SECOND FIVE-YEAR REVIEW REPORT PEMACO SUPERFUND SITE LOS ANGELES COUNTY, CALIFORNIA

Prepared by

US Army Corps of Engineers, Seattle District

for

U.S. Environmental Protection Agency

Region IX

San Francisco, California

This page intentionally left blank.

SECOND FIVE-YEAR REVIEW REPORT PEMACO SUPERFUND SITE LOS ANGELES COUNTY, CALIFORNIA

Prepared by US Army Corps of Engineers, Seattle District for U.S. Environmental Protection Agency Region IX San Francisco, California

John Lyons, Acting Assistant Division Director Superfund Site Cleanup Branch U.S. Environmental Protection Agency, Region 9

Sylamber 22, 2015

This page intentionally left blank.

EXECUTIVE SUMMARY

This is the second Five-Year Review (FYR) of the Pemaco Superfund Site (Site) located in Maywood, California within southeast Los Angeles County. The purpose of this FYR is to review information to determine if the remedy is and will continue to be protective of human health and the environment. The triggering action for this FYR was the signing of the previous FYR on September 30, 2010.

The Site is comprised of 1.4 acres located in a former mixed industrial and residential neighborhood. Pemaco, Inc. operated as a custom chemical blender from the 1940s until 1991 when the site was abandoned. A wide variety of chemicals were used on site including chlorinated and aromatic solvents, flammable liquids, oils, and specialty chemicals.

The Record of Decision (ROD) was signed on January 13, 2005. Pursuant to the ROD, remedial actions have been implemented at the Site to treat and remove contaminants (volatile organic compounds [VOCs], semi-volatile organic compounds [SVOCs], non-halogenated volatile organic compounds [NHVOCs], and metals) from soil and groundwater. The remedy addresses three zones of contamination:

- 1. surface and near-surface soil remediation zone (0 3 feet below ground surface [bgs]);
- 2. upper vadose-zone soil and perched groundwater (3 35 feet bgs); and
- 3. lower vadose-zone soil and Exposition Zone groundwater (65 to 175 feet bgs).

The ROD selected a multi-component remedy to treat each of the three remediation zones. For surface and near-surface soils, the ROD specified soil capping and limited hot spot removal. For upper vadose-zone soils and perched groundwater, the ROD specified High-Vacuum, Dual-Phase Extraction (HVDPE) to capture and treat contaminated groundwater and soil vapors. For the lower vadose-zone soils and Exposition Zone groundwater, the ROD specified thermal treatment with Electrical Resistance Heating (ERH) in the area where soil and groundwater had the highest levels of contamination, coupled with HVDPE. In addition, a groundwater extraction and treatment system was installed.

The ROD also prohibited residential use of the Pemaco property through zoning and the use of a deed restriction. It further stated that hazardous wastes remained at the Site at levels unsuitable for unrestricted land use, and that additional institutional controls may be required in the form of a State of California Land Use Covenant with the City of Maywood. The City of Maywood has issued a zoning change on its maps to identify the area as *"park"* land. In addition, the City of Maywood and the California Department of Toxic Substances Control (DTSC) have not entered into a Land Use Covenant to permanently change the site's land use to recreational. U.S. EPA sent a draft Land Use Covenant to both parties during April 2015 and the agency is still waiting for comments from both parties.

The remedy for soil was partially completed in July 2005 with the emplacement of soil cover over all but the former ERH area. The former ERH area has not yet been capped or revegetated, but it is fenced and excludes human receptors. Soil cover with revegetation or fencing is protective of human exposure by direct contact.

The groundwater remedy (extraction system) began operating in April 2007 and is effectively treating groundwater to discharge standards. However, the groundwater remedial action objectives (RAOs) are not being met because groundwater has not been restored to beneficial use. There have been increasing levels of contamination in all five hydrogeologic zones (A through E) since 2011 and the full lateral and vertical extent of trichloroethylene (TCE) contamination has not been fully delineated. The A and B

zones are not delineated to the north, the C zone is only delineated to the east, and the D zone is only delineated to the northwest. Several wells in both the perched zone and the A zone (southern) were dry during the last sampling event, so a true evaluation of the remaining contamination could not be performed.

Although the indoor air RAO (remediation of groundwater to drinking water standards) is not being met the indoor air risk has been addressed. Periodic investigation of indoor air concentrations, and/or soil sentry probe sampling has shown there is no risk to the residents living in the area.

There have been changes to the Applicable or Relevant and Appropriate Requirements (ARARs) and toxicity data for some compounds in soil and groundwater since the first FYR; however, the changes do not affect protectiveness. Land use has not changed since the first FYR and the exposure assumptions and pathways are still valid.

The remedy at the Pemaco Superfund Site currently protects human health because exposure pathways to contaminated soil and groundwater are being controlled. However, in order for the remedy to be protective in the long-term, the following actions are necessary:

- 1. Investigation of the increasing trends of contaminant concentration in each aquifer and the evaluation of the effectiveness of the groundwater extraction and treatment system;
- 2. Identification of the full extent of contamination in each zone (onsite, off site and vertically);
- 3. Capping and revegetation of the ERH area; and
- 4. Finalization of a Land Use Covenant by DTSC, U.S. EPA and City of Maywood.

			SITE IDENTIFICAT	TON
ite Name:	Pemaco S	uperfund Site		
.S. EPA:	CAD98073	37092		
Region: 9:	State	e: CA	City / County:	Maywood / Los Angeles County
			SITE STATUS	
NPL Status:	Final		1	
Multiple OUs?			Has the site achi	ieved construction completion?
Yes			Yes	
🗸 No			No	
Lead Agency: If "Other Feder Click here to e		was selected	REVIEW STATL	
f "Other Feder Click here to e	al Agency" nter text]		l above, enter Agen	icy name:
f "Other Feder Click here to e Author name (I	al Agency" nter text] Federal or s		l above, enter Agen	
f "Other Feder Click here to en Author name (I Author Affiliati	al Agency" nter text] Federal or 5 on: U.S.	State Project EPA	l above, enter Agen Manager): Ro	icy name:
f "Other Feder Click here to en Author name (I Author Affiliati Review period:	ral Agency" nter text] Federal or 1 on: U.S. Septemb	State Project EPA per 9, 2014 – S	I above, enter Agen Manager): Ro Geptember 4, 2015	icy name:
f <i>"Other Feder</i> Click here to en Author name (I Author Affiliati Review period: Date of Site Ins	al Agency" nter text] Federal or : on: U.S. Septemb spection:	State Project EPA Der 9, 2014 – S December 2	I above, enter Agen Manager): Ro Geptember 4, 2015	icy name:
f "Other Feder Click here to en Author name (I Author Affiliati Review period: Date of Site Ins Type of Review	al Agency" nter text] Federal or : on: U.S. Septemb spection: r: St	State Project EPA per 9, 2014 – S	I above, enter Agen Manager): Ro Geptember 4, 2015	icy name:
f <i>"Other Feder</i> Click here to en Author name (I Author Affiliati Review period: Date of Site Ins Type of Review Review Numbe	al Agency" nter text] Federal or 3 ion: U.S. Septemb spection: 1: St st er: 2	State Project EPA ber 9, 2014 – 9 December 2 atutory	l above, enter Agen Manager): Ro September 4, 2015 2, 2014	icy name:
f "Other Feder Click here to en Author name (I Author Affiliati Review period: Date of Site Ins Type of Review	al Agency" nter text] Federal or 3 ion: U.S. Septemb spection: 1: St st er: 2	State Project EPA Der 9, 2014 – S December 2	l above, enter Agen Manager): Ro September 4, 2015 2, 2014	icy name:
f <i>"Other Feder</i> Click here to en Author name (I Author Affiliati Review period: Date of Site Ins Type of Review Review Numbe	al Agency" nter text] Federal or : on: U.S. September pection: u: St er: 2 on Date:	State Project EPA Der 9, 2014 – S December 3 atutory September	I above, enter Agen Manager): Ro September 4, 2015 2, 2014 30, 2015	icy name:

Non	e
-----	---

Issues and Recommendations Identified in the Five-Year Review:

OU(S):	Issue Category: Institutional Controls				
Groundwater and Soil	Issue: DTSC, U.S. EPA, and the City of Maywood have not finalized a Land Use Covenant to permanently change the site's land use to recreational. The City of Maywood has issued a zoning change on its maps to identify the area as "park" land. This IC has not yet been completed. U.S. EPA sent a draft Covenant to the parties during April 2015.				
Recommendation: The DTSC, U.S. EPA, and the City of Mayw finalize the draft Land Use Covenant to permanently change the s recreational.			•		
Affect Current	Affect Future	Implementing			
Protectiveness	Protectiveness	Party	Oversight Party	Milestone Date	
No	Yes	State	U.S. EPA	September 30, 2015	

OU(s):	Issue Category: R	emedy Performance			
Groundwater	Issue: Contaminants of concern in four hydrogeological zones (A,B, C, and D)				
	have shown that sor	me wells have been in	creasing in concen	tration since 2011.	
	Recommendation:	An investigation a	and evaluation of t	he increasing	
		OCs needs to continue		-	
		extraction and treatm	•		
		nown source contribu	-	ing concentrations	
Affect Current	Affect Future	pling will be required Implementing). 		
Protectiveness	Protectiveness	Party	Oversight Party	Milestone Date	
No	Yes	U.S. EPA	U.S. EPA	September 30, 2016	
OU(s):	Issue Category: R	emedy Performance	·		
Groundwater	Issue: The increasi	ing concentrations in s	ome of the wells a	nd the possibility of an	
	unknown source has	caused the full extent	t of contamination t	o be uncertain on site,	
		because additional m			
		ng December 2014 ind are not delineated to th		al work will be required.	
	the east, and the D z				
		zone is only delineated	I to the northwest.	5	
	Recommendations:	2			
	Recommendations:	2	monitoring progra	im should be expanded	
	Recommendations: to delineate the exte	The groundwater	monitoring progra (installation of add	im should be expanded	
Affect Current	Recommendations: to delineate the exte	The groundwater ent of contamination	monitoring progra (installation of add	im should be expanded	
Affect Current Protectiveness	Recommendations: to delineate the external groundwater sampli	The groundwater ent of contamination ng) in all aquifer zone	monitoring progra (installation of add	im should be expanded	
	Recommendations: to delineate the extension groundwater sampli Affect Future	The groundwater ent of contamination ng) in all aquifer zone Implementing	monitoring progra (installation of add s.	im should be expanded itional wells and	
Protectiveness	Recommendations: to delineate the external groundwater sampli Affect Future Protectiveness Yes	The groundwater ent of contamination ng) in all aquifer zone Implementing Party	monitoring progra (installation of add s. Oversight Party U.S. EPA	m should be expanded itional wells and Milestone Date	
Protectiveness No	Recommendations:to delineate the extensiongroundwater sampliAffect FutureProtectivenessYesIssue Category:	The groundwater ent of contamination ng) in all aquifer zone Implementing Party U.S. EPA	monitoring progra (installation of add s. Oversight Party U.S. EPA	im should be expanded itional wells and Milestone Date September 30, 2016	
Protectiveness No OU(s)	Recommendations:to delineate the extensiongroundwater sampliAffect FutureProtectivenessYesIssue Category:	The groundwater ent of contamination ng) in all aquifer zone Implementing Party U.S. EPA Remedy Performance	monitoring progra (installation of add s. Oversight Party U.S. EPA	im should be expanded itional wells and Milestone Date September 30, 2016	
Protectiveness No OU(s)	Recommendations:to delineate the extensiongroundwater sampliAffect FutureProtectivenessYesIssue Category:Issue: The ERH Are	The groundwater ent of contamination ng) in all aquifer zone Implementing Party U.S. EPA Remedy Performance ea has not been cappe	monitoring progra (installation of add s. Oversight Party U.S. EPA	im should be expanded itional wells and Milestone Date September 30, 2016	
Protectiveness No OU(s) Soil	Recommendations:to delineate the extensiongroundwater sampliAffect FutureProtectivenessYesIssue Category:Issue: The ERH AreRecommendation:	The groundwater ent of contamination ng) in all aquifer zone Implementing Party U.S. EPA Remedy Performance ea has not been cappe Cap and revegeta	monitoring progra (installation of add s. Oversight Party U.S. EPA	im should be expanded itional wells and Milestone Date September 30, 2016	
Protectiveness No OU(s) Soil Affect Current	Recommendations:to delineate the extensiongroundwater sampliAffect FutureProtectivenessYesIssue Category:Issue: The ERH AreRecommendation:Affect Future	The groundwater ent of contamination ng) in all aquifer zone Implementing Party U.S. EPA Remedy Performance ea has not been cappe Cap and revegeta Implementing	monitoring progra (installation of add s. Oversight Party U.S. EPA ed and revegetated ite the ERH area	im should be expanded itional wells and Milestone Date September 30, 2016	

For sites that have achieved construction completion, enter a site wide protectiveness determination and statement.

Protectiveness Determination	n: Addendum Due Date (<i>if applicable</i>):
Short-term Protective:	[Click here to enter date]
Protectiveness Statement:	The remedy at the Pemaco Superfund Site currently protects human
health because exposure path	ways to contaminated soil and groundwater are being controlled.
However, in order for the rem	nedy to be protective in the long-term, the following actions are necessary:
(1) investigation of the increa	sing trends of contaminant concentration in each aquifer and the
evaluation of the effectivenes	s of the groundwater extraction and treatment system; (2) identification of
the full extent of contamination	on in each zone (onsite, off site and vertically); (3) capping and
revegetation of the ERH area;	and (4) finalization of a Land Use Covenant by DTSC, U.S. EPA and City of
Maywood.	

TABLE OF CONTENTS

1.0	IN	TROD	DUCTION	1-1
2.0	Sr	TE CH	IRONOLOGY	2-1
3.0	BA	ACKG	ROUND	3-1
3.1		Phys	sical Characteristics	3-1
3.2		Geo	logy/Hydrogeology	3-1
3	3.2.1	L.	Local Geology/Hydrogeology	3-1
3.3		Lanc	and Resource Use	3-3
3.4		Histo	ory of Contamination	3-3
3.5		Initia	al Response	3-3
3.6		Basi	s for Taking Action	3-4
4.0	Re	MED		4-1
4.1		Rem	nedy Selection	.4-1
4.2		Rem	nedy Implementation	4-7
2	4.2.1	L.	Soil Capping	4-7
4	4.2.2	2.	Electrical Resistance Heating System	4-7
4	4.2.3	3.	Groundwater and Vapor Extraction System	4-8
2	1.2. 4	ł.	Groundwater and Vapor Treatment Plant	4-8
4	1.2.5	5.	Institutional Controls	4-9
4.3		Ope	ration and Maintenance (O&M)	4-9
5.0	Pr	ROGR	ESS SINCE THE LAST FIVE-YEAR REVIEW	5-1
5.1		Prev	vious Five-Year Review Protectiveness Statement and Issues	.5-1
6.0	Fi	ve-Yi	EAR REVIEW PROCESS	6-1
6.1		Adm	ninistrative Components	.6-1
6.2		Com	nmunity Involvement	.6-1
6.3		Doc	ument Review	6-1
(5.3.1	L.	ARARs Review	6-2
(5.3.2	2.	Human Health Risk Assessment Review	6-9
ť	5.3.3	3.	Toxicity Values6	j-10

6.	3.4.	Ecological Review
6.4.	Data	a Review6-11
6.	4.1.	Soil Sampling (Post-ERH)6-11
6.	4.2.	Groundwater6-15
6.5.	Site	Inspection
6.6.	Inte	rviews
6.7.	Inst	itutional Controls6-26
7.0	TECHN	ICAL ASSESSMENT
7.1.	Que	stion A: Is the remedy functioning as intended by the decision documents?7-1
7.2.		ion B: Are the Exposure assumptions, Toxicity Data, Cleanup Levels, emedial Action Objectives (RAOs) Used at the Time of Remedy Selection Still Valid?7-1
7.3.		ion C: Has Any Other Information Come to Light That Could Call Into ion the Protectiveness of the Remedy?7-2
7.4.	Tecl	nnical Assessment Summary7-2
8.0	ISSUES	
9.0	RECOM	IMENDATIONS AND FOLLOW-UP ACTIONS
10.0	Pro	TECTIVENESS STATEMENT
11.0	Nex	T REVIEW

FIGURES

Figure 3-1	Location Map for the Pemaco Superfund Site	3-2
Figure 6-1	Post-ERH Soil Sampling Locations	.6-13
Figure 6-2	Mass of VOCs removed from 2007-2014	.6-23
Figure 6-3	Annual VOC Removal Efficiency in Groundwater from 2010-2014	.6-23
Figure 6-4	Recent Quarterly VOC Removal Efficiencies	.6-24

TABLES

Table 2-1	Chronology of Site Events	2-1
Table 4-1	SSRLs Specified in the ROD	4-3
Table 4-2	Annual O&M Costs (2010-2014)	4-10
Table 5-1	Status of Recommendations from the 2010 FYR	5-1
Table 6-1	Pemaco Superfund Site Five-Year Review Team	6-1

Table 6-2	Summary of Groundwater ARAR Changes	6-5
Table 6-3	Summary of Soil ARAR Changes	6-7
Table 6-4	ARAR Review Table	6-9
Table 6-5	Non-cancer toxicity factors for cis-1,2-dichloroethene and cyanide	6-11
Table 6-6	Groundwater Gauging Summary	6-15
Table 6-7	Institutional Control Summary Table	6-26
Table 8-1	Current Issues for the Pemaco Superfund Site	8-1
Table 9-1	Recommendations to Address Current Issues at the Pemaco Superfund Site	9-1

APPENDICES

- Appendix A Public Notice
- Appendix B List of Documents Reviewed
- Appendix C Figures, Graphs, Tables
- Appendix D Site Inspection Checklist
- Appendix E Interview Forms

This page intentionally left blank.

ACRONYMS AND ABBREVIATIONS

AST	above ground storage tank
ARAR	Applicable or Relevant and Appropriate Requirement
bgs	below ground surface
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act CFR
CFR	Code of Federal Regulations
COCs	contaminants of concern
CRWQCB	California Regional Water Quality Control Board DAF
DAF	dilution attenuation factor
DTSC	California Department of Toxic Substances Control EPA
ERH	electrical resistance heating
EWE	excavation worker exposure
FS	Feasibility Study
FTO	flameless thermal oxidation
FYR	Five-Year Review
GAC	granular activated carbon
HRS	Hazard Ranking System
HVDPE	High-vacuum dual-phase extraction
HWCD	Los Angeles County Fire Department, Hazardous Waste Control Department
IC	Institutional Control
IRIS	Integrated Risk Information System
J	result is an estimated value
LACSD	Los Angeles County Sanitary District
LARWQCB	Los Angeles Regional Water Quality Control Board
MCL	Maximum Contaminant Level
MIBK	methyl isobutyl ketone
NCP	National Contingency Plan
NHVOC	non-halogenated volatile organic compound
NPL	National Priorities List
O&F	operational and functional
0&M	operation and maintenance
OM&M	operation maintenance and monitoring
OSTRI	Office of Superfund Remediation and Technology Innovation

OU	Operable Unit
PAH	Polycyclic Aromatic Hydrocarbons
PCE	perchloroethylene
PRG	Preliminary Remediation Goal
RA	remedial action
RAOs	Remedial Action Objectives
RD	Remedial Design
RfD	oral reference dose
RI	Remedial Investigation
ROD	Record of Decision
RSLs	Regional Screening Levels
RPM	Remedial Project Manager
SSL	soil screening level
SSRL	site-specific remediation level
SVE	soil-vapor extraction
SVOC	semi-volatile organic compound
TCE	trichloroethylene
U.S. EPA	Environmental Protection Agency
UST	underground storage tank
UV	Ultraviolet
UV-Ox	ultraviolet oxidation
VC	vinyl chloride
VE	vacuum enhanced
VOC	volatile organic compounds

1.0 INTRODUCTION

The purpose of a Five-Year Review (FYR) is to evaluate the implementation and performance of a remedy in order to determine if the remedy will continue to be protective of human health and the environment. The methods, findings, and conclusions of FYRs are documented in FYR reports. In addition, FYR reports identify issues found during the review, if any, and document recommendations to address them.

The U.S. Environmental Protection Agency (U.S. EPA) prepares FYRs pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 121 and the National Contingency Plan (NCP). CERCLA 121 states:

"If the President selects a remedial action that results in any hazardous substances, pollutants, or contaminants remaining at the site, the President shall review such remedial action no less often than each five years after the initiation of such remedial action to assure that human health and the environment is being protected by the remedial action being implemented. In addition, if upon such review it is the judgment of the President that action is appropriate at such site in accordance with section [104] or [106], the President shall take or require such action. The President shall report to the Congress a list of facilities for which such review is required, the results of all such reviews, and any actions taken as a result of such reviews."

U.S. EPA interpreted this requirement further in the NCP; 40 Code of Federal Regulations (CFR) Section 300.430(f)(4)(ii), which states:

"If a remedial action is selected that results in hazardous substances, pollutants, or contaminants remaining at the site above levels that allow for unlimited use and unrestricted exposure, the lead agency shall review such actions no less often than every five years after the initiation of the selected remedial action."

U.S. EPA Region 9 conducted the FYR and prepared this report regarding the remedy implemented at the Pemaco Superfund Site (also referred to as "the Pemaco Site" or "the Site") in Maywood, Los Angeles County, California. U.S. EPA is the lead agency for developing and implementing the remedy for the Site. California Department of Toxic Substances Control (DTSC), as the support agency representing the State of California, has reviewed all supporting documentation and provided input to U.S. EPA during the FYR process.

This is the second FYR for the Pemaco Superfund Site. The triggering action for this statutory review is the signing of the first FYR on September 30, 2010. The FYR is required due to the fact that hazardous substances, pollutants, or contaminants remain at the site above levels that allow for unlimited use and unrestricted exposure.

The Site consists of one Operable Unit (OU) for soil and groundwater. The remedy addresses three zones of contamination within the OU:

- Surface and near-surface soil remediation zone (0-3 feet below ground surface [bgs]);
- Upper vadose-zone soil and perched groundwater (3-35 feet bgs); and
- Lower vadose-zone soil and Exposition Zone groundwater (65-175 feet bgs).

This page intentionally left blank.

2.0 SITE CHRONOLOGY

Table 2-1 lists the dates of important events for the Pemaco Superfund Site.

Table 2-1Chronology of Site Events

Event	Date
Environmental investigation performed by site owner to investigate potential leakage from tanks.	December 1990
Initial complaint to Los Angeles County Fire Department. It was determined by the responding health officers that the site was an imminent danger to human health.	May 28, 1992
Emergency response by the Los Angeles County Fire Department. A fire occurred on site, destroying the warehouse building and some materials inside.	December 12, 1993
U.S. EPA-initiated removal action U.S. EPA secured the site after the fire by removing 6 drums, verified that all storage tanks were empty, grouted an unmarked borehole, and attached locking caps to each standpipe.	December 1993
U.S. EPA completes Preliminary Assessment/Site Investigation. Pemaco Site entered into CERCLIS as Site CAD980737092.	June 1995
U.S. EPA conducts additional site characterization as part of the Expanded Site Investigation and evaluates Hazard Ranking System (HRS) Factors.	February to May 1997
Underground/aboveground storage tank (UST/AST) removal begins. All USTs and ASTs are removed in preparation for installation of a soil-vapor extraction (SVE) system. Buildings demolished.	August 25, 1997
SVE system used to treat volatile organic compound (VOC)-contaminated soil in the northeastern area of the site (now Maywood Riverfront Park).	March 1998
Site added to National Priorities List (NPL) based on the previous studies.	January 19, 1999
U.S. EPA conducts Remedial Investigation/Feasibility Study (RI/FS).	January 2000 to March 2002
U.S. EPA installs additional, deeper monitoring wells and conducts additional indoor air sampling in neighborhood surrounding the site.	March to August 2003
Record of Decision (ROD) is signed.	January 13, 2005
Maywood Riverfront Park constructed in conjunction with the Trust for Public Land and other agencies. Park construction included removal of several hot spots along the northern edge of the Pemaco property, along with capping, grading, and revegetation.	March 2005 to 2006
Hot Spot Removal Action in the northeast corner of the Site during construction of the Maywood Riverfront Park. Removal is conducted by the City of Maywood with U.S. EPA oversight.	March 28, 2005
Remedial design report is finalized.	May 2005
Dual-phase extraction system construction begins.	August 26, 2005
Treatment system construction, including building of treatment plant, trenching, piping, and additional wells.	August 1, 2005, to April 23, 2007
Installation of Electrical Resistance Heating (ERH) electrodes begins.	October 2006
Groundwater extraction and treatment system complete and operational.	April 25, 2007
Vapor extraction and treatment system complete and operational.	May 4, 2007
ERH operation begins.	September 25, 2007
ERH shutdown.	April 10, 2008

Event	Date
Declaration remedy as Operational and Functional (O&F) by U.S. EPA.	August 28, 2008
2010 FYR signed by U.S. EPA.	September 30, 2010
U.S. EPA worked with Regional Water Quality Control Board to implement a Waste Discharge NPDES Permit, where the treated waste discharge was for Wastewater Reclamation. U.S. EPA proposed to use the treated groundwater from the Pemaco Superfund Site for landscape irrigation of approximately 3.45 acres of unpaved green space at the Maywood Riverfront Park.	October 2011 to June 13,2012
Groundwater and vapor extraction and treatment system shut down due to expiration of Los Angeles County Sanitary District (LACSD) discharge permit.	April 21, 2012
Groundwater and vapor extraction and treatment system restarted under temporary 1- month LACSD discharge permit to conduct tests of pre-treatment and other options and to enhance 1,4-dioxane removal efficiency.	August 7, 2012
Temporary LACSD discharge permit expires. Groundwater and vapor extraction and treatment system shut down.	September 7, 2012
Letter from Regional Water Quality Control Board to U.S. EPA and the City of Maywood concurring with the proposed discharge of treated groundwater for landscape irrigation at the Park provided all conditions of the WDR related ARARS are met. U.S. EPA subsequently decided not to move forward with water reclamation and continued release of the water to the LA County Sanitation District.	November 9, 2012
LACSD approves new 5-year discharge permit.	February 27, 2013
Groundwater extraction and treatment system is fully operational under new LACSD discharge permit.	April 1, 2013
Vapor extraction and treatment system is re-started.	November 19, 2013
The Los Angeles Unified School District Coordinates with the City of Maywood to export the large soil piles from the southwest corner of 60th Street and Walker Avenue. Approximately 7,000 cubic yards of soil removed from area adjacent to the Pemaco treatment plant.	January 30 2014 to February 5, 2014
ERH electrode wells, vapor recovery wells, and temperature monitoring points were decommissioned.	April 28, 2014 to November 19, 2014
Cone Penetration Testing (CPT) investigation of the areas to the north and west of the Pemaco Site to identify possible off-site contamination sources.	December 2014
U.S. EPA sent a draft Land Use Covenant to DTSC and City of Maywood.	April 2015
Sampling of five Sentry Soil Vapor probes located along 59th Place and Walker Avenue to confirm that VOCs were not migrating from the Pemaco Site.	July 15, 2015

3.0 BACKGROUND

3.1. PHYSICAL CHARACTERISTICS

The Pemaco Superfund Site is located at 5973 South District Boulevard in east Los Angeles County, in the City of Maywood, along the Los Angeles River (Figure 3-1). It is bounded to the north by Slauson Avenue. Residential and light industrial properties are located to the west and south, and the concrete- lined Los Angeles River lies to the east. The Site is currently within the Maywood Riverfront Park which is primarily open space with concrete walking paths. The Pemaco Site is comprised of approximately 4.1 acres. Construction of the park began in March 2005 and was completed in June 2006. The topography of the site is relatively flat, sloping from the Los Angeles River Bike Path to the east toward Walker Avenue in the west.

3.2. GEOLOGY/HYDROGEOLOGY

3.2.1. Local Geology/Hydrogeology

There are two distinct hydrogeologic units within the study area: a perched zone groundwater unit and the stratigraphic equivalent of the regional Exposition Aquifer. Site stratigraphy as it pertains to groundwater is summarized below.

Perched Zone: Groundwater in the perched zone is typically encountered between 20 and 40 feet bgs and occurs in semi-continuous and discontinuous lenses of poorly graded sand, silty sand, and sandy silt.

These lenses range from 5 inches to 5 feet in thickness. The geometry of the perched zone is controlled by the highly irregular and undulating top surface of the underlying, laterally extensive clay.

The complex hydrogeology of the perched zone causes highly variable groundwater gradients. The overall general component of apparent groundwater flow in the perched zone is towards the southwest, but there are many localized areas that indicate that the apparent groundwater flow is in multiple directions.

Exposition Zones: The Exposition zones include five distinct water-bearing intervals (A through E) that are typically encountered at depths between 65 and 175 feet bgs, and are separated by silt/clay intervals. The zones of concern at the Site are the A through D zones.

- **A Zone:** This zone is present from 65 to 75 feet bgs. It is comprised of fine silty and poorly graded sands locally interbedded with well-graded sands. The thickness of the zone ranges from 0.25 to 10 feet;
- **B Zone:** This zone is present from 80 to 90 feet bgs. It is comprised of fine silty sands, poorly graded sands, and poorly graded sands with silt. The thickness of the zone ranges from 1.5 to 10 feet;
- **C Zone:** This zone is present from 100 to 110 feet bgs. It is comprised of saturated dark greenish gray fine silty sands, poorly graded sands, and poorly graded sands with silt. The thickness of the zone ranges from 2 to 6 feet;
- **D Zone:** This zone is present from 125 to 145 feet bgs. It is comprised of interbedded fine silty sands, poorly graded sands, and poorly graded sands with silt, well-graded sands and gravelly sands, and local well-graded sandy gravel intervals. The thickness of the zone ranges from 6 to 15 feet; and

• **E Zone:** This zone is encountered between 160 and 175 feet bgs. It is comprised of alternating saturated intervals of 1-foot-thick fine silty sands and well-graded sands. The thickness of this unit has not been determined.

3.3. LAND AND RESOURCE USE

The Pemaco Site has become fully incorporated into the Maywood Riverfront Park as part of the larger Los Angeles River Greenway program and the Los Angeles River Master Plan. The Park currently consists of soccer fields, basketball courts, a play area, native plant landscaping, and picnic areas. The land use maps show the Site zoned as park.

Municipal wells are located approximately 2,600 feet from the site to the north, approximately 4,000 feet from the site to the southwest, and 1,800 feet from the site to the south.

3.4. HISTORY OF CONTAMINATION

Pemaco, Inc. is a former chemical blending and distribution facility that stored a wide variety of chemicals, including aromatic and chlorinated solvents, flammable liquids, specialty chemicals, and oils. These chemicals were stored in a combination of aboveground storage tanks (ASTs), underground storage tanks (USTs), and drums. Historically, the Pemaco facility consisted of a 22,000-square-foot warehouse in the northern portion of the property, and 31 USTs and at least 6 ASTs in the southern part of the property. Pemaco, Inc. operated on this site from the 1940s until April 1991, when the site was abandoned (Los Angeles County Report of Investigation, Biren 1992).

On May 28, 1992, the City of Maywood planning director filed a complaint with the Los Angeles County Fire Department, Hazardous Waste Control Department (HWCD) regarding abandoned drums, USTs, and ASTs on the Site. It was reported that 400 drums were abandoned on site, many of which were damaged, uncovered, leaking, or unlabeled (Report of Investigation, Biren 1992).

A fire broke out on December 12, 1993 at the site. This fire consumed the warehouse and several drums of unknown chemicals (HazMat Emergency Incident Report of 12/12/1993). The facility remained unsecured until December 15 through 21, 1993, when the U.S. EPA executed a removal action that included the following actions:

- Erecting a chain-link fence topped with razor wire;
- Grouting an unmarked borehole;
- Verifying that all storage tanks were empty;
- Securing all standpipes; and
- Removing six 55-gallon drums offsite.

Based on the initial response described below, the Pemaco Site was added to the National Priorities List (NPL) in January 1999.

3.5. INITIAL RESPONSE

An Emergency Site Assessment/Remedial Investigation of the Pemaco Site was conducted in 1997. The results of this investigation indicated that hazardous substances, as defined by CERCLA, including chlorinated and non-chlorinated VOCs, had been released into the groundwater. A layer of chlorinated

and non-chlorinated VOCs ranging from 3 to 5 feet thick was found in the perched aquifer unit (Unilateral Administrative Order No. 97-13, U.S. EPA 1997).

A soil-vapor extraction (SVE) system was installed as an interim treatment method in 1997. It remained operational until 1998, when it was shut down due to concerns about dioxin emissions the SVE system may have produced as a byproduct of the thermal oxidation treatment system. By the time the SVE system was removed, it had treated over 90,000 pounds of hydrocarbons (Final Pemaco ROD, U.S. EPA 2005).

3.6. BASIS FOR TAKING ACTION

The perched zone groundwater under the Site is characterized as being of poor quality contained within a thin discontinuous aquifer with low transmissivity. The Exposition zone groundwater is classified by the Los Angeles Regional Water Quality Control Board (LARWQCB) as a potential drinking-water source. Therefore, the U.S. EPA used this classification in its reasonable-exposure assumption in its risk assessment.

Other beneficial uses for groundwater beneath the Pemaco Site include possible industrial applications, groundwater recharge, and freshwater replenishment.

The U.S. EPA examined several other exposure pathways as potential exposure routes. The potential exposure routes include the following; drinking the groundwater during residential use; inhaling the chemicals in the groundwater during use of groundwater; contact with contaminated surface soils via dermal, ingestion, and inhalation pathways; subsurface exposure from excavation work via dermal, ingestion, and inhalation pathways; and vapor intrusion from the subsurface by volatile chemicals.

Based on potential use of contaminated groundwater by future users, off-site migration of contaminated groundwater to existing users, potential direct contact with contaminated soils by Riverfront Park users, and the potential for soil-vapor intrusion into residences surrounding the site, the Pemaco Superfund Site was added to the NPL on January 19, 1999. A variety of contaminants of concern (COCs) were identified, including halogenated volatile organic compounds (HVOCs, primarily trichloroethylene (TCE), metals, and polycyclic aromatic hydrocarbons (PAHs).

4.0 **REMEDIAL ACTIONS**

4.1. **REMEDY SELECTION**

The ROD was signed on January 13, 2005. The 2005 ROD Remedial Action Objectives (RAOs) for the Pemaco Site are divided by media type as described below:

Soil RAOs

- Prevent human exposure (by direct contact) to contaminated soils having COCs in excess of soil applicable or relevant and appropriate requirements (ARARs) and standards that are protective of human health and the environment; and
- Prevent migration of COCs from soil to groundwater at levels that would exceed drinking water standards.

Groundwater RAOs

- Restore the groundwater quality in perched groundwater zone, and Exposition Zones to drinking water standards (MCLs);
- Prevent vertical migration of COCs from the perched groundwater and deeper Exposition Zones at rates that would cause groundwater to exceed drinking water standards;
- Prevent further offsite migration of contaminated groundwater beneath additional adjacent properties; and
- Prevent migration of contaminated groundwater to local production wells.

Indoor Air RAOs

- Remediate COCs in soil and groundwater to drinking water standards and other health based action levels to eliminate potential exposures to indoor air contaminants created by site contamination; and
- Prevent further migration of soil vapor in excess of ARARs and standards that are protective of human health and the environment.

The remedial action for the Pemaco Site addresses removal of contaminants from soil and groundwater and prevention of exposure through institutional controls (ICs). Since the subsurface geologic and hydrogeologic environments and contamination levels found at the Site are highly irregular and variable, U.S. EPA divided the site into three subsurface zones or "remediation zones" and assembled remedial alternatives by zone to develop an appropriate cleanup strategy for each individual zone. The remediation zones identified at the Pemaco Site are as follows:

- Surface and near surface soil remediation zone (0-3 feet bgs);
- Upper vadose zone soil and perched groundwater (3-40 feet bgs); and
- Lower vadose zone soil and Exposition Zone (A through E zones) groundwater (65-175 feet bgs).

The selected remedy for the Site is as follows:

- Surface and near-surface soil: Hot spot removal and soil cover/revegetation;
- Upper vadose zone soil and perched groundwater: High Vacuum Dual Phase Extraction (HVDPE) with ultraviolet (UV) oxidation for treatment of extracted groundwater, and flameless thermal oxidation (FTO) and granular activated carbon (GAC) for treatment of extracted vapors. (*Note that UV oxidation was never implemented because GAC treatment was sufficient.*);
- Lower vadose zone soil and Exposition Zone groundwater: Electrical Resistance Heating (ERH) with vacuum-enhanced groundwater extraction, groundwater extraction and treatment, and monitored natural attenuation (MNA). UV oxidation for treatment of extracted groundwater, and FTO and GAC for treatment of extracted vapors; and
- Institutional controls (ICs).

Based on comments received during the public comment period, the following activities were included as part of the remedy implementation:

- Indoor air sampling and additional vapor monitoring on Walker Avenue and 59th Street during remedial operations
- Vapor monitoring of the FTO unit. Dioxin and furans added to the list of analytes.
- Heat exchanger and a vapor phase carbon adsorption unit installed to the post-exhaust side of the FTO unit.
- *In-situ* oxidation and/or in-situ bioremediation polishing step to be implemented if the agency determines that it is necessary to augment treatment of the of the principal threat source area.

Site-specific remediation levels (SSRLs) for each zone are listed in Table 4-1.

Table 4-1	SSRLs Specified in the ROD
-----------	----------------------------

		Site-Specific Remediation Levels ¹ (IN BOLD)					
		ARARs ²		10 ⁻⁶ Cancer Risk			
Zone	Contaminant of Concern (COC)	Primary MCLs	Region IX PRGs (type of PRG)	Park User Exposure ³	Excavation Exposu		Remediation Levels ⁵
	VOCs (µg/kg)						
	1,1-Dichloroethene	-	60 µg/kg	-	722 μg/kg	са	60 μg/kg
ē	Acetone	-	16,000 μg/kg	-	-		16,000 μg/kg
in th one	Ethylbenzene	-	13,000 µg/kg	-	-		13,000 μg/kg
COCs found only in the Upper Vadose Zone	Tetrachloroethene	-	60 μg/kg	-	11,300 µg/kg	са	60 µg/kg
/adc	Toluene	-	12,000 µg/kg	-	-		12,000 μg/kg
s fou ber V	Xylenes (total)	-	210,000 μg/kg	-	-		210,000 μg/kg
Upi Upi	SVOCs (μg/kg)		DAF 20 SSL				
0	Benzo (a) anthracene	-	2000 µg/kg	-	2,610 µg/kg	са	2,000 μg/kg
	Benzo (a) pyrene	-	8,000 μg/kg	-	261 µg/kg	са	261 µg/kg
	Benzo (b) fluoranthene	-	5,000 μg/kg	-	2,610 µg/kg	са	2,610 μg/kg
ose	Carbazole	-	600 µg/kg	-	-		600 μg/kg
er Vado Zone	Dibenzo (a,h) anthracene	-	2,000 μg/kg	-	762 μg/kg	са	762 μg/kg
Upper Vadose Zone	Indeno (1,2,3-cd) pyrene	-	14,000 μg/kg	-	2,610 µg/kg	са	2,610 µg/kg
Пр	Isophorone	-	500 μg/kg	-	-		500 μg/kg
	VOCs (µg/kg) DAF 20		DAF 20 SSL				
e	Benzene	-	30 µg/kg	-	-		30 µg/kg
Both Upper and Lower Vadose Zone	1,2-Dichloroethane	-	20 µg/kg	-	-		20 µg/kg
Both Upper and ower Vadose Zor	cis-1,2-Dichloroethene	-	400 μg/kg	-	-		400 μg/kg
h Up r Var	Methylene chloride	-	20 µg/kg	-	-		20 µg/kg
Bot owe	Trichloroethene	-	60 µg/kg	-	-		60 µg/kg
Ē	Vinyl Chloride	-	10 µg/kg	-	-		10 µg/kg
	Metals (mg/kg) DAF 20		DAF 20 SSL				

		Site-Specific Remediation Levels ¹ (IN E			emediation Levels ¹ (IN BOLD)	
			ARARs ²		10 ⁻⁶ Cancer Risk	
Zone	Contaminant of Concern (COC)	Primary MCLs	Region IX PRGs (type of PRG)	Park Use Exposure		Remediation Levels ⁵
	Chromium (total)		38 mg/kg			38 mg/kg
	VOCs (µg/L)		Tap Water			
	1,1-Dichloroethane	5 μg/L	810/0.2 μg/L*			5 μg/L
	1,1,2-Trichloroethane	5 μg/L	0.2 μg/L			5 μg/L 0.60 μg/L ⁷
	Chloroethane		4.6 μg/L			100 μg/L6
	Ethylbenzene	300 μg/L	1300 μg/L	-		300 μg/L
	Toluene	150 μg/L	720 μg/L	-		150 μg/L
	NHVOCs (µg/L)		Tap Water			
ne	Acetonitrile (Coelute w/ MIBK)	-	100 μg/L	-	-	100 μg/L
Perched Ground-water Zone	Methyl isobutyl ketone (MIBK)	-	2000 μg/L	-	-	2000 μg/L
-wa	SVOCs (µg/L)		Tap Water			
ouno	1,4-Dioxane	3.0 μg/L**	6.1 μg/L			3.0 μg/L**
ed Gr	bis(2 Ethylhexyl)phthalate	4 μg/L	4.8 μg/L			4 μg/L
erche	Naphthalene***	-	6.2 μg/L	-	-	6.2 μg/L
ď	Metals (μg/L)		Tap Water			
	Chromium (total)	50 μg/L				50 μg/L
	Iron		11,000 μg/L			11,000 μg/L
	Lead	15 µg/L**				15 μg/L** 5 μg/L7
	Selenium	50 μg/L	180 μg/L	-	-	50 μg/L
	Manganese	-	880 µg/L			880 µg/L
	Thallium	2 μg/L	2.4 μg/L			2 μg/L
	Anions (μg/L)		Tap Water			

		Site-Specific Remediation Levels ¹ (IN BOLD)						
Zone	Contaminant of Concern (COC)			Remediation Levels ⁵				
	Sulfide		110 μg/L#					110 μg/L 1 μg/L7

Notes:

- 1. Concentrations in bold represent SSRLs (most conservative of numbers 2 through 5).
- 2. Primary Maximum Contaminant Levels (MCLs) are based on the most conservative of the federal EPA and California Department of Health Services MCLs for drinking water. For groundwater COCs with no available MCLs, EPA Region IX Preliminary Remediation Goals (PRGs) were used. Subsurface soils were screened against Region IX PRGs Soil Screening Levels (SSLs) with Dilution Attenuation Factors (DAF). DAF 20 PRGs are used when the contaminated soil is not directly adjacent to a drinking water source and dilution of the contaminant is occurring before it reaches the drinking water source. DAF 1 PRGs assume that the contaminated soil is directly adjacent to a drinking water source and no dilution of the contaminant is occurring along the pathway between the source soil and the drinking water source.
- 3. Park user exposure scenario calculated at 10⁻⁶ cancer risk (from Maywood Riverfront Park, or MRP, Risk Assessment). Remediation levels are risk-based values developed during the Pemaco Baseline Risk Assessment. These levels are calculated by rearranging the equations used to calculate each COC's hazard quotient or incremental cancer risk so that the equations can be used to solve for a concentration that will result in target hazard indexes of 1.0 or a target cancer risk of 1E-06. Remediation goal options differ for each risk driver. Due to the numerous receptor scenarios, the most conservative goal was listed when COCs overlapped from one receptor to another.
- 4. Excavation worker exposure scenario calculated at 10⁻⁶ cancer risk (from MRP Risk Assessment).
- 5. DTSC recommended clean-up levels based on background or ambient levels in Los Angeles for arsenic are 10-12 mg/kg and for benzo(a)pyrene are 900 µg/kg.
- 6. California Regional Water Quality Control Board Los Angeles Region Waste Discharge Requirements for Los Angeles and Ventura Counties.
- 7. California Regional Water Quality Control Board Los Angeles Region Waste Discharge Requirements for Los Angeles and Ventura Counties. The discharge limit applies when water is extracted from the aquifer, treated, and discharged. The MCL or Federal Action Level applies for waters left in the groundwater aquifer.
- µg/kg microgram per kilogram mg/kg: milligram per kilogram
- μg/L microgram per liter ca: carcinogenic
- nc noncarcinogenic
- *State of California modified PRG
- **California Department of Health Action Level, no available MCL
- + The value of lead is The EPA remediation goal for residential exposure
- ++ The lead value was derived using The Adult lead Model for non-residential exposure using parameters for a Mexican American Population
- # 110 μ g/L is the Region IX Tap Water PRG for hydrogen sulfide

This page intentionally left blank.

4.2. **Remedy Implementation**

The remedy implemented at the Pemaco site consists of the following:

- Soil capping;
- ERH to heat soils and groundwater in the most contaminated area of the site;
- HVDPE to extract contaminated groundwater and to remove contaminated vapors liberated by the heating in the ERH Area;
- HVDPE to extract contaminated groundwater from the upper vadose zone in areas at the Pemaco site outside the ERH Area and along 59th Place to intercept contaminated groundwater and soil vapors flowing toward the surrounding neighborhood;
- A treatment plant to treat contaminated groundwater and soil vapors; and
- Institutional controls to prevent future residential reuse of the site.

The ERH and HDVPE addressed contamination in the upper vadose zone, lower vadose zone, perched groundwater, and Exposition zone groundwater. Therefore, each component of the remedy is discussed in the sections that follow, rather than how the remedy was implemented in each of the three zones for which SSRLs were established.

4.2.1. Soil Capping

Soil capping was implemented in March 2005, during the construction of Maywood Riverfront Park. It included the removal of hot spots of soil contamination from six areas in the park. After contaminated soils were removed, a 1- to 3-foot-thick certified fill protective cover was placed over the majority of the park and it was vegetated (TN&A 2007a). A soil cover is protective of human exposure by direct contact and meets the RAOs. The ERH treatment area has not yet been capped or revegetated, but is enclosed by fencing, meeting the intent of the RAOs.

4.2.2. Electrical Resistance Heating System

Installation of the ERH system began in October 2006. The 58 ERH electrodes were installed between December 13, 2006 and February 20, 2007. The 58 electrodes heated the subsurface soils by using soil resistance to convert electrical energy to heat energy. Soils were heated to above the boiling point of water and the heating volatilized the contamination in the soil and groundwater, which was then collected by the vapor-recovery system. Extracted vapors were conveyed to the treatment plant via subsurface piping. Vapor monitoring points and temperature monitoring probes in and around the ERH allowed monitoring of soil vapor and temperatures in the ERH Area.

The ERH was active for 200 days, from September 25, 2007 to April 10, 2008. Following shutdown of the ERH, HVDPE continues to remove contaminated groundwater and vapor from the area. U.S. EPA recently removed all of the ERH electrodes and other wells utilized for this treatment process (November 2014 to January 2015) so that the land in this area could be developed and added into the existing Park when the City of Maywood has the funds to continue redevelopment.

4.2.3. Groundwater and Vapor Extraction System

The groundwater and vapor extraction system at the Pemaco Site consists of groundwater pumping wells, vapor extraction wells, and dual-phase extraction wells which are connected to subsurface piping that conveys the extracted groundwater and vapors to an on-site treatment plant.

The extraction system extends beyond the boundaries of the Pemaco Site to intercept contaminated groundwater and vapor before they reach the surrounding residential neighborhood. Construction commenced on August 26, 2005 with installation of the dual-phase extraction wells. Trenching, piping, and other construction activities followed.

Groundwater extraction: Groundwater extraction began on April 25, 2007 and continues to the present. The groundwater extraction system consists of perched zone, vadose zone, and Exposition zone wells.

There are 23 perched zone wells, which range from about 30 to 40 feet deep. These wells pump water extracted from the perched zone to the treatment facility (Appendix C, Figure C-1). There are 31 wells in the lower vadose zone and the Exposition zone, including: 12 A zone wells (DA-1 through DA-12), 12 B zone wells (DB-1 through DB-12), and 7 wells screened in both the A and B zones (DAB-1 through DAB-7). Not all groundwater extraction wells are in use at one time. An optimization evaluation by the plant operator is done each quarter to determine the most efficient/beneficial wells to be used for extraction. The uptime goal of the groundwater treatment system was set to 90% beginning in the third quarter of 2013. Non-attainment of the uptime goals in the last three quarters of 2014 was due to planned and minor unplanned maintenance activities and shutting the system down for semi-annual sampling.

Vapor recovery: Vapor recovery began on May 4, 2007 and continues to the present. The vapor recovery system consists of 58 combination electrode/vapor recovery wells in the ERH Area, 29 vapor recovery wells, 33 exposition wells, 25 perched zone wells, and 10 groundwater monitoring wells that were modified and connected to the vapor recovery system in November 2007. In response to public comments, a heat exchanger and a vapor phase carbon adsorption unit was installed to the post-exhaust side of the FTO unit. Not all vapor extraction wells are in use at one time. An optimization evaluation by the plant operator is done each quarter to determine the most efficient/beneficial wells to be used for extraction. The uptime goal of the pulsed operation vapor extraction was set to 40% beginning in the first quarter of 2014.

Non-attainment of the uptime goals in the last three quarters of 2014 was due to planned and minor unplanned maintenance activities and shutting the system down for semi-annual sampling.

4.2.4. Groundwater and Vapor Treatment Plant

Contaminated groundwater and vapors are treated in the on-site treatment plant. Construction of the Pemaco treatment plant was completed in March 2007 and the plant was considered fully operational after completion of a 30-day shakedown on April 23, 2007.

Groundwater and vapor are conveyed to the treatment plant by subsurface piping and enter the plant via seven headers. Extracted groundwater is treated by:

- 1. Chlorination to reduce the potential for biofouling;
- 2. Passing the groundwater through 10-micron filters to remove solids; and

3. Passing the groundwater through GAC to remove contaminants. Treated groundwater is discharged to the LA County Sanitary District sewer system. Vapor is treated by cooling and passing through vapor-phase GAC, then discharged to ambient air though a stack at the top of the treatment plant. Condensate from extracted vapor is separated from the vapor and combined with groundwater for treatment.

Vinyl chloride (VC) was detected at concentrations that exceeded Maximum Individual Cancer Risk (MIRC) levels in the vapor influent. Because VC is not effectively treated by GAC, an FTO was installed as part of the vapor treatment system to reduce concentrations before passing through GAC. The FTO was disconnected because VC concentrations were low enough to be treated by GAC alone. The public was concerned about generation of dioxin/furans from the FTO, when the system was first turned on.

Further testing confirmed that no dioxins/furans were present in the system exhaust. The FTO began operation on June 1, 2007 and continued until June 9, 2008. Although it is no longer used, the FTO remained on site until December 19, 2014 when it was sold via GSA auction.

4.2.5. Institutional Controls

The objectives of the institutional controls (ICs) defined by the ROD included the following:

- Prohibit sensitive uses such as residential, hospital, school, child-care facility, and hospice;
- Prohibit groundwater extraction and/or use without prior review and written approval of DTSC, except as provided for in the ROD;
- Prohibit alteration, disturbance, or excavation of soil and caps without a DTSC-approved excavation work plan, except as provided for in the ROD; and
- Require contaminated soils brought to the surface by grading, excavation, trenching, or backfilling to be managed in accordance with state and federal law.

The ROD required that the City of Maywood prohibit residential use of the property through zoning and required that a State of California Land Use Covenant with the City of Maywood might be required to permanently change the allowable land use at the site. U.S. EPA signed a Covenant Not to Sue Agreement with the Trust for Public Land and the City of Maywood during 2004. The Covenant discusses that the City of Maywood would allow U.S. EPA access to continue cleanup of the site and that residential housing would not be allowed on former Pemaco property. The ROD states that the rezoning is already complete. The maps on the City of Maywood web site show that the former site area is zoned as a park. According to the Acting City Planner work on the zoning change is expected to be formalized in 2015. U.S. EPA will continue working with the State of California and the City of Maywood to finalize the land use covenant for the site.

The Los Angeles Regional Water Quality Control Board (LARWQCB) has permit restrictions in place to prevent private wells from being installed.

4.3. **OPERATION AND MAINTENANCE (O&M)**

Operation and maintenance (O&M) of the treatment plant is described in the Pemaco Operation and Maintenance Manual dated May 23, 2007 (TN&A 2007b). During this operational timeframe the LACSD discharge permit for the site was scheduled to expire during November 2011. U.S. EPA requested an extension of the deadline so U.S. EPA could begin working with the Regional Water Quality Control

Board to implement a NPDES Permit for release of the treated groundwater to land and the LA River. U.S. EPA proposed to use the treated groundwater from the Pemaco Superfund Site for landscape irrigation of approximately 3.45 acres of unpaved green space at the Maywood Riverfront Park. U.S. EPA conducted testing associated with acquiring the NPDES permit between November 2011 to January 2012 and additional testing occurred from August 2012 to September 2012. The results of the testing indicated that the treated effluent did not contain chemical constituents and radionuclides with concentrations in excess of Maximum Contaminant Levels (MCLS). The Regional Water Quality Control Board issued a letter to U.S. EPA and the City of Maywood on November 9, 2012 concurring with a proposed discharge of treated groundwater for landscape irrigation at the Park provided all conditions of the WDR related ARARS were met. U.S. EPA subsequently decided not to move forward with water reclamation and continued release of the water to the LA County Sanitation District due to the cost of the changes associated with changing the treatment system.

A 5-year discharge permit was issued in February of 2013 and the groundwater treatment system was turned back on again during April 2013, followed by the vapor treatment system during November 2013.

The annual O&M costs from April 2010 through December 2014 are provided in Table 4-2. These costs include treatment plant operation and groundwater monitoring. The costs for 2014 include removal and demolition of infrastructure in the ERH area.

Year	Total Annual Cost (rounded to the nearest \$1,000)			
2010	\$1,846,000			
2011	\$1,840,000			
2012	\$2,438,000			
2013	\$1,204,000			
2014	\$1,719,000			

Table 4-2Annual O&M Costs (2010-2014)

5.0 PROGRESS SINCE THE LAST FIVE-YEAR REVIEW

5.1. PREVIOUS FIVE-YEAR REVIEW PROTECTIVENESS STATEMENT AND ISSUES

The protectiveness statement from the first FYR for the Pemaco Site is as follows:

"The remedy at the Pemaco Superfund site currently protects human health and the environment, because exposure pathways that could result in unacceptable risks are being controlled. However, the following actions should be taken:

1. The City of Maywood should change the zoning of the Pemaco Property.

2. DTSC should finalize a Land Use Covenant to permanently change the Site's land use to recreational.

3. U.S. EPA will access the area around MW-25-130 and evaluate whether further action is warranted."

The 2010 FYR included three issues and recommendations. Each recommendation and the current status are discussed in Table 5-1.

Issues from previous FYR	Recommendation	Action Taken and Outcome	Date of Action
Institutional Control	The City of Maywood needs to complete the zoning change from industrial to recreational and prohibit residential housing on the properties.	City Zoning maps show the park designation	2015
Institutional Control	DTSC and the City of Maywood need to record a State Land Use Covenant that permanently changes the site's land use to recreational.	No action	n/a
Exposition "D" Zone Concentrations	U.S. EPA will access area around well MW-25- 130 and evaluate whether further action is needed.	CPT Investigation conducted during December 2014 indicated additional sampling and well installation is necessary	n/a

Table 5-1Status of Recommendations from the 2010 FYR

This page intentionally left blank.

6.0 FIVE-YEAR REVIEW PROCESS

6.1. Administrative Components

U.S. EPA Region 9 initiated the second FYR in September 2014 and scheduled its completion for September 2015. The U.S. EPA Region 9 review team was led by Rose Marie Caraway of U.S. EPA, Remedial Project Manager (RPM) for the Pemaco Site, and also included the U.S. EPA site attorney Thelma Estrada. On September 9, 2014, U.S. EPA held a scoping call with the review team to discuss the Site and items of interest as they related to the protectiveness of the remedy currently in place. The review team members are listed in Table 6-1.

Review Team	Agency			
Rose Marie Caraway, Remedial Project Manager	U.S. EPA			
Thelma Estrada, Attorney	U.S. EPA			
Carlin Hafiz , Community Involvement Coordinator	U.S. EPA			
Miriam Gilmer, Project Manager	USACE, Seattle District			
Cathy Martin, Technical Lead	USACE, Seattle District			
Lisa Scott, Hydrogeologist	USACE, Seattle District			
David Clark, Biologist	USACE, Seattle District			

 Table 6-1
 Pemaco Superfund Site Five-Year Review Team

6.2. COMMUNITY INVOLVEMENT

On October 1, 2014, a public notice was mailed to City of Maywood residents and published on the City of Maywood website. The notice announced the commencement of the FYR process for the Pemaco Site, provided Rose Marie Caraway's contact information, and invited community participation. The public notice is available in Appendix A. U.S. EPA was not contacted as a result of this advertisement.

The FYR report will be made available to the public once it has been finalized. Copies of this document will be placed in the following designated public repositories and can be accessed online: www.epa.gov/region9/Pemaco.

U.S. EPA Region 9 95 Hawthorne Street, Suite 403 S San Francisco, California 94105 Hours: Monday - Friday 8 a.m. - 5 p.m.

Maywood City Hall 4319 East Slauson Ave. Maywood, CA 90270 (323) 562 -5570

Maywood Cesar Chavez Library 4323 E. Slauson Ave. Maywood, CA 90270 (323)771-8600

6.3. **DOCUMENT REVIEW**

This FYR included a review of relevant, site-related documents including the ROD, remedial action reports, and recent monitoring data. A complete list of the documents reviewed can be found in Appendix B.

6.3.1. ARARs Review

Section 121 (d)(2)(A) of CERCLA specifies that Superfund remedial actions (RAs) must meet any federal standards, requirements, criteria, or limitations that are determined to be legally ARARs. ARARs are those standards, criteria, or limitations promulgated under federal or state law that specifically address a hazardous substance, pollutant, contaminant, RA, location, or other circumstance at a CERCLA site.

Chemical-specific ARARs identified in the selected remedy within the ROD for the groundwater at this Site and considered for this FYR for continued groundwater treatment and monitoring are listed in Table 6-2. The groundwater remediation levels for the Pemaco Site were developed under the assumption that groundwater at the site may be used in the future for domestic purposes. The more stringent of either the California or federal MCLs were used as groundwater remediation levels. If a designated MCL was not available, U.S. EPA tap water Regional Screening Levels (RSLs) were used as remediation levels. For chemicals lacking MCLs or RSLs, other health-based standards and effluent limits were used as remediation levels.

Table 6-2 also lists changes to applicable groundwater contaminant criteria. Note that RSLs were not listed for COCs whose cleanup levels were established by MCLs. The criteria for methyl isobutyl ketone (MIBK), naphthalene, and manganese have become more stringent, and an RSL for 1,4-dioxane was established that is more stringent than the established remediation level. The changes to 1,4-dioxane and naphthalene do not affect the protectiveness of the selected remedy, since these changes are within the risk management range of 1×10^{-4} to 1×10^{-6} . However, the revised criteria for MIBK and manganese do not affect protectiveness because they were not detected in the most recent groundwater monitoring event.

Chemical-specific ARARs identified in the selected remedy within the ROD for the soils at this Site and considered for this FYR are listed in Table 6-3. To address the soil-to-groundwater exposure pathway, U.S. EPA used the soil-to-groundwater Preliminary Remediation Goals (PRGs) (U.S. EPA 2004) as remediation levels. The PRGs used as remediation levels were based on a dilution attenuation factor (DAF) of 20 and used either MCLs or risk-based concentrations as the target concentrations in groundwater. For those

COCs with no PRGs, a separate risk assessment was conducted establishing what is called the excavation worker exposure (EWE) to use as remediation levels.

Table 6-3 lists changes to applicable soil contaminant criteria. The U.S. EPA Region 9 RSL table (November 2014) lists two different types of soil screening levels (SSLs), "risk-based" screening levels or MCL- based screening levels. When the ROD was written in 2005, only MCL-based SSLs were included on the RSL (then PRG) chart. The cleanup levels mandated in the ROD for soils are a product of either these MCL-based SSLs, or the separate EWE risk assessment. As a result, for the purposes of this comparison, MCL-based SSLs are used for COCs that have MCLs, and risk-based SSLs are used for the remaining COCs; the appropriate SSL is highlighted in grey.

The criteria for several COCs have become more stringent. The changes to the SSLs for tetrachloroethene (PCE), benzo(a)anthracene, benzo(b)flouranthene, dibenzo(a,h)anthracene, and TCE have not altered the protectiveness of the selected remedy, since the new criteria are within the risk management range of 1×10^{-4} to 1×10^{-6} .

Federal and state laws and regulations other than the chemical-specific ARARs that have been promulgated or changed over the past five years are described in Table 6-4. The table does not include those ARARs identified in the ROD that are no longer pertinent, nor does it include ARARs that did not change in the last five years. For example, ARARs related to remedial design and construction are not included in the table if they do not continue into long-term Operation Maintenance & Monitoring (OM&M).

			MCL, RSL (PRG), or EWE?	Current Standards					
Zone	сос	Remediation Level from ROD		Federal MCL (as of Nov. 2014)	CA MCL (as of June 2014)	RSL for tap water (as of Nov. 2014)	Other	More or Less Stringent?	
	VOCs (µg/L)								
	1, 1-Dichloroethane	5	MCL	None	5	N/A		Same	
	1, 1, 2-Trichloroethane	5	MCL	5	5	N/A		Same	
	Chloroethane	100	CRWQCB LA1	None	None	None	1001	Same	
	Ethylbenzene	300	MCL	700	300	N/A		Same	
	Toluene	150	MCL	1000	150	N/A		Same	
ы	NHVOCs (µg/L)								
er Zoi	Acetonitrile (Coelute w/ MIBK)	100	PRG	None	None	130		Less	
Perched Groundwater Zone	Methyl isobutyl ketone (MIBK)	2000	PRG	None	None	12002		More	
round	SVOCs (µg/L)								
ed G	1, 4-Dioxane	3	HAL3	None	None	0.784		More	
erch	bis (2-Ethylhexyl)phthalate	4	MCL	6	None	N/A		Less	
-	Naphthalene	6.2	PRG	None	None	0.174		More	
	Metals (µg/L)								
	Chromium (total)	50	MCL	100	500	N/A		Less	
	Iron	11000	PRG	None	None	14000		Less	
	Lead	15	N/A5	15	15	N/A		Same	
	Selenium	50	MCL	50	50	N/A		Same	

Table 6-2 Summary of Groundwater ARAR Changes

					Current Stand	dards		
Zone	COC	Remediation Level from ROD	MCL, RSL (PRG), or EWE?	Federal MCL (as of Nov. 2014)	CA MCL (as of June 2014)	RSL for tap water (as of Nov. 2014)	Other	More or Less Stringent?
	VOCs (µg/L)	•	•		• •			
	Acetone	5500	MCL	None	None	14000		Less
	1, 1-Dichloroethene	6	MCL	7	6	N/A		Same
	1, 2-Dibromo-3-chloropropane	0.2	MCL	0.2	0.2	N/A		Same
<u>ب</u>	1, 2-Dichloroethane	0.5	MCL	5	0.5	N/A		Same
Both Perched and Exposition Zone Groundwater or Exposition Zone Groundwater only	Benzene	1	MCL	5	1	N/A		Same
vbri	Chloroform	80	MCL	80	80	N/A		Same
Perched and Exposition Zone Groundv or Exposition Zone Groundwater only	cis-1,2-Dichloroethene	6	MCL	70	6	N/A		Same
ne G wat	Dibromochloromethane	80	MCL	80	80	N/A		Same
loZ I	Methylene chloride	5	MCL	5	5	N/A		Same
tion Gro	Methyl tert butyl ether	13	MCL	None	13	N/A		Same
oosi one	Tetrachloroethene	5	MCL	5	5	N/A		Same
l Exj n Zc	trans-1, 2-Dichloroethene	10	MCL	100	10	N/A		Same
anc	Trichloroethene	5	MCL	5	5	N/A		Same
hed	Vinyl Chloride	0.5	MCL	2	0.5	N/A		Same
ercl or Ey	Metals (μg/L)							
с Р С	Aluminum	1000	MCL	None	1000	N/A		Same
Во	Arsenic	10	MCL	10	10	N/A		Same
	Manganese	880	PRG	None	None	4306		More
	Thallium	2	MCL	2	2	N/A		Same
	Anions (µg/L)	-	•			-		·
	Sulfide	110	PRG7	None	None	None	1107	Same

Notes:

1. California Regional Water Quality Board Los Angeles Region Waste Discharge Requirements for Los Angeles and Ventura Counties

2. Non-cancer RSL only

3. California Department of Public Health Drinking Water Notification Level as of December 14, 2010, no available MCL

4. Cancer RSL

5. The value of lead is the EPA remediation goal for residential exposure

6. Non-cancer RSL only

7. Remediation level taken from 2005 EPA Region IV PRG for hydrogen sulfide. There is no published 2014 RSL for hydrogen sulfide, so the same screening level is assumed.

Table 6-3	Summary of Soil ARAR Changes
-----------	------------------------------

		Remediation Level	PRG (RSL)	Risk-ba	sed SSLs	MCL-ba	ased SSLs	More or Less		
Zone	сос	from ROD	or EWE?	SSL	DAF 20 SSL	SSL	DAF 20 SSL	Stringent?		
	VOCs (µg/kg)									
	1,1-Dichloroethene	60	PRG	100	2000	2.5	503	More		
	Acetone	16000	PRG	2900	58000	None	None	Less		
	Ethylbenzene	13000	PRG	1.7	34	780	15600	Less		
oils	Tetrachloroethene	60	PRG	5.1	102	2.3	464	More		
le Si	Toluene	12000	PRG	760	15200	690	13800	Less		
Zor	Xylenes (total)	210000	PRG	190	3800	9800	1960003	More		
Upper Vadose Zone Soils	SVOCs (μg/kg)									
ir Va	Benzo (a) anthracene	2000	PRG	12	2404	None	None	More		
Jppe	Benzo (a) pyrene	261	EWE1	4	80	240	4800	Less		
	Benzo (b) fluoranthene	2610	EWE	41	8204	None	None	More		
	Carbazole2	600	PRG		No SSL			Same		
	Dibenzo (a,h) anthracene	762	EWE	13	2604	None	None	More		
	Indeno (1,2,3-cd) pyrene	2610	EWE	240	4800	None	None	Less		
	Isophorone	500	PRG	26	520	None	None	Less		
	VOCs (µg/kg)									
	Benzene	30	PRG	0.23	4.6	2.6	52	Less		
Upper and Lower Vadose Zone Soils	1,2-Dichloroethane	20	PRG	0.048	0.96	1.4	28	Less		
Upper and Lower /adose Zone Soils	cis-1,2-Dichloroethene	400	PRG	11	220	21	420	Less		
and Zo	Methylene chloride	20	PRG	2.9	58	1.3	26	Less		
per dose	Trichloroethene	60	PRG	0.18	3.6	1.8	365	More		
Up Vac	Vinyl Chloride	10	PRG	0.0065	0.13	0.69	13.8	Less		
	Metals (mg/kg)									
	Chromium (total)	38	PRG	None	None	180000	3600000	Less		

Notes:

1 Excavation Worker Exposure

2 Neither an MCL nor an RSL have been developed for Carbazole

3 Non-cancer SSL

4 Cancer SSL

5 Cancer SSL

Authority	Medium	Requirement	Status in ROD	Status in First FYR	Current Status					
	Action-Specific Criteria									
Federal Regulatory Requirement			Appropriate		Amendment filed 4/12/2011 -					

Table 6-4 ARAR Review Table

As noted above, a portion of the California State code related to hazardous waste facilities has changed since the last five year review. Specifically, the state revised its requirements for water quality monitoring on such sites, adding a surface water component to monitoring requirements. This ARAR change is not applicable to the Pemaco Site, as the site is not classified as a RCRA hazardous waste site. Additionally, there is no exposure route that involves surface water, since the COCs are effectively contained below a cap of clean soil. Any surface water runoff from the site will not be affected by the contaminants below ground surface.

6.3.2. Human Health Risk Assessment Review

A human health risk assessment was completed for the Site as part of the Remedial Investigation (RI) completed in 2003 and summarized in the 2005 ROD. The risk assessment identified the following exposure pathways and associated risks:

- The current trespasser scenario evaluated exposure to surface soils by the ingestion, dermal, and inhalation pathways;
- The future park user scenario evaluates exposure to surface soil by the ingestion, dermal, and inhalation pathways;
- The future excavation worker scenario evaluates exposure to surface and subsurface soils (to 15 feet bgs) by the ingestion, dermal and inhalation pathways;
- Although the remedy outlined in the ROD prohibits residential use of the property, the future onsite residential scenario evaluates exposure to surface soils and to groundwater within the Exposition A and B zones by the ingestion, dermal, and inhalation pathways. Vapor intrusion by volatile chemicals detected in onsite shallow soil gas was also evaluated for the future onsite residential scenario; and
- The current offsite residential scenario evaluates risks posed by potential inhalation exposure to chemicals volatilizing from the onsite subsurface soil and perched groundwater or volatilizing from perched groundwater plumes that are migrating offsite. There are currently no water supply wells in the Exposition A and B groundwater zones; therefore, exposure to groundwater in these zones was not evaluated.

The risk assessment was reviewed to identify any changes in exposure or toxicity that would impact protectiveness. The exposure pathways are still relevant as stated.

6.3.3. Toxicity Values

U.S. EPA's Integrated Risk Information System (IRIS) has a program to update toxicity values used by the Agency in risk assessment when newer scientific information becomes available. In the past five years, there have been a number of changes to the toxicity values for certain contaminants of concern at the Site. Revisions to the toxicity values for TCE, cyanide and cis-1,2-dichloroethene indicate a higher risk. A toxicity reassessment was also released for PCE, however this does not change PCE-related risks as they continue to be assessed using a more protective toxicity assessment by Cal/U.S. EPA's Office of Environmental Health Hazard Assessment (OEHHA).

Groundwater results are compared to RSLs as a first step in determining whether response actions may be needed to address potential human health exposures. The RSLs are chemical-specific concentrations that correspond to an excess cancer risk level of 1×10^{-6} (or a Hazard Quotient (HQ) of 1 for non-carcinogens) developed for standard exposure scenarios (e.g., residential and commercial/industrial). RSLs are not de facto cleanup standards for a Superfund site, but they do provide a good indication of whether actions may be needed.

In September 2011, U.S. EPA completed a review of the TCE toxicity literature and posted on IRIS both cancer and non-cancer toxicity values which resulted in lower RSLs for TCE. The screening level for chronic exposure for cancer excess risk level of 1×10^{-6} is 0.44 µg/L. U.S. EPA uses an excess cancer risk range between 1×10^{-4} and 1×10^{-6} for assessing potential exposures, which corresponds to a TCE concentration between 0.44 and 44 µg/L. The revised protective exposure range is within the current MCL for TCE of 5 µg/L. U.S. EPA's 2011 Toxicological Review for TCE also developed protective levels that include at least a 10 fold margin of safety for health effects other than cancer. Any concentrations below the non- cancer RSL indicates that no adverse health effect from exposure is expected. Concentrations significantly above the RSL may indicate an increased potential of non-cancer effects. The non-cancer and non-cancer effects.

U.S. EPA's 2011 TCE Toxicological Review assessment concluded that TCE exposure poses potential human health hazards for non-cancer toxicity to multiple organs and to the developing fetus, including fetal cardiac malformations. This and other findings of the TCE assessment indicate that women in the first trimester of pregnancy are one of the most sensitive populations to TCE inhalation exposure and that the TCE impacts during fetal development are by definition near-term impacts. In a June 30, 2014 Memorandum, U.S. EPA Region 9's toxicologists recommended interim action levels and response actions to address potential developmental hazards arising from inhalation exposures to TCE in indoor air from subsurface vapor intrusion. On July 14, 2014, the U.S. EPA Region 9 Director of Superfund distributed the toxicologists' findings to all Superfund staff, recommending that the action levels and response actions be considered at all Region 9 Sites. On August 27, 2014, U.S. EPA's Office of Superfund Remediation and Technology Innovation (OSTRI) issued a memorandum suggesting that the regions should consider early or interim actions where appropriate to eliminate, reduce, or control hazards.

On February 10, 2012, the IRIS program published its revised toxicity assessment for PCE. This reassessment set PCE cancer potency factors less stringent than previously used to assess excess cancer risks from PCE exposure. However, for Superfund sites within the state of California, Region 9 uses the PCE toxicity factors developed by Cal/U.S. EPA's OEHHA, which have not changed. This practice is based on a long-standing agreement between Region 9 and Cal/U.S. EPA that OEHHA toxicity values will be used in cases where they are significantly more protective than U.S. EPA values; such is the case with

PCE. Thus, Cal-modified RSLs apply at the Pemaco site (cancer risk: 0.14 μ g/L; non-cancer risk: 10 μ g/L). The MCL for PCE (5 μ g/L) is within the protective exposure range for PCE and remains protective.

IRIS also indicated that the non-cancer toxicity factors for both for cis-1,2-dichloroethene and cyanide have changed in the last five years, as shown in Table 6-5.

 Table 6-5
 Non-cancer toxicity factors for cis-1,2-dichloroethene and cyanide

Compound	ROD RfD	Current RfD
cis-1,2-dichloroethene	0.01 mg/kg-day	0.002 mg/kg-day
cyanide	0.02 mg/kg-day	0.0006 mg/kg-day

In both cases, the oral reference dose (RfD) decreased. However, this results in no change to the protectiveness of the remedy since there is no exposure through drinking the groundwater.

In addition, several polycyclic aromatic hydrocarbons (PAHs), including benzo(a)pyrene, are currently under review, as part of U.S. EPA's IRIS reassessment program. Any potential change to these chemicals will need to be addressed in subsequent FYRs.

6.3.4. Ecological Review

An ecological risk assessment was not included in the ROD or any other previous documents or studies. According to Section 7.2 of the ROD: "Due to the urban location of Pemaco, no risks to ecological receptors are anticipated, therefore an ecological risk assessment was not performed." Further justification was provided by the conservative risk scenarios developed for human health, making it unlikely that ecological risk would exceed human risk in these scenarios. This assessment is still valid.

6.4. DATA REVIEW

6.4.1. Soil Sampling (Post-ERH)

In January 2012, a soil sampling event occurred to verify whether RAOs for soil, as defined in the ROD for the site, had been met (SulTRAC 2012). Soil samples were collected at locations in the upper and lower vadose zones where pre-remediation (contamination reduction) concentrations exceeded SSRLs as defined in the ROD (Figure 6-1). Samples were collected from the same locations and depths as the pre- remediation samples. Twenty-eight locations were identified and samples were collected by direct-push type drill rig.

Forty-six (46) of fifty-three (53) grab samples collected at locations and depths where the preremediation samples exceeded an SSRL do not currently exceed an SSRL. Post-remediation samples at seven locations exceeded the SSRLs for a single contaminant as outlined below.

- Sample PB-02-35.0-35.5-010512 exceeded the TCE SSRL of 60.0 micrograms per kilogram (μg/kg). Post-remediation results (260 μg/kg) were lower than pre-remediation results (970 J μg/kg);
- Sample PB-03-35.0-35.5-010512 exceeded the benzene SSRL of 30 μg/kg. Post-remediation results (800 μg/kg) exceeded pre-remediation results (230 μg/kg);
- Sample PD-07-32.0-32.5-010512 exceeded the PCE SSRL of 60 μg/kg. Post-remediation results (100 μg/kg) exceeded pre-remediation results (65 μg/kg);

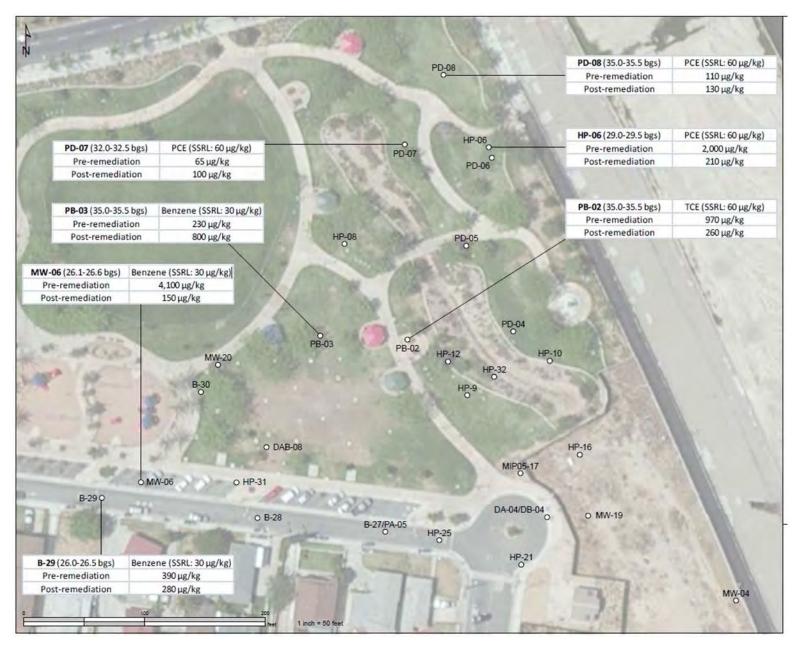


Figure 6-1 Post-ERH Soil Sampling Locations

- Sample B-29-26.0-26.5-011112 exceeded the benzene SSRL of 30 μg/kg. Post-remediation results (280 μg/kg) were greater than pre-remediation results (230 μg/kg);
- Sample MW-06-26.11-26.61-01-011012 exceeded the benzene SSRL of 30 μg/kg. Postremediation results (150 μg/kg) were lower than pre-remediation results (4,100 J μg/kg);
- Sample PD-08-35.0-35.5-010412 exceeded the benzene SSRL of 30 μg/kg. Post-remediation results (130 μg/kg) exceeded pre-remediation results (110 μg/kg); and
- Sample HP-06-29.0-29.5-01-04-12 exceeded the benzene SSRL of 30 μg/kg. Post-remediation results (210 μg/kg) were lower than pre-remediation results (2,000 μg/kg).

Note: J indicates an estimates value.

Six of seven samples were located in clayey or silty soil layers (PB-02, PB-03, PD-07, B-29, MW-06, and PD-08). Historical groundwater samples were available from five of these locations (PB-02, PB-03, PD-07, MW-06, and PD-08) and recent groundwater samples at four (PB-02, PB-03, PD-07, and MW-6) of the five locations these locations indicate that these contaminants are not contaminating groundwater at concentrations above the SSRL (SuITRAC 2012).

Data results indicate that the surface cap is still protective of direct contact for human exposure. .

6.4.2. Groundwater

6.4.2.1. Groundwater Elevations/Gradients (Gauging)

Groundwater elevations from June 2013 to July 2014 (OTIE, 2013, 2014) have dropped significantly in all hydrologic zones. All pumps were turned off for a minimum of 7 days to allow the groundwater elevations to stabilize prior to taking gauging data and sampling. The results of the groundwater elevation data, comparison to the static June 2013 elevations (OTIE 2013), calculated gradients, and inferred groundwater flow directions by hydrogeologic zone are summarized in Table 6-6. Of the 87 wells with water column (wells gauged), groundwater elevations were calculated for 67 wells (the remaining eleven wells did not have surveyed top-of-casing data and therefore elevations could not be calculated).

	Number of	Wells with Ground-		July 2014 Groundwater	Comparison to June 2013 Elevation (ft. amsl)⁴		Estimated	
Hydrogeologic Zone	Wells Gauged	water Elevations ¹	Dry Wells ²	Elevation (ft. amsl) ³	Minimum	Maximum	Horizontal Gradient ⁵⁶	Inferred Flow Direction
Perched	22	14	2	-2.20	116.64	123.71	0.02	south
А	19	11	6	-5.72	74.33	76.83	0.02 to 0.03	variable
В	25	22	1	-4.71	69.60	74.97	0.006	southwest
A & B	7	6	0	-5.77	73.69	76.58	Not used	
С	6	6	0	-2.02	43.82	45.50	0.0008	southeast
D	7	7	0	-3.87	25.04	27.29	0.003	south
E	1	1	0	-4.09	24.65	24.65	n/a ⁶	n/a ⁶

Table 6-6 Groundwater Gauging Summary

Notes:

¹Groundwater elevations calculated from surveyed well top of casing minus depth to groundwater

²Wells with no measurable water or water column less than 1 foot

³Average static groundwater elevation difference from June 2013 to July 2014

⁴ft amsl = feet above mean sea level

⁵Hydraulic gradient expressed in ft/ft

⁶n/a=not applicable (insufficient data to calculate or estimate)

Perched Zone. In July 2014, depth to water was measured in 14 wells screened in the perched zone and groundwater elevations were calculated. Two wells gauged were either dry or had less than 1-foot of water in the casing; therefore, elevations could not be calculated. Depths to groundwater ranged from 23.83 feet below top of casing (btoc) to 33.40 feet btoc. The average decline in groundwater elevations between June 2013 and July 2014 was 2.20 feet and the number of dry wells stayed the same (2). Groundwater elevations ranged from 116.64 feet amsl to 123.71 feet amsl. The groundwater flow direction was generally south at an estimated horizontal hydraulic gradient of approximately 0.02 ft/ft (Appendix C, Figure C-1).

Exposition A Zone. In July 2014, depth to water was measured in all 11 wells screened in the Exposition A zone and groundwater elevations were calculated. Six wells were either dry or had less than 1-foot of water in the casing; therefore, elevations could not be calculated. Depths to groundwater ranged from 62.49 to 73.98 feet btoc. The average decline in groundwater elevations between June 2013 and July 2014 was 5.72 feet. The number of dry wells on the gauging list increased from one to six. Groundwater elevations ranged from 74.33 to 76.83 feet amsl, with higher elevations seen generally in the southeast part of the Site along the LA River. Groundwater flow in the northern portion of the A zone was to the south-southeast at an estimated horizontal hydraulic gradient of approximately 0.03 feet per foot (ft/ft) and in the southern portion of the Site to the west at an estimated horizontal hydraulic gradient of approximately 0.02 ft/ft (Appendix C, Figure C-2).

Exposition B Zone. In July 2014, depth to water was measured in 22 wells screened in the Exposition B zone and groundwater elevations were calculated. One well measured was dry; therefore, groundwater elevations could not be calculated. Depths to groundwater ranged from 64.51 feet btoc to 77.74 feet btoc. The average decline in groundwater elevations between June 2013 and July 2014 was 4.71 feet. Groundwater elevations ranged from 69.60 to 74.97 feet amsl. There was no change in the number of dry wells compared to June of 2013. Groundwater flow direction is variable, but generally west/southwest at an estimated horizontal hydraulic gradient of approximately 0.006 ft/ft. There appears to be a southerly flow component in the northern part of the Site. (Appendix C, Figure C-3)

Exposition A & B Zone. In July 2014, depth to water was measured in 7 wells screened across the Exposition A and B zones including 5 extraction wells and groundwater elevations were calculated. None of the gauged wells were dry. Groundwater gradients were not calculated due to the screens crossing between hydrologic units. Depths to groundwater ranged from 61.94 to 73.68 feet btoc. Groundwater elevations declined an average of 5.77 between June 2013 and July 2014. Groundwater elevations ranged from 73.69 to 76.58 feet amsl.

Exposition C Zone. In July 2014, depth to water was measured in 6 wells screened in the Exposition C zone and groundwater elevations were calculated. None of the gauged wells were dry. Depths to groundwater ranged from 94.08 to 103.99 feet btoc. Groundwater elevations declined an average of 2.02 feet from June 2013. Groundwater elevations ranged from 43.82 to 45.50 feet amsl. The groundwater flow direction was generally southeast, at a relatively flat estimated horizontal hydraulic

gradient of 0.0008 ft/ft. Groundwater gradients and flow directions in July 2014 were similar to those observed in June 2013. (Appendix C, Figure C-4)

Exposition D Zone. In July 2014, depth to water was measured in 7 wells screened in the Exposition D zone and groundwater elevations were calculated. None of the gauged wells were dry. Depths to groundwater ranged from 112.78 to 121.28 feet btoc. Groundwater elevations declined an average of 3.87 feet in this zone between June 2013 and July 2014. Groundwater elevations ranged from 25.04 to 27.29 feet amsl. The groundwater flow direction was to the south with an estimated horizontal hydraulic gradient of approximately 0.003 ft/ft. Groundwater flow direction during June 2013 was generally to the south and southeast at a similar relatively flat estimated horizontal hydraulic gradient. (Appendix C, Figure C-5)

Exposition E Zone. Only one well, MW-10-170, is screened in the Exposition E Zone. Depth to groundwater was 116.10 feet btoc and the groundwater elevation was 24.65 feet amsl. The groundwater level in this well declined by 4.09 feet since the June 2013 sampling event.

6.4.2.2. Groundwater Quality

In July 2014, groundwater samples were collected from 74 wells. The primary COCs with SSRL exceedances during this sampling event were: 1,1-dichloroethene (1,1-DCE) (4 wells); 1,4-dioxane (15 wells); cis-1,2-DCE (16 wells); PCE (1 well); TCE (24 wells); and VC (2 wells). Analytical results are presented in Tables C-1 through C-9 of Appendix C. Concentration trends were evaluated for TCE in all wells, cis-1,2-DCE in wells in the Exposition A to E zones, and compounds that exceeded their respective SSRLs for all wells. Historical concentrations were plotted versus time for TCE and cis-1,2-DCE for selected zones.

Perched Zone. Historical concentrations of TCE versus time are presented on Graphs C-1 through C-5 in Appendix C. TCE concentrations showed an overall decreasing trend in all wells with the exception of PC-06 and PB-03 (Graphs C-1 through C-5). PC-06 and PB-03 exceedances remain near the SSRLs. PC-06, PB-03, PB-01, and PB-02 is extraction wells and is expected to draw contamination toward them (they may continue to have exceedances as remediation continues). Concentrations of COCs in groundwater are presented in Appendix C, Figure C-6. Analytical results are in Table C-1 of Appendix C.

In July 2014, 18 wells in the perched zone were sampled. In three of the wells, TCE and/or cis-1,2-DCE concentrations exceeded the SSRL. Other COCs detected above SSRLs were PCE and VC. All COC detections in perched zone groundwater were from wells in the area northwest of the Active Remediation Area. Results of the analysis are discussed below:

- The TCE SSRL of 5 μg/L was exceeded in one well, PB-03, at 6.7 J μg/L. The TCE concentrations showed an overall decrease in all wells except PC-06. The concentrations in PC-06 were relatively stable;
- The cis-1,2-DCE SSRL of 6 μg/L was exceeded in wells PB-02, PB-03, and PB-05 at concentrations of 120 μg/L, 21 μg/L, and 8 μg/L, respectively;
- The PCE SSRL of 5 μ g/L was exceeded in PC-06 at a concentration of 44 μ g/L;
- The VC SSRL of 0.5 μ g/L was exceeded in PB-02 at a concentration of 18 μ g/L;
- The 1,4-dioxane SSRL of 3 $\mu g/L$ in wells B-20 and PB-01 at concentrations of 10 $\mu g/L$ and 4.2 J $\mu g/L$, respectively; and

• 1,4-Dioxane concentrations in groundwater from B-20 increased to above the SSRL during July 2014.

Exposition A Zone. Historical concentrations of TCE versus time are presented on Graph C-6 through Graph C-8 in Appendix C. Concentrations of COCs in groundwater are presented on Figure C-7, and TCE concentration contours are presented on Figure C-12. Analytical results are in Tables C-2 of Appendix C, are for July 2014. Only two wells had COCs exceedances (DA-01 and MW-21-80).

In July 2014, twelve wells screened in the A zone were sampled. The only COCs with concentrations exceeding SSRLs in the A zone were TCE, cis-1,2-DCE, 1,4-dioxane, and methylene chloride in wells DA-01 and MW-21-80. TCE concentrations above SSRLs were 16 μ g/L (DA-01) and 470 μ g/L (MW-21-80). MW-21-80 is directly upgradient of the groundwater extraction system. DA-01 is an active extraction well and is expected to draw contamination (it may continue to have exceedances as remediation continues). These two wells show COCs higher than found in the perched zone. The northern extent of TCE-impacted groundwater in the A zone is currently undefined; however it is upgradient of the groundwater extraction system.

TCE concentrations in the A zone wells generally have declining trends, except in well MW-21-80, which exhibited an increasing trend since 2007.

The following other COCs exceeded their respective SSRLs:

- The cis-1,2-DCE SSRL of 6 μ g/L was exceeded in MW-21-80 at a concentration of 100 μ g/L.
- The 1,4-dioxane SSRL of 3 μg/L was exceeded in DA-01 and MW-21-80 at concentrations of 21 μg/L and 11 μg/L, respectively. The1,4-dioxane concentrations in the samples from DA-01 increased since the July 2014 sampling event.
- The methylene chloride SSRL of 5 μg/L was exceeded in MW-21-80 at a concentration of 6 J μg/L.

Exposition B Zone. Historical concentrations of TCE versus time are presented on Graphs C-9 through C-17 in Appendix C; and for cis-1,2-DCE are presented on Graphs C-18 through C-26. Groundwater COC concentrations are presented on Figures C-8 and C-9. TCE concentration contours are presented on Figure C-13, and cis-1,2-DCE concentration contours are presented in Appendix C, Figure C-14.

Analytical results are in Tables C-3 and C-4 of Appendix C. The COC exceedances are higher than in other groundwater zones.

In July 2014, 23 B zone and 7 A & B zone wells were sampled during July 2014. Samples collected from wells screened across the A & B zones are considered representative of the B zone for the purposes of this evaluation. COCs with concentrations exceeding SSRLs in the B zone and A & B zone wells include TCE, cis-1,2-DCE, VC, 1,2-dichloroethane (1,2-DCA), and 1,4-dioxane. TCE was detected above the SSRL in 15 groundwater wells. TCE concentrations exceedances ranged from 7.1µg/L (MW-13-85) to 940 µg/L (MW-01-80) in 16 wells. Detected cis-1,2-DCE concentrations ranged from 11µg/L (MW-22-90) to 480 µg/L (MW-20-85) in 8 wells.

The July 2014 TCE plume is generally similar to the December 2013 plume, with the following exceptions:

• A significant increase in the TCE concentration in MW-06-85 (from 0.32 J µg/L to 280 µg/L);

- An increase in TCE concentrations in MW-02-95 (from 490 μg/L to 850 μg/L). This well is located the groundwater treatment area which may be drawing contamination toward the well; increase in TCE concentrations in MW-21-90 (from 46 μg/L to 150 μg/L);
- A decrease in TCE concentrations in DAB-08 (from 570 μg/L to 320 μg/L). This well is an extraction well and is expected to draw contamination toward it (it may continue to have exceedances as remediation continues over time);
- Three wells (MW-28B, MW-06-85, and MW-12-90) with exceedances above the SSRLs are located downgradient of the groundwater treatment area, and appear to be outside the zone of influence (capture zone) of the extraction wells (groundwater treatment area); and
- The northern extent of TCE-impacted groundwater in the B zone is currently undefined; however it is upgradient of the groundwater extraction system.

TCE concentrations generally decreased from north to south across the Site. South of the ERH Treatment Area, TCE concentrations were below the SSRL with the exception of those from MW-13-85. TCE concentration in MW-13-85 in July 2014 was 7.1 μ g/L, which is below the previous historical low concentration of 8.5 μ g/L in December 2013. The groundwater extraction treatment system appears to have influence in the south with overall decreases in concentrations below SSRLs.

TCE concentrations increased from December 2013 to July 2014 in samples from wells DB-03 ($36\mu g/L$ to 39 $\mu g/L$), MW-20-85 (0.72 J $\mu g/L$ to 8 $\mu g/L$), MW-22-90 (8.5 $\mu g/L$ to 13 $\mu g/L$), MW-01-80 (870 $\mu g/L$ to 940 $\mu g/L$) to the west and northwest of the ERH Treatment Area.

TCE concentration trends for the B Zone and A & B Zone wells were generally decreasing or stable with the exception of four wells (DAB-08, MW 29-85, MW-21-90, and MW-12-90). TCE concentrations in these wells had overall increasing trends, but minor.

These wells are located as follows:

- DAB-08, west/northwest of the ERH Treatment Area,
- MW-29-85, on the southwest boundary of the ERH Treatment Area,
- MW-21-90, northwest of the ERH Treatment Area, and
- MW-12-90, west of the ERH Treatment Area on Alamo Avenue.

Although MW-01-80 had a significant increase in TCE concentrations from 2003 to 2012, concentrations have a slight decreasing trend since 2012. TCE concentration in well MW-06-85 increased significantly from 0.32 J μ g/L during December 2013 to 280 μ g/L during July 2014 (Appendix C, Graph C-11). This is the first sampling event during which TCE was detected at a concentration above the SSRL in this well.

The cis-1,2-DCE plume was similar to the TCE plume; cis-1,2-DCE concentrations also generally decreased from north to south across the Site. The highest cis-1,2-DCE concentration (480 μ g/L) was detected in well MW-20-85, northwest of the ERH Treatment Area. The cis-1,2-DCE plume was limited to the northwest of the ERH Treatment Area at the site and the west portion of the residential area between Alamo and Walker Avenues. The cis-1,2-DCE concentration trends for the B Zone and A & B Zone wells were generally decreasing or stable, with the exception of three wells: MW-20-85, MW-21-90, and MW-22-90 located to the north and northwest of the ERH Treatment Area.

Cis-1,2-DCE concentrations in samples from these three wells had overall increasing trends. Although MW-01-80 had a significant increase in cis-1,2-DCE concentrations from 2007 to 2012, there has been a slight decreasing trend since 2012. Cis-1,2-DCE concentration in well MW-06-85 increased from 0.08 μ g/L during December 2013 to 36 μ g/L during July 2014. This is the first sampling event since January 2006 during which cis-1,2-DCE was detected in this well at a concentration above the SSRL. The presence of cis-1,2 DCE maybe evidence of biodegradation is underway (MNA), and maybe expected to show fluctuations in concentrations related to the TCE biodegradation processes. TCE exceedances are also present in all three of these wells, which act as a source.

The following other COCs exceeded their respective SSRLs:

- The 1,2-dichloroethane SSRL of 0.5 μg/L was exceeded in MW-28B at a concentration of 2 μg/L;
- The VC SSRL of 0.5 μ g/L was exceeded in MW-20-85 at a concentration of 21 μ g/L; and
- The 1,4-dioxane SSRL of 3 μg/L was exceeded in seven B zone wells (DB-01, DB-04, MW-06-85, MW-20-85, MW-21-90, MW-22-90, MW-28B), and one A & B zone well (DAB-08) at concentrations ranging from 3.3 μg/L (MW-22-90) to 47 μg/L (MW-28B).

1,4-Dioxane concentrations increased in six wells MW-20-85, MW-21-90, and MW-22-90, DB-04, MW-06-85 and MW-28B. 1,4-Dioxane concentrations decreased in A & B zone well DAB-08.

Exposition C Zone. Historical concentrations of TCE versus time plots are presented in Appendix C, Graphs C-27 through C-28; cis-1,2-DCE versus time plots are presented on Graphs C-29 through C-30. Concentrations of COCs in groundwater are presented in Appendix C, Figure C-10 and TCE concentration contours are presented in Appendix C, Figure C-15. Analytical results are in Tables C-5 of Appendix C.

In July 2014, six monitoring wells screened in the C zone were sampled, primarily located in the southern portion of the Site and to the south and west off site on Alamo Avenue (well MW-10-110). The only COCs to exceed SSRLs in the C zone were TCE, cis-1,2-DCE, and 1,4-dioxane.

TCE was detected in groundwater from all six wells sampled; however, only two wells had exceedances above SSRLs with concentrations of 540 μ g/L (MW-23-110) and 700 μ g/L (MW-05-105). The TCE groundwater plume with concentrations above the SSRL extends off site to the west and south of the ERH Treatment Area. The highest off-site TCE concentration was in MW-05-105, located to the west and adjacent to the Site boundary. The northern extent of the TCE plume is not defined, however, is located in the upgradient boundary of the site. TCE concentrations in MW-10-110, MW-24-110, MW-25-110, and MW-34-110 were either stable or decreasing. TCE concentrations in two wells southwest and west of the ERH Treatment Area (MW-05-105 and MW-23-110, respectively) have shown increasing trends since 2011. Vertical migration maybe occurring from the upper zone due the increase concentrations in these wells.

Cis-1,2-DCE was detected in groundwater from five of the six wells sampled at concentrations ranging from 0.43 J µg/L (MW-25-110) to 88 µg/L (MW-05-105). The cis-1,2-DCE groundwater plume was similar to the TCE groundwater plume in areal extent; cis-1,2-DCE was only detected in groundwater from wells with TCE detections. Cis-1,2-DCE concentrations in MW-10-110, MW-11-100, MW-25-110, MW-24-110, and MW-34-110 were either stable or decreasing. Cis-1,2-DCE concentrations in groundwater from MW-05-105 and MW-23-110 had increasing trends. The presence of cis-1,2 DCE maybe evidence of biodegradation is underway (MNA), and maybe expected to show fluctuations in concentrations related

to the TCE biodegradation processes. TCE exceedances are also present in both of these wells, which act as a source.

1,4-Dioxane was detected at concentrations ranging from 0.63 J μ g/L to 4.3 μ g/L in all three samples from C Zone wells. The 1,4-dioxane concentration from well MW-05-105 (4.3 μ g/L) was above the SSRL of 3 μ g/L. The 1,4-dioxane concentrations have increased in all three wells.

Exposition D Zone. Historical concentrations of TCE versus time plots are presented on Graphs C-31 through C-32; cis-1,2-DCE versus time plots are presented on Graphs C-33 through C-34. Concentrations of COCs in groundwater are presented on Figure C-11 and TCE concentration contours are presented on Figure C-16. COCs with concentrations exceeding SSRLs in the D Zone include TCE, cis-1,2-DCE, and 1,4-dioxane. Analytical results are presented in Tables C-6 of Appendix C.

In July 2014, seven wells screened in the D zone were sampled. D zone monitoring wells are located in the southern portion of the Site and off site to the west and south. TCE was detected above the SSRL for TCE (5 μ g/L) in MW-07-130, MW-11-130, and MW-25-130 at concentrations of 130 μ g/L, 11 μ g/L, and 230 μ g/L, respectively. TCE concentrations in wells MW-25-130, MW-07-130, and MW-11-130 (located along the Los Angeles River) have increasing trends. TCE concentrations in well MW-23-145 (located west of the ERH Treatment Area) also have an increasing trend; although concentrations are below the SSRL they increased gradually from 0.58 μ g/L in July 2008 to 3.0 μ g/L in July 2014. Vertical migration may be occurring from the upper zone due the increase concentrations in these wells. Concentrations in the other monitored wells were generally stable.

Other COCs detected at concentrations above SSRLs were cis-1,2-DCE and 1,4-dioxane at concentrations of 10 μ g/L and 36 μ g/L, respectively, in MW-25-130. Concentrations of cis-1,2-DCE in MW-25-130 exhibited fluctuations generally within an order of magnitude around the SSRL from 2010 through 2012; however the past four samples (2013 to 2014) have been relatively stable at around 10 μ g/L. Cis-1,2-DCE concentrations in wells MW-05-135, MW-07-130, MW 11-130 and MW-12-15 have increasing trends since 2007. 1,4-Dioxane concentrations in MW-25-130 increased from 11 μ g/L to 36 μ g/L; both concentrations are above the SSRL of 3 μ g/L. The presence of cis-1,2 DCE may be evidence of biodegradation is underway (MNA), and maybe expected to show fluctuations in concentrations related to the TCE biodegradation processes. TCE exceedances are also present in all three of these wells, which act as a source.

Exposition E Zone. Well MW-10-170, the only well screened in the E zone, is located downgradient of the site to the east-southeast (Appendix C, Figure C-11). Historical concentrations of TCE are presented on Graph C-35. TCE was detected in this well at a concentration of 0.1 J μ g/L, which is below the SSRL. Historically, TCE has either not been detected or has been well below the SSRL in samples collected from this well. Analytical results are in Tables C-6 of Appendix C. One well off site is not a good representative of vertical migration to the E zone.

6.4.2.3. Historical Concentration Trends

Historical TCE concentration trends were evaluated for wells in all zones. The graphical analyses are included in Appendix C and are discussed below.

Perched Zone: TCE concentrations in the perched zone have shown generally decreasing trends in the18 wells sampled.

Exposition A Zone: TCE concentrations in the A zone have shown generally decreasing trends in 12 of the 13 wells sampled. Well MW-21-80 is the only well that has exhibited an increasing trend since 2007. Data results indicate that the extent of the groundwater plume in the A zone is unknown to the north and west of the site due to the lack of monitoring wells. Increases in COC concentrations in MW-21-80 suggest that RAOs for restoring groundwater quality are not being achieved.

Exposition B Zone: TCE concentrations in the B zone are generally decreasing from north to south across the Site based on the 30 wells sampled. TCE concentration trends for both the B zone and A & B zone wells have shown generally decreasing or stable trends with the exception of four wells (DAB-08, MW-29-85, MW-21-90, and MW-12-90). Data results indicate that the extent of the groundwater plume in the B zone is unknown to the north and west of the site due to the lack of monitoring wells.

Exposition C Zone: TCE concentrations in the C zone have shown increasing trends in the six wells sampled, with sharp increases in two of the wells since 2011 (MW-23-110 and MW-05-105). From June 2013 to July 2014, TCE concentrations increased from 63 μ g/L to 540 μ g/L in MW-23-110 and 26 μ g/L to 700 μ g/L in MW-05-105. Data results indicate that the extent of the groundwater plume in the C zone is only known to the east due to the lack of monitoring wells.

Exposition D Zone: TCE concentrations in the D zone have shown stable to increasing trends in the seven wells sampled. TCE concentrations in wells MW-25-130, MW-07-130, and MW-11-130 (located along the Los Angeles River) have increasing trends. Concentrations in the other monitored wells were generally stable. From April 2011 to July 2014, TCE concentrations increased from 99 μ g/L and 230 μ g/L in MW-25-130 and from 20 μ g/L to 130 μ g/L in MW-07-130. Data results indicate that the extent of the groundwater plume in the D zone is only known to the northwest due to the lack of monitoring wells.

6.4.2.4. Treatment System Evaluation

Mass of VOCs removed by the groundwater and vapor treatment systems has decreased substantially since ERH was active (Figure 6-2). The volume of groundwater extracted has decreased significantly since 2011 (likely due to the plant was shut down due to expiration of the LACSD discharge permit for much of 2012 and 2013, and the continuing optimization efforts), which corresponds to a decrease in the total VOC mass removed by the groundwater treatment system since 2011 (Figures 6-2 and 6-3). The annual mass removal efficiency of the groundwater treatment system (lbs. VOCs removed per million gallons of water treated), though, has been relatively stable over the last five years (Figure 6-3). Since the restart of the system in 2013, quarterly estimated mass removal efficiency of the groundwater treatment system has declined somewhat, and quarterly estimated mass removal efficiency (lbs. VOCs removed per million standard cubic feet treated) has been inconsistent (Figure 6-4). It is difficult to interpret the recent system efficiencies in light of the optimization efforts; different sets of groundwater and vapor extraction wells have been used each quarter since the system was restarted (see Section 4.3.3). The most efficient mass removal in the groundwater treatment system occurred in the second quarter of 2013, when only wells DB-01, DB-04, DB-07, and DB-08 were in operation. The most efficient mass removal in the vapor treatment system occurred in the first quarter of 2014, when only wells PB-01, PB-02, PC-06, and PD-04 were in operation. However, mass removal and achievement of SSRLs is not the only goal of the remedial action; prevention of contaminant migration is also a goal. These goals, along with the current understanding of contaminant distribution, must be carefully considered when determining which extraction wells should be in operation.

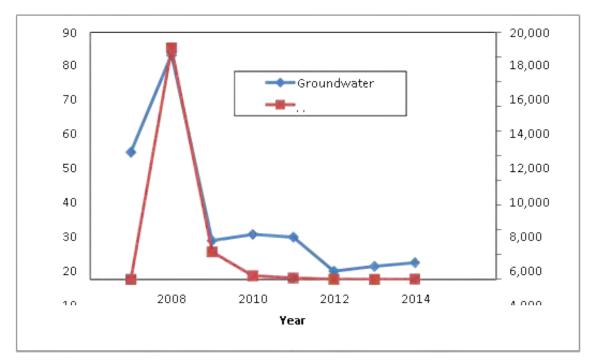


Figure 6-2 Mass of VOCs removed from 2007-2014

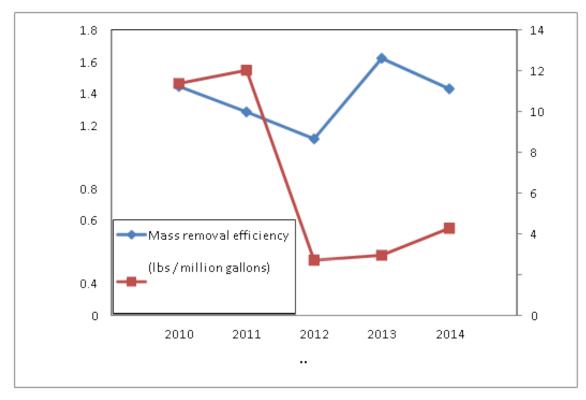
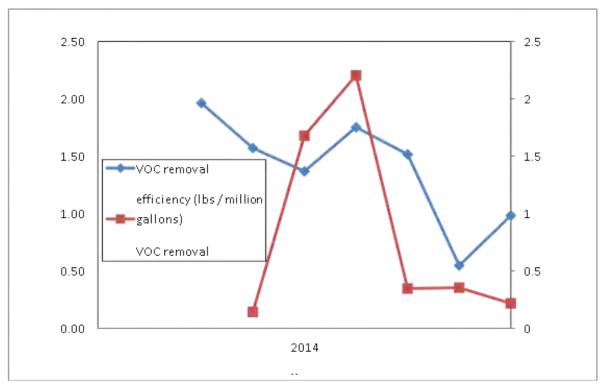



Figure 6-3 Annual VOC Removal Efficiency in Groundwater from 2010-2014

Figure 6-4 Recent Quarterly VOC Removal Efficiencies

6.5. SITE INSPECTION

U.S. EPA conducted a site inspection on December 2, 2014. The Site Inspection Checklist with a list of attendees is presented in Appendix D. The remedy systems and components that were observable are in good repair and operating as designed. The exception is the solids filtration unit at the groundwater treatment plant, which requires more maintenance than anticipated due to well damage caused by the ERH. The general impression is that the remedial systems are functioning very well, are well maintained, and problems and/or concerns are pro-actively addressed. Data, records, and logs reviewed during the site inspection support the statement that the remedy is effective and functioning as designed

The following concerns were recorded during the Site Inspection:

- There have been issues with vandalism in 2013. Vandals cut the fence in the former ERH area and stole electrical wires placed there by the City of Maywood;
- Above ground piping serving the ERH area was removed during 2014; and
- A few wells are listed for abandonment.

6.6. INTERVIEWS

During the FYR process, interviews were conducted by telephone with Brian Hendron (OTIE Project Superintendent) on December 8, 2014 and Lori Parnass (DTSC Project Manager) on December 9, 2014.

The purpose of the interviews was to document the perceived status of the Site and any perceived problems or successes with the phases of the remedy that have been implemented to date. Interviews are summarized below and complete interviews are included in Appendix E.

The primary input from Brian Hendron (OTIE) was as follows:

- 1. Monitoring data does show that contaminant levels within the original plume are decreasing.
- 2. There have been significant changes in the last 5 years.
 - a) On-site staff reduced from full time staff of 3 to 1;
 - b) The number of remediation wells currently active reduced by 50%;
 - c) Sampling routine has also been reduced by 50%; and
 - d) Changes to O&M requirements applied over last few years have reduced the effort required for O&M by approximately 50%. The current footprint of the active remediation plan allows for less monitoring effort than the previous plan with no reduction in the effectiveness of the remedy.
- 3. Some issues which have caused additional manpower effort include high sediment content in groundwater systems causing excessive filter replacement.
- 4. Significant effort has been applied to O&M optimization which includes:
 - a) Adding additional filter vessels to capture sediment coming into groundwater system. This allows for system to more efficiently capture sediment coming in and run longer between shutdowns or filter change outs;
 - b) Installation of variable frequency drive (VFD) on groundwater treatment system booster tank pump to reduce flowrate through groundwater treatment system filter vessel, which allows longer contact time or removable sediment and higher efficiency of the filter themselves; and
 - c) Installation of VFD on vapor extraction system blower to reduce energy consumption and excess vacuum applied to treatment area.

Lori Parnass (DTSC) provided the following input:

- 1. The remedy is functioning as intended.
- 2. ERH was underperforming and has been removed from operation.
- 3. Bioaugmentation may be used to help decrease groundwater concentrations in the future.
- 4. The land use covenant may be expected within 2 years.

6.7. INSTITUTIONAL CONTROLS

Table 6-7 lists the ICs associated with areas of interest at the Site.

Impacted Parcel(s)	Media	ICs Specified in the Decision Documents?	IC Objective	Instrument in Place	Notes
APN6314-030-005 APN6314-032-900 APN6314-030-800	Ground- water	Yes	Prevents human exposure to contaminated groundwater	Los Angeles Regional Water Quality Control Board private well permit restriction	
APN6314-003-001 APN6314-032-008 APN6314-030-004	Soil	Yes	Prevent human exposure to contaminated soil	Land Use Restrictions	Recording No. 02 3199193

 Table 6-7
 Institutional Control Summary Table

The ROD states that the IC objectives to be achieved through land-use restrictions included the following:

- Prohibit sensitive uses such as residential, hospital, school, child-care facility, and hospice;
- Prohibit groundwater extraction and/or use without prior review and written approval of DTSC, except as provided for in the ROD;
- Prohibit alteration, disturbance, or excavation of soil and caps without a DTSC-approved excavation work plan, except as provided for in the ROD; and
- Require contaminated soils brought to the surface by grading, excavation, trenching, or backfilling to be managed in accordance with state and federal law

The Trust for Public Land recorded a covenant dated December 30, 2002, restricting certain uses of the property, including prohibiting residential use of the property and prohibiting the alteration of the soil cover. The ROD required that the City of Maywood prohibit residential use of the property through zoning, and suggested that a State of California Land Use Covenant with the City of Maywood may be required to permanently change the allowable land use at the site. The City of Maywood has issued a zoning change on its maps to identify the area as "park" land. This IC has not yet been completed.

Likewise, DTSC representatives stated during the site inspection that the State of California has not yet finalized a Land Use Covenant for the site

7.0 TECHNICAL ASSESSMENT

7.1. QUESTION A: IS THE REMEDY FUNCTIONING AS INTENDED BY THE DECISION DOCUMENTS?

The remedy is performing as intended. The surface cap is preventing human exposure (by direct contact) of contaminated soils having COCs in excess of soil ARARs and standards that are protective of human health and the environment. The 2012 soil sampling event results showed that there has been significant contaminant reduction at the site since the pre-remediation soil samples were collected. Soil sample analysis indicates that VOC levels are currently significantly lower than before remediation began with the exception of seven locations (PB-02, PB-03, PD-07, B-29, MW-06, PD-08, and HP-06) where some COC exceed the SSRLs. These hot spots are now capped and revegetated. Although the former ERH treatment area has not been capped and revegetated, the fencing surrounding the area meets the RAO by protecting human receptors from exposure.

The groundwater chemicals of concern concentrations are generally decreasing towards MCLs with a few exceptions. In the C zone, TCE was detected in groundwater from all six wells sampled, however, only two had exceedances above SSRLs with concentrations of 540 μ g/L (MW-23-110) along the site boundary and 700 μ g/L (MW-05-105) just outside the site boundary. TCE concentrations in these two wells southwest and west of the ERH Treatment Area (MW-05-105 and MW-23-10, respectively) have shown increasing trends since 2011. In the D Zone, TCE was detected above the SSRL for TCE of 5 μ g/L in MW-07-130, and MW-11-130, at concentrations of 130 μ g/L, and 11 μ g/L off-site (down gradient south of the site). TCE concentrations in these wells have been increasing trends over time. Additionally, the E zone has only one well being monitored for vertical migration and it is downgradient of the site.

Historically, TCE has either not been detected or has been well below the SSRL in samples collected from this well. Although some contaminant levels increased in 2014, it is possible that concentrations of chlorinated solvents (TCE, 1,1-DCE, c-1,2-DCE) in Site groundwater are part of a regional groundwater issue which could impact whether or not the cleanup on the Pemaco site could reach the numeric goals identified in the ROD. There is a need for additional investigation to determine how much of the increasing concentrations are attributable to residual Pemaco contamination and how much is attributable to offsite sources showing up on site. The contaminated groundwater does not pose an immediate threat to the off-site municipals wells.

7.2. QUESTION B: ARE THE EXPOSURE ASSUMPTIONS, TOXICITY DATA, CLEANUP LEVELS, AND REMEDIAL ACTION OBJECTIVES (RAOS) USED AT THE TIME OF REMEDY SELECTION STILL VALID?

The exposure assumptions and pathways identified in the RODs are still valid, although there are changes in toxicity data and ARARs for some compounds.

The groundwater ARARs for MIBK, naphthalene, and manganese have become more stringent, and an RSL for 1,4-dioxane was established that is more stringent than the ROD remediation level. The changes to 1,4-dioxane and naphthalene have not altered the protectiveness of the selected remedy, since the new criteria are within the risk management range of 1×10^{-4} to 1×10^{-6} . The revised ARARs for MIBK and manganese do not affect protectiveness because they were not detected in the most recent groundwater sampling event.

Revision to the soil toxicity values for TCE, cyanide and cis-1,2-DCE indicate a higher risk and PCE, which indicate a lower risk, from exposure to these chemicals than previously considered. Toxicity data for

TCE, cis-1,2-DCE and cyanide in soil have been lowered. The cancer and non-cancer RSLs for PCE have been raised. However, there is no current exposure to these compounds. Therefore, changes to toxicity values do not affect protectiveness.

The ARARs for several soil COCs have become more stringent. The changes to the SSLs for PCE, benzo(a)anthracene, benzo(b)flouranthene, dibenzo(a,h)anthracene, and TCE have not altered the protectiveness of the selected remedy, since these changes are within the risk management range of 1×10^{-4} to 1×10^{-6} .

No new contaminants have been identified and no new risk assessment methodologies have come into use. The RAOs are still valid. However, the RAOs for preventing offsite migration and vertical migration by contaminated groundwater are not being met.

7.3. QUESTION C: HAS ANY OTHER INFORMATION COME TO LIGHT THAT COULD CALL INTO QUESTION THE PROTECTIVENESS OF THE REMEDY?

There is no new information that might affect the protectiveness of the remedy.

7.4. TECHNICAL ASSESSMENT SUMMARY

The remedy for soil was implemented in July 2005 with the emplacement of soil cover over most of the Site. The former ERH area has not been capped or revegetated. The ERH area is fenced and excludes human receptors. Soil cover with revegetation or fencing is protective of human exposure by direct contact and meets the RAOs. Institutional controls in the form of zoning change from industrial to recreational has not been completed by the City, nor has a Restrictive Covenant from DTSC. The soils remedy is functioning as intended.

The groundwater remedy (extraction system) began in April 2007 and is effectively treating groundwater to discharge standards. However, the groundwater RAOs are not being met and groundwater has not been restored to drinking water standards. There have been increasing levels of contamination in all four hydrogeologic zones since 2011 and the extent of TCE contamination in each zone needs additional investigation to find plume boundaries.

The indoor air RAO of remediating groundwater to drinking water standards has not been met and concentrations in groundwater are increasing. However, the indoor air risk has been addressed through investigation of indoor air concentrations which indicate that there is no risk through exposure to indoor air.

There have been changes to the ARARs and toxicity data for some compounds in soil and groundwater since the first FYR. However, they do not affect protectiveness. Land use has not changed since the first FYR and exposure assumption and pathways are still valid.

8.0 ISSUES

Table 8-1 summarizes the current issues for the Pemaco Superfund Site.

Table 8-1 Current Issues for the Pemaco Superfund Site

Issue	Affects Current Protectiveness? (Yes or No)	Affects Future Protectiveness? (Yes or No)
DTSC has not finalized a Land Use Covenant to permanently change the site's land use to recreational. The City of Maywood has issued a zoning change on its maps to identify the area as "park" land.	No	Yes
Contaminants of concern in four hydrogeologic zones (A, B, C, and D) have been increasing in concentrations since 2011.	No	Yes
The full extent of contamination in each of the four hydrogeologic zones has not been fully delineated on site, off site, or vertically.	No	Yes
The ERH Area has not been capped or revegetated	No	Yes

9.0 RECOMMENDATIONS AND FOLLOW-UP ACTIONS

Table 9-1 provides recommendations to address the current issues at the Pemaco Superfund Site.

	Recommendations/ Follow-	Responsible	Oversight	Milestone	Affects Protectiveness? (Yes or No)	
Issue	Up Actions	Party	Agency	Date	Current	Future
DTSC has not finalized a Land Use Covenant to permanently change the site's land use to recreational. The City of Maywood has issued a zoning change on its maps to identify the area as "park" land.	should finalize the draft Land Use Covenant submitted to them in	DTSC and City of Maywood	U.S. EPA	09/2016	No	Yes
Contaminants of concern in four hydrogeologic zones (A, B, C, and D) have been increasing in concentration since 2011.	An investigation and evaluation of the increase in COCs needs to be conducted. This includes evaluating the effectiveness of the groundwater extraction and treatment system and investigating whether or not there is an unknown source contributing to the increasing concentrations. Evaluate vertical contaminant movement, including impact to downgradient municipal wells is needed	U.S. EPA	U.S. EPA	09/2016	No	Yes
The full extent of contamination in each of the four hydrogeologic zones has not been fully delineated on site, off site, or vertically.	The groundwater monitoring program should be expanded to define the extent of contamination (installation of additional wells and groundwater sampling) in all hydrogeologic zones.	U.S. EPA	U.S. EPA	09/2016	No	Yes
The ERH area has not been capped or revegetated.	The ERH area should be capped and revegetated.	U.S. EPA	U.S. EPA and City of Maywood	09/2016	No	Yes

Table 9-1 Recommendations to Address Current Issues at the Pemaco Superfund Site

In addition, the following are recommendations that not do affect current protectiveness but were identified during the FYR:

- All COCs from the ROD should be monitored unless there is a reason to delete them. Changes to the analyte list should be documented within the data quality objectives of the Sampling and Analysis Plan.; and
- The groundwater and vapor extraction systems are evaluated on a quarterly basis to determine what wells are used for extraction. It is based on the most recent sampling event (COC concentrations and groundwater gradients). However, additional information about how the determinations are made is needed, including protocols to make this determination.

10.0 PROTECTIVENESS STATEMENT

The remedy at the Pemaco Superfund Site currently protects human health because exposure pathways to contaminated soil and groundwater are being controlled. However, in order for the remedy to be protective in the long-term, the following actions are necessary: (1) investigation of the increasing trends of contaminant concentration in each aquifer and the evaluation of the effectiveness of the groundwater extraction and treatment system; (2) identification of the full extent of contamination in each zone (onsite, off site and vertically); (3) capping and revegetation of the ERH area; and (4) finalization of a Land Use Covenant by DTSC, U.S. EPA and City of Maywood.

11.0 NEXT REVIEW

This is a statutory review of the Site that requires ongoing FYRs as long as waste is left on site that does not allow for unlimited use and unrestricted exposure. The next FYR will be due within five years of the signature date of this FYR.

APPENDIX A

Public Notice

U.S. Environmental Protection Agency • Region 9 • San Francisco

The United States Environmental Protection Agency begins the second Five-Year Review of cleanup at the Pemaco Superfund Site

The United States Environmental Protection Agency (EPA) has begun the second Five-Year Review of cleanup actions undertaken at the Pemaco Superfund Site, in Maywood, CA. The **Review will evaluate whether the cleanup** actions for the Site remain protective of human health and the environment. The Review is expected to be complete by June 2015.

Agencia de Protección Ambiental de los EE.UU • Región 9 • San Francisco

La Agencia de Protección Ambiental de los EE.UU. Inicia la Revisión de Cada Cinco Años sobre la limpieza en el Sitio Superfund Pemaco

La Agencia de Protección Ambiental de los EE. UU. (EPA, por sus siglas en inglés) ha iniciado El propósito de la segunda Revisión de Cada Cinco Años es para la segunda Revisión de Cada Cinco Años sobre evaluar cómo está operando el sistema de tratamiento de agua subterránea y extracción de vapor del suelo. La EPA observará el las acciones de limpieza llevadas a cabo en el progreso de la limpieza para asegurarse que las acciones realizadas Sitio Pemaco Superfund, en Maywood, CA. La durante los últimos nueve años continúan protegiendo a la comunidad. La EPA quisiera hablar con la comunidad acerca de Revisión evaluará si las acciones de limpieza cómo ha progresado la limpieza en este tiempo. para el Sitio siguen protegiendo la salud (continúa en la página 3) humana y el medio ambiente. Se espera que la Revisión finalice en junio 2015.

Superfund Site Park and Pemaco the Maywood Riverfront to ndergotong lansA

Public Notice of Five-Year Review Pemaco Supertund Site

€PA

United States Environmental Protection Agency Region 9 75 Hawthorne Street (SFD) San Francisco, CA 94105 Attn: Carlin Hafiz (Pemaco 10/14)

Official Business Penalty for Private Use, \$300 Address Service Requested

FIRST-CLASS MAIL **POSTAGE & FEES** PAID U.S. EPA PERMIT No. G-35

Pemaco Superfund Site Public Notice Sitio Superfund Pemaco

Aviso Público

The Review Process

The purpose of the second Five-Year Review is to evaluate how the soil vapor extraction and groundwater treatment system is operating. EPA will look at the progress of the cleanup to make sure the actions performed over the past nine years are continuing to protect the community. EPA would like to talk to the community about how the cleanup has progressed over time.

(continued on page 2)

El Proceso de Revisión

STAY INFORMED

September 2014 removal of heater wells used for treatment. Septiembre 2014 eliminación de pozos calentadores utilizados para el tratamiento.

Call Toll Free

Toll-free number **1-800-231-3075** has been set up for community members to call and obtain information on the Pemaco Site.

Pemaco Information Website To keep the public informed, the EPA maintains the Superfund Website: **www.epa.gov/region09/pemaco** EPA websites will be updated regularly with Fact Sheets, community meeting information, monitoring reports, and progress updates.

Information Repository Maywood César Chavez Public Library

4323 East Slauson Avenue Maywood, CA 90207 (323) 771-8600

EPA Superfund Records Center

95 Hawthorne Street San Francisco, CA 94105 (415) 947-8000

EPA Contacts Rose Marie Caraway, MBA Remedial Project Manager

75 Hawthorne St. (SFD 7-2) San Francisco, CA 94105 (415) 972-3158 caraway.rosemarie@epa.gov

Carlin Hafiz

Community Involvement Coordinator 600 Wilshire Blvd,, Ste. 1460 (213) 244-1814 Or Toll Free: (800) 231-3075 hafiz.carlin@epa.gov

The Review Process continued

The Review process will include taking a look at recent scientific developments, and comparing current chemical concentrations in the groundwater against cleanup numbers to make sure they are still safe. Some chemicals present in groundwater and/or soil at the beginning of the cleanup have met the safe levels established in the cleanup plan – the Record of Decision (ROD) – for the Site.

The Superfund law requires an evaluation of the protectiveness of the treatment system every five years when the cleanup actions will take longer than five years to complete. EPA will continue to evaluate the protectiveness of the cleanup until the chemical concentrations found in the groundwater meet the cleanup numbers established in the ROD. For this current review, EPA will examine the mechanical components of the groundwater and vapor treatment system to ensure that they continue to operate properly.

Upon completion of the second Five-Year Review, EPA will send out a 2015 Fact Sheet to inform you of the conclusions of the Review. Also, a copy of the second Five-Year Review will be placed in the local **Information Repository** listed on this page.

Community Involvement

EPA is always interested in hearing from the public. If you are interested in being interviewed for the Five-Year Review, let us know. If you have any issues or concerns about the Pemaco Site's cleanup plan or progress of cleanup, EPA would like to talk with you. Please contact Rose Marie Caraway or Carlin Hafiz at the EPA Contacts numbers listed on this page. If you would like to be included in our postal mailing list and receive future fact sheets, please contact Carlin Hafiz.

Site History

The Pemaco Site was formerly used as a chemical mixing facility that operated from the 1950s until 1991 when operations ended. The Site was placed on the National Priorities List (NPL) in January of 1999 to address contaminants that include chlorinated solvents and other volatile organic compounds (VOCs). Following extensive site investigation work, the ROD was signed in 2005. The ROD summarized EPA's selected cleanup actions and cleanup work began the Summer of 2005. The cleanup activities resulted in the majority of the former Pemaco property being incorporated into Maywood Riverfront Park by the fall of 2006. The cleanup work continues to the present day with the operation of the treatment plant.

Cleanup Objectives

The objective of groundwater cleanup activities is to restore groundwater to drinking water quality and prevent contamination from spreading. Indoor air quality objectives require cleanup of contaminated soils and groundwater in order to prevent migration of soil vapors, especially into homes and businesses. To meet these goals, EPA and the City of Maywood covered the park area with clean soil when the park was constructed in 2005. Wells were also installed on the former Pemaco location and in the surrounding community. Underground soils and groundwater that contained chemicals with the highest concentrations were heated to high temperatures in order to clean them up. Greater than 21,618 pounds of contaminants have been removed from soil and groundwater. Approximately 30,500 gallons of water per day are handled by the treatment plant.

El Proceso de Revisión continuación

El proceso de Revisión incluirá observar los desarrollos científicos recientes y comparar las concentraciones de químicos actuales en el agua subterránea en comparación con los números de limpieza para asegurar que siguen siendo seguros. Algunos químicos presentes en el agua subterránea y/o suelo al inicio de la limpieza han alcanzado los niveles de seguridad establecidos en el plan de limpieza – Documentos de Decisión (ROD, por sus siglas en inglés) – para el Sitio.

La ley de Superfund exige una evaluación de la protección del sistema de tratamiento, cada cinco años, cuando las acciones de limpieza tomen más de cinco años en completarse. La EPA continuará evaluando el propósito de protección de la limpieza hasta que las concentraciones de sustancias químicas encontradas en el agua subterránea cumplan con los números de limpieza establecidos en el ROD. Para esta revisión, la EPA examinará los componentes mecánicos del sistema de aguas subterráneas y el tratamiento de vapor para asegurarse que siguen funcionando correctamente.

Tras la finalización de la segunda Revisión de Cada Cinco Años, la EPA enviará una Hoja de Datos en el 2015 para informarles de las conclusiones de la Revisión. También, una copia de la Segunda Revisión de Cada Cinco Años será colocada en el local del **Depósito de Información** señalado en esta página.

Participación Comunitaria

La EPA siempre está interesada en escuchar al público. Si usted está interesado en ser entrevistado para la Revisión de Cada Cinco Años, háganos saber. Si usted tiene cualquier problema o preocupación sobre el plan de limpieza del Sitio Pemaco o del progreso de la limpieza, nos gustaría hablar con usted. Por favor de comunicarse con Rose Marie Caraway o con Carlin Hafiz a los números de contacto de la EPA señalados en esta página. Si a usted le gustaría ser incluido en nuestra lista de correos y recibir hojas de datos posteriores, por favor de comunicarse con Carlin Hafiz.

Historia del Sitio

El Sitio Pemaco fue utilizado antiguamente como una instalación industrial para mezclar químicos que operó desde la década de 1950 hasta 1991 cuando terminaron las operaciones. El Sitio fue colocado en la Lista de Prioridades Nacionales (NPL, por sus siglas en inglés) en enero de 1999 para abordar los contaminantes que incluían disolventes clorados y otros compuestos orgánicos volátiles (VOCs, por sus siglas en inglés). Despues de una amplia investigación sobre el terreno del Sitio, el ROD fue firmado en 2005. El ROD resumío las acciones de limpieza seleccionadas por la EPA y el trabajo de limpieza comenzo en el verano del año 2005. Las actividades de limpieza dieron como resultado que la mayoría de la antigua propiedad Pemaco se incorporara al Parque Riverfront de Maywood, en el otoño del año 2006. El trabajo de limpieza continúa hasta la fecha con la operación de la planta de tratamiento.

Objetivos de Limpieza

El objetivo de las actividades de limpieza del agua subterránea es restaurar el agua subterránea como agua de calidad potable y prevenir contaminación por propagación. Los objetivos de calidad del aire interior requieren de la limpieza de suelos y aguas subterránea contaminadas para prevenir la migración de vapores del suelo, especialmente a casas y negocios. Para cumplir estos objectivos, la EPA y la Ciudad de Maywood cubrieron el área del parque con tierra limpia cuando el parque fue construido en el año 2005. También fueron instalados pozos en la antigua ubicación de Pemaco y en la comunidad que la rodea. Los suelos subterráneos y el agua subterránea que contenían sustancias químicas en las mayores concentraciones más elevadas fueron calentados a altas temperaturas para limpiarlos. Más de 21,618 libras de contaminantes han sido removidas del suelo y del agua subterránea. Aproximadamente 30,500 galones de agua diarios son manejados por la planta de tratamiento.

ESTAR INFORMADOS

Perforación de pozos abandonado, septiembre de 2014. September 2014 well abandonment drilling.

Llame Gratis

El número gratuito **1-800-231-3075** ha sido establecido para que los miembros de la comunidad puedan llamar y obtener información sobre el Sitio Pemaco.

Página web de Información Pemaco

Para mantener al público informado, la EPA mantiene la Página web Superfund: **www.epa.gov/region09/pemaco** Las páginas web de EPA serán regularmente actualizadas con Hojas de Datos, información de reuniones comunitarias, reportes de monitoreo y actualizaciones de progreso.

Depósitos de Información Biblioteca Pública Maywood César Chavez

4323 East Slauson Avenue Maywood, CA 90207 (323) 771-8600

Centro de Registros Superfund de EPA

95 Hawthorne Street San Francisco, CA 94105 (415) 947-8000

Contactos de la EPA Rose Marie Caraway, MBA, Gerente de Proyectos de Remediación

75 Hawthorne St. (SFD 7-2) San Francisco, CA 94105 (415) 972-3158 caraway.rosemarie@epa.gov

Carlin Hafiz Coordinadora de Participación Comunitaria

600 Wilshire Blvd, Ste. 1460 (213) 244-1814 Llame gratis: (800) 231-3075 hafiz.carlin@epa.gov

APPENDIX B

List of Documents Reviewed

List of Documents Reviewed

Arcadis. 2013. Quarterly Groundwater Monitoring and Remedial Progress Report for the First Quarter of 2013. Former W.W. Henry Property. April.

Arcadis. 2013. Quarterly Groundwater Monitoring and Remedial Progress Report for the Second Quarter of 2013. Former W.W. Henry Property. July.

Arcadis. 2014. Quarterly Groundwater Monitoring and Remedial Progress Report for the Second Quarter of 2014. July.

Oneida Total Integrated Enterprises (OTIE). 2013. 2013 Second Quarter Operation and Maintenance Report (April – June) Pemaco Superfund Site. Maywood, California. September.

Oneida Total Integrated Enterprises (OTIE). 2013. 2013 Third Quarter Operation and Maintenance Report (July-September) Pemaco Superfund Site. Maywood, California. October.

Oneida Total Integrated Enterprises (OTIE). 2014. 2013 Fourth Quarter Operation and Maintenance Report (October-December) Pemaco Superfund Site. Maywood, California. January.

Oneida Total Integrated Enterprises (OTIE). 2014. 2014 First Quarter Operation and Maintenance Report (January – March) Pemaco Superfund Site. Maywood, California. September.

Oneida Total Integrated Enterprises (OTIE). 2014. 2014 Second Quarter Operation and Maintenance Report (April-June) Pemaco Superfund Site. Maywood, California. October.

Oneida Total Integrated Enterprises (OTIE). 2014. 2014 Third Quarter Operation and Maintenance Report (July – September) Pemaco Superfund Site. Maywood, California. September.

Oneida Total Integrated Enterprises (OTIE). 2014. Draft-Final Sampling and Analysis Plan. Pemaco Superfund Site. Maywood California. September.

Oneida Total Integrated Enterprises (OTIE). 2014. First Semi-Annual Groundwater Monitoring Report, July 2014 Monitoring Event for Pemaco Superfund Site. Maywood, California. December.

Oneida Total Integrated Enterprises (OTIE). 2014. First Semi-Annual Groundwater Monitoring Report, 2013 June Monitoring Event for Pemaco Superfund, Site Maywood, California. April.

Oneida Total Integrated Enterprises (OTIE). 2014. Second Semi-Annual Groundwater Monitoring Report, December 2013 and March 2014 Monitoring Events for Pemaco Superfund Site. Maywood, California. August.

SulTRAC. 2012. 2010 Monitoring and Sampling Report, Pemaco Superfund Site, Los Angeles County, California. March.

SulTRAC. 2012. Monitoring and Sampling Report January through June 2011 for Pemaco Superfund Site, Los Angeles County, California. September.

SulTRAC. 2012. Post-Remediation Soil Sampling Summary for Pemaco Superfund Site, Maywood, California. April.

SulTrac. 2012. Post-Remediation Soil Sampling Summary for Pemaco Superfund Site. Maywood, California. April.

SulTRAC. 2013. 2010 Annual Operations Report for Pemaco Superfund Site. Maywood, California. April.

SulTRAC. 2013. 2011 Annual Operations Report for Pemaco Superfund Site. Maywood, California. April.

SulTRAC. 2013. 2012 Annual Operations Report for Pemaco Superfund Site. Maywood, California. April.

SulTRAC. 2013. Monitoring and Sampling Report January through June 2012 for Pemaco Superfund Site, Los Angeles County, California. April.

SulTRAC. 2013. Monitoring and Sampling Report January through June 2012 for Pemaco Superfund Site, Los Angeles County, California. April.

SulTRAC. 2013. Monitoring and Sampling Report July through December 2011 for Pemaco Superfund Site, Los Angeles County, California. January.

SulTRAC. 2013. Monitoring and Sampling Report July through December 2012 for Pemaco Superfund Site, Los Angeles County, California. May.

TN & Associates (TN&A). 2007a. Draft Final Construction Report, Maywood Riverfront Park. May

TN&A 2007b. Operation and Maintenance Manual, PEMACO Superfund Site, 5050 Slauson Avenue, Maywood, California. May 23.

United States Environmental Protection Agency (USEPA). 2010. First Five-Year Review Report for Pemaco Superfund Site. Maywood, California. September.

USEPA. 2005. Record of Decision. Pemaco Superfund Site Maywood, California. January.

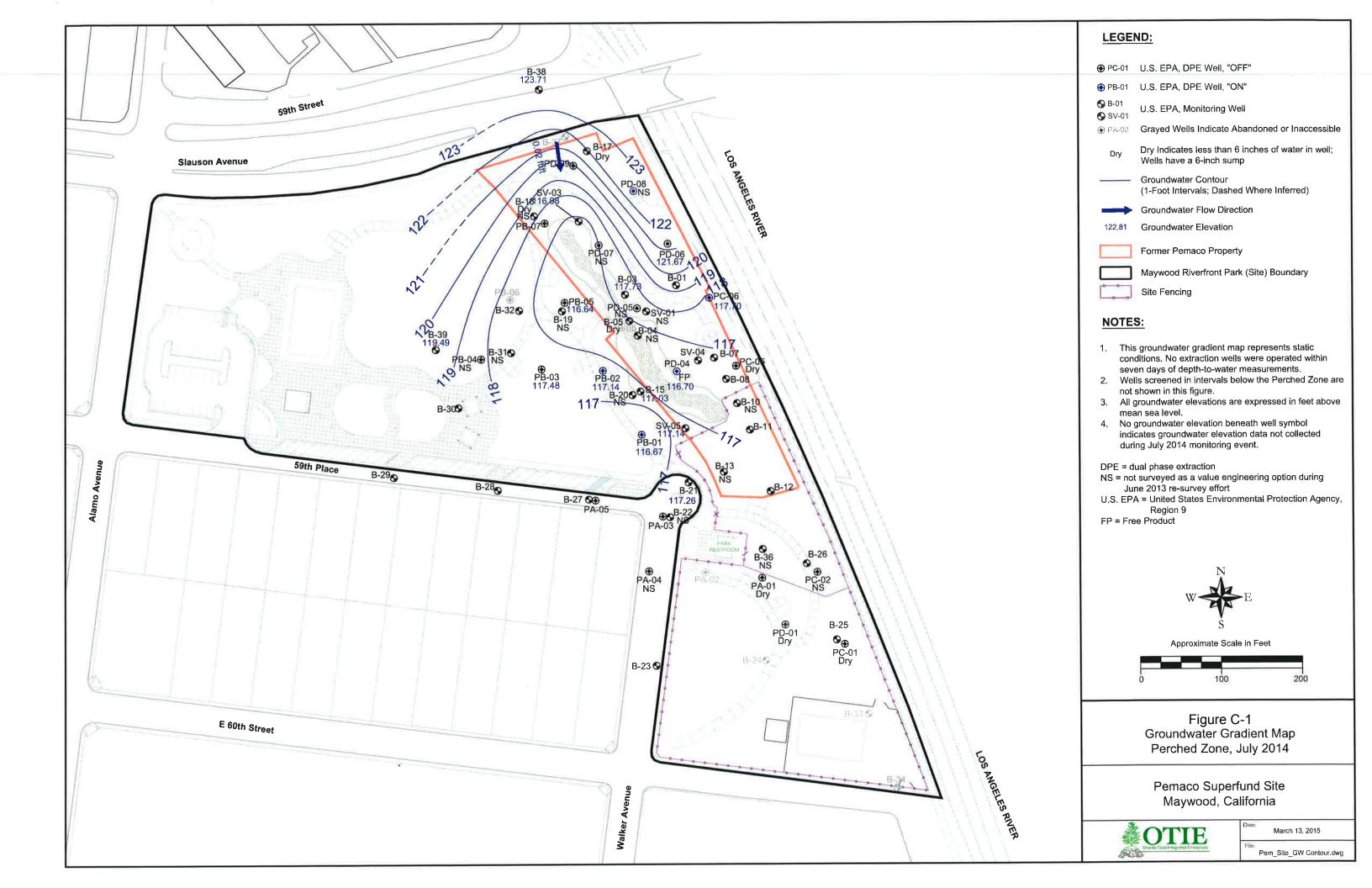
APPENDIX C

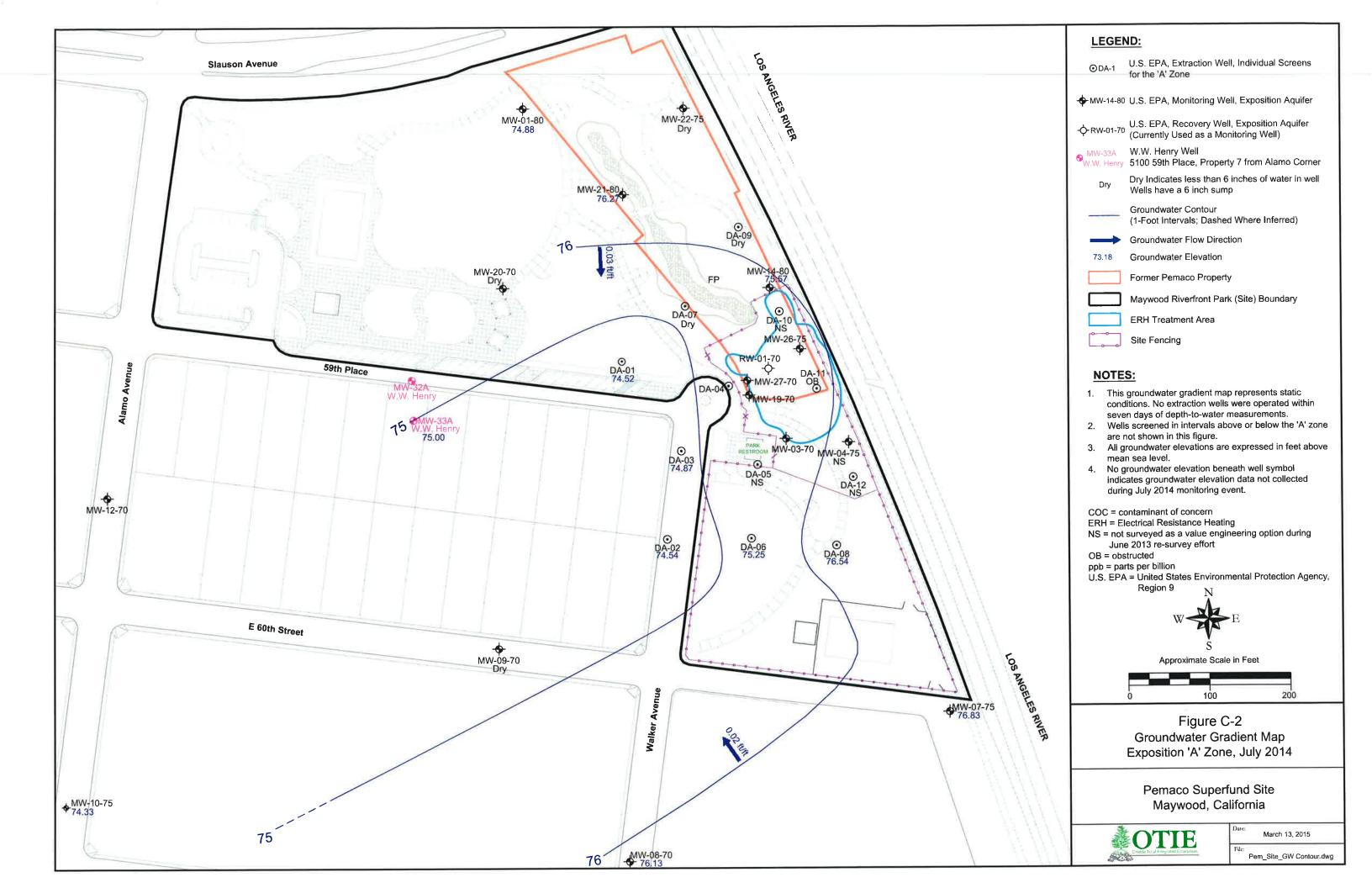
Figures, Graphs, Tables

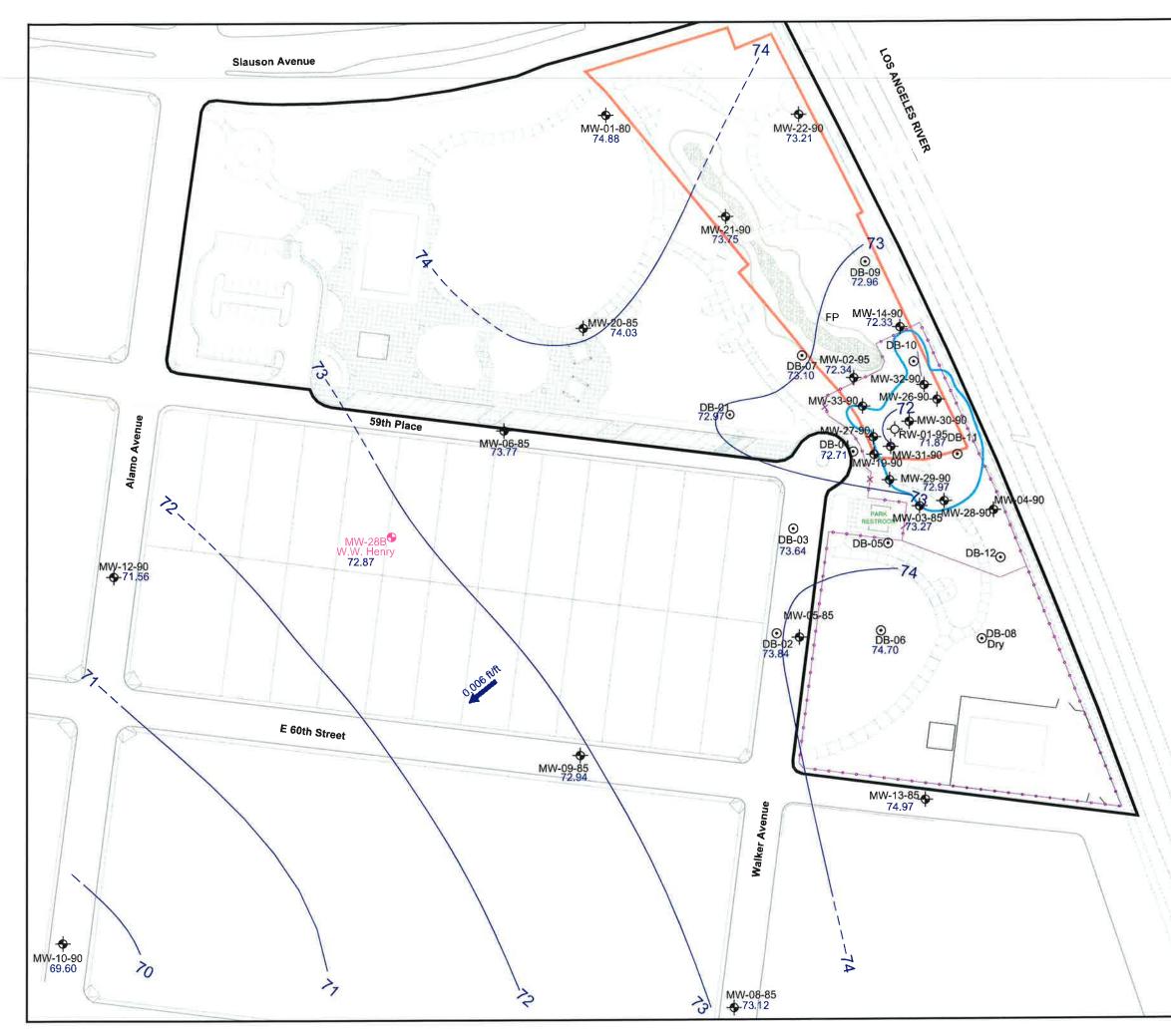
Figures List of Figures

Groundwater Gradient Map

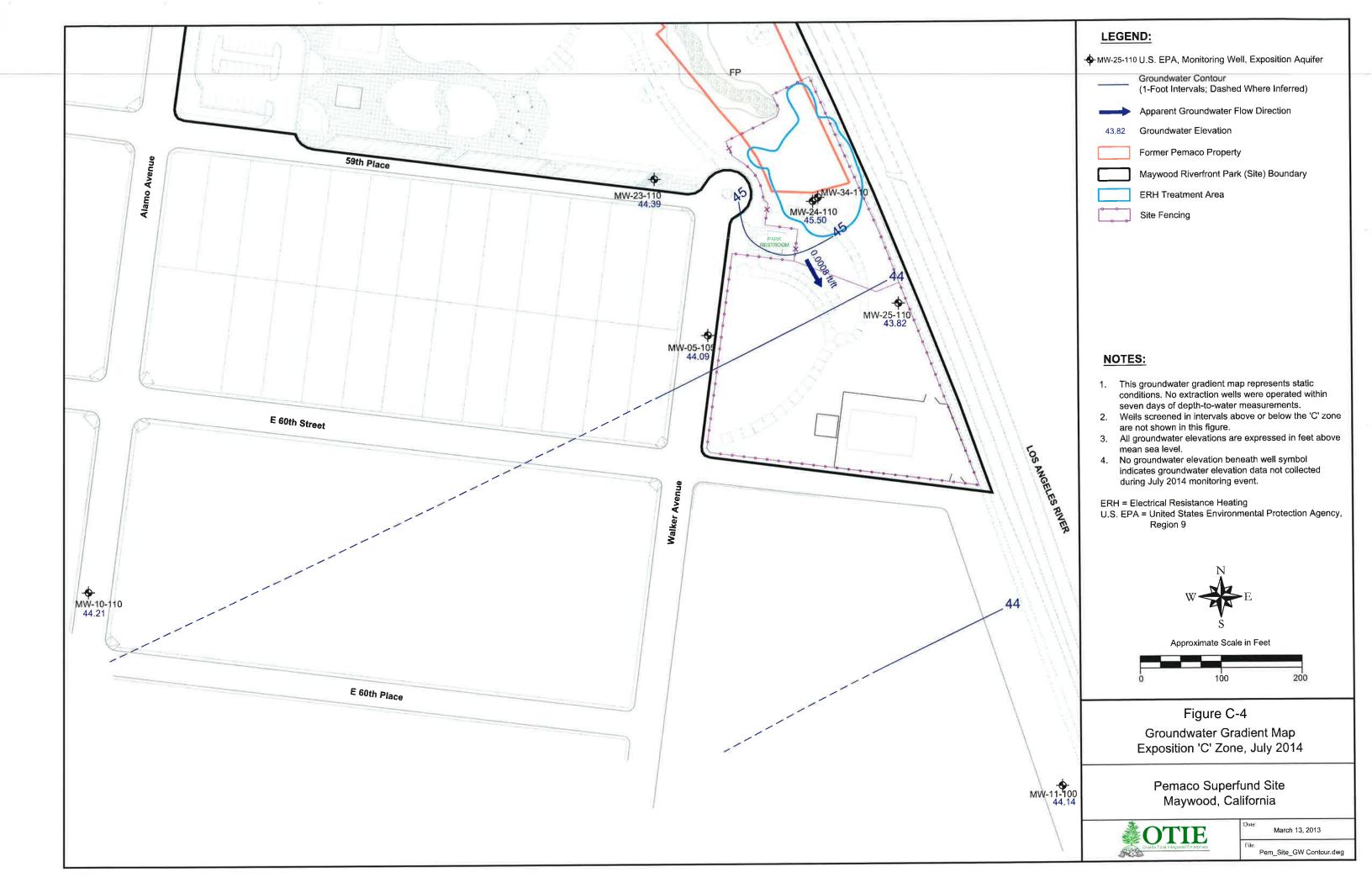
- Figure C-1 Groundwater Gradient Map, Perched Zone, July 2014
- Figure C-2 Groundwater Gradient Map, Exposition 'A' Zone, July 2014
- Figure C-3 Groundwater Gradient Map, Exposition 'B' Zone, July 2014
- Figure C-4 Groundwater Gradient Map, Exposition 'C' Zone, July 2014
- Figure C-5 Groundwater Gradient Map, Exposition 'D' Zone, July 2014

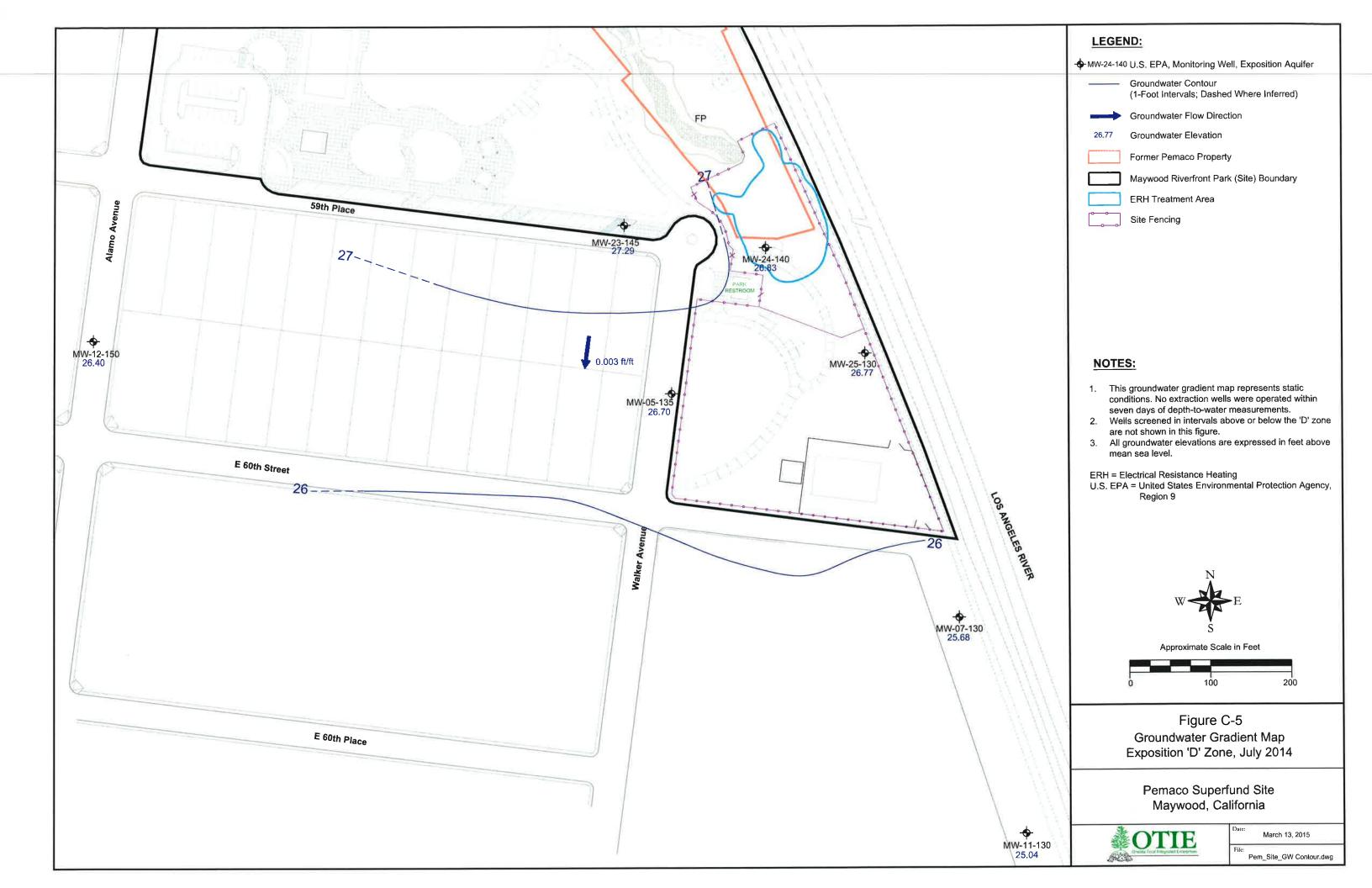

Chemical of Concern in Groundwater by Hydrological Units

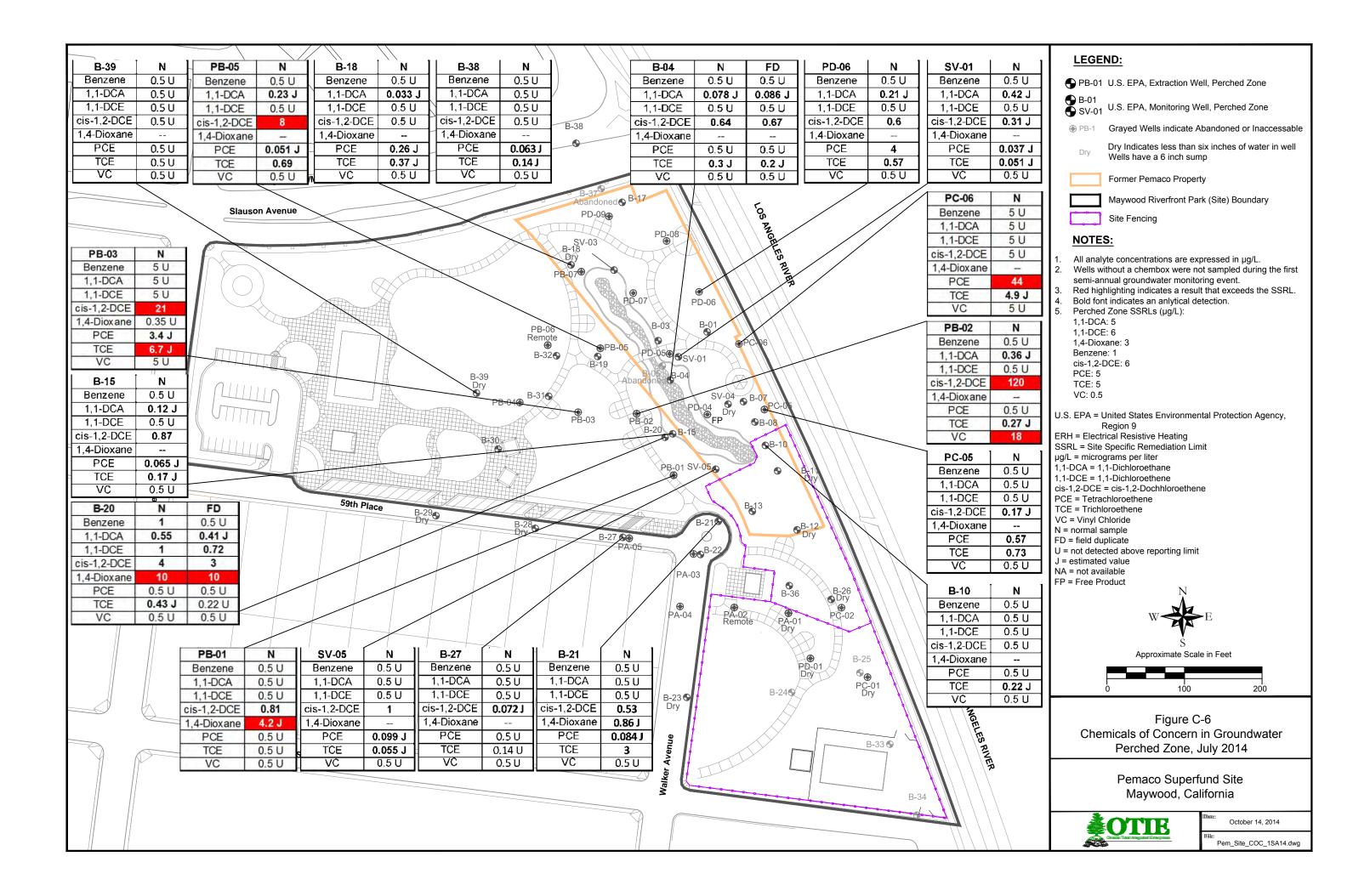

- Figure C-6 Chemicals of Concern in Groundwater, Perched Zone, July 2014
- Figure C-7 Chemicals of Concern in Groundwater, Exposition 'A' Zone, July 2014
- Figure C-8 Chemicals of Concern in Groundwater, Exposition 'B' Zone, July 2014
- Figure C-9 Chemicals of Concern in Groundwater, Exposition 'A' & 'B' Zone, July 2014
- Figure C-10 Chemicals of Concern in Groundwater, Exposition 'C' Zone, July 2014
- Figure C-11 Chemicals of Concern in Groundwater, Exposition 'D' & 'E' Zone, July 2014

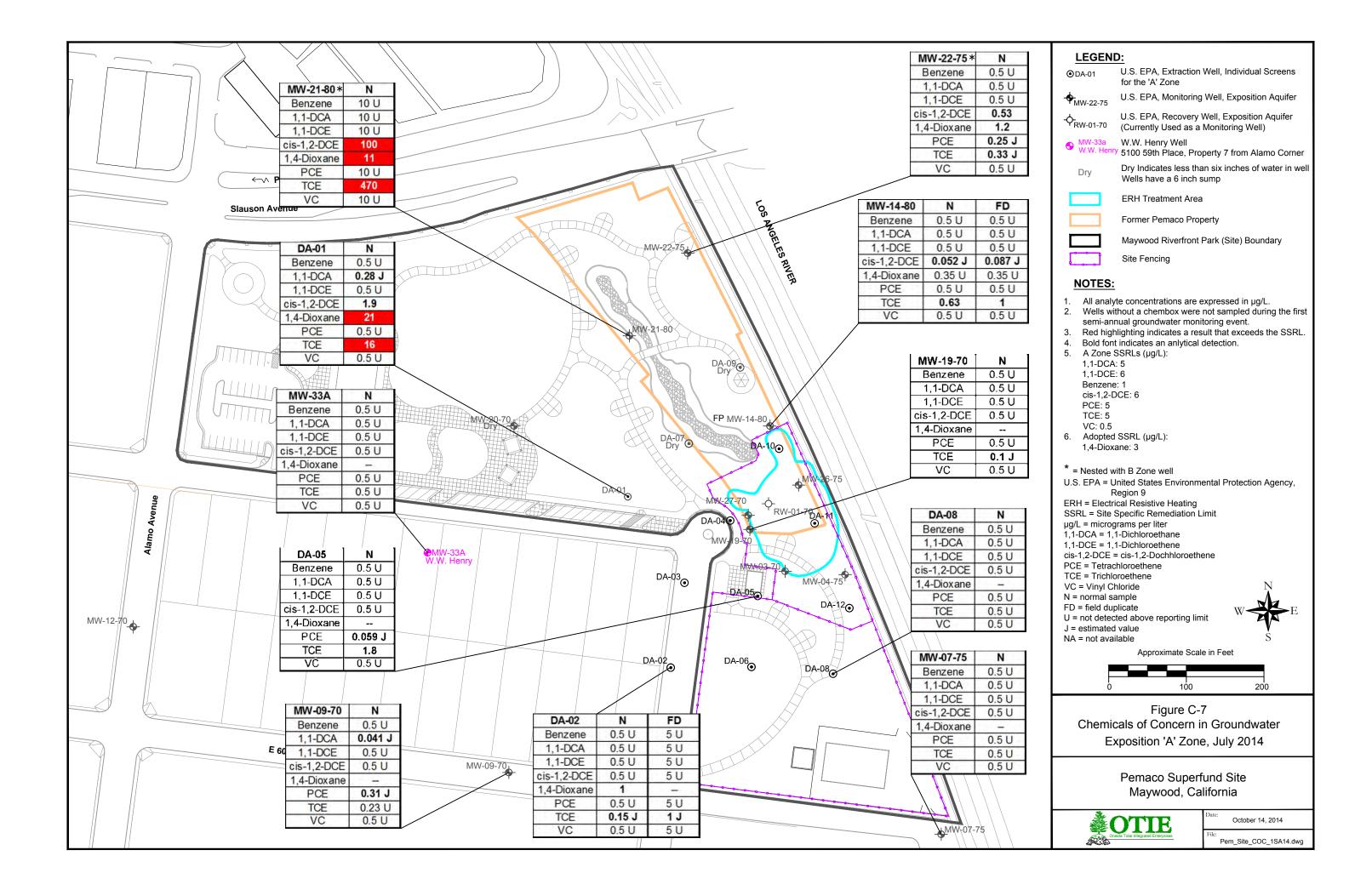

Chemical of Concern in Groundwater by Plume Maps

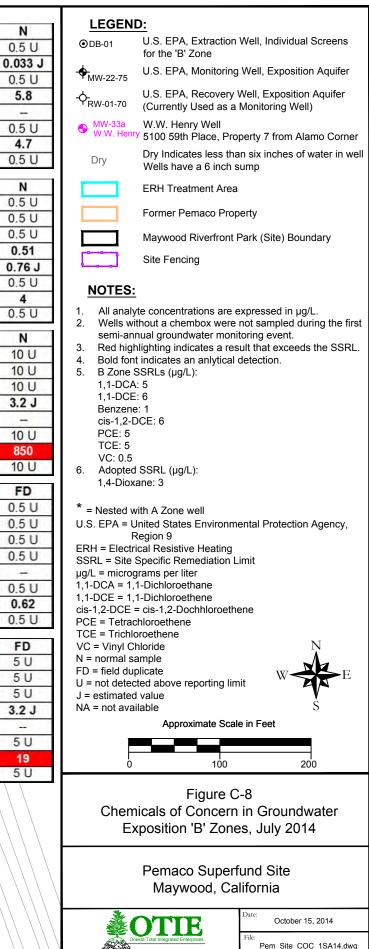
- Figure C-12 Trichloroethene Plume in Groundwater, Exposition 'A' Zone, July 2014
- Figure C-13 Trichloroethene Plume in Groundwater, Exposition 'B' and 'A' & 'B' Zone, July 2014
- Figure C-14 cis-2,2-Dichloroethene Plume in Groundwater, Exposition 'B' and 'A' & 'B' Zone, July 2014
- Figure C-15 Trichloroethene Plume in Groundwater, Exposition 'C' Zone, July 2014
- Figure C-16 Trichloroethene Plume in Groundwater, Exposition 'D' Zone, July 2014

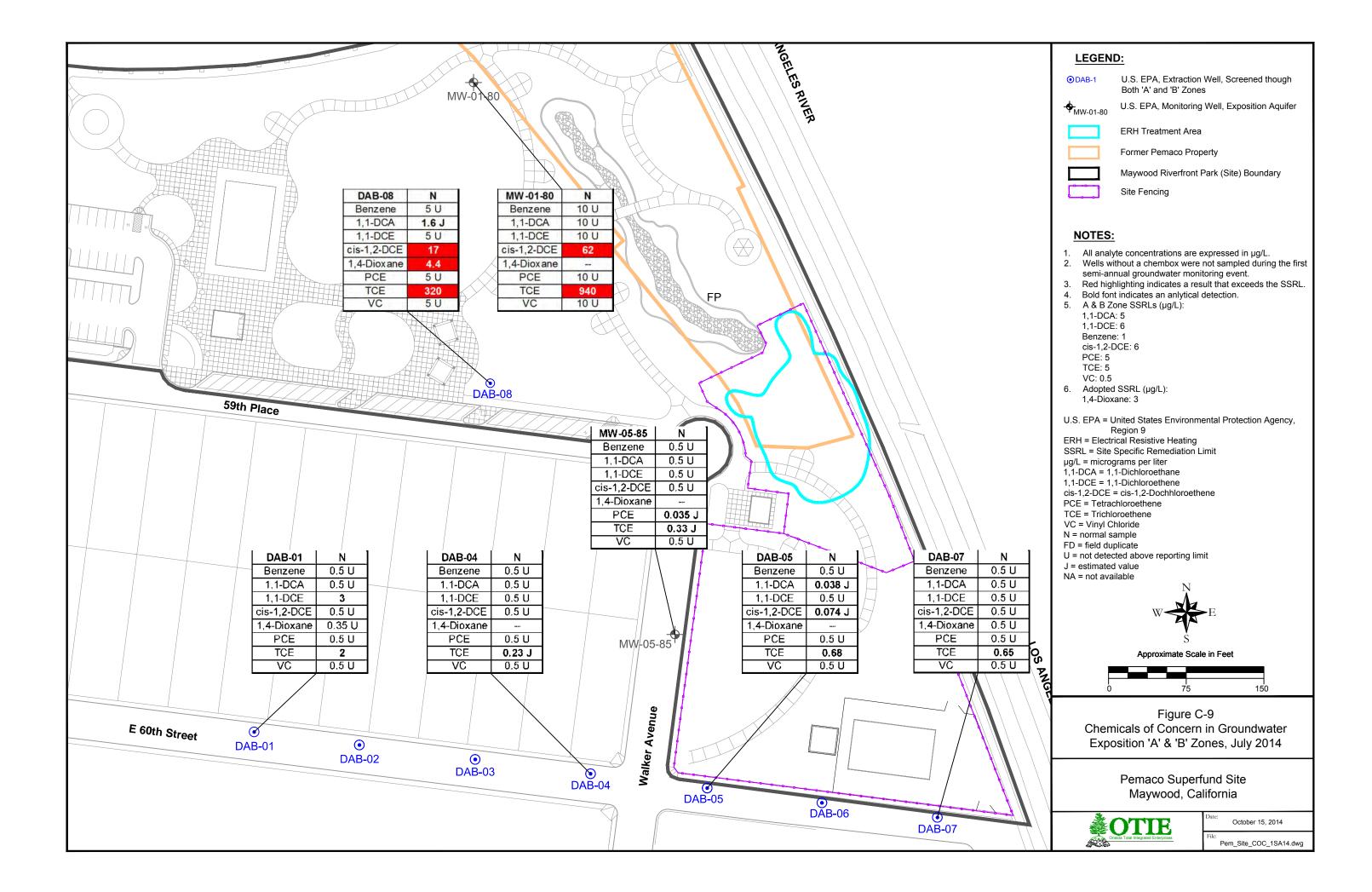

Groundwater Gradient Map

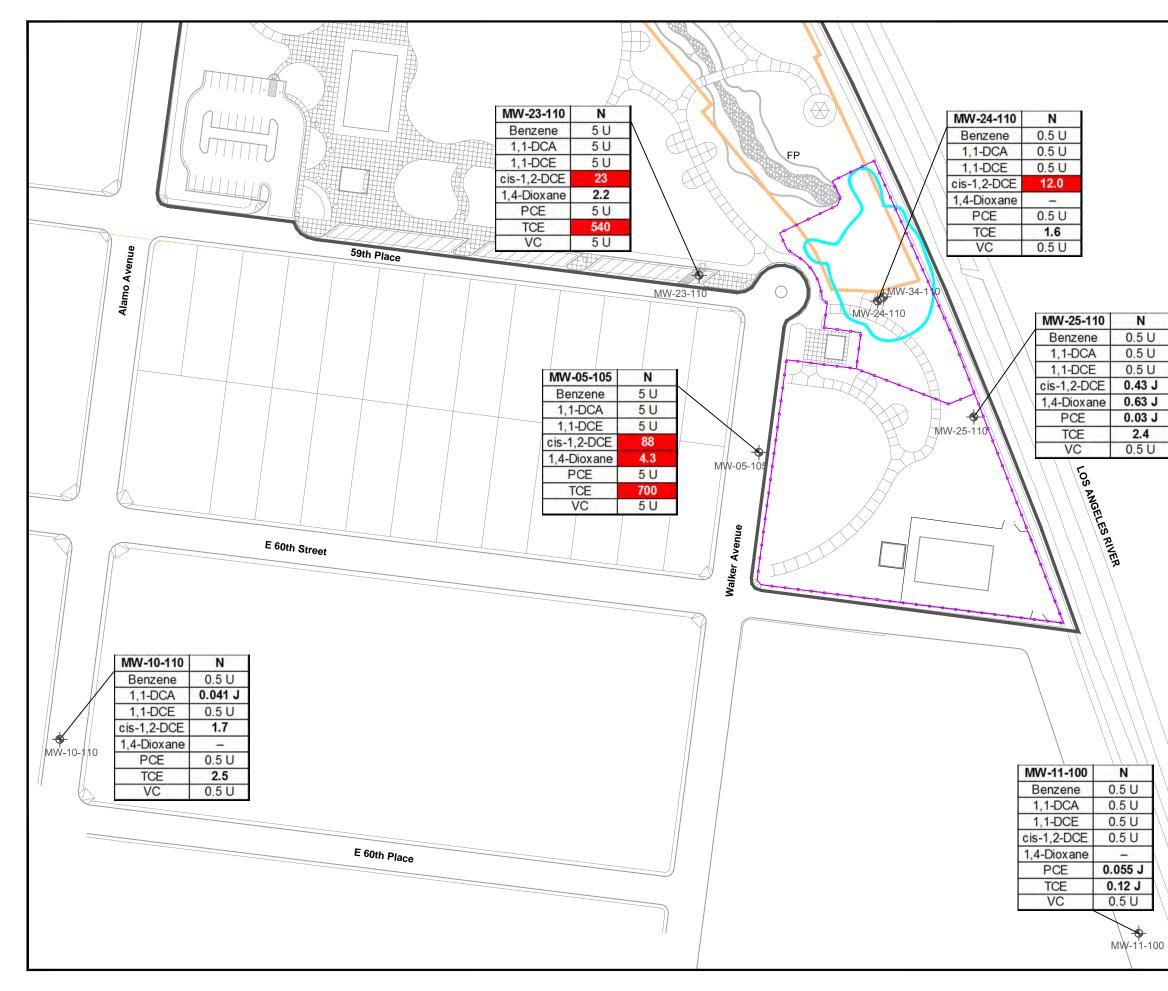


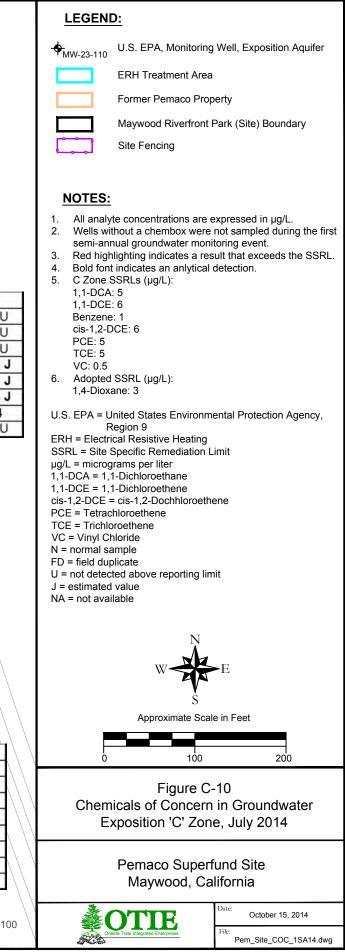


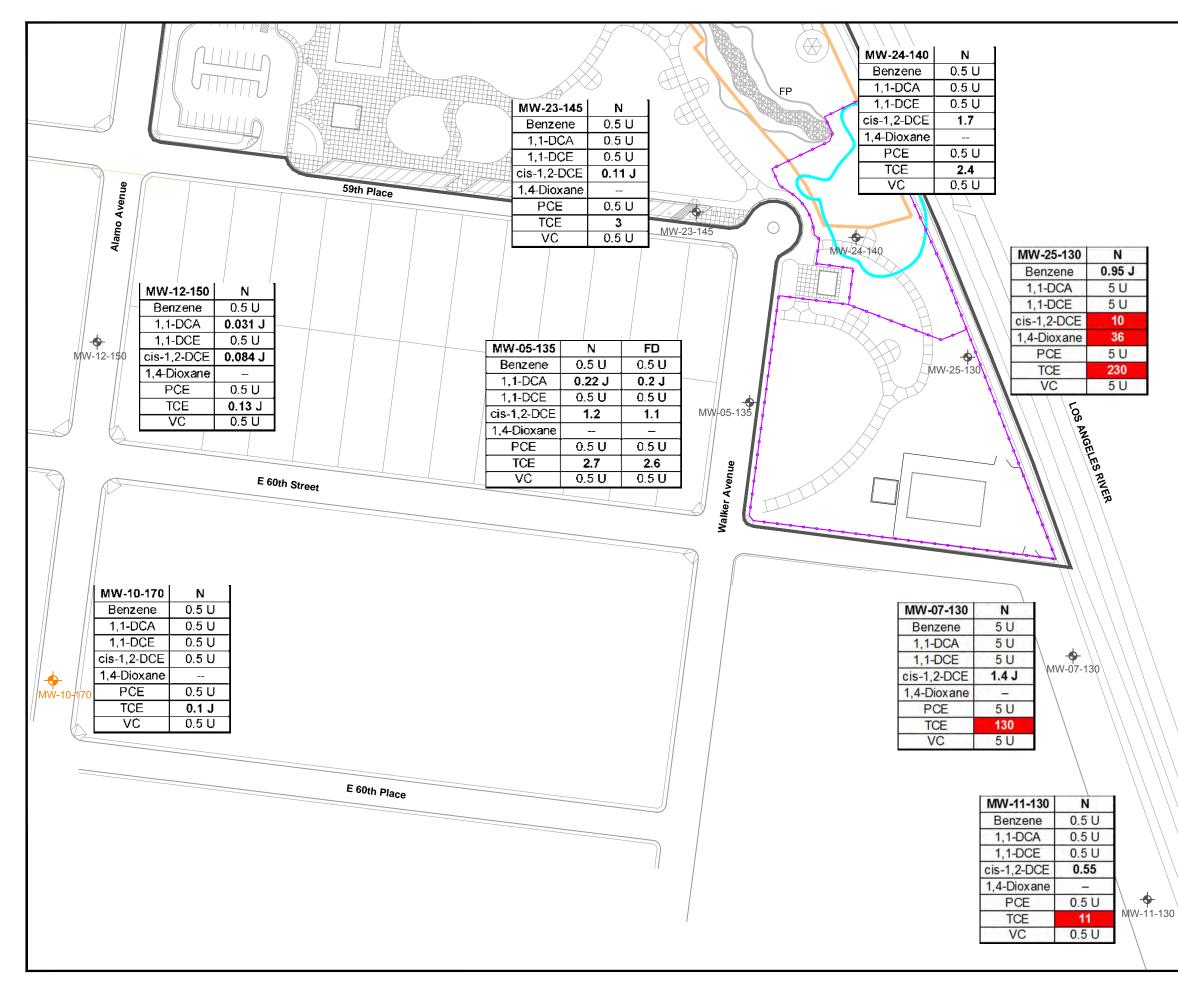

			1	
	LEGE	ND:		
	⊙DB-02	U.S. EPA, Extraction Well for the 'B' Zone	, Individual Screens	
	⊙DAB-01	U.S. EPA, Extraction Well Both 'A' and 'B' Zones	, Screened though	
	+MW-1-80 U.S. EPA, Monitoring Well, Exposition Aquifer			
	- -- RW-1-70	RW-1-70 U.S. EPA, Recovery Well, Exposition Aquifer (Currently Used as a Monitoring Well)		
	₩V-28B W.W. Henry	W.W. Henry Well 5024 59th Place, Propert	y 6 from Alamo	
	Dry	Dry Indicates less than 6 Wells have a 6 inch sum	inches of water in well	
		Groundwater Contour (1-Foot Intervals; Dashed	Where Inferred)	
	Groundwater Flow Direction			
	73.64 Groundwater Elevation			
	Former Pemaco Property			
	Maywood Riverfront Park (Site) Boundary ERH Treatment Area			
	NOTE	<u>S:</u>		
	 This groundwater gradient map represents static conditions. No extraction wells were operated within seven days of depth-to-water measurements. All groundwater elevations are expressed in feet above mean sea level. No groundwater elevation beneath well symbol indicates groundwater elevation data not collected during July 2014 monitoring event. 			
	ERH = Electrical Resistance Heating NS = not surveyed as a value engineering option during June 2013 re-survey effort U.S. EPA = United States Environmental Protection Agency, Region 9			
LOS ANGELES RIVER	A 	opproximate Scale in Feet		
SRIVER	Figure C-3 Groundwater Gradient Map Exposition 'B' Zone, July 2014			
	Pemaco Superfund Site Maywood, California			
11 11	- Aller	OTIE	Date: March 13, 2015	
1974		Overldo Tacal Integratest Enterprises	File Pem_Site_GW Contour.dwg	

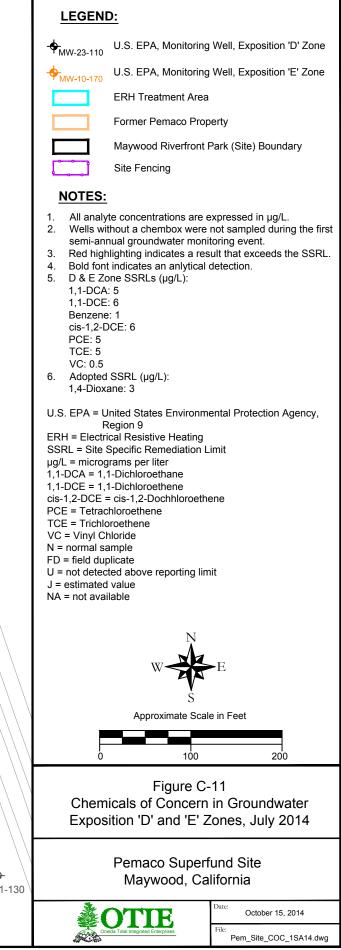


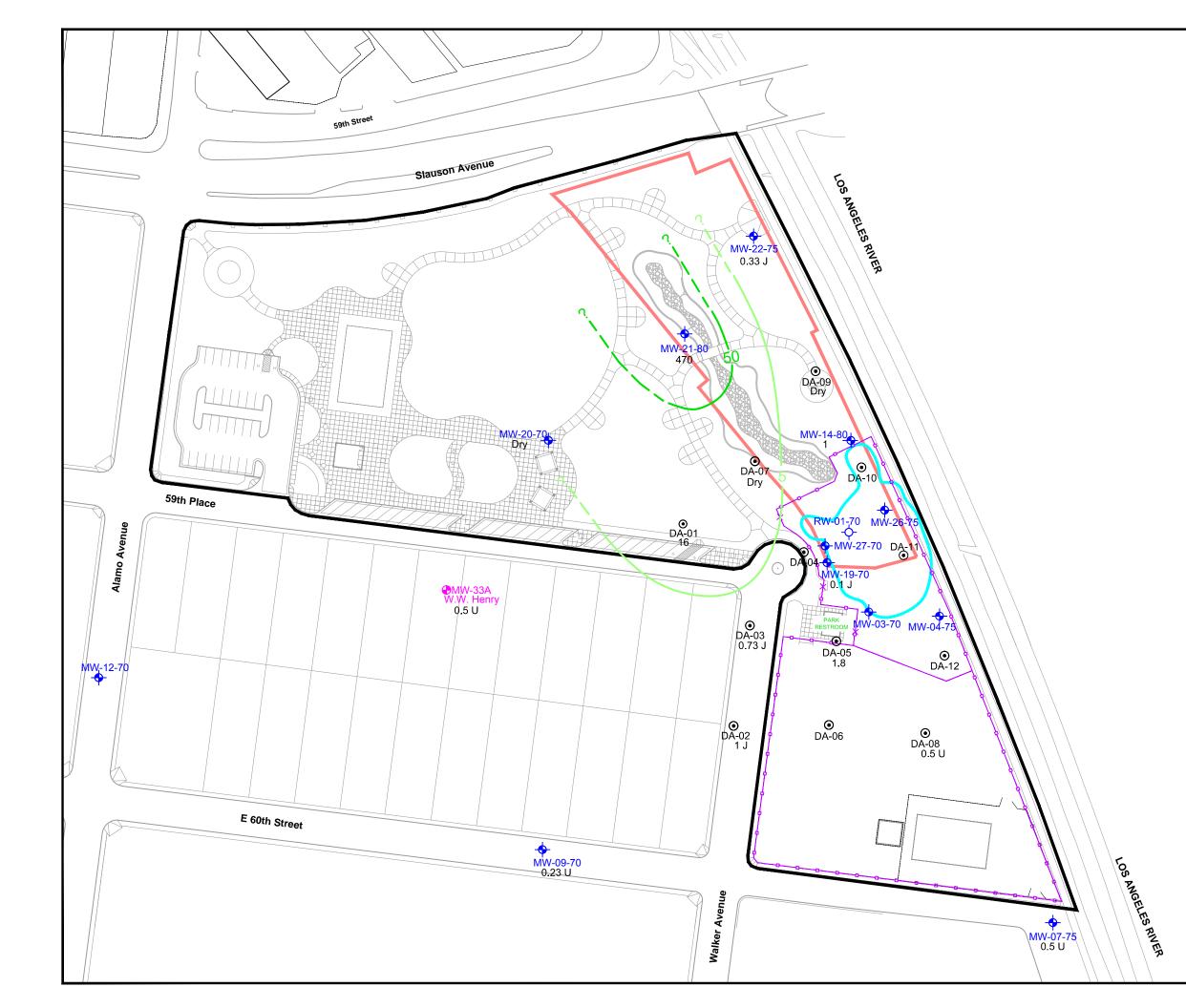

Chemical of Concern in Groundwater by Hydrological Units

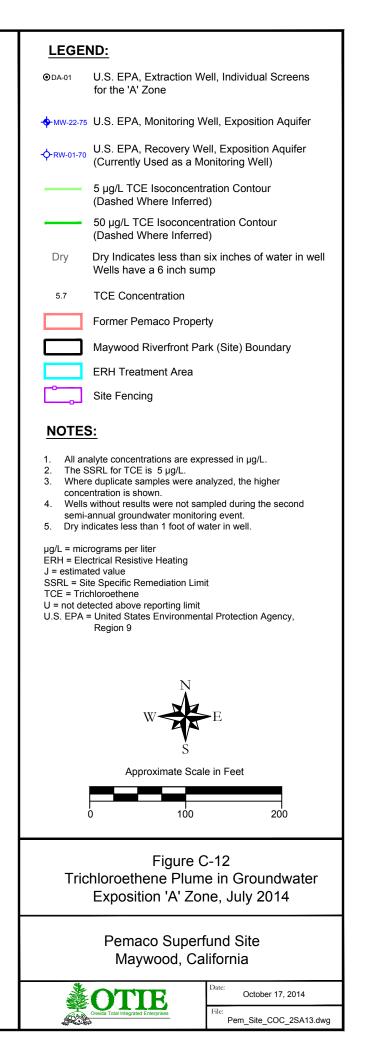


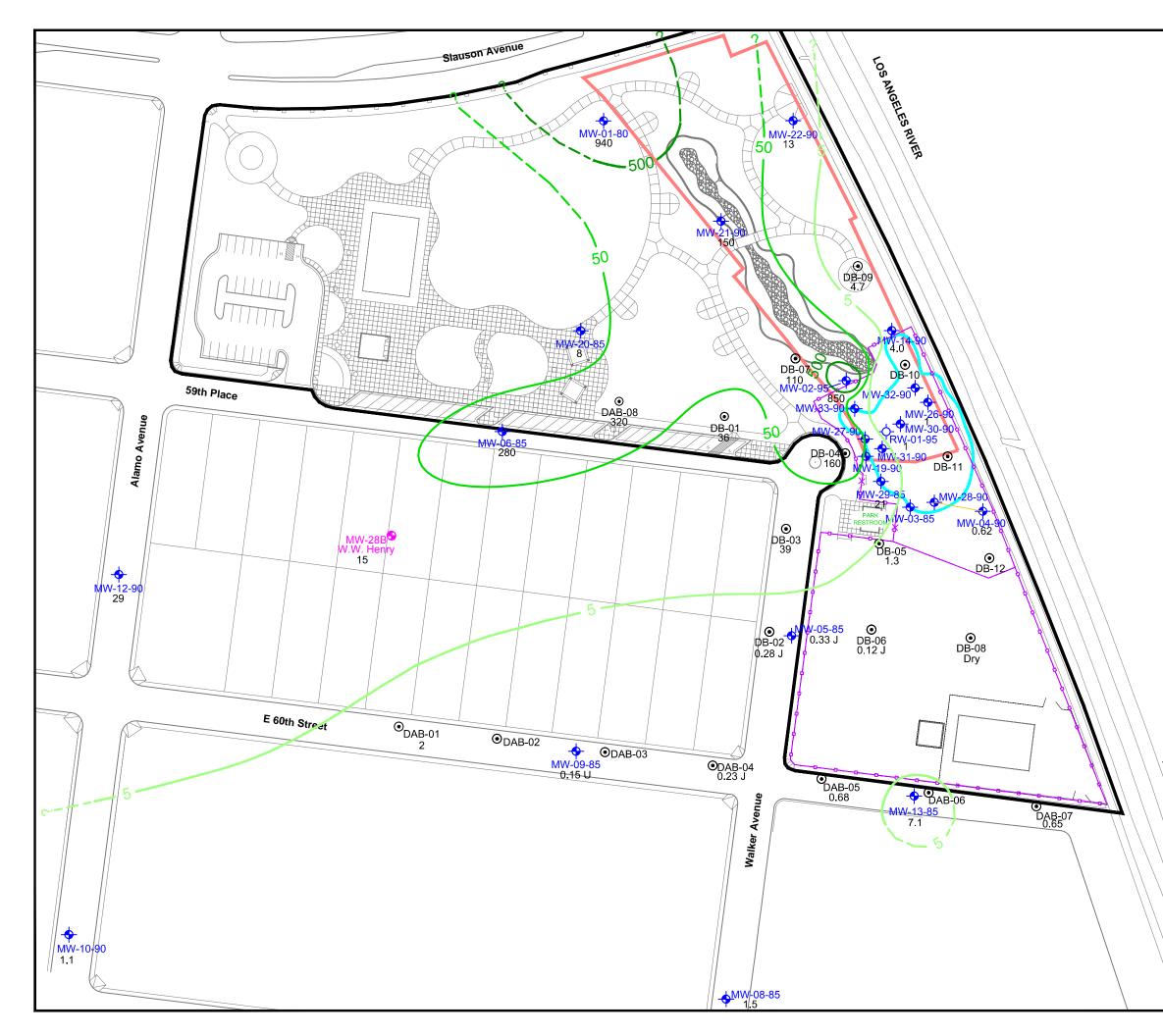


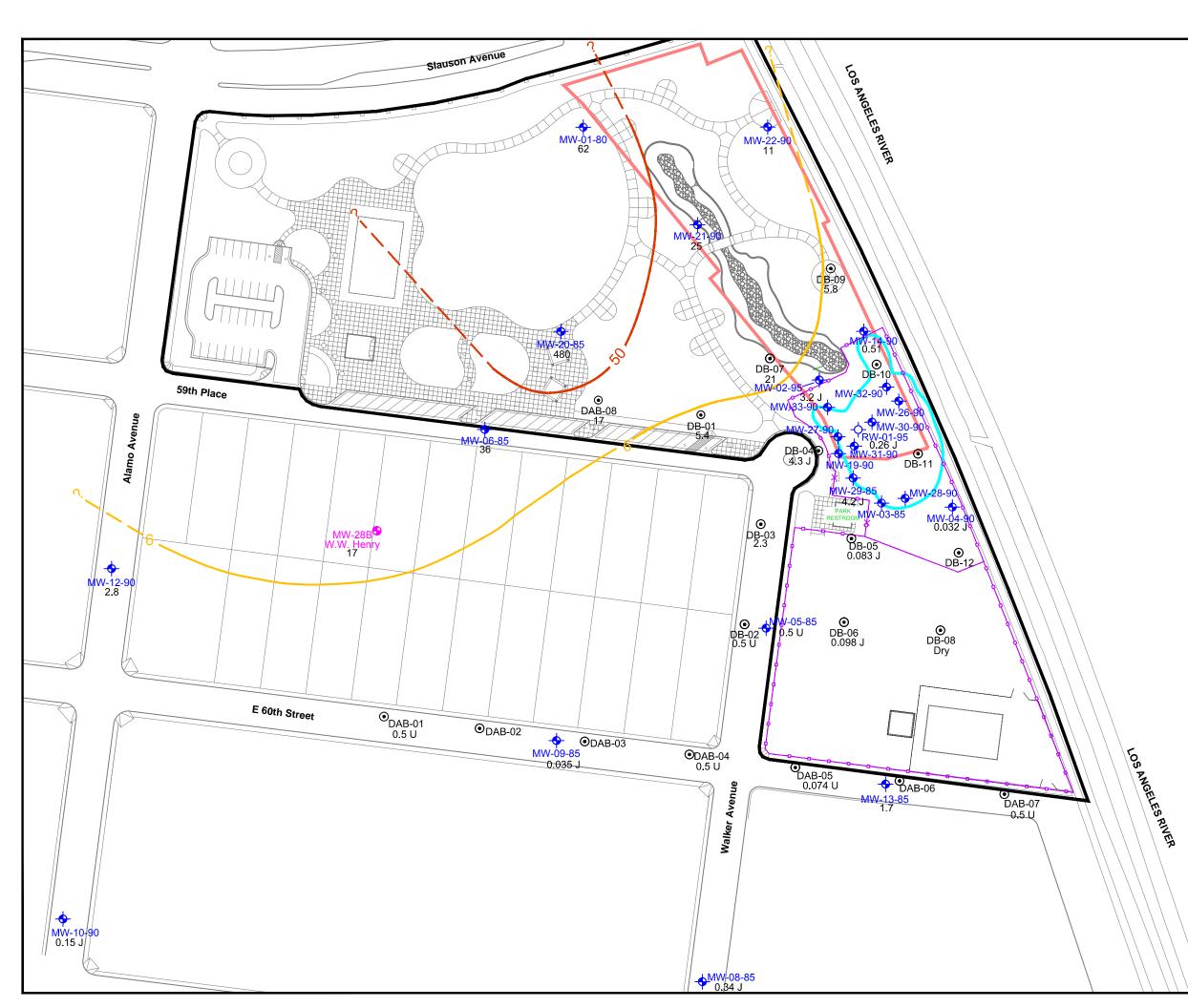


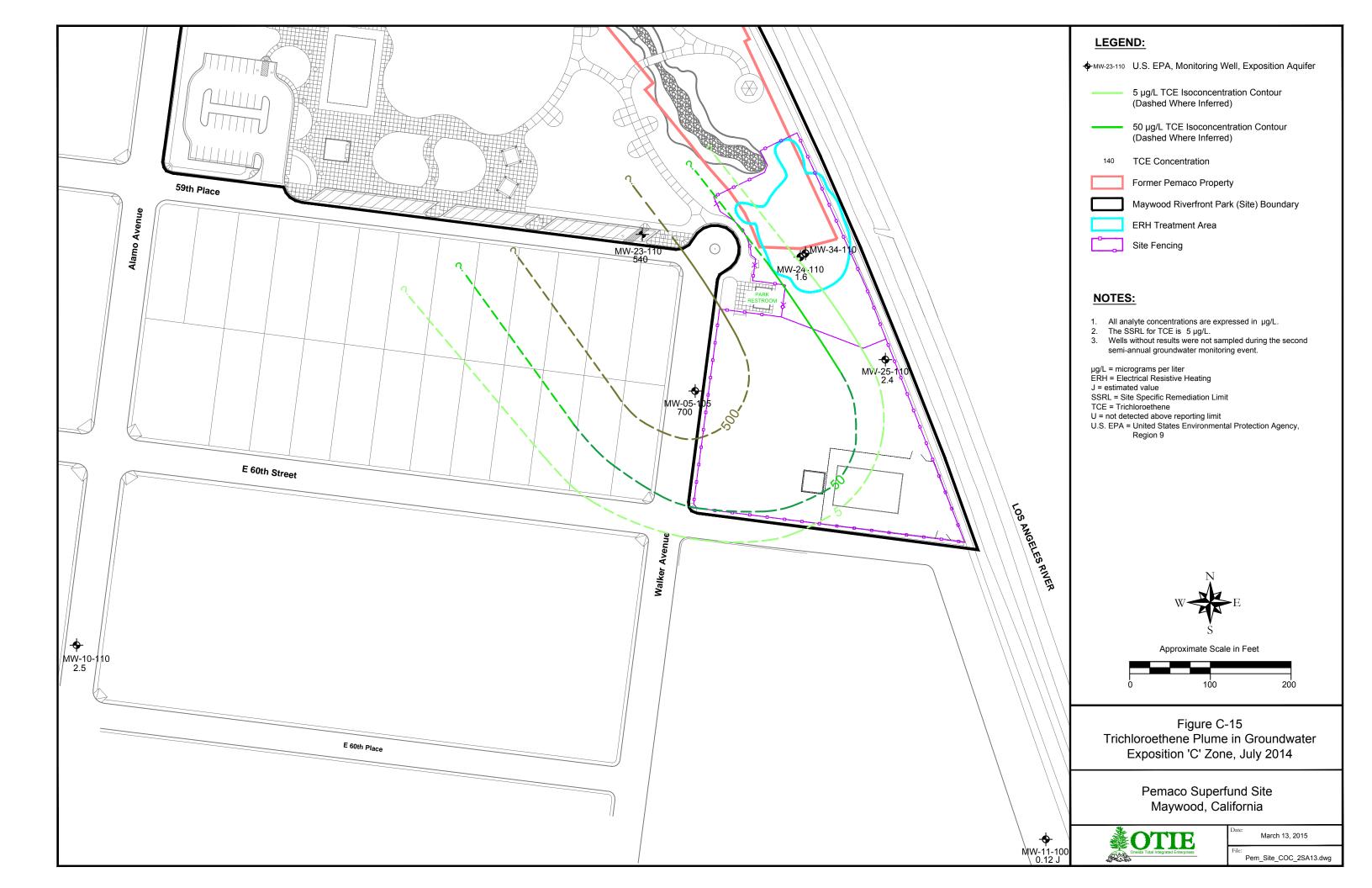


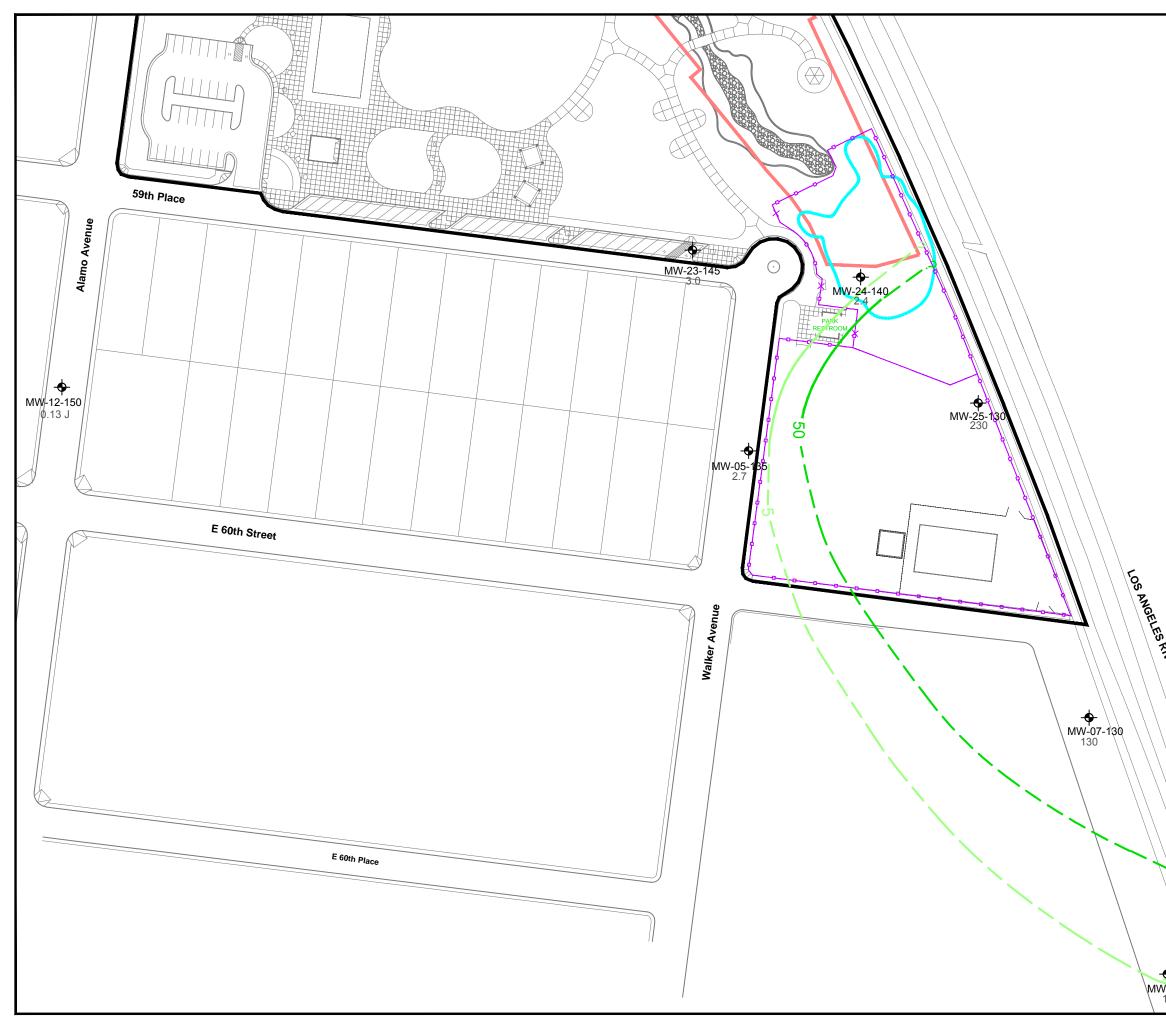






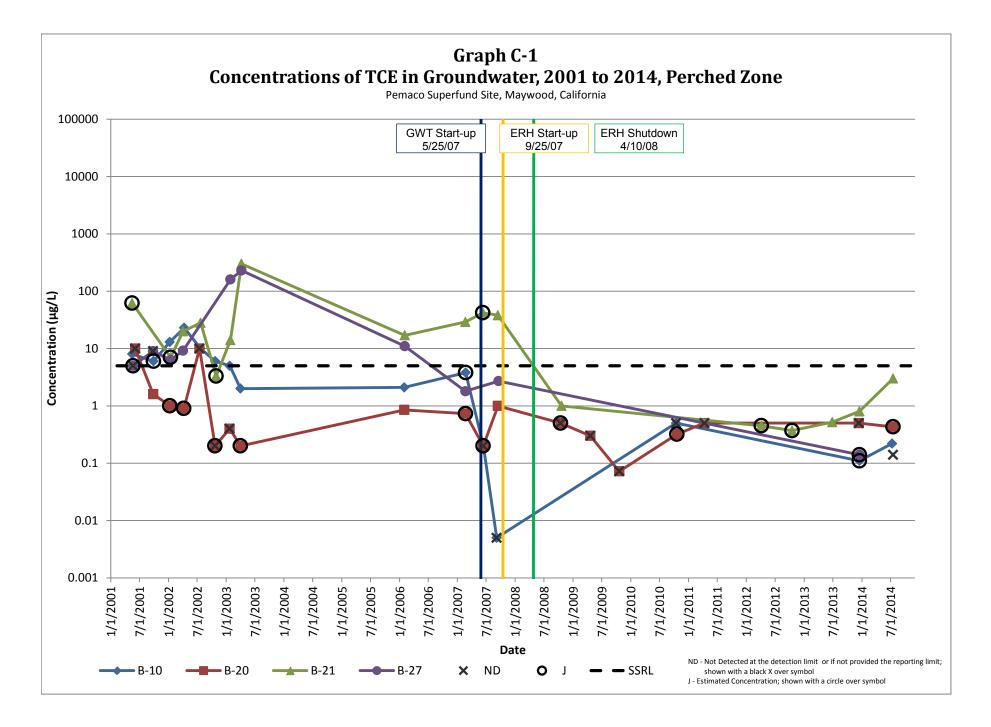

Chemical of Concern in Groundwater by Plume Map

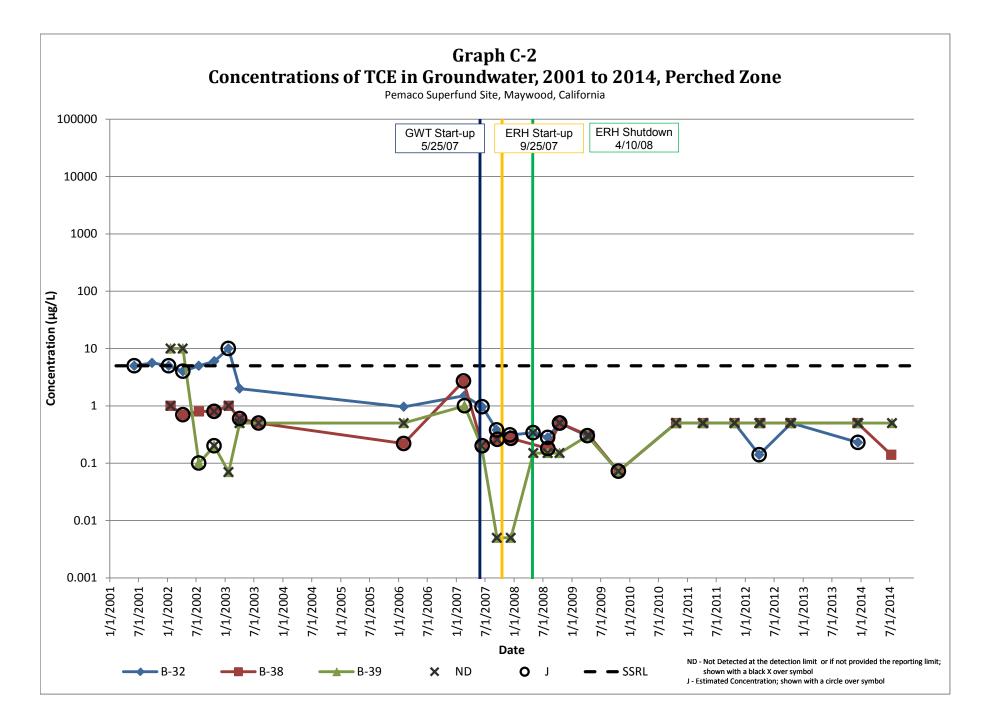


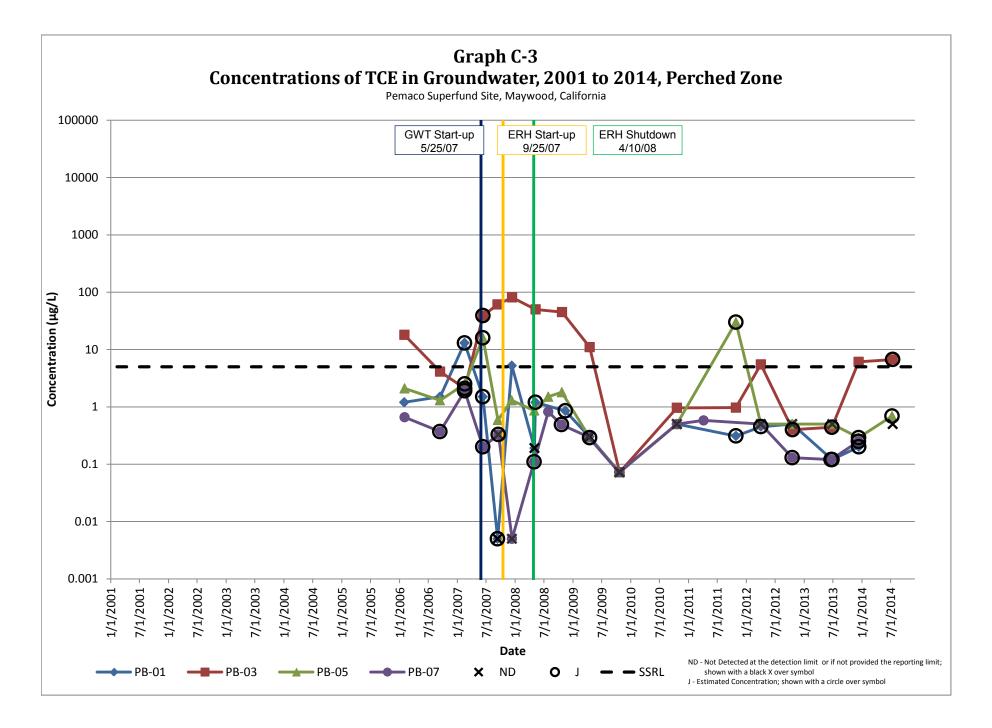


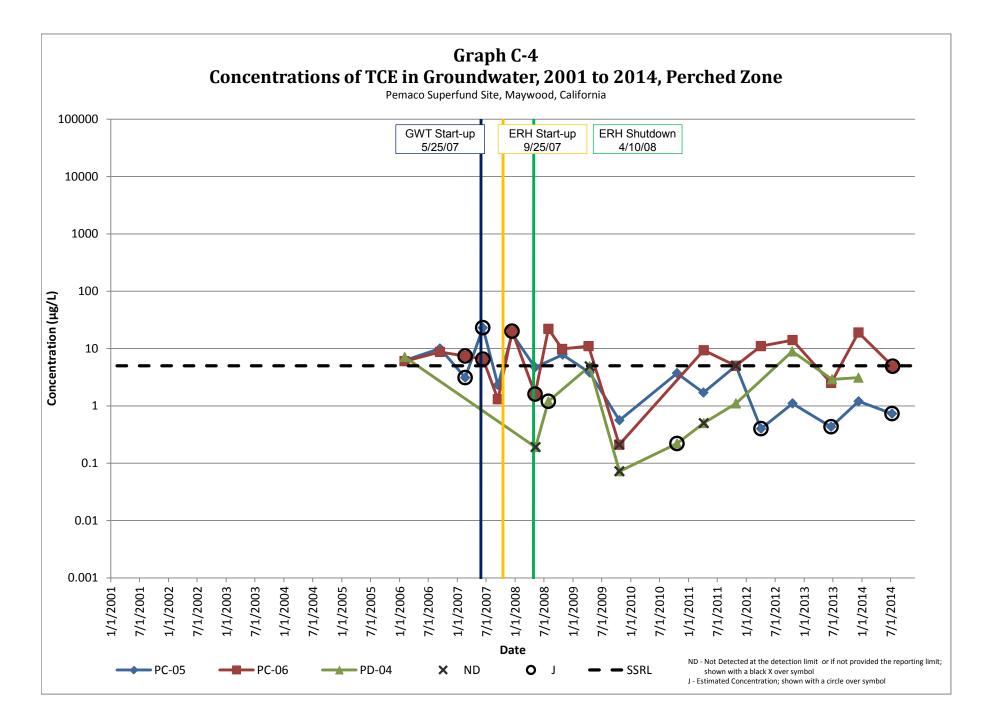
	LEGEN	<u>ND:</u>	
	⊙ DB-01	U.S. EPA, Extraction Well, Individual Screens for the 'B' and 'A'&'B' Zones	
	- MW-01-80	U.S. EPA, Monitoring Well, Exposition Aquifer	
	-\-RW-01-95	U.S. EPA, Recovery Well, Exposition Aquifer (Currently Used as a Monitoring Well)	
	• MW-28B W.W. Henry	W.W. Henry Well 5024 59th Place, Property 6 from Alamo	
		5 µg/L TCE Isoconcentration Contour (Dashed Where Inferred)	
		50 µg/L TCE Isoconcentration Contour (Dashed Where Inferred)	
		500 µg/L TCE Isoconcentration Contour (Dashed Where Inferred)	
	110	TCE Concentration	
	Dry	Dry Indicates less than six inches of water in well Wells have a 6 inch sump	
		Former Pemaco Property	
		Maywood Riverfront Park (Site) Boundary	
		ERH Treatment Area	
	ل مسما	Site Fencing	
		-	
	 All an The S Where conce Wells 	 alyte concentrations are expressed in μg/L. SRL for TCE is 5 μg/L. duplicate samples were analyzed, the higher ntration is shown. without results were not sampled during the second annual groundwater monitoring event. 	
	ERH = Ele J = estimat SSRL = Si TCE = Tric U = not det	rograms per liter ctrical Resistive Heating ted value te Specific Remediation Limit hloroethene tected above reporting limit = United States Environmental Protection Agency, Region 9	
		W E S	
205		Approximate Scale in Feet	
ANGELES	(0 100 200	
LOS ANGELES RIVER	Trichl Exposit	Figure C-13 oroethene Plume in Groundwater ion 'B' and 'A'&'B' Zones, July 2014	
	Pemaco Superfund Site Maywood, California		
		Oneida Total Integrated Enterprises Oneida Total Integrated Enterprises Date: October 17, 2014 File: Pem_Site_COC_2SA13.dwg	

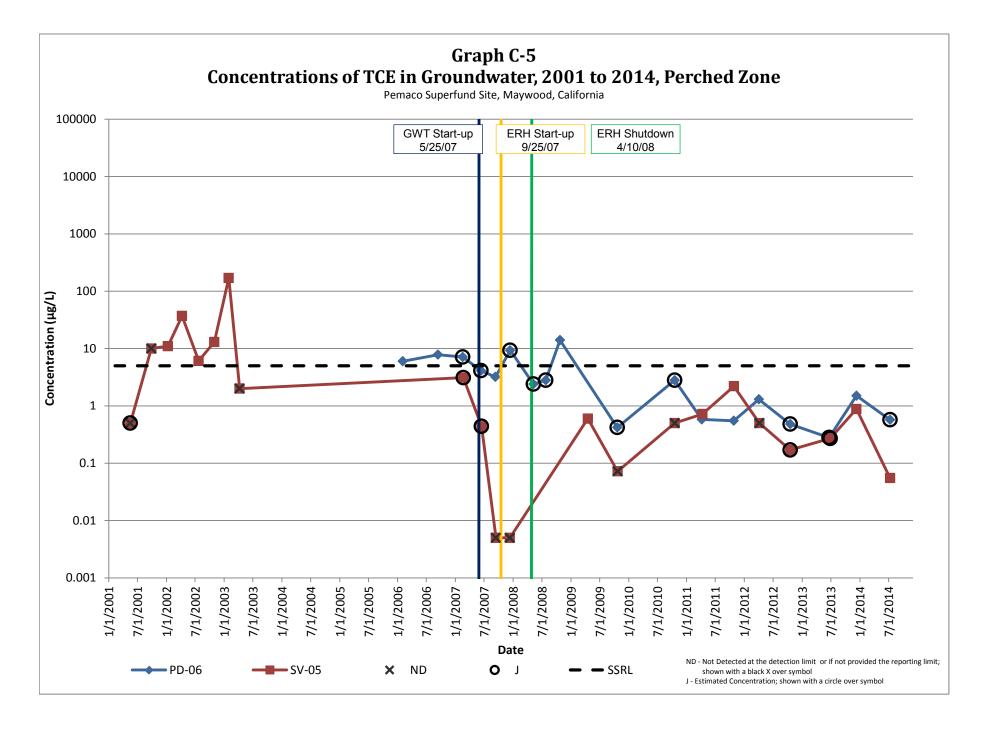
	LEGE	ND:		
	⊙ DB-01	U.S. EPA, Extraction W for the "B" Zone	ell, Individual Screens	
	- \$ -MW-21-90	U.S. EPA, Monitoring W	ell, Exposition Aquifer	
	- 수 -RW-01-95	U.S. EPA, Recovery We (Currently Used as a Mo		
	MW-28B W.W. Henry	W.W. Henry Well 5024 59th Place, Prope	rty 6 from Alamo	
		6 μg/L cis-1,2-DCE Isoc (Dashed Where Inferred		
		50 µg/L cis-1,2-DCE lsc (Dashed Where Inferred	oconcentration Contour	
	Dry	·	six inches of water in well	
		Former Pemaco Proper		
		Maywood Riverfront Par		
		ERH Treatment Area	、 <i>,</i> , , ,	
		Site Fencing		
		-		
	NOTES	<u>S:</u>		
	 All analyte concentrations are expressed in μg/L. The SSRL for cis-1,2-DCE is 6 μg/L. Where duplicate samples were analyzed, the higher concentration is shown. Wells without results were not sampled during the second semi-annual groundwater monitoring event. 			
	cis-1,2-DC ERH = Elec J = estimat SSRL = Sit U = not det	ograms per liter E = cis-1,2-Dichloroethene ctrical Resistive Heating red value te Specific Remediation Limi rected above reporting limit = United States Environment Region 9		
		Approximate Scale	►E e in Feet	
		Figure C-1 chloroethene Plur on 'B' and 'A'&'B'	me in Groundwater	
		Pemaco Superf Maywood, Ca		
\setminus		OTTIE Oneida Total Integrated Enterprises	Date: October 17, 2014	
		<u>ه</u>	Pem_Site_COC_2SA13.dwg	

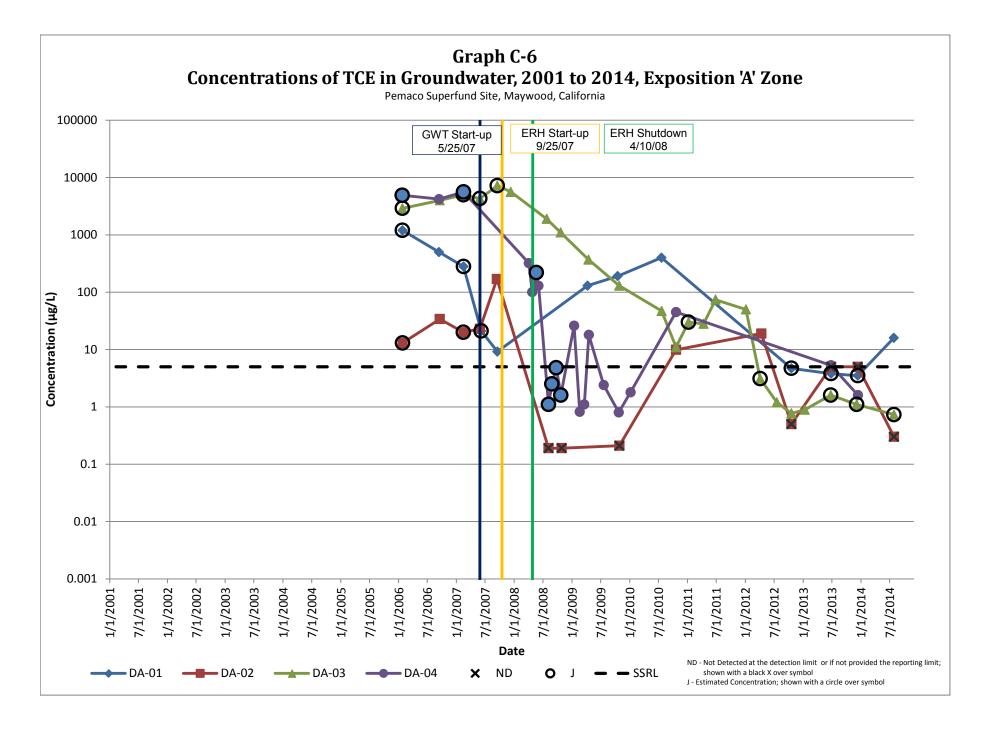


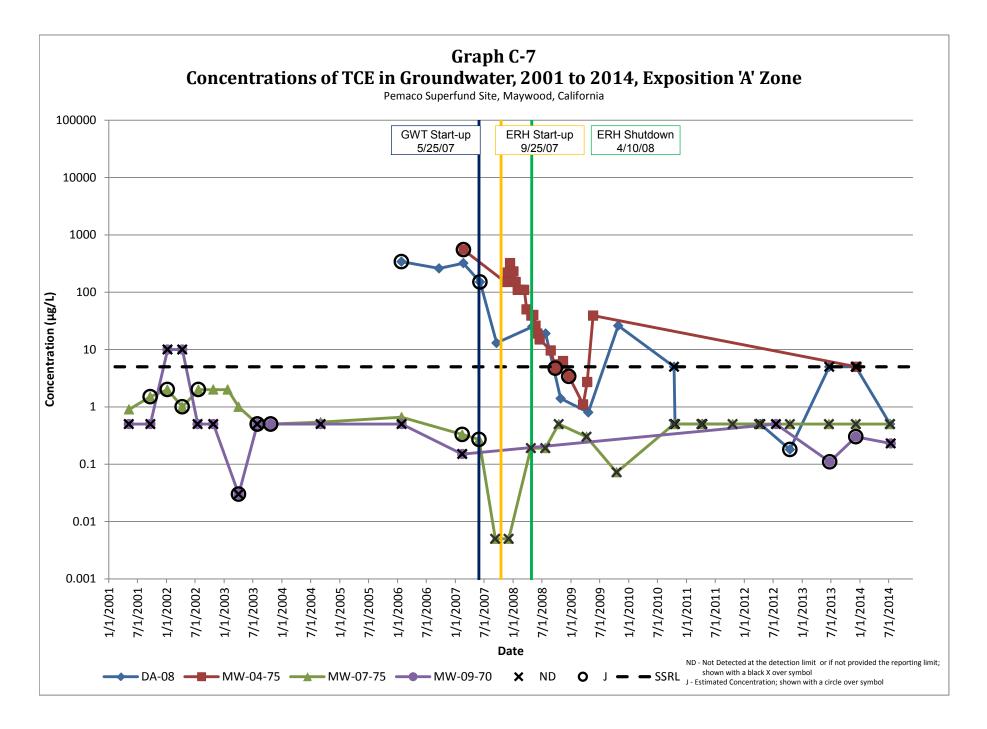

	LEGEND:
	+MW-25-130 U.S. EPA, Monitoring Well, Exposition Aquifer
	5 μg/L TCE Isoconcentration Contour (Dashed Where Inferred)
	50 μg/L TCE Isoconcentration Contour (Dashed Where Inferred)
	270 TCE Concentration
	Former Pemaco Property
	Maywood Riverfront Park (Site) Boundary
	ERH Treatment Area
	Site Fencing
	NOTES:
	 All analyte concentrations are expressed in µg/L.
	 The SSRL for TCE is 5 μg/L. Where duplicate samples were analyzed, the higher concentration is shown.
	μg/L = micrograms per liter
	ERH = Electrical Resistive Heating J = estimated value SSRL = Site Specific Remediation Limit
	TCE = Trichloroethene U = not detected above reporting limit
	U.S. EPA = United States Environmental Protection Agency, Region 9
ELES RIVER	
ER	N
	WEE
\setminus	
$\langle \rangle \rangle$	Approximate Scale in Feet
	0 100 200
	Figure C-16
\mathcal{A}	Trichloroethene Plume in Groundwater
	Exposition 'D' Zone, July 2014
	Pemaco Superfund Site
	Maywood, California
	Date: October 17, 2014
11/11/130	Credita Total Integrated Enterprises File: Pem_Site_COC_2SA13.dwg

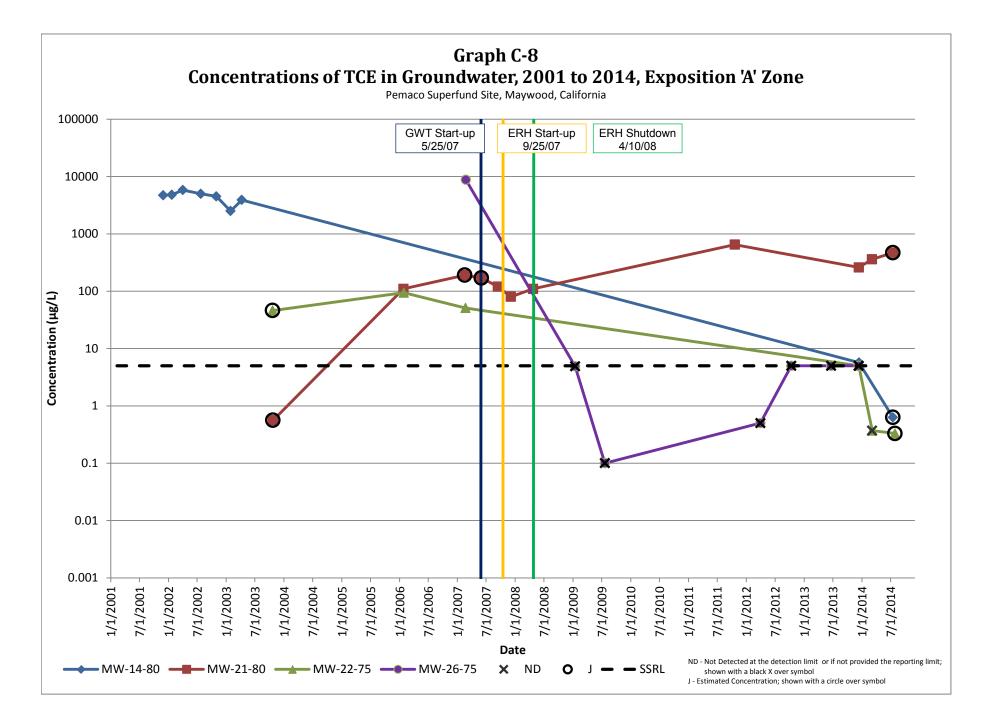

Graphs

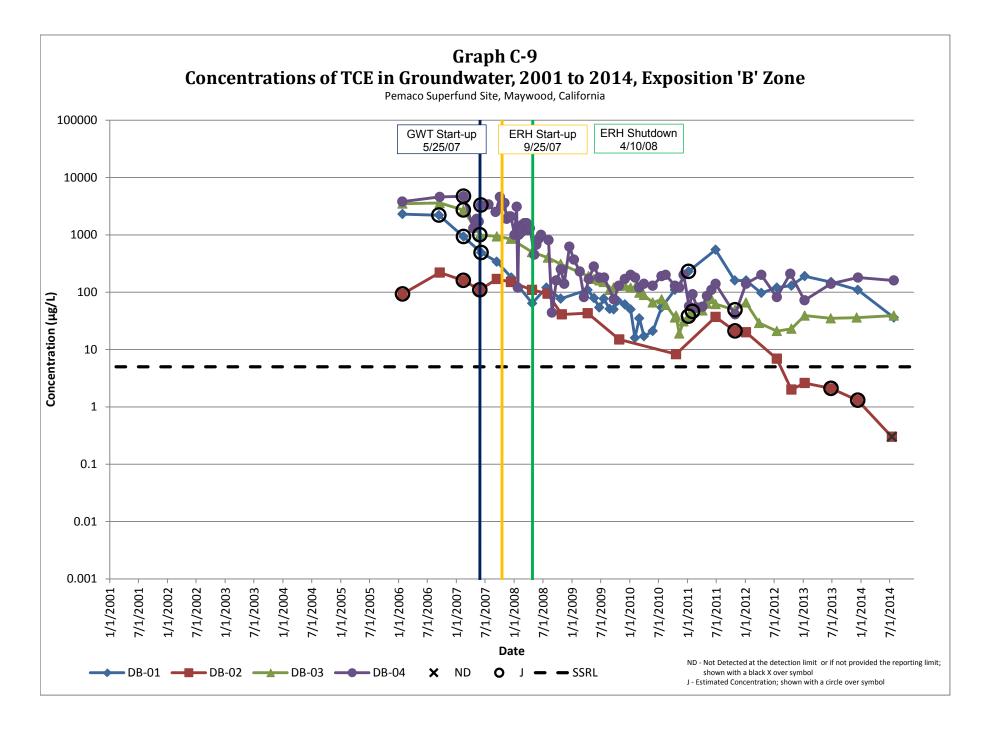

List of Graphs

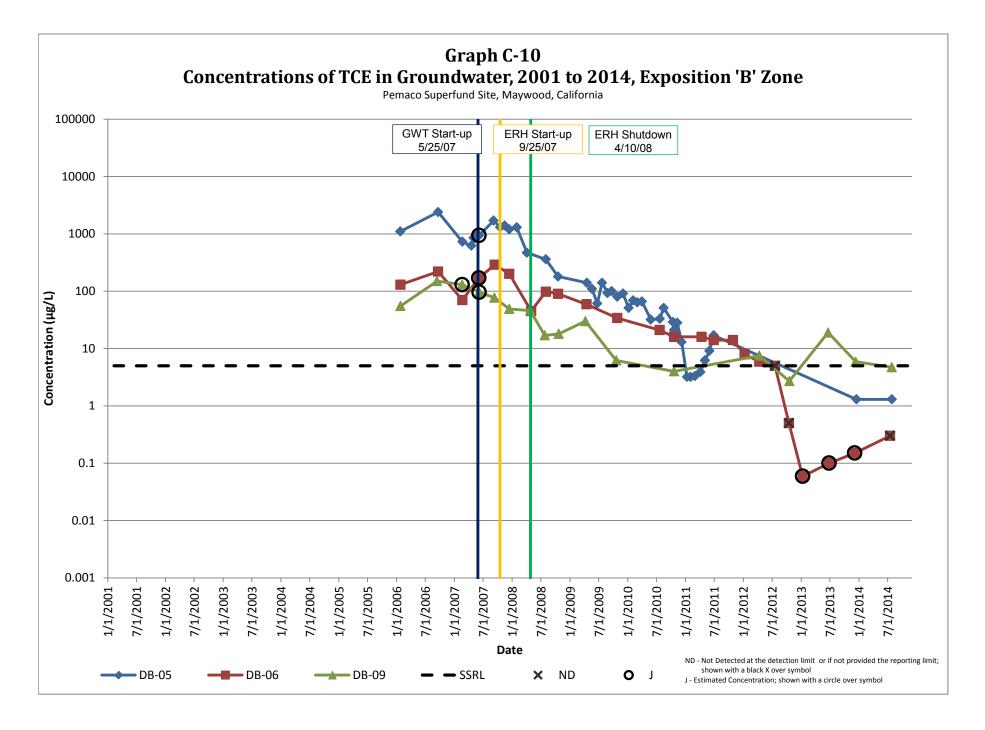

Graph C-1	Concentrations of TCE in Groundwater, 2001 to 2014, Perched Zone
Graph C-2	Concentrations of TCE in Groundwater, 2001 to 2014, Perched Zone
Graph C-3	Concentrations of TCE in Groundwater, 2001 to 2014, Perched Zone
Graph 5-1d	Concentrations of TCE in Groundwater, 2001 to 2014, Perched Zone
Graph 5-1e	Concentrations of TCE in Groundwater, 2001 to 2014, Perched Zone
Graph 5-2a	Concentrations of TCE in Groundwater, 2001 to 2014, Exposition 'A' Zone
Graph 5-2b	Concentrations of TCE in Groundwater, 2001 to 2014, Exposition 'A' Zone
Graph 5-2c	Concentrations of TCE in Groundwater, 2001 to 2014, Exposition 'A' Zone
Graph 5-3a	Concentrations of TCE in Groundwater, 2001 to 2014, Exposition 'B' Zone
Graph 5-3b	Concentrations of TCE in Groundwater, 2001 to 2014, Exposition 'B' Zone
Graph 5-3c	Concentrations of TCE in Groundwater, 2001 to 2014, Expostion 'B' Zone
Graph 5-3d	Concentrations of TCE in Groundwater, 2001 to 2014, Exposition 'B' Zone
Graph 5-3e	Concentrations of TCE in Groundwater, 2001 to 2014, Exposition 'B' Zone
Graph 5-3f	Concentrations of TCE in Groundwater, 2001 to 2014, Exposition 'B' Zone
Graph 5-3g	Concentrations of TCE in Groundwater, 2001 to 2014, Exposition 'B' Zone
Graph 5-3h	Concentrations of TCE in Groundwater, 2001 to 2014, Exposition 'A' & 'B' Zones
Graph 5-3i	Concentrations of TCE in Groundwater, 2001 to 2014, Exposition 'A' & 'B' Zones
Graph 5-3j	Concentrations of c-1,2-DCE in Groundwater, 2001 to 2014, Exposition 'B' Zone
Graph 5-3k	Concentrations of c-1,2-DCE in Groundwater, 2001 to 2014, Exposition 'B' Zone
Graph 5-3l	Concentrations of c-1,2-DCE in Groundwater, 2001 to 2014, Exposition 'B' Zone
Graph 5-3m	Concentrations of c-1,2-DCE in Groundwater, 2001 to 2014, Exposition 'B' Zone
Graph 5-3n	Concentrations of c-1,2-DCE in Groundwater, 2001 to 2014, Exposition 'B' Zone
Graph 5-3o	Concentrations of c-1,2-DCE in Groundwater, 2001 to 2014, Exposition 'B' Zone
Graph 5-3p	Concentrations of c-1,2-DCE in Groundwater, 2001 to 2014, Exposition 'B' Zone
Graph 5-3q	Concentrations of c-1,2-DCE in Groundwater, 2001 to 2014, Exposition 'A' & 'B' Zones
Graph 5-3r	Concentrations of c-1,2-DCE in Groundwater, 2001 to 2014, Exposition 'A' & 'B' Zones
Graph 5-4a	Concentrations of TCE in Groundwater, 2001 to 2014, Exposition 'C' Zone
Graph 5-4b	Concentrations of TCE in Groundwater, 2001 to 2014, Expostion 'C' Zone
Graph 5-4c	Concentrations of c-1,2-DCE in Groundwater, 2001 to 2014, Exposition 'C' Zone
Graph 5-4d	Concentrations of c-1,2-DCE in Groundwater, 2001 to 2014, Exposition 'C' Zone
Graph 5-5a	Concentrations of TCE in Groundwater, 2001 to 2014, Exposition 'D' Zone
Graph 5-5b	Concentrations of TCE in Groundwater, 2001 to 2014, Exposition 'D' Zone
Graph 5-5c	Concentrations of c-1,2-DCE in Groundwater, 2001 to 2014, Exposition 'D' Zone
Graph 5-5d	Concentrations of c-1,2-DCE in Groundwater, 2001 to 2014, Exposition 'D' Zone
Graph 5-6	Concentrations of TCE in Groundwater, 2001 to 2014, Exposition 'E' Zone

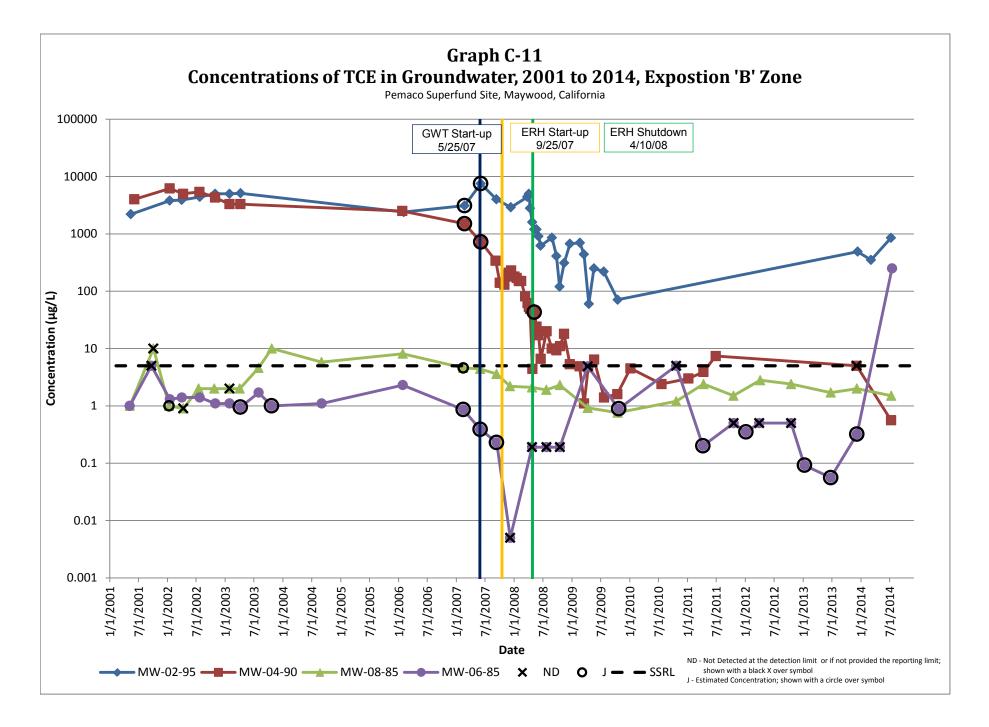


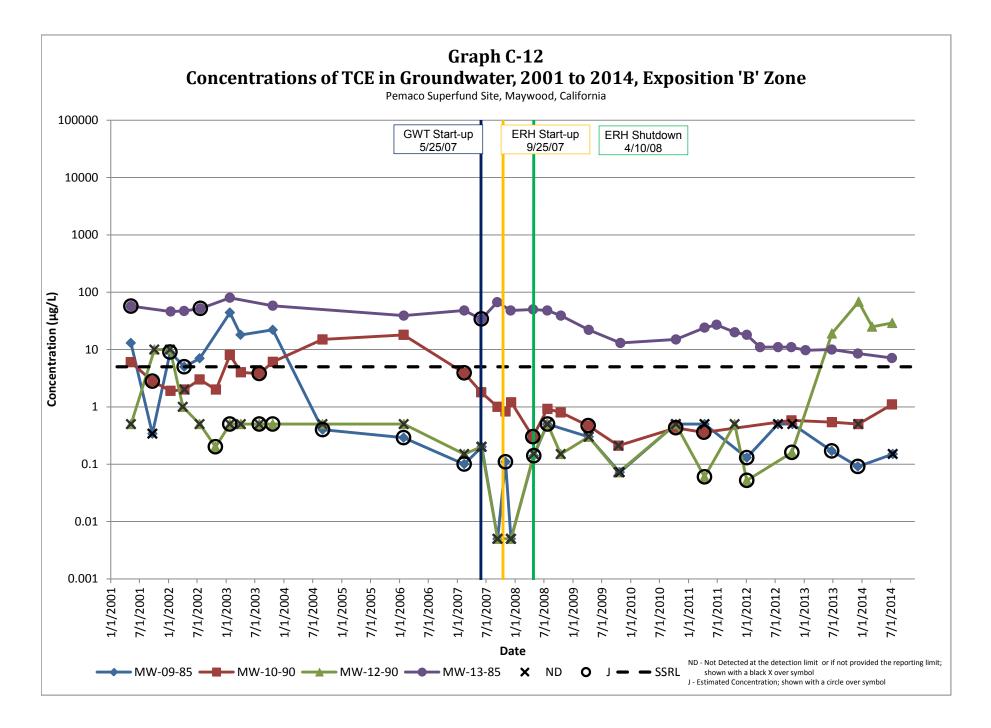


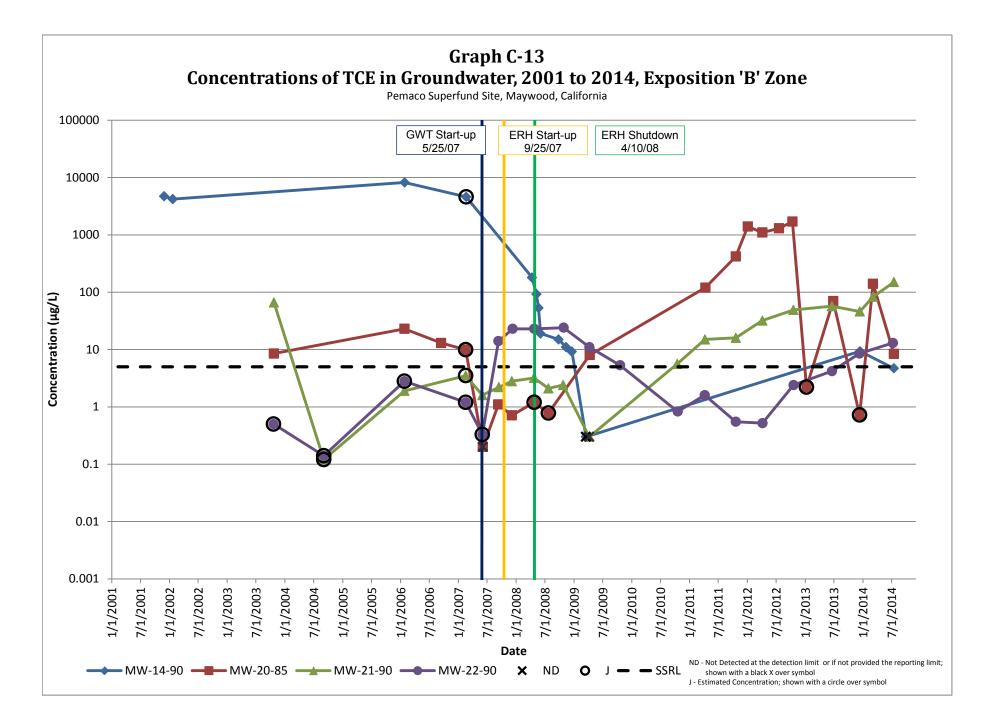


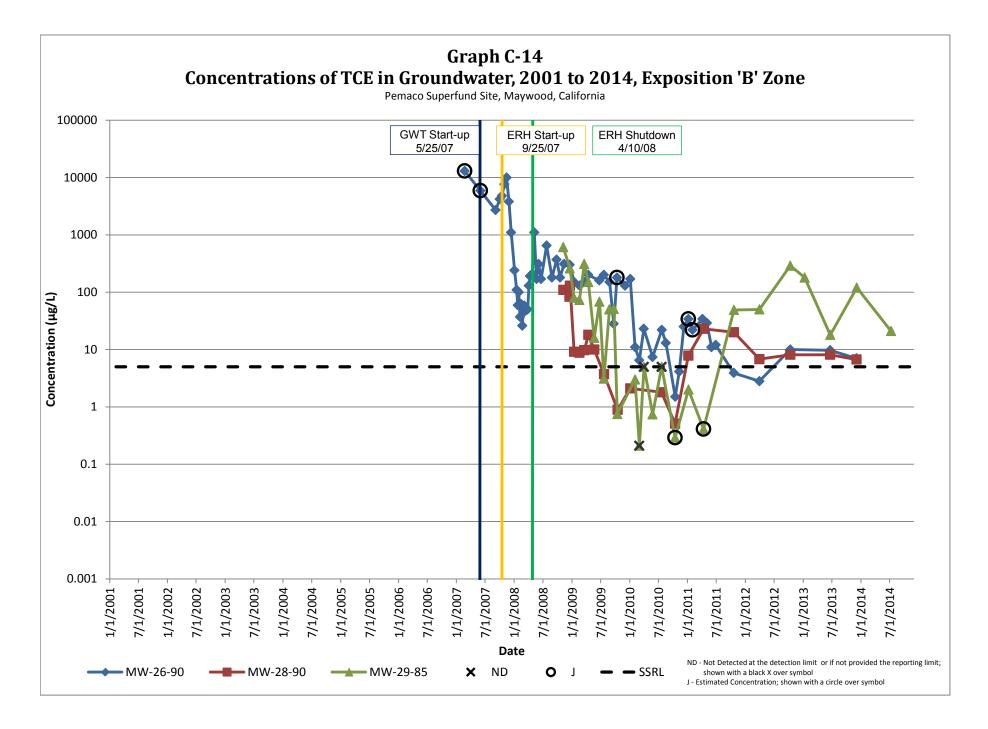




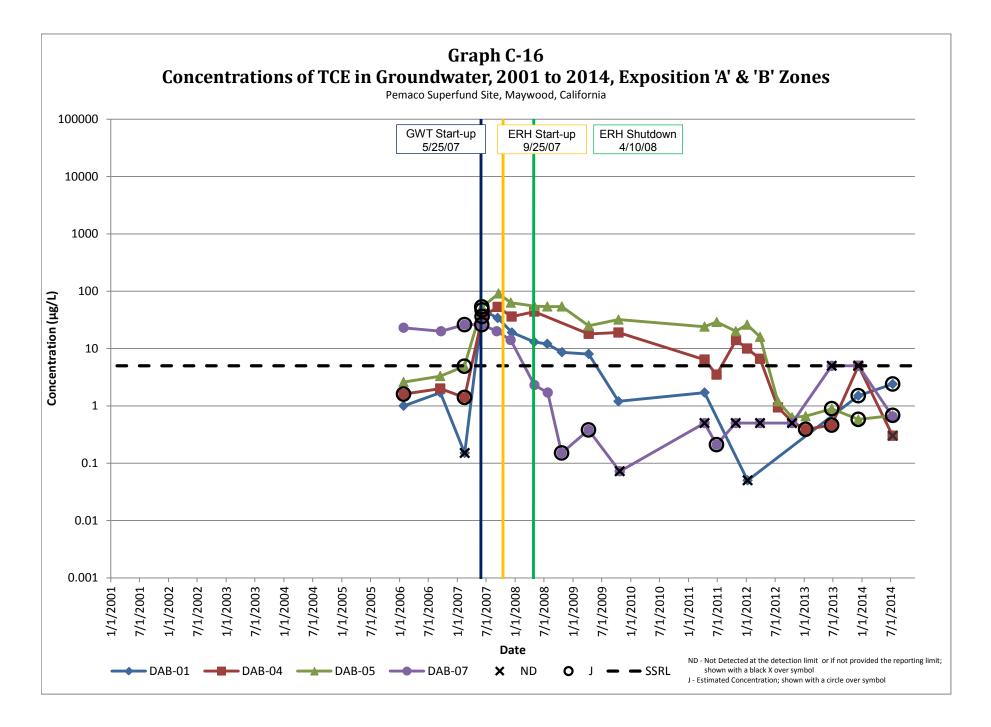


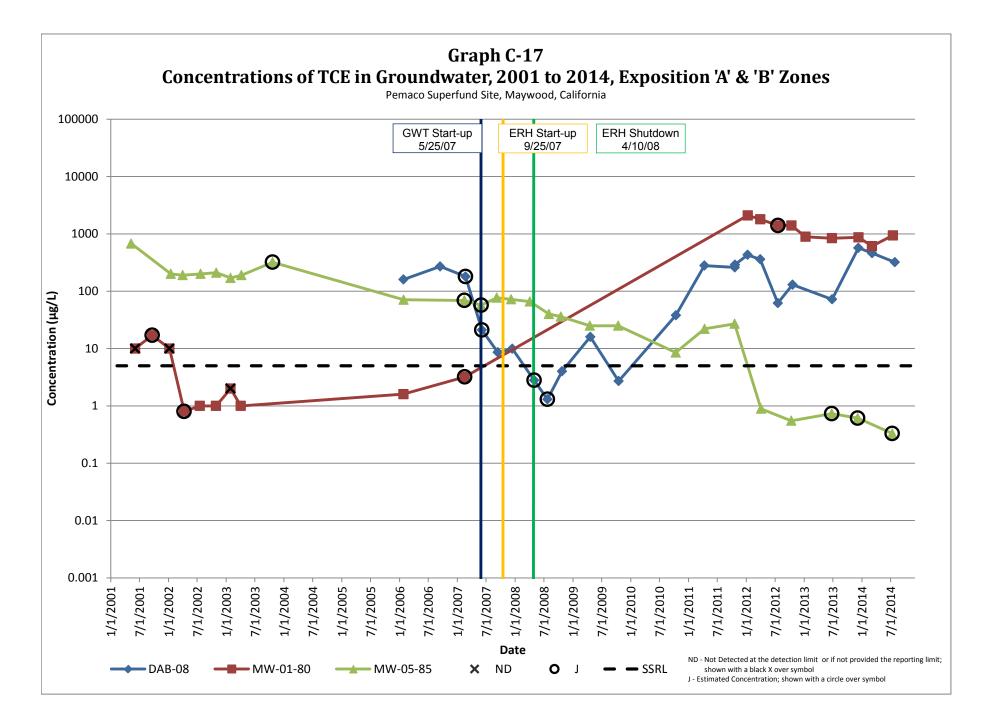


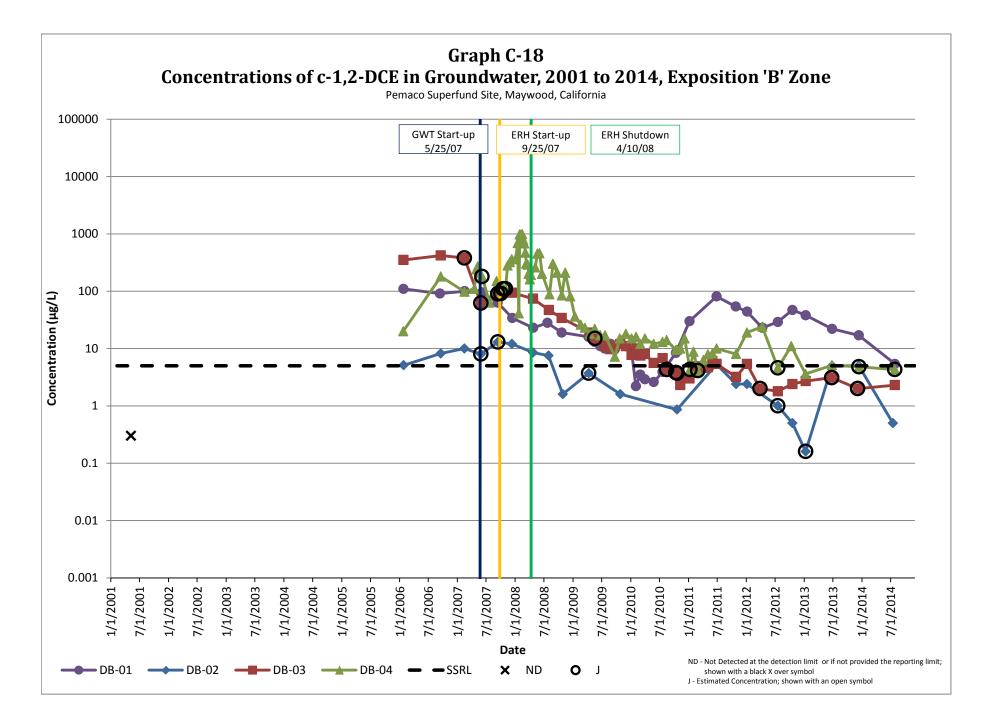


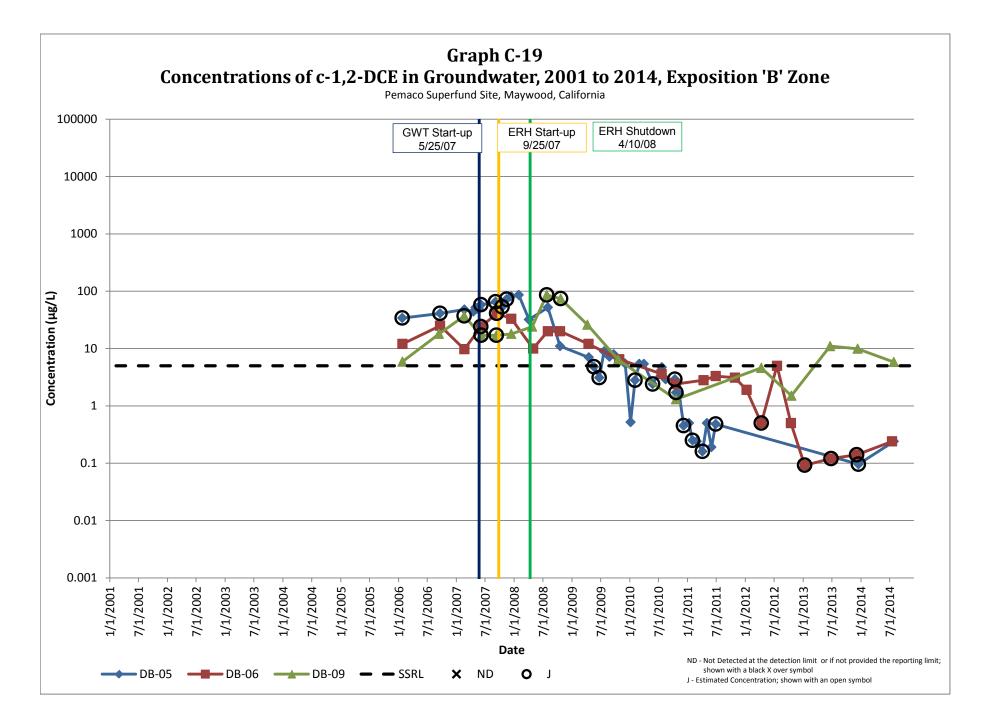


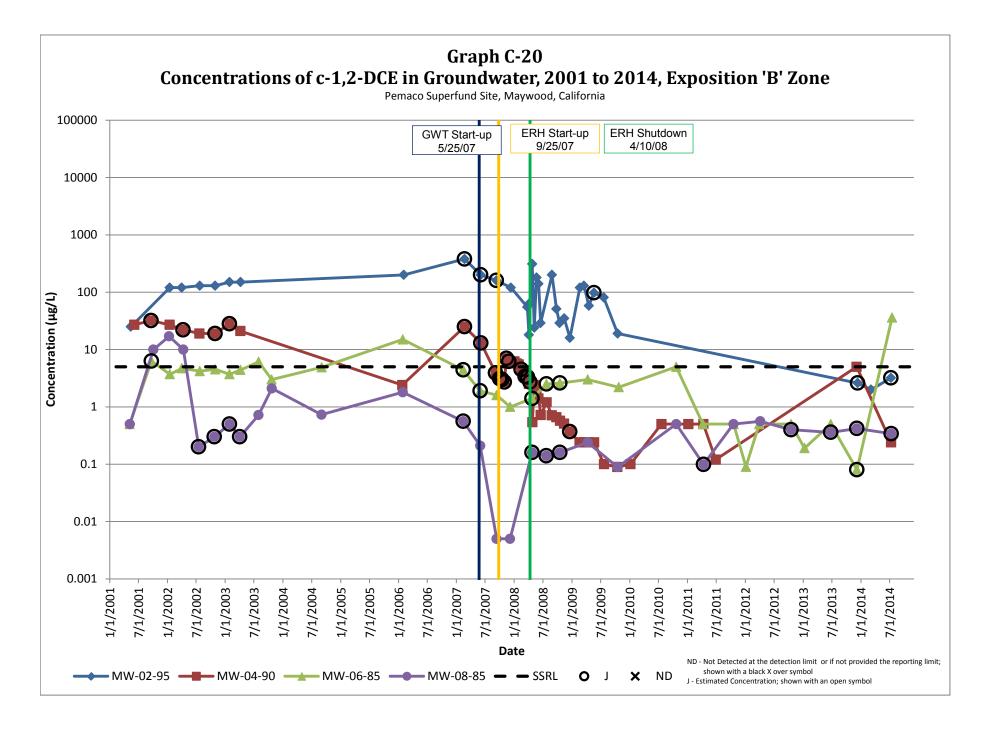


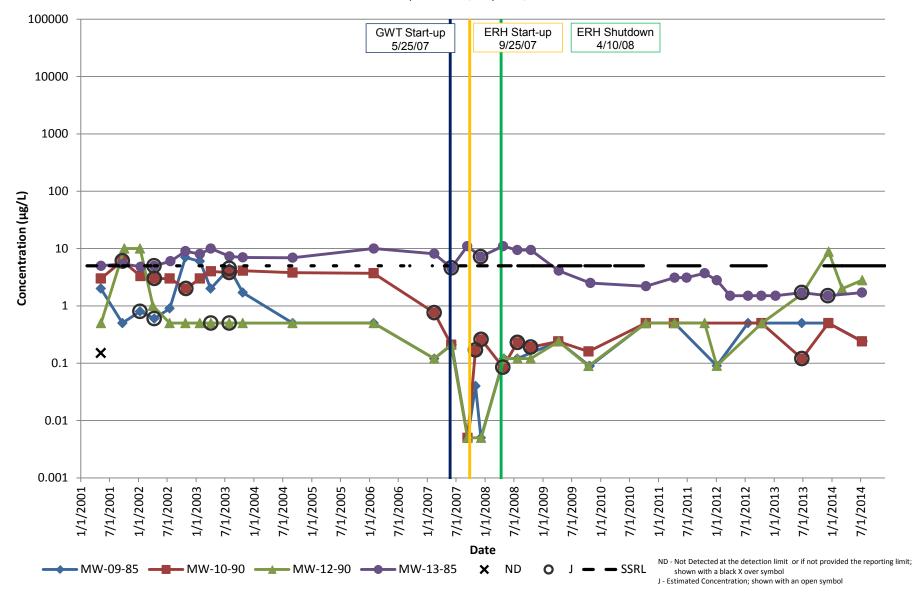


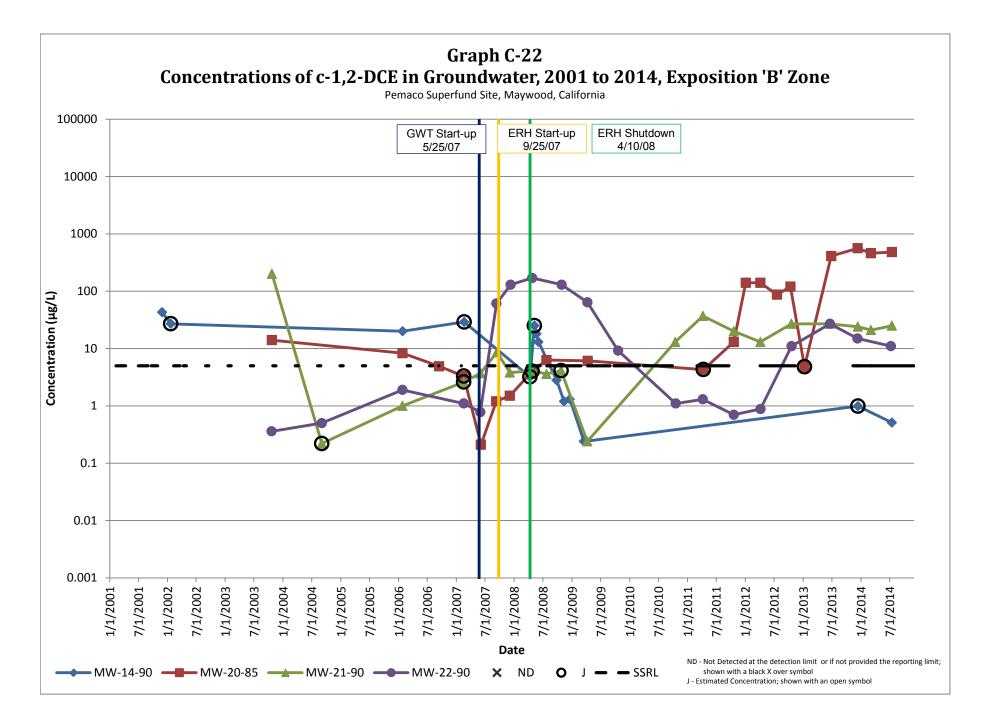


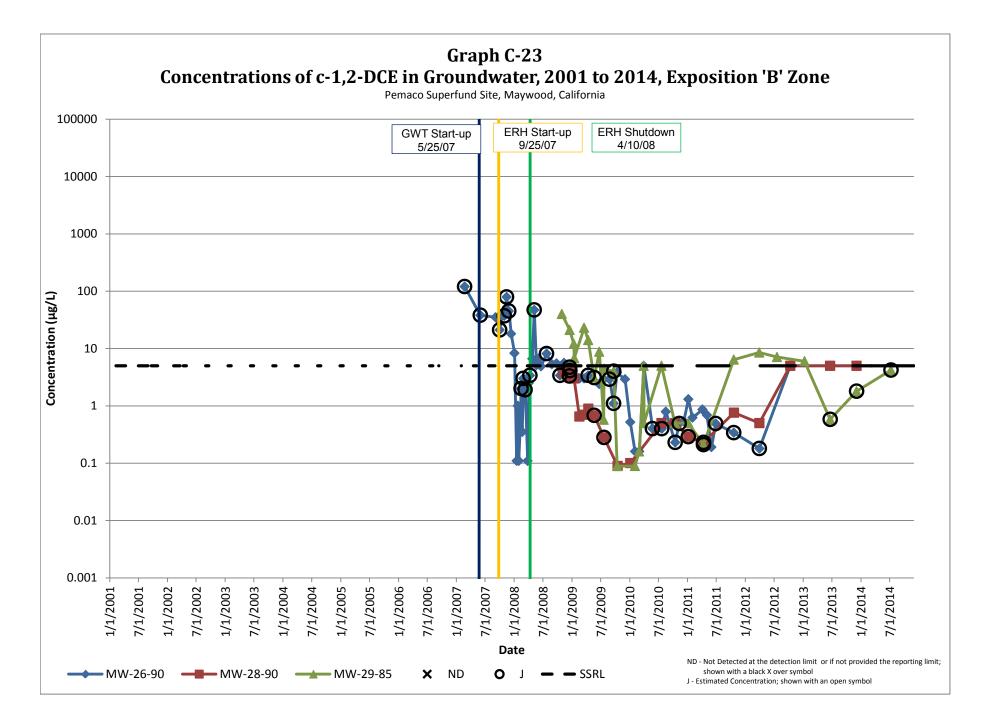


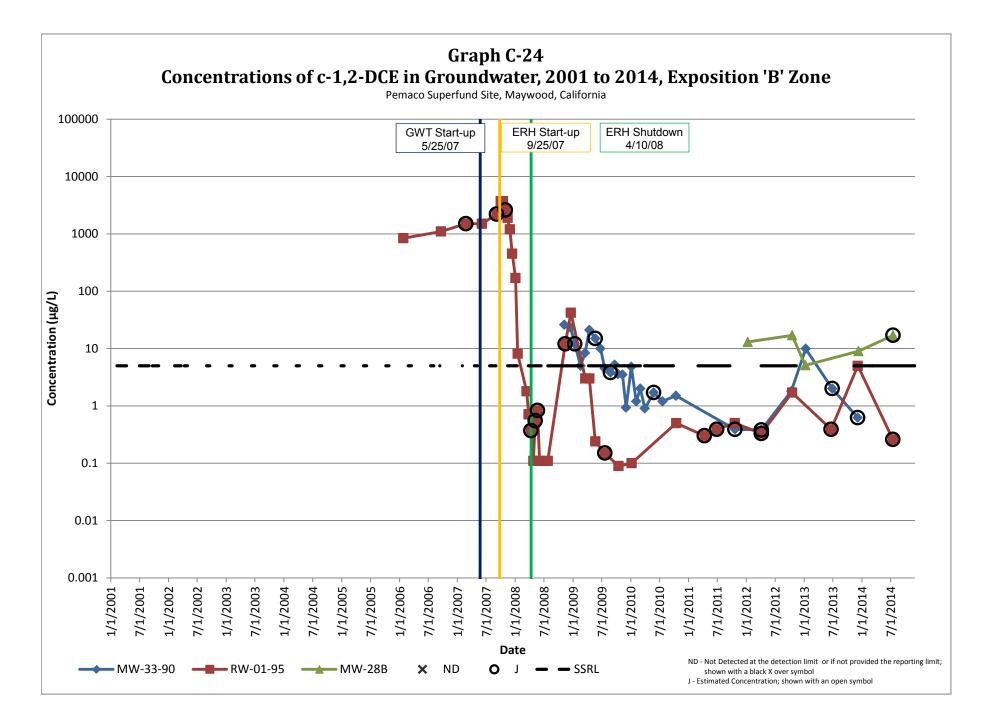


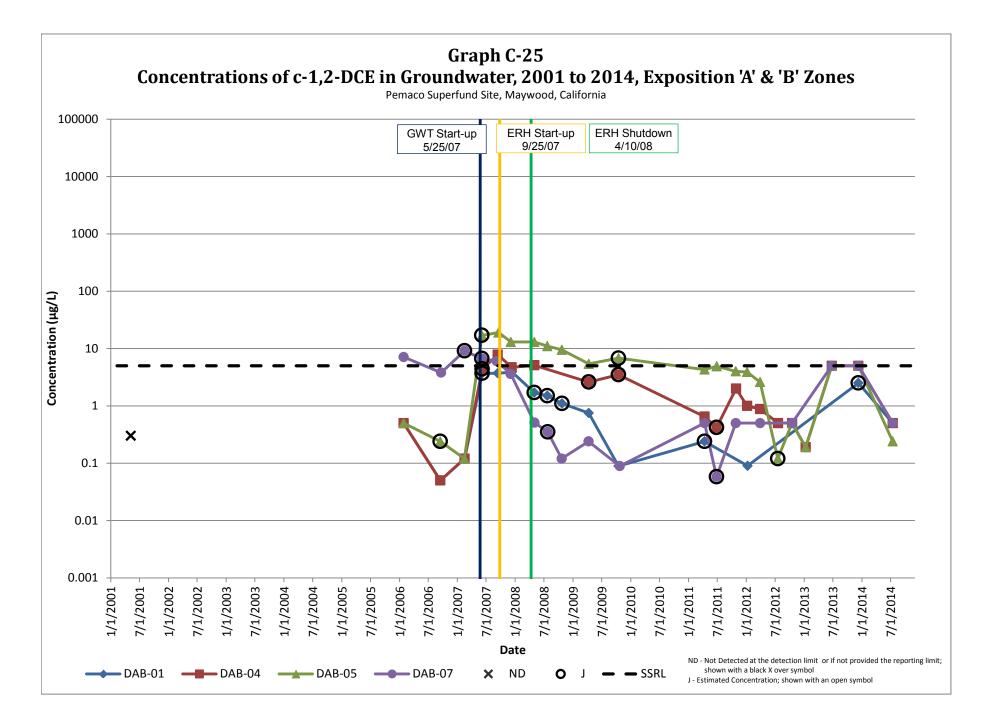


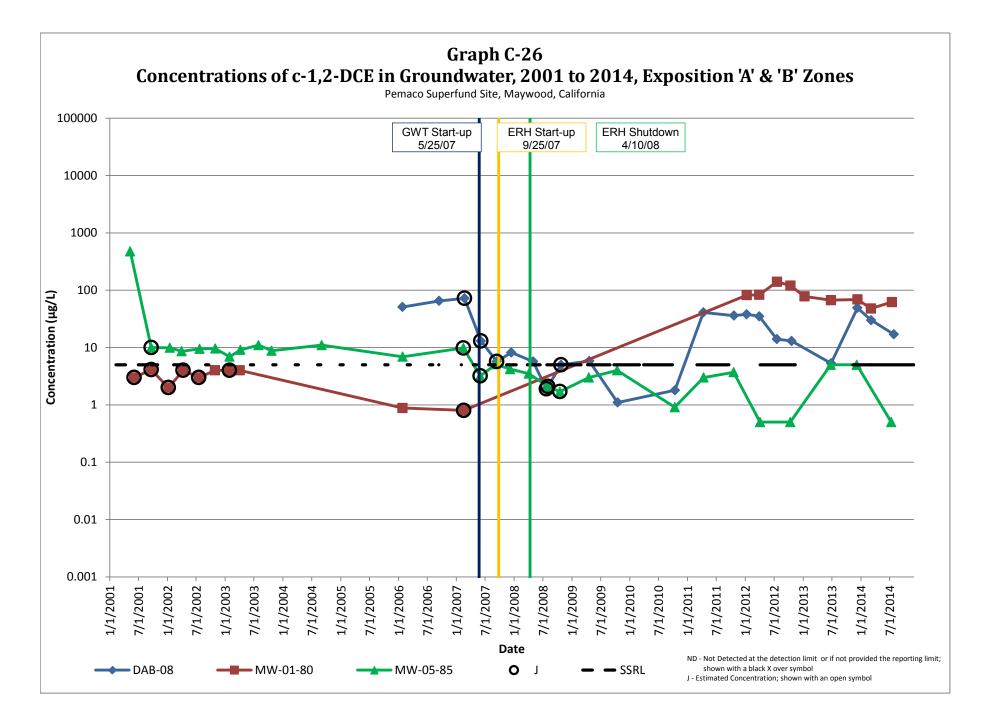


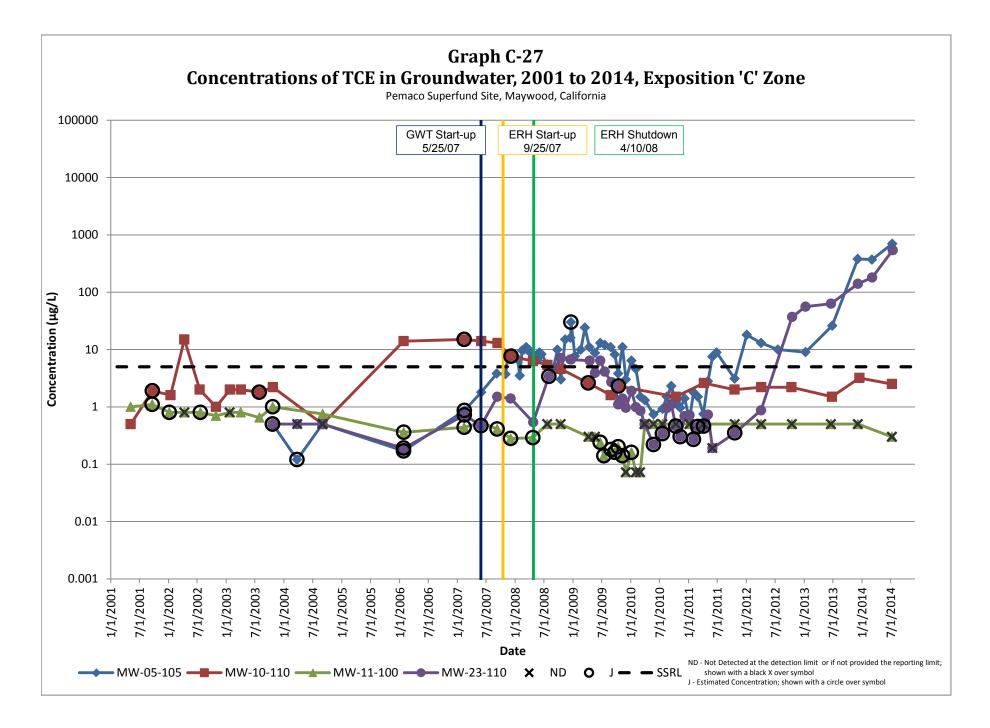


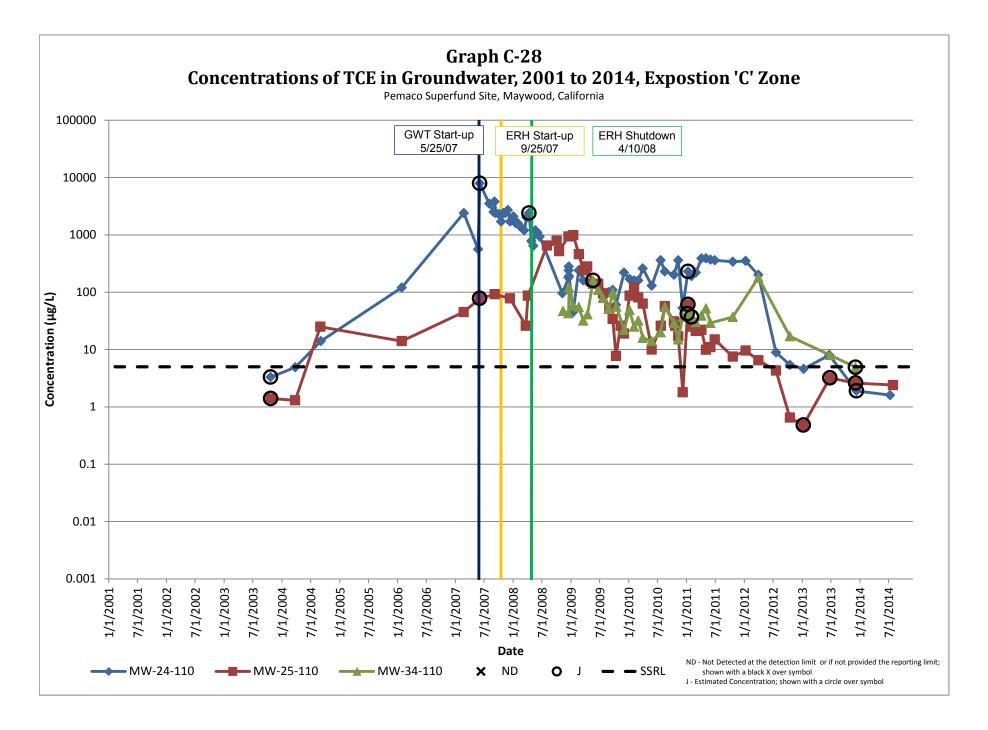


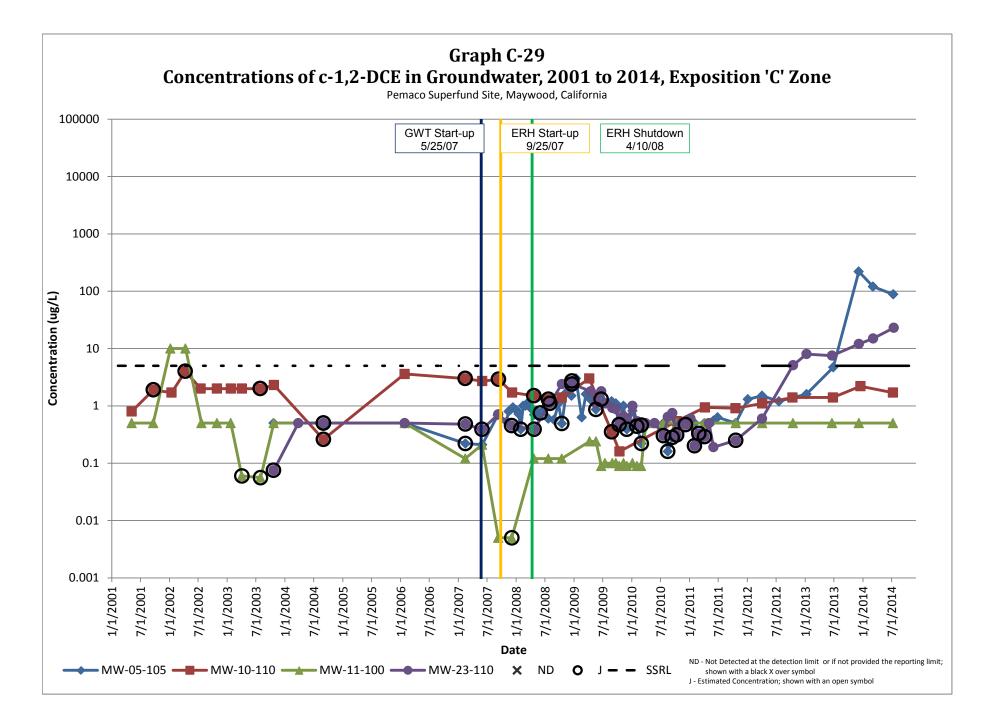

Graph C-21 Concentrations of c-1,2-DCE in Groundwater, 2001 to 2014, Exposition 'B' Zone

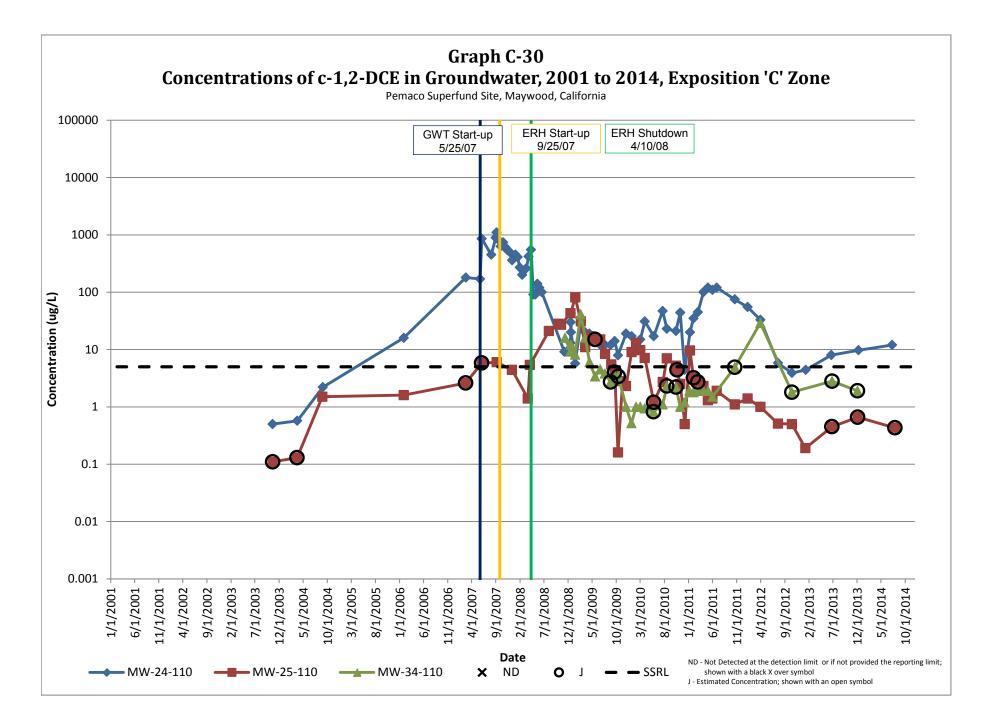


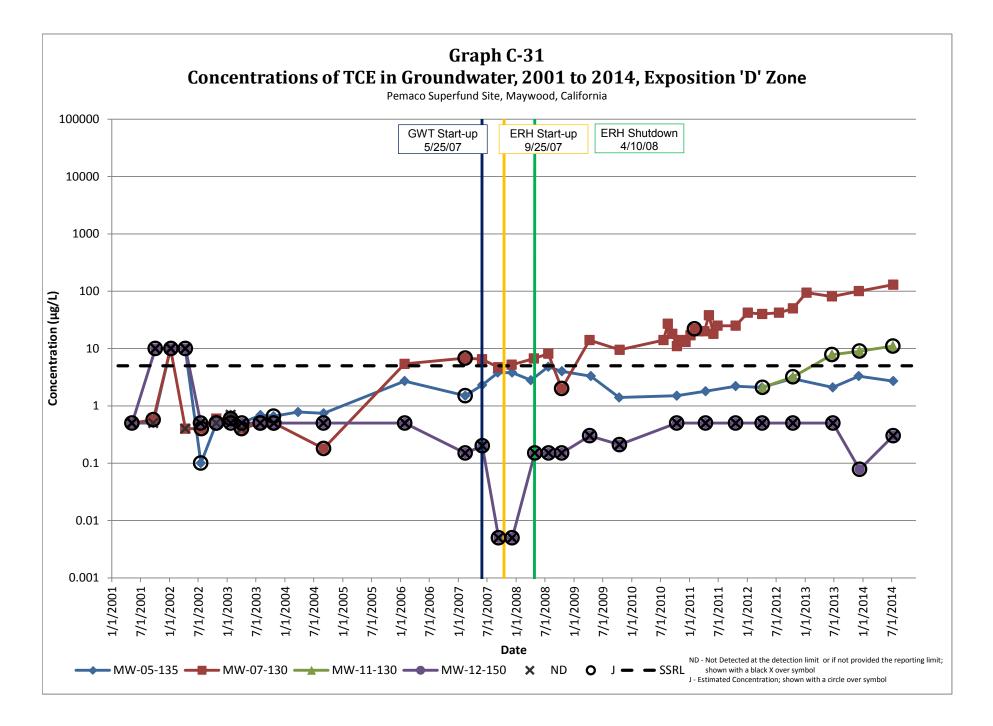

Pemaco Superfund Site, Maywood, California



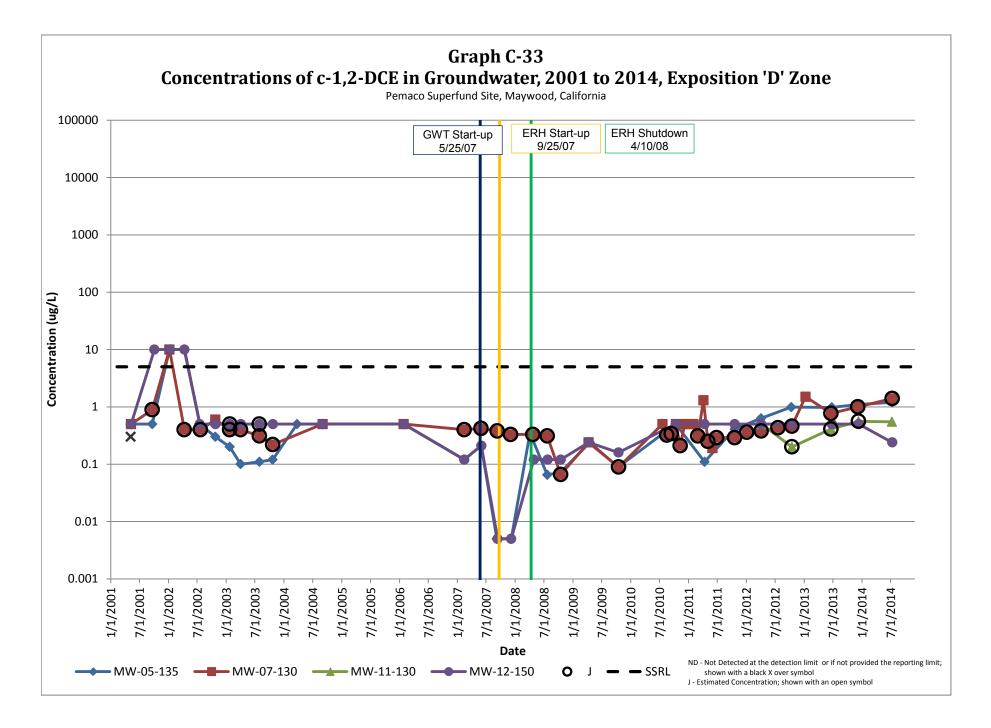


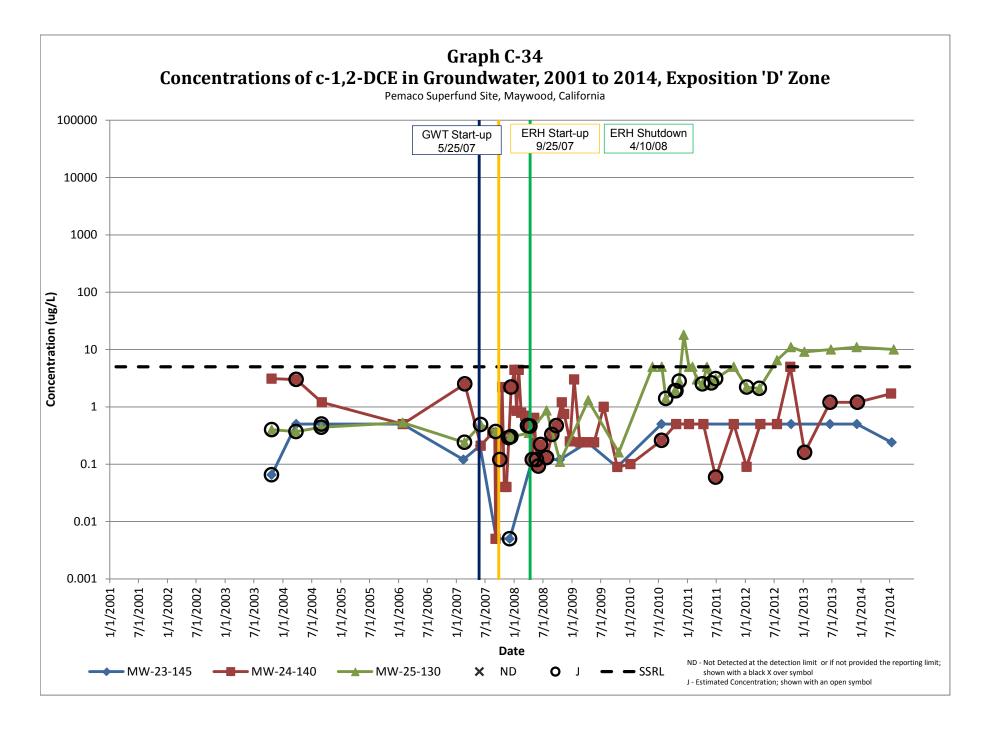


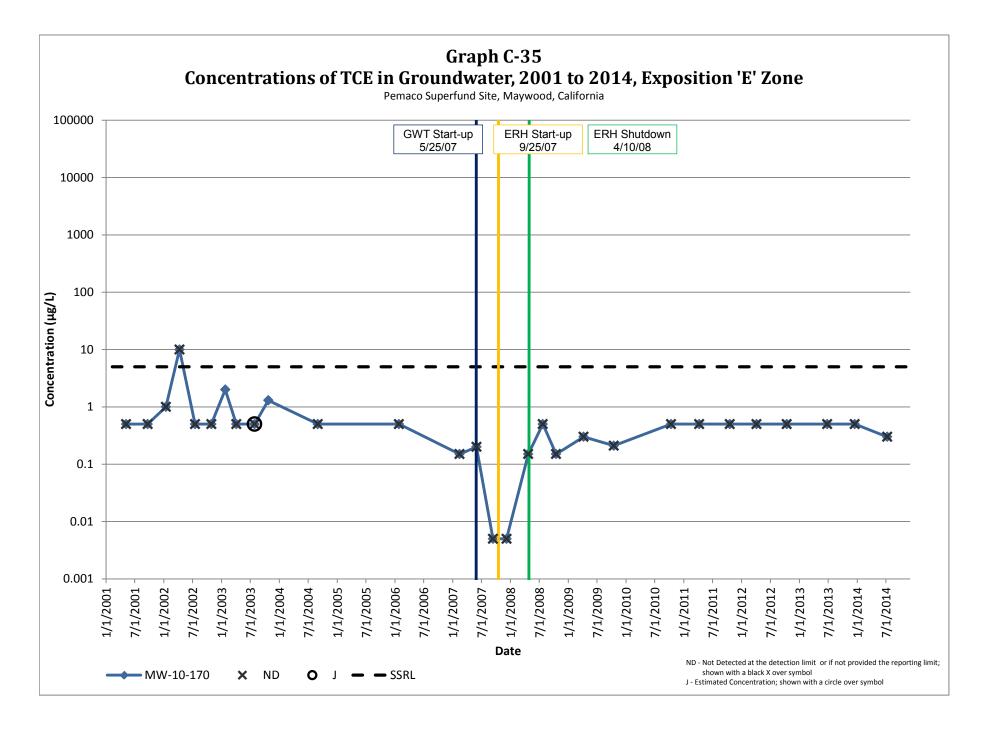












This page intentionally left blank.

Tables

List of Tables

Table C-1	Groundwater Analytical Results – Perched Zone
Table C-2	Groundwater Analytical Results – Exposition 'A' Zone
Table C-3	Groundwater Analytical Results – Exposition 'B' Zone
Table C-4	Groundwater Analytical Results – Exposition 'A' & 'B' Zone
Table C-5	Groundwater Analytical Results – Exposition 'C' Zone
Table C-6	Groundwater Analytical Results – Exposition 'D' & 'E' Zone

This page intentionally left blank.

Table C-1 - Well and Groundwater An	alytical Resu	ilts - Perc	hed Zone																			
	Sample I	Location	B-04	B-04	B-10	B-15	B-18	B-20	B-20	B-21	B-27	B-38	B-39	PB-01	PB-02	PB-03	PB-05	PC-05	PC-06	PD-06	SV-01	SV-05
		Zone	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	Sa	mple ID	Y9K42	Y9K43	Y9K44	Y9KS5	Y9K45	Y9K46	Y9K47	Y9K48	Y9K49	Y9K50	Y9K51	Y9K52	Y9K53	Y9K54	Y9K55	Y9K56	Y9K57	Y9K59	Y9KS6	Y9K60
		ple Date	7/15/2014	• •	7/10/2014	7/28/2014	7/16/2014	7/16/2014	• •	7/16/2014	7/16/2014	7/11/2014	7/16/2014	7/14/2014	7/14/2014	7/14/2014	7/10/2014	7/10/2014	7/14/2014	7/10/2014	7/28/2014	7/10/2014
		ole Type	N	FD	N	Ν	N	Ν	FD	N	N	Ν	Ν	Ν	Ν	N	N	N	Ν	N	Ν	N
Analyte Name	SSRL/MCL			-	-	-				•	-		•	-						•		
1,1,1-Trichloroethane	200*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	1*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	1200*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	5	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	5	μg/L	0.078 J	0.086 J	0.5 U	0.12 J	0.033 J	0.55	0.41 J	0.5 U	0.36 J	5 U	0.23 J	0.5 U	5 U	0.21 J	0.42 J	0.5 U				
1,1-Dichloroethene	6	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1	0.72	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U					
1,2,3-Trichlorobenzene	NC	μg/L	0.5 UJ	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 UJ	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U						
1,2,4-Trichlorobenzene	5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromo-3-Chloropropane	0	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,2-Dibromoethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	600*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,3-Dichlorobenzene	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane (P-Dioxane)	3	μg/L						10	10	0.86 J				4.2 J		0.35 U						
2-Butanone	NC	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U	10 U	5 U	5 U	5 U
2-Hexanone	NC 2.000	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	5 U	5 U	10 U	5 U	5 U	5 U
4-Methyl-2-pentanone	2,000	μg/L	5 U	50	5 U	5 U	5 U	5 U	5 U	5 U	5 U	50	5 U	50	5 U	10 U	5 U	5 U	10 U	5 U	5 U	5 U
Acetone	5,500	μg/L	2 J 0.5 U	2 J 0.5 U	5 U 0.5 U	5 U 0.5 U	5 U 0.5 U	4 J 1	5 U 0.5 U	2.7 J	5 U 0.5 U	10 U 5 U	5 U 0.5 U	5 U 0.5 U	10 U 5 U	5 U 0.5 U	5 U 0.5 U	5 U 0.5 U				
Benzene Bromochloromethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Bromodichloromethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Bromoform	NC	μg/L μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Bromomethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.3 0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.3 0	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Carbon disulfide	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	0.5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.082 J	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Chloroethane	100	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Chloroform	80	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1	0.5 U	0.5 U	1.1 J	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Chloromethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.25 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	6	μg/L	0.64	0.67	0.5 U	0.87	0.5 U	4	3	0.53	0.072 J	0.5 U	0.5 U	0.81	120	21	8	0.17 J	50	0.61	0.31 J	1
cis-1,3-Dichloropropene	0.5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Cyclohexane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.063 J	0.058 J	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U					
Dibromochloromethane	80	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	300	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Isopropanol	NC	μg/L	16 J	25 U	25 U	25 U	25 U	17 J	25 U	250 U	25 U	25 U	250 U	25 U	25 U	25 U						
Isopropylbenzene	NC	μg/L	0.5 U	0.5 U	0.5 U	0.091 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Methyl Acetate	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	1	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U

Table C-1 - Well and Groundwate	r Analytical Resul	ts - Perc	ched Zone																			
	Sample L	ocation	B-04	B-04	B-10	B-15	B-18	B-20	B-20	B-21	B-27	B-38	B-39	PB-01	PB-02	PB-03	PB-05	PC-05	PC-06	PD-06	SV-01	SV-05
		Zone	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
	Sai	nple ID	Y9K42	Y9K43	Y9K44	Y9KS5	Y9K45	Y9K46	Y9K47	Y9K48	Y9K49	Y9K50	Y9K51	Y9K52	Y9K53	Y9K54	Y9K55	Y9K56	Y9K57	Y9K59	Y9KS6	Y9K60
	Samp	le Date	7/15/2014	7/15/2014	7/10/2014	7/28/2014	7/16/2014	7/16/2014	7/16/2014	7/16/2014	7/16/2014	7/11/2014	7/16/2014	7/14/2014	7/14/2014	7/14/2014	7/10/2014	7/10/2014	7/14/2014	7/10/2014	7/28/2014	7/10/2014
	Samp	le Type	Ν	FD	N	N	N	Ν	FD	N	Ν	N	N	N	N	Ν	N	N	Ν	N	Ν	N
Analyte Name	SSRL/MCL	Units																				
				-	-	-	-	-	(Ana	lytes Contir	nued)	-	-	-	•	•	-	-		-		
Methyl tert-Butyl Ether	13	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U							
Methylcyclohexane	NC	μg/L	0.5 U	0.23 J	0.085 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U				
Methylene chloride	5	μg/L	0.5 U	0.035 U	0.033 U	0.032 J	0.078 U	0.5 U	0.13 U	0.08 U	0.11 U	0.16 U	0.5 U	0.5 U	0.5 U	5 U	0.12 U	0.14 U	5 U	0.095 U	0.5 U	0.041 U
n-Hexane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U							
Styrene	100*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U							
Tetrachloroethene	5	μg/L	0.5 U	0.5 U	0.5 U	0.065 J	0.26 J	0.5 U	0.5 U	0.084 J	0.5 U	0.063 J	0.5 U	0.5 U	0.5 U	3.4 J	0.051 J	0.57	44	4	0.037 J	0.099 J
Toluene	150	μg/L	0.5 U	0.053 J	0.052 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.13 J	5 U	0.087 U	0.5 U	5 U	0.5 U	0.5 U	0.057 U				
trans-1,2-Dichloroethene	10	μg/L	0.5 U	0.5 U	0.5 U	0.05 J	0.5 U	0.18 J	0.1 J	0.073 J	0.5 U	0.5 U	0.5 U	0.5 U	0.23 J	5 U	0.25 J	0.5 U	5 U	0.5 U	0.5 U	0.13 J
trans-1,3-Dichloropropene	0.5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U							
Trichloroethene	5	μg/L	0.3 J	0.2 J	0.22 J	0.17 J	0.37 J	0.43 J	0.22 U	3	0.14 U	0.14 J	0.5 U	0.5 U	0.27 J	6.7 J	0.69	0.73	4.9 J	0.57	0.051 J	0.055 J
Trichlorofluoromethane	150*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U							
Vinyl chloride	0.5	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	18	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U							
Xylene, o	1750*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U							
Xylenes, m & p	1750*	μg/L	0.031 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.043 J	5 U	0.038 J	0.5 U	5 U	0.5 U	0.5 U	0.035 J						

Notes:

1. "*" indicates the MCL was used in the absence of a SSRL.

2. Bold indicates a sample detection.

3. Yellow shading indicates a concentration in excess of SSRL.

4. μg/L = micrograms per liter; ID = identification; J = estimated value; NA = not available; NC = no criteria; SSRL = Site-Specific Remediation Level; SIM = Single Ion Method; Semi-Volatile Organics Analysis = SVOA; U = not detected above reporting limit; UJ = not detected above estimated reporting limit, "--" = not applicable; N = normal sample; FD = field duplicate.

5. Analytical Methods: Samples were analyzed for VOC by the Contract Labotatory Program by method SOM01.2; Samples were analyzed for 1,4-dioxane by the Contract Labotatory Program by method SVOA-SIM and by Calscience Laboratory, Inc. by U.S. EPA method SW8260B-SIM.

6. The SSRL for xylenes is sum of o, m & p isomers

7. The SSRL for 1,4-Dioxane is 3 µg/L; however, the California Department of Public Helath revised its notification level to 1 µg/L in November 2010.

	Sample Lo	cation	DA-01	DA-02	DA-03	DA-03	DA-05	DA-08	MW-07-75	MW-09-70	MW-14-80	MW-14-80	MW-19-70	MW-21-80	MW-22-75	MW-33A
		Zone		A	A	A	A	A	Α	Α	Α	Α	A	Α	Α	A
	San	nple ID		Y9KQ8	Y9KQ9	Y9KR1	Y9KR2	Y9JY4	Y9JY6	Y9JY7	Y9JY8	Y9JY9	Y9KR3	Y9JZ1	Y9KR4	Y9JZ3
		•	-	7/29/2014	•	7/29/2014	7/28/2014		7/9/2014		7/15/2014	7/15/2014	7/28/2014		7/29/2014	7/9/2014
	•	e Type	N	N	N	FD	N	N	N	N	N	FD	N	N	N	N
Analyte Name	SSRL/MCL															
1,1,1-Trichloroethane	200*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	1*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	1,200*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
1,1,2-Trichloroethane	5*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
1,1-Dichloroethane	5*	μg/L	0.28 J	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.041 J	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
1,1-Dichloroethene	6	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene	5*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
1,2-Dibromo-3-Chloropropane	0.2	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
1,2-Dibromoethane	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
1,2-Dichlorobenzene	600*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
1,2-Dichloropropane	5*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
1,3-Dichlorobenzene	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
1,4-Dichlorobenzene	5*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
1,4-Dioxane (P-Dioxane)	3	μg/L	21	1.0							0.35 U	0.35 U		11	1.2	
2-Butanone	NC	μg/L	3.7 J	5 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	20 U	5 U	5 U
2-Hexanone	NC	μg/L	5 U	5 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	20 U	5 U	5 U
4-Methyl-2-pentanone	2,000	μg/L	5 U	5 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	20 U	5 U	5 U
Acetone	5,500	μg/L	5 U	5 U	10 U	10 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	20 U	5 U	5 U
Benzene	1	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Bromochloromethane	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Bromodichloromethane	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Bromoform	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Bromomethane	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Carbon disulfide	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Carbon tetrachloride	0.5*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Chlorobenzene	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Chloroethane	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Chloroform	80	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Chloromethane	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	6	μg/L	1.9	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.052 J	0.087 J	0.5 U	100	0.53	0.5 U
cis-1,3-Dichloropropene	0.5*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.3 J	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Cyclohexane	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	2

Appendix C Table C-2 - Groundwater Analytical Results - Exposition 'A' Zone Second Five-Year Review Report Pemaco Superfund Site, Maywood, California Page 1 of 2

Table C-2 - Groundwater Analytical Result																
	Sample Lo	cation	DA-01	DA-02	DA-03	DA-03	DA-05	DA-08	MW-07-75	MW-09-70	MW-14-80	MW-14-80	MW-19-70	MW-21-80	MW-22-75	MW-33A
		Zone	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
		nple ID	-	Y9KQ8	Y9KQ9	Y9KR1	Y9KR2	Y9JY4	Y9JY6	Y9JY7	Y9JY8	Y9JY9	Y9KR3	Y9JZ1	Y9KR4	Y9JZ3
	Sampl	e Date	7/28/2014	7/29/2014	7/29/2014	7/29/2014	7/28/2014	7/10/2014	7/9/2014	7/14/2014	7/15/2014	7/15/2014	7/28/2014	7/15/2014	7/29/2014	7/9/2014
	Sample			Ν	Ν	FD	Ν	N	Ν	Ν	Ν	FD	Ν	N	Ν	N
Analyte Name	SSRL/MCL	Units														
		-			-	(An	alytes Contir	iued)		-				-		-
Dibromochloromethane	80	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Dichlorodifluoromethane	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Ethylbenzene	300*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.032 J
Isopropanol	NC	μg/L	25 U	25 U	250 U	250 U	25 U	25 U	25 U	25 U	25 U	25 U	25 U	500 U	25 U	25 U
Isopropylbenzene	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Methyl Acetate	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Methyl tert-Butyl Ether	13	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Methylcyclohexane	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Methylene chloride	5	μg/L	0.5 U	0.5 U	5 U	5 U	0.037 J	0.086 U	0.031 U	0.042 U	0.075 U	0.05 U	0.5 U	6 J	0.032 J	0.5 U
n-Hexane	NC	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Styrene	100*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Tetrachloroethene	5	μg/L	0.5 U	0.5 U	5 U	5 U	0.059 J	0.5 U	0.5 U	0.31 J	0.5 U	0.5 U	0.5 U	10 U	0.25 J	0.5 U
Toluene	150*	μg/L	0.5 U	0.5 U	0.8 J	0.84 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.07 J
trans-1,2-Dichloroethene	10	μg/L	0.097 J	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.5*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Trichloroethene	5	μg/L	16	0.15 J	0.73 J	1 J	1.8	0.5 U	0.5 U	0.23 U	0.63	1	0.1 J	470	0.33 J	0.5 U
Trichlorofluoromethane	150*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Vinyl chloride	0.5	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Xylene, o	1,750*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.5 U
Xylenes, m & p	1,750*	μg/L	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	10 U	0.5 U	0.042 J

Table C-2 - Groundwater Analytical Results - Exposition 'A' Zone

Notes:

1. "*" indicates the MCL was used in the absence of a SSRL.

2. Bold indicates a sample detection.

3. Yellow shading indicates a concentration in excess of SSRL.

4. μg/L = micrograms per liter; FD = field duplicate; ID = identification; J = estimated value; NC = no criteria; N = normal sample; SIM = Single Ion Method; SSRL = Site-Specific Remediation Level; SVOA = Semi-Volatile Organics Analysis; U = not detected above reporting limit; UJ = not detected above estimated reporting limit; VOC = volatile organic compound; "--" = not applicable.

5. Analytical Methods: Samples were analyzed for VOC by the Contract Labotatory Program by method SOM01.2; Samples were analyzed for 1,4-dioxane by the Contract Labotatory Program by method SVOA-SIM and by Calscience Laboratory, Inc. by U.S. EPA method SW8260B-SIM.

6. The SSRL for xylenes is sum of o, m, and p isomers.

7. The SSRL for 1,4-Dioxane is $3\mu g/LL$; however, the California Department of Public Helath revised its notification level to $1 \mu g/L$ in November 2010.

Table C-3 - Groundwater Analytical	Results - Expos	ition 'B'	Zone												
	Sample Locati	on	DB-01	DB-02	DB-03	DB-04	DB-05	DB-06	DB-06	DB-07	DB-09	MW-02-95	MW-04-90	MW-04-90	MW-06-85
	Zone		В	В	В	В	В	В	В	В	В	В	В	В	В
	Sample ID		Y9KR6	Y9K00	Y9KR8	Y9KR7	Y9KR9	Y9K04	Y9K05	Y9KS1	Y9KS2	Y9K09	Y9K12	Y9K13	Y9K14
	Sample Date		7/28/2014	7/15/2014	7/28/2014	7/28/2014	7/28/2014	7/16/2014	7/16/2014	7/28/2014	7/28/2014	7/9/2014	7/10/2014	7/10/2014	7/16/2014
	Sample Type		N	N	N	N	N	N	FD	N	N	N	N	FD	N
Analyte Name	SSRL/MCL	Units													
1,1,1-Trichloroethane	200*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
1,1,2,2-Tetrachloroethane	1*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	1,200*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
1,1,2-Trichloroethane	5*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
1,1-Dichloroethane	5*	μg/L	1.3 J	0.5 U	0.071 J	5 U	0.5 U	0.5 U	0.5 U	5 U	0.033 J	10 U	0.5 U	0.5 U	0.91 J
1,1-Dichloroethene	6	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
1,2,3-Trichlorobenzene	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 UJ	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
1,2,4-Trichlorobenzene	5*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
1,2-Dibromo-3-Chloropropane	0	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
1,2-Dibromoethane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
1,2-Dichlorobenzene	600*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
1,2-Dichloroethane	0.5	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	0.3 J
1,2-Dichloropropane	5*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
1,3-Dichlorobenzene	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
1,4-Dichlorobenzene	5*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
1,4-Dioxane (P-Dioxane)	3	μg/L	7.3		1.2	4.0	0.72 J	0.5 U	0.5 U						27
2-Butanone	NC	μg/L	10 U	5 U	5 U	10 U	5 U	5 U	5 U	10 U	5 U	20 U	5 U	5 U	20 U
2-Hexanone	NC	μg/L	10 U	5 U	5 U	10 U	5 U	5 U	5 U	10 U	5 U	20 U	5 U	5 U	20 U
4-Methyl-2-pentanone	2,000	μg/L	10 U	5 U	5 U	10 U	5 U	5 U	5 U	10 U	5 U	20 U	5 U	5 U	20 U
Acetone	5,500	μg/L	10 U	5 U	5 U	10 U	5 U	5 U	5 U	10 U	5 U	20 U	5 U	5 U	20 U
Benzene	1	μg/L	5 U	0.5 U	0.5 U	0.82 J	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Bromochloromethane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Bromodichloromethane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Bromoform	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Bromomethane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 UJ	0.5 U	10 UJ	0.5 U	0.5 U	2 U
Carbon disulfide	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Carbon tetrachloride	0.5*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Chlorobenzene	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Chloroethane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Chloroform	80	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Chloromethane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	1.5 J	0.5 U	0.5 U	2 U
cis-1,2-Dichloroethene	6	μg/L	5.4	0.5 U	2.3	4.3 J	0.083 J	0.091 J	0.098 J	21	5.8	3.2 J	0.032 J	0.5 U	36
cis-1,3-Dichloropropene	0.5*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Cyclohexane	NC	μg/L	5 U	0.5 U	0.038 J	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U

	Sample Locati	on	DB-01	DB-02	DB-03	DB-04	DB-05	DB-06	DB-06	DB-07	DB-09	MW-02-95	MW-04-90	MW-04-90	MW-06-85
	Zone		В	В	В	В	В	В	В	В	В	В	В	В	В
	Sample ID		Y9KR6	Y9K00	Y9KR8	Y9KR7	Y9KR9	Y9K04	Y9K05	Y9KS1	Y9KS2	Y9K09	Y9K12	Y9K13	Y9K14
	Sample Date Sample Type		7/28/2014 N	7/15/2014 N	7/28/2014 N	7/28/2014 N	7/28/2014	7/16/2014 N	7/16/2014 FD	7/28/2014 N	7/28/2014 N	7/9/2014 N	7/10/2014 N	7/10/2014 FD	7/16/2014 N
Analyte Name		Units		IN	IN	IN	IN	IN	FD	IN	IN	IN	IN	ΓU	IN
	SSIL/ WICE	Onits		-			(Analytas Can	tion of the second s	-				-		
Dibus as a blances at barra	00		5 11	0.5.11	0.5.11	5.11	(Analytes Con		0.5.11	5.11	0.5.11	10.11	0.5.11	0.5.11	2.11
Dibromochloromethane	80	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Dichlorodifluoromethane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Ethylbenzene	300*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Isopropanol	NC	μg/L	250 U	25 U	25 U	250 U	25 U	25 U	25 U	250 U	25 U	500 U	25 U	25 U	100 U
Isopropylbenzene	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.064 J	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Methyl Acetate	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Methyl tert-Butyl Ether	13	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Methylcyclohexane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Methylene chloride	5	μg/L	5 U	0.098 U	0.049 J	5 U	0.042 J	0.18 U	0.12 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
n-Hexane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Styrene	100*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Tetrachloroethene	5	μg/L	5 U	0.5 U	0.2 J	5 U	0.043 J	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	0.26 J
Toluene	150*	μg/L	0.77 J	0.5 U	0.21 J	0.81 J	0.5 U	0.5 U	0.5 U	0.73 J	0.5 U	10 U	0.5 U	0.5 U	2 U
trans-1,2-Dichloroethene	10	μg/L	5 U	0.5 U	0.16 J	5 U	0.5 U	0.5 U	0.5 U	5 U	0.036 J	10 U	0.5 U	0.5 U	0.69 J
trans-1,3-Dichloropropene	0.5*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Trichloroethene	5	μg/L	36	0.28 J	39	160	1.3	0.1 J	0.12 J	110	4.7	850	0.56	0.62	280
Trichlorofluoromethane	150*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Vinyl chloride	0.5	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Xylene, o	1,750*	µg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U
Xylenes, m & p	1,750*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	10 U	0.5 U	0.5 U	2 U

	Sample Locat	ion	MW-08-85	MW-09-85	MW-10-90	MW-12-90	MW-13-85	MW-14-90	MW-20-85	MW-21-90	MW-22-90	MW-29-85	MW-29-85	RW-01-95	MW-28B
	Zone		В	В	В	В	В	В	В	В	В	В	В	В	В
	Sample ID		Y9K15	Y9K16	Y9K17	Y9K18	Y9K19	Y9K11	Y9K20	Y9K21	Y9K22	Y9K24	Y9K25	Y9K26	Y9K23
	Sample Date		7/11/2014	7/14/2014	7/9/2014	7/11/2014	7/9/2014	7/15/2014	7/15/2014	7/15/2014	7/9/2014	7/10/2014	7/10/2014	7/15/2014	7/16/2014
	Sample Type		N	N	N	N	N	N	N	N	N	N	FD	N	N
Analyte Name	SSRL/MCL	Units													
1,1,1-Trichloroethane	200*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	1*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethan	e 1200*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
1,1,2-Trichloroethane	5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
1,1-Dichloroethane	5*	μg/L	0.15 J	0.5 U	0.5 U	0.32 J	0.17 J	0.5 U	3	0.4 J	0.35 J	5 U	5 U	0.5 U	0.33 J
1,1-Dichloroethene	6	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2	0.76 J	1.1	5 U	5 U	0.5 U	0.5 U
1,2,3-Trichlorobenzene	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 UJ	0.5 U
1,2,4-Trichlorobenzene	5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
1,2-Dibromo-3-Chloropropane	0	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
1,2-Dibromoethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	600*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
1,2-Dichloroethane	1	μg/L	0.5 U	0.5 U	0.19 J	0.073 J	0.5 U	0.5 U	2 U	0.19 J	0.12 J	5 U	5 U	0.5 U	2
1,2-Dichloropropane	5*	μg/L	0.18 J	0.5 U	0.5 U	0.5 U	0.058 J	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.16 J
1,3-Dichlorobenzene	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
1,4-Dioxane (P-Dioxane)	3	μg/L						0.76 J	20	16 J	3.3			0.76 J	47
2-Butanone	NC	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	25 U	10 U	5 U	10 U	10 U	5 U	5 U
2-Hexanone	NC	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	25 U	10 U	5 U	10 U	10 U	5 U	5 U
4-Methyl-2-pentanone	NC	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	25 U	10 U	5 U	10 U	10 U	5 U	5 U
Acetone	5,500	μg/L	5 U	5 U	5 U	5 U	5 U	5 U	25 U	10 U	5 U	10 U	10 U	5 U	5 U
Benzene	1	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Bromochloromethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Bromodichloromethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Bromoform	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Bromomethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Carbon disulfide	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Carbon tetrachloride	0.5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Chlorobenzene	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Chloroethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Chloroform	80	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Chloromethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	6	μg/L	0.34 J	0.035 J	0.15 J	2.8	1.7	0.51	480	25	11	4.2 J	3.2 J	0.26 J	17
cis-1,3-Dichloropropene	0.5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Cyclohexane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.12 J	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.081 J

	Sample Locati	ion	MW-08-85	MW-09-85	MW-10-90	MW-12-90	MW-13-85	MW-14-90	MW-20-85	MW-21-90	MW-22-90	MW-29-85	MW-29-85	RW-01-95	MW-28B
	Zone		В	В	В	В	В	В	В	В	В	В	В	В	В
	Sample ID		Y9K15	Y9K16	Y9K17	Y9K18	Y9K19	Y9K11	Y9K20	Y9K21	Y9K22	Y9K24	Y9K25	Y9K26	Y9K23
	Sample Date		7/11/2014	7/14/2014	7/9/2014	7/11/2014	7/9/2014	7/15/2014	7/15/2014	7/15/2014	7/9/2014	7/10/2014	7/10/2014	7/15/2014	7/16/2014
	Sample Type		Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	FD	N	Ν
Analyte Name	SSRL/MCL	Units													
				-	-		(Analytes Conti	nued)							
Dibromochloromethane	80	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Dichlorodifluoromethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Ethylbenzene	300*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Isopropanol	NC	μg/L	25 U	25 U	25 U	25 U	25 U	25 U	130 U	50 U	25 U	250 U	250 U	25 U	25 U
Isopropylbenzene	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Methyl Acetate	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Methyl tert-Butyl Ether	13	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.043 J	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Methylcyclohexane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Methylene chloride	5	μg/L	0.5 U	0.12 U	0.5 U	0.5 U	0.5 U	0.08 U	2 U	1 U	0.5 U	5 U	5 U	0.09 U	0.5 U
n-Hexane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Styrene	100*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Tetrachloroethene	5	μg/L	0.22 J	0.5 U	0.5 U	0.5 U	0.09 J	0.5 U	2 U	0.18 J	0.078 J	5 U	5 U	0.5 U	0.5 U
Toluene	150*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	10	μg/L	0.5 U	0.5 U	0.5 U	0.27 J	0.5 U	0.15 J	1 J	0.2 J	0.18 J	5 U	5 U	0.5 U	0.23 J
trans-1,3-Dichloropropene	0.5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Trichloroethene	5	μg/L	1.5	0.15 U	1.1	29	7.1	4	8	150	13	21	19	1	15
Trichlorofluoromethane	150*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Vinyl chloride	1	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	21	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Xylene, o	1750*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U
Xylenes, m & p	1750*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	2 U	1 U	0.5 U	5 U	5 U	0.5 U	0.5 U

Notes:

1. "*" indicates the MCL was used in the absence of a SSRL.

2. Bold indicates a sample detection.

3. Yellow shading indicates a concentration in excess of SSRL.

4. μg/L = micrograms per liter; FD = field duplicate, December 2013; ID = identification; J = estimated value; MCL - maximum contaminant level; N = normal sample; NA = not available; NC = no criteria; SIM = Single Ion Method; SSRL = Site-Specific Remediation Level; SVOA= Semi-Volatile Organics Analysis; U = not detected above reporting limit; UJ = not detected above estimated reporting limit; VOC = volatile organic compound; "--" = not applicable.

5. Analytical Methods: Samples were analyzed for VOC by the Contract Labotatory Program by method SOM01.2; Samples were analyzed for 1,4-dioxane by the Contract Labotatory Program by method SVOA-SIM and by Calscience Laboratory, Inc. by U.S. EPA method SW8260B-SIM.

6. The SSRL for xylenes is sum of o, m & p isomers

7. The SSRL for 1,4-dioxane is 3 µg/L; however, the California Department of Public Health revised its notification level to 1 µg/L in November 2010.

Table C-4 - Groundwater Analytical Results - Exposition 'A' & 'B' Zones

	Sample Lo	cation	DAB-01	DAB-04	DAB-05	DAB-07	DAB-08	MW-01-80	MW-05-85
		Zone	AB						
	San	ple ID	Y9JZ4	Y9JZ5	Y9JZ6	Y9JZ7	Y9KR5	Y9K08	Y9K10
	Sampl	e Date	7/14/2014	7/14/2014	7/14/2014	7/14/2014	7/28/2014	7/15/2014	7/11/2014
	Sampl	е Туре	Ν	Ν	Ν	Ν	Ν	N	N
Analyte Name	SSRL/MCL	Units							
1,1,1-Trichloroethane	200*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
1,1,2,2-Tetrachloroethane	1*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	1,200*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
1,1,2-Trichloroethane	5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
1,1-Dichloroethane	5*	μg/L	0.5 U	0.5 U	0.038 J	0.5 U	1.6 J	10 U	0.5 U
1,1-Dichloroethene	6	μg/L	3	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
1,2,3-Trichlorobenzene	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 UJ	5 U	10 U	0.5 U
1,2,4-Trichlorobenzene	5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
1,2-Dibromo-3-Chloropropane	0.2	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
1,2-Dibromoethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
1,2-Dichlorobenzene	600*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
1,2-Dichloroethane	0.5	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
1,2-Dichloropropane	5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
1,3-Dichlorobenzene	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
1,4-Dichlorobenzene	5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
1,4-Dioxane (P-Dioxane)	3	μg/L	0.35 U			0.5 U	4.4		
2-Butanone	NC	μg/L	5 U	5 U	5 U	5 U	10 U	20 U	5 U
2-Hexanone	NC	μg/L	5 U	5 U	5 U	5 U	10 U	20 U	5 U
4-Methyl-2-pentanone	2,000	μg/L	5 U	5 U	5 U	5 U	10 U	20 U	5 U
Acetone	5,500	μg/L	5 U	5 U	5 U	5 U	10 U	20 U	5 U
Benzene	1	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Bromochloromethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Bromodichloromethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Bromoform	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Bromomethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Carbon disulfide	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Carbon tetrachloride	0.5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U

Appendix C

Table C-4 - Groundwater Analytical Results - Exposition 'A'&'B' Zones Pemaco Superfund Site, Maywood, California Page 1 of 3

Table C-4 - Groundwater Analytical Results - Exposition 'A' & 'B' Zones

	Sample Lo	cation	DAB-01	DAB-04	DAB-05	DAB-07	DAB-08	MW-01-80	MW-05-85
		Zone	AB	AB	AB	AB	AB	AB	AB
	San	ple ID	Y9JZ4	Y9JZ5	Y9JZ6	Y9JZ7	Y9KR5	Y9K08	Y9K10
	Sampl	e Date	7/14/2014	7/14/2014	7/14/2014	7/14/2014	7/28/2014	7/15/2014	7/11/2014
	Sampl	е Туре	Ν	Ν	Ν	Ν	N	N	N
Analyte Name	SSRL/MCL	Units							
			(Analytes	Continued)					
Chlorobenzene	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Chloroethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Chloroform	80	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	1.6
Chloromethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
cis-1,2-Dichloroethene	6	μg/L	0.5 U	0.5 U	0.074 J	0.5 U	17	62	0.5 U
cis-1,3-Dichloropropene	0.5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Cyclohexane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Dibromochloromethane	80	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Dichlorodifluoromethane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Ethylbenzene	300*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Isopropanol	NC	μg/L	25 U	25 U	25 U	25 U	250 U	500 U	25 U
Isopropylbenzene	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Methyl Acetate	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Methyl tert-Butyl Ether	13	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Methylcyclohexane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Methylene chloride	5	μg/L	0.1 U	0.1 U	0.12 U	0.11 U	5 U	10 U	0.5 U
n-Hexane	NC	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Styrene	100*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Tetrachloroethene	5	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.035 J
Toluene	150*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
trans-1,2-Dichloroethene	10	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
trans-1,3-Dichloropropene	0.5*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Trichloroethene	5	μg/L	2	0.23 J	0.68	0.65	320	940	0.33 J
Trichlorofluoromethane	150*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Vinyl chloride	0.5	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U
Xylene, o	1,750*	μg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U

Appendix C

Table C-5 - Groundwater Analytical Results - Exposition 'A'&'B' Zones

Pemaco Superfund Site, Maywood, California

Page 2 of 3

Table C-4 - Groundwater Analytical Results - Exposition 'A' & 'B' Zones

	Sample Lo	cation	DAB-01	DAB-04	DAB-05	DAB-07	DAB-08	MW-01-80	MW-05-85
		Zone	AB	AB	AB	AB	AB	AB	AB
	Sam	ple ID	Y9JZ4	Y9JZ5	Y9JZ6	Y9JZ7	Y9KR5	Y9K08	Y9K10
	Sample	e Date	7/14/2014	7/14/2014	7/14/2014	7/14/2014	7/28/2014	7/15/2014	7/11/2014
	Sample	е Туре	Ν	N	Ν	Ν	N	N	Ν
Analyte Name	SSRL/MCL	Units							
			(Analytes	Continued)					
Xylenes, m & p	1,750*	µg/L	0.5 U	0.5 U	0.5 U	0.5 U	5 U	10 U	0.5 U

Notes:

1. "*" indicates the MCL was used in the absence of a SSRL.

2. Bold indicates a sample detection.

3. Yellow shading indicates a concentration in excess of SSRL.

4. μ g/L = micrograms per liter; FD = field duplicate; ID = identification; J = estimated value; N = normal sample; NA = not available; NC = no criteria; SIM = Single Ion Method; SSRL = Site-Specific Remediation Level; SVOA = Semi-Volatile Organics Analysis; U = not detected above reporting limit; UJ = not detected above estimated reporting limit, "--" = not applicable.

5. Analytical Methods: Samples were analyzed for VOC by the Contract Labotatory Program by method SOM01.2; Samples were analyzed for 1,4dioxane by the Contract Labotatory Program by method SVOA-SIM and by Calscience Laboratory, Inc. by U.S. EPA method SW8260B-SIM.

6. The SSRL for xylenes is sum of o, m & p isomers

7. The SSRL for 1,4-Dioxane is 3 µg/L; however, the California Department of Public Helath revised its notification level to 1 µg/L in November 2010.

Table C-5 - Groundwater Analytical Results - Exposition 'C' Zone

	Sample	Location	MW-05-105	MW-10-110	MW-11-100	MW-23-110	MW-24-1
		Zone	С	С	С	С	С
	Sa	mple ID	Y9K27	Y9K28	Y9K29	Y9K30	Y9K31
	Sam	ple Date	7/11/2014	7/9/2014	7/9/2014	7/14/2014	7/10/202
	Sam	ple Type	Ν	Ν	Ν	Ν	Ν
Analyte Name	SSRL/MCL	Units					
1,1,1-Trichloroethane	200*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
1,1,2,2-Tetrachloroethane	1*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	1,200*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
1,1,2-Trichloroethane	5*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
1,1-Dichloroethane	5*	μg/L	5 U	0.041 J	0.5 U	5 U	0.5 U
1,1-Dichloroethene	6	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
1,2,3-Trichlorobenzene	NC	μg/L	5 U	0.5 U	0.5 U	5 UJ	0.5 U
1,2,4-Trichlorobenzene	5*	μg/L	5 U	0.5 U	0.5 U	5 UJ	0.5 U
1,2-Dibromo-3-Chloropropane	0.2	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
1,2-Dibromoethane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
1,2-Dichlorobenzene	600*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
1,2-Dichloroethane	0.5	μg/L	5 U	0.14 J	0.5 U	5 U	0.5 U
1,2-Dichloropropane	5*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
1,3-Dichlorobenzene	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
1,4-Dichlorobenzene	5*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
1,4-Dioxane (P-Dioxane)	3	μg/L	4.3			2.2	
2-Butanone	NC	μg/L	10 U	5 U	5 U	10 U	5 U
2-Hexanone	NC	μg/L	10 U	5 U	5 U	10 U	5 U
4-Methyl-2-pentanone	2,000	μg/L	10 U	5 U	5 U	10 U	5 U
Acetone	5,500	μg/L	10 U	5 U	5 U	10 U	5 U
Benzene	1	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
Bromochloromethane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
Bromodichloromethane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
Bromoform	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
Bromomethane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
Carbon disulfide	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
Carbon tetrachloride	0.5*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
Chlorobenzene	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
Chloroethane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
Chloroform	80	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
Chloromethane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
cis-1,2-Dichloroethene	6	μg/L	88	1.7	0.5 U	23	12
cis-1,3-Dichloropropene	0.5*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U
Cyclohexane	NC	μg/L	5 U	0.5 U	0.5 U	5	0.5 U

24-110	MW-25-110
С	С
K31	Y9KS3
/2014	7/29/2014
N	N
5 U	0.5 U
5 U	0.5 U
5 U 5 U	0.5 U
5 U	0.5 U
5 U	0.5 U
5 U 5 U	0.5 U
5 U	0.5 U
5 U	0.5 U
5 U	0.5 U
5 U	0.5 U
5 U	0.5 U
5 U 5 U 5 U 5 U	0.5 U
5 U	0.5 U
5 U 5 U	0.5 U
50	0.5 U
-	0.63 J
U	5 U
U	5 U
U	5 U
U	5 U
50	0.5 U
5 U	0.5 U
	0.5 U
5 U	0.5 U
50 50 50 50 50 50 2 50 50 50	0.43 J
5 U	0.5 U
5 U	0.5 U

Table C-5 - Groundwater Analytical Results - Ex	Sample I	Location	MW-05-105	MW-10-110	MW-11-100	MW-23-110	MW-24-110	MW-25-110
		Zone	C	C	C	C	C	C
	Sa	mple ID	Y9K27	Y9K28	Y9K29	Y9K30	Y9K31	Y9KS3
		ple Date		7/9/2014	7/9/2014	7/14/2014	7/10/2014	7/29/2014
		, ple Type		N	N	N	N	N
Analyte Name	SSRL/MCL	Units						
	-	(Ana	ytes Continue	d)			-	
Dibromochloromethane	80	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
Dichlorodifluoromethane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
Ethylbenzene	300*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
Isopropanol	NC	μg/L	250 U	25 U	25 U	250 U	25 U	25 U
Isopropylbenzene	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
Methyl Acetate	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
Methyl tert-Butyl Ether	13	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
Methylcyclohexane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
Methylene chloride	5	μg/L	0.91 J	0.5 U	0.5 U	5 U	0.5 U	0.067 J
n-Hexane	NC	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
Styrene	100*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
Tetrachloroethene	5	μg/L	5 U	0.5 U	0.055 J	5 U	0.5 U	0.03 J
Toluene	150*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	10	μg/L	5 U	0.059 J	0.5 U	0.91 J	0.29 J	0.5 U
trans-1,3-Dichloropropene	0.5*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
Trichloroethene	5	μg/L	700	2.5	0.12 J	540	1.6	2.4
Trichlorofluoromethane	150*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
Vinyl chloride	0.5	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
Xylene, o	1,750*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
Xylenes, m & p	1,750*	μg/L	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U

Table C-5 - Groundwater Analytical Results - Exposition 'C' Zone

Notes:

1. "*" indicates the MCL was used in the absence of a SSRL.

2. Bold indicates a sample detection.

3. Yellow shading indicates a concentration in excess of SSRL.

4. μg/L = micrograms per liter; FD = field duplicate; ID = identification; J = estimated value; N = normal sample; NA = not available; NC = no criteria; SIM = Single Ion Method; SSRL = Site-Specific Remediation Level; SVOA = Semi-Volatile Organics Analysis; U = not detected above reporting limit; UJ = not detected above estimated reporting limit, "--" = not applicable.

5. Analytical Methods: Samples were analyzed for VOC by the Contract Labotatory Program by method SOM01.2; Samples were analyzed for 1,4-dioxane by the Contract Labotatory Program by method SVOA-SIM and by Calscience Laboratory, Inc. by U.S. EPA method SW8260B-SIM.

6. The SSRL for xylenes is sum of o, m & p isomers

7. The SSRL for 1,4-Dioxane is 3 μg/L; however, the California Department of Public Helath revised its notification level to 1 μg/L in November 2010.

Appendix C Table C-5 Groundwater Analytical Results - Exposition 'C' Zone Pemaco Superfund Site, Maywood, California Page 2 of 2

Table C-6 - Groundwater Analtytical Results - Exposition 'D' & 'E' Zone											
	Sample Lo	cation	MW-05-135	MW-05-135	MW-07-130	MW-11-130	MW-12-150	MW-23-145	MW-24-140	MW-25-130	MW-10-170
		Zone	D	D	D	D	D	D	D	D	E
	Sam	ple ID	Y9K33	Y9K34	Y9K35	Y9K40	Y9K36	Y9K37	Y9K38	Y9KS4	Y9K41
	Sampl	e Date	7/11/2014	7/11/2014	7/11/2014	7/9/2014	7/11/2014	7/14/2014	7/10/2014	7/28/2014	7/9/2014
	Sampl	е Туре	Ν	FD	Ν	Ν	Ν	Ν	Ν	Ν	N
Analyte Name	SSRL/MCL	Units									
1,1,1-Trichloroethane	200*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
1,1,2,2-Tetrachloroethane	1*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	1,200*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
1,1,2-Trichloroethane	5*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
1,1-Dichloroethane	5*	μg/L	0.22 J	0.2 J	5 U	0.5 U	0.031 J	0.5 U	0.5 U	5 U	0.5 U
1,1-Dichloroethene	6	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
1,2,3-Trichlorobenzene	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 UJ	0.5 U	5 U	0.5 U
1,2,4-Trichlorobenzene	5*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
1,2-Dibromo-3-Chloropropane	0.2	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
1,2-Dibromoethane	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
1,2-Dichlorobenzene	600*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
1,2-Dichloroethane	0.5	μg/L	0.38 J	0.35 J	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
1,2-Dichloropropane	5*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
1,3-Dichlorobenzene	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
1,4-Dichlorobenzene	5*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
1,4-Dioxane (P-Dioxane)	3	μg/L								36	
2-Butanone	NC	μg/L	5 U	5 U	10 U	5 U	5 U	5 U	5 U	10 U	5 U
2-Hexanone	NC	μg/L	5 U	5 U	10 U	5 U	5 U	5 U	5 U	10 U	5 U
4-Methyl-2-pentanone	2,000	μg/L	5 U	5 U	10 U	5 U	5 U	5 U	5 U	10 U	5 U
Acetone	5 <i>,</i> 500	μg/L	5 U	5 U	10 U	5 U	5 U	5 U	5 U	10 U	5 U
Benzene	1	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.95 J	0.5 U
Bromochloromethane	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Bromodichloromethane	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Bromoform	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Bromomethane	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Carbon disulfide	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Carbon tetrachloride	0.5*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Chlorobenzene	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Chloroethane	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Chloroform	80	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Chloromethane	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
cis-1,2-Dichloroethene	6	μg/L	1.2	1.1	1.4 J	0.55	0.084 J	0.11 J	1.7	10	0.5 U
cis-1,3-Dichloropropene	0.5*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Cyclohexane	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Dibromochloromethane	80	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U

ndwater Analtytical Posulta - Expectition 'D' & 'E' 7

Appendix C Table C-6 - Groundwater Analytical Results - Exposition 'D' & 'E' Zones Second Five-Year Review Report Pemaco Superfund Site, Maywood, California Page 1 of 2

Table C-6 - Groundwater Analtytical Results - Exposition 'D' & 'E' Zone											
	Sample Lo	cation	MW-05-135	MW-05-135	MW-07-130	MW-11-130	MW-12-150	MW-23-145	MW-24-140	MW-25-130	MW-10-170
		Zone		D	D	D	D	D	D	D	E
		ple ID		Y9K34	Y9K35	Y9K40	Y9K36	Y9K37	Y9K38	Y9KS4	Y9K41
	Sampl	e Date	7/11/2014	7/11/2014	7/11/2014	7/9/2014	7/11/2014	7/14/2014	7/10/2014	7/28/2014	7/9/2014
		е Туре		FD	N	N	N	N	N	N	Ν
Analyte Name	SSRL/MCL	Units									
				(Anal	ytes Continue	d)					
Dichlorodifluoromethane	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Ethylbenzene	300*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Isopropanol	NC	μg/L	25 U	25 U	250 U	25 U	25 U	25 U	25 U	250 U	25 U
Isopropylbenzene	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Methyl Acetate	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Methyl tert-Butyl Ether	13	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Methylcyclohexane	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Methylene chloride	5	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.095 U	0.5 U	5 U	0.5 U
n-Hexane	NC	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Styrene	100*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Tetrachloroethene	5	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Toluene	150*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.73 J	0.5 U
trans-1,2-Dichloroethene	10	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
trans-1,3-Dichloropropene	0.5*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Trichloroethene	5	μg/L	2.7	2.6	130	11	0.13 J	3	2.4	230	0.1 J
Trichlorofluoromethane	150*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Vinyl chloride	0.5	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Xylene, o	1,750*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U
Xylenes, m & p	1,750*	μg/L	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U

Table C.C. Groundwater Analtytical Pocults Expectition 'D' 8 'E' Zone

Notes:

1. "*" indicates the MCL was used in the absence of a SSRL.

2. Bold indicates a sample detection.

3. Yellow shading indicates a concentration in excess of SSRL.

4. μg/L = micrograms per liter; FD = field duplicate; ID = identification; J = estimated value; N = normal sample; NA = not available; NC = no criteria; SIM = Single Ion Method; SSRL = Site-Specific Remediation Level; SVOA = Semi-Volatile Organics Analysis; U = not detected above reporting limit; UJ = not detected above estimated reporting limit, "--" = not applicable. 5. Analytical Methods: Samples were analyzed for VOC by the Contract Labotatory Program by method SOM01.2; Samples were analyzed for 1,4-dioxane by the Contract Labotatory Program by method SVOA-SIM and by Calscience Laboratory, Inc. by U.S. EPA method SW8260B-SIM.

6. The SSRL for xylenes is sum of o, m & p isomers

7. The SSRL for 1,4-Dioxane is 3 µg/L; however, the California Department of Public Helath revised its notification level to 1 µg/L in November 2010.

APPENDIX D

Site Inspection Checklist

Five-Year Review Site Inspection Checklist

	I. SITE INFORMATION						
Site name: Pemaco S	uperfund Site	Date of inspection: D	ecember 2, 2014				
Location: 5973 South Distr	ict Blvd, Maywood, CA 90270	EPA ID: CAD980737092					
Agency, office, or company l	eading the five-year review:	Weather/temperature	e Rainy 65 degrees				
Remedy Includes: (Check all that apply) Landfill cover/containment Access controls Groundwater containment Institutional controls Groundwater pump and treatment Surface water collection and treatment Other: Electrical Resistive Heating and bioremediation. High Vacuum Dual Phase Extraction (HVDPE)							
Attachments: X Inspectio	n team roster attached II. INTERVIEWS (Check a] Site map attached					
 O&M Site Manager Interviewed ⊠ at site Problems, suggestions; . 	Brian HendronEnvironNameTi	nental Scientist itle ne no. <u>818-717-6597</u>	<u>12-2-2014</u> Date				
2. O&M staff Civil Engineering Tech 12-2-2014 Name Title Date Interviewed at site at office by phone Phone no. 626-401-4094 Problems, suggestions; Report attached Interviewed Interviewed Interviewed							
office, police departn deeds, or other city a	thorities and response agencies (in the neutrino of public health or environd county offices, etc.) Fill in all the neutrino of the neutrino o	ronmental health, zoning					
Agency - CAL-EPA/DTSC Contact - Lori Parnass	Environmental Scientist	12-2-2014	818-717-6597				
Name Problems/suggestions :	Title	Date Report Attached	Phone No.				
Agency - Army Corps of Er	gineers						
Contact – Rick Lainhart	Civil Engineering Tech	12-2-2014	626-401-4094				
Name Problems/Suggestions:	Title	Date Report Attached	Phone No.				
Agency - US EPA							
Contact – Rose Marie Caraw	ay Environmental Scientist	12-2-2014	415-972-3158				
Name	Title	Date	Phone No.				

Problei	ms/Suggestions:	Report Attached				
4.	Other interviews (optional)	rt attached.				
reports	O&M Manual and as-built drawings are in the plant. Maintenance logs are summarized in the quarterly reports which are located on the SharePoint site. Inspectors verified by checking the SharePoint site during the inspection.					
	III. ON-SITE DOCUMENTS	& RECORDS VERIFIED (Check all that apply)				
1.	As-built drawings	Readily available \square Up to date \square N/AReadily available \square Up to date \square N/AReadily available \square Up to date \square N/Adrawings are in the plant.Maintenance logs area which are located on the SharePoint site.Inspectorst site during the inspection.				
2.						
3.	for health risk. The only permit curr	Readily available Up to date N/A ant air effluent complies with the SCAQMD permit guidance ently required for the site is the wastewater discharge permit ion District. Discharge permit number 2099500.				
4.	for health risk. The only permit curr	 ☐ Readily available ☐ Up to date ☐ N/A ☐ Readily available ☐ Up to date ☐ N/A ☐ Readily available ☐ Up to date ☐ N/A ☐ Readily available ☐ Up to date ☐ N/A ☐ Readily available ☐ Up to date ☐ N/A ☐ Readily available ☐ Up to date ☐ N/A ☐ Readily available ☐ Up to date ☐ N/A 				
5.	Gas Generation Records Remarks:	\square Readily available \square Up to date \boxtimes N/A				
6.	Settlement Monument Records Remarks:	\Box Readily available \Box Up to date \boxtimes N/A				

7.	Groundwater Monitoring Records Remarks:	🔀 Readily available	Up to date	□N/A
8.	Leachate Extraction Records Remarks:	🔀 Readily available	Up to date	□ N/A
9.	Discharge Compliance Records Air Water (effluent) Remarks Samples are collected monthly web site.	☐ Readily available ⊠ Readily available y. Information readily ava	Up to date Up to date uilable also on the	⊠ N/A □ N/A e SharePoint
10.	Daily Access/Security Logs Remarks	⊠Readily available	Up to date	□ N/A

	IV. O&M COSTS					
1.	O&M Organization State in-house Contractor for State PRP in-house Contractor for PRP Federal Facility in-house Contractor for Federal Facility Other Other					
2.	O&M Cost Records ☐ Readily available ☐ Up to date ☐ Funding mechanism/agreement in place Original O&M cost estimate ☐ Breakdown attached Total annual cost by year for review period if available					
	From: January – December, 2010 <u>\$1,845,771</u> Breakdown attached					
	Total cost					
	From: January – December, 2011 <u>\$1,840,247</u> Breakdown attached Total cost					
	From: January – December, 2012 <u>\$2,437,768</u> Breakdown attached Total cost					
	From: January – December, 2013 <u>\$1,203,820</u> Breakdown attached					
	Total cost From: January – December, 2014 <u>\$991.200</u> Breakdown attached Total Cost \$8,318,806					
3.	Unanticipated or Unusually High O&M Costs During Review Period Describe costs and reasons: Not included in costs above are cost for electrode decommissioning which was \$723, 801. Additional work performed during this time includes the investigation of the MW-180 area. Cost estimate for this area is currently \$480,808.					
	V. ACCESS AND INSTITUTIONAL CONTROLS Applicable N/A					
A. Fen	icing					
1.	Fencing damaged □ Location shown on site map ⊠Gates secured ⊠ N/A Remarks Fencing surrounding the site is properly secured.					
B. Oth	ner Access Restrictions					
1.	Signs and other security measures ☐ Location shown on site map ⊠ N/A Remarks New signs posted in 2013 after subcontractor transition. Other security measures are in place.					

C. Ins	stitutional Controls (ICs)				
1.	Implementation and enforcement Site conditions imply ICs not properly implemented Site conditions imply ICs not being fully enforced	☐ Yes ⊠ No ☐ Yes ⊠ No	□ N/A □ N/A		
	Type of monitoring (<i>e.g.</i> , self-reporting, drive by) Frequency Responsible party/agency - Contact –				
	Reporting is up-to-date Reports are verified by the lead agency	X Yes □ No X Yes □ No	□ N/A □ N/A		
	Specific requirements in deed or decision documents have been met Violations have been reported Other problems or suggestions: Report attached	☐ Yes ☐ No ☐ Yes ☐ No	X N/A X N/A		
2.	Adaguagy MICs are adequate ICs	are inadequate			
۷.	AdequacyICs are adequateICsRemarks	are madequate	□ N/A		
D. Ge	neral				
1.	Remarks 2013 vandals cut the fence in the former ERH area to s in the area by the City of Maywood. In addition, vagrants have		l wires placed		
	recent dog was adopted by the field Supervisor.				
2.	Land use changes on site N/A Remarks City of Maywood removed the Soil pile during February 5, 2014.				
3.	Land use changes off site N/A Remarks				
	VI. GENERAL SITE CONDITIONS				
A. Ro	ads Applicable N/A				
1.	Roads damaged Location shown on site map Roa	ads adequate	N/A		
	Additional rock base added to the site access road nea the gates of the former Electrode area for dust control purposes		lant and inside		

B. Ot	her Site Conditions		
		eground piping that used to serv point wells, 19 vapor recovery w	
	VII. LANDF	ILL COVERS	✓ N/A
A. La	undfill Surface		
1.	Settlement (Low spots) Areal extent Remarks	Location shown on site map Depth	Settlement not evident
2.	Cracks Lengths Widths Remarks	Location shown on site map Depths	Cracking not evident
3.	Erosion Areal extent Remarks	Location shown on site map Depth	Erosion not evident
4.	Holes Areal extent Remarks	Location shown on site map Depth	Holes not evident
5.	Vegetative Cover Grass	Cover properly establi	shed
	Remarks		e size and locations on a diagram)
6.	Alternative Cover (armored rocl Remarks	k, concrete, etc.)	□ N/A
7.	Bulges Areal extent Remarks	Location shown on site map Height	Bulges not evident

8.	Wet Areas/Water Damage Wet areas Ponding Seeps Soft subgrade Remarks	 Wet areas/water damage not evident Location shown on site map Areal extent Location shown on site map Areal extent Areal extent Location shown on site map Areal extent Areal extent
9.	Slope Instability Slides Areal extent Remarks	Location shown on site map No evidence of slope instability
B.	Benches X/A	
		s of earth placed across a steep landfill side slope to interrupt the slope of surface runoff and intercept and convey the runoff to a lined
1.	Flows Bypass Bench Remarks	☐ Location shown on site map ☐ N/A or okay
2.	Bench Breached Remarks	Location shown on site map
3.	Bench Overtopped Remarks	Location shown on site map
C.	Letdown Channels Applicable (Channel lined with erosion contro slope of the cover and will allow the cover without creating erosion gul	\overline{X} N/A of mats, riprap, grout bags, or gabions that descend down the steep side he runoff water collected by the benches to move off of the landfill lies.)
1.	Settlement Loc Areal extent Remarks	action shown on site map I No evidence of settlement Depth
2.	Material Degradation Material type Remarks	ation shown on site map No evidence of degradation Areal extent
3.	Erosion 🗌 Loc Areal extent Remarks	ation shown on site map INo evidence of erosion Depth

4.	Undercutting Location shown on sit Areal extent Depth Remarks Depth	e map Do evidence of undercutting
5.	Obstructions Type CAreal extent Size Remarks] No obstructions 🔲 Location shown on site map
6.	 No evidence of excessive growth Vegetation in channels does not obstruct flow 	eal extent
D. Co	ver Penetrations] N/A
1.		Properly secured/locked Functioning on Evidence of leakage at penetration
2.	Gas Monitoring Probes Properly secured/locked Functioning Evidence of leakage at penetration Remarks	 Routinely sampled Good condition Needs Maintenance N/A
3.	Monitoring Wells (within surface area of landfill) Properly secured/locked Evidence of leakage at penetration Remarks	 Routinely sampled Good condition Needs Maintenance N/A
4.	Leachate Extraction Wells Properly secured/locked Functioning Evidence of leakage at penetration Remarks	 Routinely sampled Good condition Needs Maintenance N/A
5.	Settlement Monuments	Routinely surveyed N/A

E.	Gas Collection and Treatmen	t Applicable	$\square N/A$
1.	Gas Treatment Facilities	Thermal destruction Needs Maintenance	Collection for reuse
2.	Gas Collection Wells, M	anifolds and Piping	
3.	Gas Monitoring Facilitie	es (e.g., gas monitoring o	f adjacent homes or buildings) ntenance N/A
F.	Cover Drainage Layer		⊠ N/A
1.	Outlet Pipes Inspected Remarks	Functionin	g 🗌 N/A
2.	Outlet Rock Inspected Remarks	Functionin	g 🗌 N/A
G.	Detention/Sedimentation Pon	ds Applicable	X N/A
1.	Siltation N/A Areal extent Remarks	Depth	
2.	Erosion Areal extent Remarks	Deptl	n Erosion not evident
3.	Outlet Works Remarks	Functioning N	/A
4.	Dam Remarks	Functioning N	/A

H.	Retaining Walls	Applicable N/A	
1.	Deformations Horizontal displacement_ Rotational displacement_ Remarks	Vertical displac	Deformation not evident
2.	Degradation Remarks	Location shown on site map	Degradation not evident
I.	Perimeter Ditches/Off-Site Di	ischarge	× N/A
1.	Siltation Areal extent Remarks	Location shown on site map Depth	Siltation not evident
2.	Vegetative Growth Areal extent Remarks	Location shown on site map Vegetation does not impede fl Type	□ N/A low
3.	Erosion Areal extent Remarks	Location shown on site map Depth	Erosion not evident
4.	Discharge Structure Remarks	☐ Functioning ☐ N/A	
VIII. VERTIO		CAL BARRIER WALLS	Applicable N/A
1.	Settlement Areal extent Remarks	Location shown on site map Depth	Settlement not evident
2.	Performance Monitorin	itored 🗌 Evidence of breachin	

	IX. GROUNDWATER/SURFACE WATER REMEDIES Applicable N/A
A. Gr	oundwater Extraction Wells, Pumps, and Pipelines
1.	Pumps, Wellhead Plumbing, and Electrical ☐ Good condition ☐ All required wells properly operating ☐ Needs Maintenance ☐ N/A Remarks Information summarized in the Survey Data report for 2013 which is located on the SharePoint site in the Submittals folder.
2.	Extraction System Pipelines, Valves, Valve Boxes, and Other Appurtenances
3.	Spare Parts and Equipment ☐ Readily available ☐ Good condition ☐ Requires upgrade ☐ Needs to be provided Remarks
B. Su	rface Water Collection Structures, Pumps, and Pipelines
1.	Collection Structures, Pumps, and Electrical Good condition Needs Maintenance Remarks Image: Structure Stru
2.	Surface Water Collection System Pipelines, Valves, Valve Boxes, and Other Appurtenances Good condition Needs Maintenance Remarks
3.	Spare Parts and Equipment Readily available Good condition Requires upgrade Needs to be provided Remarks

C. Treatment System		Applicable	N/A
1.	Treatment Train (Check compo ☐ Metals removal ☐ Air stripping ⊠ Filters ☑ Additive (e.g., chelation agent ☑ Others Sodium Hypochlorid ☑ Good condition ☑ Sampling ports properly mark ☑ Auppendiction ☑ Quantity of groundwater treat ☐ Quantity of surface water treat Remarks Good Condition	☐ Oil/water separation ☐ Carbon adsorbers t, flocculent) le ☐ Needs Maintenance ed and functional splayed and up to date l ed annually <u>5.2 million gallons</u>	<u></u>
2.	Electrical Enclosures and Panel N/A X Good condi Remarks Good Condition		
3.	Tanks, Vaults, Storage Vessels N/A Good condi Remarks Storage Vessels	tion Proper secondary cont	ainment 🗌 Needs Maintenance
4.	Remarks	tion Deeds Maintenance	tly installed chart recorder in 2013
5.	Treatment Building(s) □ N/A ⊠ Good condi ⊠ Chemicals and equipment pro Remarks Recently installed fall		Needs repair
6.		Functioning Routine Needs Maintenance for abandonment. We recentl spection and Maintenance Ta	□ N/A ly repaired new well boxes and able, dated December 6, 2013.

D. Monitoring Data				
1. Monitoring Data ⊠ Is routinely submitted on time ⊠ Is of acceptable quality				
 Monitoring data suggests: Groundwater plume is effectively contained Contaminant concentrations are declining 				
D. Monitored Natural Attenuation				
 Monitoring Wells (natural attenuation remedy) Properly secured/locked Functioning Routinely sampled Good condition All required wells located Needs Maintenance N/A 				
X. OTHER REMEDIES				
HVDPE has been implemented in tandem with groundwater pump and treat. The HVDPE system is maintained, monitored, and reported-on under the same O&M Work Plan as the groundwater pump and treat and therfore the responses are the same as above for "Groundwater"; that is, the HVDPE system is in good condition, monitored and reported on a monthly basis and is in regulatory conpliance.				
XI. OVERALL OBSERVATIONS				
A. Implementation of the Remedy				
The remedy at the Pemaco site currently protects human health because exposure pathways to contaminated soil and groundwater are being controlled. However, in order for the remedy to be protective in the long-term the following should occur; 1) an investigation of the increasing trends of COCs in some of the groundwater wells; 2)evaluation of whether continued operation of the present treatment system is effective, or if other courses of treatment are necessary; 3) ID the full extent of contamination in each zone; 4) cap and revegetate the ERH area; 5) and finalize Land Use Covenant by DTSC, U.S. EPA and City of Maywood.				
B. Adequacy of O&M				
The O&M effort is adequate to keep the remedy functioning as intended.				
C. Early Indicators of Potential Remedy Problems				
D. Opportunities for Optimization				
Considering insitu bioremediation (EISB) for improving contaminant mass reduction. Refitting groundwater pumps to improve pumping rates. If EISB is successful in the Perched Zone, then significant energy savings could be realized by turning off the HVDPE.				

APPENDIX E

Interview Forms

	Five-Year Review Interview Record				
Site: Pemaco EPA ID No: CAD980737				No: CAD980737092	
Interview Type: Telephone Call					
Loc	ation of Visit:				
Date	e:	09 December 2014			
Tim	e:	1:00 PM			
			Interviewer		
Nan	ne: Janice Opp	erman	Title: Project Engineer	Organization: USACE	
			Interviewee		
	ne: Lori Parnas	-	Title: Project Manager	Organization: DTSC	
lele	ephone: (818)	(17-6597	Email: Lori.Parnass@dtsc.ca.gov		
			Summary of Conversation		
1)	 What is your current role as it relates to the site? What is your overall impression of the project? My role is to represent the State in dealing with the Site. (Local agency representative) It [The Site] is moving along. 				
2)		functioning as expected? forming within expectation	P How well is the remedy performing? n.		
3)	What does the Yes.	monitoring data show?	Are there any trends that show contaminant levels	are decreasing?	
4)	Is there a continuous O&M presence? If so, please describe staff and activities. If there is not a continuous on-site presence, Describe staff and frequency of site inspections and activities. Yes. Dual phase pump and treat soil vapor extraction and groundwater extraction.				
5)	Have there been any significant changes in the O&M requirements, maintenance schedules, or sampling routines in the last five years? If so, do they affect protectiveness of the remedy? Please describe changes and impacts. They took offline the ERH [Electrical Resistive Heating]. We might have to look at something else like bio-augmentation and look to new technologies to supplement.				
6)	What are the annual operating costs for your organization's involvement with the site? I think \$350,000.				
7)	Have there been unexpected O&M difficulties or costs at the site in the last five years? If so, please give details. Yes, ERH. It underperformed.				
8)	Have there been opportunities to optimize O&M or sampling efforts? Please describe changes and resultant or desired cost savings or improved efficiency. Yes, they took down ERH. We are considering bio-augmentation for improvement.				
9)	Are you aware of any changes in Federal/State/County/Local laws and regulations that may impact the protectiveness of the remedy? No.				
10)) Do you have any comments, suggestions, or recommendations regarding the project? No.				
			Additional Site-Specific Questions		
11)	11) Do you have more information on the status of the land use covenant and what we may expect of it? Within 2 years, once we figure out if we need bio-augmentation.				

Five-Year Review Interview Record				
Site: Pemaco				EPA ID No: CAD980737092
Intervie	ew Type:	Telephone Cal	l	
Locatio	on of Visit:			
Date:		08 December 2	2014	
Time:		10:15 AM – 10	:50 AM	
			Interviewer	
Name:	Janice Opp	erman	Title: Project Engineer	Organization: USACE
			Interviewee	
Name:	Brian Hendr	on	Title: Project Superintendent	Organization: OTIE
Teleph	one: (805) \$	585-2110	Email: BHendron@otie.com	
			Summary of Conversation	
1)	 What is your current role as it relates to the site? What is your overall impression of the project? My current role is Project Superintendent. My overall impression is that I feel very positively about it. I believe based on the remedy for the site that it is going well. 			sion is that I feel very positively
2)	 Is the remedy functioning as expected? How well is the remedy performing? Yes. Part of the remedy was completed before I came to the site. That was pretty effective. I think the remedy is performing as well as anticipated per the original writing. 			site. That was pretty effective. I
 What does the monitoring data show? Are there any trends that show contaminant levels are decreasing? Monitoring data does show the contaminate levels within the original plume are decreasing. 				
4)	 4) Is there a continuous O&M presence? If so, please describe staff and activities. If there is not continuous on-site presence, describe staff and frequency of site inspections and activities. There is a continuous O&M presence. Dedicated staff is now 1 person. Monitoring of remediation equipment, maintenance, and operation of remediation, wells, and equipment. 			f site inspections and activities. / 1 person. Monitoring of
5)	 5) Have there been any significant changes in the O&M requirements, maintenance schedules, or sampling routines in the last five years? If so, do they affect protectiveness of the remedy? Please describe changes and impacts. Yes, there have been significant changes in the last 5 years. On-site staff reduced from full time staff of 3 to 1 The number of remediation wells currently active reduced by 50%. Sampling routine has also been reduced by 50%. Changes to O&M requirements applied over last few years have reduced the effort required for O&M by approximately 50%. The current footprint of active remediation plan allows for less monitoring effort than previous plan with no reduction in the effectiveness of the remedy. 			
6)		ne annual operat y to those numbe	ing costs for your organization's a	involvement with the site?
7)	please give	details.	ed O&M difficulties or costs at the anything of major significance. So	-

additional manpower effort include high sediment content in groundwater systems causing excessive filter replacement. I can't think of anything else.

8) What causes the high sediment content?

When the groundwater wells were put in, the screen size and filter pack were a general size. They should have put a finer screen and by doing that we could have other problems like clogging. That's something we dealt with since Day 1. We have had 1 filter vessel, and we doubled that to 2, which allows us to run longer between filter change outs.

- 9) Have there been opportunities to optimize O&M or sampling efforts? Please describe changes and resultant or desired cost savings or improved efficiency. Yes, significant effort has been applied to those efforts include:
 - Adding additional filter vessels to capture sediment coming into groundwater system. This allows for system to more efficiently capture sediment coming in and run longer between shutdowns or filter change outs.
 - Installed variable frequency drive (VFD) on groundwater treatment system booster tank pump to reduce flowrate through groundwater treatment system filter vessel, which allows longer contact time or removable sediment and higher efficiency of filter themselves.
 - Installed VFD on vapor extraction system blower to reduce energy consumption and excess vacuum applied to treatment area.
 - Continuously review sample data to apply effort to areas of concern.
- Are you aware of any changes in Federal/State/County/Local laws and regulations that may impact the protectiveness of the remedy? No, I'm not.
- 11) Do you have any comments, suggestions, or recommendations regarding the project? No.