POOR LEGIBILITY

ONE OR MORE PAGES IN THIS DOCUMENT ARE DIFFICULT TO READ DUE TO THE QUALITY OF THE ORIGINAL

SFUND RECORDS CTR 3417-00043

SFUND RECORDS CTR 88202267

EFERENCE

WATER RESOURCES - RECONNAISSANCE SERIES

1

REPORT 59

WATER-RESOURCES APPRAISAL OF THE

CARSON RIVER BASIN, WESTERN NEVADA

Вy

Patrick A. Glancy and T. L. Katzer

Prepared cooperatively by the U.S. Department of the Interior, Geological Survey

FOREWORD

The program of reconnaissance water-resources studies was authorized by the 1960 Legislature to be carried on by the U.S. Geological Survey in cooperation with the Department of Conservation and Natural Resources, Division of Water Resources.

This report is the 59th report prepared by the staff of the Nevada District Office of the U.S. Geological Survey. These 59 reports describe the hydrology of 208 hydrographic areas.

The reconnaissance surveys make available pertinent information of great and immediate value to many State and Federal agencies, the State cooperating agency, and the public. As development takes place in any area, demands for more detailed information will arise, and studies to supply such information will be undertaken. In the meantime, these timely reconnaissance-type studies meet the immediate needs for information of the water resources.

> Roland D. Westergard State Engineer

Division of Water Resources

1976

CONTENTS

P	age
SUMMARY	1 4
Purpose and scope of the study	4 6 7
GENERAL HYDROLOGIC ENVIRONMENT	9
Physiographic features	9 11 13 13 14 16
INFLOW TO THE HYDROGRAPHIC AREAS	17
Precipitation Surface water	17 17 19 19 32 32 36 36 36 36 36 38 38 42 42 46 47 49 50
OUTFLOW FROM THE HYDROGRAPHIC AREAS	55
Surface and subsurface outflow	55 55 58 60 60 61 61 62

Page
WATER BUDGETS
Mainstem areas65Carson Valley (Nevada)65Dayton Valley65Churchill Valley65Carson Desert67Nonmainstem areas67Eagle Valley67Packard Valley67White Plains67Entire Carson River Basin68
WATER QUALITY
General chemical character 65 Criteria for suitability 65 Suitability for domestic use and public supply 65 Suitability for agricultural use 76 Suitability for industrial use 77 Carson River 75 Mainstem 76 Tributaries 75 Newlands Reclamation Project irrigation water 86 Carson Valley 86 Eagle Valley 87 Dayton Valley 87 Churchill Valley 87 White Plains and Packard Valley 90 Principal water -quality problems 91
AVAILABLE WATER SUPPLY
Ground-water storage in the valley-fill reservoirs
GEOHYDROLOGIC HAZARDS
NUMBERING SYSTEM FOR HYDROLOGIC SITES
REFERENCES CITED
SELECTED REFERENCES

v

ILLUSTRATIONS

· ·		Page
Plate 1.	Generalized hydrogeologic map of the Carson River basin	Back of report
Figure 1.	Map showing areas described in previous reports of this series, and the area described in this report	5
2.	Map showing weather stations and general physiographic features in study area	10
3-6	Graphs showing:	
	3a. Mean monthly flow of Carson River into and out of of Carson Valley, 1940-69 water years	35
	3b. Average monthly flow distribution, Carson River near Fort Churchill, 1919-69 water years	35
·	4. Flow duration curves for East and West Forks Carson River	37
	5. Annual maximum and minimum stages and volume of stored water in Lahontan Reservoir, 1917-72 calendar years	39
	6. Lahontan Reservoir releases to Carson River, 1917-72 calendar years	41
	PHOTOGRAPHS	
-		Front

1.	Lahontan Dam spillway in early summer of	1969	•	•	•	•	•	•	٠	٠	Front cover
2.	Aerial view of Lahontan Dam in September	1974	•	•	•	•	•	•	•	•	Inside front

vi

TABLES

			Page
Table	1.	Hydrologic summary	2
	2.	Selected quantitative physiographic data	11
	3.	Generalized lithologic units and their water-bearing properties	12
	4.	Average annual precipitation at weather stations	18
	5.	Selected surface-water records	20
	~6.	Annual flows of Carson River, water years 1891-1969	22
	7.	Maximum and minimum recorded discharge at the principal Carson River measurement sites through 1969 water year	
	8.	Average annual streamflow at Carson River gaging stations, for different reference periods	
	9.	Annual flow at nonmainstem gaging stations	27
•	10.	Maximum discharge at partial-record stations	28
	11.	Data for reservoirs and lakes in the Carson River basin	29
	12.	Estimates of average annual streamflow at hydrographic area boundaries, 1919-69 water years	31
	13.	Instantaneous measured flow of several Carson River basin tributaries	33
	14.	Estimated average annual runoff at the mountain front from ungaged tributary streams in Nevada	34
	15.	Measured Carson Desert streamflow, return flow from irrigated lands, and flow from reservoir spills	42
	16.	Summary of quantitative streamflow data for selected historic floods of the Carson River	43
	17.	Estimated potential ground-water recharge	48
÷	18.	Estimated ground-water inflow to valleys of the study area through alluvium	51
,	19.	Water imported from the Marlette Water System	52
	20.	Estimated imports of waste water to Carson River basin	53
	21.	Estimates of public, domestic, and industrial water use during 1971 water year	56

	30`.	Reconnaissance water budgets for mainstem hydrographic areas, 1919-69	6 6
	31.	Chemical analyses of well, spring, stream, and lake waters	70
-	32.	Estimated quantities of sewage processed by treatment plants within the Carson River basin	78
	33.	Summarized water-quality data for sites on Carson River, July 1966 to December 1971	80
	34.	Summarized water-quality data for Lahontan Reservoir, July 1966 to July 1971	82
3	35.	Summarized water-quality data for Daggett Creek, August 1966 to December 1971	84
	36.	Summarized water-quality data for some Carson River tributaries that convey treated sewage	85
•	37.	Summary of presently recognized and possible future water- quality problems	92
:	38.	Estimated quantity of ground water stored in the upper 100 feet of saturated valley fill	9 7
	-		
	39.	Well data	103
4	40.	Selected well logs	107
			iii

Page

CONVERSION FACTORS

For those readers who may prefer to use metric units rather than English units, the conversion factors for terms in this report are listed below:

ļ

English unit	Metric unit	Multiplication factor to convert from English to metric quantity
Inches (in)	Millimetres (mm)	25.4
Feet (ft)	Metres (m)	0.305
Miles (mi)	Kilometres (km)	1.61
Acres	Square metres (m ²)	4,050
Square miles (mi ²)	Square kilometres (km ²)	2.59
Gallons (gal)	Litres (1)	3.78
Acre-feet (acre-ft)	Cubic metres (m ³)	1,230
Cubic feet per second (ft ³ /s)	Litres per second (1/s)	28.3
Do.	Cubic metres per second (m ³ /s	0.0283
Gallons per minute (gal/min)	Litres per second (1/s)	0.0631

ix

WATER RESOURCES APPRAISAL OF THE CARSON RIVER BASIN, WESTERN NEVADA

By P. A. Glancy and T. L. Katzer

SUMMARY

The study area lies at the western edge of the Great Basin, and encompasses six major hydrographic areas and one hydrographic subarea, but excludes most of the Carson River drainage in California. Five of the hydrographic areas are part of the Carson River drainage basin; the sixth, White Plains, is the terminus of the Humboldt River basin and connects that drainage to Carson Desert. Packard Valley is tributary to Carson Desert, but not directly to Carson River. Altitudes in the Carson River basin range from 11,005 feet in the Sierra Nevada to about 3,800 feet in Carson Sink. Precipitation averages less than 6 inches per year at low Carson Desert altitudes, and more than 30 inches at high Sierra Nevada altitudes. The study area is hydrologically dominated by Carson River, Lahontan Reservoir, and the Truckee Canal, which carries Truckee River water into the basin for irrigation use on the Newlands Irrigation Project.

Table 1 summarizes selected quantitative hydrologic estimates of the study area. Most of the data of table 1 are described and, more importantly, qualified in the body of the text.

Lithologic units delineated for their hydrologic characteristics include consolidated rocks, and valley-fill deposits made up of younger and older alluvium. The valley-fill deposits constitute the principal aquifer system, and the consolidated rocks form most of the hydrographic area boundaries.

Estimates of average annual water inflow to the study area during the 1919-69 reference period are as follows: (1) precipitation (about 14 million acre-feet annually), (2) Carson River inflow (about 315,000 acre-feet annually), (3) Humboldt River tailwaste (about 6,000 acre-feet annually), (4) water imported from adjacent hydrographic areas (about 180,000 acre-feet annually), (5) natural subsurface inflow from adjacent hydrographic areas (about 8,200 acre-feet annually). Estimates of average annual water outflow from the study area during the reference period are as follows: (1) an undetermined quantity of precipitation that evaporates before it becomes salvable streamflow or ground-water recharge, (2) evapotranspiration losses from shallow ground-water discharge and consumptive crop use (about 300,000 acre-feet annually, or possibly more), (3) evaporation from surface-water bodies (about 250,000 acre-feet annually), and (4) subsurface outflow to adjacent areas (probably less than 1,000 acre-feet annually).

In contrast to the above long-term outflow estimates, the 1971 combined domestic, municipal, industrial, and livestock use was estimated at about 8,000 acre-feet, some of which was further available for additional uses.

Table 1.--Hydrologic summary

(Reconnaissance estimates are in acre-feet per year, except as indicated, and are rounded)

Hydrographic area (in downstream order, with mainstem areas capitalized)	Area (mi²)	Surface-water runoff at the mountain front	Potential ground-water recharge from precipitation	Inflow (I) and outflow (X) between areas via streams for reference period 1919-69	Imported water <u>1</u> /	Subsurface inflow (I) and outflow (X) through alluvium	Ground water stored in upper 100 feet of saturated valley fill (acre-feet)
CARSON VALLEY (Nev. part only)	422	15,000	25,000	315,000 I 272,000 X	3,700	7,800 I 15 X	710,000
Eagle Valley 2/	71	13,000	8,700	none I 7,000 X	a 430	none I 2,200 X	200,000
DAYTON VALLEY	364	1,400	7,900	276,000 I b 268,000 X	a 220	1,600 I 70 X	440,000
CHURCHILL VALLEY	491	900	1,300	c 439,000 I 380,000 X	170,000	220 I unknown X	740,000
CARSON DESERT	2,016	2,300	1,300	d 391,000 I none X	10,000	1,200+1 <1,000 X	8,000,000
Packard Valley	177	600	710	none I <100 X	none	none I 400 X	500,000
White Plains	158	100	<100	6,000 I 1,000 X	none	60 I 20 X	420,000

1. 1971 imports. There are no water exports from the study area.

2. Data from Worts and Malmberg (1966), except as noted.

a. Includes municipal imports as of 1971.

N

b. Includes 16,000 acre-feet per year through Buckland Ditch.

c. Includes 170,000 acre-feet per year through Truckee Canal.

Includes 10,000 acre-feet diversion from Truckee Canal in Hazen-Swingle Bench area and 1,000 acre-feet from d. White Plains.

Available data suggest that aside from riverflow, the Carson Valley groundwater reservoir is the best presently available source of large-quantity, highquality water. In contrast, Carson Desert has a vast quantity of ground water in storage, but it is believed to be largely of unacceptable quality for most uses. Intervening hydrographic areas generally have significantly large quantities of stored ground water of intermediate quality. All hydrographic areas having generally good-to-high quality ground water also have localized areas of poorquality water. All the presently imported sewage waste water, of varying quality, is being delivered to Carson Valley, the upstream hydrographic area of the river basin; also, much of the study area's rapidly increasing locally-generated sewage effluent is being injected into upper-basin hydrographic areas. Carson River water tends to deteriorate in quality downstream because of both natural and man-related effects. Reconnaissance data suggest abnormally high mercury concentrations in river-bottom sediments of Dayton and Churchill Valleys, which probably resulted from milling operations in the late 1800's.

The available ground-water supply of Carson Desert is unique in the study area and somewhat poorly understood. Fallon municipal and Naval Air Station supplies are obtained from a relatively deep basalt aquifer system, but the quantity of stored water and the replenishment mechanism of the system are not known. Most rural domestic supplies are obtained from a shallow aquifer system that may have originated mainly by infiltration of Newlands Reclamation Project irrigation water, in part imported from the Truckee River; however, that aquifer system is being increasingly threatened by sewage effluent from individual residences.

The rapid urban growth presently occurring in the Carson River basin not only stresses the natural hydrologic system, but, in turn, the natural system has great potential to stress the urbanizing environment. Principal geohydrologic hazards in the study area are seismic, flood, and mass earth-movement threats. The potentials for seismic and flood hazards are great throughout most of the area. Flood hazards consist of major river floods, generally restricted to the Carson River flood plain, and flash floods, which individually affect small areas but collectively are likely to occur over a large part of the area. Mass earthmovement hazards probably are common in some localized parts of the area. Unfortunately, all types of the above listed hazards might be expected to occur in varying combinations with each other, thereby further magnifying danger to lives and property through their cumulative and coincidental effects.

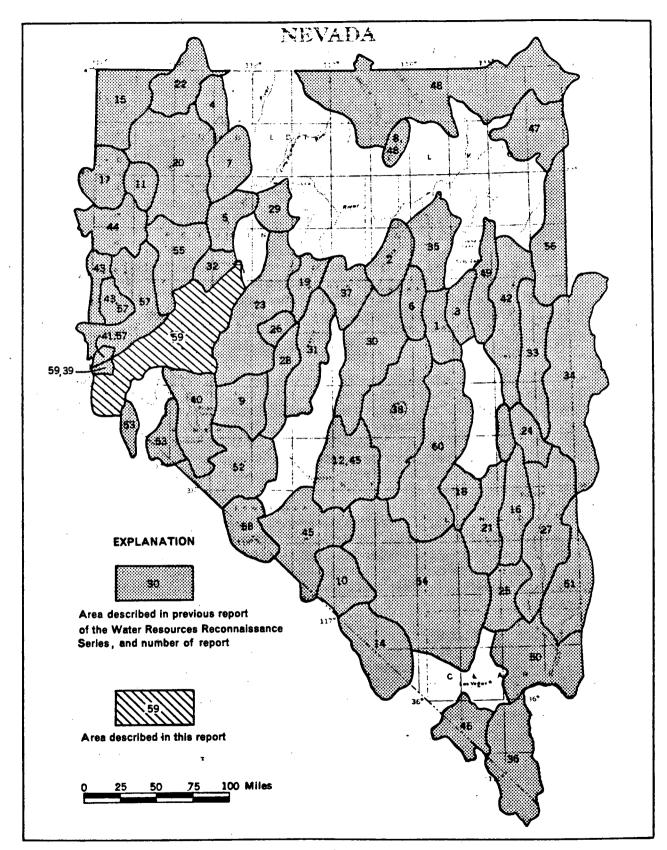
The Carson River basin is presently undergoing dramatic changes that depend on, and can be expected to influence, the hydrologic regime. Because of the dominance of the Carson River, stresses imposed on upper-basin hydrographic areas are very likely to be transmitted to lower-basin areas. Increased hydrologic knowledge is therefore a primary requisite to develop a needed understanding of the natural hydrologic system. A satisfactory understanding should be conducive to the efficient selection of planning alternatives that would aid in developing a compatible and beneficial symbiotic relationship between man and nature in the future.

INTRODUCTION

Purpose and Scope of the Study

Water-resource development in Nevada has increased substantially in recent years. Current increases relate strongly to urban and suburban population growth. The growing interest in ground-water development has created a substantial demand for information on ground-water resources throughout the State. Recognizing this need more than a decade ago, the State Legislature enacted special legislation (Chapter 181, Statutes of 1960) authorizing a series of reconnaissance studies of the ground-water resources of Nevada. As provided in the legislation, these studies are being made by the U.S. Geological Survey in cooperation with the Nevada Department of Conservation and Natural Resources, Division of Water Resources. This is the 59th report prepared as part of the reconnaissance series (fig. 1 and p. iii).

In the early studies, little information was presented on surface-water resources. Later, the reconnaissance series was broadened to include preliminary quantitative evaluations of surface water in the areas studied.


The general objectives of the reconnaissance reports during recent studies have been to (1) describe the hydrologic environment, (2) appraise the source, occurrence, movement, and chemical quality of water, (3) estimate the amount of average annual potential recharge to, discharge from, and yield of the ground-water reservoirs, (4) quantify the surface-water resources, (5) provide preliminary estimates of the amount of stored ground water, and (6) estimate the magnitude of the present water-resources development. This report encompasses most of these objectives, and because of recent hydrologic development in the Carson River basin, several additional objectives as described below.

The Carson River basin is presently undergoing extensive changes caused by rapid population growth and accompanying development. These changes are reflected in the increasing utilization of water resources, growing problems of sewage disposal, increased citizen concern for maintenance of the desirable aspects of the natural environment, including river quality, and increasing risks from geohydrologic hazards. Therefore, this study also evaluates (1) present trends of water use, compared to traditional historical uses, (2) inter- and intra-basin sewage disposal problems, (3) problems related to water quality, and (4) geohydrologic hazards.

Most of the hydrologic field work for this report was done in 1970, 1971, and the early part of 1972.

Although the river basin encompasses parts of two States, most quantitative estimates of the water resources are limited to Nevada. California segments are included where records of Carson River streamflow are provided by gages in California, several miles upstream from the State boundary (pl. 1).

-4-

Location and General Geographic Features

The Carson River basin lies roughly between lat 38°32' and 40°16' N., and long 119°50' and 118°00' W. The basin, which together with Packard Valley and White Plains make up the study area, lies mostly in west-central Nevada, but includes some area in California. The river system consists of the East and West Forks and the mainstem of the Carson River. The basin comprises, in downstream order, five hydrographic areas in Nevada (Rush, 1968, p. 18-19): Carson Valley, Eagle Valley, Dayton Valley, Churchill Valley, and Carson Desert (less Packard Valley subarea, 177 mi²), which total about 3,365 square miles in Nevada (fig. 1, pl. 1). White Plains hydrographic area, about 160 square miles in the lowest part of the Humboldt River basin, drains to the Carson Desert. The total area encompasses slightly more than 3,830 square miles including about 112 square miles in California.

Development has been intensive in recent years throughout the Carson River basin, with the primary emphasis on urbanization and a secondary interest in recreation. Principal towns within the area include Carson City, Gardnerville, Minden, Dayton, Virginia City, and Fallon--all in Nevada.

Other Studies and Data

The Carson River basin was one of the first settled and developed areas in Nevada. Continuous mining activity in the area, including the large-scale operations on the Comstock Lode, resulted in many geological studies during the past 100 years. Published results of these studies are numerous, but their relation to hydrology is not sufficient to justify mention in this report. However, several recently published geologic maps form the basis for the generalized geology shown on plate 1 of this study and these reports are identified in a later section.

U.S. Geological Survey hydrologic studies in the Carson River basin date back to the 19th century. Systematic streamflow measurements of Nevada streams began as early as 1889 when the U.S. Geological Survey began a streamflow measurement program on the Carson and Truckee Rivers (Chandler, 1905, p. 35). Results of most of these studies are referenced at appropriate places in this report.

Hydrologic data are also currently being collected in the area by other Federal and State agencies. Many hydrologic studies have also been made in areas immediately adjacent to the Carson River basin. A list of selected references is included following the main body of this report to provide a basic, but not exhaustive, list of published documents on local and regional hydrology that were not specifically cited in the text of this report.

-6-

Acknowledgments

Many individuals throughout the report area provided helpful information during this study. Critically important data were furnished by: Christopher Altemueller, Gardnerville-Minden Sewage Plant; Julio Alvas, Douglas County Water Reclamation Project; Leonard Anker, Buhel Heckathorn, Arlan Neal, William Dunning, and Duane Collins, U.S. Soil Conservation Service; J. Archambault, Lake Tahoe Area Council Lab.; Bill Berning and Walt Mandeville, Nevada State Prison; Roger Bialle, of Walters, Ball, Hibdon & Shaw, Consulting Engineers; Rob Roy Bittman, Twelfth Naval District, San Bruno, Calif.; Joseph D. Cushing and R. W. Rose, Naval Air Station, Fallon; James Dunn, Carson City Sewage Plant; J. D. Frank, Kennametals, Inc.; Clifford Girvan, Jr., Incline Village Improvement District; Dean S. Kingman, Kingman Engineers, Palo Alto, Calif.; Milton T. Lakey, Assistant City Engineer, Fallon; Pete Marshall, State Agricultural Extension Agent for Carson City and Storey Counties; Roger L. Mertens, U.S. Bureau of Land Management, Winnemucca; Richard Messier and Peter Stein, Lahontan National Fish Hatchery; William Mueller, City of Minden; Norman Murray, Mark Lawrence, and Kenneth Harrison, U.S. Bureau of Land Management; Mrs. Alton Park, Gardnerville Water Company; James Rankin, Carson City Engineer; John Schilling and Larry Garside, Nevada Bureau of Mines and Geology; James A. Smiley, U.S. Bureau of Indian Affairs; Thomas Sullivan, Edward King, and Robert Schriver, Carson Water Co.; L. A. Wolf, Lyon County Health Dept.; James Williams and Jack Sheehan, Nevada Division of Health; Hodges Transportation Corp.; employees of Nevada Division of Buildings and Grounds; J. Lyle Wightman and George Luke, Fallon area residents; and numerous other residents of the area. The help of all these people is greatly appreciated and enthusiastically acknowledged. The authors sincerely apologize to anyone who provided assistance, but whose name was inadvertently omitted from the foregoing list.

GENERAL HYDROLOGIC ENVIRONMENT

Physiographic Features

The Carson River basin is characterized by contrasting physiographic features; for example, rugged peaks and steep slopes of the Sierra Nevada contrast with the vast, flat playa surface of the Carson Sink; lush vegetated highlands of the Sierra Nevada contrast with the barren rocky peaks of the southern Stillwater Range; and the green, vegetated floor of Carson Valley contrasts with the barren, salt-encrusted valley floors of Eightmile and Fourmile Flats in Carson Desert.

The Carson River drainage begins in the high alpine zone of the Sierra Nevada in California. Many small perennial streams, most of which are outside the study area, flow into the East and West Forks of the Carson River. Ephemeral stream channels are numerous throughout the entire basin, and commonly transmit thundershower and snowmelt runoff. The two main Carson River forks in the upstream part of the basin flow generally northward and join in the northern part of Carson Valley. There, the river progressively changes to a more northeasterly course as it flows through downstream hydrographic areas to terminate in the Carson Sink.

The four hydrographic areas through which the Carson River flows are mainly bounded by mountain masses, as shown on plate 1. The major mountain ranges trend generally northward. However, some ranges also trend northeastward.

The Sierra Nevada is the dominant mountain range at the western margin of the basin, and it provides the bulk of the streamflow for the Carson River system. Other mountain ranges within the basin are the Pine Nut Mountains, Virginia Range, Desert Mountains, Hot Springs Mountains, Stillwater Range, and the West Humboldt Range (pl. 1).

The surface configurations of valley floors in the headward areas of the basin (Carson Valley and Eagle Valley) are affected greatly by streamflow processes. However, effects of ancient Lake Lahontan as a land-surface shaping agent become increasingly dominant on valley floors east of Dayton, particularly in the Carson Desert.

In the Carson Desert (including Packard Valley), alluvial fans, flood plains, and playas compose about 80 percent of the hydrographic areas. They are much less widespread in the upstream hydrographic areas of the river basin, as the following areal percentages indicate: Carson Valley, 25 percent; Eagle Valley, 30 percent; Dayton Valley, 25 percent; and Churchill Valley, 30 percent. These features also cover about a third of the White Plains hydrographic area. Additional quantitative characteristics of the physiography are summarized in table 2. Figure 2, a sketch map of the area, shows some of the main physiographic features.

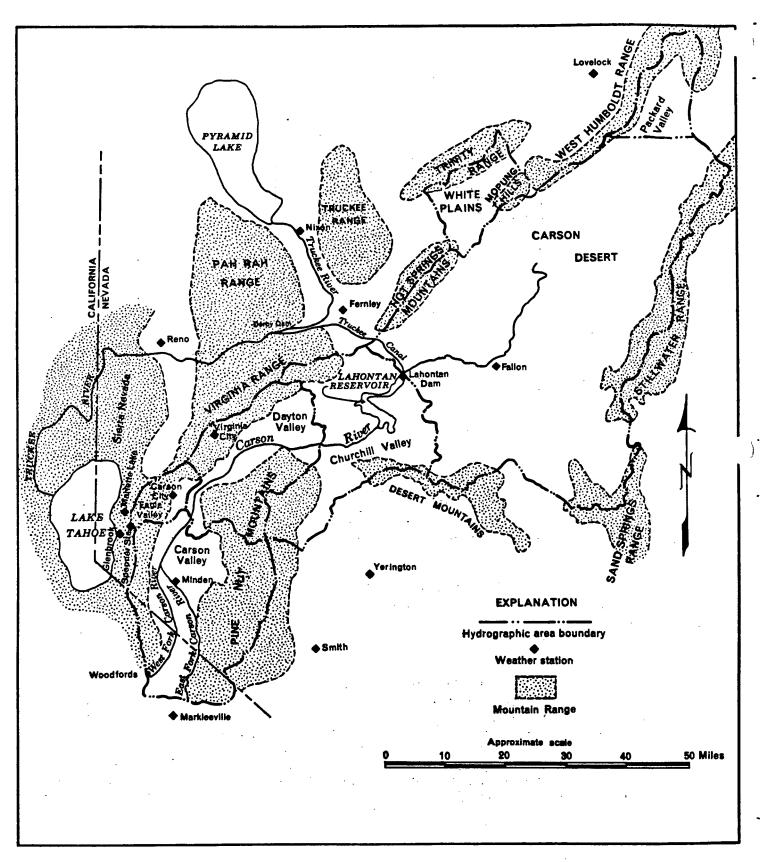


Figure 2.--Weather stations and general physiographic features in study area.

Hydrographic area	Alluvial area (thousands of acres)	Consolidated rock area (thousands of acres)	Total area (square miles)	Percent of total study area	alt: (fe	cimate itude eet) lowest	Maximum relief (feet, rounded)
Carson Valley (Nev.)	88	182	422	11	11,005	4,620	6,400
Eagle Valley	a 13	32	71	2	9,214	4,600	4,600
Dayton Valley	55	178	364	10	7,856	4,215	3,650
Churchill Valley	92	222	401	13	8,763	4,080	4,700
Carson Desert 1/	1,010	280	2,016	55	8,790	3,800	5,000
Packard Valley	63	50	177	5	8,210	3,950	4,250
White Plains	52	49	158	4	5,520	3,870	1,650
Entire study area (rounded)	1,370	990	3,700	100	11,005	3,800	7,200

Table 2.--Selected quantitative physiographic data

a. From Worts and Malmberg, 1966, p. 11.

1. Does not include Packard Valley.

Hydrogeologic Units

A great variety of rock types occur in the report area; however, for this reconnaissance study the rocks were grouped into three units on the basis of their general geohydrologic character. The three generalized units include younger and older alluvium (the valley-fill deposits), and consolidated rocks. The surficial distribution of the lithologic units is shown on plate 1, and their general character, extent, and water-bearing properties are summarized in table 3. The distribution of lithologic units as shown on plate 1 was derived mainly through synthesis and minor modification of existing geologic maps of the area as indicated on the plate. The Tertiary sedimentary-rock unit of Moore (1969) in Carson, Dayton, and Churchill Valleys is included in most places with the older alluvium for purposes of this report. The authors recognize that Moore's unit includes substantial areas of consolidated rocks, but the scope of this reconnaissance precludes further differentiation.

Plate 1 does not show geologic structural features (mainly faults) that are illustrated in the existing geologic maps. These features were omitted because many of the faults cutting consolidated rocks may not influence hydrologic interpretations in this area, and the authors believe that the structural deformation of valley fill has not been adequately investigated at present. Ground-water hydrology and the development of ground-water resources are strongly dependent on geologic structure in the valley fill, and therefore, additional investigation is needed to develop the necessary data.

Geol	ogic age		Thickness		
Period	* Epoch	Lithologic unit	(feet)	General characteristics and extent	Water-bearing properties
QUATERNARY	Holocene and Pleistocene	Younger alluvium	0-100±	Unconsolidated deposits of alluvium comprising silt, sand, gravel, and boulders derived primarily from mountain streams (perennial and ephemeral); flood-plain deposits from the Carson River, talus material, landslides, dune sand, and playa sediments. Source areas are mainly adjacent consol- idated-rock uplands and older alluvium.	Younger and older alluvium together form the valley- fill reservoir, the principal source of water
TERTIARY TO QUATERNARY	Pleistocene to Miocene(?)	Ψ υ v > Older alluvium	0-several thousand(?)	Unconsolidated to semiconsolidated deposits of clay, silt, sand, and gravel exposed near mountain fronts and buried beneath younger alluvium elsewhere. Assumed thickest in valley troughs. Lacustrine deposits of Pleistocene Lake Lahontan are exposed throughout the lower Carson River basin below Dayton. Tertiary sedimentary rocks of Carson, Dayton, and Churchill Valleys are included, and contain in addition to the above material sandstone, marl, mud- stone, shale, diatomite, limestone, calcareous tufa, interbedded tuffaceous rocks, lava flows, and breccias.	ground water. Well yields range from a few gallons per minute to several thousand gallons per minute, and from very poor to excellent in quality.
PRE-JURASSIC TO QUATERNARY		Consolidated rocks	0-many thousand	Igneous, metamorphic, and sedimentary rocks; igneous rocks are mainly Cretaceous granitic intrusives and Quaternary and older volcanic rocks; metamorphic rocks include meta- volcanics and metasedimentary rocks of Upper Jurassic age and older. Sedimentary rocks of lower Quaternary, upper Tertiary, and older units occur in about the same areal proportion as intrusive rocks. Volcanic rocks are slightly more prevalent.	Generally untested by wells except: in the Fallon area, a basalt of assumed Pliocene-Pleistocene age is the prime high-yielding water source for the city of Fallon and the Fallon Naval Air Station. Springs generally yield minor amounts of water throughout the area; in the Virginia Range above the Mound House area of Dayton Valley, they are the main s ces of domestic suppl,

Table 3.--Generalized lithologic units and their water-bearing properties

-12-

ť

Valley-Fill Reservoirs

Extent and Boundaries

Younger and older alluvium (pl. 1) form the valley-fill reservoirs, which are the principal known sources of ground water in the area. The best known evidence of valley-fill thickness is contained in lithologic logs of wells drilled in the several valleys (table 40). The available evidence and resultant conclusions are as follows.

The deepest well in <u>Carson Valley</u> (1,268 ft) is at 13/19-22abb (see section describing numbering system for hydrologic sites) near Walley's Hot Springs (tables 39 and 40). It apparently did not fully penetrate alluvium, even though it was drilled less than one-tenth of a mile from the fault contact between alluvium and consolidated rock. However, the driller's lithologic log lacks detail (table 40). Numerous other wells, ranging from 300 to 800 feet deep, drilled a substantial distance from the valley-fill-consolidated-rock boundary, also bottom in valley-fill deposits. Therefore, the valley fill may be at least a thousand and perhaps several thousand feet thick in places.

Worts and Malmberg (1966, p. 9) concluded that valley-fill thickness in Eagle Valley is generally not more than 500 feet, although in some places it may exceed 600 feet. Recent data (1969) disclose an alluvial thickness greater than 800 feet at well 15/20-17dd (tables 39 and 40).

Dayton Valley includes several independent or semi-independent valley-fill reservoir systems (pl. 1). These systems, which are areally separated from each other by consolidated-rock divides, are as follows: (1) alluvium along the Carson River between the Carson River gage near Carson City (14/20-2bc) and the consolidated-rock river canyon just downstream from Empire; (2) alluvium in the Mound House area generally east of the Carson City-Lyon County border and west of Dayton; (3) alluvium generally north and south of the Carson River from just west of Dayton eastward to the bedrock divide bordering Stagecoach Valley subarea on the east; and (4) alluvium mainly north of the Carson River from the western bedrock boundary of Stagecoach Valley to the hydrographic area boundary of Churchill Valley on the east.

The two deepest wells in Dayton Valley (17/23-18dd, 822 feet, and 17/22-33ccbc, 633 feet) did not encounter bedrock; however, wells 16/23-3bd and 17/23-10bbb did at 178 feet and 234 feet, respectively. Valley-fill thickness may be as much as a thousand feet in some places but probably is thinner than 500 feet in most areas.

The principal areas of valley fill in <u>Churchill Valley</u> have not been deeply drilled, the greatest known well depth being 300 feet (18/24-27db) with no bedrock encountered. The thickness probably is at least several hundred feet throughout most of the area. <u>Carson Desert</u> has the thickest known valley-fill deposits in the study area. Lithologic logs of several oil tests (17/29-18bd, 18/28-13ddc, 18/31-20c, and 22/30-14bbd) clearly show that alluvium is at least several thousand feet thick. One oil test (18/28-13aad) reportedly penetrated 8,001 feet with no evidence of bedrock (although the lithologic log lacks detail). Several other deep holes in the area (table 39) also apparently failed to reach bedrock. A test hole (16/32-19d) drilled for the U.S. Atomic Energy Commission near the playa at Fourmile Flat penetrated 780 feet of alluvium without encountering bedrock (table 40). Results of geological and geophysical studies suggest that the valley-fill deposits of Fourmile and Eightmile Flats are at least 1,950 feet thick in some parts of the valley (Nevada Bureau of Mines and others, 1962, p. 52). Therefore, valley-fill thickness over much of the Carson Desert probably is at least several thousand feet, and locally may exceed 8,000 feet.

No data are available to estimate valley-fill thickness in Packard Valley and White Plains.

External hydraulic boundaries of the valley-fill reservoirs are formed by the consolidated rocks (pl. 1) which underlie and surround the reservoirs. These boundaries are leaky to varying degrees. The principal internal hydraulic boundaries are stratigraphic changes and faults that may cut the valley fill. Because of a lack of adequate geologic and hydrologic data, the extent to which these lithologic and structural barriers impede ground-water flow is uncertain in most places.

Occurrence and Movement of Ground Water

Ground water, like surface water, moves from areas of higher head (waterlevel altitude) to areas of lower head. Unlike surface water, however, it moves very slowly, commonly at rates ranging from a fraction of a foot to several hundred feet per year, depending on the permeability of the deposits and the hydraulic gradient.

In the Carson River basin, ground water moves from recharge areas in the mountains or on the adjacent alluvial slopes to the lowlands, where the water is either consumed by evapotranspiration and man's activities, or leaves the valley as stream and ground-water outflow. Carson Desert, which is a "sink" area, receives ground-water flow from upstream and from Packard Valley and White Plains. Any ground water reaching the sink is discharged by evapotranspiration.

Downgradient movement of ground water from one valley to the next occurs through alluvium and possibly consolidated rocks. There is no firm evidence that sizeable quantities of ground water move between valleys of the study area through consolidated rocks. However, downgradient intervalley movement by way of alluvium involves every valley of the study area. Estimates of these quantities are made in the report sections dealing with intervalley subsurface flow.

Availability of ground water in the several valleys is indicated in general by well drillers' reports of the depth at which water was first encountered during drilling, by reported well yields, and by the water levels in the completed wells (table 39). The ground-water systems of the larger valleys in the report area are complex in that several aquifers may exist at varying depths and within localized geographic areas. These various aquifers, although collectively part of the valley-fill reservoirs, may act semi-independently of each other with regard to their individual hydraulic characteristics. For example, Walters, Ball, Hibdon, & Shaw (1970, p. 16 and 23) recognized two distinct zones, or aquifers, in Carson Valley alluvium, which they refer to as a shallow zone and a deep zone. They note a lack of any continuous confining strata between the two zones as indicated by well-drillers' logs, but recognize that partial confinement of the deep zone by an apparent overlapping of various clay lenses causes static water levels of the shallow and deep zones to differ. There are several flowing artesian wells in Carson Valley.

The ground-water reservoir of Carson Valley is believed to be the most important in the study area because it contains large quantities of goodquality water.

Occurrence and movement of ground water in Eagle Valley are discussed by Worts and Malmberg (1966).

The several valley-fill reservoirs unique to Dayton Valley have already been briefly described in the report section dealing with extent and boundaries of the valley-fill reservoir. Hydraulic heads in these valley-fill reservoirs generally range from a few feet above to several tens of feet below the land surface (table 39). Ground-water movement is generally toward the river in the three upstream systems. Movement of water through the valley-fill deposits that include the Stagecoach Valley subarea is less certain, because available data are inconclusive regarding hydraulic continuity between Stagecoach Valley alluvium and Carson River alluvium to the south. Natural phreatophyte discharge of ground water and existence of an alkali-flat playa in Stagecoach Valley, plus the presence of a gently sloping divide of subdued relief and possibly thin alluvial cover between that valley and the Carson River flood plain, suggest Stagecoach Valley may be hydraulically isolated from the Carson River. However, water-table altitudes beneath the playa and at the river are similar, suggesting a good possibility of hydraulic continuity between Stagecoach Valley and the Carson River. Resolution of this uncertainty is beyond the scope of this investigation.

No long-term records of static water levels are available for Churchill Valley; however, it is assumed that the filling of Lahontan Reservoir has caused a general rise in ground-water levels throughout much of the valley since 1915, when the dam was constructed. Ground-water levels measured in June 1970 in the vicinity of the reservoir were all within a few feet of the reservoir surface.

The regional ground-water flow system in the Carson River basin above Lahontan Dam is generally downstream toward the reservoir and is mainly controlled by the surface-water altitude. Katzer (1972) stated that some water probably is seeping from the reservoir through volcanic rocks and associated alluvial deposits that are present in the eastern subsurface of the reservoir in the vicinity of the dam. The magnitude of any subsurface leakage is unknown but probably is minor compared to surface-flow releases. Static water levels of the shallow aquifer system in the Carson Desert indicate that ground-water flow is generally toward the major natural discharge areas, namely, Carson Sink, Carson Lake, and Fourmile and Eightmile Flats. The available static water levels (table 39) suggest that ground water in the Fourmile Flat area moves under gentle gradients from the peripheral mountain boundaries into the playa area (land-surface altitude about 3,890 feet, or lower) and is subsequently discharged naturally by evapotranspiration. Some ground water also may flow to Fourmile Flat from the northwest by way of the Turupah and Eightmile Flat areas, but water levels and flow data are presently too scanty to allow a confident estimate of water volumes involved.

Morrison (1964, p. 117) discussed ground water in the Carson Desert and related ground-water occurrence and yield to his detailed knowledge of Quaternary stratigraphy of the Carson Desert area.

About 150 shallow wells were drilled, dug, and driven by the U.S. Geological Survey in the Carson Desert in 1904 (before Newlands Reclamation Project irrigation began) to investigate natural water quality in the shallow aquifer system (Stabler, 1904, p. 33). Water levels in these and other wells suggest that ground water moved generally in the same directions as surface flow (Stabler, 1904, map no. 6046), and followed the natural distributary system of the Carson River. Rush (1972) stated that in 1906, when extensive irrigation began in the area, the levels of Big and Little Soda Lakes began to rise, continuing until about 1930. The total rise in stage for the period was about 60 feet. The principal cause of the rise was attributed to seepage losses from canals, which carried water from the Carson River to fields in the Fallon area as part of the Newlands Project of the U.S. Bureau of Reclamation (Lee and Clark, 1916, p. 672-675).

Basalt in the Fallon Area

Wells that supply the City of Fallon and the U.S. Naval Air Station extract water from a basalt aquifer that is apparently interbedded with the valley-fill deposits about 500 feet below land surface (wells 19/29-30cba, 30cdbl and 2, 33cbbl, 2, and 3; tables 24, 39, and 40). These wells reportedly yield 1,000 to 2,000 gal/min. The nonpumping artesian water levels of these wells range from about 25 to 35 feet below land surface. The dissolved-solids concentration of the water from the basalt is greater than that of Carson River water but is generally much less than that of many nearby wells in valley-fill deposits. The extent of the basalt aquifer, its source of recharge, and its dependable supply are not known.

INFLOW TO THE HYDROGRAPHIC AREAS

Precipitation

The Sierra Nevada exerts the dominant control over precipitation within the Carson River basin. As storms move upslope from west to east across the Sierra Nevada, much of their moisture is depleted on west-facing slopes. This, in turn, causes lower precipitation on the east-facing slopes. Because the Sierra Nevada forms the western boundary of the Carson River basin, the study area lies mainly in a zone of diminished precipitation (a "rain shadow") with respect to east-moving storms. Table 4 summarizes the average annual precipitation at selected Weather Bureau stations in and near the report area. Figure 2 shows the location of precipitation measuring sites in and near the study area.

Snow accounts for the greatest percentage of precipitation within the basin over the long term; however, the amount of water that results from winter rains can be significant, especially in the eastern and lower parts of the basin where snowfall is usually light. Also, intense, generally unpredictable winter rains on snowpacks commonly cause severe flooding. The resulting early depletion of the snowpack occasionally results in a water shortage during the late summer growing season. Summer thunderstorms usually affect small areas, often less than a square mile, but commonly deliver large volumes of water relative to the size of drainage area in a very short time. They are a relatively unimportant water source in augmenting the available supply, but they commonly cause severe local floods, and are one of the main natural landforming agents.

Surface Water

The surface-water resources of the Carson River are well documented at a few key stations. Streamflow records at these sites are available for many years--some records date from as early as the 1890's. Definition of streamflow characteristics is possible even though the basin has undergone extensive agricultural development and small reservoirs are operated in the headwater area.

No surface water is exported from the Carson River basin, but a substantial amount is imported. Carson Valley receives treated sewage effluent from the Lake Tahoe Basin. Eagle and Dayton Valleys receive public water-supply imports from the Lake Tahoe Basin and Washoe Valley, and Churchill Valley receives a large amount of Truckee River water for irrigation use in Carson Desert. Churchill Valley also occasionally receives a minor amount of natural surface flow from the Walker River basin through Adrian Valley, and the Carson Desert receives overflow from the Humboldt River through White Plains.

-17-

<u> </u>	- <u>-</u>		Period	Average precipit (in ind	tation
Station	Approximate location	Altitude (feet)	of record (complete years)	For period of record used <u>1</u> /	Adjusted to period 1930-69 (rounded)
Marlette Lake 2/	15/18-12	8,000	1930-44, 1948-52	28.5	29
Spooner's Station <u>2/</u>	14/18-1	7,100	1940-42, 1954-67	27	26
Glenbrook 2/	14/18-15a	6,400	1945-69	19.1	19
Virginia City	17/21-29	6,002	1953-60, 1966	7.2	9.0
Woodfords	11/19-35	5,625	1938-69	20.3	20
Markleeville <u>3</u> /	10/20-21	5,546	1931-36, 1944, 1947-48, 1953-60	17.8	20
Smith <u>2/</u>	11/23-26	4,750	1930-43, 1945-65	7.3	6.5
Minden	13/20-32b	4,700	1930-38, 1940-69	8.7	8.6
Carson City	15/20-17	4,651	1930-69	11.2	a 11.2
Reno 2/	19/20-18d	4,404	1931-69	7.7	7.6
Yerington 2/	13/25-15d	4,375	1930-67, 1969	5.5	5.5
Lahontan Dam	19/26-33d	4,158	1930-34, 1936-50, 1952-69	4.4	4.4
Fernley 2/	20/24-11d	4,160	1955-69	6.1	6.6
Lovelock 2/	27/31-2bc	3,977	1930-35, 1937-66, 1968-69	5.7	5.7
Fallon Experiment Station	18/29-6 b	3,965	1930-69	5.2	a 5.2
Nixon <u>2</u> /	22/23-1	3,900	1930-47, 1949,1952, 1963-69	7.3	6.9

Table 4.--Average annual precipitation at weather stations

)

From published records of the U.S. Weather Bureau.
 Outside of report area.
 Record for 1961-68 estimated.

Index station used for estimating long-term data at other stations. **a**.

Records Available

Four long-term gaging stations on the Carson River system have recorded river flow since about the turn of the century. In addition, several stations with short-term records have been, or currently are being, operated on the mainstem, tributary streams, and diversions. Table 5 summarizes available streamflow records for the basin, and plate 1 shows the locations of the gaging stations. The annual flows of the Carson River at specific sites are presented in table 6, and maximum and minimum recorded discharges at the principal Carson River gaging stations are given in table 7. Table 8 gives the average annual flows at the six main Carson River stations for several different base periods. Table 9 presents the annual flow records for nonmainstem gaging stations upstream from Carson Desert. Table 10 lists the maximum discharge at partial-record stations and shows flow variability. Table 11 presents data for surface-water reservoirs, including information for headwater reservoirs in California, outside the report area. Additional surface-water data are available in various U.S. Geological Survey publications and files, and some are also available in reports and files of the U.S. Bureau of Reclamation, Federal Court Watermaster, Nevada State Engineer, Carson Water Subconservancy District, and the Truckee-Carson Irrigation District.

The variation of averages at a given streamflow measuring site for different base periods of record, shown in table 8, suggests that averages for different measurement sites are generally not comparable unless the same base periods are used. Therefore, this present study utilizes the base period 1919-69 of Van Denburgh and others (1973, p. 19), so that the hydrologic data, estimates, and budgets derived for the Carson River basin will be compatible with those of the adjacent Truckee River basin. No attempt has been made to adjust the flows to natural conditions because accurate adjustments are beyond the scope of this reconnaissance investigation. Natural flow conditions are discussed by Matthai (1975). Compatibility of the quantitative data derived for both river basins is desirable because the direct hydrologic interplay between the two river systems makes them dependent on each other.

Techniques of Runoff Determination

Measured runoff.--The average annual river inflow to the hydrographic areas was determined using the available streamflow records for a specific site and then adjusting the averages to the 1919-69 base period. The adjusted annual averages were determined by synthesizing missing record periods through graphic and statistical regression correlation methods. The resultant streamflow averages are shown in table 12.

Station	Station name	Location	Approximate drainage	record	Refe	r to:
number 1/	(in downstream order)	(shown on pl. 1) <u>2/</u>	area (mi ²)	(calendar years) <u>3</u> /	Table	Figure
10308200	East Fork Carson River below Markleeville Creek, near Markleeville, Calif.	10/20-15ac	276	1960-69+	6,8	
10308800	Bryant Creek near Gardnerville	11/21-30ba	31.5	1961-69++	9	
10309000	East Fork Carson River near Gardnerville	11/20-2ac	341	1890-93 1900-1906 a 1904-5 1908-10 a 1917 1925-28 a 1929 1935-37 1939-69+	6,7,8, 12,16	3a,4
10309005	Bodie Flat tributary near Gardnerville	11/21-9a b	0.46	1966-69+ 0	10	
10310000	West Fork Carson River at Woodfords, Calif.	11/19-34db	65.6	1891, a 1892 1901-20 1939-69+	6,7,8, 12,16	3a,4
10310400	Daggett Creek near Genoa	13/19-28ac	4.07	b 1964 c 1965 1965-69+	9	
10310500	Clear Creek near Carson City	14/19-1ba	15.5	1948-62++	9,10, 12	
10311000	Carson River near Carson City	14/20-2bc	876	d 1939-69+	6,7,8, 12,16	3a
10311450	Brunswick Canyon near New Empire	15/20-13ab	12.7	1966-69+0	10	
10311900	Buckland Ditch near Fort Churchill <u>4</u> /	17/24-32db	(e)	1962-69+	9,12	
10312000	Carson River near Fort Churchill	17/24-32dc	1,450	f 1912-69+	6,7,8, 12,16	3 b
10312012	Adrian Valley tributary near Wabuska	16/25-31da	5.75	1967-69+ 0	10	
10312015	Adrian Valley tributary near Weeks	16/25-30ЪЪ	0.12	1967-69+ 0	10	
10312050	Lahontan Reservoir tributary near Silver Springs	18/24-32cd	4.39	1962-69 +0	10	

Table 5.--Selected surface-water records

ì

ì

Station number <u>1</u> /		Location	Approximate drainage	Period of record	Refer to:	
	Station name (in downstream order)	(shown on pl. 1) <u>2/</u>	area (mi²)	(calendar years) <u>3</u> /	Table	Figure
10351400	Truckee Canal near Hazen	19/26-4ca	(e)	1963-69+	9,12	
10313100	Lahontan Reservoir near Fallon	19/26-33dc		g 1917-69+		5,6
10312150	Carson River below Lahontan Reservoir	19/26-34dd	h 1,950	1917-69+	6,8, 12,15	6
10312210	Stillwater Diversion Canal near Fallon	19/30-34aa	(e)	1966-69+	15	
10312220	Stillwater Slough cutoff drain near Stillwater	20/31-32cd	(e)	1966-69+	15	
10312240	Paiute Diversion Drain near Stillwater	20/30-36bc	(e)	1966-69+	15	*
10312260	Indian Lakes Canal near Fallon	2 0/29-26ab	(e)	1966-69+	15	
10312280	Carson River below Fallon	21/30-19cd	(i)	1966-69+	6,15	

Table 5.--Selected surface-water records--Continued

1. Gaging stations at which streamflow records have been collected are listed and numbered in a downstream direction along the mainstem of the river, with all stations on a tributary entering above a mainstem station listed before that station.

2. See explanation in section entitled "Numbering system for hydrologic sites."

3. Sources of non-Geological Survey data are listed by footnote. Records are not complete for all listed calendar years, and in some instances only monthly discharges are available. Symbol "+" indicates stations still in operation following water year 1969, and symbol "++" indicates conversion from a continuous recording station to a partial record station (peak discharge only). Symbol "0" indicates a partial record station for the indicated period of record.

4. Station discontinued Sept. 30, 1971.

a. Gage heights only, some months.

b. Periodic measurements only in 1964.

c. Low-flow partial-record site in 1965.

d. For discontinued gage data see U.S. Geological Survey 1960, p. 355.

e. No drainage area listed for irrigation ditches.

f. Records for 1911-31 furnished by U.S. Bureau of Reclamation and those for 1931-50 furnished by Truckee-Carson Irrigation District.

g. Records furnished by Truckee-Carson Irrigation District.

h. Truckee River drainage not included.

i. No drainage figure due to diversions between the gage and the Carson River below Lahontan Dam.

Water year <u>1</u> /	East Fork near Markleeville, Calif. (10/20-15ac)	East Fork near Gardnerville (11/20-2ac)	West Fork at Woodfords, Calif. (11/19-34db)	Main stem near Carson City (14/20-2bc)	Main stem near Fort Churchill (17/24-32dc)	Main stem below Lahontan Dam 2 (19/26-34dd)	Main stem below Fallon (21/30-19cd)
1891 1892 1893 1894-1900	No record	445 400 654	95				
1901 1902 1903 1904 1905		379 242 324 a 396 a 254	104 99 85 129 79				
1906 1907 1908 1909 1910		a 509 a 651 a 200 383 308	164 210 72 141 103				
1911 1912 1913 1914 1915		a 467 a 179 a 183 a 450 a 312	144 73 74 108 87		174 161 617 297		
1916 1917 1918 1919 1920		a 367 a 333 a 242 a 262 a 217	a 114 95 56 73 53	a 493 a 243 a 273 a 164	550 467 223 256 145	316 306 293	
1921 1922 1923 1924 1925		a 290 a 343 a 276 a 118 a 277	a 81 a 103 a 80 a 29 69	a 314 a 475 a 348 a 115 a 285	298 460 329 91 267	328 509 431 286 307	
1926 1927 1928 1929 1930		143 320 187 a 149 192	a 53 a 94 79 39 a 52	a 131 a 360 a 190 a 112 a 168	114 341 170 92 149	284 a 360 a 360 a 260 310	

Table 6.--Annual flows of Carson River, water years 1891-1969, in thousands of acre-feet

[Measured flows are rounded to three significant figures above 100,000 acre-feet and to two significant figures below]

)•

).

TUNTE

Table 6.--Annual flows of Carson River, water years 1891-1969--Continued

5 12 M. F

:

Water year <u>1</u> /	East Fork near Markleeville, Calif. (10/20-15ac)	East Fork near Gardnerville (11/20-2ac)	West Fork at Woodfords, Calif. (11/19-34db)	Main stem near Carson City (14/20-2bc)	Main stem near Fort Churchill (17/24-32dc)	Main stem below Lahontan Dam <u>2</u> (19/26-34dd)	Main stem below Fallon (21/30-19cd)
1931 1932 1933 1934 1935		a 121 a 292 a 163 a 128 a 254	a 31 a 82 a 43 a 39 a 69	a 86 a 326 a 142 a 98 a 230	65 307 122 76 210	162 284 287 140 241	
1936 1937 1938 1939 1940		252 228 a 460 a 163 273	a 82 a 74 a 127 39 76	a 296 a 281 a 592 a 163 285	275 262 580 140 279	274 321 541 311 331	
1941 1942 1943 1944 1945		250 355 331 177 307	78 106 90 47 76	263 428 425 177 332	244 403 403 169 310	330 456 474 365 399	
1946 1947 1948 1949 1950		255 181 190 196 254	76 48 56 51 77	287 180 170 187 263	262 165 152 167 260	415 348 273 354 333	
1951 1952 1953 1954 1955		349 459 256 200 160	99 127 78 53 49	434 576 286 197 134	423 587 240 177 114	555 534 511 488 390	
1956 1957 1958 1959 1960		436 228 340 147 128	124 69 98 42 38	550 243 376 128 90	533 224 341 108 60	573 557 583 453 268	
1961 1962 1963 1964 1965	115 234 297 168 360	120 233 320 171 372	31 63 92 50 120	75 239 369 158 434	44 218 338 136 382	160 252 442 422 505	

٠

Water year <u>1</u> /	East Fork near Markleeville, Calif. (10/20-15ac)	East Fork near Gardnerville (11/20-2ac)	West Fork at Woodfords, Calif. (11/19-34db)	Main stem near Carson City (14/20-2bc)	Main stem near Fort Churchill (17/24-32dc)	Main stem below Lahontan Dam 2/ (19/26-34dd)	Main stem below Fallon (21/30-19cd)
1966 1967 1968 1969	183 417 181 452	192 408 186 489	55 99 60 124	188 482 183 588	171 449 162 561	571 470 354 526	81 8.4 130
Average for available period of record	26 7	284	81	276	264	377	
Adjusted average for base period of this study, 1919-69	241	251	71	272	252	ъ 380	

Table 6.--Annual flows of Carson River, water years 1891-1969--Continued

1. A water year is from October 1 through September 30. Thus, December 1968 is in the 1969 water year.

2. Flow figures prior to 1967 furnished by U.S. Bureau of Reclamation.

a. Record synthesized by U.S. Bureau of Reclamation, Lahontan Basin Office, Carson City, Nev. (Nathan Geering, oral commun., 1971). Correlations are based on nearby streamflow records and snow-survey data; in some years monthly-flow data were available from records of the Nevada State Engineer.

b. Rounded.

		Maximum discharge 1/ Minimum dischar			
Hydrologic site number	Station name	Date	Cubic feet per second	Date	Cubic feet per second
11/20-2ac	East Fork Carson River near Gardnerville	Dec. 23, 1955	17,600	Dec. 4-10, 19-23, 1904	8
11/19-34db	West Fork Carson River at Woodfords, Calif.	Feb. 1, 1963	4,890	Dec. 23, 1961	5
14/20-2Ъс	Carson River near Carson City	Dec. 24, 1955	a 30,000	Aug. 7, 1961	3
17/24-32dc	Carson River near Fort Churchill	Feb. 2, 1963	15,300	(b)	0

Table 7.--Maximum and minimum recorded discharge at the principalCarson River measurement sites through 1969 water year

1. Instantaneous.

a. Probably exceeded during the flood of March 18, 1907, which washed out the gage (see flood section).

b. No flow during some periods in nearly every year since 1923; flow affected by Buckland Ditch, which diverts 400 feet upstream.

Period (water years)	Average annual streamflow	Period (water years)	Average annual streamflow
10/20-15ac H	ast Fork Carson Rive	er near Markleeville,	Calif.
1961-69	267	bc 1919-69	241
<u>11/20-2a</u>	c East Fork Carson	River near Gardnervi	<u>lle</u>
1891-93, 1901-3,		c 1919-69	2 51
1909-10, 1926-28,		d 1917-50	236
1930, 1936-37,	282	e 1931-6 0	251
1940-69		f 1918-67	247
1891-93, 1901-69	284	g 1919-69	245
11/19-34db	West Fork Carson H	liver at Woodfords, C	alif.
1891, 1901-15,		d 1917-50	67
1917-20, 1925	· 84	• e 1931-60	72
1928-29, 1939-69	•	f 1918-67	68
1891, 1901-69	81	g 1919-69	70
1919-69	71	8	•
14/	20-2bc Carson River	near Carson City	
1940-69	279	c 1919-69	. 272
1917-69	276	d 1917-50	253
17/24	-32dc Carson River	near Fort Churchill	
1912-69	264	e 1913-60	255
1919-69	252	f 1918-67	246
1917-50	236		
19/26-34dd Ca	rson River below Lab	nontan Reservoir, nea	r Fallon
1918-26,	380	c 1919-69	378
1930-69	200	d 1917-50	34 3
1918-69	377		U 1 U

Table 8.--Average annual streamflow at Carson River gaging stations, in thousands of acre-feet (rounded), for different reference periods

a. Actual period of record.

b. Period of record including synthesized data.

c. Reference period used in this report.

d. U.S. Bureau of Reclamation, 1954, p. 38 of "Substantiating materials."

e. Pacific Southwest Inter-Agency Committee, 1972, p. 111, Flows modified for 1965 conditions.

f. Pyramid Lake Task Force, 1969, appended summary, p. 6.

g. Flows have been adjusted for conditions at the State line as follows; East Fork Carson River near Gardnerville: 250,000 acre-feet minus estimated 5,000 acre-feet inflow from Bryant Creek in California. West Fork Carson River at Woodfords: 71,000 acre-feet plus estimated 5,000 acre-feet inflow between gage and State line, and minus estimated 7,000 acre-feet consumptive use by vegetation between gage and State line (net State line total rounded).

Water year	Bryant Creek (11/21-30ba)	Daggett Creek (13/19-28ac)	Clear Creek (14/19-1ba)	Buckland Ditch (17/24-32db)	Truckee Canal near Hazen (19/26-4ca)
1949			2.89		
50 /			3.93	· .	
1951			5.02		
52			8.14		
53			5.42		
54			3.45		
55			2.81		
1956			5.63		
57	•		3.53		
58			4.85		
59			2.98		
6 0			2.23		
19 61			1.87		
62	4.25		2.27		
63	6.02		••••	16.1	
64	2.67			14.8	a 262
65	5.00			16.5	a 250
1966	3.40	0.875		17.0	a 237
67	9,22	1.55		16.4	216
68	3.56	1.08		14.9	122
69	14.5	Ъ 2.58		19.5	114
Average	6.08	e-	3.93	16.5	200

Table 9. -- Annual flow at nonmainstem gaging stations, in thousands of acre-feet

[Flows rounded to three significant figures]

.

a. Van Denburgh and others, 1973, p. 24.b. Includes 400 acre-feet of imported sewage in 1969. See table 20.

, ;	• .		Maximum annual discharge 2/			
Station name	Location 3/	Drainage area (mi ²)	Water year	Month	Cubic feet per second	
Bodie Flat tributary near Gardnerville	11/21-9a b	0.46	1967 1968 1969	March March April	3 a 0.1 a 0.3	
Clear Creek near Carson City	14/19-1ba	15.5	1963 1964 1965 1966 1967 1968 1969	January April March February April	170 35 58 9 110 130 87	
Brunswick Canyon near New Empire	15/20-13a b	12.7	1966 1967 1968 1969	March	a 4 63 a 0.1 60	
Adrian Valley tributary near Wabuska	16/25-31da	5.75	1968 1969	August January	a 0.7 a 0.2	
Adrian Valley tributary near Weeks	16/25-30bb	.12	1968 1969	August July	a 1 a 1	
Lahontan Reservoir trib- utary near Silver Springs	18/24-32cd	4.39	1962 1963 1964 1965 1966 1967 1968 1969	July 	No flow No flow a 0.2 No flow No flow No flow No flow No flow	

Table 10.--Maximum discharge at partial-record stations 1/

ì

I.

1. A partial-record station is operated to collect limited streamflow data a systematic basis during high- and low-flow periods.
 Discharge determined by indirect methods unless otherwise noted.
 See report section describing hydrologic site numbering system.
 a. Estimated.

	Spillway	Spillway or maximum water-surface elevation above mean sea level (to	Maximum operating capacity <u>2</u> /	
Name	location 1/	nearest foot)	(acre-feet)	Tributary to
·	EAST	FORK CARSON RI	VER	· . ·
Upper Kinney Lake3/	8/20-7cb	8,536	328	Silver Creek
Lower Kinney Lake3/	8/20-7bd	8,442	920	Silver Creek
Kinney Reservoir37	8/20-8cb	8,333	900	Silver Creek
Wet Meadows3/	9/19-27ad	8,030	450	Pleasant Valley Creek
Summit Lake3/	9/19-27 d b	8,022	31	Pleasant Valley Creek
Raymond Lake3/	9/19-25aa	a 8,98 0	50	Pleasant Valley Creek
Tamarack Lake <u>3</u> /	9/19-21cc	7,890	404	Pleasant Valley Creek
Upper Sunset <u>3</u> /	9/19-27ba	7,858	68	Pleasant Valley Creek
Lower Sunset3/	9/19-22dc	7,823	860	Pleasant Valley Creek
Heenan Lake3/	9/21-3cb	7,084	2,948	Heenan Lake Creek
Indian Creek Reservoir4/	10/20-4c	5,604	3,100	Indian Creek, a tributary to East Fork Carson River
Allerman no. 1 $5/$	13/20-26ca 13/20-35ba	4,856	437	Allerman Canal
Allerman no. 2	13/20-26cb	4,838	248	Allerman Canal
Allerman no. 4	13/20-14ba	4,836	867	Allerman Canal
	WEST	FORK CARSON RI	VER	
Upper or East Lost Lake 3/	9/18-12aa	8,598	92	Headwater of West Fork
Lower or West Lost Lake 3/	9/18-1dc	8,546	127	Headwater of West Fork
Crater Lake 3/	10/18-11ca	8,522	320	Crater Lake Creek
Scotts Lake 3/	10/18-2aa	8,001	736	Scott Creek
Red Lake 3/	10/18-23ac	7,867	1,103	Red Lake Creek
Mud Lake – Reservoir	11/20-4ad	5,100	4,700	West Fork Carson River

Table 11.--Data for reservoirs and lakes in the Carson River basin

: .

•

Name	Spillway location <u>l</u> /	Spillway or maximum water-surface elevation above mean sea level (to nearest foot)		Tributary to
	MAIN	STEM CARSON RI	VER	
Ambrosetti Pond Unnamed pond in gypsum quarry	14/20-30cc 16/20-25bb	a 4,660	200	Carson River No surface outflow
Lahontan Reservoir	19/26-33dd	4,164 (1917 datum)	ъ 322,000	Carson River
Soda Lake 6/	19/28-7,8	3,988	35,000	No surface outlet
Sheckler Reservoir 2/	18/27-13ab	3,990	11,000	AA Canal
S Line Reservoir2/	19/29-28ca	a 3,95 0 ·	1,495	S Canal
Harmon Reservoir2/	•	3,926	1,700	
Ole's Pond 2/	19/29-14bd	3,939 (1917 datum)	2,000	Ole's Pond outlet
Stillwater Point Reservoir 2/	19/31-16ba	3,906	7,000	Canal
Old River Reservoir 2/	19/29-7bd	3,958	1,100	Canal

Table 11.--Data for reservoirs and lakes in the Carson River basin--Continued

)

1. See report section describing hydrologic site numbering system.

From Decree No. D-183 and U.S. Bureau of Reclamation (oral commun., 1971).
 Outside of study area, not shown on plate 1.

4. Reservoir contents dominated by imported sewage from Tahoe Basin.

5. Dual outlets.

6. From Rush (1972).

a. Estimated.

b. From Katzer (1972).

				Acre-feet per year
				inflow
Inflow to	From	Name of stream or canal	Location	(rounded)
Carson Valley (Nevada)	Carson Valley (Calif.)	East Fork Carson River at Stateline	11/20-25Ъс	a 245,000
		West Fork Carson River at Stateline	11/20-8bc	a 70,000
Carson Valley	Eagle Valley	Clear Creek near Carson City	14/19-1ba	3,000
		Carson Valley	total	318,000
Dayton Valley	Carson Valley	Carson River near Carson City	14/20-2bc	272,000
Dayton Valley	Eagle Valley	Kings and Ash Canyon Creeks plus Carson City sewage effluent		<u>b 4,000</u>
		Dayton Valley	total	276,000
	• • • • • •			
Churchill Valley	Dayton Valley	Carson River near Fort Churchill	17/24-32dc	252,000
	_	Buckland Ditch near Fort Churchill	17/24-32db	16,000
Churchill Valley	Walker River basin	Adrian Valley	16/24-35bc	1,000
Churchill Valley	Truckee River	Truckee Canal near Hazen	19/26-4ca	170,000
•		Churchill Vall	ley total	439,000
Carson Desert	Churchill Valley	Carson River below Lahontan Reservoir near Fallon	19/26-34dd	380,000
Carson Desert	Truckee River	Truckee Canal at diver- sions to Hazen and Swingle Bench areas for	20/26-32, 19/26-4, and	10,000
Carson Desert	White Plains	irrigation Lower Humboldt Drain	19/26-22 23/28-24c	<u>c 1,000</u>
<i>D</i> E361 L	L191112	Carson Desert	total	391,000

Table 12.--Estimates of average annual streamflow at hydrographic area boundaries, 1919-69 water years

1. Outside study area.

a. Flows were determined for nearest gaging stations near Gardnerville, Markleeville, and Woodfords (table 8), and were then adjusted for conditions at the State line.

b. Sewage effluent estimated to average 500 acre-feet per year for period 1919-69.

c. Estimated by channel-geometry methods developed by Moore (1968).

Estimated runoff.--Where stream-gaging records were not available, the ungaged runoff from tributary streams was estimated using the indirect methods developed by Moore (1968). The relationship between altitude, precipitation, and average annual runoff was defined for each hydrographic area at the mountain front. The resultant runoff estimate was refined using the channelgeometry technique (Moore, 1968). The accuracy of the runoff was checked by comparison with runoff estimates derived using actual streamflow measurements which were correlated for long-term average when such data were available. Data used in the checking process are shown in table 13. Table 14 summarizes the estimated runoff from tributary streams for the four mainstem hydrographic areas.)

Local runoff into Carson Valley was estimated by Piper (1969, p. F7), who employed a statistical technique based on the relation between runoff and landsurface altitude, combined with coefficients for horizontal variations. For Carson Valley as a whole, the results of Piper's method and the methods used in this report to estimate runoff are compatible. However, there are minor disagreements in some of the subareas of Carson Valley, as might be expected when indirect techniques are used. Piper's water budget for Carson Valley is discussed in the Water Budget section of this report.

Streamflow Characteristics

The dominant hydrologic feature within the Carson River basin study area is the river. It generally flows perennially throughout most of its reaches. Many perennial tributaries in the river headwater areas drain the east slope of the Sierra Nevada, and although some other tributaries do not flow perennially in their lower reaches near confluence with the river, they do play a vital role in ground-water recharge. The number of perennial tributaries decreases in a downriver direction. Downstream from the head of Dayton Valley, all tributaries are ephemeral near their confluence with the river. Therefore, streamflow through these tributaries usually reaches the river as surface flow only during times of substantial runoff caused by large rainfall or snowmelt. The major source of water for the Carson River is the winter snowpack in the Sierra Nevada, but minor amounts of water are contributed locally by rainstorms. Streamflow characteristics for the various hydrographic areas are described below.

<u>Carson Valley.</u>--The time distribution of runoff within a given year at the stream-gaging stations above Lahontan Reservoir is, in general, believed to be very similar to that of the East Fork Carson River near Gardnerville (11/20-2ac, pl. 1). The streamflow records for this site are believed generally to typify natural runoff distribution from the headwaters of the river basin, because the East Fork Carson River is the largest tributary of the headwater drainage, and streamflow at this site is virtually unaffected by manmade diversions and impoundments.

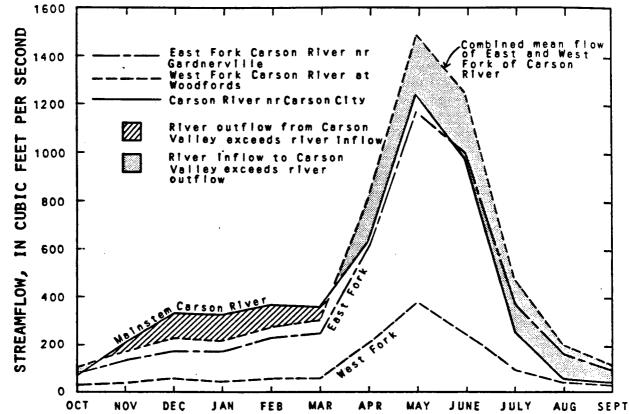
Stream	Location	Date	Discharge (ft ³ /s)	Tributary to
Thompson Canyon near Gardnerville	12/22-31cb	Apr. 9, 1969	2.24	Pine Nut Creek
Pine Nut Creek near Gardnerville <u>1</u> /	12/22-31cb 12/21-25ab 12/21-10cb 12/21-5bc 12/21-6bc 12/20-2ad	Apr. 9, 1969 Apr. 9, 1969 Sept. 8, 1969 Apr. 9, 1969	5.85 9.39 .56 10.9 10.0 14.8 8.12 14.0	Carson Valley
Buckeye Creek near Gardnerville <u>1</u> /	13/21-24ba 13/21-19ac 13/20-24cc	Apr. 14, 1969	7.60 7.94 4.99	
Mott Creek near Genoa	12/19-4cc	Sept. 11, 1969 Oct. 2, 1970 Nov. 9, 1970 Dec. 9, 1970 Feb. 9, 1971 Mar. 5, 1971 Mar. 10, 1971 Mar. 24, 1971	2.26 2.75 2.84 3.25 3.26 3.13	
Genoa Canyon near Genoa	13/19-9cd	Sept. 11, 1969	.94	Carson River
Sierra Canyon near Genoa	13/19-4db	Sept. 11, 1969 Aug. 5, 1971	a 34 0	Carson River
Unnamed tributary to Lahontan Reservoir	18/25-13ba	July 19, 1971	a 460	Lahontan Reservoir
Unnamed tributary to Lahontan Reservoir	17/24-10ab	July 20, 1971	a 1,7 00	Lahontan Reservoir

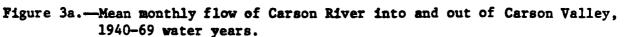
Table 13.--Instantaneous measured flow of several Carson River basin tributaries

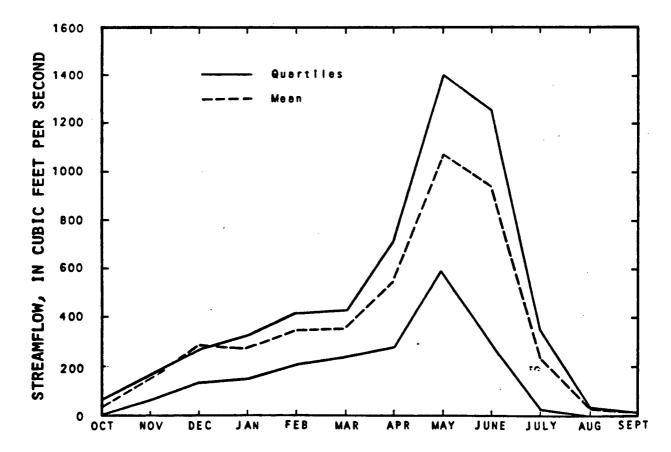
a. Peak discharge determined by indirect measurement methods, and rounded to two significant figures.
1. Listed in downstream order.

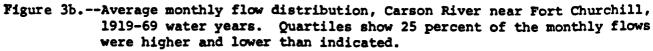
Hydrographic area	Runoff area (acres)	Percentage of total river basin rumoff area	Acre-feet of runoff	Percentage of total runoff
Carson Valley (Nev. part only)	61,000	13	a 15,000	75
Dayton Valley	130,000	28	1,400	7
Churchill Valley	98,2 00	22	·· 900	4
Carson Desert	173,000	37	Ъ 3,000	15
Total (rounded)	462,000	100	20,000	100

Table 14.--Estimated average annual runoff at the mountain front from ungaged tributary streams in Nevada


a. Estimated Carson Valley runoff from combined Nevada and California segments, downstream from the Markleeville and Woodfords river gages, is 34,000 acre-feet per year.

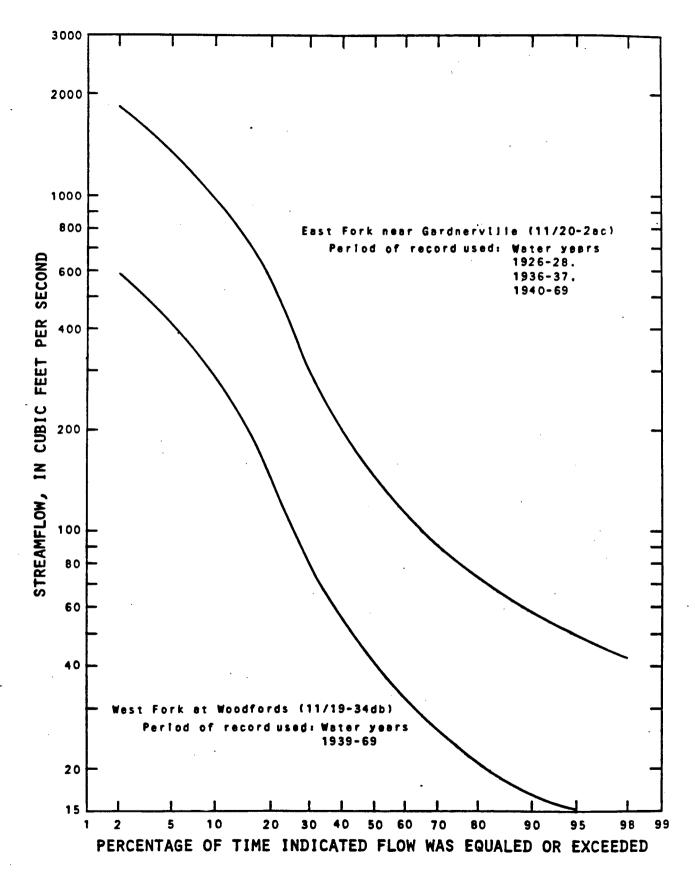

b. Includes 600 acre-feet from Packard Valley and 100 acre-feet from White Plains.


Base flow is reached in late summer, and flow then increases slightly through the fall and winter months until the snowmelt season starts in early spring. Maximum annual flows can normally be expected in May and June. Surface-water runoff from April through July generally accounts for about 40 to 60 percent of the total annual flow. Figure 3a shows the monthly flow distribution for the East and West Forks of the Carson River, which together equal the total river inflow to Carson Valley. Also shown are similar data for the Carson River near Carson City (14/20-2bc), which document total river outflow from Carson Valley. The average annual flow of the East Fork Carson River near Gardnerville for the 1919-69 base period is 251,000 acre-feet, that of the West Fork Carson River at Woodfords (11/19-34db), 71,000 acre-feet, and Carson River near Carson City, 272,000 acre-feet. Outflow from Carson Valley generally exceeds inflow from November through March, mainly because of the combined effects of ground-water inflow, local runoff to the river, and reduced evapotranspiration losses. Usually, the irrigation season ends during late September or October; the weather at that time is considerably cooler, and evapotranspiration therefore decreases markedly. With the first warm weather of spring, generally in March, irrigation begins again, and river inflow to Carson Valley begins to exceed river outflow to Dayton Valley. This net reduction of streamflow is due mainly to the increase in evapotranspiration and ground-water recharge.


Carson Valley receives a small amount of surface flow from Eagle Valley via a diversion from Clear Creek at 14/19-4cab (si*s not shown on pl. 1). That diversion is estimated to average about 100 acre-feet annually and is used to irrigate pasture on the Schneider Ranch in northern Jack's Valley (Harry Schneider, oral commun., 1972).

....

Flow-duration curves for the East and West Forks are shown in figure 4. These curves show the amount of time a given flow was equaled or exceeded; for example, a flow of 100 ft³/s on the West Fork has been equaled or exceeded 26 percent of the time during water years 1939-69. This does not mean that in any given year this flow will be reached 26 percent of the time; but over the years, this flow will average about this value if conditions are approximately equivalent to the 1939-69 period.


)

<u>Eagle Valley.</u>--Eagle Valley is not traversed by the Carson River, but is tributary to the river. According to Worts and Malmberg (1966, p. 19) the surface-flow quantities entering the Carson River are about 3,000 acre-feet per year from Clear Creek (enters the river upstream from the Carson City gage), and about 3,500 acre-feet per year from the remainder of Eagle Valley. In addition, for the period 1919-69, an estimated average of about 500 acre-feet per year of Carson City sewage effluent flowed to the river.

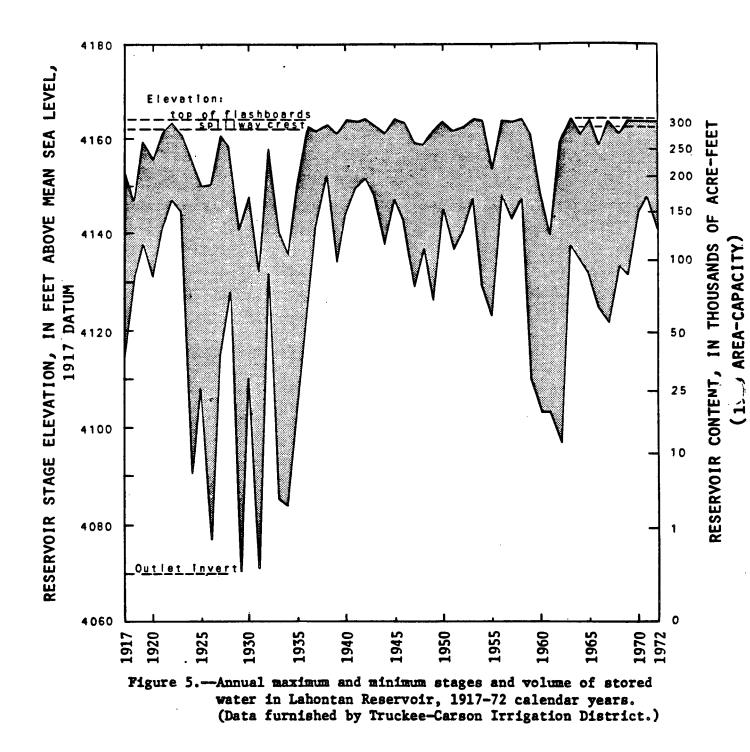
<u>Dayton Valley.</u>--The Carson River gage near Carson City (14/20-2bc) records river flow from Carson Valley to Dayton Valley. This flow averages about 272,000 acre-feet annually. The river furnishes the major part of streamflow entering Dayton Valley. Runoff from Eagle Valley, excluding Clear Creek, enters Carson River below the Carson City gage, as discussed in the previous report section. This inflow, principally from Kings and Ash Canyon Creeks and Carson City sewage effluent, is estimated to have averaged about 4,000 acre-feet per year. Therefore, the combined streamflow entering Dayton Valley from Carson and Eagle Valleys is about 276,000 acre-feet annually (table 12).

<u>Churchill Valley</u>.--The combined flow of Carson River (252,000 acre-feet annually) past the gage near Fort Churchill (17/24-32dc) plus Buckland Ditch (16,000 acre-feet annually, 17/24-32db) represent total surface-water outflow from Dayton Valley and are the major inflow components to Churchill Valley. Often during summer months, river reaches between the Carson City gage and the Fort Churchill gage are dry. River flow at the Fort Churchill gage also commonly ceases in late summer, as shown in figure 3b. The lack of flow at the Fort Churchill gage, however, is because the Buckland Ditch, which diverts just upstream from the Fort Churchill gage, often carries the entire river flow during late summer. The combined average annual flow of the river and ditch represents the cumulative flow at this hydrographic boundary; it averaged about 268,000 acre-feet annually for the 1919-69 base period.

Huxel (1969, p. 22) estimated an average annual flow of about 1,000 acrefeet per year from the Walker River in Mason Valley through Adrian Valley to the Carson River in Churchill Valley, downstream from the Fort Churchill gage. However, this quantity represents an estimated long-term average; flow occurs only during extremely wet years.

з

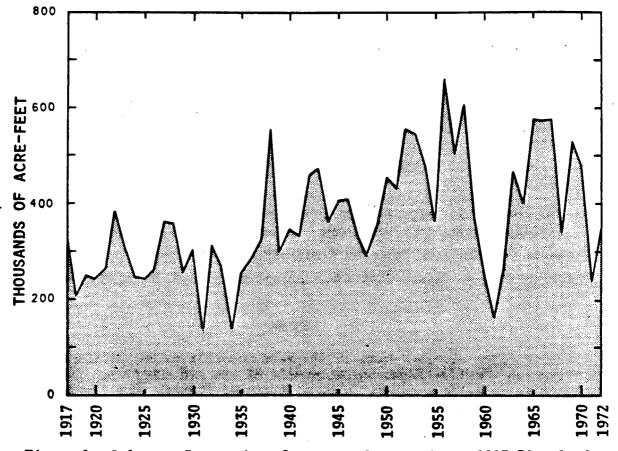
Figure 4.--Flow duration curves for East and West Forks Carson River.


Lahontan Reservoir is the largest surface-storage facility on the Carson River, and has a flashboard capacity of 322,000 acre-feet. Figure 5 shows the annual maximum and minimum stages of the reservoir for the period 1917-72 calendar years. Most of the Truckee Canal water diverted from the Truckee River at Derby Dam enters Lahontan Reservoir near Lahontan Dam. The amount of water reaching the study area was estimated by Van Denburgh and others (1973, p. 48, 57) to be 180,000 acre-feet per year for the base period 1919-69. Of this total, about 10,000 acre-feet was diverted to the Hazen-Swingle Bench area (in the Carson Desert hydrographic area), and the estimated amount entering Churchill Valley through the Truckee Canal (19/26-33dc) enroute to Lahontan Reservoir was 170,000 acre-feet per year.

<u>Carson Desert.</u>--The Carson River gage below Lahontan Dam (19/26-34dd) measures surface-water flow from Churchill Valley to Carson Desert. Streamflow at this site is controlled by reservoir releases, and averaged about 380,000 acre-feet annually for the base period. Figure 6 shows reservoir releases during the 1917-72 calendar years. This water is used primarily for irrigation in the Fallon area (pl. 1), but some also provides habitat for wildfowl in the Stillwater Wildlife Management area and adjoining areas. These uses are more fully discussed in later sections of this report.

As previously mentioned, during the 1919-69 base period, about 10,000 acre-feet per year was diverted from the Truckee Canal for irrigation in the Hazen-Swingle Bench area (pl. 1).

The surface-water outflow from the Newlands Irrigation Project is not completely accounted for by direct flow measurement. Since 1967, the Geological Survey has recorded Carson River flow just upstream from the Carson Sink (21/30-19cd), and also has recorded the flow of four canals tributary to the Stillwater Wildlife area (sites 19/30-34aa, 20/31-32cd, 20/30-36bc, and 20/29-26ab). Table 15 summarized available flow data for these five sites. Additional flow data for Carson Desert are available from the Truckee-Carson Irrigation District in Fallon and the U.S. Bureau of Reclamation in Carson City.


Packard Valley and White Plains.--Some streamflow reaches the Carson Sink of Carson Desert from Packard Valley and White Plains. The flow from Packard Valley probably is less than 100 acre-feet per year and generally occurs as the result of thunderstorms. The flow into White Plains, which represents terminal discharge of the Humboldt River, is estimated to average about 6,000 acre-feet per year. The flow from White Plains into Carson Sink is estimated to average about 1,000 acre-feet per year. The inflow-outflow quantities were estimated by a channel-geometry technique developed by Moore (1968, p. 36-68) and natural discharge evidence.

÷

-39-

)

Table 15.--Measured Carson Desert streamflow, return flow from irrigated lands, and flow from reservoir spills (thousands of acre-feet) <u>1</u>/

1

Flow	Hydrologic			Wa	Water year			
measurement site	site number	1967	1968	1969	1970	1971	1972	1973
Carson River below Lahontan Reservoir <u>2</u> /	19/26-34dd	470	354	526	471	374	363	328
Carson River below Fallon <u>3</u> /	21/30-19cd	81.1	8.41	130	68.3	74.9	6.03	6.66
Stillwater Diversion Canal near Fallon <u>3</u> /	19/30-34aa	35.7	29.0	35.9	62.6	44.3	32.7	26.8
Stillwater Slough Cutoff Drain <u>3</u> /	20/31-32cd	23.8	26.0	28.9	31.1	21.0	22.8	21.3
Paiute Diversion Drain near Stillwater 3/	20/30-36bc	7.45	5.25	7.22	9.59	6.45	6.35	6.44
Indian Lakes Canal near Fallon <u>3</u> /	20/29-26a b	18.2	10.4	16.7	16.2	18.5	15.7	8.90

[Flows rounded to three significant figures]

1. Records for other years and other stations are available from Truckee-Carson Irrigation District, Fallon and U.S. Bureau of Reclamation, Carson City.

2. Measures outflow from Lahontan Reservoir.

3. Measures flow to Carson Sink and Stillwater Wildlife Management area.

Floods

<u>Carson River floods.--Many floods have occurred on the Carson River since</u> settlement of the area began in the middle of the 19th century. Table 16 lists quantitative data for a select group of recorded floods. The floods listed in table 16 generally represent the major floods recorded at the various streamflow measurement sites in the river basin. The U.S. Department of Agriculture (1973) presents a more complete listing of specific floods and also describes interesting historical details of each individual flood. The data of table 16 and those of U.S. Department of Agriculture (1973) show that floods cannot be accurately predicted on the basis of a cyclic pattern of recurrence; for example, since 1890, the longest flood-free period (about 14 years) apparently occurred between "January 1914 and March 1928, whereas more than one flood occurred during several individual years of record. The last major recorded flood occurred in 1964; therefore, the historical record suggests that statistical odds favor recurrent flooding in the not too distant future.

Nearly all known floods on the Carson River were caused by heavy rains falling on a substantially heavy snowpack, and the flooding resulted from the combined effects of rainfall, runoff, and snownelt.

	Peak flor	s, in cubic	feet per seco	nd 1/	
	East Fork	West Fork	Mainsten	Mainstem	•
Date of	near	at	near	near Fort	
peak flow	Gardnerville	Woodfords	Carson City	Churchill	Remarks
1890			,		
May 28	a 4,2 60		No record	No record	Snowmelt
	maximum				
	observed				
June 9		Ь 1,280			Snowmelt
1892					
Dec. 25	a 5,5 40	No record	No record	No record	Rain on snow
	maximum				
	observed				
<u>1907</u>		_``````````````````````````````````````			
Mar. 18	No record		d 4,000	No record	Rain on snow
			maximum	WO TECOID	
			daily 2/		
May 17		c 1,450	=		
· · · · ·		maximum			
		daily			
I9I4					
$\frac{1914}{\text{Jan. 23}}$	No record		a E 160		Rain on snow
26	No record		e 5,1 60	a 6 150	Kain on show
20				e 6,150 maximum	
				daily	
May 2		e 1,0 50		uaily	
•					
<u>1937</u>					
Dec. 11	f 10,300	g 3,50 0	No record		Rain on snow
14				f 5,5 00	
				maximm	
		•		mean daily	
1943	~				
Jan. 21	g 5,4 20				Rain on snow
22			g 8,500		
24		_	-	g 6,3 00	
Apr. 28		g 1,2 90			
1950					
Nov. 20		h 4,730			Rain on snow
21	h 12,100	•••••			- u- and wit with
22	· · · · · · · · · ·		h 15,500		
23			•	h 7,850	
				maximum	
				daily	ι.
Dec. 3	h 4,640	h 1,880		-	
	mean daily	mean daily			
· 4	-		h 7,280		
			mean daily		
5			•	h 7,100	
				mean daily	

Table 16.--Summary of quantitative streamflow data for selected historic floods of the Carson River

ł

-43-

			feet per secon		-
	East Fork	West Fork	Mainstem	Mainstem	
Date of	near	at	near	near Fort	Demoniko
eak flow	Gardnerville	Woodfords	Carson City	Churchill	Remarks
<u>955</u> Dec. 23 24 26	i 17,600	i 4,8 10	i 30,000	i 9,680	Rain on snow
				daily	;
1963 Feb. 1 2	j 13,360	j 4,890	j 21,900	j 15,300	Rain on snow, ground frozen
<u>1964</u> Dec. 23	j 8,230	j 3,100			Rain on snow
25 26			j 8,74 0	j 7,220	
	ary maximum di Mashed out afte				
	lewell, 1894, p				
	lewell, 1891, p				
	J.S. Geological		5, p. 165.		
l. From U	J.S. Geological	Survey, 1910), p. 126.		
	I.S. Geological				
	I.S. Geological				
	I.S. Geological				
	I.S. Geological				
			970 971	174 175	
. From U	I.S. Geological				
. From U	I.S. Geological I.S. Geological				

Table 16.--Summary of quantitative streamflow data for selected historic floods of the Carson River--Continued

Records are sketchy regarding floods prior to 1890 and quantitative flow data are unavailable. However, several qualitative summaries of early floods have been published. Thompson and West (1958, p. 34) provide a brief account of a very early flood:

"On the twenty-fourth of December 1852, it commenced to snow in Carson Valley; in two days three feet of it was lying over the whole face of the country, and six days later the ground was bare. The sudden melting of the vast field of snow caused a greater flood in the Carson River to usher in the year 1853 than has since occurred [through about 1880]."

The flood of 1862 was apparently extreme, with disastrous consequences. Rain or snowfall occurred for 54 consecutive days after December 24, 1861. This caused intermittent flooding during the period, but the peak flow occurred between January 9 and 12, 1862, as a result of general rainfall. The towns of Empire (now an abandoned townsite northwest of the river just upstream from Brunswick Canyon) and Dayton were particularly hard hit. Several persons were reportedly drowned at Dayton, and a number of buildings were washed away. Parts of the Empire area were inundated by 6 to 8 feet of water during the flood peak (McGlashen and Briggs, 1939, p. 476). Bridges and other property belonging to settlers in Carson Valley were also seriously damaged (Grace Dangberg, oral commun., 1972). It was probably the greatest known flood up to that time in the area of Dayton and downstream. It may well have been greater than the floods of 1852 and 1955, but quantitative data are unavailable.

Thompson and West (1958, p. 364) also discussed the 1862 flood, but their description is limited to its effects in Carson Desert as follows:

"The Carson River overflows annually. The most noted occurrence of the kind took place in January 1862. Before then, the waters of the Carson emptied directly into the Upper Sink, and passed thence through Carson Slough and Stillwater Slough, into Lower Sink. The dry river bed could be plainly seen in 1861, through which Old River now flows, carrying with it direct into the Lower Sink a great part of the waters of the Carson, instead of by the Upper Sink, and thence by the sloughs. The same flood cut a channel where New River now runs, and also changed the outlet of the Upper Sink into an inlet, taking some of the water from New River and emptying it into the Upper Sink. The remainder flows by Stillwater Slough into the Lower Sink thus flowing past the west side of the town of Stillwater."

The major channel changes apparently caused by this flood, as recounted above, reinforce the conclusion that the 1862 flood was indeed a major flood.

River flooding again damaged the towns of Dayton and Empire in 1867. Peak flow occurred on December 26, but the river remained at flood stage for several days. Peak flood stage at Empire was 2 feet lower than the 1862 peak (McGlashen and Briggs, 1939, p. 477).

U.S. Department of Agriculture (1973, p. 7-10) described interesting details of floods during 1874, 1875, and 1886.

Extensive flooding also occurred in January 1890. Again, flooding was caused by heavy rains on a thick snowpack. Although runoff was general throughout the upper Carson River basin because of the combined rain and snowmelt runoff, the flooding was locally intensified by ice-jam damming. Flooding recurred in early February after warm weather caused release of the ice jams and increased snowmelt runoff. Parts of Empire were flooded on February 6 and the gold mills along the river were put out of operation by the high water. More flooding occurred again during early May 1890, when the unusually heavy snowpack melted quickly in upper basin areas (McGlashen and Briggs, 1939, p. 477 and 478).

The flood of 1907 also resulted from rain on snowpack. Grace Dangberg (oral commun., 1972) witnessed the flooding in Carson Valley. She recalls that some of the local flooding in the Minden-Gardnerville area originated from the rains rapidly melting snowpack in the Pine Nut Mountains. Data of table 16 show only a 4,000 ft³/s discharge at the gage near Carson City (gage was located about 8 miles downstream from present location). However, the gage washed out after the daily reading was taken, and therefore the peak flow was apparently not recorded. The magnitude of this flood may rank with the 1862 and 1955 floods. The greatest flood of record occurred in late December 1955; again heavy rains on a thick snowpack caused the flood.

)

Upper Carson River basin areas, particularly Carson, Dayton, and Eagle Valleys, are at a critical stage in planning history with regard to decisions involving Carson River flood hazards. If construction in such areas continues, flood-protection measures may be required.

The Carson River basin is now somewhat unusual, compared to many river basins of similar size, in that it has no major upstream flood-storage reservoirs above Lahontan Reservoir. In addition, much of the flood-plain area is not yet extensively developed. However, upstream storage facilities might be subject to earthquake hazards, a possibility that has yet to be adequately investigated.

Regardless of future changes in river-management policy, the historical record demonstrates that major river floods must be expected, but that their timing and magnitude cannot be predicted.

Local flash floods.--Flash flooding, although probably the most common geohydrologic hazard in the Carson River basin, is also probably the hazard least recognized by the general populace. Most flash floods in populated areas achieve a degree of short-term notoriety, but are quickly forgotten. Urban and other land-use planning, to date (1975), seems to have generally not addressed the problem of flash flooding in western Nevada.

Flash floods can result from winter rains and summer thundershowers. The winter floods frequently cover extensive areas, affect numerous small streams simultaneously, and usually contribute to major river floods. They generally result from moderate to heavy rains on a heavy snowpack or on frozen ground, and the rains commonly continue for a period of many hours or even days. In contrast, the flash floods associated with summer thundershowers, commonly referred to as "dry mantle floods" by the U.S. Department of Agriculture, usually result from extremely intense rainfall on a much smaller geographical area and for a much shorter time duration, often less than an hour. The resulting flood is frequently more intense and usually of a much shorter duration. It quickly mobilizes quantities of sediment and debris that combine with the water to form a mixture that moves as a potentially destructive flood wave. The crest of this flood wave frequently exceeds normal winter peak flood-flow quantities, and it therefore immdates areas not usually considered part of the stream's normal flood plain. Occasionally the water-sediment mixture completely abandons the normal stream channel and seeks a new route downhill. This redirected flow occurs because the moving debris commonly clogs normal channels and conveyance structures. Therefore, definition of flood plains and restrictive zoning of hazardous areas with regard to summer flash floods is normally much more difficult than that for winter floods. Risk to lives and property from the summer floods is just as real as that from winter floods -- and possibly even greater, because victims are usually subjected to additional hazards from the debris, and because warning of an impending summer flood is usually much shorter than that of a winter flood.

Qualitative and quantitative data have been collected for several flash floods in the Carson River basin during recent years by the U.S. Geological Survey. These data and accompanying interpretations are planned for future publication in a special report on flash flooding in Nevada.

Ground-Water Recharge

Most recharge is provided by precipitation on mountainous areas, with the water reaching the valley-fill reservoirs by seepage loss from streams on the alluvial slopes and by underflow from the consolidated rocks. Even in the mountains and on alluvial slopes, however, most of the precipitation evaporates before infiltration, whereas some of the remainder adds to soil moisture, and some reaches already-saturated lowland areas. Thus, only a small percentage actually finds its way to the ground-water reservoir. On most valley floors in the study area, precipitation quantities are small, and infiltration to the ground-water reservoir is generally minimal.

Potential recharge is estimated in this report using the general method described by Eakin and others (1951, p. 79-81). The method assumes that for any given altitude zone, a particular percentage of total precipitation potentially recharges the the ground-water reservoir, with that percentage depending on the average amount of precipitation within the zone. The term "potential recharge" is used because not all of the computed recharge (table 17) actually reaches the ground-water reservoirs in the hydrographic areas. Along the western side of Carson Valley, runoff from the Sierra Nevada, a part of which represents potential ground-water recharge, reaches the river, marshes, and bog areas before it can infiltrate to the ground-water reservoir. Similarly, in the upstream part of Dayton Valley, some potential ground-water recharge water (runoff from Eagle Valley and Brunswick Canyon) enters the Carson River before it can infiltrate into consolidated rocks or reach any valley-fill deposits. Likewise, a minor amount of peripheral streamflow enters Lahontan Reservoir in Churchill Valley before it can enter the ground-water system and therefore becomes a part of the surface-water system.

Table 17 lists the estimated potential recharge in the Carson River basin. The table shows an estimated 16,000 acre-feet of potential ground-water recharge in the Carson Valley part of California below the Markleeville and Woodfords river gages. An unknown part of this quantity probably is rejected as recharge because of the limited extent of valley-fill deposits in this area (pl. 1), or because the water is intercepted by the river before it reaches the valley fill.

Total precipitation and potential recharge for the entire Carson River basin in Nevada (not including White Plains) are about 1,300,000 and 36,000 acre-feet per year, respectively. Therefore, only about 3 percent of the overall precipitation is estimated to make up potential recharge. For the Nevada parts of the individual hydrographic areas, potential recharge estimates range from 0.2 to 9 percent of the total precipitation. The lowest percentages are for valleys in the eastern part of the area, where precipitation is small and catchment areas with potential recharge capability are limited in extent.

Table 17 .- Estimated potential ground-water recharge

)`

)

.

1

٠

:

÷

-

Precipitation		Estim	sted precip	itation	Retinated potent Percentage	ial recharge	
2024	Area	Range		verage	of total	Acre-feet	
(feet)	(acres)	(inches)	Teet	Acre-feet	precipitation	PET YEAT	
		West	VALLEY - C Pork Carso				
0,000-10,823	370	>40	3.3	1,200		300 2,300	
9,000-10,000	3,060 4,260	30-40 27-30	3.0 2.4	9,200 10,000 }	25	2,500	
8,000-9,000 7,000-8,000	4,180	25-27	2.2	9,200		2,300	
6,000-7,000	3,880	20-25	1.9	7,400		1,800	
5,000-6,000	9,920	12-20	1.3	13,000	10	1,300 57	
4,820-5,000 Subtotal	2,320	8-12		1,900	<u> -</u>		
(rounded)	28,000	-	-	52,000	20	10,600	
			Fork Carso	160	25	40	
9,000-9,500 8,000-9,000	78 4,180	>24 20-24	2.0 1.8	7,500	20	1,500	
7,000-8,000	11,620	15-20	1.5	17,000	15	2,600	
6,000-7,000	11,000	12-15	1.1	12,000	7	840 420	
5,150-6,000 Subtotal	17,000	<u>-12</u>		14,000			
(rounded)	43,900	-		\$1,000	11	5,400	
Total,							
Calif. (Tounded)	71,900		-	100,000	16	16,000	
			OR VALLEY -		•		
	 -		t of Carson		••	400	
9,000-9,450	791 6,880	> 24 20-24	2.0 1.8	1,600 12,000	25 20	2,400	
8,000-9,000 7,000-8,000	22,600	15-20	1.5	34,000	15	5,100	
6,000-7,000	53,000	12-15	1.1	58,000	7	4,100	
5,000-6,000	74,600	8-12	.8	60,000	3	1,800	
4,620-5,000	41,400	< 8		21,000	ELDOT	at nor	
Subtotal (rounded)	199,000	-		190,000	7	14,000	
•		Vest	of Carson	River			
9,000-9,591	481	>30	2.6	1,300)		325	
8,000-9,000	3,720	27-30	2.4	8,900		2,200	
7,000-8,000	5,580	25-27	2.2	12,000 (25	3,000	
6,000-7,000	6,510	20-25	1.9	12,000	10	3,000	
5,000-6,000 4,620-5,000	14,400 40,300	12-20 8-12	1.3	19,000 32,000	10	1,900 960	
Subtotal			8				
(rounded)	71,000	-		85,000	13	11,000	
Total,							
fievada (rounded)	270,000			270,000	9	25,000	
Grand total,				<u> </u>			
Carson Valley,	342,000	-		370,000	11	41,000	
Calif. and Nev	•						
		DA	TTON VALLEY	<u>r</u>		•	
8,000-8,763	698	>20	1.0	1,300	20	260	
7,000-8,000	10,600	19-20	1.5	16,000	15	2,400 3,400	
6,000-7,000 3,000-6,000	43,900 74,900	12-15 8-12	1.1	48,000 60,000	Ś	1,800	
4,215-5,000	103,000	Ē	.5	52,000	Binor	minor	
Total (rounded)			-	180,000	-	7,900	
		-	ORCHILL VA				
8,000-8,763 7,000-8,000	775 4,530	>15 12-15	1.5 1.1	1,200 5,000	15 7	180 350	
6,000-7,000	32,000	€-12		26,000	Ś	780	
4,070-6,000	277,000	d	5	138,000	staor	minor	
Total (rounded)	314,000	-	_	170,000	0.8	1,300	
				1/			
8,000-8,790	450	>15	1.5	680	15	200	
7,000-8,000	6,980	12-15	1.1	7,700	1	540	
6,000-7,000	36,800	₽-12		21,000	3	630	
3,845-6,000	1,260,000	4		630,000	TORIS	minor	
	1,290,000	-	-	660,000	0.2	1,300	
•	and the second distance of the second distanc		MILTE PLAT	<u>1965</u>			
Total (rounded)					-		
•	125	>8		100	• }	-100	
Total (rounded)	125 101,000			100 51,000	tonian (<100	
Total (rounded) 5,500-6,000	101,000	1 0 %				<100 <100	
Total (rounded) 5,500-6,000 3,875-5,500	101,000	4	••• 	<u>51,000</u> 51,000	minor /		
Total (rounded) 5,500-6,000 3,875-5,500 Total (rounded)	<u>101,000</u> 101,000	4	.8 .5 	51,000 51,000	winor J winor	<100	
Total (rounded) 5,500-6,000 3,875-5,500 Total (rounded) 7,500-8,206	101,000 101,000 930	- - >15	.8 .5 PACTARD VAI	51,000 51,000	minor /	<100 210	
Total (rounded) 5,500-6,000 3,875-5,500 Total (rounded)	101,000 101,000 930 3,560 9,760	4	.8 .5 PACKARD VAI 1.5 1.1 .8	51,000 51,000 LLET 1,400 3,900	<u>atisor∫</u> aisor 15 7 3	<100	
Total (rounded) 5,500-6,000 3,875-5,500 Total (rounded) 7,500-8,206 5,500-7,500	101,000 101,000 930 3,560		.8 .5 	51,000 51,000	15 7	<100 210 270	

1. Excluding Packard Valley.

A comparison of estimated mountain-front runoff with estimated potential recharge for other hydrographic areas in Nevada discloses that runoff averages about twice the potential recharge. Considerable variation occurs in individual hydrographic areas throughout the State, with presently available ratios of runoff to recharge ranging from about 0.04 to about 8. Ratios computed for the Carson River basin are as follows: Carson Valley (Calif. and Nev. parts combined), 0.8; Eagle Valley, 1.5; Dayton Valley, 0.2; Churchill Valley, 0.7; and Carson Desert (excluding Packard Valley), 2.7. The overall ratio for the river system is 0.9, which is considerably below the statewide average. The overall ratio reflects the dominance of the wetter upstream hydrographic areas of the Carson River basin. The generally low runoff-recharge ratios of the upper Carson River basin are similar to those for most of the upstream hydrographic areas of the Walker and Truckee River drainages (Glancy, 1971, and Van Denburgh and others, 1973).

The trend of lower-than-average runoff-recharge ratios generally common to contiguous hydrographic areas along the front of the Sierra Nevada has several possible explanations: (1) the estimates of recharge, runoff, or both may be in error because of inaccuracies inherent in the presently used estimating techniques, (2) the lack of high-altitude precipitation data may have caused overestimates of precipitation, and hence excessive recharge estimates, in areas immediately adjacent to the Sierra mountain front, or (3) the geologic character of the consolidated-rock uplands may induce above-average recharge in the consolidated rocks, accompanied by reduced runoff quantities at the mountain fronts, thereby reducing the runoff-recharge ratio. Thus, users of these estimates should be aware of their limitations.

Natural Subsurface Inflow

Natural subsurface inflow to the valley-fill reservoirs can be of three general types: (1) inflow from the surrounding consolidated rocks within a valley watershed, which originates as infiltrated precipitation and runoff; (2) underflow from an adjacent watershed mainly through surficially exposed consolidated rocks, with subsequent subsurface leakage into the valley-fill reservoir; and (3) inflow from an adjacent upgradient valley through valleyfill deposits (alluvium) and (or) through consolidated rocks buried by the valley fill.

The first type of inflow is included in the estimates of recharge in table 17; the proportionate amount recharged in this manner is unknown. The second type of inflow may occur more frequently than originally assumed in the Great Basin Region. However, the evidence is generally indirect; for example, a notable imbalance in the hydrologic budget of an adjacent valley, and (or) favorable flow gradients between the valley-fill reservoirs of adjacent valleys. Favorable gradients in themselves are only suggestive; however, combined with obvious hydrologic budget imbalances, they become stronger evidence for leakage. Although no inflow of this type to the Carson River basin is known or suspected on the basis of available evidence, some outflow may occur in Rawhide Flats (p. 55). The third type of ground-water inflow, through alluvium (valley fill), can be computed using a form of Darcy's law:

Q = 0.00112 TIW

in which Q is the quantity of flow, in acre-feet per year; T is the transmissivity, in gallons per day per foot; I is the hydraulic gradient, in feet per mile, W is the width of the flow section, in miles; and the factor 0.00112 converts gallons per day to acre-feet per year. Table 18 summarizes this type of ground-water inflow to valleys of the study area.

Imported Water

The Carson River basin receives water imports for irrigation and municipal supply. It also receives sewage effluent from the Lake Tahoe basin.

Irrigation water enters the basin from the Truckee River by way of the Truckee Canal. This import is one of the main irrigation supplies to the Newlands Irrigation Project lands of the Fallon area. Average annual import by way of the canal has been an estimated 180,000 acre-feet for the period 1919-69 (Van Denburgh and others, 1973, p. 48, 57). About 10,000 acre-feet is diverted from the Truckee Canal to irrigate about 1,400 acres of Carson Desert land in the Hazen and Swingle Bench area. Therefore, about 170,000 acre-feet per year reaches Lahontan Reservoir in Churchill Valley.

Imports for municipal use come to Eagle Valley and Virginia City areas by way of the Marlette-Hobart component of the State-owned Marlette Water System. Presently (1971), the imports are mainly from the Hobart Reservoir watershed which is tributary to Washoe Valley, but during the past century significant amounts were imported to the Virginia City area from Marlette Lake (not shown on pl. 1), which is part of the Lake Tahoe drainage basin. Table 19 lists quantities of water imported from the Marlette Water System during recent years. Several estimates of the average annual yield of the system are as follows (rounded to the nearest hundred acre-feet):

- (1) 5,200 acre-feet (Montgomery Engineers of Nevada, 1965, p. V-3 and appendix III).
- (2) 8,100 acre-feet (Nevada Legislative Commission, 1969, p. 24).
- (3) 7,100 to 7,400 acre-feet (Creegan and D'Angelo, Consulting Engineers, and Christoph J. Altemueller, Consulting Engineer, in Nevada Legislative Commission, 1971, p. IV-3).

The average imports from that system to the Carson River basin (Eagle Valley and Virginia City areas combined) during recent years (table 19) range from about 440 to 760 acre-feet, annually. Therefore, based on the above estimates, the Marlette Water System is currently (1971) utilizing only about one-tenth of the estimated average annual water supply.

Sewage wat r has been exported to Carson Valley from the Lake Tahoe basin for several years. A planned program of total sewage export from the Tahoe Basin'to protect its unique environment is well underway; as a result, Carson Valley since 1968 has become the recipient of effluent from three major sewage treatment plants located around the east and south shores of the lake. The

Inflow to: (in downstream order)	From:	Location of flow section	Assumed transmissivity [(gal/d)/ft] (T)	Estimated hydraulic gradient (feet per mile) (I)	Approximate width of section (miles) (W)	Estimated subsurface flow (ac-ft/yr, rounded) (Q)
Carson Valley (East Fork)	California	East Fork Carson River channel at Stateline	50,000	27	0.1	150
Carson Valley (West Fork)	California	West Fork Carson River at Stateline	50,000	85	1.5	7,000
Carson Valley	Eagle Valley	Clear Creek underflow2/	30,000	40	0.50	600
Dayton Valley	Carson Valley	Carson River channel at Carson City gage	25,000	10	0.05	15
Dayton Valley	Eagle Valley	Two separate sections2/	20,000 and 50,000	70 and 25	1.0 and 0.05	1,600
Churchill Valley	Dayton Valley	Carson River channel at gage	50,000	5	0.25	70
Churchill Valley	Mason Valley	Adrian Valley (15/25-18) ^{3/}	50,000	15	0.2	150
Carson Desert	Churchill Valley	Seepage from Lahontan Reservoir	•••		. 	Unknown
Carson Desert	Fernley Area	Alluvium near Hazen4/	50,000	- 7	2	800
Carson Desert	Packard Valley	Alluvium	5,000	20	4	400
White Plains	Lovelock Valley (Humboldt Sink)	Beneath Humboldt drain	5,000	2.5	4	60
Carson Desert	White Plains	Alluvium	5,000	1	3	20

Table 18.--Estimated ground-water inflow to valleys of the study area through alluvium

1. River channel is on or very close to bedrock.

4. Data from Van Denburgh and others, 1973, p. 47.

2. Data from Worts and Malmberg, 1966, table 9, p. 29.

3. Data from Huxel, 1969, table 13, p. 29.

-51-

	re-feet)				
Water year	State distribution system	Purchased by Carson Water Co.	Purchased by Virginia City	Purchased by Lakeview development	Total
1966	253	331	166		750
1967	182	124	136		442
1968	278	400	160		838
1969	256	340	164		760
1970	255	212	191	3	6 61
1971	253	168	220	5	64 6

Table 19.--Water imported from the Marlette Water System 1/

1. Data from records of Nevada Division of Buildings and Grounds. The data update table 5 of Worts and Malmberg (1966).

South Tahoe Public Utility District began exporting its treated effluent by pipeline to Indian Creek Reservoir (table 11) in 1968. The Douglas County Water Reclamation Project began to export treated effluent from its Round Hill treatment plant to Carson Valley by way of Daggett Creek in 1969. In January 1972, the Douglas County facility discontinued use of Daggett Creek and began exporting its treated effluent directly to the Carson River through a new pipeline system (Julio Alvas, Plant Manager, oral commun., 1972). According to Mr. Alvas, some future diversion of the treated effluent from the pipeline for irrigation in Carson Valley is probable. The Incline Village General Improvement District plant began export of its treated effluent to Carson Valley in 1971. The District had, as of December 1971, delivered at least 98 percent of its effluent to the U.S. Bureau of Land Management and the Harry Schneider Ranch in Jacks Valley for stockwatering and irrigation. However, a pipeline allows effluent to be discharged directly to the river.

2

The combined import of sewage effluent from all three sources in 1971 was about 3,700 acre-feet (table 20). The maximum capacity of the present Incline system is 3.5 million gallons daily, or about 3,900 acre-feet per year (Cliff Girbon, Jr., oral commun., 1972). That of the Douglas County Water Reclamation Project is 6 million gallons daily, or about 6,700 acre-feet per year (Julio Alvas, oral commun., 1972). The South Tahoe Public Utility District may be exporting nearly 14,000 acre-feet annually by the year 2006 (Lake Tahoe Area Council, 1970, p. 5). This means that within just a few decades Carson Valley could be receiving about 25,000 acre-feet of imported sewage effluent annually from the Lake Tahoe basin.

T	Inflow p	per water	year (ac	re-feet)	
Import system	1968	1969	1970	1971	
South Tahoe Public Utility District via Luther Pass to Indian Creek reservoir 1/	a 1,28 0	2,470	2,640	2,93 0	
Douglas County Water Reclamation Project via Daggett Creek to Carson River <u>2</u> /	0	a 400+	550	520	
Incline Village General Improvement District via Spooner's Summit to Carson River basin <u>3</u> /	0	0	0	a 29 0	
Total (rounded)	1,300	2,900+	3,200	3,740	
1. Data from Lake Tahoe Area Council (197 Lake Tahoe Area Council Laboratory (ilt of	
 Data from Julio Alvas, plant manager, Project (oral commun., 1971). 	Douglas Co	unty Wate	r Reclama	tion	
3. Data from Cliff Girbon, Jr., plant man District Treatment Plant (oral commu		ine Gener	al Improv	ement	
a. First year of system operation: theref	ore impor	ts took n	lace only	nert	

Table 20.--Estimated imports of waste water to Carson River basin

a. First year of system operation; therefore, imports took place only part of the year.

OUTFLOW FROM THE HYDROGRAPHIC AREAS

Surface and Subsurface Outflow

All surface-water flow between hydrographic areas within the Carson River basin is listed in table 12. No surface water flows from the Carson River basin to adjacent areas, as all water not percolated or discharged by evapotranspiration flows to the Stillwater Wildlife Management area or to the sink areas.

Subsurface flow between areas is discussed mainly in the section titled "Subsurface inflow" (see table 18). Possible subsurface leakage from the Carson Lake area of Carson Desert to Rawhide Flats in the Walker River drainage (not shown on pl. 1) was postulated by Everett and Rush (1967, p. 17), because the estimated annual discharge from Rawhide Flats was about five times greater than the estimated recharge. This imbalance resulted in an apparent water deficiency in Rawhide Flat of about 650 acre-feet per year. Two shallow wells were drilled in 1971 in the Bass Flats area, near Carson Lake in Carson Desert; this area is separated from Rawhide Flats by the Blow Sand Mountains. The static water-table surface inferred from water levels in these and nearby wells in Carson Desert suggests that ground-water movement in the shallow aquifer system is toward Carson Lake rather than toward Rawhide Flats. However, the water table in Rawhide Flats is about 20 feet lower than that in southern Carson Desert. Therefore, although available evidence refutes interbasin ground-water movement from Carson Desert to Rawhide Flats through shallow aquifers, the possibility of leakage through deeper aquifers still exists. The leakage requirement to satisfy estimated budget deficiencies in Rawhide Flats, only about 650 acre-feet per year, is completely masked by the great natural discharge in the Carson Desert.

Public, Domestic, and Industrial Supplies

Most of the residents in the study area, as well as industrial and commercial enterprises in the cities and most communities, are served by public water supplies. Table 21 gives estimates of public, domestic, and industrial water use during the 1971 water year in the Carson River basin. Where possible, annual estimates were made on the basis of records of water diverted or delivered to consumers. These records were not adjusted to reflect true consumptive use. When no records were available, consumptive use was estimated through population estimates and application of an average use rate of 110 gallons per day per person in most instances. For Minden and Gardnerville, a higher use rate of 120 gallons per day per person was applied to compensate for increased water consumption by a tourist population assumed greater than that of other unmetered rural communities.

Table 22 gives a summary of estimated ground-water pumpage for public supply, domestic, and industrial purposes during 1971. Tables 23 and 24 document the municipal water-supply histories of Carson City and Fallon, respectively, during recent years.

Table 21Estimates	of	public,	domestic,	and	industrial	water	use	during	1971	water	year
-------------------	----	---------	-----------	-----	------------	-------	-----	--------	------	-------	------

)

)

Domilation grow or		Estimated 1971 use	
Population group or facility served	Source of supply	(acre-feet)	Basis of estimate
	Carson Valley		
ardnerville Ranchos <u>1</u> /	2 wells	160	Estimated population of 1,000. Golf course of about 20 acres at use rate of 2 feet annually.
Gardnerville	4 wells	110	Estimated population of 820.
linden	2 wells	70	Estimated population of 500.
Genoa	Flow of Genoa Canyon 1/, sprin, in Schoolhouse Canyon 1/, so piped water from Sierra Canyo and individual wells.	ne	Estimated population of 135 plus unknown number of live- stock.
Carson Valley (rural)	Individual wells	180	Estimated population of 1,500.
Nevada Medium Security Prison 1/ Subtotal (rounded)	2 wells at Medium Security Pri	san <u>50</u> 590	Estimated population of 380.
	Eagle Valley		
Stewart	1 active well	100	Estimated population 1,000, about is of which reside only 3/4 of each year.
	Diversions from Clear Creek to water lawns and grounds	50	Worts and Malmberg, 1966, p. 23.
Carson Water Co.	 5 wells in Eagle Valley; 2 wells in Jack's Valley; Eagle Vall spring and streamflow; imported water from Marlette water system 	ey	Records of Carson Water Co. and Nevada Division of Buildings and Grounds (see table 23).
bural	Individual wells	400	Estimated population of 3,000+.
itate system	Eagle Valley spring and stream flow		Records of State Division of Buildings and Grounds (table
	Imported water from Marlette water system	<u>a 253</u>	19), and Worts and Malmberg (1966, table 6).
Subtotal (rounded)		3,870	
	Dayton Valley		
/irginia City (includes Gold Hill and Silver City)	Imports from Washoe Valley and Tahoe basin via Marlette wat system.		Records of State Division of Buildings and Grounds (table 19).
Residences in Mound House area	Springs in the Virginia Range	12	Estimated population of 100.
rea near junction of U.S. Highway 50 and Nevada Highway 17	Individual wells	5	Estimated population of 25-50.
Deyton	Individual wells	30	Estimated population of 250 and several commercial establishment
ural .	Individual wells	· <u>30</u>	Estimated population of 250.
Subtotal (rounded)		300	
	Churchill Valley		
ilver Springs	2 community wells	30	Estimated population of 225 and 8 commercial establishments.
hral Subtotal (rounded)	Individual wells	<u>25</u> \$ 5	Estimated population of 200.
in zen	<u>Carson Desert</u> Diversions from Truckee Canal	10	Retireted semiletion of PA-100
Fallon .	2 wells	a 1,030	Estimated population of 50-100. City pumpage records.
I.S. Neval Air Station	3 wells	a 438	Nevy pumpage records.
bral	Individual wells	1,000	Estimated population of 8,000+.
iennametal, Inc. <u>1</u> /	1 well	50	Information from J. D. Prank, Manager
Subtotal (rounded)		2,530	
Total (rounded)		7,300	

1. Location not shown on plate 1.

•

a. Estimate of water delivered to consumers, but not adjusted to reflect true consumptive use.

.

Eagle Valley Dayton Valley Thurchill Valley Carson Desert	Pumpage estimates (acre-feet)				
Carson Valley	580				
Eagle Valley	1,360				
Dayton Valley	65				
	55				
Carson Desert	2,500				
Packard Valley	minor .				
White Plains	none				
Total (rounded)	4,600				

Table 22.--Summary of estimated ground-water pumpage for public supply, domestic, and industrial purposes, 1971 water year

Table 23.--Water input to the Carson Water Company distribution system during the 1970 and 1971 calendar years

·	INPUT						
	1	970	1971				
Source	Acre-feet	Percentage of annual subtotal	Acre-feet	Percentage of annual subtotal			
Pumpage from Eagle Valley wells <u>1</u> /	1,264	45	1,357	47			
Stream and springflow from Eagle Valley drainages <u>1</u> /	1,340	48	1,363	47			
Imports from the State distribution system 2/	212	7	174	_6			
Eagle Valley system subtotal	2,816	100	2,894	100			
Jack's Valley system 1/	23	••	25				
Water Company combined system total (rounded)	2,840		2,920	•			

1. Data from Carson Water Co. records.

2. Data from Nevada Division of Buildings and Grounds.

. .

Water	Pumpage (acre-feet per year)					
year	Fallon wells 1/	Navy wells 2/	Total			
1967	784	457	1,241			
1968	853	486	1,339			
1969	911	438	1,349			
1970	874	438	1,312			
1971	1,029	438	1,467			

Table 24.--Pumpage of Fallon city wells and Fallon Naval Air Station wells during the 1966-71 water years

1. Data furnished by Milton Lakey, Assistant City Engineer of Fallon.

2. Data furnished by Lt. P. A. Faletti, Public Works Officer, U.S. Naval Air Station, Fallon.

A few small industrial concerns in the larger municipalities generally satisfied their limited water needs as of 1971 from the municipal-supply systems. Kennametal, Inc., operates a plant about 10 miles north of Fallon. They obtain part of their water supply from a well at the plant site which produced about 50 acre-feet of water in 1971. They supplemented this water with about 6 acrefeet purchased from the city of Fallon (J. D. Frank, Mgr., oral commun., 1972).

Water is used for power generation at Lahontan Dam by Sierra Pacific Power Co., and at a small powerplant on the V-canal by the Truckee-Carson Irrigation District. However, since 1967, no water has been used for power generation alone, because the plants use water only when it is being released for irrigation purposes.

Irrigation Pumpage

Cropland within the report area is irrigated primarily with surface water. Most ground-water pumpage for irrigation in areas upstream from Lahontan Reservoir, particularly in Carson and Dayton Valleys, is supplemental to surface-water irrigation. In other words, most irrigators supply their crops with ground water only when surface-water supplies are inadequate. As a result, pumpage is largest during years of deficient surface-water supply, and smallest during years of abundant runoff. Table 25 shows the estimated maximum, minimum, and average irrigation pumpage under current (1971) conditions of agricultural development.

Pumpage estimates for Carson Valley were made during a recent ground-water investigation (Walters, Ball, Hibdon, & Shaw, 1970, p. 42). The estimate for 1968 was 10,000 acre-feet, when the combined river flow was about 70 percent of the 1905-69 average. The estimate for 1969 was 3,000 acre-feet, when combined river flow was about 176 percent of the 64-year average. This suggests that the average annual pumpage rate during years of normal river flow is about 5,000 acre-feet.

Irrigation pumpage in Eagle Valley is estimated at less than 100 acre-feet per year, because the only known pumpage not accounted for as domestic and municipal use is that for the local golf course and cemetery.

	Pumpage estimates (acre-feet)					
Hydrographic area	Small runoff years	Average runoff years	Large runoff years			
Carson Valley 1/	10,000	5,000	3,000			
Eagle Valley	less than 100	less than 100	less than 100			
Dayton Valley 2/	7,000	3,500	1,200			
Churchill Valley 3/	50	50	50			
Carson Desert 4/	minor	minor	minor			
Packard Valley 3/	none	none	none			
White Plains 3/	none	none	none			
Total (rounded)	about 17,000	about 9,000	about 4,000			

Table 25.--Estimated annual irrigation pumpage

1. Modified from data of Walters, Ball, Hibdon, & Shaw, 1970, p. 42.

2. Based on field data collected during this study and water-rights data of Nevada State Engineer's office.

3. Based on field data collected during this study.

4. Oral communication with Truckee-Carson Irrigation District staff, 1971.

Irrigation pumpage in Dayton Valley is also mainly supplemental to surfacewater irrigation. The exceptions are in the Stagecoach area (17/23-10) and the area southeast of the Carson River a few miles downstream from Dayton (16/22-4 and 9), where farmers cumulatively irrigated about 400 acres exclusively by ground-water pumpage in 1971-72.

The only known irrigation pumpage in Churchill Valley during 1971-72 was for an alfalfa field of about 15 acres at the west edge of Silver Springs. The annual pumpage is estimated at about 50 acre-feet, and is supplied by well 18/24-25bda (pl. 1 and table 39).

The Carson Desert probably has only a minor amount of irrigation pumpage because the Truckee-Carson Irrigation District does not permit ground-water irrigation of areas greater than one acre by any individual farm. Therefore, each farm does not irrigate more than a small garden or lawn with ground water, and the total cumulative pumpage for this purpose probably is accounted for in estimates of rural domestic water use (table 21).

A comparison of tables 21 and 25 shows: (1) irrigation pumpage is somewhat more than all other pumpage in Carson and Dayton Valleys, (2) irrigation pumpage is about equal to other pumpage in Churchill Valley, (3) public, domestic, and industrial pumpage is much greater than irrigation pumpage in Eagle Valley and Carson Desert, and (4) combined pumpage for all purposes in Packard Valley and White Plains is negligible.

Surface-Water Diversions

Irrigation by surface-water diversions was not determined directly because this reconnaissance did not include detailed mapping of irrigated lands according to crop type; in fact, irrigated lands and phreatophyte areas have been field-mapped as a single unit (pl. 1). Estimates of irrigated acreages for the various hydrographic areas shown in table 28 were generally obtained from other sources, as credited in the table. Total evapotranspiration of crops and phreatophytes is approximated by difference in the water budget (table 30).

Livestock Use

Water for livestock comes from wells, springs, streams, and irrigation ditches. The amounts consumed are small compared to other types of water use. Table 26 lists the estimated average annual consumption by livestock from all water sources as of 1971. Total use of water by livestock throughout the study area in 1971 was about 700 acre-feet.

	F	Population estimates 1/					
Hydrographic area	Range cattle	Milk cows	Hogs	Sheep	Horses	consumption (acre-feet, rounded)	
Carson Valley	23,000	1,500	50 0	7,000	1,000	220	
Eagle Valley	1,100	100	minor	1,300	700	20	
Dayton and Churchil Valleys		minor	minor	1,000	200	18	
Carson Desert	50,000	3,200	1,000	15,000	3,500	48 0	
White Plains 2/	minor	none	none	minor	minor	minor	
Packard Valley 2/	200	none	none	minor	minor	2	
Total (rounded)	76,000	4,800	1,500	24,000	5,400	700	

Table 26.--Estimated annual consumption of water by livestock, 1971 calendar year

1. Population estimates based on U.S. Dept. of Commerce (19/1) and modified with assistance of County Extension Agent's staffs, except as noted. Animal per-capita use rates as follows (Nevada State Engineer, 1971, p. 16): Range cattle - 6 gal/d (gallons per day) Milk cows - 20 gal/d Hogs - 2 gal/d Sheep - 2 gal/d Horses - 10 gal/d

2. Population estimates by P. A. Glancy.

Recreation Use

Recreation is one of the fastest growing water uses in the Carson River basin. This reconnaissance does not allow an analysis of the present use or future potential of the river system for recreation purposes, because the use is generally nonconsumptive. Two principal areas of recreation use are Lahontan Reservoir, for boating and fishing, and Stillwater Wildlife Management Area, for wildfowl.

Springs

Numerous small springs occur in the consolidated rocks of the mountains. Some springs also discharge from the valley fill (pl. 1). Although these springs furnish water for stock and wildlife, the cumulative water quantities involved are minimal compared to pumpage and streamflow in the area. The springflow typically supports growth of meadowgrass, saltgrass, rabbitbrush, greasewood, willow, and aspen over very limited areas. Some of the flow probably seeps back into the ground. Doud Spring (11/21-20cd) and Saratoga Spring (14/20-21cdd) in Carson Valley have much higher discharges than most springs visited during this investigation (table 27). The table indicates that several of the springs are thermal. Worts and Malmberg (1966, p. 30) discussed springs in Eagle Valley, and Morrison (1964, p. 117) discussed springs in the Carson Desert.

Location	Name	Approximate land- surface altitude (feet)	Date	Estimated flow (gal/min)	Тепре	rature °C
11/21-20cd	Doud Spring	5,750	5- 7-70	180	70	21.0
-26ba	Double Spring	5,930	5- 6-70	<10	52	11.0
13/19-22abc	Walleys Hot Spring	4,670	11-10-59	10-15	146	63.0
14/19-23 d d	Hobo Hot Spring	4,760	5- 3-60	10-15	114	45.5
14/20-21 cdd	Saratoga Hot Spring	s 4,700	5-14-70	350	122	50.0
16/21-2daa	Sutro Tunnel	4,480	6- 1-70	25-50	83	28.5
-22cb	Dove Spring	4,620	6- 1-70	5	59	15.0
16/24-15bcd		4,275	6- 8-70	3	61	16.0
16/29-34bc	Lee Hot Springs	4,020	8-18-70	10	boiling	boiling
17/22-8cad	Sutro Springs	5,590	7-23-72	10	69	20.5
17/31-31ab	Rock Spring	3,915	8-19-70	1	68	20.0
-31ba		3,920	8-19-70	ī	66	19.0
18/22-25da	Cooney Spring	5,330	6- 3-70	<1	69	20.5
18/23-33ccb	Corral Spring	4,395	12- 7-71	ī	58	14.5
28/34-31db		5,035	10- 8-70	5	62	16.5

Table 27.--Spring data

Natural Evapotranspiration

In areas of shallow ground water, natural discharge occurs by evaporation from surface-water bodies and bare-soil areas, and by transpiration from naturally growing plants called phreatophytes, whose roots tap the ground-water reservoir. Large amounts of water are naturally discharged to the atmosphere by these evapotranspiration processes in the Carson River basin. However, as mentioned in the section on "Irrigation pumpage," no estimates of crop or natural losses are made in this report. They are shown by difference in table 30. Evapotranspiration areas are listed in table 28 and are shown in combination with irrigated areas on plate 1.

Estimates of average net evaporation from surface-water bodies in individual hydrographic areas of the Carson River basin are shown in table 29. Acreage estimates were based on the following assumptions and criteria: Carson Valley acreage includes ponds, lakes, and major stream channels; Dayton Valley acreage is almost all river-surface area; Churchill Valley acreage is largely Lahontan Reservoir and a small amount of river surface; Carson Desert acreage includes a reasonably firm estimate of about 35,000 acres of lakes, ponds, and reservoirs; a somewhat less confident estimate of about 10,000 acres in Carson Lake; and a very crude estimate of about 20,000 acres of flooded playa in the Carson Sink and Fourmile Flat areas.

Evaporative discharge from bare soil (table 28) involves water losses from the ground-water reservoir, but not losses associated with playa-surface flooding, which are accounted for in estimates of evaporation from surface-water bodies. Significant areas of bare-soil ground-water discharge exist only in Carson Desert and White Plains. The probability of ground-water discharge from the playa areas of Turupah Flat, southeast of the Fallon Naval Air Station, and Bass Flats, at the southern edge of Carson Lake, is very uncertain. Recently drilled shallow wells in these playas suggest static water levels in Turupah Flat and Bass Flats are about 11 feet and 14 to 25 feet below land surface, respectively (table 39); the amount of ground-water discharge under these conditions is considered minor.

Water losses from large areas in the Carson Lake and Stillwater Wildlife Management segment of Carson Desert are dominated from time to time by either water-surface evaporation, bare-soil ground-water discharge, phreatophyte discharge, or various combinations of these three types of discharge, depending on prevailing water supplies and water-management practices. These areas of variable discharge, therefore, are listed in several special discharge categories in table 28.

Packard Valley has practically no water-surface evaporation. Transpiration from about 1,700 acres of phreatophytes is estimated to be about 340 acre-feet per year.

Table 28.--Estimated acreage of irrigated lands, phreatophytes, surface-water bodies, and discharging playas 1/

	Carson Valley (Nevada)	Eagle Valley	Dayton Valley	Churchill Valley	Carson Desert	Packard Valley	White Plains	Total
Irrigated lands	a 48,000	ъ 700	a 6,300	a 1,300	c 56,000	(d)	(d)	112,000
Phreatophytes2/	6,000 b	5,100	6,700	22,000	e 300,000	1,700	13,000	e 350,000
Surface-water bodies (lakes, ponds, and streams)	1,100	minor	300	>7,000	65,000	minor	500 1	74,000
Discharging playa	none	none	none	none	276,000	none	12,000	290,000
Playa of uncertain ground-water discharge	none	none	none	none	5,500	none	(d)	5,500
Mixed marsh grass, grease- wood, bare soil, and surface water	(b)	(d)	(b)	(b)	4,200	(d)	(d)	4,200
Mixed bare soil and a few phreatophytes	(d)	(d)	(d)	(b)	32,000	(d)	(d)	32,000
Mainly surface water with some pasture, marsh grass, and phreatophytes	(d)	(d)	(d)	(d)	4,200	(d)	(6)	4,200
Total (rounded)	55,000	5,800	13,000	30,000	740,000	1,700	25,000	870,000

(All figures rounded)

1. Values determined during period of study. Some areas may vary substantially during periods of varying wetness.

2. Numerical difference between combined reconnaissance-field-mapped acreage of phreatophytes and irrigation, and reported irrigated acreage.

a. Acreage from U.S. Soil Conservation Service (Joe VanMullen, oral and written commun., 1974).

b. From Worts and Malmberg (1966, p. 24 and table 8).

c. From U.S. Bureau of Reclamation (Nathan Geering, oral commun., 1971).

d. No acreage determined in given category.

e. Includes about 250,000 acres where phreatophytes may be spotty or in some places absent.

63-

Hydrographic a rea	Estimated average area (acres)	Net evaporation rate <u>1</u> / (feet per year)	Average annual discharge (acre-feet per year)		
Carson Valley	1,100	2 1 2	2,800		
Dayton Valley	3 00	3	9 00		
Churchill Valley	>7,000	>312	30,000		
Carson Desert	a 45,000 b 20,000	4 a 2	180,000 40,000 220,000		

Table 29.--Estimated average annual evaporation from surface-waterbodies for mainstem hydrographic areas, 1919-69

1. Average annual lake evaporation (Kohler and others, 1959, pl. 2) minus average annual precipitation (table 4).

- a. Perennial lakes and ponds as determined by 1971 field studies. During periods of deficient water supply, such as 1920-35 and 1958-61, many of these areas reportedly decrease markedly (Harold Soule, Truckee-Carson Irrigation District, and George Luke, Stillwater resident, oral commun., 1974).
- b. Mainly playa areas that are partly flooded on a very irregular basis. Therefore evaporation rate assumes water coverage only half of each year on the average.

Part of White Plains is flooded about twice per decade, on the average, during) years of large runoff in the Humboldt River basin. The ponded flood water generally evaporates and (or) drains to Carson Desert, and the flooded areas become dry within a few months. Water-surface evaporation probably averages less than 500 acre-feet per year. Phreatophytes (mainly greasewood) occupy about 13,000 acres in a generally sparse pattern, and consume an estimated 1,300 acrefeet per year. Ground-water discharge from bare soil is an estimated 1,200 acrefeet per year from about 12,000 acres of playa surface. Total evapotranspiration, then, may be about 3,000 acre-feet per year for White Plains.

WATER BUDGETS

Water budgets for the mainstem hydrographic areas are dominated by the Carson River, because river-flow quantities generally are much larger than other budget elements. Water budgets for hydrographic areas are shown in table 30. The various budget elements are determined for the 51-year base period 1919-69, and therefore, the recent sharp increases in water imports as well as domestic and municipal use have little effect on the long-term budget averages.

Mainstem Areas

Carson Valley (Nevada)

In Carson Valley, most mountain-front runoff (table 14) and most of the ground water recharged through consolidated rocks reach the river or the valleyfill ground-water reservoir. The net average quantity annually entering the system by these two processes is assumed to be about 30,000 acre-feet (table 30).

The annual net depletion, or consumptive use, within the valley is computed by difference to be about 80,000 acre-feet. This estimate compares favorably with the 77,000 acre-feet of Piper (1969, p. F7), although Piper relied on a different period of record (1909-60) and also included the area in California below the Woodfords gage.

Dayton Valley

Most of the mountain-front runoff in Dayton Valley (averaging 1,400 acre-feet annually, table 14) is assumed to be either dissipated by evapotranspiration or infiltrated to the ground-water reservoir before reaching the river. As a result, potential ground-water recharge (7,900 acre-feet annually, table 17) is considered the local input to the Dayton Valley hydrographic areas.

Churchill Valley

The hydrologic budget of Churchill Valley is dominated not only by natural river flow, as are upstream valleys, but also by inflow of the Truckee Canal, evaporation from Lahontan Reservoir, and man-controlled releases from Lahontan Reservoir. Therefore, man-controlled activities dominate the outflow elements and also strongly influence inflow totals. Natural local input (mountain-front runoff, 900 acre-feet, plus potential ground-water recharge, 1,300 acre-feet) is insignificant when compared to most other budget elements. The budget of table 30 shows 30,000 acre-feet per year of "other outflow quantities" (by difference), which includes crop, phreatophyte, municipal, and domestic consumptive use. However, the total seems to be about 10,000 acre-feet more than the apparent water requirements indicated according to crop and phreatophyte acreages. Therefore, the apparent excess of 10,000 acre-feet presumably is either the product of errors in the estimation of inflow and outflow elements, or it represents a quantity of water escaping the valley via some undefined route.

Table	30Reconnaissance wat	er budgets in	acre-feet per year,

for mainstem hydrographic areas, 1919-69

	Carson Valley (Nev.)	Dayton Valley	Churchill Valley	Carson Desert	Total (rounded)
INFLOW					
Mainsten inflow:					
Streamflow (table 12)	315,0 00	272,000	a 268,000	ъ 380,000	315,000
Ground water [®] (table 18)	7,200	15	70	unknown	7,200
Imported water (tables 19 and 20)	c minor	d 150	e 170,000	e 10,000	180,000
Inflow from nonmainstem (adjacent) hydrographic areas:					
Streamflow	f 3,100	g 3,500	h 1,000	1 1,400	8,500
Ground water (table 17)	g 60 0	g 1,600	h 150	j 1,200	3,600
Input to system from within mainstem hydrographic area	k 30,000	£ 7,900	£ 1,300	£ 1,300	40,000
TOTAL INFLOW (rounded)	355,000	285,000	440,000	390,000	550,000
OUTFLOW					
Mainstem outflow:					
Streamflow (table 12)	272,000	a 268,0 00	ъ 380,000	0	0
Ground water (table 18. and p.)	minor	70	minor	<1,000	<1,000
Evaporation from surface- water bodies (table 29)	2,80 0	900	30,000	220,000	250,000
Other outflow quantities1/	a 80,000	n 16,000	o 30,000	p 170,000	300,000
TOTAL OUTFLOW (rounded)	355,000	285,000	440,000	390,000	550,000

Computed by difference: total inflow minus all other outflow elements. Includes
water consumptively used for municipal, industrial, domestic, and agricultural
purposes, plus evapotranspiration from phreatophytes and playas.

.

a. Carson River, 252,000 acre-feet (table 12) plus Buckland Ditch, 16,000 acre-feet.

b. U.S. Bureau of Reclamation records.

c. Average import from Lake Tahoe basin minor for period 1919-69.

d. For Virginia City area; estimated long-term average on basis of data in table 19).

e. Truckee Canal (quantity for Carson Desert is not import).

f. Clear Creek (Worts and Malmberg, 1966, p. 19, plus 100 acre-feet diversion from Clear Creek to Jacks Valley).

g. From Eagle Valley (Worts and Malmberg, 1966, p. 19 and 29).

h. Inflow from Adrian Valley (Huxel, 1969, p. 22).

1. Inflow from White Plains (1,000 acre-ft per yr) and Packard Valley (400 acre-ft per yr).

j. Inflow from White Plains (20 acre-ft per year), Packard Valley (400 acre-ft per yr), and Fernley area (800 acre-ft per yr, Van Denburgh and others, 1973, p. 47).

k. Net annual average input of 30,000 acre-fact assumed on the basis of 15,000 acre-fact estimated mountain-front runoff (table 14) and 25,000 acre-fact estimated potential ground-water recharge (table 17).

L. Assumed equal to estimated potential ground-water recharge (table 17).

m. Agrees reasonably well with 77,000 acre-feet of Piper (1969, p. F7). Includes water consumed by about 54,000 acres of crops and phreatophytes.

n. Includes minor pumpage for stock and domestic use, plus water for 13,000 acres of crops and phreatophytes.

 Includes pumpage for stock and domestic and water for about 20,000 acres of crops and phreatophytes; may include substantial ground-water outflow to Carson Desert (see text).

p. Includes water consumed by 56,000 acres of crops and up to about 620,000 acres of phreatophytes and discharging playas.

-66-

Carson Desert

Carson Desert hydrology is dominated by man-controlled releases from Lahontan Reservoir. The "other outflow quantities" determined by difference suggest that only 170,000 acre-feet of water is consumed annually by domestic, municipal, and agricultural consumptive use and natural evapotranspiration. The crops, phreatophytes, and naturally discharging bare playas (table 28) alone probably would consume or discharge considerably more than 170,000 acre-feet annually. Therefore, the outflow of water from Carson Desert seems greater than is accountable through the combined inflow elements. Reconciliation of this critical problem, unfortunately was beyond the scope of this reconnaissance.

Another budget element not considered in this reconnaissance is the amount of irrigation water that went into ground-water storage from canals, distribution ditches, and fields following the start of the Newlands Project in about 1905. Water levels locally rose as much as 50 to 60 feet during the period 1905-30 (Rush, 1972). This additional water loss, if known, would increase the losses under the "outflow" section of the budget (table 30).

Nonmainstem Areas

Eagle Valley

The water budget of Eagle Valley used in this study is that of Worts and Malmberg for conditions as of 1965 (1966, p. 33 and table 11). Their budget indicates a near balance between inflow and outflow of about 15,000 acre-feet annually; of that quantity, about 8,800 acre-feet ultimately reaches the mainstem Carson River (table 30), and the residual, 6,200 acre-feet is assumed dissipated within Eagle Valley.

Packard Valley

Packard Valley is tributary to Carson Desert (though it is not tributary to the Carson River). Subsurface leakage to Carson Desert from Packard Valley is considered as the arithmetic difference between estimates of recharge and natural discharge in Packard Valley. Estimated recharge (table 17) is 710 acre-feet and natural discharge from about 1,700 acres of phreatophytes (table 28) is estimated at about 340 acre-feet. Subsurface leakage is therefore assumed to be about 400 acre-feet. Average annual surface-water runoff to Carson Desert from Packard Valley probably is less than 100 acre-feet per year.

1

White Plains

Average annual outflow from the White Plains hydrographic area is estimated at about 6,000 acre-feet, and consists of about 1,000 acre-feet of surface-water flow (p. 38); an estimate of 20 acre-feet of ground-water underflow to Carson Desert (table 18); about 2,600 acre-feet of natural discharge by 13,000 acres of phreatophytes (table 28); 1,200 acre-feet of bare-soil evaporation from 12,000 acres (table 28); and roughly 1,000 acre-feet of estimated water-surface evaporation from about 500 acres (table 28).

-67-

Average annual inflow estimates are as follows: a minor amount of groundwater recharge within the hydrographic area (table 17); and ground-water inflow from the Humboldt Sink of about 60 acre-feet (table 18). Surface inflow from the Humboldt Sink is assumed to equal the difference between the other elements of inflow and outflow, or about 6,000 acre-feet per year, on the average (p. 38).

Entire Carson River Basin

For the entire report area, including mainstem and nonmainstem hydrographic areas, the estimated total water supply has averaged about 560,000 acre-feet per year during the base period 1919-69. The total includes 550,000 acre-feet in mainstem areas (table 30), 6,200 acre-feet dissipated in Eagle Valley (p. 67), 710 acre-feet in Packard Valley (p. 67), and 6,000 acre-feet in White Plains (p. 67). Of this approximate 560,000 acre-feet total supply, 322,000 acre-feet enter the report area from the Carson River drainage in California (table 30), 180,000 acre-feet are imported from the Truckee River via the Truckee Canal (table 30), 6,000 acre-feet are supplied from the Humboldt River drainage via White Plains (p. 67), and 1,000 acre-feet enter from the Walker River basin via Adrian Gap (table 30). Thus, the combined total inflow from outside the report area is roughly 510,000 acre-feet. Therefore, only about 50,000 acre-feet, or slightly less than 10 percent, of the total area supply is generated within the study area which was confined to Nevada.

The estimated total outflow also has averaged about 560,000 acre-feet per year, including 250,000 acre-feet of evaporation from surface-water bodies (table 29) and 310,000 acre-feet (calculated by difference) of evapotranspiration from phreatophytes, bare playas, and agricultural lands plus water consumed for municipal, industrial, and domestic purposes.

WATER QUALITY

The water quality of the Carson River basin is best in the headwater areas and tends to deteriorate in a downstream direction as a result of both natural processes and man-caused effects. The quality involves, and is determined by, a complex interrelationship of at least four general components: (1) physical characteristics of the water, such as temperature and rate and path of movement, (2) dissolved chemical constituents in the water, (3) particulate matter carried by, or in contact with, the water, and (4) the biologic community of plants and animals, including man, that live partly or wholly in this hydrologic environment. The complex interrelationship of the above components requires detailed knowledge of Carson River basin hydrology both to understand present water-quality characteristics and to predict successfully specific future changes in water quality. This required knowledge is presently inadequate, mainly because of a shortage of hydrologic data. Therefore, this study is concerned mainly with a summary presentation of some of the available data and preliminary interpretations of these data, where feasible.

General Chemical Character

Table 31 shows chemical analyses of representative water samples collected within the report area. Although the interpretations of chemical quality in the study area rely largely on the data of table 31, they are also based in part on data of Miller and others (1953), University of Nevada (1944), Walters, Ball, Hibdon, & Shaw (1970), Guyton & Associates (1967), and Worts and Malmberg (1966). Data from these reports generally are not repeated in table 31. Many unpublished analyses from the files of the Nevada Division of Health were also utilized in the interpretations. Some of these data are included in table 31.

The specific conductances in table 31 can be used as a preliminary indication of general chemical character, because the concentration of dissolved solids in a water, expressed in milligrams per litre (mg/1), is generally 55 to 70 percent of the specific conductance, in micromhos per centimetre at 25°C (hereafter abbreviated 'micromhos'). Milligrams per litre are equivalent to parts per million in most waters; see footnote 1, table 31.

Criteria for Suitability

Suitability for Domestic Use and Public Supply

The U.S. Public Health Service (1962, p. 7-8) has formulated standards that are generally accepted as a guideline for drinking-water supplies; these standards have been adopted by the Nevada Bureau of Environmental Health for public supplies in the State. The standards, as they apply to data listed in table 31, are as follows:

						.	rart					erminatio						Terr	ors a		
												(upper nu lire (low				Specific		ract 0	uital	illec Silit	tin _i Sy
									Sodiu							conduct-	PË	for Sa-	irri	gati	on2
	Source (with well depth where	Date	Ana-	Ter per atu	r-		Cal-	De-		- Sicar- bonate		Sul- Ch fate ri		- Dis-	Nard- Dess As	(micro-	(lab. deter- mine-	lin- ity		So- dium haz-	•
Location	appropriate)	sampled	<u>'}</u>	• 7			(Ca)		(K) <u>*</u> /			(SOL) (C) solids_/			tion)				
							,			RSON VAL	LEY										
11/19-12ed	Fredricksburg Canyon Creek		R				6 0.30	1.3 0.11		34 0.56	0.00	1.9 0 0.04 0.		53	.1	70	7.9	L	0.3	L	5
1/21-20cd	Doud Spring	5- 7-70	C		-		32 1.60	16 1.30		169 2.77	0 0.00	39 0.81 0.	4		145	330	8.2	L	.7	L	1
-26ba	Bouble Spring	5- 6-70	G	52	11.0) (52 2.59	20 1.65		194 3.18	0 0.00	112 2.33 0.	6 —		212	540	8.1	L	1.0	L	
-3064	Bryant Creek	9-22-69	C	-		-	46 2.30	14 1.12		0 0.00	0 0.00	199 4.14 O.	4 -		171	480	4.3	L	.6	L,	
2/1 9-3ca	Nott Canyon Creek (a)	12-11-56	8	-			8.8 Q.44	1.3 0.11		45 0.74	0 0.00	1.9 0 0.04 0.		61	28	· 62	8.1	L	.4	L	
-14cb	Sheridan Creek (a)	12- 7-56	R		-		7.2 0.36		(a)	34 0.56	0 0.00			51	23	68	8.0	L	.4	L	
-26dad	Luther Creek (a)	12- 7-56	R	-		-	4 0.20	0.5 0.04	(a)	31 0.51	0 0.00	00 0.00 0.		36	12	57	8.0	L	.4	L	
2/20-4baad	Well (343 ft) (a)	5-11-70	N			0.00	58 2.89	16 1.32		266 4.36	0 0.00	17 0.35 0.	6 7.3 23 0.13		208		7.6	L	.6	L	
-4bbad	Well (#)	2- 3-69	Ņ	-	-	0.02	40 2.00	11 0.90	20 0.87	176 2.88	0 0.00	27 0.56 0.	5 10 14 0.10		144		7.2	L	.7	L	
-104ccb	Well (445 ft) (a)	4-29- 70	1			0.02	22	5 0.41	15 0.65	110 1.80	0 0.00	11 0.23 0.3	5 0.8		76	-	7.9	L	.8	L	
-14addc	Well (497 ft) (a)	1- 4-65	G	54 .	12.0	0.03		14	(a)	253 4.15	0.00	21	10 19	30 7c	204	485	7.3	L	.7	L	
-15eeba	Well (450 ft) -(a)	4-28-70	M	-	-	0.00		4	13 0.56	105	0.00	11 0.23 0.2	5 0.1	146	76	-	7.8	L	.6	L	
/21-24bc	Pine Hut Creek	12-22-56	R	-		-	50 2.50	9.5 0.78	(a)	194 3.18	11 0.37	25 3. 0.52 0.1	, -	234	164	395	8.6	L	.7	L	
/19-3ca	Sierra Canyon Creek (a)	12-13-56	R		-		20	2.7 0.22	(a)	92 1.51	0.00	2.4 0.	.7	103	61	160	8.4	L	.9	L	
-9db	Genos Canyon Creek (a)	12-13-56	2			-	16 0.80	2.9 0.24	(a)	75 1.23	2 0.06	6.7 0.14 0.0	0 0	110	52	146	8.7	L	. 9	L	
-22abc	Walley's Hot Spring (a)	11-10-59	G	146	63.5	0.01	9.6 0.48	0.5 0.04	(a)	12 0.20	24 0.80	200 4.16 1.3	6 0.3		26	730	9.1	L	12	M	
-276 bc	Daggett Creek	12-12-56	2			-	11 0.55	2.6 0.21	(a)	68 1.12	0 0.00	1.0 0.		92	39	121	8.2	L	.5	L	
/20-29cdcd	Well (398 ft) (a)	2- 3-69	M			1.4	22 1.10	3.9 0.32	12 0.52	93 1.52	0.00	16 0.33 0.4	5 2.2		72		8.1	L	.6	L	
-JZbabc	Well (301 ft) (a)	2- 3-69	8	-	-	0.70		3.9	13 0.57	90 1.48	n 0.00	15 0.31 0.1	4 3.3	108	68		8.3	L	.7	L	
/21-28ccb	Well (95 ft)	5-14-70	G	58	14.5		29 1.45	9 0.73	35	140	0.00	57 1.19 0.2	6 —	-	109	360	7.8	L	1.5	L	
/22-2988	Buckeye Creek (a)	17-21-56	R		-	-	27 1.35	9.5	(a)	142 2.33	0,00	42 3.	9 -	253	106	330	8.3	L	1.0	L	
/19-23dd	Bobo Rot Spring (a)	5- 3-6 0	C	114	45.5	0.03	6	0.7		51 0.84	17	109 7	4 0		18	662	8.9	L.	13	١	
/20-21cdd	Saratoga Hot Spring	5-14-70	G	122 :	50.0	-	172	0	160 6.94	4	7		9 -	-	429	1,500	9.0	H	3.4	L	
									EAG	LE VALLI	<u>n</u>				•						
/19-13	Ash Cenyon Creek (a)	11- 2-70)II		-	0.07		1 0.05	17 0.74	76 1.24	0.00		2 0.1		28		7.9	L	1.4	L	
	Eings Canyon Creek (a)	11- 2-70	H	-	-	0.05	0.55	0.06	8 0.35	56 0.92	0 0.00	.02 0.0			32	-	8.0	L	.6	L	
/20-746	Well (515 ft) (a)	3-13-72	9	-	-	0.52	26 1.30	4 0.33	9.39	115 1.68	0 0.00	3 0.06 0.0	2 1.R 5 0.03		80		7.9	L	.4	L	1
-fechal	Well (69 fr)	9-18-6 2	H	-	-	4+	54 2.70	20 1.64	494 21.48	717 11.75	0 0.00	312 27 6.50 7.6		2,700	216		7.9	8)	15 1	78	ł
-1766	Mell (604 ft) (a)	11- 2-70	Ħ	-	-	0.40	24 1.20	1 0.08	25 1.09	112 1.84	0.00	16 0.38 0.1	5 0.1 5 0.00	150	64	-	7.9	L	1.4	L	1
-33icab (Well (375 ft) (a)	12-14-71	Ø		-	0.37		7 0.58	6 0.26	105 1.72	0.00	4 0.08 0.0		129	80	-	7.3	L	.3	L	1
							a.43	.	4.20			J. JO U. U	, v. vi)								

Table 31.--<u>Chemical analyses of well, spring, stream, and lake waters</u> Part A.--Routine analytical determinations

}

•

)

.

Pert & (continued)

Table 31 .- Chemical gaslyses of well, spring, stream, and lake waters--Continued

				_	•				111equi Bodius (Ma)	ins per lvalente k	per 1	(upper <u>itre (1</u>	CHET 1) and umber)]	_/		Specific conduct- ance	PE	 		ilit; gati	y 00.2
	Source (with well depth where	Date	Ana- lyst	Te pe 411	17 1 1570 -	iren	Cal- cium	Mag- MA- Sium	plus potas- sium	- Bicar-			Chlo- ride	trate	Bis- solved		(micro- mbos per cm at	nine-	ity has-	4	80- 41un har-)
Location	appropriate)	empled	<u>y</u>	•7	•c	(Te)	(Ca)	(Hg)	a: 5	_	(∞,)	(\$0,)	(C1)	(1103)	solide_/	CeC03	25°C)	tion)	ard	\$42	ard	15
/20-100	Wall (256 ft)	5-28-70	c	_	_	_	23	6	15	TON YAL	<u>111</u>	37	8	16	_	. 81	240	7.1	L	0.7	L	5
	•					,	1.15	0.47	0.66	1.02	0.00	0.77	0.23	0.26		270	588	7.9	L	.4	L	
24; and	Springs supply- ing J & R Game Ranch (combined flow)		U	-	-	-	97 4.84	0.55	17 6.73	116 1.90	e. 00	4.16	0.06	-	-				•	. •	L	•
/20-2566	Pend in Oypeum Quarry	5-28-70	G	60	15.5		651 32.48	98 8.08	0 0.00	81 1.33	0 0.00	1,810 37,68	55 1.55	-	-	2,030	3,400	8.0	¥1	.0	L	1
/21-24es	Sutro Tunnol	4-16-59	C	81	27.0		267 13.32	53 4.36	(a)	312 5.11	0 0.00	732 15.24	8.2 0.23	0.00	1,320c	884	1,650	7.6		1.0	L	1
-12aci	Well (265 ft)	7-11-72	C	95	35.0	-	120 5.99	0 0.00	170 7.52	49 8.80	0 0.00	\$70 11.87	30 0.84	-	. –	300	1,280	7.8	Ξ.	4.3	L	1
-1366	Wall (264 ft)	7-11-72	C	67	19.5		72	19	41	161 2.64	0	180 3,75	21 0.59	-	-	260	657	7.8	M	1.1	L	1
-22cb	Spring	6- 1-70	C	59	15.0	-	110 5.49	27	35 1.50	259 4.25	0	206 4.29	25 0.71	-		388	850	8.2	K	.8	L	1
-23eci	Wall (250 ft*)	3-13-69	¥	-	— '	0.13	-	17	64 2.78	193 3.16	0.00	170 3.54	19 0.54	22	435	240	-	7.4	Ħ	1.8	L	ł
-24bd	(a) Well (135 ft)	2-14-72	¥	-	-	0.31	37	12	34 1.48	173	0	56 1.17	8	4.4	275	140	-	7.5	L	1.2	L	
-29ab	(a) Wall (135 ft)	12- 6-71	C	_		_	1.85	0.99	44	250	0	280	13	_	-	420	911	8.2	Ħ	.9	L	
-29cd	Wall (79 St)	7-10-69	¥	_	-		6.59 413	1.80	1.91	4.10 154	0.00	5.83 1,060	0.37	1.7	1,810	1,140	-	7.6	1	.7	L	
-256	(s) Well (85 ft)	5-28-70	G	-	_	-	20.61 448	2.14	2.26	2.52	0.00	22.07 995	0.45	0.03	-	1,280	2,200	7.6		.0	L	
/22-7 545	Well (100 ft)	10- 6-67	I	80	26.5			3.21	0.21	3.41 149	0.00	20.72 192	0.99	0.66	583	260	-	7.7	L	1.1	L	
-146	Well (145 ft)	€- 5 -72		_	-	0.03	5.09	0.06	1.83 49	2.44	0.00 0	4.00	0.59	0.00 5.2	320	140		7.8	L	2.2	L	
-Mar	(a) Wall (600 ft)	6- 1-70	. c	66	19.0	-	1.75	1.07	2.13	2.72 164	0.00 0	1.67 90	0.45	0.05	_	186	490	8.2	L	.9	L	
-18000	Well (a)	3-20-72		_	_	0.01	2.59	1.13	1.18	2.69 195	0.00 0	1.07	0.34	22	471	248		7.8	M	1.9	L	
					11.0		3.59	1.32	2.91	3.20 218	0.00	3.09	0.42	0.36	_	151		8.4			L	
-3lec	Eldorado Camyo Creek			34			2.00	1.02	1.98	3.57	0.07	1.00	0.28		238	144		7.6	Ľ		- 1	
22-2 66 4	Well (122 ft) (a)	1- 7-72		-	-	0.00	1.45	18 1.48	0.30	2.52	0.00	0.35	0.23	6.1 0.10		_			-			
-2884	Well (123 ft) (a)	1- 7-72	-	-	-	0.10	1.30		1 0.04	151 2.48	0 0.00	16 0,33	0.23	6.2 0.10	228	156		7.6	L	.0		
-3046	Well (177 ft)	6- 3-70	G		-	-	139 6.94	36 2.93	27 1.18	161 2.64	0 0.00	369 7.68	26 0.73	_	-	; 494	1,000	7.6	M	.5	L	
-32ef	Simile Canyon Greek	5-25-69	G	56	13.5	-	130 6.49	30 3.16	47 2.03	112 1.84	0 0.00	459 9.54	10 0.28	-	-	483	1,000	8.2	H	.9	L	
-JJccbc	Wall (633 ft)	7-13-72	6	69	20.5		48 2.40	19 1.60	42 1.81	136 2.23	0 0.00	140 3.33	9 0.25	-	-	200	566	7.9	M	1.3	L	
-Mites	Well (500 ft)	7-20-72	6	67	19.5	-	52 2.59	24 2.01	36 1.56	195 3.20	0.00	130 2.71	9 0.25	-	-	230	587	8.1	M	1.0	L	
-35bc	We11	7-21-72	C C	64	18.0	-	32 1.60		30	174 2.85	0 0.00	40 0.83	0.23	-	-	130	393	8.1	M	1.1	L	
/23-364	Wall (252 ft) (a)	3-16-72	2 36	-	-	0.03	45		42	173 2.84	0 0.00	63 1.31	30	12 0.19	941	266)	8.1	L	1.4	L	
· =2bc	Well (305 ft)	2- 2-72	: T	-	-	0. <i>H</i>		0	42	24 0.39	0.27	49	. 13		152	10		9.0	L	4.7	L	
-214	(a) Well (300 ft)	3-16-72	: H	_	-	0.03	50	10	25	146	6	53	14	14	291	164	-	8.3	L	.0	L	
-3666	(a) Wall (120 ft)	9-12-71	L III	-		0.00		15	54	2.39	0.20	1.10	30	1.1	335	340)	8.2	L	2.0	L	
-10bes	(a) Well (300 ft)	8-17-71	L T	_	-	0.01	34		50	2.56	0.00	73	16		325	- 13		8.0	L	1.8	: 1	
-10bet	(a) Wall (190 ft)	6-17-7 1		-	-	6.0	1.70	1.07	2.17 41	2.80 158	6.00 6	1.52 204	.0.45 14		506	270	i	7.8	L	1.0	L	
-lless	(a) Wall (70 ft)	€-`\$-71		_		0.02	3.94	1.64		2.59	0.00	4.25	0.40	0.06	438	104		7.9		3.1	L	
	(a)			67	14.0		2.79 43	0.90		2.74	0.00 0	4.18		0.09	_	14		8.0		4.0		
-114cb	Well (165 ft*) (a)			a,	44.6		2.15	0.81	4.92	2.39	0.00	4.02	1.47			-			-	3.5		
-27 ch a	Well (220 ft) (a)	9-12-71		-	-	0.00	2.15	2.38	122	107	0.00		155	0.00	59 7			8 .1	×	2.4		
- Xibes	Well (510 ft) (a)	5-24-71		-	-	0.1	3.34	1.81		210 3.44	0.00			1.00	530	•		-	_		_	
/22-254a	Cooney Spring (a)	7-30-7		-	-	0.0	2.00	0.90	1.30	188 3.06	0 0.00	40 0.83	0.23		253	144		8.1	_	1.1		
/23-33ccb	Certal Spring	7-30-72			-	0.0			30 1.30	176 2.88	0 0.00	40		2.5 0.04	282	. 144	۱ - ۱	7.8	L	1.1	. L	

-71-

Part A (continued)

•

.

Table 31 .-- Chemical analyses of well, spring, stream, and lake waters -- Continued

j

)

•

Locati 16/24-15 17/24-16 -34 17/25-64 -18 18/24-25	Recd	Source (with well depth where appropriate) Spring	Date sampled	Ane-						(Ha)								ance					
17/24-10 -31 17/25-64 -11		Barine		1 yet		ure	iron	Cal- cium (Ca)	sium	plus potas- sium (K)4/		ate	fate	Chlo- ride (Cl)	trate	Dis- solved solids5/	8855 85	(micro- mhos per cm at 25°C)	(lab. deter- mine- tion)	ity haz-	-	So- dium baz- ard	1
17/24-10 -31 17/25-64 -11		Sarine			•	_				CHUR	HILL VA	LLEY	<u> </u>										-
-34 17/25-64 -18	:ba		6- 8-70	C	61	16.0	-	40 2.00	16 ,1.30	52 2.24	151 2.47	0 0.00	134 2.79	10 0.28	-		165	560	7.9	L	1.7	L	5
17/25- 64 -18		Well (200 ft) (a)	3- 3-70	H	-		0.30	37 1.85	4 0.33	68 2.96	162 2.66	0 0.00	89 1.85	21 0.59	0.4 0.01	352	108		7.7	L	2.8	L	\$
-10	iea	Wall (63 ft) (a)	11-22-70	Ħ	42	5.5	0.23	42 2.10	18 1.48	54 2.35	251 4.11	0.00	69 1.44	11 0.31	0 0.00	331	176	-	7.8	L	1.8	L	\$
	њь	Well (105 ft) (a)	4- 1-69	×	-	-	0.52		6.8	26 1.13	110 1.80	0.00	36 0.75	7	1.3	209	80	***	7.5	L	1.3	L	S
18/24-25	liddd	Well (150 ft) (a)	6-11-70				0.33		10 0.82	15 0.65	110 1.60	0.00	31 0.64	10 0.28	0.00	193	104		7.9	L	.6	L	S
	iadb	Well (260 ft) (a)	6-12-6 9	Ħ	-		c.o 0		16 1.30	56 2.44	142 2.33	0	124	27 0.76	14 0.23	412	172	-	7.7	L	1.9	L	. R
-27	/cac	Wall (300 ft*) (a)	- 17-71	H	-	-	0.02		11	49 2.13	134	0.00	107	26 0.73	10 0.16	364	160	-	7.9	L	1.7	L	S
-24	Mbc	Well (a)	8-17-71	¥			0.01		11 0.90	25 1.09	127 2.06	0.00	110 2.29	8 0.23	11 0.18	354	184		7.9	L	.8	L	\$
-32	tabc	Well (315 ft)	9-12-71	¥	-	-	0.06	88	20 1.64	39 1.70	158 2.59	0.00	227 4.73	12 0.34	3.5	526	300	-	7.8	N	1.0	L	S
18/25-44	1	(a) Well (380 ft)	6-12-67	¥	_	-	2.4	4.39	1.6	49	561	0	4.8	32	0	860	400	-	6.6	M	1.1	L	H
-19	cdc	Well (290 ft)	6-12-69	¥	-	-	0.13		0.13	2.13	9.20	0.00	0.10	0.90	0.00	346	160	-	8.0	L	1.2	L	5
		(=)	•					2.00	1.23	1.56 <u>CAI</u>	2.48 LSON DES	0.00 <u>ERT</u>	1.35	0.68	0.19								
17/31-31	ab	Rock Spring	8-19-70	C	68	20.0		-		_	394 6.46	0.00		1,300 36.67		-		5,340	8.2	WB	-		-
18/29-46	ac	Eingman well (776 ft)	1058	(7)	82	28.0	-	8 0.40	1 0.08	350 15.18	480 7.87	12 0.40	43 0.90	230 6.49	-	950	24	1,850	8.0		31	WH	U
-23	ccc	Truckse-Carson Irrigation Canal (a)	10- 2-56	C	70	21.0	1.4	21 1.05	4.4 0.36	(a)	84 1.38	0.00	29 0.60	6.8 0.19	1.8 0.03	145c	70	229	7.1	L	.9	L	S
18/30-12	laca	Well (s)	₽ -15-63	C	60	15.5	-	6.8 0.34	0.5 0.04	(a)	784 12.85	47 1.57	876 18.24 (5,420 152.90	37 0.60	11,200c	19	17,500	8.5	0 4	\$20	WH	U
-35	dc	Well (100 ft)	8-19-70	C	-	-	-	-		-	-	-		1,400	-			5,680		WE	-		-
18/31-44		Well (140 ft)	8-19-70	C	66	19.0		13 0.65		2,500 109,51	519 8.51	0 0.00		3,000	-	•	160	10,900	7.6	U	86	₩H	U
-31	cec	Well (300 ft) (a)	1961 (7)				3	1 0.05	1 0.08	(a)	423 6.93	12 0.40		2,155		4,820	6		8.7	VI 3	270	¥8	U
19/27-12	dc.	Well (150 ft)	6-16-71	C		-		300 4.97	110	1,100 49.52	212 3.47	0.00	2,700	490			1,200	6,380	7.7	WE	14	WB	5
19/28-74	M	Soda Lake (a)	8-28-58	c			0.10	7.9	194		1,250	1,360	6,220	7,570	2.2	24,700c	822	31 ,80 0	9.6	0	130	VE	U
-22	daa	Wall (41 ft)	2-25-64	x	-		0.10	53	16.04	117	307	0	129.502	52	10	605	22R	-	8.0	M	3.4	L	\$
-22	deb	Well (1,155+ft))12- 9-71	c	_		-	2.64	1.09	54	5.03 118	0.00	23	1.47	0.16	-	18	276	8.6	L	5.5	L	N
19/29-30 1,		(a) Wells (combine flow; 506 and	d 9-29-6 9	M	-	-	0.10		0.11 —	2.35 (a)	1.93 356 5.84	0.13 23 0.77	0.48 164 3.41	0.17 84 2.37	0.4 0.01	424	28	-	9.3	M	21	W H	U
-30		521 ft) Well (506 ft)	5- 8-58	¢	68	20.0	0.02		1.4	(a)	231	20	75	67	0.8	498c	11	821	8.8	M	23	WR	U
-31	babc	(s) Wall (444 ft)	, 12- 9-71	c	-	_	_		0.12	58	3.79	0.67	38	1.09	0.01	-	24	316	8.0	L	5.1	L	H
-33	chhl	Well (540 ft)	1-26-67	c	_	-	8.37		0.08	2.51 216	2.03	0.00	0.79 66	94	0.4	580		906	9.1	W	33	W H	U
19/30-30	ceb -	(a) Well (15-19 ft)) 6- 9-69			-	0.18	. 35	0.12 18	350	4.64 237	0.87 0	129	2.65 420	0	1,110	160		8.1		12	N	5
-30	CCC	(a) Well (37 ft)	1-15-69	¥	_	_	0.10		1.48		3.88 1,650	0.00 24	2.69 7,750	11.85 5,500		21,400	176	_	8.2		160	WR.	U
9/31-74		(a) Well (204 ft)			Bo1	ling	_	0.08		341.04	27.04	0.80 : 0	161.361 190	155.16 2,080	0.48		230	7,420	7.5			¥8	5
-11	-	Well	10- 8-70			18.5	-		0.06		1.70	0.00	3.96		_	_		12,600	7.8		58	WE.	
 10/28-1)=		Well (627 ft)	2-26-69						4.29		6.18 372	0.00 n	1.94		,	5.320	293		8.1	-	47	VI.	
1/30-19		(a) Carson River	10-18-71		37	3.0			1.96	78	6.10 178	n.00 0		76.73			120	615					
					-			1.60	0.80	3.41	2.92	0.00	1.90	0.99					8.3	1	3.1		
-30		Well (985 ft)			•3	17.0		0.20	0.10		9.08	37	100				_	2,930	8.7		68	•	U
11/32-25		Vell	10- 8-70	-	-	-			33 2.71		111	0.00	470 9,78	190 5.36		-		1,820	7.6		2.4		. 5
2/33-15		Well	10- 8-70	C	-		-	14 0.70	4 0.30	430 18.59	293 4.80	44 1.47	220 4,58	310 8.74	-	-	50	2,130	9.0		26	WE	۵

Part & (continued)

Table M .- Chemical analyses of well, spring, stream, and lake waters--Continued

										ine per lvalente					1/		Specific				ffect 11ity	
Location	Source (with well depth where Appropriate	Date annpled	Ana- lyst	Te pe atu *7	T-	iron	Cal- cium (Ca)	Nag- Be- sium	Sodiu (Ha) plus	- Bicar- bonate	Car- bon- ste	Sul- fate	Chio- ride	N1- trate	Dis-	Hard- boss as CaCO	epaduct- sace (micro-	98 (1ab.	for Se lin ity her	<u>irri</u> - -	gatio So- dium baz-	<u>m²/</u>
								PACE	UD VAL	ET AND	WHITE	PLAIKS			•					-		
23/26- 29dc	Well (44 ft)	10- 7-70) C	58	14.5		140 6.99		4,200 182.39	207 3.39	0 0.00	48	6,600 18619		- '	410	20,500	7.6	U	90	WH	\$
24/29-26ed	Bunboldt River drain	5- 1-72	6	58	14.5		50 2.50	30 2.50	370 16.05	361 5.92	5 0.17	220 4.58	370 10.38	-		250	2,090	8.5		10	1	8
		6-20- 72	G	64	19.0	-	48 2.40	63 5.19	740 32.08	388 6.36	0 0.00	440 9.16	86 0 24.15	-		380	3,990	8.3	WE	20	WR	\$
		2-28-73	C	50	10.0	-	82 4.09		1,700 75.16	202 3.31	12 0.40	.930 19.36			-	640	8,000	8.6	σ	30	VI	\$
27/33-24ced	Well	10- 8-70	G	-		-	110 5.49	40 3.30	100 4.50	189 3.10	0 0.00	110 2.29	280 7.90		-	440	1,450	7.9	M	2.1	L	8
28/34-31db	Spring	10- 8-70	G	63	17.0	-	66 3.29	14 1.11	50 2.18	134 2.20	0 0.00	75 1.56	100 2.82		<u> </u>	220	692	7.6	L	1.5	L	\$

1. Milligrams par liter and millioquivalents per liter are metric units of measure that are virtually identical to parts per million and equivalents per million, respectively, for all waters having a specific conductance less than about 10,000 micrombos. The matric system of measurement is receiving increased use throughout the United States because of its value as an international form of scientific communication. Therefore, the U.S. Geological Survey recently has adopted the system for reporting all water-quality data. Where only one number is shown, it is milligrams per liter.

me asoptes the system for reporting all water-quality data. Where only one number is shown, it is milligrams per liter. 2. <u>Salinity herard</u> is based on specific conductance (in micrombos) as follows: 0-750, low hazard (L; water suitable for almost all applications); 750-1,500, medium (N, can be detrimental to sensitive crops); 1,500-3,000, high (E; can be detrimental to many crops); 3,000-7,500, very high (V; should be used caly for tolerant plants on permaable soils); >7,500, umavitable (U). Salinity hazards for some analyses are estimated on basis of reported dissolved-solids content. <u>SAR</u> (sodium adsorption ratio) provides an indication of what effect an irrigation water will have on solid-frainage characteristics. SAR is calculated as follows, using milliquivalents per liter: SAR = Na//(Ca + Ng)/2. Where sodium plus petassium are computed by difference rather than analyzed for (footnote 4), that value is used to compute SAR. <u>Sodium heaserd</u> is based on an ampirical relation between salinity heard and sodium-adsorption ratio: low (L), medium (N), high (N), or very high (V). <u>BSC</u> (residual sodium carbonate): easis (G), or usuitable (D). The several factors should be used ensement of water applied. These and other aspects of water for irrigation also depends on climate, type of soil, drainage characteristics, plant type, end amount of water applied. These and other aspects of water quality for irrigation are discussed by the National Technical Advisory Committee (1968, p. 143-177), and the U.S. Salinity Laboratory Staff (1954).

3. Analysts: G, D.S. Geol. Survey; C, Cook Research Lab.; H, Abbot A. Manks, Inc.; H, Moree Laboratories; H, Mevada State Bealth Div.; R, D.S. Bur. Reclamation.

4. Computed as the millioquivalent-per-liter difference between the determined megative and positive ions; expressed as sodium (the contentration of sodium generally is at least 10 times that of potassium). Computation assumes that concentrations of undetermined megative ions--especially mitrate--are small.

5. Enown or assumed to be residue on evaporation at 105°C, except where followed by "c" that indicates computed sum (with bicarbonate multiplied by 0.492 to make result comparable with residue values).

a. Detailed laboratory analysis; additional determinations are listed in part 3 of this table.

Table 31 Chemical analyses of well, spring,	stress, and lake watersContinued
---	----------------------------------

Part 3.-Additional determinations from detailed chemical analyses

		millieq	grams per uivalents	litte (per lit	Te (1000	r numbe	<u>(1)1/</u>		-		millie	igrams per uivalents	r litre (a per lit	re (1000	er numbe	<u>1</u> τ) <u>1</u> /	
Location	Silica (\$10 ₂)		Arsenic (As) <u>6</u> /		Potas- sium (K)	¥1uo- ride (Y)_6/	Phos- phate (PO4)	Boron (B)		(111ca (110 ₂)	Man- ganese Qin)	Arsenic (As)	Sodium (Na)	Potas- sium (K)	Fluo- ride (F) <u>0</u> /	Phos- phate (PO ₄)	101 (1
			CARSON VAL	LEY							DATTON	VALLET	Continued				
11/19-12ad	-	-	-	3.5 0.15	2 0.05	-	-	0.00	. 17/22-28dbd	-		0.00	-	-	0.1 0.01		•
12/19-3ca	· —	-	-	4.6	2	.—	-	0.04	17/23-16d	-		0.01	-	-	0.2 0.01	-	•
-14cb	-	-	-	4.4 0.19	0.4 0.01		-	0.03	-2bc			tr.			0.2 0.01	-	•
-26dad		<u></u>	-	3.2 0.14	1.6 0.04	-	-	0.01	-264	-	-	0.01	-	-	0.1 0.01		•
L2/20-4band	-		0.00	-	-	0.1 0.01	-		-3666	-	-	0.00	-		0.3 0.02	-	•
-4bbad	-	-	0.00	-	-	0.1 0.00	 .		-106es		-	0.01			0.1 0.01		•
-104ccb	-	-	0.00	-	-	0.1 6.00	-	— '	~10bcc	-	-	0.01	-	-	0.2 0.01	-	•
-14eddc	33	0.00	-	24 1.04	3 0.08	0.1 0.01		0.30	-llacc	-	-	0.005	-	-	0.2		•
-15esbe	_		tr.			0.00	_	-	-27aba	_	-	0.005	-	_	0.1 0.01 0.2	-	•
12/21-24bc	-	_	-	20 0.87 7.1	2.3 0.06 1.6	_	_	6.17 0.00	-36haa 18/22-254a	-	-	0.005 0.005	_	-	0.2 0.01 0.1	-	
13/19-3ca -94b	_	_	_	7.1 0.31 8.3	0.04	-	_	0.00	18/23-33ecb	_	_	0.005	_	_	0.01 0.2	_	•
-765 -22abc		_	-	0.36 137	0.05 2.9	 5.0	0.06		47/4 333 059	-		GIURCHILL			0.01		
-44800		_	-	5.96	0.07	0.26			17/24-1cbs	-	_	0.025			0.4	_	
-27bbc	-		-	7.1 0.31	2.7 0.07		-	0	-36aa	-	-	0.00		_	0.02	-	
13/20-29cdical			0.005	-	-	0.1 0.01		-							0.02		
-32babc	-	-	0.01		-	0.1 0.01	-	-	17/25-6466	_	-	tr.	-	-	0.3 0.02 0.2		•
L3/22-29aa			-	25 1.09	4.3 0.11	-	-	0.13	-186464 18/24-25edb	-	_	er. 0.005	_	-	0.2 0.01 0.2	-	
14/19-2344	47	0.00	0.00	125 5.44	1.7 0.04	7.1 0.37	0.01	1.5	-27cac	_	_	0.01	_		0.01 0.1	_	
4/20-21cdd	20			-	-		-	-							0.01		
• • • · · · ·			BACLE V.						-28dbc	-	-	EF.	-	-	0.1 - 0.01	-	•
15/19-13 Ash Canyon Cu 15/19-13	reek	-	0.00 0.00	-	-	0.1 0.01 0.1	-	-	-32abc	-	-	0.015	-	-	0.5	-	
15/19-13 Kings Canyon 15/20-764b		_	0.00	_	_	0.01	_	_	18/25-19eic	-	-	0.00		-	tr.	-	
						0.01			18/29-23ecc	20	8.00		18	2.4	0.5	-	
-176d	-	-	0.015		-	0.5		-	18/30-12aca	35	-	-	0.78 4,180	0.06	0.03 5.2	_	
-324cab	-	-	tr.		-	0.2 0.01	-		18/31-31ecc	46	-	-	2,020	3.94	0.27	-	
16/21-2dee	34	1.2	DATTON V	<u>67</u>	4.6	0.6	0.00	0.03	19/28-744	3.3	6.00	0.00	87.65 8,610	2.43 39	7.9	12	
-23aci	_		6.00	2.91		0.03 0.1	_		19/29-30cfb1,2		0.00	0.04	374.54	1.00	0.42		
-2464	-	-	0.005		-	0.Q1 0.2		-	-30ofb1	31	0.00	-	10.88	0.22 0.4	0.03 0.8	0	.9 0
-29cd	-		0.00	-	-	0.01 0.4	-		-33cbb1	28	8.00	6.07	7.57	0.21	0.04		
15/22-9ab	-	-	8.00	-	-	0.02 0.3	-	-	19/30-30ecb	-	-	0.01	-	-	0.04	-	
-18ccc	-	-	9.005	-		0.02	-	-	-30ccc	-	-	>1.0	-	-	0.03 —		
19/00_00.00	_			-	_	0.02 0.1	_	-	20/28-1bd	-	0.00	0.021	1,840	112	1.2	-	
17/23-286be		-	0.00	-		0.01		-					80.04	2.86	0.06		

1. See footnote 1, p. 73.

6. Concentrations reported as "trace amount" are indicated by "tr."

Constituent	Recommended maximum concentration (milligrams per litre)
Iron (Fe)	0.3
Manganese (Mn)	.05
Sulfate (SO ₄)	250
Chloride (Cl)	25 0
Fluoride (F)	a/ About 1.2
Nitrate (NO_3)	- 45
Dissolved solids	<u>b</u> / 500

a/ Based on an annual average maximum daily air temperature of about 68°F. The optimum fluoride concentration is about 0.9 mg/1. Water containing more than about 1.8 mg/1 should not be consumed regularly, especially by children.

 \underline{b} / Equivalent to a specific conductance of about 750 micromhos.

Most of these are only recommended limits, and water therefore may be acceptable to many users despite concentrations exceeding the given values. Excessive iron causes staining of porcelain fixtures and clothing. Large concentrations of chloride and dissolved solids impart an unpleasant taste, and sulfate can have a laxative effect on persons who are drinking a particular water for the first time. Excessive fluoride tends to stain teeth and to cause bone changes, especially those of children, and a large amount of nitrate is dangerous during pregnancy and infancy because it may increase the susceptibility to "blue-baby" disease.

The arsenic concentration of drinking water is particularly important because of the possibility of long-term poisoning. The U.S. Public Health Service standards (1962, p. 8), state that arsenic should not exceed 0.05 mg/l in drinking water.

The bacteriological quality of drinking water also is important, but is outside the scope of this report. The hardness of a water is of concern to many users. The rating scale below commonly is used for hardness.

Hardness, as CaOO₃ (milligrams per litre)	Rating and remarks
0-60	Soft (suitable for most uses without artificial softening)
61-120	Moderately hard (usable except in some industrial applications; softening profitable for laundries)
121-180	Hard (softening required by laundries and some other industries)
More than 180	Very hard (softening desirable for most purposes)

The data in table 31 show that suitable water is available in all the valleys, but that problem areas do exist. The individual problems are discussed in later sections dealing with the specific hydrographic areas.

Suitability for Agricultural Use

In evaluating the suitability of a water for irrigation, the most critical considerations include dissolved-solids concentration, the relative proportion of sodium to calcium plus magnesium, and the abundance of constituents such as boron that can be toxic to plants. Four factors used by the U.S. Salinity Laboratory Staff (1954, p. 69-82) to evaluate the suitability of irrigation water are listed in table 31, and are discussed briefly in footnote 2 of that table. Minor amounts of boron (as much as 0.5 mg/l) are essential to plant mutrition, but larger concentrations can be highly toxic. The approximate upper limits recommended for boron in water irrigating sensitive, semitolerant, and tolerant crops are, respectively, 0.5-1.0, 1.0-2.0, and 2.0-4.0 mg/l (National Technical Advisory Committee, 1968, p. 153).

Most animals are more tolerant of poor water than man. Although available data are somewhat conflicting, a dissolved-solids concentration less than 4,000-7,000 mg/l (equivalent to a specific conductance of about 6,000-10,000 micromhos) apparently is safe and acceptable (McKee and Wolf, 1963, p. 112-113), provided that specific undesirable constituents are not present in excessive concentrations.

Specific problems relating to suitability of water for agricultural use are discussed later by hydrographic areas.

Suitability for Industrial Use

Water-quality requirements for industrial use vary greatly, depending on the particular use. A use-by-use discussion is outside the scope of this reconnaissance, but McKee and Wolf (1963, p. 92-106) and the National Advisory Committee (1968, p. 185-215) discuss the subject in detail. Much of the water of the Carson River basin is acceptable for most industrial uses, but other waters probably are not, on the basis of particular water-quality problems discussed below.

Sewage

Sewage effluent is rapidly becoming a significant part of the hydrologic environment of the Carson River basin. Recent accelerated urbanization within the basin with its accompanying increases in sewage wastes (table 32), as well as recent dramatic increases in sewage effluent imports from the Lake Tahoe basin (table 20) emphasize the increasing importance of sewage to this study area, particularly regarding its effects on water quality.

Sewage is generally collected for treatment and disposal in the major municipalities. In some small communities, some suburban areas, and all rural areas, individual dwellings and establishments dispose of their own individual sewage. In a minority of the individual disposal systems, untreated sewage is directly discharged to the Carson River or its major tributaries. In most places, individual discharge involves injection of untreated sewage into septic tanks, the effluent from which then percolates to ground water and, depending on a variety of circumstances, may ultimately discharge to streams. The degree to which contaminants are removed from ground water prior to its discharge to streams depends on the type of contaminants, the specific nature of the groundwater reservoir materials, the hydraulics of the flow system, the quantity of contaminants, and the rate and duration of injection.

The collected sewage is generally delivered to a treatment plant where, prior to final discharge, it receives different degrees of treatment depending on each plant's designed capability. The several treatment plants in the Carson River basin utilize at least primary and in many facilities secondary treatment techniques.

Data necessary but generally unavailable to evaluate the short- and longterm effects of sewage discharge on the environment throughout the basin are (1) continuous records of quantities of discharge from municipal plants, (2) continuous records of discharge of sewage imports to the river and to other sources, (3) continuous records of detailed chemical and biological makeup of sewage discharge, and (4) various types of hydrologic data on the components of the hydrologic system that are involved in the disposal of sewage.

Estimated sewage totals for 1971 in tables 20 and 32 show that the volume processed by seven treatment plants in the Carson basin was about equal to the amount of treated effluent imported from the Lake Tahoe basin.

	·····	Qua		of water acre-fee		sed
Treatment system	Disposition of treated effluent1/	1967	1968	1969	1970	1971
Gardnerville-Minden ²	Evaporation plus seepage, and discharge to Carson River			-		560
Stewart ^{3/}	Evaporation plus seepage, and discharge to Clear Creek	70	70	70	70	70
Nevada Medium Security Prison4/	Evaporation plus seepage, and discharge to Clear Creek	-				32
Carson City <u>5</u> /	Evaporation plus seepage, and discharge to Carson River	1,570	1,480	1,870	2,0 10	2,100
Virginia City <u>6</u> /	Evaporation plus seepage, and discharge to Sixmile Canyon					56
Fallon ⁷ /	Evaporation plus seepage, and discharge to Carson Desert alluvium			-	420	480
U.S. Naval Air Station, Fallon ⁸ /	Evaporation plus seepage, and discharge to Carson Desert alluvium.	320	340	30 0	3 00	300
Total (rounded)						3,600

Table 32.--Estimated quantities of sewage processed by treatment plants within the Carson River basin

1. Some unknown quantity probably enters ground-water system in all systems.

- 2. C. A. Altemueller (Minden-Gardnerville Sanitation Dist. Engineer, oral commun., 1971) estimates that an average of 500,000 gallons per day is processed; he also estimates that about 30 percent of this is ground water that leaks into sewer mains.
- 3. Quantity from Worts and Malmberg (1966, p. 26) because population and water use apparently have not changed appreciably since that time.
- 4. Quantity based on an average population of 375 (Walter Mandeville, Prison employee, oral commun., 1971) and 70 percent of water supplied.
- 5. Flow into plant is metered. James Dunn (City employee, oral commun., 1971) stated that these metered quantities are conservative estimates because during peakload periods the maximum inflow meter rate is exceeded. Quantities include an unknown amount of ground water that leaks into newer mains.
- Estimated quantity based on estimated average resident and tourist populations of 450 and 200. Collection system does not include communities of Gold Hill or Silver City.
- 7. Quantities are metered inflow to treatment plant.
- 8. Quantities based on Public Works office estimate that an average of 70 percent of utilized water supply is processed as sewage.

Table 32 suggests that during 1971 nearly 2,800 acre-feet of varyingly treated sewage was discharged into the Carson River from treatment plants within the basin. The greatest quantity of imported sewage effluent reaching the river during 1971 from any single source probably was that from the Douglas County Water Reclamation Project plant which discharged about 520 acre-feet to Daggett Creek. However, a substantial amount of that 520 acre-feet may have been consumed by evapotranspiration before reaching the river, because an unknown amount of Daggett Creek flow is used for irrigation during the growing season. According to Cliff Girbon, Jr., an employee at the Incline Village General Improvement District treatment plant (oral commun., Dec. 1971), more than 97 percent of the treated effluent transported through that system was utilized by the U.S. Bureau of Land Management for stockwatering, and by the Harry Schneider ranch for irrigation in Jacks Valley. The South Tahoe Public Utility District delivers its tertiary-treated effluent to Indian Creek reservoir (table 11) and some is used for irrigation of nearby agricultural lands (Record-Courier, 1972).

An unknown amount of the sewage effluent generated within and imported to the basin percolates into the ground-water reservoir from storage facilities and irrigation systems.

Specific effects of sewage effluent on surface-water quality within the report area are discussed below.

Carson River

Mainstem

Table 33 is a summary of selected chemical data collected at five locations along the Carson River from 1966 through 1971 by the Nevada Bureau of Environmental Health. The tabulation is based on about 55 monthly samples from each station.

Several trends suggested by the data are (1) average water temperatures gradually increase downstream, and temperature maxima are roughly equal at the three mainstem sites but are appreciably higher than the maxima at the two tributary sites; (2) average nitrate concentrations at the three mainstem sites are similar, and at least twice as great as those of the two tributary sites; (3) average orthophosphate concentrations at the mainstem sites far exceed those of the upstream tributary sites; (4) average dissolved-solids concentrations progressively increase downstream; (5) pH values vary little from site to site; and (6) minimum dissolved-oxygen concentrations generally decrease downstream to New Empire.

The marked increases in nutrient (nitrate and orthophosphate) concentrations between the tributary forks and New Empire are probably the result of (1) agriculture-related input (fertilizers and animal wastes) mainly in Carson Valley, and (2) the inflow of sewage effluent in Carson Valley and from the Carson City sewage treatment plant. The marked decrease in orthophosphate concentrations between New Empire and Weeks may be the result of biologic and nonbiologic assimilation. The general downstream decrease in dissolved-oxygen minima to New Empire probably is a rough indication of increased biochemical oxygen demand caused by agricultural and sewage inflows.

Table 33.--Summarized water-quality data for sites on Carson River, July 1966 to December 1971 <u>1</u>/

[Data from Nevada Bureau of Environmental Health]

		(in m	san	ples coll	ected about	age values f monthly or temperatu		uđ pH)
Site (approx- imate location in downstream order; not shown on plate 1)	Tempe °F	erature °C	Chloride (Cl)	Nitrate (NO3)	Ortho- phosphate (PO4)	Dissolved solids (residue at 105°C)	рH	Dissolved oxygen
West Fork Carson River near Highway 88 (11/20-19ab)	66 32 47	19.0 0.0 8.5	8 1 2	3.7 .0 .3	0.21 .00 .06	120 25 59	8.2 7.4	12.1 7.5 9.8
East Fork Carson River at Lahontan Fish Hatchery (12/20-23dd)	71 32 50	21.5 0.0 10.0	12 1 5	12 .0 .6	0.33 .00 .09	173 54 112	8.9 7.4	12.9 7.6 10.4
Carson River at Cradlebaugh Bridge (14/20-30db)	85 32 52	29.5 0.0 11.0	19 1 7	9.6 .0 1.2	1.1 .15 .43	275 67 164	8.1 7.2	11.4 5.8 8.7
Carson River near New Empire (15/20-12bc)	85 32 54	29.5 0.0 12.5	28 1 11	7.7 .0 1.5	9.2 .27 1.3	582 82 228	8. 6 7.4	17.5 4.1 9.7
Carson River at Weeks (17/24-35da)	81 32 56	27.0 0.0 13.5	18 1 10	14 .0 1.4	1.7 .10 .45	416 92 237	8.3 7.4	11.9 6.5 9.7

 Samples collected on a once-a-month basis with frequency distribution of sampling generally as follows: July-October 1966; July-December 1967; 1968, monthly; 1969, monthly; January-October 1970; and 1971, monthly. The U.S. Geological Survey has analyzed numerous samples of Carson River water collected near Fort Churchill (17/24-32dc) as part of its irrigation network sampling program. These data have been collected for about 10 years and are published annually in the Geological Survey's publication titled 'Water Resources Data for Nevada."

Some early (1906-7) chemical data on Carson River water were obtained just downstream from the confluence of the Truckee Canal and the river, near the present site of Lahontan Dam (Stabler, 1911, p. 23-25). These data represent the combined flow of the Truckee Canal and the Carson River, and provide some insight to the quality of Newlands Irrigation Project water supply at an early period of the project's history.

Carson River water is temporarily stored in Lahontan Reservoir. Its dissolved chemical load may be slightly concentrated during storage, according to Rollins (1965, p. 10) and Clyde-Criddle-Woodward, Inc. (1971, p. 26). However, summary data of table 34 suggest a decrease in dissolved-solids concentration of reservoir water compared to that of the inflow at Weeks (table 33). This apparent decrease may exist because sampling of reservoir water was restricted to spring and summer months when the effects of fresh seasonal inflow would most likely dominate near the reservoir surface, whereas summary data for the inflow more nearly reflects the average of varying conditions throughout the year. The increased chemical concentration of water within the main body of the reservoir, if such is indeed the case, is at least partly offset near Lahontan Dam by the inflow of characteristically more dilute water from the Truckee Canal (Rollins, 1965, p. 10).

Below Lahontan Dam, the dissolved-solids concentration of the Carson River increases markedly downstream mainly because of inflowing irrigation drainage (Rollins, 1965, p. 16, and Clyde-Criddle-Woodward, Inc., 1971, App. A, table 6). However, some of the increase during periods of low river stage may also be from inflow of shallow saline ground water, plentiful in the Carson Desert area.

Mercury, normally a trace constituent of stream waters, is of special concern in the Carson River. Before 1900, about a dozen mills along the river used mercury in the so-called "Washoe Process" for the milling of silver and gold ore from the Comstock Lode. During that time, almost 15 million pounds of the mercury escaped recovery (Smith, 1943, p. 257), much of it being incorporated in the mill tailings. Today, downstream from the millsites, measured concentrations of mercury are as much as 200 times the normal "background" level in shallow, fine-grained sediment from the bottom of streams, canals, and Lahontan Reservoir (Van Denburgh, 1973, p. 3). The greatest concentrations have been encountered in sediments of the Carson River, within and immediately upstream from the reservoir. Data for the river near Fort Churchill suggest that most of the shallow mercury may be present as mercuric sulfide or as a component of non-methyl organic compounds.

Table 34.--Summarized water-quality data for Lahontan Reservoir, July 1966 to July 1971 <u>1</u>/

			occasional	ly during	spring and	for sample summer mon or temperatu	iths 2	/
Site (approx- imate location in downstream order; not shown on plate 1)	Tempe °F	erature °C	Chloride (Cl)	Nitrate (NO3)	Ortho- phosphate (PO4)	Dissolved solids (residue at 105°C)	рH	Dissolved oxygen
17/25-22	82 50 70	28.0 10.0 21.0	12 1 6	1.7 .0 .7	0.76 .28 .44	200 118 165	8.8 7.5	16.0 5.4 9.2
18/25-20	77 54 65	25.0 12.5 18.5	12 1 6	4.8 .0 1.4	0.85 .20 .48	223 118 164	8.6 7.6	9.6 6.1 7.8
18/25-24	77 50 66	25.0 10.0 19.0	16 1 8	4.8 [·] .0 1.6	1.0 .13 .47	238 116 163	8.9 7.6	10.6 6.4 7.9
19/26-33	74 52 66	23.5 11.0 19.0	17 1 10	10 .0 2.2	1.6 .30 .79	183 119 151	8.7 7.5	9.2 5.0 7.5

[Data from Nevada Bureau of Environmental Health]

1. This summary updates the tabulation of Katzer (1972) with the addition of 1970 and 1971 data.

ì

i da aliante Aliante

2. Data based on about 14 samples collected only during spring and summer months as follows: 2 in 1966; 2 in 1967; 4 in 1968; 4 in 1969; 1 in 1970; and 1 in 1971. Samples collected from boat; sample depth 0-1 foot.

Among stream waters sampled in 1971-72, about 70 percent contained less than $1 \mu g/1$ (microgram per litre) of total mercury (Van Denburgh, 1973, table 2). The maximum measured quantity was 6.3 $\mu g/1$, for the Carson River near Fort Churchill during the spring snowmelt runoff. (The interim limit for drinking water, established by the U.S. Environmental Protection Agency (1975, p. 11994), is $2 \mu g/1$ of mercury.) At the highest concentrations, most of the mercury was associated with suspended sediment in the stream, rather than being dissolved. In areas of mercury-rich stream-bottom sediment, peak discharges in May 1973 that were greater than the relatively low flows of 1971-72 produced greater total-mercury concentrations in the streamflow (A. S. Van Denburgh, U.S. Geol. Survey, oral commun. 1973). A recent investigation by the College of Agriculture, University of Nevada, shows no evidence of mercury accumulation ('magnification'') in terrestrial plants or animals from the Carson River basin (Dr. H. G. Smith, written commun., 1972). In contrast, a similar study by the Nevada Department of Fish and Game has shown that fish in the mercury-affected lakes and streams contain greater-than-background concentrations (R. C. Sumner, oral commun., 1972).

In the future, increased nutrient contributions to the river from sewage treatment plants may in turn increase the "accessibility" of the mercury now present in the bottom sediments, through chemical transformations associated with biologic activity. The presence of mercury in the river-bottom sediments raises the question of whether toxic amounts might thus enter the food chain of high-order organisms.

Tributaries

Table 31 includes data from several small tributary streams in Carson Valley. The dissolved-solids concentrations of 7 streams draining the Sierra Nevada on the west side of the valley range from 36 to 110 mg/1, whereas samples from two streams draining the Pine Nut Mountains on the east side have concentrations of 234 and 253 mg/1.

The Bryant Creek basin, mainly in California but tributary to the East Fork Carson River in the upstream part of Carson Valley in Nevada, has been a source of concern regarding pollution. Bryant Creek and some of its tributaries are reportedly polluted by acid mine drainage from the Leviathan Sulfur Mine (California Water Resources Control Board, written commun., 1970). As a Carson River tributary, any localized pollution problems of Bryant Creek are subsequently transmitted in some degree to the Carson River. Bryant Creek normally furnishes only a minor part of the total flow of East Fork Carson River; therefore pollutants transported by Bryant Creek are generally subject to substantial dilution by river flow. Localized flooding of Bryant Creek at a time of low river flow might pose a downriver pollution hazard because of insufficient dilution of Bryant Creek runoff.

Tables 35 and 36 summarize available data on the quality of tributary inflow to the Carson River where treated sewage effluent is a component of the inflow. Table 35 shows the changes in the quality of Daggett Creek when treated sewage effluent from the Douglas County Water Reclamation Project was added in the 1969 water year (table 20). The concentrations of chloride, nitrate, orthophosphate, and dissolved solids all increased after sewage effluent was introduced. However, the lack of great change in the minimum concentrations of some of these constituents reflects the intermittent manner in which the treated effluent is introduced into the creek. The general chemical character of Daggett Creek about a decade before introduction of treated sewage effluent is shown in table 31.

		(in m	san	ples coll	ected about	ge values f monthly or temperatu		d pH)
Sampling period	Tempe °F	rature °C	Chloride (Cl)	Nitrate (NO3)	Ortho- phosphate (PO ₄)	Dissolved solids (residue at 105°C)	pH	Dissolved oxygen
August 1966 - September 1968 <u>2</u> /	60 34 49	15.5 1.0 9.5	12 3 5	8.7 .0 .9	0.10 .00 .04	100 63 87	8.2 7.5	11.8 7.3 9.1
October 1968 - December 1971 <u>3</u> /	64 32 47	17.5 .0 9.0	77 1 15	27 .0 5.5	24 .46 6.0	283 67 126	8.2 7.5	11.9 8.1 9.6

Table 35.--Summarized water-quality data for Daggett Creek, August 1966 to December 1971 <u>1</u>/

1. Sampling site not shown on plate 1 (13/19-27bbd). Data furnished by Nevada Bureau of Environmental Health.

Data based on 18 samples collected as follows: 2 in 1966, in August and October;
 7 in 1967, monthly from June to December; 9 in 1968, monthly.

3. Data based on 37 samples collected as follows: 3 in 1968, monthly; 12 in 1969, monthly; 10 in 1970, monthly from January to October; 12 in 1971, monthly.

)

A few data, not included in table 31, collected on streamflow of Gold Canyon and Sixmile Canyon Creeks in Dayton Valley during brief periods of rainfall and snowmelt runoff, suggest that the dissolved-solids concentration of these streams is frequently greater than the average of those in the Carson River basin. The data show that the water is very hard and occasionally contains appreciable quantities of sulfate. In these respects, the streamflow is chemically similar to ground water in Dayton Valley, as discussed in a later section of this report.

The final vestiges of Humboldt River flow dominate surface drainage in White Plains. Sample data of this water are included in table 31. However, the two samples may not be representative of average water quality. Humboldt River water that survives evaporation during its transit through White Plains flows into the Carson Sink and merges with any residual of Carson River flow. It then becomes more chemically concentrated through solution of playa salts in the Carson Desert and by evaporation.

The Packard Valley area has no perennial streams that reach the valley fill. No known data are available to characterize the chemical quality of ephemeral runoff in the area.

	Maximum, minimum, and average values for samples collected about monthly (in milligrams per litre, except for temperature and pH)										
Tributary and sampling site (location not shown on pl. 1)	Temperature °F °C		Chloride (Cl)	Nitrate (NO3)	Ortho- phosphate (PO4)	Dissolved solids (residue at 105°C)	рH	Dissolved oxygen			
Ditch to East Fork Carson River from Gardnerville- Minden sewage treat- ment plant (13/19-24cdd)2/	83 45 61	28.5 7.0 16.0	18 2 9	5.1 .2 1.7	8.5 .88 2.0	316 127 233	8.5 7.4	13.7 2.9 8.8			
Clear Creek at mouth (14/20–10bbb)3/	81 36 56	27.0 2.0 13.5	17 1 10	0.8 .0 .3	1.7 .35 .72	339 86 155	8.2 7.6	10.3 5.6 8.8			
Sewage effluent ditch below Carson City sewage treatment plant (15/20-15cbb) <u>4/</u>	60 38 48	15.5 3.5 9.0	31 24 27	2.6 1.1 1.7	25 12 18	398 321 361	8.0 7.6	7.5 5.4 6.7			
Mexican Ditch, including Carson City effluent, at confluence with Carson River (15/20-11bdc) <u>5</u> /	79 45 59	26.0 7.0 15.0	26 8 16	1.6 .7 1.2	13 .40 5.5	343 186 251	8.0 7.4	12.8 5.1 8.3			

Table 36.--Summarized water-quality data for some Carson River tributaries that convey treated sewage <u>1</u>/

1. Data furnished by Nevada Bureau of Environmental Health.

2. Data based on 11 samples collected as follows: 1 in November 1970; 10 on a monthly basis from January to October 1971.

- 3. Data based on 11 samples collected monthly from January to November 1971.
- 4. Data based on 3 samples collected in October, November, and December 1971.

5. Data based on 10 samples collected as follows: 1 in November 1970; 9 on a monthly basis from January to September 1971.

)

Rollins (1965) described the water quality of the Newlands Reclamation Project as of 1960. Although the study was done in a restricted time period (1959-61) during which the river flows were below average (Rollins, 1965, p. 6), the results and conclusions of the study also may be valid for years of average or above average water-supply conditions. A brief summary of Rollins' conclusions are as follows (1965, p. 17 and 18): (1) The irrigation water is of good chemical quality, having a medium salinity hazard and practically no sodium hazard; (2) the drainage waters are higher in dissolved solids and percent sodium than the irrigation water; (3) drainage waters further increase in salt concentration as they flow downstream; (4) drains in the center of the project, particularly south of the Carson River, are free from excessive salt but pick up salt rapidly as they approach the Carson Lake and Carson Sink areas; (5) conversely, drains immediately north of the Carson River carry high salt concentrations; (6) seasonal waterquality changes are more pronounced in the drainage water than in the irrigation supply; (7) some drainage is of an acceptable quality for further use as an irrigation supply, whereas other drainage is unacceptable; (8) reduction in the quantity of the irrigation supply would be expected to increase the concentrations of dissolved solids and sodium in drainage waters; (9) irrigation waters now being used in the project area probably would not harm most canal liners being used, although some of the drainage waters with highest dissolved-solids concentrations could shorten the life of some liners; (10) soil salinity and alkalinity are nearly stabilized under the existing (1960) irrigation and drainage systems; (11) overirrigation should be prevented to avoid excessive rises in ground-water levels; and (12) chemical quality of the irrigation water supply probably has not changed since the project began (1905), but the quality of drainage water has probably improved over the long term (that is, greater quantities of salt were removed by drainage water during early years of the project than are being removed now).

A considerable amount of data on chemical quality of Newlands Project irrigation water and drainage has also been collected during the last several decades by the U.S. Bureau of Reclamation (J. Gallagher, oral commun., 1971), and is available in the files of the Bureau of Reclamation office in Carson City. A salt-balance study of irrigation water and lands by the U.S. Bureau of Reclamation (unpublished report, 1967) suggests that more salts left the irrigated area by drainage return flow than entered the area in the irrigation supply. Therefore, irrigation practice was leaching salts from the soils.

Ground Water

Carson Valley

The valley-fill deposits of Carson Valley form the major storage reservoir of high-quality ground water in the Carson River basin (table 31). The water stored in these deposits may well be the major future source of supply for a large urban populace in this part of western Nevada. Walters, Ball, Hibdon, & Shaw (1970) discussed the quality of ground water in Carson Valley as part of their study for the Carson Water Company. Their report indicates (p. 10) that the ground water is generally excellent. They also concluded (p. 34) that the central and western parts of the valley apparently contain the best quality ground water. Wells in the Hot Springs Mountain area, 8 miles north of Minden (pl. 1), particularly deep wells, generally produce the poorest-quality water known in the valley. This localized area of poor-quality water may be related to deeply circulating, high temperature, minerallized water from sources associated with Saratoga Hot Springs (14/20-21cdd, pl. 1).

The Stewart area historically has had problems with excess iron in the groundwater supply. The problem is spotty, though, and not all wells yield water containing high concentrations of iron.

Eagle Valley

Worts and Malmberg (1966, p. 35) categorized Eagle Valley water as "generally satisfactory for irrigation, domestic, and most common uses." Guyton & Associates (1967, p. ii) rated Eagle Valley water quality as "generally good." However, Carson Water Co. well 15/20-17dd, drilled in 1969, yields water that apparently contains a small amount of hydrogen sulfide, which imparts an objectionable taste and smell.

Analyses of water from well 15/20-9da in Worts and Malmberg (1966, table 12) and well 15/20-9acbal (table 31, this report) suggest that poor-quality ground water occurs in the New Empire area of northeast Carson City.

Dayton Valley

Ground-water quality in Dayton Valley varies greatly from place to place (table 31). Miller and others (1953, p. 34) published a small amount of Dayton Valley water-quality data.

Several acute water-quality problem areas exist in Dayton Valley. Ground water in the Pinion Hills suburban area just east of the Carson River near Carson City is of very poor quality. A January 7, 1971, memorandum from the Nevada Bureau of Environmental Health to Pinion Hills residents categorized most of the ground water in the area as "hot mineralized water in a cemented gravel strata," and having the following general chemical composition:

Constituent or property	mg/1
Iron	0.4
Calcium	280
Sodium	200
Sulfate	90 0
Fluoride	4.2
Total dissolved solids	1,500
Total hardness	600

The mineralized and thermal character of this water suggests that is is associated with a deeply circulating ground-water system. The surface venting of this hot water (about 45°C) probably is related to geologic structure. However, several wells in the southwest part of the subdivision produce cool water with a dissolved-solids concentration of only about 300 mg/l. This cool water (about 18°-20°C) is of generally acceptable quality for most uses on the basis of presently available information. These wells probably produce from aquifers more closely associated with the Carson River flow system than with the deep-circulation system described above. Poor-quality ground water also occurs north of the Carson River from the Mound House area eastward to the junction of Nevada State Route 17 and U.S. Highway 50 (pl. 1). This water is characterized mainly by high concentrations of calcium (100 to at least 600 mg/l), sulfate (500 to at least 2,000 mg/l), and dissolved solids (1,000 to at least 3,000 mg/l), which apparently are related to gypsum-rich rocks and alluvial deposits in the immediate area. Geology of these gypsum deposits was discussed by Lincoln (1923, p. 129) and Archbold in Moore (1969, p. 34). Many of the residents in the Mound House area are supplied by a community water system fed by springs of better-quality water from the Virginia Range to the north (Mrs. Julius Bunkowski, oral commun., 1971). À.

Much of the water used for domestic purposes in the community of Dayton comes from shallow wells in town. The chemical character of water from one well serving several homes and the community center building is shown by analysis 16/21-23acd in table 31. These and other data show that the water is high in dissolved solids (400 to at least 500 mg/l) and sulfate (150 to at least 250 mg/l), and is hard (200 to 300 mg/l).

Ground waters within Dayton Valley east of Dayton and north-northwest of the Carson River, although locally variable in quality, are also commonly characterized by moderately high dissolved solids (as much as 600 mg/l), sulfate (as much as 300 mg/l), and hardness (as much as 300 mg/l). This condition is prevalent not only near Sixmile Canyon but also in the Stagecoach subarea about 15 miles northeast of Dayton. The character of this ground water strongly suggests that mineralization in the Virginia Range is a dominant chemical influence. The Virginia Range probably is the main recharge area for most of the ground water.

Chemical data are scanty south and southwest of the Carson River in Dayton Valley. The few available analyses are restricted to wells east of Dayton in T. 16 N., Rs. 21 and 22 E., and suggest that ground water may generally be somewhat more dilute than that across the river. If so, the difference may reflect a contrast in geochemical control of ground water in the Pine Nut Mountain recharge province compared to that of the Virginia Range.

A somewhat anomalous situation exists with regard to nitrate concentrations in the ground water of Dayton Valley. About one-third of Dayton Valley groundwater analyses examined (most of which are by the Nevada Bureau of Environmental Health) show nitrate concentrations in excess of 10 mg/1, with a maximum (analysis 17/23-36baa, table 31) of 62 mg/1. Although nitrate concentrations locally exceed 10 mg/1 in Carson Desert, the normal concentrations for ground water in most of the Carson River basin are somewhat less than 10 mg/1. The above-average nitrate concentrations in Dayton Valley also apparently extend to ground water in the Silver Springs area of Churchill Valley (table 31).

Churchill Valley

Ground water from community wells supplying Silver Springs is generally of good chemical quality (table 31). Although the water is hard, the dissolvedsolids and sulfate concentrations are not excessive. The numerous domestic wells in the area may not yield water with the same chemical characteristics as water from the Silver Springs community wells.

Water from the only known well in White Sage Flat (not labeled on pl. 1) of northern Churchill Valley (18/23-4a) is of much poorer quality than the Silver Springs community wells (table 31). It is extremely hard and has excessive amounts of iron, calcium, and bicarbonate.

Carson Desert

Ground water in the Carson Desert is abundant, but much of it is of poor to very poor chemical quality for most uses. The Carson Desert is the terminus of the Carson River hydrologic system. It is therefore the final discharge area for water that has moved downbasin and, as such, becomes the final receiving area for soluble chemicals transported by the water. As water evaporates from the desert, it leaves behind its dissolved chemical load. A substantial part of this load remains highly soluble and therefore tends to progressively enrich the remaining and incoming water supply. The residual waters therefore are considerably more saline than the composite inflow. Available data suggest that the ground water can be grouped into five general categories according to chemical characteristics, as follows: (1) large quantities of moderately saline to very saline water fill most of the valley-fill deposits from relatively shallow to great depths; (2) an unknown quantity of moderately dilute water occurs within a basalt aquifer of apparently local areal extent generally about 500 feet below land surface in the Fallon area; (3) unknown quantities of dilute to moderately dilute water are found within, or associated with, recent fluvial sediments generally near present or relatively contemporary Carson River channels, from shallow to unknown maximum depths; (4) dilute to moderately dilute water occurs within shallow valley-fill deposits, probably resulting from infiltration of irrigation water beneath or near lands of the Newlands Reclamation Project; and (5) unknown amounts of water of variable chemical quality lie within consolidated rocks.

Domestic water demands are supplied mainly by (1) public-supply systems for the city of Fallon and the Naval Air Station, which tap water from the basalt aquifer, and (2) individual domestic wells that tap the shallow and generally thin lens of relatively dilute water overlying the vast saline reservoir that occupies most of the valley-fill deposits. Water from the basalt aquifer has been utilized as a public supply for more than two decades. The water is soft and generally suitable for most uses. Thus far, only the arsenic concentration (characteristically 0.05-0.10 mg/l) has caused any concern regarding suitability for consumption by humans. Arsenic concentrations slightly exceed the limit for drinking water (p. 75). Public-supply systems continue to rely on the basalt aquifer, owing to (1) the lack of any evidence of long-term adverse effect attributable to the arsenic, and (2) the probable great expense involved in developing an alternate source of supply. The shallow ground water tapped by most individual domestic wells in the Carson Desert area has an uncertain future as an acceptable supply because of the risk of contamination. This risk is further increased by the fact that most of the people extracting the water from shallow domestic wells also use septic tanks that discharge at shallow depths within, or very close to, the water-supply zone. Future replenishment of this domestic supply is also uncertain because the amount and quality of replenishment depends on irrigation practices and conditions. Current emphasis on increasingly frugal use of water for irrigation suggests that future replenishment may differ somewhat from past replenishment. Lawrence Wolf, Churchill County Health Department (oral commun., 1972), stated that water quality of the shallow aquifer apparently deteriorates during periods of nonirrigation and no canal flow.

Salinity of Carson Desert ground water and the water's mineral precipitates have from time to time been exploited commercially. The salt deposits associated with Soda Lakes were mined extensively during the latter half of the 19th and early 20th centuries. However, rising lake levels associated with infiltration of irrigation water after the establishment of the Newlands Reclamation Project (Lee and Clark, 1916, p. 679 and 680) flooded the salt works and diluted the saline lake water. The unique hydrologic and chemical character of Soda Lakes was discussed by Rush (1972), Breese (1968), Lincoln (1923), Lee and Clark (1916), Stabler (1904), Russell (1885), and others. The geologic origin of Soda Lakes has been most recently discussed by Morrison (1964, p. 71-72).

The U.S. Geological Survey prospected for salt deposits associated with the valley fill during the early part of the 20th century (Gale, 1913, p. 303-311). Other explorations probably were made from time to time throughout the Carson Desert. Sodium chloride is presently harvested on the Fourmile Flat playa (pl. 1) by the Huck Salt Company of Fallon. This company, since 1938, has been harvesting salt that becomes concentrated on the playa surface through the interaction of the ground- and surface-water flow systems (Elmer Huckaby, oral commun., 1971). Earlier exploitation of saline playa deposits in the study area was described by Russell (1885, p. 234 and 235) and Lincoln (1923, p. 7-9 and 14).

White Plains and Packard Valley

Very few water-chemistry data are available for the White Plains and Packard Valley areas (table 31). One sample (well 23/28-29dc) suggests that the valley-fill deposits of White Plains are saturated with saline, sodium chloride-rich water similar to much of the very saline ground water of Carson Desert. This similarity is to be expected because both areas are the sinks of their respective large drainage systems. Salt has been harvested along the west side of White Plains playa in the past, as evidenced by the remains of abandoned salt evaporation pans visible from U.S. Interstate Highway 80. Salt harvesting was described by Lincoln (1923, p. 7 and 14).

Two chemical analyses (27/33-24ccd and 28/34-31db; table 31) suggest that ground water of the Packard Valley area is of the calcium sodium chloride type, and varies in dissolved-solids concentration from place to place. The chemical quality doubtless deteriorates as the ground water moves downgradient toward the Carson Sink. The end product is the highly saline water that saturates the valley-fill deposits of the sink.

Thermal Water

Thermal water, for purposes of this discussion, is arbitrarily defined as ground water warmer than the mean annual air temperature at the site.

Data in tables 27 and 31 suggest that several localized areas of deepseated ground-water circulation exist. The flows of Walleys, Hobo, and Saratoga Hot Springs in Carson Valley (table 27) are thermal. Worts and Malmberg (1966, p. 30, and table 12) described Carson Hot Springs in Eagle Valley. The urbanizing area east of the Carson River at the base of Pinion Hills between Mexican Dam and New Empire (location about 15/20-35c; locally referred to as the Pinion Hills subdivision) has a number of wells with thermal water. Sutro Tunnel in Dayton Valley discharges warm water from the consolidated rocks.

The major known thermal ground-water area of Carson Desert is a generalized zone extending from Soda Lakes to Stillwater that recently was classified by the U.S. Geological Survey (Godwin and others, 1971, p. 2 and 4) as a "known geothermal resource area." Morrison (1964, p. 117) briefly discussed the thermal ground water in this area. This possibly extensive geothermal system is widely recognized, but published information regarding its ground-water flow system is scanty. The basic nature of such an extensive geothermal system inherently guarantees some influence on the quality of the involved ground water, but the extent of influence in this case is virtually unknown.

Principal Water-Quality Problems

Table 37 summarizes the presently recognized water-quality problems in the Carson River basin. It also summarizes some possible future problems that might be anticipated on the basis of present developments, limited knowledge of water quality, and the hydrologic flow system of the basin.

Table 37.--Summary of presently recognized and possible future water-quality problems

Area	Present problem	Possible future problem			
Bryant Creek, East Fork Carson, and Carson River below confluence with Bryant Creek	Chemically contaminated streamflow originating in vicinity of Leviathan sulfur mine may adversely affect Carson River water under certain hydrologic conditions.	Pollution threat could continue, subside, or possibly worsen, depending on hydro- logic and other circumstances.			
Do.	Massive landslide in area of Leviathan sulfur mine tightly encroaching on tributary to Bryant Creek. Hydrologic circumstances could result in serious sediment- pollution problem downstream, and (or) potential downstream flash- flood danger.	Same potential for future as at present. Threat depends on future movement of slide and flow conditions in streams tributary to slide area.			
Carson River and tributaries	Periods of highly turbid streamflow caused by both natural and man- accelerated influences. Results in problems to surface-water irrigation systems. Also causes unknown amount of damage to fish habitat. Diminishes esthetic value of streamflow to unknown degree. Magnitude of problem not presently known because of lack of data.	Same as present, with possible additional problems also to future municipal and industrial use of river water, and reduce capacity of present and future streamflow storage reservoirs. Could also seriously hamper attempts to utilize streamflow for artificial recharge of diminishing ground water supplies.			
Do.	Discharge of sewage effluent of a quality poorer than natural streamflow causes several problems to river environment that vary in intensity depending on hydrologic circumstances at time of discharge.	Same as present problems: severity will increase if quantity of effluent increase without counterbalance by upgrading of effluent quality.			

.

.

Table 37.--Summary of presently recognized and possible future water-quality problems--Continued

Area	Present problem	Possible future problem
Carson River and tributaries		Ground water contaminated by septic-tank effluent and sewage-effluent spreading; could also seep to river and degrade streamflow quality.
Do.		Improperly located or unprotected land- fill deposits could furnish leachate pollutant that would degrade stream quality and ground water
Carson Valley: Saratoga Hot Springs area	High dissolved-solids and sulfate concentrations in ground water.	Same as present.
Carson Valley-Eagle Valley: Stewart area	Excessive iron concentrations in water.	Same as present.
Eagle Valley	Foul-smelling water from one municipal supply well.	Unknown.
Carson River below Carson City	Mercury in shallow fine-grained bottom sediments of river, canals, and Lahontan Reservoir. Excessive mercury in river water near Fort Churchill during periods of high flow. Above- normal mercury in fish associated with the mercury-affected surface waters and bottom sediments.	Increased nutrient contributions from sewage treatment plants may in turn increase the "accessibility" of the mercury through chemical transformations associated with biologic activity.
Dayton Valley: Pinion Hills area	Poor-quality ground water: high con- centrations of dissolved solids, sulfate, fluoride, iron, calcium, and sodium, and excessive hardness.	Same as present.

Table 37.--Summary of presently recognized and possible future water-quality problems--Continued

Area	Present problem	Possible future problem
Dayton Valley: Mound House area	Poor-quality ground water: high con- centrations of dissolved solids, cal- cium, and sulfate, and excessive hardness.	Same as present.
Dayton Valley: north of river downstream from Dayton	Ground water commonly hard to very hard with high concentrations of dissolved solids and sulfate.	Same as present.
Dayton Valley- Churchill Valley	Ground waters in a substantial number of wells in the valley downstream from Dayton may have nitrate concentrations somewhat above average, compared to the total river basin.	Increasing disposal of sewage through septic tanks and incompletely treated sewage may foul the ground-water reser- voir; risk is increased because nitrate concentrations appear to be above average at present.
Churchill Valley: Silver Springs area	Ground water very hard.	Same as present.
Churchill Valley: White Sage Flat	Ground water is apparently extremely hard and has excessive concentrations of iron, calcium, and bicarbonate.	Same as present.
Lahontan Reservoir and possible future large storage reservoirs		Increased sewage effluent may result in nutrient enrichment of reservoir water, causing problems of excessive algae.
Carson Desert	Saline water throughout most of the valley-fill reservoir.	Same as present.

Area		Present problem	Possible future problem					
Carson Desert: area	Fallon	Large quantities of saline water throughout most of the ground-water system.	Excessive pumping of the basalt aquifer supplying Fallon and Naval municipal supplies may promote saline-water intru- sion into this aquifer system.					
Carson Desert	·	Same as above.	Increasing septic disposal of sewage may degrade the quality of the shallow, fresh ground-water supply to a point of unacceptability. Decrease in amount of irrigation infiltration, related to probable reduction in application of water may accelerate deterioration of water quality of shallow ground-water system.					

Table 37.--Summary of presently recognized and possible future water-quality problems--Continued

.

.

-- ----

AVAILABLE WATER SUPPLY

Ground-Water Storage in the Valley-Fill Reservoirs

The amount of ground water stored in the valley fill to any selected depth below the ground-water surface is the product of the area, the selected saturated thickness (in this study, 100 ft), and the specific yield of the deposits (assumed to average 10 percent for the study area). The estimates are listed in table 38.

Table 38.--Estimated quantity of ground water stored in the upper 100 feet of saturated valley fill 1/

Hydrographic area (in downstream order)	Area probably underlain by 100 feet or more of saturated valley fill 2/ (acres, rounded)	Estimated quantity of stored ground water <u>3</u> / (acre-feet, rounded)				
Carson Valley (Nev.)	70,000	700,000				
Eagle Valley 4/	13,000	200,000				
Dayton Valley	44,000	440,000				
Churchill Valley	a 74,000	a 740,00 0				
Carson Desert	b 800,000	c 8,000,000				
Entire Carson River basin in Nevada	b 1,000,000	c 10,000,000				
Packard Valley	50,000	500,000				
White Plains	Ъ 42,000	c 420,000				

- 1. Data developed mainly by A. S. Van Denburgh, U.S. Geological Survey.
- 2. Assumed to be about 80 percent of the alluvial areas listed in table 2, because of inward-sloping contact between valley fill and consolidated rocks. (Does not apply to Eagle Valley.)
- 3. Assuming a specific yield of 0.10.
- 4. Data from Worts and Malmberg (1966, p. 11).
- a. Includes ground water underlying Lahontan Reservoir.
- b. Includes areas where ground water is too saline for most common uses.
- c. Much of this water is probably of an unacceptable quality for most common uses.

Although the estimates of stored ground water are large, the amount available in areas where the depth to water is within economic pumping lift and where land is suitable for cultivation is appreciably less. The amount of usable ground water in storage that is economically available depends in part on the distribution of the water-bearing deposits, the permeability and specific yield of the deposits, the distribution and range in chemical quality of the ground water, the number and distribution of pumped wells, and the intended water use. Also, large withdrawals of ground water along the flood plains of perennial streams can affect the flow of surface water and therefore might legally infringe on previously decreed surface-water rights.

Available Supply, Mainstem Areas

The available water supply in mainstem areas of the Carson River basin in Nevada during the base period 1919-69 consisted principally of about 320,000 acre-feet per year of combined river flow and ground-water underflow at the California State line; 50,000 acre-feet per year of local surface- and groundwater inflow to the system, for a total of 370,000 acre-feet between the State line and the Carson Sink; and about 180,000 acre-feet of water imported from the Truckee River basin through the Truckee Canal; for a grand total of about 550,000 acre-feet per year (table 30). In addition, more than 10 million acrefeet of ground water is presently stored in the upper 100 feet of saturated valley-fill deposits of the study area (table 38). Most of the surface water but little of the ground water has been developed, as described in this report. However, much of the stored ground water, particularly in the Carson Desert, may be of unacceptable chemical quality for most uses.

Activities are underway to determine the most efficient legal, economic, and physical solutions to the problems of the combined Truckee and Carson River basins. One principal problem relates to use and diversion of the water supply of the two river basins, which has contributed to the declining stage of Pyramid Lake, the terminal sink of the Truckee River basin. Traditionally, the Carson River basin has been geared to a mining and agricultural economy and its needs. However, if the present trends of population growth and urbanization continue, many new hydrologic problems should be expected.

Available Supply, Nonmainstem Areas

The available supply of Eagle Valley was described by Worts and Malmberg (1966, p. 39) as the system yield, and was estimated at 10,000 acre-feet per year.

Packard Valley and White Plains are tributary to the sink area of Carson Desert but are not tributary to the river mainstem. White Plains receives surface inflow on a generally irregular basis from the Humboldt River, and discharges part of that flow to the Carson Sink. Very little ground-water underflow enters or leaves White Plains (table 18) and only a minor amount of ground-water recharge originates within the White Plains hydrographic area (table 17). Most stored ground water may be of very poor quality, and surface inflow from the Humboldt Sink is of variable and possibly poor quality much of the time. Therefore, the amount of water reaching White Plains depends on the degree of upstream utilization of Humboldt River, which is subject to changing practices of man, and consequently, the residual is of undependable quantity and quality. Thus, the dependable, usable, and therefore available water supply, including the largely saline stored water (table 38), of White Plains can be considered small at best.

Packard Valley does not receive inflow from other hydrographic areas but precipitation within its own area generates a potential for significant recharge. Packard Valley discharges water to the Carson Sink by intermittent streamflow and ground-water underflow. Because of intermi⁺tent flow characteristics, the average annual streamflow is too unpredictable to be considered a dependable water supply. A well field probably could be developed that would salvage some of the phreatophyte discharge (about 300 acre-feet) and some of the ground-water underflow to Carson Desert. Assuming effective salvage of about half the underflow (about 200 acre-feet), the available supply of the valley would be about 500 acre-feet per year, plus a substantial part of the 500,000 acre-feet of stored water (table 38).

GEOHYDROLOGIC HAZARDS

Geohydrologic hazards probably are as critical in the Carson River basin as they are in almost any area of the world. Among these hazards, flooding of the Carson River itself may be the most noticeable, because of its widespread effect. Other water-related hazards of a generally more localized nature include flash floods in small-drainage basins, snow avalanches, and landslides. Earthquakes also must be considered because, though generally not hydrologic in origin, they nonetheless could be direct forerunners of hydrologic hazards.

None of these hazards should be considered independently. For example: (1) landslides can become more active during earthquakes and during times of intense, flood-causing rains; (2) collapse of flood-control dams, with subsequent major flooding, might well occur during an intense earthquake; (3) snow avalanches could well be triggered by heavy rains or earthquakes; and (4) landslides might cause major floods on relatively small tributary streams by ponding large quantities of water that might then suddenly be released as the impounding landslide is overtopped and quickly eroded.

NUMBERING SYSTEM FOR HYDROLOGIC SITES

The numbering system for hydrologic sites in this report indicates location on the basis of the rectangular subdivision of public lands, referenced to the Mount Diablo base line and meridian. Each number consists of three units: the first is the township north of the base line; the second unit, separated from the first by a slant, is the range east of the meridian; the third unit, separated from the second by a dash, designates the square-mile section. The section number is followed by letters that indicate the quarter section, quarter-quarter section, and so on; the letters a, b, c, and d designate the northeast, northwest, southwest, and southeast quarters, respectively. For example, well 14/19-15bcc is in SWASWANWA sec. 15, T. 14 N., R. 19 E. In this report, most sites identified with three and occasionally four letters are in areas where detailed U.S. Geological Survey topographic maps (scale, 1:62,500 and 1:24,000) are available. In other areas, sites have been located using aerial photographs and a less detailed -1:250,000-scale map. An index to Geological Survey topographic maps in Nevada can be obtained free of charge from the Distribution Section, Geological Survey, Federal Center, Lakewood, Colo. 80225.

Because of space limitation, wells are shown on plate 1 by a map number which is referenced to a location number in table 39. Springs and other hydrologic sites are identified on plate 1 only by the above described site numbering system. Township and range numbers are shown along the margins of the plate.

Indie Jy .--- Well data

Use: D, domestic; E, emploratory; FH, fish hatchery; I, industrial; Ir, irrigation; OT, oil test; P, public supply; S, stock; D, unused or sbandoned (intended use in parentheses); L, landfill.

Mater level: Measurements recorded to tenths or hundredths of a foot were generally made by U.S. Geological Survey personnel, and represent depth below land-surface datum; most measurements recorded to mearest foot were reported by well driller or owner.

Remarks: C, chemical analysis in table 31; P, depth, in feet, at which water was first encountered during drilling; L(+), driller's log in table 40; L(E), electric log svallable; L, driller's or lithologic log svallable but not included in table 40; O, U.S. Geological Survey observation well; P, period of water-level observations; S, log in files of State Engineer (State log number is indicated); T, length of time between start of pump test and measurement of yield and drawdown, in hours.

Map no.	Location	Owner	Year drilled	Depth (feet)	Casing diameter (inches)		Tield (gpm) and drawdown (feet)	Land surface altitude (feet)		-level prement Date measured	Lenarks
						CARSON	VALLEY				· · ·
	12/20-4aadd	City of Gardnerville Well no. 4	1970	313	12 -	7	1,125/58	4,782	20	470	L(+); S=11,006; T=48; not yet in production as of 8-19-71
2	-4baad	City of Gardnerville Well no. 3	1965	343	12	2	1,020/	4,760	n	265	P-10; L(+); 5-8488; T-20.5; C
3	-4bbad	City of Gerdnerville Well no. 1	pre-1925	***	-	P	-	4,753	-		C
4	-10dccb	Gardnerville Banchos Hall no. 2	1967	445	12	7	1,150/	4,818	23	96 7	P=4; 1(+); 8-9699; T=24; C
5	-léasba	U.S. Bureau of Sport Fisheries, Well no. 5	1965	800	16	72	1,420/	4,882	40.5	865	L(+); ====================================
6	-l4addc	U.S. Bureau of Sport Fisheries, Well no. 4	1961	497	16-10	71	-	4,876	-		L; 5-58 42; C
7	-15aaba	Gardnerville Ranchos Well no. 1	1965	450	18	7	2,250/-	4,828	18	1065	P-5; L; 8-9832; C
8	-17ba	J. Hellvinkel		165	18	Ir	1,175/	4,750	10.19	5-11-48	0; P=1951-56, 1959-present
9	-Z3maca	U.S. Bureau of Sport Fisheries, Well no. 3	1964	630	12	TE	1,500/275.5	4,895	26.2		P=9: L(+); L(E); S=8264; T=9.7; Pump test data from Desert Resear Institute
10	-23bdac	U.S. Bureau of Sport Fisheries, Well no. 6	1965	803	16	78	2,000/	4,874	40	965	P-6; L; S-8666; T-10
11	-23daca	U.S. Bureau of Sport Fisheries, Well no. 2			-	71	-	4,895	-	-	
12	-23dacd	U.S. Bureau of Sport Fisheries, Well no. 1	1964	200	8	PE	36/	4,895	14	464	F-12; 5-8219; T-24
	13/19-22abb	U.S. Steel Corporation	1962	1,268	10-7	E		4,665		-	L(+); S-9313; another well nearby sncountered bedrock at 280 ft. This well log shows no bedrock
14	13/20-6ad	R. V. Bopkins	1963	404	14	Ir	about 3,000/-	4,676	-	-	P=90; L; S=7386; T=about 4 hrs.
5	-7ac	Andre and Bernard Aldaz	1963	400	14	Ir	about 1,800/	4,682	-		P=21; L; S=7152; T=about 4 hrs.
6	-7dad	E. L. Marshall	1965	441	16	lr	3,400/	4,684	flowing	665	P-8: 1(+); 5-8588
1	-8cad	C. W. Godecke	1928	300	16-12	Ir	2.000/	4,700	1.98	5-12-48	0; P=1951-52, 1954-present
	-29cded	City of Minden, Hell so. 1	1925±	398	-	P	1,800/15	4,722	-		c
)	-31ce	Dangberg Land & Livestock Co.	1945	413	14	Ī۳	3.800/37	4,712	6	648	L; 5-366
D	-32babc	City of Minden, Well no. 2	1947	301	12	P	1,350/	4,722	8	447	P=8; 1(+); 5=34; C
L	-32caa	Mack Land & Cattle Co.	1927	420	18	1r	2,600/	4,733	7.99	5-12-48	0; P-1951-62, 1964-present
2		City of Gardnerville Well no. 2	1947	301	12	P	1,000/72	4,737	16.6	94 7	P=16; L(+); S=108
	13/21-15bed	U.S. Dureau of Land Management, "Uhalde Banch Wall"	1941	50 0	8	U(S)	-	5,365	96.30	5-14-70	1
4	-19cbb	U.S. Bureau of Land Management, "Buckeys Creek Well"	1941	140	8	U(S)	-	5,000	102.38	5-14-7 0	L
5	-28ccb	U.S. Bureau of Land Management, "Fish Spring Flat Well"	1941	95		5	-	5,170	56	⊩ -4 1	C, L
6	14/19-15bcc	John Ascuaga	1948	302	12	Ir	500/	5,160	1	1148	<pre>₽=20; L(+); ₽=734; bedrock at 295 ft</pre>
7	-15cc	John Ascuss	1953	252	12	D(Ir)	780/	5,150	20	1053	P-12; L; 8-2410
	-25ba	U.S. Bureau of Indian Affairs	**	2401	12	lr	350/81+	4,680	10.49	5-10-46	0; P=1951-present
	14/20-4bdb	Nevada State Medium Security Prison, Wall mo. 3	1968	a 519	•	P(2)	100/167	4,685	37	1970(?)	L(+); B=10,298; badrock at 490 ft'
)	-28cdd	Dalaova	-		6	U(D)		4,710	11.2	9-14- 70	
1	-32ec	N. Johnson	1969	436	16	Ir IAGLI V	2,800/92	4,675	floring	569	L; 5-10,579 ; T-24
2	14/20-6cb1	Sierra Estates Gen. Imp. Dist. (1973), formerly Carson Mater Co., Well me. 5	1960	300	14	P	\$20/	4,860	33	1060	P=52; L(4); B=5566; T=108; gramite bedrock at 198 ft
2	-6cb2	Sierrs Estates Gen. Imp. Dist. (1973), fermerly Carson Water Co., Well mo. SA	1962	150	10	2	30-40/	4,860	20	1162	3-36; L; 3-7012
3	15/19-12ada	Carson Mater Co., Well me. 6	1972	500	16-12	2	1,200/80.6	4,860	93.3	7 72	L: 0-12.430: 7-25.8
6	- 3334	U.S. Porest Service	1966	305	16	7	31/-	5,780	125		<pre></pre>
5	-34cc	U.S. Porest Service	1966	290	10	2	70/20	\$,750	63	► -46	P=60; 1; 9=9540; 7=1
6	15/20-7665	Carson Water Co., Wall mo. 5	1970	\$15	14-12	2	40/164	4,730	16		L(+); =11,262; C
7	-9acbal	J. L. Blies		691	6	U(D)	-	4,650	_	_	C
,		J. L. Bliss	1963:	132	6	Ð	_	4,650	_	_	• .
;	-17dd	Carson Water Co., Well mo. 4	1969	b 807	24			4,640			
,		Bevada Indian Agency, Well mo. 4	1969	375	10	*	250/58.5	4,940 4,715	26.5		C; L(+); S=10,564; T=48 C; L(+); L(E); S=10,670; T=24;
	-1744c-	Hevada Indian Agancy,	1967	247	10	•					no bedrock encountered
-	- 220010	Well no. 3	4701	e#/	10	2	-	4,705	20.86	11- 4-71'	L(+); ==10,351; bedrock at 243 ft

a. Originally drilled at 8-inch diameter to 519 feet for test purposes; later re-drilled at 10-inch dismeter to 330 feet for production purposes.

b. Plugged back to 604 feet.

•

÷

ì

.

٠

}

)

							dataContinu					
Nap ao.	Location	Owner	Tear drilled	Depth (fest)	Casing diameter (inches)	Use	Tield (gpm) and drawdown (feet)	Land surface altitude (feet)		r-level Date measured	Benerks	
					1	DATTOR						
41	15/20-1ae	Carson City	1969	256		L	\$/27	4,860	222	1069	C; L; S-10,763; bedrock at 136 ft	
₹ 42	16/21-12acd	W. W. Eitel	1968	265	16	Ir	3,250/74	4,310	10	668	P=5; L(+); B=10,144; T=8; bedrock at 222 feet; C	
43		Allran, Inc., Well no. 6	1948	264	16	Ir	960/	4,320	15	248	P=30; L; S=446; C	
44		Quilici Ranch	19201	120	14	1 .	1,000/	4,330	-	-		
45		C. C. Berton	1938±	e 250		P		4,355	-		C j	
46		J. Ricci	1948	.75	6	Ð	30/	4,360	11		L; 5-749; 7-20	
47		Deyton Elementary School	1971	135	8	P	150/25	4,370	73	471	L; 9-11,529; C; T-16	
48		Anchor Trailer Court	1957	106		7	-	4,370		-		
49		Nevada Craft Guild	1969	135	6	D	2/1001	4,760	30		L; =10,837; C	
50		Fred Winkler	1967	79	6	D	30/	4,770	45	167	C; P-55; L; B-9403	
51		R. J. Sarroille	-	85	-	Ð		4,770	-	-	c	
52	••••	R. C. Brown		80	6	D		4,770	-		•	
53		Allran, Inc., Well no. 5	1961	460	16	Ir	4,000/36	4,290	20		P-50; 1; 8-6087	
54		Deyton Valley Banchos	1955	260	14-12	2	-	4,345	57.82	2-18-72	L; 8-2999; P-60	
55		W. W. Eitel	-	100		Þ		4,305			C	
56		Cone Minor		197	12	U(11)	3,000/	4,310	7	1949	-1003	
57		Marvin Pickles	1971	145	8	Ð	30/20	4,335	64		L; 5-11,951; T=4; C	
50		R. L. Biedebach	1968	373	16	Ir	2,400/51	4,350	54	668	L; B-10,114 ; T-6	
- 57		R. L. Biedebach	1963	600	14	Ir	2,800/	4,350	55	-	C; L(+); 8-7314	
60		Unknown	-		6	D		4,410	123.22	6- 1-70		
61		Gene Minor	1960	300	14	lr	2,800/	4,358	53.24		L; ==5336	
62		V. E. Berrmann	_		6	P		4,375	_		C	
63		W. Z. Sermann	1956	292	16	Ir	1,750/	4,375	55		L; 8-3465	
64	•••••	V. E. Herrmann	1956	235	16	U(Ir)	1,500/-	4,375	66.06		L, S-3435; P-6 0	
62		V. E. Berrann	1928	372±	16	Ir	3,000/	4,375	51.04	7-20-72	· · · · · · · ·	
65		V. E. Merroenn	1956	192	16	V(1r)		4,375	52.81		L; 8-3436; F=67	
65		V. Z. Harrmann	1956	197	16 14-12	U(Ir)		4,375	\$3.02	7-12-72		
		Bodges Transportation Co.	1947	315		U(Ir)		4,250	20		P=20; L(+); S=328; bedrock at 178	
67)	1971	227	6	U())	16/14	4,440	138.29		L; S-11,768; bedrock at 47 feet	
68	\	E. P. O'Beill)	1970	122	8	Ð		4,345	-		c	
68	\	Halph Hicks	1970	123	6	D		4,340	53.32		P-65; L; S-11,630; C	
69	\	Clen 5. Kunkel	1971	215	6	D	9/2	4,500	182.6		P-180; L; S-11,825; T-1.5	
70	••••••	Segebrush Rench	1967	177	8	D	-	4,415	117		C; P-145; L; 8-9568	
n		Six-Mile Querry Products	1971	185	10	I		4,405	103.72		P=60; 5=12,180	
72		C. Smith	-		8	U(D)	~~	4,350	53.6	€- 3 -70		
73		Aliran, Inc., Well no. 2	1961	500	8	U(1r)	200/29	4.320	28.35		P-50: L: 8-6088	
> 73		Allran, Inc., Wall no. 1	1961	633	16	IT	1,300/145	4,3/0	60	761	P-35; L(+); S-6086; C	
74		Allran, Inc., Well no. 3	1961	504	16	Ir	2,370/	4,310			P-105; L: 9-6643	
75		Allran. Inc., Well BO. 4	1961	500	16	Ir	2,500/96	4,305	35	~	P-15; L; \$=6085; C	
76	-35bc (Joseph Chaves	1948		16	Ir	840/42.5	4,300	24.20	1-31(49)	C: 0; P-1952-55, 1958-65, 1967-	
77	17/23-16d	Stagecoach Land Co.	1970	252	8	• P	-	4,370	145.70	6- 3-70	L; 9=10,878; P=150; C	
78	-1db	Well no. 1 Stagecoach Land Co.	1970	280	8	U(P)	20/16	4,460	224.19	7-14-72	L; 9-11,159; P-236	
75	-2bc	Stagecoach Land Co.	1971	305		7	30+/	4,325			L; 9-11,063; 7-8; C	
80	-26d	Well no. 3 Stagecoach Land Co.	1970	300	10	7	÷	4,325		-	L; 9-11,349; 7-96; C	
81	-3000	Well po. 2 Vestus Calico	1971	164	8	D	30/	4,350	-	_	L; 11,501	
82	-Jedb	H. Visson	1969	350	12	D(lr)	-	4,290	59.13			
-	-3060	Ben Rollison	1971	120		D D	 15/—	4,350	\$2.27		L; 9-11,734; T=4; C; P=60	
	-744d	Etch Construction & Hining Co.		386	12	Ū	-	4.335	74.00		L: 3=6354	
•					-	·		4,200	73.98			
						Ir	900/112	4,285	48	469	C; L(+); \$-10,523; P-89	
85	-10bas	H. C. Phillips	1969	300	12			•	47.43	12- 7-71		
85 86		H. C. Phillips V. H. Boyer	1969	300	12	 lr	1,239/23	4,295		3- 5-72	P-59; L(+): 8-8812: T-30:	
	-10000	W. H. Boyer			_		1,239/23	-	48.71	3- 5-72		
	-10666	W. M. Boyer W. M. Boyer	1959	320	10	Ir	•	4,290	48.71 59	}- 5-72 ← -59	P-59; L(+); 3-8812; T=30; bedrock at 234 feet	
85 87 87	-10666 -10666 -10666	W. M. Boyer W. M. Boyer P. I. Augustine	1959 	. 320 204	10	lr D	-	4,290 4,280	48.71 59 . 45	}- 5-72 ← -59	P-59; L(+); 9-8812; T-30;	
84 87 87 88	-10666 -10666 -10666 -10666	W. M. Boyer W. M. Boyer P. J. Augustine Westherman	1959	320 204 198	10 6 6	lr D D D	-	4,290 4,280 4,275	48.71 59	5- 5-72 659 549	P-59; L(+); =-8812; T=30; bedrock at 234 feet	
86 87 87 88 89	-10666 -10666 -10666 -10666 -1166	W. M. Boyer W. M. Boyer P. J. Augustine Westherman Master	1959 1969 	320 204 198	10 6 6 	Ir D D D D	-	4,290 4,280 4,275 4,300	48.71 59 - 43 	5- 5-72 639 549 	P-59; L(+); D-8812; T-30; bedrock at 234 feet C; L; D-10,846	
84 87 87 88	-10666 -10666 -10666 -10666	W. M. Boyer W. M. Boyer P. J. Augustine Westherman	1959 	320 204 198	10 6 6	lr D D D	-	4,290 4,280 4,275	48.71 59 . 45 . 45 . 45 . 45.79 46.13	5 5-72 6 -39 - 5 -49 - - - - - - - - - - - - -	P-59; L(+); 9-8812; T-30; bedrock at 234 feet C; L; 9-10,646	
85 87 87 89 90 91	-10000 -10000 -10000 -10000 -1100 -1100 -11000	W. M. Boyer W. M. Boyer P. J. Augustine Westherman Mester Booley Unknown	1959 1969 1971 	320 204 198 	10 6 6 6 6 6 482	Ir D D D D S		4,290 4,280 4,275 4,300 4,280 4,270	48.71 59 	5 5-72 6 -39 	P-59; L(+); S-8812; T-30; bedrock at 234 feet C; L; D-10,846 C C	
85 87 87 88 89 90 91 91	-10000 -10000 -10000 -10000 -1100 -11000 -11000 -11000	W. M. Boyer W. M. Boyer P. J. Augustime Westherman Mester Dooley Waknown Stah Construction 6 Mining Co.	1959 	330 204 198 	10 6 6 6 6 482 16	Ir D D D D S V(1)		4,290 4,280 4,275 4,300 4,280 4,270 4,283	44.71 59 	3 - 5-72 39 39 	P-59; L(+); S-6812; T-30; bedrock at 234 feet C; L; D-10,646 C C P-68; L(+); D-6553	
85 87 87 88 89 90 91	-10000 -10000 -10000 -10000 -1100 -1100 -11000	W. M. Boyer W. M. Boyer P. J. Augustine Westherman Mester Booley Unknown	1959 1969 1971 	320 204 198 	10 6 6 6 6 6 482	Ir D D D D S		4,290 4,280 4,275 4,300 4,280 4,270	48.71 59 	5 5-72 6 -39 	P-59; L(+); S-8812; T-30; bedrock at 234 feet C; L; D-10,846 C C	
85 87 87 89 90 91 91	-10000 -10000 -10000 -10000 -1100 -11000 -11000 -11000	W. M. Boyer W. M. Boyer P. J. Augustime Westherman Mester Dooley Waknown Stah Construction 6 Mining Co.	1959 	330 204 198 	10 6 6 6 6 482 16	Ir D D D D S V(1)		4,290 4,280 4,275 4,300 4,280 4,270 4,283	44.71 59 	3 - 5-72 39 39 	P-59; L(+); S-8812; T-30; bedrock at 234 feet C; L; D-10,846 C C P-68; L(+); D-6353	

e. Estimated.

,

					-		·	Land		-level	
lap	• • • •	_	Tear	Depth	Casing dismeter		Tield (gpm) and drawdown		Depth	Tement Date	_
ο.	Location	Owper	drilled	(fest)	(inches)	Use	(feet)	(feet)	(feet)	measured	Remarks
96	16/25-5dc	U.S. Bureau of Land Management	1963(?)	127±	6	S S	L VALLET	4,230	65.16	6- 9- 70	
97	-12bc	U.S. Bureau of Land Management "Lahontan Well"	1944	126	6	5	-	4,215	43.5	6- 9-70	P-82 ; L
98	16/26-3da	U.S. Bureau of Land Management "Mooten Well"	-	-	-	5	-	4,195			
	17/24-14cd	Dakaowa	- , '		8	U(D)		4,200	49.62	6- 8-70	Abandomed homesite
100	-lcba	Edwin HcPherson	1969	200	8	D	-	4,250	100	1169	1; 5-10,793; C
101	-35da	Prank Ghiglia	1966	64	8	B(D)	\$0/5	4,205	28	466	P-40; 1; B-8994
102	-3644	Frank Chiglis	1970	63	10	D		4,215			c
103 104	17/25-6dbb -10cd	Richard Spooner Unknown	1966	105	6	Þ		4,185	32.81	7-11-72	C
105	-16cbc	Neinert	_	-	8 6-8	D	-	4,195	34.08	6-10-70 2-11-69	
.06	-1 6 4444	Narnell Devie	1970	150	8	- -	_	4,190 4,205		2-11-07	c
107	-19bab	J. Stephenson		103	6	D	_	4,195	39.20	2-11-69	•
801	-29cbc	Daksown		· _	-	D		4,185	36	2-11-69	
.09	18/24-25adb	Community of Silver Springs	1954	260	14	2	 '	4,202	64	•	P-64; L(+); 8-2543; C
10	-25bde	J. A. Powell	1960	285	12	Ir		4,210	70	1960	P=58; L; 8=5137
11	-27cac	Nark Norgan	-	300±	-	D		4,340			c
12	-27db	Sugane Black	1956	300	10	Ð	25+/	4,315	160	1156	P-175; L(+); 8-3568
13	÷28ec	U.S. Bureau of Land Management "Stockton Flat Well"	1942	281	6	D (S)		4,380	221 216.45	11-15-42 6- 5-70	P-2 20; L
14	-28dbc	James Geurts	-	-	-	D	-	4,380	-		c
15	-32abc	J. A. Key	1971	315	8	D	-	4,420	262.8	7-14-72	c
.16 .17	-36add 18/25-4a	Daknown J.S. Bureau of Land		 360	6	U(D) S	-	4,195 4,355	46.30 332.85	6-10-70 6-10-70	P-348; L: C
		Nanagement "White Sage Flat Well"			_			·			
18	-19cdc	Community of Silver Springs	1951	290	8	•		4,185	-	-	1; 5-1691; C
19	16/30-7daa	U.S. Geological Survey	1971	64			DESERT	3 030	31.04		
20	-92	U.S. Bureau of Land Hanagement "Bass Flat Well"	1943		1.5 6	E S	-	3,930 3,934	23.06 21.45 21.66		1962 water-level measurement by DRI personnel
21	-17bca	C.S. Geological Survey	1971	43	1.5	1		3,930		10-13-71	
22	-30aa	U.S. Bureal of Land Management "Diamond Wash Well"	1946	-	6	5		3,995	70.49	\$-18-70	
23	16/31-36cad	U.S. Bureau of Land Management "Wightman Wall"	1946	350	6	5	-	4,193	285.0 284	6- 1-62	1962 water-level measurement by 2 personnel
24	16/32-5bcd	P. Cushman	-	27	6	5	e 0.5-1/-	3,904	3.19 3.2	4-10-62 7- 30-6 2	1962 water-level measurement by 2 personnel
25	-Scád	3. Mathews	-	-	6	U(D)	e 20-23/	3,961	29.1 29.25	4-13-62 7-30-62	1962 water-level measurement by 1 personnel
26	-56 6b	F. Bennett	-	162	6	U(1)		3,974	65.2 65.87	7-30-62	1962 water-level measurement by 1 personnel
.27	-66	Dodge Construction Co.	-	190	4	U	• 0.2/	3,893			1962 water-level measurement by 1 personnel
28 29	-196 -196	P. Cushman U.S. Atomic Energy Commission	1962	760	•	s R	a 3-5/	3,900	-		1962 water-level measurement by i personnel L(+); water-level measurement by
						-	e 66/	4,017	110.88		personnal; leg from Nevada Bures of Mines and others (1962, p. 10
30	-29e ác	U.S. Atomic Energy Commission		480	•	I	e 5-10/	4,232	328.3	7-31-62	L(+); L(E); unter-level measurem by DEI personnel; gramite bedroci at 310 feet; leg from Heveds Burg of Mines and others (1962, p. 114)
	17/28-134	C. Dalton	1947	448	3	U	e 15/—	3,915	-	1147	
	17/29-18bd	Jones and Jewell Ranch	1921-23	3,300		70		3,915	-	-	L(+); log from Morrison (1964, p. 149)
	17/30-3ca	U.S. Geological Survey	1971	22	1.5		-	3,936		10-13-71	
34 82	-icae	D.S. Geological Survey	-1971	22	1.5	1	-	3,936		10-13-71	
22	17/31-156	D.S. Bureau of Land Hanagement(?)	-	-	6	5	-	4,050	117.76	8-19-70	
*	7/32-226	U.S. Bureau of Land Management "Sand Nountain Wall"	1964	180	6	8	-	-4,600	156	1964	P-165; L
37	18/28-36cb	Churchill Drilling Corp. "Lina no. 1"	1960	1,2562	-	or	-	3,978	-	-	Reportedly no bedrock encountered
38	-13eed	Churchill Drilling Corp. "Beggie no. 1"	1959	8,001		στ	-	3,958	-	-	Reportedly no bedrock encountered
39	-1344c	Churchill Drilling Corp. "Williams no. 1"	1961	4,750	-	OT	-	3,952	-	-	Reportedly no bedrock encountere
40	18/29-4bec	U.S. Hevy	1958	776	8-12	U(E)		3,947	20	10-28-58	C; L(+); well sended in during P test; log from Kingman (1959)
11	-5668	U.S. Hevy	1958	623	14	U(I)	-	3,950	-		L(+); log from Kingman (1959)
	-10666	U.S. Nevy	1958	602	14	3(I)		3,940	_	-	L(+); L(E); log from Kingman (195
142		-				,					

e. Setimted.

i

ł

Table 39 .--- Hell data--- Continued

)

.

)

li ap		-			Card		Tiold (Land surface		-level	
			Tear	Depth	Casing diameter		Tield (gpm) and drawdown	altitude	Depth	Date	
φ.	Location	Owner	drilled	(fest)	(inches)	Use	(feet)	(feet)	(feet)	measured	Renarks
					CARSON	DESERT	Continued				
44	18/30-12aca	Daknown	-		6	5	,	3,941			C
45	-35dc	L. Reeve, "Salt Wells"	1957(?)	100	6	D		3,957	-	-	C
46	18/31-4da	U.S. Bureau of Land Management "Kent Well"	1941	140	6	5		4,027	125.80	8-20-70	c
		•									title los from Marriage (1958 a f
47	-20c	Laboutan Mevade 011 Co.		2,015-2,0		TO	-	4,215			L(+); log from Morrison (1959, p. 2
48	-274	U.S. Bureau of Land Management "Diamond	1952	343	6	S		4,226	300	5-29-62	Water-level measurement by DRI personnel
		Canyon Well"		,			, 1				•
49	-3lccc	U.S. Bureau of Land		300	6	S	- 1	3,976	32.4		C; 1962 water-level measurements
		Management							31.96 39.27	7-30-62 8-19-70	DRI personnel
10	19/26-2365	Balaova			6	U		4,115	63.84	€-11-70	
51	19/27-12dc	U.S. Geological Survey	1971	150				4,008			c
12					1.5	1	- ,	•		8- 5-70	
M.	-18bc	Ünknovn			. 6	U	— ;	4,075	42.00	8 - 3-70	
					_		,				
53	19/28-21cc	Waka owa	1970(?)		8	U(D)	-	3,995	3.75	8- 6-70	
14	-22688	Clyde Gummov, Sr.	-	41	8	U(D)		3,972			c
55	-22dab	Clyde Gummow, Sr.	1921	1,155+		D(OT)		3,972	-		L(+); C; basalt at 1,050 feet; log from Horrison (1959, p. 125)
	•••										L(+); shandoned and unused; log f
56	-24800	City of Fallon	1934	387		U(P)	-	3,970	-		L(+); abandoned and unused; log r Morrison (1959, p. 127)
57	-36aba	City of Fallon	1969	813	14	U(P)	230 '81	3,962	38.42	11-15-71	T=12; L(+): S=10,789; basalt at 5
								-,			feet
58	-36daa	City of Fallon	1965	558	14	U(P)	1,000/	3,965	30.4	1165	P=13; L(+); S=8724; basalt at 510
59	19/29-30cba	City of Fallon, Well no. 3	1970	484		P	2,100/	3,960	33	1270	L(+); S=11,374; basalt at 404 fee
60		City of Fallon, Wall no. 1	1941	506	161		1,600/6	3,958	33	1941	L(+); basalt at 448 feet; C
10		City of Fallon, Well no. 2	1948	521	12-14-18		1,000/<1	3,958	33	1948	L(+); basalt at 455 feet; C
11		I. E. Kent Co.	1960	444	6-8	D	200+/	3,965	35		L(+); \$=5928; P=15; C; basalt at
	-310800	1. B. Mart CO.	2700		•••	•		2,702	••	•••	418 feet
2	-33cbbl	U.S. Mavy, Wall no. 1	1962	540	10-16-24	2	1,000/	3,948	29.4	562	L(+); S=6628; C; basalt at 496 fm
2		U.S. Nevy, Well no. 2	1961	530	16	P	1,400/	3,948	22	261	L(+); 8=6822; basalt at 500 fe
52	-	U.S. Hevy, Well no. 3	1962	531	16-24	7	2,000/	3,948	29.4		L(+); S=6629: T=72; basalt at
	-32003					•		.,			500 feet
53	19/30-30ccb	L. W. Mason	1969	15-19	8	D		3,928	6	1969	C
14	-30ccc	T. L. Sherman		37	8	U(D)		3,928			c
65	19/31-74c	John Bell		204	3	beating	flowing/	3,897	21 ft	reported	C; reported boiling
								- •	above	•	
									led		
16	-lia	U.S. Bureau of Land Management "Stillwater	1954(?)		6	5	-	3,950	40.56	8-20-70	C
		Point Well"									
17	-32cc	Calmevs Trust Co. and Last	1922-24	1,472		στ	-	3,935	-		L
		Chance 011 Co.					ì				
8	20/26-26cc	Southern Pacific Railroad	1907	1,323	10	U(I)		4,005	29	7-27-07	L(+)
9	20/28-166	Kennepetals, Inc.	1968	627	8-16	-				1968	
-	-28ccb	B-b				1	70/105	3,982	52	4700	C; L(+); \$=10,044; T=24
Ð.		Unknown		60	-	1		3,982 3,985	52		Drilled at site of extinct hot
Ð			-	60		U		3,985			Drilled at site of antinct hot spring (Norrison, 1964, p. 117)
	20/29-30cce	U.S. Corps of Engineers	 1959	60 692				•	52 		Drilled at site of extinct hot
1	20/29-30cce 20/32-28c	U.S. Corps of Engineers U.S. Bureau of Land			-	U	-	3,985			Drilled at site of antinct hot spring (Norrison, 1964, p. 117)
1	20/32-28c	U.S. Corps of Engineers U.S. Buresu of Land Management "Flat Vell"	1959		8 8	U U(2) 8		3,985 3,980 3,925		 8-20-70	Drilled at site of antinct hot spring (Norrison, 1964, p. 117)
1 2 3	20/32-28c 21/27-226d	U.S. Corps of Engineers U.S. Bureau of Land Hanagement "Flat Well" Taknown	1959 	69 2 —	8 8 8	U U(E) 8 5		3,985 3,980 3,925 4,080		 8-20-70 8-21-70	Drilled at site of extinct hot spring (Norrison, 1964, p. 117) L(+); L(E)
1 2 3	20/32-28c	U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Nakaown U.S. Goolegical Survey	1959		8 8	U U(2) 8		3,985 3,980 3,925		 8-20-70 8-21-70	Drilled at site of antinct hot spring (Norrison, 1964, p. 117)
1 2 3 4	20/32-28c 21/27-22bd 21/30-30ac	U.S. Corps of Engineers U.S. Bureau of Land Management "Plat Well" Unknown U.S. Geolegical Survey "Timber Lake Well"	1959 1911-12	692 985	8 8 8 12	U U(Z) S S Z	 25-30/	3,983 3,980 3,925 4,080 3,882		 8-20-70 8-21-70 10-13-71	Drilled at site of antinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306
1 2 3 4	20/32-28c 21/27-22bd 21/30-30ac	U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Bakmoun U.S. Geolegical Survey "Timber Lake Well" U.S. Bureau of Land	1959 	69 2 —	8 8 8	U U(E) 8 5		3,985 3,980 3,925 4,080		 8-20-70 8-21-70	Drilled at site of antinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306
1	20/32-28c 21/27-22bd 21/30-30ac 21/33-25cbc	U.S. Corpe of Engineers U.S. Bureau of Land Management "Flat Well" Baknoun U.S. Geolegical Survey "Timber Lake Well" U.S. Bureau of Land Management "Desert Well"	1959 1911-12 	692 985		U U(Z) S S S S		3,985 3,980 3,925 4,080 3,882 3,932		 8-20-70 8-21-70 10-13-71	Drilled at site of antinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306 C
1	20/32-28c 21/27-22bd 21/30-30ac	U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Bakmoun U.S. Geolegical Survey "Timber Lake Well" U.S. Bureau of Land	1959 1911-12	692 985	8 8 8 12	U U(Z) S S Z	 25-30/	3,983 3,980 3,925 4,080 3,882		 8-20-70 8-21-70 10-13-71	Drilled at site of antinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306 C Reportedly no bedrock encountered
1 2 3 4 5 6	20/32-28c 21/27-22bd 21/30-30sc 21/33-25ebc 22/30-14bbd	 U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Delayoun U.S. Geological Survey "Timber Lake Wall" U.S. Bureau of Land Management "Desert Well" Churchill Drilling Corp. "T.C.I.D. mo. 1" 	1959 1911-12 1961	692 985 3,758±		U U(Z) S S S S		3,983 3,980 3,925 4,080 3,882 3,932 3,850±		 8-20-70 8-21-70 10-13-71	Drilled at site of antinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306 C Reportedly no bedrock encountered selumiar and gas, 3,125-3,130 f
1 2 3 4 5 6	20/32-28c 21/27-22bd 21/30-30ac 21/33-25cbc	 U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Wakaown U.S. Geological Survey "Timber Lake Wall" U.S. Bureau of Land Management "Desert Well" Churchill Drilling Corp. 	1959 1911-12 	692 985		U U(Z) S S Z S S OT		3,985 3,980 3,925 4,080 3,882 3,932		 8-20-70 8-21-70 10-13-71	Drilled at site of antinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306 C Reportedly no bedrock encountered selumiar and gas, 3,125-3,150 f
1 2 3 4 5 6 7	20/32-28c 21/27-22bd 21/30-30sc 21/33-25ebc 22/30-14bbd	 U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Dekaoun U.S. Geolegical Survey "Timber Lake Well" U.S. Bureau of Land Management "Desert Well" Churchill Drilling Corp. "T.C.I.D. mo. 1" B. Thorps Co. "Carson Sink mo. 1" U.S. Bureau of Land 	1959 1911-12 1961	692 985 3,758±		U U(Z) S S Z S S OT		3,983 3,980 3,925 4,080 3,882 3,932 3,850±		 8-20-70 8-21-70 10-13-71	Drilled at site of antinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306 C Reportedly no bedrock encountered saltwater and gas, 3,125-3,150 i Reportedly no bedrock encountered
1 2 3 4 5 6 7	20/32-28c 21/27-22bd 21/30-50ac 21/33-25cbc 22/30-34bbd -39bbd	 U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Weksown U.S. Geolegical Survey "Timber Lake Wall" U.S. Bureau of Land Management "Desert Well" Churchill Drilling Corp. "T.C.I.D. mo. 1" B. Thorps Co. "Carson Sink mo. 1" U.S. Dureau of Lend Management "Fisk Well" 	1959 1911-12 1961 1964 	692 		U (2) S S S S S TO TO S		3,985 3,980 3,925 4,080 3,882 3,882 3,850 3,850 3,850 3,850 2,950			Drilled at site of antinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306 C Reportedly no bedrock encountered saltwater and gas, 3,125-3,150 i Reportedly no bedrock encountered
1 2 3 4 5 6 7 8	20/32-28c 21/27-22bd 21/30-50ac 21/33-25cbc 22/30-34bbd -39bbd	 U.S. Corps of Engineers U.S. Bureau of Land Munagement "Plat Well" Unknown U.S. Geolegical Survey "Timber Lake Wall" U.S. Bureau of Land Munagement "Desert Well" Churchill Drilling Corp. "I.C.I.D. mo. 1" B. Thorps Co. "Garson Sink mo. 1" U.S. Bureau of Land Munagement "Fisk Well" U.S. Bureau of Land 	1959 1911-12 1961 1964	692 	8 8 12 9 	U U(E) S S E S S OT OT	 25-30/ 	3,985 3,980 3,925 4,080 3,882 3,932 3,932 3,8502			Drilled at site of antinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306 C Reportedly no bedrock encountered saltwater and gas, 3,125-3,150 i Reportedly no bedrock encountered
1234556778	20/32-28c 21/27-225d 21/30-30sc 21/33-25cbc 22/30-145bd -196bd 22/33-15b	 U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Bukaown U.S. Geolegical Survey "Timber Lake Well" U.S. Bureau of Land Management "Desert Well" Churchill Drilling Corp. "T.C.I.D. mo. 1" B. Thorps Co. "Garoon Sink mo. 1" U.S. Bureau of Land Management "Fisk Well" U.S. Bureau of Land Management "Fisk Well" U.S. Bureau of Land Management "Copper 	1959 1911-12 1961 1964 	692 		U (2) S S S S S TO TO S		3,985 3,980 3,925 4,080 3,882 3,882 3,850 3,850 3,850 3,850 2,950			Drilled at site of antinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306 C Reportedly no bedrock encountered saltwater and gas, 3,125-3,150 i Reportedly no bedrock encountered
	20/32-28c 21/27-226d 21/30-30nc 21/33-25cbc 22/30-1466d -1966d 22/33-156 23/33-1266	 U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Bukaown U.S. Geological Survey "Timber Lake Well" U.S. Bureau of Land Management "Desert Well" Churchill Drilling Corp. "T.C.I.D. mo. 1" B. Thorps Co. "Garoon Sink mo. 1" U.S. Bureau of Land Management "Fisk Well" U.S. Bureau of Land Management "Fisk Well" U.S. Bureau of Land Management "Copper Kettle Well" 	1959 1911-12 1961 1964 	692 		U (2) S S S S OT OT S S		3,985 3,980 3,925 4,080 3,882 3,932 3,8502 3,8502 3,950 3,990			Drilled at site of artinct hot spring (Morrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306 C Reportedly no bedrock encountere estuater and gas, 3,125-3,150 ; Reportedly no bedrock encountere
	20/32-28c 21/27-225d 21/30-30sc 21/33-25cbc 22/30-145bd -196bd 22/33-15b	 U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Bukaown U.S. Geolegical Survey "Timber Lake Well" U.S. Bureau of Land Management "Desert Well" Churchill Drilling Corp. "T.C.I.D. mo. 1" B. Thorps Co. "Garoon Sink mo. 1" U.S. Bureau of Land Management "Fisk Well" U.S. Bureau of Land Management "Fisk Well" U.S. Bureau of Land Management "Copper 	1959 1911-12 1961 1964 1969(7)	492 		U U(E) S S S S OT OT S S U		3,985 3,980 3,925 4,080 3,882 3,882 3,850 3,850 3,850 3,850 2,950			Drilled at site of antinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306 C Reportedly no bedrock encountered seltmater and gas, 3,125-3,150 f Reportedly no bedrock encountered
	20/32-28c 21/27-226d 21/30-30nc 21/33-25cbc 22/30-1466d -1966d 22/33-156 23/33-1266	 U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Bukaown U.S. Geological Survey "Timber Lake Well" U.S. Bureau of Land Management "Desert Well" Churchill Drilling Corp. "T.C.I.D. mo. 1" B. Thorps Co. "Garoon Sink mo. 1" U.S. Bureau of Land Management "Fisk Well" U.S. Bureau of Land Management "Fisk Well" U.S. Bureau of Land Management "Copper Kettle Well" 	1959 	492 		U U(2) S S S OT OT S S U PACEARD		3,985 3,980 3,925 4,080 3,882 3,932 3,8501 3,8501 3,950 3,950 3,950			Drilled at site of antinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gala, 1913, p. 306 C Reportedly no bedrock encountered saltmater and gas, 3,125-3,150 i Reportedly no bedrock encountered C
	20/32-28c 21/27-226d 21/30-30nc 21/33-25cbc 22/30-1466d -1966d 22/33-156 23/33-1266	 U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Deknown U.S. Geolegical Survey "Timber Lake Wall" U.S. Bureau of Land Management "Desert Well" Churchill Drilling Corp. "T.C.I.D. mo. 1" B. Thorps Co. "Caroon Sink mo. 1" U.S. Bureau of Lend Management "Yish Well" U.S. Bureau of Lend Management "Copper Kattle Well" Bureau of Lend Management "Copper Kattle Well" Derseu of Lend Management "Copper Kattle Well" Derseu of Lend Nerseu of Lend 	1959 1911-12 1961 1964 1969(7)	492 		U U(E) S S S S OT OT S S U		3,985 3,980 3,925 4,080 3,882 3,932 3,8502 3,8502 3,950 3,990			Drilled at site of extinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306 C Reportedly no bedrock encountered celturater and gas, 3,125-3,130 i Reportedly no bedrock encountered C
	20/32-28c 21/27-226d 21/30-30ac 21/33-25cbc 22/30-3466d -1966d 22/33-156 23/33-1266 24/33-146c	 U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Dakaoon U.S. Geological Survey "Timber Lake Well" U.S. Bureau of Land Management "Desert Well" Cherchill Drilling Corp. "I.C.I.D. mo. 1" B. Thorpe Co. "Carcon Sink mo. 1" U.S. Bureau of Land Management "Fish Well" U.S. Bureau of Land Management "Copper Kattle Well" Bukmon S. Bureau of Land Management "Mattleberry 	1959 	492 		U U(2) S S S OT OT S S U PACEARD		3,985 3,980 3,925 4,080 3,882 3,932 3,8501 3,8501 3,950 3,950 3,950			Drilled at site of extinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306 C Reportedly no bedrock encountered celturater and gas, 3,125-3,130 i Reportedly no bedrock encountered C
	20/32-28c 21/27-22bd 21/30-30ac 21/33-25cbc 22/30-14bbd -19bbd 22/33-15b 23/33-15b 24/33-168c 28/33-10aa	 U.S. Corps of Engineers U.S. Burseu of Land Management "Flat Well" Dakason U.S. Geological Survey "Timber Lake Well" U.S. Burseu of Land Management "Desert Well" Cherchill Drilling Corp. "T.C.I.D. mo. 1" B. Thorps Co. "Geroon Sink mo. 1" U.S. Burseu of Land Management "Flat Well" D.S. Burseu of Land Management "Copper Kattle Well" Bukson U.S. Burseu of Land Management "Mattlaberry Well" 	1959 1911-12 1961 1964 1969(7) 	492 		U U(E) S S S OT OT S S U PACKARD S		3,983 3,980 3,925 4,080 3,882 3,932 3,8502 3,8502 3,950 3,950 3,950 3,950			Drilled at site of extinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306 C Reportedly no bedrock encountered cellumater and gas, 3,125-3,130 f Reportedly no bedrock encountered C
	20/32-28c 21/27-226d 21/30-30ac 21/33-25cbc 22/30-3466d -1966d 22/33-156 23/33-1266 24/33-146c	 U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Dakason U.S. Geological Survey "Timber Lake Well" U.S. Bureau of Land Management "Desert Well" Cherchill Drilling Corp. "I.C.I.D. mo. 1" B. Thorpe Co. "Carcon Sink mo. 1" U.S. Bureau of Land Management "Yiak Well" U.S. Bureau of Land Management "Copper Kattle Well" B.S. Bureau of Land Management "Mattlaberry Well" U.S. Bureau of Land Management "Mattlaberry Well" S. Bureau of Land Management "Mattlaberry Well" 	1959 	492 		U U(2) S S S OT OT S S U PACEARD		3,985 3,980 3,925 4,080 3,882 3,932 3,8501 3,8501 3,950 3,950 3,950			Drilled at site of extinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306 C Reportedly no bedrock encountered cellumater and gas, 3,125-3,130 f Reportedly no bedrock encountered C
	20/32-28c 21/27-22bd 21/30-30ac 21/33-25cbc 22/30-14bbd -19bbd 22/33-15b 23/33-15b 24/33-168c 28/33-10aa	 U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Wakaown U.S. Geolegical Survey "Timber Lake Wall" U.S. Bureau of Land Management "Desert Well" Churchill Drilling Corp. "I.C.I.D. mo. 1" B. Thorps Co. "Carson Sink mo. 1" U.S. Bureau of Lend Management "Fisk Well" D.S. Bureau of Lend Management "Mattlaberry Well" S. Bureau of Land Management "Muttlaberry Well" S. Bureau of Land 	1959 1911-12 1961 1964 1969(7) 	492 		U U(E) S S S OT OT S S U PACKARD S		3,983 3,980 3,925 4,080 3,882 3,932 3,8502 3,8502 3,950 3,950 3,950 3,950			Drilled at site of antinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gala, 1913, p. 306 C Reportedly no bedrock encountered calumater and gas, 3,125-3,130 i Reportedly no bedrock encountered C
	20/32-28c 21/27-22bd 21/30-30ac 21/33-25cbc 22/30-14bbd -19bbd 22/33-15b 23/33-15b 24/33-168c 28/33-10aa	 U.S. Corps of Engineers U.S. Bureau of Land Management "Flat Well" Dakason U.S. Geological Survey "Timber Lake Well" U.S. Bureau of Land Management "Desert Well" Cherchill Drilling Corp. "I.C.I.D. mo. 1" B. Thorpe Co. "Carcon Sink mo. 1" U.S. Bureau of Land Management "Yiak Well" U.S. Bureau of Land Management "Copper Kattle Well" B.S. Bureau of Land Management "Mattlaberry Well" U.S. Bureau of Land Management "Mattlaberry Well" S. Bureau of Land Management "Mattlaberry Well" 	1959 1911-12 1961 1964 1969(7) 	492 		U U(E) S S S OT OT S S U PACKARD S	23-30/ 122/ <u>VALLET</u>	3,983 3,980 3,925 4,080 3,882 3,932 3,8502 3,8502 3,950 3,950 3,950 3,950			Drilled at site of artinct hot spring (Norrison, 1964, p. 117) L(+); L(E) C; log in Gale, 1913, p. 306 C Reportedly no bedrock encounteres ealtmater and gas, 3,125-3,150 : Reportedly no bedrock encounteres C

. . .

.

Table 40.--Selected well logs

Difference Difference <thdifference< th=""> Difference Differen</thdifference<>	Material	Thick- ness (feet)	Depth (feet)	Material I	hick- ness feet)	Depth (feet)	Materia]	Thick- ness (feet)	Depth (feet)	Haterial I	hick- ness feet)	Dep (fee
ment land, l	-4aadd		115811				12/20-10dccbContinue					
by branch starty				Boulder, hard, with								
al Garranter (1977) and Garranter (1977) a	brown, sandy			fine to coarse sand	•.	~ .	soft, sandy, and					
article gravelis vith readed gravelis, best hard view article data best hard view article data best hard view best hard view article data best hard view best har		'	14		H.	615				mainly basalt. 5%		
a dineta, ister a dine	irounded gravels	5		with rounded gravels,						subrounded quartz		
 A carrier of the second second							possibly water-	••		sample, no clay.	17	12
P. Allow states B Add Mark (for the correct) The interval is and particle is and parte is and parte is and particle is and parte is and particle is	ses, water			clay, mixed	5,	67			421	Gravel, uniform. 90%		
 the performance of the performance of	yellow, sandy	8	46	Sand, fine to coarse,	-		with small semi-			subrounded to angular basalt. 5% sub-		
revels of 1 men. revels of 1									475	rounded quartz and		
 difference in the second second	vels to 1 inch.	-		sandy yellow clay				•	46.5		10	1:
ad control tilly. The series of control tilly and the series of control tilly and till tilly and		•				72	sandy	3	428	Sand, coarse, 301, and	10	14
<pre>rith prilication in the second s</pre>	coarse, silty,	,	Q U		,	/3	sticky, yellow, hard,			gravel, 701. 901		
J. Contract, Clans, M. J. J. Totales, J. Contract, Clans, M. J. J. Struct, Lans, Contract, J. <t< td=""><td>h yellow clay</td><td></td><td></td><td></td><td></td><td></td><td>gravels to & inch</td><td></td><td></td><td></td><td></td><td></td></t<>	h yellow clay						gravels to & inch					
rich see provents of provents		30	90					6	434	than 15% chips. 5%		
y million, and y marked backers, and y million and y marked backers, and y million and y marked backers, and y million and y mil	h some gravels	_		streaks, some cobbles			with small rounded					
Max Deal derry very hard. Die Versionen Die Versio				and yellow clay	36	100	gravels to & inch	8	442			
city, city, parlies, and, yang, balder, and yang, bal		•			35	100	sticky, with some				- 4	1
Jumphensky Aref Latency Ar		•1	101	probably granite	1	109	gravels to 3/8 inch	-				
Sy particleTurber of pa				with silt and			Blixed	3	445	basalt, rounded to		
adj constraint Constraint <td>yellow, hard,</td> <td></td> <td></td> <td>rounded gravels to</td> <td></td> <td></td> <td>12/20-14aaba</td> <td></td> <td></td> <td>angular grains. 20%</td> <td></td> <td></td>	yellow, hard,			rounded gravels to			12/20-14aaba			angular grains. 20%		
Circle standThe correst11111Creation of any interval stand20202020Circle stand10101010101010101010Circle stand1010101010101010101010Circle stand10		4	130		14	110 ₅		1 35	35			
and and the rounded prively to 3 (rocks, specially) (rock, and y for the rounded prively to 3 (rocks, probably) (rock, and y for the rounded prively to 3 (rocks, and and rounded prively) (rock, and y for the rounded prively (rock, and y for the rounded prively) (rock, and y for the rounded prively) (rock, and y for the rounded prively) (rock, and the rounded prively)The rounded prively (rock, and the rounded prively) (rock, and the rounded prively)The rounded prively (rock, and the rounded prively) (rock, and the rounded prively)The rounded prively (rock, and the roun					15	112		32	67	clay.	8	1
Tit Location, with second gravels Tota incomest pression in the second gravels Tota incomest pression in the second seco	clay streaks,	••	363	Sand, fine to coarse,	•			32	00		8	1
 mindes privation of the state o		33	163	to 3 inches, menhable			Gravel, coarse	21	120	Clay, 501, and gravel.	-	'
y. phy. y. tang.Same, constructionSame, constructionSame, fine transmodedSame, fine transmodeSame, fine transmodedSame, fine transmodedSame, fine transmodeSame, fine t	nded gravels	-		water-bearing	3	115		15	135	501 rounded to angula	T	
d. Correr, with the core with the correr, with the correr, with <b< td=""><td>"/6 inch, water</td><td>4</td><td></td><td>Clay, Sandy, yellow, with fine to control</td><td></td><td></td><td></td><td>a I</td><td>190</td><td>chips, 701. 501</td><td></td><td></td></b<>	"/6 inch, water	4		Clay, Sandy, yellow, with fine to control				a I	190	chips, 701. 501		
rarels to 14 inches rarels to 20 to 11 inches rarels to 20 to	coarse, with	-		sand and rounded			boulders	29		yellow clay and brown		
d correct, with constrained graves is a set and graves is a set and graves is a set	wels to 14 inche	es 14	386	gravels to 1 inch.	16	1.91				Silty clay. Sand, coarse, 501, claw	. 8	1
bundle gravels to exits and large control of the second of	coarse, with	14	100		10	131	Shale and gravel	15	255	305, and gravel, 205.	•	
endboulders1850010: courts and chert: stand, fine to course, and to	inded gravels to			with silt and large				90	345			
y-yellow Landy is 215 yellow Clay mind to Claysen of the Claysen o		20	206				boulders	155		10% quartz and chert.		
d. correst. d. correst. prior prior incode stateCharactery sta	yellow, sandy		215	yellow clay mixed	16	147				30% clay. Yellow and		
The chest single Solution Gravel 15 590 gravel, 201. 600 the construction Boulders to be avery Boulders Gravel 15 600 Boulders B				Sand, fine to coarse,				45	575		•	
infrequency Gravel, streaks of same 30 640 angular. 201 chips. 200 aurits and chert. strick, streak of same 30 640 angular. 201 chips. 200 aurits and chert. strick, streak of same 30 640 angular. 201 chips. 200 aurits and chert. strick, streak of same 30 640 angular. 201 chips. 200 aurits and chert. streak of same 30 640 angular. 201 chips. 200 aurits and chert. streak of same 30 640 angular. 201 chips. 200 aurits and chert. streak of same 30 640 angular. 201 chips. 200 aurits and chert. streak of same 30 640 angular. 201 chips. 200 aurits and chert. streak of same 30 640 angular. 201 chips. 200 aurits and chert. streak of same 30 640 angular. 201 chips. 200 aurits and chert. streak of same 30 640 angular. 200 aurits and chert. streak of same 30 640 angular. 200 aurits and 200 aurits and 2		35	250				Gravel	35	590	gravel, 701. 801		
incress string6256pool aptrop100string100200 superts and chert. stringail coories to ail coories to there string540200 superts and chert. string540200 superts and chert. String550500 superts and chert. String550 superts and chert. String<	yellow, hard,			boulders to 18 inches)	
d. correr, with d. cor		6	256		•	164				20% quartz and chert.	7	
air constructionsticty516and withinConstructionDescripti	coarse, with	•		Clay, yellow, hard,	,		mixed			Clay, 401, and gravel.		
ater 10. 34 200 ministrophone proves and provide provi				STICKY	5	161	aeno eno gravei	60			-	
d, silvy 4 294 to 2 fiches, and series to serve the series to very		34					12/20-23aaca			405 clay. Gray, brow		
serie of parels is it is not in the serie of parels is it is is increase if of parels is only increase is it is it is is it is		4	294	to 2 inches, and				4	4		i. 17	1
is 1: treaks of hand stickyis 1: treaks of hand stickyis 1: treaks of hand stickyis 1: treaks of hand stickyyr, yellow, hard, if200200200200angular. 200angular. 200 <td></td> <td>s</td> <td></td> <td></td> <td></td> <td></td> <td>Sand, coarse to very</td> <td></td> <td></td> <td>gravel, 801. 801</td> <td></td> <td></td>		s					Sand, coarse to very			gravel, 801. 801		
water 14 200 yellow (lay mixed 21 182 subangular to sub- clay moded quarts and chards gravels to and chard chards and chard chard chards and chard chards and chard cha	ly inches mixed,			streak of hard sticky			basalt fragments, 201	Lar L		basalt rounded to		
dith Occasionalsoft sample, withchert. Samp bolies.of sample in chips.prevel to 2 inches5 313counded gravels toMc, grav-broomgravel, 503, and clay,prevel, 502, and 1101010uth rounded gravelsMc, grav-broomgravel, 503, and clay,prevel, 12222to 2 inches, andgravel, 70-803 angularangular. 105 chertprevel, 12422to 2 inches, andgravel, 70-803 angularangular. 105 chertprevel, 12446Samd, fire to cearse, andgravel, 70-803 angularangular. 105 chertprevel, 12446Samd, fire to cearse, andgravel, 70-803 angularangular. 105 chertprevel, 12446Samd, fire to cearse, andgravel, 70-803 angulargravel, 70-803 angularprevel, 127, stroke3Sand, fire to cearse, andstabore but usorstabore but usorprevel, 127, stroke10inches2204prevel, 127, stroke10fire to cearse, and, fire t		14	306	yellow clay mixed	21	182	subangular to sub-				•	
gravel to 2 inches5313rounded gravels to 1 inchMuch gravel-roum 150Sand, Carse, 000 150Sand Clay, 100 100(20-based)Sand, fine to cearse, 12Sand, fine to cearse, 13Sand, fine to cearse, 14Sand, fine to cearse, 15Sand, fine to cearse, 16Sand quirt, 105Sand quirt, 10511, gray 12, soft streak18Sand, fine to cearse, 15Sand, fine to cearse, 16Sand gravel streak 16Sand				SOTL sandy, with						of sample in chips.	9	1
(272-063ard)Sand, fine to coarse, with rounded gravels(187) Sand, very coarse to gravel.1014105. 605 baselt, angular.111222to 2 inches and some yellow clay58 and, very coarse to gravel.gravel. rounded gravelsgravel. some yellow clay.58 and, very coarse to gravel.and gellow clay. tables.gravel. rounded gravelsgravel. some yellow clay.1014105. 605 baselt, and gellow clay.1014105. 605 baselt, and gellow clay.1014105. 605 baselt, and gellow clay.101010105 charact10. ecolus-province rounded gravels101410 <td>vel to 2 inches</td> <td>5</td> <td>313</td> <td>rounded gravels to</td> <td></td> <td></td> <td>Huch gray-brown</td> <td>•</td> <td></td> <td>Sand, coarse, 403,</td> <td></td> <td></td>	vel to 2 inches	5	313	rounded gravels to			Huch gray-brown	•		Sand, coarse, 403,		
profil1010101110111011101110101110	-4bead				15	197		10	14			
uiders. nd12225250515354545556575657 <td></td> <td>10</td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td>10</td> <td>14</td> <td>angular. 105 chert</td> <td></td> <td></td>		10	10					10	14	angular. 105 chert		
101226some yellow iclay48285Transments (may be introof yellow is form10. modular-grained554545454575151555510. modular-grained7210. intro10. intro5554575055 <t< td=""><td></td><td>12</td><td>22</td><td>to 2 inches and</td><td></td><td></td><td>gravel. 70-805 angul</td><td></td><td></td><td>and quartz. 10% brow</td><td></td><td></td></t<>		12	22	to 2 inches and			gravel. 70-805 angul			and quartz. 10% brow		
SameSa			M		48	245				of yellow clay. 50%	of	
nd, hard, and bouldersand throunded gravelsyellow-brown chert, 105nd bouldersbouldersEG 3 inches, verysubrounded to angularbrown and yellow clay.by, sandy, few7Clay and silt mixed 3722wartz. Trace ofbrown and yellow clay.boulders9Sand, fine to coarse,Claan sample, no claywashed from sample).md, silt yergensin1210Inches2204Gorwel, some very coarsegarartz and chert.md, soft, large-grain1210Inches andsand, fine to coarse,sand. coarse, d3G gravelsand. coarse, 205, andgravel31185Clay, wellow, hard and23229fregment moted1044sangular, 105, and gravel, 807, angular, 105, ang gravel, 105, and gravel, 105, ang gravel, 40, sangular basaltsand, fine to coarse,sand, coarse, 405, gravelda chert.605 schips.and di gravel16226Sand, fine to	medium-orained	8	54	Sand, fine to coarse.			stains). Angular 11	ht			9	
Dot Streaks1872class many silveGeneration to a myorialbendersbendershoulders577clay and silt mixed37282maxcorite and biotite.Browninghoulders577clay and silt mixed37282maxcorite and biotite.Browninghoulders577clay and silt mixed37282maxcorite and biotite.Browninghoulders577clay and silt mixed2024Box maple.Box maple.houlders1010inches2284Gravel, some very coarseamotionand, sort, samey rith toobles1010tooblestoo angular massltGox massltSort, some very coarseand, sort, samey rith20122and trickestoo angular massltSort, some very coarseamotionand, sort, samey rith20122and trickestoo angular massltClay. 40-505 chips.and, samey2013185too 10 inches, samestains.stains.Same, fine to coarse,array revel31186233sort, samey23229fragment moted303 brown clay.and highers2033sort, samey23220fragment moted304and samey-ers233sort, samey23220fragment moted305and di gravel233sort, samey23220fragment moted305and highers233sort, samey <td< td=""><td>, hard, and bould</td><td>ders</td><td></td><td>with rounded gravels to 1 inches ware</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	, hard, and bould	ders		with rounded gravels to 1 inches ware								
boolders33055555675875878878878887888788878887888<		18	72				Dwartz, Trace of	r i i i				
d. silty1390Sand, fine to coarse, with cobbles toClean sample, no clay90Sand, fine to coarse, with cobbles to100mail gravel121010 fnches2206 ravel, some very coarse9090ad, soft, large-grain rith brown clay201210 fnches220806 ravel, some very coarse9090ad, soft, large-grain rith brown clay201210 fnches, some to 4 inches and to 10 inches, some22030806 ravel, some very coarse9090ad, soft, sandy3318651silt sized22080some very coarse909090argumarts31188soft, sandy2322306sobampular emerts and chart, some3050506010445050606090<	lders			clay and silt mixed	37	282	muscorite and biotite		•	Gravel (fines probably		
D. large-grain, d, sord, fine to coerse, statad, arge-grain12102107 inches is and, fine to coerse, with rounded gravels to 4 inches, some2020107 inches is and, fine to coerse, to 10 inches, some2020107 inches is and, fine to coerse, to 10 inches, some100 inches is adjuant100 inches is adj	silty	13	90				Clean sample, no claj lumos.	20	34	90% besalt, slightly		
d, soft, large-grainSand, fine to coarse, with frounded gravelssand. 80% subroundedGuart2 and Clert.ith brown clay20122with rounded gravelsto angular basaltSandurth associationik, hard, with tight33755eccasional cobblesblack with brownishSabore but with aboutikells33755eccasional cobblesblack with brownishSabore but with aboutikells33186silt wixed22305subrounded toinval33186silt wixed22305subrounded toinval33186silt wixed23329frogment noted10id, large-grain51Sand, fine to coarse, some brown claySand, coarse, 60%Sand, coarse, 20%sampler, 10%id with boulders, id, arge-grain to51206frine to coarse, stickySatins, fish brown1044id with boulders, id, gravel, and suff, sandy, sometimes535genbles, 80-90%618/, 40%635id and gravel8204Sand, fine to coarse, stickystins, Subrounded1064id, gravel, and suff, sandy, sometimessticky4339memts, with brown10%618/, 50%id, gravel, and suff, sandy, sometimes22226gravels on coarse, mil gravelstins, Subrounded10%63%in digravel17343Clay, yellow, hard and soft, sandy sometimessubangular frogments sticky6254of black		12	102	10 fnches	2	284	Gravel, some very coers	ie 📈	-	from stained. 10%		
The proven city20122to 4 inches andpebbles and frequents, black with brownishclay. 40-603 chips. A above but with aboutincling appendix33155eccasional cobblesblack with brownish states. Subbanular quarts and chert. One calciseSand, coarse, 205, and gravel. 807.incling appendix33186silt mixed22306subbanular quarts and chert. One calciseSand, coarse, 205, and gravel. 807.ind with boulders, and gravel45233Sand, fine to coarse, stickySand, coarse, 603 gravelSand, coarse, 205, and gravel. 807.Sand, coarse, 205, and gravel. 807.id with boulders, and graveland gravel16296Clay, with sanirounded mishSand, fine to coarse, stickySand, fine to coarse, and, fine to coarse, stickySand, fine to coarse, and, gravel, and to inches, sand, fine to coarse, mill gravel, and sold, gravel, and sold, gravel, and23204Sand, fine to coarse, mill gravel, and sold, gravel, and sold, gravel, andSand, fine to coarse, mill gravel, and sold, gravel, and sold, gravel, and23226gravel and fine to coarse, stickySandSand fine, some stickySand fine to coarse, sticky, sometimesSand fine to coarse, sticky, sometimesSan	, soft, large-gri	ain		Sand, fine to coerse,			sand. 805 subrounded	;		quertz and chert. Some jumps of brown		
Net is the standing of the sta			122	to 4 inches and						clay. 40-50% chips.		
rize, hard, sandyto 10 Inches, somestatestates. Subrounded tosub orunn (13).raval33 186silt wixed22 306subangular quartz andfand, coarse, 203, andd, large-grain3soft, sandy23 329frommen todd10 44basalt, coarse, 203, andorgiomerate45 233soft, sandy23 329frommen todd10 44basalt, coarse, 303orgiomerate45233soft, sandy23 329frommen todd10 44basalt, coarse, 303orgiomerate47280with rounded gravelssizes. Some basaltemplar, 103 quartzome brown clay47280with rounded gravelssizes. Some basaltemplar, 103 quartzof, large-grain to56 (lay, yellow, hard,sangular basalt frog-40-503 chips.and gravel16296 (lay, yellow, hard,sangular basalt frog-40-503 chips.a di gravel8304Sond, fine to coarse,stains. Subrounded505 brown clay, with saniroundedouldersand gravel8304Sond, fine to coarse,stains. Tof public505 chips.gravel, and22226gravels to 3/, inchchert.1054few lumps yellow clay.gravel17343Clay, yellow, hard andcolsstains.Stars.505 chips.gravel17343Clay, sometimesstamestabesalt.205abore bat no clay.gravel17343Clay, soloweresstardstardst	115		155	eccasional cobbles	3		black with brownish				t 17	
Note: (1, large-grain conglomerate2323229Fragment moted fragment moted1044Assit, reaveled basit, rounded to angular, 103 guartz and chert.605905come brown clay47280with rounded gravels to is inch51zs.50me basalt1044Assit, rounded to angular, 103 guartz and chert.63905Assit, rounded to angular, 103 guartz and chert.angular, 103 guartz angular, 103 guartz angular, 103 guartz angular, 103 guartz angular basalt1044Assit, rounded to angular, 103 guartz angular, 103 guartz angular, 103 guartz angular, 103 guartz angular basalt1044Assit, rounded to angular, 103 guartz angular, 103 guartz and chert.1044Assit, rounded to angular, 103 guartz and chert.40,503 chips. angular, 103 guartz and chert.1044Assit, rounded to angular, 103 guartz and chert.105440,503 chips. angular 103101122226gravel and and soft, sandy sometiones sticky512105456505 chips. angular 1031112236or bick basalt.203fragments sticky512635755565612202102106<	iz, hard, sandy			silt mixed	22	306				Sand, coarse, 205, and		
d with boulders, ame brown claySand, fine to coarse, ounded gravelsSand, coarse, dots gravelSand, fine to coarse, sizes. Some basaltSand chert. 105 sampler, born angular fragmentsSand chert. 105 sampler.Sand chert. 105 		33		Clay, yellow, hard and			chert. One calcite			grave1. 80%. 90%		
and () boulders, d, large-grain to d, large-grain to and and graveland () fire for concres, to k inchfire for concres, to k inchfor diamond to k inchfor diamond to k inchfor diamond to concres, to k inchfor diamond to k inchfor diamond to k inchfor k inchfor k inchfor k inch20-10dccb to inch5 ond, fire to coarse, to k inch5000000000000000000000000000000000000	glomerate	45	233		23	329	fragment moted		44			
and gravel16296Clay, yellow, hard, sticky235peables.80-903 angular hesalt frag- sample, mo tay.sample, mo tay. clay.and gravel16296Clay, yellow, hard, sticky339ments, with brownGlay, 505, Coerse sand, angular hesalt frag- stickyGlay, 505, Coerse sand, dot, gravel, 405.a of gravel, and oulders22226gravels to coerse, with samiroundedstains. SubroundedStains. SubroundedGlay, 505, Coerse sand, dot, angular hesalt frag- stains. to remut z and chert.10S4Glay, 505, Coerse sand, dot, angular hesalt frag- dot, angular hesalt fragmentsGlay, 505, Coerse sand, dot, angular hesalt fragmentsGlay, 505, Coerse sand, dot, angular hesalt fragmentsand gravel, and oulders22226gravel, 407.Gravel, 600Gravel to pubble sizes sticky605 chips.and gravel17243Clay, yellow, hard and soft, sandy, sometimesS12 and angular fragments subangular quartz and subangular gragmentsAs above but no clay and less chips.20-10dccbSticky50 th inch, some silt16S6Clay, yellow, hard and soft, sandyS26Clay, sometimes subangular quartz and clay.20520-10dccbto h inch, some silt16S6Clay, yellow, hard and soft, sandyS74Sizes, 70-803 angular basalt fragments.S5530. to h inch samirounded gravels to 3/, inchSaft, sandy6S74Sizes, 70-803 angular basalt fragments.Soft, sandy, no lamps. S0, to yearel, 7		4 7	980				sizes. Some hasalt	FI .		and chert. Clean		
mail gravel 16 296 Clay, yellow, hard, sticky angular basalt frag- sticky 0	large-grain to)		to 4 Inch	6	335	pabbles. 80-905					
a clay with semirounded solution of the semirounded soluti	ill gravel	16	296			3.00				Clay, 505, coarse sand	. Ø	
a, gravel, and erith semirounded to engular quartz and 502 brown clay with coulders culders 22 226 gravels to 3/, inch 9 y, yellow, sandy, nd gravel 17 343 Clay, yellow, hard and 9 20-10dccb soft, sandy, sandy, sand, sandy, satizes, 70-803 angular Sandy, satizes, sandy, sabalt fragmants, 155 Sandy, sandy, sandy, sandy, sandy, sandy, satizes, satizes, satizes, satizes, satizes, satizes, satizes, satizes, s	and grave! packs	190 1	304		-	-37				10%, and gravel, 40%		
noulders 22 225 gravels to %, then chart. 10 54 the heads for	gravel, and	•		with semirounded			to engular quartz am				Ψ.	
y print <t< td=""><td>ulders</td><td></td><td>226</td><td></td><td>•</td><td>348</td><td></td><td>10</td><td>54</td><td>45% besalt, angular</td><td>ši –</td><td></td></t<>	ulders		226		•	348		10	54	45% besalt, angular	ši –	
20-loccb soft, sandy, sometimes slaw angular fragments 40-503 Chips. 20-loccb sticky 6 254 of black basalt. 203 wsil, loamy, with Sand, fine to coarse, subangular querts and 305 chips. unnide cobbles to itch, some silt 14 368 clay. 27 inches 4 Clay, yellow, herd and Gravel with 205 pebble 505, clay, 105. d, fine to coarse, soft, sandy 6 374 sizes. 70-805 angular binch sime sitt 14 Sand, fine to coarse, basalt fragments. 155 basalt, angular 103 coarse, with sanitounded subrounded to angular Sand, emdium.305, to 20-305 chips. unded cobbles to with sanitounded subrounded to angular Sand, emdium.305, to unded cobles to with sanitounded subrounded to angular Sand, emdium.305, to unded cobles to with sanitounded subrounded to angular Sand, emdium.305, to ud, fine to coarse, solte silt 12 386 red-brow. ud, fine to coarse, solte silt 12 586 red-brow.		17	343	Clay, yellow, hard and	•		to 15 mm. 70% pebble			quartz and chert.	~	
consider construction Sand, fine to coarse, subangular quertz and and less chips. Bond, fine to coarse, subangular quertz and 305 chips. subil, loamy, with with rounde: "revels chart. 105 red-brown 305 chips. unded cobbles to to is inch, some silt 14 368 clay. 27 81 Sand, ccarse, 405, grave inches 4 Clay, yellow, herd and Gravel with 205 pebble 505, clay, 105. 505 d, fine to coarse, sond, fine to coarse, basalt fragments. 155 becault and mounded ounded cobbles to with samirounded suborounded to angular 20-305 chips. unded cobstes to with samirounded suborounded to angular Sand, emdium, 305, to d, fine to coarse, subalt fragments. 155 Sand, emdium, 305, to d, fine to coarse, suborounded to angular Sand, emdium, 305, to Sand, emdium, 305, to d, fine to coarse, suborounded to angular Sand, emdium, 305, to Sand, emdium, 305, to		•-		soft, sandy, sometimes							ನ	
soli, loading, with with with nownde, revents chart. 105 read-brown 305 chips. ounded cobbles to to 1/2 inch, some silt 14 368 clay. 27 81 Sand, coerse, 455, grave inches 4 Clay, yellow, hard and Gravel with 205 pabble 505, clay, 105, 905 d, fine to coarse, soft, sandy 6 374 sizes. 70-805 angular basalt, angular 105 rith silt and Sand, fine to coarse, soft, sandy 6 sanalt fragments. 155 brown clay, no lungs. Linch dismatter 6 10 gravels to 1/2, inch quartz and chert. 105 sand, medium, 305, to 2905 d, fine to coarse, some silt 12 386 read-brown clay. 15 95 gravel, 705, 905					•	204				and less chips. 20-		
d, fine to coarse, soft, sandy 6 374 sizes, 70-805 angular basalt, angular 103 rith silt and Sand, fine to coarse, basalt fragments. 155 brown Clay, no lumps. numbed cobbles to with semirounded subrounded to angular 20-305 chips. inch dismeter 6 10 gravels to 3/, inch quartz and chert. 105 gravel, 705. 905 rd dismeter 10 gravels to 3/, inch quartz and chert. 105 gravel, 705. 905 rd dismeter 10 gravels to 12 386 read-brown clay. 15 95 gravel, 705. 905	sil, loany, with	1		with rounde. gravels			chert. 105 red-brow	3		305 chips.		
d, fine to coarse, soft, sandy 6 374 sizes, 70-805 angular basalt, angular 103 rith silt and Sand, fine to coarse, basalt fragments. 155 brown Clay, no lumps. numbed cobbles to with semirounded subrounded to angular 20-305 chips. inch dismeter 6 10 gravels to 3/, inch quartz and chert. 105 gravel, 705. 905 rd dismeter 10 gravels to 3/, inch quartz and chert. 105 gravel, 705. 905 rd dismeter 10 gravels to 12 386 read-brown clay. 15 95 gravel, 705. 905	inches	- 4	4	to is inch, some silt	14	368	clay.		81	50%, Clav. 101, 979	i and i	
rith silt and Sand, fine to coarse, besalt fragments. 155 provin clay, no limbos. bunded cobbles to writh semirounded subrounded to angular 20-305 chips. Linch dismeter 6 10 gravels to 3/, inch quartz and chert. 105 Sand, medium, 305, to nd, fine to coarse, some silt 12 386 read-brown clay. 15 95 gravel, 708, 905	fine to course		•	soft, sandy	6	374		17		basalt, angular 105		
numbed coopies to eith semirounded subrounded to angular 20-303 chips. Linch dismatter 6 10 gravels to 3/, inch quartz and chert. 105 Sand, medium, 305, to nd, fine to coarse, some sitt 12 386 read-brown clay. 15 95 gravel, 705, 905				Sand, fine to coarse,	-		basalt fragments. 19	52		brown clay, no lumps	i. 16	
d fine to coarse, gravel, 705, 905		6	10	with semirounded erayels to 3/. fort			subrounded to angular	•			10	
	, fine to coarse			some silt		386	red-brown clay.	15	96	gravel, 705. 90%		
a 2 dealer and Gray, yellow, very solly dense, end ylavel.		115		Clay, yellow, very soft,			Sand, coarse, and grave	el.	-	<pre>besalt subrounded to angular. 10% quarts</pre>	2	
cobles to 8 inches. Sand, fine to coarse, rounded basal 10.20% and chert. 20-303	bbles to 8 inches				1	383						
Silt and some soft, with silt and rounded angular guartz and chips.				with silt and rounded			angular quartz and				10	1
sandy, yellow clay, gravels to 3/g inch chert. Clean sample, adoriferous 50 60 mixed 17 410 mo clay. 12 108	my, yerrow cisy priferous	50	60		14						100	ntin

1

)

)

•

Materia]	Thick- ness (feet)	Depth	Naterial r	nick- Ness feet)	Depth (feet)	Haterial (hick- ness feet)	Depth (feet)	Material	hick- ness (feet)	Dept: (feet)
2/20-23eacaContin			13/20-32bebc		LIBER	14/20-46db			15/20-17ddContinued		
and, coarse, 301, to	0		Tepso11	2	2	Sand, gravel, and clay	67	67	Clay, streak of sand,	25	374
gravel, 70%. 90%			Gravel, large, and cobbles	6	8	Boulder	3 90	70 160	hard streaks Clay and sand, broken	8	362
basalt subrounded angular, 10% quar			Gravel, comented	ž	15	Sand, gravel, and clay Clay	. 5	165	Sand and gravel	5	387
and chert. 20-30%			Sand, coarse, and			Sand and gravel	5	170	Clay, sandy	10 9	397 406
chips.	10	333	cobbles Sand, loose	11	26 35	Clay Sand, gravel, and thin	5	175	Sand and gravel Clay, hard streaks	5	411
nd, coarse, 202, c 102, and gravel, 7	lay. Dx		Gravel, tight	5	40	streaks of clay	72	247	Sand and clay streaks	5	416
901 basalt, well			Gravel, loose	5	45	Clay	3	250	Clay, streak of sand Sand, gravel, clay stre	16	432 438
rounded to angular			Sand, tight Cobbles, comented	8	53 57	Sand and gravel Clay	15	265 268	Clay, streak of sand	15	453
105 brown clay with no lumps. 20-305	h		Clay, gravel, very soft	4	61	Sand and gravel	10	278	Sand, gravel, and clay.		
chips.	20	353	Cobbles, comented	7	68	Clay	4	282	broken	28	481
above, clay more			Gravel, loose; tight streaks	10	78	Sand and gravel	2	284 286	Sand, gravel, streak of clay	30	511
sandy. nd, coarse, 401,	21	374	Sand, tight	"	85	Clay Sand and gravel	6	292	Clay, sandy	- îî	522
sandy clay, 105.			Clay, hard	5	90	Clay	- Ă	296	Sand, gravel, streak of	12	534
gravel, 501. Brow	n		Gravel, loose; tight	104	194	Sand, gravel, and thin	38	334	clay Clay, sandy	25	559
tlay, no lumps. Well rounded to			streak Gravel, tight, and	104	194	streaks of clay Granite boulder	2	336	Sand and clay, broken	20	579
angular, 20-30%			cobbles	13	207	Sand, gravel, and clay	128	464	Sand and gravel		586 616
chips.	12	366	Gravel, firm, and	48	255	Clay with some gravel	**	490	Clay, sandy Sand and gravel	30 8	624
nd, medium to coarse, 95%, clay,			cobbles Clay	3	258	end send Granite	26	519	Clay, sandy	33	657
S, rounded to			Gravel, large, loose	19	277				Sand and gravel	.5	662
engular 455 besalt			Clay and gravel	3	280	14/20-6cb1			Clay, sandy Clay and sand, broken	18 20	680 700
501 quartz, chert, bornblende. 501			Gravel, loose Clay	16 5	296 301	Sand	.3	3	Clay and Sand, broken	14	714
wown clay (as			•	-		Send and clay Clay	12	15	Sand and gravel	5	719
rilling mud) few			13/20-32deab			Clay, Nerd	าเ	20 31	Clay and sandy clay	18	737
hips.		394	Topsoil	3	3	Cley and sand	31	62	Sand and gravel	17	74) 758
d, coarse, 95%, tu ravel, 5%. 70%	v		Gravel, large, comented	9	12	Sand and boulders Clay	33	95 115	Clay and sandy clay Sand and gravel	3	750
esalt, 305 quart			Gravel, comented Gravel with tight	18	30	Sand and rock	20 38	153	Clay and streak of sand	42	803
chert, etc. rounde			stresks	66	96	Sand, coarse and fine	45	198	15/20-32dcab		
o angular. Few		402	Clay	16	112	Granite, solid	102	300		,	1
above, but 201	-		Gravel, loose Clay and gravel	9	121 124	15/20-7ddb			Topsoil Sand	17	8
mown clay.	8	410	Gravel, loose	ที่	135	Sand, hardpan at 4 feet	1.9	12	Clay, sandy	- 4	12
above, 40% clay.		418	Clay	6	141	Sand, coarse	50	62	Sand, coarse	10	22
above, 20% clay. M, medium to coar		426	Gravel, loose Gravel, comented	21 21	162 183	Clay and grave)	6	68	Sand, clay, and firm decomposed granite	28	50
iO1, and gravel, 2	01		Cobbles	19	202	Clay and sand	12	80 90	Sand, medium	25	75
rith 201 brown cla		434	Clay	3	205	Gravel and sand Clay and sand	10 13	103	Sand, firm decomposed		
above, 5% clay. above, 20% clay.	8 24	442 466	Gravel, loose	93	214 217	Clay and gravel	45	148	granite	43 2	118
above, but with 4			Clay Granite, tight,	3	£17	Sand and clay	20	168	Sand, medium Sand, firm decomposed	•	
rown clay.	8	474	decomposed	13	230	Clay, soft, and sand Sand and clay	22 37	190 227	granite	50	170
ising id, medium to coars	8	482	Sand	13	243	Sand, hard, cemented	3	230	Sand, medium to coarse	29 10	199 209
iOL, and grave), 20			Clay Gravel	29 25	272 297	 Sand and gravel, coment 	ed,		Sand, fine Sand and clay in	10	203
with 405 brown clay	. 8	490	Clay	4	301	and clay	30	260 282	alternating layers	166	375
above, 301 clay.	8	498	-		•••	Sand and clay, comented Sandstone with rocks,	22	202			
above, 50% clay. above, 60% clay.	8	506 514	14/19-15bcc			comented	21	303	15/20-32ddcc		
above, 70-80% clay	/. š	522	Loam, dark, sandy	10	10	Sandstone, camented			Topsoil (silty and		
y, 201, 601 coarse	1		Sand, yellow	15 3	25 26	streeks of pebbles Granite, decomposed	87 43	390 433	sandy) Sand, silt. Water at	12	12
and, 20% gravel, ithology unchanged	. 5	527	Hardpan Sand, gravel, yellow		60	Basalt streaks in	43	433	14 feet, came up to		
ly, brown, 901. Da		32/	Buck	24	52	decomposed granite	3	436	10 feet	8	20
ray clay, 10%.	32	559	Granite, decomposed	3	55	Granite, decomposed and			Sand, gravel to 1 inch Sand, some silt; very	4	24
above with no gray	•		Sand, gravel, and muck, water	5	60	clay streaks Quartz and imbedded	63	499	clean	16	40
lay and some coars and.	• •	567	Granite, decomposed	Š	65	quartzite	31	510	Silt, green; some clay	6	46
y, brown, 901, cos		307	Sand, gravel, and muck,	-		Quartz and granite	5	515	Sand, silt; rust color	23	69
and, 10%.	16	583	hard	5	70 74				Sand, silt; some small gravel; rust color	36	10
above, 5% coarse s y, brown, 80%, coa	and 8	591	Gravel, large, water Commented	ō	83	15/20-17dd	_	_	Sand, silt; some small		
nd, 201.	12	623	Granite, decomposed	10	93	Clay, sandy	6	6 24	gravel and clay; rus	t	
above, 50% coarse			Boulders	5	98	Send, coarse, and grave Silt, black, Mard	1 10	29	color Class blue sends	15 10	120
and and gravel. bove, 155 coarse	8	631	Sand, dark, hard Granite, decomposed	36	101 107	Clay, sand, and gravel	าย์	47	Clay, blue, sandy Sand, some clay, brown	16	14
nd and gravel.	19	650	Granite, gravel, and			Clay, streak of gravel	22	69	Clay, sandy		15
-			sand	13	120	Gravel, sand, and stree of clay	້າລ	82	Sand, some clay, brown Sand, some clay, grave	24	174
9-22abt			Rock, bard, solid, sharp	4	124	Sand and gravel	6	36	Clay, sandy	14	19
vium; granitic			Rock, dark, hard	ž	126	Clay, streak of sand an			Sand, some clay	13	20
mposition	1,268	1,268	Sand and gravel, hard	4	130	gravel Sand and gravel	16 2	104 106	Clay, sandy	19	22
0-7dad			Gravel and sand, bord Granite and gravel	4	134 145	Clay, streak of sand an			Granite, rotten Granite, hard, solid	16	2
iof1	4	4	Clay	15	160	gravel	16	122		-	
el, coerse	-	10	Sand, gravel, water	23	183	Sand and gravel Clay, streak of sand an		130	4 <u>16/21-12acd</u>		
and gravel	Ū.	18	Clay, yellow	14	186 200	Gravel	° 7	137	Topso11	5	1
and grave?	2	20	Sand, gravel, water Rock, dark, hard	4	204	Sand, gravel, and clay,			Gravel, decomposed		
, sand, and grave	1 12	24	Clay, yellow, and	-		broken	82	189	granite, water Gravel, comented	55 15	6 7
, course, and gra	vel 12	36 48	boulders	.6	210	Clay Sand, gravel, and clay	10	199	Gravel and rock, water	31	10
, brown	4	52 74	Send and grovel Granite boulders.	10	220	streek	8	207	Sand and gravel, water	19	12
and gravel	22	74 79	decomposed	7	227	Clay, streak of sand an	đ		Gravel, commted		13
, aedium	46	125	Sand, gravel, and	-		gravel Send gravel and clay	13	220	Sand and gravel, water Gravel and small ladge	8	14
and gravel	44	169	boulders	11	230	Sand, gravel, and clay streak	10	230	witer	. 42	18
, clay, and cabble		214	Sand, gravel, and boulders mixed with			Sand, gravel, and clay,			Clay, blue	3	18
and gravel and clay	38 28	250 278	clay	12	250	broken	15	245	Gravel, weter	11	19 21
les and clay	2	278	Sand and gravel	13	263	Clay, streak of sand an gravel	d , ·	252	Granite, decomposed Gravel, unter	17	22
, sendy	55	335	Gravel and boulders	10	273	Sand, gravel, and clay,			Granite, blue	43	25
and gravel	10 T	395	Send, gravel, and boulders	12	285	broken	45	297			
		405	Sand, water	6	291	Clay, stresk of sand	10	307			
, gravel, and clas			A			Sand, gravel, and clay,					
I. gravel, and clay	7	427	Granite gravel.			broken	3	310			
d, gravel, and clay y d, gravel, and clay treaks	7		decomposed Rock, hard	4	295 302	broken Clay, fan hard streaks	3 27 12	310 337 349			

Table 40.--Selected well logs--Continued

Material	Thick- ness (feet)	Depth (feet)	Materia)	Thick- ness (feet)	Depth (feet)	Haterial	Thick- ness (feet)	Depth (feet)	Naterial	Thick- ness (feet)	Dep
16/22-9bc	1.66.1	Tierty	16/32-19dCont1nued	Liggel/	1.66.1	16/32-19dContinued		(Teet)	16/32-19dContinue		(fee
Sand	18	18	Sand, 905 very fine-			Sand, grey-green-11	pht-		Sand, gravelly, oli		
Clay Clay, streaks of sand	7 10	25 35	to very coarse-			brown; 95-100% ver	y		green; 85% very f	ine-	
Sand, thin streaks of		33	grained sand pre- dominantly sub-			fine- to very coar grained sand, prec	ion-		to very coarse- grained sand, bec	cm inc	
clay	55	90	rounded; 25% non-			inantly very fine-	• to		90-951 sand at 50	5 feet;	
lay, blue, streaks of fine gravel	10	100	quartzose; 105 subrounded to			<pre>medium-grained fro 210 to 215 feet; 1</pre>			<pre>25% nonquartzose; slightly plastic;</pre>		
ravel, loose, and			ellipsoidal			monquartzose; 55 s	iiit;		gravel and rock f	rag-	
cobblestones Clay, brown, streeks	24	124	gravel; possibly a beach or near-			few gravels; micro fossils present at			ments, some comen		
of sand	8	132	shore deposit of			to 220 and 235 to			present on larger fragments	15	51
Bravel and sand, thin			Lake Lahontan	10	65	feet	32	242	Sand, olive-green-b		•
streaks of sandy clay	118	250	Sand, 1005 very fine- to medium-grained			Sand, gravelly, gray green-brown; 85% v	/- /#FV		95-1005 very fine coarse-grained sa		
Sand and fine gravel,			sand, predominantly			fine- to very coar	'se-		predominantly ver	y fine-	
some clay Sand and fine gravel	60 170	310 480	fine-grained, getting coarser-			grained sand; 40% quartzose; 15% gra		245	to medium-grained 20-25% nonquartzo		
Sand and gravel, thin			grained toward the			Send, gray-green-bro			slightly to moder		
streaks of sandy clay	100	580	bottom of the interval; up to			95% very fine- to			plastic	10	5
Gravel and cobble-	100	200	25% nonquartzose;			coarse-grained sar predominantly fine			As above, but plast very plastic; sti		
stones, streaks	-		few gravels Sand, 90-955 very	20	105	to medium-grained;			predominantly a s	end	
of gray clay	20	600	fine- to very			15-205 nonquartzos 55 gravel; micro-	ie;		lithology Seed, grav-brown: 9	ک	5
16/23-3bd			coarse-grained			fossils present	15	260	Sand, gray-brown; 9 95% very fine- to		
Sand, fine	.4	. 4	send, predominantly Subangular; up to			Sand, gray-green-bro 955 very fine- to			medium-grained sa becoming coarser-	nd,	
iand and clay lay, sandy	14 Z	18	25% nonquartzose;			coarse-grained sar			grained toward th	e	
iand, fine	34	20 54	5-10% silt, increas-			fine to medium	,		bottom, predomina subangular: 20-25		
ravel, coarse ravel, coarse, going	6	60 .	ing toward the bottom; 5% sub-			fine- to medium- grained; 15-25% no	m-		subangular; 20-25 quartzose; 55 sil		
into clay	12	72	angular gravel; alluvium	10		quartzose; 5% silt	:		to 5% gravel	15	5
lay, yellow lay, yellow, mixed	4	76	As above, but more	10	115	few gravels; very slightly plastic,			Sand, gray-green-br 1002 very fine- t	0 (000)	
with gravel	44	120	rounded sand and			may be apparent			very coarse-grain	ed	
lay, hard, mixed with	••		gravel; possibly beach or near-shore			<pre>cohesion; micro- fossils present at</pre>			sand, predominant very fine- to med		
gravel lay, yellow, very	12	132	deposit of Lake			285-290 feet	30	29 0	grained, becoming		
hard	8	140	Lahontan Sand, olive green-	5	120	Sand, gray-light-bro 90% very fine- to	wm;		Coarser-grained to the bottom of int	Dward	
lay, very hard, mixed with gravel	15	155	brown; 1001 very			very coarse-graine	4		15-205 nonquartzo		
lay and gravel	'7	162	fine- to very			sand, predominant]			plastic to slight	1y İ	
lay and broken rock	7	169	coarse-grained sand, predominantly			<pre>very fine- to medi grained; 15% nonqu</pre>			plastic; up to 5% to subrounded gray		
ock, broken, and clay malapai	•	178	medium- to coarse-			ose; 10% silt; sli	ghtly		toward the bottom		
6V8	ń	255	grained and sub- rounded; 25-305			to moderately plas microfossils at 30	tic; n-		<pre>interval Sand, gravelly, gra;</pre>	65	6
ava with brown sandy clay	28	283	aonquartzose; water			305 feet	25	315	green-brown; 853	very	
ava, very hard	7	290	encountered at 128			As above, but up to	201		fine- to very coa	rse-	
ava, hard ava and brown sandy	11	301	<pre>fost and subsequent1 rose to 111 feet;</pre>	y		nonquartzose, 5% s nonplastic to slig	ilt; htly		erained sand, bec 603 at 630 feet;	25%	
clay	14	315	128-140: 5% silt.			plastic; some gray	e]		nonquartzose, bec	anting	
(Hev. har. Hi		l others,	<pre>slightly to moderate plastic, possibly</pre>	iy.		And rock fragments As above, but 100% s	35 and.	350	25-503 at 630 fee 15% gravel becomin		
6/32-19d 1962, p. 106)		contaminated by	•		microfossils prese	nt 10	360	40% gravel at 630	feet,	
and, light-brown, with some green;			drilling mud; micro- fossils from 130-140			Sand, gray-green-bro 95-1005 very fine-	wn; to		<pre>some of gravels a: ellipsoidal; poss</pre>		
100% very fine-			feet	20	140	very coarse-graine	đ		beach or near-sho		
to fine-grained sand, with medium			Sand, light-brown; 955 very fine- to medium	_		<pre>sand, prodominantl very fine- to medi</pre>	У		deposit of Lake		
grains, predomi-			grained; 20 percent	-		grained from 360 t	0		Lahontan As above, but 15-20	15 Kaon-	6
mantly subrounded; mon-frosted grains	15	15	<pre>nonquertzose; micro- fossils</pre>		145	445 feet; 20% nong ose, becoming 25-3	uartz-		_ quartzose, 155 gr	evel 25	6
s above, but pre-		14	Sand, gravelly, gray-	5	143	450 feet; nonplast			Sand, gray-green-bri 95-1001 very fine	sem: • 10	
dominantly fine-			green-brown; 80-851			to slightly plasti			Very coarse-grain	ed .	
to medium-grained sand; up to 40%			<pre>very fine- to very course-grained sand.</pre>			up to 5% gravel fr 445 feet; microfos			<pre>sand, predominant' very fine- to med</pre>		
of sand grains			angular to subrounde			present at 445 to			grained toward the	•	
monquartzose, including olivine.			40% nonquertzose; up to 5% silt; 10-15%			feet Send, gravelly, brow	95	455	bottom of interval		
biotite mica, horn-			angular to subrounde	đ '		green-gray; 80-855			15-201 nonquertzo: slightly to moder		
blende, fine-grained			gravel	15	160	very fine- to very			plastic; up to 55		
acid and basic volcanics, zircon	10	25	Sand, gray-green-brown 90-1005 very fine- t	5		conrse-grained san predominantly medi			gravel Sand, gravelly, brow	15	6
and, 90-95% very fine-		•••	very coarse-grained	•		to very coarse-gra	fned;		gray; 85-901 very	fine-	
to very coarse-graine sand, predominantly	d		fine- to medium-			50-605 nonquartizos 15-205 gravel and	e;		to very coarse-gri sand; 20-255 non-	nined	
fine- to medium-			grained and angular			fregments, grevels			ewartzose: moderat	tely	
grained; up to 301			to subrounded at			increase in size a			plastic from 695	to	
monquartzose; slight1 plastic at 45-50 feet	y		165 feet; 25-30% Momquartzose; 5%			to ellipsoidel-sha			705 feet; 10-15% gravel	25	,
5-10% gravel, includi	NO.		silt from 160 to 165			at 465 feet, some	show		Send, brown-gray; 9 1005 very fina- to	0	
some with ellipsoidal shape; possibly a			feet; slightly plast from 170 to 180 feet	1c		a calcareous and s ceous cement adher	111- 1mo				
beach or near-shore			sossibly contaminate	đ:		to their surface;	10 0 0		sand, angular to		
deposit of Lake	25	50	ST gravel from 160-10 alluvium	⁶⁵ ;	180	slightly to modern plastic clay lumps			sebrounded; 15-25		
nd, 1001 very fine- 1		**	Send, light-gray-brown		+ U U	present at 470 to			<pre>nonquertzose; up 1 SS silt; nonplast</pre>	ω Ic	
medium-grained sand,			95-1005 very fine- to			possibly a comente	d		to slightly plast	ic;	
predominantly sub- rounded; less than			medium-greined sand; 205 nonquertzose,			beach or near-shor deposit of Lake	t		55 gravel	45	,
105 nonquartzose;			increasing to 40% at			Lahontan	40	485	Send, gravelly, gray brown; 805 very fi	ine-	
some gravel toward bottom; microfossils			195 feet; up to \$%			Sand, gray-groon-bro	m;		to very coarse-		
present at 50-55			silt Sand, gray-light-brown	. 20	200	95-100% very fine- very coarse-graine	<u>د</u>		grained sand; 40-1 monquartzose; site	NUTS Not ly	
feet	10	60	95% very fine- to	•		sand, predominantly	y		plastic to plasti		
s above, but light-			very coarse-grained			very fine- to moti			decreasing in play	tticity	
	6	65	sand, angular to subrounded; 405 non-			grained; 155 non- Guartzose; slight]	v		above and below the to 7.35 foot inter	na 760 /al ≌0	71
green-brown; 30-40% . Monquertzose											
annquartzose above, but sub-	•		quartzose; 55 silt;			plestic	5	500			
	•	75	quartzose; 53 silt; reck fragments, sub- rounded to ellipsoid	.1		plastic	5	800			

Table 40 .-- Selected well logs -- Continued

MAX-Definition MAX-Def	Materia]	Thick- ness (feet)	Depth (feet)	Haterial	Thick- ness (feet)	Depth (feet)	Material	Thick- ness (feet)	Depth (feet)	Haterial	fhick- ness (feet)	Depth (feet)
The to arry corre- billing and set of a set of arry corre- set of a set of a se							16/32-29adcContinued		A	17/29-18bd (Norrison, 1		
r light and and a second secon	and, 95-100% very	•			-						*	20
Structure Structure <t< td=""><td>grained sand; up to</td><td>e-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Schoo Formation:</td><td></td><td>24</td></t<>	grained sand; up to	e -								Schoo Formation:		24
Torperting industrial is a proving set of the proving is a set of a proving is a set of	55 silt; some			subrounded; 5-102			coarse-sized,			Clay, sticky, yellow	8	45
series in a series in a series of series in		1					angular to sub-			Sand and gravel	30	75
Part Print Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	sediments		15							Clay, blue	15	90
Control Control <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>plastic; slightly</td><td></td><td></td><td></td><td>D</td><td>115</td></t<>							plastic; slightly				D	115
ter betraker and files ter betraker and files per betraker and files per betraker and files per betraker and files ter be	coarse-grained sand	•			25	230				showing		130
render of a 110- render of a				Clayey sand, 85-902			streak in			Gumbo, black		194
ating interest; ating	rounded and ellip-						westhered bedrock	2	447		2	196
Laboration set of mention Is based in set of mentin set of mentin set of mention Is based in set	soidal-shaped;			up to 5% silt;							54	250
Total control Total co				Blightly plastic to mlastic: we to 5%							- 5	228
<pre> press de la constant de la clama de</pre>	er neer-shore			gravel	16	246				Shale, soft, gray	10	348
<pre> press de la constant de la clama de</pre>		15	30	Send, same as above,			sized particles;				- 20 11	368
The Description of the Description of the Standard Barrel				plastic to moder-							16	397
de castra-printa- rery calcurates; rery calcurates;				ately plastic at				33	480		34	431
<pre>predeminity use: product marks of prove data for provide in the provide in</pre>					44	- ²⁰	17/22-13-che					445
arry classes: arry classes: arry classes: classe	predominantly sub-			very fine- to very		(*						446
back or nor-size very first of the second of		l;								Sand, fine Sand hard		453 463
Likewish of provide and set of the set of th	beach or mear-shore						Sand, white, fine	15	160	Shale, rotten (smelling		
a data and a factor of the sector of the sec		10					Clay, gray Clay, sandy	40		black; turns gray on	10	473
Addits per corres- per corres-		15	45	and rock tregments, angular to sub-			Pos gravel	20	240			480
angular real real real real real real real r	again; more coarse-			rounded, including						Send, very hard; small		
District School District S								20	320	Crevices and Chick hard "shells"		488
to aligned framework of the second of the se					•		Gravel, fine		329	Sand, fine	12	500
main bit overy finder to bit overy finder bit overy finde			-	to moderately			Clay, gray Clay, sandy	28	357	Shale, sandy, gray		511
to 'very configures' configure		23	70				Pos gravel, fine	14		Shale, grav		532
Land Still: up Classer, st	to very coarse-			yellow-brown at				33		Shale, sandy, gas		
to SS provision to SS					20	310						546 555
ret: fragents; priloc-brown; 563 bard; coursend; 20 Sol Sol; tandy 5 S series fragents; priloc-brown; 563 bard; coursend; 20 Sol Sol; tandy 5 S and and and-sized 10 so print(is, some fragent); print(is, Sol); print(is, S				sized particles.			Clay, blue-gray	28	480	Shale, sand streaks		565
amount 10 80 prime/ indefinition Pass prive/ prive (int, to 50) 29 610 Clay, comp, hlue 8 5 Barry (int, to 50) Compression (int, to 50) Compression (int, to 50) Compression (int, to 50) Compression (int, to 50) Clay, comp, hlue 5 C	rock fragments;			yellow-brown; 85%						Shale, sandy	.5	570
and and stand-sized to be aparticles, zone and stand-sized to be aparticles, zone aparticle		16	-							Shale, hard Clay tough, blue		583 591
image for the state of the state o	and and sand-sized						Sand, fine; streaks of			Sand	6	597
cairs-print of any interval and and interval and and interval and	perticles, 90-95%			courser materials,								618
stand-strider aptrixing angular astly singler: up to 100 strider; up to 100 strid							anno, Biack	~	633	Sand, hard		637
to submondel, up silicitized part. the submondel, up strike and submondel and course, and series and submondel and course, and series and submondel and course, and series and submondel and course	send-sized						17/23-10bas			Clay, tough, blue	6	643
to 10. stirtinged titler mederatory barteles, forwer, Margements 00 54 mais, very hard 0.7 est prot fragments on an analy, very hard 10.7 est prot fragments on analy very hard 10.7 est fragments on analy very hard 10.7 est prot fragments on analy be den mark fragments on anal								4	4			650 652
particles, 5-DC plastic to plastic commity a sector of	to 101 silt-sized			fclet: moderately			Sand, brown, herd-peck	50	54			
to one fich in """ and partial box for the set of the s	particles: 5-10%			plastic to plastic;				35	89	Clay and shale		668
effameter: sample sampl							Sand, soft, and gravel	60				671 684
becomes finer becomes finer become	diameter; sample									Shale, gray	7	691
of (nervel):it alloyis material 12/22-1000c Sale, sandy 6 7 Boulder field uss as contamisation Gravel and sand D0 20 Sale, sandy 6 7 Boulder field uss as contamisation Gravel and sand D0 20 Sale, sandy 6 7 add, B-DOS wry bioict present in no Gravel and sand D0 20 Sale, sandy 6 7 and, predom- brotice present in no Barter sandy, sand sand Sale, sandy 6 7 and, predom- better of samed 11/22-1000 Sale, sandy 6 5 and, predom- better of interval 45 255 Clay, sandy, sand gravel 5 Sale, sandy 7 fine-to medium- better of samed 11/22-1000 Sale, sandy 5 Sale, sandy 7 fine-to medium- better of samed 11/22-1000 Sale, sandy 5 Sale, sandy 7 7 fine to medium- better of samed 11/22-1000 Sale, sandy 5 Sale, sandy 7 7 fine to medium- bette				countered at 310				72		Shale, sandy		703
80 to 101 field usis eresent (mossibly from above); such from above;				TOEL, with some Alluvial material			19/00 20014			Shale, sandy	1	712
encountered wey in the most is account of the second secon	80 to 101 feet a			present (possibly						Shale, blue	Ĵ	721
imports isisting: Sand, clay, and builders 25 65 Sand, hard 4 73 carse-protoc Berger amounts than		•1	101							Send, coerse, weter at	6	7%
fine-to very carse-grainedbioitts present in previously: becomesGravel; uster169224Shale, hard9and, predom- sand, previously: becomespreviously: becomes17/22-186d50Shale, sandy9fine-to madium- previously: becomesbectum of interval45255Clay, sandy, and gravel5Shale, sandy9fine-to madium- to model into to aboveStratus17/22-186d5Shale97fine-to madium- to model into to aboveStratus1125Shale, sandy97fine-to madium- to model into to aboveState and and gravel1125Shale, sandy9fine-to madium- to model into to aboveState and gravel725Shale, sandy9fine-to aboveState and and gravel1125Shale, hard17fine-to aboveState and and gravel1125Shale, hard17fine-to it formState and and gravel2026Shale, hard17fine-to it formState and gravelStateStateStateStateStateStatefine-to it formStateStateStateStateStateStateStateStatefine-to it formStateStateStateStateStateStateStateStatefine-to it formStateStateStateStateStateStateStateStatefine-to it form											Ă	730
and predum mently very fine-to medium- bettum of interval 45 255 Cley, sandy 5 5 Shale and the sand straks 8 77 fine-to medium- bettum of interval 45 255 Cley, sandy 5 5 Shale 12 27 fine-to medium- bettum of interval 45 255 Cley, sandy and read and straks 8 77 fine-to medium- bettum of interval 45 255 Cley, sandy and read and				biotite present in			Gravel; water	169	234		1	739
fine.to modium. best pratic toward 1///22-1800 Basis of the send streaks 8 7 fine.to modium. Striler to above 5 Striler to above 5 Stale 5 Stale<							BOTOCK.	-	320	Sand, Art	;	755
IDS still; IDS feteral, but enty Sand gravel 11 35 Sand 7 suggestions of Sightj wathered Sand, gravel, and clay 7 42 Sand 7 suggestions of Setteral, but enty Sand, gravel, and clay 7 42 Sand 7 suggestions of Setteral, but enty Sand, gravel, and clay 7 42 Sand, sandy, sand clay 7 42 Sand, for 7 42 Sand, sandy, sand gravel, sand clay 7 43 Sand, for 7 43 Sand, for 7 43 Sand, fragressity 5 Sand, for 7 7 43 Sand, fragressity 5 Sand, fragressity 7 <td< td=""><td>fmently very</td><td></td><td></td><td></td><td></td><td></td><td>17/23-18dd</td><td></td><td></td><td>Shale with send streeks</td><td>s 🐌</td><td>763</td></td<>	fmently very						17/23-18dd			Shale with send streeks	s 🐌	763
IDS still; IDS feteral, but enty Sand gravel 11 35 Sand 7 suggestions of Sightj wathered Sand, gravel, and clay 7 42 Sand 7 suggestions of Setteral, but enty Sand, gravel, and clay 7 42 Sand 7 suggestions of Setteral, but enty Sand, gravel, and clay 7 42 Sand, sandy, sand clay 7 42 Sand, for 7 42 Sand, sandy, sand gravel, sand clay 7 43 Sand, for 7 43 Sand, for 7 43 Sand, fragressity 5 Sand, for 7 7 43 Sand, fragressity 5 Sand, fragressity 7 <td< td=""><td></td><td></td><td></td><td></td><td>45</td><td>355</td><td></td><td>5</td><td></td><td></td><td>2</td><td>772 778</td></td<>					45	355		5			2	772 778
provel, vith sliphity masterned is and provel and Clay '7 62 Sand 7 7 7 7 7 60 Sand (19 7 6 6 Sand (19 7 6 6 Sand (19 7 7 6 7 7 7 7 6 7 7 7 7 6 7 7 7 7 7 7	105 silt: 105			STRILLT TO ADOVE						Shale		790
Subgest 1045 07Abedrock: a make- barder, samy, samdy, and grave) 25Ge Samle, and Clay samdy, and grave) 25Ge Samle, and Clay samdy, and grave) 25Ge Samle, and Clay samdy, and grave) 26Ge Samle, and Clay samdy, and grave) 26Ge Samle, and Clay samdy, and grave) 27Samle, and Clay samdy, and grave) 28Ge Samle, and Clay samdy, and grave) 23Samle, and Samle, an	gravel, with		•	slightly weathered	•		Sand, gravel, and clay	''		Send		797
ance: miny be defined and the struct is structs to the structs in the structs is structs in the structs is structs in the struct is structs in the struct is structs in the struct is struct in the st							Clay, sandy, and gravel	26	<u>ii</u>	Shale, herd Shale, soft	1	798
Masic rock freg- metric rock freg- miter encounteredcere is didic, incere has itematic itematic reacounteredClay, sandy, sandy, and groups itematic reacounteredTill itematic itemati	Wes; Many			brought up a 3-tech			and, gravel, and clay in streaks	16	m	Sand, coarse, hard	1Ŏ	814
matter encounteredTensol Time trial; time staticCity, sandy sand, hard20Shale, hard1pestibly maid tilland clay structs; and clay structs;of sancts gravel5180Sand, hard78ing uster6107feldspars are all plagiciclass;Clay, sandy, and gravel31213Sand, frige108ing uster6107feldspars are all plagiciclass;Clay, sandy, and gravel31213Sand, frige108ing uster6107feldspars are all plagiciclass;Clay, sandy, and gravel213Sand, frige108ing usterand clay structs; sand structSand struct213Sand, frige108ing ustertared at 301 feet; and structSand struct223Sand, frige1290sand, structand structClay, sandy and gravel227Sand, frige1290sand, structand struct2Sand struct227Sand, frige1290sand structand struct22Sand, frige121091sand structand struct6240Sand, frige129110sand structand struct6240Sand, frige240Sand, frige10sand structand structClay, sandy, and gravel11220Sand, fand1010sat all foot as the struct structClay, sandy, and gravel <td>besic rock freg-</td> <td></td> <td></td> <td>core of acidic,</td> <td></td> <td></td> <td>Clay, sandy, and erevel</td> <td></td> <td>153</td> <td>Shale, sandy</td> <td></td> <td>822</td>	besic rock freg-			core of acidic,			Clay, sandy, and erevel		153	Shale, sandy		822
ni 101 fest, but interval and the structure interval in the structure interval in the structure interval in the structure interval interva											í	830
mail to prove and clay streaks;of smooth gravel5100Clay, Streak;1110ad, 80-955 veryplagicclases;Sand, frime2215Sand, frime1080char, Sordsring antlyutter use sectors.Clay, sandy, ead gravel2211Sand, frime2015Sand, frime2015send, protogring antlybalow the groundClay, sandy, and gravel2225Sand, frime2017Sand, frime2017send, protogring antlybalow the groundClay, sandy, and gravel11228Sand, frime2017Sand, frime2017send streaks2017Sand streak2Sand, frime2017Sand, frime2017Sand, frime2017send streaks2017Sand streak2Sand, frime, and clay11228Sand, frime, and clay11send streaka grassible frac.Sand streakClay, sandy, and gravel11228Sand, frime, and streaks2018Still, up to 53tared zone occursClay, sandy, and gravel12227SanleSanle218sectar sercaught fort streak streakClay, sandy, same10SanleSanle1010sectar sercaught fort streakClay, sandy, same10SanleSanle1010sectar sercaught fort streakClay, sandy, same10SanleSanle1010sectar sercaught fort streakClay, sandy, same10Sanle <td>at 101 feet, but</td> <td></td> <td></td> <td>core has limonite</td> <td></td> <td></td> <td>Send, clay, and trace</td> <td>80</td> <td>1/5</td> <td>Sand, hard</td> <td>7</td> <td>837</td>	at 101 feet, but			core has limonite			Send, clay, and trace	80	1/5	Sand, hard	7	837
all BD-95S veryplaginclass:Sandy: strait, file215Sanle, souph, gray4242ima- to veryustrait, file215Sanle, touph, gray, utthamis-e-grainedterest, file215Sanle, touph, gray, utthamis-e-grainedterest, file215Sanle, touph, gray, utthamis-e-grainedterest, file215Sanle, touph, gray, utthamis-e-grainedterest, file215Sanle, touph, gray8amis-e-grainedterest, file217Sanle, touph, gray8amis-e-grainedend stabsequentlySand strast, file227Sanle, touph, gray8amis-e-grainedrose to 325feet;Clay, sandy, and gravel11228amis-e-grained,rose to 325feet;Clay, sandy, and gravel11228amis-e-grained,rose to 325feet;Clay, sandy, and gravel11228sanle, sandyamis-e-grainedtop to 53terming the coreSanle510sanle, sandyamis-e-grainedend strast, file25Sanle, sandy19scorest corestcaught there; dff-Clay, sandy, same7277Sanle, sandy19act frequents;drifting tool uesClay, sandy, same7277Sanle, sandy10act frequents;drifting tool uesClay, sandy, same7277Sanle, sandy10act frequents;drifting tool uesClay, sandy, same7277Sanle, sandy10 <t< td=""><td></td><td></td><td>147</td><td>and clay streaks;</td><td></td><td></td><td>of smooth gravel</td><td></td><td></td><td>Clay, sticky</td><td></td><td>850</td></t<>			147	and clay streaks;			of smooth gravel			Clay, sticky		850
fine-to veryintir uss encoun- term of all of seriesClay, sandy, said prevel2 210 sand structs, fineShale, tough, gray, with sand structs, finewend, predominantlybelow the groundClay, sandy2 221 sand, fineShale, tough, gray8 92 shale, tough, graywend, predominantlybelow the groundClay, sandy, and gravel2 227 stand, fineShale, tough, gray8 92 shale, tough, graywend, predominantlybelow the groundClay, sandy, and gravel2 227 stand, fineShale, tough, gray8 92 shale, tough, graywend tousand subsequentlySand struct2 227 stand, ther, and clay9 92 stand, fineSand, fine, and clay12 92 stand, ther, and shalewend touscostStructa possible frac- stand zone occursSand struct6 244 structSand, fine, and shale20 97 stand, hard, and structwet fromments: wet fromments: wet fromments: mernd the bottomdf 10 fort as the forences in per- demotriteClay, sandy, and gravel327 standShale, hard8 1.06 standwet fromments: ment the bottom33 140 contare frag- ments and, and stand coarsegravel10 345 stand, sandShale, hard7 1.05 stand, sandwet for sand ine- to addime- ments tousfine-to ments and the fire20 375 stand, sandy345 standShale, hard7 1.10 standwet fromments: ment the differencesfine-to stand, sandyShale, hard1 1.10 stand, and gravelShale, hard1 1.10 sta	nd, 90-95% very	•	197				Clay, sandy, and gravel Sand streak. fine			Shale, tough, gray	42	902
and, produminantly below the ground at SD feet; Sand streak, fine 2 221 Leve Streaks 20 227 Sand, fine Streaks 20 227 Sand, fine 12 69 semistreak, even to an subsequently Sand streak 2 227 Sand, fine, and clay 17 95 set all quarticose; a possible frac. Sand streak 2 227 Sand, fine, and clay 17 95 set all quarticose; a possible frac. Sand streak 2 227 Sand, fine, and clay 17 95 set all quarticose; a possible frac. Sand streak 2 227 Sand, fine, and streaks 25 1,00 proved and some occurs Clay, sand growel 51 225 Sand, fine, and streaks 25 1,00 proved and some occurs Clay, sand growel 51 225 Sand, fine, and y 19 1,02 set all ing to 0.53 tered zone occurs Clay, sand growel 51 225 Sand, fard, fine, and y 19 1,02 set all fort as the Clay, same trace of sand 7 227 Sand, hard 5 1,05 set all the bottom forwards dif. Clay, same trace of sand 7 227 Sand, hard 6 1,05 set and the bottom forwards fine - 0 settonite 8 235 Sand, hard 6 1,05 set all the bottom forwards fine - 0 settonite 8 235 Sand, hard 6 1,05 set all the bottom forwards fine - 0 settonite 15 260 Shale, hard 6 1,06 set all the sottom forwards fine - 0 settonite 15 260 Shale, hard 7 1,05 set all the sottom forwards fine - 0 settonite 15 260 Shale, hard 7 1,05 set all the sottom forwards fine - 0 settonite 15 260 Shale, hard 7 1,05 set all the sottom forwards fine - 0 settonite 15 260 Shale, hard 7 1,05 set all the set all the sottom forwards forwards 2 27 1,07 set all the s	fine- to very			water was encoun-			Clay, sandy, and gravel	i.	219	Shale, tough, gray, wit	h	
erry fine- to molium-grained,and subsequentlySand stream to account of the constructionSand stream to account of the cons							Sand streak, fine	Z	221			930
adiam_grained, adiam_grained, at all quertizone; sitil; up to 53 rese to 329 fort; a possible frac- sand; sing gravel stil; up to 53 Clay, sand gravel sit all quertizone; and stand, fing; and stranks 25 Suble with sand stranks 25 Suble sand; Suble sand; Suble sand; Suble sand; Suble sand; Suble sand; Suble sand; Suble sand; Suble sand; Suble sand; Suble sand; Suble sand; Suble sand; Suble sand; Sub	ery fine- to			and subsequently				;		Sand, fine	1Ž	942
X stl1: up to 53Daried zone occursClay, sandy, and gravel 51225Shale with sand streaks 251,00revel and someet 251 feet as theClay, same gravel25220Shale, sandy1910access carsercompit there; dif-Clay, same trace of samd727Shale1010access carsercompit there; dif-Clay, same trace of samd727Shale1010access carsercompit there; dif-Clay, same trace of samd721212121acter val33140contage of fineClay, same trace of sameShale121,00ime- to median-ments my be dowgravel10245Shale10121,00ime- to median-ments my be dowgravel10245Shale10111,11ime- to median-ments my be dowgravelClay, sandy25ShaleShale101,11ime- to median-ments my be dowgravelClay, sandy25ShaleShale101,11ime costrerin differences20375Clay, sandy25ShaleShale, sandy71,12it: same gravel'sSand-isce fine-Clay, sandyand same5Shale, sandy71,12it: same gravel'sSand-isce fine-Clay, sandyand same5Shale, hard31,12me costrergravelClay, sandyand same5 <td></td> <td></td> <td></td> <td>rose to 329 feet;</td> <td></td> <td></td> <td>Clay, sandy, and gravel</td> <td>าĩ</td> <td>236</td> <td></td> <td></td> <td>959</td>				rose to 329 feet;			Clay, sandy, and gravel	าĩ	236			959
pravel and some of 251 foot is the City, same provel 25 200 Bale, samdy 19 1,02 or some provel 25 200 Bale, and 31 1,00 access carser for the truther and the bottom for the soften carse of fine carse carser for the soften carser for the soften carser for the soften carser for the soften carser for the soften carser for the soften carser for the soften carse carser carser carser carser carser carser carser for the soften carse for the soften carse carser								6		Shale with send streak		1,004
Weth fragments; drilling tool ens Clay, same trace of send 7 327 Same to 31 20 20 31	Pavel and some			at 361 feet as the			Clay, some gravel	8		Shale, sandy	19	1,023
Sensitive the bottoms Orrentes in per- the interval Sensitive the interval Sensiti	rock frogments;						Clay, some trace of same	17				1.057
of the interval 33 140 contope of fine Clay, sandy, some Sand, hard 6 1,00 inter-to medium- Gantage of fine graval 10 345 Shale, hard 7 1,00 inter-to medium- Gantage of fine graval 10 345 Shale, hard 7 1,00 inter-to medium- Gantage of hard- Clay, sandy 25 355 Shale, hard 7 1,01 inter conserver in digrave of hard- Clay, sandy 25 355 Shale, hard 10 1,11 inter conserver in digrave of hard- Clay, sandy 25 355 Shale, hard 13 1,12 ints conserver in digrave of hard- Clay, sandy 25 415 Sand, hard 3 1,12 ind rock fragments; 1005 very fine- to Clay, sandy streaks 5 465 Sand, hard 3 1,22 ind rock fragments; 1005 very fine- to Clay, sandy streaks 5 465 Sand, hard 3 1,22 ind rock fragments; 1005 very fine- to Clay, sandy streaks	built the bottom						Clay, white, or		-			1.074
ad, 85-903 very to coarse freg- gravel 10 345 Same and 17 1,00 free-to modium- Gentime to set of formaces Clay, samely 35 380 Shale, mard 7 1,10 prines to modium- Gentime to set of formaces Clay, samely 35 380 Shale, mard 7 1,10 prines to modium- In degree of hard- Clay, samely 35 380 Shale, mard 7 1,11 prines to modium- fit same gravel Same and to set of formaces Clay, samely and some gravel Samel, coarse 21 1,11 mine to the frequents: Samel-sized particles, gravel 25 415 Samel, coarse 21 1,12 fift same gravels Samel-sized particles, gravel 25 415 Samel, coarse 21 1,13 fift same gravels Samel-sized particles, gravel 24 15 Samely, coarse 21 1,13 fift same gravels Samel-sized particles, gravel 25 455 Samely, coarse 21 1,12 fore to coarse-gravined Samel an	f the interval	33	140	contage of fine			Clay, sendy, some			Send, hard	6	1.080
preimed sand, th differences Clay, sandy 25 Bale 10 1,11 preime conserver in degree of hard- Clay, sandy 25 Bale, bard 13 1,11 prins; 10-155 anss of herrock 20 375 Clay, sandy, and same gravel 5 Bale, sendy 7 1,11 prins; 10-155 anss of herrock 20 375 Clay, sandy, and same 5 Bale, sendy 7 1,11 ind rock fragments; look every fine- to Clay, sandy makes 5 415 Sand, hard 3 1,11 ind rock fragments; look every fine- to Clay, sandy makes 5 465 Bale, sandy 42 1,21 ints toward the sand-ized parti- Clay, sandy and gravel 10 475 Sand, hard 1 1,22 ents toward the clas, angular to Clay end some gravel 23 618 Shale, hard 1 1,22 etcan of the cles, angular to Clay, sandy 20 650 Shale, hard 1 1,22 careous; sample Clay, sandy 20 650 Shale, hard 1 1,22 careous; sample Clay, sandy 20 650 Shale, hard <							gravel			Shale, hard		
same coarser in degree of hard- Clay and same gravel 5 Same, Sard 13 1,12 prints; 10-153 emass of bedroct 20 375 Clay, sandy, and same Sand, sard 13 1,12 iflt; same gravels Sand-sized particles, gravel 25 415 Sand, coarse 21 1,12 ind roct fragments; 1005 very fine- to Clay, sandy 45 460 Sand, hard 3 1,11 nore roct fragments; 1005 very fine- to Clay, sandy 45 460 Sand, hard 3 1,12 nore roct fragments; 1005 very fine- to Clay, sandy staw staway 45 460 Sand, hard 3 1,20 ents toward the sand-sized parti- Clay, sandy, and gravel 10 475 Sand, hard 3 1,20 aterval 65 205 subular; moncal- Clay end some gravel 23 618 Sand, hard 3 1,20 aterval 65 205 subular; moncal- Clay, sandy 20 650 Sande, hard 2 1,20 clay, sandy	reined sand,			to differences						Shale	10	1,114
Prints; 10-153 mess of beforeck 20 375 Clay, sandy, and same Simile, sandy 7 1,1; init; same pravels Sand-sized particles, gravel 25 415 Sand, coarse 21 1,1; init rock fragments; 1005 very fine- to Clay, sandy 45 460 Sand, hard 3 1,1; ore rock fragments; 1005 very fine- to Clay, sandy 45 460 Sand, hard 3 1,1; ore rock fragments; 1005 very fine- to Clay, sandy, streaks 5 465 Sand, hard 3 1,2; ants toward the sand-sized parti- Clay, sandy, and gravel 10 457 Sand, hard 3 1,2; writs complar; moncal- Clay, sandy, and gravel 10 595 Sands, hard 1 1,2; aterval 65 205 satengular; moncal- Clay end some gravel 2 420 50 class ample Clay, sandy Clay, sandy 30 650 Shale, hard 1 1,2; class and fresh, clay end some gravel 2 420 52 50 50 50 50 50 50 50 50 50 50 50 1,2;	ane coarser			in degree of hard-			Clay and some gravel			Send, herd		1.127
ind rock fragments; 1005 very fine- to Clay, sandy 45 450 Sand, hard 3 1,10 ore rock frag- very coarse-prined Same and clay streaks 5 460 Shale, sandy 42 1,20 mint tower the same and clay streaks 5 460 Shale, sandy 42 1,20 wits tower the same and clay streaks 5 465 Shale, sandy 42 1,20 wits tower the cles, angular to Clay, same gravel 10 595 Shale, hard 1 1,20 wits tower the cles, angular to Clay end some gravel 23 615 Shale, hard 1 1,20 aterval 65 205 same, land Clay, soft 2 620 Shale, hard 1 1,20 cles, sample Clay, sandy clay, sandy 20 50 Shale, hard 2 1,20 cles, sample Clay, sandy clay, sandy 20 50 Shale, hard 2 1,20 becoming slightly Clay, sandy sandy 30 650 Shale, hard				ness of bedrock	20		Clay, sandy, and some	-				1,134
nore rock fräg- ments toward the sand-sized parti- sand-sized parti- sater-sized parti- sater-sized parti- saterval the cles, angular; noncal- cley saterval to cley, sandy, and gravel 10 475 Sand, hard 3 1,20 cley saterval 10 475 Sande, hard 1 1,20 saterval 65 205 subangular; noncal- cley soft 2 620 defiling 4 1,20 clean and fresh, clay, soft 2 620 defiling 4 1,20 clean and fresh, clay, soft 2 620 defiling 4 1,20 clean and fresh, clay, soft 2 620 defiling 4 1,20 clean and fresh, clay, sondy 30 650 Shale, hard 2 1,21 becoming slightly clay, sandy 55 Tot Shale and stranks of to moderstely gravel 55 705 Shale, sandy 3 1,22 plastic toward clay, sandy 80 755 Shale, sandy 3 1,22				1005 yerv fine. to			gravel Clav, samtu			Sand, hard	- 1	1,158
atts could be sand-sized parti- ettom of the cles, angular to Clay, sandy, and gravel 10 475 Shale, hard 1 1,20 aterval 65 205 subangular; noncal- careous; sample Clay soft 2 620 drilling 4 1,20 clean and fresh, Clay, sandy 20 650 Shale, hard 2 1,21 becoming slightly Clay, sandy, trace of Shale, hard 9 1,21 to moderately gravel 55 705 Shale, and 9 1,21 to moderately	Dre rock frag-			very coarse-grained			Send and clay streaks	5	445	Shale, sandy	42	1,200
aterval 65 205 subangular; noncal- Clay soft 23 618 Shale, hard, sandy, slow Caroous; sample Clay, soft 2 620 driling 4 1,20 Clean and fresh, Clay, sandy 20 650 Shale, hard 2 1,21 becoming slightly Clay, sandy, trace of Shale, and streaks of to moderately gravel 55 705 Shale, sandy 9 1,22 plastic toward Clay, sandy 80 755 Shale, sandy 3 1,22	ents toward the						Clay, sandy, and gravel	10	475			1,203
Clean and fresh, Clay, sandy 30 650 Shale, hard 2 1,21 becoming slightly Clay, sandy, trace of Shale and streaks of to moderately gravel 65 705 hard sand 9 1,21 plastic toward Clay, sandy 80 785 Shale, sandy 3 1,22		65	205							Shale, herd, sandy, slo		
clean and fresh, Clay, sandy 30 650 Shale, hard 2 1,21 becoming slightly Clay, sandy, trace of Shale and streaks of to moderately gravel 55 705 hard sand 9 1,21 plastic toward Clay, sandy 80 785 Shale, sandy 3 1,22		'		careous; sample			Clay, soft	2	620	drilling		1,208
to moderately gravel 55 705 hard sand 9 1,21 plastic toward Clay, sandy 80 785 Shale, sandy 3 1,22				clean and fresh,			Clay, sandy	30			Z	1,210
plastic toward Clay, sandy 80 785 Shale, sandy 3 1.23				to moderately			gravel	\$5	705	hard sand		1,219
Bottam of interval 70 445 Clay, hard 37 822 Junie, sandy, gray 28 1,21				plastic toward	-		Clay, sandy	ŰÖ.	785	Shale, sandy		1,222
				action of interval	70	445	Clay, hard			anale, sandy, gray	26	1,250

(Continued)

.

i

.)

)

•

Table 40 .--- Selected well_logs--Continued

•

; ,

.

i

ĥ

ţ

1

.

) 1

Hateria]	ness Dept	Thic Naterial nes		Naterial	Thick-	Depth		ick-	Dept
	(feet) (feet	(fee			(feet)		(fe	et)	(feet
29-18bdContinued	. · · · ·	17/29-18bdContinued		18/29-4bacContinue	đ		18/29-5aaaContinued		
le Mistone shale, hard	16 1,260		this well	Sand, fine grained, subangular	5	385	Sand, brown, poorly sorted fine to coarse,		
le, sandy estone shale, hard	9.5 1.27	In May 1922, when it was 2 deep. He reported (U.S. 6	2,845 feet	Clay, gray, hard Clay, gray, sandy,	5	390	little rounded besalt gravel, grass		
le, blue, with		epen-file report, 1922): w	ater level	trace of lime	25	415	roots, little clay,	1.	
mestone streaks	11 1,284 2 1,290	stood 300 feet below surfa	e casing	Clay, gray, trace of sand	` 5	420	loose Sand, brown, poorly	12	18
estone shale le, blue	2 1,292	and was under slight press casing cuttings were "larg	ure in	Clay, gray, more sam Clay, gray, sticky,	d 10	430	sorted, round to sub- angular, loose	5	18
le, blue, and limy		ish shaly clay, probably d	lerived from	trace of sand	27	457	Sand, brown, poorly	•	
hale beds le, blue	54 1,361 4 1,360	finely divided water laid no volcanic flow or bracci		Clay, gray with sub- engular fine sand	60	517	sorted, subangular, loose, green and gray		
d, hard k	2 1,366	was recognized. Cuttings winute shells, which in fi	contained	Clay, gray with trace		537	clay Sand, dark brown,	35	22
artz"	5 1,17	considered to be gastrapod	is and bi-	of sand Clay, gray, sticky	39	576	poorly sorted fine to		
glomerate(?), very	3 1,377	wolves. Specimens were an the Mational Huseum, but t	Amitted to	Sand, fine, free Clay, gray with trace	5	581	coarse, round to sub- angular; quartz and		
glomerste(7), extra ard		fossils found were simple considered to be derived f	estracods	of fine to coarse			basalt grains, less clay than above, loose		
glomerate(?)		water Tertiary rocks." R.	W. Richards	sand Sand and gravel, sub-	- 5 5 -	636	aud	20	24
stramely hard he," blue, with thi	1 1 ,36 3	(U.S. Geol. Survey open-fi 1947) mentioned that vario	le report.	angular, trace of gray clay		642	Clay and sand, poorly sorted silt to fime		
hale streeks; very		In the Churchill County Ke	gle between	Sand and dark gray c			sand, clay green and		
ard; gas showing le, soft, blue	59 1,441 5 1,440	June 10, 1922, and October that the well reached 3.03		fine to medium sub- angular sand	- 19	661	black, sand grains subangular	7	24
le, hard le, blue	4 1,450	rotary equipment, then was either 96 or possibly 264	deepened	Sand, medium to coar			Sand, poorly sorted to medium grain, sub-		
le, hard	3 1,460	cable-tool, between Septem	ber 1922	trace of gravel,	14.7.1		angular, little green	••	•
le, blue d	3 1,46	and October 1923. In June Ge-inch casing was set at	1922,	tight formation Clay, sandy gray	- 4	665 698	clay; formation tight Send and clay, sand	18	26
le, hard	4 1,474	later this casing was pull casing was run to 3,035 fe	ed and 4-1mch	Clay, dark blue	3	701	poorly sorted, sub-		
le and sand, strong is showing	8 1.482	to 3,128 feet; 70 feet of	hard sendstend	Clay, gray, soft Basalt gravel and	2	703	angular; clay green and black, formation		
e e and sand	4 1,48	with "oil and gas showing" below about 2,875 feet, an	is reported	volcanic dust well comented	1	704	tight, grass roots Sand, brown, rounded to	10	27
e, grey	14 1,518	feet, very hard sandstone,	, with drilling	Basalt gravel and	•	704	subangular, poorly		
e and "oil" sand	.5 1,510	"strong gas show" between	3,147 and	cinders comented w quartz sand or glas			sorted mostly coarse grains; little clay		
e . . hard	28 1,548	3,152 feet. Richards repo	rted, nowever,	(volcanic tuff); v	ery		green, gray and black; formation		
and shale	13 1.56	that C. D. Nurray, who did cable-tool drilling, recol	lected in	little country sam marine shells, 710	to		loose	30	3
, hard, and shale	22 1,58	1946 that most of the sect shale.	tion was soft	714 Basalt sand and volc	13	717	Sand, poorly sorted fine to coarse, sub-		
e. very hard	8 1,620			dust loosely comm	ted;		angular, little clay	14	3
and shale	36 1,662	18/24-25adb	• •	small basalt grain size	2	719	Sand, brown, poorly sorted medium to		
e	11 1,678	Clay 2	10 20 16 46	Basalt cinder rock a	nd		coarse, round to sub-		
and shale , hard	12 1,690		8 64	volcanic sand well comented	11	730	angular; some clay, green, gray and black;		
e I	25 1,720	water-bearing sand	8 72	Basalt gravel and volcanic sand, loo		734	formation loose Clay, gray with fine	31	3
i, hard	2 1.73	Grevel, comented Sand, packed	9 81 4 85	Basalt gravel and		/ 24	subengular sand; for-		-
and shale; crevic at circulation	e. 2) 1,754	Pas gravel, clay	7 92	volcanic sano, comented	3	737	wation hard Clay, gray and green	10	X
e	26 1,780	Paa gravel, sand; second water-bearing sand	2 🙀	Basalt gravel and	-		with fine grained		
e, herd, gas lowing	1 1,781	Leve formations 4	18 142 13 225	volcanic sand come little gray clay		742	send, grass roots, few peobles of white		
, shaly; crevice, st circulation	13 1,794	Clay with small rocks 2	5 250	little gray clay Besalt gravel and sa with gray clay; st		-	Pock; formation soft; little mica	ж	3
e .	4 1,796	Gravel, comented 1	0 260	comented and loose		751	Clay, gray and green		
le, hard, sandy le, lost circulatio	1 1 1,795 n 4 1,803	18/24-27db		Gray sand, fine to medium subangular			with fine grained round to subangular		
le, soft, blue	33 1,830	Clay and rock 11 Boulders 1		grained, and gray	•		sand, grass roots; formation hard	,	40
e, sticky, gooey , fine	24 1,860	Clay and rock 5	5 175	clay; little base) Pock, comented	۲ 25	776	Clay, same as above	•	-
e, gray I, hard	14 1,679		2 257 13 300	-	D. S.,		with very little sand; formation is soft	37	4
e, gray	35 1,916	(Kingman, D. S. 18/29-4bac fols. p. 15)		18/29-5aaa fols. p. Sand, gray, poorly	15)		Sand, brown, poorly	-	
e hard	5 1,921	Sand, coarse, free,		sarted fine (50%)	to		sorted fine to pea gravel, some clay		
and shale	32 1,970	subangular, quartz		<pre>pea gravel (2%), round to subangula</pre>	r.		ereen, grey and black.		
e, hard and shale	4 1,974	Clay, gray with rounded	7 17	marine shells, som	e .		Lower 12 feet has more clay and more		
e .	35 2,03	gravel 1	0 27 8 45	besalt chips Send, coarse, brown,	17	17	coarse sand; some basalt grains	45	4
i, hard le	25 2,060	Send, brown, fine to		fairly well sorted rounded, 995 quart		27	Clay, gray with soorly	43	-
l, hard e	6 2,060 20 2,080	medium grained,	3 48	Sand, fine, free, we	กิน 🖤	.,	sorted sand, grass roots, some mica;		
e, brown	14 2.090	Clay, black and gray,		sorted, gray 995 Quartz	10	37	formation soft	23	9
and shale	6 2,090 24 2,120	little sand 1 Sand, medium to coarse,	4 62	Sand, coarse, gray,			Clay, same as above with more sand, finer		
e running	14 2,13 19 2,15	tinht	8 70	fairly well sorted rounded, 995 quart	ż,		grained, little brown	34	5
, hard	7 2,160		2 72	little gray clay Sand, dark gray, poo	28	65	clay Send, gray, poorly	~	9
e , hard, and shale	32 2,192 20 2,212	Send, fine, tight 1 Clay, gray, soft and	5 87	sorted, quartz 952 basalt 35, free,			sorted fine to small gravel, fow grains of		
ksand	16 2,220	sticky, grass roots	§ 92	besalt 35, free, peorly serted fine	to		basalt pebbles; some		~
and shale , blue	20 2,254		0 102	med 1um	15	80	mics and gray clay Comented sand and gravel	41	5
e, sticky, blue and shale	12 2,272	Sand, rounded to sub-		Send, medium to coar light brown, free,			rounded medium sorted		
e, sticky, blue	22 2,29 44 2,33	angular, mudium to coarse grained, free,		eviticolored grain other than quartz	s 22	102	sand; lot of porous besalt grains, derk color; formation hard;		
, hard , white	3 2,34	quartz and country 5 sand 4	10 142	Sand with gravel, sa	nd 🗌	146	color; formation hard; more basalt and less		
, hard	3.5 2,351	Gravel, small, sub-		well sorted course rounded; gravel	•		send near bottom of	-	
e, sticky , sticky	43 2,394	angular; brown clay to samiy gravel and		country rock to			formation Commuted basalt gravel	7	5
e, nonsandy	10 2,41	trum clay 1	162	is inch, subangular some brown clay	່ 21	125	with sand and člay		-
	12 2,431	Clay, gray with some pos-sized gravel 1	5 187	Gravel, to 3/a inch.			entria Comented basalt gravel,	11	i
	40 2.54	Clay, gray 1	io 197	free, rounded to subangular, poorly			very few porous		
e and sand	60 2,604	Clay, black and gray, sticky 1	17 234	serted, quertz,			cuttings; fine grained send near top, harder	1	
e and sand L e, sticky	16 7.67			besalt and samesto			formation in middle;		
le and sand 1 le, sticky 1, fine 1e, hard	16 2,620 16 2,630	Clay, gray, sandy 7	1 305	active brown clav	22	147			
le, sticky e and sand i e, sticky i, fine e, bard e 1. bard	16 2,630	Clay, gray, sandy 7 Sand, fine to madium	305	some brown clay Gravel and sand,		147	some clay near bottom;		
le and sand le, sticky l, fine le, Mard le l, Mard l, Mard l, fine, gas	16 2,63 48 2,68 14 2,69	Clay, gray, sandy) Sand, fine to modium grained, subangular; gray clay	7 312	Gravel and sand. peerly sorted up t	20	147	some clay near bottom; very hard Basalt pes gravel, loose	8	64
e and sand e, sticky , fine e, hard e , hard	16 2,630	Clay, gray, sandy J Send, fine to modium grained, subangular;		Gravel and sand,	.0 19-	147	some clay near bottom; very hard	8	60

.

-111-

•

Table 40.--Selected well_logs--Continued

i

}

Neterial	Thick- ness (feet	Depth	Materia)	Thick- ness (feet)	Depth (feet)	Naterial	Thick- ness (feet)	Depth (feet)	Hateria]	Thick- ness (feet)	Dep (fge
1/29-5aaaContinue			18/31-20c (Morrison, p. 237)	R. B.,	1959.	19/28-36abe			19/29-30cdb1Cont1	nued	
and boulders, litt	e1		Sand and gravel Clay, red	20 10	20 30	Sand, fine grain	60	60	Sandstone, brown Clay, soft, mud, and	. 2	31
clay and sand	5	616	Sand	15	45	Clay, blue with sand stringers	37	97	silt	56	35
grains, some clay,	5		Clay Gravel	75 10	120 130	Clay, gray, with same	1	•.	Clay, sandy, soft Rocks, 2 inches	36 1	42
grass roots ist mud rapidly afte	, 7	623	Clay Sand	35	165	stringers Clay, gray, hard, wii	45 Lh	142	Clay, brown, soft	į	41
6 inches into clay			Clay	5 85	170 255	sand stringers Sand, hard, large gra	59	201	Sand, fine Clay, brown, hard; (cut-	•
formation at 623 for			Sandstone Gravel; salt water	70 35	325 360	to small gravel	11	212	off point for 22-	inch 11	44
(29-10bbb (Eingman, fols. p.	D. S.,	1959,	Sand	20	380	Clay, gray, sandy wit sand stringers	th 58	270	Point of water	4	- 4
nd, fine grained			Gravel Sands tone	. 14	386 400	Clay, gray, sandy	20	290	Hater static 33 fee Rock, very large, N	t 2 ard	4
surface material my, green with	,	9	Sand, dry	່ 3	403	Send Clay, grey, sandy, ar	6 nd	296	and soft, water p	ood 10	4
modules of gray		~	Sands tone Grave 1	17 10	420 430	gravel	22	318	Bock, very large, h and soft	1re 35	4
clay, little sand By, green, hard	16	25	Clay Shale, blue	90 80 20	520	Clay, blue, sandy Clay, gray, sandy, wi	52 ith	370	Setting of 14-inch i	na ter	4
and tight by, very fine	8	33	Shale, brown	20	600 620	sand stringers	85	455 480	column End of hole. Eight	-inch	•
grained sandy gray,			Shale, blue "Shale", brown	50 155	670 825	Clay, blue, sandy Clay, yellow, tan	25	400	drill left in hold 495 feet to 506 fe	t,	
Home mica and Country grains of			"Shale", blue	60 40	885	sticky clay, black mucky mud (gas)	40	520	This hole is still	1 1n	
land	41	74	"Shale", gray "Shale", brown	40 125	925 1,050	Besalt	- 44	564	large rock, no sat silt, or mud belo	NG.	
ly, some with lenses of black cla	y 9	83	"Shale", gray "Shale", brown	125	1.065	Basalt, black, hard Basalt, black, extra	17	581	448 feet. Good w	ster.	
y, same with more and	22	105	"Lime", gray "Shale", brown	40 30	1,105	hard	. 8	589	19/29-30cdb2		•
wd, gray, poorly	"	103	"Shale", brown "Conglomerate"	85 15	1,220	Basalt with quartz, some sand, real loc	xe 25	614	Fallon Formatio	DA:	
worted, fine to			"Lime", gray; "iron" at 1,370 feet		1,235	Sand, loose, with gra sandy clay	V 59	673	Surface soll Sand, fine	5	
mains - molian	38	143	at 1,370 feet "Lime", black	210 15	1,445 1,460	Sand, hard	5	678	Sand and gravel, was	ter-	
y morty sorted	11	154	"Lime", black "Shale", gray	30	1,490	Sand with sandy clay Sand, hard	\$7 2	715 717	bearing Hyenaha Format:	4 ion:	
ine to coarse		1	"Sand", gray, carries	10	1,500	Send, silty, and sand	tr -		Clay, sandy	- 4	
Ounded grains by, black and gray,	10	164	"Lime", gray	135	1,635	Sand streaks with blu	- 23 H	740	Sand, fine, and soft clay	t 13	
one fine sand	6	170	"Lime", blue	20 10	1,655 1,665	clay and sandy clay		813	Clay, Mard, blue	1	
y, soft, black, ome fine sand	7	177	water "Lime", grey "Lime", black "Lime", black "Lime", black "Lime", grey "Lime", black "Lime", black "Lime", black Total	10	1,675	<u>19/28-36daa</u>			Sand, fine and soft "Tule" sand, fine,	ciay J (with	
v. green, tight	10	187	"Lime", black	65 60	1,740 1,800	Topsoil and sand	4	.4	dark-colored organ	nic	
y, gray with modul f black clay, very	-3		"Lime", gray	120	1,920	Clay and sand Sand, coarse	9	13 17	<pre>matter), very bad Sand, coarse, and git</pre>	ravel;	
ittle sand; swamp dor from lower 4 o			rows wepth reported	to be	1,980 2,015	Clay, blue, and sand			bad-smelling water	r 10	
ormation	66	273	or 2,060 feet		-	in streaks Clay, brown, sandy	19 14	36 50 53	"Tule" sand, very fi Sand, coarse, and gi	ravel;	
y, gray and green ith fine grained			19/28-22dab p. 125-1		1959,	Clay, black	3	53	"tule" (swamp) was Clay, brown	ter 8	
and -	32	305	Sand	60	60	Clay streaks, dark, sand and gravel	147	200	Sand, fine	ė	1
d, medium to coars reen clay, few	£,		Clay, blue Sand	9	69 72	Clay, dark, sandy Clay, blue	90 60	290 350	Sand, fine, and grav water-bearing	'el, o	1
reen clay, few rains of fine	••		Mard streak	ī	73	Gravel, coarse	ĩ	357	Clay, brown	i	1
ravel y, green, hard	16 45	321 366	Sand, coarse Clay, gray and brown	32 15	105 120	Clay streaks, sand, and gravel	133	490	Sand, fine Clay, brown	13	1
ly clay, swamp gas	11	377	Clay and streaks of			Clay, blue	20	510	Clay, brown, sandy	2	i
y, blue green	36 4	413 419	sand Gravel, comented	138 20	258 278	Rock, porous	48	558	"Tule" (organic) cli black, soft	w. 23	1
y, gray and green,	•		"Netamorphosed rock" Conglomerate, black	5	283 284	19/29-30cha			black, soft "Tule" (organic) cli	Iy,	
ome medium grained and; gas at 447 fe	et		Rock, hard	2	286	Topsoil	5	5	brown, soft, sand; Sand, coarse, and gi	/ 15 mavel 2	1
nd 495 feet	76	495	Conglomerate Sandstone	119	405 409	Sand, yellow, and gra soft	21	26	Clay, hard, black	3	i
y, gray soft, some and	38	533	Clay, yellow	3	412	Clay, blue Sand, blue	8	34 60	Unit unknown: Clay, fine-sandy, a	nd	
y, gray, green and lack, little sand	22	55 5	"Blue strata" Sandstone	<i>n</i>	483 490	Clay, sendy, soft	31	91	Bud Clay, soft, brown	139	3
y, gray, sandy.			Shale	140	630	Sand, streak of clay Clay streaks, blue,	30	121	Send, fine, clay and	1 mud 17	Ĵ
enses of shaly cla as at 575 feet	/: 	589	Sand, fine Sandstone	5	635 642	yellow clay, blue			Clay, light, sandy Clay, hard, brown	ž	3
y. sandy, gray,			Sandstone, soft, and	-		sand Clay, blue, 10 feet;	61	182	Clay, gray	ž	3
reen and brown, odules of lime,			sand Sha]e	118 24	760 784	20 feet hard sand	30	212	Clay, soft, and mud Sand	- 56 63	3
rass roots	13	602	Lime and fine green			Sand, blue Sand, blue, some	60	272	Probably basali	tof	
29-23cac p. 149)	2. B.,	1964,	send Send, hard	6 35	790 825	yellow clay	61	333	Rattlesnake Hi Bunejug Format	ll or ion:	
Fallon formation	:		Shale, blue Sandstone	45	871 874	Clay, blue, yellow cl streaks of send;	ay.		Basalt, Nard, black	3	4
d Selos Formation:	11	11	Shale, blue; hard	-		besalt 404 to 423 f Basalt	ieet 90	423	Lava, porous Lava, porous, slight	2 Lly	4
. gray	36	47	Strock at base Shale, gray	124 13	998 1,011		4 1		harder Lava, porous	15	4
Hyumaha Formation y, black	101	148	Sands tone	24	1.035	19/29-30cm1		_	Leva, porous Lava, very hard	40 6	
Correlation uncer	tain:	-	Shale, blue and green Hard vesicular besalt	15	1,050	Tepsoil Sand, fine	57	12	19/29-31babc		
, gray , soft, black	67 55	215 270	breccia, comented by	7	1 674	Send and gravel	, Á	16	Clay and sand	15	
. OPAV	ñ	342	greenish CaCO3	25	1,076	Clay, sandy Sand, fine, and soft	4	20	Clay, blue, and sam	1 20	
, gray, and fine	14	356	19/28-24acc (Herrison,). 127)			clay Clay, blue, hard	13	22	Sand, blue, fine Sand	46 24	1
, black , graenish-gray	52 142	408	Surface soil Clay, soft	5 11	5 16	Sand, fine, and soft	1	34	Clay, gray	30	1
, gray-green	50	600	Sand	3	19	clay Tule sand, fine, odor		37	Sand Clay, blue	57	
. gray graan	155 25	755 780	Clay, moft Clay, hard	16	35	Very bad	22	69	Send Clay, blue	5	2
. TRY	80	860	Clay, soft	ž	40	Sand, coarse, and gre bed water due to tu	vel.		Gravel, fine	15 15	1
green-gray gray, and street	3 26	886	Sand	5 35	45 80	water above	10	79	Clay, gray Sand and grovel	25 45	2
sand	- 76	962	Clay, hard, sandy	2	82 96	Tule sand, very fine Sand, coarse, and gre	wel.	83	Clay, brown	<u> </u>	Í
, gray, and sandy	94	1,056	Send Clay, sandy	16	107	tule water	•	<u>91</u>	Gravel, committed Clay, blue, and roci	11 15 9	
-it	24	1,080	Silt, black Sand, fine	17	124	Clay, brown Sand, fine	i	92 100	Velcanic rock - elti	Her .	•
gray I, fine	176 2	1,256	Clay, soft	17	128 145	Sand, fine, and grave Clay, brown	n 🖣	109 110	boulders or shatte rock	17	4
. STRY	52 17	1,310	Clay, sandy Sand, very fine	5 10	150 160	Sand, fine	12	123	Cinders, porous blac	:k	-
r, sandy, gray r, gray	3	1,330	Clay	4	164	Clay, brown Clay, brown, sandy	Ż	125 127	reck, softer than above	,	4
, sandy, gray	12 27	1,362	Send Clay	1 15	165 180	Tule clay, black, sof	4 2 5	150		-	•
tstone	1	1,390	Sand with streeks of			Tule clay, brown, sof sandy	't. 15	165			
, gray , soft, gray	2)	1,417	clay Sand	16	196 198	Sand, coarse, and gre		167			
, hard, gray, and	-	1,426	Clay, sandy	10	208	Clay, black, hard Clay, fine, sandy, an	3	170			
ind	17	1,428	Sand, fine Clay, yellow	13 17	22) 238	mud	138	306			
	4	1,444	Gravel, fine	4	242	Clay, brown, soft Clay, fine, sandy, an	5 d	313			
r, soft, gray 7. gray			Clay, green	15	257	Bud	1 7	230			
r, soft, gray	29	1.472	Sand	13	270						
r. soft, gray /. gray /. gray, some sand freeks /. grimy, green	28 From	1,472	Sand Sand, unter-bearing	17	267	Clay, light, sandy	2	332			
, soft, gray , gray , gray, some sand , reaks	28 From o be	1,472 1,472 1,700	Sand								

-112-

Table 40.--Selected well logs--Continued

.

ł

1

÷

÷

Material	Thick- ness (feet)	Depth (feet)	Material	hick- ness feet)	Depth (feet)	Hater1a3	hick- ness feet)	Depth (feet)	Materia]	Thick- ness (feet)	Dep (fee
29-33cbb1			20/26-26ccContinued			20/29-30ccc-Continued			20/29-30cccContinue		11.66
d y. gray	20 5	20 25	Shale, black Sand and shale	2	840 846	Clay, gray, highly	-		Sand, fine to medium-		
d	10	35	Shale, brown and black	าเ	857	plastic Sand as described from	.6	40	grained, few coarse grains, fairly well		
y, blue d	55 25	90 115	Shale, black Shale and slate	13	870 873	36.4 to 39.4	2.4	42.4	graded in fine and		
ÿ	25 35	150	Slate	i i	877	Clay, brown at upper contact with streaks			medium sizes; com- posed of estimated		
d, comented y, sandy	22 13	172 185	Slate and sandy blue clay	4	861	of iron oxide changing to gray,			605 quartz, 255		
y, blue, and silt	66	251	Clay, blue, sandy	23	904	moderately to highly			black fragments (basalt), 155 green		
y, blue, and sand y, blue, and coars:		280	Sandstone Sandstone and blue clay	19	910 929	plastic, soft Organic clay, bluish	4.9	47.3	brown, red lithic fragments; particle:		
and d	50 63	330 393	Sandstone	20	949	black, very soft.			ere subrounded to		
d, comented	8	401	Sandstone and blue clay Sandstone	- 8 6	957 963	plastic, has slight	c)		engular Sand, fine to coarse-	15	17
y, thin layers, am and	1 28	429	Sandstone and blue clay Clay, blue, sticky	15	978 985	organic matter		55.3	grained, well grade	4;	
d	- îi	440	Clay, blue	10	995	Sand, fine to medium- grained, quartz and			perticles are sub- rounded to subangula	hT.	
y and sand d, comented	30 10	470 480	Clay, blue, and sand Clay, blue	8 17	1,003	volcanic fragments			composition as above	e 7.5	18
d, comented, with	-		Clay, blue, and sand		-	in about equal pro- portions; particles			Clayey sand, green gri grading quickly to 1	ly. Fat	
oft spots alt, black	16	496 505	Pock Sandstone	5 10	1,025	rounded to sub-		-	clay, moderately con	h-	-
e with soft spots	Ĵ,	512	Clay, blue	iž	1,047	rounded Clay, dark gray, highly	1.7	57	solidated Fat clay, gray, modern	1.5 1telv	18
k, black, extremely ard	/ K	517	Clay, blue, and sand- stone	,	1.056	plastic, slightly		• ·	consolidated, highly	y .	
ter, probably			Clay, blue	;	1.063	organic; contains a large percent of			plastic. Becomes to drier, well consoli-	ight.	
andstone k, black and red.	6	523	Clay, blue, and sand Clay, blue	-1 <u>j</u>	1,074	coerse sand from			dated from 186.0 to		
ractured	17	540	Clay, sandy	6	1,080	62.0 to 63.0 Send, medium to coerse-	6	63	189.0. Contains 5 1 105 fine-grained sa		
29-33cbb2			Sandstone and clay	ŝ	1,094	grained with occa-			from 189.0 to 194.0	¹⁰ 10	19
evial topsoil	18	18	Shale, sandy Sand	ž	1,102	sional pea gravel; perticles subengular			Sand, fine to coarse- grained with occasio		
dpan	11	29	Clay, sandy	5	1,109	to rounded, about			pes gravel, predomin	}-	
, sandy rock, soft	81 13	110	Send Clay, blue	15 11	1,124	equal proportions of quartz and black			antly medium-grained particles rounded to	1.	
, blue and green	377	500	Slate, blue	4	1,139	volcanic fragments;			angular, estimated f		
rock	30	530	Sandstone Clay, blue	4	1,143	from 67.0 becomes medium-grained, well			quartz with red, bro	жn,	
19-33cbb3			Shale, blue	14	1,164	sorted	20.7	83.7	tan, green lithic fi ments, few black bas	alt	
1	20	20	Sandstone Shale, blue	6 10	1,170	Organic clay, very soft, black tule deposit,			particles. This san has different appear	nd	
, sandy'	20 15	40 55	Sandstone, gray, hard	3	1,183	hes slight odor	1	84,7	ance than previous	-	
	5	60	Sandstone Clay, white	3	1,186 1,195	Sand, medium-grained, as described from 67.0 to			sands.	6	20
, blue	15	75	Chalk rock	8	1,203	83.7	` 7	91.7	Sand, poorly-graded, fine to coarse-grain	wed	
sandy	10 45	85 330	Clay, white Sand rock, blue	17	1,220	Clay, greenish-gray, very dense, slightly			with occasional pea		
with some sand	10	140	Shale, blue	6	1,236	to moderately plastic	2	93.7	gravel; particles rounded to angular.		
stone?	10 10	150 160	Sand rock, blue Sandstone	10	1,246	Sand, medium-grained as			composition as above		
, loose	- Á	164	Clay, blue	j	1,250	described from 67.0 to 83.7	4.3	96	From 216.0 to 221.8 becomes well-sorted.		
l and some clay	52 7	216 223	Clay, blue, and gravel Slate, blue, and clay	9 8	1,262	Clay, greenish-gray as	-		medium-grained	20	22
l' · ·	10	233	Clay, blue	42	1,312	described from 91.7 to 93.7	1	99	Sand, mostly medium- grained, fairly well		
and sand (very in layers)	107	340	Sand rock, hard Clay and sandstone	4	1,316	Send, medium-grained as	·		sorted, composition		
, hard	10	350	-	'	1,323	described from 67.0 to 83.7	1	100	as above	1.8	22
istone, soft	20	370	20/28-16d			Sand, medium-grained,	•		Sandy clay, gray, low to moderate plastici	ity,	
land clay	38 50	408 458	Clay	2	Z	fairly well-sorted, rounded to subangular			Contains an estimate 255 fine sand	۲.2 ۲.2	22
, blue, and sand	24 8	482	Sand Clay, sandy	107	110	particles of quartz			Sand, fine to medium-	6.6	~
, blue J, comented	าอื	490 500	Sand, medium	10	120	and volcanic frag- ments	1.7	101.7	grained, composition		
it. it, fractured and	17	517	Clay, sandy Sand, medium	75 5	195 200	Clay, greenish-gray,			as from 194.0 to 221 Clay, gray, moderate		22
POUS	14	531	Clay, sandy	145	345 357	dense, slight to moderate plasticity;			plasticity, contains	;	
4 Mar 1			Sand and gravel Basalt rock	12 25	35/ 382	changing to light			sand	· 1	2
<u>16-26cc</u>		••	Gravel, comented	158	540	brown clay, firm understely plastic	3	101.7	Sand, fine to modium-		
, white el	32 18	32 50	Rock, broken Unconsolidated rock,	37	577	Send, median to coarse-	•	100.7	grained at upper contact becoming fig		
t	52	102	conglomerate	50	627	grained, same com- position as sand from			to coarse-grained		
s tone e	18 3	120 123	20/29-30ccc			99.0 to 101.7	2.3	107	gravel; red, green,		
stone	23	146	Dune sand, gray, amstly			Clay, light brown, dense	•		black lithic fragmen		
e rock	8 23	154 177	very fine to fine-			moderately plastic; contains low percent			50% quartz; perticle rounded to subangula	15)r 7 #	91
t	20	197	grained, small per- cent medium grained.			of fine sand	6	113	Clay as from 225.0 to	. 7.0	64
s Lone e	7 91	204 295	rounded to subangular			Send, light brown, black red, white translucent	(.		225.0 alternating with fine to medium	_	
stone	60	355	particles mostly quartz with 10 to			perticles, medium to	-		grained sand, appar-		
rock, hard and sand	14	369 371	15% lithic freements.			Cherse-grained, mostly Cherse-grained, rounds			ently accurring as		
	15	386	black, brown, red			to subangular particle of quartz and lithic	5		thin bods of clay and sand; clay is		
e e and sand	45	431	(probably basalt and rhyolite) contains			of quartz and lithic fromments in about			moderately plastic	2.8	21
e end send t		440 528	a small amount of	** -		equal proportiens. Th	ria		Send, fine to medium- evalued, 705 martz.		
e and rock		\$36	silt Silt, brown, lew	18.0	18.6	clay interbed at 115.0 about 1-feet thick			preined, 705 quartz, 305 red; brewn, blac	k,	
2	39 5	575 580	plasticity, fairly			Clay, brown, losn, sligh	14.2 t	129.2	tan lithic fragments particles rounded to	;; ;	
	2	\$82	dense; contains a low plasticity,			to moderate plasticity			Subenouler	3.4	2
, dry and sand	2	590 592	fairly dense;			fire; contains about 5 fine sand. Changes to	•		Sond, fine to median-		
, ery	23	615	contains a low percent of very			gray and becomes sandy	,		preined to 245.0, 705 quertz, 305 11th	itc	
2	4	619 622	fine, micaceous			from 135.0 to 138.7 Fat clay, light gray,	9.5	138.7	frequents, mostly volcanics, rounded t		
	118	622 740	sand	4.2	22	highly plastic, firm,	•		subongular, gradual)	y	
e and sand	12	752	Clay, gray, firm, moderately to			moderately compolidate Recomes tight, dente.	d.		becoming coarse grat	ned	
e e and sand	17 5	769 774	highly plastic,			Becomes tight, dense, well consolidated from		•	aquel proportions of	,	
e and rock		778	solidated; con-			145.0 to 147.0	8.3	147	medium and coarse gr	a ins	
•	14 14	792 806	tains less then			Clay, dark gray to black dense, well consolidat	ad.		at 250. Predominant coarse-grained at 25	iy 3.0	
e, black, sticky	13	8 19	SE very fine black sand	14 4	-	slightly organis, high	ly	•	and below with 5 to	101	
e, black, and avel	•		Send, very fine to	14.4	36.4	plastic Clay, dark greenish-gray	2	149	pes gravel	25.7	26
474 [7	826	medium-grained,			moderately plastic,			Clay, brown, moderatel plastic; contains 10	y	
			75% quartz and 25%			moderately consolidate	.				
e, brown, and avel	5	831	lithic framests						to 15% fine to media		
e, brown, and	5	831	lithic fragments (volcanics), rounded to sub-			contains 10 to 155 fine-grained sand		154	to 15% fine to media grained sand	- 1.8	25

-113-

Table 40.--Selected well logs--Continued

)

•

-)

Material	hick- ness feet)	Depth (feet)	Material s	nick- Vess Veet)	Depth (feet)	Haterial	(hick- ness (feet)	Depth (feet)	Haterial	fhick- ness (feet)	Dep (Yee
/29-30cccContinued			20/29-30cccContinued			20/29-30cccContinued			20/29-30cccContinued		
nd, fine to medium-			Clay, black, soft,			Sandy clay, light gray			Sand, fine to madium-		
grained, 403 quartz, 60% lithic frag-			slightly organic becoming more			slightly plastic; contains 25 to 30%			grained. Mostly medium grained, few		
ments; particles			organic with depth,			very fine quartz			coarse grains;		
rounded to sub- angular	2.5	270	highly organic at about 385.0; con-			and black sand Sand, poorly-graded,	3	477.5	particles are mostly	4.	
ay and sand, thinly			tains 10 to 155			fine to medium-			angular to subrounde few are well rounded		
bedded. Clay. gray, moderately			very fine sand; has slight organic			grained, angular to subrounded particles			composed of 50 to 60 quartz, 40 to 50%	X.	
plastic, firm;			edor, silty	12	392	most are angular,	•		black, gray, brown,		
contains 10 to 15% fine send. Sand.			Sand, fine to medium- grained, poorly-			305 quartz with red, brown, black, green,			red, green lithic		
fine to medium-			graded, quartz,			gray lithic fragments			fragments, few mica flakes. Cuttings		
grained, com- position as from			preen, brown, black fragments	1	393	fow dark mica flakes Clay, gray, soft.	3.5	481	at 583.0 and 588.0 are clayey sand,		
267.5 to 270.0	6.9	276.9	Silt and clay, black,	•		moderately plastic,			brown, fine-grained,		
nd, fine to medium-			organic, very soft; some as described			slightly sandy Clay, brown, moderstely		490	mostly quartz grains with 25 to 30% clay	20	60
preded, predomin-			above from 380,0			plastic, firm,	,		Sandy clay, light rust	20	
ently medium- preined, subrounded			to 392.0 Sand, fine to medium-	2	395	Boderately consoli-			brown, dense, moder-		
to angular particles,			grained, predomin-			dated, contains 5 to 10% fime sand	4	494	ately well consoli- dated, slightly to		
to 60% quartz, No to 50% black,			antly medium-grained,			Clay, very soft, gray;			moderately plastic;	_	
rown, red, green			subangular to rounded particles of quartz			fine sand which prob-			from 10 to 305	' <u>.</u>	60
lithic fragments, Maximum particle			and lithic fragments Clay and silt, dark	1.5	396.5	ably occurs as thin			Sand, medium grained	-	
12e, 0.1-inch			gray to blutsh-black,			interbeds, occasional streak of black			with few fine and coarse grains as from		
Hameter. This Hand is probably			plastic, soft to			decomposed organic			563.0 to 600.0.	-	
mental comented			very soft, organic; contains a low per-			<pre>mterial present Clay, very soft, gray,</pre>	6	500	Several thin beds of sandy clay are present	nt 15	61
ithough there is no indication			cent of very fine	1 0 -	4	contains 25 to 30%			Sandy clay from 619.0		••
f comentation in			sand Sand, as described	10.5	407	fine send which probably occurs as			<pre>to 620.0, light brown slightly plastic, com</pre>		
the cuttings	20.5	297.4	from 395.0 to 396.5	1	408	thin interbeds,			tains 15 to 20% fine		
d with thin cley mterbeds; sand			Clay and silt, dark gray to bluish-			<pre>eccasional streak of black, decomposed</pre>			sand	1	62
s fine to medium-			black, plastic,			organic matter		506	Send, predominantly medium-grained, few		
rained as above; lay is gray,			soft, organic; contains a low			Clayey sand gradually			fine and coarse grain		
ighly plastic,	. -		percent of very			changing to sandy clay; 20% clay, 80%			<pre>particles mostly angu to subrounded, few we</pre>		
ins d with thin clay	2.6	300	fine sand Sand, fine to medium-	3	411	sand at upper con-			rounded; estimated 60)	
sterbeds as above	9	309	grained as described			tect with clay con- tent gradually			to 701 quartz with 30 to 405 black (basalt)		
dy clay, dark gray, Dderstely plastic,			from 395.0 to 396.5	1	412	increasing to 60%.			sreen, gray, red, bro lithic fragments, fee	wn	
oderately consol-			Clay, grayish-green, dense, slightly			gravish-green, non- plastic; sand is			Ithic fragments, few mica flakes. Thin be	r els	
dated, firm,			plastic	4	416	fine-grained	3	ទារ	of sandy clay at 622.		
ecoming softer fith depth and			Silt and clay, dark gray to black.			Clay and silt, dark gray to black,			and 626.0, brown, moderately consolidat	-	
lightly organic	10	319	organic	3	419	organic, soft	2	513	monplastic; contains	.	
y, very soft, work ray to black,			Send, as from 395.0 to 395.5	.5	419.5	Clay, light gray, soft			25 to 35% fine sand	16	63
lightly organic;			Organic silt and clay	.9	413.3	contains a low per- cent of sand	4	517	Clay, brown, dense, moderately to highly		
o odor d, fine to medium-	2	321	es above	2.5	422	Clay and silt, dark		-	plastic; contains les	5	
rained, approx-			Sand, medium-preimed becoming medium to			gray to black, soft, organic	1	518	than 5% fine sand Sand, fine to medium-	4	64
mately equal pro- prtions of quartz			coarse-grained from			Cley as from 513.0 to	•		grained, composition		
nd lithic frag-			425.0 to 427.0, rounded to subangular			517.0, sandy, prob- ably contains thin			as from 604.0 to 636. Clay, brown, moderately		64
ents, meximum			particles, 305 quartz,			interbeds of sand	2	\$20	plastic, firm	1	64
erticle size	7	328	70% black, green, gray, lithic fragments.			Clay, gray, soft, sandy; probably con-			Sand, fine to medium- grained as from 604.0		
y or silt, dark			Sand appears to be	•		tains thin beds of			to 636.0. Cuttings		
luish-gray, very oft, slightly			clean but is under- lain and overlain by			sand Interbedded clay and	5	\$25	contain from 10 to 25% clay from 650.0		
rganic	2	330	organic deposits	10	432	sand. Clay, gray,			to 665.0, brown to		
d, fine to medium-			Clay, dark gray, moderately soft,			soft, moderately plastic as above.			gray, firm, moder-		
rained as from 21.0 to 328.0	2	332	moderately plastic,			Sand fine to medium-			ately plastic; prob- ably occurs as thin		
y, dart bluish- rey, or silt as			slightly organic,		434	grained, predominantl	× _		clay interbeds. Thin		
rom 328.0 to			very slight odor Send, predominantly	4	436	medium-grained Clay, gray, soft,	,	534	clay layer at 668.0 Clay, medium gray, firm	24	67
10.0 d. fine to medium-	4	336	medium-grained,			moderately plastic,	-		moderately consol1-	•	
mined as from			some fine grained, composition as above	4	440	slightly organic Sand, predominantly		64 3	dated, moderately to highly plastic	3	67
21.0 to 328.0	6	342	Cuttings are sandy clay:	•		medium-grained,			Sandy clay with thin	-	4 /
r, dart bluish- nay as from 328.0			60% clay, 40% sand. Formation is probably			to subrounded, quartz			sand interbeds. Clay		
330.0	1	343	thin beds of clay and			and red, brown, black			1s grey, moderately consolidated; contain	5	
I, fine to medium-			sand. Clay is derk gray, slightly			groon lithic fragment	Š.,		10 to 25% fine sand.	-	
tined as from 1.0 to 328.0	1	344	erganic, slight odor			cuttings contain 20 t 252 soft gray clay,			Sand is fine to mediu grained as above	7	
ney send, blue-gray, ine-grained exarts			as before. Send 1s predominantly medium-			probably thin clay		-	Clay, mediam-gray, dens		
nd with 10 to 155		•••	grained, 60% quartz,			interbods Send, medium-grained,	11.3	554.3	<pre>moderately well conso idated, moderately to</pre>	1-	
ine-gray clay I, fine to medium-	1	345	40% tan, red, black,			perticles mostly			highly plastic, conta	1ns 👘	
mined, subangular			light green gray frequents, few mice			engular to subrounded few well rounded,	•		a low percent of fine seed	11.3	63
orounded particles quartz and red.			flakes; particles are angular to			estimated 60 to 705					
own, green, black			sebrounded	11	451	quertz, small amount : chert, remainder black	FT k		26/33-1084		
ithic fragments,			Interbedded clay and			(besalt), green, gray			Silt, soft Graval, coarse		
ze 0.1 inch. This			sand. Clay is gray, soft, inorganic.			red, brown lithic fre ments, for mice flate	۴.	-	Gravel, coarse Gravel and silt, madium	3	1
terbed of gray clay	**	-	Sand, modium-grained,	-		Clay, brown, dense,			soft	6	1
wm 347.0 to 348.	10	355	composition as above Send, fine to medium-	5	456	moderately well conso	-		Send, hord Gravel, coarse	1	2
derstely plastic;			grained, angular to			idated, moderately plastic, slightly			Gravel, hard, coarse	10	
inteins low porcent			rounded serticles of			sandy	1	96 3	Silt and sand, soft Gravel, hard, coarse	5 15	4
bined sand	4	359	quertz and lithic frequents	3	459	Sand, fine to mudium- grained, predominently	,		Silt and send, soft	15	e 71
, fine to modium-	,		Interbedded soft gray	-		medium-grained, few			Gravel, hard, coarse	10	8
wined, mostly dium grained.			clay and medium-			coarse grains; pertic	les		Silt and sand, soft Gravel, hard, coarse	13	90
ertz, green, www.black freg-			grained sand Sand, medium to coarse-	•	464	<pre>are mostly angular to subrounded, few well</pre>			Sravel, hard, coarse,	-	
	1	160	grained, average			rounded: estimated 60			witer	12	119
nts 7, light brown,		360	perticle size, 0.1 inch, maximum size,			to 70% quartz, small amount of chert and					
oft, low plasticity,			& inch, angular to			fow mica flakes;					
ontains a low per-	34	374	rounded	5	469	Penainder is black					
wat of fine sand			Clay, light brown,			(besalt) green, gray,					
mt of fine sand , dark gray, soft,						red, brown lithic					
			moderately plastic, soft to firm Sand as from 464.0 to	z	471	red, brown lithic fregments	18	580			

-114-

- Archbold, N. L., 1969, Industrial mineral deposits, in Moore, J. G., Geology and mineral deposits of Lyon, Douglas, and Ormsby Counties, Nevada: Nevada Bur. Mines Bull. 75, p. 31-42.
- Bonham, H. F., 1969, Geology and mineral deposits of Washoe and Storey Counties, Nevada: Nevada Bur. Mines Bull. 70, 140 p.
- Breese, C. R., Jr., 1968, A general limnological study of Big Soda Lake: Reno, Nevada Univ., unpub. thesis (M.S.), 83 p.
- Chandler, A. E., 1905, Hydrographic investigations in Nevada, <u>in</u> Proceedings of second conference of engineers of the Reclamation Service with accompanying papers, compiled by F. H. Newall: U.S. Geol. Survey Water-Supply Paper 146, p. 34-37.
- Clyde-Criddle-Woodward, Inc., 1971, Final report on water-use improvement study of the Truckee-Carson River basin (consulting report): Salt Lake City, Utah, Clyde-Criddle-Woodward, Inc., Consulting Engineers, 111 p.
- Eakin, T. E., and others, 1951, Contributions to the hydrology of eastern Nevada: Nevada State Engineer, Water Resources Bull. 12, 171 p.
- Everett, D. E., and Rush, F. E., 1967, A brief appraisal of the water resources of the Walker Lake area, Mineral, Lyon, and Churchill Counties, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources--Reconn. Ser. Rept. 40, 44 p.
- Gale, H. S., 1913, The search for potash in the desert basin region: U.S. Geol. Survey Bull. 530, p. 295-312.
- Glancy, P. A., 1971, Water-resources appraisal of Antelope Valley and East Walker area, Nevada and California: Nevada Dept. Conserv. and Nat. Resources, Water Resources--Reconn. Ser. Rept. 53, 69 p.
- Godwin, L. H., and others, 1971, Classification of public lands valuable for geothermal steam and associated geothermal resources: U.S. Geol. Survey Circ. 647, 18 p.
- Quyton, W. F., & Associates, 1967, Report on preliminary investigation of groundwater conditions, vicinity of Carson City, Nev.: Austin, Texas, Wm. F. Quyton & Associates, Consulting Ground-Water Hydrologists, 30 p.
- Huxel, C. J., Jr., 1969, Water resources and development in Mason Valley, Lyon County, Nevada, 1948-65: Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 38, 77 p.
- Katzer, T. L., 1972, Reconnaissance bathymetric map and general hydrology of Lahontan Reservoir, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources--Inf. Ser. Rept. 9.

Kingman, D. S., 1959, Water supply investigation, Naval Auxiliary Air Station, Fallon, Nevada: Palo Alto, Calif., Dean S. Kingman, Consulting Engineer, unpub. report, 44 p.

ì

- Koenig, J. B. (compiler), 1963, Geologic map of California, Olaf P. Jenkins ed.-Walker Lake sheet: California Div. Mines and Geology.
- Kohler, M. A., Nordenson, T. J., and Baker, D. R., 1959, Evaporation maps for the United States: U.S. Weather Bur. Tech. Paper 37, 13 p.
- Lake Tahoe Area Council, 1970, Eutrophication of surface waters--Indian Creek Reservoir: Federal Water Quality Adm. Demon. Proj., First Progress Rept., 141 p.
- Lee, C. H., and Clark, W. O., 1916, Report in Soda Lakes investigation, Truckee-Carson project near Fallon, Nev.: U.S. Geol. Survey Rept., p. 657-706.
- Lincoln, F. C., 1923, Mining districts and mineral resources of Nevada: Reno, Nevada Newsletter Publishing Company, 295 p.
- Matthai, H. F., 1975, Long-term flow of the Carson River in California and Nevada: U.S. Geol. Survey open-file report, 10 p.
- McGlashan, H. D., and Briggs, R. C., 1939, Floods of December 1937 in northern California: U.S. Geol. Survey Water-Supply Paper 843, 497 p.
- McKee, J. E., and Wolf, H. W., 1963, Water quality criteria, 2d ed.: California Water Quality Control Board Pub. 3-A, 548 p.
- Miller, M. R., Hardman, George, and Mason, H. G., 1953, Irrigation waters in Nevada: Nevada Univ. Expt. Sta. Bull. 187, 63 p.
- Montgomery Engineers, 1965, Comprehensive plan of water system development for Carson Water Company: Las Vegas, Nevada, Montgomery Engineers, 69 p.
- Moore, D. O., 1968, Estimating mean runoff in ungaged semiarid areas: Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 36, 11 p.
- Moore, J. G., 1969, Geology and mineral deposits of Lyon, Douglas, and Ormsby Counties, Nevada: Nevada Bur. Mines Bull. 75, 45 p.
- Morrison, R. B., 1959, Stratigraphic sections, well logs, and soil-profile sections in the southern Carson Desert, near Fallon, Nevada: U.S. Geol. Survey openfile report, 294 p.
- 1964, Lake Lahontan: geology of southern Carson Desert, Nevada: U.S. Geol. Survey Prof. Paper 401, 156 p.
- National Technic. 1 Advisory Committee, 1968, Water quality criteria: Federal Water Pollution Control Adm., 234 p.
- Nevada Bureau of Mines and others, 1962, Geological, geophysical, hydrological investigations of the Sand Springs Range, Fairview Valley, and Fourmile Flat Churchill County, Nevada: Nevada Univ., 127 p.

Nevada Legislative Commission, 1969, The Marlette Lake water system: Nevada Legislative Comm., Bull. 79, 103 p.

1971, Report on the continuation study of the Marlette Lake water system: Nevada Legislative Comm., Bull. 98, 8 p. with exhibit reports.

Nevada State Engineer, 1971, Estimated water use in Nevada: Nevada State Engineer, Water For Nevada Ser., Rept. 2, 32 p.

Newell, F. H., 1891, Hydrography of the arid regions: U.S. Geol. Survey 12th Ann. Rept., pt. II, p. 213-361.

_____1894, Results of stream measurements: U.S. Geol. Survey 14th Ann. Rept., pt. II, p. 89-155.

Pacific Southwest Inter-Agency Committee, 1972, Great Basin Region comprehensive framework study, selected data supplement, Appendix V, Water resources: Salt Lake City, Water Resources Council, 219 p.

Piper, A. M., 1969, A water budget of the Carson Valley, Nevada: U.S. Geol. Survey Prof. Paper 417-F, 8 p.

Pyramid Lake Task Force, 1969, Basin studies, reports, and data, Truckee-Carson River basins: Pyramid Lake Task Force, 51 p.

Record-Courier, 1972, Neva Diamond ditch carries first "head" for irrigation: Gardnerville, Nev., Record-Courier, Aug. 24, 1972, p. 6.

Rollins, M. B., 1965, Water quality of the Newlands Reclamation Project: U.S. Dept. Agriculture, Agricultural Research Service Paper ARE 41-97, 44 p.

Rush, F. E., 1967, Water-resources appraisal of Washoe Valley, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources--Reconn. Ser. Rept. 41, 39 p.

_____1972, Hydrologic reconnaissance of Big and Little Soda Lakes, Churchill County, Nevada: Nevada Div. Water Resources, Inf. Ser. Rept. 11.

Russell, I. C., 1885, Geological history of Lake Lahontan, a Quaternary lake of northwestern Nevada: U.S. Geol. Survey Mon. 11, 288 p.

Smith, G. H., 1943, The history of the Comstock Lode, 1850-1920: Nev. Univ. Bull., v. 37, no. 3, 305 p.

Stabler, Herman, 1904, Report on ground waters of Carson Sink: U.S. Geol. Survey unpub. report, 49 p.

____1911, Some stream waters of the Western United States: U.S. Geol. Survey Water-Supply Paper 274, 188 p.

Tatlock, D. B., 1969, Preliminary geologic map of Pershing County, Nevada: U.S. Geol. Survey open-file map.

- Thompson, T. H., and West, A. A., 1881 [1958], History of Nevada with illustrations and biographical sketches of its prominent men and pioneers: Berkeley, Calif., Howell-North Publ. Co., 680 p.
- U.S. Bureau of Reclamation, 1954, Washoe Project, Nevada-California, feasibility report: U.S. Bur. Reclamation, 117 p.
- U.S. Department of Agriculture, 1973, History of flooding, Carson Valley and Carson City watershed: U.S. Dept. Agriculture, Special Report, 98 p.
- U.S. Environmental Protection Agency, 1975, Interim primary drinking water standards: Federal Register, v. 40, no. 51, p. 11994.
- U.S. Geological Survey, 1910, Surface water supply of the United States, 1907-8, pt. X, the Great Basin: U.S. Geol. Survey Water-Supply Paper 250, 151 p.
- 1913, Water resources of California, pt. III, Stream measurements in the Great Basin and Pacific Coast river basins: U.S. Geol. Survey Water-Supply Paper 300, 956 p.

____, Surface water supply of the United States, pt. 10, the Great Basin: U.S. Geol. Survey Water-Supply Papers

Water year	Number	Year of
1901-22	1314	19 60
191 6	3 90	1917
1938	86 0	1939
1943	9 80	1945
1951	1214	1953
1956	1444	1958
1961-65	1927	1970

- U.S. Public Health Service, 1962, Drinking water standards, 1962: U.S. Public Health Service Pub. 956, 61 p.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture Handb. 60, 160 p.
- University of Nevada, 1944, Chemical analyses of municipal water supplies, bottled mineral waters, and hot springs of Nevada: Nevada Univ., Public Service Div., Dept. Food and Drugs, 16 p.
- Van Denburgh, A. S., 1973, Mercury in the Carson and Truckee River basins of Nevada: U.S. Geol. Survey open-file report, 12 p.
- Van Denburgh, A. S., Lamke, R. D., and Hughes, J. L., 1973, A brief waterresources appraisal of the Truckee River basin, western Nevada: Nevada Div. Water Resources, Vister Resources--Reconn. Ser. Rept. 58, 122 p.
- Walters, Ball, Hibdon, & Shaw, 1970, Carson Valley ground-water investigation for Carson Water Company: Reno, Nev., Walters, Ball, Hibdon, & Shaw, Civil Engineering Consultants, 59 p.

Willden, Ronald, and Speed, R. C., 1968, Geologic map of Churchill County, Nevada: U.S. Geol. Survey open-file map.

Worts, G. F., Jr., and Malmberg, G. T., 1966, Hydrologic appraisal of Eagle Valley, Ormsby County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources--Reconn. Ser. Rept. 39, 55 p.

SELECTED REFERENCES

Carson River Basin Council of Governments, 1973, Interim regional land use plan, vol. I, Analysis of existing general plan elements: U.S. Dept. Housing and Urban Development, Project No. CPA-NV-09-39-1000, Rept. 6, 120 p.

____1973, Goals, objectives and planning principles: U.S. Dept. Housing and Urban Development, Project No. CPA-NV-09-39-1000, Rept. 4, 98 p.

1973, A history of development in the Carson-Walker Region: U.S. Dept. Housing and Urban Development, Project No. CPA-NV-09-39-1000, Rept. 3, 77 p.

1973, Interim regional landuse plan, vol. II, Comprehensive plan: U.S. Dept. Housing and Urban Development, Project No. CPA-NV-09-39-1000, Rept. 8, 53 p.

1974, Regional water supply, treatment and distribution plan, phase I, Inventory of existing conditions: U.S. Dept. Housing and Urban Development, Project No. CPA-NV-09-39-1004, Rept. 11, 128 p.

1974, Hydrologic principles at work on the Carson and Walker River drainages: U.S. Dept. Housing and Urban Development, Project No. CPA-NV-09-39-1004, Rept. 10, 53 p.

1974, Regional water supply, treatment and distribution plan, phase II, Master plan: U.S. Dept. Housing and Urban Development, Project No. CPA-NV-09-39-1004, Rept. 12, 122 p.

1974, Regional storm drainage plan, Carson River basin, phase I, Inventory of existing conditions: U.S. Dept. Housing and Urban Development, Project No. CPA-NV-09-39-1004, Rept. 13, 88 p.

1974, Regional storm drainage plan, phase II, Master plan: U.S. Dept. Housing and Urban Development, Project No. CPA-NV-09-39-1004, Rept. 15, 111 p.

Clark, F. W., and Chatard, T. M., 1884, A report of work done in the Washington laboratory during the fiscal year 1883-84: U.S. Geol. Survey Bull. 9, 40 p.

Clyde-Criddle-Woodward, Inc., 1968, Report on lower Truckee-Carson River hydrology studies: Salt Lake City, Utah, Clyde-Criddle-Woodward, Inc., Consulting Engineers, 83 p.

_____1970, Step 1, Program development of water use improvement study of Truckee-Carson River basin: Salt Lake City, Utah, Clyde-Criddle-Woodward, Inc., Consulting Engineers, 14 p.

Cohen, Philip, and Everett, D. E., 1963, A brief appraisal of the ground-water hydrology of the Dixie-Fairview Valley area, Nevada: Nevada Dept. Conserv. and Nat. Resources, Ground-Water Resources--Reconn. Ser. Rept. 23, 40 p.

DeBraga, Marcia, 1964, Dig no graves: Sparks, Nev., Western Printing and Publishing Co., 75 p.

- District Court of the United States in and for the District of Nevada, 1951, The United States of America plaintiff vs. Alpine Land and Reservoir Company, a corporation, et. al., defendants, Decree No. 183, Proposed findings of fact, conclusions of Law and Decree, 111 p.
- Everett, D. E., and Rush, F. E., 1965, Water resources appraisal of Lovelock Valley, Pershing County, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources--Reconn. Ser. Rept. 32, 40 p.
- Gale, H. S., 1914, Notes on the Quaternary lakes of the Great Basin, with special reference to the deposition of potash and other salines: U.S. Geol. Survey Bull. 540, p. 399-406.
- Garside, L. J., and Schilling, J. H., 1967, Wells drilled for oil and gas in Nevada: Nevada Bur. Mines Map 34.
- Gifford, R. O., Ashcroft, G. L., and Magnuson, M. D., 1967, Probability of selected precipitation amounts in the western region of the United States; section for Nevada: Nevada Univ. Agr. Expt. Sta. Pub. 1-8, 31 p.
- Giles, L. W., Marshall, D. B., and Barker, Will, 1953, Stillwater Wildlife Management area: U.S. Fish and Wildlife Service, Conservation in Action, No. 9, 9 p.
- Glancy, P. A., 1969, A mudflow in the Second Creek drainage, Lake Tahoe basin, Nevada, and its relation to sedimentation and urbanization: U.S. Geol. Survey Prof. Paper 650-C, p. C195-C200.

Ì

- Hance, J. H., 1914, Potash in western saline deposits: U.S. Geol. Survey Bull. 540, p. 457-469.
- Harding, S. T., 1965, Recent variations in the water supply of the western Great Basin: Berkeley, California Univ. Archives Ser. Rept. 16, 226 p.
- Hardman, George, 1965, Nevada precipitation map, adapted from map prepared by George Hardman and others in 1936, which was published <u>in</u> Nevada Univ. Agr. Expt. Sta. Bull. 183, August 1949, 57 p.
- Hardman, George, and Mason, H. G., 1949, Irrigated lands in Nevada: Nevada Univ. Agr. Expt. Sta. Bull. 183, 57 p.
- Hardman, George, and Venstrom, Cruz, 1941, A 100-year record of Truckee River runoff estimated from changes in levels and volumes of Pyramid and Winnemucca Lakes: Am. Geophys. Union Trans., p. 71-90.
- Harmsen, Lynn, 1972, Flood investigations in Nevada, May 1, 1971 to May 1, 1972: U.S. Geol. Survey unpub. Prog. Rept. 11, 82 p.
- Harrill, J. R., 1971, Water-resources appraisal of the Granite Springs Valley area, Pershing, Churchill, and Lyon Counties, Nevada: Nevada Dept. Conserv. and Nat Resources, Water Resources--Reconn. Ser. Rept. 55, 36 p.
- Harrill, J. R., and Worts, G. F., Jr., 1968, Estimated water use in Nevada, 1950-65: Nevada Dept. Conserv. and Nat. Resources, Div. Water Resources Inf. Ser. Rept. 7, 37 p.

Harris, E. E., 1970, Reconnaissance bathymetry of Pyramid Lake, Washoe County, Nevada: U.S. Geol. Survey Hydrol. Inv. Atlas HA-379.

Holmes, D. H., Jr., 1966, Water requirements and uses in Nevada mineral industries: U.S. Bur. Mines Inf. Circ. 8288, 66 p.

- Houston, C. E., 1950, Consumptive use of irrigation water by crops in Nevada: Nevada Univ. Agr. Expt. Sta. Bull. 185, 27 p...
- Hulse, J. W., 1966, The Nevada adventure, a history: Reno, Nevada Univ. Press, 311 p.
- Jones, J. C., 1914, The geologic history of Lake Lahontan: Science, v. 40, p. 827-830.
- Lamke, R. D., and Moore, D. O., 1965, Interim inventory of surface-water resources of Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources Bull. 30, 39 p.
- Lee, W. T., Stone, R. W., Gale, H. S., and others, 1915, Guidebook of the overland route: U.S. Geol. Survey Bull. 612, 244 p.

Lintz, Joseph, Jr., 1957, Nevada oil and gas drilling data, 1906-1953: Nev. Bur. Mines Bull. 52, 80 p.

Loeltz, O. J., and Phoenix, D. A., 1955, Geology and ground-water resources of Buena Vista Valley, Pershing County, Nevada: Nev. State Engineer Water Resources Bull. 13, 51 p.

Meinzer, O. E., 1923, Outline of ground-water hydrology, with definitions: U.S. Geol. Survey Water-Supply Paper 494, 71 p.

Mifflin, M. D., 1968, Delineation of ground-water flow systems in Nevada: Desert Research Inst., Hydrology and Water Resources Pub. no. 4, 111 p.

Morrison, R. B., 1965, Quaternary geology of the Great Basin in Wright, H. E., Jr., and Frey, D. G., eds., The Quaternary of the United States: Princeton Univ. Press, p. 265-285.

Morrison, R. B., and Frye, J. C., 1965, Correlation of the Middle and Late Quaternary successions of the Lake Lahontan, Lake Bonneville, Rocky Mountain, southern Great Plains, and eastern Midwest areas: Nevada Bur. Mines Rept. 9, 45 p.

Nevada Appeal, 1960, Friday rainstorm hits Kings Canyon with mud, debris: Carson City, Nevada Appeal, Aug. 1, 1960, p. 12.

_____1970, Capping smelly well would mean rationing: Carson City, Nevada Appeal, July 30, 1970, p. 1.

_____1972a, Study plans for Dayton water, sewer system: Carson City, Nevada Appeal, Mar. 3, 1972, p. 1.

_____1972b, Green light to Dayton's water plan: Carson City, Nevada Appeal, Mar. 7, 1972, p. 1.

- Nevada Bureau of Environmental Health, 1972, Interim water quality management plan for the Carson River basin: Nevada Bur. Environmental Health, 61 p.
- Nevada State Journal, 1952, Flash flood from Galena Creek maroons family--blocks highway: Reno, Nevada State Journal, July 30, 1952, p. 1.

1956a, Flash floods hit--3 feared dead--northwest section of city stricken-huge boulders and logs smash route into high Gierra and Lake Tahoe: Reno, Nevada State Journal, July 21, 1956, p. 1.

1956b, Hundreds search flood debris for missing persons: Reno, Nevada State Journal, July 22, 1956, p. 14.

1956c, Four-year-old flood victim's body found--3 others missing: Reno, Nevada State Journal, July 24, 1956, p. 8.

1967, Flooding, slides strike Incline--mud oozes over roads at Tahoe: Reno, Nevada State Journal, Aug. 26, 1967, p. 1.

1971, Sudden flood hits Hidden Valley: Reno, Nevada State Journal, Aug. 17, 1971, p. 1, photos p. 12.

- Pacific Southwest Inter-Agency Committee, 1971, Great Basin Region comprehensive framework study, Appendix V, Water resources: Salt Lake City, Water Resources Council, 109 p.
- Pumphrey, H. L., 1955, Water-power resources in upper Carson River basin, California-Nevada: U.S. Geol. Survey Water-Supply Paper 1329-A, 29 p.
- Pyramid Lake Task Force, 1971, Final report: Pyramid Lake Task Force, 39 p., plus appendix.
- Reno Evening Gazette, 1952, Mt. Rose flood wrecks home--19 marooned by cloudburst--Galena Creek torrent closes roads in area: Reno Evening Gazette, July 30, 1952, p. 1.

1956, Four missing in flash flood--Galena, northwest Reno hit by high water: Reno Evening Gazette, July 21, 1956, p. 1.

1956a, Body of girl flood victim is recovered--mother, son, and Reno man still missing: Reno Evening Gazette, July 23, 1956, p. 1.

1965, Reno storm damage high: Reno Evening Gazette, Aug. 16, 1965, p. 1.

- 1971, Horrifying roar as flood hits Hidden Valley: Reno Evening Gazette, July 17, 1971, p. 1.
- Robertson Engineering, 1972, Review of existing reports on Calson City water supply: Carson City, Robertson Engineering, 30 p.

Robinson, T. W., 1965, Water use studies utilizing evapotranspiration tanks in Cohen, Philip, and others, Water resources of the Humboldt River Valley near Winnemucca, Nevada: U.S. Geol. Survey Water-Supply Paper 1795, p. 83-91. Rush, F. E., 1967, Water-resources appraisal of Washoe Valley, Nevada: Nevada Dept. Conserv. and Nat. Resources, Water Resources--Reconn. Ser. Rept. 41, 39 p.

____1970, Hydrologic regimen of Walker Lake, Mineral County, Nevada: U.S. Geol. Survey Hydrol. Inv. Atlas HA-415.

Ryall, Alan, 1972, Seismic potential in the western Great Basin and Range/eastern Sierra Nevada region, Nevada and California [abs.]: EOS, Transactions, American Geophys. Union, v. 53, no. 4, p. 442.

Shamberger, H. A., 1972, The story of the water supply for the Comstock: U.S. Geol. Survey Prof. Paper 779, 53 p.

Sinclair, W. C., and Loeltz, O. J., 1963, Ground-water conditions in the Fernley-Wadsworth area, Churchill, Lyon, Storey, and Washoe Counties, Nevada: U.S. Geol. Survey Water-Supply Paper 1619-AA, p. AA1-AA22.

Slemmons, D. B., and others, 1965, Earthquake epicenter map of Nevada: Nevada Bur. Mines Map 29.

Slemmons, D. B., Jones, A. E., and Gimlett, J. I., 1965, Catalog of Nevada earthquakes, 1852-1906: Seismol. Soc. America Bull. v. 55, no. 2, p. 519-565.

Taylor, L. H., 1902, Water supply and irrigation in Nevada: Nevada Univ. Agr. Expt. Sta. Bull. 52, 64 p.

_____1902, Water storage in the Truckee Basin, California-Nevada: U.S. Geol. Survey Water-Supply Paper 68, 90 p.

Thompson, G. A., 1956, Geology of the Virginia City quadrangle, Nevada: U.S. Geol. Survey Bull. 1042-C, p. 45-77.

U.S. Bureau of the Census, 1971, Nevada census of agriculture, 1969: U.S. Dept. Commerce, 136 p.

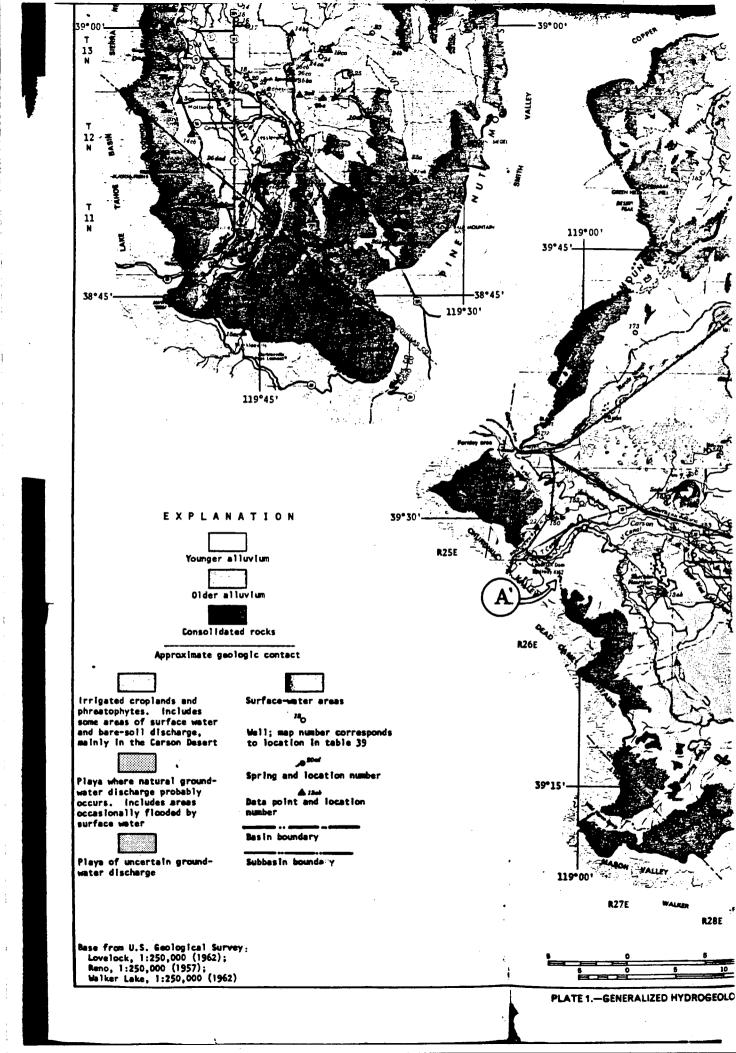
U.S. Bureau of Reclamation, 1961a, A preliminary appraisal of water development opportunities of the West Fork of the Carson River: U.S. Bur. Reclamation, Hope Valley Div., Washoe Project, Nevada-California, 35 p.

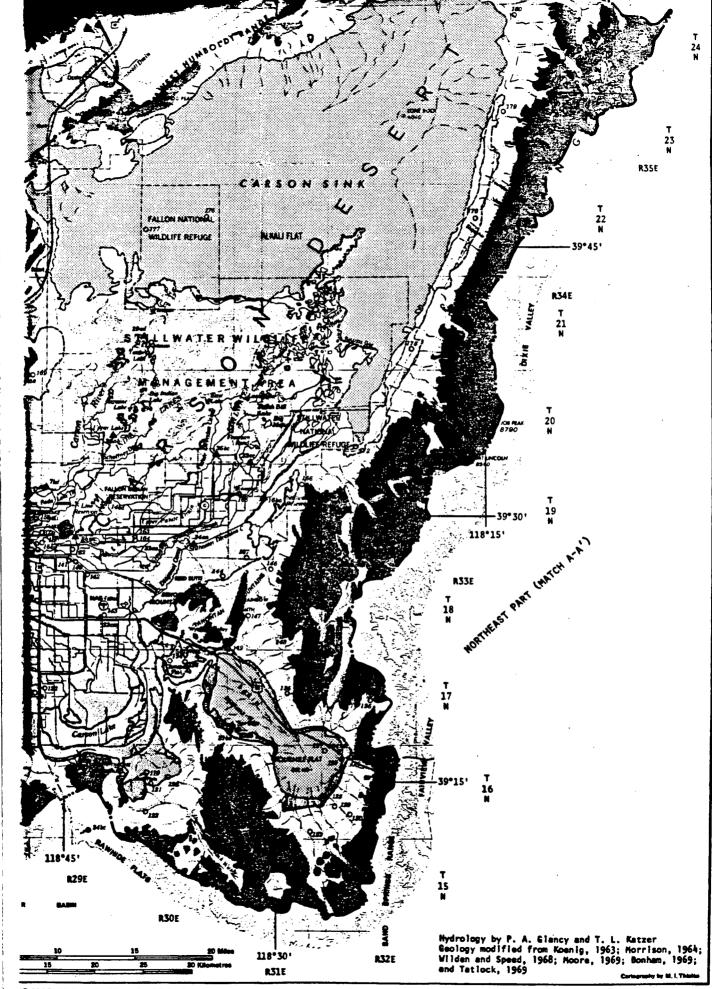
_____1961b, Watasheamu Division, Washoe Project, Nevada-California, Water supply appendix: U.S. Bur. Reclamation, v. 1, app. I, unpub. report, 189 p.

_____1961c, Watasheamu Division, Washoe Project, Nevada-California, Lands and drainage project: U.S. Bur. Reclamation, v. 2, app. II, unpub. report, 282 p.

1967, Preliminary study of existing irrigation practices and water usage, Newlands Project, Nevada: U.S. Bur. Reclamation, open-file report, 25 p.

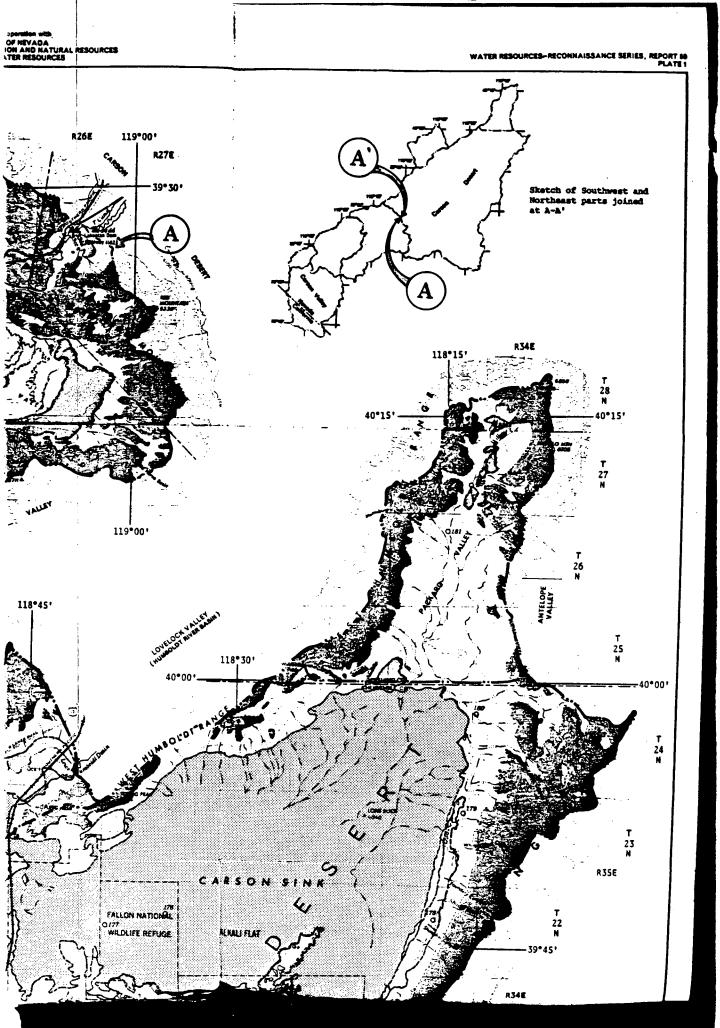
U.S. Department of Agriculture, 1969, Water and related land resources, central Lahontan basin, Walker River subbasin: U.S. Dept. Agriculture, Rept. 1, 232 p.

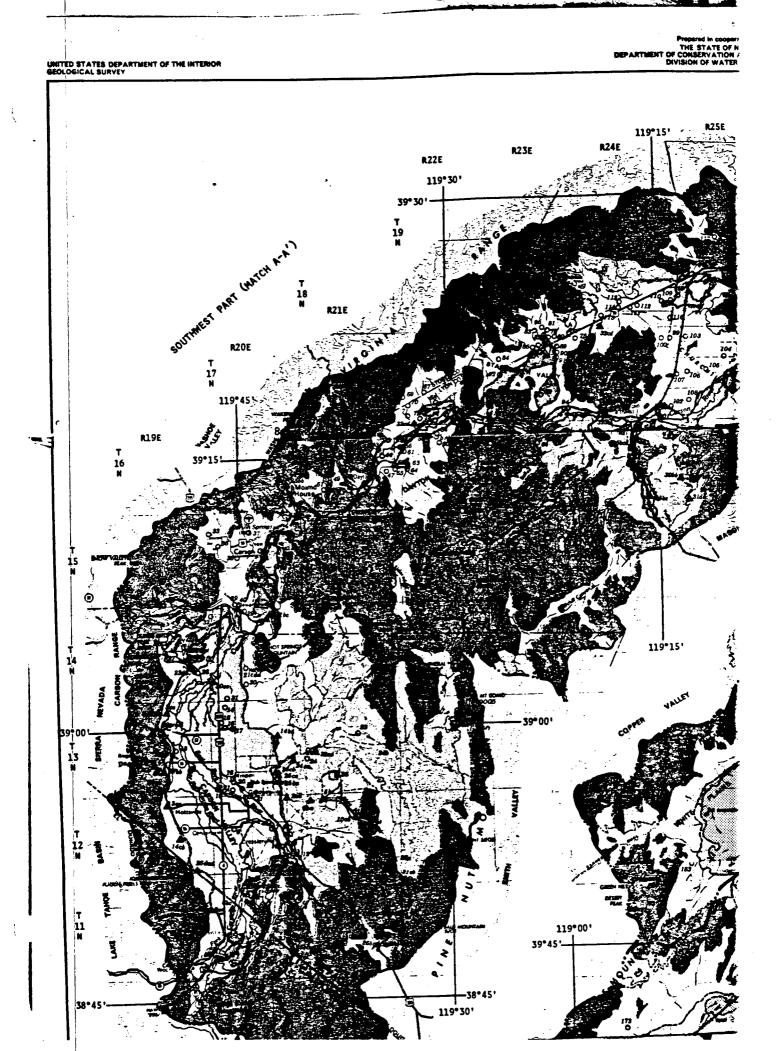

1971, Water and related land resources, central Lahontan basin, Carson River subbasin, Nevada-California, App. 1, Soils: U.S. Dept. Agriculture, 91 p. U.S. Department of the Interior, 1955, A report and findings on the Washoe Project, Nevada and California, pursuant to section 9(a) of the Reclamation Project Act of 1939 (53 Stat. 1187): U.S. Cong. 84th, 1st sess., House Doc. 181, 227 p.


1964, Proposed report, action program for resource development, Truckee and Carson River basins, California-Nevada: U.S. Dept. Interior, 37 p.

- U.S. Forest Service, U.S. Soil Conservation Service, and Economic Research Service, 1962, Chronology of flood years and high water years in Water and related land resources, Humboldt River basin, Nevada: U.S. Dept. Agriculture Special Rept., 46 p.
- U.S. Forest Service and U.S. Soil Conservation Service, 1970, Soils, Appendix 1, in Water and related land resources, central Lahontan basin, Truckee River subbasin, Nevada-California: U.S. Dept. Agriculture, 82 p.
 - Walters, Ball, Hibdon, & Shaw, 1969, Water system master plan update for Carson Water Company: Reno, Walters, Ball, Hibdon, & Shaw, Consulting Engineers.
 - Water Rights Study Group, 1970, Water rights and their enforcement; Lake Tahoe, Truckee River, and Carson River basins: Pyramid Lake Task Force, 230 p.

Wheeler, S. S., 1967, The desert lake: Caldwell, Idaho, Caxton Printers, 133 p.


- White, W. N., 1932, A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: U.S. Geol. Survey Water-Supply Paper 659-A, 105 p.
- Young, A. A., and Blaney, H. G., 1942, Use of water by native vegetation: California Div. Water Resources Bull. 50, 154 p.
- Zones, C. P., 1957, Changes in hydrologic conditions in the Dixie Valley and Fairview Valley areas, Nevada, after the earthquake of December 16, 1954: Seismol. Soc. America Bull., v. 47, no. 4, p. 387-396.



IC MAP OF THE CARSON RIVER BASIN

44.4

