2014 Treatability Study Data Evaluation Technical Memorandum

Barker-Hughesville Mining District
Superfund Site
Cascade and Judith Basin Counties, Montana

EPA Contract No. EP-W-05-049 Work Assignment No: 325-RICO-085N

Prepared by CDM Smith

January 2017

REMEDIAL ACTION CONTRACT FOR REMEDIAL, ENFORCEMENT OVERSIGHT, AND NON-TIME CRITICAL REMOVAL ACTIVITIES AT SITES OF RELEASE OR THREATENED RELEASE OF HAZARDOUS SUBSTANCES IN EPA REGION VIII

U. S. EPA CONTRACT NO. EP-W-05-049

2014 TREATABILITY STUDY DATA EVALUATION TECHNICAL MEMORANDUM

BARKER-HUGHESVILLE MINING DISTRICT SUPERFUND SITE CASCADE AND JUDITH BASIN COUNTIES, MONTANA

Work Assignment No.: 325-RICO-085N

January 2017

Prepared for:
U. S. ENVIRONMENTAL PROTECTION AGENCY
Region VIII, Montana Office
Federal Building, Suite 3200
10 West 15th Street
Helena, Montana 59626

Prepared by:
CDM FEDERAL PROGRAMS CORPORATION
50 West 14th Street, Suite 200
Helena, Montana 59601

This page intentionally left blank.

Table of Contents

Executive Summary	ES-1
ES.1 Danny T Adit Treatability Study	ES-1
ES.2 Tiger Mine Treatability Study	ES-4
Section 1 Introduction	1-1
1.1 Site Description and Background	1-1
1.1.1 Danny T Mine	
1.1.2 Tiger Mine	
1.2 Treatment Technology Description	
1.2.1 Sulfate Reduction Background	
1.2.2 Ex-situ Passive/Semi-Passive Treatment Background	1-4
1.2.3 In-situ Treatment Background	
1.3 Study Objectives and Evaluation Criteria	1-8
1.3.1 Analytic Approach and Evaluation Criteria	1-8
1.3.2 Tiger Study Principal Study Questions and Information Inputs	1-10
1.3.3 Danny T Year 2 Study Principal Study Questions and Information Inputs	1-11
Section 2 Study Methods and Sampling	2-1
2.1 Danny T Bench-Scale Hydraulic Tests	2-1
2.2 Danny T Year 2 Pilot-Scale Treatability Study	2-3
2.2.1 Collection and Routing of MIW	2-3
2.2.2 Pilot-Scale Treatment Description and Process Flow Design	2-3
2.2.2.1 Scaffold and Platform Construction	2-5
2.2.2.2 Head Tanks	
2.2.2.3 Pre-treatment Barrels	
2.2.2.4 BCR Barrels	
2.2.2.5 Solar Power System	
2.2.2.6 Post-Treatment	
2.2.3 System Startup and Shutdown	
2.2.4 Sampling and Maintenance Activities	
2.2.4.1 Sampling Activities	
2.2.4.2 Operations and Maintenance	
2.3 Tiger Mine Treatability Study and Investigation	
2.3.1 MIW Collection	
2.3.2 Laboratory Bench-Scale Study	
2.3.2.1 Alkaline Addition Titrations	
2.3.2.2 Batch Tests	
2.3.3 Tiger Mine Field Investigation	
Section 3 Quality Assurance Summary	
3.1 Danny T Bench-Scale Hydraulic Tests	
3.1.1 Deviations and Data Quality Objectives	
3.1.2 Field Quality Control Summary	
3.1.3 Data Evaluation	
3.2 Danny T Pilot-Scale Treatability Study	
3.2.1 Deviations and Data Quality Objectives	3-1

3.2.2 Field Quality Control Summary	3-3
3.2.3 Data Evaluation	3-3
3.3 Tiger Bench-Scale Treatability Study	3-4
3.3.1 Deviations and Data Quality Objectives	3-4
3.3.2 Field Quality Control Summary	3-4
3.3.3 Data Evaluation	
3.4 Tiger Mine Field Investigation	3-5
3.4.1 Deviations and Data Quality Objectives	
3.4.2 Field Quality Control Summary	
3.4.3 Data Evaluation	3-5
Section 4 Results, Analysis, and Discussion	3-1
4.1 Danny T Bench-Scale Hydraulic Tests	3-1
4.2 Danny T Year 2 Pilot-Scale Treatability Study	
4.2.1 Danny T Adit MIW Influent	
Field Parameters	
Metals	
Wet Chemistry Parameters	
Summary	
4.2.2 BCR1	
Field parameters	
Metals	
Wet Chemistry Parameters	
Summary	
4.2.3 SAPS Pre-treatment and BCR2	
Field Parameters	
Metals	
Wet Chemistry Parameters	
Summary	
4.2.4 Chitorem Pre-treatment and BCR3	
Field Parameters	
Metals	3-15
Wet Chemistry Parameters	
Summary	
4.2.5 Alkaline Addition Pre-treatment and BCR4	
Field Parameters	
Metals	3-19
Wet Chemistry Parameters	
Summary	
4.2.6 Post-Treatment Oxidation Tests	
Field parameters	
Metals	
Wet Chemistry Parameters	3-23
Summary	
4.3 Tiger Bench-Scale Treatability Study	
4.3.1 Raw MIW	
4.3.2 Alkaline Addition Titrations	
4.3.2.1 NaOH	
4.3.2.2 Limestone	
4.3.2.3 Chitorem	

4	.3.3 Batch Tests	3-26
	4.3.3.1 Control	3-26
	4.3.3.2 BCR2 – 25 ml Methanol and NaOH	3-27
	4.3.3.3 BCR3 – 50 ml Methanol and NaOH	
	4.3.3.4 BCR4 – 100 ml Methanol and NaOH	
	4.3.3.5 BCR5 – 25 ml Ethanol and NaOH	
	4.3.3.6 BCR6 – 50 ml Ethanol and NaOH	
	4.3.3.7 BCR7 – 100 ml Ethanol and NaOH	
	4.3.3.8 BCR8 – 25 ml Molasses and NaOH	
	4.3.3.9 BCR9 – 50 ml Molasses and NaOH	
	4.3.3.10 BCR10 – 100 ml Molasses and NaOH	
	4.3.3.11 BCR11 – 15 g Chitorem	
	4.3.3.12 BCR12 – 22 g Chitorem	
	4.3.3.13 BCR13 – 34 g Chitorem	
	4.3.3.14 BCR14 – 7 g Chitorem and NaOH	
	4.3.3.15 BCR15 – 7 g Chitorem and Limestone	
	4.3.3.16 BCR16 – 50 ml Molasses and Limestone	
	4.3.3.17 BCR17 –50 ml Molasses and Chitorem	
	4.3.3.18 BCR18 –7 g Chitorem and 25 ml Ethanol	
4.4 T	iger Mine Field Investigation	
	mmary and Conclusions	
	anny T Adit Treatability Study Summary and Conclusions	
	.1.1 Summary	
	.1.1 Conclusions	
	iger Mine Treatability Study Summary and Conclusions	
	ferences	
Section 6 Re	ferences	3-1
List of Fig	gures	
Figure 2.2-1	Danny T Treatability Study As-Built Process Flow Diagram	
Figure 4.1-1	Danny T Hydraulic Bench-Scale Tests 100 ml Drain Test Results	
Figure 4.1-2	Danny T Hydraulic Bench-Scale Tests 200 ml Drain Test Results	
Figure 4.2-1	Danny T Adit Treatability Study Year 2 pH Measurements	
Figure 4.2-2	Danny T Adit Treatability Study Year 2 Temperature Measurements	
Figure 4.2-3	Danny T Adit Treatability Study Year 2 Dissolved Oxygen Measurements	
Figure 4.2-4	Danny T Adit Treatability Study Year 2 Oxidation-Reduction Potential Measurement	:S
Figure 4.2-5	Danny T Adit Treatability Study Year 2 Specific Conductivity Measurements	
Figure 4.2-6	Danny T Adit Treatability Study Year 2 Dissolved Aluminum Concentrations	
Figure 4.2-7	Danny T Adit Treatability Study Year 2 Dissolved Arsenic Concentrations	
Figure 4.2-8	Danny T Adit Treatability Study Year 2 Dissolved Cadmium Concentrations	
Figure 4.2-9	Danny T Adit Treatability Study Year 2 Dissolved Copper Concentrations	
Figure 4.2-10	Danny T Adit Treatability Study Year 2 Dissolved Iron Concentrations	
Figure 4.2-11	Danny T Adit Treatability Study Year 2 Dissolved Lead Concentrations	
Figure 4.2-12	Danny T Adit Treatability Study Year 2 Dissolved Manganese Concentrations	
Figure 4.2-13	Danny T Adit Treatability Study Year 2 Dissolved Nickel Concentrations	
Figure 4.2-14	Danny T Adit Treatability Study Year 2 Dissolved Zinc Concentrations	
Figure 4.2-15	Danny T Adit Treatability Study Year 2 Sulfate Concentrations	
Figure 4.2-16	Danny T Adit Treatability Study Year 2 Sulfate Reduction Rate	
Figure 4.2-17	Danny T Adit Treatability Study Year 2 Sulfide Concentrations	

Figure 4.2-18	Danny T Adit Treatability Study Year 2 Total Alkalinity Measurements
Figure 4.2-19	Danny T Adit Treatability Study Year 2 Acidity Measurements
Figure 4.2-20	Danny T Adit Treatability Study Year 2 BOD Measurements
Figure 4.2-21	Danny T Adit Treatability Study Year 2 Phosphate Concentrations
Figure 4.2-22	Danny T Adit Treatability Study Year 2 Ammonia Concentrations
Figure 4.2-23	Danny T Adit Treatability Study Year 2 Trends in pH, Alkalinity, and Acidity in BCR1
Figure 4.2-24	Danny T Adit Treatability Study Year 2 Trends in pH, Alkalinity, and Acidity in BCR2
Figure 4.2-25	Danny T Adit Treatability Study Year 2 Trends in pH, Alkalinity, and Acidity in BCR3
Figure 4.2-26	Danny T Adit Treatability Study Year 2 Trends in pH, Alkalinity, and Acidity in BCR4
Figure 4.3-1	Tiger Bench-Scale Treatability Study 25% NaOH Titration
Figure 4.3-2	Tiger Bench-Scale Treatability Study Limestone Fines Titration
Figure 4.3-3	Tiger Bench-Scale Treatability Study Chitorem Titration
Figure 4.3-4	Tiger Bench-Scale Treatability Study pH Measurements, 1-10
Figure 4.3-5	Tiger Bench-Scale Treatability Study pH Measurements 11-18
Figure 4.3-6	Tiger Bench-Scale Treatability Study Oxidation-Reduction Potential Measurements, 1-10
Figure 4.3-7	Tiger Bench-Scale Treatability Study Oxidation-Reduction Potential Measurements, 11-18
Figure 4.3-8	Tiger Bench-Scale Treatability Study Dissolved Oxygen Measurements, 1-10
Figure 4.3-9	Tiger Bench-Scale Treatability Study Dissolved Oxygen Measurements. 11-18
Figure 4.3-10	Tiger Bench-Scale Treatability Study Sulfide Measurements, 1-10
Figure 4.3-11	Tiger Bench-Scale Treatability Study Sulfide Measurements, 11-18
Figure 4.3-12	Tiger Bench-Scale Treatability Study Alkalinity Measurements, 1-10
Figure 4.3-13	Tiger Bench-Scale Treatability Study Alkalinity Measurements, 11-18

List of Tables

Table 1.3-1	DEQ-7 Standards
Table 2.1-1	Chitorem Pre-treatment Substrate Mixture Percentages for Year 1 Study
Table 2.1-2	Hydraulic Drain Bench Test Substrate Mixtures
Table 2.1-3	Hydraulic Drain Bench Test Operations
Table 2.2-1	BCR and Pre-Treatment Barrel Substrate Percentages and Volumes for Year 2 Study
Table 2.2-2	Riser Lengths and Measured Dose Volume on August 12
Table 2.2-3	Riser Lengths and Measured Dose Volume on August 26
Table 2.2-4	Riser Lengths and Measured Dose Volume on September 2
Table 2.3-1	Tiger Bench-Scale Treatability Study Container Test Setup
Table 2.3-2	Final Tiger Bench-Scale Treatability Study Container Test Setup
Table 3.2-1	Danny T Treatability Study Year 2 Relative Percent Differences between Normal and Field
	Duplicates
Table 4.1-1	Hydraulic Drain Bench Results
Table 4.2-1	Danny T Treatability Study Year 2: Analytical Laboratory Data
Table 4.2-2	Danny T Treatability Study Year 2: Pilot Test Field Parameters
Table 4.2-3	Danny T Treatability Study Year 2: Pilot Test Percent Removal
Table 4.2-4	Danny T Treatability Study Year 2: Pilot Test Comparison to Water Quality Standards
Table 4.3-1	Tiger Bench-Scale Treatability Study: Analytical Laboratory Data
Table 4.3-2	Tiger Bench-Scale Treatability Study: CDM Smith Laboratory Data
Table 4.3-3	Tiger Bench-Scale Treatability Study: Percent Removal
Table 4.3-4	Tiger Bench-Scale Treatability Study: Comparisons to Water Quality Standards

Appendices

Appendix A Laboratory Data Packages

List of Acronyms and Abbreviations

°C degrees Celsius
°F degrees Fahrenheit
AC alternating current

Al aluminum

APC aerobic polishing cell

As arsenic

BCR biochemical reactor bgs below ground surface BOD biological oxygen demand

Ca calcium Cd cadmium

CDM Smith CDM Federal Programs Corporation

Chitorem SC-20®

CLP Contract Laboratory Program

Cu copper

DEQ Montana Department of Environmental Quality

DEQ-7 DEQ Water Quality Bureau Bulletin 7

DC direct current
DO dissolved oxygen
DQO data quality objective

ESAT Environmental Services Assistance Team
EPA United States Environmental Protection Agency

Fe Iron

FS feasibility study

 $\begin{array}{ccc} ft & & feet \\ ft^3 & & cubic feet \\ g & & gram \end{array}$

gal/day gallons per day

GARD Global Acid Rock Drainage Guide

gpm gallons per minute
HDPE high density polyethylene

ID inner diameter in³ cubic inches

ITRC Interstate Technology Regulatory Council

L liter

LED light-emitting diode MIW mining influenced water

Mg magnesium mg/L milligrams p

mg/L milligrams per liter
MIW mining influenced water

ml milliliter

ml/min milliliters per minute

mm millimeter

mmol Me/day millimoles metal per day

mmol SO₄/m³-day millimoles sulfate per cubic meter per day

Mn manganese

mS/cm milliSiemens per centimeter

mV millivolts

NaOH sodium hydroxide

Ni nickel

NPL National Priorities List
ORP oxidation-reduction potential

PARCCS precision, accuracy, representativeness, comparability, completeness, and

sensitivity

Pb lead

PRP potentially responsible party

PVC polyvinyl chloride

QAPP quality assurance project plan

QA quality assurance QC quality control

RAC Remedial Action Contract
RI remedial investigation
RPD relative percent difference
SAP sampling and analysis plan

SAPS successive alkalinity producing system

site Barker Hughesville Mining District Superfund Site

SPLP synthetic precipitation leaching procedure

SRB sulfite reducing bacteria

SOPs standard operating procedures

su standard units
TBD to be determined
TDS total dissolved solids

TCLP toxicity characteristic leaching procedure

μg/L micrograms per liter

μS/cm microSiemens per centimeter
USFS United States Forest Service

VFA volatile fatty acid

Zn zinc

This page intentionally left blank.

Executive Summary

In 2014, two treatability studies were conducted for the Barker-Hughesville Mining District Superfund Site (the Site). The studies were conducted as part of the remedial investigation/feasibility study (RI/FS) process to ultimately provide data to support screening and evaluation of process options and treatment technologies in the FS. The second season (year 2) of the Danny T Adit pilot-study was conducted in the field and the Tiger Mine bench-scale study was conducted at the CDM Smith Denver, Colorado Treatability Laboratory. The year 2 study follows up from the year 1 field pilot study conducted in 2013 to evaluate various passive and semi-passive methods for treatment of the Danny T Mine adit water. This acidic mining-influenced water (MIW) is representative of various MIW sources across the Site and provides treatability effectiveness data for this water type. The study for the Tiger Mine was focused on potential in-situ based treatments that could be deployed inside the underground mine workings area. A representative mine discharge water (Tiger mine adit TI-AD004, the "Firehose" adit) was collected in bulk and analyzed at the treatability laboratory in batch container tests with various reagents. The following sections summarize each of these studies, including their objectives, experimental and sampling procedures, results, conclusions, and recommendations.

ES.1 Danny T Adit Treatability Study

The Danny T Mine contains a large waste rock dump and discharging MIW from a collapsed adit portal. Seasonal flow rates range from 4 to 32 gallons per minute (gpm) based on RI data, and generally water quality becomes more concentrated (high concentrations of metals) as the dry season continues into fall. This MIW is acidic, has high sulfate, and high concentrations of aluminum (Al), arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), lead (Pb), and zinc (Zn). Because of the strength of the MIW, any passive approaches to MIW treatment would require a pre-treatment step to condition the water ahead of the BCR. In addition, because of the high metals loading, adequate hydraulic retention time (HRT) in the BCR for treatment is a critical design factor. HRT is needed to estimate the required treatment system size when scaling up to treatment flow rates in the FS.

The primary goals of the Danny T treatability study were to test the effectiveness of MIW treatment using various pre-treatment methods, ex-situ biochemical reactor (BCR) treatment with solid substrates, and a post-treatment oxidation/wetland process. Treatment effectiveness was evaluated by calculating metal removal efficiency, comparing effluent to water quality standards, and evaluating the biological treatment effectiveness. The BCR treatment process utilizes a carbon source as food for sulfate-reducing bacteria (SRB) that reduce sulfate to sulfide, which then react with metals in the MIW to form metal sulfides. Biological treatment effectiveness is measured by several metrics in effluent treated water including sulfate decrease, volumetric sulfate reduction rate, alkalinity increase, sulfide rotten-egg odor, oxidation-reduction potential (ORP) and dissolved oxygen (DO) decrease, and pH increase. Along with metal removal efficiency, these parameters and observations provide evidence to show whether conditions are adequate for biological sulfate reduction to occur, the extent of sulfate reduction, and to what degree the treatment is effective over the study period. Changes in HRT were evaluated by modifying influent flow rate until the BCR showed signs of stress (i.e., treatment failure).

The year 2 study consisted of similar pre-treatment and BCR components as the year 1 study. Four treatment trains were tested, each with the same BCR substrate mixture, except for BCR1 that contained a small fraction of Chitorem (dried and crushed crab shell). All BCRs contained a mixture of wood chips, sawdust, compost, dairy manure, and limestone. With the exception of the limestone,

these materials were all locally sourced. BCR1 had no pre-treatment, whereas BCR2, BCR3, and BCR4 had a successive alkalinity producing system (SAPS), Chitorem, and sodium hydroxide (NaOH) pre-treatment, respectively. Due to hydraulic clogging issues in the year 1 study, bench-scale hydraulic tests were conducted in May 2014 that determined a more favorable Chitorem, sand, and gravel mixture to maintain flow through the pre-treatment barrel.

Water was collected near the adit portal, gravity piped to an overflow tank, and gravity piped to the pilot system area. Influent MIW flow was controlled using a main timer valve set to open at 2-hour intervals to fill head tanks. Each head tank had its own individual timer valve, set to dose the MIW through each treatment train. An additional timer valve was located on the NaOH barrel effluent pipe and NaOH dosing was operated by a chemical metering pump powered with solar panels. The remaining treatment trains flowed by gravity through pre-treatment and BCR barrels. Water level in each barrel was maintained after each MIW batch at 3 inches above the substrate layer. After sampling ports, effluent from the 4 BCRs was piped together through a post-treatment system consisting of cascade aeration, aerobic wetland, and gravel filtration. The post-treatment was tested to evaluate sulfide removal, nutrients, and increase DO concentration that may be potentially harmful to the aquatic ecosystem in the receiving stream.

The initial average flow rate through the system was approximately 8.3 milliliters per minute (ml/min), yielding a HRT of 121 hours (h). The flow rate was calculated as an average over a 24-hour period dosing 1 liter (L) batch volumes every 2 hours. This flow rate was maintained for the first nine weeks of the pilot test. During week 10, the flow rate was increased to approximately 1.5 L per 2 h (80.6 h HRT). During week 12, flow rate was further increased to approximately 2 L per 2 h (60.5 h HRT). Following observations of decreased efficiency at this flow rate, flow rate was decreased to the original 8.3 ml/min in week 13 for the remaining 3 weeks. Operations and maintenance checks and collection of field parameters at all sampling ports were conducted weekly, which included MIW influent, pre-treatment effluents, BCR effluents, and post-treatment influent and effluent. Samples for analytical laboratory testing were collected bi-weekly, except for the last three weeks when laboratory samples were collected weekly. A total of 10 laboratory sample events were conducted.

Overall treatment performance was improved compared to the year 1 study due to the increased HRT for all treatment trains, increases in BCR and SAPS substrate volumes for the decreased flow rate, increases in limestone for all BCRs to provide greater buffering capacity, and improvements to the Chitorem pre-treatment hydraulics. BCRs for each treatment train had variable metal removal efficiencies as a result of different pre-treatments; however, high percent metal removals greater than 90 percent (%) were obtained, systems maintained net alkalinity, and maintained adequate sulfate reduction for lower treatment flow rates. Dissolved Cd, Cu, Fe, Pb, and Zn removal efficiencies were maintained above 98%, except for some efficiencies around 94 to 96% in the first two weeks. Total metal removal efficiencies were similarly high, although less consistent due to solid precipitates that discharge from the BCRs and require settling. Some exceedances of water quality standards occurred at times, although Al, As, Cd, and Fe often had higher laboratory detection limits than the water quality standards, making it difficult to perform comparative analysis. All BCRs responded in some degree to increases in flow rate with signs of biological stress including increases in ORP, decreases in the sulfate reduction rate and sulfide concentration, and/or increases in metals concentrations. Comparing some of the most difficult to remove metals, BCR2 and BCR3 dissolved and total Fe and Zn removal efficiencies were maintained at the highest percentage when flow rates were increased. BCR1 had the largest increase in ORP, while increases for BCRs 2 through 4 were all similarly less. All BCRs

had an ORP decrease to more reducing conditions in September after decreasing flow rate, which indicates signs of recovery of the biological stress.

Year 2 results indicate the BCR1 substrate type with no pre-treatment may not be able to maintain the desired reducing conditions for consistent metal removal at the fastest retention time (60.5 hours). The middle retention time of 80 hours may be appropriate for this treatment type; however, based on evidence from the SAPS and Chitorem pre-treatments, use of a pre-treatment is an important component for the acidic MIW type. A pre-treatment that reduces Al and Fe and increases pH and alkalinity provides long-term protection of the BCR from Al and Fe fouling and from upset to the biological communities that are necessary to maintain reducing conditions and the desired treatment efficiency. Comparing the SAPS and Chitorem pre-treatments, overall treatment performance was better for the SAPS. Large increases in some total metals occurred in the Chitorem barrel in the last month, possibly a result of release of precipitates no longer stable at the more oxidized conditions. Increased ORP may have been a result of some exhaustion of the Chitorem material in the barrel to maintain the reducing condition. Long-term use of a Chitorem-based pre-treatment with this Chitorem grain size is also questionable due to hydraulic issues observed in year 1 and the potential exhaustion of substrate observed in year 2. NaOH dosing provided many challenges, although these are primarily due to the low-flow nature of the pilot study. At higher treatment flow rates, dosing pumps and tubing would be larger and less prone to clogging issues, and the degree of mixing efficiency would increase at a higher and more turbulent flow rate. NaOH would be highly effective and consistent to remove Al and Fe acidity; however, the SAPS appears as efficient as the NaOH treatment at Al removal, and provides adequate reduction in Fe oxidation state to protect the BCR from Fe oxy-hydroxide fouling, all with no electrical power, mechanical operations, or handling of hazardous (caustic) reagents.

As an overall conclusion based on the data provided from the study, a treatment train consisting of a SAPS pre-treatment followed by a BCR with a small fraction of Chitorem (similar to BCR1) may provide the best treatment scenario to maintain efficiency and limit costs. To increase longevity and maintain flow, a coarser Chitorem size would be recommended for the BCR amendment. The treatment effectiveness observations during flow rate changes for the three pre-treatment systems indicates that the SAPS system was the most consistent of the pre-treatments, and that a SAPS/BCR treatment type could be designed with a retention time of approximately 80 hours and still maintain the desired effectiveness. The longest retention time of 121 hours was more than necessary for the treatment types evaluated.

A gradual decrease in biological oxygen demand (BOD), orthophosphate, and ammonia was observed for all BCR effluents, and the combined influent to the post-treatment system. This observation is typical after startup as soluble components are flushed from the BCR system. The post-treatment system provided significant removal of sulfide, BOD, and orthophosphate that was present in the combined BCR influent. By the beginning of September as the pilot wetland had better acclimated, BOD reduction began to greatly improve to over an order of magnitude. Due to the slow establishment of the wetland to reduce BOD, removal of ammonia by the post-treatment was limited. For ammonia to be treated biologically to nitrate, followed by uptake by plants, BOD must first be substantially reduced in the wetland system. For a short-term study, this step-wise process was not able to be evaluated. However, as a fundamental part of nitrogen cycling in natural wetlands, this process would be expected to occur in a larger and permanent wetland post-treatment system.

ES.2 Tiger Mine Treatability Study

The Tiger Mine consists of several waste rock dumps located in a narrow and steep valley, vertical shafts, and seasonal discharging MIW from adits and seeps. MIW from the seasonally discharging Firehose adit seep was collected and shipped to the CDM Smith Denver, CO Treatability Laboratory for the bench-scale treatability study. This MIW is similar to the Danny T adit MIW as acidic and containing elevated concentrations of several metals of concern.

The primary goal of the Tiger Mine in-situ treatability study was to evaluate potential improvement of water quality discharging from the Firehose adit location through injection of substrates into water in the lower Tiger shaft. Because of the identified hydraulic connection to MIW within the underground workings at the lower Tiger shaft, in-situ treatment could potentially be conducted through the shaft and treatment effectiveness observed at the Firehose Adit or lower discharging connected adits. A bench-scale study was conducted to identify the most effective organic substrates and alkaline reagents, along with inspection of the shaft with a down-hole camera to determine viability. In-situ treatment within an underground mine (e.g., mine pool groundwater) would involve similar treatment mechanisms as an ex-situ BCR, except substrates such as liquids or slurried solids would be injected underground. Biological treatment effectiveness was measured similarly to the Danny T study, except only minimal analytical laboratory measurements were conducted with the small-scale batch test volume.

Three alkaline reagents were tested to raise pH above 5 before organic substrate amendment: NaOH solution, Chitorem fines, and limestone fines. Titration tests were conducted with each reagent to determine the required dosage rate. After titration and settling, samples were collected for laboratory analysis. Batch tests were conducted with 1-gallon cubitainers with spigots, 2.5 L of MIW, 1 L of inert pea gravel, and then addition of various organic substrates and alkaline reagents. One control container was tested with only gravel and MIW. Organic substrates included ethanol, methanol, molasses, and sieved Chitorem. An extract created from dairy manure and deionized water was utilized as an SRB inoculum source for non-Chitorem tests. Three tests with different substrate quantities were evaluated for each of the four organic substrates, and ethanol, methanol, and molasses were all evaluated with the same doses of NaOH and manure extract before the organic amendment. Three Chitorem tests did not include other alkaline reagents or organic substrates; however, four additional Chitorem tests had additions of molasses, NaOH, limestone fines, and manure extract. One additional molasses, limestone, and manure extract container was also tested for a total of 17 batch tests and 1 control test.

Sampling for in-house parameters at the CDM Smith laboratory was conducted weekly starting after the first week for a total of 7 weeks. At the conclusion of the study period, treated water was extracted and submitted for analytical laboratory analysis. After approximately 1 month, low pH in four of the containers prompted the need for additional NaOH and Chitorem doses. Elevated ORP and lack of sulfide generation in 11 of the 17 containers at that time also indicated the need for additional manure extract to provide inoculum. During the first month, significant amounts of gas was formed within some of the containers. Gas was vented once or more per week from the containers but no air was allowed into the containers during venting.

The methanol and ethanol tests (BCR2 through BCR4 and BCR5 through BCR7, respectively), had some reduction in metals such as Al, Cu, Fe, Pb, and Zn from initial NaOH dosing. Sulfate reducing conditions were not obtained in methanol tests and only the lowest-dose ethanol test obtained sulfate reducing conditions near the end of the study as a result of the additional inoculum dose. These

results were not expected, since numerous applications using alcohols as substrates for SRB have been demonstrated. The study results indicate that all methanol doses and the higher ethanol doses were not appropriate for the microbial population contained within the inoculum and for the MIW tested. Doses may have been too high and caused some biological toxicity.

Molasses-based containers (BCRs 8 through 10, 16, and 17) appeared initially effective based on significantly reducing conditions and generation of a large amount of biogenic gas. However, ORP increased to oxidizing and pH decreased after three weeks and could no longer sustain sulfate reduction. Additional NaOH doses were added to BCRs 8 through 10 halfway through the study; however, after a slight pH increase and ORP decrease, conditions quickly reverted to more oxidizing and low pH. Additional molasses tests included BCR16 with limestone and BCR17 with Chitorem. Results in these containers were similar to BCRs 8 through 10 despite having additional alkaline material. Overall, molasses as an organic substrate did not appear to be an appropriate substrate for the microbial population contained within the inoculum and for the MIW tested.

In conclusion, the Chitorem-only containers (BCRs 11 through 13) were the most effective at maintaining sulfate reducing conditions and removal of metals from the MIW. Concentrations of key metals were lower than when methanol, ethanol, or molasses were used. Slightly greater sulfate reduction was observed for the higher dose (BCR13), although the lowest dose (BCR11) achieved the same metals reduction with less material. BCRs 14, 15, and 18 evaluated the lowest Chitorem dose with NaOH, limestone, and ethanol additions, respectively. Comparing each of these tests to BCR11 showed some improvements in sulfate reduction with additional alkaline materials; however, metal removal efficiencies were all similar. Overall, these results suggest that the lowest Chitorem dose along with NaOH can maintain sulfate reducing conditions and result in acceptable metals removal. Adjustment of pH with NaOH would be conducted first, followed by Chitorem addition using a guargum based slurry of the fine material or tremmie-pipe solids into an open void. Further studies utilizing lower ethanol doses are also recommended.

The Tiger bench-scale study provided an important set of data to be utilized for FS evaluations of possible in-situ treatments regarding reagent dosing and effectiveness. However, the bench-tests do not provide insight into the technical feasibility of such treatments. Downhole camera field investigations in the summer of 2014 indicated that the Tiger shaft was collapsed at approximately 80 ft and was not visibly connected to an open mine tunnel. Therefore, application of a treatability test at the Tiger shaft was not recommended. Future potential field applications could be conducted at the Tiger mine or other mine sites with further evaluations of underground workings locations, geology reviews, and planning and installation of injection/extraction wells for treatment application.

This page intentionally left blank.

Section 1

Introduction

CDM Federal Programs Corporation (CDM Smith) has been tasked by the United States Environmental Protection Agency (EPA) Region 8 to conduct bench-scale and pilot-scale treatability studies for mining influenced water (MIW) discharges at the Barker-Hughesville Mining District Superfund Site (the site). This document is a technical memorandum prepared by CDM Smith to present the results of the studies conducted in accordance with the sampling and analysis plan (SAP) addendum #2 specific for the year 2 of the Danny T adit pilot-scale treatability study (CDM Smith 2014a) and the SAP/quality assurance project plan (QAPP) specific for the Tiger Mine bench-scale treatability study (CDM Smith 2014b). The Tiger Mine bench-scale treatability study was conducted from July through August 2014. The year 2 Danny T pilot-scale treatability study was conducted from June through September 2014 along with hydraulic bench tests conducted in May 2014. These activities were conducted under CDM Smith's EPA Remedial Action Contract (RAC) for Region VIII (EPA Contract No. EP-W-05-049).

The treatability study activities are intended to evaluate potential passive or in-situ treatment alternatives for MIW sources at the site. Treatability study results will be utilized for remedial alternative development and evaluations in the feasibility study (FS). The initial phase of the Danny T treatability study (year 1) included bench-scale testing in the laboratory for determination of the most promising treatment and substrate alternatives. Following these tests and preliminary assessment of results, the pilot-scale treatability testing was planned, installed, and operated in 2013. Results from the year 1 study were published in the Final Danny T Adit Treatability Study Year 1 Technical Memorandum (CDM Smith 2014c, Appendix A). Based on the results, the second phase of the Danny T treatability study (year 2) was planned and operated in 2014. Since the Danny T adit is one of many similar acidic MIW discharges at the site, the passive treatment treatability studies conducted at the Danny T adit can be used as a surrogate for other similar MIW discharges for the purposes of FS evaluations.

The Tiger Mine was identified as a potential location for demonstration of a pilot-scale in-situ treatability study, based on the MIW, the location of the mine in a steep valley (lack of flatter space for passive treatment), and the presence of an open vertical raise that could be used to administer in-situ treatment substrates into the underground mine. A bench-scale treatability study was implemented to evaluate several in-situ substrate treatment approaches, and field investigations were conducted on the vertical shaft to evaluate the efficacy of substrate addition to the underground mine.

This technical memorandum summarizes the project background, treatment technology, and study objectives (Section 1); the treatability study methods and sampling (Section 2); quality assurance summary (Section 3); results, analysis, and discussion (Section 4); and summary and conclusions (Section 5) for both the bench-scale and pilot-scale treatability studies.

1.1 Site Description and Background

The site is located in central Montana, southeast of Great Falls (Exhibit 1-1). It consists of approximately 9,600 acres in Cascade and Judith Basin counties. There are no full-time residents at

the site, but up to a dozen properties have structures that may be inhabitable during the winter months while other property owners use campers or trailers during the summer. There are 11

drainages on the site and 45 abandoned mine sites scattered across those drainages. The two major creeks within these drainages are Galena Creek and Lower Dry Fork Belt Creek. Most of the other tributaries on site feed into those two creeks. The exception is Otter Creek, which flows north out of the site. Several smaller mines, operated under the name of the Block "P" Mine, are located near the top of Galena Creek. Under an EPA order, this portion of the site (Block P Mine and Block P Tailings) is currently undergoing removal actions by Doe Run

Resources, an identified potentially responsible party (PRP).

Various sampling events were undertaken by the State of Montana, the United States Forest Service (USFS), and Cascade County since 1972. In 2004, EPA directed CDM Smith to summarize the data obtained to date and identify data gaps. That work was presented in the *Final Technical Memorandum*, *Site Investigation Summary Report for Barker Hughesville Mining District NPL Site* (CDM Smith 2005). The technical memorandum also established a three-tier ranking system for mine sites, which considered their potential threat based on several factors: mass wasting, waste material in contact with surface water, volume of waste material, acid mine drainage discharge to surface water, visual impacts to surface water, and severity of environmental impacts. Tier I sites had the most impacts while Tier III had the least.

Remedial investigation (RI) and FS sampling activities were initiated by CDM Smith in 2009 and completed in 2014. Further information on site description, background, sampling activities, and data can be found in the respective SAP/QAPPs for the studies presented in this report (CDM Smith 2014a and 2013) or in the RI report (CDM Smith 2014d).

1.1.1 Danny T Mine

The Danny T Mine is part of the Liberty Mine Complex and located within the Middle Galena Creek area of the site, approximately ½ mile north of Barker. The Liberty Mine Complex includes the Liberty, Danny T, and Marceline mines (in order of highest elevation). The Danny T mine has one large waste rock dump, abandoned structures, and a collapsed discharged adit. Most waste rock is acid generating, and the adit discharge is a highly acidic MIW. The pH is consistently low, ranging from 2.66 to 3.08 standards units (su), and concentrations exceed the acute aquatic life standards for aluminum (Al), arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), lead (Pb), and zinc (Zn). Several human health standards are also exceeded in the adit MIW discharge. The adit discharge has scoured multiple paths down the access road, ultimately reporting to Galena Creek.

According to historic mine maps, the Danny T portal is the lowest level of underground mine workings connecting up to the Liberty mine and is likely draining these workings. The discharge from the Danny T had been estimated previously at 40 gallons per minute (gpm), and it was suspected that the flow would vary during spring runoff and into the fall. To measure the changing flow rate, a cutthroat flume and data logger were installed in June 2012 and operated until the end of September 2012. Manual

measurements were made in early May 2012 at 32 gpm. By the time the flume was installed, flow had decreased to around 20 gpm, followed by a steady decline in flow through the summer to a low of around 4 to 5 gpm.

1.1.2 Tiger Mine

The Tiger Mine is located near the top of the Upper Galena Creek drainage. The eastern boundary is near the top of the saddle between Mixes Baldy and Clendennin Mountain. The area is bounded to the north by a steep talus slope, to the south by forest, and to the west by the Pioneer Mine. There are four large waste piles at the mine that extend up the valley in a terraced pattern. Two open shafts and up to five collapsed adits are present. The source of Galena creek is a seep in the upper waste rock piles at Tiger mine, and the creek subsequently flows around and directly adjacent to the lower two waste piles.

During 2012, as part of the RI, five discharging seeps or adits associated with the Tiger mine were sampled. A deep open shaft is located below the waste rock dumps and adjacent to the stream channel. After spring runoff when conditions dry out, water in the streambed soaks into the ground just above the shaft.

A short distance to the west, and down the hill, water from monitoring station TI-AD004 discharges from a small circular hole in the hillside and then cascades down the hillside that is coated with hardened terraces of Fe precipitates. The field team nicknamed this feature the "Firehose adit." Sampling results from TI-AD004 in the RI (2012) indicate the water is severely impacted, with a low pH ranging between 2.78 and 3.53 su and very high concentrations of dissolved Al, Fe, and manganese (Mn) characteristic of MIW in the area. High concentrations of total and dissolved Cd, Cu, Pb, and Zn exceed acute aquatic life standards and occasionally the human health standard. Discharge from this adit was among the highest flow rates measured, ranging from a high of 79 gpm in late May 2012 to 13.3 gpm in late June 2012. No discharge was observed in the July and August sample events. Based on the RI data, given the large flow rate and poor water quality, this adit is one of the largest contributors to metals contamination in Upper Galena Creek when it is flowing.

Because of the transient nature of the adit discharge observed in 2012, water quality monitoring has continued through 2014. The Firehose adit was observed to be discharging during May and June 2013, and then discharge ceased once conditions dried. In May 2013, a dye tracer test showed a hydraulic connection between the discharge at TI-AD004 and the open shaft (lower tiger shaft). Review of historic underground workings maps confirmed this connection, and it appears that the Firehose adit is one of the primary discharge locations for MIW flowing downgradient through the underground workings at the Tiger Mine during the higher flow season.

The Pioneer mine workings map indicated it consisted of an adit and a crosscut to reach the vein and mine workings at the Tiger mine. In the vicinity of the Firehose adit, the tunnel would not have been far below ground. It is likely that while the Pioneer adit was open, water from the Tiger mine would have drained through the Pioneer adit portal. However, based on the mine workings maps and the field observations, it appears that as the portal at the Pioneer mine collapsed and was blocked, the mine water surfaced through a fracture in the bedrock and formed this new discharge point at TI-AD004.

1.2 Treatment Technology Description

This section presents an overview of the sulfate reduction process, in-situ treatment, and passive treatment (ex-situ).

1.2.1 Sulfate Reduction Background

The overall anaerobic sulfate reduction biochemical treatment approach has a wide variation of design possibilities, including ex-situ treatment of surface MIW from mine tunnels and/or surface mine reclamation features as well as in-situ treatment of groundwater in or adjacent to underground mine areas through open shafts, an array of injection/extraction wells, or using sub-surface permeable reactive barriers. Sulfate reduction is the key process in anaerobic biochemical treatment of MIW. In simplified terms, sulfate reduction relies on the addition of an electron donor (organic reagent) to stimulate bacterial activity. These sulfate reducing bacteria (SRB) consume the organic reagent while functioning to reduce sulfate to sulfide. The sulfide combines with dissolved metals in the MIW, resulting in precipitation of metal sulfides. In this process, formation of metal sulfide precipitates is the dominant MIW removal mechanism by which metals are treated over the long term. The sulfate reduction reaction can be simplified as follows:

$$SO_4^{-2} + 2 CH_2O \rightarrow HS^- + 2 HCO_3^- + H^+$$

Sulfate reduction produces both reduced sulfide (HS $^{-}$) and bicarbonate alkalinity (HCO $_{3}$ $^{-}$), resulting in net increase in pH of the MIW during the reaction. The formation of metal sulfides proceeds generally as follows (where Me = divalent metal species):

$$S^{2-} + Me^{2+} \rightarrow MeS$$
 and $HS^{-} + Me^{2+} \rightarrow MeS + H^{+}$

CH₂O in the sulfate reduction reaction is a generic representation of an organic substrate. The actual form of organic compound utilized by SRB to reduce sulfate can be complex and can vary for each substrate or combination of substrates. The availability of a readily usable carbon source by SRB is the limiting factor for the overall sulfide generation, and subsequent metal removal rate, as long as adequate sulfate is present. Solid substrates must proceed through an anaerobic fermentation process to produce a soluble form of carbon. Common cellulosic-based solid substrates may include wood chips, sawdust, hay, compost, and manures. Anaerobic fermentation of cellulosic materials converts sugars into volatile fatty acids (VFAs) such as a lactic or acetic acid that are used by the SRBs to reduce sulfate. Liquid substrates, such as ethanol, methanol, and molasses, must also undergo anaerobic fermentation; however, they are more readily available to SRB because they are already in the aqueous form and can produce faster reaction rates as compared to solid substrates alone, which require a consortium of bacteria to process carbon into a usable form by the SRB.

1.2.2 Ex-situ Passive/Semi-Passive Treatment Background

Ex-situ passive or semi-passive treatment involves the use of processes, such as biochemical reactor (BCR) cells that rely on the anaerobic biological sulfate reduction process for treatment, successive alkalinity producing systems (SAPS), aerobic wetlands, and abiotic chemical treatment methods such as limestone beds, sorption beds, or semi-passive lime or other alkaline material addition. Several references detail all of these processes, including but not limited to the Global Acid Rock Drainage Guide (GARD) Guide in (International Network for Acid Prevention 2009), Interstate Technology Regulatory Council (ITRC) BCRs for Mining-Influenced Water Treatment guidance document (ITRC)

2013), and the Reference Guide to Treatment Technologies for MIW (EPA 2014). The type of treatment method or combination of treatments depends on the MIW characteristics, flow, treatment goals, and other site-specific conditions. The Danny T study focused on evaluation of primary BCR treatment, various pre-treatment, and post-treatment methods.

BCRs can be composed of solid organic substrates such as wood chips, sawdust, hay, compost, manure, marine animal wastes (crab shells, oyster shells, fish bones), other food wastes, limestone gravel, and inert gravel. A truly passive BCR operates by gravity with only solid substrate materials. BCRs can also operate exclusively with liquid-based organic substrates or as an augmentation to other solid organic substrate materials. However, these BCR systems would be classified as semi-passive since the delivery of liquid substrates likely would need to be implemented using an energy source. In remote areas, addition of liquid substrates can potentially be achieved with the use of solar power and/or water-wheel technologies, so the treatment systems are still semi-passive by design. Liquid substrate BCRs can be a beneficial application because the substrate is more readily available to SRB in shorter chain and soluble carbon forms, thus, increasing the size of the bacteria population, especially SRB. This benefit can produce higher sulfate reduction reaction rates, which may result in a reduction in space required for treatment versus a solid-based-only substrate system with a lower sulfate reduction rate. However, liquid substrates also have limitations such as the need for continuous replenishment, the likely requirement of an energy source for delivery, and the potential to create a less-diverse microbial community that is more susceptible to stressed conditions.

For most MIWs, especially acidic MIWs, pre-treatment processes are usually necessary prior to BCR treatment. Three primary pre-treatment methods include oxidation, neutralization, and sedimentation/filtration. Because BCRs are living biological treatment systems, their treatment efficiency (metal removal) can be affected by changes in influent MIW chemistry and flow. Activity of SRB may also be limited by low pH and high mineral acidity MIW. Another factor that affects the treatment process is the oxidation state of the water and the presence of Fe and Al at significant concentrations. MIWs with high Fe and Al in an oxygen atmosphere can result in formation of Fe and Al oxyhydroxide precipitates. Under oxidizing conditions (high dissolved oxygen [DO] and positive oxidation-reduction potential [ORP]), the rate of precipitation can be increased. These precipitates can lead to plugging in the BCR piping and substrate layers and possible premature failure of the BCR treatment system. Therefore, various pre-treatment methods may be required, depending on the MIW water quality, in order to provide suitable chemistry for the sulfate reduction to occur, maintain system longevity, and reduce maintenance.

As part of an overall passive treatment system, a BCR cell is commonly followed by aeration processes, which may include cascades, aeration/settling ponds, and aerobic wetlands. Aeration provides oxidation of the BCR effluent that decreases sulfides, increases DO, and reduces biological oxygen demand (BOD) and ammonia formed from the BCR organic substrates prior to discharge to the receiving water. A common post-treatment application includes an open settling pond followed by an aerobic constructed wetland. The pond provides settling capacity for residual suspended solids from the BCR effluent and aeration processes. The wetland component provides additional metals polishing treatment from vegetation as well as additional filtration of solids, oxygen entrainment, and degradation of BOD and other nutrients through microbial activity and plant uptake.

1.2.3 In-situ Treatment Background

In-situ treatment within an underground mine (e.g., mine pool groundwater) involves the use of an injectable organic substrate to increase anaerobic microbial populations and to drive biochemical reactions that reduce concentrations of metals, acidity, and sulfate in MIW. For in-situ treatment, sulfate reduction with metal sulfide precipitation is the primary biochemical treatment process, provided that the mine pool is sufficiently anaerobic with low concentrations of dissolved oxygen. Examples of substrates that could be utilized for food to stimulate the microbial population include soluble materials such as ethanol, methanol, beer, VFAs (such as lactic or citric acid), glycols, and milk, or materials that can be slurried or emulsified, including but not limited to whey, vegetable oils, molasses, and crushed marine organism shells or bones.

Injection and delivery of substrate is the key to this approach, as access to underground mine workings is often limited due to collapse or safety concerns. In cases where low pH MIW is present, injection of an alkaline material into the mine pool groundwater may be needed to raise pH to minimize microbial mortality and provide the optimum conditions for the SRB population to function and multiply. In-situ treatment may also require injection of an inoculum of SRB into the mine pool groundwater to initiate the desired anaerobic biochemical reactions. Although SRB are generally ubiquitous in the mine environment, addition of an inoculum may better ensure that the desired treatment is initiated.

In-situ treatment of MIW within an underground mine area has a number of potential benefits, including but not limited to:

- Treatment of the contamination source area inside the underground mine and potential passivation of ore materials (e.g., sulfide minerals) inside the mine, thus, reducing he formation of MIW.
- Reduction of capital costs associated with construction of infrastructure for ex-situ passive or active treatment technologies.
- Reduction of operations and maintenance costs associated with ex-situ active or passive treatment technologies. Reduction of issues associated with these technologies such as plugging and freezing of water conveyance structures.
- Reduction or elimination of metal-containing treatment precipitates or metal-containing substrates that need disposal associated with ex-situ active or passive treatment technologies (disposal occurs within the underground mine and fractures).
- Reduction in space required for treatment or electrical requirements (may be limited to portable generators or solar power systems).
- Ability to treat MIW in remote areas.
- Seeps associated with the underground mine (non-point discharges) may be treated or greatly improved.

Although there are many potential benefits to in-situ treatment of underground mine pool groundwater, there are also many uncertainties and challenges associated with the technology, including:

- Limitations to completely understanding the nature and extent of contamination of historic underground mines, extent of underground workings, and geology as they relate to generation and transport of MIW.
- Uncertainty with the volume of water in the underground mine pool area requiring treatment and, thus, uncertainty with the amount of reagents required to deliver underground.
- Limitations on the ability to effectively deliver and distribute substrates for treatment and to evaluate the effectiveness of those treatments.
- Uncertainty with achieving and maintaining treatment efficiency in the long term and understanding of the frequency, type, method, and amount of injection needed.
- Potential need for costly source control measures, such as opening and rehabilitation of underground mine tunnels for access to deliver substrates and/or install a bulkhead, and potential risk that these measures to control the mine pool may be ineffective (e.g., leaking bulkhead, discharge emerges elsewhere).
- Potential for discharge of treated water from adits or seep locations that contains low DO and high BOD and sulfide, which may require post-treatment before discharge to receiving waters.
- Potential for solubilization of Fe and Mn that may be present in the underground mine area under anaerobic conditions that may be imposed by the in-situ treatment process.

Overall, treatment of the source area of contamination is the primary benefit of in-situ treatment. Insitu treatment can also be coupled with other source control technologies that limit infiltration of water into the underground workings or modify the mine pool groundwater level. Implementation of these technologies in conjunction with in-situ treatment may greatly improve long-term effectiveness of the treatment technology. For example, grout injection, surface water re-routing, or groundwater control may limit infiltration of water into the mine pool area and reduce the amount of contaminated water requiring treatment. Installation of hydrostatic bulkheads on draining adits may increase the local mine pool groundwater level, thereby potentially flooding areas containing the source materials that are generating the MIW (e.g., ore or waste rock). By flooding, generation of MIW through oxidation processes can be limited. Flooding workings areas also provides the ability to effectively treat water present within the workings tunnels or fracture zones as opposed to the condition where tunnels may have only been seasonally flooded with spring inflows. Other MIW treatment techniques can be combined with in-situ treatment to produce an overall scenario for limiting and treating MIW.

Given the above information, identification of the proper substrates to treat a particular MIW in-situ effectively is the first phase of the pre-design process. The second phase is to investigate and plan the methods for in-situ delivery of substrates. Delivery of substrates could be implemented by injection through groundwater wells screened within a mine void or in fracture zone areas associated with the underground mine, through open vertical shafts, or through open and rehabilitated horizontal mine tunnels. Treatment in a particular groundwater zone could be implemented by multiple injection

points or by installation of both injection and extraction groundwater wells to create re-circulation loops. Another alternative for substrate delivery could be to bulkhead a mine opening and provide injection of substrates through the bulkhead.

1.3 Study Objectives and Evaluation Criteria

Completion of bench-scale and pilot-scale treatability studies provides data for evaluating potential MIW treatment technologies at the site. The overall goal of the treatability studies was to determine if a particular method and/or amendment provides more desirable results with regard to reduction of metal concentrations, neutralization of acidic MIW, and practical considerations for full-scale field implementation. Treatability study data can ultimately be utilized for evaluation of MIW treatment technologies in the FS and utilized for design of full-scale treatment of MIW should these technologies be selected as part of the site remedy.

The primary goals of the Danny T treatability study were to test the effectiveness of MIW treatment using pre-treatment methods, ex-situ BCR treatment solid substrates, and a post-treatment oxidation/wetland process. The primary goal of the Tiger Mine in-situ treatability study was to evaluate potential improvement of water quality discharging from the Firehose adit location through injection of substrates into water in the lower Tiger shaft. Because of the identified hydraulic connection to MIW within the underground workings at the lower Tiger shaft, in-situ treatment could potentially be conducted through the shaft. In order to identify the most effective treatment substrates and dosage rates per volume of MIW, a bench-scale study was conducted first in the laboratory. Field investigations to evaluate the ability to utilize the shaft for substrate injection were also conducted.

The approaches and criteria used to evaluate treatment effectiveness during the treatability studies are presented in the following sections. Specific objectives for the bench-and pilot-scale treatability studies were presented as principal study questions in the appropriate SAP/QAPPs (CDM Smith 2014a and b). These study questions and information inputs are presented in the sections below to provide the framework for data assessment in Section 4 of this memorandum. Information inputs provide greater detail on the rationale for the treatability test design during the bench-and pilot-scale phases.

1.3.1 Analytic Approach and Evaluation Criteria

An effective treatment is one where toxic metals are removed from the water efficiently, and the water quality meets federal and state criteria and/or guidelines for ambient water quality. The primary measure of treatment effectiveness for either in-situ or ex-situ treatments tested in the study is the removal efficiency. Removal efficiency is the percent by which metals or other constituents are removed between the influent and effluent of the treatment system (or raw untreated water versus treated water) and is calculated as the difference between the influent and effluent concentrations divided by the influent concentration. Where applicable, the removal efficiency calculation was applied to all samples collected in the treatability study to evaluate effectiveness. In addition, metals concentrations measured at the end of the tests (treated water) were compared to Montana Department of Environmental Quality (DEQ) Water Quality Bureau Bulletin 7 (DEQ-7) acute and chronic ambient water quality standards and human health standards (DEQ 2012). Table 1.3-1 below provides a summary of the DEQ-7 standards.

In addition to metals removal, anaerobic biological treatment effectiveness is measured by several metrics that indicate the extent of the sulfate reduction process and the type of metal removal

mechanism(s) that are occurring. The extent of sulfate reduction can be correlated with removal efficiency in order to verify that metal removal was predominantly occurring via a sulfate reduction mechanism, rather than by other removal processes such as adsorption to substrates or precipitation of metal oxy-hydroxides or carbonates. The metrics for identifying the extent of sulfate reduction include the following:

- Decrease in sulfate concentrations from the untreated raw water to the final treated water. The magnitude of the sulfate concentration decrease is site-specific to the influent water sulfate concentration being evaluated and extent of biological activity.
- Alkalinity concentration changes between the initial untreated MIW and the treated MIW at the end of the study period will be measured and quantified as an indicator of SRB activity. Bicarbonate alkalinity is produced as a byproduct of the sulfate reduction process by SRB (Section 1.2.1) and should increase from the initial untreated MIW concentrations. In addition, alkalinity can increase from calcium carbonate-based materials in the substrates. The contribution of alkalinity increases by either calcium carbonate dissolution or microbial activity can be difficult to distinguish, although typically contributions by calcium carbonate are constant or slowly decreasing over time, whereas sudden increases in alkalinity can be interpreted as a result of biological activity, in correlation with other metrics (i.e., good sulfate reduction and sulfide generation).
- Generation of sulfide from the sulfate reduction as measured in the treated water. The values will be used as an indicator of successful sulfate reduction resulting
 - per liter (mg/L) in metals removal by formation of metal sulfides. Sulfate can be metabolized by SRB and generate hydrogen sulfide gas. The presence of hydrogen sulfide odor (rotten egg odor) is empirical evidence of sulfate reduction.

A target pH at 6.5 to 8.5 su is desired for effective treatment (meets aquatic water quality standards). Based on numerous treatment case studies by others and by CDM Smith, observations of ORP less than approximately -150 millivolts (mV) and decreasing and DO less than 2 mg/L in the treated effluent is indicative of the appropriate reducing environment necessary for sulfate reduction to occur. The optimum water temperature for incubation and system startup is generally desired to be within 5 to 15 degrees Celsius, but reduced sulfate reduction can still occur at temperatures less than 5 degrees Celsius.

Further details of the analytical testing approach and evaluation of data are provided in the following sections that present the principal study questions.

Table 1-1. DEQ-7 Standards

Consentration (12/1)						
	Concentration (μg/L)					
	Aqua	Human				
Parameter	Acute	Health				
Aluminum (dissolved)	750	87	n/a			
Antimony	n/a	n/a	5.6			
Arsenic	340	150	10			
Barium	n/a	n/a	1,000			
Beryllium	n/a	n/a	4.0			
Cadmium*	2.1	0.3	5.0			
Chromium	1,803	86	100			
Copper*	14	9.3	1,300			
Iron	n/a	1,000	n/a			
Lead*	82	3.2	15			
Manganese	n/a	n/a	n/a			
Mercury	1.7	0.9	0.1			
Nickel*	469	52	100			
Selenium	20	5.0	50			
Silver*	4.1	n/a	100			
Thallium	n/a	n/a	0.2			
Zinc*	120	120	2,000			
Standards are for the total recoverable						

fraction, unless otherwise noted; μg/L – micrograms per liter; n/a – no

standard available; * Standard shown

calculated at a hardness of 100 milligrams

1.3.2 Tiger Study Principal Study Questions and Information Inputs

As presented in the Tiger Mine treatability study SAP/QAPP (CDM Smith 2014b), the principal study questions and information inputs for the bench-scale study included the following:

1. What is the water quality of the Firehose Adit water used in the bench test?

MIW from the Firehose Adit at the Tiger Mine was collected in early June 2014 and shipped to the CDM Smith Treatability Laboratory in Denver, Colorado. A sample was collected from the MIW in the field and submitted to a laboratory for analysis of total and dissolved metals, alkalinity, and sulfate. In-house parameters at the CDM Smith laboratory were also measured, including pH, temperature, specific conductance, ORP, DO, HACH sulfide, and HACH ferrous Fe.

2. What dosages of alkaline reagents are required to raise the pH to approximately 5.0 su for pretreatment?

Alkaline materials were identified and titrations conducted using each material. The titrations were conducted by slowly adding the alkaline materials until the endpoint pH was reached (approximately 5.0 su). A sample of the treated MIW was collected and submitted to a laboratory for analysis of total and dissolved metals, alkalinity, and sulfate. In-house parameters at the CDM Smith laboratory were also measured, including pH, temperature, specific conductance, ORP, DO, and HACH ferrous Fe. The quantity of alkaline material needed per volume of MIW was calculated and scaled for application of the bench-scale tests.

Which liquid or slurried solid organic substrate is the most effective treatment of the MIW?

A series of batch container tests were prepared using a set volume of MIW and varying types and quantities of liquid or slurried solid organic substrates, including alkaline materials to increase pH. Containers were sealed after initial light mixing. After 1 week of incubation, a small aliquot of sample was collected from each container for in-house measurement at the CDM Smith laboratory for pH, temperature, specific conductance, ORP, DO, HACH sulfide, alkalinity, and ferrous Fe. This process was repeated weekly for a total of six sample events, and then a sample was collected and submitted to a laboratory for analysis of dissolved metals, alkalinity, and sulfate. The same in-house parameters at the CDM Smith laboratory were also measured at the end of the study. Treatment effectiveness was evaluated based on a number of metrics as presented in Section 1.3.1.

4. What is the dosage required for a liquid or slurried solid organic substrate to achieve effective treatment of MIW?

A variety of substrates were tested as well as different quantities of the same substrates. By evaluating the metrics provided in Section 1.3.1 for the different batch tests, substrate to MIW volume (or weight) ratio can be determined that maintains effective treatment but minimizes the substrate volume needed to optimize treatment costs.

5. What is the physical condition of the lower Tiger shaft, including: are there any obstructions present, is water present at the bottom, and what is the shaft total depth and/or water depth?

Deployment of a lighted video camera illuminated the shaft and provided recorded information about the shaft. Information included whether any obstruction exists in the shaft such as historical mine equipment, whether areas of the shaft were collapsed, or whether water was present at the bottom of the shaft and at what depth.

1.3.3 Danny T Year 2 Study Principal Study Questions and Information Inputs

As presented in the pilot-scale treatability study SAP addendum #2 (CDM Smith 2014a), the principal study questions and information inputs for the year 2 pilot-scale study included the following:

- 1. What is the water quality of the Danny T adit water used in the pilot-scale test?
 - Influent MIW collected from the Danny T adit was characterized based upon analytical results of samples collected during the study. Influent MIW samples were collected from the treatability study system influent sampling port during each sample event. Variability in the influent MIW water quality through the course of the study was evaluated.
- 2. What pre-treatment steps are necessary to condition the water for the BCR treatment?
 - Due to the very low pH and high metals concentrations in the Danny T adit water, pre-treatment was expected to be a necessary component of any passive treatment process. The pre-treatment is intended to condition the MIW for treatment in the BCR, decrease the likelihood of clogging the BCR, and thus, increase the longevity of the BCR. The study evaluated three types of pre-treatment for effectiveness and implementability. The pre-treatment steps investigated were:
 - Pre-treatment with an alkaline reagent (sodium hydroxide) to increase pH to approximately 4.5 to 5.5 su. This treatment was similar to the pre-treatment conducted during the year 1 study, except sodium hydroxide (NaOH) was utilized instead of magnesium hydroxide due to the operational issues encountered with magnesium hydroxide in the year 1 study. The existing solar-powered chemical dosing system was utilized for dosing the NaOH solution into the pre-treatment barrel.
 - Addition of water directly to a SAPS. This treatment reduces DO and ORP and adds alkalinity to the influent MIW without metering in a reagent. The substrate consisted of an organic layer of compost, manure, and pea gravel to reduce the oxidation state of the influent MIW, followed by a bed of limestone to raise pH. This test evaluated a passive pre-treatment approach that does not require electrical power for alkaline addition.
 - Addition of water directly to a Chitorem SC-20® (Chitorem), sand, and pea gravel barrel. On average analysis, the product contains 30% by weight calcium carbonate (from the crab shells), 40% protein (from leftover meat, ligaments, and other sources), and 20% chitin (organic compound in the crab shell). Similar to the SAPS pre-treatment, this treatment reduces the oxidation state and adds alkalinity without metering in a reagent. Chitorem is a proprietary product made of dried and crushed crab shells designed for passive treatment.

A fourth BCR without a pre-treatment step was also tested. The year 1 Treatability Study memorandum (CDM Smith 2014c) recommended not testing a BCR without pre-treatment due to the inability of the woody substrate materials to maintain sulfate reduction and a net-alkaline condition without pre-treatment. Upon further consideration, the technical team decided to

include the non-pretreated BCR treatment train but to augment the woody substrate to include Chitorem material to provide added alkalinity.

3. What pre-treatment dosage of sodium hydroxide reagent is required to achieve the optimal pH range?

The optimal pH range targeted in the pre-treatment step for the study was 4.5 to 5.5 su. NaOH titration results from the bench-scale study were utilized as an initial estimate of the dosing ratio required. The result of the 2013 bench test titration indicated an estimated dose of 3.7 milliliters (ml) of 5% by mass NaOH solution per liter of Danny T adit water. During startup of the year 2 study, a field titration was conducted with the NaOH solution to confirm this assumption. The field titration indicated an estimated dose of 25 ml of 1% (by mass) NaOH solution per liter of Danny T adit water.

4. What is the nature of the sludge and the sludge volume generated during alkaline addition pretreatment?

During the bench-scale treatability study, a measurement of the settled volume of sludge generated from a NaOH titration to a pH of approximately 5 su was completed. During the year 2 study, sludge volumes were not measured due to the inability to access the inside of the pretreatment tank without disassembling the MIW or NaOH solution feeds.

5. What is the effectiveness of the alkaline addition pre-treatment?

The alkaline addition pre-treatment efficiency assessment was based upon analytical results of samples collected from the alkaline addition pre-treatment effluent and raw water influent. Pre-treatment efficiency was based upon removal of a selected subset of metals (e.g., Al and Fe) and the observed expected increase in effluent pH and alkalinity. Removal efficiency was measured by calculating the percent difference of metal concentrations in the pre-treatment effluent versus the influent.

6. What is the effectiveness of the SAPS pre-treatment?

The SAPS pre-treatment efficiency assessment was based upon analytical results of samples collected from the SAPS pre-treatment effluent and raw water influent. Pre-treatment efficiency was based upon removal of a selected subset of metals, increases in pH and alkalinity, and decrease in ORP and DO. Removal efficiency was measured by calculating the percent difference of metal concentrations in the pre-treatment effluent versus the influent.

7. What is the effectiveness of the Chitorem pre-treatment?

The Chitorem pre-treatment efficiency assessment was based upon analytical results of samples collected from the Chitorem pre-treatment effluent and raw water influent. Pre-treatment efficiency was based upon the same metrics as defined in Study Question 6. Removal efficiency was measured by calculating the percent difference of metal concentrations in the pre-treatment effluent versus the influent.

8. What is the removal efficiency achieved for various elements in the BCR treatment barrels?

Removal efficiency is the primary metric to determine treatment effectiveness. Consistently high removal efficiency of site-specific target metals (i.e., focusing on Al, As, Cd, Cu, Fe, Pb, and Zn) is a specific quantifiable goal of the treatability study. The targeted metal removal efficiency for the BCR barrel effluent water is a value equal to or greater than 90% reduction in metals content after the initial adaptation phase. The actual target removal efficiency for some metals varies based on the chemical-specific endpoint values as provided in Study Question 10 below and variable influent concentrations throughout the study. Samples were collected from the effluent sampling ports for each BCR treatment barrel. Analytical results were used to calculate removal efficiency by comparison of the metals concentrations in BCR barrel effluent versus the influent MIW concentrations collected from the system feed tank or pre-treatment effluents. Removal efficiency for BCR barrels that first received a pre-treatment step were calculated by comparison to the pre-treatment barrel effluent concentrations, rather than the treatment system influent MIW.

9. What is the extent of sulfate reduction in the BCRs?

Sulfate reduction and metal sulfide formation are the main biochemical reactions used for removal of metals by the BCR treatment process. Therefore, measurement endpoints are established to understand the extent of sulfate reduction as part of overall treatment effectiveness evaluation. The extent of sulfate reduction in the BCR treatment barrels was assessed using the metrics presented in Section 1.3.1, which include evaluations of bi-weekly analytical laboratory sulfate, sulfide, and alkalinity concentrations and evaluation of weekly field measurements.

10. What are the chemical-specific endpoint values to evaluate test effectiveness?

As discussed in Section 1.3.1, treatability data were compared to DEQ-7 aquatic life criteria and human health drinking water standards. Table 1-1 provides the site-specific values to be used as comparison criteria for metals. Hardness-based standards are shown at a hardness of 100 mg/L; however, actual evaluations were conducted using a calculated standard based on the actual sample hardness.

11. What is the effect of seasonal weather changes on treatment effectiveness?

The year 2 pilot-scale treatability study was started earlier in the summer (early June) and continued through the end of September. Weather effects to metrics identified in Study Questions 7 through 9, including precipitation, colder ambient air, and colder influent MIW, were evaluated by documenting site-specific weather conditions using data from a temporary weather station installed at the Danny T mine and local weather stations. Since the treatment system was operated during warmer weather for the most part, limited changes to influent MIW temperature occurred. The pre-treatment and BCR treatment systems were constructed to prevent any percolation of precipitation water into the process flow; however, precipitation may result in percolation into the underground mine and may have an effect on the influent MIW chemistry to the treatment system, as described in Study Question 12 below.

12. How does treatment effectiveness vary in response to potential changes in the Danny T adit MIW chemistry?

Throughout the course of the study, MIW influent was sampled and the analytical results compared to the analytical results of treated effluent. This comparison allowed observation of changes to influent MIW chemistry if they occurred and assessment of changes in treatment effectiveness. Measurement of changes in influent MIW chemistry as a result of precipitation or other effects was limited to the bi-weekly laboratory sampling and weekly field parameter sampling. Changes in chemistry between these weekly periods cannot not be evaluated.

13. What is the BCR retention time for contact between BCR substrate and MIW flow?

Based on the average flow rates utilized, substrate volume, and porosity, the retention time was calculated and reported. The initial average design flow rate and retention time is defined in Section 2.2.2. The treatability study began at this flow rate; however, modifications to this flow rate were made during the study as described in Section 2.2.4.2.

14. What is the effectiveness of the post-treatment oxidation system to increase the DO and ORP and decrease concentrations of BOD, sulfide, nitrate, phosphorus, and ammonia?

As part of the anaerobic processes in the BCR that facilitate the formation of sulfides, constituents such as sulfide, ammonia, and BOD are generated in concentrations that are toxic to aquatic life. In addition, substrates can discharge nitrogen and phosphorus that can cause stress to the surface water system. Therefore, aeration and aerobic wetland treatment of the BCR effluent is required prior to discharge. A post-treatment system was implemented for all four combined BCR effluents that consisted of a series of cascade aeration steps, followed by flow through a small aerobic wetland treatment cell. Further details of the post-treatment are provided in Section 2.2.2.6. Post-treatment effectiveness was evaluated by comparing the analytical laboratory concentrations and field measurement data from the combined BCR influent to the post-treatment system to the final treated effluent.

15. What is the optimum Chitorem, sand, and gravel mixture to maintain adequate permeability of the substrate mixture during treatment?

Maintaining adequate permeability in the Chitorem substrate barrel was problematic during the 2013 pilot testing. Field cone-drainage tests were conducted in the field in September 2013 to determine a revised amount of gravel to add to the existing substrate in the Chitorem pretreatment barrel. However, only a limited number of tests were conducted at the time. Further drainage tests were conducted at the CDM Smith treatability laboratory in Denver, Colorado in April through May 2014 to better optimize the Chitorem, sand, and gravel content to maintain adequate permeability for water to be free-draining. These laboratory bench-scale tests were conducted with similar acidic MIW to the Danny T adit to attempt to simulate the process that created a slimy biomass layer observed in the year 1 pilot study. Further details of these tests are provided in Section 2.1. The outcome of the bench study provided a recommendation for an optimum mixture to be used in the year 2 pilot study.

Section 2

Study Methods and Sampling

2.1 Danny T Bench-Scale Hydraulic Tests

Over the course of the test in year 1, the permeability of the Chitorem barrel was substantially reduced, with substantial influent water overflowing from the top of the barrel. In September 2013, the Chitorem, sand, and gravel substrate was removed from the pre-treatment barrel, and a fraction of the removed substrate was mixed with more pea gravel to increase the permeability. Field cone drainage tests were conducted on site to determine the amount of gravel to add that would be required to maintain a free-flowing hydraulic condition. Based on these observations, a mix of 1 part original substrate to 1.5 parts pea gravel was chosen as the replacement substrate for the pre-treatment Chitorem barrel. After replacing the barrel with the revised substrate, adequate flow-through was observed through the barrel. Table 2.1-1 shows the substrate percentage variations between the original mixture, cone drainage test mixtures, and final selected mixture.

Table 2.1-1. Chitorem Pre-treatment Substrate Mixture Percentages for Year 1 Study

		Cone Test 1	Cone Test 2	Revised Mixture	
Material	Original Mixture	1 Part New Pea Gravel: 1 Part Original Mixture	2 Parts New Pea Gravel: 1 Part Original Mixture	1.5 Parts New Pea Gravel: 1 Part Original Mixture	
Chitorem	40.0%	20.0%	13.3%	16.0%	
Sand	30.0%	15.0%	10.0%	12.0%	
Pea Gravel	30.0%	65.0%	76.7%	72.0%	
Sum	100.0%	100.0%	100.0%	100.0%	

Further optimization of the volume ratio of Chitorem, sand, and gravel was determined through column drainage tests at the CDM Smith Denver treatability laboratory in April and May 2014. Based on the field cone tests, a range of tests was conducted varying the Chitorem content between 12 and 28%, sand between 9 and 21%, and pea gravel between 51 and 79%. A 10/20 well filter pack sand was utilized for the bench and pilot-scale testing rather than the common construction sand used previously. This sand is coarser and more uniform with particle sizes between 10 and 20 mesh sizes (2 to 0.84 millimeter [mm]). Density tests were conducted on the sand and Chitorem materials by measuring the weight of a known volume of material in various size beakers.

Five columns were set up, consisting of 3-inch stainless steel columns, bottom fittings, and stainless steel needle valves. Prior to addition of substrates, the time necessary to drain 1 liter from each column was tested in order to provide a control and determine if any of the valves drained at variable rates when opened to the maximum position. Five 1-liter volume mixtures were created within the percentage ranges shown in Table 2.1-2. After mixing, the materials were added to the columns. Approximately 1-inch of drainage pea gravel was added to the bottom of each column prior to the Chitorem, sand, and pea gravel mixture. The columns bottoms were equipped with a needle valve to control flow. MIW from another mine site with similar characteristics to the Danny T was added to each column along with the substrate mixtures. The surrogate MIW has similar pH and metals content to the Danny T. MIW and substrate were added at the same time, and the mixture was stirred to

ensure complete wetting of the substrate. MIW was filled to approximately 2 inches above the substrate level and allowed to equilibrate for adequate time to allow voids to saturate. Additional MIW was added as necessary once the voids saturated, and then approximately 300 ml MIW volume was drained and recycled back into the top of the column. This recycle process was repeated four times for each column. After recycling, the tops of the columns were covered with parafilm to hold moisture and limit oxygen influx during incubation.

Table 2.1-2. Hydraulic Drain Bench Test Substrate Mixtures

Item	Material	#1	#2	#3	#4	#5
Dancant	Chitorem	12.0%	16.0%	20.0%	24.0%	28.0%
	Sand	9.0%	12.0%	15.0%	18.0%	21.0%
Percent	Pea Gravel	79.0%	72.0%	65.0%	58.0%	51.0%
	Sum	100.0%	100.0%	100.0%	100.0%	100.0%
Volume (ml)	Chitorem	120	160	200	240	280
	Sand	90	120	150	180	210
	Pea Gravel	790	720	650	580	510
	Sum	1000	1000	1000	1000	1000

After incubation for approximately 1 week, each valve was opened, and the time required to gravity drain 300 ml from the columns was measured. After draining, 150 ml of the collected water was recycled back to the top of the column along with 100 ml of fresh MIW. A second drainage test was conducted for 100 ml drained, and then 50 ml of the drained MIW was recycled back to the top of the columns. Columns were covered with parafilm until the next testing day.

Tests were continued every 3 to 4 days over a period of 3 weeks as shown in Table 2.1-3. Variable tests were conducted for 100 and 200 ml drainage volumes, and variable amounts of fresh MIW were added to top of the columns after each test as shown. Some amount of drained water was also recycled at times, and additional water was drained at times to maintain the approximate 2-inch free water surface above the substrate.

Table 2.1-3. Hydraulic Drain Bench Test Operations

Date	Test No.	Test Description	Volume Fresh MIW added (ml)	Recycle Volume (ml)	Extra Volume Drained (ml)
4/30/2014	NA	Column setup, saturation, recycling, etc.	700	300 ml X 4	0
5/6/2014	1	Time to drain 300 ml	100	150	0
5/6/2014	2	Time to drain 100 ml	100	50	0
5/9/2014	3	Time to drain 200 ml	200	50	0
5/13/2014	4	Time to drain 200 ml	300	0	0
5/16/2014	5	Time to drain 200 ml	300	0	25
5/16/2014	6	Time to drain 200 ml	0	0	0
5/20/2014	7	Time to drain 200 ml	300	0	25
5/20/2014	8	Time to drain 100 ml	50	0	0
5/23/2014	9	Time to drain 200 ml	300	0	25
5/23/2014	10	Time to drain 100 ml	0	0	0
5/27/2014	11	Time to drain 200 ml	300	0	0
5/27/2014	12	Time to drain 100 ml	0	0	0

2-2

Drainage test data are presented in Section 4.1. Based on the optimum free-drainage observed, a Chitorem, sand, and gravel mixture was selected for the year 2 pilot-study. The goals of the bench tests were to maintain free flowing hydraulic conditions and minimize the volume of Chitorem due to high material cost but not decrease the percentage below the threshold tested in the year 1 revised mixture (approximately 16% by volume).

2.2 Danny T Year 2 Pilot-Scale Treatability Study

The year 2 pilot-scale treatability study was conducted from June through September 2014. Updates to the treatment system were completed in early-June 2014 and system startup completed in mid-June. The treatment system operated through the end of September 2014. Details of the pilot-scale construction and operations, including collection and routing of MIW, pilot-scale treatment description and process flow design, system startup and shutdown, and sampling and maintenance activities for the year 1 study were presented in the year 1 technical memorandum (CDM Smith 2014c/Appendix A). This section only presents changes in construction, operations, and sampling activities for the year 2 study.

2.2.1 Collection and Routing of MIW

At the conclusion of the year 1 study, the MIW collection pipes and feed tank were disconnected and drained to prevent freezing. All pipes and tank were re-connected as originally installed and operated in 2013. No changes to the piping or collection system were made, except for minor improvements to the MIW collection dam structure to repair erosion damage from the winter. Accumulated sludge in the collection pond was shoveled out and disposed on the side of the pond, and debris was scraped out of the overflow pipes with brushes. Refer to Appendix A Year 1 technical memorandum for additional details on MIW collection and routing to the pilot system.

2.2.2 Pilot-Scale Treatment Description and Process Flow Design

This section provides updates to the process flow details of the pilot-scale treatment system. An updated process flow diagram is shown as Figure 2.2-1. The basic process flow consists of a MIW collection pond, feed tank with overflow, a MIW influent timer valve, 8 liter (L) head tanks, head tank outlet timer valves, 35-gallon or 55-gallon pre-treatment barrels, pre-treatment effluent timer valves where applicable, pre-treatment effluent lines and sample ports, 55-gallon BCR barrels, BCR effluent lines and sample ports, and the post-treatment system that mixes all four BCR effluents into one.

Based on the 2013 study conclusions that most of the BCRs were overloaded with acidity, the overall average flow rates were reduced for the year 2 study. Flow rate can be calculated based on the BCR substrate volume and assumed hydraulic retention time and porosity using Darcy's Law, as follows:

$$Q_d = V_s/t_{BCR} * \eta_s$$
 Equation 1

Where.

 Q_d = BCR design flow rate, gpm

V_s = BCR volume, gallons

 t_{BCR} = BCR substrate hydraulic retention time, hours

 η_s = BCR substrate effective porosity, %

For the year 1 study design, a targeted BCR hydraulic retention time of 24 hours, a substrate volume of 35 gallons, and a substrate porosity of 0.40 were used to calculate the target flow rate of 0.01 gpm or 37 milliliters per minute (ml/min). Because overloading was evident in the year 1 data, this flow rate was decreased in year 2 in order to increase the hydraulic retention time or contact time that the influent MIW has with the substrate media.

To aid in determining the required retention time, a common sizing approach is recommended based on the approach originally presented in Wildeman et al. (1993), the recently published ITRC guidance *Biochemical Reactors for Treating Mining-Influenced Water* (ITRC 2013), Gusek and Figueroa (2009), and several other references (not listed herein). Overall, the approach suggests calculating the BCR substrate volume needed for treatment based on the metal loading of the MIW influent. The stoichiometric molar metal load (expressed in units of millimoles metal/day) is balanced with the rate at which sulfate is reduced, according to the following reactions:

$$SO_4^{-2} + 2 CH_2O \rightarrow HS^- + 2 HCO_3^- + H^+$$
Reaction 1
$$HS^- + Me^{2+} \rightarrow MeS + H^+$$
Reaction 2

As shown in reaction 1, reduced sulfide is generated by the sulfate reduction process. Metal sulfides are then precipitated by reaction 2. Since reduced sulfide forms are a reactant in reaction 2, the rate at which metals sulfides form will be limited by the rate of sulfate reduction by the SRB. Therefore, the molar rate of sulfate reduction should be equal to or greater than the molar metal feed rate. The metals utilized in the calculation include all major divalent metals (except for Mn). Mn is not removed in a BCR as a stable sulfide precipitate. An important limitation to this sizing approach is that it assumes all metal removal in a BCR occurs through metal sulfide precipitation. Since divalent metals can be removed by precipitation as carbonates, oxy-hydroxide co-precipitation with Al and Fe, or through sorption to organic surfaces, this calculation approach provides a conservative estimate of BCR design size and may ensure better long term treatment effectiveness.

Calculations using the molar metal method were provided in the SAP addendum #2 (CDM Smith 2014a). Influent MIW metals concentrations from the year 1 study were converted to a molar quantity using the molecular weight and multiplied by the flow rate to obtain a molar loading rate in millimoles metal per day (mmol Me/day). The volume of substrate needed to balance the metal load can be calculated by dividing the metal load by the sulfate reduction rate in units of millimoles sulfate per cubic meter per day (mmol SO_4/m^3 -day). Published literature sulfate reduction rates can be used for the calculation or from field data collected from treatability studies. Widely accepted literature sulfate reduction rates range from 300 mmol SO_4/m^3 -day for a woody-based substrate mixture (Gusek 1998) to 800 mmol SO_4/m^3 -day (Willow and Cohen 1998). Values in this range have been used for design of several pilot and full-scale passive treatment systems. Actual rates may be higher or lower depending on the substrate mixture and testing data for each site.

The greatest molar metal load from the year 1 study was utilized for the calculation (July 11, 2013 sample). Since the planned BCR substrate volume for the year 2 study is 40 gallons, the flow rate was then calculated based on the July 11, 2013 metal load and an assumed 300 mmol SO_4/m^3 -day sulfate reduction rate. Based on the calculation, the recommended flow rate for the year 2 study was 7.3 ml/min (0.002 gpm). This flow rate is approximately one-fifth of the year 1 flow rate. Assuming that the influent MIW will be dosed into the treatment system in batches every 2 hours, a batch volume of 0.91 L is required to maintain this flow rate. For practicality, the batch volume was rounded to 1 L

every 2 hours. Therefore, the actual field flow rate was approximately 8.3 ml/min. Although porosities can vary, assuming 40% porosity, the BCR retention time for this flow rate is approximately 121 hours.

For the SAPS pre-treatment, the targeted retention time will be approximately the same as the BCRs since the reactive substrate volume was also 40 gallons. For the Chitorem pre-treatment, which contained 20 gallons of substrate, the retention time is one-half of the BCR retention time (60.5 hours).

As the study progressed, batch volume modifications were made. These modifications and other activities and system changes are described in Section 2.2.4.2 Operations and Maintenance.

2.2.2.1 Scaffold and Platform Construction

No changes to the scaffold and platform construction were made for the year 2 study. For winterization at the end of the year 1 study, the roof was disassembled and removed to prevent possible collapse due to snow load. The roof was reassembled, and existing tie downs were adjusted for wind protection for the year 2 study.

2.2.2.2 Head Tanks

Due to the slower flow rate and smaller batch volume, the 5-gallon (approximately 19 L) bucket head tanks from the year 1 study were replaced with smaller 8 L tanks. The new head tanks were constructed from 6-inch diameter schedule 40 polyvinyl chloride (PVC) pipe. Each head tank

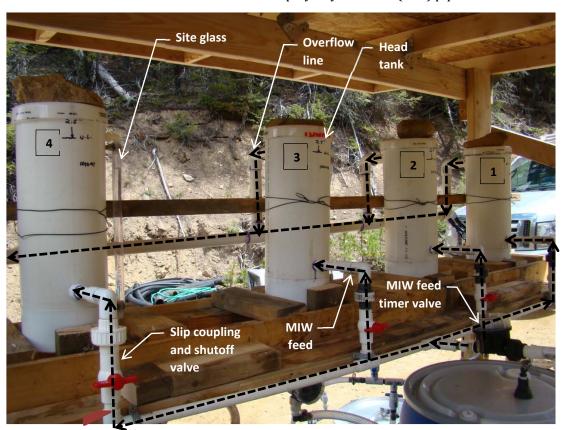


Exhibit 2-1. Head tanks and appurtenances

consisted of an 18-inch long section of pipe with a 6-inch PVC cap glued on the bottom end. A hole was drilled in the bottom cap, and a ½-inch PVC bulkhead fitting was inserted for effluent pipe connection. Appropriate sized holes were drilled and tapped in the tank walls to accept threaded PVC pipe adaptors for the influent piping and overflow piping and the nylon fittings for sight glasses.

Existing influent and effluent plumbing was reused, with minor fitting or piping modifications as needed to connect to the new head tanks. The high density polyethylene (HDPE) overflow tubing used in the year 1 study was replaced with 1-inch PVC pipe and fittings. All four head tank overflows were connected together and routed to a common section of HDPE tubing. The HDPE tubing was routed into the larger 4-inch diameter HDPE corrugated diversion line that routed overflow water away from the treatment system. A sight glass, made from 3/8-inch clear flexible tubing and two 90-degree plastic elbows (3/8-inch barb by 3/8-inch male thread) was attached to the side of each head tank, allowing a visual check of head tank water levels.

The top of the PVC riser pipe inside the head tank functions as the tank outlet. To provide the target 1 L batch volume, a male thread adaptor was glued to the end of a short section of $\frac{1}{2}$ -inch PVC pipe. The riser was then cut to approximately 13-inches long and threaded into the bulkhead fittings in the tank bottom. Using a graduated cylinder to measure each head tank batch volume, the riser lengths were adjusted so each head tank contained 1 L (plus or minus 10%) of water between the overflow elevation and the top of the riser pipe. This approach allowed for increases to the system flow by decreasing the riser pipe height if needed.

The MIW feed timer was set to open 5 minutes before the scheduled dose and remain open for 1 minute to fill all the head tanks simultaneously. The head tank outlet timer valves were programmed to open on the hour of the scheduled dose, 4 minutes after the feed inlet timer valve closed, to discharge the 1 L batch of MIW into each pre-treatment or BCR barrel. The head tank outlet timer valves were set to remain open for 1 minute. The cycle was repeated every 2 hours to provide an average flow rate of 8.3 ml/min. Exhibit 2-1 shows the installed head tanks and associated piping, valves, and fittings.

After completion of the reconstruction shown in Exhibit 2-1, the influent pipelines to each head tank were realigned at system startup (after the incubation period) to enter the head tanks at an elevation above the overflow elevation. This modification was made in order to prevent any backflow through influent lines.

2.2.2.3 Pre-treatment Barrels

Pre-treatment components and system implementation are described in the following sections. Pre-treatment was provided for three of the four treatment trains. As shown on Figure 2.2-1, alkaline addition pre-treatment was installed downstream of head tank 4 (flow line 4), Chitorem pre-treatment was installed downstream of head tank 3 (flow line 3), and SAPS pre-treatment was installed downstream of head tank 2 (flow line 2). Flow from head tank 1 (flow line 1) was fed directly into BCR1 without pre-treatment. The head tank locations and numbers are shown in Exhibit 2-1. The pre-treatment test design generally mirrored the year 1 study, except for the reduced flow rates and the following general changes:

• SAPS substrate was slightly modified, increased in volume, and placed in a larger 55-gallon barrel for flow line 2.

- Chitorem substrate was modified and increased slightly in volume for flow line 3.
- Magnesium hydroxide was replaced with sodium hydroxide (NaOH) for flow line 4.

Treatment train 1 with no pre-treatment provides a control to compare to each of the pre-treatment trains; however, the BCR substrate composition for BCR1 was slightly modified to include Chitorem compared to other BCRs. Since it was determined that pre-treatment was needed to neutralize acidity in the raw MIW from the year 1 study, addition of Chitorem to the BCR substrate was tested to determine if the material provided enough buffering to acidity without pre-treatment.

Alkaline Addition Pre-Treatment

Alkaline addition was conducted using a NaOH solution. The complete pre-treatment system required the use of a solar charger and battery-powered dosing pump, timer switch, a NaOH stock tank, and associated piping and tubing. The process operated in the same manner as in the year 1 study except for the replacement of the base, and since NaOH remains in solution, the mixer associated with the stock tank to suspend the magnesium hydroxide slurry was not necessary for year 2. Overall, the system operated sequentially with a batch of NaOH solution fed into the 55-gallon pre-treatment barrel, followed by a batch flow of influent MIW at timed intervals, a set reaction time inside the reactor (static flow condition), and an effluent timer valve that drained the treated water into a subsequent BCR barrel.

A 25% concentration by weight NaOH solution was purchased in liquid form. Titration testing conducted during startup determined that an alkaline addition rate of 25 ml of 1% NaOH solution was needed per 1 L of raw MIW to raise the pH to approximately 5.0 su. The feed concentration and total volume in the NaOH dose were determined so that the volume pumped would be within the operating limits of the metering pump and timer. Based on the titration, a 9 L batch of 1% NaOH solution was made at startup by adding 360 ml of the 25% solution to 8,640 ml of distilled water and placed in the 10-liter stock tank. The stock tank was a factory made carboy equipped with a screw lid and a bottom outlet to which a valve was attached. Partial batches were made each week as necessary to ensure the stock tank did not completely empty between field visits. The suction end of the peristaltic tubing was connected to the stock tank outlet valve and routed through the metering pump head. The Masterflex C/L® variable speed peristaltic pump was initially set at a flow rate of 25 ml/min for a duration of 1 minute. The pump would operate for 1 minute every 2 hours at 5 minutes before the hour. The metering pump fed the NaOH solution through 2.79 millimeter (inside diameter) PharMed® tubing to the 55-gallon pre-treatment barrel. Four minutes after the metering pump shut off, raw MIW discharged from the head tank would enter the pre-treatment tank to mix with the NaOH solution. Changes to the NaOH dosing operation were implemented later and are summarized in Section 2.2.4.2.

Chitorem Pre-Treatment

A Chitorem pre-treatment system was installed in the same 30-gallon barrel as year 1. Previous substrate was removed, and a new batch of substrate was mixed and added to the barrel. Modification to the substrate mixture for year 2 included a decreased percentage of both sand and Chitorem and an increased percentage of pea gravel, as shown in Table 2.2-1 below. The Chitorem media was mixed with standard construction sand and pea gravel at a ratio of approximately 12% sand, 72% pea gravel, and 16% Chitorem by volume. The construction sand and pea gravel were purchased from a local hardware store. In addition, approximately 3.75 gallons of inert gravel was placed in the bottom of the barrel as the drainage layer.

The large decrease in the Chitorem percent from 40 to only 16% compared to the year 1 study was based on both hydraulic bench-scale testing performed at the CDM Smith Denver Treatability Laboratory and successful Chitorem treatment results for a similar pilot treatment system and MIW type operated in 2013 at the Blue Ledge Mine Superfund Site in Northern California. Based on the other pilot study, this lower percentage was determined to be sufficient for the desired treatment effectiveness (Anton, Personal Communication). Hydraulic bench-scale testing results with the 16% Chitorem and higher pea gravel percentage suggested this mixture would provide adequate hydraulic conductivity to maintain flow-through operation. Hydraulic testing using the year 1 mixture proved to have limited hydraulic conductivity after several weeks of testing.

Standard dimensions for a plastic 30-gallon barrel used in the study are 18.6-inch inner diameter (ID) by 29.5 inches tall, with a total volume capacity of 32 gallons. Twenty gallons of the reactive substrate mixture were added to the barrel along with the 3.75 gallons of inert gravel on the bottom of the barrel with effluent collection piping embedded in the gravel. The overall substrate volume equated to approximately 20 inches of substrate in the barrel (measured as 9.5 inches from the top). The operational water level was set approximately 3 inches above the top of the substrate elevation. Previously used plumbing was reassembled, and no other changes to the Chitorem pre-treatment barrel were made for the year 2 operation.

SAPS Pre-Treatment

The SAPS pre-treatment system was the same as in year 1, except the SAPS substrate mixture was slightly modified and increased in size to fit in a 55-gallon barrel. A total of 40 gallons of reactive substrate was installed along with 7.5 gallons of inert pea gravel on the bottom of the barrel. The SAPS substrate consisted of 0.75- to 1.5-inch size limestone gravel, overlain by a manure, compost, and pea gravel layer. By volume percent, the manure/compost/pea gravel layer consists of approximately 33% of the volume (13.0 gallons), and the limestone consists of approximately 67.5% of the volume (27.0 gallons). The compost and manure mixture was split evenly based on volume (5.0 gallons for each material), and 3.0 gallons of inert pea gravel was added to the mixture to increase hydraulic conductivity of the mixture. Percentages and volumes for the SAPS pre-treatment are presented in Table 2.2-1 below.

Standard dimensions for a plastic 55-gallon barrel used in the study are 22.7-inch ID by 35.3 inches tall, with a total volume capacity of 57 gallons. The overall 47.5 gallons of substrate mixture equated to approximately 26.8 inches from the bottom of the barrel. The operational water level was set approximately 3 inches above the top of the substrate elevation. A bulkhead fitting was installed through the barrel lid, and an influent distribution piping gallery was installed. The piping gallery was suspended approximately 2-3 inches above the operational water level. A bulkhead fitting was also installed on the bottom of the barrel with effluent collection piping. Installation details for influent and effluent components were described for other barrels in the year 1 technical memorandum (Appendix A). Other previously used plumbing was reassembled, and no other changes to the SAPS pre-treatment were made for the year 2 operation.

2.2.2.4 BCR Barrels

The BCR substrate percentages and the SAPS and Chitorem pre-treatment substrate percentages are provided in Table 2.2-1. The same substrate materials were utilized as for year 1 with slight changes in the percent mixtures. The primary change for year 2 was to double the limestone percentage to 30% due to the acidic nature of the Danny T adit MIW. With the increase in limestone, percentages of

Table 2.2-1. BCR and Pre-Treatment Barrel Substrate Percentages and Volumes for Year 2 Study

	BCR	1	BCRs 2 th	rough 4	Chitorer Treatn		SAPS Pre-Treatment	
Substrate	Substrate Mix (v/v %)	Volume (gallon)						
Sawdust	12.5%	5.0	12.5%	5.0				
Wood chips	25.0%	10.0	25.0%	10.0				
Compost	12.5%	5.0	12.5%	5.0			12.5%	5.0
Fresh dairy manure	15.0%	6.0	20.0%	8.0			12.5%	5.0
¾ to 1 ½-inch limestone	30.0%	12.0	30.0%	12.0			67.5%	27.0
Chitorem	5.0%	2.0			16.0%	3.2		
Construction sand					12.0%	2.4		
Inert pea gravel					72.0%	14.4	7.5%	3.0
Subtotal	100.0%	40.0	100.0%	40.0	100.0%	20.0	100.0%	40.0
Drainage pea gravel		7.5		7.5		3.75		7.5
Total Substrate		47.5		47.5		23.8		47.5

v/v = volume fraction per volume total

sawdust, wood chips, and compost were decreased. The manure percentage was also increased from 12.6 to 20% for the year 2 study to provide more inoculum and readily soluble organics. For BCR1 that did not receive pre-treatment, Chitorem was added to the BCR barrel at a rate of 5% by volume. To displace the added volume, the manure quantity was decreased to 15%.

A photograph of the BCR barrels and effluent piping is shown in Exhibit 2-2. Existing discharge bulkheads, piping, valves, and other fittings were utilized from the year 1 study. The inlet to each BCR was modified for year 2 to flow through the barrel lid rather than through the side of the barrel. A bulkhead fitting was installed in the barrel lid and an influent piping distribution gallery was installed using the same design as the pre-treatment SAPS and Chitorem barrels.

The effluent piping array was modified after each sampling port to combine all four BCR effluents into one ½-inch PVC pipe to feed the post-treatment system. After combining, the PVC was converted to 1-inch HPDE pipe, and a sampling port was installed to collect a combined effluent sample. Approximately 15 feet of piping was installed to provide inline mixing prior to the sampling port.

Similar to the pre-treatment barrels, the top elevation of the vertical riser pipe determined the operational water surface. For each BCR, the height of substrate in the barrel was slightly different due to heterogeneity and compaction that can occur. The operational water surfaces for each BCR were set at 3 inches above the top of the substrate layer. Due to slightly different substrate heights, operational water surfaces for each barrel were set at slightly different elevations. Water surfaces were set at 28.3, 29.3, 30.3, and 31.3 inches for BCR1, BCR2, BCR3, and BCR4, respectively. Distribution galleries, connected to the barrel lids, extended down between 2 to 3 inches below the top of the barrel.

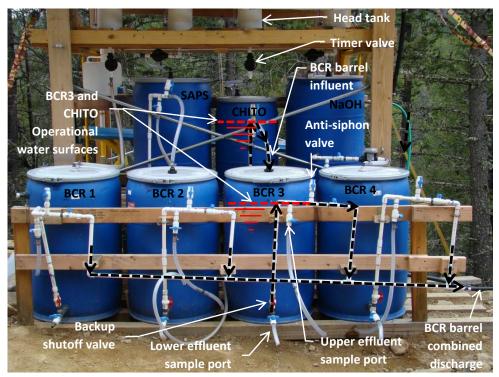


Exhibit 2-2. BCR barrels and effluent assemblies

2.2.2.5 Solar Power System

Similar to the year 1 study, 12-volt battery power was used to operate the peristaltic pump and pump timer. The solar charging panels, batteries, and controller were reinstalled in the same configuration used in year 1. The only change was to disconnect the 12-volt to 120-volt inverter since no mixer was required for the alkaline addition system in year 2. The inverter was disconnected from the system but left mounted in the control box.

2.2.2.6 Post-Treatment

A post-treatment system for all four combined BCR effluents was implemented to evaluate if aeration, an aerobic wetland, and gravel filtration could reduce concentrations of BOD, ammonia, sulfide, nitrate/nitrite, and phosphate. The four BCR effluents were combined in order to provide sufficient water flow to simulate aeration activity of a larger stream and simplify the study by not having to install infrastructure for each effluent line. Based on other studies, the low flow for each BCR would result in stagnant and non-aerating conditions. The four BCR effluents were combined into a 1-inch HDPE pipe and a sampling port installed to represent the combined influent to the post-treatment system. An annotated photograph of the post-treatment system is provided in Exhibit 2-3 below.

The combined effluent after the sampling port discharged into a 3-inch corrugated HDPE pipe and through the cascade aeration system. All 3-inch corrugated HDPE pipe was modified to increase aeration by drilling 2-inch diameter holes through the top of the pipe runs with a hole saw bit every 6 inches. The cascade system consists of two 18-inch by 25-inch (bottom dimension) plastic bins

situated approximately 30 feet apart. The bins were situated on leveled ground with the influent 3-inch HDPE pipe strapped to the top of the influent side of the bin and the effluent installed through the opposite side wall. The effluent was set to provide an elevation within the bin of approximately 4 inches and installed by drilling a hole through the side of the bin and installing a 1-inch threaded male adapter with conversion fitting back to 1-inch solid HDPE pipe. The 1-inch HPDE pipe then discharged back into an open 3-inch corrugated HDPE pipe.

After the aeration bins and approximately 100 feet of 3-inch HDPE corrugated pipe, the aerobic wetland system was installed. The aerobic wetland consisted of a 22-inch by 42-inch plastic bin lined with 7 inches of pea gravel bedding and planted with transplanted wetland plants. The wetland plants were collected using 5-gallon buckets and shovels from a wetland area located on USFS land below the Town of Barker. The wetland plant borrow area was the same general location where test pits were excavated in 2014 to evaluate the potential for a passive treatment installation in this area. Whole clods of wetland plants were fitted into the bin to completely fill the surface area.

Exhibit 2-3. Post-treatment system

The influent and effluent for the aerobic wetland bin was installed using the same construction approach as the cascade bins. The effluent was installed in the aerobic wetland bin at approximately 2 inches from the top of the bin to saturate the plants but allowed emergent vegetation to acclimate and grow. One-inch HDPE effluent piping from the aerobic wetland bin was routed to the final gravel filtration bin. The gravel filtration bin consisted of the same size bin as the aerobic wetland and contained a berm of pea gravel placed across the inlet side of the bin. Larger rocks were placed in the bin to stabilize the sloped pea gravel. The effluent from the final bin was placed at approximately half the distance of the bin to provide a water depth of approximately 10 inches. Just below the effluent pipe elevation, a sampling port (POSTE location) was installed that consisted of a bulkhead fitting installed through the plastic bin side wall, connected to a manual shutoff valve and sample tubing. Samples were collected by opening the valve slowly to fill bottles.

2.2.3 System Startup and Shutdown

Consistently wet manure was utilized for the year 2 study, compared to some dry and some wet in year 1. Therefore, no further incubation of the manure was necessary. Pre-treatment and BCR substrate materials were mixed in batches using hand tools on a plastic tarp. Similar textured materials, such as a manure and compost, were mixed first, followed by mixing in sawdust, then wood chips, and lastly limestone. A rake and shovel were used to mix the materials. The tarp was also used to tumble the materials together with two people positioned on either side of the tarp. Each BCR mixture or pre-treatment mixture was completed in batches, and the materials were loaded into the barrels. A photograph of a BCR substrate batch is shown in Exhibit 2-4.

The sequence of loading the barrels consisted of the SAPS and Chitorem pre-treatments first, followed by the BCRs. When loading the material into the pre-treatment SAPS, Chitorem, and BCR barrel 1 (no pre-treatment), influent MIW was added as the material was placed in the barrels to aid in saturating the substrate. The substrate was mixed using a stick of PVC pipe during filling of MIW and substrate material. The substrate was added to BCR barrels 2 through 4 without saturating since these barrels were to receive pre-treated water only. MIW was added manually to near the top of the pre-treatment SAPS and Chitorem barrels until the material was saturated and had sufficient standing water to commence the recycle process.

The pre-treatment barrel effluent valves were opened to allow the MIW to drain through the barrels for the recycle process. Effluent water was recycled back through the pre-treatment barrels for approximately 1 pore volume by collecting the water in 5 gallon buckets and manually pouring back into the top of the barrel. Standing water was always maintained in the barrel during the recycle process. Utilizing an estimated 40% substrate porosity, 1 pore volume for the 20 gallon Chitorem substrate is 8 gallons, and 1 pore volume for the 40 gallon SAPS barrel is 16 gallons. At approximately half way through the recycle process for the pre-treatment barrels, some of the pre-treatment effluent water was diverted into the subsequent BCR barrels (BCR2 and BCR3). Once the recycle volume was completed, the pre-treatment effluents were allowed to drain to their designed operating level into the BCRs. More MIW was added to the pre-treatment barrels until the BCRs were saturated and filled to their operating level, plus additional volume to provide for recycle. The same recycling process was

then completed for BCRs 2 and 3 for volume of approximately 16 gallons (1 substrate pore volume). Recycle for BCR1 was conducted using the same process except raw MIW was added directly to the BCR barrel.

As in year 1 for the alkaline addition pretreatment, MIW was added to the pretreatment barrel up to the operational water level at the effluent, followed by an additional volume adequate to fill BCR barrel 4. The additional volume was estimated based on the approximate porosity of the BCR substrate, plus additional water above the substrate surface. Based on the volume of water

Exhibit 2-4. BCR2 substrate mixture

added to the barrel above the effluent level, the MIW was batch treated with the volume of NaOH solution scaled up from titration testing. The barrel was mixed with a piece of PVC pipe and tested with a pH meter to allow time for reaction and ensure the target pH range was reached. The final pH of the pre-treatment batch was confirmed to be 5.0 su, then the effluent valve was opened to drain the water into BCR 4 after a period of settling. Additional batches of pre-treated MIW were made as necessary to fill the BCR and provide sufficient volume for recycle. Sixteen gallons of treated water was then recycled through BCR4.

Various plumbing components were disassembled after the conclusion of the year 1 study. Decommissioning of year 1 substrates from the barrels and reconstruction of the year 2 system was conducted from June 3 through June 6, 2014. Recycling water through all year 2 barrels was completed by June 5 to begin the incubation period. On June 9, miscellaneous plumbing work was completed, all timer valves were programmed and tested, batch NaOH solution was made, and the NaOH dosing system was programmed and calibrated. Flow through the treatment system began at around 1300 on June 9, 2014, and field samples were collected shortly thereafter from the influent, pre-treatment, and BCR barrels. Laboratory samples were then collected on June 9 from the influent, pre-treatment, and BCR barrels. Sampling of the post-treatment system began the following week. Further details on sampling are provided in Section 2.2.4 below. The system operation continued until September 29, 2014 for a total of 16 weeks.

2.2.4 Sampling and Maintenance Activities

This section discusses the field sampling schedule, procedures, sampling locations, and system maintenance activities during operation.

2.2.4.1 Sampling Activities

Water samples were collected from the influent MIW sampling port (INF), Chitorem (CHIT) and SAPS (SAPS) pre-treatment barrel lower effluent sampling ports, the alkaline addition effluent port (NAOH), the four BCR barrel lower effluent sampling ports (BCR1, BCR2, BCR3, BCR4), the combined post-treatment influent (POSTI), and the post-treatment effluent (POSTE). Sampling for the influent, pre-treatments, and BCRs began on June 11 and continued bi-weekly throughout the testing period, except for the last 3 weeks of the study when laboratory sampling was conducted weekly in anticipation of winter conditions and system shutdown. Sampling of the post-treatment influent and effluent began on June 24 and continued bi-weekly in conjunction with other samples collected. Sample collection for field parameters was conducted on a weekly basis. A total of 10 laboratory sample events were conducted from June 11 through September 29. Since sampling of the post-treatment system commenced after 2 weeks of operation, this system was only sampled for laboratory parameters a total of nine times.

During each sample event, the system was inspected and maintenance conducted as necessary. Field parameters (pH, specific conductance, temperature, ORP, and DO) were collected using a multiparameter Horiba U-5000 meter or YSI 556 meter. The Horiba meter was used for the first week of sampling work, and the YSI meter was used for the remainder of the study.

Laboratory analysis of pilot study water samples was conducted by Energy Laboratories in Helena, Montana and the EPA's Environmental Services Assistance Team (ESAT) laboratory in Denver, Colorado. Metals analysis for the last sample event was analyzed through EPA's Contract Laboratory

Program (CLP). Energy Laboratories provided analysis of acidity, sulfide, BOD, and orthophosphate. ESAT provided analysis of metals, alkalinity, ammonia, chloride, fluoride, nitrate/nitrite, and sulfate.

All 10 sample locations were analyzed for total and dissolved metals, acidity, alkalinity, chloride, fluoride, nitrate/nitrite, orthophosphate, and sulfate. Ammonia, BOD, and sulfide were also analyzed for the BCR effluents, post-treatment influent, and post-treatment effluent. Dissolved metals, alkalinity, chloride, fluoride, nitrate/nitrite, orthophosphate, sulfate, and ammonia were field filtered through a 0.45 micron in-line filter and dedicated tubing with a peristaltic pump. Some exceptions occurred to the sampling schedule and analyses as follows:

- June 11: POSTI and POSTE laboratory samples were not collected since the post-treatment system was not in full operation during the first sample event. The lack of post-treatment sampling was anticipated and in accordance with the SAP addendum #2.
- June 11: Sulfide bottles were not available for sampling; therefore, sulfide samples were not collected.
- June 24: Sulfide and BOD exceeded their holding times in storage; therefore, sulfide and BOD samples were not submitted for analysis.
- September 16: POSTI and POSTE samples were not collected and analyzed for dissolved metals, alkalinity, ammonia, chloride, fluoride, nitrate/nitrite, orthophosphate, and sulfate due to a lack of in-line filters available for these samples to be filtered for analysis. Total metals, acidity, BOD, and sulfide samples were still collected and analyzed for POSTI and POSTE locations, and all other sample locations/parameters were collected and filtered as planned for this sample event.
- September 29: Sample bottles for ESAT were mistakenly stored in CDM Smith's storage unit refrigerator and never submitted for analysis. After discovery of the error in January of 2015, metals bottles were submitted to a CLP laboratory for analysis since they were preserved and still within holding time. All of the wet chemistry analyses intended for ESAT exceeded holding times and were not submitted for analysis.

All samples were securely packaged and delivered to the laboratories for analysis, following the procedures outlined in the SAP addendum #2 (CDM Smith 2014a). The minimum sample volumes acceptable by the analytical laboratories for analysis were used to the extent possible because of the low treatment flow rates of the system.

2.2.4.2 Operations and Maintenance

Pilot system operation was routinely checked every week, field parameters measured every week, and laboratory samples were collected every other week. Routine operational checks included the following:

- The 12-volt timer clock was checked against a mobile telephone time or personal watch to make sure the system had been in continuous operation since the last sample event.
- The charge controller indicator lights were observed to check for low battery voltage.
- Timer valve operation was observed to make sure the timing sequence had not changed.

- Timer valves outlet tubing was disconnected to check for valve leakage.
- Timer valve indicator lights were observed to check for low timer battery voltage.
- The amount of NaOH solution in the stock tank was observed as a measure of whether the dosing system had functioned properly.
- The NaOH metering pump tubing was either advanced in the pump head or replaced with new tubing, and the pump output was reset.

Operational problems occurred during pilot operation that required non-routine procedures. These procedures included any action necessary to remedy the malfunctions. Non-routine procedures and general observations included the following:

June 11

• Metering pump peristaltic tubing had pulled out of the alkaline addition pre-treatment tank. As a result, alkaline addition pre-treatment tank pH was low at 3.21 su. The tank was bulk dosed with 400 ml of 1% NaOH solution. After the bulk dose, the pH was measured at 5.06 su.

June 17

- Replaced NaOH metering pump tubing and set metering pump output to 24.5 ml/min.
- Alkaline addition pH of 4.07 su was measured at the effluent sampling port approximately 45 minutes after NaOH dose. All future routine pH measurements were made at the pretreatment tank drain.

June 24

- At 12:00, the post treatment feed piping was observed to have a low spot and effluent was leaking from the piping onto the ground. The tubing was straightened and supported to avoid leaking.
- The alkaline addition pre-treatment tank pH was 3.2 su, lower than the target of pH 5 su. At 13:45, the metering pump speed and output was increased to 30 ml/min from the previous rate of 24.5 ml/min.
- Not enough water was available at the post influent sample tap to collect the required sample volume. Equal volumes were collected from the four BCR effluent sample taps for a composite sample instead. This regimen became the standard procedure for all post-influent samples (POSTI).
- At 14:00, the head tank timer valve #3 was observed to have a small amount of flow when the timer valve was closed, indicating the timer ball valve was leaking. The timer valve was replaced with a new valve.
- Disassembled, cleaned, and lubricated the timer valve removed from head tank #3 on June 17.

July 2

- The alkaline addition pre-treatment tank pH was measured at 2.83 su. Metering pump output checked at 25 ml/min, down from the 30 ml/min set on June 24. Advanced tubing in metering pump without changing the pump setting and measured flow at 32 ml/min, indicating the peristaltic tubing had deteriorated.
- At 07:45, observed the head tank timers #2 and #4 leaking and timer #1 dripping. Replaced #4 timer with the rebuilt timer #3 removed the previous week. Replaced #2 timer with a new timer. At 08:00, programmed timers #2 and #4. Cleaned and lubricated timer #1 and re-installed it with no change to the programming.

July 8

- Measured alkaline addition pre-treatment tank pH at 3.21 su. Checked metering pump output at 28 ml/min, down slightly from the 32 ml/min set on July 2. Reset the metering pump output to 48 ml/min to increase pH in alkaline addition pre-treatment tank.
- At 11:45, installed new timer valve on #4 head tank, as it was leaking again. At 12:00, programed new timer. At 12:00, head tank #1 timer valve was replaced as it was stuck in the open position.

July 15

Measured alkaline addition pre-treatment tank pH at 2.94 su. Suction tubing for the
metering pump had become disconnected from the NaOH stock tank outlet fitting, which
may explain low pH. Re-installed tubing to tank outlet valve and taped in place. Installed
new peristaltic pump tubing and set metering pump output to 50 ml/min.

July 22

Checked metering pump output at 42 ml/min, down from the 50 ml/min set on July 8.

July 29

- At 09:45, observed head tank timer valve #2 leaking, and head tank timer valve #4 not closing. Replaced both with new timers. Head tank timer valve #1 dripping slightly but not replaced.
- Measured alkaline addition pre-treatment tank pH at 2.80 su. Checked metering pump output at 45 ml/min down from 50 ml/min set on July 22. Advanced tubing and set pump output to 55.2 ml/min.

August 6

 Checked metering pump rate at 45 ml/min. Reversed peristaltic tubing and left pump output set to 44 ml/min since alkaline addition pre-treatment tank pH was measured at 5.23 su.

August 12

- Observed timer valves for head tanks #1, #2, and #4 leaking. Installed new timers for all three head tanks and reprogrammed them at 10:00.
- At 10:55, measured alkaline addition pre-treatment tank pH at 3.84 su.
- After measuring field parameters, MIW dose was increased to 1.5 L/dose (previously 1 L/dose) by shortening head tank riser pipes. Original riser lengths, new riser pipe lengths, and new dose volume are listed in Table 2.2-2 below:

Table 2.2-2. Riser Lengths and Measured Dose Volume on August 12

Head Tank Number	Original Riser (inch)	New Riser (inch)	Dose Volume (milliliter)
1	13 1/8	12 3/64	1490
2	13 1/8	12 3/64	1560
3	13 1/4	12 3/64	1640
4	13 1/8	12 1/2	1650

• Set metering pump timer to 2 minutes per cycle, advanced tubing, and set pump output to 37.5 ml/min, for a total NaOH dose of 75 ml, or 50 ml per 1 L MIW.

August 19

- At 08:45, observed head tank #4 to be fully ahead of schedule. No immediate cause was determined. At 10:00, head tank #4 was observed to be empty, indicating a possible need to reprogram the timer. Reset timers #1 and #4.
- At 09:20, NaOH metering pump output checked at 31 ml/min, down from 37.5 ml/min set on August 12. Advanced tubing in pump and adjusted output to 39 ml/min.

August 26

- High spring-like flows were observed at the adit, and feed tank was overflowing.
- Observed head tank timer #4 leaking, and replaced the timer.
- At 12:45, alkaline addition pre-treatment tank pH was measured at 2.82 su. Metering pump suction tubing came loose from NaOH stock tank, draining stock tank. Re-attached tubing and clamped in place.
- At 14:00, batteries in head tank timer valves #1, #2, #3, and #4 and feed timer were replaced, and the timers were re-programed.
- At 16:30, the MIW dose was increased to 2.0 L/dose (previously 1.5 L/dose) by shortening head tank riser pipes. Original riser lengths, existing riser lengths, new riser lengths, and new dose volume are listed in Table 2.2-3 below:

Table 2.2-3. Riser Lengths and Measured Dose Volume on August 26

Head Tank Number	Original Riser (inch)	Existing Riser New Riser (inch) (inch)		Dose Volume (milliliter)
1	13 1/8	12 3/64	10 31/32	2080
2	13 1/8	12 3/64	10 31/32	2080
3	13 1/4	12 3/64	10 31/32	2220
4	13 1/8	12 1/2	11 27/64	2130

• After 16:30, the NaOH dose was set to 117 ml/dose by adjusting the metering pump output to 39 ml/min and increasing the dose time to 3 minutes per cycle. After 16:30, the alkaline addition tank was bulk dosed with 880 ml of 1% NaOH solution.

September 2

- At 09:15, the adit flow was observed to have returned to normal. The feed tank overflow
 was plugged, and MIW was running over the tank lip. Removed and cleaned the tank
 overflow piping.
- At 12:00, head tank timers #3 and #4 were leaking, so both timers were replaced.
- At 14:15, set dose back to 1 L/dose by installing longer head tank risers. Riser lengths and dose volumes for each head tank are shown in Table 2.2-4 below:

Table 2.2-4. Riser Lengths and Measured Dose Volume on September 2

Head Tank Number	Riser (inch)	Dose Volume (milliliter)		
1	13 1/8	1070		
2	13 1/8	1070		
3	13 1/4	1160		
4	13 25/32	980		

- At 14:42, the metering pump output was set to 40 ml/min, and the metering pump timer was reset to 2 minutes per cycle.
- At 14:45, the head tank #2 timer was replaced.
- At 17:15, the NaOH dose was set to 56 ml/dose by adjusting metering pump output to 28 ml/min and leaving the timer set to 2 minutes per cycle.
- New batteries were installed in the alkaline addition effluent timer.

September 9

- At 12:10, start times on head tank timers were re-set.
- Checked metering pump output at 24 ml/min, down from 28 ml/min set on September 2. Advanced the tubing and reset pump output to 28 ml/min.

September 16

- At 10:30, the feed line sample tap was observed to have frozen and broken, and the MIW feed water was running out on the ground instead of into the head tanks. Repaired the damage by replacing the valve. Noted that the max/min thermometer recorded a minimum temperature of 40 degrees Fahrenheit, which possibly indicated the thermometer was not calibrated properly. Available weather data from the Stringer Creek weather station at an elevation of 6,550 feet (ft) indicate the temperatures began to go below freezing on the night of September 10 and continued to go below freezing until September 14. The coldest night was at 22 degrees Fahrenheit on September 12. Therefore, it is likely the influent pipeline froze at some point during this period and flow was disrupted to the treatment system after that point until maintenance was conducted on September 16.
- The alkaline addition tank pH was measured at 11.47 su due to lack of influent MIW while the NaOH metering pump continued to operate.

September 23

- At 15:00, checked metering pump output at 24 ml/min, advanced tubing, and reset pump output to 28 ml/min.
- Around 15:00, new batteries were installed in the head tank timers #1 and #4.

2.3 Tiger Mine Treatability Study and Investigation

The Tiger Mine bench-scale treatability study was conducted from early July through the end of August in CDM Smith's Denver, Colorado treatability laboratory. The bench-scale treatability study included titrations and comparative container tests utilizing various amendments and methods. MIW from the Firehose adit was collected from the site in early June 2014 and utilized in the bench-scale treatability study. Inspection of the lower shaft was completed in August 2014. Based on results of the inspection, application of the field in-situ demonstration study was not implemented.

2.3.1 MIW Collection

MIW was collected using 2.5-gallon cubitainers (total of 20 gallons collected) and shipped to the Denver laboratory for refrigerated storage until used in the study. Cubitainers were completely filled and air bubbles removed to the greatest extent possible to minimize oxidation. An MIW sample was collected for laboratory analysis using appropriate containers and preservatives and shipped to the Region 8 EPA ESAT laboratory in Denver, Colorado. Laboratory analyses included total and dissolved metals, sulfate, chloride, fluoride, alkalinity, and total dissolved solids (TDS). Field parameters, including pH, specific conductance, ORP, DO, and temperature, were also collected. This sample documented the initial water chemistry at the start of the testing.

2.3.2 Laboratory Bench-Scale Study

This section provides the study methods and sampling activity details for the Tiger Mine laboratory bench-scale study.

2.3.2.1 Alkaline Addition Titrations

Titration tests were conducted using a 25% by weight NaOH solution, Chitorem fines, and limestone fines. These materials represent substances that could potentially be injected (pumped) through a well, pipe, or tube. Chitorem is a food waste product from JRW Bioremediation derived from dried and crushed crab shells (entire body with meat removed). The material is crushed in a ball mill to a specified particle size. The Chitorem product used in this study is the same product utilized in the Danny T study. The Chitorem particle sizes are relatively fine, with the majority of the material (e.g., greater than 95%) passing a 10-mesh (2 millimeter) sieve. The material was further sieved in the laboratory to 100% less than 10 mesh for titrations. The limestone product to be used for the study was obtained from the Graymont mine in Townsend, Montana. The product is a screen reject material containing particles less than ¼-inch. The limestone material was further sieved to 100% less than a 10 mesh (2 millimeter) for titrations.

Alkaline amendments were added slowly by titration method into a continuously stirred open container to reach a pH of approximately 5.0 su. Titration tests were conducted using 1 L of MIW. The pH was recorded after each added dose of alkaline reagent. Sufficient time was allowed after each dose to allow the neutralization reaction to stabilize. After the endpoint pH was reached, the treated water was allowed to settle for 1 hour and then decanted into sample containers for analysis. Samples were collected for total and dissolved metals, total alkalinity, nitrate/nitrite, chloride, fluoride, and sulfate and submitted to an analytical laboratory (ESAT). For metals, only Al, As, Cd, Cu, Pb, Mn, and Zn were analyzed. Dissolved metals, alkalinity, and anions (nitrate/nitrite, chloride, fluoride, and sulfate) were filtered using a peristaltic pump, dedicated tubing, and an in-line 0.45 micron filter. A sample of the raw untreated water plus a duplicate were submitted to ESAT for the same parameters.

Based on the quantity of alkaline reagent added, calculations were performed to scale up the quantity for each batch test to receive alkaline addition to reach the endpoint pH of 5.0. The titrations provide an ideal dosage of alkaline reagent required due to simulated mixing; however, treatment within the underground mine or within a fractured bedrock groundwater system will not be well-mixed. Therefore, field application would require dosing of excess reagent to account for this inefficiency and uncertainty.

2.3.2.2 Batch Tests

Batch tests were conducted using 1-gallon cubitainers with spigots. A total of 2.5 L of MIW was added to each cubitainer. Approximately 1 L of inert pea gravel was also added to each cubitainer to provide a media for microbial growth to occur, which would simulate the presence of rock materials within an underground mine area. An array of organic and neutralization substrates were utilized for the batch study based on previous experience with other batch studies and literature research. The substrates utilized include the following:

- Ethanol (190 proof), store bought
- Methanol, 99.97%, VP M1 racing fuel with no fuel additives
- Molasses (food grade)
- Chitorem sieved to minus 2 mm
- Dairy manure extract inoculum

- Sodium hydroxide, 25% by weight
- Limestone fines sieved to minus 2 mm

Table 2.3-1 provides the array of substrate mixtures and doses, all of which include some combination of organic material, an alkaline material, and inoculum. A total of 18 tests were completed for the insitu treatment bench-scale study, including a control test that had no substrates added except for the inert pea gravel.

Table 2.3-1 Tiger Bench-Scale Treatability Study Container Test Setup

		Organic S	Substrates		А	lkaline Materia	Inoc	culum	
Container Test Number	Methanol	Ethanol	Molasses	Chitorem	25% NaOH	Limestone Fines	Chitorem	Manure Extract	Chitorem
1	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	25 ml				4.575 ml			25 ml	
3	50 ml				4.575 ml			25 ml	
4	100 ml				4.575 ml			25 ml	
5		25 ml			4.575 ml			25 ml	
6		50 ml			4.825 ml			25 ml	
7		100 ml			4.575 ml			25 ml	
8			25 ml		4.800 ml			25 ml	
9			50 ml		4.575 ml			25 ml	
10			100 ml		4.575 ml			25 ml	
11				15 g			†		†
12				22 g			†		†
13				34 g			†		†
14				7 g	4.575 ml		†		†
15				7 g		8.2 g	†		†
16			50 ml			14.7 g		25 ml	
17			50 ml	15 g			†	25 ml	†
18		25 ml		7 g	4.575 ml		†	25 ml	†

g = gram; †Chitorem as an alkaline material or inoculum is indicated because these properties are inherent to the material as part of the organic substrate dose; Chitorem was not dosed in addition to the organic substrate dose.

The first three organic substrates listed above (ethanol, methanol, and molasses) are liquid solutions, whereas the Chitorem was a slurried solid in a guar gel, as described below. The dairy manure extract was utilized as an inoculum of SRB to initiate the sulfate reduction process. More than one dose of each organic substrate was tested to evaluate the effectiveness of different doses and identify the minimum dose needed to provide effective treatment. In the case of Chitorem tests, the substrate material contains calcium carbonate in the shell material to provide neutralization and also provides its own SRB inoculum; therefore, some tests were conducted for this material as the sole treatment substrate, and some tests were conducted with another alkaline material and inoculum addition to augment the Chitorem. All tests contained an inoculum of either manure extract or Chitorem.

All alkaline materials, guar, <u>and Chitorem, and propylene glycol</u> were in stock at the laboratory. Alcohols and molasses were purchased to complete the laboratory work. Wet dairy manure was

obtained from a dairy farm near Denver, Colorado. The moist manure was collected in plastic bags and transported to the Denver laboratory for refrigerated storage until use. The inoculum slurry was created by first processing the manure (grinding/breaking) into smaller pieces as necessary and combining with deionized water at a ratio of 10 L water to 0.2 L manure. After mixing and allowing it to incubate at room temperature for at least 24 hours, the slurry was poured through a 2 mm sieve to remove larger suspended solids.

For addition to the batch test containers, the sieved Chitorem was suspended in a guar gum gel in order to simulate the potential application of this solid material in an injection-type application. Guar gels are derived from ground guar beans that are further processed with minerals (e.g., borax or calcium) to cause the ground powder to self-gel in water. Wyo-Ben® G-150 guar material was utilized to create the guar gel suspension. The selected Chitorem:water:guar ratio utilized was 20:79.43:0.57 by weight, based on recommendations from JRW (Chitorem manufacturer). For example, a batch of 0.57 g G-150 guar, 79.43 g deionized water, and 20 g Chitorem could be created, or scaled accordingly to the mass of Chitorem needed. The guar was mixed with the water for approximately 10 to 15 minutes until a gel formed on a stir plate. Chitorem fines were then added and sufficiently mixed for several more minutes.

After addition of gravel and the MIW, alkaline material doses were added (NaOH solution, limestone, or Chitorem), containers were closed, and each was tumbled for several seconds to mix the materials. After allowing time for settling of precipitates, the pH of each container was measured. Initial pH test results indicated containers 6 and 8 were less than 4.0 su; therefore, additional NaOH solution was added to these containers. Based on results for containers 15 and 16 that also had a low pH, additional limestone fines were added to these containers. The total added quantities are provided in Table 2.3-1.

After the initial pre-treatment pH was reached (generally between 4 and 5 su), organic substrate doses and manure inoculum (where applicable) were added to each container. Following introduction of all substrates, each cubitainer was collapsed to remove as much air space as possible, and the spigot was sealed. The cubitainers were then mixed gently and placed on the bench top so that the spigot was completely submerged. This allowed for opening of the spigots for sample collection without introducing significant air into the containers. During the first several weeks of the study, buildup of biogenic gases occurred in some containers. As necessary, these gases were released from the cubitainers by slowly opening the spigot while applying pressure to limit any inflow of air into the containers.

Addition of all substrates was completed on July 9. The containers were allowed to incubate for a total of 7 weeks until August 26. After 1 week of incubation, a small aliquot of sample was collected from the container for in-house analysis at the CDM Smith laboratory for pH, temperature, specific conductance, ORP, DO, HACH sulfide, alkalinity, and ferrous Fe. This process was repeated weekly until completion of the study, and then a sample was collected and submitted to the analytical laboratory (ESAT) for analysis of dissolved and total metals, alkalinity, and sulfate. The same in-house parameters as measured each week at the CDM Smith laboratory were also analyzed at the end of the study.

On August 6, low pH in containers 8, 9, 10, and 17 prompted the need for additional base to be added to raise pH. Containers 8, 9, and 10 each received an additional 25% NaOH dose of 7.1 ml, 9.4 ml, and

9.4 ml, respectively. Container 17 received an additional Chitorem dose of 7 g. In addition, a 25 ml manure extract inoculum was added to containers 2 through 10, 16, and 17. The inoculum dose was added at this time to ensure bacteria were present in the container. Final total quantities added to each container are provided in Table 2.3-2. Values in bold and italics indicate where additional materials were added on 8/6.

Table 2.3-2 Final Tiger Bench-Scale Treatability Study Container Test Setup

		Organic	Substrates		Alka	aline Materi	Inoc	Inoculum	
Container Test Number	Methanol	Ethanol	Molasses	Chitorem	25% NaOH	Lime- stone Fines	Chitorem	Manure Extract	Chitorem
1	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	25 ml				4.6 ml			50 ml	
3	50 ml				4.6 ml			50 ml	
4	100 ml				4.6 ml			50 ml	
5		25 ml			4.6 ml			50 ml	
6		50 ml			4.6 ml			50 ml	
7		100 ml			4.6 ml			50 ml	
8			25 ml		11.9 ml			50 ml	
9			50 ml		14.0 ml			50 ml	
10			100 ml		14.0 ml			50 ml	
11				15 g			†		†
12				22 g			†		+
13				34 g			†		+
14				7 g	4.6 ml		†		†
15				7 g		8.2 g	+		†
16			50 ml			14.7 g		50 ml	
17			50 ml	22 g			†	50 ml	+
18		25 ml		7 g	4.6 ml		†	25 ml	†

[†]Chitorem as an alkaline material or inoculum is indicated because these properties are inherent to the material as part of the organic substrate dose; Chitorem was not dosed in addition to the organic substrate dose.

2.3.3 Tiger Mine Field Investigation

On August 5, 2014, a protective grating was installed at the Tiger Mine shaft. In addition to installing the protective grating, minor improvements were made to the site to bypass surface water around the mine workings and spoils piles. Water from a spring located in the north-facing hillside above the mine shaft was diverted into a shallow trench created along an old roadbed above the mine shaft. The water was directed to a small drainage sump excavated in the road bend immediately uphill from the mine shaft. Approximately 1,000 feet of 2-inch HDPE pipe was placed parallel to the access road below the mine site to carry the diverted water into the forested hillside away from the mine site. A second trench and drainage sump was constructed in the drainage bottom immediately adjacent to the mine shaft to divert runoff and additional spring flow around the shaft. A short length of HDPE pipe connected this second drainage sump to a tee in the longer HDPE pipe run.

An Insight Vision DXP-300 video camera, operated on 12-volt battery power, was used to inspect the mine shaft. The video camera lens was mounted at the end of a 150-foot long ½-inch diameter flexible cable, shown in Exhibit 2-5. The cable came coiled on a spool, with the electronics module mounted on the top. Exhibit 2-6 shows the camera cable and 12-volt battery being prepared on the Tiger Shaft grating.

Exhibit 2-5. Video camera lens

Exhibit 2-6. Camera cable and battery

The upper portion of the shaft directly below the grating was partially obstructed with collapsed timbers, so the camera cable was inserted into a 10-foot length of 1 ½-inch schedule 40 PVC pipe. The PVC pipe was then lowered through the grate opening and guided carefully into an opening in the obstructions. The upper end of the PVC pipe with the cable inside can be seen in Exhibit 2-7 extending about 1 foot above the grate. The PVC pipe was fixed in place and the camera cable lowered through the pipe. The lens was equipped with an adjustable light-emitting diode (LED) light, and initially the camera was lowered down the shaft with the camera lens pointed straight down. This alignment gave a good overall survey of the shaft construction. To obtain a better view of the sidewalls, additional recordings were made with an auxiliary light source, consisting of an LED headlamp, attached to the camera lens. Also, for the subsequent recordings, the end of the camera cable was inserted into a 1 ½-inch diameter PVC pipe elbow to hold the camera lens horizontally (see Exhibit 2-8).

Exhibit 2-7. Inserting PVC guide pipe and camera into shaft

Exhibit 2-8. Camera lens installed in PVC pipe fitting to obtain horizontal recordings

Exhibit 2-9. Onsite video screen and computer

The flexible cable was rigid enough to allow the operator to rotate the camera in any desired direction as it was lowered into the shaft. In this way, each sidewall could be carefully inspected. Live video was displayed on a small video screen during the operation (Exhibit 2-9), and the video signal was recorded to a portable flash drive.

Five separate videos were recorded. In the first video, the camera was lowered down the west half of the shaft to the 87-foot level with the camera pointed straight down. In each of the other four videos, the camera was lowered to the 87-foot level with the camera directed horizontally at each of the four shaft walls.

This page intentionally left blank.

Section 3

Quality Assurance Summary

This section describes the quality assurance (QA) and quality control (QC) aspects of the treatability study data. Deviations are presented and how or if they affected the achievement of the data quality objectives (DQOs). A summary of field QC activities is presented, and a summary of the data evaluation is presented.

3.1 Danny T Bench-Scale Hydraulic Tests

3.1.1 Deviations and Data Quality Objectives

The bench-scale hydraulic tests were conducted in accordance with the QC requirements detailed in the SAP/QAPP (CDM Smith 2014a). Laboratory procedures conducted at the Denver Laboratory were conducted in accordance with the QA protocols outlined in the Laboratory Quality Assurance Plan for the CDM Smith Denver Treatability Laboratory (CDM Smith 2007). Laboratory and sampling procedures did not deviate from the requirements of these plans during the bench-scale hydraulic tests, with the exception that 3-inch columns were utilized for testing instead of 4-inch columns. All DQOs developed for the investigation were met.

3.1.2 Field Quality Control Summary

CDM Smith field QC procedures and CDM Smith Denver Laboratory QC procedures were followed during the work completed. Laboratory glassware, columns, and other miscellaneous items were cleaned with Alconox® powdered detergent and rinsed with deionized laboratory grade water prior to and after use. All data collected were recorded in the laboratory log book.

3.1.3 Data Evaluation

Analytical samples were not collected during the hydraulic tests. Data collected included volumes of MIW either added, recycled, or drained from the columns and time recordings. These data are usable for their intended purpose.

3.2 Danny T Pilot-Scale Treatability Study

3.2.1 Deviations and Data Quality Objectives

The pilot-scale treatability study was conducted in accordance with the QC requirements detailed in the SAP addendum #1 and #2 (CDM Smith 2013 and 2014a). Field and sampling procedures did not deviate from the requirements of these plans during the pilot-scale treatability study except as detailed below:

• As detailed in Section 2.2.4.2, several issues occurred with the NaOH dosing system that resulted in the inability to consistently pre-treat the influent MIW prior to the BCR. These issues included temporary disconnection of the peristaltic pump tubing, unintended draining of the NaOH stock tank, and collapsing of the pump tubing that resulted in plugging. In addition, modifications of the NaOH solution dosing rate were implemented to achieve the desired pre-treatment pH. These deviations somewhat limited the ability to completely answer DQOs 2

through 5. Better pH control was achieved in August and September compared to the earlier months to better answer DOOs.

- Sludge generated from the pre-treatment NaOH process was not measured during the study due to the inability to access the inside of the pre-treatment tank without disassembling the MIW or NaOH solution feeds. This deviation does not significantly affect the ability to answer DQO 4 regarding the sludge volume generated because the volume of sludge generated by NaOH addition was measured during the bench-scale treatability study conducted in 2013. This bench test volume measured provides an estimate for sludge generation for the FS.
- Throughout the course of the year 2 study, several of the timer valves were observed to have partially clogged from the high mineral content of the influent MIW. As a result, ball valves in some cases were not closing completely in between weekly maintenance visits. This issue resulted in more influent MIW entering these BCRs than designed for an unknown period of time and for an unknown volume. As a result, BCRs may have been overloaded beyond the designed average flow rate specified in the SAP addendum #2. Details of these observations are provided in Section 2.2.4.2. Ball valves were cleaned and replaced as necessary to maintain operations as designed. Resulting flow variations may have had an effect on treatment efficiency as a result of more flow moving through the pre-treatments and BCRs than intended. Therefore, this deviation likely had some effect on answering DQOs related to treatment efficiency and hydraulic retention time through the BCRs and pre-treatments (DQOs 6 through 8 and 13).
- Construction of the post-treatment system was slightly different than the one proposed in the SAP addendum #2 (CDM Smith 2014a). After the second aeration cascade bin, water was routed to the aerobic wetland bin instead of through a third wading pool with baffles. Following the aerobic wetland bin, the final gravel filter was placed in a separate bin instead of the same bin as the aerobic wetland plants. These modifications were made based on readily available materials and simplicity in construction. These deviations do not affect the ability to utilize the data or answer DQO 14 related to the post-treatment system.
- Rather than collecting the post-treatment influent sample from the designated sample port after in-line mixing of the four BCR effluents, equal volumes were collected from the four BCR effluent sample taps and composited. This method was utilized due to the lack of adequate volume to fill bottles at the post-treatment influent sample port. During each batch flow every 2 hours, the flow rate of water moving through each treatment train varied, limiting the flow at any given point and providing a variable mixing ratio of the four BCR effluents. By compositing the actual BCR effluents at equal volume, this sampling method actually provided a more representative average influent to the post-treatment system during each 2-hour interval.
- A total of 10 laboratory sample events were conducted instead of 9 since laboratory sampling
 was conducted weekly for the last 3 weeks of the study. This deviation improved data quality
 and quantity.
- Nutrients (ammonia and nitrate/nitrite) were mistakenly filtered along with other wet chemistry parameters. Samples were filtered into the sulfuric acid preserved bottle. This deviation may have limited the ability to understand total concentrations of these parameters since filtration may have removed some organic carbon-bound nitrogen species.

- As detailed in Section 2.2.4.1, some deviations occurred with not sampling some of the parameters for various sample events. These include:
 - o June 11: Sulfide bottles were not available for sampling; therefore, sulfide samples were not collected.
 - o June 24: Due to a miscommunication, sulfide and BOD exceeded their holding times in storage; therefore, sulfide and BOD samples were not submitted for analysis.
 - O September 16: POSTI and POSTE samples were not collected and analyzed for dissolved metals, alkalinity, ammonia, chloride, fluoride, nitrate/nitrite, orthophosphate, and sulfate due to a lack of in-line filters available for these samples to be filtered for analysis. Total metals, acidity, BOD, and sulfide samples were still collected and analyzed for POSTI and POSTE locations, and all other sample locations/parameters were collected and filtered as normally conducted on this sample event.
 - September 29: Sample bottles for ESAT were mistakenly stored in CDM Smith's storage unit refrigerator and not submitted for analysis. After discovery of the error in January of 2015, metals bottles were submitted to a CLP laboratory for analysis since they were preserved and still within holding time. All of the wet chemistry analyses intended for ESAT exceeded holding times and were not submitted for analysis.

The deviations listed above did not have an effect on the overall usability of the data generated. Where applicable, specific effects on DQOs developed for this investigation were described above. Otherwise, all DQOs were met for this treatability study and data are evaluated in Section 4.

3.2.2 Field Quality Control Summary

The field meter was calibrated during each sample event. All field notes, field measurements, and other sampling observations were recorded in field log books. All samples were collected in certified clean containers obtained from the laboratory or from a supplier. Titrations for the NaOH solution were completed using a mechanical pipet and disposable tip. Titrations were completed in certified clean containers or containers cleaned with Alconox® powdered detergent and grocery-purchased distilled water. NaOH solutions were created using a graduated cylinder for measurements and with grocery-purchased distilled water.

Field QC samples consisted of field duplicates and matrix spike/matrix spike duplicates. A total of 9 field duplicates were collected for a total of 98 normal field samples. This rate of field duplicate collection is just under the minimum 10% requirement for collection of field duplicates specified in the SAP. The field duplicates collected are still considered representative of the data set and adequate for use of the data for their intended purpose.

3.2.3 Data Evaluation

Data evaluation by checklist format was not conducted for the year 2 treatability study data set; however, data were still reviewed as part of the overall analysis. No data were rejected, and all data are considered usable for their intended purpose. Data evaluation by checklist was not conducted

since the intended use of the data is for technology evaluation in the FS. Laboratory data packages are provided in Appendix A.

Field duplicate samples were compared to their respective normal samples in Table 3.2-1. The relative percent difference (RPD) between the two results were calculated. Table 3.2-1 shows low RPDs for most samples below 10% and for many metals at less than 1%. For the first sample event, total Al and dissolved Mn RPDs were greater than 10% for the BCR1 duplicate and normal samples. No other metals had RPDs greater than 10%. Orthophosphate RPDs were greater than 10% for the influent MIW normal and field duplicate samples collected on 8/6, 9/2, and 9/23. Overall, these low RPDs indicate good data precision and representativeness that standard prescribed methods were followed throughout the study.

3.3 Tiger Bench-Scale Treatability Study

3.3.1 Deviations and Data Quality Objectives

The bench-scale treatability study was conducted in accordance with the QC requirements detailed in the SAP/QAPP (CDM Smith 2014b). Field sampling at the Firehose adit was completed in accordance with the 2014 Barker SAP/QAPP (CDM Smith 2014e). In addition, laboratory procedures conducted at the Denver Laboratory were conducted in accordance with the QA protocols outlined in the Laboratory Quality Assurance Plan for the CDM Smith Denver Treatability Laboratory (CDM Smith 2007). Laboratory and sampling procedures did not deviate from the requirements of these plans during the bench-scale treatability study, with the following exceptions:

- Variations were made on test setup, including addition of 2.5 L of MIW to each container instead
 of 2 L.
- Guar slurries of Chitorem and limestone were not used for titrations. Based on the small volumes/weights of these materials needed, titration of a slurry would not have been feasible.
- Limestone fines were added directly to applicable test containers without creating a guar slurry for this material. Guar slurries were only created for Chitorem addition.
- ¼-inch minus limestone was not utilized in the testing containers. Only screened limestone fines to less than 2 mm size were utilized in the study.

The deviations listed above did not have an effect on the overall data quality or usability of the data generated. All DQOs developed for the investigation were met.

3.3.2 Field Quality Control Summary

CDM Smith field QC procedures and CDM Smith Denver Laboratory QC procedures were followed during completion of the work. The laboratory uses a Milli-DI® water filtration system to create high resistivity purified water. This laboratory grade water was utilized for making the NaOH solution for titrations, cleaning measurement probes (e.g., pH, specific conductance, ORP), cleaning and rinsing glassware, and preparing guar slurries. Laboratory glassware and other miscellaneous items were cleaned after each use with tap water and Alconox® powdered detergent and rinsed with the deionized water.

Titrations were conducted with a mechanical pipet and disposable pipet tips. All pipet tips were disposed after use. The 25% NaOH solution was made on a weight basis using a laboratory balance measureable up to one-thousandth of a gram. Liquid substrates were measured using volumetric flasks, and solid substrates were measured using the laboratory balance. All measurement probes were calibrated daily, and notes were recorded in a laboratory log book. All samples were collected in certified clean containers obtained from the laboratory or from a supplier.

Field QC samples (i.e., field or matrix spike duplicates) were not collected during the bench-scale treatability study due to the lack of additional volume for each step in the treatability study process. However, a control batch container was tested alongside of the other test containers that did not have any substrates added to it except for the pea gravel. Only limited test volumes were utilized and collected for analysis in accordance with the SAP/QAPP (CDM Smith 2014b). For the Firehose adit water sample, a field duplicate was collected and submitted to the laboratory for analysis.

3.3.3 Data Evaluation

Data were obtained from the laboratory and utilized for analysis. A data evaluation review was not conducted on the bench-scale and the pilot study data. Field duplicates were not collected during the bench scale testing because of limited sample volume, except for the original Firehose adit sample collected in the field. The laboratory performed matrix duplicate and matrix spike and spike duplicate analyses as required by the methods. Although a formal data evaluation was not performed, all data are considered usable for their intended purpose. No data were flagged as rejected. Laboratory data packages are provided in Appendix B.

3.4 Tiger Mine Field Investigation

3.4.1 Deviations and Data Quality Objectives

The field investigation of the lower shaft was conducted in accordance with the requirements detailed in the SAP/QAPP (CDM Smith 2014b). No laboratory samples were collected as part of the investigation. Field investigation procedures did not deviate from the requirements of the SAP/QAPP, except that a water level meter was not deployed down the shaft because of obstructions present. Water was observed through the video camera recording in a shallow pool, and a depth below the surface was estimated. All DQOs developed for the investigation were met to the extent that the shaft could be investigated down to obstructions.

3.4.2 Field Quality Control Summary

Field QC procedures related to maintaining notes and digital records (photographs and video recordings) were followed during the investigation of the lower Tiger shaft.

3.4.3 Data Evaluation

Since analytical data were not collected, data evaluation is not applicable. Semi-quantitative information obtained from the study includes depth measurements and visual observations using the down-hole camera. This information was used for planning and evaluation purposes only.

This page intentionally left blank.

Section 4

Results, Analysis, and Discussion

This section describes the results, analysis, and discussion of the treatability study data.

4.1 Danny T Bench-Scale Hydraulic Tests

Bench-scale treatability results are presented below. This bench-test work was conducted to determine the optimum mixture of Chitorem to sand and gravel that maintained adequate porosity and hydraulic conductivity for use in the year 2 field study. Section 2.1 described the test setup and operations. A total of 12 drain tests were conducted over an approximately 4-week period for five test columns, including 1 week of incubation of the substrate with MIW before drain tests. The ratios of Chitorem, sand, and gravel varied for the five columns, with column 1 having the least Chitorem (12%) and column 5 having the most Chitorem (28%). Sand contents varied from 9 (column 1) to 21% (column 5), and gravel contents varied from 79 (column 1) to 51% (column 5).

Table 4.1-1 presents all time measurement results for the hydraulic drain tests. Figures 4.1-1 and 4.1-2 present graphs of the time to drain 100 ml of water and 200 ml of water, respectively. Prior to loading substrates to the columns, the initial drain tests with tap water indicated that the valve for column 5 provided biased faster drain times compared to other columns. Column 1 also was slightly biased slower compared to columns 2 through 4. These differences can be attributed to variability in the valves utilized. Testing throughout the study also indicated that column 5 was repeatedly biased fast compared to column 4. Since column 5 had more Chitorem than the other columns, flow should be more restricted and slower in this column. However, column 5 had consistently faster drain times than column 4 and sometimes other columns. Therefore, results for this column are considered skewed and not reliable for comparison to other columns.

Table 4.1-1. Hydraulic Drain Bench Results

	Test	Time to Drain in Seconds							
Date	No.	Test Description	#1	#2	#3	#4	#5		
		Chitorem	12.0%	16.0%	20.0%	24.0%	28.0%		
Column Contents		Sand	9.0%	12.0%	15.0%	18.0%	21.0%		
		Pea Gravel	79.0%	72.0%	65.0%	58.0%	51.0%		
4/24/2014	0	Time to drain 1 L tap water with no substrate	132	114	113	114	96		
5/6/2014	1	Time to drain 300 ml	49	48	84	125	95		
5/6/2014	2	Time to drain 100 ml	33	23	103	72	42		
5/9/2014	3	Time to drain 200 ml	49	61	100	89	47		
5/13/2014	4	Time to drain 200 ml	60	95	123	115	80		
5/16/2014	5	Time to drain 200 ml	75	80	130	142	100		
5/16/2014	6	Time to drain 200 ml	140	201	480	249	277		
5/20/2014	7	Time to drain 200 ml	139	72	64	158	72		
5/20/2014	8	Time to drain 100 ml	118	234	170	316	92		
5/23/2014	9	Time to drain 200 ml	265	263	95	304	102		
5/23/2014	10	Time to drain 100 ml	119	207	139	258	39		
5/27/2014	11	Time to drain 200 ml	267	206	144	200	68		
5/27/2014	12	Time to drain 100 ml	156	241	303	371	72		

Trends for the remaining columns generally follow the initial hypothesis in that the more Chitorem present per sand and gravel, the lower the hydraulic conductivity and the slower the drain time. In general, column 4 had the slowest drain time compared to columns 1 through 3 for the 200 ml and 100 ml drain tests. Variations occurred from test to test, however, which may be due to issues such as mobilization of smaller particles stuck in the valve and restricting flow, formation of precipitates, or preferential pathways through the substrate.

At the end of the test, column 1 had approximately 2 inches of orange precipitate on the top of the Chitorem/sand/gravel substrate from the Fe in the MIW tested. Column 2 had approximately 1.5 inches orange precipitate, and columns 3 and 4 had approximately 1 inch of precipitate. Column 5 had only approximately 0.3 inches of orange precipitate. Each of these orange layers was followed by a blackish-gray color presumably from Fe and Zn sulfide formation. This observation trend indicates that more oxidized Fe precipitate formed on the surface layer with the least amount of Chitorem and most pea gravel in column 1. For column 5 with the most Chitorem, less orange-colored oxide precipitate formed due to the reduced oxidation state. The variability of Fe oxide sludge formation probably had some effect on the hydraulic drain time, especially for the 200 ml drain tests that were conducted first without disturbing the column. After the 200 ml drain test, additional MIW was added to the columns and the 100 ml drain test was conducted. Addition of MIW to the top of the column disturbed the top oxidized sludge layer. This change may explain why for the last test date column 1 was the slowest to drain the 200 ml compared to columns 2 through 4.

Overall, hydraulic testing results indicated that the use of a higher Chitorem percentage as in column 4 (20% by volume) may have resulted in flow restrictions similar to what was observed in the year 1 pilot study. Therefore, the decision was made to implement the year 2 study with the same ratio of Chitorem (16%) to sand (12%) and gravel (72%) that was implemented at the end of the year 1 study and that was tested in column 2 of the hydraulic testing. At the end of the year 1 study and in the hydraulic test, this ratio of materials seemed to provide adequate hydraulic conductivity and enough Chitorem to maintain the desired treatment effectiveness.

4.2 Danny T Year 2 Pilot-Scale Treatability Study

The second year of the Danny T treatability study again focused on different pre-treatment methods to condition the water ahead of a woody substrate BCR but with slightly different substrate mixtures and significantly lower flow rates. The effluents from the BCRs were combined and fed into a post-treatment system to test re-aeration of the water and degradation of BOD, sulfide, and nutrients. The mixtures were detailed in Table 2.2-1, but as a reminder to the reader, the four treatment trains tested included:

- 1. BCR1 no pre-treatment but woody substrate mixture amended with a small volume of Chitorem
- 2. SAPS/BCR2 pre-treatment with a SAPS barrel, followed by a woody substrate BCR
- 3. CHIT/BCR3 pre-treatment with a Chitorem-based barrel, followed by a woody substrate BCR

4. NaOH/BCR4 - pre-treatment with NaOH solution, followed by a woody substrate BCR

Pilot-scale treatability results for the year 2 study are presented in the following sections. Table 4.2-1 presents all analytical laboratory results for the pilot-scale study. Field duplicate sample results were provided in Table 3.2-1. Table 4.2-2 presents all field measurement data. Table 4.2-3 presents the removal efficiency for all metals and select wet chemistry parameters. Finally, Table 4.2-4 presents a comparison of results to DEQ-7 aquatic water quality standards.

Removal efficiencies in Table 4.2-3 are shown for each step in the process by comparison of the treated effluent to the influent of a particular treatment process step. Removal efficiency was calculated by comparing the pre-treatment effluent to the raw water influent when pre-treatment occurred (flow lines 2 through 4). Then the BCR removal efficiency was calculated by comparison of the BCR effluent to the pre-treatment effluent as well as to the raw water influent (overall removal efficiency). For the post-treatment system, removal efficiency was calculated by comparing the post-treatment effluent to the combined influent.

The removal efficiency calculations in Table 4.2-3 considered analytical results (either influent or effluent) near or at laboratory reporting limits; however, removal efficiency for a metal or other analyte was not calculated if the influent water and treated water effluent results were both non-detect (U or UJ flagged data). Similarly, comparison to water quality standards in Table 4.2-4 was not conducted if the sample results were non-detect (U or UJ flagged). As shown in Table 4.2-3, removal efficiency calculations are qualified by a less than or greater than sign if applicable or a not applicable (NA) designation. Negative removal efficiencies indicate that concentrations increased compared to the influent due to leaching from substrates, suspension of suspended solids, or precipitate dissolution. If the raw water is non-detect and the treated water effluent is greater than the raw water reporting limit, then the removal efficiency is less than the percent shown. This would also result in a negative efficiency although results near the reporting limits may not be statistically significant to indicate that an increase in a particular metal occurred in the effluent. In contrast, if the treated water effluent is non-detect and the raw water is greater than the treated water effluent reporting limit, then the removal efficiency is greater than the percent shown.

Reporting limits provided by Energy, ESAT, or CLP laboratories varied throughout the study and for some metals were above water quality standards for ESAT data. Reporting limits also sometimes varied between dissolved and total results for the same sample. Overall, these variabilities result in limitations in calculating removal efficiencies, comparing to standards, and drawing conclusions about the results. For example, the Al reporting limit provided by ESAT for this data set varied between 50 and 500 $\mu g/L$. As reporting limits varied between 20 and 200 $\mu g/L$. Cd reporting limits varied between 2 and 20 $\mu g/L$. Fe reporting limits varied between 2 and 20 $\mu g/L$. Some of these reporting limits are above human health and/or chronic aquatic standards and in some cases above acute aquatic standards (i.e., Cd and Cu). Comparison to standards is provided in the sections that follow; however, caution should be applied to drawing conclusions from this comparison due to the high reporting limits.

Zn was the only metal that had consistently low enough reporting limits to compare to all standards, with one exception for dissolved results on 9/29. An anomalously low hardness of 2.8 mg/L was reported on 9/29, which resulted in significantly lower standards for all hardness-dependent metals.

Due to utilizing the CLP laboratory for the last event versus ESAT on all previous events, reporting limits for Al and other metals were also lower for the last event. Data on the last event, therefore, sometimes provides better resolution on comparison to standards and treatment efficiency evaluations.

Data from the system influent, pre-treatment effluents, and BCR barrel effluents are also presented in a series of figures to aid in data analysis and discussion. Figures 4.2-1 through 4.2-5 present time-based charts of pH, temperature, DO, ORP, and specific conductance results, respectively. Figures 4.2-6 through 4.2-14 present time-based charts of dissolved Al, As, Cd, Cu, Fe, Pb, Mn, nickel (Ni), and Zn, respectively. Figures 4.2-15 through 4.2-22 present time-based charts of sulfate, volumetric sulfate reduction rate, sulfide, total alkalinity, acidity, BOD, orthophosphate, and ammonia, respectively. Figures 4.2-23 through 4.2-26 present comparative figures of pH, alkalinity, and acidity to visualize whether the treatment processes were net acidic or net alkaline throughout the study. Note that concentrations in the first and second sample events are often higher due to startup conditions and these are not necessarily discussed in relation to the performance.

Figure 4.2-16 presents the volumetric sulfate reduction rate calculated over time for each BCR, the SAPS barrel, and the CHIT barrel. The volumetric sulfate reduction rate was calculated based on the average process flow rate (using the batch dosing rate), reactive substrate volumes presented in Table 2-4, and the influent and effluent sulfate concentrations measured for each barrel. Note that during some sample events, the head tank timer valves were observed to be leaking (as a result of valves not completely closing due to clogging), thus, delivering some additional flow of MIW to the treatment barrels. Although corrected upon the weekly site visits, the leaking valves would have caused some increase in overall flow rate through the treatment barrels. Since the average flow rate is multiplied by the difference in sulfate concentration to obtain the sulfate reduction rate, a larger flow would actually increase the calculated sulfate reduction rate. Therefore, actual volumetric sulfate reduction rates are likely greater than shown on Figure 4.2-16.

To determine whether or not the system could handle increased flow, on August 12 (after sampling), the flow rate was increased to a batch dose of 1.5 L every 2 hours, which equates to an average flow rate of 12.5 ml/min, up from the original 8.3 ml/min. On August 26 (after sampling), flow rate was increased to a batch dose of 2.0 L every 2 hours, which equates to an average flow rate of 16.7 ml/min. Then, for the next sampling event on September 2, based on cooler ambient temperatures and field measurements showing signs of stress, flow rates for all treatments were reduced back to 1.0 L every 2 hours, equivalent to the original 8.3 ml/min flow rate for the remainder of the study. The effects of these flow rate changes are discussed in the summary of individual reactor performances below. These flow rate variations were incorporated into the sulfate reduction rate calculations.

4.2.1 Danny T Adit MIW Influent

The following subsections summarize the MIW influent water quality.

Field Parameters

The chemistry of the influent MIW water remained relatively consistent even into the later summer in September. The pH ranged from 2.40 to 2.85 su throughout the pilot-scale study period. Specific conductance of the influent MIW ranged from 1,542 to 2,700 microSiemens per centimeter (μ S/cm), with no obvious trend over the range observed. Temperature ranged from 6.25°C to 22.5°C, with fluctuations throughout the season. The minimum temperature of 6.25°C was observed on 9/9,

corresponding with much cooler air temperatures; however, MIW influent water temperatures increased to around 15°C for the last 3 weeks. ORP ranged from 311.4 to 510 mV. DO ranged from 1.25 to 6.56 mg/L. The lowest DO values were recorded at various times that do not appear to correlate with ORP or other parameters. Temperature gradually decreased into the beginning of September (9/9), but then increased again over the last sample events.

Metals

Observations of dissolved metal trends (Table 4.2-1 and Figures 4.2-6 through 4.2-14) and comparison to water quality standards (Table 4.2-4) of the MIW influent are described below. A comparison of dissolved metals to total metals in the influent generally shows dissolved concentrations nearly the same as total concentrations, indicating the metals are largely in the dissolved phase. Fe was the most common metal with higher total than dissolved concentrations. Some dissolved metals concentrations were greater than total concentrations where the differences may be within the analytical accuracy and precision of the instruments used to analyze the samples or due to slight variabilities that can occur between dissolved and total metals sample bottles. The discussion and graphs focus on trends in the dissolved phases because the treatment system seeks to remove the dissolved metals from the raw water. Metals in the total phase can be removed through adequate filtration and/or settling.

- Dissolved Al concentrations ranged from 10,600 to 15,000 μg/L. A slight increasing concentration trend appeared to occur over the last month of the study. Total and dissolved concentrations were significantly in exceedance of the chronic and acute aquatic water quality standards throughout the study. Dissolved and total Al concentrations were very similar through the study, which indicates that most of the Al was in the dissolved form as expected at the low adit water pH.
- Dissolved As concentrations ranged from 129 μg/L to a high of 264 μg/L. Total and dissolved concentrations always exceeded the human health standard and exceeded the chronic aquatic standard during most of the study. Overall, dissolved or total As did not appear to change significantly throughout the study.
- Dissolved Cd concentrations ranged from 220 μ g/L to a high of 285 μ g/L. Total and dissolved concentrations significantly exceeded the human health standard and the chronic and acute aquatic water quality standards. Overall, dissolved or total Cd concentrations did not appear to change significantly throughout the study.
- Dissolved Cu concentrations ranged from 812 to 1,270 μg/L. Total and dissolved concentrations always exceeded the chronic and acute aquatic water quality standards.
- Dissolved Fe concentrations ranged from 111,000 to 184,000 μg/L. Total and dissolved concentrations always exceeded the chronic aquatic water quality standard.
- Dissolved Pb concentrations ranged from 134 to 246 μg/L. Total and dissolved concentrations always exceeded the human health and chronic aquatic standards.
- Dissolved Mn concentrations ranged from 75,500 to 123,000 μg/L. Mn does not have a Montana DEQ-7 standard for comparison; however, Mn is a major metal ion contributing to influent acidity loading along with Al and Fe.

- Dissolved Ni concentrations ranged from 17.9 to 53.9 μ g/L. No exceedances of standards were observed. Based on these influent MIW results, Ni is not discussed further in the sections that follow for the pilot treatment system.
- Dissolved Zn concentrations ranged from 44,000 to 66,500 μg/L. Total and dissolved concentrations significantly exceeded the human health standard and the chronic and acute aquatic water quality standards.

Wet Chemistry Parameters

Sulfate (Figure 4.2-15) concentrations in the influent MIW ranged from 894 to 1,280 mg/L. Acidity (Figure 4.2-19) concentrations in the influent MIW ranged from 600 to 790 mg/L. Alkalinity (Figure 4.2-18) concentrations in the influent MIW were non-detect throughout the study as expected for this type of acidic MIW.

Summary

Unlike in the year 1 study that had decreasing metals concentrations, year 2 Danny T MIW metals concentrations stayed relatively constant throughout the study period. Metals concentrations exceeded water quality standards and pH remained below 3.0 su.

4.2.2 BCR1

BCR1 had no pre-treatment but contained 5 percent volume Chitorem added to it unlike other BCRs in the study. The following subsections summarize the BCR1 effluent water quality.

Field parameters

The field parameters of pH, specific conductance, ORP, temperature, and DO are broad indicators of the BCR performance. BCR1 raised the pH to between 5.95 and 7.23 su; however, the discharge pH was not always within the range of 6.5 to 9.0 su set forth by DEQ¹. Discharge pH was above 6.5 su for the first month, followed by a decrease to around 6 su for several weeks, and then an increase in September.

Temperature ranged from 7.37 to 19.20°C, correlating with influent MIW temperatures as expected.

Specific conductance ranged from 1,400 to 7,160 μ S/cm. Effluent specific conductance was greater than the influent initially due to the flushing of soluble components from the substrates, which is expected in BCRs during startup. After startup, specific conductance steadily declined towards the influent specific conductance and was then less than the influent for the last month of the study.

ORP ranged from -299.0 to 107.3 mV, varying between negative and positive values for the first few weeks (considered the startup period for the first month), decreasing below -150 mV on 6/24, and increasing greater than -100 mV on 9/2. Since ORP is one of the most sensitive parameters to changing influent conditions, the increase to more oxidizing conditions on 9/2 could be due to the second increase in flow rate from 1.5 L per 2 hours (80.6 h retention) to 2.0 L per 2 hours on 8/26 (60.5 h retention). The first increase in flow rate from 1.0 L per 2 hours (121 h retention) to 1.5 L per

¹ Administrative Rules of Montana, Title 17, Chapter 30 – Water Quality, Sub-Chapter 6 – Surface Water Quality Standards, Section 17.30.628 Classification Standards.

_

2 hours (80.6 h retention) on 8/12 did not appear to have had an effect on maintaining adequate reducing conditions for sulfate reduction; however, the further flow increase on 8/26 did increase ORP above levels considered amenable to sulfate reduction. The increase in ORP on 9/2 and 9/9 may also be related to the decreasing influent water temperature below 10° C.

DO ranged from less than 0.1 to 2.78 mg/L.

Metals

The following includes observations of metal trends, removal efficiency ranges, and comparison to water quality standards.

- Dissolved and total Al were removed by BCR1 with an efficiency of 96.5 and 90.9%, respectively, for the first sample event, followed by greater than 98% for the remainder of the study. However, when estimated below the reporting limit of 250 μg/L (J qualified data), dissolved concentrations were in exceedance of the chronic aquatic standard of 87 μg/L. Concentrations were non-detect (less than 250 μg/L) on 9/16 and 9/23 and below the aquatic standard for the last sample event on 9/29 (13 μg/L). Analysis by the CLP laboratory for the last event provided the lower detection compared to previous ESAT analyses. When both total and dissolved concentrations were detected, total metals concentrations were slightly greater than dissolved.
- Dissolved and total As were removed by BCR1 with an efficiency ranging from greater than 83.7 to 99.5%, except for the first two sample events that had lower efficiencies. Dissolved and total As concentrations exceeded the human health standard during the first two sample events. From 8/6 through 9/23 (5 events), both dissolved and total As were non-detect at less than 20 μg/L. In the last sample event (with lower reporting limits), As was less than 2 μg/L.
- Dissolved Cd was removed by BCR1 with an efficiency of greater than 99% consistently, with concentrations at non-detect or detected at the reporting limit (ranged from 1.0 to 2.1 μ g/L). Total Cd removal efficiency was greater than 99% except for the first sample event. Note that the reporting limit was typically not low enough for direct comparison against the low chronic aquatic standard (0.76 μ g/L at a 400 mg/L hardness). From 7/22 through 9/23 (six events), both dissolved and total Cd were non-detect at less than 2 μ g/L. For the last sample event, dissolved Cd was non-detect at less than 1 μ g/L, and total Cd was estimated at 0.047 μ g/L.
- Dissolved Cu was removed by BCR1 with an efficiency of greater than 98% throughout the study. Total Cu was also removed with an efficiency of greater than 98% except for the first sample event. In the incubation sample (first sample event), total Cu was much greater than dissolved at 145 μ g/L, which exceeded the acute and chronic aquatic water quality standards. Later measurements of total Cu were lower or non-detect (less than 10 μ g/L), and no other sample events had concentrations that exceeded the acute (51.6 μ g/L) or chronic (30.5 μ g/L) aquatic water quality standards.
- Dissolved Fe was removed by BCR1 with an efficiency of greater than 98% throughout the study. Total Fe was removed with an efficiency of greater than 98%, except for sample events on 7/8 (11,000 µg/L) and 9/2 (6,450 µg/L). The increase in BCR1 total Fe on 7/8 may have been associated with a concurrent increase in influent total Fe on 7/8 by 30 mg/L compared to the previous sample event. The increase in BCR1 total Fe on 9/2 may have been related to the

overloading of metals due to the increased flow rate the previous week. This observation concurs with the ORP readings that indicate an increase in oxidation state on 9/2, which may limit the stability of Fe sulfide precipitates and increase Fe discharge. In some samples, Fe was detected above the reporting limit and exceeded the aquatic standard. For the last sample event which had a lower reporting limit, both dissolved (1,930 $\mu g/L$) and total (2,450 $\mu g/L$) Fe exceeded the chronic aquatic standard.

- Dissolved Pb was removed by BCR1 with an efficiency of greater than 98% throughout the study. Total Pb was removed with an efficiency of greater than 98%, except for sample events on 6/11 (20.5 μ g/L) and 8/19 (6 μ g/L). All other dissolved and total results were either non-detect or near the reporting limit of 2 μ g/L. For the last sample event, dissolved Pb was non-detect (less than 1 μ g/L), and total Pb was estimated at 0.48 μ g/L. Pb concentrations did not exceed water quality standards except for the first sample event.
- Dissolved and total Mn was removed by BCR1 for the first sample event at approximately 95%, followed by 98% during the next sample event. Removal efficiency decreased for the remainder of the study, with influent and effluent concentrations roughly equivalent. Some sample events had a negative removal efficiency, indicating that Mn was leaching from the substrate or redissolving from precipitates. Removal of Mn is not expected in a BCR since Mn does not form a stable sulfide precipitate. Mn is typically removed by carbonate precipitate formation, adsorption, or through biologically mediated Mn oxide formation (by aerobic bacteria). The Mn effluent data resemble removal by adsorption and then breakthrough. As sorption sites became saturated, removal efficiency decreased as anticipated. Similar results were observed for sorption breakthrough in the year 1 study for Mn and other metals.
- Dissolved Zn was removed by BCR1 with an efficiency of greater than 99% throughout the study. Total Zn was removed with an efficiency of greater than 99%, except for sample events on 6/11 (882 µg/L) and 7/8 (2,200 µg/L). Typically, total metals such as Zn can be elevated in BCR effluent close to startup as suspended sulfide precipitates or sorbed to organic matter. The increase in effluent total Zn from BCR1 on 7/8 may have been associated with the concurrent increase in influent total Fe that may have stressed the biological system. Interestingly, Zn removal was maintained at greater than 99% for the last half of the study despite increases in flow rate and ORP. In comparison to water quality standards, only total Zn exceeded acute and chronic water quality standards (387.8 µg/L) on 6/11, 7/8, and 7/22. The high total Zn concentration on 7/8 also exceeded the human health standard.

Wet Chemistry Parameters

Sulfate concentrations ranged from 924 mg/L in the first sample to a low of 378 mg/L on 7/22, followed by an increase and steady removal for the remainder of the study. Sulfate removal efficiency ranged from 19.7% in the first sample to a high of 65% on 7/22. Sulfide concentrations ranged from 6 mg/L on 9/23 to a high of 61 mg/L on 8/6, which generally correlates with increases or decreases in sulfate reduction. The flow-adjusted volumetric sulfate reduction rates (Figure 4.2-16) ranged from 186 mmol SO_4/m^3 -day in the first sample to a high of 577 mmol SO_4/m^3 -day on 7/22. These measured volumetric sulfate reduction rates are well within the range of published literature values for BCRs, which indicates that the BCR1 system was functioning effectively as designed at a rate of approximately 300 mmol SO_4/m^3 -day (see section 2.2.2).

Nutrient-related parameters are shown in Figures 4.2-20 (BOD), 4.2-21 (orthophosphate), and 4.2-22 (ammonia). As a common trend for all BCR effluents, concentrations of each of these constituents started at their maximum concentrations or reached a maximum within the first month, followed by a decrease for the remainder of the study. For the last 2 to 4 weeks, concentrations of these constituents appeared to have reached a steady state rather than continuing to decrease. Over the life of a BCR, some release of these nutrients is expected due to the presence of woody substrate materials and manure in the substrate. Nitrate or nitrite were not detected in the BCR effluents during the study likely because nitrogen remains in the ammonia form at reduced oxidation states.

Figure 4.2-23 illustrates the acidity and alkalinity relationship for BCR1. Separate plots of alkalinity and acidity are also shown in Figures 4.2-18 and 4.2-19, respectively. This relationship is important because it shows whether or not the net acidic influent MIW was treated to the desired net alkaline condition. Acidity concentrations in BCR1 were non-detect (less than 4 mg/L) or detected at a concentration of 4 mg/L. The first sample had the greatest alkalinity (3,020 mg/L), followed by a gradual decrease for the remainder of the study. For the last 2 weeks of the study, alkalinity concentrations appeared to stabilize to around 90 mg/L, similar to other BCRs. These results indicate that the BCR1 system was generating significant alkalinity and remained in a net alkaline condition; however, whether alkalinity would have continued to decrease beyond the study period is unknown.

Summary

Overall, results were positive for the BCR1 with woody substrate augmented by 5% Chitorem and no pre-treatment. Compared to the year 1 study, addition of Chitorem directly to the BCR and a large increase in retention time appears to have provided an adequate treatment system to treat the high acidity loads from the Danny T adit, at least for the duration of the study. Some effect to ORP was observed due to the increases in flow rate in August although ORP recovered after decreasing the flow rate at the end of the study. Also on 9/2, sulfide detected in BCR1 decreased although the rate of sulfate reduction was not affected. Note that somewhere between the sampling events of 9/9 and 9/16, flow to all BCRs was temporarily disrupted due to freezing and a break in the influent MIW pipeline. Along with the flow rate reduction on 9/2, this lack of flow may have also helped with the decrease in ORP observed on 9/16 due to a much longer residence time for water in the BCR barrel. Regardless, BCR1 was able to maintain a net-alkaline condition by generating significant alkalinity, positive sulfate reduction, and sulfide generation throughout the study. Effects to ORP on 9/2 and 9/9 indicate that the increased retention time to 60.5 h was too fast for this MIW type and substrate mixture, especially with colder fall temperatures. Overall, the BCR1 data indicate that the optimum retention time for this BCR substrate may range between 80.6 and 121 h for the water quality tested.

Dissolved removal efficiencies for many of the key metals (Cd, Cu, Fe, Pb, and Zn) were maintained above 98% for the entire study period. The variability in the removal efficiencies for most metals were often due to the relatively high laboratory reporting limits. A decrease in total removal efficiency in Fe and Zn on 7/8 may correlate with a corresponding increase in influent Fe acidity that caused stress to the biological system. A decrease in total Fe removal efficiency on 9/2 also correlates with the increased flow rate at that time as well as increased oxidation state that could result in FeS instability and flushing.

For Al, As, Cd, and Fe, high reporting limits limited the ability to compare to water quality standards that were less than the reporting limits; however, these high reporting limit concentrations are significantly lower than the raw MIW influent concentrations. Cu, Pb, and Zn reporting limits were

consistently low enough to compare to standards. When detected, some exceedances of water quality standards occurred for Al, As, Cd, and Fe. With the lower reporting limits on the last sample event, greater resolution of concentrations indicates that all standards for Al, As, and Cd were met for this event. Fe slightly exceeded the chronic aquatic standard for the last event. For Cu and Pb, only results from the first sample event exceeded water quality standards. For Zn, some exceedances occurred over the first month of the study only.

Generation of secondary effluent constituents harmful to aquatic ecosystems, including BOD, orthophosphate, and ammonia, were measured during each sample event. Overall, concentrations of each of these constituents started out at their maximum concentrations, followed by a decrease for the remainder of the study and reaching steady-state in the effluent. Removal of these constituents is demonstrated by the post-treatment system results presented in Section 4.2.6.

4.2.3 SAPS Pre-treatment and BCR2

The second treatment train included SAPS pre-treatment followed by woody substrate BCR2 (no additional Chitorem). The following subsections summarize the SAPS and BCR2 effluent water quality.

Field Parameters

The SAPS raised pH to a range between 5.06 and 6.63 su, and BCR2 further increased the pH to 5.92 to 6.78. The amount of pH increase from BCR2 compared to the SAPS varied throughout the study but was as high as a 0.8 to 1.1 su increase in some samples; however, effluent pH from BCR2 was often not within the DEQ standard range (6.5 to 9.0 su).

Specific conductance ranged from 1,350 to 2,760 μ S/cm in the SAPS and from 1,300 to 6,680 μ S/cm in BCR2. Effluent specific conductance was greater than the influent initially in both barrels due to the flushing of soluble components from the substrates, which is expected during startup. After startup, specific conductance was similar to or less than the influent.

SAPS ORP ranged from -55.0 mV on 6/11 to a high of 154.3 mV on 6/24, and BCR2 ORP ranged from 32.3 mV on 6/17 to a low of -288.1 mV on 7/15. SAPS ORP remained positive after the first sample; however, it was still significantly less than the influent MIW ORP. BCR2 ORP varied but remained negative and below approximately -150 mV after the first few weeks. ORP increases to around -150 mV on 8/19 and 9/2 may have been related to flow rate increases although the ORP increase to greater than -100 mV in BCR1 was not observed with the SAPS/BCR2 system.

The SAPS DO ranged from less than 0.1 mg/L initially to as high as 3.86 mg/L. DO in the SAPS was always less than the influent MIW. BCR2 DO ranged from less than 0.1 mg/L initially to 2.1 mg/L on 9/16. DO for BCR2 was significantly reduced throughout the study as compared to the influent MIW.

Metals

The following includes observations of metal trends, removal efficiency ranges, and comparison to water quality standards.

Dissolved Al concentrations from the SAPS ranged from non-detect (250 μg/L) to 732 μg/L compared to 10,000 to 15,000 μg/L in the influent MIW. This reduction equates to a removal efficiency range of 94.7 to 99.1%. Removal of dissolved Al in the SAPS is desirable so that aluminum precipitates do not clog the BCR. Where measureable, BCR2 provided additional Al

removal with a dissolved concentration range of 9.6 to 282 μ g/L. Dissolved removal efficiency for BCR2 compared to the SAPS effluent ranged from greater than 17.8 to 98.7% while the overall removal efficiency was consistently greater than 97% (calculated by comparing the BCR2 effluent to the SAPS MIW influent). Dissolved Al from BCR2 exceeded the chronic aquatic standard of 87 μ g/L on 6/11, 6/24, and 9/2. On 9/16 and 9/23, both dissolved and total Al were non-detect (less than 250 μ g/L), followed by a detection of dissolved Al at less than the chronic aquatic standard on 9/29.

- Dissolved As concentrations from the SAPS ranged from 3.1 to 36.2 μ g/L while removal efficiency ranged from 78.2 to 98.3%. For BCR2, dissolved As concentrations ranged from 15.6 μ g/L for the first event to 1.2 μ g/L for the last event. From 8/6 through 9/23 (five events), both dissolved and total As in BCR2 effluent were non-detect (less than 20 μ g/L). The last sample event indicated significant removal of As to less than 2 μ g/L. Due to the higher SAPS As removal, additional As removal by BCR2 cannot be determined. Except for the first event, the overall total and dissolved removal efficiencies ranged from 83.7 to 99% and 84.5 to 99.3%, respectively. When detected, results from the first three events exceeded the human health As standard of 10 μ g/L.
- Dissolved Cd concentrations from the SAPS ranged from $5.25~\mu g/L$ in the first sample to non-detect (less than $2~\mu g/L$) for most of the study while the removal efficiency ranged from 98 to greater than 99%. For BCR2, dissolved Cd concentrations were non-detect (less than $2~\mu g/L$) for most of the study except on $6/24~(1.1~\mu g/L)$. Total Cd did not vary significantly compared to dissolved Cd for both the SAPS and BCR2. Due to low concentrations and reporting limits, differences between Cd removal in the SAPS and BCR2 cannot be determined, except for the last event, which shows that both total and dissolved Cd were slightly decreased by BCR2 (less than $1~\mu g/L$) compared to the SAPS ($2.2~\mu g/L$). Overall dissolved Cd removal efficiency was greater than 99% for the entire study.
- Dissolved Cu concentrations from the SAPS ranged from 44 μ g/L in the first sample to a low of non-detect (less than 10 μ g/L) while the removal efficiency was greater than 98%, except for the first sample (96.4%). For BCR2, dissolved Cu concentrations ranged from 35.2 μ g/L in the second sample to non-detect (less than 10 μ g/L) while the overall dissolved Cu removal efficiency was consistently greater than 96%. In the first few sample events, total Cu was greater than dissolved for BCR2 representing suspended Cu precipitates and/or sorbed to organic matter discharging from the BCR. Total Cu exceeded the acute and chronic aquatic water quality standards for the first two sample events. No other exceedance of water quality standards occurred for the remainder of the study.
- Dissolved Fe concentrations from the SAPS ranged from 6,260 μg/L in the first sample to a high of 112,000 μg/L while the removal efficiency was 95.9% initially, followed by a decrease to a removal ranging from 16.5 to 41.8% for the last eight sample events. Total Fe discharging from the SAPS was slightly higher but not significantly different than dissolved. This indicates that the SAPS was performing as intended in decreasing the oxidation state of the raw MIW and converting ferric Fe to soluble ferrous Fe that would not precipitate out in the higher pH of the SAPS. For BCR2, dissolved Fe concentrations ranged from non-detect (less than 1,250 or 250 μg/L) to 1,730 μg/L while the removal efficiency compared to the SAPS effluent was greater

than 99%, except for the first sample event. Where comparisons could be made, the chronic aquatic standard was exceeded in some BCR2 samples.

- Dissolved Pb concentrations from the SAPS were non-detect for the entire study (less than 2 μ g/L) with a removal efficiency of greater than 98%. For the last sample event, dissolved and total Pb were detected in the SAPS at 0.21 and 1.8 μ g/L, respectively. Due to low concentrations and reporting limits significant differences between Pb removal in BCR2 after the SAPS cannot be determined, except for the last event, which shows that both total and dissolved Pb were slightly decreased by BCR2 compared to the SAPS. Overall dissolved Pb removal efficiency compared to the MIW influent was greater than 98% throughout the study. Total removal efficiency was slightly lower for the first 6 weeks. Total Pb exceeded the human health and chronic aquatic standards on 6/11 only.
- Dissolved Mn concentrations in the SAPS ranged from $28,200 \,\mu\text{g/L}$ in the first sample to a high of $118,000 \,\mu\text{g/L}$ while the removal efficiency ranged from 73.4% initially, down to slightly negative from 7/22 through 9/2, and 11.1 to 21.4% for the last month. For BCR2, dissolved Mn concentrations ranged from $3,980 \,\mu\text{g/L}$ in the first sample to a high of $107,000 \,\mu\text{g/L}$. BCR2 removed significant additional Mn for the first 7 weeks, but then removal efficiency declined to slightly negative or at less than 20%. Again, these trends are representative of removal via adsorption and then breakthrough.
- Dissolved Zn concentrations in the SAPS ranged from 2,260 μg/L in the first sample to a high of 38,100 μg/L while the removal efficiency ranged from 96.2% initially to 28.5% at the end of the study. Based on the data trend, Zn removal by the SAPS follows a breakthrough curve representing sorption to organic matter. For BCR2, dissolved Zn concentrations ranged from 39.9 to 268 μg/L while the removal efficiency compared to the SAPS effluent was greater than 99% except for the first sample event. For some sample events, total Zn was greater than dissolved for BCR2 representing suspended Zn precipitates and/or sorbed to organic matter discharging from the BCR. Total Zn also exceeded the chronic and acute aquatic water quality standards for some sample events. The human health Zn standard was also exceeded on 7/8. Overall dissolved Zn removal efficiency for the SAPS/BCR2 system was greater than 99% for the entire study.

Wet Chemistry Parameters

SAPS effluent sulfate concentrations ranged from 806 to 1,130 mg/L, generally following the trend in changing influent sulfate where concentrations were the highest at the beginning of the study and then decreased. SAPS sulfate removal efficiency ranged from 20 to a low of 1%, which was expected since a SAPS is not intended to provide sulfate reduction but to provide a reduction in oxidation state. Precipitation of gypsum (CaSO₄) may account for the slight sulfate decrease in the SAPS as it reacts with the calcium dissolved from the limestone. BCR2 effluent sulfate concentrations ranged from 349 to 960 mg/L, with removal efficiency compared to the SAPS of 9.4% for the first sample to as high as 62.8% on 7/22. Sulfide concentrations in BCR2 ranged from 10 mg/L on 9/23 to a high of 45 mg/L on 7/22, which generally correlates with changes in sulfate reduction. The flow-adjusted volumetric sulfate reduction rates for BCR2 ranged from 82 mmol SO_4/m^3 -day in the first sample to a high of 485 mmol SO_4/m^3 -day on 7/22. BCR2 sulfate reduction rate was calculated based on the SAPS effluent sulfate concentrations. Sulfate reduction also decreased to 88 mmol SO_4/m^3 -day on 9/2, which likely was related to the increase in flow rate on 8/26 and stress to the microbial system. Overall, BCR2

volumetric sulfate reduction rates were near the designed rate of 300 mmol SO_4/m^3 -day, except for the first sample event and after the flow rate increase at the end of August.

Nutrient-related parameters are shown in Figure 4.2-20 (BOD), 4.2-21 (orthophosphate), and 4.2-22 (ammonia). As a common trend for all BCR effluents, concentrations of each of these constituents started out at their maximum concentrations, followed by a decreasing trend and more stable discharge concentrations for the last 2 to 4 weeks.

Acidity concentrations in the SAPS ranged from non-detect (less than 4 mg/L) in the first sample to a high of 410 mg/L; however, compared to the raw influent MIW, acidity was reduced by 31.7 to 62.9%, not including the initial stagnant incubation time during startup. Alkalinity concentrations ranged from 481 mg/L in the first sample to 12.5 mg/L on 9/16. Over time, the SAPS pre-treatment went from net alkaline to net acidic; however, the SAPS was still generating alkalinity and maintaining a near-neutral pH. Once through BCR2, alkalinity increased significantly and acidity decreased. BCR2 acidity ranged from non-detect (less than 4 mg/L) to 30 mg/L on 9/2. The increase in acidity on 9/2 could be associated with stress to the microbial system from the increased flow rate. However, acidity again decreased to non-detect for the last three events once the flow rate was decreased. The first sample had the greatest alkalinity (1,630 mg/L), followed by a steady decrease for the remainder of the study. Similar to BCR, alkalinity concentrations may have stabilized around 60 mg/L for the last two weeks. Overall, these results indicate that the BCR2 system was generating significant alkalinity and remained in a net alkaline condition for the entire study.

Summary

The SAPS pre-treatment was intended to reduce some of the metals concentrations, reduce the oxidation state, and add alkalinity. The BCR treatment was intended to reduce sulfate and remove additional metals through metal sulfide precipitation. Compared to the year 1 study, the SAPS/BCR2 combination for year 2 improved in treatment efficiency due to the greater substrate retention time. The SAPS increased pH to greater than 5 su, generated alkalinity, decreased ORP and DO, and reduced concentrations of some metals prior to BCR treatment, primarily Al and Fe. Although effluent from the SAPS was still net acidic for most of the study, alkalinity was being generated, and acidity was much less than the influent MIW.

Removal of Cd, Cu, and Pb by the SAPS was significant; however, the removal was not expected to be sustained as surface sorption sites on the organic substrate become saturated. Removal of some amount of Al and Fe should continue due to increased pH resulting in Al and Fe oxy-hydroxide precipitation. By the end of the study, Al removal efficiency started to decrease. Some Fe removal was likely due to initial formation of Fe oxy-hydroxide precipitates, but as the ORP decreased, iron reduces from ferric to ferrous iron, which remains soluble at the higher pH. Iron removal efficiency reached a consistent range (26 to 37% Fe removal for the last three sample events). Arsenic was also removed by the SAPS, most likely through co-precipitation with the iron oxy-hydroxide precipitates that formed.

After the SAPS, BCR2 removed additional Al to concentrations near or below the aquatic standard and significant amounts of the remaining Fe and Zn. After the first month of startup, removal efficiency of dissolved Fe and Zn compared to the SAPS effluent was greater than 97% and in many samples greater than 99%. Removal of these metals was often to concentrations near or below human health and aquatic standards where applicable. The degree of additional removal of As, Cd, Cu, and Pb by

BCR2 after the SAPS could not be determined due to the significant removal by the SAPS and the variable laboratory reporting limits. Except for the first sample event, overall dissolved and total Al, Cd, Cu, Fe, Pb, and Zn removal efficiencies for the SAPS/BCR2 system compared to the influent MIW ranged from greater than 92 to 99% for the entire study.

Overall, the SAPS/BCR2 treatment provided significant sulfate reduction, sulfide formation, alkalinity generation, and metal removal. The treatment improvements for year 2 can be attributed to the lower treatment flow rates and larger SAPS substrate volume compared to the year 1 study. The year 2 study started at 8.3 ml/min, compared to 37 ml/min for year 1. After the two-fold increase in flow rate on 8/26, results from the 9/2 sample event indicate decreased sulfate reduction and increased acidity production by the BCR. On 9/2, field observations of a slightly increased ORP compared to on 8/26 prompted decreasing the flow rate back to 8.3 ml/min. This decrease in flow rate made an apparent improvement in treatment by decreasing acidity back to non-detect, increasing sulfate reduction, and decreasing ORP. BCR effluent pH also began to increase in response to the reduced flow rate.

4.2.4 Chitorem Pre-treatment and BCR3

The third treatment train included Chitorem pre-treatment followed by a woody substrate BCR3. The following subsections summarize the Chitorem and BCR3 effluent water quality.

Field Parameters

The Chitorem barrel (shown as "CHIT" in sample names and referred to in this report for simplification) raised pH to a range between 5.37 and 8.43 su while BCR3 effluent pH ranged from 6.30 to 6.87. Effluent pH from CHIT was highest at the beginning of the study and gradually decreased to between approximately 5.5 and 6.1 su for the last month. After the first 5 weeks, pH began to increase from BCR3 compared to the CHIT. During this period, BCR3 provided on average a 0.6 su pH increase. Effluent pH from BCR3 was within the DEQ standard range (6.5 to 9.0 su) for most of the samples.

Specific conductance ranged from 1,300 to 5,794 μ S/cm in CHIT and from 1,300 to 6,706 μ S/cm in BCR3. Effluent specific conductance was greater than the influent initially in both barrels due to the flushing of soluble components from the substrates, which is expected during startup. By the last month of the study, effluent specific conductance from the CHIT and BCR3 was similar to or less than the MIW influent. Effluent specific conductance from the Chitorem barrel was not as high at the beginning of the study as it was in year 1, which may be related to the lower quantity of Chitorem used in the barrel for year 2.

CHIT ORP was mostly above 0 for the first month, followed by a decrease to between -144.1 to -260 mV until 8/12. After the flow rate increases on 8/12 and 8/26, ORP in CHIT gradually increased to 60.8 mV. After the decrease in flow rate on 9/9, ORP in CHIT appeared to recover initially to -260.1 mV (and due to no influent MIW flow from the broken pipeline) but then increased again to above 0 by the end of the study. For BCR3, flow rate changes had much less of an effect on ORP results. ORP in BCR3 ranged from 13.2 to -332.1 mV. The highest values were during the first three weeks of the study, followed by a significantly negative ORP trend within the range needed for sulfate reduction to occur. After the second flow rate increase, ORP did increase to -188 mV on 9/2 but then decreased again in the next sample events.

The CHIT DO ranged from 0.27 mg/L to as high as 9.77 mg/L on 6/11. The high value on 6/11 was higher than the DO of the influent water and was measured only 2 days after the 0.27 mg/L measurement, which indicates a potential measurement error for this high value. In addition, the corresponding DO reading from BCR3 on 6/11 was less than 0.1 mg/L. BCR3 DO ranged from less than 0.1 mg/L initially to 2.22 mg/L on 9/16, with values less than the CHIT effluent for most of the study.

Metals

The following includes observations of metal trends, removal efficiency ranges, and comparison to water quality standards.

- Dissolved Al concentrations from the CHIT ranged from non-detect ($50 \,\mu g/L$) to $2,300 \,\mu g/L$ while removal efficiency was greater than 98% through 8/19, followed by a decrease in efficiency likely due to flow rate increases. Both dissolved and total Al began to increase on 9/2 and thereafter to a high total Al of $17,600 \,\mu g/L$ on 9/29. Total metals were generally similar to dissolved in the CHIT, except for the last month when total concentrations increased. For BCR3, dissolved Al concentrations ranged from $5.5 \,\mu g/L$ to $279 \,\mu g/L$ while the overall removal efficiency was greater than 98%, except for the first sample event. When Al was detected in the CHIT, BCR3 provided additional removal. Dissolved Al from BCR3 slightly exceeded the chronic aquatic standard of 87 $\,\mu g/L$ in some samples.
- Dissolved As concentrations from the CHIT ranged from 2.8 to 48.5 μ g/L while removal efficiency ranged from 81.6 to 98.4%. For BCR3, dissolved As concentrations had a decreasing trend from a high of 15.6 μ g/L for the first event down to 1.2 μ g/L for the last event. Compared to the year 1 study, these As results for the CHIT/BCR3 system were much lower overall. A significant difference between As removal in the CHIT and BCR3 cannot be determined. When detected, the As human health standard of 10 μ g/L was exceeded in BCR2 only for the first five sample events.
- Dissolved Cd concentrations from the CHIT ranged from non-detect (less than 2 μ g/L) to 0.27 μ g/L for the last sample event while removal efficiency was greater than 99% for the entire study. Total Cd began to increase for the last month of the study and reached influent MIW concentrations by the last sample event. For BCR3, dissolved Cd concentrations were consistently non-detect (less than 2 μ g/L and less than 1 μ g/L for the last sample event). Total Cd in BCR3 was also non-detect except for the first sample event. Overall dissolved and total Cd removal efficiency by the CHIT/BCR3 system was greater than 99% for the entire study. Significant differences between Cd removal in the CHIT and BCR3 cannot be determined except when total Cd concentrations began to increase in the CHIT effluent for the last month of the study. High total Cd removal efficiency was observed in BCR3 during this period.
- Dissolved Cu concentrations from the CHIT ranged from 24.3 μg/L in the first sample to 2 μg/L for the last sample while removal efficiency was greater than 99% for the entire study. From 7/8 through 9/23 (seven events), dissolved Cu was non-detect (less than 10 μg/L). Similar to Cd, total Cu began to increase for the last month of the study in the CHIT effluent, and a higher removal efficiency by the BCR3 was observed. For the last month, BCR3 total Cu removal efficiency ranged from 94 to 99%. Total Cu in BCR3 exceeded the chronic aquatic water quality standard for the first two sample events and the acute standard for the first event. No other exceedance of water quality standards occurred for the remainder of the study.

- Dissolved Fe concentrations from the CHIT ranged from $407 \,\mu\text{g/L}$ in the first sample to a high of $74,900 \,\mu\text{g/L}$ in the last sample, while the removal efficiency ranged from 97 to 98% for the first six sample events (through 8/19), followed by variable efficiencies between approximately 50 and 98%. Total Fe followed a similar trend although at higher concentrations overall. The increase in total Fe on 9/2 likely was due to the increased flow rate the previous week. This observation concurs with the ORP readings that indicate an increased oxidation state on 9/2 above 0, which may lead to instability of Fe sulfide precipitates. For BCR3, dissolved Fe concentrations ranged from $2,070 \,\mu\text{g/L}$ to non-detect (less than $1,250 \,\text{or}\, 250 \,\mu\text{g/L}$) while the removal efficiency compared to the CHIT effluent ranged from negative in the first sample to greater than 97%. The overall removal efficiency of the CHIT/BCR3 system was consistently greater than $98 \,\text{and}\, 97\%$ for dissolved and total Fe, respectively. Where comparisons could be made, the chronic aquatic standard was exceeded in some BCR3 samples.
- Dissolved Pb concentrations in the CHIT were non-detect (less than 2 μg/L) except for the last sample event (estimated at 0.2 μg/L). Dissolved removal efficiency was greater than 98% for the entire study. Similar to Al, Cd, Cu, and Fe, total Pb began to increase for the last month of the study. For BCR3, dissolved Pb concentrations ranged from 2.19 μg/L in the first sample to 0.062 μg/L in the last sample. Several dissolved results in BCR3 were non-detect (less than 2 μg/L), which limits the ability to compare changes with the CHIT effluent that was also non-detect. Once CHIT total Pb concentrations increased above reporting limits for the last month of the study, BCR3 total Pb removal efficiency compared to the CHIT was greater than 94%. Total Pb in BCR3 effluent exceeded the human health and chronic aquatic standards on 6/11 only.
- Dissolved Mn concentrations in the CHIT ranged from 2,110 μg/L in the first sample to a high of 96,300 μg/L while the removal efficiency ranged from 98% initially to 12.2%. For BCR3, dissolved Mn concentrations ranged from 4,010 μg/L in the first sample to a high of 66,000 μg/L. Except for the first event, BCR3 removed additional total Mn from the CHIT effluent ranging from 86.4 to 28.4%. The overall total Mn removal efficiency of the CHIT/BCR3 system ranged from 95.6% in the first sample down to around 30 to 50% in the last month.
- Dissolved Zn concentrations in the CHIT ranged from 30.2 to 297 μ g/L for the first nine sample events. On the last sample event, dissolved Zn significantly increased to 14,100 μ g/L. Dissolved removal efficiency was greater than 99%, except for the last sample. On sample events from 7/22 through 8/19, total Zn was detected greater than dissolved but still less than 1,000 μ g/L. Then on 9/2, total zinc significantly increased to 15,900 μ g/L and remained high for the month. These results appear to follow similar trends as Fe and other metals with respect to oxidation state increases with flow rate; however, dissolved Zn was still less than 100 on 9/2, 9/16, and 9/23. Thus, the increased total Zn was related to increased discharge of suspended Zn precipitates or particulates with sorbed Zn. For the last event, precipitates may have been dissolving or the CHIT was removing only limited Zn. For BCR3, dissolved Zn concentrations ranged from 7.4 to 155 μ g/L while the overall dissolved removal efficiency of the CHIT/BCR3 system was consistently greater than 99%. Total Zn removal efficiency was also greater than 99%, except for the first sample event (98.8%). Total Zn in BCR3 exceeded water quality standards in the first sample only.

Wet Chemistry Parameters

CHIT effluent sulfate concentrations ranged from 543 to 1,020 mg/L, generally following the trend in changing influent sulfate. CHIT sulfate removal efficiency ranged from 49.3 to 15.3%. Sulfate removal in the CHIT was greater than the SAPS as a pre-treatment since the Chitorem contains SRB and maintained a reducing condition conducive for sulfate reduction through at least August. BCR3 effluent sulfate concentrations ranged from 237 to 912 mg/L, with removal efficiency compared to the CHIT of 6.4% for the first sample to as high as 70.7% on 9/23. Sulfide concentrations in BCR3 ranged from 41 mg/L on 7/8 to a high of 120 mg/L on 7/22, which are the highest sulfide concentrations generated by any of the BCRs. The flow-adjusted volumetric sulfate reduction rates for BCR3 ranged from 51 mmol SO_4/m^3 -day in the first sample to a high of 529 mmol SO_4/m^3 -day on 7/8. Throughout most of the study CHIT sulfate reduction rates were actually greater than the BCR3 that followed it although some of the observed sulfate removal may be due to gypsum precipitation from the high calcium content of the Chitorem. Overall, BCR3 volumetric sulfate reduction rates were near the designed rate of 300 mmol SO_4/m^3 -day, except for the first two sample events and after the flow rate increase at the end of August.

Nutrient-related parameters for BCR3 have the same general trends as the other BCR treatment systems. Concentrations of each of these constituents started out at their maximum concentrations, followed by a decreasing trend and more stable discharge concentrations for the last 2 to 4 weeks. BCR3 had the highest overall BOD and ammonia concentrations compared to other BCRs throughout the study. BCR3 orthophosphate concentrations were similar to other BCRs and slightly higher during the last month. For CHIT, lows in orthophosphate concentrations correlated with ORP values near or above 0. These results may indicate that the Chitorem material is releasing phosphate only under more reducing conditions.

Acidity concentrations in the CHIT ranged from non-detect (less than 4 mg/L) to a high of 320 mg/L, and alkalinity concentrations ranged from 2,270 mg/L on 7/8 down to 28.1 mg/L on 9/23. The CHIT pre-treatment remained net alkaline until the last 2 weeks of the study. In BCR3, alkalinity concentrations ranged from 1,300 to 2,600 mg/L. The BCR3 effluent was net alkaline throughout the course of the study as a result of the alkalinity generated by the Chitorem barrel. Even as the Chitorem barrel alkalinity continued to decrease, BCR3 was generating additional alkalinity greater than the Chitorem barrel effluent, some of which likely was created by the sulfate reduction processes. For BCR3 however, acidity remained non-detect throughout the study. BCR3 alkalinity reached a peak on 7/8 (2,490 mg/L) and 7/22 (2,450 mg/L), followed by a gradual decrease for the remainder of the study. These peak alkalinity concentrations corresponded with some of the most reduced ORP values, highest sulfide concentrations, and greatest sulfate reduction rate, which indicated elevated alkalinity was probably biologically driven by the sulfate reduction process.

Related to the alkalinity, CHIT hardness also reached a maximum concentration on 7/8 (2,920 mg/L), followed by a decrease to 637 mg/L on 9/23. Although calcium and magnesium concentrations were not analyzed, hardness provides a representation of the dissolution of calcium carbonate into calcium and magnesium ions. The coinciding decreases in alkalinity and hardness in CHIT may indicate a decrease in available calcium carbonate in the system to react with the influent acidity.

Summary

The CHIT pre-treatment was intended to provide a similar water quality improvement as the SAPS; however, because the substrate contains SRB, alkalinity, and a carbon source, some sulfate reduction

occurred ahead of the BCR. The combined sulfate reduction and chemical precipitation processes from the calcium carbonate in the substrate resulted in significant removal of many metals prior to the BCR.

The CHIT consistently removed dissolved Cd, Cu, Pb to greater than 98 to 99% throughout the study. However, for the last month, total concentrations of these metals began to increase along with total and dissolved increases in Al, Fe, and Zn. Through 8/19, dissolved removal efficiencies for Al and Fe were greater than 97 to 99%, followed by a decrease in efficiency. Dissolved Zn removal efficiency was also greater than 99% except for the last sample. Increases in metals in the last month correspond with an increase in ORP above 0 and a decrease in pH below 6 su on 9/2 due to the second flow rate increase. A large increase in dissolved and total Fe occurred on 9/2 along with increases in total Al, Cd, Cu, Pb, and Zn but no equivalent increases in dissolved concentrations of these metals. Based on the high suspended metal concentration, the increases in these metals may have been due to coprecipitation with Fe oxy-hydroxides that passed through the CHIT barrel. With these observations in the last month, the higher Chitorem treatment efficiency observed at the beginning of the study is not likely to be maintained for the longer term or at higher flow rates. The decrease in hardness and alkalinity, along with decreased metal removal efficiency and increased ORP, indicates that the Chitorem in the pre-treatment barrel may have begun to be exhausted.

After the CHIT, BCR3 provided significant additional metal removal where comparisons could be made. Even when metals concentrations increased in the last month from the CHIT effluent, BCR3 total removal efficiencies remained greater than 94 to 99% for Al, Cd, Cu, Fe, Pb, and Zn. Except for the first sample event, overall CHIT/BCR3 dissolved and total removal efficiencies for these same metals were greater than 96 to 99%. Some of the Al, Cd, Cu, Fe, Pb, and Zn concentrations exceeded water quality standards where comparisons could be made.

Overall, the CHIT/BCR3 treatment provided significant sulfate reduction, sulfide formation, alkalinity generation, and metal removal. The treatment improvements for year 2 can be attributed to the lower treatment flow rates compared to the year 1 study and a decrease in Chitorem percentage in the substrate mixture, allowing for maintained hydraulic flow throughout the study. After the two-fold increase in flow rate on 8/26, CHIT results from the 9/2 sample event indicate increased ORP, decreased pH and sulfate reduction, increased acidity, and increased total metals. However, BCR3 still maintained net alkalinity, sulfate reduction, sulfide generation, and metal removal. A similar decrease in sulfate reduction as other BCRs occurred in BCR3 2 weeks later on 9/16 rather than on 9/2 in other BCRs.

4.2.5 Alkaline Addition Pre-treatment and BCR4

The alkaline addition pre-treatment (NaOH barrel) was followed by BCR4. The following subsections summarize the NaOH pre-treatment and BCR4 effluent water quality. As discussed in Section 2.2.4.2, problems occurred with the NaOH solution dosing. The peristaltic pump tubing was collapsing within the pump headstock, which required advancing or replacing tubing at times. In three cases, the tubing line became disconnected from the NaOH stock tank, resulting in no NaOH dosing for some period of time between the weekly site visits. NaOH dosing also had to be fine-tuned throughout the study to provide adequate NaOH to raise pH to the desired result, including when MIW flow rates were modified later in the study. All of these issues resulted in inconsistent dosing and pH adjustment, which limits the ability to evaluate trends and treatment effectiveness. Because of these overall issues, less effective or inconsistent pre-treatment is expected; therefore, more emphasis is placed on overall

BCR4 treatment performance (NaOH and BCR4) in the subsections below. Where applicable, specific NaOH field or laboratory results are discussed. All data are still presented in the tables and figures.

Field Parameters

The NaOH barrel raised pH to a range between 2.80 and 11.47 su while BCR4 increased pH to a range between 5.96 and 7.11. The one time high result of 11.47 su occurred on 9/16, consistent with when the MIW influent line froze and broke in the week prior to this event. As a result of lack of influent MIW at some point during that week, continued NaOH dosing resulted in a significant increase in pH. Issues with the pre-treatment resulted in field pH measurements less than 4.0 su in a number of cases. Despite the often low influent pH on some of the sample events, effluent pH from BCR4 remained similar to other BCRs, with some samples below the 6.5 su standard. After the first month (7/15 event), NaOH effluent pH fluctuated between greater than 4 and less than 4 su through 9/2. Although the pre-treatment had operational issues, the pre-treatment successfully increased pH to greater than 4 or 5 su on 7/22, 8/6, 8/19, 9/2, 9/16, and 9/23. All of these sample events corresponded to laboratory sample dates, which allows evaluation of treatment efficiency with laboratory data. Pre-treatment results less than 4 su that occurred on 7/29, 8/12, and 8/26 corresponded with non-laboratory sample dates.

Specific conductance ranged from 1,340 to 7,010 μ S/cm in BCR4. Effluent specific conductance was greater than the influent initially due to the flushing of soluble components from the substrates, which is expected during startup. After startup, specific conductance was similar to the influent.

BCR4 ORP ranged from 18.9 mV on 6/17 to a low of -310 mV on 8/12. After the initially high ORP, values decreased to less than -250 mV by 7/8. ORP increased to -170.7 mV after the first flow rate increase on 8/12, decreased the next week, and increased again to -157 mV after the second flow rate increase on 8/26. Following the flow rate decrease on 9/9 (and lack of influent MIW flow during part of that week), ORP decreased again to below -200 mV. ORP remained less than -150 mV for the last 2 weeks.

BCR4 DO ranged from less than 0.1 mg/L initially to 2.33 mg/L on 9/16. The NaOH pre-treatment DO remained greater than the influent MIW for most of the study likely due to the splash mixing that occurred in the barrel. Despite this high DO, BCR4 maintained effective treatment as exemplified by ORP and other parameters described in the subsections below.

Metals

The following includes observations of metal trends, removal efficiency ranges, and comparison to water quality standards.

Al removal did not occur in the NaOH pre-treatment until pH increases were above 5 su on 8/6, 8/19, 9/2, and 9/16. Dissolved Al concentrations in BCR4 ranged from 460 μ g/L in the first event to 4.2 μ g/L in the last event while the overall removal efficiency compared to the raw MIW influent was greater than 97%, except for the first event. Total Al was similar to or slightly greater than dissolved. Dissolved Al from BCR4 exceeded the chronic aquatic standard of 87 μ g/L on 6/11, 6/24, 7/8, and 9/2. On 7/22, 8/6, 8/19, 9/16, and 9/23, dissolved Al was non-detect (less than 250 μ g/L), followed by a detection of dissolved Al at less than the chronic aquatic standard on 9/29.

- Dissolved As removal efficiency in the NaOH barrel ranged from greater than 81 to 96%, likely due to higher Fe removal (see below). BCR4 dissolved As concentrations ranged from 29.5 μ g/L for the first event to non-detect for the last event (less than 1 μ g/L) while the overall dissolved removal efficiency ranged from 86.0 to 95.8%. When detected, the As human health standard was exceeded in BCR4 only for the first four sample events.
- The NaOH pre-treatment did not reduce Cd concentrations except for on 8/19, 9/2, and on 9/16 when pre-treatment pH was above 5 su. BCR4 dissolved Cd concentrations were non-detect (less than 2 or $1 \mu g/L$), except for the first two sample events. Overall dissolved and total Cd removal efficiencies were greater than 99% except for the first three sample events. Total Cd removal was less for the first three sample events due to elevated total Cd compared to dissolved Cd. When detected, total Cd often exceeded the low chronic aquatic water quality standard.
- Similar to Cd, the NaOH pre-treatment only reduced Cu concentrations during periods of elevated pre-treatment pH above 5 su. BCR4 dissolved Cu concentrations ranged from 63.3 μg/L for the first event to non-detect for the last event (less than 2 μg/L). The overall dissolved removal efficiency ranged from 94.8% to greater than 99%. Dissolved and total copper exceeded the acute and chronic aquatic water quality standards for the first sample event. Total copper exceeded the chronic standard only for the next two sample events.
- Of all other metals, Fe was the most significantly reduced by the NaOH pre-treatment due to even slight pH increases above 3 su that result in increased ferric Fe precipitate formation. Dissolved Fe concentrations in the NaOH barrel ranged from 563 to 51,700 µg/L while the dissolved and total removal efficiencies ranged from greater than 99% to 59%. Removal efficiencies were the lowest at the beginning and end of the study, with dissolved efficiencies greater than total. For BCR4, dissolved Fe concentrations ranged from 496 to 1,440 µg/L while the overall dissolved and total removal efficiencies were 98% or greater for the entire study. BCR4 Fe concentrations exceeded the chronic aquatic standard for the first three sample events.
- Similar to Cd and Cu, the NaOH pre-treatment only reduced Pb concentrations during periods of elevated pre-treatment pH above 5 su. For BCR4, dissolved Pb concentrations ranged from 16.2 μg/L in the first sample to non-detect (less than 1 or 2 μg/L) while the overall dissolved and total removal efficiencies were greater than 98%, except for the first and third sample events. Pb in BCR4 effluent exceeded water quality standards on 6/11 only.
- Mn was not removed by the pre-treatment NaOH barrel except for when pH was increased above 11 su. This elevated pH is sufficient to precipitate Mn in oxy-hydroxide forms. BCR4 followed the same Mn removal trends as other BCRs, with higher removal initially followed by a decline in efficiency. BCR4 dissolved Mn concentrations ranged from 9,680 μ g/L in the first sample to a high of 99,300 μ g/L. Dissolved Mn was also significantly reduced on the last sample event to 366 μ g/L while the total Mn on that same day was 67,000 μ g/L. This difference could be explained as suspended precipitates from the NaOH treatment passing through the BCR4 while dissolved Mn remained low.
- Zn was removed by the NaOH pre-treatment only when the pH was greater than 5 su. For BCR4, dissolved Zn concentrations ranged from 1,920 μ g/L for the first sample event to 50.4 μ g/L while the overall dissolved Zn removal efficiency was greater than 98%, except for the first

sample event. Overall total Zn removal efficiencies ranged from 88.7 to greater than 99%. Typically, total zinc concentrations were greater than dissolved. BCR4 total Zn exceeded the chronic and acute aquatic standards for the entire study. Total Zn also exceeded the human health standard during some sample events.

Wet Chemistry Parameters

The NaOH pre-treatment did not reduce sulfate nor was it expected to. BCR4 effluent sulfate concentrations ranged from 526 to 1,030 mg/L, with removal efficiency compared to the MIW influent of 10.4% for the first sample to as high as 51.3% on 7/22. Sulfide concentrations in BCR4 ranged from 5 mg/L on 7/8 to a high of 68 mg/L on 8/19. The flow-adjusted volumetric sulfate reduction rates for BCR4 ranged from 8 mmol SO_4/m^3 -day in the first sample to a high of 595 mmol SO_4/m^3 -day on 7/8. The NaOH/BCR4 system followed a similar trend to the previous BCRs.

Compared to the influent MIW, the NaOH pre-treatment provided some decrease to influent acidity, which can be attributed to the iron removal that occurred. Acidity concentrations in BCR4 were non-detect throughout the study while alkalinity concentrations ranged from 1,540 mg/L in the first sample to 51 mg/L. Alkalinity concentrations in BCR4 gradually decreased throughout the study but maintained a net alkaline treatment.

Summary

Overall, NaOH treatment effectiveness was inconsistent due to operational problems. After the first month, pre-treatment pH was above 4 or 5 su on five laboratory sample events from 7/22 to 9/16 but coincidentally decreased below 4 su on the non-laboratory sample events. As expected, the higher the pH, the more removal of higher solubility metals such as Cd, Cu, Pb, Zn, and even Mn when pH was greater than 11 su. Removal of Fe and As was more consistent throughout the study, despite pH fluctuations. Due to the high Fe concentration present in the influent MIW, even slight pH increases would have resulted in ferric Fe oxy-hydroxide precipitation and co-precipitation of the As.

Despite the pre-treatment fluctuations, BCR4 provided fairly consistent metal treatment efficiency and maintained sulfate reduction, alkalinity, and sulfide generation similar to other BCRs in the study. ORP was significantly negative (e.g., less than -250 mV) until flow rate changes were implemented. Similar to other BCRs, ORP increased after each flow rate increase compared to the previous week, followed by an overall ORP decrease after the flow rate decrease on 9/9. However, even with flow rate increases, ORP remained less than -150 mV. Also similar to BCR2 and BCR3, the volumetric sulfate reduction rate decreased after the flow rate increases, followed by a recovery when flows were decreased.

Except for the first sample event, overall dissolved Al, Cd, Cu, Fe, Pb, and Zn removal efficiencies for the NaOH/BCR4 system compared to the influent MIW were greater than 97% for the entire study. Overall total removal efficiencies for these same metals ranged from 88.7% to greater than 99% (again excluding the first sample event). When detected in BCR4, results for some of these metals exceeded water quality standards.

4.2.6 Post-Treatment Oxidation Tests

The following subsections summarize the results for the influent and effluent from the post-treatment oxidation system.

Field parameters

The combined post-treatment system influent (POSTI) pH ranged from 5.93 to 7.71 su while the post-treatment (POSTE) pH ranged from 6.07 to 8.08 su. From 7/2 through 8/26, the post-treatment system provided a 0.58 to 1.25 su pH increase from the average influent. On 9/2 and 9/9, POSTE pH was less than the DEQ standard of 6.5 su.

POSTI-specific conductance was similar to BCRs as values continued to decline throughout the study. The post-treatment system appeared to provide some specific conductance reduction during the middle part of the study although values between POSTI and POSTE were mostly very similar for the last month of the study.

POSTI ORP ranged from -315.9 to 27.8 mV while POSTE ORP ranged from -299.4 to 326 mV. During the startup period through mid-July, the post-treatment system did not provide much increase in oxidation state. On 7/22, the post-treatment system began to provide some increase in ORP. On 8/26 and beyond, a significant increase in ORP was observed. Similarly, an increase in DO was observed at the end of the study although rather erroneous POSTE DO measurements were collected. On 9/9, 9/16, and 9/30, POSTE DO was above 10 mg/L and above the saturation limit of DO. At the temperature range observed for these samples (6 to 15°C), saturated DO concentrations at an elevation of approximately 6,000 ft should probably not be greater than approximately 8 to 10 mg/L. Since increased salinity also results in decreases in DO concentration, the range may be even lower for the higher salinity waters evaluated in this study. Salinity for the POSTE samples mostly comes from the dissolved calcium, sodium, manganese, magnesium, and sulfate ions.

Metals

Due to low or often non-detect metals concentrations in BCR effluents, additional removal of metals by the post-treatment system is difficult to determine, especially for dissolved metals. In an established full-scale system, some additional metal removal by the post-treatment system is anticipated, especially the total metal fraction that may be present as discharged precipitates from the BCR. Settling and polishing of these precipitates can occur in the settling pond(s) after the BCR as well as in the post-treatment aerobic wetland.

Some total metals concentrations were detectable in the POSTI and POSTE samples although removal efficiencies were variable. Total Al removal efficiency was negative for the study until the last sample event at 60.7%. As, Cd, Cu, Fe, Pb, and Zn total removal efficiencies were 53.2 to 85.3% on 7/8 but varied from negative to positive on other events, or calculations could not be made due to all non-detected results. For example, total Fe removal efficiency was -53.3% on 7/22, 73.2% on 8/6, non-detect on 8/19, greater than 50.4% on 9/2, and -477% on 9/16. A lot of the variability has to do with reporting limit fluctuations but is also due to variable discharge chemistries, air and water temperature, and degree of wetland biological activity. Except for the first event (6/24) and on 9/16, total Zn removal efficiency ranged from 35.7 to 80.9%. All major total metals concentrations (Al, As, Cd, Cu, Fe, Pb, and Zn) increased from the post-treatment influent to the effluent on 6/24 and 9/16.

Mn is one metal of note that was generally not removed effectively by the BCRs and appears to have been removed to some degree by the post-treatment system. Typically, Mn removal does not occur abiotically without a significant pH increase above 10 su (as happened with the NaOH barrel) or biochemically with the use of limestone and specific oxidizing bacteria. The total Mn removal efficiencies observed for the study ranged from 8.9% for the first POSTE sample on 6/24 to a high of

71% on 7/8. The specific removal mechanism is unknown although most plausibly is related to the aerobic wetland component.

Wet Chemistry Parameters

No acidity was detected in the post-treatment samples. Alkalinity concentrations between the POSTI and POSTE were similar. Sulfate concentrations between POSTI and POSTE varied between reduction and no significant change. During mid-summer (7/22 and 8/6), additional reduction in sulfate occurred, whereas concentrations were similar at the beginning and end of the study. Some additional sulfate reduction probably occurred in the post-treatment system due to the low influent ORP values and flushing of suspended substrate, soluble VFAs, and microorganisms to support some sulfate reduction.

Significant reduction in sulfide occurred in the post-treatment system. POSTI sulfide ranged from 12 to 53 mg/L, whereas POSTE sulfide ranged from 8 mg/L in the first sample on 7/8 to a low detection of 0.06 mg/L on 9/29. POSTE sulfide concentrations were non-detect from 8/19 through 9/23, with variable reporting limits (0.04, 0.2, and 1 mg/L). Sulfide removal efficiency ranged from 70.4% on 7/8 to greater than 99%.

As with BCR effluents, BOD, orthophosphate, and ammonia concentrations declined in the POSTI samples as the study progressed. BOD decreased in the post-treatment system throughout the study period (7/8 to 9/29), even at initially high concentrations. BOD removal efficiency ranged from 14.8% on 7/8 to greater than 96.8% on 9/29. BOD concentrations were non-detect on 9/2, 9/16, and 9/29, with variable reporting limits (40, 6, and 2 mg/L), which indicate increased removal towards the end of the study after the aerobic wetland system had become established. The post-treatment system also had high removal of orthophosphate, with removal efficiencies ranging from 71.6 to 99.3%. Ammonia was removed only slightly by the post-treatment system likely due to the lack of sufficient oxidation throughout the small-scale pilot process. Except for the results on 6/24 (-0.2% removal efficiency), ammonia removal efficiency ranged from 4.1 to 34.2%.

Summary

As with BCR effluents, BOD, orthophosphate, and ammonia concentrations declined in the POSTI samples as the study progressed. The post-treatment system provided significant removal of sulfide, BOD, and orthophosphate in the combined BCR influent. Acidity, alkalinity, and sulfate concentrations did not vary between POSTI and POSTE samples. Some minor additional sulfate reduction occurred in the post-treatment system during mid-summer. Due to low concentrations of metals in the BCR effluents, differences between the POSTI and POSTE samples cannot be identified. BOD, orthophosphate, and sulfide removal efficiencies ranged from 14.8 to greater than 96.8%, 71.6 to 99.3%, and 70.4 to greater than 99%, respectively. Ammonia removal in the post-treatment system was limited due to the high concentrations of BOD and insufficient oxidation.

4.3 Tiger Bench-Scale Treatability Study

The bench-scale treatability results are presented below. This bench-test work was conducted to determine an optimum combination of organic substrate, alkaline material, and inoculum that most efficiently achieves and maintains sulfate reduction for metals removal. Section 2.3.2 described the test setup and operations.

Table 4.3-1 presents all of the analytical laboratory metals and wet chemistry data for the bench-scale study. Table 4.3-2 presents all of the in-house CDM Smith laboratory data for the batch tests. Table 4.3-3 provides all of the removal efficiency calculations for the titration tests and batch tests. Removal efficiencies for titration tests were calculated by comparing samples collected after the titration to the raw MIW sample. Removal efficiencies for the batch tests were calculated by comparing samples collected at the end of the batch tests to the batch control test results. Table 4.3-4 provides a comparison to water quality standards for the batch test results. All of the same limitations to completing removal efficiency calculations or water quality standard comparisons discussed in Section 4.2 for the Danny T study apply to the Tiger bench-scale study.

Reporting limits provided by ESAT for metals were similar to the Danny T study data and varied between dissolved and total results. The variabilities limit the ability to compare to water quality standards. For example, the Al reporting limit provided by ESAT for this data set was 500 $\mu g/L$. As reporting limits varied between 20 and 100 $\mu g/L$. Cd reporting limits varied between 2 and 15 $\mu g/L$. Cu reporting limits varied between 10 and 50 $\mu g/L$. The Fe reporting limit was set at 2,500 $\mu g/L$. All of these reporting limits are above human health and/or chronic aquatic standards and in some cases above acute aquatic standards (i.e., Cd and Cu). Comparison to standards is provided in the sections that follow; however, caution should be applied to drawing conclusions from this comparison due to the high reporting limits. Pb and Zn were the only metals that had consistently low enough reporting limits to compare to all standards.

4.3.1 Raw MIW

To answer principal study question 1, this section describes the water quality parameters for the untreated (raw) MIW used in the Tiger bench-scale treatability study. Dissolved and total metals concentrations in the raw MIW were found to be very similar. Similar to the Danny T study, eight metals of concern are discussed in the following sections: Al, As, Cd, Cu, Fe, Pb, Mn, and Zn. Dissolved Fe, Mn, and Zn were found to have the highest concentrations of any metals in the raw MIW: 269,000, 25,400, and 12,100 μ g/L, respectively. Dissolved Al, Cu, and Pb were measured to be 2,340, 1,450, and 952 μ g/L, respectively. Dissolved As and Cd were measured at much lower concentrations of 29.5 and 43.8, respectively. Alkalinity, chloride, fluoride, nitrate, and nitrite were not detected in the raw MIW, but sulfate was found to be 1,120 μ g/L, which provides enough sulfate for microbes to begin the sulfate reduction processes. Water hardness was measured to be 286 μ g/L.

In comparison of the raw MIW to DEQ-7 standards (DEQ 2012), both dissolved and total metals exceeded human health standards for As, Cd, Pb, and Zn. Dissolved Cu (but not total Cu) exceeded the human health standards as well. Dissolved and total Al, Cd, Cu, Fe, Pb, and Zn exceeded chronic aquatic life standards, while Al, Cd, Cu, Pb, and Zn exceeded acute aquatic life standards.

4.3.2 Alkaline Addition Titrations

This section discusses the changes in water quality from titrating the raw MIW using three separate alkaline substances: NaOH, limestone, and Chitorem. These discussions will answer the principal study question 2 for the Tiger Mine study. As described earlier in Section 2.3.2.1, an endpoint pH of 5.0 was targeted for the following titrations.

4.3.2.1 NaOH

For the NaOH titration, a total of 1.83 ml of a 25% NaOH solution was needed to achieve a pH of 5.0 in 1 L of the raw MIW (Figure 4.3-1). Dissolved and total metals removal efficiency for the titrations are provided in Table 4.3-3. Dissolved and total removal efficiency values were very similar for the NaOH titration. Dissolved Al had a removal efficiency of 93.6% while dissolved Fe and Pb were removed at 98.8%. Dissolved As was removed at 32.2%, and dissolved Cu was removed at 72.6%. Mn and Zn were removed to a much lesser extent at 11% and 5%, respectively. Cd concentrations were unchanged compared to the raw MIW.

Chloride was estimated to be 6.7 mg/L, which was increased relative to the raw MIW, while sulfate was slightly decreased to 1,020 mg/L. Other parameters, such as alkalinity, fluoride, nitrate, and nitrite, were not detected. Hardness was equal to the raw MIW at 286 mg/L.

Results from Table 4.3-4 show that after the NaOH titration, dissolved and total As and Cu and dissolved Pb no longer exceeded human health standards. Total Pb, however, still exceeded human health standards. Dissolved Fe and Pb no longer exceeded chronic aquatic life standards while dissolved and total Al and Pb no longer exceeded acute aquatic life standards.

4.3.2.2 Limestone

For the limestone titration, 2.61 g of limestone was needed to reach a pH of 5.0 in 1 L of the raw MIW (Figure 4.3-2). A thin layer of limestone flakes was observed on the bottom of the beaker, indicating that the pH may have continued to increase with time with no additional limestone. Table 4.3-3 shows that the dissolved and total removal efficiency values were very similar for the limestone titration. Dissolved Al and Cu were removed at over 95% while dissolved Fe and Pb were removed at over 99%. Dissolved As was removed at greater than 32.2%. Cd, Mn, and Zn had removal efficiency values of 0.0, 4.3, and 19.9%, respectively, which was a similar result to the NaOH titration.

Chloride was estimated to be 6.7~mg/L, which was increased relative to the raw MIW, while sulfate was slightly decreased to 1,040~mg/L. Other parameters, such as alkalinity, fluoride, nitrate, and nitrite, were not detected. Due to the mineral makeup of limestone, hardness of the MIW was increased relative to the raw MIW to 991~mg/L.

Results from Table 4.3-4 show that after the limestone titration, dissolved and total As and Cu and dissolved Pb no longer exceeded human health standards Also, dissolved Al, Fe, and Pb no longer exceeded chronic aquatic life standards while dissolved and total Al and Pb no longer exceeded acute aquatic life standards.

4.3.2.3 Chitorem

For the titration using Chitorem, 6.15 g of Chitorem was needed to reach a pH of 5.0 in the raw MIW (Figure 4.3-3). However, a layer of Chitorem flakes was observed on the bottom of the beaker, indicating that the pH may have continued to increase with time with no additional Chitorem. Table 4.3-3 shows that the dissolved and total removal efficiency values were very similar for the Chitorem titration and that the removal efficiency values followed similar trends to the two previous titrations. Dissolved Al was removed at 87.1% while dissolved Fe and Pb were removed at over 99.4%. Dissolved Cu was removed at 62.6%. The removal efficiency for Mn and Zn were higher in this titration than in the previous two, with values of 16.9 and 35.5%, respectively. Dissolved As and Cd had slightly negative removal efficiency values (indicating increases in concentration or no major statistical

change) of -22.0 and -10.5%, respectively, which was a similar result to the NaOH and limestone titrations.

Chloride was estimated to be 169 mg/L, which was increased relative to the raw MIW while sulfate was slightly decreased to 944 mg/L. Other parameters, such as alkalinity, fluoride, nitrate, and nitrite, were not detected. Due to the mineral composition of the Chitorem substrate, hardness was increased relative to the raw MIW to 1,000 mg/L.

Results from Table 4.3-4 show that after the Chitorem titration, dissolved Cu and Pb no longer exceeded human health standards. Also, dissolved Fe and Pb no longer exceeded chronic aquatic life standards while dissolved and total Al and Pb no longer exceeded acute aquatic life standards. These changes in water quality standards are similar to the previous two titrations as well.

4.3.3 Batch Tests

This section provides a summary of the bench-scale batch tests. Section 2.3.2.2 provides details on the initial setup of the 18 batch containers, and Table 4.3-2 provides details on the CDM Smith laboratory parameters sampled weekly during the study. Figures 4.3-4 through 4.3-13 provide time-based charts of the CDM Smith laboratory parameters, including pH, ORP, DO, sulfide, and alkalinity. Due to the number of batch tests, each parameter is split between two separate charts to illustrate the data more effectively.

4.3.3.1 Control

The control batch system was comprised of 2.5 L raw MIW and 1 L of an inert pea gravel. Table 4.3-2 showed that the control pH stayed in the acidic range of 2.28 to 3.0 su while the ORP stayed highly oxidizing between 579 and 624 mV. Sulfide was measured to range between 7 and 14 μ g/L. Specific conductance ranged from 1,951 to 2,130 μ S/cm. DO remained consistently at 12 mg/L for each sampling event, indicating that no geochemical processes were noticeably consuming oxygen in the raw MIW. Alkalinity was not detected in the raw MIW, and ferrous Fe ranged between 1.05 to 2.36 mg/L. No clear trends in these parameters were observed over the course of the bench-study, other than the range of data indicated that the control container provided a fairly stable comparison control test to all of the other container tests.

Comparing the control batch to the raw MIW shows that the control significantly increased total and dissolved Al, Cd, and to a lesser extent, Zn. Dissolved and total Fe and Pb were decreased by a large amount compared to the raw water collected in the field. Dissolved Cu was unchanged, but total Cu was increased in the control relative to the raw MIW.

Water quality standards provided in Table 4.3-4 show that on the bench-scale sampling date (8/26/2014), the control exceeded human health standards for dissolved and total Cd, Cu, Pb, and Zn. The chronic aquatic life standard was also exceeded for dissolved and total Al, Cd, Cu, Fe, Pb, and Zn. The acute aquatic life standard was exceeded for dissolved and total Al, Cd, Cu, and Zn. In comparison to the raw MIW sample, the control removed dissolved and total As to below all standards, as well as dissolved and total Pb to below acute aquatic life standards, but also raised total Cu to above human health standards.

4.3.3.2 BCR2 - 25 ml Methanol and NaOH

The second batch system was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 25 ml methanol, 4.575 ml NaOH, and 25 ml manure extract. The pH of BCR2 ranged from 4.5 to 6.07 su, which was higher than the control. The ORP ranged from 185 to 341 mV (oxidizing conditions) and was less than the control. Sulfide ranged from 9 to 24 μ g/L, which was higher than the control, and indicated that some sulfate reduction was occurring. Alkalinity was measured between 6.8 and 17 mg/L, which was higher than the control. DO ranged from 1 to 5 mg/L, with a decreasing trend, which was lower than the control. Ferrous Fe was lower than the control and ranged from 0.04 to 0.82 mg/L. Sulfate was not removed by BCR2, which supports other observations of no sulfate reduction.

Relative to the control, BCR2 was very successful at removing Al, Cu, Fe, and Pb from the MIW; removal efficiency values for BCR2 were greater than 88% for dissolved and total Al, Cu, Fe, and Pb. Dissolved and total Cd and Zn were removed at approximately 58 and 54%, respectively.

Table 4.3-4 shows that BCR2 was able to achieve human health water quality standards for dissolved and total Cu and Pb. Chronic aquatic life standards were met for dissolved Al as well as dissolved and total Pb. Standards for acute aquatic life were met for dissolved Al as well as dissolved Cu.

4.3.3.3 BCR3 – 50 ml Methanol and NaOH

The third batch system was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 50 ml methanol, 4.575 ml NaOH, and 25 ml manure extract. The pH of BCR3 ranged from 4.47 to 5.77 su, which was higher than the control but similar to BCR2. The ORP ranged from 208 to 346 mV. Sulfide ranged from 12 to 24 μ g/L, which was higher than the control and equal to BCR2, indicating that some minor sulfate reduction was occurring. Alkalinity was measured between 6.8 and 17 mg/L, which was higher than the control. DO ranged from 1 to 5 mg/L, with a decreasing trend, which was much lower than the control. Ferrous Fe was lower than the control and ranged from non-detect (less than 0.02 mg/L) to 0.42 mg/L. Sulfate was not removed by BCR2.

Relative to the control, BCR3 was successful at removing dissolved and total Al, Cu, Fe, and Pb; the removal efficiency for these four metals was above 92% for each. This result is very similar to BCR2. Dissolved and total Cd and Zn were removed at approximately 52 and 48%, respectively, which is a very similar result to BCR2.

Improvements in water quality relative to the control (Table 4.3-4) show that BCR3 was able to reach human health standards for dissolved and total Cu and Pb. Chronic aquatic life standards were met with dissolved Al and dissolved and total Pb. Acute aquatic life standards were met by dissolved Al.

4.3.3.4 BCR4 – 100 ml Methanol and NaOH

The fourth batch system was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 100 ml methanol, 4.575 ml NaOH, and 25 ml manure extract. The pH of BCR4 ranged from 4.49 to 5.73 su, which was higher than the control but similar to BCR2 and BCR3. The ORP ranged from 271 to 358 mV. Sulfide ranged from 6 to 42 μ g/L, which was higher than the control, BCR2, and BCR3, and indicates that some sulfate reduction may have occurred. Alkalinity was measured between 6.8 and 17 mg/L, which was higher than the control and equal to BCR2 and BCR3. DO ranged from 1 to 7 mg/L, with no obvious trend, which is lower than the control but higher than BCR2 and BCR3. Ferrous Fe was lower than the control and ranged from non-detect (less than 0.02 mg/L) to 0.3 mg/L. Sulfate was not removed by BCR2.

BCR4 was successful at removing dissolved and total Al, Cu, Fe, and Pb; the removal efficiency for these four metals was above 87%. This removal efficiency result is very similar to BCR2 and BCR3. Dissolved and total Cd and Zn were removed at approximately 51 and 44%, respectively, which was also very similar to BCR2 and BCR3.

Relative to the control, BCR4 was able to reach human health standards for dissolved and total Cu and Pb, which was the same result as BCR2 and BCR3. Chronic aquatic life standards were met by dissolved Fe and dissolved and total Pb. Acute aquatic life standards were met by dissolved Al.

Overall, the three methanol treatments were very similar in the geochemical conditions, and each was able to remove the majority of Al, Cu, Fe, and Pb from the MIW although the removal process for these metals was likely precipitate formation after NaOH addition and sorption to organic matter contained in the manure extract. Limited to no sulfate reduction occurred, and the solutions remained oxidized, indicating that methanol was not a compatible organic substrate for the bacteria contained within the manure tea. Dissolved and total Cd and Zn were metals that these three BCRs were consistently unable to reduce below human health water quality standards, and Mn appeared to be only moderately removed from these treatments.

4.3.3.5 BCR5 - 25 ml Ethanol and NaOH

The fifth batch system was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 25 ml ethanol, 4.575 ml NaOH, and 25 ml manure extract. The pH of BCR5 ranged from 4.46 to 6.93 su, which was had the highest values of any of the other methanol or ethanol test containers. The ORP ranged from -100.7 to 378 mV. Sulfide ranged from 7 to 7,030 μ g/L, which is significantly higher than the control, indicating that sulfate reduction was occurring. Alkalinity was measured between 6.8 and 170 mg/L, which was higher than the control. After the addition of more manure tea inoculum on 8/6, ORP began to decrease below 0, and sulfide and alkalinity increased due to sulfate reduction. However, pH actually decreased from 6.93 to 5.66 after the additional inoculum. DO ranged from 1 to 6 mg/L, with a decreasing trend, which was lower than the control. Ferrous Fe ranged from 0.01 to 5.2 mg/L. The higher ferrous Fe concentrations in the last 3 weeks indicates iron-reducing conditions were present. In the last sample, ferrous Fe was 4.38 mg/L while total laboratory Fe was 18.2 mg/L. In BCR5, sulfate was removed by 91% at the end of the study, most likely indicating significant reduction of sulfate.

Relative to the control, BCR5 was very successful at removing Al, Cd, Cu, Pb, and Zn from the MIW; dissolved and total removal efficiency values were greater than 83% for these metals. Dissolved and total Fe was removed at approximately 60%.

Relative to the control, BCR5 was able to reach human health standards on all remaining dissolved and total metals (not already met by the control): Cd, Cu, Pb, and Zn. Chronic aquatic life standards were met by dissolved and total Cd, Cu, Pb, and Zn. Acute aquatic life standards were met by dissolved and total Al, Cd, Cu, and Zn. Only chronic aquatic life standards for Al and Fe were exceeded with this treatment.

4.3.3.6 BCR6 - 50 ml Ethanol and NaOH

The sixth batch system was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 50 ml ethanol, 4.825 ml NaOH, and 25 ml manure extract. The pH of BCR6 ranged from 4.34 to 5.61 su, which was higher than the control and in the same range as BCR5. The ORP ranged from 75 to 406 mV.

Sulfide ranged from 7 to 93 μ g/L, which was higher than the control but significantly less than BCR5. Alkalinity was measured between 6.8 and 27.2 mg/L, which was higher than the control but less than BCR5. DO ranged from 2 to 5 mg/L, with a decreasing trend, which was much lower than the control. Ferrous Fe was lower than BCR5 and ranged from 0.02 to 3.22 mg/L. Sulfate in BCR6 was reduced by 15.3%, which was a much lower removal value than BCR5, and suggests less sulfate reduction activity. Addition of manure tea on 8/6 did not have an effect on improving results towards sulfate reduction (i.e., ORP, sulfide, and alkalinity).

Relative to the control, BCR6 was very successful at removing Al, Cu, Pb, and Zn from the MIW; removal efficiency values were greater than 88% for each of these metals. Dissolved and total Cd had removal efficiency values of 71.6 and 83%, respectively, which was lower than BCR5. Dissolved and total Fe concentrations were increased in BCR6 relative to the control by 11.1 and 12.6%, which was a different result than from BCR5, which had moderate removal of Fe.

With the exception of total Pb, BCR6 was able to reach human health standards on dissolved and total Cd, Cu, and Zn and dissolved Pb. Chronic aquatic life standards were met by dissolved and total Cd as well as dissolved Al, Cd, Pb, and Zn. Acute aquatic life standards were met by dissolved and total Al, Cd, and Cu as well as dissolved Zn. These results suggest that, although similar, BCR6 did not remove metals from the MIW to the extent of BCR5 due to the lack of sulfate reduction.

4.3.3.7 BCR7 - 100 ml Ethanol and NaOH

The seventh batch system was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 100 ml ethanol, 4.575 ml NaOH, and 25 ml manure extract. The pH of BCR7 ranged from 4.4 to 5.21 su, which was higher than the control and in the same range as BCR5 and BCR6. The ORP ranged from 189.4 to 395 mV, which was within the same range as BCR6. Sulfide ranged from 8 to 32 μ g/L, which was higher than the control but less than BCR5 and BCR6. Alkalinity was measured between 6.8 and 20.4 mg/L, which was higher than the control but less than BCR5. DO ranged from 2 to 6 mg/L, with no obvious trend, and was much lower than the control. Ferrous Fe was lower than BCR5 and ranged from less than 0.02 to 0.1 mg/L. Sulfate in BCR7 was reduced by 3.5%, which was a much lower removal value than BCR5 and BCR6, and suggests much less sulfate reduction activity. Addition of manure tea on 8/6 did not have an effect on improving results towards sulfate reduction (i.e., ORP, sulfide, and alkalinity).

Relative to the control, BCR7 was very successful at removing Al, Cu, Fe, and Pb from the MIW; removal efficiency values were greater than 89% for each of these metals. Dissolved and total Cd had removal efficiency values of 49.7 and 48.9%, respectively, which was lower than BCR5 and BCR6. Dissolved and total Zn removal efficiency values were 43.4 and 44.0%, respectively, which was significantly less than the BCR5 and BCR6 treatments.

BCR7 was able to reduce dissolved and total Cu and Pb to below human health standards, which was a similar result to BCR5 and BCR6. Chronic aquatic life standards were met only by dissolved and total Pb, which is a different result from BCR5 and BCR6. Acute aquatic life standards were met only by Al, which again was a different result than from BCR5 and BCR6.

Overall, the three ethanol test results suggest that BCR5 performed the best at reducing sulfate and removing metals from the MIW while BCR6 performed similar in metals removal. BCR7 did not

perform as well as either BCR5 or BCR6 at removing metals from the MIW and achieving water quality standards but was still able to remove a significant portion of Al, Cu, Fe, and Pb.

4.3.3.8 BCR8 - 25 ml Molasses and NaOH

The eighth batch system was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 25 ml molasses, 4.80 ml NaOH, and 25 ml manure extract. The pH of BCR8 ranged from 3.91 to 4.75 su, which was higher than the control. The ORP ranged from -375.0 to 102.5 mV, which ranges from highly reducing during the first couple weeks to oxidizing conditions. Sulfide ranged from 72 to 194 μ g/L, which was higher than the control and indicated that some sulfate reduction was occurring. Alkalinity was measured between less than 5 to 102.0 mg/L, which was higher than the control. DO ranged from 1 to 2 mg/L, which was much lower than the control. Ferrous Fe ranged from 1.44 to 4.28 mg/L, which indicates that iron-reducing conditions were present in the container. Sulfate in BCR8 was not reduced relative to the control at the end of the test, which suggests a low rate of sulfate reduction activity.

During the first 3 weeks, significant gas production was occurring in BCR8 and required venting of the cubitainer every few days. After the gas production ceased, pH decreased below 4 su, and ORP increased above 0. Based on the gas generation and first week in-house results (7/17) of high alkalinity, low ORP, and elevated sulfide, some sulfate reduction was likely occurring and contributing to the sulfide and alkalinity generation and likely CO_2 gas. The significant gas generation may have also been related to methanogenic conditions within the container, which generates methane gas. The sharp increase in ORP and decrease in pH and alkalinity may have been due to an overproduction of organic acids from the molasses within the enclosed container as well as release of Fe from the molasses (see below). After addition of NaOH and inoculum on 8/6, ORP decreased from above 0 to - 51 mV although this decrease in oxidation state was not sustained for later samples. Sulfide slightly decreased and alkalinity remained non-detect after the additional amendments.

Relative to the control, BCR8 removed dissolved and total Al at 80.7 and 75.3%, respectively. Dissolved and total Cd was similar to Al and was removed at 71.6 and 83.0%, respectively. Dissolved and total Cu was the highest removed metal in BCR8 at 96.5 and 93.4%, respectively. Dissolved and total Fe significantly increased in BCR8 relative to the control, indicating the presence of Fe in the molasses. Dissolved and total Pb were moderately removed at 66.6 and 46.2%, respectively. Dissolved and total Zn was removed at 18.3 and 11.9%, respectively, suggesting that this metal was not meaningfully affected by the BCR8 treatment.

Relative to the control, BCR8 was able to further reduce dissolved and total Cd and Cu to below human health standards although Pb and Zn remained above this standard. Total As increased from non-detect in the control to above human health standards in BCR8. Chronic aquatic life standards were met by dissolved and total Cd and by dissolved Cu. Acute aquatic life standards were met only by dissolved and total Cd and dissolved Cu.

4.3.3.9 BCR9 - 50 ml Molasses and NaOH

The ninth batch system was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 50 ml molasses, 4.575 ml NaOH, and 25 ml manure extract. The pH of BCR9 ranged from 3.82 to 4.50 su, which was higher than the control and in the same range as BCR8. The ORP ranged from -425.0 to 104.8 mV, which was within the same range as BCR8. Sulfide ranged from 127 to 268 μ g/L, and alkalinity was measured between less than 5 and 187 mg/L. Sulfide production, higher alkalinity in

the first 2 weeks, and low ORP indicates that some sulfate reduction was occurring initially. DO ranged from 1 to 3 mg/L, which was much lower than the control but in the same range as BCR8. Ferrous Fe ranged from 1.96 to 4.04 mg/L. Sulfate in BCR9 was reduced by 4.1% relative to the control in the laboratory sample, which was similar to BCR8 and suggests a low rate of sulfate reduction activity at the end of the study. After addition of NaOH and inoculum on 8/6, no observable improvement in ORP, sulfide, or alkalinity generation was observed in BCR8.

Removal efficiencies for Al, Cd, and Cu were lower in BCR9 than in BCR8. Relative to the control, BCR9 removed dissolved and total Al at 59.9 and 55.9%, respectively. Dissolved and total Cd were removed at 46.5 and 47.2%, respectively. Dissolved and total Cu were removed at 66.3 and 91.1%, respectively. Dissolved and total Fe significantly increased in BCR9 relative to the control, and to a lesser extent, dissolved and total Pb increased in concentration. Dissolved and total Zn were removed at 12.2 and 9.6%, respectively, suggesting that this metal was not significantly affected by the BCR9 treatment.

Relative to the control, BCR9 was only able to further reduce dissolved and total Cu to below human health standards while Cd, Pb, and Zn remained above this standard. Chronic and acute aquatic life standards were not met by any metal.

4.3.3.10 BCR10 - 100 ml Molasses and NaOH

The tenth batch system was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 100 ml molasses, 4.575 ml NaOH, and 25 ml manure extract. The pH of BCR10 ranged from 3.89 to 4.53 su, which was higher than the control and in the same range as BCR8 and BCR9. The ORP ranged from -436.0 to 98.7 mV. Sulfide ranged from 276 to 520 μ g/L, and alkalinity ranged from less than 20 to 204 mg/L. Similarly, BCR8, BCR9, and BCR10 all had reducing conditions and higher alkalinity at the start of the study and elevated sulfide, indicating that some sulfate reduction was occurring. Interestingly, BCR10 had the highest sulfide compared to BCRs 8 and 9, ethanol, and methanol treatments. DO ranged from 1 to 4 mg/L, which is lower than the control but in the same range as BCR8 and BCR9. Ferrous Fe ranged from 0.44 to 3.06 mg/L. Sulfate in BCR10 was reduced by 4.7% relative to the control, which was similar to BCR8 and BCR9 and suggests a low rate of sulfate reduction activity.

After addition of NaOH and inoculum on 8/6 to BCR10, ORP decreased from above 0 to -87 mV although this decrease in oxidation state was not sustained for later samples. Sulfide slightly decreased and alkalinity remained non-detect after the additional amendments.

Relative to the control, BCR10 removed dissolved and total Al at 49.3 and 41.6%, respectively, which was lower than in BCR8 and BCR9. Dissolved and total Cd was removed at 16.3 and 19.8%, respectively, which was lower than in BCR8 and BCR9. Dissolved and total Cu was removed at 77.7 and 71.1%, respectively, which was lower than in BCR8 but in the same range as BCR9. Dissolved and total Fe significantly increased in BCR10 relative to the control and to a lesser extent dissolved and total Pb. The increases in these metals concentrations was also observed in BCR9 and similarly in BCR8. Dissolved and total Zn was removed at 18.3 and 15.6%, respectively, suggesting that this metal was not meaningfully affected by the BCR10 treatment, which was the same result as from BCR8 and BCR9.

Relative to the control, BCR10 was only able to further reduce dissolved and total Cu to below human health standards while As, Cd, Pb, and Zn remained above this standard. Chronic and acute aquatic life standards were not met by any metal.

Overall, none of the three molasses treatments were able to meaningfully reduce metals concentrations to meet many of the water quality standards, especially when compared to the BCRs that utilized ethanol. This finding is in contrast to the fact that these molasses BCRs showed evidence of reducing conditions at the beginning of the study with significant sulfide production when compared to the methanol and ethanol BCRs.

4.3.3.11 BCR11 - 15 g Chitorem

BCR11 was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 15 g Chitorem. The pH of BCR11 ranged from 3.28 to 7.60 su, which was significantly higher than the control. The ORP ranged from -330.0 to 367.0 mV, which exhibited a decreasing trend over time, and ranges from highly reducing to oxidizing conditions. Sulfide ranged from 16 to 6,350 μ g/L, which indicates that sulfate reduction was occurring. Alkalinity was measured between less than 5 mg/L initially to a high of 595.0 mg/L. DO ranged from 1 to 5 mg/L, which was much lower than the control. Sulfate in BCR11 was reduced relative to the control by 76.5%, which further suggests sulfate reducing processes.

Ferrous Fe ranged from 2.44 to 0.02 mg/L at the end of the study, exhibiting a decreasing trend over time. When compared to the low final laboratory Fe concentrations, this steady decrease in ferrous Fe may represent continued Fe removal over time. Relative to the control, BCR11 significantly removed dissolved and total Al, Cd, Cu, Fe, Pb, and Zn from the MIW; all were over 85.9%.

Relative to the control, BCR11 was able to further reduce dissolved Cd, Cu, Pb, and Zn to below human health standards. Total Cu, Pb, and Zn were also removed to below the human health standard. Dissolved and total As, which were not detected in the control (less than 100 μ g/L), were detected above human health standards in BCR11. Chronic aquatic life standards were met by dissolved Al, Cd, Cu, Fe, Pb, and Zn. Acute aquatic life standards were met by dissolved Al, Cd, Cu, and Zn, and total Al and Cd.

4.3.3.12 BCR12 - 22 g Chitorem

BCR12 was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 22 g Chitorem versus only 15 g Chitorem in BCR11. The pH of BCR12 ranged from 4.33 to 7.65 su, which was significantly higher than the control and was within the same range as BCR11. The ORP ranged from -344.0 to 185.0 mV, with a decreasing trend over time similar to BCR11. Sulfide ranged from 29 to 6,440 μ g/L, which was higher than the control and similar to BCR11, and indicates that significant sulfate reduction was occurring. Alkalinity was measured between 102.0 and 714.0 mg/L, which was in the same range as BCR11. DO ranged from 1 to 3 mg/L, which was much lower than the control. Sulfate in BCR12 was reduced relative to the control by 83.9%, which further suggests sulfate reducing processes.

Ferrous Fe ranged from 2.59 to less than 0.02 mg/L at the end of the study, similar to BCR11. Relative to the control, BCR12 significantly removed dissolved and total Al, Cd, Cu, Fe, Pb, and Zn from the MIW; all were over 87.3%.

Relative to the control, BCR12 was able to further reduce dissolved and total Cd, Cu, and Zn to below human health standards. Dissolved Pb was also removed to below the human health standard. Dissolved and total As were detected above human health standards in BCR12. This result was also found in BCR11. Chronic aquatic life standards were met by dissolved Cd, Cu, Pb, and Zn. Acute aquatic life standards were met by dissolved Al, Cd, Cu, and Zn, and total Al, Cd, and Cu.

4.3.3.13 BCR13 – 34 g Chitorem

BCR13 was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 34 g Chitorem versus the lower quantities in BCRs 11 and 12. The pH of BCR13 ranged from 5.58 to 7.47 su, which was significantly higher than the control and was within the same range as BCR11 and BCR12. The ORP ranged from -365 to 64.8 mV, with a decreasing trend over time similar to BCR11 and BCR12. Sulfide ranged from 140 to 13,580 μ g/L, which was significantly higher than the control but within the same range overall as BCR11 and BCR12. These sulfide results indicate that significant sulfate reduction was occurring in BCR13. Alkalinity was measured between 289 and 850 mg/L, which was in the same range as BCR11 and BCR12. DO ranged from 1 to 2 mg/L, which was much lower than the control. Sulfate in BCR13 was reduced relative to the control by 89.8%, which was a similar result to BCR11 and BCR12 and further suggests sulfate reducing processes.

Ferrous Fe ranged from 3.38 to less than 0.02 mg/L at the end of the study, similar to BCR11 and BCR12. Relative to the control, BCR13 significantly removed dissolved and total Al, Cd, Cu, Fe, Pb, and Zn from the MIW; all were over 82.8%, and most were greater than 90% removal.

Relative to the control, BCR13 was able to further reduce dissolved and total Cu and Zn to below human health standards. Dissolved Cd and Pb were also removed to below the human health standard. Dissolved and total As were detected above human health standards in BCR13. Chronic aquatic life standards were met by dissolved Cd, Cu, Fe, Pb, and Zn. Acute aquatic life standards were met by dissolved Al, Cd, Cu, and Zn, and total Al and Cd.

Overall, the addition of Chitorem to the raw MIW was able to achieve and maintain sulfate reducing conditions and reduce more of the metals of concern to below water quality standards than the methanol, ethanol, and molasses treatments.

4.3.3.14 BCR14 - 7 g Chitorem and NaOH

BCR14 was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 7 g Chitorem and 4.575 ml NaOH. The pH of BCR14 ranged from 4.64 to 8.02 su, which was significantly higher than the control. The ORP ranged from -397.0 to 40.8 mV, with a decreasing trend over time. BCR14 reached an ORP of less than -300 mV faster than BCRs 11 through 13 and had lower values at the end of the study. Sulfide ranged from 51 to $66,560~\mu g/L$, which indicates that sulfate reduction was occurring. BCR14 had the highest detected sulfide of any other treatment container. Alkalinity was measured between 119 and 1,275 mg/L. Both alkalinity and sulfide steadily increased to their maximum concentrations on 8/11, followed by decreases in the last two sample events. The correlating trend indicates that some of the alkalinity produced was from sulfate reduction. DO ranged from 1 to 2 mg/L, which was lower than the control. Sulfate in BCR14 was reduced relative to the control by 99.5%, which further suggests sulfate reducing processes.

Ferrous Fe was lower than the control and ranged from 1.25 mg/L initially down to 0.02 mg/L at the end of the study. Relative to the control, BCR14 significantly removed dissolved and total Al, Cd, Cu, Fe,

Pb, Mn, and Zn from the MIW; all were over 87.7%, and most were over 98%. Compared to previous Chitorem BCRs and specifically BCR11 that contained the same amount of Chitorem, BCR14 did not show a discernable improvement in dissolved metal removal. Total metals removal slightly increased for BCR14.

Relative to the control, BCR14 was able to further reduce dissolved and total Cd, Cu, Pb, and Zn to below human health standards. Dissolved and total As were detected above human health standards in BCR14. Chronic aquatic life standards were met by dissolved and total Al, Cd, Cu, Fe, Pb, and Zn. Acute aquatic life standards were met by dissolved and total Al, Cd, Cu, and Zn.

4.3.3.15 BCR15 – 7 g Chitorem and Limestone

BCR15 was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 7 g Chitorem and 8.2 g limestone fines. The pH of BCR15 ranged from 4.89 to 7.85 su. BCR15 and 14 were similar in magnitude and the highest overall of any other BCRs. The ORP ranged from -387 to 52.3 mV, with a decreasing trend over time. Similar to BCR14, BCR15 reached an ORP of less than -300 mV faster than BCRs 11 through 13 and had lower values at the end of the study. Sulfide ranged from 76 to 41,280 μ g/L, and alkalinity ranged between 170 and 1,700 mg/L. The trends and magnitude of sulfide and alkalinity concentrations were similar to BCR14. DO ranged from 1 to 2 mg/L, which was lower than the control. Sulfate in BCR15 was reduced relative to the control by 88.2%, which further suggests sulfate reducing processes.

Ferrous Fe was lower than the control and ranged from 2.05 mg/L initially down to 0.01 mg/L in the second to last week. Relative to the control, BCR15 significantly removed dissolved and total Al, Cd, Cu, Fe, Pb, and Zn from the MIW; all were over 94.3%.

Relative to the control, BCR15 was able to further reduce dissolved and total Cd, Cu, Pb, and Zn to below human health standards. Dissolved and total As were detected above human health standards in BCR15. Chronic aquatic life standards were met by dissolved and total Al, Cd, Cu, Fe, Pb, and Zn. Acute aquatic life standards were met by dissolved and total Al, Cd, Cu, and Zn.

4.3.3.16 BCR16 – 50 ml Molasses and Limestone

BCR16 was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 50 ml molasses, 14.7 g limestone, and 25 ml manure extract. Like BCRs 2 through 10, BCR16 had 25 ml inoculum added to the container on 8/6. The pH of BCR16 ranged from 4.45 to 5.16 su, which was higher than the control but much less overall compared to BCRs 11 through 15. The ORP ranged from -453 to 27.6 mV, with an increasing trend with time, similar to the other BCRs that utilized molasses. Sulfide ranged from 149 to 316 μ g/L, and alkalinity ranged from less than 5 to 136 mg/L. DO ranged from 1 to 4 mg/L, which was lower than the control. Sulfate in BCR16 was reduced relative to the control by only 3.6%, which suggests that sulfate reducing processes may have stalled at an early point in time.

Ferrous Fe was in the same range as the control and ranged from 1.42 to 4.16 mg/L. Relative to the control, BCR16 removed dissolved and total Al at approximately 82%. Dissolved and total Cd removal efficiencies were 84.6 and 83.2%, respectively. Dissolved and total Cu had the greatest metal removal efficiencies in BCR16 at 95.0 and 88.1%, respectively. Dissolved and total Fe significantly increased in BCR16 relative to the control, and to a lesser extent, dissolved and total Pb increased in concentration. Dissolved and total Zn were removed at approximately 28%. These removal efficiency results and trends are very similar to the other BCRs that utilized molasses as an organic substrate.

Relative to the control, BCR16 was only able to further reduce dissolved and total Cu to below human health standards. Total As was detected above human health standards in BCR16. Chronic aquatic life standards were not met by any metal, and acute aquatic life standards were met only by dissolved Cd.

4.3.3.17 BCR17 -50 ml Molasses and Chitorem

BCR17 was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 50 ml molasses and 15 gm Chitorem and 25 ml manure extract. BCR17 also had the additional 25 ml inoculum dose and had 7 g Chitorem added on 8/6. BCR17 was meant as a comparison to BCR16 with a different alkaline material. The pH of BCR17 ranged from 3.36 to 4.0 su, which was only slightly higher than the control and less than all other BCRs. The ORP ranged from -292.0 to 76.9 mV. After the initial sample event, ORP remained in oxidizing conditions throughout the study and did not improve with the additional Chitorem and inoculum doses. Sulfide ranged from 289 to 683 μ g/L, which was in the same range as other molasses BCRs. Alkalinity was measured between less than 5 and 13.6 mg/L, which was higher than the control. DO ranged from 1 to 3 mg/L, which was lower than the control. Sulfate in BCR17 was reduced relative to the control by only 8.2%, which was a similar result to BCR16 and suggests that sulfate reducing processes may have stalled at an early point in time.

Ferrous Fe was in the same range as the control and ranged from 1.32 to 4.7 mg/L. Relative to the control, BCR17 removed dissolved and total Al at 52.0 and 47.4%, respectively. Total and dissolved As were increased relative to the control, potentially from addition of the Chitorem substrate. Dissolved and total Cu had the greatest metal removal efficiencies in BCR17 at 96.0 and 92.6%, respectively. Dissolved and total Fe significantly increased in BCR17 relative to the control. Dissolved and total Zn were removed at approximately 16%. These removal efficiency results and trends are very similar to the other BCRs that utilized molasses as an organic substrate.

Relative to the control, BCR17 was not able to further reduce any dissolved or total metal to below human health standards. Dissolved and total As were elevated relative to the control above human health standards. Acute and chronic aquatic life standards were not met for most metals.

4.3.3.18 BCR18 -7 g Chitorem and 25 ml Ethanol

BCR18 was comprised of 2.5 L raw MIW with 1 L inert pea gravel, with an addition of 7 gm Chitorem, 25 ml ethanol, 4.575 ml NaOH, and 25 ml manure extract. No additional substrate was added to this BCR later in the study. The pH of BCR18 ranged from 4.52 to 5.65 su, which was higher than the control but did not follow a similar trend to other Chitorem BCRs 11 through 15. The ORP ranged from -88.8 to 118.9 mV, with a decreasing trend for the first couple weeks to the lowest value, followed by an increasing trend towards 0. Sulfide ranged from 57 to 2,400 μ g/L, which was initially following the same trend as Chitorem BCRs 11 through 15 but then began to decrease in concentration. Alkalinity was measured between 119 and 224.4 mg/L, which was higher than the control but not as high as Chitorem BCRs 11 through 15. Some alkalinity and sulfide generation indicates that some sulfate reduction occurred. DO ranged from 1 to 3 mg/L, which was lower than the control. Sulfate in BCR18 was reduced relative to the control by 14.3%, which supports the conclusion that sulfate reducing processes might have been greater initially, followed by a decrease in activity.

Ferrous Fe was lower than the control and ranged from 0.67 to 3.36 mg/L. Relative to the control, BCR18 significantly removed dissolved and total Al, Cu, Pb, and Zn from the MIW; all were over 94.0%. Dissolved and total Cd were removed to below detection limits. Dissolved and total Fe significantly

increased in BCR18 relative to the control, which indicates that under the near oxidizing conditions at the end of the study, Fe was being released from the Chitorem.

Relative to the control, BCR18 was able to further reduce dissolved and total Cd, Cu, Pb, and Zn to below human health standards. Chronic aquatic life standards were met by dissolved and total Cd, Cu, and Pb, and by dissolved Al and Zn. Acute aquatic life standards were met by dissolved and total Al, Cd, and Cu, and by dissolved Zn.

4.4 Tiger Mine Field Investigation

To answer the Tiger Study principal study question 5 regarding the physical condition of the Tiger shaft, a field investigation of the shaft was completed using the Insight Vision DXP-300 video camera with an LED light attached. Five videos were recorded down to the 87-foot level of the shaft, four with the camera facing each wall and one with the camera facing straight down.

Between the surface and about 20 feet below ground surface (bgs), there were numerous collapsed timbers and other debris, partially obstructing the shaft. The video inspection revealed that the Tiger shaft was reasonably intact below the partial collapse. The shaft, estimated to be approximately 8-foot by 8-foot, is timbered with large wood timbers estimated to be at least 12-inch by 12-inch, with vertical wood cribbing outside the timbers on the sidewalls. There are horizontal timber sets approximately every 5-feet vertically, vertical posts in each corner, and horizontal timbers around the perimeter. At each 5-foot vertical interval, a cross timber separates the shaft in half horizontally.

The west half of the shaft was open from below the partial obstruction at the 20-foot level to a depth of 87 feet bgs. At the 87-foot level, a relatively flat and level layer of dirt was encountered. This may have been the shaft bottom or a wood landing covered with dirt. As the camera was lowered down the west side with the lens pointed to the east, there were two wood landings observed on the east side of the center dividing timbers. The first landing was noted at a depth of about 20 feet bgs, and the second landing was noted at a depth of about 50 feet bgs. The landing at the 20-foot level was supporting debris from the partial collapse near the surface. The east side of the shaft ended at the same 87-foot bgs level as the west side.

A small stream or pool of water was observed at the 87-foot level against the east wall, but due to the landings above and the cross timbers, the camera operator was not successful swinging the camera from the west side over to the east side to inspect the water source more closely. This stream or pool is shown in a video snapshot below in Exhibit 4-1. In review of the video recording, evidence of bubbling or flowing of water was observed. It is possible this water represents the mine pool elevation at the time of the investigation.

No openings of any kind were observed in any of the four sidewalls, suggesting this shaft may have been constructed to service mine workings at lower depths. Mapping of the mine workings suggest the shaft should be much deeper if it connects to the main tunnels. It seems likely that the 87-foot level reached with the camera was not the shaft bottom but another landing or a partial collapse. The inspection determined that the shaft was still open to the 87-foot level, but due to the partial collapse near the surface, significant stabilization effort would be required to access any part of the lower shaft for placement of treatment chemicals or treatment processes. The small stream of water observed at the 87-foot level against the east wall is in an area difficult to access due to the placement of landings above and the partial collapse near the surface. With these observations, near-term plans to add

reactive materials into the Tiger mine workings were suspended due to the high costs to safely and effectively deliver substances into the shaft.

Exhibit 4-1. Bottom view of Tiger Shaft showing small stream or pool adjacent to collapse

This page intentionally left blank.

Section 5

Summary and Conclusions

This section provides treatability study summaries and conclusions of the bench-scale and pilot-scale treatability studies for the site completed in 2014.

5.1 Danny T Adit Treatability Study Summary and Conclusions **5.1.1 Summary**

Using the lessons learned from the year 1 study, all of the year 2 treatment systems improved in metal treatment efficiency, sulfate reduction, sulfide generation, and maintaining a net alkaline condition. The improved results are primarily due to the increased retention time for all of the treatment systems. The year 2 study started at 8.3 ml/min (121 h retention time), compared to 37 ml/min for year 1 (24 h retention time), and BCR substrate volumes were increased for year 2, along with an increase in limestone content. The SAPS substrate volume was also doubled in size.

For BCR1, addition of the 5% Chitorem and the increased limestone content provided a significant improvement compared to the year 1 BCR1 without pre-treatment. In addition, overall treatment efficiency and sulfate reduction results for BCR1 were nearly as good as other BCRs at the lower flow rates tested. Some effect to ORP was observed due to increases in flow rate although ORP recovered after decreasing the flow rate at the end of the study. BCR1 was able to maintain a net-alkaline condition by generating significant alkalinity, positive sulfate reduction, and sulfide generation throughout the study. Dissolved removal efficiencies for many of the key metals (Cd, Cu, Fe, Pb, and Zn) were maintained above 98% for the entire study period. Total removal efficiencies were similarly high after the first sample event, with some exceptions probably due to flow rate increases, and on 7/8 when a 30 mg/L Fe increase occurred in the influent MIW compared to the previous sample event.

For BCR1 and all other BCRs, the high laboratory reporting limits for Al, As, Cd, and Fe limited the ability to compare the effluent concentrations to water quality standards that were less than the reporting limits. Cu, Pb, and Zn reporting limits were typically low enough to compare to standards due to the higher hardness values. Given this, observations for BCR1 indicate some exceedance of water quality standards for Al, As, Cd, Fe, and Zn occurred when results were detectable. With the lower reporting limits on the last sample event, greater resolution of concentrations indicates that all standards for Al, As, and Cd were met for this event.

Overall, the SAPS/BCR2 treatment provided significant sulfate reduction, sulfide formation, alkalinity generation, and metal removal. The SAPS pre-treatment increased pH to greater than 5 su, generated alkalinity, decreased ORP and DO, and reduced concentrations of several metals prior to BCR treatment. Removal of Cd, Cu, Pb, and Zn by the SAPS was significant; however, this removal is not expected to be sustained as surface sorption sites on the organic substrate become saturated. Data for Zn provides an example of sorption breakthrough at the end of the study. Removal of some amount of Al and Fe should be sustained from increased pH, resulting in Al and Fe oxy-hydroxide precipitation. While some Fe was likely removed in the top of the SAPS as Fe oxy-hydroxides, the decreased ORP in the SAPS was sufficient to reduce ferric Fe to ferrous Fe, keeping it in the dissolved phase, and lessening the likelihood of clogging. Arsenic was also removed by the SAPS consistently due to coprecipitation with the iron oxy-hydroxide precipitates that formed.

Due to significant removal of some metals, such as Cd, Cu, and Pb by the SAPS, further removal by BCR2 is difficult to evaluate. For Al, Fe, and Zn, BCR2 provided additional removal to concentrations at or below reporting limits and/or aquatic standards. Once Fe and Zn started to increase in the SAPS effluent, BCR2 maintained a 97 to greater than 99% total and dissolved removal efficiency for these metals. The SAPS/BCR2 system provided overall dissolved and total Al, Cd, Cu, Fe, Pb, and Zn removal efficiencies from greater than 92 to 99%, except for the first sample event. For Cu and Pb that had reporting limits consistently low enough to compare to water quality standards, BCR2 effluent only exceeded standards in the first two sample events. Some Al, As, Cd, Fe, and Zn results also exceeded some of the standards during the study.

Overall, the CHIT/BCR3 treatment provided similar treatment effectiveness as the SAPS/BCR2 treatment. Based on bench-scale hydraulic test results and year 1 results, the Chitorem mixture was adjusted to maintain hydraulic flow through the treatment substrate while still providing some treatment capacity. Similar to the SAPS, the CHIT increased pH to greater than 5 su, generated alkalinity, decreased ORP and DO, and reduced concentrations of several metals prior to BCR treatment. Removal of Cd, Cu, Pb, and Zn by the CHIT was significant; however, total concentrations of these metals began to increase in the last month along with total and dissolved increases in Al, Fe, and Zn, and increases in ORP. Formation of metal sulfides in the CHIT would have no longer been a stable removal mechanism with the increased oxidation state.

BCR3 provided additional metal removal after the CHIT where comparisons could be made. BCR3 total removal efficiencies compared to the SAPS remained greater than 94 to 99% for Al, Cd, Cu, Fe, Pb, and Zn in the last month of the study when concentrations increased in the CHIT effluent. Except for the first sample event, overall dissolved and total removal efficiencies for the CHIT/BCR3 system compared to the influent MIW for these same metals were greater than 96 to 99% for the entire study. Like other BCRs, comparison to water quality standards is inconsistent due to high reporting limits. Some of the BCR3 Al, As, Cd, Cu, Fe, Pb, and Zn concentrations in the first 8 weeks exceeded some of the water quality standards. Minor additional exceedances occurred later for Al and Fe.

Along with metals and ORP increases, hardness and alkalinity decreased in the last month for CHIT pre-treatment. All of these changes indicate likely effects from flow rate changes that occurred but also that the Chitorem in the pre-treatment barrel may have begun to be exhausted. As long as the Chitorem material is present to contribute alkalinity, some degree of metal removal should be sustained similar to the SAPS. However, unlike the SAPS with a significant quantity of limestone, the CHIT pre-treatment only tested a finite amount of Chitorem that contains only approximately 30% calcium carbonate by weight. Possible exhaustion of Chitorem was reviewed utilizing the Tiger benchscale study data. The average MIW acidity in the year 2 Danny T study was 667 mg/L while the estimated acidity for the Tiger study was 533 mg/L. Since these two MIWs are similar, a comparison can be made between the two studies. As reported in Section 4.3.2.2, approximately 6.15 g Chitorem was required to increase 1 L MIW to a pH of 5.0 su, with some Chitorem leftover in the bottom of the beaker. For batch Tiger BCR tests, the 15 g Chitorem dose provided adequate treatment for the 2.5 L, which is equivalent to 6 g Chitorem per 1 L MIW (see Section 4.3.3.11 BCR11). The Danny T year 2 study utilized 3.2 gallons Chitorem, which is equivalent to approximately 6,900 g Chitorem using a 0.57 kg/L density. Based on the 6 g estimate per liter MIW, the amount of MIW that could theoretically be treated with this mass of Chitorem is approximately 1,200 L. Using average flow rates and variations in flow rates for the number of pilot-study days, a total of approximately 1,500 L Danny T

adit water was treated in the study. Comparison of the two MIW volumes indicates the Chitorem could have been exhausted by the end of the year 2 study.

The NaOH pre-treatment effectiveness was variable due to operational problems with maintaining adequate and consistent pH dosing and pre-treatment pH. Although inconsistent pre-treatment pH levels did occur, when above 5 su, total Al removal efficiency ranged from 61 to 96.5%. When pH was above 4 su, total Fe removal efficiency ranged from 90.6 to 95.7%. Overall, Fe removal by the NaOH pre-treatment was the most consistent compared to other metals. Removal efficiencies for other metals were quite variable but in general increased with increasing pH.

Although pre-treatment variability occurred, BCR4 maintained a high level of metal removal efficiency similar to the other BCRs in the study. Except for the first sample event, overall dissolved Al, Cd, Cu, Fe, Pb, and Zn removal efficiencies for the NaOH/BCR4 system compared to the influent MIW were greater than 97% for the entire study. Overall total removal efficiencies for these same metals ranged from 88.7 to greater than 99% (again excluding the first sample event). Compared to other BCRs, BCR4 had a higher frequency of water quality exceedances throughout the study, especially for metals such as Cd and Zn that exceeded standards for most sample events (when detected for Cd).

Each of the treatment systems reacted slightly different to increases in flow rate although, regardless of the pre-treatment type, the BCRs still maintained significantly high total and dissolved metal removal efficiencies. ORP increases were observed for all BCRs after the flow rate increased to 12.5 ml/min (80.6 h retention time) and 16.7 ml/min (60.5 h retention time) although some signs of recovery were observed after the first increase. For the second flow rate increase, further increases in ORP occurred in all BCRs, decreases in sulfate reduction rate occurred in BCRs 2 through 4, and increases in Fe occurred in BCRs 1 and 2. Volumetric sulfate reduction rates were near or above the designed rate of 300 mmol SO_4/m^3 -day but then decreased in BCRs 2 through 4 after the second flow rate increase. BCR1 maintained a sulfate reduction rate of 443 mmol SO_4/m^3 -day on 9/2 while BCR3 was at 329 mmol SO_4/m^3 -day and BCRs 2 and 4 were below 150 mmol SO_4/m^3 -day. Both passive pretreatments (SAPS and CHIT) also had decreased metal removal, increased ORP, and generation of acidity at the fastest retention time observed on 9/2. However, after the decrease in flow rate and stagnated conditions from the pipeline break, sulfate reduction rates again increased in BCRs 2 through 4.

The combined post-treatment system provided promising test results even for such a small-scale system that has a limited aeration effect at the low and batch-based flow rate. As with BCR effluents, BOD, orthophosphate, and ammonia concentrations declined in the POSTI samples as the study progressed. The post-treatment system provided significant removal of sulfide, BOD, and orthophosphate in the combined BCR influent. Because the BCRs had already removed most of the metals, and because of higher reporting limits, additional metal removal by the post-treatment system could not be determined. BOD, orthophosphate, and sulfide removal efficiencies ranged from 14.8 to greater than 96.8%, 71.6 to 99.3%, and 70.4 to greater than 99%, respectively.

Ammonia removal in the post-treatment system was limited. While some ammonia would volatize to the atmosphere, ammonia removal would predominantly occur via a biologically mediated nitrification process to nitrate/nitrite, followed by uptake of nitrate/nitrite by plants. However, nitrification requires significantly more oxygen than what is required for BOD degradation; therefore, nitrification is impeded until BOD concentrations decrease to approximately the same level as

ammonia (Kadlec and Knight 1996). Concentrations of POSTE BOD and ammonia were not similar until the last month of the study when BOD removal increased to greater than 90%.

5.1.1 Conclusions

The overall data collected in this study indicate that the 60.5 h retention time may be too fast for maintaining adequate treatment of the Danny T adit discharge and for the types and sizes of treatment systems evaluated in this study. In contrast, the original 121 h retention time may be longer than necessary for adequate treatment. The optimum treatment retention time may then fall somewhere between 121 and 60.5 hours. This conclusion validates the use of the 300 mmol SO_4/m^3 -day sulfate reduction rate and metals acidity loading as key in sizing the BCR for the water to be treated. In FS and future design evaluations, the optimum design retention time should consider available land surface area for the passive treatment system within this retention time range to optimize the system and costs. The lower the retention time of the BCR and pre-treatment components, the less land surface area required. However, too small of a system can result in loss of long-term and consistent treatment efficiency.

Although BCR1 results indicate that addition of a small fraction of Chitorem to the BCR provides treatment enhancement and nearly equivalent efficiency as other BCRs with pre-treatment, pre-treatment by one of the other methods tested would be highly recommended to maintain adequate long-term treatment. Because of the potential exhaustion of Chitorem in the CHIT pre-treatment, eventual exhaustion of the Chitorem in a BCR-only type treatment could also lead to the same effects. Most importantly, the pre-treatment component, such as a SAPS, provides a method to reduce acidity load and oxidation state prior to the BCR, which reduces stress to the overall biological community. An initial reduction of oxidation state improves the efficiency of the sulfate reduction process. Use of pre-treatment also limits potential for clogging of piping or other infrastructure due to suspended solids and precipitates to one treatment unit rather than the BCR.

As an overall conclusion based on the data provided from the study, a SAPS pre-treatment followed by a BCR with a small fraction of Chitorem (similar to BCR1) may provide the best treatment scenario to maintain efficiency and limit costs. BCR1 exhibited more resilience to changing flow rates than the other three BCRs. This approach reduces costs and also allows for the majority of the materials in the BCR and SAPS to be sourced by local Montana suppliers. In a low-flow passive system, NaOH dosing proved to be challenging, just as magnesium hydroxide dosing was in the year 1 study. In a full-scale system, NaOH dosing would also bring challenges, such as adequate and safe storage of NaOH solution, and issues with winter operations due to the freezing point elevation of NaOH solution. The NaOH system would also require a power source that would need regular maintenance and inspection. Putting all these issues aside, the NaOH still would have the greatest potential to maintain high Al and Fe removal prior to the BCR and increase the longevity of the BCR. Assuming the NaOH system maintained a pH above 4.5 to 5.5 su, study results indicate higher metals removal compared to other pre-treatments tested.

Due to the higher cost of the Chitorem, relying solely on the Chitorem as a pre-treatment system may be more costly and achieve similar results as a SAPS system. However, based on the study design, a SAPS would need to be twice as large volumetrically compared to a Chitorem-based pre-treatment to achieve the same level of overall treatment. Additionally, because of the clogging observed in year 1, it is difficult to recommend a Chitorem-based reactor or pre-treatment with this one hydraulically successful test.

For post-treatment, the basic technologies tested appear to provide a high level of sulfide, BOD, and orthophosphate removal, especially after adequate establishment and acclimation of the aerobic wetland, BOD removal efficiencies increased above 90% at the end of the study. In a full-scale system, the lack of oxidation issue is addressed by the fact that the system would operate with a continuous and much larger flow rate. The larger flow rate results in turbulence and mixing. More aeration can be attained with simple systems such as cascades. The lack of oxidation can also be addressed by increased pond size and retention time, oxidation processes such as passively operated floating solar aerators, and a larger and more established series of aerobic wetland ponds. Inoculation with specific autotrophic nitrifying bacteria may also be considered to help initiate the nitrification process in the post-treatment ponds and wetlands such as from a local wastewater treatment plant. Another issue related to ammonia removal by nitrification is that the nitrification process converts alkalinity to carbonic acid, potentially resulting in a decreased water pH (Kadlec and Knight 1996). To address this potential issue, use of a passive limestone bed at the final discharge from the aerobic wetland or within the wetland may be considered.

5.2 Tiger Mine Treatability Study Summary and Conclusions

MIW from the Firehose Adit at the Tiger Mine was collected in early June 2014 and shipped to the CDM Smith Treatability Laboratory in Denver, Colorado. Analysis of the raw MIW was then performed to answer the Tiger Study principal study question 1, which showed very high levels of Fe, Mn, and Zn and lower levels of Al, As, Cd, Cu, Pb, and Ni. Comparison of the MIW to DEQ-7 standards showed human health standard exceedances of As, Cd, Cu, Pb, and Zn and chronic aquatic exceedances of Al, Cd, Cu, Pb, and Zn. Further analysis of this water at the Denver Laboratory showed that this MIW had a pH of around 2.5 su, a highly oxidizing ORP, no alkalinity, and enough sulfate for microbially mediated sulfate reduction processes for metals removal.

Alkaline materials NaOH, limestone, and Chitorem were used for titration tests on the raw MIW. The titrations were conducted to determine how much of each alkaline material was needed to increase the raw MIW to a pH of 5.0 su for later use in the bench-scale treatment study; the quantity of alkaline material needed per volume of MIW was calculated and scaled for application of the bench-scale tests. Results from these titrations showed that to raise the raw MIW to approximately 5.0 su required 1.83 ml of 25% NaOH, or 2.61 g limestone, or 6.15 g of the Chitorem material. With this information, the bench-scale treatability study initial batch parameters were designed.

The bench-scale study was implemented at the Denver Laboratory to test which combinations of organic substrates, alkaline materials, and microbial inoculum is most effective at treatment of the MIW. The organic substrates utilized were methanol, ethanol, molasses, and Chitorem, and the inoculum materials were a manure extract and Chitorem. After assembling a series of batch containers with varying quantities of these materials, the batch containers were sampled over a period of 7 weeks. The control batch container was assembled using only raw MIW and inert pea gravel, but water quality analysis at the end of the study showed that the control batch had reductions in concentrations of Fe and Pb but increased concentrations of Al, Cd, and Zn.

Methanol (BCRs 2 through 4) as an organic substrate along with NaOH addition was able to achieve large reductions in Al, Cu, Fe, and Pb, with smaller reductions in Zn. These reductions were likely due to precipitate formation from the initial NaOH addition. Concentrations of Cd and Zn remained well above water quality standards regardless of the initial methanol concentration. All methanol BCRs

produced only a trace of sulfide, had low alkalinity and positive ORP, and did not reduce sulfate in the final analytical laboratory sample. These results support the conclusion that sulfate reduction did not occur and methanol was not an appropriate organic substrate for the microbial population contained within the inoculum utilized and for the MIW tested.

When ethanol was used as the organic substrate (BCRs 5 through 7), further reductions in Cd and Zn were observed compared to methanol. However, Fe was removed with ethanol to a lesser degree than methanol. As with the methanol, further increases in initial ethanol concentrations did not appear to increase the metals removal efficiencies. Of the three ethanol tests, only BCR5 with the lowest ethanol dose achieved sulfate reducing conditions during the study. Addition of more inoculum on 8/6 appeared to provide a boost to the system to decrease ORP to a more reducing condition, generate more sulfide and alkalinity, and increase pH above 6 su as a result. CDM Smith laboratory ORP, sulfide, and alkalinity results and laboratory metal removal efficiencies and sulfate results suggest that the addition of more ethanol to the MIW did not increase the amount of sulfate reduction or metals removal, and the increased dose may have caused toxicity to the microbial system.

Using molasses as an organic substrate (BCRs 8 through 10, 16, and 17) appeared to be the least effective at treating the MIW. On the final sampling date, high concentrations of Al, Cd, Cu, Fe, Pb, Ni, and Zn remained in the MIW compared to the control. Although all molasses BCRs initially began the study with more reducing ORP values and significant gas generation, ORP quickly increased to oxidizing while the pH remained most likely too acidic for sulfate reduction and metals removal to occur. All molasses BCRs also released a significant amount of iron into solution from the molasses substrate, which resulted in a decrease in acidity and may have inhibited further sulfate reduction. Breakdown of molasses also may have increased concentrations of organic acids to reduce acidity. Overall, molasses BCRs were not able to sustain sulfate reduction throughout the study. Even with additional alkaline materials in BCR16 (limestone) and BCR17 (Chitorem), some component was present with the molasses that inhibited further sulfate reduction after the first couple weeks.

With the exception of a combined Chitorem/molasses substrate (BCR17), the use of Chitorem as an organic substrate appears to be the most effective at maintaining sulfate reducing conditions and removal of metals from the MIW. BCRs 11 through 13 utilized Chitorem only at different doses for the organic substrate, alkaline material, and inoculum. BCRs 14 and 15 evaluated the augmentation of a lower Chitorem dose with NaOH and limestone alkaline materials. BCR18 evaluated the augmentation of a lower Chitorem dose with ethanol.

Overall, when Chitorem was employed, levels of Al, Cd, Cu, Fe, Pb, Ni, and Zn were lower than when methanol, ethanol, or molasses were used. This finding is confirmed by consistently reducing ORP, neutral pH, higher sulfide concentration and alkalinity, and lower DO levels in the Chitorem batches than when the other three substrates were employed. Between the three Chitorem-only BCRs, the greater the Chitorem content, the slightly greater the sulfate reduction measured at the end of the study although a greater Chitorem content did not show a discernable improvement in metals removal. During the study, CDM Smith laboratory sulfide and alkalinity concentrations were slightly greater with the successively greater Chitorem contents. ORP was also the lowest with the greater Chitorem content.

When comparing Chitorem-only BCRs 11 through 13, both BCRs 14 and 15 with additional alkaline material reached an ORP of less than -300 mV faster and had lower values at the end of the study.

BCRs 14 (7 g Chitorem and NaOH) and 15 (7 g Chitorem and Limestone) had higher sulfide and alkalinity concentrations than BCRs 11 through 13 on 8/11, followed by a decrease to less than BCRs 11 through 13 for the last two sample events. For metals, BCRs 14 and 15 did not have a discernable improvement in removal efficiency. Similarly, BCR14 and BCR15 also had no difference in removal efficiencies with the different alkaline reagents utilized. However, sulfate removal was slightly greater with the use of NaOH in BCR14.

In the last container with Chitorem, the use of ethanol with Chitorem did not improve metals removal compared to other Chitorem treatments. Based on increasing ORP towards 0 and lower overall sulfide and alkalinity generation compared to other Chitorem BCRs, the addition of ethanol appeared to have provided some inhibitory effect to sulfate reduction. Overall, these results suggest that in order to maintain sulfate reducing conditions that will result in acceptable metals removal from MIW, at least 7 g of Chitorem is needed for the 2.5 L of MIW in conjunction with a separate alkaline material, or a dose of 15 g Chitorem alone may be sufficient. These findings answer the Tiger principal study questions 3 and 4.

Overall, the Chitorem bench-tests provided the best metals removal and indication of sustained sulfate reducing conditions. Adequate treatment effectiveness with the right ethanol dose also appears promising and has been shown effective in passive treatment systems by others. Assuming injection of substrates into underground workings is feasible in a field application, a combination of NaOH pH adjustment, followed by Chitorem-guar injection, is recommended given the study data results. Limestone fines also would appear to provide pH adjustment; however, NaOH as an alkaline amendment would be easier to implement and more mobile and reactive to increase pH compared to limestone. The lowest Chitorem doses tested were adequate for treatment in the batch tests; however, in a field application, higher doses probably would be recommended to provide longer-term treatment and stabilization of the mine pool oxidation state to a more reducing environment.

In conclusion, the Tiger bench-scale study provides an important set of data to be utilized for FS evaluations of possible in-situ treatments regarding reagent dosing and effectiveness. However, the bench-tests do not provide insight into the technical feasibility of such treatments. Based on downhole camera field investigations, application of a treatability test at the Tiger shaft is not recommended at this time. Future potential field applications could be conducted at the Tiger mine or other mine sites with further evaluations of underground workings locations, geology reviews, and planning and installation of injection/extraction wells for treatment application.

This page intentionally left blank.

Section 6

References

Anton, N.R. 2014. Personal Communication.

CDM Smith. 2014a. Pilot-Scale Field Test of Passive Treatment of Danny T Adit Discharge Year 2, Addendum #2 to Sampling and Analysis Plan, Bench-Scale Test of Passive Treatment of Danny T Adit Discharge, Barker-Hughesville Mining District Superfund Site, Cascade and Judith Basin Counties, Montana. Prepared for EPA by CDM Smith. May 30, 2014.

CDM Smith. 2014b. Sampling and Analysis Plan/Quality Assurance Project Plan, Tiger Mine Treatability Study, Barker-Hughesville Mining District Superfund Site, Cascade and Judith Basin Counties, Montana. Prepared for EPA by CDM Smith. July 8, 2014.

CDM Smith. 2014c. Final Danny T Adit Treatability Study Year 1 Technical Memorandum, Barker-Hughesville Mining District Superfund Site, Cascade and Judith Basin Counties, Montana. Prepared for EPA by CDM Smith. March 5, 2014.

CDM Smith. 2014d. Draft Remedial Investigation Report, Barker-Hughesville Mining District Superfund Site, Cascade and Judith Basin Counties, Montana. Prepared for EPA by CDM Smith. July 11, 2014.

CDM Smith. 2014e. Sampling and Analysis Plan/Quality Assurance Project Plan, Post-RI Activities (2014 Field Season), Barker-Hughesville Mining District Superfund Site, Cascade and Judith Basin Counties, Montana. April.

CDM Smith. 2013. Addendum #1 to Sampling and Analysis Plan, Bench-Scale Test of Passive Treatment of Danny T Adit Discharge. Prepared for EPA by CDM Smith. June 7, 2013.

CDM Smith. 2007. Laboratory Quality Assurance Plan for the CDM Smith Denver Treatability Laboratory. August.

CDM Smith. 2005. Final Technical Memorandum Site Investigation Summary Report for Barker Hughesville Mining District NPL Site (Tech Memo) Prepared for EPA. 2005.

DEQ. 2012. DEQ7 Montana Numeric Water Quality Standards. Planning Prevention and Assistance Division, Water Quality Planning Bureau, Water Quality Standards Section. Helena, MT: Montana Department of Environmental Quality. October 2012.

EPA. 2014. Reference Guide to Treatment Technologies for Mining-Influenced Water. EPA 542-R-14-001, March 2014.

Gusek, J.J. 1998. Three Case Histories of Passive Treatment of Mine Drainage. In: Proceedings of the 19th Annual West Virginia surface Mine Drainage Task Force Symposium. West Virginia University, Morgantown, WV.

Gusek, J.J., and L.A. Figueroa. 2009. Mitigation of Metal Mining Influenced Water. Society for Mining Metallurgy and Exploration, Lakewood, Colorado.

International Network for Acid Prevention, 2009. Global Acid Rock Drainage Guide. www.gardguide.com

ITRC. 2013. Biochemical Reactors for Treating Mining- Influenced Water. BCR-1. Washington, D.C.: Interstate Technology & Regulatory Council, Biochemical Reactors for Mining-Influenced Waste Team. www.itrcweb.org

Kadlec, R.H. and R.L. Knight. 1996. Treatment Wetlands. CRC Press Inc.

Wildeman, T.R., G.A. Brodie, and J.J. Gusek. 1993. Wetland Design for Mining Operations. Vancouver, B.C.: BiTech Publishing Co.

Willow, M.A. and R.R.H. Cohen. 1998. pH and Dissolved Oxygen as Factors Controlling Treatment Efficiencies in Wet Substrate, Bio-reactors Dominated by Sulfate-Reducing Bacteria. In Tailings and Mine Waste '98 (Symposium Volume of the American Society for Surface Mining and Reclamation).

Appendix A Laboratory Data Packages

This page intentionally blank.

Appendix A.1 Danny T Year 2 Pilot Study Laboratory Data Packages

This page intentionally blank.

ANALYTICAL SUMMARY REPORT

June 24, 2014

CDM Federal Programs 555 17th St Ste 1100 Denver, CO 80202

Work Order: H14060257 Quote ID: H823 - Baker-Hughsville Superfund Site

Project Name: Baker-Hughsville

Energy Laboratories Inc Helena MT received the following 9 samples for CDM Federal Programs on 6/12/2014 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
H14060257-001	14BH-DT-Pilot-INF-0611	14 06/11/14 12	:50 06/12/14	Aqueous	Acidity, Total as CaCO3 Phosphorus, Orthophosphate as P
H14060257-002	14BH-DT-Pilot-INFD- 061114	06/11/14 13	:00 06/12/14	Aqueous	Same As Above
H14060257-003	14BH-DT-Pilot-SAPS- 061114	06/11/14 13	:50 06/12/14	Aqueous	Same As Above
H14060257-004	14BH-DT-Pilot-CHIT- 061114	06/11/14 14	:05 06/12/14	Aqueous	Same As Above
H14060257-005	14BH-DT-Pilot-NAOH- 061114	06/11/14 14	:15 06/12/14	Aqueous	Same As Above
H14060257-006	14BH-DT-Pilot-BCR1- 061114	06/11/14 14	:35 06/12/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Phosphorus, Orthophosphate as P
H14060257-007	14BH-DT-Pilot-BCR2- 061114	06/11/14 14	:55 06/12/14	Aqueous	Same As Above
H14060257-008	14BH-DT-Pilot-BCR3- 061114	06/11/14 15	:20 06/12/14	Aqueous	Same As Above
H14060257-009	14BH-DT-Pilot-BCR4- 061114	06/11/14 15	:40 06/12/14	Aqueous	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:06/24/14Project:Baker-HughsvilleCollection Date:06/11/14 12:50Lab ID:H14060257-001DateReceived:06/12/14Client Sample ID:14BH-DT-Pilot-INF-061114Matrix:Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS					
Acidity, Total as CaCO3	620 mg/L	D	4.0	A2310 B	06/13/14 10:10 / SRW
NUTRIENTS					
Phosphorus, Orthophosphate as P	0.391 mg/L		0.005	E365.1	06/13/14 12:00 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:06/24/14Project:Baker-HughsvilleCollection Date:06/11/14 13:00Lab ID:H14060257-002DateReceived:06/12/14Client Sample ID:14BH-DT-Pilot-INFD-061114Matrix:Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	630 mg/L	D	4.0	A2310 B	06/13/14 10:14 / SRW
NUTRIENTS					
Phosphorus, Orthophosphate as P	0.262 mg/L		0.005	E365.1	06/13/14 12:02 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:06/24/14Project:Baker-HughsvilleCollection Date:06/11/14 13:50Lab ID:H14060257-003DateReceived:06/12/14Client Sample ID:14BH-DT-Pilot-SAPS-061114Matrix:Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	ND mg/L	D	4.0	A2310 B	06/13/14 10:21 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	3.10 mg/L	D	0.01	E365.1	06/13/14 12:03 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:06/24/14Project:Baker-HughsvilleCollection Date:06/11/14 14:05Lab ID:H14060257-004DateReceived:06/12/14Client Sample ID:14BH-DT-Pilot-CHIT-061114Matrix:Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	ND mg/L	D	4.0	A2310 B	06/13/14 10:30 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	0.090 mg/L		0.005	E365.1	06/13/14 12:04 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:06/24/14Project:Baker-HughsvilleCollection Date:06/11/14 14:15Lab ID:H14060257-005DateReceived:06/12/14Client Sample ID:14BH-DT-Pilot-NAOH-061114Matrix:Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	270 mg/L	D	4.0	A2310 B	06/13/14 10:32 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	0.038 mg/L		0.005	E365.1	06/13/14 12:07 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:06/24/14Project:Baker-HughsvilleCollection Date:06/11/14 14:35Lab ID:H14060257-006DateReceived:06/12/14Client Sample ID:14BH-DT-Pilot-BCR1-061114Matrix:Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	06/13/14 11:08 / SRW
AGGREGATE ORGANICS Oxygen Demand, Biochemical (BOD) Minimum DO for BOD is less than 1.0 mg/L.	>1755	mg/L		2000		A5210 B	06/12/14 16:39 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	10.6	mg/L	D	0.02		E365.1	06/13/14 12:08 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:06/24/14Project:Baker-HughsvilleCollection Date:06/11/14 14:55Lab ID:H14060257-007DateReceived:06/12/14Client Sample ID:14BH-DT-Pilot-BCR2-061114Matrix:Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	ND	mg/L	D	4.0	A2310 B	06/13/14 11:13 / SRW
AGGREGATE ORGANICS Oxygen Demand, Biochemical (BOD) Minimum DO for BOD is less than 1.0 mg/L.	>1758	mg/L		2000	A5210 B	06/12/14 16:41 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	73.8	mg/L	D	0.2	E365.1	06/13/14 12:09 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:06/24/14Project:Baker-HughsvilleCollection Date:06/11/14 15:20Lab ID:H14060257-008DateReceived:06/12/14Client Sample ID:14BH-DT-Pilot-BCR3-061114Matrix:Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	06/13/14 11:20 / SRW
AGGREGATE ORGANICS Oxygen Demand, Biochemical (BOD) Minimum DO for BOD is less than 1.0 mg/L.	>1758	mg/L		2000		A5210 B	06/12/14 16:43 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	55.9	mg/L	D	0.2		E365.1	06/13/14 12:10 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:06/24/14Project:Baker-HughsvilleCollection Date:06/11/14 15:40Lab ID:H14060257-009DateReceived:06/12/14Client Sample ID:14BH-DT-Pilot-BCR4-061114Matrix:Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	ND	mg/L	D	4.0	A2310 B	06/13/14 11:25 / SRW
AGGREGATE ORGANICS Oxygen Demand, Biochemical (BOD) Minimum DO for BOD is less than 1.0 mg/L.	>1749	mg/L		2000	A5210 B	06/12/14 16:46 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	43.0	mg/L	D	0.2	E365.1	06/13/14 12:11 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

QA/QC Summary Report

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:06/24/14Project:Baker-HughsvilleWork Order:H14060257

Analyte	Count Result	Units	RL	%REC Lo	ow Limit	High Limit	RPD	RPDLimit	Qual
Method: A2310 B								Batch: F	1140613A
Lab ID: H14060257-001ADL	IP Sample Duplicate	Э		R	un: PH_14	0613A		06/13/	14 10:12
Acidity, Total as CaCO3	640	mg/L	4.0				3.2	20	
Lab ID: LCS1406130000	Laboratory Contr	ol Sample		R	un: PH_14	0613A		06/13/	14 10:07
Acidity, Total as CaCO3	970	mg/L	4.0	98	90	110			
Lab ID: MBLK1406130000	Method Blank			R	un: PH_14	0613A		06/13/	14 10:06
Acidity, Total as CaCO3	4	mg/L							

QA/QC Summary Report

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:06/24/14Project:Baker-HughsvilleWork Order:H14060257

Analyte	Cou	nt Result	Units	RL	%REC Lo	w Limit	High Limit	RPD RPDLimit	Qual
Method:	A5210 B							Batch: 140612_1	BOD5-W
Lab ID:	Dil-H201_140612	Dilution Water	Blank		Ru	n: MISC \	WC_140612B	06/12	/14 14:23
Oxygen De	emand, Biochemical (BOD)	ND	mg/L	2.0		0	0.2		
Lab ID:	GGA1_140612	Laboratory Cor	ntrol Sample		Ru	n: MISC \	WC_140612B	06/12	/14 14:29
Oxygen De	emand, Biochemical (BOD)	180	mg/L	67	91	85	115		
Lab ID:	H14060249-001ADUP	Sample Duplic	ate		Ru	n: MISC \	WC_140612B	06/12	/14 14:48
, 0	emand, Biochemical (BOD) lution depleted greater than 2.0 n	ND	mg/L	130		90	110		

QA/QC Summary Report

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:06/24/14Project:Baker-HughsvilleWork Order:H14060257

Analyte	•	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E365.1							Analyt	ical Run	: FIA202-HE	_140613B
Lab ID:	ICV	Initi	al Calibrati	on Verification	Standard					06/13	/14 11:55
Phosphorus	s, Orthophosphate as P		0.250	mg/L	0.0050	100	90	110			
Lab ID:	ICB	Initi	al Calibrati	on Blank, Insti	rument Blank					06/13	/14 11:56
Phosphoru	s, Orthophosphate as P		-0.00273	mg/L	0.0050		0	0			
Lab ID:	CCV	Cor	ntinuing Ca	libration Verific	cation Standar	rd				06/13	/14 11:58
Phosphorus	s, Orthophosphate as P		0.0982	mg/L	0.0050	98	90	110			
Method:	E365.1									Batch	n: R97993
Lab ID:	LFB	Lab	oratory For	tified Blank			Run: FIA20	2-HE_140613B		06/13	/14 11:57
Phosphorus	s, Orthophosphate as P		0.181	mg/L	0.0050	91	90	110			
Lab ID:	H14060257-004BMS	Sar	nple Matrix	Spike			Run: FIA20	2-HE_140613B		06/13	/14 12:05
Phosphorus	s, Orthophosphate as P		0.129	mg/L	0.0050	20	90	110			S
- The MS/M	ISD were re-analyzed at a h	igher dilutio	on and showe	ed improved reco	overies. It is sus	pected th	at the failing M	latrix Spike is due	to matrix i	nterference.	
Lab ID:	H14060257-004BMSD	Sar	nple Matrix	Spike Duplica	ate		Run: FIA20	2-HE_140613B		06/13	/14 12:06
Phosphorus	s, Orthophosphate as P		0.127	mg/L	0.0050	19	90	110	1.6	20	S
- The MS/M	ISD were re-analyzed at a h	igher dilutio	on and showe	ed improved reco	overies. It is sus	pected th	at the failing M	latrix Spike is due	to matrix i	nterference.	
Lab ID:	H14060264-002CMS	Sar	nple Matrix	Spike			Run: FIA20	2-HE_140613B		06/13	/14 12:15
Phosphorus	s, Orthophosphate as P		0.237	mg/L	0.0050	90	90	110			
Lab ID:	H14060264-002CMSD	Sar	nple Matrix	Spike Duplica	ite		Run: FIA20	2-HE_140613B		06/13	/14 12:16
Phosphorus	s, Orthophosphate as P		0.245	mg/L	0.0050	94	90	110	3.3	20	

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Login completed by: Amanda B. Blackburn

Workorder Receipt Checklist

CDM Federal Programs

H14060257

Date Received: 6/12/2014

Reviewed by:	BL2000\wjohnson		R	eceived by: TLL	
Reviewed Date:	6/13/2014			Carrier Hand Del name:	
Shipping container/cooler in	good condition?	Yes 🔽	No 🗌	Not Present	
Custody seals intact on all s	hipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓	
Custody seals intact on all s	ample bottles?	Yes	No 🗌	Not Present ✓	
Chain of custody present?		Yes 🔽	No 🗌		
Chain of custody signed who	en relinquished and received?	Yes ✓	No 🗌		
Chain of custody agrees with	n sample labels?	Yes ✓	No 🗌		
Samples in proper container	/bottle?	Yes ✓	No 🗌		
Sample containers intact?		Yes ✓	No 🗌		
Sufficient sample volume for	indicated test?	Yes ✓	No 🗌		
All samples received within h (Exclude analyses that are c such as pH, DO, Res Cl, Su	onsidered field parameters	Yes ✓	No 🗌		
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Applicable	
Container/Temp Blank temp	erature:	1.3℃ No Ice			
Water - VOA vials have zero	headspace?	Yes	No 🗌	No VOA vials submitted	
Water - pH acceptable upon	receipt?	Yes 🗸	No 🗌	Not Applicable	

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

Orthophosphate samples received filtered as indicated on sample container. Abb 6/12/14

ENEDCV	
ENERGY	
LABORATORIES	
LABORATORIES	

Chain of Custody and Analytical Request Record

	1 1	
Page _	of	

LABORATORIES			PLEASE F	RIN	T	(Pro	ide as	much i	nformat	ion a	s po	ssible.)		
Company Name:			Project Nam						•			Samp	e Origin	EPA/State Compliance:	
CDM Smith			BARKE	ER.	- H	luc	HESVI	ME				State:	MT	Yes 🗌	
Report Mail Address (Required):			Contact Nar	ne:			Phone	Fax:	**-			Cell:		_ _	r: (Please Print)
			ANGELA				sen	(406)	441-1	400		(406) 439-3776 Tom ASKI			
M No Hard Copy Email: France	en AK@co	Msmith	Invoice Con		& Pho	one:						Purchase Order:		Quote/E	Bottle Order:
Invoice Address (Required):		vCM1	>	A		LY8	SIS RI		STED			->	Contact ELI prior RUSH sample su		Shipped by:
■ No Hard Copy Email: Saw	ns Repor	+	f Containers A W S V B O DV Soils/Solids Bioassay Other king Water			E				HED	d (TAT)	R	for charges and scheduling – See Instruction Page	;	Cooler ID(s): Receipt Temp 12
Special Report/Formats:	ectronic Data)	Number of Co Sample Type: A W Air Water So Vegetation Bios DW - Drinking			SPH 47				ATTACHED	urnaroun	U	Comments: VSE 1000 m BOTTLES FO		Receipt Temp 78 °C On Ice: Y(N)	
☐ POTW/WWTP F	POTW/WWTP Format: Ey C<\ State: LEVEL IV				A	ETHOPHOSPHATE				SEE A	Standard Turnaround (TAT)	S	combined Bod & acid		Custody Seal On Bottle On Cooler Intact Y N
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Date	Collection Time	MATRIX	ACIPITY	BOD	OR					0)	Н			Signature Y N Match
14BH-DT-Pilot-INF-	6/11/14	12=50	2 W	X		X									#14060267
2 MBH-DT-Pilot -INFD-	6/11/14	15:00	2 W	X		X									
3 14BH-DT-Pilot-SAPS-	6/11/14	13:50	2 W	X		X							-) E
4 MBH-DT-PILOT-CHIT-	6/11/14	14:15	2 W	X		X									<u> </u>
5 MBH - DT - Pilot - NAOH-	6/11/14	14:15	2 8	X		X) [
6 MBH-DT-Pilot-BCRI- OLLIH	6/11/14	14:35	2 W	X	X	X									3 00
7 MBH-DT-Pilot - BCRZ-	6/11/14	14:55	2 W	X	X	X									AT
MBH-DT-Pilot-BCR3-	6/u/14	15:20	Z W	X	X	X				T					型 ()
9 1484-DT-Pilot-BCR4-	6/11/14	15:40	2 W	X	X	X									
10		· · · · · · · · · · · · · · · · · · ·								†					
Custody Relinquished by (print):	Date/Tir	ne: 2/14 /5:	Signa	/	100		_	Received by	(print):			Date/Time:		Signat	ure:
Record Relinquished by (print):	Date/Tir	ne:	Signa	ture:	س	3/A-		Received by	" ,			Date/Time:		Signal	
Signed Sample Disposal: R	Return to Client:		Lab Dispos	al:			F	VAL	Laboratory	سأهت	- u	Jate/Time:	4 15:24	Signal	reig Xva

Statement of Work

Laboratory Analysis of Treatability Study Samples Energy Laboratories, Inc.

Subcontract No. 3383-325-006-AL, Modification 02

CDM Federal Programs Corporation (CDM Smith) has been contracted by the U.S. Environmental Protection Agency (EPA) under Contract No. EP-W-05-049, Region 8, to conduct laboratory analysis of samples collected from the Danny T adit pilot-scale treatability study at the Barker-Hughesville Superfund Site (the site). This modified statement of work (SOW) is to extend the period of performance and increase the number of sample analyses requested. Sections not requiring revision from the original SOW have not been included in this amendment, although the services are still requested. The Subcontractor requirements under this amendment are summarized in the following sections.

1.1 Scope

Scope of additional requested analyses is presented in Exhibit 1. The requested analytes are orthophosphate, acidity, sulfide, and BOD. For the 2014 pilot-scale study, up to 99 samples will be analyzed for orthophosphate acidity and up to 58 samples will be analyzed for sulfide and BOD.

Exhibit 1. List of analyses and samples required

Orthophosphate	SM4500-S D or EPA 365.1	99	0.5 mg/L
Acidity	A2310B or EPA 305.1	99	4 mg/L
Sulfide	A4500-S D or EPA 376.1	58	1 mg/L
BOD	A5210 B or EPA 405.1	58	40 mg/L

1.2 Schedule

The anticipated schedule is as follows:

- CDM Smith anticipates initiation of the 2014 pilot-scale treatability study in early June 2014.
 Samples from the pilot-scale study influent and effluent will be collected bi-weekly, starting at the week of June 9, 2014 and continuing through early October 2014. A total of 9 sampling events are planned.
- A 10 business day turn-around-time from sample receipt will be required for all results.

1.3 Deliverable Requirements

Deliverable requirements are unchanged from the original SOW.

1.4 Methods of Analyses and Number of Samples

The required analyses and number of samples for the 2014 study are provided in Exhibit 1.

U.S. Environmental Protection Agency Region 8 Technical and Management Services

Laboratory Services Program

Certificate of Analysis

Ref: 8TMS-L

MEMORANDUM

Date: 07/11/14

Subject: Analytical Results--- Barker-Hughesville Treatability JUN 2014 A046 / A-046

From: Don Goodrich; EPA Region 8 Analytical Chemistry WAM

To: Roger Hoogerheide

Superfund

8 MO

Received Sample Set(s), [Work Order : Date Received]:

[C140612 : 06/13/2014]

Attached are the analytical results for the samples received from the Barker-Hughesville_Treatability_JUN 2014_A046 sampling event, according to TDF A-046. All analyses were performed within their method specified holding times unless otherwise noted in the following narrative.

These samples were prepared, analyzed, and verified by the Environmental Services Assistance Team Laboratory (ESAT) according to the requirements of the Technical Direction Form (TDF).

Note: The laboratory herewith transmits this deliverable to the program/project partner for determination of "final data usability" which may include data validation and data quality assessment per and in accordance with EPA QA/G-8, *Guidance on Environmental Data Verification and Data Validation*, November 2002, EPA/240/R-02/004. Laboratory data qualifiers are applied based on the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*, October 2004, referred to as "NFGI".

Laboratory policy is to dispose of any remaining sample 60 days after data analysis packages are delivered to EPA. If you would like the laboratory to retain the samples for a period longer than 60 days,

Project Name: Barker-Hughesville_Treatability_JUN 2014_A046

TDF #: A-046

Case Narrative

C140612

Quality Assessment: Unless indicated by exception, the QA/QC associated with this sample set

produced data within the TDF-specified criteria.

Holding Times: All samples were analyzed within their method-specified technical holding

time(s).

1. Initial and Continuing calibration blanks (ICBs and CCBs).

Exceptions: None.

2. Preparation (PB) / Method blanks (MB)

Exceptions: None.

3. Interference Checks (ICSA / ICSAB) for ICP-MS and ICP-OE analyses only.

Exceptions: None.

4. Initial and Continuing calibration verification analyses (ICVs, SCVs and CCVs).

Exceptions: In ICP-MS sequence 1407038, lead recovered high in the SCV. As a result, all sample results for lead were qualified "J" as estimated.

5. Laboratory Control Sample (LCS) or second source analysis or SRM.

Exceptions: None.

Laboratory Fortified blank (LFB) / Blank spike (BS), same source as used for the matrix spikes. PBS performed with analyses/methods requiring preparation or digestion prior to analysis.

Exceptions: None.

7. Contract Reporting Detection Limit Standard, labeled as CRA, CRDL or CRL.

Exceptions: None.

- Laboratory Duplicate (DUP). "Source" identifies field sample duplicated in the laboratory. If either
 the "source" or the duplicate result is <5X the reporting limit, the %D limit of 20% does not apply.
 Exceptions: None.
- Laboratory Matrix Spike (MS) and spike duplicate (MSD). "Source" defines original field sample fortified prior to analysis. Percent recovery (%R) limits do not apply when sample concentration(s) exceed the corresponding analyte spike level by a factor of 4 or greater. Exceptions: None.
- 10. Serial Dilution sample analysis (SRD). "Source" is parent field sample diluted 1:5 in the laboratory. Performed for ICP-OE and ICP-MS metals analyses. Percent difference (%D) limits do not apply when analyte concentration(s) are below 50x the source sample's MDL (or 10x it's PQL). Exceptions: None.
- 11. Internal standards, criteria specified for ICP-MS analyses only, monitored at the instrument. Exceptions: None.
- 12. Any calibration using more than two-points produced a correlation coefficient equal to or greater than 0.995.

Exceptions: None.

Certificate of Analysis

Project Name: Barker-Hughesville_Treatability_JUN 2014_A046

TDF #: A-046

Acronyms and Definitions:

ESAT Environmental Services Assistance Team

J Data Estimated qualifier (also applied to all data less than PQL, greater than or equal to MDL)

MDL Method Detection Limit

PQL Practical Quantitation Limit, also known as reporting limit.

RPD Relative Percent Difference (difference divided by the mean)

%D Percent difference, serial dilution criteria unit, difference divided by the original result.

%R Percent recovery, analyzed (less sample contribution) divided by true value

< Analyte NOT DETECTED at or above the Method Detection Limit (MDL)

mg/L Parts per million (milligrams per liter). Solids equivalent = mg/Kg.

ug/L Parts per billion (micrograms per liter). Solids equivalent = ug/Kg.

NR No Recovery (matrix spike) - Often seen for calcium/magnesium when their concentration exceeds the spike level by > 4x.

NFGI USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

RE Sample Re-analysis. Usually seen on raw data and sequences for required sample dilutions due to over-range analytes.

U Analyte not detected at or above MDL qualifier

D Diluted value qualifier.

Method(s) Summary:

As defined in the Technical Direction Form (TDF), some or all of the methods listed below were used for the determination of the reported target analytes.

From EPA's Methods for the Determination of Metals in Environmental Samples, Supplement I, May 1994, dissolved, total, and/or total recoverable metals were determined by:

- Method 200.7 / 6010B using a PE Optima ICP -OE (ICP).
- Method 200.8 / 6020 using a Perkin -Elmer Elan 6000 ICP-MS.
- Method 200.2 for total recoverable metals (only) dige stion.
- Method 245.1 using a Perkin -Elmer FIMS CVAA (aqueous mercury only).

From Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, Method 2340B was used for the calculated hardness determination. Hardness is reported as mg (milligram) equivalent CaCO₃ per liter (L) determined as follows:

Calculated hardness = 2.497 * (Calcium, mg/L) + 4.118 * (Magnesium, mg/L).

From EPA's Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW -846,

- Method 3015A was used for microwave assisted total metals digestion.
- Method 7473 was used for mercury in solids.

From EPA's Determination of Inorganic Anions by Ion Chromatography, Revision 2.1, 1993, Method 300.0 was used to determine the anions.

From EPA's Methods for Chemical Analysis of Water and Wastes, March 1983:

- Method 310.1 was followed for the alkalinity determination.
- Method 160.1 was followed for gravimetric total dissolved solids (TDS) determination.
- Method 160.2 was used for gravimetric total suspended sol ids (TSS) determination.
- Method 415.3 was used for total organic carbon (TOC) determination using either an Apollo 9000 or Phoenix 8000 Non-Dispersive IR (NDIR) system. Also known as dissolved organic carbon (DOC) when performed on the dissolved sample fraction.

The quality control procedures listed in the TDF request were utilized by ESAT to verify accuracy of the results and to evaluate any matrix interferences.

Project Name: Barker-Hughesville_Treatability_JUN 2014_A046 Certificate of Analysis

TDF #: A-046

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR1-061114 **Date / Time Sampled:**

06/11/14 14:35

Workorder:

Lab Number:

C140612

C140612-02

EPA Tag No.:

Method

200.7

200.7

200.7

200.7

200.8

200.8

200.8

200.8

200.8

2340B

No Tag Prefix-B

Parameter

Aluminum

Manganese

Iron

Zinc

Arsenic

Cadmium

Copper

Lead

Nickel

Hardness

Matrix: Water

Dilution MDL Analyzed By Batch Results **Qualifier** Units Factor 436 J ug/L 200 10 07/08/2014 SV1407023 J 1000 1410 ug/L 10 07/08/2014 SV1407023 ug/L 20.0 10 4380 07/08/2014 SV1407023 142 J ug/L 100 10 07/08/2014 SV 1407023 ug/L 5.00 10 07/10/2014 SV1407027 94.5 10 07/10/2014 SV1407027 U < 2.00 ug/L 1.00 5.00 18.6 ug/L 10 07/10/2014 SV 1407027 10 07/10/2014 SV1407027 < 2.00 U ug/L 1.00 10 07/10/2014 SV1407027 < 10.0 U ug/L 5.00

15

Metals (Dissolved) by EPA 200/7000 Series Methods

3270

14BH-DT-PILOT-BCR2-061114 **Station ID:**

Date / Time Sampled:

06/11/14 14:55

Workorder: C140612

07/08/2014

10

Α

SV

1407023

Water **EPA Tag No.:** No Tag Prefix-B Matrix: Lab Number: C140612-06

mg/L

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	282	J	ug/L	200	10	07/08/2014	SV	1407023
200.7	Iron	1030	J	ug/L	1000	10	07/08/2014	SV	1407023
200.7	Manganese	3980		ug/L	20.0	10	07/08/2014	SV	1407023
200.7	Zinc	165	J	ug/L	100	10	07/08/2014	SV	1407023
200.8	Arsenic	15.6	J	ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Copper	20.2		ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Lead	2.61		ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Nickel	29.3		ug/L	5.00	10	07/10/2014	SV	1407027
2340B	Hardness	1600		mg/L	15	10	07/08/2014	SV	1407023

Certificate of Analysis

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR3-061114 EPA Tag No.: No Tag Prefix-B Date / Time Sampled: Matrix: Water 06/11/14 15:20

Workorder: C140612

Lab Number: C140612

ber: C140612-10 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	279	J	ug/L	200	10	07/08/2014	SV	1407023
200.7	Iron	1320	J	ug/L	1000	10	07/08/2014	SV	1407023
200.7	Manganese	4010		ug/L	20.0	10	07/08/2014	SV	1407023
200.7	Zinc	155	J	ug/L	100	10	07/08/2014	SV	1407023
200.8	Arsenic	174		ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Copper	22.7		ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Lead	2.19		ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Nickel	27.0		ug/L	5.00	10	07/10/2014	SV	1407027
2340B	Hardness	1870		mg/L	15	10	07/08/2014	SV	1407023

Metals (Dissolved) by EPA 200/7000 Series Methods

 Station ID:
 14BH-DT-PILOT-BCR4-061114
 Date / Time Sampled:
 06/11/14 15:40
 Workorder:
 C140612

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140612-14 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	460	J	ug/L	200	10	07/08/2014	SV	1407023
200.7	Iron	1310	J	ug/L	1000	10	07/08/2014	SV	1407023
200.7	Manganese	9680		ug/L	20.0	10	07/08/2014	SV	1407023
200.7	Zinc	1920		ug/L	100	10	07/08/2014	SV	1407023
200.8	Arsenic	29.5		ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Cadmium	12.5		ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Copper	63.3		ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Lead	16.2		ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Nickel	25.0		ug/L	5.00	10	07/10/2014	SV	1407027
2340B	Hardness	1040		mg/L	15	10	07/08/2014	SV	1407023

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-CHIT-061114 **Station ID:** EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water

06/11/14 14:05

Workorder: C140612

Lab Number:

C140612-18

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	94.5		ug/L	20.0	1	07/08/2014	SV	1407023
200.7	Iron	407		ug/L	100	1	07/08/2014	SV	1407023
200.7	Manganese	2110		ug/L	2.00	1	07/08/2014	SV	1407023
200.7	Zinc	205		ug/L	10.0	1	07/08/2014	SV	1407023
200.8	Arsenic	48.5		ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Copper	24.3		ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Lead	< 2.00	U	ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Nickel	< 10.0	U	ug/L	5.00	10	07/10/2014	SV	1407027
2340B	Hardness	1140		mg/L	2	1	07/08/2014	SV	1407023

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-INF-061114 **Station ID:**

No Tag Prefix-B EPA Tag No.:

Date / Time Sampled: Matrix: Water

06/11/14 12:50

Workorder: Lab Number:

C140612

C140612-21

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	12400		ug/L	200	10	07/08/2014	SV	1407023
200.7	Iron	154000		ug/L	1000	10	07/08/2014	SV	1407023
200.7	Manganese	106000		ug/L	20.0	10	07/08/2014	SV	1407023
200.7	Zinc	59500		ug/L	100	10	07/08/2014	SV	1407023
200.8	Arsenic	264		ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Cadmium	258		ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Copper	1210		ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Lead	245		ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Nickel	27.6		ug/L	5.00	10	07/10/2014	SV	1407027
2340B	Hardness	337		mg/L	15	10	07/08/2014	SV	1407023

Certificate of Analysis

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFD-061114 EPA Tag No.: No Tag Prefix-B **Date / Time Sampled: Matrix:** Water

06/11/14 13:00

Workorder: C140612

Lab Number:

C140612-24 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	13200		ug/L	200	10	07/08/2014	SV	1407023
200.7	Iron	160000		ug/L	1000	10	07/08/2014	SV	1407023
200.7	Manganese	106000		ug/L	20.0	10	07/08/2014	SV	1407023
200.7	Zinc	59800		ug/L	100	10	07/08/2014	SV	1407023
200.8	Arsenic	256		ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Cadmium	256		ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Copper	1160		ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Lead	242		ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Nickel	26.4		ug/L	5.00	10	07/10/2014	SV	1407027
2340B	Hardness	359		mg/L	15	10	07/08/2014	SV	1407023

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NAOH-061114 **Date / Time Sampled:** 06/11/14 14:15 **Workorder:** C140612

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140612-27

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	5530		ug/L	200	10	07/08/2014	SV	1407023
200.7	Iron	31700		ug/L	1000	10	07/08/2014	SV	1407023
200.7	Manganese	99100		ug/L	20.0	10	07/08/2014	SV	1407023
200.7	Zinc	56200		ug/L	100	10	07/08/2014	SV	1407023
200.8	Arsenic	14.7	J	ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Cadmium	256		ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Copper	787		ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Lead	72.7		ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Nickel	27.1		ug/L	5.00	10	07/10/2014	SV	1407027
2340B	Hardness	367		mg/L	15	10	07/08/2014	SV	1407023

Α

Project Name: Barker-Hughesville_Treatability_JUN 2014_A046

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-061114 EPA Tag No.: No Tag Prefix-B Date / Time Sampled: Matrix: Water

06/11/14 13:50

Workorder: C14

C140612

Certificate of Analysis

Lab Number: C140612-30

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 500	U	ug/L	200	10	07/08/2014	SV	1407023
200.7	Iron	6260		ug/L	1000	10	07/08/2014	SV	1407023
200.7	Manganese	28200		ug/L	20.0	10	07/08/2014	SV	1407023
200.7	Zinc	2260		ug/L	100	10	07/08/2014	SV	1407023
200.8	Arsenic	17.4	J	ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Cadmium	5.25		ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Copper	44.0		ug/L	5.00	10	07/10/2014	SV	1407027
200.8	Lead	< 2.00	U	ug/L	1.00	10	07/10/2014	SV	1407027
200.8	Nickel	< 10.0	U	ug/L	5.00	10	07/10/2014	SV	1407027
2340B	Hardness	987		mg/L	15	10	07/08/2014	SV	1407023

[&]quot;J" Qualifier indicates an estimated value

Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR1-061114 EPA Tag No.: No Tag Prefix-A **Date / Time Sampled: Matrix:** Water

06/11/14 14:35

Workorder: C140612

Lab Number: C140612

2-01 A	
--------	--

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	1190		ug/L	200	10	07/08/2014	SV	1406114
200.7	Iron	2610		ug/L	1000	10	07/08/2014	SV	1406114
200.7	Manganese	5040		ug/L	20.0	10	07/08/2014	SV	1406114
200.7	Zinc	882		ug/L	100	10	07/08/2014	SV	1406114
200.8	Arsenic	109		ug/L	5.00	10	07/10/2014	SV	1406114
200.8	Cadmium	17.1		ug/L	1.00	10	07/10/2014	SV	1406114
200.8	Copper	145		ug/L	5.00	10	07/10/2014	SV	1406114
200.8	Lead	20.5	J	ug/L	1.00	10	07/10/2014	SV	1406114
200.8	Nickel	< 10.0	U	ug/L	5.00	10	07/10/2014	SV	1406114

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-061114

EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

06/11/14 14:55

Workorder: C

Lab Number:

C140612

C140612-05 A

Dilution MDL Method **Parameter** By Results Qualifier Units Analyzed Batch Factor 200.7 1340 200 10 07/08/2014 SV1406114 Aluminum ug/L 200.7 Iron 3400 ug/L 1000 10 07/08/2014 SV1406114 200.7 20.0 10 SV Manganese 5300 ug/L 07/08/2014 1406114 200.7 Zinc 1370 100 10 07/08/2014 SV1406114 ug/L 200.8 Arsenic 100 07/10/2014 SV1406114 U 50.0 < 200 ug/L 200.8 Cadmium 100 07/10/2014 SV 1406114 10.0 U < 20.0 ug/L 200.8 Copper 271 ug/L 50.0 100 07/10/2014 SV1406114 200.8 Lead 55.7 J ug/L 10.0 100 07/10/2014 SV1406114 200.8 Nickel 100 07/10/2014 SV1406114 < 100 U ug/L 50.0

Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR3-061114 EPA Tag No.: No Tag Prefix-A Date / Time Sampled: Matrix: Water 06/11/14 15:20

Workorder: C140

Lab Number:

C140612

C140612-09 A

Results	0 1.6		MDI				
	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
1500		ug/L	200	10	07/08/2014	SV	1406114
3530		ug/L	1000	10	07/08/2014	SV	1406114
4700		ug/L	20.0	10	07/08/2014	SV	1406114
693		ug/L	100	10	07/08/2014	SV	1406114
180		ug/L	5.00	10	07/10/2014	SV	1406114
4.87		ug/L	1.00	10	07/10/2014	SV	1406114
144		ug/L	5.00	10	07/10/2014	SV	1406114
33.6	J	ug/L	1.00	10	07/10/2014	SV	1406114
29.5		ug/L	5.00	10	07/10/2014	SV	1406114
	4700 693 180 4.87 144 33.6	4700 693 180 4.87 144 33.6 J	4700 ug/L 693 ug/L 180 ug/L 4.87 ug/L 144 ug/L 33.6 J ug/L	4700 ug/L 20.0 693 ug/L 100 180 ug/L 5.00 4.87 ug/L 1.00 144 ug/L 5.00 33.6 J ug/L 1.00	4700 ug/L 20.0 10 693 ug/L 100 10 180 ug/L 5.00 10 4.87 ug/L 1.00 10 144 ug/L 5.00 10 33.6 J ug/L 1.00 10	4700 ug/L 20.0 10 07/08/2014 693 ug/L 100 10 07/08/2014 180 ug/L 5.00 10 07/10/2014 4.87 ug/L 1.00 10 07/10/2014 144 ug/L 5.00 10 07/10/2014 33.6 J ug/L 1.00 10 07/10/2014	4700 ug/L 20.0 10 07/08/2014 SV 693 ug/L 100 10 07/08/2014 SV 180 ug/L 5.00 10 07/10/2014 SV 4.87 ug/L 1.00 10 07/10/2014 SV 144 ug/L 5.00 10 07/10/2014 SV 33.6 J ug/L 1.00 10 07/10/2014 SV

Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 14BH-DT-PILOT-BCR4-061114
 Date / Time Sampled:
 06/11/14 15:40
 Workorder:
 C140612

EPA Tag No.: No Tag Prefix-A Matrix: Water Lab Number: C140612-13 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	1100		ug/L	200	10	07/08/2014	SV	1406114
200.7	Iron	3230		ug/L	1000	10	07/08/2014	SV	1406114
200.7	Manganese	10800		ug/L	20.0	10	07/08/2014	SV	1406114
200.7	Zinc	3340		ug/L	100	10	07/08/2014	SV	1406114
200.8	Arsenic	35.4		ug/L	5.00	10	07/10/2014	SV	1406114
200.8	Cadmium	38.0		ug/L	1.00	10	07/10/2014	SV	1406114
200.8	Copper	194		ug/L	5.00	10	07/10/2014	SV	1406114
200.8	Lead	43.8	J	ug/L	1.00	10	07/10/2014	SV	1406114
200.8	Nickel	29.3		ug/L	5.00	10	07/10/2014	SV	1406114

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-CHIT-061114 Date / Time Sampled: 06/11/14 14:05 Workorder: C140612

EPA Tag No.: No Tag Prefix-A Matrix: Water Lab Number: C140612-17 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	211		ug/L	20.0	1	07/08/2014	SV	1406114
200.7	Iron	2250		ug/L	100	1	07/08/2014	SV	1406114
200.7	Manganese	2570		ug/L	2.00	1	07/08/2014	SV	1406114
200.7	Zinc	401		ug/L	10.0	1	07/08/2014	SV	1406114
200.8	Arsenic	52.0		ug/L	5.00	10	07/10/2014	SV	1406114
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	07/10/2014	SV	1406114
200.8	Copper	22.7		ug/L	5.00	10	07/10/2014	SV	1406114
200.8	Lead	1.27	J	ug/L	1.00	10	07/10/2014	SV	1406114
200.8	Nickel	< 10.0	U	ug/L	5.00	10	07/10/2014	SV	1406114

Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 14BH-DT-PILOT-INF-061114
 Date / Time Sampled:
 06/11/14 12:50
 Workorder:
 C140612

EPA Tag No.:No Tag Prefix-AMatrix:WaterLab Number:C140612-20

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	13100		ug/L	200	10	07/08/2014	SV	1406114
200.7	Iron	160000		ug/L	1000	10	07/08/2014	SV	1406114
200.7	Manganese	107000		ug/L	20.0	10	07/08/2014	SV	1406114
200.7	Zinc	59300		ug/L	100	10	07/08/2014	SV	1406114
200.8	Arsenic	269		ug/L	5.00	10	07/10/2014	SV	1406114
200.8	Cadmium	256		ug/L	1.00	10	07/10/2014	SV	1406114
200.8	Copper	1120		ug/L	5.00	10	07/10/2014	SV	1406114
200.8	Lead	239	J	ug/L	1.00	10	07/10/2014	SV	1406114
200.8	Nickel	25.8		ug/L	5.00	10	07/10/2014	SV	1406114

Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFD-061114 EPA Tag No.: No Tag Prefix-A **Date / Time Sampled: Matrix:** Water

06/11/14 13:00

Workorder: C140612

Lab Number:

C140612-23

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	13100		ug/L	200	10	07/08/2014	SV	1406114
200.7	Iron	159000		ug/L	1000	10	07/08/2014	SV	1406114
200.7	Manganese	106000		ug/L	20.0	10	07/08/2014	SV	1406114
200.7	Zinc	59200		ug/L	100	10	07/08/2014	SV	1406114
200.8	Arsenic	251		ug/L	5.00	10	07/10/2014	SV	1406114
200.8	Cadmium	253		ug/L	1.00	10	07/10/2014	SV	1406114
200.8	Copper	1070		ug/L	5.00	10	07/10/2014	SV	1406114
200.8	Lead	260	J	ug/L	1.00	10	07/10/2014	SV	1406114
200.8	Nickel	26.1		ug/L	5.00	10	07/10/2014	SV	1406114

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NAOH-061114

No Tag Prefix-A

EPA Tag No.:

Date / Time Sampled: Matrix: Water 06/11/14 14:15

Workorder: Lab Number:

C140612

C140612-26 A

MDL Dilution Method **Parameter** Analyzed $\mathbf{B}\mathbf{v}$ Batch Results Qualifier Units Factor 10 200.7 Aluminum 5740 ug/L 200 07/08/2014 SV1406114 Iron 1000 200.7 53800 ug/L 10 07/08/2014 SV1406114 Manganese 20.0 200.7 99000 ug/L 10 07/08/2014 SV 1406114 200.7 Zinc 100 10 07/08/2014 SV1406114 55600 ug/L 200.8 5.00 10 07/10/2014 SV 1406114 Arsenic 57.6 ug/L 200.8 Cadmium 249 ug/L 1.00 10 07/10/2014 SV1406114 200.8 5.00 10 07/10/2014 SV1406114 Copper 712 ug/L 200.8 J SV Lead 80.9 ug/L 1.00 10 07/10/2014 1406114 200.8 Nickel 24.1 ug/L 5.00 10 07/10/2014 SV 1406114

A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-061114 EPA Tag No.: No Tag Prefix-A

TDF #:

Date / Time Sampled: Matrix: Water 06/11/14 13:50

Workorder: C140

Lab Number:

Certificate of Analysis

C140612

C140612-29 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 500	U	ug/L	200	10	07/08/2014	SV	1406114
200.7	Iron	6390		ug/L	1000	10	07/08/2014	SV	1406114
200.7	Manganese	28900		ug/L	20.0	10	07/08/2014	SV	1406114
200.7	Zinc	2480		ug/L	100	10	07/08/2014	SV	1406114
200.8	Arsenic	16.8	J	ug/L	5.00	10	07/10/2014	SV	1406114
200.8	Cadmium	6.66		ug/L	1.00	10	07/10/2014	SV	1406114
200.8	Copper	77.7		ug/L	5.00	10	07/10/2014	SV	1406114
200.8	Lead	1.75	J	ug/L	1.00	10	07/10/2014	SV	1406114
200.8	Nickel	< 10.0	U	ug/L	5.00	10	07/10/2014	SV	1406114

[&]quot;J" Qualifier indicates an estimated value

A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1-061114

TDF #:

EPA Tag No.: No Tag Prefix-C **Date / Time Sampled:** Matrix: Water

06/11/14 14:35

Workorder:

C140612

Certificate of Analysis

Lab Number: C140612-03

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
EPA 350.1	Ammonia as N	182	D	mg/L	30.0	1000	06/19/2014	SW	1406093

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-BCR1-061114 **Station ID:**

No Tag Prefix-D **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

06/11/14 14:35

Workorder:

C140612

Lab Number: C140612-04

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	437		mg/L	5.0	10	06/24/2014	NP	1406085
EPA 300.0	Fluoride	104		mg/L	1.0	10	06/24/2014	NP	1406085
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	06/24/2014	NP	1406085
EPA 300.0	Sulfate as SO4	924		mg/L	0.5	10	06/24/2014	NP	1406085
EPA 310.1	Total Alkalinity	3020		mg CaCO3 / L	250	50	06/17/2014	KJB	1406076

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-061114

EPA Tag No.:

No Tag Prefix-C

Date / Time Sampled:

Matrix: Water

06/11/14 14:55

Workorder: Lab Number:

C140612

C140612-07

MDL Dilution Method **Parameter** Results Qualifier Units Analyzed By Batch Factor EPA 350.1 Ammonia as N 80.9 D mg/L 30.0 1000 06/19/2014 SW 1406093

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-061114 **EPA Tag No.:** No Tag Prefix-D

Date / Time Sampled: Matrix: Water

06/11/14 14:55

Workorder: C140612

Certificate of Analysis

Lab Number:

C140612-08

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	425		mg/L	5.0	10	06/24/2014	NP	1406085
EPA 300.0	Fluoride	54.5		mg/L	1.0	10	06/24/2014	NP	1406085
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	06/24/2014	NP	1406085
EPA 300.0	Sulfate as SO4	960		mg/L	0.5	10	06/24/2014	NP	1406085
EPA 310.1	Total Alkalinity	1630		mg CaCO3 / L	250	50	06/17/2014	KJB	1406076

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR3-061114

EPA Tag No.: No Tag Prefix-C

Date / Time Sampled:

Matrix: Water

Workorder:

C140612

Lab Number: C140612-11

A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	127	D	mg/L	30.0	1000	06/19/2014	SW	1406093

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR3-061114

EPA Tag No.:

No Tag Prefix-D

Date / Time Sampled:

Matrix: Water

06/11/14 15:20

06/11/14 15:20

Workorder:

C140612

Lab Number:

C140612-12 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	652		mg/L	5.0	10	06/24/2014	NP	1406085
EPA 300.0	Fluoride	71.7		mg/L	1.0	10	06/24/2014	NP	1406085
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	06/24/2014	NP	1406085
EPA 300.0	Sulfate as SO4	912		mg/L	0.5	10	06/24/2014	NP	1406085
EPA 310.1	Total Alkalinity	1670		mg CaCO3 / L	250	50	06/17/2014	KJB	1406076

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

 Station ID:
 14BH-DT-PILOT-BCR4-061114
 Date / Time Sampled:
 06/11/14 15:40
 Workorder:
 C140612

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140612-15

Dilution MDL Method Parameter Analyzed By Batch Results **Qualifier** Units Factor EPA 350.1 Ammonia as N 52.6 D mg/L 30.0 1000 06/19/2014 SW 1406093

Certificate of Analysis

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4-061114 Date / Time Sampled: 06/11/14 15:40 Workorder: C140612

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number: C140612-16

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units Factor EPA 300.0 Chloride 382 mg/L 5.0 10 06/24/2014 NP 1406085 EPA 300.0 Fluoride 32.5 1.0 10 06/24/2014 NP 1406085 mg/L EPA 300.0 Nitrate/Nitrite as 10 06/24/2014 NP 1406085 < 50.0 U mg/L 10.0 mg/L 0.5 EPA 300.0 Sulfate as SO4 1030 10 06/24/2014 1406085 NP **Total Alkalinity** 1540 250 50 06/17/2014 KJB 1406076 EPA 310.1 mg CaCO3 / L

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-CHIT-061114 Date / Time Sampled: 06/11/14 14:05 Workorder: C140612

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number: C140612-19 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
EPA 300.0	Chloride	163		mg/L	5.0	10	06/24/2014	NP	1406085
EPA 300.0	Fluoride	9.0		mg/L	1.0	10	06/24/2014	NP	1406085
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	06/24/2014	NP	1406085
EPA 300.0	Sulfate as SO4	974		mg/L	0.5	10	06/24/2014	NP	1406085
EPA 310.1	Total Alkalinity	894		mg CaCO3 / L	250	50	06/17/2014	KJB	1406076

Α

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

 Station ID:
 14BH-DT-PILOT-INF-061114
 Date / Time Sampled:
 06/11/14 12:50
 Workorder:
 C140612

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number: C140612-22

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	7.7	J	mg/L	5.0	10	06/24/2014	NP	1406085
EPA 300.0	Fluoride	2.7		mg/L	1.0	10	06/24/2014	NP	1406085
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	06/24/2014	NP	1406085
EPA 300.0	Sulfate as SO4	1150		mg/L	0.5	10	06/24/2014	NP	1406085
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	06/17/2014	KJB	1406076

Classical Chemistry by EPA/ASTM/APHA Methods

 Station ID:
 14BH-DT-PILOT-INFD-061114
 Date / Time Sampled:
 06/11/14 13:00
 Workorder:
 C140612

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number: C140612-25 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	7.6	J	mg/L	5.0	10	06/24/2014	NP	1406085
EPA 300.0	Fluoride	2.9		mg/L	1.0	10	06/24/2014	NP	1406085
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	06/24/2014	NP	1406085
EPA 300.0	Sulfate as SO4	1160		mg/L	0.5	10	06/24/2014	NP	1406085
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	06/17/2014	KJB	1406076

Barker-Hughesville_Treatability_JUN 2014_A046 **Project Name:**

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-NAOH-061114 **Station ID:**

EPA Tag No.: No Tag Prefix-D **Date / Time Sampled:** Matrix: Water

06/11/14 14:15

Workorder: Lab Number:

C140612

Certificate of Analysis

C140612-28

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	7.7	J	mg/L	5.0	10	06/24/2014	NP	1406085
EPA 300.0	Fluoride	2.2		mg/L	1.0	10	06/24/2014	NP	1406085
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	06/24/2014	NP	1406085
EPA 300.0	Sulfate as SO4	1040		mg/L	0.5	10	06/24/2014	NP	1406085
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	06/17/2014	KJB	1406076

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-SAPS-061114 **Station ID: EPA Tag No.:**

No Tag Prefix-D

Date / Time Sampled: Matrix: Water

06/11/14 13:50

Workorder: Lab Number:

C140612

C140612-31

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	60.8		mg/L	5.0	10	06/24/2014	NP	1406085
EPA 300.0	Fluoride	5.0		mg/L	1.0	10	06/24/2014	NP	1406085
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	06/24/2014	NP	1406085
EPA 300.0	Sulfate as SO4	1060		mg/L	0.5	10	06/24/2014	NP	1406085
EPA 310.1	Total Alkalinity	481	J	mg CaCO3 / L	250	50	06/17/2014	KJB	1406076

[&]quot;J" Qualifier indicates an estimated value

Project Name: Barker-Hughesville_Treatability_JUN 2014_A046 Certificate of Analysis

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-	П								
Batch 1407027 - N	o Lab Prep Reqd	Į	Vater					ICP	MS-PE DRC-II
Method Blank (1407	7027-BLK1)	Dilution Factor: 1				Prepa	red: 07/08/14	Analyzed: 07	/10/14
Nickel	< 0.500	1.00	ug/L						
Copper	< 0.500	1.00	"						
Arsenic	< 0.500	2.00	"						
Cadmium	< 0.100	0.200	"						
Lead	< 0.100	0.200	"						
Method Blank Spike	e (1407027-BS1)	Dilution Factor: 1				Prepa	red: 07/08/14	Analyzed: 07	/10/14
Nickel	91.7	1.00	ug/L	100		92	85-115		
Copper	90.0	1.00	"	100		90	85-115		
Arsenic	87.4	2.00	"	100		87	85-115		
Cadmium	97.2	0.200	"	100		97	85-115		
Lead	108	0.200	"	100		108	85-115		
Duplicate (1407027-	DUP1)	Dilution Factor: 1	Source	: C140612-1	8	Prepa	red: 07/08/14	Analyzed: 07	/10/14
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	24.7	10.0	"		24.3			1	20
Arsenic	45.7	20.0	"		48.5			6	20
Cadmium	< 1.00	2.00	"		< 1.00				20
Lead	< 1.00	2.00	"		< 1.00				20
Matrix Spike (14070	027-MS1)	Dilution Factor: 1	Source	: C140612-1	8	Prepa	red: 07/08/14	Analyzed: 07	/10/14
Nickel	95.4	10.0	ug/L	100	< 5.00	95	70-130		
Copper	115	10.0	"	100	24.3	91	70-130		
Arsenic	137	20.0	"	100	48.5	89	70-130		
Cadmium	97.2	2.00	"	100	< 1.00	97	70-130		
Lead	109	2.00	,,	100	< 1.00	109	70-130		

TDF #: A-046

289.6

Zinc

20.0

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

		TenEav		8					
Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1407037 - 14	07027	V	Vater					ICP	MS-PE DRC-I
Serial Dilution (1407	037-SRD1)	Dilution Factor: 5	Source	: C140612-1	8	Prepa	red: 07/08/14	Analyzed: 07/	/10/14
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	< 25.0	50.0	"		24.3				10
Arsenic	40.8	100	"		48.5			17	10
Cadmium	< 5.00	10.0	"		< 1.00				10
Lead	< 5.00	10.0	"		< 1.00				10
ICPOE - PE Optin	1a								
Batch 1407023 - No	Lab Prep Reqd	V	Vater					ICPO	E - PE Optima
Method Blank (1407)	023-BLK1)	Dilution Factor: 1				Prepa	red: 07/07/14	Analyzed: 07/	/08/14
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	"						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Method Blank Spike	(1407023-BS1)	Dilution Factor: 1				Prepa	red: 07/07/14	Analyzed: 07/	/08/14
Aluminum	10170	50.0	ug/L	10100		101	85-115		
Iron	10470	250	"	10100		104	85-115		
Manganese	99.87	5.00	"	100		100	85-115		
Zinc	99.78	20.0	"	100		100	85-115		
Duplicate (1407023-I	DUP1)	Dilution Factor: 1	Source	: C140612-1	8	Prepa	red: 07/07/14	Analyzed: 07/	/08/14
Aluminum	88.42	50.0	ug/L		94.52			7	20
Iron	369.7	250	ug L		407.0			10	20
Manganese	2081	5.00	"		2107			1	20
Zinc	201.5	20.0	"		205.2			2	20
Matrix Spike (140702	23-MS1)	Dilution Factor: 1	Source	: C140612-1	8	Prepa	red: 07/07/14	Analyzed: 07	/08/14
Aluminum	9567	50.0	ug/L	10100	94.52	94	70-130		
Iron	9886	250	ug/L	10100	407.0	94	70-130		
Manganese	2161	5.00	"	100	2107	54	70-130		
	200.6	20.0		100	2107	5-7	,0150		

100

205.2

84

70-130

Project Name: Barker-Hughesville_Treatability_JUN 2014_A046 **Certificate of Analysis**

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1407028 - 14	107023	И	ater					ICPO	E - PE Optima
Serial Dilution (1407	7028-SRD1)	Dilution Factor: 5	Source	: C140612-1	8	Prepai	ed: 07/07/14	Analyzed: 07/	08/14
Aluminum	217.0	250	ug/L		94.52			79	10
Iron	584.9	1250	"		407.0			36	10
Manganese	2249	25.0	"		2107			7	10
Zinc	223.9	100	"		205.2			9	10

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

TDF #:

A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-I	II								
Batch 1406114 - 20	00.2 - TR Metals	V	Vater					ICPN	MS-PE DRC-II
Method Blank (1406	114-BLK2)	Dilution Factor: 5				Prepa	red: 06/25/14	4 Analyzed: 07/	10/14
Nickel	< 2.50	5.00	ug/L						
Copper	< 2.50	5.00	"						
Arsenic	< 2.50	10.0	"						
Cadmium	< 0.500	1.00	"						
Lead	< 0.500	1.00	"						
Duplicate (1406114-)	DUP2)	Dilution Factor: 1	Source:	C140612-1	7	Prepa	red: 06/25/14	4 Analyzed: 07/	10/14
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	25.22	10.0	"		22.69			11	20
Arsenic	48.78	20.0	"		51.96			6	20
Cadmium	1.119	2.00	"		< 1.00				20
Lead	1.350	2.00	"		1.271			6	20
Matrix Spike (14061	14-MS2)	Dilution Factor: 5	Source	Source: C140612-20		Prepa	red: 06/25/14	4 Analyzed: 07/	10/14
Nickel	439.1	5.00	ug/L	500	25.83	83	70-130		
Copper	1246	5.00	"	300	1115	44	70-130		
Arsenic	883.0	10.0	"	800	268.6	77	70-130		
Cadmium	393.9	1.00	"	200	256.0	69	70-130		
Lead	1168	1.00	"	1000	239.1	93	70-130		
Reference (1406114-	SRM2)	Dilution Factor: 2				Prepa	red: 06/25/14	4 Analyzed: 07/	10/14
Nickel	1031	20.0	ug/L	1000		103	85-115		
Copper	1005	20.0	"	1000		101	85-115		
Arsenic	2077	40.0	"	2000		104	85-115		
Cadmium	990.4	4.00	"	1000		99	85-115		
Lead	1948	4.00	"	2000		97	85-115		

Certificate of Analysis

TDF #:

A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1407038 - 14	406114	И	ater					ICPN	1S-PE DRC-II
Serial Dilution (140'	7038-SRD1)	Dilution Factor: 5	Source	: C140612-1	7	Prepai	red: 06/25/14	Analyzed: 07/	10/14
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	29.89	50.0	ug/L		22.69			27	10
Arsenic	42.42	100	"		51.96			20	10
Cadmium	< 5.00	10.0	"		< 1.00				10
Lead	< 5.00	10.0	"		1.271				10
ICPOE - PE Optii	na								
Batch 1406114 - 20	00.2 - TR Metals	И	ater					ICPO	E - PE Optima
Method Blank (1406	6114-BLK1)	Dilution Factor: 1				Prepai	red: 06/25/14	Analyzed: 07/	08/14
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	"						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Duplicate (1406114-	DUP1)	Dilution Factor: 1	Source	: C140612-1	7	Prepai	red: 06/25/14	Analyzed: 07/	08/14
Aluminum	213.6	50.0	ug/L		210.7			1	20
Iron	2336	250	"		2253			4	20
Manganese	2557	5.00	"		2568			0.5	20
Zinc	395.8	20.0	"		401.1			1	20
					401.1				
Matrix Spike (14061	14-MS1)	Dilution Factor: 1	Source	: C140612-2		Prepai	red: 06/25/14	Analyzed: 07/	08/14
•	114-MS1) 15040	Dilution Factor: 1		2000		Prepar 95	red: 06/25/14 70-130	Analyzed: 07/	08/14
Aluminum	·		Source:		0	•		Analyzed: 07/	08/14
Aluminum Iron	15040	500	ug/L	2000	13140	95	70-130	Analyzed: 07/	08/14
Aluminum Iron Manganese	15040 163800	500 2500	ug/L	2000 3000	13140 160100	95 124	70-130 70-130	Analyzed: 07/	08/14
Matrix Spike (1406) Aluminum Iron Manganese Zinc Reference (1406114-	15040 163800 105700 58770	500 2500 50.0	ug/L "	2000 3000 200	13140 160100 107200	95 124 NR NR	70-130 70-130 70-130 70-130	Analyzed: 07/v	
Aluminum Iron Manganese Zinc Reference (1406114-	15040 163800 105700 58770	500 2500 50.0 200	ug/L "	2000 3000 200	13140 160100 107200	95 124 NR NR	70-130 70-130 70-130 70-130		
Aluminum Iron Manganese Zinc Reference (1406114- Aluminum	15040 163800 105700 58770	500 2500 50.0 200 Dilution Factor: 1	ug/L " "	2000 3000 200 200	13140 160100 107200	95 124 NR NR Prepar	70-130 70-130 70-130 70-130 70-130		
Aluminum Iron Manganese Zinc	15040 163800 105700 58770 SRM1)	500 2500 50.0 200 Dilution Factor: 1	ug/L " " "	2000 3000 200 200	13140 160100 107200	95 124 NR NR Prepar	70-130 70-130 70-130 70-130 70-130 red: 06/25/14		

Project Name: Barker-Hughesville_Treatability_JUN 2014_A046 **Certificate of Analysis**

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1407029 - 14	06114	И	Vater					ICPO	E - PE Optima
Serial Dilution (1407	(029-SRD1)	Dilution Factor: 5	Source	: C140612-1	7	Prepai	red: 06/25/14	Analyzed: 07/	08/14
Aluminum	333.0	250	ug/L		210.7			45	10
Iron	2432	1250	"		2253			8	10
Manganese	2582	25.0	"		2568			0.5	10
Zinc	405.6	100	"		401.1			1	10

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample NOTE:

TDF #: A-046

${\bf Classical\ Chemistry\ by\ EPA/ASTM/APHA\ Methods-Quality\ Control}$

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ESAT Dionex IC									
Batch 1406085 - No Pr	rep Req	J	Water					ES	SAT Dionex IC
Method Blank (1406085	-BLK1)	Dilution Factor: 1				Prepa	red & Analyz	red: 06/24/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Method Blank Spike (14	06085-BS1)	Dilution Factor: 1				Prepa	red & Analyz	zed: 06/24/14	
Fluoride	5.1	0.2	mg/L	5.00		102	90-110		
Chloride	24.2	2.0	"	25.0		97	90-110		
Sulfate as SO4	23.1	0.1	"	25.0		92	90-110		
Nitrate/Nitrite as N	20.7	5.0	"	20.0		103	90-110		
Duplicate (1406085-DUP1)		Dilution Factor: 1	Source	Source: C140612-04			red & Analyz	zed: 06/24/14	
Fluoride	103	2.0	mg/L		104			0.1	20
Chloride	437	20.0	"		437			0.03	20
Sulfate as SO4	925	1.0	"		924			0.1	20
Nitrate/Nitrite as N	< 10.0	50.0	"		< 10.0				20
Matrix Spike (1406085-	MS1)	Dilution Factor: 1	Source	: C140612-0	4	Prepa	red & Analyz	red: 06/24/14	
Fluoride	100	2.0	mg/L	50.0	104	NR	80-120		
Chloride	646	20.0	"	250	437	84	80-120		
Sulfate as SO4	1100	1.0	"	250	924	72	80-120		
Nitrate/Nitrite as N	201	50.0	"	200	< 10.0	100	80-120		
Batch 1406112 - 1406085		1	Water					ES	SAT Dionex IC
Instrument Blank (1406	112-IBL1)	Dilution Factor: 1				Prepa	red & Analyz	red: 06/24/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						

Certificate of Analysis

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Lachat 8500									
Batch 1406093 - No	Prep Req		Water						Lachat 8500
Method Blank (14060	93-BLK1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 06/19/14	
Ammonia as N	< 0.0200	0.0500	mg/L						
Method Blank Spike	(1406093-BS1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 06/19/14	
Ammonia as N	0.994	0.0500	mg/L	1.00		99	90-110		
Duplicate (1406093-D	OUP1)	Dilution Factor: 1	Source:	C140612-03	3	Prepai	red & Analyz	zed: 06/19/14	
Ammonia as N	183	50.0	mg/L		182			0.2	20
Matrix Spike (140609	93-MS1)	Dilution Factor: 1	Source:	C140612-03	3	Prepai	red & Analyz	zed: 06/19/14	
Ammonia as N	1160		mg/L	1000	182	98	90-110		
Reference (1406093-S	SRM1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 06/19/14	
Ammonia as N	0.491	0.0500	mg/L	0.480		102	90-110		
Phoenix Carbon An									
Batch 1406076 - No	Prep Req		Water						x Carbon Anal
Method Blank (14060	76-BLK1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 06/17/14	
Total Alkalinity	< 5.00	10.0	mg CaCO3 /						
Method Blank (14060	76-BLK2)	Dilution Factor: 1				Prepai	red & Analyz	zed: 06/17/14	
Total Alkalinity	< 5.00	10.0	mg CaCO3 /						
Duplicate (1406076-D	OUP1)	Dilution Factor: 5	Source:	C140612-04	1	Prepai	red & Analyz	zed: 06/17/14	
Total Alkalinity	3030	500	mg CaCO3 /		3020			0.2	20
Duplicate (1406076-D	OUP2)	Dilution Factor: 1	Source:	C140613-01	1	Prepai	red & Analyz	zed: 06/17/14	
Total Alkalinity	73.5	10.0	mg CaCO3 /		73.3			0.2	20

Certificate of Analysis

TDF #:

A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1406076 - No Pre	p Req	J	Water					Phoeni	x Carbon Anal
Duplicate (1406076-DUP3)	Dilution Factor: 1	Source: (C140613-1	7	Prepar	red & Analyz	zed: 06/17/14	
Total Alkalinity	104	10.0	mg CaCO3 /		109			4	20
Reference (1406076-SRM	1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 06/17/14	
Total Alkalinity	23.3	10.0	mg CaCO3 /	23.8		98	90-110		
Reference (1406076-SRM	2)	Dilution Factor: 1				Prepai	red & Analyz	zed: 06/17/14	
Total Alkalinity	23.5	10.0	mg CaCO3 /	23.8		99	90-110		

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample NOTE:

Project Name: Barker-Hughesville_Treatability_JUN 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 310.1</u> Analysis Name: <u>WC - Alkalinity</u>

Instrument: Phoenix Carbon Anal Work Order: Nu C140612

Analytical Sequence: Total Concentration Units: mg CaCO3 / L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	Meth Blan (Batch	PQL		
		1	2	3	4	NA	1406076-BLK2	
		1.38	1.42	1.68	2.22		1.40	10.00
Total Alkalinity		5	6	7	8	NA	1.42	10.00
		1.52						
		1	2	3	4	1406076-BLK1	NA	
		1.38	1.42	1.68	2.22		27.4	10.00
		5	6	7	8	1.16	NA	10.00
		1.52						

Project Name: Barker-Hughesville_Treatability_JUN 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 350.1</u> Analysis Name: <u>WC - Ammonia</u>

Instrument: Lachat 8500 Work Order: Nu C140612

Analytical Sequence: Total Concentration Units: mg/L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	KS	Metho Blan (Batch	k	PQL
		1	2	3	4	1406093-BLK1	NA	
		0.00	0.00					
Ammonia as N		5	6	7	8	0.00	NA	0.05

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 300.0</u> Analysis Name: <u>WC - Anions by Ion Chromatography</u>

Instrument: ESAT Dionex IC Work Order: Nu C140612

Analytical Sequence: 1406112 **Dissolved** Concentration Units: <u>mg/L</u>

Analyte	Initial Calibration Blank (1 & 2)	C	Continuing Cali	bration Blank	Method Blank (Batch ID	PQL		
		1	2	3	4	1406085-BLK1	NA	
	0.00	0.00	0.00					
Fluoride		5	6	7	8	0.00	NA	0.20
		1	2	3	4	1406085-BLK1	NA	
	0.00	0.00	0.00					1
Chloride	1	5	6	7	8	0.00	NA	2.00
		1	2	3	4	1406085-BLK1	NA	
	0.00	0.00	0.00					
Sulfate as SO4		5	6	7	8	0.00	NA	0.10
	0.00	1	2	3	4	1406085-BLK1	NA	1
Nitanata /Nitanita Ni	0.00	0.00	0.00			0.00	NA	5.00
Nitrate/Nitrite as N		5	6	7	8	0.00	1874	3.00

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Diss. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140612

Analytical Sequence: 1407028 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	Method Blank (Batch II	PQL		
		1	2	3	4	1407023-BLK1	NA	
	0.72	0.88	1.74					
Aluminum		5	6	7	8	-0.21	NA	50.00
		1	2	3	4	1407023-BLK1	NA	
	48.58	73.20	109.13		-			1
Iron		5	6	7	8	57.67	NA	250.00
	+	1	2	3	4	1407023-BLK1	NA	
	0.13	0.07	0.28				***	
Manganese		5	6	7	8	-0.04	NA	5.00
	-1.06	1	2	3	4	1407023-BLK1	NA	<u> </u>
Zinc	-1.00	-3.17	-0.91			-2.85	NA	20.00
Zinc		5	6	7	8		11/1	20.00

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140612

Analytical Sequence: 1407029 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	s	Method Blank (Batch II		PQL
		1	2	3	4	1406114-BLK1	NA	
	0.72	0.88	1.74	0.08	0.02			
Aluminum		5	6	7	8	-2.03	NA	50.00
		1	2	3	4	1406114-BLK1	NA	
	48.58	73.20	109.13	71.91	81.79			
Iron		5	6	7	8	52.91	NA	250.00
		1	2	3	4	1406114-BLK1	NA	
	0.13	0.07	0.28	0.05	0.13			Ī
Manganese		5	6	7	8	-0.04	NA	5.00
	-1.06	1	2	3	4	1406114-BLK1	NA	1
Zinc	-1.00	-3.17	-0.91	-0.58	-1.42	2.98	NA	20.00
Zinc		5	6	7	8	2.98	11/1	20.00

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: <u>ICPMS Diss. Metals</u>

Instrument: ICPMS-PE DRC-II Work Order: Nu C140612

Analytical Sequence: 1407037 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	s	Method Blank (Batch II		PQL	
		1	2	3	4	1407027-BLK1	NA		
	0.01	0.00	-0.02				27.4	1.00	
Nickel		5	6	7	8	0.00	NA	1.00	
		1	2	3	4	1407027-BLK1	NA		
	-0.03	0.02	-0.01]	
Copper		5	6	7	8	-0.04	NA	1.00	
		1	2	3	4	1407027-BLK1	NA		
	-0.28	0.04	0.12				NIA	2.00	
Arsenic		5	6	7	8	-0.03	NA	2.00	
		1	2	3	4	1407027-BLK1	NA		
	-0.01	-0.01	0.00				NIA	0.20	
Cadmium		5	6	7	8	0.00	NA	0.20	
		1	2	3	4	1407027-BLK1	NA		
	0.00	0.00	0.00				NIA	0.20	
Lead		5	6	7	8	0.02	NA	0.20	

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C140612

Analytical Sequence: 1407038 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	C	Continuing Cali	bration Blank	s	Bl	thod ank ch ID)	PQL
		1	2	3	4	NA	1406114-BLK2	
	0.01	0.01	0.01					
Nickel		5	6	7	8	NA	0.01	1.00
	0.02	1	2	3	4	NA	1406114-BLK2	
	-0.03	-0.01	0.00			27.4	0.02	1.00
Copper		5	6	7	8	NA	-0.02	1.00
	0.27	1	2	3	4	NA	1406114-BLK2	
	-0.37	0.06	-0.17			27.4	0.05	2.00
Arsenic		5	6	7	8	NA	-0.05	2.00
	-0.01	1	2	3	4	NA	1406114-BLK2	
	-0.01	0.00	0.00			27.4	0.01	0.20
Cadmium		5	6	7	8	NA	0.01	0.20
	0.01	1	2	3	4	NA	1406114-BLK2	
T 1	0.01	0.01	0.01			NIA	0.00	0.20
Lead		5	6	7	8	NA	0.00	0.20

Project Name: Barker-Hughesville_Treatability_JUN 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Phoenix Carbon Anal Method: EPA 310.1 Analysis Name: WC - Alkalinity

Sequence: 1406081 Work Order: C140612 Units: mg CaCO3 / L

Total	Init	ial (ICV1, I	(CV2)		Cont	inuing Ca	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				100	101	101.0	100	101	101.0	100	101	101.0
Total Alkalinity					4			5			6	
Total 7 tikulility				100	100	100.0	100	101	101.0			
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

Project Name: Barker-Hughesville_Treatability_JUN 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Lachat 8500 Method: EPA 350.1 Analysis Name: WC - Ammonia

Sequence: 1406094 Work Order: C140612 Units: mg/L

Total	Init	ial (ICV1, I	(CV2)		Cont	inuing Ca	alibration	Verification	on Stand	ards (CC	(Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				1.00	1.03	103.0	1.00	1.07	107.0			
Ammonia as N					4			5			6	
Ammonia as iv												
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, \ Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, \ CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ESAT Dionex IC Method: EPA 300.0 Analysis Name: WC - Anions by Ion Chromatography 2013

Sequence: 1406112 Work Order: C140612 Units: mg/L

Dissolved	Initi	ial (ICV1, l	(CV2)		Cont	inuing C	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	40.0	20.2	00.2	40.0	39.6	99.0	40.0	39.7	99.3			
Chloride	40.0	39.3	98.3		4			5			6	
					7			8			9	
					1			2			3	
				4.00	3.9	97.5	4.00	3.9	97.5		-	
Fluoride	4.00	3.9	97.5		4			5			6	
					7			8			9	
					1			2			3	
	20.0	19.8	99.0	20.0	19.9	99.5	20.0	20.0	100.0			
Nitrate/Nitrite as N	20.0	17.0			4			5			6	
					7			8			9	
					1			2			3	
	100	97.9	97.9	100	98.7	98.7	100	99.2	99.2			
Sulfate as SO4	100	91.9	91.9		4			5			6	
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Diss. Metals

Sequence: 1407028 Work Order: C140612 Units: ug/L

Dissolved	Initi	al (ICV1, l	ICV2)		Cont	inuing Ca	alibration	Verificati	on Stand	ards (CC	(Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	12660	101.2	12500	12410	99.3	12500	12460	99.7			
Aluminum	12500	12660	101.3		4			5			6	
					7			8			9	
					1			2			3	
				12500	12760	102.1	12500	12640	101.1			
Iron	12500	12840	102.7		4			5			6	
					7			8			9	
					1			2			3	
	1000	1018	101.8	1000	1020	102.0	1000	1017	101.7			
Manganese	1000	1010	101.6		4			5			6	
					7			8			9	
					1			2			3	
				2500	2580	103.2	2500	2572	102.9			
Zinc	2500	2528	101.1	2300	4	103.2	2300	5	102.9		6	
ZIIIC												
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Sequence: 1407029 Work Order: C140612 Units: ug/L

Total Recoverable	Initi	al (ICV1,	ICV2)		Conti	inuing Ca	alibration	Verificati	on Stand	ards (CC	Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	12660	101.2	12500	12410	99.3	12500	12460	99.7	12500	12650	101.2
Aluminum	12500	12660	101.3		4			5			6	
Mummum				12500	12270	98.2						
					7			8			9	
					1			2			3	
				12500	12760	102.1	12500	12640	101.1	12500	12830	102.6
I	12500	12840	102.7		4			5			6	
Iron				12500	12510	100.1						
					7			8			9	
					1			2			3	
	1000	1018	101.8	1000	1020	102.0	1000	1017	101.7	1000	1021	102.1
Manganese	1000	1018	101.8		4			5			6	
Trianguites C				1000	1019	101.9						
					7			8			9	
					1			2			3	
	2500	2520	101.1	2500	2580	103.2	2500	2572	102.9	2500	2586	103.4
Zinc	2500	2528	101.1		4			5			6	
ZiiiV				2500	2597	103.9						
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Diss. Metals

Sequence: 1407037 Work Order: C140612 Units: ug/L

Dissolved	Init	ial (ICV1,	ICV2)		Cont	inuing Ca	alibration	Verificati	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
		-10	1000	50.0	52.9	105.8	50.0	51.3	102.6			
Arsenic	50.0	51.0	102.0		4			5			6	
111001110												
					7			8			9	
					1			2			3	
	50.0	49.6	99.2	50.0	50.2	100.4	50.0	49.5	99.0			
Cadmium					4			5			6	
					7			8			9	
											-	
					1			2			3	
	50.0	40.5	00.0	50.0	52.8	105.6	50.0	49.5	99.0			
Copper	50.0	49.5	99.0		4			5			6	
11												
					7			8			9	
					1			2			3	
				50.0	51.8	103.6	50.0	51.2	102.4		3	
T 1	50.0	51.6	103.2	20.0	4	105.0	30.0	5	102.1		6	
Lead												
					7			8			9	
					1			2			3	
	50.0	51.1	102.2	50.0	52.8	105.6	50.0	50.6	101.2			
Nickel	30.0	J1.1	102,2		4			5			6	
					7			8			9	
					,			o			, ,	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1407038 Work Order: C140612 Units: ug/L

Total Recoverable	Initi	ial (ICV1,	ICV2)		Cont	inuing Ca	alibration	Verificati	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				50.0	50.04	100.1	50.0	50.38	100.8			
Arsenic	50.0	50.54	101.1		4			5			6	
					7			8			9	
					1	1010	5 00	2	260		3	
	50.0	49.87	99.7	50.0	50.49	101.0	50.0	48.42	96.8			
Cadmium					4			5			6	
					7			8			9	
					1			2			3	
	50.0	46.21	02.6	50.0	46.03	92.1	50.0	47.33	94.7			
Copper	50.0	46.31	92.6		4			5			6	
					7			8			9	
					1			2			3	
	50.0	52.17	104.3	50.0	53.78	107.6	50.0	47.91	95.8			
Lead	30.0	32.17	101.5		4			5			6	
					7			8			9	
					1			2			3	
				50.0	48.17	96.3	50.0	48.12	96.2			
Nickel	50.0	47.83	95.7		4			5			6	
INICACI												
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPMS-PE DRC-II

Analyte		C	heck Sample	Result*	11:4-	Т	0/ D	BOI
Sequence:	1407037	Analysis:	ICPMS Diss. Met		<u>Units</u>	<u>True</u>	<u>%R</u>	<u>PQL</u>
Arsenic			IFA1	0.2	ug/L			2.00
			IFB1	20.9	ug/L	20	104	2.00
Cadmium			IFA1	0.0	ug/L			0.200
			IFB1	20.0	ug/L	20	100	0.200
Copper			IFA1	0.3	ug/L			1.00
			IFB1	20.3	ug/L	20	101	1.00
Lead			IFA1	0.0	ug/L			0.200
			IFB1	0.0	ug/L			0.200
Nickel			IFA1	-0.4	ug/L			1.00
			IFB1	19.9	ug/L	20	100	1.00
		True Value or + analyte list and Analysis:		Metals				
Arsenic	1107030	1 mary 515.	IFA1	0.0	ug/L			2.00
			IFB1	20.6	ug/L	20	103	2.00
Cadmium			IFA1	0.0	ug/L			0.200
			IFB1	20.0	ug/L	20	100	0.200

3cquence. 140/038	Allarysis. ICT WIS TOL. Rec. I	victais				
Arsenic	IFA1	0.0	ug/L			2.00
	IFB1	20.6	ug/L	20	103	2.00
Cadmium	IFA1	0.0	ug/L			0.200
	IFB1	20.0	ug/L	20	100	0.200
Copper	IFA1	0.3	ug/L			1.00
	IFB1	18.3	ug/L	20	92	1.00
Lead	IFA1	0.0	ug/L			0.200
	IFB1	0.0	ug/L			0.200
Nickel	IFA1	-0.3	ug/L			1.00
	IFB1	18.3	ug/L	20	92	1.00

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

A-046

TDF #:

TechLaw, Inc. - ESAT Region 8
ICP Interference Check Sample
ICPOE - PE Optima

<u>Analyte</u>	Check Sample	Result*	<u>Units</u>	<u>True</u>	<u>%R</u>	<u>PQL</u>
Sequence: 1407028	Analysis: ICPOE Diss. Metals	3				
Aluminum	IFA1	58,372.9	ug/L	60,000	97	50.0
	IFB1	59,804.1	ug/L	60,000	100	50.0
Iron	IFA1	232,466.3	ug/L	250,000	93	250
	IFB1	237,311.4	ug/L	250,000	95	250
Manganese	IFA1	-0.2	ug/L			5.00
	IFB1	193.6	ug/L	200	97	5.00
Zinc	IFA1	5.5	ug/L			20.0
	IFB1	289.5	ug/L	300	96	20.0

Sequence: 1407029	Analysis: ICPOE Tot. Rec.	Metals				
Aluminum	IFA1	58,372.9	ug/L	60,000	97	50.0
	IFB1	59,804.1	ug/L	60,000	100	50.0
Iron	IFA1	232,466.3	ug/L	250,000	93	250
	IFB1	237,311.4	ug/L	250,000	95	250
Manganese	IFA1	-0.2	ug/L			5.00
	IFB1	193.6	ug/L	200	97	5.00
Zinc	IFA1	5.5	ug/L			20.0
	IFB1	289.5	ug/L	300	96	20.0

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPMS-PE DRC-II

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1407037

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Arsenic	2.00	1.67	84	ug/L
Cadmium	0.200	0.194	97	ug/L
Copper	1.00	0.988	99	ug/L
Lead	0.200	0.203	101	ug/L
Nickel	1.00	1.08	108	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1407028

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	99.56	100	ug/L
Iron	100	152.9	153	ug/L
Manganese	10.0	10.27	103	ug/L
Zinc	50.0	50.80	102	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

Project Name: Barker-Hughesville_Treatability_JUN 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard Lachat 8500

Classical Chemistry by EPA/ASTM/APHA Methods

Sequence: 1406094

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Ammonia as N	0.0500	0.0453	91	mg/L

 $Recovery\ Control\ Limits:\ 70\text{-}130\%\ except\ Pb,\ Tl,\ Sb,\ \&\ Hg\ at\ 50\text{-}150\%.\ \ No\ limits\ for\ Al,\ Ca,\ Fe,\ K,\ Mg\ \&\ Na.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPMS-PE DRC-II

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1407038

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Arsenic	2.00	2.015	101	ug/L
Cadmium	0.200	0.1963	98	ug/L
Copper	1.00	0.9383	94	ug/L
Lead	0.200	0.2021	101	ug/L
Nickel	1.00	1.014	101	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1407029

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	99.56	100	ug/L
Iron	100	152.9	153	ug/L
Manganese	10.0	10.27	103	ug/L
Zinc	50.0	50.80	102	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 310.1 Total Sequence ID#: 1406081

Instrument ID #: Phoen	ix Carbon Anal Water		LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1406076-SRM1	Reference	06/17/14	08:24
1406076-BLK1	Blank	06/17/14	08:24
C140612-04	14BH-DT-PILOT-BCR1-06111	06/17/14	08:24
1406076-DUP1	Duplicate	06/17/14	08:24
C140612-08	14BH-DT-PILOT-BCR2-06111	06/17/14	08:24
C140612-12	14BH-DT-PILOT-BCR3-06111	06/17/14	08:24
C140612-16	14BH-DT-PILOT-BCR4-06111	06/17/14	08:24
C140612-19	14BH-DT-PILOT-CHIT-061114	06/17/14	08:24
C140612-22	14BH-DT-PILOT-INF-061114	06/17/14	08:24
C140612-25	14BH-DT-PILOT-INFD-061114	06/17/14	08:24
C140612-28	14BH-DT-PILOT-NAOH-06111	06/17/14	08:24
C140612-31	14BH-DT-PILOT-SAPS-06111 ²	06/17/14	08:24
1406076-SRM2	Reference	06/17/14	08:24
1406076-BLK2	Blank	06/17/14	08:24
1406076-DUP3	Duplicate	06/17/14	08:24
1406076-DUP2	Duplicate	06/17/14	08:24
1406081-CCV1	Calibration Check	06/17/14	13:15
1406081-CCB1	Calibration Blank	06/17/14	13:15
1406081-CCV2	Calibration Check	06/17/14	13:15
1406081-CCB2	Calibration Blank	06/17/14	13:15
1406081-CCV3	Calibration Check	06/17/14	13:15
1406081-CCB3	Calibration Blank	06/17/14	13:15
1406081-CCV4	Calibration Check	06/17/14	13:15
1406081-CCB4	Calibration Blank	06/17/14	13:15
1406081-CCV5	Calibration Check	06/17/14	13:15
1406081-CCB5	Calibration Blank	06/17/14	13:15

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 350.1 **Total Sequence ID#:** 1406094

Instrument ID #: Lachat	8500 Wate	er	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1406093-SRM1	Reference	06/19/14	09:17
1406093-BLK1	Blank	06/19/14	09:18
1406093-BS1	Blank Spike	06/19/14	09:19
1406094-CRL1	Instrument RL Check	06/19/14	09:20
C140612-03	14BH-DT-PILOT-BCR1-06111	06/19/14	09:22
1406093-DUP1	Duplicate	06/19/14	09:23
1406093-MS1	Matrix Spike	06/19/14	09:24
C140612-07	14BH-DT-PILOT-BCR2-06111	06/19/14	09:25
1406094-CCV1	Calibration Check	06/19/14	09:26
1406094-CCB1	Calibration Blank	06/19/14	09:28
C140612-11	14BH-DT-PILOT-BCR3-06111	06/19/14	09:29
C140612-15	14BH-DT-PILOT-BCR4-06111	06/19/14	09:30
1406094-CCV2	Calibration Check	06/19/14	09:41
1406094-CCB2	Calibration Blank	06/19/14	09:42

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 300.0 **Dissolved Sequence ID#:** 1406112

Instrument ID #: ESAT	Dionex IC Water	r	LSR #: A-046		
Analysis ID	Sample Name	Analysis Date	Analysis Time		
1406112-ICV1	Initial Cal Check	06/24/14	10:57		
1406112-ICB1	Initial Cal Blank	06/24/14	11:15		
1406112-SCV1	Secondary Cal Check	06/24/14	11:34		
1406112-IBL1	Instrument Blank	06/24/14	11:52		
1406085-BS1	Blank Spike	06/24/14	12:11		
1406085-BLK1	Blank	06/24/14	12:30		
C140612-04	14BH-DT-PILOT-BCR1-06111	06/24/14	12:48		
1406085-DUP1	Duplicate	06/24/14	13:07		
1406085-MS1	Matrix Spike	06/24/14	13:25		
C140612-08	14BH-DT-PILOT-BCR2-06111	06/24/14	13:44		
C140612-12	14BH-DT-PILOT-BCR3-06111	06/24/14	14:02		
C140612-16	14BH-DT-PILOT-BCR4-06111	06/24/14	14:21		
1406112-CCV1	Calibration Check	06/24/14	14:40		
1406112-CCB1	Calibration Blank	06/24/14	14:58		
C140612-22	14BH-DT-PILOT-INF-061114	06/24/14	15:17		
C140612-19	14BH-DT-PILOT-CHIT-061114	06/24/14	15:35		
C140612-25	14BH-DT-PILOT-INFD-061114	06/24/14	15:54		
C140612-28	14BH-DT-PILOT-NAOH-06111	06/24/14	16:12		
C140612-31	14BH-DT-PILOT-SAPS-061114	06/24/14	16:31		
1406112-CCV2	Calibration Check	06/24/14	16:50		
1406112-CCB2	Calibration Blank	06/24/14	17:08		

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Dissolved Sequence ID#:** 1407028

Instrument ID #: ICPOI	E - PE Optima Water	r	LSR #: A-046		
Analysis ID	Sample Name	Analysis Date	Analysis Time		
1407028-ICV1	Initial Cal Check	07/08/14	08:19		
1407028-SCV1	Secondary Cal Check	07/08/14	08:23		
1407028-ICB1	Initial Cal Blank	07/08/14	08:26		
1407028-CRL1	Instrument RL Check	07/08/14	08:29		
1407028-IFA1	Interference Check A	07/08/14	08:31		
1407028-IFB1	Interference Check B	07/08/14	08:35		
1407023-BLK1	Blank	07/08/14	08:39		
1407023-BS1	Blank Spike	07/08/14	08:42		
C140612-18	14BH-DT-PILOT-CHIT-061114	07/08/14	08:45		
1407023-DUP1	Duplicate	07/08/14	08:50		
1407028-SRD1	Serial Dilution	07/08/14	08:54		
1407023-MS1	Matrix Spike	07/08/14	08:57		
C140612-02	14BH-DT-PILOT-BCR1-06111	07/08/14	09:01		
C140612-06	14BH-DT-PILOT-BCR2-06111	07/08/14	09:04		
C140612-10	14BH-DT-PILOT-BCR3-06111	07/08/14	09:08		
1407028-CCV1	Calibration Check	07/08/14	09:14		
1407028-CCB1	Calibration Blank	07/08/14	09:17		
C140612-14	14BH-DT-PILOT-BCR4-06111	07/08/14	09:20		
C140612-21	14BH-DT-PILOT-INF-061114	07/08/14	09:23		
C140612-24	14BH-DT-PILOT-INFD-061114	07/08/14	09:26		
C140612-30	14BH-DT-PILOT-SAPS-061114	07/08/14	09:33		
C140612-27	14BH-DT-PILOT-NAOH-06111	07/08/14	09:39		
1407028-CCV2	Calibration Check	07/08/14	09:42		
1407028-CCB2	Calibration Blank	07/08/14	09:45		

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Total Recoverable Sequence ID#:** 1407029

nstrument ID #: ICPOI	E - PE Optima Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1407029-ICV1	Initial Cal Check	07/08/14	08:19
1407029-SCV1	Secondary Cal Check	07/08/14	08:23
1407029-ICB1	Initial Cal Blank	07/08/14	08:26
1407029-CRL1	Instrument RL Check	07/08/14	08:29
1407029-IFA1	Interference Check A	07/08/14	08:31
1407029-IFB1	Interference Check B	07/08/14	08:35
1407029-CCV1	Calibration Check	07/08/14	09:14
1407029-CCB1	Calibration Blank	07/08/14	09:17
1407029-CCV2	Calibration Check	07/08/14	09:42
1407029-CCB2	Calibration Blank	07/08/14	09:45
1406114-BLK1	Blank	07/08/14	09:53
1406114-SRM1	Reference	07/08/14	09:56
C140612-17	14BH-DT-PILOT-CHIT-061114	07/08/14	09:59
1406114-DUP1	Duplicate	07/08/14	10:03
1407029-SRD1	Serial Dilution	07/08/14	10:08
C140612-20	14BH-DT-PILOT-INF-061114	07/08/14	10:10
1406114-MS1	Matrix Spike	07/08/14	10:13
C140612-01	14BH-DT-PILOT-BCR1-06111	07/08/14	10:17
C140612-05	14BH-DT-PILOT-BCR2-06111	07/08/14	10:20
1407029-CCV3	Calibration Check	07/08/14	10:26
1407029-CCB3	Calibration Blank	07/08/14	10:29
C140612-09	14BH-DT-PILOT-BCR3-06111	07/08/14	10:32
C140612-13	14BH-DT-PILOT-BCR4-06111	07/08/14	10:35
C140612-23	14BH-DT-PILOT-INFD-061114	07/08/14	10:38
C140612-26	14BH-DT-PILOT-NAOH-06111	07/08/14	10:41
C140612-29	14BH-DT-PILOT-SAPS-061114	07/08/14	10:44
1407029-CCV4	Calibration Check	07/08/14	10:50
1407029-CCB4	Calibration Blank	07/08/14	10:53

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Dissolved Sequence ID#:** 1407037

Instrument ID #: ICPM	r	LSR #: A-046			
Analysis ID	Sample Name	Analysis Date	Analysis Time		
1407037-ICV1	Initial Cal Check	07/10/14	10:07		
1407037-SCV1	Secondary Cal Check	07/10/14	10:10		
1407037-ICB1	Initial Cal Blank	07/10/14	10:14		
1407037-CRL1	Instrument RL Check	07/10/14	10:17		
1407037-IFA1	Interference Check A	07/10/14	10:20		
1407037-IFB1	Interference Check B	07/10/14	10:23		
1407027-BLK1	Blank	07/10/14	10:27		
C140612-18	14BH-DT-PILOT-CHIT-061114	07/10/14	10:30		
1407027-DUP1	Duplicate	07/10/14	10:33		
1407037-SRD1	Serial Dilution	07/10/14	10:36		
1407027-BS1	Blank Spike	07/10/14	10:39		
1407027-MS1	Matrix Spike	07/10/14	10:42		
C140612-02	14BH-DT-PILOT-BCR1-06111	07/10/14	10:45		
C140612-06	14BH-DT-PILOT-BCR2-06111	07/10/14	10:48		
C140612-10	14BH-DT-PILOT-BCR3-06111	07/10/14	10:51		
1407037-CCV1	Calibration Check	07/10/14	10:57		
1407037-CCB1	Calibration Blank	07/10/14	11:01		
C140612-14	14BH-DT-PILOT-BCR4-06111	07/10/14	11:04		
C140612-21	14BH-DT-PILOT-INF-061114	07/10/14	11:07		
C140612-24	14BH-DT-PILOT-INFD-061114	07/10/14	11:10		
C140612-27	14BH-DT-PILOT-NAOH-0611	07/10/14	11:13		
C140612-30	14BH-DT-PILOT-SAPS-061114	07/10/14	11:16		
1407037-CCV2	Calibration Check	07/10/14	11:22		
1407037-CCB2	Calibration Blank	07/10/14	11:25		

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Total Recoverable Sequence ID#:** 1407038

Instrument ID #: ICPM	LSR #: A-046				
Analysis ID	Sample Name	Analysis Date	Analysis Time		
1407038-ICV1	Initial Cal Check	07/10/14	12:57		
1407038-SCV1	Secondary Cal Check	07/10/14	13:00		
1407038-ICB1	Initial Cal Blank	07/10/14	13:04		
1407038-CRL1	Instrument RL Check	07/10/14	13:07		
1407038-IFA1	Interference Check A	07/10/14	13:10		
1407038-IFB1	Interference Check B	07/10/14	13:13		
1406114-BLK2	Blank	07/10/14	13:17		
C140612-17	14BH-DT-PILOT-CHIT-061114	07/10/14	13:20		
1406114-DUP2	Duplicate	07/10/14	13:23		
1407038-SRD1	Serial Dilution	07/10/14	13:26		
1406114-SRM2	Reference	07/10/14	13:29		
C140612-20	14BH-DT-PILOT-INF-061114	07/10/14	13:32		
1406114-MS2	Matrix Spike	07/10/14	13:35		
C140612-01	14BH-DT-PILOT-BCR1-06111	07/10/14	13:38		
C140612-05	14BH-DT-PILOT-BCR2-06111	07/10/14	13:41		
1407038-CCV1	Calibration Check	07/10/14	13:47		
1407038-CCB1	Calibration Blank	07/10/14	13:50		
C140612-09	14BH-DT-PILOT-BCR3-06111	07/10/14	13:54		
C140612-13	14BH-DT-PILOT-BCR4-06111	07/10/14	13:57		
C140612-23	14BH-DT-PILOT-INFD-061114	07/10/14	14:00		
C140612-26	14BH-DT-PILOT-NAOH-06111	07/10/14	14:03		
C140612-29	14BH-DT-PILOT-SAPS-06111 ²	07/10/14	14:06		
1407038-CCV2	Calibration Check	07/10/14	14:12		
1407038-CCB2	Calibration Blank	07/10/14	14:15		

CHAIN OF CUSTODY RECORD

CDM Smith			Danny	T Pilot Test									Analy	sis												
OTES: Limited sample volumes due to treatability testing		DATE TIME MATRIX Preservative, Ammonia DATE TIME MATRIX Process Type Box 100 To 200 8 Alkalinity, Anions (sulfate, chloride, fluoride) Nitrate+Nitrite, Ammonia												Other Instructions and Notes												
SAMPLE NUMBER	DATE	TIME	MATRIX	Preservative	Type & No. of Containers	Total Metals (TAL),	Dissolved Metals (TAL), 200.7 or 200.8	Alkalinity, Anions (su	Nitrate+Nitrite, Amm																	
14BH-DT-PILOT-INF-061114	6/11/14	12:50	aqueous		3, 125 mL poly	Х	Х	X																		
14BH-DT-PILOT-INFD-061114	6/11/14	13:00	aqueous		3, 125 mL poly	Х	Х	Х																		
14BH-DT-PILOT-SAPS-061114	6/11/14	13:50	aqueous	HNO3 (metals), H2SO4 (nutrients), cool	3, 125 mL poly	х	х	Х																		
14BH-DT-PILOT-CHIT-061114	6/11/14	14:05	aqueous		3, 125 mL poly	Х	Х	Х																		
14BH-DT-PILOT-NAOH-061114	6/11/14	14:15	aqueous		3, 125 mL poly	Х	Х	Х																		
14BH-DT-PILOT-BCR1-061114	6/11/14	14:35	aqueous		4, 125 mL poly	Х	Х	Х	Х												TAL metals = Al, As, Ba, Be, Cd, G					
14BH-DT-PILOT-BCR2-061114	6/11/14	14:55	aqueous			4, 125 mL poly	Х	Х	Х	Х												Cr, Co, Cu, Fe, Pb, Mg, Mn, Ni, K				
14BH-DT-PILOT-BCR3-061114	6/11/14	15:20	aqueous									4, 125 mL poly	Х	Х	Х	Х										
14BH-DT-PILOT-BCR4-061114	6/11/14	15:40	aqueous		4, 125 mL poly	Х	Х	Х	Х																	
							\vdash						-		-		-	+		_						
							\vdash					_														
Relinquished by: (Signature)	Date/Time	1:00	Received fo	r Laboratory by:	(Signature) 6/13	55	4		1	1									I							
Received by: (Signature)	Date/Time		Airbill No.(s	1								 														

C14 0612

ESAT Technical Direction Form

Contract No. EPW13028 EPA Region 8

Site ID:		Date Issued:	5/29/2014	Date
TDF ID:	: A-046	Date Updated:		Closed By:
	Barker-Hughesville Treatability Stu The Contractor shall analyze sever. Superfund site as indicated in the Aduring the 2014 field season startin associated with this project averagi Anton/Erin Louden of CDM Smit	al water samples a analytical Informa g in mid-June tho ng approximately	tion Section. The samplingh early October 2014.	es will be sent to the ESAT R8 Lab
	Samples designated as influent sam analyzed by 200.7. Additionally, me			l concentrations and should be any be reported from the 200,7 analys
	ESAT should return the coolers to CDM Smith/Lauren Helland 50 West 14th Street, Suite 200 Helena, MT 59601 406-441-1435 FedEx # 1323-6393-5	-	fress:	
	TO02/Subtask 02b: Inorganic Ch	emistry		
	Site RPM: Roger Hoogerheide			
MATRD	al Information: ▼ Coils □ Vegetation □ Bio	ta		
	HEM □ TDS □ DOC ☑ Alk ☑ Chlo nalyze for Ammonia and report NO			Nitrite
	S olved ☑ Total Recoverable □ Tota □ Ag ☑ Al □ As □ Ba □ F	•	•	Cu ☑ Fe □ K □ Mg
200.8: [IMn □ Mo □ Na □ Ni □ F □ Ag □ Al ☑ As □ Ba □ F □ Se □ Th □ Tl □ U □ N	Be ☑ Cd ☐ Co	□ Cr ☑ Cu ☑ Mn □	V ⊠ Zn □ SiO2 Mo ⊠ Ni ⊠ Pb □ Sb
7470/747	71/747 □ Hg		07/4/14	
FIBERS	□ TEM	·		
Delivera ID	b les Descrip	btion	Du	e Date Submission Date
	ovide final deliverable package to Ta er delivery of samples.		er than 30 days	

ANALYTICAL SUMMARY REPORT

July 24, 2014

CDM Federal Programs 555 17th St Ste 1100 Denver, CO 80202

Work Order: H14070203 Quote ID: H823 - Baker-Hughsville Superfund Site

Project Name: Barker Hughsville - Danny T

Energy Laboratories Inc Helena MT received the following 11 samples for CDM Federal Programs on 7/10/2014 for analysis.

Lab ID	Client Sample ID	Collect Date Receive Date	Matrix	Test
H14070203-001	14BH-DT-PILOT-INFL- 062414	06/24/14 13:25 07/10/14	Aqueous	Acidity, Total as CaCO3 Phosphorus, Orthophosphate as P
H14070203-002	14BH-DT-PILOT-SAPS- 062414	06/24/14 13:50 07/10/14	Aqueous	Same As Above
H14070203-003	14BH-DT-PILOT-CHIT- 062414	06/24/14 14:05 07/10/14	Aqueous	Same As Above
H14070203-004	14BH-DT-PILOT-NAOH- 062414	06/24/14 14:20 07/10/14	Aqueous	Same As Above
H14070203-005	14BH-DT-PILOT-BCR1- 062414	06/24/14 14:35 07/10/14	Aqueous	Same As Above
H14070203-006	14BH-DT-PILOT-BCR1D- 062414	06/24/14 14:40 07/10/14	Aqueous	Same As Above
H14070203-007	14BH-DT-PILOT-BCR2- 062414	06/24/14 15:05 07/10/14	Aqueous	Same As Above
H14070203-008	14BH-DT-PILOT-BCR3- 062414	06/24/14 15:20 07/10/14	Aqueous	Same As Above
H14070203-009	14BH-DT-PILOT-BCR4- 062414	06/24/14 15:35 07/10/14	Aqueous	Same As Above
H14070203-010	14BH-DT-PILOT-POSTE- 062414	06/24/14 15:50 07/10/14	Aqueous	Same As Above
H14070203-011	14BH-DT-PILOT-POST1- 062414	06/24/14 16:10 07/10/14	Aqueous	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Report Date: 07/24/14

Project: Barker Hughsville - Danny T

Collection Date: 06/24/14 13:25

Lab ID: H14070203-001

Date Received: 07/10/14

Client Sample ID: 14BH-DT-PILOT-INFL-062414

Matrix: AQUEOUS

Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	640	mg/L	DH	4.0		1	A2310 B	07/11/14 13:18/SRW
NUTRIENTS Phosphorus, Orthophosphate as P	ND	mg/L	DH	0.1		100	E365.1	07/11/14 11:17/cmm

Report F
Definitions:

RL - Analyte reporting limit. QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Report Date: 07/24/14 **Collection Date:** 06/24/14 13:50

Project: Barker Hughsville - Danny T

Lab ID: H14070203-002

Date Received: 07/10/14

Client Sample ID: 14BH-DT-PILOT-SAPS-062414

Matrix: AQUEOUS

Analyses	Result	Units	Qual	RL	QCL D	F Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	15	mg/L	DH	4.0	1	A2310 B	07/11/14 13:31/SRW
NUTRIENTS Phosphorus, Orthophosphate as P	0.2	mg/L	DH	0.1	10	0 E365.1	07/11/14 11:20/cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Report Date: 07/24/14 **Collection Date:** 06/24/14 14:05

Project: Barker Hughsville - Danny T

Date Received: 07/10/14

Lab ID: H14070203-003

Matrix: AQUEOUS

Client Sample ID: 14BH-DT-PILOT-CHIT-062414

	MCL/									
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By		
INORGANICS Acidity, Total as CaCO3	ND	mg/L	DH	4.0		1	A2310 B	07/11/14 13:35/SRW		
NUTRIENTS Phosphorus, Orthophosphate as P	0.3	mg/L	DH	0.1		100	E365.1	07/11/14 11:21/cmm		

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs Report Date: 07/24/14

Project: Barker Hughsville - Danny T **Collection Date:** 06/24/14 14:20

Lab ID: H14070203-004 **Date Received:** 07/10/14

Client Sample ID: 14BH-DT-PILOT-NAOH-062414 Matrix: AQUEOUS

Analyses	Result	Units	Qual	RL	QCL D	F Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	430	mg/L	DH	4.0	1	A2310 B	07/11/14 13:40/SRW
Acidity, Total as GaGGG	430	IIIg/L	DIT	4.0	ı	A2310 B	07/11/14 13.40/3HW
NUTRIENTS							
Phosphorus, Orthophosphate as P	ND	mg/L	DH	0.1	10	0 E365.1	07/11/14 11:22/cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Barker Hughsville - Danny T **Collection Date:** 06/24/14 14:35

Lab ID: H14070203-005

Date Received: 07/10/14

Report Date: 07/24/14

Client Sample ID: 14BH-DT-PILOT-BCR1-062414

Matrix: AQUEOUS

	MCL/								
Analyses	Result	Units	Qual	RL	QCL D	F Me	ethod	Analysis Date / By	
INORGANICS									
Acidity, Total as CaCO3	ND	mg/L	DH	4.0	1	A2	2310 B	07/11/14 13:44/SRW	
NUTRIENTS									
Phosphorus, Orthophosphate as P	2.9	mg/L	DH	0.1	10	00 E3	865.1	07/11/14 11:23/cmm	

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Report Date: 07/24/14

Date Received: 07/10/14

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Barker Hughsville - Danny T **Collection Date:** 06/24/14 14:40

Lab ID: H14070203-006

Client Sample ID: 14BH-DT-PILOT-BCR1D-062414 Matrix: AQUEOUS

	MCL/								
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By	
INORGANICS Acidity, Total as CaCO3	ND	mg/L	DH	4.0		1	A2310 B	07/11/14 13:49/SRW	
NUTRIENTS Phosphorus, Orthophosphate as P	2.5	mg/L	DH	0.1		100	E365.1	07/11/14 11:24/cmm	

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Report Date: 07/24/14 **Collection Date:** 06/24/14 15:05

Project: Barker Hughsville - Danny T

Date Received: 07/10/14

Lab ID: H14070203-007

Matrix: AQUEOUS

Client Sample ID:	14BH-DT-PILOT-BCR2-062414
-------------------	---------------------------

	MCL/								
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By	
INORGANICS									
Acidity, Total as CaCO3	ND	mg/L	DH	4.0		1	A2310 B	07/11/14 13:52/SRW	
NUTRIENTS									
Phosphorus, Orthophosphate as P	41.0	mg/L	DH	0.1		100	E365.1	07/11/14 11:25/cmm	

Report RL Definitions: OC

RL - Analyte reporting limit. QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Client Sample ID: 14BH-DT-PILOT-BCR3-062414

Report Date: 07/24/14 **Collection Date:** 06/24/14 15:20

Project: Barker Hughsville - Danny T

Date Received: 07/10/14

Lab ID: H14070203-008

Matrix: AQUEOUS

Analyses	Result	Units	Qual	RL	MCL/ QCL	DF	Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	ND	mg/L	DH	4.0		1	A2310 B	07/11/14 13:57/SRW
NUTRIENTS Phosphorus, Orthophosphate as P	39.7	mg/L	DH	0.1		100	E365.1	07/11/14 11:28/cmm

Report RL - A **Definitions:** OCL

RL - Analyte reporting limit. QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.
ND - Not detected at the reporting limit.

Report Date: 07/24/14

Collection Date: 06/24/14 15:35

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Barker Hughsville - Danny T

Lab ID: H14070203-009 **Date Received:** 07/10/14

Client Sample ID: 14BH-DT-PILOT-BCR4-062414 Matrix: AQUEOUS

	MCL/								
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By	
INORGANICS Acidity, Total as CaCO3	ND	mg/L	DH	4.0		1	A2310 B	07/11/14 13:59/SRW	
,,		9. =							
NUTRIENTS									
Phosphorus, Orthophosphate as P	28.2	mg/L	DH	0.1		100	E365.1	07/11/14 11:29/cmm	

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Report Date: 07/24/14 **Collection Date:** 06/24/14 15:50

Project: Barker Hughsville - Danny T

Date Received: 07/10/14

Lab ID: H14070203-010

Matrix: AQUEOUS

Client Sample ID: 14BH-DT-PILOT-POSTE-062414

-	MCL/								
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By	
INORGANICS Acidity, Total as CaCO3	ND	mg/L	DH	4.0		1	A2310 B	07/11/14 14:03/SRW	
NUTRIENTS Phosphorus, Orthophosphate as P	4.5	mg/L	DH	0.1		100	E365.1	07/11/14 11:30/cmm	

Report RL - Analyte reporting limit. **Definitions:**

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Barker Hughsville - Danny T

Report Date: 07/24/14 **Collection Date:** 06/24/14 16:10

Lab ID: H14070203-011

Date Received: 07/10/14

Client Sample ID: 14BH-DT-PILOT-POST1-062414

Matrix: AQUEOUS

	MCL/								
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By	
INORGANICS									
Acidity, Total as CaCO3	ND	mg/L	DH	4.0		1	A2310 B	07/11/14 14:08/SRW	
NUTRIENTS									
Phosphorus, Orthophosphate as P	26.2	mg/L	DH	0.1		100	E365.1	07/11/14 11:31/cmm	

Report RL - An **Definitions:** QCl - C

RL - Analyte reporting limit. QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

QA/QC Summary Report

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:07/24/14Project:Barker Hughsville - Danny TWork Order:H14070203

Analyte	Result Units	RL %REC Low Limit High Limit	RPD RPDLimit Qual
Method: A2310 B			Batch: H140711A
Lab ID: H14070203-001ADUP	Sample Duplicate	Run: PH_140711A	07/11/14 13:25
Acidity, Total as CaCO3	650 mg/L	4.0	1.9 20
Lab ID: H14070203-011ADUP	Sample Duplicate	Run: PH_140711A	07/11/14 14:12
Acidity, Total as CaCO3	ND mg/L	4.0	20
Lab ID: LCS1407110000	Laboratory Control Sample	Run: PH_140711A	07/11/14 14:17
Acidity, Total as CaCO3	950 mg/L	4.0 97 90 110	
Lab ID: MBLK1407110000	Method Blank	Run: PH_140711A	07/11/14 14:22
Acidity, Total as CaCO3	2 mg/L		

QA/QC Summary Report

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:07/24/14Project:Barker Hughsville - Danny TWork Order:H14070203

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E365.1						Analyt	ical Run:	FIA202-HE_	_140711C
Lab ID: ICV Phosphorus, Orthophosphate as P	Initial Calibrati 0.257	on Verificatio mg/L	n Standard 0.0050	103	90	110		07/11	/14 11:12
Lab ID: ICB Phosphorus, Orthophosphate as P	Initial Calibrati 0.000150	on Blank, Ins mg/L	trument Blank 0.0050		0	0		07/11	/14 11:13
Lab ID: CCV Phosphorus, Orthophosphate as P	Continuing Ca 0.101	libration Verif mg/L	ication Standar 0.0050	d 101	90	110		07/11	/14 11:15
Lab ID: CCV Phosphorus, Orthophosphate as P	Continuing Ca 0.105	libration Verif mg/L	ication Standar 0.0050	d 105	90	110		07/11	/14 11:27
Lab ID: CCV Phosphorus, Orthophosphate as P	Continuing Ca 0.103	libration Verif mg/L	ication Standar 0.0050	d 103	90	110		07/11	/14 11:38
Method: E365.1								Batch	n: R98773
Lab ID: LFB Phosphorus, Orthophosphate as P	Laboratory Fo 0.196	rtified Blank mg/L	0.0050	98	Run: FIA20 90)2-HE_140711C 110		07/11	/14 11:14
Lab ID: H14070203-001BMS Phosphorus, Orthophosphate as P	Sample Matrix 12.7	Spike mg/L	0.10	64	Run: FIA20 90)2-HE_140711C 110		07/11	/14 11:18 S
Lab ID: H14070203-001BMSD Phosphorus, Orthophosphate as P	Sample Matrix 12.2	Spike Duplic mg/L	eate 0.10	61	Run: FIA20 90)2-HE_140711C 110	3.8	07/11 20	/14 11:19 S
Lab ID: H14070206-001BMS Phosphorus, Orthophosphate as P	Sample Matrix 0.203	Spike mg/L	0.0050	96	Run: FIA20 90)2-HE_140711C 110		07/11	/14 11:33
Lab ID: H14070206-001BMSD Phosphorus, Orthophosphate as P	Sample Matrix 0.209	Spike Duplic mg/L	eate 0.0050	100	Run: FIA20 90)2-HE_140711C 110	3.1	07/11 20	/14 11:34

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Workorder Receipt Checklist

CDM Federal Programs

Login completed by: Tracy L. Lorash

H14070203

Date Received: 7/10/2014

Reviewed by:	BL2000\kwiegand	Received by: blm					
Reviewed Date:	7/11/2014			Carrier Hand Del name:			
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present			
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓			
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓			
Chain of custody present?		Yes ✓	No 🗌				
Chain of custody signed whe	en relinquished and received?	Yes ✓	No 🗌				
Chain of custody agrees with	sample labels?	Yes ✓	No 🗌				
Samples in proper container/	bottle?	Yes ✓	No 🗌				
Sample containers intact?		Yes ✓	No 🗌				
Sufficient sample volume for	indicated test?	Yes ✓	No 🗌				
All samples received within h (Exclude analyses that are countries on the part of the part	onsidered field parameters	Yes	No 🗹				
Temp Blank received in all sh	nipping container(s)/cooler(s)?	Yes	No ✓	Not Applicable			
Container/Temp Blank tempe	erature:	6.9℃ On Ice					
Water - VOA vials have zero	headspace?	Yes	No 🗌	No VOA vials submitted 🔽			
Water - pH acceptable upon	receipt?	Yes √	No 🗌	Not Applicable			

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

All samples except for 14BH-DT-PILOT-POSTI-062414 were received past the method holding time for both alkalinity and orthophosphate.

14BH-DT-PILOT-POSTI-062414 sample collected at 16:10 was not received with sufficient time to complete analysis within method recommended hold time.

Per Angela, we are to analyze samples past the holding time. TI 7/10/14

ENERGY B	7
----------	---

Chain of Custody and Analytical Request Record

Page	of _	

Campani Namo	PLEASE I	PKIN	MC Dame	ide as muc	n intorm	ation	ı as <u>p</u>			EDA/Otata Caralliana
Company Name:	Project Nan		•	-		_		1 '	ole Origin	EPA/State Compliance:
ODM Smith	Barke	t	ugheoir	UL - D Phone/Fax:	anny	<u>T</u>			: MT	Yes No No
Report Mail Address (Required):	Contact Na	me:	J	Phone/Fax:	Q			Cell:		Sampler: (Please Print)
				(406)	141-140	00				Lauren Helland
M No Hard Copy Email: Franchen AK acomsmith. Co.		Invoice Contact & Phone:						Purch	Purchase Order: Quote/Bottle Or	
Invoice Address (Required):		/A/I	711VI I AG	IS REQU	15625131	<u></u>			Contact ELI prior	to Shipped by:
	er er	Z=31	V3(2)[2]	ne mere			4		RUSH sample su	bmittal Hang Cooler ID(s):
	e ogs Sos Sos Sos Sos Sos Sos Sos Sos Sos So						≨اد	R	for charges and scheduling – See	, ,
TO NO Hard Copy Email: Salwa as above	S V S/So S/So Ssay Waf					[# 5		Instruction Page	*
Special Report/Formats:	Number of Containers Sample Type: A W S V B O DW Air Water Soils/Solids Vegetation Bloassay Other DW - Drinking Water		3				Standard Turnaround (TAT)	U	Comments:	Receipt Temp. No. 9 ° C
DW EDD/EDT(Electronic Data)	Zer c /pe: //ater Drir		74,				_ _ _ _		bod not in	CV*(V* 4)/
POTW/WWTP Format: Excel	Numbe Iple Typ Air Wa egetatic DW - D	İ	30				₹ ₽	S	inmis set a	
State: LEVEL IV	am N	4	-2			إ	OEF ndard		samples.	Custody Seal On Bottle Y
Other: NELAC	S	1.73	2			1	ja i	1 1	,	On Cooler Y N
SAMPLE IDENTIFICATION Collection Collection	MATRIX	Acid	Orthophosp hate				"	H		Signature V N
(Name, Location, Interval, etc.) Date Time							-			Match
14BH - DT-PILOY-INFL-062414 06/24/14 13:25	2,~	Х	<i>X</i>			$-\downarrow$		-		≥ H14670203
14BH-0T-PILOT-SAPS-062411 ad24/14 13:50	2,W	X	х							
140H-DT-PIWT-CHTT-062414 06/24/14 14:05	2, W	X	X					<u> </u>		
1404-DT-PILOT-NAOH-DO2414 06/24/14 14:20	2, W	∞	X							
1404-DT. PILOT-EXCE) - OBZ414 Ob/24/14 14:35	2, W	X	×							7 /
140H-DT-PILOT-BORID-062414 06/24/14 14:40	2, N	X	X							
1464-0T-PILOT-BURZ-062414 06/24/14 15:05	2, W	X	X							<u> </u>
140H-DT-PILOT-BLE3-062414 06/24/14 15:20	2, W	X	X							O R
14BH-DT-PILOT-BCRY-DAY14 Ob/24/14 15:35	2,N	X	Х							
HOH - PT - PILOT - POSTE - Ob2414 Ob/24/14 15:50 Custody Refinquished by (print): Date/Time: Record Relinquished by (print): Date/Time: Date/Time:	2, W	$ \chi $	χ							
Custody Relinquished by (print): Date/Time:	Signa	ture: 1	Illano	Receive	d by (print):			Date/Time:		Signature:
Record Relinquished by (print): Date/Time:	Signa	ature:	MADE V	Receive	d by (print):			Date/Time:		Signature:
MUST be	· · · · · · · · · · · · · · · · · · ·				d by Laborat			Date/Time:		Signature:
Signed Sample Disposal: Return to Client:	Lab Dispos	sal:		Brive	e Ma	220	<u> </u>	7/10/1	4 15:53	Bir IMan

ENERGY Chain of Cus	•			-		-					Pag	ie <u>2</u> of <u>2</u>
Company Name:	PLEASE F	rKINT ne, PW:	(Pro S. Perr	ovide a nit, Etc.	s muc	h inforn	nation	as po		e.) ole Origin	EPA/St	ate Compliance:
COM Smith	1 _*				(Jann			1	: MT	Yes	•
Report Mail Address (Required):	Contact Nar	ne:	Ma.	Phon	e/Fax:	<i>J</i> u·117	41		Cell:		Sample	er: (Please Print)
DWO Hard Copy Email: Frankson AKO Campmith Con	Anada Invoice Con		(und) Phone:	son	(40u	<u>0)441</u>	- <i>/५</i> 0u)	Purcl	nase Order:		MHULANEL Bottle Order:
Invoice Address (Required):	DW.			SIS F	BEQU	ESTE	D		-	Contact ELI prior		Shipped by: Hand
	of Containers S. AWSVBO er Soils/Soilds I Bloassay Othe		orno phosphate				SEE ATTACHED	d Turnaı	R U S	RUSH sample surfor charges and scheduling – See Instruction Page Comments: DOD not way with the sample.	e ritudio	Cooler ID(s): Receipt Temp Graph C On Ice: Custody Seal On Bottle On Cooler Intact On Warner
SAMPLE IDENTIFICATION Collection (Name, Location, Interval, etc.) Date Time	MATRIX	7	5						. ,			Signature Y N Match
1404-DT-PILOT-POSTI-062414 00124/14 16:10	2, W	\mathcal{S}	X									≥ H14070703
3 4 5 5												W USE ONI
6			<u> </u>									
8												17. A.M.
9												4/B(
10									-			
Record Relinquished by (print): Record Relinquished by (print): Date/Time: Date/Time:	Signal Signal	ure:	Hel	and		by (print):			Date/Time: Date/Time:		Signatu Signatu	
MUST be Signed Sample Disposal: Return to Client:	Lab Dispos	al:		_	_	er N	-		ate/Time:	14 1553	Signatu	a for

U.S. Environmental Protection Agency Region 8 Technical and Management Services

Laboratory Services Program

Certificate of Analysis

Ref: 8TMS-L

MEMORANDUM

Date: 09/15/14

Subject: Analytical Results--- Barker-Hughesville Treatability 2 JUL 2014 A046 / A-046

From: Don Goodrich; EPA Region 8 Analytical Chemistry WAM

To: Roger Hoogerheide

Superfund

8 MO

Received Sample Set(s), [Work Order : Date Received]:

[C140711 : 07/11/2014]

Attached are the analytical results for the samples received from the Barker-Hughesville_Treatability 2_JUL 2014_A046 sampling event, according to TDF A-046. All analyses were performed within their method specified holding times unless otherwise noted in the following narrative.

These samples were prepared, analyzed, and verified by the Environmental Services Assistance Team Laboratory (ESAT) according to the requirements of the Technical Direction Form (TDF).

Note: The laboratory herewith transmits this deliverable to the program/project partner for determination of "final data usability" which may include data validation and data quality assessment per and in accordance with EPA QA/G-8, *Guidance on Environmental Data Verification and Data Validation*, November 2002, EPA/240/R-02/004. Laboratory data qualifiers are applied based on the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*, October 2004, referred to as "NFGI".

Laboratory policy is to dispose of any remaining sample 60 days after data analysis packages are delivered to EPA. If you would like the laboratory to retain the samples for a period longer than 60 days, please contact Don Goodrich within the 60 day period at (303) 312-6687.

TDF #: A-046

Case Narrative

C140711

Quality Assessment: Unless indicated by exception, the QA/QC associated with this sample set

produced data within the TDF-specified criteria.

Holding Times: Alkalinity results are qualified "J" as estimated as they were analyzed past holding

times. All other samples were analyzed within their method-specified technical holding

time(s).

1. Initial and Continuing calibration blanks (ICBs and CCBs).

Exceptions: None.

2. Preparation (PB) / Method blanks (MB)

Exceptions: None.

3. Interference Checks (ICSA / ICSAB) for ICP-MS and ICP-OE analyses only.

Exceptions: None.

4. Initial and Continuing calibration verification analyses (ICVs, SCVs and CCVs).

Exceptions: None.

5. Laboratory Control Sample (LCS) or second source analysis or SRM.

Exceptions: None.

6. Laboratory Fortified blank (LFB) / Blank spike (BS), same source as used for the matrix spikes.

PBS performed with analyses/methods requiring preparation or digestion prior to analysis.

Exceptions: None.

7. Contract Reporting Detection Limit Standard, labeled as CRA, CRDL or CRL.

Exceptions: None.

- Laboratory Duplicate (DUP). "Source" identifies field sample duplicated in the laboratory. If either
 the "source" or the duplicate result is <5X the reporting limit, the %D limit of 20% does not apply.
 Exceptions: None.
- 9. Laboratory Matrix Spike (MS) and spike duplicate (MSD). "Source" defines original field sample fortified prior to analysis. Percent recovery (%R) limits do not apply when sample concentration(s) exceed the corresponding analyte spike level by a factor of 4 or greater. Exceptions: In ICP-MS batch 1409017, nickel, copper, and arsenic recovered low in the MS4. No qualifiers were assigned since all other QC requirements for these analytes were met.
- 10. Serial Dilution sample analysis (SRD). "Source" is parent field sample diluted 1:5 in the laboratory. Performed for ICP-OE and ICP-MS metals analyses. Percent difference (%D) limits do not apply when analyte concentration(s) are below 50x the source sample's MDL (or 10x it's PQL). Exceptions: None.
- Internal standards, criteria specified for ICP-MS analyses only, monitored at the instrument. Exceptions: None.
- Any calibration using more than two-points produced a correlation coefficient equal to or greater than 0.995.

Exceptions: None.

Certificate of Analysis

Project Name: Barker-Hughesville_Treatability 2_JUL 2014_A046

TDF #: A-046

Acronyms and Definitions:

ESAT Environmental Services Assistance Team

J Data Estimated qualifier (also applied to all data less than PQL, greater than or equal to MDL)

MDL Method Detection Limit

PQL Practical Quantitation Limit, also known as reporting limit.

RPD Relative Percent Difference (difference divided by the mean)

%D Percent difference, serial dilution criteria unit, difference divided by the original result.

%R Percent recovery, analyzed (less sample contribution) divided by true value

Analyte NOT DETECTED at or above the Method Detection Limit (MDL)

mg/L Parts per million (millligrams per liter). Solids equivalent = mg/Kg.

ug/L Parts per billion (micrograms per liter). Solids equivalent = ug/Kg.

NR No Recovery (matrix spike) - Often seen for calcium/magnesium when their concentration exceeds the spike level by > 4x.

NFGI USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

RE Sample Re-analysis. Usually seen on raw data and sequences for required sample dilutions due to over-range analytes.

U Analyte not detected at or above MDL qualifier

D Diluted value qualifier.

Method(s) Summary:

As defined in the Technical Direction Form (TDF), some or all of the methods listed below were used for the determination of the reported target analytes.

From EPA's Methods for the Determination of Metals in Environmental Samples, Supplement I, May 1994, dissolved, total, and/or total recoverable metals were determined by:

- Method 200.7 / 6010B using a PE Optima ICP -OE (ICP).
- Method 200.8 / 6020 using a Perkin -Elmer Elan 6000 ICP-MS.
- Method 200.2 for total recoverable metals (only) dige stion.
- Method 245.1 using a Perkin -Elmer FIMS CVAA (aqueous mercury only).

From Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, Method 2340B was used for the calculated hardness determination. Hardness is reported as mg (milligram) equivalent CaCO₃ per liter (L) determined as follows:

Calculated hardness = 2.497 * (Calcium, mg/L) + 4.118 * (Magnesium, mg/L).

From EPA's Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW -846,

- Method 3015A was used for microwave assisted total metals digestion.
- Method 7473 was used for mercury in solids.

From EPA's Determination of Inorganic Anions by Ion Chromatography, Revision 2.1, 1993, Method 300.0 was used to determine the anions.

From EPA's Methods for Chemical Analysis of Water and Wastes, March 1983:

- Method 310.1 was followed for the alkalinity determination.
- Method 160.1 was followed for gravimetric total dissolved solids (TDS) determination.
- Method 160.2 was used for gravimetric total suspended sol ids (TSS) determination.
- Method 415.3 was used for total organic carbon (TOC) determination using either an Apollo 9000 or Phoenix 8000 Non-Dispersive IR (NDIR) system. Also known as dissolved organic carbon (DOC) when performed on the dissolved sample fraction.

The quality control procedures listed in the TDF request were utilized by ESAT to verify accuracy of the results and to evaluate any matrix interferences.

Project Name: Barker-Hughesville_Treatability 2_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

Certificate of Analysis

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR1-062414 **EPA Tag No.:** No Tag Prefix-A

Date / Time Sampled: Matrix: Water

06/24/14 14:35

Workorder: C140711

Lab Number:

C140711-01

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	09/12/2014	SV	1409051
200.7	Iron	< 1250	U	ug/L	500	5	09/12/2014	SV	1409051
200.7	Manganese	1870		ug/L	10.0	5	09/12/2014	SV	1409051
200.7	Zinc	82.2	J	ug/L	50.0	5	09/12/2014	SV	1409051
200.8	Arsenic	20.3		ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Copper	5.30	J	ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Nickel	27.1		ug/L	5.00	10	09/12/2014	SV	1409052
2340B	Hardness	2320		mg/L	8	5	09/12/2014	SV	1409051

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR1D-062414 **Station ID:**

No Tag Prefix-A

EPA Tag No.:

Date / Time Sampled: Matrix:

06/24/14 14:40

Workorder: C140711

Lab Number:

C140711-05 Α

MDL Dilution **Parameter** Analyzed Method $\mathbf{B}\mathbf{v}$ Batch Qualifier Results Units Factor Aluminum 1 SV 1409051 200.7 09/12/2014 < 50.0 U ug/L 20.0 200.7 Iron 180 J ug/L 100 1 09/12/2014 SV1409051 200.7 Manganese 2850 ug/L 2.00 1 09/12/2014 SV1409051 200.7 Zinc 86.0 ug/L 10.0 1 09/12/2014 SV1409051 200.8 J ug/L 5.00 09/12/2014 1409052 Arsenic 18.3 10 SV 200.8 Cadmium 10 09/12/2014 SV1409052 < 2.00 U ug/L 1.00 J 5.00 200.8 Copper 6.94 ug/L 10 09/12/2014 SV1409052 200.8 Lead 10 09/12/2014 SV1409052 < 2.00 U ug/L 1.00 200.8 Nickel 29.7 ug/L 5.00 10 09/12/2014 1409052 SVHardness 09/12/2014 1409051 2340B 2250 mg/L 2 1 SV

Water

Certificate of Analysis

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-062414 EPA Tag No.: No Tag Prefix-A **Date / Time Sampled: Matrix:** Water

06/24/14 15:05

Workorder: C140711

Lab Number:

C140711-09

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	129		ug/L	20.0	1	09/12/2014	SV	1409051
200.7	Iron	1470		ug/L	100	1	09/12/2014	SV	1409051
200.7	Manganese	4010		ug/L	2.00	1	09/12/2014	SV	1409051
200.7	Zinc	268		ug/L	10.0	1	09/12/2014	SV	1409051
200.8	Arsenic	12.4	J	ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Cadmium	1.10	J	ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Copper	35.2		ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Lead	2.95		ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Nickel	12.0		ug/L	5.00	10	09/12/2014	SV	1409052
2340B	Hardness	1300		mg/L	2	1	09/12/2014	SV	1409051

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR3-062414 **Date / Time Sampled:** 06/24/14 15:20 **Workorder:** C140711

EPA Tag No.: No Tag Prefix-A Matrix: Water Lab Number: C140711-13

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	127		ug/L	20.0	1	09/12/2014	SV	1409051
200.7	Iron	2060		ug/L	100	1	09/12/2014	SV	1409051
200.7	Manganese	4380		ug/L	2.00	1	09/12/2014	SV	1409051
200.7	Zinc	63.6		ug/L	10.0	1	09/12/2014	SV	1409051
200.8	Arsenic	46.4		ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Copper	12.9		ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Nickel	51.8		ug/L	5.00	10	09/12/2014	SV	1409052
2340B	Hardness	1570		mg/L	2	1	09/12/2014	SV	1409051

A

31.1

868

Certificate of Analysis

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR4-062414

EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

06/24/14 15:35

5.00

8

10

5

09/12/2014

09/12/2014

SV

SV

1409052

1409051

Workorder: C140711

Lab Number: C140711-17

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	108	J	ug/L	100	5	09/12/2014	SV	1409051
200.7	Iron	1440		ug/L	500	5	09/12/2014	SV	1409051
200.7	Manganese	10700		ug/L	10.0	5	09/12/2014	SV	1409051
200.7	Zinc	734		ug/L	50.0	5	09/12/2014	SV	1409051
200.8	Arsenic	9.03	J	ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Cadmium	4.51		ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Copper	15.9		ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Lead	2.12		ug/L	1.00	10	09/12/2014	SV	1409052

ug/L

mg/L

Metals (Dissolved) by EPA 200/7000 Series Methods

Nickel

Hardness

200.8

2340B

Station ID: 14BH-DT-PILOT-CHIT-062414 **Date / Time Sampled:** 06/24/14 14:05 **Workorder:** C140711

EPA Tag No.: No Tag Prefix-A Matrix: Water Lab Number: C140711-21 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 50.0	U	ug/L	20.0	1	09/12/2014	SV	1409051
200.7	Iron	2300		ug/L	100	1	09/12/2014	SV	1409051
200.7	Manganese	13200		ug/L	2.00	1	09/12/2014	SV	1409051
200.7	Zinc	35.2		ug/L	10.0	1	09/12/2014	SV	1409051
200.8	Arsenic	23.6		ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Copper	10.8		ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Nickel	29.1		ug/L	5.00	10	09/12/2014	SV	1409052
2340B	Hardness	2130		mg/L	2	1	09/12/2014	SV	1409051

Certificate of Analysis

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFL-062414 EPA Tag No.: No Tag Prefix-A **Date / Time Sampled: Matrix:** Water

06/24/14 13:25

Workorder: C140711

Lab Number: C

C140711-24 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	13700		ug/L	100	5	09/12/2014	SV	1409051
200.7	Iron	155000		ug/L	500	5	09/12/2014	SV	1409051
200.7	Manganese	113000		ug/L	10.0	5	09/12/2014	SV	1409051
200.7	Zinc	64400		ug/L	50.0	5	09/12/2014	SV	1409051
200.8	Arsenic	136		ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Cadmium	284		ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Copper	1060		ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Lead	213		ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Nickel	53.9		ug/L	5.00	10	09/12/2014	SV	1409052
2340B	Hardness	366		mg/L	8	5	09/12/2014	SV	1409051

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NAOH-062414 Date / Time Sampled: 06/24/14 14:20 Workorder: C140711

EPA Tag No.: No Tag Prefix-A

Matrix: Water

Lab Number: C140711-27 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	11100		ug/L	100	5	09/12/2014	SV	1409051
200.7	Iron	17200		ug/L	500	5	09/12/2014	SV	1409051
200.7	Manganese	104000		ug/L	10.0	5	09/12/2014	SV	1409051
200.7	Zinc	59900		ug/L	50.0	5	09/12/2014	SV	1409051
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Cadmium	264		ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Copper	799		ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Lead	135		ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Nickel	51.3		ug/L	5.00	10	09/12/2014	SV	1409052
2340B	Hardness	365		mg/L	8	5	09/12/2014	SV	1409051

Certificate of Analysis

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTE-062414 **EPA Tag No.:** No Tag Prefix-A

Date / Time Sampled: Matrix: Water

06/24/14 15:50

Workorder: C140711

Lab Number: C140711-30

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	89.3		ug/L	20.0	1	09/12/2014	SV	1409051
200.7	Iron	1020		ug/L	100	1	09/12/2014	SV	1409051
200.7	Manganese	2910		ug/L	2.00	1	09/12/2014	SV	1409051
200.7	Zinc	73.8		ug/L	10.0	1	09/12/2014	SV	1409051
200.8	Arsenic	49.9		ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Copper	8.48	J	ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Nickel	53.0		ug/L	5.00	10	09/12/2014	SV	1409052
2340B	Hardness	1520		mg/L	2	1	09/12/2014	SV	1409051

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTI-062414

EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

06/24/14 16:10

Workorder: C Lab Number:

C140711

C140711-34 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	49.9	J	ug/L	20.0	1	09/12/2014	SV	1409051
200.7	Iron	863		ug/L	100	1	09/12/2014	SV	1409051
200.7	Manganese	5490		ug/L	2.00	1	09/12/2014	SV	1409051
200.7	Zinc	281		ug/L	10.0	1	09/12/2014	SV	1409051
200.8	Arsenic	14.3	J	ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Cadmium	1.57	J	ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Copper	13.3		ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Nickel	25.6		ug/L	5.00	10	09/12/2014	SV	1409052
2340B	Hardness	1440		mg/L	2	1	09/12/2014	SV	1409051

Barker-Hughesville_Treatability 2_JUL 2014_A046 **Project Name:**

A-046

Certificate of Analysis

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-062414

No Tag Prefix-A

TDF #:

EPA Tag No.:

Date / Time Sampled: 06/24/14 13:50 Matrix: Water

Workorder: Lab Number:

C140711

C140711-38

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	09/12/2014	SV	1409051
200.7	Iron	26800		ug/L	500	5	09/12/2014	SV	1409051
200.7	Manganese	75900		ug/L	10.0	5	09/12/2014	SV	1409051
200.7	Zinc	6280		ug/L	50.0	5	09/12/2014	SV	1409051
200.8	Arsenic	19.7	J	ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/12/2014	SV	1409052
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/12/2014	SV	1409052
200.8	Nickel	27.1		ug/L	5.00	10	09/12/2014	SV	1409052
2340B	Hardness	903		mg/L	8	5	09/12/2014	SV	1409051

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR1-062414 Date / Time Sampled: 06/24/14 14:35 Workorder: C140711

EPA Tag No.: No Tag Prefix-B

Matrix: Water

Lab Number: C140711-02

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	151	J	ug/L	100	5	09/15/2014	SV	1409017
200.7	Iron	< 1250	U	ug/L	500	5	09/15/2014	SV	1409017
200.7	Manganese	2100		ug/L	10.0	5	09/15/2014	SV	1409017
200.7	Zinc	250		ug/L	50.0	5	09/15/2014	SV	1409017
200.8	Arsenic	20.5		ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Cadmium	1.37	J	ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Copper	17.1		ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Lead	1.23	J	ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/15/2014	SV	1409017

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID:14BH-DT-PILOT-BCR1D-062414Date / Time Sampled:06/24/14 14:40Workorder:C140711EPA Tag No.:No Tag Prefix-BMatrix:WaterLab Number:C140711-06A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	47.4	J	ug/L	20.0	1	09/15/2014	SV	1409017
200.7	Iron	531		ug/L	100	1	09/15/2014	SV	1409017
200.7	Manganese	2870		ug/L	2.00	1	09/15/2014	SV	1409017
200.7	Zinc	236		ug/L	10.0	1	09/15/2014	SV	1409017
200.8	Arsenic	21.1		ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Cadmium	1.76	J	ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Copper	22.0		ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Lead	1.61	J	ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/15/2014	SV	1409017

Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-062414 EPA Tag No.: No Tag Prefix-B **Date / Time Sampled: Matrix:** Water

06/24/14 15:05

Workorder: C140711

Lab Number: C140711-10

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	304		ug/L	20.0	1	09/15/2014	SV	1409017
200.7	Iron	2530		ug/L	100	1	09/15/2014	SV	1409017
200.7	Manganese	4320		ug/L	2.00	1	09/15/2014	SV	1409017
200.7	Zinc	670		ug/L	10.0	1	09/15/2014	SV	1409017
200.8	Arsenic	17.1	J	ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Cadmium	3.01		ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Copper	80.0		ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Lead	10.7		ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Nickel	5.54	J	ug/L	5.00	10	09/15/2014	SV	1409017

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR3-062414 **Date / Time Sampled:** 06/24/14 15:20

EPA Tag No.: No Tag Prefix-B **Matrix:** Water

Workorder: C140711

Lab Number: C140711-14

A

MDL Dilution Method **Parameter** Analyzed $\mathbf{B}\mathbf{v}$ Batch Results Qualifier Units Factor 1 1409017 200.7 Aluminum 133 ug/L 20.0 09/15/2014 SV100 200.7 Iron 1990 ug/L 1 09/15/2014 SV1409017 Manganese 2.00 09/15/2014 1409017 200.7 4490 ug/L 1 SV 200.7 Zinc 10.0 1 09/15/2014 SV1409017 121 ug/L 200.8 Arsenic 5.00 10 09/15/2014 SV1409017 31.0 ug/L 200.8 Cadmium 10 09/15/2014 SV 1409017 < 2.00 U ug/L 1.00 200.8 Copper 39.5 ug/L 5.00 10 09/15/2014 SV1409017 200.8 1.00 SV1409017 Lead 4.07 ug/L 10 09/15/2014 1409017 200.8 Nickel 10 09/15/2014 SV U < 10.0 ug/L 5.00

Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR4-062414 **EPA Tag No.:** No Tag Prefix-B

Date / Time Sampled: Matrix: Water

06/24/14 15:35

Workorder: C140711

Lab Number:

C140711-18

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	169	J	ug/L	100	5	09/15/2014	SV	1409017
200.7	Iron	1490		ug/L	500	5	09/15/2014	SV	1409017
200.7	Manganese	11100		ug/L	10.0	5	09/15/2014	SV	1409017
200.7	Zinc	1700		ug/L	50.0	5	09/15/2014	SV	1409017
200.8	Arsenic	17.0	J	ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Cadmium	13.2		ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Copper	40.2		ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Lead	3.87		ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/15/2014	SV	1409017

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-CHIT-062414

EPA Tag No.:

No Tag Prefix-B

Date / Time Sampled: Matrix: Water

06/24/14 14:05

Workorder: Lab Number:

C140711

C140711-22 A

Dilution MDL Method **Parameter** By Results Qualifier Units Analyzed Batch Factor 200.7 Aluminum 1 09/15/2014 SV1409017 < 50.0 U ug/L 20.0 200.7 ug/L 100 1 SV 1409017 Iron 2700 09/15/2014 200.7 Manganese 13600 ug/L 2.00 1 09/15/2014 SV 1409017 200.7 Zinc 63.0 10.0 1 09/15/2014 SV1409017 ug/L 200.8 Arsenic 18.5 J ug/L 5.00 10 09/15/2014 SV1409017 200.8 Cadmium 10 09/15/2014 SV 1409017 < 2.00 U 1.00 ug/L 200.8 Copper 14.9 ug/L 5.00 10 09/15/2014 SV1409017 200.8 Lead 10 09/15/2014 SV1409017 U < 2.00 1.00 ug/L 200.8 Nickel 10 09/15/2014 SV 1409017 < 10.0 U ug/L 5.00

Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFL-062414 EPA Tag No.: No Tag Prefix-B **Date / Time Sampled: Matrix:** Water

06/24/14 13:25 **Workorder:**

C140711

Lab Number: C140711-25

er:	C140711-25	Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	14000		ug/L	100	5	09/15/2014	SV	1409017
200.7	Iron	156000		ug/L	500	5	09/15/2014	SV	1409017
200.7	Manganese	114000		ug/L	10.0	5	09/15/2014	SV	1409017
200.7	Zinc	63800		ug/L	50.0	5	09/15/2014	SV	1409017
200.8	Arsenic	134		ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Cadmium	283		ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Copper	1130		ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Lead	189		ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Nickel	22.7		ug/L	5.00	10	09/15/2014	SV	1409017

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NAOH-062414 **Date / Time Sampled:** 06/24/14 14:20 **Workorder:** C140711

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140711-28 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	11200		ug/L	100	5	09/15/2014	SV	1409017
200.7	Iron	25000		ug/L	500	5	09/15/2014	SV	1409017
200.7	Manganese	103000		ug/L	10.0	5	09/15/2014	SV	1409017
200.7	Zinc	58700		ug/L	50.0	5	09/15/2014	SV	1409017
200.8	Arsenic	16.2	J	ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Cadmium	259		ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Copper	878		ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Lead	119		ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Nickel	21.6		ug/L	5.00	10	09/15/2014	SV	1409017

Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-POSTE-062414 **Station ID:** EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water

06/24/14 15:50

Workorder: C140711

Lab Number: C140711-31

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	246		ug/L	20.0	1	09/15/2014	SV	1409017
200.7	Iron	2720		ug/L	100	1	09/15/2014	SV	1409017
200.7	Manganese	5030		ug/L	2.00	1	09/15/2014	SV	1409017
200.7	Zinc	815		ug/L	10.0	1	09/15/2014	SV	1409017
200.8	Arsenic	65.3		ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Cadmium	5.75		ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Copper	48.3		ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Lead	15.8		ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Nickel	28.2		ug/L	5.00	10	09/15/2014	SV	1409017

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-POSTI-062414 **Station ID:** EPA Tag No.:

No Tag Prefix-B

Date / Time Sampled: Matrix: Water

06/24/14 16:10

Workorder: Lab Number:

C140711

C140711-35 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	102		ug/L	20.0	1	09/15/2014	SV	1409017
200.7	Iron	1340		ug/L	100	1	09/15/2014	SV	1409017
200.7	Manganese	5520		ug/L	2.00	1	09/15/2014	SV	1409017
200.7	Zinc	626		ug/L	10.0	1	09/15/2014	SV	1409017
200.8	Arsenic	18.2	J	ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Cadmium	4.33		ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Copper	38.5		ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Lead	3.25		ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/15/2014	SV	1409017

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-062414 EPA Tag No.: No Tag Prefix-B Date / Time Sampled: Matrix: Water

06/24/14 13:50

Workorder: C140711

Lab Number: C140711-39

Certificate of Analysis

39 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	09/15/2014	SV	1409017
200.7	Iron	26100		ug/L	500	5	09/15/2014	SV	1409017
200.7	Manganese	74600		ug/L	10.0	5	09/15/2014	SV	1409017
200.7	Zinc	5950		ug/L	50.0	5	09/15/2014	SV	1409017
200.8	Arsenic	19.9	J	ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Cadmium	2.18		ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Copper	8.61	J	ug/L	5.00	10	09/15/2014	SV	1409017
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/15/2014	SV	1409017
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/15/2014	SV	1409017

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1-062414

EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Water

06/24/14 14:35

06/24/14 14:35

Workorder: C140711

Lab Number: C14

Certificate of Analysis

C140711-03 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	83.2	J	mg/L	50.0	100	07/22/2014	NP	1407094
EPA 300.0	Fluoride	67.1		mg/L	10.0	100	07/22/2014	NP	1407094
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/22/2014	NP	1407094
EPA 300.0	Sulfate as SO4	840		mg/L	5.0	100	07/22/2014	NP	1407094
EPA 310.1	Total Alkalinity	1570	J	mg CaCO3 / L	250	50	07/14/2014	KJB	1407052

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1-062414

EPA Tag No.: No Tag Prefix-D

Date / Time Sampled:

Matrix: Water

Workorder: Lab Number:

C140711

C140711-04

A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
EPA 350.1	Ammonia as N	94.2	D	mg/L	3.00	100	07/18/2014	KJB	1407080

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1D-062414

EPA Tag No.:

No Tag Prefix-C

Date / Time Sampled: Matrix: Water

06/24/14 14:40

Workorder:

C140711

Lab Number:

C140711-07 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	79.8	J	mg/L	50.0	100	07/22/2014	NP	1407094
EPA 300.0	Fluoride	59.1		mg/L	10.0	100	07/22/2014	NP	1407094
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/22/2014	NP	1407094
EPA 300.0	Sulfate as SO4	831		mg/L	5.0	100	07/22/2014	NP	1407094
EPA 310.1	Total Alkalinity	1540	J	mg CaCO3 / L	250	50	07/14/2014	KJB	1407052

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1D-062414

EPA Tag No.: No Tag Prefix-D

Date / Time Sampled:
Matrix: Water

06/24/14 14:40

Workorder: C140711

Lab Number: C140/11

Certificate of Analysis

C140711-08

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	85.6	D	mg/L	3.00	100	07/18/2014	KJB	1407080

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-062414

EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Water 06/24/14 15:05

Workorder: C140711

Lab Number: C1

C140711-11 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	137	J	mg/L	50.0	100	07/22/2014	NP	1407094
EPA 300.0	Fluoride	< 20.0	U	mg/L	10.0	100	07/22/2014	NP	1407094
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/22/2014	NP	1407094
EPA 300.0	Sulfate as SO4	824		mg/L	5.0	100	07/22/2014	NP	1407094
EPA 310.1	Total Alkalinity	927	J	mg CaCO3 / L	250	50	07/14/2014	KJB	1407052

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-062414 **Date / Time Sampled:** 06/24/14 15:05 **Workorder:** C140711

EPA Tag No.: No Tag Prefix-D Matrix: Water

Lab Number:

C140711-12

Dilution MDL Method **Parameter** Analyzed By Batch Results Qualifier Units Factor EPA 350.1 Ammonia as N 38.8 D mg/L 3.00 100 07/18/2014 KJB 1407080

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR3-062414 **EPA Tag No.:** No Tag Prefix-C

Date / Time Sampled: Matrix: Water

06/24/14 15:20

06/24/14 15:20

C140711 Workorder: Lab Number:

Certificate of Analysis

C140711-15

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	186	J	mg/L	50.0	100	07/22/2014	NP	1407094
EPA 300.0	Fluoride	< 20.0	U	mg/L	10.0	100	07/22/2014	NP	1407094
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/22/2014	NP	1407094
EPA 300.0	Sulfate as SO4	838		mg/L	5.0	100	07/22/2014	NP	1407094
EPA 310.1	Total Alkalinity	1140	J	mg CaCO3 / L	250	50	07/14/2014	KJB	1407052

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR3-062414

EPA Tag No.: No Tag Prefix-D **Date / Time Sampled:**

Matrix: Water Workorder: Lab Number:

C140711

C140711-16

Α

Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
EPA 350.1	Ammonia as N	80.8	D	mg/L	3.00	100	07/18/2014	KJB	1407080

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4-062414 **Date / Time Sampled:** 06/24/14 15:35 Workorder: C140711

EPA Tag No.: No Tag Prefix-C Matrix:

Water

Lab Number: C140711-19

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units Factor EPA 300.0 Chloride 80.8 J 50.0 100 07/22/2014 NP 1407094 mg/L EPA 300.0 Fluoride 100 07/22/2014 NP 1407094 U 10.0 < 20.0 mg/L EPA 300.0 Nitrate/Nitrite as 100 07/22/2014 NP 1407094 < 500 U 100 mg/L EPA 300.0 Sulfate as SO4 862 mg/L 5.0 100 07/22/2014 NP 1407094 EPA 310.1 **Total Alkalinity** 569 J mg CaCO3 / L 250 50 07/14/2014 KJB 1407052

A-046

Certificate of Analysis

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4-062414 **EPA Tag No.:** No Tag Prefix-D

TDF #:

EPA Tag No.:

Date / Time Sampled: Matrix: Water

Date / Time Sampled:

Water

06/24/14 15:35

Workorder: C140711

Lab Number: C140711-20

Dilution MDL Method Parameter Analyzed By Batch Results **Qualifier** Units Factor EPA 350.1 Ammonia as N 12.1 D mg/L 3.00 100 07/18/2014 KJB 1407080

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-CHIT-062414 No Tag Prefix-C

Matrix:

06/24/14 14:05

Workorder: C140711

Lab Number:

C140711-23

A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	83.7	J	mg/L	50.0	100	07/22/2014	NP	1407094
EPA 300.0	Fluoride	44.2		mg/L	10.0	100	07/22/2014	NP	1407094
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/22/2014	NP	1407094
EPA 300.0	Sulfate as SO4	932		mg/L	5.0	100	07/22/2014	NP	1407094
EPA 310.1	Total Alkalinity	1330	J	mg CaCO3 / L	250	50	07/14/2014	KJB	1407052

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-INFL-062414 **Station ID: Date / Time Sampled:** 06/24/14 13:25 Workorder: C140711

EPA Tag No.: No Tag Prefix-C Matrix: Water

Lab Number:

C140711-26 Α

MDL Dilution Method **Parameter** Results Qualifier Units **Analyzed** $\mathbf{B}\mathbf{v}$ Batch Factor EPA 300.0 Chloride 7.1 J 5.0 10 07/22/2014 NP 1407094 mg/L EPA 300.0 Fluoride 2.8 mg/L 1.0 10 07/22/2014 NP 1407094 EPA 300.0 Nitrate/Nitrite as 10 07/22/2014 NP 1407094 < 50.0 U 10.0 mg/L EPA 300.0 Sulfate as SO4 1280 mg/L 0.5 10 07/22/2014 NP 1407094 1407052 EPA 310.1 Total Alkalinity 50 07/14/2014 KJB < 500 J mg CaCO3 / L 250

< 500

Certificate of Analysis

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-NAOH-062414

EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Water

J

06/24/14 14:20

Workorder: C140711

Lab Number: C140711-29

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	6.9	J	mg/L	5.0	10	07/22/2014	NP	1407094
EPA 300.0	Fluoride	2.5		mg/L	1.0	10	07/22/2014	NP	1407094
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/22/2014	NP	1407094
EPA 300.0	Sulfate as SO4	1050		mg/L	0.5	10	07/22/2014	NP	1407094

Classical Chemistry by EPA/ASTM/APHA Methods

Total Alkalinity

Station ID: 14BH-DT-PILOT-POSTE-062414 EPA Tag No.: No Tag Prefix-C

EPA 310.1

Date / Time Sampled:

06/24/14 15:50 **Workorder:**

250

50

C140711

07/14/2014 KJB

1407052

A

No Tag Prefix-C Matrix: Water Lab Number: C140711-32

mg CaCO3 / L

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	312		mg/L	50.0	100	07/22/2014	NP	1407094
EPA 300.0	Fluoride	57.6		mg/L	10.0	100	07/22/2014	NP	1407094
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/22/2014	NP	1407094
EPA 300.0	Sulfate as SO4	888		mg/L	5.0	100	07/22/2014	NP	1407094
EPA 310.1	Total Alkalinity	1480	J	mg CaCO3 / L	250	50	07/14/2014	KJB	1407052

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTE-062414 **Date / Time Sampled:** 06/24/14 15:50 **Workorder:** C140711

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number: C140711-33

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units Factor EPA 350.1 51.3 D mg/L 3.00 100 07/18/2014 KJB 1407080 Ammonia as N

A

Certificate of Analysis

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTI-062414 EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Water

06/24/14 16:10

Workorder: Lab Number:

C140711

C140711-36

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	90.4	J	mg/L	50.0	100	07/22/2014	NP	1407094
EPA 300.0	Fluoride	< 20.0	U	mg/L	10.0	100	07/22/2014	NP	1407094
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/22/2014	NP	1407094
EPA 300.0	Sulfate as SO4	831		mg/L	5.0	100	07/22/2014	NP	1407094
EPA 310.1	Total Alkalinity	949	J	mg CaCO3 / L	250	50	07/14/2014	KJB	1407052

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTI-062414

EPA Tag No.:

No Tag Prefix-D

Date / Time Sampled: Matrix: Water

06/24/14 16:10

Workorder: Lab Number: C140711

C140711-37

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	51.2	D	mg/L	3.00	100	07/18/2014	KJB	1407080

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-SAPS-062414

EPA Tag No.: No Tag Prefix-C **Date / Time Sampled:** Matrix: Water

06/24/14 13:50

Workorder: Lab Number: C140711

C140711-40

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	11.6	J	mg/L	5.0	10	07/22/2014	NP	1407094
EPA 300.0	Fluoride	1.0	J	mg/L	1.0	10	07/22/2014	NP	1407094
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/22/2014	NP	1407094
EPA 300.0	Sulfate as SO4	1130		mg/L	0.5	10	07/22/2014	NP	1407094
EPA 310.1	Total Alkalinity	< 500	J	mg CaCO3 / L	250	50	07/14/2014	KJB	1407052

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
CPMS-PE DRC-	II								
Batch 1409052 - N	lo Lab Prep Reqd	1	Water					ICPM	S-PE DRC-I
Method Blank (1409	9052-BLK1)	Dilution Factor: 1				Prepa	red: 09/11/14	Analyzed: 09/1	2/14
Nickel	< 0.500	1.00	ug/L						
Copper	< 0.500	1.00	ug/L						
Arsenic	< 0.500	2.00	"						
Cadmium	< 0.100	0.200	"						
Lead	< 0.100	0.200	"						
Method Blank Spik	e (1409052-BS1)	Dilution Factor: 1				Prepa	red: 09/11/14	Analyzed: 09/1	2/14
Nickel	93.2	1.00	ug/L	100		93	85-115		
Copper	94.8	1.00	ug/L	100		95	85-115		
Arsenic	86.8	2.00	"	100		87	85-115		
Cadmium	97.3	0.200	"	100		97	85-115		
Lead	96.0	0.200	"	100		96	85-115		
Duplicate (1409052-	-DUP1)	Dilution Factor: 1	Source	: C140711-09	9	Prepa	red: 09/11/14	Analyzed: 09/1	2/14
Nickel	119	10.0	ug/L		12.0			163	20
Copper	35.2	10.0	"		35.2			0.003	20
Arsenic	12.1	20.0	"		12.4			3	20
Cadmium	1.05	2.00	"		1.10			5	20
Lead	2.95	2.00	"		2.95			0.05	20
Matrix Spike (1409)	052-MS1)	Dilution Factor: 1	Source	: C140711-09	9	Prepar	red: 09/11/14	Analyzed: 09/1	2/14
Nickel	81.8	10.0	ug/L	100	12.0	70	70-130		
Copper	103	10.0	"	100	35.2	67	70-130		
Arsenic	91.6	20.0	"	100	12.4	79	70-130		
Cadmium	95.3	2.00	"	100	1.10	94	70-130		
Lead	96.7	2.00	"	100	2.95	94	70-130		
Matrix Spike (1409)	052-MS2)	Dilution Factor: 1	Source	: C140711-1	3	Prepa	red: 09/11/14	Analyzed: 09/1	2/14
Nickel	84.8	10.0	ug/L	100	51.8	33	70-130		
Copper	93.3	10.0	ug/L	100	12.9	80	70-130		
Arsenic	125	20.0	"	100	46.4	79	70-130		
	92.1	2.00	"	100	< 1.00	92	70-130		
Cadmium									

Project Name: Barker-Hughesville_Treatability 2_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

353.7

Zinc

20.0

$Metals \ (Dissolved) \ by \ EPA \ 200/7000 \ Series \ Methods - Quality \ Control$

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409056 - 140	09052	И	Vater					ICPN	MS-PE DRC-II
Serial Dilution (14090	056-SRD1)	Dilution Factor: 5	Source	: C140711-09	9	Prepa	red: 09/11/14	Analyzed: 09/	12/14
Nickel	138	50.0	ug/L		12.0			168	10
Copper	34.4	50.0	"		35.2			2	10
Arsenic	< 25.0	100	"		12.4				10
Cadmium	< 5.00	10.0	"		1.10				10
Lead	< 5.00	10.0	"		2.95				10
ICPOE - PE Optim	a								
Batch 1409051 - No	Lab Prep Reqd	И	Vater					ICPO	E - PE Optima
Method Blank (14090	951-BLK1)	Dilution Factor: 1				Prepa	red: 09/11/14	Analyzed: 09/	12/14
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	"						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Method Blank Spike	(1409051-BS1)	Dilution Factor: 1				Prepa	red: 09/11/14	Analyzed: 09/	12/14
Aluminum	10360	50.0	ug/L	10100		103	85-115		
Iron	10190	250	"	10100		101	85-115		
Manganese	99.96	5.00	"	100		100	85-115		
Zinc	98.86	20.0	"	100		99	85-115		
Duplicate (1409051-D	OUP1)	Dilution Factor: 1	Source	: C140711-0	9	Prepa	red: 09/11/14	Analyzed: 09/	12/14
Aluminum	126.7	50.0	ug/L		129.3			2	20
Iron	1509	250	ug/L		1467			3	20
Manganese	3917	5.00	"		4010			2	20
Zinc	261.6	20.0	"		268.0			2	20
Matrix Spike (140905	51-MS1)	Dilution Factor: 1	Source	: C140711-09	9	Prepa	red: 09/11/14	Analyzed: 09/	12/14
Aluminum	10640	50.0	ug/L	10100	129.3	104	70-130		
Iron	11640	250	ug/L	10100	1467	101	70-130		
Manganese	3961	5.00	"	100	4010	NR	70-130		

100

268.0

70-130

86

Project Name: Barker-Hughesville_Treatability 2_JUL 2014_A046 **Certificate of Analysis**

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

		Units	Level	Result	%R	Limits	RPD	RPD Limit
Prep Reqd	И	Vater					ICPO	E - PE Optima
S2)	Dilution Factor: 1	Source	: C140711-13	3	Prepai	red: 09/11/14	Analyzed: 09/	12/14
10620	50.0	ug/L	10100	126.9	104	70-130		
12050	250	"	10100	2058	99	70-130		
4396	5.00	"	100	4384	12	70-130		
160.2	20.0	"	100	63.60	97	70-130		
1	И	Vater					ICPO	E - PE Optima
RD1)	Dilution Factor: 5	Source	: C140711-09)	Prepai	red: 09/11/14	Analyzed: 09/	12/14
132.5	250	ug/L		129.3			2	10
1596	1250	"		1467			8	10
3962	25.0	"		4010			1	10
282.2	100	"		268.0			5	10
,	12050 4396 160.2 51 5RD1) 132.5 1596 3962	10620 50.0 12050 250 4396 5.00 160.2 20.0 SRD1) Dilution Factor: 5 132.5 250 1596 1250 3962 25.0	10620 50.0 ug/L 12050 250 " 4396 5.00 " 160.2 20.0 " SRD1) Dilution Factor: 5 Source: 132.5 250 ug/L 1596 1250 " 3962 25.0 "	10620 50.0 ug/L 10100 12050 250 " 10100 4396 5.00 " 100 160.2 20.0 " 100 SI Water SRD1) Dilution Factor: 5 Source: C140711-09 132.5 250 ug/L 1596 1250 " 3962 25.0 "	10620 50.0 ug/L 10100 126.9 12050 250 " 10100 2058 4396 5.00 " 100 4384 160.2 20.0 " 100 63.60 SI Water SRD1) Dilution Factor: 5 Source: C140711-09 132.5 250 ug/L 129.3 1596 1250 " 1467 3962 25.0 " 4010	10620 50.0 ug/L 10100 126.9 104 12050 250 " 10100 2058 99 4396 5.00 " 100 4384 12 160.2 20.0 " 100 63.60 97 SI Water SRD1) Dilution Factor: 5 Source: C140711-09 Preparent 132.5 250 ug/L 129.3 1596 1250 " 1467 3962 25.0 " 4010	10620 50.0 ug/L 10100 126.9 104 70-130 12050 250 " 10100 2058 99 70-130 4396 5.00 " 100 4384 12 70-130 160.2 20.0 " 100 63.60 97 70-130 Water SRD1) Dilution Factor: 5 Source: C140711-09 Prepared: 09/11/14 132.5 250 ug/L 129.3 1596 1250 " 1467 3962 25.0 " 4010	10620 50.0 ug/L 10100 126.9 104 70-130 12050 250 " 10100 2058 99 70-130 4396 5.00 " 100 4384 12 70-130 160.2 20.0 " 100 63.60 97 70-130 160.2 100 100 63.60 97 70-130 160.2 100 100 63.60 97 70-130 160.2 100.2 10

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-	П								
Batch 1409017 - 20	00.2 - TR Metals	J	Vater					ICPN	MS-PE DRC-II
Method Blank (1409	0017-BLK2)	Dilution Factor: 5				Prepa	red: 09/04/14	Analyzed: 09/	15/14
Nickel	< 2.50	5.00	ug/L						
Copper	< 2.50	5.00	ug/L						
Arsenic	< 2.50	10.0	"						
Cadmium	< 0.500	1.00	"						
Lead	< 0.500	1.00	"						
Duplicate (1409017-	DUP2)	Dilution Factor: 1	Source	: C140711-0	2	Prepa	red: 09/04/14	1 Analyzed: 09/	15/14
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	18.15	10.0	ug/L		17.12			6	20
Arsenic	19.74	20.0	"		20.54			4	20
Cadmium	1.016	2.00	"		1.369			30	20
Lead	< 1.00	2.00	"		1.233			30	20
Matrix Spike (14090	017-MS2)	Dilution Factor: 1	Source	: C140711-0	6	Prepa	red: 09/04/14	Analyzed: 09/	15/14
Nickel	184.8	10.0	ug/L	250	< 5.00	74	70-130		
Copper	143.5	10.0	"	150	22.01	81	70-130		
Arsenic	365.6	20.0	"	400	21.06	86	70-130		
Cadmium	101.4	2.00	"	100	1.764	100	70-130		
Lead	461.0	2.00	"	500	1.606	92	70-130		
Matrix Spike (14090	017-MS4)	Dilution Factor: 1	Source	: C140711-1	0	Prepa	red: 09/04/14	Analyzed: 09/	15/14
Nickel	171.7	10.0	ug/L	250	5.541	66	70-130		
Copper	183.1	10.0	"	150	80.00	69	70-130		
Arsenic	291.8	20.0	"	400	17.06	69	70-130		
Cadmium	82.67	2.00	"	100	3.010	80	70-130		
Lead	389.5	2.00	"	500	10.74	76	70-130		
Reference (1409017-	-SRM2)	Dilution Factor: 2				Prepa	red: 09/04/14	4 Analyzed: 09/	15/14
Nickel	486.9	20.0	ug/L	500		97	85-115		
Copper	513.7	20.0	ug/L	500		103	85-115		
Arsenic	999.4	40.0	"	1000		100	85-115		
Cadmium	531.8	4.00	"	500		106	85-115		
Lead	1028	4.00	"	1000		103	85-115		

Project Name: Barker-Hughesville_Treatability 2_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409061 - 14	09017	И	Vater					ICPN	MS-PE DRC-II
Serial Dilution (1409)	061-SRD1)	Dilution Factor: 5	Source	: C140711-0	2	Prepa	red: 09/04/14	4 Analyzed: 09/	15/14
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	< 25.0	50.0	"		17.12				10
Arsenic	< 25.0	100	"		20.54				10
Cadmium	< 5.00	10.0	"		1.369				10
Lead	< 5.00	10.0	"		1.233				10
ICPOE - PE Optim	1a								
Batch 1409017 - 20	0.2 - TR Metals	И	Vater					ICPO	E - PE Optima
Method Blank (14090	017-BLK1)	Dilution Factor: 1				Prepa	red: 09/04/14	4 Analyzed: 09/	15/14
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	"						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Duplicate (1409017-I	OUP1)	Dilution Factor: 5 Source		: C140711-0	2	Prepa	red: 09/04/14	4 Analyzed: 09/	15/14
Aluminum	346.6	250	ug/L		150.9			79	20
Iron	< 500	1250	"		< 500				20
Manganese	2064	25.0	"		2097			2	20
Zinc	229.1	100	"		249.9			9	20
Matrix Spike (14090)	17-MS1)	Dilution Factor: 1	Source	: C140711-0	6	Prepa	red: 09/04/14	4 Analyzed: 09/	15/14
Aluminum	1088	50.0	ug/L	1000	47.36	104	70-130		
Iron	2120	250	"	1500	531.3	106	70-130		
Manganese	3016	5.00	"	100	2871	145	70-130		
Zinc	336.4	20.0	"	100	236.1	100	70-130		
Matrix Spike (14090)	17-MS3)	Dilution Factor: 1	Source	: C140711-1	0	Prepa	red: 09/04/14	4 Analyzed: 09/	15/14
Aluminum	1139	50.0	ug/L	1000	304.4	83	70-130		
Iron	3743	250	"	1500	2527	81	70-130		
Manganese	4328	5.00	"	100	4320	9	70-130		
Zinc	746.2	20.0	"	100	669.6	77	70-130		

Project Name: Barker-Hughesville_Treatability 2_JUL 2014_A046 **Certificate of Analysis**

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409017 - 20	0.2 - TR Metals	Water						ICPO	E - PE Optima
Reference (1409017-	SRM1)	Dilution Factor: 1				Prepa	red: 09/04/14	Analyzed: 09/	15/14
Aluminum	507.0	50.0	ug/L	500		101	85-115		
Iron	493.5	250	"	500		99	85-115		
Manganese	541.6	5.00	"	500		108	85-115		
Zinc	528.5	20.0	"	500		106	85-115		
Batch 1409060 - 14	09017	Water					ICPO	E - PE Optima	
Serial Dilution (1409	060-SRD1)	Dilution Factor: 2	Source	: C140711-0	2	Prepa	red: 09/04/14	Analyzed: 09/	15/14
Aluminum	< 500	1250	ug/L		150.9				10
Iron	< 2500	6250	"		< 500.00				10
Manganese	2108	125	"		2097			0.5	10
Zinc	< 250	500	"		249.9				10

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample NOTE:

TDF #: A-046

${\bf Classical\ Chemistry\ by\ EPA/ASTM/APHA\ Methods-Quality\ Control}$

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ESAT Dionex IC									
Batch 1407094 - No Prep	p Req		Water					I	ESAT Dionex IC
Method Blank (1407094-B	BLK1)	Dilution Factor: 1				Prepar	red & Analyz	red: 07/22/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Method Blank Spike (1407	7094-BS1)	Dilution Factor: 1				Prepar	red & Analyz	red: 07/22/14	
Fluoride	5.4	0.2	mg/L	5.00		107	90-110		
Chloride	25.4	2.0	"	25.0		102	90-110		
Sulfate as SO4	24.5	0.1	"	25.0		98	90-110		
Nitrate/Nitrite as N	21.4	5.0	"	20.0		107	90-110		
Duplicate (1407094-DUP1)		Dilution Factor: 1	Source:	: C140711-0	3	Prepai	red & Analyz	red: 07/22/14	
Fluoride	60.5	20.0	mg/L		67.1			10	20
Chloride	82.9	200	"		83.2			0.4	20
Sulfate as SO4	846	10.0	"		840			0.8	20
Nitrate/Nitrite as N	< 100	500	"		< 100				20
Matrix Spike (1407094-MS	<u>S1)</u>	Dilution Factor: 1	Source:	: C140711-0	3	Prepai	red & Analyz	red: 07/22/14	
Fluoride	578	20.0	mg/L	500	67.1	102	80-120		
Chloride	2560	200	"	2500	83.2	99	80-120		
Sulfate as SO4	3370	10.0	"	2500	840	101	80-120		
Nitrate/Nitrite as N	2130	500	"	2000	< 100	107	80-120		
Matrix Spike (1407094-MS	S2)	Dilution Factor: 1	Source:	: C140711-4	0	Prepar	red & Analyz	red: 07/22/14	
Fluoride	51.4	2.0	mg/L	50.0	1.0	101	80-120		
Chloride	251	20.0	"	250	11.6	96	80-120		
Sulfate as SO4	1350	1.0	"	250	1130	88	80-120		
Nitrate/Nitrite as N	206	50.0	"	200	< 10.0	103	80-120		

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

Certificate of Analysis

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1407122 - 1407	7094		Water					E	SAT Dionex IC
Instrument Blank (140	7122-IBL1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 07/22/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Lachat 8500									
Batch 1407080 - No I	Prep Req		Water						Lachat 8500
Method Blank (140708	0-BLK1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 07/18/14	
Ammonia as N	< 0.0300	0.0500	mg/L						
Method Blank Spike (1	407080-BS1)	Dilution Factor: 1				Prepar	red & Analyz	zed: 07/18/14	
Ammonia as N	0.980	0.0500	mg/L	1.00		98	90-110		
Duplicate (1407080-DU	JP1)	Dilution Factor: 1	Source:	C140708-0	4	Prepai	red & Analyz	zed: 07/18/14	
Ammonia as N	58.1	5.00	mg/L		58.2			0.3	20
Duplicate (1407080-DU	JP2)	Dilution Factor: 1	Source:	C140711-2	0	Prepar	red & Analyz	zed: 07/18/14	
Ammonia as N	12.0	5.00	mg/L		12.1			0.8	20
Matrix Spike (1407080	-MS1)	Dilution Factor: 1	Source:	C140708-0	4	Prepai	red & Analyz	zed: 07/18/14	
Ammonia as N	154	5.00	mg/L	100	58.2	96	90-110		
Matrix Spike (1407080	-MS2)	Dilution Factor: 1	Source:	C140711-2	0	Prepar	red & Analyz	zed: 07/18/14	
Ammonia as N	107	5.00	mg/L	100	12.1	95	90-110		
Reference (1407080-SR	RM1)	Dilution Factor: 5				Prepai	red & Analyz	zed: 07/18/14	
Ammonia as N	4.91	0.250	mg/L	4.80		102	90-110		

Barker-Hughesville_Treatability 2_JUL 2014_A046 **Project Name:**

Certificate of Analysis

TDF #:

A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Mettler AT									
Batch 1407052 - No	Prep Req		Water						Mettler AT
Method Blank (14070	Method Blank (1407052-BLK1) Dilu					Prepai	red & Analyz	zed: 07/14/14	
Total Alkalinity	< 5.00	10.0	mg CaCO3 /						
Duplicate (1407052-DUP1) Dilution Factor			Source:	3	Prepai				
Total Alkalinity	1560	500	mg CaCO3 /		1570			0.7	20
Duplicate (1407052-D	UP2)	Dilution Factor: 5	Source:	C140711-2	6	Prepar	red & Analyz	zed: 07/14/14	
Total Alkalinity	< 250	500	mg CaCO3 /		< 250				20
Reference (1407052-S	RM1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 07/14/14	
Total Alkalinity	72.2	10.0	mg CaCO3 /	73.4		98	85-115		

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

Project Name: Barker-Hughesville_Treatability 2_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 310.1</u> Analysis Name: <u>WC - Alkalinity</u>

Instrument: Work Order: Nu C140711

Analytical Sequence: Total Concentration Units: mg CaCO3 / L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Calibration Blanks (Batch ID)					
		1	2	3	4	1407052-BLK1	NA	
		0.96	1.23					40.00
Total Alkalinity		5	6	7	8	1.10	NA	10.00

Project Name: Barker-Hughesville_Treatability 2_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 350.1</u> Analysis Name: <u>WC - Ammonia</u>

Instrument: <u>Lachat 8500</u> Work Order: Nu <u>C140711</u>

Analytical Sequence: Total Concentration Units: mg/L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Calibration Blanks (Batch ID)					
		1	2	3	4	1407080-BLK1	NA	
		0.00	0.00	0.00				
Ammonia as N		5	6	7	8	0.02	NA	0.05

TDF #: A-046

Project Name:

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 300.0</u> Analysis Name: <u>WC - Anions by Ion Chromatography</u>

Instrument: ESAT Dionex IC Work Order: Nu C140711

Analytical Sequence: 1407122 **Dissolved** Concentration Units: <u>mg/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blanks	Method Blank (Batch II	PQL		
		1	2	3	4	1407094-BLK1	NA	
	0.00	0.00	0.00					
Fluoride		5	6	7	8	0.00	NA	0.20
		4				1407004 DLW1	NT A	
	0.00	1	2	3	4	1407094-BLK1	NA	•
Chloride	0.00	0.00	0.00			0.00	NA	2.00
Chloride		5	6	7	8	-	1.71	
		1	2	3	4	1407094-BLK1	NA	
	0.00	0.00	0.00		•			
Sulfate as SO4		5	6	7	8	0.00	NA	0.10
						1		
		1	2	3	4	1407094-BLK1	NA	
	0.00	0.00	0.00					
Nitrate/Nitrite as N		5	6	7	8	0.00	NA	5.00
]		

TDF #: A-046

Project Name:

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Diss. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140711

Analytical Sequence: 1409054 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	Method Blank (Batch II	PQL		
	0.60	1	2	3	4	1409051-BLK1	NA	
	-0.68	-0.80	-0.20					
Aluminum		5	6	7	8	-3.50	NA	50.00
		1	2	3	4	1409051-BLK1	NA	
	24.36	31.08	50.36		-			1
Iron		5	6	7	8	47.74	NA	250.00
		1	2	3	4	1409051-BLK1	NA	
	0.12	0.04	0.21				27.]
Manganese		5	6	7	8	-0.22	NA	5.00
		1	2	3		1409051-BLK1	NA	
	0.21	-0.02	-0.07		4	Tioyosi BERI		†
Zinc		5	6	7	8	-1.29	NA	20.00

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: <u>ICPMS Diss. Metals</u>

Instrument: ICPMS-PE DRC-II Work Order: Nu C140711

Analytical Sequence: 1409056 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	C	Continuing Cali	bration Blank	Method Blank (Batch I	PQL		
		1	2	3	4	1409052-BLK1	NA	
	0.01	0.00	0.39				27.	
Nickel		5	6	7	8	0.05	NA	1.00
		1	2	3	4	1409052-BLK1	NA	
	0.02	0.02	-0.04					
Copper		5	6	7	8	-0.05	NA	1.00
		1	2	3	4	1409052-BLK1	NA	
	-0.02	-0.03	0.08				27.1	
Arsenic		5	6	7	8	0.01	NA	2.00
		1	2	3	4	1409052-BLK1	NA	
	0.01	0.01	0.01				***]
Cadmium		5	6	7	8	0.00	NA	0.20
		1	2	3	4	1409052-BLK1	NA	
	0.01	0.00	0.00				NA	0.20
Lead		5	6	7	8	-0.03	NA	0.20

TDF #: A-046

Project Name:

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140711

Analytical Sequence: 1409060 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blanks	Metho Blank (Batch I	PQL		
		1	2	3	4	1409017-BLK1	NA	
	-1.24	0.08	-0.04					
Aluminum		5	6	7	8	0.57	NA	50.00
	5.10	1	2	3	4	1409017-BLK1	NA	
I	-5.12	0.31	9.10			42.00	NIA	250.00
Iron		5	6	7	8	43.90	NA	250.0
	0.12	1	2	3	4	1409017-BLK1	NA	
	0.13	0.10	0.20				NIA	5.00
Manganese		5	6	7	8	-0.18	NA	5.00
		1	2	3	4	1409017-BLK1	NA	
	-2.62	-1.41	0.26				27.1	
Zinc		5	6	7	8	-1.95	NA	20.00

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C140711

Analytical Sequence: 1409061 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	Continuing Calibration Blanks				Me Bl (Bat	PQL	
		1	2	3	4	NA	1409017-BLK2	
	0.01	0.02	0.00					
Nickel		5	6	7	8	NA	-0.01	1.00
		1	2	3	4	NA	1409017-BLK2	
	0.00	0.04	0.03					
Copper		5	6	7	8	NA	0.01	1.00
	0.01	1	2	3	4	NA	1409017-BLK2	
	-0.01	-0.01	0.16			37.1	0.15	2.00
Arsenic		5	6	7	8	NA	-0.15	2.00
		1	2	3	4	NA	1409017-BLK2	
	0.00	0.01	0.01					
Cadmium		5	6	7	8	NA	0.00	0.20
		1	2	3	4	NA	1409017-BLK2	
	0.01	-0.01	0.01					
Lead		5	6	7	8	NA	0.01	0.20

Project Name: Barker-Hughesville_Treatability 2_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Mettler AT Method: EPA 310.1 Analysis Name: WC - Alkalinity

Sequence: 1407054 Work Order: C140711 Units: mg CaCO3 / L

Total	Initi	ial (ICV1, I	(CV2)		Continuing Calibration Verification Standards (CCVs)									
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R		
					1			2			3			
				100	101	101.0	100	100	100.0					
Total Alkalinity					4			5			6			
Total Tilkallility														
					7			8			9			

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

Project Name: Barker-Hughesville_Treatability 2_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Lachat 8500 Method: EPA 350.1 Analysis Name: WC - Ammonia

Sequence: 1407091 Work Order: C140711 Units: mg/L

Total	Initi	ial (ICV1, I	CV2)	Continuing Calibration Verification Standards (CCVs)									
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R	
					1			2			3		
				1.00	0.979	97.9	1.00	0.980	98.0	1.00	0.982	98.2	
Ammonia as N					4			5			6		
Ammonia as iv													
					7			8			9		

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ESAT Dionex IC Method: EPA 300.0 Analysis Name: WC - Anions by Ion Chromatography 2013

Sequence: 1407122 Work Order: C140711 Units: mg/L

Dissolved	Initi	ial (ICV1,	ICV2)		Cont	inuing Ca	alibration	Verificati	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	40.0		1069	40.0	42.7	106.8	40.0	42.3	105.8			
Chloride	40.0	42.5	106.3		4			5			6	
					7			8			9	
					1			2			3	
				4.00	4.2	105.0	4.00	4.2	105.0			
Fluoride	4.00	4.3	107.5		4			5			6	
					7			8			9	
					1			2			3	
	20.0	21.1	105.5	20.0	21.2	106.0	20.0	21.0	105.0			
Nitrate/Nitrite as N					4			5			6	
					7			8			9	
					1			2			3	
	100	107	107.0	100	106	106.0	100	106	106.0			
Sulfate as SO4	100	107	107.0		4			5			6	
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Diss. Metals

Sequence: 1409054 Work Order: C140711 Units: ug/L

Dissolved	Initi	ial (ICV1, l	(CV2)		Cont	inuing C	alibration	Verification	on Stand	ards (CC	EVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	10500	12010	102.2	12500	12570	100.6	12500	12560	100.5			
Aluminum	12500	12910	103.3		4			5			6	
					7			8			9	
					1			2			3	
	12500	12070	102.0	12500	12590	100.7	12500	12530	100.2			
Iron	12500	12870	103.0		4			5			6	
11011												
					7			8			9	
					1			2			3	
	1000	1026	102.6	1000	1037	103.7	1000	1030	103.0			
Manganese	1000	1026	102.6		4			5			6	
Trium guirese												
					7			8			9	
					1			2			3	
	2500	2506	102.0	2500	2600	104.0	2500	2570	102.8			
Zinc	2500	2596	103.8		4			5			6	
					7			8			9	
					,						,	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Diss. Metals

Sequence: 1409056 Work Order: C140711 Units: ug/L

Dissolved	Init	ial (ICV1, 1	ICV2)		Cont	inuing Ca	alibration	Verificati	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
			1000	50.0	48.8	97.6	50.0	48.7	97.4			
Arsenic	50.0	51.0	102.0		4			5			6	
					7			8			9	
					1			2			3	
				50.0	49.8	99.6	50.0	49.7	99.4			
Cadmium	50.0	49.2	98.4		4			5			6	
					7			8			9	
					1			2			3	
	50.0	51.5	102.4	50.0	51.1	102.2	50.0	48.5	97.0			
Copper	50.0	51.7	103.4		4			5			6	
					7			8			9	
					1			2			3	
	50.0	40.4	00.0	50.0	49.8	99.6	50.0	50.1	100.2			
Lead	50.0	49.4	98.8		4			5			6	
					7			8			9	
					1			2			3	
	50.0	40.7	07.4	50.0	48.7	97.4	50.0	46.8	93.6			
Nickel	50.0	48.7	97.4		4			5			6	
					7			8			9	
					/			8			9	
				<u> </u>								

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Sequence: 1409060 Work Order: C140711 Units: ug/L

Total Recoverable	Initi	al (ICV1, l	(CV2)		Conti	inuing Ca	alibration	Verificati	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	12660	101.2	12500	12540	100.3	12500	12650	101.2			
Aluminum	12500	12660	101.3		4			5			6	
					7			8			9	
					1			2			3	
	12500	10.00	404.0	12500	12600	100.8	12500	12740	101.9			
Iron	12500	12620	101.0		4			5			6	
					7			8			9	
					1			2			3	
	1000	1028	102.8	1000	1033	103.3	1000	1032	103.2			
Manganese					4			5			6	
					7			8			9	
				2500	1 2552	100.1	2500	2550	100.4		3	
	2500	2558	102.3	2500	2552	102.1	2500	2559	102.4			
Zinc					4			5			6	
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1409061 Work Order: C140711 Units: ug/L

Total Recoverable	Init	ial (ICV1,	ICV2)		Conti	inuing C	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	50.0	50.54	101.1	50.0	49.42	98.8	50.0	47.93	95.9			
Arsenic	50.0	50.54	101.1		4			5			6	
7 Hoenic												
					7			8			9	
					1			2			3	
	50.0	50.97	101.9	50.0	49.49	99.0	50.0	49.74	99.5			
Cadmium	30.0	30.97	101.9		4			5			6	
					7			8			9	
					1			2			3	
	50.0	51.24	102.5	50.0	50.32	100.6	50.0	47.54	95.1			
Copper	30.0	31.21	102.5		4			5			6	
					7			8			9	
					1			2			3	
	50.0	50.85	101.7	50.0	50.59	101.2	50.0	48.62	97.2			
Lead			101.,		4			5			6	
					7			8			9	
					1 1 2 1	02.7	50.0	2	02.5		3	
	50.0	48.29	96.6	50.0	46.34	92.7	50.0	46.25	92.5			
Nickel					4			5			6	
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPMS-PE DRC-II

Analyte		<u>C</u>	heck Sample	Result*	<u>Units</u>	True	<u>%R</u>	PQL
Sequence:	1409056	Analysis:	ICPMS Diss. Metals			· · · · · · · · · · · · · · · · · · ·		
Arsenic			IFA1	0.0	ug/L			2.00
			IFB1	19.5	ug/L	20	98	2.00
Cadmium			IFA1	0.1	ug/L			0.200
			IFB1	20.3	ug/L	20	102	0.200
Copper			IFA1	0.6	ug/L			1.00
			IFB1	17.6	ug/L	20	88	1.00
Lead			IFA1	0.0	ug/L			0.200
			IFB1	0.0	ug/L			0.200
Nickel			IFA1	-0.2	ug/L			1.00
			IFB1	17.3	ug/L	20	87	1.00
*Criteria = 8	0-120%R of T	Γrue Value or +	/- PQL					
See raw data	for complete	analyte list and	results.					
Sequence:	1409061	Analysis:	ICPMS Tot. Rec. Meta	als				
Arsenic			IFA1	0.0	ug/L			2.00

Sequence:	1409061	Analysis:	ICPMS Tot. Rec. N	1etals				
Arsenic			IFA1	0.0	ug/L			2.00
			IFB1	19.1	ug/L	20	95	2.00
Cadmium			IFA1	0.1	ug/L			0.200
			IFB1	19.8	ug/L	20	99	0.200
Copper			IFA1	0.7	ug/L			1.00
			IFB1	18.7	ug/L	20	94	1.00
Lead			IFA1	0.0	ug/L			0.200
			IFB1	0.0	ug/L			0.200
Nickel			IFA1	-0.1	ug/L			1.00
			IFB1	17.5	ug/L	20	88	1.00

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

TDF #:

A-046

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPOE - PE Optima

<u>Analyte</u>	Check Sample	Result*	<u>Units</u>	<u>True</u>	<u>%R</u>	<u>PQL</u>
Sequence: 1409054	Analysis: ICPOE Diss. Metals					
Aluminum	IFA1	60,863.9	ug/L	60,000	101	50.0
	IFB1	59,253.1	ug/L	60,000	99	50.0
Iron	IFA1	235,293.0	ug/L	250,000	94	250
	IFB1	227,940.5	ug/L	250,000	91	250
Manganese	IFA1	-0.3	ug/L			5.00
	IFB1	196.8	ug/L	200	98	5.00
Zinc	IFA1	7.4	ug/L			20.0
	IFB1	295.0	ug/L	300	98	20.0
*Criteria = \$0-120%R of	True Value or +/ POI					

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

Sequence: 14090	60 Analysis: ICPOE To	t. Rec. Metals				
Aluminum	IFA1	60,231.5	ug/L	60,000	100	50.0
	IFB1	60,976.9	ug/L	60,000	102	50.0
Iron	IFA1	234,077.4	ug/L	250,000	94	250
	IFB1	235,125.1	ug/L	250,000	94	250
Manganese	IFA1	-0.4	ug/L			5.00
	IFB1	197.0	ug/L	200	98	5.00
Zinc	IFA1	5.7	ug/L			20.0
	IFB1	285.0	ug/L	300	95	20.0

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

Barker-Hughesville_Treatability 2_JUL 2014_A046 **Project Name:**

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 **Detection Limit (PQL) Standard** ICPMS-PE DRC-II

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1409056

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Arsenic	2.00	1.97	99	ug/L
Cadmium	0.200	0.216	108	ug/L
Copper	1.00	1.01	101	ug/L
Lead	0.200	0.197	99	ug/L
Nickel	1.00	0.960	96	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 **Detection Limit (PQL) Standard**

ICPOE - PE Optima

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1409054

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	96.30	96	ug/L
Iron	100	108.2	108	ug/L
Manganese	10.0	10.12	101	ug/L
Zinc	50.0	53.34	107	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

Project Name: Barker-Hughesville_Treatability 2_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard Lachat 8500

Classical Chemistry by EPA/ASTM/APHA Methods

Sequence: 1407091

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Ammonia as N	0.0250	0.0197	79	mg/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPMS-PE DRC-II

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1409061

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Arsenic	2.00	1.961	98	ug/L
Cadmium	0.200	0.1964	98	ug/L
Copper	1.00	1.066	107	ug/L
Lead	0.200	0.2166	108	ug/L
Nickel	1.00	1.004	100	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1409060

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	94.95	95	ug/L
Iron	100	70.86	71	ug/L
Manganese	10.0	10.16	102	ug/L
Zinc	50.0	50.88	102	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 310.1 **Total Sequence ID#:** 1407054

Instrument ID #: Mett	ler AT Water	r	LSR #: A-046		
Analysis ID	Sample Name	Analysis Date	Analysis Time		
1407052-SRM1	Reference	07/14/14	10:16		
1407052-BLK1	Blank	07/14/14	10:16		
C140711-03	14BH-DT-PILOT-BCR1-06241	07/14/14	10:16		
1407052-DUP1	Duplicate	07/14/14	10:16		
C140711-07	14BH-DT-PILOT-BCR1D-0624	07/14/14	10:16		
C140711-11	14BH-DT-PILOT-BCR2-06241	07/14/14	10:16		
C140711-15	14BH-DT-PILOT-BCR3-06241	07/14/14	10:16		
C140711-19	14BH-DT-PILOT-BCR4-06241	07/14/14	10:16		
C140711-23	14BH-DT-PILOT-CHIT-062414	07/14/14	10:16		
1407054-CCV1	Calibration Check	07/14/14	10:16		
1407054-CCB1	Calibration Blank	07/14/14	10:16		
C140711-26	14BH-DT-PILOT-INFL-062414	07/14/14	10:16		
1407052-DUP2	Duplicate	07/14/14	10:16		
C140711-29	14BH-DT-PILOT-NAOH-0624	07/14/14	10:16		
C140711-32	14BH-DT-PILOT-POSTE-0624	07/14/14	10:16		
C140711-36	14BH-DT-PILOT-POSTI-06241	07/14/14	10:16		
C140711-40	14BH-DT-PILOT-SAPS-062414	07/14/14	10:16		
1407054-CCV2	Calibration Check	ion Check 07/14/14			
1407054-CCB2	Calibration Blank	07/14/14	10:16		

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 350.1 **Total Sequence ID#:** 1407091

Instrument ID #: Lac	chat 8500 Wate	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1407080-BLK1	Blank	07/18/14	13:02
1407080-BS1	Blank Spike	07/18/14	13:02
1407091-CRL1	Instrument RL Check	07/18/14	13:02
1407080-DUP1	Duplicate	07/18/14	13:02
1407080-MS1	Matrix Spike	07/18/14	13:02
1407091-CCV1	Calibration Check	07/18/14	13:02
1407091-CCB1	Calibration Blank	07/18/14	13:02
C140711-04	14BH-DT-PILOT-BCR1-06241	07/18/14	13:02
C140711-08	14BH-DT-PILOT-BCR1D-0624	07/18/14	13:02
C140711-12	14BH-DT-PILOT-BCR2-06241	07/18/14	13:02
C140711-16	14BH-DT-PILOT-BCR3-06241	07/18/14	13:02
C140711-20	14BH-DT-PILOT-BCR4-06241	07/18/14	13:02
1407080-DUP2	Duplicate	07/18/14	13:02
1407091-CCV2	Calibration Check	07/18/14	13:02
1407091-CCB2	Calibration Blank	07/18/14	13:02
1407080-MS2	Matrix Spike	07/18/14	13:02
C140711-33	14BH-DT-PILOT-POSTE-0624	07/18/14	13:02
C140711-37	14BH-DT-PILOT-POSTI-06241	07/18/14	13:02
1407080-SRM1	Reference	07/18/14	13:02
1407091-CCV3	Calibration Check	07/18/14	13:02
1407091-CCB3	Calibration Blank	07/18/14	13:02

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 300.0 **Dissolved Sequence ID#:** 1407122

Instrument ID #: ESAT	Dionex IC Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1407122-ICV1	Initial Cal Check	07/22/14	03:47
1407122-ICB1	Initial Cal Blank	07/22/14	04:06
1407122-IBL1	Instrument Blank	07/22/14	04:43
1407094-BS1	Blank Spike	07/22/14	05:01
1407094-BLK1	Blank	07/22/14	05:20
C140711-03	14BH-DT-PILOT-BCR1-06241	07/22/14	05:38
1407094-DUP1	Duplicate	07/22/14	05:57
1407094-MS1	Matrix Spike	07/22/14	06:16
C140711-07	14BH-DT-PILOT-BCR1D-0624	07/22/14	06:34
C140711-11	14BH-DT-PILOT-BCR2-06241	07/22/14	06:53
C140711-15	14BH-DT-PILOT-BCR3-06241	07/22/14	07:11
1407122-CCV1	Calibration Check	07/22/14	07:30
1407122-CCB1	Calibration Blank	07/22/14	07:49
C140711-19	14BH-DT-PILOT-BCR4-06241	07/22/14	08:07
C140711-23	14BH-DT-PILOT-CHIT-062414	07/22/14	08:26
C140711-26	14BH-DT-PILOT-INFL-062414	07/22/14	08:44
C140711-29	14BH-DT-PILOT-NAOH-0624	07/22/14	09:03
C140711-32	14BH-DT-PILOT-POSTE-0624	07/22/14	09:21
C140711-36	14BH-DT-PILOT-POSTI-06241	07/22/14	09:40
C140711-40	14BH-DT-PILOT-SAPS-06241	07/22/14	09:59
1407094-MS2	Matrix Spike	07/22/14	10:17
1407122-SCV1	Secondary Cal Check	07/22/14	10:54
1407122-CCV2	Calibration Check	07/22/14	11:17
1407122-CCB2	Calibration Blank	07/22/14	11:36

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Dissolved Sequence ID#:** 1409054

Instrument ID #: ICPO	E - PE Optima Water	r	LSR #: A-046			
Analysis ID	Sample Name	Analysis Date	Analysis Time			
1409054-ICV1	Initial Cal Check	09/12/14	08:37			
1409054-SCV1	Secondary Cal Check	09/12/14	08:40			
1409054-ICB1	Initial Cal Blank	09/12/14	08:43			
1409054-CRL1	Instrument RL Check	09/12/14	08:47			
1409054-IFA1	Interference Check A	09/12/14	08:49			
1409054-IFB1	Interference Check B	09/12/14	08:53			
1409051-BLK1	Blank	09/12/14	08:57			
1409051-BS1	Blank Spike	09/12/14	09:00			
C140711-09	14BH-DT-PILOT-BCR2-06241	09/12/14	09:03			
1409051-DUP1	Duplicate	09/12/14	09:08			
1409054-SRD1	Serial Dilution	09/12/14	09:12			
1409051-MS1	Matrix Spike	09/12/14	09:15			
C140711-13	14BH-DT-PILOT-BCR3-06241	09/12/14	09:19			
1409051-MS2	Matrix Spike	09/12/14	09:24			
C140711-01	14BH-DT-PILOT-BCR1-06241	09/12/14	09:28			
1409054-CCV1	Calibration Check	09/12/14	09:34			
1409054-CCB1	Calibration Blank	09/12/14	09:37			
C140711-05	14BH-DT-PILOT-BCR1D-0624	09/12/14	09:40			
C140711-17	14BH-DT-PILOT-BCR4-06241	09/12/14	09:44			
C140711-21	14BH-DT-PILOT-CHIT-062414	09/12/14	09:47			
C140711-24	14BH-DT-PILOT-INFL-062414	09/12/14	09:51			
C140711-27	14BH-DT-PILOT-NAOH-0624	09/12/14	09:54			
C140711-30	14BH-DT-PILOT-POSTE-0624	09/12/14	09:58			
C140711-34	14BH-DT-PILOT-POSTI-06241	09/12/14	10:02			
C140711-38	14BH-DT-PILOT-SAPS-06241	09/12/14	10:06			
1409054-CCV2	Calibration Check	09/12/14	10:12			
1409054-CCB2	Calibration Blank	09/12/14	10:15			

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Dissolved Sequence ID#:** 1409056

Instrument ID #: ICPM	S-PE DRC-II Water	r	LSR #: A-046			
Analysis ID	Sample Name	Analysis Date	Analysis Time			
1409056-ICV1	Initial Cal Check	09/12/14	09:41			
1409056-SCV1	Secondary Cal Check	09/12/14	09:44			
1409056-ICB1	Initial Cal Blank	09/12/14	09:48			
1409056-CRL1	Instrument RL Check	09/12/14	09:51			
1409056-IFA1	Interference Check A	09/12/14	09:54			
1409056-IFB1	Interference Check B	09/12/14	09:58			
1409052-BLK1	Blank	09/12/14	10:01			
1409052-BS1	Blank Spike	09/12/14	10:04			
C140711-09	14BH-DT-PILOT-BCR2-06241	09/12/14	10:07			
1409052-DUP1	Duplicate	09/12/14	10:10			
1409056-SRD1	Serial Dilution	09/12/14	10:13			
1409052-MS1	Matrix Spike	09/12/14	10:16			
C140711-13	14BH-DT-PILOT-BCR3-06241	09/12/14	10:19			
1409052-MS2	Matrix Spike	09/12/14	10:22			
C140711-01	14BH-DT-PILOT-BCR1-06241	09/12/14	10:25			
1409056-CCV1	Calibration Check	09/12/14	10:31			
1409056-CCB1	Calibration Blank	09/12/14	10:35			
C140711-05	14BH-DT-PILOT-BCR1D-0624	09/12/14	10:38			
C140711-17	14BH-DT-PILOT-BCR4-06241	09/12/14	10:41			
C140711-21	14BH-DT-PILOT-CHIT-062414	09/12/14	10:44			
C140711-24	14BH-DT-PILOT-INFL-062414	09/12/14	10:47			
C140711-27	14BH-DT-PILOT-NAOH-0624	09/12/14	10:50			
C140711-30	14BH-DT-PILOT-POSTE-0624	09/12/14	10:53			
C140711-34	14BH-DT-PILOT-POSTI-06241	09/12/14	10:56			
C140711-38	14BH-DT-PILOT-SAPS-06241	09/12/14	10:59			
1409056-CCV2	Calibration Check	09/12/14	11:22			
1409056-CCB2	Calibration Blank	09/12/14	11:26			

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Total Recoverable Sequence ID#:** 1409060

Instrument ID #: ICPOI	E - PE Optima Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1409060-ICV1	Initial Cal Check	09/15/14	08:28
1409060-SCV1	Secondary Cal Check	09/15/14	08:31
1409060-ICB1	Initial Cal Blank	09/15/14	08:34
1409060-CRL1	Instrument RL Check	09/15/14	08:37
1409060-IFA1	Interference Check A	09/15/14	08:40
1409060-IFB1	Interference Check B	09/15/14	08:44
1409017-BLK1	Blank	09/15/14	08:48
1409017-SRM1	Reference	09/15/14	08:51
C140711-02	14BH-DT-PILOT-BCR1-06241	09/15/14	08:54
1409017-DUP1	Duplicate	09/15/14	08:57
1409060-SRD1	Serial Dilution	09/15/14	09:00
C140711-06	14BH-DT-PILOT-BCR1D-0624	09/15/14	09:03
1409017-MS1	Matrix Spike	09/15/14	09:08
C140711-10	14BH-DT-PILOT-BCR2-06241	09/15/14	09:12
1409017-MS3	Matrix Spike	09/15/14	09:16
1409060-CCV1	Calibration Check	09/15/14	09:23
1409060-CCB1	Calibration Blank	09/15/14	09:26
C140711-14	14BH-DT-PILOT-BCR3-06241	09/15/14	09:30
C140711-18	14BH-DT-PILOT-BCR4-06241	09/15/14	09:34
C140711-22	14BH-DT-PILOT-CHIT-062414	09/15/14	09:37
C140711-25	14BH-DT-PILOT-INFL-062414	09/15/14	09:41
C140711-28	14BH-DT-PILOT-NAOH-0624	09/15/14	09:44
C140711-31	14BH-DT-PILOT-POSTE-0624	09/15/14	09:47
C140711-35	14BH-DT-PILOT-POSTI-06241	09/15/14	09:51
C140711-39	14BH-DT-PILOT-SAPS-062414	09/15/14	09:55
1409060-CCV2	Calibration Check	09/15/14	10:02
1409060-CCB2	Calibration Blank	09/15/14	10:05

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Total Recoverable Sequence ID#:** 1409061

Instrument ID #: ICPM	S-PE DRC-II Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1409061-ICV1	Initial Cal Check	09/15/14	11:22
1409061-SCV1	Secondary Cal Check	09/15/14	11:26
1409061-ICB1	Initial Cal Blank	09/15/14	11:29
1409061-CRL1	Instrument RL Check	09/15/14	11:32
1409061-IFA1	Interference Check A	09/15/14	11:36
1409061-IFB1	Interference Check B	09/15/14	11:39
1409017-BLK2	Blank	09/15/14	11:42
1409017-SRM2	Reference	09/15/14	11:45
C140711-02	14BH-DT-PILOT-BCR1-06241	09/15/14	11:48
1409017-DUP2	Duplicate	09/15/14	11:51
1409061-SRD1	Serial Dilution	09/15/14	11:54
C140711-06	14BH-DT-PILOT-BCR1D-0624	09/15/14	11:57
1409017-MS2	Matrix Spike	09/15/14	12:00
C140711-10	14BH-DT-PILOT-BCR2-06241	09/15/14	12:03
1409017-MS4	Matrix Spike	09/15/14	12:06
1409061-CCV1	Calibration Check	09/15/14	12:13
1409061-CCB1	Calibration Blank	09/15/14	12:16
C140711-14	14BH-DT-PILOT-BCR3-06241	09/15/14	12:19
C140711-18	14BH-DT-PILOT-BCR4-06241	09/15/14	12:22
C140711-22	14BH-DT-PILOT-CHIT-062414	09/15/14	12:25
C140711-25	14BH-DT-PILOT-INFL-062414	09/15/14	12:28
C140711-28	14BH-DT-PILOT-NAOH-0624	09/15/14	12:31
C140711-31	14BH-DT-PILOT-POSTE-0624	09/15/14	12:34
C140711-35	14BH-DT-PILOT-POSTI-06241	09/15/14	12:37
C140711-39	14BH-DT-PILOT-SAPS-06241	09/15/14	12:41
1409061-CCV2	Calibration Check	09/15/14	12:47
1409061-CCB2	Calibration Blank	09/15/14	12:50

CHAIN OF CUSTODY RECORD

						T						 										
CDM Smith			Danny	T Pilot Test									An	alysis	i							
NOTES: Limited sample volumes due to tr Contact: Angela Franden, CDM Smith (406	reatability testing 6)441-1400					200.7 or 200.8	AL), 200.7 or 200.8	lfate, chloride,	onia								Other Instructions		Other Instructions and Notes			
SAMPLE NUMBER	DATE	TIME	MATRIX	Preservative	Type & No. of Containers	Total Metals (TAL), 2	Dissolved Metals (TAL), 200.7 or 200.8	Alkalinity, Anions (sulfate, fluoride)	Nitrate+Nitrite, Ammonia													
14BH-DT-PILOT-INFL-062414	6/24/14	13:25	aqueous		3, 125 mL poly	х	Х	Х														
14BH-DT-PILOT-SAPS-062414	6/24/14	13:50	aqueous		3, 125 mL poly	Х	Х	Х														
14BH-DT-PILOT-CHIT-062414	6/24/14	14:05	aqueous		3, 125 mL poly	Х	Х	Х														
14BH-DT-PILOT-NAOH-062414	6/24/14	14:20	aqueous		3, 125 mL poly	Х	Х	Х														
14BH-DT-PILOT-BCR1-062414	6/24/14	14:35	aqueous	HNO3	4, 125 mL poly	Х	Х	Х	Х													
14BH-DT-PILOT-BCR1D-062414	6/24/14	14:40	aqueous	(metals), H2SO4	4, 125 mL poly	Х	х	Х	х													
14BH-DT-PILOT-BCR2-062414	6/24/14	15:05	aqueous	(nutrients), cool	4, 125 mL poly	Х	Х	Х	Х													
14BH-DT-PILOT-BCR3-062414	6/24/14	15:20	aqueous		4, 125 mL poly	Х	Х	Х	Х													TAL metals = Al, As, Ba, Be, Cd, Ca,
14BH-DT-PILOT-BCR4-062414	6/24/14	15:35	aqueous		4, 125 mL poly	Х	х	Х	Х													Cr, Co, Cu, Fe, Pb, Mg, Mn, Ni, K, Ag,
14BH-DT-PILOT-POSTE-062414	6/24/14	15:50	aqueous		4, 125 mL poly	Х	Х	Х	Х													Na, Tl, Zn.
14BH-DT-PILOT-POSTI-062414	6/24/14	16:10	aqueous		4, 125 mL poly	Х	Х	Х	Х													
							-						_			_			-		_	
Relinquished by: (Signature)	Date/Time		Received for	r Laboratory by:	(Signature)	l																
Received by: (Signature) Helsey Bartling	Date/Time		Airbill No.(s)					Carri	ier Na	ıme:	FedEx			L	ab: ∪	SEPA L	ab Regi	on 8				

0140711

ESAT Technical Direction Form

Contract No. EPW13028 EPA Region 8

Site ID: TDF ID:		Date Issued: Date Updated:	5/29/2014		Date Closed By:	
Details: 1	Barker-Hughesville Treatability Studies In Contractor shall analyze severa Superfund site as indicated in the Aduring the 2014 field season starting associated with this project averaging Anton/Erin Louden of CDM Smith Samples designated as influent samples.	I water samples a nalytical Informa g in mid-June tho ag approximately n. ples (-INF) are ex	tion Section. The ugh early October 10 samples per an pected to have hig	e samples will be 2014. There v event. The sar gh metal concen	e sent to the ESAT Ri will be 9 sampling ever mples will be collected atrations and should b	8 Lab nts I by Nick e
	ESAT should return the coolers to CDM Smith/Lauren Helland 50 West 14th Street, Suite 200 Helena, MT 59601 406-441-1435 FedEx # 1323-6393-5		, -	ttons may be re	ported from the 200.	analyses.
	TO02/Subtask 02b: Inorganic Che Site RPM: Roger Hoogerheide	emistry				
MATRIX	Information: □ Soils □ Vegetation □ Biot	a				
	EM TDS □ DOC ☑ Alk ☑ Chlor llyze for Ammonia and report NO2					
METALS ☑ Dissolv 200.7: □ ☑ 200.8: □	red ☑ Total Recoverable □ Total Ag ☑ Al □ As □ Ba □ B Mn □ Mo □ Na □ Ni □ P Ag □ Al ☑ As □ Ba □ B Se □ Th □ Tl □ U □ V	I □ Hardness (Ce □ B □ Ca b □ Sb □ Se ce ☑ Cd □ Co	Calc) Cd Co C CSr CTi C] Cr 🗆 Cu 🗹] Tl 🗆 V 🗹] Mg 🗆 Mo 🗹	Fe □ K □ Mg Zn □ SiO2 Ni ☑ Pb □ Sb	
FIBERS	I TEM	·				
Deliverab ID	les Describ	tion		Due Date	Submission Date	

1 Provide final deliverable package to Task Monitor no later than 30 days after delivery of samples.

5/29/14

ANALYTICAL SUMMARY REPORT

July 23, 2014

CDM Federal Programs 555 17th St Ste 1100 Denver, CO 80202

Work Order: H14070167 Quote ID: H823 - Baker-Hughsville Superfund Site

Project Name: Barker Hughsville - Danny T

Energy Laboratories Inc Helena MT received the following 11 samples for CDM Federal Programs on 7/9/2014 for analysis.

Lab ID	Client Sample ID	Collect Date R	Receive Date	Matrix	Test
H14070167-001	148H-DT-PILOT-INFL- 070814	07/08/14 8:45	07/09/14	Aqueous	Acidity, Total as CaCO3 Phosphorus, Orthophosphate as P
H14070167-002	148H-DT-PILOT-INFLD- 070814	07/08/14 9:05	07/09/14	Aqueous	Same As Above
H14070167-003	148H-DT-PILOT-SAPS- 070814	07/08/14 9:15	07/09/14	Aqueous	Same As Above
H14070167-004	148H-DT-PILOT-CHIT- 070814	07/08/14 9:25	07/09/14	Aqueous	Same As Above
H14070167-005	148H-DT-PILOT-NAOH- 070814	07/08/14 9:40	07/09/14	Aqueous	Same As Above
H14070167-006	148H-DT-PILOT-BCR1- 070814	07/08/14 9:55	07/09/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Phosphorus, Orthophosphate as P Sulfide, Iodine Titrimetric
H14070167-007	148H-DT-PILOT-BCR2- 070814	07/08/14 10:10	0 07/09/14	Aqueous	Same As Above
H14070167-008	148H-DT-PILOT-BCR3- 070814	07/08/14 10:30	0 07/09/14	Aqueous	Same As Above
H14070167-009	148H-DT-PILOT-BCR4- 070814	07/08/14 10:50	0 07/09/14	Aqueous	Same As Above
H14070167-010	148H-DT-PILOT-POSTI- 070814	07/08/14 11:05	5 07/09/14	Aqueous	Same As Above
H14070167-011	148H-DT-PILOT-POSTE- 070814	07/08/14 11:25	5 07/09/14	Aqueous	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Report Date: 07/23/14

CLIENT: CDM Federal Programs

Project: Barker Hughsville - Danny T

Work Order: H14070167 CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Prepared by Helena, MT Branch

Client: CDM Federal Programs Project: Barker Hughsville - Danny T

Report Date: 07/23/14 **Collection Date:** 07/08/14 08:45

Lab ID: H14070167-001

Date Received: 07/09/14

Client Sample ID: 148H-DT-PILOT-INFL-070814

Matrix: AQUEOUS

	MCL/								
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By	
INORGANICS Acidity, Total as CaCO3	700	mg/L	D	4.0		1	A2310 B	07/14/14 11:50/SRW	
NUTRIENTS Phosphorus, Orthophosphate as P	ND	mg/L	DH	0.05		50	E365.1	07/10/14 09:47/cmm	

Report RL - Analyte reporting limit. **Definitions:**

QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Report Date: 07/23/14 **Collection Date:** 07/08/14 09:05

Project: Barker Hughsville - Danny T **Lab ID:** H14070167-002

Date Received: 07/09/14

Client Sample ID: 148H-DT-PILOT-INFLD-070814

Matrix: AQUEOUS

	MCL/								
Analyses	Result	Units	Qual	RL	QCL DF	Method	Analysis Date / By		
INORGANICS									
Acidity, Total as CaCO3	720	mg/L	D	4.0	1	A2310 B	07/14/14 11:54/SRW		
NUTRIENTS									
Phosphorus, Orthophosphate as P	0.20	mg/L	DH	0.01	10	E365.1	07/10/14 09:50/cmm		

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Barker Hughsville - Danny T

Report Date: 07/23/14 **Collection Date:** 07/08/14 09:15

Lab ID: H14070167-003

Date Received: 07/09/14

Client Sample ID: 148H-DT-PILOT-SAPS-070814

Matrix: AQUEOUS

	MCL/								
Analyses	Result	Units	Qual	RL	QCL DF	Method	Analysis Date / By		
INORGANICS Acidity, Total as CaCO3	260	mg/L	D	4.0	1	A2310 B	07/14/14 11:57/SRW		
Notary, Total as odooo	200	mg/ L	D	7.0		71201015	07/14/14 11.07/01		
NUTRIENTS									
Phosphorus, Orthophosphate as P	0.166	mg/L	Н	0.005	2	E365.1	07/10/14 09:51/cmm		

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Barker Hughsville - Danny T

Report Date: 07/23/14 **Collection Date:** 07/08/14 09:25

Lab ID: H14070167-004

Date Received: 07/09/14

Client Sample ID: 148H-DT-PILOT-CHIT-070814

Matrix: AQUEOUS

	MCL/								
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By	
INORGANICS									
Acidity, Total as CaCO3	ND	mg/L	D	4.0		1	A2310 B	07/14/14 12:00/SRW	
NUTRIENTS									
Phosphorus, Orthophosphate as P	3.97	mg/L	DH	0.05		50	E365.1	07/10/14 09:52/cmm	

Report RL - Definitions: OCI

RL - Analyte reporting limit. QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Client Sample ID: 148H-DT-PILOT-NAOH-070814

Report Date: 07/23/14 **Collection Date:** 07/08/14 09:40

Project: Barker Hughsville - Danny T

Date Received: 07/09/14

Lab ID: H14070167-005

Phosphorus, Orthophosphate as P

Matrix: AQUEOUS

07/10/14 09:53/cmm

Analyses	Result	Units	Qual	RL	QCL DF	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	340	mg/L	D	4.0	1	A2310 B	07/14/14 12:03/SRW
NUTRIENTS							

0.005

2

E365.1

0.036

mg/L

Report Definitions:

RL - Analyte reporting limit. QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Report Date: 07/23/14

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Barker Hughsville - Danny T **Collection Date:** 07/08/14 09:55

Lab ID: H14070167-006 **Date Received:** 07/09/14

Client Sample ID: 148H-DT-PILOT-BCR1-070814 Matrix: AQUEOUS

	MCL/								
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By	
INORGANICS									
Acidity, Total as CaCO3	ND	mg/L	D	4.0		1	A2310 B	07/14/14 12:08/SRW	
Sulfide	12	mg/L		1		1	A4500-S F	07/14/14 12:20/eli-b2	
AGGREGATE ORGANICS									
Oxygen Demand, Biochemical (BOD)	580	mg/L		400		1	A5210 B	07/09/14 17:14/SRW	
NUTRIENTS									
Phosphorus, Orthophosphate as P	37.7	mg/L	DH	0.1		100	E365.1	07/10/14 10:06/cmm	

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Rarker Hugheville Danny T.

Report Date: 07/23/14 **Collection Date:** 07/08/14 10:10

Project: Barker Hughsville - Danny T

Date Received: 07/09/14

Lab ID: H14070167-007

Matrix: AQUEOUS

Client Sample ID: 148H-DT-PILOT-BCR2-070814

	MCL/								
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By	
INORGANICS									
Acidity, Total as CaCO3	ND	mg/L	D	4.0		1	A2310 B	07/14/14 12:13/SRW	
Sulfide	30	mg/L		1		1	A4500-S F	07/14/14 12:20/eli-b2	
AGGREGATE ORGANICS									
Oxygen Demand, Biochemical (BOD) No BOD dilution depleted greater than 2.0 mg/L DO.	<363	mg/L		400		1	A5210 B	07/09/14 17:17/SRW	
NUTRIENTS									
Phosphorus, Orthophosphate as P	24.0	mg/L	D	0.05		50	E365.1	07/10/14 10:07/cmm	

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Report Date: 07/23/14 **Collection Date:** 07/08/14 10:30

Project: Barker Hughsville - Danny T

Date Received: 07/09/14

Lab ID: H14070167-008 **Client Sample ID:** 148H-DT-PILOT-BCR3-070814

Matrix: AQUEOUS

	MCL/								
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By	
INORGANICS									
Acidity, Total as CaCO3	ND	mg/L	D	4.0		1	A2310 B	07/14/14 12:29/SRW	
Sulfide	41	mg/L		1		1	A4500-S F	07/14/14 12:20/eli-b2	
AGGREGATE ORGANICS									
Oxygen Demand, Biochemical (BOD)	1400	mg/L		400		1	A5210 B	07/09/14 17:18/SRW	
NUTRIENTS									
Phosphorus, Orthophosphate as P	19.1	mg/L	D	0.05		50	E365.1	07/10/14 10:08/cmm	

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs Report Date: 07/23/14

Project: Barker Hughsville - Danny T **Collection Date:** 07/08/14 10:50

Lab ID: H14070167-009 **Date Received:** 07/09/14

Client Sample ID: 148H-DT-PILOT-BCR4-070814 Matrix: AQUEOUS

	MCL/								
Analyses	Result	Units	Qual	RL	QCL D	F Method	Analysis Date / By		
INORGANICS									
Acidity, Total as CaCO3	ND	mg/L	D	4.0	1	A2310 B	07/14/14 12:35/SRW		
Sulfide	5	mg/L		1	1	A4500-S F	07/14/14 12:20/eli-b2		
AGGREGATE ORGANICS									
Oxygen Demand, Biochemical (BOD) No BOD dilution depleted greater than 2.0 mg/L DO	<363	mg/L		400	1	A5210 B	07/09/14 17:21/SRW		
NUTRIENTS									
Phosphorus, Orthophosphate as P	13.6	mg/L	DH	0.05	50	E365.1	07/10/14 13:42/cmm		

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Lab ID: H14070167-010

Report Date: 07/23/14 **Collection Date:** 07/08/14 11:05

Project: Barker Hughsville - Danny T

Date Received: 07/09/14

Client Sample ID: 148H-DT-PILOT-POSTI-070814

Matrix: AQUEOUS

	MCL/								
Analyses	Result	Units	Qual	RL	QCL 1	DF	Method	Analysis Date / By	
INORGANICS									
Acidity, Total as CaCO3	ND	mg/L	D	4.0	•	1	A2310 B	07/14/14 12:41/SRW	
Sulfide	27	mg/L		1	-	1	A4500-S F	07/14/14 12:20/eli-b2	
AGGREGATE ORGANICS									
Oxygen Demand, Biochemical (BOD)	540	mg/L		400	-	1	A5210 B	07/09/14 17:24/SRW	
NUTRIENTS									
Phosphorus, Orthophosphate as P	20.6	mg/L	D	0.05	Ę	50	E365.1	07/10/14 10:09/cmm	

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Report Date: 07/23/14

Project: Barker Hughsville - Danny T

Collection Date: 07/08/14 11:25

Lab ID: H14070167-011

Date Received: 07/09/14

Matrix: AQUEOUS

Client Sample ID: 148H-DT-PILOT-POSTE-070814

MCL/ QCL DF Method Analysis Date / By

1 A2310 B 07/14/14 12:44/SRW
1 A4500-S F 07/14/14 12:20/eli-b2

AGGREGATE ORGANICS

Oxygen Demand, Biochemical (BOD) 460 mg/L 400 1 A5210 B 07/09/14 17:26/SRW

Qual

D

RL

4.0

1

Units

mg/L

mg/L

Result

ND

8

NUTRIENTS

Analyses

Sulfide

INORGANICS

Acidity, Total as CaCO3

Phosphorus, Orthophosphate as P 5.36 mg/L D 0.05 50 E365.1 07/10/14 10:03/cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Analyte	Count Result Units	RL %REC Low Limit High Limit	RPD RPDLimit Qual
Method: A2310 B			Batch: H140714
Lab ID: H14070167-001ADU	JP Sample Duplicate	Run: PH_140714A	07/14/14 11:51
Acidity, Total as CaCO3	720 mg/L	4.0	2.1 20
Lab ID: H14070167-011ADL	JP Sample Duplicate	Run: PH_140714A	07/14/14 12:49
Acidity, Total as CaCO3	ND mg/L	4.0	20
Lab ID: LCS1407140000	Laboratory Control Sample	Run: PH_140714A	07/14/14 11:48
Acidity, Total as CaCO3	940 mg/L	4.0 96 90 110	
Lab ID: MBLK1407140000	Method Blank	Run: PH_140714A	07/14/14 11:45
Acidity, Total as CaCO3	3 mg/L		

Prepared by Helena, MT Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-S F									Batch: B_	R227086
Lab ID:	MB-R227086	Me	ethod Blank				Run: SUB-	3227086		07/14/	14 12:20
Sulfide			ND	mg/L	0.5						
Lab ID:	LCS-R227086	Lal	boratory Cor	ntrol Sample			Run: SUB-	3227086		07/14/	14 12:20
Sulfide			24.4	mg/L	1.0	95	70	130			
Lab ID:	H14070167-006C	Sa	mple Matrix	Spike			Run: SUB-	3227086		07/14/	14 12:20
Sulfide			37.4	mg/L	1.0	99	80	120			
Lab ID:	H14070167-006C	Sa	mple Matrix	Spike Duplicate			Run: SUB-I	3227086		07/14/	14 12:20
Sulfide			37.1	mg/L	1.0	98	80	120	0.6	20	

Prepared by Helena, MT Branch

Analyte	Cou	ınt Result	Units	RL	%REC Lo	w Limit	High Limit	RPD RPDLimit	Qual
Method:	A5210 B							Batch: 140709_1	_BOD5-W
Lab ID:	Dil-H201_140709	Dilution Water	Blank		Ru	n: MISC	WC_140709A	07/09	9/14 14:51
, ,	emand, Biochemical (BOD) ater blank exceeds 0.2 mg/L.	0.35	mg/L	2.0		0	0.2		
Lab ID:	GGA1_140709	Laboratory Cor	ntrol Sample		Ru	n: MISC	WC_140709A	07/09	9/14 14:55
Oxygen D	emand, Biochemical (BOD)	180	mg/L	60	93	85	115		
Lab ID:	H14070167-010ADUP	Sample Duplic	ate		Ru	n: MISC	WC_140709A	07/09	9/14 17:23
Oxygen D	emand, Biochemical (BOD)	ND	mg/L	1500		90	110		
No BOD d	dilution depleted greater than 2.0 r	ma/L DO.							

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:07/23/14Project:Barker Hughsville - Danny TWork Order:H14070167

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E365.1							Analytic	cal Run	: FIA202-HE_	_140710A
Lab ID:	ICV	Init	tial Calibrati	on Verification	Standard					07/10/	/14 09:41
Phosphoru	s, Orthophosphate as I	Р	0.246	mg/L	0.0050	98	90	110			
Lab ID:	ICB	Init	tial Calibrati	on Blank, Instr	ument Blank					07/10/	/14 09:42
Phosphoru	s, Orthophosphate as I	Р	-0.00108	mg/L	0.0050		0	0			
Lab ID:	CCV	Co	ntinuing Ca	libration Verific	ation Standar	d				07/10/	/14 09:45
Phosphoru	s, Orthophosphate as I	Р	0.0979	mg/L	0.0050	98	90	110			
Lab ID:	CCV	Co	ntinuing Ca	libration Verific	ation Standar	d				07/10/	/14 10:02
Phosphoru	s, Orthophosphate as I	Р	0.110	mg/L	0.0050	110	90	110			
Method:	E365.1									Batch	n: R98735
Lab ID:	LFB	Lal	boratory Fo	tified Blank			Run: FIA20	2-HE_140710A		07/10/	/14 09:43
Phosphoru	s, Orthophosphate as I	Р	0.187	mg/L	0.0050	93	90	110			
Lab ID:	H14070167-001BMS	Sa	mple Matrix	Spike			Run: FIA20	2-HE_140710A		07/10/	/14 09:48
Phosphoru	s, Orthophosphate as I	Р	3.97	mg/L	0.050	40	90	110			S
Lab ID:	H14070167-001BMS	D Sa	mple Matrix	Spike Duplica	te		Run: FIA20	2-HE_140710A		07/10/	/14 09:49
Phosphoru	s, Orthophosphate as I	Р	4.07	mg/L	0.050	41	90	110	2.4	20	S
Lab ID:	H14070167-002BMS	Sa	mple Matrix	Spike			Run: FIA20	2-HE_140710A		07/10/	/14 09:54
Phosphoru	s, Orthophosphate as I	Р	1.81	mg/L	0.010	80	90	110			S
Lab ID:	H14070167-002BMS	D Sa	mple Matrix	Spike Duplica	te		Run: FIA20	2-HE_140710A		07/10/	/14 09:55
Phosphoru	s, Orthophosphate as I	Р	1.91	mg/L	0.010	85	90	110	5.3	20	S
Lab ID:	H14070167-011BMS	Sa	mple Matrix	Spike			Run: FIA20	2-HE_140710A		07/10/	/14 10:04
Phosphoru	s, Orthophosphate as I	Р	15.4	mg/L	0.050	101	90	110			
Lab ID:	H14070167-011BMS	D Sa	mple Matrix	Spike Duplica	te		Run: FIA20	2-HE_140710A		07/10/	/14 10:05
Phosphoru	s, Orthophosphate as I	Р	15.8	mg/L	0.050	105	90	110	2.6	20	
Phosphoru	s, Orthophosphate as I	Р	15.8	mg/L	0.050	105	90	110	2.6	20	

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E365.1							Analyt	ical Run	: FIA202-HE_	_140710B
Lab ID:	ICV	Initi	al Calibrati	on Verificatio	on Standard					07/10/	14 13:33
Phosphoru	ıs, Orthophosphate as F	•	0.248	mg/L	0.0050	99	90	110			
Lab ID:	ICB	Initi	al Calibrati	on Blank, Ins	strument Blank					07/10/	14 13:34
Phosphoru	ıs, Orthophosphate as F)(0.000730	mg/L	0.0050		0	0			
Lab ID:	ccv	Cor	itinuing Ca	libration Veri	fication Standar	d				07/10/	14 13:36
Phosphoru	ıs, Orthophosphate as I	•	0.0982	mg/L	0.0050	98	90	110			
Method:	E365.1									Batch	n: R98742
Lab ID:	LFB	Lab	oratory Fo	tified Blank			Run: FIA20	2-HE_140710B		07/10/	14 13:35
Phosphoru	ıs, Orthophosphate as F	o	0.189	mg/L	0.0050	95	90	110			
Lab ID:	H14070186-001AMS	Sar	nple Matrix	Spike			Run: FIA20	2-HE_140710B		07/10/	14 13:39
Phosphoru	ıs, Orthophosphate as F	o	0.262	mg/L	0.0050	99	90	110			
Lab ID:	H14070186-001AMSI) Sar	nple Matrix	Spike Dupli	cate		Run: FIA20	2-HE_140710B		07/10/	14 13:40
Phosphoru	ıs, Orthophosphate as F	o	0.263	mg/L	0.0050	99	90	110	0.4	20	

Workorder Receipt Checklist

CDM Federal Programs

Login completed by: Tracy L. Lorash

H14070167

Date Received: 7/9/2014

Reviewed by:	BL2000\kwiegand		Re	eceived by: TLL
Reviewed Date:	7/11/2014			Carrier Hand Del name:
Shipping container/cooler in	good condition?	Yes √	No 🗌	Not Present
Custody seals intact on all s	shipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓
Custody seals intact on all s	sample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?		Yes 🔽	No 🗌	
Chain of custody signed wh	en relinquished and received?	Yes ✓	No 🗌	
Chain of custody agrees wit	th sample labels?	Yes ✓	No 🗌	
Samples in proper containe	r/bottle?	Yes ✓	No 🗌	
Sample containers intact?		Yes 🗹	No 🗌	
Sufficient sample volume fo	r indicated test?	Yes ✓	No 🗌	
All samples received within (Exclude analyses that are such as pH, DO, Res CI, S	considered field parameters	Yes 🔽	No 🗌	
Temp Blank received in all s	shipping container(s)/cooler(s)?	Yes	No 🗸	Not Applicable
Container/Temp Blank temp	perature:	2.9°C On Ice		
Water - VOA vials have zero	o headspace?	Yes	No 🗌	No VOA vials submitted ✓
Water - pH acceptable upor	n receipt?	Yes 🗸	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

None

ENERGY LABORATORIES	
Company Name	

Chain of Custody and Analytical Request Record

LABORATORIES	PLEASE I			_			uch in						Pa	age <u>1</u> of <u>2</u>
Company Name:	Project Nar	ne, PV	NS,	Perm	it, Etc	as mic C.	ucii iii	ioima	uon a	is po	Sam	ele Origin	EPA/S	State Compliance:
CDM Smith	Barker Highesville - DannyT State: MT								•	Yes No No				
Report Mail Address (Required):	Contact Na	me:	J		Pho	ne/Fax	K:	-	<u> </u>		Cell:			ler: (Please Print)
	ANGELA				14	06)4	141-1	400		८५०	0)439	1-3776	i.	on Helland
M No Hard Copy Email: Frand Jun AK @ Comsmith Con	Invoice Cor		. Pho	one:							Purch	nase Order:		/Bottle Order:
Invoice Address (Required):			υ Ω ί	1 7/70	शास्त्र ।	ലഭര	UES	52F3F6				Contact ELI prior	to	Shipped by: 7
XINO Hard Copy Email: Same as report	containers N S V B O DW bils/Solids assay Other ig Water	410.1	1	EPA 305.1		WEG.			ATTACHED	id (TAT)	R	RUSH sample su for charges and scheduling – See Instruction Page	bmittal	Cooler ID(s):
Special Report/Formats:	er A C	٥	8	9	EPA				AC	rour	U	Comments:		Receipt Temp
□ DW X EDD/EDT (Electronic Data) □ POTW/WWTP Format: ₹x € □ State: □ LEVEL IV □ Other: □ NELAC	Number of Containers Sample Type: A W S V B O DW Air Water Soils/Soilds Vegetation Bioassay Other DW - Drinking Water	, 5M5210 B or	Sulfide, SMY500	ity SMISIOD or	3				SEE ATT	Standard Turnaround (TAT)	S	USE 1000 ml b for combined BOD + Acidity	ottieo 	On Ice: Y N Custody Seal On Bottle Y N On Cooler Y N
SAMPLE IDENTIFICATION Collection Collection (Name, Location, Interval, etc.) Collection Time	MATRIX	B 00,	Safe	Acidity	0-Ph					Ś	Н			Intact Y N Signature Y N Match
40H-DT-PILOT-INFL-070814 07/08/14 08:45	2, W			X	X	•		ļ						≥ H14070167
140H-DT-PILOT-INFLD-070814 07/08/14 09.05	2, N			x	X								-	
14BH-DT-PILOT-SAPS-070814 07/08/14 09:15	2,N			\mathcal{X}	X				1		-			<u> </u>
4	2, N			X	X									<u></u>
140H-DT-PILOT-NAOH-0708H4 07/08/14 09:40	2, W			χ	L				1					3
1404-DT-PILOT-BCRI-070814 07/08/14 09:55	•	X	X	X										
7		X >			X									
14BH-DT-PILOT-BCR3.070814 07/08/14 10:30	,	XX	۷ ;	× ,	X				1 +					
14BH-17- PILOT-BCR4-070814 07/08/14 10:50	3, N	X ,	x	XX	<									<u>0</u>
14BH-DT-PILOT-POSTI-070814 07/08/14 11:05	.′		_		X					_				
Custody Relinquished by (print): Date/Time: Date/Time: 07/09/14/611	Signet		N	/			ed by (prir		<u> </u>	Da	te/Time:		Signatu	re:
Record Relinquished by (print): Date/Time:	/ Signati	uře:			-	Receive	ed by (prin	nt):		Da	te/Time:		Signatur	re:
Signed Sample Disposal: Return to Client:	Lah Dienoe:	al·			-		ed by Lat	oratory:	A cr	Dat	e/Time/	Truck	Signatur	* A 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Page 20 of 21

LABORATORIES

Chain of Custody and Analytical Request Record

Page	2	of	Z	

			PLEASE	יונאוי	N I	Pro	vide a	as mu	cn ini	orma	ition	as po	SSIDIE	1.)	I EDA/CA	-4- (
Company Name:			Project Nam											ole Origin	1	ate Complia	
CDM Smith			Contact Nar	H	gre	ovil	e-	Dani	74T					· MT	Yes 🗌		
Report Mail Address (Required):			Contact Nar	ne:	J		Pho	ne/Fax:	J				Cell:		1	r: (Please F	
X No Hard Copy Email: Fraval & h	<u> LQ cdms</u>	mith com	ANGELF Invoice Con SAME	tact	RAN & Pho	\ 05 F one:	N	(406)	441 -	14 <i>0</i> 0		(40		39-3776 nase Order:	· · · · · · · · · · · · · · · · · · ·	on Hold Bottle Orde	
Invoice Address (Required):	-			W)	[7J] (V] [1 5776		REQ(IIIIEQ		`			Contact ELI prior	to	Shipped by:	7
POTW/WWTP / For State:		ectronic Data)	Number of Containers Sample Type: AWSVBODW Air Water Soils/Solids Vegetation Bioassay Other DW - Drinking Water				O Phosphale, EPA 365.1				SEE ATTACHED	d Turna	R U S	RUSH sample so for charges and scheduling – See Instruction Page Comments: USL 1000mL bottles for Company for Comp	ubmittal	Cooler ID(s): Receipt Temp On Ice: Custody Seal On Bottle On Cooler Intact	° C
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Date	Collection Time	MATRIX	2 007,	SME	Acid	D-0					0)	Н			Signature Match	Y N
14614 - PT - PILOT - POSTE - 070814 0	7128/14	11:25	3, N	χ	Х	Х	X									≥#140	70147
3 4 5 6 7 8 9 10 Custody Relinquished by (print): Record Relinquished by (print): Record MUST be	Date/Tir		Signa Signa	iure:	gns			Receiv		rint):	Y: -/0	· ·	Date/Time		Signatu Signatu	ire:	
Signed Sample Disposal: Retu	ırn to Client:		Lab Dispos	al:					Tián		ral	- "	7/9/	14 16:11	Sie		Vas

U.S. Environmental Protection Agency Region 8 Technical and Management Services

Laboratory Services Program

Certificate of Analysis

Ref: 8TMS-L

MEMORANDUM

Date: 09/12/14

Subject: Analytical Results--- Barker-Hughesville_Treatability_JUL 2014_A046 / A-046

From: Don Goodrich; EPA Region 8 Analytical Chemistry WAM

To: Roger Hoogerheide

Superfund

8 MO

Received Sample Set(s), [Work Order : Date Received]:

[C140708 : 07/10/2014]

Attached are the analytical results for the samples received from the Barker-Hughesville_Treatability_JUL 2014_A046 sampling event, according to TDF A-046. All analyses were performed within their method specified holding times unless otherwise noted in the following narrative.

These samples were prepared, analyzed, and verified by the Environmental Services Assistance Team Laboratory (ESAT) according to the requirements of the Technical Direction Form (TDF).

Note: The laboratory herewith transmits this deliverable to the program/project partner for determination of "final data usability" which may include data validation and data quality assessment per and in accordance with EPA QA/G-8, *Guidance on Environmental Data Verification and Data Validation*, November 2002, EPA/240/R-02/004. Laboratory data qualifiers are applied based on the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*, October 2004, referred to as "NFGI".

Laboratory policy is to dispose of any remaining sample 60 days after data analysis packages are delivered to EPA. If you would like the laboratory to retain the samples for a period longer than 60 days,

Barker-Hughesville_Treatability_JUL 2014_A046 **Project Name:**

TDF #: A-046

Case Narrative

C140708

Quality Assessment: Unless indicated by exception, the QA/QC associated with this sample set

produced data within the TDF-specified criteria.

Holding Times: All samples were analyzed within their method-specified technical holding

time(s).

1. Initial and Continuing calibration blanks (ICBs and CCBs).

Exceptions: None.

2. Preparation (PB) / Method blanks (MB)

Exceptions: None.

3. Interference Checks (ICSA / ICSAB) for ICP-MS and ICP-OE analyses only.

Exceptions: None.

4. Initial and Continuing calibration verification analyses (ICVs, SCVs and CCVs).

Exceptions: In ICP-MS sequence 1407038, lead recovered high in the SCV. As a result, all sample results for lead were qualified "J" as estimated. In ICP-MS sequence 1409053, arsenic recovered low in the SCV. All arsenic results were qualified "J" as estimated.

5. Laboratory Control Sample (LCS) or second source analysis or SRM.

Exceptions: In ICP-MS batch 1409005, copper recovered I% below acceptable limits in the SRM. Since all other QC requirements for copper were met, no qualifiers were assigned.

6. Laboratory Fortified blank (LFB) / Blank spike (BS), same source as used for the matrix spikes. PBS performed with analyses/methods requiring preparation or digestion prior to analysis. Exceptions: None.

7. Contract Reporting Detection Limit Standard, labeled as CRA, CRDL or CRL.

Exceptions: None.

- 8. Laboratory Duplicate (DUP). "Source" identifies field sample duplicated in the laboratory. If either the "source" or the duplicate result is <5X the reporting limit, the %D limit of 20% does not apply. Exceptions: None.
- 9. Laboratory Matrix Spike (MS) and spike duplicate (MSD). "Source" defines original field sample fortified prior to analysis. Percent recovery (%R) limits do not apply when sample concentration(s) exceed the corresponding analyte spike level by a factor of 4 or greater. Exceptions: None.
- 10. Serial Dilution sample analysis (SRD). "Source" is parent field sample diluted 1:5 in the laboratory. Performed for ICP-OE and ICP-MS metals analyses. Percent difference (%D) limits do not apply when analyte concentration(s) are below 50x the source sample's MDL (or 10x it's PQL). Exceptions: In ICP-OE sequence 1409037, manganese recovered high in the SRD. As a result, the source sample was qualfied "J" as estimated for manganese.
- 11. Internal standards, criteria specified for ICP-MS analyses only, monitored at the instrument.
- 12. Any calibration using more than two-points produced a correlation coefficient equal to or greater than 0.995.

Exceptions: None.

Certificate of Analysis

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046

TDF #: A-046

Acronyms and Definitions:

ESAT	Environmental	Services	Assistance	Team

J Data Estimated qualifier (also applied to all data less than PQL, greater than or equal to MDL)

MDL Method Detection Limit

PQL Practical Quantitation Limit, also known as reporting limit.

RPD Relative Percent Difference (difference divided by the mean)

%D Percent difference, serial dilution criteria unit, difference divided by the original result.

%R Percent recovery, analyzed (less sample contribution) divided by true value

< Analyte NOT DETECTED at or above the Method Detection Limit (MDL)

mg/L Parts per million (milligrams per liter). Solids equivalent = mg/Kg.

ug/L Parts per billion (micrograms per liter). Solids equivalent = ug/Kg.

NR No Recovery (matrix spike) - Often seen for calcium/magnesium when their concentration exceeds the spike level by > 4x.

NFGI USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

RE Sample Re-analysis. Usually seen on raw data and sequences for required sample dilutions due to over-range analytes.

U Analyte not detected at or above MDL qualifier

D Diluted value qualifier.

Method(s) Summary:

As defined in the Technical Direction Form (TDF), some or all of the methods listed below were used for the determination of the reported target analytes.

From EPA's Methods for the Determination of Metals in Environmental Samples, Supplement I, May 1994, dissolved, total, and/or total recoverable metals were determined by:

- Method 200.7 / 6010B using a PE Optima ICP -OE (ICP).
- Method 200.8 / 6020 using a Perkin -Elmer Elan 6000 ICP-MS.
- Method 200.2 for total recoverable metals (only) dige stion.
- Method 245.1 using a Perkin -Elmer FIMS CVAA (aqueous mercury only).

From Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, Method 2340B was used for the calculated hardness determination. Hardness is reported as mg (milligram) equivalent CaCO₃ per liter (L) determined as follows:

Calculated hardness = 2.497 * (Calcium, mg/L) + 4.118 * (Magnesium, mg/L).

From EPA's Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW -846,

- Method 3015A was used for microwave assisted total metals digestion.
- Method 7473 was used for mercury in solids.

From EPA's Determination of Inorganic Anions by Ion Chromatography, Revision 2.1, 1993, Method 300.0 was used to determine the anions.

From EPA's Methods for Chemical Analysis of Water and Wastes, March 1983:

- Method 310.1 was followed for the alkalinity determination.
- Method 160.1 was followed for gravimetric total dissolved solids (TDS) determination.
- Method 160.2 was used for gravimetric total suspended sol ids (TSS) determination.
- Method 415.3 was used for total organic carbon (TOC) determination using either an Apollo 9000 or Phoenix 8000 Non-Dispersive IR (NDIR) system. Also known as dissolved organic carbon (DOC) when performed on the dissolved sample fraction.

The quality control procedures listed in the TDF request were utilized by ESAT to verify accuracy of the results and to evaluate any matrix interferences.

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR1-070814 **Station ID:** EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

Workorder:

C140708

C140708-01 Lab Number:

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 50.0	U	ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	2190		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	45000		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	59.2		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	5.98	J	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	1760		mg/L	2	1	09/08/2014	SV	1409031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-070814 EPA Tag No.:

No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 10:10

07/08/14 09:55

Workorder: Lab Number:

C140708

C140708-05

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	81.2		ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	< 250	U	ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	17200		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	46.8		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	1220		mg/L	2	1	09/08/2014	SV	1409031

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR3-070814 **Station ID:** EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 10:30

Workorder: Lab Number:

C140708

C140708-09

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	37.9	J	ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	2070		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	9710		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	95.7		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	26.0		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	17.0		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	1.04	J	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	2520		mg/L	2	1	09/08/2014	SV	1409031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR4-070814

EPA Tag No.:

Date / Time Sampled:

07/08/14 10:50

Workorder:

C140708

No Tag Prefix-A Matrix: Water Lab Number: C140708-13

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	133	J	ug/L	100	5	09/08/2014	SV	1409031
200.7	Iron	1030	J	ug/L	500	5	09/08/2014	SV	1409031
200.7	Manganese	61800		ug/L	10.0	5	09/08/2014	SV	1409031
200.7	Zinc	271		ug/L	50.0	5	09/08/2014	SV	1409031
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	754		mg/L	8	5	09/08/2014	SV	1409031

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-CHIT-070814 **Station ID:** EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 09:25 Workorder: C140708

Lab Number:

C140708-17

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 50.0	U	ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	5000		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	30300		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	30.2		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	7.06	J	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	2920		mg/L	2	1	09/08/2014	SV	1409031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFL-070814 EPA Tag No.:

No Tag Prefix-A

Date / Time Sampled:

07/08/14 08:45 Matrix: Water

Workorder: Lab Number:

C140708

C140708-21

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	15000		ug/L	200	10	09/08/2014	SV	1409031
200.7	Iron	184000		ug/L	1000	10	09/08/2014	SV	1409031
200.7	Manganese	123000		ug/L	20.0	10	09/08/2014	SV	1409031
200.7	Zinc	66500		ug/L	100	10	09/08/2014	SV	1409031
200.8	Arsenic	166		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	285		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	1270		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	147		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	28.5		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	375		mg/L	15	10	09/08/2014	SV	1409031

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFLD-070814

EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water 07/08/14 09:05

Workorder: C140708

Lab Number:

C140708-25

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	14900		ug/L	200	10	09/08/2014	SV	1409031
200.7	Iron	184000		ug/L	1000	10	09/08/2014	SV	1409031
200.7	Manganese	122000		ug/L	20.0	10	09/08/2014	SV	1409031
200.7	Zinc	66100		ug/L	100	10	09/08/2014	SV	1409031
200.8	Arsenic	178		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	294		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	1250		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	149		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	25.3		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	369		mg/L	15	10	09/08/2014	SV	1409031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NOAH-070814 Date / Time Sampled: 07/08/14 09:40 Workorder: C140708

EPA Tag No.: No Tag Prefix-A

Matrix: Water

Lab Number: C140708-29 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	13600		ug/L	100	5	09/08/2014	SV	1409031
200.7	Iron	23300		ug/L	500	5	09/08/2014	SV	1409031
200.7	Manganese	112000		ug/L	10.0	5	09/08/2014	SV	1409031
200.7	Zinc	64100		ug/L	50.0	5	09/08/2014	SV	1409031
200.8	Arsenic	5.61	J	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	294		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	1260		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	123		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	27.0		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	371		mg/L	8	5	09/08/2014	SV	1409031

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-POSTE-070814 **Station ID:** EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 11:25

Workorder:

Lab Number:

C140708

C140708-33

Parameter	Results	Qualifier	Units	MDL	Dilution	Analyzed	Ву	Batch
Aluminum	70.2		ug/L	20.0	Factor 1	09/08/2014	SV	1409031
			_		1			1409031
					1			1409031
Zinc	1120			10.0	1	09/08/2014	SV	1409031
Arsenic	16.9	J		5.00	10	09/09/2014	SV	1409032
Cadmium	1.75	J		1.00	10	09/09/2014	SV	1409032
Copper	5.78	J	ug/L	5.00	10	09/09/2014	SV	1409032
Lead	< 2.00	ΙŢ	ησ/Ι	1.00	10	09/09/2014	SV	1409032
Nickel					10	09/09/2014	SV	1409032
Hardness		O			1	09/08/2014	SV	1409031
	Aluminum Iron Manganese Zinc Arsenic Cadmium Copper Lead	Aluminum 70.2 Iron 974 Manganese 11500 Zinc 1120 Arsenic 16.9 Cadmium 1.75 Copper 5.78 Lead < 2.00	Aluminum 70.2 Iron 974 Manganese 11500 Zinc 1120 Arsenic 16.9 J Cadmium 1.75 J Copper 5.78 J Lead < 2.00	Aluminum 70.2 ug/L Iron 974 ug/L Manganese 11500 ug/L Zinc 1120 ug/L Arsenic 16.9 J ug/L Cadmium 1.75 J ug/L Copper 5.78 J ug/L Lead < 2.00 U ug/L Nickel < 10.0 U ug/L	Parameter Results Qualifier Units Aluminum 70.2 ug/L 20.0 Iron 974 ug/L 100 Manganese 11500 ug/L 2.00 Zinc 1120 ug/L 10.0 Arsenic 16.9 J ug/L 5.00 Cadmium 1.75 J ug/L 1.00 Copper 5.78 J ug/L 5.00 Lead < 2.00	Parameter Results Qualifier Units Factor Aluminum 70.2 ug/L 20.0 1 Iron 974 ug/L 100 1 Manganese 11500 ug/L 2.00 1 Zinc 1120 ug/L 10.0 1 Arsenic 16.9 J ug/L 5.00 10 Cadmium 1.75 J ug/L 1.00 10 Copper 5.78 J ug/L 5.00 10 Lead < 2.00	Parameter Results Qualifier Units Factor Analyzed Aluminum 70.2 ug/L 20.0 1 09/08/2014 Iron 974 ug/L 100 1 09/08/2014 Manganese 11500 ug/L 2.00 1 09/08/2014 Zinc 1120 ug/L 10.0 1 09/08/2014 Arsenic 16.9 J ug/L 5.00 10 09/09/2014 Cadmium 1.75 J ug/L 1.00 10 09/09/2014 Copper 5.78 J ug/L 5.00 10 09/09/2014 Lead < 2.00	Parameter Results Qualifier Units Factor Analyzed By Aluminum 70.2 ug/L 20.0 1 09/08/2014 SV Iron 974 ug/L 100 1 09/08/2014 SV Manganese 11500 ug/L 2.00 1 09/08/2014 SV Zinc 1120 ug/L 10.0 1 09/08/2014 SV Arsenic 16.9 J ug/L 5.00 10 09/09/2014 SV Cadmium 1.75 J ug/L 1.00 10 09/09/2014 SV Copper 5.78 J ug/L 5.00 10 09/09/2014 SV Lead < 2.00

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTI-070814

EPA Tag No.: No Tag Prefix-A **Date / Time Sampled:** Matrix: Water

07/08/14 11:05

Workorder: C140708

Lab Number: C140708-37

					MDL	Dilution			
Method	Parameter	Results	Qualifier	Units	MDL	Factor	Analyzed	Ву	Batch
200.7	Aluminum	33.9	J	ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	< 250	U	ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	37400		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	29.4		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	9.21	J	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	1540		mg/L	2	1	09/08/2014	SV	1409031

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-070814

EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 09:15 Works

Workorder: C140708

Lab Number: C140708-41

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	142	J	ug/L	100	5	09/08/2014	SV	1409031
200.7	Iron	107000		ug/L	500	5	09/08/2014	SV	1409031
200.7	Manganese	111000		ug/L	10.0	5	09/08/2014	SV	1409031
200.7	Zinc	16100		ug/L	50.0	5	09/08/2014	SV	1409031
200.8	Arsenic	36.2		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	19.0		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	802		mg/L	8	5	09/08/2014	SV	1409031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-TN-CHIT-0708

EPA Tag No.: 14 No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 19:15

Workorder: Ci

Lab Number:

C140708

C140708-45 A

Method	Parameter	Results	Oualifier	Units	MDL	Dilution	Analyzed	Ву	Batch
			¥			Factor			
200.7	Aluminum	301		ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	547		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	21100		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	7810		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	36.0		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	48.4		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	542		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	5.80		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	14.8		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	1000		mg/L	2	1	09/08/2014	SV	1409031

TDF #: A-046

EPA Tag No.: 814No Tag Prefix-A

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-TN-LSTN-070

Date / Time Sampled: Matrix: Water 07/08/14 18:55

Workorder: C14

Lab Number:

C140708

C140708-48 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	40.1	J	ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	651		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	24300		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	9690		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	43.8		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	62.9		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	4.71		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	7.78	J	ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	991		mg/L	2	1	09/08/2014	SV	1409031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-TN-NAOH-070

EPA Tag No.: 814No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 17:30

Workorder: Lab Number: C140708

C140708-51

۸

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	150		ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	420		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	22600		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	11500		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	46.4		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	397		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	11.7		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	19.5		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	286		mg/L	2	1	09/08/2014	SV	1409031

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-TN-RAW-0708 **EPA Tag No.:** 14 No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 16:30

Workorder:

C140708 Lab Number:

C140708-54

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	2340		ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	269000		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	25400		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	12100		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	29.5		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	43.8		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	1450		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	952		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	11.4		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	286		mg/L	2	1	09/08/2014	SV	1409031

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-TI-BENCH-TN-RAWD-07 **Station ID:**

EPA Tag No.: 081Mo Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 16:50

Workorder: Lab Number: C140708

C140708-57

A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	2210		ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	254000		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	24400		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	11700		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	30.5		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	45.2		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	1410		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	954		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	10.5		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	273		mg/L	2	1	09/08/2014	SV	1409031

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR1-070814 **Station ID:** EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water

07/08/14 09:55

Workorder: C140708

Lab Number:

C140708-02

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	265		ug/L	100	5	09/11/2014	SV	1409005
200.7	Iron	11000		ug/L	500	5	09/11/2014	SV	1409005
200.7	Manganese	56800		ug/L	10.0	5	09/11/2014	SV	1409005
200.7	Zinc	2200		ug/L	50.0	5	09/11/2014	SV	1409005
200.8	Arsenic	13.7	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	2.10		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	15.7		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	1.59	J	ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/11/2014	SV	1409005

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-070814

EPA Tag No.: No Tag Prefix-B **Date / Time Sampled:** Matrix: Water

07/08/14 10:10

Workorder: Lab Number:

C140708

C140708-06

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	161		ug/L	20.0	1	09/11/2014	SV	1409005
200.7	Iron	1000		ug/L	100	1	09/11/2014	SV	1409005
200.7	Manganese	19500		ug/L	2.00	1	09/11/2014	SV	1409005
200.7	Zinc	2100		ug/L	10.0	1	09/11/2014	SV	1409005
200.8	Arsenic	19.3	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	1.21	J	ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	25.6		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	7.48		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/11/2014	SV	1409005

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 14BH-DT-PILOT-BCR3-070814
 Date / Time Sampled:
 07/08/14 10:30
 Workorder:
 C140708

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140708-10

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	26.2	J	ug/L	20.0	1	09/11/2014	SV	1409005
200.7	Iron	2510		ug/L	100	1	09/11/2014	SV	1409005
200.7	Manganese	9760		ug/L	2.00	1	09/11/2014	SV	1409005
200.7	Zinc	116		ug/L	10.0	1	09/11/2014	SV	1409005
200.8	Arsenic	29.3	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	36.2		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	6.88		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/11/2014	SV	1409005

Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 14BH-DT-PILOT-BCR4-070814
 Date / Time Sampled:
 07/08/14 10:50
 Workorder:
 C140708

 EPA Tag No.:
 No Tag Prefix-B
 Matrix:
 Water
 Lab Number:
 C140708-14
 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	654		ug/L	100	5	09/11/2014	SV	1409005
200.7	Iron	2070		ug/L	500	5	09/11/2014	SV	1409005
200.7	Manganese	64700		ug/L	10.0	5	09/11/2014	SV	1409005
200.7	Zinc	7400		ug/L	50.0	5	09/11/2014	SV	1409005
200.8	Arsenic	17.4	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	13.8		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	49.6		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	8.54		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/11/2014	SV	1409005

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-CHIT-070814 Date / Time Sampled: 07/08/14 09:25 Workorder: C140708

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140708-18

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 50.0	U	ug/L	20.0	1	09/11/2014	SV	1409005
200.7	Iron	6170		ug/L	100	1	09/11/2014	SV	1409005
200.7	Manganese	33200		ug/L	2.00	1	09/11/2014	SV	1409005
200.7	Zinc	298		ug/L	10.0	1	09/11/2014	SV	1409005
200.8	Arsenic	7.06	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	1.69	J	ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	8.24	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/11/2014	SV	1409005

Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 14BH-DT-PILOT-INFL-070814
 Date / Time Sampled:
 07/08/14 08:45
 Workorder:
 C140708

 EPA Tog No:
 No Tog Prefix-B
 Matrix:
 Water
 Lab Number:
 C140708-22
 A

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140708-22 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	15100		ug/L	200	10	09/11/2014	SV	1409005
200.7	Iron	185000		ug/L	1000	10	09/11/2014	SV	1409005
200.7	Manganese	123000		ug/L	20.0	10	09/11/2014	SV	1409005
200.7	Zinc	65300		ug/L	100	10	09/11/2014	SV	1409005
200.8	Arsenic	198	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	291		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	1060		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	221		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	20.9		ug/L	5.00	10	09/11/2014	SV	1409005

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-INFLD-070814 **Station ID: Date / Time Sampled:** 07/08/14 09:05 Workorder:

C140708 EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140708-26

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	15100		ug/L	200	10	09/11/2014	SV	1409005
200.7	Iron	186000		ug/L	1000	10	09/11/2014	SV	1409005
200.7	Manganese	123000		ug/L	20.0	10	09/11/2014	SV	1409005
200.7	Zinc	66500		ug/L	100	10	09/11/2014	SV	1409005
200.8	Arsenic	207	J	ug/L	50.0	100	09/11/2014	SV	1409005
200.8	Cadmium	288		ug/L	10.0	100	09/11/2014	SV	1409005
200.8	Copper	1160		ug/L	50.0	100	09/11/2014	SV	1409005
200.8	Lead	206		ug/L	10.0	100	09/11/2014	SV	1409005
200.8	Nickel	< 100	U	ug/L	50.0	100	09/11/2014	SV	1409005

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NOAH-070814 **Date / Time Sampled:** 07/08/14 09:40 C140708 Workorder:

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140708-30

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	13500		ug/L	100	5	09/11/2014	SV	1409005
200.7	Iron	34800		ug/L	500	5	09/11/2014	SV	1409005
200.7	Manganese	110000		ug/L	10.0	5	09/11/2014	SV	1409005
200.7	Zinc	62000		ug/L	50.0	5	09/11/2014	SV	1409005
200.8	Arsenic	19.7	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	283		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	1040		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	175		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	21.3		ug/L	5.00	10	09/11/2014	SV	1409005

5.61

< 10.0

Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTE-070814 EPA Tag No.: No Tag Prefix-B Date / Time Sampled: Matrix: Water 07/08/14 11:25 **Wo**

Workorder: C140708

Lab Number: C140708-34

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	138		ug/L	20.0	1	09/11/2014	SV	1409005
200.7	Iron	1370		ug/L	100	1	09/11/2014	SV	1409005
200.7	Manganese	11900		ug/L	2.00	1	09/11/2014	SV	1409005
200.7	Zinc	1440		ug/L	10.0	1	09/11/2014	SV	1409005
200.8	Arsenic	36.5	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	2.95		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	18.1		ug/L	5.00	10	09/11/2014	SV	1409005

ug/L

ug/L

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTI-070814 Da

EPA Tag No.: No Tag Prefix-B

Lead

Nickel

200.8

200.8

Date / Time Sampled: Matrix: Water

U

07/08/14 11:05

1.00

5.00

Workorder: C1-

Lab Number:

09/11/2014

09/11/2014

10

10

C140708

C140708-38 A

SV

SV

1409005

1409005

Dilution MDL Method **Parameter** Results Qualifier Units Analyzed By Batch Factor 200.7 108 20.0 1 09/11/2014 SV1409005 Aluminum ug/L 200.7 Iron 4550 ug/L 100 1 09/11/2014 SV1409005 200.7 2.00 1 SV 1409005 Manganese ug/L 09/11/2014 41000 200.7 Zinc 3080 10.0 1 09/11/2014 SV1409005 ug/L 200.8 Arsenic 09/11/2014 SV1409005 100 < 200 J, 50.0 ug/L 200.8 Cadmium 100 09/11/2014 SV1409005 10.0 U < 20.0 ug/L 200.8 Copper 100 09/11/2014 SV1409005 50.0 < 100 U ug/L 200.8 Lead 100 09/11/2014 SV1409005 < 20.0 U ug/L 10.0 200.8 Nickel 100 09/11/2014 SV 1409005 < 100 U ug/L 50.0

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-070814 Date / Time Sampled: 07/08/14 09:15 Workorder: C140708

Certificate of Analysis

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140708-42

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	159	J	ug/L	100	5	09/11/2014	SV	1409005
200.7	Iron	103000		ug/L	500	5	09/11/2014	SV	1409005
200.7	Manganese	112000		ug/L	10.0	5	09/11/2014	SV	1409005
200.7	Zinc	18300		ug/L	50.0	5	09/11/2014	SV	1409005
200.8	Arsenic	38.8	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	5.40	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	10.5		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	11.3		ug/L	5.00	10	09/11/2014	SV	1409005

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-TN-CHIT-0708 Date / Time Sampled: 07/08/14 19:15 Workorder: C140708

EPA Tag No.: 14 No Tag Prefix-B

Matrix: Water

Lab Number: C140708-46 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	530		ug/L	20.0	1	09/11/2014	SV	1409005
200.7	Iron	41500		ug/L	100	1	09/11/2014	SV	1409005
200.7	Manganese	21200		ug/L	2.00	1	09/11/2014	SV	1409005
200.7	Zinc	7600		ug/L	10.0	1	09/11/2014	SV	1409005
200.8	Arsenic	43.1	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	47.0		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	497		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	102		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	9.78	J	ug/L	5.00	10	09/11/2014	SV	1409005

Certificate of Analysis

Metals (Total Recov) by EPA 200/7000 Series Methods

A-046

TDF #:

Station ID: 14BH-TI-BENCH-TN-LSTN-070 **Date / Time Sampled:** 07/08/14 18:55 C140708 Workorder:

EPA Tag No.: 814No Tag Prefix-B Matrix: Water Lab Number: C140708-49

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	222		ug/L	20.0	1	09/11/2014	SV	1409005
200.7	Iron	16800		ug/L	100	1	09/11/2014	SV	1409005
200.7	Manganese	24400		ug/L	2.00	1	09/11/2014	SV	1409005
200.7	Zinc	9480		ug/L	10.0	1	09/11/2014	SV	1409005
200.8	Arsenic	< 20.0	J,	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	38.6		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	114		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	70.1		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/11/2014	SV	1409005

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-TN-NAOH-070 **Date / Time Sampled:** 07/08/14 17:30 Workorder: C140708 EPA Tag No.: 814No Tag Prefix-B Matrix: Water C140708-52 Lab Number:

Dilution MDL Method **Parameter** Analyzed By Batch Results Qualifier Units Factor 09/11/2014 SV1409005 200.7 Aluminum 212 ug/L 20.0 1 200.7 100 1 09/11/2014 SV 1409005 Iron 6710 ug/L 200.7 Manganese 22700 ug/L 2.00 1 09/11/2014 SV1409005 200.7 Zinc 11200 10.0 1 09/11/2014 SV1409005 ug/L 1409005 200.8 Arsenic 10 09/11/2014 SV< 20.0 J, ug/L 5.00 200.8 Cadmium 1.00 10 09/11/2014 SV1409005 42.1 ug/L 200.8 Copper 331 ug/L 5.00 10 09/11/2014 SV1409005 200.8 Lead 42.5 ug/L 1.00 10 09/11/2014 SV1409005 200.8 Nickel ug/L 5.00 10 09/11/2014 SV1409005 14.2

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-TN-RAW-0708 Date / Time Sampled: 07/08/14 16:30 Workorder:

8.30

EPA Tag No.: 14 No Tag Prefix-B Matrix: Water Lab Number: C140708-55

Dilution MDL Method Analyzed By Batch **Parameter** Results **Qualifier** Units Factor 200.7 Aluminum 2310 ug/L 20.0 1 09/11/2014 SV1409005 100 200.7 261000 ug/L 1 09/11/2014 SV1409005 Iron 200.7 2.00 1 Manganese 24800 ug/L 09/11/2014 SV1409005 200.7 Zinc 11500 ug/L 10.0 1 09/11/2014 SV1409005 J 200.8 ug/L 5.00 10 09/11/2014 SV1409005 Arsenic 30.1 200.8 Cadmium 39.0 ug/L 1.00 10 09/11/2014 SV1409005 200.8 Copper 1100 ug/L 5.00 10 09/11/2014 SV1409005 200.8 Lead 1240 1.00 10 09/11/2014 SV1409005 ug/L

Metals (Total Recov) by EPA 200/7000 Series Methods

Nickel

200.8

Station ID: 14BH-TI-BENCH-TN-RAWD-07 Date / Time Sampled: 07/08/14 16:50 Workorder: C140708

J

EPA Tag No.: 081Mo Tag Prefix-B Matrix: Water Lab Number: C140708-58 A

ug/L

5.00

10

09/11/2014

SV

1409005

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	2260		ug/L	20.0	1	09/11/2014	SV	1409005
200.7	Iron	255000		ug/L	100	1	09/11/2014	SV	1409005
200.7	Manganese	24500		ug/L	2.00	1	09/11/2014	SV	1409005
200.7	Zinc	11300		ug/L	10.0	1	09/11/2014	SV	1409005
200.8	Arsenic	28.9	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	40.4		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	1110		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	1260		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	7.71	J	ug/L	5.00	10	09/11/2014	SV	1409005

[&]quot;J" Qualifier indicates an estimated value

Certificate of Analysis

C140708

A

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

 Station ID:
 14BH-DT-PILOT-BCR1-070814
 Date / Time Sampled:
 07/08/14 09:55
 Workorder:
 C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-03

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	65.7	J	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	55.2		mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	701		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	1020		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1-070814 **Date / Time Sampled:** 07/08/14 09:55 **Workorder:** C140708

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number: C140708-04

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	58.2	D	mg/L	3.00	100	07/18/2014	KJB	1407080

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-070814 **Date / Time Sampled:** 07/08/14 10:10 **Workorder:** C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-07 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
EPA 300.0	Chloride	85.7	J	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	30.3		mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	562		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	685		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Α

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-070814 **EPA Tag No.:**

No Tag Prefix-D

Date / Time Sampled: Matrix: Water

07/08/14 10:10

Workorder:

Lab Number:

C140708

Certificate of Analysis

C140708-08

Dilution MDL Method Parameter Analyzed By Batch Results **Qualifier** Units Factor EPA 350.1 Ammonia as N 14.6 D mg/L 3.00 100 07/18/2014 KJB 1407080

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-BCR3-070814 **Station ID:**

No Tag Prefix-C **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

07/08/14 10:30

Workorder: C140708

Lab Number:

C140708-11

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	110	J	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	134		mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	376		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	2490		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-BCR3-070814 **Date / Time Sampled: Station ID:**

EPA Tag No.:

No Tag Prefix-D

Matrix: Water

07/08/14 10:30

Workorder:

C140708

Lab Number:

C140708-12

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350 1	Ammonia as N	199	D	mg/L	3 00	100	07/18/2014	KJB	1407080

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

 Station ID:
 14BH-DT-PILOT-BCR4-070814
 Date / Time Sampled:
 07/08/14 10:50
 Workorder:
 C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-15

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	68.5	J	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	18.0	J	mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	724		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	404	J	mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Certificate of Analysis

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4-070814 Date / Time Sampled: 07/08/14 10:50 Workorder: C140708

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number: C140708-16

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	4.55	D	mg/L	0.300	10	07/18/2014	KJB	1407080

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-CHIT-070814 Date / Time Sampled: 07/08/14 09:25 Workorder: C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-19 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
EPA 300.0	Chloride	< 200	U	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	139		mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1020		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310 1	Total Alkalinity	2270		mg CaCO3 / L	250	50	07/15/2014	K IB	1407059

Α

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-INFL-070814 Date / Time Sampled: 07/08/14 08:45 Workorder: C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-23

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	6.9	J	mg/L	5.0	10	07/11/2014	NP	1407040
EPA 300.0	Fluoride	2.8		mg/L	1.0	10	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1280		mg/L	0.5	10	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-INFLD-070814 **Date / Time Sampled:** 07/08/14 09:05 **Workorder:** C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-27 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	7.0	J	mg/L	5.0	10	07/11/2014	NP	1407040
EPA 300.0	Fluoride	3.1		mg/L	1.0	10	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1310		mg/L	0.5	10	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-NOAH-070814 EPA Tag No.: No Tag Prefix-C

AH-070814 Date / Time Sampled:
Matrix: Water

07/08/14 09:40

Workorder: C140708

Lab Number: C140708

Certificate of Analysis

C140708-31 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	6.9	J	mg/L	5.0	10	07/11/2014	NP	1407040
EPA 300.0	Fluoride	2.6		mg/L	1.0	10	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1160		mg/L	0.5	10	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTE-070814 **Date / Time Sampled:**

EPA Tag No.: No Tag Prefix-C

Matrix: Water

07/08/14 11:25

Workorder:

C140708

Lab Number: C140708-35

5 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	85.3	J	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	38.8		mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	656		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	1100		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTE-070814 **Date / Time Sampled:** 07/08/14 11:25 **Workorder:** C140708

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number: C140708-36

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units **Factor** EPA 350.1 Ammonia as N 46.6 D mg/L 3.00 100 07/18/2014 KJB 1407080

A

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTI-070814 Date / Time Sampled: 07/08/14 11:05 Workorder: C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-39

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	77.1	J	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	63.9		mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	603		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	1190		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTI-070814 Date / Time Sampled: 07/08/14 11:05 Workorder: C140708

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number: C140708-40

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	70.8	D	mg/L	3.00	100	07/18/2014	KJB	1407080

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-SAPS-070814 Date / Time Sampled: 07/08/14 09:15 Workorder: C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-43 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	7.4	J	mg/L	5.0	10	07/11/2014	NP	1407040
EPA 300.0	Fluoride	3.6		mg/L	1.0	10	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1030		mg/L	0.5	10	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Α

Barker-Hughesville_Treatability_JUL 2014_A046 **Project Name:**

A-046

Certificate of Analysis

Classical Chemistry by EPA/ASTM/APHA Methods

TDF #:

14BH-TI-BENCH-TN-CHIT-0708 **Station ID: Date / Time Sampled:** 07/08/14 19:15 Workorder: C140708

EPA Tag No.: 14 No Tag Prefix-C Matrix: Water Lab Number: C140708-47

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	169	J	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	< 20.0	U	mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	944		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-TN-LSTN-070 **Date / Time Sampled:** 07/08/14 18:55 Workorder: C140708

EPA Tag No.: 814No Tag Prefix-C Matrix: Water C140708-50 Lab Number:

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	6.7	J	mg/L	5.0	10	07/11/2014	NP	1407040
EPA 300.0	Fluoride	< 2.0	U	mg/L	1.0	10	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1040		mg/L	0.5	10	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-TN-NAOH-070 **Date / Time Sampled:** 07/08/14 17:30

Workorder: C140708 EPA Tag No.: 814No Tag Prefix-C Matrix: Water Lab Number: C140708-53

Dilution MDL Method Parameter Analyzed By Batch Results Qualifier Units Factor EPA 300.0 Chloride 6.7 J mg/L 5.0 10 07/11/2014 NP 1407040 EPA 300.0 Fluoride 10 07/11/2014 1407040 NP U mg/L 1.0 < 2.0 EPA 300.0 Nitrate/Nitrite as 10 07/11/2014 NP 1407040 U 10.0 < 50.0 mg/L EPA 300.0 0.5 07/11/2014 1407040 Sulfate as SO4 1020 mg/L 10 NP 1407059 EPA 310.1 **Total Alkalinity** 50 07/15/2014 KJB < 500 mg CaCO3 / L 250

Certificate of Analysis

Α

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-TN-RAW-0708 **Date / Time Sampled:** 07/08/14 16:30 C140708 Workorder:

EPA Tag No.: 14 No Tag Prefix-C Matrix: Water Lab Number: C140708-56 Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	< 20.0	U	mg/L	5.0	10	07/11/2014	NP	1407040
EPA 300.0	Fluoride	< 2.0	U	mg/L	1.0	10	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1120		mg/L	0.5	10	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Barker-Hughesville_Treatability_JUL 2014_A046 **Certificate of Analysis Project Name:**

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-TN-RAWD-07 **Date / Time Sampled:** 07/08/14 16:50 Workorder:

C140708 EPA Tag No.: 081Mo Tag Prefix-C C140708-59 Matrix: Water Lab Number:

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	< 20.0	U	mg/L	5.0	10	07/11/2014	NP	1407040
EPA 300.0	Fluoride	< 2.0	U	mg/L	1.0	10	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1120		mg/L	0.5	10	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-	·II								
Batch 1409032 - N	lo Lab Prep Reqd	1	Water					ICPN	MS-PE DRC-I
Method Blank (1409	9032-BLK1)	Dilution Factor: 1				Prepa	red: 09/08/14	Analyzed: 09/	/09/14
Nickel	< 0.500	1.00	ug/L						
Copper	< 0.500	1.00	ug/L						
Arsenic	< 0.500	2.00	"						
Cadmium	< 0.100	0.200	"						
Lead	< 0.100	0.200	"						
Method Blank Spik	e (1409032-BS1)	Dilution Factor: 1				Prepa	red: 09/08/14	Analyzed: 09/	09/14
Nickel	93.9	1.00	ug/L	100		94	85-115		
Copper	92.0	1.00	ug/L	100		92	85-115		
Arsenic	87.1	2.00	"	100		87	85-115		
Cadmium	97.6	0.200	"	100		98	85-115		
Lead	96.0	0.200	"	100		96	85-115		
Duplicate (1409032-	-DUP1)	Dilution Factor: 1	Source	: C140708-0	1	Prepar	red: 09/08/14	Analyzed: 09/	09/14
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	< 5.00	10.0	"		< 5.00				20
Arsenic	5.26	20.0	"		5.98			13	20
Cadmium	< 1.00	2.00	"		< 1.00				20
Lead	< 1.00	2.00	"		< 1.00				20
Matrix Spike (14090	032-MS1)	Dilution Factor: 1	Source	: C140708-0	1	Prepa	red: 09/08/14	Analyzed: 09/	09/14
Nickel	125	10.0	ug/L	100	< 5.00	125	70-130		
Copper	85.2	10.0	"	100	< 5.00	85	70-130		
Arsenic	92.9	20.0	"	100	5.98	87	70-130		
Cadmium	96.8	2.00	"	100	< 1.00	97	70-130		
Lead	81.9	2.00	"	100	< 1.00	82	70-130		
Matrix Spike (14090	032-MS2)	Dilution Factor: 1	Source	: C140708-0	5	Prepa	red: 09/08/14	Analyzed: 09/	/09/14
Nickel	103	10.0	ug/L	100	< 5.00	103	70-130		
Copper	83.5	10.0	"	100	< 5.00	83	70-130		
Arsenic	87.6	20.0	"	100	< 5.00	88	70-130		
Cadmium	94.0	2.00	"	100	< 1.00	94	70-130		
Lead	80.7	2.00	"	100	< 1.00	81	70-130		

TDF #: A-046

161.3

Zinc

20.0

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409039 - 1	409032	V	Vater					ICPN	MS-PE DRC-I
Serial Dilution (140	9039-SRD1)	Dilution Factor: 5	Source	: C140708-0	1	Prepa	red: 09/08/14	Analyzed: 09/	09/14
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	< 25.0	50.0	"		< 5.00				10
Arsenic	< 25.0	100	"		5.98				10
Cadmium	< 5.00	10.0	"		< 1.00				10
Lead	< 5.00	10.0	"		< 1.00				10
ICPOE - PE Opti	ma								
Batch 1409031 - N	lo Lab Prep Reqd	V	Vater					ICPO	E - PE Optima
Method Blank (1409	9031-BLK1)	Dilution Factor: 1				Prepa	red & Analyz	zed: 09/08/14	
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	"						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Method Blank Spik	e (1409031-BS1)	Dilution Factor: 1				Prepa	red & Analyz	zed: 09/08/14	
Aluminum	10430	50.0	ug/L	10100		103	85-115		
Iron	10500	250	"	10100		104	85-115		
Manganese	99.69	5.00	"	100		100	85-115		
Zinc	100.1	20.0	"	100		100	85-115		
Duplicate (1409031-	-DUP1)	Dilution Factor: 1	Source	: C140708-0	1	Prepa	red & Analyz	zed: 09/08/14	
Aluminum	< 20.0	50.0	ug/L		< 20.0				20
Iron	2231	250	"		2188			2	20
Manganese	45050	5.00	"		44950			0.2	20
Zinc	61.18	20.0	"		59.24			3	20
Matrix Spike (14090	Dilution Factor: 1		Source	: C140708-0	1	Prepared & Analyzed: 09/08/14			
Aluminum	10670	50.0	ug/L	10100	< 20.0	106	70-130		
Iron	12470	250	ug/L	10100	2188	100	70-130		
Manganese	44260	5.00	"	100	44950	NR	70-130		
ivianganese	1613	20.0		100	77/30	1111	/0-130		

100

59.24

102

70-130

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 **Certificate of Analysis**

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409031 - No	o Lab Prep Reqd	Water						ICPOI	E - PE Optima
Matrix Spike (14090	31-MS2)	Dilution Factor: 1	Source	: C140708-0	5	Prepa	red & Analyz	ed: 09/08/14	
Aluminum	10540	50.0	ug/L	10100	81.22	104	70-130		
Iron	10400	250	"	10100	< 100	103	70-130		
Manganese	16580	5.00	"	100	17200	NR	70-130		
Zinc	138.7	20.0	"	100	46.82	92	70-130		
Batch 1409037 - 14	109031	И	Water					ICPOI	E - PE Optima
Serial Dilution (1409	037-SRD1)	Dilution Factor: 5	Source	: C140708-0	1	Prepa	red & Analyz	ed: 09/08/14	
Aluminum	264.1	250	ug/L		< 20.00				10
Iron	1811	1250	"		2188			19	10
Manganese	50820	25.0	"		44950			12	10
-	81.80	100	"		59.24			32	10

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-	II								
Batch 1409005 - 20	00.2 - TR Metals	Ţ	Vater					ICPN	MS-PE DRC-II
Method Blank (1409	0005-BLK2)	Dilution Factor: 5				Prepa	red: 09/02/14	Analyzed: 09/	11/14
Nickel	2.832	5.00	ug/L						
Copper	< 2.50	5.00	ug/L						
Arsenic	< 2.50	10.0	"						
Cadmium	< 0.500	1.00	"						
Lead	< 0.500	1.00	"						
Duplicate (1409005-	DUP2)	Dilution Factor: 1	Source	: C140708-0	2	Prepa	red: 09/02/14	4 Analyzed: 09/	11/14
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	16.03	10.0	ug/L		15.65			2	20
Arsenic	13.27	20.0	"		13.65			3	20
Cadmium	2.148	2.00	"		2.102			2	20
Lead	1.584	2.00	"		1.585			0.1	20
Matrix Spike (14090	005-MS2)	Dilution Factor: 1	Source	: C140708-0	2	Prepa	red: 09/02/14	1 Analyzed: 09/	11/14
Nickel	392.9	10.0	ug/L	500	< 5.00	79	70-130		
Copper	248.7	10.0	"	300	15.65	78	70-130		
Arsenic	744.0	20.0	"	800	13.65	91	70-130		
Cadmium	192.8	2.00	"	200	2.102	95	70-130		
Lead	1038	2.00	"	1000	1.585	104	70-130		
Matrix Spike (14090	005-MS4)	Dilution Factor: 1	Source	: C140708-0	6	Prepared: 09/02/14 Analyzed: 09/11/14			11/14
Nickel	376.2	10.0	ug/L	500	< 5.00	75	70-130		
Copper	254.0	10.0	"	300	25.57	76	70-130		
Arsenic	743.4	20.0	"	800	19.31	91	70-130		
Cadmium	191.9	2.00	"	200	1.206	95	70-130		
Lead	1024	2.00	"	1000	7.484	102	70-130		
Reference (1409005-	Reference (1409005-SRM2) Dilution Factor: 2					Prepa	red: 09/02/14	Analyzed: 09/	11/14
Nickel	911.9	20.0	ug/L	1000		91	85-115		
Copper	844.4	20.0	ug/L	1000		84	85-115		
Arsenic	1910	40.0	"	2000		96	85-115		
Cadmium	990.8	4.00	"	1000		99	85-115		
Lead	2056	4.00	"	2000		103	85-115		

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409053 - 14	09005	И	/ater					ICPN	AS-PE DRC-II
Serial Dilution (1409)	053-SRD1)	Dilution Factor: 5	Source	: C140708-0)2	Prepa	red: 09/02/14	Analyzed: 09/	11/14
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	< 25.0	50.0	"		15.65				10
Arsenic	< 25.0	100	"		13.65				10
Cadmium	< 5.00	10.0	"		2.102				10
Lead	< 5.00	10.0	"		1.585				10
ICPOE - PE Optim	1a								
Batch 1409005 - 20	0.2 - TR Metals	И	/ater					ICPO	E - PE Optima
Method Blank (14090	005-BLK1)	Dilution Factor: 1				Prepa	red: 09/02/14	Analyzed: 09/	11/14
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	"						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Duplicate (1409005-I	OUP1)	Dilution Factor: 5	Source	: C140708-0)2	Prepa	red: 09/02/14	Analyzed: 09/	11/14
Aluminum	249.9	250	ug/L		265.4			6	20
Iron	11080	1250	"		11030			0.5	20
Manganese	56130	25.0	"		56820			1	20
Zinc	2159	100	"		2195			2	20
Matrix Spike (140900	05-MS1)	Dilution Factor: 1	Source	: C140708-0)2	Prepa	red: 09/02/14	Analyzed: 09/	11/14
Aluminum	2116	50.0	ug/L	2000	265.4	93	70-130		
Iron	3960	250	"	3000	11030	NR	70-130		
Manganese	19950	5.00	"	200	56820	NR	70-130		
Zinc	2323	20.0	"	200	2195	64	70-130		
Matrix Spike (140900	Matrix Spike (1409005-MS3) Dilution Factor: 1		Source	: C140708-0)6	Prepared: 09/02/14 Analyzed: 09/11/14			
Aluminum	2004	50.0	ug/L	2000	161.4	92	70-130		
Iron	5369	250	"	3000	1003	146	70-130		
Manganese	9980	5.00	"	200	19530	NR	70-130		
Zinc	294.6	20.0	"	200	2100	NR	70-130		

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 **Certificate of Analysis**

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409005 - 20	00.2 - TR Metals	И	'ater					ICPO	E - PE Optima
Reference (1409005-	SRM1)	Dilution Factor: 1		Prepared: 09/02/14 Analyzed: 0					11/14
Aluminum	965.3	50.0	ug/L	1000		97	85-115		
Iron	918.2	250	"	1000		92	85-115		
Manganese	1005	5.00	"	1000		100	85-115		
Zinc	975.4	20.0	"	1000		98	85-115		
Batch 1409050 - 14	109005	И	Water					ICPO	E - PE Optima
Serial Dilution (1409	0050-SRD1)	Dilution Factor: 2	Source	C140708-0	2	Prepai	red: 09/02/14	Analyzed: 09/	11/14
Aluminum	< 500	1250	ug/L		265.4				10
Iron	10590	6250	"		11030			4	10
Manganese	57760	125	"		56820			2	10
		500							

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample NOTE:

TDF #: A-046

${\bf Classical\ Chemistry\ by\ EPA/ASTM/APHA\ Methods-Quality\ Control}$

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ESAT Dionex IC									
Batch 1407040 - No Pr	ep Req	J	Water					E	SAT Dionex IC
Method Blank (1407040-	-BLK1)	Dilution Factor: 1				Prepa	red & Analyz	red: 07/11/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Method Blank Spike (14	07040-BS1)	Dilution Factor: 1				Prepa	red & Analyz	zed: 07/11/14	
Fluoride	4.9	0.2	mg/L	5.00		99	90-110		
Chloride	23.6	2.0	"	25.0		94	90-110		
Sulfate as SO4	22.6	0.1	"	25.0		90	90-110		
Nitrate/Nitrite as N	20.1	5.0	"	20.0		100	90-110		
Duplicate (1407040-DUP	plicate (1407040-DUP1) Dilution Factor:		Source	: C140708-0	3	Prepa	red & Analyz	red: 07/11/14	
Fluoride	55.8	20.0	mg/L		55.2			1	20
Chloride	66.4	200	"		65.7			1	20
Sulfate as SO4	714	10.0	"		701			2	20
Nitrate/Nitrite as N	< 100	500	"		< 100				20
Matrix Spike (1407040-N	MS1)	Dilution Factor: 1	Source	: C140708-0	3	Prepa	red & Analyz	red: 07/11/14	
Fluoride	566	20.0	mg/L	500	55.2	102	80-120		
Chloride	2420	200	"	2500	65.7	94	80-120		
Sulfate as SO4	3170	10.0	"	2500	701	99	80-120		
Nitrate/Nitrite as N	2040	500	"	2000	< 100	102	80-120		
Matrix Spike (1407040-N	Tatrix Spike (1407040-MS2) Dilution Factor: 1		Source	: C140708-4	3	Prepared & Analyzed: 07/11/14			
Fluoride	53.1	2.0	mg/L	50.0	3.6	99	80-120		
Chloride	237	20.0	"	250	7.4	92	80-120		
Sulfate as SO4	1270	1.0	"	250	1030	95	80-120		
Nitrate/Nitrite as N	200	50.0	"	200	< 10.0	100	80-120		

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

Certificate of Analysis

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1407055 - 1407	7040		Water					E	SAT Dionex IC
Instrument Blank (140	7055-IBL1)	Dilution Factor: 1				Prepai	red & Analyz	ed: 07/11/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Lachat 8500									
Batch 1407080 - No I	Prep Req		Water						Lachat 8500
Method Blank (140708	0-BLK1)	Dilution Factor: 1				Prepar	red & Analyz	zed: 07/18/14	
Ammonia as N	< 0.0300	0.0500	mg/L						
Method Blank Spike (1407080-BS1)		Dilution Factor: 1				Prepai	red & Analyz	zed: 07/18/14	
Ammonia as N	0.980	0.0500	mg/L	1.00		98	90-110		
Duplicate (1407080-DU	JP1)	Dilution Factor: 1	Source	: C140708-0	4	Prepai	red & Analyz	red: 07/18/14	
Ammonia as N	58.1	5.00	mg/L		58.2			0.3	20
Duplicate (1407080-DU	J P2)	Dilution Factor: 1	Source	: C140711-2	0	Prepai	red & Analyz	ed: 07/18/14	
Ammonia as N	12.0	5.00	mg/L		12.1			0.8	20
Matrix Spike (1407080	-MS1)	Dilution Factor: 1	Source	: C140708-0	4	Prepai	red & Analyz	ed: 07/18/14	
Ammonia as N	154	5.00	mg/L	100	58.2	96	90-110		
Matrix Spike (1407080	-MS2)	Dilution Factor: 1	Source	: C140711-2	0	Prepared & Analyzed: 07/18/14			
Ammonia as N	107	5.00	mg/L	100	12.1	95	90-110		
Reference (1407080-SR	RM1)	Dilution Factor: 5				Prepai	red & Analyz	ed: 07/18/14	
Ammonia as N	4.91	0.250	mg/L	4.80		102	90-110		

Barker-Hughesville_Treatability_JUL 2014_A046 **Project Name:**

Certificate of Analysis

TDF #:

A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Mettler AT									
Batch 1407059 - No	Prep Req	i	Water						Mettler AT
Method Blank (14070:	59-BLK1)	Dilution Factor: 1				Prepa	red: 07/14/14	Analyzed: 07/	15/14
Total Alkalinity	< 5.00	10.0	mg CaCO3 /						
Ouplicate (1407059-DUP1) Dilution Factor: 5 Source: C140708-03					13	Prepared: 07/14/14 Analyzed: 07/15/14			
Total Alkalinity	1010	500	mg CaCO3 /		1020			0.5	20
Duplicate (1407059-D	UP2)	Dilution Factor: 5	Source:	C140708-4	13	Prepa	red: 07/14/14	Analyzed: 07/	15/14
Total Alkalinity	< 250	500	mg CaCO3 /		< 250				20
Reference (1407059-S	RM1)	Dilution Factor: 1				Prepa	red: 07/14/14	Analyzed: 07/	15/14
Total Alkalinity	12.0	10.0	mg CaCO3 /	10.4		115	61.3-143.9		

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: EPA 300.0 Analysis Name: WC - Anions by Ion Chromatography

Instrument: ESAT Dionex IC Work Order: Nu C140708

Analytical Sequence: 1407055 **Dissolved** Concentration Units: mg/L

Blank criteria = \pm - 5x analyte MDL (\pm - PQL)

Initial Calibration Blank (1 & 2)	C	Continuing Cali	bration Blanks		Blank	PQL	
	1	2	3	4	1407040-BLK1	NA	
0.00	0.00	0.00	0.00				
	5	6	7	8	0.00	NA	0.20
	1	2	3	4	1407040-BLK1	NA	
0.00	0.00	0.00	0.00	-	0.00		1
	5	6	7	8		NA	2.00
	1	2	3	4	1407040-BLK1	NA	<u> </u>
0.00	0.00	0.00	0.00				
	5	6	7	8	0.00	NA	0.10
0.00	1	2	3	4	1407040-BLK1	NA	
0.00	0.00	0.00	0.00			37.4	5.00
	5	6	7	8	0.00	NA	5.00
	Calibration Blank (1 & 2) 0.00	Calibration Blank (1 & 2) 1 0.00 0.00 5 1 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 0.00 0.00 0.00	Calibration Blank (1 & 2) Continuing Calibration 0.00 1 2 0.00 5 6 0.00 0.00 0.00 5 6 0.00 0.00 0.00 5 6 0.00 0.00 0.00 5 6 0.00 0.00 0.00 5 6	Calibration Blank (1 & 2) Continuing Calibration Blanks 0.00 1 2 3 0.00 0.00 0.00 0.00 5 6 7 0.00 0.00 0.00 0.00 5 6 7 0.00 0.00 0.00 0.00 5 6 7 0.00 0.00 0.00 0.00 5 6 7 0.00 0.00 0.00 0.00	Calibration Blank (1 & 2) Continuing Calibration Blanks 0.00 1 2 3 4 0.00 0.00 0.00 0.00 0.00 5 6 7 8 0.00 0.00 0.00 0.00 5 6 7 8 0.00 0.00 0.00 0.00 5 6 7 8 0.00 0.00 0.00 0.00 5 6 7 8 0.00 0.00 0.00 0.00 1 2 3 4 0.00 0.00 0.00 0.00	Calibration Blank (1 & 2) Continuing Calibration Blanks Blank (Batch III) 0.00 1 2 3 4 1407040-BLK1 0.00 0.00 0.00 0.00 0.00 0.00 1 2 3 4 1407040-BLK1 0.00 0.00 0.00 0.00 0.00 5 6 7 8 0.00 1 2 3 4 1407040-BLK1 0.00 0.00 0.00 0.00 0.00 5 6 7 8 0.00 5 6 7 8 0.00 1 2 3 4 1407040-BLK1 0.00 0.00 0.00 0.00 0.00	Calibration Blank (1 & 2) Continuing Calibration Blanks Blank (Batch ID) 0.00 1 2 3 4 1407040-BLK1 NA 0.00 0.00 0.00 0.00 NA

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 310.1</u> Analysis Name: <u>WC - Alkalinity</u>

Instrument: Mettler AT Work Order: Nu C140708

Analytical Sequence: Total Concentration Units: mg CaCO3 / L

Blank criteria = \pm - 5x analyte MDL (\pm - PQL)

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	KS	Metho Blan (Batch	k	PQL
		1	2	3	4	1407059-BLK1	NA	
		1.12	1.32					
Total Alkalinity		5	6	7	8	1.04	NA	10.00

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8

INORGANIC ANALYSES DATA SHEET

Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 350.1</u> Analysis Name: <u>WC - Ammonia</u>

Instrument: Lachat 8500 Work Order: Nu C140708

Analytical Sequence: Total Concentration Units: mg/L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	KS	Metho Blan (Batch	k	PQL
		1	2	3	4	1407080-BLK1	NA	
		0.00	0.00	0.00				
Ammonia as N	Ammonia as N		6	7	8	0.02	NA	0.05

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Diss. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140708

Analytical Sequence: 1409037 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blanks		Method Blank (Batch ID))	PQL
		1	2	3	4	1409031-BLK1	NA	
	1.95	1.62	1.03	2.79				
Aluminum		5	6	7	8	2.95	NA	50.00
		1	2	3	4	1409031-BLK1	NA	
	-23.76	21.79	-12.15	19.33				Ī
Iron		5	6	7	8	26.11	NA	250.00
		1	2	3	4	1409031-BLK1	NA	
	0.04	0.22	0.63	0.75				Ī
Manganese		5	6	7	8	-0.01	NA	5.00
		1	2	3		1409031-BLK1	NA	
	0.83	1.03	2.01	2.13	4	1407031 BERT		†
Zinc	0.05	5	6	7	8	0.01	NA	20.00

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: <u>ICPMS Diss. Metals</u>

Instrument: ICPMS-PE DRC-II Work Order: Nu C140708

Analytical Sequence: 1409039 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	C	Continuing Cali	bration Blank	S	Methoo Blank (Batch II		PQL	
		1	2	3	4	1409032-BLK1	NA		
	0.00	0.01	0.02	0.02			37.1		
Nickel		5	6	7	8	-0.01	NA	1.00	
		1	2	3	4	1409032-BLK1	NA		
	0.00	0.00	0.00	0.00					
Copper		5	6	7	8	-0.04	NA	1.00	
	0.00	1	2	3	4	1409032-BLK1	NA		
	0.09	0.02	0.07	0.09]	27.4	2.00	
Arsenic		5	6	7	8	0.11	NA	2.00	
		1	2	3	4	1409032-BLK1	NA		
	0.01	0.02	0.02	0.01					
Cadmium		5	6	7	8	0.00	NA	0.20	
	0.03 Lead	1	2	3	4	1409032-BLK1	NA		
		0.00	-0.02	-0.04			NIA	0.20	
Lead		5	6	7	8	-0.02	NA	0.20	

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140708

Analytical Sequence: 1409050 **Total Recoverable** Concentration Units: <u>ug/L</u>

Initial Calibration Blank (1 & 2)	C	Continuing Cali	ibration Blanks		Blank		PQL	
	1	2	3	4	1409005-BLK1	NA		
0.89	0.92	2.04	3.46					
	5	6	7	8	1.22	NA	50.00	
	1	2	3	4	1409005-BLK1	NA		
15.55	7.23	2.61	15.25					
	5	6	7	8	24.26	NA	250.00	
	1	2	3	4	1409005-BLK1	NA		
0.08	0.13	0.38	0.38				Ī	
	5	6	7	8	-0.28	NA	5.00	
0.64	1	2	3	4	1409005-BLK1	NA	1	
0.04	1.02	0.50	0.91			NI A	20.00	
	5	6	7	8	1.64	NA	20.00	
	Calibration Blank (1 & 2)	Calibration Blank (1 & 2) 1 0.89 1 0.92 5 15.55 7.23 5 5 0.08 1 0.13 5 0.64 1 1.02 1	Calibration Blank (1 & 2) Continuing Calibration 0.89 1 2 0.92 2.04 5 5 6 15.55 7.23 2.61 5 6 0.08 1 2 0.13 0.38 5 6 0.64 1 2 0.64 1.02 0.50	Calibration Blank (1 & 2) Continuing Calibration Blanks 0.89 1 2 3 0.92 2.04 3.46 5 6 7 1 2 3 15.55 7.23 2.61 15.25 5 6 7 0.08 0.13 0.38 0.38 5 6 7 0.64 1 2 3 0.64 1.02 0.50 0.91	Calibration Blank (1 & 2) Continuing Calibration Blanks 0.89 1 2 3 4 0.92 2.04 3.46 3.46 5 6 7 8 15.55 7.23 2.61 15.25 5 6 7 8 0.08 1 2 3 4 0.08 0.13 0.38 0.38 5 6 7 8 0.64 1 2 3 4 0.64 1.02 0.50 0.91	Calibration Blank (1 & 2) Continuing Calibration Blanks Blank (Batch ID) 0.89 1 2 3 4 1409005-BLK1 0.89 0.92 2.04 3.46 1.22 5 6 7 8 1.22 1 2 3 4 1409005-BLK1 15.55 5 6 7 8 24.26 0.08 1 2 3 4 1409005-BLK1 0.08 0.13 0.38 0.38 -0.28 5 6 7 8 -0.28 0.64 1 2 3 4 1409005-BLK1 0.64 1.02 0.50 0.91 1.64	Calibration Blank (1 & 2) Continuing Calibration Blanks Blank (Batch ID) 0.89 1 2 3 4 1409005-BLK1 NA 0.89 0.92 2.04 3.46 1.22 NA 1 2 3 4 1409005-BLK1 NA 15.55 7.23 2.61 15.25 24.26 NA 5 6 7 8 24.26 NA 0.08 0.13 0.38 0.38 -0.28 NA 5 6 7 8 -0.28 NA 0.64 1 2 3 4 1409005-BLK1 NA 0.64 1.02 0.50 0.91 1.64 NA	

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C140708

Analytical Sequence: 1409053 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	s	ВІ	thod ank ch ID)	PQL
		1	2	3	4	NA	1409005-BLK2	
	0.01	0.00	0.00	0.00				
Nickel		5	6	7	8	NA	0.57	1.00
		1	2	3	4	NA	1409005-BLK2	
	0.01	0.00	-0.02	-0.02	•			
Copper		5	6	7	8	NA	-0.03	1.00
		1	2	3		NA	1409005-BLK2	
	0.02				4	INA	1409003-BLK2	
Arsenic		0.03 5	-0.04 6	-0.04 7	8	NA	-0.21	2.00
		3		,				
		1	2	3	4	NA	1409005-BLK2	
	0.00	-0.01	-0.01	0.00			0.02	0.00
Cadmium		5	6	7	8	NA	-0.02	0.20
				2		NIA	1400005 PLY2	
	-0.01	1	2	3	4	NA	1409005-BLK2	
Lead		-0.02	-0.01	-0.02		NA	-0.03	0.20
Loud		5	6	7	8	11/1		_ 0

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ESAT Dionex IC Method: EPA 300.0 Analysis Name: WC - Anions by Ion Chromatography 2013

Sequence: 1407055 Work Order: C140708 Units: mg/L

Dissolved	Init	ial (ICV1,	ICV2)		Cont	inuing Ca	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	40.0	40.4	101.0	40.0	41.4	103.5	40.0	41.4	103.5	40.0	41.6	104.0
Chloride	40.0	40.4	101.0		4			5			6	
					7			8			9	
					1			2			3	
				4.00	4.1	102.5	4.00	4.2	105.0	4.00	4.2	105.0
Fluoride	4.00	4.0	100.0		4			5			6	
					7			8			9	
					1			2			3	
	20.0	20.1	100.5	20.0	20.6	103.0	20.0	20.6	103.0	20.0	20.7 6	103.5
Nitrate/Nitrite as N					-			<u> </u>			•	
					7			8			9	
					1			2			3	
				100	104	104.0	100	104	104.0	100	106	106.0
Sulfate as SO4	100	101	101.0	100	4	101.0	100	5	101.0	100	6	100.0
					7			8			9	
					, , , , , , , , , , , , , , , , , , ,							

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Mettler AT Method: EPA 310.1 Analysis Name: WC - Alkalinity

Sequence: 1407064 Work Order: C140708 Units: mg CaCO3 / L

Total	Init	ial (ICV1, I	(CV2)		Cont	inuing Ca	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				100	100	100.0	100	99.9	99.9			
Total Alkalinity					4			5			6	
10tai 1 iiitaiiiity												
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Lachat 8500 Method: EPA 350.1 Analysis Name: WC - Ammonia

Sequence: 1407091 Work Order: C140708 Units: mg/L

Total	Init	ial (ICV1, I	(CV2)		Conti	nuing C	alibration	Verification	on Stand	ards (CC	(Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				1.00	0.979	97.9	1.00	0.980	98.0	1.00	0.982	98.2
Ammonia as N					4			5			6	
Ammonia as iv												
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Diss. Metals

Sequence: 1409037 Work Order: C140708 Units: ug/L

Dissolved	Initi	ial (ICV1, l	(CV2)		Cont	inuing C	alibration	Verificati	on Stand	ards (CC	Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	12400	00.2	12500	12700	101.6	12500	12670	101.4	12500	12550	100.4
Aluminum	12500	12400	99.2		4			5			6	
					7			8			9	
					1			2			3	
				12500	12660	101.3	12500	12730	101.8	12500	12650	101.2
Iron	12500	12630	101.0		4			5			6	
					7			8			9	
				1000	1009	100.9	1000	1027	102.7	1000	1033	103.3
Manganese	1000	1028	102.8	1000	4	100.5	1000	5	102.7	1000	6	100.0
Manganese												
					7			8			9	
					1			2			3	
				2500	2544	101.8	2500	2579	103.2	2500	2592	103.7
Zinc	2500	2546	101.8		4			5			6	
					7			8			9	
					ı							

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Diss. Metals

Sequence: 1409039 Work Order: C140708 Units: ug/L

Dissolved	Init	ial (ICV1, I	ICV2)		Cont	inuing C	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				50.0	49.5	99.0	50.0	50.8	101.6	50.0	49.1	98.2
Arsenic	50.0	50.9	101.8		4			5			6	
					7			8			9	
					,			0				
					1			2			3	
	50.0	49.4	98.8	50.0	49.5	99.0	50.0	53.6	107.2	50.0	54.4	108.8
Cadmium	30.0		76.6		4			5			6	
					7			8			9	
					1			2			3	
	50.0	54.2	108.4	50.0	51.3	102.6	50.0	49.6	99.2	50.0	49.3	98.6
Copper	30.0	J 4 .2	100.4		4			5			6	
					7			8			9	
					1			2			3	
	50.0	50.2	100.4	50.0	46.7	93.4	50.0	48.7	97.4	50.0	46.1	92.2
Lead	50.0	30.2	100.1		4			5			6	
					7			8			9	
					1			2			3	
	50.0	53.6	107.2	50.0	51.5	103.0	50.0	50.4	100.8	50.0	52.5	105.0
Nickel					4			5			6	
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Sequence: 1409050 Work Order: C140708 Units: ug/L

Total Recoverable	Initi	ial (ICV1,	ICV2)		Cont	inuing C	alibration	Verificati	on Stand	ards (CC	Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	10500	12050	102.6	12500	12790	102.3	12500	12730	101.8	12500	12790	102.3
Aluminum	12500	12950	103.6		4			5			6	
					7			8			9	
					1			2			3	
	12500	10000	400.0	12500	12490	99.9	12500	12470	99.8	12500	12430	99.4
Iron	12500	12900	103.2		4			5			6	
					7			8			9	
				1000	1027	102.7	1000	1028	102.8	1000	1033	103.3
Managemen	1000	1022	102.2	1000	4	102.7	1000	5	102.0	1000	6	103.3
Manganese												
					7			8			9	
					1			2			3	
				2500	2594	103.8	2500	2569	102.8	2500	2589	103.6
Zinc	2500	2566	102.6		4	105.0	2000	5	102.0		6	105.0
Zinc												
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1409053 Work Order: C140708 Units: ug/L

Total Recoverable	Init	ial (ICV1,	ICV2)		Cont	inuing C	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				50.0	47.28	94.6	50.0	47.79	95.6	50.0	47.73	95.5
Arsenic	50.0	49.46	98.9		4			5			6	
					7			8			9	
					1			2			3	
	50.0	50.55	101.1	50.0	49.98	100.0	50.0	49.81	99.6	50.0	50.15	100.3
Cadmium	50.0	50.55	101.1		4			5			6	
					7			8			9	
					1			2			3	
	50.0	40.05	06.5	50.0	46.86	93.7	50.0	48.17	96.3	50.0	45.32	90.6
Copper	50.0	48.25	96.5		4			5			6	
					7			8			9	
					·							
					1			2			3	
	50.0	49.15	98.3	50.0	52.27	104.5	50.0	51.98	104.0	50.0	51.52	103.0
Lead	30.0	49.13	70.3		4			5			6	
					7			8			9	
					1			2			3	
	50.0	49.76	99.5	50.0	48.69	97.4	50.0	49.50	99.0	50.0	47.25	94.5
Nickel					4			5			6	
					7			8	_		9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #:

A-046

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPMS-PE DRC-II

Analyte		<u>C</u>	heck Sample	Result*	<u>Units</u>	<u>True</u>	<u>%R</u>	<u>PQL</u>
Sequence:	1409039	Analysis:	ICPMS Diss. Metals			· 		
Arsenic			IFA1	0.0	ug/L			2.00
			IFB1	18.8	ug/L	20	94	2.00
Cadmium			IFA1	0.1	ug/L			0.200
			IFB1	20.0	ug/L	20	100	0.200
Copper			IFA1	0.7	ug/L			1.00
			IFB1	20.6	ug/L	20	103	1.00
Lead			IFA1	0.0	ug/L			0.200
			IFB1	0.0	ug/L			0.200
Nickel			IFA1	-0.1	ug/L			1.00
			IFB1	20.3	ug/L	20	102	1.00
*Criteria = 8	30-120%R of	Γrue Value or +	-/- PQL					
See raw data	for complete	analyte list and	l results.					
Sequence:	1409053	Analysis:	ICPMS Tot. Rec. Meta	als				
Arsenic			IFA1	0.0	ug/L			2.00

Sequence:	1409053	Analysis:	ICPMS Tot. Rec.	. Metals				
Arsenic			IFA1	0.0	ug/L			2.00
			IFB1	20.1	ug/L	20	101	2.00
Cadmium			IFA1	0.0	ug/L			0.200
			IFB1	20.7	ug/L	20	104	0.200
Copper			IFA1	0.5	ug/L			1.00
			IFB1	17.4	ug/L	20	87	1.00
Lead			IFA1	0.0	ug/L			0.200
			IFB1	0.0	ug/L			0.200
Nickel			IFA1	-0.2	ug/L			1.00
			IFB1	18.3	ug/L	20	92	1.00

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

TDF #:

A-046

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPOE - PE Optima

Analyte	Check Sample	Result*	<u>Units</u>	<u>True</u>	<u>%R</u>	<u>PQL</u>
Sequence: 1409037	Analysis: ICPOE Diss. Metals					
Aluminum	IFA1	59,888.8	ug/L	60,000	100	50.0
	IFB1	60,565.4	ug/L	60,000	101	50.0
Iron	IFA1	234,765.4	ug/L	250,000	94	250
	IFB1	235,009.8	ug/L	250,000	94	250
Manganese	IFA1	-0.1	ug/L			5.00
	IFB1	196.0	ug/L	200	98	5.00
Zinc	IFA1	8.6	ug/L			20.0
	IFB1	291.9	ug/L	300	97	20.0
*Criteria = 80-120%R o	of True Value or +/- PQL					

See raw data for complete analyte list and results.

Sequence: 1409050	Analysis: ICPOE Tot. Rec.	Metals				
Aluminum	IFA1	61,035.1	ug/L	60,000	102	50.0
	IFB1	61,569.3	ug/L	60,000	103	50.0
Iron	IFA1	234,323.5	ug/L	250,000	94	250
	IFB1	234,561.1	ug/L	250,000	94	250
Manganese	IFA1	-0.5	ug/L			5.00
	IFB1	195.4	ug/L	200	98	5.00
Zinc	IFA1	4.8	ug/L			20.0
	IFB1	287.6	ug/L	300	96	20.0

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8
Detection Limit (PQL) Standard
ICPMS-PE DRC-II

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1409039

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Arsenic	2.00	2.11	105	ug/L
Cadmium	0.200	0.180	90	ug/L
Copper	1.00	0.978	98	ug/L
Lead	0.200	0.224	112	ug/L
Nickel	1.00	0.952	95	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1409037

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	99.63	100	ug/L
Iron	100	91.41	91	ug/L
Manganese	10.0	10.06	101	ug/L
Zinc	50.0	53.60	107	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard Lachat 8500

Classical Chemistry by EPA/ASTM/APHA Methods

Sequence: 1407091

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Ammonia as N	0.0250	0.0197	79	mg/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8
Detection Limit (PQL) Standard
ICPMS-PE DRC-II

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1409053

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Arsenic	2.00	1.956	98	ug/L
Cadmium	0.200	0.1660	83	ug/L
Copper	1.00	1.085	109	ug/L
Lead	0.200	0.1620	81	ug/L
Nickel	1.00	1.014	101	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1409050

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	98.99	99	ug/L
Iron	100	129.6	130	ug/L
Manganese	10.0	10.10	101	ug/L
Zinc	50.0	51.67	103	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 300.0 **Dissolved Sequence ID#:** 1407055

nstrument ID #: ESAT	LSR #: A-046		
Analysis ID	Sample Name	Analysis Date	Analysis Time
1407055-ICV1	Initial Cal Check	07/11/14	14:23
1407055-ICB1	Initial Cal Blank	07/11/14	14:42
1407055-SCV1	Secondary Cal Check	07/11/14	15:00
1407055-IBL1	Instrument Blank	07/11/14	15:19
1407040-BS1	Blank Spike	07/11/14	15:38
1407040-BLK1	Blank	07/11/14	15:56
C140708-03	14BH-DT-PILOT-BCR1-07081	07/11/14	16:15
1407040-DUP1	Duplicate	07/11/14	16:33
1407040-MS1	Matrix Spike	07/11/14	16:52
C140708-07	14BH-DT-PILOT-BCR2-07081	07/11/14	17:10
C140708-11	14BH-DT-PILOT-BCR3-07081	07/11/14	17:29
C140708-15	14BH-DT-PILOT-BCR4-07081	07/11/14	17:48
1407055-CCV1	Calibration Check	07/11/14	18:06
1407055-CCB1	Calibration Blank	07/11/14	18:25
C140708-19	14BH-DT-PILOT-CHIT-070814	07/11/14	18:43
C140708-23	14BH-DT-PILOT-INFL-070814	07/11/14	19:02
C140708-27	14BH-DT-PILOT-INFLD-0708	07/11/14	19:20
C140708-31	14BH-DT-PILOT-NOAH-0708	07/11/14	19:39
C140708-35	14BH-DT-PILOT-POSTE-0708	07/11/14	19:58
C140708-39	14BH-DT-PILOT-POSTI-07081	07/11/14	20:16
C140708-43	14BH-DT-PILOT-SAPS-070814	07/11/14	20:35
1407040-MS2	Matrix Spike	07/11/14	20:53
C140708-47	14BH-TI-BENCH-TN-CHIT-07	07/11/14	21:12
C140708-50	14BH-TI-BENCH-TN-LSTN-0	07/11/14	21:30
1407055-CCV2	Calibration Check	07/11/14	21:49
1407055-CCB2	Calibration Blank	07/11/14	22:08
C140708-53	14BH-TI-BENCH-TN-NAOH-(07/11/14	22:26
C140708-56	14BH-TI-BENCH-TN-RAW-07	07/11/14	22:45
C140708-59	14BH-TI-BENCH-TN-RAWD-	07/11/14	23:03
1407055-CCV3	Calibration Check	07/11/14	23:22
1407055-CCB3	Calibration Blank	07/11/14	23:40

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 310.1 **Total Sequence ID#:** 1407064

Instrument ID #: Mett	ler AT Wate	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1407059-SRM1	Reference	07/15/14	12:08
1407059-BLK1	Blank	07/15/14	12:08
C140708-03	14BH-DT-PILOT-BCR1-07081	07/15/14	12:08
1407059-DUP1	Duplicate	07/15/14	12:08
C140708-07	14BH-DT-PILOT-BCR2-07081	07/15/14	12:08
C140708-11	14BH-DT-PILOT-BCR3-07081	07/15/14	12:08
C140708-15	14BH-DT-PILOT-BCR4-07081	07/15/14	12:08
C140708-19	14BH-DT-PILOT-CHIT-070814	07/15/14	12:08
C140708-23	14BH-DT-PILOT-INFL-070814	07/15/14	12:08
C140708-27	14BH-DT-PILOT-INFLD-0708	07/15/14	12:08
1407064-CCV1	Calibration Check	07/15/14	12:08
1407064-CCB1	Calibration Blank	07/15/14	12:08
C140708-31	14BH-DT-PILOT-NOAH-0708	07/15/14	12:08
C140708-35	14BH-DT-PILOT-POSTE-0708	07/15/14	12:08
C140708-39	14BH-DT-PILOT-POSTI-07081	07/15/14	12:08
C140708-43	14BH-DT-PILOT-SAPS-070814	07/15/14	12:08
1407059-DUP2	Duplicate	07/15/14	12:08
C140708-47	14BH-TI-BENCH-TN-CHIT-07	07/15/14	12:08
C140708-50	14BH-TI-BENCH-TN-LSTN-0	07/15/14	12:08
C140708-53	14BH-TI-BENCH-TN-NAOH-(07/15/14	12:08
C140708-56	14BH-TI-BENCH-TN-RAW-07	07/15/14	12:08
C140708-59	14BH-TI-BENCH-TN-RAWD-	07/15/14	12:08
1407064-CCV2	Calibration Check	07/15/14	12:08
1407064-CCB2	Calibration Blank	07/15/14	12:08

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 350.1 **Total Sequence ID#:** 1407091

Instrument ID #: Lach	at 8500 Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1407080-BLK1	Blank	07/18/14	13:02
1407080-BS1	Blank Spike	07/18/14	13:02
1407091-CRL1	Instrument RL Check	07/18/14	13:02
C140708-04	14BH-DT-PILOT-BCR1-07081	07/18/14	13:02
1407080-DUP1	Duplicate	07/18/14	13:02
1407080-MS1	Matrix Spike	07/18/14	13:02
C140708-08	14BH-DT-PILOT-BCR2-07081	07/18/14	13:02
1407091-CCV1	Calibration Check	07/18/14	13:02
1407091-CCB1	Calibration Blank	07/18/14	13:02
C140708-12	14BH-DT-PILOT-BCR3-07081	07/18/14	13:02
C140708-36	14BH-DT-PILOT-POSTE-0708	07/18/14	13:02
C140708-40	14BH-DT-PILOT-POSTI-07081	07/18/14	13:02
1407080-DUP2	Duplicate	07/18/14	13:02
1407091-CCV2	Calibration Check	07/18/14	13:02
1407091-CCB2	Calibration Blank	07/18/14	13:02
1407080-MS2	Matrix Spike	07/18/14	13:02
1407080-SRM1	Reference	07/18/14	13:02
C140708-16	14BH-DT-PILOT-BCR4-07081	07/18/14	13:02
1407091-CCV3	Calibration Check	07/18/14	13:02
1407091-CCB3	Calibration Blank	07/18/14	13:02

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Dissolved Sequence ID#:** 1409037

Analysis ID	Sample Name	Analysis Date	Analysis Time
409037-ICV1	Initial Cal Check	09/08/14	11:08
1409037-ICV1	Secondary Cal Check	09/08/14	11:11
1409037-ICB1	Initial Cal Blank	09/08/14	11:14
1409037-ICB1	Instrument RL Check	09/08/14	11:17
1409037-ERE1	Interference Check A	09/08/14	11:20
1409037-IFB1	Interference Check B	09/08/14	11:24
1409031-BLK1	Blank	09/08/14	11:28
1409031-BS1	Blank Spike	09/08/14	11:31
C140708-01	14BH-DT-PILOT-BCR1-07081	09/08/14	11:34
1409031-DUP1	Duplicate	09/08/14	11:39
1409037-SRD1	Serial Dilution	09/08/14	11:43
1409031-MS1	Matrix Spike	09/08/14	11:46
C140708-05	14BH-DT-PILOT-BCR2-07081	09/08/14	11:50
1409031-MS2	Matrix Spike	09/08/14	11:55
C140708-09	14BH-DT-PILOT-BCR3-07081	09/08/14	11:59
1409037-CCV1	Calibration Check	09/08/14	12:06
1409037-CCB1	Calibration Blank	09/08/14	12:09
C140708-17	14BH-DT-PILOT-CHIT-070814	09/08/14	12:17
C140708-21	14BH-DT-PILOT-INFL-070814	09/08/14	12:21
C140708-25	14BH-DT-PILOT-INFLD-0708	09/08/14	12:24
C140708-33	14BH-DT-PILOT-POSTE-0708	09/08/14	12:31
C140708-37	14BH-DT-PILOT-POSTI-07081	09/08/14	12:35
C140708-45	14BH-TI-BENCH-TN-CHIT-07	09/08/14	12:43
1409037-CCV2	Calibration Check	09/08/14	12:51
1409037-CCB2	Calibration Blank	09/08/14	12:54
C140708-48	14BH-TI-BENCH-TN-LSTN-0	09/08/14	12:57
C140708-51	14BH-TI-BENCH-TN-NAOH-(09/08/14	13:01
C140708-54	14BH-TI-BENCH-TN-RAW-07	09/08/14	13:05
C140708-57	14BH-TI-BENCH-TN-RAWD-	09/08/14	13:08
C140708-13	14BH-DT-PILOT-BCR4-07081	09/08/14	13:16
C140708-29	14BH-DT-PILOT-NOAH-0708	09/08/14	13:19
C140708-41	14BH-DT-PILOT-SAPS-07081	09/08/14	13:22
1409037-CCV3	Calibration Check	09/08/14	13:25
1409037-CCB3	Calibration Blank	09/08/14	13:28

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Dissolved Sequence ID#:** 1409039

nstrument ID #: ICPM	S-PE DRC-II Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1409039-ICV1	Initial Cal Check	09/09/14	08:55
1409039-SCV1	Secondary Cal Check	09/09/14	08:59
1409039-ICB1	Initial Cal Blank	09/09/14	09:02
1409039-CRL1	Instrument RL Check	09/09/14	09:05
1409039-IFA1	Interference Check A	09/09/14	09:09
1409039-IFB1	Interference Check B	09/09/14	09:12
1409032-BLK1	Blank	09/09/14	09:15
1409032-BS1	Blank Spike	09/09/14	09:18
C140708-01	14BH-DT-PILOT-BCR1-07081	09/09/14	09:21
1409032-DUP1	Duplicate	09/09/14	09:24
1409039-SRD1	Serial Dilution	09/09/14	09:27
1409032-MS1	Matrix Spike	09/09/14	09:30
C140708-05	14BH-DT-PILOT-BCR2-07081	09/09/14	09:33
1409032-MS2	Matrix Spike	09/09/14	09:36
C140708-09	14BH-DT-PILOT-BCR3-07081	09/09/14	09:39
1409039-CCV1	Calibration Check	09/09/14	09:46
1409039-CCB1	Calibration Blank	09/09/14	09:49
C140708-13	14BH-DT-PILOT-BCR4-07081	09/09/14	09:52
C140708-17	14BH-DT-PILOT-CHIT-070814	09/09/14	09:55
C140708-21	14BH-DT-PILOT-INFL-070814	09/09/14	09:58
C140708-25	14BH-DT-PILOT-INFLD-0708	09/09/14	10:01
C140708-29	14BH-DT-PILOT-NOAH-0708	09/09/14	10:04
C140708-33	14BH-DT-PILOT-POSTE-0708	09/09/14	10:07
C140708-37	14BH-DT-PILOT-POSTI-07081	09/09/14	10:10
C140708-41	14BH-DT-PILOT-SAPS-07081	09/09/14	10:14
C140708-45	14BH-TI-BENCH-TN-CHIT-07	09/09/14	10:17
1409039-CCV2	Calibration Check	09/09/14	10:42
1409039-CCB2	Calibration Blank	09/09/14	10:45
C140708-48	14BH-TI-BENCH-TN-LSTN-0	09/09/14	10:49
C140708-51	14BH-TI-BENCH-TN-NAOH-(09/09/14	10:52
C140708-54	14BH-TI-BENCH-TN-RAW-07	09/09/14	10:55
C140708-57	14BH-TI-BENCH-TN-RAWD-	09/09/14	10:58
1409039-CCV3	Calibration Check	09/09/14	11:15
1409039-CCB3	Calibration Blank	09/09/14	11:18

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Total Recoverable Sequence ID#:** 1409050

nstrument ID #: ICPO	E - PE Optima Water		LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1409050-ICV1	Initial Cal Check	09/11/14	10:04
1409050-SCV1	Secondary Cal Check	09/11/14	10:07
1409050-ICB1	Initial Cal Blank	09/11/14	10:10
1409050-CRL1	Instrument RL Check	09/11/14	10:13
1409050-IFA1	Interference Check A	09/11/14	10:16
1409050-IFB1	Interference Check B	09/11/14	10:20
1409005-BLK1	Blank	09/11/14	10:24
1409005-SRM1	Reference	09/11/14	10:27
C140708-02	14BH-DT-PILOT-BCR1-07081	09/11/14	10:30
1409005-DUP1	Duplicate	09/11/14	10:33
1409050-SRD1	Serial Dilution	09/11/14	10:36
C140708-06	14BH-DT-PILOT-BCR2-07081	09/11/14	10:40
1409005-MS1	Matrix Spike	09/11/14	10:44
C140708-10	14BH-DT-PILOT-BCR3-07081	09/11/14	10:48
1409005-MS3	Matrix Spike	09/11/14	10:52
1409050-CCV1	Calibration Check	09/11/14	10:59
1409050-CCB1	Calibration Blank	09/11/14	11:02
C140708-14	14BH-DT-PILOT-BCR4-07081	09/11/14	11:05
C140708-18	14BH-DT-PILOT-CHIT-070814	09/11/14	11:09
C140708-22	14BH-DT-PILOT-INFL-070814	09/11/14	11:12
C140708-26	14BH-DT-PILOT-INFLD-0708	09/11/14	11:16
C140708-30	14BH-DT-PILOT-NOAH-0708	09/11/14	11:19
C140708-34	14BH-DT-PILOT-POSTE-0708	09/11/14	11:22
C140708-38	14BH-DT-PILOT-POSTI-07081	09/11/14	11:26
C140708-42	14BH-DT-PILOT-SAPS-07081	09/11/14	11:30
C140708-46	14BH-TI-BENCH-TN-CHIT-07	09/11/14	11:33
1409050-CCV2	Calibration Check	09/11/14	11:40
1409050-CCB2	Calibration Blank	09/11/14	11:43
C140708-49	14BH-TI-BENCH-TN-LSTN-0	09/11/14	11:46
C140708-52	14BH-TI-BENCH-TN-NAOH-(09/11/14	11:50
C140708-55	14BH-TI-BENCH-TN-RAW-07	09/11/14	11:54
C140708-58	14BH-TI-BENCH-TN-RAWD-	09/11/14	11:58
1409050-CCV3	Calibration Check	09/11/14	12:05
1409050-CCB3	Calibration Blank	09/11/14	12:08

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Total Recoverable Sequence ID#:** 1409053

nstrument ID #: ICPM	S-PE DRC-II Wate	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1409053-ICV1	Initial Cal Check	09/11/14	12:39
1409053-SCV1	Secondary Cal Check	09/11/14	12:42
1409053-ICB1	Initial Cal Blank	09/11/14	12:46
1409053-CRL1	Instrument RL Check	09/11/14	12:49
1409053-IFA1	Interference Check A	09/11/14	12:52
1409053-IFB1	Interference Check B	09/11/14	12:56
1409005-BLK2	Blank	09/11/14	12:59
C140708-02	14BH-DT-PILOT-BCR1-07081	09/11/14	13:02
1409005-DUP2	Duplicate	09/11/14	13:05
1409053-SRD1	Serial Dilution	09/11/14	13:08
C140708-06	14BH-DT-PILOT-BCR2-07081	09/11/14	13:11
1409005-SRM2	Reference	09/11/14	13:14
1409005-MS2	Matrix Spike	09/11/14	13:17
C140708-10	14BH-DT-PILOT-BCR3-07081	09/11/14	13:20
1409005-MS4	Matrix Spike	09/11/14	13:23
1409053-CCV1	Calibration Check	09/11/14	13:29
1409053-CCB1	Calibration Blank	09/11/14	13:33
C140708-14	14BH-DT-PILOT-BCR4-07081	09/11/14	13:36
C140708-18	14BH-DT-PILOT-CHIT-070814	09/11/14	13:39
C140708-22	14BH-DT-PILOT-INFL-070814	09/11/14	13:47
C140708-30	14BH-DT-PILOT-NOAH-0708	09/11/14	13:53
C140708-34	14BH-DT-PILOT-POSTE-0708	09/11/14	13:56
C140708-42	14BH-DT-PILOT-SAPS-07081	09/11/14	14:02
C140708-46	14BH-TI-BENCH-TN-CHIT-07	09/11/14	14:05
1409053-CCV2	Calibration Check	09/11/14	14:27
1409053-CCB2	Calibration Blank	09/11/14	14:30
C140708-49	14BH-TI-BENCH-TN-LSTN-0	09/11/14	14:34
C140708-52	14BH-TI-BENCH-TN-NAOH-	09/11/14	14:37
C140708-55	14BH-TI-BENCH-TN-RAW-07	09/11/14	14:40
C140708-58	14BH-TI-BENCH-TN-RAWD-	09/11/14	14:43
C140708-26	14BH-DT-PILOT-INFLD-0708	09/11/14	14:49
C140708-38	14BH-DT-PILOT-POSTI-07081	09/11/14	14:52
1409053-CCV3	Calibration Check	09/11/14	15:18
1409053-CCB3	Calibration Blank	09/11/14	15:22

Chain o	f Custody Record		Barker-l	Hughesvill	e Mini	ng Distri	ct S	up	erfı	und Site	Page:	1 of 1		
From:	CDM Smith				CDM	Smith				Se	end To:	EPA Region 8 La	ooratory	
	555 17th Street, Suite 110	0	_	50 West	14th 9	Street, Su	ite	20	0			Attn: ESAT R8/Sc		
	Denver, CO 80202		_	Helen	a, Mo	ntana 59	960	1				16194 W 45th D	r.	
			_									Golden, CO 8040)3	
													ia: Hand De	livery
												V	ia. Haria De	ilivery
		T			· · · · · · · · · · · · · · · · · · ·							Ship Dat	te: 7/10/20	14
Sample Placed in Cooler/Bag	Sample ID		Sample Time	Sample Type (S=soil) (W=water)	Bother Bother	Turn Around Time	Total Metals	Dissolved Metals	Alkalinity, Sulfate		Comme		Sample Disposition	Sample Received by Lab
····	14BH-TI-BENCH-TN-RAW-070814	7/8/2014	1630	W	19	1	Х	X	X	Triplicate sampl	e for MS/N	1SD		
	14BH-TI-BENCH-TN-RAWD-070814	7/8/2014	1650	W	3	Standard	X	X	X					
	14BH-TI-BENCH-TN-NAOH-070814 14BH-TI-BENCH-TN-CHIT-070814	7/8/2014 7/8/2014	1730 1855 i	15 W	3	(21 days)	X	X	X					
	14BH-TI-BENCH-TN-LSTN-070814	7/8/2014	IN 1915		3	1	X	X	X					
	14BH-11-BENCH-114-E3114-070814	7/8/2014	1340 10	33 W	+-2-		^	<u> </u>	\vdash					
			 		 				\vdash					
			1		 				Н		***************************************			
			1		<u> </u>				\Box					
			†											
			†											
									П		NAMES OF TAXABLE PARTY.	1.5		
									П					
	**(
			<u> </u>											
COSC Militaria chiana care e concercar con con	of Samples: 5													
emarks:	Send reports to Nick Anton (anton	nr@cdmsmitl	h.com 720 26	64-1147) and	Michael	Fischer (fisc	herr	nj@	cdm	nsmith.com 303	-383-232	8).		
	Dissolved metals and anions were	field filtered ((0.45 micron))										
elinguish	ed by (Signature and Company)			Date/Time	Receive	ed by (Signa	ture	and	Cor	mpany) Dat	e/Time	Sample Conditio	n Upon Receipt	* Artist profession
Michael		Smith	7/10/		5			and the second second	ndelikarini (naorii Ni	7-10-1	3 150	8		
					Americani									

CHAIN OF CUSTODY RECORD

CDM Smith			Danny	T Pilot Test	The state of the s							An	alysis							
NOTES: Limited sample volumes due to t Contact: Angela Franden, CDM Smith (40						200.7 or 200.8	AL), 200.7 or 200.8	lfate, chloride,	onia											Other Instructions and Notes
SAMPLE NUMBER	DATE	TIME	MATRIX	Preservative	Type & No. of Containers	Total Metals (TAL), 2	Dissolved Metals (TAL),	Alkalinity, Anions (sulfate, fluoride)	Nitrate+Nitrite, Ammonia											
● 14BH-DT-PILOT-INFL-070814	7/8/14	8:45	aqueous		3, 125 mL poly	Х														
14BH-DT-PILOT-INFLD-070814	7/8/14	9:05	aqueous		3, 125 mL poly	Х	Х	Х												
14BH-DT-PILOT-SAPS-070814	7/8/14	9:15	aqueous		3, 125 mL poly	х	Х	Х												-
● 14BH-DT-PILOT-CHIT-070814	7/8/14	9:25	aqueous		3, 125 mL poly	х	Х	Х												
● 14BH-DT-PILOT-NAOH-070814	7/8/14	9:40	aqueous	HNO3	3, 125 mL poly	Х	Х	Х												
14BH-DT-PILOT-BCR1-070814	7/8/14	9:55	aqueous	(metals), H2SO4	4, 125 mL poly	Х	Х	Х	Х											
14BH-DT-PILOT-BCR2-070814	7/8/14	10:10	aqueous	(nutrients), cool	4, 125 mL poly	Х	Х	Х	Х											-
14BH-DT-PILOT-BCR3-070814	7/8/14	10:30	aqueous		4, 125 mL poly	х	Х	Х	Х											TAL metals = Al, As, Ba, Be, Cd, Ca,
14BH-DT-PILOT-BCR4-070814	7/8/14	10:50	aqueous		4, 125 mL poly	Х	Х	Х	Х											Cr, Co, Cu, Fe, Pb, Mg, Mn, Ni, K, Ag,
14BH-DT-PILOT-POSTI-070814	7/8/14	11:05	aqueous		4, 125 mL poly	Х	Х	Х	х											Na, Tl, Zn.
14BH-DT-PILOT-POSTE-070814	7/8/14	11:25	aqueous		4, 125 mL poly	Х	х	х	х											
							_							-					-	
Relinguished by: (Signature)	Date/Time		Received fo	Laboratory by:	(Signature)	L	L		J											
Sourestelland	04/09/14	1615	Hr	_ //	t															
Received by: (Signature)	Date/Time		Airbill No.(s	, ,				Carr	ier Na	me: F	edEx		Lai	b: US	EPA Lat	Region	18			
	7/10/094	0123																		

C140708

Date Issued: 5/29/2014

Site ID: 085N

TDF ID: A-046

ESAT Technical Direction Form

Contract No. EPW13028 EPA Region 8

Date

TDF ID:	A-046		Date Up	odated:			Closed By:
	The Contractor Superfund site during the 202 associated with	e as indicated in 14 field season s	several water sa the Analytical starting in mid-J reraging approx	Information S June though ea	ection. The	samples will be 2014. There v	y at the Barker-Hughesville e sent to the ESAT R8 Lab will be 9 sampling events nples will be collected by Nick
							trations and should be ported from the 200.7 analyses.
	CDM Sn 50 West Helena, I 406-441-	return the cool- nith/Lauren He 14th Street, Suit MT 59601 1435 1323-6393-5	lland	ving address:			
	TO02/Subtas	k 02b: Inorgar	ic Chemistry				
	Site RPM: R	oger Hoogerhei	de				
MATRIX		n: Vegetation [Biota				
	o arr	OC ☑ Alk ☑ nonia and repor					
	lved 🛮 Total	Recoverable □ □ As □ Ba			1 🗆 Co 🗆	Cr □ Cu 図	Fe □ K □ Mg
200.8:	l Ag □ Al	□ Na □ Ni ☑ As □ Ba □ Tl □ U	□ Be ☑ Cd	□Со□С			Zn □ SiO2 Ni ☑ Pb □ Sb
7470/747	1/747 🗆 H	g				09/08/14	
FIBERS	□ TEM						
Delivera ID	bles	· j	Description			Due Date	Submission Date
_	ovide final deliver er delivery of sa	verable package		or no later than	30 days		
Do	2	Q 5	29/14				

ANALYTICAL SUMMARY REPORT

August 05, 2014

CDM Federal Programs 555 17th St Ste 1100 Denver, CO 80202

Work Order: H14070430 Quote ID: H823 - Baker-Hughsville Superfund Site

Project Name: 79171.3383.325.TTZ.DANNY

Energy Laboratories Inc Helena MT received the following 11 samples for CDM Federal Programs on 7/24/2014 for analysis.

Lab ID	Client Sample ID	Collect Date Receive Da	te Matrix	Test
H14070430-001	14BH-DT-PILOT-INF- 072214	07/22/14 8:30 07/24/14	Aqueous	Acidity, Total as CaCO3 Phosphorus, Orthophosphate as P
H14070430-002	14BH-DT-PILOT-SAPS- 072214	07/22/14 8:45 07/24/14	Aqueous	Same As Above
H14070430-003	14BH-DT-PILOT-CHIT- 072214	07/22/14 9:00 07/24/14	Aqueous	Same As Above
H14070430-004	14BH-DT-PILOT-NAOH- 072214	07/22/14 9:10 07/24/14	Aqueous	Same As Above
H14070430-005	14BH-DT-PILOT-BCR1- 072214	07/22/14 9:25 07/24/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Phosphorus, Orthophosphate as P Sulfide, Iodine Titrimetric
H14070430-006	14BH-DT-PILOT-BCR2- 072214	07/22/14 9:45 07/24/14	Aqueous	Same As Above
H14070430-007	14BH-DT-PILOT-BCR2D- 072214	- 07/22/14 10:00 07/24/14	Aqueous	Same As Above
H14070430-008	14BH-DT-PILOT-BCR3- 072214	07/22/14 10:10 07/24/14	Aqueous	Same As Above
H14070430-009	14BH-DT-PILOT-BCR4- 072214	07/22/14 10:20 07/24/14	Aqueous	Same As Above
H14070430-010	14BH-DT-PILOT-POSTI- 072214	07/22/14 10:30 07/24/14	Aqueous	Same As Above
H14070430-011	14BH-DT-PILOT-POSTE- 072214	- 07/22/14 10:45 07/24/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Phosphorus, Orthophosphate as P Sulfide, Methylene Blue Colorimetric

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Report Date: 08/04/14

CLIENT: CDM Federal Programs

Project: 79171.3383.325.TTZ.DANNY

Work Order: H14070430 CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: 79171.3383.325.TTZ.DANNY

Lab ID: H14070430-001

Client Sample ID: 14BH-DT-PILOT-INF-072214

Report Date: 08/04/14 **Collection Date:** 07/22/14 08:30

DateReceived: 07/24/14 **Matrix:** Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	790 mg/L	D	4.0	A2310 B	07/25/14 10:44 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	0.322 mg/L	Н	0.005	E365.1	07/24/14 16:09 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: 79171.3383.325.TTZ.DANNY

Lab ID: H14070430-002

Client Sample ID: 14BH-DT-PILOT-SAPS-072214

Report Date: 08/04/14 **Collection Date:** 07/22/14 08:45

DateReceived: 07/24/14

Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS					
acidity, Total as CaCO3	300 mg/L	D	4.0	A2310 B	07/25/14 10:54 / SRW
NUTRIENTS					
Phosphorus, Orthophosphate as P	0.30 mg/L	DH	0.01	E365.1	07/24/14 16:12 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: 79171.3383.325.TTZ.DANNY

Lab ID: H14070430-003

Client Sample ID: 14BH-DT-PILOT-CHIT-072214

Report Date: 08/04/14 Collection Date: 07/22/14 09:00 DateReceived: 07/24/14

Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS					
Acidity, Total as CaCO3	ND mg/L	D	4.0	A2310 B	07/25/14 10:59 / SRW
NUTRIENTS					
Phosphorus, Orthophosphate as P	5.93 mg/L	DH	0.02	E365.1	07/24/14 16:13 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: 79171.3383.325.TTZ.DANNY

Lab ID: H14070430-004

Client Sample ID: 14BH-DT-PILOT-NAOH-072214

Report Date: 08/04/14 **Collection Date:** 07/22/14 09:10

DateReceived: 07/24/14

Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	390 mg/L	D	4.0	A2310 B	07/25/14 11:06 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	0.013 mg/L	Н	0.005	E365.1	07/24/14 16:15 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: 79171.3383.325.TTZ.DANNY

Lab ID: H14070430-005

Client Sample ID: 14BH-DT-PILOT-BCR1-072214

Report Date: 08/04/14 Collection Date: 07/22/14 09:25 DateReceived: 07/24/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	07/25/14 11:15 / SRW
Sulfide	46	mg/L		1		A4500-S F	07/28/14 11:45 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	710	mg/L	Н	200		A5210 B	07/24/14 15:35 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	58.2	mg/L	DH	0.2		E365.1	07/24/14 16:16 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: 79171.3383.325.TTZ.DANNY

Lab ID: H14070430-006

Client Sample ID: 14BH-DT-PILOT-BCR2-072214

Report Date: 08/04/14
Collection Date: 07/22/14 09:45
DateReceived: 07/24/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	07/25/14 11:22 / SRW
Sulfide	45	mg/L		1		A4500-S F	07/28/14 11:45 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	280	mg/L	Н	200		A5210 B	07/24/14 15:38 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	14.4	mg/L	DH	0.1		E365.1	07/24/14 16:17 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: 79171.3383.325.TTZ.DANNY

Lab ID: H14070430-007

Client Sample ID: 14BH-DT-PILOT-BCR2D-072214

Report Date: 08/04/14

Collection Date: 07/22/14 10:00

DateReceived: 07/24/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	07/25/14 11:29 / SRW
Sulfide	50	mg/L		1		A4500-S F	07/28/14 11:45 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	280	mg/L	Н	200		A5210 B	07/24/14 15:41 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	14.0	mg/L	DH	0.1		E365.1	07/24/14 16:19 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: 79171.3383.325.TTZ.DANNY

Lab ID: H14070430-008

Client Sample ID: 14BH-DT-PILOT-BCR3-072214

Report Date: 08/04/14
Collection Date: 07/22/14 10:10
DateReceived: 07/24/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	07/25/14 11:34 / SRW
Sulfide	120	mg/L		1		A4500-S F	07/28/14 11:45 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	1300	mg/L	Н	300		A5210 B	07/24/14 15:42 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	11.6	mg/L	DH	0.1		E365.1	07/24/14 16:20 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: 79171.3383.325.TTZ.DANNY

Lab ID: H14070430-009

Client Sample ID: 14BH-DT-PILOT-BCR4-072214

Report Date: 08/04/14
Collection Date: 07/22/14 10:20
DateReceived: 07/24/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	07/25/14 11:41 / SRW
Sulfide	48	mg/L		1		A4500-S F	07/28/14 11:45 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	200	mg/L	Н	200		A5210 B	07/24/14 15:47 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	7.1	mg/L	DH	0.1		E365.1	07/24/14 16:23 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: 79171.3383.325.TTZ.DANNY

Lab ID: H14070430-010

Client Sample ID: 14BH-DT-PILOT-POSTI-072214

Report Date: 08/04/14 Collection Date: 07/22/14 10:30 DateReceived: 07/24/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							•
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	07/25/14 11:48 / SRW
Sulfide		mg/L	_	1		A4500-S F	07/28/14 11:45 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	550	mg/L	Н	200		A5210 B	07/24/14 15:49 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	25.5	mg/L	DH	0.2		E365.1	07/24/14 16:43 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: 79171.3383.325.TTZ.DANNY

Lab ID: H14070430-011

Client Sample ID: 14BH-DT-PILOT-POSTE-072214

Report Date: 08/04/14 Collection Date: 07/22/14 10:45 DateReceived: 07/24/14

Matrix: Aqueous

Analyses	Result	Unite	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
Analyses	riesun	Onito	Qualifiers		GOL	Wethou	Analysis bate / by
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	07/25/14 11:52 / SRW
Sulfide	3.4	mg/L	D	0.2		A4500-S D	07/28/14 13:15 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	280	mg/L	Н	200		A5210 B	07/24/14 15:52 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	4.2	mg/L	DH	0.1		E365.1	07/24/14 16:48 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

 Client:
 CDM Federal Programs
 Report Date:
 08/04/14

 Project:
 79171.3383.325.TTZ.DANNY
 Work Order:
 H14070430

Analyte	Result Units	RL	%REC Low Limit High Limit	RPD RPDLimit Qual
Method: A2310 B				Batch: H140725A
Lab ID: H14070430-001BDUP	Sample Duplicate		Run: MISC WC_140725C	07/25/14 10:49
Acidity, Total as CaCO3	820 mg/L	4.0		3.1 20
Lab ID: H14070430-011BDUP	Sample Duplicate		Run: MISC WC_140725C	07/25/14 11:57
Acidity, Total as CaCO3	ND mg/L	4.0		20
Lab ID: LCS1407250000	Laboratory Control Sample		Run: MISC WC_140725C	07/25/14 10:38
Acidity, Total as CaCO3	950 mg/L	4.0	97 90 110	
Lab ID: MBLK1407250000	Method Blank		Run: MISC WC_140725C	07/25/14 10:34
Acidity, Total as CaCO3	4 mg/L	3		

Prepared by Helena, MT Branch

 Client:
 CDM Federal Programs
 Report Date:
 08/04/14

 Project:
 79171.3383.325.TTZ.DANNY
 Work Order:
 H14070430

Analyte		Result U	nits	RL %REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-S D							Batch: B_	_R227876
Lab ID: Sulfide	MB-R227876	Method Blank ND m	g/L 0.00	02	Run: SUB-	B227876		07/28	3/14 13:15
Lab ID: Sulfide	LCS-R227876	Laboratory Contro 0.222 m	l Sample g/L 0.0	40 117	Run: SUB-	B227876 130		07/28	3/14 13:15
Lab ID: Sulfide	B14072200-002FMS	Sample Matrix Spi 0.266 m	ike g/L 0.0	40 107	Run: SUB-	B227876 130		07/28	3/14 13:15
Lab ID: Sulfide	B14072200-002FMSD	Sample Matrix Spi 0.271 m	ike Duplicate g/L 0.04	40 110	Run: SUB-	B227876 130	1.6	07/28 20	3/14 13:15

Prepared by Helena, MT Branch

 Client:
 CDM Federal Programs
 Report Date:
 08/04/14

 Project:
 79171.3383.325.TTZ.DANNY
 Work Order:
 H14070430

Analyte		Result Uni	its RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-S F							Batch: B_	R227877
Lab ID: Sulfide	MB-R227877	Method Blank ND mg/	L 0.5		Run: SUB-	B227877		07/28	/14 11:45
Lab ID: Sulfide	LCS-R227877	Laboratory Control \$ 21.5 mg/	•	100	Run: SUB-	B227877 130		07/28	/14 11:45
Lab ID: Sulfide	H14070412-003F	Sample Matrix Spike 21.9 mg/		100	Run: SUB- 80	B227877 120		07/28	3/14 11:45
Lab ID: Sulfide	H14070412-003F	Sample Matrix Spike 21.8 mg/	•	99	Run: SUB- 80	B227877 120	0.7	07/28 20	3/14 11:45
Lab ID: Sulfide	H14070412-001F	Sample Matrix Spike 22.0 mg/		100	Run: SUB- 80	B227877 120		07/28	3/14 11:45
Lab ID: Sulfide	H14070412-001F	Sample Matrix Spike 21.9 mg/	·	99	Run: SUB- 80	B227877 120	0.4	07/28 20	3/14 11:45
Method:	A4500-S F							Batch: B_	R227879
Lab ID: Sulfide	MB-R227879	Method Blank ND mg/	L 0.5		Run: SUB-	B227879		07/28	/14 11:45
Lab ID: Sulfide	LCS-R227879	Laboratory Control 9 21.0 mg/	· ·	98	Run: SUB- 70	B227879 130		07/28	3/14 11:45
Lab ID: Sulfide	H14070430-008C	Sample Matrix Spike 216 mg/		89	Run: SUB-	B227879 120		07/28	/14 11:45
Lab ID: Sulfide	H14070430-008C	Sample Matrix Spike 216 mg/	•	90	Run: SUB- 80	B227879 120	0.2	07/28 20	3/14 11:45

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

 Client:
 CDM Federal Programs
 Report Date:
 08/04/14

 Project:
 79171.3383.325.TTZ.DANNY
 Work Order:
 H14070430

Analyte	Result Units	RL %REC Low Limit High L	imit RPD RPDLimit Qual
Method: A5210 B			Batch: 140724_1_BOD5-W
Lab ID: Dil-H201_140724 Oxygen Demand, Biochemical (BOD)	Dilution Water Blank	Run: MISC WC_14	07/24/14 15:28
	0.15 mg/L	2.0 0	0.2
Lab ID: GGA1_140724 Oxygen Demand, Biochemical (BOD)	Laboratory Control Sample	Run: MISC WC_14	07/24/14 15:31
	210 mg/L	56 106 85	115

Prepared by Helena, MT Branch

 Client:
 CDM Federal Programs
 Report Date:
 08/04/14

 Project:
 79171.3383.325.TTZ.DANNY
 Work Order:
 H14070430

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E365.1						Analyti	cal Run:	FIA202-HE_	140724D
Lab ID: ICV	Initial Calibrati	on Verification St	andard					07/24	/14 15:59
Phosphorus, Orthophosphate as P	0.238	mg/L	0.0050	95	90	110			
Lab ID: ICB	Initial Calibrati	on Blank, Instrum	nent Blank					07/24	/14 16:00
Phosphorus, Orthophosphate as P	-0.00184	mg/L	0.0050		0	0			
Lab ID: CCV	Continuing Ca	libration Verificat	ion Standa	ırd				07/24	/14 16:03
Phosphorus, Orthophosphate as P	0.0896	mg/L	0.0050	90	90	110			
Lab ID: CCV	Continuing Ca	libration Verificat	ion Standa	ırd				07/24	/14 16:42
Phosphorus, Orthophosphate as P	0.0959	mg/L	0.0050	96	90	110			
Method: E365.1								Batch	n: R99139
Lab ID: LFB	Laboratory Fo	rtified Blank			Run: FIA20	2-HE_140724D		07/24	/14 16:02
Phosphorus, Orthophosphate as P	0.183	mg/L	0.0050	92	90	110			
Lab ID: H14070430-001AMS	Sample Matrix	Spike			Run: FIA20)2-HE_140724D		07/24	/14 16:10
Phosphorus, Orthophosphate as P	0.783	mg/L	0.0050	115	90	110			S
Lab ID: H14070430-001AMSD	Sample Matrix	Spike Duplicate			Run: FIA20)2-HE_140724D		07/24	/14 16:11
Phosphorus, Orthophosphate as P	0.796	mg/L	0.0050	119	90	110	1.7	20	S
Lab ID: H14070430-010AMS	Sample Matrix	Spike			Run: FIA20)2-HE_140724D		07/24	/14 16:44
Phosphorus, Orthophosphate as P	66.4	mg/L	0.20	102	90	110			
Lab ID: H14070430-010AMSD	Sample Matrix	Spike Duplicate			Run: FIA20)2-HE_140724D		07/24	/14 16:45
Phosphorus, Orthophosphate as P	89.6	mg/L	0.20	160	90	110	30	20	SR

Qualifiers:

RL - Analyte reporting limit.

R - RPD exceeds advisory limit.

S - Spike recovery outside of advisory limits.

Workorder Receipt Checklist

CDM Federal Programs

Login completed by: Tracy L. Lorash

H14070430

Date Received: 7/24/2014

Reviewed by:	BL2000\wjohnson		Re	eceived by: TLL
Reviewed Date:	8/4/2014			Carrier Hand Del name:
Shipping container/cooler in	good condition?	Yes √	No 🗌	Not Present
Custody seals intact on all s	hipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓
Custody seals intact on all s	ample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?		Yes 🔽	No 🗌	
Chain of custody signed who	en relinquished and received?	Yes 🗸	No 🗌	
Chain of custody agrees with	n sample labels?	Yes 🗸	No 🗌	
Samples in proper container	/bottle?	Yes 🗸	No 🗌	
Sample containers intact?		Yes ✓	No 🗌	
Sufficient sample volume for	indicated test?	Yes 🗸	No 🗌	
All samples received within h (Exclude analyses that are c such as pH, DO, Res Cl, Su	onsidered field parameters	Yes	No 🗹	
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank temp	erature:	7.9°C No Ice		
Water - VOA vials have zero	headspace?	Yes	No 🗌	No VOA vials submitted 🗹
Water - pH acceptable upon	receipt?	Yes 🗸	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

14BH-DT-PILOT-INF-072214 and SAPS-072214 samples were received past the method holding time for Orthophosphate. All other Orthophosphate and BOD samples were not received with sufficient time to complete analysis within method recommended hold time. Per Tom, we are to analyze. TI 7/24/14

t	
ı	$\overline{}$
ı	C
ı	4
ı	Ċ
1	Ξ
1	C
i	$^{\circ}$
ı	_
1	a
L	2
1	σ
1	ń
	-

ENERGY (B)	Chain o	f Cust	ody and	d /	Ana	aly Prov	tica vide a	al Red	ues	t Ke tion as	CC s pos	sible.)	ŭ	e _ \ of _ 2_
Company Name:			Project Nam	e, PV	VS, F	Permi	it, Etc.	79171	. 3383.	325	-	Sampi	e Ongin	EPA/St	ate Compliance:
CDM SMITH		!	79171.	₹78	3-3	312 :	R12	- 440 rd \ 7	F -773	Z.DAN	INY	State:	<u> </u>		er: (Please Print)
Report Mail Address (Required):		_	Contact Nam					ne/Fax: (- [466				Cell: 429	1-3776	· ·	Askin
			FRANDS	M3			-11				_				Bottle Order:
		-11	Invoice Conf		Pho	ne:						Purch	ase Order:	Quoten	Bottle Order.
M No Hard Copy Email: Frandsen	rk @cams	Mith cam	5AME	<i>:</i>	_				_				Out of EU of	n to	Shipped by:
Invoice Address (Required):			MO F				388		STED T) - 		-	Contact ELI prior RUSH sample so for charges and		Shipped by: + U n C Cooler ID(s):
			of Containers S: AWSVBODV er Solis/Solids n Bioassay Other rinking Water							ACHED	Turnaround (TAT)	R	scheduling – Se Instruction Page		У
No Hard Copy Email: SAME			Cont V W S Soils/ loass	<u> </u>						A	puno	U	Comments:		Receipt Temp
Special Report/Formats:		إ	er of Co pe: A W ater Soil on Bloas Orinking	KPHATE						- ⊢-	mař		B-0, D &		On Ice: Y N
□ POTWWWTP F	DD/EDT(Ele	ctronic Data)	Number of Sample Type: A Air Water Vegetation B DW - Drink	PHESP	7-		EI D	!		EE AT	ard Tu	S	AUDITY COMBINE		Custody Seal On Bottle Y N
☐ State: ☐ L ☐ Other: ☐ N	EVEL IV IELAC		San	ORTHO-1	ACIPIT	0. D	170			S	Standard	Н	IN 1000		On Cooler Y N
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Date	Callection Time	MATRIX	50	₹	80	Ñ	_	-		_	-			Signature Y N Match
14BH-DT-PILOT-INF-072214	7/22/4	8:30	2 W	X	T .		i +		1-1	+	-				≥414070430
1484-DT-PIWT-SAPS-072214		8:45	2 W_	X	X		 	-	-		-	_			
1484-DT - PILOT- CH IT-072214		9:00	2 W	$\stackrel{\sim}{\sim}$	X	-					\vdash			<u>-</u>	- <u>u</u>
MBH-OT- PILOT- NAOH-0772214		9:10	2 W	X	 	×	X	_	+	-	-	-			
1484-DT-PILET-BCR1-07244		9:25	3 W	X	١, -	+.	+ _ +	-	+-+		┼─	 	-		
14BH-DY-PILOT-BCRZ-M2214		9:45	3 W	X	_	١.	 		-	_	+-	 			417C
1484-07-PILOT-BOXZD-072214		10:00	3 W	X	+		X		-	_	-	<u> </u>			
BUBH-DT-PILOT-BCR3-072214	 - 	(0;(0	3 W	X	T	トレ	X				+-	 -			
1484-07- PILOT-BCR4-072214		10:20	3 W	+	1	\ <u>X</u>	X			_	+-	1-	<u> </u>		
19 BH-DT-PILOT-POSTI - 072214 Relinquished by (print):	Dater			eture:			1,,	Received t	by (print):		<u>.i.</u>	Date/Tim	e:	Sign	ature
Record Relinquished by (print):	7/24/ Date/T		Sign	nature.	/s	<u></u>	<u>-</u>	Received I	by (print):			Date/Tim	e:	Sign	nature/
MUST be			<u> </u>			_		Regelved	by Laborat	ory: /		Date/Tim	e: / .i as T-ci	Sign	fature:

Lab Disposal:

Signed

ENERGY LABORATORIES	B
---------------------	----------

Chain of Custody and Analytical Request Record

Page	2	of	2
~9~		•	_

			PLEASE	KIL	41	(Pro	viae	as muc	n intorn	natio	n as	s po	SSIDIE	. J				
Company Name:			Project Name, PWS, Permit, Etc.									Samp	le Origin	EPA/State Compliance:				
CDM SMITH			79171.	339	33.	3 25	. 1	Z.DAN	NY				State	MT	Yes 🗆] No □		
Report Mail Address (Required):			Contact Nar				Ph	one/Fax:	ne/Fax: Cell:				Sampler: (Please Print)					
			FRANOS				•	યવા- ાવ	űe,				439	1-3776	Tom Askin			
M No Hard Copy Email: francisco	k@cdms	mith.com	Invoice Con		& Ph A- 1/1			-	Purchase Order:				ase Order:	Quote/Bottle Order:				
Invoice Address (Required):			1				211@	REQUESTED				_	Contact ELI prior	to	Shipped by:			
			O DW	(A)		<u> </u>	200	MEGG			\dashv	(_	RUSH sample su for charges and	ıbmittal	Cooler ID(s):		
			ber of Containers ype: A W S V B O DV Vater Soils/Solids ition Bioassay Other Drinking Water	Solids Solids Say Ot Vater	Containers W.S.V.B.O.E oils/Solids assay Other ig Water								입	Standard Turnaround (TAT)	R	scheduling – See instruction Page	:	Y
M No Hard Copy Email: SAME Special Report/Formats:			F Cor A W Soils Soils Soass	ATE							ACHED	pund	U	Comments:		Receipt Temp		
DW EDD/EDT(Electronic Dat			Jer of ype: Vater tion E	-PHPSPHATE							¥II	rnard		B-00-7		On lice: Y (N)		
POTW/WWTP Format: Xls			1 	I S	٨	,	m					d Tu	S	ACIDITY		Custody Seal		
	LEVEL IV NELAÇ		Sample Air Veget DW	उँ	7)4	0'0	0				SEE	ndar		oogi ni		On Boitle Y N On Cooler Y N		
SAMPLE IDENTIFICATION	Collection	Collection	4447011	0 RTHO	ACID(T	24	SUL					Sta	Н	Bottle	-	Intact Y N Signature		
(Name, Location, Interval, etc.)	Date	Time	MATRIX	9		<u> </u>					_ļ			50(106	<u> </u>	Match		
14BH-DT-PILOT - POSTE-072214	7/22/14	10:45	3 W	×	×	×	X									≥H14070430		
2																		
3																0 Vi		
4																		
5																		
6															_			
7																		
8																		
9																<u> </u>		
10																77		
Custody Relinquished by (print):	Jan	ture:	2	Ĺ.		Received	i by (print):			Ď	ate/Time:		Signati	ure:				
Record Relinquished by (print): MUST be	Date/Til 7/2 <i>4/1</i> Date/Til	пе:	Signa	tuke				Received	d by (print):			D	ate/Time:		Signati	ure:		
Signed Sample Disposal: Return to Client: Lab Disposal:								ACU		L	_ D	ate/fime:	14 8:54	Signati	A			
Sample Disposal: R	eturn to Cilent:		Lab Dispos	idi			_		<u>, 4004</u> 1	$\Box v \wedge A$	\		$\mu \nu \gamma$	17 0 57	\sim	~~~~		

U.S. Environmental Protection Agency Region 8 Technical and Management Services

Laboratory Services Program

Certificate of Analysis

Ref: 8TMS-L

MEMORANDUM

Date: 09/18/14

Subject: Analytical Results--- Barker-Hughesville Treatability 3 JUL 2014 A046 / A-046

From: Don Goodrich; EPA Region 8 Analytical Chemistry WAM

To: Roger Hoogerheide

Superfund

8 MO

Received Sample Set(s), [Work Order : Date Received]:

[C140717 : 07/24/2014]

Attached are the analytical results for the samples received from the Barker-Hughesville_Treatability 3_JUL 2014_A046 sampling event, according to TDF A-046. All analyses were performed within their method specified holding times unless otherwise noted in the following narrative.

These samples were prepared, analyzed, and verified by the Environmental Services Assistance Team Laboratory (ESAT) according to the requirements of the Technical Direction Form (TDF).

Note: The laboratory herewith transmits this deliverable to the program/project partner for determination of "final data usability" which may include data validation and data quality assessment per and in accordance with EPA QA/G-8, *Guidance on Environmental Data Verification and Data Validation*, November 2002, EPA/240/R-02/004. Laboratory data qualifiers are applied based on the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*, October 2004, referred to as "NFGI".

Laboratory policy is to dispose of any remaining sample 60 days after data analysis packages are delivered to EPA. If you would like the laboratory to retain the samples for a period longer than 60 days, please contact Don Goodrich within the 60 day period at (303) 312-6687.

Project Name: Barker-Hughesville_Treatability 3_JUL 2014_A046

TDF #: A-046

Case Narrative

C140717

Quality Assessment: Unless indicated by exception, the QA/QC associated with this sample set

produced data within the TDF-specified criteria.

Holding Times: All samples were analyzed within their method-specified technical holding

time(s).

1. Initial and Continuing calibration blanks (ICBs and CCBs).

Exceptions: None.

2. Preparation (PB) / Method blanks (MB)

Exceptions: None.

3. Interference Checks (ICSA / ICSAB) for ICP-MS and ICP-OE analyses only.

Exceptions: None.

4. Initial and Continuing calibration verification analyses (ICVs, SCVs and CCVs).

Exceptions: In ICP-MS sequence 1409083, copper and nickel recovered low in the ending CCV.

All bracketed samples were qualified "J" as estimated for copper and nickel.

5. Laboratory Control Sample (LCS) or second source analysis or SRM.

Exceptions: None.

Laboratory Fortified blank (LFB) / Blank spike (BS), same source as used for the matrix spikes.
 PBS performed with analyses/methods requiring preparation or digestion prior to analysis.

Exceptions: None.

7. Contract Reporting Detection Limit Standard, labeled as CRA, CRDL or CRL.

Exceptions: None.

- Laboratory Duplicate (DUP). "Source" identifies field sample duplicated in the laboratory. If either
 the "source" or the duplicate result is <5X the reporting limit, the %D limit of 20% does not apply.
 Exceptions: None.
- Laboratory Matrix Spike (MS) and spike duplicate (MSD). "Source" defines original field sample fortified prior to analysis. Percent recovery (%R) limits do not apply when sample concentration(s) exceed the corresponding analyte spike level by a factor of 4 or greater.

Exceptions: In ICP-MS batches 1409073 and 1409057, copper and nickel recovered low in the all matrix spikes. No qualifiers were assigned.

10. Serial Dilution sample analysis (SRD). "Source" is parent field sample diluted 1:5 in the laboratory. Performed for ICP-OE and ICP-MS metals analyses. Percent difference (%D) limits do not apply when analyte concentration(s) are below 50x the source sample's MDL (or 10x it's PQL). Exceptions: None.

11. Internal standards, criteria specified for ICP-MS analyses only, monitored at the instrument. Exceptions: None.

12. Any calibration using more than two-points produced a correlation coefficient equal to or greater than

Exceptions: None.

Project Name: Barker-Hughesville_Treatability 3_JUL 2014_A046

TDF #: A-046

Acronyms and Definitions:

ECAT	F	C	A	T
ESAT	Environmental	Services A	Assistance	ream

J Data Estimated qualifier (also applied to all data less than PQL, greater than or equal to MDL)

MDL Method Detection Limit

PQL Practical Quantitation Limit, also known as reporting limit.

RPD Relative Percent Difference (difference divided by the mean)

%D Percent difference, serial dilution criteria unit, difference divided by the original result.

%R Percent recovery, analyzed (less sample contribution) divided by true value

Analyte NOT DETECTED at or above the Method Detection Limit (MDL)

mg/L Parts per million (milligrams per liter). Solids equivalent = mg/Kg.

ug/L Parts per billion (micrograms per liter). Solids equivalent = ug/Kg.

NR No Recovery (matrix spike) - Often seen for calcium/magnesium when their concentration exceeds the spike level by > 4x.

NFGI USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

RE Sample Re-analysis. Usually seen on raw data and sequences for required sample dilutions due to over-range analytes.

U Analyte not detected at or above MDL qualifier

D Diluted value qualifier.

Method(s) Summary:

As defined in the Technical Direction Form (TDF), some or all of the methods listed below were used for the determination of the reported target analytes.

From EPA's Methods for the Determination of Metals in Environmental Samples, Supplement I, May 1994, dissolved, total, and/or total recoverable metals were determined by:

- Method 200.7 / 6010B using a PE Optima ICP -OE (ICP).
- Method 200.8 / 6020 using a Perkin -Elmer Elan 6000 ICP-MS.
- Method 200.2 for total recoverable metals (only) dige stion.
- Method 245.1 using a Perkin -Elmer FIMS CVAA (aqueous mercury only).

From Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, Method 2340B was used for the calculated hardness determination. Hardness is reported as mg (milligram) equivalent CaCO₃ per liter (L) determined as follows:

Calculated hardness = 2.497 * (Calcium, mg/L) + 4.118 * (Magnesium, mg/L).

From EPA's Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW -846,

- Method 3015A was used for microwave assisted total metals digestion.
- Method 7473 was used for mercury in solids.

From EPA's Determination of Inorganic Anions by Ion Chromatography, Revision 2.1, 1993, Method 300.0 was used to determine the anions.

From EPA's Methods for Chemical Analysis of Water and Wastes, March 1983:

- Method 310.1 was followed for the alkalinity determination.
- Method 160.1 was followed for gravimetric total dissolved solids (TDS) determination.
- Method 160.2 was used for gravimetric total suspended sol ids (TSS) determination.
- Method 415.3 was used for total organic carbon (TOC) determination using either an Apollo 9000 or Phoenix 8000 Non-Dispersive IR (NDIR) system. Also known as dissolved organic carbon (DOC) when performed on the dissolved sample fraction.

The quality control procedures listed in the TDF request were utilized by ESAT to verify accuracy of the results and to evaluate any matrix interferences.

Project Name: Barker-Hughesville_Treatability 3_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR1-072214 EPA Tag No.: No Tag Prefix-B **Date / Time Sampled: Matrix:** Water

07/22/14 09:25

Workorder: C140717

Lab Number: C14071

C140717-02 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	172	J	ug/L	100	5	09/17/2014	SV	1409072
200.7	Iron	< 1250	U	ug/L	500	5	09/17/2014	SV	1409072
200.7	Manganese	57300		ug/L	10.0	5	09/17/2014	SV	1409072
200.7	Zinc	< 100	U	ug/L	50.0	5	09/17/2014	SV	1409072
200.8	Arsenic	5.24	J	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
2340B	Hardness	1340		mg/L	8	5	09/17/2014	SV	1409072

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-072214

No Tag Prefix-B

EPA Tag No.:

Date / Time Sampled: Matrix: Water

07/22/14 09:45

Workorder: C140717

Lab Number: C14071

C140717-05

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	09/17/2014	SV	1409072
200.7	Iron	< 1250	U	ug/L	500	5	09/17/2014	SV	1409072
200.7	Manganese	46300		ug/L	10.0	5	09/17/2014	SV	1409072
200.7	Zinc	< 100	U	ug/L	50.0	5	09/17/2014	SV	1409072
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Copper	5.43	J	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
2340B	Hardness	895		mg/L	8	5	09/17/2014	SV	1409072

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR2D-072214 **Station ID:** EPA Tag No.:

No Tag Prefix-B

Date / Time Sampled: Matrix: Water

07/22/14 10:00

Workorder: Lab Number:

C140717

C140717-09

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	09/17/2014	SV	1409072
200.7	Iron	< 1250	U	ug/L	500	5	09/17/2014	SV	1409072
200.7	Manganese	50600		ug/L	10.0	5	09/17/2014	SV	1409072
200.7	Zinc	50.7	J	ug/L	50.0	5	09/17/2014	SV	1409072
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Copper	6.81	J	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
2340B	Hardness	882		mg/L	8	5	09/17/2014	SV	1409072

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR3-072214 **Station ID:**

EPA Tag No.:

No Tag Prefix-B

Date / Time Sampled: Matrix: Water

07/22/14 10:10

Workorder:

Lab Number:

C140717

C140717-13

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 50.0	U	ug/L	20.0	1	09/17/2014	SV	1409072
200.7	Iron	< 250	U	ug/L	100	1	09/17/2014	SV	1409072
200.7	Manganese	11900		ug/L	2.00	1	09/17/2014	SV	1409072
200.7	Zinc	40.8		ug/L	10.0	1	09/17/2014	SV	1409072
200.8	Arsenic	16.2	J	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Copper	5.69	J	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
2340B	Hardness	2410		mg/L	2	1	09/17/2014	SV	1409072

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR4-072214 **Station ID:** EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water

07/22/14 10:20

Workorder: C140717

Lab Number:

C140717-17 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	09/17/2014	SV	1409072
200.7	Iron	< 1250	U	ug/L	500	5	09/17/2014	SV	1409072
200.7	Manganese	62800		ug/L	10.0	5	09/17/2014	SV	1409072
200.7	Zinc	324		ug/L	50.0	5	09/17/2014	SV	1409072
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Copper	6.00	J	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
2340B	Hardness	552		mg/L	8	5	09/17/2014	SV	1409072

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-CHIT-072214 **Station ID:**

EPA Tag No.:

No Tag Prefix-B

Date / Time Sampled: Matrix: Water

07/22/14 09:00

Workorder:

Lab Number:

C140717

C140717-21

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	277		ug/L	100	5	09/17/2014	SV	1409072
200.7	Iron	4310		ug/L	500	5	09/17/2014	SV	1409072
200.7	Manganese	96300		ug/L	10.0	5	09/17/2014	SV	1409072
200.7	Zinc	297		ug/L	50.0	5	09/17/2014	SV	1409072
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
2340B	Hardness	2010		mg/L	8	5	09/17/2014	SV	1409072

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INF-072214 **EPA Tag No.:** No Tag Prefix-B

Date / Time Sampled: Matrix: Water

07/22/14 08:30

Workorder: C140

Lab Number:

C140717

C140717-24

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	14600		ug/L	100	5	09/17/2014	SV	1409072
200.7	Iron	181000		ug/L	500	5	09/17/2014	SV	1409072
200.7	Manganese	116000		ug/L	10.0	5	09/17/2014	SV	1409072
200.7	Zinc	62700		ug/L	50.0	5	09/17/2014	SV	1409072
200.8	Arsenic	186		ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Cadmium	276		ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Copper	919		ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Lead	199		ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Nickel	17.9		ug/L	5.00	10	09/17/2014	SV	1409073
2340B	Hardness	372		mg/L	8	5	09/17/2014	SV	1409072

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NAOH-072214 Date / Time Sampled: 07/22/14 09:10 Workorder: C140717

EPA Tag No.: No Tag Prefix-B

Matrix: Water

Lab Number: C140717-27 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	12900		ug/L	100	5	09/17/2014	SV	1409072
200.7	Iron	563	J	ug/L	500	5	09/17/2014	SV	1409072
200.7	Manganese	112000		ug/L	10.0	5	09/17/2014	SV	1409072
200.7	Zinc	63000		ug/L	50.0	5	09/17/2014	SV	1409072
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Cadmium	285		ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Copper	911		ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Lead	86.7		ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Nickel	19.4		ug/L	5.00	10	09/17/2014	SV	1409073
2340B	Hardness	358		mg/L	8	5	09/17/2014	SV	1409072

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTE-072214

EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water

07/22/14 10:45

Workorder: C14

Lab Number:

C140717

C140717-30

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 50.0	U	ug/L	20.0	1	09/17/2014	SV	1409072
200.7	Iron	< 250	U	ug/L	100	1	09/17/2014	SV	1409072
200.7	Manganese	13100		ug/L	2.00	1	09/17/2014	SV	1409072
200.7	Zinc	16.3	J	ug/L	10.0	1	09/17/2014	SV	1409072
200.8	Arsenic	16.5	J	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
2340B	Hardness	933		mg/L	2	1	09/17/2014	SV	1409072

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTI-072214

No Tag Prefix-B

EPA Tag No.:

Date / Time Sampled: Matrix: Water 07/22/14 10:30

Workorder: C140717

Lab Number:

140/1/

C140717-34 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	29.1	J	ug/L	20.0	1	09/17/2014	SV	1409072
200.7	Iron	< 250	U	ug/L	100	1	09/17/2014	SV	1409072
200.7	Manganese	42100		ug/L	2.00	1	09/17/2014	SV	1409072
200.7	Zinc	31.3		ug/L	10.0	1	09/17/2014	SV	1409072
200.8	Arsenic	5.88	J	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Copper	5.52	J	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Lead	1.48	J	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
2340B	Hardness	1300		mg/L	2	1	09/17/2014	SV	1409072

Project Name: Barker-Hughesville_Treatability 3_JUL 2014_A046

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-072214 EPA Tag No.: No Tag Prefix-B Date / Time Sampled: Matrix: Water 07/22/14 08:45

Workorder: C140717

Lab Number: C140717-38

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	321		ug/L	100	5	09/17/2014	SV	1409072
200.7	Iron	112000		ug/L	500	5	09/17/2014	SV	1409072
200.7	Manganese	118000		ug/L	10.0	5	09/17/2014	SV	1409072
200.7	Zinc	5520		ug/L	50.0	5	09/17/2014	SV	1409072
200.8	Arsenic	9.62	J	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/17/2014	SV	1409073
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409073
200.8	Nickel	7.19	J	ug/L	5.00	10	09/17/2014	SV	1409073
2340B	Hardness	677		mg/L	8	5	09/17/2014	SV	1409072

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR1-072214 **EPA Tag No.:** No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/22/14 09:25

Workorder: C140717 Lab Number:

C140717-01

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	185	J	ug/L	100	5	09/17/2014	SV	1409057
200.7	Iron	687	J	ug/L	500	5	09/17/2014	SV	1409057
200.7	Manganese	64200		ug/L	10.0	5	09/17/2014	SV	1409057
200.7	Zinc	497		ug/L	50.0	5	09/17/2014	SV	1409057
200.8	Arsenic	6.77	J	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Lead	2.23		ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/17/2014	SV	1409057

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-072214

EPA Tag No.:

No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/22/14 09:45

Workorder: Lab Number:

C140717

C140717-04 A

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units Factor 100 5 09/17/2014 1409057 200.7 Aluminum 148 J ug/L SV J 500 200.7 Iron 615 ug/L 5 09/17/2014 SV1409057 5 200.7 10.0 09/17/2014 SV1409057 Manganese 48500 ug/L 200.7 Zinc 326 ug/L 50.0 5 09/17/2014 SV 1409057 09/17/2014 1409057 200.8 Arsenic 7.73 J ug/L 5.00 10 SV 200.8 Cadmium 10 09/17/2014 SV1409057 < 2.00 U 1.00 ug/L 200.8 11.7 5.00 09/17/2014 SV1409057 Copper ug/L 10 200.8 Lead 5.73 ug/L 1.00 10 09/17/2014 SV1409057 200.8 Nickel 10 09/17/2014 1409057 < 10.0 U ug/L 5.00

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR2D-072214 **Station ID:** EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/22/14 10:00

Workorder: C140717

Lab Number: C140717-08

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	116	J	ug/L	100	5	09/17/2014	SV	1409057
200.7	Iron	517	J	ug/L	500	5	09/17/2014	SV	1409057
200.7	Manganese	51100		ug/L	10.0	5	09/17/2014	SV	1409057
200.7	Zinc	287		ug/L	50.0	5	09/17/2014	SV	1409057
200.8	Arsenic	7.42	J	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Copper	8.03	J	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Lead	4.27		ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/17/2014	SV	1409057

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR3-072214 **Station ID:**

EPA Tag No.:

No Tag Prefix-A

Date / Time Sampled:

07/22/14 10:10 Matrix: Water

Workorder:

C140717 Lab Number:

C140717-12 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 50.0	U	ug/L	20.0	1	09/17/2014	SV	1409057
200.7	Iron	152	J	ug/L	100	1	09/17/2014	SV	1409057
200.7	Manganese	13000		ug/L	2.00	1	09/17/2014	SV	1409057
200.7	Zinc	162		ug/L	10.0	1	09/17/2014	SV	1409057
200.8	Arsenic	19.7	J	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Copper	9.34	J	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Lead	1.97	J	ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Nickel	29.3	J	ug/L	5.00	10	09/17/2014	SV	1409057

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR4-072214

EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water 07/22/14 10:20

Workorder: C140717

Certificate of Analysis

Lab Number: (

C140717-16 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	148	J	ug/L	100	5	09/17/2014	SV	1409057
200.7	Iron	578	J	ug/L	500	5	09/17/2014	SV	1409057
200.7	Manganese	67700		ug/L	10.0	5	09/17/2014	SV	1409057
200.7	Zinc	3180		ug/L	50.0	5	09/17/2014	SV	1409057
200.8	Arsenic	14.4	J	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Cadmium	2.25		ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Copper	8.53	J	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Lead	3.67		ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Nickel	< 10.0	J,	ug/L	5.00	10	09/17/2014	SV	1409057

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-CHIT-072214

EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/22/14 09:00

Workorder: Lab Number: C140717

C140717-20 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	298		ug/L	100	5	09/17/2014	SV	1409057
200.7	Iron	2950		ug/L	500	5	09/17/2014	SV	1409057
200.7	Manganese	95700		ug/L	10.0	5	09/17/2014	SV	1409057
200.7	Zinc	887		ug/L	50.0	5	09/17/2014	SV	1409057
200.8	Arsenic	6.36	J	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Cadmium	1.86	J	ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Copper	6.58	J	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Nickel	11.8	J	ug/L	5.00	10	09/17/2014	SV	1409057

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INF-072214 EPA Tag No.: No Tag Prefix-A Date / Time Sampled: Matrix: Water 07/22/14 08:30

Workorder: C Lab Number:

C140717

C140717-23

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	14500		ug/L	100	5	09/17/2014	SV	1409057
200.7	Iron	180000		ug/L	500	5	09/17/2014	SV	1409057
200.7	Manganese	117000		ug/L	10.0	5	09/17/2014	SV	1409057
200.7	Zinc	62600		ug/L	50.0	5	09/17/2014	SV	1409057
200.8	Arsenic	189		ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Cadmium	272		ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Copper	852	J	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Lead	207		ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Nickel	48.2	J	ug/L	5.00	10	09/17/2014	SV	1409057

Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 14BH-DT-PILOT-NAOH-072214
 Date / Time Sampled:
 07/22/14 09:10
 Workorder:
 C140717

EPA Tag No.: No Tag Prefix-A Matrix: Water Lab Number: C140717-26 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	13300		ug/L	100	5	09/17/2014	SV	1409057
200.7	Iron	16900		ug/L	500	5	09/17/2014	SV	1409057
200.7	Manganese	115000		ug/L	10.0	5	09/17/2014	SV	1409057
200.7	Zinc	64900		ug/L	50.0	5	09/17/2014	SV	1409057
200.8	Arsenic	17.2	J	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Cadmium	272		ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Copper	820	J	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Lead	105		ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Nickel	22.5	J	ug/L	5.00	10	09/17/2014	SV	1409057

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTE-072214 **EPA Tag No.:** No Tag Prefix-A

Date / Time Sampled: 07/22/14 10:45 **Matrix:** Water

Workorder: C1
Lab Number:

C140717

:: C140717-29

0717 - 29 A	
--------------------	--

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	590		ug/L	20.0	1	09/17/2014	SV	1409057
200.7	Iron	756		ug/L	100	1	09/17/2014	SV	1409057
200.7	Manganese	14300		ug/L	2.00	1	09/17/2014	SV	1409057
200.7	Zinc	347		ug/L	10.0	1	09/17/2014	SV	1409057
200.8	Arsenic	22.4		ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Copper	< 10.0	J,	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Lead	7.81		ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Nickel	< 10.0	J,	ug/L	5.00	10	09/17/2014	SV	1409057

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTI-072214

Copper

Lead

Nickel

EPA Tag No.: No Tag Prefix-A

200.8

200.8

200.8

Date / Time Sampled: 07/22/14 10:30

Matrix: Water

J

J,

6.12

2.62

< 10.0

Workorder: C140717

Lab Number: C140717-33

09/17/2014

09/17/2014

09/17/2014

SV

SV

SV

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units Factor 200.7 09/17/2014 1409057 Aluminum 66.7 ug/L 20.0 1 SV 100 200.7 Iron 493 ug/L 1 09/17/2014 SV1409057 200.7 2.00 1 09/17/2014 SV1409057 Manganese 46100 ug/L 200.7 Zinc 857 ug/L 10.0 1 09/17/2014 SV 1409057 09/17/2014 1409057 200.8 Arsenic 9.52 J ug/L 5.00 10 SV 200.8 Cadmium J 1.00 10 09/17/2014 SV1.16 ug/L 1409057

ug/L

ug/L

ug/L

5.00

1.00

5.00

10

10

10

Α

1409057

1409057

1409057

Project Name: Barker-Hughesville_Treatability 3_JUL 2014_A046

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-072214 EPA Tag No.: No Tag Prefix-A **Date / Time Sampled:** 07/22/14 08:45 **Matrix:** Water

Workorder: C140717

Certificate of Analysis

Lab Number: C140717-37

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	587		ug/L	100	5	09/17/2014	SV	1409057
200.7	Iron	118000		ug/L	500	5	09/17/2014	SV	1409057
200.7	Manganese	118000		ug/L	10.0	5	09/17/2014	SV	1409057
200.7	Zinc	7180		ug/L	50.0	5	09/17/2014	SV	1409057
200.8	Arsenic	10.7	J	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Copper	< 10.0	J,	ug/L	5.00	10	09/17/2014	SV	1409057
200.8	Lead	1.32	J	ug/L	1.00	10	09/17/2014	SV	1409057
200.8	Nickel	9.74	J	ug/L	5.00	10	09/17/2014	SV	1409057

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1-072214
EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Water 07/22/14 09:25

Workorder: C140717

Lab Number:

C140717-03

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	10.2	J	mg/L	5.0	10	08/05/2014	NP	1408009
EPA 300.0	Fluoride	56.3		mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrite as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Sulfate as SO4	378		mg/L	0.5	10	08/05/2014	NP	1408009
EPA 310.1	Total Alkalinity	1040		mg CaCO3 / L	50.0	10	07/25/2014	KJB	1407136

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-072214

EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Water

07/22/14 09:45

Workorder:

C140717

Lab Number: C140717-06

Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	10.9	J	mg/L	5.0	10	08/05/2014	NP	1408009
EPA 300.0	Fluoride	15.8		mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrite as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Sulfate as SO4	349		mg/L	0.5	10	08/05/2014	NP	1408009
EPA 310.1	Total Alkalinity	650		mg CaCO3 / L	50.0	10	07/25/2014	KJB	1407136

Project Name: Barker-Hughesville_Treatability 3_JUL 2014_A046

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-072214 **EPA Tag No.:**

No Tag Prefix-D

Date / Time Sampled: Matrix: Water

07/22/14 09:45

Workorder: C140717

Lab Number:

Certificate of Analysis

C140717-07

Dilution MDL Method Parameter Analyzed By Batch Results **Qualifier** Units Factor EPA 350.1 Ammonia as N 11.4 D mg/L 3.00 100 08/05/2014 KJB 1408011

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2D-072214

No Tag Prefix-C **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

07/22/14 10:00

Workorder: C140717

Lab Number:

C140717-10

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	11.7	J	mg/L	5.0	10	08/05/2014	NP	1408009
EPA 300.0	Fluoride	15.0		mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrite as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Sulfate as SO4	370		mg/L	0.5	10	08/05/2014	NP	1408009
EPA 310.1	Total Alkalinity	637		mg CaCO3 / L	50.0	10	07/25/2014	KJB	1407136

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2D-072214 **Date / Time Sampled:** 07/22/14 10:00 Workorder: C140717 C140717-11

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number:

> Dilution **MDL**

Method Analyzed **Parameter** By Batch Results Qualifier Units **Factor** D 3.00 EPA 350.1 Ammonia as N 10.2 mg/L 100 08/05/2014 KJB 1408011

A

Project Name: Barker-Hughesville_Treatability 3_JUL 2014_A046

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR3-072214

EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Water

07/22/14 10:10

Workorder: C14

Lab Number:

C140717

Certificate of Analysis

C140717-14

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
EPA 300.0	Chloride	15.5	J	mg/L	5.0	10	08/05/2014	NP	1408009
EPA 300.0	Fluoride	90.1		mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrite as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Sulfate as SO4	299		mg/L	0.5	10	08/05/2014	NP	1408009
EPA 310.1	Total Alkalinity	2450		mg CaCO3 / L	50.0	10	07/25/2014	KJB	1407136

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR3-072214

EPA Tag No.:

No Tag Prefix-D

Date / Time Sampled:
Matrix: Water

07/22/14 10:10

Workorder: Lab Number:

C140717

C140717-15

MDL Dilution Method **Parameter** Analyzed By Batch **Qualifier** Results Units Factor D EPA 350.1 mg/L 3.00 100 08/05/2014 KJB 1408011 Ammonia as N 172

Barker-Hughesville_Treatability 3_JUL 2014_A046 **Project Name:**

A-046

Certificate of Analysis

07/22/14 10:20

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-BCR4-072214 **Station ID: EPA Tag No.:** No Tag Prefix-C

TDF #:

Date / Time Sampled: Matrix: Water

Workorder: Lab Number:

C140717

C140717-18

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	9.8	J	mg/L	5.0	10	08/05/2014	NP	1408009
EPA 300.0	Fluoride	10.8		mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrite as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Sulfate as SO4	526		mg/L	0.5	10	08/05/2014	NP	1408009
EPA 310.1	Total Alkalinity	507		mg CaCO3 / L	50.0	10	07/25/2014	KJB	1407136

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4-072214 **Date / Time Sampled:** 07/22/14 10:20 Workorder: C140717

No Tag Prefix-D Matrix: Water **EPA Tag No.:**

C140717-19 Lab Number:

MDL Dilution Method **Parameter** Analyzed By Batch **Qualifier** Results Units Factor D EPA 350.1 Ammonia as N mg/L 0.300 10 08/05/2014 KJB 1408011 7.65

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-CHIT-072214 **EPA Tag No.:** No Tag Prefix-C

Date / Time Sampled: Matrix: Water

07/22/14 09:00

Workorder: C140717

Lab Number: C140717-22

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	7.2	J	mg/L	5.0	10	08/05/2014	NP	1408009
EPA 300.0	Fluoride	59.7		mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrite as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Sulfate as SO4	778		mg/L	0.5	10	08/05/2014	NP	1408009
EPA 310.1	Total Alkalinity	1500		mg CaCO3 / L	50.0	10	07/25/2014	KJB	1407136

Classical Chemistry by EPA/ASTM/APHA Methods

Total Alkalinity

EPA 310.1

Station ID: 14BH-DT-PILOT-INF-072214 Date / Time Sampled: 07/22/14 08:30 Workorder: C140717

EPA Tag No.: No Tag Prefix-C **Matrix:** Water

< 100

Lab Number: C140717-25

07/25/2014

KJB

10

Α

1407136

MDL Dilution Method **Parameter** Analyzed By Batch Results **Qualifier** Units **Factor** J EPA 300.0 5.0 10 1408009 Chloride 7.0 mg/L 08/05/2014 NP EPA 300.0 Fluoride 2.5 mg/L 1.0 10 08/05/2014 NP 1408009 EPA 300.0 Nitrate as N 10 08/05/2014 NP 1408009 U 1.0 < 5.0 mg/L Nitrate/Nitrite as NP EPA 300.0 10 08/05/2014 1408009 U < 50.0 mg/L 10.0 EPA 300.0 Nitrite as N 10 08/05/2014 NP 1408009 U < 5.0 mg/L 1.0 1080 mg/L 0.5 1408009 EPA 300.0 Sulfate as SO4 10 08/05/2014 NP

mg CaCO3 / L

50.0

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-NAOH-072214 EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Water

07/22/14 09:10

Workorder: C140717

Lab Number: C140717-28

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	7.1	J	mg/L	5.0	10	08/05/2014	NP	1408009
EPA 300.0	Fluoride	2.7		mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrite as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Sulfate as SO4	1250		mg/L	0.5	10	08/05/2014	NP	1408009
EPA 310.1	Total Alkalinity	< 100		mg CaCO3 / L	50.0	10	07/25/2014	KJB	1407136

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-POSTE-072214 **Station ID:**

No Tag Prefix-C **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

07/22/14 10:45

Workorder: Lab Number:

C140717

C140717-31 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	15.0	J	mg/L	5.0	10	08/05/2014	NP	1408009
EPA 300.0	Fluoride	11.7		mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrite as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Sulfate as SO4	264		mg/L	0.5	10	08/05/2014	NP	1408009
EPA 310.1	Total Alkalinity	893		mg CaCO3 / L	50.0	10	07/25/2014	KJB	1407136

Project Name: Barker-Hughesville_Treatability 3_JUL 2014_A046

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTE-072214 **EPA Tag No.:**

No Tag Prefix-D

Date / Time Sampled: Matrix: Water

07/22/14 10:45

Workorder:

Lab Number:

C140717

Certificate of Analysis

C140717-32

Dilution MDL Method Parameter Analyzed By Batch Results **Qualifier** Units Factor EPA 350.1 Ammonia as N 41.7 D mg/L 3.00 100 08/05/2014 KJB 1408011

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-POSTI-072214 **Station ID:**

No Tag Prefix-C **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

07/22/14 10:30

Workorder: C140717

Lab Number:

C140717-35

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	10.5	J	mg/L	5.0	10	08/05/2014	NP	1408009
EPA 300.0	Fluoride	42.3		mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrite as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Sulfate as SO4	424		mg/L	0.5	10	08/05/2014	NP	1408009
EPA 310.1	Total Alkalinity	1040		mg CaCO3 / L	50.0	10	07/25/2014	KJB	1407136

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTI-072214 **Date / Time Sampled:** 07/22/14 10:30 Workorder: C140717

EPA Tag No.: No Tag Prefix-D Matrix: Water

Lab Number: C140717-36

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
EPA 350.1	Ammonia as N	58.6	D	mg/L	3.00	100	08/05/2014	KJB	1408011

A

Barker-Hughesville_Treatability 3_JUL 2014_A046 **Project Name:**

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-SAPS-072214 **Station ID:** EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Water

07/22/14 08:45

Workorder: C140717

Certificate of Analysis

Lab Number: C140717-39

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	7.1	J	mg/L	5.0	10	08/05/2014	NP	1408009
EPA 300.0	Fluoride	2.2		mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/05/2014	NP	1408009
EPA 300.0	Nitrite as N	< 5.0	U	mg/L	1.0	10	08/05/2014	NP	1408009
EPA 300.0	Sulfate as SO4	939		mg/L	0.5	10	08/05/2014	NP	1408009
EPA 310.1	Total Alkalinity	138		mg CaCO3 / L	50.0	10	07/25/2014	KJB	1407136

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1-072214

No Tag Prefix-D

Date / Time Sampled:

Water

Matrix:

07/22/14 09:25

Workorder: Lab Number: C140717

C140717-40

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	73.5	D	mg/L	3.00	100	08/05/2014	KJB	1408011

[&]quot;J" Qualifier indicates an estimated value

EPA Tag No.:

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-	II								
Batch 1409073 - N	o Lab Prep Reqd	1	Water					ICP	MS-PE DRC-II
Method Blank (1409	9073-BLK1)	Dilution Factor: 1				Prepa	red: 09/16/14	Analyzed: 09/	17/14
Nickel	< 0.500	1.00	ug/L						
Copper	< 0.500	1.00	"						
Arsenic	< 0.500	2.00	"						
Cadmium	< 0.100	0.200	"						
Lead	< 0.100	0.200	"						
Method Blank Spik	e (1409073-BS1)	Dilution Factor: 1				Prepa	red: 09/16/14	Analyzed: 09/	17/14
Nickel	97.0	1.00	ug/L	100		97	85-115		
Copper	98.5	1.00	"	100		99	85-115		
Arsenic	85.3	2.00	"	100		85	85-115		
Cadmium	95.6	0.200	"	100		96	85-115		
Lead	96.2	0.200	"	100		96	85-115		
ouplicate (1409073-DUP1)		Dilution Factor: 1	Source	: C140717-0	5	Prepa	red: 09/16/14	Analyzed: 09/	17/14
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	6.13	10.0	"		5.43			12	20
Arsenic	< 5.00	20.0	"		< 5.00				20
Cadmium	< 1.00	2.00	"		< 1.00				20
Lead	< 1.00	2.00	"		< 1.00				20
Matrix Spike (14090	073-MS1)	Dilution Factor: 1	Source	: C140717-0	5	Prepa	red: 09/16/14	Analyzed: 09/	17/14
Nickel	65.3	10.0	ug/L	100	< 5.00	65	70-130		
Copper	70.1	10.0	"	100	5.43	65	70-130		
Arsenic	94.1	20.0	"	100	< 5.00	94	70-130		
Cadmium	93.3	2.00	"	100	< 1.00	93	70-130		
Lead	103	2.00	"	100	< 1.00	103	70-130		
Matrix Spike (14090	073-MS2)	Dilution Factor: 1	Source: C140717-09 Prepared: 09/16/14 Analyzed: 09/17/14				17/14		
Nickel	61.0	10.0	ug/L	100	< 5.00	61	70-130		
Copper	63.7	10.0	"	100	6.81	57	70-130		
Arsenic	94.4	20.0	"	100	< 5.00	94	70-130		
Cadmium	93.4	2.00	"	100	< 1.00	93	70-130		
Lead	107	2.00	"	100	< 1.00	107	70-130		

TDF #: A-046

130.2

Zinc

100

$Metals \ (Dissolved) \ by \ EPA \ 200/7000 \ Series \ Methods - Quality \ Control$

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409082 - 14	109073	И	Vater					ICP	MS-PE DRC-1
Serial Dilution (1409	082-SRD1)	Dilution Factor: 5	Source	: C140717-0	5	Prepa	red: 09/16/14	Analyzed: 09/	17/14
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	< 25.0	50.0	"		5.43				10
Arsenic	< 25.0	100	"		< 5.00				10
Cadmium	< 5.00	10.0	"		< 1.00				10
Lead	< 5.00	10.0	"		< 1.00				10
ICPOE - PE Optin	na								
Batch 1409072 - No	o Lab Prep Reqd	И	Vater					ICPO	E - PE Optin
Method Blank (1409	072-BLK1)	Dilution Factor: 1				Prepa	red: 09/16/14	Analyzed: 09/	17/14
Aluminum	< 20.0	50.0	ug/L						
fron	< 100	250	ug L						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Method Blank Spike	(1409072-BS1)	Dilution Factor: 1				Prepa	red: 09/16/14	Analyzed: 09/	17/14
Aluminum	10540	50.0	ug/L	10100		104	85-115		
Iron	10580	250	"	10100		105	85-115		
Manganese	113.7	5.00	"	100		114	85-115		
Zinc	101.4	20.0	"	100		101	85-115		
Duplicate (1409072-I	DUP1)	Dilution Factor: 5	Source	: C140717-0	5	Prepa	red: 09/16/14	Analyzed: 09/	17/14
Aluminum	< 100	250	ug/L		< 100				20
Iron	< 500	1250	ug/L		< 500				20
Manganese	46120	25.0	"		46310			0.4	20
Zinc	< 50.0	100	"		< 50.0			0.1	20
Matrix Spike (14090'	72-MS1)	Dilution Factor: 5	Source	: C140717-0	5	Prepa	red: 09/16/14	Analyzed: 09/	17/14
Aluminum	10830	250	ug/L	10100	< 100	107	70-130		
Iron	10620	1250	ug L	10100	< 500	105	70-130		
Manganese	45590	25.0	"	100	46310	NR	70-130		
	120.2	100		100	.0510	1111	, 0 150		

100

< 50.0

130

70-130

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409072 - N	o Lab Prep Reqd	Water						ICPO	E - PE Optima
Matrix Spike (14090	72-MS2)	Dilution Factor: 5	Source	: C140717-0	9	Prepa	red: 09/16/14	Analyzed: 09/	17/14
Aluminum	10290	250	ug/L	10100	< 100	102	70-130		
Iron	10300	1250	"	10100	< 500	102	70-130		
Manganese	50940	25.0	"	100	50630	302	70-130		
Zinc	150.9	100	"	100	50.70	100	70-130		
Batch 1409077 - 14	109072	И	Vater					ICPO	E - PE Optima
Serial Dilution (1409	0077-SRD1)	Dilution Factor: 2	Source	: C140717-0	5	Prepa	red: 09/16/14	Analyzed: 09/	17/14
Aluminum	< 500	1250	ug/L		< 100.00				10
Iron	< 2500	6250	"		< 500.00				10
Manganese	48230	125	"		46310			4	10
		500							

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

TDF #:

A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-	II								
Batch 1409057 - 2	00.2 - TR Metals	J	Vater					ICPN	MS-PE DRC-II
Method Blank (1409	9057-BLK2)	Dilution Factor: 5				Prepa	red: 09/15/14	Analyzed: 09/	17/14
Nickel	< 2.50	5.00	ug/L						
Copper	< 2.50	5.00	ug/L						
Arsenic	< 2.50	10.0	"						
Cadmium	< 0.500	1.00	"						
Lead	< 0.500	1.00	"						
Duplicate (1409057-	-DUP2)	Dilution Factor: 1	Source	: C140717-0)1	Prepa	red: 09/15/14	Analyzed: 09/	17/14
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	< 5.00	10.0	ug/L		< 5.00				20
Arsenic	8.224	20.0	"		6.766			19	20
Cadmium	< 1.00	2.00	"		< 1.00				20
Lead	1.841	2.00	"		2.233			19	20
Matrix Spike (1409057-MS2)		Dilution Factor: 1	Source	: C140717-0)4	Prepa	red: 09/15/14	Analyzed: 09/	17/14
Nickel	332.8	10.0	ug/L	500	< 5.00	67	70-130		
Copper	192.7	10.0	"	300	11.68	60	70-130		
Arsenic	747.9	20.0	"	800	7.734	93	70-130		
Cadmium	188.3	2.00	"	200	< 1.00	94	70-130		
Lead	1144	2.00	"	1000	5.728	114	70-130		
Matrix Spike (14090	057-MS4)	Dilution Factor: 1	Source	: C140717-0	08	Prepa	red: 09/15/14	Analyzed: 09/	17/14
Nickel	333.3	10.0	ug/L	500	< 5.00	67	70-130		
Copper	187.2	10.0	"	300	8.033	60	70-130		
Arsenic	752.7	20.0	"	800	7.422	93	70-130		
Cadmium	195.9	2.00	"	200	< 1.00	98	70-130		
Lead	1174	2.00	"	1000	4.268	117	70-130		
Reference (1409057	-SRM2)	Dilution Factor: 2	Dilution Factor: 2			Prepa	red: 09/15/14	Analyzed: 09/	17/14
Nickel	878.1	20.0	ug/L	1000		88	85-115		
Copper	896.1	20.0	"	1000		90	85-115		
Arsenic	1977	40.0	"	2000		99	85-115		
Cadmium	987.3	4.00	"	1000		99	85-115		
Lead	2071	4.00	"	2000		104	85-115		

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409083 - 14	09057	И	Vater					ICP	MS-PE DRC-II
Serial Dilution (1409)	083-SRD1)	Dilution Factor: 5	Source	C140717-0	1	Prepa	red: 09/15/14	Analyzed: 09/	17/14
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	< 25.0	50.0	"		< 5.00				10
Arsenic	< 25.0	100	"		6.766				10
Cadmium	< 5.00	10.0	"		< 1.00				10
Lead	< 5.00	10.0	"		2.233				10
ICPOE - PE Optim	12								
Batch 1409057 - 20	0.2 - TR Metals	И	Vater					ICPO	E - PE Optima
Method Blank (14090)57-BLK1)	Dilution Factor: 1				Prepar	red: 09/15/14	Analyzed: 09/	17/14
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	"						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Duplicate (1409057-D	OUP1)	Dilution Factor: 5	Source	C140717-0	1	Prepa	red: 09/15/14	Analyzed: 09/	17/14
Aluminum	205.7	250	ug/L		185.3			10	20
Iron	552.2	1250	"		686.6			22	20
Manganese	63530	25.0	"		64210			1	20
Zinc	468.4	100	"		496.8			6	20
Matrix Spike (140905	57-MS1)	Dilution Factor: 5	Source	C140717-0	4	Prepa	red: 09/15/14	Analyzed: 09/	17/14
Aluminum	2102	250	ug/L	2000	148.2	98	70-130		
Iron	3787	1250	"	3000	614.8	106	70-130		
Manganese	48150	25.0	"	200	48490	NR	70-130		
Zinc	532.8	100	"	200	326.4	103	70-130		
Matrix Spike (140905	57-MS3)	Dilution Factor: 5	Source: C140717-08 Prepar			red: 09/15/14	Analyzed: 09/	17/14	
Aluminum	2074	250	ug/L	2000	116.2	98	70-130		
Iron	3375	1250	"	3000	516.6	95	70-130		
Manganese	52540	25.0	"	200	51060	739	70-130		
Č	507.5	100	"	200	287.1	110	70-130		

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409057 - 20	00.2 - TR Metals	Water						ICPO	E - PE Optima
Reference (1409057-	-SRM1)	Dilution Factor: 1				Prepar	red: 09/15/14	Analyzed: 09/	17/14
Aluminum	995.5	50.0	ug/L	1000		100	85-115		
Iron	1002	250	"	1000		100	85-115		
Manganese	1038	5.00	"	1000		104	85-115		
Zinc	1010	20.0	**	1000		101	85-115		
Batch 1409078 - 14	409057	И	ater					ICPO	E - PE Optima
Serial Dilution (1409	9078-SRD1)	Dilution Factor: 2	Source	C140717-0	1	Prepar	red: 09/15/14	Analyzed: 09/	17/14
Aluminum	< 500	1250	ug/L		185.3				10
	< 500 < 2500	1250 6250	ug/L		185.3 686.6				10 10
Aluminum Iron Manganese								4	

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample NOTE:

TDF #: A-046

${\bf Classical\ Chemistry\ by\ EPA/ASTM/APHA\ Methods-Quality\ Control}$

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ESAT Dionex IC									
Batch 1408009 - No Pr	ep Req	J	Water					ES	SAT Dionex IC
Method Blank (1408009-	BLK1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 08/05/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Nitrite as N	< 0.1	0.5	"						
Nitrate as N	< 0.1	0.5	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Method Blank Spike (14	08009-BS1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 08/05/14	
Fluoride	5.0	0.2	mg/L	5.00		101	90-110		
Chloride	24.3	2.0	"	25.0		97	90-110		
Nitrite as N	10.3	0.5	"	10.0		103	90-110		
Nitrate as N	10.2	0.5	"	10.0		102	90-110		
Sulfate as SO4	23.2	0.1	"	25.0		93	90-110		
Nitrate/Nitrite as N	20.5	5.0	"	20.0		103	90-110		
Duplicate (1408009-DUP	1)	Dilution Factor: 1	Source	C140717-0	3	Prepar	red & Analyz	zed: 08/05/14	
Fluoride	56.7	2.0	mg/L		56.3			0.6	20
Chloride	10.2	20.0	"		10.2			0.1	20
Nitrite as N	< 1.0	5.0	"		< 1.0				20
Nitrate as N	< 1.0	5.0	"		< 1.0				20
Sulfate as SO4	377	1.0	"		378			0.4	20
Nitrate/Nitrite as N	< 10.0	50.0	"		< 10.0				20
Matrix Spike (1408009-N	AS1)	Dilution Factor: 1	Source	C140717-0	3	Prepai	red & Analyz	zed: 08/05/14	
Fluoride	46.2	2.0	mg/L	50.0	56.3	NR	80-120		
Chloride	254	20.0	"	250	10.2	98	80-120		
Nitrite as N	104	5.0	"	100	< 1.0	104	80-120		
Nitrate as N	103	5.0	"	100	< 1.0	103	80-120		
Sulfate as SO4	634	1.0	"	250	378	102	80-120		
Nitrate/Nitrite as N	207	50.0	"	200	< 10.0	103	80-120		

TDF #: A-046

${\bf Classical\ Chemistry\ by\ EPA/ASTM/APHA\ Methods-Quality\ Control}$

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit	
Batch 1408009 - No Pa	rep Req	Į	Vater					E	SAT Dionex IC	
Matrix Spike (1408009-	MS2)	Dilution Factor: 1	Source	: C140717-3	9	Prepa	red & Analyz	red: 08/05/14		
Fluoride	49.8	2.0	mg/L	50.0	2.2	95	80-120			
Chloride	235	20.0	"	250	7.1	91	80-120			
Nitrite as N	99.4	5.0	"	100	< 1.0	99	80-120			
Nitrate as N	97.8	5.0	"	100	< 1.0	98	80-120			
Sulfate as SO4	1180	1.0	"	250	939	98	80-120			
Nitrate/Nitrite as N	197	50.0	"	200	< 10.0	99	80-120			
Batch 1408042 - 14080	009	Į	Vater					E	SAT Dionex IC	
Instrument Blank (1408	042-IBL1)	Dilution Factor: 1				Prepa	Prepared & Analyzed: 08/05/14			
Fluoride	< 0.1	0.2	mg/L							
Chloride	< 0.5	2.0	"							
Nitrite as N	< 0.1	0.5	"							
Nitrate as N	< 0.1	0.5	"							
Sulfate as SO4	< 0.05	0.1	"							
Nitrate/Nitrite as N	< 1.0	5.0	"							
Lachat 8500										
Batch 1408011 - No Pr	rep Req	Į	Vater						Lachat 8500	
Method Blank (1408011	-BLK1)	Dilution Factor: 1				Prepa	red: 08/04/14	Analyzed: 08/	05/14	
Ammonia as N	< 0.0300	0.0500	mg/L							
Method Blank Spike (14	408011-BS1)	Dilution Factor: 1				Prepa	red: 08/04/14	Analyzed: 08/	05/14	
Ammonia as N	1.01	0.0500	mg/L	1.00		101	90-110			
Duplicate (1408011-DUI	P1)	Dilution Factor: 1	Source	: C140717-0	7	Prepa	red: 08/04/14	Analyzed: 08/	05/14	
Ammonia as N	11.5	5.00	mg/L		11.4			0.5	20	

Certificate of Analysis

TDF #:

A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
rep Req	J	Vater						Lachat 8500
MS1)	Dilution Factor: 1	Source: 0	C 140717-0	7	Prepar	ed: 08/04/14	Analyzed: 08/	05/14
112	5.00	mg/L	100	11.4	101	90-110		
M1)	Dilution Factor: 5				Prepar	ed: 08/04/14	Analyzed: 08/	05/14
4.89	0.250	mg/L	4.80		102	90-110		
rep Req	Į	Vater						Mettler AT
5-BLK1)	Dilution Factor: 1					ed & Analyz	zed: 07/25/14	
< 5.00	10.0	mg CaCO3 /						
P1)	Dilution Factor: 1	Source: (C140717-0	3	Prepar	ed & Analyz	zed: 07/25/14	
1040	100	mg CaCO3 /		1040			0.05	20
P2)	Dilution Factor: 1	Source: (C 140717-3	9	Prepar	ed & Analyz	zed: 07/25/14	
137	100	mg CaCO3 /		138			0.9	20
M1)	Dilution Factor: 1				Prepar	ed & Analyz	zed: 07/25/14	
12.1	10.0	mg CaCO3 /	10.4		117	61.3-143.9		
	rep Req MS1) 112 M1) 4.89 rep Req 5-BLK1) < 5.00 P1) 1040 P2) 137	rep Req	MS1	Result Det. Limit Units Level rep Req Water MS1) Dilution Factor: 1 Source: C140717-0 112 5.00 mg/L 100 M1) Dilution Factor: 5 4.89 0.250 mg/L 4.80 rep Req Water Water 5.80 10.0 mg CaCO3 / L L P1) Dilution Factor: 1 Source: C140717-0 1040 100 mg CaCO3 / L L P2) Dilution Factor: 1 Source: C140717-3 137 100 mg CaCO3 / L L M1) Dilution Factor: 1 mg CaCO3 / L 10.4 10.4 10.4	Nesult Det. Limit Units Level Result	Result Det. Limit Units Level Result %R rep Req Water MS1) Dilution Factor: 1 Source: C140717-07 Prepar 112 5.00 mg/L 100 11.4 101 M1) Dilution Factor: 5 Prepar 4.89 0.250 mg/L 4.80 102 rep Req Water FBLK1) Dilution Factor: 1 Source: C140717-03 Prepar PI) Dilution Factor: 1 Source: C140717-03 Prepar P2) Dilution Factor: 1 Source: C140717-39 Prepar M1) Dilution Factor: 1 Source: C140717-39 Prepar M1) Dilution Factor: 1 Source: C140717-39 Prepar M1) Dilution Factor: 1 Source: C140717-39 Prepar	New New	No. No.

NOTE: %R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level.

RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 310.1</u> Analysis Name: <u>WC - Alkalinity</u>

Instrument: Mettler AT Work Order: Nu C140717

Analytical Sequence: Total Concentration Units: mg CaCO3 / L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	KS	Metho Blan (Batch	PQL	
		1	2	3	4	1407136-BLK1	NA	
		1.44	1.26					4.0.00
Total Alkalinity		5	6	7	8	1.10	NA	10.00

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 350.1</u> Analysis Name: <u>WC - Ammonia</u>

Instrument: Lachat 8500 Work Order: Nu C140717

Analytical Sequence: Total Concentration Units: mg/L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	xs.	Metho Blan (Batch	k	PQL
		1	2	3	4	1408011-BLK1	NA	
		0.00	-0.01	0.00				
Ammonia as N		5	6	7	8	0.00	NA	0.05

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 300.0</u> Analysis Name: <u>WC - Anions by Ion Chromatography</u>

Instrument: ESAT Dionex IC Work Order: Nu C140717

Analytical Sequence: 1408042 **Dissolved** Concentration Units: <u>mg/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	Method Blank (Batch II	PQL		
		1	2	3	4	1408009-BLK1	NA	
	0.00	0.00	0.00					
Fluoride		5	6	7	8	0.00	NA	0.20
		1	2	3	4	1408009-BLK1	NA	
	0.00	0.00	0.00					
Chloride		5	6	7	8	0.00	NA	2.00
		1	2	3	4	1408009-BLK1	NA	
	0.00	0.00	0.00					
Nitrite as N		5	6	7	8	0.00	NA	0.50
		1	2	3	4	1408009-BLK1	NA	
	0.00	0.00	0.00					
Nitrate as N		5	6	7	8	0.00	NA	0.50
		1	2	3	4	1408009-BLK1	NA	
	0.00	0.00	0.00					
Sulfate as SO4		5	6	7	8	0.00	NA	0.10
		1	2	3	4	1408009-BLK1	NA	
	0.00	0.00	0.00					
Nitrate/Nitrite as N		5	6	7	8	0.00	NA	5.00

TDF #: A-046

Project Name:

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: <u>ICPOE Diss. Metals</u>

Instrument: ICPOE - PE Optima Work Order: Nu C140717

Analytical Sequence: 1409077 **Dissolved** Concentration Units: <u>ug/L</u>

Aluminum 5 -0.39 1 45.09	2 3 1.97 0.92 6 7 2 3	8	-0.72	NA NA	50.00
Aluminum -0.39 5 5 1 45.09	6 7	8		NA	50.00
45.09				NA	50.00
45.09	2 3	4			
45.09		4	1409072-BLK1	NA	
83.83 4	3.55 61.1				Ī
Iron 5	6 7	8	80.98	NA	250.0
	2 3	4	1409072-BLK1	NA	
0.10	0.88 0.61				
Manganese 5	6 7	8	-0.20	NA	5.00
-2.01	2 3	4	1409072-BLK1	NA	1
Zinc -0.03 (0.56 -0.96	5	-2.69	NA	20.00
Zinc 5	6 7	8	-2.09	INA	20.00

TDF #: A-046

Project Name:

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140717

Analytical Sequence: 1409078 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	s	Method Blank (Batch II		PQL
		1	2	3	4	1409057-BLK1	NA	
	0.07	-0.39	1.97	0.92	1.48			
Aluminum		5	6	7	8	-3.85	NA	50.00
		1.81						
		1	2	3	4	1409057-BLK1	NA	
	45.09	83.83	43.55	61.16	26.13			Ī
Iron		5	6	7	8	26.88	NA	250.0
		64.45						
		1	2	3	4	1409057-BLK1	NA	
	0.10	0.40	0.88	0.61	0.30			
Manganese		5	6	7	8	-0.03	NA	5.00
		0.56						
		1	2	3	4	1409057-BLK1	NA	
	-2.01	-0.03	0.56	-0.96	-0.39		37.4	20.00
Zinc		5	6	7	8	-0.21	NA	20.00
		-1.40						

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: <u>ICPMS Diss. Metals</u>

Instrument: ICPMS-PE DRC-II Work Order: Nu C140717

Analytical Sequence: 1409082 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	C	Continuing Cali	bration Blank	s	Methoo Blank (Batch II		PQL
		1	2	3	4	1409073-BLK1	NA	
	0.03	0.02	0.02				374	
Nickel		5	6	7	8	-0.01	NA	1.00
		1	2	3	4	1409073-BLK1	NA	
	-0.02	-0.01	-0.02		4	TIOSONS BEILL	1111	
Copper		5	6	7	8	-0.09	NA	1.00
		1	2	3	4	1409073-BLK1	NA	
	-0.01	-0.10	0.00					,
Arsenic		5	6	7	8	0.03	NA	2.00
		1	2	3		1409073-BLK1	NA	
	0.01			3	4	1407073-BERT	IVA	
Cadmium		5	0.01 6	7	8	0.00	NA	0.20
		J	Ŭ	•	<u> </u>			
	0.02	1	2	3	4	1409073-BLK1	NA	
	0.02	0.05	0.02				NA	0.20
Lead		5	6	7	8	0.00	NA	0.20

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C140717

Analytical Sequence: 1409083 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	S	Bl	ethod ank ch ID)	PQL
		1	2	3	4	NA	1409057-BLK2	
	0.03	0.02	0.02	0.03	0.02			1.00
Nickel		5	6	7	8	NA	-0.02	1.00
		1	2	3	4	NA	1409057-BLK2	
_	-0.02	-0.01	-0.02	-0.04	-0.04		0.10	1.00
Copper		5	6	7	8	NA	-0.10	1.00
		1	2	3	4	NA	1409057-BLK2	
	-0.01	-0.10	0.00	-0.03	-0.06		0.16	• • • •
Arsenic		5	6	7	8	NA	0.16	2.00
		1	2	3	4	NA	1409057-BLK2	
	0.01	0.01	0.01	0.02	0.01		0.00	0.20
Cadmium		5	6	7	8	NA	0.00	0.20

	0.02	1	2	3	4	NA	1409057-BLK2	
Lead	0.02	0.05	0.02	0.02	0.02	NA	0.04	0.20
Leau		5	6	7	8	11/1	0.04	0.20

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Mettler AT Method: EPA 310.1 Analysis Name: WC - Alkalinity

Sequence: 1407142 Work Order: C140717 Units: mg CaCO3 / L

Total	Initi	ial (ICV1, I	(CV2)		Conti	inuing C	alibration	Verification	on Stand	ards (CC	(Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				100	99.6	99.6	100	100	100.0			
Total Alkalinity					4			5			6	
Total Mikalility												
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, \ Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, \ CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Lachat 8500 Method: EPA 350.1 Analysis Name: WC - Ammonia

Sequence: 1408030 Work Order: C140717 Units: mg/L

Total	Initi	ial (ICV1, I	CV2)		Cont	inuing C	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				1.00	1.02	102.0	1.00	1.02	102.0	1.00	1.02	102.0
Ammonia as N					4			5			6	
Ammonia as iv												
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

Project Name:

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ESAT Dionex IC Method: EPA 300.0 Analysis Name: WC - Anions by Ion Chromatography 2013

Sequence: 1408042 Work Order: C140717 Units: mg/L

Sequence. 1400042		WOIK OI	uci. Ci-	10/1/		Omis. m	5/12					
Dissolved	Init	ial (ICV1, l	ICV2)		Cont	tinuing C	alibration	Verificati	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	40.0	41.0	102.0	40.0	41.5	103.8	40.0	38.4	96.0			
Chloride	40.0	41.2	103.0		4			5			6	
Cinoriac												
					7			8			9	
					1			2			3	
			100.5	4.00	4.1	102.5	4.00	3.7	92.5			
Fluoride	4.00	4.1	102.5		4			5			6	
riuoriae												
					7			8			9	
					1			2			3	
				10.0	10.3	103.0	10.0	9.5	95.0			
Nitrate as N	10.0	10.2	102.0		4			5			6	
mirate as in												
					7			8			9	
					1			2			3	
				20.0	20.6	103.0	20.0	19.0	95.0			
Nitrate/Nitrite as N	20.0	20.5	102.5		4			5			6	
minate/minite as in												
					7			8			9	
					1			2			3	
		40.5	400.0	10.0	10.3	103.0	10.0	9.6	96.0			
Nitrite as N	10.0	10.3	103.0		4			5			6	
INITIAL AS IN												
					7			8			9	
					1			2			3	
		4.0-5	405.5	100	104	104.0	100	93.1	93.1			
Sulfate as SO4	100	103	103.0		4			5			6	
Surface as SU4												
					7			8			9	
	L						L					

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Diss. Metals

Sequence: 1409077 Work Order: C140717 Units: ug/L

Dissolved	Initi	ial (ICV1,	ICV2)	1	Cont	inuing C	alibration	Verificati	on Stand	ards (CC	Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	10.500	400.0	12500	12820	102.6	12500	12860	102.9	12500	13100	104.8
Aluminum	12500	12520	100.2		4			5			6	
					7			8			9	
					1			2			3	
	12500	12720	101.8	12500	13020	104.2	12500	12970	103.8	12500	12920	103.4
Iron	12300	12/20	101.0		4			5			6	
					7			8			9	
					1			2			3	
	1000	1020	102.0	1000	1024	102.4	1000	1038	103.8	1000	1035	103.5
Manganese	1000	1028	102.8		4			5			6	
manganese												
					7			8			9	
					1			2			3	
	2500	2565	102 (2500	2606	104.2	2500	2609	104.4	2500	2616	104.6
Zinc	2500	2565	102.6		4			5			6	
Zinc												
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Sequence: 1409078 Work Order: C140717 Units: ug/L

Total Recoverable	Initi	al (ICV1,	ICV2)		Conti	inuing Ca	alibration	Verification	on Stand	ards (CC	Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	10500	100.2	12500	12820	102.6	12500	12860	102.9	12500	13100	104.8
Aluminum	12500	12520	100.2		4			5			6	
7 Manimum				12500	12780	102.2	12500	12800	102.4			
					7			8			9	
					1			2			3	
				12500	13020	104.2	12500	12970	103.8	12500	12920	103.4
T	12500	12720	101.8	12300	4	101.2	12300	5	103.0	12300	6	103.1
Iron				12500	12870	103.0	12500	12880	103.0			
					7			8			9	
					1			2			3	
	1000	1029	102.9	1000	1024	102.4	1000	1038	103.8	1000	1035	103.5
Manganese	1000	1028	102.8		4			5			6	
Wanganese				1000	1054	105.4	1000	1050	105.0			
					7			8			9	
					1			2			3	
	2500	2565	102 (2500	2606	104.2	2500	2609	104.4	2500	2616	104.6
Zinc	2500	2565	102.6		4			5			6	
Ziiic				2500	2678	107.1	2500	2651	106.0			
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Diss. Metals

Sequence: 1409082 Work Order: C140717 Units: ug/L

Dissolved	Init	ial (ICV1, l	(CV2)	l	Cont	inuing C	alibration	Verificati	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	50.0	40.5	00.0	50.0	48.5	97.0	50.0	48.6	97.2			
Arsenic	50.0	49.5	99.0		4			5			6	
1 11001110												
					7			8			9	
					1			2			3	
	50.0	47.8	95.6	50.0	49.0	98.0	50.0	48.8	97.6			
Cadmium	30.0	77.0	75.0		4			5			6	
					7			8			9	
				50.0	<u>1</u> 46.9	93.8	50.0	<u>2</u> 44.8	89.6		3	
	50.0	48.4	96.8	30.0	46.9	93.8	30.0	5	89.0		6	
Copper					-			3			0	
					7			8			9	
					1			2			3	
				50.0	51.4	102.8	50.0	52.4	104.8			
Lead	50.0	48.7	97.4		4			5			6	
Lead												
					7			8			9	
					1			2			3	
	50.0	48.3	96.6	50.0	46.7	93.4	50.0	45.1	90.2			
Nickel	50.0	TU.J	70.0		4			5			6	
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1409083 Work Order: C140717 Units: ug/L

Total Recoverable	Initi	ial (ICV1, I	ICV2)	I	Cont	inuing Ca	alibration	Verificati	on Stand	ards (CC	(Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				50.0	48.45	96.9	50.0	48.58	97.2	50.0	48.19	96.4
Arsenic	50.0	49.46	98.9		4			5			6	
Arsenie				50.0	46.99	94.0						
					7			8			9	
					1			2			3	
	50.0	47.84	95.7	50.0	48.95	97.9	50.0	48.75	97.5	50.0	48.02	96.0
Cadmium	30.0	47.04	75.1		4			5			6	
				50.0	48.29	96.6						
					7			8			9	
					1			2			3	
	50.0	48.45	96.9	50.0	46.88	93.8	50.0	44.77	89.5	50.0	46.27	92.5
Copper					4			5			6	
••				50.0	42.58	85.2						
					7			8			9	
					1			2			3	
	50.0	48.68	97.4	50.0	51.37	102.7	50.0	52.40	104.8	50.0	53.29	106.6
Lead	30.0	46.06	97.4		4			5			6	
				50.0	54.62	109.2						
					7			8			9	
					1			2			3	
	50.0	48.32	96.6	50.0	46.69	93.4	50.0	45.14	90.3	50.0	45.80	91.6
Nickel	30.0	46.32	90.0		4			5			6	
				50.0	42.66	85.3						
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPMS-PE DRC-II

Analyte		<u>C</u>	heck Sample	Result*	<u>Units</u>	True	<u>%R</u>	<u>PQL</u>
Sequence:	1409082	Analysis:	ICPMS Diss. Metals					
Arsenic			IFA1	0.0	ug/L			2.00
			IFB1	19.8	ug/L	20	99	2.00
Cadmium			IFA1	0.1	ug/L			0.200
			IFB1	19.5	ug/L	20	97	0.200
Copper			IFA1	0.6	ug/L			1.00
			IFB1	17.6	ug/L	20	88	1.00
Lead			IFA1	0.1	ug/L			0.200
			IFB1	0.1	ug/L			0.200
Nickel			IFA1	-0.1	ug/L			1.00
			IFB1	17.2	ug/L	20	86	1.00
*Criteria = 8	0-120%R of T	Γrue Value or +	-/- PQL					
See raw data	for complete	analyte list and	l results.					
Sequence:	1409083	Analysis:	ICPMS Tot. Rec. Meta	als				
	·		TT-1.4		/T	·	·	

Sequence: 14	409083	Analysis:	ICPMS Tot. Rec. Me	etals				
Arsenic			IFA1	0.0	ug/L			2.00
			IFB1	19.8	ug/L	20	99	2.00
Cadmium			IFA1	0.1	ug/L			0.200
			IFB1	19.5	ug/L	20	97	0.200
Copper			IFA1	0.6	ug/L			1.00
			IFB1	17.6	ug/L	20	88	1.00
Lead			IFA1	0.1	ug/L			0.200
			IFB1	0.1	ug/L			0.200
Nickel			IFA1	-0.1	ug/L			1.00
			IFB1	17.2	ug/L	20	86	1.00

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPOE - PE Optima

Analyte	Check Sample	Result*	<u>Units</u>	<u>True</u>	<u>%R</u>	<u>PQL</u>
Sequence: 14090	77 Analysis: ICPOE Diss. Metals		· <u> </u>	<u> </u>		
Aluminum	IFA1	60,300.9	ug/L	60,000	101	50.0
	IFB1	60,573.2	ug/L	60,000	101	50.0
Iron	IFA1	235,735.5	ug/L	250,000	94	250
	IFB1	238,388.9	ug/L	250,000	95	250
Manganese	IFA1	-0.4	ug/L			5.00
	IFB1	199.2	ug/L	200	100	5.00
Zinc	IFA1	1.3	ug/L			20.0
	IFB1	294.7	ug/L	300	98	20.0
*Criteria = 80-120%	R of True Value or +/- PQL					

See raw data for complete analyte list and results.

Sequence: 1409	0078 Analysis:	ICPOE Tot. R	ec. Metals				
Aluminum		IFA1	60,300.9	ug/L	60,000	101	50.0
		IFB1	60,573.2	ug/L	60,000	101	50.0
Iron		IFA1	235,735.5	ug/L	250,000	94	250
		IFB1	238,388.9	ug/L	250,000	95	250
Manganese		IFA1	-0.4	ug/L			5.00
		IFB1	199.2	ug/L	200	100	5.00
Zinc		IFA1	1.3	ug/L			20.0
		IFB1	294.7	ug/L	300	98	20.0

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPMS-PE DRC-II

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1409082

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Arsenic	2.00	1.96	98	ug/L
Cadmium	0.200	0.199	100	ug/L
Copper	1.00	1.02	102	ug/L
Lead	0.200	0.221	111	ug/L
Nickel	1.00	0.977	98	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1409077

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	99.22	99	ug/L
Iron	100	143.0	143	ug/L
Manganese	10.0	10.19	102	ug/L
Zinc	50.0	51.56	103	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard Lachat 8500

Classical Chemistry by EPA/ASTM/APHA Methods

Sequence: 1408030

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Ammonia as N	0.0250	0.0237	95	mg/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8
Detection Limit (PQL) Standard
ICPMS-PE DRC-II

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1409083

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Arsenic	2.00	1.959	98	ug/L
Cadmium	0.200	0.1995	100	ug/L
Copper	1.00	1.017	102	ug/L
Lead	0.200	0.2214	111	ug/L
Nickel	1.00	0.9769	98	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1409078

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Aluminum	100	99.22	99	ug/L
Iron	100	143.0	143	ug/L
Manganese	10.0	10.19	102	ug/L
Zinc	50.0	51.56	103	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 310.1 **Total Sequence ID#:** 1407142

Instrument ID #: Mettler	AT Wate	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1407136-SRM1	Reference	07/25/14	13:25
1407136-BLK1	Blank	07/25/14	13:25
C140717-03	14BH-DT-PILOT-BCR1-07221	07/25/14	13:25
1407136-DUP1	Duplicate	07/25/14	13:25
C140717-06	14BH-DT-PILOT-BCR2-07221	07/25/14	13:25
C140717-10	14BH-DT-PILOT-BCR2D-0722	07/25/14	13:25
C140717-14	14BH-DT-PILOT-BCR3-07221	07/25/14	13:25
C140717-18	14BH-DT-PILOT-BCR4-07221	07/25/14	13:25
C140717-22	14BH-DT-PILOT-CHIT-072214	07/25/14	13:25
C140717-25	14BH-DT-PILOT-INF-072214	07/25/14	13:25
1407142-CCV1	Calibration Check	07/25/14	13:25
1407142-CCB1	Calibration Blank	07/25/14	13:25
C140717-28	14BH-DT-PILOT-NAOH-0722	07/25/14	13:25
C140717-31	14BH-DT-PILOT-POSTE-0722	07/25/14	13:25
C140717-35	14BH-DT-PILOT-POSTI-07221	07/25/14	13:25
C140717-39	14BH-DT-PILOT-SAPS-07221	07/25/14	13:25
1407136-DUP2	Duplicate	07/25/14	13:25
1407142-CCV2	Calibration Check	07/25/14	13:25
1407142-CCB2	Calibration Blank	07/25/14	13:25

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 350.1 **Total Sequence ID#:** 1408030

Instrument ID #: Lachat	8500 Wate	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1408011-SRM1	Reference	08/05/14	15:27
1408011-BLK1	Blank	08/05/14	15:27
1408011-BS1	Blank Spike	08/05/14	15:27
1408030-CRL1	Instrument RL Check	08/05/14	15:27
C140717-07	14BH-DT-PILOT-BCR2-07221	08/05/14	15:27
1408011-DUP1	Duplicate	08/05/14	15:27
1408011-MS1	Matrix Spike	08/05/14	15:27
C140717-11	14BH-DT-PILOT-BCR2D-0722	08/05/14	15:27
1408030-CCV1	Calibration Check	08/05/14	15:27
1408030-CCB1	Calibration Blank	08/05/14	15:27
C140717-15	14BH-DT-PILOT-BCR3-07221	08/05/14	15:27
C140717-32	14BH-DT-PILOT-POSTE-0722	08/05/14	15:27
C140717-36	14BH-DT-PILOT-POSTI-07221	08/05/14	15:27
C140717-40	14BH-DT-PILOT-BCR1-07221	08/05/14	15:27
1408030-CCV2	Calibration Check	08/05/14	15:27
1408030-CCB2	Calibration Blank	08/05/14	15:27
C140717-19	14BH-DT-PILOT-BCR4-07221	08/05/14	15:27
1408030-CCV3	Calibration Check	08/05/14	15:27
1408030-CCB3	Calibration Blank	08/05/14	15:27

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 300.0 **Dissolved Sequence ID#:** 1408042

Instrument ID #: ESAT	Dionex IC Water	nex IC Water		
Analysis ID	Sample Name	Analysis Date	Analysis Time	
1408042-ICV1	Initial Cal Check	08/05/14	10:36	
1408042-ICB1	Initial Cal Blank	08/05/14	10:55	
1408009-BS1	Blank Spike	08/05/14	11:32	
1408009-BLK1	Blank	08/05/14	11:51	
C140717-03	14BH-DT-PILOT-BCR1-07221	08/05/14	12:09	
1408009-DUP1	Duplicate	08/05/14	12:28	
1408009-MS1	Matrix Spike	08/05/14	12:46	
C140717-06	14BH-DT-PILOT-BCR2-07221	08/05/14	13:05	
C140717-10	14BH-DT-PILOT-BCR2D-0722	08/05/14	13:24	
C140717-14	14BH-DT-PILOT-BCR3-07221	08/05/14	13:42	
1408042-CCV1	Calibration Check	08/05/14	14:01	
1408042-CCB1	Calibration Blank	08/05/14	14:56	
1408042-SCV1	Secondary Cal Check	08/05/14	15:15	
1408042-IBL1	Instrument Blank	08/05/14	15:34	
C140717-18	14BH-DT-PILOT-BCR4-07221	08/05/14	15:52	
C140717-22	14BH-DT-PILOT-CHIT-072214	08/05/14	16:11	
C140717-25	14BH-DT-PILOT-INF-072214	08/05/14	16:29	
C140717-28	14BH-DT-PILOT-NAOH-0722	08/05/14	16:48	
C140717-31	14BH-DT-PILOT-POSTE-0722	08/05/14	17:06	
C140717-35	14BH-DT-PILOT-POSTI-07221	08/05/14	17:25	
C140717-39	14BH-DT-PILOT-SAPS-07221	08/05/14	17:44	
1408009-MS2	Matrix Spike	08/05/14	18:02	
1408042-CCV2	Calibration Check	08/05/14	18:21	
1408042-CCB2	Calibration Blank	08/05/14	19:17	

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Dissolved Sequence ID#:** 1409077

Instrument ID #: ICPO	E - PE Optima Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1409077-ICV1	Initial Cal Check	09/17/14	08:04
1409077-SCV1	Secondary Cal Check	09/17/14	08:08
1409077-ICB1	Initial Cal Blank	09/17/14	08:11
1409077-CRL1	Instrument RL Check	09/17/14	08:14
1409077-IFA1	Interference Check A	09/17/14	08:16
1409077-IFB1	Interference Check B	09/17/14	08:20
1409072-BLK1	Blank	09/17/14	08:24
1409072-BS1	Blank Spike	09/17/14	08:27
C140717-02	14BH-DT-PILOT-BCR1-07221	09/17/14	08:55
1409077-CCV1	Calibration Check	09/17/14	09:01
1409077-CCB1	Calibration Blank	09/17/14	09:04
C140717-13	14BH-DT-PILOT-BCR3-07221	09/17/14	09:07
C140717-17	14BH-DT-PILOT-BCR4-07221	09/17/14	09:11
C140717-24	14BH-DT-PILOT-INF-072214	09/17/14	09:18
C140717-27	14BH-DT-PILOT-NAOH-0722	09/17/14	09:22
C140717-30	14BH-DT-PILOT-POSTE-0722	09/17/14	09:25
C140717-34	14BH-DT-PILOT-POSTI-07221	09/17/14	09:29
C140717-38	14BH-DT-PILOT-SAPS-07221	09/17/14	09:33
C140717-05	14BH-DT-PILOT-BCR2-07221	09/17/14	09:39
1409077-CCV2	Calibration Check	09/17/14	09:42
1409077-CCB2	Calibration Blank	09/17/14	09:45
1409072-DUP1	Duplicate	09/17/14	09:48
1409077-SRD1	Serial Dilution	09/17/14	09:51
1409072-MS1	Matrix Spike	09/17/14	09:55
C140717-09	14BH-DT-PILOT-BCR2D-0722	09/17/14	09:58
1409072-MS2	Matrix Spike	09/17/14	10:01
C140717-21	14BH-DT-PILOT-CHIT-072214	09/17/14	10:04
1409077-CCV3	Calibration Check	09/17/14	10:07
1409077-CCB3	Calibration Blank	09/17/14	10:10

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Total Recoverable Sequence ID#:** 1409078

Instrument ID #: ICPO	E - PE Optima Water	r	LSR #: A-046						
Analysis ID	Sample Name	Analysis Date	Analysis Time						
1409078-ICV1	Initial Cal Check	09/17/14	08:04						
1409078-SCV1	Secondary Cal Check	09/17/14	08:08						
1409078-ICB1	Initial Cal Blank	09/17/14	08:11						
1409078-CRL1	Instrument RL Check	09/17/14	08:14						
1409078-IFA1	Interference Check A	09/17/14	08:16						
1409078-IFB1	Interference Check B	09/17/14	08:20						
1409078-CCV1	Calibration Check	09/17/14	09:01						
1409078-CCB1	Calibration Blank	09/17/14	09:04						
1409078-CCV2	Calibration Check	09/17/14	09:42						
1409078-CCB2	Calibration Blank	09/17/14	09:45						
1409078-CCV3	Calibration Check	09/17/14	10:07						
1409078-CCB3	Calibration Blank	09/17/14	10:10						
1409057-BLK1	Blank	09/17/14	10:17						
1409057-SRM1	Reference	09/17/14	10:20						
C140717-01	14BH-DT-PILOT-BCR1-07221	09/17/14	10:23						
1409057-DUP1	Duplicate	09/17/14	10:26						
1409078-SRD1	Serial Dilution	09/17/14	10:29						
C140717-04	14BH-DT-PILOT-BCR2-07221	09/17/14	10:32						
1409057-MS1	Matrix Spike	09/17/14	10:36						
C140717-08	14BH-DT-PILOT-BCR2D-0722	09/17/14	10:39						
1409057-MS3	Matrix Spike	09/17/14	10:42						
1409078-CCV4	Calibration Check	09/17/14	10:48						
1409078-CCB4	Calibration Blank	09/17/14	10:51						
C140717-12	14BH-DT-PILOT-BCR3-07221	09/17/14	10:54						
C140717-16	14BH-DT-PILOT-BCR4-07221	09/17/14	10:58						
C140717-20	14BH-DT-PILOT-CHIT-072214	09/17/14	11:01						
C140717-23	14BH-DT-PILOT-INF-072214	09/17/14	11:04						
C140717-26	14BH-DT-PILOT-NAOH-0722	09/17/14	11:07						
C140717-29	14BH-DT-PILOT-POSTE-0722	09/17/14	11:11						
C140717-33	14BH-DT-PILOT-POSTI-07221	09/17/14	11:15						
C140717-37	14BH-DT-PILOT-SAPS-07221	09/17/14	11:19						
1409078-CCV5	Calibration Check	09/17/14	11:25						
1409078-CCB5	Calibration Blank	09/17/14	11:28						

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Dissolved Sequence ID#:** 1409082

Instrument ID #: ICPM	S-PE DRC-II Water	r	LSR #: A-046				
Analysis ID	Sample Name	Analysis Date	Analysis Time				
1409082-ICV1	Initial Cal Check	09/17/14	09:18				
1409082-SCV1	Secondary Cal Check	09/17/14	09:21				
1409082-ICB1	Initial Cal Blank	09/17/14	09:25				
1409082-CRL1	Instrument RL Check	09/17/14	09:28				
1409082-IFA1	Interference Check A	09/17/14	09:31				
1409082-IFB1	Interference Check B	09/17/14	09:34				
1409073-BLK1	Blank	09/17/14	09:38				
1409073-BS1	Blank Spike	09/17/14	09:41				
C140717-05	14BH-DT-PILOT-BCR2-07221	09/17/14	09:44				
1409073-DUP1	Duplicate	09/17/14	09:47				
1409082-SRD1	Serial Dilution	09/17/14	09:50				
1409073-MS1	Matrix Spike	09/17/14	09:53				
C140717-09	14BH-DT-PILOT-BCR2D-0722	09/17/14	09:56				
1409073-MS2	Matrix Spike	09/17/14	09:59				
C140717-02	14BH-DT-PILOT-BCR1-07221	09/17/14	10:02				
1409082-CCV1	Calibration Check	09/17/14	10:29				
1409082-CCB1	Calibration Blank	09/17/14	10:32				
C140717-13	14BH-DT-PILOT-BCR3-07221	09/17/14	10:35				
C140717-17	14BH-DT-PILOT-BCR4-07221	09/17/14	10:39				
C140717-21	14BH-DT-PILOT-CHIT-072214	09/17/14	10:42				
C140717-24	14BH-DT-PILOT-INF-072214	09/17/14	10:45				
C140717-27	14BH-DT-PILOT-NAOH-0722	09/17/14	10:48				
C140717-30	14BH-DT-PILOT-POSTE-0722	09/17/14	10:51				
C140717-34	14BH-DT-PILOT-POSTI-07221	09/17/14	10:54				
C140717-38	14BH-DT-PILOT-SAPS-07221	09/17/14	10:57				
1409082-CCV2	Calibration Check	09/17/14	12:26				
1409082-CCB2	Calibration Blank	09/17/14	12:29				

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Total Recoverable Sequence ID#:** 1409083

nstrument ID #: ICPM	S-PE DRC-II Water		LSR #: A-04					
Analysis ID	Sample Name	Analysis Date	Analysis Time					
1409083-ICV1	Initial Cal Check	09/17/14	09:18					
1409083-SCV1	Secondary Cal Check	09/17/14	09:21					
1409083-ICB1	Initial Cal Blank	09/17/14	09:25					
1409083-CRL1	Instrument RL Check	09/17/14	09:28					
1409083-IFA1	Interference Check A	09/17/14	09:31					
1409083-IFB1	Interference Check B	09/17/14	09:34					
1409083-CCV1	Calibration Check	09/17/14	10:29					
1409083-CCB1	Calibration Blank	09/17/14	10:32					
1409083-CCV2	Calibration Check	09/17/14	12:26					
1409083-CCB2	Calibration Blank	09/17/14	12:29					
1409057-BLK2	Blank	09/17/14	12:35					
1409057-SRM2	Reference	09/17/14	12:38					
C140717-01	14BH-DT-PILOT-BCR1-07221	09/17/14	12:41					
1409057-DUP2	Duplicate	09/17/14	12:44					
1409083-SRD1	Serial Dilution	09/17/14	12:47					
C140717-04	14BH-DT-PILOT-BCR2-07221	09/17/14	12:51					
1409057-MS2	Matrix Spike	09/17/14	12:54					
C140717-08	14BH-DT-PILOT-BCR2D-0722	09/17/14	12:57					
1409057-MS4	Matrix Spike	09/17/14	13:00					
1409083-CCV3	Calibration Check	09/17/14	13:53					
1409083-CCB3	Calibration Blank	09/17/14	13:56					
C140717-12	14BH-DT-PILOT-BCR3-07221	09/17/14	14:00					
C140717-16	14BH-DT-PILOT-BCR4-07221	09/17/14	14:03					
C140717-20	14BH-DT-PILOT-CHIT-072214	09/17/14	14:06					
C140717-23	14BH-DT-PILOT-INF-072214	09/17/14	14:09					
C140717-26	14BH-DT-PILOT-NAOH-0722	09/17/14	14:12					
C140717-29	14BH-DT-PILOT-POSTE-0722	09/17/14	14:15					
C140717-33	14BH-DT-PILOT-POSTI-07221	09/17/14	14:18					
C140717-37	14BH-DT-PILOT-SAPS-07221	09/17/14	14:21					
1409083-CCV4	Calibration Check	09/17/14	15:18					
1409083-CCB4	Calibration Blank	09/17/14	15:21					

CHAIN OF CUSTODY RECORD

CDM Smith		Danny T Pilot Test						Analysis																					
NOTES: Limited sample volumes due to tr	eatability testing					0.7 or 200.8	.), 200.7 or 200.8	ate, chloride, fluoride)															Other Instructions and Notes						
SAMPLE NUMBER	DATE	TIME	MATRIX	Preservative	Type & No. of Containers	Total Metals (TAL), 20	Dissolved Metals (TAL), 200.7 or 200.8	Alkalinity, Anions (sulfate,	Nitrate+Nitrite, Ammonia																				
14BH-DT-PILOT-INF-072214	7/22/14	8:30	aqueous		3, 125 mL poly	Х	Х	Х																					
14BH-DT-PILOT-SAPS-072214	7/22/14	8:45	aqueous		3, 125 mL poly	Х	Х	Х															7						
14BH-DT-PILOT-CHIT-072214	7/22/14	9:00	aqueous		3, 125 mL poly	Х	Х	Х																					
14BH-DT-PILOT-NAOH-072214	7/22/14	9:10	aqueous		3, 125 mL poly	Х	Х	Х		. 8.																			
14BH-DT-PILOT-BCR1-072214	7/22/14	9:25	aqueous	HNO3	3, 125 mL poly	Х	Х	Х	X	40	1V</td <td>4</td> <td></td>	4																	
14BH-DT-PILOT-BCR2-072214	7/22/14	9:45	aqueous	(metals), H2SO4	4, 125 mL poly	Х	Х	Х	Х	7	ph.											ТДІ	. metals = Al, As, Ba, Be, Cd, C						
14BH-DT-PILOT-BCR2D-072214	7/22/14	10:00	aqueous	(nutrients), cool	4, 125 mL poly	х	Х	X	Х														Cr, Co, Cu, Fe, Pb, Mg, Mn, Ni, K,						
14BH-DT-PILOT-BCR3-072214	7/22/14	10:10	aqueous								4, 125 mL poly	Х	Х	Х	Х													Na,	Tl, Zn.
14BH-DT-PILOT-BCR4-072214	7/22/14	10:20	aqueous								4, 125 mL poly	Х	Х	Х	Х														
14BH-DT-PILOT-POSTI-072214	7/22/14	10:30	aqueous		4, 125 mL poly	Х	Х	Х	X																				
14BH-DT-PILOT-POSTE-072214	7/22/14	10:45	aqueous		4, 125 mL poly	Х	Х	Х	Х																				
																				7									
					0																								
Relinquished by: (Signature)	Date/Time 7/22/20	:00		r Laboratory by:	(Signature)	-					•				•	•													
Received by: (Signature)	Date/Time		Airbill No.(s)									-0.00																

C140717

ESAT Technical Direction Form

Contract No. EPW13028 EPA Region 8

Site ID: 085N TDF ID: A-046	Date Issued: Date Updated	5/29/2014	Date Closed By:	
Name: Barker-Hughesville Treatabil Details: The Contractor shall analyze Superfund site as indicated is during the 2014 field season associated with this project a Anton/Erin Louden of CDN	several water samples a the Analytical Inform starting in mid-June th veraging approximately A Smith.	ation Section. The san ough early October 201 7 10 samples per an ever	uples will be sent to the ESA 4. There will be 9 sampling at. The samples will be col	AT R8 Lab g events lected by Nick
Samples designated as influe analyzed by 200.7. Additional				
ESAT should return the coo CDM Smith/Lauren He 50 West 14th Street, Su Helena, MT 59601 406-441-1435 FedEx # 1323-6393-5	elland	dress:		
TO02/Subtask 02b: Inorga	nic Chemistry			
Site RPM: Roger Hoogerhe	ide			
Analytical Information: MATRIX ☑ Water □ Soils □ Vegetation	⊐ Biota			
WET CHEM ☐ TSS ☐ TDS ☐ DOC ☑ Alk ☑ Other: Analyze for Ammonia and repo			☑ Nitrite	
METALS ☑ Dissolved ☑ Total Recoverable ☐ 200.7: ☐ Ag ☑ Al ☐ As ☐ Ba ☑ Mn ☐ Mo ☐ Na ☐ Ni 200.8: ☐ Ag ☐ Al ☑ As ☐ Ba ☐ Se ☐ Th ☐ Tl ☐ U	□ Be □ B □ Ca □ Pb □ Sb □ Se □ Be ፱ Cd □ Cc	Cd Co Cr Sr CTi CTI Cr Cu Mr	□ V ☑ Zn □ SiO2	_
7470/7471/747 🗆 Hg		09/17/	(4	
FIBERS □ PLM □ TEM				
Deliverables ID	Description	ד	Due Date Submission Date	
Provide final deliverable package	•		out Duic Suomission 19ale	

Provide final deliverable package to Task Monitor no later than 30 day after delivery of samples.

ANALYTICAL SUMMARY REPORT

August 25, 2014

CDM Federal Programs 555 17th St Ste 1100 Denver, CO 80202

Work Order: H14080124 Quote ID: H823 - Baker-Hughsville Superfund Site

Project Name: Barker Hughsville - Danny T

Energy Laboratories Inc Helena MT received the following 11 samples for CDM Federal Programs on 8/7/2014 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
H14080124-001	14BH-DT-PILOT-INFL- 080614	08/06/14 8:5	5 08/07/14	Aqueous	Acidity, Total as CaCO3 Phosphorus, Orthophosphate as P
H14080124-002	14BH-DT-PILOT-INFLD- 080614	08/06/14 9:0	0 08/07/14	Aqueous	Same As Above
H14080124-003	14BH-DT-PILOT-SAPS- 080614	08/06/14 9:10	0 08/07/14	Aqueous	Same As Above
H14080124-004	14BH-DT-PILOT-CHIT- 080614	08/06/14 9:20	0 08/07/14	Aqueous	Same As Above
H14080124-005	14BH-DT-PILOT-NAOH- 080614	08/06/14 9:3	5 08/07/14	Aqueous	Same As Above
H14080124-006	14BH-DT-PILOT-BCR1- 080614	08/06/14 9:4	5 08/07/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Phosphorus, Orthophosphate as P Sulfide, Iodine Titrimetric
H14080124-007	14BH-DT-PILOT-BCR2- 080614	08/06/14 10:	10 08/07/14	Aqueous	Same As Above
H14080124-008	14BH-DT-PILOT-BCR3- 080614	08/06/14 10:	35 08/07/14	Aqueous	Same As Above
H14080124-009	14BH-DT-PILOT-BCR4- 080614	08/06/14 10:	50 08/07/14	Aqueous	Same As Above
H14080124-010	14BH-DT-PILOT-POSTI- 080614	08/06/14 11:	10 08/07/14	Aqueous	Same As Above
H14080124-011	14BH-DT-PILOT-POSTE- 080614	- 08/06/14 11::	25 08/07/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Phosphorus, Orthophosphate as P Sulfide, Methylene Blue Colorimetric

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Report Date: 08/25/14

CLIENT: CDM Federal Programs

Project: Barker Hughsville - Danny T

Work Order: H14080124 CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080124-001

Client Sample ID: 14BH-DT-PILOT-INFL-080614

Report Date: 08/25/14 **Collection Date:** 08/06/14 08:55 **DateReceived:** 08/07/14

Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	690 mg/L	D	4.0	A2310 B	08/11/14 11:09 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	0.362 mg/L		0.005	E365.1	08/08/14 08:39 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080124-002

Client Sample ID: 14BH-DT-PILOT-INFLD-080614

Report Date: 08/25/14

Collection Date: 08/06/14 09:00

DateReceived: 08/07/14

Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	730 mg/L	D	4.0	A2310 B	08/11/14 11:17 / SRW
NUTRIENTS					
Phosphorus, Orthophosphate as P	0.10 mg/L	D	0.05	E365.1	08/07/14 16:17 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080124-003

Client Sample ID: 14BH-DT-PILOT-SAPS-080614

Report Date: 08/25/14 **Collection Date:** 08/06/14 09:10

DateReceived: 08/07/14

Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	400 mg/L	D	4.0	A2310 B	08/11/14 11:22 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	0.10 mg/L	D	0.02	E365.1	08/08/14 08:44 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080124-004

Client Sample ID: 14BH-DT-PILOT-CHIT-080614

Report Date: 08/25/14 **Collection Date:** 08/06/14 09:20

DateReceived: 08/07/14

Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS					
Acidity, Total as CaCO3	ND mg/L	D	4.0	A2310 B	08/11/14 11:27 / SRW
NUTRIENTS					
Phosphorus, Orthophosphate as P	26.9 mg/L	D	0.1	E365.1	08/07/14 16:19 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080124-005

Client Sample ID: 14BH-DT-PILOT-NAOH-080614

Report Date: 08/25/14 **Collection Date:** 08/06/14 09:35

DateReceived: 08/07/14

Matrix: Aqueous

Analyses	Result U	nits	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	320 m	g/L	D	4.0		A2310 B	08/11/14 11:34 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	ND m	g/L	D	0.01		E365.1	08/08/14 09:02 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080124-006

Client Sample ID: 14BH-DT-PILOT-BCR1-080614

Report Date: 08/25/14 **Collection Date:** 08/06/14 09:45

DateReceived: 08/07/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	08/11/14 11:41 / SRW
Sulfide	61	mg/L		1		A4500-S F	08/11/14 13:45 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	250	mg/L		100		A5210 B	08/07/14 17:40 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	24.5	mg/L	D	0.1		E365.1	08/07/14 16:21 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T
Lab ID: H14080124-007

Client Sample ID: 14BH-DT-PILOT-BCR2-080614

Report Date: 08/25/14

Collection Date: 08/06/14 10:10

DateReceived: 08/07/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	08/11/14 11:48 / SRW
Sulfide	31	mg/L		1		A4500-S F	08/11/14 13:45 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD) No BOD dilution depleted greater than 2.0 mg/L DO.	<121	mg/L		100		A5210 B	08/07/14 17:45 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	6.9	mg/L	D	0.1		E365.1	08/07/14 16:22 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080124-008

Client Sample ID: 14BH-DT-PILOT-BCR3-080614

Report Date: 08/25/14 **Collection Date:** 08/06/14 10:35 **DateReceived:** 08/07/14

Matrix: Aqueous

Analyses	Result U	nits	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND m	g/L	D	4.0		A2310 B	08/11/14 11:55 / SRW
Sulfide	82 m	g/L		1		A4500-S F	08/11/14 13:45 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	710 m	g/L		200		A5210 B	08/07/14 17:46 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	10.7 m	g/L	D	0.1		E365.1	08/07/14 16:23 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080124-009 **Client Sample ID:** 14BH DT BH OT BO

Client Sample ID: 14BH-DT-PILOT-BCR4-080614

Report Date: 08/25/14 **Collection Date:** 08/06/14 10:50 **DateReceived:** 08/07/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	08/11/14 12:01 / SRW
Sulfide	35	mg/L		1		A4500-S F	08/11/14 13:45 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD) No BOD dilution depleted greater than 2.0 mg/L DO.		mg/L		100		A5210 B	08/07/14 17:51 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	2.5	mg/L	D	0.1		E365.1	08/07/14 16:25 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080124-010

Client Sample ID: 14BH-DT-PILOT-POSTI-080614

Report Date: 08/25/14 **Collection Date:** 08/06/14 11:10 **DateReceived:** 08/07/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	08/11/14 12:05 / SRW
Sulfide		mg/L		1		A4500-S F	08/11/14 13:45 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	310	mg/L		100		A5210 B	08/07/14 17:58 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	13.5	mg/L	D	0.1		E365.1	08/07/14 16:26 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080124-011

Client Sample ID: 14BH-DT-PILOT-POSTE-080614

Report Date: 08/25/14

Collection Date: 08/06/14 11:25

DateReceived: 08/07/14

Matrix: Aqueous

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	08/11/14 12:11 / SRW
Sulfide	5.7	mg/L	D	0.2		A4500-S D	08/11/14 14:00 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	73	mg/L		70		A5210 B	08/07/14 18:04 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	2.3	mg/L	D	0.1		E365.1	08/07/14 16:33 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Analyte	Count Result Units	RL %REC Low Limit High Limit	RPD RPDLimit Qual
Method: A2310 B			Batch: H140811A
Lab ID: H14080124-001BDU	JP Sample Duplicate	Run: PH_140811A	08/11/14 11:13
Acidity, Total as CaCO3	720 mg/L	4.0	4.3 20
Lab ID: H14080124-011ADU	JP Sample Duplicate	Run: PH_140811A	08/11/14 12:17
Acidity, Total as CaCO3	ND mg/L	4.0	20
Lab ID: LCS1408110000	Laboratory Control Sample	Run: PH_140811A	08/11/14 11:06
Acidity, Total as CaCO3	940 mg/L	4.0 96 90 110	
Lab ID: MBLK1408110000	Method Blank	Run: PH_140811A	08/11/14 11:03
Acidity, Total as CaCO3	2 mg/L		

Prepared by Helena, MT Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-S D									Batch: B_	R228747
Lab ID:	MB-R228747	Me	ethod Blank				Run: SUB-	3228747		08/11/	14 14:00
Sulfide			ND	mg/L	0.002						
Lab ID:	LCS-R228747	Lal	boratory Cor	ntrol Sample			Run: SUB-I	3228747		08/11/	/14 14:00
Sulfide			0.278	mg/L	0.040	115	70	130			
Lab ID:	B14080622-002EMS	Sa	mple Matrix	Spike			Run: SUB-	3228747		08/11/	14 14:00
Sulfide			0.403	mg/L	0.040	86	70	130			
Lab ID:	B14080622-002EMS	D Sa	mple Matrix	Spike Duplicate			Run: SUB-	3228747		08/11/	/14 14:00
Sulfide			0.404	mg/L	0.040	87	70	130	0.4	20	
Lab ID:	B14080843-001FMS	Sa	mple Matrix	Spike			Run: SUB-	B228747		08/11/	/14 14:00
Sulfide			0.305	mg/L	0.040	117	70	130			
Lab ID:	B14080843-001FMS	D Sa	mple Matrix	Spike Duplicate			Run: SUB-I	3228747		08/11/	/14 14:00
Sulfide			0.276	mg/L	0.040	105	70	130	9.8	20	

Prepared by Helena, MT Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-S F									Batch: B_	R228749
Lab ID:	MB-R228749	Met	thod Blank				Run: SUB-	3228749		08/11/	14 13:45
Sulfide			ND	mg/L	0.5						
Lab ID:	LCS-R228749	Lab	oratory Co	ntrol Sample			Run: SUB-E	B228749		08/11/	14 13:45
Sulfide			23.2	mg/L	1.0	101	70	130			
Lab ID:	H14080093-001F	Sar	mple Matrix	Spike			Run: SUB-E	3228749		08/11/	14 13:45
Sulfide			23.7	mg/L	1.0	98	80	120			
Lab ID:	H14080093-001F	Sar	mple Matrix	Spike Duplicate			Run: SUB-E	3228749		08/11/	14 13:45
Sulfide			23.6	mg/L	1.0	98	80	120	0.3	20	
Lab ID:	H14080093-002F	Sar	mple Matrix	Spike			Run: SUB-E	B228749		08/11/	14 13:45
Sulfide			23.3	mg/L	1.0	101	80	120			
Lab ID:	H14080093-002F	Sar	mple Matrix	Spike Duplicate			Run: SUB-E	3228749		08/11/	14 13:45
Sulfide			23.1	mg/L	1.0	100	80	120	0.7	20	

Prepared by Helena, MT Branch

Analyte Co.	unt Result Units	RL %	REC Low Limit High Limit	RPD RPDLimit Qual
Method: A5210 B				Batch: 140807_2_BOD5-W
Lab ID: Dil-H201_140807	Dilution Water Blank		Run: MISC WC_140807B	08/07/14 17:19
Oxygen Demand, Biochemical (BOD)	ND mg/L	2.0	0 0.2	
Lab ID: GGA1_140807	Laboratory Control Sample		Run: MISC WC_140807B	08/07/14 17:24
Oxygen Demand, Biochemical (BOD)	180 mg/L	60	89 85 115	
Lab ID: H14080121-001ADUP	Sample Duplicate		Run: MISC WC_140807B	08/07/14 17:34
Oxygen Demand, Biochemical (BOD)	810 mg/L	360	90 110	6.8 10

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:08/25/14Project:Barker Hughsville - Danny TWork Order:H14080124

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E365.1							Analyti	cal Run:	FIA202-HE_	_140807B
Lab ID:	ICV	Initi	al Calibratio	n Verification S	Standard					08/07/	14 16:09
Phosphoru	s, Orthophosphate as I	P	0.242	mg/L	0.0050	97	90	110			
Lab ID:	ICB	Initi	al Calibratio	n Blank, Instru	ıment Blank					08/07/	14 16:10
Phosphoru	s, Orthophosphate as I	Р	-0.00109	mg/L	0.0050		0	0			
Lab ID:	CCV	Cor	ntinuing Cali	bration Verifica	ation Standar	d				08/07/	14 16:12
Phosphoru	s, Orthophosphate as I	P	0.0994	mg/L	0.0050	99	90	110			
Lab ID:	ccv	Cor	ntinuing Cali	bration Verifica	ation Standar	d				08/07/	14 16:32
Phosphoru	s, Orthophosphate as I	P	0.103	mg/L	0.0050	103	90	110			
Method:	E365.1									Batch	: R99540
Lab ID:	LFB	Lab	oratory Fort	ified Blank			Run: FIA20	2-HE_140807B		08/07/	14 16:11
Phosphoru	s, Orthophosphate as I	P	0.186	mg/L	0.0050	93	90	110			
Lab ID:	H14080124-001AMS	Sar	mple Matrix :	Spike			Run: FIA20	2-HE_140807B		08/07/	14 16:15
Phosphoru	s, Orthophosphate as I	P	9.36	mg/L	0.10	47	90	110			S
Lab ID:	H14080124-001AMSI	D Sar	nple Matrix :	Spike Duplicat	е		Run: FIA20	2-HE_140807B		08/07/	14 16:16
Phosphoru	s, Orthophosphate as I	P	9.80	mg/L	0.10	49	90	110	4.6	20	S
Lab ID:	H14080124-011BMS	Sar	nple Matrix :	Spike			Run: FIA20	2-HE_140807B		08/07/	14 16:34
Phosphoru	ıs, Orthophosphate as I	P	21.5	mg/L	0.10	96	90	110			
Lab ID:	H14080124-011BMSI	D Sar	nple Matrix :	Spike Duplicat	е		Run: FIA20	2-HE_140807B		08/07/	14 16:35
Phosphoru	is, Orthophosphate as I	Р	21.7	mg/L	0.10	97	90	110	1.1	20	

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:08/25/14Project:Barker Hughsville - Danny TWork Order:H14080124

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E365.1							Analyti	cal Run	: FIA202-HE_	_140808A
Lab ID:	ICV	Init	al Calibrati	on Verification S	tandard					08/08/	14 08:34
Phosphoru	s, Orthophosphate as I	>	0.246	mg/L	0.0050	98	90	110			
Lab ID:	ICB	Init	al Calibrati	on Blank, Instrur	ment Blank					08/08/	14 08:35
Phosphoru	s, Orthophosphate as I	-	0.000320	mg/L	0.0050		0	0			
Lab ID:	CCV	Coi	ntinuing Ca	libration Verifica	tion Standar	rd				08/08/	14 08:37
Phosphoru	s, Orthophosphate as I	>	0.101	mg/L	0.0050	101	90	110			
Lab ID:	CCV	Coi	ntinuing Ca	libration Verifica	tion Standar	rd				08/08/	14 08:57
Phosphoru	s, Orthophosphate as I	>	0.105	mg/L	0.0050	105	90	110			
Method:	E365.1									Batch	n: R99566
Lab ID:	LFB	Lab	oratory For	tified Blank			Run: FIA20	2-HE_140808A		08/08/	14 08:36
Phosphoru	s, Orthophosphate as I	>	0.192	mg/L	0.0050	96	90	110			
Lab ID:	H14080124-002AMS	Saı	mple Matrix	Spike			Run: FIA20	2-HE_140808A		08/08/	/14 08:42
Phosphoru	s, Orthophosphate as I	>	4.07	mg/L	0.050	41	90	110			S
Lab ID:	H14080124-002AMSI) Sai	mple Matrix	Spike Duplicate)		Run: FIA20	2-HE_140808A		08/08/	14 08:43
Phosphoru	s, Orthophosphate as I	>	5.12	mg/L	0.050	51	90	110	23	20	SR
Lab ID:	H14080124-011BMS	Saı	mple Matrix	Spike			Run: FIA20	2-HE_140808A		08/08/	14 08:59
Phosphoru	s, Orthophosphate as I	>	22.7	mg/L	0.10	101	90	110			
Lab ID:	H14080124-011BMSI	D Saı	mple Matrix	Spike Duplicate)		Run: FIA20	2-HE_140808A		08/08/	14 09:00
Phosphoru	s, Orthophosphate as I	>	23.1	mg/L	0.10	103	90	110	1.4	20	

Qualifiers:

RL - Analyte reporting limit.

R - RPD exceeds advisory limit.

S - Spike recovery outside of advisory limits.

Workorder Receipt Checklist

CDM Federal Programs

Login completed by: Wanda Johnson

H14080124

Date Received: 8/7/2014

Reviewed by:	BL2000\sdull		R	eceived by: wjj	
Reviewed Date:	8/11/2014			Carrier Hand Del name:	
Shipping container/cooler in	n good condition?	Yes ✓	No 🗌	Not Present	
Custody seals intact on all	shipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓	
Custody seals intact on all	sample bottles?	Yes	No 🗌	Not Present ✓	
Chain of custody present?		Yes ✓	No 🗌		
Chain of custody signed when	hen relinquished and received?	Yes ✓	No 🗌		
Chain of custody agrees w	ith sample labels?	Yes 🗸	No 🗌		
Samples in proper contained	er/bottle?	Yes ✓	No 🗌		
Sample containers intact?		Yes ✓	No 🗌		
Sufficient sample volume for	or indicated test?	Yes ✓	No 🗌		
All samples received within (Exclude analyses that are such as pH, DO, Res CI, S	considered field parameters	Yes 🔽	No 🗌		
Temp Blank received in all	shipping container(s)/cooler(s)?	Yes	No 🗸	Not Applicable	
Container/Temp Blank tem	perature:	8.2℃ On Ice			
Water - VOA vials have zer	o headspace?	Yes	No 🗌	No VOA vials submitted ✓	
Water - pH acceptable upo	n receipt?	Yes 🔽	No 🗌	Not Applicable	

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

None

ENERGY (3)		ody and Analytical Request Record PLEASE PRINT (Provide as much information as possible.)									1	Pag	e <u>1</u> of <u>2</u>	-				
Company Name:	··· -	<u>.</u> T	Project Nam						icu ii	ntorm	iatio	n as	s pos	Samp	e Origin	EPA/St	ate Compliance:	
CDM Smith			•						· • • • • • • • • • • • • • • • • • • •		-			State:	MT	Yes 🗀	No □	Ì
Report Mail Address (Required):			Contact Nan	1e:)* *	۰۰۰ میر	Pho	one/Fax	<u>OF PER</u> X:	7				Cell:	<u> </u>	Sampler: (Please Print)		
Troport man visualists (i.i.s.q.m.s.i.,		İ	_													Lain	ren Helland	,
			Angela Invoice Cont				7	(40	6 J 4	41-1	400)		Purch	ase Order:	L	Bottle Order:	_
No Hard Copy Email: Francisc	nAv Ocdn	asmin con			X I IN	JIIC.								1 01011	455 01401.	Q B o to /		j
Invoice Address (Required):	713 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -		Same				50/3						$\overline{}$		Contact ELI prior	to	Shipped by:	┪
myoloo maalooc (moquire).			<u></u>	/A\[<u> </u>		21182	RE@)ULEX		ש				RUSH sample su		hand del	\dashv
			er Others	!		ĺ					ĺ		£	R	for charges and scheduling – See	;	y	-
MNo Hard Copy Email: Francisco	n Ava das	mih cou	S V S/So S/So S/So Wat				75					뀌	d (T		Instruction Page		/ Receipt Temp	
Special Report/Formats:	is to Hear Oring	india Casa.	Number of Containers Sample Type: A W S V B O DW Air Water Solis/Solids Vegetation Bioassay Other DW - Drinking Water				Phosphate	j.			ļ	ACHED	Standard Turnaround (TAT)	U	Comments:			
	EDD/EDT(Ele	ectronic Data)	Der Cype: Vater Iton Drir				. X				İ	ATT,	ırnaı		Please use 1		On Ice: (Y) N	-
□ POTWWWTP / F	Format: <u>F</u> x		Air V Air V Geta DW -		١.,		hc					Д	d T	S	bother for		Custody Seal /	abla
☐ State: ☐ !	LEVEL IV		Samp Ve	_	مح	4	- 91	!				SEE	ndar		Combined R		On Bottle Y R On Cooler Y N	1)
☐ Other: ☐	NELAC		0,	9	<u>.</u>	4	Orma	İ	į				Stal	н	and acidi	M.	Intact Y N	И
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.)	Collection Date	Collection Time	MATRIX	80	Sultide	Acidity	Ò							• •	<u> </u>		Signature Y W	Д
1464-DT-PILOT-INFL-080614	1 108/06/14	08:55	2, N			Х	×			İ							和14080134	
14BH-DT-PHOT-INFLO-080614	l .		2, W			Х	×										ilmic	
148H-DT-ALOT-6APS-080614	1 -	9.10	2, W	<u>_</u>		Х	X			_					<u></u>		9 <u>9</u>	
1484-DT-PILOT-CHT-080614		9:20	2, N			×	メ	_								:	<u>s</u>	
1484-0T-PHOT-NAOH-080614		9:35	2,10			X	Х	_	_					_		. <u>-</u>		_
1404-0T-PLOT-BURY-080614		9:45	3,W	X	X	Х	X							. <u>-</u>			<u> </u>	_
1464-DT-PILOT-BCR2-080614		10:10 مين	3,W_	X	X	X_	X								<u>-</u>			
14BH-DT-PILOT-BUR3-080614		10:35	3, N	Х	X	Χ_	X		- - -				_	_	<u> </u>		<u> </u>	
14BH-DT-PILOT-BURY-080614	98/0b/14	/0:50	3, W_	χ	X	\ X	1		-									
14BH-DT-PILOT-POSTI-DODWY	08/06/14	11:10	3, W Signs	<u>X</u>	X	X	X	Ren	eived h	y (print):			г	ate/Time	<u> </u>	Signa	ture:	
Custody / Clieb Hills	Datern	7/14/418	Laur	<u>iHe</u>	<u>lla</u>	nd												
	Date/Ti	ime:	Signa	iture:	. –			Rec	eived by	y (print):			£)ate/Time	: 	Signa -		
MUST be								Rec	eived h	v Labora	atory:			ate/Time	1119	Signa	ture:	

Lab Disposal:

Signed

Sample Disposal: Return to Client:

Received by Laboratory:

8-7-14

Signature:

Company Name:	PLEASE	PRIN	IT ((Pro	vide a	s muc	-				ssible	e.)		ge of	
	Project Na											ole Origin		tate Compliance:	
COM Smith	Bayle Contact Na	1 17	<u>w</u>	esu	<u>rille</u>	<u>- Da</u>	inn	41				: MT	Yes No No		
Report Mail Address (Required):											Cell:		Sampler: (Please Print)		
	Ange				un ((40b)) d r	-	400				Lai	wentkland	
ANO Hard Copy Email: FrandsnAx Qcdnsmin	Invoice Co		& Pho	one:							Purci	nase Order:	Quote/	Bottle Order:	
Invoice Address (Required):	Jane	Τ							_			Cantact El Laria	4-	Shipped by:	
Servi - Servi	Containers Containers A W S V B O DW Solis/Solids Joassay Other sing Water									und (TAT)	R	Contact ELI prior RUSH sample su for charges and scheduling – See Instruction Page Comments:	ıbmittal	Cooler ID(s):	
Special Report/Formats: DW	Sample Veget	Boo	Sulfale	Acidich	Ortho-phosphale	17.			ATTA DEC	υ . υ	S	Pleax 4x 11 bothers for conserved Bot acidity.		On Ice: N Custody Seal On Bottle On Cooler Intact On V	
SAMPLE IDENTIFICATION Collection Collection (Name, Location, Interval, etc.) Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection Collection		2	Ϋ́	Ac	ර්						1.			Signature Match	
140H-DT-PILOT-POSTE-08004 08/06/14 11:2	5 3, W	X	X	X	X									134 At 100 800 134	
5	***													₽	
6															
7															
â					1							_			
9	-				·		1		-			<u>. </u>			
10			\dashv	- †				-+		+	ļ				
Custody Relinquished by (print): Relinquished by (print): Date/Time: OB/03/14/ Relinquished by (print): Date/Time:	418 Surin	ature:	lan	d		Receive					L Date/Time Date/Time		Signatu Signatu		
MUST be Sample Disposal: Return to Client:	Lah Dispo					Receive	ed by L _y	•			Date/Time:	18	- Signatu		

U.S. Environmental Protection Agency Region 8 Technical and Management Services

Laboratory Services Program

Certificate of Analysis

Ref: 8TMS-L

MEMORANDUM

Date: 09/24/14

Subject: Analytical Results--- Barker-Hughesville Treatability AUG 2014 A046 / A-046

From: Don Goodrich; EPA Region 8 Analytical Chemistry WAM

To: Roger Hoogerheide

Superfund

8 MO

Received Sample Set(s), [Work Order : Date Received]:

[C140804 : 08/08/2014]

Attached are the analytical results for the samples received from the Barker-Hughesville_Treatability_AUG 2014_A046 sampling event, according to TDF A-046. All analyses were performed within their method specified holding times unless otherwise noted in the following narrative.

These samples were prepared, analyzed, and verified by the Environmental Services Assistance Team Laboratory (ESAT) according to the requirements of the Technical Direction Form (TDF).

Note: The laboratory herewith transmits this deliverable to the program/project partner for determination of "final data usability" which may include data validation and data quality assessment per and in accordance with EPA QA/G-8, *Guidance on Environmental Data Verification and Data Validation*, November 2002, EPA/240/R-02/004. Laboratory data qualifiers are applied based on the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*, October 2004, referred to as "NFGI".

Laboratory policy is to dispose of any remaining sample 60 days after data analysis packages are delivered to EPA. If you would like the laboratory to retain the samples for a period longer than 60 days,

Project Name: Barker-Hughesville_Treatability_AUG 2014_A046

TDF #: A-046

Case Narrative

C140804

Quality Assessment: Unless indicated by exception, the QA/QC associated with this sample set

produced data within the TDF-specified criteria.

Holding Times: All samples were analyzed within their method-specified technical holding

time(s).

1. Initial and Continuing calibration blanks (ICBs and CCBs).

Exceptions: None.

2. Preparation (PB) / Method blanks (MB)

Exceptions: None.

3. Interference Checks (ICSA / ICSAB) for ICP-MS and ICP-OE analyses only.

Exceptions: None.

4. Initial and Continuing calibration verification analyses (ICVs, SCVs and CCVs).

Exceptions: None.

5. Laboratory Control Sample (LCS) or second source analysis or SRM.

Exceptions: None.

6. Laboratory Fortified blank (LFB) / Blank spike (BS), same source as used for the matrix spikes.

PBS performed with analyses/methods requiring preparation or digestion prior to analysis.

Exceptions: None.

7. Contract Reporting Detection Limit Standard, labeled as CRA, CRDL or CRL.

Exceptions: None.

8. Laboratory Duplicate (DUP). "Source" identifies field sample duplicated in the laboratory. If either the "source" or the duplicate result is <5X the reporting limit, the %D limit of 20% does not apply. Exceptions: None.

9. Laboratory Matrix Spike (MS) and spike duplicate (MSD). "Source" defines original field sample fortified prior to analysis. Percent recovery (%R) limits do not apply when sample concentration(s) exceed the corresponding analyte spike level by a factor of 4 or greater.

Exceptions: In ICP-MS batch 1409088, copper recovered low in the MS1 and MS2. Nickel also recovered low in the MS1. No qualifiers were assigned since all other QC requirements for nickel and copper were met.

10. Serial Dilution sample analysis (SRD). "Source" is parent field sample diluted 1:5 in the laboratory. Performed for ICP-OE and ICP-MS metals analyses. Percent difference (%D) limits do not apply when analyte concentration(s) are below 50x the source sample's MDL (or 10x it's PQL). Exceptions: None.

 Internal standards, criteria specified for ICP-MS analyses only, monitored at the instrument. Exceptions: None.

12. Any calibration using more than two-points produced a correlation coefficient equal to or greater than

0.995.

Exceptions: None.

Project Name: Barker-Hughesville_Treatability_AUG 2014_A046

TDF #: A-046

Acronyms and Definitions:

ESAT Environmental Services Assistance Team

J Data Estimated qualifier (also applied to all data less than PQL, greater than or equal to MDL)

MDL Method Detection Limit

PQL Practical Quantitation Limit, also known as reporting limit.

RPD Relative Percent Difference (difference divided by the mean)

%D Percent difference, serial dilution criteria unit, difference divided by the original result.

%R Percent recovery, analyzed (less sample contribution) divided by true value

Analyte NOT DETECTED at or above the Method Detection Limit (MDL)

mg/L Parts per million (milligrams per liter). Solids equivalent = mg/Kg.

ug/L Parts per billion (micrograms per liter). Solids equivalent = ug/Kg.

NR No Recovery (matrix spike) - Often seen for calcium/magnesium when their concentration exceeds the spike level by > 4x.

NFGI USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

RE Sample Re-analysis. Usually seen on raw data and sequences for required sample dilutions due to over-range analytes.

U Analyte not detected at or above MDL qualifier

D Diluted value qualifier.

Method(s) Summary:

As defined in the Technical Direction Form (TDF), some or all of the methods listed below were used for the determination of the reported target analytes.

From EPA's Methods for the Determination of Metals in Environmental Samples, Supplement I, May 1994, dissolved, total, and/or total recoverable metals were determined by:

- Method 200.7 / 6010B using a PE Optima ICP -OE (ICP).
- Method 200.8 / 6020 using a Perkin -Elmer Elan 6000 ICP-MS.
- Method 200.2 for total recoverable metals (only) dige stion.
- Method 245.1 using a Perkin -Elmer FIMS CVAA (aqueous mercury only).

From Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, Method 2340B was used for the calculated hardness determination. Hardness is reported as mg (milligram) equivalent CaCO₃ per liter (L) determined as follows:

Calculated hardness = 2.497 * (Calcium, mg/L) + 4.118 * (Magnesium, mg/L).

From EPA's Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW -846,

- Method 3015A was used for microwave assisted total metals digestion.
- Method 7473 was used for mercury in solids.

From EPA's Determination of Inorganic Anions by Ion Chromatography, Revision 2.1, 1993, Method 300.0 was used to determine the anions.

From EPA's Methods for Chemical Analysis of Water and Wastes, March 1983:

- Method 310.1 was followed for the alkalinity determination.
- Method 160.1 was followed for gravimetric total dissolved solids (TDS) determination.
- Method 160.2 was used for gravimetric total suspended sol ids (TSS) determination.
- Method 415.3 was used for total organic carbon (TOC) determination using either an Apollo 9000 or Phoenix 8000 Non-Dispersive IR (NDIR) system. Also known as dissolved organic carbon (DOC) when performed on the dissolved sample fraction.

The quality control procedures listed in the TDF request were utilized by ESAT to verify accuracy of the results and to evaluate any matrix interferences.

Project Name: Barker-Hughesville_Treatability_AUG 2014_A046 Certificate of Analysis

TDF #: A-046

Project Name: Barker-Hughesville_Treatability_AUG 2014_A046

A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR1-080614 **EPA Tag No.:** No Tag Prefix-B

TDF #:

Date / Time Sampled: Matrix: Water

08/06/14 09:45

Workorder: C140804

Certificate of Analysis

Lab Number:

C140804-02

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	09/22/2014	SV	1409087
200.7	Iron	< 1250	U	ug/L	500	5	09/22/2014	SV	1409087
200.7	Manganese	83000		ug/L	10.0	5	09/22/2014	SV	1409087
200.7	Zinc	< 100	U	ug/L	50.0	5	09/22/2014	SV	1409087
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Copper	6.94	J	ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/22/2014	SV	1409088
2340B	Hardness	963		mg/L	8	5	09/22/2014	SV	1409087

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-080614 **Date / Time Sampled:** 08/06/14 10:10 Workorder: C140804

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number:

C140804-06

A

Dilution **MDL** Method Analyzed By Batch **Parameter** Results Qualifier Units Factor 1409087 200.7 Aluminum 5 09/22/2014 SV < 250 U ug/L 100 200.7 5 09/22/2014 SV1409087 Iron < 1250 U ug/L 500 200.7 Manganese 88000 ug/L 10.0 5 09/22/2014 1409087 SV200.7 Zinc 5 09/22/2014 SV1409087 < 100 U ug/L 50.0 200.8 10 09/22/2014 SV1409088 Arsenic < 20.0 U ug/L 5.00 200.8 Cadmium 09/22/2014 SV1409088 10 < 2.00 U ug/L 1.00 200.8 Copper 5.09 J 5.00 10 09/22/2014 SV1409088 ug/L 200.8 Lead 10 09/22/2014 1409088 SV < 2.00 U ug/L 1.00 Nickel 200.8 10 09/22/2014 SV 1409088 < 10.0 U 5.00 ug/L 774 09/22/2014 SV 1409087 2340B Hardness mg/L 8 5

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR3-080614 **Station ID:** EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water

08/06/14 10:35

C140804 Workorder:

Lab Number:

C140804-10

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 50.0	U	ug/L	20.0	1	09/22/2014	SV	1409087
200.7	Iron	< 250	U	ug/L	100	1	09/22/2014	SV	1409087
200.7	Manganese	39300		ug/L	2.00	1	09/22/2014	SV	1409087
200.7	Zinc	44.6		ug/L	10.0	1	09/22/2014	SV	1409087
200.8	Arsenic	10.4	J	ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Copper	9.81	J	ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/22/2014	SV	1409088
2340B	Hardness	2060		mg/L	2	1	09/22/2014	SV	1409087

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR4-080614 EPA Tag No.:

No Tag Prefix-B

Date / Time Sampled: Matrix: Water

08/06/14 10:50

Workorder: Lab Number:

C140804

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	09/22/2014	SV	1409087
200.7	Iron	< 1250	U	ug/L	500	5	09/22/2014	SV	1409087
200.7	Manganese	99300		ug/L	10.0	5	09/22/2014	SV	1409087
200.7	Zinc	205		ug/L	50.0	5	09/22/2014	SV	1409087
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Copper	7.04	J	ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/22/2014	SV	1409088
2340B	Hardness	599		mg/L	8	5	09/22/2014	SV	1409087

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-CHIT-080614
EPA Tag No.: No Tag Prefix-B

Date / Time Sampled:
Matrix: Water

08/06/14 09:20

Workorder: C14

Lab Number:

C140804

C140804-18

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
200.7	Aluminum	173	J	ug/L	100	5	09/22/2014	SV	1409087
200.7	Iron	2320		ug/L	500	5	09/22/2014	SV	1409087
200.7	Manganese	79400		ug/L	10.0	5	09/22/2014	SV	1409087
200.7	Zinc	< 100	U	ug/L	50.0	5	09/22/2014	SV	1409087
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/22/2014	SV	1409088
2340B	Hardness	1620		mg/L	8	5	09/22/2014	SV	1409087

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFL-080614

No Tag Prefix-B

EPA Tag No.:

Date / Time Sampled: Matrix: Water

08/06/14 08:55

Workorder: C14

Lab Number:

C140804

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	12600		ug/L	100	5	09/22/2014	SV	1409087
200.7	Iron	159000		ug/L	500	5	09/22/2014	SV	1409087
200.7	Manganese	109000		ug/L	10.0	5	09/22/2014	SV	1409087
200.7	Zinc	57000		ug/L	50.0	5	09/22/2014	SV	1409087
200.8	Arsenic	143		ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Cadmium	232		ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Copper	849		ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Lead	134		ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Nickel	19.0		ug/L	5.00	10	09/22/2014	SV	1409088
2340B	Hardness	346		mg/L	8	5	09/22/2014	SV	1409087

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFLD-080614
EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water 08/06/14 09:00

Workorder: C140
Lab Number: C3

C140804

C140804-24

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	12300		ug/L	100	5	09/22/2014	SV	1409087
200.7	Iron	156000		ug/L	500	5	09/22/2014	SV	1409087
200.7	Manganese	108000		ug/L	10.0	5	09/22/2014	SV	1409087
200.7	Zinc	57100		ug/L	50.0	5	09/22/2014	SV	1409087
200.8	Arsenic	140		ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Cadmium	237		ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Copper	852		ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Lead	137		ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Nickel	18.3		ug/L	5.00	10	09/22/2014	SV	1409088
2340B	Hardness	335		mg/L	8	5	09/22/2014	SV	1409087

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NAOH-080614 Date / Time Sampled: 08/06/14 09:35 Workorder: C140804

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140804-27 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	4380		ug/L	100	5	09/22/2014	SV	1409087
200.7	Iron	< 1250	U	ug/L	500	5	09/22/2014	SV	1409087
200.7	Manganese	105000		ug/L	10.0	5	09/22/2014	SV	1409087
200.7	Zinc	56400		ug/L	50.0	5	09/22/2014	SV	1409087
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Cadmium	251		ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Copper	660		ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Lead	5.60		ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Nickel	19.7		ug/L	5.00	10	09/22/2014	SV	1409088
2340B	Hardness	343		mg/L	8	5	09/22/2014	SV	1409087

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-POSTE-080614 **Station ID:** EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water

08/06/14 11:25

Workorder:

C140804 Lab Number:

C140804-30

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 50.0	U	ug/L	20.0	1	09/22/2014	SV	1409087
200.7	Iron	< 250	U	ug/L	100	1	09/22/2014	SV	1409087
200.7	Manganese	34400		ug/L	2.00	1	09/22/2014	SV	1409087
200.7	Zinc	15.1	J	ug/L	10.0	1	09/22/2014	SV	1409087
200.8	Arsenic	14.1	J	ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/22/2014	SV	1409088
2340B	Hardness	1010	C	mg/L	2	1	09/22/2014	SV	1409087

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-POSTI-080614 **Station ID:**

EPA Tag No.:

No Tag Prefix-B

Date / Time Sampled: Matrix: Water

08/06/14 11:10

Workorder: C140804

Lab Number:

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	09/22/2014	SV	1409087
200.7	Iron	< 1250	U	ug/L	500	5	09/22/2014	SV	1409087
200.7	Manganese	83800		ug/L	10.0	5	09/22/2014	SV	1409087
200.7	Zinc	< 100	U	ug/L	50.0	5	09/22/2014	SV	1409087
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Copper	5.72	J	ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/22/2014	SV	1409088
2340B	Hardness	997		mg/L	8	5	09/22/2014	SV	1409087

Project Name: Barker-Hughesville_Treatability_AUG 2014_A046

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-080614 EPA Tag No.: No Tag Prefix-B Date / Time Sampled: Matrix: Water

08/06/14 09:10

Workorder: C140804

Lab Number: C

Certificate of Analysis

C140804-38 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	554		ug/L	100	5	09/22/2014	SV	1409087
200.7	Iron	107000		ug/L	500	5	09/22/2014	SV	1409087
200.7	Manganese	118000		ug/L	10.0	5	09/22/2014	SV	1409087
200.7	Zinc	18200		ug/L	50.0	5	09/22/2014	SV	1409087
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/22/2014	SV	1409088
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/22/2014	SV	1409088
200.8	Nickel	15.0		ug/L	5.00	10	09/22/2014	SV	1409088
2340B	Hardness	640		mg/L	8	5	09/22/2014	SV	1409087

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR1-080614 **Station ID:** EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

08/06/14 09:45

C140804 Workorder:

Lab Number: C140804-01

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	140	J	ug/L	100	5	09/24/2014	SV	1409084
200.7	Iron	< 1250	U	ug/L	500	5	09/24/2014	SV	1409084
200.7	Manganese	87400		ug/L	10.0	5	09/24/2014	SV	1409084
200.7	Zinc	175		ug/L	50.0	5	09/24/2014	SV	1409084
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/24/2014	SV	1409084
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/24/2014	SV	1409084
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/24/2014	SV	1409084
200.8	Lead	1.34	J	ug/L	1.00	10	09/24/2014	SV	1409084
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/24/2014	SV	1409084

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-080614

EPA Tag No.:

No Tag Prefix-A

Date / Time Sampled: Matrix: Water

08/06/14 10:10

Workorder: Lab Number:

C140804

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	09/24/2014	SV	1409084
200.7	Iron	657	J	ug/L	500	5	09/24/2014	SV	1409084
200.7	Manganese	94800		ug/L	10.0	5	09/24/2014	SV	1409084
200.7	Zinc	62.4	J	ug/L	50.0	5	09/24/2014	SV	1409084
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/24/2014	SV	1409084
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/24/2014	SV	1409084
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/24/2014	SV	1409084
200.8	Lead	1.09	J	ug/L	1.00	10	09/24/2014	SV	1409084
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/24/2014	SV	1409084

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR3-080614 **Station ID:** EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

08/06/14 10:35

Workorder:

C140804

Lab Number: C140804-09

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 50.0	U	ug/L	20.0	1	09/24/2014	SV	1409084
200.7	Iron	< 250	U	ug/L	100	1	09/24/2014	SV	1409084
200.7	Manganese	41000		ug/L	2.00	1	09/24/2014	SV	1409084
200.7	Zinc	108		ug/L	10.0	1	09/24/2014	SV	1409084
200.8	Arsenic	12.2	J	ug/L	5.00	10	09/24/2014	SV	1409084
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/24/2014	SV	1409084
200.8	Copper	7.47	J	ug/L	5.00	10	09/24/2014	SV	1409084
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/24/2014	SV	1409084
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/24/2014	SV	1409084

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR4-080614 No Tag Prefix-A **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

08/06/14 10:50

Workorder:

Lab Number:

C140804

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	105	J	ug/L	100	5	09/24/2014	SV	1409084
200.7	Iron	< 1250	U	ug/L	500	5	09/24/2014	SV	1409084
200.7	Manganese	105000		ug/L	10.0	5	09/24/2014	SV	1409084
200.7	Zinc	1290		ug/L	50.0	5	09/24/2014	SV	1409084
200.8	Arsenic	7.65	J	ug/L	5.00	10	09/24/2014	SV	1409084
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/24/2014	SV	1409084
200.8	Copper	6.80	J	ug/L	5.00	10	09/24/2014	SV	1409084
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/24/2014	SV	1409084
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/24/2014	SV	1409084

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-CHIT-080614 **Station ID:** EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

08/06/14 09:20

C140804 Workorder:

Lab Number:

C140804-17

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	219	J	ug/L	100	5	09/24/2014	SV	1409084
200.7	Iron	5830		ug/L	500	5	09/24/2014	SV	1409084
200.7	Manganese	81200		ug/L	10.0	5	09/24/2014	SV	1409084
200.7	Zinc	404		ug/L	50.0	5	09/24/2014	SV	1409084
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/24/2014	SV	1409084
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/24/2014	SV	1409084
200.8	Copper	7.05	J	ug/L	5.00	10	09/24/2014	SV	1409084
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/24/2014	SV	1409084
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/24/2014	SV	1409084

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFL-080614 **EPA Tag No.:**

No Tag Prefix-A

Date / Time Sampled: Matrix: Water

08/06/14 08:55

Workorder: Lab Number:

C140804

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	12800		ug/L	100	5	09/24/2014	SV	1409084
200.7	Iron	162000		ug/L	500	5	09/24/2014	SV	1409084
200.7	Manganese	110000		ug/L	10.0	5	09/24/2014	SV	1409084
200.7	Zinc	57800		ug/L	50.0	5	09/24/2014	SV	1409084
200.8	Arsenic	147	J	ug/L	50.0	100	09/24/2014	SV	1409084
200.8	Cadmium	245		ug/L	10.0	100	09/24/2014	SV	1409084
200.8	Copper	1140		ug/L	50.0	100	09/24/2014	SV	1409084
200.8	Lead	129		ug/L	10.0	100	09/24/2014	SV	1409084
200.8	Nickel	< 100	U	ug/L	50.0	100	09/24/2014	SV	1409084

Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-INFLD-080614 **Station ID:** EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

08/06/14 09:00

C140804 Workorder:

Lab Number:

C140804-23

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	12800		ug/L	100	5	09/24/2014	SV	1409084
200.7	Iron	165000		ug/L	500	5	09/24/2014	SV	1409084
200.7	Manganese	111000		ug/L	10.0	5	09/24/2014	SV	1409084
200.7	Zinc	57900		ug/L	50.0	5	09/24/2014	SV	1409084
200.8	Arsenic	158	J	ug/L	50.0	100	09/24/2014	SV	1409084
200.8	Cadmium	238		ug/L	10.0	100	09/24/2014	SV	1409084
200.8	Copper	1070		ug/L	50.0	100	09/24/2014	SV	1409084
200.8	Lead	126		ug/L	10.0	100	09/24/2014	SV	1409084
200.8	Nickel	< 100	U	ug/L	50.0	100	09/24/2014	SV	1409084

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-NAOH-080614 **Station ID:** EPA Tag No.:

No Tag Prefix-A

Date / Time Sampled: Matrix: Water

08/06/14 09:35

Workorder:

C140804

Lab Number:

C140804-26

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	4990		ug/L	100	5	09/24/2014	SV	1409084
200.7	Iron	9280		ug/L	500	5	09/24/2014	SV	1409084
200.7	Manganese	108000		ug/L	10.0	5	09/24/2014	SV	1409084
200.7	Zinc	57600		ug/L	50.0	5	09/24/2014	SV	1409084
200.8	Arsenic	< 200	U	ug/L	50.0	100	09/24/2014	SV	1409084
200.8	Cadmium	255		ug/L	10.0	100	09/24/2014	SV	1409084
200.8	Copper	785		ug/L	50.0	100	09/24/2014	SV	1409084
200.8	Lead	< 20.0	U	ug/L	10.0	100	09/24/2014	SV	1409084
200.8	Nickel	< 100	U	ug/L	50.0	100	09/24/2014	SV	1409084

Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTE-080614 EPA Tag No.: No Tag Prefix-A Date / Time Sampled: Matrix: Water 08/06/14 11:25 Workor

Workorder: C140804

Lab Number: C140804-29

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	329		ug/L	20.0	1	09/24/2014	SV	1409084
200.7	Iron	335		ug/L	100	1	09/24/2014	SV	1409084
200.7	Manganese	36200		ug/L	2.00	1	09/24/2014	SV	1409084
200.7	Zinc	169		ug/L	10.0	1	09/24/2014	SV	1409084
200.8	Arsenic	< 200	U	ug/L	50.0	100	09/24/2014	SV	1409084
200.8	Cadmium	< 20.0	U	ug/L	10.0	100	09/24/2014	SV	1409084
200.8	Copper	< 100	U	ug/L	50.0	100	09/24/2014	SV	1409084
200.8	Lead	< 20.0	U	ug/L	10.0	100	09/24/2014	SV	1409084
200.8	Nickel	< 100	U	ug/L	50.0	100	09/24/2014	SV	1409084

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTI-080614

Copper

Lead

Nickel

EPA Tag No.:

200.8

200.8

200.8

No Tag Prefix-A

< 100

< 20.0

< 100

Date / Time Sampled: Matrix: Water

U

U

U

08/06/14 11:10

Workorder: C

100

100

100

09/24/2014

09/24/2014

09/24/2014

SV

SV

SV

C140804

Lab Number: C140804-33

Α

1409084

1409084

1409084

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units Factor 200.7 Aluminum 138 J 100 5 09/24/2014 SV1409084 ug/L 200.7 Iron 5 09/24/2014 SV 1409084 U 500 < 1250 ug/L 200.7 10.0 5 1409084 Manganese 85400 ug/L 09/24/2014 SV 1409084 200.7 Zinc 263 ug/L 50.0 5 09/24/2014 SV 200.8 1409084 Arsenic 100 09/24/2014 SV < 200 U 50.0 ug/L 200.8 Cadmium 100 09/24/2014 SV 1409084 U 10.0 < 20.0 ug/L

ug/L

ug/L

ug/L

50.0

10.0

50.0

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-080614 EPA Tag No.: No Tag Prefix-A Date / Time Sampled: Matrix: Water

08/06/14 09:10

Workorder: C140804

Certificate of Analysis

Lab Number:

C140804-37 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	1650		ug/L	100	5	09/24/2014	SV	1409084
200.7	Iron	109000		ug/L	500	5	09/24/2014	SV	1409084
200.7	Manganese	119000		ug/L	10.0	5	09/24/2014	SV	1409084
200.7	Zinc	18300		ug/L	50.0	5	09/24/2014	SV	1409084
200.8	Arsenic	< 200	U	ug/L	50.0	100	09/24/2014	SV	1409084
200.8	Cadmium	< 20.0	U	ug/L	10.0	100	09/24/2014	SV	1409084
200.8	Copper	< 100	U	ug/L	50.0	100	09/24/2014	SV	1409084
200.8	Lead	< 20.0	U	ug/L	10.0	100	09/24/2014	SV	1409084
200.8	Nickel	< 100	U	ug/L	50.0	100	09/24/2014	SV	1409084

[&]quot;J" Qualifier indicates an estimated value

A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1-080614

EPA Tag No.: No Tag Prefix-C

TDF #:

Date / Time Sampled: Matrix: Water

08/06/14 09:45

08/06/14 09:45

Workorder:

Lab Number:

C140804

Certificate of Analysis

C140804-03

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.8	J	mg/L	5.0	10	08/25/2014	NP	1408082
EPA 300.0	Fluoride	20.5		mg/L	1.0	10	08/25/2014	NP	1408082
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/25/2014	NP	1408082
EPA 300.0	Sulfate as SO4	527		mg/L	0.5	10	08/25/2014	NP	1408082
EPA 310.1	Total Alkalinity	649		mg CaCO3 / L	50.0	10	08/12/2014	KJB	1408056

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1-080614

EPA Tag No.: No Tag Prefix-D **Date / Time Sampled:**

Matrix: Water Workorder: Lab Number:

C140804

C140804-04

A

MDL Dilution Method **Parameter** By Batch Analyzed Qualifier Results Units Factor EPA 350.1 Ammonia as N 39.8 D mg/L 3.00 100 08/27/2014 KJB 1408127

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-080614 **Date / Time Sampled:** 08/06/14 10:10 Workorder: C140804

No Tag Prefix-C Water EPA Tag No.: Matrix:

Lab Number:

C140804-07 A

MDL Dilution Method **Parameter** Results Qualifier Units Analyzed $\mathbf{B}\mathbf{v}$ Batch Factor EPA 300.0 Chloride J 5.0 10 08/25/2014 NP 1408082 6.0 mg/L EPA 300.0 Fluoride 4.9 mg/L 1.0 10 08/25/2014 NP 1408082 Nitrate/Nitrite as EPA 300.0 10 08/25/2014 NP 1408082 U 10.0 < 50.0 mg/L EPA 300.0 Sulfate as SO4 615 mg/L 0.5 10 08/25/2014 NP 1408082 399 mg CaCO3 / L 50.0 10 1408056 EPA 310.1 **Total Alkalinity** 08/12/2014 KJB

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-080614 **EPA Tag No.:**

No Tag Prefix-D

Date / Time Sampled: Matrix: Water

08/06/14 10:10

Workorder: Lab Number:

C140804

Certificate of Analysis

C140804-08

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	7.74	D	mg/L	3.00	100	08/27/2014	KJB	1408127

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-BCR3-080614 **Station ID:**

No Tag Prefix-C **EPA Tag No.:**

EPA 350.1

Date / Time Sampled: Matrix: Water

08/06/14 10:35

Workorder: C140804

Lab Number:

C140804-11

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.9	J	mg/L	5.0	10	08/25/2014	NP	1408082
EPA 300.0	Fluoride	63.1		mg/L	1.0	10	08/25/2014	NP	1408082
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/25/2014	NP	1408082
EPA 300.0	Sulfate as SO4	311		mg/L	0.5	10	08/25/2014	NP	1408082
EPA 310.1	Total Alkalinity	1950		mg CaCO3 / L	50.0	10	08/12/2014	KJB	1408056

Classical Chemistry by EPA/ASTM/APHA Methods

Ammonia as N

Station ID: 14BH-DT-PILOT-BCR3-080614 **Date / Time Sampled:** C140804 08/06/14 10:35 Workorder:

Matrix: Water EPA Tag No.: No Tag Prefix-D Lab Number: C140804-12

D

117

MDL Dilution Method **Parameter** Results Qualifier Units Analyzed By Batch Factor

mg/L

3.00

100

08/27/2014

KJB

1408127

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4-080614

EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Water

08/06/14 10:50

08/06/14 10:50

Workorder: C1

Lab Number:

C140804

Certificate of Analysis

C140804-15

Dilution MDL Method Parameter Analyzed By Batch Results **Qualifier** Units Factor EPA 300.0 Chloride 5.4 J mg/L 5.0 10 08/25/2014 NP 1408082 EPA 300.0 Fluoride 2.2 mg/L 1.0 10 08/25/2014 NP 1408082 EPA 300.0 Nitrate/Nitrite as 10 08/25/2014 NP 1408082 < 50.0 U mg/L 10.0 EPA 300.0 Sulfate as SO4 628 mg/L 0.5 10 08/25/2014 NP 1408082 EPA 310.1 **Total Alkalinity** 461 mg CaCO3 / L 50.0 10 08/12/2014 KJB 1408056

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4-080614

EPA Tag No.: No Tag Prefix-D

Date / Time Sampled:

Matrix: Water

Workorder:

Lab Number:

C140804

C140804-16

A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	6.00	D	mg/L	3.00	100	08/27/2014	KJB	1408127

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-CHIT-080614

EPA Tag No.:

No Tag Prefix-C

Date / Time Sampled:

Water

Matrix:

d: 08/06/14 09:20

Workorder:

C140804

Lab Number:

C140804-19 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	6.3	J	mg/L	5.0	10	08/26/2014	NP	1408082
EPA 300.0	Fluoride	64.7		mg/L	1.0	10	08/26/2014	NP	1408082
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/26/2014	NP	1408082
EPA 300.0	Sulfate as SO4	653		mg/L	0.5	10	08/26/2014	NP	1408082
EPA 310.1	Total Alkalinity	1230		mg CaCO3 / L	50.0	10	08/12/2014	KJB	1408056

Barker-Hughesville_Treatability_AUG 2014_A046 **Project Name:**

A-046

Certificate of Analysis

08/06/14 08:55

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-INFL-080614 EPA Tag No.: No Tag Prefix-C

TDF #:

Date / Time Sampled: Matrix: Water

Workorder:

C140804

Lab Number: C140804-22

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.6	J	mg/L	5.0	10	08/26/2014	NP	1408082
EPA 300.0	Fluoride	2.5		mg/L	1.0	10	08/26/2014	NP	1408082
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/26/2014	NP	1408082
EPA 300.0	Sulfate as SO4	1170		mg/L	0.5	10	08/26/2014	NP	1408082
EPA 310.1	Total Alkalinity	< 100		mg CaCO3 / L	50.0	10	08/12/2014	KJB	1408056

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-INFLD-080614 C140804 **Station ID: Date / Time Sampled:** 08/06/14 09:00 Workorder:

No Tag Prefix-C Matrix: Water **EPA Tag No.:** Lab Number: C140804-25

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	08/26/2014	NP	1408082
EPA 300.0	Fluoride	2.5		mg/L	1.0	10	08/26/2014	NP	1408082
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/26/2014	NP	1408082
EPA 300.0	Sulfate as SO4	1190		mg/L	0.5	10	08/26/2014	NP	1408082
EPA 310.1	Total Alkalinity	< 100		mg CaCO3 / L	50.0	10	08/12/2014	KJB	1408056

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-NAOH-080614 **EPA Tag No.:** No Tag Prefix-C

Date / Time Sampled: Matrix: Water

08/06/14 09:35

Workorder: C140804

Lab Number:

Certificate of Analysis

C140804-28

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.3	J	mg/L	5.0	10	08/26/2014	NP	1408082
EPA 300.0	Fluoride	2.2		mg/L	1.0	10	08/26/2014	NP	1408082
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/26/2014	NP	1408082
EPA 300.0	Sulfate as SO4	1120		mg/L	0.5	10	08/26/2014	NP	1408082
EPA 310.1	Total Alkalinity	< 100		mg CaCO3 / L	50.0	10	08/12/2014	KJB	1408056

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-POSTE-080614 **Station ID: EPA Tag No.:**

No Tag Prefix-C

Date / Time Sampled: Water

Matrix:

08/06/14 11:25

Workorder:

C140804

Lab Number: C140804-31

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	9.0	J	mg/L	5.0	10	08/26/2014	NP	1408082
EPA 300.0	Fluoride	2.0		mg/L	1.0	10	08/26/2014	NP	1408082
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/26/2014	NP	1408082
EPA 300.0	Sulfate as SO4	422		mg/L	0.5	10	08/26/2014	NP	1408082
EPA 310.1	Total Alkalinity	849		mg CaCO3 / L	50.0	10	08/12/2014	KJB	1408056

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTE-080614 **EPA Tag No.:**

No Tag Prefix-D

Date / Time Sampled: Matrix: Water

08/06/14 11:25

Workorder: Lab Number:

C140804

C140804-32

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	29.7	D	mg/L	3.00	100	08/27/2014	KJB	1408127

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTI-080614 **EPA Tag No.:** No Tag Prefix-C

Date / Time Sampled: Matrix: Water

08/06/14 11:10

Workorder:

Lab Number:

C140804

Certificate of Analysis

C140804-35

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.6	J	mg/L	5.0	10	08/26/2014	NP	1408082
EPA 300.0	Fluoride	19.6		mg/L	1.0	10	08/26/2014	NP	1408082
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/26/2014	NP	1408082
EPA 300.0	Sulfate as SO4	546		mg/L	0.5	10	08/26/2014	NP	1408082
EPA 310.1	Total Alkalinity	742		mg CaCO3 / L	50.0	10	08/12/2014	KJB	1408056

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTI-080614 **EPA Tag No.:**

No Tag Prefix-D

Date / Time Sampled:

Matrix: Water Workorder:

C140804

Lab Number: C140804-36 A

Dilution MDL Method **Parameter** Analyzed By Batch Qualifier Results Units Factor EPA 350.1 Ammonia as N 35.8 D mg/L 3.00 100 08/27/2014 KJB 1408127

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-SAPS-080614 **Station ID:**

EPA Tag No.: No Tag Prefix-C **Date / Time Sampled:**

Water Matrix:

08/06/14 09:10

08/06/14 11:10

Workorder:

C140804

Lab Number:

C140804-39 Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.7	J	mg/L	5.0	10	08/26/2014	NP	1408082
EPA 300.0	Fluoride	2.0		mg/L	1.0	10	08/26/2014	NP	1408082
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/26/2014	NP	1408082
EPA 300.0	Sulfate as SO4	1040		mg/L	0.5	10	08/26/2014	NP	1408082
EPA 310.1	Total Alkalinity	82.5		mg CaCO3 / L	25.0	5	08/12/2014	KJB	1408056

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-	П								
Batch 1409088 - N	o Lab Prep Reqd	1	Water					ICPN	AS-PE DRC-II
Method Blank (1409	9088-BLK1)	Dilution Factor: 1				Prepa	red: 09/19/14	Analyzed: 09/	22/14
Nickel	< 0.500	1.00	ug/L						
Copper	< 0.500	1.00	ug/L						
Arsenic	< 0.500	2.00	"						
Cadmium	< 0.100	0.200	"						
Lead	< 0.100	0.200	"						
Method Blank Spike	e (1409088-BS1)	Dilution Factor: 1				Prepa	red: 09/19/14	Analyzed: 09/	22/14
Nickel	98.1	1.00	ug/L	100		98	85-115		
Copper	100	1.00	"	100		100	85-115		
Arsenic	93.3	2.00	"	100		93	85-115		
Cadmium	96.5	0.200	"	100		97	85-115		
Lead	98.3	0.200	"	100		98	85-115		
Duplicate (1409088-	-DUP1)	Dilution Factor: 1	Dilution Factor: 1 Source:			Prepa	red: 09/19/14	Analyzed: 09/	22/14
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	7.12	10.0	"		6.94			3	20
Arsenic	< 5.00	20.0	"		< 5.00				20
Cadmium	< 1.00	2.00	"		< 1.00				20
Lead	< 1.00	2.00	"		< 1.00				20
Matrix Spike (14090	088-MS1)	Dilution Factor: 1	Source	: C140804-0	2	Prepa	red: 09/19/14	Analyzed: 09/	22/14
Nickel	69.3	10.0	ug/L	100	< 5.00	69	70-130		
Copper	75.1	10.0	"	100	6.94	68	70-130		
Arsenic	91.5	20.0	"	100	< 5.00	91	70-130		
Cadmium	91.7	2.00	"	100	< 1.00	92	70-130		
Lead	90.6	2.00	"	100	< 1.00	91	70-130		
Matrix Spike (14090	088-MS2)	Dilution Factor: 1	Source	: C140804-0	6	Prepa	red: 09/19/14	Analyzed: 09/	22/14
Nickel	70.4	10.0	ug/L	100	< 5.00	70	70-130		
Copper	69.5	10.0	"	100	5.09	64	70-130		
Arsenic	91.1	20.0	"	100	< 5.00	91	70-130		
Cadmium	95.5	2.00	"	100	< 1.00	95	70-130		
Lead	92.8	2.00	"	100	< 1.00	93	70-130		

Project Name: Barker-Hughesville_Treatability_AUG 2014_A046 Certificate of Analysis

TDF #: A-046

125.2

Zinc

100

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409097 - 14	.09088		Vater					ICP	MS-PE DRC-II
Serial Dilution (1409	097-SRD1)	Dilution Factor: 5	Source	: C140804-0	2	Prepa	red: 09/19/14	Analyzed: 09	/22/14
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	< 25.0	50.0	"		6.94				10
Arsenic	< 25.0	100	"		< 5.00				10
Cadmium	< 5.00	10.0	"		< 1.00				10
Lead	< 5.00	10.0	"		< 1.00				10
ICPOE - PE Optin	na								
Batch 1409087 - No	o Lab Prep Reqd	V	Vater					ICPO	E - PE Optima
Method Blank (1409	087-BLK1)	Dilution Factor: 1				Prepa	red: 09/19/14	Analyzed: 09	/22/14
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	ug L						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Method Blank Spike	(1409087-BS1)	Dilution Factor: 1				Prepa	red: 09/19/14	Analyzed: 09	/22/14
Aluminum	10360	50.0	ug/L	10100		103	85-115		
Iron	10420	250	"	10100		103	85-115		
Manganese	100.3	5.00	"	100		100	85-115		
Zinc	101.2	20.0	"	100		101	85-115		
Duplicate (1409087-I	DUP1)	Dilution Factor: 5	Source	: C140804-0	2	Prepa	red: 09/19/14	Analyzed: 09	/22/14
Aluminum	< 100	250	ug/L		< 100				20
Iron	< 500	1250	"		< 500				20
Manganese	82250	25.0	"		83020			0.9	20
Zinc	< 50.0	100	"		< 50.0			•	20
Matrix Spike (14090)	87-MS1)	Dilution Factor: 5	Source	: C140804-0	2	Prepa	red: 09/19/14	Analyzed: 09	/22/14
Aluminum	10050	250	ug/L	10100	< 100	99	70-130		
Iron	10170	1250	"	10100	< 500	101	70-130		
Manganese	81590	25.0	"	100	83020	NR	70-130		
	105.0	100		100	05020	. 111	,0150		

100

< 50.0

125

70-130

Project Name: Barker-Hughesville_Treatability_AUG 2014_A046 **Certificate of Analysis**

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409087 - N	o Lab Prep Reqd	И	'ater					ICPO	E - PE Optima
Matrix Spike (14090	987-MS2)	Dilution Factor: 5	Source	: C140804-0	6	Prepai	red: 09/19/14	Analyzed: 09/	22/14
Aluminum	10180	250	ug/L	10100	< 100	101	70-130		
Iron	10430	1250	"	10100	< 500	103	70-130		
Manganese	89830	25.0	"	100	88040	NR	70-130		
Zinc	101.0	100	"	100	< 50.0	101	70-130		
Batch 1409095 - 14	109087	И	ater					ICPO	E - PE Optima
Batch 1409095 - 14 Serial Dilution (1409		Dilution Factor: 2		: C140804-0	2	Prepai	red: 09/19/14	ICPO Analyzed: 09/	
Serial Dilution (1409				: C140804-0	2 < 100.00	Prepai	red: 09/19/14		
Serial Dilution (1409) Aluminum	0095-SRD1)	Dilution Factor: 2	Source	: C140804-0		Prepai	red: 09/19/14		22/14
	0095-SRD1) < 500	Dilution Factor: 2	Source:	: C140804-0	< 100.00	Prepai	red: 09/19/14		22/14

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

Certificate of Analysis

TDF #:

A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-I	II								
Batch 1409084 - 20	00.2 - TR Metals	Į	Vater					ICPN	MS-PE DRC-II
Method Blank (1409	084-BLK2)	Dilution Factor: 5				Prepa	red: 09/18/14	Analyzed: 09/	24/14
NY 1 1	< 2.50	5.00	/r						
Nickel	< 2.50	5.00	ug/L						
Copper	< 2.50	10.0	"						
Arsenic Cadmium	< 0.500	1.00	"						
Lead	< 0.500	1.00	"						
Duplicate (1409084-)	DUP2)	Dilution Factor: 1	Source	: C140804-0)1	Prena	red: 09/18/14	1 Analyzed: 09/	24/14
	<u> </u>					-1		,	
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	< 5.00	10.0	"		< 5.00				20
Arsenic	< 5.00	20.0	"		< 5.00				20
Cadmium	< 1.00	2.00	"		< 1.00				20
Lead	1.611	2.00	"		1.342			18	20
Matrix Spike (14090	84-MS2)	Dilution Factor: 1	Source: C140804-05			Prepa	red: 09/18/14	Analyzed: 09/	24/14
Nickel	425.5	10.0	ug/L	500	< 5.00	85	70-130		
Copper	248.2	10.0	"	300	< 5.00	83	70-130		
Arsenic	726.9	20.0	"	800	< 5.00	91	70-130		
Cadmium	196.0	2.00	"	200	< 1.00	98	70-130		
Lead	933.1	2.00	"	1000	1.095	93	70-130		
Matrix Spike (14090	84-MS4)	Dilution Factor: 1	Source	: C140804-0	19	Prepa	red: 09/18/14	Analyzed: 09/	24/14
Nickel	418.6	10.0	ug/L	500	< 5.00	84	70-130		
Copper	255.7	10.0	"	300	7.475	83	70-130		
Arsenic	749.3	20.0	"	800	12.15	92	70-130		
Cadmium	192.7	2.00	"	200	< 1.00	96	70-130		
Lead	936.9	2.00	"	1000	< 1.00	94	70-130		
Reference (1409084-	SRM2)	Dilution Factor: 2				Prepa	red: 09/18/14	1 Analyzed: 09/	24/14
Nickel	993.3	20.0	ug/L	1000		99	85-115		
Copper	1002	20.0	ug/L	1000		100	85-115		
Arsenic	2047	40.0	"	2000		100	85-115		
Cadmium	1020	4.00	"	1000		102	85-115		
Lead	1995	4.00	,,	2000		102	85-115		

Project Name: Barker-Hughesville_Treatability_AUG 2014_A046 Certificate of Analysis

TDF #: A-046

292.8

Zinc

20.0

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limi
Batch 1409104 - 14	09084	И	Vater					ICP	MS-PE DRC-
Serial Dilution (1409	104-SRD1)	Dilution Factor: 5	Source	: C140804-0	1	Prepa	red: 09/18/14	Analyzed: 09/	24/14
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	< 25.0	50.0	ug/L		< 5.00				10
Arsenic	< 25.0	100	"		< 5.00				10
Cadmium	< 5.00	10.0	"		< 1.00				10
Lead	< 5.00	10.0	"		1.342				10
ICPOE - PE Optin	1a								
Batch 1409084 - 20	0.2 - TR Metals	И	Vater					ICPO	E - PE Optin
Method Blank (1409	084-BLK1)	Dilution Factor: 1				Prepa	red: 09/18/14	Analyzed: 09/	24/14
Aluminum	< 20.0	50.0	ug/L						
ron	< 100	250	"						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Duplicate (1409084-1	DUP1)	Dilution Factor: 5	Source	: C140804-0	1	Prepa	red: 09/18/14	Analyzed: 09/	24/14
Aluminum	144.6	250	ug/L		140.2			3	20
Iron	< 500	1250	"		< 500			-	20
Manganese	86460	25.0	"		87360			1	20
Zinc	147.9	100	"		174.5			17	20
Matrix Spike (14090	84-MS1)	Dilution Factor: 5	Source	: C140804-0	5	Prepa	red: 09/18/14	Analyzed: 09/	24/14
Aluminum	2036	250	ug/L	2000	< 100	102	70-130		
Iron	3748	1250	"	3000	657.1	103	70-130		
Manganese	95590	25.0	"	200	94800	398	70-130		
Zinc	274.6	100	"	200	62.43	106	70-130		
Matrix Spike (14090	84-MS3)	Dilution Factor: 1	Source	: C140804-0	9	Prepa	red: 09/18/14	Analyzed: 09/	24/14
Aluminum	2029	50.0	ug/L	2000	< 20.0	101	70-130		
Iron	3137	250	"	3000	< 100	105	70-130		
Manganese	40490	5.00	"	200	40970	NR	70-130		
<i>3</i>	202.0	20.0			, .				

200

107.7

93

70-130

Project Name: Barker-Hughesville_Treatability_AUG 2014_A046 **Certificate of Analysis**

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit	
Batch 1409084 - 20	00.2 - TR Metals	И	Vater			ICPOE - PE Opt				
Reference (1409084-	SRM1)	Dilution Factor: 1				Prepa	red: 09/18/14	Analyzed: 09/	24/14	
Aluminum	980.7	50.0	ug/L	1000		98	85-115			
Iron	1037	250	"	1000		104	85-115			
Manganese	1045	5.00	"	1000		104	85-115			
Zinc	1016	20.0	"	1000		102	85-115			
Batch 1409103 - 14	109084	И	Vater					ICPO	E - PE Optima	
Serial Dilution (1409	0103-SRD1)	Dilution Factor: 2	Source	: C140804-0	1	Prepa	red: 09/18/14	Analyzed: 09/	24/14	
Aluminum	< 500	1250	ug/L		140.2				10	
Iron	< 2500	6250	"		< 500.00				10	
Manganese	91590	125	"		87360			5	10	
Zinc	< 250	500	"		174.5				10	

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

TDF #: A-046

${\bf Classical\ Chemistry\ by\ EPA/ASTM/APHA\ Methods-Quality\ Control}$

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ESAT Dionex IC				_ 	_ 				
Batch 1408082 - No Pr	rep Req		Water					E	ESAT Dionex IC
Method Blank (1408082	-BLK1)	Dilution Factor: 1				Prepa	red & Analyz	ed: 08/25/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Method Blank Spike (14	08082-BS1)	Dilution Factor: 1				Prepa	red & Analyz	ed: 08/25/14	
Fluoride	4.8	0.2	mg/L	5.00		97	90-110		
Chloride	24.6	2.0	"	25.0		98	90-110		
Sulfate as SO4	24.9	0.1	"	25.0		100	90-110		
Nitrate/Nitrite as N	19.2	5.0	"	20.0		96	90-110		
Duplicate (1408082-DUI	P1)	Dilution Factor: 1	Source:	: C140804-03	3	Prepa	red & Analyz	ed: 08/25/14	
Fluoride	20.9	2.0	mg/L		20.5			2	20
Chloride	5.7	20.0	"		5.8			0.7	20
Sulfate as SO4	529	1.0	"		527			0.6	20
Nitrate/Nitrite as N	< 10.0	50.0	"		< 10.0				20
Matrix Spike (1408082-	MS1)	Dilution Factor: 1	Source:	: C140804-03	3	Prepa	red & Analyz	ed: 08/25/14	
Fluoride	59.4	2.0	mg/L	50.0	20.5	78	80-120		
Chloride	250	20.0	"	250	5.8	98	80-120		
Sulfate as SO4	751	1.0	"	250	527	90	80-120		
Nitrate/Nitrite as N	195	50.0	"	200	< 10.0	97	80-120		
Matrix Spike (1408082-1	MS2)	Dilution Factor: 1	Source:	: C140804-39	9	Prepa	red & Analyz	ed: 08/26/14	
Fluoride	52.2	2.0	mg/L	50.0	2.0	100	80-120		
Chloride	255	20.0	"	250	5.7	100	80-120		
Sulfate as SO4	1280	1.0	"	250	1040	94	80-120		
Nitrate/Nitrite as N	195	50.0	"	200	< 10.0	98	80-120		

Certificate of Analysis

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409003 - 1408	8082		Water					E	SAT Dionex IC
Instrument Blank (140	9003-IBL1)	Dilution Factor: 1				Prepai	red & Analyz	ed: 08/25/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Lachat 8500									
Batch 1408127 - No I	Prep Req		Water						Lachat 8500
Method Blank (140812	7-BLK1)	Dilution Factor: 1				Prepar	red & Analyz	red: 08/27/14	
Ammonia as N	< 0.0300	0.0500	mg/L						
Method Blank Spike (1	408127-BS1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 08/27/14	
Ammonia as N	1.01	0.0500	mg/L	1.00		101	90-110		
Duplicate (1408127-DU	J P1)	Dilution Factor: 1	Source	: C140804-0	4	Prepai	red & Analyz	zed: 08/27/14	
Ammonia as N	40.1	5.00	mg/L		39.8			0.7	20
Duplicate (1408127-DU	J P2)	Dilution Factor: 1	Source	: C140809-2	0	Prepai	red & Analyz	zed: 08/27/14	
Ammonia as N	5.58	0.500	mg/L		5.52			1	20
Matrix Spike (1408127	-MS1)	Dilution Factor: 1	Source	: C140804-0	4	Prepai	red & Analyz	ed: 08/27/14	
Ammonia as N	136	5.00	mg/L	100	39.8	96	90-110		
Matrix Spike (1408127	-MS2)	Dilution Factor: 1	Source	: C140809-2	0	Prepai	red & Analyz	ed: 08/27/14	
Ammonia as N	15.5	0.500	mg/L	10.0	5.52	100	90-110		
Reference (1408127-SR	RM1)	Dilution Factor: 5				Prepai	red & Analyz	red: 08/27/14	
Ammonia as N	4.86	0.250	mg/L	4.80		101	90-110		

Barker-Hughesville_Treatability_AUG 2014_A046 **Project Name:**

Certificate of Analysis

TDF #:

A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit			
Mettler AT												
Batch 1408056 - No	Prep Req		Water			Mettler A						
Method Blank (14080	56-BLK1)	Dilution Factor: 1				Prepai	red: 08/11/14	Analyzed: 08/	12/14			
Total Alkalinity	< 5.00	10.0	mg CaCO3 /									
Duplicate (1408056-D	olicate (1408056-DUP1) Dilution Factor: 1 Source: C140804-03						Prepared: 08/11/14 Analyzed: 08/12/14					
Total Alkalinity	649	100	mg CaCO3 /		649			0.1	20			
Duplicate (1408056-D	UP2)	Dilution Factor: 5	Source:	C140804-3	9	Prepar	red: 08/11/14	Analyzed: 08/	12/14			
Total Alkalinity	83.0	50.0	mg CaCO3 /		82.5			0.7	20			
Reference (1408056-Si	RM1)	Dilution Factor: 1				Prepar	red: 08/11/14	Analyzed: 08/	12/14			
Total Alkalinity	11.8	10.0	mg CaCO3 /	10.4		113	61.3-143.9					

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

Project Name: Barker-Hughesville_Treatability_AUG 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 310.1</u> Analysis Name: <u>WC - Alkalinity</u>

Instrument: Work Order: Nu C140804

Analytical Sequence: Total Concentration Units: mg CaCO3 / L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	Metho Blan (Batch	PQL		
		1	2	3	4	1408056-BLK1	NA	
		1.19	1.31					4.0.00
Total Alkalinity		5	6	7	8	1.19	NA	10.00

TDF #: A-046

TechLaw Inc., ESAT Region 8

INORGANIC ANALYSES DATA SHEET

Certificate of Analysis

Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 350.1</u> Analysis Name: <u>WC - Ammonia</u>

Instrument: Lachat 8500 Work Order: Nu C140804

Analytical Sequence: Total Concentration Units: mg/L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	Metho Blan (Batch	PQL		
		1	2	3	4	1408127-BLK1	NA	
		0.00	0.00	0.00				
Ammonia as N		5	6	7	8	0.00	NA	0.05

TDF #: A-046

Project Name:

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 300.0</u> Analysis Name: <u>WC - Anions by Ion Chromatography</u>

Instrument: ESAT Dionex IC Work Order: Nu C140804

Analytical Sequence: 1409003 **Dissolved** Concentration Units: <u>mg/L</u>

BLK1 NA NA BLK1 NA	0.20
BLK1 NA	Λ
BLK1 NA	Λ
NA	2.00
BLK1 NA	Λ
NA	0.10
BLK1 NA	Λ
N/A	5.00
INA	3.00
	-BLK1 NA

TDF #: A-046

Project Name:

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Diss. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140804

Analytical Sequence: 1409095 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	s	Method Blank (Batch II	PQL	
		1	2	3	4	1409087-BLK1	NA	
	-5.80	-3.95	-4.83					
Aluminum		5	6	7	8	-6.21	NA	50.00
		1	2	3	4	1409087-BLK1	NA	
	28.50	54.46	39.67		•			1
Iron		5	6	7	8	79.70	NA	250.00
		1	2	3	4	1409087-BLK1	NA	
	0.17	0.64	1.25		·			Ī
Manganese		5	6	7	8	-0.22	NA	5.00
	0.20	1	2	3	4	1409087-BLK1	NA	1
7:	0.30	-0.53	0.72			0.21	NA	20.00
Zinc		5	6	7	8	-0.31	INA	20.0

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: <u>ICPMS Diss. Metals</u>

Instrument: ICPMS-PE DRC-II Work Order: Nu C140804

Analytical Sequence: 1409097 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	C	Continuing Cali	bration Blank	Methoo Blank (Batch I)	PQL		
		1	2	3	4	1409088-BLK1	NA	
	0.02	0.01	0.01					
Nickel		5	6	7	8	-0.04	NA	1.00
		1	2	3	4	1409088-BLK1	NA	
	-0.05	-0.05	-0.09				**.	
Copper		5	6	7	8	0.07	NA	1.00
	0.10	1	2	3	4	1409088-BLK1	NA	
	-0.10	-0.04	-0.05			0.16	NIA	2.00
Arsenic		5	6	7	8	-0.16	NA	2.00
		1	2	3	4	1409088-BLK1	NA	
	0.01	0.01	0.01			l	27.4	0.20
Cadmium		5	6	7	8	0.01	NA	0.20
	0.00	1	2	3	4	1409088-BLK1	NA	
	0.02	0.01	0.03				NIA	0.24
Lead		5	6	7	8	-0.02	NA	0.20

TDF #: A-046

Project Name:

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140804

Analytical Sequence: 1409103 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	Method Blank (Batch II	PQL		
		1	2	3	4	1409084-BLK1	NA	
	1.53	1.08	2.20					
Aluminum		5	6	7	8	3.02	NA	50.00
		1	2	3	4	1409084-BLK1	NA	
	38.83	44.44	44.72		•			1
Iron		5	6	7	8	86.56	NA	250.0
		1	2	3	4	1409084-BLK1	NA	
	0.11	0.45	0.49		•			1
Manganese		5	6	7	8	-0.66	NA	5.00
	0.02	1	2	3	4	1409084-BLK1	NA	_
7.	0.02	1.13	0.68			1.47	NA	20.00
Zinc		5	6	7	8	1.47	INA	

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C140804

Analytical Sequence: 1409104 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	C	Continuing Cali	bration Blanks	Me Bl (Bate	PQL		
		1	2	3	4	NA	1409084-BLK2	
	0.01	0.02	0.02	0.03				
Nickel		5	6	7	8	NA	0.07	1.00
		1	2	3	4	NA	1409084-BLK2	
	0.00	0.00	-0.02	-0.02				
Copper		5	6	7	8	NA	-0.05	1.00
		1	2	3	4	NA	1409084-BLK2	
	-0.11	-0.03	-0.05	0.12				
Arsenic		5	6	7	8	NA	-0.03	2.00
		1	2	3	4	NA	1409084-BLK2	
	0.02	0.01	-0.01	0.00				
Cadmium		5	6	7	8	NA	0.00	0.20
	0.01	1	2	3	4	NA	1409084-BLK2	
Lead	0.01	0.02	0.01	0.00		NA	0.01	0.20
Lead		5	6	7	8	INA	0.01	0.20

Project Name: Barker-Hughesville_Treatability_AUG 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Mettler AT Method: EPA 310.1 Analysis Name: WC - Alkalinity

Sequence: 1408062 Work Order: C140804 Units: mg CaCO3 / L

Total	Initi	ial (ICV1, I	(CV2)		Conti	inuing C	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				100	97.4	97.4	100	96.8	96.8			
Total Alkalinity					4			5			6	
Total Mikaminty												
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

Project Name: Barker-Hughesville_Treatability_AUG 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Lachat 8500 Method: EPA 350.1 Analysis Name: WC - Ammonia

Sequence: 1408133 Work Order: C140804 Units: mg/L

Total	Initi	ial (ICV1, I	CV2)		Cont	inuing C	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				1.00	1.00	100.0	1.00	1.00	100.0	1.00	1.01	101.0
Ammonia as N					4			5			6	
Ammonia as iv												
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ESAT Dionex IC Method: EPA 300.0 Analysis Name: WC - Anions by Ion Chromatography 2013

Sequence: 1409003 Work Order: C140804 Units: mg/L

Dissolved	Init	ial (ICV1, l	ICV2)		Cont	inuing Ca	alibration	Verification	on Stand	ards (CC	(Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	40.0	20.6	00.0	40.0	41.3	103.3	40.0	39.7	99.3	40.0	40.4	101.0
Chloride	40.0	39.6	99.0		4			5			6	
					7			8			9	
					1			2			3	
				4.00	4.1	102.5	4.00	3.9	97.5	4.00	4.0	100.0
Fluoride	4.00	3.9	97.5		4			5			6	
					7			8			9	
					1			2			3	
	20.0	20.3	101.5	20.0	20.9	104.5	20.0	19.9	99.5	20.0	20.6	103.0
Nitrate/Nitrite as N	20.0	20.5	101.5		4			5			6	
					7			8			9	
					1			2			3	
	100	100	100.0	100	104	104.0	100	99.3	99.3	100	101	101.0
Sulfate as SO4	100	100	100.0		4			5			6	
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Diss. Metals

Sequence: 1409095 Work Order: C140804 Units: ug/L

Dissolved	Initi	al (ICV1, l	(CV2)		Conti	inuing C	alibration	Verificati	on Stand	ards (CC	(Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	12660	101.2	12500	12640	101.1	12500	12740	101.9			
Aluminum	12500	12660	101.3		4			5			6	
					7			8			9	
				12500	127(0	102.1	12500	12720	101.0		3	
	12500	12790	102.3	12500	12760	102.1	12500	12730	101.8			
Iron					4			5			6	
					7			8			9	
					1			2			3	
	1000	1021	102.1	1000	1044	104.4	1000	1047	104.7			
Manganese	1000	1021	102.1		4			5			6	
Trainguites 0												
					7			8			9	
					1			2			3	
				2500	2623	104.9	2500	2650	106.0			
Zinc	2500	2540	101.6		4			5			6	
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Diss. Metals

Sequence: 1409097 Work Order: C140804 Units: ug/L

Dissolved	Initial (ICV1, ICV2)			Continuing Calibration Verification Standards (CCVs)								
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				50.0	48.4	96.8	50.0	48.0	96.0			
Arsenic	50.0	51.6	103.2		4			5			6	
					7			8			9	
Cadmium					1 10.6	20.5		2			3	
	50.0	48.5	97.0	50.0	49.6	99.2	50.0	49.9 5	99.8		6	
					4			<u> </u>			0	
					7			8			9	
				50.0	45.0	90.0	50.0	<u>2</u> 45.8	91.6		3	
	50.0	52.8	105.6	30.0	45.0	90.0	30.0	5	91.0		6	
Copper					<u> </u>							
					7			8			9	
					1			2			3	
	50.0	49.8	99.6	50.0	49.6	99.2	50.0	50.1	100.2			
Lead					4			5			6	
					7			8			9	
					1			2			3	
	50.0	51.2	102.4	50.0	45.8	91.6	50.0	46.7	93.4			
Nickel					4			5			6	
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Sequence: 1409103 Work Order: C140804 Units: ug/L

Total Recoverable	Initial (ICV1, ICV2)			Continuing Calibration Verification Standards (CCVs)								
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
			102.9		1			2			3	
	40.500	12860		12500	12770	102.2	12500	12690	101.5			
Aluminum	12500				4			5			6	
					7			8			9	
					1			2			3	
Iron	40.500	120=0	1016	12500	12920	103.4	12500	12690	101.5			
	12500	13070	104.6		4			5			6	
					7			8			9	
					1			2			3	
				1000	1049	104.9	1000	1039	103.9			
Manganese	1000	1038	103.8		4			5			6	
Ü					7			8			9	
					1			8			9	
					1			2			3	
	2500	2602	1041	2500	2647	105.9	2500	2612	104.5			
Zinc	2500	2500 2603 104.1		4		5			6			
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1409104 Work Order: C140804 Units: ug/L

Total Recoverable	Initial (ICV1, ICV2)			Continuing Calibration Verification Standards (CCVs)								
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
			19 100.4	50.0	49.55	99.1	50.0	46.40	92.8	50.0	47.13	94.3
Arsenic	50.0	50.19			4			5			6	
					7			8			9	
					1			2			3	
				50.0	48.56	97.1	50.0	49.44	98.9	50.0	50.01	100.0
Cadmium	50.0	49.36	98.7		4			5			6	
					7			8			9	
					1			2			3	
	50.0	50.20	100.4	50.0	47.88	95.8	50.0	46.64	93.3	50.0	47.90	95.8
Copper	50.0	50.20	100.4		4			5			6	
					7			8			9	
					,			8			,	
					1			2			3	
	50.0	49.41	98.8	50.0	48.83	97.7	50.0	48.13	96.3	50.0	48.35	96.7
Lead	50.0	77.71	70.0		4			5			6	
					7			8			9	
					•							
					1			2			3	
	50.0	49.50	99.0	50.0	49.32	98.6	50.0	47.92	95.8	50.0	47.93	95.9
Nickel	30.0	77.50	77.0		4			5			6	
					7			8			9	
					,			<u> </u>				

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPMS-PE DRC-II

Analyte	Check Sample	Result*	<u>Units</u>	<u>True</u>	<u>%R</u>	<u>PQL</u>
Sequence: 1409097	Analysis: ICPMS Diss. Meta	ls				
Arsenic	IFA1	0.0	ug/L			2.00
	IFB1	19.9	ug/L	20	100	2.00
Cadmium	IFA1	0.2	ug/L			0.200
	IFB1	19.9	ug/L	20	99	0.200
Copper	IFA1	0.5	ug/L			1.00
	IFB1	18.6	ug/L	20	93	1.00
Lead	IFA1	0.0	ug/L			0.200
	IFB1	0.0	ug/L			0.200
Nickel	IFA1	-0.2	ug/L			1.00
	IFB1	18.4	ug/L	20	92	1.00
*Criteria = 80-120%R of See raw data for complete	e analyte list and results.					
Sequence: 1409104	Analysis: ICPMS Tot. Rec. N		/T			
Arsenic	IFA1	0.1	ug/L			2.00
	IFB1	19.2	ug/L	20	96	2.00
Cadmium	IFA1	0.1	ug/L			0.200
	IFB1	20.4	ug/L	20	102	0.200
Copper	IFA1	0.5	ug/L			1.00

THISCHIC		***	Č			2.00
	IFB1	19.2	ug/L	20	96	2.00
Cadmium	IFA1	0.1	ug/L			0.200
	IFB1	20.4	ug/L	20	102	0.200
Copper	IFA1	0.5	ug/L			1.00
	IFB1	19.7	ug/L	20	99	1.00
Lead	IFA1	0.0	ug/L			0.200
	IFB1	0.0	ug/L			0.200
Nickel	IFA1	-0.2	ug/L			1.00
	IFB1	19.6	ug/L	20	98	1.00

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8
ICP Interference Check Sample
ICPOE - PE Optima

<u>Analyte</u>	Check Sample	Result*	<u>Units</u>	<u>True</u>	<u>%R</u>	<u>PQL</u>
Sequence: 1409095	Analysis: ICPOE Diss. Meta	ıls				
Aluminum	IFA1	59,509.4	ug/L	60,000	99	50.0
	IFB1	60,207.7	ug/L	60,000	100	50.0
Iron	IFA1	230,698.2	ug/L	250,000	92	250
	IFB1	234,772.6	ug/L	250,000	94	250
Manganese	IFA1	-0.4	ug/L			5.00
	IFB1	194.2	ug/L	200	97	5.00
Zinc	IFA1	7.0	ug/L			20.0
	IFB1	287.4	ug/L	300	96	20.0
*Criteria = 80-120%R o	of True Value or +/- POL					
	te analyte list and results.					
Sequence: 1409103	Analysis: ICPOE Tot. Rec. M	Metals				
Aluminum	IFA1	59,968.5	ug/L	60,000	100	50.0
	IFD1	(1 (77 7	110/I	(0.000	102	50.0

Sequence: 1409	103 Analysis:	ICPOE Tot. Red	c. Metals				
Aluminum		IFA1	59,968.5	ug/L	60,000	100	50.0
		IFB1	61,677.7	ug/L	60,000	103	50.0
Iron		IFA1	236,988.4	ug/L	250,000	95	250
		IFB1	240,251.7	ug/L	250,000	96	250
Manganese		IFA1	-0.7	ug/L			5.00
		IFB1	199.3	ug/L	200	100	5.00
Zinc		IFA1	4.8	ug/L			20.0
		IFB1	300.3	ug/L	300	100	20.0

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPMS-PE DRC-II

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1409097

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Arsenic	2.00	2.08	104	ug/L
Cadmium	0.200	0.189	95	ug/L
Copper	1.00	0.970	97	ug/L
Lead	0.200	0.222	111	ug/L
Nickel	1.00	0.989	99	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1409095

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	93.36	93	ug/L
Iron	100	147.8	148	ug/L
Manganese	10.0	10.17	102	ug/L
Zinc	50.0	50.48	101	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

Project Name: Barker-Hughesville_Treatability_AUG 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard Lachat 8500

Classical Chemistry by EPA/ASTM/APHA Methods

Sequence: 1408133

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Ammonia as N	0.0250	0.0230	92	mg/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8
Detection Limit (PQL) Standard
ICPMS-PE DRC-II

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1409104

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Arsenic	2.00	2.100	105	ug/L
Cadmium	0.200	0.2029	101	ug/L
Copper	1.00	0.9799	98	ug/L
Lead	0.200	0.1949	97	ug/L
Nickel	1.00	0.9846	98	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1409103

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	100.3	100	ug/L
Iron	100	147.1	147	ug/L
Manganese	10.0	9.833	98	ug/L
Zinc	50.0	52.62	105	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 310.1 **Total Sequence ID#:** 1408062

Instrument ID #: Mettler A	T Wate	er	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1408056-SRM1	Reference	08/12/14	08:30
1408056-BLK1	Blank	08/12/14	08:30
C140804-03	14BH-DT-PILOT-BCR1-08061	08/12/14	08:30
1408056-DUP1	Duplicate	08/12/14	08:30
C140804-07	14BH-DT-PILOT-BCR2-08061	08/12/14	08:30
C140804-11	14BH-DT-PILOT-BCR3-08061	08/12/14	08:30
C140804-15	14BH-DT-PILOT-BCR4-08061	08/12/14	08:30
C140804-19	14BH-DT-PILOT-CHIT-080614	08/12/14	08:30
C140804-22	14BH-DT-PILOT-INFL-080614	08/12/14	08:30
C140804-25	14BH-DT-PILOT-INFLD-0806	08/12/14	08:30
1408062-CCV1	Calibration Check	08/12/14	08:30
1408062-CCB1	Calibration Blank	08/12/14	08:30
C140804-28	14BH-DT-PILOT-NAOH-0806	08/12/14	08:30
C140804-31	14BH-DT-PILOT-POSTE-0806	08/12/14	08:30
C140804-35	14BH-DT-PILOT-POSTI-08061	08/12/14	08:30
C140804-39	14BH-DT-PILOT-SAPS-08061	08/12/14	08:30
1408056-DUP2	Duplicate	08/12/14	08:30
1408062-CCV2	Calibration Check	08/12/14	08:30
1408062-CCB2	Calibration Blank	08/12/14	08:30

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 350.1 **Total Sequence ID#:** 1408133

Instrument ID #: Lacha	tt 8500 Water	r	LSR #: A-046			
Analysis ID	Sample Name	Analysis Date	Analysis Time			
1408127-SRM1	Reference	08/27/14	15:23			
1408127-BLK1	Blank	08/27/14	15:23			
1408127-BS1	Blank Spike	08/27/14	15:23			
1408133-CRL1	Instrument RL Check	08/27/14	15:23			
C140804-04	14BH-DT-PILOT-BCR1-08061	08/27/14	15:23			
1408127-DUP1	Duplicate	08/27/14	15:23			
1408127-MS1	Matrix Spike	08/27/14	15:23			
C140804-08	14BH-DT-PILOT-BCR2-08061	08/27/14	15:23			
1408133-CCV1	Calibration Check	08/27/14	15:23			
1408133-CCB1	Calibration Blank	08/27/14	15:23			
C140804-12	14BH-DT-PILOT-BCR3-08061	08/27/14	15:23			
C140804-16	14BH-DT-PILOT-BCR4-08061	08/27/14	15:23			
C140804-32	14BH-DT-PILOT-POSTE-0806	08/27/14	15:23			
C140804-36	14BH-DT-PILOT-POSTI-08061	08/27/14	15:23			
1408133-CCV2	Calibration Check	08/27/14	15:23			
1408133-CCB2	Calibration Blank	08/27/14	15:23			
1408127-DUP2	Duplicate	08/27/14	15:23			
1408127-MS2	Matrix Spike	08/27/14	15:23			
1408133-CCV3	Calibration Check	08/27/14	15:23			
1408133-CCB3	Calibration Blank	08/27/14	15:23			

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 300.0 **Dissolved Sequence ID#:** 1409003

Instrument ID #: ESAT	Dionex IC Water	ex IC Water					
Analysis ID	Sample Name	Analysis Date	Analysis Time				
1409003-ICV1	Initial Cal Check	08/25/14	11:05				
1409003-ICB1	Initial Cal Blank	08/25/14	11:24				
1409003-SCV1	Secondary Cal Check	08/25/14	11:43				
1409003-IBL1	Instrument Blank	08/25/14	12:02				
1408082-BS1	Blank Spike	08/25/14	12:20				
1408082-BLK1	Blank	08/25/14	12:39				
C140804-03	14BH-DT-PILOT-BCR1-08061	08/25/14	12:58				
1408082-DUP1	Duplicate	08/25/14	13:17				
1408082-MS1	Matrix Spike	08/25/14	13:36				
C140804-07	14BH-DT-PILOT-BCR2-08061	08/25/14	13:54				
C140804-11	14BH-DT-PILOT-BCR3-08061	08/25/14	14:13				
C140804-15	14BH-DT-PILOT-BCR4-08061	08/25/14	14:32				
1409003-CCV1	Calibration Check	08/25/14	14:51				
1409003-CCB1	Calibration Blank	08/25/14	15:10				
1409003-CCV2	Calibration Check	08/26/14	17:39				
1409003-CCB2	Calibration Blank	08/26/14	17:58				
C140804-19	14BH-DT-PILOT-CHIT-080614	08/26/14	18:17				
C140804-22	14BH-DT-PILOT-INFL-080614	08/26/14	18:36				
C140804-25	14BH-DT-PILOT-INFLD-0806	08/26/14	18:55				
C140804-28	14BH-DT-PILOT-NAOH-0806	08/26/14	19:13				
C140804-39	14BH-DT-PILOT-SAPS-08061	08/26/14	19:32				
C140804-31	14BH-DT-PILOT-POSTE-0806	08/26/14	19:51				
C140804-35	14BH-DT-PILOT-POSTI-08061	08/26/14	20:10				
1408082-MS2	Matrix Spike	08/26/14	20:29				
1409003-CCV3	Calibration Check	08/26/14	20:47				
1409003-CCB3	Calibration Blank	08/26/14	21:25				

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Dissolved Sequence ID#:** 1409095

Instrument ID #: ICPO	E - PE Optima Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1409095-ICV1	Initial Cal Check	09/22/14	08:56
1409095-SCV1	Secondary Cal Check	09/22/14	08:59
1409095-ICB1	Initial Cal Blank	09/22/14	09:02
1409095-CRL1	Instrument RL Check	09/22/14	09:05
1409095-IFA1	Interference Check A	09/22/14	09:08
1409095-IFB1	Interference Check B	09/22/14	09:12
1409087-BLK1	Blank	09/22/14	09:16
1409087-BS1	Blank Spike	09/22/14	09:19
C140804-02	14BH-DT-PILOT-BCR1-08061	09/22/14	09:22
1409087-DUP1	Duplicate	09/22/14	09:25
1409095-SRD1	Serial Dilution	09/22/14	09:28
1409087-MS1	Matrix Spike	09/22/14	09:31
C140804-06	14BH-DT-PILOT-BCR2-08061	09/22/14	09:34
1409087-MS2	Matrix Spike	09/22/14	09:37
C140804-10	14BH-DT-PILOT-BCR3-08061	09/22/14	09:41
1409095-CCV1	Calibration Check	09/22/14	09:48
1409095-CCB1	Calibration Blank	09/22/14	09:51
C140804-14	14BH-DT-PILOT-BCR4-08061	09/22/14	09:54
C140804-18	14BH-DT-PILOT-CHIT-080614	09/22/14	09:57
C140804-21	14BH-DT-PILOT-INFL-080614	09/22/14	10:00
C140804-24	14BH-DT-PILOT-INFLD-0806	09/22/14	10:03
C140804-27	14BH-DT-PILOT-NAOH-0806	09/22/14	10:06
C140804-30	14BH-DT-PILOT-POSTE-0806	09/22/14	10:09
C140804-38	14BH-DT-PILOT-SAPS-08061	09/22/14	10:18
C140804-34	14BH-DT-PILOT-POSTI-08061	09/22/14	10:24
1409095-CCV2	Calibration Check	09/22/14	10:27
1409095-CCB2	Calibration Blank	09/22/14	10:30

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Dissolved Sequence ID#:** 1409097

Instrument ID #: ICPM	LSR #: A-046					
Analysis ID	Sample Name	Analysis Date	Analysis Time			
1409097-ICV1	Initial Cal Check	09/22/14	10:43			
1409097-SCV1	Secondary Cal Check	09/22/14	10:46			
1409097-ICB1	Initial Cal Blank	09/22/14	10:49			
1409097-CRL1	Instrument RL Check	09/22/14	10:53			
1409097-IFA1	Interference Check A	09/22/14	10:56			
1409097-IFB1	Interference Check B	09/22/14	10:59			
1409088-BS1	Blank Spike	09/22/14	11:06			
C140804-02	14BH-DT-PILOT-BCR1-08061	09/22/14	11:09			
1409088-DUP1	Duplicate	09/22/14	11:12			
1409097-SRD1	Serial Dilution	09/22/14	11:15			
1409088-MS1	Matrix Spike	09/22/14	11:18			
C140804-06	14BH-DT-PILOT-BCR2-08061	09/22/14	11:21			
1409088-MS2	Matrix Spike	09/22/14	11:24			
C140804-10	14BH-DT-PILOT-BCR3-08061	09/22/14	11:27			
1409088-BLK1	Blank	09/22/14	11:30			
1409097-CCV1	Calibration Check	09/22/14	11:33			
1409097-CCB1	Calibration Blank	09/22/14	11:36			
C140804-14	14BH-DT-PILOT-BCR4-08061	09/22/14	11:40			
C140804-18	14BH-DT-PILOT-CHIT-080614	09/22/14	11:43			
C140804-21	14BH-DT-PILOT-INFL-080614	09/22/14	11:46			
C140804-24	14BH-DT-PILOT-INFLD-0806	09/22/14	11:49			
C140804-27	14BH-DT-PILOT-NAOH-0806	09/22/14	11:52			
C140804-30	14BH-DT-PILOT-POSTE-0806	09/22/14	11:55			
C140804-34	14BH-DT-PILOT-POSTI-08061	09/22/14	11:58			
C140804-38	14BH-DT-PILOT-SAPS-08061	09/22/14	12:01			
1409097-CCV2	Calibration Check	09/22/14	12:23			
1409097-CCB2	Calibration Blank	09/22/14	12:27			

TDF #: A-046

TechLaw Inc., ESAT Region 8

INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Total Recoverable Sequence ID#:** 1409103

Instrument ID #: ICPOI	E - PE Optima Water	r	LSR #: A-046		
Analysis ID	Sample Name	Analysis Date	Analysis Time		
1409103-ICV1	Initial Cal Check	09/24/14	08:10		
1409103-SCV1	Secondary Cal Check	09/24/14	08:13		
1409103-ICB1	Initial Cal Blank	09/24/14	08:16		
1409103-CRL1	Instrument RL Check	09/24/14	08:19		
1409103-IFA1	Interference Check A	09/24/14	08:22		
1409103-IFB1	Interference Check B	09/24/14	08:26		
1409084-BLK1	Blank	09/24/14	08:30		
1409084-SRM1	Reference	09/24/14	08:33		
C140804-01	14BH-DT-PILOT-BCR1-08061	09/24/14	08:36		
1409084-DUP1	Duplicate	09/24/14	08:39		
1409103-SRD1	Serial Dilution	09/24/14	08:42		
C140804-05	14BH-DT-PILOT-BCR2-08061	09/24/14	08:45		
1409084-MS1	Matrix Spike	09/24/14	08:48		
C140804-09	14BH-DT-PILOT-BCR3-08061	09/24/14	08:51		
1409084-MS3	Matrix Spike	09/24/14	08:56		
1409103-CCV1	Calibration Check	09/24/14	09:03		
1409103-CCB1	Calibration Blank	09/24/14	09:06		
C140804-13	14BH-DT-PILOT-BCR4-08061	09/24/14	09:09		
C140804-17	14BH-DT-PILOT-CHIT-080614	09/24/14	09:12		
C140804-20	14BH-DT-PILOT-INFL-080614	09/24/14	09:15		
C140804-23	14BH-DT-PILOT-INFLD-0806	09/24/14	09:18		
C140804-26	14BH-DT-PILOT-NAOH-0806	09/24/14	09:21		
C140804-29	14BH-DT-PILOT-POSTE-0806	09/24/14	09:24		
C140804-33	14BH-DT-PILOT-POSTI-08061	09/24/14	09:28		
C140804-37	14BH-DT-PILOT-SAPS-080614	09/24/14	09:32		
1409103-CCV2	Calibration Check	09/24/14	09:38		
1409103-CCB2	Calibration Blank	09/24/14	09:41		

TDF #: A-046

TechLaw Inc., ESAT Region 8

INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Total Recoverable Sequence ID#:** 1409104

Instrument ID #: ICPM	S-PE DRC-II Water	r	LSR #: A-046		
Analysis ID	Sample Name	Analysis Date	Analysis Time		
1409104-ICV1	Initial Cal Check	09/24/14	09:15		
1409104-SCV1	Secondary Cal Check	09/24/14	09:18		
1409104-ICB1	Initial Cal Blank	09/24/14	09:21		
1409104-CRL1	Instrument RL Check	09/24/14	09:25		
1409104-IFA1	Interference Check A	09/24/14	09:28		
1409104-IFB1	Interference Check B	09/24/14	09:31		
1409084-BLK2	Blank	09/24/14	09:34		
1409084-SRM2	Reference	09/24/14	09:37		
C140804-01	14BH-DT-PILOT-BCR1-08061	09/24/14	09:40		
1409084-DUP2	Duplicate	09/24/14	09:44		
1409104-SRD1	Serial Dilution	09/24/14	09:47		
C140804-05	14BH-DT-PILOT-BCR2-08061	09/24/14	09:50		
409084-MS2	Matrix Spike	09/24/14	09:53		
C140804-09	14BH-DT-PILOT-BCR3-08061	09/24/14	09:56		
1409084-MS4	Matrix Spike	09/24/14	09:59		
1409104-CCV1	Calibration Check	09/24/14	10:05		
1409104-CCB1	Calibration Blank	09/24/14	10:08		
C140804-13	14BH-DT-PILOT-BCR4-08061	09/24/14	10:11		
C140804-17	14BH-DT-PILOT-CHIT-080614	09/24/14	10:15		
1409104-CCV2	Calibration Check	09/24/14	10:46		
1409104-CCB2	Calibration Blank	09/24/14	10:49		
C140804-20	14BH-DT-PILOT-INFL-080614	09/24/14	10:52		
C140804-23	14BH-DT-PILOT-INFLD-0806	09/24/14	10:55		
C140804-26	14BH-DT-PILOT-NAOH-0806	09/24/14	10:58		
C140804-29	14BH-DT-PILOT-POSTE-0806	09/24/14	11:01		
C140804-33	14BH-DT-PILOT-POSTI-08061	09/24/14	11:05		
C140804-37	14BH-DT-PILOT-SAPS-08061	09/24/14	11:08		
409104-CCV3	Calibration Check	09/24/14	11:14		
1409104-CCB3	Calibration Blank	09/24/14	11:17		

CHAIN OF CUSTODY RECORD

CDM Smith			Danny	T Pilot Test										Analy	sis	*							
NOTES: Limited sample volumes due to tre Contact: Angela Franden, CDM Smith (406)	eatability testing 441-1400					00.7 or 200.8	-), 200.7 or 200.8	ate, chloride,	nia	-													Other Instructions and Notes
SAMPLE NUMBER	DATE	TIME	MATRIX	Preservative	Type & No. of Containers	Total Metals (TAL), 20	Dissolved Metals (TAL),	Alkalinity, Anions (sulfate, fluoride)	Nitrate+Nitrite, Ammonia														
14BH-DT-PILOT-INFL-080614	8/6/14	8:55	aqueous		3, 125 mL poly	Х	_	X						+								+	
14BH-DT-PILOT-INFLD-080614	8/6/14	9:00	aqueous	1	3, 125 mL poly	Х	Х	х						+					+	-			
14BH-DT-PILOT-SAPS-080614	8/6/14	9:10	aqueous		3, 125 mL poly	х		х	_		-+		-	+	\vdash	-		-	+			-	
14BH-DT-PILOT-CHIT-080614	8/6/14	9:20	aqueous		3, 125 mL poly	х	-	_	_		-	-	+	+-			-				+	-	
14BH-DT-PILOT-NAOH-080614	8/6/14	9:35	aqueous	HNO3	3, 125 mL poly	х		х	-	_				+-		-	-						
14BH-DT-PILOT-BCR1-080614	8/6/14	9:45	aqueous	(metals), H2SO4	4, 125 mL poly	х		+	х			+	+	-				-	\vdash	-+		-	
14BH-DT-PILOT-BCR2-080614	8/6/14	10:10	aqueous	(nutrients), cool	4, 125 mL poly	х		+	х			+		-		-					-	-	
14BH-DT-PILOT-BCR3-080614	8/6/14	10:35	aqueous		4, 125 mL poly	Х		-	х							-	+-	-	-			-	
14BH-DT-PILOT-BCR4-080614	8/6/14	10:50	aqueous		4, 125 mL poly	Х	х	-	х			_	-	-			_		+				AL metals = Al, As, Ba, Be, Cd, Ca,
14BH-DT-PILOT-POSTI-080614	8/6/14	11:10	aqueous		4, 125 mL poly	Х	-		X				-	-			-				-	- "	r, Co, Cu, Fe, Pb, Mg, Mn, Ni, K, Ag Na, Tl, Zn.
14BH-DT-PILOT-POSTE-080614	8/6/14	11:25	aqueous		4, 125 mL poly	Х	<u> </u>	-	х									+			-	-	, ,
											_												
									4	_													
Relinquished by: (Signature)	Date/Time	L	Received for	Laboratory by: (Cignoture)																		
Lauren Holand	08/07/14			Eusoratory by. (oignaule j																		
Received by: (Signature)	Date/Time		Airbill No.(s)					Carrie	r Nan	ne: F	edEx				Lab:	JSEPA L	ab Regio	on 8				-	
Kelsey Bartley	8/8/14	121	15														,						

C140904

ESAT Technical Direction Form

Contract No. EPW13028 EPA Region 8

Site ID: 085N TDF ID: A-046	Date Issued: 5/29/2014 Date Updated:	Date Closed By:
during the 2014 field season start	eral water samples associated with the treat Analytical Information Section. The san ing in mid-June though early October 201 ging approximately 10 samples per an ever	nples will be sent to the ESAT R8 Lab
	mples (-INF) are expected to have high m netals with sufficiently high concentration	netal concentrations and should be s may be reported from the 200.7 analyses.
ESAT should return the coolers to CDM Smith/Lauren Helland 50 West 14th Street, Suite 20 Helena, MT 59601 406-441-1435 FedEx # 1323-6393-5	d	
TO02/Subtask 02b: Inorganic C	Chemistry	
Site RPM: Roger Hoogerheide		
Analytical Information: MATRIX ■ Water □ Soils □ Vegetation □ Bi	iota	
WET CHEM ☐ TSS ☐ TDS ☐ DOC ☑ Alk ☑ Chl Other: Analyze for Ammonia and report No		☑ Nitrite
METALS ☑ Dissolved ☑ Total Recoverable □ Na □ Na □ Na □ Na <td< td=""><th>Be □ B □ Ca □ Cd □ Co □ Cr Pb □ Sb □ Se □ Sr □ Ti □ Ti □ Ti Be □ Cd □ Co □ Cr □ Cu ☑ Mr</th><td>□ V ⊠ Zn □ SiO2 n□ Mo ⊠ Ni ⊠ Pb □ Sb</td></td<>	Be □ B □ Ca □ Cd □ Co □ Cr Pb □ Sb □ Se □ Sr □ Ti □ Ti □ Ti Be □ Cd □ Co □ Cr □ Cu ☑ Mr	□ V ⊠ Zn □ SiO2 n□ Mo ⊠ Ni ⊠ Pb □ Sb
FIBERS □ PLM □ TEM		
Deliverables ID Descr	ription 1	Due Date Submission Date
1 Provide final deliverable package to T after delivery of samples.	•	

2 9 00 11.

ANALYTICAL SUMMARY REPORT

September 02, 2014

CDM Federal Programs 555 17th St Ste 1100 Denver, CO 80202

Work Order: H14080372 Quote ID: H823 - Baker-Hughsville Superfund Site

Project Name: Barker Hughsville - Danny T

Energy Laboratories Inc Helena MT received the following 11 samples for CDM Federal Programs on 8/20/2014 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
H14080372-001	14BH-DT-PILOT-INFL- 081914	08/19/14 9:4	0 08/20/14	Aqueous	Acidity, Total as CaCO3 Phosphorus, Orthophosphate as P
H14080372-002	14BH-DT-PILOT-SAPS- 081914	08/19/14 9:50	0 08/20/14	Aqueous	Same As Above
H14080372-003	14BH-DT-PILOT-CHIT- 081914	08/19/14 10:	05 08/20/14	Aqueous	Same As Above
H14080372-004	14BH-DT-PILOT-NAOH- 081914	08/19/14 10:	15 08/20/14	Aqueous	Same As Above
H14080372-005	14BH-DT-PILOT-BCR1- 081914	08/19/14 10:	30 08/20/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Phosphorus, Orthophosphate as P Sulfide, Iodine Titrimetric
H14080372-006	14BH-DT-PILOT-BCR2- 081914	08/19/14 10:	45 08/20/14	Aqueous	Same As Above
H14080372-007	14BH-DT-PILOT-BCR3- 081914	08/19/14 11:	00 08/20/14	Aqueous	Same As Above
H14080372-008	14BH-DT-PILOT-BCR3D- 081914	- 08/19/14 11:	10 08/20/14	Aqueous	Same As Above
H14080372-009	14BH-DT-PILOT-BCR4- 081914	08/19/14 11:	25 08/20/14	Aqueous	Same As Above
H14080372-010	14BH-DT-PILOT-POSTI- 081914	08/19/14 11:	40 08/20/14	Aqueous	Same As Above
H14080372-011	14BH-DT-PILOT-POSTE- 081914	08/19/14 12:	00 08/20/14	Aqueous	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

CLIENT: CDM Federal Programs

Project: Barker Hughsville - Danny T

Work Order: H14080372

Report Date: 09/02/14

CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080372-001

Client Sample ID: 14BH-DT-PILOT-INFL-081914

Report Date: 09/02/14

Collection Date: 08/19/14 09:40

DateReceived: 08/20/14

Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
•					,
INORGANICS					
Acidity, Total as CaCO3	600 mg/L	D	4.0	A2310 B	08/26/14 11:20 / SRW
NUTRIENTS					
Phosphorus, Orthophosphate as P	0.297 mg/L		0.005	E365.1	08/20/14 15:27 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080372-002

Client Sample ID: 14BH-DT-PILOT-SAPS-081914

Report Date: 09/02/14 **Collection Date:** 08/19/14 09:50

DateReceived: 08/20/14

Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	410 mg/L	D	4.0	A2310 B	08/26/14 11:33 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	0.079 mg/L		0.005	E365.1	08/20/14 15:28 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080372-003

Client Sample ID: 14BH-DT-PILOT-CHIT-081914

Report Date: 09/02/14 **Collection Date:** 08/19/14 10:05

Matrix: Aqueous

DateReceived: 08/20/14

Analyses	Result Unit	s Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	ND ma/	. D	4.0	A2310 B	08/26/14 11:36 / SRW
NUTRIENTS	ND mg/l	. 0	4.0	A2310 B	06/26/14 11.36 / SRVV
Phosphorus, Orthophosphate as P	20.6 mg/l	. D	0.1	E365.1	08/20/14 14:12 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: **CDM Federal Programs Project:** Barker Hughsville - Danny T H14080372-004

Lab ID:

Client Sample ID: 14BH-DT-PILOT-NAOH-081914

Report Date: 09/02/14 **Collection Date:** 08/19/14 10:15

DateReceived: 08/20/14 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	260	mg/L	D	4.0		A2310 B	08/26/14 11:40 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	ND	mg/L		0.005		E365.1	08/20/14 15:29 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080372-005

Client Sample ID: 14BH-DT-PILOT-BCR1-081914

Report Date: 09/02/14

Collection Date: 08/19/14 10:30

DateReceived: 08/20/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	08/26/14 11:43 / SRW
Sulfide	25	mg/L	D	1		A4500-S F	08/22/14 13:30 / eli-b
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	110	mg/L		80		A5210 B	08/20/14 16:15 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	16.4	mg/L	D	0.1		E365.1	08/20/14 14:14 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080372-006

Client Sample ID: 14BH-DT-PILOT-BCR2-081914

Report Date: 09/02/14 **Collection Date:** 08/19/14 10:45

Matrix: Aqueous

DateReceived: 08/20/14

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL I	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0	1	A2310 B	08/26/14 11:46 / SRW
Sulfide	12	mg/L	D	1	,	A4500-S F	08/22/14 13:30 / eli-b
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD) No BOD dilution depleted greater than 2.0 mg/L DO.	<83	mg/L		80	,	A5210 B	08/20/14 16:23 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	2.84	mg/L	D	0.02	ı	E365.1	08/20/14 15:30 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080372-007

Client Sample ID: 14BH-DT-PILOT-BCR3-081914

Report Date: 09/02/14 **Collection Date:** 08/19/14 11:00 **DateReceived:** 08/20/14

Matrix: Aqueous

Anglyona	Dogult	Unito	Ovalifiana	DI.	MCL/	Mathad	Australia Bata / Ba
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	08/26/14 11:50 / SRW
Sulfide	80	mg/L	D	1		A4500-S F	08/22/14 13:30 / eli-b
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	390	mg/L		100		A5210 B	08/20/14 16:28 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	19.1	mg/L	D	0.1		E365.1	08/20/14 14:16 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080372-008

Client Sample ID: 14BH-DT-PILOT-BCR3D-081914

Report Date: 09/02/14

Collection Date: 08/19/14 11:10

DateReceived: 08/20/14

Matrix: Aqueous

					MCL/		
Analyses	Result l	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND r	mg/L	D	4.0		A2310 B	08/26/14 11:54 / SRW
Sulfide	79 r	ng/L	D	1		A4500-S F	08/22/14 13:30 / eli-b
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	370 r	mg/L		100		A5210 B	08/20/14 16:35 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	19.6 r	mg/L	D	0.1		E365.1	08/20/14 14:17 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080372-009

Client Sample ID: 14BH-DT-PILOT-BCR4-081914

Report Date: 09/02/14
Collection Date: 08/19/14 11:25
DateReceived: 08/20/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	08/26/14 11:59 / SRW
Sulfide	68	mg/L	D	1		A4500-S F	08/22/14 13:30 / eli-b
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	84	mg/L		80		A5210 B	08/20/14 16:44 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	2.2	mg/L	D	0.1		E365.1	08/20/14 14:18 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080372-010

Client Sample ID: 14BH-DT-PILOT-POSTI-081914

Report Date: 09/02/14 **Collection Date:** 08/19/14 11:40 **DateReceived:** 08/20/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	08/26/14 12:03 / SRW
Sulfide	48	mg/L	D	1		A4500-S F	08/22/14 13:30 / eli-b
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	120	mg/L		80		A5210 B	08/20/14 16:52 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	9.8	mg/L	D	0.1		E365.1	08/20/14 14:19 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14080372-011

Client Sample ID: 14BH-DT-PILOT-POSTE-081914

Report Date: 09/02/14 **Collection Date:** 08/19/14 12:00

DateReceived: 08/20/14

Matrix: Aqueous

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	08/26/14 12:08 / SRW
Sulfide	ND	mg/L	D	1		A4500-S F	08/22/14 13:30 / eli-b
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	87	mg/L		30		A5210 B	08/20/14 16:55 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	1.7	mg/L	D	0.1		E365.1	08/20/14 14:22 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/02/14Project:Barker Hughsville - Danny TWork Order:H14080372

Analyte	Result Units	RL %REC Low Limit High Limit	RPD RPDLimit Qual
Method: A2310 B			Batch: H140826A
Lab ID: H14080372-001ADUP	Sample Duplicate	Run: PH_140826A	08/26/14 11:24
Acidity, Total as CaCO3	600 mg/L	4.0	0.4 20
Lab ID: H14080372-011ADUP	Sample Duplicate	Run: PH_140826A	08/26/14 12:12
Acidity, Total as CaCO3	ND mg/L	4.0	20
Lab ID: LCS1408260000	Laboratory Control Sample	Run: PH_140826A	08/26/14 11:16
Acidity, Total as CaCO3	940 mg/L	4.0 96 90 110	
Lab ID: MBLK1408260000	Method Blank	Run: PH_140826A	08/26/14 11:13
Acidity, Total as CaCO3	3 mg/L		

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/02/14Project:Barker Hughsville - Danny TWork Order:H14080372

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-S F								Batch: B_	R229412
Lab ID: Sulfide	MB-R229412	Method Blank ND	mg/L	0.5		Run: SUB-	B229412		08/22	/14 13:30
Lab ID: Sulfide	LCS-R229412	Laboratory Co. 21.7	ntrol Sample mg/L	1.0	100	Run: SUB- 70	B229412 130		08/22	/14 13:30
Lab ID: Sulfide	H14080372-005C	Sample Matrix 46.6	Spike mg/L	1.0	99	Run: SUB- 80	B229412 120		08/22	/14 13:30
Lab ID: Sulfide	H14080372-005C	Sample Matrix 46.5	Spike Duplicate mg/L	1.0	99	Run: SUB- 80	B229412 120	0.2	08/22 20	/14 13:30
Lab ID: Sulfide	H14080355-001F	Sample Matrix 21.8	Spike mg/L	1.0	98	Run: SUB- 80	B229412 120		08/22	/14 13:30
Lab ID: Sulfide	H14080355-001F	Sample Matrix 21.8	Spike Duplicate mg/L	1.0	98	Run: SUB- 80	B229412 120	0.0	08/22 20	/14 13:30

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/02/14Project:Barker Hughsville - Danny TWork Order:H14080372

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A5210 B							Batcl	n: 140820_1_	BOD5-W
Lab ID: Oxygen Der	Dil-H201_140820 mand, Biochemical (BOD)	Dilution Water ND	Blank mg/L	2.0		Run: BOD- 0	SKALAR_1408 0.2	20A	08/20)/14 15:29
, 0	GGA1_140820 mand, Biochemical (BOD) tamic acid check falls outside ac	Laboratory Co 130 cceptable limits.	ntrol Sample mg/L	70	64	Run: BOD- 85	SKALAR_1408 115	20A	08/20)/14 15:39 S
Lab ID: Oxygen Der	H14080364-001ADUP mand, Biochemical (BOD)	Sample Duplic	ate mg/L	210		Run: BOD- 90	SKALAR_1408 110	20A 2.5	08/20 10)/14 16:06

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/02/14Project:Barker Hughsville - Danny TWork Order:H14080372

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD RPI	DLimit	Qual
Method:	E365.1						Analytic	cal Run: FIA	202-HE_	_140820B
Lab ID: Phosphorus	ICV , Orthophosphate as P	Initial Calibrati 0.247	on Verification St mg/L	tandard 0.0050	99	90	110		08/20	/14 13:58
Lab ID: Phosphorus	ICB , Orthophosphate as P	Initial Calibrati -0.000460	on Blank, Instrun mg/L	nent Blank 0.0050		0	0		08/20	/14 13:59
Lab ID: Phosphorus	CCV , Orthophosphate as P	Continuing Ca 0.105	libration Verificat mg/L	ion Standa 0.0050	105	90	110		08/20	/14 14:06
Lab ID: Phosphorus	CCV , Orthophosphate as P	Continuing Ca 0.110	libration Verificat mg/L	ion Standa 0.0050	110	90	110		08/20	/14 14:21
Lab ID: Phosphorus	CCV , Orthophosphate as P	Continuing Ca 0.107	libration Verificat mg/L	ion Standa 0.0050	ard 107	90	110		08/20	/14 14:28
Method:	E365.1								Batch	ı: R99904
Lab ID:	LFB	Laboratory Fo	rtified Blank			Run: FIA20	02-HE_140820B		08/20	/14 14:05
Phosphorus	, Orthophosphate as P	0.189	mg/L	0.0050	95	90	110			
Lab ID: Phosphorus	H14080372-001BMS , Orthophosphate as P	Sample Matrix 17.0	Spike mg/L	0.11	85	Run: FIA20 90	02-HE_140820B 110		08/20	/14 14:09 S
Lab ID: Phosphorus	H14080372-001BMSD , Orthophosphate as P	Sample Matrix 17.3	Spike Duplicate mg/L	0.11	87	Run: FIA20 90	02-HE_140820B 110	1.7	08/20 20	/14 14:10 S
Lab ID: Phosphorus	H14080372-011BMS , Orthophosphate as P	Sample Matrix 23.6	Spike mg/L	0.11	110	Run: FIA20 90	02-HE_140820B 110		08/20	/14 14:23
Lab ID: Phosphorus	H14080372-011BMSD , Orthophosphate as P	Sample Matrix 22.9	Spike Duplicate mg/L	0.11	106	Run: FIA20 90)2-HE_140820B 110	3.1	08/20 20	/14 14:24

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/02/14Project:Barker Hughsville - Danny TWork Order:H14080372

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E365.1						Analyt	ical Run	: FIA202-HE_	_140820C
Lab ID:	ICV	Initial Calibrati	on Verification	Standard					08/20	/14 15:19
Phosphorus,	Orthophosphate as P	0.239	mg/L	0.0050	96	90	110			
Lab ID:	ICB	Initial Calibrat	on Blank, Instru	ument Blank					08/20	/14 15:20
Phosphorus,	Orthophosphate as P	-0.00150	mg/L	0.0050		0	0			
Lab ID:	CCV	Continuing Ca	libration Verific	ation Standa	ırd				08/20	/14 15:22
Phosphorus,	Orthophosphate as P	0.102	mg/L	0.0050	102	90	110			
Method:	E365.1								Batch	n: R99911
Lab ID:	LFB	Laboratory Fo	rtified Blank			Run: FIA20)2-HE_140820C	;	08/20	/14 15:21
Phosphorus,	Orthophosphate as P	0.183	mg/L	0.0050	91	90	110			
Lab ID:	H14080372-011BMS	Sample Matrix	Spike			Run: FIA20)2-HE_140820C	;	08/20	/14 15:25
Phosphorus,	Orthophosphate as P	22.3	mg/L	0.11	103	90	110			
Lab ID:	H14080372-011BMSD	Sample Matrix	Spike Duplicat	te		Run: FIA20)2-HE_140820C	;	08/20	/14 15:26
Phosphorus,	Orthophosphate as P	21.7	mg/L	0.11	101	90	110	2.5	20	

Workorder Receipt Checklist

CDM Federal Programs

Login completed by: Wanda Johnson

H14080372

Date Received: 8/20/2014

Reviewed by:	BL2000\rwilliams		Re	eceived by: wjj
Reviewed Date:	8/21/2014			Carrier Hand Del name:
Shipping container/cooler in	good condition?	Yes √	No 🗌	Not Present
Custody seals intact on all s	hipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓
Custody seals intact on all s	ample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?		Yes 🗹	No 🗌	
Chain of custody signed who	en relinquished and received?	Yes ✓	No 🗌	
Chain of custody agrees with	n sample labels?	Yes ✓	No 🗌	
Samples in proper container	/bottle?	Yes ✓	No 🗌	
Sample containers intact?		Yes 🗹	No 🗌	
Sufficient sample volume for	indicated test?	Yes ✓	No 🗌	
All samples received within I (Exclude analyses that are c such as pH, DO, Res CI, Su	onsidered field parameters	Yes 🔽	No 🗌	
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Applicable
Container/Temp Blank temp	erature:	1.7℃ On Ice		
Water - VOA vials have zero	headspace?	Yes	No 🗌	No VOA vials submitted ✓
Water - pH acceptable upon	receipt?	Yes 🗸	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

None

LABORATORIES CHAIT OF CUS	_			_							ماطند		ray	- VI <u></u>
	PLEASE F	RIN	T (Provi	ide as	much	infor	matio	<u>n</u> as	pos	Sample.	le Origin	EPA/Sta	ate Compliance:
Company Name:	Project Nam					1	_				-		Yes []	
CDM Smith	Contact Nar	1	W	<u>alva</u>	<u> </u>	<u> بللا</u>	- Na	<u>าาห</u>	工			MT		
Report Mail Address (Required):	Contact Nar	ne:		ر.	Phone	/Fax:		9			Cell:		· ·	r: (Please Print)
•	Angela	JP	w	rdsci	0	(406) 44	7-14	35		_			on Helland.
	Invoice Con					<u> </u>					Purch	ase Order:	Quote/E	Bottle Order:
MNO Hard Copy Email: Francen AK acdmsmith.	an Same													
Invoice Address (Required):			NI/AIR	 1 WQI	 IG B	 EQU	[3 857]	(20) 			U	Contact ELI prior		Shipped by:
, , ,			NIZ-M						\dashv			RUSH sample su for charges and	ıbmittal	Cooler ID(s):
	SOS S									A)	R	scheduling – See	,	y
•	Containers N S V B O DV Sis Solids assay Other				ડ				삒	E		Instruction Page		
A No Hard Copy Email: Same.					osphate				ACHED	Standard Turnaround (TAT)	U	Comments:		Receipt Temp TB
Special Report/Formats: *	a tere				7					arc	0	Please use.	/b0bml	
DW EDD/EDT (Electronic Date	Sample Type: Air Wate Vegetation DW - Dri				3				AT	Ĭ	_	bothes for		On tice: (7) N
POTWAWTP Format: EXCL			-		p				Ш	D.	S	Combined B		Custody Seal On Bottle Y
State: LEVEL IV	Sar		7	1.4	1	ļ	ļ		SE	and.				On Cooler Y N
Other: NELAC		80	🛨	13	tho-ph					Sta	Н	and audi	<i>'\r\</i>].	Intact Y N
SAMPLE IDENTIFICATION Collection Collection (Name, Location, Interval, etc.)	MATRIX	a	Sultae	Acidisa	9_			-					<u></u>	Signature Y Match
1404. DT-PHOT-INFL-081914 08/19/14 9:40	2, W		_	1 1	X	-		-		_				高 円H080345
1484-DT-PILOT-SAPS-08191 18/11/14 9:50	2, W			X	X					_				<u> </u>
1484-07-PILOT-CHIT-081974 08/19/14 10:05	2, N	ļ		+	<u> </u>			_) 到
146H-DT-PLOT-NAOH-08914 08/19/14 10:15	2, N	<u> </u>	.,	1-1	X _	-	_							<u> </u>
1484-01-PROT-BORY-08/19/14 10:30	3W_	X	X		灶	\perp					 -	-		
1484. OT- PILOT-18CR2-081919 58/1944 10:45	3 N	X	χ	 ' \ 	Х	\perp	_				<u> </u>	-		<u> </u>
1494-DT-PILOT-KR3-081914 06/19/14 /1:00	3, W	X	X	X	X	1-1					_	<u></u>	_	· · · · · · · · · · · · · · · · · · ·
1484-DT-PILOT-BCR7D-081914 08/19/14 11:10	3. N	X	X	X	<u>X</u>	1		<u> </u>			ļ	_		<u> </u>
1484-01- ALDT-184 08/14 08/19/14 11:25	3N	X	X	X	X						ļ . <u>-</u>		_	
10 1464-05-PLOT-PST -0619/4 08 19 14 11: 40) 3 W	X	X	X	<u> </u>	Receive	ed by (prin	1			Date/Time	3:	Signal	
	43 Anu	nature:/	el 0	and										huen.
Record Reinfquished by (print): Date/Time:	Sign	nature:	نيمدي	 .		Receive	ed by (prir	nt):			Date/Time	a; 	Signa:	cure:
MUST be						Receive	ed by Lai	oratory:	. i		Date/Time	0-14 124	Signa	gre:
Signed Sample Disposal: Return to Client:	Lab_Disp	osal: _				Щ	لص	420	<u> </u>		09	1, 100	-	

Chain of Custody and Analytical Reguest Record

ENERGY (3)	Chain (of Cust	tody an	ıd.	An	al	ytic	al	Re	qu	est	: R	eco	ord		Pad	ge <u>2</u> of 2	
Company Name: COM Smith		_	PLEASE F Project Nam	PRIN ne, P	NT WS,	(Pro Pern	vide nit, Et	as n c.	nuch	infor	mati	ion a	s po	ssible Samp	e.) ole Origin : MT		tate Compliance:	_
Report Mail Address (Required): PNo Hard Copy Email: Franklyn	Ar Occ	lwsmilh con	Contact Nar Angula Invoice Con Same	i	Fra	nd:						•			nase Order:	Lau	er: (Please Print) Ch Holland (Bottle Order:	<u>'</u>
☐ POTW/WWTP For ☐ State: ☐ LE ☐ Other: ☐ NE	rmat: Exc VEL IV ELAC		of Containers s: A W S V B O DW e: Soils/Solids n Bioassay Other inking Water		15 de.	dibe	Bro-phojohate ®		2U[SEE ATTACHED	Standard Turnaround (TAT)	R U S H	Contact ELI prior RUSH sample su for charges and scheduling – See Instruction Page Comments: PLASC USC I Short a Code	ubmittal	Receipt Temp 78 I 7 ° C On Ice: (Y) N Custody Seal On Bottle On Cooler Y Intact Y N	٠
(Name, Location, Interval, etc.)	Collection Date	Collection Time	MATRIX	メ	なべ	· Au											Signature Match	!/
14B4-0T-PILOT-PISTF-0819/4 2 3 4 5 6 7 8	00/19/14	5	3, W			\	X										MINO 380 14080372	<u>-</u>

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at www.energylab.com for additional information, downloadable fee schedule, forms, and links.

Lab Disposal:

Received by (print):

Received by (print):

Date/Time:

Date/Time.

8-20-14

Signature:

Signature:

Relinquished by (print):

Sample Disposal:

Custody

Record MUST be

Signed

Date/Time:

Return to Client:

U.S. Environmental Protection Agency Region 8 Technical and Management Services

Laboratory Services Program

Certificate of Analysis

Ref: 8TMS-L

MEMORANDUM

Date: 10/02/14

Subject: Analytical Results--- Barker-Hughesville Treatability 2 AUG 2014 A046 / A-046

From: Don Goodrich; EPA Region 8 Analytical Chemistry WAM

To: Roger Hoogerheide

Superfund

8 MO

Received Sample Set(s), [Work Order : Date Received]:

[C140809 : 08/21/2014]

Attached are the analytical results for the samples received from the Barker-Hughesville_Treatability 2_AUG 2014_A046 sampling event, according to TDF A-046. All analyses were performed within their method specified holding times unless otherwise noted in the following narrative.

These samples were prepared, analyzed, and verified by the Environmental Services Assistance Team Laboratory (ESAT) according to the requirements of the Technical Direction Form (TDF).

Note: The laboratory herewith transmits this deliverable to the program/project partner for determination of "final data usability" which may include data validation and data quality assessment per and in accordance with EPA QA/G-8, *Guidance on Environmental Data Verification and Data Validation*, November 2002, EPA/240/R-02/004. Laboratory data qualifiers are applied based on the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*, October 2004, referred to as "NFGI".

Laboratory policy is to dispose of any remaining sample 60 days after data analysis packages are delivered to EPA. If you would like the laboratory to retain the samples for a period longer than 60 days, please contact Don Goodrich within the 60 day period at (303) 312-6687.

TDF #: A-046

Case Narrative

C140809

Quality Assessment: Unless indicated by exception, the QA/QC associated with this sample set

produced data within the TDF-specified criteria.

Holding Times: All samples were analyzed within their method-specified technical holding

time(s).

1. Initial and Continuing calibration blanks (ICBs and CCBs).

Exceptions: None.

2. Preparation (PB) / Method blanks (MB)

Exceptions: None.

3. Interference Checks (ICSA / ICSAB) for ICP-MS and ICP-OE analyses only.

Exceptions: None.

4. Initial and Continuing calibration verification analyses (ICVs, SCVs and CCVs).

Exceptions: None.

5. Laboratory Control Sample (LCS) or second source analysis or SRM.

Exceptions: None.

Laboratory Fortified blank (LFB) / Blank spike (BS), same source as used for the matrix spikes. PBS performed with analyses/methods requiring preparation or digestion prior to analysis.

Exceptions: None.

 $7. \ \ Contract \ Reporting \ Detection \ Limit \ Standard, \ labeled \ as \ CRA, \ CRDL \ or \ CRL.$

Exceptions: None.

- 8. Laboratory Duplicate (DUP). "Source" identifies field sample duplicated in the laboratory. If either the "source" or the duplicate result is <5X the reporting limit, the %D limit of 20% does not apply. Exceptions: None.
- 9. Laboratory Matrix Spike (MS) and spike duplicate (MSD). "Source" defines original field sample fortified prior to analysis. Percent recovery (%R) limits do not apply when sample concentration(s) exceed the corresponding analyte spike level by a factor of 4 or greater. Exceptions: In ICP-MS batch 1410002, nickel recovered low in the MS1, and copper recovered low in the MS1 and MS2. No qualifiers were assigned since all other QC requirements for these analytes were met.
- 10. Serial Dilution sample analysis (SRD). "Source" is parent field sample diluted 1:5 in the laboratory. Performed for ICP-OE and ICP-MS metals analyses. Percent difference (%D) limits do not apply when analyte concentration(s) are below 50x the source sample's MDL (or 10x it's PQL). Exceptions: None.
- Internal standards, criteria specified for ICP-MS analyses only, monitored at the instrument. Exceptions: None.
- 12. Any calibration using more than two-points produced a correlation coefficient equal to or greater than 0.995.

Exceptions: None.

Certificate of Analysis

Project Name: Barker-Hughesville_Treatability 2_AUG 2014_A046

TDF #: A-046

Acronyms and Definitions:

		α .		CIC C
ESAT	Environmental	Services .	A ccictance	leam
LOAI	Liiviioiiiiciiai	DCI VICCO I	Toolotalice.	1 Cam

J Data Estimated qualifier (also applied to all data less than PQL, greater than or equal to MDL)

MDL Method Detection Limit

PQL Practical Quantitation Limit, also known as reporting limit.

RPD Relative Percent Difference (difference divided by the mean)

%D Percent difference, serial dilution criteria unit, difference divided by the original result.

%R Percent recovery, analyzed (less sample contribution) divided by true value

< Analyte NOT DETECTED at or above the Method Detection Limit (MDL)

mg/L Parts per million (millligrams per liter). Solids equivalent = mg/Kg.

ug/L Parts per billion (micrograms per liter). Solids equivalent = ug/Kg.

NR No Recovery (matrix spike) - Often seen for calcium/magnesium when their concentration exceeds the spike level by > 4x.

NFGI USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

RE Sample Re-analysis. Usually seen on raw data and sequences for required sample dilutions due to over-range analytes.

U Analyte not detected at or above MDL qualifier

D Diluted value qualifier.

Method(s) Summary:

As defined in the Technical Direction Form (TDF), some or all of the methods listed below were used for the determination of the reported target analytes.

From EPA's Methods for the Determination of Metals in Environmental Samples, Supplement I, May 1994, dissolved, total, and/or total recoverable metals were determined by:

- Method 200.7 / 6010B using a PE Optima ICP -OE (ICP).
- Method 200.8 / 6020 using a Perkin -Elmer Elan 6000 ICP-MS.
- Method 200.2 for total recoverable metals (only) dige stion.
- Method 245.1 using a Perkin -Elmer FIMS CVAA (aqueous mercury only).

From Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, Method 2340B was used for the calculated hardness determination. Hardness is reported as mg (milligram) equivalent CaCO₃ per liter (L) determined as follows:

Calculated hardness = 2.497 * (Calcium, mg/L) + 4.118 * (Magnesium, mg/L).

From EPA's Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW -846,

- Method 3015A was used for microwave assisted total metals digestion.
- Method 7473 was used for mercury in solids.

From EPA's Determination of Inorganic Anions by Ion Chromatography, Revision 2.1, 1993, Method 300.0 was used to determine the anions.

From EPA's Methods for Chemical Analysis of Water and Wastes, March 1983:

- Method 310.1 was followed for the alkalinity determination.
- Method 160.1 was followed for gravimetric total dissolved solids (TDS) determination.
- Method 160.2 was used for gravimetric total suspended sol ids (TSS) determination.
- Method 415.3 was used for total organic carbon (TOC) determination using either an Apollo 9000 or Phoenix 8000 Non-Dispersive IR (NDIR) system. Also known as dissolved organic carbon (DOC) when performed on the dissolved sample fraction.

The quality control procedures listed in the TDF request were utilized by ESAT to verify accuracy of the results and to evaluate any matrix interferences.

Project Name: Barker-Hughesville_Treatability 2_AUG 2014_A046 Certificate of Analysis

TDF #: A-046

Barker-Hughesville_Treatability 2_AUG 2014_A046 **Project Name:**

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR1-081914 **Station ID:** EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water

08/19/14 10:30

Workorder:

C140809

Lab Number: C140809-02

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	137	J	ug/L	100	5	10/01/2014	SV	1410001
200.7	Iron	< 1250	U	ug/L	500	5	10/01/2014	SV	1410001
200.7	Manganese	90900		ug/L	10.0	5	10/01/2014	SV	1410001
200.7	Zinc	< 100	U	ug/L	50.0	5	10/01/2014	SV	1410001
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Copper	14.3		ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Lead	1.01	J	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/01/2014	SV	1410002
2340B	Hardness	925		mg/L	8	5	10/01/2014	SV	1410001

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-081914 EPA Tag No.:

No Tag Prefix-B

Date / Time Sampled: Matrix: Water

08/19/14 10:45

Workorder: Lab Number: C140809

C140809-06

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	10/01/2014	SV	1410001
200.7	Iron	533	J	ug/L	500	5	10/01/2014	SV	1410001
200.7	Manganese	102000		ug/L	10.0	5	10/01/2014	SV	1410001
200.7	Zinc	< 100	U	ug/L	50.0	5	10/01/2014	SV	1410001
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Copper	5.36	J	ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/01/2014	SV	1410002
2340B	Hardness	746		mg/L	8	5	10/01/2014	SV	1410001

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR3-081914 **Station ID:** EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water

08/19/14 11:00

Workorder:

C140809

Lab Number: C140809-10

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	175	J	ug/L	100	5	10/01/2014	SV	1410001
200.7	Iron	< 1250	U	ug/L	500	5	10/01/2014	SV	1410001
200.7	Manganese	39800		ug/L	10.0	5	10/01/2014	SV	1410001
200.7	Zinc	< 100	U	ug/L	50.0	5	10/01/2014	SV	1410001
200.8	Arsenic	6.81	J	ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Copper	13.9		ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/01/2014	SV	1410002
2340B	Hardness	1300		mg/L	8	5	10/01/2014	SV	1410001

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR3D-081914 EPA Tag No.:

No Tag Prefix-B

Date / Time Sampled: Matrix: Water

08/19/14 11:10

Workorder: Lab Number:

C140809

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	178	J	ug/L	100	5	10/01/2014	SV	1410001
200.7	Iron	< 1250	U	ug/L	500	5	10/01/2014	SV	1410001
200.7	Manganese	40900		ug/L	10.0	5	10/01/2014	SV	1410001
200.7	Zinc	< 100	U	ug/L	50.0	5	10/01/2014	SV	1410001
200.8	Arsenic	7.44	J	ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Copper	11.5		ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/01/2014	SV	1410002
2340B	Hardness	1200		mg/L	8	5	10/01/2014	SV	1410001

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR4-081914 **Station ID:** EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water

08/19/14 11:25

C140809 Workorder:

Lab Number:

C140809-18

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	10/01/2014	SV	1410001
200.7	Iron	< 1250	U	ug/L	500	5	10/01/2014	SV	1410001
200.7	Manganese	72100		ug/L	10.0	5	10/01/2014	SV	1410001
200.7	Zinc	137		ug/L	50.0	5	10/01/2014	SV	1410001
200.8	Arsenic	5.38	J	ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Copper	12.8		ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/01/2014	SV	1410002
2340B	Hardness	418		mg/L	8	5	10/01/2014	SV	1410001

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-CHIT-081914 **Date / Time Sampled:**

08/19/14 10:05

Workorder:

C140809

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140809-22

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	144	J	ug/L	100	5	10/01/2014	SV	1410001
200.7	Iron	1620		ug/L	500	5	10/01/2014	SV	1410001
200.7	Manganese	69000		ug/L	10.0	5	10/01/2014	SV	1410001
200.7	Zinc	< 100	U	ug/L	50.0	5	10/01/2014	SV	1410001
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/01/2014	SV	1410002
2340B	Hardness	958		mg/L	8	5	10/01/2014	SV	1410001

Barker-Hughesville_Treatability 2_AUG 2014_A046 **Project Name:**

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-INFL-081914 **Station ID:** EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water

08/19/14 09:40

Workorder:

C140809 Lab Number:

Certificate of Analysis

C140809-25

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	10600		ug/L	100	5	10/01/2014	SV	1410001
200.7	Iron	133000		ug/L	500	5	10/01/2014	SV	1410001
200.7	Manganese	101000		ug/L	10.0	5	10/01/2014	SV	1410001
200.7	Zinc	52400		ug/L	50.0	5	10/01/2014	SV	1410001
200.8	Arsenic	129		ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Cadmium	222		ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Copper	812		ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Lead	136		ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Nickel	19.4		ug/L	5.00	10	10/01/2014	SV	1410002
2340B	Hardness	313		mg/L	8	5	10/01/2014	SV	1410001

Metals (Dissolved) by EPA 200/7000 Series Methods

Date / Time Sampled: Station ID: 14BH-DT-PILOT-NAOH-081914 08/19/14 10:15 Workorder: C140809

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140809-28 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	912		ug/L	100	5	10/01/2014	SV	1410001
200.7	Iron	1740		ug/L	500	5	10/01/2014	SV	1410001
200.7	Manganese	91200		ug/L	10.0	5	10/01/2014	SV	1410001
200.7	Zinc	28200		ug/L	50.0	5	10/01/2014	SV	1410001
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Cadmium	147		ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Copper	87.7		ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Nickel	13.7		ug/L	5.00	10	10/01/2014	SV	1410002
2340B	Hardness	308		mg/L	8	5	10/01/2014	SV	1410001

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTE-081914 EPA Tag No.: No Tag Prefix-B Date / Time Sampled: Matrix: Water 08/19/14 12:00

Workorder: C140809

Lab Number:

C140809-31

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	119	J	ug/L	100	5	10/01/2014	SV	1410001
200.7	Iron	< 1250	U	ug/L	500	5	10/01/2014	SV	1410001
200.7	Manganese	51100		ug/L	10.0	5	10/01/2014	SV	1410001
200.7	Zinc	< 100	U	ug/L	50.0	5	10/01/2014	SV	1410001
200.8	Arsenic	12.0	J	ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/01/2014	SV	1410002
2340B	Hardness	891		mg/L	8	5	10/01/2014	SV	1410001

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTI-081914

EPA Tag No.:

No Tag Prefix-B

Ma

Date / Time Sampled: Matrix: Water

08/19/14 11:40

Workorder: (

C140809

Lab Number:

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	118	J	ug/L	100	5	10/01/2014	SV	1410001
200.7	Iron	< 1250	U	ug/L	500	5	10/01/2014	SV	1410001
200.7	Manganese	76500		ug/L	10.0	5	10/01/2014	SV	1410001
200.7	Zinc	< 100	U	ug/L	50.0	5	10/01/2014	SV	1410001
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Copper	7.85	J	ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/01/2014	SV	1410002
2340B	Hardness	813		mg/L	8	5	10/01/2014	SV	1410001

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-081914 EPA Tag No.: No Tag Prefix-B Date / Time Sampled: Matrix: Water

08/19/14 09:50

Workorder: C140809

Certificate of Analysis

Lab Number:

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	394		ug/L	100	5	10/01/2014	SV	1410001
200.7	Iron	111000		ug/L	500	5	10/01/2014	SV	1410001
200.7	Manganese	108000		ug/L	10.0	5	10/01/2014	SV	1410001
200.7	Zinc	27200		ug/L	50.0	5	10/01/2014	SV	1410001
200.8	Arsenic	5.75	J	ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Copper	5.34	J	ug/L	5.00	10	10/01/2014	SV	1410002
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/01/2014	SV	1410002
200.8	Nickel	19.9		ug/L	5.00	10	10/01/2014	SV	1410002
2340B	Hardness	622		mg/L	8	5	10/01/2014	SV	1410001

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR1-081914
EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

08/19/14 10:30

Workorder: C140809

Lab Number: C14080

C140809-01 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	199	J	ug/L	100	5	10/01/2014	SV	1409140
200.7	Iron	< 1250	U	ug/L	500	5	10/01/2014	SV	1409140
200.7	Manganese	95800		ug/L	10.0	5	10/01/2014	SV	1409140
200.7	Zinc	119		ug/L	50.0	5	10/01/2014	SV	1409140
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Lead	6.00		ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/02/2014	SV	1409140

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-081914

EPA Tag No.:

No Tag Prefix-A

Date / Time Sampled: Matrix: Water

08/19/14 10:45

Workorder: Lab Number:

C140809

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	100	J	ug/L	100	5	10/01/2014	SV	1409140
200.7	Iron	710	J	ug/L	500	5	10/01/2014	SV	1409140
200.7	Manganese	106000		ug/L	10.0	5	10/01/2014	SV	1409140
200.7	Zinc	102		ug/L	50.0	5	10/01/2014	SV	1409140
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Lead	1.00	J	ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/02/2014	SV	1409140

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR3-081914 EPA Tag No.: No Tag Prefix-A **Date / Time Sampled: Matrix:** Water

08/19/14 11:00

Workorder: C14

C140809

Lab Number: C140809-09

Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	181	J	ug/L	100	5	10/01/2014	SV	1409140
200.7	Iron	< 1250	U	ug/L	500	5	10/01/2014	SV	1409140
200.7	Manganese	40600		ug/L	10.0	5	10/01/2014	SV	1409140
200.7	Zinc	56.0	J	ug/L	50.0	5	10/01/2014	SV	1409140
200.8	Arsenic	8.30	J	ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Nickel	6.41	J	ug/L	5.00	10	10/02/2014	SV	1409140

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR3D-081914

No Tag Prefix-A

EPA Tag No.:

Date / Time Sampled: Matrix: Water

08/19/14 11:10

Workorder: C140809

Lab Number: C140809-13

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units Factor J Aluminum 188 ug/L 100 5 10/01/2014 SV1409140 200.7 200.7 Iron 5 10/01/2014 SV1409140 < 1250 U ug/L 500 5 200.7 Manganese 41200 ug/L 10.0 10/01/2014 SV1409140 200.7 Zinc 64.8 J 50.0 5 10/01/2014 SV1409140 ug/L 200.8 J 5.00 10 10/02/2014 SV1409140 Arsenic 8.46 ug/L Cadmium 200.8 10 10/02/2014 SV1409140 < 2.00 U ug/L 1.00 200.8 Copper 10 10/02/2014 SV 1409140 < 10.0 U ug/L 5.00 200.8 Lead 10 10/02/2014 SV 1409140 < 2.00 U ug/L 1.00 200.8 Nickel 10 10/02/2014 SV 1409140 U 5.00 < 10.0 ug/L

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR4-081914 **EPA Tag No.:** No Tag Prefix-A

Date / Time Sampled: Matrix: Water

08/19/14 11:25

Workorder: C1 Lab Number:

C140809

C140809-17 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	10/01/2014	SV	1409140
200.7	Iron	< 1250	U	ug/L	500	5	10/01/2014	SV	1409140
200.7	Manganese	71900		ug/L	10.0	5	10/01/2014	SV	1409140
200.7	Zinc	1040		ug/L	50.0	5	10/01/2014	SV	1409140
200.8	Arsenic	9.17	J	ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Cadmium	1.11	J	ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Copper	9.19	J	ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/02/2014	SV	1409140

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-CHIT-081914 EPA Tag No.: No Tag Prefix-A **Date / Time Sampled: Matrix:** Water

08/19/14 10:05

Workorder: C1 Lab Number:

C140809

C140809-21 A

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units Factor J Aluminum 155 ug/L 100 5 10/01/2014 SV1409140 200.7 200.7 ug/L 500 5 SV1409140 Iron 5120 10/01/2014 200.7 Manganese 70500 ug/L 10.0 5 10/01/2014 SV1409140 5 200.7 Zinc 50.0 10/01/2014 1409140 586 ug/L SV 200.8 10 Arsenic 10/02/2014 SV1409140 < 20.0 U ug/L 5.00 Cadmium 200.8 10 10/02/2014 SV1409140 < 2.00 U ug/L 1.00 200.8 Copper 10 10/02/2014 SV 1409140 < 10.0 U ug/L 5.00 200.8 Lead 10 10/02/2014 SV 1409140 < 2.00 U ug/L 1.00 200.8 Nickel 10 10/02/2014 SV 1409140 U 5.00 < 10.0 ug/L

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFL-081914 **EPA Tag No.:** No Tag Prefix-A

Date / Time Sampled: Matrix: Water

08/19/14 09:40

C140809 Workorder: Lab Number:

C140809-24

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	10900		ug/L	100	5	10/01/2014	SV	1409140
200.7	Iron	137000		ug/L	500	5	10/01/2014	SV	1409140
200.7	Manganese	98200		ug/L	10.0	5	10/01/2014	SV	1409140
200.7	Zinc	50400		ug/L	50.0	5	10/01/2014	SV	1409140
200.8	Arsenic	123		ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Cadmium	232		ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Copper	871		ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Lead	104		ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Nickel	21.3		ug/L	5.00	10	10/02/2014	SV	1409140

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NAOH-081914

EPA Tag No.:

No Tag Prefix-A

Date / Time Sampled: Matrix: Water

08/19/14 10:15

Workorder: Lab Number:

C140809

C140809-27 Α

MDL Dilution Method **Parameter** Analyzed $\mathbf{B}\mathbf{v}$ Batch Results Qualifier Units Factor 100 5 1409140 200.7 1300 ug/L 10/01/2014 SVAluminum 500 5 200.7 Iron 9670 ug/L 10/01/2014 SV1409140 Manganese 10.0 5 1409140 200.7 91000 ug/L 10/01/2014 SV 200.7 Zinc 50.0 5 10/01/2014 SV1409140 27900 ug/L 200.8 Arsenic J 5.00 10 10/02/2014 SV 1409140 8.38 ug/L 200.8 Cadmium 145 ug/L 1.00 10 10/02/2014 SV1409140 200.8 5.00 10 10/02/2014 SV1409140 Copper 125 ug/L 200.8 SV 1409140 Lead 5.79 ug/L 1.00 10 10/02/2014 200.8 Nickel 13.9 ug/L 5.00 10 10/02/2014 SV1409140

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-POSTE-081914 **Station ID:**

Date / Time Sampled:

08/19/14 12:00 Workorder: C140809

EPA Tag No.: No Tag Prefix-A Matrix: Water

Lab Number:

C140809-30

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	174	J	ug/L	100	5	10/01/2014	SV	1409140
200.7	Iron	< 1250	U	ug/L	500	5	10/01/2014	SV	1409140
200.7	Manganese	51900		ug/L	10.0	5	10/01/2014	SV	1409140
200.7	Zinc	156		ug/L	50.0	5	10/01/2014	SV	1409140
200.8	Arsenic	11.5	J	ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/02/2014	SV	1409140

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-POSTI-081914 **Station ID:**

Date / Time Sampled:

08/19/14 11:40

Workorder:

C140809

EPA Tag No.:

No Tag Prefix-A

Matrix: Water

Lab Number:

C140809-34 Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	134	J	ug/L	100	5	10/01/2014	SV	1409140
200.7	Iron	< 1250	U	ug/L	500	5	10/01/2014	SV	1409140
200.7	Manganese	77400		ug/L	10.0	5	10/01/2014	SV	1409140
200.7	Zinc	326		ug/L	50.0	5	10/01/2014	SV	1409140
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/02/2014	SV	1409140

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-081914 EPA Tag No.: No Tag Prefix-A Date / Time Sampled: Matrix: Water

08/19/14 09:50

Workorder: C1 Lab Number:

C140809

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	494		ug/L	100	5	10/01/2014	SV	1409140
200.7	Iron	108000		ug/L	500	5	10/01/2014	SV	1409140
200.7	Manganese	107000		ug/L	10.0	5	10/01/2014	SV	1409140
200.7	Zinc	25800		ug/L	50.0	5	10/01/2014	SV	1409140
200.8	Arsenic	5.41	J	ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/02/2014	SV	1409140
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/02/2014	SV	1409140
200.8	Nickel	21.4		ug/L	5.00	10	10/02/2014	SV	1409140

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

 Station ID:
 14BH-DT-PILOT-BCR1-081914
 Date / Time Sampled:
 08/19/14 10:30
 Workorder:
 C140809

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140809-03

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	08/28/2014	NP	1408111
EPA 300.0	Fluoride	8.7		mg/L	1.0	10	08/28/2014	NP	1408111
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/28/2014	NP	1408111
EPA 300.0	Sulfate as SO4	682		mg/L	0.5	10	08/28/2014	NP	1408111
EPA 310.1	Total Alkalinity	457		mg CaCO3 / L	25.0	5	08/25/2014	KJB	1408112

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1-081914 **Date / Time Sampled:** 08/19/14 10:30 **Workorder:** C140809

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number: C140809-04

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	20.6	D	mg/L	3.00	100	08/27/2014	KJB	1408127

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-081914 **Date / Time Sampled:** 08/19/14 10:45 **Workorder:** C140809

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140809-07 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.5	J	mg/L	5.0	10	08/28/2014	NP	1408111
EPA 300.0	Fluoride	1.6	J	mg/L	1.0	10	08/28/2014	NP	1408111
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/28/2014	NP	1408111
EPA 300.0	Sulfate as SO4	688		mg/L	0.5	10	08/28/2014	NP	1408111
EPA 310.1	Total Alkalinity	314		mg CaCO3 / L	25.0	5	08/25/2014	KJB	1408112

Α

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-081914

EPA Tag No.: No Tag Prefix-D **Date / Time Sampled:** Matrix:

Water

08/19/14 10:45 Workorder:

C140809

Certificate of Analysis

Lab Number: C140809-08 Α

Dilution MDL Method Parameter Analyzed By Batch Results **Qualifier** Units Factor EPA 350.1 Ammonia as N 5.98 D mg/L 0.300 10 08/27/2014 KJB 1408127

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR3-081914 **EPA Tag No.:**

No Tag Prefix-C

Date / Time Sampled: Matrix: Water

08/19/14 11:00

Workorder: C140809

Lab Number:

C140809-11

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.5	J	mg/L	5.0	10	08/28/2014	NP	1408111
EPA 300.0	Fluoride	29.1		mg/L	1.0	10	08/28/2014	NP	1408111
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/28/2014	NP	1408111
EPA 300.0	Sulfate as SO4	270		mg/L	0.5	10	08/28/2014	NP	1408111
EPA 310.1	Total Alkalinity	1330		mg CaCO3 / L	25.0	5	08/25/2014	KJB	1408112

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-BCR3-081914 **Station ID:**

EPA Tag No.:

No Tag Prefix-D

Date / Time Sampled: Matrix: Water

08/19/14 11:00

Workorder:

C140809

Lab Number:

C140809-12

MDL Dilution Method **Parameter** Results Qualifier Units Analyzed By Batch Factor EPA 350.1 79.8 D mg/L 3.00 100 08/27/2014 KJB 1408127 Ammonia as N

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR3D-081914 EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Water

08/19/14 11:10

Workorder:

Lab Number:

C140809

Certificate of Analysis

C140809-15

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	08/28/2014	NP	1408111
EPA 300.0	Fluoride	27.4		mg/L	1.0	10	08/28/2014	NP	1408111
EPA 300.0	Nitrate/Nitrite as	< 50.0	U	mg/L	10.0	10	08/28/2014	NP	1408111
EPA 300.0	Sulfate as SO4	289		mg/L	0.5	10	08/28/2014	NP	1408111
EPA 310.1	Total Alkalinity	1300		mg CaCO3 / L	25.0	5	08/25/2014	KJB	1408112

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-BCR3D-081914 **Station ID: EPA Tag No.:**

No Tag Prefix-D

Date / Time Sampled: Matrix: Water

08/19/14 11:10

Workorder: Lab Number:

C140809

C140809-16

Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	77.8	D	mg/L	3.00	100	08/27/2014	KJB	1408127

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4-081914

EPA Tag No.:

No Tag Prefix-C

Date / Time Sampled: Matrix: Water

08/19/14 11:25

Workorder:

C140809

Lab Number:

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	08/28/2014	NP	1408111
EPA 300.0	Fluoride	2.1		mg/L	1.0	10	08/28/2014	NP	1408111
EPA 300.0	Nitrate/Nitrite as	< 50.0	U	mg/L	10.0	10	08/28/2014	NP	1408111
EPA 300.0	Sulfate as SO4	630		mg/L	0.5	10	08/28/2014	NP	1408111
EPA 310.1	Total Alkalinity	451		mg CaCO3 / L	25.0	5	08/25/2014	KJB	1408112

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4-081914 EPA Tag No.:

No Tag Prefix-D

Date / Time Sampled: Matrix: Water

08/19/14 11:25

Workorder: Lab Number:

C140809

Certificate of Analysis

C140809-20

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
EPA 350.1	Ammonia as N	5.52	D	mg/L	0.300	10	08/27/2014	KJB	1408127

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-CHIT-081914 **Station ID:**

EPA Tag No.: No Tag Prefix-C Date / Time Sampled: Matrix: Water

08/19/14 10:05

Workorder:

Lab Number:

C140809

C140809-23

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.5	J	mg/L	5.0	10	08/28/2014	NP	1408111
EPA 300.0	Fluoride	13.9		mg/L	1.0	10	08/28/2014	NP	1408111
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/28/2014	NP	1408111
EPA 300.0	Sulfate as SO4	623		mg/L	0.5	10	08/28/2014	NP	1408111
EPA 310.1	Total Alkalinity	621		mg CaCO3 / L	25.0	5	08/25/2014	KJB	1408112

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-INFL-081914 **Date / Time Sampled:** 08/19/14 09:40 C140809 Workorder:

No Tag Prefix-C Matrix: Water EPA Tag No.: Lab Number: C140809-26

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	08/29/2014	NP	1408111
EPA 300.0	Fluoride	2.2		mg/L	1.0	10	08/29/2014	NP	1408111
EPA 300.0	Nitrate/Nitrite as	< 50.0	U	mg/L	10.0	10	08/29/2014	NP	1408111
EPA 300.0	Sulfate as SO4	1010		mg/L	0.5	10	08/29/2014	NP	1408111
EPA 310.1	Total Alkalinity	< 50.0		mg CaCO3 / L	25.0	5	08/25/2014	KJB	1408112

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-NAOH-081914 **EPA Tag No.:** No Tag Prefix-C

Date / Time Sampled: Matrix: Water

08/19/14 10:15

Workorder:

Lab Number:

C140809

Certificate of Analysis

C140809-29

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	08/29/2014	NP	1408111
EPA 300.0	Fluoride	1.1	J	mg/L	1.0	10	08/29/2014	NP	1408111
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/29/2014	NP	1408111
EPA 300.0	Sulfate as SO4	1010		mg/L	0.5	10	08/29/2014	NP	1408111
EPA 310.1	Total Alkalinity	< 10.0		mg CaCO3 / L	5.00	1	08/25/2014	KJB	1408112

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTE-081914 **EPA Tag No.:**

No Tag Prefix-C

Date / Time Sampled: Water

Matrix:

08/19/14 12:00

Workorder: Lab Number:

C140809

C140809-32

Α

Dilution MDL Method **Parameter** Analyzed By Batch Qualifier Units Results **Factor** EPA 300.0 Chloride 6.6 J mg/L 5.0 10 08/29/2014 NP 1408111 Fluoride 1.0 10 EPA 300.0 3.5 mg/L 08/29/2014 NP 1408111 EPA 300.0 Nitrate/Nitrite as 10 08/29/2014 NP 1408111 U < 50.0 10.0 mg/L N NP EPA 300.0 Sulfate as SO4 539 0.5 10 1408111 mg/L 08/29/2014 EPA 310.1 mg CaCO3 / L 25.0 5 08/25/2014 KJB 1408112 **Total Alkalinity** 726

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTE-081914 **Date / Time Sampled:** 08/19/14 12:00 Workorder: C140809

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number: C140809-33

MDL Dilution Method **Parameter** Analyzed By Batch Results **Qualifier** Units Factor EPA 350.1 25.5 D mg/L 3.00 100 08/27/2014 KJB 1408127 Ammonia as N

A

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTI-081914

Date / Time Sampled:

08/19/14 11:40 **Workorder:**

C140809

Certificate of Analysis

EPA Tag No.: No Tag Prefix-C Matrix: Water

Lab Number:

C140809-36 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.3	J	mg/L	5.0	10	08/29/2014	NP	1408111
EPA 300.0	Fluoride	9.4		mg/L	1.0	10	08/29/2014	NP	1408111
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/29/2014	NP	1408111
EPA 300.0	Sulfate as SO4	559		mg/L	0.5	10	08/29/2014	NP	1408111
EPA 310.1	Total Alkalinity	611		mg CaCO3 / L	25.0	5	08/25/2014	KJB	1408112

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTI-081914

EPA Tag No.:

No Tag Prefix-D

Date / Time Sampled:

Matrix: Water

Workorder:

C140809

Lab Number: C140809-37

Dilution MDL Method **Parameter** Analyzed By Batch Qualifier Results Units Factor EPA 350.1 Ammonia as N 26.6 D mg/L 3.00 100 08/27/2014 KJB 1408127

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-SAPS-081914

EPA Tag No.: No Tag Prefix-C

Date / Time Sampled:

Matrix:

Water

08/19/14 09:50

08/19/14 11:40

Workorder:

C140809

Lab Number:

C140809-40 A

A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	08/29/2014	NP	1408111
EPA 300.0	Fluoride	1.6	J	mg/L	1.0	10	08/29/2014	NP	1408111
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	08/29/2014	NP	1408111
EPA 300.0	Sulfate as SO4	1000		mg/L	0.5	10	08/29/2014	NP	1408111
EPA 310.1	Total Alkalinity	97.8		mg CaCO3 / L	25.0	5	08/25/2014	KJB	1408112

[&]quot;J" Qualifier indicates an estimated value

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-	П								
Batch 1410002 - N	o Lab Prep Reqd	i	Water					ICPN	AS-PE DRC-II
Method Blank (1410	0002-BLK1)	Dilution Factor: 1				Prepa	red & Analyz	red: 10/01/14	
Nickel	< 0.500	1.00	ug/L						
Copper	< 0.500	1.00	"						
Arsenic	< 0.500	2.00	"						
Cadmium	< 0.100	0.200	"						
Lead	< 0.100	0.200	"						
Method Blank Spike	e (1410002-BS1)	Dilution Factor: 1				Prepa	red & Analyz	zed: 10/01/14	
Nickel	92.6	1.00	ug/L	100		93	85-115		
Copper	92.9	1.00	"	100		93	85-115		
Arsenic	90.9	2.00	"	100		91	85-115		
Cadmium	98.8	0.200	"	100		99	85-115		
Lead	96.1	0.200	"	100		96	85-115		
Duplicate (1410002-	DUP1)	Dilution Factor: 1	Source	: C140809-0	2	Prepa	Prepared & Analyzed: 10/01/14		
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	7.61	10.0	"		14.3			61	20
Arsenic	< 5.00	20.0	"		< 5.00				20
Cadmium	< 1.00	2.00	"		< 1.00				20
Lead	< 1.00	2.00	"		1.01				20
Matrix Spike (14100	002-MS1)	Dilution Factor: 1	Source	: C140809-0	2	Prepa	red & Analyz	ed: 10/01/14	
Nickel	66.5	10.0	ug/L	100	< 5.00	66	70-130		
Copper	75.7	10.0	"	100	14.3	61	70-130		
Arsenic	98.8	20.0	"	100	< 5.00	99	70-130		
Cadmium	96.8	2.00	"	100	< 1.00	97	70-130		
Lead	98.9	2.00	"	100	1.01	98	70-130		
Matrix Spike (14100	002-MS2)	Dilution Factor: 1	Source	: C140809-0	6	Prepa	red & Analyz	zed: 10/01/14	
Nickel	75.0	10.0	ug/L	100	< 5.00	75	70-130		
Copper	44.0	10.0	"	100	5.36	39	70-130		
Arsenic	97.4	20.0	"	100	< 5.00	97	70-130		
Cadmium	96.1	2.00	"	100	< 1.00	96	70-130		
Lead	99.2	2.00	"	100	< 1.00	99	70-130		

Project Name: Barker-Hughesville_Treatability 2_AUG 2014_A046 Certificate of Analysis

TDF #: A-046

115.3

Zinc

100

$Metals \ (Dissolved) \ by \ EPA \ 200/7000 \ Series \ Methods - Quality \ Control$

TechLaw, Inc. - ESAT Region 8

		TeenEuv							
Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1410014 - 14	10002	V	Vater					ICPM	1S-PE DRC-II
Serial Dilution (1410	014-SRD1)	Dilution Factor: 5	Source	: C140809-0	2	Prepa	red & Analyz	ed: 10/01/14	
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	< 25.0	50.0	"		14.3				10
Arsenic	< 25.0	100	"		< 5.00				10
Cadmium	< 5.00	10.0	"		< 1.00				10
Lead	< 5.00	10.0	"		1.01				10
ICPOE - PE Optin	1a								
Batch 1410001 - No	Lab Prep Reqd	V	Vater					ICPOI	E - PE Optima
Method Blank (1410	001-BLK1)	Dilution Factor: 1				Prepa	red & Analyz	red: 10/01/14	
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	ug L						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Method Blank Spike	(1410001-BS1)	Dilution Factor: 1				Prepa	red & Analyz	ed: 10/01/14	
Aluminum	9920	50.0	ug/L	10100		98	85-115		
Iron	9896	250	"	10100		98	85-115		
Manganese	97.58	5.00	"	100		98	85-115		
Zinc	99.44	20.0	"	100		99	85-115		
Duplicate (1410001-I	DUP1)	Dilution Factor: 5	Source	: C140809-0	2	Prepa	red & Analyz	red: 10/01/14	
Aluminum	133.0	250	ug/L		137.0			3	20
Iron	< 500	1250	ug/L		< 500			5	20
Manganese	91620	25.0	"		90920			0.8	20
Zinc	< 50.0	100	"		< 50.0			0.0	20
Matrix Spike (141000	01-MS1)	Dilution Factor: 5	Source	: C140809-0	2	Prepa	red & Analyz	red: 10/01/14	
Aluminum	10010	250	ug/L	10100	137.0	98	70-130		
Iron	9863	1250	ug/L	10100	< 500	98	70-130		
Manganese	90870	25.0	"	100	90920	NR	70-130		
1.14115411030	1150	100		100	70720	1 417	10 130		

100

< 50.0

70-130

115

Project Name: Barker-Hughesville_Treatability 2_AUG 2014_A046 **Certificate of Analysis**

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1410001 - N	o Lab Prep Reqd	И	Vater					ICPO	E - PE Optima
Matrix Spike (14100	01-MS2)	Dilution Factor: 5	Source	: C140809-0	6	Prepa	red & Analyz	zed: 10/01/14	
Aluminum	9885	250	ug/L	10100	< 100	98	70-130		
Iron	10710	1250	"	10100	533.0	101	70-130		
Manganese	102100	25.0	"	100	102500	NR	70-130		
Zinc	113.1	100	"	100	< 50.0	113	70-130		
Batch 1410008 - 14	110001	И	Vater					ICPO	E - PE Optima
Serial Dilution (1410	0008-SRD1)	Dilution Factor: 2	Source	: C140809-0	2	Prepa	red & Analyz	zed: 10/01/14	
Aluminum	< 500	1250	ug/L		137.0				10
Iron	< 2500	6250	"		< 500.00				10
Manganese	96760	125	"		90920			6	10
-	< 250	500	"		< 50.00				10

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Certificate of Analysis

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
CPMS-PE DRC-	II								
Batch 1409140 - 20	00.2 - TR Metals)	Water					ICPN	MS-PE DRC-II
Method Blank (1409	0140-BLK2)	Dilution Factor: 5				Prepa	red: 09/29/14	Analyzed: 10/	02/14
Nickel	< 2.50	5.00	ug/L						
Copper	< 2.50	5.00	"						
Arsenic	< 2.50	10.0	"						
Cadmium	< 0.500	1.00	"						
Lead	< 0.500	1.00	"						
Ouplicate (1409140-	DUP2)	Dilution Factor: 1	Source	: C140809-0	1	Prepa	red: 09/29/14	Analyzed: 10/	02/14
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	< 5.00	10.0	"		< 5.00				20
Arsenic	< 5.00	20.0	"		< 5.00				20
Cadmium	< 1.00	2.00	"		< 1.00				20
Lead	6.138	2.00	"		5.995			2	20
Matrix Spike (14091	40-MS2)	Dilution Factor: 1	Source	: C140809-0	5	Prepa	red: 09/29/14	Analyzed: 10/	02/14
Nickel	453.1	10.0	ug/L	500	< 5.00	91	70-130		
Copper	270.0	10.0	"	300	< 5.00	90	70-130		
Arsenic	723.6	20.0	"	800	< 5.00	90	70-130		
Cadmium	197.3	2.00	"	200	< 1.00	99	70-130		
Lead	859.1	2.00	"	1000	1.004	86	70-130		
Matrix Spike (14091	40-MS4)	Dilution Factor: 1	Source	: C140809-0	9	Prepa	red: 09/29/14	Analyzed: 10/	02/14
Nickel	474.6	10.0	ug/L	500	6.411	94	70-130		
Copper	275.1	10.0	"	300	< 5.00	92	70-130		
Arsenic	751.1	20.0	"	800	8.296	93	70-130		
Cadmium	191.3	2.00	"	200	< 1.00	96	70-130		
Lead	889.4	2.00	"	1000	< 1.00	89	70-130		
Reference (1409140-	-SRM2)	Dilution Factor: 2				Prepa	red: 09/29/14	Analyzed: 10/	02/14
Nickel	1019	20.0	ug/L	1000		102	85-115		
Copper	1019	20.0	"	1000		102	85-115		
Arsenic	1962	40.0	"	2000		98	85-115		
Cadmium	1007	4.00	"	1000		101	85-115		
	1955	4.00	"	2000		98	85-115		

Project Name: Barker-Hughesville_Treatability 2_AUG 2014_A046 Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1410015 - 14	409140	и	/ater					ICPN	MS-PE DRC-II
Serial Dilution (1410	0015-SRD1)	Dilution Factor: 5	Source	: C140809-0	1	Prepar	red: 09/29/14	Analyzed: 10/	02/14
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	< 25.0	50.0	ug L		< 5.00				10
Arsenic	< 25.0	100	"		< 5.00				10
Cadmium	< 5.00	10.0	"		< 1.00				10
Lead	5.718	10.0	"		5.995			5	10
ICPOE - PE Optir	na								
Batch 1409140 - 20	00.2 - TR Metals	И	/ater					ICPO	E - PE Optima
Method Blank (1409	9140-BLK1)	Dilution Factor: 1				Prepar	red: 09/29/14	Analyzed: 10/	01/14
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	ug L						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Duplicate (1409140-	DUP1)	Dilution Factor: 5	Source	: C140809-0	1	Prepai	red: 09/29/14	Analyzed: 10/	01/14
Aluminum	207.9	250	ug/L		199.5			4	20
Iron	< 500	1250	"		< 500				20
Manganese	97190	25.0	"		95850			1	20
Zinc	99.56	100	"		119.0			18	20
Matrix Spike (14091	40-MS1)	Dilution Factor: 5	Source	: C140809-0	5	Prepar	red: 09/29/14	Analyzed: 10/	01/14
	1943	250	ug/L	2000	100.2	92	70-130		
Aluminum			-		709.9	92	70-130		
Aluminum Iron	3472	1250	"	3000					
Iron	3472 107500	1250 25.0	"						
Iron Manganese				200 200	106000 101.7	756 89	70-130 70-130		
	107500 279.7	25.0	"	200	106000 101.7	756 89	70-130 70-130	Analyzed: 10/	01/14
Iron Manganese Zinc	107500 279.7	25.0 100	" Source	200 200	106000 101.7	756 89	70-130 70-130	Analyzed: 10/	01/14
Iron Manganese Zinc Matrix Spike (14091	107500 279.7 40-MS3)	25.0 100 Dilution Factor: 5	"	200 200 : C140809-0	106000 101.7 9	756 89 Prepar	70-130 70-130 red: 09/29/14	Analyzed: 10/	01/14
Iron Manganese Zinc Matrix Spike (14091 Aluminum	107500 279.7 40-MS3)	25.0 100 Dilution Factor: 5	" Source ug/L	200 200 : C140809-0 2000	106000 101.7 9	756 89 Prepar	70-130 70-130 red: 09/29/14 70-130	Analyzed: 10/	01/14

Project Name: Barker-Hughesville_Treatability 2_AUG 2014_A046 **Certificate of Analysis**

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409140 - 20	00.2 - TR Metals	И	'ater					ICPO	E - PE Optima
Reference (1409140-	-SRM1)	Dilution Factor: 1				Prepai	red: 09/29/14	Analyzed: 10/	01/14
Aluminum	952.0	50.0	ug/L	1000		95	85-115		
Iron	934.7	250	"	1000		93	85-115		
Manganese	1008	5.00	"	1000		101	85-115		
Zinc	1003	20.0	"	1000		100	85-115		
Batch 1410009 - 14	409140	И	'ater					ICPO	E - PE Optima
Serial Dilution (1410	0009-SRD1)	Dilution Factor: 2	Source	: C140809-01	1	Prepai	red: 09/29/14	Analyzed: 10/	01/14
Aluminum	< 500	1250	ug/L		199.5				10
	< 500 < 2500	1250 6250	ug/L		199.5 < 500.00				10 10
Aluminum Iron Manganese								5	

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

${\bf Classical\ Chemistry\ by\ EPA/ASTM/APHA\ Methods-Quality\ Control}$

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ESAT Dionex IC									·
Batch 1408111 - No Pr	rep Req		Water					E	SAT Dionex IC
Method Blank (1408111-	-BLK1)	Dilution Factor: 1				Prepa	red & Analyz	ed: 08/28/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Method Blank Spike (14	108111-BS1)	Dilution Factor: 1				Prepa	red & Analyz	ed: 08/28/14	
Fluoride	4.9	0.2	mg/L	5.00		98	90-110		
Chloride	24.8	2.0	"	25.0		99	90-110		
Sulfate as SO4	25.7	0.1	"	25.0		103	90-110		
Nitrate/Nitrite as N	19.5	5.0	"	20.0		98	90-110		
Duplicate (1408111-DUP1)		Dilution Factor: 1	Source	C140809-0	3	Prepa	red & Analyz	red: 08/28/14	
Fluoride	8.5	2.0	mg/L		8.7			2	20
Chloride	5.4	20.0	"		5.4			1	20
Sulfate as SO4	644	1.0	"		682			6	20
Nitrate/Nitrite as N	< 10.0	50.0	"		< 10.0				20
Matrix Spike (1408111-	MS1)	Dilution Factor: 1	Source	: C140809-0	3	Prepa	red & Analyz	red: 08/28/14	
Fluoride	55.8	2.0	mg/L	50.0	8.7	94	80-120		
Chloride	253	20.0	"	250	5.4	99	80-120		
Sulfate as SO4	925	1.0	"	250	682	97	80-120		
Nitrate/Nitrite as N	194	50.0	"	200	< 10.0	97	80-120		
Matrix Spike (1408111-	MS2)	Dilution Factor: 1	Source	: C140809-4	0	Prepa	red & Analyz	ed: 08/29/14	
Fluoride	51.8	2.0	mg/L	50.0	1.6	100	80-120		
Chloride	257	20.0	"	250	5.4	101	80-120		
Sulfate as SO4	1240	1.0	"	250	1000	94	80-120		
Nitrate/Nitrite as N	197	50.0	"	200	< 10.0	99	80-120		

Certificate of Analysis

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409002 - 1408	8111		Water					E	SAT Dionex IC
Instrument Blank (140	99002-IBL1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 08/28/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Lachat 8500									
Batch 1408127 - No 1	Prep Req		Water						Lachat 8500
Method Blank (140812	27-BLK1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 08/27/14	
Ammonia as N	< 0.0300	0.0500	mg/L						
Method Blank Spike (1	1408127-BS1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 08/27/14	
Ammonia as N	1.01	0.0500	mg/L	1.00		101	90-110		
Duplicate (1408127-DU	JP1)	Dilution Factor: 1	Source:	C140804-0	4	Prepai	red & Analyz	zed: 08/27/14	
Ammonia as N	40.1	5.00	mg/L		39.8			0.7	20
Duplicate (1408127-DU	UP2)	Dilution Factor: 1	Source:	C140809-2	0	Prepai	red & Analyz	zed: 08/27/14	
Ammonia as N	5.58	0.500	mg/L		5.52			1	20
Matrix Spike (1408127	7-MS1)	Dilution Factor: 1	Source:	C140804-0	4	Prepai	red & Analyz	zed: 08/27/14	
Ammonia as N	136	5.00	mg/L	100	39.8	96	90-110		
Matrix Spike (1408127	/-MS2)	Dilution Factor: 1	Source:	C140809-2	0	Prepai	red & Analyz	zed: 08/27/14	
Ammonia as N	15.5	0.500	mg/L	10.0	5.52	100	90-110		
Reference (1408127-SF	RM1)	Dilution Factor: 5				Prepai	red & Analyz	zed: 08/27/14	
Ammonia as N	4.86	0.250	mg/L	4.80		101	90-110		

Barker-Hughesville_Treatability 2_AUG 2014_A046 **Project Name:**

Certificate of Analysis

TDF #:

A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Mettler AT									
Batch 1408112 - No	Prep Req		Water						Mettler AT
Method Blank (14081	12-BLK1)	Dilution Factor: 1			Prepai	red & Analyz	zed: 08/25/14		
Total Alkalinity	< 5.00	10.0	mg CaCO3 /						
Duplicate (1408112-DUP1) Dilution Factor: 5 Source: C140809-03 Prepared & Analyzed: 08/25/14									
Total Alkalinity	454	50.0	mg CaCO3 /		457			0.6	20
Duplicate (1408112-D	UP2)	Dilution Factor: 5	Source:	C140809-4	0	Prepar	red & Analyz	zed: 08/25/14	
Total Alkalinity	97.1	50.0	mg CaCO3 /		97.8			0.7	20
Reference (1408112-S)	RM1)	Dilution Factor: 1				Prepar	red & Analyz	zed: 08/25/14	
Total Alkalinity	11.9	10.0	mg CaCO3 /	10.4		114	61.3-143.9		

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

Project Name: Barker-Hughesville_Treatability 2_AUG 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 310.1</u> Analysis Name: <u>WC - Alkalinity</u>

Instrument: Mettler AT Work Order: Nu C140809

Analytical Sequence: Total Concentration Units: mg CaCO3 / L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	Metho Blan (Batch	PQL			
		1	2	3	4	1408112-BLK1	NA	
		1.56	1.52					40.00
Total Alkalinity		5	6	7	8	1.00	NA	10.00

TDF #: A-046

TechLaw Inc., ESAT Region 8

INORGANIC ANALYSES DATA SHEET

Certificate of Analysis

Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 350.1</u> Analysis Name: <u>WC - Ammonia</u>

Instrument: Lachat 8500 Work Order: Nu C140809

Analytical Sequence: Total Concentration Units: mg/L

Analyte	Initial Calibration Blank (1 & 2)	Method Continuing Calibration Blanks (Batch ID)							
		1	2	3	4	1408127-BLK1	NA		
		0.00	0.00	0.00					
Ammonia as N		5	6	7	8	0.00	NA	0.05	
						1			

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 300.0</u> Analysis Name: <u>WC - Anions by Ion Chromatography</u>

Instrument: ESAT Dionex IC Work Order: Nu C140809

Analytical Sequence: 1409002 **Dissolved** Concentration Units: <u>mg/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	Method Blank (Batch II	PQL		
		1	2	3	4	1408111-BLK1	NA	
	0.00	0.00	0.00					
Fluoride		5	6	7	8	0.00	NA	0.20
				_		1400111 DV V	NA	
	0.00	1	2	3	4	1408111-BLK1	NA	,
Chloride	0.00	0.00	0.00]	NA	2.00
Chloride		5	6	7	8	0.00	NA	2.00
		1	2	3	4	1408111-BLK1	NA	
	0.00	0.00	0.00					
Sulfate as SO4		5	6	7	8	0.00	NA	0.10
		1	2	3	4	1408111-BLK1	NA	
	0.00	0.00	0.00				27.4	
Nitrate/Nitrite as N		5	6	7	8	0.00	NA	5.00
]		

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Diss. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140809

Analytical Sequence: 1410008 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	Method Blank (Batch II	PQL		
		1	2	3	4	1410001-BLK1	NA	
	2.12	2.18	1.79					50.00
Aluminum		5	6	7	8	2.40	NA	
		1	2	3	4	1410001-BLK1	NA	
	6.64	11.44	28.95		•			1
Iron		5	6	7	8	19.29	NA	250.0
		1	2	3	4	1410001-BLK1	NA	
	0.09	0.27	0.66		-			
Manganese		5	6	7	8	-0.03	NA	5.00
	1.18	1	2	3	4	1410001-BLK1	NA	1
7:	1.10	0.57	2.99			-0.19	NA	20.00
Zinc		5 6 7 8	INA	20.00				

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140809

Analytical Sequence: 1410009 **Total Recoverable** Concentration Units: <u>ug/L</u>

Initial Calibration Blank (1 & 2)	Continuing Calibration Blanks					PQL	
	1	2	3	4	1409140-BLK1	NA	
2.12	2.18	1.79	2.70	3.69		27.4	50.00
	5	6	7	8	2.55	NA	50.00
	1	2	3	4	1409140-BLK1	NA	
6.64	11.44	28.95	26.30	-14.38			
	5	6	7	8	-13.83	NA	250.0
+	1	2	3	4	1409140-BLK1	NA	
0.09	0.27	0.66	0.59	-			
	5	6	7	8	0.17	NA	5.00
1 10	3	4	1409140-BLK1	NA			
1.18	0.57	2.99	0.35	1.59]	NIA	20.00
	5	6	7	8	2.22	INA	20.0
	2.12 6.64	Blank (1 & 2) 2.12 2.18 5 6.64 1 11.44 5 0.09 1 0.27 5 1.18 0.57	Continuing Call	1 2 3 2.12 5 6 7 7 2.70 5 6 7 7 2.70 5 6 7 7 2.70 1 2 3 3	Continuing Calibration Blanks 2.12 1 2 3 4	Continuing Calibration Blanks Chatch	Continuing Calibration Blanks (Batch ID)

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: <u>ICPMS Diss. Metals</u>

Instrument: ICPMS-PE DRC-II Work Order: Nu C140809

Analytical Sequence: 1410014 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	Ó	Continuing Cali	bration Blank	Methoo Blank (Batch II	PQL		
		1	2	3	4	1410002-BLK1	NA	
	0.03	0.01	0.00					
Nickel		5	6	7	8	-0.02	NA	1.00
		1	2	3		1410002-BLK1	NA	
	0.03			3	4	1410002-BLK1	INA	1
Copper		0.00	-0.03 6	7	8	-0.08	NA	1.00
		5	0	/	<u> </u>	1		
		1	2	3	4	1410002-BLK1	NA	
	0.15	0.13	0.07				27.1	
Arsenic		5	6	7	8	0.22	NA	2.00
			2	2		1410002 DI K1	NIA	
	0.01	1	2	3	4	1410002-BLK1	NA	1
Cadmium		0.02	0.00			-0.01	NA	0.20
Caumum		5	6	7	8	-0.01	1111	0.20
		1	2	3	4	1410002-BLK1	NA	
	0.01	0.01	0.01				27.]
Lead		5	6	0.01 NA	NA	0.20		

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C140809

Analytical Sequence: 1410015 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	Continuing Calibration Blanks				Met Bla (Bate	PQL	
		1	2	3	4	NA	1409140-BLK2	
	0.00	0.01	-0.02					
Nickel		5	6	7	8	NA	-0.03	1.00
		1	2	3	4	NA	1409140-BLK2	
	-0.04	-0.04	-0.07					
Copper	5 6 7 8 NA	-0.15	1.00					
		1	2	3	4	NA	1409140-BLK2	
	0.12	0.07	0.09				0.14	2.00
Arsenic		5	6	7	8	NA	-0.14	2.00
		1	2	3	4	NA	1409140-BLK2	
	0.01	0.00	0.00					0.20
Cadmium		5	6	7	8	NA	0.00	0.20
						N/A	1400140 DI VO	
	0.04	1	2	3	4	NA	1409140-BLK2	
Lead		0.03	0.01			NA	-0.01	0.20
2000		5	6	7	8	± 11. ±		

Project Name: Barker-Hughesville_Treatability 2_AUG 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Mettler AT Method: EPA 310.1 Analysis Name: WC - Alkalinity

Sequence: 1408117 Work Order: C140809 Units: mg CaCO3 / L

Total	Initial (ICV1, ICV2)			Continuing Calibration Verification Standards (CCVs)									
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R	
					1			2			3		
				100	98.2	98.2	100	98.3	98.3				
Total Alkalinity					4			5			6		
Total Mikalility													
					7			8			9		

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, \ Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, \ CCV = 80 - 120\% R.$

Project Name: Barker-Hughesville_Treatability 2_AUG 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Lachat 8500 Method: EPA 350.1 Analysis Name: WC - Ammonia

Sequence: 1408133 Work Order: C140809 Units: mg/L

Total Analyte	Initial (ICV1, ICV2)			Continuing Calibration Verification Standards (CCVs)								
	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
Ammonia as N					1			2			3	
				1.00	1.00	100.0	1.00	1.00	100.0	1.00	1.01	101.0
					4			5			6	
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

Project Name:

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ESAT Dionex IC Method: EPA 300.0 Analysis Name: WC - Anions by Ion Chromatography 2013

Sequence: 1409002 Work Order: C140809 Units: mg/L

Dissolved Analyte	Initial (ICV1, ICV2)			Continuing Calibration Verification Standards (CCVs)									
	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R	
Chloride	40.0	38.4	96.0		1			2			3		
				40.0	40.9	102.3	40.0	40.9	102.3				
					4			5			6		
					7			8			9		
					1			2			3		
Fluoride	4.00	3.7	92.5	4.00	4.1	102.5	4.00	4.0	100.0				
				4.00	4	102.3	4.00	5	100.0		6		
					7			8			9		
Nitrate/Nitrite as N	20.0	19.7	98.5		1			2			3		
				20.0	21.0	105.0	20.0	20.9	104.5				
		221. 2010		4			5			6			
					7			8			9		
Sulfate as SO4	100	94.8	94.8		1			2			3		
				100	105	105.0	100	102	102.0				
					4			5			6		
					7			8			9		
											· · · · · · · · · · · · · · · · · · ·		

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Diss. Metals

Sequence: 1410008 Work Order: C140809 Units: ug/L

Dissolved	Initi	al (ICV1, l	(CV2)		Conti	nuing C	alibration	Verificati	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	12140	07.1	12500	12260	98.1	12500	12570	100.6			
Aluminum	12500	12140	97.1		4			5			6	
					7			8			9	
					1			2			3	
				12500	12280	98.2	12500	12590	100.7			
Iron	12500	12280	98.2		4			5			6	
iioii -												
					7			8			9	
					1			2			3	
	1000	1007	100.7	1000	1008	100.8	1000	1016	101.6			
Manganese	1000	1007	100.7		4			5			6	
					7			8			9	
					1			2			3	
	2500	2541	101.6	2500	2532	101.3	2500	2567	102.7			
Zinc	2300	2341	101.0		4			5			6	
					7			8			9	
					· · · · · · · · · · · · · · · · · · ·							

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Sequence: 1410009 Work Order: C140809 Units: ug/L

Total Recoverable	Initi	al (ICV1, l	(CV2)		Conti	inuing Ca	alibration	Verification	on Stand	ards (CC	Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	12140	07.1	12500	12260	98.1	12500	12570	100.6	12500	12450	99.6
Aluminum	12500	12140	97.1		4			5			6	
Alummum				12500	12490	99.9						
					7			8			9	
					1			2			3	
	12500	12200	00.2	12500	12280	98.2	12500	12590	100.7	12500	12520	100.2
Iron	12500	12280	98.2		4			5			6	
non				12500	12490	99.9						
					7			8			9	
					1			2			3	
	1000	1007	100.7	1000	1008	100.8	1000	1016	101.6	1000	1012	101.2
Manganese	1000	1007	100.7		4			5			6	
ivianganese				1000	1019	101.9						
					7			8			9	
					1			2			3	
	2500	2541	101.6	2500	2532	101.3	2500	2567	102.7	2500	2547	101.9
Zinc	2500	2541	101.6		4			5			6	
Zinc				2500	2573	102.9						
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Diss. Metals

Sequence: 1410014 Work Order: C140809 Units: ug/L

Dissolved	Init	ial (ICV1,	ICV2)		Cont	inuing C	alibration	Verificati	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
			101.1	50.0	49.7	99.4	50.0	49.5	99.0			
Arsenic	50.0	50.7	101.4		4			5			6	
					7			8			9	
					/			8			9	
					1			2			3	
	50.0	49.7	99.4	50.0	49.3	98.6	50.0	51.4	102.8			
Cadmium	30.0	49.7	99.4		4			5			6	
					7			8			9	
					1			2			3	
	50.0	40.6	07.2	50.0	44.9	89.8	50.0	45.0	90.0			
Copper	50.0	48.6	97.2		4			5			6	
					7			8			9	
								-			<u> </u>	
					1			2			3	
	50.0	40.6	07.0	50.0	49.7	99.4	50.0	50.2	100.4			
Lead	50.0	48.6	97.2		4			5			6	
					7			8			9	
					·							
					1			2			3	
	50.0	47.7	95.4	50.0	45.1	90.2	50.0	46.8	93.6			
Nickel	30.0	7/./)J. †		4			5			6	
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1410015 Work Order: C140809 Units: ug/L

Total Recoverable	Initi	ial (ICV1, l	(CV2)		Cont	inuing Ca	alibration	Verificati	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				50.0	49.07	98.1	50.0	46.22	92.4			
Arsenic	50.0	49.05	98.1		4			5			6	
					7			8			9	
					1			2			3	
	50.0	10.62	07.2	50.0	49.81	99.6	50.0	50.00	100.0			
Cadmium	50.0	48.63	97.3		4			5			6	
					7			8			9	
					7			0			,	
					1			2			3	
	50.0	40.00	07.0	50.0	50.07	100.1	50.0	46.34	92.7			
Copper	50.0	48.88	97.8		4			5			6	
					7			8			9	
					,							
					1			2			3	
	50.0	49.70	99.4	50.0	48.58	97.2	50.0	44.85	89.7			
Lead	30.0	49.70	99.4		4			5			6	
					7			8			9	
					7			0			,	
-					1			2			3	
	50.0	48.68	97.4	50.0	49.88	99.8	50.0	48.42	96.8			
Nickel					4			5			6	
					7			8			9	
										_		

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPMS-PE DRC-II

Analyte		<u>C</u>	heck Sample	Result*	<u>Units</u>	<u>True</u>	<u>%R</u>	<u>PQL</u>
Sequence:	1410014	Analysis:	ICPMS Diss. Metals					
Arsenic			IFA1	0.1	ug/L			2.00
			IFB1	20.3	ug/L	20	102	2.00
Cadmium			IFA1	0.1	ug/L			0.200
			IFB1	20.4	ug/L	20	102	0.200
Copper			IFA1	0.4	ug/L			1.00
			IFB1	17.7	ug/L	20	88	1.00
Lead			IFA1	0.0	ug/L			0.200
			IFB1	0.0	ug/L			0.200
Nickel			IFA1	-0.3	ug/L			1.00
			IFB1	17.1	ug/L	20	86	1.00
		Γrue Value or ∃ analyte list and	•					
Sequence:	1410015	Analysis:	ICPMS Tot. Rec. Met	als				
Arsenic			IFA1	0.0	ug/L			2.00
			IFB1	18.6	ug/L	20	93	2.00

Sequence:	1410015	Analysis:	ICPMS Tot. Rec. M	1 etals				
Arsenic			IFA1	0.0	ug/L			2.00
			IFB1	18.6	ug/L	20	93	2.00
Cadmium			IFA1	0.2	ug/L			0.200
			IFB1	19.8	ug/L	20	99	0.200
Copper			IFA1	0.5	ug/L			1.00
			IFB1	18.8	ug/L	20	94	1.00
Lead			IFA1	0.0	ug/L			0.200
			IFB1	0.0	ug/L			0.200
Nickel			IFA1	-0.2	ug/L			1.00
			IFB1	18.5	ug/L	20	92	1.00

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

Certificate of Analysis

TDF #:

A-046

TechLaw, Inc ESAT Region 8
ICP Interference Check Sample
ICPOF - PF Ontime

Analyte		<u>C</u>	heck Sample	Result*	<u>Units</u>	<u>True</u>	<u>%R</u>	<u>PQL</u>
Sequence:	1410008	Analysis:	ICPOE Diss. Metals					
Aluminum			IFA1	59,822.0	ug/L	60,000	100	50.0
			IFB1	58,594.8	ug/L	60,000	98	50.0
Iron			IFA1	233,950.4	ug/L	250,000	94	250
			IFB1	230,762.6	ug/L	250,000	92	250
Manganese			IFA1	-0.3	ug/L			5.00
			IFB1	193.1	ug/L	200	97	5.00
Zinc			IFA1	2.8	ug/L			20.0
			IFB1	286.7	ug/L	300	96	20.0
*Criteria = 80	0-120%R of T	rue Value or +	-/- PQL					
See raw data	for complete a	analyte list and	l results.					

Sequence:	1410009	Analysis:	ICPOE Tot. Rec	c. Metals				
Aluminum			IFA1	59,822.0	ug/L	60,000	100	50.0
			IFB1	58,594.8	ug/L	60,000	98	50.0
Iron			IFA1	233,950.4	ug/L	250,000	94	250
			IFB1	230,762.6	ug/L	250,000	92	250
Manganese			IFA1	-0.3	ug/L			5.00
			IFB1	193.1	ug/L	200	97	5.00
Zinc			IFA1	2.8	ug/L			20.0
			IFB1	286.7	ug/L	300	96	20.0

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPMS-PE DRC-II

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1410014

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Arsenic	2.00	2.07	103	ug/L
Cadmium	0.200	0.214	107	ug/L
Copper	1.00	0.942	94	ug/L
Lead	0.200	0.157	79	ug/L
Nickel	1.00	0.983	98	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1410008

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	95.73	96	ug/L
Iron	100	103.0	103	ug/L
Manganese	10.0	9.989	100	ug/L
Zinc	50.0	52.38	105	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

Project Name: Barker-Hughesville_Treatability 2_AUG 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard Lachat 8500

Classical Chemistry by EPA/ASTM/APHA Methods

Sequence: 1408133

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Ammonia as N	0.0250	0.0230	92	mg/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8
Detection Limit (PQL) Standard
ICPMS-PE DRC-II

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1410015

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Arsenic	2.00	2.270	113	ug/L
Cadmium	0.200	0.1910	96	ug/L
Copper	1.00	0.9230	92	ug/L
Lead	0.200	0.2310	116	ug/L
Nickel	1.00	0.9571	96	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1410009

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	95.73	96	ug/L
Iron	100	103.0	103	ug/L
Manganese	10.0	9.989	100	ug/L
Zinc	50.0	52.38	105	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 310.1 **Total Sequence ID#:** 1408117

Instrument ID #: Mettler A	T Wate	r	LSR #: A-046	
Analysis ID	Sample Name	Analysis Date	Analysis Time	
1408112-SRM1	Reference	08/25/14	15:16	
1408112-BLK1	Blank	08/25/14	15:16	
C140809-03	14BH-DT-PILOT-BCR1-08191	08/25/14	15:16	
1408112-DUP1	Duplicate	08/25/14	15:16	
C140809-07	14BH-DT-PILOT-BCR2-08191	08/25/14	15:16	
C140809-11	14BH-DT-PILOT-BCR3-08191	08/25/14	15:16	
C140809-15	14BH-DT-PILOT-BCR3D-0819	08/25/14	15:16	
C140809-19	14BH-DT-PILOT-BCR4-08191	08/25/14	15:16	
C140809-23	14BH-DT-PILOT-CHIT-081914	08/25/14	15:16	
C140809-26	14BH-DT-PILOT-INFL-081914	08/25/14	15:16	
1408117-CCV1	Calibration Check	08/25/14	15:16	
1408117-CCB1	Calibration Blank	08/25/14	15:16	
C140809-29	14BH-DT-PILOT-NAOH-0819	08/25/14	15:16	
C140809-32	14BH-DT-PILOT-POSTE-0819	08/25/14	15:16	
C140809-36	14BH-DT-PILOT-POSTI-08191	08/25/14	15:16	
C140809-40	14BH-DT-PILOT-SAPS-081914	08/25/14	15:16	
1408112-DUP2	Duplicate	08/25/14	15:16	
1408117-CCV2	Calibration Check	08/25/14	15:16	
1408117-CCB2	Calibration Blank	08/25/14	15:16	

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 350.1 **Total Sequence ID#:** 1408133

Instrument ID #: Lacha	t 8500 Wate	Water					
Analysis ID	Sample Name	Analysis Date	Analysis Time				
1408127-SRM1	Reference	08/27/14	15:23				
1408127-BLK1	Blank	08/27/14	15:23				
1408127-BS1	Blank Spike	08/27/14	15:23				
1408133-CRL1	Instrument RL Check	08/27/14	15:23				
1408127-DUP1	Duplicate	08/27/14	15:23				
1408127-MS1	Matrix Spike	08/27/14	15:23				
1408133-CCV1	Calibration Check	08/27/14	15:23				
1408133-CCB1	Calibration Blank	08/27/14	15:23				
C140809-04	14BH-DT-PILOT-BCR1-08191	08/27/14	15:23				
1408133-CCV2	Calibration Check	08/27/14	15:23				
1408133-CCB2	Calibration Blank	08/27/14	15:23				
C140809-12	14BH-DT-PILOT-BCR3-08191	08/27/14	15:23				
C140809-16	14BH-DT-PILOT-BCR3D-0819	08/27/14	15:23				
C140809-33	14BH-DT-PILOT-POSTE-0819	08/27/14	15:23				
C140809-37	14BH-DT-PILOT-POSTI-08191	08/27/14	15:23				
C140809-08	14BH-DT-PILOT-BCR2-08191	08/27/14	15:23				
C140809-20	14BH-DT-PILOT-BCR4-08191	08/27/14	15:23				
1408127-DUP2	Duplicate	08/27/14	15:23				
1408127-MS2	Matrix Spike	08/27/14	15:23				
1408133-CCV3	Calibration Check	08/27/14	15:23				
1408133-CCB3	Calibration Blank	08/27/14	15:23				

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 300.0 **Dissolved Sequence ID#:** 1409002

Instrument ID #: ESAT	Dionex IC Water	r	LSR #: A-046		
Analysis ID	Sample Name	Analysis Date	Analysis Time		
1409002-ICV1	Initial Cal Check	08/28/14	19:07		
1409002-ICB1	Initial Cal Blank	08/28/14	19:26		
1409002-SCV1	Secondary Cal Check	08/28/14	19:45		
1409002-IBL1	Instrument Blank	08/28/14	20:04		
1408111-BS1	Blank Spike	08/28/14	20:23		
1408111-BLK1	Blank	08/28/14	20:41		
C140809-03	14BH-DT-PILOT-BCR1-08191	08/28/14	21:00		
1408111-DUP1	Duplicate	08/28/14	21:19		
1408111-MS1	Matrix Spike	08/28/14	21:38		
C140809-07	14BH-DT-PILOT-BCR2-08191	08/28/14	21:57		
C140809-11	14BH-DT-PILOT-BCR3-08191	08/28/14	22:16		
C140809-15	14BH-DT-PILOT-BCR3D-0819	08/28/14	22:34		
1409002-CCV1	Calibration Check	08/28/14	22:53		
1409002-CCB1	Calibration Blank	08/28/14	23:12		
C140809-19	14BH-DT-PILOT-BCR4-08191	08/28/14	23:31		
C140809-23	14BH-DT-PILOT-CHIT-081914	08/28/14	23:50		
C140809-26	14BH-DT-PILOT-INFL-081914	08/29/14	00:09		
C140809-29	14BH-DT-PILOT-NAOH-0819	08/29/14	00:27		
C140809-32	14BH-DT-PILOT-POSTE-0819	08/29/14	00:46		
C140809-36	14BH-DT-PILOT-POSTI-08191	08/29/14	01:05		
C140809-40	14BH-DT-PILOT-SAPS-081914	08/29/14	01:24		
1408111-MS2	Matrix Spike	08/29/14	01:43		
1409002-CCV2	Calibration Check	08/29/14	02:02		
1409002-CCB2	Calibration Blank	08/29/14	02:39		

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Dissolved Sequence ID#:** 1410008

Instrument ID #: ICPO	E - PE Optima Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1410008-ICV1	Initial Cal Check	10/01/14	10:27
1410008-SCV1	Secondary Cal Check	10/01/14	10:30
1410008-ICB1	Initial Cal Blank	10/01/14	10:33
1410008-CRL1	Instrument RL Check	10/01/14	10:36
1410008-IFA1	Interference Check A	10/01/14	10:39
1410008-IFB1	Interference Check B	10/01/14	10:43
1410001-BLK1	Blank	10/01/14	10:47
1410001-BS1	Blank Spike	10/01/14	10:50
C140809-02	14BH-DT-PILOT-BCR1-08191	10/01/14	10:53
1410001-DUP1	Duplicate	10/01/14	10:56
1410008-SRD1	Serial Dilution	10/01/14	10:59
1410001-MS1	Matrix Spike	10/01/14	11:03
C140809-06	14BH-DT-PILOT-BCR2-08191	10/01/14	11:06
1410001-MS2	Matrix Spike	10/01/14	11:09
C140809-10	14BH-DT-PILOT-BCR3-08191	10/01/14	11:12
1410008-CCV1	Calibration Check	10/01/14	11:18
1410008-CCB1	Calibration Blank	10/01/14	11:21
C140809-14	14BH-DT-PILOT-BCR3D-0819	10/01/14	11:24
C140809-18	14BH-DT-PILOT-BCR4-08191	10/01/14	11:27
C140809-22	14BH-DT-PILOT-CHIT-081914	10/01/14	11:31
C140809-25	14BH-DT-PILOT-INFL-081914	10/01/14	11:34
C140809-28	14BH-DT-PILOT-NAOH-0819	10/01/14	11:37
C140809-31	14BH-DT-PILOT-POSTE-0819	10/01/14	11:40
C140809-35	14BH-DT-PILOT-POSTI-08191	10/01/14	11:43
C140809-39	14BH-DT-PILOT-SAPS-081914	10/01/14	11:46
1410008-CCV2	Calibration Check	10/01/14	11:52
1410008-CCB2	Calibration Blank	10/01/14	11:55

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Total Recoverable Sequence ID#:** 1410009

nstrument ID #: ICPOI Analysis ID	E - PE Optima Water Sample Name	Analysis Date	LSR #: A-046 Analysis Time		
1410009-ICV1	Initial Cal Check	10/01/14	10:27		
1410009-SCV1	Secondary Cal Check	10/01/14	10:30		
1410009-ICB1	Initial Cal Blank	10/01/14	10:33		
1410009-ICB1	Instrument RL Check	10/01/14	10:36		
1410009-ERE1	Interference Check A	10/01/14	10:39		
1410009-IFB1	Interference Check B	10/01/14	10:43		
1410009-ICCV1	Calibration Check	10/01/14	11:18		
1410009-CCB1	Calibration Blank	10/01/14	11:21		
1410009-CCV2	Calibration Check	10/01/14	11:52		
1410009-CCB2	Calibration Blank	10/01/14	11:55		
1409140-BLK1	Blank	10/01/14	12:01		
1409140-SRM1	Reference	10/01/14	12:05		
C140809-01	14BH-DT-PILOT-BCR1-08191	10/01/14	12:08		
1409140-DUP1	Duplicate	10/01/14	12:11		
1410009-SRD1	Serial Dilution	10/01/14	12:14		
C140809-05	14BH-DT-PILOT-BCR2-08191	10/01/14	12:17		
1409140-MS1	Matrix Spike	10/01/14	12:20		
C140809-09	14BH-DT-PILOT-BCR3-08191	10/01/14	12:23		
1409140-MS3	Matrix Spike	10/01/14	12:26		
1410009-CCV3	Calibration Check	10/01/14	12:33		
1410009-CCB3	Calibration Blank	10/01/14	12:36		
C140809-13	14BH-DT-PILOT-BCR3D-0819	10/01/14	12:39		
C140809-17	14BH-DT-PILOT-BCR4-08191	10/01/14	12:42		
C140809-21	14BH-DT-PILOT-CHIT-081914	10/01/14	12:45		
C140809-24	14BH-DT-PILOT-INFL-081914	10/01/14	12:48		
C140809-27	14BH-DT-PILOT-NAOH-0819	10/01/14	12:51		
C140809-30	14BH-DT-PILOT-POSTE-0819	10/01/14	12:54		
C140809-34	14BH-DT-PILOT-POSTI-08191	10/01/14	12:58		
C140809-38	14BH-DT-PILOT-SAPS-081914	10/01/14	13:00		
1410009-CCV4	Calibration Check	10/01/14	13:07		
1410009-CCB4	Calibration Blank	10/01/14	13:10		

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Dissolved Sequence ID#:** 1410014

Instrument ID #: ICPM	S-PE DRC-II Water	r	LSR #: A-046		
Analysis ID	Sample Name	Analysis Date	Analysis Time		
1410014-ICV1	Initial Cal Check	10/01/14	11:47		
1410014-SCV1	Secondary Cal Check	10/01/14	11:50		
1410014-ICB1	Initial Cal Blank	10/01/14	11:53		
1410014-CRL1	Instrument RL Check	10/01/14	11:57		
1410014-IFA1	Interference Check A	10/01/14	12:00		
1410014-IFB1	Interference Check B	10/01/14	12:03		
1410002-BLK1	Blank	10/01/14	12:06		
1410002-BS1	Blank Spike	10/01/14	12:09		
C140809-02	14BH-DT-PILOT-BCR1-08191	10/01/14	12:13		
1410002-DUP1	Duplicate	10/01/14	12:16		
1410014-SRD1	Serial Dilution	10/01/14	12:19		
1410002-MS1	Matrix Spike	10/01/14	12:22		
C140809-06	14BH-DT-PILOT-BCR2-08191	10/01/14	12:25		
1410002-MS2	Matrix Spike	10/01/14	12:28		
C140809-10	14BH-DT-PILOT-BCR3-08191	10/01/14	12:31		
1410014-CCV1	Calibration Check	10/01/14	13:00		
1410014-CCB1	Calibration Blank	10/01/14	13:03		
C140809-14	14BH-DT-PILOT-BCR3D-0819	10/01/14	13:06		
C140809-18	14BH-DT-PILOT-BCR4-08191	10/01/14	13:09		
C140809-22	14BH-DT-PILOT-CHIT-081914	10/01/14	13:12		
C140809-25	14BH-DT-PILOT-INFL-081914	10/01/14	13:15		
C140809-28	14BH-DT-PILOT-NAOH-0819	10/01/14	13:19		
C140809-31	14BH-DT-PILOT-POSTE-0819	10/01/14	13:22		
C140809-35	14BH-DT-PILOT-POSTI-08191	10/01/14	13:25		
C140809-39	14BH-DT-PILOT-SAPS-081914	10/01/14	13:28		
1410014-CCV2	Calibration Check	10/01/14	14:57		
1410014-CCB2	Calibration Blank	10/01/14	15:00		

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Total Recoverable Sequence ID#:** 1410015

Instrument ID #: ICPM	S-PE DRC-II Wate	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1410015-ICV1	Initial Cal Check	10/02/14	10:11
1410015-SCV1	Secondary Cal Check	10/02/14	10:15
1410015-ICB1	Initial Cal Blank	10/02/14	10:18
1410015-CRL1	Instrument RL Check	10/02/14	10:21
1410015-IFA1	Interference Check A	10/02/14	10:24
1410015-IFB1	Interference Check B	10/02/14	10:28
1409140-BLK2	Blank	10/02/14	10:31
1409140-SRM2	Reference	10/02/14	10:34
C140809-01	14BH-DT-PILOT-BCR1-08191	10/02/14	10:37
1409140-DUP2	Duplicate	10/02/14	10:40
1410015-SRD1	Serial Dilution	10/02/14	10:43
C140809-05	14BH-DT-PILOT-BCR2-08191	10/02/14	10:46
1409140-MS2	Matrix Spike	10/02/14	10:49
C140809-09	14BH-DT-PILOT-BCR3-08191	10/02/14	10:52
1409140-MS4	Matrix Spike	10/02/14	10:55
1410015-CCV1	Calibration Check	10/02/14	11:02
1410015-CCB1	Calibration Blank	10/02/14	11:05
C140809-13	14BH-DT-PILOT-BCR3D-0819	10/02/14	11:08
C140809-17	14BH-DT-PILOT-BCR4-08191	10/02/14	11:11
C140809-21	14BH-DT-PILOT-CHIT-081914	10/02/14	11:14
C140809-24	14BH-DT-PILOT-INFL-081914	10/02/14	11:17
C140809-27	14BH-DT-PILOT-NAOH-0819	10/02/14	11:20
C140809-30	14BH-DT-PILOT-POSTE-0819	10/02/14	11:23
C140809-34	14BH-DT-PILOT-POSTI-08191	10/02/14	11:26
C140809-38	14BH-DT-PILOT-SAPS-081914	10/02/14	11:29
1410015-CCV2	Calibration Check	10/02/14	11:36
1410015-CCB2	Calibration Blank	10/02/14	11:39

CHAIN OF CUSTODY RECORD

CDM Smith			Danny	T Pilot Test								Ana	lysis						
NOTES: Limited sample volumes due to treatability testing Contact: Angela Franden, CDM Smith (406)441-1400						200.7 or 200.8	AL), 200.7 or 200.8	ulfate, chloride,	onia										Other Instructions and Notes
SAMPLE NUMBER	DATE	TIME	MATRIX	Preservative	Type & No. of Containers	Total Metals (TAL), 2	Dissolved Metals (TAL),	Alkalinity, Anions (sulfate, fluoride)	Nitrate+Nitrite, Ammonia										
14BH-DT-PILOT-INFL-081914	8/19/14	9:40	aqueous		3, 125 mL poly	Х	Х	Х										\top	
14BH-DT-PILOT-SAPS-081914	8/19/14	9:50	aqueous		3, 125 mL poly	Х	Х	х											1
14BH-DT-PILOT-CHIT-081914	8/19/14	10:05	aqueous		3, 125 mL poly	Х	Х	х											
14BH-DT-PILOT-NAOH-081914	8/19/14	10:15	aqueous		3, 125 mL poly	Х	Х	х											
14BH-DT-PILOT-BCR1-081914	8/19/14	10:30	aqueous	HNO3	4, 125 mL poly	Х	Х	х	х										
14BH-DT-PILOT-BCR2-081914	8/19/14	10:45	aqueous	(metals), H2SO4	4, 125 mL poly	х	Х	х	х										
14BH-DT-PILOT-BCR3-081914	8/19/14	11:00	aqueous	(nutrients), cool	4, 125 mL poly	Х	Х	х	х					\Box					
14BH-DT-PILOT-BCR3D-081914	8/19/14	11:10	aqueous		4, 125 mL poly	Х	Х	х	х										TAL
14BH-DT-PILOT-BCR4-081914	8/19/14	11:25	aqueous		4, 125 mL poly	х	Х	х	х									_	TAL metals = Al, As, Ba, Be, Cd, C Cr, Co, Cu, Fe, Pb, Mg, Mn, Ni, K,
14BH-DT-PILOT-POSTI-081914	8/19/14	11:40	aqueous		4, 125 mL poly	х	Х	х	х										Na, Tl, Zn.
14BH-DT-PILOT-POSTE-081914	8/19/14	12:00	aqueous		4, 125 mL poly	х	х	х	х										
					3														
Relinquished by: (Signature)	Date/Time	14 . 1.	Received for	Laboratory by	(Signatura) 9/31/	16													
Rayun Holland	08/20/	14	Kels	Laboratory by:	(Signature) 8/21/1 W 10:00	7													
Received by: (Signature)	Date/Time		Airbill No.(s)					Carrie	r Nam	e: Fed	ΙΕx		Lab:	USEPA	Lab Reg	ion 8			

0140809

Site ID: 085N

ESAT Technical Direction Form

Contract No. EPW13028 EPA Region 8

Date

Closed By:

Date Issued: 5/29/2014

TDF ID.	: A-046		Date Up	odated;		Closed By:
	Superfund site during the 201 associated with Anton/Erin L	or shall analyze e as indicated in l4 field season h this project a Louden of CDM	several water san the Analytical starting in midyveraging approxist Smith.	Information Sec June though earl imately 10 samp	tion. The samples will ly October 2014. There les per an event. The s	dy at the Barker-Hughesville be sent to the ESAT R8 Lab will be 9 sampling events amples will be collected by Nick
						entrations and should be reported from the 200,7 analyses.
	CDM Sm 50 West Helena, N 406-441-	nith/Lauren Ho 14th Street, Sui MT 59601		wing address:		
		k 02b: Inorga oger Hoogerhe				
MATRE	al Information <u>K</u> r □ Soils □		□ Biota			
WET CH	HEM IDS IDS	OC ☑ Alk ☑	Chloride ☑ S	ulfate ☑ Fluori 03 as NO2-NO3	de ☑ Nitrate ☑ Nitrit combined.	e
200.7: [olved ☑ Total ☐ Ag ☑ Al ☑ Mn ☐ Mo ☐ Ag ☐ Al ☐ Se ☐ Th	□ As □ Ba □ Na □ Ni □ As □ Ba □ Tl □ U	□ Pb □ Sb	□ C2 □ Cd □ Se □ Sr □ Co □ Cr	Co Cr Cu E	ℤ Zn □ SiO2
7470/747	71/747 □ H	£			10/01/14	
<u>FIBERS</u> □ PLM	□ TEM				•	
		verable package	Description to Task Monite	or no later than	Due Date	Submission Date

ANALYTICAL SUMMARY REPORT

September 18, 2014

CDM Federal Programs 555 17th St Ste 1100 Denver, CO 80202

Work Order: H14090029 Quote ID: H823 - Baker-Hughsville Superfund Site

Project Name: Barker Hughsville - Danny T

Energy Laboratories Inc Helena MT received the following 11 samples for CDM Federal Programs on 9/3/2014 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
H14090029-001	14BH-DT-PILOT-INFL- 090214	09/02/14 10:	10 09/03/14	Aqueous	Acidity, Total as CaCO3 Phosphorus, Orthophosphate as P
H14090029-002	14BH-DT-PILOT-INFLD- 090214	09/02/14 10:	15 09/03/14	Aqueous	Same As Above
H14090029-003	14BH-DT-PILOT-SAPS- 090214	09/02/14 10:	25 09/03/14	Aqueous	Same As Above
H14090029-004	14BH-DT-PILOT-CHTT- 090214	09/02/14 10:	35 09/03/14	Aqueous	Same As Above
H14090029-005	14BH-DT-PILOT-NAOH- 090214	09/02/14 10:	45 09/03/14	Aqueous	Same As Above
H14090029-006	14BH-DT-PILOT-BCR1- 090214	09/02/14 10:	55 09/03/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Phosphorus, Orthophosphate as P Sulfide, Methylene Blue Colorimetric
H14090029-007	14BH-DT-BCR2-090214	09/02/14 11:	10 09/03/14	Aqueous	Same As Above
H14090029-008	14BH-DT-BCR3-090214	09/02/14 11:	25 09/03/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Phosphorus, Orthophosphate as P Sulfide, Iodine Titrimetric
H14090029-009	14BH-DT-BCR4-090214	09/02/14 11:	35 09/03/14	Aqueous	Same As Above
H14090029-010	14BH-DT-POST1-090214	09/02/14 11:	50 09/03/14	Aqueous	Same As Above
H14090029-011	14BH-DT-PILOT-POSTE- 090214	09/02/14 12:	05 09/03/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Phosphorus, Orthophosphate as P Sulfide, Methylene Blue Colorimetric

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Report Date: 09/18/14

CLIENT: CDM Federal Programs

Project: Barker Hughsville - Danny T

Work Order: H14090029 CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090029-001

Client Sample ID: 14BH-DT-PILOT-INFL-090214

Report Date: 09/18/14 **Collection Date:** 09/02/14 10:10

Matrix: Aqueous

DateReceived: 09/03/14

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	600 mg/L	D	4.0	A2310 B	09/12/14 10:00 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	0.399 mg/L		0.005	E365.1	09/03/14 15:55 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090029-002

Client Sample ID: 14BH-DT-PILOT-INFLD-090214

Report Date: 09/18/14 **Collection Date:** 09/02/14 10:15

DateReceived: 09/03/14 **Matrix:** Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS					
Acidity, Total as CaCO3	570 mg/L	D	4.0	A2310 B	09/12/14 10:11 / SRW
NUTRIENTS					
Phosphorus, Orthophosphate as P	0.05 mg/L	D	0.01	E365.1	09/04/14 08:40 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090029-003

Client Sample ID: 14BH-DT-PILOT-SAPS-090214

Report Date: 09/18/14 **Collection Date:** 09/02/14 10:25

DateReceived: 09/03/14

Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	280 mg/L	D	4.0	A2310 B	09/12/14 10:14 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	0.049 mg/L		0.005	E365.1	09/04/14 08:41 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090029-004 **Client Sample ID:** 14BH-DT-PILOT-CHTT-090214

Report Date: 09/18/14 **Collection Date:** 09/02/14 10:35 **DateReceived:** 09/03/14

Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	58 mg/L	D	4.0	A2310 B	09/12/14 10:19 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	0.066 mg/L		0.005	E365.1	09/04/14 08:45 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090029-005

Client Sample ID: 14BH-DT-PILOT-NAOH-090214

Report Date: 09/18/14 **Collection Date:** 09/02/14 10:45

DateReceived: 09/03/14 **Matrix:** Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	120 mg/L	D	4.0	A2310 B	09/12/14 10:22 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	ND mg/L		0.005	E365.1	09/04/14 08:46 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T
Lab ID: H14090029-006

Lab ID: H14090029-006 **Client Sample ID:** 14BH-DT-PILOT-BCR1-090214

Report Date: 09/18/14 **Collection Date:** 09/02/14 10:55

DateReceived: 09/03/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	09/12/14 10:27 / SRW
Sulfide	7.4	mg/L	D	0.2		A4500-S D	09/05/14 15:20 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD) No BOD dilution depleted greater than 2.0 mg/L DO.	<40	mg/L		40		A5210 B	09/03/14 17:04 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	6.36	mg/L	D	0.02		E365.1	09/04/14 08:47 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T
Lab ID: H14090029-007

Client Sample ID: 14BH-DT-BCR2-090214

Collection Date: 09/02/14 11:10
DateReceived: 09/03/14
Matrix: Aqueous

Report Date: 09/18/14

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	30	mg/L	D	4.0		A2310 B	09/12/14 10:31 / SRW
Sulfide	16.4	mg/L	D	0.4		A4500-S D	09/05/14 15:20 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD) No BOD dilution depleted greater than 2.0 mg/L DO.	<40	mg/L		40		A5210 B	09/03/14 17:11 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	2.28	mg/L	D	0.01		E365.1	09/04/14 08:48 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090029-008 **Client Sample ID:** 14BH-DT-BCR3-090214

Report Date: 09/18/14 **Collection Date:** 09/02/14 11:25 **DateReceived:** 09/03/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	09/12/14 10:36 / SRW
Sulfide	46	mg/L		1		A4500-S F	09/05/14 13:30 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	120	mg/L		40		A5210 B	09/03/14 17:17 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	16.2	mg/L	D	0.1		E365.1	09/04/14 08:49 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

Client Sample ID: 14BH-DT-BCR4-090214

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T
Lab ID: H14090029-009

Collection Date: 09/02/14 11:35
DateReceived: 09/03/14
Matrix: Aqueous

Report Date: 09/18/14

					MCL/	MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By	
INORGANICS								
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	09/12/14 10:40 / SRW	
Sulfide	18	mg/L		1		A4500-S F	09/05/14 13:30 / eli-b22	
AGGREGATE ORGANICS								
Oxygen Demand, Biochemical (BOD) No BOD dilution depleted greater than 2.0 mg/L DO.	<40	mg/L		40		A5210 B	09/03/14 17:26 / SRW	
NUTRIENTS								
Phosphorus, Orthophosphate as P	1.23	mg/L		0.005		E365.1	09/04/14 08:50 / cmm	

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T
Lab ID: H14090029-010

Client Sample ID: 14BH-DT-POST1-090214

Report Date: 09/18/14

Collection Date: 09/02/14 11:50

DateReceived: 09/03/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	09/12/14 10:44 / SRW
Sulfide	12	mg/L		1		A4500-S F	09/05/14 13:30 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	44	mg/L		40		A5210 B	09/03/14 17:33 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	6.44	mg/L	D	0.02		E365.1	09/04/14 08:51 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090029-011

Client Sample ID: 14BH-DT-PILOT-POSTE-090214

Report Date: 09/18/14 **Collection Date:** 09/02/14 12:05 **DateReceived:** 09/03/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	09/12/14 10:49 / SRW
Sulfide	ND	mg/L	D	0.2		A4500-S D	09/05/14 15:20 / eli-b22
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD) No BOD dilution depleted greater than 2.0 mg/L DO.		mg/L		40		A5210 B	09/03/14 17:41 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	1.83	mg/L		0.005		E365.1	09/04/14 08:52 / cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/18/14Project:Barker Hughsville - Danny TWork Order:H14090029

Analyte	Result Units	RL %REC Low Limit High Limit	RPD RPDLimit Qual
Method: A2310 B			Batch: H140912A
Lab ID: H14090029-001BDUP	Sample Duplicate	Run: PH_140912A	09/12/14 10:05
Acidity, Total as CaCO3	610 mg/L	4.0	0.8 20
Lab ID: H14090029-011ADUP	Sample Duplicate	Run: PH_140912A	09/12/14 10:54
Acidity, Total as CaCO3	ND mg/L	4.0	20
Lab ID: LCS1409120000	Laboratory Control Sample	Run: PH_140912A	09/12/14 09:57
Acidity, Total as CaCO3	940 mg/L	4.0 96 90 110	
Lab ID: MBLK1409120000	Method Blank	Run: PH_140912A	09/12/14 09:53
Acidity, Total as CaCO3	2 mg/L		

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/18/14Project:Barker Hughsville - Danny TWork Order:H14090029

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-S D								Batch: B	_R230108
Lab ID: Sulfide	MB-R230108	Method Blank ND	mg/L	0.002		Run: SUB-	B230108		09/05	5/14 15:20
Lab ID: Sulfide	LCS-R230108	Laboratory Cor 0.256	ntrol Sample mg/L	0.040	115	Run: SUB-	B230108 130		09/05	5/14 15:20
Lab ID: Sulfide	B14090340-002AMS	Sample Matrix 0.259	Spike mg/L	0.040	102	Run: SUB-	B230108 130		09/05	5/14 15:20
Lab ID: Sulfide	B14090340-002AMSD	Sample Matrix 0.254	Spike Duplicate mg/L	0.040	100	Run: SUB-	B230108 130	1.7	09/05 20	5/14 15:20

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/18/14Project:Barker Hughsville - Danny TWork Order:H14090029

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-S F								Batch: B_	R230109
Lab ID: Sulfide	MB-R230109	Method Blank ND	mg/L	0.5		Run: SUB-	B230109		09/05	/14 13:30
Lab ID: Sulfide	LCS-R230109	Laboratory Co 24.0	ntrol Sample mg/L	1.0	100	Run: SUB-	B230109 130		09/05	/14 13:30
Lab ID: Sulfide	B14090380-003EMS	Sample Matrix 24.0	Spike mg/L	1.0	100	Run: SUB-	B230109 120		09/05	/14 13:30
Lab ID: Sulfide	B14090380-003EMSD	Sample Matrix 24.2	Spike Duplicate mg/L	1.0	101	Run: SUB- 80	B230109 120	0.7	09/05 20	/14 13:30

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/18/14Project:Barker Hughsville - Danny TWork Order:H14090029

Analyte	Result Units	RL '	%REC	Low Limit	High Limit	RPD RPDLimit Qual
Method: A5210 B						Batch: 140903_1_BOD5-W
Lab ID: Dil-H201_140903	Dilution Water Blank			Run: BOD-	SKALAR_140903.	A 09/03/14 15:47
Oxygen Demand, Biochemical (BOD)	ND mg/L	2.0		0	0.2	
Lab ID: GGA1_140903	Laboratory Control Sample			Run: BOD-	SKALAR_140903.	A 09/03/14 15:58
Oxygen Demand, Biochemical (BOD)	130 mg/L	66	68	85	115	S

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/18/14Project:Barker Hughsville - Danny TWork Order:H14090029

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E365.1						Analyti	cal Run	: FIA202-HE	_140903A
Lab ID: ICV	Initial Calibrat	on Verification St	andard					09/03	3/14 15:36
Phosphorus, Orthophosphate as P	0.238	mg/L	0.0050	95	90	110			
Lab ID: ICB	Initial Calibrat	on Blank, Instrum	nent Blank					09/03	3/14 15:37
Phosphorus, Orthophosphate as P	0.000570	mg/L	0.0050		0	0			
Lab ID: CCV	Continuing Ca	libration Verificat	ion Standa	ırd				09/03	3/14 15:39
Phosphorus, Orthophosphate as P	0.0951	mg/L	0.0050	95	90	110			
Lab ID: CCV	Continuing Ca	libration Verificat	ion Standa	ırd				09/03	3/14 16:01
Phosphorus, Orthophosphate as P	0.0929	mg/L	0.0050	93	90	110			
Lab ID: CCV	Continuing Ca	libration Verificat	ion Standa	ırd				09/03	3/14 16:18
Phosphorus, Orthophosphate as P	0.0979	mg/L	0.0050	98	90	110			
Method: E365.1								Batch:	R100259
Lab ID: LFB	Laboratory Fo	rtified Blank			Run: FIA20	02-HE_140903A		09/03	3/14 15:41
Phosphorus, Orthophosphate as P	0.185	mg/L	0.0050	93	90	110			
Lab ID: MB-26001	Method Blank				Run: FIA20	02-HE_140903A		09/03	8/14 15:51
Phosphorus, Orthophosphate as P	0.001	mg/L	0.0010						
Lab ID: H14090026-001HMS	Sample Matrix	Spike			Run: FIA20	02-HE_140903A		09/03	3/14 15:53
Phosphorus, Orthophosphate as P	3.19	mg/L	0.010	109	90	110			
Lab ID: H14090026-001HMSD	Sample Matrix	Spike Duplicate			Run: FIA20	02-HE_140903A		09/03	3/14 15:54
Phosphorus, Orthophosphate as P	3.33	mg/L	0.010	116	90	110	4.3	20	S

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

QA/QC Summary Report

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/18/14Project:Barker Hughsville - Danny TWork Order:H14090029

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E365.1						Analyt	ical Run	: FIA202-HE_	_140904A
Lab ID:	ICV	Initial Calibrati	ion Verification S	Standard					09/04	/14 08:34
Phosphorus,	Orthophosphate as P	0.238	mg/L	0.0050	95	90	110			
Lab ID:	ICB	Initial Calibrat	ion Blank, Instru	ıment Blank					09/04	/14 08:35
Phosphorus,	Orthophosphate as P	0.000230	mg/L	0.0050		0	0			
Lab ID:	CCV	Continuing Ca	llibration Verifica	ation Standa	ırd				09/04	/14 08:37
Phosphorus,	Orthophosphate as P	0.0971	mg/L	0.0050	97	90	110			
Method:	E365.1								Batch:	R100270
Lab ID:	LFB	Laboratory Fo	rtified Blank			Run: FIA20	02-HE_140904A		09/04	/14 08:36
Phosphorus,	Orthophosphate as P	0.186	mg/L	0.0050	93	90	110			
Lab ID:	H14090029-003AMS	Sample Matrix	Spike			Run: FIA20	02-HE_140904A		09/04	/14 08:43
Phosphorus,	Orthophosphate as P	0.345	mg/L	0.0050	73	90	110			S
Lab ID:	H14090029-003AMSD	Sample Matrix	Spike Duplicate	e		Run: FIA20	02-HE_140904A		09/04	/14 08:44
Phosphorus,	Orthophosphate as P	0.385	mg/L	0.0050	83	90	110	11	20	S

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Workorder Receipt Checklist

CDM Federal Programs

Login completed by: Wanda Johnson

H14090029

Date Received: 9/3/2014

Reviewed by:	BL2000\rwilliams		Re	eceived by: tsp	
Reviewed Date:	9/9/2014			Carrier Hand Del name:	
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present	
Custody seals intact on all s	hipping container(s)/cooler(s)?	Yes	No 🗌	Not Present 🔽	
Custody seals intact on all s	ample bottles?	Yes	No 🗌	Not Present 🗹	
Chain of custody present?		Yes 🔽	No 🗌		
Chain of custody signed who	en relinquished and received?	Yes 🔽	No 🗌		
Chain of custody agrees with	n sample labels?	Yes 🗸	No 🔲		
Samples in proper container	/bottle?	Yes 🔽	No 🗌		
Sample containers intact?		Yes 🔽	No 🗌		
Sufficient sample volume for	indicated test?	Yes 🔽	No 🗌		
All samples received within I (Exclude analyses that are c such as pH, DO, Res CI, Su	onsidered field parameters	Yes ✓	No 🗌		
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Applicable	
Container/Temp Blank temp	erature:	2.3°C On Ice			
Water - VOA vials have zero	headspace?	Yes	No 🗌	No VOA vials submitted	
Water - pH acceptable upon	receipt?	Yes 🗸	No 🗌	Not Applicable	

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

None

ENERGY (E) Chain of Cust	ody an	d A	٩na	alytica	al Re	eque	st R	ecc	ord		Page	e <u>l</u> of <u>2</u>
LABORATORIES	PLEASE P	RIN	T (Provide as	s much	<u>inform</u>	ation	as po	ssible.) le Origin	EPA/St	ate Compliance:
Company Name:	Project Name	e, PV	۷۵, P ۱	ermii, Eic.	٠,٨				State:		Yes □	No □
CDM Smith	Barrer	TM	<u>gh</u>	NILL	<u>ープ</u> レ e/Fax:	anny			Celi:	<u> </u>	Sample	r: (Please Print)
Report Mail Address (Required):	Contact Nam					ء د د د د د	! 				1.1	klland
	Angela	Fr	avu	dsin	(.41	06) 44	<i> - 14</i>	00_	, _			Bottle Order:
	Invoice Cont	act 8	Pho	ne:	,				Purch	ase Order:	Quote/t	some Order.
XNo Hard Copy Email: Francson Ax @ Comsmith. com	Same.	<u> </u>							_	6 C11		Shipped by:
Invoice Address (Required):	>	A		YSIS F	BEQU	este	D		-	Contact ELI prio RUSH sample s		Hand
	S O DW	-	$\neg \top$		1			╗	R	for charges and scheduling – Se		Cooler ID(s):
	ater Odige							(TAT	11	Instruction Page		\
10 No Hard Copy Email: Franksnak @ cdmsmith.com	Containers W V B O DV Soils/Soilds oassay Other ing Water			7				Turnaround	U	Comments:	/- an /	Receipt Temp C
Special Report/Formats:	Pare of Original A			l ad	1			Turnar		Please ive /	00UML	On lice: (Y) N
DW EDD/EDT(Electronic Data)	Numbe Sample Typ Air Wa Vegetatio			1 tra			1 1		S	pothes for	י שפי	Cuetody Saal
POTWWWTP Format: EXUL	Z de Albo	'	3	73		1		ndard		and audit	y	On Bottle Y N
State: LEVEL IV Other: NELAC	ဟိ	۵	<u>.</u>	13 B				Standard	⊢Н	Combined.	,	Intact Y N
SAMPLE IDENTIFICATION Collection Collection	MATRIX	8	Sulfide	Acidin						<u> </u>		Signature Y N Match
(Name, Location, interval, cres)	0 (a)	-		XX								H14090029
1404-07-PILOT-INFL-090214 09/02/14 60:10	2,W	-	-	N /		-	-	_	+			
2HBH-DT-PILOT-INFLD-090114 09/01/14 10:15	2,W	 	!	$X \mid Y \mid$			1		-			<u> </u>
1404-DT-PMM-3APS-090214 09/02/14 /6:25	2, W			XX		 	-		-			
14BH-DT-PILOT-CHTT-090214 09/04/4 10:35	2, N_		-	XX		<u> </u>	+ -	-	1 "			
14184-DT-PILUT-NACH-090214 09/04/4 10:45	2,W	<u> </u>	1,,	XX	-		-					
1484-01- PILOT- BCRI-090214 09/02/14 10:55	3,W	X	X	XX		_	+					<u>0</u>
1418H-DT-PILOT-BCR2-09024 09/02/14 11:10	3.W	X	X	XX			 		-			
1484-177-PILOT-BLR3-090214 09/02/14 11:25	3, W	X	X	XX		<u> </u>	-			<u> </u>		- <u>©</u>
148H-DT-PILOT-BORY-090214 09/02/14 11:35	3. W	K	X	XX			$\downarrow \downarrow$					
Pur. 2 Pum PD TT - MAZIN AQ/02/14 11:50	3. W	7	X	XX					Det Co		Sign	ature:
Purple - OT - PILOT - POSTI - 090214 09/02/14 11 - 50	Sign	ature	411	and	Receiv	red by (print):	c 		Date/Tin			
Record Relinquished by (print): Date/Time:	- XVVXV	nature:	ų.Λ.V	A	Receiv	red by (print)	: -		Date/Tin	nė:		
MUST be	_				Recei	yed by Labe	гарогу:		Date/Im	14 12:48		nature:
Signed Sample Disposal: Return to Client:	Lab Disp	osal:				-7 W V	1-1/12		1131		منوبات و ما	requested

ENERGY	
LABORATORIES	-

Chain of Custody and Analytical Request Record

Company Name:	PLEASE PRINT Project Name, PWS,	(Provide as mu	ch information as	possible.)	Page of
CDM Smith	Project Name, PWS,	Permit, Etc.		Sample Origin	EPA/State Compliance:
COMI JM TM	Balker Hugh Contact Name:	WV114 1)	annyT	State: MT	Yes ☐ No ☐
Report Mail Address (Required):	:				Sampler: (Please Print)
	Angula Fra Invoice Contact & Pho	andsen	(406) 441	-1400	Lauren Helland
& No Hard Copy Email: Frand Sun AK @cdmsmon		one:	-	Purchase Order:	Quote/Bottle Order:
Invoice Address (Required):	Jame				
(1 - 2 - 27)	ANAI	LYSIS REQU	VESTED	Contact ELI prior	r to Shipped by:
Special Report/Formats:	of Containers A W S V B O r Solls/Solids Bloassay Othe nking Water	hisphake	ACHED	RUSH sample so for charges and scheduling – Sec Instruction Page Comments:	Cooler ID(s):
DW EDD/EDT(Electronic Dat POTW/WWTP Format: Fx (L) State: LEVEL IV Other: NELAC	Number Sample Type: Air Wate Oby - Dri	27	SEE ATT/	Comments: Comments: Comments:	700 On Ice: (Y)
SAMPLE IDENTIFICATION Collection Collection (Name, Location, Interval, etc.)		Accept Ortra		B H Combined.	Intact y N Signature y N
14BH-DT-PILOT-POSTE-09024 09/02/14 12:05	- · · · · · · · · · · · · · · · · · · ·	XX			match
2	7,1	~ ^			#1469 6029
3					
				-	——————————————————————————————————————
		-			
	+	- + +- -			
				<u> </u>	
		- 			
0	-	- + +			
Custody Refinquished by (print): Date/Time: 09/07/14/17:4	Signature:	Received	by (print):	Date/Time:	Signature:
Record Relinquished by (print). 09/03/14/12-4	Signature:	Received	by (print):	Date/Time:	Signature:
MUST be		Back.			
Signed Sample Disposal: Return to Client:	Lab Disposal:		L Kelli	Date/Time; 9/3/14 12:48	Signature
-					

U.S. Environmental Protection Agency Region 8 Technical and Management Services

Laboratory Services Program

Certificate of Analysis

Ref: 8TMS-L

MEMORANDUM

Date: 10/14/14

Subject: Analytical Results--- Barker-Hughesville Treatability SEP 2014 A046 / A-046

From: Don Goodrich; EPA Region 8 Analytical Chemistry WAM

To: Roger Hoogerheide

Superfund

8 MO

Received Sample Set(s), [Work Order : Date Received]:

[C140903 : 09/04/2014]

Attached are the analytical results for the samples received from the Barker-Hughesville_Treatability_SEP 2014_A046 sampling event, according to TDF A-046. All analyses were performed within their method specified holding times unless otherwise noted in the following narrative.

These samples were prepared, analyzed, and verified by the Environmental Services Assistance Team Laboratory (ESAT) according to the requirements of the Technical Direction Form (TDF).

Note: The laboratory herewith transmits this deliverable to the program/project partner for determination of "final data usability" which may include data validation and data quality assessment per and in accordance with EPA QA/G-8, *Guidance on Environmental Data Verification and Data Validation*, November 2002, EPA/240/R-02/004. Laboratory data qualifiers are applied based on the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*, October 2004, referred to as "NFGI".

Laboratory policy is to dispose of any remaining sample 60 days after data analysis packages are delivered to EPA. If you would like the laboratory to retain the samples for a period longer than 60 days,

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046

TDF #: A-046

Case Narrative

C140903

Quality Assessment: Unless indicated by exception, the QA/QC associated with this sample set

produced data within the TDF-specified criteria.

Holding Times: All samples were analyzed within their method-specified technical holding

time(s).

1. Initial and Continuing calibration blanks (ICBs and CCBs).

Exceptions: None.

2. Preparation (PB) / Method blanks (MB)

Exceptions: None.

3. Interference Checks (ICSA / ICSAB) for ICP-MS and ICP-OE analyses only.

Exceptions: None.

4. Initial and Continuing calibration verification analyses (ICVs, SCVs and CCVs).

Exceptions: In ICP-MS sequence 1410057 and 1410058, arsenic recovered high in the SCV. Matrix spike recoveries for arsenic were within acceptable limits. In ICP-MS sequence 1410058, arsenic recovered high in CCV3. As a result, bracketed arsenic detections were qualified "J" as estimated.

5. Laboratory Control Sample (LCS) or second source analysis or SRM.

Exceptions: None.

 Laboratory Fortified blank (LFB) / Blank spike (BS), same source as used for the matrix spikes. PBS performed with analyses/methods requiring preparation or digestion prior to analysis. Exceptions: None.

 Contract Reporting Detection Limit Standard, labeled as CRA, CRDL or CRL. Exceptions: None.

- Laboratory Duplicate (DUP). "Source" identifies field sample duplicated in the laboratory. If either
 the "source" or the duplicate result is <5X the reporting limit, the %D limit of 20% does not apply.
 Exceptions: None.
- Laboratory Matrix Spike (MS) and spike duplicate (MSD). "Source" defines original field sample fortified prior to analysis. Percent recovery (%R) limits do not apply when sample concentration(s) exceed the corresponding analyte spike level by a factor of 4 or greater. Exceptions: None.
- 10. Serial Dilution sample analysis (SRD). "Source" is parent field sample diluted 1:5 in the laboratory. Performed for ICP-OE and ICP-MS metals analyses. Percent difference (%D) limits do not apply when analyte concentration(s) are below 50x the source sample's MDL (or 10x it's PQL). Exceptions: None.
- 11. Internal standards, criteria specified for ICP-MS analyses only, monitored at the instrument. Exceptions: None.
- 12. Any calibration using more than two-points produced a correlation coefficient equal to or greater than 0.995.

Exceptions: None.

Certificate of Analysis

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046

TDF #: A-046

Acronyms and Definitions:

		α .		TT.
ESAT	Environmental	Services .	A ccictance	leam
LOAI	Liiviioiiiiciiai	DCI VICCO I	Toolotalice.	1 Cam

J Data Estimated qualifier (also applied to all data less than PQL, greater than or equal to MDL)

MDL Method Detection Limit

PQL Practical Quantitation Limit, also known as reporting limit.

RPD Relative Percent Difference (difference divided by the mean)

%D Percent difference, serial dilution criteria unit, difference divided by the original result.

%R Percent recovery, analyzed (less sample contribution) divided by true value

Analyte NOT DETECTED at or above the Method Detection Limit (MDL)

mg/L Parts per million (millligrams per liter). Solids equivalent = mg/Kg.

ug/L Parts per billion (micrograms per liter). Solids equivalent = ug/Kg.

NR No Recovery (matrix spike) - Often seen for calcium/magnesium when their concentration exceeds the spike level by > 4x.

NFGI USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

RE Sample Re-analysis. Usually seen on raw data and sequences for required sample dilutions due to over-range analytes.

U Analyte not detected at or above MDL qualifier

D Diluted value qualifier.

Method(s) Summary:

As defined in the Technical Direction Form (TDF), some or all of the methods listed below were used for the determination of the reported target analytes.

From EPA's Methods for the Determination of Metals in Environmental Samples, Supplement I, May 1994, dissolved, total, and/or total recoverable metals were determined by:

- Method 200.7 / 6010B using a PE Optima ICP -OE (ICP).
- Method 200.8 / 6020 using a Perkin -Elmer Elan 6000 ICP-MS.
- Method 200.2 for total recoverable metals (only) dige stion.
- Method 245.1 using a Perkin -Elmer FIMS CVAA (aqueous mercury only).

From Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, Method 2340B was used for the calculated hardness determination. Hardness is reported as mg (milligram) equivalent CaCO₃ per liter (L) determined as follows:

Calculated hardness = 2.497 * (Calcium, mg/L) + 4.118 * (Magnesium, mg/L).

From EPA's Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW -846,

- Method 3015A was used for microwave assisted total metals digestion.
- Method 7473 was used for mercury in solids.

From EPA's Determination of Inorganic Anions by Ion Chromatography, Revision 2.1, 1993, Method 300.0 was used to determine the anions.

From EPA's Methods for Chemical Analysis of Water and Wastes, March 1983:

- Method 310.1 was followed for the alkalinity determination.
- Method 160.1 was followed for gravimetric total dissolved solids (TDS) determination.
- Method 160.2 was used for gravimetric total suspended sol ids (TSS) determination.
- Method 415.3 was used for total organic carbon (TOC) determination using either an Apollo 9000 or Phoenix 8000 Non-Dispersive IR (NDIR) system. Also known as dissolved organic carbon (DOC) when performed on the dissolved sample fraction.

The quality control procedures listed in the TDF request were utilized by ESAT to verify accuracy of the results and to evaluate any matrix interferences.

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

Certificate of Analysis

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR1-090214
EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water 09/02/14 10:55 **Wo**

Workorder: C140903

Lab Number: C140903-02

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	129	J	ug/L	100	5	10/14/2014	SV	1410050
200.7	Iron	< 1250	U	ug/L	500	5	10/14/2014	SV	1410050
200.7	Manganese	85900		ug/L	10.0	5	10/14/2014	SV	1410050
200.7	Zinc	< 100	U	ug/L	50.0	5	10/14/2014	SV	1410050
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Nickel	15.6		ug/L	5.00	10	10/14/2014	SV	1410051
2340B	Hardness	736		mg/L	8	5	10/14/2014	SV	1410050

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-090214

No Tag Prefix-B

EPA Tag No.:

Date / Time Sampled: Matrix: Water 09/02/14 11:10

Workorder: C14

Lab Number:

C140903

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	126	J	ug/L	100	5	10/14/2014	SV	1410050
200.7	Iron	1730		ug/L	500	5	10/14/2014	SV	1410050
200.7	Manganese	107000		ug/L	10.0	5	10/14/2014	SV	1410050
200.7	Zinc	< 100	U	ug/L	50.0	5	10/14/2014	SV	1410050
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Nickel	5.59	J	ug/L	5.00	10	10/14/2014	SV	1410051
2340B	Hardness	734		mg/L	8	5	10/14/2014	SV	1410050

Certificate of Analysis

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR3-090214 **Station ID:** EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water

09/02/14 11:25

C140903 Workorder:

Lab Number:

C140903-10

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	148	J	ug/L	100	5	10/14/2014	SV	1410050
200.7	Iron	< 1250	U	ug/L	500	5	10/14/2014	SV	1410050
200.7	Manganese	46800		ug/L	10.0	5	10/14/2014	SV	1410050
200.7	Zinc	< 100	U	ug/L	50.0	5	10/14/2014	SV	1410050
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Copper	5.48	J	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/14/2014	SV	1410051
2340B	Hardness	896		mg/L	8	5	10/14/2014	SV	1410050

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR4-090214 **Station ID:**

EPA Tag No.:

No Tag Prefix-B

Date / Time Sampled: Matrix: Water

09/02/14 11:35

Workorder: C140903

Lab Number:

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	304		ug/L	100	5	10/14/2014	SV	1410050
200.7	Iron	< 1250	U	ug/L	500	5	10/14/2014	SV	1410050
200.7	Manganese	71100		ug/L	10.0	5	10/14/2014	SV	1410050
200.7	Zinc	88.9	J	ug/L	50.0	5	10/14/2014	SV	1410050
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/14/2014	SV	1410051
2340B	Hardness	355		mg/L	8	5	10/14/2014	SV	1410050

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-CHIT-090214 **Station ID:** EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water

09/02/14 10:35

C140903 Workorder:

Lab Number:

C140903-18

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	428		ug/L	100	5	10/14/2014	SV	1410050
200.7	Iron	31500		ug/L	500	5	10/14/2014	SV	1410050
200.7	Manganese	66300		ug/L	10.0	5	10/14/2014	SV	1410050
200.7	Zinc	53.0	J	ug/L	50.0	5	10/14/2014	SV	1410050
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Nickel	11.3		ug/L	5.00	10	10/14/2014	SV	1410051
2340B	Hardness	585		mg/L	8	5	10/14/2014	SV	1410050

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFL-090214 EPA Tag No.:

No Tag Prefix-B

Date / Time Sampled: Matrix: Water

09/02/14 10:10

Workorder: Lab Number:

C140903

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	12300		ug/L	100	5	10/14/2014	SV	1410050
200.7	Iron	111000		ug/L	500	5	10/14/2014	SV	1410050
200.7	Manganese	75500		ug/L	10.0	5	10/14/2014	SV	1410050
200.7	Zinc	44000		ug/L	50.0	5	10/14/2014	SV	1410050
200.8	Arsenic	227		ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Cadmium	220		ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Copper	933		ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Lead	246		ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Nickel	31.4		ug/L	5.00	10	10/14/2014	SV	1410051
2340B	Hardness	256		mg/L	8	5	10/14/2014	SV	1410050

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFLD-090214

EPA Tag No.: No Tag Prefix-B

Date / Time Sampled:
Matrix: Water

09/02/14 10:15 **Workorder:**

C140903

Lab Number: C140903-24

					MDI	D:14:			
Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	12300		ug/L	100	5	10/14/2014	SV	1410050
200.7	Iron	111000		ug/L	500	5	10/14/2014	SV	1410050
200.7	Manganese	76400		ug/L	10.0	5	10/14/2014	SV	1410050
200.7	Zinc	45400		ug/L	50.0	5	10/14/2014	SV	1410050
200.8	Arsenic	228		ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Cadmium	216		ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Copper	936		ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Lead	246		ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Nickel	26.9		ug/L	5.00	10	10/14/2014	SV	1410051
2340B	Hardness	255		mg/L	8	5	10/14/2014	SV	1410050

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NAOH-090214 **Date / Time Sampled:** 09/02/14 10:45 **Workorder:** C140903

EPA Tag No.: No Tag Prefix-B

Matrix: Water

Workofder: C140903-27 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	10/14/2014	SV	1410050
200.7	Iron	< 1250	U	ug/L	500	5	10/14/2014	SV	1410050
200.7	Manganese	58100		ug/L	10.0	5	10/14/2014	SV	1410050
200.7	Zinc	11000		ug/L	50.0	5	10/14/2014	SV	1410050
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Cadmium	77.2		ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Copper	6.85	J	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Nickel	13.7		ug/L	5.00	10	10/14/2014	SV	1410051
2340B	Hardness	226		mg/L	8	5	10/14/2014	SV	1410050

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTE-090214 **EPA Tag No.:** No Tag Prefix-B

Date / Time Sampled: Matrix: Water

09/02/14 12:05 Workorder:

C140903

Lab Number: C140903-30

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	10/14/2014	SV	1410050
200.7	Iron	< 1250	U	ug/L	500	5	10/14/2014	SV	1410050
200.7	Manganese	67400		ug/L	10.0	5	10/14/2014	SV	1410050
200.7	Zinc	< 100	U	ug/L	50.0	5	10/14/2014	SV	1410050
200.8	Arsenic	5.20	J	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Copper	5.29	J	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Nickel	7.13	J	ug/L	5.00	10	10/14/2014	SV	1410051
2340B	Hardness	693		mg/L	8	5	10/14/2014	SV	1410050

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-POSTI-090214 **Station ID: EPA Tag No.:**

No Tag Prefix-B

Date / Time Sampled: Matrix: Water

09/02/14 11:50

Workorder: Lab Number: C140903

C140903-34

Α

MDL Dilution Method **Parameter** Analyzed Results Qualifier Units By Batch Factor 200.7 Aluminum 5 10/14/2014 SV 1410050 < 250 U ug/L 100 200.7 1720 500 5 10/14/2014 SV 1410050 Iron ug/L 200.7 Manganese 80700 ug/L 10.0 5 10/14/2014 SV1410050 200.7 Zinc 5 10/14/2014 SV 1410050 < 100 U 50.0 ug/L 200.8 10/14/2014 1410051 Arsenic 10 SV U 5.00 < 20.0 ug/L 200.8 Cadmium 10 10/14/2014 SV 1410051 < 2.00 U ug/L 1.00 200.8 Copper 10 10/14/2014 SV1410051 5.00 < 10.0 U ug/L 10 10/14/2014 1410051 200.8 Lead SV < 2.00 U ug/L 1.00 Nickel 200.8 10 10/14/2014 SV1410051 5.00 < 10.0 U ug/L 2340B Hardness 676 mg/L 8 5 10/14/2014 SV1410050 Project Name: Barker-Hughesville_Treatability_SEP 2014_A046

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-090214 EPA Tag No.: No Tag Prefix-B Date / Time Sampled: Matrix: Water

09/02/14 10:25

Workorder: C140903

Certificate of Analysis

Lab Number:

C140903-38 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	464		ug/L	100	5	10/14/2014	SV	1410050
200.7	Iron	81900		ug/L	500	5	10/14/2014	SV	1410050
200.7	Manganese	84800		ug/L	10.0	5	10/14/2014	SV	1410050
200.7	Zinc	25600		ug/L	50.0	5	10/14/2014	SV	1410050
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/14/2014	SV	1410051
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410051
200.8	Nickel	26.7		ug/L	5.00	10	10/14/2014	SV	1410051
2340B	Hardness	531		mg/L	8	5	10/14/2014	SV	1410050

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR1-090214
EPA Tag No.: No Tag Prefix-A

Date / Time Sampled:
Matrix: Water

Workorder:

C140903

Lab Number: C140903-01

Certificate of Analysis

903-01 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	140	J	ug/L	100	5	10/14/2014	SV	1410018
200.7	Iron	6450		ug/L	500	5	10/14/2014	SV	1410018
200.7	Manganese	89400		ug/L	10.0	5	10/14/2014	SV	1410018
200.7	Zinc	76.2	J	ug/L	50.0	5	10/14/2014	SV	1410018
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/14/2014	SV	1410018

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-090214

Date / Time Sampled:

09/02/14 11:10

09/02/14 10:55

Workorder: C14

C140903

EPA Tag No.: No Tag Prefix-A Matrix: Water Lab Number: C140903-05 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	113	J	ug/L	100	5	10/14/2014	SV	1410018
200.7	Iron	1770		ug/L	500	5	10/14/2014	SV	1410018
200.7	Manganese	112000		ug/L	10.0	5	10/14/2014	SV	1410018
200.7	Zinc	125		ug/L	50.0	5	10/14/2014	SV	1410018
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/14/2014	SV	1410018

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR3-090214 **Station ID: Date / Time Sampled:** EPA Tag No.: No Tag Prefix-A

Matrix: Water

09/02/14 11:25

C140903 Workorder:

Lab Number:

C140903-09

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	175	J	ug/L	100	5	10/14/2014	SV	1410018
200.7	Iron	< 1250	U	ug/L	500	5	10/14/2014	SV	1410018
200.7	Manganese	47400		ug/L	10.0	5	10/14/2014	SV	1410018
200.7	Zinc	< 100	U	ug/L	50.0	5	10/14/2014	SV	1410018
200.8	Arsenic	8.60	J	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Nickel	5.85	J	ug/L	5.00	10	10/14/2014	SV	1410018

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR4-090214

Date / Time Sampled:

09/02/14 11:35

Workorder:

C140903

No Tag Prefix-A Matrix: Water **EPA Tag No.:** Lab Number: C140903-13 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	10/14/2014	SV	1410018
200.7	Iron	< 1250	U	ug/L	500	5	10/14/2014	SV	1410018
200.7	Manganese	74100		ug/L	10.0	5	10/14/2014	SV	1410018
200.7	Zinc	772		ug/L	50.0	5	10/14/2014	SV	1410018
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Cadmium	1.39	J	ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Copper	5.44	J	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/14/2014	SV	1410018

Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-CHIT-090214 EPA Tag No.: No Tag Prefix-A **Date / Time Sampled: Matrix:** Water

09/02/14 10:35

Workorder: C1

Lab Number:

C140903

C140903-17

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	5400		ug/L	100	5	10/14/2014	SV	1410018
200.7	Iron	49900		ug/L	500	5	10/14/2014	SV	1410018
200.7	Manganese	69500		ug/L	10.0	5	10/14/2014	SV	1410018
200.7	Zinc	15900		ug/L	50.0	5	10/14/2014	SV	1410018
200.8	Arsenic	15.8	J	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Cadmium	53.5		ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Copper	172		ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Lead	48.0		ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Nickel	13.6		ug/L	5.00	10	10/14/2014	SV	1410018

Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 14BH-DT-PILOT-INFL-090214
 Date / Time Sampled:
 09/02/14 10:10
 Workorder:
 C140903

EPA Tag No.: No Tag Prefix-A Matrix: Water Lab Number: C140903-20 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
200.7	Aluminum	12300		ug/L	100	5	10/14/2014	SV	1410018
200.7	Iron	111000		ug/L	500	5	10/14/2014	SV	1410018
200.7	Manganese	77200		ug/L	10.0	5	10/14/2014	SV	1410018
200.7	Zinc	45100		ug/L	50.0	5	10/14/2014	SV	1410018
200.8	Arsenic	233	J	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Cadmium	211		ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Copper	917		ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Lead	250		ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Nickel	24.7		ug/L	5.00	10	10/14/2014	SV	1410018

Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFLD-090214

EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

09/02/14 10:15

Workorder: C140903

Lab Number:

C140903-23 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	12100		ug/L	100	5	10/14/2014	SV	1410018
200.7	Iron	111000		ug/L	500	5	10/14/2014	SV	1410018
200.7	Manganese	77700		ug/L	10.0	5	10/14/2014	SV	1410018
200.7	Zinc	45600		ug/L	50.0	5	10/14/2014	SV	1410018
200.8	Arsenic	244	J	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Cadmium	222		ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Copper	946		ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Lead	253		ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Nickel	26.7		ug/L	5.00	10	10/14/2014	SV	1410018

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NAOH-090214 **Date / Time Sampled:** 09/02/14 10:45 **Workorder:** C140903

EPA Tag No.: No Tag Prefix-A Matrix: Water Lab Number: C140903-26 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	824		ug/L	100	5	10/14/2014	SV	1410018
200.7	Iron	7940		ug/L	500	5	10/14/2014	SV	1410018
200.7	Manganese	59300		ug/L	10.0	5	10/14/2014	SV	1410018
200.7	Zinc	12200		ug/L	50.0	5	10/14/2014	SV	1410018
200.8	Arsenic	18.1	J	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Cadmium	83.1		ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Copper	73.1		ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Lead	15.9		ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Nickel	14.2		ug/L	5.00	10	10/14/2014	SV	1410018

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTE-090214 **EPA Tag No.:** No Tag Prefix-A

Date / Time Sampled: Matrix: Water

09/02/14 12:05 Workorder: C140903

Lab Number: C140903-29

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	145	J	ug/L	100	5	10/14/2014	SV	1410018
200.7	Iron	< 1250	U	ug/L	500	5	10/14/2014	SV	1410018
200.7	Manganese	69600		ug/L	10.0	5	10/14/2014	SV	1410018
200.7	Zinc	92.1	J	ug/L	50.0	5	10/14/2014	SV	1410018
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/14/2014	SV	1410018

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTI-090214 EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

09/02/14 11:50

Workorder: Lab Number:

C140903

C140903-33 A

Dilution MDL Method **Parameter** Analyzed By Batch Qualifier Results Units Factor 200.7 Aluminum 130 J ug/L 100 5 10/14/2014 SV 1410018 5 200.7 ug/L 500 Iron 2520 10/14/2014 SV1410018 200.7 10.0 5 10/14/2014 1410018 Manganese 79900 ug/L SV 200.7 Zinc 268 ug/L 50.0 5 10/14/2014 SV 1410018 200.8 10 10/14/2014 1410018 Arsenic SV U 5.00 < 20.0 ug/L 200.8 Cadmium 1410018 10 10/14/2014 SV U 1.00 < 2.00 ug/L 200.8 Copper 10 10/14/2014 SV1410018 < 10.0 U ug/L 5.00 200.8 Lead 10 10/14/2014 SV1410018 < 2.00 U ug/L 1.00 200.8 Nickel 10 10/14/2014 SV 1410018 < 10.0 U ug/L 5.00

Barker-Hughesville_Treatability_SEP 2014_A046 **Project Name:**

A-046

Certificate of Analysis

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-090214 **EPA Tag No.:** No Tag Prefix-A

TDF #:

Date / Time Sampled: 09/02/14 10:25 Matrix: Water

C140903 Workorder:

C140903-37 Lab Number:

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	575		ug/L	100	5	10/14/2014	SV	1410018
200.7	Iron	80200		ug/L	500	5	10/14/2014	SV	1410018
200.7	Manganese	85500		ug/L	10.0	5	10/14/2014	SV	1410018
200.7	Zinc	26400		ug/L	50.0	5	10/14/2014	SV	1410018
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Copper	5.52	J	ug/L	5.00	10	10/14/2014	SV	1410018
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/14/2014	SV	1410018
200.8	Nickel	26.8		ug/L	5.00	10	10/14/2014	SV	1410018

[&]quot;J" Qualifier indicates an estimated value

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046

A-046

Certificate of Analysis

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1-090214

TDF #:

EPA Tag No.: No Tag Prefix-C **Date / Time Sampled:** 09/02/14 10:55 Matrix: Water

Workorder: C140903

Lab Number:

C140903-03

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	09/16/2014	NP	1409035
EPA 300.0	Fluoride	1.7	J	mg/L	1.0	10	09/16/2014	NP	1409035
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	09/16/2014	NP	1409035
EPA 300.0	Sulfate as SO4	626		mg/L	0.5	10	09/16/2014	NP	1409035
EPA 310.1	Total Alkalinity	284		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409021

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-BCR1-090214 **Station ID:**

No Tag Prefix-D **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/02/14 10:55

Workorder: Lab Number: C140903

C140903-04

A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	6.41	D	mg/L	0.300	10	09/26/2014	KJB	1409128

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-090214 **Date / Time Sampled:** 09/02/14 11:10 C140903 Workorder:

No Tag Prefix-C Matrix: Water EPA Tag No.:

Lab Number:

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	09/16/2014	NP	1409035
EPA 300.0	Fluoride	1.5	J	mg/L	1.0	10	09/16/2014	NP	1409035
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	09/16/2014	NP	1409035
EPA 300.0	Sulfate as SO4	753		mg/L	0.5	10	09/16/2014	NP	1409035
EPA 310.1	Total Alkalinity	229		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409021

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-090214 EPA Tag No.:

Date / Time Sampled: No Tag Prefix-D

Matrix: Water 09/02/14 11:10

Workorder: C140903

Certificate of Analysis

Lab Number:

C140903-08 A

Α

Dilution MDL Method Parameter By Analyzed Batch Results **Qualifier** Units Factor EPA 350.1 Ammonia as N 2.59 D mg/L 0.300 10 09/26/2014 KJB 1409128

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR3-090214

EPA Tag No.: No Tag Prefix-C **Date / Time Sampled:** Matrix:

09/02/14 11:25 Water

Workorder: C140903

C140903-11 Lab Number:

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units Factor EPA 300.0 Chloride 5.3 J mg/L 5.0 10 09/16/2014 NP 1409035 EPA 300.0 Fluoride 3.8 1.0 10 09/16/2014 NP 1409035 mg/L EPA 300.0 Nitrate/Nitrite as 10 09/16/2014 NP 1409035 < 50.0 U mg/L 10.0 0.5 EPA 300.0 Sulfate as SO4 mg/L 10 09/16/2014 1409035 464 NP **Total Alkalinity** 588 50.0 10 09/09/2014 SW 1409021 EPA 310.1 mg CaCO3 / L

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR3-090214 **Date / Time Sampled:** 09/02/14 11:25 Workorder: C140903

Water EPA Tag No.: No Tag Prefix-D Matrix:

C140903-12 Lab Number:

Dilution **MDL** Method **Parameter** Results Qualifier Units Analyzed Bv Batch Factor EPA 350.1 21.9 D 0.300 10 KJB 1409128 Ammonia as N mg/L 09/26/2014

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4-090214 EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Water

09/02/14 11:35

09/02/14 11:35

Workorder:

Lab Number:

C140903

Certificate of Analysis

C140903-15

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	09/16/2014	NP	1409035
EPA 300.0	Fluoride	1.6	J	mg/L	1.0	10	09/16/2014	NP	1409035
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	09/16/2014	NP	1409035
EPA 300.0	Sulfate as SO4	732		mg/L	0.5	10	09/16/2014	NP	1409035
EPA 310.1	Total Alkalinity	176		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409021

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4-090214

EPA Tag No.: No Tag Prefix-D **Date / Time Sampled:**

Matrix: Water Workorder:

C140903

A

A

Lab Number: C140903-16

MDL Dilution Method **Parameter** By Batch Analyzed Results Qualifier Units Factor EPA 350.1 Ammonia as N 1.33 D mg/L 0.300 10 09/26/2014 KJB 1409128

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-CHIT-090214 **Station ID: Date / Time Sampled:** 09/02/14 10:35 Workorder:

No Tag Prefix-C Water EPA Tag No.: Matrix:

C140903

C140903-19 Lab Number:

MDL Dilution Method **Parameter** Results Qualifier Units Analyzed $\mathbf{B}\mathbf{v}$ Batch Factor EPA 300.0 Chloride 5.4 J 5.0 10 09/16/2014 NP 1409035 mg/L EPA 300.0 Fluoride 2.5 mg/L 1.0 10 09/16/2014 NP 1409035 Nitrate/Nitrite as EPA 300.0 10 09/16/2014 NP 1409035 U 10.0 < 50.0 mg/L EPA 300.0 Sulfate as SO4 663 mg/L 0.5 10 09/16/2014 NP 1409035 mg CaCO3 / L 50.0 1409021 EPA 310.1 **Total Alkalinity** 155 10 09/09/2014 SW

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-INFL-090214

EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Water

09/02/14 10:10

Workorder: C140903

Certificate of Analysis

Lab Number:

C140903-22

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	09/16/2014	NP	1409035
EPA 300.0	Fluoride	2.2		mg/L	1.0	10	09/16/2014	NP	1409035
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	09/16/2014	NP	1409035
EPA 300.0	Sulfate as SO4	894		mg/L	0.5	10	09/16/2014	NP	1409035
EPA 310.1	Total Alkalinity	< 100		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409021

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-INFLD-090214 **Date / Time Sampled:** 09/02/14 10:15 **Workorder:** C140903

EPA Tag No.: No Tag Prefix-C Matrix: Water

Lab Number: C140903-25

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	09/16/2014	NP	1409035
EPA 300.0	Fluoride	2.5		mg/L	1.0	10	09/16/2014	NP	1409035
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	09/16/2014	NP	1409035
EPA 300.0	Sulfate as SO4	904		mg/L	0.5	10	09/16/2014	NP	1409035
EPA 310.1	Total Alkalinity	< 100		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409021

Certificate of Analysis

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-NAOH-090214 **EPA Tag No.:** No Tag Prefix-C

Date / Time Sampled: Matrix: Water

09/02/14 10:45

Workorder: C140903

Lab Number:

C140903-28

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	09/16/2014	NP	1409035
EPA 300.0	Fluoride	1.3	J	mg/L	1.0	10	09/16/2014	NP	1409035
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	09/16/2014	NP	1409035
EPA 300.0	Sulfate as SO4	819		mg/L	0.5	10	09/16/2014	NP	1409035
EPA 310.1	Total Alkalinity	< 100		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409021

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTE-090214 **EPA Tag No.:**

Date / Time Sampled: No Tag Prefix-C Matrix: Water

09/02/14 12:05

Workorder:

C140903

Lab Number: C140903-31

Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.8	J	mg/L	5.0	10	09/16/2014	NP	1409035
EPA 300.0	Fluoride	1.5	J	mg/L	1.0	10	09/16/2014	NP	1409035
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	09/16/2014	NP	1409035
EPA 300.0	Sulfate as SO4	697		mg/L	0.5	10	09/16/2014	NP	1409035
EPA 310.1	Total Alkalinity	295		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409021

Classical Chemistry by EPA/ASTM/APHA Methods

09/02/14 12:05 **Station ID:** 14BH-DT-PILOT-POSTE-090214 **Date / Time Sampled:** Workorder: C140903

EPA Tag No.: No Tag Prefix-D Matrix:

Water Lab Number: C140903-32

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units Factor EPA 350.1 Ammonia as N 7.10 D mg/L 0.300 10 09/26/2014 KJB 1409128

A

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTI-090214

EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Water 09/02/14 11:50

Workorder: C14

Lab Number:

C140903

Certificate of Analysis

C140903-35 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.3	J	mg/L	5.0	10	09/16/2014	NP	1409035
EPA 300.0	Fluoride	2.2		mg/L	1.0	10	09/16/2014	NP	1409035
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	09/16/2014	NP	1409035
EPA 300.0	Sulfate as SO4	662		mg/L	0.5	10	09/16/2014	NP	1409035
EPA 310.1	Total Alkalinity	307		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409021

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTI-090214

EPA Tag No.: No Tag Prefix-D

Date / Time Sampled: Matrix: Water

ne Sampled: 09/02/14 11:50 Water

Workorder: Lab Number: C140903

C140903-36

Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
EPA 350.1	Ammonia as N	8.09	D	mg/L	0.300	10	09/26/2014	KJB	1409128

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-SAPS-090214

EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Water 09/02/14 10:25

Workorder:

C140903

Lab Number:

C140903-39 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	09/16/2014	NP	1409035
EPA 300.0	Fluoride	1.8	J	mg/L	1.0	10	09/16/2014	NP	1409035
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	09/16/2014	NP	1409035
EPA 300.0	Sulfate as SO4	806		mg/L	0.5	10	09/16/2014	NP	1409035
EPA 310.1	Total Alkalinity	85.8	J	mg CaCO3 / L	50.0	10	09/09/2014	SW	1409021

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-	П								
Batch 1410051 - N	o Lab Prep Reqd	J	Water					ICPN	MS-PE DRC-II
Method Blank (1410	0051-BLK1)	Dilution Factor: 1				Prepar	red: 10/13/14	Analyzed: 10/	14/14
Nickel	< 0.500	1.00	ng/I						
Copper	< 0.500	1.00	ug/L "						
Arsenic	< 0.500	2.00	"						
Cadmium	< 0.100	0.200	"						
Lead	< 0.100	0.200	"						
Method Blank Spike (1410051-BS1)		Dilution Factor: 1				Prepa	red: 10/13/14	Analyzed: 10/	14/14
Nickel	101	1.00	ug/L	100		101	85-115		
Copper	101	1.00	ug/L "	100		101	85-115		
Arsenic	100	2.00	"	100		100	85-115		
Cadmium	99.7	0.200	"	100		100	85-115		
Lead	105	0.200	"	100		105	85-115		
Duplicate (1410051-	DUP1)	Dilution Factor: 1	Source	: C140903-0	2	Prepa	red: 10/13/14	Analyzed: 10/	14/14
Nickel	20.3	10.0	ug/L		15.6			26	20
Copper	< 5.00	10.0	"		< 5.00				20
Arsenic	< 5.00	20.0	"		< 5.00				20
Cadmium	< 1.00	2.00	"		< 1.00				20
Lead	131	2.00	"		< 1.00				20
Matrix Spike (14100	051-MS1)	Dilution Factor: 1	Source	: C140903-0	2	Prepa	red: 10/13/14	Analyzed: 10/	14/14
Nickel	105	10.0	ug/L	100	15.6	89	70-130		
Copper	96.2	10.0	"	100	< 5.00	96	70-130		
Arsenic	106	20.0	"	100	< 5.00	106	70-130		
Cadmium	98.9	2.00	"	100	< 1.00	99	70-130		
Lead	105	2.00	"	100	< 1.00	105	70-130		
Matrix Spike (14100	051-MS2)	Dilution Factor: 1	Source	: C140903-0	6	Prepar	red: 10/13/14	Analyzed: 10/	14/14
Nickel	101	10.0	ug/L	100	5.59	95	70-130		
Copper	87.2	10.0	"	100	< 5.00	87	70-130		
Arsenic	104	20.0	"	100	< 5.00	104	70-130		
Cadmium	102	2.00	"	100	< 1.00	102	70-130		
Lead	107	2.00	"	100	< 1.00	107	70-130		

TDF #: A-046

100.3

Zinc

100

$Metals \ (Dissolved) \ by \ EPA \ 200/7000 \ Series \ Methods - Quality \ Control$

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Lim
Batch 1410057 - 14	10051	Į	Vater					ICPN	MS-PE DRC-
Serial Dilution (1410	057-SRD1)	Dilution Factor: 5	Source	: C140903-0	2	Prepa	red: 10/13/14	Analyzed: 10/	14/14
Nickel	51.0	50.0	ug/L		15.6			106	10
Copper	< 25.0	50.0	"		< 5.00				10
Arsenic	< 25.0	100	"		< 5.00				10
Cadmium	< 5.00	10.0	"		< 1.00				10
Lead	< 5.00	10.0	"		< 1.00				10
CPOE - PE Optim	18								
Batch 1410050 - No	Lab Prep Reqd	Į	Vater					ICPO	E - PE Optir
Method Blank (14100	050-BLK1)	Dilution Factor: 1				Prepa	red: 10/13/14	Analyzed: 10/	14/14
Aluminum	< 20.0	50.0	ug/L						
fron	< 100	250	"						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Method Blank Spike	(1410050-BS1)	Dilution Factor: 1				Prepa	red: 10/13/14	Analyzed: 10/	14/14
Aluminum	10440	50.0	ug/L	10100		103	85-115		
Iron	10440	250	"	10100		103	85-115		
Manganese	101.0	5.00	"	100		101	85-115		
Zinc	101.5	20.0	"	100		102	85-115		
Duplicate (1410050-E	OUP1)	Dilution Factor: 5	Source	: C140903-0	2	Prepa	red: 10/13/14	Analyzed: 10/	14/14
Aluminum	110.1	250	ug/L		128.7			16	20
Iron	< 500	1250	"		< 500				20
Manganese	84470	25.0	"		85950			2	20
Zinc	< 50.0	100	"		< 50.0			_	20
Matrix Spike (1410050-MS1)		Dilution Factor: 5	Source	: C140903-0	2	Prepa	red: 10/13/14	Analyzed: 10/	14/14
Aluminum	10400	250	ug/L	10100	128.7	102	70-130		
Iron	10450	1250	"	10100	< 500	103	70-130		
Manganese	83730	25.0	"	100	85950	NR	70-130		
	100.3	100		100	00,00	. 111	, 0 150		

100

< 50.0

100

70-130

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046 **Certificate of Analysis**

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1410050 - No	Lab Prep Reqd	И	ater					ICPO	E - PE Optima
Matrix Spike (141005	50-MS2)	Dilution Factor: 5	Source	: C140903-0	6	Prepa	red: 10/13/14	Analyzed: 10/	14/14
Aluminum	10140	250	ug/L	10100	125.7	99	70-130		
Iron	11630	1250	"	10100	1728	98	70-130		
Manganese	107000	25.0	"	100	107100	NR	70-130		
Zinc	121.0	100	"	100	< 50.0	121	70-130		
Batch 1410053 - 14	10050	И	/ater					ICPO	E - PE Optima
Serial Dilution (1410	053-SRD1)	Dilution Factor: 2	Source	: C140903-0	2	Prepa	red: 10/13/14	Analyzed: 10/	14/14
Aluminum	< 500	1250	ug/L		128.7				10
Iron	< 2500	6250	"		< 500.00				10
Manganese	88650	125	"		85950			3	10
Zinc	< 250	500	"		< 50.00				10

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample NOTE:

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-	II								
Batch 1410018 - 20	00.2 - TR Metals	Į	Vater					ICPN	MS-PE DRC-II
Method Blank (1410	0018-BLK2)	Dilution Factor: 5				Prepa	red: 10/02/14	Analyzed: 10/	14/14
Nickel	< 2.50	5.00	ug/L						
Copper	< 2.50	5.00	ug E						
Arsenic	< 2.50	10.0	"						
Cadmium	< 0.500	1.00	"						
Lead	< 0.500	1.00	"						
Duplicate (1410018-DUP2)		Dilution Factor: 1	Source	: C140903-0	1	Prepa	red: 10/02/14	Analyzed: 10/	14/14
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	< 5.00	10.0	"		< 5.00				20
Arsenic	< 5.00	20.0	"		< 5.00				20
Cadmium	< 1.00	2.00	"		< 1.00				20
Lead	< 1.00	2.00	"		< 1.00				20
Matrix Spike (1410018-MS2)		Dilution Factor: 1	Source	: C140903-0	5	Prepa	red: 10/02/14	Analyzed: 10/	14/14
Nickel	478.6	10.0	ug/L	500	< 5.00	96	70-130		
Copper	292.0	10.0	"	300	< 5.00	97	70-130		
Arsenic	854.9	20.0	"	800	< 5.00	107	70-130		
Cadmium	202.3	2.00	"	200	< 1.00	101	70-130		
Lead	1101	2.00	"	1000	< 1.00	110	70-130		
Matrix Spike (14100	018-MS4)	Dilution Factor: 1	Source	: C140903-0	9	Prepa	red: 10/02/14	Analyzed: 10/	14/14
Nickel	481.2	10.0	ug/L	500	5.850	95	70-130		
Copper	283.1	10.0	"	300	< 5.00	94	70-130		
Arsenic	859.5	20.0	"	800	8.595	106	70-130		
Cadmium	207.5	2.00	"	200	< 1.00	104	70-130		
Lead	1083	2.00	"	1000	< 1.00	108	70-130		
Reference (1410018-SRM2) Dilution Factor		Dilution Factor: 2				Prepa	red: 10/02/14	Analyzed: 10/	14/14
Nickel	987.1	20.0	ug/L	1000		99	85-115		
Copper	990.9	20.0	"	1000		99	85-115		
Arsenic	2147	40.0	"	2000		107	85-115		
Cadmium	992.3	4.00	"	1000		99	85-115		
Lead	2175	4.00	,,	2000		109	85-115		

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1410058 - 14	10018	И	Vater					ICP	MS-PE DRC-II
Serial Dilution (1410	058-SRD1)	Dilution Factor: 5	Source	: C140903-0	1	Prepa	red: 10/02/14	4 Analyzed: 10/	14/14
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	< 25.0	50.0	ug E		< 5.00				10
Arsenic	< 25.0	100	"		< 5.00				10
Cadmium	< 5.00	10.0	"		< 1.00				10
Lead	< 5.00	10.0	"		< 1.00				10
ICPOE - PE Optin	na								
Batch 1410018 - 200.2 - TR Metals		И	Vater					ICPO	E - PE Optima
Method Blank (1410	018-BLK1)	Dilution Factor: 1				Prepar	red: 10/02/14	4 Analyzed: 10/	14/14
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	"						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Duplicate (1410018-1	DUP1)	Dilution Factor: 5	Source	Durce: C140903-01 Prepared: 10/02/14 Analyzed: 10/14/					14/14
Aluminum	127.1	250	ug/L		140.2			10	20
Iron	6439	1250	"		6455			0.2	20
Manganese	88790	25.0	"		89420			0.7	20
Zinc	71.39	100	"		76.22			7	20
Matrix Spike (14100	18-MS1)	Dilution Factor: 5	Source	: C140903-0	5	Prepa	red: 10/02/14	4 Analyzed: 10/	14/14
Aluminum	2049	250	ug/L	2000	113.2	97	70-130		
Iron	4815	1250	"	3000	1766	102	70-130		
Manganese	111600	25.0	"	200	112200	NR	70-130		
Zinc	323.2	100	"	200	124.7	99	70-130		
Matrix Spike (14100	Matrix Spike (1410018-MS3) Dilution Factor: 5		Source	: C140903-0	9	Prepa	red: 10/02/14	4 Analyzed: 10/	14/14
Aluminum	2055	250	ug/L	2000	174.6	94	70-130		
Iron	3091	1250	"	3000	< 500	103	70-130		
Manganese	47280	25.0	"	200	47430	NR	70-130		
Zinc	214.9	100	**	200	< 50.0	107	70-130		

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046 **Certificate of Analysis**

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1410018 - 20	00.2 - TR Metals	W	ater					ICPO	E - PE Optima
Reference (1410018-	-SRM1)	Dilution Factor: 1				Prepai	red: 10/02/14	Analyzed: 10/	14/14
Aluminum	972.5	50.0	ug/L	1000		97	85-115		
Iron	971.2	250	"	1000		97	85-115		
Manganese	1031	5.00	"	1000		103	85-115		
Zinc	1020	20.0	"	1000		102	85-115		
Batch 1410054 - 14	410018	W	ater					ICPO	E - PE Optima
Serial Dilution (1410	0054-SRD1)	Dilution Factor: 2	Source	C140903-0	1	Prepai	red: 10/02/14	Analyzed: 10/	14/14
A 1	< 500	1250	ug/L		140.2				10
Aluminum									
	6313	6250	"		6455			2	10
Aluminum Iron Manganese	6313 92420	6250 125	"		6455 89420			2 3	10 10

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

TDF #: A-046

${\bf Classical\ Chemistry\ by\ EPA/ASTM/APHA\ Methods-Quality\ Control}$

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ESAT Dionex IC									
Batch 1409035 - No Pr	ep Req	J	Vater					E	SAT Dionex IC
Method Blank (1409035-	-BLK1)	Dilution Factor: 1				Prepa	red & Analyz	red: 09/16/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	0.6	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Method Blank Spike (14	09035-BS1)	Dilution Factor: 1				Prepa	red & Analyz	zed: 09/16/14	
Fluoride	4.5	0.2	mg/L	5.00		91	90-110		
Chloride	23.9	2.0	"	25.0		95	90-110		
Sulfate as SO4	24.0	0.1	"	25.0		96	90-110		
Nitrate/Nitrite as N	18.8	5.0	"	20.0		94	90-110		
Duplicate (1409035-DUF	21)	Dilution Factor: 1	Source	: C140903-0	3	Prepa	red & Analyz	zed: 09/16/14	
Fluoride	1.7	2.0	mg/L		1.7			3	20
Chloride	5.3	20.0	"		5.4			2	20
Sulfate as SO4	629	1.0	"		626			0.6	20
Nitrate/Nitrite as N	< 10.0	50.0	"		< 10.0				20
Matrix Spike (1409035-I	MS1)	Dilution Factor: 1	Source	: C140903-0	3	Prepa	red & Analyz	zed: 09/16/14	
Fluoride	53.2	2.0	mg/L	50.0	1.7	103	80-120		
Chloride	256	20.0	"	250	5.4	100	80-120		
Sulfate as SO4	890	1.0	"	250	626	106	80-120		
Nitrate/Nitrite as N	198	50.0	"	200	< 10.0	99	80-120		
Matrix Spike (1409035-N	(1409035-MS2) Dilution Factor: 1		Source	: C140903-3	9	Prepa	red & Analyz	zed: 09/16/14	
Fluoride	52.2	2.0	mg/L	50.0	1.8	101	80-120		
Chloride	265	20.0	"	250	5.4	104	80-120		
Sulfate as SO4	1070	1.0	"	250	806	106	80-120		
Nitrate/Nitrite as N	202	50.0	"	200	< 10.0	101	80-120		

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046

Certificate of Analysis

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409108 - 14090	035		Water					E	SAT Dionex IC
Instrument Blank (1409	108-IBL1)	Dilution Factor: 1				Prepar	ed & Analyz	zed: 09/16/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Lachat 8500									
Batch 1409128 - No Prep Req		J	Water						Lachat 8500
Method Blank (1409128	-BLK1)	Dilution Factor: 1				Prepai	ed & Analyz	zed: 09/26/14	
Ammonia as N	< 0.0300	0.0500	mg/L						
Method Blank Spike (14	109128-BS1)	Dilution Factor: 1				Prepai	ed & Analyz	zed: 09/26/14	
Ammonia as N	0.997	0.0500	mg/L	1.00		100	90-110		
Duplicate (1409128-DUI	P1)	Dilution Factor: 1	Source	C140903-0	4	Prepai	ed & Analyz	zed: 09/26/14	
Ammonia as N	6.38	0.500	mg/L		6.41			0.6	20
Matrix Spike (1409128-	MS1)	Dilution Factor: 1	Source	C140903-0	4	Prepai	ed & Analyz	zed: 09/26/14	
Ammonia as N	16.2	0.500	mg/L	10.0	6.41	97	90-110		
Reference (1409128-SR	M1)	Dilution Factor: 5				Prepar	ed & Analyz	zed: 09/26/14	
Ammonia as N	5.14	0.250	mg/L	4.80		107	90-110		
Mettler AT									
Batch 1409021 - No Pr	Batch 1409021 - No Prep Req		Water						Mettler AT
Method Blank (1409021-BLK1)		Dilution Factor: 1				Prepai	red: 09/04/14	Analyzed: 09	/09/14
Total Alkalinity	< 5.00	10.0	mg CaCO3 /						

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046 **Certificate of Analysis**

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit			
Batch 1409021 - No P	rep Req	J	Vater			Mettler A						
Duplicate (1409021-DU)	Duplicate (1409021-DUP1) Dilution Factor: 1 Source: C140903-03					Prepai	red: 09/04/14	Analyzed: 09/	ed: 09/09/14			
Total Alkalinity	282	100	mg CaCO3 /		284			0.7	20			
Duplicate (1409021-DU)	P2)	Dilution Factor: 1	Source: (C140903-3	9	Prepai	ed: 09/04/14	Analyzed: 09/	09/14			
Total Alkalinity	87.3	100	mg CaCO3 /		85.8			2	20			
Reference (1409021-SR)	M1)	Dilution Factor: 1				Prepar	red: 09/04/14	Analyzed: 09/	09/14			
Total Alkalinity	12.1	10.0	mg CaCO3 /	10.4		116	61.3-143.9					

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample NOTE:

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 310.1</u> Analysis Name: <u>WC - Alkalinity</u>

Instrument: Mettler AT Work Order: Nu C140903

Analytical Sequence: Total Concentration Units: mg CaCO3 / L

Blank criteria = \pm - 5x analyte MDL (\pm - PQL)

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	Blan	Method Blank (Batch ID)			
		1	2	3	4	1409021-BLK1	NA	
		1.02	1.08	1.04	1.04		27.1	10.00
Total Alkalinity		5	6	7	8	1.25	NA	10.00

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 300.0</u> Analysis Name: <u>WC - Anions by Ion Chromatography</u>

Instrument: ESAT Dionex IC Work Order: Nu C140903

Analytical Sequence: 1409108 **Dissolved** Concentration Units: <u>mg/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	s	Blank	(Batch ID)		
		1	2	3	4	1409035-BLK1	NA		
	0.00	0.00	0.00]	
Fluoride		5	6	7	8	0.06	NA	0.20	
		1	2	3	4	1409035-BLK1	NA		
	0.00	0.00	0.00		-			1	
Chloride		5	6	7	8	0.59	NA	2.00	
		1	2	3		1409035-BLK1	NA		
	0.00	0.00	0.00	3	4	1407033-BER1		†	
Sulfate as SO4		5	6	7	8	0.00	NA	0.10	
	0.00	1	2	3	4	1409035-BLK1	NA	<u></u>	
Nitanata (Nitanita NI	0.00	0.00	0.00				NI A	5.00	
Nitrate/Nitrite as N		5	6	7	8	0.16	NA	5.00	

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 350.1</u> Analysis Name: <u>WC - Ammonia</u>

Instrument: Lachat 8500 Work Order: Nu C140903

Analytical Sequence: Total Concentration Units: mg/L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	Metho Blan (Batch	k	PQL	
		1	2	3	4	1409128-BLK1	NA	
		0.00	0.00					
Ammonia as N		5	6	7	8	0.00	NA	0.05

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Diss. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140903

Analytical Sequence: 1410053 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	C	Continuing Cali	bration Blank	s	Method Blank (Batch ID))	PQL
		1	2	3	4	1410050-BLK1	NA	
	1.05	-0.17	0.82					
Aluminum		5	6	7	8	2.90	NA	50.00
		1	2	3	4	1410050-BLK1	NA	
	21.96	20.42	9.49]
Iron		5	6	7	8	42.65	NA	250.0
		1	2	3	4	1410050-BLK1	NA	
	0.07	0.24	0.20					Ī
Manganese		5	6	7	8	0.01	NA	5.00
						1410050 DI VI	NIA	
	-0.19	1	2	3	4	1410050-BLK1	NA	1
Zinc	0.17	-0.59	-0.16			0.79	NA	20.00
ZIIIC		5	6	7	8	0.79	11/1	20.00

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140903

Analytical Sequence: 1410054 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	s	Methoo Blank (Batch I		PQL
		1	2	3	4	1410018-BLK1	NA	
	1.05	-0.17	0.82	3.79	3.77		27.1	
Aluminum		5	6	7	8	-0.08	NA	50.00
		1	2	3	4	1410018-BLK1	NA	
	21.96	20.42	9.49	21.18	15.35			Ī
Iron		5	6	7	8	20.12	NA	250.00
		1	2	3	4	1410018-BLK1	NA	
	0.07	0.24	0.20	0.25	0.42			
Manganese		5	6	7	8	0.01	NA	5.00
	0.10	1	2	3	4	1410018-BLK1	NA	1
	-0.19	-0.59	-0.16	0.72	0.22]	NIA	20.00
Zinc		5	6	7	8	1.91	NA	20.00

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: <u>ICPMS Diss. Metals</u>

Instrument: ICPMS-PE DRC-II Work Order: Nu C140903

Analytical Sequence: 1410057 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blanks	s	Method Blank (Batch II		PQL
		1	2	3	4	1410051-BLK1	NA	
	0.01	0.01	0.01				27.4	1.00
Nickel		5	6	7	8	-0.07	NA	1.00
		1	2	3	4	1410051-BLK1	NA	<u> </u>
	-0.01	0.00	0.01				37.	1.00
Copper		5	6	7	8	-0.06	NA	1.00
		1	2	3	4	1410051-BLK1	NA	<u> </u>
	0.12	0.22	-0.11				27.4	2.00
Arsenic		5	6	7	8	0.11	NA	2.00
		1	2	3	4	1410051-BLK1	NA	
	0.01	0.01	0.00				27.4	0.20
Cadmium		5	6	7	8	-0.01	NA	0.20
	0.01	1	2	3	4	1410051-BLK1	NA	1
Load	0.01	0.01	0.01				NA	0.20
Lead		5	6	7	8	-0.01	1974	0.20

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C140903

Analytical Sequence: 1410058 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	C	Continuing Cali	bration Blank	s	Bl	thod ank ch ID)	PQL
		1	2	3	4	NA	1410018-BLK2	
	0.01	0.01	0.01	0.00	0.02			
Nickel		5	6	7	8	NA	-0.05	1.00
		1	2	3	4	NA	1410018-BLK2	
	-0.01	0.00	0.01	0.00	0.02			
Copper		5	6	7	8	NA	-0.02	1.00
	0.10	1	2	3	4	NA	1410018-BLK2	
	0.12	0.22	-0.11	0.04	0.29	27.	0.10	2.00
Arsenic		5	6	7	8	NA	-0.19	2.00
		1	2	3	4	NA	1410018-BLK2	
	0.01	0.01	0.00	0.02	0.01		0.01	0.00
Cadmium		5	6	7	8	NA	-0.01	0.20
	0.04	1	2	3	4	NA	1410018-BLK2	
	0.01	0.01	0.01	0.01	0.01	27.1	0.00	0.20
Lead		5	6	7	8	NA	0.00	0.20

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Mettler AT Method: EPA 310.1 Analysis Name: WC - Alkalinity

Sequence: 1409045 Work Order: C140903 Units: mg CaCO3 / L

Total	Init	ial (ICV1, I	CV2)		Cont	inuing C	alibratior	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				100	99.6	99.6	100	99.7	99.7	100	99.5	99.5
Total Alkalinity					4			5			6	
Total Mikalility				100	99.6	99.6						
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ESAT Dionex IC Method: EPA 300.0 Analysis Name: WC - Anions by Ion Chromatography 2013

Sequence: 1409108 Work Order: C140903 Units: mg/L

Dissolved	Init	ial (ICV1, I	CV2)		Cont	inuing Ca	alibration	Verificati	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	40.0	20.0	07.2	40.0	40.2	100.5	40.0	40.7	101.8			
Chloride	40.0	38.9	97.3		4			5			6	
					7			8			9	
					1			2			3	
	4.00	3.7	92.5	4.00	3.9	97.5	4.00	4.0	100.0			
Fluoride	4.00	5.1	72.3		4			5			6	
					7			8			9	
					1	102.0	• • •	2	100.5		3	
	20.0	19.9	99.5	20.0	20.6	103.0	20.0	20.7 5	103.5		6	
Nitrate/Nitrite as N											•	
					7			8			9	
				100	1 102	102.0	100	102	102.0		3	
	100	98.0	98.0	100	102	102.0	100	102 5	102.0		6	
Sulfate as SO4								<u> </u>			U	
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Lachat 8500 Method: EPA 350.1 Analysis Name: WC - Ammonia

Sequence: 1409130 Work Order: C140903 Units: mg/L

Total	Initi	ial (ICV1, I	CV2)		Conti	inuing C	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				1.00	0.998	99.8	1.00	0.998	99.8			
Ammonia as N					4			5			6	
Ammonia as iv												
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Diss. Metals

Sequence: 1410053 Work Order: C140903 Units: ug/L

Dissolved	Initi	al (ICV1, l	ICV2)		Conti	inuing C	alibration	Verificati	on Stand	ards (CC	(Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	12600	101.4	12500	12720	101.8	12500	12740	101.9			
Aluminum	12500	12680	101.4		4			5			6	
					7			8			9	
					1			2			3	
				12500	12710	101.7	12500	12870	103.0			
Iron	12500	12710	101.7		4			5			6	
non												
					7			8			9	
					1			2			3	
	1000	1035	103.5	1000	1036	103.6	1000	1056	105.6			
Manganese	1000	1055	103.3		4			5			6	
					7			8			9	
				2500	<u>1</u> 2581	102.2	2500	2 2672	106.9		3	
	2500	2581	103.2	2300		103.2	2300		100.9			
Zinc					4			5			6	
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Sequence: 1410054 Work Order: C140903 Units: ug/L

Total Recoverable	Initi	al (ICV1,]	ICV2)		Conti	nuing C	alibration	Verificati	on Stand	ards (CC	Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	10.000		12500	12720	101.8	12500	12740	101.9	12500	12930	103.4
Aluminum	12500	12680	101.4		4			5			6	
Aummum				12500	12870	103.0						
					7			8			9	
					1			2			3	
	12500	12710	101.7	12500	12710	101.7	12500	12870	103.0	12500	12900	103.2
Iron	12500	12710	101.7		4			5			6	
non				12500	13060	104.5						
					7			8			9	
					1			2			3	
	1000	1035	103.5	1000	1036	103.6	1000	1056	105.6	1000	1067	106.7
Manganese	1000	1033	103.3		4			5			6	
Winiganese				1000	1071	107.1						
					7			8			9	
					1			2			3	
	2500	2501	102.2	2500	2581	103.2	2500	2672	106.9	2500	2698	107.9
Zinc	2500	2581	103.2		4			5			6	
Ziiiç				2500	2698	107.9						
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Diss. Metals

Sequence: 1410057 Work Order: C140903 Units: ug/L

Dissolved	Init	ial (ICV1, 1	ICV2)		Cont	inuing C	alibration	Verificati	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				50.0	53.1	106.2	50.0	53.1	106.2			
Arsenic	50.0	52.2	104.4		4			5			6	
					7			8			9	
								2				
				50.0	<u>1</u> 52.7	105.4	50.0	51.6	103.2		3	
Cadmium	50.0	49.4	98.8	30.0	4	103.4	30.0	5	103.2		6	
					7			8			9	
					1							
					1			2			3	
	50.0	40.6	07.0	50.0	52.0	104.0	50.0	52.7	105.4			
Copper	50.0	48.6	97.2		4			5			6	
					7			8			9	
					1			2			3	
	50.0	40.0	060	50.0	53.3	106.6	50.0	52.9	105.8			
Lead	50.0	48.0	96.0		4			5			6	
					7			8			9	
					1			2			3	
	50.0	48.9	97.8	50.0	50.9	101.8	50.0	51.6	103.2		6	
Nickel					•							
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1410058 Work Order: C140903 Units: ug/L

Total Recoverable	Init	ial (ICV1,	ICV2)		Cont	inuing Ca	alibration	Verificati	ification Standards (CCVs)			
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	50.0	50.05	104.5	50.0	53.13	106.3	50.0	53.14	106.3	50.0	55.84	111.7
Arsenic	50.0	52.25	104.5		4			5			6	
Arsenic				50.0	53.72	107.4						
					7			8			9	
					1			2			3	
	50.0	40.40	00.0	50.0	52.67	105.3	50.0	51.59	103.2	50.0	52.72	105.4
Cadmium	50.0	49.40	98.8		4			5			6	
Cuamium				50.0	52.93	105.9						
					7			8			9	
					1			2			3	
	50.0	40.72	07.2	50.0	51.98	104.0	50.0	52.71	105.4	50.0	51.25	102.5
Copper	50.0	48.63	97.3		4			5			6	
Соррег				50.0	51.77	103.5						
					7			8			9	
					1			2			3	
	50.0	48.01	96.0	50.0	53.26	106.5	50.0	52.85	105.7	50.0	53.38	106.8
Lead	30.0	48.01	90.0		4			5			6	
				50.0	53.98	108.0						
					7			8			9	
					1			2			3	
	50.0	48.92	97.8	50.0	50.92	101.8	50.0	51.64	103.3	50.0	51.88	103.8
Nickel	30.0	70.72	71.0		4			5			6	
				50.0	51.21	102.4						
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPMS-PE DRC-II

<u>Analyte</u>		· 	heck Sample	Result*	<u>Units</u>	<u>True</u>	<u>%R</u>	<u>PQL</u>
Sequence:	1410057	Analysis:	ICPMS Diss. Me					
Arsenic			IFA1	0.1	ug/L			2.00
			IFB1	20.6	ug/L	20	103	2.00
Cadmium			IFA1	0.0	ug/L			0.200
			IFB1	20.3	ug/L	20	102	0.200
Copper			IFA1	0.8	ug/L			1.00
			IFB1	21.0	ug/L	20	105	1.00
Lead			IFA1	0.0	ug/L			0.200
			IFB1	0.0	ug/L			0.200
Nickel			IFA1	0.3	ug/L			1.00
			IFB1	20.9	ug/L	20	105	1.00
		True Value or +						
Sequence:	1410058	Analysis:	ICPMS Tot. Rec.	Metals				
Arsenic	1110000		IFA1	0.1	ug/L			2.00
			IFB1	20.6	ug/L	20	103	2.00
Cadmium			IFA1	0.0	ug/L			0.200
			IFB1	20.3	ug/L	20	102	0.200
Copper			IFA1	0.8	ug/L			1.00

Triscine	11111	0.1	C			2.00
	IFB1	20.6	ug/L	20	103	2.00
Cadmium	IFA1	0.0	ug/L			0.200
	IFB1	20.3	ug/L	20	102	0.200
Copper	IFA1	0.8	ug/L			1.00
	IFB1	21.0	ug/L	20	105	1.00
Lead	IFA1	0.0	ug/L			0.200
	IFB1	0.0	ug/L			0.200
Nickel	IFA1	0.3	ug/L			1.00
	IFB1	20.9	ug/L	20	105	1.00
+G:: : 00 1200/P 0T						

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

TDF #:

A-046

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPOE - PE Optima

Analyte	Check Sample	Result*	<u>Units</u>	True	<u>%R</u>	<u>PQL</u>
Sequence: 1410053	Analysis: ICPOE Diss. Metals					
Aluminum	IFA1	61,002.7	ug/L	60,000	102	50.0
	IFB1	61,372.0	ug/L	60,000	102	50.0
Iron	IFA1	240,138.1	ug/L	250,000	96	250
	IFB1	241,455.5	ug/L	250,000	97	250
Manganese	IFA1	-0.2	ug/L			5.00
	IFB1	201.6	ug/L	200	101	5.00
Zinc	IFA1	4.8	ug/L			20.0
	IFB1	310.5	ug/L	300	104	20.0
*Criteria = 80-120%R of	True Value or +/- PQL					
See raw data for complete	e analyte list and results.					
Sequence: 1410054	Analysis: ICPOE Tot. Rec. Me	tals				
-			/T			

Sequence: 1410054	Analysis: ICPOE Tot. Rec.	Metals				
Aluminum	IFA1	61,002.7	ug/L	60,000	102	50.0
	IFB1	61,372.0	ug/L	60,000	102	50.0
Iron	IFA1	240,138.1	ug/L	250,000	96	250
	IFB1	241,455.5	ug/L	250,000	97	250
Manganese	IFA1	-0.2	ug/L			5.00
	IFB1	201.6	ug/L	200	101	5.00
Zinc	IFA1	4.8	ug/L			20.0
	IFB1	310.5	ug/L	300	104	20.0

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8
Detection Limit (PQL) Standard
ICPMS-PE DRC-II

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1410057

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Arsenic	2.00	2.21	111	ug/L
Cadmium	0.200	0.176	88	ug/L
Copper	1.00	0.973	97	ug/L
Lead	0.200	0.194	97	ug/L
Nickel	1.00	0.911	91	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1410053

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	98.49	98	ug/L
Iron	100	111.2	111	ug/L
Manganese	10.0	10.19	102	ug/L
Zinc	50.0	50.44	101	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

Project Name: Barker-Hughesville_Treatability_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard Lachat 8500

Classical Chemistry by EPA/ASTM/APHA Methods

Sequence: 1409130

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Ammonia as N	0.0250	0.0245	98	mg/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8
Detection Limit (PQL) Standard
ICPMS-PE DRC-II

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1410058

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Arsenic	2.00	2.213	111	ug/L
Cadmium	0.200	0.1759	88	ug/L
Copper	1.00	0.9730	97	ug/L
Lead	0.200	0.1941	97	ug/L
Nickel	1.00	0.9112	91	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1410054

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Aluminum	100	98.49	98	ug/L
Iron	100	111.2	111	ug/L
Manganese	10.0	10.19	102	ug/L
Zinc	50.0	50.44	101	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 310.1 **Total Sequence ID#:** 1409045

Instrument ID #: Mettle	er AT Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1409045-CCV1	Calibration Check	09/09/14	10:35
1409045-CCB1	Calibration Blank	09/09/14	10:38
1409045-CCV2	Calibration Check	09/09/14	10:55
1409045-CCB2	Calibration Blank	09/09/14	10:58
1409021-SRM1	Reference	09/09/14	12:14
1409021-BLK1	Blank	09/09/14	12:16
C140903-03	14BH-DT-PILOT-BCR1-09021	09/09/14	12:17
1409021-DUP1	Duplicate	09/09/14	12:19
C140903-07	14BH-DT-PILOT-BCR2-09021	09/09/14	12:20
C140903-11	14BH-DT-PILOT-BCR3-09021	09/09/14	12:22
C140903-15	14BH-DT-PILOT-BCR4-09021	09/09/14	12:24
C140903-19	14BH-DT-PILOT-CHIT-090214	09/09/14	12:26
1409045-CCV3	Calibration Check	09/09/14	12:28
1409045-CCB3	Calibration Blank	09/09/14	12:31
C140903-22	14BH-DT-PILOT-INFL-090214	09/09/14	12:32
C140903-25	14BH-DT-PILOT-INFLD-0902	09/09/14	12:33
C140903-28	14BH-DT-PILOT-NAOH-0902	09/09/14	12:34
C140903-31	14BH-DT-PILOT-POSTE-0902	09/09/14	12:35
C140903-35	14BH-DT-PILOT-POSTI-09021	09/09/14	12:37
C140903-39	14BH-DT-PILOT-SAPS-09021	09/09/14	12:39
1409021-DUP2	Duplicate	09/09/14	12:40
1409045-CCV4	Calibration Check	09/09/14	12:47
1409045-CCB4	Calibration Blank	09/09/14	12:50

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 300.0 **Dissolved Sequence ID#:** 1409108

Instrument ID #: ESAT	Dionex IC Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1409108-ICV1	Initial Cal Check	09/16/14	10:57
1409108-ICB1	Initial Cal Blank	09/16/14	11:16
1409108-SCV1	Secondary Cal Check	09/16/14	11:35
1409108-IBL1	Instrument Blank	09/16/14	11:54
1409035-BS1	Blank Spike	09/16/14	12:13
1409035-BLK1	Blank	09/16/14	12:32
C140903-03	14BH-DT-PILOT-BCR1-09021	09/16/14	12:50
1409035-DUP1	Duplicate	09/16/14	13:09
1409035-MS1	Matrix Spike	09/16/14	13:28
C140903-07	14BH-DT-PILOT-BCR2-09021	09/16/14	13:47
C140903-11	14BH-DT-PILOT-BCR3-09021	09/16/14	14:06
C140903-15	14BH-DT-PILOT-BCR4-09021	09/16/14	14:25
1409108-CCV1	Calibration Check	09/16/14	14:43
1409108-CCB1	Calibration Blank	09/16/14	15:02
C140903-19	14BH-DT-PILOT-CHIT-090214	09/16/14	15:21
C140903-22	14BH-DT-PILOT-INFL-090214	09/16/14	15:40
C140903-25	14BH-DT-PILOT-INFLD-0902	09/16/14	15:59
C140903-28	14BH-DT-PILOT-NAOH-0902	09/16/14	16:17
C140903-31	14BH-DT-PILOT-POSTE-0902	09/16/14	16:36
C140903-35	14BH-DT-PILOT-POSTI-09021	09/16/14	16:55
C140903-39	14BH-DT-PILOT-SAPS-09021	09/16/14	17:14
1409035-MS2	Matrix Spike	09/16/14	17:33
1409108-CCV2	Calibration Check	09/16/14	17:52
1409108-CCB2	Calibration Blank	09/16/14	18:10

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 350.1 **Total Sequence ID#:** 1409130

Instrument ID #: Lachat	8500 Wate	r	LSR #: A-046		
Analysis ID	Sample Name	Analysis Date	Analysis Time		
1409128-SRM1	Reference	09/26/14	13:14		
1409128-BLK1	Blank	09/26/14	13:14		
1409128-BS1	Blank Spike	09/26/14	13:14		
1409130-CRL1	Instrument RL Check	09/26/14	13:14		
C140903-04	14BH-DT-PILOT-BCR1-09021	09/26/14	13:14		
1409128-DUP1	Duplicate	09/26/14	13:14		
1409128-MS1	Matrix Spike	09/26/14	13:14		
C140903-08	14BH-DT-PILOT-BCR2-09021	09/26/14	13:14		
C140903-12	14BH-DT-PILOT-BCR3-09021	09/26/14	13:14		
1409130-CCV1	Calibration Check	09/26/14	13:14		
1409130-CCB1	Calibration Blank	09/26/14	13:14		
C140903-16	14BH-DT-PILOT-BCR4-09021	09/26/14	13:14		
C140903-32	14BH-DT-PILOT-POSTE-0902	09/26/14	13:14		
C140903-36	14BH-DT-PILOT-POSTI-09021	09/26/14	13:14		
1409130-CCV2	Calibration Check	09/26/14	13:14		
1409130-CCB2	Calibration Blank	09/26/14	13:14		

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Dissolved Sequence ID#:** 1410053

Instrument ID #: ICPO	E - PE Optima Water	r	LSR #: A-046		
Analysis ID	Sample Name	Analysis Date	Analysis Time		
1410053-ICV1	Initial Cal Check	10/14/14	08:15		
1410053-SCV1	Secondary Cal Check	10/14/14	08:18		
1410053-ICB1	Initial Cal Blank	10/14/14	08:21		
1410053-CRL1	Instrument RL Check	10/14/14	08:24		
1410053-IFA1	Interference Check A	10/14/14	08:27		
1410053-IFB1	Interference Check B	10/14/14	08:31		
1410050-BLK1	Blank	10/14/14	08:35		
1410050-BS1	Blank Spike	10/14/14	08:38		
C140903-02	14BH-DT-PILOT-BCR1-09021	10/14/14	08:41		
1410050-DUP1	Duplicate	10/14/14	08:44		
1410053-SRD1	Serial Dilution	10/14/14	08:47		
1410050-MS1	Matrix Spike	10/14/14	08:50		
C140903-06	14BH-DT-PILOT-BCR2-09021	10/14/14	08:53		
1410050-MS2	Matrix Spike	10/14/14	08:56		
C140903-10	14BH-DT-PILOT-BCR3-09021	10/14/14	09:00		
1410053-CCV1	Calibration Check	10/14/14	09:06		
1410053-CCB1	Calibration Blank	10/14/14	09:09		
C140903-14	14BH-DT-PILOT-BCR4-09021	10/14/14	09:12		
C140903-18	14BH-DT-PILOT-CHIT-090214	10/14/14	09:15		
C140903-21	14BH-DT-PILOT-INFL-090214	10/14/14	09:18		
C140903-24	14BH-DT-PILOT-INFLD-0902	10/14/14	09:21		
C140903-27	14BH-DT-PILOT-NAOH-0902	10/14/14	09:24		
C140903-30	14BH-DT-PILOT-POSTE-0902	10/14/14	09:27		
C140903-34	14BH-DT-PILOT-POSTI-09021	10/14/14	09:31		
C140903-38	14BH-DT-PILOT-SAPS-09021	10/14/14	09:33		
1410053-CCV2	Calibration Check	10/14/14	09:40		
1410053-CCB2	Calibration Blank	10/14/14	09:43		

TDF #: A-046

TechLaw Inc., ESAT Region 8

INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Total Recoverable Sequence ID#:** 1410054

nstrument ID #: ICPOI Analysis ID	E - PE Optima Water Sample Name	Analysis Date	LSR #: A-046 Analysis Time
	· -	·	•
1410054-ICV1	Initial Cal Check	10/14/14	08:15
1410054-SCV1	Secondary Cal Check	10/14/14	08:18
1410054-ICB1	Initial Cal Blank	10/14/14	08:21
1410054-CRL1	Instrument RL Check	10/14/14	08:24
1410054-IFA1	Interference Check A	10/14/14	08:27
1410054-IFB1	Interference Check B	10/14/14	08:31
1410054-CCV1	Calibration Check	10/14/14	09:06
1410054-CCB1	Calibration Blank	10/14/14	09:09
1410054-CCV2	Calibration Check	10/14/14	09:40
1410054-CCB2	Calibration Blank	10/14/14	09:43
1410018-BLK1	Blank	10/14/14	09:51
1410018-SRM1	Reference	10/14/14	09:54
C140903-01	14BH-DT-PILOT-BCR1-09021	10/14/14	09:57
1410018-DUP1	Duplicate	10/14/14	10:00
1410054-SRD1	Serial Dilution	10/14/14	10:03
C140903-05	14BH-DT-PILOT-BCR2-09021	10/14/14	10:06
1410018-MS1	Matrix Spike	10/14/14	10:09
C140903-09	14BH-DT-PILOT-BCR3-09021	10/14/14	10:12
1410018-MS3	Matrix Spike	10/14/14	10:16
1410054-CCV3	Calibration Check	10/14/14	10:22
1410054-CCB3	Calibration Blank	10/14/14	10:25
C140903-13	14BH-DT-PILOT-BCR4-09021	10/14/14	10:28
C140903-17	14BH-DT-PILOT-CHIT-090214	10/14/14	10:31
C140903-20	14BH-DT-PILOT-INFL-090214	10/14/14	10:34
C140903-23	14BH-DT-PILOT-INFLD-0902	10/14/14	10:37
C140903-26	14BH-DT-PILOT-NAOH-0902	10/14/14	10:40
C140903-29	14BH-DT-PILOT-POSTE-0902	10/14/14	10:44
C140903-33	14BH-DT-PILOT-POSTI-09021	10/14/14	10:47
C140903-37	14BH-DT-PILOT-SAPS-090214	10/14/14	10:50
1410054-CCV4	Calibration Check	10/14/14	10:56
1410054-CCB4	Calibration Blank	10/14/14	10:59

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Dissolved Sequence ID#:** 1410057

Instrument ID #: ICPMS	r	LSR #: A-046	
Analysis ID	Sample Name	Analysis Date	Analysis Time
1410057-ICV1	Initial Cal Check	10/14/14	11:08
1410057-SCV1	Secondary Cal Check	10/14/14	11:11
1410057-ICB1	Initial Cal Blank	10/14/14	11:14
1410057-CRL1	Instrument RL Check	10/14/14	11:17
1410057-IFA1	Interference Check A	10/14/14	11:21
1410057-IFB1	Interference Check B	10/14/14	11:24
1410051-BLK1	Blank	10/14/14	11:27
1410051-BS1	Blank Spike	10/14/14	11:30
C140903-02	14BH-DT-PILOT-BCR1-09021	10/14/14	11:33
1410051-DUP1	Duplicate	10/14/14	11:36
1410057-SRD1	Serial Dilution	10/14/14	11:39
1410051-MS1	Matrix Spike	10/14/14	11:42
C140903-06	14BH-DT-PILOT-BCR2-09021	10/14/14	11:46
1410051-MS2	Matrix Spike	10/14/14	11:49
C140903-10	14BH-DT-PILOT-BCR3-09021	10/14/14	11:52
1410057-CCV1	Calibration Check	10/14/14	11:58
1410057-CCB1	Calibration Blank	10/14/14	12:01
C140903-14	14BH-DT-PILOT-BCR4-09021	10/14/14	12:04
C140903-18	14BH-DT-PILOT-CHIT-090214	10/14/14	12:07
C140903-21	14BH-DT-PILOT-INFL-090214	10/14/14	12:10
C140903-24	14BH-DT-PILOT-INFLD-0902	10/14/14	12:13
C140903-27	14BH-DT-PILOT-NAOH-0902	10/14/14	12:17
C140903-30	14BH-DT-PILOT-POSTE-0902	10/14/14	12:20
C140903-34	14BH-DT-PILOT-POSTI-09021	10/14/14	12:23
C140903-38	14BH-DT-PILOT-SAPS-09021	10/14/14	12:26
1410057-CCV2	Calibration Check	10/14/14	12:32
1410057-CCB2	Calibration Blank	10/14/14	12:35

TDF #: A-046

TechLaw Inc., ESAT Region 8

INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Total Recoverable Sequence ID#:** 1410058

Analysis ID	S-PE DRC-II Water Sample Name	Analysis Date	LSR #: A-046 Analysis Time
1410058-ICV1	Initial Cal Check	10/14/14	11:08
1410058-SCV1	Secondary Cal Check	10/14/14	11:11
1410058-ICB1	Initial Cal Blank	10/14/14	11:14
1410058-CRL1	Instrument RL Check	10/14/14	11:17
1410058-IFA1	Interference Check A	10/14/14	11:21
1410058-IFB1	Interference Check B	10/14/14	11:24
1410058-CCV1	Calibration Check	10/14/14	11:58
1410058-CCB1	Calibration Blank	10/14/14	12:01
1410058-CCV2	Calibration Check	10/14/14	12:32
1410058-CCB2	Calibration Blank	10/14/14	12:35
1410018-BLK2	Blank	10/14/14	12:40
1410018-SRM2	Reference	10/14/14	12:43
C140903-01	14BH-DT-PILOT-BCR1-09021	10/14/14	12:46
1410018-DUP2	Duplicate	10/14/14	12:49
1410058-SRD1	Serial Dilution	10/14/14	12:52
C140903-05	14BH-DT-PILOT-BCR2-09021	10/14/14	12:55
1410018-MS2	Matrix Spike	10/14/14	12:58
C140903-09	14BH-DT-PILOT-BCR3-09021	10/14/14	13:01
410018-MS4	Matrix Spike	10/14/14	13:04
1410058-CCV3	Calibration Check	10/14/14	13:18
1410058-CCB3	Calibration Blank	10/14/14	13:21
C140903-13	14BH-DT-PILOT-BCR4-09021	10/14/14	13:24
C140903-17	14BH-DT-PILOT-CHIT-090214	10/14/14	13:27
C140903-20	14BH-DT-PILOT-INFL-090214	10/14/14	13:30
C140903-23	14BH-DT-PILOT-INFLD-0902	10/14/14	13:33
C140903-26	14BH-DT-PILOT-NAOH-0902	10/14/14	13:36
C140903-29	14BH-DT-PILOT-POSTE-0902	10/14/14	13:40
C140903-33	14BH-DT-PILOT-POSTI-09021	10/14/14	13:43
C140903-37	14BH-DT-PILOT-SAPS-09021	10/14/14	13:46
1410058-CCV4	Calibration Check	10/14/14	13:52
1410058-CCB4	Calibration Blank	10/14/14	13:55

CHAIN OF CUSTODY RECORD

CDM Smith			Danny	T Pilot Test									Anal	/sis					 		
NOTES: Limited sample volumes due to tre Contact: Angela Franden, CDM Smith (406)						200.7 or 200.8	AL), 200.7 or 200.8	ulfate, chloride,	onia												Other Instructions and Notes
SAMPLE NUMBER	DATE	TIME	MATRIX	Preservative	Type & No. of Containers	Total Metals (TAL),	Dissolved Metals (TAL), 200.7 or 200.8	Alkalinity, Anions (sulfate, chloride, fluoride)	Nitrate+Nitrite, Amm												
14BH-DT-PILOT-INFL-090214	9/2/14	10:10	aqueous		3, 125 mL poly	х	Х	Х													
14BH-DT-PILOT-INFLD-090214	9/2/14	10:15	aqueous		3, 125 mL poly	Х	Х	Х													
14BH-DT-PILOT-SAPS-090214	9/2/14	10:25	aqueous		3, 125 mL poly	Х	Х	Х													-
14BH-DT-PILOT-CHIT-090214	9/2/14	10:35	aqueous		3, 125 mL poly	Х	Х	Х													
14BH-DT-PILOT-NAOH-090214	9/2/14	10:45	aqueous	HNO3	3, 125 mL poly	Х	Х	Х													TAL metals = Al, As, Ba, Be, Cd, Ca,
14BH-DT-PILOT-BCR1-090214	9/2/14	10:55	aqueous	(metals), H2SO4	4, 125 mL poly	Х	Х	Х	Х												
14BH-DT-PILOT-BCR2-090214	9/2/14	11:10	aqueous	(nutrients), cool	4, 125 mL poly	Х	Х	Х	Х												
14BH-DT-PILOT-BCR3-090214	9/2/14	11:25	aqueous		4, 125 mL poly	х	Х	Х	Х										_		
14BH-DT-PILOT-BCR4-090214	9/2/14	11:35	aqueous		4, 125 mL poly	Х	Х	Х	Х						-						Cr, Co, Cu, Fe, Pb, Mg, Mn, Ni, K, Ag,
14BH-DT-PILOT-POSTI-090214	9/2/14	11:50	aqueous		4, 125 mL poly	Х	Х	Х	х				_	1					+		Na, Tl, Zn.
14BH-DT-PILOT-POSTE-090214	9/2/14	12:05	aqueous		4, 125 mL poly	Х	х	Х	х												
														_	-						
Relinquished by: (Signature)	Date/Time		Received for	Laboratory by:	(Signature)			-													
Lawn Illand	09/03/14			- "*	· = •																
Received by: (Signature)	Date/Time		Airbill No.(s)					Carr	ier Na	ıme:	FedEx	 		Lab	USEF	PA Lab F	Region 8	,	 		
Kebuy Barthing	9/4/14	10:3	?0																		

Grolo419 C14090/3

ESAT Technical Direction Form

Contract No. EPW13028 EPA Region 8

Site ID: USSIN	Date Issued: 5	/29/2014 Date
TDF ID: A-046	Date Updated:	Closed By:
Details: The Cont Superfun during th associated Anton/E Samples of analyzed ESAT sh CDI 50 V Hele 406-	ughesville Treatability Study ractor shall analyze several water samples assed site as indicated in the Analytical Information 2014 field season starting in mid-June though with this project averaging approximately 10 rin Louden of CDM Smith. designated as influent samples (-INF) are expense.	ociated with the treatability study at the Barker-Hughesville on Section. The samples will be sent to the ESAT R8 Lab the early October 2014. There will be 9 sampling events 0 samples per an event. The samples will be collected by Nick ected to have high metal concentrations and should be 1 y high concentrations may be reported from the 200.7 analyses.
	abtask 02b: Inorganic Chemistry	
Analytical Information MATRIX ✓ Water ☐ Soils	ation:	
	I DOC ☑ Alk ☑ Chloride ☑ Sulfate ☑ Ammonia and report NO2 and NO3 as NO2	
200.7: ☐ Ag ☑ Mn ☐ 200.8: ☐ Ag ☐ Se ☐	Mo □ Na □ Ni □ Pb □ Sb □ Se □	c) Cd Co Cr Cu Fe K Mg Sr Ti Ti V Zn SiO2 Cr Cu Mn Mo Ni Pb Sb
FIBERS □ PLM □ TEM		
Deliverables ID	Description	Due Date Submission Date
1 Provide final after delivery	deliverable package to Task Monitor no later of samples.	than 30 days

ANALYTICAL SUMMARY REPORT

September 22, 2014

CDM Federal Programs 555 17th St Ste 1100 Denver, CO 80202

Work Order: H14090301 Quote ID: H823 - Baker-Hughsville Superfund Site

Project Name: Barker Hughsville - Danny T

Energy Laboratories Inc Helena MT received the following 11 samples for CDM Federal Programs on 9/17/2014 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
H14090301-001	14BH-DT-PILOT-INFL- 091614	09/16/14 11:	:05 09/17/14	Aqueous	Acidity, Total as CaCO3 Phosphorus, Orthophosphate as P
H14090301-002	14BH-DT-PILOT-SAPS- 091614	09/16/14 11:	:30 09/17/14	Aqueous	Same As Above
H14090301-003	14BH-DT-PILOT-CHIT- 091614	09/16/14 11:	:45 09/17/14	Aqueous	Same As Above
H14090301-004	14BH-DT-PILOT-NAOH- 091614	09/16/14 12:	:00 09/17/14	Aqueous	Same As Above
H14090301-005	14BH-DT-PILOT-BCR1- 091614	09/16/14 12:	:15 09/17/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Phosphorus, Orthophosphate as P Sulfide, Iodine Titrimetric
H14090301-006	14BH-DT-PILOT-BCR2- 091614	09/16/14 12:	:30 09/17/14	Aqueous	Same As Above
H14090301-007	14BH-DT-PILOT-BCR3- 091614	09/16/14 12:	:45 09/17/14	Aqueous	Same As Above
H14090301-008	14BH-DT-PILOT-BCR4- 091614	09/16/14 13:	:00 09/17/14	Aqueous	Same As Above
H14090301-009	14BH-DT-PILOT-BCR4D- 091614	- 09/16/14 13:	:05 09/17/14	Aqueous	Same As Above
H14090301-010	14BH-DT-PILOT-POSTI- 091614	09/16/14 13:	:20 09/17/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Sulfide, Iodine Titrimetric
H14090301-011	14BH-DT-PILOT-POSTE- 091614	- 09/16/14 13:	:30 09/17/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Sulfide, Methylene Blue Colorimetric

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Report Date: 09/22/14

CLIENT: CDM Federal Programs

Project: Barker Hughsville - Danny T

Work Order: H14090301 CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Barker Hughsville - Danny T

Report Date: 09/22/14 **Collection Date:** 09/16/14 11:05

Lab ID: H14090301-001

Date Received: 09/17/14

Client Sample ID: 14BH-DT-PILOT-INFL-091614

Matrix: AQUEOUS

	MCL/										
Analyses	Result	Units	Qual	RL	QCL DF	Method	Analysis Date / By				
INORGANICS											
Acidity, Total as CaCO3	670	mg/L	D	4.0	1	A2310 B	09/18/14 10:57/SRW				
NUTRIENTS											
Phosphorus, Orthophosphate as P	0.338	mg/L		0.005	2	E365.1	09/18/14 09:29/cmm				

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Report Date: 09/22/14 **Collection Date:** 09/16/14 11:30

Project: Barker Hughsville - Danny T **Lab ID:** H14090301-002

Date Received: 09/17/14

Client Sample ID: 14BH-DT-PILOT-SAPS-091614

Matrix: AQUEOUS

Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	280	mg/L	D	4.0		1	A2310 B	09/18/14 11:03/SRW
NUTRIENTS Phosphorus, Orthophosphate as P	0.115	mg/L		0.005		1	E365.1	09/18/14 09:19/cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Barker Hughsville - Danny T

Collection Date: 09/16/14 11:45

Lab ID: H14090301-003

Date Received: 09/17/14

Report Date: 09/22/14

Client Sample ID: 14BH-DT-PILOT-CHIT-091614

Matrix: AQUEOUS

Analyses	Result	Units	Qual	RL	MCL/ QCL	DF	Method	Analysis Date / By
INORGANICS								
Acidity, Total as CaCO3	ND	mg/L	D	4.0		1	A2310 B	09/18/14 11:07/SRW
NUTRIENTS								
Phosphorus, Orthophosphate as P	7.64	mg/L	D	0.02		25	E365.1	09/18/14 09:20/cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Report Date: 09/22/14

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Barker Hughsville - Danny T Collection Date: 09/16/14 12:00

Lab ID: H14090301-004 **Date Received:** 09/17/14

Client Sample ID: 14BH-DT-PILOT-NAOH-091614 Matrix: AQUEOUS

	MCL/											
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By				
INORGANICS Acidity, Total as CaCO3	ND	mg/L	D	4.0		1	A2310 B	09/18/14 11:11/SRW				
NUTRIENTS Phosphorus, Orthophosphate as P	0.014	mg/L		0.005		1	E365.1	09/18/14 09:21/cmm				

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Barker Hughsville - Danny T

Report Date: 09/22/14 **Collection Date:** 09/16/14 12:15

Lab ID: H14090301-005

Date Received: 09/17/14

Client Sample ID: 14BH-DT-PILOT-BCR1-091614

Matrix: AQUEOUS

Analyses	MCL/							
	Result	Units	Qual	RL	QCL DF	Method	Analysis Date / By	
INORGANICS								
Acidity, Total as CaCO3	ND	mg/L	D	4.0	1	A2310 B	09/18/14 11:14/SRW	
Sulfide	19	mg/L		1	1	A4500-S F	09/19/14 13:00/eli-b2	
AGGREGATE ORGANICS								
Oxygen Demand, Biochemical (BOD)	64	mg/L		30	1	A5210 B	09/17/14 15:51/SRW	
NUTRIENTS								
Phosphorus, Orthophosphate as P	8.96	mg/L	D	0.02	25	E365.1	09/18/14 09:24/cmm	

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Report Date: 09/22/14

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Barker Hughsville - Danny T Collection Date: 09/16/14 12:30

Lab ID: H14090301-006 **Date Received:** 09/17/14

Client Sample ID: 14BH-DT-PILOT-BCR2-091614 Matrix: AQUEOUS

Analyses	MCL/							
	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By
INORGANICS								
Acidity, Total as CaCO3	ND	mg/L	D	4.0		1	A2310 B	09/18/14 11:19/SRW
Sulfide	29	mg/L		1		1	A4500-S F	09/19/14 13:00/eli-b2
AGGREGATE ORGANICS								
Oxygen Demand, Biochemical (BOD)	54	mg/L		30		1	A5210 B	09/17/14 15:59/SRW
NUTRIENTS								
Phosphorus, Orthophosphate as P	2.71	mg/L	D	0.01		10	E365.1	09/18/14 09:25/cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Report Date: 09/22/14 **Collection Date:** 09/16/14 12:45

Project: Barker Hughsville - Danny T

Date Received: 09/17/14

Lab ID: H14090301-007

Matrix: AQUEOUS

Client Sample ID:	14BH-DT-PILOT-BCR3-091614
-------------------	---------------------------

Analyses	MCL/							
	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By
INORGANICS								
Acidity, Total as CaCO3	ND	mg/L	D	4.0		1	A2310 B	09/18/14 11:23/SRW
Sulfide	53	mg/L		1		1	A4500-S F	09/19/14 13:00/eli-b2
AGGREGATE ORGANICS								
Oxygen Demand, Biochemical (BOD)	130	mg/L		30		1	A5210 B	09/17/14 16:04/SRW
NUTRIENTS								
Phosphorus, Orthophosphate as P	14.7	mg/L	D	0.05		50	E365.1	09/18/14 09:26/cmm

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Report Date: 09/22/14 **Collection Date:** 09/16/14 13:00

Project: Barker Hughsville - Danny T

Date Received: 09/17/14

Lab ID: H14090301-008

Matrix: AQUEOUS

Client Sample ID: 14BH-DT-PILOT-BCR4-091614

	MCL/								
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By	
INORGANICS									
Acidity, Total as CaCO3	ND	mg/L	D	4.0		1	A2310 B	09/18/14 11:26/SRW	
Sulfide	35	mg/L		1		1	A4500-S F	09/19/14 13:00/eli-b2	
AGGREGATE ORGANICS									
Oxygen Demand, Biochemical (BOD)	67	mg/L		30		1	A5210 B	09/17/14 16:13/SRW	
NUTRIENTS									
Phosphorus, Orthophosphate as P	1.28	mg/L		0.005		5	E365.1	09/18/14 09:27/cmm	

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Report Date: 09/22/14 **Collection Date:** 09/16/14 13:05

Project: Barker Hughsville - Danny T

Date Received: 09/17/14

Lab ID: H14090301-009

Matrix: AQUEOUS

Client Sample ID:	14BH-DT-PILOT-BCR4D-091614
-------------------	----------------------------

	MCL/								
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By	
INORGANICS									
Acidity, Total as CaCO3	ND	mg/L	D	4.0		1	A2310 B	09/18/14 11:29/SRW	
Sulfide	34	mg/L		1		1	A4500-S F	09/19/14 13:00/eli-b2	
AGGREGATE ORGANICS									
Oxygen Demand, Biochemical (BOD)	62	mg/L		30		1	A5210 B	09/17/14 16:21/SRW	
NUTRIENTS									
Phosphorus, Orthophosphate as P	1.22	mg/L		0.005		5	E365.1	09/18/14 09:28/cmm	

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Report Date: 09/22/14 **Collection Date:** 09/16/14 13:20

Project: Barker Hughsville - Danny T

Date Received: 09/17/14

Lab ID: H14090301-010

Matrix: AQUEOUS

Client Sample ID: 14BH-DT-PILOT-POSTI-091614

	MCL/							
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By
INORGANICS								
Acidity, Total as CaCO3	ND	mg/L	D	4.0		1	A2310 B	09/18/14 11:34/SRW
Sulfide	30	mg/L		1		1	A4500-S F	09/19/14 13:00/eli-b2
AGGREGATE ORGANICS								
Oxygen Demand, Biochemical (BOD)	67	mg/L		30		1	A5210 B	09/17/14 16:33/SRW

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs Report Date: 09/22/14

Project: Barker Hughsville - Danny T **Collection Date:** 09/16/14 13:30

Lab ID: H14090301-011 **Date Received:** 09/17/14

Client Sample ID: 14BH-DT-PILOT-POSTE-091614 Matrix: AQUEOUS

	MCL/							
Analyses	Result	Units	Qual	RL	QCL DF	Method	Analysis Date / By	
INORGANICS								
Acidity, Total as CaCO3	ND	mg/L	D	4.0	1	A2310 B	09/18/14 11:38/SRW	
Sulfide	ND	mg/L	D	0.2	10	A4500-S D	09/19/14 13:15/eli-b2	
AGGREGATE ORGANICS								
Oxygen Demand, Biochemical (BOD) No BOD dilution depleted greater than 2.0 mg/L D	<6 00.	mg/L		6	1	A5210 B	09/17/14 16:44/SRW	

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/22/14Project:Barker Hughsville - Danny TWork Order:H14090301

Analyte	Result Units	RL %REC Low Limit High Limit	RPD RPDLimit Qual
Method: A2310 B			Batch: H140918A
Lab ID: H14090301-001ADUP	Sample Duplicate	Run: PH_140918A	09/18/14 10:59
Acidity, Total as CaCO3	700 mg/L	4.0	4.0 20
Lab ID: H14090301-011ADUP	Sample Duplicate	Run: PH_140918A	09/18/14 11:43
Acidity, Total as CaCO3	ND mg/L	4.0	20
Lab ID: LCS1409180000	Laboratory Control Sample	Run: PH_140918A	09/18/14 10:55
Acidity, Total as CaCO3	950 mg/L	4.0 97 90 110	
Lab ID: MBLK1409180000	Method Blank	Run: PH_140918A	09/18/14 10:53
Acidity, Total as CaCO3	3 mg/L		

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/22/14Project:Barker Hughsville - Danny TWork Order:H14090301

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-S D								Batch: B_	_R230858
Lab ID: Sulfide	MB-R230858	Method Blank ND	mg/L	0.002		Run: SUB-	B230858		09/19	9/14 13:15
Lab ID: Sulfide	LCS-R230858	Laboratory Cor 0.231	ntrol Sample mg/L	0.040	112	Run: SUB-	B230858 130		09/19	9/14 13:15
Lab ID: Sulfide	B14091665-002AMS	Sample Matrix 0.261	Spike mg/L	0.040	107	Run: SUB-	B230858 130		09/19	9/14 13:15
Lab ID: Sulfide	B14091665-002AMSD	Sample Matrix 0.273	Spike Duplicate mg/L	0.040	113	Run: SUB-	B230858 130	4.7	09/19 20	9/14 13:15

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/22/14Project:Barker Hughsville - Danny TWork Order:H14090301

Analyte		Result Units	RL	%REC Lov	w Limit High	Limit R	PD RPDLimit	Qual
Method:	A4500-S F						Batch: I	B_R230859
Lab ID: Sulfide	MB-R230859	Method Blank ND mg/L	0.5	Ru	ın: SUB-B2308	359	09/-	19/14 13:00
Lab ID: Sulfide	LCS-R230859	Laboratory Control Sample 19.7 mg/L	1.0	Ru 100	un: SUB-B2308 70	359 130	09/	19/14 13:00
Lab ID: Sulfide	H14090301-005C	Sample Matrix Spike 36.9 mg/L	1.0	Ru 90	un: SUB-B2308 80	359 120	09/	19/14 13:00
Lab ID: Sulfide	H14090301-005C	Sample Matrix Spike Duplicate 37.2 mg/L	1.0	Ru 91	un: SUB-B2308 80		09/ ⁻ 0.9 20	19/14 13:00

RL - Analyte reporting limit.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/22/14Project:Barker Hughsville - Danny TWork Order:H14090301

Analyte		Result Units	RL	%REC Low	Limit	High Limit	RPD	RPDLimit	Qual
Method:	A5210 B						Batch	n: 140917_1_	BOD5-W
Lab ID: Oxygen De	Dil-H201_140917 mand, Biochemical (BOD)	Dilution Water Blank ND mg/L	2.0	Run	: BOD- 0	SKALAR_1409 0.2	17A	09/17	7/14 14:45
Lab ID: Oxygen De	GGA1_140917 mand, Biochemical (BOD)	Laboratory Control Sample 220 mg/L	52	Run 109	: BOD- 85	SKALAR_1409 115	17A	09/17	7/14 14:56
Lab ID: Oxygen De	H14090301-009ADUP mand, Biochemical (BOD)	Sample Duplicate 60 mg/L	31	Run	: BOD- 90	SKALAR_1409 110	17A 3.0	09/17 10	7/14 16:28

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:09/22/14Project:Barker Hughsville - Danny TWork Order:H14090301

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E365.1						Analyt	ical Run	: FIA202-HE_	_140918A
Lab ID:	ICV	Initial Calibrati	on Verification St	andard					09/18	/14 09:11
Phosphorus,	Orthophosphate as P	0.238	mg/L	0.0050	95	90	110			
Lab ID:	ICB	Initial Calibrat	on Blank, Instrun	nent Blank					09/18	/14 09:12
Phosphorus,	Orthophosphate as P	-0.000260	mg/L	0.0050		0	0			
Lab ID:	ccv	Continuing Ca	libration Verificat	ion Standa	ırd				09/18	/14 09:15
Phosphorus,	Orthophosphate as P	0.105	mg/L	0.0050	105	90	110			
Method:	E365.1								Batch:	R100660
Lab ID:	LFB	Laboratory Fo	rtified Blank			Run: FIA20	02-HE_140918A	<u>l</u>	09/18	/14 09:13
Phosphorus,	Orthophosphate as P	0.199	mg/L	0.0050	100	90	110			
Lab ID:	H14090301-004BMS	Sample Matrix	Spike			Run: FIA20	02-HE_140918A	L	09/18	/14 09:22
Phosphorus,	Orthophosphate as P	0.149	mg/L	0.0050	68	90	110			S
Lab ID:	H14090301-004BMSD	Sample Matrix	Spike Duplicate			Run: FIA20	02-HE_140918A	ı	09/18	/14 09:23
Phosphorus,	Orthophosphate as P	0.149	mg/L	0.0050	68	90	110	0.2	20	S

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Login completed by: Amanda B. Blackburn

Workorder Receipt Checklist

CDM Federal Programs

H14090301

Date Received: 9/17/2014

Reviewed by:	BL2000\sdull		R	eceived by: kjw	
Reviewed Date:	9/18/2014			Carrier Hand Del name:	
Shipping container/coole	r in good condition?	Yes ✓	No 🗌	Not Present	
Custody seals intact on a	Yes	No 🗌	Not Present ✓		
Custody seals intact on a	Ill sample bottles?	Yes	No 🗌	Not Present ✓	
Chain of custody present	Yes 🗸	No 🗌			
Chain of custody signed	Yes 🗸	No 🗌			
Chain of custody agrees	Yes 🗸	No 🗌			
Samples in proper container/bottle?		Yes 🗸	No 🗌		
Sample containers intact	?	Yes 🗸	No 🗌		
Sufficient sample volume	for indicated test?	Yes 🗸	No 🗌		
	in holding time? e considered field parameters Sulfite, Ferrous Iron, etc.)	Yes 🗸	No 🗌		
Temp Blank received in a	all shipping container(s)/cooler(s)?	Yes 🗸	No 🗌	Not Applicable	
Container/Temp Blank te	mperature:	5.1 °C No Ice			
Water - VOA vials have z	ero headspace?	Yes	No 🗌	No VOA vials submitted ✓	
Water - pH acceptable up	pon receipt?	Yes 🗹	No 🗌	Not Applicable	

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

None

_
'n
ō
20
ge
Ъ

LABORATORIES Chain of Cus	tody a	nd	A	naly	/tic	al F	Requ	ıes	t R	ec	ord		Do	ge 1 of 2
Company Name:	PLEASE Project Na	PRI	NT	(Prov	vide a	s mu	ch info	ormat	tion a	as po	ssible	e.)	га	ge or
CDM SMITH	1		• • • • •	, , Спп	II, EIC.						Sam	ple Origin	EPA/S	State Compliance:
Report Mail Address (Required):	BARKER	. Hu	<u>1GH</u>	<u>VSVI</u>	LLE	<u> - Da</u>	LNN	\mathcal{T}			State	* MT	Yes [] No []
,	Contact Na	Contact Name: Phone/Fax:							Cell:		Sampl	ier: (Please Print)		
	ANGELA FRANDSEN (406) 441-1435									ــــــــــــــــــــــــــــــــــــــ				
Ma Hand C = 11 1 1 2	Invoice Cor	ntact	& Pt	NODO.		106)	441-	145	<u> </u>				IOM	ASKIN
No Hard Copy Email: frandsenak @ cdmsmith.com	SAME					F				Purci			/Bottle Order:	
Invoice Address (Required):	JAME	1												
	MO "	A		LVS	R E		EST					Contact ELI prior	to	Shipped by:
	sis of sis					7-7			Т			RUSH sample su	bmittal	Hand Cooler ID(s):
No Hard Copy Email: SAME	ate OS Early Rain Parks		<u> </u>		ļu		İ			AT)	R	for charges and scheduling – See		Cooler ib(s):
Special Popost/F	W S			┆ ┆,	£	1 1			甲	T) E		Instruction Page		<i>'</i>
Special Report/Formats:	Number of Containers Sample Type: A W S V B O DV Air Water Soils/Soilds Vegetation Bioassay Other DW - Drinking Water				FHOS PHATE				ATTACHED	Standard Turnaround (TAT)	U	Comments:		Receipt Temp TE
DW EDD/EDT _(Electronic Data)	5 2 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			!	8					Jarc	U	1000 mL	i	_ <i>5,</i> 1°c
State: Format: EXCEL	Age T		w		7				A	Tur	_	BOTTLES F	A12	On Ice: Y
State: LEVEL IV Other: NELAC	Ne Kei	ļ	2	14	4				SEE	₽	S			Custody Seal
SAMPLE IDENTIFIED	ν, I	Δ	4	2 3	2				S	g l		COMBINED		On Bottle Y N On Cooler Y N
SAMPLE IDENTIFICATION (Name, Location, Interval, etc.) Collection Date Time	MATRIX	BOD	SULFIDE	ACIDITY	ĭ					Sta	н	BOD + ACID	ITY	Intact y N
	MAIRIA	tt	Ŋ	40	7			1 1					1	Signature
4BH-DT-PILOT-INFL-091614 9/16/14 11:05	2, W		1	$X \mid \Sigma$				† †	-	_				Match
4BH-DT-PILOT-SAPS-091614 9(16/14 11:30				\rightarrow	}-	╂┷┼		+		+				M14090301
MOU ST-SI - CONTRACT IN I	2, W	-	;		<u> </u>						İ			
184 - OT TILOT - CHIT-091614 9116/14 11:45	2, W			X X										Ŏ .
4BH-DT-PILOT-NACH-091614 9/16/14 12:00	2, W	j		XX			7	 				· · · · · · · · · · · · · · · · · · ·	:	<u>~</u>
1BH-DT-PILUT-BCR1-0916H 9/16/14 12:15	3.W	V			}			\vdash						<u> </u>
BU-DT-PUA-BOAR ASSESS OF		\rightarrow	\mathcal{H}		-	_			_	_				<i>M</i>
PU-DE 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3,W)	X/	X	X X										
BH-DT-9107-8CR3-091614 9/16/14 12:45	3, W)	X	$\langle 1 \rangle$	$\langle X \rangle$	7-1				_ -					
BH-DT-PILOT-BCR4-091674 9/16/14 13:00	3,W)	入		***	+	+-	-			+				
24 - NT - n 1 - NT - N 0 0 0 1 1 1		\rightarrow	\mathbb{X}	\mathbb{R}	} —↓	_			_					
W-DT-Next marrie agents a	3,W)	$\sqrt{2}$	$\langle \rangle$	$\langle X \rangle$	L		} }				- 1			
H-DT-PICOT-POSTI-09/16/14 13:20 ISTODY Relinquished by (print): Date/Time:	2,W >	$\langle \rangle$	$\langle \rangle$							\neg				
TOM ASKIN WITH TO	Signature	<u>`</u>	_ <u>-</u>	<u> </u>	Re	ceived b	/ (print):			 Dat	e/Time:		Signatu	re:
Relinquished by (print): Date/Time:	Signature lehr			- 5.										
		Received by (print): Date/1					Date/Time: Signature:							
gned Sample Disposal: Return to Client:	Lab Disposal:				12	elved b	y Laboral	ory:	Δ.		/Time:	- 17	3 ignatu	re// , 1
In certain circumstances, samples submitted to Energy I	can Dispusal:				_11	<u>ztny</u>	Wie	COMO	<u> </u>	9-1	<u>7-14</u>	13:14 has	gignatu 44-7	10 Wellen

This serves as notice of this possibility. All sub-contracted data will be clearly notated on your analytical report.

Visit our web site at www.energylab.com for additional information, downloadable fee schedule, forms, and links.

f 21
₹
6 5
gg
ш

mpany Name:			PLEASE	PRI	NT	(Pr	nvide	ae m	uch inf	orma	ation	as po	ossibi	e.)	, u;	ge <u>2</u> of <u>2</u>	
DM SMITH			i iojeci iva	me, i	F 442	, Per	mit, E	tc.					Sam	ple Origin	EPA/S	tate Compliance:	
port Mail Address (Required):			BARKET	LH	VCH	lesv				τ	_		State	e: MT	Yes [] No 🗆	
to (Hodelica).			Contact Na					one/Fa			-		Cell:		Sample	er: (Please Print)	
			ANGEL	t Fi	RAN	IDSE	M	(466)	441-	143	5				Tak	1 ASKM	
la Hard Comu Euro I C.	1.0-1	*11	Invoice Co										TPurc	hase Order:			
lo Hard Copy Email: francis ice Address (Required):	AAK (Cams	nuth.com	SAM	E									, 410	, aronado oragi.		Quote/Bottle Order:	
reduired):				_		U 777			WEST			Г		Contact ELI prior	to	Shipped by:	
			D DW		Т <u></u>	1	1	<u>जिल्ल</u>)		-	RUSH sample su		Hand	
			in Section in the sec									Ē	R	for charges and scheduling – See		Cooler ID(s):	
Hard Copy Email: SAMT	<u> </u>		of Containers A W S V B O DV Solls/Solids Bioassay Other Iking Water								一一点	(TAT)	'`	Instruction Page	•	Y	
cial Report/Formats:			A Sole A								ACHED	χ	U	Comments:		Receipt Temp	
DW DOTWARE	EDD/EDT(E	lectronic Data)	Tion ate		1						ATTA	Turnaround		1060 ML		<u>5.1 °</u> c	
OTAN/AAAA I B	CEL	Air V		(u	لدا							S	BOTTLES F	ol	On Ice: Y		
State: LEVEL IV Other: NELAC			Number Sample Type Air Wat Vegetation DW - Dr		ヨロナカクタ	177					III.	Standard)	COMBINED		Custody Seal On Bottle Y	
AMPLE IDENTIFICATION		T		40	ť	9					ြလ	tanc	١.,	BOD + ACI		On Cooler: Y	
me, Location, Interval, etc.)	Collection Date	Collection Time	MATRIX	BC	3	40						S	Н	1		Intact Y Signature	
-OT-PILOT-POSTE-09161	4 9/16/14	13:30	2	V	V		-+	_	 -		-		-			Match Y	
	1 11/461-1	10.50	2, W	Λ	Δ	Δ			 	_ _	_					\$414090301	
	 													1			
																0	
																<u></u>	
											+ -					Š	
				- +			-	_		+-	-						
	 						- -				-				<u></u>	0	
				-	- 4		_	<u> </u>									
											1						
					1		+	+-		+	++	_				3	
ody Relinquished by (print):	Oate/Tim	40 13:14	Signer	re:	<u>つ</u> し			Receive	ed by (print):		D;	ate/Time:		Signatu	Te:	
Relinquished by (print):	7 (C) 13:14	Signatu		Js	h	<u>-</u>	Receive	ed by (print	· -			- A - / T'	· · · · · · · · · · · · · · · · · · ·				
Г be								11000146	o by (bunt	<i>j</i> .		Ų	ate/Time:		Signatu	re:	
Sample Disposal: Ri	eturn to Client:		Lab Disposa	l.	,			Kacely A A H	d by Labo	atory:	1		ite/Time:	14 13:14	Signatu	TA WILL	

U.S. Environmental Protection Agency Region 8 Technical and Management Services

Laboratory Services Program

Certificate of Analysis

Ref: 8TMS-L

MEMORANDUM

Date: 12/01/14

Subject: Analytical Results--- Barker-Hughesville Treatability 2 SEP 2014 A046 / A-046

From: Don Goodrich; EPA Region 8 Analytical Chemistry WAM

To: Roger Hoogerheide

Superfund

8 MO

Received Sample Set(s), [Work Order : Date Received]:

[C140918 : 09/29/2014]

Attached are the analytical results for the samples received from the Barker-Hughesville_Treatability 2_SEP 2014_A046 sampling event, according to TDF A-046. All analyses were performed within their method specified holding times unless otherwise noted in the following narrative.

These samples were prepared, analyzed, and verified by the Environmental Services Assistance Team Laboratory (ESAT) according to the requirements of the Technical Direction Form (TDF).

Note: The laboratory herewith transmits this deliverable to the program/project partner for determination of "final data usability" which may include data validation and data quality assessment per and in accordance with EPA QA/G-8, *Guidance on Environmental Data Verification and Data Validation*, November 2002, EPA/240/R-02/004. Laboratory data qualifiers are applied based on the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*, October 2004, referred to as "NFGI".

Laboratory policy is to dispose of any remaining sample 60 days after data analysis packages are delivered to EPA. If you would like the laboratory to retain the samples for a period longer than 60 days, please contact Don Goodrich within the 60 day period at (303) 312-6687.

Project Name: Barker-Hughesville_Treatability 2_SEP 2014_A046

TDF #: A-046

Case Narrative

C140918

Quality Assessment: Unless indicated by exception, the QA/QC associated with this sample set

produced data within the TDF-specified criteria.

Holding Times: All samples were analyzed within their method-specified technical holding

time(s).

1. Initial and Continuing calibration blanks (ICBs and CCBs).

Exceptions: None.

2. Preparation (PB) / Method blanks (MB)

Exceptions: None.

3. Interference Checks (ICSA / ICSAB) for ICP-MS and ICP-OE analyses only.

Exceptions: None.

4. Initial and Continuing calibration verification analyses (ICVs, SCVs and CCVs).

Exceptions: In ICP-OE sequence 1411092, iron recovered 1% below acceptable limits in the ICV.

No qualifiers were assigned since all other QC requirements for iron were met.

5. Laboratory Control Sample (LCS) or second source analysis or SRM.

Exceptions: None.

Laboratory Fortified blank (LFB) / Blank spike (BS), same source as used for the matrix spikes.
 PBS performed with analyses/methods requiring preparation or digestion prior to analysis.

Exceptions: None.

7. Contract Reporting Detection Limit Standard, labeled as CRA, CRDL or CRL.

Exceptions: None.

- Laboratory Duplicate (DUP). "Source" identifies field sample duplicated in the laboratory. If either
 the "source" or the duplicate result is <5X the reporting limit, the %D limit of 20% does not apply.
 Exceptions: None.
- Laboratory Matrix Spike (MS) and spike duplicate (MSD). "Source" defines original field sample fortified prior to analysis. Percent recovery (%R) limits do not apply when sample concentration(s) exceed the corresponding analyte spike level by a factor of 4 or greater. Exceptions: None.
- 10. Serial Dilution sample analysis (SRD). "Source" is parent field sample diluted 1:5 in the laboratory. Performed for ICP-OE and ICP-MS metals analyses. Percent difference (%D) limits do not apply when analyte concentration(s) are below 50x the source sample's MDL (or 10x it's PQL). Exceptions: None.
- 11. Internal standards, criteria specified for ICP-MS analyses only, monitored at the instrument. Exceptions: Scandium was high for samples C140918-40, -43, -68, -71. Affected analytes (copper and nickel), were "J" flagged as estimated. Suspect matrix interference (high manganese).
- 12. Any calibration using more than two-points produced a correlation coefficient equal to or greater than

Exceptions: None.

Project Name: Barker-Hughesville_Treatability 2_SEP 2014_A046

TDF #: A-046

Acronyms and Definitions:

ESAT Environmental Services Assistance Team

J Data Estimated qualifier (also applied to all data less than PQL, greater than or equal to MDL)

MDL Method Detection Limit

PQL Practical Quantitation Limit, also known as reporting limit.

RPD Relative Percent Difference (difference divided by the mean)

%D Percent difference, serial dilution criteria unit, difference divided by the original result.

%R Percent recovery, analyzed (less sample contribution) divided by true value

Analyte NOT DETECTED at or above the Method Detection Limit (MDL)

mg/L Parts per million (millligrams per liter). Solids equivalent = mg/Kg.

ug/L Parts per billion (micrograms per liter). Solids equivalent = ug/Kg.

NR No Recovery (matrix spike) - Often seen for calcium/magnesium when their concentration exceeds the spike level by > 4x.

NFGI USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

RE Sample Re-analysis. Usually seen on raw data and sequences for required sample dilutions due to over-range analytes.

U Analyte not detected at or above MDL qualifier

D Diluted value qualifier.

Method(s) Summary:

As defined in the Technical Direction Form (TDF), some or all of the methods listed below were used for the determination of the reported target analytes.

From EPA's Methods for the Determination of Metals in Environmental Samples, Supplement I, May 1994, dissolved, total, and/or total recoverable metals were determined by:

- Method 200.7 / 6010B using a PE Optima ICP -OE (ICP).
- Method 200.8 / 6020 using a Perkin -Elmer Elan 6000 ICP-MS.
- Method 200.2 for total recoverable metals (only) dige stion.
- Method 245.1 using a Perkin -Elmer FIMS CVAA (aqueous mercury only).

From Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, Method 2340B was used for the calculated hardness determination. Hardness is reported as mg (milligram) equivalent CaCO₃ per liter (L) determined as follows:

Calculated hardness = 2.497 * (Calcium, mg/L) + 4.118 * (Magnesium, mg/L).

From EPA's Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW -846,

- Method 3015A was used for microwave assisted total metals digestion.
- Method 7473 was used for mercury in solids.

From EPA's Determination of Inorganic Anions by Ion Chromatography, Revision 2.1, 1993, Method 300.0 was used to determine the anions.

From EPA's Methods for Chemical Analysis of Water and Wastes, March 1983:

- Method 310.1 was followed for the alkalinity determination.
- Method 160.1 was followed for gravimetric total dissolved solids (TDS) determination.
- Method 160.2 was used for gravimetric total suspended sol ids (TSS) determination.
- Method 415.3 was used for total organic carbon (TOC) determination using either an Apollo 9000 or Phoenix 8000 Non-Dispersive IR (NDIR) system. Also known as dissolved organic carbon (DOC) when performed on the dissolved sample fraction.

The quality control procedures listed in the TDF request were utilized by ESAT to verify accuracy of the results and to evaluate any matrix interferences.

Project Name: Barker-Hughesville_Treatability 2_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR1-091614 **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/16/14 12:15

Workorder: Lab Number:

C140918

C140918-02

2	Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	< 1250	U	ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	80700		ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	< 100	U	ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	< 10.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	777		mg/L	8	5	11/21/2014	SV	1411085

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: C140918 14BH-DT-PILOT-BCR1-092314 **Date / Time Sampled:** 09/23/14 12:45 Workorder:

EPA Tag No.: Matrix: Water C140918-06 Lab Number:

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	< 1250	U	ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	84500		ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	< 100	U	ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	< 10.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	832		mg/L	8	5	11/21/2014	SV	1411085

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-091614 EPA Tag No.:

Date / Time Sampled: Matrix: Water 09/16/14 12:30

Workorder: C14
Lab Number:

C140918

C140918-10

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	< 1250	U	ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	96000		ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	< 100	U	ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	5.93	J	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	653		mg/L	8	5	11/21/2014	SV	1411085

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 13:10

Workorder: Lab Number:

C140918

C140918-14 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	< 1250	U	ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	90200		ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	< 100	U	ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	6.19	J	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	662		mg/L	8	5	11/21/2014	SV	1411085

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR3-091614 **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/16/14 12:45

Workorder: Lab Number:

C140918

C140918-18

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	< 1250	U	ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	48100		ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	< 100	U	ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	5.37	J	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	7.39	J	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	798		mg/L	8	5	11/21/2014	SV	1411085

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR3-092314 **Station ID: EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/23/14 13:25

Workorder: C140918

Lab Number: C140918-22

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	< 1250	U	ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	54100		ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	< 100	U	ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	6.56	J	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	7.69	J	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	767		mg/L	8	5	11/21/2014	SV	1411085

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR4-091614 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/16/14 13:00

Workorder: C14

C140918

Lab Number: C140918-26

5	Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	< 1250	U	ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	55600		ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	50.4	J	ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	6.29	J	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	284		mg/L	8	5	11/21/2014	SV	1411085

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR4-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 13:45

Workorder: C Lab Number:

C140918

C140918-30

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	< 1250	U	ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	55500		ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	159		ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	7.68	J	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	289		mg/L	8	5	11/21/2014	SV	1411085

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR4D-091614 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/16/14 13:05

Workorder: C14
Lab Number: C

C140918

C140918-34

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	< 1250	U	ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	56600		ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	63.6	J	ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	5.97	J	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	284		mg/L	8	5	11/21/2014	SV	1411085

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-CHIT-091614

EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/16/14 11:45

Workorder: (
Lab Number:

C140918

C140918-38 A

MDL Dilution Method **Parameter** Analyzed By Batch Qualifier Units Results **Factor** 200.7 Aluminum 5 11/21/2014 SV1411085 < 250 U ug/L 100 5 200.7 Iron 3120 ug/L 500 11/21/2014 SV1411085 10.0 200.7 Manganese 63400 ug/L 5 11/21/2014 SV1411085 200.7 Zinc 5 11/21/2014 SV1411085 < 100 U 50.0 ug/L 7.97 J 5.00 200.8 Arsenic ug/L 10 11/21/2014 SV1411086 200.8 Cadmium 10 11/21/2014 SV1411086 U ug/L 1.00 < 2.00 200.8 10 11/21/2014 SV 1411086 Copper 5.00 < 10.0 U ug/L 200.8 Lead 10 11/21/2014 SV1411086 < 2.00 U ug/L 1.00 Nickel 200.8 10 11/21/2014 SV1411086 5.00 < 10.0 U ug/L 2340B Hardness 871 mg/L 8 5 11/21/2014 SV1411085

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-CHIT-092314 EPA Tag No.:

Date / Time Sampled:
Matrix: Water

09/23/14 12:20

Workorder: C140918

Lab Number: C140918-41

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	626		ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	59100		ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	90800		ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	< 100	U	ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	< 10.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	6.64	J	ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	637		mg/L	8	5	11/21/2014	SV	1411085

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFL-091614 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/16/14 11:05

Workorder: (
Lab Number:

C140918

C140918-44 A

MDL Dilution Method **Parameter** Analyzed Results Qualifier Units By Batch Factor 200.7 Aluminum 12900 ug/L 100 5 11/21/2014 SV 1411085 200.7 Iron 140000 ug/L 500 5 11/21/2014 SV1411085 200.7 Manganese ug/L 10.0 5 11/21/2014 SV 96200 1411085 200.7 Zinc ug/L 50.0 5 11/21/2014 SV1411085 52400 200.8 ug/L 5.00 Arsenic 227 10 11/21/2014 SV 1411086 200.8 Cadmium 226 ug/L 1.00 10 11/21/2014 SV1411086 200.8 Copper 825 ug/L 5.00 10 11/21/2014 SV1411086 200.8 Lead 169 1.00 10 11/21/2014 1411086 ug/L SV ug/L 200.8 Nickel 5.00 10 11/21/2014 25.6 SV1411086 2340B Hardness 306 8 5 11/21/2014 SV1411085 mg/L

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFL-092314 **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/23/14 11:15

Workorder: Lab Number:

C140918

C140918-47

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	13300		ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	140000		ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	104000		ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	55500		ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	150		ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	238		ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	892		ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	158		ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	24.4		ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	325		mg/L	8	5	11/21/2014	SV	1411085

Metals (Dissolved) by EPA 200/7000 Series Methods

Hardness

200.8

2340B

Station ID: 14BH-DT-PILOT-INFLD-092314 **Date / Time Sampled:** 09/23/14 11:40

23.8

317

EPA Tag No.: Matrix: Water Workorder: C140918

11/21/2014

11/21/2014

5

SV

SV

Lab Number: C140918-50 A

Dilution **MDL** Method By **Parameter** Qualifier Analyzed Batch Results Units Factor 200.7 Aluminum 12900 ug/L 100 5 11/21/2014 SV 1411085 5 200.7 Iron 142000 ug/L 500 11/21/2014 SV1411085

10.0 200.7 Manganese 103000 ug/L 5 11/21/2014 SV1411085 200.7 Zinc 54900 ug/L 50.0 5 11/21/2014 SV 1411085 200.8 Arsenic 148 ug/L 5.00 10 11/21/2014 SV1411086 200.8 Cadmium 1.00 10 11/21/2014 SV1411086 235 ug/L 200.8 Copper 870 ug/L 5.00 10 11/21/2014 SV 1411086 Lead 200.8 156 ug/L 1.00 10 11/21/2014 SV1411086 Nickel ug/L 5.00 10

mg/L

8

Page 11 of 84

1411086

1411085

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NAOH-091614 EPA Tag No.:

Date / Time Sampled: Matrix: Water 09/16/14 12:00

Workorder: C140918

Lab Number: C140918-53

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	236	J	ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	< 1250	U	ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	24.8	J	ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	57.6	J	ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	5.29	J	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	138		mg/L	8	5	11/21/2014	SV	1411085

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NAOH-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 12:35

Workorder: Lab Number:

C140918

C140918-56

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	8540		ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	981	J	ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	89500		ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	47700		ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	5.20	J	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	210		ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	647		ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	33.5		ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	21.1		ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	317		mg/L	8	5	11/21/2014	SV	1411085

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTE-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water 09/23/14 14:20

Workorder: C14

C140918

Lab Number: C140

C140918-60 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	< 1250	U	ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	47700		ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	< 100	U	ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	8.25	J	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	< 10.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	629		mg/L	8	5	11/21/2014	SV	1411085

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTI-092314 EPA Tag No.:

Cadmium

200.8

Date / Time Sampled: Matrix: Water

09/23/14 14:00

1.00

Workorder: (
Lab Number:

10

C140918

C140918-65 A

Batch

1411085

1411085

1411085

1411085

1411086

1411086

SV

11/21/2014

Dilution **MDL** Method **Parameter** Analyzed By Results Qualifier Units Factor 200.7 Aluminum 5 11/21/2014 SV < 250 U ug/L 100 200.7 5 11/21/2014 SVIron < 1250 U ug/L 500 200.7 Manganese 69500 ug/L 10.0 5 11/21/2014 SV200.7 Zinc 5 11/21/2014 SV< 100 U ug/L 50.0 5.00 10 200.8 Arsenic 5.53 J ug/L 11/21/2014 SV

U

< 2.00

5.00 10 200.8 Copper 6.84 J ug/L 11/21/2014 SV1411086 200.8 Lead 10 11/21/2014 SV1411086 U 1.00 < 2.00 ug/L 200.8 Nickel 10 11/21/2014 SV1411086 < 10.0 U 5.00 ug/L 2340B Hardness 629 mg/L 8 5 11/21/2014 SV 1411085

ug/L

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-091614 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/16/14 11:30

Workorder: C146
Lab Number: C

C140918

C140918-69 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	304		ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	88600		ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	84300		ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	27100		ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	5.35	J	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	5.08	J	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	18.2		ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	601		mg/L	8	5	11/21/2014	SV	1411085

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 12:00

Workorder: C Lab Number:

C140918

C140918-72 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	411		ug/L	100	5	11/21/2014	SV	1411085
200.7	Iron	101000		ug/L	500	5	11/21/2014	SV	1411085
200.7	Manganese	92500		ug/L	10.0	5	11/21/2014	SV	1411085
200.7	Zinc	33900		ug/L	50.0	5	11/21/2014	SV	1411085
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Copper	5.41	J	ug/L	5.00	10	11/21/2014	SV	1411086
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/21/2014	SV	1411086
200.8	Nickel	21.0		ug/L	5.00	10	11/21/2014	SV	1411086
2340B	Hardness	638		mg/L	8	5	11/21/2014	SV	1411085

[&]quot;J" Qualifier indicates an estimated value

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR1-091614 **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/16/14 12:15

Workorder: Lab Number:

C140918

C140918

8-01	Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/24/2014	SW	1411075
200.7	Iron	< 1250	U	ug/L	500	5	11/24/2014	SW	1411075
200.7	Manganese	85600		ug/L	10.0	5	11/24/2014	SW	1411075
200.7	Zinc	96.3	J	ug/L	50.0	5	11/24/2014	SW	1411075
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Copper	< 10.0	U	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Lead	1.11	J	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/24/2014	SW	1411075

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR1-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 12:45

Workorder: Lab Number:

C140918

C140918-05

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/24/2014	SW	1411075
200.7	Iron	< 1250	U	ug/L	500	5	11/24/2014	SW	1411075
200.7	Manganese	88900		ug/L	10.0	5	11/24/2014	SW	1411075
200.7	Zinc	50.8	J	ug/L	50.0	5	11/24/2014	SW	1411075
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Copper	< 10.0	U	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/24/2014	SW	1411075

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-091614 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/16/14 12:30

Workorder: C140918

Lab Number: C140918

C140918-09 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/24/2014	SW	1411075
200.7	Iron	< 1250	U	ug/L	500	5	11/24/2014	SW	1411075
200.7	Manganese	98900		ug/L	10.0	5	11/24/2014	SW	1411075
200.7	Zinc	514		ug/L	50.0	5	11/24/2014	SW	1411075
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Copper	< 10.0	U	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Lead	1.19	J	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/24/2014	SW	1411075

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 13:10

Workorder: Ci

C140918

C140918-13 A

ethod Parameter Results Qualifier Units MDL Dilution Analyzed By Bate

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/24/2014	SW	1411075
200.7	Iron	< 1250	U	ug/L	500	5	11/24/2014	SW	1411075
200.7	Manganese	93200		ug/L	10.0	5	11/24/2014	SW	1411075
200.7	Zinc	160		ug/L	50.0	5	11/24/2014	SW	1411075
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Copper	< 10.0	U	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/24/2014	SW	1411075

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR3-091614 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/16/14 12:45

Workorder: C1 Lab Number:

C140918

C140918-17

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/24/2014	SW	1411075
200.7	Iron	< 1250	U	ug/L	500	5	11/24/2014	SW	1411075
200.7	Manganese	48500		ug/L	10.0	5	11/24/2014	SW	1411075
200.7	Zinc	< 100	U	ug/L	50.0	5	11/24/2014	SW	1411075
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Copper	< 10.0	U	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/24/2014	SW	1411075

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR3-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 13:25

Workorder:

C140918

Lab Number: C140918-21

Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	116	J	ug/L	100	5	11/24/2014	SW	1411075
200.7	Iron	< 1250	U	ug/L	500	5	11/24/2014	SW	1411075
200.7	Manganese	56000		ug/L	10.0	5	11/24/2014	SW	1411075
200.7	Zinc	< 100	U	ug/L	50.0	5	11/24/2014	SW	1411075
200.8	Arsenic	7.09	J	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Copper	< 10.0	U	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/24/2014	SW	1411075

Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 14BH-DT-PILOT-BCR4-091614
 Date / Time Sampled:
 09/16/14 13:00
 Workorder:
 C140918

EPA Tag No.: Lab Number: C140918-25

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/24/2014	SW	1411075
200.7	Iron	< 1250	U	ug/L	500	5	11/24/2014	SW	1411075
200.7	Manganese	58200		ug/L	10.0	5	11/24/2014	SW	1411075
200.7	Zinc	468		ug/L	50.0	5	11/24/2014	SW	1411075
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Copper	7.35	J	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/24/2014	SW	1411075

Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 14BH-DT-PILOT-BCR4-092314
 Date / Time Sampled:
 09/23/14 13:45
 Workorder:
 C140918

 EPA Tag No.:
 Matrix:
 Water
 Lab Number:
 C140918-29
 A

Dilution MDL Method **Parameter** Analyzed By Batch Qualifier Results Units **Factor** 200.7 Aluminum 5 11/24/2014 SW1411075 U 100 < 250 ug/L 200.7 5 11/24/2014 SW1411075 Iron U 500 < 1250 ug/L 200.7 10.0 5 11/24/2014 1411075 Manganese 57000 ug/L SW200.7 Zinc 938 ug/L 50.0 5 11/24/2014 SW1411075 200.8 Arsenic 5.98 J ug/L 5.00 10 11/24/2014 SW 1411075 200.8 Cadmium 2.27 ug/L 1.00 10 11/24/2014 SW 1411075 200.8 10.6 5.00 10 11/24/2014 SW1411075 Copper ug/L 200.8 Lead 10 SW 11/24/2014 1411075 U 1.00 < 2.00 ug/L 200.8 Nickel 10 11/24/2014 SW1411075 < 10.0 U ug/L 5.00

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR4D-091614 **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/16/14 13:05

Workorder: C140918

Lab Number: C140918-33

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/24/2014	SW	1411075
200.7	Iron	< 1250	U	ug/L	500	5	11/24/2014	SW	1411075
200.7	Manganese	59000		ug/L	10.0	5	11/24/2014	SW	1411075
200.7	Zinc	466		ug/L	50.0	5	11/24/2014	SW	1411075
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Copper	7.03	J	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/24/2014	SW	1411075

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-CHIT-091614 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/16/14 11:45

Workorder:

C140918

Lab Number: C140918-37

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	6740		ug/L	100	5	11/24/2014	SW	1411075
200.7	Iron	51400		ug/L	500	5	11/24/2014	SW	1411075
200.7	Manganese	72900		ug/L	10.0	5	11/24/2014	SW	1411075
200.7	Zinc	22600		ug/L	50.0	5	11/24/2014	SW	1411075
200.8	Arsenic	21.9		ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Cadmium	77.1		ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Copper	299		ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Lead	55.3		ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/24/2014	SW	1411075

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-CHIT-092314 **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/23/14 12:20

Workorder: Lab Number

C140918

er:	C140918-40	Α	

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	12400		ug/L	100	5	11/24/2014	SW	1411075
200.7	Iron	87700		ug/L	500	5	11/24/2014	SW	1411075
200.7	Manganese	95800		ug/L	10.0	5	11/24/2014	SW	1411075
200.7	Zinc	31300		ug/L	50.0	5	11/24/2014	SW	1411075
200.8	Arsenic	12.5	J	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Cadmium	54.5		ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Copper	179	J	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Lead	39.1		ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Nickel	11.2	J	ug/L	5.00	10	11/24/2014	SW	1411075

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-INFL-091614 **Station ID: EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/16/14 11:05

Workorder: Lab Number:

C140918

C140918-43

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	13600		ug/L	100	5	11/24/2014	SW	1411075
200.7	Iron	146000		ug/L	500	5	11/24/2014	SW	1411075
200.7	Manganese	99300		ug/L	10.0	5	11/24/2014	SW	1411075
200.7	Zinc	54600		ug/L	50.0	5	11/24/2014	SW	1411075
200.8	Arsenic	225		ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Cadmium	240		ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Copper	901	J	ug/L	5.00	10	11/24/2014	SW	1411075
200.8	Lead	166		ug/L	1.00	10	11/24/2014	SW	1411075
200.8	Nickel	23.2	J	ug/L	5.00	10	11/24/2014	SW	1411075

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFL-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 11:15

Workorder: C14
Lab Number: C

C140918

C140918-46

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	13500		ug/L	100	5	11/25/2014	SW	1411076
200.7	Iron	148000		ug/L	500	5	11/25/2014	SW	1411076
200.7	Manganese	107000		ug/L	10.0	5	11/25/2014	SW	1411076
200.7	Zinc	58400		ug/L	50.0	5	11/25/2014	SW	1411076
200.8	Arsenic	169		ug/L	5.00	10	11/25/2014	SW	1411076
200.8	Cadmium	246		ug/L	1.00	10	11/25/2014	SW	1411076
200.8	Copper	1010		ug/L	5.00	10	11/25/2014	SW	1411076
200.8	Lead	175		ug/L	1.00	10	11/25/2014	SW	1411076
200.8	Nickel	27.0		ug/L	5.00	10	11/25/2014	SW	1411076

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFLD-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water 09/23/14 11:40

Workorder: Lab Number:

C140918

C140918-49 A

MDL Dilution Method **Parameter** Analyzed $\mathbf{B}\mathbf{v}$ Batch Results Qualifier Units Factor 100 5 200.7 13400 ug/L 11/25/2014 SW 1411076 Aluminum 500 5 200.7 Iron 140000 ug/L 11/25/2014 SW 1411076 Manganese 104000 200.7 ug/L 10.0 5 11/25/2014 SW1411076 200.7 Zinc 50.0 5 SW55400 ug/L 11/25/2014 1411076 200.8 5.00 10 11/25/2014 SW 1411076 158 ug/L Arsenic 200.8 Cadmium 247 ug/L 1.00 10 11/25/2014 SW 1411076 200.8 5.00 10 Copper 944 ug/L 11/25/2014 SW1411076 200.8 Lead 167 ug/L 1.00 10 11/25/2014 SW 1411076 200.8 Nickel 25.2 ug/L 5.00 10 11/25/2014 SW 1411076

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NAOH-091614 Date / Time Sampled: 09/16/14 12:00 Workorder: C140918

EPA Tag No.: Matrix: Water Lab Number: C140918-52

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	479		ug/L	100	5	11/25/2014	SW	1411076
200.7	Iron	6230		ug/L	500	5	11/25/2014	SW	1411076
200.7	Manganese	2520		ug/L	10.0	5	11/25/2014	SW	1411076
200.7	Zinc	1130		ug/L	50.0	5	11/25/2014	SW	1411076
200.8	Arsenic	10.8	J	ug/L	5.00	10	11/25/2014	SW	1411076
200.8	Cadmium	4.25		ug/L	1.00	10	11/25/2014	SW	1411076
200.8	Copper	26.5		ug/L	5.00	10	11/25/2014	SW	1411076
200.8	Lead	4.32		ug/L	1.00	10	11/25/2014	SW	1411076
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/25/2014	SW	1411076

Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 14BH-DT-PILOT-NAOH-092314
 Date / Time Sampled:
 09/23/14 12:35
 Workorder:
 C140918

 EPA Tag No.:
 Matrix:
 Water
 Lab Number:
 C140918-55
 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	9030		ug/L	100	5	11/25/2014	SW	1411076
200.7	Iron	25500		ug/L	500	5	11/25/2014	SW	1411076
200.7	Manganese	91500		ug/L	10.0	5	11/25/2014	SW	1411076
200.7	Zinc	47300		ug/L	50.0	5	11/25/2014	SW	1411076
200.8	Arsenic	32.8		ug/L	5.00	10	11/25/2014	SW	1411076
200.8	Cadmium	216		ug/L	1.00	10	11/25/2014	SW	1411076
200.8	Copper	696		ug/L	5.00	10	11/25/2014	SW	1411076
200.8	Lead	72.4		ug/L	1.00	10	11/25/2014	SW	1411076
200.8	Nickel	22.5		ug/L	5.00	10	11/25/2014	SW	1411076

EPA Tag No.:

200.8

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTE-091614

Date / Time Sampled: Matrix: Water

09/16/14 13:30

Workorder: C140918

Lab Number: C140918-58

A

Α

Dilution MDL Method Parameter Analyzed By Batch Results **Qualifier** Units Factor 200.7 Aluminum 3960 ug/L 100 5 11/25/2014 SW 1411076 ug/L 500 5 11/25/2014 SW1411076 200.7 Iron 7210 10.0 5 200.7 Manganese 61300 ug/L 11/25/2014 SW1411076 200.7 Zinc 1680 50.0 5 11/25/2014 SW 1411076 ug/L 200.8 5.00 10 11/25/2014 SW 1411076 Arsenic 41.5 ug/L 200.8 1.00 10 11/25/2014 SWCadmium 3.43 ug/L 1411076 200.8 Copper 34.2 ug/L 5.00 10 11/25/2014 SW 1411076 Lead 118 10 200.8 ug/L 1.00 11/25/2014 SW 1411076 200.8 Nickel 10 11/25/2014 SW1411076 U 5.00 < 10.0 ug/L

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTE-092314 EPA Tag No.:

Nickel

< 10.0

U

Date / Time Sampled: Matrix: Water

09/23/14 14:20

Workorder: C140918

10

11/25/2014

SW

Lab Number: C140918-59

Dilution **MDL** Method **Parameter** Qualifier Units Analyzed By Batch Results Factor 1411076 200.7 Aluminum 5 11/25/2014 SW U 100 < 250 ug/L 200.7 5 11/25/2014 SWIron 1411076 < 1250 U ug/L 500 10.0 5 200.7 Manganese 47200 ug/L 11/25/2014 SW 1411076 200.7 Zinc 101 ug/L 50.0 5 11/25/2014 SW 1411076 200.8 Arsenic J 5.00 10 11/25/2014 SW1411076 8.71 ug/L 200.8 Cadmium 10 11/25/2014 SW 1411076 1.00 < 2.00 U ug/L 200.8 Copper 10 11/25/2014 SW 1411076 < 10.0 U ug/L 5.00 200.8 10 SW 1411076 Lead 1.50 J ug/L 1.00 11/25/2014

ug/L

5.00

1411076

EPA Tag No.:

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTI-091614

Date / Time Sampled: Matrix: Water

09/16/14 13:20

Workorder: C140918

Lab Number:

C140918-63

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/25/2014	SW	1411076
200.7	Iron	< 1250	U	ug/L	500	5	11/25/2014	SW	1411076
200.7	Manganese	77000		ug/L	10.0	5	11/25/2014	SW	1411076
200.7	Zinc	191		ug/L	50.0	5	11/25/2014	SW	1411076
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/25/2014	SW	1411076
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/25/2014	SW	1411076
200.8	Copper	5.07	J	ug/L	5.00	10	11/25/2014	SW	1411076
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/25/2014	SW	1411076
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/25/2014	SW	1411076

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTI-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 14:00

Workorder:

Lab Number:

C140918

C140918-64

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 250	U	ug/L	100	5	11/25/2014	SW	1411076
200.7	Iron	< 1250	U	ug/L	500	5	11/25/2014	SW	1411076
200.7	Manganese	73800		ug/L	10.0	5	11/25/2014	SW	1411076
200.7	Zinc	346		ug/L	50.0	5	11/25/2014	SW	1411076
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/25/2014	SW	1411076
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/25/2014	SW	1411076
200.8	Copper	< 10.0	U	ug/L	5.00	10	11/25/2014	SW	1411076
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/25/2014	SW	1411076
200.8	Nickel	< 10.0	U	ug/L	5.00	10	11/25/2014	SW	1411076

Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-091614 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/16/14 11:30

Workorder: C14
Lab Number: C

C140918

C140918-68 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	894		ug/L	100	5	11/25/2014	SW	1411076
200.7	Iron	88100		ug/L	500	5	11/25/2014	SW	1411076
200.7	Manganese	84400		ug/L	10.0	5	11/25/2014	SW	1411076
200.7	Zinc	26800		ug/L	50.0	5	11/25/2014	SW	1411076
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/25/2014	SW	1411076
200.8	Cadmium	1.20	J	ug/L	1.00	10	11/25/2014	SW	1411076
200.8	Copper	11.8	J	ug/L	5.00	10	11/25/2014	SW	1411076
200.8	Lead	1.30	J	ug/L	1.00	10	11/25/2014	SW	1411076
200.8	Nickel	26.2	J	ug/L	5.00	10	11/25/2014	SW	1411076

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 12:00

Workorder: Lab Number:

C140918

C140918-71 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	498		ug/L	100	5	11/25/2014	SW	1411076
200.7	Iron	103000		ug/L	500	5	11/25/2014	SW	1411076
200.7	Manganese	93600		ug/L	10.0	5	11/25/2014	SW	1411076
200.7	Zinc	33600		ug/L	50.0	5	11/25/2014	SW	1411076
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	11/25/2014	SW	1411076
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	11/25/2014	SW	1411076
200.8	Copper	6.26	J	ug/L	5.00	10	11/25/2014	SW	1411076
200.8	Lead	< 2.00	U	ug/L	1.00	10	11/25/2014	SW	1411076
200.8	Nickel	18.3	J	ug/L	5.00	10	11/25/2014	SW	1411076

[&]quot;J" Qualifier indicates an estimated value

Certificate of Analysis

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1-091614 **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/16/14 12:15

Workorder:

C140918

Lab Number: C140918-03

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.5	J	mg/L	5.0	10	10/03/2014	NP	1410026
EPA 300.0	Fluoride	1.5	J	mg/L	1.0	10	10/03/2014	NP	1410026
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	10/03/2014	NP	1410026
EPA 300.0	Sulfate as SO4	552		mg/L	0.5	10	10/03/2014	NP	1410026
EPA 310.1	Total Alkalinity	82.3		mg CaCO3 / L	5.00	1	09/30/2014	KJB	1409148

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1-091614 **EPA Tag No.:**

EPA 310.1

Date / Time Sampled: Water

Matrix:

09/16/14 12:15

Workorder: Lab Number: C140918

C140918-04

A

A

1409148

MDL Dilution Method **Parameter** By Batch Analyzed Qualifier Results Units Factor EPA 350.1 Ammonia as N 9.54 JD mg/L 0.300 10 10/17/2014 KJB 1410088

Classical Chemistry by EPA/ASTM/APHA Methods

Total Alkalinity

Station ID: 14BH-DT-PILOT-BCR1-092314 **Date / Time Sampled:** 09/23/14 12:45 Workorder:

Water **EPA Tag No.:** Matrix:

91.5

Lab Number:

1

09/30/2014

C140918

C140918-07

KJB

MDL Dilution Method **Parameter** Results Qualifier Units Analyzed $\mathbf{B}\mathbf{v}$ Batch Factor EPA 300.0 Chloride 5.8 J 5.0 10 10/03/2014 NP 1410026 mg/L EPA 300.0 Fluoride 1.1 J mg/L 1.0 10 10/03/2014 NP 1410026 Nitrate/Nitrite as EPA 300.0 10 10/03/2014 NP 1410026 U 10.0 < 50.0 mg/L EPA 300.0 Sulfate as SO4 587 mg/L 0.5 10 10/03/2014 NP 1410026

mg CaCO3 / L

5.00

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 12:45

Workorder: C140918

Lab Number: C140918-08

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	10.8	D	mg/L	0.300	10	10/17/2014	KJB	1410088

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-091614 EPA Tag No.: **Date / Time Sampled: Matrix:** Water

09/16/14 12:30

Workorder: C140918

Lab Number: C1409

C140918-11 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.3	J	mg/L	5.0	10	10/03/2014	NP	1410026
EPA 300.0	Fluoride	1.5	J	mg/L	1.0	10	10/03/2014	NP	1410026
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	10/03/2014	NP	1410026
EPA 300.0	Sulfate as SO4	566		mg/L	0.5	10	10/03/2014	NP	1410026
EPA 310.1	Total Alkalinity	61.1		mg CaCO3 / L	5.00	1	09/30/2014	KJB	1409148

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-091614 **Date / Time Sampled:** 09/16/14 12:30 **Workorder:** C140918

EPA Tag No.: Matrix: Water

Workorder: C.
Lab Number:

C140918-12 A

MDL Dilution Method **Parameter** Results Qualifier Units Analyzed By Batch Factor EPA 350.1 Ammonia as N 2.39 J D mg/L 0.300 10 10/17/2014 KJB 1410088

Certificate of Analysis

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-092314 **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/23/14 13:10

Workorder: Lab Number:

C140918

C140918-15

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	6.0	J	mg/L	5.0	10	10/03/2014	NP	1410026
EPA 300.0	Fluoride	1.5	J	mg/L	1.0	10	10/03/2014	NP	1410026
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	10/03/2014	NP	1410026
EPA 300.0	Sulfate as SO4	560		mg/L	0.5	10	10/03/2014	NP	1410026
EPA 310.1	Total Alkalinity	61.7		mg CaCO3 / L	5.00	1	09/30/2014	KJB	1409148

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-BCR2-092314 **Station ID: EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/23/14 13:10

Workorder: C140918

Lab Number:

C140918-16

A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	2.45	D	mg/L	0.300	10	10/17/2014	KJB	1410088

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR3-091614 **Date / Time Sampled:** C140918 09/16/14 12:45 Workorder:

Matrix: Water EPA Tag No.:

Lab Number:

C140918-19

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.5	J	mg/L	5.0	10	10/03/2014	NP	1410026
EPA 300.0	Fluoride	3.0		mg/L	1.0	10	10/03/2014	NP	1410026
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	10/03/2014	NP	1410026
EPA 300.0	Sulfate as SO4	352		mg/L	0.5	10	10/03/2014	NP	1410026
EPA 310.1	Total Alkalinity	116		mg CaCO3 / L	5.00	1	09/30/2014	KJB	1409148

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR3-091614 EPA Tag No.:

Matrix: Water

09/16/14 12:45

Workorder: C1

Lab Number:

C140918

Certificate of Analysis

C140918-20

A

MDL Dilution

Iethod Parameter Results Qualifier Units

Extra Analyzed By Bate

Date / Time Sampled:

MethodParameterResultsQualifierUnitsMDL FactorDilution FactorAnalyzedBy BatchEPA 350.1Ammonia as N14.4J Dmg/L0.3001010/17/2014KJB1410088

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR3-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 13:25

Workorder: C14

Lab Number:

C140918

C140918-23 A

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units Factor EPA 300.0 Chloride 5.4 J 5.0 10 10/03/2014 NP 1410026 mg/L EPA 300.0 Fluoride 10 10/03/2014 NP 1410026 < 2.0 U 1.0 mg/L Nitrate/Nitrite as EPA 300.0 10 10/03/2014 NP 1410026 < 50.0 U mg/L 10.0 Sulfate as SO4 0.5 EPA 300.0 237 mg/L 10 10/03/2014 NP 1410026 EPA 310.1 **Total Alkalinity** 141 mg CaCO3 / L 5.00 1 09/30/2014 KJB 1409148

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR3-092314 **Date / Time Sampled:** 09/23/14 13:25 **Workorder:** C140918

EPA Tag No.: Matrix: Water

Lab Number:

C140918-24

Α

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units Factor EPA 350.1 16.0 D 0.300 10 10/17/2014 KJB 1410088 Ammonia as N mg/L

Certificate of Analysis

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4-091614 **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/16/14 13:00

Workorder: C140918

Lab Number: C140918-27

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	10/03/2014	NP	1410026
EPA 300.0	Fluoride	1.8	J	mg/L	1.0	10	10/03/2014	NP	1410026
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	10/03/2014	NP	1410026
EPA 300.0	Sulfate as SO4	642		mg/L	0.5	10	10/03/2014	NP	1410026
EPA 310.1	Total Alkalinity	51.0		mg CaCO3 / L	5.00	1	09/30/2014	KJB	1409148

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-BCR4-091614 **Station ID: EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/16/14 13:00

Workorder:

Lab Number:

C140918

C140918-28

Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
EPA 350.1	Ammonia as N	1.27	JD	mg/L	0.300	10	10/17/2014	KJB	1410088

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4-092314 **Date / Time Sampled:** 09/23/14 13:45

EPA Tag No.:

Matrix: Water

Workorder:

C140918

Lab Number:

C140918-31

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	10/03/2014	NP	1410026
EPA 300.0	Fluoride	1.7	J	mg/L	1.0	10	10/03/2014	NP	1410026
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	10/03/2014	NP	1410026
EPA 300.0	Sulfate as SO4	636		mg/L	0.5	10	10/03/2014	NP	1410026
EPA 310.1	Total Alkalinity	58.5		mg CaCO3 / L	5.00	1	09/30/2014	KJB	1409148

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4-092314 **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/23/14 13:45

Workorder:

Lab Number:

C140918

Certificate of Analysis

C140918-32

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	1.56	D	mg/L	0.300	10	10/17/2014	KJB	1410088

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-BCR4D-091614 **Station ID: EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/16/14 13:05

Workorder: C140918

Lab Number:

C140918-35

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.3	J	mg/L	5.0	10	10/03/2014	NP	1410026
EPA 300.0	Fluoride	1.6	J	mg/L	1.0	10	10/03/2014	NP	1410026
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	10/03/2014	NP	1410026
EPA 300.0	Sulfate as SO4	629		mg/L	0.5	10	10/03/2014	NP	1410026
EPA 310.1	Total Alkalinity	51.2		mg CaCO3 / L	5.00	1	09/30/2014	KJB	1409148

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4D-091614 **Date / Time Sampled:** C140918 09/16/14 13:05 Workorder:

Matrix: Water EPA Tag No.:

Lab Number:

C140918-36

MDL Dilution Method **Parameter** Results Qualifier Units Analyzed By Batch Factor EPA 350.1 Ammonia as N 1.25 J D mg/L 0.300 10 10/17/2014 KJB 1410088 Project Name: Barker-Hughesville_Treatability 2_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

 Station ID:
 14BH-DT-PILOT-CHIT-091614
 Date / Time Sampled:
 09/16/14 11:45
 Workorder:
 C140918

EPA Tag No.: Matrix: Water Lab Number: C140918-39

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.7	J	mg/L	5.0	10	10/03/2014	NP	1410026
EPA 300.0	Fluoride	1.2	J	mg/L	1.0	10	10/03/2014	NP	1410026
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	10/03/2014	NP	1410026
EPA 300.0	Sulfate as SO4	543		mg/L	0.5	10	10/03/2014	NP	1410026
EPA 310.1	Total Alkalinity	107		mg CaCO3 / L	5.00	1	09/30/2014	KJB	1409148

Classical Chemistry by EPA/ASTM/APHA Methods

 Station ID:
 14BH-DT-PILOT-CHIT-092314
 Date / Time Sampled:
 09/23/14 12:20
 Workorder:
 C140918

EPA Tag No.: Matrix: Water Lab Number: C140918-42 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	10/03/2014	NP	1410026
EPA 300.0	Fluoride	3.1		mg/L	1.0	10	10/03/2014	NP	1410026
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	10/03/2014	NP	1410026
EPA 300.0	Sulfate as SO4	808		mg/L	0.5	10	10/03/2014	NP	1410026
EPA 310.1	Total Alkalinity	28.1		mg CaCO3 / L	5.00	1	09/30/2014	KJB	1409148

Certificate of Analysis

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-INFL-091614 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/16/14 11:05

Workorder: C140918

Lab Number: C140918-45

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.5	J	mg/L	5.0	10	10/03/2014	NP	1410026
EPA 300.0	Fluoride	2.5		mg/L	1.0	10	10/03/2014	NP	1410026
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	10/03/2014	NP	1410026
EPA 300.0	Sulfate as SO4	1070		mg/L	0.5	10	10/03/2014	NP	1410026
EPA 310.1	Total Alkalinity	< 10.0		mg CaCO3 / L	5.00	1	09/30/2014	KJB	1409148

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-INFL-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water 09/23/14 11:15

Workorder: C

Lab Number:

C140918

C140918-48

A

Dilution MDL Method **Parameter** Analyzed By Batch Results Qualifier Units **Factor** J EPA 300.0 Chloride 5.4 mg/L 5.0 10 10/03/2014 NP 1410026 1.0 EPA 300.0 Fluoride 2.3 mg/L 10 10/03/2014 1410026 NP EPA 300.0 Nitrate/Nitrite as 10 10/03/2014 NP 1410026 U < 50.0 10.0 mg/L N EPA 300.0 Sulfate as SO4 1110 0.5 10 10/03/2014 NP 1410026 mg/L EPA 310.1 **Total Alkalinity** 1 09/30/2014 KJB 1409148 < 10.0 mg CaCO3 / L 5.00

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-INFLD-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 11:40

Workorder: C140 Lab Number: C

Certificate of Analysis

C140918

C140918-51 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.5	J	mg/L	5.0	10	10/04/2014	NP	1410026
EPA 300.0	Fluoride	2.5		mg/L	1.0	10	10/04/2014	NP	1410026
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	10/04/2014	NP	1410026
EPA 300.0	Sulfate as SO4	1110		mg/L	0.5	10	10/04/2014	NP	1410026
EPA 310.1	Total Alkalinity	< 10.0		mg CaCO3 / L	5.00	1	09/30/2014	KJB	1409148

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-NAOH-091614 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/16/14 12:00

Workorder: C1

Lab Number:

C140918

C140918-54

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	10/04/2014	NP	1410026
EPA 300.0	Fluoride	2.0		mg/L	1.0	10	10/04/2014	NP	1410026
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	10/04/2014	NP	1410026
EPA 300.0	Sulfate as SO4	883		mg/L	0.5	10	10/04/2014	NP	1410026
EPA 310.1	Total Alkalinity	34.7		mg CaCO3 / L	5.00	1	09/30/2014	KJB	1409148

Certificate of Analysis

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-NAOH-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 12:35

Workorder: C14
Lab Number: C

C140918

C140918-57

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	10/04/2014	NP	1410026
EPA 300.0	Fluoride	2.0		mg/L	1.0	10	10/04/2014	NP	1410026
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	10/04/2014	NP	1410026
EPA 300.0	Sulfate as SO4	976		mg/L	0.5	10	10/04/2014	NP	1410026
EPA 310.1	Total Alkalinity	< 10.0		mg CaCO3 / L	5.00	1	09/30/2014	KJB	1409148

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTE-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water 09/23/14 14:20

Workorder: Lab Number:

C140918

C140918-61 A

Dilution MDL Method **Parameter** Analyzed By Batch Qualifier Units Results Factor EPA 300.0 Chloride 6.3 J mg/L 5.0 10 10/04/2014 NP 1410026 J Fluoride mg/L 1.0 10 EPA 300.0 1.6 10/04/2014 NP 1410026 EPA 300.0 Nitrate/Nitrite as 1410026 10 10/04/2014 NP U < 50.0 10.0 mg/L N NP EPA 300.0 Sulfate as SO4 0.5 10 10/04/2014 1410026 543 mg/L EPA 310.1 mg CaCO3 / L 5.00 1 09/30/2014 KJB 1409148 **Total Alkalinity** 75.5

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTE-092314 EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 14:20

Workorder: Lab Number: C140918

C140918-62 A

MDL Dilution Method **Parameter** Analyzed By Batch Qualifier Units Results Factor EPA 350.1 6.33 D mg/L 0.300 10 10/17/2014 KJB 1410088 Ammonia as N

A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTI-092314

TDF #:

EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/23/14 14:00

C140918 Workorder:

C140918-66 Lab Number:

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	5.4	J	mg/L	5.0	10	10/04/2014	NP	1410026
EPA 300.0	Fluoride	< 2.0	U	mg/L	1.0	10	10/04/2014	NP	1410026
EPA 300.0	Nitrate/Nitrite as	< 50.0	U	mg/L	10.0	10	10/04/2014	NP	1410026
EPA 300.0	Sulfate as SO4	488		mg/L	0.5	10	10/04/2014	NP	1410026
EPA 310.1	Total Alkalinity	89.4		mg CaCO3 / L	5.00	1	09/30/2014	KJB	1409148

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTI-092314 **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

09/23/14 14:00

Workorder:

Lab Number:

C140918

C140918-67 Α

Dilution MDL Method **Parameter** Analyzed By Batch **Qualifier** Results Units Factor EPA 350.1 Ammonia as N 7.90 D mg/L 0.300 10 10/17/2014 KJB 1410088

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-SAPS-091614

EPA Tag No.:

Date / Time Sampled: Matrix: Water

09/16/14 11:30

Workorder: Lab Number: C140918

C140918-70

Α

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units Factor EPA 300.0 Chloride J 5.0 10 10/04/2014 NP 1410026 6.2 mg/L EPA 300.0 Fluoride 1.5 J mg/L 1.0 10 10/04/2014 NP 1410026 Nitrate/Nitrite as EPA 300.0 10 10/04/2014 NP 1410026 < 50.0 U mg/L 10.0 0.5 10 EPA 300.0 Sulfate as SO4 856 mg/L 10/04/2014 NP 1410026 **Total Alkalinity** mg CaCO3 / L 5.00 1 09/30/2014 KJB 1409148 EPA 310.1 12.5

Project Name: Barker-Hughesville_Treatability 2_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

 Station ID:
 14BH-DT-PILOT-SAPS-092314
 Date / Time Sampled:
 09/23/14 12:00
 Workorder:
 C140918

EPA Tag No.: Matrix: Water Lab Number: C140918-73

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
EPA 300.0	Chloride	5.5	J	mg/L	5.0	10	10/04/2014	NP	1410026
EPA 300.0	Fluoride	1.5	J	mg/L	1.0	10	10/04/2014	NP	1410026
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	10/04/2014	NP	1410026
EPA 300.0	Sulfate as SO4	948		mg/L	0.5	10	10/04/2014	NP	1410026
EPA 310.1	Total Alkalinity	17.3		mg CaCO3 / L	5.00	1	09/30/2014	KJB	1409148

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-	II								
Batch 1411086 - N	o Lab Prep Reqd	J	Water					ICP	MS-PE DRC-I
Method Blank (1411	1086-BLK1)	Dilution Factor: 1				Prepa	red: 11/20/14	Analyzed: 11/	21/14
Nickel	< 0.500	1.00	ug/L						
Copper	< 0.500	1.00	ug L						
Arsenic	< 0.500	2.00	"						
Cadmium	< 0.100	0.200	"						
Lead	< 0.100	0.200	"						
Method Blank Spik	e (1411086-BS1)	Dilution Factor: 1				Prepa	red: 11/20/14	Analyzed: 11/	21/14
Nickel	97.4	1.00	ug/L	100		97	85-115		
Copper	97.5	1.00	"	100		97	85-115		
Arsenic	102	2.00	"	100		102	85-115		
Cadmium	95.4	0.200	"	100		95	85-115		
Lead	99.7	0.200	"	100		100	85-115		
Duplicate (1411086-	DUP1)	Dilution Factor: 1	Source	: C140918-0	2	Prepar	red: 11/20/14	Analyzed: 11/	21/14
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	< 5.00	10.0	"		< 5.00				20
Arsenic	< 5.00	20.0	"		< 5.00				20
Cadmium	< 1.00	2.00	"		< 1.00				20
Lead	< 1.00	2.00	"		< 1.00				20
Matrix Spike (14110	086-MS1)	Dilution Factor: 1	Source	: C140918-0	2	Prepar	red: 11/20/14	Analyzed: 11/	21/14
Nickel	78.9	10.0	ug/L	100	< 5.00	79	70-130		
Copper	82.1	10.0	"	100	< 5.00	82	70-130		
Arsenic	86.7	20.0	"	100	< 5.00	87	70-130		
Cadmium	90.5	2.00	"	100	< 1.00	91	70-130		
Lead	85.2	2.00	"	100	< 1.00	85	70-130		
Matrix Spike (14110	086-MS2)	Dilution Factor: 1	Source	: C140918-0	6	Prepa	red: 11/20/14	Analyzed: 11/	21/14
Nickel	76.2	10.0	ug/L	100	< 5.00	76	70-130		
Copper	81.5	10.0	"	100	< 5.00	82	70-130		
Arsenic	83.7	20.0	"	100	< 5.00	84	70-130		
Cadmium	91.7	2.00	"	100	< 1.00	92	70-130		
Lead	86.1	2.00	"	100	< 1.00	86	70-130		

Project Name: Barker-Hughesville_Treatability 2_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

113.6

Zinc

100

$Metals \ (Dissolved) \ by \ EPA \ 200/7000 \ Series \ Methods - Quality \ Control$

TechLaw, Inc. - ESAT Region 8

		TeenEav							
Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1411094 - 14	11086	V	Vater					ICP	MS-PE DRC-II
Serial Dilution (1411	094-SRD1)	Dilution Factor: 5	Source	: C140918-02	2	Prepa	red: 11/20/14	Analyzed: 11	/21/14
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	< 25.0	50.0	"		< 5.00				10
Arsenic	< 25.0	100	"		< 5.00				10
Cadmium	< 5.00	10.0	"		< 1.00				10
Lead	< 5.00	10.0	"		< 1.00				10
ICPOE - PE Optin	na								
Batch 1411085 - No	Lab Prep Reqd	V	Vater					ICPO	E - PE Optima
Method Blank (1411)	085-BLK1)	Dilution Factor: 1				Prepa	red: 11/20/14	Analyzed: 11	/21/14
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	ug/L						
Manganese	< 2.00	5.00	,,						
Zinc	< 10.0	20.0	"						
Method Blank Spike	(1411085-BS1)	Dilution Factor: 1				Prepa	red: 11/20/14	Analyzed: 11	/21/14
Aluminum	10310	50.0	ug/L	10100		102	85-115		
Iron	10440	250	"	10100		103	85-115		
Manganese	102.5	5.00	"	100		102	85-115		
Zinc	100.9	20.0	"	100		101	85-115		
Duplicate (1411085-I	DUP1)	Dilution Factor: 5	Source	: C140918-02	2	Prepa	red: 11/20/14	Analyzed: 11	/21/14
Aluminum	< 100	250	ug/L		< 100				20
Iron	< 500	1250	ug/L		< 500				20
Manganese	83850	25.0	"		80740			4	20
Zinc	< 50.0	100	"		< 50.0			7	20
Matrix Spike (14110	85-MS1)	Dilution Factor: 5	Source	: C140918-02	2	Prepa	red: 11/20/14	Analyzed: 11	/21/14
Aluminum	10180	250	ug/L	10100	< 100	101	70-130		
Iron	10160	1250	ug/L	10100	< 500	101	70-130		
Manganese	81420	25.0	,,	100	80740	676	70-130		
141011gailese	112.6	100		100	00/40	0/0	70-130		

100

< 50.0

114

70-130

Project Name: Barker-Hughesville_Treatability 2_SEP 2014_A046 **Certificate of Analysis**

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1411085 - No	o Lab Prep Reqd	И	Vater					ICPO	E - PE Optima
Matrix Spike (14110	85-MS2)	Dilution Factor: 5	Source	: C140918-0	6	Prepa	red: 11/20/14	Analyzed: 11/	21/14
Aluminum	10180	250	ug/L	10100	< 100	101	70-130		
Iron	10440	1250	"	10100	< 500	103	70-130		
Manganese	83870	25.0	"	100	84540	NR	70-130		
Zinc	107.0	100	"	100	< 50.0	107	70-130		
Batch 1411092 - 14	11085	И	Vater					ICPO	E - PE Optima
Serial Dilution (1411	092-SRD1)	Dilution Factor: 2	Source	: C140918-0	2	Prepa	red: 11/20/14	Analyzed: 11/	21/14
Aluminum	< 500	1250	ug/L		< 100.00				10
Iron	< 2500	6250	"		< 500.00				10
Manganese	83420	125	"		80740			3	10
-	< 250	500	"		< 50.00				10

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-	П								
Batch 1411075 - 20	00.2 - TR Metals	Į	Vater					ICPN	MS-PE DRC-II
Method Blank (1411	1075-BLK2)	Dilution Factor: 5				Prepa	red: 11/18/14	Analyzed: 11/	24/14
Nickel	< 2.50	5.00	ug/L						
Copper	< 2.50	5.00	ug/L						
Arsenic	< 2.50	10.0	"						
Cadmium	< 0.500	1.00	"						
Lead	< 0.500	1.00	"						
Duplicate (1411075-	DUP2)	Dilution Factor: 1	Source	: C140918-0)1	Prepa	red: 11/18/14	Analyzed: 11/	24/14
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	< 5.00	10.0	ug/L		< 5.00				20
Arsenic	< 5.00	20.0	"		< 5.00				20
Cadmium	< 1.00	2.00	"		< 1.00				20
Lead	< 1.00	2.00	"		1.113				20
Matrix Spike (1411075-MS2)		Dilution Factor: 1	Source	: C140918-0	95	Prepa	red: 11/18/14	Analyzed: 11/	24/14
Nickel	431.8	10.0	ug/L	500	< 5.00	86	70-130		
Copper	263.9	10.0	"	300	< 5.00	88	70-130		
Arsenic	734.1	20.0	"	800	< 5.00	92	70-130		
Cadmium	188.6	2.00	"	200	< 1.00	94	70-130		
Lead	855.7	2.00	"	1000	< 1.00	86	70-130		
Matrix Spike (14110	075-MS4)	Dilution Factor: 1	Source	C140918-0	9	Prepa	red: 11/18/14	Analyzed: 11/	24/14
Nickel	430.2	10.0	ug/L	500	< 5.00	86	70-130		
Copper	262.3	10.0	"	300	< 5.00	87	70-130		
Arsenic	710.4	20.0	"	800	< 5.00	89	70-130		
Cadmium	190.4	2.00	"	200	< 1.00	95	70-130		
Lead	839.5	2.00	"	1000	1.191	84	70-130		
Reference (1411075-	-SRM2)	Dilution Factor: 2				Prepa	red: 11/18/14	Analyzed: 11/	24/14
Nickel	922.8	20.0	ug/L	1000		92	85-115		
Copper	942.1	20.0	"	1000		94	85-115		
Arsenic	1900	40.0	"	2000		95	85-115		
Cadmium	935.2	4.00	"	1000		94	85-115		
Lead	1959	4.00	"	2000		98	85-115		

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1411076 - 2	00.2 - TR Metals	Į	Vater					ICP	MS-PE DRC-II
Method Blank (141	1076-BLK2)	Dilution Factor: 5				Prepa	red: 11/18/14	Analyzed: 11/	25/14
Nickel	< 2.50	5.00	ug/L						
Copper	< 2.50	5.00	"						
Arsenic	< 2.50	10.0	"						
Cadmium	< 0.500	1.00	"						
Lead	< 0.500	1.00	"						
Duplicate (1411076-	-DUP2)	Dilution Factor: 1	Source:	: C140918-4	16	Prepa	red: 11/18/14	Analyzed: 11/	25/14
Nickel	25.30	10.0	ug/L		27.02			7	20
Copper	974.0	10.0	"		1008			3	20
Arsenic	164.0	20.0	"		169.4			3	20
Cadmium	249.5	2.00	"		246.1			1	20
Lead	168.8	2.00	"		175.4			4	20
Matrix Spike (1411)	076-MS2)	Dilution Factor: 1	Source: C140918-49		Prepa	red: 11/18/14	Analyzed: 11/	25/14	
Nickel	461.9	10.0	ug/L	500	25.18	87	70-130		
Copper	1189	10.0	"	300	943.6	82	70-130		
Arsenic	842.0	20.0	"	800	158.4	85	70-130		
Cadmium	434.3	2.00	"	200	246.6	94	70-130		
Lead	1070	2.00	"	1000	166.9	90	70-130		
Reference (1411076	-SRM2)	Dilution Factor: 2				Prepa	red: 11/18/14	Analyzed: 11/	25/14
Nickel	947.5	20.0	ug/L	1000		95	85-115		
Copper	961.5	20.0	"	1000		96	85-115		
Arsenic	1945	40.0	"	2000		97	85-115		
Cadmium	941.9	4.00	"	1000		94	85-115		
Lead	1867	4.00	"	2000		93	85-115		

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

Certificate of Analysis

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1411102 - 14	11075	И	/ater					ICPN	MS-PE DRC-II
Serial Dilution (1411	102-SRD1)	Dilution Factor: 5	Source	: C140918-01	1	Prepai	red: 11/18/14	Analyzed: 11/2	24/14
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	< 25.0	50.0	"		< 5.00				10
Arsenic	< 25.0	100	"		< 5.00				10
Cadmium	< 5.00	10.0	"		< 1.00				10
Lead	< 5.00	10.0	"		1.113				10
Batch 1411103 - 14	11076	И	/ater			ICPMS-PE D			MS-PE DRC-II
Serial Dilution (1411	103-SRD1)	Dilution Factor: 5	Source	: C140918-46	6	Prepared: 11/18/14 Analyzed: 11/25/14			25/14
Nickel	27.08	50.0	ug/L		27.02			0.2	10
Copper	1051	50.0	"		1008			4	10
Arsenic	171.4	100	"		169.4			1	10
Cadmium	252.9	10.0	"		246.1			3	10
Lead	166.0	10.0	"		175.4			6	10
ICPOE - PE Optin	1a								
Batch 1411075 - 20	0.2 - TR Metals	И	ater					ICPO	E - PE Optima
Method Blank (1411)	075-BLK1)	Dilution Factor: 1				Prepar	red: 11/18/14	Analyzed: 11/2	24/14
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	"						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Duplicate (1411075-I	dicate (1411075-DUP1) Dilution Factor: 5		Source	: C140918-01	1	Prepar	red: 11/18/14	Analyzed: 11/2	24/14
Aluminum	< 100	250	ug/L		< 100				20
Iron	< 500	1250	"		< 500				20
Manganese	86730	25.0	"		85590			1	20
Zinc	115.6	100	"		96.31			18	20

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1411075 - 20	0.2 - TR Metals	Į	Vater					ICPO	E - PE Optim
Matrix Spike (14110)	75-MS1)	Dilution Factor: 5	Source:	: C140918-0	5	Prepa	red: 11/18/14	Analyzed: 11/	24/14
Aluminum	2010	250	ug/L	2000	< 100	100	70-130		
ron	3407	1250	"	3000	< 500	114	70-130		
Manganese	88390	25.0	"	200	88880	NR	70-130		
Zinc	265.8	100	"	200	50.79	107	70-130		
Aatrix Spike (14110	75-MS3)	Dilution Factor: 5	Source:	: C140918-0	9	Prepa	red: 11/18/14	Analyzed: 11/	24/14
Aluminum	1990	250	ug/L	2000	< 100	100	70-130		
ron	3538	1250	"	3000	< 500	118	70-130		
Manganese	100100	25.0	"	200	98930	582	70-130		
Zinc	704.6	100	"	200	514.4	95	70-130		
Reference (1411075-SRM1) Dilution Factor:						Prepa	red: 11/18/14	Analyzed: 11/	24/14
Aluminum	917.5	50.0	ug/L	1000		92	85-115		
ron	914.2	250	"	1000		91	85-115		
Manganese	1028	5.00	"	1000		103	85-115		
Zinc	988.1	20.0	"	1000		99	85-115		
Batch 1411076 - 20	0.2 - TR Metals	Į	Vater					ICPO	E - PE Optim
Method Blank (1411)	076-BLK1)	Dilution Factor: 1				Prepar	red: 11/18/14	Analyzed: 11/	25/14
Aluminum	< 20.0	50.0	ug/L						
ron	< 100	250	"						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Duplicate (1411076-DUP1) Dilution Factor: 5		Source:	: C140918-4	6	Prepa	red: 11/18/14	Analyzed: 11/	25/14	
Aluminum	13340	250	ug/L		13460			0.9	20
ron	144500	1250	"		147700			2	20
Manganese	104700	25.0	"		107400			3	20
Zinc	55760	100	"		58410			5	20

TDF #:

A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1411076 - 20	00.2 - TR Metals	И	Vater					ICPO	E - PE Optima
Matrix Spike (14110	076-MS1)	Dilution Factor: 5	Source:	C140918-4	9	Prepa	red: 11/18/14	Analyzed: 11/	25/14
Aluminum	15080	250	ug/L	2000	13390	84	70-130		
Iron	143700	1250	"	3000	140300	114	70-130		
Manganese	104400	25.0	"	200	104300	52	70-130		
Zinc	56190	100	"	200	55440	377	70-130		
Reference (1411076-	-SRM1)	Dilution Factor: 1				Prepa	red: 11/18/14	Analyzed: 11/	25/14
Aluminum	924.7	50.0	ug/L	1000		92	85-115		
Iron	907.6	250	"	1000		91	85-115		
Manganese	1027	5.00	"	1000		103	85-115		
Zinc	959.7	20.0	"	1000		96	85-115		
Batch 1411099 - 14	411075	И	Vater					ICPO	E - PE Optima
Serial Dilution (141	1099-SRD1)	Dilution Factor: 2	Source:	C140918-0	1	Prepa	red: 11/18/14	Analyzed: 11/	24/14
Aluminum	< 500	1250	ug/L		< 100.00				10
Iron	< 2500	6250	"		< 500.00				10
	90050	125	"		85590			5	10
Manganese	90030	123			03370				
C	< 250	500	"		96.31				10
Zinc	< 250	500						ICPO	
Manganese Zinc Batch 1411100 - 14 Serial Dilution (141)	< 250 411076	500	" Vater	C140918-4	96.31	Prepa	red: 11/18/14	ICPO Analyzed: 11/	E - PE Optima
Zinc Batch 1411100 - 14 Serial Dilution (141)	< 250 411076	500 И	" Vater Source:	C140918-4	96.31	Prepa	red: 11/18/14		E - PE Optima
Zinc Batch 1411100 - 14 Serial Dilution (141) Aluminum	< 250 411076 1100-SRD1)	500 И Dilution Factor: 2	" Vater	C140918-4	96.31	Prepa	red: 11/18/14	Analyzed: 11/	E - PE Optim 25/14
Zinc Batch 1411100 - 14	< 250 411076 1100-SRD1)	Dilution Factor: 2	" Source: ug/L	C140918-4	96.31 6	Prepa	red: 11/18/14	Analyzed: 11/	E - PE Optim 25/14

NOTE: %R = %Recovery, %R limits do not apply when sample levels exceed 4x the spike level.

RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

TDF #: A-046

${\bf Classical\ Chemistry\ by\ EPA/ASTM/APHA\ Methods-Quality\ Control}$

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ESAT Dionex IC									
Batch 1410026 - No Pr	rep Req		Water					E	SAT Dionex IC
Method Blank (1410026	-BLK1)	Dilution Factor: 1				Prepa	red & Analyz	ed: 10/03/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Method Blank Spike (14	10026-BS1)	Dilution Factor: 1				Prepa	red & Analyz	ed: 10/03/14	
Fluoride	5.1	0.2	mg/L	5.00		101	90-110		
Chloride	25.6	2.0	"	25.0		102	90-110		
Sulfate as SO4	26.0	0.1	"	25.0		104	90-110		
Nitrate/Nitrite as N	20.5	5.0	"	20.0		102	90-110		
Duplicate (1410026-DUP1)		Dilution Factor: 1	Source:	C140918-0	3	Prepa	red & Analyz	ed: 10/03/14	
Fluoride	1.5	2.0	mg/L		1.5			3	20
Chloride	5.6	20.0	"		5.5			1	20
Sulfate as SO4	553	1.0	"		552			0.2	20
Nitrate/Nitrite as N	< 10.0	50.0	"		< 10.0				20
Matrix Spike (1410026-	MS1)	Dilution Factor: 1	Source:	C140918-0	3	Prepa	red & Analyz	ed: 10/03/14	
Fluoride	53.5	2.0	mg/L	50.0	1.5	104	80-120		
Chloride	253	20.0	"	250	5.5	99	80-120		
Sulfate as SO4	824	1.0	"	250	552	109	80-120		
Nitrate/Nitrite as N	196	50.0	"	200	< 10.0	98	80-120		
Matrix Spike (1410026-	MS2)	Dilution Factor: 1		C140918-4	2	Prepa	red & Analyz	ed: 10/03/14	
Fluoride	51.7	2.0	mg/L	50.0	3.1	97	80-120		
Chloride	254	20.0	"	250	5.4	100	80-120		
Sulfate as SO4	1070	1.0	"	250	808	107	80-120		
Nitrate/Nitrite as N	196	50.0	"	200	< 10.0	98	80-120		

Certificate of Analysis

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1410034 - 1410	0026		Water					E	SAT Dionex IC
Instrument Blank (141	0034-IBL1)	Dilution Factor: 1				Prepa	red & Analyz	zed: 10/03/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Lachat 8500									
Batch 1410088 - No 1	Prep Req		Water						Lachat 8500
Method Blank (141008	88-BLK1)	Dilution Factor: 1				Prepared & Analyzed: 10/17/14			
Ammonia as N	< 0.0300	0.0500	mg/L						
Method Blank Spike (1	1410088-BS1)	Dilution Factor: 1				Prepa	red & Analyz	red: 10/17/14	
Ammonia as N	1.04	0.0500	mg/L	1.00		104	90-110		
Duplicate (1410088-DU	J P1)	Dilution Factor: 1	Source	C140918-0	8	Prepa	red & Analyz	red: 10/17/14	
Ammonia as N	10.6	0.500	mg/L		10.8			1	20
Duplicate (1410088-DU	JP2)	Dilution Factor: 1	Source	C140918-6	57	Prepar	red & Analyz	red: 10/17/14	
Ammonia as N	7.32	0.500	mg/L		7.90			8	20
Matrix Spike (1410088	3-MS1)	Dilution Factor: 1	Source	: C140918-0	8	Prepa	red & Analyz	ed: 10/17/14	
Ammonia as N	19.3	0.500	mg/L	10.0	10.8	86	80-120		
Matrix Spike (1410088	3-MS2)	Dilution Factor: 1	Source	C140918-6	57	Prepa	red & Analyz	red: 10/17/14	
Ammonia as N	16.2	0.500	mg/L	10.0	7.90	83	80-120		
Reference (1410088-SF	RM1)	Dilution Factor: 5	į.			Prepa	red & Analyz	ed: 10/17/14	
Ammonia as N	5.30	0.250	mg/L	4.80		110	90-110		

Barker-Hughesville_Treatability 2_SEP 2014_A046 **Project Name:**

Certificate of Analysis

TDF #:

A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Mettler AT									
Batch 1409148 - No	Prep Req		Water						Mettler AT
Method Blank (1409)	148-BLK1)	Dilution Factor: 1				Prepa	red & Analyz	zed: 09/30/14	
Total Alkalinity	< 5.00	10.0	mg CaCO3 /						
Duplicate (1409148-DUP1) Dilution Factor: 1 Source: C140918-03			3	Prepar	red & Analyz	zed: 09/30/14			
Total Alkalinity	82.2	10.0	mg CaCO3 /		82.3			0.09	20
Duplicate (1409148-I	OUP2)	Dilution Factor: 1	Source:	C140918-4	2	Prepa	red & Analyz	zed: 09/30/14	
Total Alkalinity	27.8	10.0	mg CaCO3 /		28.1			1	20
Reference (1409148-5	SRM1)	Dilution Factor: 1				Prepa	red & Analyz	zed: 09/30/14	
Total Alkalinity	12.1	10.0	mg CaCO3 /	10.4		117	61.3-143.9		

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: EPA 300.0 Analysis Name: WC - Anions by Ion Chromatography

Instrument: ESAT Dionex IC Work Order: Nu C140918

Analytical Sequence: 1410034 **Dissolved** Concentration Units: mg/L

Analyte	Initial Calibration Blank (1 & 2)	Continuing Calibration Blanks			Method Blank (Batch ID	PQL		
		1	2	3	4	1410026-BLK1	NA	
	0.00	0.00	0.00	0.00			37.4	0.20
Fluoride		5	6	7	8	0.00	NA	0.20
		1	2	3	4	1410026-BLK1	NA	
	0.00	0.00	0.00	0.00	•			1
Chloride		5	6	7	8	0.00	NA	2.00
		1	2	3	4	1410026-BLK1	NA	
	0.00	0.00	0.00	0.00				
Sulfate as SO4		5	6	7	8	0.00	NA	0.10
	0.00	1	2	3	4	1410026-BLK1	NA	
Nitrate/Nitrite as N	0.00	0.00	0.00	0.00			NI A	5.00
Mitrate/Mitrite as N		5	6	7	8	0.00	NA	3.00

Project Name: Barker-Hughesville_Treatability 2_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 310.1</u> Analysis Name: <u>WC - Alkalinity</u>

Instrument: Mettler AT Work Order: Nu C140918

Analytical Sequence: Total Concentration Units: mg CaCO3 / L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	xs.	Metho Blan (Batch	PQL	
		1	2	3	4	1409148-BLK1	NA	
		1.43	1.58					
Total Alkalinity		5	6	7	8	1.14	NA	10.00

Project Name: Barker-Hughesville_Treatability 2_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 350.1</u> Analysis Name: <u>WC - Ammonia</u>

Instrument: Lachat 8500 Work Order: Nu C140918

Analytical Sequence: Total Concentration Units: mg/L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	KS	Metho Blan (Batch	PQL	
		1	2	3	4	1410088-BLK1	NA	
		0.00	-0.01					
Ammonia as N		5	6	7	8	0.00	NA	0.05

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Diss. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140918

Analytical Sequence: 1411092 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)		Continuing Cali	bration Blank	s	Metho Blanl (Batch	k	PQL
		1	2	3	4	1411085-BLK1	NA	
	0.33	0.16	0.11	-0.17				
Aluminum		5	6	7	8	5.38	NA	50.00
	12.20	1	2	3	4	1411085-BLK1	NA	
	-12.30	-8.11	-8.60	-8.54		50.50	NIA	250.0
Iron		5	6	7	8	50.72	NA	250.0
	0.10	1	2	3	4	1411085-BLK1	NA	
	0.10	0.34	0.52	0.46			374	5.00
Manganese		5	6	7	8	-0.11	NA	5.00
		1	2	3	4	1411085-BLK1	NA	
	0.56	0.67	0.90	-0.84			NA	
Zinc		5	6	7	8	0.11		20.00

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: <u>ICPMS Diss. Metals</u>

Instrument: ICPMS-PE DRC-II Work Order: Nu C140918

Analytical Sequence: 1411094 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	C	Continuing Cali	bration Blanks	Method Blank (Batch II	PQL		
	0.01	1	2	3	4	1411086-BLK1	NA	
	0.01	0.02	0.01	0.01		J		1.00
Nickel		5	6	7	8	0.03	NA	1.00
		1	2	3	4	1411086-BLK1	NA	
_	0.01	0.02	0.02	0.02			374	1.00
Copper		5	6	7	8	-0.01	NA	1.00
		1	2	3	4	1411086-BLK1	NA	
	0.21	0.10	0.30	0.24]	NIA	2.00
Arsenic		5	6	7	8	0.22	NA	2.00
		1	2	3	4	1411086-BLK1	NA	
	0.02	0.01	0.00	0.01			27.4	
Cadmium		5	6	7	8	-0.01	NA	0.20
	0.02	1	2	3	4	1411086-BLK1	NA	_
Lead	0.02	0.01	0.00	0.01		0.00	NA	0.20
Lead		5	6	7	8	0.00	11/71	0.20

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140918

Analytical Sequence: 1411099 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	s	Blank	Method Blank (Batch ID)		
		1	2	3	4	1411076-BLK1	NA		
	-0.99	1.05	0.56						
Aluminum		5	6	7	8	-0.21	NA	50.00	
		1	2	3	4	1411075-BLK1	NA		
	-0.99	1.05	0.56					1	
		5	6	7	8	-1.31	NA	50.00	
		1	2	3	4	1411076-BLK1	NA		
	-8.48	-12.40	-3.42		-				
Iron		5	6	7	8	34.43	NA	250.0	
		1	2	3	4	1411075-BLK1	NA		
	-8.48	-12.40	-3.42						
		5	6	7	8	7.87	NA	250.0	
		1	2	3	4	1411076-BLK1	NA		
	0.13	0.37	0.38				NIA	5.00	
Manganese		5	6	7	8	0.14	NA	5.00	
		1	2	3	4	1411075-BLK1	NA		
	0.13	0.37	0.38					Ī	
		5	6	7	8	-0.19	NA	5.00	
		1	2	3	4	1411076-BLK1	NA		
	-0.48	2.96	2.41]	
Zinc		5	6	7	8	3.34	NA	20.00	
	+	1	2	3	4	1411075-BLK1	NA		
	-0.48	2.96	2.41						
		5	6	7	8	3.28	NA	20.00	
				7	8	3.28	NA		

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140918

Analytical Sequence: 1411100 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	Method Blank (Batch ID	PQL		
		1	2	3	4	1411076-BLK1	NA	
	-0.35	2.92	1.22					
Aluminum		5	6	7	8	-0.21	NA	50.00
		1	2	3	4	1411075-BLK1	NA	
	-0.35	2.92	1.22				27.4	
		5	6	7	8	-1.31	NA	50.00
		1	2	3	4	1411075-BLK1	NA	
	0.25	-3.93	23.15					250.0
Iron		5	6	7	8	7.87	NA	250.0
		1	2	3	4	1411076-BLK1	NA	
	0.25	-3.93	23.15				27.1	2500
		5	6	7	8	34.43	NA	250.0
		1	2	3	4	1411075-BLK1	NA	
	0.14	0.27	0.59				NIA	5.00
Manganese		5	6	7	8	-0.19	NA	5.00
		1	2	3	4	1411076-BLK1	NA	
	0.14	0.27	0.59				27.1	
		5	6	7	8	0.14	NA	5.00
		1	2	3	4	1411076-BLK1	NA	
~	-1.68	0.21	2.84			J T	NIA	20.00
Zinc		5	6	7	8	3.34	NA	20.00
	1.00	1	2	3	4	1411075-BLK1	NA	
	-1.68	0.21	2.84				NIA	20.00
		5	6	7	8	3.28	NA	

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C140918

Analytical Sequence: 1411102 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	Me Bl (Bat	PQL		
		1	2	3	4	NA	1411076-BLK2	
	0.00	0.00	0.00					
Nickel		5	6	7	8	NA	0.00	1.00
		1	2	3	4	NA	1411075-BLK2	
	0.00	0.00	0.00					
		5	6	7	8	NA	0.02	1.00
		1	2	3	4 NA 1411076-BI	1411076-BLK2		
	0.00	0.01	0.02					
Copper		5	6	7	8	NA	0.08	1.00
		1	2	3	4	NA	1411075-BLK2	
	0.00	0.01	0.02				0.05	1.00
		5	6	7	8	NA	0.25	1.00
		1	2	3	4	NA	1411075-BLK2	
	0.18	0.21	0.13			374	0.12	2.00
Arsenic		5	6	7	8	NA	0.13	2.00
	2.12	1	2	3	4	NA	1411076-BLK2	
	0.18	0.21	0.13			374	0.02	2.00
	-	5	6	7	8	NA	0.03	2.00
	0.00	1	2	3	4	NA	1411076-BLK2	
	0.00	0.01	0.02			374	0.00	0.00
Cadmium		5	6	7	8	NA	0.00	0.20
		1	2	3	4	NA	1411075-BLK2	
	0.00	0.01	0.02					0.20
		5	6	7	8	NA	0.01	0.20

Project Name: Barker-Hughesville_Treatability 2_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C140918

Analytical Sequence: 1411102 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Method Continuing Calibration Blanks (Batch ID)							
		1	2	3	4	NA	1411075-BLK2			
	0.00	-0.02	-0.03				0.01			
Lead		5	6	7	8	NA		0.20		
		1	2	3	4	NA	1411076-BLK2			
	0.00	-0.02	-0.03					0.20		
		5	6	7	8	NA	-0.01			
1										

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C140918

Analytical Sequence: 1411103 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	s	Me Bl (Bat	PQL	
		1	2	3	4	NA	1411075-BLK2	
	0.00	0.00	0.00					
Nickel		5	6	7	8	NA	0.02	1.00
	0.00	1	2	3	4	NA	1411076-BLK2	
	0.00	0.00	0.00			NA	0.00	1.00
		5	6	7	8	NA	0.00	1.00
						NY A	1.411.07.6 DV V/2	
	0.00	1	2	3	4	NA	1411076-BLK2	
Copper		0.00	0.00			NA	0.08	1.00
••	ŀ	5	6	7	8			
		1	2	3	4	NA	1411075-BLK2	
	0.00	0.00	0.00	-	+	-	0.25	
		5	6	7	8	NA		1.00
				•	U			
		1	2	3	4	NA	1411076-BLK2	
	0.10	0.12	0.30				0.02	
Arsenic		5	6	7	8	NA	0.03	2.00
	0.10	1	2	3	4	NA	1411075-BLK2	
	0.10	0.12	0.30			NA	0.13	2.00
		5	6	7	8	NA	0.13	2.00
						NY A	1411075 PL Y2	
	0.01	1	2	3	4	NA	1411075-BLK2	
Cadmium		0.01	0.00			NA	0.01	0.20
		5	6	7	8			
		1	2	3	4	NA	1411076-BLK2	
	0.01	0.01	0.00		7			
		5	6	7	8	NA	0.00	0.20
		-			-			

Project Name: Barker-Hughesville_Treatability 2_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C140918

Analytical Sequence: 1411103 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Calibration Blanks (Batch ID)							
		1	2	3	4	NA	1411076-BLK2			
	0.01	-0.02	-0.02				-0.01			
Lead		5	6	7	8	NA		0.20		
		1	2	3	4	NA	1411075-BLK2			
	0.01	-0.02	-0.02							
		5	6	7	8	NA	0.01	0.20		

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ESAT Dionex IC Method: EPA 300.0 Analysis Name: WC - Anions by Ion Chromatography 2013

Sequence: 1410034 Work Order: C140918 Units: mg/L

Dissolved	Init	ial (ICV1, l	(CV2)		Continuing Calibration Verification Standards (CCVs)								
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R	
					1			2			3		
	40.0	20.4	00.5	40.0	39.7	99.3	40.0	39.6	99.0	40.0	39.6	99.0	
Chloride	40.0	39.4	98.5		4			5			6		
					7			8			9		
					1			2			3		
				4.00	3.9	97.5	4.00	3.9	97.5	4.00	3.9	97.5	
Fluoride	4.00	3.8	95.0		4			5			6		
					7			8			9		
				20.0	1 20.7	102.5	20.0	20.6	102.0	20.0	3	102.0	
ATT	20.0	20.6	103.0	20.0	20.7	103.5	20.0	20.6	103.0	20.0	20.6 6	103.0	
Nitrate/Nitrite as N													
					7			8			9		
					1			2			3		
				100	100	100.0	100	100	100.0	100	99.5	99.5	
Sulfate as SO4	100	98.8	98.8		4			5			6		
					7			8			9		

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

Project Name: Barker-Hughesville_Treatability 2_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Mettler AT Method: EPA 310.1 Analysis Name: WC - Alkalinity

Sequence: 1410059 Work Order: C140918 Units: mg CaCO3 / L

Total	Init	ial (ICV1, I	(CV2)	Continuing Calibration Verification Standards (CCVs)										
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R		
					1			2			3			
				100	99.9	99.9	100	99.6	99.6	100	100	100.0		
Total Alkalinity					4			5			6			
Total Finalinity														
					7			8			9			

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, \ Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, \ CCV = 80 - 120\% R.$

Project Name: Barker-Hughesville_Treatability 2_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Lachat 8500 Method: EPA 350.1 Analysis Name: WC - Ammonia

Sequence: 1410095 Work Order: C140918 Units: mg/L

Total	Initial (ICV1, ICV2)			Continuing Calibration Verification Standards (CCVs)										
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R		
					1			2			3			
				1.00	0.969	96.9	1.00	0.971	97.1					
Ammonia as N					4			5			6			
7 Hillionia as 1 v														
					7			8			9			

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, \ Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, \ CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Diss. Metals

Sequence: 1411092 Work Order: C140918 Units: ug/L

Dissolved	Initi	ial (ICV1, l	(CV2)		Cont	inuing C	alibration	Verificati	on Stand	ards (CC	Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	10500	10740	101.0	12500	13000	104.0	12500	12940	103.5	12500	12720	101.8
Aluminum	12500	12740	101.9		4			5			6	
					7			8			9	
					1			2			3	
				12500	13270	106.2	12500	13060	104.5	12500	12830	102.6
Iron	12500	12710	101.7		4			5			6	
					7			8			9	_
					1			2			3	
	1000	1035	103.5	1000	1040	104.0	1000	1038	103.8	1000	1034	103.4
Manganese	1000	1033	105.5		4			5			6	
					7			8			9	
					1			2			3	
				2500	2589	103.6	2500	2585	103.4	2500	2562	102.5
Zinc	2500	2583	103.3		4			5			6	
					7			8			9	
					,							

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Diss. Metals

Sequence: 1411094 Work Order: C140918 Units: ug/L

Dissolved	Init	ial (ICV1,	ICV2)		Cont	inuing C	alibration	Verification	on Standards (CCVs)			
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				50.0	49.2	98.4	50.0	45.4	90.8	50.0	45.5	91.0
Arsenic	50.0	50.6	101.2		4			5			6	
					7			8			9	
					1			2			3	
	50.0	47.0	05.0	50.0	48.3	96.6	50.0	48.8	97.6	50.0	48.0	96.0
Cadmium	50.0	47.9	95.8		4			5			6	
					7			8			9	
					1			<u> </u>			9	
					1			2			3	
	50.0	50.2	100.4	50.0	49.5	99.0	50.0	45.9	91.8	50.0	45.3	90.6
Copper	30.0	30.2	100.4		4			5			6	
					7			8			9	
					,						,	
					1			2			3	
	50.0	49.0	98.0	50.0	48.2	96.4	50.0	46.3	92.6	50.0	46.5	93.0
Lead	50.0	47.0	70.0		4			5			6	
					7			8			9	
					,							
					1			2			3	
	50.0	49.8	99.6	50.0	49.0	98.0	50.0	47.1	94.2	50.0	46.3	92.6
Nickel					4			5			6	
					7			8			9	
					<u> </u>			<u> </u>				

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Sequence: 1411099 Work Order: C140918 Units: ug/L

Total Recoverable	Initi	al (ICV1, l	(CV2)		Conti	inuing C	alibration	Verificati	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	12010	102.2	12500	12910	103.3	12500	12860	102.9			
Aluminum	12500	12910	103.3		4			5			6	
					7			8			9	
					1			2			3	
	12500	12690	101.4	12500	12640	101.1	12500	12500	100.0			
Iron	12500	12680	101.4		4			5			6	
					7			8			9	
				1000	1042	1042	1000	2	104.1		3	
	1000	1035	103.5	1000	1042	104.2	1000	1041	104.1		6	
Manganese					•							
					7			8			9	
				2500	1	1040	2500	2 200	105.1		3	
	2500	2613	104.5	2500	2621	104.8	2500	2628	105.1			
Zinc					4			5			6	
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Sequence: 1411100 Work Order: C140918 Units: ug/L

Total Recoverable	Initi	al (ICV1, l	ICV2)		Cont	inuing Ca	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	12660	101.2	12500	12830	102.6	12500	12650	101.2			
Aluminum	12500	12660	101.3		4			5			6	
					7			8			9	
								-				
					1			2			3	
	12500	10550	102.2	12500	12670	101.4	12500	12490	99.9			
Iron	12500	12770	102.2		4			5			6	
non												
					7			8			9	
					1			2			3	
	1000	1021	102.1	1000	1016	101.6	1000	1033	103.3			
Manganese	1000	1021	102.1		4			5			6	
					7			8			9	
					1			2			3	
				2500	2540	101.6	2500	2581	103.2			
Zinc	2500	2529	101.2		4			5			6	
-												
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1411102 Work Order: C140918 Units: ug/L

Total Recoverable	Initi	ial (ICV1,	ICV2)		Conti	nuing C	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				50.0	47.49	95.0	50.0	48.38	96.8			
Arsenic	50.0	51.23	102.5		4			5			6	
					7			8			9	
					1			2			3	
	50.0	40.40	06.0	50.0	49.32	98.6	50.0	49.36	98.7			
Cadmium	30.0	48.40	96.8		4			5			6	
					7			8			9	
					,			0				
					1			2			3	
		10.00	00.4	50.0	49.40	98.8	50.0	49.93	99.9			
Copper	50.0	49.69	99.4		4			5			6	
					7			8			9	
					,			•				
					1			2			3	
	50.0	50.60	101.4	50.0	46.79	93.6	50.0	47.32	94.6			
Lead	50.0	50.68	101.4		4			5			6	
					7			8			9	
					/			<u> </u>			9	
					1			2			3	
	50.0	48.59	97.2	50.0	48.12	96.2	50.0	50.13	100.3			
Nickel	30.0	10.57	71.4		4			5			6	
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1411103 Work Order: C140918 Units: ug/L

Total Recoverable	Init	ial (ICV1, l	(CV2)		Conti	inuing C	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	50.0	40.00	00.0	50.0	47.80	95.6	50.0	47.44	94.9			
Arsenic	50.0	48.98	98.0		4			5			6	
					7			8			9	
					1			2			3	
	50.0	40.00	07.6	50.0	48.36	96.7	50.0	48.04	96.1			
Cadmium	50.0	48.80	97.6		4			5			6	
					7			8			9	
					,			0				
					1			2			3	
	50.0	50.20	100.0	50.0	48.51	97.0	50.0	46.53	93.1			
Copper	50.0	50.39	100.8		4			5			6	
					7			8			9	
					,							
-					1			2			3	
	50.0	40 47	06.0	50.0	47.17	94.3	50.0	48.03	96.1			
Lead	50.0	48.47	96.9		4			5			6	
											9	
					7			8			9	
					1			2			3	
	50.0	50.50	101.0	50.0	49.25	98.5	50.0	47.69	95.4			
Nickel	30.0	50.50	101.0		4			5			6	
					7			8			9	
					· · · · · · · · · · · · · · · · · · ·							

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPMS-PE DRC-II

Analyte		<u>C</u>	heck Sample	Result*	Units	<u>True</u>	<u>%R</u>	<u>PQL</u>
Sequence:	1411094	Analysis:	ICPMS Diss. Meta	ıls				
Arsenic			IFA1	0.1	ug/L			2.00
			IFB1	20.1	ug/L	20	100	2.00
Cadmium			IFA1	0.1	ug/L			0.200
			IFB1	19.8	ug/L	20	99	0.200
Copper			IFA1	0.7	ug/L			1.00
			IFB1	20.5	ug/L	20	103	1.00
Lead			IFA1	0.0	ug/L			0.200
			IFB1	0.0	ug/L			0.200
Nickel			IFA1	0.0	ug/L			1.00
			IFB1	20.0	ug/L	20	100	1.00
		True Value or + analyte list and						
Sequence:	1411102	Analysis:	ICPMS Tot. Rec. N	Metals				
Arsenic			IFA1	0.0	ug/L			2.00
			IFB1	19.9	ug/L	20	99	2.00
Cadmium			IFA1	0.1	ug/L			0.200
			IFB1	20.1	ug/L	20	101	0.200
Copper			IFA1	0.8	ug/L			1.00
			IFB1	20.9	ug/L	20	104	1.00
Lead			IFA1	0.0	ug/L			0.200

0.0

-0.1

19.3

ug/L

ug/L

ug/L

20

96

Nickel

IFB1

IFA1

IFB1

See raw data for complete analyte list and results.

0.200

1.00

1.00

^{*}Criteria = 80-120%R of True Value or +/- PQL

TDF #:

A-046

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPMS-PE DRC-II

Analyte Sequence:	1411103		eck Sample CPMS Tot. Rec.	Result*	<u>Units</u>	<u>True</u>	<u>%R</u>	<u>PQL</u>
Arsenic	1411105	7 thary 515.	IFA1	0.0	ug/L			2.00
			IFB1	19.9	ug/L	20	99	2.00
Cadmium			IFA1	0.1	ug/L			0.200
			IFB1	20.2	ug/L	20	101	0.200
Copper			IFA1	0.8	ug/L			1.00
			IFB1	20.4	ug/L	20	102	1.00
Lead			IFA1	0.0	ug/L			0.200
			IFB1	0.0	ug/L			0.200
Nickel			IFA1	-0.1	ug/L			1.00
			IFB1	20.0	ug/L	20	100	1.00

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

TDF #:

A-046

TechLaw, Inc ESAT Region 8
ICP Interference Check Sample
ICPOF - PF Ontima

Analyte	Check Sample	Result*	<u>Units</u>	<u>True</u>	<u>%R</u>	<u>PQL</u>
Sequence: 1411092	Analysis: ICPOE Diss. Metals					
Aluminum	IFA1	58,946.7	ug/L	60,000	98	50.0
	IFB1	60,393.6	ug/L	60,000	101	50.0
Iron	IFA1	235,374.5	ug/L	250,000	94	250
	IFB1	236,309.1	ug/L	250,000	95	250
Manganese	IFA1	0.0	ug/L			5.00
	IFB1	195.6	ug/L	200	98	5.00
Zinc	IFA1	5.3	ug/L			20.0
	IFB1	278.5	ug/L	300	93	20.0
*Criteria = \$0.120%P.of	Erus Value or ±/ DOI					

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

Sequence: 1411099	Analysis: ICPOE Tot. Rec.	Metals				
Aluminum	IFA1	59,605.2	ug/L	60,000	99	50.0
	IFB1	59,692.2	ug/L	60,000	99	50.0
Iron	IFA1	222,383.5	ug/L	250,000	89	250
	IFB1	226,580.4	ug/L	250,000	91	250
Manganese	IFA1	-0.5	ug/L			5.00
	IFB1	194.3	ug/L	200	97	5.00
Zinc	IFA1	0.3	ug/L			20.0
	IFB1	281.2	ug/L	300	94	20.0

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

IFA1	58,490.7	ug/L			
	,	ug/L	60,000	97	50.0
IFB1	60,313.7	ug/L	60,000	101	50.0
IFA1	223,856.3	ug/L	250,000	90	250
IFB1	232,796.3	ug/L	250,000	93	250
IFA1	0.0	ug/L			5.00
IFB1	193.5	ug/L	200	97	5.00
IFA1	3.7	ug/L			20.0
IFB1	280.9	ug/L	300	94	20.0
	IFA1 IFB1 IFB1 IFA1	IFA1 223,856.3 IFB1 232,796.3 IFA1 0.0 IFB1 193.5 IFA1 3.7	IFA1 223,856.3 ug/L IFB1 232,796.3 ug/L IFA1 0.0 ug/L IFB1 193.5 ug/L IFA1 3.7 ug/L	IFA1 223,856.3 ug/L 250,000 IFB1 232,796.3 ug/L 250,000 IFA1 0.0 ug/L IFB1 193.5 ug/L 200 IFA1 3.7 ug/L	IFA1 223,856.3 ug/L 250,000 90 IFB1 232,796.3 ug/L 250,000 93 IFA1 0.0 ug/L IFB1 193.5 ug/L 200 97 IFA1 3.7 ug/L

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8
Detection Limit (PQL) Standard
ICPMS-PE DRC-II

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1411094

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Arsenic	2.00	2.26	113	ug/L
Cadmium	0.200	0.200	100	ug/L
Copper	1.00	1.22	122	ug/L
Lead	0.200	0.213	106	ug/L
Nickel	1.00	0.992	99	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1411092

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	101.4	101	ug/L
Iron	100	96.29	96	ug/L
Manganese	10.0	10.70	107	ug/L
Zinc	50.0	53.35	107	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

Project Name: Barker-Hughesville_Treatability 2_SEP 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard Lachat 8500

Classical Chemistry by EPA/ASTM/APHA Methods

Sequence: 1410095

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Ammonia as N	0.0250	0.0224	90	mg/L

 $Recovery\ Control\ Limits:\ 70\text{-}130\%\ except\ Pb,\ Tl,\ Sb,\ \&\ Hg\ at\ 50\text{-}150\%.\ \ No\ limits\ for\ Al,\ Ca,\ Fe,\ K,\ Mg\ \&\ Na.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPMS-PE DRC-II

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1411102

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Arsenic	2.00	1.932	97	ug/L
Cadmium	0.200	0.2113	106	ug/L
Copper	1.00	0.9363	94	ug/L
Lead	0.200	0.1796	90	ug/L
Nickel	1.00	0.9006	90	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPMS-PE DRC-II

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1411103

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Arsenic	2.00	2.067	103	ug/L
Cadmium	0.200	0.1959	98	ug/L
Copper	1.00	1.056	106	ug/L
Lead	0.200	0.2012	101	ug/L
Nickel	1.00	0.9537	95	ug/L

 $Recovery\ Control\ Limits:\ 70\text{-}130\%\ except\ Pb,\ Tl,\ Sb,\ \&\ Hg\ at\ 50\text{-}150\%.\ \ No\ limits\ for\ Al,\ Ca,\ Fe,\ K,\ Mg\ \&\ Na.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Detection Limit (PQL) Standard

ICPOE - PE Optima

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1411099

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Aluminum	100	96.47	96	ug/L
Iron	100	74.14	74	ug/L
Manganese	10.0	10.44	104	ug/L
Zinc	50.0	53.81	108	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1411100

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	98.64	99	ug/L
Iron	100	85.00	85	ug/L
Manganese	10.0	10.61	106	ug/L
Zinc	50.0	52.90	106	ug/L

 $Recovery\ Control\ Limits:\ 70\text{-}130\%\ except\ Pb,\ Tl,\ Sb,\ \&\ Hg\ at\ 50\text{-}150\%.\ \ No\ limits\ for\ Al,\ Ca,\ Fe,\ K,\ Mg\ \&\ Na.$

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 300.0 **Dissolved Sequence ID#:** 1410034

Instrument ID #: ESAT	Dionex IC Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1410034-ICV1	Initial Cal Check	10/03/14	15:57
1410034-ICB1	Initial Cal Blank	10/03/14	16:15
1410034-SCV1	Secondary Cal Check	10/03/14	16:34
1410034-IBL1	Instrument Blank	10/03/14	16:53
1410026-BS1	Blank Spike	10/03/14	17:12
1410026-BLK1	Blank	10/03/14	17:31
C140918-03	14BH-DT-PILOT-BCR1-09161	10/03/14	17:50
1410026-DUP1	Duplicate	10/03/14	18:08
1410026-MS1	Matrix Spike	10/03/14	18:27
C140918-07	14BH-DT-PILOT-BCR1-09231	10/03/14	18:46
C140918-11	14BH-DT-PILOT-BCR2-09161	10/03/14	19:05
C140918-15	14BH-DT-PILOT-BCR2-09231	10/03/14	19:24
1410034-CCV1	Calibration Check	10/03/14	19:43
1410034-CCB1	Calibration Blank	10/03/14	20:01
C140918-19	14BH-DT-PILOT-BCR3-09161	10/03/14	20:58
C140918-23	14BH-DT-PILOT-BCR3-09231	10/03/14	21:17
C140918-27	14BH-DT-PILOT-BCR4-09161	10/03/14	21:35
C140918-31	14BH-DT-PILOT-BCR4-09231	10/03/14	21:54
C140918-35	14BH-DT-PILOT-BCR4D-091€	10/03/14	22:13
C140918-39	14BH-DT-PILOT-CHIT-091614	10/03/14	22:32
C140918-42	14BH-DT-PILOT-CHIT-092314	10/03/14	22:51
1410026-MS2	Matrix Spike	10/03/14	23:10
C140918-45	14BH-DT-PILOT-INFL-091614	10/03/14	23:28
C140918-48	14BH-DT-PILOT-INFL-092314	10/03/14	23:47
1410034-CCV2	Calibration Check	10/04/14	00:06
1410034-CCB2	Calibration Blank	10/04/14	00:25
C140918-51	14BH-DT-PILOT-INFLD-0923	10/04/14	01:21
C140918-54	14BH-DT-PILOT-NAOH-0916	10/04/14	01:40
C140918-57	14BH-DT-PILOT-NAOH-0923	10/04/14	01:59
C140918-61	14BH-DT-PILOT-POSTE-0923	10/04/14	02:18
C140918-66	14BH-DT-PILOT-POSTI-09231	10/04/14	02:37
C140918-70	14BH-DT-PILOT-SAPS-09161	10/04/14	02:56
C140918-73	14BH-DT-PILOT-SAPS-092314	10/04/14	03:14
1410034-CCV3	Calibration Check	10/04/14	03:33
1410034-CCB3	Calibration Blank	10/04/14	04:30

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 310.1 **Total Sequence ID#:** 1410059

Instrument ID #: Mettle	er AT Wate	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1409148-SRM1	Reference	09/30/14	07:24
1409148-BLK1	Blank	09/30/14	07:24
C140918-03	14BH-DT-PILOT-BCR1-09161	09/30/14	07:24
1409148-DUP1	Duplicate	09/30/14	07:24
C140918-07	14BH-DT-PILOT-BCR1-09231	09/30/14	07:24
C140918-11	14BH-DT-PILOT-BCR2-09161	09/30/14	07:24
C140918-15	14BH-DT-PILOT-BCR2-09231	09/30/14	07:24
C140918-19	14BH-DT-PILOT-BCR3-09161	09/30/14	07:24
C140918-23	14BH-DT-PILOT-BCR3-09231	09/30/14	07:24
C140918-27	14BH-DT-PILOT-BCR4-09161	09/30/14	07:24
1410059-CCV1	Calibration Check	09/30/14	07:24
1410059-CCB1	Calibration Blank	09/30/14	07:24
C140918-31	14BH-DT-PILOT-BCR4-09231	09/30/14	07:24
C140918-35	14BH-DT-PILOT-BCR4D-0916	09/30/14	07:24
C140918-39	14BH-DT-PILOT-CHIT-091614	09/30/14	07:24
C140918-42	14BH-DT-PILOT-CHIT-092314	09/30/14	07:24
1409148-DUP2	Duplicate	09/30/14	07:24
C140918-45	14BH-DT-PILOT-INFL-091614	09/30/14	07:24
C140918-48	14BH-DT-PILOT-INFL-092314	09/30/14	07:24
C140918-51	14BH-DT-PILOT-INFLD-0923	09/30/14	07:24
C140918-54	14BH-DT-PILOT-NAOH-0916	09/30/14	07:24
C140918-57	14BH-DT-PILOT-NAOH-0923	09/30/14	07:24
1410059-CCV2	Calibration Check	09/30/14	07:24
C140918-61	14BH-DT-PILOT-POSTE-0923	09/30/14	07:24
C140918-66	14BH-DT-PILOT-POSTI-09231	09/30/14	07:24
C140918-70	14BH-DT-PILOT-SAPS-09161	09/30/14	07:24
C140918-73	14BH-DT-PILOT-SAPS-09231	09/30/14	07:24
1410059-CCV3	Calibration Check	09/30/14	07:24
1410059-CCB3	Calibration Blank	09/30/14	07:24

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 350.1 **Total Sequence ID#:** 1410095

Instrument ID #: Lachat	8500 Wate	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1410088-SRM1	Reference	10/17/14	12:23
1410088-BLK1	Blank	10/17/14	12:23
1410088-BS1	Blank Spike	10/17/14	12:23
1410095-CRL1	Instrument RL Check	10/17/14	12:23
C140918-04	14BH-DT-PILOT-BCR1-09161	10/17/14	12:23
C140918-08	14BH-DT-PILOT-BCR1-09231	10/17/14	12:23
1410088-DUP1	Duplicate	10/17/14	12:23
1410088-MS1	Matrix Spike	10/17/14	12:23
C140918-12	14BH-DT-PILOT-BCR2-09161	10/17/14	12:23
1410095-CCV1	Calibration Check	10/17/14	12:23
1410095-CCB1	Calibration Blank	10/17/14	12:23
C140918-16	14BH-DT-PILOT-BCR2-09231	10/17/14	12:23
C140918-20	14BH-DT-PILOT-BCR3-09161	10/17/14	12:23
C140918-24	14BH-DT-PILOT-BCR3-09231	10/17/14	12:23
C140918-28	14BH-DT-PILOT-BCR4-09161	10/17/14	12:23
C140918-32	14BH-DT-PILOT-BCR4-09231	10/17/14	12:23
C140918-36	14BH-DT-PILOT-BCR4D-0916	10/17/14	12:23
C140918-62	14BH-DT-PILOT-POSTE-0923	10/17/14	12:23
C140918-67	14BH-DT-PILOT-POSTI-09231	10/17/14	12:23
1410088-DUP2	Duplicate	10/17/14	12:23
1410088-MS2	Matrix Spike	10/17/14	12:23
1410095-CCV2	Calibration Check	10/17/14	12:23
1410095-CCB2	Calibration Blank	10/17/14	12:23

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Dissolved Sequence ID#:** 1411092

Analysis ID	Come 1- N	Analysis Date	Analysis Time
	Sample Name	Analysis Date	Analysis Time
1411092-ICV1	Initial Cal Check	11/21/14	10:16
1411092-SCV1	Secondary Cal Check	11/21/14	10:19
1411092-ICB1	Initial Cal Blank	11/21/14	10:22
1411092-CRL1	Instrument RL Check	11/21/14	10:25
1411092-IFA1	Interference Check A	11/21/14	10:28
1411092-IFB1	Interference Check B	11/21/14	10:31
1411085-BLK1	Blank	11/21/14	10:35
1411085-BS1	Blank Spike	11/21/14	10:39
C140918-02	14BH-DT-PILOT-BCR1-09161	11/21/14	10:42
1411085-DUP1	Duplicate	11/21/14	10:45
1411092-SRD1	Serial Dilution	11/21/14	10:48
1411085-MS1	Matrix Spike	11/21/14	10:51
C140918-06	14BH-DT-PILOT-BCR1-09231	11/21/14	10:54
1411085-MS2	Matrix Spike	11/21/14	10:57
C140918-10	14BH-DT-PILOT-BCR2-09161	11/21/14	11:00
1411092-CCV1	Calibration Check	11/21/14	11:06
1411092-CCB1	Calibration Blank	11/21/14	11:09
C140918-14	14BH-DT-PILOT-BCR2-09231	11/21/14	11:12
C140918-18	14BH-DT-PILOT-BCR3-09161	11/21/14	11:15
C140918-22	14BH-DT-PILOT-BCR3-09231	11/21/14	11:18
C140918-26	14BH-DT-PILOT-BCR4-09161	11/21/14	11:21
C140918-30	14BH-DT-PILOT-BCR4-09231	11/21/14	11:25
C140918-34	14BH-DT-PILOT-BCR4D-0916	11/21/14	11:28
C140918-38	14BH-DT-PILOT-CHIT-091614	11/21/14	11:31
C140918-41	14BH-DT-PILOT-CHIT-092314	11/21/14	11:34
C140918-44	14BH-DT-PILOT-INFL-091614	11/21/14	11:37
1411092-CCV2	Calibration Check	11/21/14	11:43
1411092-CCB2	Calibration Blank	11/21/14	11:46
C140918-47	14BH-DT-PILOT-INFL-092314	11/21/14	11:49
C140918-50	14BH-DT-PILOT-INFLD-0923	11/21/14	11:52
C140918-53	14BH-DT-PILOT-NAOH-0916	11/21/14	11:55
C140918-56	14BH-DT-PILOT-NAOH-0923	11/21/14	11:58
C140918-60	14BH-DT-PILOT-POSTE-0923	11/21/14	12:02
C140918-65	14BH-DT-PILOT-POSTI-09231	11/21/14	12:05
C140918-69	14BH-DT-PILOT-SAPS-09161	11/21/14	12:08
C140918-72	14BH-DT-PILOT-SAPS-09231	11/21/14	12:11
1411092-CCV3	Calibration Check	11/21/14	12:17
1411092-CCB3	Calibration Blank	11/21/14	12:20

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Dissolved Sequence ID#:** 1411094

nstrument ID #: ICPM	S-PE DRC-II Water		LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
411094-ICV1	Initial Cal Check	11/21/14	10:45
1411094-SCV1	Secondary Cal Check	11/21/14	10:48
1411094-ICB1	Initial Cal Blank	11/21/14	10:52
1411094-CRL1	Instrument RL Check	11/21/14	10:55
1411094-IFA1	Interference Check A	11/21/14	10:58
1411094-IFB1	Interference Check B	11/21/14	11:02
1411086-BLK1	Blank	11/21/14	11:05
1411086-BS1	Blank Spike	11/21/14	11:08
C140918-02	14BH-DT-PILOT-BCR1-09161	11/21/14	11:11
1411086-DUP1	Duplicate	11/21/14	11:14
1411094-SRD1	Serial Dilution	11/21/14	11:17
1411086-MS1	Matrix Spike	11/21/14	11:20
C140918-06	14BH-DT-PILOT-BCR1-09231	11/21/14	11:23
1411086-MS2	Matrix Spike	11/21/14	11:26
C140918-10	14BH-DT-PILOT-BCR2-09161	11/21/14	11:30
1411094-CCV1	Calibration Check	11/21/14	11:43
1411094-CCB1	Calibration Blank	11/21/14	11:46
C140918-14	14BH-DT-PILOT-BCR2-09231	11/21/14	11:49
C140918-18	14BH-DT-PILOT-BCR3-09161	11/21/14	11:52
C140918-22	14BH-DT-PILOT-BCR3-09231	11/21/14	11:55
C140918-26	14BH-DT-PILOT-BCR4-09161	11/21/14	11:58
C140918-30	14BH-DT-PILOT-BCR4-09231	11/21/14	12:02
C140918-34	14BH-DT-PILOT-BCR4D-0916	11/21/14	12:05
C140918-38	14BH-DT-PILOT-CHIT-091614	11/21/14	12:08
C140918-41	14BH-DT-PILOT-CHIT-092314	11/21/14	12:11
C140918-44	14BH-DT-PILOT-INFL-091614	11/21/14	12:14
1411094-CCV2	Calibration Check	11/21/14	12:20
411094-CCB2	Calibration Blank	11/21/14	12:23
C140918-47	14BH-DT-PILOT-INFL-092314	11/21/14	12:27
C140918-50	14BH-DT-PILOT-INFLD-0923	11/21/14	12:30
C140918-53	14BH-DT-PILOT-NAOH-0916	11/21/14	12:33
C140918-56	14BH-DT-PILOT-NAOH-0923	11/21/14	12:36
C140918-60	14BH-DT-PILOT-POSTE-0923	11/21/14	12:39
C140918-65	14BH-DT-PILOT-POSTI-09231	11/21/14	12:42
C140918-69	14BH-DT-PILOT-SAPS-091614	11/21/14	12:45
C140918-72	14BH-DT-PILOT-SAPS-092314	11/21/14	12:48
411094-CCV3	Calibration Check	11/21/14	12:54
1411094-CCB3	Calibration Blank	11/21/14	12:58

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Total Recoverable Sequence ID#:** 1411099

Instrument ID #: ICPOI	E - PE Optima Wate	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1411099-ICV1	Initial Cal Check	11/24/14	10:23
1411099-SCV1	Secondary Cal Check	11/24/14	10:26
1411099-ICB1	Initial Cal Blank	11/24/14	10:30
1411099-CRL1	Instrument RL Check	11/24/14	10:33
1411099-IFA1	Interference Check A	11/24/14	10:35
1411099-IFB1	Interference Check B	11/24/14	10:39
1411075-BLK1	Blank	11/24/14	10:43
1411075-SRM1	Reference	11/24/14	10:46
C140918-01	14BH-DT-PILOT-BCR1-09161	11/24/14	10:49
1411075-DUP1	Duplicate	11/24/14	10:52
1411099-SRD1	Serial Dilution	11/24/14	10:55
1411075-MS1	Matrix Spike	11/24/14	10:59
C140918-05	14BH-DT-PILOT-BCR1-09231	11/24/14	11:02
1411075-MS3	Matrix Spike	11/24/14	11:05
C140918-09	14BH-DT-PILOT-BCR2-09161	11/24/14	11:08
1411099-CCV1	Calibration Check	11/24/14	11:14
1411099-CCB1	Calibration Blank	11/24/14	11:17
C140918-13	14BH-DT-PILOT-BCR2-09231	11/24/14	11:20
C140918-17	14BH-DT-PILOT-BCR3-09161	11/24/14	11:23
C140918-21	14BH-DT-PILOT-BCR3-09231	11/24/14	11:26
C140918-25	14BH-DT-PILOT-BCR4-09161	11/24/14	11:29
C140918-29	14BH-DT-PILOT-BCR4-09231	11/24/14	11:32
C140918-33	14BH-DT-PILOT-BCR4D-0916	11/24/14	11:36
C140918-37	14BH-DT-PILOT-CHIT-091614	11/24/14	11:39
C140918-40	14BH-DT-PILOT-CHIT-092314	11/24/14	11:42
C140918-43	14BH-DT-PILOT-INFL-091614	11/24/14	11:45
1411099-CCV2	Calibration Check	11/24/14	11:51
1411099-CCB2	Calibration Blank	11/24/14	11:54

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Total Recoverable Sequence ID#:** 1411100

Instrument ID #: ICPO	E - PE Optima Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1411100-ICV1	Initial Cal Check	11/25/14	09:11
1411100-SCV1	Secondary Cal Check	11/25/14	09:15
1411100-ICB1	Initial Cal Blank	11/25/14	09:18
1411100-CRL1	Instrument RL Check	11/25/14	09:21
1411100-IFA1	Interference Check A	11/25/14	09:23
1411100-IFB1	Interference Check B	11/25/14	09:27
1411076-BLK1	Blank	11/25/14	09:31
1411076-SRM1	Reference	11/25/14	09:35
C140918-46	14BH-DT-PILOT-INFL-092314	11/25/14	09:37
1411076-DUP1	Duplicate	11/25/14	09:40
1411100-SRD1	Serial Dilution	11/25/14	09:44
C140918-49	14BH-DT-PILOT-INFLD-0923	11/25/14	09:47
1411076-MS1	Matrix Spike	11/25/14	09:50
C140918-52	14BH-DT-PILOT-NAOH-0916	11/25/14	09:53
C140918-55	14BH-DT-PILOT-NAOH-0923	11/25/14	09:56
1411100-CCV1	Calibration Check	11/25/14	10:02
1411100-CCB1	Calibration Blank	11/25/14	10:05
C140918-58	14BH-DT-PILOT-POSTE-0916	11/25/14	10:08
C140918-59	14BH-DT-PILOT-POSTE-0923	11/25/14	10:11
C140918-63	14BH-DT-PILOT-POSTI-09161	11/25/14	10:14
C140918-64	14BH-DT-PILOT-POSTI-09231	11/25/14	10:17
C140918-68	14BH-DT-PILOT-SAPS-091614	11/25/14	10:20
C140918-71	14BH-DT-PILOT-SAPS-092314	11/25/14	10:24
1411100-CCV2	Calibration Check	11/25/14	10:33
1411100-CCB2	Calibration Blank	11/25/14	10:36

TDF #: A-046

TechLaw Inc., ESAT Region 8

INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Total Recoverable Sequence ID#:** 1411102

Instrument ID #: ICPM	S-PE DRC-II Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1411102-ICV1	Initial Cal Check	11/24/14	11:29
1411102-SCV1	Secondary Cal Check	11/24/14	11:32
1411102-ICB1	Initial Cal Blank	11/24/14	11:35
1411102-CRL1	Instrument RL Check	11/24/14	11:39
1411102-IFA1	Interference Check A	11/24/14	11:42
1411102-IFB1	Interference Check B	11/24/14	11:45
1411075-BLK2	Blank	11/24/14	11:48
1411075-SRM2	Reference	11/24/14	11:52
C140918-01	14BH-DT-PILOT-BCR1-09161	11/24/14	11:55
1411075-DUP2	Duplicate	11/24/14	11:58
1411102-SRD1	Serial Dilution	11/24/14	12:01
1411075-MS2	Matrix Spike	11/24/14	12:04
C140918-05	14BH-DT-PILOT-BCR1-09231	11/24/14	12:07
1411075-MS4	Matrix Spike	11/24/14	12:10
C140918-09	14BH-DT-PILOT-BCR2-09161	11/24/14	12:13
1411102-CCV1	Calibration Check	11/24/14	12:19
1411102-CCB1	Calibration Blank	11/24/14	12:23
C140918-13	14BH-DT-PILOT-BCR2-09231	11/24/14	12:26
C140918-17	14BH-DT-PILOT-BCR3-09161	11/24/14	12:29
C140918-21	14BH-DT-PILOT-BCR3-09231	11/24/14	12:32
C140918-25	14BH-DT-PILOT-BCR4-09161	11/24/14	12:35
C140918-29	14BH-DT-PILOT-BCR4-09231	11/24/14	12:38
C140918-33	14BH-DT-PILOT-BCR4D-0916	11/24/14	12:41
C140918-37	14BH-DT-PILOT-CHIT-091614	11/24/14	12:44
C140918-40	14BH-DT-PILOT-CHIT-092314	11/24/14	12:48
C140918-43	14BH-DT-PILOT-INFL-091614	11/24/14	12:51
1411102-CCV2	Calibration Check	11/24/14	13:05
1411102-CCB2	Calibration Blank	11/24/14	13:08

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Total Recoverable Sequence ID#:** 1411103

Instrument ID #: ICPMS	S-PE DRC-II Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1411103-ICV1	Initial Cal Check	11/25/14	10:39
1411103-SCV1	Secondary Cal Check	11/25/14	10:42
1411103-ICB1	Initial Cal Blank	11/25/14	10:45
1411103-CRL1	Instrument RL Check	11/25/14	10:49
1411103-IFA1	Interference Check A	11/25/14	10:52
1411103-IFB1	Interference Check B	11/25/14	10:55
1411076-BLK2	Blank	11/25/14	10:59
1411076-SRM2	Reference	11/25/14	11:02
C140918-46	14BH-DT-PILOT-INFL-092314	11/25/14	11:05
1411076-DUP2	Duplicate	11/25/14	11:08
1411103-SRD1	Serial Dilution	11/25/14	11:11
C140918-49	14BH-DT-PILOT-INFLD-0923	11/25/14	11:14
1411076-MS2	Matrix Spike	11/25/14	11:17
C140918-52	14BH-DT-PILOT-NAOH-0916	11/25/14	11:20
C140918-55	14BH-DT-PILOT-NAOH-0923	11/25/14	11:23
1411103-CCV1	Calibration Check	11/25/14	11:30
1411103-CCB1	Calibration Blank	11/25/14	11:33
C140918-58	14BH-DT-PILOT-POSTE-0916	11/25/14	11:36
C140918-59	14BH-DT-PILOT-POSTE-0923	11/25/14	11:39
C140918-63	14BH-DT-PILOT-POSTI-09161	11/25/14	11:42
C140918-64	14BH-DT-PILOT-POSTI-09231	11/25/14	12:06
C140918-68	14BH-DT-PILOT-SAPS-091614	11/25/14	12:28
C140918-71	14BH-DT-PILOT-SAPS-09231	11/25/14	12:31
1411103-CCV2	Calibration Check	11/25/14	12:46
1411103-CCB2	Calibration Blank	11/25/14	12:50

0146918

ESAT Technical Direction Form

Contract No. EPW13028 EPA Region 8

Site ID: 085N TDF ID: A-046	Date Issued: 5/29/2014 Date Updated:	Date Closed By:
Name: Barker-Hughesville Treatabilit	- -	Closed By,
Details: The Contractor shall analyze s Superfund site as indicated in during the 2014 field season st	everal water samples associated with the tre the Analytical Information Section. The sa carting in mid-June though early October 20 eraging approximately 10 samples per an ev-	imples will be sent to the ESAT R8 Lab
Samples designated as influent analyzed by 200.7. Additionall	samples (-INF) are expected to have high ray, metals with sufficiently high concentration	metal concentrations and should be one may be reported from the 200.7 analyses.
ESAT should return the coole CDM Smith/Lauren Hel 50 West 14th Street, Suite Helena, MT 59601 406-441-1435 FedEx # 1323-6393-5	land	
TO02/Subtask 02b: Inorgan	c Chemistry	
Site RPM: Roger Hoogerheid	le	
Analytical Information:		
MATRIX ☑ Water □ Soils □ Vegetation □	Biota	Ψ [*] · · ·
	Chloride ☑ Sulfate ☑ Fluoride ☑ Nitrat NO2 and NO3 as NO2-NO3 combined.	te ☑ Nitrite
METALS	P1 1 17 1 (O.1)	
☑ Dissolved ☑ Total Recoverable ☐ 200.7: ☐ Ag ☑ Al ☐ As ☐ Ba	Total □ Hardness (Calc) □ Be □ B □ Ca □ Cd □ Co □ C	Cr□Cu ☑ Fe □K □Mg
200.8: □ Ag □ Al ☑ As □ Ba	□ Pb □ Sb □ Se □ Sr □ Ti □ T □ Be ☑ Cd □ Co □ Cr ☑ Cu ☑ N	
□ Se □ Th □ Tl □ U 7470/7471/747 □ Hg	11/21 Sv	ly
FIBERS □ PLM □ TEM		
Deliverables ID D	escription	Due Date Submission Date
**	1	

1 Provide final deliverable package to Task Monitor no later than 30 days after delivery of samples.

CHAIN OF CUSTODY RECORD

CDM Smith			Danny	T Pilot Test								Anal	ysis						PACT 1
NOTES: Limited sample volumes due to tr Contact: Angela Frandsen, CDM Smith (40	reatability testing 06)441-1400					200.7 or 200.8	solved Metals (TAL), 200.7 or 200.8	lfate, chloride,	onia										PAGE 10FZ Other Instructions and Notes
SAMPLE NUMBER	DATE	TIME	MATRIX	Preservative	Type & No. of Containers	Is (TAL),	Dissolved Metals (TA	Alkalinity, Anions (sulfate, c	Nitrate+Nitrite, Ammonia										
14BH-DT-PILOT-INFL-091614	9/16/14	11:05⊌	aqueous		3, 125 mL poly	х	Х	Х											
14BH-DT-PILOT-SAPS-091614	9/16/14	11:30 %	aqueous		3, 125 mL poly	х	х	Х											
14BH-DT-PILOT-CHIT-091614	9/16/14	11:45 _k	aqueous		3, 125 mL poly	Х	Х	Х											
14BH-DT-PILOT-NAOH-091614	9/16/14	12:00₺	aqueous		3, 125 mL poly	Х	Х	Х											
14BH-DT-PILOT-BCR1-091614	9/16/14	12:15	aqueous	HNO3		х	Х	Х											
14BH-DT-PILOT-BCR2-091614	9/16/14	12:30	aqueous	(metals), H2SO4	4, 125 mL poly	Х	Х	Х	Х										1
14BH-DT-PILOT-BCR3-091614	9/16/14	12:45	aqueous	(nutrients), cool	4, 125 mL poly	х	Х	x x											
14BH-DT-PILOT-BCR4-091614	9/16/14	13:00	aqueous		4, 125 mL poly	х	Х	X	Х										TAL metals = Al, As, Ba, Be, Cd, Ca,
14BH-DT-PILOT-BCR4D-091614	9/16/14	13:05&	aqueous		4, 125 mL poly	х	х	х	Х										Cr, Co, Cu, Fe, Pb, Mg, Mn, Ni, K, Ag,
14BH-DT-PILOT-POSTI-091614	9/16/14	13:20 %	aqueous		1, 125 mL poly	х													Na, Tl, Zn.
14BH-DT-PILOT-POSTE-091614	9/16/14	13:30	aqueous		1, 125 mL poly	Х													
Relinguished by: (Signature)	Date/Time 9/25/1		Received fo	r Laboratory by:	(Signature)														
Received by: (Signature)	Date/Time	.15	Airbill No.(s)				Carr	ier Na	ıme: Fe	dEx		Lab:	USEPA	Lab Re	egion 8			

CHAIN OF CUSTODY RECORD

CDM Smith			Danny	T Pilot Test								А	nalysis							PAGEZ OF 2		
NOTES: Limited sample volumes due to to Contact: Angela Frandsen, CDM Smith (40	reatability testing 06)441-1400					200.7 or 200.8	AL), 200.7 or 200.8	(sulfate, chloride,	onia	ş										Other Instructions and Notes		
SAMPLE NUMBER	DATE	TIME	MATRIX	Preservative	Type & No. of Containers	Is (TAL),	Dissolved Metals (TAL),	Alkalinity, Anions (su fluoride)	Nitrate+Nitrite, Ammonia													
14BH-DT-PILOT-INFL-092314	9/23/14	11:15	aqueous		3, 125 mL poly	Х	Х	Х														
14BH-DT-PILOT-INFLD-092314	9/23/14	11:40 ₂	aqueous		3, 125 mL poly	Х	Х	Х														
14BH-DT-PILOT-SAPS-092314	9/23/14	12:00	aqueous		3, 125 mL poly	Х	Х	Х														
14BH-DT-PILOT-CHIT-092314	9/23/14	12:20	aqueous				3, 125 mL poly	Х	Х	Х												
14BH-DT-PILOT-NAOH-092314	9/23/14	12:35✓	aqueous	HNO3	3, 125 mL poly	Х	Х	Х														
14BH-DT-PILOT-BCR1-092314	9/23/14	12:45	aqueous	(metals)	4, 125 mL poly	Х	Х	Х	Х													
14BH-DT-PILOT-BCR2-092314	9/23/14	13:10,	aqueous	(nutrients), cool	4, 125 mL poly	Х	х	х	х													
14BH-DT-PILOT-BCR3-092314	9/23/14	13:25	aqueous		4, 125 mL poly	Х	Х	х	Х											TAL metals = Al, As, Ba, Be, Cd, Ca		
14BH-DT-PILOT-BCR4-092314	9/23/14	13:45√	aqueous		4, 125 mL poly	х	Х	х	Х											Cr, Co, Cu, Fe, Pb, Mg, Mn, Ni, K, Ag,		
14BH-DT-PILOT-POSTI-092314	9/23/14	14:00	aqueous		1, 125 mL poly	х	Х	х	Х											Na, Tl, Zn.		
14BH-DT-PILOT-POSTE-092314	9/23/14	14:20₺	aqueous		1, 125 mL poly	х	х	Х	х								ļ			-		
																		-				
																				-		
Relinquished by: (Signature)	Date/Time			r Laboratory by:	(Signature)	_		Carr	ier Na	ame:	FedEx		L	.ab: U	ISEPA L	ab Regio	n 8					

Sample Receipt Form - TLF-51.00

Project: Barker Treatability TI)F #:	A-046	
Project: Barker Treatability TI Date Received: 9/29/14 Time Received: 9:55 By:	Janelle	Lohn	an
1 Airbill/shipping documents present?	Drop Off	Yes	No
2 Custody seals on shipping containers present and intact?	None	Yes	No
3 Custody seals on sample containers present and intact?	None	Yes	No
4 Chain of Custody (COC) present?		Yes	No
5 COC and sample container information agree?		Yes	['] No
6 Aqueous samples preserved correctly, if required?	N/A	Yes	No
7 Samples received within holding times for requested analyses?		Yes	No
8 Sufficient sample volume for requested analyses?		Yes	No
9 Sample containers intact and not leaking?		(Yes)	No
10 Sample containers appropriate for requested analyses?	\	Yes	No
11 Samples shipped on ice?	malted	(Yes)	No
12 Cooler temperature(s) ≤ 6.0 °C?	N/A	Yes	No
Cooler #: 1 2 Temperature (°C): /8./	3	4	5
Comments and Additional Information:			
Client notified of anomalies, if necessary? Anomalies noted in case narrative and data qualified, if necessary?	N/A N/A	Yes Yes	No No

ANALYTICAL SUMMARY REPORT

October 09, 2014

CDM Federal Programs 555 17th St Ste 1100 Denver, CO 80202

Work Order: H14090462 Quote ID: H823 - Baker-Hughsville Superfund Site

Project Name: Barker Hughsville - Danny T

Energy Laboratories Inc Helena MT received the following 11 samples for CDM Federal Programs on 9/25/2014 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
H14090462-001	14BH-DT-PILOT-INFL- 092314	09/23/14 11	:15 09/25/14	Aqueous	Acidity, Total as CaCO3 Phosphorus, Orthophosphate as P
H14090462-002	14BH-DT-PILOT-INFLD- 092314	09/23/14 11	:40 09/25/14	Aqueous	Same As Above
H14090462-003	14BH-DT-PILOT-SAPS- 092314	09/23/14 12	:00 09/25/14	Aqueous	Same As Above
H14090462-004	14BH-DT-PILOT-CHIT- 092314	09/23/14 12	:20 09/25/14	Aqueous	Same As Above
H14090462-005	14BH-DT-PILOT-NAOH- 092314	09/23/14 12	:35 09/25/14	Aqueous	Same As Above
H14090462-006	14BH-DT-PILOT-BCR1- 092314	09/23/14 12	:45 09/25/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Phosphorus, Orthophosphate as P Sulfide, Iodine Titrimetric
H14090462-007	14BH-DT-PILOT-BCR2- 092314	09/23/14 13	:10 09/25/14	Aqueous	Same As Above
H14090462-008	14BH-DT-PILOT-BCR3- 092314	09/23/14 13	:25 09/25/14	Aqueous	Same As Above
H14090462-009	14BH-DT-PILOT-BCR4- 092314	09/23/14 13	:40 09/25/14	Aqueous	Same As Above
H14090462-010	14BH-DT-PILOT-POSTI- 092314	09/23/14 14	:00 09/25/14	Aqueous	Same As Above
H14090462-011	14BH-DT-PILOT-POSTE 092314	- 09/23/14 14	:20 09/25/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Phosphorus, Orthophosphate as P Sulfide, Methylene Blue Colorimetric

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Report Date: 10/09/14

CLIENT: CDM Federal Programs

Project: Barker Hughsville - Danny T

Work Order: H14090462 CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090462-001

Client Sample ID: 14BH-DT-PILOT-INFL-092314

Report Date: 10/09/14 **Collection Date:** 09/23/14 11:15

DateReceived: 09/25/14

Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	660 mg/L	D	4.0	A2310 B	10/01/14 09:43 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	0.158 mg/L	Н	0.005	E365.1	09/25/14 14:25 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090462-002

Client Sample ID: 14BH-DT-PILOT-INFLD-092314

Report Date: 10/09/14 **Collection Date:** 09/23/14 11:40

DateReceived: 09/25/14

Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	670 mg/L	D	4.0	A2310 B	10/01/14 09:49 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	0.377 mg/L	н	0.005	E365.1	09/25/14 14:28 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090462-003

Client Sample ID: 14BH-DT-PILOT-SAPS-092314

Report Date: 10/09/14 **Collection Date:** 09/23/14 12:00 **DateReceived:** 09/25/14

Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	320 mg/L	D	4.0	A2310 B	10/01/14 09:53 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	0.068 mg/L	Н	0.005	E365.1	09/25/14 14:29 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090462-004

Client Sample ID: 14BH-DT-PILOT-CHIT-092314

Report Date: 10/09/14

Collection Date: 09/23/14 12:20

DateReceived: 09/25/14

Matrix: Aqueous

Analyses	Result Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	200 mg/L	D	4.0	A2310 B	10/01/14 09:58 / SRW
NUTRIENTS	200 Hig/L	Б	4.0	A2310 B	10/01/14 09.36 / ShW
Phosphorus, Orthophosphate as P	0.033 mg/L	Н	0.005	E365.1	09/25/14 14:30 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090462-005

Client Sample ID: 14BH-DT-PILOT-NAOH-092314

Report Date: 10/09/14 **Collection Date:** 09/23/14 12:35

DateReceived: 09/25/14

Matrix: Aqueous

Analyses	Result Un	its Qualifie	rs RL	MCL/ QCL Method	Analysis Date / By
INORGANICS Acidity, Total as CaCO3	340 mg	/L D	4.0	A2310 B	10/01/14 10:02 / SRW
NUTRIENTS Phosphorus, Orthophosphate as P	ND mg	/L H	0.005	E365.1	09/25/14 14:31 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090462-006

Client Sample ID: 14BH-DT-PILOT-BCR1-092314

Report Date: 10/09/14 **Collection Date:** 09/23/14 12:45 **DateReceived:** 09/25/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	10/01/14 10:06 / SRW
Sulfide		mg/L	D	1		A4500-S F	09/30/14 12:30 / eli-b
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	73	mg/L	Н	40		A5210 B	09/25/14 14:33 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	3.54	mg/L	DH	0.02		E365.1	09/25/14 14:32 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090462-007

Client Sample ID: 14BH-DT-PILOT-BCR2-092314

Report Date: 10/09/14 **Collection Date:** 09/23/14 13:10

DateReceived: 09/25/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	10/01/14 10:11 / SRW
Sulfide	10	mg/L	D	1		A4500-S F	09/30/14 12:30 / eli-b
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	60	mg/L	Н	20		A5210 B	09/25/14 14:42 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	1.78	mg/L	DH	0.01		E365.1	09/25/14 14:33 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090462-008

Client Sample ID: 14BH-DT-PILOT-BCR3-092314

Report Date: 10/09/14 **Collection Date:** 09/23/14 13:25 **DateReceived:** 09/25/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							•
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	10/01/14 10:15 / SRW
Sulfide	67	mg/L	D	1		A4500-S F	09/30/14 12:30 / eli-b
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	140	mg/L	Н	40		A5210 B	09/25/14 14:48 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	11.7	mg/L	DH	0.02		E365.1	09/25/14 14:34 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090462-009

Client Sample ID: 14BH-DT-PILOT-BCR4-092314

Report Date: 10/09/14

Collection Date: 09/23/14 13:40

DateReceived: 09/25/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	10/01/14 10:19 / SRW
Sulfide	39	mg/L	D	1		A4500-S F	09/30/14 12:30 / eli-b
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	87	mg/L	Н	40		A5210 B	09/25/14 14:55 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	1.63	mg/L	Н	0.005		E365.1	09/25/14 14:35 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090462-010

Client Sample ID: 14BH-DT-PILOT-POSTI-092314

Report Date: 10/09/14 **Collection Date:** 09/23/14 14:00

DateReceived: 09/25/14

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	10/01/14 10:24 / SRW
Sulfide	32	mg/L	D	1		A4500-S F	09/30/14 12:30 / eli-b
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	77	mg/L	Н	40		A5210 B	09/25/14 15:03 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	5.25	mg/L	DH	0.02		E365.1	09/25/14 14:36 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs
Project: Barker Hughsville - Danny T

Lab ID: H14090462-011

Client Sample ID: 14BH-DT-PILOT-POSTE-092314

Report Date: 10/09/14 **Collection Date:** 09/23/14 14:20

DateReceived: 09/25/14 **Matrix:** Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
INORGANICS							
Acidity, Total as CaCO3	ND	mg/L	D	4.0		A2310 B	10/01/14 10:28 / SRW
Sulfide	ND	mg/L		0.04		A4500-S D	09/30/14 12:30 / eli-b
AGGREGATE ORGANICS							
Oxygen Demand, Biochemical (BOD)	5	mg/L	Н	4		A5210 B	09/25/14 15:14 / SRW
NUTRIENTS							
Phosphorus, Orthophosphate as P	1.23	mg/L	DH	0.02		E365.1	09/25/14 14:52 / cmm

Report RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:10/09/14Project:Barker Hughsville - Danny TWork Order:H14090462

Analyte	Count Result Units	RL %REC Low Limit High Limit	RPD	RPDLimit Qual
Method: A2310 B				Batch: H141001A
Lab ID: H14090462-001ADU	P Sample Duplicate	Run: PH_141001A		10/01/14 09:46
Acidity, Total as CaCO3	670 mg/L	4.0	1.9	20
Lab ID: H14090462-011ADU	P Sample Duplicate	Run: PH_141001A		10/01/14 10:33
Acidity, Total as CaCO3	ND mg/L	4.0		20
Lab ID: LCS1410010000	Laboratory Control Sample	Run: PH_141001A		10/01/14 09:41
Acidity, Total as CaCO3	950 mg/L	4.0 97 90 110		
Lab ID: MBLK1410010000	Method Blank	Run: PH_141001A		10/01/14 09:40
Acidity, Total as CaCO3	3 mg/L			

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:10/09/14Project:Barker Hughsville - Danny TWork Order:H14090462

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-S D									Batch: B_	R231388
Lab ID:	MB-R231388	Me	thod Blank				Run: SUB-l	3231388		09/30/	/14 12:30
Sulfide			ND	mg/L	0.002						
Lab ID:	LCS-R231388	Lat	ooratory Co	ntrol Sample			Run: SUB-I	3231388		09/30/	/14 12:30
Sulfide			0.253	mg/L	0.040	113	70	130			
Lab ID:	B14092445-001GMS	Sa	mple Matrix	Spike			Run: SUB-	3231388		09/30/	/14 12:30
Sulfide			0.226	mg/L	0.040	101	70	130			
Lab ID:	B14092445-001GMS	D Sa	mple Matrix	Spike Duplicate			Run: SUB-	3231388		09/30/	/14 12:30
Sulfide			0.231	mg/L	0.040	103	70	130	2.3	20	
Lab ID:	B14092666-001FMS	Sa	mple Matrix	Spike			Run: SUB-	3231388		09/30/	/14 12:30
Sulfide			0.473	mg/L	0.040	43	70	130			S
Lab ID:	B14092666-001FMSI	D Sa	mple Matrix	Spike Duplicate			Run: SUB-I	3231388		09/30/	/14 12:30
Sulfide			0.451	mg/L	0.040	33	70	130	4.8	20	S

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:10/09/14Project:Barker Hughsville - Danny TWork Order:H14090462

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-S F									Batch: B_	R231389
Lab ID:	MB-R231389	Me	thod Blank				Run: SUB-	3231389		09/30/	14 12:30
Sulfide			ND	mg/L	0.5						
Lab ID:	LCS-R231389	Lal	ooratory Co	ntrol Sample			Run: SUB-I	3231389		09/30/	/14 12:30
Sulfide			21.5	mg/L	1.0	100	70	130			
Lab ID:	B14092496-001EMS	Sa	mple Matrix	Spike			Run: SUB-	3231389		09/30/	14 12:30
Sulfide			22.1	mg/L	1.0	97	80	120			
Lab ID:	B14092496-001EMS	D Sa	mple Matrix	Spike Duplicate			Run: SUB-l	3231389		09/30/	14 12:30
Sulfide			21.9	mg/L	1.0	96	80	120	0.7	20	
Lab ID:	B14092548-002AMS	Sa	mple Matrix	Spike			Run: SUB-l	3231389		09/30/	14 12:30
Sulfide			105	mg/L	1.0	107	80	120			
Lab ID:	B14092548-002AMS	D Sa	mple Matrix	Spike Duplicate			Run: SUB-	3231389		09/30/	14 12:30
Sulfide			105	mg/L	1.0	108	80	120	0.2	20	

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:10/09/14Project:Barker Hughsville - Danny TWork Order:H14090462

Analyte	Cou	nt Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A5210 B							Batcl	h: 140925_1_	BOD5-W
Lab ID:	Dil-H201_140925	Dilution Water	Blank			Run: BOD-	SKALAR_140925	Α	09/25/	14 14:01
Oxygen De	emand, Biochemical (BOD)	0.18	mg/L	2.0		0	0.2			
Lab ID:	GGA1_140925	Laboratory Co	ntrol Sample			Run: BOD-	SKALAR_140925	Α	09/25/	14 14:11
, 0	emand, Biochemical (BOD) lutamic acid check falls outside a	140 cceptable limits.	mg/L	65	72	85	115			S
Lab ID:	H14090439-001ADUP	Sample Duplic	ate			Run: BOD-	SKALAR_140925	Α	09/25/	14 14:29
Oxygen De	emand, Biochemical (BOD)	52	mg/L	39		90	110	0.6	10	
Lab ID:	H14090470-001ADUP	Sample Duplic	ate			Run: BOD-	SKALAR_140925	Α	09/25/	14 15:48
Oxygen De	emand, Biochemical (BOD)	610	mg/L	200		90	110	2.1	10	

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:10/09/14Project:Barker Hughsville - Danny TWork Order:H14090462

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E365.1							Analyti	cal Run	: FIA202-HE_	_140925B
Lab ID:	ICV	Init	al Calibrati	on Verification St	andard					09/25/	/14 14:20
Phosphoru	s, Orthophosphate as I	>	0.237	mg/L	0.0050	95	90	110			
Lab ID:	ICB	Init	al Calibrati	on Blank, Instrum	nent Blank					09/25/	/14 14:21
Phosphoru	s, Orthophosphate as I	>	-0.00144	mg/L	0.0050		0	0			
Lab ID:	CCV	Coi	ntinuing Ca	libration Verificat	ion Standar	rd				09/25/	/14 14:23
Phosphoru	s, Orthophosphate as I	-	0.0925	mg/L	0.0050	93	90	110			
Lab ID:	CCV	Coi	ntinuing Ca	libration Verificat	ion Standar	ď				09/25/	/14 14:51
Phosphoru	s, Orthophosphate as I	>	0.0995	mg/L	0.0050	100	90	110			
Method:	E365.1									Batch:	R100884
Lab ID:	LFB	Lab	oratory For	tified Blank			Run: FIA20	2-HE_140925B		09/25/	/14 14:22
Phosphoru	s, Orthophosphate as I	>	0.183	mg/L	0.0050	91	90	110			
Lab ID:	H14090462-001BMS	Saı	mple Matrix	Spike			Run: FIA20	2-HE_140925B		09/25/	/14 14:26
Phosphoru	s, Orthophosphate as I	>	0.337	mg/L	0.0050	90	90	110			
Lab ID:	H14090462-001BMSI	D Saı	mple Matrix	Spike Duplicate			Run: FIA20	2-HE_140925B		09/25/	/14 14:27
Phosphoru	s, Orthophosphate as I	-	0.361	mg/L	0.0050	102	90	110	6.8	20	
Lab ID:	H14090462-011CMS	Saı	mple Matrix	Spike			Run: FIA20	2-HE_140925B		09/25/	/14 14:53
Phosphoru	s, Orthophosphate as I	5	6.02	mg/L	0.025	96	90	110			
Lab ID:	H14090462-011CMSI	D Saı	mple Matrix	Spike Duplicate			Run: FIA20	2-HE_140925B		09/25/	/14 14:54
Phosphoru	s, Orthophosphate as I	>	6.14	mg/L	0.025	98	90	110	2.1	20	

Qualifiers:

RL - Analyte reporting limit.

Workorder Receipt Checklist

CDM Federal Programs

Login completed by: Tracy L. Lorash

H14090462

Date Received: 9/25/2014

	•				
Reviewed by:	BL2000\rwilliams		R	eceived by: TLL	
Reviewed Date:	9/30/2014			Carrier Hand Del name:	
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present	
Custody seals intact on all s	hipping container(s)/cooler(s)?	Yes	No 🗌	Not Present ✓	
Custody seals intact on all s	ample bottles?	Yes	No 🗌	Not Present 🗸	
Chain of custody present?		Yes ✓	No 🗌		
Chain of custody signed wh	en relinquished and received?	Yes ✓	No 🗌		
Chain of custody agrees wit	h sample labels?	Yes ✓	No 🗌		
Samples in proper contained	/bottle?	Yes ✓	No 🗌		
Sample containers intact?		Yes 🔽	No 🗌		
Sufficient sample volume fo	r indicated test?	Yes 🔽	No 🗌		
All samples received within (Exclude analyses that are c such as pH, DO, Res Cl, Sc	considered field parameters	Yes	No 🗹		
Temp Blank received in all s	shipping container(s)/cooler(s)?	Yes	No 🗸	Not Applicable	
Container/Temp Blank temp	erature:	8.3℃ No Ice			
Water - VOA vials have zero	headspace?	Yes	No 🗌	No VOA vials submitted √	
Water - pH acceptable upor	receipt?	Yes 🗸	No 🗌	Not Applicable	

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

14BH-DT-PILOT-INFL-092314 ortho-phosphate sample was received past the method holding time. All other samples for BOD and ortho-phosphate were potentially not received with sufficient time to complete analysis within method recommended hold time. TI 9/25/14

ENERGY	
LABORATORIES	

Chain of Custody and Analytical Request Record

Page			of _	2
-	_	_	_	

LABORATORIES	PLEASE I	PRINT	(Provide	as much informati	on as p	ossible	.)	
Company Name:	Project Nan	ne, PWS	S, Permit, Etc	·. ·	-	Samp	le Origin	EPA/State Compliance:
COM SMITH	BARKE	7R- S	DANNY	T		State	MT	Yes No No
Report Mail Address (Required):	Contact Na	ne:	Pho	ne/Fax:		Cell:		Sampler: (Please Print)
_	ANGELA FRANDSEN (406) 44/1400 SUM MULEY Invoice Contact & Phone: Purchase Order: Quote/Bottle Order:							
KNO Hard Copy Email: francisenak @ alms Mith_cam	J	ME				Purci	lase Order.	Quote/Bottle Order:
Invoice Address (Required):	3	ANZ		REQUESTED	T	→	Contact ELI prior RUSH sample su	
No Hard Copy Email: SAME	r of Containers e: AWSVBOD ter Soils/Solids n Bioassay Other rinking Water		ALX)		HED nd (TAT)	R	for charges and scheduling – See Instruction Page	Cooler ID(s):
Special Report/Formats: DW EDD/EDT(Electronic Data) POTW/WWTP Format: Ex C EL State: LEVEL IV Other: NELAC	Number of (Sample Type: A Air Water S Vegetation Bic DW - Drinkin	OD TOTY	FIDE HO-PHOSPHUTS		SEE ATTACHED	S	1000 ML BOTTLES FOR BOD AND	On Bottle Y N
SAMPLE IDENTIFICATION Collection (Name, Location, Interval, etc.) Collection Time	MATRIX	120 K	1 - M		Ste	Н	ACIOIT	IIIIaci y N
484-DT-PILOT-INFL-092314 9/23/14 1115	2 W	X						≥H14090462
MBH-DT-8110T-INFLD-092314 9/23/14 11:40	2 W	X						
14BH-DT-PILOT-SAPS-092314 9/23/14 12:00	2 W	X						
WBK-PT-PRIOT-CHIT-092314 9/23/14 12:20	ZW	X						
MBH-DT-PILOT-NAUH-192314 9/23/14 12:35	2 W	X	X					→
1481-07-PILOT-BURI-0923H 9/23/14 12:45	3 W	XX	XX					(전)
44BH-DT-PILOT-BCRZ-19234 9/23/14 13:10	3 W	XX	XX					A 17
9484-01-PILOT-BCR3-092314 9/23/14 13:25	3 W	XX	XX					
94BR-DT-PILOT-BURY-192214 9/23/14 13:40	3 W	XX	XX					18 (MB)
" BUBL-OT PILOT-POSTE-19234 9/23/14 14:00	3 W	XX	XX					
Custody Relinquished by (print): Date/Time: 9/25/140 11	32 Signa	ure.	1	Received by (print):	·!	Date/Time:		Signature:
Relinquished by (print): Date/Time:	Signa	ture		Received by (print):		Date/Time:		Signature:
MUST be Signed Sample Disposal: Return to Client:				Received by Laboratory:	J 0	Date/Time	4 11:33	Sacy Xeral
Signed Sample Disposal: Return to Client:	Lab Dispos	al:		Yacy Cora	1 <u>- 4</u>	1/25/1	7 11.22	- wind

ENERGY	
LABORATORIES	

Chain of Custody and Analytical Request Record

Page 2 of 2

LABORATORIES	PLEASE I	PRIN	T ((Pro	vide	<u>as mι</u>	ich in	form <u>at</u>	ion a	s po	ssible	.)			
Company Name:	Project Nan	ne, P\	WS, I	Perm	it, Etc	o					Samp	le Origin	EPA/State	e Compliance:	
COM SMITH	BARK	ex		DA	NN.	IY -	T_				State	MT	Yes 🗌	No 🗆	
Report Mail Address (Required):	Contact Na			-		ne/Fax					Cell:	•	Sampler:	(Please Print)	
	ANGEL				SE N	. (401)	441	-14	60				MILE	,
(No Hard Copy Email: francsuale a courseith	Invoice Cor	itact 8									Purch	ase Order:	Quote/Bo	ttle Order:	
Invoice Address (Required):	~	A			318	REQ	UES	TED			→	Contact ELI prior RUSH sample sul	bmittal	Hand	1
	Containers (W S V B O D) Soils/Solids loassay Other ing Water				RHOSPHATE				۱	Turnaround (TAT)	R	for charges and scheduling – See	C	cooler ID(s):	
No Hard Copy Email: SIME	Cont W S oils/S oass				\mathcal{L}				ACHED) pu		Instruction Page Comments:	R	leceipt Temp	\dashv
Special Report/Formats:	우주유교통			j, ,	TO				₹	aron	U	1 PM 2	/ I-	<u>8.3</u> °c	
□ DW EDD/EDT(Electronic Data) □ POTW/WWTP Format: V □ State: □ LEVEL IV	Number Sample Type Air Wat Vegetation DW - Dr		121	FIDE	4			Ì	۱¥	Ę		Boon	T O	on Ice: Y N	$\bar{)}$
State: LEVEL IV	N SOLE NO		101	T	\$				出	lard	S	FOR	Cı	On Bottle Y N	
Other: NELAC	ιχ	Q	J	3	V				ြလ	Standard		BOD ANT		On Cooler Y N	,
SAMPLE IDENTIFICATION Collection Collection (Name, Location, Interval, etc.)	MATRIX	(J.)	4	S	2					U)	Н	BOOM BOTTL BOD ANT ACIDI	T(Si	gnature Y N	
484-DT-PIUT-POSTE-072514 9/23/1/20	3W	X	\times	X	X			İ					≥	H14090462	<u>)</u>
2															
3													© n)	1
4)	1
5	· · · · · · · · · · · · · · · · · · ·						1 1) 	1
6															1
7					<u> </u>				†			·		3	1
8							† †							-	1
9				+					1					<u></u>	1
10				+	-		+ +		+				<u> </u>		1
Custody Beingushed by Arrith: Date/Time:	27 Signa	pre:	Le 1	 !	<u> </u>	Recei	ved by (pr	rint):			ate/Time:		Signature		. •
Record Pelinquished by (print): Date/Time:	Signa	ture:	pr> 6	-L		Recei	ved by (pr	rint):		ď	ate/Time:	<u>. </u>	Signature:	/ / /	+
MUST be								aboratory		/ D	ate// ime:	1	Signature:	- 2	A
Signed Sample Disposal: Return to Client:	Lab Dispos	al:					rac	<u>4 Ce</u>	vto	<u> </u>	7/25	/19 10:33	- tac	y revail	Į

ANALYTICAL SUMMARY REPORT

October 13, 2014

CDM Federal Programs 555 17th St Ste 1100 Denver, CO 80202

Work Order: H14100008 Quote ID: H823

Project Name: Baker-Hughsville Superfund Site

Energy Laboratories Inc Helena MT received the following 10 samples for CDM Federal Programs on 10/1/2014 for analysis.

Lab ID	Client Sample ID	Collect Date Receive Date	Matrix	Test
H14100008-001	14BH-DT-PILOT-INFL- 092914	09/29/14 14:25 10/01/14	Aqueous	Acidity, Total as CaCO3 Phosphorus, Orthophosphate as P
H14100008-002	14BH-DT-PILOT-SAPS- 092914	09/29/14 14:40 10/01/14	Aqueous	Same As Above
H14100008-003	14BH-DT-PILOT-CHIT- 092914	09/29/14 14:55 10/01/14	Aqueous	Same As Above
H14100008-004	14BH-DT-PILOT-NAOH- 092914	09/29/14 15:10 10/01/14	Aqueous	Same As Above
H14100008-005	14BH-DT-PILOT-BCR1- 092914	09/29/14 15:20 10/01/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Phosphorus, Orthophosphate as P Sulfide, Iodine Titrimetric
H14100008-006	14BH-DT-PILOT-BCR2- 092914	09/29/14 15:50 10/01/14	Aqueous	Same As Above
H14100008-007	14BH-DT-PILOT-BCR3- 092914	09/29/14 16:10 10/01/14	Aqueous	Same As Above
H14100008-008	14BH-DT-PILOT-BCR4- 092914	09/29/14 16:20 10/01/14	Aqueous	Same As Above
H14100008-009	14BH-DT-PILOT-POSTI- 092914	09/29/14 16:40 10/01/14	Aqueous	Same As Above
H14100008-010	14BH-DT-PILOT-POSTE- 092914	- 09/29/14 17:00 10/01/14	Aqueous	Acidity, Total as CaCO3 Biochemical Oxygen Demand, 5 Day Phosphorus, Orthophosphate as P Sulfide, Methylene Blue Colorimetric

The analyses presented in this report were performed by Energy Laboratories, Inc., 3161 E. Lyndale Ave., Helena, MT 59604, unless otherwise noted. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Report Date: 10/13/14

CLIENT: CDM Federal Programs

Project: Baker-Hughsville Superfund Site

Work Order: H14100008 CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Prepared by Helena, MT Branch

Client: CDM Federal Programs Report Date: 10/13/14

Project: Baker-Hughsville Superfund Site Collection Date: 09/29/14 14:25

Lab ID: H14100008-001 **Date Received:** 10/01/14

Client Sample ID: 14BH-DT-PILOT-INFL-092914 Matrix: AQUEOUS

	MCL/									
Analyses	Result	Units	Qual	RL	QCL DF	Method	Analysis Date / By			
INORGANICS										
Acidity, Total as CaCO3	700	mg/L	D	4.0	1	A2310 B	10/10/14 10:38/SRW			
NUTRIENTS										
Phosphorus, Orthophosphate as P	0.106	mg/L	Н	0.005	2	E365.1	10/02/14 11:26/cmm			

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Report Date: 10/13/14

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Baker-Hughsville Superfund Site Collection Date: 09/29/14 14:40

Lab ID: H14100008-002 **Date Received:** 10/01/14

Client Sample ID: 14BH-DT-PILOT-SAPS-092914 Matrix: AQUEOUS

	MCL/									
Analyses	Result	Units	Qual	RL	QCL DF	Method	Analysis Date / By			
INORGANICS Acidity, Total as CaCO3	380	mg/L	D	4.0	1	A2310 B	10/10/14 10:45/SRW			
NUTRIENTS Phosphorus, Orthophosphate as P	0.070	mg/L	Н	0.005	1	E365.1	10/02/14 11:29/cmm			

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs Report Date: 10/13/14

Project: Baker-Hughsville Superfund Site Collection Date: 09/29/14 14:55

Lab ID: H14100008-003 **Date Received:** 10/01/14

Client Sample ID: 14BH-DT-PILOT-CHIT-092914 Matrix: AQUEOUS

	MCL/									
Analyses	Result	Units	Qual	RL	QCL DF	Method	Analysis Date / By			
INORGANICS	000		5	4.0		40040 B	10/10/14 10 50/05/0			
Acidity, Total as CaCO3	320	mg/L	D	4.0	1	A2310 B	10/10/14 10:50/SRW			
NUTRIENTS										
Phosphorus, Orthophosphate as P	0.053	mg/L	Н	0.005	1	E365.1	10/02/14 11:30/cmm			

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Report Date: 10/13/14

Collection Date: 09/29/14 15:10

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Baker-Hughsville Superfund Site

Lab ID: H14100008-004 **Date Received:** 10/01/14

Client Sample ID: 14BH-DT-PILOT-NAOH-092914 Matrix: AQUEOUS

	MCL/									
Analyses	Result	Units	Qual	RL	QCL DF	Method	Analysis Date / By			
INORGANICS Acidity, Total as CaCO3	480	mg/L	D	4.0	1	A2310 B	10/10/14 10:55/SRW			
NUTRIENTS Phosphorus, Orthophosphate as P	0.036	mg/L	Н	0.005	1	E365.1	10/02/14 11:31/cmm			

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.
ND - Not detected at the reporting limit.

Report Date: 10/13/14

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Baker-Hughsville Superfund Site Collection Date: 09/29/14 15:20

Lab ID: H14100008-005 **Date Received:** 10/01/14

Client Sample ID: 14BH-DT-PILOT-BCR1-092914 Matrix: AQUEOUS

		MCL/										
Analyses	Result	Units	Qual	RL	QCL DF	Method	Analysis Date / By					
INORGANICS												
Acidity, Total as CaCO3	ND	mg/L	D	4.0	1	A2310 B	10/10/14 11:00/SRW					
Sulfide	18	mg/L		1	1	A4500-S F	10/03/14 12:50/eli-b					
AGGREGATE ORGANICS												
Oxygen Demand, Biochemical (BOD)	64	mg/L	Н	20	1	A5210 B	10/01/14 16:16/SRW					
NUTRIENTS												
Phosphorus, Orthophosphate as P	3.43	mg/L	DH	0.02	25	E365.1	10/02/14 11:32/cmm					

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs Report Date: 10/13/14

Project: Baker-Hughsville Superfund Site Collection Date: 09/29/14 15:50

Client Sample ID: 14BH-DT-PILOT-BCR2-092914 Matrix: AQUEOUS

	MCL/										
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By			
INORGANICS											
Acidity, Total as CaCO3	ND	mg/L	D	4.0		1	A2310 B	10/10/14 11:05/SRW			
Sulfide	20	mg/L		1		1	A4500-S F	10/03/14 12:50/eli-b			
AGGREGATE ORGANICS											
Oxygen Demand, Biochemical (BOD)	42	mg/L	Н	20		1	A5210 B	10/01/14 16:24/SRW			
NUTRIENTS											
Phosphorus, Orthophosphate as P	1.51	mg/L	DH	0.01		10	E365.1	10/02/14 11:33/cmm			

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:10/13/14Project:Baker-Hughsville Superfund SiteCollection Date:09/29/14 16:10

Lab ID: H14100008-007 **Date Received:** 10/01/14

Client Sample ID: 14BH-DT-PILOT-BCR3-092914 Matrix: AQUEOUS

	MCL/									
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By		
INORGANICS										
Acidity, Total as CaCO3	ND	mg/L	D	4.0		1	A2310 B	10/10/14 11:09/SRW		
Sulfide	59	mg/L		1		1	A4500-S F	10/03/14 12:50/eli-b		
AGGREGATE ORGANICS										
Oxygen Demand, Biochemical (BOD)	110	mg/L	Н	40		1	A5210 B	10/01/14 16:30/SRW		
NUTRIENTS										
Phosphorus, Orthophosphate as P	10.3	mg/L	DH	0.02		25	E365.1	10/02/14 11:34/cmm		

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client: CDM Federal Programs Report Date: 10/13/14

Project: Baker-Hughsville Superfund Site Collection Date: 09/29/14 16:20

Lab ID: H14100008-008 **Date Received:** 10/01/14

Client Sample ID: 14BH-DT-PILOT-BCR4-092914 Matrix: AQUEOUS

	MCL/							
Analyses	Result	Units	Qual	RL	QCL DF	Method	Analysis Date / By	
INORGANICS								
Acidity, Total as CaCO3	ND	mg/L	D	4.0	1	A2310 B	10/10/14 11:14/SRW	
Sulfide	34	mg/L		1	1	A4500-S F	10/03/14 12:50/eli-b	
AGGREGATE ORGANICS								
Oxygen Demand, Biochemical (BOD)	70	mg/L	Н	40	1	A5210 B	10/01/14 16:40/SRW	
NUTRIENTS								
Phosphorus, Orthophosphate as P	5.79	mg/L	DH	0.02	25	E365.1	10/02/14 11:35/cmm	

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Matrix: AQUEOUS

10/02/14 11:36/cmm

Client Sample ID: 14BH-DT-PILOT-POSTI-092914

Phosphorus, Orthophosphate as P

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: CDM Federal Programs Report Date: 10/13/14

4.67

mg/L

Project: Baker-Hughsville Superfund Site Collection Date: 09/29/14 16:40

Lab ID: H14100008-009 **Date Received:** 10/01/14

MCL/ DF Analyses Result Units Qual RLQCL Method **Analysis Date / By INORGANICS** D Acidity, Total as CaCO3 ND mg/L 4.0 1 A2310 B 10/10/14 11:19/SRW Sulfide 33 A4500-S F 10/03/14 12:50/eli-b mg/L 1 **AGGREGATE ORGANICS** Oxygen Demand, Biochemical (BOD) 62 Н 20 1 A5210 B 10/01/14 16:48/SRW mg/L **NUTRIENTS**

DH

0.02

25

E365.1

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

D - RL increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Report Date: 10/13/14

LABORATORY ANALYTICAL REPORT

Prepared by Helena, MT Branch

Client: CDM Federal Programs

Project: Baker-Hughsville Superfund Site **Collection Date:** 09/29/14 17:00

Lab ID: H14100008-010 **Date Received:** 10/01/14

Client Sample ID: 14BH-DT-PILOT-POSTE-092914 Matrix: AQUEOUS

	MCL/								
Analyses	Result	Units	Qual	RL	QCL	DF	Method	Analysis Date / By	
INORGANICS									
Acidity, Total as CaCO3	ND	mg/L	D	4.0		1	A2310 B	10/10/14 11:26/SRW	
Sulfide	0.06	mg/L		0.04		1	A4500-S D	10/03/14 13:15/eli-b2	
AGGREGATE ORGANICS									
Oxygen Demand, Biochemical (BOD)	<2	mg/L	Н	2		1	A5210 B	10/01/14 17:05/SRW	
No BOD dilution depleted greater than 2.0 mg/L	DO.								
NUTRIENTS									
Phosphorus, Orthophosphate as P	0.033	mg/L	Н	0.005		2	E365.1	10/02/14 11:37/cmm	

Report RL - Analyte reporting limit. **Definitions:** QCL - Quality control limit.

 $\ensuremath{\mathsf{D}}$ - $\ensuremath{\mathsf{RL}}$ increased due to sample matrix.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:10/13/14Project:Baker-Hughsville Superfund SiteWork Order:H14100008

Analyte	Result Units	RL %REC Low Limit High Limit	RPD RPDLimit Qual
Method: A2310 B			Batch: H141010A
Lab ID: H14100008-001ADU Acidity, Total as CaCO3	P Sample Duplicate 700 mg/L	Run: PH_141010A 4.0	10/10/14 10:41 1.1 20
Lab ID: LCS1410100000 Acidity, Total as CaCO3	Laboratory Control Sample 940 mg/L	Run: PH_141010A 4.0 96 90 110	10/10/14 10:36
Lab ID: MBLK1410100000 Acidity, Total as CaCO3	Method Blank 3 mg/L	Run: PH_141010A	10/10/14 10:33

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:10/13/14Project:Baker-Hughsville Superfund SiteWork Order:H14100008

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-S D								Batch: B_	_R231630
Lab ID: Sulfide	MB-R231630	Method Blank ND	mg/L	0.002		Run: SUB-	B231630		10/03	3/14 13:15
Lab ID: Sulfide	LCS-R231630	Laboratory Co. 0.218	ntrol Sample mg/L	0.040	107	Run: SUB-	B231630 130		10/03	3/14 13:15
Lab ID: Sulfide	B14100215-002FMS	Sample Matrix 0.289	Spike mg/L	0.040	116	Run: SUB-	B231630 130		10/03	3/14 13:15
Lab ID: Sulfide	B14100215-002FMSD	Sample Matrix 0.301	Spike Duplicate mg/L	0.040	122	Run: SUB-	B231630 130	3.9	10/03 20	3/14 13:15

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:10/13/14Project:Baker-Hughsville Superfund SiteWork Order:H14100008

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-S F								Batch: B_	_R231644
Lab ID: Sulfide	MB-R231644	Method Blank ND	mg/L	0.5		Run: SUB-	B231644		10/03	3/14 12:50
Lab ID: Sulfide	LCS-R231644	Laboratory Cor 22.6	ntrol Sample mg/L	1.0	98	Run: SUB-	B231644 130		10/03	8/14 12:50
Lab ID: Sulfide	B14100159-001CMS	Sample Matrix 33.8	Spike mg/L	1.0	94	Run: SUB-	B231644 120		10/03	3/14 12:50
Lab ID: Sulfide	B14100159-001CMSD	Sample Matrix 33.8	Spike Duplicate mg/L	1.0	94	Run: SUB- 80	B231644 120	0.0	10/03 20	3/14 12:50

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:10/13/14Project:Baker-Hughsville Superfund SiteWork Order:H14100008

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A5210 B							Batcl	n: 141001_1_	BOD5-W
Lab ID: Oxygen De	Dil-H201_141001 mand, Biochemical (BOD)	Dilution Water ND	Blank mg/L	2.0		Run: BOD- 0	SKALAR_1410 0.2	01A	10/01	/14 15:00
Lab ID:	GGA1_141001	Laboratory Co	ntrol Sample			Run: BOD-	SKALAR_1410	01A	10/01	/14 15:11
, 0	mand, Biochemical (BOD) tamic acid check falls outside ac	150 cceptable limits.	mg/L	61	76	85	115			S
Lab ID:	H14100008-009ADUP	Sample Duplic	cate			Run: BOD-	SKALAR_1410	01A	10/01	/14 16:56
Oxygen De	mand, Biochemical (BOD)	58	mg/L	18		90	110	6.0	10	

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Prepared by Helena, MT Branch

Client:CDM Federal ProgramsReport Date:10/13/14Project:Baker-Hughsville Superfund SiteWork Order:H14100008

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E365.1						Analytic	al Run:	FIA202-HE	_141002C
Lab ID:	ICV	Initial Calibrati	on Verification St	andard					10/02	2/14 11:21
Phosphorus,	Orthophosphate as P	0.240	mg/L	0.0050	96	90	110			
Lab ID:	ICB	Initial Calibrati	on Blank, Instrum	ent Blank					10/02	2/14 11:22
Phosphorus,	Orthophosphate as P	-0.000170	mg/L	0.0050		0	0			
Lab ID:	CCV	Continuing Ca	libration Verificati	on Standa	rd				10/02	2/14 11:24
Phosphorus,	Orthophosphate as P	0.0941	mg/L	0.0050	94	90	110			
Lab ID:	ICV	Initial Calibrati	on Verification St	andard					10/02	2/14 11:21
Phosphorus,	Orthophosphate as P	0.240	mg/L	0.0050	96	90	110			
Lab ID:	ICB	Initial Calibrati	on Blank, Instrum	ent Blank					10/02	2/14 11:22
Phosphorus,	Orthophosphate as P	-0.000170	mg/L	0.0050		0	0			
Lab ID:	CCV	Continuing Ca	libration Verificati	on Standa	rd				10/02	2/14 11:24
Phosphorus,	Orthophosphate as P	0.0941	mg/L	0.0050	94	90	110			
Method:	E365.1								Batch:	R101045
Lab ID:	LFB	Laboratory For	rtified Blank			Run: FIA20)2-HE_141002C		10/02	2/14 11:23
Phosphorus,	Orthophosphate as P	0.195	mg/L	0.0050	97	90	110			
Lab ID:	H14100008-001BMS	Sample Matrix	Spike			Run: FIA20)2-HE_141002C		10/02	2/14 11:27
Phosphorus,	Orthophosphate as P	0.713	mg/L	0.0050	152	90	110			S
Lab ID:	H14100008-001BMSD	Sample Matrix	Spike Duplicate			Run: FIA20)2-HE_141002C		10/02	2/14 11:28
Phosphorus,	Orthophosphate as P	0.740	mg/L	0.0050	159	90	110	3.8	20	S
Lab ID:	LFB	Laboratory Fo	rtified Blank			Run: FIA20)2-HE_141002C		10/02	2/14 11:23
Phosphorus,	Orthophosphate as P	0.195	mg/L	0.0050	97	90	110			
Lab ID:	MB-26397	Method Blank				Run: FIA20	02-HE_141002C		10/02	2/14 11:45
Phosphorus,	Orthophosphate as P	ND	mg/L	0.0010						
Lab ID:	H14100009-001BMS	Sample Matrix	Spike			Run: FIA20)2-HE_141002C		10/02	2/14 11:48
Phosphorus,	Orthophosphate as P	0.429	mg/L	0.0050	115	90	110			S
Lab ID:	H14100009-001BMSD	Sample Matrix	Spike Duplicate			Run: FIA20)2-HE_141002C		10/02	2/14 11:49
Phosphorus,	Orthophosphate as P	0.435	mg/L	0.0050	118	90	110	1.5	20	S

Qualifiers:

RL - Analyte reporting limit.

S - Spike recovery outside of advisory limits.

Workorder Receipt Checklist

CDM Federal Programs

Login completed by: Tracy L. Lorash

H14100008

Date Received: 10/1/2014

Reviewed by:	BL2000\rwilliams	Received by: wjj					
Reviewed Date:	10/3/2014			Carrier Hand Del name:			
Shipping container/cooler i	n good condition?	Yes ✓	No 🗌	Not Present			
Custody seals intact on all	shipping container(s)/cooler(s)?	Yes	No 🗌	Not Present 🗸			
Custody seals intact on all	sample bottles?	Yes	No 🗌	Not Present ✓			
Chain of custody present?		Yes 🔽	No 🗌				
Chain of custody signed w	hen relinquished and received?	Yes 🗸	No 🗌				
Chain of custody agrees w	ith sample labels?	Yes	No 🗹				
Samples in proper contained	er/bottle?	Yes 🗸	No 🗌				
Sample containers intact?		Yes 🗸	No 🗌				
Sufficient sample volume f	or indicated test?	Yes 🗸	No 🗌				
All samples received within (Exclude analyses that are such as pH, DO, Res CI, \$	considered field parameters	Yes 🗸	No 🗌				
Temp Blank received in all	shipping container(s)/cooler(s)?	Yes 🗸	No 🗌	Not Applicable			
Container/Temp Blank tem	perature:	6.2°C Melted Ice	e				
Water - VOA vials have ze	ro headspace?	Yes	No 🗌	No VOA vials submitted [\checkmark		
Water - pH acceptable upc	on receipt?	Yes 🔽	No 🗌	Not Applicable			

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

Contact and Corrective Action Comments:

Sample ID on COC is 14BH-DT-PILOT-BCR2-092914 -ID on orthophos bottle is missing the number 2. Logged in with ID from COC.

Collection time on COC for CHIT sample is 14:55 - bottles have 14:45. Logged in with time from COC. TI 10/1/14

ENERGY	
LABORATORIES	

Chain of Custody and Analytical Request Record

Page	of	
5		

	PLEASE FRIN	TI (Flovide a	s much information as	possible.	EDA/Ctate O "cases	
Company Name:	Project Name, PV			Sample Origin EPA/State Compliance		
CDM SMITH	BAKKER-	DANNA		State: M		
Report Mail Address (Required):	Contact Name:	Phone	e/Fax:	Cell:	Sampler: (Please Print)	
	ANGELA FRANDSEN (406) 441- 1400				SLIM MILLER	
No Hard Copy Email: frandserak @cdmsmith-cam	Invoice Contact &	& Phone:		Purchase Orde	r: Quote/Bottle Order:	
Invoice Address (Required): No Hard Copy Email: SAME Special Report/Formats: DW EDD/EDT(Electronic Data) POTW/WWTP Format: FXCEL State: LEVEL IV Other: NELAC SAMPLE IDENTIFICATION (Name, Location, Interval, etc.) Date Time		MOSPHUFTE	SEE ATTACHED	RUSH s. for charge scheduli Instruction Comme Comme S S Comme	on Page	
14BH-DT-PILOT-INFL-091914 9/29/14 14:25	zw X	X			≥ #146π.	
14BH-07-PILOTSAPS-092914 9/29/14 14:40	ZW X	\(\)			ZH416068	
14PH-07-PILAT-CHIT-097914 1 14:55	2W X					
14BH-07-PILOT-NAOH-092914 15:10	ZW X	X				
14BH-DT-PILOT-BCRI-0929H 15:30	3w X	XXX				
1484-DT-PILOT-BLAZ-2192914 15:50	3W X	XXX				
148H-DT-PILOT-BUS-0929M 16:10	3W X	XXX			TA T	
14BH-5T-914T-BCR4-092914 16:20	3W X	$X \times X$				
14BH-DT-PISTI-092914 16=40	3W X	XXX			<u> </u>	
19BH-DT-PIUT-POSTE-0929M V 17:00	3W X	XXX				
Custody Relinquished by (print): Date/Time:	Signature:	7.1.	Received by (print):	Date/Time:	Signature:	
Record Relinquished by (print): Date/Time: Date/Time: NOLL Page	β β β g hature		Received by (print):	Date/Time:	Signature:	
Signed Sample Disposal: Return to Client:	Lab Disposal:		Received by Laboratory:	Date/Time: 1250	Signature:	

Appendix A.2 Tiger Bench-Scale Treatability Study Laboratory Data Packages

This page intentionally blank.

U.S. Environmental Protection Agency Region 8 Technical and Management Services

Laboratory Services Program

Certificate of Analysis

Ref: 8TMS-L

MEMORANDUM

Date: 09/12/14

Subject: Analytical Results--- Barker-Hughesville_Treatability_JUL 2014_A046 / A-046

From: Don Goodrich; EPA Region 8 Analytical Chemistry WAM

To: Roger Hoogerheide

Superfund

8 MO

Received Sample Set(s), [Work Order : Date Received]:

[C140708 : 07/10/2014]

Attached are the analytical results for the samples received from the Barker-Hughesville_Treatability_JUL 2014_A046 sampling event, according to TDF A-046. All analyses were performed within their method specified holding times unless otherwise noted in the following narrative.

These samples were prepared, analyzed, and verified by the Environmental Services Assistance Team Laboratory (ESAT) according to the requirements of the Technical Direction Form (TDF).

Note: The laboratory herewith transmits this deliverable to the program/project partner for determination of "final data usability" which may include data validation and data quality assessment per and in accordance with EPA QA/G-8, *Guidance on Environmental Data Verification and Data Validation*, November 2002, EPA/240/R-02/004. Laboratory data qualifiers are applied based on the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*, October 2004, referred to as "NFGI".

Laboratory policy is to dispose of any remaining sample 60 days after data analysis packages are delivered to EPA. If you would like the laboratory to retain the samples for a period longer than 60 days,

Barker-Hughesville_Treatability_JUL 2014_A046 **Project Name:**

TDF #: A-046

Case Narrative

C140708

Quality Assessment: Unless indicated by exception, the QA/QC associated with this sample set

produced data within the TDF-specified criteria.

Holding Times: All samples were analyzed within their method-specified technical holding

time(s).

1. Initial and Continuing calibration blanks (ICBs and CCBs).

Exceptions: None.

2. Preparation (PB) / Method blanks (MB)

Exceptions: None.

3. Interference Checks (ICSA / ICSAB) for ICP-MS and ICP-OE analyses only.

Exceptions: None.

4. Initial and Continuing calibration verification analyses (ICVs, SCVs and CCVs).

Exceptions: In ICP-MS sequence 1407038, lead recovered high in the SCV. As a result, all sample results for lead were qualified "J" as estimated. In ICP-MS sequence 1409053, arsenic recovered low in the SCV. All arsenic results were qualified "J" as estimated.

5. Laboratory Control Sample (LCS) or second source analysis or SRM.

Exceptions: In ICP-MS batch 1409005, copper recovered I% below acceptable limits in the SRM. Since all other QC requirements for copper were met, no qualifiers were assigned.

6. Laboratory Fortified blank (LFB) / Blank spike (BS), same source as used for the matrix spikes. PBS performed with analyses/methods requiring preparation or digestion prior to analysis. Exceptions: None.

7. Contract Reporting Detection Limit Standard, labeled as CRA, CRDL or CRL.

Exceptions: None.

- 8. Laboratory Duplicate (DUP). "Source" identifies field sample duplicated in the laboratory. If either the "source" or the duplicate result is <5X the reporting limit, the %D limit of 20% does not apply. Exceptions: None.
- 9. Laboratory Matrix Spike (MS) and spike duplicate (MSD). "Source" defines original field sample fortified prior to analysis. Percent recovery (%R) limits do not apply when sample concentration(s) exceed the corresponding analyte spike level by a factor of 4 or greater. Exceptions: None.
- 10. Serial Dilution sample analysis (SRD). "Source" is parent field sample diluted 1:5 in the laboratory. Performed for ICP-OE and ICP-MS metals analyses. Percent difference (%D) limits do not apply when analyte concentration(s) are below 50x the source sample's MDL (or 10x it's PQL). Exceptions: In ICP-OE sequence 1409037, manganese recovered high in the SRD. As a result, the source sample was qualfied "J" as estimated for manganese.
- 11. Internal standards, criteria specified for ICP-MS analyses only, monitored at the instrument.
- 12. Any calibration using more than two-points produced a correlation coefficient equal to or greater than 0.995.

Exceptions: None.

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046

TDF #: A-046

Acronyms and Definitions:

ESAT	Environmental	Services	Assistance	Team

J Data Estimated qualifier (also applied to all data less than PQL, greater than or equal to MDL)

MDL Method Detection Limit

PQL Practical Quantitation Limit, also known as reporting limit.

RPD Relative Percent Difference (difference divided by the mean)

%D Percent difference, serial dilution criteria unit, difference divided by the original result.

%R Percent recovery, analyzed (less sample contribution) divided by true value

< Analyte NOT DETECTED at or above the Method Detection Limit (MDL)

mg/L Parts per million (milligrams per liter). Solids equivalent = mg/Kg.

ug/L Parts per billion (micrograms per liter). Solids equivalent = ug/Kg.

NR No Recovery (matrix spike) - Often seen for calcium/magnesium when their concentration exceeds the spike level by > 4x.

NFGI USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

RE Sample Re-analysis. Usually seen on raw data and sequences for required sample dilutions due to over-range analytes.

U Analyte not detected at or above MDL qualifier

D Diluted value qualifier.

Method(s) Summary:

As defined in the Technical Direction Form (TDF), some or all of the methods listed below were used for the determination of the reported target analytes.

From EPA's Methods for the Determination of Metals in Environmental Samples, Supplement I, May 1994, dissolved, total, and/or total recoverable metals were determined by:

- Method 200.7 / 6010B using a PE Optima ICP -OE (ICP).
- Method 200.8 / 6020 using a Perkin -Elmer Elan 6000 ICP-MS.
- Method 200.2 for total recoverable metals (only) dige stion.
- Method 245.1 using a Perkin -Elmer FIMS CVAA (aqueous mercury only).

From Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, Method 2340B was used for the calculated hardness determination. Hardness is reported as mg (milligram) equivalent CaCO₃ per liter (L) determined as follows:

Calculated hardness = 2.497 * (Calcium, mg/L) + 4.118 * (Magnesium, mg/L).

From EPA's Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW -846,

- Method 3015A was used for microwave assisted total metals digestion.
- Method 7473 was used for mercury in solids.

From EPA's Determination of Inorganic Anions by Ion Chromatography, Revision 2.1, 1993, Method 300.0 was used to determine the anions.

From EPA's Methods for Chemical Analysis of Water and Wastes, March 1983:

- Method 310.1 was followed for the alkalinity determination.
- Method 160.1 was followed for gravimetric total dissolved solids (TDS) determination.
- Method 160.2 was used for gravimetric total suspended sol ids (TSS) determination.
- Method 415.3 was used for total organic carbon (TOC) determination using either an Apollo 9000 or Phoenix 8000 Non-Dispersive IR (NDIR) system. Also known as dissolved organic carbon (DOC) when performed on the dissolved sample fraction.

The quality control procedures listed in the TDF request were utilized by ESAT to verify accuracy of the results and to evaluate any matrix interferences.

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR1-070814 **Station ID:** EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

Workorder:

C140708

C140708-01 Lab Number:

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 50.0	U	ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	2190		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	45000		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	59.2		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	5.98	J	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	1760		mg/L	2	1	09/08/2014	SV	1409031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-070814 EPA Tag No.:

No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 10:10

07/08/14 09:55

Workorder: Lab Number:

C140708

C140708-05

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	81.2		ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	< 250	U	ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	17200		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	46.8		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	1220		mg/L	2	1	09/08/2014	SV	1409031

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR3-070814 **Station ID:** EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 10:30

Workorder: Lab Number:

C140708

C140708-09

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	37.9	J	ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	2070		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	9710		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	95.7		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	26.0		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	17.0		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	1.04	J	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	2520		mg/L	2	1	09/08/2014	SV	1409031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR4-070814

EPA Tag No.:

Date / Time Sampled:

07/08/14 10:50

Workorder:

C140708

No Tag Prefix-A Matrix: Water Lab Number: C140708-13

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	133	J	ug/L	100	5	09/08/2014	SV	1409031
200.7	Iron	1030	J	ug/L	500	5	09/08/2014	SV	1409031
200.7	Manganese	61800		ug/L	10.0	5	09/08/2014	SV	1409031
200.7	Zinc	271		ug/L	50.0	5	09/08/2014	SV	1409031
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	754		mg/L	8	5	09/08/2014	SV	1409031

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-CHIT-070814 **Station ID:** EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 09:25 Workorder: C140708

Lab Number:

C140708-17

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 50.0	U	ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	5000		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	30300		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	30.2		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	7.06	J	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	2920		mg/L	2	1	09/08/2014	SV	1409031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFL-070814 EPA Tag No.:

No Tag Prefix-A

Date / Time Sampled:

07/08/14 08:45 Matrix: Water

Workorder: Lab Number:

C140708

C140708-21

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	15000		ug/L	200	10	09/08/2014	SV	1409031
200.7	Iron	184000		ug/L	1000	10	09/08/2014	SV	1409031
200.7	Manganese	123000		ug/L	20.0	10	09/08/2014	SV	1409031
200.7	Zinc	66500		ug/L	100	10	09/08/2014	SV	1409031
200.8	Arsenic	166		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	285		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	1270		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	147		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	28.5		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	375		mg/L	15	10	09/08/2014	SV	1409031

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFLD-070814

EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water 07/08/14 09:05

Workorder: C140708

Lab Number:

C140708-25

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	14900		ug/L	200	10	09/08/2014	SV	1409031
200.7	Iron	184000		ug/L	1000	10	09/08/2014	SV	1409031
200.7	Manganese	122000		ug/L	20.0	10	09/08/2014	SV	1409031
200.7	Zinc	66100		ug/L	100	10	09/08/2014	SV	1409031
200.8	Arsenic	178		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	294		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	1250		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	149		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	25.3		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	369		mg/L	15	10	09/08/2014	SV	1409031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NOAH-070814 Date / Time Sampled: 07/08/14 09:40 Workorder: C140708

EPA Tag No.: No Tag Prefix-A

Matrix: Water

Lab Number: C140708-29 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	13600		ug/L	100	5	09/08/2014	SV	1409031
200.7	Iron	23300		ug/L	500	5	09/08/2014	SV	1409031
200.7	Manganese	112000		ug/L	10.0	5	09/08/2014	SV	1409031
200.7	Zinc	64100		ug/L	50.0	5	09/08/2014	SV	1409031
200.8	Arsenic	5.61	J	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	294		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	1260		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	123		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	27.0		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	371		mg/L	8	5	09/08/2014	SV	1409031

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-DT-PILOT-POSTE-070814 **Station ID:** EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 11:25

Workorder:

Lab Number:

C140708

C140708-33

Parameter	Results	Qualifier	Units	MDL	Dilution	Analyzed	Ву	Batch
Aluminum	70.2		ug/L	20.0	Factor 1	09/08/2014	SV	1409031
			_		1			1409031
					1			1409031
Zinc	1120			10.0	1	09/08/2014	SV	1409031
Arsenic	16.9	J		5.00	10	09/09/2014	SV	1409032
Cadmium	1.75	J		1.00	10	09/09/2014	SV	1409032
Copper	5.78	J	ug/L	5.00	10	09/09/2014	SV	1409032
Lead	< 2.00	ΙŢ	ησ/Ι	1.00	10	09/09/2014	SV	1409032
Nickel					10	09/09/2014	SV	1409032
Hardness		O			1	09/08/2014	SV	1409031
	Aluminum Iron Manganese Zinc Arsenic Cadmium Copper Lead	Aluminum 70.2 Iron 974 Manganese 11500 Zinc 1120 Arsenic 16.9 Cadmium 1.75 Copper 5.78 Lead < 2.00	Aluminum 70.2 Iron 974 Manganese 11500 Zinc 1120 Arsenic 16.9 J Cadmium 1.75 J Copper 5.78 J Lead < 2.00	Aluminum 70.2 ug/L Iron 974 ug/L Manganese 11500 ug/L Zinc 1120 ug/L Arsenic 16.9 J ug/L Cadmium 1.75 J ug/L Copper 5.78 J ug/L Lead < 2.00 U ug/L Nickel < 10.0 U ug/L	Parameter Results Qualifier Units Aluminum 70.2 ug/L 20.0 Iron 974 ug/L 100 Manganese 11500 ug/L 2.00 Zinc 1120 ug/L 10.0 Arsenic 16.9 J ug/L 5.00 Cadmium 1.75 J ug/L 1.00 Copper 5.78 J ug/L 5.00 Lead < 2.00	Parameter Results Qualifier Units Factor Aluminum 70.2 ug/L 20.0 1 Iron 974 ug/L 100 1 Manganese 11500 ug/L 2.00 1 Zinc 1120 ug/L 10.0 1 Arsenic 16.9 J ug/L 5.00 10 Cadmium 1.75 J ug/L 1.00 10 Copper 5.78 J ug/L 5.00 10 Lead < 2.00	Parameter Results Qualifier Units Factor Analyzed Aluminum 70.2 ug/L 20.0 1 09/08/2014 Iron 974 ug/L 100 1 09/08/2014 Manganese 11500 ug/L 2.00 1 09/08/2014 Zinc 1120 ug/L 10.0 1 09/08/2014 Arsenic 16.9 J ug/L 5.00 10 09/09/2014 Cadmium 1.75 J ug/L 1.00 10 09/09/2014 Copper 5.78 J ug/L 5.00 10 09/09/2014 Lead < 2.00	Parameter Results Qualifier Units Factor Analyzed By Aluminum 70.2 ug/L 20.0 1 09/08/2014 SV Iron 974 ug/L 100 1 09/08/2014 SV Manganese 11500 ug/L 2.00 1 09/08/2014 SV Zinc 1120 ug/L 10.0 1 09/08/2014 SV Arsenic 16.9 J ug/L 5.00 10 09/09/2014 SV Cadmium 1.75 J ug/L 1.00 10 09/09/2014 SV Copper 5.78 J ug/L 5.00 10 09/09/2014 SV Lead < 2.00

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTI-070814

EPA Tag No.: No Tag Prefix-A **Date / Time Sampled:** Matrix: Water

07/08/14 11:05

Workorder: C140708

Lab Number: C140708-37

					MDL	Dilution			
Method	Parameter	Results	Qualifier	Units	MDL	Factor	Analyzed	Ву	Batch
200.7	Aluminum	33.9	J	ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	< 250	U	ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	37400		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	29.4		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	9.21	J	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	1540		mg/L	2	1	09/08/2014	SV	1409031

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-070814

EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 09:15 Works

Workorder: C140708

Lab Number: C140708-41

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
200.7	Aluminum	142	J	ug/L	100	5	09/08/2014	SV	1409031
200.7	Iron	107000		ug/L	500	5	09/08/2014	SV	1409031
200.7	Manganese	111000		ug/L	10.0	5	09/08/2014	SV	1409031
200.7	Zinc	16100		ug/L	50.0	5	09/08/2014	SV	1409031
200.8	Arsenic	36.2		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	< 10.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	19.0		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	802		mg/L	8	5	09/08/2014	SV	1409031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-TN-CHIT-0708

EPA Tag No.: 14 No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 19:15

Workorder: Ci

Lab Number:

C140708

C140708-45 A

Method	Parameter	Results	Oualifier	Units	MDL	Dilution	Analyzed	Ву	Batch
			¥			Factor			
200.7	Aluminum	301		ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	547		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	21100		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	7810		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	36.0		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	48.4		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	542		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	5.80		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	14.8		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	1000		mg/L	2	1	09/08/2014	SV	1409031

TDF #: A-046

EPA Tag No.: 814No Tag Prefix-A

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-TN-LSTN-070

Date / Time Sampled: Matrix: Water 07/08/14 18:55

Workorder: C14

Lab Number:

C140708

C140708-48 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	40.1	J	ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	651		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	24300		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	9690		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	43.8		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	62.9		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	4.71		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	7.78	J	ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	991		mg/L	2	1	09/08/2014	SV	1409031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-TN-NAOH-070

EPA Tag No.: 814No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 17:30

Workorder: Lab Number: C140708

C140708-51

۸

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	150		ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	420		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	22600		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	11500		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	46.4		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	397		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	11.7		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	19.5		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	286		mg/L	2	1	09/08/2014	SV	1409031

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-TN-RAW-0708 **EPA Tag No.:** 14 No Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 16:30

Workorder:

C140708 Lab Number:

C140708-54

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	2340		ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	269000		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	25400		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	12100		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	29.5		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	43.8		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	1450		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	952		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	11.4		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	286		mg/L	2	1	09/08/2014	SV	1409031

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-TI-BENCH-TN-RAWD-07 **Station ID:**

EPA Tag No.: 081Mo Tag Prefix-A

Date / Time Sampled: Matrix: Water

07/08/14 16:50

Workorder: Lab Number: C140708

C140708-57

A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	2210		ug/L	20.0	1	09/08/2014	SV	1409031
200.7	Iron	254000		ug/L	100	1	09/08/2014	SV	1409031
200.7	Manganese	24400		ug/L	2.00	1	09/08/2014	SV	1409031
200.7	Zinc	11700		ug/L	10.0	1	09/08/2014	SV	1409031
200.8	Arsenic	30.5		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Cadmium	45.2		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Copper	1410		ug/L	5.00	10	09/09/2014	SV	1409032
200.8	Lead	954		ug/L	1.00	10	09/09/2014	SV	1409032
200.8	Nickel	10.5		ug/L	5.00	10	09/09/2014	SV	1409032
2340B	Hardness	273		mg/L	2	1	09/08/2014	SV	1409031

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-DT-PILOT-BCR1-070814 **Station ID:** EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water

07/08/14 09:55

Workorder: C140708

Lab Number:

C140708-02

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	265		ug/L	100	5	09/11/2014	SV	1409005
200.7	Iron	11000		ug/L	500	5	09/11/2014	SV	1409005
200.7	Manganese	56800		ug/L	10.0	5	09/11/2014	SV	1409005
200.7	Zinc	2200		ug/L	50.0	5	09/11/2014	SV	1409005
200.8	Arsenic	13.7	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	2.10		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	15.7		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	1.59	J	ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/11/2014	SV	1409005

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-BCR2-070814

EPA Tag No.: No Tag Prefix-B **Date / Time Sampled:** Matrix: Water

07/08/14 10:10

Workorder: Lab Number:

C140708

C140708-06

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	161		ug/L	20.0	1	09/11/2014	SV	1409005
200.7	Iron	1000		ug/L	100	1	09/11/2014	SV	1409005
200.7	Manganese	19500		ug/L	2.00	1	09/11/2014	SV	1409005
200.7	Zinc	2100		ug/L	10.0	1	09/11/2014	SV	1409005
200.8	Arsenic	19.3	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	1.21	J	ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	25.6		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	7.48		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/11/2014	SV	1409005

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 14BH-DT-PILOT-BCR3-070814
 Date / Time Sampled:
 07/08/14 10:30
 Workorder:
 C140708

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140708-10

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	26.2	J	ug/L	20.0	1	09/11/2014	SV	1409005
200.7	Iron	2510		ug/L	100	1	09/11/2014	SV	1409005
200.7	Manganese	9760		ug/L	2.00	1	09/11/2014	SV	1409005
200.7	Zinc	116		ug/L	10.0	1	09/11/2014	SV	1409005
200.8	Arsenic	29.3	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	36.2		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	6.88		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/11/2014	SV	1409005

Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 14BH-DT-PILOT-BCR4-070814
 Date / Time Sampled:
 07/08/14 10:50
 Workorder:
 C140708

 EPA Tag No.:
 No Tag Prefix-B
 Matrix:
 Water
 Lab Number:
 C140708-14
 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	654		ug/L	100	5	09/11/2014	SV	1409005
200.7	Iron	2070		ug/L	500	5	09/11/2014	SV	1409005
200.7	Manganese	64700		ug/L	10.0	5	09/11/2014	SV	1409005
200.7	Zinc	7400		ug/L	50.0	5	09/11/2014	SV	1409005
200.8	Arsenic	17.4	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	13.8		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	49.6		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	8.54		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/11/2014	SV	1409005

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-CHIT-070814 Date / Time Sampled: 07/08/14 09:25 Workorder: C140708

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140708-18

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 50.0	U	ug/L	20.0	1	09/11/2014	SV	1409005
200.7	Iron	6170		ug/L	100	1	09/11/2014	SV	1409005
200.7	Manganese	33200		ug/L	2.00	1	09/11/2014	SV	1409005
200.7	Zinc	298		ug/L	10.0	1	09/11/2014	SV	1409005
200.8	Arsenic	7.06	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	1.69	J	ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	8.24	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	< 2.00	U	ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/11/2014	SV	1409005

Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 14BH-DT-PILOT-INFL-070814
 Date / Time Sampled:
 07/08/14 08:45
 Workorder:
 C140708

 EPA Tog No:
 No Tog Prefix-B
 Matrix:
 Water
 Lab Number:
 C140708-22
 A

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140708-22 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	15100		ug/L	200	10	09/11/2014	SV	1409005
200.7	Iron	185000		ug/L	1000	10	09/11/2014	SV	1409005
200.7	Manganese	123000		ug/L	20.0	10	09/11/2014	SV	1409005
200.7	Zinc	65300		ug/L	100	10	09/11/2014	SV	1409005
200.8	Arsenic	198	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	291		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	1060		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	221		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	20.9		ug/L	5.00	10	09/11/2014	SV	1409005

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-INFLD-070814 EPA Tag No.: No Tag Prefix-B **Date / Time Sampled: Matrix:** Water

07/08/14 09:05

Workorder: C140708

Lab Number: C140708-26

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	15100		ug/L	200	10	09/11/2014	SV	1409005
200.7	Iron	186000		ug/L	1000	10	09/11/2014	SV	1409005
200.7	Manganese	123000		ug/L	20.0	10	09/11/2014	SV	1409005
200.7	Zinc	66500		ug/L	100	10	09/11/2014	SV	1409005
200.8	Arsenic	207	J	ug/L	50.0	100	09/11/2014	SV	1409005
200.8	Cadmium	288		ug/L	10.0	100	09/11/2014	SV	1409005
200.8	Copper	1160		ug/L	50.0	100	09/11/2014	SV	1409005
200.8	Lead	206		ug/L	10.0	100	09/11/2014	SV	1409005
200.8	Nickel	< 100	U	ug/L	50.0	100	09/11/2014	SV	1409005

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-NOAH-070814 Date / T

EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Water

07/08/14 09:40

Workorder: C Lab Number:

C140708

C140708-30 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	13500		ug/L	100	5	09/11/2014	SV	1409005
200.7	Iron	34800		ug/L	500	5	09/11/2014	SV	1409005
200.7	Manganese	110000		ug/L	10.0	5	09/11/2014	SV	1409005
200.7	Zinc	62000		ug/L	50.0	5	09/11/2014	SV	1409005
200.8	Arsenic	19.7	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	283		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	1040		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	175		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	21.3		ug/L	5.00	10	09/11/2014	SV	1409005

5.61

< 10.0

Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTE-070814 EPA Tag No.: No Tag Prefix-B Date / Time Sampled: Matrix: Water 07/08/14 11:25 **Wo**

Workorder: C140708

Lab Number: C140708-34

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	138		ug/L	20.0	1	09/11/2014	SV	1409005
200.7	Iron	1370		ug/L	100	1	09/11/2014	SV	1409005
200.7	Manganese	11900		ug/L	2.00	1	09/11/2014	SV	1409005
200.7	Zinc	1440		ug/L	10.0	1	09/11/2014	SV	1409005
200.8	Arsenic	36.5	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	2.95		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	18.1		ug/L	5.00	10	09/11/2014	SV	1409005

ug/L

ug/L

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-POSTI-070814 Da

EPA Tag No.: No Tag Prefix-B

Lead

Nickel

200.8

200.8

Date / Time Sampled: Matrix: Water

U

07/08/14 11:05

1.00

5.00

Workorder: C1-

Lab Number:

09/11/2014

09/11/2014

10

10

C140708

C140708-38 A

SV

SV

1409005

1409005

Dilution MDL Method **Parameter** Results Qualifier Units Analyzed By Batch Factor 200.7 108 20.0 1 09/11/2014 SV1409005 Aluminum ug/L 200.7 Iron 4550 ug/L 100 1 09/11/2014 SV1409005 200.7 2.00 1 SV 1409005 Manganese ug/L 09/11/2014 41000 200.7 Zinc 3080 10.0 1 09/11/2014 SV1409005 ug/L 200.8 Arsenic 09/11/2014 SV1409005 100 < 200 J, 50.0 ug/L 200.8 Cadmium 100 09/11/2014 SV1409005 10.0 U < 20.0 ug/L 200.8 Copper 100 09/11/2014 SV1409005 50.0 < 100 U ug/L 200.8 Lead 100 09/11/2014 SV1409005 < 20.0 U ug/L 10.0 200.8 Nickel 100 09/11/2014 SV 1409005 < 100 U ug/L 50.0

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-DT-PILOT-SAPS-070814 Date / Time Sampled: 07/08/14 09:15 Workorder: C140708

Certificate of Analysis

EPA Tag No.: No Tag Prefix-B Matrix: Water Lab Number: C140708-42

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	159	J	ug/L	100	5	09/11/2014	SV	1409005
200.7	Iron	103000		ug/L	500	5	09/11/2014	SV	1409005
200.7	Manganese	112000		ug/L	10.0	5	09/11/2014	SV	1409005
200.7	Zinc	18300		ug/L	50.0	5	09/11/2014	SV	1409005
200.8	Arsenic	38.8	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	5.40	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	10.5		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	11.3		ug/L	5.00	10	09/11/2014	SV	1409005

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-TN-CHIT-0708 Date / Time Sampled: 07/08/14 19:15 Workorder: C140708

EPA Tag No.: 14 No Tag Prefix-B

Matrix: Water

Lab Number: C140708-46 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	530		ug/L	20.0	1	09/11/2014	SV	1409005
200.7	Iron	41500		ug/L	100	1	09/11/2014	SV	1409005
200.7	Manganese	21200		ug/L	2.00	1	09/11/2014	SV	1409005
200.7	Zinc	7600		ug/L	10.0	1	09/11/2014	SV	1409005
200.8	Arsenic	43.1	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	47.0		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	497		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	102		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	9.78	J	ug/L	5.00	10	09/11/2014	SV	1409005

Certificate of Analysis

Metals (Total Recov) by EPA 200/7000 Series Methods

A-046

TDF #:

Station ID: 14BH-TI-BENCH-TN-LSTN-070 **Date / Time Sampled:** 07/08/14 18:55 C140708 Workorder:

EPA Tag No.: 814No Tag Prefix-B Matrix: Water Lab Number: C140708-49

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	222		ug/L	20.0	1	09/11/2014	SV	1409005
200.7	Iron	16800		ug/L	100	1	09/11/2014	SV	1409005
200.7	Manganese	24400		ug/L	2.00	1	09/11/2014	SV	1409005
200.7	Zinc	9480		ug/L	10.0	1	09/11/2014	SV	1409005
200.8	Arsenic	< 20.0	J,	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	38.6		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	114		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	70.1		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	< 10.0	U	ug/L	5.00	10	09/11/2014	SV	1409005

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-TN-NAOH-070 **Date / Time Sampled:** 07/08/14 17:30 Workorder: C140708 EPA Tag No.: 814No Tag Prefix-B Matrix: Water C140708-52 Lab Number:

Dilution MDL Method **Parameter** Analyzed By Batch Results Qualifier Units Factor 09/11/2014 SV1409005 200.7 Aluminum 212 ug/L 20.0 1 200.7 100 1 09/11/2014 SV 1409005 Iron 6710 ug/L 200.7 Manganese 22700 ug/L 2.00 1 09/11/2014 SV1409005 200.7 Zinc 11200 10.0 1 09/11/2014 SV1409005 ug/L 1409005 200.8 Arsenic 10 09/11/2014 SV< 20.0 J, ug/L 5.00 200.8 Cadmium 1.00 10 09/11/2014 SV1409005 42.1 ug/L 200.8 Copper 331 ug/L 5.00 10 09/11/2014 SV1409005 200.8 Lead 42.5 ug/L 1.00 10 09/11/2014 SV1409005 200.8 Nickel ug/L 5.00 10 09/11/2014 SV1409005 14.2

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-TN-RAW-0708 Date / Time Sampled: 07/08/14 16:30 Workorder:

8.30

EPA Tag No.: 14 No Tag Prefix-B Matrix: Water Lab Number: C140708-55

Dilution MDL Method Analyzed By Batch **Parameter** Results **Qualifier** Units Factor 200.7 Aluminum 2310 ug/L 20.0 1 09/11/2014 SV1409005 100 200.7 261000 ug/L 1 09/11/2014 SV1409005 Iron 200.7 2.00 1 Manganese 24800 ug/L 09/11/2014 SV1409005 200.7 Zinc 11500 ug/L 10.0 1 09/11/2014 SV1409005 J 200.8 ug/L 5.00 10 09/11/2014 SV1409005 Arsenic 30.1 200.8 Cadmium 39.0 ug/L 1.00 10 09/11/2014 SV1409005 200.8 Copper 1100 ug/L 5.00 10 09/11/2014 SV1409005 200.8 Lead 1240 1.00 10 09/11/2014 SV1409005 ug/L

Metals (Total Recov) by EPA 200/7000 Series Methods

Nickel

200.8

Station ID: 14BH-TI-BENCH-TN-RAWD-07 Date / Time Sampled: 07/08/14 16:50 Workorder: C140708

J

EPA Tag No.: 081Mo Tag Prefix-B Matrix: Water Lab Number: C140708-58 A

ug/L

5.00

10

09/11/2014

SV

1409005

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	2260		ug/L	20.0	1	09/11/2014	SV	1409005
200.7	Iron	255000		ug/L	100	1	09/11/2014	SV	1409005
200.7	Manganese	24500		ug/L	2.00	1	09/11/2014	SV	1409005
200.7	Zinc	11300		ug/L	10.0	1	09/11/2014	SV	1409005
200.8	Arsenic	28.9	J	ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Cadmium	40.4		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Copper	1110		ug/L	5.00	10	09/11/2014	SV	1409005
200.8	Lead	1260		ug/L	1.00	10	09/11/2014	SV	1409005
200.8	Nickel	7.71	J	ug/L	5.00	10	09/11/2014	SV	1409005

[&]quot;J" Qualifier indicates an estimated value

Certificate of Analysis

C140708

A

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

 Station ID:
 14BH-DT-PILOT-BCR1-070814
 Date / Time Sampled:
 07/08/14 09:55
 Workorder:
 C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-03

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	65.7	J	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	55.2		mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	701		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	1020		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR1-070814 **Date / Time Sampled:** 07/08/14 09:55 **Workorder:** C140708

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number: C140708-04

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
EPA 350.1	Ammonia as N	58.2	D	mg/L	3.00	100	07/18/2014	KJB	1407080

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-070814 **Date / Time Sampled:** 07/08/14 10:10 **Workorder:** C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-07 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
EPA 300.0	Chloride	85.7	J	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	30.3		mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	562		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	685		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Α

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR2-070814 **EPA Tag No.:**

No Tag Prefix-D

Date / Time Sampled: Matrix: Water

07/08/14 10:10

Workorder:

Lab Number:

C140708

Certificate of Analysis

C140708-08

Dilution MDL Method Parameter Analyzed By Batch Results **Qualifier** Units Factor EPA 350.1 Ammonia as N 14.6 D mg/L 3.00 100 07/18/2014 KJB 1407080

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-BCR3-070814 **Station ID:**

No Tag Prefix-C **EPA Tag No.:**

Date / Time Sampled: Matrix: Water

07/08/14 10:30

Workorder: C140708

Lab Number:

C140708-11

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	110	J	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	134		mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	376		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	2490		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-DT-PILOT-BCR3-070814 **Date / Time Sampled: Station ID:**

EPA Tag No.:

No Tag Prefix-D

Matrix: Water

07/08/14 10:30

Workorder:

C140708

Lab Number:

C140708-12

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350 1	Ammonia as N	199	D	mg/L	3 00	100	07/18/2014	KJB	1407080

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

 Station ID:
 14BH-DT-PILOT-BCR4-070814
 Date / Time Sampled:
 07/08/14 10:50
 Workorder:
 C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-15

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	68.5	J	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	18.0	J	mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	724		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	404	J	mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Certificate of Analysis

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-BCR4-070814 Date / Time Sampled: 07/08/14 10:50 Workorder: C140708

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number: C140708-16

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	4.55	D	mg/L	0.300	10	07/18/2014	KJB	1407080

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-CHIT-070814 Date / Time Sampled: 07/08/14 09:25 Workorder: C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-19 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
EPA 300.0	Chloride	< 200	U	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	139		mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1020		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310 1	Total Alkalinity	2270		mg CaCO3 / L	250	50	07/15/2014	K IB	1407059

Α

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-INFL-070814 Date / Time Sampled: 07/08/14 08:45 Workorder: C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-23

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	6.9	J	mg/L	5.0	10	07/11/2014	NP	1407040
EPA 300.0	Fluoride	2.8		mg/L	1.0	10	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1280		mg/L	0.5	10	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-INFLD-070814 **Date / Time Sampled:** 07/08/14 09:05 **Workorder:** C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-27 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	7.0	J	mg/L	5.0	10	07/11/2014	NP	1407040
EPA 300.0	Fluoride	3.1		mg/L	1.0	10	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1310		mg/L	0.5	10	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-NOAH-070814 EPA Tag No.: No Tag Prefix-C

AH-070814 Date / Time Sampled: Matrix: Water 07/08/14 09:40

Workorder: C140708

Lab Number: C140708

Certificate of Analysis

C140708-31 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	6.9	J	mg/L	5.0	10	07/11/2014	NP	1407040
EPA 300.0	Fluoride	2.6		mg/L	1.0	10	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1160		mg/L	0.5	10	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTE-070814 **Date / Time Sampled:**

EPA Tag No.: No Tag Prefix-C

Matrix: Water

07/08/14 11:25

Workorder:

C140708

Lab Number: C140708-35

5 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	85.3	J	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	38.8		mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	656		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	1100		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTE-070814 **Date / Time Sampled:** 07/08/14 11:25 **Workorder:** C140708

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number: C140708-36

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units **Factor** EPA 350.1 Ammonia as N 46.6 D mg/L 3.00 100 07/18/2014 KJB 1407080

A

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTI-070814 Date / Time Sampled: 07/08/14 11:05 Workorder: C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-39

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	77.1	J	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	63.9		mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	603		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	1190		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-POSTI-070814 Date / Time Sampled: 07/08/14 11:05 Workorder: C140708

EPA Tag No.: No Tag Prefix-D Matrix: Water Lab Number: C140708-40

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 350.1	Ammonia as N	70.8	D	mg/L	3.00	100	07/18/2014	KJB	1407080

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-DT-PILOT-SAPS-070814 Date / Time Sampled: 07/08/14 09:15 Workorder: C140708

EPA Tag No.: No Tag Prefix-C Matrix: Water Lab Number: C140708-43 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	7.4	J	mg/L	5.0	10	07/11/2014	NP	1407040
EPA 300.0	Fluoride	3.6		mg/L	1.0	10	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1030		mg/L	0.5	10	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Α

Barker-Hughesville_Treatability_JUL 2014_A046 **Project Name:**

A-046

Certificate of Analysis

Classical Chemistry by EPA/ASTM/APHA Methods

TDF #:

14BH-TI-BENCH-TN-CHIT-0708 **Station ID: Date / Time Sampled:** 07/08/14 19:15 Workorder: C140708

EPA Tag No.: 14 No Tag Prefix-C Matrix: Water Lab Number: C140708-47

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	169	J	mg/L	50.0	100	07/11/2014	NP	1407040
EPA 300.0	Fluoride	< 20.0	U	mg/L	10.0	100	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 500	U	mg/L	100	100	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	944		mg/L	5.0	100	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-TN-LSTN-070 **Date / Time Sampled:** 07/08/14 18:55 Workorder: C140708

EPA Tag No.: 814No Tag Prefix-C Matrix: Water C140708-50 Lab Number:

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	6.7	J	mg/L	5.0	10	07/11/2014	NP	1407040
EPA 300.0	Fluoride	< 2.0	U	mg/L	1.0	10	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1040		mg/L	0.5	10	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-TN-NAOH-070 **Date / Time Sampled:** 07/08/14 17:30

Workorder: C140708 EPA Tag No.: 814No Tag Prefix-C Matrix: Water Lab Number: C140708-53

Dilution MDL Method Parameter Analyzed By Batch Results Qualifier Units Factor EPA 300.0 Chloride 6.7 J mg/L 5.0 10 07/11/2014 NP 1407040 EPA 300.0 Fluoride 10 07/11/2014 1407040 NP U mg/L 1.0 < 2.0 EPA 300.0 Nitrate/Nitrite as 10 07/11/2014 NP 1407040 U 10.0 < 50.0 mg/L EPA 300.0 0.5 07/11/2014 1407040 Sulfate as SO4 1020 mg/L 10 NP 1407059 EPA 310.1 **Total Alkalinity** 50 07/15/2014 KJB < 500 mg CaCO3 / L 250

Certificate of Analysis

Α

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-TN-RAW-0708 **Date / Time Sampled:** 07/08/14 16:30 C140708 Workorder:

EPA Tag No.: 14 No Tag Prefix-C Matrix: Water Lab Number: C140708-56 Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	< 20.0	U	mg/L	5.0	10	07/11/2014	NP	1407040
EPA 300.0	Fluoride	< 2.0	U	mg/L	1.0	10	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1120		mg/L	0.5	10	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

Barker-Hughesville_Treatability_JUL 2014_A046 **Certificate of Analysis Project Name:**

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-TN-RAWD-07 **Date / Time Sampled:** 07/08/14 16:50 Workorder:

C140708 EPA Tag No.: 081Mo Tag Prefix-C C140708-59 Matrix: Water Lab Number:

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Chloride	< 20.0	U	mg/L	5.0	10	07/11/2014	NP	1407040
EPA 300.0	Fluoride	< 2.0	U	mg/L	1.0	10	07/11/2014	NP	1407040
EPA 300.0	Nitrate/Nitrite as N	< 50.0	U	mg/L	10.0	10	07/11/2014	NP	1407040
EPA 300.0	Sulfate as SO4	1120		mg/L	0.5	10	07/11/2014	NP	1407040
EPA 310.1	Total Alkalinity	< 500		mg CaCO3 / L	250	50	07/15/2014	KJB	1407059

[&]quot;J" Qualifier indicates an estimated value

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-	·II								
Batch 1409032 - N	lo Lab Prep Reqd	1	Water					ICPN	MS-PE DRC-I
Method Blank (1409	9032-BLK1)	Dilution Factor: 1				Prepa	red: 09/08/14	Analyzed: 09/	/09/14
Nickel	< 0.500	1.00	ug/L						
Copper	< 0.500	1.00	ug/L						
Arsenic	< 0.500	2.00	"						
Cadmium	< 0.100	0.200	"						
Lead	< 0.100	0.200	"						
Method Blank Spik	e (1409032-BS1)	Dilution Factor: 1				Prepa	red: 09/08/14	Analyzed: 09/	09/14
Nickel	93.9	1.00	ug/L	100		94	85-115		
Copper	92.0	1.00	ug/L	100		92	85-115		
Arsenic	87.1	2.00	"	100		87	85-115		
Cadmium	97.6	0.200	"	100		98	85-115		
Lead	96.0	0.200	"	100		96	85-115		
Duplicate (1409032-DUP1)		Dilution Factor: 1	Source	: C140708-0	1	Prepar	red: 09/08/14	Analyzed: 09/	09/14
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	< 5.00	10.0	"		< 5.00				20
Arsenic	5.26	20.0	"		5.98			13	20
Cadmium	< 1.00	2.00	"		< 1.00				20
Lead	< 1.00	2.00	"		< 1.00				20
Matrix Spike (14090	032-MS1)	Dilution Factor: 1	Source	: C140708-0	1	Prepa	red: 09/08/14	Analyzed: 09/	09/14
Nickel	125	10.0	ug/L	100	< 5.00	125	70-130		
Copper	85.2	10.0	"	100	< 5.00	85	70-130		
Arsenic	92.9	20.0	"	100	5.98	87	70-130		
Cadmium	96.8	2.00	"	100	< 1.00	97	70-130		
Lead	81.9	2.00	"	100	< 1.00	82	70-130		
Matrix Spike (14090	032-MS2)	Dilution Factor: 1	Source	: C140708-0	5	Prepa	red: 09/08/14	Analyzed: 09/	/09/14
Nickel	103	10.0	ug/L	100	< 5.00	103	70-130		
Copper	83.5	10.0	"	100	< 5.00	83	70-130		
Arsenic	87.6	20.0	"	100	< 5.00	88	70-130		
Cadmium	94.0	2.00	"	100	< 1.00	94	70-130		
Lead	80.7	2.00	"	100	< 1.00	81	70-130		

TDF #: A-046

161.3

Zinc

20.0

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409039 - 1	409032	V	Vater					ICPN	MS-PE DRC-I
Serial Dilution (140	9039-SRD1)	Dilution Factor: 5	Source	: C140708-0	1	Prepa	red: 09/08/14	Analyzed: 09/	09/14
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	< 25.0	50.0	"		< 5.00				10
Arsenic	< 25.0	100	"		5.98				10
Cadmium	< 5.00	10.0	"		< 1.00				10
Lead	< 5.00	10.0	"		< 1.00				10
ICPOE - PE Opti	ma								
Batch 1409031 - N	lo Lab Prep Reqd	V	Vater					ICPO	E - PE Optima
Method Blank (1409	9031-BLK1)	Dilution Factor: 1				Prepa	red & Analyz	zed: 09/08/14	
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	"						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Method Blank Spik	e (1409031-BS1)	Dilution Factor: 1				Prepa	red & Analyz	zed: 09/08/14	
Aluminum	10430	50.0	ug/L	10100		103	85-115		
Iron	10500	250	"	10100		104	85-115		
Manganese	99.69	5.00	"	100		100	85-115		
Zinc	100.1	20.0	"	100		100	85-115		
Duplicate (1409031-	-DUP1)	Dilution Factor: 1	Source	: C140708-0	1	Prepa	red & Analyz	zed: 09/08/14	
Aluminum	< 20.0	50.0	ug/L		< 20.0				20
Iron	2231	250	"		2188			2	20
Manganese	45050	5.00	"		44950			0.2	20
Zinc	61.18	20.0	"		59.24			3	20
Matrix Spike (14090	031-MS1)	Dilution Factor: 1	Source	: C140708-0	1	Prepa	red & Analyz	zed: 09/08/14	
Aluminum	10670	50.0	ug/L	10100	< 20.0	106	70-130		
Iron	12470	250	ug/L	10100	2188	100	70-130		
Manganese	44260	5.00	"	100	44950	NR	70-130		
ivianganese	1613	20.0		100	77/30	1111	/0-130		

100

59.24

102

70-130

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 **Certificate of Analysis**

TDF #: A-046

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409031 - No	o Lab Prep Reqd	Water						ICPOI	E - PE Optima
Matrix Spike (14090	31-MS2)	Dilution Factor: 1	Source	: C140708-0	5	Prepa	red & Analyz	ed: 09/08/14	
Aluminum	10540	50.0	ug/L	10100	81.22	104	70-130		
Iron	10400	250	"	10100	< 100	103	70-130		
Manganese	16580	5.00	"	100	17200	NR	70-130		
Zinc	138.7	20.0	"	100	46.82	92	70-130		
Batch 1409037 - 14	109031	И	Vater					ICPOI	E - PE Optima
Serial Dilution (1409	037-SRD1)	Dilution Factor: 5	Source	: C140708-0	1	Prepa	red & Analyz	ed: 09/08/14	
Aluminum	264.1	250	ug/L		< 20.00				10
Iron	1811	1250	"		2188			19	10
Manganese	50820	25.0	"		44950			12	10
-	81.80	100	"		59.24			32	10

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-	II								
Batch 1409005 - 20	00.2 - TR Metals	Ţ	Vater					ICPN	MS-PE DRC-II
Method Blank (1409	0005-BLK2)	Dilution Factor: 5				Prepa	red: 09/02/14	Analyzed: 09/	11/14
Nickel	2.832	5.00	ug/L						
Copper	< 2.50	5.00	ug/L						
Arsenic	< 2.50	10.0	"						
Cadmium	< 0.500	1.00	"						
Lead	< 0.500	1.00	"						
Duplicate (1409005-DUP2)		Dilution Factor: 1	Source	: C140708-0	2	Prepa	red: 09/02/14	4 Analyzed: 09/	11/14
Nickel	< 5.00	10.0	ug/L		< 5.00				20
Copper	16.03	10.0	ug/L		15.65			2	20
Arsenic	13.27	20.0	"		13.65			3	20
Cadmium	2.148	2.00	"		2.102			2	20
Lead	1.584	2.00	"		1.585			0.1	20
Matrix Spike (14090	005-MS2)	Dilution Factor: 1	Source	: C140708-0	2	Prepa	red: 09/02/14	1 Analyzed: 09/	11/14
Nickel	392.9	10.0	ug/L	500	< 5.00	79	70-130		
Copper	248.7	10.0	"	300	15.65	78	70-130		
Arsenic	744.0	20.0	"	800	13.65	91	70-130		
Cadmium	192.8	2.00	"	200	2.102	95	70-130		
Lead	1038	2.00	"	1000	1.585	104	70-130		
Matrix Spike (14090	005-MS4)	Dilution Factor: 1	Source	: C140708-0	6	Prepa	red: 09/02/14	Analyzed: 09/	11/14
Nickel	376.2	10.0	ug/L	500	< 5.00	75	70-130		
Copper	254.0	10.0	"	300	25.57	76	70-130		
Arsenic	743.4	20.0	"	800	19.31	91	70-130		
Cadmium	191.9	2.00	"	200	1.206	95	70-130		
Lead	1024	2.00	"	1000	7.484	102	70-130		
Reference (1409005-SRM2) Dilution F		Dilution Factor: 2				Prepa	red: 09/02/14	Analyzed: 09/	11/14
Nickel	911.9	20.0	ug/L	1000		91	85-115		
Copper	844.4	20.0	ug/L	1000		84	85-115		
Arsenic	1910	40.0	"	2000		96	85-115		
Cadmium	990.8	4.00	"	1000		99	85-115		
Lead	2056	4.00	"	2000		103	85-115		

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409053 - 14	09005	И	/ater					ICPN	AS-PE DRC-II
Serial Dilution (1409)	053-SRD1)	Dilution Factor: 5	Source	: C140708-0)2	Prepa	red: 09/02/14	Analyzed: 09/	11/14
Nickel	< 25.0	50.0	ug/L		< 5.00				10
Copper	< 25.0	50.0	"		15.65				10
Arsenic	< 25.0	100	"		13.65				10
Cadmium	< 5.00	10.0	"		2.102				10
Lead	< 5.00	10.0	"		1.585				10
ICPOE - PE Optim	1a								
Batch 1409005 - 20	0.2 - TR Metals	И	/ater					ICPO	E - PE Optima
Method Blank (14090	005-BLK1)	Dilution Factor: 1				Prepa	red: 09/02/14	Analyzed: 09/	11/14
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	"						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Duplicate (1409005-I	OUP1)	Dilution Factor: 5	Factor: 5 Source: C140708-02		Prepa	red: 09/02/14	Analyzed: 09/	11/14	
Aluminum	249.9	250	ug/L		265.4			6	20
Iron	11080	1250	"		11030			0.5	20
Manganese	56130	25.0	"		56820			1	20
Zinc	2159	100	"		2195			2	20
Matrix Spike (140900	05-MS1)	Dilution Factor: 1	Source	: C140708-0)2	Prepa	red: 09/02/14	Analyzed: 09/	11/14
Aluminum	2116	50.0	ug/L	2000	265.4	93	70-130		
Iron	3960	250	"	3000	11030	NR	70-130		
Manganese	19950	5.00	"	200	56820	NR	70-130		
Zinc	2323	20.0	"	200	2195	64	70-130		
Matrix Spike (140900	Matrix Spike (1409005-MS3)		Source	: C140708-0)6	Prepa	red: 09/02/14	Analyzed: 09/	11/14
Aluminum	2004	50.0	ug/L	2000	161.4	92	70-130		
Iron	5369	250	"	3000	1003	146	70-130		
Manganese	9980	5.00	"	200	19530	NR	70-130		
Zinc	294.6	20.0	"	200	2100	NR	70-130		

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 **Certificate of Analysis**

TDF #: A-046

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409005 - 20	00.2 - TR Metals	И	'ater					ICPO	E - PE Optima
Reference (1409005-	SRM1)	Dilution Factor: 1				Prepai	red: 09/02/14	Analyzed: 09/	11/14
Aluminum	965.3	50.0	ug/L	1000		97	85-115		
Iron	918.2	250	"	1000		92	85-115		
Manganese	1005	5.00	"	1000		100	85-115		
Zinc	975.4	20.0	"	1000		98	85-115		
Batch 1409050 - 14	109005	И	/ater					ICPO	E - PE Optima
Serial Dilution (1409	0050-SRD1)	Dilution Factor: 2	Source	C140708-0	2	Prepai	red: 09/02/14	Analyzed: 09/	11/14
Aluminum	< 500	1250	ug/L		265.4				10
Iron	10590	6250	"		11030			4	10
Manganese	57760	125	"		56820			2	10
		500							

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample NOTE:

TDF #: A-046

${\bf Classical\ Chemistry\ by\ EPA/ASTM/APHA\ Methods-Quality\ Control}$

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ESAT Dionex IC									
Batch 1407040 - No Pr	ep Req	J	Water					E	SAT Dionex IC
Method Blank (1407040-	-BLK1)	Dilution Factor: 1				Prepa	red & Analyz	red: 07/11/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Method Blank Spike (14	07040-BS1)	Dilution Factor: 1				Prepa	red & Analyz	zed: 07/11/14	
Fluoride	4.9	0.2	mg/L	5.00		99	90-110		
Chloride	23.6	2.0	"	25.0		94	90-110		
Sulfate as SO4	22.6	0.1	"	25.0		90	90-110		
Nitrate/Nitrite as N	20.1	5.0	"	20.0		100	90-110		
Duplicate (1407040-DUP1)		Dilution Factor: 1	Source	: C140708-0	3	Prepa	red & Analyz	red: 07/11/14	
Fluoride	55.8	20.0	mg/L		55.2			1	20
Chloride	66.4	200	"		65.7			1	20
Sulfate as SO4	714	10.0	"		701			2	20
Nitrate/Nitrite as N	< 100	500	"		< 100				20
Matrix Spike (1407040-N	MS1)	Dilution Factor: 1	Source	: C140708-0	3	Prepa	red & Analyz	red: 07/11/14	
Fluoride	566	20.0	mg/L	500	55.2	102	80-120		
Chloride	2420	200	"	2500	65.7	94	80-120		
Sulfate as SO4	3170	10.0	"	2500	701	99	80-120		
Nitrate/Nitrite as N	2040	500	"	2000	< 100	102	80-120		
Matrix Spike (1407040-MS2)		Dilution Factor: 1	Source	: C140708-4	3	Prepa	red & Analyz	zed: 07/11/14	
Fluoride	53.1	2.0	mg/L	50.0	3.6	99	80-120		
Chloride	237	20.0	"	250	7.4	92	80-120		
Sulfate as SO4	1270	1.0	"	250	1030	95	80-120		
Nitrate/Nitrite as N	200	50.0	"	200	< 10.0	100	80-120		

TDF #: A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

Certificate of Analysis

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1407055 - 1407	7040		Water					E	SAT Dionex IC
Instrument Blank (140	7055-IBL1)	Dilution Factor: 1				Prepai	red & Analyz	ed: 07/11/14	
Fluoride	< 0.1	0.2	mg/L						
Chloride	< 0.5	2.0	"						
Sulfate as SO4	< 0.05	0.1	"						
Nitrate/Nitrite as N	< 1.0	5.0	"						
Lachat 8500									
Batch 1407080 - No I	Prep Req		Water						Lachat 8500
Method Blank (140708	0-BLK1)	Dilution Factor: 1				Prepar	red & Analyz	zed: 07/18/14	
Ammonia as N	< 0.0300	0.0500	mg/L						
Method Blank Spike (1	407080-BS1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 07/18/14	
Ammonia as N	0.980	0.0500	mg/L	1.00		98	90-110		
Duplicate (1407080-DU	JP1)	Dilution Factor: 1	Source	: C140708-0	4	Prepai	red & Analyz	red: 07/18/14	
Ammonia as N	58.1	5.00	mg/L		58.2			0.3	20
Duplicate (1407080-DU	J P2)	Dilution Factor: 1	Source	: C140711-2	0	Prepai	red & Analyz	ed: 07/18/14	
Ammonia as N	12.0	5.00	mg/L		12.1			0.8	20
Matrix Spike (1407080	-MS1)	Dilution Factor: 1	Source	: C140708-0	4	Prepai	red & Analyz	ed: 07/18/14	
Ammonia as N	154	5.00	mg/L	100	58.2	96	90-110		
Matrix Spike (1407080	-MS2)	Dilution Factor: 1	Source	: C140711-2	0	Prepai	red & Analyz	ed: 07/18/14	
Ammonia as N	107	5.00	mg/L	100	12.1	95	90-110		
Reference (1407080-SR	RM1)	Dilution Factor: 5				Prepai	red & Analyz	ed: 07/18/14	
Ammonia as N	4.91	0.250	mg/L	4.80		102	90-110		

Barker-Hughesville_Treatability_JUL 2014_A046 **Project Name:**

Certificate of Analysis

TDF #:

A-046

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit	
Mettler AT										
Batch 1407059 - No	o Prep Req		Water						Mettler AT	
Method Blank (1407	059-BLK1)	Dilution Factor: 1				Prepai	red: 07/14/14	Analyzed: 07/	15/14	
Total Alkalinity	< 5.00	10.0	mg CaCO3 /							
Duplicate (1407059-1	DUP1)	Dilution Factor: 5	Source: C140708-03				Prepared: 07/14/14 Analyzed: 07/15/14			
Total Alkalinity	1010	500	mg CaCO3 /		1020			0.5	20	
Duplicate (1407059-1	DUP2)	Dilution Factor: 5	Source:	C140708-4	3	Prepai	ed: 07/14/14	Analyzed: 07/	15/14	
Total Alkalinity	< 250	500	mg CaCO3 /		< 250				20	
Reference (1407059-	SRM1)	Dilution Factor: 1				Prepai	ed: 07/14/14	Analyzed: 07/	15/14	
Total Alkalinity	12.0	10.0	mg CaCO3 /	10.4		115	61.3-143.9			

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: EPA 300.0 Analysis Name: WC - Anions by Ion Chromatography

Instrument: ESAT Dionex IC Work Order: Nu C140708

Analytical Sequence: 1407055 **Dissolved** Concentration Units: mg/L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blanks	Method Blank (Batch II	PQL		
		1	2	3	4	1407040-BLK1	NA	
	0.00	0.00	0.00	0.00				
Fluoride		5	6	7	8	0.00	NA	0.20
		1	2	3	4	1407040-BLK1	NA	
	0.00	0.00	0.00	0.00				1
Chloride		5	6	7	8	0.00	NA	2.00
	0.00	1	2	3	4	1407040-BLK1	NA	<u> </u>
	0.00	0.00	0.00	0.00			37.4	0.10
Sulfate as SO4		5	6	7	8	0.00	NA	0.10
		1	2	3	4	1407040-BLK1	NA	
Nitrate/Nitrite as N	0.00	0.00	0.00	0.00]	27.4	
		5	6	7	8	0.00	NA	5.00

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 310.1</u> Analysis Name: <u>WC - Alkalinity</u>

Instrument: Mettler AT Work Order: Nu C140708

Analytical Sequence: Total Concentration Units: mg CaCO3 / L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	Metho Blan (Batch	PQL		
		1	2	3	4	1407059-BLK1	NA	
		1.12	1.32					
Total Alkalinity		5	6	7	8	1.04	NA	10.00

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw Inc., ESAT Region 8

INORGANIC ANALYSES DATA SHEET

Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 350.1</u> Analysis Name: <u>WC - Ammonia</u>

Instrument: Lachat 8500 Work Order: Nu C140708

Analytical Sequence: Total Concentration Units: mg/L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	Metho Blan (Batch	PQL		
		1	2	3	4	1407080-BLK1	NA	
		0.00	0.00	0.00				
Ammonia as N		5	6	7	8	0.02	NA	0.05

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Diss. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140708

Analytical Sequence: 1409037 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blanks	Method Blank (Batch ID	PQL		
		1	2	3	4	1409031-BLK1	NA	
	1.95	1.62	1.03	2.79				
Aluminum		5	6	7	8	2.95	NA	50.00
		1	2	3	4	1409031-BLK1	NA	
	-23.76	21.79	-12.15	19.33				Ī
Iron		5	6	7	8	26.11	NA	250.00
		1	2	3	4	1409031-BLK1	NA	
	0.04	0.22	0.63	0.75				Ī
Manganese		5	6	7	8	-0.01	NA	5.00
		1	2	3		1409031-BLK1	NA	
	0.83	1.03	2.01	2.13	4	1407031 BERT		†
Zinc		5	6	7	8	0.01	NA	20.00

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: <u>ICPMS Diss. Metals</u>

Instrument: ICPMS-PE DRC-II Work Order: Nu C140708

Analytical Sequence: 1409039 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	C	Continuing Cali	bration Blank	Methoo Blank (Batch II	PQL		
		1	2	3	4	1409032-BLK1	NA	
	0.00	0.01	0.02	0.02			37.1	
Nickel		5	6	7	8	-0.01	NA	1.00
		1	2	3	4	1409032-BLK1	NA	
	0.00	0.00	0.00	0.00				
Copper		5	6	7	8	-0.04	NA	1.0
	0.00	1	2	3	4	1409032-BLK1	NA	
	0.09	0.02	0.07	0.09]	27.4	2.00
Arsenic		5	6	7	8	0.11	NA	2.00
		1	2	3	4	1409032-BLK1	NA	
	0.01	0.02	0.02	0.01				
Cadmium		5	6	7	8	0.00	NA	0.20
		1	2	3	4	1409032-BLK1	NA	
	0.03	0.00	-0.02	-0.04			NIA	0.20
Lead		5	6	7	8	-0.02	NA	0.20

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140708

Analytical Sequence: 1409050 **Total Recoverable** Concentration Units: <u>ug/L</u>

Initial Calibration Blank (1 & 2)	C	Continuing Cali	ibration Blanks	Blank	PQL		
	1	2	3	4	1409005-BLK1	NA	
0.89	0.92	2.04	3.46				
	5	6	7	8	1.22	NA	50.00
	1	2	3	4	1409005-BLK1	NA	
15.55	7.23	2.61	15.25				
	5	6	7	8	24.26	NA	250.00
	1	2	3	4	1409005-BLK1	NA	
0.08	0.13	0.38	0.38				Ī
	5	6	7	8	-0.28	NA	5.00
0.64	1	2	3	4	1409005-BLK1	NA	1
0.04	1.02	0.50	0.91			NI A	20.00
	5	6	7	8	1.64	NA	20.00
	Calibration Blank (1 & 2)	Calibration Blank (1 & 2) 1 0.89 1 0.92 5 15.55 7.23 5 5 0.08 1 0.13 5 0.64 1 1.02 1	Calibration Blank (1 & 2) Continuing Calibration 0.89 1 2 0.92 2.04 5 5 6 15.55 7.23 2.61 5 6 0.08 1 2 0.13 0.38 5 6 0.64 1 2 0.64 1.02 0.50	Calibration Blank (1 & 2) Continuing Calibration Blanks 0.89 1 2 3 0.92 2.04 3.46 5 6 7 1 2 3 15.55 7.23 2.61 15.25 5 6 7 0.08 0.13 0.38 0.38 5 6 7 0.64 1 2 3 0.64 1.02 0.50 0.91	Calibration Blank (1 & 2) Continuing Calibration Blanks 0.89 1 2 3 4 0.92 2.04 3.46 3.46 5 6 7 8 15.55 7.23 2.61 15.25 5 6 7 8 0.08 1 2 3 4 0.08 0.13 0.38 0.38 5 6 7 8 0.64 1 2 3 4 0.64 1.02 0.50 0.91	Calibration Blank (1 & 2) Continuing Calibration Blanks Blank (Batch ID) 0.89 1 2 3 4 1409005-BLK1 0.89 0.92 2.04 3.46 1.22 5 6 7 8 1.22 1 2 3 4 1409005-BLK1 15.55 5 6 7 8 24.26 0.08 1 2 3 4 1409005-BLK1 0.08 0.13 0.38 0.38 -0.28 5 6 7 8 -0.28 0.64 1 2 3 4 1409005-BLK1 0.64 1.02 0.50 0.91 1.64	Calibration Blank (1 & 2) Continuing Calibration Blanks Blank (Batch ID) 0.89 1 2 3 4 1409005-BLK1 NA 0.89 0.92 2.04 3.46 1.22 NA 1 2 3 4 1409005-BLK1 NA 15.55 7.23 2.61 15.25 24.26 NA 5 6 7 8 24.26 NA 0.08 0.13 0.38 0.38 -0.28 NA 5 6 7 8 -0.28 NA 0.64 1 2 3 4 1409005-BLK1 NA 0.64 1.02 0.50 0.91 1.64 NA

TDF #: A-046

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C140708

Analytical Sequence: 1409053 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	s	Me Bl (Bat	PQL	
		1	2	3	4	NA	1409005-BLK2	
	0.01	0.00	0.00	0.00				
Nickel		5	6	7	8	NA	0.57	1.00
		1	2	3	4	NA	1409005-BLK2	
	0.01	0.00	-0.02	-0.02	•			
Copper		5	6	7	8	NA	-0.03	1.00
		1	2	3		NA	1409005-BLK2	
	0.02				4	INA	1409003-BLK2	
Arsenic		0.03 5	-0.04 6	-0.04 7	8	NA	-0.21	2.00
		3		,				
		1	2	3	4	NA	1409005-BLK2	
	0.00	-0.01	-0.01	0.00			0.02	0.00
Cadmium		5	6	7	8	NA	-0.02	0.20
				2		NIA	1400005 PLY2	
	-0.01	1	2	3	4	NA	1409005-BLK2	
Lead		-0.02	-0.01	-0.02		NA	-0.03	0.20
Loud		5	6	7	8	11/1		_ 0

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ESAT Dionex IC Method: EPA 300.0 Analysis Name: WC - Anions by Ion Chromatography 2013

Sequence: 1407055 Work Order: C140708 Units: mg/L

Dissolved	Init	ial (ICV1,	ICV2)		Cont	inuing Ca	alibration	Verification	on Stand	ndards (CCVs)				
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R		
					1			2			3			
	40.0	40.4	101.0	40.0	41.4	103.5	40.0	41.4	103.5	40.0	41.6	104.0		
Chloride	40.0	40.4	101.0		4			5			6			
					7			8			9			
					1			2			3			
				4.00	4.1	102.5	4.00	4.2	105.0	4.00	4.2	105.0		
Fluoride	4.00	4.0	100.0		4			5			6			
					7			8			9			
					1			2			3			
	20.0	20.1	100.5	20.0	20.6	103.0	20.0	20.6	103.0	20.0	20.7 6	103.5		
Nitrate/Nitrite as N					-			<u> </u>			•			
					7			8			9			
					1			2			3			
				100	104	104.0	100	104	104.0	100	106	106.0		
Sulfate as SO4	100	101	101.0	100	4	101.0	100	5	101.0	100	6	100.0		
					7			8			9			
					, , , , , , , , , , , , , , , , , , ,			<u> </u>						

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Mettler AT Method: EPA 310.1 Analysis Name: WC - Alkalinity

Sequence: 1407064 Work Order: C140708 Units: mg CaCO3 / L

Total	Init	ial (ICV1, I	(CV2)	Continuing Calibration Verification Standards (CCVs)									
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R	
					1			2			3		
				100	100	100.0	100	99.9	99.9				
Total Alkalinity					4			5			6		
10tai 1 iiitaiiiity													
					7			8			9		

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Lachat 8500 Method: EPA 350.1 Analysis Name: WC - Ammonia

Sequence: 1407091 Work Order: C140708 Units: mg/L

Total	Init	ial (ICV1, I	(CV2)	Continuing Calibration Verification Standards (CCVs)										
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R		
					1			2			3			
				1.00	0.979	97.9	1.00	0.980	98.0	1.00	0.982	98.2		
Ammonia as N					4			5			6			
Ammonia as iv														
					7			8			9			

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Diss. Metals

Sequence: 1409037 Work Order: C140708 Units: ug/L

Dissolved	Initi	ial (ICV1, l	(CV2)		Cont	inuing C	alibration	Verificati	on Stand	ards (CC	Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	12400	00.2	12500	12700	101.6	12500	12670	101.4	12500	12550	100.4
Aluminum	12500	12400	99.2		4			5			6	
					7			8			9	
					1			2			3	
				12500	12660	101.3	12500	12730	101.8	12500	12650	101.2
Iron	12500	12630	101.0		4			5			6	
					7			8			9	
				1000	1009	100.9	1000	1027	102.7	1000	1033	103.3
Manganese	1000	1028	102.8	1000	4	100.5	1000	5	102.7	1000	6	100.0
Manganese												
					7			8			9	
					1			2			3	
				2500	2544	101.8	2500	2579	103.2	2500	2592	103.7
Zinc	2500	2546	101.8		4			5			6	
					7			8			9	
					ı							

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Diss. Metals

Sequence: 1409039 Work Order: C140708 Units: ug/L

Dissolved	Init	ial (ICV1, I	ICV2)		Cont	inuing C	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				50.0	49.5	99.0	50.0	50.8	101.6	50.0	49.1	98.2
Arsenic	50.0	50.9	101.8		4			5			6	
					7			8			9	
					,			0				
					1			2			3	
	50.0	49.4	98.8	50.0	49.5	99.0	50.0	53.6	107.2	50.0	54.4	108.8
Cadmium	30.0		76.6		4			5			6	
					7			8			9	
					1			2			3	
	50.0	54.2	108.4	50.0	51.3	102.6	50.0	49.6	99.2	50.0	49.3	98.6
Copper	30.0	J 4 .2	100.4		4			5			6	
					7			8			9	
					1			2			3	
	50.0	50.2	100.4	50.0	46.7	93.4	50.0	48.7	97.4	50.0	46.1	92.2
Lead	50.0	30.2	100.1		4			5			6	
					7			8			9	
					1			2			3	
	50.0	53.6	107.2	50.0	51.5	103.0	50.0	50.4	100.8	50.0	52.5	105.0
Nickel					4			5			6	
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Sequence: 1409050 Work Order: C140708 Units: ug/L

Total Recoverable	Initi	ial (ICV1,	ICV2)		Cont	inuing C	alibration	Verificati	on Stand	ards (CC	Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	10500	12050	102.6	12500	12790	102.3	12500	12730	101.8	12500	12790	102.3
Aluminum	12500	12950	103.6		4			5			6	
					7			8			9	
					1			2			3	
	12500	10000	400.0	12500	12490	99.9	12500	12470	99.8	12500	12430	99.4
Iron	12500	12900	103.2		4			5		3 12500 12790 102.3 6 9		
					7			8			9	
				1000	1027	102.7	1000	1028	102.8	1000		102.2
Managemen	1000	1022	102.2	1000	4	102.7	1000	5	102.0	1000		103.3
Manganese												
					7			8			9	
					1			2			2	
				2500	2594	103.8	2500	2569	102.8	2500		103.6
Zinc	2500 2566 102.6 4 5		105.0									
Zinc												
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

TDF #: A-046

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1409053 Work Order: C140708 Units: ug/L

Total Recoverable	Init	ial (ICV1,	ICV2)		Cont	inuing C	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				50.0	47.28	94.6	50.0	47.79	95.6	50.0	47.73	95.5
Arsenic	50.0	49.46	98.9		4			5			6	
					7			8			9	
					1			2			3	
	50.0	50.55	101.1	50.0	49.98	100.0	50.0	49.81	99.6	50.0	50.15	100.3
Cadmium	50.0	50.55	101.1		4			5			6	
					7			8			9	9
					1			2			3	
	50.0	40.05	06.5	50.0	46.86	93.7	50.0	48.17	96.3	50.0	45.32	90.6
Copper	50.0	48.25	96.5		4			5			6	
					7			8			9	
					·							
					1			2			3	
	50.0	49.15	98.3	50.0	52.27	104.5	50.0	51.98	104.0	50.0	51.52	103.0
Lead	30.0	49.13	70.3		4			5			6	
					7			8			9	
					1			2			3	
	50.0	49.76	99.5	50.0	48.69	97.4	50.0	49.50	99.0	50.0	47.25	94.5
Nickel					4			5			6	
					7			8	_		9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF #:

A-046

TechLaw, Inc. - ESAT Region 8 **ICP Interference Check Sample** ICPMS-PE DRC-II

Analyte		Check Sample	Result*	<u>Units</u>	True	<u>%R</u>	<u>PQL</u>
Sequence:	1409039	Analysis: ICPMS Diss. Metals					
Arsenic		IFA1	0.0	ug/L			2.00
		IFB1	18.8	ug/L	20	94	2.00
Cadmium		IFA1	0.1	ug/L			0.200
		IFB1	20.0	ug/L	20	100	0.200
Copper		IFA1	0.7	ug/L			1.00
		IFB1	20.6	ug/L	20	103	1.00
Lead		IFA1	0.0	ug/L			0.200
		IFB1	0.0	ug/L			0.200
Nickel		IFA1	-0.1	ug/L			1.00
		IFB1	20.3	ug/L	20	102	1.00

Sequence:	1409053	Analysis:	ICPMS Tot. Rec	. Metals				
Arsenic			IFA1	0.0	ug/L			2.00
			IFB1	20.1	ug/L	20	101	2.00
Cadmium			IFA1	0.0	ug/L			0.200
			IFB1	20.7	ug/L	20	104	0.200
Copper			IFA1	0.5	ug/L			1.00
			IFB1	17.4	ug/L	20	87	1.00
Lead			IFA1	0.0	ug/L			0.200
			IFB1	0.0	ug/L			0.200
Nickel			IFA1	-0.2	ug/L			1.00
			IFB1	18.3	ug/L	20	92	1.00
	,			,		,	,	

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

TDF #:

A-046

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPOE - PE Optima

Analyte	Check Sample	Result*	<u>Units</u>	<u>True</u>	<u>%R</u>	<u>PQL</u>
Sequence: 1409037	Analysis: ICPOE Diss. Metals					
Aluminum	IFA1	59,888.8	ug/L	60,000	100	50.0
	IFB1	60,565.4	ug/L	60,000	101	50.0
Iron	IFA1	234,765.4	ug/L	250,000	94	250
	IFB1	235,009.8	ug/L	250,000	94	250
Manganese	IFA1	-0.1	ug/L			5.00
	IFB1	196.0	ug/L	200	98	5.00
Zinc	IFA1	8.6	ug/L			20.0
	IFB1	291.9	ug/L	300	97	20.0
*Criteria = 80-120%R o	of True Value or +/- PQL					

See raw data for complete analyte list and results.

Sequence: 1409050	Analysis: ICPOE Tot. Rec.	Metals				
Aluminum	IFA1	61,035.1	ug/L	60,000	102	50.0
	IFB1	61,569.3	ug/L	60,000	103	50.0
Iron	IFA1	234,323.5	ug/L	250,000	94	250
	IFB1	234,561.1	ug/L	250,000	94	250
Manganese	IFA1	-0.5	ug/L			5.00
	IFB1	195.4	ug/L	200	98	5.00
Zinc	IFA1	4.8	ug/L			20.0
	IFB1	287.6	ug/L	300	96	20.0

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8
Detection Limit (PQL) Standard
ICPMS-PE DRC-II

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1409039

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Arsenic	2.00	2.11	105	ug/L
Cadmium	0.200	0.180	90	ug/L
Copper	1.00	0.978	98	ug/L
Lead	0.200	0.224	112	ug/L
Nickel	1.00	0.952	95	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1409037

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	99.63	100	ug/L
Iron	100	91.41	91	ug/L
Manganese	10.0	10.06	101	ug/L
Zinc	50.0	53.60	107	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

Project Name: Barker-Hughesville_Treatability_JUL 2014_A046 Certificate of Analysis

TDF #: A-046

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard Lachat 8500

Classical Chemistry by EPA/ASTM/APHA Methods

Sequence: 1407091

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Ammonia as N	0.0250	0.0197	79	mg/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw, Inc. - ESAT Region 8
Detection Limit (PQL) Standard
ICPMS-PE DRC-II

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1409053

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Arsenic	2.00	1.956	98	ug/L
Cadmium	0.200	0.1660	83	ug/L
Copper	1.00	1.085	109	ug/L
Lead	0.200	0.1620	81	ug/L
Nickel	1.00	1.014	101	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1409050

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	98.99	99	ug/L
Iron	100	129.6	130	ug/L
Manganese	10.0	10.10	101	ug/L
Zinc	50.0	51.67	103	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 300.0 **Dissolved Sequence ID#:** 1407055

	Dionex IC Water		LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1407055-ICV1	Initial Cal Check	07/11/14	14:23
1407055-ICB1	Initial Cal Blank	07/11/14	14:42
1407055-SCV1	Secondary Cal Check	07/11/14	15:00
1407055-IBL1	Instrument Blank	07/11/14	15:19
1407040-BS1	Blank Spike	07/11/14	15:38
1407040-BLK1	Blank	07/11/14	15:56
C140708-03	14BH-DT-PILOT-BCR1-07081	07/11/14	16:15
1407040-DUP1	Duplicate	07/11/14	16:33
1407040-MS1	Matrix Spike	07/11/14	16:52
C140708-07	14BH-DT-PILOT-BCR2-07081	07/11/14	17:10
C140708-11	14BH-DT-PILOT-BCR3-07081	07/11/14	17:29
C140708-15	14BH-DT-PILOT-BCR4-07081	07/11/14	17:48
1407055-CCV1	Calibration Check	07/11/14	18:06
1407055-CCB1	Calibration Blank	07/11/14	18:25
C140708-19	14BH-DT-PILOT-CHIT-070814	07/11/14	18:43
C140708-23	14BH-DT-PILOT-INFL-070814	07/11/14	19:02
C140708-27	14BH-DT-PILOT-INFLD-0708	07/11/14	19:20
C140708-31	14BH-DT-PILOT-NOAH-0708	07/11/14	19:39
C140708-35	14BH-DT-PILOT-POSTE-0708	07/11/14	19:58
C140708-39	14BH-DT-PILOT-POSTI-07081	07/11/14	20:16
C140708-43	14BH-DT-PILOT-SAPS-070814	07/11/14	20:35
1407040-MS2	Matrix Spike	07/11/14	20:53
C140708-47	14BH-TI-BENCH-TN-CHIT-07	07/11/14	21:12
C140708-50	14BH-TI-BENCH-TN-LSTN-0	07/11/14	21:30
1407055-CCV2	Calibration Check	07/11/14	21:49
1407055-CCB2	Calibration Blank	07/11/14	22:08
C140708-53	14BH-TI-BENCH-TN-NAOH-(07/11/14	22:26
C140708-56	14BH-TI-BENCH-TN-RAW-07	07/11/14	22:45
C140708-59	14BH-TI-BENCH-TN-RAWD-	07/11/14	23:03
1407055-CCV3	Calibration Check	07/11/14	23:22
1407055-CCB3	Calibration Blank	07/11/14	23:40

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 310.1 **Total Sequence ID#:** 1407064

Instrument ID #: Mett	ler AT Wate	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1407059-SRM1	Reference	07/15/14	12:08
1407059-BLK1	Blank	07/15/14	12:08
C140708-03	14BH-DT-PILOT-BCR1-07081	07/15/14	12:08
1407059-DUP1	Duplicate	07/15/14	12:08
C140708-07	14BH-DT-PILOT-BCR2-07081	07/15/14	12:08
C140708-11	14BH-DT-PILOT-BCR3-07081	07/15/14	12:08
C140708-15	14BH-DT-PILOT-BCR4-07081	07/15/14	12:08
C140708-19	14BH-DT-PILOT-CHIT-070814	07/15/14	12:08
C140708-23	14BH-DT-PILOT-INFL-070814	07/15/14	12:08
C140708-27	14BH-DT-PILOT-INFLD-0708	07/15/14	12:08
1407064-CCV1	Calibration Check	07/15/14	12:08
1407064-CCB1	Calibration Blank	07/15/14	12:08
C140708-31	14BH-DT-PILOT-NOAH-0708	07/15/14	12:08
C140708-35	14BH-DT-PILOT-POSTE-0708	07/15/14	12:08
C140708-39	14BH-DT-PILOT-POSTI-07081	07/15/14	12:08
C140708-43	14BH-DT-PILOT-SAPS-070814	07/15/14	12:08
1407059-DUP2	Duplicate	07/15/14	12:08
C140708-47	14BH-TI-BENCH-TN-CHIT-07	07/15/14	12:08
C140708-50	14BH-TI-BENCH-TN-LSTN-0	07/15/14	12:08
C140708-53	14BH-TI-BENCH-TN-NAOH-(07/15/14	12:08
C140708-56	14BH-TI-BENCH-TN-RAW-07	07/15/14	12:08
C140708-59	14BH-TI-BENCH-TN-RAWD-	07/15/14	12:08
1407064-CCV2	Calibration Check	07/15/14	12:08
1407064-CCB2	Calibration Blank	07/15/14	12:08

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 350.1 **Total Sequence ID#:** 1407091

Instrument ID #: Lach	at 8500 Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1407080-BLK1	Blank	07/18/14	13:02
1407080-BS1	Blank Spike	07/18/14	13:02
1407091-CRL1	Instrument RL Check	07/18/14	13:02
C140708-04	14BH-DT-PILOT-BCR1-07081	07/18/14	13:02
1407080-DUP1	Duplicate	07/18/14	13:02
1407080-MS1	Matrix Spike	07/18/14	13:02
C140708-08	14BH-DT-PILOT-BCR2-07081	07/18/14	13:02
1407091-CCV1	Calibration Check	07/18/14	13:02
1407091-CCB1	Calibration Blank	07/18/14	13:02
C140708-12	14BH-DT-PILOT-BCR3-07081	07/18/14	13:02
C140708-36	14BH-DT-PILOT-POSTE-0708	07/18/14	13:02
C140708-40	14BH-DT-PILOT-POSTI-07081	07/18/14	13:02
1407080-DUP2	Duplicate	07/18/14	13:02
1407091-CCV2	Calibration Check	07/18/14	13:02
1407091-CCB2	Calibration Blank	07/18/14	13:02
1407080-MS2	Matrix Spike	07/18/14	13:02
1407080-SRM1	Reference	07/18/14	13:02
C140708-16	14BH-DT-PILOT-BCR4-07081	07/18/14	13:02
1407091-CCV3	Calibration Check	07/18/14	13:02
1407091-CCB3	Calibration Blank	07/18/14	13:02

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Dissolved Sequence ID#:** 1409037

nstrument ID #: ICPO	E - PE Optima Water		LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
409037-ICV1	Initial Cal Check	09/08/14	11:08
1409037-SCV1	Secondary Cal Check	09/08/14	11:11
1409037-ICB1	Initial Cal Blank	09/08/14	11:14
409037-CRL1	Instrument RL Check	09/08/14	11:17
409037-IFA1	Interference Check A	09/08/14	11:20
409037-IFB1	Interference Check B	09/08/14	11:24
409031-BLK1	Blank	09/08/14	11:28
409031-BS1	Blank Spike	09/08/14	11:31
C140708-01	14BH-DT-PILOT-BCR1-07081	09/08/14	11:34
1409031-DUP1	Duplicate	09/08/14	11:39
1409037-SRD1	Serial Dilution	09/08/14	11:43
1409031-MS1	Matrix Spike	09/08/14	11:46
C140708-05	14BH-DT-PILOT-BCR2-07081	09/08/14	11:50
409031-MS2	Matrix Spike	09/08/14	11:55
C140708-09	14BH-DT-PILOT-BCR3-07081	09/08/14	11:59
1409037-CCV1	Calibration Check	09/08/14	12:06
409037-CCB1	Calibration Blank	09/08/14	12:09
C140708-17	14BH-DT-PILOT-CHIT-070814	09/08/14	12:17
C140708-21	14BH-DT-PILOT-INFL-070814	09/08/14	12:21
C140708-25	14BH-DT-PILOT-INFLD-0708	09/08/14	12:24
C140708-33	14BH-DT-PILOT-POSTE-0708	09/08/14	12:31
C140708-37	14BH-DT-PILOT-POSTI-07081	09/08/14	12:35
C140708-45	14BH-TI-BENCH-TN-CHIT-07	09/08/14	12:43
409037-CCV2	Calibration Check	09/08/14	12:51
409037-CCB2	Calibration Blank	09/08/14	12:54
C140708-48	14BH-TI-BENCH-TN-LSTN-0	09/08/14	12:57
C140708-51	14BH-TI-BENCH-TN-NAOH-(09/08/14	13:01
C140708-54	14BH-TI-BENCH-TN-RAW-07	09/08/14	13:05
C140708-57	14BH-TI-BENCH-TN-RAWD-	09/08/14	13:08
C140708-13	14BH-DT-PILOT-BCR4-07081	09/08/14	13:16
C140708-29	14BH-DT-PILOT-NOAH-0708	09/08/14	13:19
C140708-41	14BH-DT-PILOT-SAPS-07081	09/08/14	13:22
1409037-CCV3	Calibration Check	09/08/14	13:25
1409037-CCB3	Calibration Blank	09/08/14	13:28

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Dissolved Sequence ID#:** 1409039

nstrument ID #: ICPM	S-PE DRC-II Water	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1409039-ICV1	Initial Cal Check	09/09/14	08:55
1409039-SCV1	Secondary Cal Check	09/09/14	08:59
1409039-ICB1	Initial Cal Blank	09/09/14	09:02
1409039-CRL1	Instrument RL Check	09/09/14	09:05
1409039-IFA1	Interference Check A	09/09/14	09:09
1409039-IFB1	Interference Check B	09/09/14	09:12
1409032-BLK1	Blank	09/09/14	09:15
1409032-BS1	Blank Spike	09/09/14	09:18
C140708-01	14BH-DT-PILOT-BCR1-07081	09/09/14	09:21
1409032-DUP1	Duplicate	09/09/14	09:24
1409039-SRD1	Serial Dilution	09/09/14	09:27
1409032-MS1	Matrix Spike	09/09/14	09:30
C140708-05	14BH-DT-PILOT-BCR2-07081	09/09/14	09:33
1409032-MS2	Matrix Spike	09/09/14	09:36
C140708-09	14BH-DT-PILOT-BCR3-07081	09/09/14	09:39
1409039-CCV1	Calibration Check	09/09/14	09:46
1409039-CCB1	Calibration Blank	09/09/14	09:49
C140708-13	14BH-DT-PILOT-BCR4-07081	09/09/14	09:52
C140708-17	14BH-DT-PILOT-CHIT-070814	09/09/14	09:55
C140708-21	14BH-DT-PILOT-INFL-070814	09/09/14	09:58
C140708-25	14BH-DT-PILOT-INFLD-0708	09/09/14	10:01
C140708-29	14BH-DT-PILOT-NOAH-0708	09/09/14	10:04
C140708-33	14BH-DT-PILOT-POSTE-0708	09/09/14	10:07
C140708-37	14BH-DT-PILOT-POSTI-07081	09/09/14	10:10
C140708-41	14BH-DT-PILOT-SAPS-07081	09/09/14	10:14
C140708-45	14BH-TI-BENCH-TN-CHIT-07	09/09/14	10:17
1409039-CCV2	Calibration Check	09/09/14	10:42
1409039-CCB2	Calibration Blank	09/09/14	10:45
C140708-48	14BH-TI-BENCH-TN-LSTN-0	09/09/14	10:49
C140708-51	14BH-TI-BENCH-TN-NAOH-(09/09/14	10:52
C140708-54	14BH-TI-BENCH-TN-RAW-07	09/09/14	10:55
C140708-57	14BH-TI-BENCH-TN-RAWD-	09/09/14	10:58
1409039-CCV3	Calibration Check	09/09/14	11:15
1409039-CCB3	Calibration Blank	09/09/14	11:18

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Total Recoverable Sequence ID#:** 1409050

nstrument ID #: ICPO	E - PE Optima Water		LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1409050-ICV1	Initial Cal Check	09/11/14	10:04
1409050-SCV1	Secondary Cal Check	09/11/14	10:07
1409050-ICB1	Initial Cal Blank	09/11/14	10:10
1409050-CRL1	Instrument RL Check	09/11/14	10:13
1409050-IFA1	Interference Check A	09/11/14	10:16
1409050-IFB1	Interference Check B	09/11/14	10:20
1409005-BLK1	Blank	09/11/14	10:24
1409005-SRM1	Reference	09/11/14	10:27
C140708-02	14BH-DT-PILOT-BCR1-07081	09/11/14	10:30
1409005-DUP1	Duplicate	09/11/14	10:33
1409050-SRD1	Serial Dilution	09/11/14	10:36
C140708-06	14BH-DT-PILOT-BCR2-07081	09/11/14	10:40
1409005-MS1	Matrix Spike	09/11/14	10:44
C140708-10	14BH-DT-PILOT-BCR3-07081	09/11/14	10:48
1409005-MS3	Matrix Spike	09/11/14	10:52
1409050-CCV1	Calibration Check	09/11/14	10:59
1409050-CCB1	Calibration Blank	09/11/14	11:02
C140708-14	14BH-DT-PILOT-BCR4-07081	09/11/14	11:05
C140708-18	14BH-DT-PILOT-CHIT-070814	09/11/14	11:09
C140708-22	14BH-DT-PILOT-INFL-070814	09/11/14	11:12
C140708-26	14BH-DT-PILOT-INFLD-0708	09/11/14	11:16
C140708-30	14BH-DT-PILOT-NOAH-0708	09/11/14	11:19
C140708-34	14BH-DT-PILOT-POSTE-0708	09/11/14	11:22
C140708-38	14BH-DT-PILOT-POSTI-07081	09/11/14	11:26
C140708-42	14BH-DT-PILOT-SAPS-07081	09/11/14	11:30
C140708-46	14BH-TI-BENCH-TN-CHIT-07	09/11/14	11:33
1409050-CCV2	Calibration Check	09/11/14	11:40
1409050-CCB2	Calibration Blank	09/11/14	11:43
C140708-49	14BH-TI-BENCH-TN-LSTN-0	09/11/14	11:46
C140708-52	14BH-TI-BENCH-TN-NAOH-(09/11/14	11:50
C140708-55	14BH-TI-BENCH-TN-RAW-07	09/11/14	11:54
C140708-58	14BH-TI-BENCH-TN-RAWD-	09/11/14	11:58
1409050-CCV3	Calibration Check	09/11/14	12:05
1409050-CCB3	Calibration Blank	09/11/14	12:08

TDF #: A-046

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Total Recoverable Sequence ID#:** 1409053

nstrument ID #: ICPM	S-PE DRC-II Wate	r	LSR #: A-046
Analysis ID	Sample Name	Analysis Date	Analysis Time
1409053-ICV1	Initial Cal Check	09/11/14	12:39
1409053-SCV1	Secondary Cal Check	09/11/14	12:42
1409053-ICB1	Initial Cal Blank	09/11/14	12:46
1409053-CRL1	Instrument RL Check	09/11/14	12:49
1409053-IFA1	Interference Check A	09/11/14	12:52
1409053-IFB1	Interference Check B	09/11/14	12:56
1409005-BLK2	Blank	09/11/14	12:59
C140708-02	14BH-DT-PILOT-BCR1-07081	09/11/14	13:02
1409005-DUP2	Duplicate	09/11/14	13:05
1409053-SRD1	Serial Dilution	09/11/14	13:08
C140708-06	14BH-DT-PILOT-BCR2-07081	09/11/14	13:11
1409005-SRM2	Reference	09/11/14	13:14
1409005-MS2	Matrix Spike	09/11/14	13:17
C140708-10	14BH-DT-PILOT-BCR3-07081	09/11/14	13:20
1409005-MS4	Matrix Spike	09/11/14	13:23
1409053-CCV1	Calibration Check	09/11/14	13:29
1409053-CCB1	Calibration Blank	09/11/14	13:33
C140708-14	14BH-DT-PILOT-BCR4-07081	09/11/14	13:36
C140708-18	14BH-DT-PILOT-CHIT-070814	09/11/14	13:39
C140708-22	14BH-DT-PILOT-INFL-070814	09/11/14	13:47
C140708-30	14BH-DT-PILOT-NOAH-0708	09/11/14	13:53
C140708-34	14BH-DT-PILOT-POSTE-0708	09/11/14	13:56
C140708-42	14BH-DT-PILOT-SAPS-07081	09/11/14	14:02
C140708-46	14BH-TI-BENCH-TN-CHIT-07	09/11/14	14:05
1409053-CCV2	Calibration Check	09/11/14	14:27
1409053-CCB2	Calibration Blank	09/11/14	14:30
C140708-49	14BH-TI-BENCH-TN-LSTN-0	09/11/14	14:34
C140708-52	14BH-TI-BENCH-TN-NAOH-	09/11/14	14:37
C140708-55	14BH-TI-BENCH-TN-RAW-07	09/11/14	14:40
C140708-58	14BH-TI-BENCH-TN-RAWD-	09/11/14	14:43
C140708-26	14BH-DT-PILOT-INFLD-0708	09/11/14	14:49
C140708-38	14BH-DT-PILOT-POSTI-07081	09/11/14	14:52
1409053-CCV3	Calibration Check	09/11/14	15:18
1409053-CCB3	Calibration Blank	09/11/14	15:22

Chain o	f Custody Record		Barker-l	Hughesvill	e Mini	ng Distri	ct S	up	erfı	und Site	Page:	1 of 1		
From:	CDM Smith				CDM	Smith				Se	end To:	EPA Region 8 La	ooratory	
	555 17th Street, Suite 110	0	_	50 West	14th 9	Street, Su	ite	20	0			Attn: ESAT R8/Sc		
	Denver, CO 80202		_	Helen	a, Mo	ntana 59	960	1				16194 W 45th D	r.	
			_									Golden, CO 8040)3	
													ia: Hand De	livery
												V	ia. Haria De	ilivery
		T			· · · · · · · · · · · · · · · · · · ·							Ship Dat	te: 7/10/20	14
Sample Placed in Cooler/Bag	Sample ID		Sample Time	Sample Type (S=soil) (W=water)	Bother Bother	Turn Around Time	Total Metals	Dissolved Metals	Alkalinity, Sulfate		Comme		Sample Disposition	Sample Received by Lab
····	14BH-TI-BENCH-TN-RAW-070814	7/8/2014	1630	W	19	1	Х	X	X	Triplicate sampl	e for MS/N	1SD		
	14BH-TI-BENCH-TN-RAWD-070814	7/8/2014	1650	W	3	Standard	X	X	X					
	14BH-TI-BENCH-TN-NAOH-070814 14BH-TI-BENCH-TN-CHIT-070814	7/8/2014 7/8/2014	1730 1855 i	15 W	3	(21 days)	X	X	X					
	14BH-TI-BENCH-TN-LSTN-070814	7/8/2014	IN 1915		3	1	X	X	X					
	14BH-11-BENCH-114-E3114-070814	7/8/2014	1340 10	33 W	+-2-		^	<u> </u>	\vdash					
			 		 				\vdash					
			1		 				Н		***************************************			
			1		<u> </u>				\Box					
			†											
									П		NAMES OF TAXABLE PARTY.	1.5		
									П					
	**(
			<u> </u>											
COSC Militaria chiana con conservata con con con con con con con con con con	of Samples: 5													
emarks:	Send reports to Nick Anton (anton	nr@cdmsmitl	h.com 720 26	64-1147) and	Michael	Fischer (fisc	herr	nj@	cdm	nsmith.com 303	-383-232	8).		
	Dissolved metals and anions were	field filtered ((0.45 micron))										
elinguish	ed by (Signature and Company)			Date/Time	Receive	ed by (Signa	ture	and	Cor	mpany) Dat	e/Time	Sample Conditio	n Upon Receipt	* Artist profession
Michael		Smith	7/10/		5			and the same of th	ndelikarini (naorii Ni	7-10-1	3 150	8		
					Americani									

CHAIN OF CUSTODY RECORD

CDM Smith			Danny	T Pilot Test	The state of the s							An	alysis							
NOTES: Limited sample volumes due to t Contact: Angela Franden, CDM Smith (40						200.7 or 200.8	AL), 200.7 or 200.8	lfate, chloride,	onia											Other Instructions and Notes
SAMPLE NUMBER	DATE	TIME	MATRIX	Preservative	Type & No. of Containers	Total Metals (TAL), 2	Dissolved Metals (TAL),	Alkalinity, Anions (sulfate, fluoride)	Nitrate+Nitrite, Ammonia											
● 14BH-DT-PILOT-INFL-070814	7/8/14	8:45	aqueous		3, 125 mL poly	Х														
14BH-DT-PILOT-INFLD-070814	7/8/14	9:05	aqueous		3, 125 mL poly	Х	Х	Х												
14BH-DT-PILOT-SAPS-070814	7/8/14	9:15	aqueous		3, 125 mL poly	х	Х	Х												-
● 14BH-DT-PILOT-CHIT-070814	7/8/14	9:25	aqueous		3, 125 mL poly	х	Х	Х												
● 14BH-DT-PILOT-NAOH-070814	7/8/14	9:40	aqueous	HNO3	3, 125 mL poly	Х	Х	Х												
14BH-DT-PILOT-BCR1-070814	7/8/14	9:55	aqueous	(metals), H2SO4	4, 125 mL poly	Х	Х	Х	Х											
14BH-DT-PILOT-BCR2-070814	7/8/14	10:10	aqueous	(nutrients), cool	4, 125 mL poly	Х	Х	Х	Х											
14BH-DT-PILOT-BCR3-070814	7/8/14	10:30	aqueous		4, 125 mL poly	х	Х	Х	Х											TAL metals = Al, As, Ba, Be, Cd, Ca,
14BH-DT-PILOT-BCR4-070814	7/8/14	10:50	aqueous		4, 125 mL poly	Х	Х	Х	Х											Cr, Co, Cu, Fe, Pb, Mg, Mn, Ni, K, Ag,
14BH-DT-PILOT-POSTI-070814	7/8/14	11:05	aqueous		4, 125 mL poly	Х	Х	Х	Х											Na, Tl, Zn.
14BH-DT-PILOT-POSTE-070814	7/8/14	11:25	aqueous		4, 125 mL poly	Х	х	х	х											
							_							-					-	
Relinguished by: (Signature)	Date/Time		Received fo	Laboratory by:	(Signature)		L		J											
Sourestelland	04/09/14	1615	Hr	_ //	t															
Received by: (Signature)	Date/Time		Airbill No.(s	, ,				Carr	ier Na	me: F	edEx		Lai	b: US	EPA Lat	Region	18			
	7/10/094	012:30																		

C140708

Date Issued: 5/29/2014

Site ID: 085N

TDF ID: A-046

ESAT Technical Direction Form

Contract No. EPW13028 EPA Region 8

Date

TDF ID:	A-046		Date Up	odated:			Closed By:
	The Contractor Superfund site during the 202 associated with	e as indicated in 14 field season s	several water sa the Analytical starting in mid-J reraging approx	Information S June though ea	ection. The	samples will be 2014. There v	y at the Barker-Hughesville e sent to the ESAT R8 Lab will be 9 sampling events nples will be collected by Nick
							trations and should be ported from the 200.7 analyses.
	CDM Sn 50 West Helena, I 406-441-	return the cool- nith/Lauren He 14th Street, Suit MT 59601 1435 1323-6393-5	lland	ving address:			
	TO02/Subtas	k 02b: Inorgar	ic Chemistry				
	Site RPM: R	oger Hoogerhei	de				
MATRIX		n: Vegetation [Biota				
	o arr	OC ☑ Alk ☑ nonia and repor					
	lved 🛮 Total	Recoverable □ □ As □ Ba			1 🗆 Co 🗆	Cr □ Cu 図	Fe □ K □ Mg
200.8:	l Ag □ Al	□ Na □ Ni ☑ As □ Ba □ Tl □ U	□ Be ☑ Cd	□Со□С			Zn □ SiO2 Ni ☑ Pb □ Sb
7470/747	1/747 🗆 H	g				09/08/14	
FIBERS	□ TEM						
Delivera ID	bles	· j	Description			Due Date	Submission Date
_	ovide final deliver er delivery of sa	verable package		or no later than	30 days		
Do	2	Q 5	29/14				

U.S. Environmental Protection Agency Region 8 Technical and Management Services

Laboratory Services Program

Certificate of Analysis

Ref: 8TMS-L

MEMORANDUM

Date: 10/14/14

Subject: Analytical Results--- Barker-Hugh Tiger Mine Treatability SEP 2014 A058 / A-058

From: Don Goodrich; EPA Region 8 Analytical Chemistry WAM

To: Roger Hoogerheide

Superfund

8 MO

Received Sample Set(s), [Work Order : Date Received]:

[C140901 : 08/29/2014]

Attached are the analytical results for the samples received from the Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 sampling event, according to TDF A-058. All analyses were performed within their method specified holding times unless otherwise noted in the following narrative.

These samples were prepared, analyzed, and verified by the Environmental Services Assistance Team Laboratory (ESAT) according to the requirements of the Technical Direction Form (TDF).

Note: The laboratory herewith transmits this deliverable to the program/project partner for determination of "final data usability" which may include data validation and data quality assessment per and in accordance with EPA QA/G-8, *Guidance on Environmental Data Verification and Data Validation*, November 2002, EPA/240/R-02/004. Laboratory data qualifiers are applied based on the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*, October 2004, referred to as "NFGI".

Laboratory policy is to dispose of any remaining sample 60 days after data analysis packages are delivered to EPA. If you would like the laboratory to retain the samples for a period longer than 60 days, please contact Don Goodrich within the 60 day period at (303) 312-6687.

Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 **Project Name:**

TDF#: A-058

Case Narrative

C140901

Quality Assessment: Unless indicated by exception, the QA/QC associated with this sample set

produced data within the TDF-specified criteria.

Holding Times: All samples were analyzed within their method-specified technical holding

time(s).

1. Initial and Continuing calibration blanks (ICBs and CCBs).

Exceptions: None.

2. Preparation (PB) / Method blanks (MB)

Exceptions: None.

3. Interference Checks (ICSA / ICSAB) for ICP-MS and ICP-OE analyses only.

Exceptions: None.

4. Initial and Continuing calibration verification analyses (ICVs, SCVs and CCVs).

Exceptions: In ICP-MS sequence 1410052, lead recovered 1% above acceptable limits in the ending CCV. As a result, bracketed samples were qualified "J" as estimated for lead.

5. Laboratory Control Sample (LCS) or second source analysis or SRM.

Exceptions: In ICP-MS batch 1410017, lead recovered high in the SRM. No qualifiers were assigned since matrix spike recoveries were within acceptable range for lead.

6. Laboratory Fortified blank (LFB) / Blank spike (BS), same source as used for the matrix spikes. PBS performed with analyses/methods requiring preparation or digestion prior to analysis. Exceptions: None.

7. Contract Reporting Detection Limit Standard, labeled as CRA, CRDL or CRL.

Exceptions: None.

- 8. Laboratory Duplicate (DUP). "Source" identifies field sample duplicated in the laboratory. If either the "source" or the duplicate result is <5X the reporting limit, the %D limit of 20% does not apply. Exceptions: None.
- 9. Laboratory Matrix Spike (MS) and spike duplicate (MSD). "Source" defines original field sample fortified prior to analysis. Percent recovery (%R) limits do not apply when sample concentration(s) exceed the corresponding analyte spike level by a factor of 4 or greater. Exceptions: None.
- 10. Serial Dilution sample analysis (SRD). "Source" is parent field sample diluted 1:5 in the laboratory. Performed for ICP-OE and ICP-MS metals analyses. Percent difference (%D) limits do not apply when analyte concentration(s) are below 50x the source sample's MDL (or 10x it's PQL). Exceptions: In ICP-MS sequence 1410046, cadmium was detected just above the PQL in the ICSA. As a result, the reporting limit for cadmium was raised from 0.20 ug/L. to 0.30 ug/L. No qualifiers were assigned.
- 11. Internal standards, criteria specified for ICP-MS analyses only, monitored at the instrument. Exceptions: None.
- 12. Any calibration using more than two-points produced a correlation coefficient equal to or greater than 0.995.

Exceptions: None.

Certificate of Analysis

Project Name: Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058

TDF #: A-058

Acronyms and Definitions:

ESAT Environmental Services Assistance Team

J Data Estimated qualifier (also applied to all data less than PQL, greater than or equal to MDL)

MDL Method Detection Limit

PQL Practical Quantitation Limit, also known as reporting limit.

RPD Relative Percent Difference (difference divided by the mean)

%D Percent difference, serial dilution criteria unit, difference divided by the original result.

%R Percent recovery, analyzed (less sample contribution) divided by true value

< Analyte NOT DETECTED at or above the Method Detection Limit (MDL)

mg/L Parts per million (millligrams per liter). Solids equivalent = mg/Kg.

ug/L Parts per billion (micrograms per liter). Solids equivalent = ug/Kg.

NR No Recovery (matrix spike) - Often seen for calcium/magnesium when their concentration exceeds the spike level by > 4x.

NFGI USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

RE Sample Re-analysis. Usually seen on raw data and sequences for required sample dilutions due to over-range analytes.

U Analyte not detected at or above MDL qualifier

D Diluted value qualifier.

Method(s) Summary:

As defined in the Technical Direction Form (TDF), some or all of the methods listed below were used for the determination of the reported target analytes.

From EPA's Methods for the Determination of Metals in Environmental Samples, Supplement I, May 1994, dissolved, total, and/or total recoverable metals were determined by:

- Method 200.7 / 6010B using a PE Optima ICP -OE (ICP).
- Method 200.8 / 6020 using a Perkin -Elmer Elan 6000 ICP-MS.
- Method 200.2 for total recoverable metals (only) dige stion.
- Method 245.1 using a Perkin -Elmer FIMS CVAA (aqueous mercury only).

From Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, Method 2340B was used for the calculated hardness determination. Hardness is reported as mg (milligram) equivalent CaCO₃ per liter (L) determined as follows:

 $Calculated\ hardness = 2.497\ * (Calcium,\ mg/L) + 4.118\ * (Magnesium,\ mg/L).$

From EPA's Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW -846,

- Method 3015A was used for microwave assisted total metals digestion.
- Method 7473 was used for mercury in solids.

From EPA's $Determination\ of\ Inorganic\ Anions\ by\ Ion\ Chromatography$, Revision 2.1, 1993, Method 300.0 was used to determine the anions.

From EPA's Methods for Chemical Analysis of Water and Wastes, March 1983:

- Method 310.1 was followed for the alkalinity determination.
- Method 160.1 was followed for gravimetric total dissolved solids (TDS) determination.
- Method 160.2 was used for gravimetric total suspended sol ids (TSS) determination.
- Method 415.3 was used for total organic carbon (TOC) determination using either an Apollo 9000 or Phoenix 8000 Non-Dispersive IR (NDIR) system. Also known as dissolved organic carbon (DOC) when performed on the dissolved sample fraction.

The quality control procedures listed in the TDF request were utilized by ESAT to verify accuracy of the results and to evaluate any matrix interferences.

Project Name: Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058

Certificate of Analysis

TDF #: A-058

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR10-0826 EPA Tag No.: No Tag Prefix-C Date / Time Sampled:
Matrix: Ground Water

08/26/14 11:30

Workorder: C140901

Lab Number:

C140901-03

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
200.7	Aluminum	14900		ug/L	200	10	10/08/2014	SV	1410031
200.7	Iron	303000		ug/L	1000	10	10/08/2014	SV	1410031
200.7	Manganese	41100		ug/L	20.0	10	10/08/2014	SV	1410031
200.7	Zinc	10700		ug/L	100	10	10/08/2014	SV	1410031
200.8	Arsenic	38.4	J	ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Cadmium	44.3		ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Copper	314		ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Lead	255		ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Nickel	108		ug/L	25.0	50	10/08/2014	SV	1410036
2340B	Hardness	651		mg/L	15	10	10/08/2014	SV	1410031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR11-0826 **Date / Time Sampled:** 08/26/14 11:45 **Workorder:** C140901

EPA Tag No.: No Tag Prefix-C

Matrix: Ground Water

Lab Number: C140901-06 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 500	U	ug/L	200	10	10/08/2014	SV	1410031
200.7	Iron	< 2500	U	ug/L	1000	10	10/08/2014	SV	1410031
200.7	Manganese	16100		ug/L	20.0	10	10/08/2014	SV	1410031
200.7	Zinc	371		ug/L	100	10	10/08/2014	SV	1410031
200.8	Arsenic	40.0		ug/L	5.00	10	10/08/2014	SV	1410036
200.8	Cadmium	< 3.00	U	ug/L	1.00	10	10/08/2014	SV	1410036
200.8	Copper	7.37	J	ug/L	5.00	10	10/08/2014	SV	1410036
200.8	Lead	2.18		ug/L	1.00	10	10/08/2014	SV	1410036
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/08/2014	SV	1410036
2340B	Hardness	1140		mg/L	15	10	10/08/2014	SV	1410031

Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 **Project Name:**

Certificate of Analysis

TDF #: A-058

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-TI-BENCH-BCR12-0826 **Station ID:** EPA Tag No.: No Tag Prefix-C

Date / Time Sampled: Matrix: Ground Water 08/26/14 12:00

08/26/14 12:15

Workorder: Lab Number:

C140901

C140901-09

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	219	J	ug/L	200	10	10/08/2014	SV	1410031
200.7	Iron	1050	J	ug/L	1000	10	10/08/2014	SV	1410031
200.7	Manganese	13000		ug/L	20.0	10	10/08/2014	SV	1410031
200.7	Zinc	167	J	ug/L	100	10	10/08/2014	SV	1410031
200.8	Arsenic	59.9		ug/L	5.00	10	10/08/2014	SV	1410036
200.8	Cadmium	< 3.00	U	ug/L	1.00	10	10/08/2014	SV	1410036
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/08/2014	SV	1410036
200.8	Lead	3.35		ug/L	1.00	10	10/08/2014	SV	1410036
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/08/2014	SV	1410036
2340B	Hardness	1420		mg/L	15	10	10/08/2014	SV	1410031

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-TI-BENCH-BCR13-0826 **Station ID:**

No Tag Prefix-C EPA Tag No.:

Date / Time Sampled:

Matrix: Ground Water

Workorder: Lab Number:

C140901

C140901-12

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	299	J	ug/L	200	10	10/08/2014	SV	1410031
200.7	Iron	< 2500	U	ug/L	1000	10	10/08/2014	SV	1410031
200.7	Manganese	12800		ug/L	20.0	10	10/08/2014	SV	1410031
200.7	Zinc	< 200	U	ug/L	100	10	10/08/2014	SV	1410031
200.8	Arsenic	104		ug/L	5.00	10	10/08/2014	SV	1410036
200.8	Cadmium	< 3.00	U	ug/L	1.00	10	10/08/2014	SV	1410036
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/08/2014	SV	1410036
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/08/2014	SV	1410036
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/08/2014	SV	1410036
2340B	Hardness	2070		mg/L	15	10	10/08/2014	SV	1410031

Project Name: Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058

A-058

Certificate of Analysis

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR14-0826 **Date / Time Sampled:** 08/26/14 12:30 Workorder: C140901

EPA Tag No.: No Tag Prefix-C

TDF #:

Matrix: Ground Water Lab Number: C140901-15

Dilution MDL Method Parameter Analyzed By Batch Results **Qualifier** Units Factor 200.7 Aluminum 10 10/08/2014 SV1410031 < 500 U ug/L 200 200.7 Iron 10 10/08/2014 SV 1410031 < 2500 U ug/L 1000 20.0 200.7 ug/L 10 10/08/2014 1410031 Manganese 3480 SV 200.7 Zinc 10 10/08/2014 SV1410031 < 200 U ug/L 100 200.8 Arsenic 20.9 ug/L 5.00 10 10/08/2014 SV1410036 200.8 Cadmium 10 10/08/2014 SV1410036 < 3.00 U ug/L 1.00 5.00 200.8 Copper 8.37 J 10 10/08/2014 SV1410036 ug/L 200.8 Lead 10 10/08/2014 SV 1410036 U 1.00 < 2.00 ug/L 200.8 Nickel 10 10/08/2014 SV1410036 < 10.0 U ug/L 5.00 2340B Hardness 543 mg/L 15 10 10/08/2014 SV1410031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR15-0826

Date / Time Sampled:

08/26/14 12:45 Workorder:

C140901

EPA Tag No.:

No Tag Prefix-C

Matrix: Ground Water Lab Number:

C140901-18 A

Method	Parameter				MDL	Dilution	Analyzed	Ву	Batch
		Results	Qualifier	Units		Factor			
200.7	Aluminum	< 500	U	ug/L	200	10	10/08/2014	SV	1410031
200.7	Iron	< 2500	U	ug/L	1000	10	10/08/2014	SV	1410031
200.7	Manganese	12100		ug/L	20.0	10	10/08/2014	SV	1410031
200.7	Zinc	< 200	U	ug/L	100	10	10/08/2014	SV	1410031
200.8	Arsenic	20.9		ug/L	5.00	10	10/08/2014	SV	1410036
200.8	Cadmium	< 3.00	U	ug/L	1.00	10	10/08/2014	SV	1410036
200.8	Copper	6.45	J	ug/L	5.00	10	10/08/2014	SV	1410036
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/08/2014	SV	1410036
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/08/2014	SV	1410036
2340B	Hardness	1170		mg/L	15	10	10/08/2014	SV	1410031

Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 **Project Name:**

A-058

Certificate of Analysis

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR16-0826 EPA Tag No.: No Tag Prefix-C

TDF #:

Date / Time Sampled: 08/26/14 13:00 Matrix: Ground Water

Workorder:

Lab Number:

C140901

C140901-21

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	5340		ug/L	200	10	10/08/2014	SV	1410031
200.7	Iron	268000		ug/L	1000	10	10/08/2014	SV	1410031
200.7	Manganese	42900		ug/L	20.0	10	10/08/2014	SV	1410031
200.7	Zinc	9500		ug/L	100	10	10/08/2014	SV	1410031
200.8	Arsenic	< 100	U	ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Cadmium	8.17	J	ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Copper	71.0		ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Lead	185		ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Nickel	53.8		ug/L	25.0	50	10/08/2014	SV	1410036
2340B	Hardness	4850		mg/L	15	10	10/08/2014	SV	1410031

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-TI-BENCH-BCR17-0826 **Station ID:**

No Tag Prefix-C EPA Tag No.:

Date / Time Sampled:

Matrix: Ground Water

08/26/14 13:15

Workorder:

C140901

Lab Number:

C140901-24

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	14100		ug/L	200	10	10/08/2014	SV	1410031
200.7	Iron	326000		ug/L	1000	10	10/08/2014	SV	1410031
200.7	Manganese	43800		ug/L	20.0	10	10/08/2014	SV	1410031
200.7	Zinc	11100		ug/L	100	10	10/08/2014	SV	1410031
200.8	Arsenic	126		ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Cadmium	83.8		ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Copper	55.7		ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Lead	116		ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Nickel	110		ug/L	25.0	50	10/08/2014	SV	1410036
2340B	Hardness	3480		mg/L	15	10	10/08/2014	SV	1410031

Certificate of Analysis

TDF #: A-058

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR18-0826 **EPA Tag No.:** No Tag Prefix-C

Date / Time Sampled: Matrix: Ground Water 08/26/14 09:15

Workorder: C140901

Lab Number:

C140901-27

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 500	U	ug/L	200	10	10/08/2014	SV	1410031
200.7	Iron	155000		ug/L	1000	10	10/08/2014	SV	1410031
200.7	Manganese	30400		ug/L	20.0	10	10/08/2014	SV	1410031
200.7	Zinc	< 200	U	ug/L	100	10	10/08/2014	SV	1410031
200.8	Arsenic	< 100	U	ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Cadmium	< 15.0	U	ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Copper	< 50.0	U	ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Lead	< 10.0	U	ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Nickel	< 50.0	U	ug/L	25.0	50	10/08/2014	SV	1410036
2340B	Hardness	875		mg/L	15	10	10/08/2014	SV	1410031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR2-0826 EPA Tag No.:

No Tag Prefix-C

Date / Time Sampled: Matrix: Ground Water

08/26/14 09:30

Workorder:

C140901

Lab Number: C140901-30

A

MDL Dilution Method Analyzed By Batch **Parameter** Results Qualifier Units Factor 10/08/2014 1410031 200.7 Aluminum 10 SV< 500 U ug/L 200 200.7 3870 1000 10 10/08/2014 SV1410031 Iron ug/L 200.7 20.0 10/08/2014 1410031 Manganese 23000 ug/L 10 SV200.7 Zinc 5980 ug/L 100 10 10/08/2014 SV 1410031 SV 200.8 10/08/2014 Arsenic 50 1410036 < 100 U ug/L 25.0 200.8 5.00 Cadmium 21.8 ug/L 50 10/08/2014 SV1410036 200.8 J 25.0 50 10/08/2014 SV 1410036 Copper 26.6 ug/L 200.8 Lead 50 10/08/2014 SV1410036 U 5.00 < 10.0 ug/L 200.8 Nickel 50 10/08/2014 SV1410036 < 50.0 U ug/L 25.0 15 10 2340B Hardness 335 mg/L 10/08/2014 SV 1410031

Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 **Project Name:**

Certificate of Analysis

Metals (Dissolved) by EPA 200/7000 Series Methods

A-058

TDF #:

14BH-TI-BENCH-BCR3-0826 **Station ID: Date / Time Sampled:** 08/26/14 09:45 Workorder:

C140901 EPA Tag No.: No Tag Prefix-C Matrix: Ground Water Lab Number: C140901-33

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 500	U	ug/L	200	10	10/08/2014	SV	1410031
200.7	Iron	2550		ug/L	1000	10	10/08/2014	SV	1410031
200.7	Manganese	22700		ug/L	20.0	10	10/08/2014	SV	1410031
200.7	Zinc	6810		ug/L	100	10	10/08/2014	SV	1410031
200.8	Arsenic	< 100	U	ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Cadmium	25.4		ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Copper	70.5		ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Lead	< 10.0	U	ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Nickel	< 50.0	U	ug/L	25.0	50	10/08/2014	SV	1410036
2340B	Hardness	343		mg/L	15	10	10/08/2014	SV	1410031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR4-0826 **Date / Time Sampled:** 08/26/14 10:00 Workorder: C140901 EPA Tag No.: No Tag Prefix-C Matrix: Ground Water Lab Number: C140901-36

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	306	J	ug/L	200	10	10/08/2014	SV	1410031
200.7	Iron	< 2500	U	ug/L	1000	10	10/08/2014	SV	1410031
200.7	Manganese	20000		ug/L	20.0	10	10/08/2014	SV	1410031
200.7	Zinc	7420		ug/L	100	10	10/08/2014	SV	1410031
200.8	Arsenic	< 100	U	ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Cadmium	26.4		ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Copper	174		ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Lead	< 10.0	U	ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Nickel	< 50.0	U	ug/L	25.0	50	10/08/2014	SV	1410036
2340B	Hardness	319		mg/L	15	10	10/08/2014	SV	1410031

TDF #: A-058

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR5-0826 **EPA Tag No.:** No Tag Prefix-C

Date / Time Sampled: Matrix: Ground Water Workorder: Lab Number:

C140901

Certificate of Analysis

C140901-39

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	450	J	ug/L	200	10	10/08/2014	SV	1410031
200.7	Iron	18600		ug/L	1000	10	10/08/2014	SV	1410031
200.7	Manganese	30600		ug/L	20.0	10	10/08/2014	SV	1410031
200.7	Zinc	< 200	U	ug/L	100	10	10/08/2014	SV	1410031
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	10/08/2014	SV	1410036
200.8	Cadmium	< 3.00	U	ug/L	1.00	10	10/08/2014	SV	1410036
200.8	Copper	< 10.0	U	ug/L	5.00	10	10/08/2014	SV	1410036
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/08/2014	SV	1410036
200.8	Nickel	< 10.0	U	ug/L	5.00	10	10/08/2014	SV	1410036
2340B	Hardness	317		mg/L	15	10	10/08/2014	SV	1410031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR6-0826

No Tag Prefix-C

EPA Tag No.:

Date / Time Sampled: Matrix: Ground Water 08/26/14 10:30

08/26/14 10:15

Workorder:

C140901 Lab Number:

C140901-42

Α

MDL Dilution Method **Parameter** Analyzed By Batch Qualifier Units Results **Factor** 1410031 200.7 Aluminum 10 10/08/2014 SV< 500 U ug/L 200 1000 200.7 Iron 52900 ug/L 10 10/08/2014 SV1410031 20.0 200.7 Manganese 30000 ug/L 10 10/08/2014 SV1410031 200.7 Zinc 239 ug/L 100 10 10/08/2014 SV1410031 200.8 1410036 Arsenic 50 10/08/2014 SV < 100 U 25.0 ug/L 200.8 Cadmium 50 10/08/2014 SV1410036 5.00 < 15.0 U ug/L 200.8 Copper 50 10/08/2014 SV1410036 25.0 < 50.0 U ug/L 200.8 10/08/2014 1410036 Lead 50 SV < 10.0 U ug/L 5.00 Nickel 200.8 50 10/08/2014 SV1410036 < 50.0 U ug/L 25.0 2340B Hardness 338 mg/L 15 10 10/08/2014 SV1410031

TDF #: A-058

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR7-0826 Date / Time Sampled: 08/26/14 10:45 Workorder: C140901

EPA Tag No.: No Tag Prefix-C Matrix: Ground Water Lab Number: C140901-45

Certificate of Analysis

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	240	J	ug/L	200	10	10/08/2014	SV	1410031
200.7	Iron	1930	J	ug/L	1000	10	10/08/2014	SV	1410031
200.7	Manganese	22800		ug/L	20.0	10	10/08/2014	SV	1410031
200.7	Zinc	7410		ug/L	100	10	10/08/2014	SV	1410031
200.8	Arsenic	< 100	U	ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Cadmium	26.6		ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Copper	112		ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Lead	< 10.0	U	ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Nickel	< 50.0	U	ug/L	25.0	50	10/08/2014	SV	1410036
2340B	Hardness	312		mg/L	15	10	10/08/2014	SV	1410031

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID:14BH-TI-BENCH-BCR8-0826Date / Time Sampled:08/26/14 11:00Workorder:C140901EPA Tag No.:No Tag Prefix-CMatrix:Ground WaterLab Number:C140901-48A

MDL Dilution Method **Parameter** Analyzed By Batch Results Qualifier Units Factor 200.7 Aluminum 5680 ug/L 200 10 10/08/2014 SV 1410031 200.7 Iron 273000 ug/L 1000 10 10/08/2014 SV1410031 20.0 SV 200.7 Manganese 39800 ug/L 10 10/08/2014 1410031 200.7 Zinc 10700 ug/L 100 10 10/08/2014 SV 1410031 200.8 Arsenic 50 10/08/2014 SV1410036 < 100 U ug/L 25.0 200.8 Cadmium 50 10/08/2014 SV1410036 < 15.0 U ug/L 5.00 200.8 Copper 50 10/08/2014 SV1410036 < 50.0 U ug/L 25.0 200.8 Lead 55.7 5.00 50 10/08/2014 SV1410036 ug/L 200.8 Nickel 85.7 ug/L 25.0 50 10/08/2014 SV1410036 10/08/2014 1410031 2340B Hardness 434 mg/L 15 10 SV

A-058

Certificate of Analysis

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR9-0826 EPA Tag No.: No Tag Prefix-C

TDF #:

Date / Time Sampled: Ground Water Matrix:

Workorder:

08/26/14 11:15

C140901

Lab Number: C140901-51

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	11800		ug/L	200	10	10/08/2014	SV	1410031
200.7	Iron	278000		ug/L	1000	10	10/08/2014	SV	1410031
200.7	Manganese	39500		ug/L	20.0	10	10/08/2014	SV	1410031
200.7	Zinc	11500		ug/L	100	10	10/08/2014	SV	1410031
200.8	Arsenic	< 100	U	ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Cadmium	28.3		ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Copper	475		ug/L	25.0	50	10/08/2014	SV	1410036
200.8	Lead	248		ug/L	5.00	50	10/08/2014	SV	1410036
200.8	Nickel	104		ug/L	25.0	50	10/08/2014	SV	1410036
2340B	Hardness	493		mg/L	15	10	10/08/2014	SV	1410031

Metals (Dissolved) by EPA 200/7000 Series Methods

14BH-TI-BENCH-CONTROL-08 **Station ID:**

EPA Tag No.: 26 No Tag Prefix-C

Date / Time Sampled:

08/26/14 09:00 Matrix: Ground Water

Workorder:

C140901 Lab Number:

C140901-54 A

MDL Dilution Method Parameter Analyzed By Batch Qualifier Units Results **Factor** 200.7 Aluminum 29400 ug/L 10/08/2014 SV1410031 200 10 200.7 47600 1000 10 10/08/2014 1410031 Iron ug/L SV 200.7 Manganese 30100 ug/L 20.0 10 10/08/2014 SV1410031 100 10 10/08/2014 1410031 200.7 Zinc 13100 ug/L SV 200.8 Arsenic 50 10/08/2014 SV 1410036 < 100 U ug/L 25.0 200.8 Cadmium 52.9 ug/L 5.00 50 10/08/2014 SV1410036 SV 200.8 25.0 50 10/08/2014 1410036 Copper 1410 ug/L 200.8 Lead 5.00 50 10/08/2014 SV 1410036 167 ug/L 200.8 Nickel ug/L 25.0 50 10/08/2014 1410036 59.3 SV2340B 499 15 10 10/08/2014 SV 1410031 Hardness mg/L

[&]quot;J" Qualifier indicates an estimated value

Certificate of Analysis

TDF #: A-058

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR10-0826 **EPA Tag No.:** No Tag Prefix-B

Date / Time Sampled: Matrix: Ground Water 08/26/14 11:30

Workorder:

C140901

Lab Number: C140901-02

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	16400		ug/L	200	10	10/08/2014	SV	1410017
200.7	Iron	322000		ug/L	1000	10	10/08/2014	SV	1410017
200.7	Manganese	43100		ug/L	20.0	10	10/08/2014	SV	1410017
200.7	Zinc	11400		ug/L	100	10	10/08/2014	SV	1410017
200.8	Arsenic	38.5	J	ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Cadmium	47.1		ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Copper	508		ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Lead	371		ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Nickel	141		ug/L	25.0	50	10/13/2014	SV	1410017

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR11-0826

EPA Tag No.:

No Tag Prefix-B

Date / Time Sampled:

08/26/14 11:45 Matrix: Ground Water

Workorder: Lab Number:

C140901

C140901-05 Α

MDL Dilution Method **Parameter** Analyzed $\mathbf{B}\mathbf{v}$ Batch Results Qualifier Units Factor J 10 1410017 200.7 Aluminum 397 ug/L 200 10/08/2014 SV1000 200.7 Iron 3210 ug/L 10 10/08/2014 SV1410017 Manganese 20.0 1410017 200.7 16800 ug/L 10 10/08/2014 SV 200.7 Zinc 100 10 10/08/2014 SV1410017 1510 ug/L 200.8 5.00 10 10/13/2014 SV1410017 54.0 ug/L Arsenic 200.8 Cadmium 5.95 ug/L 1.00 10 10/13/2014 SV1410017 200.8 5.00 10 10/13/2014 SV1410017 Copper 85.8 ug/L 200.8 SV Lead 27.5 ug/L 1.00 10 10/13/2014 1410017 200.8 Nickel 15.6 ug/L 5.00 10 10/13/2014 SV1410017

TDF #: A-058

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR12-0826

Date / Time Sampled:

08/26/14 12:00

Workorder: C140

C140901

EPA Tag No.:	No Tag Prefix-B		Matrix:	Ground Water		Lab Num	ıber:	C140901-0	8 A	
Method	Parameter	Results	Qualifie	· Units	MDL	Dilution	Analyze	d Bv	Batch	

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	473	J	ug/L	200	10	10/08/2014	SV	1410017
200.7	Iron	4570		ug/L	1000	10	10/08/2014	SV	1410017
200.7	Manganese	13800		ug/L	20.0	10	10/08/2014	SV	1410017
200.7	Zinc	573		ug/L	100	10	10/08/2014	SV	1410017
200.8	Arsenic	76.9		ug/L	5.00	10	10/13/2014	SV	1410017
200.8	Cadmium	3.87		ug/L	1.00	10	10/13/2014	SV	1410017
200.8	Copper	51.0		ug/L	5.00	10	10/13/2014	SV	1410017
200.8	Lead	24.7		ug/L	1.00	10	10/13/2014	SV	1410017
200.8	Nickel	22.1		ug/L	5.00	10	10/13/2014	SV	1410017

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR13-0826 Date / Time Sampled: 08/26/14 12:15 Workorder: C140901

EPA Tag No.: No Tag Prefix-B Matrix: Ground Water Lab Number: C140901-11 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	720		ug/L	200	10	10/08/2014	SV	1410017
200.7	Iron	5230		ug/L	1000	10	10/08/2014	SV	1410017
200.7	Manganese	13600		ug/L	20.0	10	10/08/2014	SV	1410017
200.7	Zinc	809		ug/L	100	10	10/08/2014	SV	1410017
200.8	Arsenic	123		ug/L	5.00	10	10/13/2014	SV	1410017
200.8	Cadmium	7.15		ug/L	1.00	10	10/13/2014	SV	1410017
200.8	Copper	79.5		ug/L	5.00	10	10/13/2014	SV	1410017
200.8	Lead	33.6		ug/L	1.00	10	10/13/2014	SV	1410017
200.8	Nickel	32.6		ug/L	5.00	10	10/13/2014	SV	1410017

TDF #: A-058

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR14-0826 EPA Tag No.: No Tag Prefix-B Date / Time Sampled:
Matrix: Ground Water

08/26/14 12:30 W

Workorder: C140901

Lab Number: C140901-14

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 500	U	ug/L	200	10	10/08/2014	SV	1410017
200.7	Iron	< 2500	U	ug/L	1000	10	10/08/2014	SV	1410017
200.7	Manganese	3820		ug/L	20.0	10	10/08/2014	SV	1410017
200.7	Zinc	< 200	U	ug/L	100	10	10/08/2014	SV	1410017
200.8	Arsenic	21.7		ug/L	5.00	10	10/13/2014	SV	1410017
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	10/13/2014	SV	1410017
200.8	Copper	5.93	J	ug/L	5.00	10	10/13/2014	SV	1410017
200.8	Lead	< 2.00	U	ug/L	1.00	10	10/13/2014	SV	1410017
200.8	Nickel	7.78	J	ug/L	5.00	10	10/13/2014	SV	1410017

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR15-0826

Cadmium

Copper

Lead

Nickel

< 2.00

< 10.0

< 2.00

12.7

EPA Tag No.:

200.8

200.8

200.8

200.8

No Tag Prefix-B

Date / Time Sampled:
Matrix: Ground Water

ne Sampled: 08/26/14 12:45

ug/L

ug/L

ug/L

ug/L

1.00

5.00

1.00

5.00

Workorder: C

10

10

10

10

10/13/2014

10/13/2014

10/13/2014

10/13/2014

SV

SV

SV

SV

1410017

1410017

1410017

1410017

C140901

Lab Number: C140901-17

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 500	U	ug/L	200	10	10/08/2014	SV	1410017
200.7	Iron	< 2500	U	ug/L	1000	10	10/08/2014	SV	1410017
200.7	Manganese	12500		ug/L	20.0	10	10/08/2014	SV	1410017
200.7	Zinc	< 200	U	ug/L	100	10	10/08/2014	SV	1410017
200.8	Arsenic	26.5		ug/L	5.00	10	10/13/2014	SV	1410017

U

U

U

Certificate of Analysis

TDF #: A-058

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR16-0826 EPA Tag No.: No Tag Prefix-B Date / Time Sampled:
Matrix: Ground Water

08/26/14 13:00 **V**

Workorder: C140901

Lab Number:

C140901-20 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	5180		ug/L	200	10	10/08/2014	SV	1410017
200.7	Iron	264000		ug/L	1000	10	10/08/2014	SV	1410017
200.7	Manganese	44000		ug/L	20.0	10	10/08/2014	SV	1410017
200.7	Zinc	9730		ug/L	100	10	10/08/2014	SV	1410017
200.8	Arsenic	30.4	J	ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Cadmium	9.89	J	ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Copper	209		ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Lead	227		ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Nickel	173		ug/L	25.0	50	10/13/2014	SV	1410017

Metals (Total Recov) by EPA 200/7000 Series Methods

 Station ID:
 14BH-TI-BENCH-BCR17-0826
 Date / Time Sampled:
 08/26/14 13:15
 Workorder:
 C140901

EPA Tag No.: No Tag Prefix-B Matrix: Ground Water Lab Number: C140901-23 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	14800		ug/L	200	10	10/08/2014	SV	1410017
200.7	Iron	330000		ug/L	1000	10	10/08/2014	SV	1410017
200.7	Manganese	45000		ug/L	20.0	10	10/08/2014	SV	1410017
200.7	Zinc	11300		ug/L	100	10	10/08/2014	SV	1410017
200.8	Arsenic	162		ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Cadmium	98.1		ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Copper	130		ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Lead	181		ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Nickel	207		ug/L	25.0	50	10/13/2014	SV	1410017

TDF #: A-058

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-TI-BENCH-BCR18-0826 **Station ID: EPA Tag No.:** No Tag Prefix-B

Date / Time Sampled: Matrix: Ground Water 08/26/14 09:15

C140901 Workorder:

Lab Number:

C140901-26

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	238	J	ug/L	200	10	10/08/2014	SV	1410017
200.7	Iron	180000		ug/L	1000	10	10/08/2014	SV	1410017
200.7	Manganese	33800		ug/L	20.0	10	10/08/2014	SV	1410017
200.7	Zinc	504		ug/L	100	10	10/08/2014	SV	1410017
200.8	Arsenic	< 100	U	ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Cadmium	< 10.0	U	ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Copper	< 50.0	U	ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Lead	< 10.0	U	ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Nickel	< 50.0	U	ug/L	25.0	50	10/13/2014	SV	1410017

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR2-0826

EPA Tag No.:

No Tag Prefix-B

Date / Time Sampled: Matrix: Ground Water

08/26/14 09:30

Workorder:

C140901

Lab Number:

C140901-29 Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	226	J	ug/L	200	10	10/08/2014	SV	1410017
200.7	Iron	5360		ug/L	1000	10	10/08/2014	SV	1410017
200.7	Manganese	22800		ug/L	20.0	10	10/08/2014	SV	1410017
200.7	Zinc	6160		ug/L	100	10	10/08/2014	SV	1410017
200.8	Arsenic	< 100	U	ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Cadmium	24.4		ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Copper	45.2	J	ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Lead	7.10	J	ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Nickel	36.3	J	ug/L	25.0	50	10/13/2014	SV	1410017

TDF #: A-058

Metals (Total Recov) by EPA 200/7000 Series Methods

14BH-TI-BENCH-BCR3-0826 **Station ID:** EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Ground Water 08/26/14 09:45

C140901 Workorder:

Lab Number: C140901-32

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	< 500	U	ug/L	200	10	10/08/2014	SV	1410017
200.7	Iron	3620		ug/L	1000	10	10/08/2014	SV	1410017
200.7	Manganese	23100		ug/L	20.0	10	10/08/2014	SV	1410017
200.7	Zinc	7150		ug/L	100	10	10/08/2014	SV	1410017
200.8	Arsenic	< 100	U	ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Cadmium	27.8		ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Copper	102		ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Lead	< 10.0	U	ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Nickel	35.6	J	ug/L	25.0	50	10/13/2014	SV	1410017

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR4-0826

EPA Tag No.: No Tag Prefix-B **Date / Time Sampled:**

Matrix: Ground Water

08/26/14 10:00

Workorder: C140901

Lab Number: C140901-35

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	357	J	ug/L	200	10	10/08/2014	SV	1410017
200.7	Iron	1560	J	ug/L	1000	10	10/08/2014	SV	1410017
200.7	Manganese	19900		ug/L	20.0	10	10/08/2014	SV	1410017
200.7	Zinc	7440		ug/L	100	10	10/08/2014	SV	1410017
200.8	Arsenic	< 100	U	ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Cadmium	28.3		ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Copper	215		ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Lead	8.07	J	ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Nickel	31.1	J	ug/L	25.0	50	10/13/2014	SV	1410017

TDF #: A-058

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR5-0826 EPA Tag No.: No Tag Prefix-B Date / Time Sampled:
Matrix: Ground Water

08/26/14 10:15

Workorder: C140901

Lab Number:

C140901-38

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	443	J	ug/L	200	10	10/08/2014	SV	1410017
200.7	Iron	18200		ug/L	1000	10	10/08/2014	SV	1410017
200.7	Manganese	30400		ug/L	20.0	10	10/08/2014	SV	1410017
200.7	Zinc	< 200	U	ug/L	100	10	10/08/2014	SV	1410017
200.8	Arsenic	< 100	U	ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Cadmium	< 10.0	U	ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Copper	< 50.0	U	ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Lead	< 10.0	J,	ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Nickel	< 50.0	U	ug/L	25.0	50	10/13/2014	SV	1410017

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR6-0826 EPA Tag No.: No Tag Prefix-B Date / Time Sampled:
Matrix: Ground Water

08/26/14 10:30

Workorder: (
Lab Number:

C140901

C140901-41

1 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	620		ug/L	200	10	10/08/2014	SV	1410017
200.7	Iron	51800		ug/L	1000	10	10/08/2014	SV	1410017
200.7	Manganese	29500		ug/L	20.0	10	10/08/2014	SV	1410017
200.7	Zinc	811		ug/L	100	10	10/08/2014	SV	1410017
200.8	Arsenic	< 100	U	ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Cadmium	< 10.0	U	ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Copper	27.7	J	ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Lead	22.7	J	ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Nickel	< 50.0	U	ug/L	25.0	50	10/13/2014	SV	1410017

TDF #: A-058

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR7-0826 EPA Tag No.: No Tag Prefix-B Date / Time Sampled:
Matrix: Ground Water

08/26/14 10:45 **Workorder:**

order: C140901

Lab Number: C140901-44

l A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	395	J	ug/L	200	10	10/08/2014	SV	1410017
200.7	Iron	3800		ug/L	1000	10	10/08/2014	SV	1410017
200.7	Manganese	22800		ug/L	20.0	10	10/08/2014	SV	1410017
200.7	Zinc	7560		ug/L	100	10	10/08/2014	SV	1410017
200.8	Arsenic	< 100	U	ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Cadmium	30.0		ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Copper	180		ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Lead	12.4	J	ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Nickel	39.2	J	ug/L	25.0	50	10/13/2014	SV	1410017

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR8-0826

EPA Tag No.: No Tag Prefix-B

Date / Time Sampled: Matrix: Ground Water

impled: 08/26/14 11:00

Workorder: C1

Lab Number:

C140901

C140901-47 A

Dilution MDL Method **Parameter** Analyzed By Results Qualifier Units Batch Factor 200.7 6930 200 10 10/08/2014 SV1410017 Aluminum ug/L 200.7 Iron 301000 ug/L 1000 10 10/08/2014 SV1410017 200.7 20.0 10 SV 1410017 Manganese 44100 ug/L 10/08/2014 200.7 Zinc 11900 100 10 10/08/2014 SV1410017 ug/L 200.8 J 25.0 50 10/13/2014 SV1410017 Arsenic 29.2 ug/L 200.8 50 1410017 Cadmium 10/13/2014 SV< 10.0 U ug/L 5.00 200.8 Copper 117 ug/L 25.0 50 10/13/2014 SV 1410017 200.8 Lead 105 J ug/L 5.00 50 10/13/2014 SV1410017 200.8 Nickel 119 ug/L 25.0 50 10/13/2014 SV1410017

A-058

Certificate of Analysis

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-BCR9-0826 **Date / Time Sampled:**

Workorder:

C140901

C140901-50

EPA Tag I	No.:
-----------	------

TDF #:

No Tag Prefix-B

Matrix: Ground Water Lab Number:

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	12400		ug/L	200	10	10/08/2014	SV	1410017
200.7	Iron	295000		ug/L	1000	10	10/08/2014	SV	1410017
200.7	Manganese	41500		ug/L	20.0	10	10/08/2014	SV	1410017
200.7	Zinc	12200		ug/L	100	10	10/08/2014	SV	1410017
200.8	Arsenic	33.2	J	ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Cadmium	31.0		ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Copper	157		ug/L	25.0	50	10/13/2014	SV	1410017
200.8	Lead	287	J	ug/L	5.00	50	10/13/2014	SV	1410017
200.8	Nickel	130		ug/L	25.0	50	10/13/2014	SV	1410017

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: 14BH-TI-BENCH-CONTROL-08

EPA Tag No.: 26 No Tag Prefix-B

Date / Time Sampled: Matrix: Ground Water

08/26/14 09:00

08/26/14 11:15

Workorder: Lab Number: C140901

C140901-53 Α

MDL Dilution Method **Parameter** Analyzed $\mathbf{B}\mathbf{v}$ Batch Results Qualifier Units Factor ug/L 1410017 200.7 28100 200 10 10/08/2014 SVAluminum 1000 200.7 Iron 46000 ug/L 10 10/08/2014 SV1410017 Manganese 20.0 1410017 200.7 31100 ug/L 10 10/08/2014 SV 200.7 Zinc 100 10 10/08/2014 13500 ug/L SV1410017 200.8 10/13/2014 1410017 Arsenic 50 SVU < 100 25.0 ug/L 200.8 5.00 1410017 Cadmium 58.7 ug/L 50 10/13/2014 SV200.8 Copper 1760 ug/L 25.0 50 10/13/2014 SV1410017 200.8 J Lead 195 ug/L 5.00 50 10/13/2014 SV 1410017 200.8 25.0 10/13/2014 1410017 Nickel 86.0 ug/L 50 SV

[&]quot;J" Qualifier indicates an estimated value

Certificate of Analysis

TDF #: A-058

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-BCR10-0826 EPA Tag No.: No Tag Prefix-A **Date / Time Sampled:** 08/26/14 11:30 **Matrix:** Ground Water

Workorder: C Lab Number:

C140901

C140901-01

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Sulfate as SO4	972		mg/L	5.0	100	09/04/2014	NP	1409010
EPA 310.1	Total Alkalinity	< 100		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409008

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-BCR11-0826

EPA Tag No.: No Tag Prefix-A

Date / Time Sampled:
Matrix: Ground Water

08/26/14 11:45

Workorder: C140901

Lab Number: C14090

C140901-04 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Sulfate as SO4	240		mg/L	0.5	10	09/04/2014	NP	1409010
EPA 310.1	Total Alkalinity	1530		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409008

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-BCR12-0826 Date / Time Sampled: 08/26/14 12:00 Workorder: C140901

EPA Tag No.: No Tag Prefix-A Matrix: Ground Water Lab Number: C140901-07 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Sulfate as SO4	164		mg/L	0.5	10	09/04/2014	NP	1409010
EPA 310 1	Total Alkalinity	2190		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409008

TDF #: A-058

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-BCR13-0826 **EPA Tag No.:** No Tag Prefix-A

Date / Time Sampled: Matrix: Ground Water 08/26/14 12:15

Workorder: C140901

Lab Number:

Certificate of Analysis

C140901-10

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Sulfate as SO4	104		mg/L	0.5	10	09/04/2014	NP	1409010
EPA 310.1	Total Alkalinity	2760		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409008

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-BCR14-0826 **EPA Tag No.:**

No Tag Prefix-A

Date / Time Sampled: Matrix: Ground Water

08/26/14 12:30

50.0

10

09/09/2014

Workorder: Lab Number:

C140901

C140901-13

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Sulfate as SO4	5.0		mg/L	0.05	1	09/08/2014	NP	1409010
EPA 310.1	Total Alkalinity	1470		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409008

Classical Chemistry by EPA/ASTM/APHA Methods

Total Alkalinity

1320

EPA 310.1

Station ID: 14BH-TI-BENCH-BCR15-0826 **Date / Time Sampled:** C140901 08/26/14 12:45 Workorder:

EPA Tag No.: No Tag Prefix-A Matrix: Ground Water Lab Number: C140901-16

Dilution MDL Method Parameter Analyzed By Batch Results Qualifier Units Factor EPA 300.0 Sulfate as SO4 120 mg/L 0.05 1 09/08/2014 NP 1409010

mg CaCO3 / L

1409008

SW

Certificate of Analysis

TDF #: A-058

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-BCR16-0826 **EPA Tag No.:** No Tag Prefix-A

Date / Time Sampled: Matrix: Ground Water 08/26/14 13:00 Workorder:

C140901

Lab Number:

C140901-19

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Sulfate as SO4	983		mg/L	0.5	10	09/08/2014	NP	1409010
EPA 310.1	Total Alkalinity	2220		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409008

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-BCR17-0826

EPA Tag No.: No Tag Prefix-A Date / Time Sampled:

08/26/14 13:15 Matrix: Ground Water

Workorder: Lab Number:

C140901

C140901-22

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Sulfate as SO4	936		mg/L	5.0	100	09/04/2014	NP	1409010
EPA 310.1	Total Alkalinity	< 100		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409008

Classical Chemistry by EPA/ASTM/APHA Methods

Date / Time Sampled: Station ID: 14BH-TI-BENCH-BCR18-0826 08/26/14 09:15 Workorder: C140901

Matrix: Ground Water EPA Tag No.: No Tag Prefix-A Lab Number: C140901-25

MDL Dilution Parameter Method Analyzed By Batch Qualifier Results Units Factor 0.5 EPA 300.0 Sulfate as SO4 10 1409010 874 mg/L 09/04/2014 NP mg CaCO3 / L 50.0 EPA 310.1 **Total Alkalinity** 721 10 09/09/2014 SW 1409008

Certificate of Analysis

TDF #: A-058

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-BCR2-0826 EPA Tag No.: No Tag Prefix-A

Date / Time Sampled: Matrix: Ground Water 08/26/14 09:30

Workorder: C140901

Lab Number:

C140901-28

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Sulfate as SO4	1040		mg/L	0.5	10	09/04/2014	NP	1409010
EPA 310.1	Total Alkalinity	< 100		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409008

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-BCR3-0826

EPA Tag No.: No Tag Prefix-A **Date / Time Sampled:**

08/26/14 09:45 Matrix: Ground Water

C140901 Workorder:

Lab Number:

C140901-31

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Sulfate as SO4	1000		mg/L	0.5	10	09/04/2014	NP	1409010
EPA 310.1	Total Alkalinity	< 100		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409008

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-BCR4-0826 **Date / Time Sampled:** 08/26/14 10:00 Workorder: C140901

EPA Tag No.: No Tag Prefix-A Matrix: Ground Water Lab Number: C140901-34 Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Sulfate as SO4	1000		mg/L	0.5	10	09/04/2014	NP	1409010
EPA 310.1	Total Alkalinity	< 100		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409008

TDF #: A-058

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-BCR5-0826 **Date / Time Sampled:**

08/26/14 10:15

Workorder:

C140901

Certificate of Analysis

EPA Tag No.:

EPA Tag No.:

No Tag Prefix-A

Matrix: Ground Water

Lab Number:

C140901-37

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Sulfate as SO4	92.0		mg/L	0.5	10	09/04/2014	NP	1409010
EPA 310.1	Total Alkalinity	498		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409008

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-BCR6-0826

No Tag Prefix-A

Date / Time Sampled: Matrix: Ground Water

08/26/14 10:30

Workorder:

Lab Number:

C140901

C140901-40

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Sulfate as SO4	864		mg/L	0.5	10	09/08/2014	NP	1409010
EPA 310.1	Total Alkalinity	139		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409008

Classical Chemistry by EPA/ASTM/APHA Methods

Station ID: 14BH-TI-BENCH-BCR7-0826

EPA Tag No.: No Tag Prefix-A **Date / Time Sampled:** Matrix: Ground Water

08/26/14 10:45

Workorder: Lab Number:

C140901

C140901-43

Α

Dilution MDL Method Parameter Analyzed By Batch Results Qualifier Units Factor 0.5 EPA 300.0 Sulfate as SO4 984 mg/L 10 09/08/2014 NP 1409010 1409008 EPA 310.1 **Total Alkalinity** 10 09/09/2014 SW< 100 mg CaCO3 / L 50.0

A-058

Certificate of Analysis

Classical Chemistry by EPA/ASTM/APHA Methods

TDF #:

Station ID: 14BH-TI-BENCH-BCR8-0826 **Date / Time Sampled:** Workorder: C140901 08/26/14 11:00

No Tag Prefix-A Matrix: Ground Water Lab Number: C140901-46 **EPA Tag No.:**

Dilution MDL Method Parameter Analyzed By Batch Results **Qualifier** Units Factor EPA 300.0 Sulfate as SO4 1020 mg/L 0.5 10 09/08/2014 NP 1409010 EPA 310.1 **Total Alkalinity** 509 mg CaCO3 / L 50.0 10 09/09/2014 1409008 SW

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-TI-BENCH-BCR9-0826 Date / Time Sampled: **Station ID:** 08/26/14 11:15 Workorder: C140901

No Tag Prefix-A Matrix: Ground Water C140901-49 **EPA Tag No.:** Lab Number:

Dilution MDL Method **Parameter** Analyzed By Batch Results **Qualifier** Units Factor EPA 300.0 Sulfate as SO4 978 mg/L 5.0 100 09/08/2014 NP 1409010 EPA 310.1 Total Alkalinity 10 09/09/2014 SW1409008 < 100 mg CaCO3 / L 50.0

Classical Chemistry by EPA/ASTM/APHA Methods

14BH-TI-BENCH-CONTROL-08 08/26/14 09:00 C140901 **Station ID: Date / Time Sampled:** Workorder:

EPA Tag No.: 26 No Tag Prefix-A Matrix: Ground Water Lab Number: C140901-52 Α

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
EPA 300.0	Sulfate as SO4	1020		mg/L	0.5	10	09/08/2014	NP	1409010
EPA 310.1	Total Alkalinity	< 100		mg CaCO3 / L	50.0	10	09/09/2014	SW	1409008

[&]quot;J" Qualifier indicates an estimated value

A

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limi
CPMS-PE DRC-	-II								
Batch 1410036 - N	No Lab Prep Reqd	J	Water					ICPM	IS-PE DRC-I
Method Blank (141	0036-BLK1)	Dilution Factor: 1				Prepa	red & Analyz	red: 10/08/14	
Nickel	< 0.500	1.00	ug/L						
Copper	< 0.500	1.00	ug/L						
Arsenic	< 0.500	2.00	"						
Cadmium	< 0.100	0.200	"						
Lead	< 0.100	0.200	"						
Aethod Blank Spik	te (1410036-BS1)	Dilution Factor: 1				Prepa	red & Analyz	red: 10/08/14	
Nickel	95.9	1.00	ug/L	100		96	85-115		
Copper	93.8	1.00	"	100		94	85-115		
Arsenic	87.4	2.00	"	100		87	85-115		
Cadmium	95.9	0.200	"	100		96	85-115		
ead	93.2	0.200	"	100		93	85-115		
Ouplicate (1410036	410036-DUP1) Dilution Factor: 5 Source: C140901-03		3	Prepa	red & Analyz	red: 10/08/14			
Vickel	114	50.0	ug/L		108			5	20
Copper	324	50.0	"		314			3	20
Arsenic	35.1	100	"		38.4			9	20
Cadmium	41.2	10.0	"		44.3			7	20
Lead	258	10.0	"		255			1	20
Matrix Spike (1410	036-MS1)	Dilution Factor: 5	Source	: C140901-0	3	Prepa	red & Analyz	zed: 10/08/14	
Nickel	206	50.0	ug/L	100	108	98	70-130		
Copper	422	50.0	"	100	314	107	70-130		
Arsenic	119	100	"	100	38.4	81	70-130		
Cadmium	155	10.0	"	100	44.3	111	70-130		
ead	366	10.0	"	100	255	111	70-130		
Aatrix Spike (1410	036-MS2)	Dilution Factor: 1	Source	: C140901-0	6	Prepar	red & Analyz	red: 10/08/14	
Nickel	84.5	10.0	ug/L	100	< 5.00	84	70-130		
Copper	94.3	10.0	"	100	7.37	87	70-130		
Arsenic	127	20.0	"	100	40.0	87	70-130		
Cadmium	97.0	2.00	"	100	< 1.00	97	70-130		
Lead	95.5	2.00	"	100	2.18	93	70-130		

Project Name: Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 Certificate of Analysis

TDF #: A-058

10510

Zinc

200

$Metals \ (Dissolved) \ by \ EPA \ 200/7000 \ Series \ Methods - Quality \ Control$

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limi
Batch 1410046 - 14	10036	И	Vater					ICPN	MS-PE DRC-
Serial Dilution (1410	046-SRD1)	Dilution Factor: 2	Source	e: C140901-0	3	Prepa	red & Analyz	ed: 10/08/14	
Nickel	< 125	250	ug/L		108				10
Copper	318	250	"		314			1	10
Arsenic	< 125	500	"		38.4				10
Cadmium	49.3	50.0	"		44.3			11	10
Lead	250	50.0	"		255			2	10
CPOE - PE Optin	na								
Batch 1410031 - No	o Lab Prep Reqd		Vater					ICPO	E - PE Optii
Method Blank (1410	031-BLK1)	Dilution Factor: 1				Prepa	red: 10/07/14	Analyzed: 10/	08/14
Aluminum	< 20.0	50.0	ug/L						
ron	< 100	250	ug/L						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Method Blank Spike	(1410031-BS1)	Dilution Factor: 1				Prepa	red: 10/07/14	Analyzed: 10/	08/14
Aluminum	10510	50.0	ug/L	10100		104	85-115		
íron	10640	250	"	10100		105	85-115		
Manganese	98.11	5.00	"	100		98	85-115		
Zinc	97.54	20.0	"	100		98	85-115		
Duplicate (1410031-1	DUP1)	Dilution Factor: 1	Source	e: C140901-0	3	Prepa	red: 10/07/14	Analyzed: 10/	08/14
Aluminum	14390	500	ug/L		14920			4	20
ron	293100	2500	ug E		302700			3	20
Manganese	39770	50.0	"		41120			3	20
Zinc	10440	200	"		10730			3	20
Matrix Spike (14100	31-MS1)	Dilution Factor: 1	Source	e: C140901-0	3	Prepa	red: 10/07/14	Analyzed: 10/	08/14
Aluminum	24390	500	ug/L	10100	14920	94	70-130		
Iron	301400	2500	ug E	10100	302700	NR	70-130		
Manganese	39910	50.0	"	100	41120	NR	70-130		
	10510	200							

100

10730

NR

70-130

Project Name: Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 **Certificate of Analysis**

TDF #: A-058

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1410031 - N	o Lab Prep Reqd	И	Vater					ICPO	E - PE Optima
Matrix Spike (14100	31-MS2)	Dilution Factor: 1	Source	: C140901-0	6	Prepai	red: 10/07/14	Analyzed: 10/	/08/14
Aluminum	10680	500	ug/L	10100	< 200	106	70-130		
Iron	11220	2500	"	10100	< 1000	111	70-130		
Manganese	15920	50.0	"	100	16050	NR	70-130		
Zinc	472.3	200	"	100	371.1	101	70-130		
Batch 1410039 - 14	410031	И	Vater					ICPO	E - PE Optima
Serial Dilution (1410	0039-SRD1)	Dilution Factor: 5	Source	: C140901-0	3	Prepai	red: 10/07/14	Analyzed: 10/	08/14
Aluminum	14380	2500	ug/L		14920			4	10
Iron	298900	12500	"		302700			1	10
Manganese	41990	250	"		41120			2	10
		1000							

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample NOTE:

A-058

Certificate of Analysis

TDF #:

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-II									
Batch 1410017 - 200	.2 - TR Metals	Ţ	Vater					ICPN	MS-PE DRC-II
Method Blank (141001	7-BLK2)	Dilution Factor: 5				Prepar	red: 10/02/14	Analyzed: 10/	13/14
	< 2.50	5.00							
Nickel	< 2.50	5.00	ug/L						
Copper	< 2.50	10.0	"						
Arsenic	< 0.500	1.00	"						
Cadmium	< 0.500	1.00	"						
Lead	0.500	1.00							
Duplicate (1410017-DU	JP2)	Dilution Factor: 5	Source	: C140901-0	2	Prepai	red: 10/02/14	Analyzed: 10/	13/14
Nickel	139.5	50.0	ug/L		140.9			0.9	20
Copper	518.5	50.0	"		507.9			2	20
Arsenic	30.30	100	"		38.48			24	20
Cadmium	47.64	10.0	"		47.14			1	20
Lead	379.0	10.0	"		371.0			2	20
Matrix Spike (1410017	/-MS2)	Dilution Factor: 1	Source	: C140901-0	5	Prepai	red: 10/02/14	Analyzed: 10/	13/14
Nickel	526.1	10.0	ug/L	500	15.58	102	70-130		
Copper	396.5	10.0	"	300	85.77	104	70-130		
Arsenic	971.3	20.0	"	800	54.04	115	70-130		
Cadmium	231.4	2.00	"	200	5.947	113	70-130		
Lead	1188	2.00	"	1000	27.52	116	70-130		
Matrix Spike (1410017	/-MS4)	Dilution Factor: 1	Source	: C140901-0	8	Prenai	red: 10/02/14	Analyzed: 10/	13/14
	•		Source	. 0110701 0		- Top			
Nickel	516.3	10.0	ug/L	500	22.06	99	70-130		
Copper	344.3	10.0	"	300	50.97	98	70-130		
Arsenic	1038	20.0	"	800	76.89	120	70-130		
Cadmium	220.3	2.00	"	200	3.873	108	70-130		
Lead	1148	2.00	"	1000	24.73	112	70-130		
Reference (1410017-SF	RM2)	Dilution Factor: 2				Prepai	red: 10/02/14	Analyzed: 10/	13/14
								-	
Nickel	1033	20.0	ug/L	1000		103	85-115		
Copper	1057	20.0	"	1000		106	85-115		
Arsenic	2183	40.0	"	2000		109	85-115		
Cadmium	1116	4.00	"	1000		112	85-115		
Lead	2407	4.00	"	2000		120	85-115		

Project Name: Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 Certificate of Analysis

TDF #: A-058

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1410052 - 14	10017	И	Vater					ICPN	AS-PE DRC-II
Serial Dilution (14100	052-SRD1)	Dilution Factor: 2	Source	: C140901-0	2	Prepar	red: 10/02/14	4 Analyzed: 10/	13/14
Nickel	< 125	250	ug/L		140.9				10
Copper	509.9	250	"		507.9			0.4	10
Arsenic	< 125	500	"		38.48				10
Cadmium	39.46	50.0	"		47.14			18	10
Lead	373.1	50.0	"		371.0			0.6	10
ICPOE - PE Optim	12								
Batch 1410017 - 200	0.2 - TR Metals	И	Vater					ICPO	E - PE Optima
Method Blank (14100)17-BLK1)	Dilution Factor: 1				Prepai	red: 10/02/14	4 Analyzed: 10/	08/14
Aluminum	< 20.0	50.0	ug/L						
Iron	< 100	250	"						
Manganese	< 2.00	5.00	"						
Zinc	< 10.0	20.0	"						
Duplicate (1410017-D	OUP1)	Dilution Factor: 1	Source	: C140901-0	2	Prepai	red: 10/02/14	4 Analyzed: 10/	08/14
Aluminum	14830	500	ug/L		16430			10	20
Iron	289900	2500	"		322300			11	20
Manganese	40260	50.0	"		43060			7	20
Zinc	10560	200	"		11360			7	20
Matrix Spike (141001	17-MS1)	Dilution Factor: 1	Source	: C140901-0	5	Prepai	red: 10/02/14	4 Analyzed: 10/	08/14
Aluminum	2269	500	ug/L	2000	397.3	94	70-130		
Iron	6090	2500	"	3000	3214	96	70-130		
Manganese	17090	50.0	"	200	16760	164	70-130		
Zinc	1697	200	"	200	1511	93	70-130		
Matrix Spike (141001	17-MS3)	Dilution Factor: 1	Dilution Factor: 1 Source: C140901-0		8	Prepai	red: 10/02/14	4 Analyzed: 10/	08/14
Aluminum	2362	500	ug/L	2000	473.0	94	70-130		
Iron	7196	2500	"	3000	4575	87	70-130		
Manganese	14540	50.0	"	200	13800	366	70-130		
Zinc	818.2	200	"	200	573.0	123	70-130		

Project Name: Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 **Certificate of Analysis**

TDF #: A-058

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1410017 - 20	00.2 - TR Metals	и	'ater					ICPO	E - PE Optima
Reference (1410017-	SRM1)	Dilution Factor: 1				Prepared: 10/02/14 Analyzed: 10/08/14			
Aluminum	972.7	50.0	ug/L	1000		97	85-115		
Iron	961.9	250	"	1000		96	85-115		
Manganese	1027	5.00	"	1000		103	85-115		
Zinc	1012	20.0	"	1000		101	85-115		
Batch 1410040 - 14	110017	И	'ater					ICPO	E - PE Optima
Serial Dilution (1410	0040-SRD1)	Dilution Factor: 5	Source	C140901-02	2	Prepai	red: 10/02/14	Analyzed: 10/	08/14
Aluminum	15050	2500	ug/L		16430			9	10
Iron	304500	12500	"		322300			6	10
Manganese	42840	250	"		43060			0.5	10
	11060	1000	"		11360			3	10

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

Certificate of Analysis

TDF #: A-058

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ESAT Dionex IC									
Batch 1409010 - No	Prep Req	1	Water					ES	AT Dionex IC
Method Blank (14090)	10-BLK1)	Dilution Factor: 1				Prepar	red & Analyz	zed: 09/04/14	
Sulfate as SO4	< 0.05	0.1	mg/L						
Method Blank Spike (1409010-BS1)	Dilution Factor: 1				Prepa	red & Analyz	zed: 09/04/14	
Sulfate as SO4	25.6	0.1	mg/L	25.0		102	90-110		
Duplicate (1409010-D	UP1)	Dilution Factor: 1	Source:	C140901-0	1	Prepa	red & Analyz	zed: 09/04/14	
Sulfate as SO4	981	10.0	mg/L		972			0.9	20
Matrix Spike (1409010	0-MS1)	Dilution Factor: 1	Source:	C140901-0	1	Prepar	red & Analyz	zed: 09/04/14	
Sulfate as SO4	3480	10.0	mg/L	2500	972	100	80-120		
Matrix Spike (1409010	0-MS2)	Dilution Factor: 1	Source:	C140901-3	1	Prepa	red & Analyz	zed: 09/04/14	
Sulfate as SO4	1260	1.0	mg/L	250	1000	104	80-120		
Batch 1409107 - 140	9010	J	Water					ES	AT Dionex IC
Instrument Blank (140	09107-IBL1)	Dilution Factor: 1				Prepa	red & Analyz	zed: 09/04/14	
Sulfate as SO4	< 0.05	0.1	mg/L						
Mettler AT									
Batch 1409008 - No	Prep Req	J	Water						Mettler AT
Method Blank (140900	08-BLK1)	Dilution Factor: 1				Prepar	red: 09/02/14	Analyzed: 09/0	09/14
Total Alkalinity	< 5.00	10.0	mg CaCO3 /						
Duplicate (1409008-D	UP1)	Dilution Factor: 1	Source:	C140901-0	1	Prepa	red: 09/02/14	Analyzed: 09/0	09/14
Total Alkalinity	< 50.0	100	mg CaCO3 /		< 50.0				20

Project Name: Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 **Certificate of Analysis**

TDF #: A-058

Classical Chemistry by EPA/ASTM/APHA Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1409008 - No	Prep Req		Water						Mettler AT
Duplicate (1409008-D	UP2)	Dilution Factor: 1	Source:	C140901-3	1	Prepar	red: 09/02/14	Analyzed: 09/	/09/14
Total Alkalinity	< 50.0	100	mg CaCO3 /		< 50.0				20
Reference (1409008-S	RM1)	Dilution Factor: 1				Prepar	red: 09/02/14	Analyzed: 09/	09/14
Total Alkalinity	11.9	10.0	mg CaCO3 /	10.4		115	61.3-143.9		

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level. RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for QC sample

Project Name: Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 Certificate of Analysis

TDF #: A-058

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: <u>EPA 310.1</u> Analysis Name: <u>WC - Alkalinity</u>

Instrument: Work Order: Nu C140901

Analytical Sequence: Total Concentration Units: mg CaCO3 / L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	KS	Metho Blan (Batch	k	PQL
		1	2	3	4	1409008-BLK1	NA	
		1.02	1.08	1.04	1.04		27.1	10.00
Total Alkalinity		5	6	7	8	0.96	NA	10.00

Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 **Project Name:**

Certificate of Analysis

TDF #: A-058

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET

Intial and Continuing Calibration Blanks

Analytical Method: EPA 300.0 Analysis Name: WC - Anions by Ion Chromatography

Work Order: Nu C140901 Instrument: **ESAT Dionex IC**

1409107 **Dissolved** Analytical Sequence: Concentration Units: mg/L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	xs.	Metho Blan (Batch	k	PQL
		1	2	3	4	1409010-BLK1	NA	
	0.00	0.00	0.00	0.00	0.00			
Sulfate as SO4		5	6	7	8	0.00	NA	0.10

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Diss. Metals

Instrument: ICPOE - PE Optima Work Order: Nu C140901

Analytical Sequence: 1410039 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blanks	Method Blank (Batch II	PQL		
		1	2	3	4	1410031-BLK1	NA	
	1.73	0.68	2.27	4.09				
Aluminum		5	6	7	8	-0.17	NA	50.00
		1	2	3	4	1410031-BLK1	NA	
	-4.23	65.85	47.50	17.24	-			1
Iron		5	6	7	8	46.62	NA	250.0
		1	2	3	4	1410031-BLK1	NA	
	0.14	0.12	0.11	0.16				
Manganese		5	6	7	8	-0.12	NA	5.00
	-0.49	1	2	3	4	1410031-BLK1	NA	4
Zinc	-0.77	-0.39	-0.06	-0.31		-2.57	NA	20.00
ZIIIC		5	6	7	8	-2.37	11/1	20.00

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Instrument: <u>ICPOE - PE Optima</u> Work Order: Nu <u>C140901</u>

Analytical Sequence: 1410040 **Total Recoverable** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	Metho Blank (Batch I	PQL		
		1	2	3	4	1410017-BLK1	NA	
	1.73	0.68	2.27	4.09	0.91		27.1	
Aluminum		5	6	7	8	0.00	NA	50.00
		0.84	2.56					
		1	2	3	4	1410017-BLK1	NA	250.00
	-4.23	65.85	47.50	17.24	59.77		NA	
Iron		5	6	7	8	8.09		
		38.46	31.29					
		1	2	3	4	1410017-BLK1	NA	
	0.14	0.12	0.11	0.16	0.06			5.00
Manganese		5	6	7	8	0.11	NA	
		0.06	0.18					
		1	2	3	4	1410017-BLK1	NA	20.00
	-0.49	-0.39	-0.06	-0.31	-0.90		27.1	
Zinc		5	6	7	8	0.42	NA	
		0.35	-0.04					

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: <u>ICPMS Diss. Metals</u>

Instrument: ICPMS-PE DRC-II Work Order: Nu C140901

Analytical Sequence: 1410046 **Dissolved** Concentration Units: <u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blank	Methoo Blank (Batch I	PQL		
		1	2	3	4	1410036-BLK1	NA	
	0.03	0.02	0.00	0.03	0.01			
Nickel		5	6	7	8	-0.15	NA	1.00
		0.02						
Copper		1	2	3	4	1410036-BLK1	NA	1.00
	0.00	-0.01	-0.01	0.01	-0.01		1	
		5	6	7	8	-0.06	NA	1.00
		-0.03						
		1	2	3	4	1410036-BLK1	NA	
	0.12	0.05	0.16	0.11	0.09			
Arsenic		5	6	7	8	0.14	NA	2.00
		0.01						
		1	2	3	4	1410036-BLK1	NA	
	0.02	0.00	0.02	0.02	0.01			0.20
Cadmium		5	6	7	8	0.02	NA	
		0.01						
	0.06	1	2	3	4	1410036-BLK1	NA	
	0.06	0.03	0.06	0.08	0.07		27.	
Lead		5	6	7	8	0.06	NA	0.20
		0.08						1

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Instrument: ICPMS-PE DRC-II Work Order: Nu C140901

Analytical Sequence: 1410052 **Total Recoverable** Concentration Units: <u>ug/L</u>

Initial Calibration Blank (1 & 2)	(Continuing Cali	bration Blanks	Bl	PQL		
	1	2	3	4	NA	1410017-BLK2	
0.03	0.01	0.01	0.00				
	5	6	7	8	NA	-0.07	1.00
	1	2	3	4	NA	1410017-BLK2	
0.00	-0.01	0.00	-0.03				
	5	6	7	8	NA	-0.05	1.00
	1	2	3	4	NA	1410017-BLK2	
0.14	0.23	0.22	0.12			0.05	• • • •
	5	6	7	8	NA	-0.05	2.00
	1	2	3	4	NA	1410017-BLK2	
-0.01	-0.01	0.00	0.01			0.01	
	5	6	7	8	NA	-0.01	0.20
	1	2	3	4	NA	1410017-BLK2	
0.01	0.01	0.01	0.01				
	5	6	7	8	NA	0.00	0.20
	Calibration	Calibration Blank (1 & 2) 1 0.03 1 0.01 5 0.00 1 -0.01 5 0.14 0.23 5 5 -0.01 5 0.01 0.01	Calibration Blank (1 & 2) Continuing California	Calibration Blank (1 & 2) Continuing Calibration Blanks 0.03 1 2 3 0.01 0.01 0.00 0.00 5 6 7 0.00 -0.01 0.00 -0.03 5 6 7 0.14 0.23 0.22 0.12 5 6 7 -0.01 0.00 0.01 5 6 7 -0.01 0.00 0.01 5 6 7 0.01 0.01 0.01	Calibration Blank (1 & 2) Continuing Calibration Blanks 0.03 1 2 3 4 0.01 0.01 0.00 0.00 0.00 5 6 7 8 0.00 -0.01 0.00 -0.03 0.00 5 6 7 8 0.14 0.23 0.22 0.12 0.12 5 6 7 8 -0.01 0.02 0.12 0.01 5 6 7 8 -0.01 0.00 0.01 0.01 5 6 7 8 0.01 0.00 0.01 0.01	Calibration Blank (1 & 2) Continuing Calibration Blanks BI (Bat (Bat (Bat (Bat (Bat (Bat (Bat (Bat	Calibration Blank (1 & 2) Continuing Calibration Blanks Blank (Batch ID) 0.03 1 2 3 4 NA 1410017-BLK2 0.01 0.01 0.00 NA -0.07 1 2 3 4 NA 1410017-BLK2 0.00 -0.01 0.00 -0.03 NA -0.05 5 6 7 8 NA -0.05 0.14 0.23 0.22 0.12 NA NA -0.05 -0.01 5 6 7 8 NA -0.05 -0.01 0.01 0.00 0.01 NA 1410017-BLK2 -0.01 0.00 0.01 NA 1410017-BLK2 0.01 0.01 0.01 0.01 NA 1410017-BLK2 0.01 0.01 0.01 0.01 NA 1410017-BLK2

Project Name: Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 Certificate of Analysis

TDF #: A-058

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

Mettler AT Method: EPA 310.1 Analysis Name: WC - Alkalinity

Sequence: 1409045 Work Order: C140901 Units: mg CaCO3 / L

Total Analyte	Initial (ICV1, ICV2)			Continuing Calibration Verification Standards (CCVs)									
	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R	
Total Alkalinity					1			2			3		
				100	99.6	99.6	100	99.7	99.7	100	99.5	99.5	
					4			5			6		
Total Mikalility				100	99.6	99.6							
					7			8			9		

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, \ Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, \ CCV = 80 - 120\% R.$

Project Name: Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 Certificate of Analysis

TDF #: A-058

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ESAT Dionex IC Method: EPA 300.0 Analysis Name: WC - Anions by Ion Chromatography 2013

Sequence: 1409107 Work Order: C140901 Units: mg/L

Dissolved Analyte	Initial (ICV1, ICV2)			Continuing Calibration Verification Standards (CCVs)								
	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	1.00	404	1010	100	106	106.0	100	102	102.0	100	106	106.0
Sulfate as SO4	100	104	104.0		4			5			6	
Surface as 504				100	108	108.0						
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, \ Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, \ CCV = 80 - 120\% R.$

Project Name:

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Diss. Metals

Sequence: 1410039 Work Order: C140901 Units: ug/L

Dissolved	Initi	ial (ICV1, l	(CV2)		Cont	inuing Ca	alibration	Verificati	on Stand	ards (CC	Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	11040	05.5	12500	13230	105.8	12500	12830	102.6	12500	13110	104.9
Aluminum	12500	11940	95.5		4			5			6	
					7			8			9	
					1			2			3	
				12500	13230	105.8	12500	13110	104.9	12500	13170	105.4
Iron	12500	12310	98.5		4			5			6	
					7			8			9	
					1			2			3	
	1000	1037	103.7	1000	1054	105.4	1000	1055	105.5	1000	1061	106.1
Manganese	1000	1037	103.7		4			5			6	
					7			8			9	
					1			2			3	
				2500	2676	107.0	2500	2663	106.5	2500	2674	107.0
Zinc	2500	2615	104.6		4			5			6	
					7			8			9	
					,			<u> </u>				

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

Project Name:

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima Method: 200.7 Analysis Name: ICPOE Tot. Rec. Metals

Sequence: 1410040 Work Order: C140901 Units: ug/L

Total Recoverable	Initi	ial (ICV1, l	ICV2)	1	Cont	inuing Ca	alibration	Verificati	on Stand	ards (CC	Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	10500	11040	05.5	12500	13230	105.8	12500	12830	102.6	12500	13110	104.9
Aluminum	12500	11940	95.5		4			5			6	
Alumnum				12500	13100	104.8	12500	13140	105.1	12500	13410	107.3
					7			8			9	
				<u> </u>	1			2			3	
				12500	13230	105.8	12500	13110	104.9	12500	13170	105.4
	12500	12310	98.5	12300	4	103.0	12300	5	104.7	12300	6	103.4
Iron				12500	13180	105.4	12500	13130	105.0	12500	13420	107.4
					7			8			9	
					1			2			3	
	1000	1027	102.7	1000	1054	105.4	1000	1055	105.5	1000	1061	106.1
Manganese	1000	1037	103.7		4			5			6	
Triangunese				1000	1062	106.2	1000	1062	106.2	1000	1063	106.3
					7			8			9	
					1			2			3	
	2500	2615	104.6	2500	2676	107.0	2500	2663	106.5	2500	2674	107.0
Zinc	2500	2615	104.6		4			5			6	
Ziiiv		·		2500	2708	108.3	2500	2715	108.6	2500	2684	107.4
					7			8			9	

 $Metals - ICV \& CCV \% R \ Criteria = 90 - 110\%, Classical \ Chemistry \% R \ Criteria - ICV = 90 - 110\% R, CCV = 80 - 120\% R.$

Project Name:

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Diss. Metals

Sequence: 1410046 Work Order: C140901 Units: ug/L

Dissolved	Init	ial (ICV1,	ICV2)		Cont	inuing C	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
			400.0	50.0	50.0	100.0	50.0	49.9	99.8	50.0	49.0	98.0
Arsenic	50.0	50.1	100.2		4			5			6	
Auseme				50.0	47.2	94.4	50.0	46.8	93.6			
					7			8			9	
					1			2			3	
	50.0	50.8	101.6	50.0	51.7	103.4	50.0	53.2	106.4	50.0	52.2	104.4
Cadmium	30.0	30.6	101.0		4			5			6	
Cuumum				50.0	53.5	107.0	50.0	53.7	107.4			
					7			8			9	
					1			2			3	
	50.0	48.8	97.6	50.0	47.8	95.6	50.0	50.6	101.2	50.0	49.7	99.4
Copper	30.0	70.0	77.0		4			5			6	
11				50.0	45.5	91.0	50.0	47.7	95.4			
					7			8			9	
-												
					1			2			3	
	50.0	49.7	99.4	50.0	49.5	99.0	50.0	49.9	99.8	50.0	52.2	104.4
Lead	30.0	77.7	77.т		4			5			6	
				50.0	51.6	103.2	50.0	52.1	104.2			
					7			8			9	
					1			2			3	
	50.0	49.8	99.6	50.0	48.7	97.4	50.0	50.9	101.8	50.0	51.4	102.8
Nickel					4			5			6	
				50.0	47.2	94.4	50.0	49.5	99.0			
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

Project Name:

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II Method: 200.8 Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1410052 Work Order: C140901 Units: ug/L

Total Recoverable	Init	ial (ICV1,	ICV2)		Cont	inuing C	alibration	Verificati	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				50.0	52.79	105.6	50.0	51.37	102.7	50.0	53.11	106.2
Arsenic	50.0	52.61	105.2		4			5			6	
riiseine												
					7			8			9	
					1			2			3	
				50.0	51.36	102.7	50.0	51.97	103.9	50.0	52.87	105.7
Cadmium	50.0	50.94	101.9		4			5			6	
Cuaman												
					7			8			9	
					1			2			3	
				50.0	48.00	96.0	50.0	49.54	99.1	50.0	50.46	100.9
Caman	50.0	49.43	98.9		4	, 0.0	20.0	5	,,,,		6	100.5
Copper												
					7			8			9	
					1			2			3	
	50.0	48.43	96.9	50.0	51.84	103.7	50.0	54.43	108.9	50.0	55.69 6	111.4
Lead					4			<u> </u>			0	
					7			8			9	
					1			2			3	
	50.0	49.21	98.4	50.0	48.54	97.1	50.0	49.29	98.6	50.0	49.74	99.5
Nickel	20.0		70.1		4			5			6	
					7			8			9	
					,			<u> </u>				

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

Certificate of Analysis

TDF #: A-058

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPMS-PE DRC-II

Analyte		C	heck Sample	Result*	<u>Units</u>	<u>True</u>	0/ D	<u>PQL</u>
Sequence:	1410046	_	ICPMS Diss. Met	·	Units	True	<u>%R</u>	<u>rol</u>
Arsenic			IFA1	0.0	ug/L			2.00
			IFB1	18.4	ug/L	20	92	2.00
Cadmium			IFA1	0.2	ug/L			0.200
			IFB1	20.2	ug/L	20	101	0.200
Copper			IFA1	0.5	ug/L			1.00
			IFB1	18.5	ug/L	20	92	1.00
Lead			IFA1	0.1	ug/L			0.200
			IFB1	0.1	ug/L			0.200
Nickel			IFA1	-0.3	ug/L			1.00
			IFB1	18.7	ug/L	20	93	1.00
		True Value or +						
Sequence:	1410052	Analysis:	ICPMS Tot. Rec.	Metals				
Arsenic			IFA1	0.2	ug/L			2.00
			IFB1	20.3	ug/L	20	102	2.00
Cadmium			IFA1	0.0	ug/L			0.200
			IFB1	21.4	ug/L	20	107	0.200
Copper			IFA1	0.7	ug/L			1.00

20.8

0.0

0.0

0.3

20.3

ug/L

ug/L

ug/L

ug/L

ug/L

20

20

104

101

1.00

0.200

0.200

1.00

1.00

Lead

Nickel

IFB1

IFA1

IFB1

IFA1

IFB1

See raw data for complete analyte list and results.

^{*}Criteria = 80-120%R of True Value or +/- PQL

A-058

Certificate of Analysis

TDF #:

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPOE - PE Optima

Analyte		<u>C</u>	heck Sample	Result*	<u>Units</u>	<u>True</u>	<u>%R</u>	<u>PQL</u>
Sequence: 14	410039	Analysis:	ICPOE Diss. Metals					·
Aluminum			IFA1	59,949.1	ug/L	60,000	100	50.0
			IFB1	63,224.5	ug/L	60,000	105	50.0
Iron			IFA1	233,436.0	ug/L	250,000	93	250
			IFB1	247,526.4	ug/L	250,000	99	250
Manganese			IFA1	-0.3	ug/L			5.00
			IFB1	198.7	ug/L	200	99	5.00
Zinc			IFA1	6.7	ug/L			20.0
			IFB1	290.2	ug/L	300	97	20.0
*Criteria = 80-1	20%R of Tr	ue Value or +	/- PQL					
See raw data for	complete ar	nalyte list and	results.					

Sequence: 1410040	Analysis: ICPOE Tot. Rec.	Metals				
Aluminum	IFA1	59,949.1	ug/L	60,000	100	50.0
	IFB1	63,224.5	ug/L	60,000	105	50.0
Iron	IFA1	233,436.0	ug/L	250,000	93	250
	IFB1	247,526.4	ug/L	250,000	99	250
Manganese	IFA1	-0.3	ug/L			5.00
	IFB1	198.7	ug/L	200	99	5.00
Zinc	IFA1	6.7	ug/L			20.0
	IFB1	290.2	ug/L	300	97	20.0

^{*}Criteria = 80-120%R of True Value or +/- PQL

See raw data for complete analyte list and results.

TDF #: A-058

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPMS-PE DRC-II

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1410046

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Arsenic	2.00	2.23	111	ug/L
Cadmium	0.200	0.199	100	ug/L
Copper	1.00	1.02	102	ug/L
Lead	0.200	0.255	127	ug/L
Nickel	1.00	0.831	83	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1410039

<u>Analyte</u>	<u>True</u>	Found	<u>%R</u>	<u>Units</u>
Aluminum	100	99.00	99	ug/L
Iron	100	136.1	136	ug/L
Manganese	10.0	10.29	103	ug/L
Zinc	50.0	52.07	104	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-058

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPMS-PE DRC-II

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1410052

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Arsenic	2.00	2.094	105	ug/L
Cadmium	0.200	0.2102	105	ug/L
Copper	1.00	0.9794	98	ug/L
Lead	0.200	0.2122	106	ug/L
Nickel	1.00	0.9186	92	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPOE - PE Optima

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1410040

<u>Analyte</u>	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Aluminum	100	99.00	99	ug/L
Iron	100	136.1	136	ug/L
Manganese	10.0	10.29	103	ug/L
Zinc	50.0	52.07	104	ug/L

Recovery Control Limits: 70-130% except Pb, Tl, Sb, & Hg at 50-150%. No limits for Al, Ca, Fe, K, Mg & Na.

TDF #: A-058

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 310.1 **Total Sequence ID#:** 1409045

nstrument ID #: Mettle	er AT Water		LSR #: A-058
Analysis ID	Sample Name	Analysis Date	Analysis Time
1409008-SRM1	Reference	09/09/14	10:06
1409008-BLK1	Blank	09/09/14	10:07
C140901-01	14BH-TI-BENCH-BCR10-082(09/09/14	10:09
1409008-DUP1	Duplicate	09/09/14	10:10
C140901-04	14BH-TI-BENCH-BCR11-082(09/09/14	10:10
C140901-07	14BH-TI-BENCH-BCR12-082(09/09/14	10:14
C140901-10	14BH-TI-BENCH-BCR13-082(09/09/14	10:19
C140901-13	14BH-TI-BENCH-BCR14-082(09/09/14	10:24
C140901-16	14BH-TI-BENCH-BCR15-082(09/09/14	10:28
C140901-19	14BH-TI-BENCH-BCR16-082(09/09/14	10:31
1409045-CCV1	Calibration Check	09/09/14	10:35
1409045-CCB1	Calibration Blank	09/09/14	10:38
C140901-22	14BH-TI-BENCH-BCR17-082(09/09/14	10:39
C140901-25	14BH-TI-BENCH-BCR18-082(09/09/14	10:40
C140901-28	14BH-TI-BENCH-BCR2-0826	09/09/14	10:43
C140901-31	14BH-TI-BENCH-BCR3-0826	09/09/14	10:44
1409008-DUP2	Duplicate	09/09/14	10:45
C140901-34	14BH-TI-BENCH-BCR4-0826	09/09/14	10:47
C140901-37	14BH-TI-BENCH-BCR5-0826	09/09/14	10:48
C140901-40	14BH-TI-BENCH-BCR6-0826	09/09/14	10:50
C140901-43	14BH-TI-BENCH-BCR7-0826	09/09/14	10:52
C140901-46	14BH-TI-BENCH-BCR8-0826	09/09/14	10:53
1409045-CCV2	Calibration Check	09/09/14	10:55
1409045-CCB2	Calibration Blank	09/09/14	10:58
C140901-49	14BH-TI-BENCH-BCR9-0826	09/09/14	12:12
C140901-52	14BH-TI-BENCH-CONTROL-	09/09/14	12:13
1409045-CCV3	Calibration Check	09/09/14	12:28
1409045-CCB3	Calibration Blank	09/09/14	12:31
1409045-CCV4	Calibration Check	09/09/14	12:47
1409045-CCB4	Calibration Blank	09/09/14	12:50

TDF #: A-058

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: EPA 300.0 **Dissolved Sequence ID#:** 1409107

nstrument ID #: ESAT Dionex IC Water			LSR #: A-058		
Analysis ID	Sample Name	Analysis Date	Analysis Time		
1409107-ICV1	Initial Cal Check	09/04/14	13:42		
1409107-ICB1	Initial Cal Blank	09/04/14	14:01		
1409107-SCV1	Secondary Cal Check	09/04/14	14:20		
1409107-IBL1	Instrument Blank	09/04/14	14:39		
1409010-BS1	Blank Spike	09/04/14	14:57		
1409010-BLK1	Blank	09/04/14	15:16		
C140901-01	14BH-TI-BENCH-BCR10-082(09/04/14	15:35		
1409010-DUP1	Duplicate	09/04/14	15:54		
1409010-MS1	Matrix Spike	09/04/14	16:13		
C140901-04	14BH-TI-BENCH-BCR11-0826	09/04/14	16:32		
C140901-07	14BH-TI-BENCH-BCR12-082(09/04/14	16:50		
C140901-10	14BH-TI-BENCH-BCR13-082(09/04/14	17:09		
1409107-CCV1	Calibration Check	09/04/14	17:28		
1409107-CCB1	Calibration Blank	09/04/14	17:47		
C140901-22	14BH-TI-BENCH-BCR17-082(09/04/14	19:02		
C140901-25	14BH-TI-BENCH-BCR18-082(09/04/14	19:21		
C140901-28	14BH-TI-BENCH-BCR2-0826	09/04/14	19:40		
C140901-31	14BH-TI-BENCH-BCR3-0826	09/04/14	19:59		
1409010-MS2	Matrix Spike	09/04/14	20:17		
C140901-34	14BH-TI-BENCH-BCR4-0826	09/04/14	20:36		
C140901-37	14BH-TI-BENCH-BCR5-0826	09/04/14	20:55		
1409107-CCV2	Calibration Check	09/04/14	21:14		
1409107-CCB2	Calibration Blank	09/04/14	23:44		
1409107-CCV3	Calibration Check	09/08/14	11:33		
1409107-CCB3	Calibration Blank	09/08/14	11:52		
C140901-40	14BH-TI-BENCH-BCR6-0826	09/08/14	12:11		
C140901-43	14BH-TI-BENCH-BCR7-0826	09/08/14	12:29		
C140901-46	14BH-TI-BENCH-BCR8-0826	09/08/14	12:48		
C140901-49	14BH-TI-BENCH-BCR9-0826	09/08/14	13:07		
C140901-52	14BH-TI-BENCH-CONTROL-	09/08/14	13:26		
C140901-13	14BH-TI-BENCH-BCR14-082(09/08/14	13:45		
C140901-16	14BH-TI-BENCH-BCR15-082(09/08/14	14:04		
C140901-19	14BH-TI-BENCH-BCR16-082(09/08/14	14:22		
1409107-CCV4	Calibration Check	09/08/14	14:41		
1409107-CCB4	Calibration Blank	09/08/14	15:19		

TDF #: A-058

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Dissolved Sequence ID#:** 1410039

nstrument ID #: ICPOI Analysis ID	E - PE Optima Water Sample Name	Analysis Date	LSR #: A-058 Analysis Time	
	<u> </u>	-	<u> </u>	
1410039-ICV1	Initial Cal Check	10/08/14	08:17	
1410039-SCV1	Secondary Cal Check	10/08/14	08:20	
1410039-ICB1	Initial Cal Blank	10/08/14	08:23	
1410039-CRL1	Instrument RL Check	10/08/14	08:26	
1410039-IFA1	Interference Check A	10/08/14	08:29	
1410039-IFB1	Interference Check B	10/08/14	08:33	
1410031-BLK1	Blank	10/08/14	08:37	
1410031-BS1	Blank Spike	10/08/14	08:40	
C140901-03	14BH-TI-BENCH-BCR10-082(10/08/14	08:43	
1410031-DUP1	Duplicate	10/08/14	08:46	
1410039-SRD1	Serial Dilution	10/08/14	08:49	
1410031-MS1	Matrix Spike	10/08/14	08:52	
C140901-06	14BH-TI-BENCH-BCR11-0826	10/08/14	08:56	
1410031-MS2	Matrix Spike	10/08/14	08:59	
C140901-09	14BH-TI-BENCH-BCR12-082(10/08/14	09:02	
1410039-CCV1	Calibration Check	10/08/14	09:08	
1410039-CCB1	Calibration Blank	10/08/14	09:11	
C140901-12	14BH-TI-BENCH-BCR13-082(10/08/14	09:14	
C140901-15	14BH-TI-BENCH-BCR14-082(10/08/14	09:17	
C140901-18	14BH-TI-BENCH-BCR15-082(10/08/14	09:20	
C140901-21	14BH-TI-BENCH-BCR16-082(10/08/14	09:23	
C140901-24	14BH-TI-BENCH-BCR17-082(10/08/14	09:27	
C140901-27	14BH-TI-BENCH-BCR18-082(10/08/14	09:30	
C140901-30	14BH-TI-BENCH-BCR2-0826	10/08/14	09:33	
C140901-33	14BH-TI-BENCH-BCR3-0826	10/08/14	09:36	
C140901-36	14BH-TI-BENCH-BCR4-0826	10/08/14	09:39	
1410039-CCV2	Calibration Check	10/08/14	09:45	
1410039-CCB2	Calibration Blank	10/08/14	09:48	
C140901-39	14BH-TI-BENCH-BCR5-0826	10/08/14	09:51	
C140901-42	14BH-TI-BENCH-BCR6-0826	10/08/14	09:54	
C140901-45	14BH-TI-BENCH-BCR7-0826	10/08/14	09:57	
C140901-48	14BH-TI-BENCH-BCR8-0826	10/08/14	10:00	
C140901-51	14BH-TI-BENCH-BCR9-0826	10/08/14	10:03	
C140901-54	14BH-TI-BENCH-CONTROL-	10/08/14	10:07	
1410039-CCV3	Calibration Check	10/08/14	10:13	
1410039-CCB3	Calibration Blank	10/08/14	10:16	

TDF #: A-058

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Total Recoverable Sequence ID#:** 1410040

Instrument ID #: ICPO	nstrument ID #: ICPOE - PE Optima Water				
Analysis ID	Sample Name	Analysis Date	Analysis Time		
1410040-ICV1	Initial Cal Check	10/08/14	08:17		
1410040-SCV1	Secondary Cal Check	10/08/14	08:20		
1410040-ICB1	Initial Cal Blank	10/08/14	08:23		
1410040-CRL1	Instrument RL Check	10/08/14	08:26		
1410040-IFA1	Interference Check A	10/08/14	08:29		
1410040-IFB1	Interference Check B	10/08/14	08:33		
1410040-CCV1	Calibration Check	10/08/14	09:08		
1410040-CCB1	Calibration Blank	10/08/14	09:11		
1410040-CCV2	Calibration Check	10/08/14	09:45		
1410040-CCB2	Calibration Blank	10/08/14	09:48		
1410040-CCV3	Calibration Check	10/08/14	10:13		
1410040-CCB3	Calibration Blank	10/08/14	10:16		
1410017-BLK1	Blank	10/08/14	10:28		
1410017-SRM1	Reference	10/08/14	10:32		
C140901-02	14BH-TI-BENCH-BCR10-082(10/08/14	10:35		
1410017-DUP1	Duplicate	10/08/14	10:38		
1410040-SRD1	Serial Dilution	10/08/14	10:41		
C140901-05	14BH-TI-BENCH-BCR11-0826	10/08/14	10:44		
1410017-MS1	Matrix Spike	10/08/14	10:47		
C140901-08	14BH-TI-BENCH-BCR12-082(10/08/14	10:50		
1410017-MS3	Matrix Spike	10/08/14	10:53		
1410040-CCV4	Calibration Check	10/08/14	11:00		
1410040-CCB4	Calibration Blank	10/08/14	11:03		
C140901-11	14BH-TI-BENCH-BCR13-082(10/08/14	11:06		
C140901-14	14BH-TI-BENCH-BCR14-082(10/08/14	11:09		
C140901-17	14BH-TI-BENCH-BCR15-082(10/08/14	11:12		
C140901-20	14BH-TI-BENCH-BCR16-082(10/08/14	11:15		
C140901-23	14BH-TI-BENCH-BCR17-082(10/08/14	11:18		
C140901-26	14BH-TI-BENCH-BCR18-082(10/08/14	11:21		
C140901-29	14BH-TI-BENCH-BCR2-0826	10/08/14	11:24		
C140901-32	14BH-TI-BENCH-BCR3-0826	10/08/14	11:27		
C140901-35	14BH-TI-BENCH-BCR4-0826	10/08/14	11:31		
1410040-CCV5	Calibration Check	10/08/14	11:37		
1410040-CCB5	Calibration Blank	10/08/14	11:40		
C140901-38	14BH-TI-BENCH-BCR5-0826	10/08/14	11:43		
C140901-41	14BH-TI-BENCH-BCR6-0826	10/08/14	11:46		
C140901-44	14BH-TI-BENCH-BCR7-0826	10/08/14	11:49		
C140901-47	14BH-TI-BENCH-BCR8-0826	10/08/14	11:52		

Project Name: Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 Certificate of Analysis

TDF #: A-058

TechLaw Inc., ESAT Region 8

INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.7 **Total Recoverable Sequence ID#:** 1410040

Instrument ID #: ICPOE - P	PE Optima Wat	er	LSR #: A-058
Analysis ID	Sample Name	Analysis Date	Analysis Time
C140901-50	14BH-TI-BENCH-BCR9-0826	10/08/14	11:55
C140901-53	14BH-TI-BENCH-CONTROL-	10/08/14	11:58
1410040-CCV6	Calibration Check	10/08/14	12:04
1410040-CCB6	Calibration Blank	10/08/14	12:08

TDF #: A-058

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Dissolved Sequence ID#:** 1410046

Instrument ID #: ICPM	nstrument ID #: ICPMS-PE DRC-II Water				
Analysis ID	Sample Name	Analysis Date	Analysis Time		
1410046-ICV1	Initial Cal Check	10/08/14	10:33		
1410046-SCV1	Secondary Cal Check	10/08/14	10:36		
1410046-ICB1	Initial Cal Blank	10/08/14	10:40		
1410046-CRL1	Instrument RL Check	10/08/14	10:43		
1410046-IFA1	Interference Check A	10/08/14	10:46		
1410046-IFB1	Interference Check B	10/08/14	10:50		
1410036-BLK1	Blank	10/08/14	10:53		
1410036-BS1	Blank Spike	10/08/14	10:56		
C140901-06	14BH-TI-BENCH-BCR11-0826	10/08/14	11:11		
1410036-MS2	Matrix Spike	10/08/14	11:14		
C140901-09	14BH-TI-BENCH-BCR12-082(10/08/14	11:17		
1410046-CCV1	Calibration Check	10/08/14	11:23		
1410046-CCB1	Calibration Blank	10/08/14	11:27		
C140901-12	14BH-TI-BENCH-BCR13-082(10/08/14	11:30		
C140901-15	14BH-TI-BENCH-BCR14-082(10/08/14	11:33		
C140901-18	14BH-TI-BENCH-BCR15-082(10/08/14	11:36		
1410046-CCV2	Calibration Check	10/08/14	12:07		
1410046-CCB2	Calibration Blank	10/08/14	12:11		
C140901-39	14BH-TI-BENCH-BCR5-0826	10/08/14	12:14		
C140901-03	14BH-TI-BENCH-BCR10-082(10/08/14	12:58		
1410036-DUP1	Duplicate	10/08/14	13:02		
1410046-SRD1	Serial Dilution	10/08/14	13:05		
1410046-CCV3	Calibration Check	10/08/14	13:17		
1410046-CCB3	Calibration Blank	10/08/14	13:20		
1410036-MS1	Matrix Spike	10/08/14	13:23		
C140901-21	14BH-TI-BENCH-BCR16-082(10/08/14	13:26		
C140901-24	14BH-TI-BENCH-BCR17-082(10/08/14	13:30		
C140901-27	14BH-TI-BENCH-BCR18-082(10/08/14	13:33		
C140901-30	14BH-TI-BENCH-BCR2-0826	10/08/14	13:36		
C140901-33	14BH-TI-BENCH-BCR3-0826	10/08/14	13:39		
C140901-36	14BH-TI-BENCH-BCR4-0826	10/08/14	13:42		
C140901-42	14BH-TI-BENCH-BCR6-0826	10/08/14	13:45		
C140901-45	14BH-TI-BENCH-BCR7-0826	10/08/14	13:48		
C140901-48	14BH-TI-BENCH-BCR8-0826	10/08/14	13:51		
1410046-CCV4	Calibration Check	10/08/14	13:54		
1410046-CCB4	Calibration Blank	10/08/14	13:57		
C140901-51	14BH-TI-BENCH-BCR9-0826	10/08/14	14:01		
C140901-54	14BH-TI-BENCH-CONTROL-	10/08/14	14:04		

Project Name: Barker-Hugh_Tiger Mine Treatability_SEP 2014_A058 Certificate of Analysis

TDF #: A-058

TechLaw Inc., ESAT Region 8

INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Dissolved Sequence ID#:** 1410046

Instrument ID #:	ICPMS-PE	DRC-II W	ater	LSR #: A-058
Analysis II	D	Sample Name	Analysis Date	Analysis Time
1410046-CCV5		Calibration Check	10/08/14	14:07
1410046-CCB5		Calibration Blank	10/08/14	14:10

TDF #: A-058

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method: 200.8 **Total Recoverable Sequence ID#:** 1410052

nstrument ID #: ICPM	LSR #: A-058			
Analysis ID	Sample Name	Analysis Date	Analysis Time	
1410052-ICV1	Initial Cal Check	10/13/14	13:58	
1410052-SCV1	Secondary Cal Check	10/13/14	14:02	
1410052-ICB1	Initial Cal Blank	10/13/14	14:05	
1410052-CRL1	Instrument RL Check	10/13/14	14:08	
1410052-IFA1	Interference Check A	10/13/14	14:12	
1410052-IFB1	Interference Check B	10/13/14	14:15	
1410017-BLK2	Blank	10/13/14	14:18	
1410017-SRM2	Reference	10/13/14	14:21	
C140901-02	14BH-TI-BENCH-BCR10-082(10/13/14	14:24	
1410017-DUP2	Duplicate	10/13/14	14:27	
1410052-SRD1	Serial Dilution	10/13/14	14:30	
C140901-05	14BH-TI-BENCH-BCR11-0826	10/13/14	14:33	
1410017-MS2	Matrix Spike	10/13/14	14:36	
C140901-08	14BH-TI-BENCH-BCR12-082(10/13/14	14:39	
1410017-MS4	Matrix Spike	10/13/14	14:42	
1410052-CCV1	Calibration Check	10/13/14	14:49	
1410052-CCB1	Calibration Blank	10/13/14	14:52	
C140901-11	14BH-TI-BENCH-BCR13-082(10/13/14	14:55	
C140901-14	14BH-TI-BENCH-BCR14-082(10/13/14	14:58	
C140901-17	14BH-TI-BENCH-BCR15-082(10/13/14	15:01	
C140901-20	14BH-TI-BENCH-BCR16-082(10/13/14	15:04	
C140901-23	14BH-TI-BENCH-BCR17-082(10/13/14	15:07	
C140901-26	14BH-TI-BENCH-BCR18-082(10/13/14	15:10	
C140901-29	14BH-TI-BENCH-BCR2-0826	10/13/14	15:13	
C140901-32	14BH-TI-BENCH-BCR3-0826	10/13/14	15:17	
C140901-35	14BH-TI-BENCH-BCR4-0826	10/13/14	15:20	
1410052-CCV2	Calibration Check	10/13/14	15:26	
1410052-CCB2	Calibration Blank	10/13/14	15:29	
C140901-38	14BH-TI-BENCH-BCR5-0826	10/13/14	15:32	
C140901-41	14BH-TI-BENCH-BCR6-0826	10/13/14	15:35	
C140901-44	14BH-TI-BENCH-BCR7-0826	10/13/14	15:38	
C140901-47	14BH-TI-BENCH-BCR8-0826	10/13/14	15:41	
C140901-50	14BH-TI-BENCH-BCR9-0826	10/13/14	15:45	
C140901-53	14BH-TI-BENCH-CONTROL-	10/13/14	15:48	
1410052-CCV3	Calibration Check	10/13/14	16:00	
1410052-CCB3	Calibration Blank	10/13/14	16:04	

Page 1 of 6

USEPA

DateShipped: 8/28/2014

CHAIN OF CUSTODY RECORD

Site #: MT6122307485

Contact Name: Nick Anton Contact Phone: 720-264-1147 No: 8-082714-181518-0001

Cooler #: Lab: ESAT

Lab #	Sample #	Location	Analyses	Matrix	Collected	Numb Cont		Preservative	Lab QC
	14BH-TI-BENCH- BCR10-0826	BENCH-BCR10	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	
11:30	14BH-TI-BENCH- BCR10-0826	BENCH-BCR10	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR10-0826	BENCH-BCR10	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR11-0826	BENCH-BCR11	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	
11:45	14BH-TI-BENCH- BCR11-0826	BENCH-BCR11	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR11-0826	BENCH-BCR11	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR12-0826	BENCH-BCR12	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	
1200	14BH-TI-BENCH- BCR12-0826	BENCH-BCR12	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR12-0826	BENCH-BCR12	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR13-0826	BENCH-BCR13	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	

	SAMPLES TRANSFERRED FROM
Special Instructions:	CHAIN OF CUSTODY #

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
	Aick Julan	3/28/2014	500 Kelay Bartley ESAT	8/29/14	8:00
	COM SMITH	1 1			

Page 2 of 6

USEPA

DateShipped: 8/28/2014

CHAIN OF CUSTODY RECORD

Site #: MT6122307485

Contact Name: Nick Anton Contact Phone: 720-264-1147 No: 8-082714-181518-0001

Cooler #: Lab: ESAT

Lab#	Sample #	Location	Analyses	Matrix	Collected	Numb Cont		Preservative	Lab QC
12:15	14BH-TI-BENCH- BCR13-0826	BENCH-BCR13	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR13-0826	BENCH-BCR13	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR14-0826	BENCH-BCR14	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	
12:30	14BH-TI-BENCH- BCR14-0826	BENCH-BCR14	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR14-0826	BENCH-BCR14	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR15-0826	BENCH-BCR15	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	
12:45	14BH-TI-BENCH- BCR15-0826	BENCH-BCR15	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR15-0826	BENCH-BCR15	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR16-0826	BENCH-BCR16	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	
13:00	14BH-TI-BENCH- BCR16-0826	BENCH-BCR16	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	

	SAMPLES TRANSFERRED FROM
Special Instructions:	CHAIN OF CUSTODY #

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
			Keben Bartley ESAT	8/29/14 8	: 00

Page 3 of 6

USEPA

DateShipped: 8/28/2014

CHAIN OF CUSTODY RECORD

Site #: MT6122307485

Contact Name: Nick Anton Contact Phone: 720-264-1147 No: 8-082714-181518-0001

Cooler #: Lab: ESAT

Lab#	Sample #	Location	Analyses	Matrix	Collected	Numb Cont		Preservative	Lab QC
	14BH-TI-BENCH- BCR16-0826	BENCH-BCR16	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
13:15	14BH-TI-BENCH- BCR17-0826	BENCH-BCR17	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	
	14BH-TI-BENCH- BCR17-0826	BENCH-BCR17	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR17-0826	BENCH-BCR17	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR2-0826	BENCH-BCR2	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	
930	14BH-TI-BENCH- BCR2-0826	BENCH-BCR2	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR2-0826	BENCH-BCR2	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR3-0826	BENCH-BCR3	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	
	14BH-TI-BENCH- BCR3-0826	BENCH-BCR3	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
9:45	14BH-TI-BENCH- BCR3-0826	BENCH-BCR3	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	

	SAMPLES TRANSFERRED FROM
Special Instructions:	CHAIN OF CUSTODY #

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
			Kelsey Bartley ESAT	8/29/14 8	:00
				*	

Page 4 of 6

USEPA

DateShipped: 8/28/2014

CHAIN OF CUSTODY RECORD

Site #: MT6122307485

Contact Name: Nick Anton Contact Phone: 720-264-1147 No: 8-082714-181518-0001

Cooler #: Lab: ESAT

Lab#	Sample #	Location	Analyses	Matrix	Collected	Numb Cont	i .	Preservative	Lab QC
	14BH-TI-BENCH- BCR4-0826	BENCH-BCR4	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	
10:60	14BH-TI-BENCH- BCR4-0826	BENCH-BCR4	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR4-0826	BENCH-BCR4	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR5-0826	BENCH-BCR5	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	
10:15	14BH-TI-BENCH- BCR5-0826	BENCH-BCR5	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR5-0826	BENCH-BCR5	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR6-0826	BENCH-BCR6	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	
10:30	14BH-TI-BENCH- BCR6-0826	BENCH-BCR6	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR6-0826	BENCH-BCR6	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
10:45	14BH-TI-BENCH- BCR7-0826	BENCH-BCR7	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	

	SAMPLES TRANSFERRED FROM
Special Instructions:	CHAIN OF CUSTODY #

Items/Reason	tems/Reason Relinquished by (Signature and Organization)		Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
			Kelsey Bartley ESAT	8/29/14	8:00

Page 5 of 6

USEPA

DateShipped: 8/28/2014

CHAIN OF CUSTODY RECORD

Site #: MT6122307485

Contact Name: Nick Anton Contact Phone: 720-264-1147 Cooler #:

No: 8-082714-181518-0001

Lab: ESAT

Lab#	Sample #	Location	Analyses	Matrix	Collected	Numb Cont	Container	Preservative	Lab QC
	14BH-TI-BENCH- BCR7-0826	BENCH-BCR7	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR7-0826	BENCH-BCR7	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR8-0826	BENCH-BCR8	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	
	14BH-TI-BENCH- BCR8-0826	BENCH-BCR8	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
11:00	14BH-TI-BENCH- BCR8-0826	BENCH-BCR8	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR9-0826	BENCH-BCR9	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	
11:15	14BH-TI-BENCH- BCR9-0826	BENCH-BCR9	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- BCR9-0826	BENCH-BCR9	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
	14BH-TI-BENCH- CONTROL-0826	BENCH-CONTROL	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	
900	14BH-TI-BENCH- CONTROL-0826	BENCH-CONTROL	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	

	SAMPLES TRANSFERRED FROM
Special Instructions:	CHAIN OF CUSTODY #

Items/Reason	ems/Reason Relinquished by (Signature and Organization)		Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
			Kelsey Bartley ESAT	8/29/14 8	:00

Page 6 of 6

USEPA

DateShipped: 8/28/2014

Special Instructions:

CHAIN OF CUSTODY RECORD

Site #: MT6122307485

Contact Name: Nick Anton Contact Phone: 720-264-1147 No: 8-082714-181518-0001

SAMPLES TRANSFERRED FROM

CHAIN OF CUSTODY #

Cooler #: Lab: ESAT

Lab#	Sample #	Location	Analyses	Matrix	Collected	Numb Cont	Container	Preservative	Lab QC
	14BH-TI-BENCH- CONTROL-0826	BENCH-CONTROL	TAL Metals - Total	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
BCR18	14BH-TI-BENCH- BCR1-0826	BENCH-BCR1	Alkalinity/Sulfate-Filtered	Ground Water	8/26/2014	1	poly	4 C	9:15
BOL18	14BH-TI-BENCH- BCR1-0826	BENCH-BCR1	TAL Metals - Diss - Filtered	Ground Water	8/26/2014	1	poly	HNO3 pH<2	
BCR18	14BH-TI-BENCH- BCR1-0826	BENCH-BCR1	TAL Metals - Total	Ground Water	8/26/2014	. 1	poly	HNO3 pH<2	

Items/Reason	Relinquished by (Signature and Organization)	Date/Time	Received by (Signature and Organization)	Date/Time	Sample Condition Upon Receipt
			Kelsey Bartley ESAT	8/29/14	8:00
					4
					11
				-	

Site ID: 085N

ESAT Technical Direction Form

Contract No. EPW13028 EPA Region 8

Date

Date Issued: 7/8/2014

TDF ID	: A-058	Date Updated:	(Closed By:
Name: Details:	Tiger Mine-BH Treatability Study The Contractor shall analyze a total of a treatability study of the Tiger M will arrive at the ESAT R8 Lab dur mid-August 2014. Nick Anton of	Aine located at the Barker ing the week ending July CDM Smith will hand de	-Hughesville Superfund sit 11, 2014. The second se iver the samples to the lab	te. The first set of samples (5) t of samples (18) will arrive in .
	The samples will be analyzed for to Information Section.	tal and dissolved metals,	lkalinity, and sulfate as inc	licate in the Analytical
	TO02/Subtask 02b: Inorganic Ch	•		
	The site RPM is Roger Hoogerheid	e.		
•	al Information:			
MATRIX ☑ Wate:	K r □ Soils □ Vegetation □ Bio	ta		
WET CH ☐ TSS Other	HEM □ TD\$ □ DOC ☑ Alk □ Chlo	ride 🛮 Sulfate 🗖 Fluor	de 🗆 Nitrate 🗅 Nitrite	
200.7: 1	S blved ☑ Total Recoverable □ Tota □ Ag ☑ Al □ As □ Ba □ E ☑ Mn □ Mo □ Na □ Ni □ F □ Ag □ Al ☑ As □ Ba □ E	e □ B □ Ca □ Cd b □ Sb □ Se □ Sr	Co Cr Cu Z Ti CT V Z Cu Mn Mo M	Zn □ SiO2
1	⊃Se □Th □Tl □U □V	7 □ Zn	2	
7470/747	71/747 🗆 Hg		lv 10/08/14	
FIBERS	□ TEM		7	
Delivera ID	a bles Descrij	otion	Due Date	Submission Date
	ovide final deliverable package to Ta er delivery of samples.	sk Monitor no later than	00 days	
da	ovide preliminary data to Task Moni ys after delivery of samples. Final d onitor no later than 30 days after del	elivery package is due to ' ivery of samples.		

Tables

This page intentionally blank.

Table 3.2-1
Danny T Treatability Study Year 2 Relative Percent Differences between Normal and Field Duplicates
Barker-Hughesville Mining District Superfund Site

Location					BCR1									BCR2									BCR3				
Sample ID	14BH-DT-P	ILOT-BCR	R1-062414	4	14BH-DT-F	PILOT:	-BCR1D-062414	BCR	1 RPD	14BH-DT	-PILO	T-BCR2-0722	14	14BH-DT-PILO	T-BCR2D-0	72214	BCR2	RPD	14BH-DT-F	PILOT-	-BCR3-0819	914	14BH-DT-P	ILOT-	BCR3D-081914	BCR3	B RPD
Sample Date	6,	/24/2014				6/24/	2014	6/24	/2014		7/22	/2014		7/2	2/2014		7/22	/2014	8	8/19/2	2014		8	3/19/	2014	8/19	/2014
Fraction	D		T		D		Т	D	T	D		T		D	T		D	T	D		T		D		Т	D	T
Analyte	Result	Q Re	esult	Q	Result	Q	Result Q	RPD	RPD	Result	Q	Result	Q	Result Q	Result	Q	RPD	RPD	Result	Q	Result	Q	Result	Q	Result Q	RPD	RPD
Aluminum	250 U		151 J		50	U	47.4 J	NA	26.1%	250	U	148 .	J	250 U	13	L6 J	NA	6.1%	175 J	J	181	J	178 J		188 J	0.4%	0.9%
Arsenic	20.3		20.5		18.3	J	21.1	2.6%	0.7%	20	U	7.73	J	20 U	7.4	12 J	NA	1.0%	6.81 J	J	8.3	J	7.44 J		8.46 J	2.2%	0.5%
Cadmium	2 U		1.37 J		2	U	1.76 J	NA	6.2%	2	U	2	U	2 U		2 U	NA	NA	2 ا	U	2	U	2 (J	2 U	NA	NA
Copper	5.3 J		17.1		6.94	J	22	6.7%	6.3%	5.43	J	11.7		6.81 J	8.0)3 J	5.6%	9.3%	13.9		10	U	11.5		10 U	4.7%	NA
Iron	1250 U		1250 U		180	J	531	NA	NA	1250	J	615 .	J	1250 U	53	L7 J	NA	4.3%	1250 l	U	1250	U	1250 l	J	1250 U	NA	NA
Lead	2 U		1.23 J		2	U	1.61 J	NA	6.7%	2	U	5.73		2 U	4.2	27	NA	7.3%	2 ا	U	2	U	2 l	J	2 U	NA	NA
Manganese	1870		2100		2850		2870	10.4%	7.7%	46300		48500		50600	5110	00	2.2%	1.3%	39800		40600		40900		41200	0.7%	0.4%
Nickel	27.1		10 U		29.7		10 U	2.3%	NA	10	U	10	U	10 U	1	10 U	NA	NA	10 l	U	6.41	J	10 U	J	10 U	NA	NA
Zinc	82.2 J		250		86		236	1.1%	1.4%	100	U	326		50.7 J	28	37	NA	3.2%	100 l	U	56	J	100 U	J	64.8 J	NA	3.6%
Acidity			4 U				4 U	NA	NA			4	U			4 U	NA	NA			4	U			4 U	NA	NA
Alkalinity	1570				1540			0.5%	NA	650				637			0.5%	NA	1330				1300			0.6%	NA
Ammonia	94.2				85.6			2.4%	NA	11.4				10.2			2.8%	NA	79.8				77.8			0.6%	NA
BOD								NA	NA			280			28	30	NA	0.0%			390				370	NA	1.3%
Chloride	83.2 J				79.8	J		1.0%	NA	10.9	J			11.7 J			1.8%	NA	5.5 J	J			5.4 J			0.5%	NA
Fluoride	67.1				59.1			3.2%	NA	15.8				15			1.3%	NA	29.1				27.4			1.5%	NA
Hardness			2320				2250	NA	0.8%			895			88	32	NA	0.4%			1300				1200	NA	2.0%
Nitrate								NA	NA	5	U			5 U			NA	NA								NA	NA
Nitrate/Nitrite	500 U				500	U		NA	NA	50	U			50 U			NA	NA	50 l	U			50 l	J		NA	NA
Nitrite								NA	NA	5	U			5 U			NA	NA							_	NA	NA
Orthophosphate	2.9				2.5			3.7%	NA	14.4				14			0.7%	NA	19.1				19.6		_	0.6%	NA
Sulfate	840				831			0.3%	NA	349				370			1.5%	NA	270				289			1.7%	NA
Sulfide								NA	NA			45			ī	0	NA	2.6%			80				79	NA	0.3%

Notes:

INF = Adit influent to treatment system; BCRX = Biochemical reactor barrel effluent; SAPS = Successive alkalinity producing system pre-treatment to BCR2;

CHIT = Chitorem pre-treatment to BCR3; NAOH = Sodium hydroxide pre-treatment to BCR4

Q = Qualifier; U = Result below method reporting limit shown; J = estimated result; D = dissolved fraction; T = total fraction

 μ g/L = micrograms per liter; mg/L = milligrams per liter

Flags:

Text- RPD exceeds 10%

Table 3.2-1
Danny T Treatability Study Year 2 Relative Percent Differences between Normal and Field Duplicates
Barker-Hughesville Mining District Superfund Site

Location			BCR4											11	NF								
Sample ID	14BH-DT-PILC	OT-BCR4-091614	14BH-DT-PILO	T-BCR4D-091614	BCR4	4 RPD	14BH-DT	-PILO	T-INF-061114	14BH-C	T-PILO	T-INFD-061114	INF	RPD	14BH-DT-	-PILO	T-INF-0708	14	14BH-DT-	-PILOT	T-INFD-070814	INF	RPD
Sample Date	9/16	6/2014	9/1	5/2014	9/16	/2014		6/11/	/2014		6/11	/2014	6/11	/2014		7/8/2	2014			7/8/2	2014	7/8/	/2014
Fraction	D	Т	D	Т	D	T	D		Т	D		Т	D	T	D		T		D		Т	D	T
Analyte	Result Q	Result Q	Result Q	Result Q	RPD	RPD	Result	Q	Result (Q Result	Q	Result Q	RPD	RPD	Result	Q	Result	Q	Result	Q	Result Q	RPD	RPD
Aluminum	250 U	250 U	250 U	250 U	NA	NA	12400		13100	1320)	13100	1.6%	0.0%	15000		15100		14900		15100	0.2%	0.0%
Arsenic	20 U	20 U	20 U	20 U	NA	NA	264		269	25	õ	251	0.8%	1.7%	166		198	J	178		207 J	1.7%	1.1%
Cadmium	2 U	2 U	2 U	2 U	NA	NA	258		256	25	5	253	0.2%	0.3%	285		291		294		288	0.8%	0.3%
Copper	6.29 J	7.35 J	5.97 J	7.03 J	1.3%	1.1%	1210		1120	116)	1070	1.1%	1.1%	1270		1060		1250		1160	0.4%	2.3%
Iron	1250 U	1250 U	1250 U	1250 U	NA	NA	154000		160000	16000)	159000	1.0%	0.2%	184000		185000		184000		186000	0.0%	0.1%
Lead	2 U	2 U	2 U	2 U	NA	NA	245		239 J	24	2	260 J	0.3%	2.1%	147		221		149		206	0.3%	1.8%
Manganese	55600	58200	56600	59000	0.4%	0.3%	106000		107000	10600)	106000	0.0%	0.2%	123000		123000		122000		123000	0.2%	0.0%
Nickel	10 U	10 U	10 U	10 U	NA	NA	27.6		25.8	26.	1	26.1	1.1%	0.3%	28.5		20.9		25.3		100 U	3.0%	NA
Zinc	50.4 J	468	63.6 J	466	5.8%	0.1%	59500		59300	5980)	59200	0.1%	0.0%	66500		65300		66100		66500	0.2%	0.5%
Acidity		4 U		4 U	NA	NA			620			630	NA	0.4%			700				720	NA	0.7%
Alkalinity	51		51.2		0.1%	NA	500	C		50	U		NA	NA	500 l	U			500	U		NA	NA
Ammonia	1.27		1.25		0.4%	NA							NA	NA								NA	NA
BOD		67		62	NA	1.9%							NA	NA								NA	NA
Chloride	5.4 J		5.3 J		0.5%	NA	7.7	J		7.	5 J		0.3%	NA	6.9 J	J			7	J		0.4%	NA
Fluoride	1.8 J		1.6 J		2.9%	NA	2.7			2.	9		1.8%	NA	2.8				3.1			2.5%	NA
Hardness		284		284	NA	0.0%			337			359	NA	1.6%			375				369	NA	0.4%
Nitrate					NA	NA							NA	NA								NA	NA
Nitrate/Nitrite	50 U		50 U		NA	NA	50	U		5	U		NA	NA	50 l	U			50	U		NA	NA
Nitrite					NA	NA							NA	NA								NA	NA
Orthophosphate	1.28		1.22		1.2%	NA	0.391			0.26	2		9.9%	NA	0.05 l	U			0.2			NA	NA
Sulfate	642		629		0.5%	NA	1150			116)		0.2%	NA	1280				1310			0.6%	NA
Sulfide		35		34	NA	0.7%							NA	NA								NA	NA

Notes:

INF = Adit influent to treatment system; BCRX = Biochemical reactor barrel effluent; SAPS = Successive alkalinity producing system pre-treatment to BCR2;

CHIT = Chitorem pre-treatment to BCR3; NAOH = Sodium hydroxide pre-treatment to BCR4

Q = Qualifier; U = Result below method reporting limit shown; J = estimated result; D = dissolved fraction; T = total fraction

 μ g/L = micrograms per liter; mg/L = milligrams per liter

Flags:

Text- RPD exceeds 10%

Table 3.2-1
Danny T Treatability Study Year 2 Relative Percent Differences between Normal and Field Duplicates
Barker-Hughesville Mining District Superfund Site

Location															INF													
Sample ID	14BH-D1	Γ-PILO	T-INF-0806	14	14BH-DT	-PILO	T-INFD-0806:	14	INF	RPD	14BH-D	T-PILC	OT-INF-09021	L4	14BH-DT-F	PILOT	-INFD-090214	II.	F RPD	14BH	DT-PIL	.OT-INF-092	314	14BH-DT	-PILO	Γ-INFD-092314	l II	IF RPD
Sample Date		8/6/2	2014			8/6/	2014		8/6/	2014		9/2/	2014		9	9/2/2	2014	9/	2/2014		9/2	3/2014			9/23/	2014	9/	23/2014
Fraction	D		T		D		T		D	T	D		Т		D		Т	D	Т	D		Т		D		T	D	T
Analyte	Result	Q	Result	ď	Result	Q	Result	Q	RPD	RPD	Result	ď	Result	Q	Result	Q	Result (RPD	RPD	Result	Q	Result	Q	Result	Q	Result	Q RPE	RPD
Aluminum	12600		12800		12300		12800		0.6%	0.0%	12300		12300		12300		12100	0.0%	0.49	1330	00	13500)	12900		13400	0.89	0.2%
Arsenic	143		147	J	140		158 .	J	0.5%	1.8%	227		233	J	228		244 J	0.1%	1.29	1!	50	169	9	148		158	0.3%	1.7%
Cadmium	232		245		237		238		0.5%	0.7%	220		211		216		222	0.5%	1.3%	2	38	246	5	235		247	0.39	0.1%
Copper	849		1140		852		1070		0.1%	1.6%	933		917		936		946	0.1%	0.8%	89	92	1010)	870		944	0.69	1.7%
Iron	159000		162000		156000		165000		0.5%	0.5%	111000		111000		111000		111000	0.0%	0.0%	1400	00	148000)	142000		140000	0.49	1.4%
Lead	134		129		137		126		0.6%	0.6%	246		250		246		253	0.0%	0.3%	1.	58	175	5	156		167	0.3%	1.2%
Manganese	109000		110000		108000		111000		0.2%	0.2%	75500		77200		76400		77700	0.3%	0.29	1040	00	107000)	103000		104000	0.29	0.7%
Nickel	19		100	U	18.3		100	U	0.9%	NA	31.4		24.7		26.9		26.7	3.9%	1.9%	24	.4	27	7	23.8		25.2	0.69	1.7%
Zinc	57000		57800		57100		57900		0.0%	0.0%	44000		45100		45400		45600	0.8%	0.3%	5550	00	58400)	54900		55400	0.3%	1.3%
Acidity			690				730		NA	1.4%			600				570	NA	1.3%			660)			670	NA	0.4%
Alkalinity	100	U			100	U			NA	NA	100	U			100 L	J		NA	NA		10 U			10	U		NA	NA
Ammonia									NA	NA								NA	NA								NA	NA
BOD									NA	NA								NA	NA								NA	NA
Chloride	5.6	J			5.4	J			0.9%	NA	5.4	J			5.4 J			0.0%	NA	5	.4 J			5.5	J		0.5%	6 NA
Fluoride	2.5				2.5				0.0%	NA	2.2				2.5			3.2%	NA	2	.3			2.5			2.19	6 NA
Hardness			346				335		NA	0.8%			256				255	NA	0.19			325	5			317	NA	0.6%
Nitrate									NA	NA								NA	NA								NA	NA
Nitrate/Nitrite	50	U			50	U			NA	NA	50	U			50 L	J		NA	NA	!	50 U			50	U		NA	NA
Nitrite									NA	NA								NA	NA								NA	NA
Orthophosphate	0.362		_		0.1				28.4%	NA	0.399				0.05		_	38.9%	NA	0.1	58			0.377			20.5	% NA
Sulfate	1170				1190				0.4%	NA	894				904			0.3%	NA	11:	10			1110			0.09	6 NA
Sulfide									NA	NA								NA	NA								NA	NA

Notes:

INF = Adit influent to treatment system; BCRX = Biochemical reactor barrel effluent; SAPS = Successive alkalinity producing system pre-treatment to BCR2;

CHIT = Chitorem pre-treatment to BCR3; NAOH = Sodium hydroxide pre-treatment to BCR4

Q = Qualifier; U = Result below method reporting limit shown; J = estimated result; D = dissolved fraction; T = total fraction

 μ g/L = micrograms per liter; mg/L = milligrams per liter

Flags:

Text- RPD exceeds 10%

Table 4.2-1 Danny T Treatability Study Year 2: Analytical Laboratory Data **Barker-Hughesville Mining District Superfund Site**

	Location										II.	IF .									
	Sample ID	14BH-DT-F	PILOT-INF-061114	14BH-DT-	PILOT-INF-062414	14BH-DT-I	ILOT-INF-070814	14BH-DT-P	PILOT-INF-072214	14BH-DT-	PILOT-INF-080614	14BH-DT-PIL	OT-INF-081914	14BH-DT-PIL	OT-INF-090214	14BH-DT-PILC	OT-INF-091614	14BH-DT-PILO	T-INF-092314	14BH-DT-PILO	OT-INF-092914
	Sample Date	6/	11/2014	6	/24/2014	7	/8/2014	7/	22/2014	8	3/6/2014	8/19	9/2014	9/2	/2014	9/16	/2014	9/23/	2014	9/29	/2014
	Fraction	D	T	D	T	D	T	D	Т	D	T	D	T	D	Т	D	Т	D	Т	D	T
Analyte	Units	Result	Q Result Q	Result	Q Result Q	Result	Q Result Q	Result	Q Result Q	Result	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Metals		1		1		1 1								<u> </u>	, ,						
Aluminum	μg/L	12400	13100	13700	14000	15000	15100	14600	14500	12600	12800	10600	10900	12300	12300	12900	13600	13300	13500	13700	14100
Antimony	μg/L																			2 J	2 J
Arsenic	μg/L	264	269	136	134	166	198 J	186	189	143	147 J	129	123	227	233 J	227	225	150	169	178	189
Barium	μg/L																			3.8 J	3.9 J
Beryllium	μg/L																			7.4	7.8
Cadmium	μg/L	258	256	284	283	285	291	276	272	232	245	222	232	220	211	226	240	238	246	271	275
Calcium	μg/L																			96300 J	110000
Chromium	μg/L					<u> </u>		+ +					<u> </u>							5.7	7.8
Cobalt	μg/L	1010		4000	1100	1000	1050			0.40	1110		0=1			00.5	221		1010	34.3	33.2
Copper	μg/L	1210	1120	1060	1130	1270	1060	919	852 J	849		812	871	933	917	825	901 J	892	1010	1170	1230
Iron	μg/L	154000	160000	155000	156000	184000	185000	181000	180000	159000	162000	133000	137000	111000	111000	140000	146000	140000	148000	152000	164000
Lead	μg/L	245	239 J	213	189	147	221	199	207	134	129	136	104	246	250	169	166	158	175	169	172
Magnesium	μg/L	100000	107000	112000	111000	122000	422000	11.0000	117000	100000	110000	101000	00200	75500	77200	06200	00200	104000	107000	22800	23100
Manganese Nickel	μg/L	106000	107000	113000	114000	123000	123000 20.9	116000	117000	109000 19	110000	101000 19.4	98200	75500	77200	96200	99300	104000	107000	114000	94900
	μg/L	27.6	25.8	53.9	22.7	28.5	20.9	17.9	48.2 J	19	100 U	19.4	21.3	31.4	24.7	25.6	23.2 J	24.4	27	35.9 724	38.4 754
Potassium Selenium	μg/L μg/L					1														724 5 J	754 5 J
Silver	μg/L μg/L					1														3 J	5 J
Sodium	μg/L μg/L					1	+	+					+	+	+		+	+ +		4840	4900
Thallium	μg/L μg/L					1	+	+					+	+	+		+	+ +		1.9	1.9
Vanadium	μg/L μg/L					1	+	+					+	+	+		+	+ +		2.8 J	1.9 1.8 J
Zinc	μg/L	59500	59300	64400	63800	66500	65300	62700	62600	57000	57800	52400	50400	44000	45100	52400	54600	55500	58400	53300	54500
Wet Chemistry	μ6/ L	33300	33300	04400	03800	00300	03300	02700	02000	37000	37800	32400	30400	44000	45100	32400	34000	33300	38400	33300	34300
Acidity	mg/L		620		640		700		790		690		600		600		670		660		700
Alkalinity	mg/L	500		500		500		100		100		50 U		100 U		10 U		10 U			
Ammonia	mg/L																				
BOD	mg/L																				
Chloride	mg/L	7.7	J	7.1	J	6.9	J	7	J	5.6	J	5.4 J		5.4 J		5.5 J		5.4 J			
Fluoride	mg/L	2.7		2.8		2.8		2.5		2.5		2.2		2.2		2.5		2.3			
Hardness	mg/L		337		366		375		372		346		313		256		306		325		
Nitrate/Nitrite	mg/L	50	U	50	U	50	U	50	U	50	U	50 U		50 U		50 U		50 U			
Nitrate	mg/L							5													
Nitrite	mg/L							5													
Orthophosphate		0.391		0.1	U	0.05	U	0.322		0.362		0.297		0.399		0.338		0.158		0.106	
Sulfate	mg/L	1150		1280		1280		1080		1170		1010		894		1070		1110			
Sulfide	mg/L																				
		Notes:	<u> </u>									· ·								· · · · · · · · · · · · · · · · · · ·	

CHIT = Chitorem pre-treatment to BCR3; NAOH = Sodium hydroxide pre-treatment to BCR4; POSTI = Combined four BCR effluents into post-treatment system; POSTE = Effluent from post-treatment system

Q = Qualifier; U = Result below method reporting limit shown; J = estimated result; D = dissolved fraction; T = total fraction

 $\mu g/L$ = micrograms per liter; mg/L = milligrams per liter

Table 4.2-1 Danny T Treatability Study Year 2: Analytical Laboratory Data **Barker-Hughesville Mining District Superfund Site**

	Location										ВС	CR1									
	Sample ID	14BH-DT-PILO	T-BCR1-061114	14BH-DT-PILO	T-BCR1-062414	14BH-DT-PILO	T-BCR1-070814	14BH-DT-PILO	T-BCR1-072214	14BH-DT-PILO	Γ-BCR1-080614	14BH-DT-PILO	T-BCR1-081914	14BH-DT-PILO	T-BCR1-090214	14BH-DT-PILO	T-BCR1-091614	14BH-DT-PILO	OT-BCR1-092314	14BH-DT-PILO	T-BCR1-092914
	Sample Date	6/11	/2014	6/24	/2014	7/8/	2014	7/22	/2014	8/6/	2014	8/19	/2014	9/2/	2014	9/16	/2014	9/2	3/2014	9/29	/2014
	Fraction	D	Т	D	T	D	Т	D	Т	D	T	D	Т	D	Т	D	Т	D	Т	D	T
Analyte	Units	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Metals					•						•										•
Aluminum	μg/L	436 J	1190	250 U	151 J	50 U	265	172 J	185 J	250 U	140 J	137 J	199 J	129 J	140 J	250 U	250 U	250 U	250 U	13 J	23.9
Antimony	μg/L																			2 J	
Arsenic	μg/L	94.5	109	20.3	20.5	5.98 J	13.7 J	5.24 J	6.77 J	20 U	20 U	0.97 J	1.4								
Barium	μg/L																			188	181
Beryllium	μg/L																			1 U	
Cadmium	μg/L	2 U	17.1	2 U	1.37 J	2 U	2.1	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	1 U	0.047 J
Calcium	μg/L																			315000	300000
Chromium	μg/L																			3.6	6.4
Cobalt	μg/L																			1.4	0.66 J
Copper	μg/L	18.6	145	5.3 J		10 U	15.7	10 U		6.94 J	10 U	14.3	10 U	10 U	10 U		10 U			2 U	1
Iron	μg/L	1410 J	2610	1250 U	1250 U	2190	11000	1250 U	687 J	1250 U	1250 U	1250 U	1250 U	1250 U	6450	1250 U	1250 U	1250 U	1250 U	1930	2450
Lead	μg/L	2 U	20.5 J	2 U	1.23 J	2 U	1.59 J	2 U	2.23	2 U	1.34 J	1.01 J	6	2 U	2 U	2 U	1.11 J	2 U	2 U	1 U	0.48 J
Magnesium	μg/L																			27800	26000
Manganese	μg/L	4380	5040	1870	2100	45000	56800	57300	64200	83000	87400	90900	95800	85900	89400	80700	85600	84500	88900	85200	86600
Nickel	μg/L	10 U	10 U	27.1	10 U	10 U	10 U	15.6	10 U	10 U	10 U	10 U	10 U	11.4	13.2						
Potassium	μg/L																			1020	975
Selenium	μg/L																			5 J	9.4
Silver	μg/L																			1 U	1 U
Sodium	μg/L																			6080	5690
Thallium	μg/L																			1 U	
Vanadium	μg/L																			0.14 J	
Zinc	μg/L	142 J	882	82.2 J	250	59.2	2200	100 U	497	100 U	175	100 U	119	100 U	76.2 J	100 U	96.3 J	100 U	50.8 J	3.8	76.2
Wet Chemistry																					
Acidity	mg/L		4 U		4 U		4 U	1	4 U		4 U		4 U		4 U		4 U		4 U		4 U
Alkalinity	mg/L	3020		1570		1020		1040		649		457		284		82.3		91.5			
Ammonia	mg/L	182		94.2		58.2		73.5		39.8		20.6		6.41		9.54		10.8			
BOD	mg/L		1755				580		710		250		110		40 U		64		73		64
Chloride	mg/L	437		83.2 J		65.7 J		10.2 J		5.8 J		5.4 J		5.4 J		5.5 J		5.8 J			
Fluoride	mg/L	104		67.1		55.2		56.3		20.5		8.7		1.7 J		1.5 J		1.1 J			
Hardness	mg/L		3270		2320		1760		1340		963		925		736		777		832		
Nitrate/Nitrite	mg/L	50 U		500 U		500 U		50 U		50 U		50 U		50 U		50 U		50 U			
Nitrate	mg/L							5 U													
Nitrite	mg/L							5 U													
Orthophosphat	te mg/L	10.6		2.9		37.7		58.2		24.5		16.4		6.36		8.96		3.54		3.43	
Sulfate	mg/L	924		840		701		378		527		682		626		552		587			
Sulfide	mg/L						12		46		61		25		7.4		19		6		18

CHIT = Chitorem pre-treatment to BCR3; NAOH = Sodium hydroxide pre-treatment to BCR4; POSTI = Combined four BCR effluents into post-treatment system; POSTE = Effluent from post-treatment system

Q = Qualifier; U = Result below method reporting limit shown; J = estimated result; D = dissolved fraction; T = total fraction

 $\mu g/L$ = micrograms per liter; mg/L = milligrams per liter

Table 4.2-1 Danny T Treatability Study Year 2: Analytical Laboratory Data **Barker-Hughesville Mining District Superfund Site**

	Location													SA	PS									
	Sample ID	14BH-DT-PI	LOT-SAPS-061114	14BH-DT-I	PILOT-SAPS-06	2414	14BH-DT-P	ILOT-SAP	S-070814	14BH-DT-PI	LOT-SAPS-072214	14BH-DT-I	PILOT-SAPS-C	80614	14BH-DT-PII	OT-SAPS-081914	14BH-DT-PI	OT-SAPS-090214	14BH-DT-PILO	T-SAPS-091614	14BH-DT-PILO	T-SAPS-092314	14BH-DT-PILC	OT-SAPS-092914
	Sample Date	6/	11/2014	E	5/24/2014		7	//8/2014		7/:	22/2014		8/6/2014		8/:	9/2014	9,	2/2014	9/16	/2014	9/23/	/2014	9/29	/2014
	Fraction	D	Т	D	Т		D		Т	D	Т	D	1		D	Т	D	T	D	Т	D	Т	D	Т
Analyte	Units	Result	Q Result Q	Result	Q Result	Q	Result	Q Re	sult Q	Result	Q Result Q	Result	Q Resul	t Q	Result	Result (Q Result	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Metals																								
Aluminum	μg/L	500	U 500 U	250	U 25	0 U	142	J	159 J	321	587	554	10	550	394	494	464	575	304	894	411	498	732	856
Antimony	μg/L																						2 J	2 J
Arsenic	μg/L	17.4	J 16.8 J	19.7	J 19.	.9 J	36.2		38.8 J	9.62	J 10.7 J	20	U :	200 U	5.75	5.41 .	1 20	J 20 U	5.35 J	20 U	20 U	20 U	3.1	3.1
Barium	μg/L																						45.6	46.5
Beryllium	μg/L																						0.77 J	0.92 J
Cadmium	μg/L	5.25	6.66	2	U 2.1	.8	2	U	2 U	2	U 2 U	2	U	20 U	2 1	J 2 L	J 2	J 2 U	2 U	1.2 J	2 U	2 U	2.2	1.9
Calcium	μg/L									_													225000	250000
Chromium	μg/L									-													4.9	10.4
Cobalt	μg/L									l						<u> </u>							36.9	24
Copper	μg/L	44	77.7	_		1 J	10		5.4 J	10		_		100 U	5.34	10 (11.8 J		6.26 J	2 J	13.1
Iron	μg/L	6260	6390	26800	2610		107000		03000	112000	118000	107000			111000	108000	81900	80200	88600	88100	101000	103000	111000	114000
Lead	μg/L	2	U 1.75 J	2	U	2 U	2	U	10.5	2	U 1.32 J	2	U	20 U	2 1	J 2 l	J 2	J 2 U	2 U	1.3 J	2 U	2 U	0.21 J	1.8
Magnesium	μg/L	20200	20000	75000	7466		444000		12000	440000	440000	440000	440	200	400000	407000	0.4000	05500	0.4200	04400	02500	02500	26300	25300
Manganese	μg/L	28200	28900	75900	7460	_	111000	1	12000	118000	118000	118000	1190		108000	107000	84800	85500	84300	84400	92500	93600	89600	91500
Nickel	μg/L	10	U 10 U	27.1	1	.0 U	19		11.3	7.19	J 9.74 J	15		100 U	19.9	21.4	26.7	26.8	18.2	26.2 J	21	18.3 J	71.3 1550	65.5 1540
Potassium Selenium	μg/L μg/L									+				-		+	+ +			-			5 J	1540 5 J
Silver	μg/L μg/L									+													2.3	3 J
Sodium	μg/L μg/L					-				+ +						+	+		-	+	+		5290	5100
Thallium	μg/L μg/L									+						+	+ +			 			0.21 J	0.24 J
Vanadium	μg/L μg/L					-				+ +						+	+		-	+	+		5 U	
Zinc	μg/L μg/L	2260	2480	6280	595	:0	16100		18300	5520	7180	18200	18:	200	27200	25800	25600	26400	27100	26800	33900	33600	38100	39300
Wet Chemistry	μ5/ L	2200	2480	0280	393	10	10100		18300	3320	7180	10200	10.	300	27200	23800	23000	20400	27100	20800	33300	33000	38100	39300
Acidity	mg/L		4 U		1	.5			260		300			100		410		280		280		320		380
Alkalinity	mg/L	481		500			500	U		138		82.5			97.8	1	85.8		12.5		17.3			
Ammonia	mg/L																							
BOD	mg/L																							
Chloride	mg/L	60.8		11.6	J		7.4	J		7.1	J	5.7	J		5.4		5.4	J	6.2 J		5.5 J			
Fluoride	mg/L	5		1	J		3.6			2.2		2	 		1.6		1.8		1.5 J		1.5 J			
Hardness	mg/L		987		90	13			802		677			540		622		531		601		638		
Nitrate/Nitrite	mg/L	50		50			50	U		50		50	U		50	,	50		50 U		50 U			
Nitrate	mg/L									5														
Nitrite	mg/L									5	U													
Orthophosphate		3.1		0.2			0.166			0.3		0.1			0.079		0.049		0.115		0.068		0.07	
Sulfate	mg/L	1060		1130			1030			939		1040			1000		806		856		948		1	
Sulfide	mg/L																				1		1	
		Notes:		•					•		<u> </u>	•		•										

CHIT = Chitorem pre-treatment to BCR3; NAOH = Sodium hydroxide pre-treatment to BCR4; POSTI = Combined four BCR effluents into post-treatment system; POSTE = Effluent from post-treatment system

Q = Qualifier; U = Result below method reporting limit shown; J = estimated result; D = dissolved fraction; T = total fraction

 $\mu g/L$ = micrograms per liter; mg/L = milligrams per liter

Table 4.2-1 Danny T Treatability Study Year 2: Analytical Laboratory Data **Barker-Hughesville Mining District Superfund Site**

	Location										ВС	R2									
	Sample ID	14BH-DT-P	ILOT-BCR2-061114	14BH-DT-F	PILOT-BCR2-062414	14BH-DT-P	ILOT-BCR2-070814	14BH-DT-PILC	T-BCR2-072214	14BH-DT-P	ILOT-BCR2-080614	14BH-DT-PIL	OT-BCR2-081914	14BH-DT-PILO	T-BCR2-090214	14BH-DT-PILO	T-BCR2-091614	14BH-DT-PILO	Г-BCR2-092314	14BH-DT-PILO	T-BCR2-092914
	Sample Date	6	/11/2014	E	5/24/2014	7	//8/2014	7/22	2/2014	8	/6/2014	8/1	9/2014	9/2/	/2014	9/16/	/2014	9/23	/2014	9/29	/2014
	Fraction	D	T	D	Т	D	Т	D	Т	D	Т	D	T	D	T	D	Т	D	Т	D	T
Analyte	Units	Result	Q Result Q	Result	Q Result C	Result	Q Result Q	Result Q	Result Q	Result	Q Result Q	Result C	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Metals																					
Aluminum	μg/L	282	J 1340	129	304	81.2	161	250 U	148 J	250	U 250 U	250 L	J 100 J	126 J	113 J	250 U	250 U	250 U	250 U	9.6 J	24.9
Antimony	μg/L																			2 J	2 J
Arsenic	μg/L	15.6	J 200 U	12.4	J 17.1 J	20	U 19.3 J	20 U	7.73 J	20	U 20 U	20 L	J 20 U	20 U	20 U	20 U	20 U	20 U	20 U	1.2	1.9
Barium	μg/L																			219	211
Beryllium	μg/L																			1 U	
Cadmium	μg/L	2	U 20 U	1.1	J 3.01	2	U 1.21 J	2 U	2 U	2	U 2 U	2 l	J 2 U	2 U	2 U	2 U	2 U	2 U	2 U	1 U	
Calcium	μg/L																			240000	241000
Chromium	μg/L																			1.9 J	11.5
Cobalt	μg/L																			0.86 J	0.7 J
Copper	μg/L	20.2		35.2	80	10		5.43 J	11.7	5.09		5.36	10 U	10 U		5.93 J	10 U	6.19 J	10 U	2 U	
Iron	μg/L	1030		1470	2530	250		1250 U	615 J	1250		533	710 J	1730	1770	1250 U	1250 U	1250 U	1250 U	876	1210
Lead	μg/L	2.61	55.7 J	2.95	10.7	2	U 7.48	2 U	5.73	2	U 1.09 J	2 L	J 1 J	2 U	2 U	2 U	1.19 J	2 U	2 U	0.045 J	1.1
Magnesium	μg/L	2000	5300	4040	4220	47200	40500	46200	40500	00000	0.4000	402000	400000	407000	112000	05000	00000	00200	02200	24200	23800
Manganese	μg/L	3980	5300	4010	4320	17200	19500	46300	48500	88000	94800	102000	106000	107000	112000	96000	98900	90200	93200	79000	83600
Nickel	μg/L	29.3	100 U	12	5.54 J	10	U 10 U	10 U	10 U	10	U 10 U	10 l	J 10 U	5.59 J	10 U	10 U	10 U	10 U	10 U	4.6 2450	13.2 2480
Potassium	μg/L μg/L					-															8.4
Selenium Silver	μg/L μg/L					-														5 J 1 U	
Sodium	μg/L μg/L					+														5050	5000
Thallium	μg/L μg/L					+		+					+		+			+ +		1 U	
Vanadium	μg/L μg/L					+		+					+		+			+ +		0.19 J	5 U
Zinc	μg/L	165	J 1370	268	670	46.8	2100	100 U	326	100	U 62.4 J	100 L	J 102	100 U	125	100 U	514	100 U	160	39.9	288
Wet Chemistry	μ ₈ / τ	103	1 1370	200	070	40.8	2100	100 0	320	100	0 02.4 3	100 0	102	100 0	123	100 0	314	100 0	100	39.9	200
Acidity	mg/L		4 U		4 1		4 U		4 U		4 U		4 U		30		4 U		4 U		4 11
Alkalinity	mg/L	1630	7 0	927		685	1 0	650	1 -	399	+ + + -	314	1 1	229	30	61.1	10	61.7	7 0		+ + +
Ammonia	mg/L	80.9		38.8		14.6		11.4		7.74		5.98		2.59		2.39		2.45			
BOD	mg/L	00.5	1758	30.0		14.0	363 U		280	7.74	121 U	3.30	83 U		40 U		54	2.43	60		42
Chloride	mg/L	425		137		85.7		10.9 J	200	6		5.5	35 0	5.4 J		5.3 J	3.	6 J	35		
Fluoride	mg/L	54.5		20		30.3		15.8		4.9		1.6		1.5 J		1.5 J		1.5 J			
Hardness	mg/L		1600		1300		1220		895		774		746		734		653		662		
Nitrate/Nitrite	mg/L	50		500		500		50 U		50		50 L		50 U		50 U		50 U			
Nitrate	mg/L			100		1 220		5 U			1		1		 			1 33		1	
Nitrite	mg/L							5 U													
Orthophosphate		73.8		41		24		14.4		6.9		2.84		2.28		2.71		1.78		1.51	
Sulfate	mg/L	960		824		562		349		615		688		753		566		560			
Sulfide	mg/L					1	30		45		31		12		16.4		29		10		20
-		Notes:			<u> </u>													•			

CHIT = Chitorem pre-treatment to BCR3; NAOH = Sodium hydroxide pre-treatment to BCR4; POSTI = Combined four BCR effluents into post-treatment system; POSTE = Effluent from post-treatment system

Q = Qualifier; U = Result below method reporting limit shown; J = estimated result; D = dissolved fraction; T = total fraction

 $\mu g/L$ = micrograms per liter; mg/L = milligrams per liter

Table 4.2-1 Danny T Treatability Study Year 2: Analytical Laboratory Data **Barker-Hughesville Mining District Superfund Site**

	Location											CHIT									
	Sample ID	14BH-DT-PILC	T-CHIT-061114	14BH-DT-PILC	OT-CHIT-06241	.4 14BH-DT-PILO	T-CHIT-070814	14BH-DT-PILC	OT-CHIT-072214	14BH-DT-PILO	T-CHIT-080614	14BH-DT-PILO	T-CHIT-08191	4 14BH-DT-PILO	T-CHIT-090214	14BH-DT-PILO	T-CHIT-091614	14BH-DT-PII	LOT-CHIT-092314	14BH-DT-PILO	OT-CHIT-092914
	Sample Date	6/11	/2014	6/24	/2014	7/8/	2014	7/22	/2014	8/6/	/2014	8/19	/2014	9/2/	/2014	9/16	/2014	9/2	23/2014	9/29	9/2014
	Fraction	D	Т	D	Т	D	T	D	Т	D	T	D	Т	D	Т	D	Т	D	Т	D	T
Analyte	Units	Result Q	Result Q	Result Q	Result	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result C	Result Q	Result	Q Result Q	Result Q	Result Q	Result Q	Result (Q Result Q	Result Q	Result Q
Metals		•	•	•					•		•				•	•	•		•		
Aluminum	μg/L	94.5	211	50 U	50	U 50 U	50 U	277	298	173 J	219 J	144 J	155	J 428	5400	250 U	6740	626	12400	2300	17600
Antimony	μg/L																			2 J	2 J
Arsenic	μg/L	48.5	52	23.6	18.5	J 7.06 J	7.06 J	20 U	6.36 J	20 U	20 U	20 U	20	U 20 U	15.8 J	7.97 J	21.9	20 (J 12.5 J	2.8	12
Barium	μg/L																			20.8	46.5
Beryllium	μg/L																			1.8	8.1
Cadmium	μg/L	2 U	2 U	2 U	2	U 2 U	1.69 J	2 U	1.86 J	2 U	2 U	2 U	2	U 2 U	53.5	2 U	77.1	2 (J 54.5	0.27 J	256
Calcium	μg/L																			221000	220000
Chromium	μg/L																			1.9 J	10.5
Cobalt	μg/L																			26.1	12.7
Copper	μg/L	24.3	22.7	10.8	14.9	10 U	8.24 J	10 U		10 U	7.05 J	10 U	10		172	10 U	299	10		2 J	363
Iron	μg/L	407	2250	2300	2700	5000	6170	4310	2950	2320	5830	1620	5120	31500	49900	3120	51400	59100	87700	74900	98500
Lead	μg/L	2 U	1.27 J	2 U	2	U 2 U	2 U	2 U	2 U	2 U	2 U	2 U	2	U 2 U	48	2 U	55.3	2 1	J 39.1	0.2 J	174
Magnesium	μg/L																			30100	29300
Manganese	μg/L	2110	2570	13200	13600	30300	33200	96300	95700	79400	81200	69000	70500	66300	69500	63400	72900	90800	95800	87700	92800
Nickel	μg/L	10 U	10 U	29.1	10	U 10 U	10 U	10 U	11.8 J	10 U	10 U	10 U	10	U 11.3	13.6	10 U	10 U	6.64	J 11.2 J	24.5	48
Potassium	μg/L																			1100	1210
Selenium	μg/L																			5 J	6.6
Silver	μg/L																			1.5	1 J
Sodium	μg/L																			6520	6390
Thallium	μg/L																			1 U	1.9
Vanadium	μg/L																			0.27 J	
Zinc	μg/L	205	401	35.2	63	30.2	298	297	887	100 U	404	100 U	586	53 J	15900	100 U	22600	100	J 31300	14100	61700
Wet Chemistry				1	1		1		1		T T	T	1		1		1			1	
Acidity	mg/L		4 U		4		4 U		4 U		4 U		4		58		4 U		200		320
Alkalinity	mg/L	894		1330		2270		1500		1230		621		155		107		28.1			
Ammonia	mg/L		\vdash				 		 	++						 					++
BOD	mg/L		\vdash				 		 	++						 					
Chloride	mg/L	163		83.7 J		200 U		7.2 J		6.3 J		5.5 J		5.4 J		5.7 J		5.4	J _		
Fluoride	mg/L	9		44.2		139		59.7		64.7		13.9		2.5		1.2 J		3.1			++
Hardness	mg/L		1140		2130		2920		2010		1620		958		585		871		637		++
Nitrate/Nitrite	mg/L	50 U		500 U		500 U		50 U		50 U		50 U		50 U		50 U		50	J		++
Nitrate	mg/L							5 U		 						 					++
Nitrite	mg/L			<u> </u>				5 U				 									++
Orthophosphate	Ç,	0.09		0.3		3.97		5.93		26.9		20.6		0.066		7.64		0.033		0.053	
Sulfate	mg/L	974		932		1020		778		653		623		663		543		808			++
Sulfide	mg/L																				
		Notes:																			

CHIT = Chitorem pre-treatment to BCR3; NAOH = Sodium hydroxide pre-treatment to BCR4; POSTI = Combined four BCR effluents into post-treatment system; POSTE = Effluent from post-treatment system

Q = Qualifier; U = Result below method reporting limit shown; J = estimated result; D = dissolved fraction; T = total fraction

 $\mu g/L$ = micrograms per liter; mg/L = milligrams per liter

Table 4.2-1 Danny T Treatability Study Year 2: Analytical Laboratory Data **Barker-Hughesville Mining District Superfund Site**

											ъ,	CR3									
	Sample ID	14BH-DT-P	ILOT-BCR3-061114	14BH-DT-PILC	OT-BCR3-06241	4 14BH-DT-PI	LOT-BCR3-070814	14BH-DT-P	ILOT-BCR3-072214	14BH-DT-PILO	T-BCR3-080614	14BH-DT-PI	LOT-BCR3-081914	14BH-DT-PILO	T-BCR3-090214	14BH-DT-PILC	OT-BCR3-091614	14BH-DT-PILC	OT-BCR3-092314	14BH-DT-PILO	T-BCR3-092914
Sa	ample Date	6,	/11/2014	6/24	4/2014	7,	/8/2014	7,	/22/2014	8/6/	2014	8/	19/2014	9/2/	/2014	9/16	5/2014	9/23	3/2014	9/29	/2014
	Fraction	D	T	D	T	D	Т	D	Т	D	Т	D	Т	D	Т	D	Т	D	Т	D	Т
Analyte	Units	Result	Q Result Q	Result Q	Result	Q Result	Q Result Q	Result	Q Result Q	Result Q	Result Q	Result	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Metals		ı										1		, ,			, ,		, ,		/
	μg/L	279	J 1500	127	133	37.9	J 26.2 J	50	U 50 U	50 U	50 U	175	J 181 J	148 J	175 J	250 U	250 U	250 U	116 J	5.5 J	
	μg/L																			2 J	2 J
	μg/L	174	180	46.4	31	26	29.3 J	16.2	J 19.7 J	10.4 J	12.2 J	6.81	J 8.3 J	20 U	8.6 J	5.37 J	20 U	6.56 J	7.09 J	4.3	4.3
	μg/L			<u> </u>		+									 					105	107
	μg/L											ļ								1 U	
	μg/L	2	U 4.87	2 U	2	J 2	0 2 0	2	U 2 U	2 U	2 U	2	U 2 U	2 U	2 U	2 U	2 U	2 U	2 U	1 U	
	μg/L											 				+ +				282000	281000
	μg/L											-				+				0.98 J	1.7 J 0.88 J
	μg/L	22.7	144	12.9	39.5	17	36.2	5.69	J 9.34 J	0.01	7.47 J	13.9	10 U	5.48 J	10 U	7.39 J	10 U	7.69 J	10 U	2.7 0.57 J	1.2 J
	μg/L μg/L	1320	J 3530	2060	1990	2070	2510	250		9.81 J 250 U	7.47 J 250 U	+	U 1250 U		10 U			1250 U		1810	1.2 J 1940
	μg/L μg/L	2.19	33.6 J	2000 2 U		1.04	J 6.88	250		250 U			U 2 U		2 U					0.062 J	0.36 J
	μg/L μg/L	2.19	33.0 J	2 0	4.07	1.04	J 0.88	2	U 1.97 J	2 0	2 0	2	2 0	2 0	2 0	2 0	2 0	2 0	2 0	27400	27500
	μg/L μg/L	4010	4700	4380	4490	9710	9760	11900	13000	39300	41000	39800	40600	46800	47400	48100	48500	54100	56000	66000	66400
	μg/L μg/L	27	29.5	51.8	10			11900		10 U	10 U	10		10 U	5.85 J	10 U		10 U		3.6	3.4
	μg/L μg/L	27	29.5	51.0	10	0 10	0 10 0	10	29.5 J	10 0	10 0	10	0 0.41 J	10 0	3.63 J	10 0	10 0	10 0	10 0	1740	1750
	μg/L μg/L					+										+ +				19	37.7
	μg/L				+							+				+ +				1 U	
	μg/L			 								 								6770	6780
	μg/L																			1 U	
	μg/L			 								 								0.63 J	0.97 J
	μg/L	155	J 693	63.6	121	95.7	116	40.8	162	44.6	108	100	U 56 J	100 U	100 U	100 U	100 U	100 U	100 U		11.8
Wet Chemistry	100	100	3 033	03.0	1	33.7	110	10.0	102		100	100	5 30 3	100 0	100 0	100 0	100 0	100 0	100 0		11.0
	mg/L		4 U		4	U	4 U		4 U		4 U		4 U		4 U		4 U		4 U		4 U
	mg/L	1670		1140		2490		2450		1950		1330		588		116		141			
	mg/L	127		80.8		199		172		117		79.8		21.9		14.4		16			
BOD	mg/L		1758				1400		1300		710		390		120		130		140		110
Chloride	mg/L	652		186 J		110	J	15.5	J	5.9 J		5.5	J	5.3 J		5.5 J		5.4 J			
Fluoride	mg/L	71.7		20 U		134		90.1		63.1		29.1		3.8		3		2 U			
Hardness I	mg/L		1870		1570		2520		2410		2060		1300		896		798		767		
Nitrate/Nitrite	mg/L	50	U	500 U		500	U	50	U	50 U		50	U	50 U		50 U		50 U			
Nitrate	mg/L							5	U												
Nitrite	mg/L							5	U												
Orthophosphate I	mg/L	55.9		39.7		19.1		11.6		10.7		19.1		16.2		14.7		11.7		10.3	
Sulfate	mg/L	912		838		376		299		311		270		464		352		237			
Sulfide	mg/L						41		120		82		80		46		53		67		59

CHIT = Chitorem pre-treatment to BCR3; NAOH = Sodium hydroxide pre-treatment to BCR4; POSTI = Combined four BCR effluents into post-treatment system; POSTE = Effluent from post-treatment system

Q = Qualifier; U = Result below method reporting limit shown; J = estimated result; D = dissolved fraction; T = total fraction

 $\mu g/L$ = micrograms per liter; mg/L = milligrams per liter

Table 4.2-1 Danny T Treatability Study Year 2: Analytical Laboratory Data **Barker-Hughesville Mining District Superfund Site**

	Location										N	AOH									
	Sample ID	14BH-DT-PILO	T-NAOH-061114	14BH-DT-PILO	T-NAOH-062414	14BH-DT-PILO	Γ-NOAH-070814	14BH-DT-PILO	T-NAOH-072214	14BH-DT-PILO	Γ-NAOH-080614	14BH-DT-PILOT	Γ-NAOH-081914	14BH-DT-PILOT	Γ-NAOH-090214	14BH-DT-PILO	T-NAOH-091614	14BH-DT-PIL	.OT-NAOH-092314	14BH-DT-PILO	T-NAOH-092914
	Sample Date	6/11	/2014	6/24	/2014	7/8/	2014	7/22	/2014	8/6/	2014	8/19/	/2014	9/2/	2014	9/16	/2014	9/:	23/2014	9/29	9/2014
	Fraction	D	Т	D	Т	D	Т	D	Т	D	T	D	Т	D	Т	D	T	D	T	D	Т
Analyte	Units	Result Q	Result Q	Result Q	Result 0	Result Q	Result Q	Result Q	Result 0	Result Q	Result Q	Result Q	Result C	Result Q	Result Q	Result Q	Result Q	Result	Q Result Q	Result Q	Result Q
Metals			,	, ,		, ,	, ,	,		, ,					r	, ,	, ,				<u>, </u>
Aluminum	μg/L	5530	5740	11100	11200	13600	13500	12900	13300	4380	4990	912	1300	250 U	824	236 J	479	8540	9030	7120	7810
Antimony	μg/L																			2 J	
Arsenic	μg/L	14.7 J	57.6	20 U	16.2 J	5.61 J	19.7 J	20 U	17.2 J	20 U	200 U	20 U	8.38 J	20 U	18.1 J	20 U	10.8 J	5.2	J 32.8	32.8	62.4
Barium	μg/L																			4 J	0.0
Beryllium	μg/L																			4.5	4.5
Cadmium	μg/L	256	249	264	259	294	283	285	272	251	255	147	145	77.2	83.1	2 U	4.25	210	216	236	234
Calcium	μg/L																			97100	99400
Chromium	μg/L																			1.8 J	2.1
Cobalt	μg/L																			42.2	40.9
Copper	μg/L	787	712	799	878	1260	1040	911	820 J		785	87.7	125	6.85 J	73.1	5.29 J	26.5	647	696	696	724
Iron	μg/L	31700	53800	17200	25000	23300	34800	563 J	16900	1250 U	9280	1740	9670	1250 U	7940	1250 U	6230	981		51700	66500
Lead	μg/L	72.7	80.9 J	135	119	123	175	86.7	105	5.6	20 U	2 U	5.79	2 U	15.9	2 U	4.32	33.5	72.4	72.4	88.7
Magnesium	μg/L																			24300	24000
Manganese	μg/L	99100	99000	104000	103000	112000	110000	112000	115000	105000	108000	91200	91000	58100	59300	24.8 J	2520	89500	91500	108000	109000
Nickel	μg/L	27.1	24.1	51.3	21.6	27	21.3	19.4	22.5 J	19.7	100 U	13.7	13.9	13.7	14.2	10 U	10 U	21.1	22.5	29.9	35.7
Potassium	μg/L																			734	748
Selenium	μg/L																			1.4 J	5 U
Silver	μg/L																			1 J	1 J
Sodium	μg/L																			141000	141000
Thallium	μg/L																			2	1.9
Vanadium	μg/L																			0.45 J	0.95 J
Zinc	μg/L	56200	55600	59900	58700	64100	62000	63000	64900	56400	57600	28200	27900	11000	12200	57.6 J	1130	47700	47300	43700	43700
Wet Chemistry	,																				
Acidity	mg/L		270		430		340		390		320		260		120		4 U		340		480
Alkalinity	mg/L	500 U		500 U		500 U		100 U		100 U		10 U		100 U		34.7		10	U		
Ammonia	mg/L																				
BOD	mg/L																				
Chloride	mg/L	7.7 J		6.9 J		6.9 J		7.1 J		5.3 J		5.4 J		5.4 J		5.4 J		5.4	J		
Fluoride	mg/L	2.2		2.5		2.6		2.7		2.2		1.1 J		1.3 J		2		2			
Hardness	mg/L		367		365		371		358		343		308		226		138		317		
Nitrate/Nitrite	mg/L	50 U		50 U		50 U		50 U		50	U										
Nitrate	mg/L							5 U													
Nitrite	mg/L							5 U													
Orthophosphat	te mg/L	0.038		0.1 U		0.036		0.013		0.01 U		0.005 U		0.005 U		0.014		0.005		0.036	
Sulfate	mg/L	1040		1050		1160		1250		1120		1010		819		883		976			
Sulfide	mg/L	İ				İ															

CHIT = Chitorem pre-treatment to BCR3; NAOH = Sodium hydroxide pre-treatment to BCR4; POSTI = Combined four BCR effluents into post-treatment system; POSTE = Effluent from post-treatment system

Q = Qualifier; U = Result below method reporting limit shown; J = estimated result; D = dissolved fraction; T = total fraction

 $\mu g/L$ = micrograms per liter; mg/L = milligrams per liter

Table 4.2-1 Danny T Treatability Study Year 2: Analytical Laboratory Data **Barker-Hughesville Mining District Superfund Site**

	Location										В	CR4									
	Sample ID	14BH-DT-PILO	T-BCR4-061114	14BH-DT-PILO	T-BCR4-062414	14BH-DT-PILO	T-BCR4-070814	14BH-DT-PILO	T-BCR4-072214	14BH-DT-PILO	T-BCR4-080614	14BH-DT-PILO	Γ-BCR4-081914	14BH-DT-PILO	Γ-BCR4-090214	14BH-DT-PILO	T-BCR4-091614	14BH-DT-PILO	OT-BCR4-092314	14BH-DT-PILO	T-BCR4-092914
	Sample Date	6/11	/2014	6/24	/2014	7/8/	2014	7/22	/2014	8/6/	2014	8/19	/2014	9/2/	2014	9/16	/2014	9/2	3/2014	9/29/	/2014
	Fraction	D	Т	D	T	D	Т	D	T	D	T	D	T	D	Т	D	Т	D	Т	D	T
Analyte	Units	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Metals																					
Aluminum	μg/L	460 J	1100	108 J	169 J	133 J	654	250 U	148 J	250 U	105 J	250 U	250 U	304	250 U	250 U	250 U	250 U	250 U	4.2 J	
Antimony	μg/L																			2 U	
Arsenic	μg/L	29.5	35.4	9.03 J	17 J	20 U	17.4 J	20 U	14.4 J	20 U	7.65 J	5.38 J	9.17 J	20 U	20 U	20 U	20 U	20 U	5.98 J	1 U	
Barium	μg/L																			0.19 J	
Beryllium	μg/L																			1 U	
Cadmium	μg/L	12.5	38	4.51	13.2	2 U	13.8	2 U	2.25	2 U	2 U	2 U	1.11 J	2 U	1.39 J	2 U	2 U	2 U	2.27	1 U	2.4
Calcium	μg/L																			956	107000 J
Chromium	μg/L																			2 U	
Cobalt	μg/L																			0.21 J	1.3
Copper	μg/L	63.3	194	15.9	40.2	10 U		6 J	8.53 J	7.04 J	6.8 J	12.8	9.19 J	10 U	5.44 J	6.29 J	7.35 J	7.68 J		2 U	1
Iron	μg/L	1310 J	3230	1440	1490	1030 J	2070	1250 U	578 J	1250 U	1250 U	1250 U	1250 U		1250 U	1250 U	1250 U			496	442
Lead	μg/L	16.2	43.8 J	2.12	3.87	2 U	8.54	2 U	3.67	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	1 U	0.48 J
Magnesium	μg/L																			106 J	18400
Manganese	μg/L	9680	10800	10700	11100	61800	64700	62800	67700	99300	105000	72100	71900	71100	74100	55600	58200	55500	57000	366	67000
Nickel	μg/L	25	29.3	31.1	10 U	J 10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	0.26 J	24.8
Potassium	μg/L																			500 U	
Selenium	μg/L																			5 U	1.9 J
Silver	μg/L																			1 J	1 J
Sodium	μg/L																			36.4 J	226000
Thallium	μg/L																			1 U	
Vanadium	μg/L																			5 U	
Zinc	μg/L	1920	3340	734	1700	271	7400	324	3180	205	1290	137	1040	88.9 J	772	50.4 J	468	159	938	158	970
Wet Chemistry																					
Acidity	mg/L		4 U		4 U	J	4 U		4 U		4 U		4 U		4 U		4 U		4 U		4 U
Alkalinity	mg/L	1540		569		404 J		507		461		451		176		51		58.5			
Ammonia	mg/L	52.6		12.1		4.55		7.65		6		5.52		1.33		1.27		1.56			
BOD	mg/L		1749				363 U		200		121 U		84		40 U		67		87		70
Chloride	mg/L	382		80.8 J		68.5 J		9.8 J		5.4 J		5.4 J		5.4 J		5.4 J		5.4 J			
Fluoride	mg/L	32.5		20 U		18 J		10.8		2.2		2.1		1.6 J		1.8 J		1.7 J			
Hardness	mg/L		1040		868		754		552		599		418		355		284		289		
Nitrate/Nitrite	mg/L	50 U		500 U		500 U		50 U		50 U		50 U		50 U		50 U		50 U			
Nitrate	mg/L					İ		5 U													
Nitrite	mg/L					İ		5 U													
Orthophosphat	te mg/L	43	İ	28.2		13.6		7.1		2.5		2.2		1.23		1.28		1.63		5.79	
Sulfate	mg/L	1030		862		724		526		628		630		732		642		636			
Sulfide	mg/L						5		48		35		68		18		35		39		34

CHIT = Chitorem pre-treatment to BCR3; NAOH = Sodium hydroxide pre-treatment to BCR4; POSTI = Combined four BCR effluents into post-treatment system; POSTE = Effluent from post-treatment system

Q = Qualifier; U = Result below method reporting limit shown; J = estimated result; D = dissolved fraction; T = total fraction

 $\mu g/L$ = micrograms per liter; mg/L = milligrams per liter

Table 4.2-1 Danny T Treatability Study Year 2: Analytical Laboratory Data **Barker-Hughesville Mining District Superfund Site**

	Location											PO:	TI							
	Sample ID	14BH-DT-	PILOT-	-POSTI-062414	14BH-DT-	PILOT	-POSTI-070814	14BH-DT-PILO	T-POSTI-07221	4 14BH-DT-PIL	OT-POSTI-080614	14BH-DT-PIL	OT-POSTI-08191	14BH-DT-	PILOT-POSTI-090214	14BH-DT-PILOT-POSTI- 091614	14BH-DT-	PILOT-POSTI-092314	14BH-DT-PILO	T-POSTI-09291
	Sample Date		6/24/:	2014		7/8/2	2014	7/22	/2014	8/	6/2014	8/:	19/2014		9/2/2014	9/16/2014		9/23/2014	9/29	/2014
	Fraction	D		Т	D		T	D	T	D	Т	D	Т	D	Т	T	D	Т	D	T
Analyte	Units	Result	Q	Result Q	Result	Q	Result Q	Result Q	Result	Q Result	Q Result Q	Result	Q Result (Result	Q Result Q	Result Q	Result	Q Result Q	Result Q	Result (
Metals																				
Aluminum	μg/L	49.9	J	102	33.9) J	108	29.1 J	66.7	250	J 138 J	118	J 134	250	U 130 J	250 U	250	U 250 U	9 J	16.8
Antimony	μg/L																		2 J	2 .
Arsenic	μg/L	14.3	J	18.2 J	9.21	L J	200 UJ	5.88 J	9.52	J 20	J 200 U	20	J 20 l	J 20	U 20 U	20 U	5.53	J 20 U	1.7	2.9
Barium	μg/L																		159	161
Beryllium	μg/L																		1 U	1 1
Cadmium	μg/L	1.57	J	4.33	2	2 U	20 U	2 U	1.16	J 2	J 20 U	2	J 2 l	J 2	U 2 U	2 U	2	U 2 U	1 U	0.61
Calcium	μg/L																		239000	238000
Chromium	μg/L																		0.79 J	1.1
Cobalt	μg/L																		4.3	0.82
Copper	μg/L	13.3		38.5	10	U	100 U	5.52 J	6.12	J 5.72	J 100 U	7.85	J 10 U	J 10	U 10 U	5.07 J	6.84	J 10 U	2 U	1.7
ron	μg/L	863		1340	250	U	4550	250 U	493	1250	J 1250 U	1250	J 1250 l	J 1720	2520	1250 U	1250	U 1250 U	1770	2140
Lead	μg/L	2	U	3.25	2	2 U	20 U	1.48 J	2.62	2	J 20 U	2	J 2 l	J 2	U 2 U	2 U	2	U 2 U	0.045 J	0.37
Magnesium	μg/L																		24300	24900
Manganese	μg/L	5490		5520	37400)	41000	42100	46100	83800	85400	76500	77400	80700	79900	77000	69500	73800	84700	84000
Nickel	μg/L	25.6		10 U	10	U	100 U	10 U	10	JJ 10	J 100 U	10	J 10 l	J 10	U 10 U	10 U	10	U 10 U	3.2	2.8
Potassium	μg/L																		1750	1780
Selenium	μg/L																		10.1	15.4
Silver	μg/L																		1 U	1 1
Sodium	μg/L																		64200	63400
Thallium	μg/L																		1 U	1 1
Vanadium	μg/L																		0.56 J	0.73
Zinc	μg/L	281		626	29.4		3080	31.3	857	100	J 263	100	J 326	100	U 268	191	100	U 346	16.3	360
Wet Chemistry	1			<u> </u>			<u> </u>		l l	1			1			J	•	· · · · · · · · · · · · · · · · · · ·		
Acidity	mg/L			4 U			4 U		4	J	4 U		4 1	J	4 U	4 U		4 U		4 (
Alkalinity	mg/L	949			1190)		1040		742		611		307			89.4			
Ammonia	mg/L	51.2			70.8			58.6		35.8		26.6		8.09			7.9			
BOD	mg/L					1 1	540		550		310		120		44	67		77		62
Chloride	mg/L	90.4	J		77.1	J		10.5 J		5.6	J	5.3	J	5.3	J		5.4	J		
Fluoride	mg/L		U		63.9			42.3		19.6		9.4		2.2				U		
Hardness	mg/L			1440		1 1	1540		1300		997		813		676			629		
Nitrate/Nitrite	mg/L	500	U		500	U		50 U		50		50		50	U		50	U		
Nitrate	mg/L							5 U			1						1			
Nitrite	mg/L		1 1			1 1		5 U												
Orthophosphate		26.2	1 1		20.6	5		25.5		13.5		9.8		6.44			5.25		4.67	
Sulfate	mg/L	831			603			424		546	+ +	559		662			488			1
Sulfide	mg/L	331	+		505		27		53	1 3 10	33	333	48	- 502	12	30	100	32		33

INF = Adit influent to treatment system; BCRX = Biochemical reactor barrel effluent; SAPS = Successive alkalinity producing system pre-treatment to BCR2;

CHIT = Chitorem pre-treatment to BCR3; NAOH = Sodium hydroxide pre-treatment to BCR4; POSTI = Combined four BCR effluents into post-treatment system; POSTE = Effluent from post-treatment system

Q = Qualifier; U = Result below method reporting limit shown; J = estimated result; D = dissolved fraction; T = total fraction

µg/L = micrograms per liter; mg/L = milligrams per liter

Table 4.2-1
Danny T Treatability Study Year 2: Analytical Laboratory Data
Barker-Hughesville Mining District Superfund Site

	Location												POS	STE										
		14BH-DT-PII	LOT-PC	OSTE-062414	14BH-DT-PIL	OT-POSTE-0	070814	14BH-DT-PI	ILOT-	POSTE-072214	14BH-DT-PILO	DT-POSTE-080614			POSTE-081914	14BH-DT-PI	LOT-POSTE-090214		PILOT-POSTE- 1614	14BH-DT-P	LOT-POSTE-0923	14BH-DT-	PILOT-P	POSTE-092914
	Sample Date		/24/20	14		8/2014			/22/2	2014		6/2014		3/19/2	2014	9	/2/2014	9/16	/2014		/23/2014		9/29/2	
	Fraction	D		T	D	1		D		T	D	T	D		T	D	T		T	D	T	D		T
Analyte	Units	Result	Q	Result Q	Result	Q Resul	t Q	Result	Q	Result Q	Result C	Result Q	Result	Q	Result Q	Result	Q Result Q	Result	Q	Result	Q Result	Q Result	Q	Result Q
Metals Aluminum	μg/L	89.3		246	70.2	1 1	.38	50	11	590	50 L	329	119	1 1	174 J	250	U 145 J	3960	\lambda	250	U 250	U 2.	ıl ı l	6.6 J
Antimony	μg/L μg/L	03.3		240	70.2	- 1	.30	30	U	390	30 0	329	119	J	1/4 J	230	0 143 1	3900		230	0 230	0 2.	7 J	2 J
Arsenic	μg/L μg/L	49.9		65.3	16.9	1 3	6.5 J	16.5		22.4	14.1	200 U	12	J	11.5 J	5.2	J 20 U	41.5		8.25	J 8.71	J 5.4	1	5.6
Barium	μg/L μg/L	43.3		05.5	10.9	, ,	0.5	10.5	J	22.4	14.1	200 0	12	, J	11.5 7	3.2	J 20 0	41.0	'I	0.23	J 6.71	87.		92
Beryllium	μg/L μg/L			<u> </u>				1							-	+	+					87.0	1 11	1 U
Cadmium	μg/L μg/L	2		5.75	1.75		.95	2	U	2 U	2 (J 20 U	1	U	2 U	2	U 2 U	3.43		1	U 2		1 11	0.073 J
Calcium	μg/L μg/L	2	0	5.75	1.73	J 2	.93	2	U	2 0	2 0	, 20 0		U	2 0	2	0 2 0	3.43	2		0 2	24700		238000
Chromium	μg/L μg/L															-							+-+	
								 								+						0.3	-	0.51 J
Cobalt	μg/L	0.40	_	40.2	F 70		0.1	10		10 111	10 1	100 11	10	l	10 11	F 20	10 11	24.2		10		3.7	-	0.75
Copper	μg/L	8.48 1020	J	48.3	5.78 974		8.1	10		10 UJ	10 U		10		10 U 1250 U		J 10 U	34.2		10 1250				0.82 J
Iron	μg/L			2720		13		250	_	756	250 L		1250	_		+					U 1250		+-+	1780
Lead	μg/L	2	U	15.8	2	5	.61		U	7.81	2 L	J 20 U	2	U	2 U	2	U 2 U	118	3	2	U 1.5	J 0.09		0.53 J
Magnesium	μg/L	2010		5020	11500	446	200	12100		1 1200	24400	25200	54400		54000	67400	50500	64206		47700	47200	2500		24500
Manganese	μg/L	2910		5030	11500	119	_	13100		14300	34400	36200	51100	 	51900	67400	69600	61300		47700	47200	5800		56800
Nickel	μg/L	53		28.2	10	U	10 U	10	U	10 UJ	10 L	J 100 U	10	U	10 U	7.13	J 10 U	10	U	10	U 10			8.1
Potassium	μg/L			-												1						357	-	3500
Selenium	μg/L																					1.	-	1.2 J
Silver	μg/L																						l U	1 U
Sodium	μg/L																					5400)	53000
Thallium	μg/L																						l U	1 U
Vanadium	μg/L																					0.43	+-+	0.54 J
Zinc	μg/L	73.8		815	1120	14	140	16.3	J	347	15.1	169	100	U	156	100	U 92.1 J	1680)	100	U 101	6.3	2	68.7
Wet Chemistry								1				1	1					1	1	1				
Acidity	mg/L			4 U			4 U			4 U		4 U			4 U		4 U	4	l U		4	U		4 U
Alkalinity	mg/L	1480			1100			893			849		726			295				75.5				
Ammonia	mg/L	51.3			46.6			41.7			29.7		25.5			7.1				6.33				
BOD	mg/L					4	160			280		73			87		40 U	(U		5			2 U
Chloride	mg/L	312			85.3	J		15	J		9 J		6.6			5.8				6.3	J			
Fluoride	mg/L	57.6			38.8			11.7			2		3.5			1.5				1.6	-			
Hardness	mg/L			1520		14	180			933		1010			891		693				629			
Nitrate/Nitrite	mg/L	500	U		500	U		50	_		50 L	J	50	U		50	U			50	U			
Nitrate	mg/L								U															
Nitrite	mg/L							5																
Orthophosphate	mg/L	4.5			5.36			4.2			2.3		1.7			1.83				1.23		0.03	3	
Sulfate	mg/L	888			656			264			422		539			697				543				
Sulfide	mg/L						8			3.4		5.7	1		1 U		0.2 U	0.2	2 U		0.04	U	1 1	0.06

INF = Adit influent to treatment system; BCRX = Biochemical reactor barrel effluent; SAPS = Successive alkalinity producing system pre-treatment to BCR2;

CHIT = Chitorem pre-treatment to BCR3; NAOH = Sodium hydroxide pre-treatment to BCR4; POSTI = Combined four BCR effluents into post-treatment system; POSTE = Effluent from post-treatment system

Q = Qualifier; U = Result below method reporting limit shown; J = estimated result; D = dissolved fraction; T = total fraction

μg/L = micrograms per liter; mg/L = milligrams per liter

Table 4.2-2 Danny T Treatability Study Year 2: Pilot Test Field Parameters **Barker-Hughesville Mining District Superfund Site**

											Da	te								
Parameter	Units	Location	6/9/2014	6/11/2014	6/17/2014	6/24/2014	7/2/2014	7/8/2014	7/15/2014	7/22/2014	7/29/2014	8/6/2014	8/12/2014	8/19/2014	8/26/2014	9/2/2014	9/9/2014	9/16/2014	9/23/2014	9/30/2014
		INF	2.76	2.83	2.85	2.67	2.4	2.45	2.53	2.58	2.46	2.69	2.56	2.59	2.68	2.59	2.56	2.64	2.43	2.57
		BCR1	7.23	7.16	6.98	6.8	6.79	6.38	5.95	6.01	6	6.05	6.05	6.08	6.19	5.99	6.1	7.07	6.5	6.2
		SAPS	6.54	6.63	6.47	5.85	5.43	5.73	5.82	5.45	5.4	5.51	5.58	5.06	5.31	5.35	5.64	5.53	5.94	5.47
		BCR2	6.78	6.68	6.68	6.46	6.62	6.29	6.18	6.26	6.02	6.07	6.02	5.94	6.07	5.92	6.11	6.72	6.53	6.2
mil		CHIT	8.31	8.43	7.8	7.36	6.83	6.9	6.51	6.36	6.15	6.13	6.09	5.94	6.05	5.51	5.82	6.08	5.98	5.37
pН	su	BCR3	6.87	6.66	6.62	6.45	6.68	6.7	6.56	6.64	6.67	6.57	6.60	6.57	6.55	6.3	6.39	6.82	6.67	6.48
		NAOH	7.08	3.21	4.07	3.22	2.83	3.21	2.94	4.38	2.8	5.23	3.84	5.91	2.82	5.15	5.27	11.47	4.32	3.03
		BCR4	7.11	7.01	6.81	6.57	6.54	6.35	6.29	6.45	6.24	6.43	6.51	6.24	6.41	6.23	6.52	7.04	5.96	6.66
		POSTI	7.11	7.11	7.54	7.71	6.63	6.43	6.45	6.45	6.48	6.43	6.45	6.31	6.32	6.19	6.33	6.83	5.93	6.55
		POSTE			7.64	6.79	7.21	7.36	7.36	7.7	7.36	7.44	7.27	7.17	7.33	6.07	6.4	8.08	6.89	7.46
		INF	1.84	1.79	2.7	1.994	2.146	2.162	2.04	2.024	1.96	1.615	1.89	1.542	1.63	1.91	2.35	1.813	1.82	1.84
		BCR1	6.74	7.16	6.09	3.827	4.261	3.284	3.115	2.611	2.2	1.78	2.01	1.634	1.68	1.74	2	1.548	1.63	1.4
		SAPS	2.55	2.76	2.285	1.967	2.022	1.926	1.721	1.719	1.74	1.492	1.74	1.46	1.53	1.62	1.93	1.491	1.55	1.35
		BCR2	5.78	6.68	6.071	3.468	2.774	2.276	1.969	1.768	1.68	1.438	1.74	1.308	1.52	1.77	1.87	1.384	1.3	1.43
Conductivity	mS/cm	CHIT	3.59	3.17	2.802	3.941	5	5.794	4.316	3.72	3.1	2.649	2.57	1.707	1.67	1.58	1.91	1.702	1.55	1.3
Comademicy		BCR3	6.35	6.66	6.706	3.481	4.463	5.435	5.113	4.673	3.53	3.366	3.65	2.412	2.02	2.11	2.09	1.584	1.42	1.3
		NAOH	1.44	3.21	1.862	1.897	2.104	2.076	2.068	1.911	1.96	1.623	1.85	1.603	1.56	1.81	2.27	2.358	1.62	1.49
		BCR4	5.99	7.01	5.45	2.631	2.381	2.141	1.84	1.774	1.85	1.562	1.79	1.638	1.65	1.81	2.05	1.577	1.51	1.34
		POSTI	6.32	7.11	6.091	4.836	3.526	3.367	2.564	2.552	2.43	1.915	2.31	1.779	1.7	1.8	2	1.52	1.46	1.31
		POSTE			5.792	3.167	3.218	3.102	2.566	1.938	2.14	1.792	2.05	2.153	1.62	1.81	1.99	1.405	1.49	1.29
		INF	471	463	486.1	479.5	311.4	NA	489.5	488.4	501	485.1	491	493.8	510	504	476	477.8	501	485
		BCR1	-91	-13	107.3	-173.2	-245.3	-214.6	-181.4	-144	-265	-191.1	-242	-166.3	-180	-61.6	-88	-261.7	-299	-235
		SAPS	-34	-55	130.1	154.3	100.4	71.1	46.1	61.1	42	63.8	48.2	130.2	102	110	58.3	54.3	26.5	83.5
		BCR2	-64	-50	32.3	-62.5	-204.9	-257.4	-288.1	-181.3	-255	-254.4	-164	-144.3	-200	-145	-235	-266.7	-231	-176
ORP	mV	CHIT	-113	149	97	93.6	71.2	20.5	-231.2	-144.1	-220	-157.5	-260	-127.9	-102	60.8	-80	-260.1	-10.7	155
		BCR3	-100	-55	13.2	-59.4	-250.6	-327.4	-332.1	-218.7	-330	-311.3	-296	-227.9	-215	-188	-218	-282.6	-228	-193
		NAOH	69	478	214.1	220.1	273	174.6	452.4	97.6	498	16.7	312	-9.4	503	338	198	36.9	364	474
		BCR4	-67	-71	18.9	-60	-216.2	-256.1	-273.2	-187.8	-255 263	-279.7	-310	-170.7	-209	-157	-223	-280.9	-217	-198
		POSTI POSTE	-39	-54	27.8 33.6	-27.4 -32	-248.9 -251.5	-315.9 -279.4	-294.7 -299.4	-188.2 -21.3	-263 -215	-248.1 -216.5	-290 -258	-199.1 -234	-195 128	-123 326	-177 108	-262.3 -36.4	-210 195	-165 163
			C F.C	2.20								-210.5								
		INF BCR1	6.56 0.34	3.26 0	0.81	1.25 0.07	5.95 0.72	3.96 0.25	3.2 1.13	5.5 1.06	2.75 0.66	2.07	3.53 0.62	4.04	2.71 0.71	4.3 2.14	6.45 1.14	4.46 1.97	3.23 0.73	3.98 1.22
		SAPS	0.34	0	0.81	0.62		1.69		3.86		2.07	1.95	2.78	1.38	1.95		1.54	2.21	2.92
		BCR2	0.37	0	0.88	0.62	1.06 0.35	0.17	2.71 0.54	0.59	1.9 0.49	1.01	1.95	1.15	0.54	1.55	3.27 0.88	2.1	0.55	0.99
Dissolved		CHIT	0.27	9.77	0.98	1.02	1.3	1.45	1	1.59	1.2	3.57	1.15	4.39	0.96	2.92	1.56	1.08	1.44	3.2
Oxygen	mg/L	BCR3	0.27	0	0.9	0.86	0.22	0.28	0.64	0.66	0.4	1.13	0.43	0.92	0.38	1.21	1.39	2.22	1.07	1.12
2,82		NAOH	6.08	2.32	3.74	5.67	6.61	6.16	5.77	6.48	3.6	6.49	5.68	6.18	7.2	6.79	8.32	6.44	8.11	7.9
		BCR4	0	0	0.84	1.02	0.64	0.39	0.64	0.78	0.46	1.13	0.44	1.46	0.55	1.5	1.35	2.33	1.55	1.31
		POSTI	1.53	0	2.69	0	0.86	0.47	1.06	0.9	0.68	0.81	0.44	1.21	0.68	1.28	2.13	2.83	1.8	3.21
		POSTE	NA	NA	0.53	4.11	0.44	0.3	0.34	2.46	0.96	1.49	1.00	0.97	3.24	7.57	15.4	11.54	7.84	13.4
		INF	22.5	8.19	19.21	22.18	8.14	10.98	16.27	11.75	21.9	12.65	17.1	13.46	17.6	9.94	6.25	16.63	15.4	14.5
		BCR1	15.7	9.74	10.26	15.17	11.1	14.45	16.59	14.02	19.2	14.59	18.3	15.1	12.5	9.44	7.37	12.82	16.4	8.94
		SAPS	16.84	8.38	10.86	13.87	10.59	12.69	15.92	14.37	19.1	14.7	19.3	15.2	10.4	9.56	6.17	10.89	15.1	8.25
		BCR2	16.19	9.54	9.14	13.23	10.71	13.75	15.95	13.94	18.2	15.15	19.7	14.88	10.4	9.57	6.69	11.44	14.2	8.7
_		CHIT	16.03	8.96	10.95	14.37	11.44	13.72	16.15	14.75	19.5	14.82	19.2	15.24	10.3	9.42	6.46	10.29	16.2	8.43
Temperature	°C	BCR3	15.12	9.67	10.03	13.26	10.9	15.19	15.8	14.15	19.1	15.01	19.6	15.25	10.9	9.86	7.36	8.8	13.5	8.21
		NAOH	16.37	8.98	11.81	16.66	10.67	13.43	16.22	14.32	18.7	14.65	18.6	15.41	8.8	9.8	6.34	12.29	14.4	8.3
		BCR4	15.21	9.36	9.96	13.2	10.93	15	15.65	14.59	19.9	15.02	20.7	15.82	10.3	10.6	6.93	9.4	13.8	8.06
		POSTI	15.85	13.4	11.02	19.61	10.75	16.84	16.11	14.49	21.2	15.55	20.8	17.44	11.5	11.2	6.22	14.42	14.6	9.11
		POSTE			14.09	13.58	8.57	16.2	15.66	13.21	17.3	15.32	17.4	16.9	15.2	10.1		13.8	17.2	11.1
Notes:						<u>'</u>														

su = standard units

mV= millivolts

°C = degrees Celcius INF = Adit influent to treatment system BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2

CHIT = Chitorem pre-treatment to BCR 3

NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTI = Combined 4 BCR effluents into post-treatment system

POSTE = Effluent from post-treatment system

Table 4.2-3
Danny T Treatability Study Year 2: Pilot Test Percent Removal
Barker-Hughesville Mining District Superfund Site

Location																		Е	CR1 (compared t	o Infl	uent locatio	on)																	
Sample ID	14B	H-DT-PILC	T-BCF	R1-061114	14E	BH-DT-PILO	T-BCF	R1-062414	14BF	1-DT-PILO	T-BCR	1-070814	14B	H-DT-PILO	T-BCF	R1-072214	14	BH-DT-PILC	T-BC	R1-080614	146	H-DT-PILO	T-BCR	1-081914	14E	BH-DT-PILC	T-BCF	R1-090214	14	BH-DT-PILO	T-BCR	1-091614	14	BH-DT-PILC	T-BCF	1-092314	14	BH-DT-PILO	OT-BCR1	-092914
Sample Date		6/11	/2014			6/24	/2014			7/8/	2014			7/22	/2014	,		8/6	/2014			8/19	/2014			9/2	/2014			9/16	/2014			9/23	3/2014			9/2	9/2014	
Fraction		D		T		D		T		D		T		D		T		D		T		D		T		D		T		D		T		D		Т		D		T
Analyte	%	Removal	%	Removal	%	Removal	%	Removal	% R	emoval	% I	Removal	% l	Removal	%	Removal	%	Removal	%	Removal	%	Removal	% I	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	6 Removal	% R	lemoval
Metals																																								
Aluminum		96.5%		90.9%	>	98.2%		98.9%	>	99.7%		98.2%		98.8%		98.7%	^	98.0%		98.9%		98.7%		98.2%		99.0%		98.9%	>	98.1%	>	98.2%	>	98.1%	>	98.1%		99.9%		99.8%
Arsenic		64.2%		59.5%		85.1%		84.7%		96.4%		93.1%		97.2%		96.4%	>	86.0%	>	86.4%	>	84.5%	>	83.7%	>	91.2%	>	91.4%	>	91.2%	>	91.1%	>	86.7%	>	88.2%		99.5%		99.3%
Cadmium	>	99.2%		93.3%	>	99.3%		99.5%	>	99.3%		99.3%	>	99.3%	>	99.3%	>	99.1%	>	99.2%	>	99.1%	>	99.1%	>	99.1%	>	99.1%	>	99.1%	>	99.2%	>	99.2%	>	99.2%	>	99.6%		100.0%
Copper		98.5%		87.1%		99.5%		98.5%	>	99.2%		98.5%	>	98.9%	>	98.8%		99.2%	>	99.1%		98.2%	>	98.9%	>	98.9%	>	98.9%	>	98.8%	>	98.9%	>	98.9%	>	99.0%	>	99.8%		99.8%
Iron		99.1%		98.4%	>	99.2%	>	99.2%		98.8%		94.1%	>	99.3%		99.6%	>	99.2%	>	99.2%	>	99.1%	>	99.1%	>	98.9%		94.2%	>	99.1%	>	99.1%	>	99.1%	>	99.2%		98.7%		98.5%
Lead	>	99.2%		91.4%	>	99.1%		99.3%	>	98.6%		99.3%	>	99.0%		98.9%	>	98.5%		99.0%		99.3%		94.2%	>	99.2%	>	99.2%	>	98.8%		99.3%	>	98.7%	>	98.9%	>	99.4%		99.7%
Manganese		95.9%		95.3%		98.3%		98.2%		63.4%		53.8%		50.6%		45.1%		23.9%		20.5%		10.0%		2.4%		-13.8%		-15.8%		16.1%		13.8%		18.8%		16.9%		25.3%		8.7%
Nickel	>	63.8%	>	61.2%		49.7%	>	55.9%	>	64.9%	>	52.2%	>	44.1%	>	79.3%	>	47.4%	NA		>	48.5%	>	53.1%		50.3%	>	59.5%	>	60.9%	>	56.9%	>	59.0%	>	63.0%		68.2%		65.6%
Zinc		99.8%		98.5%		99.9%		99.6%		99.9%		96.6%	>	99.8%		99.2%	>	99.8%		99.7%	>	99.8%		99.8%	>	99.8%		99.8%	>	99.8%		99.8%	>	99.8%		99.9%		100.0%		99.9%
Wet Chemistry																																								
Acidity			^	99.4%			>	99.4%			>	99.4%			^	99.5%			>	99.4%			>	99.3%			>	99.3%			>	99.4%			>	99.4%			>	99.4%
Alkalinity	<	-504.0%			<	-214.0%			<	-104.0%			<	-940.0%			<	-549.0%			<	-814.0%			<	-184.0%			<	-723.0%			<	-815.0%						
Ammonia	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
BOD	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Orthophosphate	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Sulfate		19.7%				34.4%				45.2%				65.0%				55.0%				32.5%				30.0%				48.4%				47.1%						
Sulfide	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	

NA = Percent removal calculation is not applicable due to the following logic cases:

1) The treated water effluent is non-detect, and the raw water was detected at a concentration less than the treated water effluent reporting limit.

2) The raw water is non-detect, and the treated effluent water was detected at a concentration less than the raw water reporting limit.

3) Both the raw water and the treated water effluent are non-detect.

4) Percent removal for certain wet chemistry parameters are not meaningful comparisons; therefore, calculations were not completed.

= Adit influent to treatment system

BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2

CHIT = Chitorem pre-treatment to BCR 3

NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTE = Effluent from post-treatment system

olved Metals BOD= Biological oxygen demand

Table 4.2-3
Danny T Treatability Study Year 2: Pilot Test Percent Removal
Barker-Hughesville Mining District Superfund Site

Location																		S	APS (compared t	o Influ	ent locatio	n)																	
Sample ID	14B	H-DT-PILO	T-SAP	S-061114	14B	BH-DT-PILO	T-SAF	PS-062414	14B	H-DT-PILO	T-SAP	S-070814	14E	H-DT-PILO	T-SAI	PS-072214	14	BH-DT-PILO	T-SAF	PS-080614	14E	H-DT-PILO	T-SAPS-0	81914	14B	BH-DT-PILO	T-SAP	PS-090214	14	BH-DT-PILO	T-SAP	S-091614	14	BH-DT-PILO	T-SAP	S-092314	146	BH-DT-PILO	T-SAPS-0	92914
Sample Date		6/11	/2014			6/24	/2014			7/8/	2014			7/22	/2014			8/6	2014			8/19	/2014			9/2/	/2014			9/16	/2014			9/23	/2014			9/29	9/2014	
Fraction		D		T		D		T		D		T		D		T		D		T		D	1			D		T		D		T		D		T		D	Ţ	
Analyte	% R	Removal	%	Removal	% I	Removal	%	Removal	% I	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	% Ren	noval	% ا	Removal	%	Removal	%	Removal	% I	Removal	%	Removal	%	Removal	%	Removal	% Ren	noval
Metals																																								
Aluminum	>	96.0%	>	96.2%	>	98.2%	>	98.2%		99.1%		98.9%		97.8%		96.0%		95.6%		87.1%		96.3%	9	95.5%		96.2%		95.3%		97.6%		93.4%		96.9%		96.3%		94.7%	Ĝ	93.9%
Arsenic		93.4%		93.8%		85.5%		85.1%		78.2%		80.4%		94.8%		94.3%	>	86.0%		-36.1%		95.5%	g	95.6%	>	91.2%	>	91.4%		97.6%	>	91.1%	>	86.7%	>	88.2%		98.3%	Ĝ	98.4%
Cadmium		98.0%		97.4%	>	99.3%		99.2%	>	99.3%	>	99.3%	>	99.3%	>	99.3%	>	99.1%	>	91.8%	>	99.1%	> 9	99.1%	>	99.1%	>	99.1%	>	99.1%		99.5%	>	99.2%	>	99.2%		99.2%	ĉ	99.3%
Copper		96.4%		93.1%	>	99.1%		99.2%	>	99.2%		99.5%	>	98.9%		98.8%	>	98.8%	>	91.2%		99.3%	> 9	98.9%	>	98.9%		99.4%		99.4%		98.7%		99.4%		99.4%		99.8%	ĉ	98.9%
Iron		95.9%		96.0%		82.7%		83.3%		41.8%		44.3%		38.1%		34.4%		32.7%		32.7%		16.5%	2	21.2%		26.2%		27.7%		36.7%		39.7%		27.9%		30.4%		27.0%	3	30.5%
Lead	>	99.2%		99.3%	>	99.1%	>	98.9%	>	98.6%		95.2%	>	99.0%		99.4%	>	98.5%	>	84.5%	>	98.5%	> 9	98.1%	>	99.2%	>	99.2%	>	98.8%		99.2%	>	98.7%	>	98.9%		99.9%	ĉ	99.0%
Manganese		73.4%		73.0%		32.8%		34.6%		9.8%		8.9%		-1.7%		-0.9%		-8.3%		-8.2%		-6.9%	-	-9.0%		-12.3%		-10.8%		12.4%		15.0%		11.1%		12.5%		21.4%		3.6%
Nickel	>	63.8%	>	61.2%		49.7%	>	55.9%		33.3%		45.9%		59.8%		79.8%		21.1%	NA	-		-2.6%	-	-0.5%		15.0%		-8.5%		28.9%		-12.9%		13.9%		32.2%		-98.6%	-	70.6%
Zinc		96.2%		95.8%		90.2%		90.7%		75.8%		72.0%		91.2%		88.5%		68.1%		68.3%		48.1%	4	48.8%		41.8%		41.5%		48.3%		50.9%		38.9%		42.5%		28.5%	2	27.9%
Wet Chemistry																																								
Acidity			>	99.4%				97.7%				62.9%				62.0%				42.0%			3	31.7%				53.3%				58.2%				51.5%			4	15.7%
Alkalinity		3.8%			NA				NA				<	-38.0%				17.5%			<	-95.6%				14.2%			<	-25.0%			<	-73.0%						
Ammonia	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
BOD	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Orthophosphate	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Sulfate		7.8%				11.7%				19.5%				13.1%				11.1%				1.0%				9.8%				20.0%				14.6%						
Sulfide	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	

NA = Percent removal calculation is not applicable due to the following logic cases:

1) The treated water effluent is non-detect, and the raw water was detected at a concentration less than the treated water effluent reporting limit.

2) The raw water is non-detect, and the treated effluent water was detected at a concentration less than the raw water reporting limit.

3) Both the raw water and the treated water effluent are non-detect.

4) Percent removal for certain wet chemistry parameters are not meaningful comparisons; therefore, calculations were not completed.

IF = Adit influent to treatment system

BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2

CHIT = Chitorem pre-treatment to BCR 3

NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTE = Effluent from post-treatment system

D = Dissolved Metals

BOD= Biological oxygen demand

Table 4.2-3
Danny T Treatability Study Year 2: Pilot Test Percent Removal
Barker-Hughesville Mining District Superfund Site

Location																		BCR2 (c	ompa	ared to SAP	S Pre-	treatment	locatio	on)																
Sample ID	14BH-	-DT-PILO	T-BCR	2-061114	146	BH-DT-PILO	T-BCR	R2-062414	14	BH-DT-PILO	T-BCR	2-070814	14B	H-DT-PILO	T-BCF	R2-072214	14	BH-DT-PILC	T-BCI	R2-080614	14	BH-DT-PILO	T-BCR	R2-081914	14	BH-DT-PILO	T-BCF	R2-090214	14	BH-DT-PILO	T-BCR	2-091614	14	BH-DT-PILC	T-BCR	2-092314	14	BH-DT-PILC	T-BCR2-	092914
Sample Date		6/11	/2014			6/24	/2014			7/8	/2014			7/22	/2014	1		8/6	/2014			8/19	/2014			9/2	/2014			9/16	5/2014			9/23	3/2014			9/29	/2014	
Fraction		D		T		D		T		D		T		D		T		D		T		D		T		D		T		D		T		D		T		D		T
Analyte	% Re	moval	% I	Removal	%	Removal	%	Removal	%	Removal	% I	Removal	% l	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	% Re	emoval
Metals																																								
Aluminum		43.6%	<	-168.0%		48.4%	<	-21.6%		42.8%		-1.3%	>	22.1%		74.8%	>	54.9%	>	84.8%	>	36.5%		79.8%		72.8%		80.3%	>	17.8%	>	72.0%	>	39.2%	>	49.8%		98.7%		97.1%
Arsenic		10.3%		-1090.5%	,	37.1%		14.1%	>	44.8%		50.3%		-107.9%		27.8%	NA		NA			-247.8%		-269.7%	NA		NA			-273.8%	NA		NA		NA			61.3%		38.7%
Cadmium	>	61.9%		-200.3%		45.0%		-38.1%	NA			39.5%	NA		NA	-	NA		NA		NA		NA		NA		NA		NA			-66.7%	NA		NA		>	54.5%		97.6%
Copper		54.1%		-248.8%	<	-252.0%		-829.2%	NA			-374.1%		45.7%		-17.0%		49.1%	NA			-0.4%	NA		NA			-81.2%		-16.7%	>	15.3%		-14.4%		-59.7%		0.0%		84.7%
Iron		83.5%		46.8%		94.5%		90.3%	>	99.8%		99.0%	>	98.9%		99.5%	>	98.8%		99.4%		99.5%		99.3%		97.9%		97.8%	>	98.6%	>	98.6%	>	98.8%	>	98.8%		99.2%		98.9%
Lead	<	-30.5%		-3082.9%	<	-47.5%	<	-435.0%	NA			28.8%	NA			-334.1%	NA			94.6%	NA			50.0%	NA		NA		NA			8.5%	NA		NA			78.6%		38.9%
Manganese		85.9%		81.7%		94.7%		94.2%		84.5%		82.6%		60.8%		58.9%		25.4%		20.3%		5.6%		0.9%		-26.2%		-31.0%		-13.9%		-17.2%		2.5%		0.4%		11.8%		8.6%
Nickel	< -	193.0%	NA			55.7%		44.6%	>	47.4%	>	11.5%		-39.1%		-2.7%	>	33.3%	NA		>	49.7%	>	53.3%		79.1%	>	62.7%	>	45.1%	>	61.8%	>	52.4%	>	45.4%		93.5%		79.8%
Zinc		92.7%		44.8%		95.7%		88.7%		99.7%		88.5%	>	98.2%		95.5%	>	99.5%		99.7%	>	99.6%		99.6%	>	99.6%		99.5%	>	99.6%		98.1%	>	99.7%		99.5%		99.9%		99.3%
Wet Chemistry																																								
Acidity			NA				>	73.3%			>	98.5%			>	98.7%			>	99.0%			>	99.0%				89.3%			>	98.6%			>	98.8%			>	98.9%
Alkalinity	-	238.9%			<	-85.4%			<	-37.0%				-371.0%				-383.6%				-221.1%				-166.9%				-388.8%				-256.6%						
Ammonia	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
BOD	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Orthophosphate	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Sulfate		9.4%				27.1%				45.4%				62.8%				40.9%				31.2%				6.6%			Ì	33.9%				40.9%						
Sulfide	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	

NA = Percent removal calculation is not applicable due to the following logic cases:

1) The treated water effluent is non-detect, and the raw water was detected at a concentration less than the treated water effluent reporting limit.

2) The raw water is non-detect, and the treated effluent water was detected at a concentration less than the raw water reporting limit.

3) Both the raw water and the treated water effluent are non-detect.

4) Percent removal for certain wet chemistry parameters are not meaningful comparisons; therefore, calculations were not completed.

INF = Adit influent to treatment system

BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2

CHIT = Chitorem pre-treatment to BCR 3

NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTE = Effluent from post-treatment system

D = Dissolved Metals

T = Total Metals

Table 4.2-3 Danny T Treatability Study Year 2: Pilot Test Percent Removal Barker-Hughesville Mining District Superfund Site

Location																		(HIT (compared t	o Influ	ent locatio	on)																	
Sample ID	14B	H-DT-PILO	T-CHI	T-061114	14B	BH-DT-PILO	т-сні	IT-062414	14B	H-DT-PILO	T-CHI	T-070814	14E	H-DT-PILO	т-сн	IT-072214	14	BH-DT-PILO	т-сн	IT-080614	14	BH-DT-PILO	OT-CHI	T-081914	141	BH-DT-PILO	T-CHIT-09	214	14B	H-DT-PILO	T-CHIT	Г-091614	14	BH-DT-PILO	T-CHIT	-092314	14E	BH-DT-PIL	OT-CHIT	092914
Sample Date		6/11	/2014			6/24	/2014			7/8/	2014			7/22	/2014	,		8/6	2014			8/19	/2014			9/2/	2014			9/16	/2014			9/23	/2014			9/2	9/2014	
Fraction		D		T		D		T		D		T		D		T		D		T		D		T		D	T			D		T		D		T		D		T
Analyte	% F	Removal	%	Removal	% I	Removal	%	Removal	% R	Removal	% l	Removal	% l	Removal	%	Removal	%	Removal	%	Removal	%	Removal	% I	Removal	%	Removal	% Rem	oval	% F	Removal	% R	Removal	%	Removal	% R	emoval	%	Removal	% R	emoval
Metals																																								
Aluminum		99.2%		98.4%	>	99.6%	>	99.6%	>	99.7%	>	99.7%		98.1%		97.9%		98.6%		98.3%		98.6%		98.6%		96.5%	56	.1%	>	98.1%		50.4%		95.3%		8.1%		83.2%		-24.8%
Arsenic		81.6%		80.7%		82.6%		86.2%		95.7%		96.4%	>	89.2%		96.6%	>	86.0%	>	86.4%	>	84.5%	>	83.7%	>	91.2%	93	.2%		96.5%		90.3%	>	86.7%		92.6%		98.4%		93.7%
Cadmium	>	99.2%	>	99.2%	>	99.3%	>	99.3%	>	99.3%		99.4%	>	99.3%		99.3%	>	99.1%	>	99.2%	>	99.1%	>	99.1%	>	99.1%	74	.6%	>	99.1%		67.9%	>	99.2%		77.8%		99.9%		6.9%
Copper		98.0%		98.0%		99.0%		98.7%	>	99.2%		99.2%	>	98.9%		99.2%	>	98.8%		99.4%	>	98.8%	>	98.9%	>	98.9%	81	.2%	>	98.8%		66.8%	>	98.9%		82.3%		99.8%		70.5%
Iron		99.7%		98.6%		98.5%		98.3%		97.3%		96.7%		97.6%		98.4%		98.5%		96.4%		98.8%		96.3%		71.6%	55	.0%		97.8%		64.8%		57.8%		40.7%		50.7%		39.9%
Lead	>	99.2%		99.5%	>	99.1%	>	98.9%	>	98.6%	>	99.1%	>	99.0%	>	99.0%	>	98.5%	>	98.4%	>	98.5%	>	98.1%	>	99.2%	80	.8%	>	98.8%		66.7%	>	98.7%		77.7%		99.9%		-1.2%
Manganese		98.0%		97.6%		88.3%		88.1%		75.4%		73.0%		17.0%		18.2%		27.2%		26.2%		31.7%		28.2%		12.2%	10	.0%		34.1%		26.6%		12.7%		10.5%		23.1%		2.2%
Nickel	>	63.8%	>	61.2%		46.0%	>	55.9%	>	64.9%	>	52.2%	>	44.1%		75.5%	>	47.4%	NA		>	48.5%	>	53.1%		64.0%	44	.9%	>	60.9%	>	56.9%		72.8%		58.5%		31.8%		-25.0%
Zinc		99.7%		99.3%		99.9%		99.9%		100.0%		99.5%		99.5%		98.6%	>	99.8%		99.3%	>	99.8%		98.8%		99.9%	64	.7%	>	99.8%		58.6%	>	99.8%		46.4%		73.5%		-13.2%
Wet Chemistry																																								
Acidity			>	99.4%			>	99.4%			>	99.4%			>	99.5%			>	99.4%			>	99.3%			90	.3%			>	99.4%				69.7%				54.3%
Alkalinity	<	-78.8%			<	-166.0%			<	-354.0%			<	-1400.0%			<	-1130.0%			<	-1142.0%			<	-55.0%			<	-970.0%			<	-181.0%						
Ammonia	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
BOD	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Orthophosphate	NA		NA		NA		NA	1	NA		NA		NA		NA	1	NA	-	NA		NA		NA		NA		NA	-	NA		NA		NA		NA		NA		NA	
Sulfate		15.3%				27.2%		_		20.3%				28.0%		_		44.2%				38.3%				25.8%				49.3%				27.2%						
Sulfide	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	

1) The treated water effluent is non-detect, and the raw water was detected at a concentration less than the treated water effluent reporting limit.

2) The raw water is non-detect, and the treated effluent water was detected at a concentration less than the raw water reporting limit.

3) Both the raw water and the treated water effluent are non-detect.

4) Percent removal for certain wet chemistry parameters are not meaningful comparisons; therefore, calculations were not completed.

BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2

CHIT = Chitorem pre-treatment to BCR 3 NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTE = Effluent from post-treatment system

T = Total Metals

Table 4.2-3
Danny T Treatability Study Year 2: Pilot Test Percent Removal
Barker-Hughesville Mining District Superfund Site

Location																		BCR	(com	pared to C	hitore	m Pre-treat	tment))																
Sample ID	14B	H-DT-PILO	T-BCF	R3-061114	14B	BH-DT-PILO	T-BCF	R3-062414	14B	H-DT-PILO	T-BCR	R3-070814	14E	H-DT-PILO	T-BC	R3-072214	14	BH-DT-PILO	T-BCF	R3-080614	148	H-DT-PILO	T-BCR	3-081914	14E	BH-DT-PILO	T-BCR	R3-090214	146	BH-DT-PILO	T-BCR	3-091614	14	BH-DT-PILC	T-BCF	3-092314	14	BH-DT-PIL	OT-BCR	3-092914
Sample Date		6/11	/2014			6/24	/2014	ļ		7/8/	/2014			7/22	/201	4		8/6	/2014			8/19	/2014			9/2/	/2014			9/16	5/2014			9/23	3/2014			9/2	9/2014	
Fraction		D		Т		D		T		D		T		D		T		D		Т		D		T		D		Т		D		Т		D		Т		D		T
Analyte	% I	Removal	%	Removal	%	Removal	%	Removal	% F	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	% F	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	% l	Removal
Metals																																								
Aluminum		-195.2%		-610.9%	<	-154.0%	<	-166.0%		24.2%		47.6%	>	81.9%	>	83.2%	>	71.1%	>	77.2%		-21.5%		-16.8%		65.4%		96.8%	NA		>	96.3%	>	60.1%		99.1%		99.8%		99.9%
Arsenic		-258.8%		-246.2%		-96.6%		-67.6%		-268.3%		-315.0%		19.0%		-209.7%		48.0%		39.0%		66.0%		58.5%	NA			45.6%		32.6%	>	8.7%		67.2%		43.3%		-53.6%		64.2%
Cadmium	NA		<	-143.5%	NA		NA		NA			-18.3%	NA			-7.5%	NA		NA		NA		NA		NA		>	96.3%	NA		>	97.4%	NA		>	96.3%		-270.4%	>	99.6%
Copper		6.6%		-534.4%		-19.4%		-165.1%	<	-70.0%		-339.3%		43.1%		-41.9%		1.9%		-6.0%	<	-39.0%	NA			45.2%	>	94.2%		26.1%	>	96.7%		23.1%	>	94.4%		71.5%		99.7%
Iron		-224.3%		-56.9%		10.4%		26.3%		58.6%		59.3%	>	94.2%		94.8%	>	89.2%	^	95.7%	>	22.8%	>	75.6%	>	96.0%	>	97.5%	>	59.9%	>	97.6%	>	97.9%	>	98.6%		97.6%		98.0%
Lead	<	-9.5%		-2545.7%	NA		<	-103.5%		48.0%	<	-244.0%	NA			1.5%	NA		NA		NA		NA		NA		>	95.8%	NA		>	96.4%	NA		>	94.9%		69.0%		99.8%
Manganese		-90.0%		-82.9%		66.8%		67.0%		68.0%		70.6%		87.6%		86.4%		50.5%		49.5%		42.3%		42.4%		29.4%		31.8%		24.1%		33.5%		40.4%		41.5%		24.7%		28.4%
Nickel	<	-170.0%	<	-195.0%		-78.0%	NA		NA		NA		NA			-148.3%	NA		NA		NA			35.9%	>	11.5%		57.0%	NA		NA			-50.6%	>	10.7%		85.3%		92.9%
Zinc		24.4%		-72.8%		-80.7%		-92.1%		-216.9%		61.1%		86.3%		81.7%		55.4%		73.3%	NA			90.4%		-88.7%	>	99.4%	NA		>	99.6%	NA		>	99.7%		99.9%		100.0%
Wet Chemistry																																								
Acidity			NA				NA				NA				NA				NA				NA	-			>	93.1%			NA				>	98.0%			>	98.8%
Alkalinity		-86.8%				14.3%				-9.7%				-63.3%				-58.5%				-114.2%				-279.4%				-8.4%				-401.8%						
Ammonia	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
BOD	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Orthophosphate	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Sulfate		6.4%				10.1%				63.1%				61.6%				52.4%				56.7%				30.0%				35.2%				70.7%			\top			
Sulfide	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	

NA = Percent removal calculation is not applicable due to the following logic cases:

1) The treated water effluent is non-detect, and the raw water was detected at a concentration less than the treated water effluent reporting limit.

2) The raw water is non-detect, and the treated effluent water was detected at a concentration less than the raw water reporting limit.

3) Both the raw water and the treated water effluent are non-detect.

4) Percent removal for certain wet chemistry parameters are not meaningful comparisons; therefore, calculations were not completed.

= Adit influent to treatment system

BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2

CHIT = Chitorem pre-treatment to BCR 3

NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTE = Effluent from post-treatment system

T = Total Metals

issorved ivietals

Table 4.2-3 Danny T Treatability Study Year 2: Pilot Test Percent Removal Barker-Hughesville Mining District Superfund Site

Location																	N	АОН (compared t	o Infl	uent locatio	on)																
Sample ID	14BH	I-DT-PILO	T-NAC	DH-061114	14BF	H-DT-PILOT	T-NAO	H-062414	14BH-DT-PILO	OT-NO	AH-070814	14BI	H-DT-PILO	-NAC	H-072214	14B	H-DT-PILO	Γ-NAC	DH-080614	14B	H-DT-PILOT	-NAOH-081	914 1	4BH-0	DT-PILOT-	-NAOH-0902:	14 14	4BH-DT-PILO	T-NAC	H-091614	14B	H-DT-PILO	Г-NAОН	-092314	14B	H-DT-PILO	T-NAOH-	92914
Sample Date		6/11	L/2014			6/24/	/2014		7/8	3/2014	4		7/22	/2014			8/6	2014			8/19	/2014			9/2/2	2014		9/10	6/2014			9/23	/2014			9/29	/2014	
Fraction		D		T		D		T	D		T		D		T		D		T		D	T		[D	T		D		T		D		T		D	1	•
Analyte	% R	Removal	%	Removal	% F	Removal	% ا	Removal	% Removal	%	6 Removal	% I	Removal	%	Removal	%	Removal	%	Removal	%	Removal	% Remo	val	% Rer	emoval	% Remova		% Removal	%	Removal	%	Removal	% Re	emoval	%	Removal	% Rer	noval
Metals																																						
Aluminum		55.4%		56.2%		19.0%		20.0%	9.3%		10.6%		11.6%		8.3%		65.2%		61.0%		91.4%	88.	1% >	> 9	98.0%	93.3%	,	98.2%		96.5%		35.8%		33.1%		48.0%	4	4.6%
Arsenic		94.4%		78.6%	>	85.3%		87.9%	96.6%		90.1%	>	89.2%		90.9%	>	86.0%		-36.1%	>	84.5%	93.	2% >	> 9	91.2%	92.2%	>	91.2%		95.2%		96.5%		80.6%		81.6%	(57.0%
Cadmium		0.8%		2.7%		7.0%		8.5%	-3.2%		2.7%		-3.3%		0.0%		-8.2%		-4.1%		33.8%	37.	5%	6	64.9%	60.6%	>	99.1%		98.2%		11.8%		12.2%		12.9%	1	.4.9%
Copper		35.0%		36.4%		24.6%		22.3%	0.8%		1.9%		0.9%		3.8%		22.3%		31.1%		89.2%	85.	5%	9	99.3%	92.0%	,	99.4%		97.1%		27.5%		31.1%		40.5%	4	1.1%
Iron		79.4%		66.4%		88.9%		84.0%	87.3%		81.2%		99.7%		90.6%	>	99.2%		94.3%		98.7%	92.	9% >	> 9	98.9%	92.8%	>	99.1%		95.7%		99.3%		82.8%		66.0%	į	9.5%
Lead		70.3%		66.2%		36.6%		37.0%	16.3%		20.8%		56.4%		49.3%		95.8%	>	84.5%	>	98.5%	94.	1% >	> 9	99.2%	93.6%	>	98.8%		97.4%		78.8%		58.6%		57.2%	4	8.4%
Manganese		6.5%		7.5%		8.0%		9.6%	8.9%		10.6%		3.4%		1.7%		3.7%		1.8%		9.7%	7.3	%	2	23.0%	23.2%	,	100.0%		97.5%		13.9%		14.5%		5.3%	-	14.9%
Nickel		1.8%		6.6%		4.8%		4.8%	5.3%		-1.9%		-8.4%		53.3%		-3.7%	NA			29.4%	34.	7%	Ĺ	56.4%	42.5%	; >	60.9%	>	56.9%		13.5%		16.7%		16.7%		7.0%
Zinc		5.5%		6.2%		7.0%		8.0%	3.6%		5.1%		-0.5%		-3.7%		1.1%		0.3%		46.2%	44.	5%	-	75.0%	72.9%	,	99.9%		97.9%		14.1%		19.0%		18.0%	1	.9.8%
Wet Chemistry																										•												
Acidity				56.5%				32.8%			51.4%				50.6%				53.6%			56.	7%			80.0%	,		>	99.4%				48.5%			3	1.4%
Alkalinity	NA				NA				NA			NA				NA				NA			N.	Α			<	-247.0%			NA					•		
Ammonia	NA		NA		NA		NA		NA	NA		NA		NA		NA		NA		NA		NA -	· N.	Α		NA	N/	Α	NA		NA		NA		NA		NA	
BOD	NA		NA		NA		NA		NA	NA		NA		NA		NA		NA		NA		NA -	· N.	Α		NA	N/	A	NA		NA		NA		NA		NA	
Orthophosphate	NA		NA		NA		NA		NA	NA		NA		NA		NA		NA		NA		NA -	· N.	Α		NA	N/	Α	NA		NA		NA		NA		NA	
Sulfate		9.6%				18.0%			9.4%				-15.7%				4.3%				0.0%				8.4%			17.5%				12.1%						
Sulfide	NA		NA		NA		NA		NA	NA		NA		NA		NA		NA		NA		NA -	· N.	Α		NA	N/	Α	NA		NA		NA		NA		NA	

1) The treated water effluent is non-detect, and the raw water was detected at a concentration less than the treated water effluent reporting limit.

2) The raw water is non-detect, and the treated effluent water was detected at a concentration less than the raw water reporting limit.

3) Both the raw water and the treated water effluent are non-detect.

4) Percent removal for certain wet chemistry parameters are not meaningful comparisons; therefore, calculations were not completed.

BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2

CHIT = Chitorem pre-treatment to BCR 3 NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTE = Effluent from post-treatment system

T = Total Metals

Table 4.2-3 Danny T Treatability Study Year 2: Pilot Test Percent Removal Barker-Hughesville Mining District Superfund Site

Location																	В	CR4 (d	compared to	o NaO	H Pre-treati	nent)																		
Sample ID	14BH-DT-	PILOT-	BCR4-061114	14	BH-DT-PILO	T-BCR	R4-062414	146	BH-DT-PILO	T-BCR4	-070814	14	BH-DT-PILO	T-BCR4	-072214	14	BH-DT-PILO	T-BCI	R4-080614	14	BH-DT-PILO	T-BCR	4-081914	14	BH-DT-PILOT	Г-BCR	R4-090214	14	BH-DT-PILO1	Γ-BCR4	1-091614	14	BH-DT-PILO	T-BCF	4-092314	14	BH-DT-P	LOT-B	3CR4-0929	14
Sample Date		6/11/2	014		6/24	/2014			7/8/	2014			7/22	/2014			8/6/	2014			8/19,	/2014			9/2/2	2014			9/16/	2014			9/23	/2014			9	/29/20	014	
Fraction	D		T		D		T		D		T		D		Т		D		T		D		T		D		T		D		T		D		T		D		T	
Analyte	% Remo	/al	% Removal	%	Removal	% l	Removal	%	Removal	% R	emoval	%	Removal	% R	emoval	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	6 Remova		% Remov	al
Metals																																								
Aluminum	91.7	7 %	80.8%		99.0%		98.5%		99.0%		95.2%	>	98.1%		98.9%	>	94.3%		97.9%	>	72.6%	>	80.8%	<	-21.6%	>	69.7%		-5.9%	>	47.8%	>	97.1%	>	97.2%		99.9%	ó	99.7	%
Arsenic	-100	7%	38.5%		54.9%		-4.9%		-256.5%		11.7%	NA			16.3%	NA			96.2%		73.1%		-9.4%	NA			-10.5%	NA			-85.2%		-284.6%		81.8%	>	97.0%	ó	85.3	.%
Cadmium	95.3	.%	84.7%		98.3%		94.9%	>	99.3%		95.1%	>	99.3%		99.2%	>	99.2%	>	99.2%	>	98.6%		99.2%	>	97.4%		98.3%	NA		>	52.9%	>	99.0%		98.9%	>	99.6%	ó	99.0	%
Copper	92.0)%	72.8%		98.0%		95.4%	>	99.2%		95.2%		99.3%		99.0%		98.9%		99.1%		85.4%		92.6%		-46.0%		92.6%		-18.9%		72.3%		98.8%		98.5%	>	99.7%	ó	99.2	.%
Iron	95.9	9%	94.0%		91.6%		94.0%		95.6%		94.1%		-122.0%		96.6%	NA		>	86.5%	>	28.2%	>	87.1%	NA		>	84.3%	NA		>	79.9%		-27.4%	>	95.1%		99.0%	ó	99.3	%
Lead	77.	7%	45.9%		98.4%		96.7%	>	98.4%		95.1%	>	97.7%		96.5%	>	64.3%	NA		NA		^	65.5%	NA		^	87.4%	NA		>	53.7%	^	94.0%	>	97.2%	>	98.69	ó	99.5	%
Manganese	90.2	2%	89.1%		89.7%		89.2%		44.8%		41.2%		43.9%		41.1%		5.4%		2.8%		20.9%		21.0%		-22.4%		-25.0%		-224093.5%		-2209.5%		38.0%		37.7%		99.79	ó	38.5	%
Nickel	7.7	%	-21.6%		39.4%	>	53.7%	>	63.0%	>	53.1%	>	48.5%		55.6%	>	49.2%	NA		>	27.0%	>	28.1%	>	27.0%	>	29.6%	NA		NA		>	52.6%	>	55.6%		99.19	ó	30.5	%
Zinc	96.6	5%	94.0%		98.8%		97.1%		99.6%		88.1%		99.5%		95.1%		99.6%		97.8%		99.5%		96.3%		99.2%		93.7%		12.5%		58.6%		99.7%		98.0%		99.69	6	97.8	,%
Wet Chemistry																																								
Acidity			> 98.5%			>	99.1%			>	98.8%			>	99.0%			>	98.8%			>	98.5%			>	96.7%			NA				>	98.8%			>	> 99.2	.%
Alkalinity	< -208	0%		<	-13.8%				19.2%			<	-407.0%			<	-361.0%			<	-4410.0%			<	-76.0%				-47.0%			<	-485.0%		·					
Ammonia	NA	١	AV	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		N	IA	
BOD	NA	١	VA	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		N	IA	
Orthophosphate	NA	١	AV	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		N	IA	
Sulfate	1.0	%			17.9%				37.6%				57.9%				43.9%				37.6%				10.6%				27.3%				34.8%							
Sulfide	NA	١	AV	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		N/	IA	

1) The treated water effluent is non-detect, and the raw water was detected at a concentration less than the treated water effluent reporting limit.

2) The raw water is non-detect, and the treated effluent water was detected at a concentration less than the raw water reporting limit.

3) Both the raw water and the treated water effluent are non-detect.

4) Percent removal for certain wet chemistry parameters are not meaningful comparisons; therefore, calculations were not completed.

BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2

CHIT = Chitorem pre-treatment to BCR 3

NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTE = Effluent from post-treatment system

D = Dissolved Metals

T = Total Metals

Table 4.2-3
Danny T Treatability Study Year 2: Pilot Test Percent Removal
Barker-Hughesville Mining District Superfund Site

Location															PO	STE (compa	ared to P	ost-influ	ent lo	cation)														
Sample ID	14E	H-DT-PILOT	-POS	TE-062414	14B	H-DT-PILOT	T-POST	TE-070814	146	BH-DT-PILO	Γ-POS	TE-072214	14B	H-DT-PILO	OT-POS	TE-080614	14BH-0	DT-PILOT	-POS	ΓE-081914	14BI	H-DT-PILO	T-POS	ΓE-090214		TE 001614	14BI	H-DT-PILO	T-POS	TE-092314	14	BH-DT-PILO1	r-POST	E-092914
Sample Date		6/24	/2014			7/8/	2014			7/22	/2014	1		8/0	6/2014			8/19	/2014			9/2	/2014			/16/2014		9/23	/2014	1		9/29	/2014	
Fraction		D		T		D		T		D		T		D		T		D		T		D		T		T		D		T		D		T
Analyte	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	%	Removal	% Rei	moval	% I	Removal	% I	Removal	%	Removal	%	Removal	% I	Removal	%	Removal	%	Removal	% F	temoval
Metals																																		
Aluminum		-79.0%		-141.2%		-107.1%		-27.8%		-71.8%		-784.6%	NA			-138.4%		-0.8%		-29.9%	NA			-11.5%	<	-1484.0%	NA		NA			67.8%		60.7%
Arsenic		-249.0%		-258.8%		-83.5%		81.8%		-180.6%		-135.3%		29.5%	NA		4	40.0%		42.5%		74.0%	NA		<	-107.5%		-49.2%		56.5%		-217.6%		-93.1%
Cadmium		-27.4%		-32.8%		12.5%		85.3%	NA			-72.4%	NA		NA		NA		NA		NA		NA		<	-71.5%	NA		NA		NA			88.0%
Copper		36.2%		-25.5%		42.2%		81.9%		-81.2%		-63.4%		-74.8%	NA		-	-27.4%	NA			47.1%	NA			-574.6%		-46.2%	NA			68.0%		51.8%
Iron		-18.2%		-103.0%	<	-289.6%		69.9%	NA			-53.3%	NA			73.2%	NA		NA		>	27.3%	>	50.4%	<	-476.8%	NA		NA			10.7%		16.8%
Lead	NA	-		-386.2%	NA			72.0%		-35.1%		-198.1%	NA		NA		NA		NA		NA		NA		<	-5800.0%	NA			25.0%		-113.3%		-43.2%
Manganese		47.0%		8.9%		69.3%		71.0%		68.9%		69.0%		58.9%		57.6%	3	33.2%		32.9%		16.5%		12.9%		20.4%		31.4%		36.0%		31.5%		32.4%
Nickel		-107.0%	<	-182.0%	NA		NA		NA			0.0%	NA		NA	-	NA		NA			28.7%	NA		NA		NA		NA			-12.5%		-189.3%
Zinc		73.7%		-30.2%		-3709.5%		53.2%		47.9%		59.5%		84.9%		35.7%	NA			52.1%	NA			65.6%		-779.6%	NA			70.8%		62.0%		80.9%
Wet Chemistry																																		
Acidity			NA				NA				NA				NA				NA				NA		NA				NA				NA	
Alkalinity		-56.0%				7.6%				14.1%				-14.4%			-	-18.8%				3.9%						15.5%						
Ammonia		-0.2%				34.2%				28.8%				17.0%				4.1%				12.2%						19.9%						
BOD								14.8%				49.1%				76.5%				27.5%			>	9.1%	>	91.0%				93.5%			>	96.8%
Orthophosphate		82.8%				74.0%				83.5%				83.0%			1 :	82.7%				71.6%						76.6%				99.3%		
Sulfate		-6.9%				-8.8%				37.7%				22.7%				3.6%				-5.3%						-11.3%						
Sulfide								70.4%			Ì	93.6%				82.7%			>	97.9%			>	98.3%	>	99.3%			>	99.9%				99.8%

Motoci

NA = Percent removal calculation is not applicable due to the following logic cases:

1) The treated water effluent is non-detect, and the raw water was detected at a concentration less than the treated water effluent reporting limit.

2) The raw water is non-detect, and the treated effluent water was detected at a concentration less than the raw water reporting limit.

3) Both the raw water and the treated water effluent are non-detect.

4) Percent removal for certain wet chemistry parameters are not meaningful comparisons; therefore, calculations were not completed.

INF = Adit influent to treatment system

BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2

CHIT = Chitorem pre-treatment to BCR 3

NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTE = Effluent from post-treatment system

D = Dissolved Metals
T = Total Metals

Location															BCF	R2/SAPS (compared	l to In	fluent loca	tion)																	
Sample ID	14	BH-DT-PILOT-B	CR2-061114	14	4BH-DT-PILOT-BC	R2-06241	1 14	4BH-DT-PILO	OT-BCR2-070814	:	4BH-DT-PILO	OT-BCR2-072	2214	14E	BH-DT-PILC	T-BCR2-0	080614	14B	H-DT-PILO	T-BCR2	2-081914	14	BH-DT-PILO	T-BCR2-09	0214	14	BH-DT-PILO	T-BCR2	2-091614	146	BH-DT-PILO	T-BCR	2-092314	14BI	H-DT-PILO	-BCR2	-092914
Sample Date		6/11/20	14		6/24/201	L 4		7/8	/2014		7/2	2/2014			8/6	/2014			8/19,	/2014			9/2/	2014			9/16	/2014			9/23	/2014			9/29/	2014	
Fraction		D	T		D	T		D	Т		D	T			D		Т		D		T		D	Т			D		T		D		T		D		T
Analyte	%	Removal	% Removal	%	% Removal %	% Remova	%	6 Removal	% Removal		% Removal	% Remo	oval	% I	Removal	% Re	moval	% I	Removal	% I	Removal	%	Removal	% Rem	oval	%	Removal	% F	Removal	%	Removal	%	Removal	% R	emoval	% R	emoval
Metals																																					
Aluminum		97.7%	89.8%		99.1%	97.8%		99.5%	98.9%	>	98.3%	99.	.0%	>	98.0%	>	98.0%	>	97.6%		99.1%		99.0%	99	9.1%	>	98.1%	>	98.2%	>	98.1%	>	98.1%		99.9%		99.8%
Arsenic		94.1%	25.7%		90.9%	87.2%	>	88.0%	90.3%	>	89.2%	95.	.9%	>	86.0%	>	86.4%	>	84.5%	>	83.7%	>	91.2%	> 93	L.4%	>	91.2%	>	91.1%	>	86.7%	>	88.2%		99.3%		99.0%
Cadmium	>	99.2%	92.2%		99.6%	98.9%	>	99.3%	99.6%	>	99.3%	> 99.	.3%	>	99.1%	>	99.2%	>	99.1%	>	99.1%	>	99.1%	> 99	9.1%	>	99.1%	>	99.2%	>	99.2%	>	99.2%	>	99.6%		100.0%
Copper		98.3%	75.8%		96.7%	92.9%	>	99.2%	97.6%		99.4%	98.	.6%		99.4%	>	99.1%		99.3%	>	98.9%	>	98.9%	> 98	3.9%		99.3%	>	98.9%		99.3%	>	99.0%	>	99.8%		99.8%
Iron		99.3%	97.9%		99.1%	98.4%	>	99.9%	99.5%	>	99.3%	99.	.7%	>	99.2%		99.6%		99.6%		99.5%		98.4%	98	3.4%	>	99.1%	>	99.1%	>	99.1%	>	99.2%		99.4%		99.3%
Lead		98.9%	76.7%		98.6%	94.3%	>	98.6%	96.6%	>	99.0%	97.	.2%	>	98.5%		99.2%	>	98.5%		99.0%	>	99.2%	> 99	9.2%	>	98.8%		99.3%	>	98.7%	>	98.9%		100.0%		99.4%
Manganese		96.2%	95.0%		96.5%	96.2%		86.0%	84.1%		60.1%	58.	.5%		19.3%		13.8%		-1.0%		-7.9%		-41.7%	-4	5.1%		0.2%		0.4%		13.3%		12.9%		30.7%		11.9%
Nickel		-6.2%	-287.6%		77.7%	75.6%	>	64.9%	> 52.2%	>	44.1%	> 79.	.3%	>	47.4%	NA		>	48.5%	>	53.1%		82.2%	> 59	9.5%	>	60.9%	>	56.9%	>	59.0%	>	63.0%		87.2%		65.6%
Zinc		99.7%	97.7%		99.6%	98.9%		99.9%	96.8%	>	99.8%	99.	.5%	>	99.8%		99.9%	>	99.8%		99.8%	>	99.8%	99	9.7%	>	99.8%		99.1%	>	99.8%		99.7%		99.9%		99.5%
Wet Chemistry																																					
Acidity		>	99.4%		>	99.4%			> 99.4%			> 99.	.5%			>	99.4%			>	99.3%			95	5.0%			>	99.4%			>	99.4%			>	99.4%
Alkalinity	<	-226.0%		<	-85.4%		<	-37.0%		<	-550.0%			<	-299.0%			<	-528.0%			<	-129.0%			<	-511.0%			<	-517.0%						
Ammonia		N	Α		NA				NA			NA -				NA				NA				NA	-			NA				NA				NA	
BOD		N	Α		NA				NA			NA -				NA				NA				NA				NA				NA				NA	
Orthophosphate		-18774.7% N	Α	<	-40900.0% NA		<	-47900.0%	6 NA		-4372.0%	NA -			-1806.1%	NA			-856.2%	NA			-471.4%	NA			-701.8%	NA			-1026.6%	NA		·	-1324.5%	NA	
Sulfate		16.5%			35.6%			56.1%			67.7%				47.4%				31.9%				15.8%				47.1%				49.5%						
Sulfide		N	Α		NA				NA			NA -				NA				NA				NA				NA				NA				NA	

1) The treated water effluent is non-detect, and the raw water was detected at a concentration less than the treated water effluent reporting limit.

2) The raw water is non-detect, and the treated effluent water was detected at a concentration less than the raw water reporting limit.

3) Both the raw water and the treated water effluent are non-detect.

4) Percent removal for certain wet chemistry parameters are not meaningful comparisons; therefore, calculations were not completed.

BCRX = Biochemical reactor barrel effluent SAPS = Successive alkalinity producing system pre-treatment to BCR 2

CHIT = Chitorem pre-treatment to BCR 3 NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTE = Effluent from post-treatment system

POSTE = Effluent from post-treatment system

T = Total Metals

Location														BCR3/C	hitore	m (compa	red to	Influent lo	cation)														
Sample ID	14BH-DT-PILO	T-BCR3	-061114	14BH-DT-PILOT-	BCR3-062414	14BH-DT-PILO	T-BCR3	3-070814	14	BH-DT-PILC	T-BC	R3-072214	14	BH-DT-PILOT	-BCR3	-080614	14	BH-DT-PILO	T-BCR3-081914	14	4BH-DT-PILC	T-BCR3-0902	14	14BH-DT-PI	LOT-BC	R3-091614	14	BH-DT-PILO	T-BCR	3-092314	14BI	H-DT-PILO1	-BCR3-092914
Sample Date	6/11,	2014		6/24/2	014	7/8/	/2014			7/22	2/201	4		8/6/2	014			8/19/	2014		9/2	/2014		9/	16/201	.4		9/23	/2014			9/29/	2014
Fraction	D		T	D	T	D		T		D		T		D		T		D	Т		D	Т		D		T		D		T		D	Т
Analyte	% Removal	% R	temoval	% Removal	% Removal	% Removal	% R	Removal	%	Removal	%	Removal	%	Removal	% R	emoval	%	Removal	% Removal	%	6 Removal	% Remov	al	% Removal	9	% Removal	%	Removal	%	Removal	% R	emoval	% Removal
Metals																																	
Aluminum	97.8%		88.5%	99.1%	99.1%	99.7%		99.8%	>	99.7%	>	99.7%	>	99.6%	>	99.6%		98.3%	98.3%		98.8%	98.6	%	> 98.1%	>	98.2%	>	98.1%		99.1%		100.0%	99.9%
Arsenic	34.1%		33.1%	65.9%	76.9%	84.3%		85.2%		91.3%		89.6%		92.7%		91.7%		94.7%	93.3%	>	91.2%	96.3	%	97.6%	>	91.1%		95.6%		95.8%		97.6%	97.7%
Cadmium	> 99.2%		98.1%	> 99.3%	> 99.3%	> 99.3%	>	99.3%	>	99.3%	>	99.3%	>	99.1%	>	99.2%	>	99.1%	> 99.1%	>	99.1%	> 99.1	%	> 99.1%	>	99.2%	>	99.2%	>	99.2%	>	99.6%	> 99.6%
Copper	98.1%		87.1%	98.8%	96.5%	98.7%		96.6%		99.4%		98.9%		98.8%		99.3%		98.3%	> 98.9%		99.4%	> 98.9	%	99.1%	>	98.9%		99.1%	>	99.0%		100.0%	99.9%
Iron	99.1%		97.8%	98.7%	98.7%	98.9%		98.6%	>	99.9%		99.9%	^	99.8%	>	99.8%	>	99.1%	> 99.1%	>	98.9%	> 98.9	%	> 99.1%	>	99.1%	>	99.1%	>	99.2%		98.8%	98.8%
Lead	99.1%		85.9%	> 99.1%	97.8%	99.3%		96.9%	>	99.0%		99.0%	>	98.5%	>	98.4%	>	98.5%	> 98.1%	>	99.2%	> 99.2	%	> 98.8%	>	98.8%	>	98.7%	>	98.9%		100.0%	99.8%
Manganese	96.2%		95.6%	96.1%	96.1%	92.1%		92.1%		89.7%		88.9%		63.9%		62.7%		60.6%	58.7%		38.0%	38.6	%	50.0%		51.2%		48.0%		47.7%		42.1%	30.0%
Nickel	2.2%		-14.3%	3.9%	> 55.9%	> 64.9%	>	52.2%	>	44.1%		39.2%	>	47.4%	NA		>	48.5%	69.9%	>	68.2%	76.3	%	> 60.9%	>	56.9%	>	59.0%	>	63.0%		90.0%	91.1%
Zinc	99.7%		98.8%	99.9%	99.8%	99.9%		99.8%		99.9%		99.7%		99.9%		99.8%	>	99.8%	99.9%	>	99.8%	> 99.8	%	99.8%	>	99.8%	>	99.8%	>	99.8%		100.0%	100.0%
Wet Chemistry																					•					•							
Acidity		>	99.4%		> 99.4%		>	99.4%			>	99.5%			>	99.4%			> 99.3%			> 99.3	%		>	99.4%			>	99.4%			> 99.4%
Alkalinity	< -234.0%			< -128.0%		< -398.0%			<	-2350.0%			<	-1850.0%			<	-2560.0%		<	-488.0%			-1060.09	%		<	-1310.0%					
Ammonia																																	
BOD																																	
Orthophosphate	-14196.7%			< -39600.0%		< -38100.0%				-3502.5%				-2855.8%				-6331.0%			-3960.2%			-4249.19	%			-7305.1%				-9617.0%	
Sulfate	20.7%			34.5%		70.6%				72.3%				73.4%				73.3%			48.1%			67.1%				78.6%					
Sulfide	1																																

1) The treated water effluent is non-detect, and the raw water was detected at a concentration less than the treated water effluent reporting limit.

2) The raw water is non-detect, and the treated effluent water was detected at a concentration less than the raw water reporting limit.

3) Both the raw water and the treated water effluent are non-detect.

4) Percent removal for certain wet chemistry parameters are not meaningful comparisons; therefore, calculations were not completed.

BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2

CHIT = Chitorem pre-treatment to BCR 3 NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTE = Effluent from post-treatment system

POSTE = Effluent from post-treatment system

BOD= Biological oxygen demand T = Total Metals

Location												BCR4/N	AOH (com	pared	d to Influe	nt locat	tion)															
Sample ID	14BH-DT-PILO	T-BCR4-061114	14BH-DT-PILOT-	BCR4-062414	14BH-DT-PILOT	T-BCR4-070814	14	BH-DT-PILO	T-BCR	4-072214	14	BH-DT-PILOT-B	CR4-0806:	14	14BH-D	T-PILOT	-BCR4-081914	14	4BH-DT-PILC	OT-BCR4	-090214	14	H-DT-PILOT-E	BCR4	1-091614	14	BH-DT-PILO	T-BCR	4-092314	14	IBH-DT-PILOT	-BCR4-092914
Sample Date	6/11/	2014	6/24/2	2014	7/8/2	2014		7/22	/2014			8/6/20:	L 4			8/19/2	2014		9/2	2/2014			9/16/20	014			9/23	/2014			9/29/	2014
Fraction	D	T	D	T	D	T		D		T		D	T		D		T		D		T		D		T		D		T		D	T
Analyte	% Removal	% Removal	% Removal	% Removal	% Removal	% Removal	%	Removal	% I	Removal	%	Removal	% Remov	al	% Rem	oval	% Removal	%	6 Removal	% R	emoval	%	Removal	% R	Removal	%	Removal	%	Removal	%	Removal	% Removal
Metals																																
Aluminum	96.3%	91.6%	99.2%	98.8%	99.1%	95.7%	>	98.3%		99.0%	>	98.0%	99.29	%	> 97	.6%	> 97.7%		97.5%	>	98.0%	>	98.1%	>	98.2%	>	98.1%	>	98.1%		100.0%	99.8%
Arsenic	88.8%	86.8%	93.4%	87.3%	> 88.0%	91.2%	>	89.2%		92.4%	>	86.0%	94.89	%	95	.8%	92.5%	>	91.2%	>	91.4%	>	91.2%	>	91.1%	>	86.7%		96.5%	>	99.4%	95.1%
Cadmium	95.2%	85.2%	98.4%	95.3%	> 99.3%	95.3%	>	99.3%		99.2%	>	99.1% >	99.29	%	> 99	.1%	99.5%	>	99.1%		99.3%	>	99.1%	>	99.2%	^	99.2%		99.1%	>	99.6%	99.1%
Copper	94.8%	82.7%	98.5%	96.4%	> 99.2%	95.3%		99.3%		99.0%		99.2%	99.49	%	98	.4%	98.9%	>	98.9%		99.4%		99.2%		99.2%		99.1%		99.0%	>	99.8%	99.5%
Iron	99.1%	98.0%	99.1%	99.0%	99.4%	98.9%	>	99.3%		99.7%	>	99.2% >	99.29	%	> 99	.1%	> 99.1%	>	98.9%	>	98.9%	>	99.1%	>	99.1%	>	99.1%	>	99.2%		99.7%	99.7%
Lead	93.4%	81.7%	99.0%	98.0%	> 98.6%	96.1%	>	99.0%		98.2%	>	98.5% >	98.49	%	> 98	.5%	> 98.1%	>	99.2%	>	99.2%	>	98.8%	>	98.8%	^	98.7%	>	98.9%	>	99.4%	99.7%
Manganese	90.9%	89.9%	90.5%	90.3%	49.8%	47.4%		45.9%		42.1%		8.9%	4.5%	6	28	.6%	26.8%		5.8%		4.0%		42.2%		41.4%		46.6%		46.7%		99.7%	29.4%
Nickel	9.4%	-13.6%	42.3%	> 55.9%	> 64.9%	> 52.2%	>	44.1%		79.3%	>	47.4% N	Α		> 48	.5%	> 53.1%	>	68.2%	>	59.5%	>	60.9%	>	56.9%	>	59.0%	>	63.0%		99.3%	35.4%
Zinc	96.8%	94.4%	98.9%	97.3%	99.6%	88.7%		99.5%		94.9%		99.6%	97.89	%	99	.7%	97.9%		99.8%		98.3%		99.9%		99.1%		99.7%		98.4%		99.7%	98.2%
Wet Chemistry																																
Acidity		> 99.4%		> 99.4%		> 99.4%			>	99.5%		>	99.49	%			> 99.3%			>	99.3%			>	99.4%			>	99.4%			> 99.4%
Alkalinity	< -208.0%		< -13.8%		19.2%		<	-407.0%			<	-361.0%			< -80	2.0%		<	-76.0%			<	-410.0%			<	-485.0%					
Ammonia																																
BOD																																
Orthophosphate	-10897.4%		< -28100.0%		< -27100.0%			-2105.0%				-590.6%			-64	0.7%			-208.3%				-278.7%				-931.6%				-5362.3%	
Sulfate	10.4%		32.7%		43.4%			51.3%				46.3%			37	.6%			18.1%				40.0%				42.7%					
Sulfide																																

1) The treated water effluent is non-detect, and the raw water was detected at a concentration less than the treated water effluent reporting limit.

2) The raw water is non-detect, and the treated effluent water was detected at a concentration less than the raw water reporting limit.

3) Both the raw water and the treated water effluent are non-detect.

4) Percent removal for certain wet chemistry parameters are not meaningful comparisons; therefore, calculations were not completed.

INF = Adit influent to treatment system

BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2

CHIT = Chitorem pre-treatment to BCR 3

NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTE = Effluent from post-treatment system POSTE = Effluent from post-treatment system

T = Total Metals

		Location											INF									
		Sample ID		PILOT-INF- 1114		-PILOT-INF- 2414		T-PILOT-INF- 70814		T-PILOT-INF- 72214		Γ-PILOT-INF- 80614		Γ-PILOT-INF- 31914		-PILOT-INF- 0214		-PILOT-INF- 1614		PILOT-INF- 2314		-PILOT-INF- 2914
		Sample Date	6/11	/2014	6/24	4/2014	7/	8/2014	7/2	22/2014	8/	6/2014	8/1	9/2014	9/2	/2014	9/16	5/2014	9/23	/2014	9/29	/2014
		Fraction	D	Т	D	T	D	Т	D	Т	D	Т	D	Т	D	T	D	T	D	Т	D	Т
Analyte	Units	Standard ¹	Result Q	Result Q	Result C	Q Result C	Q Result	Q Result C	Q Result	Q Result C	Result	Q Result C	Result (Q Result Q	Result C	Q Result C	Result C	Result C	Result Q	Result Q	Result Q	Result Q
Aluminum	μg/L	87.0	12400	13100	13700	14000	15000	15100	14600	14500	12600	12800	10600	10900	12300	12300	12900	13600	13300	13500	13700	14100
Antimony	μg/L	5.6																			2 J	2 J
Arsenic	μg/L	10.0	<u>264</u>	<u>269</u>	<u>136</u>	<u>134</u>	<u>166</u>	<u>198</u> .	1 <u>186</u>	<u>189</u>	<u>143</u>	<u>147</u> J	<u>129</u>	<u>123</u>	<u>227</u>	233 J	<u>227</u>	<u>225</u>	<u>150</u>	<u>169</u>	<u>178</u>	<u>189</u>
Barium	μg/L	1000.0																			3.8 J	3.9 J
Beryllium	μg/L	4.0																			7.4	7.8
Cadmium	μg/L	0.3	<u>258</u>	<u>256</u>	<u>284</u>	<u>283</u>	<u>285</u>	<u>291</u>	<u>276</u>	<u>272</u>	<u>232</u>	<u>245</u>	<u>222</u>	<u>232</u>	<u>220</u>	<u>211</u>	<u>226</u>	<u>240</u>	<u>238</u>	<u>246</u>	<u>271</u>	<u>275</u>
Chromium	μg/L	86.2																			5.7	7.8
Copper	μg/L	9.3	1210	1120	1060	1130	1270	1060	919	852	849	1140	812	871	933	917	825	901 J	892	1010	1170	1230
Iron	μg/L	1000.0	154000	160000	155000	156000	184000	185000	181000	180000	159000	162000	133000	137000	111000	111000	140000	146000	140000	148000	152000	164000
Lead	μg/L	3.2	<u>245</u>	239 J	<u>213</u>	<u>189</u>	<u>147</u>	<u>221</u>	<u>199</u>	<u>207</u>	<u>134</u>	<u>129</u>	<u>136</u>	<u>104</u>	<u>246</u>	<u>250</u>	<u> 169</u>	<u> 166</u>	<u>158</u>	<u>175</u>	<u>169</u>	<u>172</u>
Nickel	μg/L	52.2	27.6	25.8	53.9	22.7	28.5	20.9	17.9	48.2	19	100 L	19.4	21.3	31.4	24.7	25.6	23.2 J	24.4	27	35.9	38.4
Selenium	μg/L	50.0																			5 J	5 J
Silver	μg/L	100.0																			1 J	1 J
Thallium	μg/L	0.2																			<u>1.9</u>	<u>1.9</u>
Zinc	μg/L	119.8	<u>59500</u>	<u>59300</u>	<u>64400</u>	<u>63800</u>	<u>66500</u>	<u>65300</u>	<u>62700</u>	<u>62600</u>	57000	<u>57800</u>	<u>52400</u>	<u>50400</u>	44000	<u>45100</u>	<u>52400</u>	<u>54600</u>	<u>55500</u>	<u>58400</u>	<u>53300</u>	<u>54500</u>
Hardness	mg/L	100	337	337	366	366	375	375	372	372	346	346	313	313	256	256	306	306	325	325	334.23	369.71
Hardness for calculation ²	mg/L	100	337	337	366	366	375	375	372	372	346	346	313	313	256	256	306	306	325	325	334.23	369.71

Aquatic life hardness-based equations for 6 metals are shown below. Equations are from DEQ-7 Montana Numeric Water Quality Standards (October 2012).

¹Standards shown for cadmium, chromium, copper, lead, nickel, and zinc are based on 100 mg/L hardness for comparison purposes only. Actual screening in the table is based on the calculated hardness for each particular sample result.

³A hardness value of 400 mg/L was assumed for the standards' calculations for POSTI and POSTE on 9/16/2014. A hardness measurement was not collected on that date, however measurements before and after this date were significantly greater than 400 mg/L.

Cadmium	Acute	$e^{(1.0166*\ln(hardness)-3.924)}$
	Chronic	$e^{(0.7409*\ln(hardness)-4.719)}$
Chromium	Acute	$e^{(0.819*\ln(hardness)+3.7256)}$
	Chronic	$e^{(0.819*\ln(hardness)+0.6848)}$
Copper	Acute	$e^{(0.9422*\ln(hardness)-1.7)}$
	Chronic	$e^{(0.8545*\ln(hardness)-1.702)}$
Lead	Acute	$e^{(1.273*\ln(hardness)-1.46)}$
	Chronic	$e^{(1.273*\ln(hardness)-4.705)}$
Nickel	Acute	$e^{(0.846*\ln(hardness)+2.255)}$
	Chronic	$e^{(0.846*\ln(hardness)+0.0584)}$
Zinc	Acute/chronic	$e^{(0.8473*\ln(hardness)+0.884)}$

D = Dissolved Metals
T = Total Metals

T = Total Metals

Q = Qualifier

μg/L= micrograms per liter

mg/L = milligrams per liter

INF = Adit influent to treatment system

BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2 $\mbox{CHIT} = \mbox{Chitorem pre-treatment to BCR 3}$

NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTI = Combined four BCR effluents into post-treatment system

POSTE = Effluent from post-treatment system

Flags:

² A hardness concentration of 400 mg/L was used for all measurements greater than 400 mg/L as per MT DEQ Montana Numeric Water Quality Standards (October 2012).

		Location										В	CR1									
		Sample ID	14BH-DT-P 061	114	06:	PILOT-BCR1- 2414	07	PILOT-BCR1- '0814	0	-PILOT-BCR1- 72214	0	-PILOT-BCR1- 80614		T-PILOT-BCR1- 081914	09	PILOT-BCR1- 00214	09	PILOT-BCR1- 1614	09	PILOT-BCR1- 2314	092	PILOT-BCR1- 2914
		Sample Date	6/11	/2014	6/24	/2014	7/8	3/2014	7/2	2/2014	8/	6/2014	8/	19/2014	9/2	2/2014	9/16	5/2014	9/23	3/2014	9/29	/2014
		Fraction	D	Т	D	Т	D	Т	D	Т	D	Т	D	Т	D	Т	D	Т	D	Т	D	T
Analyte	Units	Standard ¹	Result Q	Result Q	Result Q	Result Q	Result (Q Result C	Result	Q Result C	Q Result	Q Result C	Result	Q Result C	Q Result C	Q Result Q	Result C	Result Q	Result C	Q Result Q	Result Q	Result Q
Aluminum	μg/L	87.0	436 J	1190	250 U	151 J	50 l	265	172	J 185 .	250	U 140 J	137	J 199 .	129	J 140 J	250 U	J 250 U	250 L	J 250 U	13 J	23.9
Antimony	μg/L	5.6																			2 J	2 J
Arsenic	μg/L	10.0	<u>94.5</u>	<u>109</u>	<u>20.3</u>	<u>20.5</u>	5.98	13.7 J	5.24	J 6.77 .	20	U 20 L	J 20	U 20 l	J 20 l	J 20 U	20 U	J 20 U	20 L	J 20 U	0.97 J	1.4
Barium	μg/L	1000.0																			188	181
Beryllium	μg/L	4.0																			1 U	1 U
Cadmium	μg/L	0.3	2 U	<u>17.1</u>	2 U	1.37 J	2 (2.1	2	U 2 L	J 2	U 2 L	J 2	U 2 U	J 2 L	J 2 U	2 U	J 2 U	1 2 L	J 2 U	1 U	0.047 J
Chromium	μg/L	86.2																			3.6	6.4
Copper	μg/L	9.3	18.6	145	5.3 J	17.1	10 l	J 15.7	10	U 10 l	6.94	J 10 L	14.3	10 l	J 10 l	J 10 U	10 U	J 10 U	10 L	J 10 U	2 U	2 J
Iron	μg/L	1000.0	1410 J	2610	1250 U	1250 U	2190	11000	1250	U 687 .	1250	U 1250 L	1250	U 1250 U	J 1250 L	J 6450	1250 U	J 1250 U	1250 L	J 1250 U	1930	2450
Lead	μg/L	3.2	2 U	20.5 J	2 U	1.23 J	2 (J 1.59 J	2	U 2.23	2	U 1.34 J	1.01	J 6	2 l	J 2 U	2 U	J 1.11 J	2 L	J 2 U	1 U	0.48 J
Nickel	μg/L	52.2	10 U	10 U	27.1	10 U	10 l	J 10 L	J 10	U 10 l	J 10	U 10 L	J 10	U 10 U	J 15.6	10 U	10 U	J 10 U	10 L	J 10 U	11.4	13.2
Selenium	μg/L	50.0																			5 J	9.4
Silver	μg/L	100.0																			1 U	1 U
Thallium	μg/L	0.2																			1 U	1 U
Zinc	μg/L	119.8	142 J	882	82.2 J	250	59.2	2200	100	U 497	100	U 175	100	U 119	100 l	J 76.2 J	100 U	J 96.3 J	100 L	J 50.8 J	3.8	76.2
Hardness	mg/L	100	3270	3270	2320	2320	1760	1760	1340	1340	963	963	925	925	736	736	777	777	832	832	400	400
Hardness for calculation ²	mg/L	100	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400

Aquatic life hardness-based equations for 6 metals are shown below. Equations are from DEQ-7 Montana Numeric Water Quality Standards (October 2012).

¹Standards shown for cadmium, chromium, copper, lead, nickel, and zinc are based on 100 mg/L hardness for comparison purposes only. Actual screening in the table is based on the calculated hardness for each particular sample result.

³A hardness value of 400 mg/L was assumed for the standards' calculations for POSTI and POSTE on 9/16/2014. A hardness measurement was not collected on that date, however measurements before and after this date were significantly greater than 400 mg/L.

Cadmium	Acute	$e^{(1.0166*\ln(hardness)-3.924)}$
	Chronic	$e^{(0.7409*\ln(hardness)-4.719)}$
Chromium	Acute	$e^{(0.819*\ln(hardness)+3.7256)}$
	Chronic	$e^{(0.819*\ln(hardness)+0.6848)}$
Copper	Acute	$e^{(0.9422*\ln(hardness)-1.7)}$
	Chronic	$e^{(0.8545*\ln(hardness)-1.702)}$
Lead	Acute	$e^{(1.273*\ln(hardness)-1.46)}$
	Chronic	$e^{(1.273*\ln(hardness)-4.705)}$
Nickel	Acute	$e^{(0.846*\ln(hardness)+2.255)}$
	Chronic	$e^{(0.846*\ln(hardness)+0.0584)}$
Zinc	Acute/chronic	ρ (0.8473*ln(hardness)+0.884)

D = Dissolved Metals
T = Total Metals

T = Total Metals

Q = Qualifier

μg/L= micrograms per liter
mg/L = milligrams per liter

INF = Adit influent to treatment system

BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2
CHIT = Chitorem pre-treatment to BCR 3
NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTI = Combined four BCR effluents into post-treatment system

POSTE = Effluent from post-treatment system

Flags:

² A hardness concentration of 400 mg/L was used for all measurements greater than 400 mg/L as per MT DEQ Montana Numeric Water Quality Standards (October 2012).

		Location										S	SAPS									
		Sample ID	061		06	PILOT-SAPS- 2414	07	-PILOT-SAPS- 70814	C	Γ-PILOT-SAPS- 172214	0	T-PILOT-SAPS- 80614	C	Γ-PILOT-SAPS- 081914	09	PILOT-SAPS- 0214	09	PILOT-SAPS- 1614	09	PILOT-SAPS- 2314	092	PILOT-SAPS- 2914
		Sample Date	6/11	/2014	6/24	1/2014	7/8	3/2014	7/:	22/2014	8/	6/2014	8/	19/2014	9/2	/2014	9/16	5/2014	9/23	3/2014	9/29	/2014
		Fraction	D	T	D	Т	D	T	D	Т	D	Т	D	Т	D	Т	D	T	D	Т	D	T
Analyte	Units	Standard ¹	Result Q	Result Q	Result Q	Result Q	Result (Q Result (Q Result	Q Result	Q Result	Q Result C	Q Result	Q Result C	Result C	Q Result Q	Result C	Result C	Result C	Result Q	Result Q	Result Q
Aluminum	μg/L	87.0	500 U	500 U	250 U	250 U	142	J 159	321	587	554	1650	394	494	464	575	304	894	411	498	732	856
Antimony	μg/L	5.6																			2 J	2 J
Arsenic	μg/L	10.0	<u>17.4</u> J	<u>16.8</u> J	<u>19.7</u> J	<u>19.9</u> J	<u>36.2</u>	<u>38.8</u>	J 9.62	J <u>10.7</u>	J 20	U 200 l	J 5.75	J 5.41 J	20 L	J 20 U	5.35 J	20 U	J 20 U	20 U	3.1	3.1
Barium	μg/L	1000.0																			45.6	46.5
Beryllium	μg/L	4.0																			<u>0.77</u> J	<u>0.92</u> J
Cadmium	μg/L	0.3	<u>5.25</u>	6.66	2 U	2.18	2	J 2 l	J 2	U 2	J 2	U 20 L	J 2	U 2 L	J 2 L	J 2 U	2 U	1.2 J	2 U	1 2 U	2.2	1.9
Chromium	μg/L	86.2																			4.9	10.4
Copper	μg/L	9.3	44	77.7	10 U	8.61 J	10	J 5.4	J 10	U 10 l	JJ 10	U 100 l	J 5.34	J 10 L	J 10 L	J 5.52 J	5.08 J	11.8 J	5.41 J	6.26 J	2 J	13.1
Iron	μg/L	1000.0	6260	6390	26800	26100	107000	103000	112000	118000	107000	109000	111000	108000	81900	80200	88600	88100	101000	103000	111000	114000
Lead	μg/L	3.2	2 U	1.75 J	2 U	2 U	2	J 10.5	2	U 1.32	J 2	U 20 L	J 2	U 2 L	J 2 L	J 2 U	2 U	1.3 J	2 U	1 2 U	0.21 J	1.8
Nickel	μg/L	52.2	10 U	10 U	27.1	10 U	19	11.3	7.19	J 9.74	J 15	100 l	J 19.9	21.4	26.7	26.8	18.2	26.2 J	21	18.3 J	71.3	65.5
Selenium	μg/L	50.0																			5 J	5 J
Silver	μg/L	100.0																			2.3	1 J
Thallium	μg/L	0.2																			0.21 J	0.24 J
Zinc	μg/L	119.8	<u>2260</u>	<u>2480</u>	<u>6280</u>	<u>5950</u>	<u>16100</u>	<u>18300</u>	<u>5520</u>	7180	<u>18200</u>	<u>18300</u>	<u>27200</u>	<u>25800</u>	<u>25600</u>	26400	<u>27100</u>	<u>26800</u>	33900	33600	<u>38100</u>	<u>39300</u>
Hardness	mg/L	100	987	987	903	903	802	802	677	677	640	640	622	622	531	531	601	601	638	638	400	400
Hardness for calculation ²	mg/L	100	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400

Aquatic life hardness-based equations for 6 metals are shown below. Equations are from DEQ-7 Montana Numeric Water Quality Standards (October 2012).

¹Standards shown for cadmium, chromium, copper, lead, nickel, and zinc are based on 100 mg/L hardness for comparison purposes only. Actual screening in the table is based on the calculated hardness for each particular sample result.

³A hardness value of 400 mg/L was assumed for the standards' calculations for POSTI and POSTE on 9/16/2014. A hardness measurement was not collected on that date, however measurements before and after this date were significantly greater than 400 mg/L.

Cadmium	Acute	$e^{(1.0166*\ln(hardness)-3.924)}$
	Chronic	$e^{(0.7409*\ln(hardness)-4.719)}$
Chromium	Acute	$e^{(0.819*\ln(hardness)+3.7256)}$
	Chronic	$e^{(0.819*\ln(hardness)+0.6848)}$
Copper	Acute	$e^{(0.9422*\ln(hardness)-1.7)}$
	Chronic	$e^{(0.8545*\ln(hardness)-1.702)}$
Lead	Acute	$e^{(1.273*\ln(hardness)-1.46)}$
	Chronic	$e^{(1.273*\ln(hardness)-4.705)}$
Nickel	Acute	$e^{(0.846*\ln(hardness)+2.255)}$
	Chronic	$e^{(0.846*\ln(hardness)+0.0584)}$
Zinc	Acute/chronic	$e^{(0.8473*\ln(hardness)+0.884)}$

D = Dissolved Metals
T = Total Metals

T = Total Metals

Q = Qualifier

μg/L= micrograms per liter

mg/L = milligrams per liter

INF = Adit influent to treatment system

BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2
CHIT = Chitorem pre-treatment to BCR 3
NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTI = Combined four BCR effluents into post-treatment system

POSTE = Effluent from post-treatment system

Flags:

² A hardness concentration of 400 mg/L was used for all measurements greater than 400 mg/L as per MT DEQ Montana Numeric Water Quality Standards (October 2012).

		Location											BCR2										
		Sample ID	14BH-DT-P 061 6/11/	114	06:	PILOT-BCR2- 2414 8/2014	07	-PILOT-BCR2- 70814 3/2014	C	T-PILOT-BCR2- 072214 22/2014	(T-PILOT-BCR2 080614 76/2014	14B	08	PILOT-BCR2- 1914 9/2014	09	PILOT-BCR2- 90214 2/2014	09	PILOT-BCR2- 1614 6/2014	09	PILOT-BCR2- 92314 3/2014	09	PILOT-BCR2- 92914 9/2014
		Fraction	D	T	D	Т	D	Т	D	Т	D	T		D	Т	D	T	D	Т	D	T	D	Т
Analyte	Units	Standard ¹	Result Q	Result Q	Result Q	Result Q	Result	Q Result (Q Result	Q Result	Q Result	Q Result	Q Res	ult Q	Result C	Q Result (Q Result Q	Result C	Q Result C	Result C	Q Result C	Q Result C	Q Result Q
Aluminum	μg/L	87.0	282 J	1340	129	304	81.2	161	250	U 148	J 250	U 250	U	250 U	100 .	126	J 113 J	250 L	J 250 L	J 250 L	J 250 L	J 9.6 J	J 24.9
Antimony	μg/L	5.6																				2 .	J 2 J
Arsenic	μg/L	10.0	<u>15.6</u> J	200 U	<u>12.4</u> J	<u>17.1</u> J	20	U <u>19.3</u>	J 20	U 7.73	J 20	U 20	U	20 U	J 20 L	J 20 I	J 20 U	20 L	J 20 L	J 20 L	J 20 L	1.2	1.9
Barium	μg/L	1000.0																				219	211
Beryllium	μg/L	4.0																				1 (J 1 U
Cadmium	μg/L	0.3	2 U	20 U	1.1 J	3.01	2	U 1.21	J 2	U 2	U 2	U 2	U	2 U	J 2 L	J 2 I	J 2 U	2 L	J 2 L	J 2 L	J 2 L	J 1 L	J 0.046 J
Chromium	μg/L	86.2																				1.9	J 11.5
Copper	μg/L	9.3	20.2	271	35.2	80	10	U 25.6	5.43	J 11.7	5.09	J 10	U !	5.36 J	10 U	10	J 10 U	5.93 J	10 L	6.19	J 10 L	J 2 L	J 2 J
Iron	μg/L	1000.0	1030 J	3400	1470	2530	250	J 1000	1250	U 615	J 1250	U 657	J	533 J	710 .	1730	1770	1250 U	J 1250 L	J 1250 L	J 1250 L	J 876	1210
Lead	μg/L	3.2	2.61	55.7 J	2.95	10.7	2	J 7.48	2	U 5.73	2	U 1.09	J	2 U	1 .	2	J 2 U	2 (J 1.19 J	2 l	J 2 L	J 0.045 J	1.1
Nickel	μg/L	52.2	29.3	100 U	12	5.54 J	10	U 10	J 10	U 10	U 10	U 10	U	10 U	J 10 U	5.59	J 10 U	10 U	J 10 L	J 10 U	J 10 L	4.6	13.2
Selenium	μg/L	50.0																				5 1	8.4
Silver	μg/L	100.0																				1 (J 1 U
Thallium	μg/L	0.2																				1 (J 1 U
Zinc	μg/L	119.8	165 J	1370	268	670	46.8	<u>2100</u>	100	U 326	100	U 62.4	J	100 U	102	100	J 125	100 U	514	100 ເ	J 160	39.9	288
Hardness	mg/L	100	1600	1600	1300	1300	1220	1220	895	895	774	774		746	746	734	734	653	653	662	662	400	400
Hardness for calculation ²	mg/L	100	400	400	400	400	400	400	400	400	400	400		400	400	400	400	400	400	400	400	400	400

Aquatic life hardness-based equations for 6 metals are shown below. Equations are from DEQ-7 Montana Numeric Water Quality Standards (October 2012).

¹Standards shown for cadmium, chromium, copper, lead, nickel, and zinc are based on 100 mg/L hardness for comparison purposes only. Actual screening in the table is based on the calculated hardness for each particular sample result.

Q = Qualifier

³A hardness value of 400 mg/L was assumed for the standards' calculations for POSTI and POSTE on 9/16/2014. A hardness measurement was not collected on that date, however measurements before and after this date were significantly greater than 400 mg/L.

Cadmium	Acute	$e^{(1.0166*\ln(hardness)-3.924)}$
	Chronic	$e^{(0.7409*\ln(hardness)-4.719)}$
Chromium	Acute	$e^{(0.819*\ln(hardness)+3.7256)}$
	Chronic	$e^{(0.819*\ln(hardness)+0.6848)}$
Copper	Acute	$e^{(0.9422*\ln(hardness)-1.7)}$
	Chronic	$e^{(0.8545*\ln(hardness)-1.702)}$
Lead	Acute	$e^{(1.273*\ln(hardness)-1.46)}$
	Chronic	$e^{(1.273*\ln(hardness)-4.705)}$
Nickel	Acute	$e^{(0.846*\ln(hardness)+2.255)}$
	Chronic	$e^{(0.846*\ln(hardness)+0.0584)}$
Zinc	Acute/chronic	$e^{(0.8473*\ln(hardness)+0.884)}$

D = Dissolved Metals
T = Total Metals

BCRX = Biochemical reactor

SAPS = Successive alkalinity

μg/L= micrograms per liter mg/L = milligrams per liter INF = Adit influent to treatment system

BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2 CHIT = Chitorem pre-treatment to BCR 3

NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTI = Combined four BCR effluents into post-treatment system

POSTE = Effluent from post-treatment system

Flags:

² A hardness concentration of 400 mg/L was used for all measurements greater than 400 mg/L as per MT DEQ Montana Numeric Water Quality Standards (October 2012).

		Location											HIT										
		Sample ID	061		06	PILOT-CHIT-	07	-PILOT-CHIT- 70814	0	Г-РІLОТ-СНІТ- 72214		T-PILOT-CHIT- 080614		T-PILOT-CHIT 081914	14BH	090214		091	PILOT-CHIT- 1614	092	PILOT-CHIT- 2314	092	PILOT-CHIT-
		Sample Date		/2014		4/2014		3/2014	,	22/2014	8	/6/2014	8,	19/2014		9/2/201	L4 _		/2014		/2014		9/2014
		Fraction	D	Т	D	Т	D	T	D	Т	D	Т	D	Т	D		Т	D	Т	D	T	D	
Analyte	Units	Standard ¹	Result Q	Result Q	Result C	Q Result Q	Result (Q Result (Q Result	Q Result	Q Result	Q Result (Result	Q Result	Q Result	Q R	Result O		Result Q	Result Q	Result Q	Result Q	Q Result Q
Aluminum	μg/L	87.0	94.5	211	50 U	J 50 U	50	U 50 I	J 277	298	173	J 219 .	144	J 155	J 42	8	5400	250 U	6740	626	12400	2300	17600
Antimony	μg/L	5.6																				2 J	2 J
Arsenic	μg/L	10.0	<u>48.5</u>	<u>52</u>	<u>23.6</u>	<u>18.5</u> J	7.06	J 7.06	J 20	U 6.36	J 20	U 20 l	ر 20	U 20	U 2	0 U	<u>15.8</u> J	7.97 J	<u>21.9</u>	20 U	<u>12.5</u> J	2.8	<u>12</u>
Barium	μg/L	1000.0																				20.8	46.5
Beryllium	μg/L	4.0																				<u>1.8</u>	<u>8.1</u>
Cadmium	μg/L	0.3	2 U	2 U	2 U	J 2 U	2 1	1.69	J 2	U 1.86	J 2	U 2 l	J 2	U 2	U	2 U	<u>53.5</u>	2 U	<u>77.1</u>	2 U	<u>54.5</u>	0.27 J	<u>256</u>
Chromium	μg/L	86.2																				1.9 J	10.5
Copper	μg/L	9.3	24.3	22.7	10.8	14.9	10	U 8.24	J 10	U 6.58	J 10	U 7.05 .	10	U 10	U 1	0 U	172	10 U	299	10 U	179 J	2 J	363
Iron	μg/L	1000.0	407	2250	2300	2700	5000	6170	4310	2950	2320	5830	1620	5120	3150	0	49900	3120	51400	59100	87700	74900	98500
Lead	μg/L	3.2	2 U	1.27 J	2 U	J 2 U	2	U 2 I	J 2	U 2	U 2	U 2 l	J 2	U 2	U	2 U	<u>48</u>	2 U	<u>55.3</u>	2 U	39.1	0.2 J	<u>174</u>
Nickel	μg/L	52.2	10 U	10 U	29.1	10 U	10	U 10	J 10	U 11.8	J 10	U 10 l	J 10	U 10	U 11	3	13.6	10 U	10 U	6.64 J	11.2 J	24.5	48
Selenium	μg/L	50.0																				5 J	6.6
Silver	μg/L	100.0																				1.5	1 J
Thallium	μg/L	0.2																				1 U	J <u>1.9</u>
Zinc	μg/L	119.8	205	401	35.2	63	30.2	298	297	887	100	U 404	100	U 586	5	3 J	<u>15900</u>	100 U	22600	100 U	<u>31300</u>	<u>14100</u>	<u>61700</u>
Hardness	mg/L	100	1140	1140	2130	2130	2920	2920	2010	2010	1620	1620	958	958	58	5	585	871	871	637	637	400	400
Hardness for calculation ²	mg/L	100	400	400	400	400	400	400	400	400	400	400	400	400	40	0	400	400	400	400	400	400	400

Aquatic life hardness-based equations for 6 metals are shown below. Equations are from DEQ-7 Montana Numeric Water Quality Standards (October 2012).

1Standards shown for cadmium, chromium, copper, lead, nickel, and zinc are based on 100 mg/L hardness for comparison purposes only. Actual screening in the table is based on the calculated hardness for each particular sample result.

³A hardness value of 400 mg/L was assumed for the standards' calculations for POSTI and POSTE on 9/16/2014. A hardness measurement was not collected on that date, however measurements before and after this date were significantly greater than 400 mg/L.

Cadmium	Acute	$e^{(1.0166*\ln(hardness)-3.924)}$
	Chronic	$e^{(0.7409*\ln(hardness)-4.719)}$
Chromium	Acute	$e^{(0.819*\ln(hardness)+3.7256)}$
	Chronic	$e^{(0.819*\ln(hardness)+0.6848)}$
Copper	Acute	$e^{(0.9422*\ln(hardness)-1.7)}$
	Chronic	$e^{(0.8545*\ln(hardness)-1.702)}$
Lead	Acute	$e^{(1.273*\ln(hardness)-1.46)}$
	Chronic	$e^{(1.273*\ln(hardness)-4.705)}$
Nickel	Acute	$e^{(0.846*\ln(hardness)+2.255)}$
	Chronic	$e^{(0.846*\ln(hardness)+0.0584)}$
Zinc	Acute/chronic	$e^{(0.8473*\ln(hardness)+0.884)}$

D = Dissolved Metals

T = Total Metals Q = Qualifier μg/L= micrograms per liter mg/L = milligrams per liter INF = Adit influent to treatment system BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2 CHIT = Chitorem pre-treatment to BCR 3 NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTI = Combined four BCR effluents into post-treatment system

POSTE = Effluent from post-treatment system

Flags:

² A hardness concentration of 400 mg/L was used for all measurements greater than 400 mg/L as per MT DEQ Montana Numeric Water Quality Standards (October 2012).

		Location										В	CR3									
		Sample ID	061		06	PILOT-BCR3- 2414	07	-PILOT-BCR3- 70814	0	-PILOT-BCR3- 72214	0	-PILOT-BCR3- 80614	0	-PILOT-BCR3- 81914	09	PILOT-BCR3- 0214	09	PILOT-BCR3- 1614	09	PILOT-BCR3- 2314	09	PILOT-BCR3- 2914
		Sample Date		/2014	b/24	1/2014		3/2014		22/2014	8/	6/2014	8/.	19/2014	9/2 D	/2014	9/16	5/2014	9/23	3/2014 —	9/29 D	/2014
Ameliaka	11-24-	Fraction	D D	Describ O		Davids O	D	0 0	D	O Brouk 6	D D	0 0	D D	0 0) December 0		Describe O		D	_	Doroth O
Analyte	Units	Standard ¹	Result Q			(Itesuit e	Result	Q Result (Q Result C	`	Q Result C	, itesuit	Q Result C	. Itesaire e	Q Result Q		Result Q		nesure Q	Result Q	
Aluminum	μg/L	87.0	279 J	1500	127	133	37.9	J 26.2	J 50	U 50 L	J 50	U 50 L	175	J 181 J	148 J	175 J	250 U	250 U	250 U	116 J	5.5 J	11.8 J
Antimony	μg/L	5.6																			2 J	2 J
Arsenic	μg/L	10.0	<u>174</u>	<u>180</u>	<u>46.4</u>	<u>31</u>	<u>26</u>	<u>29.3</u>	J <u>16.2</u>	J <u>19.7</u> J	<u>10.4</u>	J <u>12.2</u> J	6.81	J 8.3 J	20 L	J 8.6 J	5.37 J	20 U	6.56 J	7.09 J	4.3	4.3
Barium	μg/L	1000.0					1														105	107
Beryllium	μg/L	4.0																			1 U	1 U
Cadmium	μg/L	0.3	2 U	4.87	2 U	J 2 U	2 1	U 2 I	J 2	U 2 L	J 2	U 2 L	J 2	U 2 U	2 L	J 2 U	2 U	J 2 U	2 U	2 U	1 U	1 U
Chromium	μg/L	86.2																			0.98 J	1.7 J
Copper	μg/L	9.3	22.7	144	12.9	39.5	17	36.2	5.69	J 9.34 J	9.81	J 7.47 J	13.9	10 U	5.48 J	10 U	7.39 J	10 U	7.69 J	10 U	0.57 J	1.2 J
Iron	μg/L	1000.0	1320 J	3530	2060	1990	2070	2510	250	U 152 J	250	U 250 L	1250	U 1250 U	1250 L	J 1250 U	1250 U	1250 U	1250 U	1250 U	1810	1940
Lead	μg/L	3.2	2.19	33.6 J	2 U	4.07	1.04	J 6.88	2	U 1.97 J	2	U 2 L	J 2	U 2 U	2 L	J 2 U	2 U	J 2 U	2 U	2 U	0.062 J	0.36 J
Nickel	μg/L	52.2	27	29.5	51.8	10 U	10	U 10	J 10	U 29.3 J	10	U 10 L	J 10	U 6.41 J	10 L	J 5.85 J	10 U	J 10 U	10 U	10 U	3.6	3.4
Selenium	μg/L	50.0																			19	37.7
Silver	μg/L	100.0					1 1														1 U	1 U
Thallium	μg/L	0.2																			1 U	1 U
Zinc	μg/L	119.8	155 J	693	63.6	121	95.7	116	40.8	162	44.6	108	100	U 56 J	100 L	J 100 U	100 U	100 U	100 U	100 U	7.4	11.8
Hardness	mg/L	100	1870	1870	1570	1570	2520	2520	2410	2410	2060	2060	1300	1300	896	896	798	798	767	767	400	400
Hardness for calculation ²	mg/L	100	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400

Aquatic life hardness-based equations for 6 metals are shown below. Equations are from DEQ-7 Montana Numeric Water Quality Standards (October 2012).

1Standards shown for cadmium, chromium, copper, lead, nickel, and zinc are based on 100 mg/L hardness for comparison purposes only. Actual screening in the table is based on the calculated hardness for each particular sample result.

³A hardness value of 400 mg/L was assumed for the standards' calculations for POSTI and POSTE on 9/16/2014. A hardness measurement was not collected on that date, however measurements before and after this date were significantly greater than 400 mg/L.

Cadmium	Acute	$e^{(1.0166*\ln(hardness)-3.924)}$
	Chronic	$e^{(0.7409*\ln(hardness)-4.719)}$
Chromium	Acute	$e^{(0.819*\ln(hardness)+3.7256)}$
	Chronic	$e^{(0.819*\ln(hardness)+0.6848)}$
Copper	Acute	$e^{(0.9422*\ln(hardness)-1.7)}$
	Chronic	$e^{(0.8545*\ln(hardness)-1.702)}$
Lead	Acute	$e^{(1.273*\ln(hardness)-1.46)}$
	Chronic	$e^{(1.273*\ln(hardness)-4.705)}$
Nickel	Acute	$e^{(0.846*\ln(hardness)+2.255)}$
	Chronic	$e^{(0.846*\ln(hardness)+0.0584)}$
Zinc	Acute/chronic	ρ (0.8473*ln(hardness)+0.884)

D = Dissolved Metals

T = Total Metals Q = Qualifier μg/L= micrograms per liter mg/L = milligrams per liter INF = Adit influent to treatment system BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2 CHIT = Chitorem pre-treatment to BCR 3 NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTI = Combined four BCR effluents into post-treatment system POSTE = Effluent from post-treatment system

Flags:

² A hardness concentration of 400 mg/L was used for all measurements greater than 400 mg/L as per MT DEQ Montana Numeric Water Quality Standards (October 2012).

		Location										N	AOH									
		Sample ID	061	ILOT-NAOH- 1114	06	PILOT-NAOH- 2414	0	PILOT-NOAH- 70814	0	-PILOT-NAOH- 72214	0	PILOT-NAOH- 80614	0	PILOT-NAOH- B1914	09	PILOT-NAOH- 00214	09:	PILOT-NAOH- 1614	09	PILOT-NAOH- 2314	092	ILOT-NAOH- 2914
		Sample Date		/2014		/2014		8/2014	,	22/2014	8/	6/2014	8/1	.9/2014	9/2	2/2014	_	5/2014		3/2014		/2014
		Fraction	D		D		D	0 0 0	D	0 0 0 0	D		D		D		D		D		D	- 1
Analyte	Units	Standard ¹	Result Q	nesure Q		Result C	Result	Q Result C		Q Result C	`	Q Result C	Result	Q Result C		Q Result C		t itesuit Q		Result Q	-	
Aluminum	μg/L	87.0	5530	5740	11100	11200	13600	13500	12900	13300	4380	4990	912	1300	250 l	824	236 J	479	8540	9030	7120	7810
Antimony	μg/L	5.6																			2 J	2 J
Arsenic	μg/L	10.0	<u>14.7</u> J	<u>57.6</u>	20 U	<u>16.2</u> J	5.61	J <u>19.7</u> .	1 20	U <u>17.2</u> J	20	U 200 L	J 20	U 8.38 J	20 l	J <u>18.1</u> J	1 20 U	J <u>10.8</u> J	5.2 J	<u>32.8</u>	<u>32.8</u>	<u>62.4</u>
Barium	μg/L	1000.0																			4 J	3.8 J
Beryllium	μg/L	4.0																			4.5	4.5
Cadmium	μg/L	0.3	<u>256</u>	<u>249</u>	<u>264</u>	<u>259</u>	<u>294</u>	<u>283</u>	<u>285</u>	<u>272</u>	<u>251</u>	<u>255</u>	<u>147</u>	<u>145</u>	<u>77.2</u>	<u>83.1</u>	2 U	4.25	<u>210</u>	<u>216</u>	<u>236</u>	<u>234</u>
Chromium	μg/L	86.2																			1.8 J	2.1
Copper	μg/L	9.3	787	712	799	878	1260	1040	911	820	660	785	87.7	125	6.85	73.1	5.29 J	26.5	647	696	696	724
Iron	μg/L	1000.0	31700	53800	17200	25000	23300	34800	563	J 16900	1250	9280	1740	9670	1250 l	7940	1250 U	6230	981 J	25500	51700	66500
Lead	μg/L	3.2	<u>72.7</u>	80.9 J	<u>135</u>	<u>119</u>	<u>123</u>	<u>175</u>	<u>86.7</u>	<u>105</u>	5.6	20 L	J 2	U 5.79	2 l	J <u>15.9</u>	2 U	4.32	<u>33.5</u>	<u>72.4</u>	<u>72.4</u>	<u>88.7</u>
Nickel	μg/L	52.2	27.1	24.1	51.3	21.6	27	21.3	19.4	22.5	19.7	100 L	13.7	13.9	13.7	14.2	10 U	10 U	21.1	22.5	29.9	35.7
Selenium	μg/L	50.0																			1.4 J	5 U
Silver	μg/L	100.0																			1 J	1 J
Thallium	μg/L	0.2																			<u>2</u>	<u>1.9</u>
Zinc	μg/L	119.8	<u>56200</u>	<u>55600</u>	<u>59900</u>	<u>58700</u>	<u>64100</u>	<u>62000</u>	<u>63000</u>	<u>64900</u>	<u>56400</u>	<u>57600</u>	<u>28200</u>	27900	11000	<u>12200</u>	57.6 J	1130	<u>47700</u>	<u>47300</u>	<u>43700</u>	<u>43700</u>
Hardness	mg/L	100	367	367	365	365	371	371	358	358	343	343	308	308	226	226	138	138	317	317	342.38	346.9
Hardness for calculation ²	mg/L	100	367	367	365	365	371	371	358	358	343	343	308	308	226	226	138	138	317	317	342.38	346.9

Aquatic life hardness-based equations for 6 metals are shown below. Equations are from DEQ-7 Montana Numeric Water Quality Standards (October 2012).

1Standards shown for cadmium, chromium, copper, lead, nickel, and zinc are based on 100 mg/L hardness for comparison purposes only. Actual screening in the table is based on the calculated hardness for each particular sample result.

³A hardness value of 400 mg/L was assumed for the standards' calculations for POSTI and POSTE on 9/16/2014. A hardness measurement was not collected on that date, however measurements before and after this date were significantly greater than 400 mg/L.

Cadmium	Acute	$e^{(1.0166*\ln(hardness)-3.924)}$
	Chronic	$e^{(0.7409*\ln(hardness)-4.719)}$
Chromium	Acute	$e^{(0.819*\ln(hardness)+3.7256)}$
	Chronic	$e^{(0.819*\ln(hardness)+0.6848)}$
Copper	Acute	$e^{(0.9422*\ln(hardness)-1.7)}$
	Chronic	$e^{(0.8545*\ln(hardness)-1.702)}$
Lead	Acute	$e^{(1.273*\ln(hardness)-1.46)}$
	Chronic	$e^{(1.273*\ln(hardness)-4.705)}$
Nickel	Acute	$e^{(0.846*\ln(hardness)+2.255)}$
	Chronic	$e^{(0.846*\ln(hardness)+0.0584)}$
Zinc	Acute/chronic	ρ (0.8473*ln(hardness)+0.884)

D = Dissolved Metals

T = Total Metals Q = Qualifier μg/L= micrograms per liter mg/L = milligrams per liter INF = Adit influent to treatment system BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2 CHIT = Chitorem pre-treatment to BCR 3 NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTI = Combined four BCR effluents into post-treatment system

POSTE = Effluent from post-treatment system

Flags:

² A hardness concentration of 400 mg/L was used for all measurements greater than 400 mg/L as per MT DEQ Montana Numeric Water Quality Standards (October 2012).

		Location										В	CR4									
		Sample ID	14BH-DT-P 061	ILOT-BCR4- 1114		PILOT-BCR4- 2414		PILOT-BCR4- 70814		-PILOT-BCR4- 72214		-PILOT-BCR4- 80614		T-PILOT-BCR4- 081914		-PILOT-BCR4- 90214		PILOT-BCR4- 1614		PILOT-BCR4- 2314		PILOT-BCR4- 2914
		Sample Date	6/11,	/2014	6/24	1/2014	7/8	3/2014	7/:	22/2014	8/	6/2014	8/	19/2014	9/.	2/2014	9/16	5/2014	9/23	/2014	9/29	/2014
		Fraction	D	T	D	T	D	T	D	T	D	T	D	T	D	Т	D	T	D	T	D	T
Analyte	Units	Standard ¹	Result Q	Result Q	Result Q	Result Q	Result (Q Result (Q Result	Q Result (Q Result	Q Result C	Result	Q Result C	Q Result	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Aluminum	μg/L	87.0	460 J	1100	108 J	169 J	133	J 654	250	U 148 .	250	U 105 J	250	U 250 L	304	250 U	250 U	250 U	250 U	250 U	4.2 J	21.2
Antimony	μg/L	5.6																			2 U	2 J
Arsenic	μg/L	10.0	<u>29.5</u>	<u>35.4</u>	9.03 J	<u>17</u> J	20	J <u>17.4</u>	J 20	U <u>14.4</u> .	20	U 7.65 J	5.38	J 9.17 .	20	U 20 U	20 U	J 20 U	20 U	5.98 J	1 U	9.2
Barium	μg/L	1000.0																			0.19 J	108
Beryllium	μg/L	4.0																			1 U	1 U
Cadmium	μg/L	0.3	<u>12.5</u>	<u>38</u>	4.51	<u>13.2</u>	2	13.8	2	U 2.25	2	U 2 L	J 2	U 1.11 .	2	J 1.39 J	2 U	J 2 U	2 U	2.27	1 U	2.4
Chromium	μg/L	86.2																			2 U	12.2
Copper	μg/L	9.3	63.3	194	15.9	40.2	10	J 49.6	6	J 8.53 .	7.04	J 6.8 J	12.8	9.19	10	J 5.44 J	6.29 J	7.35 J	7.68 J	10.6	2 U	6
Iron	μg/L	1000.0	1310 J	3230	1440	1490	1030	2070	1250	U 578 .	1250	U 1250 L	1250	U 1250 U	1250	U 1250 U	1250 U	1250 U	1250 U	1250 U	496	442
Lead	μg/L	3.2	<u>16.2</u>	43.8 J	2.12	3.87	2	J 8.54	2	U 3.67	2	U 2 L	J 2	U 2 U	J 2	U 2 U	1 2 U	J 2 U	2 U	2 U	1 U	0.48 J
Nickel	μg/L	52.2	25	29.3	31.1	10 U	10	J 10 l	ال 10	U 10 L	IJ 10	U 10 L	J 10	U 10 U	J 10	U 10 U	10 U	10 U	10 U	10 U	0.26 J	24.8
Selenium	μg/L	50.0																			5 U	1.9 J
Silver	μg/L	100.0																			1 J	1 J
Thallium	μg/L	0.2																			1 U	1 U
Zinc	μg/L	119.8	1920	<u>3340</u>	734	1700	271	<u>7400</u>	324	<u>3180</u>	205	1290	137	1040	88.9	J 772	50.4 J	468	159	938	158	970
Hardness	mg/L	100	1040	1040	868	868	754	754	552	552	599	599	418	418	355	355	284	284	289	289	2.8246	342.94
Hardness for calculation ²	mg/L	100	400	400	400	400	400	400	400	400	400	400	400	400	355	355	284	284	289	289	2.8246	342.94

Aquatic life hardness-based equations for 6 metals are shown below. Equations are from DEQ-7 Montana Numeric Water Quality Standards (October 2012).

1Standards shown for cadmium, chromium, copper, lead, nickel, and zinc are based on 100 mg/L hardness for comparison purposes only. Actual screening in the table is based on the calculated hardness for each particular sample result.

³A hardness value of 400 mg/L was assumed for the standards' calculations for POSTI and POSTE on 9/16/2014. A hardness measurement was not collected on that date, however measurements before and after this date were significantly greater than 400 mg/L.

Cadmium	Acute	$e^{(1.0166*\ln(hardness)-3.924)}$
	Chronic	$e^{(0.7409*\ln(hardness)-4.719)}$
Chromium	Acute	$e^{(0.819*\ln(hardness)+3.7256)}$
	Chronic	$e^{(0.819*\ln(hardness)+0.6848)}$
Copper	Acute	$e^{(0.9422*\ln(hardness)-1.7)}$
	Chronic	$e^{(0.8545*\ln(hardness)-1.702)}$
Lead	Acute	$e^{(1.273*\ln(hardness)-1.46)}$
	Chronic	$e^{(1.273*\ln(hardness)-4.705)}$
Nickel	Acute	$e^{(0.846*\ln(hardness)+2.255)}$
	Chronic	$e^{(0.846*\ln(hardness)+0.0584)}$
Zinc	Acute/chronic	ρ (0.8473*ln(hardness)+0.884)

D = Dissolved Metals

T = Total Metals Q = Qualifier μg/L= micrograms per liter mg/L = milligrams per liter INF = Adit influent to treatment system BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2 CHIT = Chitorem pre-treatment to BCR 3 NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTI = Combined four BCR effluents into post-treatment system POSTE = Effluent from post-treatment system

Flags:

² A hardness concentration of 400 mg/L was used for all measurements greater than 400 mg/L as per MT DEQ Montana Numeric Water Quality Standards (October 2012).

Table 4.2-4 Danny T Treatability Study Year 2: Pilot Test Comparison to Water Quality Standards **Barker-Hughesville Mining District Superfund Site**

		Location									POST	E							
		Sample ID	14BH-DT-PI 062	LOT-POSTE- 414	14BH-DT-PI 070	LOT-POSTE- 814		PILOT-POSTE- 72214		ILOT-POSTE- 0614		ILOT-POSTE- 1914		ILOT-POSTE- 0214	14BH-DT-PILOT- POSTE-091614		ILOT-POSTE- 2314		PILOT-POSTE- 2914
		Sample Date	6/24/	/2014	7/8/	2014	7/2	2/2014	8/6/	2014	8/19	/2014	9/2/	²⁰¹⁴	9/16/2014	9/23	/2014	9/29	9/2014
		Fraction	D	T	D	T	D	Т	D	T	D	T	D	T	T	D	T	D	Т
Analyte	Units	Standard ¹	Result Q	Result Q	Result Q	Result Q	Result	Q Result Q	Result Q	Result Q	Result C	Result Q	Result Q	Result Q	Result ³ Q	Result O	Result Q	Result Q	Result Q
Aluminum	μg/L	87.0	89.3	246	70.2	138	50	U 590	50 U	329	119 J	174 J	250 U	145 J	3960	250 U	250 U	2.9 J	6.6 J
Antimony	μg/L	5.6																2 J	2 J
Arsenic	μg/L	10.0	<u>49.9</u>	<u>65.3</u>	<u>16.9</u> J	<u>36.5</u> J	<u>16.5</u>	J <u>22.4</u>	<u>14.1</u> J	200 U	<u>12</u> J	<u>11.5</u> J	5.2 J	20 U	<u>41.5</u>	8.25 J	8.71 J	5.4	5.6
Barium	μg/L	1000.0																87.8	92
Beryllium	μg/L	4.0																1 U	1 U
Cadmium	μg/L	0.3	2 U	<u>5.75</u>	1.75 J	2.95	2	U 2 U	2 U	20 U	2 U	2 U	2 U	2 U	3.43	2 U	2 U	1 U	0.073 J
Chromium	μg/L	86.2																0.31 J	0.51 J
Copper	μg/L	9.3	8.48 J	48.3	5.78 J	18.1	10	U 10 UJ	10 U	100 U	10 U	10 U	5.29 J	10 U	34.2	10 U	10 U	0.64 J	0.82 J
Iron	μg/L	1000.0	1020	2720	974	1370	250	U 756	250 U	335	1250 U	1250 U	1250 U	1250 U	7210	1250 U	1250 U	1580	1780
Lead	μg/L	3.2	2 U	<u>15.8</u>	2 U	5.61	2	U 7.81	2 U	20 U	2 U	2 U	2 U	2 U	<u>118</u>	2 U	1.5 J	0.096 J	0.53 J
Nickel	μg/L	52.2	53	28.2	10 U	10 U	10	U 10 UJ	10 U	100 U	10 U	10 U	7.13 J	10 U	10 U	10 U	10 U	3.6	8.1
Selenium	μg/L	50.0																1.3 J	1.2 J
Silver	μg/L	100.0																1 U	1 U
Thallium	μg/L	0.2																1 U	1 U
Zinc	μg/L	119.8	73.8	815	1120	1440	16.3	J 347	15.1 J	169	100 U	156	100 U	92.1 J	1680	100 U	101	6.2	68.7
Hardness	mg/L	100	1520	1520	1480	1480	933	933	1010	1010	891	891	693	693	400	629	629	400	400
Hardness for calculation ²	mg/L	100	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400

Aquatic life hardness-based equations for 6 metals are shown below. Equations are from DEQ-7 Montana Numeric Water Quality Standards (October 2012).

1Standards shown for cadmium, chromium, copper, lead, nickel, and zinc are based on 100 mg/L hardness for comparison purposes only. Actual screening in the table is based on the calculated hardness for each particular sample result.

³A hardness value of 400 mg/L was assumed for the standards' calculations for POSTI and POSTE on 9/16/2014. A hardness measurement was not collected on that date, however measurements before and after this date were significantly greater than 400 mg/L.

Cadmium	Acute	$e^{(1.0166*\ln(hardness)-3.924)}$
	Chronic	$e^{(0.7409*\ln(hardness)-4.719)}$
Chromium	Acute	$e^{(0.819*\ln(hardness)+3.7256)}$
	Chronic	$e^{(0.819*\ln(hardness)+0.6848)}$
Copper	Acute	$e^{(0.9422*\ln(hardness)-1.7)}$
	Chronic	$e^{(0.8545*\ln(hardness)-1.702)}$
Lead	Acute	$e^{(1.273*\ln(hardness)-1.46)}$
	Chronic	$e^{(1.273*\ln(hardness)-4.705)}$
Nickel	Acute	$e^{(0.846*\ln(hardness)+2.255)}$
	Chronic	$e^{(0.846*\ln(hardness)+0.0584)}$
Zinc	Acute/chronic	ρ (0.8473*ln(hardness)+0.884)

D = Dissolved Metals T = Total Metals

Q = Qualifier μg/L= micrograms per liter mg/L = milligrams per liter INF = Adit influent to treatment system BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2 CHIT = Chitorem pre-treatment to BCR 3 NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTI = Combined four BCR effluents into post-treatment system POSTE = Effluent from post-treatment system

Flags:

² A hardness concentration of 400 mg/L was used for all measurements greater than 400 mg/L as per MT DEQ Montana Numeric Water Quality Standards (October 2012).

Table 4.2-4
Danny T Treatability Study Year 2: Pilot Test Comparison to Water Quality Standards
Barker-Hughesville Mining District Superfund Site

		Location												PC	STI									
		Sample ID	06	PILOT-POST 2414	rı-		70814			07221		08	PILOT-POSTI- 0614	30	PILOT-POST 31914	Ί-	09	PILOT-POSTI- 0214	14BH-DT-PI 091	614	092	ILOT-POSTI- 2314	09	PILOT-POSTI- 2914
		Sample Date	6/24	1/2014		7/8	8/2014	1	7/	22/2	014	8/6	/2014	8/1	9/2014		9/2	/2014	9/16/	2014	9/23	/2014	9/29	9/2014
		Fraction	D	Т		D		Т	D		Т	D	Т	D	T		D	T			D	Т	D	Т
Analyte	Units	Standard ¹	Result C	Result	Q	Result	Q Re	esult Q	Result	Q	Result Q	Result Q	Result Q	Result (Q Result	Q	Result Q	Result C	Result ²	Q	Result Q	Result Q	Result Q	Result Q
Aluminum	μg/L	87.0	49.9 J	102	2	33.9	J	108	29.1	J	66.7	250 U	138 J	118	134	J	250 U	130 J	250	U	250 U	250 U	9 J	16.8 J
Antimony	μg/L	5.6																					2 J	2 J
Arsenic	μg/L	10.0	<u>14.3</u> J	<u>18.2</u>	J	9.21	J	200 UJ	5.88	J	9.52 J	20 U	200 U	20 ا	ر 20	U	20 U	20 L	20	U	5.53 J	20 U	1.7	2.9
Barium	μg/L	1000.0																					159	161
Beryllium	μg/L	4.0																					1 U	1 U
Cadmium	μg/L	0.3	1.57 J	4.33		2	U	20 U	2	U	1.16 J	2 U	20 U	2 (J 2	U	2 U	2 L	2	J	2 U	2 U	1 U	0.61 J
Chromium	μg/L	86.2																					0.79 J	1.1 J
Copper	μg/L	9.3	13.3	38.5	5	10	U	100 U	5.52	J	6.12 J	5.72 J	100 U	7.85	J 10	U	10 U	10 L	5.07	J	6.84 J	10 U	2 U	J 1.7 J
Iron	μg/L	1000.0	863	1340)	250	U	4550	250	U	493	1250 U	1250 U	1250 l	J 1250	U	1720	2520	1250	U	1250 U	1250 U	1770	2140
Lead	μg/L	3.2	2 L	3.25	5	2	U	20 U	1.48	J	2.62	2 U	20 U	2 l	J 2	U	2 U	2 L	2	U	2 U	2 U	0.045 J	0.37 J
Nickel	μg/L	52.2	25.6	10	U	10	U	100 U	10	U	10 UJ	10 U	100 U	10 ເ	J 10	U	10 U	10 L	10	U	10 U	10 U	3.2	2.8
Selenium	μg/L	50.0																					10.1	15.4
Silver	μg/L	100.0																					1 U	
Thallium	μg/L	0.2				_																	1 U	1 U
Zinc	μg/L	119.8	281	626	5	29.4		3080	31.3		857	100 U	263	100 l	326		100 U	268	191		100 U	346	16.3	360
Hardness	mg/L	100	1440	1440		1540		1540	1300	П	1300	997	997	813	813		676	676	400		629	629	400	400
Hardness for calculation ²	mg/L	100	400	400		400		400	400		400	400	400	400	400		400	400	400		400	400	400	400

Aquatic life hardness-based equations for 6 metals are shown below. Equations are from DEQ-7 Montana Numeric Water Quality Standards (October 2012).

¹Standards shown for cadmium, chromium, copper, lead, nickel, and zinc are based on 100 mg/L hardness for comparison purposes only. Actual screening in the table is based on the calculated hardness for each particular sample result.

³A hardness value of 400 mg/L was assumed for the standards' calculations for POSTI and POSTE on 9/16/2014. A hardness measurement was not collected on that date, however measurements before and after this date were significantly greater than 400 mg/L.

Cadmium	Acute	$e^{(1.0166*\ln(hardness)-3.924)}$
	Chronic	$e^{(0.7409*\ln(hardness)-4.719)}$
Chromium	Acute	$e^{(0.819*\ln(hardness)+3.7256)}$
	Chronic	$e^{(0.819*\ln(hardness)+0.6848)}$
Copper	Acute	$e^{(0.9422*\ln(hardness)-1.7)}$
	Chronic	$e^{(0.8545*\ln(hardness)-1.702)}$
Lead	Acute	$e^{(1.273*\ln(hardness)-1.46)}$
	Chronic	$e^{(1.273*\ln(hardness)-4.705)}$
Nickel	Acute	$e^{(0.846*\ln(hardness)+2.255)}$
	Chronic	$e^{(0.846*\ln(hardness)+0.0584)}$
Zinc	Acute/chronic	$e^{(0.8473*\ln(hardness)+0.884)}$

D = Dissolved Metals
T = Total Metals

T = Total Metals

Q = Qualifier

μg/L= micrograms per liter

mg/L = milligrams per liter

INF = Adit influent to treatment system

BCRX = Biochemical reactor barrel effluent

SAPS = Successive alkalinity producing system pre-treatment to BCR 2
CHIT = Chitorem pre-treatment to BCR 3
NAOH = Sodium hydroxide pre-treatment to BCR 4

POSTI = Combined four BCR effluents into post-treatment system

POSTE = Effluent from post-treatment system

Flags:

² A hardness concentration of 400 mg/L was used for all measurements greater than 400 mg/L as per MT DEQ Montana Numeric Water Quality Standards (October 2012).

Table 4.3-1
Tiger Bench-Scale Treatability Study: Analytical Laboratory Data
Barker-Hughesville Mining District Superfund Site

Sample I	D	14BH-TI-B	NCH-1	ΓN-RAW-0708	314	14BH-TI-BE	NCH-1	TN-RAWD-070814	14BH-TI-B	ENCH-	TN-CHIT-070814	14BH-TI-BI	ENCH-	TN-LSTN-070	814	14BH-TI-BENCH-1	TN-NAOH-07	0814	14BH-TI-BEN	NCH-CONTROL-08	326	14BH-TI	I-BENCH-E	BCR2-0826	14BH-T	I-BENC	H-BCR3-0826
Sample Da	ite		7/8/2	2014			7/8/	/2014		7/8/	2014		7/8/	2014		7/8/	2014		8,	/26/2014			8/26/201	14		8/26/	2014
Fraction	1	D		T		D		Т	D		Т	D		T		D	T		D	Т		D		Т	D		Т
Analyte	Unit	Result	Q	Result	Q	Result	Q	Result Q	Result	ď	Result Q	Result	Q	Result	ď	Result Q	Result	Q	Result	Q Result	Q	Result	QI	Result Q	Result	Q	Result Q
Aluminum	μg/L	2340.00		2310.00		2210.00		2260.00	301.00		530.00	40.10	J	222.00		150.00	212.00)	29400.00	28100.00		500.00	U	226.00 J	500.00	U	500.00 U
Arsenic	μg/L	29.50		30.10	J	30.50		28.90 J	36.00		43.10 J	20.00	U	20.00	IJ	20.00 U	20.00	UJ	100.00	U 100.00	U	100.00	U	100.00 U	100.00	U	100.00 U
Cadmium	μg/L	43.80		39.00		45.20		40.40	48.40		47.00	43.80		38.60		46.40	42.10)	52.90	58.70		21.80		24.40	25.40		27.80
Copper	μg/L	1450.00		1100.00		1410.00		1110.00	542.00		497.00	62.90		114.00		397.00	331.00)	1410.00	1760.00		26.60	J	45.20 J	70.50		102.00
Iron	μg/L	269000.00		261000.00		254000.00		255000.00	547.00		41500.00	651.00		16800.00		420.00	6710.00)	47600.00	46000.00		3870.00		5360.00	2550.00		3620.00
Lead	μg/L	952.00		1240.00		954.00		1260.00	5.80		102.00	4.71		70.10		11.70	42.50)	167.00	195.00	J	10.00	U	7.10 J	10.00	U	10.00 U
Manganese	μg/L	25400.00		24800.00		24400.00		24500.00	21100.00		21200.00	24300.00		24400.00		22600.00	22700.00)	30100.00	31100.00		23000.00	2	22800.00	22700.00		23100.00
Nickel	μg/L	11.40		8.30	J	10.50		7.71 J	14.80		9.78 J	7.78	J	10.00	U	19.50	14.20)	59.30	86.00		50.00	U	36.30 J	50.00	U	35.60 J
Zinc	μg/L	12100.00		11500.00		11700.00		11300.00	7810.00		7600.00	9690.00		9480.00		11500.00	11200.00)	13100.00	13500.00		5980.00		6160.00	6810.00		7150.00
Alkalinity	mg/L	500.00	U			500.00	J		500.00	כ		500.00	U			500.00 U			100.00	U		100.00	U		100.00	U	
Chloride	mg/L	20.00	U			20.00	J		169.00	J		6.70	J			6.70 J											
Fluoride	mg/L	2.00	U			2.00	J		20.00	כ		2.00	U			2.00 U											
Hardness	mg/L			286.00				273.00			1000.00			991.00			286.00)		499.00				335.00			343.00
Nitrate/Nitrite	mg/L	50.00	U			50.00	U		500.00	U		50.00	U	·		50.00 U											
Sulfate	mg/L	1120.00				1120.00			944.00			1040.00				1020.00			1020.00			1040.00			1000.00		

Sample ID		14BH-TI	-BENC	H-BCR4-082	6	14BH-T	I-BENO	CH-BCR5-082	6	14BH-TI-BEN	CH-BCR6-082	6	14BH-T	I-BEN	CH-BCR7-082	6	14BH-TI-BEN	CH-BCR8-082	6	14BH-T	I-BEN	CH-BCR9-0826	14BH-TI-	BENC	H-BCR10-0826	6
Sample Dat	:e		8/26/	2014			8/26	/2014		8/26	/2014			8/26	/2014		8/26	/2014			8/26	/2014		8/26/	2014	
Fraction		D		Ţ		D		T		D	T		D		T		D	T		D		T	D		Т	
Analyte	Unit	Result	Q	Result	Q	Result	Q	Result	Q	Result Q	Result	Q	Result	Q	Result	Q	Result Q	Result	Q	Result	Q	Result Q	Result	Q	Result	Q
Aluminum	μg/L	306.00	J	357.00	J	450.00	J	443.00	J	500.00 U	620.00		240.00	J	395.00	J	5680.00	6930.00		11800.00		12400.00	14900.00		16400.00	
Arsenic	μg/L	100.00	U	100.00	U	20.00	U	100.00	U	100.00 U	100.00	U	100.00	U	100.00	U	100.00 U	29.20	J	100.00	U	33.20 J	38.40	J	38.50	J
Cadmium	μg/L	26.40		28.30		3.00	U	10.00	U	15.00 U	10.00	U	26.60		30.00		15.00 U	10.00	U	28.30		31.00	44.30		47.10	
Copper	μg/L	174.00		215.00		10.00	U	50.00	U	50.00 U	27.70	J	112.00		180.00		50.00 U	117.00		475.00		157.00	314.00		508.00	
Iron	μg/L	2500.00	U	1560.00	J	18600.00		18200.00		52900.00	51800.00		1930.00	J	3800.00		273000.00	301000.00		278000.00		295000.00	303000.00		322000.00	
Lead	μg/L	10.00	U	8.07	J	2.00	U	10.00	UJ	10.00 U	22.70	J	10.00	U	12.40	J	55.70	105.00	J	248.00		287.00 J	255.00		371.00	
Manganese	μg/L	20000.00		19900.00		30600.00		30400.00		30000.00	29500.00		22800.00		22800.00		39800.00	44100.00		39500.00		41500.00	41100.00		43100.00	
Nickel	μg/L	50.00	U	31.10	J	10.00	U	50.00	U	50.00 U	50.00	U	50.00	U	39.20	J	85.70	119.00		104.00		130.00	108.00		141.00	
Zinc	μg/L	7420.00		7440.00		200.00	U	200.00	U	239.00	811.00		7410.00		7560.00		10700.00	11900.00		11500.00		12200.00	10700.00		11400.00	
Alkalinity	mg/L	100.00	U			498.00				139.00			100.00	U			509.00			100.00	U		100.00	U		
Chloride	mg/L																									
Fluoride	mg/L																									
Hardness	mg/L			319.00				317.00			338.00				312.00			434.00				493.00			651.00	
Nitrate/Nitrite	mg/L																									
Sulfate	mg/L	1000.00				92.00				864.00			984.00				1020.00			978.00			972.00			

Q = Qualifier; U = Result below method reporting limit shown; J = estimated result; D = dissolved fraction; T = total fraction $\mu g/L = micrograms$ per liter; mg/L = milligrams per liter

Table 4.3-1
Tiger Bench-Scale Treatability Study: Analytical Laboratory Data
Barker-Hughesville Mining District Superfund Site

Sample I	D	14BH-TI-	BENCH	H-BCR11-0826	5	14BH-TI-BENG	CH-BCR12-08	26	14BH-TI-BENC	H-BCR13-082	6	14BH-TI-BENG	CH-BCR14-082	6	14BH-TI	-BENCI	H-BCR15-0826	14BH-TI	-BENC	H-BCR16-0826	14BH-TI	-BENC	H-BCR17-0826	14BH-TI-BEN	CH-BCR18-08	326
Sample Da	ate		8/26/	2014		8/26	/2014		8/26,	/2014		8/26	5/2014			8/26/	2014		8/26	/2014		8/26	/2014	8/2	5/2014	
Fraction	1	D		T		D	Т		D	T		D	T		D		Т	D		Т	D		Т	D	T	
Analyte	Unit	Result	Q	Result	Q	Result Q	Result	Q	Result Q	Result	Q	Result Q	Result	۵	Result	Q	Result Q	Result	Q	Result Q	Result	Q	Result Q	Result Q	Result	Q
Aluminum	μg/L	500.00	U	397.00	J	219.00 J	473.00	J	299.00 J	720.00		500.00 U	500.00	U	500.00	U	500.00 U	5340.00		5180.00	14100.00		14800.00	500.00 U	238.00	0 J
Arsenic	μg/L	40.00		54.00		59.90	76.90		104.00	123.00		20.90	21.70		20.90		26.50	100.00	U	30.40 J	126.00		162.00	100.00 U	100.00	0 U
Cadmium	μg/L	3.00	U	5.95		3.00 U	3.87		3.00 U	7.15		3.00 U	2.00	U	3.00	U	2.00 U	8.17	J	9.89 J	83.80		98.10	15.00 U	10.00	0 U
Copper	μg/L	7.37	J	85.80		10.00 U	51.00		10.00 U	79.50		8.37 J	5.93	J	6.45	J	10.00 U	71.00		209.00	55.70		130.00	50.00 U	50.00	0 U
Iron	μg/L	2500.00	U	3210.00		1050.00 J	4570.00		2500.00 U	5230.00		2500.00 U	2500.00	U	2500.00	U	2500.00 U	268000.00		264000.00	326000.00		330000.00	155000.00	180000.00	0
Lead	μg/L	2.18		27.50		3.35	24.70		2.00 U	33.60		2.00 U	2.00	U	2.00	U	2.00 U	185.00		227.00	116.00		181.00	10.00 U	10.00	0 U
Manganese	μg/L	16100.00		16800.00		13000.00	13800.00		12800.00	13600.00		3480.00	3820.00		12100.00		12500.00	42900.00		44000.00	43800.00		45000.00	30400.00	33800.00	0
Nickel	μg/L	10.00	U	15.60		10.00 U	22.10		10.00 U	32.60		10.00 U	7.78	J	10.00	U	12.70	53.80		173.00	110.00		207.00	50.00 U	50.00	0 U
Zinc	μg/L	371.00		1510.00		167.00 J	573.00		200.00 U	809.00		200.00 U	200.00	U	200.00	U	200.00 U	9500.00		9730.00	11100.00		11300.00	200.00 U	504.00	0
Alkalinity	mg/L	1530.00				2190.00			2760.00			1470.00			1320.00			2220.00			100.00	U		721.00		
Chloride	mg/L																									
Fluoride	mg/L																									
Hardness	mg/L			1140.00			1420.00			2070.00			543.00				1170.00			4850.00			3480.00		875.00	0
Nitrate/Nitrite	mg/L																									
Sulfate	mg/L	240.00				164.00			104.00			5.00			120.00			983.00			936.00			874.00		

Q = Qualifier; U = Result below method reporting limit shown; J = estimated result; D = dissolved fraction; T = total fraction $\mu g/L = micrograms$ per liter; mg/L = milligrams per liter

Test Number	Contents	Date	рН	Temp	Specific Conductivity	ORP	DO	Sulfide	Alkalinity	Ferrous Iron
		7/9/2014	su 2.28	°C NM	mS/cm NM	mV NM	mg/L NM	μg/L NM	mg/L NM	mg/L NM
		7/3/2014	2.55	24.0	NM	624	12	7	NM	2.36
		7/25/2014	2.69	23.3	NM	599	12	7	<5	1.81
1	Control Sample	7/31/2014	2.40	23.0	2050	595	12	14	NM	1.52
		8/11/2014	3.00	22.7	2030	600	12	7	<5	1.30
		8/18/2014	2.52	22.3	2130	590	12	8	<5	1.27
		8/25/2014	2.51	21.9	1951	579	12	14	<5 NA	1.05
		7/9/2014 7/17/2014	4.50 5.04	NM 24.0	NM NM	NM 341	NM 4	NM 11	NM 17.0	NM 0.04
		7/25/2014	5.13	24.0	NM	312	3	19	6.8	0.07
2	25 mL methanol, 4.575 mL 25% NaOH, 25 mL manure extract	7/31/2014	4.90	21.9	1858	307	3	9	6.8	0.07
		8/11/2014	6.07	22.5	>1999	185	5	24	6.8	0.54
		8/18/2014	5.07	22.3	>1999	210	1	17	6.8	0.48
		8/25/2014	5.29	21.9	1730	213	1	19	13.6	0.82
		7/9/2014	4.47 4.91	NM 24.0	NM NM	NM 346	NM 5	NM	NM 17.0	NM <0.02
		7/17/2014 7/25/2014	4.91	24.0	NM	285	4	23 24	6.8	0.24
3	50 mL methanol, 4.575 mL 25% NaOH, 25 mL manure extract	7/31/2014	4.93	22.5	1829	278	3	15	6.8	<0.02
_		8/11/2014	5.77	22.7	1968	226	1	18	6.8	0.23
		8/18/2014	5.29	22.4	>1999	208	2	12	6.8	0.20
		8/25/2014	5.30	21.9	1660	218	2	12	6.8	0.42
		7/9/2014	4.49	NM	NM	NM	NM	NM	NM	NM
		7/17/2014	4.71	24.0	NM	358	6	16	17.0	<0.02
4	100 mL methanol, 4.575 mL 25% NaOH, 25 mL manure extract	7/25/2014 7/31/2014	4.83 4.77	24.2 22.4	NM 1842	271 271	7	42 6	6.8 6.8	0.30 <0.02
4	100 Hie Hethanol, 4.373 Hie 23% NaOH, 23 Hie Handle extract	8/11/2014	5.73	22.4	1876	271	1	26	6.8	0.03
		8/18/2014	5.00	22.8	1928	275	5	20	6.8	0.02
		8/25/2014	5.03	21.9	1550	297	5	11	6.8	<0.02
		7/9/2014	4.46	NM	NM	NM	NM	NM	NM	NM
		7/17/2014	4.66	23.6	NM	378	5	10	13.6	0.01
_		7/25/2014	5.29	24.3	NM	228	6	7	6.8	0.72
5	25 mL ethanol, 4.575 mL 25% NaOH, 25 mL manure extract	7/31/2014	5.35	23.2	1969	205	6	27	6.8	1.27
		8/11/2014 8/18/2014	6.93 5.66	22.4 22.5	>1999 >1999	-100	1	38 6120	20.4 68.0	3.14 5.20
		8/25/2014	5.37	21.9	1450	-101	1	7030	170.0	4.38
		7/9/2014	4.34	NM	NM	NM	NM	NM	NM	NM
		7/17/2014	4.35	23.6	NM	406	5	33	13.6	0.02
		7/25/2014	4.42	24.2	NM	291	5	10	6.8	0.02
6	50 mL ethanol, 4.825 mL 25% NaOH, 25 mL manure extract	7/31/2014	4.51	21.6	1902	242	5	7	6.8	0.21
		8/11/2014	4.91	23.1	1976	162	3	24	6.8	2.69
		8/18/2014 8/25/2014	4.65 5.61	23.0 21.7	>1999 1650	114 75	2	12 93	6.8 27.2	3.22 1.85
		7/9/2014	4.69	NM	NM	NM	NM	NM	NM	NM
		7/17/2014	5.06	23.6	NM	395	5	32	20.4	<0.02
		7/25/2014	4.40	24.2	NM	303	5	8	6.8	<0.02
7	100 mL ethanol, 4.575 mL 25% NaOH, 25 mL manure extract	7/31/2014	4.49	21.8	1743	284	4	8	6.8	<0.02
		8/11/2014	4.66	23.3	1860	250	2	18	6.8	0.08
		8/18/2014	4.60	23.1	1884	201	6	10	6.8	0.10
		8/25/2014	5.21	21.7	1530	189	5 NM	13	6.8	<0.02
		7/9/2014 7/17/2014	4.42 4.25	NM 22.9	NM NM	NM -375	NM 2	NM 91	NM 102.0	NM 1.44
		7/17/2014	4.23	24.2	NM	-245	1	162	<20	3.16
8	25 mL molasses, 4.800 mL 25% NaOH, 25 mL manure extract	7/31/2014	3.91	22.4	2300	103	2	194	<5	2.59
		8/11/2014	4.64	23.2	3990	-51	1	129	NM	4.00
		8/18/2014	4.59	23.1	4020	78	1	84	NM	3.66
		8/25/2014	4.75	21.8	3650	90	NM	72	NM	4.28
		7/9/2014	4.50	NM	NM	NM	NM	NM	NM 107.0	NM
		7/17/2014	4.22	22.9	NM NM	-425 124	3	214	187.0	3.38
9	50 mL molasses, 4.575 mL 25% NaOH, 25 mL manure extract	7/25/2014 7/31/2014	3.94 3.82	24.4 22.4	NM 2540	-124 105	2	268 247	<20 <5	1.96 2.79
J	100 ms molados, 7.070 ms 2070 NaOri, 20 ms mailuit taliall	8/11/2014	4.15	22.4	4580	60	2	171	NM	3.42
		8/18/2014	4.13	23.1	4640	67	1	127	NM	2.56
		8/25/2014	4.22	21.5	4310	50	NM	141	NM	4.04
		7/9/2014	4.53	NM	NM	NM	NM	NM	NM	NM
		7/17/2014	4.19	22.9	NM	-436	4	476	204.0	2.26
	400 14 14 14 14 14 14 14 14 14 14 14 14 14	7/25/2014	3.97	24.3	NM	-64	3	489	<20	0.44
10	100 mL molasses, 4.575 mL 25% NaOH, 25 mL manure extract	7/31/2014	3.89	23.2	2990	99	3	520	<20	2.90
i		8/11/2014 8/18/2014	4.25 4.30	22.7 23.1	4860 5010	-87 -13	2 1	375 370	NM NM	2.22 1.56
		8/25/2014	4.30	21.6	4560	35	NM	276	NM	3.06
		,								

NM = not measured

 $Some \ alkalinty \ measurements \ not \ collected \ due \ to \ low \ pH. \ Alkalinity \ is \ not \ detectable \ by \ the \ HACH \ method \ below \ pH \ 4.5 \ su.$

Only pH was measured on 7/9 at startup per the sampling plan.

Other not measured results are due to malfunctioned equipment (e.g., conductivity).

Test Number	Contents	Date	рН	Temp	Specific Conductivity	ORP	DO	Sulfide	Alkalinity	Ferrous Iron
			su	°C	mS/cm	mV	mg/L	μg/L	mg/L	mg/L
		7/9/2014	NM	NM	NM	NM	NM	NM	NM	NM
		7/17/2014	3.28	22.9	NM	367	4	51	<5	1.27
		7/25/2014	5.15	23.9	NM	152	2	16	102.0	1.68
11	15 g Chitorem	7/31/2014	5.90	22.8	2800	0	5	782	153.0	2.44
		8/11/2014 8/18/2014	6.71 7.17	23.5 23.9	3230 3500	-160 -298	2 1	4160 6350	595.0 510.0	0.94 0.09
		8/25/2014	7.17	23.9	3150	-330	NM	4960	571.2	0.09
		7/9/2014	NM	NM	NM	NM	NM	NM	NM	NM
		7/17/2014	4.33	22.9	NM	185	3	29	102.0	2.59
		7/25/2014	5.80	23.8	NM	-16	2	1558	255.0	1.40
12	22 g Chitorem	7/31/2014	6.24	22.7	2920	-60	3	3945	306.0	2.19
		8/11/2014	6.79	23.4	4520	-206	1	6440	510.0	0.23
		8/18/2014	7.28	23.9	4730	-327	1	6150	595.0	0.09
		8/25/2014	7.65	21.7	4330	-344	NM	5740	714.0	<0.02
		7/9/2014	NM	NM	NM	NM	NM	NM	NM	NM
		7/17/2014	5.58	22.8	NM	65	2	140	289.0	2.25
12	24 a Chitaram	7/25/2014 7/31/2014	6.13	24.0 23.7	NM F040	-117 -112	1	2184 3960	357.0 646.0	1.56 3.38
13	34 g Chitorem	8/11/2014	6.75	23.4	5040 6210	-263	1	13580	680.0	<0.02
		8/18/2014	7.00	23.9	6820	-339	1	3050	850.0	0.03
		8/25/2014	7.47	21.5	6340	-365	NM	3440	816.0	<0.02
		7/9/2014	4.64	NM	NM	NM	NM	NM	NM	NM
		7/17/2014	6.38	22.8	NM	41	2	51	119.0	1.25
		7/25/2014	6.94	23.9	NM	-182	1	4116	187.0	0.97
14	7 g Chitorem, 4.575 mL 25% NaOH	7/31/2014	7.52	23.6	2550	-359	1	830	272.0	0.03
		8/11/2014	7.94	23.5	2670	-385	1	66560	1275.0	0.03
		8/18/2014	7.95	24.0	2740	-396	1	67	459.0	0.07
		8/25/2014	8.02	21.6	2540	-397	NM	110	510.0	0.02
		7/9/2014	4.89	NM 22.0	NM	NM	NM	NM	NM	NM
		7/17/2014 7/25/2014	6.19 6.94	22.8 23.9	NM NM	-109	2	146 1926	170.0 221.0	1.53 2.05
15	7 g Chitorem, 8.2 g limestone fines	7/23/2014	7.50	23.5	2540	-303	1	4400	340.0	0.09
13	7 g Chitoreth, 6.2 g innestone fines	8/11/2014	7.71	23.6	2550	-382	1	41280	1700.0	0.03
		8/18/2014	7.80	24.0	2560	-383	1	76	442.0	0.01
		8/25/2014	7.85	21.5	2390	-387	NM	428	408.0	0.04
		7/9/2014	5.06	NM	NM	NM	NM	NM	NM	NM
		7/17/2014	4.66	22.7	NM	-453	4	262	102.0	2.17
		7/25/2014	4.46	24.0	NM	-307	4	316	136.0	1.42
16	50 mL molasses, 14.7 g limestone fines, 25 mL manure extract	7/31/2014	4.45	23.5	4280	-97	2	269	<20	2.90
		8/11/2014	4.86	23.4	5790	-67	1	295	<5	3.00
		8/18/2014	4.94	24.0	6240	7	1	164	NM	2.96
		8/25/2014	5.16 NM	22.1	5970	28	NM	149	NM NM	4.16
		7/9/2014 7/17/2014	3.62	NM 22.7	NM NM	NM -292	NM 3	NM 630	NIVI <5	NM 2.94
		7/17/2014	3.45	24.2	NM	61	3	683	13.6	2.94
17	50 mL molasses, 15 g Chitorem, 25 mL manure extract	7/31/2014	3.36	23.0	3500	77	1	648	<5	3.33
	, , , , , , , , , , , , , , , , , , , ,	8/11/2014	3.66	23.2	5230	50	1	289	NM	1.32
		8/18/2014	3.65	24.0	5550	49	1	359	NM	1.68
		8/25/2014	4.00	22.2	5180	24	NM	331	NM	4.70
		7/9/2014	4.52	NM	NM	NM	NM	NM	NM	NM
		7/17/2014	4.79	22.7	NM	119	3	57	119.0	0.67
		7/25/2014	5.23	23.6	NM	-35	1	1112	170.0	2.25
18	25 mL ethanol, 7 g Chitorem, 4.575 mL 25% NaOH, 25 mL manure extract	7/31/2014	5.36	23.2	2300	-89	1	2400	170.0	2.14
		8/11/2014	5.53	23.1	2730	-2	1	620	176.8	3.36
		8/18/2014 8/25/2014	5.51 5.65	24.1 22.3	2940 2820	-36 -15	1 NM	623 202	204.0 224.4	3.06 2.24
Notes:		0/23/2014	3.03	44.3	2020	-17	INIVI	202	44.4	۲.۲4

 $Some \ alkalinty \ measurements \ not \ collected \ due \ to \ low \ pH. \ Alkalinity \ is \ not \ detectable \ by \ the \ HACH \ method \ below \ pH \ 4.5 \ su.$

Only pH was measured on 7/9 at startup per the sampling plan.

Other not measured results are due to malfunctioned equipment (e.g., conductivity).

Table 4.3-3
Tiger Bench-Scale Treatability Study: Percent Removal
Barker-Hughesville Mining District Superfund Site

Sample	ID	14BH	I-TI-BENCH-	TN-C	HIT-070814	14BI	H-TI-BENCH-1	ΓN-LS	STN-070814	14BH	I-TI-BENCH-1	ΓN-N	AOH-070814	14	4BH-TI-BENG	СН-ВС	CR2-0826	1	4BH-TI-BEN	СН-ВС	R3-0826	1	4BH-TI-BENC	СН-ВС	R4-0826	14	4BH-TI-BEN	СН-ВС	R5-0826
Sample D	ate		7/8/	2014			7/8/2	2014			7/8/	2014			8/26	/2014			8/26	/2014			8/26/	/2014			8/26	/2014	
Fractio	n		D		T		D		T		D		T		D		T		D		T		D		T		D		T
Analyte	Unit	% I	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal
Aluminum	μg/L		87.1%		77.1%		98.3%		90.4%		93.6%		90.8%	^	98.3%		99.2%	>	98.3%	>	98.2%		99.0%		98.7%		98.5%		98.4%
Arsenic	μg/L		-22.0%		-43.2%	^	32.2%		33.6%	^	32.2%		33.6%	NA		NA		NA		NA		NA		NA		NA		NA	
Cadmium	μg/L		-10.5%		-20.5%		0.0%		1.0%		-5.9%		-7.9%		58.8%		58.4%		52.0%		52.6%		50.1%		51.8%	>	94.3%	>	83.0%
Copper	μg/L		62.6%		54.8%		95.7%		89.6%		72.6%		69.9%		98.1%		97.4%		95.0%		94.2%		87.7%		87.8%	>	99.3%	>	97.2%
Iron	μg/L		99.8%		84.1%		99.8%		93.6%		99.8%		97.4%		91.9%		88.3%		94.6%		92.1%	^	94.7%		96.6%		60.9%		60.4%
Lead	μg/L		99.4%		91.8%		99.5%		94.3%		98.8%		96.6%	^	94.0%		96.4%	>	94.0%	>	94.9%	^	94.0%		95.9%	>	98.8%		94.9%
Manganese	μg/L		16.9%		14.5%		4.3%		1.6%		11.0%		8.5%		23.6%		26.7%		24.6%		25.7%		33.6%		36.0%		-1.7%		2.3%
Nickel	μg/L		-29.8%		-17.8%		31.8%		-20.5%		-71.1%		-71.1%	^	15.7%		57.8%	>	15.7%		58.6%	^	15.7%		63.8%	>	83.1%	>	41.9%
Zinc	μg/L		35.5%		33.9%		19.9%		17.6%		5.0%		2.6%		54.4%		54.4%		48.0%		47.0%		43.4%		44.9%	>	98.5%	>	98.5%
Alkalinity	mg/L	NA				NA				NA				NA				NA				NA				<	-398.0%		
Chloride	mg/L	<	-745.0%				66.5%				66.5%																		
Fluoride	mg/L	NA				NA				NA																			
Hardness	mg/L				-249.7%				-246.5%				0.0%				32.9%				31.3%				36.1%				36.5%
Nitrate/Nitrite	mg/L	NA				NA				NA																			
Sulfate	mg/L		15.7%				7.1%				8.9%				-2.0%				2.0%				2.0%				91.0%		

NA = Percent removal calculation is not applicable due to the following logic cases:

1) The treated water is non-detect, and the raw water was detected at a concentration less than the treated water reporting limit.

2) The raw water is non-detect, and the treated water was detected at a concentration less than the raw water reporting limit.

3) Both the raw water and the treated water are non-detect.

4) Percent removal for certain wet chemistry parameters are not meaningful comparisons; therefore, calculations were not completed.

CHIT = Chitorem treatment

LSTN= Limestone treatment

NAOH = Sodium hydroxide treatment

BCRX = Biochemical reactor barrel effluent

D = Dissolved Metals

Table 4.3-3
Tiger Bench-Scale Treatability Study: Percent Removal
Barker-Hughesville Mining District Superfund Site

Sample	ID	14	BH-TI-BEN	СН-ВС	R6-0826	14	4BH-TI-BENC	Н-ВС	R7-0826	1	4BH-TI-BENC	СН-ВС	CR8-0826	14	4BH-TI-BENG	СН-ВС	CR9-0826	14	IBH-TI-BENCH	-BCR	10-0826	14	IBH-TI-BENC	H-BCI	R11-0826	14	BH-TI-BENCH	I-BCR	12-0826
Sample D	ate		8/26	/2014			8/26/	2014			8/26/	/2014			8/26	/2014			8/26/2	2014			8/26	2014			8/26/	2014	
Fractio	n		D		T		D		T		D		T		D		T		D		T		D		T		D		T
Analyte	Unit	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	% I	removal	%	removal	%	removal	%	removal	%	removal
Aluminum	μg/L	>	98.3%		97.8%		99.2%		98.6%		80.7%		75.3%		59.9%		55.9%		49.3%		41.6%	>	98.3%		98.6%		99.3%		98.3%
Arsenic	μg/L	NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Cadmium	μg/L	>	71.6%	>	83.0%		49.7%		48.9%	>	71.6%	>	83.0%		46.5%		47.2%		16.3%		19.8%	>	94.3%		89.9%	>	94.3%		93.4%
Copper	μg/L	>	96.5%		98.4%		92.1%		89.8%	>	96.5%		93.4%		66.3%		91.1%		77.7%		71.1%		99.5%		95.1%	>	99.3%		97.1%
Iron	μg/L		-11.1%		-12.6%		95.9%		91.7%		-473.5%		-554.3%		-484.0%		-541.3%		-536.6%		-600.0%	>	94.7%		93.0%		97.8%		90.1%
Lead	μg/L	>	94.0%		88.4%	>	94.0%		93.6%		66.6%		46.2%		-48.5%		-47.2%		-52.7%		-90.3%		98.7%		85.9%		98.0%		87.3%
Manganese	μg/L		0.3%		5.1%		24.3%		26.7%		-32.2%		-41.8%		-31.2%		-33.4%		-36.5%		-38.6%		46.5%		46.0%		56.8%		55.6%
Nickel	μg/L	>	15.7%	>	41.9%	>	15.7%		54.4%		-44.5%		-38.4%		-75.4%		-51.2%		-82.1%		-64.0%	>	83.1%		81.9%	>	83.1%		74.3%
Zinc	μg/L		98.2%		94.0%		43.4%		44.0%		18.3%		11.9%		12.2%		9.6%		18.3%		15.6%		97.2%		88.8%		98.7%		95.8%
Alkalinity	mg/L	<	-39.0%			NA				<	-409.0%			NA				NA				<	-1430.0%			<	-2090.0%		
Chloride	mg/L																												
Fluoride	mg/L																												
Hardness	mg/L				32.3%				37.5%				13.0%				1.2%				-30.5%				-128.5%				-184.6%
Nitrate/Nitrite	mg/L																												
Sulfate	mg/L		15.3%				3.5%				0.0%				4.1%				4.7%				76.5%				83.9%		_

NA = Percent removal calculation is not applicable due to the following logic cases:

1) The treated water is non-detect, and the raw water was detected at a concentration less than the treated water reporting limit.

2) The raw water is non-detect, and the treated water was detected at a concentration less than the raw water reporting limit.

3) Both the raw water and the treated water are non-detect.

4) Percent removal for certain wet chemistry parameters are not meaningful comparisons; therefore, calculations were not completed.

CHIT = Chitorem treatment

LSTN= Limestone treatment

NAOH = Sodium hydroxide treatment

BCRX = Biochemical reactor barrel effluent

D = Dissolved Metals

Table 4.3-3
Tiger Bench-Scale Treatability Study Percent Removal
Barker-Hughesville Mining District Superfund Site

Sample I	ID	14	BH-TI-BENC	H-BCI	R13-0826	14	BH-TI-BENC	H-BCF	R14-0826	14	BH-TI-BENC	H-BCF	R15-0826	14	BH-TI-BENC	H-BCI	R16-0826	14	BH-TI-BENC	H-BCI	R17-0826	14	BH-TI-BENC	Н-ВС	R18-0826
Sample D	ate		8/26,	/2014			8/26/	2014			8/26,	/2014			8/26	/2014			8/26/	2014			8/26	/2014	
Fraction	1		D		T		D		T		D		T		D		T		D		T		D		T
Analyte	Unit	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal	%	removal
Aluminum	μg/L		99.0%		97.4%	^	98.3%	>	98.2%	>	98.3%	^	98.2%		81.8%		81.6%		52.0%		47.3%	>	98.3%		99.2%
Arsenic	μg/L	<	-4.0%	'	-23.0%	NA		NA		NA			73.5%	NA		NA		<	-26.0%	<	-62.0%	NA		NA	
Cadmium	μg/L	>	94.3%		87.8%	^	94.3%	>	96.6%	>	94.3%	^	96.6%		84.6%		83.2%		-58.4%		-67.1%	>	71.6%	>	83.0%
Copper	μg/L	>	99.3%		95.5%		99.4%		99.7%		99.5%	^	99.4%		95.0%		88.1%		96.0%		92.6%	>	96.5%	>	97.2%
Iron	μg/L	>	94.7%		88.6%	^	94.7%	>	94.6%	>	94.7%	^	94.6%		-463.0%		-473.9%		-584.9%		-617.4%		-225.6%		-291.3%
Lead	μg/L	>	98.8%		82.8%	^	98.8%	>	99.0%	>	98.8%	^	99.0%		-10.8%		-16.4%		30.5%		7.2%	>	94.0%	>	94.9%
Manganese	μg/L		57.5%		56.3%		88.4%		87.7%		59.8%		59.8%		-42.5%		-41.5%		-45.5%		-44.7%		-1.0%		-8.7%
Nickel	μg/L	>	83.1%		62.1%	^	83.1%		91.0%	>	83.1%		85.2%		9.3%		-101.2%		-85.5%		-140.7%	>	15.7%	>	41.9%
Zinc	μg/L	>	98.5%		94.0%	^	98.5%	>	98.5%	>	98.5%	^	98.5%		27.5%		27.9%		15.3%		16.3%	>	98.5%		96.3%
Alkalinity	mg/L	<	-2660.0%			'	-1370.0%			<	-1220.0%			<	-2120.0%			NA				<	-621.0%		
Chloride	mg/L																								
Fluoride	mg/L																								
Hardness	mg/L				-314.8%				-8.8%				-134.5%				-871.9%				-597.4%				-75.4%
Nitrate/Nitrite	mg/L		_																						
Sulfate	mg/L		89.8%				99.5%				88.2%				3.6%				8.2%				14.3%		

NA = Percent removal calculation is not applicable due to the following logic cases:

1) The treated water is non-detect, and the raw water was detected at a concentration less than the treated water reporting limit.

2) The raw water is non-detect, and the treated water was detected at a concentration less than the raw water reporting limit.

3) Both the raw water and the treated water are non-detect.

4) Percent removal for certain wet chemistry parameters are not meaningful comparisons; therefore, calculations were not completed.

CHIT = Chitorem treatment

LSTN= Limestone treatment

NAOH = Sodium hydroxide treatment

BCRX = Biochemical reactor barrel effluent

D = Dissolved Metals

Table 4.3-4
Tiger Bench-Scale Treatability Study: Comparisons to Water Quality Standards
Barker-Hughesville Mining District Superfund Site

		Sample ID	14BH-TI-BEN	NCH-	TN-RAW-070	814	14BH-TI-BEN	СН-Т	N-RAWD-070	814	14BH-TI-BEI	NCH-	TN-CHIT-0708	314	14BH-TI-BEI	NCH-	TN-LSTN-070	814	14BH-TI-BEN	ICH-T	N-NAOH-0708	314
		Sample Date		7/8/3	2014			7/8/	2014			7/8/	2014			7/8/	2014			7/8/	2014	
		Fraction	D		T		D		Т		D		Т		D		T		D		T	
Analyte	Unit	Standard ¹	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
Aluminum	μg/L	87.0	2340		2310		2210		2260		301		530		40.1	J	222		150		212	
Arsenic	μg/L	10.0	<u>29.5</u>		<u>30.1</u>	J	<u>30.5</u>		<u>28.9</u>	J	<u>36</u>		43.1	J	20	U	20	UJ	20	U	20	UJ
Cadmium	μg/L	0.3	<u>43.8</u>		<u>39</u>		<u>45.2</u>		<u>40.4</u>		48.4		<u>47</u>		43.8		<u>38.6</u>		<u>46.4</u>		<u>42.1</u>	
Copper	μg/L	9.3	<u>1450</u>		1100		<u>1410</u>		1110		542		497		62.9		114		397		331	
Iron	μg/L	1000.0	269000		261000		254000		255000		547		41500		651		16800		420		6710	
Lead	μg/L	3.2	<u>952</u>		<u>1240</u>		<u>954</u>		<u>1260</u>		5.8		<u>102</u>		4.71		<u>70.1</u>		11.7		42.5	
Nickel	μg/L	52.2	11.4		8.3	J	10.5		7.71	J	14.8		9.78	J	7.78	J	10	U	19.5		14.2	
Zinc	μg/L	119.8	<u>12100</u>		<u>11500</u>		<u>11700</u>		<u>11300</u>		<u>7810</u>		<u>7600</u>		<u>9690</u>		<u>9480</u>		<u>11500</u>		<u>11200</u>	
Hardness	mg/L	100	286		286		273		273		1000		1000		991		991		286		286	_
Hardness for calculation ²	mg/L	100	286		286		273		273		400		400		400		400		286		286	

Aquatic life hardness-based equations for 6 metals are shown below. Equations are from DEQ-7 Montana Numeric Water Quality Standards (October 2012).

1Standards shown for cadmium, copper, lead, nickel, and zinc are based on 100 mg/L hardness for comparison purposes only. Actual screening in the table is based on the calculated hardness for each particular sample result.

² A hardness concentration of 400 mg/L was used for all measurements greater than 400 mg/L as per MT DEQ Montana Numeric Water Quality Standards (October 2012).

Cadmium	Acute	$e^{(1.0166*\ln(hardness)-3.924)}$	D = Dissolved Metals	Flags:	
	Chronic	$e^{(0.7409*\ln(hardness)-4.719)}$	T = Total Metals	<u>Text</u> -	Exceeds Human Health standard.
Copper	Acute	$e^{(0.9422*\ln(hardness)-1.7)}$	Q = Qualifier	Text -	Exceeds Chronic Aquatic Life standard.
	Chronic	e(0.8545*ln(hardness)-1.702)	μg/L= micrograms per liter	Text -	Exceeds Acute Aquatic Life standard.
Lead	Acute	$e^{(1.273*\ln(hardness)-1.46)}$	mg/L = milligrams per liter		_
	Chronic	e(1.273*ln(hardness)-4.705)	CHIT = Chitorem treatment		
Nickel	Acute	$e^{(0.846*\ln(hardness)+2.255)}$	LSTN= Limestone treatment		
	Chronic	$e^{(0.846*\ln(hardness)+0.0584)}$	NAOH = Sodium hydroxide treatment		
Zinc	Acute/chronic	$e^{(0.8473*ln(hardness)+0.884)}$	BCRX = Biochemical reactor barrel effluent		

		Sample ID	14BH-TI-BEN	CH-CONTROL-0826	14BH-TI-B	ENCH-BCR2-0826	14BH-TI-BENG	CH-BCR3-0826	14BH-TI-BEN	CH-BCR4-0826	14BH-TI-BE	NCH-BCR5-0826	14BH-TI-BENC	H-BCR6-0826	14BH-TI-BENG	CH-BCR7-0826	14BH-TI-BEN	CH-BCR8-0826	14BH-TI-BE	NCH-BCR9-0826
		Sample Date	8/	26/2014	8,	/26/2014	8/26,	/2014	8/26	/2014	8/2	26/2014	8/26/	2014	8/26	/2014	8/26	5/2014	8/	26/2014
		Fraction	D	T	D	T	D	T	D	T	D	Т	D	T	D	T	D	T	D	Т
Analyte	Unit	Standard ¹	Result	Q Result Q	Result	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result (Q Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result	Q Result Q
Aluminum	μg/L	87.0	29400	28100	500	U 226 J	500 U	500 U	306 J	357 J	450	J 443 J	500 U	620	240 J	395 J	5680	6930	11800	12400
Arsenic	μg/L	10.0	100	U 100 U	100	U 100 U	100 U	100 U	100 U	100 U	20 (J 100 U	100 U	100 U	100 U	100 U	100 U	<u>29.2</u> J	100	U <u>33.2</u> J
Cadmium	μg/L	0.3	<u>52.9</u>	<u>58.7</u>	21.8	24.4	<u>25.4</u>	<u>27.8</u>	<u>26.4</u>	28.3	3 (J 10 U	15 U	10 U	<u>26.6</u>	<u>30</u>	15 U	10 U	<u>28.3</u>	<u>31</u>
Copper	μg/L	9.3	<u>1410</u>	<u>1760</u>	26.6	J 45.2 J	70.5	102	174	215	10	J 50 U	50 U	27.7 J	112	180	50 U	117	475	157
Iron	μg/L	1000.0	47600	46000	3870	5360	2550	3620	2500 U	1560 J	18600	18200	52900	51800	1930 J	3800	273000	301000	278000	295000
Lead	μg/L	3.2	<u>167</u>	195 J	10	U 7.1 J	10 U	10 U	10 U	8.07 J	2 1	J 10 UJ	10 U	22.7 J	10 U	12.4 J	<u>55.7</u>	105 J	<u>248</u>	287 J
Nickel	μg/L	52.2	59.3	86	50	U 36.3 J	50 U	35.6 J	50 U	31.1 J	10	J 50 U	50 U	50 U	50 U	39.2 J	85.7	<u>119</u>	<u>104</u>	<u>130</u>
Zinc	μg/L	119.8	<u>13100</u>	<u>13500</u>	<u>5980</u>	<u>6160</u>	<u>6810</u>	<u>7150</u>	<u>7420</u>	<u>7440</u>	200 ।	J 200 U	239	811	<u>7410</u>	<u>7560</u>	<u>10700</u>	<u>11900</u>	<u>11500</u>	<u>12200</u>
Hardness	mg/L	100	499	499	335	335	343	343	319	319	317	317	338	338	312	312	434	434	493	493
Hardness for calculation ²	mg/L	100	400	400	335	335	343	343	319	319	317	317	338	338	312	312	400	400	400	400

Aquatic life hardness-based equations for 6 metals are shown below. Equations are from DEQ-7 Montana Numeric Water Quality Standards (October 2012).

1Standards shown for cadmium, copper, lead, nickel, and zinc are based on 100 mg/L hardness for comparison purposes only. Actual screening in the table is based on the calculated hardness for each particular sample result.

² A hardness concentration of 400 mg/L was used for all measurements greater than 400 mg/L as per MT DEQ Montana Numeric Water Quality Standards (October 2012).

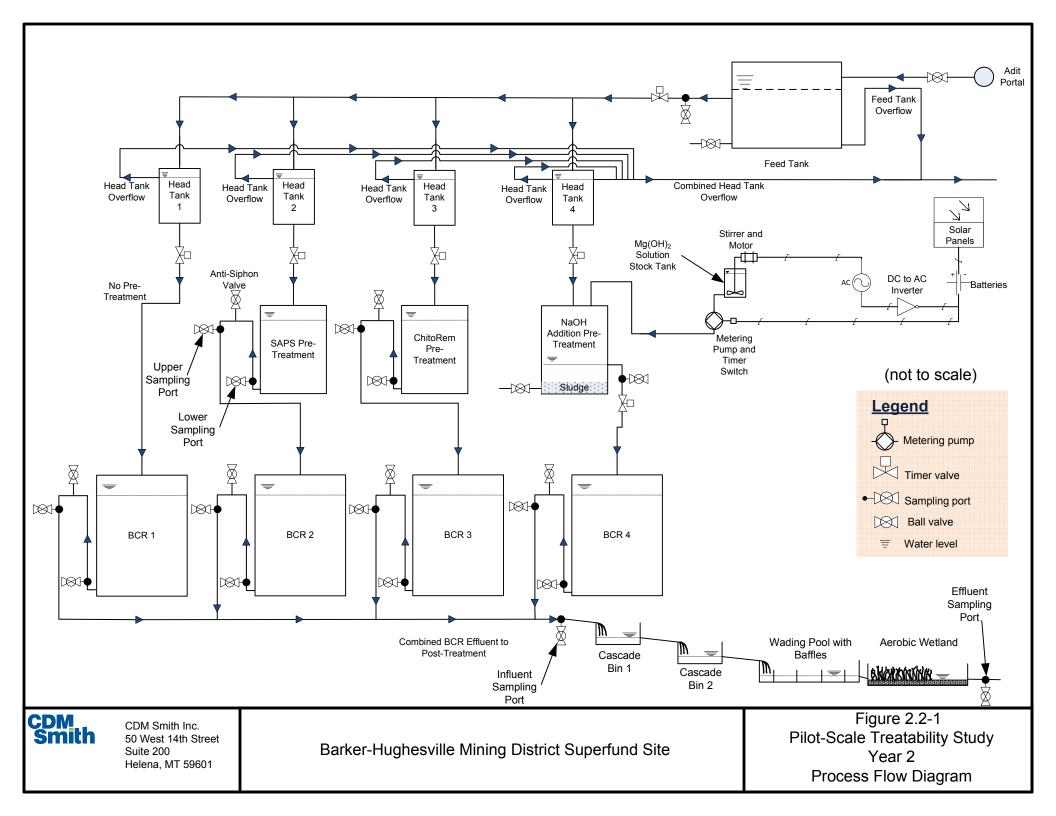
Cadmium	Acute	$e^{(1.0166*\ln(hardness)-3.924)}$	D = Dissolved Metals	Flags:	
	Chronic	$e^{(0.7409*\ln(hardness)-4.719)}$	T = Total Metals	<u>Text</u> -	Exceeds Human Health standard.
Copper	Acute	$e^{(0.9422*\ln(hardness)-1.7)}$	Q = Qualifier	Text -	Exceeds Chronic Aquatic Life standard.
	Chronic	$e^{(0.8545*\ln(hardness)-1.702)}$	μg/L= micrograms per liter	Text -	Exceeds Acute Aquatic Life standard.
Lead	Acute	$e^{(1.273*\ln(hardness)-1.46)}$	mg/L = milligrams per liter		_
	Chronic	e(1.273*ln(hardness)-4.705)	CHIT = Chitorem treatment		
Nickel	Acute	$e^{(0.846*\ln(hardness)+2.255)}$	LSTN= Limestone treatment		
	Chronic	$e^{(0.846*\ln(hardness)+0.0584)}$	NAOH = Sodium hydroxide treatment		
Zinc	Acute/chronic	$e^{(0.8473*\ln(hardness)+0.884)}$	BCRX = Biochemical reactor barrel effluent		

		Sample ID	14BH-TI-BEN	ICH-BCR10-0826	14BH-TI-BE	NCH-BCR11-0826	14BH-TI-BE	NCH-BCR12-0826	14BH-TI-BENG	CH-BCR13-0826	14BH-TI-BEN	CH-BCR14-0826	14BH-TI-BENC	CH-BCR15-0826	14BH-TI-BENC	H-BCR16-0826	14BH-TI-BENC	H-BCR17-0826	14BH-TI-BENC	H-BCR18-0826
		Sample Date	8/2	6/2014	8/	26/2014	8/3	26/2014	8/26	/2014	8/26	5/2014	8/26	/2014	8/26	/2014	8/26	/2014	8/26	/2014
		Fraction	D	T	D	T	D	Т	D	T	D	T	D	Т	D	Т	D	T	D	T
Analyte	Unit	Standard ¹	Result C	Result Q	Result	Q Result Q	Result	Q Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Aluminum	μg/L	87.0	14900	16400	500	U 397 J	219	J 473 J	299 J	720	500 U	500 U	500 U	500 U	5340	5180	14100	14800	500 U	238 J
Arsenic	μg/L	10.0	<u>38.4</u> J	<u>38.5</u> J	<u>40</u>	<u>54</u>	<u>59.9</u>	<u>76.9</u>	<u>104</u>	123	<u>20.9</u>	21.7	20.9	<u>26.5</u>	100 U	<u>30.4</u> J	<u>126</u>	<u>162</u>	100 U	100 U
Cadmium	μg/L	0.3	44.3	<u>47.1</u>	3	U <u>5.95</u>	3	U 3.87	3 U	7.15	3 U	2 U	3 U	2 U	8.17 J	9.89 J	83.8	98.1	15 U	10 U
Copper	μg/L	9.3	314	508	7.37	J 85.8	10	U 51	10 U	79.5	8.37 J	5.93 J	6.45 J	10 U	71	209	55.7	130	50 U	50 U
Iron	μg/L	1000.0	303000	322000	2500	U 3210	1050	J 4570	2500 U	5230	2500 U	2500 U	2500 U	2500 U	268000	264000	326000	330000	155000	180000
Lead	μg/L	3.2	<u>255</u>	<u>371</u>	2.18	27.5	3.35	24.7	2 U	33.6	2 U	2 U	2 U	2 U	<u>185</u>	227	<u>116</u>	<u>181</u>	10 U	10 U
Nickel	μg/L	52.2	<u>108</u>	<u>141</u>	10	U 15.6	10	U 22.1	10 U	32.6	10 U	7.78 J	10 U	12.7	53.8	<u>173</u>	<u>110</u>	207	50 U	50 U
Zinc	μg/L	119.8	<u>10700</u>	<u>11400</u>	371	1510	167	J 573	200 U	809	200 U	200 U	200 U	200 U	<u>9500</u>	<u>9730</u>	<u>11100</u>	<u>11300</u>	200 U	504
Hardness	mg/L	100	651	651	1140	1140	1420	1420	2070	2070	543	543	1170	1170	4850	4850	3480	3480	875	875
Hardness for calculation ²	mg/L	100	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400

Aquatic life hardness-based equations for 6 metals are shown below. Equations are from DEQ-7 Montana Numeric Water Quality Standards (October 2012).

1Standards shown for cadmium, copper, lead, nickel, and zinc are based on 100 mg/L hardness for comparison purposes only. Actual screening in the table is based on the calculated hardness for each particular sample result.

² A hardness concentration of 400 mg/L was used for all measurements greater than 400 mg/L as per MT DEQ Montana Numeric Water Quality Standards (October 2012).


Cadmium	Acute	$e^{(1.0166*\ln(hardness)-3.924)}$	D = Dissolved Metals	Flags:	
	Chronic	$e^{(0.7409*\ln(hardness)-4.719)}$	T = Total Metals	<u>Text</u> -	Exceeds Human Health standard.
Copper	Acute	ρ (0.9422*ln(hardness)-1.7)	Q = Qualifier	Text -	Exceeds Chronic Aquatic Life standard.
	Chronic	ρ (0.8545*ln(hardness)-1.702)	μg/L= micrograms per liter	Text -	Exceeds Acute Aquatic Life standard.
Lead	Acute	$e^{(1.273*\ln(hardness)-1.46)}$	mg/L = milligrams per liter		
	Chronic	ρ (1.273*ln(hardness)-4.705)	CHIT = Chitorem treatment		
Nickel	Acute	$e^{(0.846*\ln(hardness)+2.255)}$	LSTN= Limestone treatment		
	Chronic	$e^{(0.846*\ln(hardness)+0.0584)}$	NAOH = Sodium hydroxide treatment		
7inc	Acuto/chronic	(0.0472+ln(handmagg)+0.004)	PCDV = Diochamical reactor barrol offluent		

Figures

This page intentionally blank.

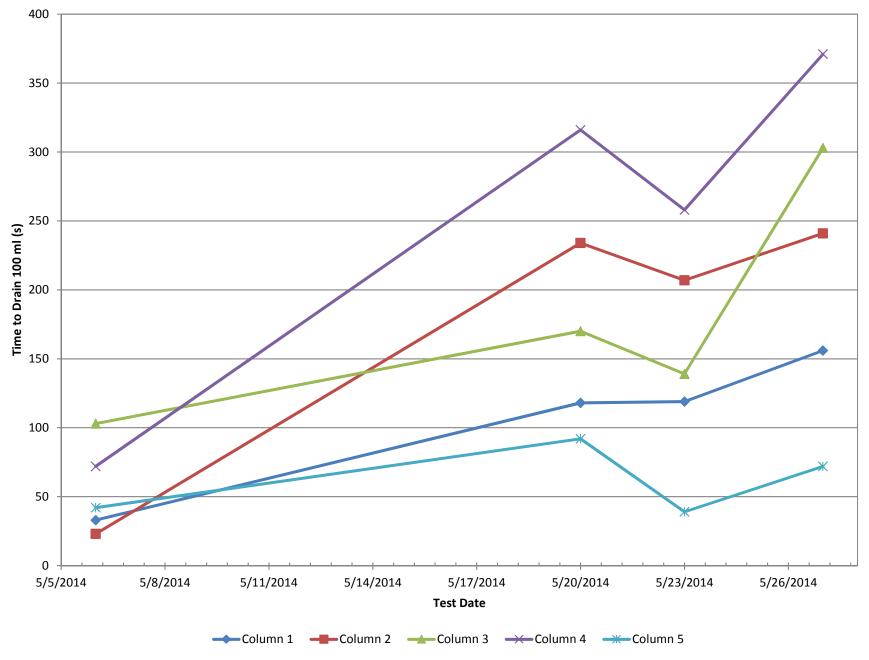


Figure 4.1-1 100 ml Drain Test Results Danny T Hydraulic Bench-Scale Tests

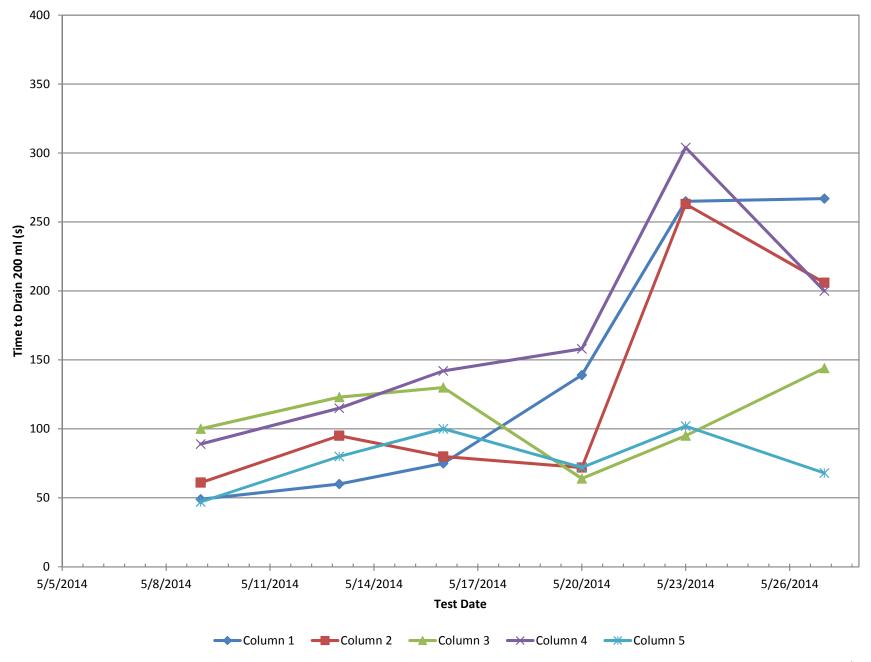


Figure 4.1-2
200 ml Drain Test Results
Danny T Hydraulic Bench-Scale Tests

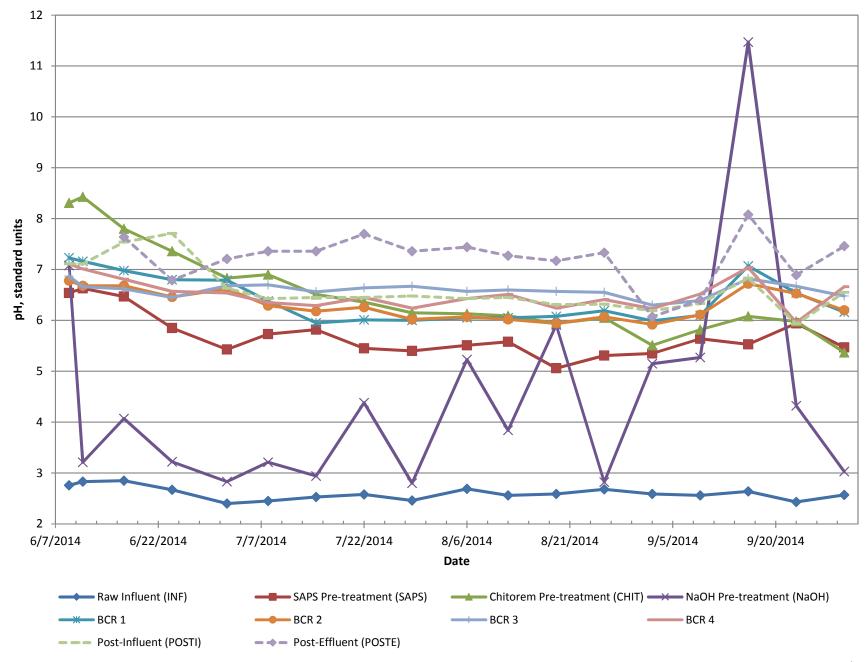


Figure 4.2-1 pH Measurements Danny T Adit Treatability Study Year 2

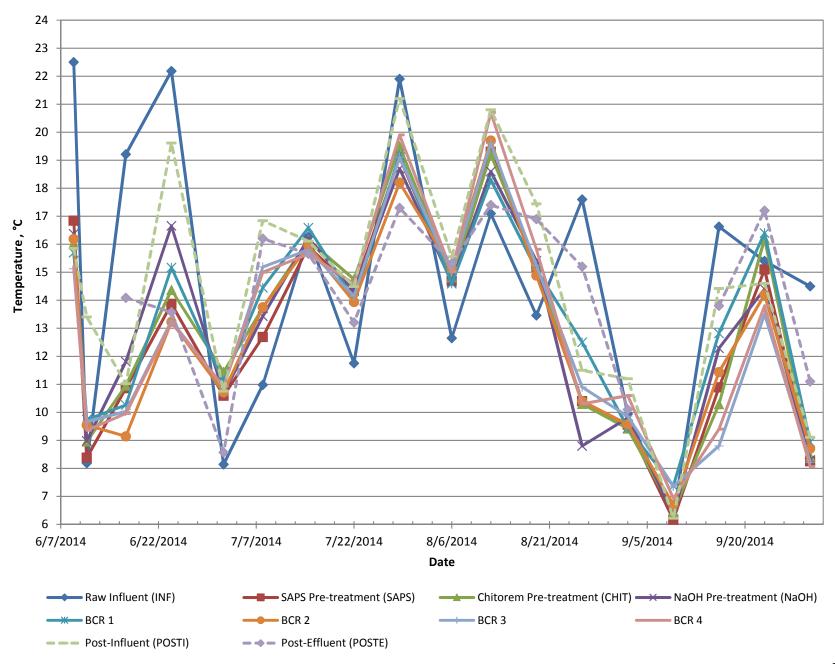


Figure 4.2-2
Temperature Measurments
Danny T Adit Treatability Study Year 2

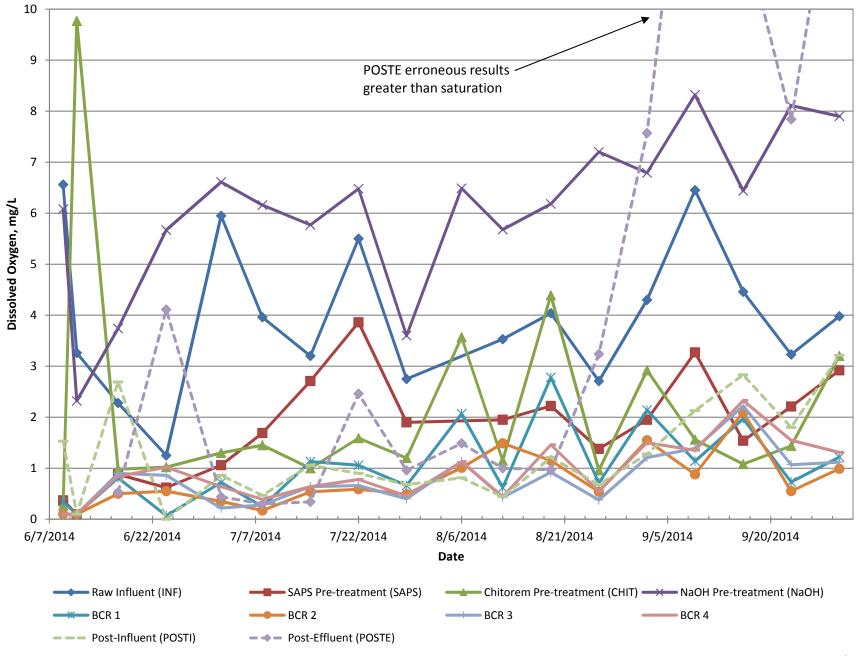


Figure 4.2-3
Dissolved Oxygen Measurements
Danny T Adit Treatability Study Year 2

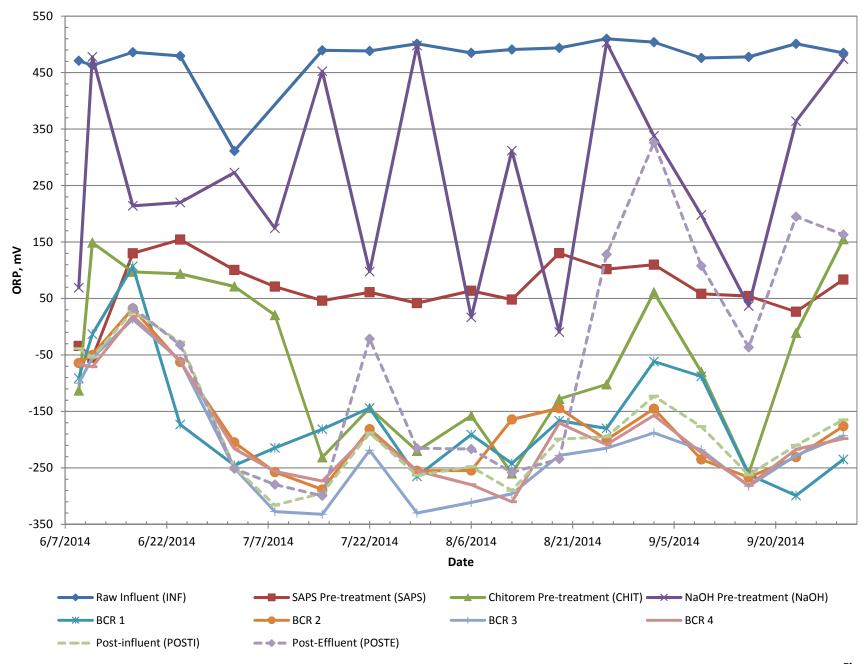


Figure 4.2-4
Oxidation-Reduction Potential Measurements
Danny T Adit Treatability Study Year 2

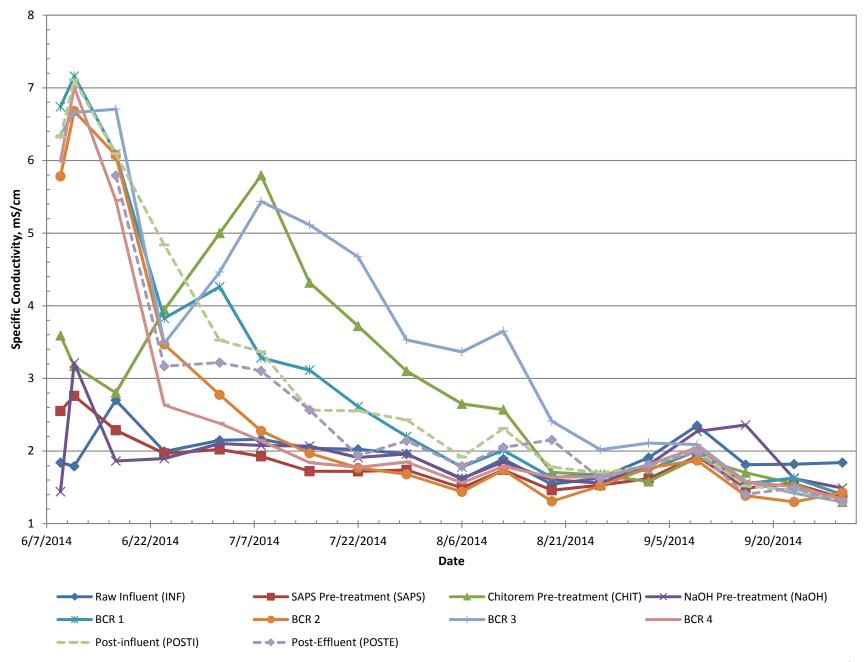


Figure 4.2-5
Specific Conductivity Measurements
Danny T Adit Treatability Study Year 2

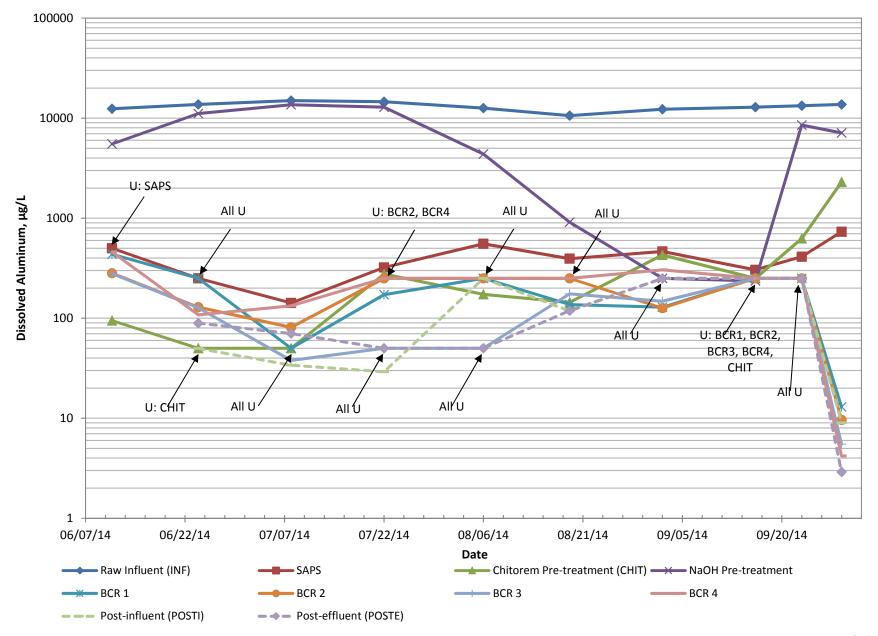


Figure 4.2-6
Dissolved Aluminum Concentrations
Danny T Adit Treatability Study Year 2

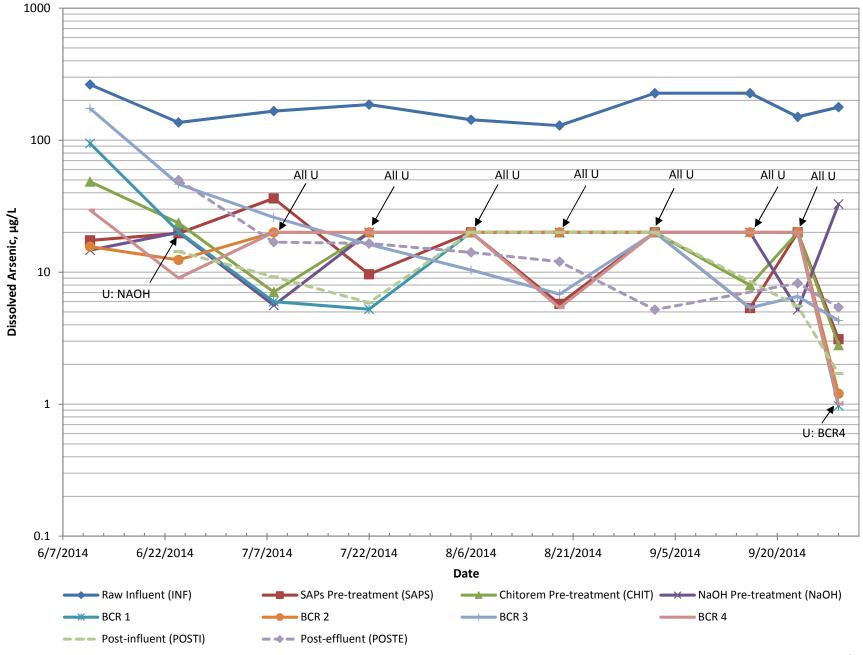


Figure 4.2-7
Dissolved Arsenic Concentrations
Danny T Adit Treatability Study Year 2

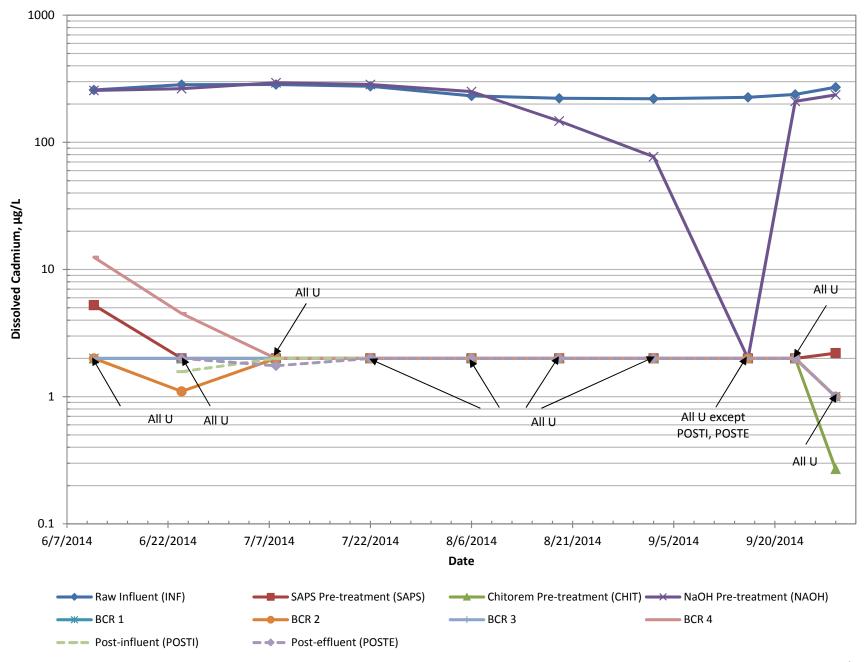


Figure 4.2-8
Dissolved Cadmium Concentrations
Danny T Adit Treatability Study Year 2



Figure 4.2-9
Dissolved Copper Concentrations
Danny T Adit Treatability Study Year 2



Figure 4.2-10
Dissolved Iron Concentrations
Danny T Adit Treatability Study Year 2

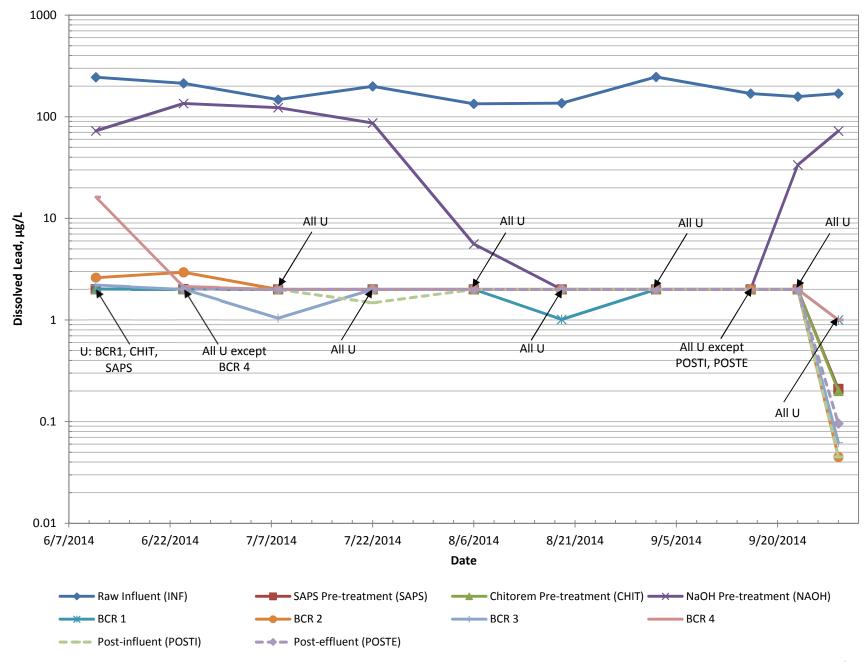


Figure 4.2-11
Dissolved Lead Concentrations
Danny T Adit Treatability Study Year 2

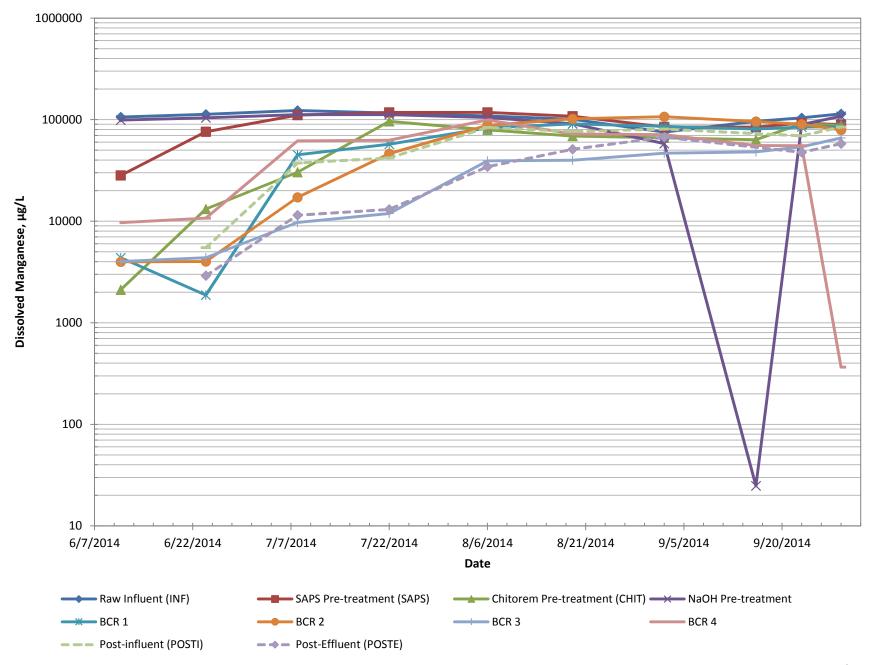


Figure 4.2-12
Dissolved Manganese Concentrations
Danny T Adit Treatability Study Year 2

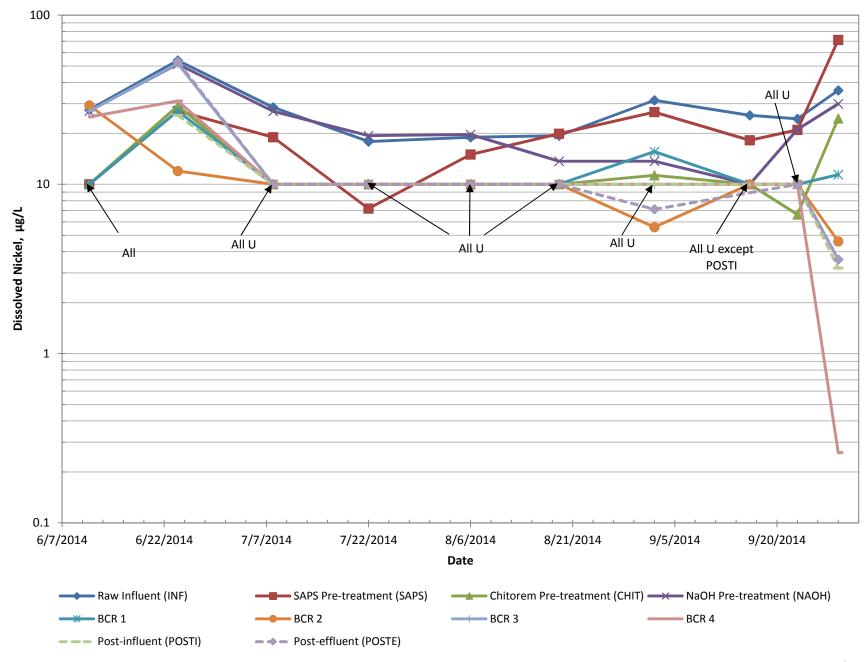


Figure 4.2-13
Dissolved Nickel Concentrations
Danny T Adit Treatability Study Year 2

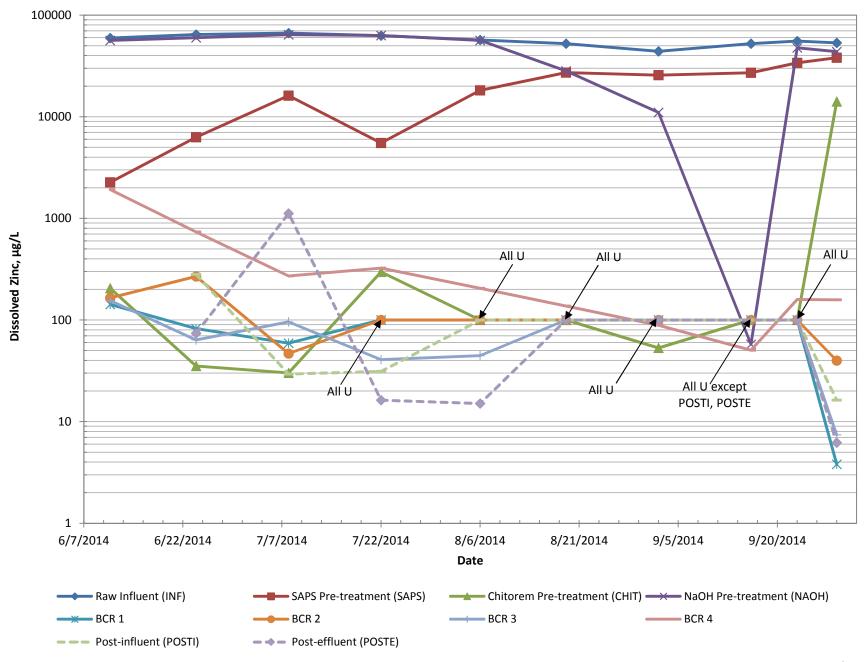


Figure 4.2-14
Dissolved Zinc Concentrations
Danny T Adit Treatability Study Year 2

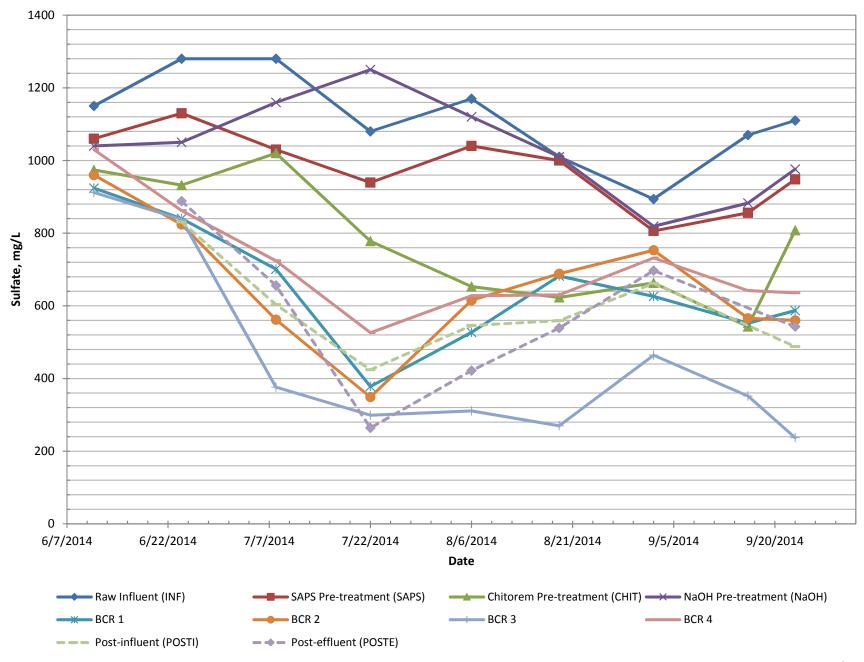
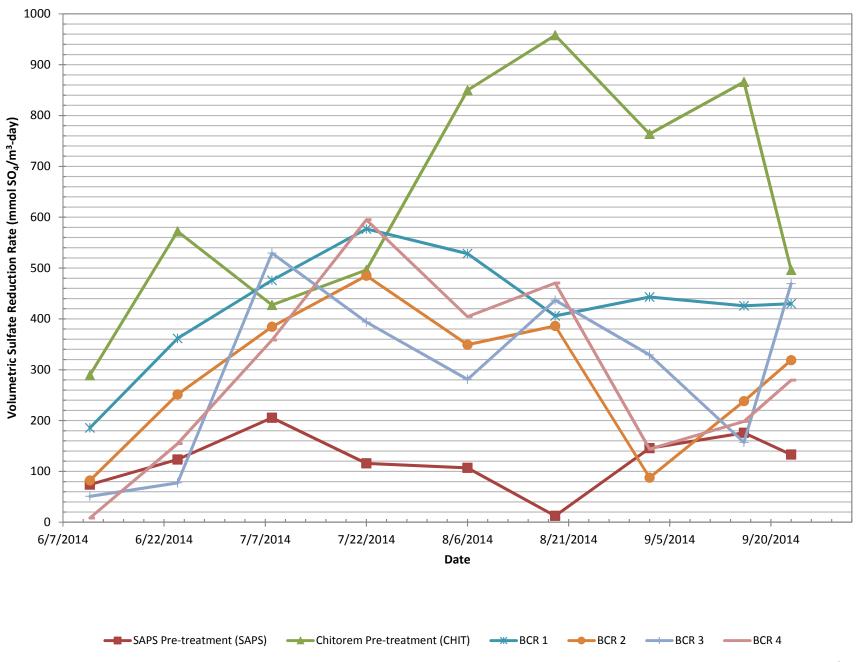



Figure 4.2-15
Sulfate Concentrations
Danny T Adit Treatability Study Year 2

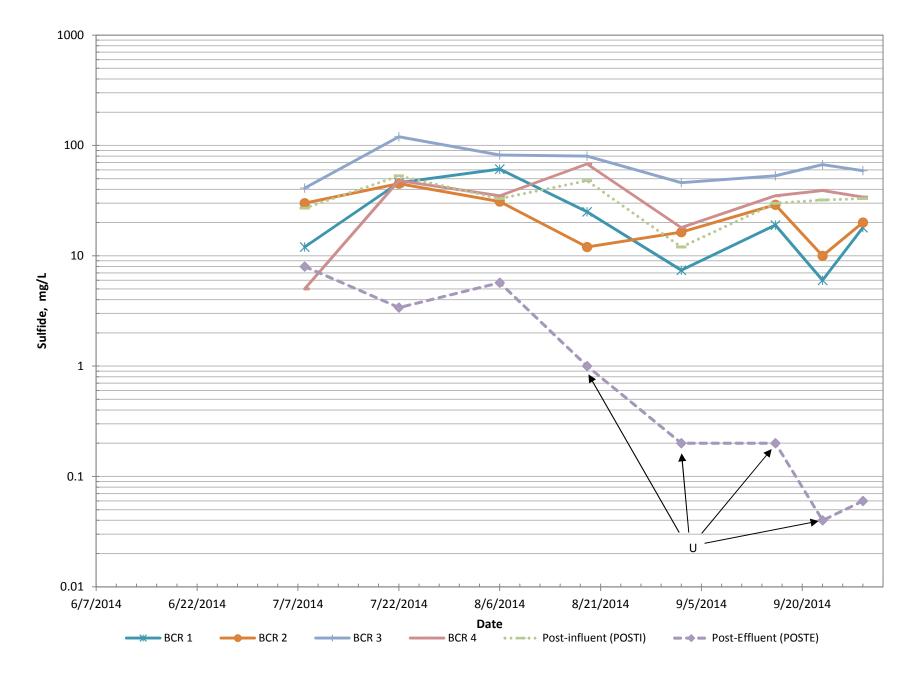


Figure 4.2-17
Sulfide Concentrations
Danny T Adit Treatability Study Year 2

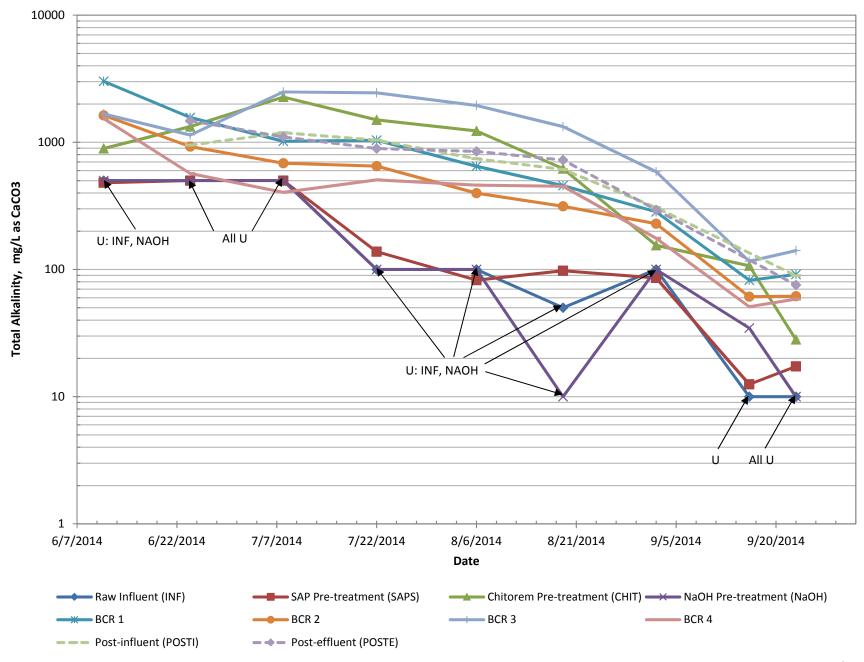
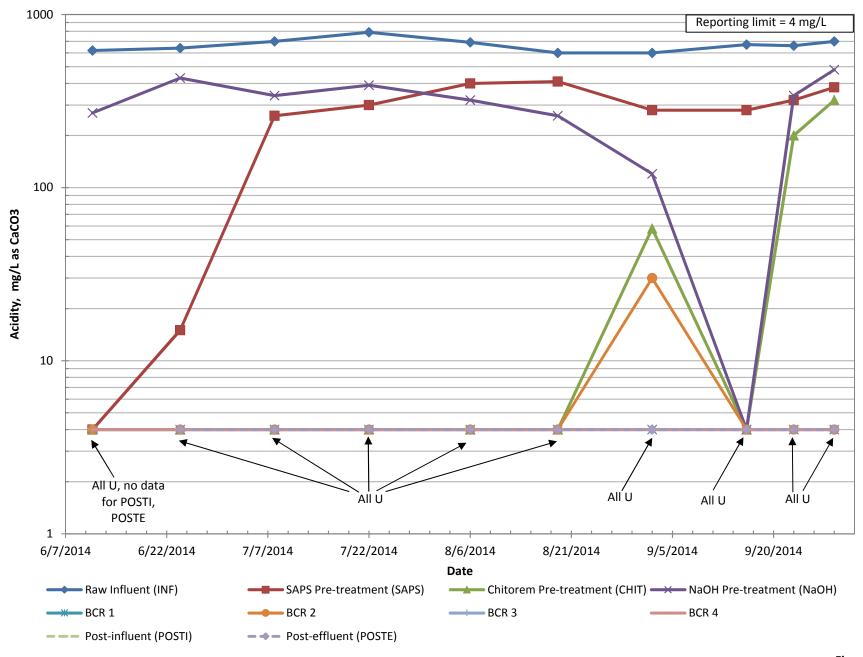



Figure 4.2-18
Total Alkalinity Measurements
Danny T Adit Treatability Study Year 2

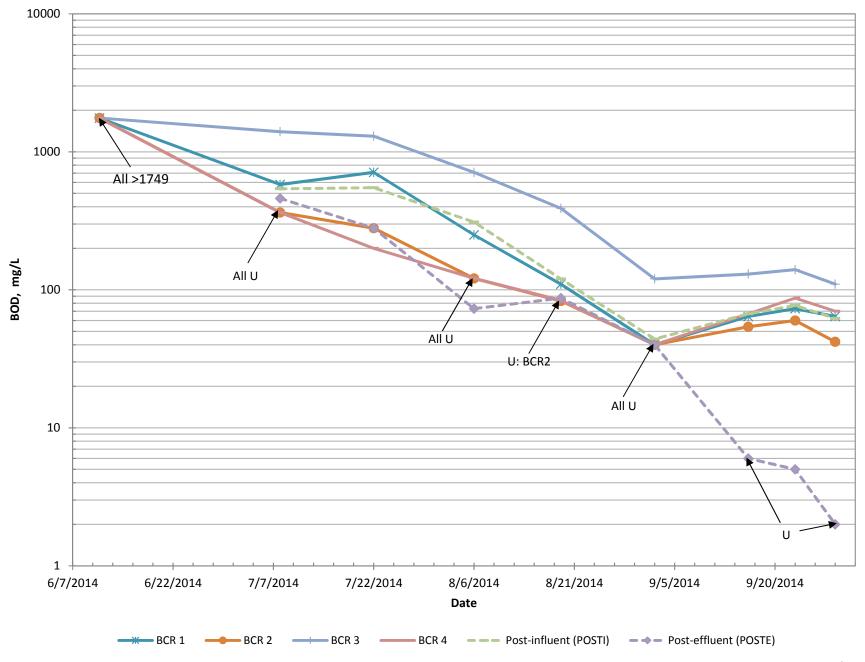


Figure 4.2-20 BOD Measurements Danny T Adit Treatability Study Year 2

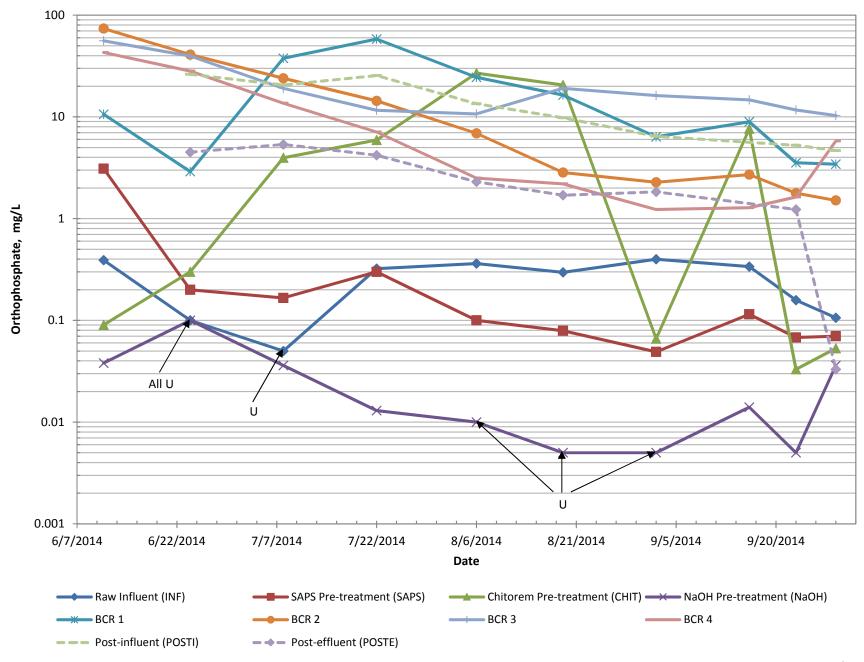


Figure 4.2-21
Phosphate Concentrations
Danny T Adit Treatability Study Year 2

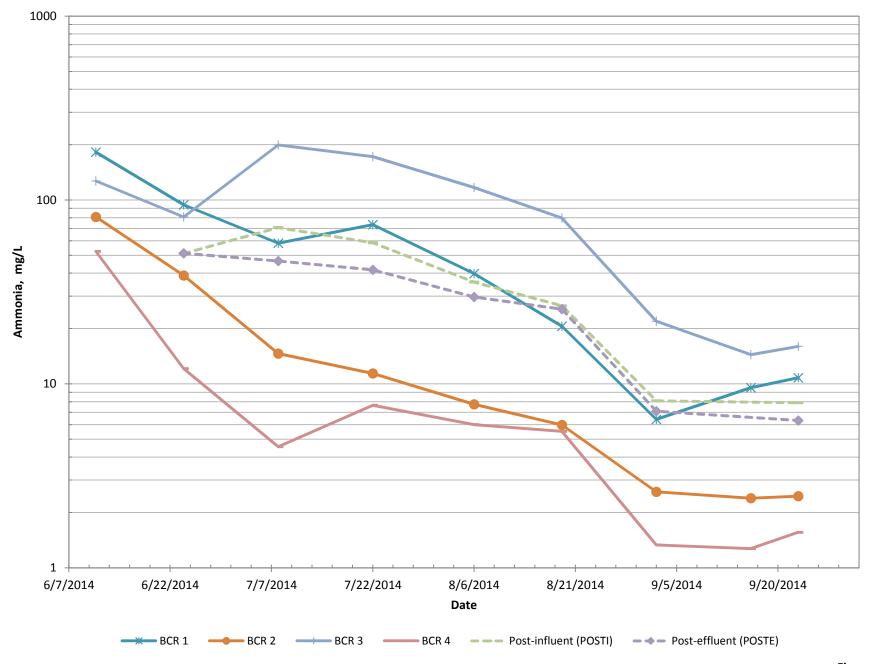


Figure 4.2-22
Ammonia Concentrations
Danny T Adit Treatability Study Year 2

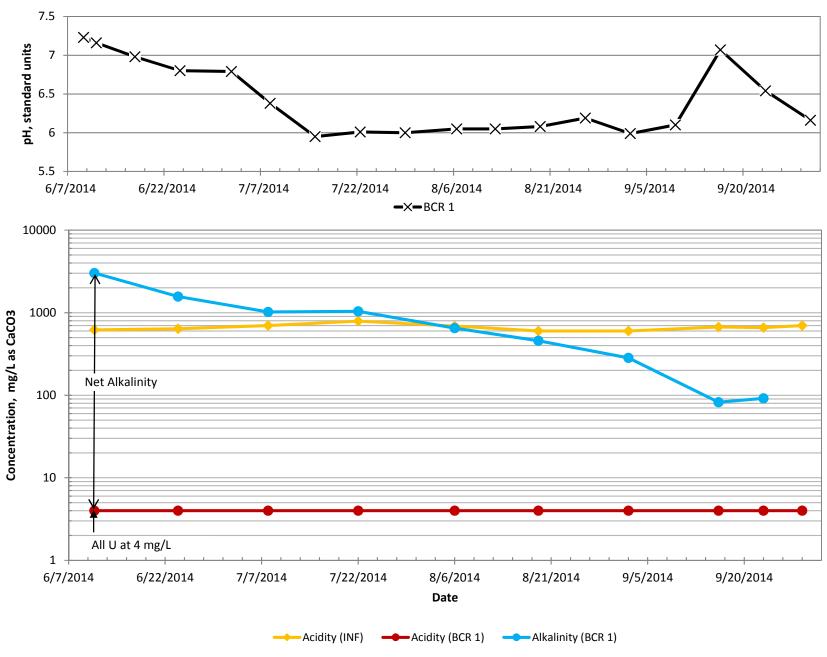


Figure 4.2-23
Trends in pH, Alkalinity, and Acidity in BCR 1
Danny T Adit Treatability Study Year 2

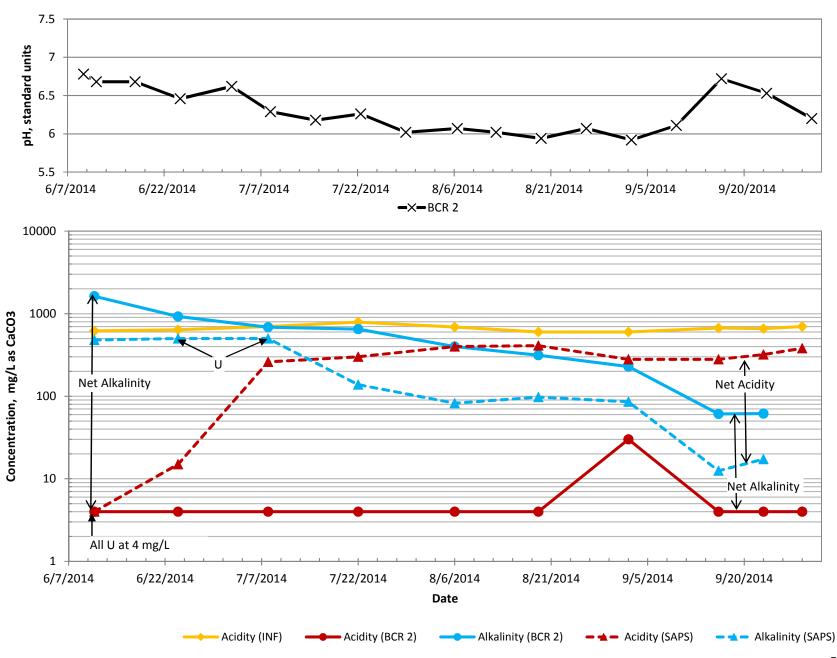


Figure 4.2-24
Trends in pH, Alkalinity, and Acidity in BCR 2
Danny T Adit Treatability Study Year 2

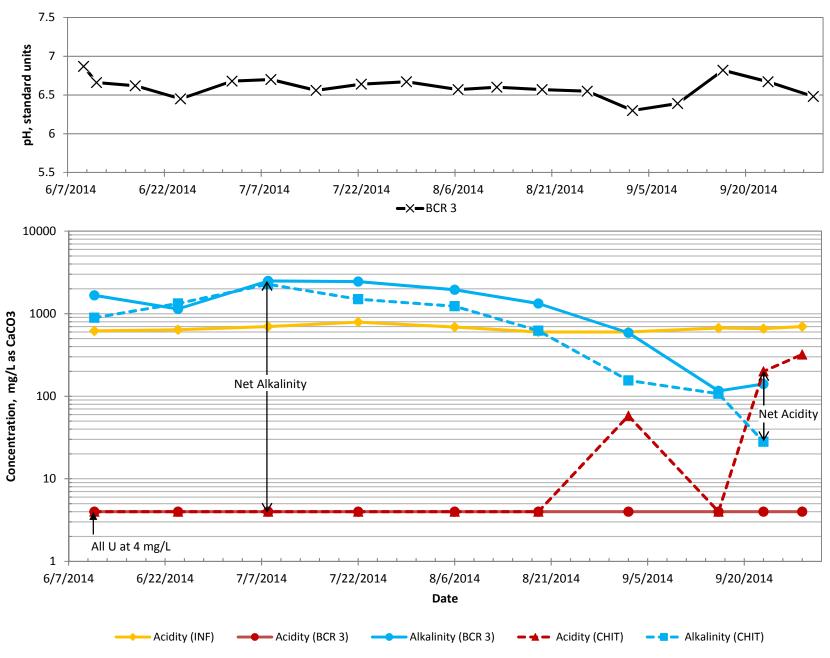


Figure 4.2-25
Trends in pH, Alkalinity, and Acidity in BCR 3
Danny T Adit Treatability Study Year 2

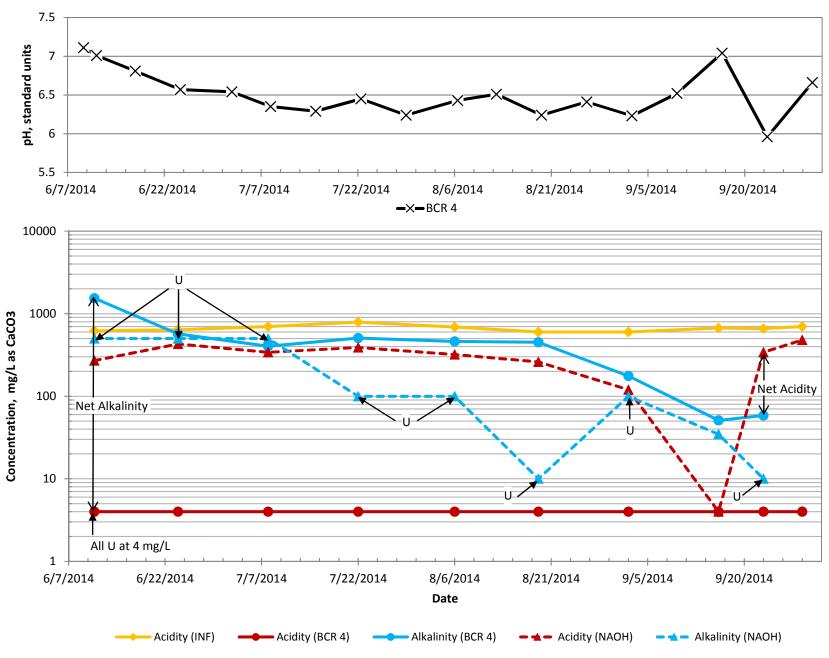


Figure 4.2-26
Trends in pH, Alkalinity, and Acidity in BCR 4
Danny T Adit Treatability Study Year 2

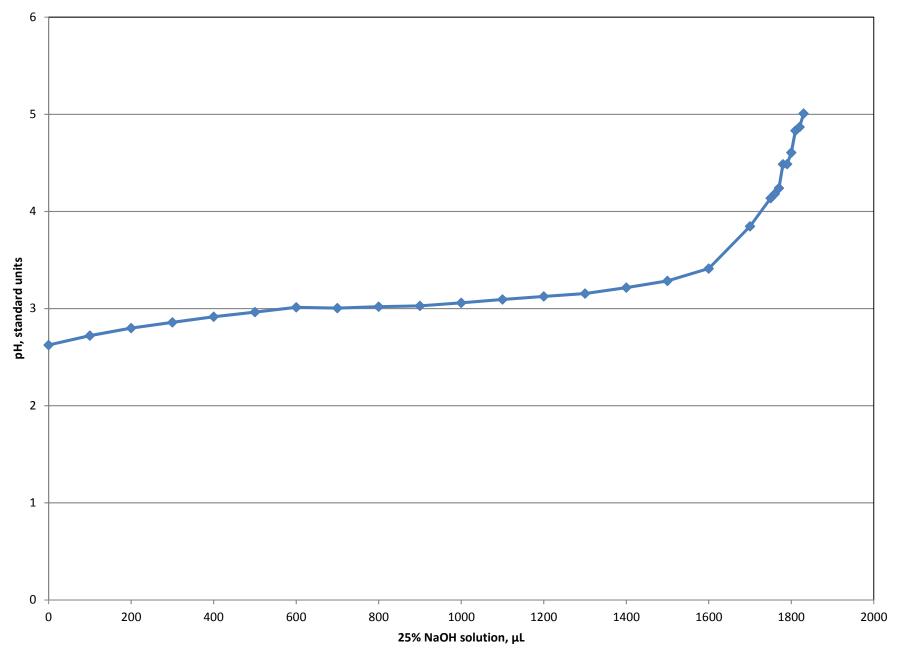


Figure 4.3-1 25% NaOH Titration Tiger Bench-Scale Treatability Study

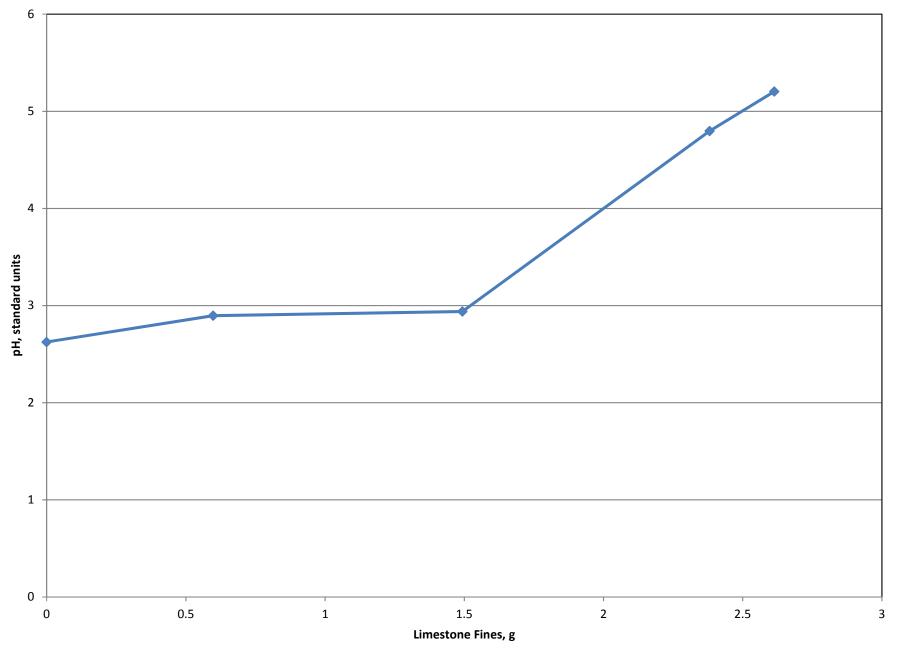


Figure 4.3-2 Limestone Fines Titration Tiger Bench-Scale Treatability Study

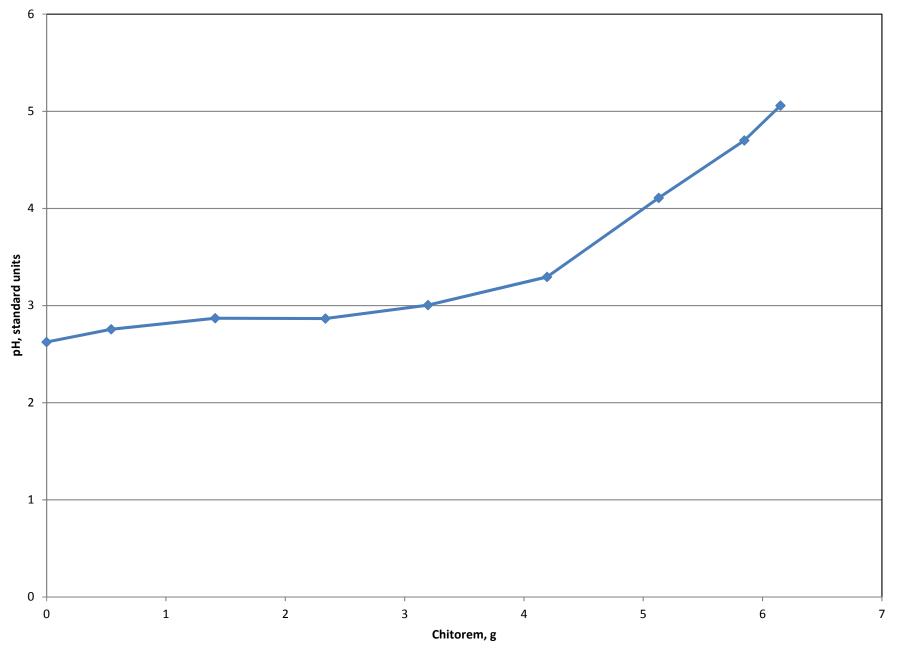


Figure 4.3-3 Chitorem Titration Tiger Bench-Scale Treatability Study

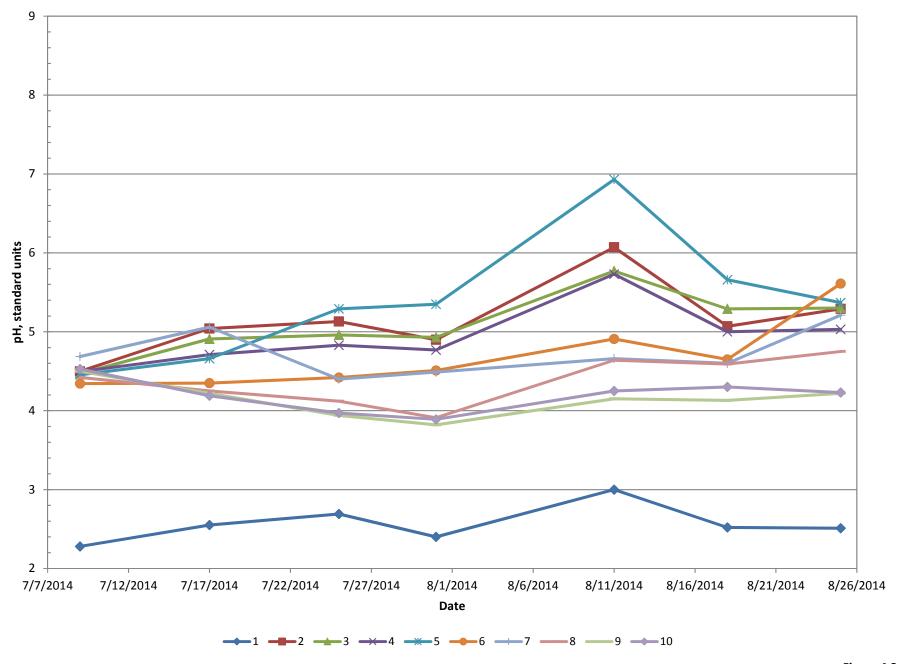


Figure 4.3-4 pH Measurements, 1-10 Tiger Bench-Scale Treatability Study

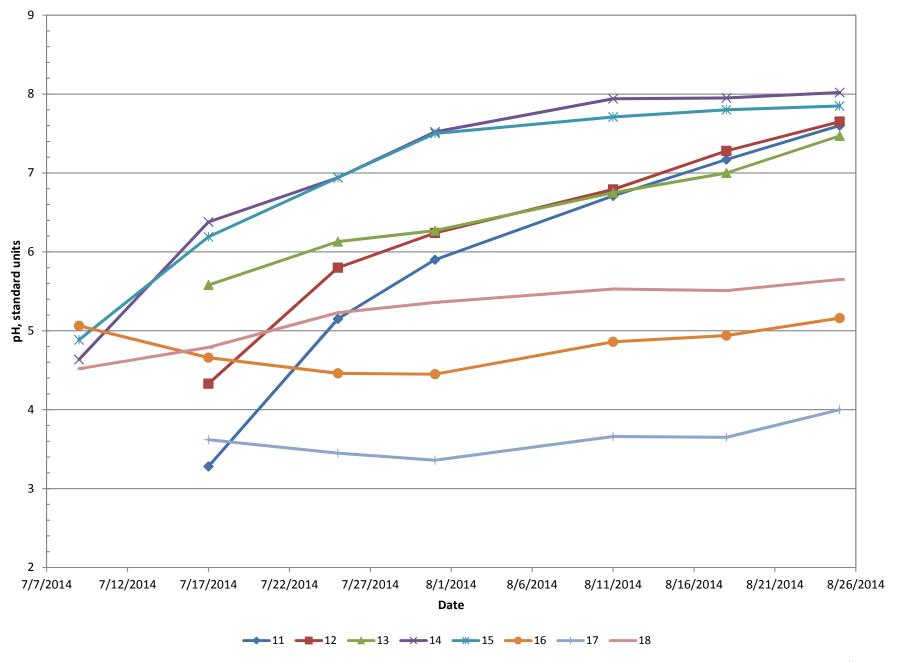


Figure 4.3-5 pH Measurements, 11-18 Tiger Bench-Scale Treatability Study

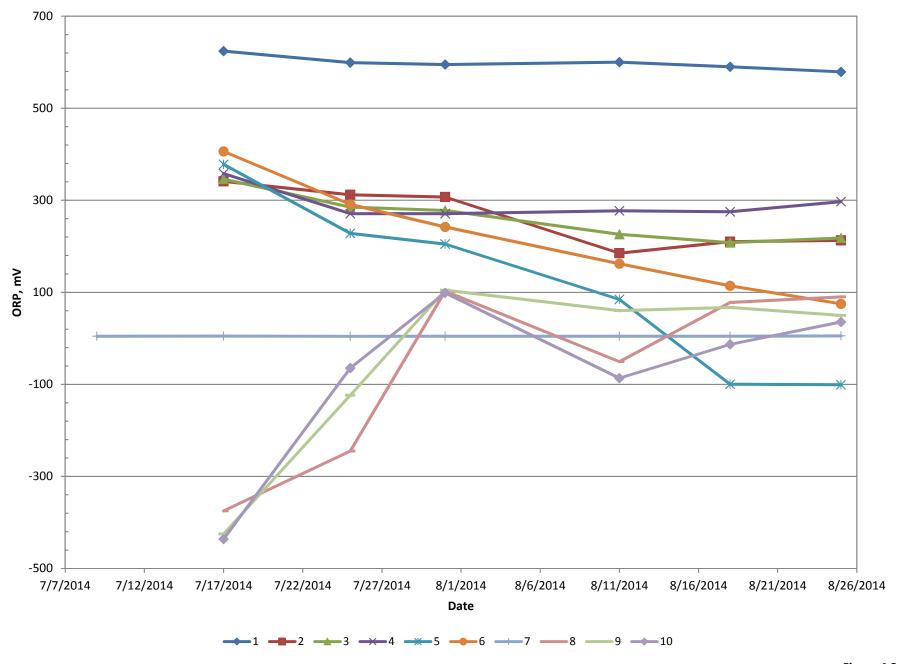


Figure 4.3-6
Oxidation-Reduction Potential Measurements, 1-10
Tiger Bench-Scale Treatability Study

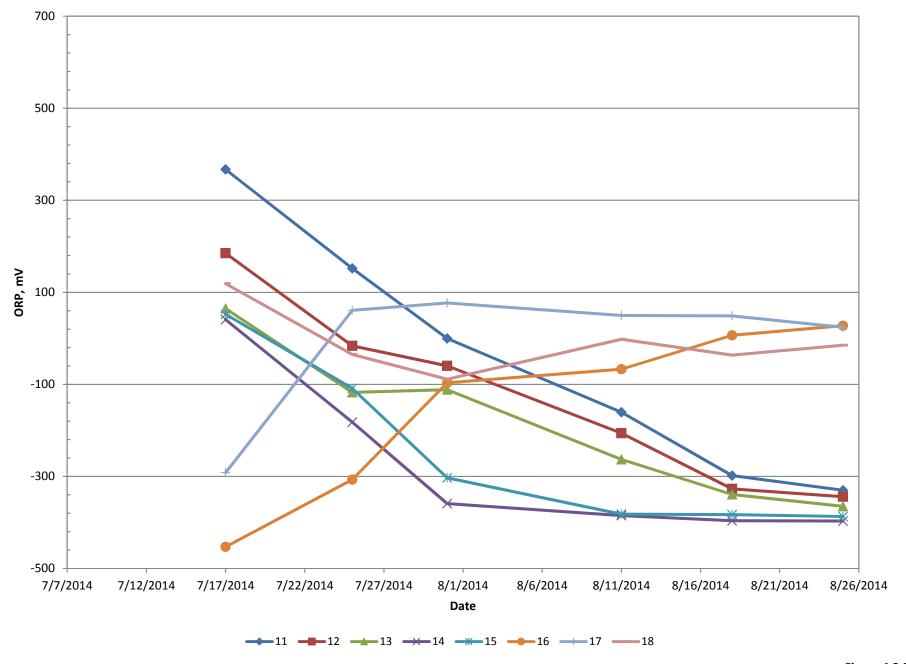


Figure 4.3-7
Oxidation-Reduction Potential Measurements, 11-18
Tiger Bench-Scale Treatability Study

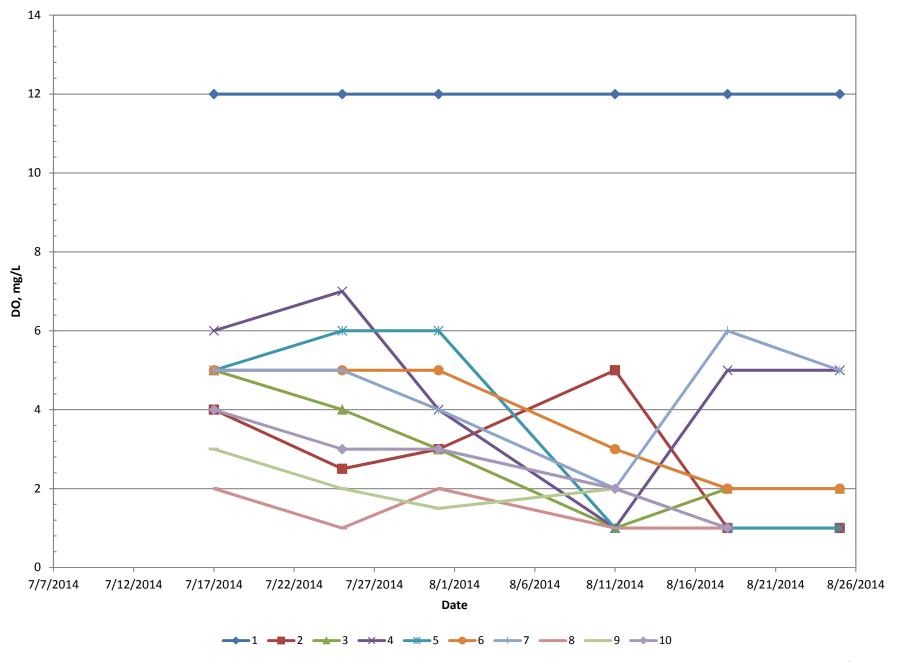


Figure 4.3-8
Dissolved Oxygen Measurements, 1-10
Tiger Bench-Scale Treatability Study

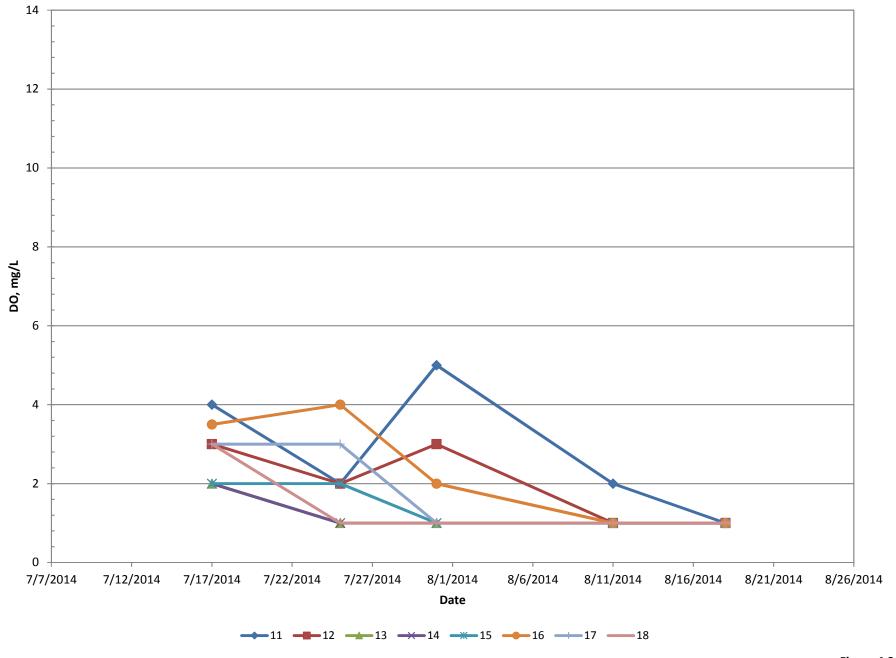


Figure 4.3-9
Dissolved Oxygen Measurements, 11-18
Tiger Bench-Scale Treatability Study

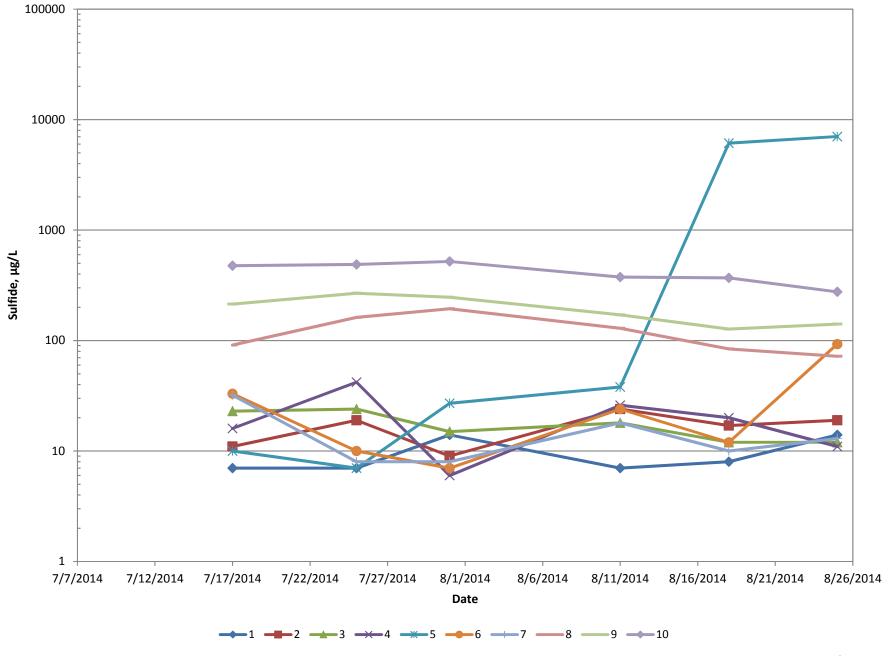


Figure 4.3-10
Sulfide Measurements, 1-10
Tiger Bench-Scale Treatability Study

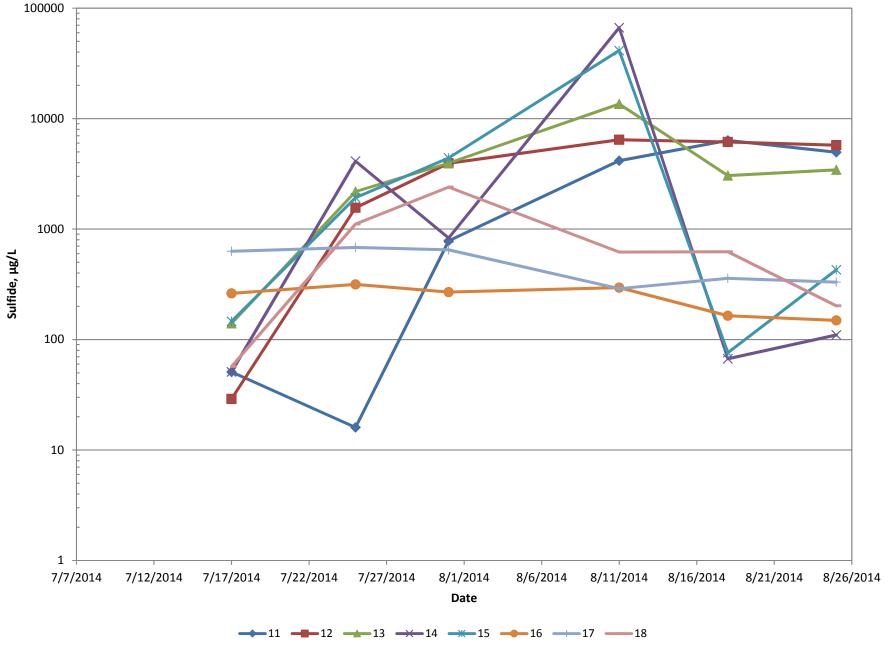
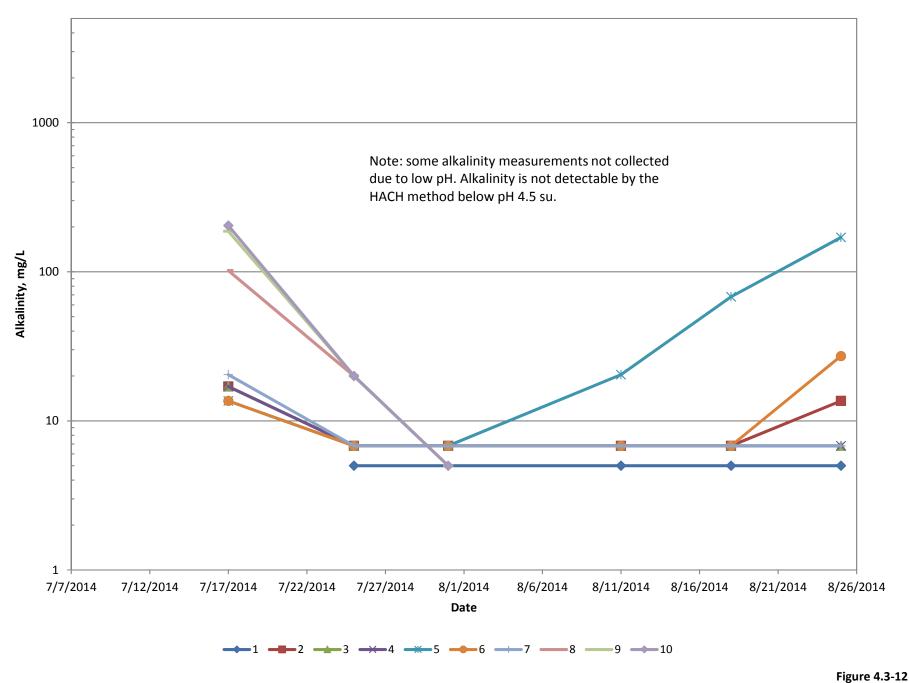



Figure 4.3-11 Sulfide Measurements, 11-18 Tiger Bench-Scale Treatability Study

Alkalinity Measurements, 1-10
Tiger Bench-Scale Treatability Study

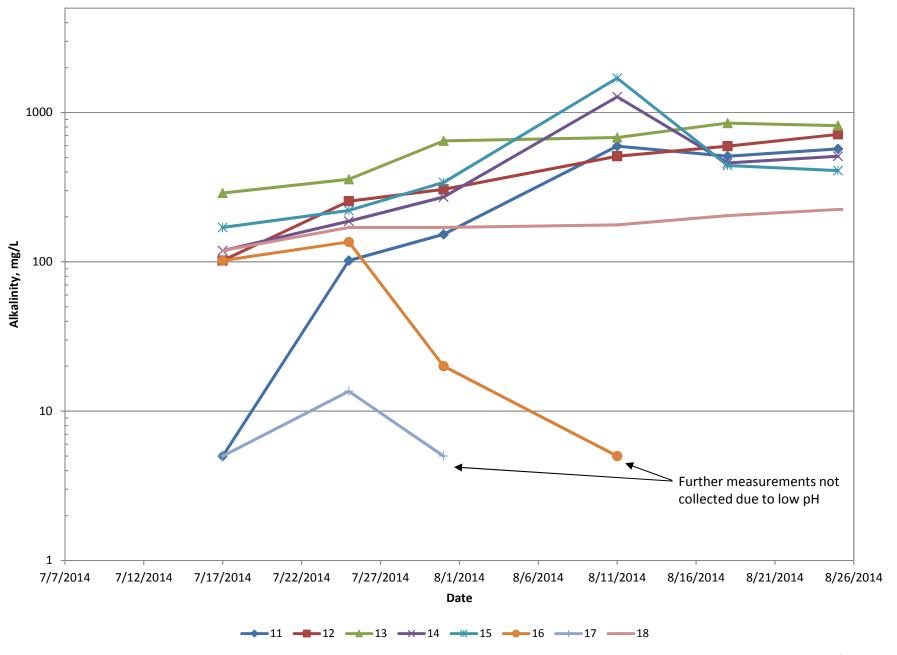


Figure 4.3-13
Alkalinity Measurements, 11-18
Tiger Bench-Scale Treatability Study