Executive Summary

The UCR Site is located in north central Washington, and extends from the U.S.–Canadian international border south and west to the Grand Coulee Dam, a distance of approximately 150 miles down river (see Figure 1–1 in Section 1). The UCR site includes short free-flowing reach of the Columbia River and Franklin D. Roosevelt Lake (Lake Roosevelt), a large reservoir maintained behind the Grand Coulee Dam. EPA prepared this screening assessment in response to public concern regarding the safety of recreating on beaches along the UCR, especially for those beaches which appear to be largely comprised of riverine deposits of slag (Majewski et al., 2003).

Previous investigations by federal and state agencies have identified the presence of contamination within the U.S. portion of the Upper Columbia River (UCR) and surrounding upland areas from the Grand Coulee Dam to the Canadian border (Bortelson et al., 1994; U.S. Environmental Protection Agency Region 10, 2003). Other studies evaluated contaminant source areas and effects north of the Canadian border (Godin & Hagen, 1992; Nener, 1992; Goodarzi, Sanei & Duncan, 2001; Goodarzi et al., 2002; McMartin et al., 2002). Contaminants found by those studies include heavy metals such as cadmium, copper, lead, mercury, and zinc.

In August 1999, the Colville Confederated Tribes petitioned EPA to conduct an assessment of the UCR (The Confederated Tribes of the Colville Reservation, 1999). The petition expressed health and ecological concerns from contamination in the river. Consequently, EPA completed a preliminary assessment and expanded site inspection, which indicated that further data collection and Remedial Investigation and Feasibility Studies (RI/FS) were needed (Ecology and Environment (E&E), 2000; Ecology and Environment (E&E), 2002; U.S. Environmental Protection Agency Region 10, 2003).

Because Franklin D. Roosevelt Lake (Lake Roosevelt) and Grand Coulee Dam are designated as National Recreation Areas, there is a concern that people may be exposed to unsafe levels of contaminants along the river during occasional beach visits. EPA prepared this recreational beach screening assessment in an effort to begin to address concerns expressed over the safety of recreating on beaches in the Upper Columbia River and Lake Roosevelt. This screening level risk assessment is based on beach sediment samples collected in April, 2005 as part of a larger sediment study. The sediment study also involved the collection of a large amount of submerged sediment samples to assess the nature and extent of contamination and to assess risks to the environment (U.S. Environmental Protection Agency Region 10, 2006).

Of the fifteen beaches examined, twelve are safe for recreational use, and the remaining three, northernmost locations (“Black Sand Beach”, Northport, and Dalles) will be re-evaluated using the recreational use scenario. If your exposure is limited to ingesting sediment while camping (with young children) along the shoreline for 14 days per year, returning for 30 years, then 12 of the beaches are safe and 3 of the beaches warrant additional study. These beaches present cancer risks on the order of 1 in a million.
Additional studies are planned to occur as part of the Human Health Risk Assessment to address residential, tribal, and other types of exposures and land use.

This screening level risk assessment entailed calculating a safe concentration for each metal of concern for comparison to the maximum level of each metal encountered at each of the 15 beaches. This safe concentration is a Preliminary Remedial Goal (PRG). The PRG was compared to the maximum level of each metal found on each of the 15 beaches. The maximum for arsenic was greater than the PRG at the following 3 of the 15 sites (listed from north to south):

- “Black Sand” Beach at river mile 742
- Northport City Boat Ramp at river mile 735 (this was the only location with a maximum lead concentration above the 400 mg/kg)
- Dalles Orchard at river mile 729

None of the other metals exceeded PRGs at the remaining 12 beaches along the Upper Columbia River or Lake Roosevelt.

Although 12 of the 15 beaches were below the recreational screening levels, these beaches along with the three northernmost locations will be evaluated for other types of uses, including residential or tribal uses. However, no significant health risk to recreational users is posed from exposures to sediment at the three locations with levels of arsenic or lead slightly above screening levels because the screening levels were selected to be very protective for recreational uses.

Although this assessment was developed to prioritize beaches based on limited recreational use, the results suggest that sediments along the beaches would also present minimal risks for residents who frequent the beaches on a daily basis.
Appendixes
A Results for the Seven Metals of Concern
B Summary of Complete Analytical Results
C Graphs of Metals of Concern Compared with PRGs
D Recreational PRG Calculation Worksheets
E Sample Location Maps

Tables
1-1 Values for Selected Contaminants of Concern on UCR Beaches 1-3
2-1 Summary of Beach Screening Results... 2-3
2-2 Reference Concentrations for Metals of Potential Concern 2-4
3-1 Exposure Parameter Definitions.. 3-4
3-2 Toxicity Criteria .. 3-6

Figures
1-1 Upper Columbia River and Lake Roosevelt Beach Area Sampling Sites 1-6
Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>adherence factor</td>
</tr>
<tr>
<td>COPC</td>
<td>chemical of potential concern</td>
</tr>
<tr>
<td>CSM</td>
<td>conceptual site model</td>
</tr>
<tr>
<td>CTE</td>
<td>central tendency estimate</td>
</tr>
<tr>
<td>Ecology</td>
<td>Washington State Department of Ecology</td>
</tr>
<tr>
<td>HHRA</td>
<td>human health risk assessment</td>
</tr>
<tr>
<td>HQ</td>
<td>hazard quotient</td>
</tr>
<tr>
<td>MTCA</td>
<td>Washington State Model Toxics Control Act</td>
</tr>
<tr>
<td>NOAEL</td>
<td>no-observed adverse effect level</td>
</tr>
<tr>
<td>PbB</td>
<td>blood lead levels</td>
</tr>
<tr>
<td>PRG</td>
<td>preliminary remediation goal</td>
</tr>
<tr>
<td>RBC</td>
<td>risk-based concentration</td>
</tr>
<tr>
<td>RI/FS</td>
<td>Remedial Investigation and Feasibility Studies</td>
</tr>
<tr>
<td>RfD</td>
<td>reference dose</td>
</tr>
<tr>
<td>RME</td>
<td>reasonable maximum exposure</td>
</tr>
<tr>
<td>SA</td>
<td>surface area</td>
</tr>
<tr>
<td>SF</td>
<td>slope factor</td>
</tr>
</tbody>
</table>
1.1 Background and Site Description

The Upper Columbia River (UCR) site is located in north central Washington, and extends from the U.S.–Canadian international border south and west to the Grand Coulee Dam, a distance of approximately 150 miles down river (Figure 1–1). The UCR site includes a short free–flowing reach of the Columbia River and Franklin D. Roosevelt Lake (Lake Roosevelt), a large reservoir maintained behind the Grand Coulee Dam. EPA prepared this screening assessment in response to public concern regarding the safety of recreating on beaches along the UCR, especially for those beaches which appear to be largely comprised of riverine deposits of slag (Majewski et al., 2003). Because the Upper Columbia River and Lake Roosevelt are a popular destination to camp, boat, swim, or otherwise recreate, there is a concern that people could potentially be exposed to metals in beach sediments along the river.

1.2 Purpose

This report documents a screening evaluation of contaminant concentrations in beach sediment along the banks of the Upper Columbia River and Lake Roosevelt from the Canadian border to the Grand Coulee Dam. Fifteen beaches along the Upper Columbia River and Lake Roosevelt were sampled as representative of popular recreational sites based on comments received from The Confederated Tribes of the Colville Reservation (CCT), the Spokane Tribe of Indians (STI), the National Parks Service, and the Washington Departments of Ecology and Health. The purpose of performing a screening level risk assessment is to provide a high degree of confidence that a health threat does not exist or, alternatively, to determine if further evaluation is warranted in the RI/FS.

1.3 Site Description

The Upper Columbia River (UCR) site is located in north central Washington, and extends from the U.S.–Canadian international border south and west to the Grand Coulee Dam, a distance of approximately 150 miles down river (see Figure 1–1). The UCR site includes a free–flowing reach of the Columbia River and Franklin D. Roosevelt Lake (Lake Roosevelt), a large reservoir maintained behind the Grand Coulee Dam. EPA prepared this screening risk assessment in response to public concern regarding the safety of recreating on beaches along the UCR, especially for those beaches which appear to be largely comprised of riverine deposits of slag (Majewski et al., 2003).
1.4 Methods

1.4.1 Field Sampling
Sediment samples were collected from the upper 15 cm at three elevations (1250, 1260, and 1280 feet above mean sea level) along the shoreline, and analyzed for metals, PCB arochlors, dioxins, furans, and pesticides. The sample elevations were selected to be exposed between 20 and 100 percent of the time during a typical water year. Samples were collected along beaches where exposure is expected from the surface to a depth 15 cm.

1.4.2 Selection of Contaminants for Screening
The following seven contaminants were selected because the maximum concentrations of at least one beach sample exceeded the residential Preliminary Remedial Goals (PRG) developed by Region 9 (Smucker, 2004) http://www.epa.gov/region09/waste/sfund/prg/index.html. Because the residential PRGs are based on exposures of 350 days per year for 30 years, they are protective for 14 days of intense recreation use per year. None of the other chemicals (e.g., PCB arochlors, dioxins, furans, and pesticides) exceeded the Region 9 Residential PRGs.

The following seven metals were selected for evaluation because the maximum levels exceeded the Region 9 PRG:

- Antimony
- Arsenic
- Copper
- Iron
- Lead
- Manganese
- Uranium

After comparison of maximum sample concentrations with recreational PRGs, exceedances were limited to arsenic and lead.

1.4.3 Screening Process
The screening level risk assessment entailed calculating a safe concentration for each metal of concern for comparison to the maximum level of each metal encountered at each of the 15 beaches (Table 1-1). This safe concentration is Preliminary Remedial Goal (PRG) (U.S. Environmental Protection Agency, 2005a). The PRGs were developed for screening purposes; they are not clean-up levels (U.S. Environmental Protection Agency, 2005a). Based on this comparison, sites were grouped into one of the following categories:

- Excluded from further consideration because they are unlikely to pose a threat to human health from recreational use, or
- Evaluated further in the RI/FS

Because young children are the most vulnerable, because of their high potential for sediment ingestion and their low body weight, PRGs developed to ensure protection of children are protective of older children and adults. PRGs developed for beach sediment...
TABLE 1-1
Values for Selected Contaminants of Concern on UCR Beaches (all values are expressed in mg/kg dry weight)
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Metal</th>
<th>Maximum (mg/kg dry wt)</th>
<th>Region 9 Residential PRG</th>
<th>Recreational PRG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>53</td>
<td>31</td>
<td>521</td>
</tr>
<tr>
<td>Arsenic</td>
<td>36</td>
<td>0.4</td>
<td>13*</td>
</tr>
<tr>
<td>Copper</td>
<td>3,290</td>
<td>3,129</td>
<td>52,143</td>
</tr>
<tr>
<td>Iron</td>
<td>254,000</td>
<td>23,463</td>
<td>782,143</td>
</tr>
<tr>
<td>Lead</td>
<td>535</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Manganese</td>
<td>4,780</td>
<td>1,762</td>
<td>60,833</td>
</tr>
<tr>
<td>Uranium</td>
<td>84</td>
<td>16</td>
<td>261</td>
</tr>
</tbody>
</table>

*13 mg/kg is the risk-based PRG for arsenic, but this value was increased to account for naturally occurring arsenic at approximately 3 mg/kg for an adjusted PRG of 16 mg/kg (associated with an incremental risk of 10–6 see discussion on background levels).

assume children will be exposed to beach sand sediment through ingestion and dermal contact and will ingest more sediment (i.e., eat more dirt) while playing at the beach than they would in their home setting on a per day basis because of greater access to uncovered sand or sediment and more limited access to washrooms compared with a home or school. Consistent with EPA dermal exposure guidance, the dermal pathway was evaluated for arsenic only because absorption factors are not currently available for other metals (U.S. Environmental Protection Agency, 2004b). Children were assumed to visit the beaches for up to 14 days per year. For arsenic, the only carcinogen evaluated, the 14-day exposure was repeated annually for 30 consecutive years. For children, the PRG was based on a high rate of sediment ingestion equal to 300 mg/day based on the 90th percentile from a soil ingestion study of children camping (van Wijnen, Clausing & Brunekreef, 1990). The adult sediment ingestion rate was 100 mg/day, equivalent to a full-time residential rate (U.S. Environmental Protection Agency, 1991a).

1.4.4 Preliminary Remediation Goal for Lead
PRGs are developed differently for lead than for the other metals. EPA uses a mathematical model to estimate blood lead levels in children up to 84 months of age (U.S. Environmental Protection Agency, 2005b). The model was used to calculate the national residential soil lead screening level of 400 mg/kg. This level associated with 5% risk of attaining an elevated blood lead level of 10 μg/dL (U.S. Environmental Protection Agency, 1998b). Currently, 10 μg/dL is recognized as an elevated blood level for children by EPA and the Centers for Disease Control and Prevention (Centers for Disease Control and Prevention, 1991; U.S. Environmental Protection Agency, 1998b). The 400 mg/kg national screening level was selected as a protective recreational PRG for this screening assessment. Alternative scenarios or assumptions may be used to assess risks for other types of activities in the forthcoming RI/FS.
1.4.5 Preliminary Remediation Goal for Metals Other Than Lead

PRGs were calculated using standard EPA risk equations and solving for concentration (U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response, 1996b). Target risk goals and equations differ for carcinogenic or non-carcinogenic effects. PRGs are calculated by defining a target cancer risk or hazard goals, a set of exposure assumptions, and then solving sediment concentration. Arsenic was the only carcinogen evaluated. The arsenic PRG is based on the low end of EPA’s acceptable cancer range, which is an increased cancer risk of one in a million (10^-6). This level was adjusted to account for local levels of naturally occurring arsenic at approximately 3 mg/kg. Based solely on cancer risk, PRG would be 13 mg/kg, but the average background level is 3 mg/kg, these levels were added to realize an adjusted PRG of 16 mg/kg. A PRG based on non-cancer arsenic effects would be substantially higher at 540 mg/kg. The target risk goal for non–carcinogenic hazards is a hazard quotient (HQ) of 1. An HQ of 1 is the point at which the estimated dose equals the protective dose or Reference Dose (RfD).

1.4.6 Beach Recreation

Typical recreational uses on the beach areas are:

- Dry beach play – playing and digging in the sand,
- Shallow water play – wading, splashing, or swimming
- Camping, picnicking, or cooking
- Boat launching and retrieval

These recreational activities may include intensive contact with sediments, especially when individuals are moving in and out of the water and in contact with beach sand. Of particular interest is a young child playing on the sand, where wet materials are more likely to adhere to skin, and a large proportion of skin is exposed (Finley & Scott, 1996; Kissel, Richter & Fenske, 1996). Under these conditions, adhered materials are available for hand–to–mouth ingestion and, to a lesser extent, for dermal absorption.

1.4.7 Limitations of this Assessment

The focus of this screening level risk assessment is the sediment ingestion pathway by children; however, examples of other receptors and exposure pathways that will be part of the forthcoming RI/FS work include-exposures that occur during fishing, hunting, or gathering of other food items from the Upper Columbia River and Lake Roosevelt. This assessment does not address risks associated with wind blown sediment. Dust storms are currently being investigated by the U.S. Geological Survey, but results are not yet available (Majewski et al., 2003). These exposures will be addressed in the forthcoming baseline risk assessment.

Mercury is the primary concern from fish consumption. EPA is currently analyzing fish tissue for an extensive array of potential contaminants, but the fish consumption pathway is not included in this screening assessment. This pathway will be investigated in the near future by both the Washington Department of Health and EPA.

It is also possible that park maintenance workers could be exposed to contaminants in sediment during the course of their work activities. Because the screening levels are
protective of children during beach play, the screening concentrations are likely protective of adult maintenance workers at the depths sampled. However, it is possible that contamination may be present below samples depth used in this assessment which could expose excavation workers.

The focus of this expedited risk assessment is the development of screening levels for beach sediment that will protect all visitors recreating along the Upper Columbia River and Lake Roosevelt. Recreational exposure was evaluated based on children ingesting sediment and getting sediment on their skin (dermal contact). Children were selected as the most sensitive population based on their potentially higher ingestion of sediment and lower body weight.

This report was prepared in accord with EPA’s current risk assessment guidelines (U.S. Environmental Protection Agency Office of Solid Waste And Emergency Response, 1989; U.S. Environmental Protection Agency, 1991c; U.S. Environmental Protection Agency, 2000; U.S. Environmental Protection Agency, 2002b; U.S. Environmental Protection Agency Office of Emergency and Remedial Response, 2002; U.S. Environmental Protection Agency, 2004a; U.S. Environmental Protection Agency, 2004b; U.S. Environmental Protection Agency, 2006). The evaluation follows the best available science and professional judgment to reflect site-specific conditions that are not specifically addressed in appropriate regulatory guidance.

The accuracy of this report depends in part on the quality and representativeness of the available sampling, exposure, and toxicological data. Where information is incomplete, health-protective assumptions were made so that public health risks were not underestimated. Section 4 presents a discussion of uncertainties in the risk assessment resulting from data limitations.
FIGURE 1-1
Upper Columbia River and Lake Roosevelt Beach Area Sampling Sites
SECTION 2

Data Evaluation

This section provides a summary of the sampling and analysis completed to support this screening assessment. Samples were collected from sediment (i.e., beach sand) on the portions of the beach used by people for recreation. Ortho photographs showing the sample locations are presented in Appendix B. Sections below describe the numbers and types of samples collected at each beach and present analytical results. Also described are the chemicals of potential concern (COPCs) and the background concentrations of metals in sediment for the Upper Columbia River and Lake Roosevelt.

Data were gathered for this screening level analysis as described in the Sediment Sampling Approach and Rationale report prepared by CH2MHiLL (U.S. Environmental Protection Agency Region 10, 2006). Overall objectives for the Phase I sediment sampling include the following:

- Evaluate human health risks from recreational exposure at 15 high-use locations dispersed along the Upper Columbia River and Lake Roosevelt
- Define nature and extent of sediment contamination
- Describe longitudinal and transverse spatial trends of sediment contamination
- Collect concentration depth data from sediment cores
- Describe temporal trends by comparing data collected in 2005 with prior sediment data

After screening maximum beach samples against Region 9 Residential PRGs, the following chemicals of potential concern were identified. Maximum beach sample concentrations were then screened against recreational PRGs for these metals, with the exception of lead – where a residential PRG was used as the recreational PRG. See Appendix A for results of the COPC screening.

- Antimony
- Arsenic
- Copper
- Iron
- Lead
- Manganese
- Uranium

2.1 Sampling Investigations

For this recreational screening risk assessment, samples were collected from beach sediment at 15 locations along the Upper Columbia River and Lake Roosevelt based on input from the Confederated Tribes of the Colville Reservation, the Spokane Tribe of Indians, Washington State, and the National Parks Service. Beach locations were distributed along the entire
length of the site. Additionally, within each location, samples were located based on local knowledge (gleaned during discussions with staff from the Tribes and National Parks Service) of high use areas based on proximity to swim beaches, campgrounds, play equipment, boat ramps, and other amenities.

2.2 Sediment Sampling

Appendix A summarizes the results of COPCS at each location. The objective of the sampling was to produce sufficient data for screening against PRGs. Surface samples were collected from the upper 10-15 cm at three locations and three elevations for a total of 9 sub-samples. These sub-samples were combined at each of the three elevations to yield three composite samples at 12 locations. The 9 sub-samples collected at the Northport, Kettle Falls, and Columbia Campground beaches were not combined. At these beaches, all 9 samples were analyzed separately to measure variability between sub-samples. Ratios of the maximum to mean concentrations were relatively small, (i.e., generally less than 2x for the composites and less than 3x for the discreet samples).

2.3 Sediment Laboratory Analyses

The laboratory had problems with the analyses for antimony and uranium. In the case of antimony, the many results were rejected due to low matrix spike recoveries (i.e., recovery below 30 percent) that indicated low bias in the measurement. This was not caused by laboratory or field error, but is intrinsic to the nature of the sediments collected. Despite uncertainties in the antimony results, the highest value encountered was one tenth of the PRG and it is unlikely that antimony poses a risk to people on the beaches. More than 75% of the uranium analyses were below the detection limit which varied between 5 and 129 mg/kg depending on the lab result and the moisture content of the sediment. However, even the maximum non-detect value was below the PRG of 261 mg/kg.

2.4 Results

After a comparison of the full suite of chemicals, including pesticides, organic compounds, PCBs, dioxins, furans, and metals, seven metals had maximum concentrations which exceeded residential land use soil screening values (Smucker, 2004). Recreational PRGs were developed to screen beaches based on 14 days of use per year instead of 350 days of use per year for residential land use PRGs. For children, the PRG was based on a high rate of sediment ingestion equal to 300 mg/day based on the 90th percentile from a soil ingestion study of children camping (van Wijnen, Clausing & Brunekreef, 1990). The adult sediment ingestion rate was 100 mg/day, equivalent to a full-time residential rate (U.S. Environmental Protection Agency, 1991a). When compared with recreational PRGs, three of the fifteen locations had concentrations above the arsenic PRG and one sample exceeded the lead PRG (Table 2-1). Levels for these metals exceeded the residential PRGs by a small margin. The maximum concentration for arsenic was greater than the PRG at the following 3 of the 15 sites (listed from north to south):
Table 2-1
Summary of Beach Screening Results
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Beach (listed from North to South)</th>
<th>Bank – River Mile</th>
<th>Exceeds PRG</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Black Sand” Beach</td>
<td>East – 742</td>
<td>Arsenic</td>
</tr>
<tr>
<td>Northport Boat Ramp</td>
<td>East – 735</td>
<td>Arsenic</td>
</tr>
<tr>
<td>Dalles Orchard</td>
<td>East – 729</td>
<td>Arsenic</td>
</tr>
<tr>
<td>North Gorge Campground</td>
<td>East – 718</td>
<td>Pass</td>
</tr>
<tr>
<td>Marcus Island Campground</td>
<td>East – 708</td>
<td>Pass</td>
</tr>
<tr>
<td>Kettle Falls Swim Beach</td>
<td>East – 700</td>
<td>Pass</td>
</tr>
<tr>
<td>Haag Cove</td>
<td>West – 697</td>
<td>Pass</td>
</tr>
<tr>
<td>French Rocks Boat Ramp</td>
<td>West – 690</td>
<td>Pass</td>
</tr>
<tr>
<td>North Gifford</td>
<td>East – 675</td>
<td>Pass</td>
</tr>
<tr>
<td>AA Campground</td>
<td>East – 673</td>
<td>Pass</td>
</tr>
<tr>
<td>Roger’s Bar</td>
<td>West – 658</td>
<td>Pass</td>
</tr>
<tr>
<td>Columbia Campground</td>
<td>East – 642</td>
<td>Pass</td>
</tr>
<tr>
<td>Lincoln Mills Boat Ramp</td>
<td>East – 633</td>
<td>Pass</td>
</tr>
<tr>
<td>Keller Ferry No. 2</td>
<td>East – 615</td>
<td>Pass</td>
</tr>
<tr>
<td>Spring Canyon Campground</td>
<td>East – 600</td>
<td>Pass</td>
</tr>
</tbody>
</table>

- “Black Sand” Beach at river mile 742
- Northport City Boat Ramp at river mile 735 (this was the only location with a maximum lead concentration above the 400 mg/kg)
- Dalles Orchard at river mile 729

None of the other chemicals (e.g., PCB arochlorls, dioxins, furans, and pesticides) exceeded recreational PRGs. Although this screening risk assessment was based on recreational use of the beaches, because the arsenic recreational PRG was based on a 1 in a million cancer risk and the lead recreational PRG was equal to the residential PRG, risks from sediment exposure would still be modest, even under a full-time residential land-use scenario.

2.5 Sediment Background Concentrations

Background concentrations for the seven metals of concern are presented in Table 2-2. These background concentrations are based on results from sediment reference samples collected in 2005 by EPA, the U.S. Geological Survey in 1995 and 1990, and Ecology’s Natural Background Soil Metals Concentrations in Washington State (Washington State Department of Ecology, 1994; Majewski et al., 2003).
TABLE 2-2
Reference Concentrations for Metals of Potential Concern
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Metal</th>
<th>Reference Concentration Range (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>0.1 – 1.4</td>
</tr>
<tr>
<td>Arsenic</td>
<td>1 – 10</td>
</tr>
<tr>
<td>Copper</td>
<td>10 – 25</td>
</tr>
<tr>
<td>Iron</td>
<td>5,100 – 34,000</td>
</tr>
<tr>
<td>Lead</td>
<td>8 – 47</td>
</tr>
<tr>
<td>Manganese</td>
<td>129 – 1,000</td>
</tr>
<tr>
<td>Uranium</td>
<td>0.5</td>
</tr>
</tbody>
</table>
The purpose of establishing a PRG is to provide a point of comparison below which there is a high degree of confidence that a health threat does not exist. Alternatively, a health threat may not exist at beaches where metals occur above the PRG. To develop a PRG, the amount of exposure to a given chemical must be defined, an estimate of the toxicity of each chemical must be available, and target cancer risk and other health hazard goals must be established. Each of these three categories: exposure, toxicity, and target risk, are included in equations to calculate the PRG. Although true for all metals examined, the lead PRG was based on a the national soil PRG for lead, which is based on limiting lead exposure, based on a modeled 5% target risk of attaining a blood level of 10 μg/dL for a child aged 6-84 months (U.S. Environmental Protection Agency, 1998b). Toxicity data was based on EPA sources, primarily the online Integrated Risk Information System (IRIS) http://www.epa.gov/iris/ (Cook, 2003).

3.1 Exposure Assessment

In a screening risk assessment, exposure is defined conditionally to calculate the PRGs. A screening assessment is an “If - Then” statement created to prioritize areas based on a clearly defined exposure scenario. For this assessment, the statement is:

If your exposure is limited to ingesting sediment while camping (with young children) along the shoreline for 14 days per year, returning for 30 years, then 12 of the beaches are safe and 3 of the beaches warrant additional study. These 3 beaches present cancer risks on the order of 1 in a million.

EPA defined the target population as young children because they are the most sensitive to potential risks from ingesting beach sediment. Young children typically ingest more sediment than older children, or adults, because they are often on the ground, have greater hand-to-mouth contact, and ingest more material normalized to their lighter body weight (Simon, 1998). In addition to their greater potential for exposure, children are more sensitive to lead because their brains are still developing (National Academy of Sciences, 1993). Recent research suggests that early life exposures may contribute to the onset of diseases in later life (Barker, 2004; Smith et al., 2006).

Exposure was defined as a 14-day camping scenario with young children and associated high rates of sediment ingestion and dermal exposure, reoccurring over 30 years. The 14-day exposure frequency was based on National Park Service limits to camping. Repeating exposure over 30 years makes for a more protective PRG for arsenic, the only carcinogen evaluated, but does not effect the PRGs for other metals.

3.1.1 Ingestion of Soil

Incidental ingestion of soil is believed to be the primary route of exposure for metals in outdoor settings (Duggan & Inskip, 1985; Duggan et al., 1985). Young children are more
likely to ingest soil during outdoor play than adults because of their more frequent hand-to-mouth actions and tendency to play in sand (U.S. Environmental Protection Agency, 1997a; U.S. Environmental Protection Agency, 2002a). Although adults also ingest soil, they typically ingest less soil than children (Stanek et al., 1997). Because adults ingest less soil than children, PRGs protective of children will protect adults.

The best estimates of soil ingestion rates in children are from mass balance tracer studies which estimate soil ingestion based on elements found in soil and feces, and even these studies reflect a high degree of uncertainty (previous studies have been published without any measurements at all) (Hawley, 1985). Ideally, soil tracers have a low content in the diet and low gastrointestinal absorption. Tracer studies measure all sources of tracers that were ingested, including outdoor soil, indoor house dust, airborne dust that is trapped in the upper respiratory tract and swallowed, food, medicines, vitamins, paint chips, baby powder, and toothpaste. The most reliable studies have attempted to correct for the contribution of tracers from the diet and from medicines (U.S. Environmental Protection Agency, 1997a).

For residential exposure scenarios, EPA has recommended a Reasonable Maximum Exposure soil (i.e., the highest value that is reasonably expected to occur within a population) ingestion rates of 200 mg/day for young children (ages 1 through 6) and 100 mg/day for older groups (U.S. Environmental Protection Agency, 1991a). These values are protective estimates of average values for soil and dust ingestion over a chronic period of exposure based on EPA’s subsequent review of soil ingestion studies (U.S. Environmental Protection Agency, 1997a).

For exposures at the beach, children are assumed to potentially ingest greater amounts of soil/sediment than they would at home; consequently, the soil/sediment ingestion rate selected for the PRG calculations is 300 mg/day, rather than 200 mg/day. EPA selected this value because EPA believes it is based on the most relevant soil ingestion study for a camping scenario. The value is the 90th percentile from a study of 78 children camping adjacent to a lake (van Wijnen, Clausing & Brunekreef, 1990).

3.1.2 Dermal Contact With Soil

Dermal contact with soil is a complete pathway and was included in the PRG calculations concurrent with soil ingestion. However, a dermal absorption factor is available to quantify the dermal pathway for arsenic only (U.S. Environmental Protection Agency, 2004b).

EPA recommends the use of oral toxicity criteria for the dermal pathway, with a conversion factor to convert the orally administered toxicity criteria to an internally absorbed dose, and an absorption factor for the amount of chemicals which cross the skin and enter the bloodstream (U.S. Environmental Protection Agency, 2004b). The importance of dermal exposures relative to ingestion exposures for soil depends on the chemical–specific absorption fraction and relative bioavailability factors associated with the dermal and ingestion routes. In this assessment, dermal absorption of arsenic is insignificant relative to ingestion (Lorenzana et al., 1996).
3.1.3 Gastrointestinal Absorption
The dose calculated by the exposure assessment is an “administered” dose unless it is adjusted to account for systemic absorption into the bloodstream (“absorbed” dose). Absorption should be adjusted if the form of the chemical for the exposed population differs from the form of the chemical used to develop the toxicity criteria. In this assessment, EPA adjusted the arsenic absorption by a factor of 0.6 to account for reduced absorption of arsenic in sediment relative to arsenic in drinking water because the toxicity criteria for arsenic are based on drinking water exposures (U.S. Environmental Protection Agency Office of Solid Waste And Emergency Response, 1989; U.S. Environmental Protection Agency, 1998a).

3.1.4 Dermal Absorption
Because arsenic is the only metal with an available dermal absorbed fraction, dermal exposure calculations were limited exclusively to arsenic (U.S. Environmental Protection Agency, 2004b). The dermal absorption factor for arsenic is 3% (U.S. Environmental Protection Agency, 2004b).

3.1.5 Intake Calculations
For each exposure pathway and age group, the following equation calculates unit exposure, as dose per mg/kg of chemical in soil per day based on the exposure assumptions (see Table 3-1 below and Appendix D for detailed calculations).

Non–carcinogens
Soil Ingestion:

\[
Summary \ Intake \ Factor \ (SIF) = CF \times IRS_c \times EF_c \times ED_c/(BW_c \times AT_n)
\]

Dermal Soil Contact:

\[
SIF = CF \times SA_c \times EF_c \times ED_c \times AF_c/(BW_c \times AT_n)
\]

Carcinogens
Exposure is calculated differently for assessing carcinogenic risks than non–carcinogenic hazards. The averaging time for non–carcinogenic effects is the same as the exposure period (i.e., 6 years for children), whereas for carcinogenic effects the averaging time is equivalent to a lifetime, or 70 years (U.S. Environmental Protection Agency Office of Solid Waste And Emergency Response, 1989).

For evaluation of carcinogenic exposure, pathways with different exposures for two age groups (e.g., child soil ingestion and dermal contact), the total dose is calculated by:

1. Weighting the intake of each age group (e.g., 1- to 6-year-olds) by the length of time spent in that age group (e.g., 6 years)
2. Summing the time–weighted doses from all age groups

3. Dividing by the averaging time, as follows:

Soil Ingestion:

\[
SIF_{\text{soil}} = CF \times EF_c \times \left(ED_c \times IRS_c / BW_c \right) + \left(ED_a \times IRS_a / BW_a \right) / AT_c
\]

Dermal Soil Contact:

\[
SIF_{\text{dermal}} = CF \times EF_c \times \left(ED_c \times SA_c \times AF_c / BW_c \right) + \left(ED_a \times SA_a \times AF_a / BW_a \right) / AT_c
\]

The dose for each pathway of exposure (ingestion of soil, dermal contact) is combined with the toxicity criteria and target health goals to estimate PRGs. Appendix D contains the spreadsheets with calculation details and a presentation of each formula used.

3.2 Toxicity Criteria

This section summarizes toxicity criteria used to calculate PRGs. A fundamental principle of toxicology is that the dose determines whether a chemical is toxic. For example, very high doses of iron or manganese are toxic, but both metals are essential nutrients at lower doses. Accordingly, the toxicity criteria describe the quantitative relationship between a chemical’s dose and magnitude of toxic effect. The criteria are described below; toxicity

TABLE 3-1

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Name</th>
<th>Value and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>Sediment Conversion Factor</td>
<td>(10^6) mg per kg</td>
</tr>
<tr>
<td>IRS<sub>c</sub></td>
<td>Sediment Ingestion Rate – Child</td>
<td>300 mg per day</td>
</tr>
<tr>
<td>IRS<sub>a</sub></td>
<td>Sediment Ingestion Rate – Adult</td>
<td>100 mg per day</td>
</tr>
<tr>
<td>EF</td>
<td>Exposure Frequency</td>
<td>14 days per year</td>
</tr>
<tr>
<td>ED<sub>c</sub></td>
<td>Exposure Duration – Child</td>
<td>6 years</td>
</tr>
<tr>
<td>ED<sub>a</sub></td>
<td>Exposure Duration – Adult</td>
<td>24 years</td>
</tr>
<tr>
<td>AF<sub>c</sub></td>
<td>Adherence Factor – Child</td>
<td>0.2 mg/cm²</td>
</tr>
<tr>
<td>AF<sub>a</sub></td>
<td>Adherence Factor – Adult</td>
<td>0.07 mg/cm²</td>
</tr>
<tr>
<td>SA<sub>c</sub></td>
<td>Exposed Surface Area – Child</td>
<td>6,600 cm²</td>
</tr>
<tr>
<td>SA<sub>a</sub></td>
<td>Exposed Surface Area – Adult</td>
<td>15,000 cm²</td>
</tr>
<tr>
<td>BW<sub>c</sub></td>
<td>Body Weight – Child</td>
<td>15 kg</td>
</tr>
<tr>
<td>BW<sub>a</sub></td>
<td>Body Weight – Adult</td>
<td>70 kg</td>
</tr>
<tr>
<td>AT<sub>c</sub></td>
<td>Averaging Time – Carcinogens</td>
<td>25,500 days</td>
</tr>
<tr>
<td>AT<sub>nc</sub></td>
<td>Averaging Time – Non-Carcinogens</td>
<td>2,190 days</td>
</tr>
</tbody>
</table>
criteria used in this assessment are summarized in Table 3-2. It is noteworthy that for arsenic and lead, the only two metals which exceeded the PRG, the toxicity criteria are based on extensive studies of human populations exposed to these metals (National Academy of Sciences, 1993; National Academy of Sciences, 1999; National Academy of Sciences, 2001).

3.2.1 Oral Toxicity Parameters

Key dose–response parameters are EPA slope factors for assessing cancer risks, and EPA-verified reference dose (RfD) values for evaluating non–carcinogenic effects (Table 3-2). Most of these criteria are from the EPA’s online data base Integrated Risk Information System (IRIS) http://www.epa.gov/iris/, but other sources of toxicity parameters are available from the Risk Assessment Information System http://risk.lsd.ornl.gov/tox/tox_values.shtml.

Carcinogenic Effects of Arsenic

The cancer slope factor (SF) expressed as the inverse of dose units of mg/kg–day relates an increase in cancer risk as a function of dose. The dose response assumes that there is no threshold. In other words, any exposure to arsenic greater than zero is associated with a proportional increase in cancer risk, such that no dose is without some risk of cancer.

Arsenic’s SF, the only carcinogen in this assessment, is based on human epidemiological studies and real environmental exposures. In Taiwan, a correlation has been made between high arsenic concentrations in drinking water and the increased incidence of skin cancer in humans (Tseng, 1977; Tseng, 1989). Therefore, EPA has classified arsenic as a proven human carcinogen (U.S. Environmental Protection Agency, 2003). Currently, the SF for arsenic is under review to incorporate findings from more recent studies including drinking water reviews (National Academy of Sciences, 1999; National Academy of Sciences, 2001). There are no cancer toxicity criteria for the other metals of concern, because there is no evidence to suggest that they are carcinogenic.

Non–carcinogenic Effects

The chronic RfD (expressed in units of mg/kg–day) is an estimated daily chemical intake rate for the human population, including sensitive subgroups, that appears to be without appreciable risk of non–carcinogenic effects if ingested over a lifetime. Because chronic criteria are based on lifetime average body weight and intake assumptions, they are likely to be protective when compared to child’s exposure, with their lower body weight and greater sediment ingestion rate.

RfD values are derived from experimental data on a no–observed–adverse–effect level (NOAEL) or lowest–observed–adverse–effect level (LOAEL) in animals or humans. A NOAEL is the highest tested chemical dose given to animals or humans that has not been associated with any adverse health effects. A LOAEL is the lowest chemical dose at which health effects have been reported. RfDs are calculated by dividing a NOAEL or LOAEL by a total uncertainty factor, which represents a combination of individual factors for various sources of uncertainty in the data base for a particular chemical or in extrapolating animal data to humans. RfDs and associated uncertainty factors are summarized in Table 3-2 for each chemical. IRIS also assigns a level of confidence in the RfD. The level of confidence is
rated as either high, medium, or low based on the confidence in the critical study and underlying data.

TABLE 3-2
Toxicity Criteria
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Cancer SF (mg/kg–day)</th>
<th>Noncancer: RfD (mg/kg–day)</th>
<th>Health Endpoint</th>
<th>Uncertainty Factor Confidence in RfD</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td>None</td>
<td>0.0004</td>
<td>Reduced lifespan, altered glucose and cholesterol</td>
<td>1,000 Low confidence</td>
<td>(U.S. Environmental Protection Agency, 1991b)</td>
</tr>
<tr>
<td>Arsenic</td>
<td>1.5</td>
<td>0.0003</td>
<td>Skin cancer (SF), hyper pigmentation and hyperkeratosis of the skin (RfD)</td>
<td>3 Medium confidence</td>
<td>(U.S. Environmental Protection Agency, 1998a)</td>
</tr>
<tr>
<td>Copper</td>
<td>None</td>
<td>0.04</td>
<td>Renal, proteinuria</td>
<td>10 High confidence</td>
<td>(U.S. Environmental Protection Agency, 1997b)</td>
</tr>
<tr>
<td>Iron</td>
<td>None</td>
<td>0.6</td>
<td>Hematological effects</td>
<td>1 High</td>
<td>(Institute of Medicine, 2001; Stifelman et al., 2005)</td>
</tr>
<tr>
<td>Lead</td>
<td>None</td>
<td>10 μg/dL in blood</td>
<td>CNS IQ and cognitive function</td>
<td>High</td>
<td>(Centers for Disease Control and Prevention, 1991; U.S. Environmental Protection Agency, 1998b)</td>
</tr>
<tr>
<td>Manganese</td>
<td>None</td>
<td>0.047*</td>
<td>CNS Motor Effects</td>
<td>1 Medium confidence</td>
<td>(U.S. Environmental Protection Agency, 1996)</td>
</tr>
<tr>
<td>Uranium</td>
<td>None</td>
<td>0.0002</td>
<td>Renal damage</td>
<td>1,000 Low confidence</td>
<td>(U.S. EPA National Center for Exposure Assessment, 2001)</td>
</tr>
</tbody>
</table>

Notes:
Rfd – Reference Dose
SF – Slope Factor

*Mn RfD is 0.14 with a MF of 3 for non-dietary assessments (0.14/3 = .047) based on (U.S. Environmental Protection Agency, 1996)

3.2.2 Essential Nutrients

Of the seven chemicals of concern, three are essential nutrients: iron, copper, and manganese. RfDs for essential elements are developed to be protective against deficiency as well as toxicity. Therefore, RfDs for essential metals are protective against the toxic effects of over-exposure to these metals, and the RfDs supply adequate levels of the metal to meet the Recommended Daily Allowance guidelines (Institute of Medicine, 2001; U.S. Environmental Protection Agency, 2004a; Stifelman et al., 2005).
3.3 Calculation of PRGs

This section calculates health-based PRGs for beach sediment. Preceding sections quantified exposure in terms of a unit dose of chemical along with the relative toxicity associated with exposure. This section uses this information to calculate sediment PRGs that are protective of health for sediment ingestion and dermal absorption for arsenic.

PRGs are calculated by defining a exposure parameters and a target risk level, then solving the equations for a sediment concentration (U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response, 1996a). The target cancer risk for arsenic, the only carcinogen assessed, is 1 in a million (10^{-6}). This is the low end of EPA’s cancer risk range spanning 10^{-6} to 10^{-4}. For lead, EPA relied on the EPA’s national PRG of 400 mg/kg, instead of calculating a site-specific concentration (U.S. Environmental Protection Agency, 1994; U.S. Environmental Protection Agency, 1998b). The target risk for the remaining metals was a Hazard Quotient of 1.

The following equation was used for calculation of PRGs for oral and dermal exposure to arsenic (the only carcinogen in this assessment):

$$\text{Soil/Sediment PRG} = \frac{\text{Target Risk}}{\text{SF} \times \{(\text{SIF}_{\text{sediment}}) + (\text{SIF}_{\text{dermal}} \times \text{ABS}_d)\}}$$

The target risk goal for non–carcinogenic hazards is a hazard quotient (HQ) of 1. An HQ of 1.0 is the point at which the estimated dose equals the RfD.

PRGs based on noncancer effects for each the remaining metals, were calculated using the following equation for each pathway.

$$\text{Soil PRG} = \text{HQ} \times \frac{\text{RfD}}{(\text{SIF}_\text{soil})}$$

PRG calculations are included as Appendix D.
SECTION 4

Uncertainties in the Beach Screening Assessment

The purpose of the screening level risk assessment was to prioritize beaches into two categories:

1. Excluded from further consideration because they are unlikely to pose a threat to human health from recreational use, or

2. Evaluated further in the Remedial Investigation and Feasibility Studies

The screening assessment produces the potential for two kinds of errors. The first is the potential to falsely retain a site for additional evaluation when, in fact, the site need not be considered a concern (false positive conclusion). The second is to falsely eliminate a site from further consideration when, in fact, there should be a concern (false negative conclusion). The assessment was designed to limit the potential for false negative errors in favor of the potential for false positive errors, which can be addressed during planned re-evaluations. Countering false positive errors is important to prevent response actions where they are not necessary. EPA wishes to limit the potential for false negative errors to avoid missing a potentially hazardous situation. Therefore, uncertainties were handled protectively in this screening assessment to reduce the potential for false negative conclusions (e.g., maximum concentrations from each of the beaches were used for screening).

EPA recognizes that perhaps the greatest uncertainty was caused limiting the sampling to 15 locations. During public meetings held in June 2006, EPA learned that the Agency did not include two popular beaches, namely Bradbury Beach and Colville Flats. Sampling at these locations will be recommended during the next phase of field work. Sampling at additional beaches in the vicinity of Dalles Orchard, Northport, and “Black Sand” beaches will also be considered.

PRG development requires assumptions about exposure and toxicity as well as defining a target level of risk. Assumptions about exposure are generally site-specific, in this assessment, 14 days was based on Park Service limits to camping and a high sediment ingestion rate was selected based on a study of children camping near a lake (van Wijnen, Clausing & Brunekreef, 1990; National Parks Service, 2006). Assumptions about toxicity are independent of the site, and depend on the standardized values (Cook, 2003).

PRGs for sediment included an assumption that ingestion of sediment during recreational activities was 300 mg/day for children up to six years old, and 100 mg/day for children older than six and adults. The 300 mg per day ingestion day is the 90th percentile value from a study of soil ingested by children while camping (van Wijnen, Clausing & Brunekreef, 1990). The average value from this study was 120 mg/day. Recreational users of the rivers may have a shorter exposure duration than 30 years assumed for the PRG calculation for arsenic or the 6-year total assumed for other metals. Shorter exposure...
durations would produce proportionally less stringent PRGs. In addition to exposure parameters, PRG development required selection of a target acceptable risk level. For arsenic, the only carcinogen evaluated, the PRG was based on a 1×10^{-6} increased cancer risk, which represents the low end of EPA’s cancer risk range of 10^{-6} to 10^{-4}. The lead PRG was based on the national soil screening value for lead (U.S. Environmental Protection Agency, 1998b). Because this value is typically used in residential settings, it is considered protective in a recreational setting. For the other metals, the target risk was a HQ of 1, which is considered a protective threshold for adverse health effects (U.S. Environmental Protection Agency Office of Solid Waste And Emergency Response, 1989).

The effects of simultaneous exposure to multiple chemicals can be additive, antagonistic (less than additive), or synergistic (more than additive). Whether and how chemicals interact depends on the level of exposure and characteristics of the individual chemicals. Adverse health interactions are unlikely to occur from beach sediment exposure because the exposure levels are low and the interactions are likely to be less than additive because copper, iron, manganese and zinc are essential minerals (Goyer, 1995). For example, iron and zinc decrease absorption and toxicity from exposure to lead (Goyer, 1997).
EPA has completed a screening level risk assessment for sediment exposure from limited recreational use at fifteen popular beaches along Lake Roosevelt and the Upper Columbia River. Twelve of the fifteen beaches are safely below health-based risk standards for all the contaminants EPA tested for, including arsenic, lead, pesticides, and PCBs. At three beaches EPA found levels of arsenic and/or lead that were slightly above EPA screening levels, but those beaches remain safe for seasonal recreation as well. This screening was limited to recreational use only, such as a family that camps for up to two weeks per year, returning for 30 years. More intensive uses of the beaches, such as year-round food gathering or camping for extended periods of several months or more were not addressed by this assessment, but will be addressed in the Upper Columbia River RI/FS.

The beach screening is a first step in evaluating potential risks from contamination. EPA will be using all of the sediment and fish tissue data EPA collected in 2005 to conduct an in-depth risk assessment for people living in the area and using the beaches year-round. That risk assessment may take several years to complete.

The highest levels of arsenic in beach sediments were found at the three most northern beaches EPA sampled (Black Sand, Northport, and Dalles). Arsenic levels at these beaches were still very low, but slightly higher than the screening level. Lead was also slightly higher than the screening level at Northport only. Since these three locations did not pass EPA’s screening, EPA will re-evaluate them for recreational use during the full risk assessment. However, because the risks are low, these beaches are still safe for visitors to use.

The following is a summary of findings:

- Higher metal concentrations were found at the northern reach of the river.
- There was little difference between metals levels at different beach elevations.
- Three sites (“Black Sand” Beach, Northport, and Dalles) were selected for further evaluation based on the concentration of arsenic above screening levels. One of these sites, at Northport, also exceeded the screening level for lead.

Results for the Seven Metals of Concern
Results for the Seven Metals of Concern

Upper Columbia River RI/F5

TABLE A-1

<table>
<thead>
<tr>
<th>Object Name</th>
<th>Sample Name</th>
<th>CAS Number</th>
<th>Antimony (mg/kg)</th>
<th>Arsenic (mg/kg)</th>
<th>Copper (mg/kg)</th>
<th>Iron (mg/kg)</th>
<th>Lead (mg/kg)</th>
<th>Manganese (mg/kg)</th>
<th>Uranium (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recreational RBC</td>
<td></td>
<td>7440360</td>
<td>7440382</td>
<td>7440508</td>
<td>7439896</td>
<td>7439921</td>
<td>7439965</td>
<td>7440611</td>
<td></td>
</tr>
<tr>
<td>Spring Canyon Campground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keller Ferry No 2</td>
<td>East</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRG Flag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave/PRG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max/Ave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keller Ferry No 2</td>
<td>East</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRG Flag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave/PRG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max/Ave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lincoln Mill Boat Ramp</td>
<td>East</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRG Flag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave/PRG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max/Ave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia Campground</td>
<td>East</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRG Flag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave/PRG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max/Ave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roger's Bar West</td>
<td>East</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRG Flag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave/PRG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max/Ave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Gifford Campground</td>
<td>East</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRG Flag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave/PRG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max/Ave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE A-1
Summary of Analytical and Screening Results
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Analyte (mg/kg)</th>
<th>Antimony</th>
<th>Arsenic</th>
<th>Copper</th>
<th>Iron</th>
<th>Lead</th>
<th>Manganese</th>
<th>Uranium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAS Number:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recreational RB/C</td>
<td>7440360</td>
<td>7440382</td>
<td>7440508</td>
<td>7439896</td>
<td>7439921</td>
<td>7429965</td>
<td>7440611</td>
<td></td>
</tr>
<tr>
<td>Object Name Sample Name</td>
<td>Ave/PRG</td>
<td>0.2%</td>
<td>26.6%</td>
<td>0.0%</td>
<td>2.2%</td>
<td>14.1%</td>
<td>0.5%</td>
<td>9.0%</td>
</tr>
<tr>
<td></td>
<td>Max/Ave</td>
<td>129.7%</td>
<td>162.8%</td>
<td>144.5%</td>
<td>132.7%</td>
<td>181.2%</td>
<td>182.4%</td>
<td>104.8%</td>
</tr>
<tr>
<td>French Rocks Boat Launch West</td>
<td>RM690B1</td>
<td>0.42 UJ</td>
<td>2.4</td>
<td>10.9</td>
<td>11000</td>
<td>20.7</td>
<td>208</td>
<td>17.7 U</td>
</tr>
<tr>
<td></td>
<td>RM690B2</td>
<td>1 UJ</td>
<td>2.4</td>
<td>14.5</td>
<td>9960</td>
<td>18.7</td>
<td>171</td>
<td>8.4 J</td>
</tr>
<tr>
<td></td>
<td>RM690B3</td>
<td>0.95 UJ</td>
<td>2.6</td>
<td>13.8</td>
<td>12000</td>
<td>21.9</td>
<td>260</td>
<td>22.1 U</td>
</tr>
<tr>
<td></td>
<td>Max PRG Flag</td>
<td>1</td>
<td>2.6</td>
<td>14.5</td>
<td>12000</td>
<td>21.9</td>
<td>260</td>
<td>22.1 U</td>
</tr>
<tr>
<td>Haag Cove West</td>
<td>RM697B1</td>
<td>0.29 UJ</td>
<td>1</td>
<td>4.2</td>
<td>5180</td>
<td>16.5</td>
<td>111</td>
<td>17.3 U</td>
</tr>
<tr>
<td></td>
<td>RM697B2</td>
<td>1.8 J</td>
<td>1.4</td>
<td>16.5</td>
<td>11800</td>
<td>136</td>
<td>158</td>
<td>23.1 U</td>
</tr>
<tr>
<td></td>
<td>RM697B3</td>
<td>1.8 J</td>
<td>2.3</td>
<td>34</td>
<td>18100</td>
<td>222</td>
<td>267</td>
<td>30.2 U</td>
</tr>
<tr>
<td>Kettle Falls Swim Beach East</td>
<td>RM700B1</td>
<td>0.37 UJ</td>
<td>1.4</td>
<td>9.9</td>
<td>11300</td>
<td>5.2</td>
<td>259</td>
<td>20 UJ</td>
</tr>
<tr>
<td></td>
<td>RM700B1L</td>
<td>0.61 UJ</td>
<td>1.5</td>
<td>10.7</td>
<td>8640</td>
<td>6</td>
<td>125</td>
<td>18.2 UJ</td>
</tr>
<tr>
<td></td>
<td>RM700B1R</td>
<td>5.3 UJ</td>
<td>1.8</td>
<td>9.8</td>
<td>8650</td>
<td>4.3</td>
<td>146</td>
<td>17.8 U</td>
</tr>
<tr>
<td></td>
<td>RM700B2c</td>
<td>0.95 UJ</td>
<td>1</td>
<td>10</td>
<td>9930</td>
<td>7.3</td>
<td>147</td>
<td>16.6 U</td>
</tr>
<tr>
<td></td>
<td>RM700B2L</td>
<td>6.4 UJ</td>
<td>1.3</td>
<td>9.2</td>
<td>9320</td>
<td>6.8</td>
<td>161</td>
<td>21.2 U</td>
</tr>
<tr>
<td></td>
<td>RM700B2R</td>
<td>0.3 UJ</td>
<td>1.5</td>
<td>9.3</td>
<td>9680</td>
<td>7</td>
<td>145</td>
<td>16 UJ</td>
</tr>
<tr>
<td>Marco Island East</td>
<td>RM700B3c</td>
<td>1.3 UJ</td>
<td>2.7</td>
<td>26.7</td>
<td>26000</td>
<td>10.7</td>
<td>605</td>
<td>24.7 U</td>
</tr>
<tr>
<td></td>
<td>RM700B3L</td>
<td>0.45 UJ</td>
<td>1.5</td>
<td>10</td>
<td>10160</td>
<td>7.6</td>
<td>147</td>
<td>17.9 U</td>
</tr>
<tr>
<td></td>
<td>RM700B3R</td>
<td>0.31 UJ</td>
<td>1.8</td>
<td>16.1</td>
<td>16200</td>
<td>8.3</td>
<td>390</td>
<td>19.9 U</td>
</tr>
<tr>
<td>N. Gorge East</td>
<td>RM710B1</td>
<td>1.0 UJ</td>
<td>2.3</td>
<td>26.7</td>
<td>26000</td>
<td>10.7</td>
<td>605</td>
<td>24.7 U</td>
</tr>
<tr>
<td></td>
<td>RM710B2</td>
<td>8.1 UJ</td>
<td>6.5</td>
<td>50.3</td>
<td>17600</td>
<td>297</td>
<td>214</td>
<td>27.1 U</td>
</tr>
<tr>
<td></td>
<td>RM710B3</td>
<td>6.4 J</td>
<td>10.7</td>
<td>215</td>
<td>26500</td>
<td>215</td>
<td>434</td>
<td>42.2 U</td>
</tr>
<tr>
<td>Dales Orchard East</td>
<td>RM729B1</td>
<td>0.47 UJ</td>
<td>5</td>
<td>22.9</td>
<td>16000</td>
<td>68.8</td>
<td>171</td>
<td>5.7 J</td>
</tr>
<tr>
<td></td>
<td>RM729B2</td>
<td>3.6 J</td>
<td>9.6</td>
<td>132</td>
<td>23500</td>
<td>223</td>
<td>270</td>
<td>11.2 J</td>
</tr>
<tr>
<td></td>
<td>RM729B3</td>
<td>6.4 J</td>
<td>10.7</td>
<td>215</td>
<td>26500</td>
<td>215</td>
<td>434</td>
<td>42.2 U</td>
</tr>
<tr>
<td>Northport Boat Ramp East</td>
<td>RM735B1c</td>
<td>8.9 J</td>
<td>6.9</td>
<td>271</td>
<td>33500</td>
<td>163</td>
<td>619</td>
<td>22.3 U</td>
</tr>
<tr>
<td></td>
<td>RM735B1L</td>
<td>52.1 J</td>
<td>18.2</td>
<td>2130</td>
<td>171000</td>
<td>239</td>
<td>3430</td>
<td>20.6 U</td>
</tr>
<tr>
<td></td>
<td>RM735B1R</td>
<td>3.6 J</td>
<td>6.9</td>
<td>98</td>
<td>21300</td>
<td>156</td>
<td>268</td>
<td>22.4 U</td>
</tr>
<tr>
<td></td>
<td>RM735B2c</td>
<td>14.8 J</td>
<td>10.5</td>
<td>598</td>
<td>71600</td>
<td>249</td>
<td>1220</td>
<td>19 U</td>
</tr>
<tr>
<td></td>
<td>RM735B2L</td>
<td>5.3 J</td>
<td>23.2</td>
<td>2620</td>
<td>213000</td>
<td>324</td>
<td>4150</td>
<td>20.2 U</td>
</tr>
<tr>
<td></td>
<td>RM735B2R</td>
<td>13.7 J</td>
<td>9.3</td>
<td>328</td>
<td>40100</td>
<td>194</td>
<td>642</td>
<td>21.3 U</td>
</tr>
<tr>
<td></td>
<td>RM735B3c</td>
<td>8.6 J</td>
<td>6.1</td>
<td>326</td>
<td>34600</td>
<td>174</td>
<td>672</td>
<td>21.8 U</td>
</tr>
<tr>
<td></td>
<td>RM735B3L</td>
<td>43.6 J</td>
<td>35.7</td>
<td>3200</td>
<td>254000</td>
<td>535</td>
<td>4780</td>
<td>19.1 U</td>
</tr>
</tbody>
</table>

Notes:
- **PRG Flag:** PRG = Pass, Fail = Fail
- **Pass:** Ave, Max
- **Fail:** Ave, Max
- **Sample:** Ave, Max
- **Pass:** Ave, Max
- **Fail:** Ave, Max
- **PRG:** Ave, Max
TABLE A-1
Summary of Analytical and Screening Results
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Analyte: (mg/kg)</th>
<th>Antimony</th>
<th>Arsenic</th>
<th>Copper</th>
<th>Iron</th>
<th>Lead</th>
<th>Manganese</th>
<th>Uranium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAS Number:</td>
<td>7440360</td>
<td>7440382</td>
<td>7440508</td>
<td>7439896</td>
<td>7439921</td>
<td>7429965</td>
<td>7440611</td>
</tr>
<tr>
<td>Recreational RBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Object Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM735B3R</td>
<td>MJ4EZ1</td>
<td>15.6 J</td>
<td>10.2</td>
<td>491</td>
<td>51500</td>
<td>217</td>
<td>961</td>
<td>21.8 U</td>
</tr>
<tr>
<td>Ave</td>
<td>PRG Flag</td>
<td>Pass</td>
<td>Fail</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>PRG</td>
</tr>
<tr>
<td>Max</td>
<td>Ave/PRG</td>
<td>4.6%</td>
<td>87.4%</td>
<td>2.2%</td>
<td>12.7%</td>
<td>62.5%</td>
<td>3.1%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Black Sand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Bank</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM742B1</td>
<td>MJ4EW4</td>
<td>47.7 J</td>
<td>27.3</td>
<td>2350</td>
<td>211000</td>
<td>D</td>
<td>266</td>
<td>3680 D</td>
</tr>
<tr>
<td>Ave</td>
<td>PRG Flag</td>
<td>Pass</td>
<td>Fail</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>PRG</td>
</tr>
<tr>
<td>Max</td>
<td>Ave/PRG</td>
<td>7.6%</td>
<td>141.6%</td>
<td>4.0%</td>
<td>25.4%</td>
<td>64.4%</td>
<td>9.7%</td>
<td>29.5%</td>
</tr>
<tr>
<td>RM742B2</td>
<td>MJ4EW5</td>
<td>52.3 J</td>
<td>25.2</td>
<td>2240</td>
<td>187000</td>
<td>D</td>
<td>231</td>
<td>3680 D</td>
</tr>
<tr>
<td>RM742B3</td>
<td>MJ4EX0</td>
<td>18.6 J</td>
<td>16.1</td>
<td>1620</td>
<td>197000</td>
<td>D</td>
<td>276</td>
<td>3080 D</td>
</tr>
<tr>
<td>Ave</td>
<td>PRG Flag</td>
<td>Pass</td>
<td>Fail</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>PRG</td>
</tr>
<tr>
<td>Max</td>
<td>Ave/PRG</td>
<td>132.3%</td>
<td>119.4%</td>
<td>113.5%</td>
<td>106.4%</td>
<td>107.1%</td>
<td>105.7%</td>
<td>109.6%</td>
</tr>
</tbody>
</table>
Summary of Complete Analytical Results
<table>
<thead>
<tr>
<th>Qualifier</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>The analyte was not detected at or above the reported result. The analyte was positively identified. The associated numerical result is an estimate.</td>
</tr>
<tr>
<td>J</td>
<td>The analyte was not detected at or above the reported estimated results. The associated numerical value is an estimate of the quantitation limit of the analyte in this sample.</td>
</tr>
<tr>
<td>UJ</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>The data are unusable for all purposes.</td>
</tr>
<tr>
<td>D</td>
<td>The value is the result of analysis at a secondary dilution factor.</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
<th>Analyte CAS Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM600B1</td>
<td>19-Apr-05</td>
<td>Beach</td>
<td></td>
<td>1289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM600B2</td>
<td>19-Apr-05</td>
<td>Subsample</td>
<td>1276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM600B3</td>
<td>19-Apr-05</td>
<td>Composite</td>
<td>1266</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM615B1</td>
<td>19-Apr-05</td>
<td>Beach</td>
<td>1279</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM615B2</td>
<td>19-Apr-05</td>
<td>Subsample</td>
<td>1275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM615B3</td>
<td>19-Apr-05</td>
<td>Composite</td>
<td>1275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM633B1</td>
<td>18-Apr-05</td>
<td>Beach</td>
<td></td>
<td>1289</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Frequency of Detection

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total organic carbon</td>
<td>E-10195</td>
<td>mg/Kg</td>
<td>98% 63 286 U 825 558 385 910 1,330 1,850</td>
</tr>
<tr>
<td>CLP TAL TotMetals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>7429905</td>
<td>mg/Kg</td>
<td>100% 63 7,150 7,800 8,310 6,270 8,030 8,620 7,160</td>
</tr>
<tr>
<td>Antimony</td>
<td>7440360</td>
<td>mg/Kg</td>
<td>63% 54 1.0 UJ 1.1 UJ 0.79 UJ 0.58 UR 0.89 UR 0.95 UR 0.79 UR</td>
</tr>
<tr>
<td>Arsenic</td>
<td>7440382</td>
<td>mg/Kg</td>
<td>97% 63 8.5 7.5 10 4.0 4.9 4.7 5.9</td>
</tr>
<tr>
<td>Beryllium</td>
<td>7440393</td>
<td>mg/Kg</td>
<td>100% 63 41 52 51 46 59 69 61</td>
</tr>
<tr>
<td>Beryllium</td>
<td>7440417</td>
<td>mg/Kg</td>
<td>100% 63 0.53 0.60 0.64 0.51 0.68 0.74 0.47</td>
</tr>
<tr>
<td>Cadmium</td>
<td>7440439</td>
<td>mg/Kg</td>
<td>86% 63 0.52 U 0.51 U 0.52 U 0.50 U 0.48 U 0.50 U 0.064 U</td>
</tr>
<tr>
<td>Calcium</td>
<td>7440702</td>
<td>mg/Kg</td>
<td>100% 63 5,990 1,810 1,960 3,880 1,760 1,940 11,500</td>
</tr>
<tr>
<td>Chromium</td>
<td>7440743</td>
<td>mg/Kg</td>
<td>100% 63 9.0 9.7 9.8 9.8 11 13 9.6</td>
</tr>
<tr>
<td>Cobalt</td>
<td>7440494</td>
<td>mg/Kg</td>
<td>100% 63 3.7 J 4.1 J 4.4 J 3.9 J 5.0 5.4 14</td>
</tr>
<tr>
<td>Copper</td>
<td>7440508</td>
<td>mg/Kg</td>
<td>100% 63 6.5 5.5 7.1 6.7 8.6 9.1 12</td>
</tr>
<tr>
<td>Iron</td>
<td>7439896</td>
<td>mg/Kg</td>
<td>100% 63 14,300 14,900 15,400 13,100 15,500 15,600 14,200</td>
</tr>
<tr>
<td>Lead</td>
<td>7439921</td>
<td>mg/Kg</td>
<td>100% 63 6.1 7.1 6.7 4.5 6.3 5.9 6.2</td>
</tr>
<tr>
<td>Magnesium</td>
<td>7439954</td>
<td>mg/Kg</td>
<td>100% 63 5,360 5,590 5,800 4,330 4,390 4,210 6,300</td>
</tr>
<tr>
<td>Manganese</td>
<td>7439665</td>
<td>mg/Kg</td>
<td>100% 63 226 208 227 214 230 248 334</td>
</tr>
<tr>
<td>Mercury</td>
<td>7439976</td>
<td>mg/Kg</td>
<td>68% 63 0.10 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.10 U</td>
</tr>
<tr>
<td>Nickel</td>
<td>7440020</td>
<td>mg/Kg</td>
<td>100% 63 7.5 7.5 8.2 8.5 9.4 10 8.5</td>
</tr>
<tr>
<td>Potassium</td>
<td>7440097</td>
<td>mg/Kg</td>
<td>100% 63 1,230 1,470 1,610 1,080 1,410 1,640 1,350</td>
</tr>
<tr>
<td>Selenium</td>
<td>7782452</td>
<td>mg/Kg</td>
<td>26% 19 3.6 UJ 3.6 UJ 3.6 UJ 3.5 UR 3.4 UR 3.5 UR 3.3 UR</td>
</tr>
<tr>
<td>Silver</td>
<td>7440224</td>
<td>mg/Kg</td>
<td>#VALUE! 63 1.0 UJ 1.0 UJ 1.0 UJ 1.0 UJ 0.96 UJ 1.0 UJ 0.93 UJ</td>
</tr>
<tr>
<td>Sodium</td>
<td>7440235</td>
<td>mg/Kg</td>
<td>89% 63 74 J 54 J 66 J 49 J 58 J 75 J 98 J</td>
</tr>
<tr>
<td>Thallium</td>
<td>7440280</td>
<td>mg/Kg</td>
<td>5% 63 2.6 U 2.6 U 2.6 U 2.5 U 2.4 U 2.5 U 2.3 U</td>
</tr>
<tr>
<td>Uranium</td>
<td>7440611</td>
<td>mg/Kg</td>
<td>27% 63 21 U 52 J 21 U 20 U 4.6 J 5.4 J 6.9 J</td>
</tr>
<tr>
<td>Vanadium</td>
<td>7440622</td>
<td>mg/Kg</td>
<td>100% 63 14 14 15 14 17 20 13</td>
</tr>
<tr>
<td>Zinc</td>
<td>7440666</td>
<td>mg/Kg</td>
<td>100% 63 40 55 48 37 44 39 36</td>
</tr>
</tbody>
</table>

CLP TCL PAH

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylnaphthalene</td>
<td>91576</td>
<td>µg/Kg</td>
<td>35% 63 4.0 U 4.0 U 4.0 U 4.0 U 4.0 U 5.0 U 0.30 J</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>83329</td>
<td>µg/Kg</td>
<td>11% 63 4.0 U 4.0 U 4.0 U 4.0 U 4.0 U 4.0 U 5.0 U 4.0 U</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208968</td>
<td>µg/Kg</td>
<td>14% 63 4.0 U 4.0 U 4.0 U 4.0 U 4.0 U 4.0 U 5.0 U 0.90 J</td>
</tr>
<tr>
<td>Anthracene</td>
<td>120127</td>
<td>µg/Kg</td>
<td>13% 63 4.0 U 4.0 U 4.0 U 4.0 U 4.0 U 4.0 U 5.0 U 4.0 U</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>56553</td>
<td>µg/Kg</td>
<td>30% 63 4.0 U 4.0 U 4.0 U 4.0 U 4.0 U 4.0 U 5.0 U 4.0 U</td>
</tr>
</tbody>
</table>

CVO/WAL UCR 2005 SD Beach Data.xls/Beach
07/26/2006 9:39 AM
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Date Collected</th>
<th>Sample Type</th>
<th>Elevation</th>
<th>Analyte CAS Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM600B1</td>
<td>19-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1289</td>
<td>50328 µg/Kg 24%</td>
<td>Benzo(a)pyrene</td>
<td>4.0 UJ 4.0 UJ 4.0 UJ 4.0 UJ 4.0 U 5.0 U 4.0 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>205992 µg/Kg 24%</td>
<td>Benzo(b)fluoranthene</td>
<td>4.0 UJ 4.0 UJ 4.0 UJ 4.0 UJ 4.0 U 5.0 U 4.0 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>191242 µg/Kg 32%</td>
<td>Benzo(ghi)perylene</td>
<td>4.0 UJ 4.0 UJ 4.0 UJ 4.0 UJ 4.0 U 5.0 U 4.0 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>207089 µg/Kg 14%</td>
<td>Benzo(k)fluoranthene</td>
<td>4.0 UJ 4.0 UJ 4.0 UJ 4.0 UJ 4.0 U 5.0 U 4.0 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>218019 µg/Kg 54%</td>
<td>Chrysene</td>
<td>4.0 U 4.0 U 4.0 U 4.0 U 4.0 U 5.0 U 4.0 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53703 µg/Kg 17%</td>
<td>Dibenzo(a,h)anthracene</td>
<td>4.0 UJ 4.0 UJ 4.0 UJ 4.0 UJ 4.0 U 5.0 U 4.0 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>132649 µg/Kg 22%</td>
<td>Dibenzo furan</td>
<td>4.0 U 4.0 U 4.0 U 4.0 U 4.0 U 5.0 U 4.0 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>206440 µg/Kg 48%</td>
<td>Fluoranthene</td>
<td>4.0 U 4.0 U 4.0 U 4.0 U 4.0 U 5.0 U 4.0 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>86737 µg/Kg 14%</td>
<td>Fluorene</td>
<td>4.0 U 4.0 U 4.0 U 4.0 U 4.0 U 5.0 U 4.0 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>193395 µg/Kg 25%</td>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>4.0 UJ 4.0 UJ 4.0 UJ 4.0 UJ 4.0 U 5.0 U 4.0 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>91203 µg/Kg 16%</td>
<td>Naphthalene</td>
<td>3.5 U 3.6 U 3.6 U 3.6 U 3.6 U 3.7 U 3.7 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85018 µg/Kg 44%</td>
<td>Phenanthrene</td>
<td>4.0 U 4.0 U 4.0 U 4.0 U 4.0 U 5.0 U 5.0 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>129000 µg/Kg 48%</td>
<td>Pyrene</td>
<td>4.0 U 4.0 U 4.0 U 4.0 U 4.0 U 5.0 U 5.0 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CLP TCL PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCB-1016 µg/Kg 0%</td>
<td>0.84 U 0.86 U 0.86 U 0.88 U 0.88 U 0.92 U 0.86 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCB-1221 µg/Kg 0%</td>
<td>3.4 U 3.5 U 3.5 U 3.6 U 3.6 U 3.7 U 3.4 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCB-1232 µg/Kg 0%</td>
<td>3.4 U 3.5 U 3.5 U 3.6 U 3.6 U 3.7 U 3.4 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCB-1242 µg/Kg 0%</td>
<td>0.84 U 0.86 U 0.86 U 0.88 U 0.88 U 0.92 U 0.86 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCB-1248 µg/Kg 0%</td>
<td>0.84 U 0.86 U 0.86 U 0.88 U 0.88 U 0.92 U 0.86 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCB-1254 µg/Kg 0%</td>
<td>0.84 U 0.86 U 0.86 U 0.88 U 0.88 U 0.92 U 0.86 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PCB-1260 µg/Kg 0%</td>
<td>0.84 U 0.86 U 0.86 U 0.88 U 0.88 U 0.92 U 0.86 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CLP TCL Pesticides</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,4'-DDD µg/Kg 0%</td>
<td>0.68 U 0.70 U 0.69 U 0.71 U 0.71 U 0.74 U 0.69 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,4'-DDE µg/Kg 5%</td>
<td>0.68 U 0.70 U 0.69 U 0.71 U 0.71 U 0.74 U 0.69 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,4'-DDT µg/Kg 11%</td>
<td>0.68 U 0.33 J 0.69 U 0.71 U 0.71 U 0.45 J 0.74 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,4'-DDD µg/Kg 2%</td>
<td>0.68 U 0.70 U 0.69 U 0.71 U 0.71 U 0.74 U 0.69 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,4'-DDE µg/Kg 11%</td>
<td>0.68 U 0.70 U 0.69 U 0.71 U 0.71 U 0.50 J 0.74 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,4'-DDT µg/Kg 33%</td>
<td>0.68 U 1.5 0.29 J 0.71 U 1.3 J 0.74 U 0.26 J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aldrin µg/Kg 0%</td>
<td>0.34 U 0.34 U 0.34 U 0.35 U 0.35 U 0.37 U 0.34 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>alpha-BHC µg/Kg 2%</td>
<td>0.34 U 0.34 U 0.34 U 0.35 U 0.35 U 0.37 U 0.34 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>alpha-Chlordane µg/Kg 0%</td>
<td>0.34 U 0.34 U 0.34 U 0.35 U 0.35 U 0.37 U 0.34 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>beta-BHC µg/Kg 0%</td>
<td>0.34 U 0.34 U 0.34 U 0.35 U 0.35 U 0.37 U 0.34 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cis-Nonachlor µg/Kg 0%</td>
<td>0.34 U 0.34 U 0.34 U 0.35 U 0.35 U 0.37 U 0.34 U</td>
</tr>
</tbody>
</table>

CVOI/PAL UCR 2005 SD Beach Data.xls/Beach
07/26/2006 9:39 AM
<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta-BHC</td>
<td>319868</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>60571</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>959988</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>33213659</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>1031078</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endrin</td>
<td>72208</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>7421934</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>53494705</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>gamma-BHC (Lindane)</td>
<td>58899</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>gamma-Chlordane</td>
<td>5566347</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>76448</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>1024573</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>118741</td>
<td>µg/Kg</td>
<td>6%</td>
<td>63</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>87683</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>72435</td>
<td>µg/Kg</td>
<td>5%</td>
<td>63</td>
</tr>
<tr>
<td>Oxychlordane</td>
<td>27304138</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>8001352</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>trans-Nonachlor</td>
<td>39765805</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,1'-Biphenyl</td>
<td>92524</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>120821</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>95501</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>541731</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>106467</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,2'-oxybis(1-chloropropane)</td>
<td>108601</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>95954</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>88062</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>120832</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>105679</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>51285</td>
<td>µg/Kg</td>
<td>0%</td>
<td>53</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>121142</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>606202</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>91587</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Station ID:</td>
<td>Date Collected:</td>
<td>Sample Type:</td>
<td>Elevation:</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>--------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>RM600B1</td>
<td>19-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1289</td>
<td></td>
</tr>
<tr>
<td>RM600B2</td>
<td>19-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1276</td>
<td></td>
</tr>
<tr>
<td>RM600B3</td>
<td>19-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1266</td>
<td></td>
</tr>
<tr>
<td>RM615B1</td>
<td>19-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1279</td>
<td></td>
</tr>
<tr>
<td>RM615B2</td>
<td>19-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1275</td>
<td></td>
</tr>
<tr>
<td>RM615B3</td>
<td>19-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1289</td>
<td></td>
</tr>
<tr>
<td>RM633B1</td>
<td>18-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1275</td>
<td></td>
</tr>
</tbody>
</table>

TABLE B-1

Beach Data Listing—UCR 2005 Sediment Sampling Event

Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Chlorophenol</td>
<td>95578</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>95487</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>2-Nitroaniline</td>
<td>88744</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 210 U 220 U 220 U 220 U 230 U 230 U</td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>88755</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>3,3'-Dichlorobenzidine</td>
<td>91941</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>4,6-Dinitro-2-methylphenol</td>
<td>534521</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 210 U 220 U 220 U 220 U 230 U 230 U</td>
</tr>
<tr>
<td>4-Bromophenyl-phenylether</td>
<td>101553</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>59507</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td>106478</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>4-Chlorophenyl-phenyl ether</td>
<td>7005723</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>106445</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>4-Nitroaniline</td>
<td>100016</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 210 U 220 U 220 U 220 U 230 U 230 U</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>100027</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 210 U 220 U 220 U 220 U 230 U 230 U</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>98862</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Atrazine</td>
<td>1912249</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>100527</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Benzoeic acid</td>
<td>65850</td>
<td>µg/Kg</td>
<td>0%</td>
<td>46 85 UR 86 UR 85 UR 88 UR 88 UR 91 UR 85 UR</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>100516</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>bis(2-Chloroethoxy)methane</td>
<td>111911</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)ether</td>
<td>111444</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl)phthalate</td>
<td>117817</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td>85687</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Caprolactam</td>
<td>105602</td>
<td>µg/Kg</td>
<td>3%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Carbazole</td>
<td>86748</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>84742</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Di-n-octylphthalate</td>
<td>117840</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>84662</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Dimethyl phthalate</td>
<td>131113</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>67721</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Isophorone</td>
<td>78591</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>N-Nitrosodi-n-propylamine</td>
<td>621647</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td>86306</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>98953</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U 86 U 85 U 88 U 88 U 91 U 85 U</td>
</tr>
<tr>
<td>Station ID:</td>
<td>Date Collected:</td>
<td>Sample Type:</td>
<td>Elevation:</td>
<td>Analyte CAS Units</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>RM600B1</td>
<td>19-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1289</td>
<td>Pentachlorophenol</td>
</tr>
<tr>
<td>RM600B2</td>
<td>19-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1276</td>
<td>Perchlorocyclopentadiene</td>
</tr>
<tr>
<td>RM600B3</td>
<td>19-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1266</td>
<td>Phenol</td>
</tr>
<tr>
<td>RM615B1</td>
<td>19-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1279</td>
<td>Dioxins and Furans</td>
</tr>
<tr>
<td>RM615B2</td>
<td>19-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1275</td>
<td>1,2,3,4,6,7,8-Heptachlorodibenzodioxin</td>
</tr>
<tr>
<td>RM615B3</td>
<td>19-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1275</td>
<td>1,2,3,4,6,7,8-Heptachlorodibenzofuran</td>
</tr>
<tr>
<td>RM633B1</td>
<td>18-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1289</td>
<td>1,2,3,4,7,8,9-Heptachlorodibenzodioxin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2,3,4,7,8,9-Heptachlorodibenzofuran</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2,3,4,7,8-Hexachlorodibenzodioxin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2,3,4,7,8-Hexachlorodibenzofuran</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2,3,4,6,7,8-Hexachlorodibenzodioxin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2,3,4,6,7,8-Hexachlorodibenzofuran</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2,3,7,8,9-Hexachlorodibenzodioxin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2,3,7,8,9-Hexachlorodibenzofuran</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2,3,7,8-Pentachlorodibenzo-p-dioxin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2,3,7,8-Pentachlorodibenzofuran</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,3,4,6,7,8-Hexachlorodibenzodioxin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,3,4,7,8-Pentachlorodibenzofuran</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,3,7,8-Tetrachlorodibenzodioxin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,3,7,8-Tetrachlorodibenzofuran</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heptachlorodibenzodioxin (Total)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Heptachlorodibenzofuran (Total)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hexachlorodibenzodioxin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hexachlorodibenzofuran (Total)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Octachlorodibenzodioxin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Octachlorodibenzofuran</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pentachlorodibenzodioxin (Total)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pentachlorodibenzofuran (Total)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TEQ WHO-98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tetrachlorodibenzodioxin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tetrachlorodibenzofuran (Total)</td>
</tr>
</tbody>
</table>
TABLE B-1

Beach Data Listing--UCR 2005 Sediment Sampling Event

Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total organic carbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-10195</td>
<td>mg/Kg</td>
<td>98%</td>
<td>63</td>
<td>582</td>
<td>543</td>
<td>944</td>
<td>4,810</td>
<td>4,500</td>
</tr>
<tr>
<td>CLP TAL TotMetals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>7429905 mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>6,900</td>
<td>5,070</td>
<td>7,350</td>
<td>7,890</td>
<td>11,600</td>
</tr>
<tr>
<td>Antimony</td>
<td>7440360 mg/Kg</td>
<td>63%</td>
<td>54</td>
<td>1.3 UR</td>
<td>0.92 UR</td>
<td>0.53 J</td>
<td>1.3 J</td>
<td>1.3 J</td>
</tr>
<tr>
<td>Arsenic</td>
<td>7440382 mg/Kg</td>
<td>97%</td>
<td>63</td>
<td>6.7</td>
<td>5.9</td>
<td>3.9</td>
<td>3.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Barium</td>
<td>7440393 mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>36</td>
<td>35</td>
<td>62</td>
<td>68</td>
<td>114</td>
</tr>
<tr>
<td>Beryllium</td>
<td>7440417 mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>0.43 J</td>
<td>0.32 J</td>
<td>0.43 J</td>
<td>0.55 J</td>
<td>0.72</td>
</tr>
<tr>
<td>Cadmium</td>
<td>7440439 mg/Kg</td>
<td>86%</td>
<td>63</td>
<td>0.058 U</td>
<td>0.47 U</td>
<td>0.25 J</td>
<td>0.46 J</td>
<td>0.29 J</td>
</tr>
<tr>
<td>Calcium</td>
<td>7440702 mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>15,100</td>
<td>10,300</td>
<td>1,660</td>
<td>2,030</td>
<td>2,360</td>
</tr>
<tr>
<td>Chromium</td>
<td>7440473 mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>9.1</td>
<td>6.2</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Cobalt</td>
<td>7440484 mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>3.5 J</td>
<td>3.0 J</td>
<td>4.7 J</td>
<td>5.4 J</td>
<td>6.2</td>
</tr>
<tr>
<td>Copper</td>
<td>7440508 mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>10</td>
<td>7.3</td>
<td>6.0</td>
<td>8.9</td>
<td>11</td>
</tr>
<tr>
<td>Iron</td>
<td>7439896 mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>12,600</td>
<td>10,200</td>
<td>13,100</td>
<td>13,800</td>
<td>16,300</td>
</tr>
<tr>
<td>Lead</td>
<td>7439921 mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>4.7</td>
<td>4.4</td>
<td>13</td>
<td>9.0</td>
<td>9.5</td>
</tr>
<tr>
<td>Magnesium</td>
<td>7439954 mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>6,240</td>
<td>5,320</td>
<td>3,420</td>
<td>3,430</td>
<td>3,610</td>
</tr>
<tr>
<td>Manganese</td>
<td>7439965 mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>224</td>
<td>217</td>
<td>136</td>
<td>111</td>
<td>254</td>
</tr>
<tr>
<td>Mercury</td>
<td>7439976 mg/Kg</td>
<td>68%</td>
<td>63</td>
<td>0.11 U</td>
<td>0.098 U</td>
<td>0.032 J</td>
<td>0.012 J</td>
<td>0.0070 J</td>
</tr>
<tr>
<td>Nickel</td>
<td>7440020 mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>7.8</td>
<td>6.1</td>
<td>9.4</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Potassium</td>
<td>7440097 mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>1,410</td>
<td>1,140</td>
<td>1,240</td>
<td>1,360</td>
<td>1,640</td>
</tr>
<tr>
<td>Selenium</td>
<td>7782492 mg/Kg</td>
<td>26%</td>
<td>19</td>
<td>3.4 UR</td>
<td>3.3 UR</td>
<td>3.5 UR</td>
<td>3.9 UR</td>
<td>3.7 UR</td>
</tr>
<tr>
<td>Silver</td>
<td>7440224 mg/Kg</td>
<td>#VALUE!</td>
<td>63</td>
<td>0.97 UJ</td>
<td>0.94 UJ</td>
<td>1.0 UJ</td>
<td>1.1 UJ</td>
<td>1.1 UJ</td>
</tr>
<tr>
<td>Sodium</td>
<td>7440235 mg/Kg</td>
<td>89%</td>
<td>63</td>
<td>97 J</td>
<td>57 J</td>
<td>75 J</td>
<td>94 J</td>
<td>111 J</td>
</tr>
<tr>
<td>Thallium</td>
<td>7440280 mg/Kg</td>
<td>5%</td>
<td>63</td>
<td>2.4 U</td>
<td>2.3 U</td>
<td>2.5 U</td>
<td>2.8 U</td>
<td>2.7 U</td>
</tr>
<tr>
<td>Uranium</td>
<td>7440611 mg/Kg</td>
<td>27%</td>
<td>63</td>
<td>6.4 J</td>
<td>6.3 J</td>
<td>20 U</td>
<td>22 U</td>
<td>21 U</td>
</tr>
<tr>
<td>Vanadium</td>
<td>7440622 mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>11</td>
<td>8.4</td>
<td>14</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>Zinc</td>
<td>7440666 mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>30</td>
<td>27</td>
<td>149</td>
<td>116</td>
<td>95</td>
</tr>
</tbody>
</table>

CLP TCL PAH

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylnaphthalene</td>
<td>91576</td>
<td>µg/Kg</td>
<td>35%</td>
<td>4.0 U</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>83329</td>
<td>µg/Kg</td>
<td>11%</td>
<td>4.0 U</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208968</td>
<td>µg/Kg</td>
<td>14%</td>
<td>4.0 U</td>
</tr>
<tr>
<td>Anthracene</td>
<td>120127</td>
<td>µg/Kg</td>
<td>13%</td>
<td>4.0 U</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>56553</td>
<td>µg/Kg</td>
<td>30%</td>
<td>4.0 U</td>
</tr>
<tr>
<td>Analyte</td>
<td>CAS</td>
<td>Units</td>
<td>Frequency of Detection</td>
<td>Number of Samples</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------</td>
<td>---------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>50328</td>
<td>µg/Kg</td>
<td>24%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>205992</td>
<td>µg/Kg</td>
<td>24%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>191242</td>
<td>µg/Kg</td>
<td>32%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>207089</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Chrysene</td>
<td>218019</td>
<td>µg/Kg</td>
<td>54%</td>
<td>63</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>53703</td>
<td>µg/Kg</td>
<td>17%</td>
<td>63</td>
</tr>
<tr>
<td>Dibenzo[4]furan</td>
<td>132649</td>
<td>µg/Kg</td>
<td>22%</td>
<td>63</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>206440</td>
<td>µg/Kg</td>
<td>48%</td>
<td>63</td>
</tr>
<tr>
<td>Fluorene</td>
<td>86737</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>193395</td>
<td>µg/Kg</td>
<td>25%</td>
<td>63</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91203</td>
<td>µg/Kg</td>
<td>16%</td>
<td>63</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>85018</td>
<td>µg/Kg</td>
<td>44%</td>
<td>63</td>
</tr>
<tr>
<td>Pyrene</td>
<td>129000</td>
<td>µg/Kg</td>
<td>48%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1016</td>
<td>12674112</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>11104282</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>11141165</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>53469219</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>12672296</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>11097691</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>11096825</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4'-DDD</td>
<td>53190</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4'-DDE</td>
<td>3424826</td>
<td>µg/Kg</td>
<td>5%</td>
<td>63</td>
</tr>
<tr>
<td>2,4'-DDT</td>
<td>789026</td>
<td>µg/Kg</td>
<td>11%</td>
<td>63</td>
</tr>
<tr>
<td>4,4'-DDD</td>
<td>72559</td>
<td>µg/Kg</td>
<td>11%</td>
<td>63</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>50293</td>
<td>µg/Kg</td>
<td>33%</td>
<td>63</td>
</tr>
<tr>
<td>Aldrin</td>
<td>309002</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>alpha-BHC</td>
<td>319846</td>
<td>µg/Kg</td>
<td>2%</td>
<td>63</td>
</tr>
<tr>
<td>alpha-Chlordane</td>
<td>5103719</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>beta-BHC</td>
<td>319857</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>cis-Nonachlor</td>
<td>5103731</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Analyte</td>
<td>CAS</td>
<td>Units</td>
<td>Frequency of Detection</td>
<td>Number of Samples</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>-------</td>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>delta-BHC</td>
<td>319868</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.34 U</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>60571</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.34 U</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>959988</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.34 U</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>33213659</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.36 U</td>
</tr>
<tr>
<td>Endosulfan Sulfate</td>
<td>1031078</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.37 U</td>
</tr>
<tr>
<td>Endrin</td>
<td>72208</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.39 U</td>
</tr>
<tr>
<td>Endrin Aldehyde</td>
<td>7421934</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.34 U</td>
</tr>
<tr>
<td>Endrin Ketone</td>
<td>53494705</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.34 U</td>
</tr>
<tr>
<td>gamma-BHC (Lindane)</td>
<td>58899</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.34 U</td>
</tr>
<tr>
<td>gamma-Chlordane</td>
<td>5566347</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.36 U</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>76448</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.37 U</td>
</tr>
<tr>
<td>Heptachlor Epoxide</td>
<td>1024573</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.37 U</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>118741</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.39 U</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>87683</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.37 U</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>72435</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.34 U</td>
</tr>
<tr>
<td>Oxychlorodane</td>
<td>27304138</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.34 U</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>8001352</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.34 U</td>
</tr>
<tr>
<td>trans-Nonachlor</td>
<td>39765805</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.37 U</td>
</tr>
<tr>
<td>CLP TCL SVOC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1'-Biphenyl</td>
<td>92524</td>
<td>µg/Kg</td>
<td>63</td>
<td>85 U</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>120821</td>
<td>µg/Kg</td>
<td>63</td>
<td>85 U</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>95501</td>
<td>µg/Kg</td>
<td>63</td>
<td>85 U</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>541731</td>
<td>µg/Kg</td>
<td>63</td>
<td>85 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>106467</td>
<td>µg/Kg</td>
<td>63</td>
<td>85 U</td>
</tr>
<tr>
<td>2,2'-oxybis(1-chloropropane)</td>
<td>108601</td>
<td>µg/Kg</td>
<td>63</td>
<td>85 U</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>95954</td>
<td>µg/Kg</td>
<td>63</td>
<td>220 U</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>88062</td>
<td>µg/Kg</td>
<td>63</td>
<td>85 U</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>120832</td>
<td>µg/Kg</td>
<td>63</td>
<td>85 U</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>105679</td>
<td>µg/Kg</td>
<td>63</td>
<td>85 U</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>51285</td>
<td>µg/Kg</td>
<td>63</td>
<td>220 U</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>121142</td>
<td>µg/Kg</td>
<td>63</td>
<td>85 U</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>606202</td>
<td>µg/Kg</td>
<td>63</td>
<td>85 U</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>91587</td>
<td>µg/Kg</td>
<td>63</td>
<td>85 U</td>
</tr>
<tr>
<td>Analyte</td>
<td>CAS</td>
<td>Units</td>
<td>Frequency</td>
<td>Number of Samples</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>95578</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>2-Methylphenol</td>
<td>95487</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>2-Nitroaniline</td>
<td>88744</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 220 U</td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>88755</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>3,3’-Dichlorobenzidine</td>
<td>91941</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>4,6-Dinitro-2-methylphenol</td>
<td>534521</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 220 U</td>
</tr>
<tr>
<td>4-Bromophenyl-phenylether</td>
<td>101553</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>59507</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td>106478</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>4-Chlorophenyl-phenyl ether</td>
<td>7005723</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>106445</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>4-Nitroaniline</td>
<td>100016</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 220 U</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>100027</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 220 U</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>98862</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>Atrazine</td>
<td>1912249</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>100527</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>65850</td>
<td>µg/Kg</td>
<td>0%</td>
<td>46 85 UR</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>100516</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>bis(2-Chloroethoxy)methane</td>
<td>111911</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)jether</td>
<td>111444</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl)phthalate</td>
<td>117817</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td>85687</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>Caprolactam</td>
<td>105602</td>
<td>µg/Kg</td>
<td>3%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>Carbazole</td>
<td>86748</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>84742</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>Di-n-octylphthalate</td>
<td>117840</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>84662</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>Dimethyl phthalate</td>
<td>131113</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>67721</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>Isophorone</td>
<td>78591</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>N-Nitrosodi-n-propylamine</td>
<td>621647</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td>86306</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>98953</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63 85 U</td>
</tr>
</tbody>
</table>

TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS
<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM633B2 18-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1278</td>
<td>1220 U</td>
<td>220 U</td>
<td>220 U</td>
</tr>
<tr>
<td>RM633B3 18-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1267</td>
<td>220 U</td>
<td>220 U</td>
<td>230 U</td>
</tr>
<tr>
<td>RM642B1c 15-Apr-05</td>
<td>Beach Subsample</td>
<td>1281</td>
<td>230 U</td>
<td>230 U</td>
<td>260 U</td>
</tr>
<tr>
<td>RM642B1L 15-Apr-05</td>
<td>Beach Subsample</td>
<td>1279</td>
<td>260 U</td>
<td>260 U</td>
<td>240 U</td>
</tr>
<tr>
<td>RM642B1R 15-Apr-05</td>
<td>Beach Subsample</td>
<td>1281</td>
<td>260 U</td>
<td>260 U</td>
<td>240 U</td>
</tr>
<tr>
<td>RM642B2c 15-Apr-05</td>
<td>Beach Subsample</td>
<td>1264</td>
<td>260 U</td>
<td>260 U</td>
<td>240 U</td>
</tr>
<tr>
<td>RM642B2L 15-Apr-05</td>
<td>Beach Subsample</td>
<td>1264</td>
<td>260 U</td>
<td>260 U</td>
<td>240 U</td>
</tr>
</tbody>
</table>

Dioxins and Furans

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentachlorophenol</td>
<td>87865</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Perchlorocyclopentadiene</td>
<td>77474</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Phenol</td>
<td>108952</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzodioxin</td>
<td>35822469</td>
<td>pg/g</td>
<td>47%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzofuran</td>
<td>67562394</td>
<td>pg/g</td>
<td>58%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-Heptachlorodibenzodioxin</td>
<td>55673897</td>
<td>pg/g</td>
<td>3%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-Heptachlorodibenzofuran</td>
<td>39227286</td>
<td>pg/g</td>
<td>39%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,6,7,8,9-Heptachlorodibenzo-dioxin</td>
<td>70648269</td>
<td>pg/g</td>
<td>11%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,6,7,8,9-Heptachlorodibenzo-furan</td>
<td>57653857</td>
<td>pg/g</td>
<td>44%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexachlorodibenzofuran</td>
<td>57117449</td>
<td>pg/g</td>
<td>19%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzodioxin</td>
<td>19408743</td>
<td>pg/g</td>
<td>42%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzofuran</td>
<td>72918219</td>
<td>pg/g</td>
<td>6%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8-Pentachlorodibeno-p-dioxin</td>
<td>40321764</td>
<td>pg/g</td>
<td>28%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8-Pentachlorodibenzo-furan</td>
<td>57117416</td>
<td>pg/g</td>
<td>19%</td>
<td>36</td>
</tr>
<tr>
<td>2,3,4,6,7,8-Hexachlorodibenzo-furan</td>
<td>60851345</td>
<td>pg/g</td>
<td>17%</td>
<td>36</td>
</tr>
<tr>
<td>2,3,4,7,8-Pentachlorodibenzo-furan</td>
<td>57117314</td>
<td>pg/g</td>
<td>33%</td>
<td>36</td>
</tr>
<tr>
<td>2,3,7,8-Tetrachlorodibenzo-dioxin</td>
<td>1746016</td>
<td>pg/g</td>
<td>19%</td>
<td>36</td>
</tr>
<tr>
<td>Heptachlorodibenzodioxin (Total)</td>
<td>37871004</td>
<td>pg/g</td>
<td>64%</td>
<td>36</td>
</tr>
<tr>
<td>Heptachlorodibenzo-furan (Total)</td>
<td>38998753</td>
<td>pg/g</td>
<td>64%</td>
<td>36</td>
</tr>
<tr>
<td>Hexachlorodibenzofuran (Total)</td>
<td>3465468</td>
<td>pg/g</td>
<td>81%</td>
<td>36</td>
</tr>
<tr>
<td>Octachlorodibenzo-dioxin</td>
<td>55684941</td>
<td>pg/g</td>
<td>86%</td>
<td>36</td>
</tr>
<tr>
<td>Octachlorodibenzo-furan</td>
<td>3268879</td>
<td>pg/g</td>
<td>58%</td>
<td>36</td>
</tr>
<tr>
<td>Octachlorodibenzo-furan</td>
<td>60851345</td>
<td>pg/g</td>
<td>17%</td>
<td>36</td>
</tr>
<tr>
<td>Pentachlorodibenzodioxin (Total)</td>
<td>36088229</td>
<td>pg/g</td>
<td>53%</td>
<td>36</td>
</tr>
<tr>
<td>Pentachlorodibenzo-furan (Total)</td>
<td>30402154</td>
<td>pg/g</td>
<td>64%</td>
<td>36</td>
</tr>
<tr>
<td>TEQ WHO-98</td>
<td>19903575</td>
<td>pg/g</td>
<td>42%</td>
<td>36</td>
</tr>
<tr>
<td>Tetrachlorodibenzo-dioxin (Total)</td>
<td>55722275</td>
<td>pg/g</td>
<td>81%</td>
<td>36</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
<th>Analyte CAS Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM642B2R</td>
<td>15-Apr-05</td>
<td>Beach Subsample</td>
<td>415.1</td>
<td>Total organic carbon E-10195 mg/Kg</td>
<td>98%</td>
<td>63</td>
</tr>
<tr>
<td>RM642B3c</td>
<td>15-Apr-05</td>
<td>Beach Subsample</td>
<td></td>
<td>Aluminum 7429905 mg/Kg</td>
<td>100%</td>
<td>54</td>
</tr>
<tr>
<td>RM642B3L</td>
<td>15-Apr-05</td>
<td>Beach Subsample</td>
<td></td>
<td>Antimony 7440360 mg/Kg</td>
<td>63%</td>
<td>54</td>
</tr>
<tr>
<td>RM642B3R</td>
<td>15-Apr-05</td>
<td>Beach Subsample</td>
<td></td>
<td>Arsenic 7440382 mg/Kg</td>
<td>97%</td>
<td>63</td>
</tr>
<tr>
<td>RM658B1</td>
<td>14-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1264</td>
<td>Barium 7440393 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>RM658B2</td>
<td>14-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1252</td>
<td>Beryllium 7440417 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>RM658B3</td>
<td>14-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1252</td>
<td>Cadmium 7440439 mg/Kg</td>
<td>86%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Composite</td>
<td>1253</td>
<td>Calcium 7440702 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1286</td>
<td>Chromium 7440473 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1277</td>
<td>Cobalt 7440484 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1260</td>
<td>Copper 7440508 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Iron 7439896 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lead 7439921 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Magnesium 7439954 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Manganese 7439965 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mercury 7439976 mg/Kg</td>
<td>68%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nickel 7440020 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Potassium 7440097 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Selenium 7782492 mg/Kg</td>
<td>26%</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Silver 7440224 mg/Kg</td>
<td>VALUE!</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sodium 7440235 mg/Kg</td>
<td>89%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Thallium 7440280 mg/Kg</td>
<td>5%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Uranium 7440611 mg/Kg</td>
<td>27%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vanadium 7440622 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zinc 7440666 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
</tbody>
</table>

CLP TAL TotMetals

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Number of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>7429905</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>As</td>
<td>7440360</td>
<td>mg/Kg</td>
<td>63%</td>
<td>54</td>
</tr>
<tr>
<td>Cd</td>
<td>7440417</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Cu</td>
<td>7440439</td>
<td>mg/Kg</td>
<td>86%</td>
<td>63</td>
</tr>
<tr>
<td>Mg</td>
<td>7440702</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Mn</td>
<td>7440473</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Ni</td>
<td>7440484</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Pb</td>
<td>7440484</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Cr</td>
<td>7440508</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Fe</td>
<td>7439896</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Pb</td>
<td>7439921</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Fe</td>
<td>7439954</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Mn</td>
<td>7439965</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Cu</td>
<td>7439976</td>
<td>mg/Kg</td>
<td>68%</td>
<td>63</td>
</tr>
<tr>
<td>Ni</td>
<td>7440020</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Fe</td>
<td>7440097</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Se</td>
<td>7782492</td>
<td>mg/Kg</td>
<td>26%</td>
<td>19</td>
</tr>
<tr>
<td>Hg</td>
<td>7440224</td>
<td>mg/Kg</td>
<td>VALUE!</td>
<td>63</td>
</tr>
<tr>
<td>Na</td>
<td>7440235</td>
<td>mg/Kg</td>
<td>89%</td>
<td>63</td>
</tr>
<tr>
<td>K</td>
<td>7440280</td>
<td>mg/Kg</td>
<td>5%</td>
<td>63</td>
</tr>
<tr>
<td>Br</td>
<td>7440611</td>
<td>mg/Kg</td>
<td>27%</td>
<td>63</td>
</tr>
<tr>
<td>V</td>
<td>7440622</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Zn</td>
<td>7440666</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
</tbody>
</table>

CLP TCL PAH

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Number of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylnaphthalene</td>
<td>91576</td>
<td>µg/Kg</td>
<td>35%</td>
<td>63</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>83329</td>
<td>µg/Kg</td>
<td>11%</td>
<td>63</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208968</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Anthracene</td>
<td>120127</td>
<td>µg/Kg</td>
<td>13%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>56553</td>
<td>µg/Kg</td>
<td>30%</td>
<td>63</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15-Apr-05</td>
<td>Beach Subsample</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-Apr-05</td>
<td>Beach Subsample</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-Apr-05</td>
<td>Beach Subsample</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1286</td>
</tr>
<tr>
<td></td>
<td>14-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1277</td>
</tr>
<tr>
<td></td>
<td>14-Apr-05</td>
<td>Beach Subsample Composite</td>
<td>1260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyrene</td>
<td>50328</td>
<td>µg/Kg</td>
<td>24%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>205992</td>
<td>µg/Kg</td>
<td>24%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>191242</td>
<td>µg/Kg</td>
<td>32%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>207089</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Chrysene</td>
<td>218019</td>
<td>µg/Kg</td>
<td>54%</td>
<td>63</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>53703</td>
<td>µg/Kg</td>
<td>17%</td>
<td>63</td>
</tr>
<tr>
<td>Dibenzofuran</td>
<td>132649</td>
<td>µg/Kg</td>
<td>22%</td>
<td>63</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>206440</td>
<td>µg/Kg</td>
<td>48%</td>
<td>63</td>
</tr>
<tr>
<td>Fluorene</td>
<td>86737</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>193395</td>
<td>µg/Kg</td>
<td>25%</td>
<td>63</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91203</td>
<td>µg/Kg</td>
<td>16%</td>
<td>63</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>85018</td>
<td>µg/Kg</td>
<td>44%</td>
<td>63</td>
</tr>
<tr>
<td>Pyrene</td>
<td>129000</td>
<td>µg/Kg</td>
<td>48%</td>
<td>63</td>
</tr>
</tbody>
</table>

PCB-1016	12674112	µg/Kg	0%	63	0.93 U	1.6 U	1.0 U	6.3 U	0.86 U	0.88 U	0.88 U
PCB-1221	11104282	µg/Kg	0%	63	3.7 U	6.4 U	4.1 U	25 U	3.5 U	3.6 U	3.6 U
PCB-1232	11141165	µg/Kg	0%	63	3.7 U	6.4 U	4.1 U	25 U	3.5 U	3.6 U	3.6 U
PCB-1242	53469219	µg/Kg	0%	63	0.93 U	1.6 U	1.0 U	6.3 U	0.86 U	0.88 U	0.88 U
PCB-1248	12672286	µg/Kg	0%	63	0.93 U	1.6 U	1.0 U	6.3 U	0.86 U	0.88 U	0.88 U
PCB-1254	11097691	µg/Kg	0%	63	0.93 U	1.6 U	1.0 U	6.3 U	0.86 U	0.88 U	0.88 U
PCB-1260	11096825	µg/Kg	0%	63	0.93 U	1.6 U	1.0 U	6.3 U	0.86 U	0.88 U	0.88 U

PCB-1016	12674112	µg/Kg	0%	63	0.93 U	1.6 U	1.0 U	6.3 U	0.86 U	0.88 U	0.88 U
PCB-1221	11104282	µg/Kg	0%	63	3.7 U	6.4 U	4.1 U	25 U	3.5 U	3.6 U	3.6 U
PCB-1232	11141165	µg/Kg	0%	63	3.7 U	6.4 U	4.1 U	25 U	3.5 U	3.6 U	3.6 U
PCB-1242	53469219	µg/Kg	0%	63	0.93 U	1.6 U	1.0 U	6.3 U	0.86 U	0.88 U	0.88 U
PCB-1248	12672286	µg/Kg	0%	63	0.93 U	1.6 U	1.0 U	6.3 U	0.86 U	0.88 U	0.88 U
PCB-1254	11097691	µg/Kg	0%	63	0.93 U	1.6 U	1.0 U	6.3 U	0.86 U	0.88 U	0.88 U
PCB-1260	11096825	µg/Kg	0%	63	0.93 U	1.6 U	1.0 U	6.3 U	0.86 U	0.88 U	0.88 U

<p>| 2,4'-DDE | 3424826 | µg/Kg | 5% | 63 | 0.75 U | 1.3 U | 0.81 U | 5.1 U | 0.69 U | 0.71 U | 0.71 U |
| 2,4'-DDE | 3424826 | µg/Kg | 5% | 63 | 0.75 U | 1.3 U | 0.81 J | 5.1 U | 0.69 U | 0.71 U | 0.71 U |
| 2,4'-DDT | 789026 | µg/Kg | 11% | 63 | 0.75 U | 1.3 U | 2.7 U | 57 U | 0.69 U | 0.71 U | 0.71 U |
| 4,4'-DDD | 72548 | µg/Kg | 2% | 63 | 0.75 U | 1.3 U | 0.81 U | 21 J | 0.69 U | 0.71 U | 0.71 U |
| 4,4'-DDE | 72559 | µg/Kg | 11% | 63 | 0.75 U | 1.3 U | 2.7 U | 63 U | 0.69 U | 0.71 U | 0.71 U |
| 4,4'-DDT | 50293 | µg/Kg | 33% | 63 | 0.28 J | 0.18 J | 0.18 J | 100 J | 0.69 U | 0.71 U | 0.71 U |
| Aldrin | 309002 | µg/Kg | 0% | 63 | 0.37 U | 0.63 U | 0.40 U | 2.6 U | 0.34 U | 0.35 U | 0.35 U |
| alpha-BHC | 319846 | µg/Kg | 2% | 63 | 0.37 U | 0.63 U | 0.40 U | 2.6 U | 0.34 U | 0.35 U | 0.35 U |
| alpha-Chlordane | 5103719 | µg/Kg | 0% | 63 | 0.37 U | 0.63 U | 0.40 U | 2.6 U | 0.34 U | 0.35 U | 0.35 U |
| beta-BHC | 319857 | µg/Kg | 0% | 63 | 0.37 U | 0.63 U | 0.40 U | 2.6 U | 0.34 U | 0.35 U | 0.35 U |
| cis-Nonachlor | 5103731 | µg/Kg | 0% | 63 | 0.37 U | 0.63 U | 0.40 U | 2.6 U | 0.34 U | 0.35 U | 0.35 U |</p>
<table>
<thead>
<tr>
<th>Station ID:</th>
<th>RM642B2R</th>
<th>RM642B3c</th>
<th>RM642B3L</th>
<th>RM642B3R</th>
<th>RM658B1</th>
<th>RM658B2</th>
<th>RM658B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Collected:</td>
<td>15-Apr-05</td>
<td>15-Apr-05</td>
<td>15-Apr-05</td>
<td>15-Apr-05</td>
<td>14-Apr-05</td>
<td>14-Apr-05</td>
<td>14-Apr-05</td>
</tr>
<tr>
<td>Sample Type:</td>
<td>Beach Subsample</td>
<td>Beach Subsample</td>
<td>Beach Subsample</td>
<td>Beach Subsample</td>
<td>Beach Subsample Composite</td>
<td>Beach Subsample Composite</td>
<td>Beach Subsample Composite</td>
</tr>
<tr>
<td>Elevation:</td>
<td>1264</td>
<td>1252</td>
<td>1252</td>
<td>1253</td>
<td>1286</td>
<td>1277</td>
<td>1260</td>
</tr>
</tbody>
</table>

Analyte | **CAS** | **Units** | **Number of Samples** | **Frequency of Detection** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>delta-BHC</td>
<td>319868</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.37 U</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>60571</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.75 U</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>959988</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.37 U</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>33213659</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.75 U</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>1031078</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.75 U</td>
</tr>
<tr>
<td>Endrin</td>
<td>72208</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.75 U</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>7421934</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.75 U</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>53494705</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.75 U</td>
</tr>
<tr>
<td>gamma-BHC (Lindane)</td>
<td>58899</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.37 U</td>
</tr>
<tr>
<td>gamma-Chlordane</td>
<td>5566347</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.37 U</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>76448</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.37 U</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>1024573</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.37 U</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>118741</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.37 U</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>87683</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.37 U</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>72435</td>
<td>µg/Kg</td>
<td>63</td>
<td>3.7 U</td>
</tr>
<tr>
<td>Oxychlordane</td>
<td>27304138</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.37 U</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>8001352</td>
<td>µg/Kg</td>
<td>63</td>
<td>37 U</td>
</tr>
<tr>
<td>trans-Nonachlor</td>
<td>39765805</td>
<td>µg/Kg</td>
<td>63</td>
<td>0.37 U</td>
</tr>
</tbody>
</table>

CLP TCL SVOC

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Number of Samples</th>
<th>Frequency of Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1'-Biphenyl</td>
<td>92524</td>
<td>µg/Kg</td>
<td>63</td>
<td>93 U</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>120821</td>
<td>µg/Kg</td>
<td>63</td>
<td>93 U</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>95501</td>
<td>µg/Kg</td>
<td>63</td>
<td>93 U</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>541731</td>
<td>µg/Kg</td>
<td>63</td>
<td>93 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>106467</td>
<td>µg/Kg</td>
<td>63</td>
<td>93 U</td>
</tr>
<tr>
<td>2,2'-oxybis(1-chloropropane)</td>
<td>108601</td>
<td>µg/Kg</td>
<td>63</td>
<td>93 U</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>95954</td>
<td>µg/Kg</td>
<td>63</td>
<td>240 U</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>88062</td>
<td>µg/Kg</td>
<td>63</td>
<td>93 U</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>120832</td>
<td>µg/Kg</td>
<td>63</td>
<td>93 U</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>105679</td>
<td>µg/Kg</td>
<td>63</td>
<td>93 U</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>51285</td>
<td>µg/Kg</td>
<td>53</td>
<td>240 U</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>121142</td>
<td>µg/Kg</td>
<td>63</td>
<td>93 U</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>606202</td>
<td>µg/Kg</td>
<td>63</td>
<td>93 U</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>91587</td>
<td>µg/Kg</td>
<td>63</td>
<td>93 U</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
<th>15-Apr-05</th>
<th>15-Apr-05</th>
<th>15-Apr-05</th>
<th>15-Apr-05</th>
<th>14-Apr-05</th>
<th>14-Apr-05</th>
<th>14-Apr-05</th>
<th>14-Apr-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Chlorophenol</td>
<td>95578</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>2-Methylphenol</td>
<td>95487</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>2-Nitroaniline</td>
<td>88744</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>240 U</td>
<td>400 U</td>
<td>260 U</td>
<td>320 U</td>
<td>220 U</td>
<td>220 U</td>
<td>220 U</td>
<td></td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>88755</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>3,3'-Dichlorobenzidine</td>
<td>91941</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>3-Nitroaniline</td>
<td>99092</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>240 U</td>
<td>400 U</td>
<td>260 U</td>
<td>320 U</td>
<td>220 U</td>
<td>220 U</td>
<td>220 U</td>
<td></td>
</tr>
<tr>
<td>4,6-Dinitro-2-methylphenol</td>
<td>534521</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>240 U</td>
<td>400 U</td>
<td>260 U</td>
<td>320 U</td>
<td>220 U</td>
<td>220 U</td>
<td>220 U</td>
<td></td>
</tr>
<tr>
<td>4-Bromophenyl-phenylether</td>
<td>101553</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>59507</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td>106478</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>4-Chlorophenol-phenyl ether</td>
<td>7005723</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>106445</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>5-Nitroaniline</td>
<td>100016</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>240 U</td>
<td>400 U</td>
<td>260 U</td>
<td>320 U</td>
<td>220 U</td>
<td>220 U</td>
<td>220 U</td>
<td></td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>100027</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>240 U</td>
<td>400 U</td>
<td>260 U</td>
<td>320 U</td>
<td>220 U</td>
<td>220 U</td>
<td>220 U</td>
<td></td>
</tr>
<tr>
<td>Acetophenone</td>
<td>98862</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>1912249</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>100527</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>65850</td>
<td>µg/Kg</td>
<td>0%</td>
<td>46</td>
<td>93 UJ</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>220 U</td>
<td>220 UR</td>
<td>220 UR</td>
<td></td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>100516</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>Bis(2-Chloroethoxy)methane</td>
<td>111911</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>Bis(2-chloroethyl)jether</td>
<td>111444</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>Bis(2-ethylhexyl)phthalate</td>
<td>117817</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>87 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td>85687</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>Caprolactam</td>
<td>105602</td>
<td>µg/Kg</td>
<td>3%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>55 J</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>Carbazole</td>
<td>86748</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>84742</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>Di-n-octylphthalate</td>
<td>117840</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>84662</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 UJ</td>
<td>88 UJ</td>
<td>88 UJ</td>
<td></td>
</tr>
<tr>
<td>Dimethyl phthalate</td>
<td>131113</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>67721</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>Isophorone</td>
<td>78591</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>N-Nitrosodimethylamine</td>
<td>621647</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td>86306</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>98953</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>93 U</td>
<td>160 U</td>
<td>100 U</td>
<td>130 U</td>
<td>86 U</td>
<td>88 U</td>
<td>88 U</td>
<td></td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentachlorophenol</td>
<td>87865</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Perchlorocyclopentadiene</td>
<td>77474</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Phenol</td>
<td>108952</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>

Dioxins and Furans

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzodioxin</td>
<td>35822469</td>
<td>pg/g</td>
<td>47%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzofuran</td>
<td>67562394</td>
<td>pg/g</td>
<td>58%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-Heptachlorodibenzodioxin</td>
<td>55673897</td>
<td>pg/g</td>
<td>3%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-Heptachlorodibenzofuran</td>
<td>39227286</td>
<td>pg/g</td>
<td>39%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexachlorodibenzodioxin</td>
<td>70648269</td>
<td>pg/g</td>
<td>11%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexachlorodibenzofuran</td>
<td>57633857</td>
<td>pg/g</td>
<td>44%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzodioxin</td>
<td>57117449</td>
<td>pg/g</td>
<td>19%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzofuran</td>
<td>19408743</td>
<td>pg/g</td>
<td>42%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzodioxin (Total)</td>
<td>39918219</td>
<td>pg/g</td>
<td>6%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8-Pentachlorodibenzodioxin</td>
<td>40321764</td>
<td>pg/g</td>
<td>28%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8-Pentachlorodibenzofuran</td>
<td>57117416</td>
<td>pg/g</td>
<td>19%</td>
<td>36</td>
</tr>
<tr>
<td>2,3,4,6,7,8-Hexachlorodibenzofuran</td>
<td>60851345</td>
<td>pg/g</td>
<td>17%</td>
<td>36</td>
</tr>
<tr>
<td>2,3,4,7,8-Pentachlorodibenzodioxin</td>
<td>57117314</td>
<td>pg/g</td>
<td>33%</td>
<td>36</td>
</tr>
<tr>
<td>2,3,7,8-Tetrachlorodibenzodioxin</td>
<td>1746016</td>
<td>pg/g</td>
<td>19%</td>
<td>36</td>
</tr>
<tr>
<td>2,3,7,8-Tetrachlorodibenzofuran</td>
<td>51207319</td>
<td>pg/g</td>
<td>64%</td>
<td>36</td>
</tr>
<tr>
<td>Heptachlorodibenzodioxin (Total)</td>
<td>38781004</td>
<td>pg/g</td>
<td>83%</td>
<td>36</td>
</tr>
<tr>
<td>Heptachlorodibenzofuran (Total)</td>
<td>38998753</td>
<td>pg/g</td>
<td>72%</td>
<td>36</td>
</tr>
<tr>
<td>Hexachlorodibenzodioxin (Total)</td>
<td>34665468</td>
<td>pg/g</td>
<td>81%</td>
<td>36</td>
</tr>
<tr>
<td>Hexachlorodibenzofuran (Total)</td>
<td>55684941</td>
<td>pg/g</td>
<td>86%</td>
<td>36</td>
</tr>
<tr>
<td>Octachlorodibenzodioxin</td>
<td>3268879</td>
<td>pg/g</td>
<td>58%</td>
<td>36</td>
</tr>
<tr>
<td>Octachlorodibenzofuran</td>
<td>39001020</td>
<td>pg/g</td>
<td>58%</td>
<td>36</td>
</tr>
<tr>
<td>Pentachlorodibenzodioxin (Total)</td>
<td>36088229</td>
<td>pg/g</td>
<td>53%</td>
<td>36</td>
</tr>
<tr>
<td>Pentachlorodibenzofuran (Total)</td>
<td>30402154</td>
<td>pg/g</td>
<td>64%</td>
<td>36</td>
</tr>
<tr>
<td>TEQ WHO-98</td>
<td>TEQ</td>
<td>pg/g</td>
<td>92%</td>
<td>36</td>
</tr>
<tr>
<td>Tetrachlorodibenzodioxin (Total)</td>
<td>41903575</td>
<td>pg/g</td>
<td>42%</td>
<td>36</td>
</tr>
<tr>
<td>Tetrachlorodibenzofuran (Total)</td>
<td>55722275</td>
<td>pg/g</td>
<td>81%</td>
<td>36</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total organic carbon</td>
<td>E-10195</td>
<td>mg/Kg</td>
<td>98%</td>
<td>63</td>
</tr>
<tr>
<td>CLP TAL TotMetals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>7429905</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63 1,500 J 4,660 J 7,430 J 3,470 J 5,330 J 2,530 J 4,660 J 12,300 J 6,550 J</td>
</tr>
<tr>
<td>Antimony</td>
<td>7440360</td>
<td>mg/Kg</td>
<td>63% 1.2 J 1.5 J 1.1 J 1.0 J 1.1 J 1.6 J 0.42 J 5.0 J 13.0 J</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>7440382</td>
<td>mg/Kg</td>
<td>97% 4.1 J 5.3 J 3.6 J 2.3 J 3.6 J 7.0 J 2.4 J</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>7440393</td>
<td>mg/Kg</td>
<td>100% 78 78 78 66 80 152 62</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>7440417</td>
<td>mg/Kg</td>
<td>100% 0.66 0.90 0.68 0.63 0.59 J 0.93 J 0.46 J</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>7440439</td>
<td>mg/Kg</td>
<td>86% 0.17 J 0.74 1.0 3.1 0.63 2.4 0.51 J 4.0 J 13.0 J</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>7440702</td>
<td>mg/Kg</td>
<td>100% 2,990 4,120 2,520 3,100 6,050 5,200 4,830 J</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>7440743</td>
<td>mg/Kg</td>
<td>100% 15 24 18 20 18 28 13 J</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>7440849</td>
<td>mg/Kg</td>
<td>100% 6.4 10 6.9 5.6 J 6.7 10 4.5 J</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>7440508</td>
<td>mg/Kg</td>
<td>100% 12 20 15 16 29 11</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>7439896</td>
<td>mg/Kg</td>
<td>100% 14,800 21,100 16,000 13,300 15,200 J 22,600 J 11,000 J</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>7439921</td>
<td>mg/Kg</td>
<td>100% 6.7 20 34 51 16 102 21 J</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>7439954</td>
<td>mg/Kg</td>
<td>100% 3,550 4,970 3,700 4,040 4,520 6,530 4,900 J</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>7439965</td>
<td>mg/Kg</td>
<td>100% 248 383 167 145 194 526 208 J</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>7439976</td>
<td>mg/Kg</td>
<td>68% 0.010 J 0.031 J 0.053 J 0.062 J 0.030 J 0.21 J 0.099 J</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>7440020</td>
<td>mg/Kg</td>
<td>100% 13 21 16 14 16 24 15 J</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>7440097</td>
<td>mg/Kg</td>
<td>100% 1,160 2,020 1,220 1,200 1,210 2,190 749 J</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>7782492</td>
<td>mg/Kg</td>
<td>26% 19 4.0 UR 4.3 UR 4.2 UR 4.3 UR 3.7 UR 4.3 UR 3.1 UR</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>7440224</td>
<td>mg/Kg</td>
<td>#VALUE! 1.1 UJ 1.2 UJ 1.2 UJ 1.2 UJ 1.1 U 1.2 U 0.89 UJ</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>7440235</td>
<td>mg/Kg</td>
<td>89% 129 J 173 J 115 J 94 J 147 J 245 J 134 J</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>7440280</td>
<td>mg/Kg</td>
<td>5% 63 2.9 U 3.1 U 3.0 U 3.1 U 2.7 UJ 3.1 UJ 2.2 U</td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>7440611</td>
<td>mg/Kg</td>
<td>27% 63 23 U 25 U 24 U 24 U 21 UJ 25 UJ 18 U</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>7440622</td>
<td>mg/Kg</td>
<td>100% 63 26 33 27 22 27 36 22 J</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>7440666</td>
<td>mg/Kg</td>
<td>100% 63 49 118 158 220 90 295 92 J</td>
<td></td>
</tr>
</tbody>
</table>

CLP TCL PAH

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylnaphthalene</td>
<td>91576</td>
<td>µg/Kg</td>
<td>35%</td>
<td>63 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 0.70 J 0.20 J</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>83329</td>
<td>µg/Kg</td>
<td>11%</td>
<td>63 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 4.0 U</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208968</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 4.0 U</td>
</tr>
<tr>
<td>Anthracene</td>
<td>120127</td>
<td>µg/Kg</td>
<td>13%</td>
<td>63 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 6.0 U 4.0 U</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>56553</td>
<td>µg/Kg</td>
<td>30%</td>
<td>63 5.0 U 5.0 U 5.0 U 0.40 J 5.0 U 1.0 J 4.0 U</td>
</tr>
</tbody>
</table>
TABLE B-1

Beach Data Listing--UCR 2005 Sediment Sampling Event

Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyrene</td>
<td>50328</td>
<td>µg/Kg</td>
<td>24%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>20592</td>
<td>µg/Kg</td>
<td>24%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>19124</td>
<td>µg/Kg</td>
<td>32%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>20708</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Chrysene</td>
<td>21801</td>
<td>µg/Kg</td>
<td>54%</td>
<td>63</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>53703</td>
<td>µg/Kg</td>
<td>17%</td>
<td>63</td>
</tr>
<tr>
<td>Dibenzofuran</td>
<td>13264</td>
<td>µg/Kg</td>
<td>22%</td>
<td>63</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>20644</td>
<td>µg/Kg</td>
<td>48%</td>
<td>63</td>
</tr>
<tr>
<td>Fluorene</td>
<td>86737</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>19339</td>
<td>µg/Kg</td>
<td>25%</td>
<td>63</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91203</td>
<td>µg/Kg</td>
<td>6%</td>
<td>63</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>85018</td>
<td>µg/Kg</td>
<td>44%</td>
<td>63</td>
</tr>
<tr>
<td>Pyrene</td>
<td>12900</td>
<td>µg/Kg</td>
<td>48%</td>
<td>63</td>
</tr>
</tbody>
</table>

|
|

<table>
<thead>
<tr>
<th>CLP TCL PCBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1016</td>
</tr>
<tr>
<td>PCB-1221</td>
</tr>
<tr>
<td>PCB-1232</td>
</tr>
<tr>
<td>PCB-1242</td>
</tr>
<tr>
<td>PCB-1248</td>
</tr>
<tr>
<td>PCB-1254</td>
</tr>
<tr>
<td>PCB-1260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLP TCL Pesticides</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4’-DDD</td>
</tr>
<tr>
<td>2,4’-DDE</td>
</tr>
<tr>
<td>2,4’-DDT</td>
</tr>
<tr>
<td>4,4’-DDD</td>
</tr>
<tr>
<td>4,4’-DDE</td>
</tr>
<tr>
<td>4,4’-DDT</td>
</tr>
<tr>
<td>Aldrin</td>
</tr>
<tr>
<td>alpha-BHC</td>
</tr>
<tr>
<td>alpha-Chlordane</td>
</tr>
<tr>
<td>beta-BHC</td>
</tr>
<tr>
<td>cis-Nonachlor</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RM673B1</td>
<td>RM673B2</td>
<td>RM673B3</td>
</tr>
<tr>
<td></td>
<td>16-Apr-05</td>
<td>16-Apr-05</td>
<td>16-Apr-05</td>
</tr>
<tr>
<td></td>
<td>Beach Subsample</td>
<td>Beach Subsample</td>
<td>Beach Subsample</td>
</tr>
<tr>
<td></td>
<td>Composite</td>
<td>Composite</td>
<td>Composite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta-BHC</td>
<td>319868 µg/Kg</td>
<td>0%</td>
<td>0.39 U</td>
<td>63</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>60571 µg/Kg</td>
<td>0%</td>
<td>0.79 U</td>
<td>63</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>959988 µg/Kg</td>
<td>0%</td>
<td>0.39 U</td>
<td>63</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>33213659 µg/Kg</td>
<td>0%</td>
<td>0.79 U</td>
<td>63</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>1031078 µg/Kg</td>
<td>0%</td>
<td>0.79 U</td>
<td>63</td>
</tr>
<tr>
<td>Endrin</td>
<td>72208 µg/Kg</td>
<td>0%</td>
<td>0.79 U</td>
<td>63</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>7421934 µg/Kg</td>
<td>0%</td>
<td>0.79 U</td>
<td>63</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>53494705 µg/Kg</td>
<td>0%</td>
<td>0.79 U</td>
<td>63</td>
</tr>
<tr>
<td>gamma-BHC (Lindane)</td>
<td>58899 µg/Kg</td>
<td>0%</td>
<td>0.39 U</td>
<td>63</td>
</tr>
<tr>
<td>gamma-Chlordane</td>
<td>5566347 µg/Kg</td>
<td>0%</td>
<td>0.39 U</td>
<td>63</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>76448 µg/Kg</td>
<td>0%</td>
<td>0.39 U</td>
<td>63</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>1024573 µg/Kg</td>
<td>0%</td>
<td>0.39 U</td>
<td>63</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>118741 µg/Kg</td>
<td>6%</td>
<td>0.39 U</td>
<td>63</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>87683 µg/Kg</td>
<td>0%</td>
<td>0.39 U</td>
<td>63</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>72435 µg/Kg</td>
<td>5%</td>
<td>3.9 U</td>
<td>63</td>
</tr>
<tr>
<td>Oxychlordane</td>
<td>27304138 µg/Kg</td>
<td>0%</td>
<td>0.39 U</td>
<td>63</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>8001352 µg/Kg</td>
<td>0%</td>
<td>0.39 U</td>
<td>63</td>
</tr>
<tr>
<td>trans-Nonachlor</td>
<td>39765805 µg/Kg</td>
<td>0%</td>
<td>0.39 U</td>
<td>63</td>
</tr>
</tbody>
</table>

CLP TCL SVOC

<table>
<thead>
<tr>
<th></th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1'-Biphenyl</td>
<td>92524 µg/Kg</td>
<td>0%</td>
<td>98 U</td>
<td>10 U</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>120821 µg/Kg</td>
<td>0%</td>
<td>98 U</td>
<td>110 U</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>95501 µg/Kg</td>
<td>0%</td>
<td>98 U</td>
<td>110 U</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>541731 µg/Kg</td>
<td>0%</td>
<td>98 U</td>
<td>110 U</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>106467 µg/Kg</td>
<td>0%</td>
<td>98 U</td>
<td>110 U</td>
</tr>
<tr>
<td>2,2'-oxybis(1-chloropropane)</td>
<td>108601 µg/Kg</td>
<td>0%</td>
<td>98 U</td>
<td>110 U</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>95954 µg/Kg</td>
<td>0%</td>
<td>98 U</td>
<td>110 U</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>88062 µg/Kg</td>
<td>0%</td>
<td>98 U</td>
<td>110 U</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>120832 µg/Kg</td>
<td>0%</td>
<td>98 U</td>
<td>110 U</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>105679 µg/Kg</td>
<td>0%</td>
<td>98 U</td>
<td>110 U</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>51285 µg/Kg</td>
<td>0%</td>
<td>98 U</td>
<td>110 U</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>121142 µg/Kg</td>
<td>0%</td>
<td>98 U</td>
<td>110 U</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>606202 µg/Kg</td>
<td>0%</td>
<td>98 U</td>
<td>110 U</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>91587 µg/Kg</td>
<td>0%</td>
<td>98 U</td>
<td>110 U</td>
</tr>
<tr>
<td>Analyte</td>
<td>CAS</td>
<td>Units</td>
<td>Frequency of Detection</td>
<td>Number of Samples</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>-------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>95578</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2-Methylphenol</td>
<td>95487</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2-Nitroaniline</td>
<td>88744</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>88755</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>3,3’-Dichlorobenzidine</td>
<td>91941</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>3-Nitroaniline</td>
<td>99092</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4,6-Dinitro-2-methylphenol</td>
<td>534521</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Bromophenyl-phenylether</td>
<td>101553</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>59507</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td>106478</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Chlorophenyl-phenyl ether</td>
<td>700572</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>106445</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Nitroaniline</td>
<td>100016</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>100027</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>98862</td>
<td>µg/Kg</td>
<td>3%</td>
<td>63</td>
</tr>
<tr>
<td>Atrazine</td>
<td>1912249</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>100527</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>65850</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>100516</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>bis(2-Chloroethoxy)methane</td>
<td>111911</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)jether</td>
<td>111444</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl)phthalate</td>
<td>117817</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td>85687</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Caprolactam</td>
<td>105602</td>
<td>µg/Kg</td>
<td>3%</td>
<td>63</td>
</tr>
<tr>
<td>Carbazole</td>
<td>86748</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>84742</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Di-n-octyl phthalate</td>
<td>117840</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>84662</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Dimethyl phthalate</td>
<td>131113</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>67721</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Isophorone</td>
<td>78591</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>N-Nitrosodi-n-propylamine</td>
<td>621647</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td>86306</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>98953</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16-Apr-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-Apr-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-Apr-05</td>
<td>Subsample Composite</td>
<td>1282</td>
</tr>
<tr>
<td></td>
<td>16-Apr-05</td>
<td>Subsample Composite</td>
<td>1277</td>
</tr>
<tr>
<td></td>
<td>16-Apr-05</td>
<td>Subsample Composite</td>
<td>1278</td>
</tr>
<tr>
<td></td>
<td>16-Apr-05</td>
<td>Subsample Composite</td>
<td>1283</td>
</tr>
<tr>
<td></td>
<td>16-Apr-05</td>
<td>Subsample Composite</td>
<td>1272</td>
</tr>
<tr>
<td></td>
<td>16-Apr-05</td>
<td>Subsample Composite</td>
<td>1253</td>
</tr>
<tr>
<td></td>
<td>13-Apr-05</td>
<td>Subsample Composite</td>
<td>1285</td>
</tr>
</tbody>
</table>

Frequency of Detection

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentachlorophenol</td>
<td>87865</td>
<td>µg/Kg</td>
<td>0% 63</td>
</tr>
<tr>
<td>Perchlorocyclopentadiene</td>
<td>77474</td>
<td>µg/Kg</td>
<td>0% 63</td>
</tr>
<tr>
<td>Phenol</td>
<td>108952</td>
<td>µg/Kg</td>
<td>0% 63</td>
</tr>
</tbody>
</table>

Dioxins and Furans

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzodioxin</td>
<td>35822469</td>
<td>pg/g</td>
<td>47% 36 250 U 2.2</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzofuran</td>
<td>67562394</td>
<td>pg/g</td>
<td>58% 36 0.12 U 0.5 J</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-Heptachlorodibenzo-furan</td>
<td>55673897</td>
<td>pg/g</td>
<td>3% 36 0.071 U 0.2 J</td>
</tr>
<tr>
<td>1,2,3,4,7,8-Hexachlorodibenzodioxin</td>
<td>39227286</td>
<td>pg/g</td>
<td>39% 36 0.079 U 0.096 U</td>
</tr>
<tr>
<td>1,2,3,4,7,8-Hexachlorodibenzofuran</td>
<td>70648269</td>
<td>pg/g</td>
<td>11% 36 0.047 J 0.1 U</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexachlorodibenzodioxin</td>
<td>57635857</td>
<td>pg/g</td>
<td>44% 36 0.088 U 0.27 J</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexachlorodibenzofuran</td>
<td>57117449</td>
<td>pg/g</td>
<td>19% 36 0.046 U 0.048 J</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzodioxin</td>
<td>19408743</td>
<td>pg/g</td>
<td>42% 36 0.084 U 0.16 J</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzofuran</td>
<td>72918219</td>
<td>pg/g</td>
<td>6% 36 0.070 U 0.10 J</td>
</tr>
<tr>
<td>1,2,3,7,8-Pentachlorodibenzo-p-dioxin</td>
<td>40321765</td>
<td>pg/g</td>
<td>28% 36 0.057 U 0.11 J</td>
</tr>
<tr>
<td>1,2,3,7,8-Pentachlorodibenzofuran</td>
<td>57117416</td>
<td>pg/g</td>
<td>19% 36 0.041 U 0.049 U</td>
</tr>
<tr>
<td>2,3,4,6,7,8-Hexachlorodibenzodioxin</td>
<td>60851345</td>
<td>pg/g</td>
<td>17% 36 0.057 J 0.046 J</td>
</tr>
<tr>
<td>2,3,4,7,8-Pentachlorodibenzofuran</td>
<td>57117314</td>
<td>pg/g</td>
<td>33% 36 0.047 U 0.14 U</td>
</tr>
<tr>
<td>2,3,7,8-Tetrachlorodibenzodioxin</td>
<td>1746016</td>
<td>pg/g</td>
<td>19% 36 0.045 U 0.063 U</td>
</tr>
<tr>
<td>2,3,7,8-Tetrachlorodibenzofuran</td>
<td>51207319</td>
<td>pg/g</td>
<td>64% 36 0.084 U 0.78 U</td>
</tr>
<tr>
<td>Heptachlorodibenzodioxin (Total)</td>
<td>37871004</td>
<td>pg/g</td>
<td>83% 36 1.1 U 4.2 J</td>
</tr>
<tr>
<td>Heptachlorodibenzofuran (Total)</td>
<td>38998753</td>
<td>pg/g</td>
<td>72% 36 0.22 U 1.1 J</td>
</tr>
<tr>
<td>Hexachlorodibenzodioxin (Total)</td>
<td>34465468</td>
<td>pg/g</td>
<td>81% 36 0.076 U 0.42 U</td>
</tr>
<tr>
<td>Hexachlorodibenzofuran (Total)</td>
<td>55684941</td>
<td>pg/g</td>
<td>86% 36 0.12 U 0.53 U</td>
</tr>
<tr>
<td>Octachlorodibenzoide</td>
<td>3268879</td>
<td>pg/g</td>
<td>58% 36 3.3 U 17.0</td>
</tr>
<tr>
<td>Octachlorodibenzofuran</td>
<td>39001020</td>
<td>pg/g</td>
<td>58% 36 0.21 U 0.98 J</td>
</tr>
<tr>
<td>Pentachlorodibenzodioxin (Total)</td>
<td>36088229</td>
<td>pg/g</td>
<td>53% 36 0.17 U 0.64 U</td>
</tr>
<tr>
<td>Pentachlorodibenzofuran (Total)</td>
<td>30402154</td>
<td>pg/g</td>
<td>64% 36 0.088 U 0.30 U</td>
</tr>
<tr>
<td>TEQ WHO-98</td>
<td>TEQ</td>
<td>pg/g</td>
<td>92% 36 0.011 U 0.27 U</td>
</tr>
<tr>
<td>Tetrachlorodibenzodioxin (Total)</td>
<td>41903575</td>
<td>pg/g</td>
<td>42% 36 0.045 U 0.39 U</td>
</tr>
<tr>
<td>Tetrachlorodibenzofuran (Total)</td>
<td>55722275</td>
<td>pg/g</td>
<td>81% 36 0.084 U 1.2 J</td>
</tr>
<tr>
<td>Station ID:</td>
<td>RM690B2</td>
<td>RM690B3</td>
<td>RM697B1</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Date Collected:</td>
<td>13-Apr-05</td>
<td>13-Apr-05</td>
<td>13-Apr-05</td>
</tr>
<tr>
<td>Sample Type:</td>
<td>Beach Subsample</td>
<td>Beach Subsample</td>
<td>Beach Subsample</td>
</tr>
<tr>
<td>Elevation:</td>
<td>1274</td>
<td>1269</td>
<td>1284</td>
</tr>
</tbody>
</table>

Frequency of Detection

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total organic carbon</td>
<td>E-10195 mg/Kg</td>
<td>98%</td>
<td>63</td>
</tr>
<tr>
<td>CLP TAL Tot Metals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>7429905 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Antimony</td>
<td>7440360 mg/Kg</td>
<td>63%</td>
<td>54</td>
</tr>
<tr>
<td>Arsenic</td>
<td>7440382 mg/Kg</td>
<td>97%</td>
<td>63</td>
</tr>
<tr>
<td>Barium</td>
<td>7440393 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Beryllium</td>
<td>7440417 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Cadmium</td>
<td>7440439 mg/Kg</td>
<td>86%</td>
<td>63</td>
</tr>
<tr>
<td>Calcium</td>
<td>7440702 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Chromium</td>
<td>7440473 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Cobalt</td>
<td>7440484 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Copper</td>
<td>7440508 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Iron</td>
<td>7439896 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Lead</td>
<td>7439921 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Magnesium</td>
<td>7439954 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Manganese</td>
<td>7439965 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Mercury</td>
<td>7439976 mg/Kg</td>
<td>68%</td>
<td>63</td>
</tr>
<tr>
<td>Nickel</td>
<td>7440020 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Potassium</td>
<td>7440097 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Selenium</td>
<td>7782492 mg/Kg</td>
<td>26%</td>
<td>19</td>
</tr>
<tr>
<td>Silver</td>
<td>7440224 mg/Kg</td>
<td>#VALUE!</td>
<td>63</td>
</tr>
<tr>
<td>Sodium</td>
<td>7440235 mg/Kg</td>
<td>89%</td>
<td>63</td>
</tr>
<tr>
<td>Thallium</td>
<td>7440280 mg/Kg</td>
<td>5%</td>
<td>63</td>
</tr>
<tr>
<td>Uranium</td>
<td>7440611 mg/Kg</td>
<td>27%</td>
<td>63</td>
</tr>
<tr>
<td>Vanadium</td>
<td>7440622 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Zinc</td>
<td>7440666 mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
</tbody>
</table>

CLP TCL PAH

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methynaphthalene</td>
<td>91576 µg/Kg</td>
<td>35%</td>
<td>63</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>83329 µg/Kg</td>
<td>11%</td>
<td>63</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208968 µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Anthracene</td>
<td>120127 µg/Kg</td>
<td>13%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>56553 µg/Kg</td>
<td>30%</td>
<td>63</td>
</tr>
<tr>
<td>Station ID:</td>
<td>Date Collected:</td>
<td>Sample Type:</td>
<td>Elevation:</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RM690B2</td>
<td>13-Apr-05 Beach Composite</td>
<td>Subsample 1274</td>
<td>4.0 U 5.0 U 4.0 U 0.40 J 0.60 J 4.0 U 4.0 U</td>
</tr>
<tr>
<td>RM690B3</td>
<td>13-Apr-05 Beach Composite</td>
<td>Subsample 1289</td>
<td>4.0 U 0.40 J 4.0 U 0.40 J 0.80 J 4.0 U 4.0 U</td>
</tr>
<tr>
<td>RM697B1</td>
<td>13-Apr-05 Beach Composite</td>
<td>Subsample 1284</td>
<td>4.0 U 5.0 U 4.0 U 0.40 J 0.60 J 4.0 U 4.0 U</td>
</tr>
<tr>
<td>RM697B2</td>
<td>13-Apr-05 Beach Composite</td>
<td>Subsample 1282</td>
<td>4.0 U 0.40 J 4.0 U 0.40 J 0.80 J 0.20 J 0.20 J</td>
</tr>
<tr>
<td>RM697B3</td>
<td>13-Apr-05 Beach Composite</td>
<td>Subsample 1277</td>
<td>4.0 U 5.0 U 4.0 U 6.0 U 7.0 U 4.0 U 4.0 U</td>
</tr>
<tr>
<td>RM700B1c</td>
<td>12-Apr-05 Beach Composite</td>
<td>Subsample 1285</td>
<td>4.0 U 0.40 J 0.40 J 4.0 U 0.40 J 0.80 J 0.20 J</td>
</tr>
<tr>
<td>RM700B1L</td>
<td>12-Apr-05 Beach Composite</td>
<td>Subsample 1288</td>
<td>4.0 U 0.40 J 4.0 U 0.40 J 0.80 J 0.20 J 0.20 J</td>
</tr>
</tbody>
</table>

Analyte	**CAS**	**Units**	**Frequency of Detection**	**Number of Samples**
Benzo(a)pyrene | 50328 | µg/Kg | 24% | 63
Benzo(b)fluoranthene | 205992 | µg/Kg | 24% | 63
Benzo(g,h,i)perylene | 191242 | µg/Kg | 32% | 63
Benzo(k)fluoranthene | 207089 | µg/Kg | 14% | 63
Chrysene | 218019 | µg/Kg | 54% | 63
Dibenzo(a,h)anthracene | 53703 | µg/Kg | 17% | 63
Dibenzo[def]chrysene | 132649 | µg/Kg | 22% | 63
Fluoranthene | 206440 | µg/Kg | 48% | 63
Fluorene | 86737 | µg/Kg | 14% | 63
Indeno[1,2,3-cd]pyrene | 193395 | µg/Kg | 25% | 63
Naphthalene | 91203 | µg/Kg | 16% | 63
Phenanthen | 85018 | µg/Kg | 44% | 63
Phenanthrene | 129000 | µg/Kg | 48% | 63
Pyrene | 12674112 | µg/Kg | 0% | 63
PCB-1016 | 12674112 | µg/Kg | 0% | 63
PCB-1221 | 11104282 | µg/Kg | 0% | 63
PCB-1232 | 11141165 | µg/Kg | 0% | 63
PCB-1242 | 53469219 | µg/Kg | 0% | 63
PCB-1248 | 12672296 | µg/Kg | 0% | 63
PCB-1254 | 11097691 | µg/Kg | 0% | 63
PCB-1260 | 11096825 | µg/Kg | 0% | 63
Pyrene | 53191 | µg/Kg | 0% | 63
2,4'-DDD | 3424826 | µg/Kg | 5% | 63
2,4'-DDE | 789026 | µg/Kg | 11% | 63
2,4'-DDT | 72548 | µg/Kg | 2% | 63
4,4'-DDD | 72559 | µg/Kg | 11% | 63
Aldrin | 309002 | µg/Kg | 0% | 63
alpha-BHC | 319846 | µg/Kg | 2% | 63
alpha-Chlordane | 5103719 | µg/Kg | 0% | 63
beta-BHC | 319857 | µg/Kg | 0% | 63
cis-Nonachlor | 5103731 | µg/Kg | 0% | 63
<table>
<thead>
<tr>
<th>Station ID:</th>
<th>RM690B2</th>
<th>RM690B3</th>
<th>RM697B1</th>
<th>RM697B2</th>
<th>RM697B3</th>
<th>RM700B1c</th>
<th>RM700B1L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Collected:</td>
<td>13-Apr-05</td>
<td>13-Apr-05</td>
<td>13-Apr-05</td>
<td>13-Apr-05</td>
<td>13-Apr-05</td>
<td>12-Apr-05</td>
<td>12-Apr-05</td>
</tr>
<tr>
<td>Sample Type:</td>
<td>Beach Subsample Composite</td>
<td>Beach Sample</td>
<td>Beach Sample</td>
</tr>
<tr>
<td>Elevation:</td>
<td>1274</td>
<td>1269</td>
<td>1284</td>
<td>1282</td>
<td>1277</td>
<td>1285</td>
<td>1288</td>
</tr>
<tr>
<td>Analyte</td>
<td>CAS</td>
<td>Units</td>
<td>Frequency of Detection</td>
<td>Number of Samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>------------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>delta-BHC</td>
<td>319868</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>0.35 U</td>
<td>0.41 U</td>
<td>0.35 U</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>60571</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>0.72 U</td>
<td>0.83 U</td>
<td>0.70 U</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>959988</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>0.35 U</td>
<td>0.41 U</td>
<td>0.35 U</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>33213659</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>0.72 U</td>
<td>0.83 U</td>
<td>0.70 U</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>1031078</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>0.72 U</td>
<td>0.83 U</td>
<td>0.70 U</td>
</tr>
<tr>
<td>Endrin</td>
<td>72208</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>0.72 U</td>
<td>0.83 U</td>
<td>0.70 U</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>7421934</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>0.72 U</td>
<td>0.83 U</td>
<td>0.70 U</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>53494705</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>0.72 U</td>
<td>0.83 U</td>
<td>0.70 U</td>
</tr>
<tr>
<td>gamma-BHC (Lindane)</td>
<td>58899</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>0.35 U</td>
<td>0.41 U</td>
<td>0.35 U</td>
</tr>
<tr>
<td>gamma-Chlordane</td>
<td>5566347</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>0.35 U</td>
<td>0.41 U</td>
<td>0.35 U</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>76448</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>0.35 U</td>
<td>0.41 U</td>
<td>0.35 U</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>1024573</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>0.35 U</td>
<td>0.41 U</td>
<td>0.35 U</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>118741</td>
<td>µg/Kg</td>
<td>6%</td>
<td>63</td>
<td>0.35 U</td>
<td>0.41 U</td>
<td>0.092 J</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>87683</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>0.35 U</td>
<td>0.41 U</td>
<td>0.35 U</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>72435</td>
<td>µg/Kg</td>
<td>5%</td>
<td>63</td>
<td>3.6 U</td>
<td>4.1 U</td>
<td>3.5 U</td>
</tr>
<tr>
<td>Oxychlordane</td>
<td>27304138</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>0.35 U</td>
<td>0.41 U</td>
<td>0.35 U</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>8001352</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>35 U</td>
<td>41 U</td>
<td>35 U</td>
</tr>
<tr>
<td>trans-Nonachlor</td>
<td>39765805</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>0.35 U</td>
<td>0.41 U</td>
<td>0.35 U</td>
</tr>
</tbody>
</table>

CLP TCL SVOC

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1'-Biphenyl</td>
<td>92524</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>120821</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>95501</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>541731</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>106467</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,2'-oxybis(1-chloropropane)</td>
<td>108601</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>95954</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>88062</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>120832</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>105679</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>51285</td>
<td>µg/Kg</td>
<td>0%</td>
<td>53</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>121142</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>606202</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>91587</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event

Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13-Apr-05</td>
<td>Beach</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subsample</td>
<td>Composite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1274</td>
<td>1259</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1284</td>
<td>1282</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1277</td>
<td>1285</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1288</td>
<td></td>
</tr>
</tbody>
</table>

Frequency of Detection and Number of Samples

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Chlorophenol</td>
<td>95578</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>2-Methylphenol</td>
<td>95487</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>2-Nitroaniline</td>
<td>88744</td>
<td>µg/Kg</td>
<td>0% 63 220 U 260 U 220 U 280 U 360 U 210 U 220 U</td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>88755</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>3,3’-Dichlorobenzidine</td>
<td>91941</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>3-Nitroaniline</td>
<td>99092</td>
<td>µg/Kg</td>
<td>0% 63 220 U 260 U 220 U 280 U 360 U 210 U 220 U</td>
</tr>
<tr>
<td>4,6-Dinitro-2-methylphenol</td>
<td>534521</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>4-Bromophenyl-phenylether</td>
<td>101553</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>59507</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td>106478</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>4-Chlorophenyl-phenyl ether</td>
<td>7005723</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>106445</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>4-Nitroaniline</td>
<td>100016</td>
<td>µg/Kg</td>
<td>0% 63 220 U 260 U 220 U 280 U 360 U 210 U 220 U</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>100027</td>
<td>µg/Kg</td>
<td>0% 63 220 U 260 U 220 U 280 U 360 U 210 U 220 U</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>98862</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Atrazine</td>
<td>1912249</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>100527</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>65850</td>
<td>µg/Kg</td>
<td>0% 46 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>100516</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>bis(2-Chloroethoxy)methane</td>
<td>111911</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)jether</td>
<td>111444</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl)phthalate</td>
<td>117817</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td>85687</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Caprolactam</td>
<td>105602</td>
<td>µg/Kg</td>
<td>3% 63 88 U 150 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Carbazole</td>
<td>86748</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>84742</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Di-n-octylphthalate</td>
<td>117840</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>84662</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Dimethyl phthalate</td>
<td>131113</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>67721</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Isophorone</td>
<td>78591</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>N-Nitrosodi-n-propylamine</td>
<td>621647</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td>86306</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>98953</td>
<td>µg/Kg</td>
<td>0% 63 88 U 100 U 87 U 110 U 140 U 85 U 88 U</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
<th>Analyte CAS Units</th>
<th>Analyte Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RM690B2 13-Apr-05</td>
<td>Subsample Composite</td>
<td>1274</td>
<td>0%</td>
<td>63</td>
<td>µg/Kg</td>
<td>Pentachlorophenol 87865 pg/g</td>
</tr>
<tr>
<td></td>
<td>RM690B3 13-Apr-05</td>
<td>Subsample Composite</td>
<td>1269</td>
<td>0%</td>
<td>63</td>
<td>µg/Kg</td>
<td>Perchlorocyclopentadiene 77474 pg/g</td>
</tr>
<tr>
<td></td>
<td>RM697B1 13-Apr-05</td>
<td>Subsample Composite</td>
<td>1284</td>
<td>0%</td>
<td>63</td>
<td>µg/Kg</td>
<td>Phenol 108952 pg/g</td>
</tr>
<tr>
<td></td>
<td>RM697B2 13-Apr-05</td>
<td>Subsample Composite</td>
<td>1282</td>
<td>0%</td>
<td>63</td>
<td>µg/Kg</td>
<td>1,2,3,4,6,7,8-Heptachlorodibenzodioxin 35822469 pg/g</td>
</tr>
<tr>
<td></td>
<td>RM697B3 13-Apr-05</td>
<td>Subsample Composite</td>
<td>1277</td>
<td>0%</td>
<td>63</td>
<td>µg/Kg</td>
<td>1,2,3,4,6,7,8-Heptachlorodibenzofuran 67562394 pg/g</td>
</tr>
<tr>
<td></td>
<td>RM700B1c 12-Apr-05</td>
<td>Subsample Composite</td>
<td>1285</td>
<td>0%</td>
<td>63</td>
<td>µg/Kg</td>
<td>1,2,3,4,6,7,8-Hexachlorodibenzodioxin 55673897 pg/g</td>
</tr>
<tr>
<td></td>
<td>RM700B1L 12-Apr-05</td>
<td>Subsample Composite</td>
<td>1288</td>
<td>0%</td>
<td>63</td>
<td>µg/Kg</td>
<td>1,2,3,4,6,7,8-Hexachlorodibenzofuran 70648269 pg/g</td>
</tr>
</tbody>
</table>

Dioxins and Furans

<table>
<thead>
<tr>
<th>Analyte CAS Units</th>
<th>Analyte Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzodioxin 35822469 pg/g</td>
<td>47% 1.0 U 0.47 U 4.9 8.6</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzofuran 67562394 pg/g</td>
<td>47% 0.053 U 0.07 U 0.12 J 0.18 J</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8,9-Heptachlorodibenzofuran 55673897 pg/g</td>
<td>0% 0.078 U 0.054 U 0.062 J 0.21 U</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Hexachlorodibenzodioxin 39227286 pg/g</td>
<td>39% 0.11 U 0.070 J 0.12 J 0.18 J</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Hexachlorodibenzofuran 70648269 pg/g</td>
<td>11% 0.054 U 0.07 U 0.14 J 0.24 J</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexachlorodibenzodioxin 57633857 pg/g</td>
<td>44% 0.11 J 0.14 J 0.078 U 0.37 J</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexachlorodibenzofuran 75117449 pg/g</td>
<td>19% 0.055 U 0.051 U 0.047 U 0.10 J</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzodioxin 19408743 pg/g</td>
<td>42% 0.076 J 0.082 J 0.26 U 0.51 U</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzofuran 72918219 pg/g</td>
<td>6% 0.083 U 0.076 U 0.07 U 0.21 U</td>
</tr>
<tr>
<td>1,2,3,7,8-Pentachlorodibenzino-p-dioxin 40321764 pg/g</td>
<td>28% 0.058 U 0.052 U 0.044 U 0.17 U</td>
</tr>
<tr>
<td>1,2,3,7,8-Pentachlorodibenzodibenzofuran 57117416 pg/g</td>
<td>19% 0.038 U 0.045 U 0.023 U 0.16 J</td>
</tr>
<tr>
<td>2,3,4,6,7,8-Hexachlorodibenzofuran 60851345 pg/g</td>
<td>17% 0.056 U 0.045 J 0.047 U 0.11 U</td>
</tr>
<tr>
<td>2,3,4,7,8-Pentachlorodibenzofuran 57117314 pg/g</td>
<td>33% 0.045 U 0.065 U 0.028 J 0.24 J</td>
</tr>
<tr>
<td>2,3,7,8-Tetrachlorodibenzodioxin 1746016 pg/g</td>
<td>19% 0.073 U 0.047 U 0.039 U 0.15 J</td>
</tr>
<tr>
<td>2,3,7,8-Tetrachlorodibenzofuran 51207319 pg/g</td>
<td>64% 1.2 1.5 0.30 J 8.7</td>
</tr>
<tr>
<td>Heptachlorodibenzodioxin (Total) 37871004 pg/g</td>
<td>83% 2.1 J 4.3 J 1.0 U 11 J</td>
</tr>
<tr>
<td>Heptachlorodibenzofuran (Total) 38998753 pg/g</td>
<td>72% 0.43 U 0.97 J 0.085 U 2.3 J</td>
</tr>
<tr>
<td>Hexachlorodibenzodioxin (Total) 34465468 pg/g</td>
<td>81% 0.37 0.62 0.076 U 3.6</td>
</tr>
<tr>
<td>Hexachlorodibenzofuran (Total) 55864941 pg/g</td>
<td>86% 0.061 U 0.49 0.044 J 1.5</td>
</tr>
<tr>
<td>Octachlorodibenzodioxin 3268879 pg/g</td>
<td>58% 7.8 U 15 3.2 U 33</td>
</tr>
<tr>
<td>Octachlorodibenzofuran 39001020 pg/g</td>
<td>58% 0.68 U 0.98 J 0.16 U 2.1 J</td>
</tr>
<tr>
<td>Pentachlorodibenzodioxin (Total) 36088229 pg/g</td>
<td>53% 0.058 U 0.16 0.044 U 0.54</td>
</tr>
<tr>
<td>Pentachlorodibenzofuran (Total) 30402154 pg/g</td>
<td>64% 0.12 0.46 0.067 U 1.9 J</td>
</tr>
<tr>
<td>TEQ WHO-98 TEQ pg/g</td>
<td>92% 0.22 0.20 0.030 J 1.3</td>
</tr>
<tr>
<td>Tetrachlorodibenzodioxin (Total) 41903575 pg/g</td>
<td>42% 0.073 U 0.18 0.039 U 0.40</td>
</tr>
<tr>
<td>Tetrachlorodibenzofuran (Total) 55722275 pg/g</td>
<td>81% 1.8 J 2.7 J 0.45 J 18 J</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RM700B1R</td>
<td>RM700B2c</td>
<td>RM700B2L</td>
</tr>
<tr>
<td></td>
<td>12-Apr-05</td>
<td>12-Apr-05</td>
<td>12-Apr-05</td>
</tr>
<tr>
<td>Beach Subsample</td>
<td>Beach Subsample</td>
<td>Beach Subsample</td>
<td>Beach Subsample</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1282</td>
<td>1274</td>
</tr>
</tbody>
</table>

Analyte | CAS | Units | Frequency of Detection | Number of Samples |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total organic carbon</td>
<td>E-10195</td>
<td>mg/Kg</td>
<td>98%</td>
<td>63</td>
</tr>
<tr>
<td>Aluminum</td>
<td>7429905</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Antimony</td>
<td>7440360</td>
<td>mg/Kg</td>
<td>63%</td>
<td>54</td>
</tr>
<tr>
<td>Arsenic</td>
<td>7440382</td>
<td>mg/Kg</td>
<td>97%</td>
<td>63</td>
</tr>
<tr>
<td>Barium</td>
<td>7440393</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Beryllium</td>
<td>7440417</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Cadmium</td>
<td>7440439</td>
<td>mg/Kg</td>
<td>86%</td>
<td>63</td>
</tr>
<tr>
<td>Calcium</td>
<td>7440702</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Chromium</td>
<td>7440473</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Cobalt</td>
<td>7440484</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Copper</td>
<td>7440508</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Iron</td>
<td>7439896</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Lead</td>
<td>7439921</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Magnesium</td>
<td>7439954</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Manganese</td>
<td>7439965</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Mercury</td>
<td>7439976</td>
<td>mg/Kg</td>
<td>68%</td>
<td>63</td>
</tr>
<tr>
<td>Nickel</td>
<td>7440020</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Potassium</td>
<td>7440097</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Selenium</td>
<td>7782492</td>
<td>mg/Kg</td>
<td>26%</td>
<td>19</td>
</tr>
<tr>
<td>Silver</td>
<td>7440224</td>
<td>mg/Kg</td>
<td>#VALUE!</td>
<td>63</td>
</tr>
<tr>
<td>Sodium</td>
<td>7440235</td>
<td>mg/Kg</td>
<td>89%</td>
<td>63</td>
</tr>
<tr>
<td>Thallium</td>
<td>7440280</td>
<td>mg/Kg</td>
<td>5%</td>
<td>63</td>
</tr>
<tr>
<td>Uranium</td>
<td>7440611</td>
<td>mg/Kg</td>
<td>27%</td>
<td>63</td>
</tr>
<tr>
<td>Vanadium</td>
<td>7440622</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Zinc</td>
<td>7440666</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
</tbody>
</table>

CLP TCL PAH

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methylnaphthalene</td>
<td>91576</td>
<td>µg/Kg</td>
<td>35%</td>
<td>63</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>83329</td>
<td>µg/Kg</td>
<td>11%</td>
<td>63</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208988</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Anthracene</td>
<td>120127</td>
<td>µg/Kg</td>
<td>13%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>56553</td>
<td>µg/Kg</td>
<td>30%</td>
<td>63</td>
</tr>
</tbody>
</table>
TABLE B-1

Beach Data Listing--UCR 2005 Sediment Sampling Event

Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RM700B1R 12-Apr-05</td>
<td>Beach Subsample</td>
<td>1282</td>
</tr>
<tr>
<td></td>
<td>RM700B2c 12-Apr-05</td>
<td>Beach Subsample</td>
<td>1274</td>
</tr>
<tr>
<td></td>
<td>RM700B2L 12-Apr-05</td>
<td>Beach Subsample</td>
<td>1281</td>
</tr>
<tr>
<td></td>
<td>RM700B2R 12-Apr-05</td>
<td>Beach Subsample</td>
<td>1269</td>
</tr>
<tr>
<td></td>
<td>RM700B3c 12-Apr-05</td>
<td>Beach Subsample</td>
<td>1259</td>
</tr>
<tr>
<td></td>
<td>RM700B3L 12-Apr-05</td>
<td>Beach Subsample</td>
<td>1255</td>
</tr>
<tr>
<td></td>
<td>RM700B3R 12-Apr-05</td>
<td>Beach Subsample</td>
<td>1255</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyrene</td>
<td>50328</td>
<td>µg/Kg</td>
<td>24%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>205992</td>
<td>µg/Kg</td>
<td>24%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>191242</td>
<td>µg/Kg</td>
<td>32%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>207089</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Chrysene</td>
<td>218019</td>
<td>µg/Kg</td>
<td>54%</td>
<td>63</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>53703</td>
<td>µg/Kg</td>
<td>17%</td>
<td>63</td>
</tr>
<tr>
<td>Dibenzo[fluor][ou]aran</td>
<td>132649</td>
<td>µg/Kg</td>
<td>22%</td>
<td>63</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>206440</td>
<td>µg/Kg</td>
<td>48%</td>
<td>63</td>
</tr>
<tr>
<td>Fluorene</td>
<td>86737</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>193395</td>
<td>µg/Kg</td>
<td>25%</td>
<td>63</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91203</td>
<td>µg/Kg</td>
<td>16%</td>
<td>63</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>85018</td>
<td>µg/Kg</td>
<td>44%</td>
<td>63</td>
</tr>
<tr>
<td>Pyrene</td>
<td>129000</td>
<td>µg/Kg</td>
<td>48%</td>
<td>63</td>
</tr>
</tbody>
</table>

CLP TCL PCBs

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1016</td>
<td>12674112</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>11104282</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>11141165</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>53469219</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>12672296</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>11097691</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>11096825</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>

CLP TCL Pesticides

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4'-DDD</td>
<td>53190</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4'-DDE</td>
<td>3424826</td>
<td>µg/Kg</td>
<td>5%</td>
<td>63</td>
</tr>
<tr>
<td>2,4'-DDT</td>
<td>789026</td>
<td>µg/Kg</td>
<td>11%</td>
<td>63</td>
</tr>
<tr>
<td>4,4'-DDD</td>
<td>72548</td>
<td>µg/Kg</td>
<td>2%</td>
<td>63</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>72559</td>
<td>µg/Kg</td>
<td>11%</td>
<td>63</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>50293</td>
<td>µg/Kg</td>
<td>33%</td>
<td>63</td>
</tr>
<tr>
<td>Aldrin</td>
<td>309002</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>alpha-BHC</td>
<td>319846</td>
<td>µg/Kg</td>
<td>2%</td>
<td>63</td>
</tr>
<tr>
<td>alpha-Chlordane</td>
<td>5103719</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>beta-BHC</td>
<td>319857</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>cis-Nonachlor</td>
<td>5103731</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta-BHC</td>
<td>319868</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>60571</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>959988</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>33213659</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>1031078</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endrin</td>
<td>72208</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>7421934</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>53494705</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>gamma-BHC (Lindane)</td>
<td>58899</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>gamma-Chlordane</td>
<td>5566347</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>76448</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>1024573</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>118741</td>
<td>µg/Kg</td>
<td>6%</td>
<td>63</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>87683</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>72435</td>
<td>µg/Kg</td>
<td>5%</td>
<td>63</td>
</tr>
<tr>
<td>Oxychlordan</td>
<td>27304138</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>8001352</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>trans-Nonachlor</td>
<td>39765805</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>

CLP TCL SVOC

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1'-Biphenyl</td>
<td>92524</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>120821</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>95501</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>541731</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>106467</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,2'-oxybis(1-chloropropane)</td>
<td>108601</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>95954</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>88062</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>120832</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>105679</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>51285</td>
<td>µg/Kg</td>
<td>0%</td>
<td>53</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>121142</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>606202</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>91587</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>
TABLE B-1

Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RM700B1R</td>
<td>RM700B2c</td>
<td>RM700B2L</td>
</tr>
<tr>
<td></td>
<td>12-Apr-05</td>
<td>12-Apr-05</td>
<td>12-Apr-05</td>
</tr>
<tr>
<td>Beach Subsample</td>
<td>Beach Subsample</td>
<td>Beach Subsample</td>
<td>Beach Subsample</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Chlorophenol</td>
<td>95578</td>
<td>µg/Kg</td>
<td>0%</td>
<td>1282</td>
</tr>
<tr>
<td>2-Methylphenol</td>
<td>95487</td>
<td>µg/Kg</td>
<td>0%</td>
<td>1274</td>
</tr>
<tr>
<td>2-Nitroaniline</td>
<td>88744</td>
<td>µg/Kg</td>
<td>0%</td>
<td>1281</td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>88755</td>
<td>µg/Kg</td>
<td>0%</td>
<td>1269</td>
</tr>
<tr>
<td>3,3’-Dichlorobenzidine</td>
<td>91941</td>
<td>µg/Kg</td>
<td>0%</td>
<td>1259</td>
</tr>
<tr>
<td>3-Nitroaniline</td>
<td>99092</td>
<td>µg/Kg</td>
<td>0%</td>
<td>1255</td>
</tr>
<tr>
<td>4,6-Dinitro-2-methylphenol</td>
<td>534521</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>4-Bromophenyl-phenylether</td>
<td>101553</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>59507</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td>106478</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>4-Chlorophenyl-phenyl ether</td>
<td>7005723</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>106445</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>4-Nitroaniline</td>
<td>100016</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>100027</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Acetophenone</td>
<td>98862</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>1912249</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>100527</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>65850</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>100516</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Bis(2-Chloroethoxy)methane</td>
<td>111911</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Bis(2-chloroethyl)ether</td>
<td>111444</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Bis(2-ethylhexyl)phthalate</td>
<td>117817</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td>85687</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Caprolactam</td>
<td>105602</td>
<td>µg/Kg</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Carbazole</td>
<td>86748</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>84742</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Di-n-octylphthalate</td>
<td>117840</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>84662</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Dimethyl phthalate</td>
<td>131113</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>67721</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Isophorone</td>
<td>78591</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>N-Nitrosodi-n-propylamine</td>
<td>621647</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td>86306</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>99853</td>
<td>µg/Kg</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

CVOIPAL UCR 2005 SD Beach Data.xls\Beach
07/26/2006 9:39 AM
Page 29 of 45
<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM700B1R</td>
<td>12-Apr-05</td>
<td>Beach Subsample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM700B2c</td>
<td>12-Apr-05</td>
<td>Beach Subsample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM700B2L</td>
<td>12-Apr-05</td>
<td>Beach Subsample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM700B2R</td>
<td>12-Apr-05</td>
<td>Beach Subsample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM700B3c</td>
<td>12-Apr-05</td>
<td>Beach Subsample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM700B3L</td>
<td>12-Apr-05</td>
<td>Beach Subsample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RM700B3R</td>
<td>12-Apr-05</td>
<td>Beach Subsample</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beach Data Listing--UCR 2005 Sediment Sampling Event

Upper Columbia River RI/FS

Analyte

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentachlorophenol</td>
<td>87865</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Perchlorocyclopentadiene</td>
<td>77474</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Phenol</td>
<td>108952</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>

Dioxins and Furans

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzo-dioxin</td>
<td>35822469</td>
<td>pg/g</td>
<td>47%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzofuran</td>
<td>67562394</td>
<td>pg/g</td>
<td>58%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,4,7,8-Hexachlorodibenzo-dioxin</td>
<td>55673897</td>
<td>pg/g</td>
<td>3%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,4,7,8-Hexachlorodibenzofuran</td>
<td>39227286</td>
<td>pg/g</td>
<td>39%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,4,7,8-Hexachlorodibenzo-dioxin</td>
<td>70648269</td>
<td>pg/g</td>
<td>11%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,5,6,7,8-Hexachlorodibenzo-dioxin</td>
<td>57653857</td>
<td>pg/g</td>
<td>44%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,5,6,7,8-Hexachlorodibenzofuran</td>
<td>7117449</td>
<td>pg/g</td>
<td>19%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzo-dioxin</td>
<td>19408743</td>
<td>pg/g</td>
<td>42%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzofuran</td>
<td>72918219</td>
<td>pg/g</td>
<td>6%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8-Pentachlorodibenzo-p-dioxin</td>
<td>40321764</td>
<td>pg/g</td>
<td>28%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8-Pentachlorodibenzofuran</td>
<td>57117416</td>
<td>pg/g</td>
<td>19%</td>
<td>36</td>
</tr>
<tr>
<td>2,3,4,6,7,8-Hexachlorodibenzofuran</td>
<td>60851345</td>
<td>pg/g</td>
<td>17%</td>
<td>36</td>
</tr>
<tr>
<td>2,3,4,7,8-Pentachlorodibenzofuran</td>
<td>57117314</td>
<td>pg/g</td>
<td>33%</td>
<td>36</td>
</tr>
<tr>
<td>2,3,7,8-Tetrachlorodibenzo-dioxin</td>
<td>1746016</td>
<td>pg/g</td>
<td>19%</td>
<td>36</td>
</tr>
<tr>
<td>2,3,7,8-Tetrachlorodibenzofuran</td>
<td>51207319</td>
<td>pg/g</td>
<td>64%</td>
<td>36</td>
</tr>
<tr>
<td>Heptachlorodibenzodioxin (Total)</td>
<td>3781004</td>
<td>pg/g</td>
<td>83%</td>
<td>36</td>
</tr>
<tr>
<td>Heptachlorodibenzofuran (Total)</td>
<td>38998753</td>
<td>pg/g</td>
<td>72%</td>
<td>36</td>
</tr>
<tr>
<td>Hexachlorodibenzodioxin (Total)</td>
<td>34654548</td>
<td>pg/g</td>
<td>81%</td>
<td>36</td>
</tr>
<tr>
<td>Hexachlorodibenzofuran (Total)</td>
<td>55684941</td>
<td>pg/g</td>
<td>86%</td>
<td>36</td>
</tr>
<tr>
<td>Octachlorodibenzodioxin</td>
<td>3268879</td>
<td>pg/g</td>
<td>58%</td>
<td>36</td>
</tr>
<tr>
<td>Octachlorodibenzofuran</td>
<td>39001020</td>
<td>pg/g</td>
<td>58%</td>
<td>36</td>
</tr>
<tr>
<td>Pentachlorodibenzodioxin (Total)</td>
<td>36088229</td>
<td>pg/g</td>
<td>53%</td>
<td>36</td>
</tr>
<tr>
<td>Pentachlorodibenzofuran (Total)</td>
<td>30402154</td>
<td>pg/g</td>
<td>64%</td>
<td>36</td>
</tr>
<tr>
<td>TEQ WHO-98</td>
<td>9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachlorodibenzodioxin (Total)</td>
<td>41903575</td>
<td>pg/g</td>
<td>42%</td>
<td>36</td>
</tr>
<tr>
<td>Tetrachlorodibenzofuran (Total)</td>
<td>55722275</td>
<td>pg/g</td>
<td>81%</td>
<td>36</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing—UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Elevation:</th>
<th>Analyte CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM708B1</td>
<td>07-Apr-05</td>
<td>415.1</td>
<td>Total organic carbon</td>
<td>E-10195</td>
<td>mg/Kg</td>
<td>98%</td>
</tr>
<tr>
<td>RM708B2</td>
<td>07-Apr-05</td>
<td>415.1</td>
<td>Aluminum</td>
<td>7429905</td>
<td>mg/Kg</td>
<td>100%</td>
</tr>
<tr>
<td>RM708B3</td>
<td>07-Apr-05</td>
<td>415.1</td>
<td>Antimony</td>
<td>7440360</td>
<td>mg/Kg</td>
<td>63%</td>
</tr>
<tr>
<td>RM718B1</td>
<td>06-Apr-05</td>
<td>415.1</td>
<td>Arsenic</td>
<td>7440382</td>
<td>mg/Kg</td>
<td>97%</td>
</tr>
<tr>
<td>RM718B2</td>
<td>06-Apr-05</td>
<td>415.1</td>
<td>Barium</td>
<td>7440393</td>
<td>mg/Kg</td>
<td>100%</td>
</tr>
<tr>
<td>RM718B3</td>
<td>06-Apr-05</td>
<td>415.1</td>
<td>Beryllium</td>
<td>7440417</td>
<td>mg/Kg</td>
<td>100%</td>
</tr>
<tr>
<td>RM729B1</td>
<td>08-Apr-05</td>
<td>415.1</td>
<td>Cadmium</td>
<td>7440439</td>
<td>mg/Kg</td>
<td>86%</td>
</tr>
<tr>
<td>CLP TAL TotMetals</td>
<td>CLP TCL PAH</td>
<td>415.1</td>
<td>Calcium</td>
<td>7440702</td>
<td>mg/Kg</td>
<td>100%</td>
</tr>
<tr>
<td>Cobalt</td>
<td>7440473</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Copper</td>
<td>7440484</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>5.2</td>
<td>7.1</td>
</tr>
<tr>
<td>Iron</td>
<td>7440508</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>14</td>
<td>58</td>
</tr>
<tr>
<td>Lead</td>
<td>7439896</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>12,700</td>
<td>23,400</td>
</tr>
<tr>
<td>Magnesium</td>
<td>7439954</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>4,220</td>
<td>5,390</td>
</tr>
<tr>
<td>Manganese</td>
<td>7439965</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>170</td>
<td>246</td>
</tr>
<tr>
<td>Mercury</td>
<td>7439976</td>
<td>mg/Kg</td>
<td>68%</td>
<td>63</td>
<td>0.078 J</td>
<td>0.47</td>
</tr>
<tr>
<td>Nickel</td>
<td>7440020</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Potassium</td>
<td>7440097</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>1,070</td>
<td>1,020</td>
</tr>
<tr>
<td>Selenium</td>
<td>7782492</td>
<td>mg/Kg</td>
<td>26%</td>
<td>19</td>
<td>3.6 U</td>
<td>4.3 J</td>
</tr>
<tr>
<td>Silver</td>
<td>7440224</td>
<td>mg/Kg</td>
<td>#VALUE!</td>
<td>63</td>
<td>1.0 U</td>
<td>1.3 U</td>
</tr>
<tr>
<td>Sodium</td>
<td>7440235</td>
<td>mg/Kg</td>
<td>89%</td>
<td>63</td>
<td>96 J</td>
<td>134 J</td>
</tr>
<tr>
<td>Thallium</td>
<td>7440280</td>
<td>mg/Kg</td>
<td>5%</td>
<td>63</td>
<td>2.6 U</td>
<td>3.2 U</td>
</tr>
<tr>
<td>Uranium</td>
<td>7440611</td>
<td>mg/Kg</td>
<td>27%</td>
<td>63</td>
<td>7.5 J</td>
<td>6.7 J</td>
</tr>
<tr>
<td>Vanadium</td>
<td>7440622</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>19</td>
<td>29</td>
</tr>
<tr>
<td>Zinc</td>
<td>7440666</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td>186 J</td>
<td>620 J</td>
</tr>
</tbody>
</table>

CLP TCL PAH
- 2-Methylnaphthalene: 91576 µg/Kg 35% 63 1.0 J 30 7.0 0.40 J 4.0 J 4.0 J 0.60 J
- Acenaphthene: 83329 µg/Kg 11% 63 0.30 J 3.0 J 1.0 J 0.90 U 0.50 J 0.40 J 5.0 U
- Acenaphthylene: 208968 µg/Kg 14% 63 13 U 1.0 J 0.20 J 9.0 U 0.30 J 0.40 J 9.0
- Anthracene: 120127 µg/Kg 13% 63 13 U 3.0 J 0.50 J 3.7 U 7.0 4.6 U 7.0
- Benzo(a)anthracene: 56553 µg/Kg 30% 63 2.0 J 7.0 7.0 0.50 J 3.0 J 3.0 J 5.0 U
<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Number of Samples</th>
<th>Frequency of Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyrene</td>
<td>50328</td>
<td>µg/Kg</td>
<td>63</td>
<td>24%</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>205992</td>
<td>µg/Kg</td>
<td>63</td>
<td>24%</td>
</tr>
<tr>
<td>Benzo(ghi)perylene</td>
<td>191242</td>
<td>µg/Kg</td>
<td>63</td>
<td>32%</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>207089</td>
<td>µg/Kg</td>
<td>63</td>
<td>14%</td>
</tr>
<tr>
<td>Chrysene</td>
<td>218019</td>
<td>µg/Kg</td>
<td>63</td>
<td>54%</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>53703</td>
<td>µg/Kg</td>
<td>63</td>
<td>17%</td>
</tr>
<tr>
<td>Dibenzofuran</td>
<td>132649</td>
<td>µg/Kg</td>
<td>63</td>
<td>22%</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>206440</td>
<td>µg/Kg</td>
<td>63</td>
<td>48%</td>
</tr>
<tr>
<td>Fluorene</td>
<td>86737</td>
<td>µg/Kg</td>
<td>63</td>
<td>54%</td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>193395</td>
<td>µg/Kg</td>
<td>63</td>
<td>25%</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91203</td>
<td>µg/Kg</td>
<td>63</td>
<td>16%</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>85018</td>
<td>µg/Kg</td>
<td>63</td>
<td>44%</td>
</tr>
<tr>
<td>Pyrene</td>
<td>129000</td>
<td>µg/Kg</td>
<td>63</td>
<td>48%</td>
</tr>
</tbody>
</table>

PCBs

PCB-1016	12674112	µg/Kg	63	0.50 U	0.90 U	0.72 U	1.0 U	0.89 U	0.75 U
PCB-1221	11104282	µg/Kg	63	1.0 J	1.1 J	0.86 U	0.90 U	1.3 U	1.1 U
PCB-1232	11141165	µg/Kg	63	4.0 J	3.0 J	1.0 J	0.20 J	2.0 J	2.0 J
PCB-1242	53469219	µg/Kg	63	2.0 J	17.0 J	3.0 J	0.40 J	5.0 J	5.0 J
PCB-1248	12672296	µg/Kg	63	12 U	12 U	10 U	1.0 J	1.0 J	1.0 J
PCB-1254	11097691	µg/Kg	63	12 U	12 U	10 U	1.0 J	1.0 J	1.0 J
PCB-1260	11096825	µg/Kg	63	12 U	12 U	10 U	1.0 J	1.0 J	1.0 J

Pesticides

<p>| Aldrin | 309002 | µg/Kg | 63 | 0.50 U | 0.44 U | 0.34 U | 0.36 U | 0.50 U | 0.44 U |
| alpha-BHC | 319846 | µg/Kg | 63 | 0.50 U | 0.44 U | 0.34 U | 0.36 U | 0.50 U | 0.44 U |
| alpha-Chlordane| 5103719| µg/Kg | 63 | 0.50 U | 0.44 U | 0.34 U | 0.36 U | 0.50 U | 0.44 U |
| beta-BHC | 319857 | µg/Kg | 63 | 0.50 U | 0.44 U | 0.34 U | 0.36 U | 0.50 U | 0.44 U |
| cis-Nonachlor | 5103731| µg/Kg | 63 | 0.50 U | 0.44 U | 0.34 U | 0.36 U | 0.50 U | 0.44 U |</p>
<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta-BHC</td>
<td>319868</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>60571</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>959988</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>33213659</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>1031078</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endrin</td>
<td>72208</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>7421934</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>53494705</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>gamma-BHC (Lindane)</td>
<td>58899</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>gamma-Chlordane</td>
<td>5566347</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>76448</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>1024573</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>118741</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>87683</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>72435</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Oxychlordane</td>
<td>27304138</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>8001352</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>trans-Nonachlor</td>
<td>39765805</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,1'-Biphenyl</td>
<td>92524</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>120821</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>95501</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>541731</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>106467</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,2'-oxybis(1-chloropropane)</td>
<td>108601</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>95954</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>88062</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>120832</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>105679</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>51285</td>
<td>µg/Kg</td>
<td>0%</td>
<td>53</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>121142</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>606202</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>91587</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RM708B1 07-Apr-05</td>
</tr>
<tr>
<td></td>
<td>RM708B2 07-Apr-05</td>
</tr>
<tr>
<td></td>
<td>RM708B3 07-Apr-05</td>
</tr>
<tr>
<td></td>
<td>RM718B1 06-Apr-05</td>
</tr>
<tr>
<td></td>
<td>RM718B2 06-Apr-05</td>
</tr>
<tr>
<td></td>
<td>RM718B3 06-Apr-05</td>
</tr>
<tr>
<td></td>
<td>RM729B1 08-Apr-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Type:</th>
<th>Elevation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beach Subsample</td>
<td>Composite</td>
</tr>
<tr>
<td>1283</td>
<td>1279</td>
</tr>
<tr>
<td>1289</td>
<td>1271</td>
</tr>
<tr>
<td>1259</td>
<td>1282</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Chlorophenol</td>
<td>95578</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2-Methylphenol</td>
<td>95487</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2-Nitroaniline</td>
<td>88744</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>88755</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>3,3’-Dichlorobenzidine</td>
<td>91941</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>3-Nitroaniline</td>
<td>99092</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4,6-Dinitro-2-methylphenol</td>
<td>534521</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Bromophenyl-phenylether</td>
<td>101553</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>59507</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td>106478</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Chlorophenyl-phenyl ether</td>
<td>7005723</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>106445</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Nitroaniline</td>
<td>100016</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>100027</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>98862</td>
<td>µg/Kg</td>
<td>3%</td>
<td>63</td>
</tr>
<tr>
<td>Atrazine</td>
<td>1912249</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>100527</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>65850</td>
<td>µg/Kg</td>
<td>0%</td>
<td>46</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>100516</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>bis(2-Chloroethoxy)methane</td>
<td>111911</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)ether</td>
<td>111444</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl)phthalate</td>
<td>117817</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td>85687</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Caprolactam</td>
<td>105602</td>
<td>µg/Kg</td>
<td>3%</td>
<td>63</td>
</tr>
<tr>
<td>Carbazole</td>
<td>86748</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>84742</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Di-n-octylphthalate</td>
<td>117840</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>84662</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Dimethyl phthalate</td>
<td>131113</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>67721</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Isophorone</td>
<td>78591</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>N-Nitrosodi-n-propylamine</td>
<td>621647</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td>86306</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>98953</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>

CVOIVAL UCR 2005 SD Beach Data.xls/Beach 07/26/2006 9:39 AM
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RM708B1 07-Apr-05</td>
<td>Beach Subsample Composite 1283</td>
<td>1283</td>
</tr>
<tr>
<td></td>
<td>RM708B2 07-Apr-05</td>
<td>Beach Subsample Composite 1279</td>
<td>1279</td>
</tr>
<tr>
<td></td>
<td>RM708B3 07-Apr-05</td>
<td>Beach Subsample Composite 1279</td>
<td>1279</td>
</tr>
<tr>
<td></td>
<td>RM718B1 06-Apr-05</td>
<td>Beach Subsample Composite 1289</td>
<td>1289</td>
</tr>
<tr>
<td></td>
<td>RM718B2 06-Apr-05</td>
<td>Beach Subsample Composite 1271</td>
<td>1271</td>
</tr>
<tr>
<td></td>
<td>RM718B3 06-Apr-05</td>
<td>Beach Subsample Composite 1259</td>
<td>1259</td>
</tr>
<tr>
<td></td>
<td>RM729B1 08-Apr-05</td>
<td>Beach Subsample Composite 1282</td>
<td>1282</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Number of Detection</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentachlorophenol</td>
<td>87865 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>320 U</td>
<td>280 U</td>
</tr>
<tr>
<td>Perchlorocyclopentadiene</td>
<td>77474 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>130 U</td>
<td>110 U</td>
</tr>
<tr>
<td>Phenol</td>
<td>108952 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>130 U</td>
<td>110 U</td>
</tr>
</tbody>
</table>

Dioxins and Furans

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Number of Detection</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzodioxin</td>
<td>35822469 pg/g</td>
<td>47%</td>
<td>36</td>
<td>1.4 J</td>
<td>8.1</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzofuran</td>
<td>67562394 pg/g</td>
<td>58%</td>
<td>36</td>
<td>0.39 J</td>
<td>1.6 J</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-Heptachlorodibenzofuran</td>
<td>55673897 pg/g</td>
<td>3%</td>
<td>36</td>
<td>0.12 U</td>
<td>0.12 U</td>
</tr>
<tr>
<td>1,2,3,4,7,8-Hexachlorodibenzodioxin</td>
<td>39227286 pg/g</td>
<td>39%</td>
<td>36</td>
<td>0.076 U</td>
<td>0.15 J</td>
</tr>
<tr>
<td>1,2,3,4,7,8-Hexachlorodibenzofuran</td>
<td>70648269 pg/g</td>
<td>11%</td>
<td>36</td>
<td>0.052 U</td>
<td>0.20 U</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexachlorodibenzodioxin</td>
<td>5763857 pg/g</td>
<td>44%</td>
<td>36</td>
<td>0.097 U</td>
<td>0.59 U</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexachlorodibenzofuran</td>
<td>57117449 pg/g</td>
<td>19%</td>
<td>36</td>
<td>0.053 J</td>
<td>0.13 U</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzodioxin</td>
<td>19408743 pg/g</td>
<td>42%</td>
<td>36</td>
<td>0.075 U</td>
<td>0.45 J</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzofuran</td>
<td>72918219 pg/g</td>
<td>6%</td>
<td>36</td>
<td>0.064 U</td>
<td>0.073 U</td>
</tr>
<tr>
<td>1,2,3,7,8-Pentachlorodibenzodioxin</td>
<td>40321764 pg/g</td>
<td>28%</td>
<td>36</td>
<td>0.045 U</td>
<td>0.16 U</td>
</tr>
<tr>
<td>1,2,3,8-Pentachlorodibenzofuran</td>
<td>57117416 pg/g</td>
<td>19%</td>
<td>36</td>
<td>0.043 U</td>
<td>0.24 J</td>
</tr>
<tr>
<td>2,3,4,6,7,8-Hexachlorodibenzofuran</td>
<td>60851345 pg/g</td>
<td>17%</td>
<td>36</td>
<td>0.056 U</td>
<td>0.17 U</td>
</tr>
<tr>
<td>2,3,4,7,8-Pentachlorodibenzofuran</td>
<td>57117314 pg/g</td>
<td>33%</td>
<td>36</td>
<td>0.077 J</td>
<td>0.46 J</td>
</tr>
<tr>
<td>2,3,7,8-Tetrahlorodibenzodioxin</td>
<td>1746016 pg/g</td>
<td>19%</td>
<td>36</td>
<td>0.040 U</td>
<td>0.25 J</td>
</tr>
<tr>
<td>2,3,7,8-Tetrahlorodibenzofuran</td>
<td>51207319 pg/g</td>
<td>64%</td>
<td>36</td>
<td>1.2</td>
<td>18</td>
</tr>
<tr>
<td>Heptachlorodibenzodioxin (Total)</td>
<td>38770100 pg/g</td>
<td>83%</td>
<td>36</td>
<td>2.8</td>
<td>17</td>
</tr>
<tr>
<td>Heptachlorodibenzofuran (Total)</td>
<td>38998753 pg/g</td>
<td>72%</td>
<td>36</td>
<td>0.62 J</td>
<td>4.0 J</td>
</tr>
<tr>
<td>Hexachlorodibenzo-p-dioxin (Total)</td>
<td>34465468 pg/g</td>
<td>81%</td>
<td>36</td>
<td>0.33</td>
<td>5.6</td>
</tr>
<tr>
<td>Hexachlorodibenzofuran (Total)</td>
<td>55684941 pg/g</td>
<td>86%</td>
<td>36</td>
<td>0.49</td>
<td>2.5</td>
</tr>
<tr>
<td>Octachlorodibenzodioxin</td>
<td>3268879 pg/g</td>
<td>58%</td>
<td>36</td>
<td>10</td>
<td>55</td>
</tr>
<tr>
<td>Octachlorodibenzofuran</td>
<td>39001020 pg/g</td>
<td>58%</td>
<td>36</td>
<td>0.67 J</td>
<td>3.8</td>
</tr>
<tr>
<td>Pentachlorodibenzodioxin (Total)</td>
<td>36088229 pg/g</td>
<td>53%</td>
<td>36</td>
<td>0.045 U</td>
<td>1.1</td>
</tr>
<tr>
<td>Pentachlorodibenzofuran (Total)</td>
<td>30402154 pg/g</td>
<td>64%</td>
<td>36</td>
<td>0.53 J</td>
<td>3.0</td>
</tr>
<tr>
<td>TEQ WHO-98</td>
<td>TEQ pg/g</td>
<td>92%</td>
<td>36</td>
<td>0.28</td>
<td>2.5</td>
</tr>
<tr>
<td>Tetrachlorodibenzodioxin (Total)</td>
<td>41903575 pg/g</td>
<td>42%</td>
<td>36</td>
<td>0.040 U</td>
<td>0.77</td>
</tr>
<tr>
<td>Tetrachlorodibenzofuran (Total)</td>
<td>55722275 pg/g</td>
<td>81%</td>
<td>36</td>
<td>2.3</td>
<td>37</td>
</tr>
<tr>
<td>Analyte</td>
<td>CAS</td>
<td>Units</td>
<td>Frequency of Detection</td>
<td>Number of Samples</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>------------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Total organic carbon</td>
<td>E-10195</td>
<td>mg/Kg</td>
<td>98%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>CLP TAL TotMetals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>7429905</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>7440360</td>
<td>mg/Kg</td>
<td>63%</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>7440382</td>
<td>mg/Kg</td>
<td>97%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>7440393</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>7440417</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>7440439</td>
<td>mg/Kg</td>
<td>86%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>7440702</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>7440473</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>7440484</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>7440508</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>7439896</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>7439921</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>7439954</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>7439965</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>7439976</td>
<td>mg/Kg</td>
<td>68%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>7440020</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>7440097</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>7782492</td>
<td>mg/Kg</td>
<td>26%</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>7440224</td>
<td>mg/Kg</td>
<td>#VALUE!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>7440235</td>
<td>mg/Kg</td>
<td>89%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td>7440280</td>
<td>mg/Kg</td>
<td>5%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>7440611</td>
<td>mg/Kg</td>
<td>27%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>7440622</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>7440666</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>CLP TCL PAH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>91576</td>
<td>µg/Kg</td>
<td>35%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>83329</td>
<td>µg/Kg</td>
<td>11%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208968</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Anthracene</td>
<td>120127</td>
<td>µg/Kg</td>
<td>13%</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>56553</td>
<td>µg/Kg</td>
<td>30%</td>
<td>63</td>
<td></td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzo(a)pyrene</td>
<td>50328</td>
<td>µg/Kg</td>
<td>24%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>205992</td>
<td>µg/Kg</td>
<td>24%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>191242</td>
<td>µg/Kg</td>
<td>32%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>207089</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Chrysene</td>
<td>218019</td>
<td>µg/Kg</td>
<td>54%</td>
<td>63</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>53703</td>
<td>µg/Kg</td>
<td>17%</td>
<td>63</td>
</tr>
<tr>
<td>Dibenzofuran</td>
<td>132649</td>
<td>µg/Kg</td>
<td>22%</td>
<td>63</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>206440</td>
<td>µg/Kg</td>
<td>48%</td>
<td>63</td>
</tr>
<tr>
<td>Fluorene</td>
<td>86737</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>193395</td>
<td>µg/Kg</td>
<td>25%</td>
<td>63</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91203</td>
<td>µg/Kg</td>
<td>16%</td>
<td>63</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>85018</td>
<td>µg/Kg</td>
<td>44%</td>
<td>63</td>
</tr>
<tr>
<td>Pyrene</td>
<td>129000</td>
<td>µg/Kg</td>
<td>48%</td>
<td>63</td>
</tr>
</tbody>
</table>

CLP TCL PCBs

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1016</td>
<td>12674112</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>1110428</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>11141165</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>53469219</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>12672296</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>11097691</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>11096825</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>

CLP TCL Pesticides

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4'-DDD</td>
<td>53190</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4'-DDE</td>
<td>3424826</td>
<td>µg/Kg</td>
<td>5%</td>
<td>63</td>
</tr>
<tr>
<td>2,4'-DDT</td>
<td>789026</td>
<td>µg/Kg</td>
<td>11%</td>
<td>63</td>
</tr>
<tr>
<td>4,4'-DDD</td>
<td>72548</td>
<td>µg/Kg</td>
<td>2%</td>
<td>63</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>72559</td>
<td>µg/Kg</td>
<td>11%</td>
<td>63</td>
</tr>
<tr>
<td>4,4'-DDT</td>
<td>50293</td>
<td>µg/Kg</td>
<td>33%</td>
<td>63</td>
</tr>
<tr>
<td>Aldrin</td>
<td>309002</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>alpha-BHC</td>
<td>319846</td>
<td>µg/Kg</td>
<td>2%</td>
<td>63</td>
</tr>
<tr>
<td>alpha-Chlordane</td>
<td>5103719</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>beta-BHC</td>
<td>319857</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>cis-Nonachlor</td>
<td>5103731</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RM729B2 08-Apr-05</td>
<td>RM729B3 08-Apr-05</td>
<td>RM735B1c 11-Apr-05</td>
</tr>
<tr>
<td></td>
<td>Beach Subsample 1272</td>
<td>Beach Subsample 1261</td>
<td>Beach Subsample 1282</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Number of Samples</th>
<th>Frequency of Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta-BHC</td>
<td>319868 µg/Kg 0%</td>
<td>63 0.36 U</td>
<td>0.35 U 0.40 U 0.34 U 0.41 U 0.41 U 0.34 U</td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td>60571 µg/Kg 0%</td>
<td>63 0.72 U</td>
<td>0.70 U 0.80 U 0.69 U 0.82 U 0.84 U 0.69 U</td>
<td></td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>959988 µg/Kg 0%</td>
<td>63 0.36 U</td>
<td>0.35 U 0.40 U 0.34 U 0.41 U 0.41 U 0.34 U</td>
<td></td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>33213659 µg/Kg 0%</td>
<td>63 0.72 U</td>
<td>0.70 U 0.80 U 0.69 U 0.82 U 0.84 U 0.69 U</td>
<td></td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>1031078 µg/Kg 0%</td>
<td>63 0.72 U</td>
<td>0.70 U 0.80 U 0.69 U 0.82 U 0.84 U 0.69 U</td>
<td></td>
</tr>
<tr>
<td>Endrin</td>
<td>72208 µg/Kg 0%</td>
<td>63 0.72 U</td>
<td>0.70 U 0.80 U 0.69 U 0.82 U 0.84 U 0.69 U</td>
<td></td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>7421934 µg/Kg 0%</td>
<td>63 0.72 U</td>
<td>0.70 U 0.80 U 0.69 U 0.82 U 0.84 U 0.69 U</td>
<td></td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>53494705 µg/Kg 0%</td>
<td>63 0.72 U</td>
<td>0.70 U 0.80 U 0.69 U 0.82 U 0.84 U 0.69 U</td>
<td></td>
</tr>
<tr>
<td>gamma-BHC (Lindane)</td>
<td>58899 µg/Kg 0%</td>
<td>63 0.36 U</td>
<td>0.35 U 0.40 U 0.34 U 0.41 U 0.41 U 0.34 U</td>
<td></td>
</tr>
<tr>
<td>gamma-Chlordane</td>
<td>5566347 µg/Kg 0%</td>
<td>63 0.36 U</td>
<td>0.35 U 0.40 U 0.34 U 0.41 U 0.41 U 0.34 U</td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>76448 µg/Kg 0%</td>
<td>63 0.36 U</td>
<td>0.35 U 0.40 U 0.34 U 0.41 U 0.41 U 0.34 U</td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>1024573 µg/Kg 0%</td>
<td>63 0.36 U</td>
<td>0.35 U 0.40 U 0.34 U 0.41 U 0.41 U 0.34 U</td>
<td></td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>118741 µg/Kg 6%</td>
<td>63 0.36 U</td>
<td>0.35 U 0.11 J 0.34 U 0.41 U 0.41 U 0.34 U</td>
<td></td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>87683 µg/Kg 0%</td>
<td>63 0.36 U</td>
<td>0.35 U 0.40 U 0.34 U 0.41 U 0.41 U 0.34 U</td>
<td></td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>72435 µg/Kg 5%</td>
<td>63 3.6 U</td>
<td>3.5 U 4.0 U 3.4 U 4.1 U 4.1 U 3.4 U</td>
<td></td>
</tr>
<tr>
<td>Oxychlordane</td>
<td>27304138 µg/Kg 0%</td>
<td>63 0.36 U</td>
<td>0.35 U 0.40 U 0.34 U 0.41 U 0.41 U 0.34 U</td>
<td></td>
</tr>
<tr>
<td>Toxaphene</td>
<td>8001352 µg/Kg 0%</td>
<td>63 36 U</td>
<td>35 U 40 U 34 U 41 U 41 U 34 U</td>
<td></td>
</tr>
<tr>
<td>trans-Nonachlor</td>
<td>39765805 µg/Kg 0%</td>
<td>63 0.36 U</td>
<td>0.35 U 0.40 U 0.34 U 0.41 U 0.41 U 0.34 U</td>
<td></td>
</tr>
</tbody>
</table>

CLP TCL SVOC

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Number of Samples</th>
<th>Frequency of Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1'-Biphenyl</td>
<td>92524 µg/Kg 0%</td>
<td>63 90 U</td>
<td>88 U 99 U 86 U 100 U 100 U 86 U</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>120821 µg/Kg 0%</td>
<td>63 90 U</td>
<td>88 U 99 U 86 U 100 U 100 U 86 U</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>95501 µg/Kg 0%</td>
<td>63 90 U</td>
<td>88 U 99 U 86 U 100 U 100 U 86 U</td>
<td></td>
</tr>
<tr>
<td>2,3-Dichlorobenzene</td>
<td>541731 µg/Kg 0%</td>
<td>63 90 U</td>
<td>88 U 99 U 86 U 100 U 100 U 86 U</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>106467 µg/Kg 0%</td>
<td>63 90 U</td>
<td>88 U 99 U 86 U 100 U 100 U 86 U</td>
<td></td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>418323 µg/Kg 0%</td>
<td>63 90 U</td>
<td>88 U 99 U 86 U 100 U 100 U 86 U</td>
<td></td>
</tr>
<tr>
<td>2,2'-oxybis(1-chloropropane)</td>
<td>108601 µg/Kg 0%</td>
<td>63 90 U</td>
<td>88 U 99 U 86 U 100 U 100 U 86 U</td>
<td></td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>95954 µg/Kg 0%</td>
<td>63 230 U</td>
<td>220 U 250 U 220 U 260 U 260 U 220 U</td>
<td></td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>88062 µg/Kg 0%</td>
<td>63 90 U</td>
<td>88 U 99 U 86 U 100 U 100 U 86 U</td>
<td></td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>120832 µg/Kg 0%</td>
<td>63 90 U</td>
<td>88 U 99 U 86 U 100 U 100 U 86 U</td>
<td></td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>105679 µg/Kg 0%</td>
<td>63 90 U</td>
<td>88 U 99 U 86 U 100 U 100 U 86 U</td>
<td></td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>51285 µg/Kg 0%</td>
<td>53 230 U</td>
<td>220 U 250 U 220 U 260 U 260 U 220 U</td>
<td></td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>121142 µg/Kg 0%</td>
<td>63 90 U</td>
<td>88 U 99 U 86 U 100 U 100 U 86 U</td>
<td></td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>606202 µg/Kg 0%</td>
<td>63 90 U</td>
<td>88 U 99 U 86 U 100 U 100 U 86 U</td>
<td></td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>91587 µg/Kg 0%</td>
<td>63 90 U</td>
<td>88 U 99 U 86 U 100 U 100 U 86 U</td>
<td></td>
</tr>
<tr>
<td>Analyte</td>
<td>CAS</td>
<td>Units</td>
<td>Frequency of Detection</td>
<td>Number of Samples</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>---------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td>95578</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2-Methylphenol</td>
<td>95487</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2-Nitroaniline</td>
<td>88744</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>88755</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>3,3'-Dichlorobenzidine</td>
<td>91941</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>3-Nitroaniline</td>
<td>99092</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4,6-Dinitro-2-methylphenol</td>
<td>534521</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Bromophenyl-phenylether</td>
<td>101553</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>59507</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td>106478</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Chlorophenyl-phenyl ether</td>
<td>7005723</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>106445</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Nitroaniline</td>
<td>100016</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>100027</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>98862</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Atrazine</td>
<td>1912249</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Benzenaldehyde</td>
<td>100527</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Benzonic acid</td>
<td>65850</td>
<td>µg/Kg</td>
<td>0%</td>
<td>46</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>100516</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>bis(2-Chloroethoxy)methane</td>
<td>111911</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)ether</td>
<td>111444</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl)phthalate</td>
<td>117817</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td>85687</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Caprolactam</td>
<td>105602</td>
<td>µg/Kg</td>
<td>3%</td>
<td>63</td>
</tr>
<tr>
<td>Carbazole</td>
<td>86748</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>84742</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Di-n-octylphthalate</td>
<td>117840</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>84662</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Dimethyl phthalate</td>
<td>131113</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>67721</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Isophorone</td>
<td>78591</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>N-Nitrosodi-n-propylamine</td>
<td>621647</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td>86306</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>98953</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Station ID:</td>
<td>Date Collected:</td>
<td>Sample Type:</td>
<td>Elevation:</td>
<td>Frequency of Detection</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>-------------</td>
<td>-----------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>08-Apr-05</td>
<td>Beach</td>
<td>1272</td>
<td></td>
</tr>
<tr>
<td></td>
<td>08-Apr-05</td>
<td>Subsample</td>
<td>1261</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11-Apr-05</td>
<td>Composite</td>
<td>1282</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11-Apr-05</td>
<td>Beach</td>
<td>1282</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11-Apr-05</td>
<td>Subsample</td>
<td>1289</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11-Apr-05</td>
<td>Composite</td>
<td>1277</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11-Apr-05</td>
<td>Beach</td>
<td>1278</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentachlorophenol</td>
<td>87865</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Perchlorocyclopentadiene</td>
<td>77474</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Phenol</td>
<td>108952</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Dioxins and Furans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzodioxin</td>
<td>35822469</td>
<td>pg/g</td>
<td>47%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzoferan</td>
<td>67562394</td>
<td>pg/g</td>
<td>58%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-Heptachlorodibenzoferan</td>
<td>55673897</td>
<td>pg/g</td>
<td>3%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,4,7,8-Hexachlorodibenzodioxin</td>
<td>39227286</td>
<td>pg/g</td>
<td>39%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,4,7,8-Hexachlorodibenzoferan</td>
<td>70648269</td>
<td>pg/g</td>
<td>11%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexachlorodibenzoferan</td>
<td>57653857</td>
<td>pg/g</td>
<td>44%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexachlorodibenzoferan</td>
<td>57117449</td>
<td>pg/g</td>
<td>19%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzoferan</td>
<td>19408743</td>
<td>pg/g</td>
<td>42%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzoferan</td>
<td>72918219</td>
<td>pg/g</td>
<td>6%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8-Pentachlorodibeno-p-dioxin</td>
<td>40321764</td>
<td>pg/g</td>
<td>28%</td>
<td>36</td>
</tr>
<tr>
<td>1,2,3,7,8-Pentachlorodibenzoferan</td>
<td>57117416</td>
<td>pg/g</td>
<td>19%</td>
<td>36</td>
</tr>
<tr>
<td>2,3,4,6,7,8-Hexachlorodibenzoferan</td>
<td>60851345</td>
<td>pg/g</td>
<td>17%</td>
<td>36</td>
</tr>
<tr>
<td>2,3,4,7,8-Pentachlorodibenzoferan</td>
<td>57117314</td>
<td>pg/g</td>
<td>3%</td>
<td>36</td>
</tr>
<tr>
<td>2,3,7,8-Tetrachlorodibenzodioxin</td>
<td>1746016</td>
<td>pg/g</td>
<td>19%</td>
<td>36</td>
</tr>
<tr>
<td>Heptachlorodibenzodioxin (Total)</td>
<td>37871004</td>
<td>pg/g</td>
<td>83%</td>
<td>36</td>
</tr>
<tr>
<td>Heptachlorodibenzoferan (Total)</td>
<td>38998753</td>
<td>pg/g</td>
<td>72%</td>
<td>36</td>
</tr>
<tr>
<td>Hexachlorodibenzodioxin (Total)</td>
<td>34465468</td>
<td>pg/g</td>
<td>81%</td>
<td>36</td>
</tr>
<tr>
<td>Hexachlorodibenzoferan (Total)</td>
<td>55684941</td>
<td>pg/g</td>
<td>86%</td>
<td>36</td>
</tr>
<tr>
<td>Octachlorodibenzodioxin</td>
<td>3268879</td>
<td>pg/g</td>
<td>58%</td>
<td>36</td>
</tr>
<tr>
<td>Octachlorodibenzoferan</td>
<td>39001020</td>
<td>pg/g</td>
<td>58%</td>
<td>36</td>
</tr>
<tr>
<td>Pentachlorodibenzodioxin (Total)</td>
<td>36088229</td>
<td>pg/g</td>
<td>53%</td>
<td>36</td>
</tr>
<tr>
<td>Pentachlorodibenzoferan (Total)</td>
<td>30402154</td>
<td>pg/g</td>
<td>64%</td>
<td>36</td>
</tr>
<tr>
<td>TEQ WHO-98</td>
<td></td>
<td>pg/g</td>
<td>92%</td>
<td>36</td>
</tr>
<tr>
<td>Tetrachlorodibenzodioxin (Total)</td>
<td>41903575</td>
<td>pg/g</td>
<td>42%</td>
<td>36</td>
</tr>
<tr>
<td>Tetrachlorodibenzoferan (Total)</td>
<td>55722275</td>
<td>pg/g</td>
<td>81%</td>
<td>36</td>
</tr>
<tr>
<td>Analyte</td>
<td>CAS</td>
<td>Units</td>
<td>Frequency of Detection</td>
<td>Number of Samples</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-------</td>
<td>----------------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Total organic carbon</td>
<td>E-10195</td>
<td>mg/Kg</td>
<td>98%</td>
<td>63</td>
</tr>
<tr>
<td>CLP TAL TotMetals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>7429905</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Antimony</td>
<td>7440360</td>
<td>mg/Kg</td>
<td>63%</td>
<td>54</td>
</tr>
<tr>
<td>Arsenic</td>
<td>7440382</td>
<td>mg/Kg</td>
<td>97%</td>
<td>63</td>
</tr>
<tr>
<td>Barium</td>
<td>7440393</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Beryllium</td>
<td>7440417</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Cadmium</td>
<td>7440439</td>
<td>mg/Kg</td>
<td>86%</td>
<td>63</td>
</tr>
<tr>
<td>Calcium</td>
<td>7440702</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Chromium</td>
<td>7440473</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Cobalt</td>
<td>7440484</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Copper</td>
<td>7440508</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Iron</td>
<td>7439896</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Lead</td>
<td>7439921</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Magnesium</td>
<td>7439954</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Manganese</td>
<td>7439965</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Mercury</td>
<td>7439976</td>
<td>mg/Kg</td>
<td>68%</td>
<td>63</td>
</tr>
<tr>
<td>Nickel</td>
<td>7440020</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Potassium</td>
<td>7440097</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Selenium</td>
<td>7782492</td>
<td>mg/Kg</td>
<td>26%</td>
<td>19</td>
</tr>
<tr>
<td>Silver</td>
<td>7440224</td>
<td>mg/Kg</td>
<td>#VALUE!</td>
<td>63</td>
</tr>
<tr>
<td>Sodium</td>
<td>7440235</td>
<td>mg/Kg</td>
<td>89%</td>
<td>63</td>
</tr>
<tr>
<td>Thallium</td>
<td>7440280</td>
<td>mg/Kg</td>
<td>5%</td>
<td>63</td>
</tr>
<tr>
<td>Uranium</td>
<td>7440611</td>
<td>mg/Kg</td>
<td>27%</td>
<td>63</td>
</tr>
<tr>
<td>Vanadium</td>
<td>7440622</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>Zinc</td>
<td>7440666</td>
<td>mg/Kg</td>
<td>100%</td>
<td>63</td>
</tr>
<tr>
<td>CLP TCL PAH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Methylnaphthalene</td>
<td>91576</td>
<td>µg/Kg</td>
<td>35%</td>
<td>63</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>83329</td>
<td>µg/Kg</td>
<td>11%</td>
<td>63</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>208968</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Anthracene</td>
<td>120127</td>
<td>µg/Kg</td>
<td>13%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>56553</td>
<td>µg/Kg</td>
<td>30%</td>
<td>63</td>
</tr>
<tr>
<td>Analyte</td>
<td>CAS</td>
<td>Units</td>
<td>Frequency of Detection</td>
<td>Number of Samples</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------</td>
<td>-------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>50328</td>
<td>µg/Kg</td>
<td>24%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>205992</td>
<td>µg/Kg</td>
<td>24%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(b)fluoranthene</td>
<td>191242</td>
<td>µg/Kg</td>
<td>32%</td>
<td>63</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene</td>
<td>207089</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Chrysene</td>
<td>218019</td>
<td>µg/Kg</td>
<td>54%</td>
<td>63</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>53703</td>
<td>µg/Kg</td>
<td>17%</td>
<td>63</td>
</tr>
<tr>
<td>Dibenzofuran</td>
<td>132649</td>
<td>µg/Kg</td>
<td>22%</td>
<td>63</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>206440</td>
<td>µg/Kg</td>
<td>48%</td>
<td>63</td>
</tr>
<tr>
<td>Fluorene</td>
<td>86737</td>
<td>µg/Kg</td>
<td>14%</td>
<td>63</td>
</tr>
<tr>
<td>Indeno[1,2,3-cd]pyrene</td>
<td>193395</td>
<td>µg/Kg</td>
<td>25%</td>
<td>63</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>91203</td>
<td>µg/Kg</td>
<td>16%</td>
<td>63</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>85018</td>
<td>µg/Kg</td>
<td>44%</td>
<td>63</td>
</tr>
<tr>
<td>Pyrene</td>
<td>129000</td>
<td>µg/Kg</td>
<td>48%</td>
<td>63</td>
</tr>
</tbody>
</table>

CLP TCL PCBs

<table>
<thead>
<tr>
<th>PCB-1016</th>
<th>12674112</th>
<th>µg/Kg</th>
<th>0%</th>
<th>63</th>
<th>1.0 U</th>
<th>1.1 U</th>
<th>0.87 U</th>
<th>1.1 U</th>
<th>0.85 U</th>
<th>0.85 U</th>
<th>0.96 U</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-1221</td>
<td>11104282</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>4.0 U</td>
<td>4.6 U</td>
<td>3.6 U</td>
<td>4.2 U</td>
<td>3.4 U</td>
<td>3.4 U</td>
<td>3.9 U</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>11141165</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>4.0 U</td>
<td>4.6 U</td>
<td>3.6 U</td>
<td>4.2 U</td>
<td>3.4 U</td>
<td>3.4 U</td>
<td>3.9 U</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>53469219</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>1.0 U</td>
<td>1.1 U</td>
<td>0.87 U</td>
<td>1.1 U</td>
<td>0.85 U</td>
<td>0.85 U</td>
<td>0.96 U</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>12672296</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>1.0 U</td>
<td>1.1 U</td>
<td>0.87 U</td>
<td>1.1 U</td>
<td>0.85 U</td>
<td>0.85 U</td>
<td>0.96 U</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>11097691</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>1.0 U</td>
<td>1.1 U</td>
<td>0.87 U</td>
<td>1.1 U</td>
<td>0.85 U</td>
<td>0.85 U</td>
<td>0.96 U</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>11096825</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>1.0 U</td>
<td>1.1 U</td>
<td>0.87 U</td>
<td>1.1 U</td>
<td>0.85 U</td>
<td>0.85 U</td>
<td>0.96 U</td>
</tr>
</tbody>
</table>

CLP TCL Pesticides

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4'-DDD</td>
<td>53190</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4'-DDE</td>
<td>3424826</td>
<td>µg/Kg</td>
<td>5%</td>
<td>63</td>
</tr>
<tr>
<td>2,4'-DDE</td>
<td>789026</td>
<td>µg/Kg</td>
<td>11%</td>
<td>63</td>
</tr>
<tr>
<td>4,4'-DDD</td>
<td>72548</td>
<td>µg/Kg</td>
<td>2%</td>
<td>63</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>72559</td>
<td>µg/Kg</td>
<td>11%</td>
<td>63</td>
</tr>
<tr>
<td>4,4'-DDE</td>
<td>50293</td>
<td>µg/Kg</td>
<td>33%</td>
<td>63</td>
</tr>
<tr>
<td>Aldrin</td>
<td>309002</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>alpha-BHC</td>
<td>319846</td>
<td>µg/Kg</td>
<td>2%</td>
<td>63</td>
</tr>
<tr>
<td>alpha-Chlordane</td>
<td>5103719</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>beta-BHC</td>
<td>319857</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>cis-Nonachlor</td>
<td>5103731</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RM735B2R</td>
<td>Beach Subsample</td>
<td>11-Apr-05</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>RM735B3c</td>
<td>Beach Subsample</td>
<td>11-Apr-05</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>RM735B3L</td>
<td>Beach Subsample</td>
<td>11-Apr-05</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>RM735B3R</td>
<td>Beach Subsample</td>
<td>11-Apr-05</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>RM742B1</td>
<td>Beach Subsample Composite</td>
<td>09-Apr-05</td>
<td>0%</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>RM742B2</td>
<td>Beach Subsample Composite</td>
<td>09-Apr-05</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>RM742B3</td>
<td>Beach Subsample Composite</td>
<td>09-Apr-05</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta-BHC</td>
<td>319868</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>60571</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endosulfan I</td>
<td>959988</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endosulfan II</td>
<td>33213659</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endosulfan sulfate</td>
<td>1031078</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endrin</td>
<td>72208</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endrin aldehyde</td>
<td>7421934</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Endrin ketone</td>
<td>53494705</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>gamma-BHC (Lindane)</td>
<td>58899</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>gamma-Chlordane</td>
<td>5566347</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>76448</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>1024573</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>118741</td>
<td>µg/Kg</td>
<td>6%</td>
<td>63</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>87683</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>72435</td>
<td>µg/Kg</td>
<td>5%</td>
<td>63</td>
</tr>
<tr>
<td>Oxychlordane</td>
<td>27304138</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>8001352</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>trans-Nonachlor</td>
<td>39765805</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>

CLP TCL SVOC

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1'-Biphenyl</td>
<td>92524</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>120821</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>95501</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>541731</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>106467</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,2'-oxybis(1-chloropropane)</td>
<td>108601</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4,5-Trichlorophenol</td>
<td>95954</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4,6-Trichlorophenol</td>
<td>88062</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td>120832</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td>105679</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dinitrophenol</td>
<td>51285</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td>121142</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td>606202</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
<tr>
<td>2-Chloronaphthalene</td>
<td>91587</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
</tr>
</tbody>
</table>
TABLE B-1
Beach Data Listing--UCR 2005 Sediment Sampling Event
Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Chlorophenol</td>
<td>95578 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>2-Methylphenol</td>
<td>95487 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>120 U</td>
</tr>
<tr>
<td>2-Nitroaniline</td>
<td>88744 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>260 U</td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td>88755 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>3,3'-Dichlorobenzidine</td>
<td>91941 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>120 U</td>
</tr>
<tr>
<td>3-Nitroaniline</td>
<td>99092 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>260 U</td>
</tr>
<tr>
<td>4,6-Dinitro-2-methylphenol</td>
<td>534521 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>4-Bromophenyl-phenylether</td>
<td>101553 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>120 U</td>
</tr>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td>59507 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>4-Chloroaniline</td>
<td>106478 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>120 U</td>
</tr>
<tr>
<td>4-Chlorophenyl-phenyl ether</td>
<td>7005723 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>4-Methylphenol</td>
<td>106445 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>120 U</td>
</tr>
<tr>
<td>4-Nitroaniline</td>
<td>100016 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>260 U</td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td>100027 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>260 U</td>
</tr>
<tr>
<td>Acetophenone</td>
<td>98862 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>Atrazine</td>
<td>1912249 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>120 U</td>
</tr>
<tr>
<td>Benzaldehyde</td>
<td>100527 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>Benzoic acid</td>
<td>65850 µg/Kg</td>
<td>0%</td>
<td>46</td>
<td>100 UJ</td>
</tr>
<tr>
<td>Benzyl alcohol</td>
<td>100516 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>bis(2-Chloroethoxy)methane</td>
<td>111911 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>120 U</td>
</tr>
<tr>
<td>Bis(2-chloroethyl)ether</td>
<td>111444 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>Bis(2-ethylhexyl)phthalate</td>
<td>117817 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>120 U</td>
</tr>
<tr>
<td>Butyl benzyl phthalate</td>
<td>85687 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>120 U</td>
</tr>
<tr>
<td>Caprolactam</td>
<td>105602 µg/Kg</td>
<td>3%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>Carbazole</td>
<td>86748 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>Di-n-butyl phthalate</td>
<td>84742 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>Di-n-octylphthalate</td>
<td>117840 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>Diethyl phthalate</td>
<td>84662 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>Dimethyl phthalate</td>
<td>131113 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>67721 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>Isophorone</td>
<td>78591 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>N-Nitrosodi-n-propylamine</td>
<td>621647 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td>86306 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>Nitrobenzene</td>
<td>98953 µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
</tbody>
</table>
TABLE B-1

Beach Data Listing--UCR 2005 Sediment Sampling Event

Upper Columbia River RI/FS

<table>
<thead>
<tr>
<th>Station ID:</th>
<th>Date Collected:</th>
<th>Sample Type:</th>
<th>Elevation:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentachlorophenol</td>
<td>87865</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>260 U</td>
</tr>
<tr>
<td>Perchlorocyclopadiene</td>
<td>77474</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
<tr>
<td>Phenol</td>
<td>108952</td>
<td>µg/Kg</td>
<td>0%</td>
<td>63</td>
<td>100 U</td>
</tr>
</tbody>
</table>

Dioxins and Furans

<table>
<thead>
<tr>
<th>Analyte</th>
<th>CAS</th>
<th>Units</th>
<th>Frequency of Detection</th>
<th>Number of Samples</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzo(dioxin)</td>
<td>35822469</td>
<td>pg/g</td>
<td>47%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>1,2,3,4,6,7,8-Heptachlorodibenzo(furan)</td>
<td>67562394</td>
<td>pg/g</td>
<td>58%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-Heptachlorodibenzo(dioxin)</td>
<td>55673897</td>
<td>pg/g</td>
<td>3%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>1,2,3,4,7,8,9-Heptachlorodibenzo(furan)</td>
<td>39227286</td>
<td>pg/g</td>
<td>39%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexachlorodibenzo(dioxin)</td>
<td>70648269</td>
<td>pg/g</td>
<td>11%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexachlorodibenzo(furan)</td>
<td>57653857</td>
<td>pg/g</td>
<td>44%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>1,2,3,6,7,8-Hexachlorodibenzo(furan)</td>
<td>57117449</td>
<td>pg/g</td>
<td>19%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzo(dioxin)</td>
<td>19408743</td>
<td>pg/g</td>
<td>42%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>1,2,3,7,8,9-Hexachlorodibenzo(dioxin)</td>
<td>72918219</td>
<td>pg/g</td>
<td>6%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>1,2,3,7,8-Pentachlorodibenzo-p-dioxin</td>
<td>40321764</td>
<td>pg/g</td>
<td>28%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>1,2,3,7,8-Pentachlorodibenzo(dioxin)</td>
<td>57117416</td>
<td>pg/g</td>
<td>19%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>2,3,4,6,7,8-Hexachlorodibenzo(dioxin)</td>
<td>60851345</td>
<td>pg/g</td>
<td>17%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>2,3,4,7,8-Pentachlorodibenzo(dioxin)</td>
<td>57117314</td>
<td>pg/g</td>
<td>33%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>2,3,7,8-Tetrachlorodibenzo(dioxin)</td>
<td>1746016</td>
<td>pg/g</td>
<td>19%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>2,3,7,8-Tetrachlorodibenzo(dioxin)</td>
<td>51207319</td>
<td>pg/g</td>
<td>64%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>Heptachlorodibenzo(dioxin) (Total)</td>
<td>37871004</td>
<td>pg/g</td>
<td>83%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>Heptachlorodibenzo(dioxin) (Total)</td>
<td>38998753</td>
<td>pg/g</td>
<td>72%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>Hexachlorodibenzo(dioxin) (Total)</td>
<td>34465468</td>
<td>pg/g</td>
<td>81%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>Hexachlorodibenzo(dioxin) (Total)</td>
<td>55684941</td>
<td>pg/g</td>
<td>86%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>Octachlorodibenzo(dioxin)</td>
<td>3268879</td>
<td>pg/g</td>
<td>58%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>Octachlorodibenzo(dioxin)</td>
<td>39001020</td>
<td>pg/g</td>
<td>58%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>Pentachlorodibenzo(dioxin) (Total)</td>
<td>36088229</td>
<td>pg/g</td>
<td>53%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>Pentachlorodibenzo(dioxin) (Total)</td>
<td>30402154</td>
<td>pg/g</td>
<td>64%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>TEQ WHO-98</td>
<td>TEQ</td>
<td>pg/g</td>
<td>92%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>Tetrachlorodibenzo(dioxin) (Total)</td>
<td>41903575</td>
<td>pg/g</td>
<td>42%</td>
<td>36</td>
<td>--</td>
</tr>
<tr>
<td>Tetrachlorodibenzo(dioxin) (Total)</td>
<td>55722275</td>
<td>pg/g</td>
<td>81%</td>
<td>36</td>
<td>--</td>
</tr>
</tbody>
</table>
Graphs of Metals of Concern Compared with PRGs
Columbia River - Lake Roosevelt - Arsenic on Beaches

Arsenic (mg/kg)

- Arsenic Max
- Arsenic Ave
- Arsenic 14-Day Rec 10E-6
- Estimated natural background

estimated natural arsenic background

one in 1,000,000 cancer risk 14 days per year

Arsenic Max
Arsenic Ave
Arsenic 14-Day Rec 10E-6
Estimated natural background
Columbia River - Lake Roosevelt - Copper on Beaches

River Mile from Upstream to Downstream

Copper Max
Copper Ave
Copper Rec RBC
Copper R-9 Residential PRG
Columbia River - Lake Roosevelt - Manganese on Beaches

Manganese Max
Manganese Ave
Manganese Rec RBC
Manganese R-9
Residential PRG

River Mile

Manganese (mg/kg)
Recreational PRG Calculation Worksheets
<table>
<thead>
<tr>
<th>Pathway</th>
<th>Contact Rate</th>
<th>Event Frequency</th>
<th>Body Weight</th>
<th>Averaging Time</th>
<th>Age Adjusted Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Impact</td>
<td>CF</td>
<td>BF</td>
<td>AT</td>
<td>noncarcinogens</td>
</tr>
<tr>
<td></td>
<td>IRS, soil or SA, derm. or IR, water</td>
<td>(soil - kg/mg)</td>
<td>(days/years)</td>
<td>(years)</td>
<td>ATn</td>
</tr>
<tr>
<td></td>
<td>(mg/day)</td>
<td>CF</td>
<td>BF</td>
<td>AT</td>
<td>carcinogens</td>
</tr>
<tr>
<td></td>
<td>adherence (mg/cm²)</td>
<td>(days/years)</td>
<td>(years)</td>
<td>(kg)</td>
<td>ATe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CF</td>
<td>BF</td>
<td>AT</td>
<td>noncarcinogens</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CF</td>
<td>BF</td>
<td>AT</td>
<td>(child-adult)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CF</td>
<td>BF</td>
<td>AT</td>
<td>child, only</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CF</td>
<td>BF</td>
<td>AT</td>
<td>child-adult</td>
</tr>
<tr>
<td>Ingestion Soil</td>
<td>300</td>
<td>1E-06</td>
<td>14</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>RECREATIONAL</td>
<td>100</td>
<td>1E-06</td>
<td>14</td>
<td>24</td>
<td>70</td>
</tr>
<tr>
<td>Dermal Soil</td>
<td>6600</td>
<td>0.2</td>
<td>1E-06</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>RECREATIONAL</td>
<td>18000</td>
<td>0.07</td>
<td>1E-06</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>Ingestion Soil</td>
<td>200</td>
<td>1E-06</td>
<td>350</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>RESIDENTIAL</td>
<td>100</td>
<td>1E-06</td>
<td>350</td>
<td>24</td>
<td>70</td>
</tr>
<tr>
<td>Dermal Soil</td>
<td>2800</td>
<td>0.2</td>
<td>1E-06</td>
<td>350</td>
<td>6</td>
</tr>
<tr>
<td>RESIDENTIAL</td>
<td>5700</td>
<td>0.07</td>
<td>350</td>
<td>24</td>
<td>70</td>
</tr>
</tbody>
</table>

Chemical Absorption and Dose Quotient

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Oral Absorp.</th>
<th>Dermal Absorp.</th>
<th>Ref. Dose</th>
<th>Hazard Quotient</th>
<th>Target Risk</th>
<th>Slope Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSs</td>
<td>ABSd</td>
<td>RD</td>
<td>HQ</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>Arsenic - cancer</td>
<td>0.6</td>
<td>0.03</td>
<td>0.0003</td>
<td></td>
<td>1E-06</td>
<td>1.5</td>
</tr>
<tr>
<td>Arsenic - noncancer</td>
<td>0.6</td>
<td>0.03</td>
<td>0.0003</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Exposure and Health Risk

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Recreational Soil & Dermal</th>
<th>Recreational Soil & Dermal</th>
<th>Residential Soil & Dermal</th>
<th>Residential Soil & Dermal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Integrated Adult-Child)</td>
<td>(Integrated Adult-Child)</td>
<td>(Integrated Adult-Child)</td>
<td>(Integrated Adult-Child)</td>
</tr>
<tr>
<td></td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Arsenic - cancer</td>
<td>16.143609</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As - noncancer</td>
<td>1339</td>
<td>1418</td>
<td>89</td>
<td>97</td>
</tr>
</tbody>
</table>

Appendix D_072506.XLS/Arsenic
<table>
<thead>
<tr>
<th>Pathway</th>
<th>Contact Rate</th>
<th>Conversion Factor</th>
<th>Event Frequency</th>
<th>Duration</th>
<th>Body Weight</th>
<th>Averaging Time</th>
<th>Summary Intake Factor (SIF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IRS, soil or SA, derm. or IR, water (mg/day)</td>
<td>(soil - kg/mg)</td>
<td>(days/years)</td>
<td>(years)</td>
<td>(kg)</td>
<td>noncarcin. ATn</td>
<td>carcinogens ATc</td>
</tr>
<tr>
<td>Ingestion Soil RECREATIONAL</td>
<td>300 child</td>
<td>1E-06</td>
<td>14</td>
<td>6</td>
<td>15</td>
<td>2,190</td>
<td>25,550</td>
</tr>
<tr>
<td>Dermal Soil RECREATIONAL</td>
<td>6600 cm², child</td>
<td>1.00E-06</td>
<td>14</td>
<td>24</td>
<td>70</td>
<td>8,760</td>
<td></td>
</tr>
<tr>
<td>Ingestion Soil RESIDENTIAL</td>
<td>200 child</td>
<td>1.00E-06</td>
<td>350</td>
<td>6</td>
<td>15</td>
<td>2,190</td>
<td>25,550</td>
</tr>
<tr>
<td>Dermal Soil RESIDENTIAL</td>
<td>2800 cm², child</td>
<td>1.00E-06</td>
<td>350</td>
<td>6</td>
<td>15</td>
<td>2,190</td>
<td>25,500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Oral Absorp. ABSo</th>
<th>Dermal Absorp. ABSd</th>
<th>Adherence Factor (AF) children</th>
<th>Adherence Factor (AF) adults</th>
<th>Ref. Dose RfD</th>
<th>Hazard Quotient HQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony - noncancer</td>
<td>1</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0004</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony - noncancer</td>
<td>521</td>
<td>521</td>
<td>110</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>Pathway</td>
<td>Contact Rate</td>
<td>Conversion Factor CF (soil - kg/mg)</td>
<td>Event Frequency EF (days/years)</td>
<td>Duration ED (years)</td>
<td>Body Weight BW (kg)</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-------------------------------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Ingestion Soil</td>
<td>300 child</td>
<td>1E-06</td>
<td>14</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>RECREATIONAL</td>
<td>100 adult</td>
<td></td>
<td>24</td>
<td>70</td>
<td>8,760</td>
</tr>
<tr>
<td>Dermal Soil</td>
<td>6600 cm², child</td>
<td>1.00E-06</td>
<td>14</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>RECREATIONAL</td>
<td>18000 cm², adult</td>
<td></td>
<td>24</td>
<td>70</td>
<td>8,760</td>
</tr>
<tr>
<td>Ingestion Soil</td>
<td>200 child</td>
<td>1.00E-06</td>
<td>350</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>RESIDENTIAL</td>
<td>5700 cm², adult</td>
<td></td>
<td>24</td>
<td>70</td>
<td>8,760</td>
</tr>
<tr>
<td>Dermal Soil</td>
<td>2800 cm², child</td>
<td>1.00E-06</td>
<td>350</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>RESIDENTIAL</td>
<td>5700 cm², adult</td>
<td></td>
<td>24</td>
<td>70</td>
<td>8,760</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Oral Absorp. ABSo</th>
<th>Dermal Absorp. ABSd</th>
<th>Adherence Factor (AF) children mg/cm²</th>
<th>Adherence Factor (AF) adults mg/cm²</th>
<th>Ref. Dose RfD (mg/kg/day)</th>
<th>Hazard Quotient HQ unitless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper - noncancer</td>
<td>1</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.040</td>
<td>1</td>
</tr>
</tbody>
</table>

RfD for copper is based on Heast as cited by Region 9 PRG

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Recreational Soil & derm. Kids only mg/kg</th>
<th>Recreational Soil ing. Kids mg/kg</th>
<th>Residential soil ing. (Integrated Adult-Child) mg/kg</th>
<th>Residential Soil & derm. Kids mg/kg</th>
<th>Residential Soil ing. Kids mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper - noncancer</td>
<td>52143</td>
<td>52143</td>
<td>10950</td>
<td>3129</td>
<td>3129</td>
</tr>
</tbody>
</table>

Appendix D_072506.XLS/Copper Page 3
<table>
<thead>
<tr>
<th>Pathway</th>
<th>Contact Rate</th>
<th>Conversion Factor CF</th>
<th>Event Frequency EF</th>
<th>Duration ED</th>
<th>Body Weight BW</th>
<th>Averaging Time AT</th>
<th>Summary Intake Factor (SIF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HRS, soil or SA, derm. or IR, water (mg/day)</td>
<td>soil - kg/mg</td>
<td>(days/years)</td>
<td>(years)</td>
<td>(kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingestion Soil RECREATIONAL</td>
<td>300</td>
<td>child</td>
<td>1E-06</td>
<td>14</td>
<td>6</td>
<td>15</td>
<td>2,190</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>adult</td>
<td>14</td>
<td>24</td>
<td>70</td>
<td></td>
<td>8,760</td>
</tr>
<tr>
<td>Dermal Soil RECREATIONAL</td>
<td>6600 cm², child</td>
<td>1.00E-06</td>
<td>14</td>
<td>6</td>
<td>15</td>
<td></td>
<td>2,190</td>
</tr>
<tr>
<td></td>
<td>18000 cm², adult</td>
<td>1.00E-06</td>
<td>14</td>
<td>24</td>
<td>70</td>
<td></td>
<td>8,760</td>
</tr>
<tr>
<td>Ingestion Soil RESIDENTIAL</td>
<td>200</td>
<td>child</td>
<td>1.00E-06</td>
<td>350</td>
<td>6</td>
<td>15</td>
<td>2,190</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>adult</td>
<td>350</td>
<td>24</td>
<td>70</td>
<td></td>
<td>8,760</td>
</tr>
<tr>
<td>Dermal Soil RESIDENTIAL</td>
<td>2800 cm², child</td>
<td>1.00E-06</td>
<td>350</td>
<td>6</td>
<td>15</td>
<td></td>
<td>2,190</td>
</tr>
<tr>
<td></td>
<td>5700 cm², adult</td>
<td>1.00E-06</td>
<td>350</td>
<td>24</td>
<td>70</td>
<td></td>
<td>8,760</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Oral Absorp. ABSo</th>
<th>Dermal Absorp. ABSd</th>
<th>Adherence Factor (AF) children mg/cm²</th>
<th>Adherence Factor (AF) adults mg/cm²</th>
<th>Ref. Dose RfD (mg/kg/day)</th>
<th>Hazard Quotient HQ unitless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron - noncancer</td>
<td>1</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.600</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Recreational Soil & derm. Kids only mg/kg</th>
<th>Recreational Soil ing. Kids mg/kg</th>
<th>Residential soil ing. (Integrated Adult-Child) mg/kg</th>
<th>Residential Soil & derm. Kids mg/kg</th>
<th>Residential Soil ing. Kids mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron - noncancer</td>
<td>782143</td>
<td>782143</td>
<td>164250</td>
<td>46929</td>
<td>46929</td>
</tr>
<tr>
<td>Pathway</td>
<td>Contact Rate</td>
<td>Conversion Factor CF (soil - kg/mg)</td>
<td>Event Frequency EF (days/years)</td>
<td>Duration ED (years)</td>
<td>Body Weight BW (kg)</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>------------------------------------</td>
<td>--------------------------------</td>
<td>--------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>noncarcin. ATn</td>
<td>carcino gens ATc</td>
<td>noncarcinogens (child-adult)</td>
<td>noncarcinogens child-only</td>
</tr>
<tr>
<td>Ingestion Soil</td>
<td>300 child</td>
<td>1E-06</td>
<td>14</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>RECREATIONAL</td>
<td>100 adult</td>
<td></td>
<td>14</td>
<td>24</td>
<td>70</td>
</tr>
<tr>
<td>Dermal Soil</td>
<td>6600 cm², child</td>
<td>1.00E-06</td>
<td>14</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>RECREATIONAL</td>
<td>18000 cm², adult</td>
<td>1.00E-06</td>
<td>14</td>
<td>24</td>
<td>70</td>
</tr>
<tr>
<td>Ingestion Soil</td>
<td>200 child</td>
<td>1.00E-06</td>
<td>350</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>RESIDENTIAL</td>
<td>100 adult</td>
<td></td>
<td>350</td>
<td>24</td>
<td>70</td>
</tr>
<tr>
<td>Dermal Soil</td>
<td>2800 cm², child</td>
<td>1.00E-06</td>
<td>350</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>RESIDENTIAL</td>
<td>5700 cm², adult</td>
<td></td>
<td>350</td>
<td>24</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Oral Absorp. ABSo</th>
<th>Dermal Absorp. ABSo</th>
<th>Adherence Factor (AF) children mg/cm²</th>
<th>Adherence Factor (AF) adults mg/cm²</th>
<th>Ref. Dose RfD (mg/kg/day)</th>
<th>Hazard Quotient HQ unitless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese - noncancer</td>
<td>1</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.047</td>
<td>1</td>
</tr>
</tbody>
</table>

*Note: IRIS Mn RfD is 0.14 with a MF of 3 for non-dietary assessments (.14/3 = .047)
<table>
<thead>
<tr>
<th>Pathway</th>
<th>Contact Rate</th>
<th>Conversion Factor CF</th>
<th>Event Frequency EF</th>
<th>Duration ED</th>
<th>Body Weight BW</th>
<th>Averaging Time AT</th>
<th>Summary Intake Factor (SIF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IRS, soil or SA, derm. or IR, water (mg/day)</td>
<td>(soil - kg/mg)</td>
<td>(days/years)</td>
<td>(years)</td>
<td>(kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingestion Soil</td>
<td>300</td>
<td>1E-06</td>
<td>14</td>
<td>6</td>
<td>15</td>
<td>2,190</td>
<td>25,550</td>
</tr>
<tr>
<td>RECREATIONAL</td>
<td>100</td>
<td>adult</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermal Soil</td>
<td>6600 cm², child</td>
<td>1.00E-06</td>
<td>14</td>
<td>6</td>
<td>15</td>
<td>2,190</td>
<td>25,550</td>
</tr>
<tr>
<td>RECREATIONAL</td>
<td>18000 cm², adult</td>
<td></td>
<td>14</td>
<td>24</td>
<td>70</td>
<td>8,760</td>
<td></td>
</tr>
<tr>
<td>Ingestion Soil</td>
<td>200</td>
<td>child</td>
<td>1.00E-06</td>
<td>350</td>
<td>6</td>
<td>15</td>
<td>2,190</td>
</tr>
<tr>
<td>RESIDENTIAL</td>
<td>100</td>
<td>adult</td>
<td></td>
<td>350</td>
<td>24</td>
<td>70</td>
<td>8,760</td>
</tr>
<tr>
<td>Dermal Soil</td>
<td>2800 cm², child</td>
<td>1.00E-06</td>
<td>350</td>
<td>6</td>
<td>15</td>
<td>2,190</td>
<td>25,500</td>
</tr>
<tr>
<td>RESIDENTIAL</td>
<td>5700 cm², adult</td>
<td></td>
<td>350</td>
<td>24</td>
<td>70</td>
<td>8,760</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Oral Absorp. ABSo</th>
<th>Dermal Absorp. ABSd</th>
<th>Adherence Factor (AF) children mg/cm²</th>
<th>Adherence Factor (AF) adults mg/cm²</th>
<th>Ref. Dose RFD (mg/kg/day)</th>
<th>Hazard Quotient HQ unitless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uranium - noncancer</td>
<td>1</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>2E-04</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Recreational Soil & derm. Kids only mg/kg</th>
<th>Recreational Soil ing. Kids mg/kg</th>
<th>Residential soil ing. (Integrated Adult-Child) mg/kg</th>
<th>Residential Soil & derm. Kids mg/kg</th>
<th>Residential Soil ing. Kids mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uranium - noncancer</td>
<td>261</td>
<td>261</td>
<td>55</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>
FIGURE 2-13
Black Sand Beach - RM 742
2005 Beach Sample Locations

Upper Columbia River RI/FS

LEGEND

2005 Beach Sampling
- Beach Subsample Composites
- Beach Subsamples
1949 NOAA Bathymetry

10-foot Bottom Elevation Contours

Approximate scale in feet

File Path: \dbh\proj\USEnvironment\Prote\315904\GIS\MapDocuments\Mxds\2005 Sediment Sampling\Phase 1 Sediment Data Eval\Phase 1 Sed Data Eval Beaches Figure 2-13 to 2-27.mxd, Date: June 23, 2006 9:32:19 AM
FIGURE 2-15
Dalles Orchard
2005 Beach Sample Locations
Upper Columbia River RI/FS

LEGEND
2005 Beach Sampling
- Beach Subsample Composites
- Beach Subsamples
1949 NOAA Bathymetry
10-foot Bottom Elevation Contours

Approximate scale in feet
FIGURE 2-18
Kettle Falls Swim Beach
2005 Beach Sample Locations

Upper Columbia River RI/FS

2005 Beach Sediment Sample Locations

LEGEND

2005 Beach Sampling

○ Beach Subsample Composites
○ Beach Subsamples

1974 USBR Bathymetry

10-foot Bottom Elevation Contours
FIGURE 2-21
Cloverleaf Beach
2005 Beach Sample Locations

Upper Columbia River RI/FS

LEGEND

2005 Beach Sampling
- Beach Subsample Composites
- Beach Subsamples

1974 USBR Bathymetry

10-foot Bottom Elevation Contours

Approximate scale in feet
The indicated location of Sample 673B1L is estimated from field notes. The reported GPS location was found to be in error.
2005 Beach Sediment Sample Locations

LEGEND

2005 Beach Sampling
- Beach Subsample Composites
- Beach Subsamples

1974 USBR Bathymetry
10-foot Bottom Elevation Contours

FIGURE 2-23
Rogers Bar Campground
2005 Beach Sample Locations
Upper Columbia River RI/FS
FIGURE 2-25
Linear Mill Boat Ramp
2005 Beach Sample Locations

LEGEND
2005 Beach Sampling
○ Beach Subsample Composites
○ Beach Subsamples

1974 USBR Bathymetry
10-foot Bottom Elevation Contours

Approximate scale in feet

File Path: \bbh\project\USEnvironmental\Project\315904\GIS\MapDocuments\Mxds\2005 Sediment Sampling\Phase 1 Sediment Data Eval\Phase 1 Sed Data Eval Beaches Figure 2-13 to 2-27.mxd, Date: June 23, 2006 9:32:19 AM
FIGURE 2-26
Kellers Ferry
2005 Beach Sample Locations
Upper Columbia River RI/FS

LEGEND
2005 Beach Sampling
- Beach Subsample Composites
- Beach Subsamples
1974 USBR Bathymetry
10-foot Bottom Elevation Contours

Approximate scale in feet

File Path: \bbh\proj\USEnvironmentalProts\315904\GIS\MapDocuments\Mxds\2005 Sediment Sampling\Phase 1 Sediment Data Eval\Phase 1 Sed Data Eval Beaches Figure 2-13 to 2-27.mxd, Date: June 23, 2006 9:32:19 AM