CEIN Others _

NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES DIVISION OF WASTE MANAGEMENT

First Superfund Five-Year Review Report Cape Fear Wood Preserving Site Fayetteville, Cumberland County, North Carolina US EPA ID: NCD 003188828

> Prepared for US EPA Region 4 September 2006

FIRST FIVE-YEAR REVIEW REPORT CAPE FEAR WOOD PRESERVING SITE US EPA ID: NCD 003188828

Prepared for the US Environmental Protection Agency Region 4

Prepared by the State of North Carolina Department of Environment & Natural Resources

September 2006

FIRST FIVE-YEAR REVIEW REPORT CAPE FEAR WOOD PRESERVING SITE **US EPA ID: NCD 003188828**

Prepared for the US EPA Region 4

Prepared by the North Carolina Department of Environment & Natural Resources

GND

9/25/04

Approved by: Beverly H. Banister, Acting Division Director Waste Management Division US EPA Region 4

R. Donald Rigger, Branch Chief Superfund Remedial and Site Evaluation Branch **US EPA Region 4**

Richard Campbell, Chief/ Superfund Remedial and Site Evaluation Branch, Section B **US EPA Region 4**

(Som c

Jon Bornholm, RPM Superfund Remedial and Site Evaluation Branch **US EPA Region 4**

Jack Butler, Section Head NC DENR Division of Waste Management Superfund Section

Nile Testerman, Environmental Engineer NC DENR Division of Waste Management Superfund Section

Date

25/06

Ipt.

19,7006

Table of Contents

Five-Year Review Summary Formi1.0Introduction12.0Site Chronology33.0Background53.1Site Description53.2Site Topography, Geology, and Hydrogeology5	vi ix 1 3 5 5 5 8 10 10 10 10
1.0Introduction12.0Site Chronology33.0Background53.1Site Description53.2Site Topography, Geology, and Hydrogeology5	1 3 5 5 5 5 8 10 10
2.0Site Chronology3.03.0Background5.03.1Site Description5.13.2Site Topography, Geology, and Hydrogeology5.1	3 5 5 5 5 8 10 10
3.0Background53.1Site Description53.2Site Topography, Geology, and Hydrogeology5	5 5 5 8 10 10
3.1Site Description53.2Site Topography, Geology, and Hydrogeology5	5 5 8 10 10
3.2 Site Topography, Geology, and Hydrogeology 5	5 5 10 10
	5 8 10 10 10
2.2 Lond and Deserves Liss	8 10 10 10
	10 10 10
5	10 10
	10
	16
	21
e	25
	25
1	25
5	26
	26
	26
6.4.1 Original ARARs from 1989 ROD	27
6.4.2 Current Applicable ARARs	28
6.5 Data Review 22	28
6.6 Site Inspection 77	73
6.7 Interviews 77	73
7.0 Technical Assistance 77	74
7.1 Question A: Is the remedy functioning as intended by the decision	
documents?	74
7.2 Question B: Are the exposure assumptions, toxicity data, clean-up levels	
and remedial action objectives (RAOs) used at the time of the remedy still	
	75
7.3 Question C: Has any other information come to light that could call into	
	76
	77
5	77
	78
•	79
11.0 Next Review	

Tables

Table 1	Chronology of Site Event	3
Table 2	1989 ROD Specified Clean-Up Goals for Soil/Sediment	12
Table 3	Specified Clean-Up Goals for Groundwater as Stated in the 2002 ROD	
	Amendment	15
Table 4	Cost Summary for the RSE Report	22
Table 5	Summary of Remediation Costs and Projected O&M	23
Table 6	Monitoring Well Sampling Schedule	24
Table 7	Influent/Effluent Analytical Data	37-39
Table 8	Groundwater Monitoring Well Analytical Data	42-55
Table 9	Extraction Point Analytical Data	59-62
Table 10	Quarterly Historic DO and ORP Measurements	65-70
Table 11	DNAPL Recovery Summary	71-72
Table 12	Recommendations and Follow-Up Actions	78

Figures

Figure 1	Site Location Map for Cape Fear Wood Preserving Site	6
Figure 2	Historic Site Layout Map	7
Figure 3	French Drain Schematic	19
Figure 4	Soil Excavation Areas During Phase IIIB	31
Figure 5	Current Site Layout Map	34
Figure 6	2006 Potentiometric Surface Map	40
Figure 7	Groundwater Concentration Plume Map, VOC Exceedences	56
Figure 8	Groundwater Concentration Plume Map, NCAR PAH Exceedences	58

Attachments

Documents	Reviewed
	Documents

- Attachment 2: Site Inspection Checklist
- Attachment 3: Community Notice
- Attachment 4: Complete Interviews

List of Acronyms

A&RR Aberdeen and Rockfish Ra	ilroad
AGST Above-Ground Storage Tai	
ARAR Applicable or Relevant and	
CAP Capacity Assurance Plan	requirement
CAR-PAH Carcinogenic PAH	
CCA Copper-Chromium-Arsenio	
11	ental Response, Compensation, and Liability Act
CFR Code of Federal Regulation	
CLP Contract Laboratory Progra	
COC Contaminants of Concern	****
CWA Clean Water Act	
DNAPL Dense Non-Aqueous Phase	e Liquid
DO Dissolved Oxygen	
20	on Standard Operating Procedure and Quality
Assurance Manual	
ERH Electrical Resistance Heati	ng
ESD Explanation of Significant	•
ESI Expanded Site Inspection	
FD French Drain	
ICs Institutional Controls	
IG Infiltration Galleries	
MCL Maximum Contaminant Le	evel
MNA Monitored Natural Attenua	ition
MPE Multi-Phase Extraction	
MW Monitoring Well	
NCAC North Carolina Administra	tive Code
NC DENR North Carolina Departmen	t of Environment and Natural Resources
NCDWA North Carolina Drinking W	Vater Act
NCAR-PAH Non-carcinogenic PAHs	
NCR National Contingency Plan	
NCSWQS North Carolina Surface Wa	ater Quality Standards
NCWPCR North Carolina Pollution C	Control Regulation
NPDES National Pollutant Dischar	ge Elimination System
NPL National Priority List	
O&M Operation and Maintenance	e
OHM OHM Remediation Service	
ORP Oxidation-Reduction Poter	
PAH Polynuclear Aromatic Hyd	
PCOR Preliminary Close-Out Rep	
POTW Publicly Owned Treatment	Works
ppm Parts per million	
ppb Parts per billion	
PRP Potentially Responsible Pa	rty

QA/QC	Quality Assurance/Quality Control
RA	Remedial Action
RAO	Remedial Action Objective
RCRA	Resource Conservation and Recovery Act
RD	Remedial Design
RFP	Request for Proposal
RG	Remediation Goals
RI	Remedial Investigation
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
ROS	Reduction-Oxidation and Stabilization
RPM	Remedial Project Manager
RSE	Remedial System Evaluation Report
RW	Recovery Well
SARA	Superfund Amendments and Reauthorization Act
SDWA	Safe Drinking Water Act
SOW	Statement of Work
SVE	Soil Vapor Extraction
SVOC	Semi-Volatile Organic Compound
μg/l	Micrograms per liter
US EPA	United States Environmental Protection Agency
USC	Universal Standard Code
VOC	Volatile Organic Compound
WESI	Williams Environmental Services, Inc.
yd ³	Cubic yard

Executive Summary

The Cape Fear Wood Preserving Site is located in Cumberland County, North Carolina, on the western side of Fayetteville near Highway 401. Of the approximate 41 acres comprising the site, less than 10 acres were developed by the facility. The property is adjacent to other industrial/commercial establishments, as well as private residences. The Cape Fear Wood Preserving Site consists of one operable unit, encompassing both the soil and groundwater remedies at the Site. Site related contaminants associated with the groundwater are currently being remediated. This is a policy review and is the first Five-Year Review for the Cape Fear Wood Preserving Site.

Cape Fear Wood Preserving began operations at the Site in 1953 and continued until 1983. The facility produced creosote-treated wood from 1953 until 1978 when demand for creosote-treated products declined. Wastes from the creosote process were pumped into a concrete sump north of the treatment unit. As liquid separated from the sludge, it was pumped into a drainage ditch that lies southeast of the developed portion of the Site and discharged into a diked pond. Storm water run-off from the treatment yard also drained to this ditch. Waste from the treatment process was pumped into an unlined lagoon north of the dry kiln and allowed to percolate into the ground.

In 1977, the Site was determined to be contaminated with constituents of coal tar and coal tar creosote. The US EPA conducted a site reconnaissance and a site investigation in October 1984. Surface water, groundwater, soil, and sediment samples were collected from the Site. PAHs and the Chromium, Copper and Arsenic (CCA) metals were detected in all samples. As a result, the US EPA conducted an emergency removal action at the Site during January and February 1985. In May and October 1985, a Site Investigation was conducted, and analytical results again indicated that samples were contaminated with creosote-related organic compounds as well as chromium, copper, and arsenic. In September 1986, US EPA conducted a second emergency response action, when site visits revealed that vandals had shot holes in a creosote storage tank, spilling approximately 500 gallons of creosote on the ground. The Site was subsequently evaluated and included on the NPL on July 22, 1987. In 1988, the US EPA's contractor conducted a Remedial Investigation/Feasibility Study (RI/FS). On June 30, 1989, the Record of Decision (ROD) was signed for the Cape Fear Wood Preserving Site.

The remedies stated in the ROD dated June 30, 1989 provide for the remediation of contaminated soil and groundwater. The major components of the selected remedy, as stated in the ROD, include: Remediation of hazardous materials, tanks, and piping; Source control (remediation of contaminated soils through soil washing/flushing technique and excavation); and Migration control (remediation of contaminated groundwater through groundwater extraction, recovery, and treatment).

The ROD was modified by an Explanation of Significant Difference (ESD) signed on September 24, 1991. The first ESD accomplished the following: Selected soil washing over low thermal desorption as the primary technology to address soil contamination; Stipulated that the organic contaminants attached to the clay/silts in the slurry generated by the soil washing process would be bio-degraded using indigenous micro-organisms in the on-site bioreactor; Acknowledge the potential need to solidify some soil using a cement/fly ash mixture to address the elevated concentrations of the metals; Selected activated carbon adsorption as the primary treatment technology for treating groundwater; Recognized the potential need for pretreatment of the contaminated water stream to remove suspended solids and oxidized iron prior to activated carbon filtration; and Selected Bones Creek as the discharge point for the treated water.

The ROD was modified by a second ESD signed on August 14, 1995. This ESD was required in order to discharge treated water into the drainage ditch on the southeast side of the Site as activities conducted during the early phase of the RA generated small amounts of contaminated water.

The ROD was modified by a third ESD signed on May 31, 1996. This modification accomplished the following: Eliminated the bio-treatment step of the slurry from the soil remediation process, and changed the point of discharge of the treated water to the local POTW.

The ROD was modified with a ROD Amendment signed on March 23, 2001. This ROD Amendment modified the groundwater remediation alternative specified on the 1989 ROD and the 1990 RD. The ROD Amendment made the following fundamental changes to the groundwater alternative. The groundwater RA now includes: Extract contaminated groundwater and dense non-aqueous phase liquid (DNAPL) through recovery (extraction) wells and the French Drain located within the boundaries of the plume; Treat extracted groundwater to levels necessary for discharge; Amend treated water with nutrients to promote in-situ biodegradation of contaminants; Discharge amended water back into the aquifer through infiltration galleries located within and at the boundaries of the plume and if necessary discharge treated groundwater to the local POTW; Inject ambient air (air sparging) into saturated soils through air-sparge wells distributed throughout the dissolved phase of the plume; Install additional monitoring wells; and Monitor natural attenuation in the shallow and deeper aquifers.

The RA Work Assignment was issued in September 1994, and the remediation action was divided into four phases. Phase I was to clear and secure the Site, empty, clean, and dispose of storage tanks and piping, treat contaminated water, and remove/transport/dispose of debris/ hazardous waste material. Phase II was to temporarily relocate the existing railroad track, restore the railroad track following remediation of the underlying contaminated soils, and removal of the spur. Phase III was to excavate and treat contaminated soils, treat and discharge contaminated water, and backfill and restore disturbed areas. Phase IV was to install groundwater extraction wells, monitoring wells, and piezometers, construct a groundwater treatment plant, install a groundwater discharge system, and operate and maintain the groundwater treatment plant.

Phase I work began in July 1995 and was completed in September 1995. Phase II began in December 1995 and was completed by February 1996. Phase III was divided into two phases; Phase IIIA and Phase IIIB. Phase IIIA involved implementing a soil washing technology which began in June 1996. After implementation of this technology, it was determined that soil washing was not achieving the ROD soil performance standards. Therefore, the US EPA initiated low-thermal desorption for contaminated soils, Phase IIIB. Phase IIIB, the low-thermal desorption treatment, began in June 1998 and was completed in May 1999. Phase IV, groundwater remediation, began in April 2001, and by August 2001 the groundwater remedy was operational and functional.

This is the first Five-Year Review for the Cape Fear Wood Preserving Site. The purpose of this Five-Year Review is to evaluate the remedy at the Site and to determine if the action remains protective of public health and the environment.

The remedy is functioning as intended by the decision documents, ROD, ESDs, and ROD Amendment. The exposure assumptions, toxicity data, clean-up levels, and remedial action objectives used at the time of the remedy are still valid. No other information has come to light that could call into question the protectiveness of the remedy; however, there are six issues/ recommendations that have been identified during this five-year review effort:

- 1. Institutional controls have not been identified.
- 2. Institutional controls have not been implemented.
- 3. Install well(s) downgradient from monitoring well MW-161 to complete the delineation of the plume in the intermediate zone of the aquifer.
- 4. Optimization of dense non-aqueous phase liquid (DNAPL) removal. Several options have been reviewed already, including a pilot study on electrical resistance heating (ERH); however, further evaluation is needed.
- 5. Evaluate existing data, collect additional data, if needed, and determine if arsenic should be included as a COC and evaluate the potential impact of arsenic on the treatment system.
- 6. Continue the collection of monitored natural attenuation (MNA) parameters for data and trend analysis to determine if MNA can be considered as a remedial alternative for the plume peripheries.

The remedy at the Site currently protects human health and the environment in the short-term because the main source of contamination was remediated through source removal. Currently, no human or ecological exposure pathways exist to contaminated groundwater or soil. As stated in the 1989 ROD and/or 2001 ROD Amendment, the goal of the Cape Fear remedial action is to reduce on-site levels of contamination as to allow for unlimited use and unrestricted exposure. However, as there is a dense non-aqueous phase liquid (DNAPL) present, this goal will not be achieved for a long time. Therefore, to insure long-term protection during this interim, the Agency has decided to implement institutional controls at the Site.

.

	S			
Site name (from	Site name (from WasteLAN): Cape Fear Wood Preserving Site			
US EPA ID (from WasteLAN): NCD 003188828				
Region: 4	State: NC	City/County: Fayetteville, Cumberland County		
		SITE STATUS		
NPL status: 🗵	Final [] Deleted	□ Other (specify)		
Remediation sta	atus (choose all th	nat apply): Under Construction Operating		
IX Complete				
Multiple OUs?* I	DYES X NO	Construction completion date: 9 / 25 / 2001		
Has site been pi	ut into reuse?	IYES INO		
	REVIEW STATUS			
Lead agency: 🗵 US EPA 🗋 State 🗇 Tribe 🗍 Other				
Author(s) name:	: Nile Testerman	/ Stephanie Grubbs		
Author(s) title:		Author(s) affiliation: NC DENR		
Engineer/Hydrog				
Review period: 1 / 1 / 2006 to 9 / 25 / 2006				
	Date(s) of site inspection: 5 / 22 / 2006			
Type of review: Policy				
Review number: 🗵 1 (first) 🗆 2 (second) 🗆 3 (third) 🗆 Other				
Triggering Actio		· · · · · · · · · · · · · · · · · · ·		
Actual RA Onsit				
⊠Construction Co □Other	ompletion	Previous Five-Year Review Report		
Triggering action date (from WasteLAN): 9 / 25 / 2001				
Due date (five years after triggering action date): 9 / 25 / 2006				

Five-Year Review Summary Form, cont'd

Issues:

- 1. Institutional controls have not been identified.
- 2. Institutional controls have not been implemented.
- 3. Install well(s) downgradient from monitoring well MW-16i to complete the delineation of the plume in the intermediate zone of the aquifer.
- 4. Optimization of dense non-aqueous phase liquid (DNAPL) removal. Several options have been reviewed already, including a pilot study on electrical resistance heating (ERH); however, further evaluation is needed.
- 5. Evaluate existing data, collect additional data, if needed, and determine if arsenic should be included as a COC and evaluate the potential impact of arsenic on the treatment system.
- 6. Continue the collection of monitored natural attenuation (MNA) parameters for data and trend analysis to determine if MNA can be considered as a remedial alternative for the plume peripheries.

Recommendations and Follow-up Actions:

Major recommendations: Identify and implement institutional controls; Install additional monitoring well(s); Continue to optimize the groundwater remediation system; evaluate existing data, collect additional data, if needed, and determine if arsenic should be included as a COC and evaluate the potential impact of arsenic on the treatment system; and Continue to collect of MNA parameters for future evaluation of remedial options.

Protectiveness Statement:

The remedy at the Site currently protects human health and the environment in the short-term because the main source of contamination was remediated through source removal. Currently, no human or ecological exposure pathways exist to contaminated groundwater or soil. As stated in the 1989 ROD and/or 2001 ROD Amendment, the goal of the Cape Fear remedial action is to reduce on-site levels of contamination as to allow for unlimited use and unrestricted exposure. However, as there is a dense non-aqueous phase liquid (DNAPL) present, this goal will not be achieved for a long time. Therefore, to insure long-term protection during this interim, the Agency has decided to implement institutional controls at the Site.

1.0 Introduction

The purpose of conducting a Five-Year Review is to determine whether the remedy implemented at a Site is protective of human health and the environment. The methods, findings, and conclusions of this review are documented in the Five-Year Review report. In addition, Five-Year Review reports identify issues found during the review, if any, and identify recommendations to address them.

The North Carolina Department of Environment and Natural Resources (NC DENR), Division of Waste Management, Superfund Section, on behalf of the United States Environmental Protection Agency (US EPA), Region IV, has conducted a Five-Year Review of the remedial actions implemented at the Cape Fear Wood Preserving Superfund Site (Site) (US EPA ID#NCD 003 188 828). The Site is located off Reilly Road on the western side of Fayetteville, Cumberland County, North Carolina. This review was conducted from January 2006 through September 2006 and the results of this review are documented in this report. This review was conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) § 121 and the National Contingency Plan (NCP). CERCLA § 121 states:

If the President selects a remedial action that results in any hazardous substances, pollutants, or contaminants remaining at the site, the President shall review such remedial action no less often than each five years after the initiation of such remedial action to assure that human health and the environment are being protected by the remedial action being implemented. In addition, if upon such review it is the judgement of the President that action is appropriate at such site in accordance with section [104] or [106], the President shall take or require such action. The President shall report to the Congress a list of facilities for which such review is required, the results of all such reviews, and any actions taken as a result of such reviews.

The US EPA interpreted this requirement further in the National Oil and Hazardous Substance Pollution Contingency Plan (NCP); 4.0 CFR § 300.430(f)(4)(ii) states:

If a remedial action is selected that results in hazardous substances, pollutants, or contaminants remaining at the site above levels that allow for unlimited use and unrestricted exposure, the lead agency shall review such action no less often than every five years after the initiation of the selected remedial action.

The methods, findings, conclusions, and significant issues found during the review are documented in this Five-Year Review report. This Five Year Review was performed in a manner consistent with the latest US EPA Comprehensive Five-Year Review Guidance (US EPA, 2001).

The Cape Fear Wood Preserving Site consists of one operable unit, encompassing both the soil and groundwater remedies at the Site. Site related contaminants associated with the groundwater are currently being remediated. This is a policy review and is the first Five-Year Review for the Cape Fear Wood Preserving Site. The triggering action for this review is September 25, 2001, five years from the signing date of the Preliminary Close-Out Report (PCOR). A policy review is conducted when a "remedial action that, upon completion, will not leave hazardous substances, pollutants, or contaminants remain on Site above levels that allow for unlimited use and unrestricted exposure, but requires five years or more to complete" (US EPA Comprehensive Five-Year Review Guidance, June 2001). As stated in the 1989 ROD and/or 2001 ROD Amendment, the goal of the Cape Fear remedial action is to reduce on-site levels of contamination as to allow for unlimited use and unrestricted exposure. However, as there is a dense non-aqueous phase liquid (DNAPL) present, this goal will not be achieved for a long time. Therefore, to insure long-term protection during this interim, the Agency has decided to implement institutional controls (ICs) at the Site.

The purpose of this Five-Year Review is to evaluate the remedy at the Cape Fear Site in Fayetteville, North Carolina and to determine if the action remains protective of public health and the environment. More specifically, the purpose is:

- To confirm that the remedy as specified in the June 1989 Record of Decision (ROD), September 1991 Explanation of Significant Difference (ESD), August 1995 ESD, May 1996 ESD, March 2001 ROD Amendment, September 1990 Remedial Design (RD), and/or August 2000 Groundwater Design Report, remains effective at protecting human health and the environment (i.e., the remedy is operating and functioning as designed, and
- To evaluate whether the cleanup levels specified in the ROD/ROD Amendment remain protective of human health and the environment.

2.0. Site Chronology

Table 1 lists the Site chronology for selected events for the Cape Fear Wood Preserving Site.

Event	Date
The Cape Fear Wood Preserving facility became operational and produced creosote-treated wood.	1953-1978
State authorities determined the Site to be contaminated with constituents of coal tar and coal-tar creosote.	Summer 1977
The owners/operators changed operations to limit further releases, installed a new potable water well for a neighbor, and removed 900 cubic yards of creosote-contaminated soil.	January-March 1985
A closed circuit copper-chromium-arsenic (CCA) process plant was installed and the old creosote and CCA facility was decommissioned.	1979-1980
The new CCA plant was regulated under the Resource Conservation and Recovery Act (RCRA) as a small generator until the company went out of business.	1980-1983
Site reconnaissance and Site Investigation was conducted by US EPA.	October 1984

 Table 1 - Chronology of Site Events

Event	Date
US EPA issued Special Notice Letters to the Potentially Responsible Parties (PRPs) informing them of US EPA's intention to conduct CERCLA remedial activities unless they chose to conduct remedial activities themselves.	December 14, 1984
US EPA conducted an emergency removal action at the Site.	January-March 1985
Hazard Ranking System (HRS) package completed.	July 31, 1985
Site proposed for listing on the National Priority List (NPL).	June 10, 1986
Site Investigation report completed.	June 13, 1986
US EPA conducted a second emergency response.	September 1986
Preliminary Assessment completed.	October 10, 1986
Final listing on NPL.	July 22, 1987
Since the close of operations in 1983, the Site was abandoned and purchased by SECo, Investment, Inc.	Summer 1988
PRPs were sent notice letters informing them that US EPA was planning on spending fund monies to clean-up the Site.	June 5, 1989
Combined Remedial Investigation (RI) and Feasibility Study (FS) complete.	June 30, 1989
Record of Decision (ROD) signed.	June 30, 1989
Remedial Design report completed.	September 20, 1991
ROD was modified with an ESD. This ESD selected soil washing over low thermal desorption, organic slurry generated by the soil washing to be bio-degraded using indigenous microorganisms, potential need to solidify some soil, selected activate carbon adsorption for groundwater treatment, potential need for pretreatment technology for groundwater, and selected discharge point for treated water.	September 24, 1991
Phase 1 work began on Site. Phase 1 consisted of clearing, installing a fence, disposal of storage tanks, treatment of contaminated water, and removing hazardous material (CCA crystals/solidified creosote/asbestos).	July 25 through September 5, 1995
The ROD was modified with a second ESD. This modification was needed in order to discharge treated water into an on-site drainage ditch.	August 25, 1995
Phase II began on site. Temporary relocation of the existing railroad tracks and then restoration of the tracks following remediation of the underlying contaminated soil and removal of the spur.	December 1995 through February 1996

Event	Date
The ROD was modified with a third ESD. This modification was issued to eliminate the biotreatment step from the soil remediation process and change the point of discharge of the treated water to the local Publicly Owned Treatment Works (POTW).	May 31, 1996
Following the submittal of the Soil Washing Demonstration Test Report, the Agency concluded that the soil washing process did not achieve the ROD's soil performance standards. Consequently, the Agency initiated low-thermal desorption which was the contingency remedy for soils specified in the 1989 ROD.	September through October 1996
Phase III was initiated on site. Phase III was the soil remediation phase of the RA.	June 1996 through September 1999
Remedial Action Completion Report was completed.	September 1999
The ROD was modified with a ROD Amendment. This modification was to fundamentally change the groundwater alternative. The groundwater RA changed to extraction and treatment of groundwater, amend treated groundwater to promote biodegradation, discharge amended water back to aquifer, if needed, discharge treated groundwater to POTW, air sparging, install additional monitoring wells, and monitor natural attenuation.	March 23, 2001
Phase IV was initiated on site. Phase IV was the groundwater remediation phase of the RA. Installation of extraction and monitoring wells, construction of groundwater treatment plant, installation of discharge system, and operation and maintenance of groundwater treatment plant.	April 2001 through present
Preliminary Close-Out Report (PCOR) completed for groundwater and soil remedies.	September 25, 2001
Remedial Action (RA) report was completed.	June 24, 2002
Construction activities begin on the Electrical Resistance Heating (ERH) Pilot Study.	July 27, 2004
Completion of the Remedial Site Evaluation (RSE) Report.	February 1, 2005
Initiated the Five-Year Review effort.	January 2006
ERH Pilot Study Report submitted to US EPA from WRS Infrastructure & Environment, Inc.	May 17, 2006

3.0 Background

3.1 Site Description

The Cape Fear Wood Preserving Site is located in Cumberland County, North Carolina, on the western side of Fayetteville near Highway 401, near the intersection of 35°02' 57" North latitude and 79°01' 17" West longitude. Of the approximate 41 acres comprising the site, less than 10 acres were developed by the facility. The property is adjacent to other industrial/

commercial establishments, as well as private residences. Four homes are located near the Site and a subdivision is located approximately 0.25 miles south of the Site. Figure 1 shows the Site location and topographic map of the area. Figure 2 shows the historical layout of the Site.

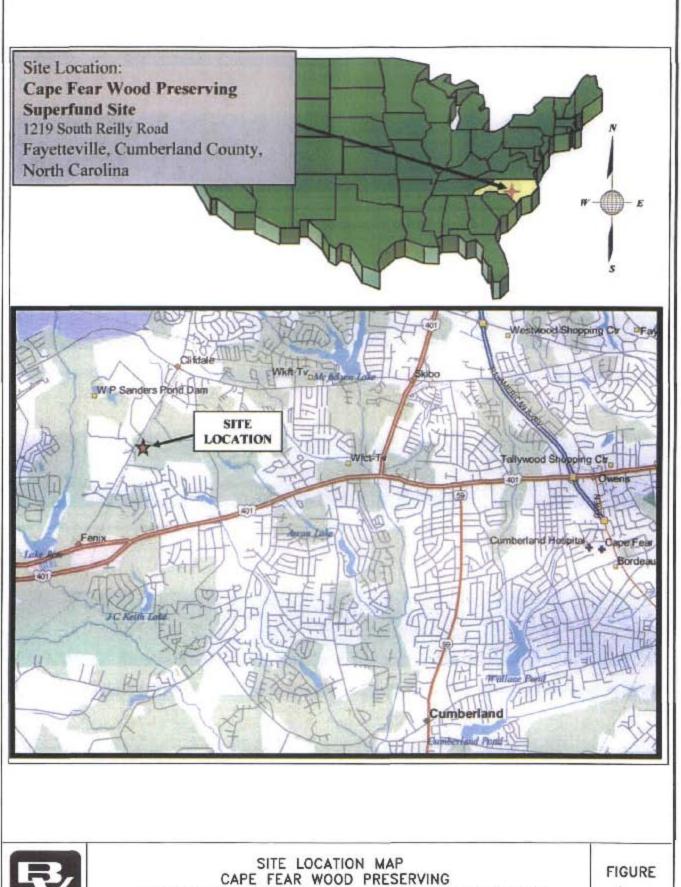
3.2 Site Topography, Geology, and Hydrogeology

The Site is situated on a 41-acre tract of land. Of the 41-acres, 10-acres were developed by the facility and the remainder of the property is heavily wooded with conifer trees, and a small swampy area northeast of the developed area. The swampy area consists of a seasonally flooded wetland dominated by rushes. The upland section of the Site is sandy and well drained. No endangered plant or animal species were identified during the Remedial Investigation (RI).

The terrain at the Cape Fear Site is predominantly flat with its drainage provided by the swampy area on the northeastern side of the Site and a man-made ditch along the southern portion that extends eastward to the former location of the diked pond. Currently the man-made ditch continued off-site, flowing east.

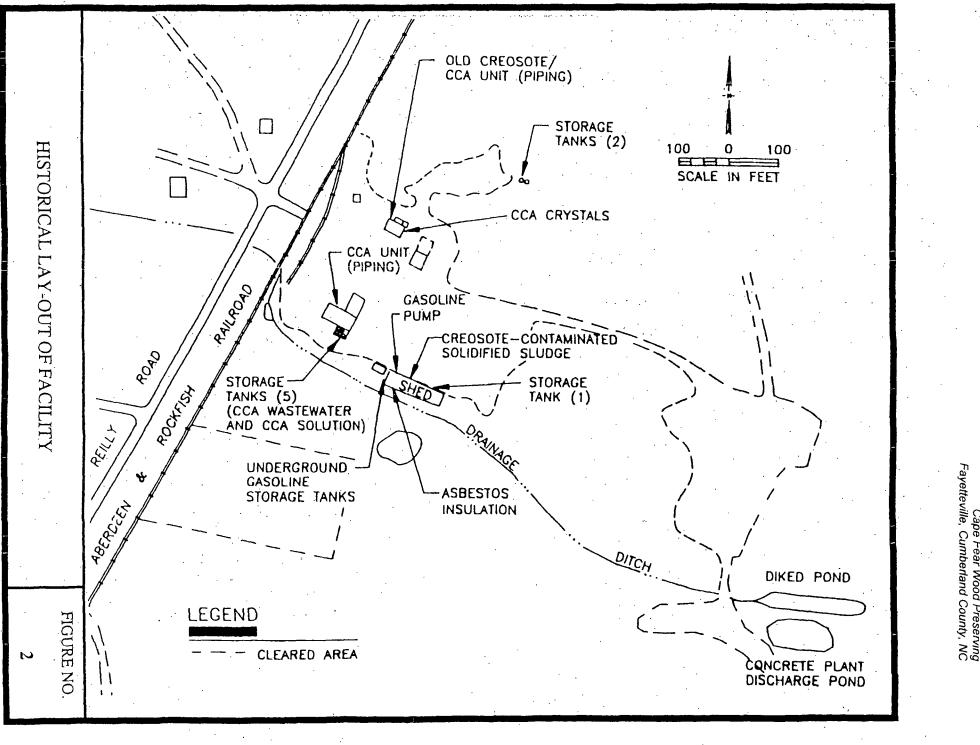
The Site is underlain by two aquifers of concern, and these aquifers are separated by an aquitard. At the Site, flow in the lower aquifer is generally southwestward and flow in the upper shallow aquifer is radial. Flow also occurs downward through the aquitard from the upper to the lower aquifer.

3.3 Land and Resource Use


Land use is varied around the Site. The properties north and east include an undisturbed pine forest; to the west is farmland and residences; and a concrete plant and the Southgate subdivision lie to the south.

3.4 History of Contamination

Cape Fear Wood Preserving began operations at the Site in 1953 and continued until 1983. The facility produced creosote-treated wood from 1953 until 1978 when demand for creosote-treated products declined. Wood was then treated by a wolmanizing process using salts containing sodium dichromate, copper sulfate, and arsenic pentoxide. This treatment process is known as the copper-chromium-arsenic (CCA) process. The date the CCA process was initiated is unknown, as is whether the creosote and CCA process occurred simultaneously or in succession.


Both liquid and sludge wastes were generated by these two treatment processes. Wastes from the creosote process were pumped into a concrete sump north of the treatment unit. As liquid separated from the sludge, it was pumped into a drainage ditch that lies southeast of the developed portion of the Site and discharged into a diked pond. Storm water run-off from the treatment yard also drained to this ditch. Waste from the CCA treatment process was pumped into an unlined lagoon north of the dry kiln and allowed to percolate into the ground.

During the summer of 1977, the Site was determined to be contaminated with constituents of coal tar and coal tar creosote. In response to orders from the State of North

FAYETTEVILLE, CUMBERLAND COUNTY, NORTH CAROLINA

1

Carolina, the owner/operators altered the operations of the facility to comply with North Carolina law by limiting further releases, installing a new potable water well for a neighboring residence west of the Site, and removing creosote contaminated soil from the treatment yard and the drainage ditch running parallel to the railroad right-of-way. The contaminated soil was transported for land spreading to a leased property approximately 2.5 miles south of the Site. Soil sampling on this property, as part of the RI, revealed low levels of polycyclic aromatic hydrocarbons (PAHs).

Sometime between 1979 and 1980, a new closed-circuit CCA treatment was installed, and the old creosote and CCA facilities were decommissioned. The new CCA plant was regulated under Resource Conservation and Recovery Act (RCRA) as a small generator until 1983, when the company was abandoned. The Site has remained unused since 1988, when SECo Investments, Inc. purchased the property.

The US EPA conducted a site reconnaissance and a site investigation in October 1984. Surface water, groundwater, soil, and sediment samples were collected from the northeast swamp, diked pond, lagoon, drainage ditch, and a domestic well west of the Site. PAHs and the CCA metals were detected in all samples. As a result, the US EPA conducted an emergency removal action at the Site during January and February 1985. This action included: removal of creosote sludge from the creosote concrete sump; removal of sludge from the lagoon to a depth of 7 feet and solidification of the sludge with fly ash; pumping of lagoon water into storage tanks south of the new CCA unit; removal of contaminated soil from the drainage ditch parallel to the railroad tracks and at an intersecting culvert; removal of contaminated soil from a portion of the northeast swamp and stained areas in the treatment yard; and backfilling of excavation with clean, sandy soil. All contaminated soils and sludges were transported to a hazardous waste landfill in Pinewood, South Carolina.

In May and October 1985, US EPA contractor, NUS Corporation, collected soil, sediment, surface water and groundwater samples for the site investigation. Analytical results again indicated that samples were contaminated with creosote-related organic compounds as well as chromium, copper, and arsenic. In September 1986, US EPA conducted a second emergency response action, when site visits revealed that vandals had shot holes in a 3,000 gallon creosote storage tank, spilling approximately 500 gallons of creosote on the ground. The clean-up action included: removal, solidification, and transport of approximately 10 cubic yards of creosote-contaminated sludge to an on-site metal shed east of the new CCA unit; removal and transport of the creosote storage tanks to the on-site metal shed; excavation and grading of the area where the release had occurred; pumping of approximately 15,000 gallons of the CCA waste water from the CCA recovery sump into the on-site storage tanks south of the new CCA unit; and containment of the CCA recovery sump within an earthen dike. The Site was subsequently evaluated and included on the NPL on July 22, 1987.

During the fall 1988, at the direction of the Cumberland County building/construction inspector, the owner (Seco Investments) retrenched most of the drainage ditch, dug several new drainage trenches, and breached the diked pond. The ditch, sediments in the diked pond, and the sediments in the diked pond were to be remediated.

In 1988, US EPA contractor, Camp, Dresser, and McGee, Inc., conducted a Remedial Investigation/Feasibility Study (RI/FS). On June 30, 1989, the ROD was signed for the Cape Fear Wood Preserving Site.

4.0 Remedial Actions

4.1 Basis for Taking Remedial Action

The purpose of the remedial action as stated in the 1989 ROD is to minimize, if not mitigate contamination in the soils, groundwater, and surface waters and sediment and to reduce, if not eliminate, potential risks to human health and the environment. The following clean-up objectives were determined based on regulatory requirements and levels of contaminants found at the Site:

- To Protect the public health and the environment from exposure to contaminated on-site soils through inhalation, direct contact, and erosion of soils into surface water and wetlands;
- To prevent off-site movement of contaminated groundwater; and,
- To restore contaminated groundwater to levels protective of human health and the environment.

4.2 Remedy Selection

June 1989 Record of Decision

The remedies stated in the Record of Decision (ROD) dated June 30, 1989 provide for remediation of contaminated soil and groundwater. Although the ROD indicates that ICs are to be implemented at the Site, the ROD does not specify what ICs are to be implemented nor does the ROD specify the use of ICs as a major component of the remedy. The major components of the selected remedy, as stated in the ROD, include:

Remediation of Hazardous Materials, Tanks, and Piping:

- Sodium dichromate-copper sulfate-arsenic pentoxide (CCA) salt crystals, the solidified creosote, and asbestos-containing pipe insulation will be disposed of off site. The CCA crystals and solidified creosote will be disposed of at a RCRA permitted landfill. The asbestos-containing pipe insulation will be disposed of at the Cumberland County Solid Waste Facility pursuant to the facilities specifications.
- The tanks and associated piping, above and below ground, will be emptied, flushed and cleaned until non-hazardous. The metal will be cut and sold or either taken to the Cumberland County Solid Waste Facility pursuant to the facilities specifications. For all other material deemed hazardous, will be transported to a RCRA permitted landfill for disposal.

• The contents of the tanks and associated piping contains approximately 50,000 gallon of 3 percent CCA solution and 15,000 gallons of CCA contaminated wastewater. The 3 percent solution will go out for bid to purchase and if no buyer is interested, the 3 percent solution and the wastewater will be treated on site through the water treatment system set up for treating the pumped surface water and extracted groundwater.

Source Control (Remediation of Contaminated Soils):

- The preferred alternative for the remediation of contaminated soils/sediment is a soil washing/flushing technique. The alternate source control alternative is a low temperature process to remove the organic contaminates followed by either a soil washing/flushing technique or soil fixation/solidification/stabilization process to address the inorganics. The decision will be based on data generated by the soil washing/flushing treatability study conducted during the remedial design (RD) phase.
- Contaminated soil/sediment will be excavated, treated and placed back in the excavation. All wastewater will either be reused or treated on site.

Table 2 lists the 1989 ROD Specified Clean-Up Goals for Soil/Sediment.

Migration Control (Remediation of Contaminated Groundwater):

- Groundwater extraction will be accomplished through the use of well points in the upper (surficial) aquifer. Recovery will be conducted in 10,000 square foot subareas at a time, and the well points will be removed to adjacent areas for sub sequential dewatering.
- Due to local contamination of the lower aquifer, the lower aquifer will be pumped following remediation of the overlying upper aquifer in this area.
- A water treatment system will be established on site. The system's influent will include contents of the tanks and piping, all wastewater generated due to remedial actions, pumped surface water, and extracted groundwater. The discharge location of the treated water will either be the local publicly owned treatment works (POTW) or a surface stream. This decision of point of discharge will occur during the RD phase. All effluents will meet all applicable and relevant or appropriate requirements (ARARs).

September 1991 First Explanation of Significant Difference

The ROD was modified by an Explanation of Significant Difference (ESD) signed on September 24, 1991. As part of the findings from the two treatability studies conducted as part of the 1989-1990 RD, the first ESD accomplished the following:

- Selected soil washing over low thermal desorption as the primary technology to address soil contamination at the Site;
- Stipulated that the organic contaminants attached to the clay/silts in the slurry generated by the soil washing process would be bio-degraded using indigenous micro-organisms in the on-site bioreactor;
- Acknowledge the potential need to solidify some soil using a cement/fly ash mixture to address the elevated concentrations of the metals (arsenic and chromium);

- Selected activated carbon adsorption as the primary treatment technology for treating groundwater;
- Recognized the potential need for pretreatment of the contaminated water stream to remove suspended solids and oxidized iron prior to activated carbon filtration; and
- Selected Bones Creek as the discharge point for the treated water.

CONTAMINANT	Soil Remediation Level (Clean-up Goal) mg/kg	Rationale for clean-up Level
Soil		
Arsenic	94	a&b
Benzene (leachate case)	0.005	С
Chromium (leachate case)	88	d
PAHs	2.5	a&e
Total PAHs	100	f
Sediment		
Arsenic	94	ър
Chromium (leachate case)	88	g
Total PAHs	3	h

Table 2: 1989 ROD Specified Clean-Up Goals for Soil/Sediment:

a - The value derived using reverse risk assessment techniques.

b - The future use worker scenario is used since this is the more likely land use and arsenic is not posing a significant risk under current use conditions.

- c The Contract Laboratory Required Quantitation Limit is proposed since the calculated risk assessment value is below analytical detection limits. Should this limit be reduced with time as analytical procedures improve, the newer (lower) limit would become the cleanup goal,
- d The value represents Site background conditions since the calculated risk assessment value is below background levels,
- e The value listed represents a current use scenario since this is more conservative than the levels derived for the future use worker scenario,
- f The value is based on typical background concentrations (from the literature) since the calculated level necessary to prevent future leachate from exceeding a hazard index of 1 in the groundwater (60 mg/kg) is less than representative background conditions.
- g The same value proposed for soils is applied due to a similar human exposure route and low expected impact to surface water on a volumetric basis,
- h Concentration researched by US EPA to be protective of aquatic biota.

mg/kg - milligrams per kilogram or parts per million

August 1995 Second Explanation of Significant Difference

The ROD was modified by a second ESD signed on August 14, 1995. This ESD was required in order to discharge treated water into the drainage ditch on the southeast side of the Site as activities conducted during the early phase of the RA generated small amounts of contaminated water. Since the discharge pipeline would not be installed until later into the Remedial Action (RA), the contaminated water generated was treated and discharged on site. The water discharged on site was treated using activated carbon to meet the substantive requirements of a National Pollutant Discharge Elimination System (NPDES) permit.

May 1996 Third Explanation of Significant Difference

The ROD was modified by a third ESD signed on May 31, 1996. This modification accomplished the following:

- Eliminated the biotreatment step of the slurry from the soil remediation process, and
- Changed the point of discharge of the treated water from Bones Creek to the local POTW.

March 2001 Record of Decision Amendment

The ROD was modified with a ROD Amendment signed on March 23, 2001. This ROD Amendment modified the groundwater remediation alternative specified on the 1989 ROD and the 1990 RD. The ROD Amendment made the flowing fundamental changes to the groundwater alternative. The groundwater RA now includes:

- Extract contaminated groundwater and dense nonaqueous phase liquid (DNAPL) through recovery (extraction) wells and the French Drain located within the boundaries of the plume.
- Treat extracted groundwater to levels necessary for discharge.
- Amend treated water with nutrients to promote in-situ biodegradation of contaminants.
- Discharge amended water back into the aquifer through infiltration galleries located within and at the boundaries of the plume and if necessary, discharge treated groundwater to the local POTW.
- Inject ambient air (air sparging) into saturated soils through air sparge wells distributed throughout the dissolved phase of the plume.
- Install additional monitoring wells.
- Monitor natural attenuation in the shallow and deeper aquifers.

The groundwater clean-up goals were also updated to reflect new North Carolina groundwater requirements. None of the soil clean-up levels were modified during the 2001 ROD Amendment. Table 3 is the new groundwater performance standards as presented in the ROD Amendment.

Table 3: Specified Clean-Up Goals for Groundwater as Stated on the2001 ROD Amendment:

2001 KOD Amenument:					
CONTAMINANT	Performance Clean-Up Standard (µg/l)	Basis for Standard			
Volatile Organic Compounds (VOCs)					
Benzene	1	15ANCAC2L			
Carcinogenic Polycyclic Aro	matic Hydrocarbon (PAHs)				
Benzo(a) anthracene	0.05	15ANCAC2L			
Benzo(b) fluoranthene	0.047	15ANCAC2L			
Benzo(k) fluoranthene	0.47	15ANCAC2L			
Benzo(a) pyrene	0.0047	15ANCAC2L			
Chrysene	5	15ANCAC2L			
Dibenzo(a, h) anthracene	0.0047	15ANCAC2L			
Indeno(1,2,3-cd) pyrene	0.47	15ANCAC2L			
Non-Carcinogenic Polycyclic	e Aromatic Hyrdocarbon (PAHs)			
Acenaphthene	80	15ANCAC2L			
Acenaphthylene	210	15ANCAC2L			
Anthracene	2,100	15ANCAC2L			
Fluorene	280	15ANCAC2L			
Fluoranthene	280	15ANCAC2L			
Naphthalene	21	15ANCAC2L			
Phenanthrene	210	15ANCAC2L			
Pyrene	210	15ANCAC2L			

4.3 Remedy Implementation

Following the approval of the RD in September 1990, the project became dormant for four years as the State of North Carolina had difficulty in resolving its capacity assurance issue. Section 104(c)(4) of CERCLA, as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), requires each State to have a capacity assurance plan (CAP) that assures the State will have adequate capacity for the destruction, treatment, or secure disposition of all hazardous wastes that are reasonably expected to be generated within the State during the next two decades. US EPA cannot spend remedial action money in a State that is not in compliance with this section of CERCLA. The capacity assurance issue was rectified in the summer of 1994. The RA Work Assignment was issued in September 1994.

During discussion with US EPA's RA contractor, it was decided to divide the RA into four phases. The four phases are as follows:

Phase I - Clear the Site; install an access control fence around the entire Site; empty, flush, clean, and dispose of nine storage tanks and associated piping; treat contaminated water (surface water, storage tank liquids, rinse water, water from dewatering excavation, etc.) by means of a temporary treatment facility; and remove/transport/dispose of debris/ hazardous waste material [CCA crystals and solidified creosote] and asbestos-containing insulation to either a municipal landfill or a RCRA-permitted hazardous waste landfill (as appropriate).

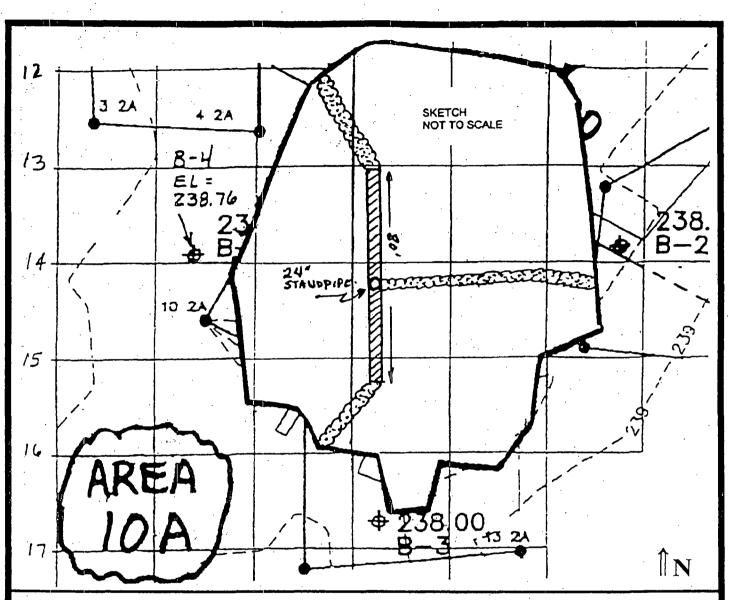
Phase II - Temporarily relocate the existing railroad track and then restore the railroad track following remediation of the underlying contaminated soils and removal of the spur.

Phase III - Install the discharge pipeline to the POTW; dismantle/demolish and dispose of building structures; excavate and treat contaminated soils; treat and discharge contaminated water; and backfill and restore disturbed areas.

Phase IV - Install groundwater extraction wells, monitoring wells, and piezometers; construct groundwater treatment plant; install groundwater discharge system; and operate and maintain groundwater treatment plant.

Phase I work began the week of July 25, 1995 and was completed the week of September 5, 1995 with the exception of disposing of the solidified creosote and sludge from the tanks. This material was stored in roll-offs and was shipped to a RCRA-permitted hazardous waste facility for final disposal at a later date. Phase II began the week of December 1, 1995 and was completed the week of February 12, 1996. Following the relocation of the existing railroad track and the removal of the underlying contaminated soils, the excavation was backfilled with clean soil brought from an off-site source and the railroad track was restored along its original route.

The soil remediation phase was subdivided into two (2) phases: Phase IIIA and Phase IIIB. Phase MIA involved implementing a soil washing technology. Mobilization of equipment to the Site to conduct the soil washing demonstration test began on June 11,1996. The actual demonstration test was completed on September 23, 1996. Following the submittal of the Soil Washing Demonstration Test Report on October 5, 1996, the Agency concluded that the soil washing process did not achieve the ROD'S soil performance standards. Consequently, the Agency initiated low-thermal desorption which was the contingency remedy for soils specified in the 1989 ROD. A December 1996 fact sheet informed the public that the soil washing demonstration test failed to achieve the soil performance standards, and therefore, the Agency abandoned the soil washing remedy and would implement the contingent remedy, low-thermal desorption to remediate the soils.


The treatment of the soils via low-thermal desorption was designated as Phase IIIB. The low-thermal desorption subcontractor began mobilization to the Site on June 12, 1998. Typically, the thermal treatment system operated 24 hours/day, 7 days/week with occasional shutdowns for preventative, corrective, and emergency maintenance work. Treatment of contaminated soil began on July 8, 1998 and was completed on May 1, 1999. A stack test for emissions was not required as the low-thermal desorption subcontractor was able to establish to the regulators satisfaction that the system constructed on site had met clean air standards at other sites treating the same type of contaminants. No soils were solidified as all the treated soils were below the performance standards for arsenic and chromium.

The 1989 ROD originally estimated 24,000 cubic yards on soil requiring treatment. In the Request for Proposal (RFP) package, this volume was increase to 50,000 cubic yards. Approximately 113,000 cubic yards of contaminated soils were eventually excavated, thermally treated, backfilled, graded, and re-vegetated. The final inspection for Phase IIIB was conducted on June 1, 1999. NCDENR/Land Quality Section accepted the final regrading/re-vegetation/ erosion control on September 2, 1999.

In the bottom of the largest excavation in the middle of the Site, a groundwater extraction trench or French Drain was installed prior to backfilling this excavation with treated soils. The drain itself is 80 feet long approximately 25 feet below grade. Three fingers extend from the French Drain, one at each end of the drain and one emanating from the standpipe. These fingers were added to the French Drain to increase its influence in the underlying subsurface environment. Figure 3 provides a schematic of this French Drain. The two primary goals for installing this drain were to enhance the removal of DNAPL emanating from the west-northwest and the west-southwest side walls of the excavation and allow the elimination of a significant number of extraction wells called for in the 1990 RD. The soil remediation phase did not pursue removing this DNAPL as it was below the water table and the Agency elected to deal with the DNAPL along with groundwater.

A Statement of Work (SOW) to reassess the groundwater RD was issued in September 1999. This evaluation was documented in the August 2000 Groundwater Design Report. This report recommended abandoning the original groundwater extraction system and implementing a more traditional groundwater extraction approach using permanent extraction wells. In August 2000, the SOW to implement the revised groundwater (Phase IV) RD was issued. The Phase IV RFP was issued on October 13, 2000 and the contract to build and operate the system for 30 months was executed on March 21, 2001.

The Phase IV subcontractor began mobilizing equipment and personnel to the Site the week of April 30, 2001. The groundwater remediation system included seven recovery wells, the French Drain, twelve air sparging wells, ten infiltration galleries, 35 monitoring wells, and the treatment building. Inside the treatment building is an oil-water separator, a 10,000 gallon equalization tank, bag filters, two granular activated carbon filters, two air compressors, and all the controls for these systems. Three of the recovery wells and the French Drain have two pumps, one to remove contaminated groundwater and establish hydraulic control and one to capture DNAPL. All pumps are pneumatic. The three-day start-up test on the entire system began on August 13, 2001. The five-day field performance test began on August 16, 2001. The system ran successfully for 24-hours per day for the five days. The Phase IV subcontractor

STANDPIPE: 24-inch diameter schedule 40 steel pipe. The bottom 10-foot section covered with ½-inch holes. The bottom is a solid steel plate without holes. Upon installation, the standpipe was modified to limit the bottom section to six-feet by applying two layers of heavy polyethylene liner over the upper four-feet of holes. The two layers of polyethylene were secured by stainless steel bands.

FINGERS: The 80-foot long trench is supplemented with three (3) extensions to provide a preferential pathway for the migration of contaminated groundwater from areas away from the trench location. Two fingers extend diagonally from the ends of the trench to the SW and NW corners of the excavation. One finger extends northeasterly from the standpipe to the far side of the excavation. These fingers were constructed with materials listed below. The fingers were installed in shallow (12-18 inch) deep trenches, 3-4 foot wide. All fingers were rock filled and completely covered with geotextile (top to bottom).

SUBSURFACE GROUNDWATER EXTRACTION TRENCH

Length -- 80 feet (not including finger extensions) Depth -- 6-8 feet (6-feet deep at ends, 8-foot deep in the middle) Fabric -- TG700 (8-Oz.) 15-foot wide x 300-foot wide 11/2 rolls Width -- 36-inches Fill -- No. 4 rock - 175 tons

ORIENTATION AND LOCATION OF FRENCH DRAIN

3

FIGURE NO.

demobilized from the Site the week of August 27, 2001. On July 1, 2002, the US EPA and NC DENR concurred that the groundwater remedy was operational and functional.

In July 2004, construction activities for the Electrical Resistance Heating (ERH) Pilot study were underway. The study objectives were: design, construct, and operate (for four months) a pilot scale DNAPL recovery and treatment system utilizing the Electro-Thermal Dynamic Stripping ProcessTM technology; and, evaluate the effectiveness (comparing pre- and post-pilot analytical data and percent removal of PAHs and total DNAPL mass removed) and efficiency (comparing the engineered system's performance to the engineered design specifications) of recovering DNAPL from the most heavily impacted areas of the Site.

The Electro-Thermal Dynamic Stripping ProcessTM utilizes ERH to heat the subsurface soils and aquifer matrix. This is accomplished by passing an electrical current between electrodes installed in the subsurface. As the current passes through the soil matrix, heat is generated due to the electrical resistivity of the soil matrix. The heat generated facilitates mobilization of the contaminant mass. Once mobilized, the contaminant mass is removed through proven extraction methods (i.e., Soil Vapor Extraction (SVE), dual phase extraction, groundwater extraction, etc.). The primary goal of effective in-situ thermal ERH remediation is to increase contaminant mass recovery rates by mobilizing contaminants and increasing their concentration in extracted media.

Based on the four month pilot study, a total of 4,629 pounds of contaminant mass was recovered in the dissolved, vapor, and free phases. The percent mass recovered in the liquid and vapor phases was 60.2% and 39.8%, respectively. From the data gained from the pilot study, thermally-enhanced treatment significantly increased the contaminant mass removal rate and mobilized through mechanisms such as reduced viscosity, increased volatility and aqueous solubility, and secondary permeability. However, it should be noted that the increased cost for this treatment technology is currently being evaluated for it's potential as an alternative treatment for DNAPL removal.

In February 2005, a Streamline System Evaluation Report (RSE-Lite) was submitted to the US EPA. The US EPA funded the work and preparation of the document by GeoTrans, Inc., under US EPA contract to Dynamac Corp., Ada, Oklahoma. The RSE-Lite involves a team of expert hydrogeologists and engineers, independent of the Site, conducting a third-party evaluation of Site operations. The RSE-Lite process considers the goals of the remedy, Site conceptual model, above-ground and subsurface performance, and Site exit strategies. Several observation and recommendations were made regarding effectiveness, cost reduction, technical improvement, and Site closeout. Recommendations for effectiveness focused primarily on plume delineation and construction of potentiometric surface maps. Recommendations for cost reduction include changing to a local contractor for operation and maintenance (O&M) services and groundwater sampling, and reducing the groundwater sampling locations and frequency. The technical improvement recommendations include considering an alternative to using a sequestering agent, reducing frequency of water level measurements, and discontinuing dissolved oxygen monitoring. The recommendations for Site close-out, documents the RSE-Lite team's suggestions regarding evaluating various current remedy components by running them independently and suggestions regarding potential scale-up issues associated with the thermal

pilot study. Table 4 is a summary table of the recommendation from the RSE-Lite report, including estimated costs and/or savings associated with these recommendation.

4.4 System Operation/Operation and Maintenance

The cost estimates to implement the RA at the Cape Fear Wood Preserving Site as described in the 1989 ROD, the 1990 RD, and the 2001 ROD Amendment are presented in Table 5.

Black & Veatch, with the assistance of the previous subcontractor WRS Environmental and Infrastructure, constructed the system and initiated O&M activities at the Site starting in August 2001. Proterra Consulting, Inc., initiated O&M activities at the Site in June 2005 for Black & Veatch. Monthly reports are provided with a summary of the O&M status and analytical data for the groundwater treatment system.

Phases I, II, and III of the RA have been successfully completed. Therefore, there are no O&M issues or costs associated with the soils at the Site. In February 2005, the final RSE-Lite report was published by the US EPA. The RSE Site Team recommended reducing the sampling frequency from quarterly to annually. The sampling frequency had already been reduced in 2004 when the Site team recommended reducing the sampling frequency to semi-annually by eliminating two sampling events. The 2005 RSE report concluded that the annual sampling would adequately monitor the progress toward restoration and evaluate the attenuation of contaminants at the plume boundaries. It was also concluded that the new monitoring schedule would reduce groundwater monitoring cost from \$50,000 per year to approximately \$15,000 per year. Currently, groundwater samples are collected and analyzed on a semiannual or annual basis, based on the well. See Table 6 for the monitoring well sampling schedule dated February 14, 2005.

In accordance with the ROD and ESDs, dissolved oxygen (DO) levels have been recorded on a monthly basis since the system start-up. Oxygen reduction potential (ORP) measurements were conducted on an annual basis as part of the monitored natural attenuation (MNA) program. The 2005 RSE report, recommended reducing water level measurements from monthly to quarterly and discontinue collecting DO measurements. The collection of water levels measurements have been reduced in frequency to the recommended schedule in the RSE report. However, the DO measurements are still being collected, although at a reduced monitoring schedule from monthly to quarterly, and ORP is collected annually. The RSE report also recommended that the semi-monthly water level measurements from the recovery wells, French drain, and infiltration galleries should continue at that frequency.

O&M costs include monthly site visits for routine equipment checks, non-scheduled maintenance of equipment, groundwater monitoring events as scheduled by the US EPA and NC DENR, and the assemblage of all the monthly data and activities into an O&M Monthly Report. Based on the 2005 RSE report, several modifications were made regarding the sampling frequency (as stated in the previous paragraph) and O&M labor. The report recommended that the current O&M contractor, Black & Veatch, should hire a local contractor to oversee the monthly O&M services so that additional costs associated with travel, approximately \$60,000 per year, could be eliminated. As of June 1, 2005, Proterra Consulting, P.C. was subcontracted to perform the routine O&M activities with a one-year contract, with two one-year option periods.

Table 4: Cost Summary Table

Recommendations	Reason	Additional Capital Costs (\$)	Estimated Change in Annual Costs (\$/yr.)	Estimated Change in Life-Cycle costs (\$) *	Estimated Change in Life Cycle Costs (\$) **	Status of Implementing Recommended Action
6.1.1 Install and sample a monitoring well downgradient of MW-16	Effectiveness	\$15,000	negligible	\$15,000	\$15,000	Still needs to be completed
6.1.2 Sample outer monitoring well annually	Effectiveness	negligible	\$4000	\$120,000	\$65,000	Has been implemented
6.1.3 Do not use water levels from operating recovery wells or infiltration galleries when generating potentiometric surface maps	Effectiveness	\$0	\$0	\$0	\$0	Has been implemented
6.2.1 Contract O&M services and groundwater sampling to a local contractor	Cost Reduction	negligible	(\$85,000)	(\$2,550,000)	(\$1,372,000)	Current O&M contractor is local
6.2.2 Eliminate select monitoring wells from groundwater monitoring program and reduce sampling (and associated reporting) frequency from guarterly to annually	Cost Reduction	negligible	(\$35,000)	(\$1,050,000)	(\$565,000)	Has been implemented
6.3.1 Consider alternatives before adding a sequestering agent	Technical Improvement	Not quantified	Not quantified	Not quantified	Not quantified	Air sparging wells have been terminated
6.3.2 Reduce frequency of water level measurements from monitoring wells, discontinue DO monitoring, and simplify monthly O&M reports	Technical Improvement	Included in 6.2.1	Included in 6.2.1	Included in 6.2.1	Included in 6.2.1	Has been implemented
6.3.3 Ass a suffix to well labels to indicate shallow and deep wells	Technical Improvement	\$0	\$0	\$0	\$0	Has been implemented
6.4.1 Evaluate effectiveness of various remedy components	Site closeout	Not quantified	Not quantified	Not quantified	Not quantified	Has been implemented
6.4.2 Considerations for evaluating the thermal pilot study	Site closeout	\$0	\$0	\$0	\$0	Has been implemented

Costs in parenthesis imply cost reductions. * assumes 30 years of operation with a discount rate of 0% (i.e. no discount) ** assumes 30 years of operation with a discount rate of 5% and no discounting in the first year

Remedial Action	1989 ROD (present worth)	1990 RD	2001 ROD Amendment	Actual Costs
Phase I - General Site Cle	an-Up			
Phase I	\$258,900	\$486,600		Subcontractor \$498,700 Oversight \$341,800
Phase II – Remediating Co	ontaminated Soils	Beneath Railroa	d Track	
Phase II	Not Specified	\$164,800		Subcontractor \$300,700 Oversight \$270,100
Phase IIIA – Soil Washing				
Phase IIIA (including solidification of some of the soils)	\$9,951,100	\$10,644,400		Subcontractor \$1,768,800 Request for EAS* \$1,650,000 Oversight \$549,900
Phase IIIB – Thermal Treat	tment of Soils			
Phase IIIB	\$14,030,000			Subcontractor & Oversight \$13,288,800
Phase IV – Groundwater F	Remediation			
Construction + 30 yrs O&M Construction +5 yrs O&M Construction +8 yrs O&M Subcontractor & Oversight Estimated Cost with 30 months of O&M costs	\$4,700,000	\$1,584,900	\$5,128,300	\$2,207,800 \$537,700
Entire Remedy	·····			
Total Present Worth for Remedy (soil washing + 30 yrs GW O&M)	\$14,910,000			
Total Present Worth for Remedy (soil washing + 5yrs of GW O&M)		\$16,965,300		
Total Present Worth for Revised Groundwater Remedy (10 yrs O&M)			\$5,318,000	
Total Present Worth for Remedy (including 8 yrs GW O&M)				\$20,568,700

Table 6 Proposed Monitoring Well Sampling Schedule February 14, 2005 Cape Fear Wood Preserving Superfund Site Fayetteville, North Carolina

		Semi-		
	Total	Annual	Annual	
Monitoring	Depth	Sampling	Sampling	
Well ID	(ft bis)	(Feb/Aug)	(August)	Rationale
CF-MW-01I	52.00			Perimeter intermediate well; non-detect since 2002
CF-MW02S	NR		X	Western perimeter sentinel well; non-detect since 2002
CF-MW03S	NR	X	X	Low level contamination. Downgradient of DNAPL plume.
CF-MW04I	72.00		X	Intermediate well; non-detect since 2002
CF-MW05S	NR		X	DNAPL source well
CF-MW06I	67.00		X	Monitor vertical extent in source area
CF-MW07S	NR		X	Low levels; steady
CF-MW08I	62.00			Perimeter intermediate well; non-detect since 2002
CF-MW11S	NR			Eastern perimeter sentinel well; non-detect since 2002
CF-MW12I	47.00			Eastern perimeter sentinel well; non-detect since 2002
CF-MW15S	22.00	· ·		Eastern perimeter sentinel well; non-detect since 2002
CF-MW16I	57.00	Х	X	Monitor intermediate zone contamination
CF-MW17S	28.50			Northwest perimeter sentinel well; non-detect since 2002
CF-MW18S	30.50		X	Monitor plume northeast extent
CF-MW19S	27.00		X	Monitor plume southern extent
CF-MW20S	32.00		X	Monitor plume southern extent
CF-MW22S	NR		X	Low levels; steady
CF-MW23S	NR	X	X	Contaminated (western flank of plume)
CF-MW24S	28.00		X	Southwest perimeter sentinel well; non-detect since 2002
CF-MW25S	24.00	X	Х	Contaminated; downgradient of source
CF-MW26S	23.00	X	X	Contaminated; downgradient of source
CF-MW27S	28.00		X	Monitor plume eastern extent
CF-MW28S	24.00		X	Monitor plume northeast extent; non-detect since 2002
CF-MW29S	25.50		X	DNAPL source area
CF-MW30S	18.00		X	DNAPL source area
CF-MW31S	28.00		X	Moderate contamination; steady
CF-MW32S	24.00		X	DNAPL source area
CF-MW33S	25.00	X	X	Monitor plume southern extent
CF-MW34S	NR		X	Southeast perimeter sentinel well; very low detections since 2002
CF-MW35S	NR	Х	X	Southeast perimeter sentenial well
CF-MW36I*	57.00	X	X	Monitor intermediate zone contamination; down gradient of MW16I
CF-RW-01		X	X	Active Recovery Well
CF-RW-02		x	x	Active Recovery Well
CF-RW-03		X	X	Active Recovery Well
CF-RW-04		X	x	Active Recovery Well
CF-RW-05		Х	X	Active Recovery Well
CF-RW-06		X	x	Active Recovery Well
CF-RW-07		X	X	Active Recovery Well
CF-RW-08**		Х	Х	Proposed New Recovery Well
CF-RW-09**		X	x	Proposed New Recovery Well
MPE-1		×	X	Pilot Study Multi-Phase Extraction Well
MPE-2		X	x	Pilot Study Multi-Phase Extraction Well
MPE-3		X	X	Pilot Study Multi-Phase Extraction Well
MPE-4		X	X	Pilot Study Multi-Phase Extraction Well
EW-1				Old Inactive deep recovery well
EW-2			·· · · · · · · · · ·	Old Inactive deep recovery well
TOTALS		19	38	

Notes:

ft bls = feet below land surface ft msl = feet above mean sea level MW = Monitor Well NR = Not Recorded N/A = Not Available

5.0 Progress Since Last Five-Year Review

Since this is the first Five-Year Review Report, no other report is available.

6.0 Five-Year Review Process

6.1 Administrative Components

The five-year review process for the Cape Fear Wood Preserving Site was performed by the NC DENR, Superfund Section. Nile Testerman (Environmental Engineer) and Stephanie Grubbs (Hydrogeologist) from NC DENR were responsible for gathering and reviewing data for this review. Telephone and/or email discussions/interviews with Jon Bornholm, US EPA Remedial Project Manager (RPM), Ed Hicks, Project Coordinator for Black & Veatch, and Beau Hodges, Proterra Consulting, Inc., O&M subcontractor to Black & Veatch, were conducted. Other activities conducted for this review include document review (see Attachment 1), completion of a Site Inspection Checklist (see Attachment 2), community interview documentation (see Attachment 3), and the Five-Year Review Report preparation.

6.2 Community Involvement

All community involvement activities regarding the remedial activities for the Site were conducted by the US EPA. The community was notified via a public notice in the local newspaper, Fayetteville Observer Times, regarding the five-year review process at the Site. A public notice was placed in the Fayetteville Observer Times on March 8, 2006. A copy of the public notice is included in Attachment 3. Several community interviews were also conducted. See Section 6.7 of this report for a summary of the interviews conducted and Attachment 3 for a complete list of the comments/issues voiced by the community.

After the five-year review has been approved by US EPA, a notice will be placed in the Fayetteville Observer Times informing the community that the complete Five-Year Review report will be available at the US EPA Record Center, 11th Floor, 61 Forsyth Street, SW, Atlanta, GA 30303; the Cumberland County Public Library and Information Center, 300 Maiden Lane, Fayetteville, NC; and, on the US EPA website (<u>http://www.epa.gov/superfund/index.htm</u>).

6.3 Document Review

This Five-Year Review consisted of a review of relevant documents including the signed ROD, ESDs, ROD Amendments, RI Report, Remedial Action Reports, Monthly O&M Reports, 2005 RSE Report, and Semiannual Sampling Event Reports. Applicable soil and groundwater clean-up standards and other ARARs, as listed in the ROD, ESDs, and ROD Amendments, were also reviewed and checked for updates. See Attachment 1 for a complete list of documents reviewed.

6.4 ARAR Review

In performing the Five-Year Review for compliance with applicable or relevant and appropriate requirements (ARARs), only those ARARs addressing risk posed to human health and the environment (i.e., addressing the protectiveness of the remedy) were reviewed. This is in keeping with current US EPA guidance on five-year reviews.

6.4.1 Original ARARs from the 1989 ROD

Federal ARARs

- 40 CFR Parts 257-271 promulgated under the authority of the RCRA and RCRA as amended (42 USC Section 6921-6939)
- Clean Water Act (CWA 33 USC Sections 1251-1376, 40 CFR Parts 121, 122, 125, and 131)
- Occupational Safety and Health Administration (29 USC Section 651 et seq. and 29 CFR 1910 and 1090)
- Safe Drinking Water Act (42 USC Section 1412, 40 CFR Part 141)
- Clean Water Act, Dredge and Fill Requirements (40 CFR 230)
- CWA Pretreatment Standards (33 USC Section 1317); 40 CFR 403
- Department of Transportation Hazardous Material Transportation Act (49 USC Sections 1801-1812; 49 CFR Parts 100-199)
- Clean Air Act (42 USC 109; 40 CFR Part 50)
- Fish and Wildlife Coordination Act (16 USC 661-666)
- Endangered Species Act (Section 7(c))
- Floodplain Management Executive Act (Executive Order 11988; 40 CFR 6, Subpart A)

State ARARs

- North Carolina Solid Waste Disposal Regulations (North Carolina Administrative Code (NCAC), Title 15A, Chapter 13B)
- Regulations for the Management of Hazardous Waste promulgated under the authority of the NC Waste Management Act (NCAC Title 15A, Chapter 13A)
- NC Drinking Water and Groundwater Standards; Groundwater Classifications and Standards (NCAC Title 15 Chapter 2L)
- NC Surface Water Quality Standards (NCSWQS) Classification and Water Quality Standards (NCAC Title 15A Chapter 2B)
- NCSWQS Technology-Based Effluent Limitations (NCAC Title 15A Chapter 2, Subschapter 2B. 0400)
- NC Drinking Water Act (NCDWA) (General Statutes Chapter 130A, NCAC 311-327)
- NC Air Pollution Control Regulations (NCAC Title 15A Chapter 2D and 2Q)
- NC Sedimentation Control Rules (NCAC Title 15A Subchapter4)

The list of ARARs pertaining to the soil remediation at the Site are no longer applicable. The soil remediation at the Cape Fear Wood Preserving Site has been completed and all remediation goals for the soil remedy were achieved.

6.4.2 Current Applicable ARARs

Site specific ARARs are identified as follows: Maximum contaminant levels (MCLs) and groundwater standards specified in NCAC 2L are ARARs for site groundwater. Both the original alternative and the amended alternative are designed to obtain ARARs throughout the entire Site. Construction of the groundwater recovery, treatment, and discharge system for both alternatives will satisfy action-specific ARARs. The disposal of any sludge or spent activated carbon generated by either system would also comply with ARARs. The only location-specific ARAR, construction of the groundwater treatment system within a 100-year flood plain, pertains to both alternatives. The chemical quality of the effluent and the location of the infiltration galleries will be in accordance with North Carolina regulations.

6.5 Data Review

<u>Phase I</u>

Phase I of the remediation began on June 13, 1995. OHM Remediation Services (OHM) was awarded the subcontract for this phase of remediation. Phase I work involved excavating contaminated soil from the western side of grid 2E along the railroad right-of-way and then backfilling with clean material to relocate the railroad track bypass. Analytical results of excavation confirmation samples revealed additional contaminated soil in some sections of the excavated area. When those sections were excavated, an area of black muddy soil was found under the railroad railbed. Data from these borings were used to produce a backfill design appropriate for constructing a roadbed for the relocated railroad track. Soil excavated from the railroad right-of-way was stockpiled on site for future treatment. The excavations were backfilled with soil from an off-site source that was sampled and verified to be "clean" before transported to the Site.

Phase I also consisted of clearing and fencing the Site. Structures were left intact, but asbestos-containing material (including pipe insulation) was removed from one building and disposed in accordance with regulatory requirements. Steel underground gasoline storage tanks were found intact and no leaking was detected. CCA solution was emptied from one above ground storage tank (AGST) and transported to another wood-preserving company for recycling. Nine steel AGST were drained, cleaned, cut-up, and transported off-site for recycling. Solidified creosote material piled under a pole barn on site was excavated and placed into roll-off containers for disposal.

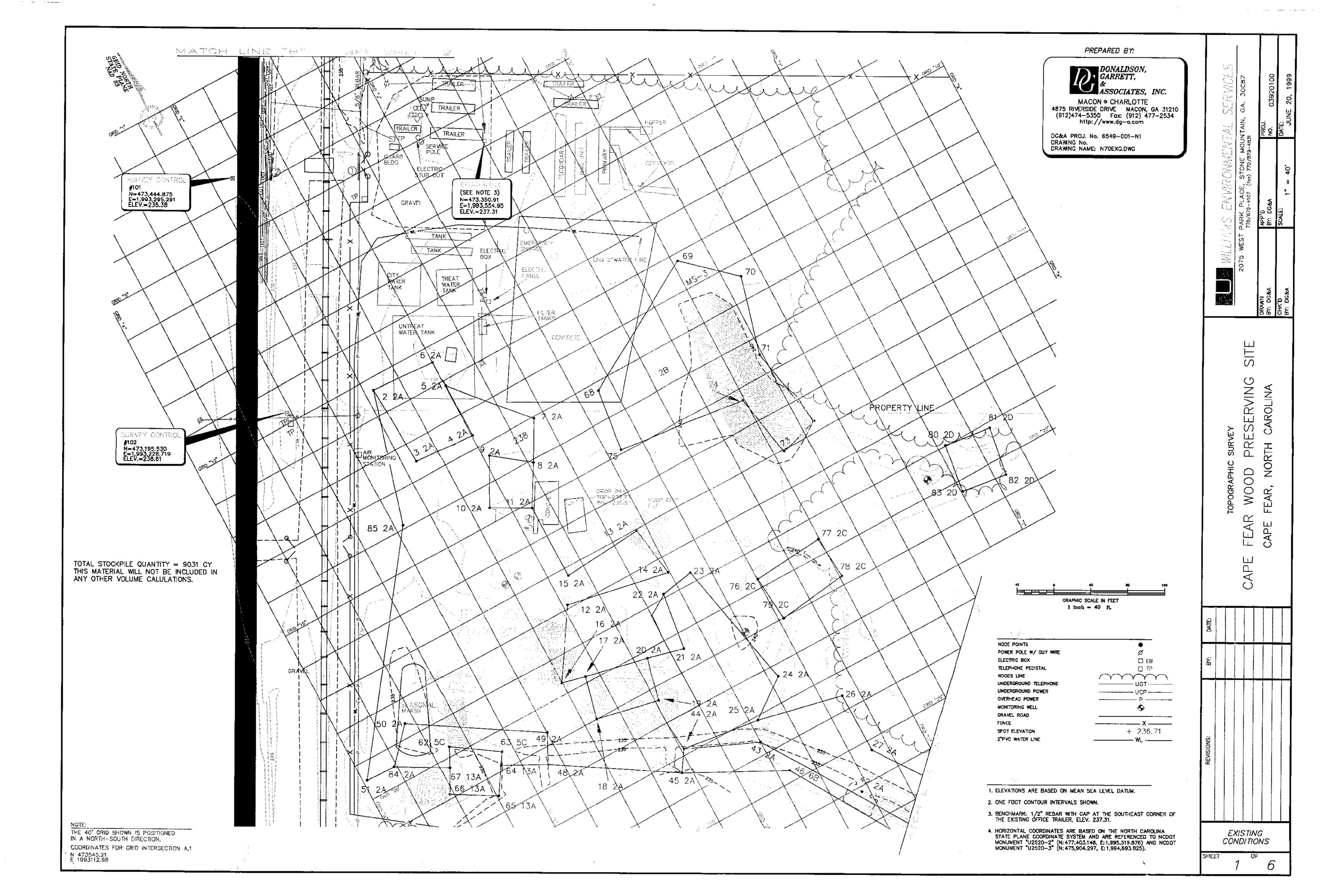
Excavated grids were sampled using the established sampling protocol and in accordance with US EPA Region IV Environmental Investigation Standard Operating Procedure and Quality Assurance Manual (EISOPQAM). If the excavation sample results showed that the contaminant levels exceeded the Site clean-up goals, excavation proceeded in 1- or 2-foot intervals until a depth of 6 feet or uncontaminated soil was encountered. Figure 4 is a map the grid area. Table 2 shows the ROD specified clean-up goals for soil.

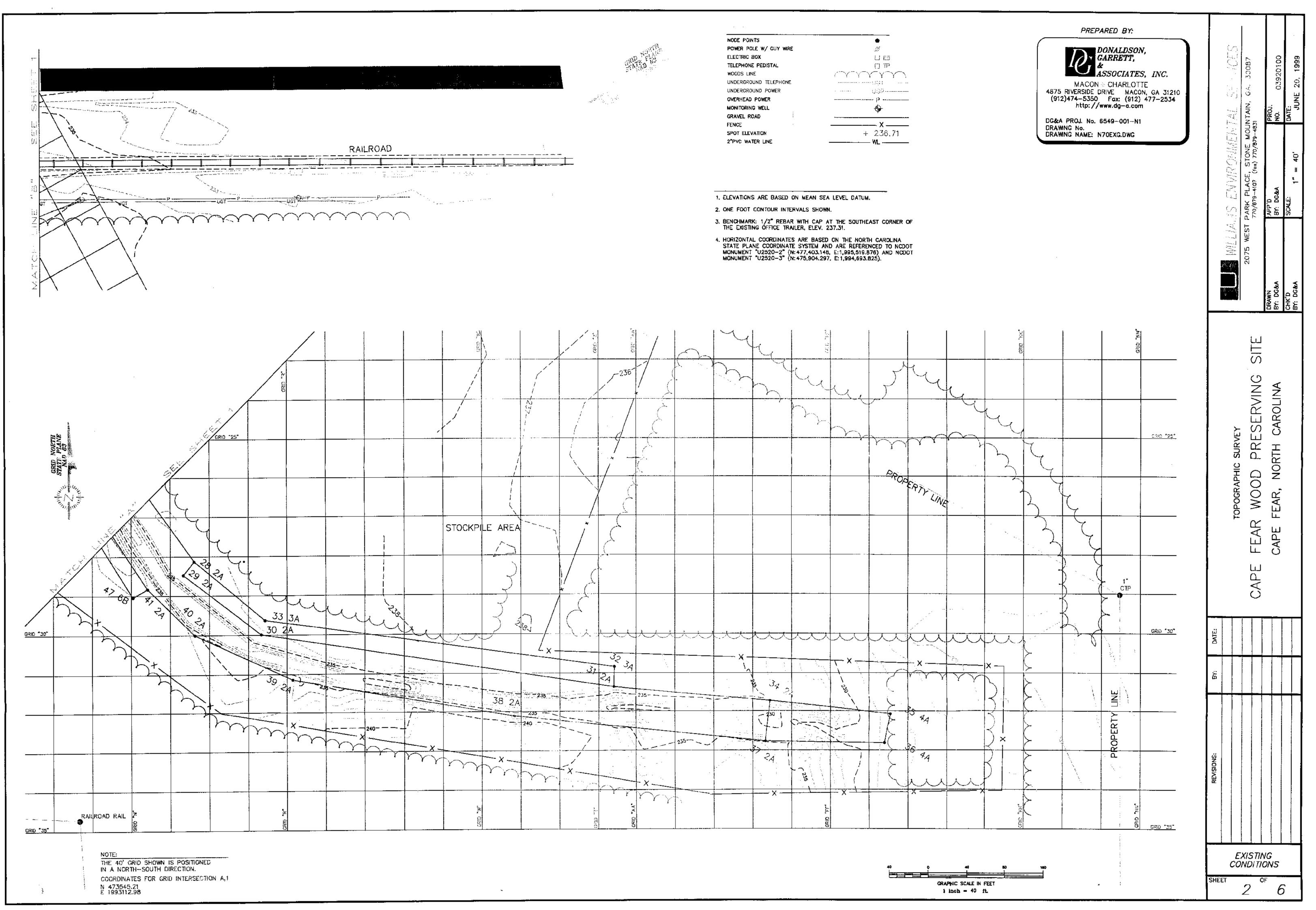
<u>Phase II</u>

Phase II involved relocating a portion of active track belonging to Aberdeen and Rockfish Railroad (A&RR). The track was relocated to the newly remediated area west of the original location. The railroad work performed during Phase II was originally planned to encompass all contamination below the railroad right-of-way. However, analytical results from confirmation sampling of the excavated areas during Phase IIIA indicated contamination north of the Site. As a result, a 600-foot section of railroad right-of-way north of the was remediated during the later Phase IIIB.

<u>Phase IIIA</u>

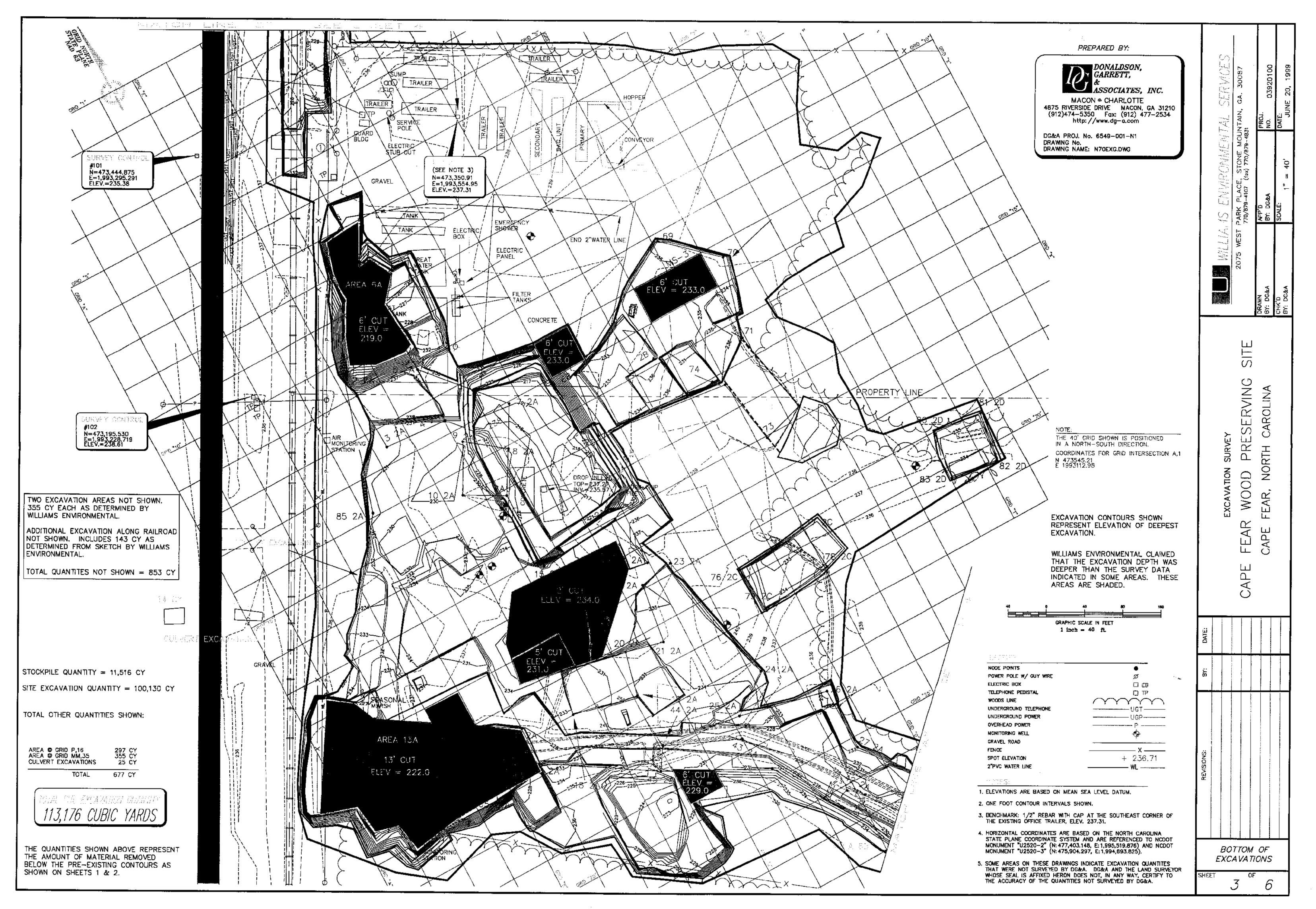
Phase IIIA comprised the major soil remediation at the Site. The 1989 ROD specified soil washing as the preferred remedial action alternative for soils, based on a study conducted during the RD. Bechtel Environmental Inc. was retained by US EPA to develop a remedial design to address the Site conditions. Bechtel was to perform the remedial action in September 1994, in accordance with the SOW stipulating soil washing as the technology to be used for source control. Soil washing equipment was mobilized to the Site in June 1996, but the soil washing demonstration test completed in September 1996, indicated that the system failed to achieve the Site clean-up goals.

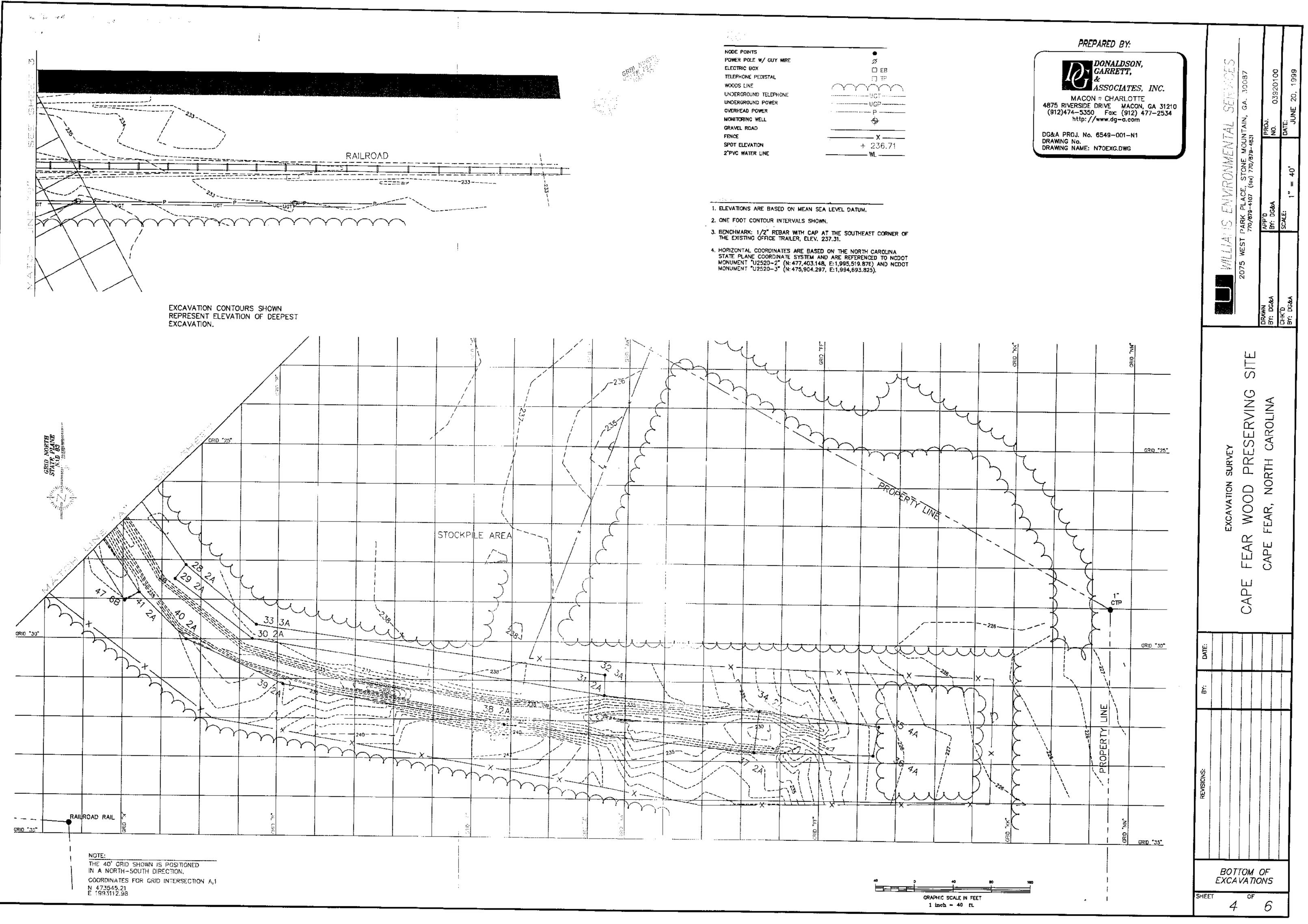

<u>Phase IIIB</u>


Low-temperature thermal desorption treatment was specified in the ROD as the alternative treatment technology to soil washing. In July 1997, US EPA developed the Final Draft Request for Proposal for Thermal Treatment Services and in February 1998, Williams Environmental Services, Inc. (WESI) was awarded the subcontract to begin Phase IIIB, Thermal Treatment. The low-temperature thermal desorption process (or thermal treatment) uses three basic components; a rotary kiln, baghouse, and combustion chamber. Each component is connected by a large diameter piping that conveys the off-gas from the rotary kiln through the bag house, the combustion chamber, and, finally, out of the stack.

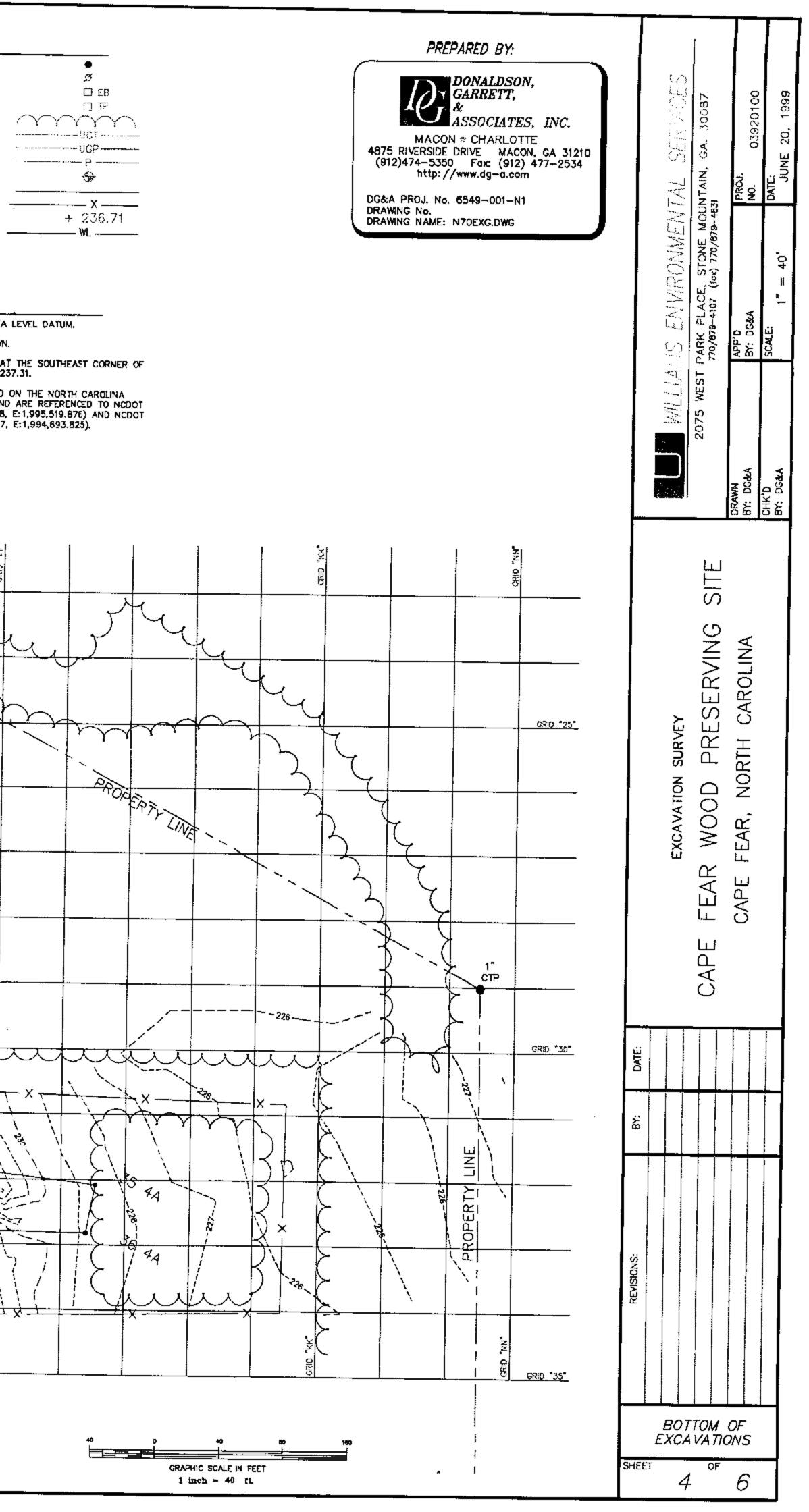
All treated and excavated soils were analyzed to assure that the remediation goals were achieved. The major sampling activities during Phase IIIB were treated soil sampling and confirmation sampling following excavation:

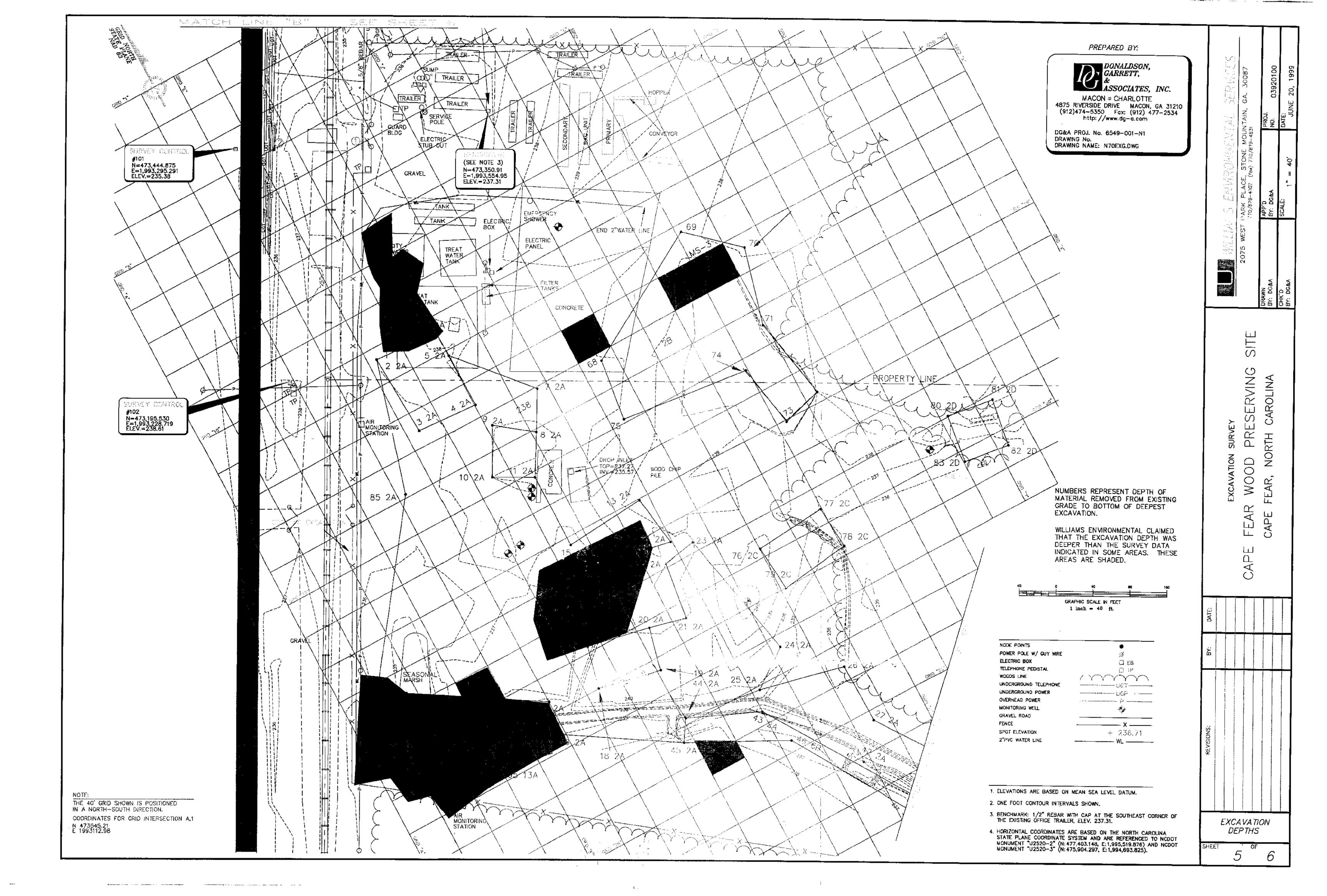
- Treated soil sampling consisted of sampling each 320 cubic yard (yd³) of treated soil as it left the treatment system. The sample was analyzed for the contaminants of concern (COCs) and was required to meet all the Site clean-up goals before the soil could be used for backfill for site excavation.
- Confirmation sampling of excavations consisted of sampling each excavated grid bottom and deep sidewall to ensure that all contaminated soil was excavated. If a confirmation sample showed that adjacent soils met the Site clean-up goals, that section of the excavation would stop and the excavation could be backfilled. If the sampled failed to meet the Site clean-up goals, excavation was resumed over the sample area and was resampled.

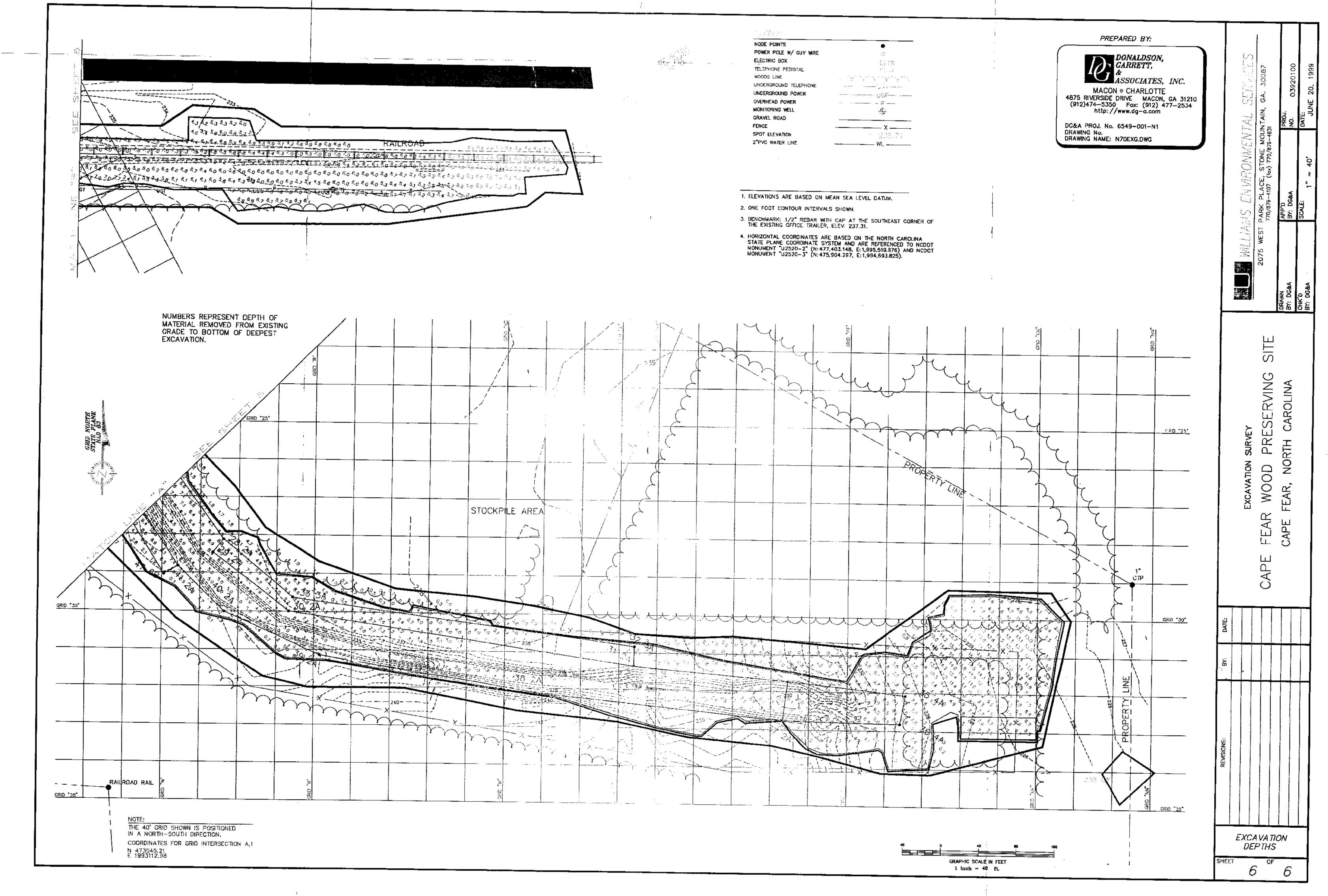

After contamination was found below grids that formerly met criteria, the practice of excavating and sampling grids from the surface downwards was revised. The revised method involved excavating a grid to its final depth, than sampling the sidewalls of adjacent grids. This method exposed a profile view of the grid sidewall so a sidewall evaluation could determine the most probable location of contamination. Typically, these were areas of stained soil. As a result of the revised sampling procedure, grids were usually sampled near the bottom of the sidewall. This procedure reduced the number of samples required and detected contaminated soil that otherwise would have been hidden.



			÷	
· · · · · ·			· · · ·	
	<u> </u>			 um
	- · · · · · · · · · · · · · · · · · · ·	- <u></u> - <u>-</u>	<u></u>	₂
				:







:

NODE POINTS	•
POWER POLE W/ GUY WIRE	
ELECTRIC BOX	ri ng
TELEPHONE PEDISTAL	
WOODS LINE	 Without with
UNDERGROUND TELEPHONE	والمراجعة المحادية
UNDERGROUND POWER	USS
OVERHEAD POWER	
MONITORING WELL	- <u>-</u>
GRAVEL ROAD	·
ENCE	- <u> </u>
SPOT ELEVATION	2.62.7
2"PVC WATER LINE	WI

· ·

·-----

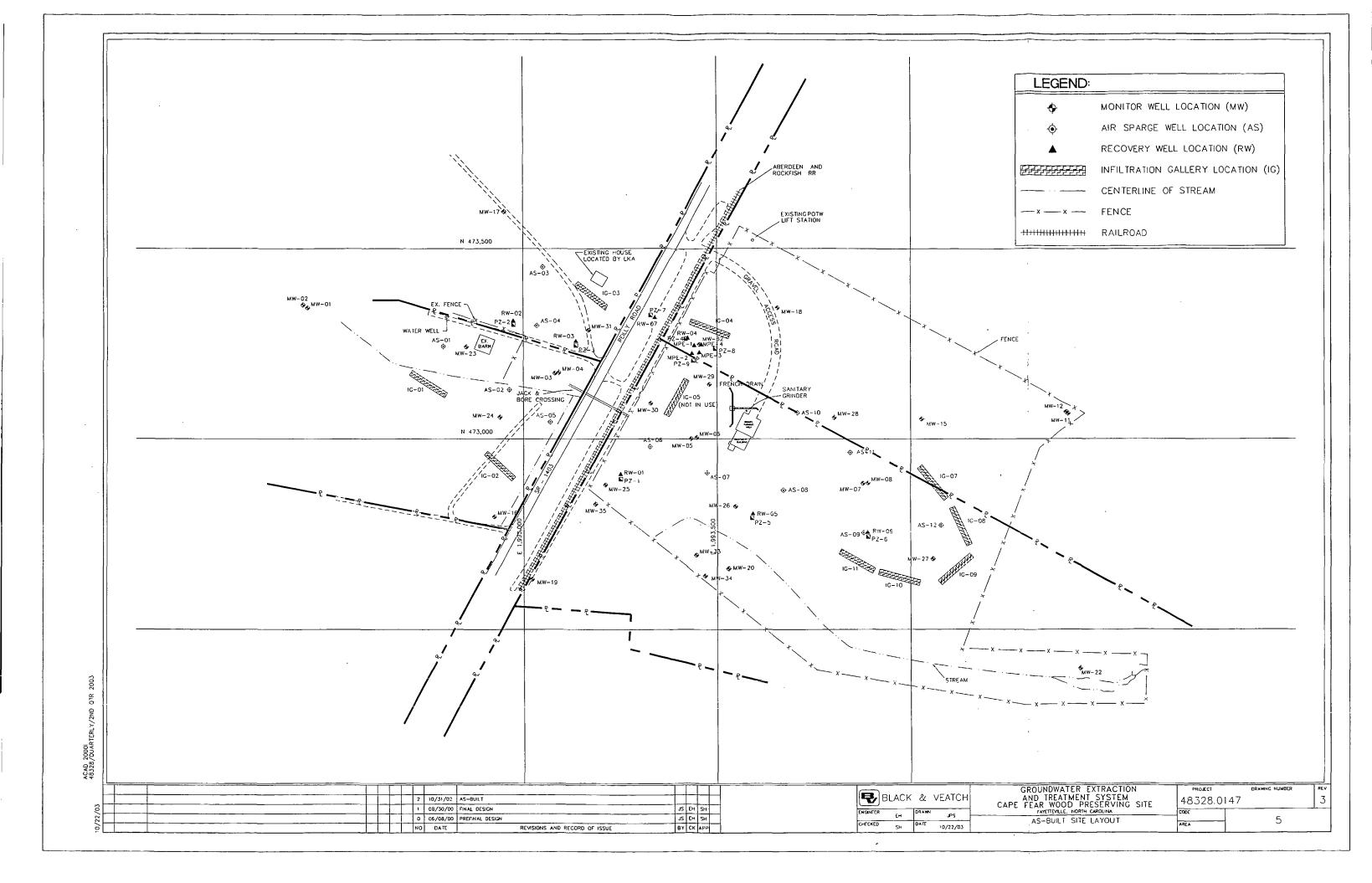
--

The volume of soil excavated and treated during Phase IIIB greatly exceeded the projected quantity of 50,000 yd³; the final excavation volume totaled approximately 110,000 yd³. Several major excavation areas were expanded in depth of the excavation and the areas of contamination expanded well beyond the limits set by the RI and the RD. These areas (see Figure 4 for the area locations) include:

- Area 2B, excavation of surface soils to 2 feet revealed wide areas of creosote-stained soil. This area received special attention and involved excavations well beyond the planned 6 foot depth, to a depth of 20 feet.
- Area 13A, in the southwestern corner of the Site, was found to expand laterally in all directions at the 10 to 13 foot depth. Fortunately, this area was underlain by a layer of clay that appeared to stop the spread of the creosote.
- Area 4A, at the eastern end of the south ditch, expanded vertically to a depth of approximately 10 feet over the 9 grids. According to the RI/RD, the south ditch had been intermittently dammed to hold back creosote during the former wood preserving operations. This area was underlain by clay as well and limited the spread of the contaminants to approximately 10 feet in depth.
- Area 6A, located in the northwestern section of the Site, became known as the Water Treatment Area because it extended beyond the originally defined limits into the grids beneath the subcontractor's water treatment area. In addition, the area expanded to approximately six grids north of the original 6A area.
- Area 10A, the central area of the Site, was originally a 60-foot square next to a concrete slab. After the initial excavation, a 36-foot square by 10 feet deep concrete sump was discovered. Extremely high VOCs were detected. The area was assumed to be the sump which had probably been filled with fly ash during one of the earlier emergency response actions. Excavation of this sump allowed the full magnitude of contamination to be realized. Large quantities of DNAPL and light non-aqueous phase liquids (LNAPL) were seeping from the bottom and sidewalls of the excavation. Eventually, this area was excavated to a depth of 20 feet over approximately 8 grids. Deeper excavating required engineered design to determine the proper excavation side and slope angles. From the sidewalls of this excavation at the groundwater interface, DNAPL discharged into the excavation along with groundwater. This was the first time that a DNAPL was encountered at the Site. A decision was made by the US EPA with NCDENR to construct a subsurface groundwater extraction trench or French Drain across the bottom of the excavation. The trench would capture the contaminated groundwater coming from the west and any remaining product from the aquifer. The groundwater extraction trench extends 80 feet along a north-south orientation and is supplemented by three shallow extensions of rock-filled fabric that provide a preferential pathway from the corners of excavation. See Figure 3 for a sketch of the groundwater extraction trench.
- Railroad area excavation was performed during this phase without constructing a temporary bypass for the active track. Instead, A&RR allowed the track to be taken off-line for a short period of time. Excavation of the railroad area revealed that contamination was present to the north and west of the excavated area. This required an additional excavation of the railroad area to 60 feet wide and 6 feet deep for 600 feet north of the Site.

Wastewater generated during the Phase IIIB included stormwater and groundwater pumped from excavations and water used for decontaminating equipment. All wastewater was treated by an on-site treatment system operated by the subcontractor. Prior to being discharged to an on-site drainage ditch, the wastewater was sampled to verify that it met Site clean-up goals.

Air monitoring was conducted as part of the Phase IIIB sampling strategy. The project monitoring strategy for detecting potential airborne Site contaminants consisted of four measures to address specific sets of hazardous operations regularly occurring on site. The four elements of the air analysis program were: Site perimeter air monitoring; Continuous monitoring of the thermal treatment stack; Real-time excavation area or work area sampling and analysis; and Personnel air sampling. The monitoring results indicated that contamination did not leave the Site as airborne emissions.


<u>Phase IV</u>

The data review for the groundwater monitoring data set consisted of an evaluation of the initial data collected during the system start-up from the Baseline (Data Evaluation) Report dated December 2001 and data collected from the start-up of the remediation system through the most current document from the Semi-Annual Report for the Groundwater Extraction and Treatment Facility dated October 1, 2005 through March 31, 2006, submitted to the US EPA in June 2006 by Black & Veatch Special Projects Corp.

Phase IV subcontractor began mobilizing equipment and personnel to the Site during the week of April 30, 2001. The groundwater remediation system at the time of start-up included seven recovery wells (RW 1 through RW7), the groundwater extraction trench or French Drain (FD), twelve air sparging wells, ten infiltration galleries, 35 monitoring wells, and the treatment building. Figure 5 is a map of the on-site structures and well locations. Inside the treatment building is an oil-water separator, equalization tank, bag filters, granular activated carbon filters, air compressors, and all the controls for the system. Three recovery wells and the French Drain have two pumps, one for hydraulic control and one to capture DNAPL. The three-day start-up test on the entire system began on August 13, 2001. The five-day performance test began on August 16, 2001.

The Baseline Report was completed on December 20, 2001. The purpose of the baseline report was to identify and describe baseline conditions at the Site prior to the system start-up of the groundwater extraction and treatment system. Based on observations made during construction of the groundwater remedy for the Site, the significant expansions of the groundwater monitoring network (addition of 13 new monitoring wells, 7 recovery wells, and 12 air sparging wells), and analytical results obtained during the baseline sampling event, several conclusions were reached:

- A significant more wide-spread free-phase DNAPL plume was present. The plume was discovered in the central portion of the Site (RW-01, RW-04, RW-07, and the French Drain), along and to the east of the railroad track corridor.
- Non-carcinogenic PAH compounds (naphthalene, most prevalent) exceeding the groundwater clean-up standard for the Site extend further to the west, south, and east than previously known. Monitoring wells MW-23s (300 feet west of Reilly Road), and MW-07 (300 feet east of the treatment plant), each had exceedences for 1 or more non-carcinogenic PAH compounds.

- MW-22s (located on the extreme eastern end and in a topographically low are of the Site) was reported to have exceedences for 1 non-carcinogenic PAH compounds (naphthalene, 67 parts per billion (µg/l)).
- Although heavy metals were not considered COCs for the Site groundwater remedy, the presence of arsenic, cadmium, and chromium were potentially an issue with the on-site re-injection or off-site discharge of treated waters for the City of Fayetteville's POTW. Arsenic levels ranged from 18 to 24 µg/l within the system influent and from 48 to 155 μ g/l within the effluent. The maximum allowable arsenic levels for discharge to the on-site infiltration galleries was 50 µg/l (NCDENR 2L Standard). Beginning on day 3 and continuing through day 8 of start-up and testing, arsenic levels in effluent samples declined below the 50 μ g/l threshold and remained steady thereafter within the 8 to 26 μ g/l range. The French Drain and the recovery wells were also sampled for arsenic and these fell below the 50 µg/l threshold. It was concluded that the initial levels of arsenic were an anomaly related to break-in of the carbon units and the arsenic levels within the influent and effluent should remain well below the threshold range of 50 μ g/l. However, as of January 2001, the new MCL for arsenic is 10 μ g/l. Cadmium and chromium levels are not above the appropriate ARARs (NCAC 2L Groundwater Standard); therefore, we do not have to evaluate for these metals as COCs.
- The most heavily impacted wells on site were the 7 recovery wells and the French Drain. This indicated that the final field selected locations were optimized and the DNAPL investigation was highly effective.
- MW-23s and MW-26s, two of the heavily impacted wells, should be within the radii of influence of the nearby recovery wells.

Tables 7 through 11 are summary tables for the influent/effluent, recovery wells, and monitoring wells since system start-up.

The remediation goals for the Cape Fear Wood Preserving Site are to achieve the NC DENR 2L Groundwater Standards throughout the entire plume. The NC DENR 2L Groundwater Standards are included in Table 7 because the groundwater treatment system must treat the influent to reduce contaminants to an acceptable level (achieving effluent containing a 95% reduction from the influent contaminant concentrations) or effluent contaminant concentrations below the NC 2L Groundwater Standard. As of the 2006 Semi-Annual Report, the following are the most current results for the Treatment System Monitoring (Influent/Effluent monitoring), Groundwater Elevation monitoring, and Groundwater Monitoring wells data.

Influent/Effluent Monitoring Results

Treatment system influent and effluent samples are currently being sampled monthly. Table 7 is a summary of these results since the September 2005 sampling event. As seen from this table, the influent data shows no significant changes in contaminant concentration levels over the reporting period. The highest PAH concentrations were detected in the December 2005 sample. The effluent data presented in Table 7 documents the efficiency of the treatment in removing the contaminants from the groundwater. There were no detections of contaminants in the effluent during the reporting period.

Table 7 System Influent, Between Carbon, and Effluent Analytical Summary September 2005 - March 2006 **Cape Fear Wood Preserving Site**

Compound	2L Standard	rd Influent												
Second States and States		Sep-05	Oct-05	Nov-05	Dec-05	Jan-06	Feb-06	Mar-06						
Volatile Organic Compoun	ds (VOCs)													
Benzene	1	18	15U	18	29	3UD	23.1D	1.0UD						
Toluene	1000	43	43	39	48	3UD	23.6D	4.4UD						
Ethyl Benzene	29	37	69	52	63	2UD	1.5D	0.5UD						
Total Xylenes	530	175	292	165	164	19JD	37.0JD	5.6JE						
Non-Carcinogenic (NCAR)	PAHS													
Acenaphthene	80	430	580	540	590	438D	414D	5						
Acenaphthylene	210	50U	50U	50U	50U	25JD	30.2JD	1.7						
Anthracene	2100	50U	50U	50U	50U	17JD	14.6JD	2.8						
Fluoranthene	280	50U	110	58	58	44JD	44.6JD	15.						
Fluorene	280	230	320	250	250	233D	225D	21.						
1-Methylnaphthalene	NE	290	350	320	360	216D	235D	1						
2-Methylnaphthalene	NE	540	600	670	660	412D	388D	2.00						
Naphthalene	21	3,200	4,100	4,400	5,300	1600D	1.460D	2.1						
Phenanthrene	210	290	480	340	300	303D	271D	0.90						
Pryene	210	500	67	50U	50U	23JD	26.6JD	9.7						
Carbazole(diphenylamine)	5*	240	310	270	350	218D	200D	19.						
Carcinogenic (CAR) PAHs														
Benzo(a)anthracene	0.05	50U	50U	50U	50U	5UD	5.0UD	1.00						
Benzo(a)pyrene	0.0047	50U	50U	50U	50U	6UD	5.5UD	1.1						
Benzo(b)flouranthene	0.0047	50U	50U	50U	50U	4UD	3.5UD	0.71						
Benzo(k)fluoranthene	0.47	50U	50U	50U	50U	9UD	9.0UD	1.81						
Ideno(1,2,3-cd)pyrene	0.047	50U	50U	50U	50U	6UD	5.5UD	1.11						
Dibenzo(a,h)anthracene	0.0047	50U	50U	50U	50U	5UD	5.0UD	1.00						
Benzo(g,h,i)peryiene	NE	500	50U	50U	50U	6UD	6.0JD	1.30						
Chrysene	5	50U	50U	50U	50U	5UD	5.0UD	1.0						

.

Notes:

U = Compound was analyzed but not detected to the concetration shown.

J = Indicates an estimated value.

D = Indicates that the sample was diluted.

NS = Not sampled due to failure of carbon diffusers

NE - Not established

* - Based on Region 9 Preliminary Remediation Goals

Bold - Indicates concentrations above NC 2L.

The NC DENR 2L Groundwater Standards are included because the groundwater treatment system must treat the influent to reduce contaminants to an acceptable level (achieving effluent containing a 95% reduction from the influent contaminant concentrations) or effluent contaminant concentrations below the NC 2L Groundwater Standard.

Table 7 System Influent, Between Carbon, and Effluent Analytical Summary September 2005 - March 2006 Cape Fear Wood Preserving Site

Compound	2L Standard												
		Sep-05	Oct-05	Nov-05	Dec-05	Jan-06	Feb-06	Mar-06					
Volatile Organic Compoun	ds (VOCs)												
Benzene	1	1.0U	1.0 U	1	2	1	6.1	NS					
Toluene	1000	1.0U	2	2	2	2	5.5	NS					
Ethyl Benzene	29	1.0U	2	3)	2	1	3.0	NS					
Total Xylenes	530	3.0U	9	9	7	5	9.2	NS					
Non-Carcinogenic (NCAR)	PAHS												
Acenaphthene	80	10U	10	22	35	55	81.6	NS					
Acenaphthylene	210	10U	10U	100	10U	3J	3.1J	NS					
Anthracene	2100	10U	100	10U	10U	3J	3.6J	NS					
Fluoranthene	280	10U	100	10U	100	9J	12.8	NS					
Fluorene	280	10U	10U	11	14	32	44.7	NS					
1-Methylnaphthalene	NE	10U	10U	14	22	26	29.3	NS					
2-Methylnaphthalene	NE	10U	10U	18	36	44	2.0U	NS					
Naphthalene	21	10U	10U	66	200	156D	2.1U	NS					
Phenanthrene	210	10U	10U	15	14	46	42.5	NS					
Pryene	210	10U	10U	100	100	5J	7.4J	NS					
Carbazole(diphenylamine)	5*	10U	10U	12	21	35	40.5	NS					
Carcinogenic (CAR) PAHs													
Benzo(a)anthracene	0.05	10U	10U	10U	10U	1U	1.0U	NS					
Benzo(a)oyrene	0.0047	10U	100	100	100	10	1.1U	NS					
Benzo(b)flouranthene	0.0047	10U	10U	100	10U	0.7U	0.7U	NS					
Benzo(k)fluoranthene	0.47	100	100	10U	10U	2U	1.8U	NS					
Ideno(1,2,3-cd)pyrene	0.047	10U	100	100	100	10	1.1U	NS					
Dibenzo(a,h)anthracene	0.0047	10U	10U	100	10U	1U	1.0U	NS					
Benzo(g,h,l)perviene	NE	100	100	100	100	1U	1.3U	NS					
Chrysene	5	10U	100	10U	10U	1U	1.00	NS					

Notes:

U = Compound was analyzed but not detected to the concetration shown.

J = Indicates an estimated value.

D = indicates that the sample was diuted.

NS = Not sampled due to failure of carbon diffusers

NE - Not established

* - Based on Region 9 Preliminary Remediation Goals

Bold - Indicates concentrations above NC 2L. The NC DENR 2L Groundwater Standards are included because the groundwater treatment system must treat the influent to reduce contaminants to an acceptable level (achieving effluent containing a 95% reduction from the influent contaminant concentrations)

or effluent contaminant concentrations below the NC 2L Groundwater Standard,

Table 7 System Influent, Between Carbon, and Effluent Analytical Summary September 2005 - March 2006 Capo Fear Wood Preserving Site

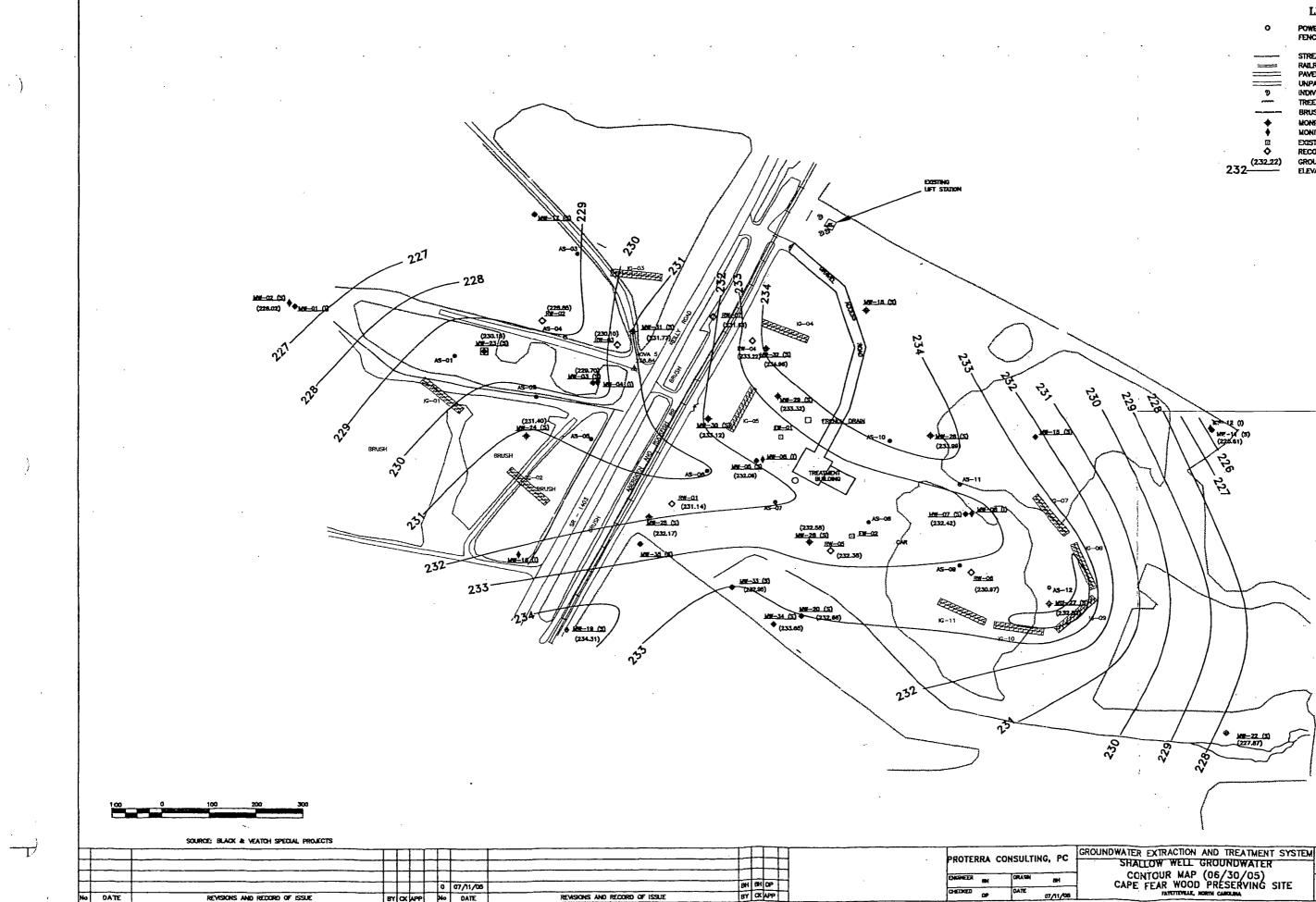
Compound	2L Standard	ard Effluent												
		Sep-05	Oct-05	Nov-05	Dec-05	Jan-06	Feb-06	Mar-06						
Volatile Organic Compoun	ids (VOCs)			1997										
Benzene	1	1.0U	1.0U	1.0U	1.0U	0.2U	0.20	0.20						
Toluene	1000	1.0U	1.0U	1.0U	1.0U	0.2U	0.2U	0.2U						
Ethyl Benzene	29	1.0U	1.0U	1.0U	1.0U	0.1U	0.1U	0.1U						
Total Xylenes	530	3.0U	3.0U	3.0U	3.0U	0.5U	0.5U	0.5U						
Non-Carcinogenic (NCAR)	PAHS													
Acenaphthene	80	10U	10U	10U	100	10	1.4U	1.4U						
Acenaphthylene	210	10U	10U	10U	100	10	1.4U	1.4U						
Anthracene	2100	10U	10U	10U	100	0.9U	0.9U	0.9U						
Fluoranthene	280	10U	10U	10U	100	0.9U	0.9U	0.90						
Fluorene	280	10U	10U	10U	100	1U	1.1U	1.10						
1-Methylnaphthalene	NE	10U	10U	10U	100	20	1.8U	1.8U						
2-Methylnaphthalene	NE	10U	10U	10U	100	2U	2.0U	2.00						
Naphthalene	21	10U	10U	10U	100	20	2.1U	2.10						
Phenanthrene	210	10U	10U	10U	10U	0.9U	0.9U	0.9U						
Pryene	210	10U	10U	100	10U	0.9U	0.9U	0.9U						
Carbazole(diphenylamine)	5*	10U	10U	100	10U	0.8U	0.8U	0.8U						
Carcinogenic (CAR) PAHs														
Benzo(a)anthracene	0.05	10U	10U	10U	100	10	1.00	1.00						
Benzo(a)pyrena	0.0047	10U	10U	100	100	10	1.1U	1.10						
Benzo(b)flouranthene	0.0047	10U	10U	10U	100	0.7U	0.7U	0.7U						
Benzo(k)fluoranthene	0.47	10U	10U	10U	10U	2U	1.8U	1.8L						
Ideno(1,2,3-cd)pyrene	0.047	10U	10U	10U	100	10	1.10	1.10						
Dibenzo(a,h)anthracene	0.0047	100	10U	10U	100	10	1.00	1.00						
Benzo(g,h,l)perylene	NE	10U	10U	10U	100	10	1.3U	1.3U						
Chrysene	5	100	100	100	100	10	1.00	1.00						

Notes:

U = Compound was analyzed but not detected to the concetration shown.

J = Indicates an estimated value.

D = Indicates that the sample was diluted.


NS = Not sampled due to failure of carbon diffusers

NE - Not established

* - Based on Region 9 Preliminary Remediation Goals

Bold - Indicates concentrations above NC 2L. The NC DENR 2L Groundwater Standards are included because the groundwater treatment system must treat the influent to reduce contaminants to an acceptable level (achieving effluent containing a 95% reduction from the influent contaminant concentrations)

or effluent contaminant concentrations below the NC 2L Groundwater Standard.

REVISIONS AND RECORD OF ISSUE

No

DATE

REVISIONS AND RECORD OF ISSUE

BY CK APP No DATE

DATE 07/11/08

08

LEGEND

POWER POLE FENCE LINE

stream Railroad Paved Road UNPAVED ROAD INDIVIDUAL TREE TREE LINE BRUSH LINE MONITORING WELL (SHALLOW) MONITORING WELL (INTERMEDIATE) EXISTING EXTRACTION WELL RECOVERY WELL GROUNDWATER ELEVATION (08/30/05) ELEVATION CONTOUR

DWATER EXTRACTION AND TREATMENT SYSTEM	/Bay/CFWP/DRAWINGS/	REV
SHALLOW WELL GROUNDWATER	REPORTS/FIGURES	0
CONTOUR MAP (06/30/05) CAPE FEAR WOOD PRESERVING SITE	FIGURE 6	

Groundwater Elevation Monitoring

Groundwater level measurements are collected quarterly from all MWs and monthly from all Infiltration Gallery (IG) piezometers and RWs. These historical data are tabulated in the Quarterly O&M Reports. Groundwater table elevations were calculated and potentiometric surface maps were generated based on these data. Figure 6 is the most current potentiometric surface map, June 2005.

In general, the groundwater elevations decreased from June 2005 to September 2005 by an average of 2.5 feet and increased from September 2005 to December 2005 by an average of 2.9 feet. These fluctuations are considered to be normal seasonal variation due to precipitation.

Groundwater Monitoring Results

Black & Veatch and Proterra personnel performed the annual groundwater sampling during the week of March 13, 2006. This is the most current groundwater monitoring data available. Groundwater samples were collected from 7 MWs (MW-03S, MW-161, MW-23S, MW-25S, MW-26S, MW-33S, and MW-35S), two multi-phase extraction (MPE) wells (MPE-2 and MPE 3), and five extraction points (RW2, RWS, RWS, RW6, and FD). Five other wells (RW1, RW4, RW7, MPE-1, and MPE-4) all detected DNAPL; therefore, they were not sampled. All of the samples were delivered to a US EPA Contract Laboratory Program (CLP) laboratory for analyses by US EPA Method 8260 for volatile organic compounds (VOCs) and by Method 8270 for PAHs, plus carbazole. None of the MWs were sampled for natural attenuation parameters or heterotrophic plate count during this sampling event.

Table 8 is a summary table for the groundwater data collected from the monitoring wells from September 2002 to present. During this most recent sampling event, March 2006, the following wells had COCs above the remediation levels for groundwater:

VOCs (µg/l - micrograms per liter)

Benzene

MW-03S (12 µg/l)	MW-25S (1.3 µg/l)
MW-161(81 µg/l)	MW-26S (1.2 µg/l)

Figure 7 is a groundwater concentration plume map that shows the VOC concentration exceedences of the 2L Standards from the monitoring wells. The VOC exceedence plume is approximately 650 feet long by 300 feet wide. The maximum benzene and ethyl benzene concentrations in the shallow aquifer were detected in MW-3S, which is located in the DNAPL plume area. The maximum benzene and ethyl benzene concentrations detected in the intermediate aquifer were detected in MW-161, an intermediate depth well located on the edge of the dissolved plume. With no other immediate depth wells in the vicinity of MW-161, the extent of the VOC contamination in this area of the plume is unknown. There were attempts made in 2005 to secure a site access agreement with the property owner to allow the installation of another intermediate well down gradient of MW-161; however, those attempts have been unsuccessful to date. The areal extent of the shallow VOC plume is encompassed by the RWs and is being effectively captured by the extraction system.

The following is a list of the PAH compounds and the corresponding MWs that detected concentrations above the Site remediation levels:

Non-carcinogenic (NCAR) PAHs: (J - estimated value):

Naphthalene

MW-16l (340J μg/L) MW-25S (530 μg/L) MW-35S (24 μg/L)

Acenaphthene

MW-25S (190 µg/l)

Figure 8 is a concentration plume map showing the NCAR PAH exceedances of the Site remediation goals. Naphthalene, acenaphthene, and carbazole comprise the compounds in the shallow aquifer plume. The estimated PAH exceedances plume is about 400 feet long by 350 feet wide. The plume is delineated on four sides and is apparently being hydraulically controlled by the extraction system. The maximum concentrations of naphthalene, acenaphthene, and carbazole were detected in the sample collected from MW-5S at 530, 190, and 61 μ g/L, respectively. This MW is located in the area of the DNAPL plume.

The groundwater sample collected from MW-161 is the only intermediate depth well that detected any NCAR PAH compounds (naphthalene at 340 J μ g/L and carbazole at 33 J μ g/L). With no other immediate depth wells in the vicinity of MW-161, the extent of the NCAR PAH contamination in this zone of the plume is unknown.

Extraction Point Sampling Results

During the March 2006 sampling event, groundwater samples from seven extraction points (RW-2, RW-3, RW-5, RW-6, MPE-2, MPE-3, and the French Drain (FD)) were collected and analyzed for VOCs and PAHs, plus carbazole. The other extraction points (RW-1, RW-4, RW-7, MPE-1, and MPE-4) were not sampled due the presence of DNAPL (Free Product) in the wells. The extraction point historical analytical data are summarized in Table 9 (2005 4-5). The following is a list of the compounds and the corresponding extraction point samples that detected concentrations above the remediation levels:

VOCs:

Benzer	ne		
	RW-3	(4.8	μ

RW-3 (4.8 µg/L)	MPE-2 (1.3 µg/L)
RW-5 (1.8 µg/L)	MPE-3 (2.0 µg/L)
RW-6 (1.0 µg/L)	FD (6.5 µg/l)

<u>NCAR PAHs</u>: Naphthalene

naiene	
RW-3 (360 µg/L)	RW-6 (150 µg/L)
MPE-2 (230 µg/L)	RW-5 (60 μ g/L)
MPE-3 (1200 µg/l)	FD (2400 µg/L)

Acenaphthene

MPE-2 (110 μg/L) MPE-3 (210J μg/l) FD(170J μg/L)

	Remediation	Remediation CF-MW-011										CF-4W-025										
Analyte (Jig1.)	Goal *	Sep-02	Dec-02	Mar-03	Jun-03	Oct-03	Dec-03	Jul-04	Mar-05	Sep-05	Mar-06	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Jul-04	Mar-06	8ep-05	Mar-46	
Carolnogenic (CAR) PAHs	0.0.000000000	AND ROADS	8.2010	5.001		- 11010	a support	SEACT?	and the second	10/14545	10,000	133000	A STRATE	Contraction of the	00010103	((04)(653))	TANKIN STR		10000	10.000	DEBUGN	
Benzo(a)Artivacene	0.05	30.0	51/	10 U	10 U	10 U	NS	18 U	KS	NS	NS	10 U	5 U	10 U	10.0	10 U	NS	10 U	NS	1000	NIS	
Chryssene	5	10 U	5 U	10.0	10 U	10 U	NS	10 U	NS	NS	NS	10 U	5 U	10 U	10.0	10 U	NS	10 U	NS	1000	NS	
Renzo(b)(Fluoranthere	0.0047	10 U	50	10 U	10.0	10.0	NS	10 U	NS	NB	NS	10 J	50	10 U	10 U	10 U	NIS	10 U	NS	10UJ	NS	
Banzo a Pyreno	0.0047	10 U	50	10 U	10.0	10 U	NS	10 U	NS	NS	NS	10 U	50	1C U	16.0	10 U	115	10 U	NS	1000	NIS	
Indeno (1,2,5-cd) Pyrane	0.047	10-U	5 U	10 W	10.0	10 U	NG	10.00	NG	NG	NS	100	50	1000	10 U	10 U	NB	10.03	NS	1503	NS	
Diberzo(a,h)Anthracene	0.0047	10 U	5U	10 W	100	10 U	NS	10 U	NS	NS	NS	100	5U	1000	10 U	10 U	NS	10 U	NS	1000	NS	
Benzo()(Fluoranthene	0.47	10 U	50	10 U	10 U	10 U	NS	10 U	NS	NS	NS	10 U	50	10 U	10 U	30 U	NS	10 U	NS	1000	NS	
Ken-carcinogenic (NCAR) PAHs	and a second of	10011100	Sec. 1988	States .	2110.10	Constantial Second	1000000	-2014	(1997) (1997)	55220	Contract 1	1909/100	0.0000	a second a second	sente 171	1.10	1.5.1.5.1.2.2.2	120124-000	Constraints	10.000	1358055	
Naphthalene	21	10 U	5U	10 U	10 U	1.1	NS	10 U	NS	NB	NS	10.1	50	10 U	10 U	10 U	NS	10 U	NS	1000	NS	
Aconsphiltylene	210	10.0	5.1	18.0	1011	10.0	NS	10.0	NS	NS	NS	10.1	50	10.0	10.0	30.0	145	10 U	NS.	1000	NS	
Acersphtrate	80	10 U	6U	10 U	10.0	10 U	NS	10 U	NS	NB	NS	10 U	5U	10 U	10.0	10 U	749	10 U	NS	1003	NS	
Filiorene	280	10 U	6U	10 U	10 U	10 U	NB	10 U	NS	NB	NS	10 J	6 W	100	10 U	10 U	NS	10 U	NS	1000	45	
Phonanterene	210	10.0	5U	10 U	10 U	10 U	NB	10 U	NS	NS	NS	10.0	50	100	10 U	10 U	145	10 U	145	1003	NS	
Anthracene	2100	10 U	6U	10 U	100	10 U	NS	10 U	NS	NS	NS	10 J	5U	100	100	10 U	NS	10 U	NS	1000	NS	
Fluoranthece	280	10.0	50	10 U	100	10 U	NS	10 U	NS	NS	NS	10 U	5U	10 U	10 U	10 U	NS	10 U	NS	1003	NS	
Pyrese	210	10 U	5U	10 U	101	10 U	NS	11	NS	NS	NS	10 11	5U	10 U	10.0	10 U	NS	10 U	NS	1DUJ	NS	
Carboucie	NCOC	10 U	6U	10 U	10 U	10 U	NS	10 U	NS	NS	NS	10.0	50	10 U	100	10 U	NS	10 U	NS	1000	NS	
Velatile Organic Compounds (VOCs)	a standard and	10年3月25日	1 de la const	1.000000	PERSONAL A	10.0150	12770	CANAS .		Matterio C.	AND REAL	LITERS!	2017214	144	CRASSED.	CALL IN	010000	al deres	44464	1001223	A CONTRACTOR	
Bendene	1	10.0	0,5 U	0.5 U	U.8.0	0.5 U	NS	0.6 U	NS	NS	NS	100	0.5 U	0.6 U	0.6U	0.6.0	149	0.5 U	NS	100	NS	
Charomethene	NCOC	10 U	0.5 U	0.5 U	0.6.0	0.5 U	NG	0.6.0	NS	NS	NS	10.0	0.5 U	U 8.0	0.6 U	0.6 U	N/S	0.6 U	NS	100	NB	
Adelano	NCOC	10 UJ	50	5U	5 U	6 U	NB	5 U	NS	NIS	NS	10 UJ	50	511	5U	5U	NS	50	NS	1003	NS	
Chieroform	NCOC	10 U	0.5 U	0.5 U	0.5.0	0,5 U	NS	0,5 U	NS	NS	NS	10 U	0.5 U	0.5 U	0.5 U	0.5 U	145	0.6.0	NS	100	NS	
1.2-Dichloroethane	NCOC	10 U	0.5 U	0.5 U	U-8.0	0.5 U	NS	0.6 U	NS	NS	NS	10 U	0.19 J	0.6 U	0.6 U	0.5 U	NS	0.5 U	NB	100	NS	
Tetrachioroethene	NCOC	10.0	0.5 U	0.5 U	0.50	0.5 U	NB	0.5 U	NS	NS	NS	10 U	0.5 U	0.5 U	050	0.5 U	NS	0.5 U	NS	100	NS	
Toluene	NCOC	10 U	0.5 U	0,5 U	0.50	0.5 U	NS	0.5 U	NS	NS	NS	100	0.5U	0.5 U	0.6 U	0.5 U	NS	0.6 U	NS	100	NS	
Tityi Betzena	NCOC	10 U	0.5 U	0.5 U	0.60	0.50	NS	0.5 U	NIS	N/5	NS	100	0.5 U	0.6 U	0.5 U	0.5 U	NS	0.5-U	NS	100	NS	
Xylenes (bitel)	NCOC	10 U	0.5 U	0.5 U	0.5 U	0.5 U	NB	0.5 U	NB	NB	NS	10 U	0.5 U	0.5 U	0.5 U	0.5 U	NS	0.5 U	NS	100	NG	
Styrene	NCOC	10.0	0.5 U	0,5 U	0.5 U	0.5 U	NS	0.5 U	NS	NS	NS	10.0	0.5 U	U.5.0	0.5 U	0.5 U	NS	0.5 U	NS	100	NS	
is a propylaeraterie	HCOC	10 U	0.5 U	0.5 U	C.5 U	0.5 U	NS	0.5 U	NS	145	NS	10 U	0.5 U	U.6 U	0.6 U	0.6 U	NS	0.5 U	NS	10U	NS	

NOTES:

NGCC - Not a Site CCC

"- Based on 15A NCAC 2.

J Estimated Value NS Not Sampled (by decision)

N- Presumptive Evidence of Presence of Naterial

U- Meteriel was analyzed for: but not detected. The

number is the minimum quantitation limit.

NS - Not Sampled by decision

NA - Not Analyzed: Lab frices samples

Boldface indicates compounds above site action levels.

	Remediation	Remodiation CF-MW-03S													CF-MW-041										
Analyte (µg/L)	Goal*	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Jui-34	Mer-05	Sep-05	Mac-06	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Jui-01	Mar-05	Sep-05	Mar-06				
Carelnogenic (CAR) PAHs	1000 States	10000000	2012020	Sen SAN	. Carles			1000000	States -	155 Feb 77 7	C. P. C. S.	STERNER .	112000	200310	- Obser	12525902	0430310	1005502	STATES STATE	0.8100	CONSCISTS.				
Berzo(a)Anthracena	0.05	1D U	5UJ	10.0	10 U	10 U	10 U	101/	10 1	10 U	10.0	10 U	5 W	10 U	10 U	10 U	NS	2 J	NB	10.00	NS				
Chrysene	5	10 U	4UJ	100	10 U	10 U	10.1	10 1	10 U	10 U	100	10.0	5W	10 U	10 U	10 U	NS	2 J	NIS	10.03	NS				
Berszo(b)(Fisorenthene	0.0047	10 U	នបរ	100	10.0	10 U	10 J	101	10.0	100	101	10 U	5.00	10 U	+b U	10 U	NS	100	NS	10 UU	NB				
Barao-a-Pyram	0.0047	10 U	6 UJ	10 U	10 U	10 U	10 J	10.0	10 U	100	100	10.0	5 W	10 U	10 U	10 U	NS	10 UU	NS	10 UJ	NS				
Indens (1,2,3-od) Pyrene	0.047	100	á UJ	10 UJ	UBT	10 U	10 J	10 UU	10 U	10 U	100	10 U	500	1000	10 U	10.0	NS	10 U	NS	10 UJ	NS				
Diberapia,hjAafnacene	0.0047	10 U	6 U J	10 UJ	10.0	10 U	10 J	10.0	10 U	100	· .00	10 U	5 W.	10 UU	10 U	10 U	NS	10 U	NS	10 UJ	NS				
Benzo00Fluorantheree	0.47	10 U	5 UJ	10 U	10 U	10 U	10 J	10.0	10 U	10.0	100	10 U	5 UJ	10 U	10 U	10 U	NS	10 U	NS	10.03	NS				
Kon-carcinogènic (HCAR) PAHs		元后却	Residences	0009505	CONSTRUCTS.	AV CYCL	10000000	1000	00052657	H PARA	12142999	S86712-57	65 Y 10 S 10	10000	2000		1543944	1997 P. 18	Carl Star S		110000				
Naphtalana	21	32	76 J	30	41	13	11	L.8	18	10 J	12 12	100	ទយ	10.0	10 U	10 U	NB	10 U	NS	10 UJ	NS				
Acomphibylene	210	10 U	5.01	10 U	10 U	10 U	10 J	100	100	10 UJ	180	10 J	6 UJ	10.0	10 U	10.0	NS	10 U	NS	10:00	NS				
Aconaphthese	80	05	71 J	92	190	P1	110	64	85	71 J	62	10 3	ទយ	10.0	10 U	10 U	NG	100	NS	10 UJ	N3				
Fluorene	280	31	30 J	38	46	42	40	22.J	34	28 J		100	6 W	100	10 U	16U	NS	100	NS	10:03	NS				
Phenantiwane	210	29	23 J	26	33	36	29	22 J	91	29 J	21	10 J	ទយ	10 U	10 U	10 U	NS	1010	NS	10 UJ	NS				
Anthracena	2100	23	5 UJ	1.1	10 U	2 J	10 J	10.0	. 17	1.1	100	10 1	5.UJ	10.0	10 U	10 U	NS	100	NS	10 UJ	NB				
Fluorenthese	280	13	5 UJ	10 U	100	10 U	10.0	100	tou	10 UJ	10 U	10 J	6 UJ	10 U	10 U	10 U	NS	4.1	NS	10:02	NS				
Pyrane	210	10 U	5 UU	10.0	10 LL	10 U	10.0	100	10 U	10 UJ	101	101	5 UJ	10.0	-10 LI	10.0	NS	4.1	NS	10.03	NS				
Carbazola	NCOC	47	57 J	\$3	78	80	88	10 J	99	78 J	52	10 1	6 UJ	100	10 U	10U	NS	10.0	NB	10 10	NS				
Volutile Organic Compounds (VOCs)	SUMPRIME AND	NOOSHGED	ALL COLORN	10-0000	0.4057-53	NUMBER OF	12245126	COLORA S	ALC: NO.	19.00人的543	A ROLLAND	1000030	12-03-002-0	10,000,000	EASS/Lt	同時時期時代	19500-027	的政治	Kalikus	10.5秋年	的时代的				
Benzene	1	12	15	16	17	1.2	23	18	38	18	12	10.0	0.51	0.5U	0.5.U	0.50	NS	0.5 U	NS	10 U.	NS				
Chioromatiena	NCOC	10.0	0.5 U	0.5 U	0.5 U	0.16 J	0.5.0	0.5 U	10	10.0	101	10 J	0,5 U	0.50	0.5 U	0.6U	NS	0.5 U	NS	10 U	NS				
Acetone	NCOC	10 U	6 U	5 U	5 U	5.0	6U	60	51.1	10 U	10 UJ	10.0	SU	5U	6U	5U	NS	50	NS	10.02	NS				
Chiereform	NCOC	10.0	0.5 U	0.5 U	0.50	0.5 U	0.5U	0.5 U	10	10 U	0.0	10 U	0.5 U	0.5 U	0.5 U	0.5U	NS	0.5 U	NS	100	NS				
1_2-Dichiorpethene	NCOC	10 U	0.5 U	0.5 U	0.6U	0.5 U	0.60	0.5 U	0.42 J	10 U	BU	10 U	0.6 U	0.6 U	0.5 U	0.6 U	NS	0.5 U	NS	10 U	NS				
Terracislamethene	NCOC	10 U	0.5 U	0.5 U	0.5U	0.38 J	0.5U	0.5 U	10	10.0	10.0	101	0.5 U	0.5 U	0.5 U	0.5 U	NS	0.5 U	NS	100	NS				
Toiuero	NCOC	2 J	4.9	1.5	1.3	0.5.U	1.9	1.2	2.4	10 U	10 U	10.0	0.27 /	0.5 U	0.5 U	0.6 U	NS	050	NS	10 U	NS				
Eltyl Benzene	NCOC	7 J	12	12	11	0.71	16	9.5	10	15	100	10.0	0.5 U	0.50	0.5 U	U 8.0	NS	0.6 U	NS	10 U	NS				
Xylenes (total)	NCOC	12	26	14	16	1	21	15	16.6	15	8J	10.0	0.6 U	0.6 U	0.5 U	0.6 U	NS	0.5 U	NS	10 U	NS				
Styrene	NCOC	10 U	0.89	0.5 U	0.50	050	8.0	0.5 U	0.52 J	10 U	100	10 1	0.5 U	0.50	0.5 U	0.5U	NS	0.5 U	NS	10 U	NS				
Isopropybeszene	MCOC	10 U	1	1	1	0.5 U	1.7	0.78	1.3	10.0	10.0	10 U	0.50	0.50	0.5.0	0.5 U	NS	0.6 U	NS	10U	NS				

NOTES:

NCCC Net a Ste CCC

*- Based on 16A NGAC 2L

J - Estimated Value NS - Not Sampled (by decision)

N - Presumptive Evidence of Presence of Naterial

U - Material was analyzed for, but not detected. The number is the minimum quantitation limit.

NS - Not Sampled by decision

NA - Not Analyzed; Lab froze samples.

Boldface indicates compounds above site action levels.

	Remediation					CF-NM	/-05\$										CF-MW-08	V			
Analyte (µgiL)	Goal*	Sep-32	Dec-02	Mar-03	Jun-02	Sep-83	Dec-03	Jul-04	Mar-15	Sep-85	Mar-96	Sep-02	Dec-02	Mar-03	Jun-63	8ep-03	Dec-83	Jul-04	Mar-05	8ep-05	Mar-08
Carcinogénic (CAR) Piblix	Constanting of the	- PORKIE	0.000 (100)	ENV-Second	1.53274380		1.15.66.14	1-20-202	2-23 (C + 3	Charles States	10000-0	2893000	2005	1.224 (2)	5002500	CALCULATION OF COMPANY	机构的程序	1001008	349,0554	1010784	and the second
Bunzo(a) Anthroeone	9.05	10 U	2600 W	101	100	200 U	1000 U	100	NS	10 LU	NS	10 U	5 UJ	10 U	4.4	10.0	10 U	10 U	NS	10 UJ	NS
Chrysene	6	10 0	2500 UJ	10.0	10 U	200 U	1000 U	10 U	NS	10 LU	NS	101	su.	10 U	2 J	10 U	10 U	10 U	N3	1003	NS
filenum(b)(Filenershierer	0.0947	10.0	2500 LU	100	100	200 U	1000 U	100	NIS	10 LV	NS	100	SUJ.	10.0	100	70 U	180	10111	MS	1010	NS
Banzo-a-Pyrene	0.0347	100	2500 LU	100	10 U	200 U	1000 U	10U	NIS	10.00	NS	10 U	6 U J	10 U	10 U	10 U	10 U	10 U	NS	10 LU	NS
Indeno (1,2,3-cd) Pyrene	0.047	10 U	2600 W	1010	10.0	200 U	1000 U	100	NS	1000	NS	10 U	500	10-UJ	10 U	100	10 U	10 U	NS	10 UJ	NS
Dibenzo(s,h)Anthracens	0.0347	10 U	2500 W	1010	10 U	200 U	1000 U	10U	NIS	10 UU	NS	10.0	6UJ	10 UJ	10 U	10 U	10 U	100	NS	10 UJ	NS
Barzo(K)Puorasthene	9,47	10.0	25001.0	101/	10.0	200 11	1000 U	104	NS	10 LU	NS	1011	5UJ	10 U	10 U	10.0	1013	1011	NS	10.00	NS
fice-carcinogenic (NCAR) PAHs	A STATISTICS OF	A VIAPOPPOR	140.000	Section (Sec.	C NEW SKI	10000000	10.000	1000	ST MULTIN		CORP.	0.00000000		and the second	2124	1999-1999 (P		100000	1001000	210100	Sec. 20 cm
Maphthelene	21	2800	10000 J	8930	7109	810	7930	13000	NS	69900 J	N3	10.0	SUL	10 U	10 U	10 U	10 U	10.0	NS	10 UJ	NS
Acerephthylene	210	7.3	2500 UJ	11	10.0	200 U	1000 U	14	NB	10 J	NB	10 U	601	100	10.U	100	10 U	10.0	NS	10 UJ	NS
Acenaphthena	30	290 J	260 J	370	360	381	320 J	3/0.1	NS	330 J	NS	100	5U)	10 U	2.1	100	10 U	100	NS	10 UJ	NS
Flucement	280	70	2600 UU	140	100 J	200 U	120 J	3000 U	NS	E0 J	NS	100	5 UJ	10 U	2.J	10 U	10 U	100	NS	10 UJ	NS
Phonanthrene	210	68	2500 LU	120	87.1	200 U	110 J	3000 U	NS	87 J	NS	10 U	5 UJ	10 U	6.1	10 U	10 U	10.0	NS	10 U J	NS
Anthrazene	2100	8 J	260010	8.1	12	20013	1000 U	15	NS	10 J	NIS	101	5 U	10-11	10 U	10 U	10 U	10U	NS	10 UJ	NS
Fluorantiene	280	7 J	2600 UJ	73	8,1	200 U	1000 U	10	NS	81	NS	100	\$ U.J	10 U	6J	10.U	10 U	10 U	NS	10 UJ	NS
Pyrene	210	4.1	2500 UJ	4.1	53	200 U	1000 U	6.1	NB	6.)	NB	10 U	6 LU	10 U	4.1	10 U	100	10 U	NS	10 UJ	N5
Carbazolo	NCOC	150 J	2600 UJ	300	230	1 DE	L 00%	L 065	NS	210 J	NS	100	500	10 U	100	10 U	10 U	10.0	NS	10 UJ	NS
Volatile Drgaals Compounds (VDCs)	1997年1998年19	12040603	M. S. S. S. S.	1257.31	12633.00	a large hereit	4-2-2-1	12934990	NEAN AR	ALC: NO CONTRACTOR	(4) [1] [1]	1.1.500	建最短级	-709845	and allow	Distantin State	Section 2	and and	27 Mar 49	新学的行为	2007536
Benzene	1	81	52	40	41	11	45	57	NS	29	NS	100	0.64	0.5 U	0.64	0.27 .	0.17 J	0.41 J	NS	NA	NS
Chloromethene	NCOC	10 U	10.0	10 U	100	100	10 U	100	NS	10 U	N45	100	0.5 U	0.5 U	0.6.0	0.5 U	0.50	0.5 U	NS	NA	NS
Acetore	NCOC	111	10 J	32	100	10U	10.03	100	NS	10 U	NS	10 W	60	61/	19	533	5 U	50	NS	NA	AS.
Chloraform	NCOC	100	10 0	10 U	100	10 U	180	100	NE	10 U	NS	100	0.5 U	0.5.0	0.5 U	0.5 U	0.5 U	0.5 U	NS	NA	NS
1,2-Dichlorcethane	NCOC	100	10 J	10U	100	100	100	100	NS	10 U	NS	100	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	NS	NA	NB
Tetrachioroethere	NCOC	10 U	10 J	10 U	100	10 U	10 U	10 U	NS	10.U	NS	100	0.5 U	0.6 U	0.6 U	0.5 U	UEU	U.5 U	NS	NA	N5
Toluone	NCOC	21	180	170	180	41	160	240	NE	120	NS	100	0,24 J	0.5 U	0.5 U	0.5 U	0.5 U	0.6 U	NS	NA	NS
Ethy Benzene	NCOC	28	20)	150	180	37	150	220	NS	140	NS	10 U	0.21 J	0.5.0	0.61	0.5 U	0.5 U	0.5 U	NS	NA	NB
Kylennes (hotel)	NCOC	120	803	570	680	120	560	818	NE	510	NIS	180	0.47 J	0.5 U	0.5 U	0.5.1/	054	0.5 U	NS	NA	NS
Styrano	NCOC	16	90	8D	\overline{n}	18.1	77	150	NS	62	NS	100	050	0.5 U	051	0.6.U	0.5.U	0.5 U	NS	NA	NS
hopropybencere	NCOC	10U	20	16	17	100	18	26	NS	15	NS	10.0	0.5 U	0.6.0	0.510	0.6 U	0.6 U	0.5 U	NS	NA	NB

NOTES:

NCCC - Not a Site COC

*- Based on 15A NCAC 2L

J - Estimated Value NS - Not Sampled (by decision) N - Presumptive Evidence of Presence of Materiel

U - Material was analyzed for, but not detected. The

number is the minimum quantilation limit.

NS - Not Sampled by decision

NA - Not Analyzed; Lab froze campios

Boldface indicates compounds above sile action levels.

	Remediation					CF-W	IW-075									CF-M	W-081				
Analyte (ug/L)	Goal*	Bep-02	Dec-02	Mar-00	Jun-83	8ep-03	Dec-03	Jul-04	Mar-06	8ep-05	Mar-06	Bep-02	Dec-02	Mar-43	Jun-03	8ep-03	Dec-03	Jul-04	Mar-05	Sep-06	Mar-86
Carcinogenic (CAR) PAlls	Statute States	13900	SAME OF	NO 797-	20,820	1.2.5.6.5	St. Collate	1.2210	GEN CO	1000	12122013	國際機構	NO YOU IN	And in party			1000000	71.5.0	ROUN	6750000	NUMPER
Benzo(e)Anthrecere	0.05	100	ទយ	10.0	10.0	100	100	10 U	NS	10 W	NS	10 U	5UJ	10 U	10.0	10 U	NS	10.U	NS	N5	NS
Chrysene	6	100	6 W	100	10.0	10 U	10.0	10.0	145	10.00	NS	10 U.	507	10.0	10.0	10.0	NS	10 U	NS	NS	NS
Berzo(b)/fluoranthene	0.0047	10.0	6 UJ	10 U	10.0	100	10 U	10 U	148	10 UJ	NS	10 U	6UJ	10.0	10 U	10 U	NB	1000	NB	NS	NE
Banzo-a-Pyrame	0.0047	100	ទយ	10.0	10 0	-DU	10 U	10 U	NS	10 UJ	NS	10 U	5.UU	1010	10 U	10.0	NS	10 U	NS	NS	NIS
Indens (1.2,3-cd) Pyrene	0.047	100	600	10 W	10 J	:00	10 U	10.0	145	10.00	NS	10 U	504	10.00	10 U	10 U	NS	10 U	NS	NS	NB
Diberzo(a,h)Anthraciene	0.8047	10 U	6 UJ	10 UJ	10 U	10 U	10 U	10 U	NS	10 UJ	NS	10 U	500	10 LU	10 U	10 U	NS	10 U	NS	NS	NS
Banzo())Fluoranthana	0.47	10 U	នយ	100	10 U	10.0	10.0	10 10	NS	10 UJ	NS	10 U	504	10.0	10 U	10 U	NS	10.0	NS	NS	NS
Non-camboganic (HCAR) PAHs	A DESCRIPTION OF THE	50/00/68	1.327.024	0.00.000	1310944	ALC: NO. 15-25	1 CLASS	02000	1. CAN	Season and	and the second	57155550	1.000	STREET, SOL	a constant		01150506	1000000	S. 886(L)	1.11/01/07	1000000
Naphihalene	21	10.0	28 J	60	115	818	10 U	656	NS	10 111	NS	10 U	510	101/	10.11	1013	NS	10.0	NS	NS	NS
Aconophitylano	210	10.0	5,6 J	3.1	10.0	10 U.	10 U	41	NS	71	NS	10 U	500	10 U	10 U	10 U	NS	100	NS	NS	NS
Acenaphinana	80	64	120 J	100	79	160 J	170	120 J	N8	62 J	NS	10 U	510	100	10 U	10 U	NB	10 U	NS	NS	NS
Fluorene	280	44	52 J	65	47	73	77	68 J	NS	62 J	NS	10 U	500	10 U	10 U	10.0	NS	100	N5	NS	NS
Phanastinene	210	42	54 J	70	49	78	62	64 J	NS	28 J	NS	10.0	5 LU	10U	10 U	10 U	NS	100	NS	NS	NS
Anthrasene	2100	91	L 8.8	9.1	10	12	11	10	NS	θ.	NS	10 U	5 W.	10 U	10 U	10 U	NS	10.0	NS	NS	NS
Fluorentheres	280	11	11 J	8J	81	12	12	91	NS	121	NS	10 U	5 W	10 U	10 U	10 U	NS	100	NS	NS	NS
Pyraza	210	6.	6.9 J	51	61	6.	6 J	51	NS	42	NS	10.0	6 W	10 U	10 U	10 U	NB	100	NB	NIS	NS
Carbazole	NCOC	10.0	32 J	33	28	40	35	44	NB	38 J	NB	100	5W	10 U	10 U	1.1	NS	100	NS	NS	NS
Volatile Organie Compounds (VOCs)	Contraction and the second	CALCULAR STAT	Manale	(Sola ca)	Jagood	1000	100000	Service -	interna in	A Reference	CI DINE IS	110 31.81	CT-GLOSA	10000	1000	10000	Leans.	(3)(3)(4)	44620164	ACCUSED IN	A SEA SHE
Enrupene	1	10 U	0.5 U	0.5 U	2.60	0.5 U	0.6 U	0.50	NG	10 U	NS	10 U	0.0.0	0.6.0	0.50	0.5 U	NB	0.5 U	NS	NB	NB
Chioromethene	NCOC	16.0	0.51	0.5 U	25U	0.5 U	0.5U	0.5 U	NS	10 U	NS	10 U	0.5 U	0.5 U	050	0:5 L	NS	0.5 U	NS	NS	NS
Acetone	NCOC	10 UU	50	5U	25 U	5.0	5 U	su.	NS	10 U	NS	10.00	50	5U	÷U	5U	NS	5U	NS	NS	NS
Chloroform	NCOC	100	0.5 U	0.5 U	2.5 U	0.5 U	0.6U	0.5 U	NS	10 U	NS	10 U	0.5 U	0.5 U	0.5 U	0,5 U	NS	0.5 U	NS	NS	NB
1.2 Dichloroethene	NCOC	10 U	0.5 U	0.5 U	25U	0.5 U	0.5U	0.5 U	NS	10 U	NS	10 U	UBD	0.5 U	050	0.5 U	NS	0.5 U	NS	NS	NS
Tetrachicroethene	NCOC	100	0.5.U	0.51/	25U	0.5.0	0.5.0	0.5 U	NS	10 U	N/S	1010	050	0.510	050	0.51	NS	05U	NS	NS	NS
Tolvere	NCOC	1.3	0.84	0.32 J	250	0.65	0,76	0.5	NS.	10.0	NS	100	0.5 U	0.5 U	0.5 U	0.51/	NIS	050	NS	NS	NS
Ethyl Gergere	NCOC	33	1.7	0.90	12	1.8	2.3	1.5	NS	3J	NB	10 U	0.5 U	0.5 U	0.5 U	0.5 U	NS	050	NE	NS	NE
Xylenes (total)	NCOC	8.1	8.1	2.9	3.2	72	8.1	6	NS	10	NS	100	U 8.0	0.5 U	0.5 U	0.5 U	NS	050	NS	N5	NS
Etymene	NCOC	100	0.66	0.5 U	250	0.87	0,0	0.82	NS	10 J	NS	100	0.5 U	0.5 U	0.5 U	0.5 U	NS	050	NS	NS	NS
hopropy/bennere	NCOC	100	0.19 J	0.5 U	2.6 U	0.18 J	0.29 J	U 3.0	NS	10 J	NS	100	0.6 U	0.5 U	0.5 U	0.5 U	NS	050	NS	NS	NS

NOTES:

NCCC - Not a Site COC

1 - Based on 15A NCAC 2L

J - Estimated Value NG - Not Sampled (by decision)

N - Presamptive Evidence of Presence of Meterial

U - Meterial was analyzed for, but not detected. The

number is the minimum quantitation limit.

NS- Not Sampled by decision

NA - Not Analyzed: Lab troze samples BoldBace indicates compounds above site action lovels.

	Remediation					CIF-MA	N-158									CF-M	W-16V				
Analyse (ug/L)	Goal*	Sep-82	Dec-02	Mar-43	Jun-03	Sep-03	Dec-03	Jul-01	Mar-05	Sep-05	Mar-08	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Jus-04	Nar-05	Sep-05	Mar-06
Carcinogenic (CAR) PAHs		n n - s - s - s - s	5501677	Pessenas	10000	510-030	CONCRET.	1023 0.25	944 19 AV	100.000	COLORAS.	CALLS STATE	104598.0		AT SERIES	ANY STR	1155516	19681955	などのない	observing.	1000000
Beszu(a)Anthracere	3,85	10 U	60	10 U	10 U	10 U	NG	10 U	NS	NO	N3	tDU	600 U	:000	100	50 U	100	100	100	10 LU	1012
Chryssee	5	10.0	EU	10 U	10 U	10 U	NS	10.0	98	NS	NS	100	500 Ú	.0 M	18.0	50 U	100	100	100	1010	100
Benzo(b)(Fluorantheno	0.0047	100	÷U	tou	10 L	10 U	NS	10.00	NS	NS	NS	10.0	500 U	:0.UU	10 U	50 U	1DU	10.0	10 U	1000	101
Benzo-a-Pyrens	0.0047	100	80	10.0	10 U	10 U	NS	10 U	NS	NS	N5	100	500 U	10 W	10 U	50 U	100	10 33	10 U	10.00	101
Indens (1,2,3-cd) Pyrene	0.047	16 U	EU	10 LU	10 U	10 U	NS	10 U	NS	NS	NS	100	500 W	10 W	10 U	50 U	TDU	10 U	10.0	1010	1 BU
Dibenzo(a,hsAnthracene	0.0047	1012	±u	10 LU	10 L/	10 U	NS	10.1	NS	NE	NS	10.0	500 U	101.0	10 U	5014	10.0	1011	100	10.00	100
Benzo(k)/Russanthene	9,47	100	4U	101	10 U	10 LI	NS	10 U	NS	NS	NS	100	600 U	10.00	10 U	BOU	100	100	10 U	1000	100
Noni-carcinogenic (RCAR) PRHs	Service Contract of the	12535361	100000000	Research and	123.000	1000	1.000	0,000,000	2-5-20100	10000000	0.000	1468000	12:03:030	16 12 (0)	19111112	10017444	1910103	1000	对非时间的	1927	1001000
Mephthalene	21	100	±u	104	10 U	2 J	NS	10 U	NS	NS	NS	1400	1800	400 J	2590	260	380	570	538	318 J	340
Acontphthylene	210	100	0 U S	100	10 U	10 U	NS	10 U	NS	NS	N5	24	500 U	10.00	10 U	50 U	100	12	21	1.1	101/
Acomplithene	80	100	. 5 U	19 L	10 U	4.1	NS	10 U	NS	NS	NS	48	500 LI	19 J	34	32 J	34	33	60	34 J	42
Fluorena	284	100	5U	10 L	10 U	SJ	NS	10 U	NS	NS	NS	11	500 LI	4.1	82	50 U	7.1	42	BJ	6.1	EI
Phonesthrape	210	100	8U	100	10.U	B J	NUS	10 U	NS	NS	NS	10 U	500 U	10 UJ	43	50 U	10.0	23	10 U	10.03	10U
Antracena	2100	10 U	5 U	10 U	10 U	10 U	NB	10 U	NS	NE	NB	100	500 U	10 UJ	10 U	50 U	10 U	10U	10U	10 LU	160
Fluoranthene	284	100	50	50 U	10 U	10 U	NS	10 U	NS.	NS	NS	10.0	500 U	10 00	2.J	50U	10 U	100	10U	16 UJ	100
Peena	218	100	5U	100	10.0	33	NS	10 U	NS	NS	NS	10 U	500 U	10 UJ	1.1	50 U	10 U	100	10U	10 UJ	100
Carbatole	NCOC	10 U	50	10 U	10 U	10 U	NS	10.0	NS	NB	NS	32	500 U	16 J	24	19 J	26	20	52	21J	33
Volatile Organic Compounds (VOCs)	Contraction of the second second	1220342	1000	H1222723	1000000	111111	10000	1000	Gid Photos	CI OT X DEC	2339772	10110111	EAL MARK	120241248	SURSER	CALCULATION OF	S. 19-06-50	a type ou	におりの言語	100%的目标	-7.36.25
Benzens	1	10 U	0.5 U	0.6 U	0.5 U	0.5 U	NS	0.5 U	NS	NS	NS	85	30 J	58	63	65	58	71	75	88	11
Chieromethane	NCOC	10 U	0.5 U	0.6.U	050	0.5 U	NS	0.6 U	NIS	NS	NS	10.0	10 UJ	100	10 UU	100	10 U	100	60	100	100
Asstone	NCOC	10 U/	50	50	50	751	NS	50	NS	145	NS	10 UJ	10 UJ	100	100	12	10.03	10.0	25 UJ	10 U	1600
Chieratorn	NCOC	10 U	0.5 U	0.6 U	050	0.5 U	NS	0.5 U	NS	NS	NS	10 U	10 UJ	10 U	10U	100	10.0	100	50	100	100
1,2-Okhiorcethene	NCOC	10 U	050	0.6 U	050	0.5 U	NS	0.5.0	NS	145	NS	10.0	10 UJ	180	100	100	10.0	100	1.8./	100	100
Tekachiprositiene	NCOC	10 U	0.6 U	0.6 U	05U	050	NS	0.6 U	NS	145	NS	10 U	10 UJ	10 U	100	100	10 U	100	5 U	100	100
Takeno	NCOC	10 U	0.5 U	0.6 U	05U	05U	NS	0.5 U	NS	149	NS	45	44 J	32	37	29	28	33	35	35	100
Ethyl Benzene	NCOC	10.0	0.6.U	0.5 U	050	0.5 U	NS	0.6.U	NS	MS	NS	110	130 J	88	83	36	40	55	53	54	- 50
Nylemen (total)	NCOC	10 U	0.6 U	0.6 U	0.5 U	DSU	NS	0.6 U	NB	145	NS	110	971	66	69	64	66	72	76	65	62
Styrere	NCOC	10 U	0.5 U	0.6 U	050	050	NS	0.5 U	NIS	148	NS	5.	10 UJ	31	4J	18	24	100	4.1	51	1,Qe
isopropylbanzone	NCOC	10 U	0.5.0	0.5 U	050	050	145	050	NIS	145	NS	10	9 J	6 J	7.1	18	4.2	LS	8.3	71	872

NOTES

NCCC - Not a Site COC

- Besed on 15A NCAC 2L

J - Estimated Value NS - Not Sempled (by decision)

N - Presumptive Evidence of Presence of Material

U - Material was analyzed for, but not detected. The

number is the minimum quantitation limit.

NS - Not Sampled by decision

NA - Not Analyzed; Lab frozo samples

Bold'ace indicates compounds above site action invels.

	Remediation					CF-M	W-178					1				CF-M	W-188				
Analyte (ugit.)	Gosl*	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Jui-04	Mar-05	Sep-05	Mar-06	2ep-82	Dec-02	Mar-33	Jun-03	Sep-03	Dec-03	Jul-04	Mar-05	Sep-05	Mar-05
Curchicgardic (CAR) RARS	a for the contraction	of endowed the			180000	5 9 95 9		ALCONS.	1000000	100 - 100 - 10 M	NAMES OF	199906103		Sector Sector	64 CT \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1875 30	No. States	and the second	and the second	1.000	10145-54
Benzo(a)Anthracene	0.05	10.0	5.W	10 U	10.0	100	NS	101	NS:	NE	NB	100	5UJ	10 U	10.0	10.1	N8	100	NS	10 UJ	NS
Chrysene	5	100	5.00	10U	10.0	10 U	NS	100	NS	MS.	NS	10 U	sui	10 U	10 U	10 J	NS	100	NS	10 UJ	NS
Senzo(b)/Fluoranthene	0.0847	10.0	5 W	10U	100	10.0	NS	100	NS	NS	NB	100	601	10 U	10 U	10 J	NS-	10 00	NS	10 UJ	NS
Senzo-a Pyrere	0.0647	10 U	510	10U	10 U	10 U	NB	1010	NS	NS	NIS	1010	SUJ	10 11	10 U	10 J	NS	10U	NS	10 W	NS
Indeno (1,2,3-od) Pyrene	0.047	+0 U	5UJ	101.0	10.0	10.0	NS	1011	NS	NS	NS	101/	510	10.00	10 J	100	N5	100	NS	1000	NS
Olbergo(s,h)Anthracene	8,6047	10 U	6W	10 W	10U	10 U	NS	10 U	NB	NIS	N5	10 U	6 U.U	18 UJ	10 J	100	NS	100	NB	1000	NS
Benzoik/Fluoranthene	0.47	10.0	a LU B	100	10.0	100	NS	10 U	NS	NS	NS	10 U	5 U.V	100	10 U	101	NS	100	NS	1000	NS
Non-carcinogenic (NCAR) PAHs		10000000	100633103		100000	111213	122511767	21 2 2 27	109/524	(二)(注)))	2.000	10/12/12	2010/01/2017	12203719	MARGIN	11010010	0.3340.0	ROMPO CO	03.00	0.2207.02	Caller Co
Naphthaliene	21	18 U	5W	10.0	10 U	100	NS	10 U	NS	NS	NS	100	500	10 U	10 J	100	NS	100	NS	1003	NS
Acenaphthylena	210	10 U	ទយ	100	10 U	10.0	NS	10 U	NS	NS	NS	10 U	5 UU	100	10 J	100	NS	100	NS	1000	NS
Acenaphhene	80	10.0	5111	100	100	100	NS	1010	N/S	N3	NS	10.U	514	100	10 J	10 U	N5	100	NS	10 UJ	NS
Pluorene	289	10 U	5 W	100	100	100	NB	10 U	NB	NB	NS	10 U	5 LU	10 U	10.0	100	N8	10U	NS	1010	NS
Phenemitrene	210	18 U	sw	100	10.0	100	NS	10 U	NS	NS	NS	10 U	500	100	10 U	10.0	NS	10 U	NS	1000	NS
Anthracene	2100	10.0	ទយ	100	100	100	N5	10 U	NS	NS	NS	10 U	514	100	10 U	18 U	NS	10 U	NS	1000	NS
Fluorenthene	230	10 U	ទយ	100	10U	100	NS	10 U	NS	NS	NS	10 U	500	10 U	10.0	10.0	NS	100	NS	1000	NS
Pyrane	210	100	ទយ	100	100	100	NS	10.0	NB	NB	NS	10 U	500	10 U	10 U	100	NS	100	NS	10.UJ	NS
Carbuzole	NCDC	100	51,11	100	10.0	10U	NS	18 U	NS.	NIS	NS	101/	51.4	100	101	100	N5	100	NS	10 UJ	NS
Velatile Organic Compounds (VOCs)	and a subsection of the	14.459.66	AN ASSA	Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.		19420	20-24-5	1000	1=+28/124	1284168	12,51856	-Sexuely	< 685/s	STARKS ST	22223/23	AND ST	a New York	0.0869.0	ALC: NO POST OF A DESCRIPTION OF A DESCR		164.64
Denzene	1	180	0.5U	0.5 U	0.50	0.6U	NS	0.5 U	NB	NB	NS	10 U	05U	C.5 J	0.5 U	0.5U	NS	0.5U	NS	10 U	N3
Chloromethano	NCOC	10.0	0.5U	0.5U	0.5U	0.5 U	NS	0.5 U	NS	NS	NS	10 U	0.5 U	C.5.J	0.5U	0.5U	NS	2.5U	NS	10.0	NB
Apetone	NCDC	10 W	6U	5U	6U	5 U	NS	6U	NS	NS	NS	10 U	60	5 U	61	5 U	NS	6U	NS	10 U	NS
Chloraform	NCOC	100	0.5U	0.5U	0.50	0.6 U	NS	0.5 U	NB	NS	NS	10 U	050	0.5 J	0.5 U	0,5U	NB	0.5U	NS	10 U	N5
1.2-Dichiorosthane	NCOC	100	0.50	0.5U	0.5 U	DEU	NS	0.5 U	NS	NS	NS	10 U	050	0.5 U	0.5.0	0.5U	NS	0.5 U	NS	100	NB
Tstrachloroethene	NCDC	10 U	0.6U	0.6U	0.50	0.6U	NS	0.5.U	NS	N45	NS	10 U	0.5 U	0.6 U	0.5 U	0.5U	NIS	0.5U	NS	10 U	NS
Toluene	NCOC	10.0	0.50	0.50	0.60	0.8.0	NS	0.6 U	NB	NB	NS	100	0.2 J	0.50	0.60	0.50	NB	0.5U	NS	100	NS
Ethyl Sergene	NCOC	10.0	0,5 U	3.5 U	0.50	0.5 U	NS	0.5 U	NS	NS	NB	10 U	050	0.5 U	0.5.U	0.5 U	NS	0.5 U	NG	10.0	NS
Xylenes (total)	NCOC	10.0	6.5U	9.5 U	0.00	0.5 U	NS	0.5.U	NS	N5	NS	10.0	050	0.5 U	0,5 U	0.5 U	NS	0.6U	NS-	100	N/S
Эдтипа	NCOC	10 U	0.5U	0.5 U	0.6 U	0.5 U	NS	0.6 U	NS	NS	NS	10 U	0.50	0.5 U	0.6U	0.5 U	NS	D.5 U	NS	10 U	NS
Isopropylbenzene	NCOC	10 U	0.5 U	0.5 U	050	0.5 U	NS	0.5 U	NB	NS	NS	10 U	050	0.5 U	0.5U	0.5 U	NS	0.5 U	NS	10.0	NS

NOTES:

NGGC -Not a Sile COC

*- Based on 15A NCAC 2L

J - Estimated Value NS - Not Sampled (by decision)

N- Presumptive Evidence of Presence of Metarial

U- Meterial was analyzed for, but not detected. The

number is the minimum quartitation limit.

NS - Not Sampled by decision

NA - Not Analyzed; Lab froze samples

Boldface indicates compounds above site action levels.

	Remediation					CF-M	N-195									CF-M	N-205				
Analyte (µµL)	Goal*	Sep-02	Dec-02	Mur-03	Jun-03	Sep-33	Dec-03	Jul-04	Niker-05	Gep-05	Mar-06	Seg-02	Dec-02	Mar-03	Jun-03	Scp-03	Dec-03	Jui-04	Mar-05	Sep-05	Mar-05
caromogenic (CAR) PAHs	A XER OF BRIDE	286768	25 110	Concession in the	100000	10000	0176190	1.1.26.00	indicates	200 C 200 C 200	C VIST :	24000	A MARTIN	644488	122025	CONTRACT.	CONCERCIO	100000	COLUMN 1	000000	State on G
Benata(a)Anthracese	0.05	10 U	5 U	10.0	10.0	10 U	NS	10 U	NS	10 UJ	NS	10 U	6U	10 U	10.0	10 U	10 U	1DU	NS	10.03	NS
Chrysene	5	10 U	50	10 U	10 U	10 11	NS	10 U	NS	10 UJ	NS	10 U	5U	10 U	10 1	10 U	10 U	100	N5	10 UU	NS.
Benzo(b)Fluoranthono	0.0047	10.0	50	10 U	10 U	100	NS	10.04	NS	10 UJ	NS	10.0	50	10 U	10 U	10 U	10 U	100	NS	1000	NB
Banato-e-Pyrene	0.0047	10 U	6U	10 U	100	10 U	NS	10 U	NS	10:03	NS	10 U	5U	10 U	10 U	10 U	10 U	10 U	NE	10 UU	NS
indeno (1.2,3-cd) Pyrene	0.047	10 U	5 U	10 W	10 U	10 U	NS	10 U	NS	10 W	NS	10 U	5U	10 UJ	10 U	10 U	10.0	100	NS	10 UJ	NS
Divenzo(a, h)Anthracene	0,0047	10 U	5 U	10 LU	10.0	10 U	N5	10.0	NS	10.00	NS	10.0	su	10 LU	10 U	10 U	10.0	10.0	NS	10.03	N3
8enzold/Fiverenthene	0.47	10 U	5U	10 U	10.0	10 U	N5	10 U	NS	10 UJ	NS	10 U	50	10 U	10 U	10 U	10.0	10 U	NS	10.00	NS
Hon-carcinegenic MCAR PAHs	NO REAL PROPERTY OF	1,5750,68	GRUDUCE	2010-001	COLLEGE	1000.003	动用的复数	- CARL	100.000	COLOR!	10000000	12532013	SHEAKS	1. C. S. 1. J. J.	a field	0000000	THE REAL PROPERTY.	04923	-170 500	12 (25.29)	80200
Napirthalene	21	10 U	5U	10 U	2 J	10.0	NS	10 U	NS	10 UJ	NS	10 U	8.5	7.1	2.J	12	9.J	10 U	NS	23	NS
AcomphEnylene	210	10 U	5U	10 U	10 U	10 U	NS	10 U	NS	10 UJ	NS	10 U	6U	10 U	10 U	10 U	10 U	10.0	NE	10 UU	NS
Azartaphinase	80	10 U	5 U	10 U	100	10.0	NS	10U	NS	10 UJ	NS	10 U	50	10 U	10 U	10 U	10 U	100	NS	+D UU	NS
Fluctene	280	10 U	50	10 U	10 U	100	NS	10 U	NS	10 UJ	NS	10 U	su	10 U	10.0	10 U	10 U	10 U	NS	1000	NS
Phonentinene	210	10 U	6U	10 U	10.0	10 U	NS	10.0	NS	10 UJ	NS	10 U	5U	10 U	10 U	10 U	10 U	100	NS	10 UU	NS
Anthracene	2160	10 U	5U	10 U	10 U	100	N8	10.0	NS	10 UJ	NS	10.0	50	10 U	10.0	10 U	10.0	10 U	NS	1010	NS
Flueranthene	280	10 U	5.0	10 U	10 U	10.0	NS	10'U	NS	10 UJ	NS	10 U	5U	10 U	10 U	10.0	10 U	100	NS .	10.00	NB
Pyrena	210	10 U	6U	10 U	10 U	10 U	NS	100	NS	10 UJ	NS	10 U	5U	10 U	10 U	10 U	10 U	10.0	NS	10 W	NS
Carboole	NCOC	10.1	50	10.0	100	10.0	NS	10 U	NS	10 UJ	NS	10.0	5U	10.0	10.0	10.0	100	10.0	NS	1010	NS
Volatile Organic Compounds (VOCs)	a support of the balance	1010045	and the second	104000	14-14-16-16	1 2000		1000	-146 (S. 44)	A COMPANY	1 States	- 100000	10000000	A PACKAGE	FERRES	11-11-12-12	149.12174	10000	NOP OF SERVICE	1.0000000	10000
Bergwite	1	10 U	0.6 U	0.5 U	0.50	0.5 U	N/3	0.5U	NS	10 UJ	NS	1.1	0.6 U	0.5 U	0.5 U	0.23 J	0.5U	050	NS	100	NS
Chiarometrane	NCOC	10 U	0.5.0	0.5 U	0.5 U	0.5 U	NB	0.5U	NS	10 UJ	NS	16 U	0.5 U	0.5 U	0.5 U	0.5 U	0.50	0.5 U	NS	100	NS
Acetone	NCOC	10.00	8.8 J	5U	5U	5U	NS	50	NS	10 00	NS	1100	5.5 J	6U	50	80	50	5U	NS	101/	NB
Chloroform	NCOC	10 U	0.5 U	0.5 U	U 8.0	0.5 U	NS	0.5U	NIS	10 UU	NS	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5U	0.5U	NS	100	NS
1,2-Dishlerosthana	NCOC	10 U	05111	0.5 U	0.5 J	0.5 1	NIS	0.5 U	NS	10 UU	NS	10 U	0.19.1	050	0.5.1	0.5 U	0.5U	0.5U	NS	100	NS
Tetracisloroethene	NCOC	10 U	050	0.5 U	C.5 J	0.5 U	NS	0,5 U	NS	TOUU	NS	10 U	0.6.U	050	0.6 1	0.6 U	0.6U	0.5U	NS	100	NB
Tolawiw	NCOC	10 U	0.6 U	0.5 U	0.5 U	0.5 U	N3	0.6U	NS	1000	NS	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5U	0.50	NS	100	NS
Ethyl Bergone	NCOC	10 U	0.51	0.5 U	0.5 U	0.6 U	NB	0.5.U	NS	10-03	NS	1CU	0.5 U	0.5 U	0.5 U	0.5 U	DBU	0.5 U	NS	100	NS
Xylenes (total)	NCOC	10 U	0.5 U	0.5 U	0.5.0	0.8 U	NS	Uau	NS	10 UJ	NS	10.0	0.5 U	0.5 U	0.5 U	0.5 U	0.6U	0.5 U	NS	10U	NS
Stoene	NCOC	10 U	0.5 U	0.5 U	0.6.0	0.6 U	NS	0.6U	NS	10 UJ	NS	10 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5.U	0.5 U	NS	10U	NS
Isopropybenzene	NCOC	10 U	0.5 U	0.5 U	0.5 U	0.5 U	NS	0.5U	NS	10 UJ	NS	10 U	0.50	050	0.5 U	0.5 U	050	0.50	NS	100	NS

NOTES:

NGOC - Not a Sta COG

*- Based on 16A NCAC 2L

J - Estimated Value NS - Not Sempled (by decision)

N-Presamptive Evidence of Presence of Material

U-Motorial was analyzed for, but not detected. The

number is the minimum quantitation limit.

NS - Not Sempled by decision

NA - Not Analyzed; Leb fraze samples Boldface indicates compounds above site action evels.

	Remediation					CF-M	N-228	and set of		Sec. Law						CF-M	N-239		-		
Analyte (egt.)	Goals*	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Jul-04	Mar-05	Sep-05	Mar-06	Sep-42	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Jul-04	Mar-05	Sep-05	Mar-06
Carchogenic (CAR) PAHs	Construction and	201810-0	-0408560	2051-000		1.000	12000	Stores	No. Contractory	STOREY'S	Contraction of	1-146630	Creation of	CHARACTER	and the second second	and the second	and the second second	10000001	America	9-26-24	11111575
Banzo(stAnthracens	0.05	10 U	10 U	10 U	100	10 U	10 U	10 U	NS	10 UJ	NIS	100	60 UJ	10.00	10 U	50 U	10 U	100	10 U	10.00	100
Chrysene	5	10.0	10 U	16.0	10 U	10.0	10.0	10 J	NS	10 UJ	NS	101	50 UJ	1000	10 U	500	10.0	101	1011	101.0	150
Senzo(b)Fluoramberro	0.0047	10.0	10.0	10 U	100	10.0	10.0	10.3	NS	10 111	NS	100	50 UJ	1000	10.0	50 U	10 U	100	10U	1010	100
Banzo-a-Pyrana	0.0047	100	10 U	10 U	100	10 U	100	10 U	NS	10 UJ	NS	100	50 UJ	1000	10.0	50 U	10 U	10U	10U	10.00	100
Indeno (1,7,3-cd) Pyrene	0.047	10U	10 U	10.00	100	10.0	1011	10 1	NS	10 UJ	NS	100	50 U J	1DLU	10 U	50 U	10.11	10133	101	10111	100
Dibenzo(a,It)Antimosene	0.0047	1011	1011	10 JJ	10.0	10.U	1011	10.3	NS	10.122	NS	100	50.11	10111	10.1	60 U	10 U	10U	100	10 W	109
Sereo(kifficerenthese	8.47	100	100	10.0	100	10 U	100	100	NS	10 UJ	NS	100	EO UJ	10111	10.0	60 U	10 U	100	10U	10 UJ	150
Non-cercinogenic (NCAR) PAHs	Charles and Social	11-14632	Cells (D)		2010000	1023,300		1000	200159	1.428.8	Contraction of the second s	100000	State of the	S. L. Land	1001000	Particular I	S-01655	10.000	123(2)(2)		AT STREET
Naphthalene	21	120	120	110	71	04	89	90	NS	27 3	NS	590	L 082	L 102	810	260	200	198	140	10.03	11
Asenapititylene	210	31	3.1	3.1	31	43	100	4.1	NS	3./	NS	10 U	50 JJ	31	11	60 U	10 U	100	100	10 UJ	103
AsenapWhene	86	120	151 J	120	100	94	93	130	NS	110	NS	13	5J	10 J	15	5J	5 J	1.1	10	10 LU	100
Fluorene	286	58	80	74	58	62	63	01	NS	541	NS	31	50 UJ	2.1	4.1	50 U	12	100	100	10 U J	101
Phenenthrapy	218	72	120	110	74	81	72	120	NIS	72.1	NS	16	50 UJ	12.J	18	6J	63	2J	2.1	10UJ	1011
Arthracene	2100	8.J	21	2J	10.0	43	2.J	41	NIS	4J	N8	10 U	60 UJ	10 UJ	10.0	58 U	10 U	100	100	1003	104
Fluorantiene	280	2.J	100	10.0	21	2.3	2.1	21	NS	2 J	NS	10 U	50 UU	10 UJ	10-U	CO U	10 U	10 U	100	1003	100
Psiene	210	100	100	100	10.0	100	100	100	NS	10 44	N5	10.0	50 UU	10 W	100	60 U	10 U	100	100	10UJ	100
Carbazola	NCCC	15	17	15	18	13	15	20	NIS	11 J	NS	20	11J	23 J	26	9J	10	51	51	1003	104
Votable Organic Compounds (VOCs)		17/03/03	esta national	1.12.12.12.12.1	1469	S STREETS	12.22	1000			19782	10000	100000	12000	100000	1123444	1000	1922	11219	NAPPER 2	1000
Benzene	1	100	100	100	10 U	100	100	100	NS	10 W	NS	73	23	4.1	5J	3.J	2J	10 U	0.72 J	1003	0.500
Chloromethana	NCOC	100	100	100	10.02	10 U	100	100	NS	10.00	NS	10 U	100	10 U	10 W	10 U	18 U	10.0	1.0	1003	0 SOU
Asetane	NOOC	10 W	100	100	100	100	10.00	10 U	NS	10 W	NB	10.03	100	10 U	100	10.0	10 LU	100	SU	1004	5.00
Chieraform	NCCC	100	100	100	100	100	10U	100	N5	10 W	N5	10 U	100	10 U	100	10 U	10 U	10 U	10	1000	0.500
1,2-Dichlorowthere	NCCC	10 U	100	100	100	100	100	10 U	NS	10 W	NS	10 U	10U	10 U	100	100	10 U	10.0	1.0	1004	U.bBJ
Tetrachioroethene	NCOC	10U	100	100	10U	100	100	10 U	NS	10 W	NS	10 U	100	10 U	100	1CU	10 U	100	10	10 W	0.600
Toluene	NCCC	100	10U	10U	100	100	100	100	NS	10 W	NS	2.1	100	1.1	1.1	10 U	10 U	10 U	0.14 J	10 UU	0.50U
Etry Sermene	NCCC	100	100	100	10 U	10 U	100	10 U	NS	10 UU	NS	87	31	6J	83	31	21	1011	LRD	1003	0.5bu
Xylenes (tela)	NCOC	100	100	100	10 U	10U	100	10.0	NS	10 UU	NS	22	73	15	18	71	5 J	1.1	2.24 J	1004	0.600
Styrene	NCCC	100	100	100	10 U	10 R	100	fDU	NS	10 UJ	NS	100	100	101	100	10 U	10 U	10.0	0.082 J	10 W	0.600
Inopropeibenzerei	NCCC	10U	10U	100	101	100	100	100	NS	10 W	NS	100	100	10 U	10U	10 U	10 U	100	10	1000	U06,0

NOTES:

NCOC - Not a site COC

*- Based on 15A NCAC 21.

J - Estimated Value 145 - Not Sampled (by decision)

N - Presumptive Evidence of Presence of Material

U - Netwriel was analyzed for, but not detected. The

number is the minimum quantitation limit.

NS - Not Sempled by decision

NA - Not Analyzed; Lab froze samples

Boldface indicates compounds above site actor levels.

	Remediation					CF-M	N-245									CF-M	N-25S				
Analyte (µg/L)	Goals"	Sep-62	Dec-42	Mar-63	Jun-63	8ep-03	Dec-03	Jul-04	Mar-05	Sep-05	Mar-06	8cp-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Jui-04	Mar-05	Sep-85	f/lar-06-
Carcinogenic (CAR) PAHs	S SERVICE STATE	44,94,04		1407-080	and the second		CHI WALL	CONTRACT/OR	Service Service	10000-04	12.515/21	NUCLEON OF		Constants	States of	184 645	A \$ \$ \$ 100 A \$	10.97.088	A 4 4-14	RESIDENT.	ALC: NO.
Benzo(ii)Arthrasone	0.65	10 U	£U	10-U	10 U	10.0	NS	1011	NS	1CUJ	NS	10 U	100 U	100	100	-400 U	10.0	10 U	100	100	100
Chrysene	6	10 U	60	10 U	10 U	10 U	NO	10 U	NS	10 UJ	NS	10 U	100 U	10.0	100	406 U	10 U	10 U	10 U	100	10.0
Berraco(b)/Hucranthene	0.0647	10 U	5 U.	10 U	10 U	18 U	NS	10 U	NS	10 UJ	NS	18 U	100 0	10.0	100	400 U	10.0	10U	10.0	100	1210
Banzo-a-Pyrese	0.0047	10 U	£U	10.0	10 U	10 U	NS	10 U	NS	10.03	NS	10 U	100 U	100	100	-400 U	100	10U	10.U	100	10.0
Indeno (1,2,3-cd) Pyrene	0.047	10 U	5.U	10 LU	10 U	10 U	NS	10.04	NS	10 UJ	NS	10 U	100 UJ	10 W	100	400 U	10 U	100	10.0	100	100
Diberac(a,h)Anthrasone	0.0047	10 U	5U	10 LU	10 U	10 U	NS	10 U	MS	10 UJ	NS	10.0	100 U	10 UJ	100	400 U	100	10U	100	100	100
Benze@)Fluoranthana	0.47	1017	5.U	10.0	10.U	10 U	NS	104	NS	101,0	NS	10.0	100 U	180	100	400 U	10 U	100	10.0	100	100
Non-sarelinogenic (NCAR) PAHs	and the second	12204	AND DO DO	6.00	00226-7	1961 499	12-12-12-12	100800	80.000	0000000	1-1-1 () () ()	The states	60608201	S220/000	Section Section	COLONY C	0.010502	CONTRACTOR OF	10 - 20 M	1011054	20.5245
Nephtalene	21	10.0	50	100	10 U	10 U	NIS	100	NS	10.03	NB	2503	440	1400	1290	1860	1100	1290	1200	69	530
Asenaphtrylena	210	100	50	100	10 U	10 U	NS	100	NS	10.03	NIS	23	100 U	81	15	400 U	13	10	33	4	71
Azuruphtiene	80	100	5 U	10 U	10 U	10 U	NS	100	NS	10 UJ	NB	520	200 J	250	330	320 J	248	210	230 J	100	190
Placene	230	10 U	5 U	10 U	10 U	10 U	NS	101	NS	10 UJ	NS	63	98 J	120	150	160 J	120 J	90 J	120 J	54	1003
Phananthrono	210	10 U	50	100	10 U	10 U	NS	101	NS	10.04	NS	71	140	150	170	200 J	130 J	120 J	140 J	37	110.
Arthracene	2100	100	5 U	10 U	10 U	10 U	NIS	100	NS	10 UJ	NS	18	100 U	61	8J	4000	6.3	6J	8.)	3.1	51
Fuoranhene	280	10 U	50	10 U	10 U	10 U	NB	101	NS	10.03	NS	32	100 U	10	21	400 U	20	16	19	LO	17
Pyrone	210	TOU	50	10 U	10 U	100	NS	10 L	NS	1000	N5	16	100 U	10	12	400 U	10	8.1	73	41	6J -
Certezale	NCOC	100	50	10 U	10 U	10 U	145	10 U	NS	10LU	NIS	69	61 J	89	130	130 J	87 J	200 J	LOP	12	61
Votitite Organic Compounds (VOCs)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	fyraiter?	AND	网络影响中	1224			1.17655	121112	0.000		11,02,01	170331	3239278	IN STREET	00.00000	1000038	336464	10000000	Ser. Ser.	2828625
Berzene	1	100	0.5 U	0.6 U	050	0.50	NS	0.5.0	NS	10.00	NS	2.J	11	1.J	2 J	2J	2 J	100	11	10 14	1,3
Chigramethese	NCOC	10 U	05U	0.5 U	050	0.50	145	0.5 U	NS	10 LU	NS	10 1	10 LU	10U	10 LU	50 LL	100	10.0	50	10:33	0.50(1)
Acelone	NCOC	10 U	64.2	5U	5U	5 W	NS	5U	NS	10 LU	NS	10 LU	10 UJ	15	100	100	10.00	100	25 UJ	10 UJ	5.000
Chieroform	NCOC	10 U	0.6.0	0.6.0	050	0.5 U	N5	0.5 U	NS	10.00	NB	10 U	10 W	100	100	10 U	10U	100	5 U	10 13	0.600
1.2-Dickloroethane	HCOC	10 U	0.5 U	0.5 U	050	0.6.0	NS	0.5 U	N3	10 UV	148	10 U	10 UU	100	100	10U	100	100	5 U	10:00	1,100,0
Tetrachiprovibene	NCOC	10 U	0.51	0.6 U	050	050	NS	0.5 U	NS	10 LU	NS	100	10 W	100	100	100	10U	100	50	10 10	0.000
Toluene	NCOC	10 U	0.5.0	0.6 U	050	0.5.0	NS	0.5.0	NS	10 W	NS	7 J	31	33	71	71	4.J	21	1.8 J	10 UU	1.9
Ethyl Benzena	NCOC	10 U	0,5 U	0.5 U	050	0.5 U	NS	05U	148	101.0	NS	11	51	6.1	15	12	71	5J	3.7 J	10:33	81
Xylenes (tota)	NCOC	10.U	0.6.0	0.51/	050	0.5.U	NS	0.5 U	NS	101.0	NS	30	10 J	13	30	29	17	11	7.6	10.00	104100
Styrene	NCOC	10 U	0.5 U	0.6 U	0.5.U	6.6 U	NS	050	NIS	10.00	NS	7.1	21	23	51	6 R.	3J	21	1.2.1	10.00	0.900
Isopropylaenzene	NCOC	10 U	0.5 U	0.5 U	0.5 U	0.6 U	48	050	MS	10 LU	NS	100	10 UJ	10U	10 U	10U	100	10 U	50	1010	0.48)

NOTES:

NCOC - Not a site CCC

* - Breed on 15A NCAC 2L

J - Estimated Value NE - Not Sampled (by decision)

N- Presumptive Evidence of Presence of Material

U - Metarial was analyzed for, but not detected. The

number is the minimum quantitation limit.

NS - Not Sampled by decision

NA - Not Anelyzed; Leb froze samples Boldface indicates compounds above sile action levels.

	Remediation	0				CF-M	W-268									CF-M	N-278				
Analyte (pg/L)	Goule*	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Jul-05	Mar-05	Sep-05	Mar-06	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Jul-04	Mar-05	Sep-05	Nar-06
Carcinogenic (CAR) PAHs		CONSTRUCTION OF	A A G COA Y	161,051,98		1.000	1000000000		111111	1000000	10000	CONSTR-	1000	STOUK!	10000	10100	NO WAR	100 (CC/0)	9125 S.S.S.S.	10101012	and the second
Benzo(e)Asthracone	0.05	100 U	50	10 U	10.0	10.0	10.0	10.0	100	10 84	190	100	5U	101	10 U	100	10.0	10.0	NS	10 W.	NS
Chrysene	6	100 U	5 U	10.0	10.0	10 U	10 U	100	101	10 83	100	10 U	5 U	10.0	10 U	10 U	10 U	10.0	NS	10 00	NS
Banzo(t)Fluoranthene	4,0047	100 U	5 U	10 U	10 U	101	10 11	10.0	100	10.03	10U	100	5U	10.0	10 U	10 U	10.0	10.03	NS	10 W	NS
Benzo-e-Pyrene	6,0047	100 U	50	100	10 U	100	10.0	100	10 U	10 UU	1011	100	5U	10 U	10 U	10 U	100	10 U	NS	18 W	NS
Indeno (1,2,3-cd) Pynete	0.047	100 U	5 U	10 LU	10 U	101	100	1DU	*0 U	1010	100	10 U	511	10 LU	10 U	10 U	100	10 U	NIS	10 10	NS
Dibergo(a/s)Anthrasene	6.6047	100 LI	50	10 LU	10 U	104	10 U	100	100	10 UJ	10U	10 U	50	101	100	10 U	100	10 U	NS	10 W	NG
Bergad)/Fluoranthene	0.47	100 U	50	100	19.0	100	100	100	100	10.00	SDL	101	50	100	10 U	10 U	10 U	10 U	NIS	10 UJ	N3
Nen-cardinogenic (NCAN) PAHs	and the second second		ALCONTANT.		(0,2a)		200000	412201012	A CAL	10.5150.55		PROFESSION OF		ALC: NOT	Let Call		A DECK	2284.000	COLUMN ST	2010	COLUMN 2 AND
Naphthalene	21	400	358	190	470	980	903	2400	2.J	10 UU	41	10 U	6U	45	10 U	10 U	10 U	10 U	NS	10 UJ	NS
Acenaphthylene	210	100 U	50	100	101	10 U	10.0	32	10 U	10 UU	1061	10 U	6U	100	10 U	10 U	100	10 U	NS	10 UJ	NS
Acemphthese	80	37 J	18	22	48	69	69	250	10 U	21 J	31	10 U	6U	10 U	10 U	10 U	100	101	NS	10 UJ	NS
Fluorene	210	18 J	9.7	10	23	40	97	140	100	11.1	100	10.0	5U	10 U	10 U	10 U	10.0	10 U	NS	10 UJ	NS
Phonanthrene	210	15.1	11	10	22	37	31	140	10 U	12.3	100	10 U	50	10 U	100	10 U	10 U	10.0	NB	10 UJ	N3
Astracwa	2100	100 U	1.2 J	100	10 U	51	21	7.)	10 U	10 W	100	10 U	GU	10 U	10 U	10 U	10 U	100	NS	10 UJ.	NS
Fluoranthene	280	100 U	1.8 J	10 U	1.1	37	31	9.1	10 U	10 LU	100	10 U	6U	100	10 U	10 U	10 U	100	NS	10.03	NS
Pyrene	210	100 U	50	10 U	10 U	12	1.1	4.1	10 U	10 W	100	10 U	5U	10 U	10.0	10 U	100	100	NS	10 UJ	NB
Carbezola	NCOC	21 J	17	16	25	40	44	120	100	13 J	100	100	6U	10 U	10 U	10 U	100	100	NS	10 UU	NS
Volatile Organic Compounds (VOCa)	10 - 10 - 55 - 74 - 7	and the	196312-00	121126000	1996 A.		NUL ASSUME	6220503	100 V 7.17	自己的问题	124.73	1 HUNDER	elegister.	Report of	444500	0009846	ALC: NOT A	No alter	HEXAR	1.04688	N SYSTEM
Banzano	1	16	11	8,8	3.2	18	54	20	0.35 J	1010	1.7	100	0.6.U	0.6 U	0.50	0.6 U	0.5 U	0.6 0	NB	10 UJ	NB
Chlorumethone	NCOC	10 U	0.5 U	0.6 U	2.6 U	0.6 U	0,44 J	0.5 U	10	10 UU	0.5000	100	0.5 U	0.5 U	0.5 U	0.6 U	0.5 U	0.5 U	NS	10 UJ	NS
Acetone	NCOC	10 U	6U	50	25 U	5U	50	6 U	500	10 00	5.8.11	10.03	6U	5U	50	5U	50	50	NS	10 UJ	NS
Chieroferm	NCOC	10 U	0.5 U	0.5 U	2.6U	0,5 U	0.5 U	0.50	10	10 W	0.500	100	0.5 U	0.6 U	0.50	0.5 U	0.5 U	0.5 U	NS	10 UU	NS
1,2-Dichloroethene	NCOC	10 U	0.6 U	0.5 U	2.5 U	0.5 U	0.5 U	0.5 U	10	10 UU	OSCUL	100	0.5 U	0.5 U	0.5 U	0.5 U	0.5 UJ	0,5 U	NS	10.00	NS
Tetrachiomethane	NCOC	10 U	05U	0.5 U	25U	0.5 U	0.5 U	0.51	10	10.00	0.500	10 U	0.5 U	050	051	0.5 U	0.5.0	0.5.0	NS	101/J	NS
Toluent	NCOC	4.3	2.6	2.9	1.3.1	4.8	4.1	21	10	10 W	5.500	10 U	0.s U	0.5 U	u.s.u	0.5 U	0.5 U	0.5 U	NS	10.00	NS
Etryl Benzene	NCOC	12	24	20	9.9	32	28	44	0.087 J	10 W	212	10 U	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U	0.5 U	NE	10.00	NB
Xylanea (Iolal)	NCOC	22	17	15	6.6	28	23	72	2.0	10 W	0.63	100	0.5 U	0.5 U	0.5 U	0.5 U	0.50	0.5 U	NS	10 00	NS
Styrete	NCOC	10 U	0.48 J	0.50	2,5 J	0.50	0.5 U	0.50	1.0	10 W	0,500	100	U.6.U	0.5 U	0.5 U	0.5 U	0.5.0	0.5 U	NS	10 00	NS
isopropylbenzene	NCOC	2.J	1.3	1.4	2.6 U	2.3	2.5	3.2	10	10 UJ	C.IIJ	100	0.6 U	050	0.5 U	0.5 U	0.5U	0.50	NS	10.00	NS

NOTER

NCOC - Net a site COC

*- Besed on 15A NCAC 2L

J - Estimated Value NS - Not Sempled (by decision)

N- Presumptive Evidence of Presance of Material

U- Material was analyzed for, but not delected. The

number is the minimum quantitation limit.

NS - Not Sampled by decision

NA - Not Analyzed; Lab fryze samples

Boldface incidence compounds above site action levels.

	Remediation					CF-MW	V-285									c	F-MW-295	1				
Analyte (ugit.)	Coals"	Sep-02	Dec-42	Mar-13	Jun-#3	8ep-03	Dec-03	341-84	Mar-05	Sep-05	Mar-66	Sep-07	Dec-07	Mar-03	Jun-03	8ep-63	Dec-03	Jul-04	Jan-05	Mar-65	Sep-05	Mar-06
Carcinogenic (CAR) PABs	B+10000000000	1999	an and	112000	1946,946	ALCONTRACT	Starte Par	SOLOG	AD X OF GREET		esterrait	ROLE TO SA	a children to	1000000	ANSIER	1449349	1000	No. Restor	a chanta	-010000	1111193	States?
Senzo(a)-Anthracene	0.03	10.0	50	118	NS	10 U	NS	10 U	NB	10 UU	NS	100	5000 U	100 UJ	10 U	100 U	10 U	100	1000 U	5.1	100 U	NS
Chrysene	5	10 U	.eu	NS	NS.	10 U	N5	10.0	NS	10.03	NS	100	5000 U	100 UJ	10.0	100 U	10.0	10.0	1000 U	4.J	100 U	NS
Benno(b)Fluorenthene	0.0647	10 U	6U	NS	NS	10 U	NS	10 U	NS	10 UJ	NS	10.0	0 0000 U	100 UJ	10 U	100 U	tou	10.0	1000 U	10 U	100 U	NS
Berizo-a Pyrone	0.0647	10 U	£U	NS	NS	10 U	NB	10 U	NB	10 UJ	NS	100	£000 U	100 UJ	10 U	1C0 U	10 U	10 U	100010	10 U	100 U	NS
indeno (1,2,3-cd) Pyrese	0.047	100	5U	NS	NS	10 U	NS	10.0	NS	10.04	NS	100	5000 LU	100103	10 U	100 U	10 U	10 U	1000 U	10 U	100 U	NS
Diberato(a,k)Anthracene	0.0647	100	.6U	NIS	NS.	10 U	NS	10.0	MS	10.04	NIS	100	5000 U	100 UJ	10 U	100 U	10 U	10 U	1000 U	10.0	100 U	NS
Serato(k)Fisoranthene	9.47	10 U	50	NB	NB	10 U	NB	10 U	NB	10 UU	NB	10U	5000 U	100 UJ	10 U	100 U	10 U	10 U	10001	10 U	100 U	NS
Non-carcindgenic (VCAR) PAHs		2002236	10000	865(957	4.120020	00000	2. 196, 23	0.000		11-50-51		10.000	0000000	1000	Series Sec	120000	S-MRS	2-32-53	9401000	2010/2020	217/112	THE REAL OF
Napitykiene	21	100	5U	NS	NS	10 U	NS	1.1	NS	10 UU	NS	12000	14000	11000 J	11000	13803	15000	11000	11000	10000	14000	NS
Accomplititylene	290	100	50	NS	NS	10 U	NS	101	NS	10 UU	NS	25	5000 U	23 J	28	31.3	29	27	1000 U	25	33 J	NS
Acomphithene	30	100	50	NS	NS	10 U	NS	10 U	NS	10 W	NS	700 J	820 J	500 J	850	580	L 008	480 J	580 J	650 J	688	NB
Fluorane	290	100	6U	:45	NS	10 U	NS	100	NS	10 W	NS	150 J	5000 U	210.1	320	260	310 J	4000 U	220 J	270 /	240	NIS
Phenanthrene	210	10 U	5 U	NS.	NB	10 U	NS	10 U	NB	10 W	NB	140 J	5000 U	170.1	240	230	3000 U	4000 U	240 J	300 J	250	NS
Arthracepe	2100	1D LI	50	NS	NG	10 U	NS	10 U	NS	10 W	NS	23	5000 U	173	10 U	21 J	22	21	1000 U	28	34 J	NIS
Fluorethese	280	10.U	5 U	NS	NB	10 U	NS	100	N5	10 UU	NS	14	5000 U	100 UV	18	20 J	19	15	1000 U	45	301	NS
Pyrene	210	10 U	5 U	NS	NIS	10.0	NS	10 U	NS	10 UU	NS	71	5000 U	100 LU	L6	11 J	11	7.1	1000J	25	19J	NS
Carberra	NCOC	10 U	5U	NS	NS	10 U	NS	100	NS	10 W	NS	400 J	5000 U	410 J	540	390	480 J	4000 U	320 J	550 J	460	NIS
Votattle Organic Compounds (VDCs)	i in the second second	A HOLES	1.577897	03/09/09/20	PERSONAL PROPERTY AND	14445477	Service of the	10.225343	1320123-03		V 42/12/2	Sec.	1.2437/21	32.633.25	Section 1	and see a	State and a	中国政策	22440	学生的自己	and the second	1216468
Benzene	1	10 LI	0.5 U	NS	NS	101	NS	10 U	NS	10.00	NS	61	32	24	32	29	18	16	15 J	28	NA	NIS
Chioromethane	NCOC	10.0	0.50	115	NG	10 U	NS	100	NS	10 UU	NS	100	20 U	100	10 UJ	10 U	10 U	10 U	20 U	10 U	NA	NS
Acetone	NCOC	10.00	6U	345	NS	10 U	NS	100	NS	10 UJ	NS	45 U	20 U	100	12	13	10 UJ	18 U	20 U	St J	NA	NIS
Chloroform	NCOC	1010	0.5 U	NS	NS	10 U	NS	10 U	NS	10 UU	NS	10 U	20 U	100	10 U	100	10 U	24	20 U	100	NA	NS
1.2-Dichforgethane	NCOC	100	0.5 U	.45	NG	100	NS	+0 U	NS	10 LU	NS	100	20 U	100	10 U	100	10 U	10.0	20 U	100	NA	NIS
Tetrachiomethene	NCOC	10 U	0.5 U	NS	NS	10 U	NS	100	NS	10 UU	NS	100	20 U	100	10 U	100	10 U	1.J	20 U	101/	NA	NS
Tokiene	NCOC	10 U	0.6.U	NS	NS	10 U	NS	10 U	NS	10 UU	NS	160	190	110	160	120	00	93	110	140	RAA.	NS
Etryl Benzene	NCOC	10 U	0.5 U	NS	NS	10 U	NS	10 U	NS	10 00	NS	240	200	170	220	160	140	160	180	100	NA	NIS
Xyinens (Izin)	NCOC	10 U	0.5 U	NS	NS	10.0	NS	10 U	NS	10 W	NS	830	640	550	680	430	420	540	626	158	NA	NIS
Starene	NCOC	10 U	0.5 U	NS	NIS	10 R	NS	10.0	NS	10 W	NS	100	130	110	140	100 J	98	120	90	140 J	NA	NS
Isopropyborzene	NCOC	10 LI	0.5 U	NS	NIS	10 U	NS NS	10 U	NS	10.00	NB	100	19 J	18	10 U	10 U	15	14	18 J	19	NA	NIS

NOTES:

NODC - Net a site COC

*- Based on 15A NOAC 2L

J - Estimated Value NS - Not Sempled (by decision).

N- Presumptive Evidence of Presence of Meterial U- Naterial was analyzed for, but not detected. The

number is the minimum quantitation limit.

NS - Not Sampled by decision

NA - Not Analyzed; Lab froze samples Boldface indicates compounds above abs ection levels.

	Remediation					C	F-MW-208	C									CF-M	N-315				
Analyte (upL)	Goals	Bep-02	Dec-02	Mar-03	Jun-03	8ep-83	Dec-03	Jul-04	Jan-05	Mar-05	Sep-86	Mar-05	8ep-02	Dec-82	Mar-03	Jun-03	Bep-03	Dec-03	Jul-04	Mar-85	8ep-36	Mar-06
Cambangenk: (CAR) RAM	THE CONTRACTOR	Text (197	118 25 60	Store and	K-1961044	10555141	100030-24	S.S. 155	de la composition de la compos	1.00000000	A STREET	101214303	ANDER	000 10000	1000000	STREET	DISKNI STALL	1000		1200	68-3121	CONTRICT OF
Benzo(a)/Whasone	0.05	101/	601 U	100 UJ	10 U	1000 U	10.0	10 U	1000	10.0	tou	NS	18.0	250 UJ	10 U	101/	10.0	100	10.0	NIS	10.00	NS.
Chrysene	\$	10.0	601 U	100 UJ	10 U	1000 U	100	10 LI	200 U	10 U	100	NS	10 U	254 U)	10 U	100	10 U	100	10 U	N/3	10 LU	NS-
Benzo(b)Hacharthens	0.0047	10 U	600 U	100-04	10 U	1000 U	10 U	10.U	200 U	10 U	10 U	NS	16 U	250 UJ	10 U	10 U	10.0	10 U	10 U	NS	10.00	NS.
Barato-a-Pyrese	0.0047	10.0	600 U	105 UJ	10 U	1000 U	10 U	10 U	200 U	10 U	10 U	NS	10 U	250 UJ	10 U	120	10 U	100	10 U	NS	10.00	NS.
Indero (1.2,3-ed) Pyrere	0.047	10.0	500 1.0	100 UJ	10 U	1000 U	100	10 U	200 U	10-0	100	NS	10 U	260 UJ	10 UJ	10 U	10 U	100	10.00	NS	10 LU	NS
Diberato(s,h)Anthracens	0.0047	10 U	600 U	100 UJ	10 U	1000 U	10 U	10 U	200 U	10.0	100	NS	10 U	250 UJ	10 UJ	10 U	10 U	100	10 U	NS	10 W	NS
Barren(I)Fluoraritane	0.47	1013	602 U	100 UU	10.0	1000 U	101/	10 U	200 U	10 J	100	NS	10 LI	250 LU	10 U	151/	10.11	10.0	10 U	NIS	10.00	NS
Non-caroleogenic (NCAR) PAHs	A DEPARTMENT	111923			0.000		SUG THIS	1000		1000	051100106	Car are	A CANAN		0705050	1000000	101115	887 B.M. (***		1111111	112	COLOR OF
Napithawa	21	2100	3300	1600 J	1800	3200	2200	3000	2000	670	1590	NS	890	1608 J	\$70	730	1200	1700	2500	NS	2000	NS
Aconspiritutere	210	13	500 U	100.00	11	1000 U	12	11	200 U	5 J	71	NB	10 U	250 UJ	10 U	10 U	10 U	11	1.1	NS	3.1	NS
Acenaphthene	80	480 J	340 J	170 J	250	100 J	250	210 J	290	120 J	180 J	NS	100	260 UJ	10 U	10 U	10 U	tDU	12	NS	14 J	NS
Flatence	280	210 J	170 J	79 J	110	130 J	120 J	100 J	140 J	66	11D J	NS	10 U	250 UJ	10 U	10 U	10 U	1.1	4J	NS	6.1	NS
Phanasterene	210	180 J	160 J	66 J	77	140 J	76	90.1	130 J	74	110.2	NS	10	250 UJ	0.3	10	15	19	57 J	NS	33 J	NS
Arthrapete	2100	51	600 U	100 UV	6.	1000 U	6.J	7.1	20013	4.1	8.J	NS	10.0	260 LU	10 U	10 U	10 U	100	10 U	NIS	10 LU	NS
Fluorantheme	280	15	600 U	100 UU	83	1000 U	10	8.2	200 U	12	12	NB	10 U	260 LU	10 U	10 U	10 U	100	10.0	NS	10.00	NIS
Pyrene	210	71	500 U	100 U4	43	1000 U	5.1	4J	200 U	73	5.1	NB	10 U	250 LU	10 U	10 U	10 U	100	10.0	NS	10.00	NS
Cerbacolo	NCOC	L 095	170 J	E4 J	120	140 J	120	138 J	120 J	63	L NR	NES	3.1	250 LU	5.1	7 J	12	15	40 J	NS	43 J	NS
Volatile deganic Compounds (VOCs)	1.0.000 States		a state of the		1980 (R.S.)	1212000	22.000	1000	CARDONE?	23.000	化学和利用	Report to	214133	Service Services	STONES.		240.5	10 A 20 A	Constraints	and the second	10.0325	0100245
Bergano	1	14	9J	31	4.1	17	£J	3.J	3J	2 J	3 J	NS	6J	E J	5J	1 J	12	8.1	12	NS	13	NS
Chloromethane	NCOC	10.0	10UJ	10 U	10 U	10.0	10 U	10 U	10.00	10 U	10 U	NS	10 U	10 U	10 U	10 U	10 U	10 U	10 U	NS	10 U	NS
Asstane	NCOC	11 U	10UJ	10 U	10 U	10 U	10 UJ	10	10.03	10.0	10.00	NS	10.00	100	13	1D U	10 U	10 UJ	10 U	NS	10 U	NS
Chieroform	NCOC	10 U	10UJ	10 U	10 U	10U	10 U	21	100	10 J	100	NS	101	100	10 U	10 U	10 U	100	10 U	NS	10 U	NS
1,2-Eichloroethare	NCOC	10 U	1003	10 U	10 U	10 U	10 U	10 U	100	10 1	100	NG	10.0	10 U	10 U	10 U	10 U	10 U	10 U	NS	10 U	NB
Tetrachioroethene	NCOC	10 U	10UJ	10 U	10 U	10 U	10 U	1.J	100	100	100	NS	10U	10 U	10 U	10 U	10 U	100	10 U	NS	18 U	NS
Toluene	NCOC	25	19 J	BJ	13	54	91	6.3	51	3.J	5J	NS	10 U	10 U	10 U	1.1	10.0	10 U	1.1	NS	21	NS
Einyi Benzene	NCOC	38	24 J	14	20	45	16	15	11	4.J	11	NS	10 U	10 U	10 U	2.J	10 U	10 U	3.1	NS	Bi	NS
Salament (Initial)	NCOC	88	60 J	33	61	110	41	34	24	81	21	NS	8J	12	10	20	26	18	27	NS	38	MB
Styrene	NCOC	15	11.1	4.1	83	16.J	61	6 J	31	2 J	43	NB	100	10.0	10 U	10 U	10 U	10.0	10 U	NS	10.0	NIS
Isogropy@enaone	NCOC	10.0	1.1	10 U	10 U	1012	18	10 U	100	10 J	100	NS	10 U	10 U	10 U	10 U	1.1	100	10 U	NS	10 U	NS

NOTES

NCOC - Not a site CCC

*- Besed on 15A NCAC 2L

J- Estimated Value NS - Not Sempled (by decision)

N- Presumptive Evidence of Presence of Naterial

U- Natorial was analyzed for, but not detected. The

number is the minimum quantitation limit.

NS - No: Sampled by decision

NA - Not Analyzed; Lab froze samples Boldfers indicates compounds above site action levels.

	Remediation					CF-W	N-325									CF-M	V-338				
Analyte (pgl.)	Goals*	8sp-42	Dec-02	Mar-00	Jun-00	Seg-03	Dec-03	Jul-D4	Mar-05	Sep-06	Mar-06	Sep-82	Dec-32	Mar-03	Jun-03	8ep-03	Dec-03	Jul-04	Mar-06	8cp-05	Mar-05
Carcinogenet (GAR) PAHs	Contraction and the second	CERTING	AND REACH		12 10 10 15	10000	14843 24	2011035	00001000	1000	1.166.66	CONTRACTOR OF	Constanting of the second	12012		1111111	1000	CONS.	1024 - 20060	England in	1983957
Senzoia(Anthracene	0.05	100	260 U	10 U	100	200 U	10.0	10.0	18	3.4	NS	10 U	5 L	18.0	100	101/	10.0	100	100	10.00	18.0
Chrysiane	5	10.0	250 U	100	100	200 U	10 U	10 U	17	3.1	NS	10 U	5.0	10.0	10U	10 U	10.0	100	100	1000	10.0
Lenso(o)Fluoranthene	0.0047	10 U	200 U	10 U	10 U	200 U	10 U	10 U	31	10 U	NS	10 U	50	10 U	100	100	10 U	100	100	10 UJ	10 U
Bergo-a Pyrone	8,0047	100	250 U	10 U	100	200 U	10 U	10 U	31	10 U	HS	10 U	5-U	10 U	100	100	10 U	10U	100	10 UJ	100
indene (1.2.3-cd) Pyrane	B.847	10:0	250 LU	10.JJ	101/	200 U	1013	10.0	101/	1011	NS.	10 U	511	10 111	100	100	10 U	10U	10U	16 UJ	100
Dibenacia, h)Anthrecone	0.0047	10 U	260 U	10.33	100	200 U	10 U	10 U	100	10 U	NS	10 U	51)	100	10U	10 U	10 U	100	10 U	10 UJ	10 U
Lerzok)Pisaranftwow	0.47	10 U	260 U	10 U	100	200 U	10 U	10 U	2.J	10 U	MB	10.0	50	10 U	100	100	10 U	100	100	10111	10-11
Non-carolinegenik (NCAR) PAHs		0235999	1200233000	12 PINX	76.000	1702258	PRODUC	100.000	1.	REALPH	121218	1120-AV	0000000	19771255	190000	1211212	NEW PARTY	12005	1223002		1.150.5
Naphthalace	21	510	1300	810	1610	960	420	740	4210	220	MS	24	9.4	41	22	27	29	43	18	21	41
Agenaphtrylene	210	83	260 U	8.1	14	200 U	10 U	71	13	10 U	NS	10 U	511	10 U	100	100	10 U	1.1	100	10 UJ	100
Aconophthene	80	150	210 J	138	278	170 J	73	130 J	1200	130	NS	1.1	1.7.1	1.1	1.1	100	1.1	3.1	100	1003	150
Raprese	280	67	11C J	68	120	89 J	43	68	920 J	63	NS	10 U	50	10 U	100	10 U	10 U	100	10 U	10 U J	1.261
Fhenauthrene	210	100	160 J	60	150	120 J	53	961	2810	310	NS	10.0	5 U	10 U	10.0	100	10 U	100	10 U	10 UJ	101
Antiviazione	2100	83	250 U	41	100	200 U	4.1	71	260 J	10	NS	10 U	512	10 U	10U	10 U	10 U	100	100	10 UJ	100
Flucenativere	280	16	250 U	10	19	200 U	11	16	Lote	67	NS	101	6U	10.0	100	100	10 U	100	100	10.03	101
Pyrene	210	9 J	268 U	6J	10	200 U	6 J	8.1	310 J	52	NS	10 U	5U	10U	18 U	10 U	10 U	10 U	10 U	10 UU	1DU
Cerbazole	NCOC	32	58 J	31	78	44 J	22	47	1100	28	NS	10 U	1.1.1	100	100	100	10.0	10.0	100	10.00	100
Votatile Organic Compounds (VOCs)	Constraint of the	DIT IS NOT	510 X X X	Constant Sector	(目前決定)/	01/01/58/8	14.2655	1208636	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6-900 ST-0	ACCOUNTS OF	102406400	SPAND	1004555	14.484.55	E DAY/SZI (1000	S. 19 14	17.8039168	B ANGEN IN	12223
Bergene	1	2J	100	11	11	3J	10 U	100	31	10 U	NS	10 U	0.95 J	1.4	0.5U	L 31.0	0.21 J	0.5 U	0.1 J	2.J	0.504
Chipromethane	NCOC	101	10 U	100	10 U	100	10.0	10 U	10 U	10 U	NS	10 U	0.34 J	0.5 U	0,50	0.5 U	0.5 U	0.5U	10	10 U	0,50(1)
Acetore	NCOC	100	10 U	14	10 U	10 U	1004	10 U	30 J	10 U	NS	10 W	61	50	6U	6U	SU	60	5 UJ	10 U	UJA-B.
Chloroform	NCOC	10 U	10 U	100	10 U	10 U	10 U	tJ	10 U	10 U	NS	10 U	0.5 U	0.5 U	0.5U	0.5 U	0.5 U	0.5 U	10	10 U	0.600
1.2-Dichloroethane	NCOC	100	10 U	100	10.0	10 U	10 U	16 U	100	10 U	NS	10 U	0.6 U	0.5 U	0,5U	9.5U	0.5 U	0.5U	10	10 U	0.500.0
Tetechlorostrame	NCOC	10.0	10.0	100	100	10 U	10 U	10 LI	1011	10.0	NS	10 U	0.6.0	0.5U	0.5U	0.5U	0.5 U	0.5 U	10	10 U	0.500
Taluene	NCOC	10 U	10 U	41	3.J	41	10 U	3.J	18	10 U	NB	10.0	L96.0	0.5 U	0.5U	0.5 U	0.18 J	0.5 U	0.077 1	3.1	0,500
Ethyl Benzene	NCOC	2 J	31	82	71	81	10 U	7J	13	10 U	KB	10 U	0.28 J	0.21 J	0,50	0.5 U	0.15 J	0.5 U	C.069 J	7 J	0.111
Xylenes (total)	NCOC	6.)	E J	20	18	10	10 U	ZJ	37	10 U	NS	10 U	0.49.1	2.3	0.5U	0.5 U	0.28 J	0.5 U	0.177 J	13	0.36/
Dyname	NCOC	10 U	12	51	6J	5R	10 U	10 U	17 J	10 U	NS	10 U	0.6 U	0.5 U	0.5U	0.5U	0.5 U	0.5 U	10	2.J	0,630
Isopiopybenzene	NCOC	10 U	10 U	10U	10 U	10 U	10 U	10 U	100	10 U	NS	10 U	0.5 U	0.5.U	0.5U	0.5 U	0.5 U	0.5 U	10	10 U	0.50L

NOTES:

HODG - Not a site COC

*- Besed on 15A NGAC 2L

J - Estimated Value NS - Not Sempled (by decision)

N - Presumptive Evidence of Presence of Material

U - Naterial was analyzed for, but not detected. The

number is the minimum quantitation limit.

NS - Not Sempled by decision

KA - Not Analyzed; Lab froza samples Boldface indicates compounds above sits action levels.

	Remediation	1.	123 Jul	- Changel	1917 - N.S.	CF-M	W-345	in Second	2.01-1.021	and the second		· · · · · · ·	a Charles			CF-M	W-355		1000 A. 1999		
Amalyte (agt_)	Goals*	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Jui-04	Mar-05	Sep-05	Mar-06	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Jui-04	Mar-05	Sep-05	Mar-eb
Carelnogenic (CAR) PARs			12-12-102	0.000	5900.00	CRAN	1111111111	100000	CONTRACTOR OF	10000538		10-10-01-0		NU PY TO	STREET, SPE	CON CASE	000000	26,610			S. OLANS
Beneo(a)Anthracene	6.05	10 U	5U	10 U	10 U	100	NS	10.1	NS	10 LU	NS	10.0	100	100	10 U	10.0	10 U	10 U	NS.	101,0	100
Chrysona	5	10.0	\$U	10 U	10 U	10 U	N\$	10 U	NS	10 LJ	NS	100	10 U	100	100	10 U	10 U	100	NS	10.00	180
Benco(b)Fluorenthere	0.0047	10 U	50	10 U	10.0	10.0	NS	10 U	NS	10.03	NS	100	10.0	10 U	10U	10 U	10 U	100	NS	10.00	100
Barao-a-Pytene	8.0047	10 U	5U	10 U	10.0	100	NE	10 U	NS	10.03	NIS	100	10 U	100	100	10 U	10 U	10 U	NS	10 LU	Idu
Indeno (1.2.3-sd) Pyrene	0.047	10 U	50	10100	10 U	10 U	NE	10 U	NB	10 LU	NS	100	10.03	10.00	10.0	10.0	- 10 U	10 U	NS	10 W	190
Dibenzo(a,h)Anthracene	8,0047	10 U	60	10 00	100	10 U	NS	10 U	NS	10 LU	NS	10.0	101	10.0	10U	10 U	10 U	100	NS	10 UU	100
Benzo K/Fk.orarthene	0.47	10 U	5U	10 U	10.0	100	NS	10 U	NS	10 LU	NS	10 U	10 U	100	10.0	10 U	10 U	10 U	NS	10 LU	100
Ron-carcinogenic (NCAR) PAHs	S STREET, STREET, STREET, ST	第39月4月8	\$9(8)((4)	1.200	1000000	CU PART	1000000	1 State	1.4.6.95			51.2.35	Contraction of	1000000	1000	119210	256/2010	CHARLES OF	NO. NO.	STREET.	Surger and
Naphthalene	21	31	4.3.)	10 U	10 U	21	NS	3.1	NS	11	NS	200	100	100	100	10 U	28	35	NS	1B J	24
Acenaphthylene	210	10 U	50	10 U	10.0	10.0	NS	10 U	NS	101.1	NS	11	10 U	100	100	10 U	10 U	100	NS	10 UJ	100
Acenaphthere	80	10 U	50	10 U	10 U	to U	NE	10 U.	NB	10 LJ	NS	20	100	10 U	2.J	31	7.3	54	NS	SJ	E)
Fluerane	240	10.0	80	10 U	10.0	100	NS	10 U	NS	10 LU	NS	11	100	100	10.0	1.1	31	6.1	NS	2 J	31
Phenerthene	210	10 U	60	10 U	10.0	10 U	NS	10 U	NS	10 UJ	NS	8.1	100	10 U	100	10 U	10 U	100	NS	10 UJ	101
Anthracene	2100	10 U	51	10 U	10 U	10 U	NS	10 U	NS	10 LU	NB	10.0	100	100	10U	10 U	10.0	10 U	NS	10 W	100
Fluctanthene	210	10 U	SU	10 U	100	100	NS	10 U	NS	10 LJ	N5	100	100	100	100	10 U	10 U	10 U	NS	10 W	18U
Pyrana	210	10 U	50	10 U	100	100	NS	10.0	NS	10 LU	NS	100	10 U	100	10 U	10 U	10 U	10 U	NS	101.0	101
Carbassie	NCOC	18.0	50	10 U	108	100	NE	100	NS	1013	NS.	54	180	100	100	21	10	LB	NS	21	43
Volutile Organic Compounds (VOCs)	A STREET STORES	10101010	手段に使知	· · · · · · · · · · · · · · · · · · ·	Constant of	1.1666.00	10000		1000000	A 20200		1.55	5 1 (D+6+3	6 . 1	14411010	4111235	HE-SICAL	SEP 1	100000	249.8450	A DE RECENT
Bancana	1	10 U	0.16 J	0.5 U	0,5 U	0.5 U	NAS	0.5 U	NS	10.0	NS	18 U	10.0	10 U	100	10 U	101	10 U	18	100	0.28
Chlorometrane	NCOC	10 U	0.5 U	0.5 U	0.5 U	0.5 U	NS	0.5 U	NS	10 U	NS	10 U	100	10 U	10.1	10 U	100	10 U	NS	100	0.500
Acetone	NCOC	10 W	6U	5U	5U	50	NS	50	NS	100	NS	10 UJ	100	10 U	100	12	10 UJ	10 U	NS	10 UJ	5.00
Chlaroform	NCOC	10 U	0.50	0.5 U	0.6 U	0.5 U	NS	0.5 U	NS	10.0	NS	100	100	10 U	10 U	10 U	10 U	1.1	NS	10 U	q 50U
1,2-Dishlerosthane	NCOC	10 U	0.50	0.5 U	0.5 U	0.5 U	NS	0.5 U	NIS.	10 U	NS	100	100	10 U	10.0	10 U	100	10 U	NS	10 U	O DOU
Tetrachlorpetione	NCOC	10 U	0.5 U	0.5 U	0.5 U	0.5 U	NS	0.5 U	NS	101	NS	10.0	10U	10 U	10.0	10 U	100	10 U	NS	10 U	0.500
Toluene	NCOC	10 U	0.16 J	0.5 U	C.5 U	0.5 U	NS	0.6 U	N5	100	NS	21	10U	10 U	10 U	10 U	1010	10 U	NS	10 U	0,28,1
lithyl Benzare	NCOC	10 U	0.37 5	0.5 U	0.5 U	0.5 U	NB	0.6 U	NS.	10 U	NS	1.1	100	10 U	10 U	10 U	100	10.0	NS	10 U	0.54
Xylenes (lotal)	NCOC	100	0.48 J	0.5 U	0.5 U	0.5 U	NS	0.5 3	NS	100	NS	100	100	10 U	10.0	10 U	100	10 U	NS	10 U	0.75
Styrena	NCOC	10 U	0.5 U	0.5 U	C.5.U	0.5 U	NS	0.5 U	NS	10.0	NS	100	100	10 U	10 U	10 R	10 U	10 U	NS	10 U	0.500
Isopropylberzene	NCOC	10 U	0.5 U	0.5 U	C.6.1	0.5 U	NS	0.5 U	NS	10.0	NS	10U	10U	10 U	100	10 U	101	10 U	NS	1D U	0.500

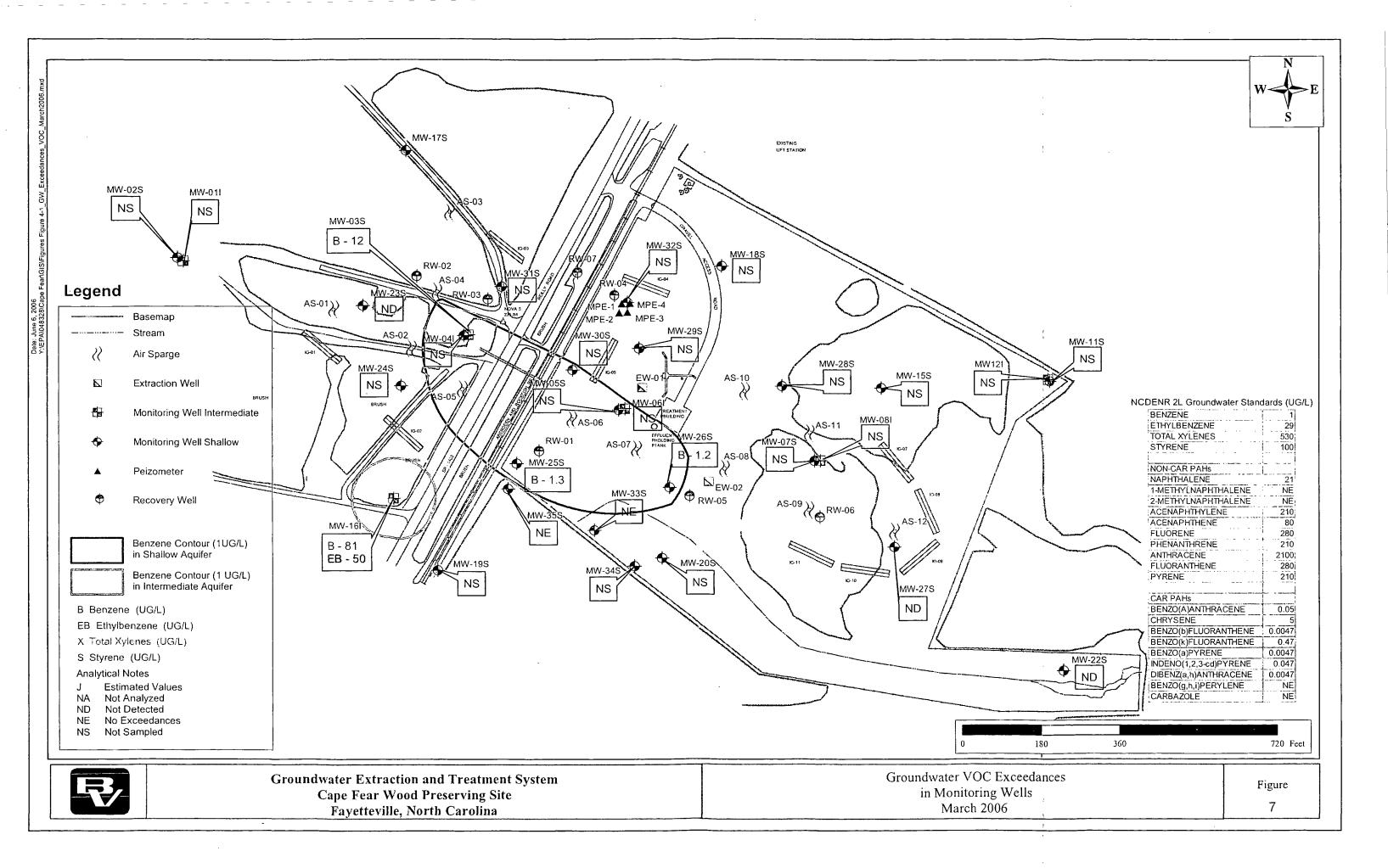
NOTES:

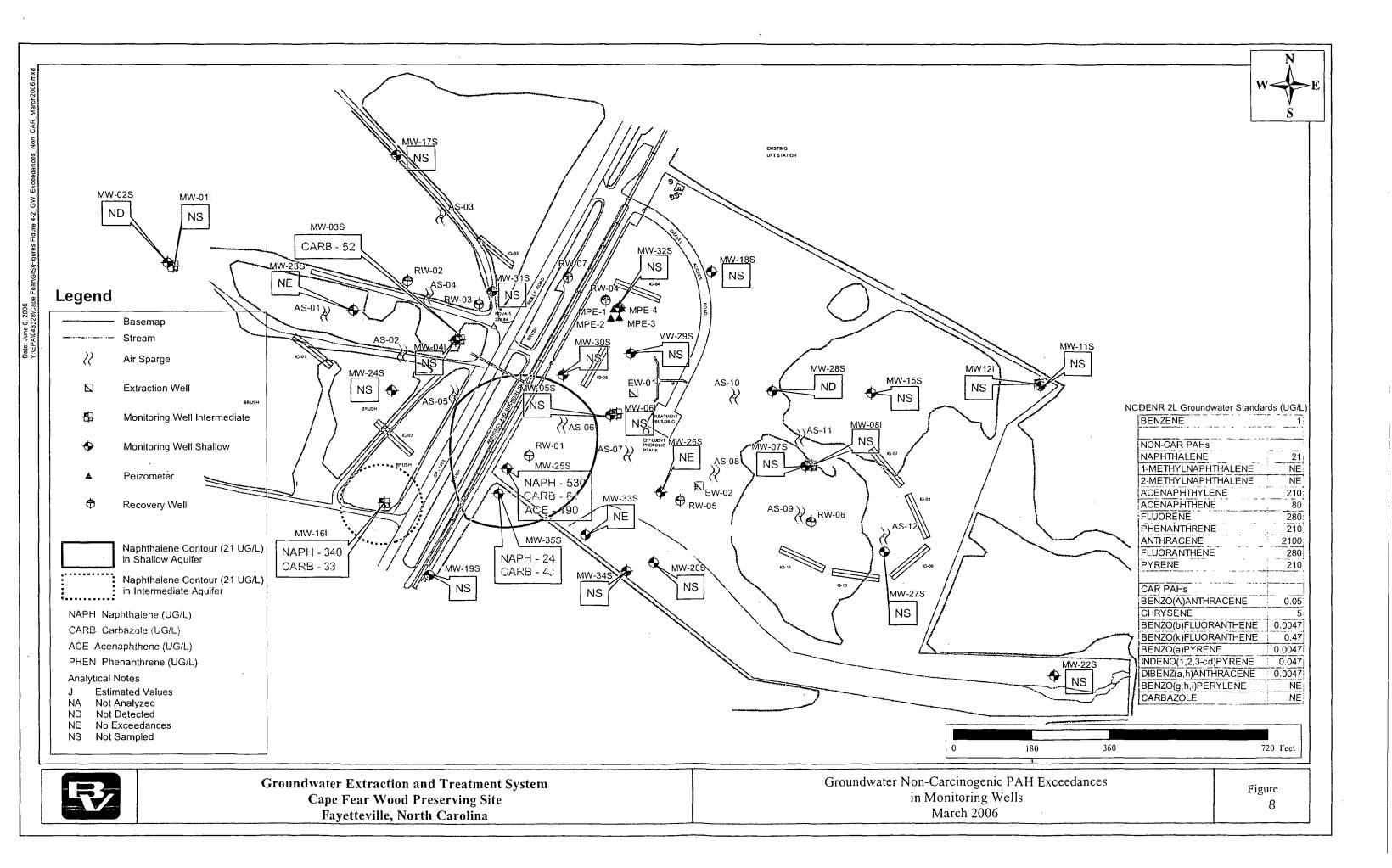
NCOC-Not a site COC

*- Based on 15A NCAC 2L

J - Extimated Value NS - Not Sampled (by decision)

N - Presumptive Evidence of Presence of Meterial


U - Material was analyzed for, but not detected. The


number is the minimum quantitation limit.

NS - Not Sampled by decision

NA - Not Analyzed; Lab Poole samples

Boldhace indicates compounds above site action levels.

Table 9 Extraction Point Analytical Summary Cape Fear Wood Preserving Site March 2006

Analyte (µp/L)	Remediation	CF-RW-1											CF-RW-2										
	Gaal*	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Jui-04	Jan-05	Mar-05	SH0-05	Mar-05	Sep-67	Dec-02	Mar-43	.Jun-03	Sep-43	Dec-03	Jul-04	Mar-05	Sep-05	War-06		
Carchogenio(CAR) PAHs		THE REAL	N STARTER	6431940	essent in	and the second	11/21/18	如為功		1	Contraction of	PLAN FU	030090	ANY COST	经投资 的	1999	并但另外	CONSTRAINT		- States of	1111		
Berzo(r)Asthrecone	0.05	1000 U	10.0	10 1	1000 U	30 J	10 U	250 U	19.0	FP	FP	10.0	50	10 U	10 U	10 U	10 U	10 U	0.63 J	10 U	10 U		
Chrysens	5	1000 U	10 U	10 U	1000 U	23 J	10.0	250 U	100	FP	FP	10 U	50	10 U	10 U	10 U	10 U	10 U	1 U	10 U	10.0		
Benna(b)Fluoranthene	0.0047	1000 U	16 U	10 U	1000 U	100U	1013	250 U	10 U	FP	FP	10 U	5U	10 U	10 U	10 U	10.U	10 U	.6U	10 U	100		
Bertho(x) Pyrane	0.0047	1000 U	10.0	10.4	100CU	2000	10111	250 U	1013	FP	F.P	10.0	50	10 U	101.0	10 U	10.12	10 U	10.	101)	18.0		
indono(1.2,3 o.6) Pyrone	0.047	1000 UJ	10.01	10.1	1000 U	2004	1014	250 U	10 U	6b	FP	10 U	50	101.0	10 U	10.1	10 U	10 U	10	10.0	100		
Ditretize (1,1) Artimizerie	0.0047	1000 U	10.5	10.0	1000 U	200 U	10.00	250 U	10 U	FP	FP	100	5U	10 U	10 U	10.0	10 U	10 W	10	10 U	100		
Benne())/Rucranthene	0.47	1000 U	10.0	10 U	1000 U	200 U	10 LU	250 U	10 U	FP	FP	10 U	6U	10 U	10 U	101	10 U	10 U	10	10.0	10.0		
Non-Carcinogenic (NCAR) PAHs		1355 Section	EES OF US	10100	ALL HALF	112/13/2	1212244	S	all when	ストロション	JAN BER	19999-19	12010933	4353509	10-21-22	SP280AL	COLLEGE	092.128	10.61457	N.53.5 5.3	Summer of		
Naphihuiana	21	5200	2900	2200	3600	969	3500	3000	2900	FP	FP	32	220	68	10 U	56	10 U	10 U	0.58 J	10 U	100		
Agenephtrylene	210	1000 U	17	23	1000-U	200 U	13	250 U	30	FP	FP	100	50	10 U	10 U	101	1.5	10 U	10	10 U	10 U		
Aconsphene	80	520 J	310	480	420 J	518	230 J	410	360 J	FP	FP	19	17	4.1	13	LB	4.1	3 J	10	10 U	101		
Fluorene	280	240 J	140	230 U	190.J	267	120 J	200 J	180.	FP	FP	7.1	6.9	10 U	10 U	2.1	11	10 U	10-0	10 U	101		
Phenandrama	210	250 J	160	230	210 J	395	150 J	2101	160.	FP	FP	6J	6.0	10 U	10.0	3.1	10 U	10 U	10.0	10 U	1011		
Antesaoso	2100	1000 U	7.1	14	1000 U	31 J	16	250 U	11	FP	FP	100	50	10 U	10 U	10 U	10.0	10 U	10 U	10 U	30 U		
Fluoranthana	280	1000 U	10	23	1000 U	160 J	23	250 U	18	FP	FP	10 U	5U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10.0		
Pyrana	210	1000 U	8.J	13	1000 U	110 J	11	250 U	10	FP	FP	100	50	10 U	10 U	10 U	10 U	10.00	10 U	10 U	10-0		
Cathdaolo	NCOC	250 J	140	240	190 J	210	110 J	200 J	190 J	FP	FP	16	18	4.1	10 U	7.3	10 U	11	100	tou	101		
Volatile Organic Compounds (VOCs)		N ELCOLO	CONTRACT	128,9981	12/05/14/	123233	11/22012	1010020	12122	11.11.12.12	302622	10000010	0.00000000	1111111111	12.6 19 19 2	Second States	6.1.93.23	12022	0.099.00	CHCY CORE	12000		
Betzens	1	10.0	7 J	8.1	13	8.1	8 J	E.S	LB	FP	sp	Lė	4.2	050	0.67	1.8	1.8	1.6	0.63 J	1010	0.61		
Chieromethane	NCOC	10 J	100	10.0	10 U	10.0	10.0	10 10	10 U	FP	FP	10 U	0.5 U	0.6 U	0.60	0.5 U	0.69	0.5 U	10	10 LU	0.5000		
Acetose	NCOC	10 J	100	100	8.	10 UJ	100	10 LU	10 U	FP	FP	10 UJ	6U	5 U	6	50	5U	50	50	10 LU	5.001		
Chisraferm	NCOC	LOI	101	10 U	10.0	10 U	10 U	10 U	10 U	FP	pp .	10.0	0.5 U	0.50	050	0.5 U	0.5 U	0.5 U	10	10 LU	0.500		
1,2-Olehioroethane	NCOC	10 J	100	10 U	10 U	10 U	10 U	100	10 U	8P	FP	100	0.5 U	0.5 U	0.50	0.5-U	0.6 UJ	0.5 U	10	10 LU	0.50U		
Tetrachicrosthene	NCOC	10 J	10.0	10.0	100	10 U	10 U	101	10 U	FP	FP	10 U	0.5 U	0.5 U	050	0.5 U	0.5 U	0.5 U	10	10 LU	0.500		
Tolaene	NCOC	17	14	15	21	\$6	13	11	12	FP	FP	10 U	0.45 J	0.24 J	0.29 J	0.5 U	0.5 U	0.5 U	10	10 W	0.600		
Ethylbonzone	NCOC	17	14	16	20	13	14	12	13	FP	FP	10 U	0.52	0.29 J	0.38 J	0.5 U	0.17 J	0.5 U	10	10 LU	0.500		
Xylenes (kots)	NCOC	51	43	48	68	43	43	37	42	FP	FP	6J	8.4	0.5	0.91	1.9	2.2	0.5	0.58 J	10 LU	L010		
Styrene	NCOC	12	51	11	14.1	81	12	81	12 J	FD	ęp	10 U	0.35.3	0.5.0	0.5.0	0.5 U	050	3.5 U	10	1011	OLSEN		
Isuprapytivenzene	HCOC	10.0	1.1	100	10 U	100	100	10.0	1.0	FP	IP	10 U	0.10 J	0.5 U	0.5 U	0.5 U	050	0.50	10	10 00	0.500		

NOTES:

NCOC - Not a site Contaminant of Concern

J - Estimated Value NS - Not Sampled (by decision)

N - Presumplive Evidence of Presence of Malertal

U - Material was analyzed for, but not detected. The sumber is the minimum cuantitation limit.

NA-Not Anaybed

Boldhace represents compounds above site remediation goals

RW - Recovery Well FD - French Drain

INF- Infuert

EFF-Effant

CARB - Balsman Carbon

FP = Free Freehet (DNAPL)

NS - Not Sempled by decision

* Besis for remediation goal is NCAC 2L Groundwater Standard and Table 3 of 2001 ROD Amendement

Table 9 Extraction Point Analytical Summary **Cape Fear Wood Preserving Site** March 2006

Analyte (µg/L)	Remediation	CF-RW-3											CF-RW-4										
	Gos!"	Seg-02	Dec-02	Mar-03	Jun-80	Sep-03	Dec-03	Jul-04	Mar-05	Sep-06	Mar-D1	Sec-07	Dec-02	Nur-03	CO-muL	Sep-03	Dec-03	JU1-04	Jan-to	Mar-15	Sep-05	Mar-06	
Carcinogenic(CAR) PAHs	and the second	1.200		Course a	1233	20.00		STORAGE ST	production of	ED PRICE	2014	A SALAN	1.4-4.20	8 197	1993	SCHAR		620/5	120	and the second	1000000	1940 200	
Benzo(a/Anthrasene	0.05	10 U	SDC U	10 U	10 U	100 U	10 U	100	10 U	10 LU	180	50 U	2500 U	100 33	69	100 U	500 U	19	600 U	4.1	FF	FP	
Chrysene	\$	100	600 U	10 U	10 U	10010	10.0	10 U	10 U	10-00	101	60 U	2600.0	100.03	66	100 U	500 U	14	500 LJ	4.1	FP.	EP.	
Benzo(b)(Fluorentheme	0.0047	10.0	500 U	10 U	10 U	100 U	10 UJ	1612	10 U	10 UJ	TOU	60 U	2500 U	100 UJ	29	100 U	500 U	73	500 12	10 U	FF	FP	
Beszojaj Pyrene	0.0047	16 U	500 U	10 U	10 U	1 DÇ U	10 LI	10.0	10.0	10 LU	100	50 U	2500 U	180 U J	23	100.0	500 U	4.3	500 U	100	FF	FP	
Indeno(1.2,3-cd) Pyrana	0.647	10 U	500-UJ	1000	10 U	10CU	10 U	10 U	10 U	10 W	thr:	50 U	2500 UJ	10003	7.1	100.0	500 U	1.1	500 U	10 U	FP	FP	
Dibenzo(a,h)Arthrecarte	0.0047	10 U	500 U	10 U	100	100 U	10 U	10 U	10 U	10.00	100	50 U	2500 U	100 U.I	31	100 U	500 U	10.UU	500 U	10 U	. pp	PP.	
BenzoádFluoranthene	0.47	1C U	500 U	10.0	100	100 U	1011	100	10.0	10 43	10日	90 U	2500 U	100 LU	27	100 U	500 U	31	500 U	10 U	FF	FP	
Non-Carchogenic (NCAR) PAHs.	Part of the second second	100000	E- / YYSS	APP (PALA)	11119 1119	TEXING		912597	COLORADA -	C. S. A.L.C.		1000003	and a start	1000000	100000	12110950	CONV.	A PARA	SELENSY	12 Million		125001.5	
Naphthalena	21	1500	2300	740	339	460	460	030	550	630	360	4200	11000	L 0053	5200	\$300	8608	3700	9000	8800	FP	FP	
Aconaphthylene	210	5.1	500 U	ZJ	14	100 U	10 U	1 J	20	17	100	61	2900 U	45 J	48	48 J	500 U	47	500 U	61	FF	FP	
Acanaphthene	80	46	69 J	25	17	12 J	10 U	21	27	22 J	18	720 J	£880 J	£ 008	1000	580	700	640 J	810	780 J	FF	FP	
Fluorene	280	24	500 U	10	71	100 U	51	8J	12	10.1	R.r	220	2600 U	250 J	580	280	310 J	210 J	320 J	320 J	FP	FP	
Phanasthrene	210	16	500 U	13	81	100 U	7 J	14 J	15	101	BJ	230	2500 U	250 J	1400	330	340 J	350 J	390 J	350 J	FF	FP	
Animent	2100	1.J	500 U	10.0	100	100 U	14 U	10 UJ	10 U	10 LU	10.0	25 J	2500 U	22 J	10 U	50 J	500 U	31	600 U	28	FP	FP	
Fluprantheme	280	2.J	500 U	10.0	100	100 U	10 U	100	10 U	101.0	300	26 J	2500 U	26 J	620	63 J	500 U	110 J	72.1	65	PP	FP	
Pyrene	210	100	600 U	10 U	10U	100 U	10 U	100	18 U	10 LU	100	14 J	2500 U	17 J	450	40 J	500 U	1000 U	500 U	20	FP	FP	
Carbazole	NCOC	40	500 U	23	14	11J	13	27 J	33	22.1	14	310	460 J	360 J	400	408	54 J	290 J	470 J	430 J	FP	FP	
Vointile Organie Compounds (VOC	5)	12.91293	12.5320	11784-10	9.295302	1999 2225	100000000	122150	1.19972		12444035	121412/01	1001102020	12000	1000	C) 30 (30)	2.54.57	D B B B B B B B B B B B B B B B B B B B	2202003	82593S ()	0100000	1000000	
Bergene	1	17	17 J	7.1	3.J	5 J	3.J	őJ	4.6 J	NA	4.8	17	17	18	14	21	15	8 J	5.J	11	FP	FP	
Chiorasuttene	NCOC	100	10 W	100	20.0	10 U	10 U	10 U	50	NA	0,5001	2.1	100	100	10 U	10 U	10 U	100	tous	10 U	FP	FP	
Acetore	NCOC	10.00	10 UJ	100	20 W	100	10 LU	10 U	25 U	NA	5.00V	10 U	10.0	11	10 U	14	10 LU	100	10 LU	15 J	FP	FP	
Chiarafam	NCOC	10U	10 UJ	100	20 U	100	10 U	10 U	5U	NA	0.500	10 U	100	100	10 U	10 U	10 U	10U	100	10 U	FF	FP	
1.2-Dikhlorgethane	NCOC	100	10 UJ	100	20 U	100	10 U	10 U	5U	NA.	0.684	100	180	100	10 U	10 U	10 U	100	10 U	100	FP	FP	
Tetracticroethone	NCOC	100	10 UJ	100	20U	100	10 U	10 U	5U	NA	0.620	101/	100	100	10 U	10 U	10 U	100	10.0	10.0	FP	FP	
Toluene	NCOC	73	EJ	3.1	200	27	1.J	3.1	341	NA	4.0	06	63	65	40	61	45	14	24	34	FF	PP .	
Etrybargete	NCOC	63	\$3	3.1	20 U	21	10 U	21	2.2.1	NA	3.1	50	52	43	32	52	37	15	38	40	FP	FP	
Xymenas (solal)	NCOC	22	29 J	1 11	2.1	TS	33	8.1	8.95	NA	9.1	\$40	134	120	87	130	100	46	97	110	FP	F9	
Steams	NCOC	100	10 UJ	100	20 U	10 R	10 U	10 U	0.57 J	NA	0.500	72	72	68	42	64 J	52	16	38	64 J	FP	80	
Isoprosybenzene	NCOC	1010	10 UJ	10.0	20 U	101	10 U	10 LI	5U	NA	0.25J	10 U	2.	21	10 U	10 U	1.1	10.1	100	2.1	FP	53	

NOTES:

NDDC - Not a site Contemnant of Concern

J - Estimated Value NS - Not Sampled (by decision)

N - Presumptive Evidence of Presence of Material

U - Meterial was analyzed for, but not detected. The

sumber is the minimum quantitation limit.

NA - Not Anayland

Boldface represents compounds above site remediation goets

RW - Recovery Well

PD - French Drain INF - Isituest

EFF - ERWART

CARB - Releasen Carbon

FP = Free Product (DNAPL)

NS - Not Sampled by decision

* Sexts for remediation goal is NCAC 2L Groundwater Standard a

Table 9 Extraction Point Analytical Summary Cape Fear Wood Preserving Site March 2006

Analyte (µg/L)	Remediation	1	io		CF-RW-6																
	Geal	Sep-02	Dec-92	Mar-03	Jun-03	8ep-03	Dec-03	Jul-04	Mar-05	Sop-08	Mar-ae	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Jul-04	Nar-05	Sep-05	Mir-be
Carcinogenic(CAR) PAHs	147 A	Var Barris	10300.030	EGG S	1983年	1 Martines	NRSED	CREW'S	PALL AV	C. S. S. S. M.	States 1	ACCUSED IN	0.000		13/25/25	10121023	C (Goy) Y	NON-THE	SHORES	12000	
Benzo(a)Anthiacone	0.95	100	5U	10.0	10.0	10 U	10.0	10 1	10.0	NS	100	10U	5U	10 U	10 U	10.0	10 U	101	100	101.0	100
Chrysene	5	100	5U	100	10 U	10 U	10 J	10 U	100	NS	101	100	50	10 U	10.0	10 J	10.0	100	10 U	10 W	tau
Benzo(b)Fluoranthene	0.0347	10U	5U	10 U	10 U	10 U	10 UU	10 U	10.0	NS	100	100	60	10 U	10.0	10 J	10 U	19 U	10 U	10 W	100
Bertoo(s) Pyrane	0.0347	100	6U	10 U	10.0	10 U	10.0	10 U	10 U	N8	100	100	60	10 U	10 U	10 U	10 U	100	10 U	10.00	100
indexo(1,2,3-ed) Pyrone	0.047	100	5U	10 UJ	10.0	100	10 J	10 U	10 1	NS	1du	100	50	10 UJ	10 U	10 U	10.0	100	10 U	10.00	100
Obenzola hiAntirecene	0.0047	100	5U	100	1 100	10.0	100	100	10.0	N5	100	100	5U	10 U	100	10.0	100	10.03	10U	10UJ	100
BanzoOcFluoranthana	8.47	100	50	1011	10.0	10.0	10.0	10.0	1011	NS	100	101	611	10.0	10.0	10.0	100	1010	100	1000	100
Non-Carcinogenic INCAR) PAHe	ANTER OF TRACES	19 20 20	Res vousier	CARA NED	10.5350.03	Sparting	1.1.1.1.1.1.1	STRACT!	14772677	1266063	CONTRACT.	2220340	1-	10000000	\$229933	100000	1000	1000	-0.000	10000	0.9128.00
Napithalone	21	72	64	170	100	240	180	630	54.0	NS	60	10U	50	4.1	100	2.1	100	21	10 U	10.00	150
Acomphiliplere	210	1.1	5U	10 U	10 U	10.0	100	2.J	2 J	NS.	1061	10 U	6U	10 U	10 U	10 J	10 U	10U	10 U	10 W	41
Armaphthene	90	32	23	18	30	29	27	82 J	51	NS	18:	10U	2.8 J	10 U	10 U	3.J	10 U	100	21	3.1	42
Pleasers	290	15	12	13	19	37	14	53.1	28	NS	- 11	tou	141	10 U	101	4.1	10.0	100	13	1000	15
Pherantinana	210	15	12	8.1	23	16	13	33 J	29	NS	2011252	10U	5U	10 U	10 U	100	100	100	100	1.1	51
Anthraceos	2100	100	5U	10 U	1.1	1 J	10 LI	11	11	NS	1911	100	5U	10 U	10U	10.0	100	100	10U	1000	100
Fluciantiese	230	2.1	13J	10 U	3.1	1.1	10 U	2.1	21	NS	100	100	5U	10 U	100	100	100	100	10U	1000	100
Pyrana	210	11	5 U	10 U	2 J	10 U	10 U	10 U	10 U	NS	100	100	5U	10 U	10 U	100	10U	100	100	10UJ	100
Catazia	HOOC	100	50	5 J	1.1	12	71	25 J	13	NS	d.J	100	50	10 U	100	10.0	1011	100	10U	1000	100
Volatile Organio Compounde (VOC)) Contraction of the second	No. of Lot of Lo	and history	Restal Inc. 10	0112000	5.478.8580	A VERSION	072201157	10010250	100000000	10000000	SHEWST	Contracta (SKOUSS	00000000	ST. AUDITOR	100000000	NAS STOR	NUMBER	1000000	00000000
Serzene	1	7.1	4.9	4.8	1.9	5.1	5.2	5.4	1.6	NO	1.8	100	0.17 J	0.5 U	0.5 U	0.5U	0.6 U	0.6U	L 950.0	10 U	1.0
Chicromethane	NCOC	100	0.5 U	0.5 U	8.21 J	0.60	0.50	0.5 U	10	NS	0.5000	100	0.6 U	0.5 U	0.5 U	0.5U	0.5.0	0.6U	10	10.0	DUSCENT
Agetone	NCOC	10 UJ	50	5 U	33	5 L	50	5U	50	NS	1,40.0	10:00	5.4	5U	5U	37 J	50	5W	6U	100	1201
Criaroform	NCOC	100	0.5 U	0.5.0	0.5.U	0.5.U	0.6U	0.5 U	10	NS	0.500	100	0.5 U	0.60	C.5 U	0.5U	U 0.0	0.60	10	100	0.500
1.2-Dichlorpethane	NCOC	100	0.5 U	0.50	0.5 U	0.6.0	0.5W	0.5 W	10	NS	0.500	10U	0.6 U	0.5 U	0.5 U	0.5U	0.5UJ	0.50	10	100	0.201
Tetrachiocome	NCOC	100	0.5 U	0.50	050	0.50	0.50	0.5 U	10	NS	0.500	101/	0.5 U	050	0.5 U	0.50	0.513	nêu	111	100	0.601
Tohuma	NCOC	41	2.7	1.0	1	2.2	1.8	3	0.84 J	NS	Laho	10 U	0.AZ J	U3.0	C.6.U	0.824	0.6.U	0.6 U	0.25 J	10U	4.9
Ettylescene	NCOC	11	8.4	8.6	4	11	9.5	12	1.P	NO	0.46	10 U	0.53	0.6 U	0.5 U	C.39 J	0.6 U	0.6 U	0.29 J	10.0	0.3
Xvienes (totel)	NCOC	12	11	7.4	4.3	10	9	13	2.03 J	NS	100 1000	100	1.3	0.5 U	0.5 U	D.71	0.60	0.6 U	0.45 J	100	16
Starene	NCOC	101	0.27 .	0.5.U	0.5 U	0.27 J	0.5U	0.55	L 780.0	NS	0.500	10 U	0.5 U	0.5 U	0.5 U	0.50	0.5.0	0.6 U	10	100	0.600
sopropybenzere	NCOC	100	0.46	0.62	0.21 J	0.5	0.68	0.51	0.21 J	NS	d11.	100	0.5U	0.6 U	0.50	0.50	U.0.0	0.5 U	10	10.0	0.281

NOTES:

NCCC - Not a site Conteminent of Concern

J - Estimated Velue NS - Not Sampled (by decision)

N- Presumptive Endence of Presence of Naterial

U- Meterial was analyzed for, but not detected. The

number is the minimum quantitation limit.

NA - Not Anayland

Baldface represents compounds above sits remediation goels

RW - Recovery Well

PD - French Drain

NF - Infuent

EFP- Lituari

CARB - Between Carbon

FP = Free Product (DNAPL) NS - Not Sempled by decision

* Basis for remodulice goal is NCAC 2L Groundwater Standard a

Table 9 Extraction Point Analytical Summary Cape Fear Wood Preserving Site March 2006

	Remediation		Sector Sector		12000	CF-RW-7	1		under andere	11-1-2-5	CF-N	PE-2	CF-MPE-3		0.000	Not All		CF-	°D	in the second			10000
Analyte (µg/L)	Goal*	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Jui-04	Mar-05	Sep-05	Mar-Hi	Bep-05	Mar-86	Mar 06	Bep-02	Dec-02	Mar-03	Jun-03	8ep-83	Dec-03	Jui-04	Mar-05	5ep-05	Mw-de
Caronogenic(CAR) FAHs	Supervised (1)	1.2.0.2.0	1.161.11		The second		10000	F. S.	1.86.10		10716	1100	10155.01		SIMUSE		10000	1220	Consult of	2.1.63	ALC: NO.	10.026	
Bonzo(a)Anthracene	0.05	NS	100 LU	23 J	250 J	500 U	8700	1000 U	₹₽.	FP	2 J	100	100	20 U	1500 U	130 UJ	10 U	100 U	10 U	10 U	10.0	100 LU	2.1
Chrysene	5	NG	100 LU	22 J	250 J	500 U	5800	1000 1	TP	TP	2.J	10.	TOU	20 U	1600 U	100 LU	101/	100 U	10 U	10 U	100	100 UU	JUC
Benzo(b)Fixentriffere	0.0047	NS	100 LU	100 U	250 4	500 U	4000	1000.0	tp	FF	10.0	10.1	100	20 U	10000	100 UJ	10.0	100 U	10 U	10 U	10.0	100 UU	1.BU
Batzo(a) Pyrene	0.0047	NS	100 LU	100 U	260 J	500 U	2400	1000 0	rp.	FF	100	180	(QU	20 U	1000U	100 UJ	10 U	100 U	10 U	10 U	10 U	100 LU	181
Indona(1,2,3-cd) Pyrene	0.047	NS	100 LU	U 001	260 J	500 U	580 J	1000 J	.FP	中	10 U	100	UD	20 U	1500 LU	100 LU	10.0	100 U	1010	10 U	10 U	100 UU	100
Dibenzo(a,h)Arthracene	9,0047	NS	100 UU	100.0	250 1	500 U	210 J	1000 ป	i P	ep.	10 U	LOL	104	20 U	1600 U	100 LU	100	100 U	10 U	10 U	10 U	100 UU	100
Banzo(oFluorarthana	0.47	NS	100.00	100 U	260.1	500 U	1600 J	1000 U	:p		1011	10.1	100	20.0	16001	100.00	100	100 U	10 U	10 U	10 U	100 UU	100
Non-Carcinogenic (NCAR) PAHa	STATISTICS.	Assertation	1-1-1-50 EE	STU REAL	(1)。11(1)(1)	(2000)	Sec.	15435217	a constraints	Service Services	(S) Second	1. 1910.1.1	SAME CAN SOT	1000000	ALCO AND ALC	CONNER!	11000	503 A.G.++	0.55 (5) (6)	10/412	ALLEIGHT	NO2-SCOM	120480
NextWeaters	25	NS.	5060 J	3400	67.03	8300	00036	1000 1	10	re-	520	230	1200	3200	6300	L 8064-	2100	720	4806	26/00	3480	5800 J	1400
Ad emaphility/earto	210	NS	43 J	44 J	59 J	500 U	3900	L 05E	FP	FP	1.1	100	21	35.2	1200 U	11J	100	100 U	15	30	11	11 J	61
Aconsphthene	80	NS	390 J	310	470	780	\$2600	3600	FP	FP	200	110	210.1	470 J	340 J	260 J	140	240	340 J	370 J	240	280 J	170J
Fluorene	250	NS	140.2	150	1923	340 J	35000	630 J	FP	PP .	50	17	1000	120	1500 U	130 J	60	140	150 J	100.2	110 J	130 J	721
Phenentruce	210	NS.	130 J	190	180 J	550	120000	1000 U	FP	FF	140	43	1702	120	1800U	130 J	65	140	150 J	190 J	150 J	180 J	761
Anthracene	2100	NB	13 J	100 U	250 U	500 U	10000	240 J	FP	EP	. e.j.	41	10	17.1	1500 U	14.1	DJ.	17 J	14	11	19	26 J	71
Fluorenheno	280	NIS	100 LU	L 201	250 U	190 J	58000	1000 U	PD	. cp	26	11	50	20	1500 U	15.1	11	20 J	14	22	24	22 J	20
Pyrama	210	NS	100 LU	60 J	250 U	110J	42009	1000 U	FP	TP .	14	6/	16	127	1000 U	100 UJ	6J	13 J	9.1	10	12	14 J	12
Carbarnie	NCOC	NB	280 J	290	390	L 06C	9500	1000 U	EP	FF	64	23	73	130	1600 U	150 J	78	130	170 J	230 J	240 J	180 J	793
Volable Organic Compounds (VOC	a station and the	2220017	21212200	ALC: NO.	0.tn0050		Extent for		Statute (1991	Carry and	1000 C		Salahan Managara	100.000	Country FLY	00000770	3783444	COLUMN TO D	Grad 1921	1111111	The states	Sec. Sell	1002010
Senzene	1	NS	54 J	200	310	190	360	190	FP	FP	NA	1,3	2.4	27	22 J	15	12	19	15	10	8.2	19	6.5
Chiaramethene	NCOC	NB	10 U	20 U	100	10 U	100	20 U	FP	FP	NA	0.50LU	0.5000	10 U	10.00	10 U	10 UJ	1011	10 U	10.0	50	101	0 50,33
Assiane	NCOC	NB	14 J	51 J	49	19 UU	47	100 U	FP	FP	NA	5.001	5,4833	10 UJ	10 LU	19	10 U	30 UJ	10.00	12	25 W	100	7.904
Chlaroform	NCOC	NG	10 LI	20 U	100	101	10U	20 U	FP	.FP	NA	0,584	LIDED	100	10 LU	10 U	10 U	10 U	10 U	100	5U	10 U	0.90
1,2-Dichlorosthene	NCOC	NS	10.0	20 U	100	10.0	LS	25 U	FP	FP	NA	0.50.1	0.003	100	10.00	10 U	100	10 U	1.1	10 U	5U	10 U	0.50.01
Tetrachioroethene	NCOC	NS	10 U	20 U	10 U	100	10 U	20 U	FP	EP	NA	0.600	0.600	10 U	10 LU	10 U	10 U	10 U	10 U	100	5U	100	0.500
Tokene	NCOC	NS	63 J	140	240	160	300	160	FP	FP	NA	0,57	8.1	84	83 J	47	62	60	57	50	29	68	33
Ety/bergene	NCOC	NS	35 J	46	100	70	160	70	FP	FP.	NA	4.4	9.0	110	120 J	59	110	82	89	67	47	110	62
Sylamas (total)	NCOC	NS	1000	140	260	210	290	206	FP	FP	NA	2.8	18	330	350 J	170	350	240	270	210	143	360	207
Styrace	NODC	NS	52 J	19	150 J	130	200	110	I FP	FP	NA	5.50U	614	61	60.1	43	61	4.4	62	46	26	100	30
hopropybenzene	NCOC	NG	2.1	20.0	tou	21	5.1	3.7 J	FP	FP	NA	0.37J	CIBRU	10.0	+0.1	43	8.1	10 U	8.1	5.	5.5	101	7.5

NOTES:

NCCC - Not a site Conterminent of Concern

.1 - Estimated Value NS - Not Sampled (by decision)

N - Presumptive Evidence of Presence of Meterial

U - Material was analyzed for, but not detected. The

number is the minimum quantitation limit.

NA - Nos Ameyizerő

Boldface represents compounds above site remediation goals

RW - Recovery Well

FD - French Drain

INF - Influent EFF - Effluent

CARB - Setween Carbon

FP = Free Product (DNAPL)

NS - Noi Sempled by decision

ina - Not campied by decision

* Basis for remediation goal is NCAC 2, Groundwater Standard a

Five-Year Review Cape Fear Wood Preserving Fayetteville, Cumberland County, NC

CAR PAHS:

The FD was the only extraction point that detected any CAR PAH compounds above the laboratory reporting limit and above the remediation levels (benzo(a) pyrene at $2J \mu g/L$).

RW-6 was the only well that had a significant increase in concentrations of the NCAR PAHs compared to the previous events. All the other compounds remained fairly constant in all the extraction points. Since no samples were collected from the extraction points that detected DNAPL present (labeled as FP), no significant trends can be deduced from these data. Currently, RW-2 and RW-6 are off-line. During this semi-annual sampling event, naphthalene was detected in RW-6 after the well had been turned off in March 2006. These well have been turned off and the pumps in these wells have been placed in the MPE wells. MPE-1, MPE-2, MPE-3, and MPE-4 (from the pilot study) have been placed on-line and the recovery wells that had two pumps have been changed to utilize only one pump which will be a bottom loading pump.

Air Sparging Monitoring

Dissolved Oxygen (DO) levels are routinely measured in groundwater at the select MW locations as an indicator of the air sparging system's area of influence. The DO levels were recorded from select MW in January 2005. As part of the Thermal Injection Pilot Study performed from September through December 2004, the air sparging system was taken off-line. The system is anticipated to remain off-line indefinitely; therefore, DO levels measurements have not been recorded for the purpose of the air sparging system.

However, DO and ORP levels are being measured in groundwater at select MW locations as an indicator of natural attenuation processes present in the subsurface. The DO levels are measured in all MWs quarterly. The measurements are summarized in the Quarterly O&M Reports (June and September 2005). ORP measurements were measured in all MWs in June 2005. These data are summarized in Table 10 from the September O&M Report. A review of the data shows that there is no obvious trend in the DO data that supports bringing the air sparging system back online to increase the DO levels in the subsurface. There has been no decrease in DO levels measured in the last two quarters as compared to the measurements collected prior to September 2004 when the air sparging system was turned off. With only one set of ORP data, no interpretation of the data can be made at this time.

Since operation of the groundwater remediation system began, a total of 16.5 million gallons of contaminated groundwater has been extracted, treated, and re-injected into the on-site infiltration galleries. As of March 2006, 11,766 gallons of DNAPL have been recovered from the subsurface since system start-up. Cumulative total DNAPL mass removal calculations estimate a volume of 107,201 pounds of DNAPL mass have been removed since system start-up. Table 11 is a summary of DNAPL recovery since September 2001. The groundwater treatment system has been performing as anticipated and has been effective in treating the impacted groundwater.

Based on the most recent Semi-Annual Report (October 2005 through March 2006), the groundwater remediation system is working as designed. The cumulative dissolved-phase mass removal volume since system start-up, is estimated at approximately 5,638 pounds. An estimated 4,629 pounds of dissolved mass were removed during the pilot study conducted from October 2004 - February 2005. This total was not reported by individual compound, so the percentage of mass removed by each compound cannot be calculated. It is assumed that naphthalene comprises the majority of the mass removed.

Table 10

Quarterly Historic Dissolved Oxygen & Oxygen Reduction Potential Measurements Cape Fear Wood Preserving Superfund Site Fayetteville, North Carolina

Monitoravelle	Sec. Honce	Dissoved Owgen a	
MW-11	N/A	NM	
	7/26/2004	6.46	
· ·	10/7/2004	NM	
	11/3/2004	NM	
· · .	1/25/2005	NM	
	4/27/2005	NM	
	6/30/2005	6.08	-30.3
MW-2S	6/29/2004	5.03	
	7/26/2004	6.96	
	10/7/2004	4.97	
· ·	11/3/2004	5.64	
	1/25/2005	6.49	
	4/27/2005	6.47	
	6/30/2005	5.02	128.6
MW-3S	6/29/2004	1.90	
	7/26/2004	0.87	
	10/7/2004	3.98	· ·
	11/3/2004	3.81	
	1/25/2005	2.08	
	4/27/2005	2.53	
	6/30/2005	2.36	33.1
MW-4I	N/A	NM	
	7/26/2004	0.18	
	10/7/2004	NM	· .
	11/3/2004	NM .	
	1/25/2005	NM	
	4/27/2005	NM	
	6/30/2005	2.37	-31.4
MW-5S	6/29/2004	1.90	
	7/27/2004	1.12	
	10/7/2004	0.80	
	11/3/2004	2.64	"
-	1/25/2005	1.06	
	4/27/2005	0.61	10.1
	6/30/2005	1.20	48.1
MW-6I	N/A	NM	
	7/27/2004	0.88	
	10/7/2004	NM	
	11/3/2004	NM	
	1/25/2005	NM	
	4/27/2005	NM	
	6/30/2005	1.48	33.6

See notes at end of table.

÷

Table 10 Quarterly Historic Dissolved Oxygen & Oxygen Reduction Potential Measurements Cape Fear Wood Preserving Superfund Site Fayetteville, North Carolina

And the second			
Monitor Vell		 Oussolveolop.opene. Oussolveolop.opene. 	Sovygars (dammar) domensiyanya
MW-7S	6/29/2004	1.01	
	7/27/2004	0.22	
	10/7/2004	2.33	
	11/3/2004	0.65	
	1/25/2005	0.64	
	4/27/2005	0.57	
	6/30/2005	0.78	8.5
MW-81	NA .	NM	
	7/27/2004	0.15	
	10/7/2004	NM	
	11/3/2004	NM	
1	1/25/2005	NM	
	4/27/2005	NM	
	6/30/2005	1.62	91.1
MW-11S	6/29/2004	1.01	
	N/A	NM	•
	10/7/2004	NM	
	11/3/2004	1.30	
	1/25/2005	1.48	
	4/27/2005	1.33	
	6/30/2005	1.83	94.6
MW-12I	6/29/2004	NM	
	N/A	NM	
•	10/7/2004	NM	
	11/3/2004	NM	
	1/25/2005	NM	
	4/27/2005	NM	
	6/30/2005	NM	Well Obstructed
MW-15S	6/29/2004	2.90	
	7/27/2004	0.86	
	10/7/2004	1.50	
	11/3/2204	7.60	
· ·	1/25/2005	2.63	
}	4/27/2005	3.84	
	6/30/2005	0.84	-76.0
MW-16I	N/A	NM	
	7/26/2004	0.12	
	10/7/2004	NM	
	11/3/2004	NM	
	1/25/2005	NM	
	4/27/2005	NM	
	6/30/2005	4.72	-64.9
	0/30/2003	T./2	-0-1.7

Sec notes at end of table.

66

. . .

Table 10

Quarterly Historic Dissolved Oxygen & Oxygen Reduction Potential Measurements Cape Fear Wood Preserving Superfund Site Fayetteville, North Carolina

Monitoryxell	s an an than a start an	Discurdenzeele	Öst zgan Richtenon Honstinstative
MW-17S	6/29/2004	4.35	
	7/26/2004	1.88	
	10/7/2004	2.54	
	11/3/2004	3.08	
	1/25/2005	3.79	
	4/27/2005	0.81	
	6/30/2005	3.40	95.0
MW-18S	6/29/2004	4.96	
	7/27/2004	5.03	
	10/7/2004	3.50	
	11/3/2004	5.99	
l	1/25/2005	6.58	
	4/27/2005	5.71	
۶.	6/30/2005	4.45	87.0
MW-19S	6/29/2004	3.37	
	7/26/2004	0.32	
	10/7/2004	3.65	
	11/3/2004	5.16	
	1/25/2005	5.32	
	4/27/2005	3.41	
	6/30/2005	2.25	135.0
MW-20S	6/29/2004	2.98	
	7/27/2004	0.38	
	10/7/2004	0.80	
	11/3/2004	2.39	
	1/25/2005	1.20	
	4/27/2005	1.63	
·	6/30/2005	0.62	75.0
MW-22S	6/29/2004	1.87	
	7/27/2004	0.36	
	10/7/2004	2.30	
	11/3/2004	0.58	,
. ·	1/25/2005	1.30	
	4/27/2005	5.05	
	6/30/2005	0.95	47.3
MW-23S	N/A	NM	
	7/26/2004	0.37	
	10/7/2004	1.40	
	11/3/2004	3.01	
	1/25/2005	3.32	
	4/27/2005	3.49	
	6/30/2005	6.4	64.2

See notes at end of table.

14

Table 10

Quarterly Historic Dissolved Oxygen & Oxygen Reduction Potential Measurements Cape Fear Wood Preserving Superfund Site Fayetteville, North Carolina

Monther Wells	PDAL STREET	E Discolvero vgen a	10 nymen Ruthaetons
MW-24S	6/29/2004	0.17	CALEGIC DUBILITY MARKE
141 44 -243	7/26/2004	0.99	
	10/7/2004	0.73	
	11/3/2004	3.94	
	1/25/2005	1.78	
	4/27/2005	4.80	
	6/30/2005	3.11	73.2
MW-25S	6/29/2004	0.99	15.4
141 44 -236	7/28/2004	0.68	
	10/7/2004	2.60	
	11/3/2004	4.10	
	1/25/2005	1.17	
	4/27/2005	2.11	-
	6/30/2005	1.38	-6.8
MW-26S	6/29/2004	4.07	-0.0
141 44 -205	7/27/2004	0.70	
· ·	10/7/2004	3.01	
	11/3/2004	4.20	
	1/25/2005	0.89	
	4/27/2005	5.22	
	6/30/2005	2.16	60.7
	6/29/2004	2.96	00.7
141 44 -275	7/26/2004	1.74	
	10/7/2004	3.10	ļ
	11/3/2004	1.49	
	1/25/2005	1.83	
	4/27/2005	0.98	
	6/30/2005	1.00	46.5
MW-28S	6/29/2004	2.00	
	7/26/2004	1.58	
	10/7/2004	2.36	
	11/3/2004	2.32	
	1/25/2005	2.42	
	4/27/2005	2.49	
	6/30/2005	1.17	78.1
MW-29S	6/29/2004	1.72	
	7/28/2004	0.74	
	10/7/2004	1.40	
	11/3/2004	0.40	
	1/25/2005	2.10	
	4/27/2005	1.23	
	.6/30/2005	0.37	29.8

See notes at end of table.

68

Five-Year Review Cape Fear Wood Preserving Fayetteville, Cumberland County, NC

Table 10

Quarterly Historic Dissolved Oxygen & Oxygen Reduction Potential Measurements Cape Fear Wood Preserving Superfund Site Fayetteville, North Carolina

Monthol Welly		Part is all the all of some of the	SO worm Reduction
i in the	es advins, a		
MW-30S		2.16	ess Holentiels (nove)
MW-305	6/29/2004	3.16	
	7/28/2004	0.53	
	10/7/2004	3.17	
	11/3/2004	0.11	
	1/25/2005	0.94	
	4/27/2005	0.74	
	6/30/2005	0.77	42.6
- MW-31S	6/29/2004	1.98	· ·
	7/26/2004	1.43	
	10/7/2004	2.20	
	11/3/2004	8.53	
	1/25/2005	1.44	
	4/27/2005	7.59	
	6/30/2005	2.85	101.6
MW-32S	6/29/2004	2.96	
	7/28/2004	0.36	
, · · ·	10/7/2004	1.08	
	11/3/2004	0.32	
	1/25/2005	NM	
	4/27/2005	0.36	
	6/30/2005	0.43	-31.5
MW-33S	6/29/2004	2.94	
	7/27/2004	0.85	
	10/7/2004	2.94	
	11/3/2004	3.48	
	1/25/2005	0.99	
	4/27/2005	4.75	
	6/30/2005	1.66	4.9
MW-34S	6/29/2004	1.61	
	7/27/2004	0.22	
	10/7/2004	0.90	
	11/3/2004	1.07	
	1/25/2005	NM	
]	4/27/2005	3.62	
	6/30/2005	1.47	54.5
			<u></u>

See notes at end of table.

}

Table 10 Quarterly Historic Dissolved Oxygen & Oxygen Reduction Potential Measurements Cape Fear Wood Preserving Superfund Site Fayetteville, North Carolina

	19 K Kilven Ossiren fanst G	(+ (Oshoran Hotfillini an - มีโตกัลเกมโกสาง 1
N/A	NM	
7/28/2004	0.26	
10/7/2004	NM	
11/3/2004	NM	
1/25/2005	NM	
4/27/2005	NM	
6/30/1935	NM	NM
	7/28/2004 10/7/2004 11/3/2004 1/25/2005 4/27/2005	7/28/2004 0.26 10/7/2004 NM 11/3/2004 NM 1/25/2005 NM 4/27/2005 NM

Notes:

See June 2004 O & M Report for recorded

historic data from August 2001 to June 2004. NM = Not measured MW = Monitor Well

mg/L = milligram per liter

ID = Identification

Cont. = Continued

Table 11 Summary of DNAPL Recovery Cape Fear Wood Preserving Site March 2006

Date	Gallons Recovered	Cumulative Gallons Recovered	Annual Total Gallons Recovered	Total Mass Recovered (pounds)	Cumulative Mass Recovered (pounds)	Annual Tota Mass Recovered (pounds)
Sep-01	3,960	3,960		36,080	36,080	
Oct-01	220	4,180		2,004	38,084	
Nov-01	55	4,235		501	38,585	
Dec-01	0	4.235		0	38,585	
Jan-02	0	4.235		0	38,585	
Feb-02	5	4.240		46	38,631	
Mar-02	460	4.700		4,191	42,822	
Apr-02	175	4,875		1,594	44,416	
May-02	550	5,425		5,011	49,428	
Jun-02	850	6,275		7,744	57,172	
Jul-02	440	6,715		4,009	61,181	
Aug-02	225	6,940		2,050	63,231	
Sep-02	55	6,995	6,995	501	63,732	63,732
Oct-02	400	7,395		3,644	67,376	
Nov-02	475	7,870		4,328	71,704	
Dec-02	325	8,195		2,961	74,665	
Jan-03	300	8,495		2,733	77,398	
Feb-03	175	8,670		1,594	78,993	
Mar-03	125	8,795		1,139	80,132	
Apr-03	0	8,795		0	80,132	
May-03	0	8,795		0	80,132	
Jun-03	0	8,795		0	80,132	
Jul-03	0	8,795		0	80,132	
Aug-03	0	8,795		0	80,132	
Sep-03	0	8,795	1,800	0	80,132	16,400
Oct-03	100	8,895		911	81,043	
Nov-03	175	9,070		1,594	82,637	
Dec-03	150	9,220		1,367	84,004	
Jan-04	175	9,395		1,594	85,598	
Feb-04	65	9,460		592	86,191	
Mar-04	45	9,505		410	86,601	
Apr-04	165	9,670		1,503	88,104	
May-04	25	9,695		228	88,332	
Jun-04	25	9,720		228	88,559	
Jul-04	150	9,870		1,367	89,926	
Aug-04	25	9,895		228	90,154	
Sep-04	25	9,920	1,125	228	90,382	10,250

Table 11 Summary of DNAPL Recovery Cape Fear Wood Preserving Site March 2006

Date	Gallons Recovered	Cumulative Gallons Recovered	Annual Total Gallons Recovered	Total Mass Recovered (pounds)	Cumulative Mass Recovered (pounds)	Annual Total Mass Recovered (pounds)
Oct-04	25	9,945		228	90,609	
Nov-04	50	9,995		456	91,065	
Dec-04	50	10,045		456	91,520	
Jan-05	25	10,070		228	91,748	
Feb-05	138	10,208		1,257	93,006	
Pilot Study	213	10,421		1,941	94,946	
Mar-05	0	10,421		0	94,946	
Apr-05	25	10,446		228	95,174	
May-06	0	10,446		0	95,174	
Jun-05	895	11,341		8,154	103,328	
Jul-05	50	11,391		456	103,784	
Aug-05	70	11,461		638	104,422	
Sep-05	45	11,506	1,586	410	104,832	14,450
Oct-05	40	11,546		364	105,196	
Nov-05	110	11,656		1,002	106,198	
Dec-05	0	11,656		0	106,198	
Jan-06	70	11,726		638	106,836	
Feb-06	40	11,766		364	107,201	
Mar-06	0	11,766		0	107,201	

Notes:

* - Total removed during Pilot Study

DNAPL = Dense Non-Aqueous Phase Liquid

DNAPL Specific Gravity = 1.0918

Mass Extracted_{DNAPL}, pound = Volume DNAPL (gallon) x Specific Gravity DNAPL x 8.345 (pounds/gallon)

The VOC concentrations have decreased over time since the system start-up. Mass removal estimates are calculated every quarter and based on these figures, the remediation systems at the Site are effectively removing the subsurface target parameters.

Activities conducted at the Site were consistent with the 1989 ROD, the three ESDs, and the 2001 ROD Amendment and all the work plans prepared for the design and implementation of the RA, including sampling and analysis. The RD Reports, including a Quality Assurance Project Plans, incorporated all US EPA and NC DENR quality assurance and quality control (QA/QC) procedures and protocol. US EPA analytical methods were used for all validation and monitoring samples during RA activities. Sampling of soil and water followed the US EPA protocol USEPA, Region 4, Science and Ecosystem Support Division, Environmental Investigations Standard Operating Procedures and Quality Assurance Manual, May 1996 (EISOPQAM), as revised, and Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods.

The QA/QC program developed and used for this RA was comprehensive. The Agency's contractors and subcontractors complied with the requirements set forth in the QA/QC plan; therefore, US EPA and NCDENR accept that all analytical results are accurate to the degree needed to assure satisfactory execution of the RA and are consistent with the ROD/ESDs/ROD Amendment and the RD plans and specifications.

6.6 Site Inspection

The Site inspection of the Cape Fear Wood Preserving Site was conducted on May 22, 2006. Attending the Site visit was:

- Jon Bornholm, RPM, US EPA
- Nile Testerman, Environmental Engineer, NC DENR, Superfund Section
- Beau Hodge, Site Manager, Proterra Consulting, Inc.

During the inspection, all on-site documents and records were noted as readily available and up-to-date. The Site was secure, fencing and gates were functioning and locked. The treatment system building and monitoring wells are locked, secure, functioning properly, and routinely sampled. O&M at the Site is conducted by Black & Veatch's subcontractor, Proterra. All O&M records are up-to-date and available. The groundwater extraction wells, pumps, and pipelines, as well as the treatment system and discharge system are in good condition.

6.7 Interviews

The following persons were interviewed regarding the activities and implementation of the remedial actions at the Cape Fear Wood Preserving Site. Only a portion of the interviews are stated below, for the complete interview statement see Attachment 3.

Jon Bornholm, US EPA RPM:

Is the Remedy Functioning as Expected?, "For groundwater, the original remedy included three technologies which included groundwater/DNAPL extraction and treatment with on-site discharge of the treated groundwater, air sparging, and injection to nutrients to promote in-situ bio-degradation on the contaminants. Based on the findings a 2004 RSE, the air sparging and nutrient injection systems were shut down. Due to the extent of the DNAPL, the time-frame estimated in the Remedial Design to achieve the groundwater cleanup goals was underestimated. It will take significantly longer than eight years to achieve the groundwater cleanup goals."

Four individuals within the surrounding community were contacted by the US EPA regarding the remedial activities at the Cape Fear Site. Four individuals were interviewed about issues they might have concerning the remediation and community involvement. Of the four individuals contacted, two had several concerns. One individual's concerns/comments included: "Infiltration gallery IG-02 located to the west of Reilly Road was built in a low area and was a total waste of taxpayers money because it does not pump much water"; "Three out of four air sparging -not sure if they are even working"; "Some of the plume is on private land and I would like to see a report that determines the boundaries of the plume in order to see if the treatment system is working"; and, Eight acres of private land is part of a 20 year easement and landowner is concerned that he cannot do anything with the eight acres. The second individual's concerns/ comments include: "Would like to see more communication with the public regarding the Site"; It has been two to three years since the private wells were sampled and landowner has yet to receive any results from the sampling; and, "When was the last time that the test wells were sampled and how often are the test wells sampled?" Attachment 3 is a complete list of the comments/issues.

7.0 Technical Assessment

7.1 Question A: Is the remedy functioning as intended by the decision documents?

The remedial action continues to operate as designed. Three of the four major groundwater treatment systems (extraction, treatment, and injection) performed their intended functions during the most recent semi-annual sampling period (October 2005 through March 2006). Through March 2006, approximately 11,766 gallons or 107,201 pounds of DNAPL (Free Product) have been removed from the groundwater since system startup. The groundwater extraction and infiltration system continues to have the desired effect on the shallow aquifer at the Site. Potentiometric surface maps for the semi-annual period indicate the influence from the extraction points and infiltration galleries continue to result in hydraulic control of the dissolved-phase groundwater plume. The current extraction/injection configuration appears to be accomplishing the two primary objectives of contaminant mass recovery and hydraulic plume control. The treatment system is effectively removing the contaminants in the extracted groundwater as evidenced by the system treatment effluent monitoring data collected monthly.

Although the groundwater remedy is functioning as designed, the 2006 Semi-Annual Report included several observations to improve the performance of the remedy. These include: Continue to monitor operations and make changes as necessary to increase total system flow to roughly 1.6 million gallons per semi-annual reporting period if possible; Continue to monitor treatment system monthly analytical results to maximize carbon loading on the primary unit but preventing an effluent exceedence; Replace the carbon in the primary vessel every 8 to 9

months; Evaluate replacing the DNAPL double diaphragm pumps in the extractions wells with bottom-loading pneumatic pumps (these pumps will recover both product and groundwater); Turn off the pumps in RW-2 and RW-6 and use the pumps in two of the MPE wells to focus the extraction on center of the DNAPL plume area; DO measurements will be collected quarterly; ORP measurements will be collected annually; Evaluate filtration options to reduce bag filter change outs and system alarms; and Install an intermediate-depth well down gradient of MW-161.

Since the groundwater remedy is a long-term remedial action for the Site, institutional controls need to be identified and implemented for the Cape Fear Wood Preserving Site.

7.2 Question B: Are the exposure assumptions, toxicity data, clean up levels and remedial action objectives (RAOs) used at the time of the remedy still valid?

The exposure assumptions, toxicity data, clean-up levels, and RAOs used at the time of the remedy are still valid for the COCs. The chemical-specific ARARs (i.e., MCLs and the State Groundwater Standards) have not changed for the COCs from the Remediation Goals given in the ROD Amendment. Although in March 2001, the Federal MCL for arsenic was changed from 50 μ g/l to 10 μ g/l. This revised Federal MCL for arsenic took effect as part of the National Primary Drinking Water Regulation, March 23, 2001. Based on arsenic levels collected for the Baseline Sampling Report (See Section 6.5, Data Review, Phase IV), the influent/effluent arsenic levels collected in 2001 were below the 50 μ g/l former standard. But currently, these arsenic levels (ranging from 8 μ g/l to 26 μ g/l) exceed the new 10 μ g/l standard. Though the arsenic standard has changed, there are no current exposures to contaminants in the groundwater.

The National Recommended Water Quality Criteria for surface water was not reviewed as there is no longer a discharge to surface water. The discharge to surface water was eliminated at the completion of the soil remediation phase. In addition, the May 1996 ESD, changed the point of discharge of the treated water from Bones Creek to the local POTW. Additionally, the 2001 ROD Amendment modified the remedy to discharge the amended, treated groundwater back into the aquifer through infiltration galleries located within and at the boundaries of the plume and if necessary, to discharge the treated groundwater to the local POTW.

Although arsenic has not been identified has a COC within the groundwater, an evaluation of the existing arsenic analytical data will be conducted. Based on the conclusions of this evaluation, the collection of additional arsenic analytical data may be warranted in order to determine if arsenic should be identified as a Site COC or if the treatment system may need to be modified do to the presence of arsenic. In the short-term, there are no current exposure routes to the groundwater and the remedy is still protective of human health.

Currently, the land use at the Site remains unchanged and no new human health or ecological routes of exposure have been identified or modified in anyway that would change the protectiveness of the remedy. However, in May 2006, the US EPA spoke with the property owner of the Site, and he stated that he intends on redeveloping the Site into residential properties in the future. Based on this future property land use, the residential risk scenario used in the RI is still valid, and the groundwater clean-up goals are acceptable for residential property use.

The purpose of the remedial action as stated in the 1989 ROD is to minimize, if not mitigate contamination in the soils, groundwater, and surface waters and sediment and to reduce, if not eliminate, potential risks to human health and the environment. The following clean-up objectives were determined based on regulatory requirements and levels of contaminants found at the Site:

- To Protect the public health and the environment from exposure to contaminated on-site soils through inhalation, direct contact, and erosion of soils into surface water and wetlands;
- To prevent off-site movement of contaminated groundwater; and,
- To restore contaminated groundwater to levels protective of human health and the environment.

There have been no changes in the physical conditions of the Site that would affect the protectiveness of the remedy. All remediation goals were achieved during the remedial action for soil and the remedial action for groundwater continues to operate as designed.

7.3 Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

No additional information has come to light that could call into question the protectiveness of the remedy.

7.4 Technical Assessment Summary

The remedy is functioning as intended by the decision documents, ROD, ESDs, and ROD Amendment. The exposure assumptions, toxicity data, clean-up levels and RAOs used at the time of the remedy are still valid for the COCs. As stated above, the Federal MCL for arsenic was changed as part of the National Primary Drinking Water Regulation. Currently, arsenic is not a COC within the groundwater, the collection and evaluation of arsenic analytical data and evaluation of the potential impact on the treatment system will need to be conducted. In the short-term, there are no current exposure routes to the groundwater and the remedy is still protective of human health.

The groundwater remedy is functioning as designed, and as discussed earlier, the 2005 RSE made several recommendations to improve the performance of the remedy including the addition of a monitoring well downgradient of the most south-southwest well (MW-161). Additionally, institutional controls need to be identified and implemented at the Site; however, these items do not affect the protectiveness of the remedy as currently there are no groundwater users in the area of the contamination.

8.0 Issues

There are six issues that have been identified during this review.

- Institutional controls need to be identified.
- Institutional controls need to be implemented.
- Install well(s) downgradient from monitoring well MW-16i to complete the delineation of the plume in the intermediate zone of the aquifer.
- Optimization of dense non-aqueous phase liquid (DNAPL) removal. Several options have been reviewed already, including a pilot study on electrical resistance heating (ERH); however, further evaluation is needed.
- Evaluate existing data, collect additional data, if needed, and determine if arsenic should be included as a COC and evaluate the potential impact of arsenic on the treatment system.
- Continue the collection of monitored natural attenuation (MNA) parameters for data and trend analysis to determine if MNA can become a more integral part of the groundwater remedial action.

9.0 Recommendations and Follow-up Actions

Table 12: Recommendations and Follow-up Actions									
Issues	Recommendations/ Follow-up Actions	Party Responsible	Oversight Agency	Milestone Date	Affe Protecti (Y/	veness?			
					Current	Future			
Identify institutional controls.	Identify institutional controls and make necessary changes via ROD Amendment or ESD.	US EPA & State	US EPA & State	September 2007	N	Y			
Implement institutional controls.	Implement Institutional controls and review implementation in next five-year review	US EPA, State & cooperation of land owners	US EPA & State	September 25, 2008	Ν	Y			
Complete the delineation of the plume in the intermediate zone of the aquifer.	Install an additional monitoring well downgradient of MW-161	US EPA	US EPA & State	September 25, 2009	N	Y			
Determine if arsenic should be identified as a Site contaminant of concern as the Federal MCL was changed from 50 µg/l to 10 µg/l.	Evaluate existing arsenic data, collect additional data (if needed), determine if arsenic should be listed as a COG, and evaluate potential impact of arsenic on treatment system	US EPA	US EPA & State	September 25, 2008	Ν	Y			
Continue monitoring the groundwater to ensure the groundwater system is operating/functioning as designed and remedial goals are being achieved.	Continue optimization of the groundwater remediation system	US EPA	US EPA & State	September 25, 2011	Y	Y			
Evaluating components for possible MNA as a future remedy.	Continue to gather information on Monitored Natural Attenuation.	US EPA	US EPA & State	September 25, 2011	Y	Y			
Complete evaluation of implementing a more aggressive remediation technology to remove DNAPL	Complete final report on Pilot Study and present findings/conclusions to US EPA's management.	US EPA	US EPA & State	September 2008	Y	Y			

Table 12: Recommendations and Follow-up Actions

10.0 Protectiveness Statement

The remedy at the Site currently protects human health and the environment in the short-term because the main source of contamination was remediated through source removal. Currently, no human or ecological exposure pathways exist to contaminated groundwater or soil. As stated in the 1989 ROD and/or 2001 ROD Amendment, the goal of the Cape Fear remedial action is to reduce on-site levels of contamination as to allow for unlimited use and unrestricted exposure. However, as there is a dense non-aqueous phase liquid (DNAPL) present, this goal will not be achieved for a long time. Therefore, to insure long-term protection during this interim, the Agency has decided to implement institutional controls at the Site.

11.0 Next Review

The next Five-Year Review for the Cape Fear Wood Preserving Site is required to be completed within five years from the US EPA Region 4 Waste Management Division Director's (or his designee) signature/approval date of this document.

Five-Year Review Cape Fear Wood Preserving Fayetteville, Cumberland County, NC

ATTACHMENT 1 List of Documents Reviewed

List of Documents Reviewed Cape Fear Wood Preserving Site Five-Year Review

U.S. Environmental Protection Agency, Region IV. October 6, 1988. Final Remedial Investigation Report, Cape Fear Wood Preserving Site, Fayetteville, North Carolina.

U.S. Environmental Protection Agency, Region IV. June 30, 1989. Record Of Decision, Cape Fear Wood Preserving Site, Fayetteville, North Carolina.

U.S. Environmental Protection Agency, Region IV. September 24, 1991. Explanation of Significant Differences. Cape Fear Wood Preserving Site, Fayetteville, North Carolina.

U.S. Environmental Protection Agency, Region IV. August 27, 1995. Explanation of Significant Differences. Cape Fear Wood Preserving Site, Fayetteville, North Carolina.

Bechtel Environmental, Inc. September 1999. Remedial Action Completion Report for Soils. Cape Fear Wood Preserving Site, Fayetteville, North Carolina.

U.S. Environmental Protection Agency, Region IV. March 23, 2001. Record Of Decision Amendment, Cape Fear Wood Preserving Site, Fayetteville, North Carolina.

U.S. Environmental Protection Agency, Region IV. September 2001. Preliminary Close-Out Report, Cape Fear Wood Preserving Site, Fayetteville, North Carolina.

Black & Veatch Special Projects Corp. December 20, 2001. Baseline (Data Evaluation) Report (Prior to System Startup) for the Groundwater Remediation System. Cape Fear Wood Preserving Site, Fayetteville, North Carolina.

Black & Veatch Special Projects Corp. March 7, 2002. Remedial Action Report for Phase IV-Groundwater Extraction/Treatment System. Cape Fear Wood Preserving Site, Fayetteville, North Carolina.

Black & Veatch Special Projects Corp. August 2005. Operation and Maintenance Monthly Report, June 2005. Cape Fear Wood Preserving Site, Fayetteville, North Carolina.

Black & Veatch Special Projects Corp. July 2005. Operation and Maintenance Monthly Report, July 2005. Cape Fear Wood Preserving Site, Fayetteville, North Carolina.

Black & Veatch Special Projects Corp. February 2006. September 2005 Semi-Annual Report, April 1 through September 30, 2005, Groundwater Extraction and Treatment Facility. Cape Fear Wood Preserving Site, Fayetteville, North Carolina.

Black & Veatch Special Projects Corp. June 2006. March 2006 Semi-Annual Report, October 1, 2005 through March 31, 2006, Groundwater Extraction and Treatment Facility. Cape Fear Wood Preserving Site, Fayetteville, North Carolina.

Five-Year Review Cape Fear Wood Preserving Fayetteville, Cumberland County, NC

ATTACHMENT 2 Site Inspection Checklist

Site Inspection Checklist

۰.

.

I. SITE INFORMATION					
Site name: Cape Fear Wood Preserving	Date of inspection: May 22, 2006				
Location and Region: Fayetteville, NC/ US EPA Region 4	EPA ID: NCD 003188828				
Agency, office, or company leading the five-year review: NC DENR Superfund Section	Weather/temperature: Showers, 70 degrees				
Remedy Includes: (Check all that apply) □ Landfill cover/containment □ Monitored natural attenuation ⊠ Access controls ⊠ Groundwater containment □ Institutional controls □ Vertical barrier walls ⊠ Groundwater pump and treatment □ Surface water collection and treatment ⊠ Other – DNAPL Removal □					
Attachments: Inspection team roster attached	Site map attached - see Five Year Review Report				
II. INTERVIEWS	(Check all that apply)				
 D&M site manager Ed Hicks Name Interviewed □ at site □ at office ⊠ by phone Problems, suggestions; ⊠ Report attached 	Project Manager May 5, 2006 Title Date				
 O&M staff Beau Hodge/Proterra Name Interviewed ⊠ at site □ at office □ by phone Pho Problems, suggestions; ⊠ Report attached, see attached 					
	cencies (i.e., State and Tribal offices, emergency response h or environmental health, zoning office, recorder of ll in all that apply.				
Agency Cumberland County Planning Contact <u>Pam Spears</u> Name Problems; suggestions; 🗵 Report attached: Cit There have been no problems with the site.	Planning May 22, 2006 910-678-7600 Title Date Phone no. y recently annexed site and need to talk with them.				
4. Other interviews (optional)	d.				
	· · · · · · · · · · · · · · · · · · ·				

.

	III. ON-SITE DOCUMENTS & RECORDS VERIFIED (Check all that apply)							
1.	O&M Documents ☑ O&M manual ☑ As-built drawings ☑ Maintenance logs Remarks – Everything up to date with mair	 Readily available Readily available Readily available Readily available ntenance logs on computer 	☑ Up to date ☑ Up to date ☑ Up to date	□ N/A □ N/A □ N/A				
2.	Site-Specific Health and Safety Plan Contingency plan/emergency response Remarks - The Contingency Plan/Emergen Health and Safety Plan.		e 🗵 Up to date	□ N/A □ N/A site-specific				
3.	O&M and OSHA Training Records Remarks - All O&M and OSHA Records a	Readily available are maintained in central off	Up to date ice.	□ N/A				
4.	Permits and Service Agreements Air discharge permit Effluent discharge Waste disposal, POTW Other permits	□ Readily available □ Readily available □ Readily available □ Readily available	□ Up to date □ Up to date □ Up to date □ Up to date	□ N/A □ N/A ⊠ N/A □ N/A				
5.	Gas Generation Records	adily available 🛛 Up t	to date 🗵 N/A	4				
6.	Settlement Monument Records Remarks	□ Readily available	Up to date	X N/A				
7.	Groundwater Monitoring Records Remarks	🗵 Readily available	☑ Up to date	D N/A				
8.	Leachate Extraction Records Remarks	□ Readily available	Up to date	X N/A				
9.	Discharge Compliance Records □ Air ⊠ Water (effluent) Remarks – No discharge to City POTW	□ Readity available ⊠ Readily available	□ Up to date ⊠ Up to date	□ N/A □ N/A				
10.	Daily Access/Security Logs Remarks – No security logs. Site is fenced	□ Readily available d and the gate is locked.	Up to date	X N/A				
	IV.	O&M COSTS		·				
1.	□ PRP in-house □ Cor	ntractor for State ntractor for PRP ntractor for Federal Facility lack & Veatch who are contr						

.

.

2.	O&M Cost Records I Readily available I Up to date I Funding mechanism/agreement in place Original O&M cost estimate I Breakdown attached	
	Total annual cost by year for review period if available	
	From $6/1/05$ To $6/30/06$ $$130K$ \Box Breakdown attached	
	DateDateTotal costFrom6/1/04To6/1/05\$140K□DateDateTotal cost	
	From <u>6/1/03</u> To <u>6/1/04</u> <u>\$140K</u> Breakdown attached Date Date Total cost	
3.	Unanticipated or Unusually High O&M Costs During Review Period Describe costs and reasons: None to date for the everyday operations of the systems.	
	V. ACCESS AND INSTITUTIONAL CONTROLS Applicable IN/A	
A. Fen	ncing	
1.	Fencing damaged Image: Location shown on site map Image: Gates secured Image: N/A Remarks Image: Gates secured Image: Gates secured Image: Gates secured Image: Gates secured	
B. Oth	ner Access Restrictions	
1.	Signs and other security measures \boxtimes Location shown on site map \square N/A Remarks	
C. Inst	titutional Controls (ICs)	
۱.	Implementation and enforcement Site conditions imply ICs not properly implemented Site conditions imply ICs not being fully enforced Yes Yes No N/A	
	Type of monitoring (<i>e.g.</i> , self-reporting, drive by) Frequency - Responsible party/agency - Contact	
	Name Title Date Phone no).
	Reporting is up-to-dateImage: YesNoN/AReports are verified by the lead agencyImage: YesNoN/ASpecific requirements in deed or decision documents have been metImage: YesNoN/AViolations have been reportedImage: YesNoN/AOther problems or suggestions:Image: Report attachedImage: YesNo	
2.	Adequacy ICs are adequate ICs are inadequate I/A Remarks - Institutional Controls have not been placed on the Cape Fear Wood Preserving Site althor access controls (i.e., fencing around remediation systems is maintained).	ough

.

D.	General	
1.	Vandalism/trespassing Remarks – Someone sto	□ Location shown on site map
2.	Land use changes on s Remarks – None but po	ite I N/A ssible residential now that City has annexed the site.
3.	Land use changes off s Remarks - No	ite 🗵 N/A
	····	VI. GENERAL SITE CONDITIONS
А.	Roads	X N/A
١.	Roads damaged Remarks	□ Location shown on site map □ Roads adequate □ N/A
B.	Other Site Conditions	
	gallon drums a	s on site filled with material that needs to be disposed properly. Thirty empty 55- ilso on site. Plastic container and electrical box left by Electric Resistance Study contractor needs to be disposed properly.
	VII	. LANDFILL COVERS
A.	Landfill Surface	
1.	Settlement (Low spots) Areal extent Remarks	
2.	Cracks Lengths Remarks	Location shown on site map Gracking not evident Widths Depths
3.	Erosion Areal extent Remarks	Location shown on site map Erosion not evident Depth
4.	Holes Areal extent Remarks	Location shown on site map Holes not evident Depth
5.	Vegctative Cover □ Trees/Shrubs (indica Remarks	□ Grass □ Cover properly established □ No signs of stress te size and locations on a diagram)
6.	Alternative Cover (ar Remarks	mored rock, concrete, etc.) 🗆 N/A
7.	Bulges Areal extent	Location shown on site map Bulges not evident Height

	Remarks
8.	Wet Areas/Water Damage Wet areas/water damage not evident Location shown on site map Areal extent Ponding Location shown on site map Areal extent Soft subgrade Location shown on site map Areal extent Remarks Wet areas/water damage not evident Location shown on site map Areal extent
9.	Slope Instability
B.	Benches □ Applicable □ N/A (Horizontally constructed mounds of earth placed across a steep landfill side slope to interrupt the slope in order to slow down the velocity of surface runoff and intercept and convey the runoff to a lined channel.)
١.	Flows Bypass BenchI Location shown on site mapI N/A or okayRemarks
2.	Bench Breached
3.	Bench Overtopped □ Location shown on site map □ N/A or okay Remarks
C.	Letdown Channels Applicable N/A (Channel lined with erosion control mats, rip rap, grout bags, or gabions that descend down the steep side slope of the cover and will allow the runoff water collected by the benches to move off of the landfill cover without creating erosion gullies.)
1.	Settlement Image: Location shown on site map Image: No evidence of settlement Areal extent Depth No evidence of settlement Remarks Image: No evidence of settlement
2.	Material Degradation
3.	Erosion □ Location shown on site map □ No evidence of erosion Areal extent Depth No evidence of erosion Remarks Image: Constraint of the second sec
4.	Undercutting
5.	Obstructions Type Inclusion Inclusion blown on site map Areal extent Size Remarks
6.	Excessive Vegetative Growth Type

	 No evidence of excessive gr Vegetation in channels does Location shown on site map Remarks 	not obstruct flow	eal extent	_
D. C	over Penetrations D Applicabl	e □N/A		
1.	Gas Vents Properly secured/locked Evidence of leakage at pene N/A Remarks	Active	ive Routinely sampled Needs Maintenance	Good condition
2.	Gas Monitoring Probes Properly secured/locked Evidence of leakage at pene Remarks	☐ Functioning tration	 Routinely sampled Needs Maintenance 	□ Good condition □ N/A
3.	Monitoring Wells (within surf Properly secured/locked Evidence of leakage at pene Remarks	Functioning	 Routinely sampled Needs Maintenance 	□ Good condition □ N/A
4.	Leachate Extraction Wells Properly secured/locked Evidence of leakage at pene Remarks	☐ Functioning tration	 Routinely sampled Needs Maintenance 	□ Good condition □ N/A
5.	Settlement Monuments Remarks	Located	C Routinely surveyed	□ N/A
E. G	as Collection and Treatment 4	Applicable 🛛 N/A		
1.	5	Thermal destruction Needs Maintenance	Collection for reuse	
2.	Gas Collection Wells, Manife	olds and Piping Needs Maintenance		
3.	Gas Monitoring Facilities (e., □ Good condition □ N Remarks	g., gas monitoring of Needs Maintenance	adjacent homes or building	25)
F. C	over Drainage Layer		□ N/A	
1.	Outlet Pipes Inspected Remarks	□ Functioning	□ N/A	
2.	Outlet Rock Inspected Remarks	□ Functioning	□ N/A	

G.	Detention/Sedimentation Pond	ls 🛛 App	licable	🗆 N/A	
1.	Siltation Areal extent Siltation not evident Remarks		Depth	🗆 N/A	
2.	Erosion Areal ext Erosion not evident Remarks	lent	Depth		
3.	Outlet Works Remarks	□ Functioning	□ N/A		
4.	Dam Remarks	□ Functioning	□ N/A		
Н.	Retaining Walls	Applicable	□ N/A		
1.	Deformations Horizontal displacement Rotational displacement Remarks			Deformation not evident	
2.	Degradation Remarks	Location show	wn on site map	Degradation not evident	
Ι.	I. Perimeter Ditches/Off-Site Discharge				
1.	Siltation 🛛 Locat Areal extent Remarks		e map 🗆 Siltation	not evident	
2.	Vegetative Growth Uegetation does not imp Areal extent Remarks	pede flow	wn on site map	□ N/A	
3.	Erosion Areal extent Remarks	Location show Depth	wn on site map	Erosion not evident	
4.	Discharge Structure Remarks	□ Functioning	□ N/A		
	VIII. VERT	ICAL BARRIE	R WALLS	Applicable 🗵 N/A	
1.	Settlement Areal extent Remarks	Location sho Depth	wn on site map	Settlement not evident	
2.	Performance Monitoring			lence of breaching	

	Remarks
	IX. GROUNDWATER/SURFACE WATER REMEDIES 🖾 Applicable 🗆 N/A
A.	Groundwater Extraction Wells, Pumps, and Pipelines X Applicable IN/A
1.	Pumps, Wellhead Plumbing, and Electrical ☑ Good condition ☑ All required wells properly operating □ Needs Maintenance □ N/A Remarks
2.	Extraction System Pipelines, Valves, Valve Boxes, and Other Appurtenances Good condition INeeds Maintenance Remarks
3.	Spare Parts and Equipment ☑ Readily available ☑ Good condition □ Requires upgrade □ Needs to be provided Remarks
В.	Surface Water Collection Structures, Pumps, and Pipelines
1.	Collection Structures, Pumps, and Electrical Good condition INeeds Maintenance Remarks
2.	Surface Water Collection System Pipelines, Valves, Valve Boxes, and Other Appurtenances Good condition INeeds Maintenance Remarks
3.	Spare Parts and Equipment Readily available Good condition Requires upgrade Needs to be provided Remarks
C.	Treatment System X Applicable I N/A
1.	Treatment Train (Check components that apply) Metals removal Oil/water separation Air stripping Carbon adsorbers Filters - Bag Additive (e.g., chelation agent, flocculent) Others Sood condition Sampling ports properly marked and functional Sampling/maintenance log displayed and up to date Equipment properly identified Quantity of groundwater treated annually Quantity of surface water treated annually Remarks
2.	Electrical Enclosures and Panels (properly rated and functional) N/A Solution Needs Maintenance Remarks

,

3.	Tanks, Vaults, Storage Vessels N/A Image: Good condition Remarks
4.	Discharge Structure and Appurtenances
	Treatment Building(s) N/A Image: Good condition (esp. roof and doorways) Chemicals and equipment properly stored Remarks
6.	Monitoring Wells (pump and treatment remedy)Image: Secured/lockedImage: Secured stateImage: Secured/lockedImage: Secured stateImage: Secured state
D. N	Monitoring Data 🖾 Applicable 🗆 N/A
1.	Monitoring Data Is routinely submitted on time Is of acceptable quality
2.	Monitoring data suggests: Image: Section of the se
E. 1	Monitored Natural Attenuation
I.	Monitoring Wells (natural attenuation remedy) Properly secured/locked Functioning Routinely sampled Good condition All required wells located Nceds Maintenance N/A Remarks
	X. OTHER REMEDIES
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.
See	e text of Five Year Report
	XI. OVERALL OBSERVATIONS
A.	Implementation of the Remedy
	Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).
wit	e soil was remediated with on site thermal desorption. The groundwater is being contained h a pump and treat system and DNAPL removal using recovery wells. The groundwater tem appears to be containing the plume. There is a question if the plume in the

intermediate aquifer is defined. There are plans to put in another monitoring well downgradient of MW16i. Containment concentrations in the groundwater are declining. DNAPL is being removed. A pilot study using electric resistance heating was performed to speed up DNAPL removal. It is unclear if the results from the study warrant the extra cost to speed up DNAPL removal.

B. Adequacy of O&M

Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.

See text of Five Year Report

C. Early Indicators of Potential Remedy Problems

Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs, that suggest that the protectiveness of the remedy may be compromised in the future.

See text of Five Year Report

D. Opportunities for Optimization

Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.

A Remedial Site Evaluation was performed. All recommendations except one were implemented. The one recommendation not completed is to look at the intermediate aquifer for extent of contamination in the southwest part of the plume. The proposed well will be located off site and proper access agreement needs to be finalized. The subcontractor is looking for ways to lower maintenance for the groundwater pump and treat system. Including replacing pumps, updating software, replacing water and air lines.

5.0 RECOMMENDATIONS

5.1 Next Month

The following routine tasks will be conducted in May 2006:

- Evaluate performance of modifications and repairs completed during April 2006.
- Perform monthly system checks.
- Daily remote monitoring of the system.
- Change out bag filters as needed.
- Complete minor repairs to system to maintain run-time.
- Conduct monthly system sampling.
- Transport and dispose of 20 drums of DNAPL.

5.2 Future Activities

The following recommendations are proposed to enhance the operation and performance of the remedial system. Complete integration of the MPE wells will require reprogramming of the PLC to use the solenoid valves that controlled the groundwater pumps in RW-2 and RW-6 to control the MPE wells; this will take place during June 2006. While programming is being conducted, additional minor programming will be performed to address control logic concerns that have been raised in previous monthly reports.

Proterra recommends converting the remaining dual pump wells (RW-1 and RW-7) to single bottom loading pumps, simplifying the process and increasing flows of groundwater and DNAPL.

Proterra recommends changing the frequency of the system sample collection. Influent and mid-carbon samples will be collected every other month, and effluent samples will be collected semi-annually.

When Air Component Systems returns to the site during the June quarterly maintenance visit, change the hoses on AC#2. The hoses on AC#1 were changed in August 2005.

Purchase two replacement flow meters with similar capabilities to the replace the faulty flow meters at the IG outfall and the POTW outfall. Similar specifications will reduce the amount of

Five-Year Review Cape Fear Wood Preserving Fayetteville, Cumberland County, NC

ATTACHMENT 3 Community Notice

EPA ANNOUNCES A FIVE-YEAR REVIEW of the Cape Fear Wood Preserving Site in Fayetteville, North Carolina

The Environmental Protection Agency is conducting a Five-Year Review of the clean-up remedy implemented at the Cape Fear Wood Preserving Superfund Site. The Cape Fear Site is located in Cumberland County, North Carolina, on the western side of Fayetteville at 1219 South Reilly Road. The purpose of the Five-Year Review is to evaluate the implemented clean-up remedy and to ensure that this remedy is effective and continues to be protective of human health and the environment.

The Cape Fear Wood Preserving Company commenced operations in 1953 and continued until 1983. The 41-acre facility produced creosote-treated wood from 1953 until 1978 when demand for creosote-treated products declined. Wood was then treated using copper-chromium-arsenic. Both liquid and sludge wastes were generated by these two treatment processes. Waste from the creosote process was pumped into a concrete sump and as liquid separated from the sludge, it was pumped into a drainage ditch that discharged into a diked pond. Stormwater runoff from the treatment yard also drained into this ditch. Waste from the copper-chromium-arsenic treatment process was pumped into a unlined lagoon north of the drying kiln and allowed to percolate into the ground. The Site was finalized on the National Priorities List (NPL) in J u ly 1987.

The construction phase of the Remedial Action (clean-up) at the Site began in J u ly 1995 and was completed in August 2001. The Remedial Action included the following activities: general Site clean-up, the successful treatment of approximately 113,000 cubic yards of contaminated soils/sediments through a low-thermal desorption unit, and the installation of a groundwater extraction and treatment system. General Site clean-up activities and the soil remediation effort occurred between July 1995 and May 1999. Construction of the groundwater remediation phase started in April 2001 and was completed in August 2001 when the groundwater remediation system became operational. As of November 2005, the groundwater remediation system has removed and treated approximately 15.5 million gallons of groundwater and has removed approximately 960 pounds of dissolved organic contaminants and approximately 11,440 gallons of creosote (104,250 pounds).

EPA will announce the release of the Final Five-Year Review and will place a copy of the report in the information repository located at the Cumberland County Public Library & Information Center, 300 Maiden Lane, Fayetteville, North Carolina, for the public to review.

For further information on the Cape Fear Wood Preserving Superfund Site, please feel free to contact: Jon Bornholm, EPA Remedial Project Manager, or Angela Miller, EPA Community Involvement Coordinator (800) 435-9233 ext. 28820 or 28561

Five-Year Review Cape Fear Wood Preserving Fayetteville, Cumberland County, NC

ATTACHMENT 4 Complete Interviews

Cape Fear Wood Preserving Site Fayetteville, Cumberland County, NC EPAID: NCD003 188828 Superfund Five Year Review Report

Interview Questionnaire

Prepared by Jon Bornholm (5/3/06)

- 1. What is your overall impression of the project? (general sentiment) No particular response.
- 2. What effects have site operations had on the surrounding community? The first negative off-site impact was the contamination of a potable well across the street. A new potable well was drilled. During the Remedial Action, the owners of two adjacent properties were paid for 20 year easements. The Remedial Action brought money into the local economy and continues to do so during the long term operation and maintenance effort.
- 3. Are you aware of any community concerns regarding the site or its operation and administration? If so, please give details. The Agency has not heard of any community concerns. However, a recent Fayetteville newspaper article stated some residents in the South Gate community voiced some concern about the potential impact the Site has had on the quality of their drinking water. Other individuals, have questioned the Agency on the estimated timeframe to cleanup the groundwater.
- Have there been any complaints, violations, or other incidents related to the site requiring a response by your office? If so, please give details of the events and results of the responses.
 Since the Emergency responses in the early 1980's, none that I know of.
- 5. Do you feel well informed about the site's activities and progress? Yes
- Do you have any comments, suggestions, or recommendations regarding the site's management or operation?
 No
- What is the current status of construction (e.g., budget and schedule)? Remedial Action activities have been completed. Operation and maintenance (O&M) activities have been funded through FY 2007. Anticipate continuing O&M funding on a yearly basis.
- 8. Have any problems been encountered which required, or will require, changes to this remedial design or this ROD?
 A pilot scale treatability study on aggressively removing the dense non-aqueous phase liquid (DNAPL) was recently completed. The Agency is currently evaluating the results. Based on these results, the Agency may continue status quo (pump groundwater and DNAPL from existing wells) or may opt to implement a more aggressive system of removing the DNAPL front the subsurface.

Cape Fear Wood Preserving Site Fayetteville, Cumberland County, NC EPAID: NCD003 188828 Superfund Five Year Review Report

Inspection Questionnaire Page 2 of 3

- 9. Have any problems or difficulties been encountered which have impacted construction progress or implementability? The original selected soil clean-up technology, soil washing, did not achieve soil clean-up goals. The contingent soil clean-up remedy, low thermal desorption, was then implemented and was successful. The Agency treated over 113,000 cubic yards of contaminated soil.
- Do you have any comments, suggestions, or recommendations regarding the project (i.e., design, construction documents, constructability, management, regulatory agencies, etc.)?
 None
- 11. Is the remedy functioning as expected? How well is the remedy performing? For groundwater, the original remedy included three technologies which included groundwater/DNAPL, extraction and treatment with on-site discharge of the treated groundwater, air sparging, and injection to nutrients to promote in-situ bio-degradation on the contaminants. Based on the findings a. 2004 RSE, the air sparging and nutrient injection systems were shut down. Due to the extent of the DNAPL, the time-frame estimated in the Remedial Design to achieve the groundwater cleanup goals was underestimated. It will take significantly longer than eight years to achieve the groundwater cleanup goals.
- 12. What does the monitoring data show? Are there any trends that show contaminant levels are decreasing?Monitoring data indicates that the benzene plume periphery is decreasing and the PAH plume in the shallow aquifer has been contained and reduced in size,
- 13. Is there a continuous on-site O&M presence? If so, please describe staff and activities. If there is not a continuous on-site presence, describe staff and frequency of site inspections and activities.
 The groundwater extraction, treatment, and discharge systems were designed and built to

The groundwater extraction, treatment, and discharge systems were designed and built to he automated. However, the O&M contractor visits the Site approximately twice a week to deal with alarm conditions.

14. Have there been any significant changes in the O&M requirements, maintenance schedules, or sampling routines since start-up or in the last five years? If so, do they affect the protectiveness or effectiveness of the remedy? Please describe changes and impacts.

The changes in the O&M requirements, maintenance schedules, or sampling routines were either pre-determined in the Remedial Design or the result of the recommendation made in the 2004 Remediation System Evaluation (RSE).

Cape Fear Wood Preserving Site Fayetteville, Cumberland County, NC EPAID: NCD003 188828 Superfund Five Year Review Report

Inspection Questionnaire Page 3 of 3

- 15. Have there been unexpected O&M difficulties or costs at the site since start-up or in the last five years? If so, please give details. Yes, the destructiveness of the creosote being extracted was underestimated. Most of the piping throughout the ground water extraction and treatment systems that came into contact with the creosote has been changed to HDPE which is more resistant to chemical attack.
- 16. Have there been opportunities to optimize O&M, or sampling efforts? Please describe changes and resultant or desired cost savings or improved efficiency. Yes, changes documented in the 2004 RSE.
- 17. Do you have any comments, suggestions, or recommendations regarding the project? No

FIVE YEAR REVIEW - MAY 2006 Cape Fear Wood Preserving Site, Fayetteville, North Carolina Community Interviews

This interviewee stated that he did not have any comments or concerns about the site. He has requested a copy of the final report when it is released.

This interviewee had several comments/concerns:

- Infiltration gallery IG-02 located to the west of Reilly Road was built in a low area and was a total waste of taxpayers money because it does not pump much water,
- Three out of four air sparging not sure if they are even working,
- Some of the plume is on private land and he would like to see a report that determines the boundaries of the plume in order to see if the treatment system is working.
- Eight acres of this land is part of a 20 year easement and this interviewee is concerned that the property owner cannot do anything with the eight acres.
- The interviewee requests a copy of the final report when it is released.

This interviewee had several comments/concerns:

- Would like to see more communication with the public regarding the Site,
- It has been two to three years since the private wells were sampled and the interviewee has yet to receive any results from the sampling,
- When was the last time that the test wells were sampled? How often are the test wells sampled?

This interviewee's concern focused on when this property will be released by the government so that the property can be developed. The intent is to develop this property as residential.

Community interviews were conducted by: Angela R. Miller / Jon Bournholm U.S. Environmental Protection Agency Public Affairs Specialist / Remedial Project Manager