Prepared for:

Eureka Gulch Properties LLC

4936 South Fillmore Court Englewood, Colorado 80113

2024 Final Report Revision 2

Ben Franklin Mine Bonita Peak Mining District NPL Site San Juan County Silverton, Colorado

Prepared by:

engineers | scientists | innovators

5670 Greenwood Plaza Blvd, Suite 540 Greenwood Village, CO 80111 Telephone: (303) 790-1340 www.geosyntec.com

30 December 2024

This final report for monitoring associated with the removal work conducted under the August 15, 2019 Administrative Settlement Agreement and Order on Consent for Removal Action for the Ben Franklin Mine Site, located near Silverton, Colorado has been prepared by Geosyntec Consultants and certified as follows:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Prepared by:

Joen M. Cordova

November 08, 2024

Jean Cordova

Date

Date

Senior Scientist, Geosyntec Consultants

Certified by:

11/11/2024

Revised 12/30/2024

Project Manager,

Jeff Kurtz,

Geosyntec Consultants

1.	SUMMARY OF EVENTS
	A. Site Conditions and Background
II.	EFFECTIVENESS OF REMOVAL ACTIONS
	 A. Actions Taken by PRPs
III.	DIFFICULTIES ENCOUNTERED
	A. Items that Affected the Response
IV.	RECOMMENDATIONS 9
	A. Means to Prevent a Recurrence of the Discharge or Release
V.	FIGURES
	Figure 1 Historic Sampling Locations Figure 2 Surface Water Sample Locations Figure 3 Low flow loading plots for copper, lead and zinc at EG4A, EG5, and BF1 Figure 4 County Road work above ARD-1 on September 25, 2023 Figure 5 Current Conditions Photograph
VI.	TABLES
	Table 1—Surface Water Results
VII.	APPENDICES
	A. Remedial Action photographs and drawings from 2019
	B. Field Notes and Sampling Forms

Geosyntec consultants

C.	Flow Measurement Forms
	Photographs of Sampling Locations
	Lab Results for Surface Water
F.	Data Validation Results
	Sampling Metadata
Н.	Willow Planting photographs from 2022 and status in 2023

I. SUMMARY OF EVENTS

A. Site Conditions and Background

1. Initial situation, including site location, coordination, and NPL status:

The Ben Franklin Mine is located immediately below the confluence of the headwaters of Eureka Gulch, situated on a relatively gentle, rocky slope within an alpine tundra biome. It is at an elevation of 11,920 feet NGVD29 in the northern part of San Juan County, Colorado (Township 42 North, Range 7 West, Section 14, New Mexico Principal Meridian; Latitude 37°53'40.9" North, Longitude 107°36'28.5" West, WGS84), approximately 6.5 miles north-northeast of Silverton, the county seat of San Juan County, adjacent to County Road 25 and on the southwest side of Eureka Creek. The mine is within the Bonita Peak Mining District NPL Site and was identified in the May 2019 Interim Record of Decision for the NPL Site as a property to be remediated under separate legal authority.

Prior to the ASAOC agreement, the Colorado Division of Reclamation, Mining and Safety (DRMS) had advised the EPA of its intent to conduct a safety closure of the Ben Franklin Mine stope. DRMS took this action under its independent state statutory authority.

The Ben Franklin Mine is comprised of two main sets of workings, both of which occur on the Ben Franklin Lode claim. An adit that is approximately 325 feet in length bears North 73° West (DRMS designated the portal as EG9 at 37°53'40.2" North, 107°36'28.7" West). Two cross cuts run to the left and right of the adit. The left cross cut was driven for 45 feet and occurs in rhyolitic rocks with disseminated pyrite. The right cross-cut was driven for a distance of about 65 feet, where a large room-sized opening was made, with a winze at the northeast end. DRMS designated an underhand open stope as EG11, which is located at approximately 37°53'41.2" North, 107°36'30.4" West. The stope contains the winze connecting to the Ben Franklin adit as well as a caved shaft.

The main waste dump associated with the adit, which principally is on the Adventure and Iron Mask Lode claims, is located along Eureka Creek, and consists primarily of fine to coarse sulfide-bearing rock containing pyrite, galena, and sphalerite in quartz and rhodonite. The Colorado Division of Minerals and Geology (CDMG) estimated the volume of waste rock is approximately 500 cubic yards.

The Ben Franklin Mine site consists of a backfilled stope, gated adit, former waste rock piles, and adit discharge. The drainage from the adit is less than 10 gpm based on historic sampling by the United States Geological Survey and Eureka Gulch LLC. The Ben Franklin site was investigated by the Colorado Division of Minerals and Geology

Geosyntec Consultants

(CDMG now DRMS) and EPA during the late 1990s and from 2015 through 2023, respectively. Water quality samples were collected at an acidic seep below the Ben Franklin Mine waste rock pile (ARD1), upstream (EG3A (BF-SW1 in 2023) and BF2), and downstream of the mine (EG5 & A39A) (see Figure 1). The location of sample location EG3A was inconsistent and only the data from 2016 onward is considered to be representative of the upstream concentrations as it had then moved to the equivalent of the current EG4A location. At the upstream location EG3A, pH ranged from 6.24 to 7.25, with the lower pH occurring during spring high-flow conditions in 2016. The pH was 7.01 in June 2016 at the downstream location EG5. For the July 2017 EPA sampling event, location BF2 was introduced and sampled, located in Eureka Gulch downstream of the main vein intersection with the creek and just upstream of the confluence with the Ben Franklin adit drainage. The pH at this location was lower than the upstream EG3A location, and the concentration of all metals and sulfate were higher than upstream. Furthermore, the concentrations of all metals at BF2, except lead, were higher than the downstream location EG5. This suggests significant natural background contribution from the creek crossing of the vein and minimal loading from the Ben Franklin adit drainage, other than a potential adit contribution for lead. Unfortunately, no flows were measured at BF2 and the loading changes can't be quantified. At the waste rock pile drainage location (ARD1), which includes flow from a number of natural seeps emerging from the vein, pH ranged from 2.76 to 3.10. At the waste rock pile drainage location, acute standards were exceeded for Al, Cd, Cu, Mn, Pb, and Zn, and chronic standards were exceeded for Fe. These metals concentrations from the waste rock pile were orders of magnitude above those found upstream and downstream of the mine in Eureka Creek. Upstream of the Ben Franklin Mine, in June 2016 and July 2017 acute standards were exceeded for Cd, Cu, and Zn, while in September 2015 and 2017, the acute standard for Zn, and chronic standards for Cd, Cu, and Pb were exceeded. Downstream in June 2016, acute standards for Cd, Cu, and Zn, and chronic standards for Al and Pb were exceeded. Aluminum, cadmium, copper, lead, manganese and zinc concentrations were higher at the downstream location in September 2017 compared to the upstream location. Metals concentrations were generally higher during spring high-flow conditions compared to fall low-flow conditions at the upstream sample location while the opposite was the case for the downstream location with higher concentrations during low flow.

2. Location of hazardous substance(s):

The portion of the site subject to this removal action is the Ben Franklin Mine adit discharge, located at 37.894491, -107.607946. DRMS addressed the Ben Franklin Mine waste rock in the Eureka Gulch stream channel in a separate action under state authority.

3. Cause of release or discharge:

The Ben Franklin Mine is a historic mine that operated intermittently from approximately 1883 to 1982 under prior owners. Groundwater inflow supplies the adit discharge flow.

4. Efforts to obtain response by responsible parties:

EPA, Eureka Gulch Properties LLC and Ryan Bennett entered into an Administrative Settlement Agreement and Order on Consent for Removal Action (ASAOC) on August 15, 2019, which specified response actions the Respondents would complete at the Ben Franklin site. Respondent's consultant, Geosyntec Consultants, submitted a Removal Work Plan to EPA on August 29, 2019.

B. <u>Organization of the Response, Including State/Local Participation</u>

Immediately prior to the removal action, DRMS conducted a separate action under state authority. Details are provided under section I.D.1, below.

C. <u>Injury/Possible Injury to Natural Resources</u>

1. Content and time of notice to natural resource trustees:

EPA provided notice to the natural resource trustees on August 8, 2016.

2. Trustee damage assessment and restoration activities:

Not applicable

D. Chronological Narrative of Response Actions

1. Threat abatement actions taken:

Immediately prior to the ASAOC response action, DRMS conducted a safety closure of the Ben Franklin open stope as a separate action under state authority. The DRMS bid document summary for this work states:

The project work will include the relocation and consolidation of Ben Franklin waste rock to the Ben Franklin stope hazardous mine opening for use as backfill. Prior to construction activities commencing at the site, Sfence, or approved equivalent, or berms will be placed around all excavation and backfilling areas. The stope will be prepared for backfill by removing snow, sealing off any groundwater influenced areas with bentonite and placing limestone fines in the bottom of the stope feature. The Ben Franklin waste rock will be hauled to the Ben Franklin stope and placed in one-foot lifts and compacted within the stope with a sheep's foot

compactor. The backfilled surface will be amended limestone crusher fines and Portland cement to prevent infiltration. Suitable growth media will be scavenged from the private property and placed over the backfilled area, seeded and mulched with wood straw mulch. The remaining waste rock at the portal level will be consolidated into the driest location available and access to the portal level will be shut off with large rocks along the County Road.

In accordance with the ASAOC, Eureka Gulch Properties LLC performed the following work at the Ben Franklin site from September 15 to October 13, 2019, with details provided in the 2019 annual report and here in Appendix A:

Seal Voids around Ben Franklin Adit

- Contractor applied a sufficient amount of polyurethane foam (PUF) to seal gaps around the existing portal gate to restrict public access to the adit.
- The PUF-applied areas were coated with concrete. Once the concrete cured, the area was covered with a rock façade for protection, aesthetic purposes, and to deter public access.

Install Limestone Channel within Ben Franklin Adit

- Contractor installed a channel within the Ben Franklin adit that is approximately 40 feet long by 2 feet wide by 0.5-foot deep to centralize adit flow.
- Limestone was used to fill the channel to provide pH buffering to the adit flow prior to exiting the Ben Franklin adit.
- DRMS routed the adit discharge to Eureka Creek away from limited remnant waste under its state statutory authority.
- Analysis of treatment/disposal/alternative technology approaches concluded that a limestone-lined diversion ditch within the mine adit would be the most effective means of treatment for the low mine flows encountered.

Seeps

• Following DRMS's work on the Ben Franklin stope, an evaluation of the need to implement measures to control remnant seeps originating from Eureka Creek through the embankment or under the road into the stope was conducted. No seeps were visible during the surface water sampling events in late September 2019, 2020, 2021, 2022, 2023, or 2024.

In accordance with the ASAOC, Eureka Gulch Properties LLC performed the following monitoring work at the Ben Franklin site on September 30, 2024, as it has done every September since 2019.

Surface Water Sampling and Analysis

- As specified in the SAP, three surface water sample locations were sampled (**Figure 2**) and flows measured on September 30, 2024. Field notes are included in Appendix B; sampling and flow measurement forms are attached in Appendix C; and sampling location photographs are included in Appendix D.
- In addition, the ARD-1 location was inspected to determine if any flow was present at this location following the DRMS and ASAOC work. No water or flow was present at this location during the 2019, 2020, or 2021 sampling events. Due to heavy rain the previous evening and rain during the sampling event, a trickle flow of approximately 0.2 gpm was present during the September 2022 event. No water or flow was present during the 2023 and 2024 sampling events.

The samples, including one duplicate, were analyzed for a select group of dissolved and total recoverable metals (as agreed by EPA) along with calcium, magnesium and sulfate. Results are tabulated in Table 1 and the full lab report is included in Appendix E. All data underwent data validation according to EPA guidelines by an independent party in the Geosyntec Greenwood Village office. The data validation report is attached in Appendix F.

E. Resources Committed

Eureka Gulch Properties LLC incurred costs in three principal areas: consulting costs to prepare project documents and procure contractors, materials and contractor costs for the removal work, and costs for surface water sampling and analysis. In addition, post-removal monitoring and annual reporting will continue for one more year.

On behalf of Eureka Gulch Properties, Geosyntec Consultants has incurred costs for preparation of the Work Plan, Sampling and Analysis Plan, and Annual Reports, as well as costs for contracting the removal work. Through November 2024 these costs total \$44,665.

On behalf of Eureka Gulch Properties, Geosyntec Consultants has incurred costs for obtaining materials for the removal action and costs for the removal contractor. These costs total \$8,423.

On behalf of Eureka Gulch Properties, Geosyntec Consultants has incurred costs for the sampling and analysis of surface water samples. These costs total \$17,452.

Eureka Gulch Properties LLC has performed the following post-removal activities for the final time:

Post-Removal Action Monitoring and Maintenance

- Monitor Eureka Creek water quality upstream and downstream of the Ben Franklin site annually during low-flow conditions for a period of five years. Annual reports will be submitted. The first event was conducted September 25, 2019, with an annual report submitted November 8, 2019. The second event was conducted September 25, 2020, with an annual report submitted October 30, 2020. The third event was conducted September 27, 2021. The fourth event was conducted September 27, 2022. The fifth event was conducted September 27, 2023. The sixth and final event was conducted September 30, 2024. The ARD-1 location will be inspected yearly, and flow measured if present.
- Monitor water quality of the adit flow prior to entering Eureka Creek annually for five years to assess the effectiveness of the limestone channel. Limestone will be replenished as needed to maintain pH buffer during the five-year post-removal period.
- During annual monitoring, the adit seal will be inspected for continued effectiveness.
- During annual monitoring, an evaluation of the need to implement measures to control any remnant seeps originating from Eureka Creek through the embankment or under the road into the stope will be conducted. No seeps were visible during the field surface water sampling events in late September 2019, 2020, 2021, 2022, 2023, or 2024.

If needed, a supplemental Work Plan will be submitted to control any remnant seeps originating from Eureka Creek that pass through the embankment or under the road into the stope.

II. EFFECTIVENESS OF REMOVAL ACTIONS

A. Actions Taken by PRPs

Comparison of the September 2024 surface water sampling and flow measurement data to historic data suggests the following:

Flow from the Ben Franklin adit (BF1) has been reduced more than 90 percent from historic rates of 5-10 gpm to less than 0.52 gpm, and less than 0.2 gpm in the past three years, as shown in Table 1. Note that EPA's 2021 and 2023 flows appear to have included additional seepage flows from beyond the adit drainage

where additional natural seepage from the vein along the northern bank of the creek channel enters the adit discharge channel, as described more fully below.

While most metal concentrations in the Ben Franklin adit discharge have not varied much compared to pre removal, flow has decreased by up to 93% indicating significant reduction (30-80%) in metal loading from the adit since the response action in 2018/2019, and 89% to 97% since 2017. As **Figure 3** indicates, only a small proportion of the loading at downstream EG5 since 2022 can be explained by the contribution from the Ben Franklin adit. This flow and load reduction is likely due to filling the stope, thus removing the perennial snow and minimizing precipitation inflow through the open stope and preventing influx of water through the embankment upstream of the stope and under the road.

Upstream Eureka Gulch metal concentrations at EG4A are near the recorded historic levels in low flow conditions. Metal concentrations in downstream Eureka Gulch at EG5 (above the former confluence with ARD-1 flows) have varied above and below the recorded historic (September 2016 to 2017) levels in low flow, although lead and copper concentrations appear to have increased over time. During low flow, dissolved copper, lead and zinc loads are comparable to historic levels. The rain event during and immediately prior to the September 2022 sampling event is likely to be the cause of the elevated flows, concentrations, and loading in 2022 due to the presence of a trickle of flow at ARD-1.

September 2019 EPA data from a sampling site further downstream (A39) below the former ARD-1 location, show more obvious metal concentration (aluminum, cadmium, manganese and zinc) reductions (to levels comparable to location EG5) due to the elimination of metal-rich ARD-1 flows that enter Eureka Gulch between EG5 and A39, as noted in section B below.

It is important to point out a sample location issue of concern in the CDM Smith September 2023 Sampling:

For Principal Study Question #3, they proposed to "Measure flow rates and collect analytical samples as close to the portal as possible. Improved understanding of the adit discharge and loading is important to understand the adit's contribution to water quality impacts."

CDM collected three (3) samples, BF1 (adit), (BF-SW1), and EG5 in a single event in September 2023. To properly sample the adit drainage BF1, the adit must be entered due to groundwater seepage occurring along the vein which presents itself as seeps just beyond the portal discharge and enters the effluent channel.

CDM did not enter the adit to collect their 2021 or 2023 sample of BF1. Sample location EG4A (BF-SW1) may be inappropriate as the upstream "baseline" location as it is upstream of the vein crossing of Eureka Gulch.

A particular data gap is the lack of additional post-action samples at Eureka Gulch location A39 (or A39A), downstream of the former ARD-1 location, which would confirm the load reductions achieved from the discontinuation of ARD-1 flow shown by the one September 2019 result at A39. Unfortunately, the county conducted road work just above the ARD-1 location in late September 2023 and it is uncertain how this may impact loading evaluations downstream (see **Figure 4**).

As noted in Section I.A.2, sampling occurred at location BF2 in 2017, which is located in Eureka Gulch downstream of the main vein intersection with the creek and just upstream of the confluence with the Ben Franklin adit drainage. As there are no tributary contributions in the reach between EG4A and BF2, the concentration increase in that reach indicates significant natural background contribution from the creek crossing of the vein. The pH at this location was lower than the upstream EG4A location, and the concentration of all metals and sulfate were higher than upstream. Furthermore, the concentrations of all metals at BF2, except lead, were higher than the downstream location EG5. This natural background interpretation is consistent with the small proportion of total Eureka Gulch metal loading attributed to the Ben Franklin adit at EG5.

Current site conditions are shown in **Figure 5**.

B. Actions Taken by State and Local Forces

DRMS submitted a separate report covering the work conducted under state authority in 2019.

Flow from ARD-1 has been terminated by a combination of DRMS stope closure, DRMS waste rock removal from the stream channel, and DRMS channelization of the mine adit discharge to Eureka Gulch.

C. Actions Taken by Federal Agencies and Special Terms

Not applicable

D. Actions Taken by Contractors, Private Groups, and Volunteers

In accord with recommendations from Mark Rudolph at CDPHE, on October 1, 2022, volunteers from Trout Unlimited's Five River Chapter planted roughly 200 willow cuttings on the reclaimed dump of the Ben Franklin. The cuttings were locally harvested from a source adjacent to the site on the west side of Eureka Creek. The cuttings were planted on the Southern third of the dump, which is also the lowest elevation of the dump. Installation of cuttings consisted of using a 3/4" diameter drill bit drilling roughly 6-9 inch deep holes and pushing the cutting in by hand. One will note that willows exist on both sides of the dump so it is only reasonable to conclude that they likely existed prior to disturbance. The intent of planting was phytostabilization and to improve the overall aesthetic with respect to the natural setting. Annual site inspections indicate a two-year survival rate of roughly 25% of the cuttings. Photographs of the willow installation process and the current condition are provided in Appendix H.

III. DIFFICULTIES ENCOUNTERED

A. <u>Items that Affected the Response</u>

Not applicable

B. Issues of Intergovernmental Coordination

Not applicable

C. <u>Difficulties Interpreting, Complying with, or Implementing Policies and Regulations</u>

Not applicable

IV. RECOMMENDATIONS

A. Means to Prevent a Recurrence of the Discharge or Release

Not applicable

B. Means to Improve Response Actions

Not applicable

C. Proposals for Changes in Regulations and Response Plans

Not applicable

TABLE

Table 1. Summary of Surface Water Analytical Data Ben Franklin Mine, Eureka Gulch Silverton, CO

Part	ir																											
	Site Description		Sample Date	Agency	Flow (cfs)	Estimated GPM	pН										d Cd	(µg/L)	Cu (µg/L)			(µg/L)				Zn		Sulfate (mg/L)
Fig. Page																												
From Healman Mental Men					_					1.10					٠,		10.1				1100	107	100			007		
From the properties of the pro						104,9																						
Fig. 1 (2) (2) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4			4,,			22.1				_	_					_	_	_	_	_			15.9	_	_		_	
				,		62																	7					
Part	confluence					02								-0.2														
Part							_			_			<1		<2	_	_	_		_		_						
Tentisciscission of the section of t																												89.6
Continence of Co		EG3A	9/29/15	EPA	0.0784		7.25	203	94	63	32					0.55	0.59	11.4	9.78	<100	<100	116	107	4.18	2.45	217	215	
Section Properties Proper	Euroka holou Voin	EG3A	6/22/99	DMG	18,469		7.57	ND	57	150	62	BDL	<0.2	BDL	<1	4,70	4.70	19.6	12,6	281	16	2024	1940	2.70	<0.6	1999	1993	48.7
Part	Intersection, upstream of adit discharge				NM																							
Part					0.0043			700			7000							1110										
Part					0.0043																							
511 521 522 523																												
Part																												
Ber Framile Ber Fr				Geosyntec																								
Part Part Part Part Part Part Part Part												0.9		<0,2														
Part	Ben Franklin adit	2	9/27/18	inst/EPA		1,19	3.24	486	176	2750	2720		0.64		<0.5	28.5	31.2	1580	1710	<100	<100	9120	8920	1580	1670	7320	7600	223
Part		2	6/27/18	nst/EPA		4,76	3,68	366	106	1950	1990		0.72			37,2	42,5	1770	2020	743	713	9060	9550	1240	1370	10500	11600	159
Part		2	140.140.11	nst/EPA		5,02																						
Section Sect							0,00	0.0			00.10			<10										10.10			11000	
Mathematical Math				Mtn. Studies	Tem	5,06									12							t e						
APOLI 1979 200999999999999999999999999999999999		DM32	6/28/16				3.53	412	95	2740	2640		0.92			49.5	49.6	2230	2100	999	911	10800	11000	1800	1740	14400	15300	
Action of the properties of th							4.23	488	150	3390	3030		<0.5			40.0	42.1	2030	2130	376	<100	13100	12800	1990	2070	11900	12200	275
Acide drainings from Born Framshin with Born Franshin with Born Framshin with Born Franshin with Born Fransh					1																							
Acid criange from Many Many Many Many Many Many Many Many						trickle-	3,54	844	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acid calcing from plane						Dry																						
Part Park Park Park Park Park Park Park Park					_																							
Pie p	Ben Franklin waste					Diy	3,13	888	123	8960	8360		1,32	<10	0.915	65,4	64.3	1920	1810	3100	2020	23700	22400	1080	979	20000	19300	293
Part														<10	<2													
Part																												338
Fig.		ARD1					3.1	918	123	7180						57.5	55.6			3560				840				
Fig. Supplementary Fig. Supplementary																												108
Final Strate Fina						3-14																						76.8
Eurola Dello Men Frinchi Landou			9/19/23									<2.5		_			1.64	29							_			70.7
Euroka Dello Meg Friedrikh Lander Meg Friedrik						153.1							_															
Eurola blook Mark Friedliki Language (17 5 a.m.) 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.				Geosyntec		37.9																						
Friedrick Humble Fig. Fig.						70																						
Fig. 1.0	Franklin tunnel					/9						0.4		0.2														
Fig.							7.39						<1		<2		1.59								0.98			45.4
First Bell May 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												c2.5	<0.5	<25	<0.5													
Euroka Debow Ben Finding above		EG5	6/22/99	DMG	21.115		7.5	151				BDL	<0.2	BDL			2.30		19.3	168	23	1035	1027	10.1	1.70		1082	39.4
Friedrick Principle (Ray)					_		-	233		_	_	BDL	<0.2				_	_		_				_				
Fig. 1. Fig. 1																												
A38 08/2017 EPA NF 7,38 08.1 311 57 0.1 0.1 0.2 1.8 0.		A39A	06/28/16	EPA	NM		7.59		62	133	99			1.0		3,25	3.19	16.2				607	593		2.14		1030	49.2
Fig.													1		-2													
Eureka Gulch alore Ferry Tunnel A39 08/28/16 EPA NA1 7,51 102 190 199 1 19 1 19 1 19 1 19 1 19 1																												
Terry Tunnel A39 00/3015 EPA	L				NM																							
A39 06/1407 ARSG 15,8 7,38 196 101 - 4 3,5 3,4 21,9 18,1 117 <100 120 1180 9,2 3,1 1040 1040 A39 101592 WQCD 0,356 6,99 94 - 1,70 18,0 120 180 120 1180 9,2 3,1 1040 1040 A39 06/5782 WQCD 0 7,58 59 110 0,0 2 4,80 24,0 1 5,0 100 1200					NM		7.55					-						10.00										
A39 06/25/92 WQCD 7.58 59 110 <0.2 4.80 24.0 8.00 1200	' '	A39	06/14/07	ARSG											<4		3.4		18,1						3.1		1040	
					0.36						***																	
ן האס ן שייטיסיסיון זייקטיט באיטן ן 1,700 באט ן 1,000 באט		A39 A39	09/09/91	WQCD	2.3		6.77	333	59 123	310	110		<0.2	-			4.80 5.00		18.0	220			3700	-	8.00 <5		1700	

Note: extensive data with flow measurements exists for A39 from late 1987 to late 1994

FIGURES

Figure 3. Low Flow Metal Loading Over Time for Ben Franklin Adit, Upstream, and Downstream

APPENDIX A As-Built Drawing for Adit Discharge Channel and Photographs of 2019 Remedial Work

Geosyntec Consultants Photographic Record

engineers | scientists | innovators

Client: Eureka Gulf Properties, LLC Project Number: DE0247

Site Name: Bonita Peak Superfund Site | Site Location: Eureka Gulch, Silverton, CO

Photograph 1

Date: 9/17/2019

Direction: NA

Comments: Left side portal safety closure.

Photograph 2

Date: 9/17/2019

Direction: NA

Comments: Interior adit limestone ditch, looking

out from adit.

Geosyntec Consultants Photographic Record

engineers | scientists | innovators

Client: Eureka Gulf Properties, LLC Project Number: DE0247

Site Name: Bonita Peak Superfund Site

Site Location: Eureka Gulch, Silverton, CO

Photograph 3

Date: 9/17/2019

Direction: NA

Comments: Interior adit limestone ditch, looking

into adit.

Photograph 4

Date: 9/17/2019

Direction: NA

Comments: Interior adit limestone ditch entrance.

APPENDIX B

Field Notes

SURFACE WATER SAMPLING AND ANALYSIS

DATE & SAMPLE TIME: A \$730/24 8:50 PERSONNEL: Ryan Bennett, Briandwer INSTRUMENTS: (Conductivity, Temperature, pH, Flow, etc.) YSI DESPRO

GENERAL		
SAMPLE ID	AMZB	
SAMPLING LOCATION	1073	
SAMPLE DEPTH	111	
WATER SOURCE/ BODY	SURFACE WATER	
WEATHER CONDITIONS	+	slight breeze 7.6°C
QUALITY ASSURANCE	01	
SAMPLING EQUIP / METHOD	peristelly	
DECONTAMINATION METHOD	new	
FLOW MEASUREMENT	2" out that	1 54.3 GPM
FILTRATION EQUIPMENT	0.45 um	high capacity
FIELD MEASUREMENTS		, 8
APPEARANCE	clear, a	lgae
TEMPERATURE (°C or °F)	9.60 3.7	00
рН	4.26	
OTHER		8/L 5.6 508 15/07.
SAMPLES COLLECTED AN		
ANALYSIS	PRESERVATIVE	BOTTLES AND HANDLING
Metals dissolut	None nimiz	Gil terch
total	nihiz	raw
Dissolved Organic Carbon	H ₂ SO ₄	
1005		filted
sampling Location Map/ ADD	from sandba	55 used in flow measurement is in an act of vandalismover summer
- lofs of alga	e.	low has been completed
LAB/DATE SUBMITTED:		DELIVERY METHOD:

DISCHARGE DATA : 20 Am PERSONNEL: Ryan Bennett Bylang (DATE & TIME: 9/30 LOCATION: A Volumetric Method: Trial #1 minutes seconds volume gal/quarts/liters Trial #2 minutes seconds volume gal/quarts/liters Trial #3 gal/quarts/liters minutes seconds volume Trial #4 minutes seconds volume gal/quarts/liters Trial #5 gal/quarts/liters minutes volume seconds Leakage Estimate Flume Method: Type: Cutthroat JH / Parshall / Other: Heada O.U2 Head. Size: 3 GPM a upstream ^b downstream Leakage Estimate Manning Equation Applied to Culvert Method: Culvert Location: Culvert Free of Debris and Obstructions: Depth of Water in Culvert: Flow CFS: FLOW GPM: Culvert Location: Culvert Free of Debris and Obstructions:__ Depth of Water in Culvert: Flow CFS: FLOW GPM: Culvert Location: Culvert Free of Debris and Obstructions: Depth of Water in Culvert:__ Flow CFS: FLOW GPM: Leakage Estimate: TOTAL CFS **TOTAL GPM**

Additional Notes:

Sub mergaca!

SURFACE WATER SAMPLING AND ANALYSIS

GENERAL		
SAMPLE ID	149731	
SAMPLING LOCATION	A0731	
SAMPLE DEPTH	0.5 inches	
WATER SOURCE/ BODY	SURFACE WATER	
WEATHER CONDITIONS	Sunny breezy 10.9 °C	
QUALITY ASSURANCE	81 -0	
SAMPLING EQUIP / METHOD	peristaltic	
DECONTAMINATION METHOD		
FLOW MEASUREMENT	2" cutthost 63.1 GPM	
FILTRATION EQUIPMENT	2" catthoot, 63.1 GPM 0.45 un high capacity Greatech	
FIELD MEASUREMENTS	The state of the s	
APPEARANCE	clearwater aboundant algae	
TEMPERATURE (°C or °F)	50° 5.0° C	
рН	4.26	
OTHER	D.O. = 9.3 mg/L S.C. = 527uS/cm	
SAMPLES COLLECTED AN		
ANALYSIS	PRESERVATIVE BOTTLES AND HANDLING	
Metals dissolud	None ritiz filtered	
to but	ritiz raw	
Dissolved Organic Carbon	11,50,	
ions	- filsen	
sampling location map/add Following a field notes. In	FIONAL NOTES: cidental shredding of original Apt- se notes were re-created using ApTB orded parameter values from the mul	7B1

Volumetric	Method:					
Trial #1		minute	s	seconds	volume	gal/quarts/liters
Trial #2		minute	s	seconds	volume	gal/quarts/liter
Trial #3		minute		seconds	volume	gal/quarts/liter
Trial #4		minute		seconds	volume	gal/quarts/liter
Trial #5		minute	s	seconds	volume	gal/quarts/liter
			Leakage	e Estimate		-
Flume Met		me Cutthro	pat H / Parsha	all / Other		
	Size:	2	(in) ft.		16 Head _b O.	42 in. M.
				1		9
	Leakage	Estimate	2 911		upstream down	nstream
Manning E	Culvert L	ocation:	ulvert Method	ctions:		
Manning E	Culvert L Culvert F Depth of Flow CF: FLOW G Culvert L Culvert F Depth of Flow CF:	ocation: ree of Debr Water in Co S: PM: ocation: ree of Debr Water in Co S:	ris and Obstructure ulvert: ris and Obstructure ulvert:	ctions:		
Manning E	Culvert L Culvert F Depth of Flow CF: FLOW G Culvert L Culvert F Depth of Flow CF: FLOW G	ree of Debr Water in Co S: PM: ocation: ree of Debr Water in Co S: PM:	ris and Obstructure	ctions:		
Manning E	Culvert L Culvert F Depth of Flow GF FLOW G Culvert L Culvert F Depth of Flow GF FLOW G Culvert L Culvert L Culvert L	ree of Debrivater in Cost. cocation: cocation: cocation: cocation: cocation: cocation: cocation: cocation: cocation:	ris and Obstructures an	ctions:		
Manning E	Culvert L Culvert F Depth of Flow GF FLOW G Culvert L Culvert F Depth of Flow GF FLOW G Culvert L Culvert L Culvert L Culvert L Culvert L Culvert F	ree of Debrivater in Concentration:	ris and Obstructuris an	ctions:		
Manning E	Culvert L Culvert F Depth of Flow GF FLOW G Culvert L Culvert F Depth of Flow GF FLOW G Culvert L Culvert L Culvert L Culvert L Culvert L Culvert F	ree of Debrivater in Concentration:	ris and Obstructuris an	ctions:		
Manning E	Culvert L Culvert F Depth of Flow CF FLOW G Culvert F Depth of Flow CF FLOW G Culvert L Culvert F Depth of Flow CF FLOW G	ree of Debr Water in Co S:	ris and Obstructures an	ctions:		
Manning E	Culvert L Culvert F Depth of Flow CF FLOW G Culvert F Depth of Flow CF FLOW G Culvert L Culvert F Depth of Flow CF FLOW G	ree of Debr Water in Co S:	ris and Obstructures an	ctions:		141
Manning E	Culvert L Culvert F Depth of Flow CF FLOW G Culvert F Depth of Flow CF FLOW G Culvert L Culvert F Depth of Flow CF FLOW G	ree of Debr Water in Co S:	ris and Obstructures an	ctions:		

Page 1 of 1

SURFACE WATER SAMPLING AND ANALYSIS

GENERAL								
SAMPLE ID	A0731	olul						
SAMPLING LOCATION	A0731	A0731						
SAMPLE DEPTH	0.5 ind	und						
WATER SOURCE/ BODY	SURFACE WATER							
WEATHER CONDITIONS	sunny,	breezy 10.9°C						
QUALITY ASSURANCE		0						
SAMPLING EQUIP / METHOD	peristalh	2						
DECONTAMINATION METHOD	new							
FLOW MEASUREMENT		ot 63.1 GPM						
FILTRATION EQUIPMENT	0.45 100	high capacity						
FIELD MEASUREMENTS		1						
APPEARANCE	clare ale							
	5.0°C	jue						
TEMPERATURE (°C or °F)	4.26							
pH	D.0=9.300	000 000 01						
OTHER		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
SAMPLES COLLECTED AN ANALYSIS	PRESERVATIVE							
Metals dissolve)		POTTLES AND HANDLING						
he Jal	None nihic	TI FUCO						
	n,he	raw						
Dissolved Organic Carbon	H ₂ SU ₄							
pon 5	_	filtred						
		1(1400)						
SAMPLING LOCATION MAP / ADD	NTIONAL MOTES.							
SAMPLING LOCATION WAP / ADD	MONAL NOTES. 164	s of algae, shallow sampling point in act of vandalish						
Sanol clu	impod below !	sampling point in act of vandalish						

			DISCI	HARGE DATA			
DATE & TIN	ME: 9:	57 9/3 BI due		PERSONNEL	Ryand	Bennett	Brana Cree
/olumetric	V. Carrier and Carrier			_			
Trial #1		minutes		seconds	volume		gal/quarts/liters
Trial #2		minutes	-	seconds	volume		gal/quarts/liters
Trial #3		minutes		seconds	volume		gal/quarts/liters
Trial #4		minutes	1	seconds	volume		gal/quarts/liters
Trial #5		minutes		seconds	volume		gal/quarts/liters
			Leakage E	Estimate			
Flume Meti	hod:						
riume weu		ype: Cutthroat	H / Parshall	/ Other:			
	Size:	2	(in)/ft.	Head _a 6. U	6 Head	0.48	_in. / 🕀
	Leakage	Estimate		а	upstream	b downstream	
					аростоски	dominoadam	
	Culvert I Depth of Flow CF FLOW G Culvert I Depth of Flow CF FLOW G Culvert I Depth of Flow CF FLOW G Culvert I Depth of FLOW G	Water in Culvers: GPM: _ocation: _ree of Debris and the culvers of D	and Obstruction	ons:			
	Leakage	Estimate:	-			0 1111	
					TOTAL CFS	0.141	-
				105	TOTAL GPM	63.1	
Additional N	Notes:						

Submugencl

SURFACE WATER SAMPLING AND ANALYSIS

DATE & SAMPLE TIME:	9/30/24	10:25	PERSONNEL: 12-an	Bennett.	Briana Gree-
INSTRUMENTS: (Conductivity, Tempe	rature pH Flov	v etc.) //	12	-	

GENERAL		
SAMPLE ID	DM6	
SAMPLING LOCATION	DMb	
SAMPLE DEPTH		
WATER SOURCE/ BODY	SURFACE WATE	:R
WEATHER CONDITIONS	sunny u	andy
QUALITY ASSURANCE	•	
SAMPLING EQUIP / METHOD		
DECONTAMINATION METHOD		
FLOW MEASUREMENT	none	
FILTRATION EQUIPMENT		
FIELD MEASUREMENTS		
APPEARANCE		
TEMPERATURE (°C or °F)		
pH		
OTHER		
SAMPLES COLLECTED AN	ID SAMPLE ANALYS	SIS
ANALYSIS	PRESERVATIVE	BOTTLES AND HANDLING
Metals	None	
Dissolved Organic Carbon	H ₂ SO ₄	
sampling location map/add no mease cannot be met ph-tos	be calcula	Ird, sampling objectives can't
LAB/DATE SUBMITTED:		DELIVED METHOD

SURFACE WATER SAMPLING AND ANALYSIS

DATE & SAMPLE TIME: 9/30/24	•	10:30Am	PERSONNEL	Ryan Bennett	Brana Groom
INSTRUMENTS: (Conductivity, Temperatur					

GENERAL		
SAMPLE ID	DM7	
SAMPLING LOCATION	Dm7	
SAMPLE DEPTH	O. Zinch	
WATER SOURCE/ BODY	SURFACE WATER	
WEATHER CONDITIONS	sunny, u	
QUALITY ASSURANCE	0.	0
SAMPLING EQUIP / METHOD	peristalh	ے
DECONTAMINATION METHOD	new	
FLOW MEASUREMENT	plaste be	eg/volumetra 1.5 GPM
FILTRATION EQUIPMENT	0.45 mm	high capacity restren
FIELD MEASUREMENTS		
APPEARANCE		
TEMPERATURE (°C or °F)	7.500	8. 7.5°C
pH	6.7	120 = 8.22
OTHER	100 - 820	myte 51. 4303 45/cm
SAMPLES COLLECTED AN		
ANALYSIS	PRESERVATIVE	BOTTLES AND HANDLING
Metals dissolud	None WWIL	filled
lot of	nitre	raw
Dissolved Organic Carbon	H ₂ SO ₊	
1025	_	Lilbered
	+	
SAMPLING LOCATION MAP / ADD	ITIONAL NOTES:	
SAMI LING LOCATION WAF / ADD	THONAL NOTES.	
LAB/DATE SUBMITTED:		DELIVERY METHOD:

		More	MATTER PROPERTY AND A	COURSE LINE		ERLEROLE ERRENNING
			HARGE DATA			
DATE & TIM LOCATION:	E: 9/30/24 DM7	11:00 9	PERSONNEL:	Br, are	Crev	Regar Brook
Volumetric I						
Trial #1 Trial #2 Trial #3 Trial #4 Trial #5	minutes minutes minutes minutes minutes minutes	30 30 30 Leakage E	seconds seconds seconds seconds seconds	volume volume volume volume		(gal/quarts/liters gal/quarts/liters gal/quarts/liters gal/quarts/liters gal/quarts/liters
Flume Meth						
	Type: Cutthroat				in the second	
	Size:	in. / it.	Head _a	Head _b		in. / ft.
	Leakage Estimate		a	upstream	^b downstrear	n
Manning Eq	uation Applied to Culver Culvert Location: Culvert Free of Debris a Depth of Water in Culve Flow CFS: FLOW GPM: Culvert Location: Culvert Free of Debris a	and Obstructio				
	Depth of Water in Culve					
	Flow CFS:					
	Culvert Location:Culvert Free of Debris a Depth of Water in Culve Flow CFS:FLOW GPM:	rt:				
	Leakage Estimate:					
			T	OTAL CFS	0.00	33 Gpm
			T	OTAL GPM	1.5	GPM

Additional Notes:

GENERAL		130/24 12:30 PERSONNEL: Ryan Bennets ity, Temperature, pH, Flow, etc.) YSI desgro	
SAMPLE ID		EGE	
SAMPLING I	OCATION	EUS	
SAMPLE DE	PTH	4"	
WATER SO	JRCE/ BODY	SURFACE WATER	
WEATHER (CONDITONS	party wordy, cool, breeze 15.50	
QUALITY	ASSURANCE	0	
SAMPLING E	EQUIP / METHOD	pristaltic	
DECONTAM	INATION METHOD	peristaltic new	
FLOW MEAS	SUREMENT 145 CO	on volumedar large has dear deal he had the f	50 cl
	EQUIPMENT	O. Your high capacity filter	Chan
FIELD ME	ASUREMENTS	1112	
APPEARANG		cler	
		10.1 ° C	
SAF.	JRE (°C or °F)	1 30	
pH		1.00	
OTHER	THE CO.	100 = 7.45 ng/L SC = 240.7 uSon	
		D SAMPLE ANALYSIS	
	ANALYSIS	PRESERVATIVE BOTTLES AND HANDLING	
Metals	dissolud	None nim2 filterd	
	10 101	nimic vacv	
Dissolved (Organic Carbon	H ₂ SO ₄	
	1715	- 6/201	
	1 201-2	71170	
SAMPLING L	OCATION MAP / ADDI	location for accurate Llow measurement	
	or than s	tocknow for according to the	
LAB/DATE	SUBMITTED:	DELIVERY METHOD:	

	- 9/2n/s		CHARGE DATA		H. Briann (real
LOCATION:	F.45	9 10.40	PERSONNE	Lifeyon benn	er, Diana rea
Volumetric		3 BELOW			
Trial #1	mii	nutes	seconds	volume	gal/quarts/liters
Trial #2		nutes	seconds	volume	gal/quarts/liters
Trial #3		nutes	seconds	volume	gal/quarts/liters
Trial #4		nutes	seconds	volume	gal/quarts/liters
Trial #5	mil	nutes	seconds	volume	gal/quarts/liters
		Leakage	e Estimate 2	GPM	
Flume Meth		tthroat / H / Parsha	all / Other		
	4.				V- V2
	Size:	in, / ft,	Head _a	Head _{b_}	in. / ft.
	Leakage Estima	te		^a upstream ^b dowr	stream
Manning Ed	quation Applied t	o Culvert Method			
		Debris and Obstruc	tions:		
		n Culvert:			
	FLOW GPM:		MILE STREET		
	Culvert Location				
		Debris and Obstruc	tions:		
		n Culvert:			
	Flow CFS: FLOW GPM:				
	1 2011 OF N.			-7.	
	Culvert Location				
		Debris and Obstruc	ctions:		
	Depth of Water	n Culvert:			
	Flow CFS:				
	FLOW GPM:				
	Leakage Estima	te:			
				TOTAL CFS	0.346
				TOTAL GPM	to 155.1
Additional N	lotes:			1 Ct Time	com! .7.7/1
	ignt 8.5	GPM 1			apm[2+1.8+2.1+1.8+3.4
	11.	- V	-	c 1.7+1	8+1.01
1000	2.1	gal	5 50	6	7 94
13 scc		011		(12.	124
1 501	21	gal 1		<u> </u>	2117 +3.4 (20)
2 occ		1	350.	3.6 + 3.	1701
0 101	7.7	gal	3 3		
7 de		0	-	6. 3. +	3.3+1.3+3.5 Wa
			Page 1 of 55		
					33+29+21(0)
			2 26	L. 5,+ +	101211

GENERAL		
SAMPLE ID	EG4A	
SAMPLING LOCATION	EG4A	
SAMPLE DEPTH	14	
WATER SOURCE/ BODY	SURFACE WATER	
WEATHER CONDITIONS	(col, intermitt	endrain, windy 9.2°C
QUALITY ASSURANCE		0
SAMPLING EQUIP / METHOD	paristallic	
DECONTAMINATION METHOD	new	
FLOW MEASUREMENT	2" outh	noct 108.2 GPM
FILTRATION EQUIPMENT	0.45 14	n high espacity
FIELD MEASUREMENTS		1 0
APPEARANCE	clear	
TEMPERATURE (°C or °F)	9.3°C	.
pH	7.46	
OTHER	100 = 7.64n	ng/L S.C. 253.1 u.S/cn
SAMPLES COLLECTED AN	D SAMPLE ANALYSIS	
ANALYSIS	PRESERVATIVE	BOTTLES AND HANDLING
Metals dissalvel	None of nitric	filmed
total	nhac	row
Dissolved Organic Carbon	112504	
درما	-	filtered
SAMPLING LOCATION MAP/ADD	DITIONAL NOTES: Sedingnt,	sinilar to that of fine road low culvert. Also exists above

	1E: 9/30/24 EGYA	4.101.	PERSONNEL	: Kyan B	ennett, Briana a
olumetric					
olumetric	method:				
Trial #1	min	utes	seconds	volume	gal/quarts/liters
Trial #2	min	nutes	seconds	volume	gal/quarts/liters
Trial #3	min	utes	seconds	volume	gal/quarts/liters
Trial #4		nutes	seconds	volume	gal/quarts/liters
Trial #5	min	nutes	seconds	volume	gal/quarts/liters
		Leaka	ge Estimate		
lume Meti	hod:				
		tthroat / H / Parsh	And the second s		10
	Size:	(in). / ft.	Head _a OS	Head _{b_}	0.12 in.1st.
	Leakage Estimat	te 4ap	M	a upstream b d	lownstream
			1		
	AT THE RESERVE OF THE PARTY OF				
	Culvert Location: Culvert Free of D	:	uctions:		
	Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM:	: Debris and Obstrun Culvert:	uctions:		
	Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location:	: Debris and Obstrun Culvert:	uctions:		
	Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location: Culvert Free of D	:	uctions:		
	Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location: Culvert Free of D Depth of Water in	ebris and Obstruction Culvert:	uctions:		
	Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location: Culvert Free of D Depth of Water in	ebris and Obstruction Culvert:	uctions:		
	Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location: Culvert Free of D Depth of Water in Flow CFS:	:	uctions:		
	Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location	:	uctions:		
	Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location Culvert Location Culvert Free of D	:	uctions:		
	Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location Culvert Free of D Depth of Water in Culvert Free of D Depth of Water in Flow CFS: Flow CFS:	Debris and Obstruction Culvert: Debris and Obstruction Culvert: Debris and Obstruction Culvert:	uctions:		
	Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location Culvert Free of D Depth of Water in Culvert Location Culvert Free of D Depth of Water in	Debris and Obstruction Culvert: Debris and Obstruction Culvert: Debris and Obstruction Culvert:	uctions:		
	Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location Culvert Free of D Depth of Water in Culvert Free of D Depth of Water in Flow CFS: Flow CFS:	Debris and Obstruction Culvert:	uctions:		
lanning E	Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location: Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Culvert Location Culvert Free of D Depth of Water in Flow CFS: FLOW GPM: Flow CFS: FLOW GPM:	Debris and Obstruction Culvert:	uctions:		0.2411

GENERAL		
SAMPLE ID	EG44 dup	
SAMPLING LOCATION	EG44	
SAMPLE DEPTH	14	
WATER SOURCE/ BODY	SURFACE WATER	
WEATHER CONDITIONS	1001, breezy, chiley	9.7°C
QUALITY ASSURANCE	, ,	
SAMPLING EQUIP / METHOD	peristalhe	
DECONTAMINATION METHOD	new	
FLOW MEASUREMENT	2" out throat 11	25GPM
FILTRATION EQUIPMENT	0.45 um nigh capaci	
FIELD MEASUREMENTS		
APPEARANCE	clear	
TEMPERATURE (°C or °F)	9.2°C	
H	7.46	
OTHER	DO:7.65mall S.C.	252.8 uskn
SAMPLES COLLECTED AN	9	7
ANALYSIS	PRESERVATIVE	BOTTLES AND HANDLING
Metals dissolved	None nitric Glared	
total	nitiz raw	
Disselved Organic Carbon	H _o SO ₄	
1515	- filtered	
10:13		
SAMPLING LOCATION MAP / ADD	TIONAL NOTES:	1 1 1 1 2 2 1 2
scd. n	tional notes: ent appears to have was culved depositing in the	sampling and

		DISCHA	ARGE DA	ГА		
	ME: 9/30/24 2: EG44 dup	15pm	PERSONN	EL: Pyan	Benne H	Biana Gr
/olumetric	: <u>Eught</u> aup				,	
olumetric	iwethoa:					
Trial #1	minutes		seconds	volume		gal/quarts/liters
Trial #2	minutes		seconds	volume		gal/quarts/liters
Trial #3	minutes		seconds	volume		gal/quarts/liters
Trial #4	minutes		seconds	volume		gal/quarts/liters
Trial #5	minutes		seconds	volume		gal/quarts/liters
		Leakage Est	imate			
Flume Meti	hod:					
	Type: Cutthroat / H	/ Parshall / C	Other:		- 00 12	
	Size: 2 (in)	/ ft.	Heada O.	St 0.53 Head		_ in. /ft.)
	Leakage Estimate	GPM		a upstream	b downstream	
	Mark Market Street					
density of F						
vianning E	quation Applied to Culvert	Method:				
	Culvert Location:	01-1				
	Culvert Free of Debris and					
	Depth of Water in Culvert:_		-			
	Flow CFS:FLOW GPM:					
	Culvert Location:					
	Culvert Free of Debris and	Obstructions				
	Depth of Water in Culvert:_					
	Flow CFS:					
	Culvert Location:					
	Culvert Free of Debris and	Obstructions	,			
	Depth of Water in Culvert:_					
	Flow CFS:					
	FLOW GPM:					
	Lastana Farina					
	Leakage Estimate:					
				TOTAL CFS	0-250	δ
				TOTAL COM		1 000

Additional Notes:

DATE & SAMPLE TIME: 9/30/24 2	2:40 PM	PERSONNEL:	Briana Gren,	RigarBernot
INSTRUMENTS: (Conductivity, Temperature				<i>0</i>

GENERAL	
SAMPLE ID	1351
	BEI
SAMPLING LOCATION	0.5 inch
SAMPLE DEPTH	
WATER SOURCE/ BODY WEATHER CONDITIONS	SURFACE WATER 5 4 nny breizy 16 C
QUALITY ASSURANCE	134mily Dietely 10 C
	a cietal bic
SAMPLING EQUIP / METHOD	peristallic
DECONTAMINATION METHOD	new 112
FLOW MEASUREMENT	Bester culthroot at plestic beg
FILTRATION EQUIPMENT	1 0.45 um high appacity Custech
FIELD MEASUREMENTS	
APPEARANCE	
TEMPERATURE (°C or °F)	5.9°C
pH	7.64 3.67
OTHER	00-5.87my S.C.=769 us/cm
SAMPLES COLLECTED AN	ID SAMPLE ANALYSIS
ANALYSIS	PRESERVATIVE BOTTLES AND HANDLING
Metals of SSO we	None nidia filtered
total	nitic raw
Dissolved Organic Carbon	H ₂ SO ₄
17015	L. Leved
10.13	
SAMPLING LOCATION MAP/ADD Ve Suc 12000 more not	Sitional NOTES flow, distribute to sample with out king solids off bottom. Simpled just in side tal. Flow rate 8 feet down stream is than 5x that in tunnel. Scepases from tunnel observed.
LAB/DATE SUBMITTED:	DELIVERY METHOD:

			WITH THE STATE OF	WORKER'S CAMPAIN	E 40	CARRAL BERNOON
		DISCHA	ARGE DATA			
DATE & TIN	BFI 9/30/24	2:20 PM	PERSONNEL:	12 yan Ber	mett, C	briana Gree
Volumetric	Method: inside hu	inel				
Trial #1 Trial #2 Trial #3 Trial #4 Trial #5	minutes minutes minutes minutes minutes minutes		seconds seconds seconds seconds	volume volume volume	7.1 (9: 7.1 (9: 9:	al/quarts/liters al/quarts/liters al/quarts/liters al/quarts/liters al/quarts/liters
		Leakage Est	imate	0		
Flume Meth	nod: Type: Cutthroat / H	I / Parshall / C	Other:			
	Size:in		Head _a	Head _b		in. / ft.
	Leakage Estimate		а	upstream b do	ownstream	
	Culvert Location: Culvert Free of Debris and Depth of Water in Culvert Flow CFS: FLOW GPM: Culvert Free of Debris and Depth of Water in Culvert Flow CFS: FLOW GPM: Culvert Free of Debris and Depth of Water in Culvert Flow CFS: FLOW GPM: Culvert Location: Culvert Location: Culvert Free of Debris and Depth of Water in Culvert Flow CFS: FLOW GPM: Leakage Estimate:	d Obstructions d Obstructions	s:			
				TOTAL CFS	0.000	25
Additional N	votes: Outside 8	ft fr		TOTAL GPM	0.11	
			0.3			

30 sounds 0.4 gal
30 sounds 0.35 gallons

non-adit seepage observed into water, gaining flow as some
moves down stream, note stratal bedrock

Page 1 of 1 planes die down gradient

	2 1 2 1 PHOTOGRAP	HIC LOG	
	Bonita Peaks London +Ben Frankl.	CAMERA MODEL SERIAL NUMBER	
PROJECT NUMBER PHOTOGRAPHER	Briana Cuer	COMMENTS	
SITE PERSONNEL	Eyan Bernet		

FRAME	DIRECTION1	DATE	DESCRIPTION (Location, features, personnel)
+107B-un	NW	9/30/24	Burrou's Creek ADTB 100/6mg up sheem
7575 dan	56	9/30/24	120000's Check AGPB looking down stream
40781 up	W	9/30/24	Browns Creek ADTBI Wolang upsteam
A\$781-dom	6		Burrows Creek AUTBI looking downsherm
467			
DMG 40	N	9/30/14	DM6 looking upsteem
Dors down	5	9/30/24	nmb looksly down stream,
DMZ-40	NE	9/30/24	Park pipe om7 looking upsterm
DM7-10-0	SW	9/30/24	Postal p.pe pm7 loking down sheem
myrib-us	N	9/30/24	unnamed indutery west of DMB ypstron
Smhis I don	~ 6	9/30/201	unnamed tributery west at pM6 down sheen
EG5-up	N	9/30/24	EG5100 King upstehm
EGE don	5	2/30/24	545 looking down sheer
EG44 00	W	9/30/24	tett EGY A looking upstreem
EG44 dom	12	9/30/24	EGUA looking dodnotiecus
BF1-40	5W	9/30/24	Bentranklin peter BFI looking up stream
OFI_down	NE	9/30/24	BFI looking down steam
BFIpuket	5 W	9/30/24	outlet pipe BFI looking upsherm
Seepasel	NW	913024	seepage dow gradient of portel
Seepase	5 W	9/30/24	seepase stratigraphically higher than prortel.

¹ - One of eight compass directions (e.g. northwest) should be used to describe the direction the camera is pointed.

	4GZ Laboratories, Inc.			CHAIN of CUSTODY			
and Company of the Co	prings, CO 80487 (800) 334-5493						
eport to:	A TOTAL OF THE PARTY OF THE PAR		10	71	40 : .		
ame: Jeff Kur		Addr	ess: 13	16	Miner:	5 Dr	-
ompany: Geosyn	ALCOHOLOGICAL CONTRACTOR OF THE PROPERTY OF TH	_				80026	
-mail: jkurtze	gcosynte com	Tele	phone: 3	03 - 8	243 - 5	289	
opy of Report to:							315
ame: Ruan 1	3ennett	E-ma	ait: c+	605	aniuan	land.com	1
company: San Tuan L	3enne H and Holding Go.	Teler	phone:		- ng con		
voice to:					2 3 AB		
		Air					
ame:		Addr	ess:				
ompany: -mail:	5	-					
		Telel	phone:				
opy of Invoice to:							
ame: Jeff Kurt	2	Addr	ess:				
ompany: Geosynt							
-mail: j Kurtz@q	eosyntec.com	Tele	phone:				
sample(s) received past holding	g time (HT), or if insufficient HT re		The state of the s			YES X	1
	ACZ proceed with requested shot know. If matther "Yes" nor "No" is Indicated, ACZ will			vans, poor if pr	is explored, and stee	NO	1
e samples for SDWA Complian		Yes		No	IXI		
yes, please include state form:	s. Results will be reported to PQL	for Color	ado.				
ROJECT INFORMATION note #: BOVITA - PEAK - #:	-sW	of Containers	2	S REQUEST	ED (attach list or	use quote number)	
and a financial service and a service was serviced and		la ii	2		1 1	1 1	
eporting state for compliance tes heck box if samples include NRC		- 8	S. J.				
SAMPLE IDENTIFICATION	CROMMODERS PROPRIOR OF	mx #	300/74 254				
AØ7.3	9/30/24 8:50 AM SU		X				_
A\$ 7B1	9/30/249:40Am 50		1				-
A07B1 dup	9/30/24 9:40AMSU		×				
DM7	9/30/24 10:3020 50	33	1				
EG.5	19/30/24 12:30Pm 50	0 3	×				
EG4A	9/30/24 1:45/10/1 5:	0 3	×	10 1			
EGHADUD	9/30/24 1:457M 50	0 3	1				
BF1	9/30/24/ 2:40Pms		X				
Matrix SW (Surface Water) -:	GW (Ground Water) · WW (Waste Water) · DW (Dri	nking Water) ·	SL (Sludge) - SO (Soil) - O	L (Oil) · Other (Spec	cify)
EMARKS			B 5 75	-			
	sampling for EG						
CALIDATE PROPERTY.	refer to ACZ's terms & conditions	olocated	THE RESERVE		No. of Concession, Name of Street, or other Designation, Name of Street, Name		IDAE
RELINQUISHED B	777	1 100		EIVED E	21.	DATE:TI	IIVIE
Briana II	10/01/24 4	1150m					

APPENDIX C Sampling and Flow Measurement Forms

10/30/2024 2" cutthroat Q=CH_aⁿ

				$Q=K_sW^{1.025}H_a^{n2}$						
Site	H _a (ft.)	H _b (ft.)	Submergence Ratio	Flow (cfs) F	low (gpm)	Leakage (cfs) Leak	age (gpm)	Leakage/Flow	Total Flow (cfs) Total	Flow (gpm)
EG4A	0.52			0.23214	104.2	0.00891	4	4%	0.24106	108.2
EG4ADUP	0.53	0.13	3 25%	0.24185	108.5	0.00891	4	4%	0.25076	112.5
Values	Ti ()	\/_l								
	tric Time (sec)	Volume (gallons)								
BF1 - 30" upstream of pipe inlet							_			
Point of sampling	60			0.000290	0.13	0.000000	0	0%	0.00029	0.13
	60			0.000223	0.10	0.000000	0	0%	0.00022	0.10
	60	0.11		0.000245	0.11	0.000000	0	0%	0.00025	0.11
			Average	0.000253	0.11	0.000000	0	0%	0.00025	0.11
BF1 - 8' downstream of pipe exit										
	30			0.001337	0.60	0.000000	0	0%	0.00134	0.60
	30			0.001782	0.80	0.000000	0	0%	0.00178	0.80
	30	0.35	5	0.001560	0.70	0.000000	0	0%	0.00156	0.70
			Average	0.001560	0.70	0.000000	0	0%	0.00156	0.70
EG5										
Left stream channel	5	12.6	5	0.33687	151.2	0.00446	2	1%	0.34133	153.2
	5	12.4	ļ.	0.33153	148.8	0.00446	2	1%	0.33598	150.8
	9	5 11.2	!	0.29944	134.4	0.00446	2	1%	0.30390	136.4
	9	12.0)	0.32083	144.0	0.00446	2	1%	0.32529	146.0
			Average	0.32217	144.6	0.00446	2	1%	0.32662	146.6
Right stream channel	15	5 2.10)	0.01872	8.4	0.00000	0	0%	0.01872	8.4
	15	5 2.10)	0.01872	8.4	0.00000	0	0%	0.01872	8.4
	15)	0.01961	8.8	0.00000	0	0%	0.01961	8.8
			Average	0.01901	8.5	0.00000	0	0%	0.01901	8.5
			_							
Total EG5									0.34564	155.1

KOrDSS MEASUREMENT DATA FILE EXPORT

FILE CREATED:	10/1/2024 0:48								
DATE	TIME	SITE	DATA ID	GPS Latitude (°)	GPS Longitude (°)	Altitude (ft)	Barometer (inHg)	Temp (°C)	Cond (µS/cm)
9/30/2024	12:33:57 PM	EG5		37.89415°	-107.60642°		19.72	10.1	172.1
9/30/2024	2:05:14 PM	EG4A		37.89495°	-107.60838°		19.634	9.2	176.6
9/30/2024	2:06:07 PM	EG4A		37.89492°	-107.60839°		19.637	9.3	177.2
9/30/2024	3:02:53 PM	BF1		37.89452°	-107.60810°		19.649	5.9	488
Sp Cond (μS/cm) 240.7	Sal (psu) 0.11	nLFCond (μS/cm) 244.9	TDS (mg/L) 156	Resistivity (ohms- cm)	Sigma-T (s t) -0.2	Sigma (s) -0.2	pH 7.8	pH (mV) -63.2	ORP (mV) 92.5
252.8								-03.2 -44.2	92.3 75
252.8 253.1	0.12 0.12	257.3 257.6	164 165		-0.1 -0.1	-0.1 -0.1	7.46 7.46	-44.2 -44.2	75.2
768.3	0.38	780.3	499		0.3	0.3	3.67	163.9	395.9

ODO (% Sat)	ODO (mg/L)
66.2	7.45
66.5	7.65
66.6	7.63
47.1	5.86

ProDSS Calibration Worksheet

When the Environment Demands It

This calibration worksheet can help document your calibration and track the performance of your sensors. Please follow the detailed calibration procedures in the ProDSS manual or your facility's standard operating procedure (SOP) to ensure all calibrations are as accurate and as consistent as possible.

Refer to the YSI Solution Expiration Dates document to ensure your calibration solutions are fresh. In addition to using fresh standards, never accept an out-of-range or questionable calibration results.

Calibration Date 9/30/2024

Technician: RTB

Handheld Serial Number: 16 M 1 Ø 34 Ø4 Handheld Software Version:

Cable Serial Number: 178100900 626909-4

Temperature

Reading when sensor is dry and in room temp air: 16.5 C Accurate?

Reading when sensor is dry and in room temp air: $\bigcirc \bigcirc \bigcirc$ Acceptable value is less than 1 μ S/cm

Actual Reading in solution before calibration is accepted: 1003

Reading in calibration solution after calibration is completed: 1000

Conductivity Cell Constant in GLP* record after calibration:

Acceptable range for ProDSS conductivity/temperature sensors (626902) is 4.5 to 6.5 Acceptable range for integral (i.e. built-in) sensors on ODO/CT assemblies is 4.4 to 6.4

Optical Dissolved Oxygen

Barometric pressure: 21.57/

Actual Reading before DO% calibration is accepted: 73.9 %

Reading in DO% calibration environment after calibration is completed: 72.1%

ODO gain in GLP record after calibration: _____ Acceptable range is 0.75 to 1.50

pH

		Actual Readin	gs during calibration	
<u>Buffer</u>	<u>Calibration Value</u>	pН	<u>pH mV</u> **	Acceptable pH mV in buffer
7	7,04	7.16	-22.60	-50 mV to 50 mV
4	4,00	4.08	151.8	+165 to +180 from pH 7 buffer mV value
10	10.12	10-18	-194.1	-165 to -180 from pH 7 buffer mV value

pH slope in GLP record after calibration:___

Acceptable range is ~ 55 to 60 pH/mV (Ideal is 59.16 mV/pH)

^{*}GLP stands for Good Laboratory Practice file. This calibration record contains important information about the calibration result.

^{**}The pH mV at the time of calibration (Sensor Value) can also be seen in the final pH GLP record.

ProDSS

Calibration Worksheet

ORP

Actual Reading in solution before calibration is accepted: 238_*0 Reading in calibration solution after calibration is completed: 237.7

ORP Cal Offset in GLP record after calibration:_ Acceptable range is -100 to 50

Turbidity

<u>Calibration</u> value (FNU)*	Actual Reading during calibration
0	
12.4*	
124*	
1010	

Acceptable range for Actual Reading during calibration of the first point is -10 to 10 FNU

*Note: The turbidity sensor can be calibrated to 3 points. Either 12.4 or 124 FNU standard can be used for the second point, but not both. Other calibration values can be used when calibrating.

Depth (Completed in Air)

Actual Reading before calibration is accepted:_ Reading in air after calibration is completed:_

04/11/16 03:41:01PM Calibrate Turbidity Calibration value [1010.0] inish Calibration Press ESC to Abort Last Calibrated 04/11/16 03:35:43PM **Actual Readings** 1005.3 FNU ost Cal Value 1010.0 FNU FNU 1030.2 1005.9 981.5 268 Ready for cal point

Ammonium

	Actual Readings	during calibration	
<u>Concentration</u> ** (i.e. Calibration Value)	mg/L	<u>mV</u> ***	Acceptable mV when the sensor is new
1st point: 1 mg/L			-20 mV to 20 mV
2nd point: 100 mg/L			+90 to +130 from mV value in 1 mg/L standard

Nitrate

	Actual Readings	during calibration	
<u>Concentration**</u> (i.e. Calibration Value)	mg/L	<u>mV</u> ***	Acceptable mV when the sensor is new
1st point: 1 mg/L			180 mV to 220 mV
2nd point: 100 mg/L			-90 to -130 from mV value in 1 mg/L standard

Chloride

	Actual Readings	during calibration	
<u>Concentration</u> ** (i.e. Calibration Value)	mg/L	<u>mV</u> ***	Acceptable mV when the sensor is new
1st point: 10 mg/L			205 mV to 245 mV
2nd point: 1,000 mg/L			-80 to -130 from mV value in 10 mg/L standard

^{**}Other standard concentrations can be used. A 2 point calibration without chilling a third calibration solution is extremely accurate and is the preferred method. However, if there is a large temperature variation during sampling, a chilled third calibration point is recommended.

^{***}The mV at the time of calibration (Sensor Value) for each point can also be seen in the GLP record after a calibration is complete.

APPENDIX D

Photographs of Sampling Locations

Client: Eureka Gulch Properties LLC Project Number: DE0247

Site Name: Ben Franklin Mine/Bonita Peak NPL | Site Location: Silverton, CO

Photograph 1

Date: 9/30/2024

Direction: W

Comments: Location EG4A looking upstream.

Photograph 2

Date: 9/30/2024

Direction: E

Comments: Location EG4A looking downstream.

Client: Eureka Gulch Properties LLC Project Number: DE0247

Site Name: Ben Franklin Mine/Bonita Peak NPL | Site Location: Silverton, CO

Photograph 3

Date: 9/30/2024

Direction: NE

Comments: Location BF1 looking upstream.

Photograph 4

Date: 9/30/2024

Direction: SW

Comments: Location BF1 looking downstream.

Client: Eureka Gulch Properties LLC	Project Number: DE0247
Site Name: Ben Franklin Mine/Bonita Peak NPL	Site Location: Silverton, CO

Photograph 5	5
--------------	---

Date: 9/30/2024

Direction: W

Comments: Location BF1

effluent.

Photograph	l
------------	---

Date:

Direction:

Comments:

Cell left blank

engineers | scientists | innovators

Client: Eureka Gulch Properties LLC Project Number: DE0247

Site Name: Ben Franklin Mine/Bonita Peak NPL | Site Location: Silverton, CO

Photograph 6

Date: 9/30/2024

Direction: NW

Comments: Location ARD1 looking upstream.

Photograph 7

Date: 9/30/2024

Direction: SE

Comments: Location

ARD1 looking downstream.

engineers | scientists | innovators

Client: Eureka Gulch Properties LLC Project Number: DE0247

Site Name: Ben Franklin Mine/Bonita Peak NPL | Site Location: Silverton, CO

Photograph 8

Date: 9/30/2024

Direction: N

Comments: Location EG5 looking upstream.

Photograph 9

Date: 9/30/2024

Direction: S

Comments: Location EG5 looking downstream.

APPENDIX E

Laboratory Results for Surface Water

October 16, 2024

Report to:

Jeff Kurtz

Geosyntec Consultants 1376 Miners Drive Suite 320Suite 108 Lafayette, CO 80026

cc: Ryan Bennett

Project ID:

ACZ Project ID: L90587

Jeff Kurtz:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 02, 2024. This project has been assigned to ACZ's project number, L90587. Please reference this number in all future inquiries.

Bill to:

Jeff Kurtz

Suite 620

44 Union Blvd.

Geosyntec Consultants

Lakewood, CO 80228

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L90587. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after November 15, 2024. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Mark McNeal has reviewed and approved this report.

Mark Melleal

L90587-2410161040 Page 1 of 23

Project ID:

Sample ID: A07B

Date Sampled: 09/30/24 08:50

Date Received: 10/02/24

Sample Matrix: Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Recoverable Digestion ICP	EPA 200.2								10/09/24 14:58	smw
Total Recoverable Digestion ICP-MS	EPA 200.2								10/09/24 7:20	gjl
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	EPA 200.8	50	27.9			mg/L	0.25	0.75	10/14/24 14:57	aps
Aluminum, total recoverable	EPA 200.8	50	25.7		*	mg/L	0.25	0.75	10/14/24 13:33	gjl
Arsenic, dissolved	EPA 200.8	1	0.00337			mg/L	0.0002	0.001	10/11/24 14:48	gjl
Arsenic, total recoverable	EPA 200.8	1	0.00356			mg/L	0.0002	0.001	10/11/24 13:31	gjl
Cadmium, dissolved	EPA 200.8	1	0.0300			mg/L	0.00005	0.00025	10/11/24 14:48	gjl
Cadmium, total recoverable	EPA 200.8	1	0.0295			mg/L	0.00005	0.00025	10/11/24 13:31	gjl
Calcium, dissolved	EPA 200.7	1	35.3			mg/L	0.1	0.5	10/10/24 22:09	msp
Copper, dissolved	EPA 200.8	1	0.0540			mg/L	0.0008	0.002	10/11/24 14:48	gjl
Copper, total recoverable	EPA 200.8	1	0.0584			mg/L	0.0008	0.002	10/11/24 13:31	gjl
Iron, dissolved	EPA 200.7	1	0.187			mg/L	0.06	0.15	10/10/24 22:09	msp
Iron, total recoverable	EPA 200.7	1	0.171			mg/L	0.06	0.15	10/11/24 18:18	wtc
Lead, dissolved	EPA 200.8	1	0.0102			mg/L	0.0001	0.0005	10/11/24 14:48	gjl
Lead, total recoverable	EPA 200.8	1	0.0103			mg/L	0.0001	0.0005	10/11/24 13:31	gjl
Magnesium, dissolved	EPA 200.7	1	5.71			mg/L	0.2	1	10/10/24 22:09	msp
Manganese, dissolved	EPA 200.8	50	8.96			mg/L	0.02	0.1	10/14/24 14:57	aps
Manganese, total recoverable	EPA 200.8	50	8.31		*	mg/L	0.02	0.1	10/14/24 13:33	gjl
Silver, dissolved	EPA 200.8	1	<0.0001	U		mg/L	0.0001	0.0005	10/11/24 14:48	gjl
Silver, total recoverable	e EPA 200.8	1	<0.0001	U		mg/L	0.0001	0.0005	10/11/24 13:31	gjl
Zinc, dissolved	EPA 200.8	1	4.48		*	mg/L	0.006	0.015	10/11/24 14:48	gjl
Zinc, total recoverable	EPA 200.8	1	4.28		*	mg/L	0.006	0.015	10/11/24 13:31	gjl
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3 (dissolved)	Calculation (SM 2340 B-2011)		112			mg/L	0.2	5	10/15/24 0:00	calc
Sulfate	ASTM D516-07/-11/-16	25	252		*	mg/L	25	125	10/03/24 14:16	jqr

REPIN.02.06.05.01

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: A07B1

ACZ Sample ID: L90587-02

Date Sampled: 09/30/24 09:40

Date Received: 10/02/24

Sample Matrix: Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Recoverable Digestion ICP	EPA 200.2								10/09/24 15:12	smw
Total Recoverable Digestion ICP-MS	EPA 200.2								10/09/24 7:20	gjl
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual 2	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	EPA 200.8	50	30.0			mg/L	0.25	0.75	10/14/24 14:59	aps
Aluminum, total recoverable	EPA 200.8	50	27.1		*	mg/L	0.25	0.75	10/14/24 13:35	gjl
Arsenic, dissolved	EPA 200.8	1	0.00387			mg/L	0.0002	0.001	10/11/24 14:54	gjl
Arsenic, total recoverable	EPA 200.8	1	0.00378			mg/L	0.0002	0.001	10/11/24 13:38	gjl
Cadmium, dissolved	EPA 200.8	1	0.0327			mg/L	0.00005	0.00025	10/11/24 14:54	gjl
Cadmium, total recoverable	EPA 200.8	1	0.0306			mg/L	0.00005	0.00025	10/11/24 13:38	gjl
Calcium, dissolved	EPA 200.7	1	34.9			mg/L	0.1	0.5	10/10/24 22:12	msp
Copper, dissolved	EPA 200.8	1	0.0620			mg/L	0.0008	0.002	10/11/24 14:54	gjl
Copper, total recoverable	EPA 200.8	1	0.0590			mg/L	0.0008	0.002	10/11/24 13:38	gjl
Iron, dissolved	EPA 200.7	1	0.197			mg/L	0.06	0.15	10/10/24 22:12	msp
Iron, total recoverable	EPA 200.7	1	0.181			mg/L	0.06	0.15	10/11/24 18:20	wtc
Lead, dissolved	EPA 200.8	1	0.0109			mg/L	0.0001	0.0005	10/11/24 14:54	gjl
Lead, total recoverable	EPA 200.8	1	0.0105			mg/L	0.0001	0.0005	10/11/24 13:38	gjl
Magnesium, dissolved	EPA 200.7	1	5.84			mg/L	0.2	1	10/10/24 22:12	msp
Manganese, dissolved	EPA 200.8	50	9.70			mg/L	0.02	0.1	10/14/24 14:59	aps
Manganese, total recoverable	EPA 200.8	50	8.80		*	mg/L	0.02	0.1	10/14/24 13:35	gjl
Silver, dissolved	EPA 200.8	1	<0.0001	U		mg/L	0.0001	0.0005	10/11/24 14:54	gjl
Silver, total recoverable	EPA 200.8	1	< 0.0001	U		mg/L	0.0001	0.0005	10/11/24 13:38	gjl
Zinc, dissolved	EPA 200.8	1	4.68		*	mg/L	0.006	0.015	10/11/24 14:54	gjl
Zinc, total recoverable	EPA 200.8	1	4.30		*	mg/L	0.006	0.015	10/11/24 13:38	gjl
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3 (dissolved)	Calculation (SM 2340 B-2011)		111			mg/L	0.2	5	10/15/24 0:00	calc
Sulfate	ASTM D516-07/-11/-16	25	255		*	mg/L	25	125	10/03/24 14:17	jqr

REPIN.02.06.05.01

L90587-2410161040 Page 3 of 23

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: A07B1DUP

ACZ Sample ID: **L90587-03**

Date Sampled: 09/30/24 09:40

Date Received: 10/02/24

Sample Matrix: Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Recoverable Digestion ICP	EPA 200.2								10/09/24 15:27	smw
Total Recoverable Digestion ICP-MS	EPA 200.2								10/09/24 7:20	gjl
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	EPA 200.8	50	30.1			mg/L	0.25	0.75	10/14/24 15:01	aps
Aluminum, total recoverable	EPA 200.8	50	27.2		*	mg/L	0.25	0.75	10/14/24 13:37	gjl
Arsenic, dissolved	EPA 200.8	1	0.00366			mg/L	0.0002	0.001	10/11/24 14:56	gjl
Arsenic, total recoverable	EPA 200.8	1	0.00384			mg/L	0.0002	0.001	10/11/24 13:40	gjl
Cadmium, dissolved	EPA 200.8	1	0.0320			mg/L	0.00005	0.00025	10/11/24 14:56	gjl
Cadmium, total recoverable	EPA 200.8	1	0.0314			mg/L	0.00005	0.00025	10/11/24 13:40	gjl
Calcium, dissolved	EPA 200.7	1	35.1			mg/L	0.1	0.5	10/10/24 22:15	msp
Copper, dissolved	EPA 200.8	1	0.0592			mg/L	0.0008	0.002	10/11/24 14:56	gjl
Copper, total recoverable	EPA 200.8	1	0.0618			mg/L	0.0008	0.002	10/11/24 13:40	gjl
Iron, dissolved	EPA 200.7	1	0.196			mg/L	0.06	0.15	10/10/24 22:15	msp
Iron, total recoverable	EPA 200.7	1	0.181			mg/L	0.06	0.15	10/11/24 18:23	wtc
Lead, dissolved	EPA 200.8	1	0.0106			mg/L	0.0001	0.0005	10/11/24 14:56	gjl
Lead, total recoverable	EPA 200.8	1	0.0108			mg/L	0.0001	0.0005	10/11/24 13:40	gjl
Magnesium, dissolved	EPA 200.7	1	5.80			mg/L	0.2	1	10/10/24 22:15	msp
Manganese, dissolved	EPA 200.8	50	9.73			mg/L	0.02	0.1	10/14/24 15:01	aps
Manganese, total recoverable	EPA 200.8	50	8.85		*	mg/L	0.02	0.1	10/14/24 13:37	gjl
Silver, dissolved	EPA 200.8	1	<0.0001	U		mg/L	0.0001	0.0005	10/11/24 14:56	gjl
Silver, total recoverable	e EPA 200.8	1	<0.0001	U		mg/L	0.0001	0.0005	10/11/24 13:40	gjl
Zinc, dissolved	EPA 200.8	1	4.56		*	mg/L	0.006	0.015	10/11/24 14:56	gjl
Zinc, total recoverable	EPA 200.8	1	4.37		*	mg/L	0.006	0.015	10/11/24 13:40	gjl
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3 (dissolved)	Calculation (SM 2340 B-2011)		112			mg/L	0.2	5	10/15/24 0:00	calc
Sulfate	ASTM D516-07/-11/-16	25	263		*	mg/L	25	125	10/03/24 14:17	jqr

REPIN.02.06.05.01

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: DM7

ACZ Sample ID: L90587-04

Date Sampled: 09/30/24 10:30

Date Received: 10/02/24

Sample Matrix: Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Recoverable Digestion ICP	EPA 200.2								10/09/24 15:41	smw
Total Recoverable Digestion ICP-MS	EPA 200.2								10/09/24 7:20	gjl
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	EPA 200.8	1	0.131		*	mg/L	0.005	0.015	10/11/24 14:59	gjl
Aluminum, total recoverable	EPA 200.8	1	0.993			mg/L	0.005	0.015	10/11/24 13:46	gjl
Arsenic, dissolved	EPA 200.8	1	0.00187			mg/L	0.0002	0.001	10/11/24 14:59	gjl
Arsenic, total recoverable	EPA 200.8	1	0.0276			mg/L	0.0002	0.001	10/11/24 13:46	gjl
Cadmium, dissolved	EPA 200.8	1	0.0758			mg/L	0.00005	0.00025	10/11/24 14:59	gjl
Cadmium, total recoverable	EPA 200.8	1	0.0727			mg/L	0.00005	0.00025	10/11/24 13:46	gjl
Calcium, dissolved	EPA 200.7	1	62.8			mg/L	0.1	0.5	10/10/24 22:18	msp
Copper, dissolved	EPA 200.8	1	0.0262			mg/L	0.0008	0.002	10/11/24 14:59	gjl
Copper, total recoverable	EPA 200.8	1	0.217			mg/L	0.0008	0.002	10/11/24 13:46	gjl
Iron, dissolved	EPA 200.7	1	0.457			mg/L	0.06	0.15	10/10/24 22:18	msp
Iron, total recoverable	EPA 200.7	1	15.5			mg/L	0.06	0.15	10/11/24 18:26	wtc
Lead, dissolved	EPA 200.8	1	<0.0001	U		mg/L	0.0001	0.0005	10/11/24 14:59	gjl
Lead, total recoverable	EPA 200.8	1	0.0443			mg/L	0.0001	0.0005	10/11/24 13:46	gjl
Magnesium, dissolved	EPA 200.7	1	4.19			mg/L	0.2	1	10/10/24 22:18	msp
Manganese, dissolved	EPA 200.8	1	1.94		*	mg/L	0.0004	0.002	10/11/24 14:59	gjl
Manganese, total recoverable	EPA 200.8	1	1.78		*	mg/L	0.0004	0.002	10/11/24 13:46	gjl
Silver, dissolved	EPA 200.8	1	< 0.0001	U		mg/L	0.0001	0.0005	10/11/24 14:59	gjl
Silver, total recoverable	EPA 200.8	1	0.00011	В		mg/L	0.0001	0.0005	10/11/24 13:46	gjl
Zinc, dissolved	EPA 200.8	20	12.9			mg/L	0.12	0.3	10/14/24 15:03	aps
Zinc, total recoverable	EPA 200.8	20	12.0			mg/L	0.12	0.3	10/14/24 13:43	gjl
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3 (dissolved)	Calculation (SM 2340 B-2011)		174			mg/L	0.2	5	10/15/24 0:00	calc
Sulfate	ASTM D516-07/-11/-16	5	172		*	mg/L	5	25	10/03/24 13:47	jqr

REPIN.02.06.05.01

L90587-2410161040 Page 5 of 23

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: EG5

ACZ Sample ID: **L90587-05**

Date Sampled: 09/30/24 12:30

Date Received: 10/02/24

Sample Matrix: Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Recoverable Digestion ICP	EPA 200.2								10/09/24 15:56	smw
Total Recoverable Digestion ICP-MS	EPA 200.2								10/09/24 7:20	gjl
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	EPA 200.8	1	0.0832		*	mg/L	0.005	0.015	10/11/24 15:01	gjl
Aluminum, total recoverable	EPA 200.8	1	0.107			mg/L	0.005	0.015	10/11/24 13:48	gjl
Arsenic, dissolved	EPA 200.8	1	<0.0002	U		mg/L	0.0002	0.001	10/11/24 15:01	gjl
Arsenic, total recoverable	EPA 200.8	1	<0.0002	U		mg/L	0.0002	0.001	10/11/24 13:48	gjl
Cadmium, dissolved	EPA 200.8	1	0.00147			mg/L	0.00005	0.00025	10/11/24 15:01	gjl
Cadmium, total recoverable	EPA 200.8	1	0.00139			mg/L	0.00005	0.00025	10/11/24 13:48	gjl
Calcium, dissolved	EPA 200.7	1	37.9			mg/L	0.1	0.5	10/10/24 22:21	msp
Copper, dissolved	EPA 200.8	1	0.0259			mg/L	0.0008	0.002	10/11/24 15:01	gjl
Copper, total recoverable	EPA 200.8	1	0.0325			mg/L	0.0008	0.002	10/11/24 13:48	gjl
Iron, dissolved	EPA 200.7	1	<0.06	U		mg/L	0.06	0.15	10/10/24 22:21	msp
Iron, total recoverable	EPA 200.7	1	<0.06	U		mg/L	0.06	0.15	10/11/24 18:29	wtc
Lead, dissolved	EPA 200.8	1	0.00951			mg/L	0.0001	0.0005	10/11/24 15:01	gjl
Lead, total recoverable	EPA 200.8	1	0.0139			mg/L	0.0001	0.0005	10/11/24 13:48	gjl
Magnesium, dissolved	EPA 200.7	1	3.54			mg/L	0.2	1	10/10/24 22:21	msp
Manganese, dissolved	EPA 200.8	1	0.300		*	mg/L	0.0004	0.002	10/11/24 15:01	gjl
Manganese, total recoverable	EPA 200.8	1	0.305		*	mg/L	0.0004	0.002	10/11/24 13:48	gjl
Silver, dissolved	EPA 200.8	1	< 0.0001	U		mg/L	0.0001	0.0005	10/11/24 15:01	gjl
Silver, total recoverable	EPA 200.8	1	< 0.0001	U		mg/L	0.0001	0.0005	10/11/24 13:48	gjl
Zinc, dissolved	EPA 200.8	1	0.498		*	mg/L	0.006	0.015	10/11/24 15:01	gjl
Zinc, total recoverable	EPA 200.8	1	0.464			mg/L	0.006	0.015	10/11/24 13:48	gjl
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3 (dissolved)	Calculation (SM 2340 B-2011)		109			mg/L	0.2	5	10/15/24 0:00	calc
Sulfate	ASTM D516-07/-11/-16	5	76.8		*	mg/L	5	25	10/03/24 13:47	jqr

REPIN.02.06.05.01

L90587-2410161040 Page 6 of 23

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: EG4A

Date Sampled: 09/30/24 13:45

Date Received: 10/02/24

Sample Matrix: Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Recoverable Digestion ICP	EPA 200.2								10/09/24 16:10	smw
Total Recoverable Digestion ICP-MS	EPA 200.2								10/09/24 7:20	gjl
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	EPA 200.8	1	0.0240		*	mg/L	0.005	0.015	10/11/24 15:03	gjl
Aluminum, total recoverable	EPA 200.8	1	0.0404			mg/L	0.005	0.015	10/11/24 13:50	gjl
Arsenic, dissolved	EPA 200.8	1	<0.0002	U		mg/L	0.0002	0.001	10/11/24 15:03	gjl
Arsenic, total recoverable	EPA 200.8	1	<0.0002	U		mg/L	0.0002	0.001	10/11/24 13:50	gjl
Cadmium, dissolved	EPA 200.8	1	0.000882			mg/L	0.00005	0.00025	10/11/24 15:03	gjl
Cadmium, total recoverable	EPA 200.8	1	0.000841			mg/L	0.00005	0.00025	10/11/24 13:50	gjl
Calcium, dissolved	EPA 200.7	1	39.9			mg/L	0.1	0.5	10/10/24 22:30	msp
Copper, dissolved	EPA 200.8	1	0.00288			mg/L	0.0008	0.002	10/11/24 15:03	gjl
Copper, total recoverable	EPA 200.8	1	0.00415			mg/L	0.0008	0.002	10/11/24 13:50	gjl
Iron, dissolved	EPA 200.7	1	<0.06	U		mg/L	0.06	0.15	10/10/24 22:30	msp
Iron, total recoverable	EPA 200.7	1	<0.06	U		mg/L	0.06	0.15	10/11/24 18:32	wtc
Lead, dissolved	EPA 200.8	1	0.00023	В		mg/L	0.0001	0.0005	10/11/24 15:03	gjl
Lead, total recoverable	EPA 200.8	1	0.00138			mg/L	0.0001	0.0005	10/11/24 13:50	gjl
Magnesium, dissolved	EPA 200.7	1	3.88			mg/L	0.2	1	10/10/24 22:30	msp
Manganese, dissolved	EPA 200.8	1	0.0682		*	mg/L	0.0004	0.002	10/11/24 15:03	gjl
Manganese, total recoverable	EPA 200.8	1	0.0698		*	mg/L	0.0004	0.002	10/11/24 13:50	gjl
Silver, dissolved	EPA 200.8	1	<0.0001	U		mg/L	0.0001	0.0005	10/11/24 15:03	gjl
Silver, total recoverable	e EPA 200.8	1	<0.0001	U		mg/L	0.0001	0.0005	10/11/24 13:50	gjl
Zinc, dissolved	EPA 200.8	1	0.396		*	mg/L	0.006	0.015	10/11/24 15:03	gjl
Zinc, total recoverable	EPA 200.8	1	0.366			mg/L	0.006	0.015	10/11/24 13:50	gjl
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3 (dissolved)	Calculation (SM 2340 B-2011))	116			mg/L	0.2	5	10/15/24 0:00	calc
Sulfate	ASTM D516-07/-11/-16	5	80.7		*	mg/L	5	25	10/03/24 13:48	jqr

REPIN.02.06.05.01

L90587-2410161040 Page 7 of 23

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: EG4ADUP

ACZ Sample ID: **L90587-07**

Date Sampled: 09/30/24 13:45

Date Received: 10/02/24

Sample Matrix: Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Recoverable Digestion ICP	EPA 200.2								10/09/24 16:24	smw
Total Recoverable Digestion ICP-MS	EPA 200.2								10/09/24 7:20	gjl
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Aluminum, dissolved	EPA 200.8	1	0.0316		*	mg/L	0.005	0.015	10/11/24 15:05	gjl
Aluminum, total recoverable	EPA 200.8	1	0.0443			mg/L	0.005	0.015	10/11/24 13:53	gjl
Arsenic, dissolved	EPA 200.8	1	<0.0002	U		mg/L	0.0002	0.001	10/11/24 15:05	gjl
Arsenic, total recoverable	EPA 200.8	1	<0.0002	U		mg/L	0.0002	0.001	10/11/24 13:53	gjl
Cadmium, dissolved	EPA 200.8	1	0.000862			mg/L	0.00005	0.00025	10/11/24 15:05	gjl
Cadmium, total recoverable	EPA 200.8	1	0.000847			mg/L	0.00005	0.00025	10/11/24 13:53	gjl
Calcium, dissolved	EPA 200.7	1	40.1			mg/L	0.1	0.5	10/10/24 22:33	msp
Copper, dissolved	EPA 200.8	1	0.00295			mg/L	0.0008	0.002	10/11/24 15:05	gjl
Copper, total recoverable	EPA 200.8	1	0.00407			mg/L	0.0008	0.002	10/11/24 13:53	gjl
Iron, dissolved	EPA 200.7	1	<0.06	U		mg/L	0.06	0.15	10/10/24 22:33	msp
Iron, total recoverable	EPA 200.7	1	<0.06	U		mg/L	0.06	0.15	10/11/24 18:35	wtc
Lead, dissolved	EPA 200.8	1	0.00035	В		mg/L	0.0001	0.0005	10/11/24 15:05	gjl
Lead, total recoverable	EPA 200.8	1	0.00144			mg/L	0.0001	0.0005	10/11/24 13:53	gjl
Magnesium, dissolved	EPA 200.7	1	3.90			mg/L	0.2	1	10/10/24 22:33	msp
Manganese, dissolved	EPA 200.8	1	0.0671		*	mg/L	0.0004	0.002	10/11/24 15:05	gjl
Manganese, total recoverable	EPA 200.8	1	0.0700		*	mg/L	0.0004	0.002	10/11/24 13:53	gjl
Silver, dissolved	EPA 200.8	1	<0.0001	U		mg/L	0.0001	0.0005	10/11/24 15:05	gjl
Silver, total recoverable	e EPA 200.8	1	<0.0001	U		mg/L	0.0001	0.0005	10/11/24 13:53	gjl
Zinc, dissolved	EPA 200.8	1	0.386		*	mg/L	0.006	0.015	10/11/24 15:05	gjl
Zinc, total recoverable	EPA 200.8	1	0.362			mg/L	0.006	0.015	10/11/24 13:53	gjl
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3 (dissolved)	Calculation (SM 2340 B-2011)		116			mg/L	0.2	5	10/15/24 0:00	calc
Sulfate	ASTM D516-07/-11/-16	5	88.9		*	mg/L	5	25	10/03/24 13:49	jqr

REPIN.02.06.05.01

L90587-2410161040 Page 8 of 23

^{*} Please refer to Qualifier Reports for details.

Project ID:

Sample ID: BF1

Date Sampled: 09/30/24 14:40

Date Received: 10/02/24

Sample Matrix: Surface Water

Inorganic Prep										
Parameter	EPA Method	Dilution	Result	Qual 2	ΧQ	Units	MDL	PQL	Date .	Analyst
Total Recoverable Digestion ICP	EPA 200.2								10/09/24 17:08	smw
Total Recoverable Digestion ICP-MS	EPA 200.2								10/09/24 7:20	gjl
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual 2	XQ	Units	MDL	PQL	Date .	Analyst
Aluminum, dissolved	EPA 200.8	1	7.68		*	mg/L	0.005	0.015	10/11/24 15:11	gjl
Aluminum, total recoverable	EPA 200.8	1	8.22			mg/L	0.005	0.015	10/11/24 13:55	gjl
Arsenic, dissolved	EPA 200.8	1	0.00212			mg/L	0.0002	0.001	10/11/24 15:11	gjl
Arsenic, total recoverable	EPA 200.8	1	0.00236			mg/L	0.0002	0.001	10/11/24 13:55	gjl
Cadmium, dissolved	EPA 200.8	1	0.0805			mg/L	0.00005	0.00025	10/11/24 15:11	gjl
Cadmium, total recoverable	EPA 200.8	1	0.0699			mg/L	0.00005	0.00025	10/11/24 13:55	gjl
Calcium, dissolved	EPA 200.7	1	72.7			mg/L	0.1	0.5	10/10/24 22:42	msp
Copper, dissolved	EPA 200.8	1	4.42			mg/L	0.0008	0.002	10/11/24 15:11	gjl
Copper, total recoverable	EPA 200.8	1	4.14			mg/L	0.0008	0.002	10/11/24 13:55	gjl
Iron, dissolved	EPA 200.7	1	0.083	В		mg/L	0.06	0.15	10/10/24 22:42	msp
Iron, total recoverable	EPA 200.7	1	0.305			mg/L	0.06	0.15	10/11/24 18:50	wtc
Lead, dissolved	EPA 200.8	1	2.46			mg/L	0.0001	0.0005	10/11/24 15:11	gjl
Lead, total recoverable	EPA 200.8	1	2.52			mg/L	0.0001	0.0005	10/11/24 13:55	gjl
Magnesium, dissolved	EPA 200.7	1	14.1			mg/L	0.2	1	10/10/24 22:42	msp
Manganese, dissolved	EPA 200.8	200	39.0			mg/L	0.08	0.4	10/14/24 15:04	aps
Manganese, total recoverable	EPA 200.8	200	30.9			mg/L	0.08	0.4	10/14/24 13:50	gjl
Silver, dissolved	EPA 200.8	1	0.00139			mg/L	0.0001	0.0005	10/11/24 15:11	gjl
Silver, total recoverable	e EPA 200.8	1	0.00208			mg/L	0.0001	0.0005	10/11/24 13:55	gjl
Zinc, dissolved	EPA 200.8	200	20.5			mg/L	1.2	3	10/14/24 15:04	aps
Zinc, total recoverable	EPA 200.8	200	18.2			mg/L	1.2	3	10/14/24 13:50	gjl
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual 3	XQ	Units	MDL	PQL	Date .	Analyst
Hardness as CaCO3 (dissolved)	Calculation (SM 2340 B-2011)		240			mg/L	0.2	5	10/15/24 0:00	calc
Sulfate	ASTM D516-07/-11/-16	25	353		*	mg/L	25	125	10/03/24 14:18	jqr

REPIN.02.06.05.01

^{*} Please refer to Qualifier Reports for details.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations	Rei	oort F	leader	Exp	lanat	tions
----------------------------	-----	--------	--------	-----	-------	-------

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit unless omitted or equal to the PQL (see comment #5).

Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit. Synonymous with the EPA term "minimum level".

QC True Value of the Control Sample or the amount added to the Spike

Rec Recovered amount of the true value or spike added, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

QC Sample Tvi	100

AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution

QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method or calibration procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method. Spikes/Fortified Matrix Determines sample matrix interferences, if any.

Standard Verifies the validity of the calibration.

ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL. The associated value is an estimated quantity.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- L Target analyte response was below the laboratory defined negative threshold.
- U The material was analyzed for, but was not detected above the level of the associated value.

The associated value is either the sample quantitation limit or the sample detection limit.

Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (4) EPA SW-846. Test Methods for Evaluating Solid Waste.
- (5) Standard Methods for the Examination of Water and Wastewater.

Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.
- (4) An asterisk in the "XQ" column indicates there is an extended qualifier and/or certification qualifier associated with the result.
- (5) If the MDL equals the PQL or the MDL column is omitted, the PQL is the reporting limit.

For a complete list of ACZ's Extended Qualifiers, please click:

https://acz.com/wp-content/uploads/2019/04/Ext-Qual-List.pdf

REP001.03.15.02

L90587-2410161040 Page 10 of 23

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

WG599930C	limits are in % R	ec.												
WG5999300CV	Aluminum, disso	olved		EPA 200.	8									
WGS99030ICV ICV 10/11/24 14.42 MS240930-3 .1 .1001 mg/L .0011	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WGS99030ICB	WG599030													
Minimax	WG599030ICV	ICV	10/11/24 14:42	MS240930-3	.1		.1001	mg/L	100	90	110			
L90587-01AS AS 10/11/24 14:50 MS241008-3 .050065 22.7 22.4252 mg/L -549 70 130 L -	WG599030ICB	ICB	10/11/24 14:44				U	mg/L		-0.011	0.011			
MG599241 MG599241 MG599241 MG5491083 MS249303 .1	WG599030LFB	LFB	10/11/24 14:46	MS241008-3	.050065		.0521	mg/L	104	85	115			
WG5992411CV	L90587-01AS	AS	10/11/24 14:50	MS241008-3	.050065	22.7	22.4252	mg/L	-549	70	130			M3
WGS99241ICF	L90587-01ASD	ASD	10/11/24 14:52	MS241008-3	.050065	22.7	22.2107	mg/L	-977	70	130	1	20	M3
WG599241ICB ICB 10/14/24 14:50 WG599241IFB ICF 10/14/24 14:52 MS24100B-3 .050065 .0524 .0529 mg/L .068 85 .115	WG599241													
WG599241LFB	WG599241ICV	ICV	10/14/24 14:48	MS240930-3	.1		.0981	mg/L	98	90	110			
L90666-02AS AS 10/14/24 15:14 MS241008-3 .050065 .0.54 .1029 mg/L 98 70 130 0 20 Aluminum, total recoverable EPA 200.8 ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec% Lower Upper RFD Limit Qual WG599029ICV ICV 10/11/24 13:10 MS240930-3 1.1 .0992 mg/L 99 90 1110 .0011 .0011 .0011 .0011 .0011 .0011 .0011 .0011 .0011 .0011 .0011 .0011 .0011 .0011 .0011 .0011 .0011 .0011 .00020-01LFMD LFMD 10/11/24 13:40 MS240911-3 .050065 .0596 .1036 mg/L 82 70 130 12 20 .0015 .	WG599241ICB	ICB	10/14/24 14:50				U	mg/L		-0.011	0.011			
Aluminum, total recoverble EPA 200.8	WG599241LFB	LFB	10/14/24 14:52	MS241008-3	.050065		.0529	mg/L	106	85	115			
Aduminum, total recoverable EPA 200.8 AGZ ID Type Analyzed PCN/SGN QC Sample Found Units Rec's Lower Upper RPD Limit Qual WG599029 WG599029 WG599029(CV ICV 10/11/24 13:08 MS240930-3 .1 .0.9092 mg/L 99 90 110 WG599029(ICR ICR 10/11/24 13:10 U mg/L -0.015 0.015 WG599029(ICR ICR 10/11/24 13:12 U mg/L -0.011 0.011 WG5990346LRB LRB 10/11/24 13:14 MS240911-3 .050065 U 0.496 mg/L 99 85 115 L90587-03LFMD LFM 10/11/24 13:44 MS240911-3 .050065 24.5 23.9426 mg/L -1113 70 130 1 20 M3 L90620-01LFM LFM 10/11/24 13:44 MS240911-3 .050065 24.5 23.9426 mg/L -1113 70 130 1 20 M3 L90620-01LFMD LFMD 10/11/24 13:44 MS240911-3 .050065 24.5 23.9426 mg/L -1113 70 130 1 20 M3 L90620-01LFMD LFMD 10/11/24 13:44 MS240911-3 .050065 0.0596 .1006 mg/L 82 70 130 2 20 WG599228 WG599228(CV ICV 10/14/24 13:24 MS240911-3 .050065 0.0596 .1006 mg/L 82 70 130 2 20 WG599228(C) ICR 10/14/24 13:24 MS240911-3 .050065 U 0.0596 .1006 mg/L 90 110 WG599228(C) ICV 10/14/24 13:25 MS240911-3 .050065 U 0.0596 .1006 mg/L 90 110 WG599228(C) ICV 10/14/24 13:26 MS240911-3 .050065 U 0.0596 .1006 mg/L 90 110 WG599228(C) ICV 10/14/24 13:27 WS240911-3 .050065 U 0.0596 .1006 mg/L 90 110 WG59928(C) ICV 10/14/24 13:29 U mg/L 90 110 WG59928(C) ICR 10/14/24 13:29 U mg/L 90 70 130 U 0.011 WG59938(C) ICR 10/14/24 13:39 MS240911-3 .050065 0.0593 1.1036 mg/L 88 70 130 WG59928(C) ICR 10/14/24 13:58 MS240911-3 .050065 0.0593 1.1045 mg/L 90 70 130 U 0.011 WG59903LRB ICR 10/14/24 14:09 MS241008-3 .050065 0.0593 1.1046 mg/L 90 70 130 U 12 0 WG59903LRB ICR 10/14/24 14:09 MS241008-3 .050065 0.0593 1.1046 mg/L 90 70 130 U 12 0 WG59903LRB ICR 10/14/24 14:09 MS241008-3 .050065 0.0593 1.1046 mg/L 90 70 130 U 12 0 WG59903LRB ICR 10/14/24 14:09 MS241008-3 .050065 0.0593 1.1046 mg/L 90 70 130 U 12 0 WG59903LRB ICR 10/14/24 14:09 MS241008-3 .050065	L90666-02AS	AS	10/14/24 15:14	MS241008-3	.050065	.054	.1029	mg/L	98	70	130			
MCS99029	L90666-02ASD	ASD	10/14/24 15:15	MS241008-3	.050065	.054	.1025	mg/L	97	70	130	0	20	
WG599029 WG599029 CV CV 10/11/24 13:08 MS240930-3 .1 .0992 mg/L .0015 .00	Aluminum, total	recover	able	EPA 200.	8									
WG599029ICV ICV 10/11/24 13:08 MS240930-3 .1 .0.992 mg/L 99 90 110 WG599029ICB ICB 10/11/24 13:10	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599029ICB ICB 10/11/24 13:10 U mg/L -0.015 0.015 U mg/L -0.011 0.011 WG598946LRB LFB 10/11/24 13:14 MS240911-3 0.50065 24.5 23.8036 mg/L -1.991 70 130 1 20 M3 M3 M3 M3 M3 M3 M3 M	WG599029													
WG599029ICB	WG599029ICV	ICV	10/11/24 13:08	MS240930-3	.1		.0992	mg/L	99	90	110			
WG598946LRB LRB 10/11/24 13:12	WG599029ICB							mg/L						
WG598946LFB LFB 10/11/24 13:14 MS240911-3 .050065														
L90587-03LFM LFM 10/11/24 13:42 MS240911-3 0.50065 24.5 23.8036 mg/L -1391 70 130 M3 L90587-03LFMD LFMD 10/11/24 13:44 MS240911-3 0.50065 24.5 23.9426 mg/L -1113 70 130 1 20 M3 L90620-01LFM LFM 10/11/24 14:08 MS240911-3 0.50065 0.596 1.03 mg/L 87 70 130 2 20 WG599228 WG599228ICV ICV 10/14/24 13:24 MS240930-3 1.1 1.022 mg/L 102 90 110 WG599228ICB ICB 10/14/24 13:29 U mg/L -0.015 0.015 L90587-03LFMD LFM 10/14/24 13:31 MS240911-3 0.50065 0.596 0.487 mg/L 97 85 115 L90587-03LFM LFM 10/14/24 13:31 MS240911-3 0.50065 27.2 28.6 mg/L 2796 70 130 M3 L90620-01LFM LFM 10/14/24 13:58 MS240911-3 0.50065 27.2 29.7835 mg/L 5160 70 130 M3 L90620-01LFM LFM 10/14/24 13:58 MS240911-3 0.50065 0.593 1.036 mg/L 88 70 130 L90620-01LFM LFM 10/14/24 14:00 MS240911-3 0.50065 0.593 1.045 mg/L 90 70 130 1 20 WG599032LRB LRB 10/14/24 14:07 U mg/L -0.011 0.011 WG599032LRB LRB 10/14/24 14:09 MS240911-3 0.50065 0.593 1.045 mg/L 90 70 130 1 20 WG599032LRB LRB 10/14/24 14:09 MS240911-3 0.50065 0.593 1.0464 mg/L 93 85 115 EPA 200.8				MS240911-3	.050065		.0496	mg/L	99					
L90587-03LFMD LFMD 10/11/24 13:44 MS240911-3 .050065 24.5 23.9426 mg/L -1113 70 130 1 20 M3 L90620-01LFM LFM 10/11/24 14:08 MS240911-3 .050065 .0596 .103 mg/L 87 70 130 2 20 WG599228 WG599228ICV ICV 10/14/24 13:24 MS240930-3 .1 1.022 mg/L 102 90 110 WG599228ICB ICB 10/14/24 13:27 U mg/L -0.015 0.015 WG59924B LRB 10/14/24 13:29 U mg/L -0.011 0.011 WG599346LFB LFB 10/14/24 13:31 MS240911-3 .050065 27.2 28.6 mg/L 97 85 115 L90587-03LFMD LFMD 10/14/24 13:41 MS240911-3 .050065 27.2 29.7835 mg/L 5160 70 130 4 20 M3 L90620-01LFMD LFMD 10/14/24 13:68 MS240911-3 .050065 .0593 .1036 mg/L 88 70 130 L90620-01LFMD LFMD 10/14/24 13:68 MS240911-3 .050065 .0593 .1036 mg/L 88 70 130 L90620-01LFMD LFMD 10/14/24 14:00 MS240911-3 .050065 .0593 .1036 mg/L 90 70 130 1 20 WG599032LRB LRB 10/14/24 14:07 U mg/L -0.011 0.011 WG599032LRB LRB 10/14/24 14:07 U mg/L -0.011 0.011 WG599032LRB LRB 10/14/24 14:07 U mg/L -0.011 0.011 WG599032LRB LFB 10/14/24 14:09 MS241008-3 .050065 .0593 .10464 mg/L 90 70 130 1 20 WG599032LRB LRB 10/14/24 14:09 MS241008-3 .050065 .0593 .10464 mg/L 93 85 115						24.5		mg/L	-1391					МЗ
L90620-01LFM	L90587-03LFMD						23.9426	mg/L	-1113			1	20	
WG599228ICV ICV 10/14/24 13:24 MS240930-3 .1 .1022 mg/L 102 90 110 WG599228ICB ICB 10/14/24 13:27 U mg/L -0.015 0.015 WG59928ICB LRB 10/14/24 13:29 U mg/L -0.011 0.011 WG698946LRB LFB 10/14/24 13:31 MS240911-3 .050065	L90620-01LFM	LFM	10/11/24 14:08	MS240911-3		.0596	.103	mg/L	87	70				
WG599228ICV ICV 10/14/24 13:24 MS240930-3 .1 .1022 mg/L 102 90 110 WG599228ICB ICB 10/14/24 13:27 U mg/L -0.015 0.015 WG598946LRB LRB 10/14/24 13:29 U mg/L -0.011 0.011 WG598946LFB LFB 10/14/24 13:31 MS240911-3 .050065	L90620-01LFMD	LFMD	10/11/24 14:10	MS240911-3	.050065	.0596	.1006	mg/L	82	70	130	2	20	
WG599228ICB ICB 10/14/24 13:27 U mg/L -0.015 0.015 WG598946LRB LRB 10/14/24 13:29 U mg/L -0.011 0.011 WG598946LFB LFB 10/14/24 13:31 MS240911-3 .050065 27.2 28.6 mg/L 2796 70 130 M3 L90587-03LFMD LFMD 10/14/24 13:41 MS240911-3 .050065 27.2 29.7835 mg/L 5160 70 130 4 20 M3 L90620-01LFM LFM 10/14/24 13:58 MS240911-3 .050065 .0593 .1036 mg/L 88 70 130 4 20 M3 L90620-01LFMD LFMD 10/14/24 14:00 MS240911-3 .050065 .0593 .1045 mg/L 90 70 130 1 20 WG599032LRB LRB 10/14/24 14:07 U mg/L 93 85 115 Arsenic, dissolved EPA 200.8	WG599228													
WG598946LRB LRB 10/14/24 13:29 U mg/L -0.011 0.011 WG598946LFB LFB 10/14/24 13:31 MS240911-3 .050065 27.2 28.6 mg/L 2796 70 130 M3 L90587-03LFMD LFMD 10/14/24 13:41 MS240911-3 .050065 27.2 29.7835 mg/L 5160 70 130 4 20 M3 L90620-01LFM LFM 10/14/24 13:58 MS240911-3 .050065 .0593 .1036 mg/L 88 70 130 4 20 M3 L90620-01LFMD LFMD 10/14/24 14:00 MS240911-3 .050065 .0593 .1045 mg/L 90 70 130 4 20 M3 L90620-01LFMD LFMD 10/14/24 14:00 MS240911-3 .050065 .0593 .1045 mg/L 90 70 130 1 20 WG599032LRB LRB 10/14/24 14:07 U mg/L 93 85 115 <td>WG599228ICV</td> <td>ICV</td> <td>10/14/24 13:24</td> <td>MS240930-3</td> <td>.1</td> <td></td> <td>.1022</td> <td>mg/L</td> <td>102</td> <td>90</td> <td>110</td> <td></td> <td></td> <td></td>	WG599228ICV	ICV	10/14/24 13:24	MS240930-3	.1		.1022	mg/L	102	90	110			
WG598946LFB LFB 10/14/24 13:31 MS240911-3 .050065 .0.0487 mg/L 97 85 115 L90587-03LFM LFM 10/14/24 13:39 MS240911-3 .050065 27.2 28.6 mg/L 2796 70 130 M3 L90587-03LFMD LFMD 10/14/24 13:41 MS240911-3 .050065 27.2 29.7835 mg/L 5160 70 130 4 20 M3 L90620-01LFM LFM 10/14/24 13:58 MS240911-3 .050065 .0593 .1036 mg/L 88 70 130 L90620-01LFMD LFMD 10/14/24 14:00 MS240911-3 .050065 .0593 .1045 mg/L 90 70 130 1 20 WG599032LRB LRB 10/14/24 14:07 U mg/L -0.011 0.011 WG599032LFB LFB 10/14/24 14:09 MS241008-3 .050065 .0464 mg/L 93 85 115 Arsenic, dissolved EPA 200.8	WG599228ICB	ICB	10/14/24 13:27				U	mg/L		-0.015	0.015			
L90587-03LFM LFM 10/14/24 13:39 MS240911-3 .050065 27.2 28.6 mg/L 2796 70 130 M3 L90587-03LFMD LFMD 10/14/24 13:41 MS240911-3 .050065 27.2 29.7835 mg/L 5160 70 130 4 20 M3 L90620-01LFM LFM 10/14/24 13:58 MS240911-3 .050065 .0593 .1036 mg/L 88 70 130 1 20 L90620-01LFMD LFMD 10/14/24 14:00 MS240911-3 .050065 .0593 .1045 mg/L 90 70 130 1 20 WG599032LRB LRB 10/14/24 14:07 U mg/L 90 70 130 1 20 WG599032LFB LFB 10/14/24 14:09 MS241008-3 .050065 .0464 mg/L 93 85 115 Arsenic, dissolved EPA 200.8	WG598946LRB	LRB	10/14/24 13:29				U	mg/L		-0.011	0.011			
L90587-03LFMD LFMD 10/14/24 13:41 MS240911-3 .050065 27.2 29.7835 mg/L 5160 70 130 4 20 M3 L90620-01LFM LFMD 10/14/24 13:58 MS240911-3 .050065 .0593 .1036 mg/L 88 70 130 1 20 L90620-01LFMD LFMD 10/14/24 14:00 MS240911-3 .050065 .0593 .1045 mg/L 90 70 130 1 20 WG599032LRB LRB 10/14/24 14:09 MS241008-3 .050065 .0464 mg/L 93 85 115 Arsenic, dissolved EPA 200.8	WG598946LFB	LFB	10/14/24 13:31	MS240911-3	.050065		.0487	mg/L	97	85	115			
L90620-01LFM LFM 10/14/24 13:58 MS240911-3 .050065 .0593 .1036 mg/L 88 70 130 L90620-01LFMD LFMD 10/14/24 14:00 MS240911-3 .050065 .0593 .1045 mg/L 90 70 130 1 20 WG599032LRB LRB 10/14/24 14:07 U mg/L -0.011 0.011 WG599032LFB LFB 10/14/24 14:09 MS241008-3 .050065 .0464 mg/L 93 85 115 Arsenic, dissolved EPA 200.8	L90587-03LFM	LFM	10/14/24 13:39	MS240911-3	.050065	27.2	28.6	mg/L	2796	70	130			M3
L90620-01LFMD LFMD 10/14/24 14:00 MS240911-3 .050065 .0593 .1045 mg/L 90 70 130 1 20 WG599032LRB LRB 10/14/24 14:07 U mg/L -0.011 0.011 WG599032LFB LFB 10/14/24 14:09 MS241008-3 .050065 .0464 mg/L 93 85 115 Arsenic, dissolved	L90587-03LFMD	LFMD	10/14/24 13:41	MS240911-3	.050065	27.2	29.7835	mg/L	5160	70	130	4	20	M3
WG599032LRB LRB 10/14/24 14:07 U mg/L -0.011 0.011 WG599032LFB LFB 10/14/24 14:09 MS241008-3 .050065 .0464 mg/L 93 85 115 Arsenic, dissolved EPA 200.8	L90620-01LFM	LFM	10/14/24 13:58	MS240911-3	.050065	.0593	.1036	mg/L	88	70	130			
WG599032LFB LFB 10/14/24 14:09 MS241008-3 .050065 .0464 mg/L 93 85 115 Arsenic, dissolved EPA 200.8	L90620-01LFMD	LFMD	10/14/24 14:00	MS240911-3	.050065	.0593	.1045	mg/L	90	70	130	1	20	
Arsenic, dissolved EPA 200.8	WG599032LRB	LRB	10/14/24 14:07				U	mg/L		-0.011	0.011			
<u> </u>	WG599032LFB	LFB	10/14/24 14:09	MS241008-3	.050065		.0464	mg/L	93	85	115			
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec% Lower Upper _RPD_Limit_Qual_	Arsenic, dissolv	ed		EPA 200.	8									
7, The state of th	ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599030	WG599030													
WG599030ICV ICV 10/11/24 14:42 MS240930-3 .05 .04969 mg/L 99 90 110	WG599030ICV	ICV	10/11/24 14:42	MS240930-3	.05		.04969	mg/L	99	90	110			
WG599030ICB ICB 10/11/24 14:44 U mg/L -0.00044 0.00044				0000 0	.50				50					
WG599030LFB LFB 10/11/24 14:46 MS241008-3 .0501 .05644 mg/L 113 85 115				MS241008-3	.0501				113					
L90587-01AS AS 10/11/24 14:50 MS241008-3 .0501 .00337 .0579 mg/L 109 70 130						.00337								
L90587-01ASD ASD 10/11/24 14:52 MS241008-3 .0501 .00337 .05808 mg/L 109 70 130 0 20												0	20	

L90587-2410161040 Page 11 of 23

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Arsenic, total rec	coverabl	e	EPA 200.	8									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599029													
WG599029ICV	ICV	10/11/24 13:08	MS240930-3	.05		.04983	mg/L	100	90	110			
WG599029ICB	ICB	10/11/24 13:10	11102 10000 0	.00		U	mg/L	100	-0.0006	0.0006			
WG598946LRB	LRB	10/11/24 13:12				U	mg/L		-0.00044	0.00044			
WG598946LFB	LFB	10/11/24 13:14	MS240911-3	.0501		.04924	mg/L	98	85	115			
L90587-03LFM	LFM	10/11/24 13:42	MS240911-3	.0501	.00384	.05181	mg/L	96	70	130			
L90587-03LFMD	LFMD	10/11/24 13:44	MS240911-3	.0501	.00384	.05351	mg/L	99	70	130	3	20	
L90620-01LFM	LFM	10/11/24 14:08	MS240911-3	.0501	U	.04907	mg/L	98	70	130			
L90620-01LFMD	LFMD	10/11/24 14:10	MS240911-3	.0501	U	.04901	mg/L	98	70	130	0	20	
Cadmium, disso	lved		EPA 200.	8									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599030													
WG599030ICV	ICV	10/11/24 14:42	MS240930-3	.05		.050308	mg/L	101	90	110			
WG599030ICB	ICB	10/11/24 14:44				U	mg/L		-0.00011	0.00011			
WG599030LFB	LFB	10/11/24 14:46	MS241008-3	.05005		.054283	mg/L	108	85	115			
L90587-01AS	AS	10/11/24 14:50	MS241008-3	.05005	.03	.083619	mg/L	107	70	130			
L90587-01ASD	ASD	10/11/24 14:52	MS241008-3	.05005	.03	.083536	mg/L	107	70	130	0	20	
Cadmium, total r	ecovera	ıble	EPA 200.	8									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599029													
WG599029ICV	ICV	10/11/24 13:08	MS240930-3	.05		.049829	mg/L	100	90	110			
WG599029ICB	ICB	10/11/24 13:10				U	mg/L		-0.00015	0.00015			
WG598946LRB	LRB	10/11/24 13:12				U	mg/L		-0.00011	0.00011			
WG598946LFB	LFB	10/11/24 13:14	MS240911-3	.05005		.047689	mg/L	95	85	115			
L90587-03LFM	LFM	10/11/24 13:42	MS240911-3	.05005	.0314	.078198	mg/L	94	70	130			
L90587-03LFMD	LFMD	10/11/24 13:44	MS240911-3	.05005	.0314	.079321	mg/L	96	70	130	1	20	
L90620-01LFM	LFM	10/11/24 14:08	MS240911-3	.05005	.000273	.04664	mg/L	93	70	130			
L90620-01LFMD	LFMD	10/11/24 14:10	MS240911-3	.05005	.000273	.046435	mg/L	92	70	130	0	20	
Calcium, dissolv	ed		EPA 200.	7									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599089													
WG599089ICV	ICV	10/10/24 20:59	11240928-4	100		98.56	mg/L	99	95	105			
WG599089ICB	ICB	10/10/24 21:05				U	mg/L		-0.3	0.3			
WG599089LFB	LFB	10/10/24 21:17	II241007-1	67.92919		66.82	mg/L	98	85	115			
L90587-07AS	AS	10/10/24 22:36	II241007-1	67.92919	40.1	108.3	mg/L	100	85	115			
L90587-07ASD	ASD	10/10/24 22:39	II241007-1	67.92919	40.1	105.2	mg/L	96	85	115	3	20	
Copper, dissolve													
	ed		EPA 200.	8									
ACZ ID	ed Type	Analyzed	EPA 200. PCN/SCN	8 QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
ACZ ID WG599030		Analyzed			Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
		Analyzed 10/11/24 14:42			Sample	Found .05324	Units mg/L	Rec%	Lower 90	Upper	RPD	Limit	Qual
WG599030	Туре	,	PCN/SCN	QC	Sample						RPD	Limit	Qual
WG599030 WG599030ICV	Type	10/11/24 14:42	PCN/SCN	QC	Sample	.05324	mg/L		90	110	RPD	Limit	Qual
WG599030 WG599030ICV WG599030ICB	Type ICV ICB	10/11/24 14:42 10/11/24 14:44	PCN/SCN MS240930-3	QC .05	Sample	.05324 U	mg/L mg/L	106	90 -0.00176	110 0.00176	RPD	Limit	Qual
WG599030 WG599030ICV WG599030ICB WG599030LFB	Type ICV ICB LFB	10/11/24 14:42 10/11/24 14:44 10/11/24 14:46	PCN/SCN MS240930-3 MS241008-3	.05 .05005		.05324 U .05739	mg/L mg/L mg/L	106 115	90 -0.00176 85	110 0.00176 115	RPD	Limit	Qual

L90587-2410161040 Page 12 of 23

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Copper, total recoverable		e	EPA 200.8	3									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599029													
WG599029ICV	ICV	10/11/24 13:08	MS240930-3	.05		.05288	mg/L	106	90	110			
WG599029ICB	ICB	10/11/24 13:10				U	mg/L		-0.0024	0.0024			
WG598946LRB	LRB	10/11/24 13:12				U	mg/L		-0.00176	0.00176			
WG598946LFB	LFB	10/11/24 13:14	MS240911-3	.05005		.05104	mg/L	102	85	115			
L90587-03LFM	LFM	10/11/24 13:42	MS240911-3	.05005	.0618	.10733	mg/L	91	70	130			
L90587-03LFMD	LFMD	10/11/24 13:44	MS240911-3	.05005	.0618	.11201	mg/L	100	70	130	4	20	
L90620-01LFM	LFM	10/11/24 14:08	MS240911-3	.05005	.00103	.04449	mg/L	87	70	130			
L90620-01LFMD	LFMD	10/11/24 14:10	MS240911-3	.05005	.00103	.04456	mg/L	87	70	130	0	20	
Iron, dissolved	EPA 200.7												
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599089													
WG599089ICV	ICV	10/10/24 20:59	11240928-4	2		1.996	mg/L	100	95	105			
WG599089ICB	ICB	10/10/24 21:05				U	mg/L		-0.18	0.18			
WG599089LFB	LFB	10/10/24 21:17	II241007-1	1.003		1.038	mg/L	103	85	115			
L90587-07AS	AS	10/10/24 22:36	II241007-1	1.003	U	1.1	mg/L	110	85	115			
L90587-07ASD	ASD	10/10/24 22:39	II241007-1	1.003	U	1.078	mg/L	107	85	115	2	20	
Iron, total recov	erable		EPA 200.7	7									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599161													
WG599161ICV	ICV	10/11/24 17:20	II240928-4	2		2.012	mg/L	101	95	105			
WG599161ICB	ICB	10/11/24 17:26				U	mg/L		-0.18	0.18			
WG598934LRB	LRB	10/11/24 17:38				U	mg/L		-0.132	0.132			
WG598934LFB	LFB	10/11/24 17:41	II241007-1	1.003		1.003	mg/L	100	85	115			
L90582-04LFM	LFM	10/11/24 18:06	II241007-1	1.003	U	1.101	mg/L	110	70	130			
L90582-04LFMD	LFMD	10/11/24 18:15	II241007-1	1.003	U	1.145	mg/L	114	70	130	4	20	
L90587-07LFM	LFM	10/11/24 18:39	II241007-1	1.003	U	1.053	mg/L	105	70	130			
L90587-07LFMD	LFMD	10/11/24 18:41	II241007-1	1.003	U	1.086	mg/L	108	70	130	3	20	
Lead, dissolved			EPA 200.8	3									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599030													
WG599030ICV	ICV	10/11/24 14:42	MS240930-3	.05		.0522	mg/L	104	90	110			
WG599030ICB	ICB	10/11/24 14:44				U	mg/L		-0.00022	0.00022			
WG599030LFB	LFB	10/11/24 14:46	MS241008-3	.05005		.0543	mg/L	108	85	115			
L90587-01AS	AS	10/11/24 14:50	MS241008-3	.05005	.0102	.06469	mg/L	109	70	130			
L90587-01ASD	ASD	10/11/24 14:52	MS241008-3	.05005	.0102	.06518	mg/L	110	70	130	1	20	

L90587-2410161040 Page 13 of 23

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Lead, total recoverable		EPA 200.8											
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599029													
WG599029ICV	ICV	10/11/24 13:08	MS240930-3	.05		.05137	mg/L	103	90	110			
WG599029ICB	ICB	10/11/24 13:10				U	mg/L		-0.0003	0.0003			
WG598946LRB	LRB	10/11/24 13:12				U	mg/L		-0.00022	0.00022			
WG598946LFB	LFB	10/11/24 13:14	MS240911-3	.05005		.05002	mg/L	100	85	115			
L90587-03LFM	LFM	10/11/24 13:42	MS240911-3	.05005	.0108	.06022	mg/L	99	70	130			
L90587-03LFMD	LFMD	10/11/24 13:44	MS240911-3	.05005	.0108	.0615	mg/L	101	70	130	2	20	
L90620-01LFM	LFM	10/11/24 14:08	MS240911-3	.05005	.00027	.05204	mg/L	103	70	130			
L90620-01LFMD	LFMD	10/11/24 14:10	MS240911-3	.05005	.00027	.05191	mg/L	103	70	130	0	20	
Magnesium, dis	solved		EPA 200.	.7									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599089													
WG599089ICV	ICV	10/10/24 20:59	11240928-4	100		97.88	mg/L	98	95	105			
WG599089ICB	ICB	10/10/24 21:05				U	mg/L		-0.6	0.6			
WG599089LFB	LFB	10/10/24 21:17	II241007-1	50.59457		49.91	mg/L	99	85	115			
L90587-07AS	AS	10/10/24 22:36	II241007-1	50.59457	3.9	55.2	mg/L	101	85	115			
L90587-07ASD	ASD	10/10/24 22:39	II241007-1	50.59457	3.9	53.75	mg/L	99	85	115	3	20	
Manganese, dissolved		EPA 200.8											
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599030													
WG599030ICV	ICV	10/11/24 14:42	MS240930-3	.05		.05054	mg/L	101	90	110			
WG599030ICB	ICB	10/11/24 14:44				U	mg/L		-0.00088	0.00088			
WG599030LFB	LFB	10/11/24 14:46	MS241008-3	.0501		.05159	mg/L	103	85	115			
L90587-01AS	AS	10/11/24 14:50	MS241008-3	.0501	7.37	7.34755	mg/L	-45	70	130			M3
L90587-01ASD	ASD	10/11/24 14:52	MS241008-3	.0501	7.37	7.35202	mg/L	-36	70	130	0	20	МЗ
WG599241													
WG599241ICV	ICV	10/14/24 14:48	MS240930-3	.05		.0505	mg/L	101	90	110			
WG599241ICB	ICB	10/14/24 14:50				U	mg/L		-0.00088	0.00088			
WG599241LFB	LFB	10/14/24 14:52	MS241008-3	.0501		.05352	mg/L	107	85	115			
L90666-02AS	AS	10/14/24 15:14	MS241008-3	.0501	.0273	.078	mg/L	101	70	130			
L90666-02ASD	ASD	10/14/24 15:15	MS241008-3	.0501	.0273	.07777	mg/L	101	70	130	0	20	

L90587-2410161040 Page 14 of 23

GEOSYNTEC ACZ Project ID: L90587

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

Manganese, tot	al recove	erable	EPA 200.8										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599029													
WG599029ICV	ICV	10/11/24 13:08	MS240930-3	.05		.0502	mg/L	100	90	110			
WG599029ICB	ICB	10/11/24 13:10				U	mg/L		-0.0012	0.0012			
WG598946LRB	LRB	10/11/24 13:12				U	mg/L		-0.00088	0.00088			
WG598946LFB	LFB	10/11/24 13:14	MS240911-3	.0501		.04839	mg/L	97	85	115			
L90587-03LFM	LFM	10/11/24 13:42	MS240911-3	.0501	8.16	7.95268	mg/L	-414	70	130			М3
L90587-03LFMD	LFMD	10/11/24 13:44	MS240911-3	.0501	8.16	7.9932	mg/L	-333	70	130	1	20	M3
L90620-01LFM	LFM	10/11/24 14:08	MS240911-3	.0501	.0134	.05845	mg/L	90	70	130			
L90620-01LFMD	LFMD	10/11/24 14:10	MS240911-3	.0501	.0134	.05456	mg/L	82	70	130	7	20	
WG599228													
WG599228ICV	ICV	10/14/24 13:24	MS240930-3	.05		.04984	mg/L	100	90	110			
WG599228ICB	ICB	10/14/24 13:27				U	mg/L		-0.0012	0.0012			
WG598946LRB	LRB	10/14/24 13:29				U	mg/L		-0.00088	0.00088			
WG598946LFB	LFB	10/14/24 13:31	MS240911-3	.0501		.04749	mg/L	95	85	115			
L90587-03LFM	LFM	10/14/24 13:39	MS240911-3	.0501	8.85	9.27918	mg/L	857	70	130			M3
L90587-03LFMD	LFMD	10/14/24 13:41	MS240911-3	.0501	8.85	9.69711	mg/L	1691	70	130	4	20	М3
L90620-01LFM	LFM	10/14/24 13:58	MS240911-3	.0501	.0101	.05589	mg/L	91	70	130			
L90620-01LFMD	LFMD	10/14/24 14:00	MS240911-3	.0501	.0101	.05645	mg/L	93	70	130	1	20	
WG599032LRB	LRB	10/14/24 14:07				U	mg/L		-0.00088	0.00088			
WG599032LFB	LFB	10/14/24 14:09	MS241008-3	.0501		.04615	mg/L	92	85	115			
Silver, dissolve	d		EPA 200.8										
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599030													
WG599030ICV	ICV	10/11/24 14:42	MS240930-3	.02		.02066	mg/L	103	90	110			
WG599030ICB	ICB	10/11/24 14:44				U	mg/L		-0.00022	0.00022			
WG599030LFB	LFB	10/11/24 14:46	MS241008-3	.01		.01075	mg/L	108	85	115			
L90587-01AS	AS	10/11/24 14:50	MS241008-3	.01	U	.00988	mg/L	99	70	130			
L90587-01ASD	ASD	10/11/24 14:52	MS241008-3	.01	U	.0101	mg/L	101	70	130	2	20	
Silver, total reco	overable		EPA 200.8										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG599029													
WG599029ICV	ICV	10/11/24 13:08	MS240930-3	.02		.02062	mg/L	103	90	110			
WG599029ICB	ICB	10/11/24 13:10				U	mg/L		-0.0003	0.0003			
WG598946LRB	LRB	10/11/24 13:12				U	mg/L		-0.00022	0.00022			
WG598946LFB	LFB	10/11/24 13:14	MS240911-3	.01		.00961	mg/L	96	85	115			
L90587-03LFM	LFM	10/11/24 13:42	MS240911-3	.01	U	.00899	mg/L	90	70	130			
L90587-03LFMD	LFMD	10/11/24 13:44	MS240911-3	.01	U	.009	mg/L	90	70	130	0	20	
L90620-01LFM	LFM	10/11/24 14:08	MS240911-3	.01	U	.0084	mg/L	84	70	130			
L90620-01LFMD	LFMD	10/11/24 14:10	MS240911-3	.01	U	.00829	mg/L	83	70	130	1	20	

L90587-2410161040 Page 15 of 23

GEOSYNTEC ACZ Project ID: L90587

NOTE: If the Rec% column is null, the high/low limits are in the same units as the result. If the Rec% column is not null, then the high/low limits are in % Rec.

WG598610ICV ICV 10/03/24 8:54 WI240925-2 20.02 20 mg/L 100 85 115 WG598610ICB ICB 10/03/24 8:54 WI24091-1 10 mg/L -2.5 2.5 WG598610LFB LFB 10/03/24 13:31 WI241001-1 10 10.7 mg/L 107 85 115 M3 L90591-02ASD ASD 10/03/24 14:20 SO4TURB25X 10 391 404.2 mg/L 132 85 115 1 20 M3 L90591-02ASD ASD 10/03/24 14:20 SO4TURB25X 10 391 407.7 mg/L 167 85 115 M3 L90591-02ASD ASD 10/13/24 14:20 SO4TURB25X 10 391 407.7 mg/L 167 85 115 10 M3 <th co<="" th=""><th>WG598610 WG598610ICV WG598610ICB WG598610LFB L90591-02AS L90591-02ASD Zinc, dissolved ACZ ID</th><th>ICV ICB LFB AS</th><th>10/03/24 8:54 10/03/24 8:54 10/03/24 13:31 10/03/24 14:19</th><th>PCN/SCN WI240925-2 WI241001-1</th><th>QC 20.02</th><th></th><th>20</th><th></th><th></th><th></th><th></th><th>RPD</th><th>Limit</th><th>Qual</th></th>	<th>WG598610 WG598610ICV WG598610ICB WG598610LFB L90591-02AS L90591-02ASD Zinc, dissolved ACZ ID</th> <th>ICV ICB LFB AS</th> <th>10/03/24 8:54 10/03/24 8:54 10/03/24 13:31 10/03/24 14:19</th> <th>PCN/SCN WI240925-2 WI241001-1</th> <th>QC 20.02</th> <th></th> <th>20</th> <th></th> <th></th> <th></th> <th></th> <th>RPD</th> <th>Limit</th> <th>Qual</th>	WG598610 WG598610ICV WG598610ICB WG598610LFB L90591-02AS L90591-02ASD Zinc, dissolved ACZ ID	ICV ICB LFB AS	10/03/24 8:54 10/03/24 8:54 10/03/24 13:31 10/03/24 14:19	PCN/SCN WI240925-2 WI241001-1	QC 20.02		20					RPD	Limit	Qual					
WG598610CV ICV 10/03/24 8:54 WI249925-2 20.02 20 mg/L 100 85 115 VEX. VEX. VEX. VEX. VEX. VEX. VEX. VEX.	WG598610 WG598610ICV WG598610ICB WG598610LFB L90591-02AS L90591-02ASD Zinc, dissolved	ICV ICB LFB AS	10/03/24 8:54 10/03/24 8:54 10/03/24 13:31 10/03/24 14:19	WI240925-2 WI241001-1	20.02	Sample	20					KPD	Lillill	Quai						
WG598610ICV ICV 10/03/24 8:54 WI240925-2 20.02 20 mg/L 100 85 115 WG598610ICB ICB 10/03/24 8:54 WI24091-1 10 10.7 mg/L 107 85 115 WG598610LFB LFB 10/03/24 14:19 SO4TURB25X 10 391 404.2 mg/L 132 85 115 WG5991-02AS AS 10/03/24 14:20 SO4TURB25X 10 391 407.7 mg/L 167 85 115 U 20 M3 WG5991-02AS AS 10/03/24 14:20 SO4TURB25X 10 391 407.7 mg/L 167 85 115 U 20 M3 WG5991-02AS AS 10/03/24 14:20 SO4TURB25X 10 391 407.7 mg/L 167 85 115 U 20 M3 WG599030 WG599030ICV ICV 10/11/24 14:42 MS240930-3 .05 .0511 mg/L 102 90 110 WG599030ICB ICB 10/11/24 14:44 MS241008-3 .050015 .057 mg/L 114 85 115 U M3 WG599030ICB LFB 10/11/24 14:50 MS241008-3 .050015 4.48 4.4623 mg/L -2.2 70 130 0 20 M3 WG599241ICW ICV 10/14/24 14:50 MS241008-3 .050015 4.48 4.4692 mg/L -2.2 70 130 0 20 M3 WG599241ICB ICB 10/14/24 14:50 MS241008-3 .050015 4.48 4.4692 mg/L -2.2 70 130 0 20 M3 WG599241ICB ICB 10/14/24 14:50 MS241008-3 .050015 .0638 IM IM M9/L -0.0132 .00132 WG599241ICB ICB 10/14/24 14:50 MS241008-3 .050015 .0638 IM IM M9/L -0.0132 .00132 WG599241ICB ICB 10/14/24 14:50 MS241008-3 .050015 .0638 IM IM M9/L -0.0132 .00132 WG599241ICB ICB 10/14/24 14:51 MS241008-3 .050015 .0638 IM IM M9/L -0.0132 .00132 WG599241ICB ICB 10/14/24 15:14 MS241008-3 .050015 .0638 IM IM M9/L -0.0132 .00132 WG599241ICB ICB 10/14/24 15:14 MS241008-3 .050015 .0638 IM IM M9/L -0.0132 .00132 WG599241ICB ICB 10/14/24 15:15 MS241008-3 .050015 .0638 IM IM M9/L -0.0132 .00132 WG599241ICB ICB 10/14/24 15:14 MS241008-3 .050015 .0638 IM IM M9/L -0.0132 .00132 WG599241ICB ICB IM MS241008-3 .050015 .0638 IM IM M9/L -0.0132 .001	WG598610ICV WG598610ICB WG598610LFB L90591-02AS L90591-02ASD Zinc, dissolved	ICB LFB AS	10/03/24 8:54 10/03/24 13:31 10/03/24 14:19	WI241001-1				mg/L	100	85	115									
WG598610ICB ICB 10/03/24 8:54	WG598610ICB WG598610LFB L90591-02AS L90591-02ASD Zinc, dissolved	ICB LFB AS	10/03/24 8:54 10/03/24 13:31 10/03/24 14:19	WI241001-1				mg/L	100	85	115									
WG598610LFB	WG598610LFB L90591-02AS L90591-02ASD Zinc, dissolved ACZ ID	LFB AS	10/03/24 13:31 10/03/24 14:19		10															
L90591-02AS	L90591-02AS L90591-02ASD Zinc, dissolved ACZ ID	AS	10/03/24 14:19		10		U	mg/L		-2.5	2.5									
Company	L90591-02ASD Zinc, dissolved ACZ ID			SO4TURB25X	10		10.7	mg/L	107	85	115									
Zinc, dissolved EPA 200.8 ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec% Lower Upper RPD Limit Qual WG599030 WG599030ICV ICV 10/11/24 14:42 MS240930-3 .05 .0511 mg/L 102 90 110 WG599030ICB ICB 10/11/24 14:44 U MS241008-3 .050015 .057 mg/L 114 85 115 L90587-01AS AS 10/11/24 14:50 MS241008-3 .050015 4.48 4.4623 mg/L -22 70 130 0 20 M3 WG599241 WG599241ICV ICV 10/14/24 14:48 MS240930-3 .05 050015 4.48 4.4692 mg/L -22 70 130 0 20 M3 WG599241 WG599241ICB ICB 10/14/24 14:52 MS241008-3 .050015 .058 MS24008-3 .050015 MS24008-3 .050015 .058 MS24008-3 .050015 .058 MS24008-3 .050015 MS24008-3 .050015 .058 MS24008-3 .050015 .058 MS24008-3 .050015 .050015 MS24008-3 .050015 MS24008-3 .050015 MS24008-3 .050015 MS24008-3 .050015 MS24008-3 .050015 MS24	Zinc, dissolved	ASD	10/03/24 14:20		10	391	404.2	mg/L	132	85	115			M3						
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec% Lower Upper RPD Limit Qual Vision WG599030 WG599030ICW ICV 10/11/24 14:42 MS240930-3 .05 .0511 mg/L 102 90 110 .0132	ACZ ID			SO4TURB25X	10	391	407.7	mg/L	167	85	115	1	20	М3						
WG599030 WG599030ICV ICV 10/11/24 14:42 MS240930-3 .05 .0511 mg/L 102 90 110 WG599030ICB ICB 10/11/24 14:44 WS241008-3 .050015 .057 mg/L -0.0132 0.0132 WG599030LFB LFB 10/11/24 14:46 MS241008-3 .050015 .057 mg/L -35 70 130 M3 L90587-01ASD ASD 10/11/24 14:52 MS241008-3 .050015 4.48 4.4692 mg/L -35 70 130 0 20 M3 WG599241 WG599241ICV ICV 10/14/24 14:48 MS240930-3 .05 .0485 mg/L 97 90 110 WG599241ICB ICB 10/14/24 14:50 MS241008-3 .050015 .0485 mg/L 97 90 110 WG599241LFB LFB 10/14/24 14:50 MS241008-3 .050015 .052 mg/L 104 85 115 L90666-02AS AS <th></th> <th></th> <th></th> <th>EPA 200.</th> <th>8</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				EPA 200.	8															
WG599030ICV ICV 10/11/24 14:44 MS240930-3 .05 .0511 mg/L 102 90 110 WG599030ICB ICB 10/11/24 14:44 MS241008-3 .050015 .057 mg/L 114 85 115 L90587-01AS AS 10/11/24 14:50 MS241008-3 .050015 4.48 4.4623 mg/L -35 70 130 M3 L90587-01ASD ASD 10/11/24 14:52 MS241008-3 .050015 4.48 4.4692 mg/L -22 70 130 0 20 M3 WG599241 WG599241ICV ICV 10/14/24 14:50 MS241008-3 .05 .0485 mg/L 97 90 110 WG599241LFB ICB 10/14/24 14:50 MS241008-3 .050015 .052 mg/L 97 90 110 WG599241LFB ICB 10/14/24 14:50 MS241008-3 .050015 .0638 .1117 mg/L 97 70 130 0 20 </th <th>WG500020</th> <th>Type</th> <th>Analyzed</th> <th>PCN/SCN</th> <th>QC</th> <th>Sample</th> <th>Found</th> <th>Units</th> <th>Rec%</th> <th>Lower</th> <th>Upper</th> <th>RPD</th> <th>Limit</th> <th>Qual</th>	WG500020	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual						
WG599030ICB ICB 10/11/24 14:44 U mg/L -0.0132 0.0132 WG599030LFB LFB 10/11/24 14:46 MS241008-3 .050015 .057 mg/L 114 85 115 L90587-01AS AS 10/11/24 14:50 MS241008-3 .050015 4.48 4.4623 mg/L -35 70 130 0 20 M3 L90587-01ASD ASD 10/11/24 14:52 MS241008-3 .050015 4.48 4.4692 mg/L -22 70 130 0 20 M3 WG599241 WG599241ICV ICV 10/14/24 14:48 MS240930-3 .05 .0485 mg/L 97 90 110 WG599241LFB ICB 10/14/24 14:50 MS241008-3 .050015 .052 mg/L 104 85 115 L90666-02AS AS 10/14/24 15:14 MS241008-3 .050015 .0638 .1117 mg/L 97 70 130 0 20 <td <="" colspan="6" td=""><td>** @399030</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td>** @399030</td> <td></td>						** @399030													
WG599030LFB LFB 10/11/24 14:46 MS241008-3 .050015 .057 mg/L 114 85 115 L90587-01AS AS 10/11/24 14:50 MS241008-3 .050015 4.48 4.4623 mg/L -35 70 130 .05 M3 L90587-01ASD ASD 10/11/24 14:52 MS241008-3 .050015 4.48 4.4692 mg/L -22 70 130 0 20 M3 WG599241 WG599241ICV ICV 10/14/24 14:48 MS240930-3 .05 .0485 mg/L 97 90 110 WG599241ICB ICB 10/14/24 14:50 WS241008-3 .050015 .052 mg/L 104 85 115 L90666-02AS AS 10/14/24 15:14 MS241008-3 .050015 .0638 .1117 mg/L 96 70 130 0 20 Zinc, total recoverable EPA 200.8 EPA 200.8 Found Units Rec% Lower Upp	WG599030ICV	ICV	10/11/24 14:42	MS240930-3	.05		.0511	mg/L	102	90	110									
WG599030LFB LFB 10/11/24 14:46 MS241008-3 .050015 .057 mg/L 114 85 115 L90587-01AS AS 10/11/24 14:50 MS241008-3 .050015 4.48 4.4623 mg/L -35 70 130 0 20 M3 L90587-01ASD ASD 10/11/24 14:52 MS241008-3 .050015 4.48 4.4692 mg/L -35 70 130 0 20 M3 WG599241 WG599241ICV ICV 10/14/24 14:48 MS240930-3 .05 .0485 mg/L 97 90 110 WG599241ICB ICB 10/14/24 14:50 WS241008-3 .050015 .052 mg/L 104 85 115 L90666-02AS AS 10/14/24 15:14 MS241008-3 .050015 .0638 .1117 mg/L 96 70 130 0 20 Zinc, total recoverable EPA 200.8 PCN/SCN QC Sample Found Units Rec% Lower Upper Upper RPD Limit Qual		ICB					U	mg/L			0.0132									
L90587-01ASD ASD 10/11/24 14:52 MS241008-3 .050015 4.48 4.4692 mg/L -22 70 130 0 20 M3 WG599241 WG599241ICV ICV 10/14/24 14:48 MS240930-3 .05 .0485 mg/L 97 90 110 WG599241ICB ICB 10/14/24 14:50 U mg/L -0.0132 0.0132 WG599241LFB LFB 10/14/24 14:52 MS241008-3 .050015 .052 mg/L 104 85 115 L90666-02AS AS 10/14/24 15:14 MS241008-3 .050015 .0638 .1117 mg/L 96 70 130 0 20 Zinc, total recoverable EPA 200.8		LFB		MS241008-3	.050015		.057	mg/L	114											
WG599241ICV ICV 10/14/24 14:48 MS240930-3 .05 .0485 mg/L 97 90 110 WG599241ICB ICB 10/14/24 14:50 U mg/L -0.0132 0.0132 WG599241LFB LFB 10/14/24 14:52 MS241008-3 .050015 .052 mg/L 104 85 115 L90666-02AS AS 10/14/24 15:14 MS241008-3 .050015 .0638 .1117 mg/L 96 70 130 L90666-02ASD ASD 10/14/24 15:15 MS241008-3 .050015 .0638 .1121 mg/L 97 70 130 0 20 Zinc, total recoverable EPA 200.8 ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec% Lower Upper RPD Limit Qua	L90587-01AS	AS	10/11/24 14:50	MS241008-3	.050015	4.48	4.4623	mg/L	-35	70	130			M3						
WG599241ICV ICV 10/14/24 14:48 MS240930-3 .05 .0485 mg/L 97 90 110 WG599241ICB ICB 10/14/24 14:50 U mg/L -0.0132 0.0132 WG599241LFB LFB 10/14/24 14:52 MS241008-3 .050015 .0638 .1117 mg/L 104 85 115 L90666-02AS AS 10/14/24 15:14 MS241008-3 .050015 .0638 .1117 mg/L 96 70 130 0 20 Zinc, total recoverable EPA 200.8 ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec% Lower Upper RPD Limit Qual	L90587-01ASD	ASD	10/11/24 14:52	MS241008-3	.050015	4.48	4.4692	mg/L	-22	70	130	0	20	М3						
WG599241ICB ICB 10/14/24 14:50	WG599241																			
WG599241ICB ICB 10/14/24 14:50 U mg/L -0.0132 0.0132 WG599241LFB LFB 10/14/24 14:52 MS241008-3 .050015 .052 mg/L 104 85 115 L90666-02AS AS 10/14/24 15:14 MS241008-3 .050015 .0638 .1117 mg/L 96 70 130 L90666-02ASD ASD 10/14/24 15:15 MS241008-3 .050015 .0638 .1121 mg/L 97 70 130 0 20 Zinc, total recoverable EPA 200.8 ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec% Lower Upper RPD Limit Qual	WG599241ICV	ICV	10/14/24 14:48	MS240930-3	.05		.0485	mg/L	97	90	110									
WG599241LFB LFB 10/14/24 14:52 MS241008-3 .050015 .052 mg/L 104 85 115 L90666-02AS AS 10/14/24 15:14 MS241008-3 .050015 .0638 .1117 mg/L 96 70 130 L90666-02ASD ASD 10/14/24 15:15 MS241008-3 .050015 .0638 .1121 mg/L 97 70 130 0 20 Zinc, total recoverable EPA 200.8 ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec% Lower Upper RPD Limit Qual								-	٥.											
L90666-02AS AS 10/14/24 15:14 MS241008-3 .050015 .0638 .1117 mg/L 96 70 130 L90666-02ASD ASD 10/14/24 15:15 MS241008-3 .050015 .0638 .1121 mg/L 97 70 130 0 20 Zinc, total recoverable EPA 200.8 ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec% Lower Upper RPD Limit Quare				MS241008-3	050015				104											
L90666-02ASD ASD 10/14/24 15:15 MS241008-3 .050015 .0638 .1121 mg/L 97 70 130 0 20 Zinc, total recoverable ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec% Lower Upper RPD Limit Qua						0638														
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec% Lower Upper RPD Limit Qua												0	20							
ACZ ID Type Analyzed PCN/SCN QC Sample Found Units Rec% Lower Upper RPD Limit Qua	Zinc. total recov	verable	<u> </u>	EPA 200.	 8															
						Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual						
		71.																		
WG599029ICV ICV 10/11/24 13:08 MS240930-3 .05 .0507 mg/L 101 90 110		ICV	10/11/24 12:00	MS240030-3	05		0507	ma/l	101	00	110									
WG599029ICB ICB 10/11/24 13:10 U mg/L -0.018 0.018				WO240330-3	.05			-	101											
WG598946LRB LRB 10/11/24 13:12 U mg/L -0.0132 0.0132								-												
				MS240011-3	050015				00											
WG598946LFB LFB 10/11/24 13:14 MS240911-3 .050015 .049 mg/L 98 85 115 L90587-03LFM LFM 10/11/24 13:42 MS240911-3 .050015 4.37 4.2703 mg/L -199 70 130 M3						4 27								Ma						
								-				4	20							
								-				1	20	IVIS						
L90620-01LFM LFM 10/11/24 14:08 MS240911-3 .050015 .0096 .0532 mg/L 87 70 130 L90620-01LFMD LFMD 10/11/24 14:10 MS240911-3 .050015 .0096 .0507 mg/L 82 70 130 5 20												5	20							
WG599228		2	10/11/2111.10		.000010	.0000	.0001		O.L	, 0	100	Ü	20							
WG599228ICV ICV 10/14/24 13:24 MS240930-3 .05 .0511 mg/L 102 90 110	WG599228ICV			MS240930-3	.05				102											
	144050000000																			
	WG599228ICB																			
	WG598946LRB																			
L90620-01LFM LFM 10/14/24 13:58 MS240911-3 .050015 .0078 .0518 mg/L 88 70 130	WG598946LRB WG598946LFB			MS240911-3	.050015	.0078	.0518	mg/L	88	70	130									
L90620-01LFMD LFMD 10/14/24 14:00 MS240911-3 .050015 .0078 .0523 mg/L 89 70 130 1 20	WG598946LRB WG598946LFB L90620-01LFM	LFM																		
WG599032LRB LRB 10/14/24 14:07 U mg/L -0.0132 0.0132	WG598946LRB WG598946LFB L90620-01LFM L90620-01LFMD	LFM LFMD	D 10/14/24 14:00				.0523			70	130	1	20							
WG599032LFB LFB 10/14/24 14:09 MS241008-3 .050015 .0477 mg/L 95 85 115	WG598946LRB WG598946LFB L90620-01LFM L90620-01LFMD WG599032LRB	LFM LFMD LRB	0 10/14/24 14:00 10/14/24 14:07	MS240911-3	.050015		.0523 U	mg/L	89	70 -0.0132	130 0.0132	1	20							

L90587-2410161040 Page 16 of 23

Inorganic Extended Qualifier Report

ACZ Project ID: L90587

Geosyntec Consultants

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L90587-01	WG599228	Aluminum, total recoverable	EPA 200.8	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, total recoverable	EPA 200.8	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG598610	Sulfate	ASTM D516-07/-11/-16	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG599030	Zinc, dissolved	EPA 200.8	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG599029	Zinc, total recoverable	EPA 200.8	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
L90587-02	WG599228	Aluminum, total recoverable	EPA 200.8	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, total recoverable	EPA 200.8	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG598610	Sulfate	ASTM D516-07/-11/-16	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG599030	Zinc, dissolved	EPA 200.8	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG599029	Zinc, total recoverable	EPA 200.8	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
L90587-03	WG599228	Aluminum, total recoverable	EPA 200.8	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, total recoverable	EPA 200.8	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG598610	Sulfate	ASTM D516-07/-11/-16	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Zinc, dissolved	EPA 200.8	M3	concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG599029	Zinc, total recoverable	EPA 200.8	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.

REPAD.15.06.05.01

L90587-2410161040 Page 17 of 23

Inorganic Extended Qualifier Report

ACZ Project ID: L90587

Geosyntec Consultants

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L90587-04	WG599030	Aluminum, dissolved	EPA 200.8	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, dissolved	EPA 200.8	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG599029	Manganese, total recoverable	EPA 200.8	BB	Target analyte detected in calibration blank at or above acceptance limit. Sample value was > 10X the concentration in the calibration blank.
	WG598610	Sulfate	ASTM D516-07/-11/-16	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
L90587-05	WG599030	Aluminum, dissolved	EPA 200.8	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, dissolved	EPA 200.8	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG599029	Manganese, total recoverable	EPA 200.8	ВВ	Target analyte detected in calibration blank at or above acceptance limit. Sample value was > 10X the concentration in the calibration blank.
	WG598610	Sulfate	ASTM D516-07/-11/-16	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG599030	Zinc, dissolved	EPA 200.8	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
L90587-06	WG599030	Aluminum, dissolved	EPA 200.8	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, dissolved	EPA 200.8	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG599029	Manganese, total recoverable	EPA 200.8	ВВ	Target analyte detected in calibration blank at or above acceptance limit. Sample value was > 10X the concentration in the calibration blank.
	WG598610	Sulfate	ASTM D516-07/-11/-16	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG599030	Zinc, dissolved	EPA 200.8	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.

REPAD.15.06.05.01

L90587-2410161040 Page 18 of 23

ACZ Project ID: L90587

Geosyntec Consultants

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L90587-07	WG599030	Aluminum, dissolved	EPA 200.8	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
		Manganese, dissolved	EPA 200.8	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG599029	Manganese, total recoverable	EPA 200.8	ВВ	Target analyte detected in calibration blank at or above acceptance limit. Sample value was > 10X the concentration in the calibration blank.
	WG598610	Sulfate	ASTM D516-07/-11/-16	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG599030	Zinc, dissolved	EPA 200.8	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
L90587-08	WG599030	Aluminum, dissolved	EPA 200.8	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG598610	Sulfate	ASTM D516-07/-11/-16	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.

REPAD.15.06.05.01

L90587-2410161040 Page 19 of 23

Geosyntec Consultants ACZ Project ID: L90587

No certification qualifiers associated with this analysis

L90587-2410161040 Page 20 of 23

Sample Receipt

L90587

Geosyntec Consultants ACZ Project ID:

Date Received: 10/02/2024 10:57

Received By:

Date Printed: 10/3/2024

Dat	e Printed:	10	10/3/2024	
Receipt Verification				
	YES	NO	NA	
1) Is a foreign soil permit included for applicable samples?			Х	
2) Is the Chain of Custody form or other directive shipping papers present?	X			
3) Does this project require special handling procedures such as CLP protocol?		Х		
4) Are any samples NRC licensable material?			Х	
5) If samples are received past hold time, proceed with requested short hold time analyses?	X			
6) Is the Chain of Custody form complete and accurate?	X			
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the samples	?	Х		
Samples/Containers				
	YES	NO	NA	
8) Are all containers intact and with no leaks?	X			
9) Are all labels on containers and are they intact and legible?	X			
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Time?	X			
11) For preserved bottle types, was the pH checked and within limits? 1	X			
12) Is there sufficient sample volume to perform all requested work?	X			
13) Is the custody seal intact on all containers?			Х	
14) Are samples that require zero headspace acceptable?			Х	
15) Are all sample containers appropriate for analytical requirements?	X			
16) Is there an Hg-1631 trip blank present?			Х	
17) Is there a VOA trip blank present?			Х	
18) Were all samples received within hold time?	X			
	NA indica	tes Not A _l	oplicable	

Chain of Custody Related Remarks

Client Contact Remarks

Shipping Containers

Cooler Id	Temp(°C)	Temp Criteria(°C)	Rad(μR/Hr)	Custody Seal Intact?
7513	4.3	<=6.0	15	Yes

Was ice present in the shipment container(s)?

Yes - Wet ice was present in the shipment container(s).

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

Sample Receipt

Geosyntec Consultants

ACZ Project ID: L90587

Date Received: 10/02/2024 10:57

Received By:

Date Printed: 10/3/2024

REPAD LPII 2012-03

L90587-2410161040 Page 22 of 23

The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCl preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

ق نہ
<u> </u>
2 2

AL 2773 Down	nhill Drive Steamboat S	boratories, In prings CO 80487 (800) 3	IC. (90	587	*	CHAII	N of CL	JSTOI	DY
	Jeff Kur	·L2		Addi		7/	M.	- 4 0		
Company	-			Addi				er's D		
E-mail:		acosanec con	ᅱ	Tala	phone:	7-70	142	0 800 - 558	1	
		1009 TCC COM	<u> </u>	Leie	priorie:	503 -	44-2	- 2280	· · · · · · · · · · · · · · · · · · ·	
	Report to:	2 11							<u> </u>	
Name:	Ryan 1	Jenne TT		E-ma		<u>603</u>	anja	anland	d-com	1
Company	San Juan L	and ibolding to.		Tele	phone:					
Invoice to):									
Name:				Addr	ess:		-			
Company									· · · · · · · · · · · · · · · · · · ·	
E-mail:				Tele	ohone:					
Copy of I	nvoice to:									
Name:	Toll Kurl	2		Addr	ee.					
Company:	Jeff Kurt	• (Auur	C36.					
E-mail:	i Ku-1200	eosyntec.com		Tale					··· <u>-</u> _	
	received past holding	g time (HT), or if insuffici			ohone:			\	cl 1/	
analysis be	fore expiration, shall	ACZ proceed with reques	ted short I	IT anal	vses?			YE NO	$\overline{}$	1
A ra. normali	will contact offset for further lesson	ction. If nother "YES" nor "NO" is indica	and, ACZ will pro		to requested was	yste, even if H	T is expired, as	nd dote will be que	Mary .	1
	s for SDWA Complian	ae Monitoring? Results will be reported	to POL to	Yes		No	Δ			
		Sampler's Site Info					. 20	13 4 -		
	Signature: Bio		hed to the suther			, i . i undessite	Ode <u>014</u> nd that intentic	133 Time	e Zone <u>i M.</u> Per territaria	O T
	INFORMATION		harded reign (tre to	mple is an	open a desire		Salada by Si	abilia. At stille gusto		
	BOUTA-PEAK-	.<)					50071156737	ige de ome dinase	2.3.1.6.54	
PO#:	WINT FUZ	30	-	of Containers	2					İ
	tate for compliance testi	inn'		1 1 1	2	- 1				
	samples include NRC	··-	1	8	300/174 6.3	İ				
	E IDENTIFICATION	DATE:TIME	Matrix		ğ					
10	23	9/30/24 8:50 4		3	7	-	+			
Ad	221	12.1		_	2	-	+			
400	LB1 dup	9/30/24 9:40		3	1					
DW.		10.57.	11.130	3			+-+			
FI	<i>T</i>				 		╂─┤		 	
FG	1 <u>4</u>	M / 10 /	An SW	3	×		1-1			
- A	4du0	9 /30/24 1:454		3	<u> </u>	- -	╅		+ -	
1201			24 5W	3			+		+	
		14/30/24 2:40	Phou	3	<u> </u>		+	_	+ -	
		<u> </u>	 		 					
Matrix	SW (Surface Water) - G	W (Compatible and a Mark Compa	1 1 1 1							
REMARKS		W (Ground Water) - WW (Was	viaser) · D	*** (D(\$1)	raud AAstol) .	ot (Studge)	· 50 (Soli)	- OF (OII) · O	ther (Specif	y)
	encolulad	sempling for								
	Please re	fer to ACZ's terms & cor	nditions lo	cated o	n the reve	rse side (of this CC	Ç.		
	RELINQUISHED BY					EIVED B			ATE:TIM	1E
~~	97			- /-	777	7				
	riana In	10/01/	24 4 11	um	Kr. 3.			1/(0/2	424 1	1057
	mana /sh	10/01/	24 4.1	Vm.	<u>h</u>	٢	··	10/2	1/24 1	(05/
	syana /sh	[0/01]	24 4:1	Vm.	KR			10/2	424 1	(U2)

APPENDIX F Data Validation Results

Project: DE0247 London & Ben Franklin Mines, Silverton, CO	Completed by: O. Bojan	Reviewed by: J. Kurtz
Laboratory Name/Report ID: ACZ/ L90587	Date: 10/17/2024	Date: 10/25/2024

Item	Y	N	NA	Reviewer	Comments
Field Document Review					
1. Does the total number of samples analyzed in this data package		X			8 samples total including 2 duplicates (A07B1 DUP
exceed 20 samples (does not include QA samples)?					and EG4A DUP) were evaluated.
If more than 20 samples, review 1 in 20 per the QAPP. List			X		
additional samples reviewed in comments.					
2. Were all sample identities consistent in field notes, forms, and COC?	Х				Field forms were provided, and sample IDs are consistent with COCs.
3. Were field calculations (e.g., field parameters and water levels) accurate?	X				Recorded for each location in the correct units.
4. Were the samples collected, preserved, and shipped in accordance with project specs?	X				The Sample Receipt form noted that the sample cooler temperature was below the acceptable limit of 6.0°C.
					Field forms reported that samples for sulfate and dissolved metals analysis were filtered in the field.
5. If any problems were detected in the review of selected	X				All samples were evaluated, and no additional issues
samples, all samples represented by the data package must be					were noted.
evaluated. Was it necessary to evaluate all samples?					
Chain of Custody (COC)					
1. Is the project name listed?	X				The quote "Bonita-Peak-SW" is listed.
2. Are the client sample IDs listed?	X				
3. Are the sample matrices listed?	X				
4. Are the date & time of sample collection listed for each	X				
sample?					
5. Are the sample preservations noted?		X			The COC references the quote but does not specify
					preservations. The lab provides pre-preserved bottles
6. Are the analyses noted?		X			The COC references the quote but does not specify
					analyses as is standard practice for this lab and
					project. The lab provides proposed analyses to the PM
					via email for verification prior to analysis

Item	Y	N	NA	Reviewer	Comments
7. Are the samples properly relinquished and received?	X				
Report Review					
1. Sample receipt issues noted/described?	X				No issues were noted in the Case Narrative.
2. Date & time of lab receipt noted?	X				
3. Lab IDs match those listed on COC?	X				
4. Lab completed analyses for all samples collected?	X				
5. Did all samples arrive in good condition at the laboratory?	X				
6. Was the sample login information complete and compared to	X				
the COC?					
7. Is the report narrative present and complete?	X				Cover and reference pages provided.
8. Did the case narrative flag any issues not noted elsewhere?		X			No issues noted.
9. Did the electronic data deliverable (EDD) match the lab	X				Confirmed.
report?					

Comments:

Analysis: Dissolved and Total Recoverable (TR) Metals by			NA	Reviewer	Comments
EPA Methods 200.7 ICP and 200.8 ICP-MS					
A. Initial Review					
1. Are the correct compound lists reported?	X				
2. Are all the compounds reported in the blanks and LCSs?	X				
3. Are the sample results consistently reported to the MDLs?	X				
4. Are the MDLs at or below the project action limit (PAL) listed in the QAPP?		X			Some MDLs for aluminum (Al) and manganese (Mn) were elevated due to sample dilution but were associated with sample concentrations above the PQLs.
5. Are the lab flags defined?	X				
6. Are the units correct?	X				
7. Are the times of analyses reported?	X				
8. Are the methods the same as those in the QAPP?	X				
9. Were lab flags correctly applied?	X				
B. Holding Time and Preservation					

Analysis: Dissolved and Total Recoverable (TR) Metals by EPA Methods 200.7 ICP and 200.8 ICP-MS		N	NA	Reviewer	Comments
1. Holding times met?	X				
2. Samples appropriately preserved?					No issues noted; samples were preserved with HNO ₃ per the field forms.
C. Quality Control (QC) Samples					
1. Blanks: 1/20 samples & should not contain any target analyte at a concentration greater than the RLs?	x				Sufficient ICBs and LRBs were provided for dissolved and TR metals QC. No detections above RLs/PQLs.
 Review detections in the samples and qualify as appropriate as indicated in the EPA NFG. 			Х		All affected sample values were greater than 10x the calibration blank concentration.
2. Surrogates (organic analyses only): in all samples & QC samples and within laboratory limits?			Х		
a. If surrogates outside the limits, qualify as appropriate as indicated in the EPA NFG.			Х		
3. LCS (& LCSD if presented): 1/20 samples and within laboratory limits?	X				LFBs were reported for all compounds and were within QC limits.
 a. If recoveries outside the limits, qualify associated samples as appropriate as indicated in the EPA NFG. 			X		
 If LCSD samples are present, evaluate precision. If RPD outside the limits qualify associated samples as appropriate. 			X		
4. MS/MSD: 1/20 samples and within laboratory limits?		х			 LFM/LFMD or AS/ASD pairs were reported for all compounds. All recoveries and RPDs were within QC limits except for the following: Dissolved Al in the AS/ASD run on A07B in WG599030; % recoveries were below QC limits. TR Al in the LFM/LFMD run on A07B1 DUP in WG599029 and WG599228; % recoveries were above QC limits in WG599228 and below QC limits in WG599029. Dissolved Mn in the AS/ASD run on A07B in WG599030; % recoveries were below QC limits.

Analysis: Dissolved and Total Recoverable (TR) Metals by EPA Methods 200.7 ICP and 200.8 ICP-MS	Y	N	NA	Reviewer	Comments
					 TR Mn in the LFM/LFMD run on A07B1 DUP in WG599029 and WG599228; % recoveries were above QC limits in WG599029. Dissolved zinc (Zn) in the AS/ASD run on A07B in WG599030; % recoveries were below QC limits. TR Zn in the LFM/LFMD run on A07B1 DUP in WG599029; % recoveries were below QC limits. The results in the LFM/LFMD or AS/ASD and associated samples were qualified "M3" indicating the % recoveries are unusable since the analyte concentration in the sample is disproportionate to the spike level. The % recoveries of the associated control samples (LCS or LFB) were acceptable. No additional qualification is required.
a. If recoveries or RPD outside the limits, qualify associated sample as appropriate as indicated in the EPA NFG.			X		RPDs for AS/ASDs and LFM/LFMDs were reported and were within QC limits.
5. Laboratory Duplicate: 1/20 sample and within laboratory limits?	Х				RPDs for AS/ASDs and LFM/LFMDs were within QC limits.
a. If RPD outside the limits, qualify associated sample as appropriate as indicated in the EPA NFG.			Х		
6. Instrument Performance Checks, Internal Standard Areas (and other laboratory QC not listed above) within laboratory limits?	х				ICV reported for all compounds and within QC limits. CCV not provided for this level of reporting.
D. Field QC Samples					
1. Field QC analyzed (e.g., field blanks, dups)?	Х				Two duplicate samples (A07B1 DUP and EG4A DUP) are evaluated below.
2. Field QC blank results acceptable:					
a. Field blank?			x		Not required by SAP
b. Equipment blank?			х		No equipment rinse blank is required per the SAP based on use of disposable sampling equipment.

Analysis: Dissolved and Total Recoverable (TR) Metals by EPA Methods 200.7 ICP and 200.8 ICP-MS	Y	N	NA	Reviewer	Comments
3. Field duplicate analyzed?	X				
4. Field duplicate RPD criteria met (50% RPD metals)?	X				See comparison table. No qualifiers required.

Notes:

Analysis: Sulfate by ASTM Method D516-02/-07/-11 - Turbidimetric	Y	N	NA	Reviewer	Comments
A. Initial Review		+			
1. Are the correct compound lists reported?	х				
2. Are the sample results consistently reported to the RLs?	х				
3. Are the MDLs at or below the PAL listed in the QAPP?		X			MDLs are above the PALs listed in the QAPP but are elevated due to sample dilutions; concentrations above the PQLs.
4. Are the lab flags defined?	X				
5. Are the units correct?	X				
6. Are the times of analyses reported?	x				
7. Are the methods the same as those in the QAPP?	X				
8. Were lab flags correctly applied?	X				
B. Holding Time and Preservation					
1. Holding times met?	X				
2. Samples appropriately preserved?	X				
C. Quality Control (QC) Samples					
1. Blanks: 1/20 samples & should not contain any target analyte at a concentration greater than the MDLs?	x				One ICB was reported and is within QC limits.
a. Review detections in the samples and qualify as appropriate as indicated in the EPA NFG.			Х		
2. Surrogates (organic analyses only): in all samples & QC samples and within laboratory limits?			X		
a. If surrogates outside the limits, qualify as appropriate as indicated in the EPA NFG.			Х		
3. LCS (& LCSD if presented): 1/20 samples and within laboratory limits?	X				One LFB was reported and is within QC limits.

L90587 DV checklist_DRAFT_Bonita Peak SW Sept 2024 Lab ID: ACZ – L90587 Page 5 of 9

Analysis: Sulfate by ASTM Method D516-02/-07/-11 -	<u> </u>	N	NA NA	Reviewer	Comments		
Turbidimetric							
a. If recoveries outside the limits, qualify associated			X				
samples as appropriate as indicated in the EPA NFG.							
b. If LCSD samples are present, evaluate precision. If RPD			X				
outside the limits qualify associated samples as							
appropriate.							
4. MS/MSD: 1/20 samples and within laboratory limits?		X			One AS/ASD pair was reported using a sample		
					unrelated to this SDG. The AS is qualified "M3" to		
					indicate that the spike recovery value is unusable		
					since the sulfate concentration in the sample is		
					disproportionate to the spike level. The recovery of		
					the associated control sample (LCS or LFB) was acceptable.		
a. If recoveries or RPD outside the limits, qualify associated			X		No additional qualification is required.		
sample as appropriate as indicated in the EPA NFG.			A		Two additional qualification is required.		
5. Laboratory Duplicate: 1/20 sample and within laboratory	x				RPD for the AS/ASD was within QC limits.		
limits?	**				The for the field was within the minus.		
a. If RPD outside the limits, qualify associated sample as			Х				
appropriate as indicated in the EPA NFG.							
6. Instrument Performance Checks, Internal Standard Areas (and	X				ICV reported and within QC limits. CCV not provided		
other laboratory QC not listed above) within laboratory limits?					for this level of reporting.		
D. Field QC Samples							
1. Field QC analyzed (e.g., field blanks, dups)?	X				Two duplicate samples (A07B1 DUP and EG4A		
					DUP) are evaluated below.		
2. Field QC blank results acceptable:							
a. Field blank?			X		Not required by SAP		
b. Equipment blank?			X		No equipment rinse blank is required per the SAP based on use of disposable sampling equipment.		
3. Field duplicate analyzed?	Х						
4. Field duplicate RPD criteria met (20% RPD)?	Х				See comparison table. No qualifiers required.		

Notes:

Analysis: Hardness as CaCO3 (dissolved) by Method SM2340B		N	NA	Reviewer	Comments
A. Initial Review					
1. Are the correct compound lists reported?	Х				
2. Are the sample results consistently reported to the RLs?	Х				
3. Are the MDLs at or below the PAL listed in the QAPP?	X				PQL calculation reported at 5 mg/L with MDL of 0.2 or an MDL of 0.5 mg/L.
4. Are the lab flags defined?	X				
5. Are the units correct?	X				
6. Are the times of analyses reported?	X				
7. Are the methods the same as those in the QAPP?	X				
8. Were lab flags correctly applied?			x		No flags were necessary.
B. Holding Time and Preservation					
1. Holding times met?	X				
2. Samples appropriately preserved?	X				
C. Quality Control (QC) Samples					
1. Blanks: 1/20 samples & should not contain any target analyte			x		
at a concentration greater than the MDLs?					
a. Review detections in the samples and qualify as appropriate as indicated in the EPA NFG.			X		
2. Surrogates (organic analyses only): in all samples & QC			X		
samples and within laboratory limits?					
a. If surrogates outside the limits, qualify as appropriate as indicated in the EPA NFG.			X		
3. LCS (& LCSD if presented): 1/20 samples and within			X		
laboratory limits?					
a. If recoveries outside the limits, qualify associated samples as appropriate as indicated in the EPA NFG.			X		
b. If LCSD samples are present, evaluate precision. If RPD outside the limits qualify associated samples as appropriate.			х		
4. MS/MSD: 1/20 samples and within laboratory limits?			Х		
a. If recoveries or RPD outside the limits, qualify associated sample as appropriate as indicated in the EPA NFG.			х		

Analysis: Hardness as CaCO3 (dissolved) by Method			NA	Reviewer	Comments
SM2340B					
5. Laboratory Duplicate: 1/20 sample and within laboratory limits?			X		
a. If RPD outside the limits, qualify associated sample as appropriate as indicated in the EPA NFG.			X		
6. Instrument Performance Checks, Internal Standard Areas (and other laboratory QC not listed above) within laboratory limits?			X		
D. Field QC Samples					
1. Field QC analyzed (e.g., field blanks, dups)?	Х				Two duplicate samples (A07B1 DUP and EG4A DUP) are evaluated below.
2. Field QC blank results acceptable:					
a. Field blank?			Х		Not required by SAP
b. Equipment blank?			Х		No equipment rinse blank is required per the SAP based on use of disposable sampling equipment.
3. Field duplicate analyzed?	Х				
4. Field duplicate RPD criteria met (20% RPD)?	X				See comparison table. No qualifiers required.

Notes:

Definitions

EPA NFG - USEPA National Functional Guidelines for Inorganic Superfund Methods Data Review, November 2020, (OLEM 9240.1-66, EPA 542-R-20-006)

QAPP - Quality Assurance Project Plan

SAP – Sampling and Analysis Plan

QC - Quality Control

MDL - Method Detection Limit

RL - Reporting Limit

PQL - Practical Quantitation Limit

RPD – Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MSD – Matrix Spike Duplicate

LFB - Laboratory Fortified Blank

L90587 DV checklist_DRAFT_Bonita Peak SW Sept 2024

Lab ID: ACZ - L90587

Page 8 of 9

LRB -Laboratory Reagent Blank

AS – Analytical Spike (Post Digestion)

ASD - Analytical Spike (Post Digestion) Duplicate

LFM – Laboratory Fortified Matrix

LFMD –Laboratory Fortified Matrix Duplicate

DUP – Sample Duplicate ICB – Initial Calibration Blank

ICV - Initial Calibration Verification standard

CCV – Continuing Calibration Verification standard

Ben Franklin Mine Data Validation EG4A AND EG4A (DUP) SEPTEMBER 2024 - SAMPLE / SAMPLE DUP COMPARISON

Samp id	Type	Samp date	Analysis	Analyte	Result (mg/L)	RL	RLx5	+/-	% RPD	Flag?
EG4A	SA	9/30/2024	Dissolved	Calcium, dissolved	39.9	0.5	0.5		0.50	
EG4ADUP	FD	9/30/2024	Dissolved	Calcium, dissolved	40.1	0.5	2.5		-0.50	N
EG4A	SA	9/30/2024	Dissolved	Magnesium, dissolved	3.88	1	-	4.8800		N
EG4ADUP	FD	9/30/2024	Dissolved	Magnesium, dissolved	3.9 1 5 2.9000 0.024 0.015 0.075 0.0390			N		
EG4A	SA	9/30/2024	Dissolved	Aluminum, dissolved	0.024	4 0.015		0.0390		N
EG4ADUP	FD	9/30/2024	Dissolved	Aluminum, dissolved	0.0316 0.015 0.075 0.0390 0.0316 0.015			IN		
EG4A	SA	9/30/2024	Total Recoverable	Aluminum, total recoverable	0.0404	0.015	0.075	0.0554		N
EG4ADUP	FD	9/30/2024	Total Recoverable	Aluminum, total recoverable	0.04	0.015 0.0254			IN .	
EG4A	SA	9/30/2024	Dissolved	Cadmium, dissolved	0.000882	0.00025	0.0013	0.001132		
EG4ADUP	FD	9/30/2024	Dissolved	Cadmium, dissolved	0.000862	0.00025	0.0013	0.000632		N
EG4A	SA	9/30/2024	Total Recoverable	Cadmium, total recoverable	0.000841	0.00025	0.0040	0.001091		
EG4ADUP	FD	9/30/2024	Total Recoverable	Cadmium, total recoverable	0.000847	0.00025	0.0013	0.000591		N
EG4A	SA	9/30/2024	Dissolved	Copper, dissolved	0.00288	0.002	0.04	0.0049		
EG4ADUP	FD	9/30/2024	Dissolved	Copper, dissolved	0.00295	0.002				N
EG4A	SA	9/30/2024	Total Recoverable	Copper, total recoverable	0.00415	0415 0.002 0.01		0.00615		
EG4ADUP	FD	9/30/2024	Total Recoverable	Copper, total recoverable	0.00407 0.002 0.01 0.00215			N		
EG4A	SA	9/30/2024	Dissolved	Lead, dissolved	0.00023	0.0005	0.0025	0.00073		N
EG4ADUP	FD	9/30/2024	Dissolved	Lead, dissolved	0.0004	0.0005	0.0025	-0.00027		IN
EG4A	SA	9/30/2024	Total Recoverable	Lead, total recoverable	0.00138	0.0005	0.0025	0.00188		
EG4ADUP	FD	9/30/2024	Total Recoverable	Lead, total recoverable	0.00144	0.0005	0.0025	0.00088		N
EG4A	SA	9/30/2024	Dissolved	Manganese, dissolved	0.0682	0.002	0.01		1.00	N
EG4ADUP	FD	9/30/2024	Dissolved	Manganese, dissolved	0.0671	0.002 0.01		1.63 N	IN .	
EG4A	SA	9/30/2024	Total Recoverable	Manganese, total recoverable	0.0698	0.002	0.01		-0.29	N
EG4ADUP	FD	9/30/2024	Total Recoverable	Manganese, total recoverable	0.0700	0.002	0.01		-0.29	IN .
EG4A	SA	9/30/2024	Dissolved	Zinc, dissolved	0.396	0.015	0.075		2.56	N
EG4ADUP	FD	9/30/2024	Dissolved	Zinc, dissolved	0.386	0.015	0.075		2.56	IN .
EG4A	SA	9/30/2024	Total Recoverable	Zinc, total recoverable	0.366	0.015	0.075		4.40	
EG4ADUP	FD	9/30/2024	Total Recoverable	Zinc, total recoverable	0.362	0.015	0.075		1.10	N
Samp id	Туре	Samp date	Analysis	Analyte	Result (mg/L)	RL	RLx5	+/-	% RPD	Flag?
EG4A	SA	9/30/2024		Sulfate	80.7	25	125	105.7		N
EG4ADUP	FD	9/30/2024		Sulfate	88.9	25	125	63.9		IN
Samp id	Туре	Samp date	Analysis	Analyte	Result (mg/L)	RL	RLx5	+/-	% RPD	Flag?
EG4A	SA	9/30/2024	Dissolved	Hardness as CaCO3	116	5	25		0.00	N
EG4ADUP	FD	9/30/2024	Dissolved	Hardness as CaCO3	116	5	20		0.00	"

APPENDIX G

Metadata Attachment to Figure 1

Core EPA Metadata Fields https://www.epa.gov/geospatial/epa-metadata-technical-specification

Field Name	Description	Required?	Geospatial Only?	Applicable to DE0247?
Title	"Surface Water Sampling Locations, Ben Franklin Mine, Eureka Gulch, Colorado, September 2022, Geosyntec Consultants, Greenwood Village, Colorado (EPA Region 8)"	Yes		Yes
Description	"A total of 4 surface water samples were collected (including one duplicate) at the historic Ben Franklin Mine in Eureka Gulch, within the Bonita Peak Mining District Superfund site, near Silverton, Colorado. Locations were selected upstream and downstream of the area of adit discharge and at the adit discharge. A fifth surface water location had a trickle of flow from a rain event and only flow was measured. The five GPS locations were differentially corrected and imported into a file geodatabase, attributed to indicate location, sample collection procedure, and notes."	Yes		Yes
Tags (General)				
Tags (ISO)				
Tags (Place)				
Tags (EPA Org)				
Tags (EPA Theme)				
Tags (Federal Program Code)				
Last Update				
Publishing Organization	Geosyntec Consultants	Yes		Yes
Publisher	Geosyntec Consultants	Yes		Yes
Publisher Email	ikurtz@geosyntec.com	Yes		Yes
Identifier				
Access Level				
Rights				
Data License				
System of Records				
General Use Limitation				
Spatial Extent				
Temporal				
Distribution URL				
Metadata Date Stamp				
Update Frequency				
Metadata Responsible Party				
Language	English	Yes		Yes
County	San Juan County			
Spatial Reference				
Spatial Data Representation				

APPENDIX H 2022 Willow Planting and 2023 Willow Growth Photographs

Geosyntec Consultants Photographic Record

Client: Eureka Gulch Properties LLC Project Number: DE0247

Site Name: Ben Franklin Mine/Bonita Peak NPL | Site Location: Silverton, CO

Photograph 1

Date: 10/01/2022

Direction: W

Comments: Hand planting of willows into ¾ inch drilled holes on southern portion of Ben Franklin reclaimed waste rock dump

Photograph 2

Date: 9/25/2023

Direction:

Comments: Willow growth on reclaimed Ben Franklin waste rock since 2022

