

Introduction

The U S Environmental Protection Agency (EPA) Region 7 is providing this fact sheet as a public guidance on mine waste usage in the states of Missouri and Kansas Some residual wastes from mining are a commercial commodity and have been used for many years Proper use of the wastes can reduce some threats to the environment and to human health that currently exist Removing chat piles and covering tailings can also bring non productive land back to beneficial and safe use However improper uses of mine wastes may increase the threat to human health and the environment. The ultimate use of the material should not allow people and in particular young children to come into contact with the material easily

Site Background

C

Historic lead and zinc mining in the Midwest was centered in two major areas the Tri State area covering more than 2 500 square miles in southwestern Missouri southeastern Kansas and northeastern Oklahoma and the Old Lead Belt covering about 110 square miles in southeastern Missouri. The first recorded mining occurred in the Old Lead Belt in about 1742. The production increased significantly in both the Tri state area and the Old Lead Belt during the mid 1800s and lasted up to 1972. Cuirently production still occurs in a third area the Viburnum Trend in southeastern Missouri. Mining and milling of ore produced more than 500 million tons of wastes in the Tri State area and about 250 million tons of wastes in the Old Lead Belt. More than 75 percent of the waste has been removed and used for many purposes over the years Today approximately 100 million tons of waste remain in the Tri State area and 60 million tons in the Old Lead Belt. EPA Region 7 the states of Kansas and Missouri local communities and private companies are working together to seek solutions to the potential adverse impacts of these mine wastes which are contaminated with lead zinc cadmium and other metals

Chat and Tailings

Ore production consisted of crushing and grinding the rock to standard sizes and separating the ore Ore processing was accomplished in either a dry gravity separation or through a wet flotation separation Dry processes produced a fine gravel waste commonly called chat The

flotation process resulted in the creation of tailings ponds used to settle out material from solution. The wastes from flotation are typically sand and silt size and are called tailings. Milling resulted in large chat waste piles and in flat areas with tailings deposited some depth below the ground surface. Tailings are generally held in a dammed impoundment and contain higher concentrations of heavy metals and therefore present a higher risk to human health and the environment through ingestion.

Another lesser source of mine waste is called development rock Development rock is the waste rock generated in drilling shafts to the deep mines and therefore did not come from the major ore producing rocks Typically development rock consists of large boulders and is locally known as bullrock Smelters also operated historically in Kansas Missouri and Oklahoma but this fact sheet does not address smelter related wastes

Legal Considerations

If waste material is used in a way that creates a threat to human health or the environment the owner of the property and the party responsible for creating the hazardous situation could be liable for a cleanup under the Superfund law Because these mine wastes often contain lead cadmium zinc or other metal contaminants at levels that present a risk to both human health and the environment using them in situations that would allow people or species to regularly come into contact with the material could result in unacceptable situations which could be considered a Superfund problem. The property owners haulers operators and individuals or businesses that sell buy or use mine waste materials need to ensure they are using the materials in a manner that prevents direct contact by human and ecological receptors and is not detrimental to the environment

Typical uses

EPA and the states of Kansas and Missouri are willing to provide assistance in reviewing specific uses of mine wastes but have no formal approval procedures. The following is a list of typical uses of mine wastes with a general assessment of whether or not the use may result in significant human health or environmental threats. The list represents EPA Region 7 s views on acceptable and unacceptable uses of mine wastes.

Mine waste uses that are not likely to present a threat to human health or the environment

- Applications that bind material into a durable product These would include its use as an aggregate in batch plants preparing asphalt and concrete (note other engineering and chemical properties of the chat may not be compatible with its use in concrete)
- Applied below paying on asphalt or concrete roads and parking lots

- Applications that cover the material with clean material particularly in areas that are not likely to ever be used for residential or public area development Examples would include spreading chat around utility pipe in excavated trenches or placing chat as deep fill on commercial sites
- Applications that use the material as raw product for manufacturing a safe product such as in glass or manufacturing

Mine waste uses that may present a threat to human health or the environment

- Playground sand or surface material in play areas
- Driveways parking lots and roadways including roadway shoulders that are not paved
- Residential usages in general The placement in a residential setting could cause a problem in the future if an unknowing person excavated the material and allowed it to be re exposed Also construction of residential homes or siting public use areas such as parks or playgrounds on or very near mine waste piles may result in unacceptable exposures
- Public areas in which children play such as paiks and school grounds
- Placement of fill material which comes in contact with free standing
 water in an excavation or with surface water
- Sandblasting
- Use as an agricultural soil amendment to adjust soil alkalinity

Additional Information

If you would like additional information about this fact sheet or Superfund mining sites in Kansas or Missouri please contact EPA Region 7's Office of External Programs 901 N 5th Street Kansas City Kansas 66101 1 913 551 7003 or toll free in Kansas and Missouri 1 800 223 0425

ł

A STUDY ON THE POSSIBLE USE OF CHAT AND TAILINGS FROM THE OLD LEAD BELT OF MISSOURI FOR AGRICULTURAL LIMESTONE

٢

by

Bobby G Wixson Nord L Gale and Brian E Davies

a series a second a second

Page

I	INT	RODUCTION ~	2
II	OBJ	IECTIVES	3
III	RES	EARCH METHODOLOGY	4
	A	Tailings and Chat	5
	B	Soils	5
	C	Vegetation	6
	٢D	Bioassays	6
	Ε	Commercial Limestone	7
	F	Quality Control	7
IV	STI	JDY AREA	8
۷	CH/	ARACTERIZATION OF TAILINGS AND CHAT PILES	11
	A	Leadwood	15
	8	Big River-Desloge	27
	C	National	27
	D	Elvins	44
	£	Bonne Terre	45
	F	Statistical Analysis of Different Tailings Piles	45
٧I	FI	ELD STUDIES OF TAILINGS USED FOR AGRICULTURAL	
	LII	MESTONE PURPOSES	57
VII	CO	MMERCIAL LIMESTONE STUDIES	76
VIII	PL	ANT METAL UPTAKE STUDIES	81
IX	CO	NCLUSIONS	91
ACKNO	WLED	GEMENTS	94
REFER	ENCE	5	96
APPEN	DIX		99

.

_

- ---

- -

LIST OF FIGURES

Figur	re	Page
1	Location of Old and New Lead Belts of Missouri	9
2	Location of Tailings Piles Studied in the Old Lead Belt	12
3	Distribution of Lead in Sediments of Big River	
	Associated with Tailings Piles	13
4	Lead in Water of Big River in the Old Lead Belt Region of	
	Missouri	14
5	Location of Sampling Sites on Leadwood Tailings Pile	16
6	Location of U.S. Bureau of Mines Auger and Core	
	Sampling Sites on Leadwood Tailings Pile	21
7	Location of Sampling Sites (Big River-Desloge	
	Tailings Pile)	28
8	Location of Sampling Sites at the National Tailings	
	Pile (15)	32
9	Location of Sampling Sites on Elvins Tailings Pile	46
10	Location of Sampling Sites on Bonne Terre Tailings Pile	49
11	Location of Sampling Sites on Benne Terre Tailings Flat	52
12	Location of Sampling Sites on T Ferguson Farm Near	
	Farmington, Missouri	59
13	Lead in Radish Grown on Experimental Soils	85
14	Cadmium in Radish Grown on Experimental Soils	86
15	Lead in Lettuce Grown on Experimental Soils	87
16	Cadmium in Lettuce Grown on Experimental Soils	88

-

Table		Page
1	Leadwood Tailings Pile	18
2	Auger and Core Sampling of Leadwood Tailings	
	Pile (Courtesy Bureau of Mines)	22
3	Rotary Core Sampling of Leadwood Tailings Deposit	
	Inductive Coupled Argon Plasma Analysis (ICAP) for	
	Site R-1 by Depth (Units are Micrograms/gram)	24
4	Rotary Core Sampling of Leadwood Tailings Deposit	
	Inductive Coupled Argon Plasma (ICAP) Analysis for	
	Site R-2 by Depth (Units are Micrograms/gram)	25
5	Big River-Desloge Tailings Pile	29
6	National Tailings Pile (15)	33
7	Statistical Analysis of Heavy Metals in the National	
	Taווngs Pile (14) Note All Values וה ppm	38
8	Auger and Core Samples on National Tailings Pile	
	(Courtesy of Bureau of Mines)	41
9	Rotary Core Sampling of National Tailings Deposit	
	Inductive Coupled Argon Plasma Analysis (ICAP) for Sites	
	R-3 and R-4 by Depth (Units are micrograms/gram)	42
10	Rotary Core Sampling of National Tailings Deposit	
	Inductive Coupled Argon Plasma (ICAP) Analysis for Site	
	R-5 by Depth (Units are micrograms/gram)	43
11	Elvins Tailings Pile	47

Table	2	Page
12	Bonne Terre Tailings Pile	50
13	Bonne Terre Tailings Flat	53
14	Statistical Analysis of Heavy Metals in the	
	Different Tailings Piles	55
15	Soil and Vegetation Analysis (ICAP) for Sample Sites	
	on Ferguson Farm (Units in Micrograms/gram)	60
16	Soll Analysis (AAS) for Sample Sites on Ferguson Farm	72
17	Soil and Vegetation Analysis (ICAP) for the Young	
	Farmers Field Where Tailings Were Used for Agricultural	
	Limestone (Units in Micrograms/gram)	74
18	Soil and Vegetation Analysis (ICAP) for Crider Soil	
	(Control) Near Farmington Missouri (Units are in	
	Macrograms/gram)	75
19	Location of Commercial Agricultural Limestone Used in	
	Study and Lead Contents (ug/g)	77
20	ICAP Analysis (ug/g) for Commercial Limestone	78
21	Lead, Cadmium and Zinc in Soil, Tailings and	
	Agricultural Lime Used in Experimental Soils	
	(Micrograms/gram Dry Weight)	84

-

·· · - ·---

····--

A STUDY ON THE POSSIBLE USE OF CHAT AND TAILINGS FROM THE OLD LEAD BELT OF MISSOURI FOR AGRICULTURAL LIMESTONE

By Bobby Wixson, Nord Gale and Brian Davies

I INTRODUCTION

Lead and zinc mining and milling procedures have historically produced large quantities of gange or waste rock from which most but not all of the ore minerals have been removed From 1850 to 3960 three major lead and zinc mining districts were developed in Missouri's Lead Belt which contributed to the state becoming the primary producer of lead for the United States in 1902 Initially most of this production came from the Old Lead Belt in Madison and St Francis Counties with St Joseph Lead Company being the main producer However these resources became worked out and the mines in the Old Lead Belt were closed by 1965 This closure was also due to the discovery of the Viburnum Trend or New Lead Belt developed during 1968 which presently produces some 92% of the total U S lead production (1)

During the productive life of the Old Lead Belt two different methods of mineral beneficiation were employed. The first method used density separation or jigging which produced a coarse waste rock material called chat. This material was commonly disposed of in large piles or heaps often resembling small mountains. From 1915 to 1922, the froth flotation method of separating lead zinc and copper from the parent rock by the use of chemical collectors was developed resulting in a finer particle waste rock material (tailings) and a more effective removal of sulphide minerals. Therefore, three general types of chat heaps or tailings piles exist in the "Old Lead Belt' area of Missouri These are 1) chat, 2) tailings, 3) a mixture of chat and tailings representing historical changes in ore separation and mineral collection technology

These rather dominant waste hills or deposits of chat or tailings, unless specially treated will remain sterile of vegetation because of unfavorable physical properties (e.g. surface instability or moisture retention characteristics), lack of essential plant nutrients, and residual concentrations of heavy metals. The tailings or chat heaps may be unsightly and environmentally damaging if the rock waste material is blown or washed from the hills into neighboring fields or waterways (2). The most common ameliorative practice to date has been by landscaping and revegetation. However, the chat or tailings heaps also offer the possibility of being used as an economically valuable material such as in building foundations highway construction and use of the calcareous material as agricultural limestone. However, questions were raised concerning residual heavy metal content which might restrict the use of tailings or chat for use as agricultural limestone purposes.

According to Davies and Roberts (3) and other studies (4) similar reuse of limestone tailings in north Wales (Great Britain) was believed to have contributed to the formation of a major contamination area (171 km² contaminated by Pb) resulting in significant problems of heavy metal uptake by vegetables Also, the residual organic content following froth flotation had limited reuse in Derbyshire, England (5)

The Missouri Department of Natural Resources (DNR) has been constantly asked by the public and the mining industries if the tailings, or chat materials in the Old Lead Belt area might be used as agricultural limestone

- Marganet - ----

thereby presenting a potential for resource reuse and contributing to removal of a possible pollution source However, additional research information was needed on the chemical characterization and metals possibly available to soil and plants if the tailings or chat materials were to be used for agricultural lime purposes

Based on the needs of the Missouri DNR a research study was designed and performed to answer these important research questions

II OBJECTIVES

Based on the needs noted and a request from the Missouri DNR the objectives of this study were to

- Characterize physical and chemical composition of selected cnat and tailings piles in the Old Lead Belt and New Lead Belt
- 2 Collect and analyze soil and vegetation samples from fields where tailings or chat had been previously used as agricultural lime
- 3 Collect and analyze soil and vegetation samples from control areas where commercial limestone has been applied for at least five years
- 4 Perform bioassays for plant uptake of metals in radish and lettuce plants grown on uncontaminated soil agricultural limestone (controls) and soils treated with tailings or chat with the pH adjusted to 7 or neutral
- 5 Surmarize and evaluate analytical results to determine if selective tailings or chat materials might be used for agricultural purposes without the bioconcentration of heavy metals from the soil to the plant system at levels which might be of concern to public health

III RESEARCH METHODOLOGY

A research program was proposed which involved both survey, experimental and analytical work with the objectives of characterizing the Old Lead Belt chat and tailings chemically and establishing, if these materials were applied to the land as agricultural limestone, whether they might release heavy metals to the soil-plant system at levels of concern for public health. Since the Old Lead Beltinitially utilized older, less efficient extractive technologies, it was proposed to also survey some selected tailings from newer mining operations in the Viburnum Trend where more effective ore concentration techniques are presently employed

In St Francois County there are six major chat or tailings areas at Leadwood down the Big River to the Desloge pile in a meander loop of the river at Bonne Terre the Elvins tailings pile the Federal tailings pile and the National tailings pile at Flat River Missouri All except the Federal tailings were studied in the Old Lead Belt. Two further tailings piles were investigated in the New Lead Belt at the St Joe Viburnum operation and the Cominco American Magmont Mine

Meetings were held with the Missouri DNR project director Mr John C Ford, and a statistical package was developed for the necessary number of samples needed for each chat or tailings pile to attain the level of confidence needed by the Missouri DNR The number of samples collected followed the population standard deviation suggested for the 95% confidence level

A Tailings and Chat

Tailings and chat samples were taken along a number of transects which were determined to be most representative of the tailings or chat pile At each sample location, samples were collected from approximately the 20 - 40 cm depth below the surface This was intended to distinguish between weathered and leached surface material and the less altered interior material Samples were bagged in polyethylene and labelled as to location in the respective pile. The material was returned to the laboratory air dried and sieved with the less than 40-mesh fine fraction being dissolved in nitric acid and analyzed for lead, cadmium and zinc by atomic absorption (AAS) or the inductively coupled argon plasma (ICAP) method

B Soils

Two fields were located where tailings had been applied for lime supplementation for at least the past five years The pedological nature of the soil were established at each site with the assistance of Mr Burton L Brown of the Soil Conversation Service and at each site a random survey of the topsoil was made using the standard staggered W method Samples were comprised of auger cores to a depth of 10 cm which were then bulked in a polyethlene bag

Soils were then returned to the laboratory where they were dried at room temperature gently ground and passed through a 2 mm nylon sieve Metal analysis was performed by the Environmental Trace Substances Research Center in Columbia Missouri using the AAS (flame or graphite furnace or ICAP method

J

C Vegetation

The plant material was cropped with stainless steel implements and placed in a polyethylene bag and then, in turn, in a second bag with the sample label Label and sample record sheet contained the same information as used for soil samples. As soon as practicable, the samples were placed in an ice chest

In the laboratory the plant material was carefully washed by accepted methods and dried at 100°C followed by milling Analysis (wet or dry ashing) was made by AAS or ICAP as previously described

D Bioassays

Radish and lettuce were the two experimental plants used for controlled growth experiments

Pots used in the study were 20 cm/8 in commercial plastic Soils were brought in to the laboratory, spread thin on plastic sheeting and large debris removed The soils were sampled for analysis and then potted and mixed with 25% volume of inert (e.g. chert) grit. After the soils were analyzed each 'pot was emptied on to the plastic and the appropriate amount of lime and fertilizer mixed in. The soils were then returned to the pot, watered with deionised water and allowed to stand for 48 hours to equilibrate Each pot was then sown with 25 seeds of the respective plant and the seeds allowed to germinate and grow. They were then thinned to 5 plants per pot and allowed to grow to maturity. After plant harvest the pot soils were reanalysed

Soils were derived from localities identified during the earlier survey work with a sufficient amount excavated to fill the pots. Soils were returned

C.

to the laboratory in plastic sacks contained within plastic trash cans

All pot treatments were triplicated and received a basal treatment of NPK compounded from laboratory pure chemicals The soils used comprised an uncontaminated control soil, the same with sufficient agricultural limestone to adjust the pH to approximately 7, a soil known to have been treated with dolomitic tailings, the control soil plus metal-rich tailings from the Old Lead Belt sufficient to raise pH to approximately 7 the control plus tailings from the New Lead Belt sufficient to raise pH to approximately 7

When the plants were harvested the yield from each plot was weighed immediately after the soil was washed from the roots with deionised water Lettuce was divided into leaves and roots the leaves weighed and root length measured Radish was divided into leaves bulb and roots leaves and bulbs weighed and analyzed for Pb or Cd

E Commercial Limestone

Thirteen samples of commercial agricultural limestone were obtained and submitted to the Environmental Trace Substances Research Center in Columbia, Missouri for ICAP analyses. These samples represented four outof-state samples and nine samples representative of the different locations within the State of Missouri that are presently producing agricultural limestone

F Quality Control

····

Since this study needed to determine if selected chat or tailings may be used for agricultural lime purposes, an efficient quality control method was necessary. In order to maintain this sixteen (16%) of the study samples were analyzed by the Environmental Trace Substances Research Center (ETSRC) in Columbia Missouri. Also selected sample duplicates and

spikes were incorporated into the analytical program at the University of Missouri-Rolla (UMR) and the ETSRC to validate analytical results

IV STUDY AREA

The study area selected for this investigation is comprised of the Leadwood, Big River, Desloge, Elvins, National and Bonne Terre tailings piles within the confines of the Old Lead Belt in St Francois County, Missouri The Old Lead Belt is located about 113 km (70 mi) south of St Louis, Missouri and contains the cities of Bonneterre, Leadwood, Elvins Desloge, and Flat River This old mining region covers an area of approximately 285 sq km (110 sq mi) and is bordered by latitudes 38°00' and 37°49'5 and by longitudes 90°37'30' and 90°28 45'

⁴ According to a report submitted by Heyward M Wharton to the St Joe Minerals Corporation on 28 October 1983 (6) the acreage affected by inactive lead-zinc mining in the Old Lead Belt represented 3085 acres as contrasted with the 1822 presently impacted by active or development mining operations in the Viburnum Trend " Figure 1 provides a visual perspective of the area including its location with respect to major cities in Missouri

The topography consists of gently rolling hills with narrow tablelands areas and alluvial plains comprise most of the topography in the Old Lead Belt with the exception of the extreme southwestern portions of St Francois County, which is mountainous (7) Hickory, elm and sycamore trees compliment the lowland stream areas, while red white and black oaks are abundant in the upland areas (8)

The climate of this region usually consists of warm humid summers, and mild winters Extremes of $-30^{\circ}F(-34^{\circ}C)$ and $115^{\circ}F(46^{\circ}C)$ have been

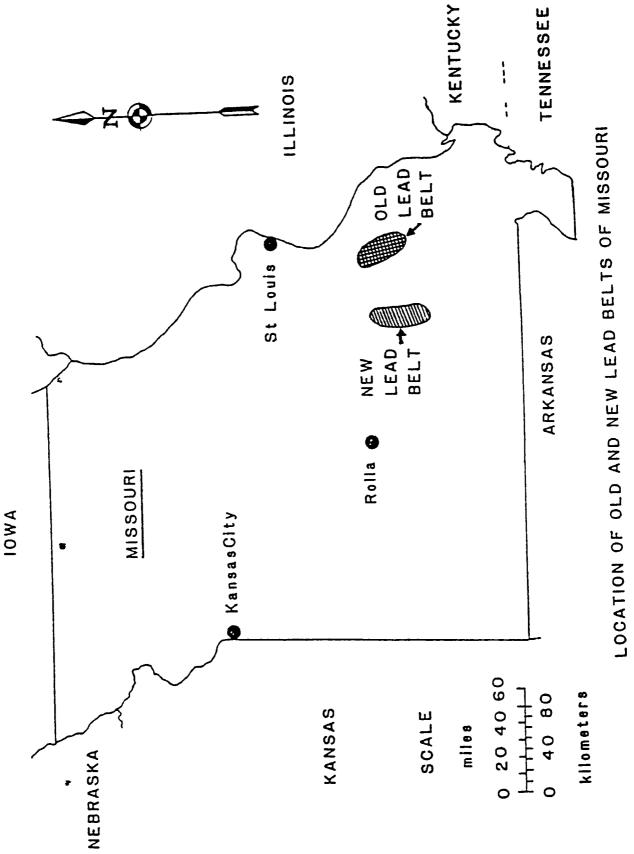


FIGURE I

recorded, but are not common to the area Annual rainfall averages generally total about 40 inches (9)

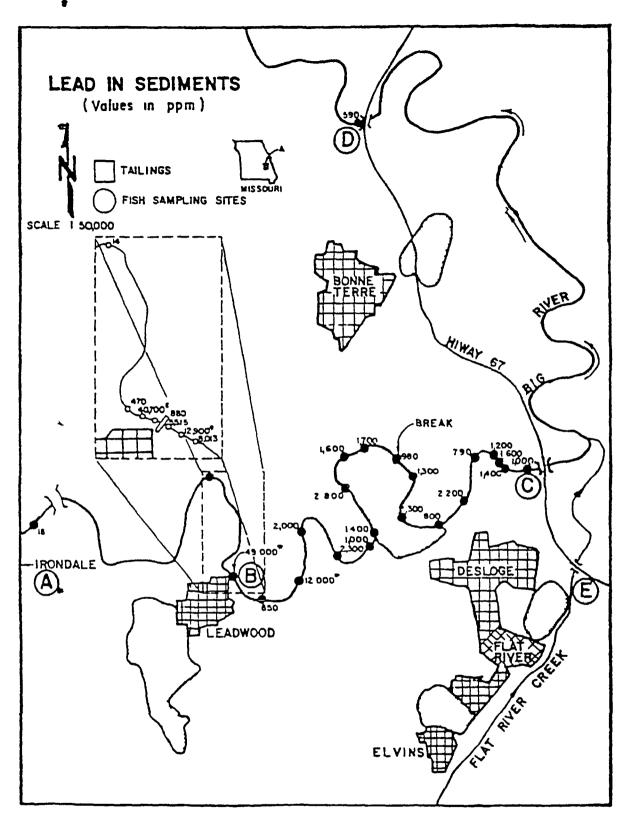
Galena, the most important mineral ore of lead, was the principle ore mined within the Old Lead Belt of Missouri (10,11) Normal thickness of this mineralization varied from a few inches to about 6 l m (20 ft) These ore deposits were horizontal concentrated along flat shale bands or other easily permeated plains, and found in the Bonne Terre dolemite with thicknesses of nearly 131 m (400 ft) The La Motte sandstone, with thicknesses up to 400 feet underlies this dolemite while shale and siliceous dolemite, in thicknesses up to 152 m (500 ft) is found above it

5

ŧ

V CHARACTERIZATION OF TAILINGS AND CHAT PILES

Five different tailings or chat piles within the Old Lead Belt area were selected for sampling These were the Leadwood, Big River-Desloge, National, Elvins and Bonne Terre (two areas) tailings piles illustrated in Figure 2


These tailings and chat piles in the Big River area of the 'Old Lead Belt" were subjected to metal sampling to determine the amounts of lead, cadmium and zinc present. Since some of the chat piles which were generated before the introduction of the froth flotation extraction technology, around 1917 contain larger gangue particles and more metals, it was necessary to categorize these tailings or chat disposal areas which are a contributing source for tailings material (and metals) introduced into the sediments of Big River through storm water runoff

Concentrations of lead in sediments and water of the Big River are shown in Figures 3 and 4 These sediment data indicate that the highest concentrations of lead were found near the confluence of Eaton Creek with the Big River at Leadwood Lead concentrations of the sediments derived from the Desloge tailings pile are uniformly in the range of 1,000-3 000 ppm and the sediment data reflect the composition of this tailings pile (12) Concentrations of lead in river water are quite low throughout the region including water from over river sediments shown to have anomalously high lead concentrations (5 ppb lead in water at Leadwood) In most instances the lead concentrations remain below the recommended limits for drinking water standards. This is consistent with the known limited solubility of lead compounds in hard alkaline

FIGURE 2 LOCATION OF TAILINGS PILES STUDIED IN THE OLD LEAD BELT

برجيمه المداكلينيا الا

15

+

FIGURE 3 DISTRIBUTION OF LEAD IN SEDIMENTS OF BIG RIVER ASSOCIATED WITH TAILINGS PILES

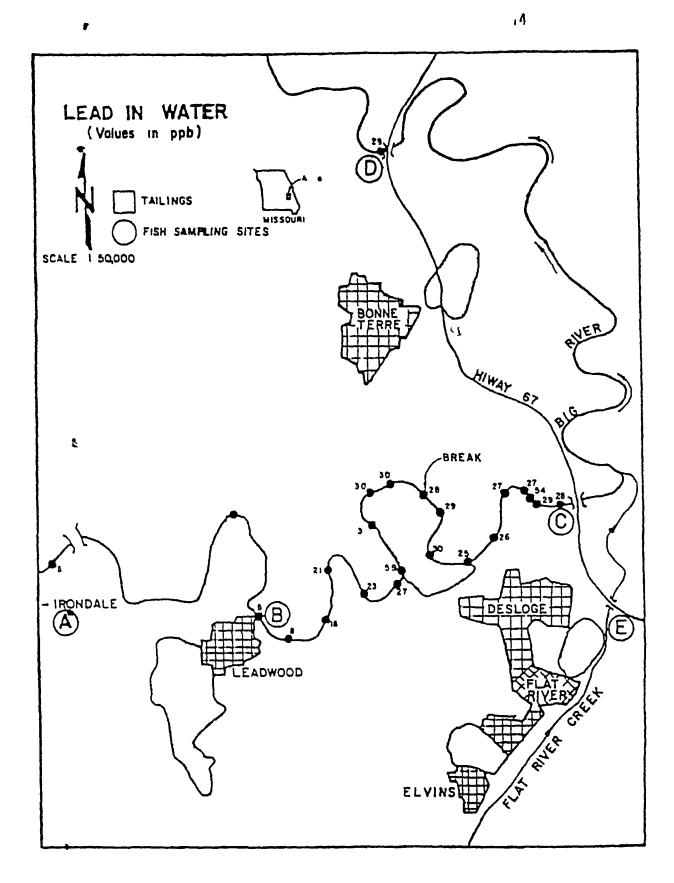
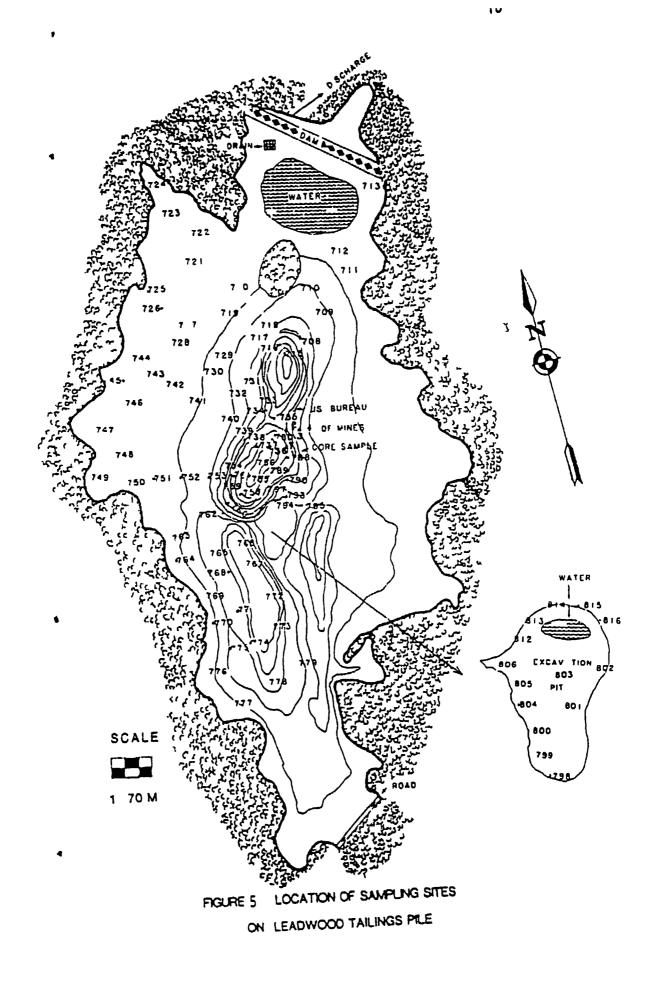


FIGURE 4 LEAD IN WATER OF BIG RIVER IN THE OLD LEAD BELT REGION OF MISS URI

waters The two notable exceptions were 1) a sample of water taken directly from a pipe from an old drill hole (59 ppb) some distance upstream of the eroded break in the Desloge tailings pile, and b) a sample taken from the Big River at the junction with sewage effluent from the Desloge-Flat River city sewage treatment plant (54 ppb)

Sampling transects were designed to take the most representative samples of tailings (or chat) material from the unweathered portion (depth of 20 cm) of the piles in sufficient numbers to meet the Missouri DNR statistical program discussed in the methods section of the report and included in the Appendix Sampling locations were noted by number on the appropriate tailings figures and followed by tables giving the metal values for Pb Cd and Zn


The National tailings pile was the subject of a M S thesis by Elliott (15) and only the pertinent findings are discussed in this report However a copy of Elliott s thesis (15) will accompany the report as a part of the research evaluation

Individual tailings or chat piles are discussed according to • characterization by sampling data A statistical analysis and evaluation of the different tailings piles is included at the end of this section of the report

A Leadwood

*

A series of transects were established for the Leadwood tailings and chat pile located along the eastern border of the town of Leadwood, Missouri and extending slightly to the south of town Figure 5 illustrates the samples numbering for the 98 samples taken at near-surface unweathered

materials Table 1 indicates the metal concentrations for Pb, Cd, and Zn in micrograms per gram (parts per million) by sample number

t

Since the U.S. Department of the Interior Bureau of Mines was performing a research study associated with tailings deposits in the Old Lead Belt , a cooperative effort was worked out with their researcn people whereby the near surface sampling results would be shared with them in return for the Bureau of Mines coring down to the bottom of the Leadwood and National tailings piles Mr Larry George Glynn Horter and Scot Lay assisted with the coring procedure and Figure 6 illustrates the location of the hand augered samples (two-to-four foot depth) and the drill hole locations which extended to twelve feet_gat one location and twenty four feet at a second location to reach bedrock under the Leadwood tailings pile Table 2 gives the Pb Cd, and Zn concentrations associated with the hand augered samples and the two coring drill holes (Courtesy of the Bureau of Table 3 gives the inductive coupled argon plasma (ICAP) Mines) analysis for the core samples at site R-1 down to 24 ft and Table 4 gives the ICAP data for the core samples at site R-2 down to 12 ft or bedrock

The highest lead values found for the Leadwood tailings pile were 17 000 micrograms per gram which came from a site close to the earthen dam at the north-eastern portion of the area. The next highest sample of 13 800 ppm came from the center of the excavated pit on the south side of the main pile. Shallow hand augered samples did not show a significant change in composition down to a depth of four feet

		ug/gu	Conc,	fleta	Sample
	Zn		Cď	РЬ	No
	3490		66	1320	L708
	4750	7		1880	L709
	3550		63	1630	L710
	2290 3570	0 4	40 67	1110	L711
	8630	4	158	2420 17000	L712 L713
	15200		243	9500	L713
	4150	0	88	1620	L715
	4940	0	60	1820	L716
~	5150	-		2310	L717
	4370	5	87	1900	L718
	3100	Ō	66	1780	L719
	3530	5	74	2580	L720
	1710	5	40	1830	L721
		5 —	47]{ 80	1722
	1980	6	39	1510	L723
	1880	6	4]	2280	L724
	1000	6	37	1620	L725
	1830	3	42	1020	L726
		6	70	2580	L727
	2860	2	57	1620	L728
	6040		115	3310	L729
	3200	0	64	1070	L730
	6150		111	1990	L731
	5620		101	1860	L732
	5340		101	1630	L733
	9720 4650	0	171 98	1260 2530	L734
	4830	9 7	96	1600	L736
	4510	2 <u> </u>	90 94	1630	L737 L736 ——
	3720	3	78	1030 1720	L738
	1600		44	919	L740
	1040		28	886	L741
	1050		30	761	L742
	1340	5 —	34	E23	L743
	1300	5	33	986	L744
	7980		83	2170	L745
	3760		75	832	L746
	3820		763	1430	L747
	0535		596		L748
	3560		763	690	L740
	2°30		547	023	L7_0
	8530		161	2520	L751
	00100 		187 172	2300 2260	L752 L754

TABLE - 1 LEADVOOD TAILINGS PILE

-

ŧ

.

•

4

	LEADU	OOD TAILIIGS	PILE	
Sample	tieca	1 Conc ug/g		
ho	РЬ	Cd	Zn	
L755	1170	1230	6060	
L756	1900	1350	7060	
L758	1950	995	5460	
L759	4740	1120	5890	
L760	920	45 9	2480	
L761	1050	625	3520	
L762	1880	858 1200	4390 6730	
L763	1430 1670	856	4480	
L764 L765 ——	736	<u> </u>	5570	
L765	3420	20 4	1710	
L767	597	308	1250	
L768	3290	20 3	1430	
L769	3230 370	372	1450	
L770	1400			
L771	1300	15 9	987	
L772	2200	77 2	4050	
L773	785	31 1	1280	
L774	1120	44 3	2210	
L775	016	46 7		
L776	2600	37 9	1710	
L777	90 <i>o</i>	85 0	4250	
L778	1140	56 3	3010	
L779	1130	55 6	2780	
L780	3640	155	8610	
L781	2550	249	14600	
L782	7470	220	13600	
L783	20د 4	162	9180	
L784	3490	151	8460	
L786	1120	37 3		
L787	1250	67 2	3660	
L788	934	46 9	2530	
L789	615	93	633	
L790	1640	77 3	4050	
L791		78 4		
L792	5560	78 7	52]4	
L793	1270	70 2	3980	
1794	1100 10100	84 6 456	4720 25800	
L795 L798	1380	47 2	2460	
L795	1360	47 2	2630	
L800	1710	20 J	4790	
L800	1970	76 4	3010	
1502	8230	278	15800	
LE03				
	1440	69 2		

-

(CONTILED) TABLE - 1 LEADVOOD TAILIIGS PILE

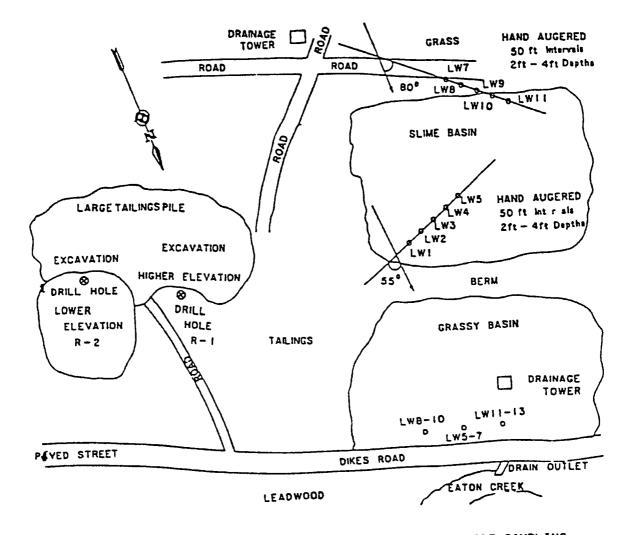
ŧ

\$

>

۲

+


		(Continued) TABLE 1 OOD TAILINGS	PILE	
Sample	lieta	1 Conc ug/g		
No	РЬ	Cd	Zn	
L805 L806 L812 L813 L814 L815 L816	1740 - 2830 6200 4180 3521 4340 2490	69 6 87 8 177 325 	3970 5380 9900 19600 	

t

Ł

4

. .. - --

•

4

-

\$

FIGURE 6 LOCATION OF U S BUREAU OF MINES AUGER AND CORE SAMPLING SITES ON LEADWOOD TAILINGS PILE

__

Sample No	Me	tal Conc	ug/g
	Pb	Cd	Zn
Surface			
LW 5-7	2200	40	833
LN 8-10	2167	37	800
LW 11-13	2850	35	500
<u>Augered</u> - Surface -	two - four foot dep	oth	
LW 1-Surface	1300	40	1000
LW 1-2 ft	600	40	400
LW 1-4 ft	700	30	300
LW 2-Surface	1600	40	1200
LW 2-2 ft	2000	40	1100
LW 2-4 ft	2500	40	1300_
LW 3-Surface	600	30	400
LW 3-2 ft LW 3-4 ft	1200	40	1000
والمحاجب والمتحد والمتحدين والمتحدين والمتحدين والمتحدين والمتحدين والمتحدين والمتحدين والمتحدين والمتحدين	700	30	800
LV 4-Surface LW 4-2 ft	1600	80	1300
LW 4-2 ft LW 4-4 ft	3200	80	1300
LW 5-Surface	4000	100	1800
LW 5-2 ft	2000 2400	130 100	1800 1700
LW 5-4 ft	2400	110	1400
LW 7-Surface	1400	110	1400
LW 7-2 ft	1200	90	1300
LW 7-4 ft	1500	70	1400
LW 8-Surface	1400	50	1000
LW 8-2 ft	1500	80	1100
LW 8-4 ft	1600	80	1200
LW 9-Surface	1500	90	1200
LW 9-2 ft	1500	100	1000
LW 9-4 ft	1500	120	1300
LW 10-Surface	1300	40	1000
LW 10-2 ft	1000	40	1000
LW 10-4 ft	1900	60	1600
LW 11-Surface	2600	50	1200
LW 11-2 ft	1100	60	1700
LW 11-4 ft	1000	60	1400

TABLE 2 AUGER AND CORE SAMPLING OF LEADWOOD TAILINGS PILE (Courtesy Bureau of Mines)

<u> </u>			
Sample No		al Conc ug/g	
	Pb	Cd Zn	
Rotary Cored	<u>Pb</u>	Depth	
R-1	5000	3 ft	
	5100	6	
	5500	9	
	5200	12	
	4900	15	
	4500	18	
	4300	21	
	4600	24 - Bottom on tail	מ נ
 R-2	16600	3 ft	
	12100	6	
	10400	9	
	10500	12 - Bottom of tail	in ng

TABLE 2 (Cont) AUGER AND CORE SAMPLING OF LEADWOOD TAILINGS PILE (Courtesy Bureau of Mines)

- -

			(UNLIS AKI	E 111 CRUGRAMS/GI	RAM)			
Element	3 ft	6 ft	9 TE	7	15 f	18 ft	21 ft	24 ft
	20	20	17 ~	21	15	8	*6	10
	830	820	1200	720	520	4 90	760	740
	61	6	6	۲	5	5	6	6
	Ś	ę	10	6	9	S	S	e
	11	3 4	7 0	67	49	36	0 7	3 4
	0 89	1 0	11	96 0	0 83	0 83	1 0	0 9
	190 000	190 000	180 000	180 000	190 000	190 000	190 000	190 000
	250	270	180	170	160	061	120	120
	27	32	37	37	35	32	33	30
	68	6 7	10	18	20	22	25	17
	15	12	12	14	15	11	61	10
	19 000	19 000	20 000	20 000	20 000	21 000	21 000	20 000
	2	1	2	l	1	-	-	2
	100 000	100 000	000 66	100 000	100 000	100 000	100 000	100 001
	3400	3400	34,00	3500	3500	3600	3600	3500
	20	20	20	30	30	30	30	20
	16	18	18	23	18	18	23	16
	190	200	210	210	210	200	190	190
	6	8	6	6	10	10	6	6
	01	10	20	40	30	30	30	20
	180	340	160	2 50	210	140	100	110
	2	<2	<2	< 2	<2	<2	<2	ć 2
	50	52	50	50	50	51	50	51
	E O>	£ 0>	<0 3	<0 3	<0 3	<0 3	C 0>	6 O>
	5	t.	4	,	4	4	t	•
7n	13 000	14 000	000 14 000 9800 9800 8400 7300	9800	8400	2300	6600	6300

TABLE 3 ROTARY CORE SAMPLING OF LEADWOOD TAILINGS DEPOSIT INDUCTIVE COUPLED ARGON PLASMA ANALYSIS (ICAP) FOR SITE R-1 BY DEPTH

TABLE 4 ROTARY CORE SAMPLING OF LEADWOOD TAILINGS DEPOSIT INDUCTIVE COUPLED ARGON PLASMA (ICAP) ANALYSIS FOR SITE R-2 BY DEPTH (UNITS ARE MICROGRAMS/GRAM)

ng	24 760
	760
A1 1800 1000- 1100 7	
As 10 10 10 1	10
n 10. 8 3 <	<2
Ba 73 60 73 8	B 1
Be 11 10 10 0	0 66
Ca 160 000 170 000 170 000 1	150 000
Cd 350 450 430 4	420
1 Co 53 74 86	130
Cr 68 11 16	54
Cu 15 15 17 2	22
Fe 20 000 20 000 21 000 2	21 000
Li 3 2 2	1
Mg 90 000 90 000 90 000 90 000	82 000
Hn 3200 3200 3300	3000
₹ Mo 20 30 30	30
N1 25 37 50	67
P 240 230 240	270
Sb 9 7 4	<3
Se 10 20 10	10
Si 96 470 130	220
Sn <2 <2 <2	<2
Sr 46 45 45	41
Ti <03 <03 <03	<03
v 6 5 5	4
Zn 19 000 23 000 23 000	23 000

The rotary core samples were taken in the area where prior sampling had indicated that the chat contained elevated levels of metals and probably represented the oldest part of the deposit The R-1 site was cored to the bedrock at the bottom of the pile which represented a depth of 24 feet Samples were taken every three feet and analyzed for a complete host of elements by the ICAP method Lead at this location did not show an increase toward the bottom of the hole but remained in the 4600 to 5000 ppm range. The water brought up in the coring samples was fresh and without any anaerobic smell which leads one to postulate that the rainwater leachate is moving away from the tailings pile to the drain at the northern edge of the tailings area. ICAP data also indicates that the concentration of other elements tends to remain fairly constant again indicating a more rapid flow through of rainwater with no appreciable concentrations at the bottom of the chat deposits.

The rotary core samples at site R-2 were started in a depression some 12 feet lower than the R-1 site and approximately 100 yards to the south of the R-1 site Lead concentrations at the surface ran 16,600 ppm and decreased to 10,500 ppm at the 12 foot depth or bottom of the hole at dolomite bedrock Again the water brought up with the samples did not contain any anaerobic odor and was of a quality that could be attributed to rainfall. The ICAP data for the R-2 site did not exhibit any unusual increases or decreases in the elements surveyed which seemed to further confirm the rapid penetration and subsurface flow of storm runoff water through the tailings pile and into the drain for Eaton Creek branch

B Big River-Desloge

The Big River-Desloge tailings pile is located on a turn of the Big River approximately two miles downstream from Leadwood, Missouri and east of the town of Desloge, Missouri During the past four years, this tailings pile received much attention from the regulatory agencies researchers and the press due to a break in the elevated pile allowing for the discharge of tailings into the Big River along the eastern slope

4

The Kansas City Times headline article of March 28 1981 carried a banner headline saying Old Mines Leave a Legacy of Danger (13) which expressed concern about repairs to halt the runoff of lead

The break has since been repaired but the unstability of the tailings pile along the eastern slope and bordering the Big River remains to be a problem

Figure 7 illustrates the sampling pattern employed in characterizing the Big River-Desloge tailings pile Table 5 gives a listing for Pb, Cd and Zn concentrations found for the various sample sites A total of 74 samples were taken to meet the statistical requirements suggested by the Missouri Department of Natural Resources (14)

C lational

The National tailings pile is situated in the northern portion of Flat River Missouri and is shaped like a large dome covering approximately 1 3 square km (0 5 square miles) in area. Storm water runoff from the tailings area is discharged into Flat River creek which flows some three miles before it discharges into the Big River



FIGURE 7 LOCATION OF SAMPLING SITES (BIG RIVER-DESLOGE TAILINGS PILE)

	BIG RIVER-	DESLOGE TAILIN	IGS PILE
Sample	Met	al Conc, ug/g	
No	Pb	Cd	Zn
D900	1670	37 8	1670
D901	1540	38 9	1700
D902	1420	27 4	1150
D903	1190	11 7	330
D904	1420	54 8	2380
D905	2590	30 2	1320
D906	3840	34 9	1750
D907	3560	26 5	1380
D908	970	, 68	875
D909	1250	15 6	950
D910	1800	15 7	1040
D911	1360	25	1080
D912	2310	40 0	1890
D913	4470	18 3	821
D915	1530		680
D916	826	15 7	531
D917	3140 1020	31 7 17 4	1440 637
D918	958	21 4	
D919	2710	29 9	798 1380
D920 — — D921	2710 1570	29 9 8 0	511
D921 D922	997	7 0	406
D923	835	8 0	373
D924	896	75	437
D925		9 8	373
D926	1080	13	297
D927	983	11 8	354
D928	877	16 5	518
D929	964	13 8	373
D930	1380		582
D931	1010	18 5	698
D932	1150	21 5	816
D933	951	11 6	233
D934	1620	20 5	840
D935	5530	46 9	404
D936	1570	24 2	933
D937	1400	8 7	525
D938	1330	19 8	733
D939	1140	21 5	783
D940	2380	19 2	1380
D941	1120	9 2	558
D942	1410	15 4	715
D943	4320	68 2	3580
D944	1800	15 8	1210
D945	1710	21 1	1090

TABLE 5 BIG RIVER-DESLOGE TAILINGS PILE

5

3

4

١,

- ----

ACHICA CA

2

NALM _ J. J. J. STREPARTING

Sample	Met	al Conc ug/g	
No	Pb	Cd	Zn
D946	3190	17 5	1350
D947	933	12 0	344
D948	1440	13 5	439
D949	2380	18 1	644
D950	1730	15 9	693
D951	1540	55 9	519
D952	1490	77	560
D953	1070	24 5	1030
D954	4710	31 4	1510
D955	2780	30 7	
D956	5360	28 8	1330
D957	6200	37 3	1720
D958	2910	37 1	1680
D960	1880	35 8	3990
D961	1830	39 4	3080
D962	1950	38 9	2910
D963	1410	32 9	1970
D964	2180	45 6	2500
D965	2130	43 8	1780
D967 D968	1980	37 8	
D968	2310 1810	37 9	1870
D909 D970	3610	25 6	1100
D970 D971	5822	38 2	1850
D972	2240	46 2 	2250
D973	4070	22 9 44 5	994
D974	2110	44 5 33 6	2090 1560
D975	3130	51 6	2410
D976	2690	78 6	-
0070	2030	/8 0	3970

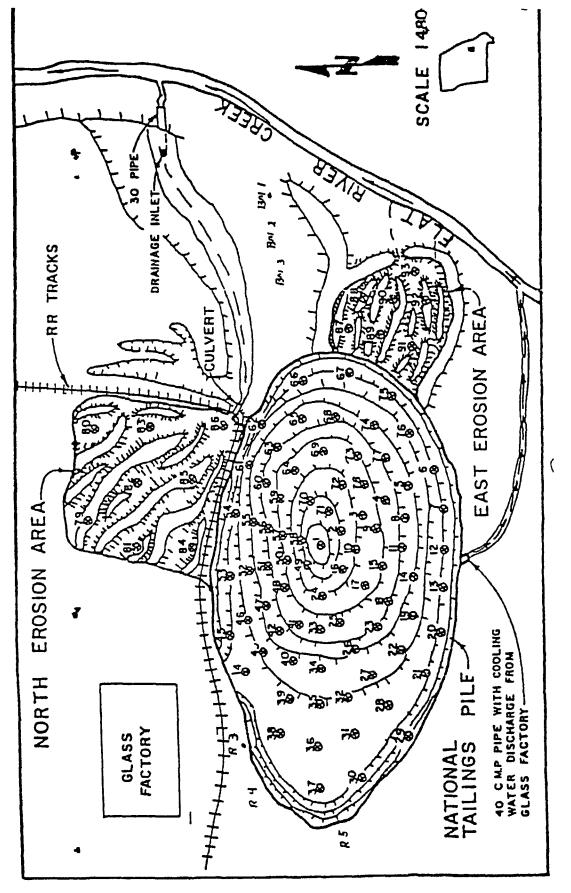
TABLE 5 (Cont) BIG RIVER-DESLOGE TAILINGS PILE

1

4

•

_____.



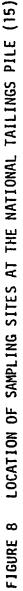

An extensive study was carried out on the National tailings pile for this project and resulted in a thesis entitled "Impact of Tailings from Abandoned Lead Mines on the Water Quality and Sediments of Flat River Creek and Big River in Southeastern Missouri' by Mr Larry E Elliott (15)

Figure 8 indicates the location of the sampling sites on the National tailings pile used for this study A total of ninety three samples of tailings material were collected and analyzed for lead, zinc cadmium and copper seventy eight from the main pile eight and seven from the erosion areas on the north and east sides respectively as shown in Table 6 Table 7 provides a statistical analysis of the metal concentrations in each of the three areas

Samples from the main pile were found to contain lead concentrations ranging from a low of 1640 ppm to a high of 9283 ppm with values well distributed between these two extremes. Although samples taken in close proximity to one another often reflected similar concentrations with respect to the wide range of values encountered no definite pattern seemed evident. The concentrations of lead appeared to be randomly dispersed from both the top to the bottom as well as around the perimeter of the pile. This random behavior was displayed by all four of the metals studied

Zinc was found in concentrations generally ranging from 87 ppm to 978 ppm with the exception of three samples which were found to be much higher. Two of these were just under 2000 ppm while the third collected from the northwest side of the pile contained 5055 ppm of zinc

Sample		ietals,	חסת	
Number	РЪ	/n	Cd	Cu
1	5261	518	7	133
2	4225	305	6	122
3	1815	240	5	65
4	9ر 19	108	4	95 ¥
5	2377 _	95	3	92
6	4780	238	3	190
7	4822	289	3	145
8	1822	87	3	114
9	2585	90	3	130
ı0 ——	2348 _	258	5	11
11	4044	496	8	244
12	2581	432	7	264
13	4566	628	8	183
14	3881	703	9	176
15 —	- 376	665	12	95
16	2579	156	4	64
17	3880	471	6	67
18	2396	174	5	165
19	3166	312	6	358
20	4327	ردو	13	197
_1	3242	469	7	502
22	4762	621	9	354
23	2570	188	4	227

TABLE 6 IATIONAL TAILINGS PILE (15)

-- -

--

Sample	РЪ	<u>Metals</u> 7n	ppm Cd	Cu
Number	rb	7 11		
24	2318	207	3	106
2	2413	- 722	11	63
26	2205	د 47	7	99
27	1678	4 ,4	7	154
28	4461	510	۴	157
29	3504	436	د	220
30 ——	4558)	- 52
31	5 34 1	547	6	4,
32	2292	391	6	603
33	2189	245	4	91
34	1984	11_	2	628
35	3007		4	215
36	3254	356	6	3.7
37	7101	د ۲ ۳ ز	29	308
38	3519	403	6	339
39	4د / _	254	3	196
40	2854	2 17	1	109
41	2619	302	4	162
42	6/46	1955	30	380
ł	7766	ə() ə ə	K7	81
44	9_83	626	10	182
45	2951	31.3	5	282

TABLE 6 (Cont) NATIONAL TAILINGS PILE (15)

•

.

Sample Metals ppm				
Number	РЪ	Zn	Cd	Cd
46	5141	439	(305
47	3512	363)	130
48	4853	183	4	287
49	2283	95	3	67
50	4998	- 460	6	110
51	2635	280	5	114
52	3186	449	6	>1
53	2203	267	6	- 41
54	2157	253	5	181
55	- 5333 -	- 397	6	90
56	2063	112	3	81
57	5060	408	6	135
58	5519	587	7	136
59	2380	176	4	131
60	2268	- 978	12	142
61	209.3	232	4	101
62	4115	271	5	95
63	774	379	5	107
64	3 369	385	6	110
65	2240	- 329	6	- 101
66	°004	22	,	99
67	2962	302	5	137
68	1826	98	3	105

TABLE 6 (Cont) NATIONAL TAILINGS PILE (15)

Sample		Metals,	ppm	Cu
Number	Pb	Zn	Cd	
69	4732	493	7	129
70	6759	- 609	7	_ 131
71	3274	321	1	113
72	3465	211	-4	121
73 3	20-0	387	6	115
74	5646	277	4	101
75	2368	- 234	5	111
76	1640	127	3	139
77	3317	156	4	126
78	694	115	l	οļ
79	2417	34		44
80		102	11	32
81	5494	398	ч	98
82	1553	107	4	88
83	1177	34	3	53
84	3229	70	2	39
85 -	2774	30 .	/ ₁ .	36
86	1183	107	4	99
87	4641	127		122
88	5204	129	4	286
89	799	1 745	7	64
90	924	5 1]5		183
91	704	.7 192	5	, 79

~~ ~~

TABLI 6 (Cont) NATIONAL TA'LINGS PILT (15)

-- --

TABLE 6 (Cont) NATIONAL TAILINGS PILE (15)

1

Sample		Metals	ppm	
Number	РЪ	7 n	Cd	Cu
92	8818	1170	19	459
93	6315	72	3	181

A state of the sta

۹

· ___ - ·

•

TABLE 7STATISTICAL ANALYSIS OF HEAVY METALSIN THE NATIONAL TAILINGS PILE (14)NoteAll Values in ppm

	lend	/180	Cidmium	Copper
MALIN TALLINES PILE				
h in	3505	457	72	183
Standard Deviation	1516 🦹	613	10 1	124
95% Confidence Interval	3172 11 3844	94 11< 267	2 5rus 10 3	102545200
NORTH ERUSION ARTA				
M au	2510	112	49	61
Studiel Deviiti n	13'>	112	2 8	, 1
957 Confidence Interval	159° u 3428	29 pr 190	30 ur6 8	42 u 80
LAST TROSTON AREA				
16 710	6894	295	64	196
Standard Deviation	1-464	361	53	127
95% Confidence Interval	5809<1 7979	94×u<562	2 5 µ<10 3	102<µ<290

· - --- ·· ·· ··

Cadmium was generally low in concentrations compared to the other three metals With the exception of sample number fourty-three, containing eighty-seven ppm, all the samples contained concentrations of three to thirty ppm inclusive Sample number fourty-three exhibited the highest value of zinc, and contained nearly 8000 ppm of lead This sample was also adjacent to the tailings sample showing the highest lead concentration

Copper concentrations ranged from 51 ppm to a high of 628 ppm with the samples being well distributed throughout these limits Of the four metals, copper seemed to be the most random in distribution with samples in close proximity even differing greatly from one another

Although no cefinite pattern was observed for the distribution of the metals throughout the pile a sample abundant in one metal tended to have high concentrations of the others with the exception of copper For example tailings materials rich in lead would likely be rjch in zinc and cadmium

The north erosion area displayed lower average concentrations for all four metals when compared with the main pile and the east erosion area A lead pattern of dispersion not apparent for the main pile were evidenced in this area Samples on the west and southwest edge of this area were highest in lead, followed by steadily decreasing concentrations as the sample sites progressed eastward

Even though the highest value for zinc (398 ppm) and lead was shared by the same sample the pattern of dispersion found for lead did not occur with zinc cadmium or copper Zinc was found almost exclusively to fall within the interval of 34 ppm low to 107 ppm high

The values for cadmium ranged from 2 to 11 ppm, while copper ranged from 32 ppm to 99 ppm

Unlike material from the main pile, samples in the north erosion area that were rich in one metal did not generally correspond to high concentrations in any of the other three metals

The east erosion area contained the highest average concentrations for lead and copper and demonstrated a pattern of dispersion for lead while zinc, cadmium, and copper failed to exhibit a recognizable pattern

Lead, up to a high value of 8818 ppm on the southern portion of the erosion area and a low of 4641 ppm on the northern portion, tended to increase in concentration as the sample points progressed southward The sample points going from east to west, however, differed only slightly in their respective concentrations of lead

Hand augered samples to a depth of 8 feet were made by the U S Bureau of Mines team for the north and east erosion area Samples number BM-1, BM-2 and BM-4 were made in the tailings runoff area affected by storm water that ultimately drain into Flat River Creek to the east of the deposit Augered samples were also taken in the vicinity of samples number 82, 89 and 90 in the erosion areas

Rotary core samples were taken to the bottom of the tailings piles at locations R-3, R-4 and R-5 All of these locations are noted in Figure 8 Table 8 indicates the augar and core samples by depth with concentraions of Pb, Cd and Zn Table 9 gives the ICAP data for elements found at different depths for the R-3 and R-4 coring sites Table 10 gives the rotary core ICAP analysis for site R-5 down to the clay layer underlying the pile at a depth of approximately eleven feet

		Met		
Sample N		РЪ	Cd	Zn
Hand Au	gered			
BM-1	Surface	1100	40	700
BM-1	2 ft	4100	20	300
BM-1	4 ft	4600	30	400
BM-2	Surface	4700	30	400
BM-2	2 ft	3800	30	300
BM-2	<u>4 ft</u>	2000	40	300
BM-3	Surface	2700	40	300
BM-3	2 ft	1900	40	200
BM-3	<u>4 ft</u>	1500	40	200
89	2 ft	2800	01.0	76 74
89	<u>4 ft</u>	<u>3400</u> 1800	01 4	78
90	Surface	2100	the second s	
82	2 ft	1100	1 5	270
82	4 ft	1200	3	150
82	6 ft	1200	1	40
82 82	8 ft Cully Sado	760	1	40
Rotary	Gully Side	,00	_	
R-3	3 ft	7400	45	2700
R-3	5 ft	1400	15	1200
R-4	2-5 ft clay	6400	26	1200
R-4	<u>3 ft chat</u>	10200	72	3400
R-5	3 ft	9700	76	3700
R-5	6 ft	7100	120	6300
R-5	9 ft	8600	80	4100
R-5	10 ft	8300	88	5000
R-5	11 ft bottom clay	820	220	330

TABLE 8AUGER AND CORE SAMPLES ON NATIONALTAILINGS PILE (Courtesy of Bureau of Mines)

_ _.

TABLE 9 ROTARY CORE SAMPLING OF NATIONAL TAILINGS DEPOSIT INDUCTIVE COUPLED ARGON PLASMA ANALYSIS (ICAP) FOR SITES R-3 AND R-4 BY DEPTH (UNITS ARE MICROGRAMS/GRAM)

<17

<17

410

<8

12

180

39

1200

<3

30

86

<2

37

5

<03

3-00

<3

30

450

< 2

35

54

18

1200

SЪ

Se

51

Sn

Sr

TÍ

V

Zn

<3

50

180

<2

32

20

10

TABLE 10 ROTARY CORE SAMPLING OF NATIONAL TAILINGS DEPOSIT INDUCTIVE COUPLED ARGON PLASMA (ICAP) ANALYSIS FOR SITE R-5 BY DEPTH (UNITS ARE MICROGRAMS/GRAM)

-					BOTTOM
Element	<u>3 ft</u>	<u>6 ft</u>	<u>9 ft</u>	<u>10 ft</u>	<u>11 ft</u>
Ag	10	10	8	8	07
A1	1100	1100	1500	1800	4200
٨s	6	6	9	20	20
В	20	<2	10	7	3
Ba	4 5	59	72	13	19
Be	15	14	15	12	02
Ca	180 000	170 000	170 000	160 000	98 000
Cd	76	120	80	88	220
Co	78	76	93	100	48
Cr	32	70	14	22	6
Cu	130	72	99	83	68
Fe	39 000	31 000	35 000	34 000	6400
Li	2	2	3	2	3
Нg	90 000	86 000	85 000	81 000	57 000
Mn	4700	4300	4400	4200	550
Мо	50	40	50	40	<2
Ni	67	49	72	77	6 0
P	280	360	340	3 70	90
Sb	<3	<3	<3	<3	<3
Se	30	30	40	30	<3
Si	130	220	130	130	170
Sn	<2	<2	<2	<2	<2
Sr	40	40	<0 03	38	30
Ti	<03	<03	<03	2	32
V	4	4	5	7	11
Zn	3700	6300	4100	5000	330

The samples BM-1, BM-2 and BM-4 in the drainage pattern reflect the tailings transport from the north erosion area and part of the main dome-like structure of the main pile. The lower lead values shown for the two erosion areas reflect the slime pool discharges that had more of the lead removed during processing

The rotary core samples were made along the edge of the older chat material at the western side of the main tailings pile. It was known that the chat material in this area averaged around 8000 to 10,000 ppm lead and we wanted to determine what the depth of the chat materials was in this area. The deposit turned out to be thinner than thought in most areas (3-5 feet deep) where people had been hauling the chat away for road material or use as agricultural limestone. The clay layer underlying the deposit had low lead and zinc values but increased cadmium levels (up to 220 ppm) which were significantly higher than concentrations normally found in the tailings chat or slime line materials

Water brought up with the core samples did not exhibit an anaerobic or methane odor again suggesting that rainwater percolates through the chat and tailings materials and then moves horizontally along the top of the clay materials and drains into Flat River Creek

D Elvins

The Elvins tailings pile borders northern Elvins, Missouri and covers a land area of approxiamtely 0 6 square km (0 25 square miles) Two shallow lakes are found on the southwestern edge of the tailings pile and seepage from the base of the deposit passes through these shallow lakes and then flows into Flat River Creek These waters

contain high levels of dissolved calcium, magnesium, zinc and lead which have an impact on the sediments and biota of Flat River Creek

The Elvins tailings pile was studied in 1976 by Kramer (16) and the growth of algae in the zinc rich wastes and seepage water has been reported by Whitton, <u>et al</u> (17) Presently a small asphalt paving plant operates on the southern perimeter of the tailings pile with the tailings being used as a finer sized aggregate source

F gure 9 illustrates the location of 91 sampling sites on the Elvins tailing pile Table 11 gives the metal concentrations of Pb, Cd and Zn found at the sampling locations

E Bonne Terre

The Bonne Terre tailing deposits consist of two different areas and configurations A large chat and tailings dome is situated on the east side of Bonne Terre Missouri and covers an area of approximately 50 acres of land The second area is located about 1/2 mile to the west of the chat hill just across Missouri Highway 67 and is a mostly dried-up tailings pond covering about 272 acres

Figure 10 gives the location of sampling sites on the Bonne Terre tailings pile which is shaped like a small hill overlooking a golf course Table 12 lists the metal concentrations found for Pb, Cd and Zinc at the tailings pile

Figure 11 shows the location of sampling sites on the flat tailings deposits of the Bonne Terre east deposit which still has water confined at one end Table 13 gives the metal concentrations found for Pb Cd and Zn at the recorded sampling locations

F Statistical Analysis of Different Tailings Piles

Heavy metal data from the characterization of the different tailings and chat piles studied were statistically evaluated for

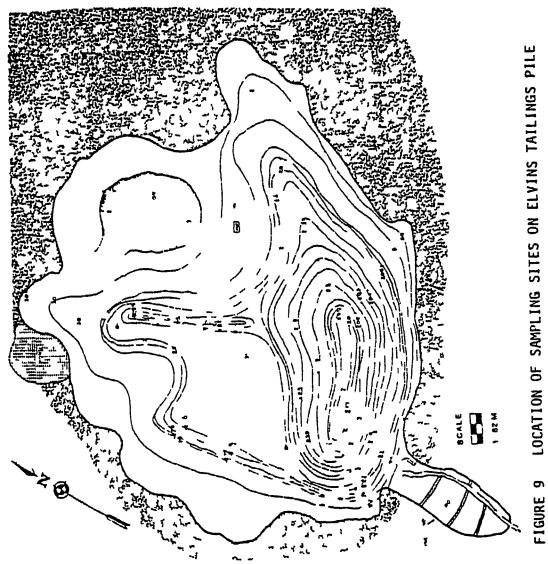


FIGURE 9

	ELVINS TAILINGS PILE				
Sample	i	Metal Conc	ug/g		
No	РЪ	Cd	Zn		
E200	5990	190	6100		
E201	6420	180	11200		
E202	7950	202	11200		
E203	5130	199	10600		
E204	4460 ·	 165 ·	9210		
E205	4200	156	8620		
E206	4400	168	9510		
E207	3570	140	8210		
E208	3650	152	8180		
E210	5180 -		11800		
E211	4190	179	11400		
E212	6000	153	9600		
E213	4630	160	9630		
E214	5450	155	8610		
E215	6780 -		8080		
E216	6960	172	9260		
E217	5240	120	6870		
E218	4980	114	6000		
E219	7500	106	5600		
E220	4760 -	168 ·			
E221	6820	163	11400		
E222	5500	110	6400		
E223	5990	114	6100		
E224	4470	70	8 4350		
E225	5270 -		8590		
E226	4010	92	9 5320		
E227	1880	51	5 1290		
E228 E229	3680	84	6 5150		
E229 E230 —	5180	132	6480		
E230 E231		76	3 6540		
E231 E232	4300	189	11900		
EZ32	3880	138	8820		
E233 E234	3170	151	2040		
E235	2780	126	6510		
E235	3630 -		6090		
E237	3180		5 4560		
E238	1300		6 4470		
E239	8140	106	1760		
E240	8360	135	9280		
E241B	6200 -		0 4290		
E242	8000	95	0 1300		
E245	9600	157	10900		
E246	11100		8 4950		
E247	5640	161	9680		
E248	7080 -		8360		
E249	3780	144	7870		
	4600	129	6990		

£

TABLE - 11 ELVINS TAILINGS PILE

Sample	Meta	al Conc, ug/g	
No	Pb	Çd	Zn
E250	6410	138	2040
E251	6190	114	6290
E252	4850	127	7020
E253	4050	118	6340
E254	4440	115	- 5360
E255	1700	51 3	2480
E256	2750	52 8	2210
E257	1350	48 3	2290
E258	1170	45 0	2190
E259	2180	54 4	2440
E260	2750	69 8	3300
E261	1060	61 4	2170
E262	1400	110	5500
E263	1270	74 8	3570
E264	1120	72 2	
E265	1620	75 5	3770
E266	4230	119	1440
E267	1060	74 7	3620
E268	1050	74 8	3660
E269	<u>1030</u>	58 2	2140
E270	851	57 9	2600
E271	1100	74 7	2650
E272	4190	82 3	4240
E273	8890	85 0	4250
E274	4890	63 9	
E275	4890 7160	100	4810
E276	9310	19 8	792
E275	9260	31 5	1950
E278		134	8510
E279	10000		
E280		94 4	5960
E290	4020	62 9	3510
E291	2750	56 1	3000
E292	2890	50 2	2330
E293			
E293			2450
E294	2940	67 6 75 8	3380
E295	2190	75 8	3980
	2230	99 1	5820
E297 E298	1000	59 3	3600
		48 4	2610
E299	3160	61 7	3210
E300	2270	47 3	2360
E301	2080	54 4	2230
E302	1780	42 2	1990
E303	1650	44 9	2120
E304	1900	42 6	108

. . ____

TABLE - 11 (Cont) ELVINS TAILINGS PILE

Ţ

•

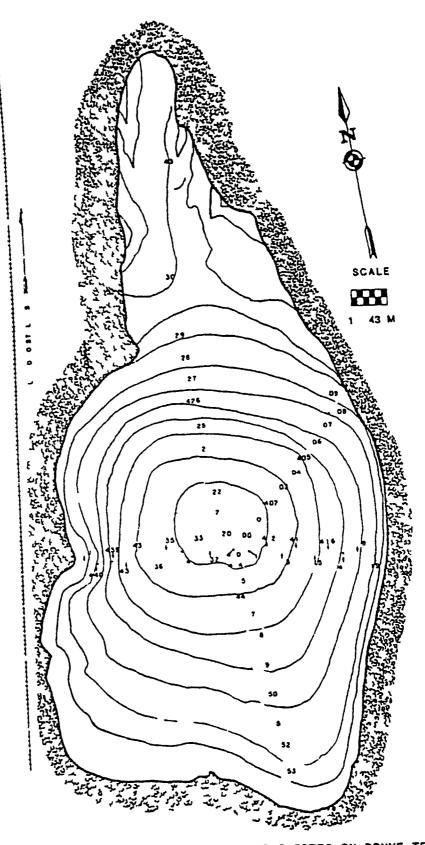


FIGURE 10 LOCATION OF SAMPLING SITES ON BONNE TERRE TAILINGS PILE

ţ

ł

·····	BONNE	TERRE TAILI	NGS PILE
Sample	Met	al Conc ug/g	3
No	РЬ	Cd	Zn
BT 400	5330	97	469
BT401	5020	54	273
BT402	1300	10 2	309
BT403	2020	99	430
BT404	2280		451
BT405	3540	11 9	689
BT 406	3070	12 1	718
BT 407	1890	17 6	650
BT408	1540	12 3	587
BT409	3230	14 9	501
BT 410	3590	13 9	51 3
BT411	4120	13 4	671
BT412	4450	17 7	757
BT413	3140	14 4	722
BT414	4350	12 0	309
BT415	2540	16 1	757
BT416	3040	16 4	648
BT417	1630	96	486
BT418	1840	13 7	597
BT419	1760	10 0	641
BT420	1480	30	150
BT421	3080	5 5	194
BT422	2050	13 3	434
BT 423	1940	13 0	479
BT424	2190	13 5	458
BT425	2380	15 1	573
BT 426	2390	17 2	622
BT 427	1580	15 1	553
BT 428	1860	14 2	686
BT 429	1340	13 9	661
BT430	4720	29 5	786
BT431	2650	70	150
BT432	3200	15 2	705
BT433	3200	15 8	650
BT434		8 2	426
BT435	6670 5820	15 3	477
BT436	5820	10 9	361
BT437	5210	18 1	559
BT438	4290	11 5	573
BT 439	6730		755
BT440	6840 5800	12 8	618
BT441	5800	16 0	180

ſ

~

TABLE - 12 BONNE TERRE TAILINGS PILE

*-

Sample	Met	tal Conc ug/	'g
No	РЬ	Cd	Zn
BT444	3280	15 1	511
BT445	4530	13 6	444
BT446	4220	17 4	697
BT447	5030	19 2	746
BT448	5980	22 5	967
BT449	5190	28 8	623
BT450	3390	22 4	922
BT451	3540	22 0	878
BT452	2791	15 7	563
BT453	6230	10 4	539

TABLE - 12 BONNE TERRE TAILINGS PILE

٢

Ł

r

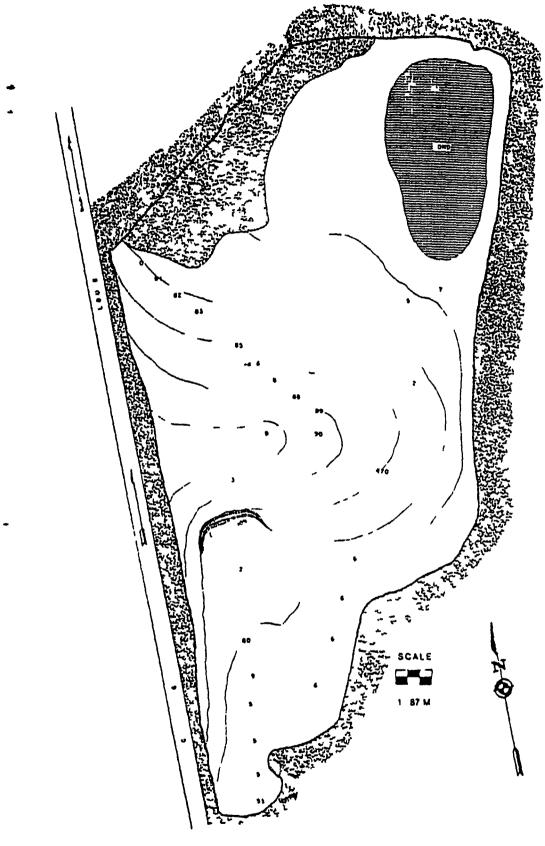


FIGURE 11 LOCATION OF SAMPLING SITES ON BONNE TERRE TAILINGS FLAT

	TABL			
BONNE	TERRF	TA	ILINGS	FLAT

i.

Sample No	Meta	1 Conc ug/g	}
	РЬ	Cd	Zn
BT455	1232	59	173
BT456	3020	10 2	361
BT457	6650	10 5	312
BT458	1810	59	385
BT459	1600	- 90	354
BT460	1920	12 3	491
BT461	1170	93	312
BT462	1610	10 0	234
BT463	989	84	185
BT464	1560	_ 73	205
BT465	1550	11 2	244
BT466	2310	12 0	380
BT467	1540	10 8	366
BT468	3450	10 4	243
BT469	1620	95	255
BT470	1860	60	157
BT471	1520	4 5	87 2
BT472	2710	63	222
BT473	1170	36	9 9 5
BT474	660	79	151
BT475	1440	47	156
BT476	2610	49	330
BT477	1320	60	165
BT478	1900	13 2	337
BT479	1760	98	273
BT480	1290	13 8	524
BT481	1480	15 1	543
BT482	1780	13 3	321
BT483	1820	56	618
BT484	1400	67	171
BT485	2840	10 0	1470
BT486	7610	20 9	698
BT487	1590	67	152
BT488	1020	64	115
BT489	1950	- 81	321
BT490	1120	52	170

.

-

TABLE 14 STATISTICAL ANALYSIS OF HEAVY METALS IN THE DIFFERENT TAILINGS PILES

	LEAD	CADMIUM	ZINC
Mean Standard Deviation 95% Confidence Interval Maximum Minimum	2444 4072 2455 <u<3231 17000 597</u<3231 	267 394 223 <u<299 1870 9 3</u<299 	5009 4894 4957 <u<5894 25800 633</u<5894
BIG RIVER DESLOGE			
Mean Standard Deviation 95% Confidence Interval Maximum Minimum	2077 1294 1931 <u<2224 6200 826</u<2224 	26 15 2 24 <u<28 78 6 6 8</u<28 	1226 860 1129 <u<1323 3990 233</u<1323
NATIONAL			
Mean * Standard Deviation 95% Confidence Level	3508 1516 3172 <u<3844< td=""><td>7 2 10 1 2 ^r<u<10 3<="" td=""><td>457 613 94<u<562< td=""></u<562<></td></u<10></td></u<3844<>	7 2 10 1 2 ^r <u<10 3<="" td=""><td>457 613 94<u<562< td=""></u<562<></td></u<10>	457 613 94 <u<562< td=""></u<562<>
1) NORTH EROSION AREA			
Mean Standard Deviation 95% Confidence Inter	2510 1325 val1592< u<3428	4 9 2 8 3 D <u<6 8<="" td=""><td>112 112 29<u<190< td=""></u<190<></td></u<6>	112 112 29 <u<190< td=""></u<190<>
2) EAST EROSION AREA			
Mean Standard Deviation 95% Confidence Inter <u>ELVINS</u>	6894 1464 va15809 <u<7979< td=""><td>6 4 5 3 2 5<u<10 3<="" td=""><td>295 361 94<u<562< td=""></u<562<></td></u<10></td></u<7979<>	6 4 5 3 2 5 <u<10 3<="" td=""><td>295 361 94<u<562< td=""></u<562<></td></u<10>	295 361 94 <u<562< td=""></u<562<>
Mean Standard Deviation 95% Confidence Interval Maximum Minimum	4392 2581 4130 <u<4654 11600 851</u<4654 	103 47 98 <u<108 202 19 8</u<108 	5482 3179 516^ <u<5803 11900 108</u<5803
BONNE TERRE			
Mean Standard Deviation 95% Confidence Interval Maximum Minimum	3515 1705 3285 <u<3744 7010 1300</u<3744 	13 9 5 3 18 2 <u<14 6<br="">29 5 3 0</u<14>	541 211 512 <u<569 967 51 3</u<569

. _.___

Elliott (15) and Wixson <u>et al</u> (12) have noted that the tailings materials tend to move downriver during storm events with the heavier metal rich fraction tending to settle out first as the storm water event decreases This accounts for pulses of metals that may be found at different locations following periods of elevated rainfall and rapid runoff into and down the Big River

Considering the amount of sediments found in the intestines of bottom feeding suckers, the bioavailability of lead and other metals in the sediments is rather small. However continued monitoring is needed to make sure that lead levels in edible fish tissues do not approach levels of concern to human health

VI FIELD STUDIES OF TAILINGS USED FOR AGRICULTURAL LIMESTONE PURPOSES

One of the objectives of this research project was to sample, analyze and evaluate soil and vegetation in a natural field environment where tailings material had been used for agricultural limestone over a period of years. With the assistance of Mr John Carter, Environmental Engineer, St Joe Minerals Corporation and the permission of Mr T Ferguson, a series of such samples were taken on the Ferguson farm near Farmington, Missouri

At this site a random survey was made of the soil using the standard 'staggered W" method Each sample was comprised of 20 auger cores to a depth of 10 cm and bulked into a polyethylene bag Soil samples were then dried at air temperature in the laboratory, ground and passed through a nylon sieve of 2 mm aperature

Vegetation samples of grass and clover were collected with stainless steel implements at appropriate soil sampling sites and placed in polyethylene bags with the root system intact in the soil sample In the laboratory, the plant material was separated from the soil and carefully washed by standard methods and dried at 100°C followed by milling and analysis

Analysis for the soil samples was by AAS (flame or graphite furnace) or ICAP performed by the Environmental Trace Substances Research Center at the University of Missouri in Columbia Missouri Appropriate preparation, extraction and control techniques were employed in the analysis of the soil and plant material Figure 12 illustrates the staggered W sampling scheme and sample site locations within the confines of the Ferguson farm Table 15 gives the ICAP analysis for soils, grass, leaves stems and roots, and clover flowers, leaves and roots These data are important to determine how much metal (such as lead) might be removed from the tailings amended soil and translocated into the roots stems leaves or flowers of grass and clover grown in the field for animal consumption Additional elements determined by the ICAP method are also listed for the soil and vegetation sampled Units reported are micrograms/gram (dry weight for plant materials)

Table 16 indicates the soil analysis (AAS) for sample sites on the Ferguson farm where grass or clover samples were not collected

The Ferguson farm pasture studied was last limed with tailings from the Big River-Desloge tailings pile in 1978 according to information received from Mr Ferguson Tailings from other locations had also been used on this seventeen acre field for a number of years preceeding the 1978 application

The highest lead soil value found was 200 μ g/g and the grass growing in this material gave an analysis of 40 for the roots 4 for the stems and 13 in the blade portion of the grass. At sample site number 420 the soil contained 100 μ g/g Pb and the grass roots reflected 100 μ g/g with 2 in the stem and 5 found in the blades or leaves

The clover plants had even less accumulation of lead or other metals in the roots, stems leaves or flowers of the plant growing on the tested soil

mater the state of the state of

TABLE 15

uυ

SOIL AND VEGETATION ANALYSIS (ICAP) FOR SAMPLE SITES ON FERGUSON FARM (UNITS IN MICROGRAMS/GRAM)

Element	419 Soil	420 Soil	420 Grass Leaves	420 Grass Stems	420 Grass Roots
Ag	<03	<03	04	< 0 3	<02
A1	5300	8500	130	190	4100
As	10	10	۲Ţ.		
В			52	4	4
Ba	63	66	98	70	45
Ве	0 49	0 46	<0 03	<0 03	0 44
Ca	6400	12000	4500	ססק נ	27000
Cd	07	09	03	<03	14
Co	80	93	03	05	72
Cr	13	13	088	07	17
Cu	34	28	58	4	27
Fe	12000	12000	150	210	17000
к	290	530	14000	9800	2400
Li	34	66	<03	<03	24
Mg	3400	6600	3500	2100	13000
Mn	720	740	61	77	1100
N7	23	42	230	160	600
Ni	56	95	08	08	55
P	270	540	3300	2 500	1100
РЪ	78	100	49	2	100
Si	48	54	220	170	43
Sr	48	9]	66	34	12
Τi	19	66	15	3 1	93
V	23	74	03	05	27
Zn	32	58	14	23	70

		TABLE	15 (Cont)	}	42	1	421 Clover
Element	421 Soil	1	421 Clover Rootb	421 Clover Stems	Clov Flor		Leaves <0 4
	<0 3		<0 6	<02<2	03 53		40
Ag	6000		1600				16
A1	10			19	29		18
٨s	10		9	23	13		<0 04
В	67		32	<0 02		0 02	19000
Ва	0 46		0 07	7500		2000	-0 4
Be	1400	0	5400	<0 2	1	06	08
Ca	10	•	<1	03		11	0 4
CJ	82		30	< 0 2		25	16
Co	13		39	53		28	150
Cr	18		34	41		94	7400
Cu		000	2900	6600		13000	<0 4
t.	42		4400	<0 2	2	<0 2	3900
٨		5	12	650	0	3800	150
L	•	300	6600	19		81	110
	• •••	780	260	54		120	93
		40	800	0	95	38	1800
	••	71	15	13	300	2900	88
	N1 	690	290	<	1	3 <0 ⁸	с 8 3
	р РЪ	100	12	•	:0 5	14	20
	ru Si	360	23		20	<0	2 0 4
		11	1.		<0 2	<0 <0	<0 4
	Sr Ti	35		4	<02	78	53
	V	21		30	13	, c	-
	v 7n	70		45			
	1.11						

.....

TABLE 15 (Cont)

-

ŧ

Element	425 Soil	425 Grass Rools	425 Grass Stems	425 Grass Leaves	425 Clover Roots
Ag	<0 3	0 3	1	<0 4	05
A1	8100	2500	80	350	330
As	10				
Б		6	<4	6	16
Ba	76	42	12	15	15
Be	0 54	03	<0 07	<0 04	<0 05
Ca	16000	24000	2100	3500	2800
Cd	28	70	<07	06	05
Co s	86	62	<07	09	07
Cr	12	10	1	16	1
Cu	15	24	46	84	23
Fe	10000	8300	120	390	400
k	660	2 500	22000	27000	5600
1 1	63	15	<0 7	<0 4	<0 5
١c	8800	12000	3400	3700	5900
Mn	980	1000	60	74	60
Na -	45	540	190	270	1100
N1	10	60	1	2 3	1
P	450	1100	4200	4400	3400
РЪ	200	~ 0	<4	13	5
51	44	410	<1	310	30
Sr	99	11	36	52	10
Ti	78	33	26	16	33
v	22	16	08	1	23
				~ ~	

.

Zn

TABLE 15 (Cont)

E	lement		425 Clover Flowers	425 Clover Leaves	425 5011
	Ag	0 3	<2	<0 2	<03
	Al	9	<20	40	8100
	As				10
	В	22	10	28	
	Ba	20	73	12	76
	Ве	<0 02	<0 2	<0 02	0 54
	Ca	6400	12000	18000	16000
	Cd	03	<2	03	28
	Co	<02	<2	04	86
	Cr	04	<2	04	12
	Cu	6 1	14	14	15
	Fe	48	91	120	10000
	ĸ	9400	21000	13000	660
	Li	<02	<2	<0 2	63
	Чs	3700	3200	3600	8800
	Mn	16	66	92	980
	٧a	55	150	91	45
	Ní	05	2	. 3	10
	Р	1700	4400	2500	450
	РЪ	<1	<8	2	200
	Si	<05	< 3	06	44
	Sr	17	85	14	99
	Tí	<02	<2	<02	78
	۷	<02	<2	<02	22

49

43

120

ł

TABLE 15 (Cont)

١

1

Zn

Element	429 Soil	429 Grass Roots	429 Grass Stems	429 Grass Leaves	
Ag	<03	<0 3	<0 3	0 4	
Al	4400	2300	110	180	
As	10				
В		<2	<1	6	
Ba	71	33	19	14	L
Be	0 62	0 30	<0 03	<0 04	
Ca	22000	18000	2400	3800	
Cd	22	13	0 88	<0 4	
Co	13	6 1	06	04	
-Cr	96	66	22	1	
-Cu	33	25	79	70	
Fe	13000	6800	160	200	
k	410	4900	25000	39000	
Li	31	16	<03	<0 4	
Яg	11000	9200	2700	4100	
Mn	1200	690	54	57	
\ a	42	4 90	170	230	
NI	78	42	23	15	
P	620	1200	3100	5200	
гъ	160	68	2	66	
Si	230	58	170	300	
Sr	95	9 9	50	69	
11	30	50	29	30	
V	20	14	05	05	
Zn	93	120	36	23	

- -----

TABLE 15 (Cont)

-.. ----

Element	430 Soil	430 Grass Roots	430 Grass Leaves	430 Grass Stems
Ag	<03	<03	<0 3	<0 3
Al	6 5 00	2600	130	150
As	26			
В		4	<2	45
Ba	76	40	13	14
Be	0 66	0 15	<0 03	<0 03
Ca	17000	9000	3400	1900
Cd	20	08	<03	04
Co	14	68	04	05
Cr	12	50	04	06
Cu	22	40	75	56
Fe	13000	4900	180	180
k	580	4700	32000	17000
Lı	51	16	<03	<03
Чg	9000	4200	3600	1900
^ In	1100	620	59	53
۱	39	380	250	120
Ni	89	38	04	07
Р	550	1100	4500	2500
РЪ	120	27	3	2
Si	27	42	260	210
Sr	88	75	62	38
Tí	30	52	27	37
۱	23	12	03	06
Zn	110	130	21	32

TABLE 15 (Cont)

Element	430 Soil	430 Clover Leaves	430 Clover Roots	430 Clover Stems
Ag	<0 3	<03	<0 2	<02
Al	6500	190	420	80
٨s	26			
В		32	14	23
Ba	76	13	15	29
Ве	0 66	<0 03	0 02	<0 02
Ca	17000	18000	3500	7900
Cd	20	<03	03	<0 2
Co	14	08	0 95	04
Cr	12	0 97	0 93	05
Cu	22	15	11	72
Fe	13000	300	630	91
k	580	16000	11000	29000
Li	51	03	03	<0 2
 ۲g	9000	4600	3100	4000
ی ۱n	1100	91	76	20
1	39	77	240	92
11	89	08	07	05
P	550	1900	2000	1300
РЪ	120	50	11	2
Si	27	90	52	59
Sr	88	18	97	24
Ti	30	53	92	31
١	23	06	1 2	03
Zn	110	34	14	15

TABLE 15 (Cont)

3

~

TABLE 15 (Cont)

Element	435 Soil	435 Grass Leaves	435 Grass Stems	435 Grass Roots
Ag	<03	<0 4	<0 4	<0 2
Al	8600	120	170	6600
As	10			
~ỹ B		6	<2	11
Ba	61	6 1	70	88
Be	0 57	<0 04	<0 04	0 73
Ca	20000	3700	2300	24000
Cd	08	04	06	19
` Co	92	<0 4	<0 4	13
Cr	13	09	19	17
Cu	22	62	57	25
Fe	14000	160	210	22000
k	800	25000	16000	3700
Lı	72	<0 4	<0 4	50
Ыр	10000	3800	2500	12000
۲n	1000	70	72	1900
` 1	62	- 50	120	390
N 1	84	16	26	66
P	780	4300	3000	1300
РЪ	120	5	2	73
Si	100	340	7	420
Sr	11	44	36	16
Ti	83	25	66	87
۷	28	<0 4	05	36
7 n	65	25	43	110

TABLE 15 (Cont)

Element	436 Soil	436 Clover _Roots	436 Clover Stems	436 Clover Leaves
Ag	<03	<0 5	<03	<0 3
A1	6200	470	20	67
As	10			
Б		18	18	31
Ва	58	12	12	72
Be	0 61	<0 05	<0 02	<0 03
Ca	18000	3500	6600	17000
Cd	11	<0 5	<03	<03
Co	88	1	<03	06
Cr	11	1	<03	1
Cu	21	19	72	11
Fe	13000	720	42	130
k	570	13000	20000	22000
Lı	50	<0 5	<02	<03
Mg	9400	4700	3200	3100
hin	1100	110	15	87
Na -	46	380	90	180
1	70	55	<03	06
P	760	3600	2300	2000
гъ	160	<3	<2	4
51	62	39	35	82
Sr	94	10	13	10
TI	34	12	03	1
ν	24	2	<0 2	<03
Zn	75	17	89	37

·····

Element	441 Soil	441 Grass Roots	441 Grass Leaves	441 Grass Stems
Ag	<0 3	<0 3	<02	<03
Al	9300	3400	180	140
As	17			
В		5	63	<2
Ba	79	220	97	55
Be	0 65	0 68	<0 02	<0 02
Ca	10000	11000	5200	1700
Cd	10	07	04	07
Co	11	48	03	04
Cr	15	12	1 0	26
Cu	30	140	59	50
Fe	13000	16000	170	260
k	720	4 700	29000	24000
Lı	72	2 1	<0 2	<03
Mg	5600	5500	4600	2700
Mn	990	3100	92	140
۲J	47	600	220	430
L	816	30	1 1	09
P	690	1400	3400	3900
РЪ	170	77	71	<2
Si	370	410	230	4
Sr	98	95	8 1	34
Ti	81	49	0 79	58
ν	29	30	06	34
Zn	65	120	19	50

·--··- ·

TABLE 15 (Cont)

Element	442 Soil	442 Grass Roots	442 Grass Leaves	442 Grass Stems
Ag	<03	<0 4	<03	<03
41	12000	2100	56	100
As	18			
Б		6	S	<1
Ba	92	30	87	94
Be	0 62	0 16	<0 03	<0 03
Ca	10000	7500	4100	1500
Cd	13	12	05	<03
Ca	11	4 3	<03	07
Cr	17	48	07	04
Cu	16	29	53	51
Fe	16000	4300	120	190
k	1000	4800	28000	17000
13	84	12	<03	<03
ig	5700	3400	4400	2100
hin	1000	510	73	94
` a	54	610	260	170
N1	96	36	08	07
P	750	1200	3100	2800
ГЪ	84	27	64	<1
Si	74	500	250	29
Sr	11	70	77	34
TI	130	32	1	19
X	33	10	<0 3	05
Zn	72	120	18	29

-

_

TABLE 15 (Cont)

Element	442 Soil	442 Clover Roots	442 Clover Stems	442 Clover Leaves	442 Clover Flowers
٨g	<0 3	<0 6	<0 3	<03	<03
A1	12000	820	120	30	18
As	18				
Б		17	18	18	25
Ba	92	20	24	11	14
Be	0 62	0 06	<0 03	<0 03	<0 03
Ca	10000	5600	7800	16000	12000
Cd	1 3	<0 6	<03	<0 3	<0 3
Co	11	20	05	08	08
Cr	17	2	04	05	04
Cu	16	22	63	16	13
Fe	16000	1900	170	110	78
k	1000	10000	°4000	22000	19000
Li	84	<0 6	<03	<0 3	<03
21	5700	4100	2400	3500	3700
۰۲ Mn	1000	200	34	89	58
``` \a	54	620	120	250	110
, \1	96	18	04	12	08
P	750	2300	1400	1600	3100
ГЪ	84	69	2	10	42
Si	74	250	3	89	83
Sr	11	12	19	14	17
л. Ті	130	12	25	<0 3	<0 3
/	33	39	03	<0 3	<0 3
Zn	72	18	16	40	30
	-				

TABLE 15 (Cont)

mar allamout

---

_---

		······································			
Sample No	Metal Conc, ug/g				
	РЪ	Cd	Zn	CO	
422	20	< 3	38	8	
423	20	< 3	31	82	
424	20	< 3	21	6 1	
427	130	< 3	22	43	
428	40	< 3	24	6 1	
429	20	< 3	25	70	
432	20	< 3	21	51	
433	200	< 3	72	32	
434	200	< 3	25	38	
438	82	< 3	64	59	
439	80	< 3	34	17	
440	110	< 3	37	16	
443	30	< 3	31	11	
444	30	< 3	24	10	
445	30	< 3	22	9	
446	41	< 3	26	-	
447	220	< 3	94	-	
448	200	< 3	69	-	

## TABLE 16 SOIL ANALYSIS (AAS) FOR SAMPLE SITES ON FERGUSON FARM

-----

A second location where tailings material had been used for agricultural limestone purposes was suggested by Mr Burton L Brown of the U S Soil Conservation Service in Farmington, Missouri This pasture was approximately one mile south of Farmington, Missouri and named "Young Farmers" after the cooperative association that owned the land Soil and grass samples were taken from this area and the analytical findings (ICAP) are presented in Table 17 The soil samples indicated 180 µg/g Pb while the grass roots from the same soil contained 6µg/g Pb and the leaves contained 9µg/g Pb

A normal Crider soil was suggested by Mr Burton using his soil report (19) to locate a typical control soil and the ICAP analysis for this soil taken from an undeveloped field one mile north of Farmington Missouri is shown in Table 18. Interestingly enough the undisturbed control soil was found to contain 140  $\mu$ g/g Pb and the grass growing in this material contained9 $\mu$ g/g Pb in the roots and6 $\mu$ g/g Pb in the blades again indicating that the Pb is not bioconcentrated in the plant from the soil material. Leaf litter at the control soil area was analyzed to determine if atmospheric fallout might influence the metal levels and the levels were found not to be of concern (Table 18)

The Crider soil selected for the natural control soil was also used in the experimental plant growth experiments conducted in the laboratory

and a land the second second

### TABLE 17

### SOIL AND VEGETATION ANALYSIS (ICAP) FOR THE YOUNG FARMERS FIELD WHERE TAILINGS WERE USED FOR AGRICULTURAL LIMESTONE (UNITS IN MICROGRAMS/GRAM)

Element	YF-1 Soil	YF-1 Grass	YF-1 Roots
Ag	< 1	57	24
Al	6100	260	530
B	20	4	10
Ba	140	29	14
Be	0 51	< 0 1	< 0 1
Ca	3700	3600	1500
Cđ	05	< 0 6	< 0 5
Co	84	<06	< 0 5
Cr	15	< 0 6	< 0 5
Cu	13	87	11
Fe	10000	260	410
k	680	16000	6300
Lı	4 0	< 0 6	< 0 5
Mg	1800	2200	700
Mn	1300	83	63
Na	25	130	180
ti	94	48	08
P	540	2900	1700
РЪ	180	9	6
Si	120	380	210
Sr	65	6 D	25
Ti	56	84	23
r	20	08	17
Zn	65	42	47

١,

### TABLE 18

Ŧ

INDLE 10					
SOIL AND VEGETATION ANALYSIS (ICAP) FOR					
CRIDER SOIL (CONTROL) NEAR FARMINGTON MISSOURI					
(UNITS ARE IN MICROGRAMS/GRAM)					

Element	<u>C-11 Soi1</u>	C-11 Roots	C-11 Stems	C-11 Leaves
Ag	< 0 3	< 0 6	< 0 5	< 0 6
Al	11000	3100	590	350
В	6	16	3	3
Ba	230	89	73	42
Ве	0 70	< 0 1	< 0 1	< 0 1
Ca	1600	3100	3400	1900
Cd	< 0 3	< 0 6	< 0 5	< 0 6
Co	12	32	1	< 0 6
Cr	22	20	< 0 5	< 0 6
Cu	95	15	64	97
Fe	13000	2200	480	310
k	1400	19000	9700	43000
Li	77	19	< 0 5	< 0 6
Mg	1200	1800	1700	1900
Mn	1700	520	430	220
Na	27	330	200	47
Ni	14	4 1	06	30
Р	300	1200	590	2500
РЪ	140	7	9	< 6
Si	200	1900	150	77
Sr	11	17	16	87
Ti	170	150	22	12
ν	30	77	16	09
Zn	37	50	31	26

·····

### VII COMMERCIAL LIMESTONE STUDY

It was necessary to determine the elements present in commercial agricultural limestone which were used as a control during the experimental growth studies Mr Paul R Rexroad and Ms Mary A Pagett at the Agriculture Experiment Station Chemistry Lab of the University of Missouri-Columbia were kind enough to furnish information on the list of lime quarries and stockpiles by counties After further consultation, thirteen samples were selected for ICAP analysis at the ETSRC in Columbia to determine baseline elemental composition

Four samples were selected from neighboring states (Illinois, Iowa, Arkansas and kansas) and the remainder of the samples were from within the State of Missouri Three of the samples selected for comparison in the State of Missouri were from old lead belt mining operations

Table 19 indicates the identification number, name and location of the limestone quarry followed by the identification number used by the ETSRC for the ICAP analysis Table 20 presents the ICAP data for the various commercial agricultural limestone used in this study

**TABLE 19** 

23

Jar 1

77

27

LOCATION OF COMMERCIAL AGRICULTURAL LIMESTONE USED IN STUDY AND LEAD CONTENTS (ug/g)

Customer I D	Quarry	Location	Sample #	(6/6n) qd
2039	Calcium Carbonate Co	Quincy 111 inois	83010076	6
2011	Ampel	Des Moines, lowa	77	8
1976	Twin Lakes	Midway Arkansas	78	12
2006	Cullor L S Co	Ft Scott Kansas	62	11
2088	Conco Quarries	Springfield Mo	80	11
1918 (2)	St Joe Minerals Corp	Viburnum, Mo **	81	350
2019	Rolla Materials, Inc	Rolla, Mo	82	8
2025	Jeff-Cole Co	Jefferson City Mo	83	8
(1) 6161	Agric Limestone Co	Bonne Terre, Mo *	84	1800
(1) 1261	James D Allen Materials	Farmington, Mo *	85	1 700
1922 (1)	Lead Belt Materials Co	Inc Flat River, Mo *	86	1100
1949	Mississippi Lime Co	Ste Genevieve Mo	88	13
1993	Harris Lime	Patterson Mo	68	7

* Denotes Old Lead Delt Area ** Denotes New Lead Belt Area ł

t

# TABLE 20

ICAP ANALYSIS (ug/g) FOR COMMERCIAL LIMESTONE

Ŧ		2039 83010076	2011 83010077	1976 83010078	2006 83010079
	Ag	< 7	< 7	< 7	<7
	Al	< 50	400	920	1800
	As	< 70	< 70	< 70	< 70
	B	< 30	< 30	< 30	< 30
	Ba	2	C 8 C	2	16
	Be	<1	< 1	<1	<1
	Ca	367000	251000	171000	334000
	Cd	<7	< 7	< 7	< 7
	Co	< 7	<7	< 7	< 7
3	Cr	<7	21	15	< 7
	Cu	<7	< 7	29	16
	Fe	390	1900	3300	5400
	ĸ	< 500	< 500	< 500	< 500
	Li	< 7	< 7	< 7	<7
	Hg	3300	70000	98000	4400
	Mn	220	210	120	420
•	Na	200	330	150	92
	Ni	<7	14	10	13
	P	< 70	3400	350	360
	Pb	< 30	< 30	< 30	< 30
	Se	< 70	< 70	< 70	< 70
	Si	100	430	340	260
	Sn	< 70	< 70	< 70	< 70
	Sr	96	180	72	970
	Ti	< 10	< 10	< 10	< 10
	V	< 7	< 7	< 7	8
٤	Zn	110	36	340	81

· · -

-----

----

_....

I

## TABLE 20 (Cont)

ICAP ANALYSIS (ug/g) FOR COMMERCIAL LIMESTONE

As	2088	1918(2)	2019(1)	2025
Al	83010080	83010081	83010082	83010083
As	<del>ک</del> ۲	<7	< 7	< 7
B	300	60	750	1200
Ba	< 70	< 70	< 70	< 70
Be	< 30	< 30	< 30	< 30
Ca	2	36	70	45
Cd	<1	< 1	< 1	< 1
Со	365000	191000	163000	155000
Cr	< 7	10	<7	< 7
Cu	< 7	19	< 7	< 7
Fe	< 7	< 7	10	11
ĸ	12	290	15	19
Li	490	12000	4400	2900
чg	< 500	< 500	< 500	< 500
Mn	< 7	< 7	< 7	< 7
Na	1400	110000	94000	91000
Ni	200	1700	180	180
P	180	170	180	160
РЪ	< 7	33	10	11
Se	100	300	1100	620
Si	· < 30	340	< 30	< 30
Sn	< 70	< 70	<70	< 70
Sr	160	280	240	230
Ti	< 70	< 70	< 70	< 70
v	150	54	59	59
Zn	< 10	< 10	< 10	<10
	< 7	< 7	7	< 7
	16	750	7	< 7

ب - د ب

- ---

~

____

---

the second

# TABLE 20 (Cont)

# ICAP ANALYSIS (ug/g) FOR COMMERCIAL LIMESTONE

	1919(1) 83010084	1921(1) 83010085	1922(1) 83010086	1949 83010088	1993 83010089
Ag	< 7	< 7	< 7	< 7	< 7
<b>A1</b>	140	150	300	80	880
As	< 70	< 70	< 70	<70	< 70
В	60	40	< 30 😋	< 30	< 30
8	11	39	3	87	8 0
Be	< 1	<1	< 1	<1	<1
Ca	192000	184000	189000	371000	196000
Cđ	< 7	24	42	<7	<7
Co	27	15	20	< 7	< 7
Cr	7	8	11	14	< 7
Cu	170	93	40	8	20
Fe	44000	31000	22000	360	2900
ĸ	< 500	< 500	< 500	< 500	< 500
Li	<7	< 7	< 7	<7	<7
Mg	91000	92000	102000	1800	115000
Mn	5300	4500	3500	16	140
Na	230	260	230	110	260
Ni	28	17	24	< 7	< 7
P	310	430	320	80	300
РЬ	1700	1600	1100	< 30	< 30
Se	< 70	< 70	< 70	< 70	< 70
Si	270	280	310	120	260
Sn	< 70	< 70	< 70	< 70	< 70
Sr	36	44	47	140	53
Tí	< 10	< 10	< 10	< 10	< 10
V	10	7	7	< 7	8
Zn	350	860	2100	32	22

σu

#### VIII PLANT METAL UPTAKE STUDIES

Using the survey of metal contents in tailings and chat piles from the Old Lead Belt of Missouri with high lead values, bulk samples were then collected from areas with the highest known lead content for use as limestone in laboratory plant growth experiments Quantitles of tailings material from the New Lead Belt mill operations were also collected for comparison. The tailings were analyzed for cadmium and lead prior to experimental soil preparation

The experimental design involved the mixing of tailings with an uncontaminated acid soil derived from the Old Lead Belt area The typical soil chosen belongs to the Crider series This is a dark brown silt loam formed in loess or clay residuum with pH in the top 20 cm being approximately 5 0 unless limed The soil is classified as a mesic Typic Paleudalf (19)

In a control study the same acid soil was amended with equivalent amounts of a commercial agricultural limestone known to contain only background levels of heavy metals. For further comparison soil was collected from a farm where Old Lead Belt tailings had been spread on the land over a number of years

Soil samples were laid out on polyethylene sheeting to dry in the laboratory Large particles and stones were removed by hand Dried soils were ground with a large mortar and pestle and passed through a stainless steel sieve of 2 mm aperature. The sieved material was then mixed with coarse gravel (inert) at a ratio of 3 1 to improve drainage. The experimental soil mixtures used for plant growth were prepared by mixing the appropriate soil sample with commercial agricultural limestone or tailings on a volume basis

•The various types of soils and amended soils utilized for laboratory plant growth experiments were as follow

- 1 Uncontaminated control soil (Crider)
- 2 Control soil commercial agricultural limestone (3 1)
- 3 Control soil commercial agricultural limestone (7 1)
- 4 Control soil New Lead Belt tailings (3 1)
- 5 Control soil New Lead Belt tailings (7 1)
- 6 Control soil Old Lead Belt tailings (3 1)
- 7 Control soil Old Lead Belt tailings (7 1)
- 8 Ferguson Farm soil (previously treated with Old Lead
   Belt tailings as agricultural limestone)

Each of these soil mixtures was used to prepare six experimental pots Each pot received a bottom layer of glass fiber, 2.5 cm thick over which the soil mixture was placed Prior to planting each pot received a surface application of liquid fertilizer and was allowed to equilibrate for 48 hours

Radish (French Breakfast) and lettuce (Paris White) seeds were sown at a rate of 25 per pot and covered with a 1 cm layer of the appropriately treated soil All pots were placed in a commercial greenhouse in a randomised block, and watered thoroughly from below with local tapwater

Initial growth was rapid and the plants were thinned to 10 per pot for radish and 5 per pot for lettuce Plants were harvested after 6 weeks At Harvest, plants were divided into leaves and roots and tubers in the case of radish Each plant part was weighed, washed thoroughly with distilled water to remove soil particles, and dried in paper bags for 24 hours in an oven with a forced draught and set at 90 C After drying plants were reweighed ground and sent to the Environmental Trace Substances Laboratory at Columbia Missouri for analysis Soil samples from each pot were also collected and analysed Analysis was by the inductively coupled argon plasma emission method or flameless atomic absorption for lead

#### RESULTS AND DISCUSSION

AND A REAL PROPERTY OF

3

The analytical values for the soils and limestones are illustrated in Table 21

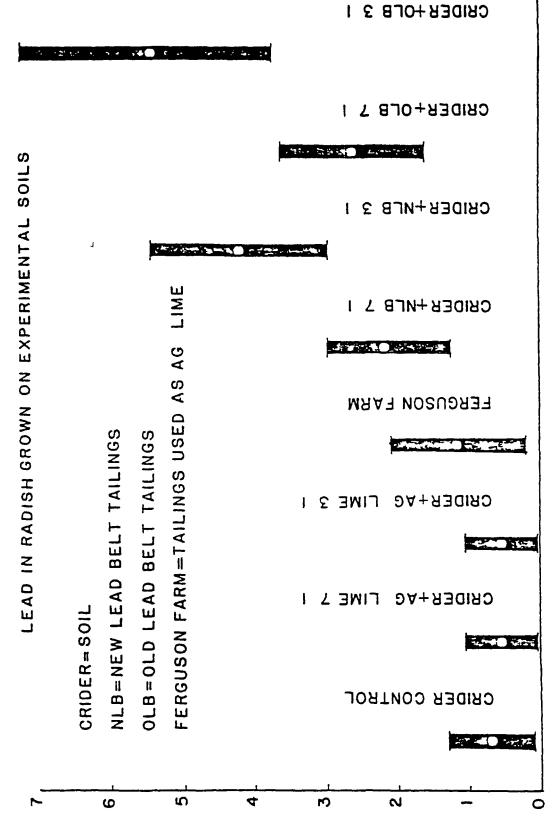
For each treatment, the mean and standard error of the three replications of each plant was calculated on a dry weight basis. These are presented graphically for Pb and Cd in radish bulbs in Figures 13 and 14 Figures 15 and 16 illustrate the Pb and Cd in lettuce leaves For each diagram the treatments have been ranked in order of increasing metal contents of the treatments left to right along the X axis

The diagrams for lead indicate a distinct upward trend in metal content of plants from left to right i e as soil metal levels increase The trend for Cd is not as marked

The highest levels of Pb in the soils were noted in the 3 l mixtures of Old Lead Belt tailings and these soils yielded radish with the highest Pb contents in the range 5 - 7  $\mu$ g/g dry matter. One way of interpreting these values is to use the maximum permissible limit for lead in food in Great Britain. In Britain it is an offense to sell food containing > $l_{\mu}$ ; Pb/g on a fresh weight basis. Although the

U.J

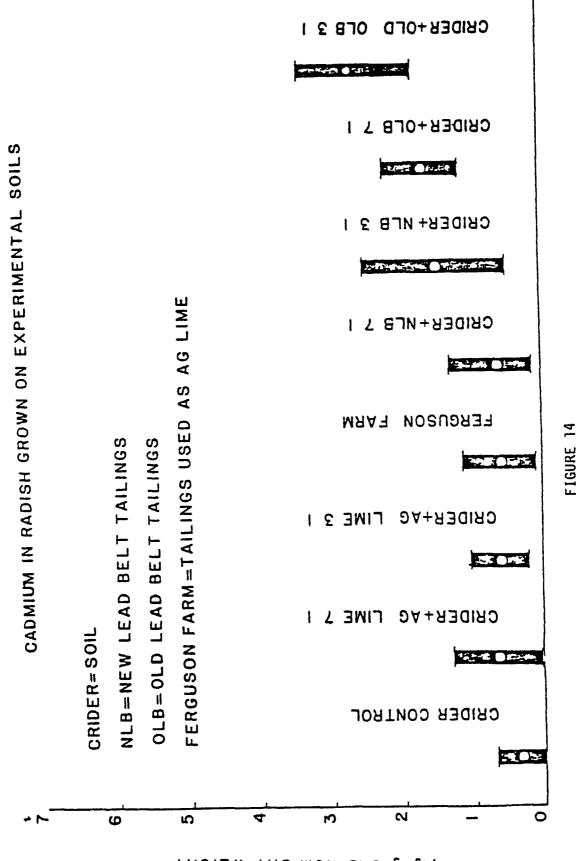
	OLD LEAD BELT TAILINGS	9100	64	3100
	NEW LEAD BELT TALLINGS	320	75	500
21 AND ZINC IN D AGRICULTURAL RIMENTAL SOILS DRY WEIGHT)	FERGUSON FARM	[h ,	< 0 3	. 26
TABLE 21 LEAD, CADMIUM AND ZINC IN SOIL, TAILINGS AND AGRICULTURAL LIME USED IN EXPERIMENTAL SOILS (MICROGRAMS/GRAM DRY WEIGHT)	AG LJME (Ste Genevieve)	. 73	< 0 3	. 21 .
•	CRIDER (Soil Control)	. 29	< 0 3	35 .


P_B CD ZN

-

-

04


٤,



1

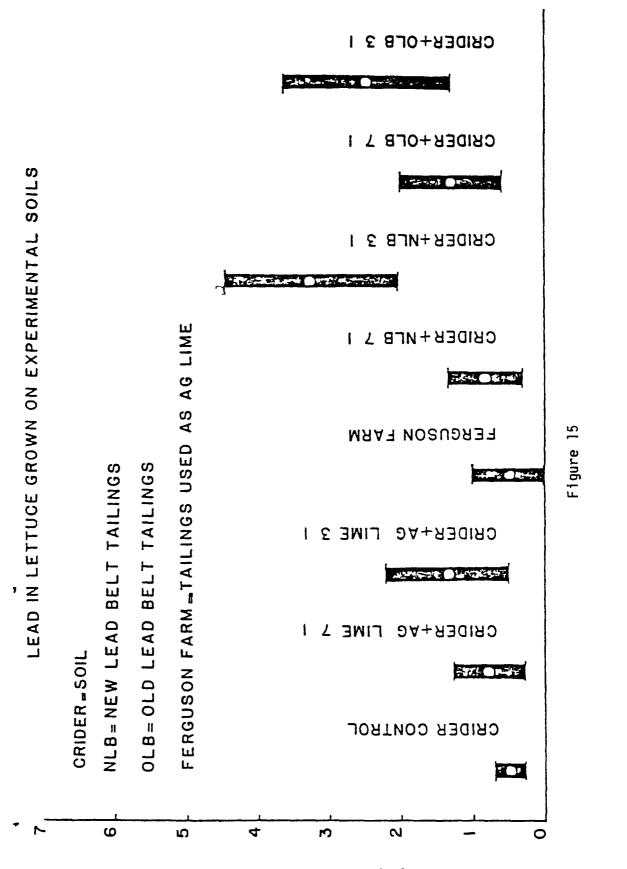
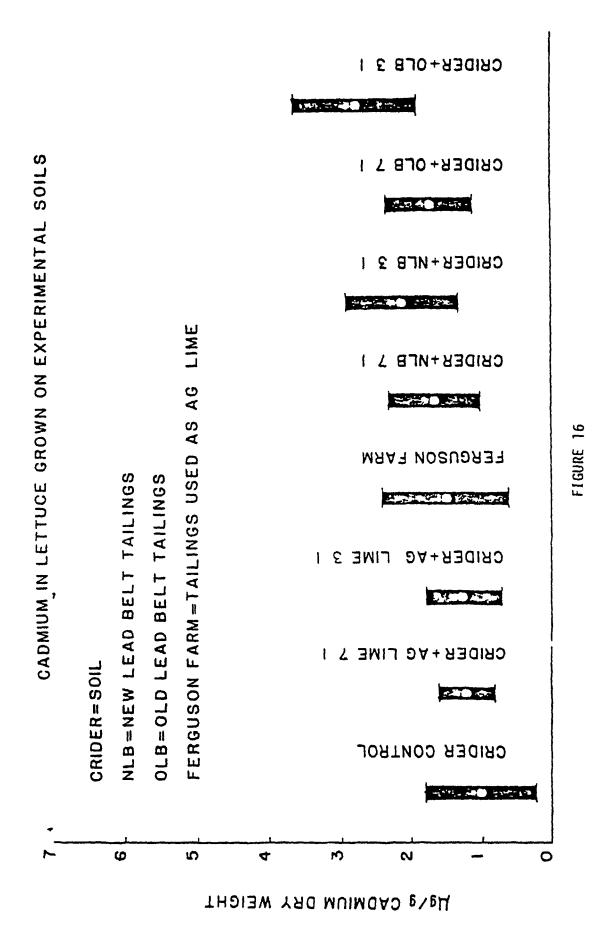

M9/9 LEAD DRY WEIGHT

FIGURE 13




ſ





THOIAW YAO DAAL 0/04

0/



dry matter content of vegetables is variable it is a useful approximation to suppose most contain about 10% dry matter and the permissible limit therefore converts to 10 µg/g dry weight. The highest lead contents of the radish are lower than this limit. Levels in the lettuce are even lower and lettuce dry matter contents are more usually nearer 5% than 10%. It is interesting to note that in both lettuce and radish, slightly elevated levels occurred in the New Lead Belt 3 | tailings. This suggests that even though the New Lead Belt tailings contain less Pb than the Old Lead Belt ones when added at a rate of 3 l (soil tailings), soil Pb levels could become higher than those observed when Old Lead Belt tailings are added at a rate of 7 l (soil tailings). In the case of lettuce. New Lead Belt tailings at 3 l produced higher plant levels than Old Lead Belt tailings at 3 l

The Cd contents of radish and lettuce showed a similar trend to that of Pb i e increasing with the content of the underlying soil Levels in the highest Cd treatment were 6 times those in the control for radish and 3 times those for lettuce and in both cases this was about 3  $\mu$ g/g dry weight. On a fresh weight basis this would correspond to 0 3  $\mu$ g/g for radish and 0 15  $\mu$ g/g for lettuce. In neither Great Britain nor the USA is the food content of cadmium controlled by law Davies and White (20) argued that using the same premises that were used to derive a lead limit a limit of 0 2  $\mu$ g Cd/g wet weight is applicable. The highest radish value is above the limit of 0 2 mg/kg for Ct suggested by Davies and White (20)

The liming regimes used in this experiment were far in excess of those which would be considered normal agricultural practice In normal liming practices, two tons of lime are applied to one acre of soil (top 6 inches) Using calculations for Crider soil, this represents two tons of agricultural lime per 1089 tons of soil or a ratio of 544 l (soil-to-lime) Hence with normal rates of application, metal levels accumulated by crops would be expected to be far lower This was in fact observed where the plants were grown on the Ferguson farm soil which has received mill tailings as agricultural limestone over a number of years However the low uptake observed could also be a function of the high pH maintained by the added lime In practice therefore, uptake may increase if high metal levels are allowed to accumulate in soils, and are subsequently made more available by a lowering of pH e g by discontinuation of the liming regime

1

ъ

### IX CONCLUSIONS

Five of the major chat or tailings piles and areas in the "Old Lead Belt" of Missouri have been sampled, analyzed and evaluated for the concentrations and distributions of pertinent metals Near surface and core samples were collected in sufficient numbers and patterns to statistically characterize the studied deposits resulting from different separation techniques employing jigging or froth flotation technology

The National and Elvins tailings piles were found to contain the highest mean Pb values (4000-6800 ppm) while the Leadwood debosit contained the highest mean Cd values (267 ppm) coupled with elevated zinc concentrations (5482 ppm) Fach tailings or chat pile and area displayed specific characteristics that may be utilized in planning for stabilization revegetation control or runoff discharges into streams or rivers determining impacts on blota or utilization of these waste rock materials for construction agricultural limestone or other constructive uses

Field studies carried out in pastures where tailings from the Old Lead Belt had been used for a number of years as agricultural limestone did not indicate any significant movement of Pb Cd or Zn from the tailings enriched soil into the roots, stems or leaves of the grass or clover analyzed Control soil and vegetation growing in the same samples indicated a similar trend of no

bioconcentration of elements from the soil

A number of commercial limestone samples from Missouri and from neighboring states were analyzed for comparison with tailings and local limestone used in laboratory plant growth and bloassay experiments to ascertain whether the Old and/or New Lead Belt tailings could be used as agricultural limestone without elevating heavy metal contents of farm crops to unacceptable levels

Plant metal uptake studies indicated that both lettuce and radish tended to accumulate some of the Pb and Cd added when lead-zinc mill tailings were mixed with soil as aggicultural limestone Radish bulbs accumulated Pb to a higher degree than lettuce, but both accumulate Cd to the same level However neither was considered a health hazard according to accepted or proposed standards for Cd and Pb in food with the possible exception of radish grown at the highest rate of appliction of Old Lead Belt tailings, which is significantly higher than normal liming practices

This research evaluation of the data suggests that dolomitic limestone tailings in Southeast Missouri from both the Old and New Lead Belts could be used as a cheap and convenient substitute for agricultural limestone with resultant environmental benefits (21) Utilization of tailings on a broader scale would also enable much of the chat or tailings piles to be removed as a resource

_

material and thereby eliminate some of the stability and erosion problems while improving the appearance of the landscape However, since the different milling waste piles contain varying amounts of cadmium and lead, the materials selected for such use should not contain elevated metal levels found in some of the older chat or tailings locations characterized in this study

ь

1

I.

#### ACKNOWLEDGEMFNTS

Many different people, agencies or industries have participated or helped with this study and the authors would like to acknowledge their efforts

The research work was supported by the Missouri Department of Natural Resources and the suggestions, support, leadership and patience of John Ford, John Howland and Robert Schrieber is most appreciated

This project was also funded in part, under a continuing 208 grant from the U S EPA and this support is also gratefully acknowledged

John Carter, St Joe Minerals Corporation was most helpful in assisting with field work and admission to St Joe property and data Special thanks must go to Theodore Ferguson and his family for allowing us to sample his farm pasture Burton Brown from the soil conservation service in Farmington, Missouri gave of his time, shared data and suggested area soils for the study

Mr Lee Cash of the Lead Belt Materials Company and Gayle Blackwell and George Carroul of the St Francis County Environmental Corporation allowed our team to sample on their properties

Larry George, Glynn Horter and Scot Lay from the Bureau of Mines in Rolla, Missouri assisted with auger and coring work on the tailings piles The permission to include the Bureau data and assistance of Don Paulson is also appreciated

-----

草坯性 支

Paul Rexroad and Mary Pagett at the University of Missouri-Columbia helped with the selection of commercial limestone for analysis The analytical preparation and analysis carried out by Ed Hindergerger, Millie Kaiser and Tom Clevenger at the Environmental Trace Substances Research Center in Columbia, Missouri gave the quality control needed for the study

Heyward Wharton from the Missouri DNR Division of Geology and Land Survey furnished maps suggestions and data that were most helpful Dr Brian Davies was a visiting professor at the University of Missouri-Rolla during this research and thanks to UMR and the University College of Wales-Aberystwyth, Wales for their support

Larry Elliott completed his M S Thesis on the National Tailings pile with support from the Missouri DNR

Special thanks must go to the students and staff associates who sweated long hours in the sun or lab to collect the necessary samples and data They are Bill Ray, Tanzeer Ahmed, Nicola Houghton David Schlotzhauer, Ross Hazelhorst and Sue Hills

To all these fine people and others who helped on this study our sincere thanks

### REFERENCES CITED

- Mo Geology News, Mo Dept of Natural Resources, Div of Geology and Land Survey, Rolla, Mo Vol 1, No 1 April 1981
- 2 <u>The Missouri Lead Study</u>, B G Wixson, Ed The University of Missouri-Rolla, Rolla, Mo Vol I and II 1977
- 3 Davies, B E and L J Roberts <u>Science of the Total Environment</u> 4, 249-261, 1975
- 4 Davies, B E and L J Roberts The Distribution of Heavy Metal Contaminated Soils in North-east Clwyd, Wales, Water, Air and Soil Pollution, 9 567-568 1978
- 5 Ford, T D , and J H Rieuwerts Lead Mining in the Peak District Peak Park Joint Planning Board Bakewell Derbyshire, 2nd Ed ISBN 0-901628-25-6 1975
- 6 Wharton Hey ard M Missouri Department of Natural Resources Division of Geology and Land Survey Memorandum of 28 October, 1983 to Mr John Carter, Director of Environmental Control St Joe Minerals Corp P O Box 500 Viburnum, MO
- 7 Buckley E R 'Geology of the Disseminated Lead Deposits of St Francis and Washington Counties,' Missouri Geological Survey, 1908
- 8 Winslow, A , 'Lead and Zinc, Missouri Geological Survey 1894
- 9 Water Quality of the Big Bourbeuse Meramec River Basins," Missouri Water Pollution Board, Jefferson City MO 1964
- 10 Jeffery, P G , <u>Chemical Methods of Rock Analysis</u>, Pergamon Press Elmsford, New York 1975

- Wagner R E, Lead Belt Geology <u>Mining and Metallurgy</u>, 28,
   4, August 1947
- 12 Wixson B G Elliott L E Gale N L and Davies, B E 1983 Influence of Tailings from the Old Lead Belt of Missouri on Sediments of the Big River Trace Substances in Environmental Health - VXI D D Hemphill Ed Columbia MO 1982 pp 3-11
- 13 Prater B Old Mines Leave Legacy of Danger Kansas City Times Headline, Kansas City MO 23 March 1981
- 14 Ford John C Memorandum of 6 October 1981 Missouri Department of Natural Resources Jefferson City MO to Bobby Wixson Univ of MO-Rolla concerning adequate sample size 1981
- 15 Elliott Larry E Impact of Tailings from Abandoned Lead Mines on the Water Quality and Sediments of Flat River Creek and Big River in Southeastern Missouri M S Thesis The University of Missouri-Rolla Rolla MO 1982 63pp
- 16 Kramer Roger K Effects of a Century Old Missouri Lead Mining Operation Upon the Water Quality Sediments and Biota of Flat River Creek M S Thesis The University of Missouri-Rolla Rolla, MO 1976 137 pp
- 17 Whitton B A Gale N L and Wixson B G Chemistry and Plant Ecology of Zinc-Rich Wastes Dominated by Blue-Green Algae Hydrobiologia, Hague Netherlands 331-341 Nov 1980
- 18 Zachritz W H II The Effects of the Old Lead Belt Mining District of Southeastern Missouri on the Water Quality and Sediments of the Big River Basin M S Thesis The University of Missouri-Rolla Rolla MO 1978 103 pp

- 19 Brown, B L Soil Survey of St Francois County, Missouri USDA Soil Conservation Service, Washington, D C 1981
- 20 Davies, B E and White, H M Trace Elements in Vegetables Grown on Soils Contaminated by Base Metal Mining <u>Journal of Plant</u> <u>Nutrition</u> 3 387-488 1981
- 21 Wixson, B G , Gale N L Davies B E and Houghton N J Possible Use of Lead-Zinc Mill Tailings as Agricultural Limestone " Trace Substances in Environmental Health XVII D D Hemphill, Ed Univ of MO-Columbia Columbia, MO 1983



United States Department of the Interior BUREAU OF MINES 1300 BISHOP AVENUE ROLLA MISSOURI 65401

October 28, 1983

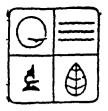
DCT 3 1

Dr Bobby G Wixson Professor of Environmental Health University of Missouri - Rolla 321 Engineering Research Lab Rolla, Mo 65401

Dear Dr Wixson

ł

Thank you for your recent letter acknowledging the cooperation provided by Bureau of Mines employees at the Rolla Research Center We are pleased that their assistance was beneficial, especially the supplemental data that you wish to include in your final report on the characterization of the lead tailings piles in southeast Missouri


The analytical results and other technical assistance that was provided by the Bureau may be incorporated in your final report

If we can be of further assistance in the future, please let us know

Sincerely yours,

D L Paulson Research Director Rolla Research Center

ኘ



MISSOURI DEPARTMENT OF NATURAL RESOURCES PO Box 1368 2010 Missouri Bivd Jeffer Jon City Missouri 65102 (314) 751 3241

October 6 1981

Dr Bobby Wixson University of Missouri Rolla Rolla Missouri 65401

Dear Dr Wixson

Thank you for forwarding copies of the preliminary data from the sampling and analysis of heavy metals in selected chat piles and tailings ponds There were several interesting points including

1 The great variability in zinc concentration between chat piles

2 The apparent enrichment of material at the outflow from the Flat River pile which suggests some selective process

I have put together some comments on the variances of the samples you have taken and how they relate to adequate sample size (no of samples) It appears that with the number of samples taken the sample means for metals levels in chat piles are within 30' of the true mean and in the Desloge tailings within 15' of the true mean. These figures assume a 95' confidence level

I would welcome your comments on the attached materials which document my estimation of appropriate sample sizes

Sincerelv

1 121

John C Ford Environmental Specialist Vater Pollution Control Program

JCF jc

Christopher S Bond Governor Fred A Lafser Director

Division of Environmental Quality -Robert J Schreiber Jr PE Director I believe there are ypes of conclusions concerning eavy metals concentrations in tailings that require some degree of statistical corroboration

- 1 The mean or average concentration of a given metal in a particular chat pile or tailings pond and
- 2 The mean concentration of a given metal in one chat pile or tailings pond relative to the mean concentration of that metal in a second chat pile or tailings pond

The following procedure is my attempt to calculate the minimum sample size necessary to provide that statistical cooroboration

In order to make estimates of a certain precision that are representative of a population at a given level of confidence the following formula is used

$$n = \frac{t^2 s^2}{d^2}$$

Where

e n = no of samples
t = Student's t (confidence level desired)
s² = population variance estimate
d = desired precision

### Student's t

I wish to use a 95° confidence level Assuming cost restraints will put the sample size in the range of  $3 \le r \le 15$  then  $2.35 \le t \le 1.75$  For the purposes of estimating sample size (which must be rounded off to a whole number anyway) I will use t = 2

### Population Variance Estimate, 42

I made four separate estima es of population variance for Pb Zn and Cd In choosing samples I was careful not to include samples sites that may have been of different origin Thus at the Elvins chat pile the coarse material (sample 87) was not included nor were tailings moved by water (samples 76-80) At the Flat River pile the material in the lower pile (samples 55-57) were not included

·· · -

Results are as follows based upon metals concentration in parts per million

			Approx Sample Variance (4 ² )					
Location San	ple Numb	ers			РЪ	<u>7n</u>	Cđ	
Elvins Chat Pile Flat R ' Leadwood '		58 59	63	64	3 250,0	2 400,0 00 13 8 00 9 000,0	300 7 6	6
Deslodge Tailings	+ -				160 0	•		3

------

The high variance for  $\angle n$  at Leadwood is caused by 2 or the nine values If we consider them outliers and ignore them for the moment then the maximum variance we are experiencing at the 3 chat piles is about 3 million and for the tailings pond 160 000

#### Desired Precision d

Precision here is the maximum illouible difference between the sample estimate and the true population valve which can be detected with a given level of confidence. In this case. I have chosen one-tenth of the sample mean. Asking for considerably more precision than this like. Of of the sample mean may be exceeding the capability of the analytical procedures.

For simplicity an average value of d for chat piles of 300 was used for Pb and 400 for 2n (a value of 25 7 will be used for the Flat River pile since it is considerably different in  $\frac{1}{2}$   $2n_{-}/$ 

	Value of	d	
Location	РЪ	<u>Zn</u>	Cd
Elvins Chat Pile	260	377	73
Flat R	408	25 7	54
Leadwood '	295	463	9 1
Desloge Tailings Pond	176	126	27

### Calculation of Sample Size n

ŧ

		t ²	s ²	d ²	n
Cnat Piles	Pb	4	3 100	90 000	133
	Zn	4	3 10 ⁶	160 000	75
Flat R Zinc	Zn	4	13 800	660	84
	Cd	4	3 000	50	240
Tailings Ponds	РЪ	4	160 000	31 000	21
_	Zn	4	54 000	16 000	14
	Cd	4	35 <b>3</b>	7	20

The high variances in Pb Zn and Cd concentrations in chat result in the large number of samples required to obtain a sample estimate within 107 of the true mean 95% of the time By looking at the log of the metals concentrations sample variances can often be reduced

# J Transformation of Data

All metals concentrations were transformed as follows (log₁₀ concentration) +1

This leads to the following set of sample variances

Location	РЪ	Zn	cđ	
Elvins Chat Pile	019	037	025	
Flat R Chat Pile	030	056	052	
Leadwood Chat Pile	050	059	054	
Desloge Tailings Pond	011	007	009	

'd transformed becomes  $\left[ (\log_{10} \text{ sample mcan}) + 1 \right] - \left[ \log_{10} 9 \text{ sample mean} \right]$ 

	d				
Location	РЪ	Zn	cd		
Elvins/Leagwood Chat	0 05	0 04	0 05		
Flat R that Pile	0 05	0 05	0 05		
Desloge Jailings	0 05	0 05	0 05		

Location		²	<mark>ء</mark> 2	d ²	ົ
Elvins/Leadwood Chat	Pb	4	050	0025	80
_	Zn	4	059	0016	148
5	Ca	4	054	0025	86
Flat R Chat	Zn	4	056	0025	90
Desloge Tailings	Pb	4	011	0025	18
	Zn	4	007	0025	11
	Cd	4	009	0025	14

By reducing the amount of precision smaller sample numbers are obtained They are summrized as follows

			Sample mean and true mean withi		
Location	Material	Metal	10/ for log	157 rransformed	20% data
Flvin-/Leadwood	Chat	РЪ	80	41	20
		Zn	148	48	29
		Cđ	86	44	22
Flat R	Chat	РЪ	80	41	20
		Zn	90	46	22
		Cd	86	44	22
Deeloge	Tailings	Ph	18	9	4
-	•	7 n	11	6	3
		Cd	14	7	44

- 2 Choosing sample size to determine relative concentrations in 2 or more piles requires hypothesis testing Tables are available to give number of samples needed once the following variables are estimated or defined
  - S the difference between means which will be detected ---- percent of the time when a true difference exists
  - an estimate of population standard deviation
  - the probability of saying a true difference exists when the samples are really from the same population

I - the probability that the test detects a true difference when a true difference actually exists

# <u></u>

he will use the same values for & that c did for d for the transformed data

# 6

Ve will use the standard deviations of the samples  $\alpha_{(1-\beta)}$  We will define  $\alpha = 05$  and  $(1-\beta) = 80$ 

Using the attached table the appropriate simple sizes are

Sample size n (for each of Z sa- les)

		6 = 05	δ = 07	δ = 10	
Eivins/Leadvood Chat Piles	РЪ	> 100	> 100	83	
	Zn	7100	>100	2100	
	۲D	7100	>100	90	
Flat R Chat Pile	РЪ	>100	7100	83	
٦	Zn	7100	> 100	95	
	Cd	>100	>100	90	
Desloge Tailings Pond	РЪ	75	37	19	
	Zn	45	24	12	
	Cđ	60	32	16	

#### Conclusions

The high variability of metals concentrations in chat mean that large numbers of samples will be needed to make conclusions with a 1 level of confidence will take between 20-25 samples to come within 20 of the true mean metals coilert of a chat pile 40-50 samples to come within 157 and 80-100 samples to come within 107 of the true mean metal content. Log transformat on has been used and his resulted in a slight decrease in necessary samples size.

Tailing: which are typically more homogeneous do not require as many samples Only 10-20 samples are required to achieve a sample mean within 10% of the true mean and only 4 samples to have a sample mean within 20% of the true mean Hypothesis testing which would determine which of two sets of materials contained more metals require considerably more sampling as the table on page 4 shows

Obviously, sample variance is of great importance in determining sample size Should future sampling indicate sample variances different from those used here the sampling data should all be combined and new variances calculated This may result in a lower estimate of adequate sample size and a cost saving

.

4

\$

۲

4

ō
×
-
٥
z
ш
۵.
٩.
2

# AUMBER OF OBSERVATIONS FOR ATEST OF DIFFERENCE BETWEEN AWO MEANS'

It is the theorem of the second substitution is a second substitution of the second substitution is the second se

										1 -	
				32223	*****	382**	13128				••
		- [	-	53	=====	23222	9 <b></b>	*****			
	8				<u>2</u> • 2 4	****	. = = = =			* * * - A	
-		-	5		0 10 12	39-83	22225	2252*		****	~
			0 0		<u>1</u>	22228	*****	22222	<u>•</u> ••~~		<b>~</b> n
_	1					=1283	85683	22022	::::	*****	
		1	•	-	22323	22922	1111	****		•	
	13		-		823	22222	27222	2222*	ر		~ ~
0	9	1	•		102		22222	88222	<u>a</u> • • • • •		
			100		101			22222	2:2**		-
			<u>ē</u>			<u> </u>		=====	2:22:		
1			•		29222	<b>2</b> 2778	82222		*****		~
•		6 6	-		101	5. ~	: ° :	-====		~ * * * * *	<b>.</b>
0					5	32325			_ = = = = =	*****	-
		Ì	•			28227	=3==33	****	12219		-
			5			<u> </u>	22222	<u> </u>	22222	2222	
			-		<u>=</u> 1=2	****	2-2-2		~~~~		
ł	1_		5		11	532°5	*****		= = = = =		
i o		0	-			5		29 22	22228		•
l			01 0 07			5 2 3	32224	-~ <del>.</del> ? I	12222	<u> </u>	-
			8	<b>;</b>		8 :	28.23	*****	-2222	22222	
	,4	1 1		00000	0 10 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2	\$3322	72735			- ~ ~ ~ ~	
	-11-5	3									
	-		-								

[533]

# Agency for Toxic Substances and Disease Registry

**Division of Health Studies** 

# **Big River Mine Tailings Superfund Site** Lead Exposure Study

St Francois County, Missouri

August 1998



# U S DEPARTMENT OF HEALTH & HUMAN SERVICES

Public Health Service Agency for Toxic Substances and Disease Registry Atlanta Georgia 30333 Additional copies of this report are available from National Technical Information Services Springfield Virginia (800) 553 6847 Request publication number PB98 146335

# FINAL REPORT PRINTED BY

# U S DEPARTMENT OF HEALTH AND HUMAN SERVICES AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY ATLANTA, GEORGIA

# BIG RIVER MINE TAILINGS SUPERFUND SITE LEAD EXPOSURE STUDY

# SUBMITTED BY

# MISSOURI DEPARTMENT OF HEALTH BUREAU OF ENVIRONMENTAL EPIDEMIOLOGY JEFFERSON CITY, MISSOURI

June 1998

æ.

This report was supported in part by funds from the Comprehensive Environmental Response Compensation, and Liability Act trust fund provided to the Missouri Department of Health, under Grant No H75/ATH780826 from the Agency for Toxic Substances and Disease Registry Public Health Service US Department of Health and Human Services

# DISCLAIMER

Mention of the name of any company or product does not constitute endorsement by the Agency for Toxic Substances and Disease Registry the Public Health Service the US Department of Health and Human Services or the Missouri Department of Health

# CONTENTS

DISCLAIMER	11
DISCLAIMER	11
LIST OF TABLES	v
LIST OF FIGURES	vu
LIST OF APPENDICES	ıx
ABSTRACT	1
	_
INTRODUCTION	3
RATIONALE FOR STUDY	3
RATIONALE FOR LIMITING STUDY TO CHILDREN	3
BACKGROUND	4
PROBLEM STATEMENT	4
RELATIONSHIP BETWEEN LEAD EXPOSURE BLOOD LEAD LEVELS	
AND HEALTH PROBLEMS	4
EXPOSURE SOURCES RELATED TO THE BIG RIVER MINE TAILINGS SITE	5
METHODS	7
STUDY DESIGN	7
STUDY AREA SELECTION	8
Control Area Selection	9
POPULATION SAMPLING STRATEGIES	11
BLOOD COLLECTION AND ANALYSIS TECHNIQUES	13
SAMPLE ANALYSIS METHODS	16
QUALITY CONTROL MEASURES	18
DATA ANALYSIS	22
RESULTS	22
CANVASS INFORMATION	22
BLOOD LEAD COMPARISON ON CATEGORIES FROM QUESTIONNAIRE	25
IDENTIFICATION OF SOURCE CONTRIBUTIONS	23
DISCUSSION	28
STUDY LIMITATIONS	28
STUDY STRENGTHS	28
INTERPRETATION	28
CONCLUSIONS	33

33

Page

ııi

------

١

· _-·

# LIST OF TABLES

Table 1 — Area Population by Age and Gender from 1990 U S Census Big River Mine Tailings Superfund Site Lead Exposure Study Missouri 1997 Study Area	49 51
Table 2 — Quality Control Summary Results Big River Mine Tailings Superfund Site Lead Exposure Study Missouri 1997	52
Table 3Overview of Study and Control Area Canvass and Recruitment Effort Big River Mine Tailings Superfund Site Lead Exposure Study Missouri 1997	53
Table 4 —Questionnaire Responses by Factors and Group Big River Mine TailingsSuperfund Site Lead Exposure Study Missouri 1997	54 65
Table 5 —Mean Blood Lead and Environmental Lead Results Compared between Study and Control Groups Big River Mine Tailings Superfund Site Lead Exposure Study Missouri 1997	66
Table 6 — Mean Blood Lead Values Compared to Questionnaire Factors by GroupBig River Mine Tailings Superfund Site Lead Exposure Study Missouri 1997	67 77
Table 7 —Correlation Coefficients and Level of Significance for Questionnaire and Environmental Data with Blood Lead Levels in Study Group Big River Mine Tailings Superfund Site Lead Exposure Study Missouri 1997	78
Table 8 —Correlation Coefficients and Level of Significance for Questionnaire and Environmental Data with Blood Lead Levels in Control Group Big River Mine Tailings Superfund Site Lead Exposure Study Missouri 1997	79
Table 9 — Correlations Between Dust and Soil Lead Measures in the Study Area Big River Mine Tailings Superfund Site Lead Exposure Study Missouri 1997	r 80
Table 10 — Correlations Between XRF, Dust and Soil Lead Measures in the Study AreaBig River Mine Tailings Superfund Sites Lead Exposure Study Missouri 1997	81
Table 11 — Range and Median of Percent Contribution of Lead from Selected Sourcesin the Study Area as Predicted from Modeled Classification Scheme Big River MineTailings Superfund Site Lead Exposure Study Missouri 1997	82

# LIST OF FIGURES

Figure 1 — Study Area	85
Figure 2 —Blood Lead Levels for Study and Control Groups	87

# LIST OF APPENDICES

Appendix 1 — Questionnaire	1 1
Appendix 2 —Release and Consent Forms	2 1
Appendix 3 — Media Information	31
Appendix 4 — Residential Canvass Guidance	41
Appendix 5 — Household Census Form	51
Appendix 6 — Recruitment Letter from St Francois County Health Department	61
Appendix 7 — Study Area Recruitment	7-1
Appendix 8Control Area Recruitment Advertisement	81
Appendix 9 — Sampling Teams	91
Appendix 10 —Blood Collection Protocol	10 1
Appendix 11 — Environmental Sampling Protocols and Forms	11 1
Appendix 12 — Environmental Laboratory Certifications	12-1
Appendix 13 — Laboratory Methodologies for Environmental Lead Analysis	13 1
Appendix 14 — Laboratory Detection and Quantification Limits for Environmental Samples	14-1
Appendix 15 — Laboratory Quality Control Procedures	15 1
Appendix 16 — Nist Standard Reference Materials Used for Spikes	16 1
Appendix 17 —Intended and Achieved Frequency of Environmental Sample Quality Control	17 1

-----

------

## ABSTRACT

The purpose of this study was to determine if living close to the Big River Mine Tailings Superfund Site increased blood lead levels of resident children and what contribution mining waste had to any increase The average blood lead level of the 226 children in the study group was  $652 \mu g/dl$  compared to  $3 43 \mu g/dl$  in the 69 control children. The proportion of children with blood lead levels greater than or equal to  $10 \mu g/dl$  in the study and control groups was 17% and 3%respectively. Soil and dust lead levels were up to 10 times higher in the study group compared to the control group. Source characterization of lead levels in soil in the study area indicated that approximately 50% of the lead could be determined to originate from mine waste. Approximately 26% of the vacuum dust could be attributed to waste pile source and 37% to soil of which a proportion probably originated from mine waste.

The results of this study indicated that blood lead levels were a product of exposure to lead mining waste lead based paint and other sources Because the only substantial difference between the study and control areas in terms of exposure to lead was the presence of lead mining mining waste is the most reasonable explanation for the differences between the blood lead levels in the two communities

# BIG RIVER MINE TAILINGS SUPERFUND SITE LEAD EXPOSURE STUDY

# INTRODUCTION

# **RATIONALE FOR STUDY**

A Preliminary Public Health Assessment for the Big River Mine Tailings Superfund Site (considered the Site in the text) (Agency for Toxic Substances and Disease Registry 1994) was reviewed by the Health Activities Recommendation Panel (HARP) at the Agency for Toxic Substances and Disease Registry (ATSDR) It was determined that individuals living on or near this Site were exposed to contaminants at levels of concern Considering the widespread lead contamination at the Site the potential for social and personal costs of lead poisoning in children, and the HARP review the Missouri Department of Health (DOH) proposed to ATSDR to conduct a study of children exposed to lead

This Site provided an opportunity to evaluate the impact of mine waste without appreciable waste from smelting operations on blood lead levels of children living in the area Two smelting operations located in Bonne Terre operated for less than 10 years around the turn of the century

In 1995 a report from DOH to ATSDR documented that children living in a Superfund site in Jasper County Missouri contaminated with lead had significantly higher blood lead levels than children living in a comparison community (ATSDR, 1995) The Jasper County Site was contaminated with waste from lead mining milling and smelting operations The smelting operations consisted of primitive lead smelting operations in hundreds of backyard smelters

# **RATIONALE FOR LIMITING STUDY TO CHILDREN**

Children are at highest risk for lead exposure therefore only children six to 90 months of age were selected for this study. This is the age range for considerable hand to mouth behavior. In the Jasper County Study, adults youths and children were evaluated. Although blood lead values for all age groups were significantly higher than for a comparison group, only one person in the adult group and one in the youth group had levels greater than 10 micrograms of lead per deciliter of blood ( $\mu$ g/dl) compared to fourteen percent of the children

# Study Objectives

The first overall objective of this study was to determine if living in a former lead mining area increases blood lead levels of resident children Secondly, if this increase does occur what contribution did mining waste have to that increase

# BACKGROUND

## **PROBLEM STATEMENT**

Prominent reminders of mining history remain today at the Site with six major tailings piles or ponds several smaller tailings areas and numerous closed mines scattered throughout the 110 square mile Old Lead Belt area (USGS 1988) In 1990 an assessment of the Big River Mine Tailings site was completed by The Ecology and Environment Field Investigation Team (E&E/FIT) under an EPA contract Sampled media included air soil sediment and surface and ground water on the Site as well as off the Site Surface water and sediment were collected from the Big River and tributaries in contact with the mining waste piles Laboratory results indicated that lead levels found in the pile samples ranged from 910 parts per million (ppm) to 13 000 ppm with a mean concentration of 2 215 ppm These values represented high concentrations compared with background concentrations (background samples were collected for all media) as low as 64 ppm These were similar to those reported in a study carried out by the University of Missouri Rolla (Wixson, 1983) Two residential samples and one near a day care center showed very high lead concentrations similar to those reported from the tailings¹

E&E/FIT concluded that the Site was affecting the area located to the south In addition, areas located approximately 1 500 feet from the Site to the east and southeast seemed to be the most significantly affected From this information it follows that blood lead levels particularly in children living in the area, should be investigated

# RELATIONSHIP BETWEEN LEAD EXPOSURE, BLOOD LEAD LEVELS, AND HEALTH PROBLEMS

The Centers for Disease Control and Prevention (CDC) considers lead poisoning the number one preventable pediatric health problem facing children today (CDC 1991) At low levels of exposure comparable to those found near the Site several signs of lead toxicity have been described They include decreased attention span, hyperactivity and lower IQ scores (Ernhardt et al 1981) Lead levels as low as 10  $\mu$ g/dl have been shown to affect child development (Bellinger et al 1987 Bellinger et al 1991 Dietrich et al 1987 Needleman et al 1990 Ernhart et al 1986 Lyngbye et al 1990) Needleman and Gatsonis (1990) report that children s IQ scores are related inversely to low levels of lead burden Several studies provide sufficient evidence that children s cognition was adversely affected by lead (Bergomi et al 1989 Ferguson et al 1988 Fulton et al 1987 Hansen et al 1989 Hawk et al 1986 Hatzakis et al 1989 Lansdown et al 1986 Schroeder et al 1985 Silva et al 1988 Winneke et al 1990 Yule et al 1981)

¹Mining and milling waste can also be referred to as chat or tailings These terms are used interchangeably throughout the text

Adverse effects of lead on intelligence are persistent across socioeconomic strata, as well as different ethnic and racial groups (Baghurst et al 1992 Dietrich et al 1993a, Bellinger et al 1991 Dietrich et al 1993b) The ATSDR has estimated that among all American children, 17% have blood lead levels above 15 ug/dl (ATSDR, 1988) Among white children, 7% of those with good socioeconomic conditions have elevated lead levels in contrast to 25% in poor whites (ATSDR, 1988) The estimates for black children are 25% among those in good socioeconomic conditions compared with 55% among poor blacks (ATSDR, 1988)

Relevant exposure pathways (i e ingestion inhalation) and sources for children include leadbased paint materials ambient air indoor dust and soil Lead based paint is a major contributor to lead poisoning in older homes Since dust is airborne before it settles lead particulates in dust are likely to be inhaled Lead exposure is greatest in indoor dust where the contaminants are dispersed trapped, and settled over a confined area (Lepow et al 1974 Vostal et al 1974) Few studies are available that indicate how much lead in dust and soil may result in increased blood lead levels when lead is ingested or inhaled (Lepow et al 1974 Vostal et al 1974)

People who work in certain hobbies or industries such as the production of storage batteries chemical substances such as paint and gasoline additives metal products such as sheet lead solder and pipe and ammunition, may also be at risk because of exposure at the work place as well as at home Potential for contamination of the home environment exists from particulates transferred from work to the household environment (Prior et al 1994 Klemmer et al 1975 Knishkowy and Baker 1986)

# **EXPOSURE SOURCES RELATED TO THE BIG RIVER MINE TAILINGS SITE**

Chat and tailings have been used as fill material or mixed with asphalt as gravel for road surfacing, and for many other house and garden uses The material has been spread through the area by man and by erosion Erosion significantly contributes to down gradient deposition of the contaminated material (Wixson, 1993)

Lead has been detected in private wells at a maximum of 32 9 ppb Recent monitoring indicates that the level of lead in public water was below the current EPA Action Level of 15 ppb Lead is naturally occurring in the area, but the deposition of mine tailings at ground surface has made lead more accessible to people Lead is also a problem in older homes where lead paint has been used People living near the Site and tailings throughout the area, have been exposed to lead through incidental ingestion of soils and dust contaminated with lead

Lead exposure is probably greatest in indoor dust where the contaminants are trapped dispersed and settled over a confined area. In the study area, lead has previously been detected at a concentration of 27 460 ppm in the vacuum dust of a home where work with lead products was a hobby (MDOH 1986) In the same study lead was found in other homes (with no lead-related hobbies) at a maximum of 5 230 ppm (MDOH, 1986) These concentrations are an indication of the amount of lead in dust that was distributed throughout the households and accessible to the occupants

#### Description of Exposure Area

The Big River Mine Tailings Site is located approximately 70 miles south of St Louis in an area of southeast Missouri known as the Old Lead Belt Although lead was discovered in the area in the 1700s mining was done by individuals as a dispersed and mostly superficial operation until 1860 At that point large scale mining was established in the region Between 1907 and 1953 this area was the major producer of lead in the nation Mining operations ceased in October 1972 when the last mine was officially closed (USGS 1988)

Prominent reminders of the mining history remain today with six major tailings piles or ponds several smaller tailings areas and numerous closed mines scattered throughout the 110 square mile Old Lead Belt area (USGS 1988) These piles are the result of the stockpiling of tailings One of these piles is currently listed as a Superfund site. The Site consists of approximately 600 acres of mine tailings in a pile that ranges in height from ground level to more than 100 feet, with an average height of approximately 50 feet. The majority of the Site is situated within a horseshoe shaped bend of the Big River, which flows on the east north, and west sides. Residential areas and the city of Desloge are adjacent to the Site on the south and southeast

In addition to the city of Desloge the city of Park Hills is also south of the Site and contains three additional tailings piles A fifth tailings pile (the Bonne Terre pile) is approximately two miles north of the Site in Bonne Terre A sixth tailings pile the Leadwood pile is approximately two miles west of the Site The piles are shown on a map in Figure 1

Most of these large piles are located adjacent to residential areas In some cases tailings are slumping into existing backyards of adjacent homes In addition to this deposition in nearby yards lead contaminated dust is blown from the piles and redeposited throughout the study area

A total of approximately 250 million tons of tailings were produced in the Old Lead Belt with the majority stored in the six major tailings piles (E&E 1991) The material encountered in the piles and scattered throughout the area consists of small particles ranging from powder to silt and sand This variety is the result of two methods of separation used for mineral extraction from limestone Density separation resulted in larger size particulate called chat (approximately the size of fine gravel) and chemical separation resulted in much smaller and fine particulate called tailings (silt/sand type material) which is the predominant form contained in the piles (Wixson et al 1983)

The piles have been found to have high concentrations of lead Other metals found in the material include cadmium, arsenic and zinc Mine tailings dust containing these metals has been spread into the environment and the surrounding community by wind and rain Varying concentrations of the heavy metals can be found in environmental media throughout the area including off site soil groundwater and surface water household dust and in the water sediment plants and animals of the Big River

In late spring 1977 the area received heavy rainfall which caused a large portion of the tailings from the Site to become supersaturated and collapse into the Big River An estimated

50 000 cubic yards of tailings washed into the river at that time (UMC 1977) An investigation was initiated by the Environmental Protection Agency (EPA) in response to a concern of the Missouri Department of Natural Resources (MDNR) over pollution of the Big River as a result of the collapse (UMC 1977) The EPA concluded that the Big River had been degraded as a consequence of physical disturbances in its benthic zone Chemical toxicity was not reported at that time The conclusion was based upon aquatic population density and diversity data (EPA, 1991)

Since then elevated levels of lead cadmium, arsenic and zinc have been found in plants crayfish, mussels and fish in the river As early as 1980 elevated levels of lead detected in fish downstream of the Site were reported by the Missouri Department of Conservation (MDOC) Lead levels in edible fillets ranged from 0.4 ppm to 0.7 ppm (MDOC 1980) This prompted a news release issued by the MDOC and the DOH, warning people not to eat fish in the affected area. The DOH issued an advisory against eating bottom feeding fish taken from the 50 mile section of the river between Desloge and the Mammoth Access. The fish advisory is still in effect for bottom feeding fish. The advisory now extends to the Big River's confluence with the Meramec River and sunfish have been added.

The United States Fish and Wildlife Service released the results of their study on the effects of the chat and tailings material on the Big River in 1982 The findings reported elevated heavy metal residues mainly lead, cadmium, and zinc in all biologicals examined Algae rooted plants crayfish, mussels and fish were examined in the study (Schmitt and Finger 1982)

In 1985 St Joe Minerals Corporation organized a task force that included representatives of the corporation, MDNR, local officials and other interested parties The Desloge Tailings Task Force was in charge of supervision as well as oversight of short and long term stabilization activities on the Site These activities included seeding and planting black locust trees and settlement of snow fences and have only partially controlled erosion of the piles

During the same year the DOH conducted a study of lung cancer in the area As part of the study dust was sampled in 46 homes The average metals concentrations found resembled the concentrations found in the piles The report concluded that the piles were the major source of lead-contaminated household dust in the area (MDOH, 1986)

# METHODS

### STUDY DESIGN

In order to ensure that study participants had the greatest likelihood of being exposed to lead contaminants in soil, air and water media, a study was carried out at the end of summer and early fall

when children were most likely to have spent time outside Children were located by canvassing the study area to locate eligible participants Details of this activity are discussed in Section III D Children qualified for participation if the following applied

- They were six to 90 months in age and
- They had been living in the defined study area for at least 60 days prior to the beginning of the study

A random sample of all homes with eligible children was generated from the study and control areas If more than one eligible child was available in a home one child was selected at random from that home In addition after exhausting all homes on the initial list without enrolling the required number of children, another random list of remaining eligible homes was drawn As it happened we needed to draw several consecutive lists of eligible homes to get enough participants and this resulted in most all eligible homes in the study and control areas being selected

Two nurses and an environmental specialist were sent to each participant s home that had been included in the sample and whose parents consented to have their child participate in the study After informed consent the investigators completed a questionnaire that included information on the child and on the household A copy of the questionnaire is included in Appendix 1

A venous blood sample was taken from the child and processed according to the approved protocol (see section III F) Environmental samples were collected from the home and yard according to the environmental sampling protocol (see section III G)

All participant s parents were required to sign a consent to answer the questionnaire and have a venous blood sample taken from their children Copies of consent forms are included in Appendix 2

The purpose of the questionnaire was to document demographic behavioral occupational and educational information Parents were asked to provide questionnaire information for their participant child Behavior that increases risk of exposure to contaminated environmental media and other possible factors related to lead exposure were documented Interviewers were trained by DOH staff and by Saint Louis University School of Public Health (SLUSPH) A copy of the questionnaire is included in Appendix 1

# STUDY AREA SELECTION

The study area consisted of Bonne Terre and the area east of Bonne Terre Desloge Leadington, Park Hills Leadwood Frankclay Wortham, Mitchell and adjacent areas Demographic data on these areas from the 1990 U S Census are presented in Table 1 These cities are adjacent to the largest mine tailings in the study area (Figure 1) These towns were chosen for the study because

- I they presented comparable demographic composition
- II had high lead levels reported in prior environmental analysis
- III are located around the largest lead waste piles in the region and
- IV their proximity to each other

# **CONTROL AREA SELECTION**

The control group was chosen from Salem, Missouri an area outside the Old Lead Belt Salem is 72 miles from the study area Census data was used to select this area based upon similarities with the study group Variables from the census data used to make the determination for selection of the control area included total population, percent of managers or professionals percent with a high school diploma, percent of families with a child under the age of six, percent of black population under age of six, percent of housing units built before 1960 percent of families with an income below the poverty level median family income and median value of owner occupied housing groups

The selection criteria was to include those zip code areas within the state with a population between 10 000 and 20 000 persons the zip code areas extend beyond the city limits and therefore do not correspond to the data presented in Table 1 This eliminated all but 75 Missouri zip codes Percentage of values for the above variables were calculated. The weighted average of these variables was then calculated based on the populations of the zip codes in the study area. This average was used to determine how other zip codes compared with these zip codes by producing an index for each variable. Indices were calculated for each of the above variables. The indexes for each variable were then averaged for each zip code area to obtain an overall index. The overall index was ranked and those zip codes with an overall index value of between 0.95 and 1.05 were kept. All but 18 zip codes were eliminated

The standard deviation of these variables was also calculated to determine the degree of variation between the variables for each zip code. A zip code could have an extremely low value for one variable and a high value for another that could possibly cause it to have an index of near 1 000. If the standard deviation was less than 0 200 that zip code was included as part of a final list. Six zip codes met these criteria. After examining the location of these zip codes the city of Salem was chosen because it was the closest to the study area.

Although this area is located outside the mining area, soil and drinking water samples were taken from 10 randomly selected homes prior to the study initiation to ensure that lead levels were not elevated Levels were considered elevated if the average soil lead levels were greater than background (75 90 ppm) or the average water lead levels were greater than the EPA action level for drinking water (15 ppb) No elevations in lead levels were determined

# Performance of Canvassing Activities

The purpose of the canvass was to identify (from both the study and control areas) all children eligible for participation in the study Groundwork was laid for the canvass by raising area residents awareness that it would soon be taking place This increased awareness was accomplished through media interviews and information releases arranged and provided by the St Francois County Health Department (Appendix 3) Local law enforcement authorities in both the study and control areas were notified of the canvass activities enabling these agencies to address residents concerns about the legitimacy of canvassers calling or visiting the homes

Preceding the canvass training was conducted for interviewers who would be contacting residents and performing the canvass. The initial training session for canvassers was conducted at the St Francois County Health Department on March 1 1995 and included five participants from Mineral Area College four from SLUSPH and four from the St Francois County Health Department. Two additional training sessions were conducted within approximately one month of the first session to expand the size of the canvass workforce. The total number trained included thirty one students from Mineral Area College (MAC) seven from SLUSPH, and seven from the DOH. All training was conducted by the same individual using the same lecture outline and handouts (Appendix 4). The training sessions included discussion of the following topics.

- a) Background information on the study and the purpose of the canvass General information about the health effects of lead
- b) Description of the study methodology
- c) General description of the canvass and
- d) Detailed description of the canvass form item by item

The canvass began on March 1 1995 and was completed on July 30 1995 A two part approach was used for this canvass including telephone and door to door contacts. The information acquired for each home included name address phone number and number of residents age six or younger Additional information was acquired if there were eligible children in the home. The canvass form used is included as Appendix 5

The canvass was initiated by phone After at least four attempts were made to contact a resident by phone follow up actions were conducted door to door Phone calls and home visits were made on different days and at different times of the day A minimum of five attempts combining telephone and door to door visits were made for each home in the study and control areas

To aid with the telephone process a criss cross directory was utilized A criss cross directory provides lists of residents by street with phone numbers providing an effective canvass management tool facilitating the transition from telephone to door to door efforts. The criss cross directory used was produced two years earlier by a local phone company and only covered the study area Unfortunately a newer directory was not available and residents of the area are somewhat mobile Although the dated directory did pose several problems requiring some effort to update the data, it still provided an excellent starting point for the telephone portion of the census The problems encountered when accomplishing the canvass of the study area were compounded due to the recent consolidation of the towns of Rivermines Flat River Esther and Elvins into the new township of Park Hills This resulted in 53 recent street name changes in Park Hills The adjacent town of Desloge had also recently changed the names of 26 streets in response to the realignment of the surrounding community This made many homes difficult to locate and some properties difficult to define The problems introduced by these changes were minimized by the efforts of the St Francois County Health Department They updated much of the directory by hand divided it into manageable sections and distributed it to the canvassers

The control area was separated by approximately a one and one half hour travel time from the study area Three phone lines were installed at the St Francois County Health Department with toll free numbers to Salem, MO to facilitate the phone canvass After several attempts were made by phone to each home in Salem, a team of canvassers traveled to Salem for five days to complete the door-to door follow up

# **POPULATION SAMPLING STRATEGIES**

#### Study Group Recruitment

All recruitment in the study area was accomplished by telephone contact from the St Francois County Health Department The telephone recruitment was preceded by a letter from the local health department explaining the hazards associated with lead and the benefits of participating in the study (Appendix 6) When it became apparent that the population would be exhausted a newspaper advertisement was placed in the local paper (Appendix 7) to identify interested residents missed during the canvass and those who might have initially declined

Homes with phones were called at least five times Those that could not be reached by phone were recruited door-to door

#### Control Group Recruitment

Prior to the initiation of recruitment efforts in the control area, the local law enforcement authorities were notified of the upcoming recruitment. This enabled them to resolve residents concerns that may have been generated by a study recruiter inquiring about their children. The Dent County Health Department was also notified and provided background information on the study to enable them to thoroughly address questions from concerned callers

The control area recruitment was initially attempted via telephone by a male representative from SLUSPH. After approximately 20 calls it was believed that local residents were suspicious of a stranger calling their home and inquiring about their children. The approach was then changed to door to-door. It was hoped that a personal visit from a recruiter wearing an appropriate identification card would alleviate the suspicions of the residents. This approach did not appear to be substantially more effective Approximately 30 eligible homes were visited and consent was acquired from 7 (23%) However because of the number of homes with eligible children in the comparison area, a consent rate of greater than 50% was needed to gain the desired number of participants

A factor in this low response rate was thought to be the use of a single male recruiter visiting homes during the day when many mothers were home alone with their children. Although every effort was made to show the legitimacy of the recruiter with professional apparel and the wearing of visible identification the reception was still suspicious and often negative. In an effort to resolve this uneasiness a team was formed of one male and one female representative. Although this did resolve much of the apparent nervousness of the individuals approached, the consent rate was still inadequate with approximately 30% of contacted homes agreeing to participate in the study.

The feedback obtained from those who refused seemed to indicate a fundamental lack of awareness concerning lead hazards. In an effort to increase their awareness and willingness to participate a letter was drafted placed on Dent County Health Department letterhead and signed by the local health department director. The letter was sent to homes not yet contacted and to homes that had been contacted but had not yet agreed or refused to participate. It was anticipated that this would not only increase awareness but also reduce the perception that this was an activity being accomplished solely by agencies and organizations outside the community. The letter was somewhat effective however the response rate was still not adequate

In a final attempt to increase the consent rate of those remaining a secretary from the Dent County Health Department agreed to contact the remaining homes by phone. It was believed that having a local resident make the contact would bring greater legitimacy to the effort thereby resulting in a more successful recruitment. Since it was apparent that the available control population would be exhausted an advertisement was placed in the local paper (Appendix 8) soliciting the involvement of any eligible homes in the area. It was hoped that this would identify any homes missed during the census and provide an opportunity for residents who initially declined to reconsider involvement in the study.

Homes were visited at least four times during different days of the week and different times of the day Also those with phone numbers were attempted numerous times

- 1 Sampling Team Development
  - a Team Composition

There were a total of three primary sampling teams In addition, there was one back up sampling team to act as individual substitutes or whole team substitution as the need arose Each sampling team was comprised of three individuals an environmental sanitarian, a nurse and a nurse phlebotomist Although all team members were cross trained to obtain environmental samples and perform household interviews only the environmental sanitarian was trained to use the X ray Fluorescence Spectrometer (XRF) for direct determination of lead paint concentrations In addition, only the nurse phlebotomist collected the blood samples Appendix 9 contains information on team members and responsibilities

# b Team Training

The first two primary sampling teams and the back up team attended a two day in house seminar (July 19 20 1995) The training was provided by SLUSPH and DOH staff Training was provided on overall study protocol and questionnaire administration, environmental sampling protocol for obtaining field samples (soil water dust wipes XRF measurements floor vacuum and vacuum bags) storage and chain of custody methods and requirements A one day (August 4 1995) mock field sampling exercise at two homes was performed using the finalized sampling protocols The third primary sampling team entered the study at a later date and was trained in a similar manner over a two day period (September 20 21 1995) by the same personnel and two of the primary sampling team members

# c Team Supervision

During the first two days of field sampling (August 8 - 9 1995) the primary teams were closely supervised for proper performance of the sampling protocols for blood environmental measurements and samples and interview methods by SLUSPH and DOH staff In addition, the field sampling teams were supervised through periodic visits and observations of sampling practice throughout the sampling period

# **BLOOD COLLECTION AND ANALYSIS TECHNIQUES**

Venous blood samples were collected from children in the study and comparison groups The CDC protocol for blood collection and shipment was followed Samples were analyzed for blood lead levels The analysis was conducted by the Missouri Department of Health State Public Health Laboratory and the Division of Environmental Health Laboratory Sciences (DEHLS) Centers for Disease Control and Prevention (CDC) Atlanta, Georgia These laboratories are certified by the National Lead Laboratory Accreditation Program Protocols for blood collection are included in Appendix 10

# Environmental Sampling and Analysis

Outdoor soil, household soil/dust, drinking water and selected paint samples were collected at the residence of each study and control participant Painted surfaces inside and outside of each residence that may have been a source of lead exposure to the study population were evaluated for lead content with the use of a portable XRF monitor a NITONTM XL Quality control measures practiced during all procedures included split samples with secondary laboratory analysis side by side sample collection, and submittal of National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) as a blind reference sample All samples were collected and stored in pre labeled and numbered zip lock 4 mil (0 004 inch thickness) re sealable plastic bags All sampling methods record keeping requirements forms used and additional information recorded is described in detail in the Environmental Sampling Protocol Standard Operation Procedures in Appendix 11

- 1 Sampling Methods Location and Rationale
  - a Soil

Outdoor soil sampling included up to five with a minimum of four composite soil samples collected from each of three locations (1) the non play yard area surrounding the house (yard) (2) the area surrounding the foundation of the house (dripline areas within three feet of structure walls) and (3) indicated/designated play areas within the yard Each sample of a composite consisted of the first one half inch of normal top soil without vegetation obtained with a slotted 7/8 inch soil recovery probe (HUD 1993 E 8) Soil samples were taken from up to five (with a minimum of four) sites for each composite At the time of sampling the soil condition as to compaction, moistness and extent of vegetation was assessed and recorded

Yard area composite soil samples were used to assess environmental sources other than exterior paint that may contain lead Dripline sampling assessed contributions from exterior lead paint. In addition, it assessed ambient airborne particulate sources that may impact the house structure and wash off with precipitation. Yard play area samples were used to assess primary outdoor play area exposure sources

The four main sides of the residence delineated the drip line composite sample area Where there was a distinct difference in the house exterior structure a fifth side/sample was added Each sample was collected from approximately the center of each designated side at least three feet from any visible water run off area, such as a rain spout between six and thirty inches from the wall and when possible from a non vegetated location

The yard area composite sample areas were also determined by using the natural outlines of the residence to segregate the yard into four main boundary areas by drawing an imaginary line from each corner of the residence to the closest corner boundary of the yard A fifth area was added when the house and yard configuration warranted Within each boundary area, a sample was obtained as close to the center of each boundary area as feasible from non vegetated areas that were not considered play areas and were at least three feet from a water run off source

The yard play area composite samples were obtained from those areas indicated as such by the parent/guardian Composite samples were collected from as close to the center of each area as feasible and in a non vegetated location when available Sand boxes and other non soil areas were not included In addition to environmental sampling at residences community play grounds that were indicated by the participants parents to be main play areas were sampled Composite soil samples were obtained from five locations within the observed play regions From visual observation, the observed play areas within each community play ground were divided up to five regions of approximate equal size as possible A soil sample was obtained as close to the center of each region as feasible from non-vegetated areas when available XRF measurements were performed on playground equipment These sampling protocols are included in Appendix 11

# b House Dust

Indoor house dust samples were obtained from three sources (1) collection of the bag filter within the household vacuum cleaner when available (2) a composite vacuum sample taken from up to five one square foot locations of the household (child s bedroom, main entry area and up to three play areas) using a modified University of Cincinnati method (HUD 1992 pp L10 14) and (3) a composite wipe sample using Wash n Dri wipes (Millson, et al 1994 Ashley 1994) from a measured area of up to five operable window sills randomly selected in the child s bedroom and main play areas (HUD 1992 pp L15-17) These sampling protocols are included in Appendix 11

# c Paint

Painted surfaces that had the potential for being a current source of lead exposure were evaluated for lead content with the XRF monitor Indoors this included up to a total of four rooms three rooms indicated as primary play areas and the child's sleeping area. For indoor outdoor and detached painted surfaces that were found to contain greater than 0.7 milligrams of lead per square centimeter of area (mg/cm²) the surface type physical condition, damage type potential source of damage and total and damaged square footage of each painted surface was determined. Paint chip samples for subsequent analysis were only obtained if a valid XRF reading could not be made or if XRF readings were  $\geq 0.7 \text{ mg/cm}^2$ and a representative paint chip was available from a damaged area (no paint surfaces were to be damaged to obtain a paint chip sample). These paint chip samples were only used to help in determining the source of the lead found in selected dust samples. These sampling protocols are included in Appendix 11

# d Water

First draw (defined as no water usage within the past 8 hours) kitchen tap water samples were collected A sample was collected from the kitchen cold water tap into a 250 ml polyethylene bottle (containing nitric acid preservative) These sampling protocols are included in Appendix 11

# 2 Sampling Protocol

Environmental samples were obtained at each study site through use of field XRF sampling dust wipe of window sills filter vacuum of floors collection of household vacuum cleaner bag or contents paint chip samples drinking water and soil samples Field sampling teams also completed forms assessing the characteristics of environmental samples (including condition of lead paint and sample matrices) and an exposure assessment evaluation (See Appendix 11 for field sampling protocols and data collection forms)

The daily field sampling protocol consisted of

- a) Preparation for field work (assuring all needed supplies are present obtaining addresses loading vehicles etc.)
- b) Completion of consent forms prior to sampling
- c) Home schematic drawing and determination of indoor sample locations which included the study child s bedroom up to three primary play areas and the main occupant entry An outdoor schematic indicating the outdoor soil sample areas and a Global Positioning System (GPS) reading for the study site location
- d) XRF analysis of all painted and varnished surfaces within sample locations outside wall areas and detached structures
- e) Collection of paint chips if no valid XRF result could be obtained or if XRF readings were  $\geq 0.7 \text{ mg/cm}^2$  and if the sample could be obtained without damage to the surface
- f) Window sill wipes of up to five operational windows from the indoor sample sites
- g) Floor filter vacuum of one square foot in each of the indoor sample locations
- h) Separate Composite soil samples from up to five sites each of the house drip line non play area yard play area yard and community play areas
- 1) Chain of custody forms for all collected samples and
- J) Pre and post calibration of XRF and vacuum pump used to obtain floor cassette vacuum sample

# SAMPLE ANALYSIS METHODS

The primary laboratory used was TC Analytics located in Norfolk, VA The laboratory is accredited by the American Industrial Hygiene Association (AIHA) for metals analysis and participates satisfactorily in the EPA Lead Proficiency Analytical Testing (ELPAT) Program for paint chips soil and dust wipes Through the Commonwealth of Virginia, Department of General Services Division of Consolidated Laboratory Services the laboratory is certified to perform drinking water analysis for lead The secondary lab used for the preparation of Standard Reference Materials (SRM s) and analysis of duplicate and split samples was Midwest Research Institute (MRI) in Kansas City MO MRI is certified by the American Association for Laboratory Accreditation (AALA) under the ELPAT Program for lead in soil paint chips dust air and drinking water Laboratory certifications are listed in Appendix 12 Lead analysis was performed using the methodologies in Appendix 13 Laboratory analysis specifications on instrument method detection limits and instrument practical quantification limits for milligrams of analyte per liter of solution (mg/L) along with the digestion volume were used to determine the practical quantification limits (PQL) and method detection limits (MDL) for the primary lab reported in Appendix 14 The limits for the secondary laboratory met or exceeded these limits The MDL s were determined using the procedure outlined in CFR 40 Part 136 Appendix B The PQL s were considered to be the lowest standard used in the calibration of the instrument The reported limits take into account the digestion volumes for the samples

# 1 Identification of Source Contributions

Source apportionment of lead in house dust soil and airborne particles from potentially contributing sources is a difficult task. Determination of source contributions may be affected by many factors such as similarity of chemical make up of the lead analyte from different sources and environmental chemical processes that occur due to solubility and changes in pH leading to chemical degradation and transformations to other lead species during transport and over time

An automated individual particle analysis (IPA) based on scanning electron microscopy (SEM) and X-ray energy spectroscopy (EDX) was used to assess the potential originating sources of the lead found These techniques have been shown to be able to discriminate between lead particles at the individual level when bulk sample analysis indicate compositionally similar products (Hunt et al 1992) Chemical/elemental morphology and composition is determined through SEM and EDX analysis Particles with morphologies and elemental associations characteristic of different particulate lead source types can be identified and enumerated. If a classification scheme for IPA results can be developed that provides distinctive signatures for the different source type materials it can be applied to ambient dust samples analyzed under identical conditions providing a descriptive source apportionment. Based on knowledge of product composition and potential degradation products groups of particles that most likely are derived from the same source can be probabilistically identified on the basis of morphology and composition.

This method has been used in the United Kingdom as part of a comprehensive study of lead contamination in environmental dusts and as part of a lead contamination study in Australia (Johnson and Hunt 1994) as well as in studies to determine lead sources near a lead smelter in Missouri (Vander Wood and Brown, 1992) At present this method generates essentially semi-quantitative results but should be sufficient for discriminating between lead derived from paint alone or other environmental sources such as mining waste piles (Johnson and Hunt 1994) Assessment of the samples for source contribution was performed at the State University of New York, College of Environmental Science and Forestry Department of Chemistry

# QUALITY CONTROL MEASURES

To assure quality control in the environmental sampling and analytical protocols employed the following methods were used

- 1 Use of laboratories with good laboratory practice as evidenced by their accreditation through the AIHA Laboratory Accreditation Program for metal analysis or the AALA (Appendix 12)
- 2 Use of laboratories participating in the ELPAT program with satisfactory proficiency (Appendix 12)
- 3 Inter and intra laboratory QA/QC results were reported as required under their accreditation programs The minimum procedures frequency and criteria for these quality control practices are shown in Appendix 15
- 4 Submission of blind NIST SRM samples mixed with the field samples (Appendices 16 and 17) SRM was prepared by the secondary laboratory MRI using NIST standards and spiked onto vacuum filter cassettes dust wipes water and soil samples and submitted to the primary laboratory blindly along with collected field samples The sample results obtained from the primary laboratory were submitted to MRI for a QC evaluation and a reporting of the absolute and percent difference The NIST SRM s used for the spikes are listed in Appendix 16
- 5 Submission of field sampling blanks (Appendix 17) Media blanks for vacuum cassette filters dust wipe media, sample storage containers and gloves worn during field sampling were submitted and analyzed to assess possible contamination inherent in the sampling protocol from the presence in the field or from transport
- 6 Preparation and submission of split soil and water samples to a second laboratory for interlaboratory comparison Composite soil and water samples were split and one sample submitted to MRI for sample preparation and analysis concentration verification (Appendix 17)
- 7 To assess variability of the analytes within the soil sample media, a second side by side sample was taken for the soil samples within six inches of the first sample (Appendix 17) and
- 8 All blood lead samples were analyzed by Missouri Department of Health State Public Health Laboratory Duplicates from 74% of these samples were also analyzed by the DEHLS The results from the two labs were correlated at r = 97 and an alpha coefficient of reliability of 98 This value indicates a very close agreement between laboratories

# Quality Control for Data Entry

Data was entered into a Microsoft Access Data Base system from the original data collection forms Quality control was performed through the use of data range delimiters which would indicate data fields containing improper values such as letters instead of numbers or values outside of allowable ranges and a random re check of data entry for 10% of all household files

Not including the questionnaires a total of 31 case files (11%) were re checked for entry error rate from the data collection forms Each case file contained from 17 to 21 separate forms with approximately 50 entries per form, for an approximate total of 950 entries per case file A total of 65 entry errors were found and corrected for an error rate of 0 2% per case file or 0 01% per form An initial re check of 20% of the questionnaires (60) was performed for data entry Each questionnaire contained approximately 150 entries and demonstrated an error rate of 2 4% per questionnaire This was found to have resulted from a format error in the data base entry form. After the format error rate of 0 1% was found per questionnaire

# Quality Control for Environmental Samples

Entry of environmental sample analysis results were cross referenced with sample numbers on the chain of custody forms as the results were received and double checked on entry Data-base delimiter parameters were used to immediately indicate any values outside of expected value ranges to be re checked A 10% quality control check of environmental analysis data entries showed no entry errors Two soil samples were lost due to inaccurate labeling of sample containers and chain of custody forms in the field Given the number of total environmental samples (over 2 500 excluding blanks splits and blind reference samples) this resulted in a sample loss rate of less than 0 08%

In general the quality control results indicated good accuracy precision, and no interferences Analysis of field blanks indicated no contamination or interference from the field sampling collection media during field use shipment, and handling The analysis of blind reference materials showed good recovery and accuracy by the primary laboratory with possibly low recovery or loss of sample possible with filter cassettes The split sample analysis showed good agreement between the primary and secondary laboratory The side by side samples indicated good precision within the primary laboratory as well as consistency within the soil matrix and compositing procedure

Appendix 17 shows the frequency of quality control submittals which were achieved Almost all quality control submission rates were as intended or exceeded the intended rate. The situations where the achieved rate was less than intended (which were only for field blanks for the gloves and collection bags) were due to chance. The field study sampling was ended prior to the time the field sampling teams would have obtained the last field blank of these items.

# Standard Reference Material (Blind Reference)

These samples were inserted into the sampling chain of custody protocol in the same manner as field samples to monitor the performance of the laboratory analysis. These samples also provide laboratory analysis analyte recovery information for assessing the accuracy and precision of field sample data through sample preparation and analysis activities. It should be noted however, that the accuracy and precision achieved for field samples is partially dependent on the matrix matching between the QC sample and field sample since analytical results are generally matrix sensitive. It is not possible to completely match the matrix of the field sample. This is particularly difficult for soil samples but the use of split samples as a QC tool helps to compensate for this loss

A summary of the SRM or Blind Reference sample results are shown in Table 2 Actual concentration values obtained are not shown Instead the ratio of the reported lab result to the SRM known concentrations are reported Descriptive statistics presented include the total number of samples number of samples reported between the practical quantification limit (PQL) and method detection limit (MDL) number of samples reported below the MDL minimum, maximum geometric mean (GM) natural log standard deviation (LNsd) and lower and upper 95% Confidence Limits (CL) for these ratios

Except for the cassette filter all ratios of the laboratory value to the reference value for all media were close to one indicating good recoveries and accuracy in the analysis In all cases except for one maximum drinking water and one minimum vacuum cassette sample the minimum and maximum ratios were within the CL For drinking water one value exceeded the upper CL by just over 2% The stability of the drinking water SRM solutions over time was proven through testing of aliquots of stored solution over the sample submittal period (September 1995 through February 1996) The average concentration was found to be 24 26 ug/L with a standard deviation of 0 46 ug/L

The recovery on the cassette filters had a GM of around 50% and two of the vacuum cassette samples were well below the lower 95% CL and could be considered outliers Censoring of these two values as anomalies showed an improved sample recovery response with a GM of around 60% The poor recovery of sample with the filter cassettes was most likely due to loss of media onto the cassette through static charge and material movement. In addition, the reference material used (Urban particulate) was of a much different consistency than the material collected in the field. It was finer of more uniform size and did not contain the organic materials that were collected in field samples. This material was placed on the filter rather than vacuumed which resulted in a lower adherence. There was no embedding into the surface material that would happen with the field samples. During the transfer of the filter it was much easier to lose the reference type material than the field material. It was expected that the recovery of field samples is greater than for the reference material. A typical accepted tolerance for SRM samples is within 80% to 120% of the true value (percent error of 20%). All SRM summary results excluding the vacuum cassettes fell within acceptable ranges

# Field Side-By-Side Samples

Side by sides soil samples were included to determine variability due to the sample collection process and the natural variability due to environmental conditions Ratios of the paired samples greater/lessor values were determined for analysis Table 2 reports descriptive statistics that include the number of samples number of total samples between PQL and MDL number of samples below MDL minimum and maximum ratio GM ratio LNsd and 95% upper CL

The inherent variability between field samples was evident in these results Despite being collected side-by side (within six inches of each other) a number of pairs were measured to have very different lead contents as reflected in the higher ratios GM difference of 64% and relatively large estimated upper 95% CL. The removal of one outlier from the lead sample showed an improved maximum ratio difference of 6 8 and a GM difference of only 39% with an R squared of 0 81. These values indicated a relatively good homogeneity within the soil samples obtained and a consistent sampling procedure

# Split (Duplicate) Samples

Split or duplicate samples are expected to be relatively similar in analyte content because they are representative samples from a composite field sample collection mixture. One of each of the two samples were sent to the primary and secondary laboratories. The descriptive statistics were the same as generated for the field side by side analysis and are summarized in Table 2. Due to variations in compositing and media, a normal tolerance for split sample analysis is 40%. Although the lead analysis for vacuum filter samples was close to the extreme of the range all GM ratios were within this range. The soil split samples agreed very well, and when three of the soil lead outliers were taken into account the soil GM ratios of differences were below 30%. The R squared value for soil lead was 0.89 and for vacuum bag lead was 0.44.

The water split sample ratios were almost 1 with very little range between the minimum and maximum ratios Almost all water samples were below the PQL so a meaningful R squared value could not be determined Results for soil and water split samples indicated very good agreement between the two labs and were indicative of good accuracy and precision in the sample results

# Field Blanks

Field blanks are identical to regular field samples except that no sample is actually collected Field blanks provide information on the extent of contamination experienced through field samples resulting from a combination of laboratory processing and field handling. The field blank samples were analyzed for lead A summary of the field blank results are presented in Table 2. The descriptive statistics were the same as generated for the SRM. The upper CL was only reported since the reported concentration limits could not go below the MDL. All of the cassette filter and dust wipe results for lead were below the PQL. The largest lead concentration reported for a field blank dust wipe was 13.8  $\mu$ g. The GM for lead was 4.9  $\mu$ g. All of the GM for the field blanks were very close to their respective PQL s. Data suggest that no contamination of field samples occurred during the sampling handling, and field transport activities.

# **DATA ANALYSIS**

Statistical data analysis was performed by SLUSPH The Statistical Package for Social Sciences (SPSS) was used The variety of statistical analyses included

- Comparison of mean blood lead and environmental lead data between the study and control populations by t test and analysis of covariance
- Comparison of proportion of children with blood lead levels above 10 µg/dl between the two groups using chi square analysis
- Comparison of mean blood lead levels between various risk factor groups by t test and analysis of variance and
- Correlation analysis was used to assess the relationship between blood lead levels and a number of environmental variables (soil, dust paint water lead condition of house etc.) behavioral variables demographic variables socio economic variables and household characteristics

# RESULTS

# **CANVASS INFORMATION**

The Study and Control areas were somewhat different in dimensions however findings indicate they were demographically very similar A comparison of the study and control area canvass can be seen in Table 3 At least 95% of the homes in each area were contacted by either telephone or home visit. The canvass required a total of 5 937 phone calls with a mean of 1 62 calls needed for those homes successfully contacted by phone and 6 553 home visits with a mean of 1 25 visits needed for those homes successfully contacted by door to door visits. This combined approach proved to be effective in meeting the objectives of the canvass. Of the homes successfully contacted by phone 65% were reached on the first call and 86% by the second. Comparing this to the home visits 82% of homes successfully contacted by a visit were reached on the first visit and 94% were contacted by the second.

#### **Recruitment Information**

The canvass of the study area identified 779 homes eligible for participation in the project From the 779 30% participated in the study 39% refused to participate 8% canceled their appointments after initially consenting 11% moved or refused to participate due to an anticipated move and 2% could not participate for other reasons Others excluded had children that were not yet six months old or had children who were older than 90 months In summary those refusing canceling moving or excluded for other reasons totaled 60% of the homes There were also 10% of the homes that could not be contacted (Table 3) The canvass of the control area (Salem Missouri) identified 249 homes eligible for participation in the project From the 249 29% participated in the study 29% refused to participate 14% canceled their appointments after initially consenting 10% moved or refused to participate due to an anticipated move 10% could not participate for other reasons. In summary those refusing canceling moving or excluded for other reasons totaled 63% of the homes. Another 8% of the homes could not be contacted (Table 3)

# Descriptive Statistics of Study and Control Areas

This study evaluated 235 children from an area of Missouri where lead mining had taken place over the past century (study) and 72 children from an area where lead mining had never taken place (control) The children were between the ages of six and 90 months at the time of sampling except for one child who was 92 months This child was included because an incorrect date of birth was obtained during the canvass Since a blood sample had been obtained and the child was only two months over the cutoff date the child was retained Statistical analysis was repeated without this child without any effect on mean values

Figure 2 presents the frequency distribution of blood lead results for the study and control groups Blood samples could not be obtained from nine children in the study area and three children in the control area Seventeen percent of the children in the study group had blood lead levels greater than or equal to 10  $\mu$ g/dl the level of concern established by the Centers for Disease Control and Prevention (CDC) and 3 5% had levels greater than or equal to 15  $\mu$ g/dl Only two children in the study group had levels greater than 20  $\mu$ g/dl In the control group two children had blood lead levels of 10  $\mu$ g/dl Remaining blood lead levels were less than 10  $\mu$ g/dl

Table 4 presents the responses to the questionnaire administered to a parent or legal guardian of each child The information was obtained from the mother in approximately 86% of the interviews Both the study and control groups were of similar age with an overall average age of 3 72 years Approximately 50% of both groups were female and all except three children in the study group were white The distribution of household income was similar between the two groups. The distribution of years of education was also similar except that slightly fewer mothers in the control group finished high school. In the study area, 48% of the homes were built prior to 1960 compared to 32% of the homes in the control area. Significantly more homes in the study area were owner occupied than in the control area, 62.3% versus 45.8% Plastic pipes were predominant in the study area homes while copper piping was most frequently used in the control area. The source of water for both the study and control groups was almost always from a public water system, however significantly more children in the study area drank bottled water. Numbers in the tables will not always be the same as the number of children recruited because some measurements could not be made on every child.

Almost half the homes in both areas have had some form of renovation within the past year particularly in the child's bedroom Over 20% of the homes in the study area used mining material in the yard compared to 4% in the control area. More often a household member in the study area repaired automobile radiators and worked in auto maintenance. Although a number of household members in both groups worked in occupations or had hobbies that might result in contact with lead, there were no other differences between the two groups that might result in bringing lead contamination into the home Few people in either community currently work in a lead mining activity

Slightly more households in the control community used foreign made clay pottery or ceramic dishes to prepare serve or store food or drinks. There were no differences in the use of copper or pewter between groups. Few differences in housecleaning methods or frequency were evident between the two groups except the study group is more likely to dry dust.

Approximately 50% of the households in both areas had at least one person that used tobacco products in the home Of those families with children less than two years of age more children breast feed in the control area Children spent similar amounts of time playing on the floor in both groups approximately 5 5 hours per day Children seemed to play outdoors a little more often in the control area than in the study area and when playing outdoors they spent more time there Over 40% of children in both groups had a favorite blanket or toy but study children were less likely to put that item in their mouth More households in the study area had a vegetable garden in which children were more likely to eat from while control children were more likely to eat vegetables grown elsewhere in local area

# Comparison of Blood Lead and Environmental Factors

Table 5 presents a comparison of mean blood lead levels and environmental data between the study and control groups The average blood lead values were almost twice as high in the study compared to the control group 6 52 and 3 43 µg/dl respectively There was also significantly more variation in the study group The concentration of lead found in the vacuum bag was seven times higher in the study area compared to control area. The lead concentration found in the soil of the designated play areas of the study group was over 10 times that for the control area In both areas the soil lead at drip line was higher than the average of the yard soil. It is interesting to note that the soil lead levels in the play area were higher than the average for the rest of the yard All values for lead collected from the floor using the vacuum cassette sampling method were significantly higher in the study area. This was also true of the dust wipe samples taken from the window sill. Indoor XRF reported readings tended to be higher in the study area Outdoor XRF readings were similar in the two groups In the study area, 72% of the homes had indoor XRF values greater than zero  $mg/cm^2$  and 55% had values greater than or equal to 7 mg/cm² Outdoor areas greater than zero mg/cm² occurred in 80% of the homes and 64% of the homes had XRF readings greater than or equal to 7 mg/cm² on outdoor surfaces Water lead levels were slightly higher in the control group however this was not statistically significant Although measures of dustiness of rooms were slightly lower in the study area the differences were not statistically significant

Mean blood lead comparisons were repeated correcting for total indoor XRF and total outdoor XRF values because of the differences in XRF values for the study and control homes This also adjusts for age of house which differed between the two groups Age of house correlates with the objective measure of lead paint XRF These XRF measures were chosen as covariates because

they had the highest correlation with blood lead levels. The mean values for the study and control groups before correcting for covariates were 6 52 and 3 43  $\mu$ g/dl and after correction were 6 44 and 3 70  $\mu$ g/dl respectively. No other factors were determined to be confounding variables

# BLOOD LEAD COMPARISON ON CATEGORIES FROM QUESTIONNAIRE

Table 6 displays blood lead level comparisons between various categories on the questionnaire A t test was used for two category comparisons and analysis of variance was used for multi-category comparisons. Care should be taken when interpreting the data in categories that contain less than five children because the significance level might not be meaningful. It is possible to collapse groupings with multi-category variables that contain few children, however it was decided to show all categories for the readers information. A one way analysis of variance was chosen because the purpose of this analysis was to investigate potential confounding variables not to compare study and control groups.

Blood lead levels for males and females were not significantly different from each other Within both groups average blood lead levels decreased with an increase in income but the differences were only statistically significant for the study group Blood lead levels tended to decrease with increasing levels of education A comparison between homes built before 1960 and after 1960 showed a significant difference in both the study and control groups however the difference was only on average approximately 1  $\mu$ g/dl Children who came from homes that were rented tended to have slightly higher blood lead levels than children coming from resident owned homes however this difference was only significant for the control group

In the study group blood lead levels were similar for children using public water and those using bottled water The blood lead levels however were significantly lower in children using well water for both drinking water and water for cooking (note the number of children using well water was quite small) When a family member worked in auto bodies or auto maintenance children in that household had higher blood lead levels than for children with family members not involved in these occupations Six family members in the study group indicated that they casted or smelted lead The children in these families had significantly higher blood lead levels. The few children who were in families with members who recently worked in mining had significantly higher blood lead levels than children from non mining families. Although there was a significant difference between the categories of dry sweeping the pattern of differences was not consistent. Children living in homes that always dry sweep have the highest blood lead levels however the next highest level is in families who never dry sweep

Household cigarette smoking is associated with significant higher blood lead levels. There is a very consistent pattern associated with a child playing in dirt. The more frequently that this occurs the higher the blood lead levels. The more often that a child takes food snacks or candy outside the higher their blood lead levels.

### Correlational Analysis

Table 7 presents correlation coefficients and significance levels for various environmental factors and questionnaire data correlated with blood lead levels in children in the study area Table 8 displays this data for the control group A level of 0 10 was chosen as borderline significance and of potential interest in interpreting the results

Most environmental measures reported in Table 7 for the study area were significantly correlated with blood lead levels A number of correlation coefficients were statistically significant for the questionnaire data

Higher blood lead levels in children were associated with the following

- Homes using a dry sweep method more often
- Children who play in dirt more often
- Children who take food outside more often
- Children who wash more often before sleeping
- Children who carry a favorite toy around more often
- Children who swallow things more often

Lower blood lead levels were associated with the following

- Children who wash more often after playing in dirt
- Children who chew fingernails more often
- Mothers who have higher education levels
- Families who spend more on food and
- Families who have a higher household income

The only environmental factor for the control group (Table 8) that was significantly correlated to blood lead levels was the lead level of the yard soil. The only significant correlations with questionnaire data were how often the child plays in grassy areas how often the child plays in dirt how often a child uses a pacifier the mother's education level and the household income

Table 9 shows correlations between dust and soil lead measures in the study group The only significant relationship was between soil lead at the drip line and wipe samples of the window sills Total XRF values were significantly correlated with lead concentrations in vacuum bag lead concentration in soil at drip line and dust wipe samples of window sills (Table 10)

In all cases the correlation coefficients are low and have only limited predictive value They do suggest relationships between a number of environmental and sociobehavioral factors and blood lead levels that can be utilized in designing an intervention project

#### **IDENTIFICATION OF SOURCE CONTRIBUTIONS**

Individual Particle Analysis (IPA) technique with the use of automated scanning electron microscopy (SEM) coupled with image analysis and X ray energy spectroscopy was used to

- 1 Determine whether particulate lead forms in the mining waste materials in the study area could be distinguished from those of lead bearing paint origin
- 2 Determine a classification scheme to discriminate mining waste particulate from paint and
- 3 To estimate the source contributions to the lead present in household dusts

The results from analysis of samples from five different composites of mining waste piles and twelve paint chip samples were used to develop an algorithm for assessing source contribution A composite of six study area soil samples which did not contain paint chip samples indicated that a classification scheme was possible to separate the results of IPA measured characteristics into source descriptive categories. This classification scheme was used to identify and proportion the relative percent contribution for source of lead found in vacuum bag dust samples for eight selected study area homes. The homes from the study area were selected randomly from homes that were found to contain lead based paint as well as lead within yard soil vacuum bag dust and window sill wipe samples.

Table 11 indicates the range and median percentages attributed to the source categories of waste pile paint, soil or common (could not differentiate with IPA between the possible sources) The common category was based on the presence of lead oxide and lead carbonate that were oxides of lead from which the originating source could not be determined. The formation of the oxides could be from weathering or fine abrasion The most conservative classification schemes are presented In addition to the final results for the source contribution to the dust in the home vacuum bags the application of the developed classification scheme on the waste pile paint chip and soil composite samples are also shown The first level of the classification scheme developed weights the percent attributed to a source category based on the volume sum of the particles analyzed and are Identified as Waste Volume (WV) Paint Volume (PV) Soil Volume (SV) and Common Volume (CV) The second level additionally weights by the fraction of lead determined in each particle as shown by WVL PVL SVL and CVL respectively For example a comparison of WV and WVL for Waste Piles showed that the total volume of particles that were a source of lead and that could be identified as derived from the waste piles was 79 1% of the total particle volume Inclusion of the fraction of the lead present in the total volume indicated that only 69 4% of the lead measured could be said to have been derived from the waste piles. In other words, for this example even though the total volume was greatest from the waste piles (79 1%) for particles containing lead only 69 4% of the total lead measured could be said to have been derived from the waste piles

Using both the developed classification schemes on known waste pile samples (i e samples obtained from the waste piles) a high identification as to the actual source (694 791%) was

(1993) and Bjerre et al (1993) that found no relationships between environmental lead from mining operations and blood lead levels. These conclusions have been questioned by Mushak (1991) and Gulson (1994) who argue that many of the reports suggesting the absence of relationships between blood lead and mining waste contaminated soil were based upon historic data of questionable epidemiological quality. Lead in the mine waste from this study was also in the form of lead sulfate and yet the blood lead levels from children exposed to this waste were considerably higher than the control group.

Gulson et al (1994) reported a positive relationship between lead mine waste and blood lead levels Soil and dust samples from a lead mining community in Australia showed a high degree of bioavailability Blood lead levels in 899 children (1 to 4 years of age) from a mining community showed that approximately 20% had blood lead levels greater than 25  $\mu$ g/dl and over 85% had greater than 10  $\mu$ g/dl. They concluded that ingestion of soil and dust was the main pathway and source for the elevated blood lead levels reported for children living in this community. In another lead mining and smelting area, an association between soil lead and blood lead levels in children age six 71 months was demonstrated (Cook, 1993). Additional evidence of a relationship between lead mining activities and blood lead was provided by Dutkiewicz et al. (1993) who determined that blood lead values in a mining area were significantly higher than a comparison population. Also a study of a mining area in Missouri with lead mining and smelting activities demonstrated that blood lead levels greater than 10  $\mu$ g/dl compared to none in the control group (Murgueytio et al. 1996)

The implications of elevated blood lead levels of children living in the study area goes beyond the children sampled for this study. The 1990 census recorded 1702 children between the ages of 0 and 72 months living in the Big River mine area. If 17% of these children were expected to have had elevated blood lead levels as determined in this study. 289 children in 1990 would have been expected to have blood lead levels greater than or equal to 10  $\mu$ g/dl and therefore were at risk for toxicological effects such as decreased attention span hyperactivity lower IQ scores (Ernhardt et al 1981 Needleman and Gatsonis 1990) child developmental problems (Bellinger et al 1987 Bellinger et al 1991 Dietrich et al 1987 Needleman et al 1990 Ernhart et al 1986 Lyngbye et al 1990) and decreased general measures of cognition (Bergomi et al 1989 Ferguson et al 1988 Fulton et al 1987 Hansen et al 1988 Hawk et al 1986 Hatzakis et al 1989 Lansdown et al 1986 Schroeder et al 1985 Silva et al 1988 Winneke et al 1990 Yule et al 1981) Estimating from 1990 census data, over 200 children are born each year into this area and become at risk for elevated blood leads resulting in approximately 34 new children becoming lead poisoned annually

To further evaluate the contribution of mine waste to the excess elevated blood lead levels a discussion of the relationship between lead in soil dust and paint should be considered. It was assumed that sources of soil and dust lead were similar in the study and control areas except for the presence of mining waste in the study area. This would be consistent with the environmental data and the results of the source characterization All environmental measures of soil and dust lead were many times higher in the study group compared to the control group For example the soil lead levels in the children's play areas were 10 times higher in the lead mining area averaging  $1282 \ \mu g/g$  (ppm) A composite of six soil samples from the study area were analyzed for source characterization. Less than one percent derived from a paint source between 50% and 60% derived from mining waste and between 40% and 50% could not be determined as either waste or paint. Since the soil samples were from the yard distant from the drip line they were not expected to have a large percentage of lead based paint. It was expected that the source for a large percentage of the yard samples would not be identifiable due to chemical transformations that would alter the samples original physiochemical form. The percentage of soil that was identified as derived from mining waste probably resulted from the transport of mining waste as fill or from being recently wind blown into the area

Source analysis of the household vacuum bag dust within the study area, based on particle volume indicated the proportion derived from the mining waste was 26% the proportion derived from a paint source was 16% and the proportion from soil was 37% In 15% of the lead identified a specific originating source could not be determined. These results suggested that the waste piles were at least as important a contribution source as paint but it is reasonable to assume that a large percent of the source derived from yard soil originated from the waste piles. The overall contribution, therefore of the waste piles may be two to three times the contribution from paint by both total particle volume and lead concentration.

Further evidence that soil and dust lead in the study area related to blood lead levels were the significant correlations in the study area but not in the control area. There was somewhat better correlation between dust lead and blood lead than soil lead and blood lead. This might be related to a child spending more time inside the home than playing in soil outside the home or it might be an artifact related to the greater variation in soil lead levels. The strongest correlation with blood lead levels in the study area was lead in dust on the floor followed by indoor XRF values followed by loading of lead on the window sill

Total XRF values were significantly correlated with lead concentrations in vacuum bag lead concentrations in soil at drip line and dust wipe samples of window sills but were not correlated with soil lead in play areas or with the lead concentration on the floor of the homes in the study area. This indicated that both indoor and outdoor lead based paint contributes to dust lead and to drip line soil lead but not to soil lead distant from the house

This correlational analysis suggests that blood lead levels can be reduced by interventions that address all of these sources Interventions might include remediation of mine waste material that children are exposed to through soil or dust and remediation or abatement of lead based paint in the homes Educational interventions might include limiting exposure children have to soil by covering lead contaminated soil with non contaminated soil and by planting yard vegetation. Children s exposure to dust can be reduced by better housecleaning techniques by keeping children s hands and toys clean, and by controlling what a child puts in their mouths XRF values were slightly higher for indoor paint in the study area. To determine if this difference might confound the blood lead levels an analysis of covariance adjusting for both indoor and outdoor XRF values was performed. The mean blood lead values were minimally affected by this adjustment. The adjusted mean values were still approximately twice as high in the study area. There was little or no difference in other potential confounders between the study and control groups and therefore no additional adjustments to the comparisons between study and control groups were necessary.

The results of this study were remarkably similar to those reported for Jasper County Missouri a mining area on the western side of the state (Murgueytio 1996) In that area both mining waste and past local smelting contributed to the lead levels Fourteen percent of the children living in that mining area had blood lead levels greater than 10  $\mu$ g/dl In the study reported here 17% had elevated blood lead levels The average blood lead level in the Jasper County study was 6 25  $\mu$ g/dl in the study group and 3 59  $\mu$ g/dl in the control group This is very similar to the average in the present study 6 52  $\mu$ g/dl and 3 44  $\mu$ g/dl in the study and control groups respectively

It was originally suspected that blood lead levels might be higher in the Jasper County study compared to this study because of the presence of diverse smelting operations in Jasper County resulting in a lead form that might be more bioavailable. This proved not to be the case Results of the Big River study were very similar to the Jasper County study resulting in the conclusion that mine waste with or without smelting waste is related to elevated blood lead levels. The results of the Jasper County and Big River studies combined strengthens the premise that exposure to lead mining waste elsewhere in the state or in the nation might result in elevated blood lead levels and therefore steps should be taken to reduce exposure to this lead source

## CONCLUSIONS

The results of this study indicated that blood lead levels were a product of exposure to lead mining waste lead based paint and other sources Because the only substantial difference between the study and control area in terms of exposure to lead is the presence of lead mining mining waste was the most reasonable explanation for the dramatic differences between the blood lead levels in the two communities

### RECOMMENDATIONS

- 1 Although mining waste accounts for the difference between the study and control area, both lead paint and soil/dust lead were related to blood lead levels Blood lead levels can be reduced by efforts to both reduce exposure to mining waste and to reduce exposure to lead based paint
- 2 An educational and environmental intervention program that addresses both of these sources should be initiated
- 3 Future studies should focus on effective interventions to reduce exposure and on adverse neurobehavioral outcomes such as school achievement and IQ XRF technology could be used to estimate long term exposure to lead by measuring accumulation of lead in bone These measures of exposure could then be evaluated against markers of cognitive development

## AUTHORS AND ACKNOWLEDGMENTS

## <u>Authors.</u>

Ana Maria Murgueytio MD MPH¹ Scott A Clardy BS² David A. Sterling PhD CIH¹ Brooke N Shadel BA³ Bruce W Clements MPH¹ R Gregory Evans PhD MPH¹

#### Affiliations

- 1 Saint Louis University School of Public Health, St Louis Missouri
- 2 Missouri Department of Health, Jefferson City Missouri
- 3 Oak Ridge Institute of Science and Education, Oak Ridge Tennessee

### Acknowledgments

- St Francois County Health Department
  - Jane Hartrup RN Gary Bertram Sharon Bach, RN Diane Eaton, RN Jane Howard RN Barbara Huff RN Judy McCarty Jon Peacock Robert Royal Mary Cunningham Sharon Wallace Judy Black
- Mineral Area College Shawn Grindstaff Esq All canvass workers
- Dent County Health Department Peggy Musgraves RN Cheryl Smith

Saint Louis University School of Public Health Brad Wilson Mike McDaniel Linda Sterling BSN MPH Joe Steensma MPH Missouri Department of Health Bureau of Environmental Epidemiology Daryl Roberts MEd Cherri Baysinger Daniels MS Gale Carlson, MPA Eden Dietle Lori Harris Daniel Stark Joy Williams Missouri Department of Health Central District Office Angela Cobb Missouri Department of Health, Southwest District Office Brittney Wallace Jasper County Health Department Anthony Moehr MPH Environmental Protection Agency Region VII Office Jack Generaux Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta Georgia Charles Dodson Daniel Pascal Agency for Toxic Substances and Disease Registry Atlanta, Georgia Jeffrey Lybarger MD MPH Paul Jones MS Missouri State Public Health Laboratory Eric Blank, Dr PH State University of New York David L Johnson, PhD

38

Skilled Care Home Health Agency Dorothy Wilson, L P N Sharon Johnson, L P N

The investigators would especially like to acknowledge and thank the citizens for their participation and assistance as the study was implemented

### REFERENCES

Agency for Toxic Substances and Disease Registry (ATSDR) Jasper County Missouri superfund site lead and cadmium exposure study (final report) Missouri Department of Health, Division of Environmental Health and Epidemiology Bureau of Environmental Epidemiology 1995

Agency for Toxic Substances and Disease Registry (ATSDR) The nature and extent of lead poisoning in children in the United States a report to Congress Atlanta, Georgia US Department of Health and Human Services 1988

Agency for Toxic Substances and Disease Registry (ATSDR) Preliminary public health assessment for Big River Mine Tailings Site Desloge St Francois County Missouri Atlanta, Georgia US Department of Health and Human Services January 12 1994

Ashley K (1994) Personal communication, April 1994

Baghurst P Tong, S McMichael A Robertson E Wigg N Vimpani G Determinants of blood lead concentrations to age 5 years in a birth cohort study of children living in the lead smelting city of Port Piric and surrounding areas Arch Environ Health [Vol 47 (No 3)] 1992

Bellinger D Sloman J Leviton A Ravinowitz M Needleman H Waternaux C Low level exposure and children s cognitive function in the preschool years Pediatrics 87 219-27 1991

Bellinger D Leviton A. Waternaux C Needleman H Robinowitz M Longitudinal analyses of prenatal and postnatal lead exposure and early cognitive development N England J Med 316 1037-43 1987

Bergomi M Borella P Fantuzzi G Vivola G Sturloni N Cavazzuti G Tampieri A Tartoni P Relationship between lead exposure indicators and neuropyschological performances in children Dev Med Child Neurol 31 181 90 1989

Bjerre B Berglund M Harsbo K Hellman B Blood lead concentrations of Swedish preschool children in a community with high lead levels from mine waste in soil and dust Scan J Work, Env & Health 19 (3) 154 61 1993

Bornschein R. Clark C Grote J Peace B Roda S Succop P Soil lead blood lead relationships in a former lead mining town Environ Geochem Health 9 149 60 1989

Calabrese E Stanek E What proportion of household dust is derived from outdoor soil J Soil Cont 1 253 63 1992

CDC Preventing lead poisoning in young children A statement by the Centers for Disease Control October 1991

Fulton M Raab G Thompson G Laxen D Hunter R Hepburn W Influence of blood lead on the ability and the attainment of children in Edinburgh Lancet 1 1221 6 1987

Gulson B Davis J Mizon K Korsch M Law A, Howarth D Lead bioavailability in the environment of children blood lead levels in children can be elevated in a mining community Arch Environ Health 49(5) 326 31 1994

Hansen O Trillingsgaard A Beese I Lyngbye T Grandjean P A neuropsychological study of children with elevated dentine lead level assessment of the effect of lead in different socio economic groups Neurotoxicology and Teratology 11 205 13 1989

Hatzakis A Kokkevi A Maravelias C Katsouyanni K Salaminios F Kalandidi A Koutselinis A Stefanis C Trichopoulos D Psychometric intelligence deficits in lead exposed children In Smith M Grant L Sors A, editors Lead exposure and child development an international assessment Dordrecht Kluwer Academic Publishers 211-23 1989

Hawk B Schroeder S Robinson G Otto D Mushak P Kleinbaum D Dwanson G Relation of lead and social factors to IQ of low SES children a partial replication Am J Ment Def 91 178 83 1986

HUD US Environmental Protection Agency Model Training Course Curriculum, Lead abatement training for supervisors and contractors course manual July 1992 From HUD USER, Rockville MA

HUD US Environmental Protection Agency Model Training Course Curriculum, Lead inspector training course manual April 1993 From HUD USER, Rockville MA

Hunt A. Johnson D Watt J and Thorton I Characterizing the sources of particulate lead in house dust by automated scanning electron microscopy Env Sc and Tech 26 (8) 1513–22 1992

Johnson D and Hunt A. Analysis of lead in urban soils by computer assisted SEM/EDX Method development and early results Lead in point soil and dirt health risk, exposure studies control measures measurement methods and quality assurance ASTM STP 1226 Beard M and Allen Iske E Eds 1994

Klemer H Leitis E Pfenninger K Arsenic content of house dusts in Hawaii Bull Env Cont Tox 14 449 52 1975

Knishkowy B Baker E Transmission of occupational disease to family contacts Am J Ind Med 9 543 50 1986

Lansdown R Yule W Urbanowicz M Hunter J The relationship between blood level concentrations intelligence attainment and behaviour in a school population the second study Int Arch Occup Environ Health 57 225 35 1986

Lepow M Bruckman L Rubino R Markowitz S Gillette M Kapish J Role of Airborne Lead in Increased Body Burden of Lead in Hartford Children Env Health Perspec (99–102) 1974

Lyngbye T Hansen O Trillingsgaard A Beese I Grandjean P Learning disabilities in children significance of low-level lead exposure and confounding effects Acta Pediatr Scand 79 352 60 1990

Millson M Eller P Ashley K Evaluation of wipe sampling materials for lead in surface dust Am Ind Hyg Assoc J 55(4) 330 42 1994

Missouri Department of Health, Report of Flat River environmental study 1986

Murgueytio A Evans R Roberts D Moehr T Prevalence of childhood lead poisoning in a lead mining area J Env Health 58 12 17 number 10 1996

Mushak P Gastro intestinal absorption of lead in children and adults overview of biological and biophysico chemical aspects Chem Spec Bioavail 3 87 104 1991

Needleman H. Schell A Bellinger D Leviton A Allred E The long term effects of exposure to low doses of lead in childhood and 11 year follow up report N Engl J Med 322 83 8 1990

Needleman H Gatsonis C Low level lead exposure and the IQ of children JAMA, 263 673-8 1990

Prior S Sterling D Frazer G Scothgard effects on pasticide removal from farmers' work clothing during laundering Occupation Hygiene 1994

Schmitt C Finger S The dynamics of metals from past and present mining activities in the big and black river watersheds Southeastern Missouri U S Fish and Wildlife Service

Columbia National Fisheries Research Laboratory Columbia, Missouri 1982

Schroeder S Hawk B Otto D Mushak P Hicks R Separating the effects of lead and social factors on IQ Environ Res 38 144 54 1985

Silva P Hugher P Williams S Faed J Blood lead intelligence reading attainment and behaviour in eleven year old children in Dunedin, New Zealand J Child Psych Psychiat 29 43 52 1988

Steele M. Beck B Murphy B Strauss H Assessing the contribution from lead in mining wastes to blood lead Reg toxic Pharm 11 158 90 1990

USGS document no Water Resources Investigation Report 87 4286 1988

University of Missouri Columbia, Report on Big River Mine Tailings Site 1977

Vander Wood T and Brown R. The application of automated scanning electron microscopy/energy dispersive x ray spectrometry to the identification of lead rich particles in soil and dust Environmental Choices Technical Supplement 1(1) 1992

Vostal I Traves E Sayre J and Charney E Lead analysis of house dust a method for the detection of another source of lead exposure in inner city children Env Health Perspec 91-97 1974

Winneke G Brockhaus A. Ewers U Kramer U Neuf M Results from the European multicenter study on lead neurotoxicity in children implications for risk assessment Neurotoxicity and Teratology 12 553 9 1990

Wixson B Davies B (eds) Lead in soil recommended guidelines Society for Environmental Geochemistry and Health Science Reviews (25 38) Norwood 1993

Wixson B Gale N Davies B A study on the use of chat and tailings from the old lead belt of Missouri for agricultural limestone A research report submitted to the Department of Natural Resources University of Missouri Rolla, Missouri 1983

Woodward-Clyde Consultants Trends in children s blood lead levels and sources of environmental lead exposures Report for ASARCO Leadville Coloarado Project No 22909K, 1993

Yule W Lansdown R Miller I Urvanowicz M The relationship between blood lead concentrations intelligence and attainment in a school population a pilot study Dev Med Child Neurol 23 567 76 1981

~

# Table 1 — Area Population by Age and Gender from 1990 U SCensus Big River MineTailings Superfund Site Lead Exposure Study, Missouri 1997 Study Area

Age Group (years)	Male	Female	Total
<1	9	26	35
1 2	63	44	107
3 4	58	65	123
5 6	60	72	132
Subtotal	190	207	397
≥7	1 628	1 846	3 474
TOTAL	1 818	2 053	3 871
	Declogo		
	Desloge		
Age Group (years)	Male	Female	Total
<1	22	22	44
1 2	61	52	113
3-4	59	61	120
5 6	58	62	120
Subtotal	200	197	297
<u>≥</u> 7	1 743	2 010	2 753
TOTAL	1 943	2 207	4 150

## **Bonne Terre**

Table 1 — (cont) Area Population by Age and Gender from 1990 U S	Census Big River
Mine Tailings Superfund Site Lead Exposure Study, Missouri 1997	

Age Group (years)	Male	Female	Total
Age Group (Jears)			
<1	57	63	120
1 2	119	122	241
3 4	129	143	272
5 6	129	113	242
Subtotal	434	441	875
<u>≥</u> 7	3 239	3 821	7 055
TOTAL	3 673	4 262	7 935
	Leadwood		
Age Group (years)	Male	Female	Total
<1	10	5	15
1 2	18	16	34
3 4	24	10	34
5 6	22	28	50
Subtotal	75	59	133
≥7	532	582	1 114
TOTAL	606	641	1 247

Park Hills

. . . . . . .

.....

. .....

Table 1 — (cont) Area Population by Age and Gender from 1990 U S Census Big River Mine Tailings Superfund Site Lead Exposure Study, Missouri 1997 Control Area

Age Group (years)	Male	Female	Total
<1	26	67	93
1 2	91	37	128
3 4	47	50	97
5 6	78	35	113
Subtotal	242	189	431
>7	1753	2302	4055
TOTAL	1995	2491	4486

Salem

51

٤

5
Ž
2
102
ž
Σ
γþ
Ĵ
్ర
Ē
Š
×
7
5
Ĩ
Ē
Ē
Ξ
- A
ŝ
Su
l l
-
110
ž
3
3
ੁੱਧ
=
lls
3
ž
رتا ک
Ē
H
Su
Ъ
Ē
õ
2
uluy
Ξ
- Չա մույ
"Ø
$2 - Q_{\rm H}$
"Ø

-------

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Quanty Control Summary Recents Big River Mine 1 mings Superfand Site 1 end 1 xposure Study Missouri 1997	uy Keults	Big Rivei M	hue I ulmg	s Տարու քա	nud Sate I	e ul I xpo	une Study	Missouri I	760	
E         71         2         71         2         71         230         230         230         000           E         11         71         1         2         71         230         1131         413         116           E         1         2         1         230         1131         413         106           E         1         2         1         20         230         230         000           E         1         2         1         20         33         166         111           E         6         0         0         0         0         0         0         0         0           E         66         0         0         0         0         0         0         0         0         0           E         66         0         0         0         0         0         0         0         0         0           E         66         0         0         0         0         0         0         0         0         0           E         66         0         0         0         0         0         0         <	r $r$ <th></th> <th>z '</th> <th></th> <th></th> <th>į</th> <th></th> <th>- -</th> <th>Ξ</th> <th></th> <th></th> <th></th>		z '			į		- -	Ξ			
I $I$ <td>Image: Here         Image: Here         <thi< td=""><td></td><td></td><td>-</td><td>7</td><td>11</td><td>S .</td><td>2 50</td><td>1</td><td></td><td>5</td><td></td></thi<></td>	Image: Here         Image: Here <thi< td=""><td></td><td></td><td>-</td><td>7</td><td>11</td><td>S .</td><td>2 50</td><td>1</td><td></td><td>5</td><td></td></thi<>			-	7	11	S .	2 50	1		5	
I $I$ <td>I $I$ $I$<td>-</td><td></td><td>x</td><td>11</td><td>Ŧ</td><td>2 50</td><td>1175</td><td>4 95</td><td></td><td></td><td>40.08</td></td>	I $I$ <td>-</td> <td></td> <td>x</td> <td>11</td> <td>Ŧ</td> <td>2 50</td> <td>1175</td> <td>4 95</td> <td></td> <td></td> <td>40.08</td>	-		x	11	Ŧ	2 50	1175	4 95			40.08
R         A         0         4         230         230         000           eff. Freese         23         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th0< th=""> <th0< th=""> <th0< th=""></th0<></th0<></th0<>	k $l$ <td>Ę</td> <td></td> <td>_</td> <td>7</td> <td>-</td> <td>2.50</td> <td>25</td> <td>11 60</td> <td>11</td> <td></td> <td>797 AR</td>	Ę		_	7	-	2.50	25	11 60	11		797 AR
k f f free f f f f f f f f f f f f f f f	0R ferme         29         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th0< th="">         0         0         <th< td=""><td>Ŧ</td><td></td><td>4</td><td>0</td><td>Ŧ</td><td>2 50</td><td>2.50</td><td>2 50</td><td>000</td><td></td><td></td></th<></th0<>	Ŧ		4	0	Ŧ	2 50	2.50	2 50	000		
p/k $29$ 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pring Lab V 1 c/R	k forence									2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lend	R/B	29	0	0	0.75	0.97	0 84	010	69 0	1 01
E         38         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th0< th="">         0         0         0</th0<>	R         38         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th0< th="">         0         0         0</th0<>	lend	10	9	0	0	10.0	£6 O	0 49	0 78	01 0	230
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		*	•	-	015	0.93	0.55	81.0	02(	111
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P I	2		0	e	0 76	0 93	0 85	90 0	67.0	1 00
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	lead	ľa	٢	0	¢	0 80	124	90 I	100		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/ 1 e/Lessor V 1									00	9
lead $p_{\rm k}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	lend lend	e/e a/a	62	•	•	00 1	11 38	1 43	0 50		3 90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4k	66	•	-	8	101	130	0 27		222
feed         p/l         2R         2C         0         100         1C7         105         012           rend         ugl_         35         1         0         1         6391         164         077           tend         ugl_         34         1         0         1         6391         164         077           2. MDL Ni w Directuri         1.31 sint grid         1         0         1         677         147         044           2. MDL Ni w Directuri         1.31 sint grid         1         0         1         677         147         044           2. MDL Ni w Directuri         1.31 sint grid         1         0         1         677         147         044	fead $p/l$ $2R$ $2C$ $0$ $100$ $1/7$ $105$ $012$ $\pi V I$ tend $ugl_{1}$ $35$ 1 $0$ 1 $6391$ $164$ $077$ $tend$ $gl_{2}$ $34$ 1 $0$ 1 $677$ $044$ 2. MDL M         w Dated with $1.31$ $udd$ $i \downarrow 4.4$ $1.47$ $0.44$ 2. MDL M         w Dated with $1.31$ $udd$ $i \downarrow 4.4$ $1.47$ $0.44$ 2. MDL M         w Dated with $1.31$ $udd$ $i \downarrow 4.4$ $1.4$ $0.44$ $grave         2.8 walf 1.4 1.4 1.4 0.44 $	lead	сh	Ξ	0	0	1 02	27 E	1 32	0 4C		90 F
т∨і lend ug/L 33 1 0 1 6391 164 077 lend <u>g/E 34 1 0 1 637</u> 147 017 2. AlDL N w Dated witt, 3 1 sd − 1 g 0 1 67 147 014 g= αgam 7 R witi ti walfadet falter	$\frac{\pi V I}{\text{lead}} \frac{\pi V I}{\text{gl}} = 33 \qquad 1 \qquad 0 \qquad 1 \qquad 6391 \qquad 164 \qquad 077 \\ \frac{1}{\text{lead}} \frac{gl}{\text{gl}} = 34 \qquad 1 \qquad 0 \qquad 1 \qquad 677 \qquad 143 \qquad 044 \\ 2. \text{ AIUL M} \text{ is Directual L} = 1 = 41  1 = 0 \qquad 1 \qquad 677 \qquad 143 \qquad 044 \\ \text{g}^{-} = \alpha \text{ gran } 7 \text{ Ratit al walfidetif d} \text{ it a } 1 = 1  1 = 0  \text{for } L  L  1 \qquad 0.44 $	망	P/4	28	3(	=	1 00	117	1 63	0 12		
lend ug(L 33 1 0 1 6391 164 077 lend ^e g(C 34 1 0 1 637 147 044 12. AlDL M w DAtecturi L 31 val~1 g/N 1at d d 1 t,4 1C1 1 × C fder L t, 6 g= crgam 7 R atir 11 val fader f d 1 t,4 1C1 1 × C fder L t,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Î										
tend ⁷ <u>թ/բ</u> 34 1 0 1 67/ 147 044 ւ 1.2. AIDL Ni w Ducciwi է 31 ավ) բթ. 1 եմ մ մ մ է 4.1.cl i - C. fder L. է 6 8 ացատ 7 R.att մ տոն faderif մ կոց	i 2. AIDL Ni w Ducciuui L 3 i admi gN 1ai d di i 4. 4. 1cl i a C fdar L 1, 0.44 6 g= cegaan 7. Raiti 11 walfadatf di 1a 6 g= cegaan 7. Raiti 11 walfadatf di 1a	lend	'l/ân		-	Ð	-	16 59	1 64	17.0		r 6
6 8≖ argam 7 Rati ti walfadetfallar 6 8≖ argam 7 Rati ti walfadetfallar	6 8= crigan 7 Rati il valfadetfullas 6 8= crigan 7 Rati il valfadetfullas	lend by buy by			-		-	670	147	0 44		181
		ות יד אוטר או ו 6 פייר מימוו			7 <u>5</u> 2	مہ 	101	C lder	ļ			70 7

## Table 3 —Overview of Study and Control Area Canvass and Recruitment Effort Big River Mine Tailings Superfund Site Lead Exposure Study, Missouri 1997

	Study Are	ea	Control Ar	ea
Area (square miles)		20		2
Population		17 270		4 484
Total number of homes		5 702		2 264
Total number of eligible homes for study		778		249
Recruitment Summary	Percent	<u>(n)</u>	Percent	<u>(n)</u>
Refused	39%	(307)	29%	(72)
Canceled	8%	(60)	14%	(34)
Moved	11%	(83)	10%	(25)
Ineligible	2%	(16)	10%	(25)
Unable to contact	10%	(78)	8%	(21)
Consented	30%	(235)	29%	(72)
Total	100%	(779)	100%	(249)

----

FACTOR	STUDY (n = 235)	<b>CONTROL</b> (n = 72)	<u>p-VALUE</u> ²
Person answering question			
Mother	85 19	87 5 /	
Father	89/	69/	
Grandparent	47/	42/	
Other person	13/	14/	954
Age (years)	3 70 ± 1 77 ³	3 80 <u>+</u> 1 72	655
Gender			
Male	49 8 /	47 2 /	
Female	50 2/	52 8 /	403
Race			
Black	13/	0 ⁄	
White	98 7%	100/	NA ⁴
Total gross household income before taxes			
<u>≤</u> \$4 999	81/		
\$5 000 \$9 999	81/	83/	
<b>\$</b> 10 000 <b>\$</b> 14 999	98/	11 1/	
\$15 000 \$19 999	98/	6 9%	
<b>\$</b> 20 000 <b>\$</b> 24 999	11 1/	42/	
\$25 000 \$29 999	11 1/	97/	
\$30 000 <b>\$3</b> 4 999	106/	83/	
\$35 000 \$39,999	81/	83/	
≥ \$40 000	162/	20 8/	
Refused	09/0	0/	
Don t Know	64/	14/	149
Highest year of education completed by the mother of the			
child			
No schooling	0/		
Elementary School	128/		
High School	498/		
Technical or Trade School	98%		
Junior/Community College	183/	153/	
Four year College/University	72/		
Attended Graduate school	21/	14/	.277
Year house was built ^s			
<1900 1909	88/		
1910 1919	3 6%		
1920 1929	66/		
1930 1939	88/		
1940 1949	102/		
1950 1959	10.2/		
1960 1969	29/		
1970 1979	54 168/		
1980 1989	161/		
1990 present	161/	12 2 /	001

# Table 4 —Questionnaire Responses by Factors and Group Big River Mine Tailings SuperfundSite Lead Exposure Study Missouri 1997

FACTOR	<b>STUDY</b> (n = 255)	CONTROL (n = 72)	p- VALUE
House rented or owned?			
Rented	34 9 /	542/	
Owned	626/	458/	
Other	26/	0/	008
Type of water pipes			
Lead	17/	29/	
Plastic	457/	176/	
Galvanızed Steel	104/	118/	
Copper	13 3 /	50 0 /	
Iron	06/	0/	
Mixed	277/	176/	
Other	06/	0/	< 001
Source of house water for drinking			
Public water	919/	986/	
Well	26/	14/	
Other	55/	0/	NA
Source of house water for cooking			
Public water	962/	986/	
Well	21/	14/	
Other	17/	0/	NA
Source of child s water for drinking			
Public water	786/	97 2 /	
Well	38/	14/	
Bottled	17 5 /	14/	NA
Source of child s water for cooking	<b></b>		
Public water	919/	986/	
Well Bottled	21/ 60/	14/	NA
Water in kitchen faucet filtered or treated Yes	162/	14 5 /	
No	83 8 /	85 5 /	450
Any part of house repainted sanded or stripped chemically or by heat within last year?			
Yes	487/	478/	
No	513/	52 2 /	504

FACTOR	STUDY (n = 235)	<b>CONTROL</b> (n = 72)	p- VALUE
What part of house was work done in?			
Bedroom	453/	44 0 /	
Living Room	22 1 /	20 0 /	
Bathroom	74/	16 0 /	
Kıtchen	84/	8 0%	
Outside walls	116/	120/	
Porch	53/	0/	
Deck	07	0/	703
How often air conditioning is used during summer			
Never	72/	113/	
Rarely	13/	28/	
Sometimes	132/	56/	
Frequently	32 8/	197/	
Always	45 5 /	60 6 /	037
Where air conditioning is used			
Central	48 9%	50 0 /	
Living/family room	33 8 /	37 5/	
Child s bedroom	37/	16/	
Other bedroom	55/	0/	
Kitchen	18/	94/	
Other	64/	16/	012
Mine smelter or lead industry materials used in or around			
house or yard	204/	38/	
Yes			000
No	796/	96.2/	002
Pets go in and out of house	28.2 /	28.0.7	
Yes	382/ 618/	380/	549
No	01 87	620/	548
In the last 90 days any member of household			
Painted pictures with artists paints? Yes	69%	97%	
No	93 1 /	90 3 /	283
Painted stained or refinished furniture?	20.17	20.37	205
Yes	175%	194/	
No	82 5 /	806/	415
Painted the inside or outside of a home or building?			
Yes	37 3%	296/	
No	627/	704/6	146
Worked with stained glass?			
Yes	04/	0/	
No	99 67	100/	NA
Cast lead into fishing sinkers bullets or anything else?			
Yes	56 47/	56/	
No	953/	95 4 /	474

FACTOR	<b>STUDY</b> (n = 235)	<b>CONTROL</b> (n = 72)	p- VALU
In the last 90 days any member of household Worked with soldering sheets of metal?			
Yes	79/	29/	
No	921/	97 1 /	11
Worked with soldering pipes?			
Yes	95/	42/	
No	90 5 /	95 8/	11
Repaired auto radiators?			
Yes	90/	14/	
No	910/	98 6 /	02
Worked on auto bodies or auto maintenance? (includes			
mechanics) Yes	389/	214/	
No	61 1 /	786/	00
Worked at a sewage treatment plant?	011/	/00/	00
Yes	04/	0/	
No	996/	100/	N
Made pottery?	22.07	1007	1
Yes	09/	0/	
No	991/	100/	N
Ridden a dirt bike mountain bike or ATV in the local area?			-
Yes			
	157/	194/	
No	84 3 /	806/	.28
Welded?			
Yes	137/	86/	
No	86 3 /	914/	1'
Cleaned or repaired firearms?			
Yes	198/	127/	
No	80 2 /	873/	1
Visited indoor firearm target ranges?			
Yes	17/	14/	
No	98 3 /	986/	N
Done wire/cable cutting or splicing?	<b>2</b> 2 <i>A I</i>		
Yes	23 2 /	157/	
No	76 8 /	84 3 /	12
Casted or smelted lead?	26/		
Yes		14/	
No	97 4 /	986/	N
Worked in plastics manufacture? Yes	26/	0/	
	974/		N
No Washadan battana manufactum?	7/4/	100 /	N
Worked in battery manufacture? Yes	0/	14/	
No	100/	986/	21
	1007	70 07	Ň
Worked in pipe machining? Yes	17/	0/	
No	983/	100 /	N
110	57	1007	N

<b>STUDY</b> (n = 235)	<b>CONTROL</b> (n = 72)	P VALUE
0/	0%	
100/	100/	NA
0/	0 ⁄	
100%	100/	NA
17/	0/	
98 3 /	100 /	N
13/	0/	
		N
	••••	112
77/	56/	
92 3 /	94 4 /	N
13/	83/	
987/	917/	N
30/	69/	
97 0 /	93 1 /	12
714/	40 0 /	
0 ⁄₀	0/	
0%	0/	
0/	0 ⁄	
286/	60 0 /	N.
0/	0/	
0%	20 0 /	
0/	0/	
429/	400%	N
057/	261/	
58	07	N
	0/ 100/ 0/ 100% 17/ 983/ 13/ 987/ 77/ 923/ 13/ 987/ 30/ 970/ 714/ 04 0% 0/ 286/ 571/ 0/ 0% 0/ 429/ 957/ 30/ 957/ 30/ 957/ 30/ 957/ 30/ 957/ 30/ 957/ 30/ 957/ 30/ 957/ 30/ 957/ 30/ 957/ 30/ 957/ 30/ 957/ 30/ 957/ 30/ 957/ 30/ 957/ 30/ 957/ 30/ 957/ 30/ 957/ 30/ 970/ 987/ 987/ 987/ 987/ 987/ 987/ 987/ 987/ 987/ 987/ 987/ 987/ 987/ 987/ 987/ 987/ 987/ 987/ 987/ 987/ 970/ 970/ 970/ 970/ 970/ 970/ 970/ 971/ 987/ 987/ 970/ 970/ 987/ 987/ 987/ 987/ 987/ 987/ 970/ 970/ 970/ 970/ 970/ 970/ 957/ 957/ 957/ 90/ 957/ 957/ 957/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 90/ 90/ 957/ 90/ 957/ 90/ 957/ 90/ 90/ 957/ 90/ 957/ 90/ 90/ 90/ 957/ 90/ 90/ 90/ 90/ 90/ 90/ 90/ 90	0/ $0%$ $100/$ $100/$ $0/$ $0/$ $100%$ $100/$ $17/$ $0/$ $983/$ $100/$ $13/$ $0/$ $987/$ $100/$ $77/$ $56/$ $923/$ $944/$ $13/$ $83/$ $987/$ $910/$ $71/$ $56/$ $923/$ $944/$ $13/$ $83/$ $987/$ $917/$ $30/$ $69/$ $970/$ $931/$ $714/$ $400/$ $0/$ $0/$ $970/$ $931/$ $714/$ $400/$ $0/$ $0/$ $0/$ $0/$ $0/$ $0/$ $0/$ $0/$ $0/$ $0/$ $0/$ $0/$ $0/$ $0/$ $0/$ $0/$ $0/$ $0/$ $0/$

58

FACTOR	<b>STUDY</b> (n = 235)	<b>CONTROL</b> (n = 72)	p-VALUE
When food or drinks are prepared served stored how			
often are they placed in copper or pewter dishes or			
containers? Never	974/	986/	
Rarely	21/	14/	
Sometimes	04/	0/	
Frequently	04/	0/	
Always	0/	0/	NA
When food or drinks are stored or put away how often are			
they stored in the original can after being opened?			
Never	87 2 /	83 3 /	
Rarely	77/	11 1/	
Sometimes	38/	28/	
Frequently	13/	28/	
Always	0/	0/	614
How often do you vacuum?			
Never	34/	14/	
Rarely	21/	14/	
Sometimes	13 2/	139/	
Frequently	560/	694/	
Always	252/	139/	.218
How often do you dry sweep?			
Never	77/	11 1/	
Rarely	51/	69/	
Sometimes	107/	111/	
Frequently	376/	458/	
Always	389/	250/	285
How often do you mop?	15.0 (	<b>50 0</b> (	
Never	170/	22 2 /	
Rarely	47/	97/	
Sometimes	289/	361/	
Frequently	379/	264/	
Always	11 57	56/	087
How often do you wet wipe?		• • •	
Never	38/	14/	
Rarely	55/	56/	
Sometimes	22 6/	23 6/	
Frequently	477/	61 1/	
Always	204/	83/	108

59

----

____

FACTOR	<b>STUDY</b> (n = 235)	<b>CONTROL</b> $(n = 72)$	p-VALUE
How often do you dry dust?			
Never	171/	20 8/	
Rarely	175/	20 8 ⁄	
Sometimes	286/	41 7/	
Frequently	29 9 /	12 5 /	
Always	68/	4 2%	029
How often do you use other house cleaning methods?			
Never	65 2/	47 9 /	
Rarely	73/	14 1 /	
Sometimes	14 2 /	155/	
Frequently	103/	22 5 /	
Always	30/	0/	008
How many times per month are the following rooms			
cleaned Kitchen	22 A ± 14 E	10 1 ± 14 7	011
Child s bedroom	22 4 <u>+</u> 16 5	28 1 <u>+</u> 16 7	
	12 4 ±11 5	120 <u>+</u> 110	783
Living/family room	19 0 <u>+</u> 12 9	20 7 <u>+</u> 16 0	354
How long do you spend cleaning the following rooms each time you clean them? (minutes)			
Kitchen	36 6 <u>+</u> 35 4	39 9 <u>+</u> 18 0	294
Child s bedroom	34 4 <u>+</u> 33 5	32 5 <u>+</u> 20 9	568
Living/family room	29 2 <u>+</u> 23 5	28 7 <u>+</u> 13 7	824
Do you have a vacuum cleaner?			
Yes	94 5 /	94 4 /	
No	55/	56/	595
If yes how long ago was the vacuum cleaner last used? (days)	23 <u>+</u> 32	27±49	372
If yes how long ago was the vacuum cleaner bag empthed or last changed? (days)	23 6 <u>+</u> 38 2	24 4 <u>+</u> 39 6	887
		<b>_</b>	
Does anyone smoke tobacco products in your home?	50 7 /	50.0 (	
Yes	58 7 / 41 3 /	500/	1
No If yes how many people smoke in this house?	413/ 14±20	50 0 ∕ 2 1 <u>+</u> 4.2	121 193
	-		
How long has the child been living in this home? (months)	28 4 <u>+</u> 21 7	19 8 <u>+</u> 17 4	001
Does child breast feed? (Only for participants ≤2yrs old)			
Yes	38 8 /	64 3 /	
No	61 2 /	357/	073
	0127	11 66	07:
Does child currently take a bottle?	60 45 87	40 9 /	
Yes			
No	54 2 /	591/	438

# Table 4 ----(cont) Questionnaire Responses by Factors and Group Big River Mine TailingsSuperfund Site Lead Exposure Study, Missouri 1997

_____

FACTOR	<b>STUDY</b> (n = 235)	<b>CONTROL</b> $(n = 72)$	p-VALUE
Hours per day the child usually spends playing on the floor			
in this house	ט ג <u>+</u> 3 0	54 <u>+</u> 34	837
How often does the child play outdoors?			
Never	13/	56/	
Rarely	94/	12 5/	
Sometimes	26 8 /	194/	
Frequently	498/	417/	
Always	128/	20 8 /	053
If the child plays outdoors hours per day on the average the child plays outdoors	26 <u>+</u> 19	3 2 <u>+</u> 2 8	073
Where does child usually play when outside this house?			
Back yard	511/	36 6 /	
Front yard	258/	35 2 /	
Side yard	124/	127/	
Street and side walk	17/	28/	
Other	90/	127/	267
When the child is not playing around the house where does he/she usually play?			
Neighbor s yard	24 2 /	278/	
Playground	52/	56/	
Near or around creek or ditch	0/	28/	
On or near sidewalks or streets	17/	0/	
Park	52/	69/	
Only plays around the home	307/	69/	
Other	329/	50 0 /	798
How often does the child play on a grassy area?			
Never	5.2/	69/	
Rarely	103/	56/	
Sometimes	193/	181/	
Frequently	45 5 /	486/	
Always	197/	20 8 /	761
How often does the child play on concrete/asphalt?			
Never	129/	85/	
Rarely	30 2 /	254/	
Sometimes	293/	35 2 /	
Frequently	246/	26 8 /	
Always	30/	42/	678
How often does the child play in dirt?			
Never	99/	11 1 /	
Rarely	253/	194/	
Sometimes	283/	29 2 /	
	51 275/	27 8/	
Always	86/	125/	837

FACTOR	<b>STUDY</b> (n = 235)	<b>CONTROL</b> (n = 72)	p- VALUE
Is there any park or common play areas where the child plays?			
Yes	50 6/	56 9 /	
No	494/	43 1 /	212
Does child			
Crawl	55/	43/	
Walk Both	76 6/ 17 9/	52 2 / 43 5 /	NA
Boui	1737	45 57	NA
How often does child take food snacks or candy outside to eat? Never			
	227/	23 6/	
Rarely	38 2/	319/	
Sometimes	24 9 /	264/	
Frequently	94/	12 5/	
Always	47/0	56/	872
How often does the child take a bottle or pacifier outside with them?			
Never	85 5 /	887/	
Rarely	47/6	56/	
Sometimes	51/	14/	
Frequently	17/	42/	
Always	30/	0/	NA
How often does the child wash hands or face before eating?			
Never	04/	28/	
Rarely	43/	56/	
Sometimes	150/	28 2/	
Frequently	28 2 ⁄₀	26 8/	
Always	52 1/	366/	022
How often does the child wash hands or face before going to sleep?	• • •	<b>2</b> /	
Never Rarely	21/6 43/	0/	
Sometimes			
	123/	153/	
Frequently	23 8/	250/	
Always How often does the child wash hands or face after playing with dirt of sand?	57 4 / or	597/	283
Never	35/	28/	
Rarely	2 6%	0/	
Sometimes	97%	153%	
Frequently 62	207/	20 8/	
Always	63 4 /	61 1/	465

FACTOR	<b>STUDY</b> (n = 235)	CONTROL (n=72)	p- VALUE
Number of times the child is bathed or given a shower per week	6 4 <u>+</u> 2 1	6 2 <u>+</u> 2 0	546
How often has the child used a pacifier in the last 6			
months ⁹ Never	88 5 /	887/	
Rarely	30/	14/	
Sometimes	17/	14/	
Frequently	21/	28/	
Aiways	47/	56/	NA
How often does the child suck their thumb or fingers?			
Never	71 1/	653/	
Rarely	89/	69/	
Sometimes	106/	13 9 /	
Frequently	47/	111/	
Always	47/	28/	269
How often does the child chew on their fingernails?	50.0 <i>(</i>		
Never Rarely	58 3 / 16 2 /	653/ 139/	
-			
Sometimes	123/	11 1/	
Frequently	89/	28/	
Always	43/	69/	366
Does the child have a favonte blanket or toy? Yes	44 3 /	514/	
No	557/	486/	177
For those answering yes how often does the child carry this around during the day?			
Never	219/	13.2/	
Rarely	190/	158/	
Sometimes	219/	289/	
Frequently	257/	34 2 /	
Always	114/	79/	577
For those answering yes how often does the child put this blanket or toy in their mouth?			
Never	519/	316/	
Rarely	163/	263/	
Sometimes	154/	79/	
Frequently	77/	237/	
Always	87/	105/	025
How often does the child put things other than food into their mouth?	16.0 /	17.4.4	
Never Rarely	159/ 279/	174/ 261/	
Sometimes	270/	261/	
Frequently	159/	203/	
Aiways	13 3 /	101/	879

----

FACTOR	<b>STUDY</b> (n = 235)	<b>CONTROL</b> (n = 72)	p- VALUE
How often does the child put their mouth on furniture or			
on the window sill?	44.4.7	27.5 /	
Never Rarely	44 4 / 20 9 /	37 5 / 25 0 /	
-			
Sometimes	214/0	23 6%	
Frequently	94/	11 1 /	
Always	38/	28/	827
How often does the child swallow things other than food? Never			
146461	749/	66 7 /	
Rarely	170/	25 0 /	
Sometimes	60/	69/	
Frequently	17/	14/	
Always	04/	0/	593
How often does the child put paint chips in their mouth? Never			
INCACI	966/	97 1 /	
Rarely	17/	29/	
Sometimes	17/	0/	
Frequently	0 ⁄6	0/	
Always	0/	0/	NA
Does your household have a vegetable garden?			
Yes	29 5%	167/	
No For those answering yes how often does the child eat vegetables grown in your garden?	70 5%	83 3 /	020
Never	219⁄0	42 9 /	
Rarely	20 5 /	7 1%	
Sometimes	274/	14 3 /	
Frequently	247/	143/	
Always	55/	21 4 /	083
How often does the child eat vegetables grown elsewhere			
in the local area? Never	44 6 /	22.2/	
Rarely	18 2%	27 8/	
Sometimes	23 8/	30 6 /	
Frequently	10 8%	13 9/	
Always	26/	56/	015
Has the child ever been treated with traditional folk, or herbal medications?			
Yes	64/	70%	
No	93 6%	93 0 /	520
Number of people living in house	64 44±14	40±12	024

._ . . . . . . . .

_____

# Table 4 --- (cont) Questionnaire Responses by Factors and Group Big River Mine TailingsSuperfund Site Lead Exposure Study, Missouri 1997

FACTOR	<b>STUDY</b> (n = 235)	CONTROL (n = 72)	p- VALUE
Amount of money spent on food per week in household			
<u>_</u> ≤\$25	17/	28/	
\$25 \$50	167/	26 4 /	
\$50 <b>\$</b> 75	38 0 /	36 1 /	
<b>\$</b> 75 <b>\$</b> 100	30 3 /	236/	
> \$100	13 2/	11 1/	382

1 Some factors had more responses offered than are displayed in this table If no participants answered a particular response the response was not included in the table

2 P-values are for proportions from chi square analysis and for interval data from t-test

3 Mean plus or minus standard deviation

4 NA not calculated because more than 25% of cells had less than five subjects expected per cell

5 Results do not include responses of don t know or refused There were 98 such responses in the study group and 31 such responses in the control group

## Table 5 —Mean Blood Lead and Environmental Lead Results Compared between Study and Control Groups Big River Mine Tailings Superfund Site Lead Exposure Study, Missouri 1997

	STUDY	CONTROL	
FACTOR	Mean ± SD (n)	Mean + SD (n)	p VALUE
Blood lead (all values included) (µg/dl)	6 52 ± 3 92 (226)	3 43 ± 1 98 (69)	000
Lead concentration in tap water (µg/l)	2 38 <u>+</u> 7 23 (235)	3 55 <u>+</u> 3 02 (72)	181
Lead concentration in drip line soil(µg/g)	1794 62 ± 2030 58 (231)	625 62 <u>+</u> 2224 31(71)	000
Lead concentration in play area soil (µg/g)	1282 28 <u>+</u> 1447 11 (222)	127 15 <u>+</u> 211 89 (60)	000
Lead concentration in yard soil (µg/g)	1078 76 <u>+</u> 120 88 (233)	87 57 <u>+</u> 180 16 (72)	000
Lead concentration in vacuum bag ( $\mu g/g$ )	1214 49 ± 440 76 (201)	173 02 <u>+</u> 238 90 (61)	001
Lead loading of floor cassette vacuum (µg/ft ² )	18 04 <u>+</u> 56 01 (226)	4 10 <u>+</u> 18 59 (65)	002
Lead concentration of floor cassette vacuum (µg/g)	763 23 <u>+</u> 2122.28 (234)	283 69 <u>+</u> 690 95 (67)	070
Visible dust during floor cassette vacuum (lower the value the less visible the dust)	82 <u>+</u> 21 (227)	84 <u>+</u> 21 (72)	560
Lead loading in window sill dust wipe (µg/ft ² )	1641 52 <u>+</u> 5534 92 (221)	196 95 <u>+</u> 319 34 (66)	000
Visible loose dust during window sill dust wipe (lower the value the less the loose dust)	93 ± 15 (221)	91 <u>+</u> 17 (66)	480
Visible dust when blown during window sill dust wipe (lower the value the less visible the dust)	92 <u>+</u> 15 (221)	90 <u>+</u> 18 (66)	344
Observed visible soiling of dust wipe sampling material (lower the value the less visible the soiling)	89 <u>+</u> 21 (219)	93 <u>+</u> 14 (66)	085
XRF for all indoor surfaces (mg/cm ² )	28 <u>+</u> 51 (235)	14 <u>+</u> 22 (72)	001
XRF for indoor surfaces by room (mg/cm ² )	28 <u>+</u> 51 (235)	14 <u>+</u> 22 (72)	001
XRF for indoor surfaces by room and friction (mg/cm ² )	. <b>34</b> <u>+</u> 58 (235)	22 <u>+</u> 36 (72)	031
XRF for indoor friction surfaces only (mg/cm ² )	36 <u>+</u> 61 (235)	.22 <u>+</u> 36 (72)	013
XRF >0 for indoor surfaces (mg/cm ² )	1 32 <u>+</u> 1 21 (192)	1 17 <u>+</u> 1 22 (51)	405
$XRF \ge 0.7$ for indoor surfaces (mg/cm ² )	3 14 <u>+</u> 1 32 (130)	2 75 <u>+</u> 1 38 (33)	141
XRF for indoor surfaces weighted ² by d/t (mg/cm ² )	<b>3 18</b> <u>+</u> 1 40 (101)	2 93 <u>+</u> 1 57 (18)	488
XRF for indoor surfaces weighted by d/t by room (mg/cm )	2 20 <u>+</u> 1.28 (101)	1 52 <u>+</u> 1 04 (18)	036
XRF for indoor surfaces weighted by d/t by room and friction (mg/cm ² )	1 05 ± 83 (101)	57 ± 43 (18)	001
XRF for indoor friction surfaces only weighted by d/t (mg/cm ² )	1 66 <u>+</u> 1 15 (101)	1 01 ± 72 (18)	003
XRF for all outdoor surfaces (mg/cm ² )	.29 <u>+</u> 36 (235)	34 ± 41 (72)	346
XRF >0 for outdoor surfaces (mg/cm ² )	1 93 <u>+</u> 1 55 (188)	2.26 <u>+</u> 1 93 (57)	.244
$XRF \ge 0.7$ for outdoor surfaces (mg/cm ² )	$346 \pm 162(150)$	3 98 ± 2 50 (44)	189
Observed general condition of rooms (scale of 1=poor to 5=good)	3 22 ± 89 (235)	3 52 ± 99 (72)	014

- 1 Bolded factors showed a significant difference (p < 05) between the study and control groups
- 2 d/t = damaged area/total wall area Contains only XRF values  $\geq 0.7 \text{ mg/cm}^2$

UDY	CONTROL
ean <u>+</u> SD (n)	Mean ± SD (n)
76 ± 4 63 (112)	3 44 ± 1 98 (32)
28 ± 3 07 (114)	3 43 ± 2 01 (37)
50	992
33 ± 4 16 (3)	
52 ± 3 93 (223)	3 43 ± 1 98 (69)
35	
11 ± 4 33 (19)	4 00 ± 2 45 (15)
26 ± 6 40 (19)	4 83 ± 2 79 (6)
09 ± 3 83 (22)	4 00 ± 1 93 (8)
$00 \pm 2.02 (22)$	$200 \pm (3)$
08 ± 5 11 (26)	4 33 ± 1 15 (3)
52 ± 3 29 (25)	$286 \pm 157$ (7)
$09 \pm 325(22)$	$283 \pm 117$ (6)
78 ± 1 70 (18)	$300 \pm 155$ (6)
18 ± 2 68 (38)	2 93 ± 1 73 (14)
10	280
41 ± 2 88 (29)	4 13 ± 2 33 (15)
76 ± 4 65 (112)	3 53 ± 1 99 (36)
17 ± 3 01 (23)	$500 \pm 141$ (2)
10 ± 3 10 (41)	2 31 ± 1 25 (10)
06 ± 2 05 (16)	$260 \pm 114$ (5)
20 ± 1 30 (5)	$200 \pm$ (1)
48	159
50 ± 3 03 (10)	
16±129 (5)	$300 \pm (1)$
67 ±3 61 (9)	$500 \pm (1)$
18 ± 3 19 (11)	$300 \pm 183$ (4)
29 ± 2 95 (14)	$420 \pm 130$ (5)
29 ± 3 34 (14)	2 88 ± 1 13 (8)
$75 \pm 222$ (4)	2 80 ± 1 81 (10)
41 ± 2 52 (22)	$2\ 20\pm 1\ 10$ (5)
24 ± 3 00 (21)	$1 00 \pm$ (2)
32 ± 2 34 (22)	$267 \pm 58$ (3) 232
24	$4 \pm 3\ 00\ (21)$ $2 \pm 2\ 34\ (22)$

# Table 6 — Mean Blood Lead Values Compared to Questionnaire Factors by Group BigRiver Mine Tailings Superfund Site Lead Exposure Study, Missouri 1997

	STUDY	CONTROL
FACTOR	Mean + SD (n)	<u>Mean + SD (n)</u>
House built prior to 1960	6 78 ± 4 65 (63)	3 37 ± 1 38 (19)
House built after 1959	5 28 ± 2 67 (69)	2 45 ± 1 47 (20)
p-value	023	052
House rented of owned?		
Rented	707±335 (81)	4 05 ± 2 28 (38)
Owned	6 20 ± 4 14 (139)	2 68 ± 1 19 (31)
p value	180	002
Type of water pipes		
Lead	5 67 ± 1 53 (3)	$300 \pm (1)$
Plastic	6 21 ± 2 96 (76)	$460 \pm 114$ (5)
Galvanized Steel	10 18 ± 8 38 (17)	$367 \pm 306$ (3)
Copper	$535 \pm 281$ (23)	3 19 ± 1 80 (16)
Iron	$4\ 00\ \pm$ (1)	
Mixed	6 84 ± 3 70 (45)	3 50 ± 1 52 (6)
Other	$700 \pm (1)$	<i></i>
p-value	011	655
Source of house water for drinking		2 49 1 1 09 400
Public water	6 71 ± 3 95 (208)	3 47 ± 1 97 (68)
Well	2 33 ± 1 03 (6)	$1 00 \pm (1)$
p value	007	
Source of house water for cooking		
Public water	6 68 ± 3 91 (217)	3 47 ± 1 97 (68)
Well	2 60 ± 89 (5)	$1 00 \pm (1)$
p-value	021	
Source of child s water for drinking		
Public water Well	6 79 ± 4 09 (176) 3 11 ± 2 09 (9)	$345 \pm 198(67)$ $100 \pm (1)$
wen Bottled	• • •	
p-value	6 15 <u>+</u> 3 05 (40) 018	$500 \pm (1)$
Source of child s water for cooking		
Public water	6 68 ± 3 96 (207)	3 47 ± 1 97 (68)
Well	2 60 ± 89 (5)	1 00 ± (1)
Bottled	5 62 <u>+</u> 3.23 (13)	
p value	049	
Any part of house repainted sanded or stripped chemically or by heat within last year?		
Yes	6 71 ± 3 87 (108)	3 12 ± 1 52 (33)
No	6 34 ± 3 99 (115)	3 30 ± 1 88 (33)
p-value	479	667
	69	

Table 6 ---(cont) Mean Blood Lead Values Compared to Questionnaire Factors by GroupBig River Mine Tailings Superfund Site Lead Exposure Study, Missouri 1997

68

.—

· · · · · · · · -

......

	STUDY	CONTROL	
FACTOR	Mean ± SD (n)	<u>Mean + SD (n)</u>	
Mine smelter or lead industry materials used in or around			
house or yard Yes	635±448 (40)	3 50 ± 2 12 (2)	
No	$654 \pm 396 (157)$	$331 \pm 191$ (48)	
p-value	798	893	
P			
Pets go in and out of house			
Yes	6 97 ± 4 79 (87)	3 85 ± 2 25 (27)	
No	6 26 ± 3 26 (137)	3 20 ± 1 78 (41)	
p-value	193	185	
In the last 90 days any member of household			
Worked on auto bodies or auto maintenance? (includes			
mechanics)			
Yes	7 37 ± 3 78 (87)	3 80 ± 2 40 (15)	
No	6 01 ± 3 93 (138)	3 29 ± 1 88 (52)	
p-valu <del>c</del>	001	387	
Made pottery?			
Yes	$9\ 00\pm 1\ 41$ (2)		
No	6 50 ± 3 93 (224)	3 43 ± 1 98 (69)	
p-value	370		
Ridden a dirt bike mountain bike or ATV in the local			
area? Yes	6 47 + 2 16 (24)	2 42 4 2 21 (14)	
	$647 \pm 316$ (34)	$343 \pm 231$ (14)	
No	6 53 ± 4 05 (192) 940	3 44 ± ± 1 91 (55) 990	
p-value	540	330	
Welding? Yes	6 94 ± 3 54 (31)	367±163 (6)	
No	$647\pm398(194)$	$336 \pm 200(61)$	
p-value	548	718	
Cleaned or repaired firearms?			
Yes	7 56 ± 5 45 (45)	400±274 (9)	
No	6 25 ± 3 41 (178)	3 36 ± 1 87 (59)	
p-value	131	3710	
Casting or smelting lead?			
Yes	$10\ 67\pm 3\ 72$ (6)	$200 \pm (1)$	
No	6 38 ± 3 87 (219)	3 36 ± 1 83 (67)	
p-value	008		
Other lead related job of activity?			
Yes	8 33 ± 7 51 (3)	4 83 ± 2 99 (6)	
No	6 46 ± 3 90 (218)	3 30 ± 1 84 (63)	
p-value	708	070	

	STUDY	CONTROL	
FACTOR	Mean ± SD (n)	Mean ± SD (n)	
People living in house worked in mining or a mining related			
ob in last 90 days?			
Yes	9 71 ± 4 99 (7)	$520 \pm 311$ (5)	
No	6 42 ± 3 85 (219)	3 30 ± 1 83 (64)	
p-value	028	038	
When food or drinks are prepared served stored how often re they placed in clay pottery or ceramic dishes which were omemade or made in another country?			
Never	6 61 ± 3 98 (215)	3 42 ± 2 07 (60)	
Rarely	4 57 ± 1 90 (7)	3 57 ± 1 51 (7)	
Sometimes		3 50 ± 71 (2)	
Frequently	4 50 ± 71 (2)		
p value	307	981	
When food or drinks are prepared served stored how often ire they placed in copper or pewter dishes or containers?			
Never	6 51 ± 3 93 (221)	3 34 ± 1 93 (67)	
Rarely	6 00 ± 3 56 (4)	6 00 ± (1)	
Sometimes	11 00 ± (1)		
p-value	504	178	
When food or drinks are stored or put away how often are ney stored in the original can after being opened? Never	6 66 ± 4 07 (197)	3 48 ± 2 05 (58)	
Rarely	$528 \pm 247$ (18)	3 57 ± 98 (7)	
Sometimes	$550 \pm 2.98$ (8)	$350 \pm 354$ (2)	
Frequently	$733 \pm 208$ (3)	$150 \pm 71$ (2)	
p value	438	587	
Iow often do you vacuum?			
Never	8 25 ± 4 13 (8)	$1000\pm$ (1)	
Rarely	5 80 ± 1 30 (5)	$200 \pm (1)$	
Sometimes	6 90 ± 4 75 (30)	2 40 ± 1 08 (10)	
Frequently	6 02 ± 3 95 (127)	$357 \pm 201(47)$	
Always	7 25 ± 3 35 (56)	3 30 ± 1.25 (10)	
p-value	200	004	
Iow often do you dry sweep?			
Never	6 28 ± 2 93 (18)	371±293 (7)	
Rarely	$582 \pm 252(11)$	3 80 ± 84 (5)	
-	5 44 ± 2 79 (25)	$338 \pm 226$ (8)	
Sometimes		(-/	
	5 71 ± 3 01 (86)	3 59 ± 2 06 (32)	
Sometimes Frequently Always	5 71 ± 3 01 (86) 7 78 ± 4 93 (86)	3 59 ± 2 06 (32) 2 94 ± 1 56 (17)	

# Table 6 —(cont) Mean Blood Lead Values Compared to Questionnaire Factors by GroupBig River Mine Tailings Superfund Site Lead Exposure Study, Missouri 1997

	STUDY	CONTROL
FACTOR	Mean <u>+</u> SD (n)	<u>Mean + SD (n)</u>
How often do you mop?		
Never	6 00 ± 2 86 (39)	3 40 ± 1 99 (15)
Rarely	$570 \pm 177 (10)$	$314 \pm 146$ (7)
Sometimes	6 38 ± 3 81 (65)	$3.08 \pm 1.69(24)$
Frequently	6 68 ± 4 62 (85)	$4\ 00 \pm 2\ 43\ (19)$
Always	7 37 ± 3 71 (27)	$350 \pm 238$ (4)
p value	627	663
How often do you wet wipe?		
Never	$612 \pm 264$ (8)	
Rarely	6 23 ± 3 00 (13)	$275 \pm 50$ (4)
Sometimes	6 68 ± 3 28 (53)	4 76 ± 2 59 (17)
Frequently	6 04 ± 4 17 (106)	2 98 ± 1 55 (42)
Always	7 59 ± 4 30 (46)	3 33 ± 1 97 (6)
p-value	263	012
How often do you dry dust?		
Never	6 56 ± 3 09 (39)	3 57 ± 1 55 (14)
Rarely	6 44 ± 5 13 (41)	3 87 ± 2 56 (15)
Sometimes	6 97 ± 4 56 (63)	3 47 ± 1 96 (30)
Frequently	6 23 ± 3 00 (66)	3 00 ± 1 53 (7)
Always	6 31 ± 2 91 (16)	$133 \pm 58$ (3)
p-value	871	349
How often do you use other house cleaning methods?		
Never	6 73 ± 4 31 (144)	3 58 ± 2 03 (31)
Rarely	7 06 ± 3 54 (17)	3 50 ± 1 72 (10)
Sometimes	6 15 ± 3 25 (33)	3 45 ± 2 62 (11)
Frequently	5 67 ± 2 76 (24)	3 25 ± 1 65 (16)
Always	$6\ 50\pm 2\ 59$ (6)	
p-value	713	962
Does anyone smoke tobacco products in your home?		
Yes	7 07 ± 4 14 (133)	3 82 ± 2 39 (34)
No	5 73 ± 3 46 (93)	3 06 ± 35 (35)
p-value	011	112
Does child breast feed? (Only for participants ≤2yrs old)		
Yes	5 33 ± 1 15 (3)	
No	6 69 ± 3 39 (65)	3 50 ± 2 22 (16)
p-value	494	

## Table 6 —(cont) Mean Blood Lead Values Compared to Questionnaire Factors by Group Big River Mine Tailings Superfund Site Lead Exposure Study, Missouri 1997

----

	STUDY	CONTROL	
FACTOR	<u>Mean ± SD (n)</u>	<u>Mean + SD (n)</u>	
Does child currently take a bottle?			
Yes	6 66 ± 3 91 (29)	$362 \pm 292$ (8)	
No	6 46 ± 2 91 (39)	3 58 ± 1 88 (12)	
p-value	816	969	
How often does the child play outdoors?			
Never	$200 \pm (1)$	$2.00 \pm$ (3)	
Rarely	6 71 ± 4 23 (21)	4 00 ± 2 93 (8)	
Sometimes	6 35 ± 4 04 (62)	3 23 ± 2 65 (13)	
Frequently	6 13 ± 2 93 (112)	3 23 ± 1 43 (30)	
Always	<b>8</b> 33 ± 5 92 (30)	4 00 ± 1 85 (15)	
p-value	058	429	
Where does child usually play when outside this hou			
Back yard	6 09 ± 3 15 (115)	2 96 ± 1 57 (25)	
Front yard	6 93 ± 3 44 (60)	4 00 ± 1 91 (24)	
Side yard	$711 \pm 602$ (27)	4 44 ± 2 79 (9)	
Street and side walk	$375 \pm 1.26$ (4)	$300 \pm 141$ (2)	
Other	7 79 ± 5 57 (19)	238±192 (8)	
p-value	153	085	
When the child is not playing around the house who does he/she usually play?	ere		
Neighbor s yard	7 00 ± 4 61 (55)	2 95 ± 1 32 (20)	
Playground	7 92 ± 3 68 (12)	433±115 (3)	
On or near sidewalks or streets	$600 \pm 216$ (4)	500±424 (2)	
Park	6 45 ± 7 17 (11)	5 20 ± 3 49 (5)	
Only plays around the home	6 39 ± 3 69 (70)	3 40 ± 2 41 (5)	
Other	6 18 ± 2 98 (71)	3 29 ± 1 85 (34)	
p-value	705	205	
How often does the child play on a grassy area?			
Never	636±388 (11)	1 75 ± 50 (4)	
Rarely	5 96 ± 2 84 (24)	167±58 (3)	
Sometimes	593±365 (45)	3 54 ± 2 37 (13)	
Frequently	6 64 ± 3 61 (102)	3 23 ± 1 57 (35)	
Always	7 30 ± 5 24 (43)	4 71 ± 2 30 (14)	
p-value	509	017	
How often does the child play on concrete/asphalt?			
Never	7 11 ± 4 00 (28)	$240 \pm 114$ (5)	
Rarely	6 74 ± 3 56 (69)	4 50 ± 2 85 (18)	
Sometimes	5 65 ± 3 17 (66)	3 12 ± 1 13 (25)	
Frequently	6 17 ± 3 04 (54)	3 18 ± 1 74 (17)	
Always	$12 14 \pm 10 14$ (7)	367±208 (3)	
p-value	001 72	105	

· · _-

-----

-----

 Table 6 ----(cont) Mean Blood Lead Values Compared to Questionnaire Factors by Group

 Big River Mine Tailings Superfund Site Lead Exposure Study, Missouri 1997

	STUDY	CONTROL
FACTOR	<u>Mean + SD (n)</u>	Mean ± SD (n)
How often does the child play in dirt?		
Never	5 52 ± 3 03 (21)	3 29 ± 3 25 (7)
Rarely	5 88 ± 3 69 (57)	$264 \pm 227(14)$
Sometimes	6 23 ± 3 38 (64)	⇒ 20 ± 1 20 (20)
Frequently	6 73 ± 3 15 (62)	4 05 ± 1 85 (20)
Always	9 70 ± 6 89 (20)	4 00 ± 1 85 (8)
p-value	003	277
Is there any park or common play areas where the child		
plays?		
Yes	6 48 ± 3 81 (114)	3 74 ± 2 02 (39)
No	6 53 ± 4 05 (109)	3 03 ± 1 88 (30)
p-value	925	141
How often does child take food snacks or candy outside to eat?		
Never	6 50 ± 3 20 (48)	3 29 ± 2 46 (14)
Rarely	5 97 ± 3 62 (87)	3 48 ± 1 93 (23)
Sometimes	6 44 ± 3 08 (57)	3 37 ± 1 89 (19)
Frequently	7 64 ± 3 44 (22)	3 00 ± 1 66 (9)
Always	9 55 ± 9 46 (11)	500±163 (4)
p-value	037	562
How often does the child take a bottle or pacifier outside with them?		
Never	6 51 ± 3 68 (196)	3 17 ± 1 61 (60)
Rarely	5 10 ± 2 08 (10)	7 50 ± 3 00 (4)
Sometimes	7 36 ± 4 82 (11)	2 00 ± (1)
Frequently	13 33 ± 13 05 (3)	267±58 (3)
Always	4 33 ± 1 03 (6)	
p-value	012	< 001
How often does the child wash hands or face before eating?		
Never	$10\ 00\ \pm$ (1)	$1 00 \pm (1)$
Rarely	3 90 ± 1.29 (10)	375±206 (4)
Sometimes	6 54 ± 3 26 (35)	3 79 ± 1 81 (19)
Frequently	6 52 ± 5 38 (62)	2 78 ± 1 11 (18)
Always	6 73 ± 3 25 (117)	3 73 ± 2 47 (26)
p-value	235	320

#### Table 6 —(cont) Mean Blood Lead Values Compared to Questionnaire Factors by Group Big River Mine Tailings Superfund Site Lead Exposure Study, Missouri 1997

	STUDY	CONTROL	
FACTOR	Mean ± SD (n)	Mean <u>+</u> SD (n)	
How often does the child wash hands or face before going			
to sleep?	2 40 1 67 (5)		
Never	$340 \pm 167$ (5)		
Rarely	$550 \pm 314$ (10)		
Sometimes	$659 \pm 6.27$ (29)	3 09 ± 1 92 (11)	
Frequently	5 96 ± 2 86 (54)	3 41 ± 1 54 (17)	
Always	6 94 ± 4 02 (128)	3 54 ± 2 18 (41)	
p-value	171	806	
How often does the child wash hands or face after playing with durt or sand?			
Never	11 17 ± 11 70 (6)	$100 \pm (1)$	
Rarely	6 00 ± 1 79 (6)		
Sometimes	6 68 ± 2 761 (22)	3 27 ± 2 45 (11)	
Frequently	6 29 ± 4 25 (45)	3 71 ± 2 40 (14)	
Always	6 43 ± 3 36 (140)	3 44 ± 1 72 (43)	
p-value	065	611	
How often has the child used a pacifier in the last 6 months?			
Never	6 60 ± 4 03 (201)	3.26 ± 1 82 (61)	
Rarely	$440 \pm 167$ (5)	$200 \pm$ (1)	
Sometimes	674±189 (4)		
Frequently	$500 \pm 235$ (5)	$500 \pm 141$ (2)	
Always	$555 \pm 362$ (11)	$475 \pm 359(4)$	
p value	681	255	
How often does the child suck their thumb or fingers?			
Never	6 53 ± 3 86 (162)	3 43 ± 2 08 (47)	
Rarely	$710 \pm 284$ (21)	$250 \pm 58$ (4)	
Sometimes	5 30 ± 2 72 (23)	3 80 ± 1 62 (10)	
Frequently	727±717 (11)	3 57 ± 2 51 (7)	
Always	7 11 ± 4 57 (9)	3 00 ± (1)	
p-value	516	867	
How often does the child chew on their fingernails?			
Never	6 90 ± 4 46 (131)	3 61 ± 2 06 (44)	
Rarely	6 22 ± 3 36 (37)	3 20 ± 1 87 (10)	
Sometimes	6 00 ± 2 64 (28)	3 13 ± 1 55 (8)	
Frequently	605±312 (21)	$150 \pm 071$ (2)	
Always	$489 \pm 162$ (9)	$360 \pm 251$ (5)	
p-value	435	632	
Does the child have a favorite blanket or toy?			
Yes	5 98 ± 3 09 (100)	3 44 ± 1 81 (34)	
No	6 94 ± 4 44 (126)	3 43 ± 2 16 (35)	
p-value	066	979	
•	74		

....

# Table 6 —(cont) Mean Blood Lead Values Compared to Questionnaire Factors by GroupBig River Mine Tailings Superfund Site Lead Exposure Study, Missouri 1997

	STUDY	CONTROL	
FACTOR	<u>Mean + SD (n)</u>	<u>Mean + SD (n)</u>	
For these answering the basis often does the shild a			
For those answering yes how often does the child c around during the day?	any this		
Never	5 43 ± 2 33 (23)	$275 \pm 126$ (4)	
Rarely	5 42 ± 2 97 (19)	$300 \pm 158$ (5)	
Sometimes	6 09 ± 3 75 (22)	$390 \pm 233(10)$	
Frequently	5 88 ± 2 70 (25)	3 54 ± 1 81 (13)	
Always	7 67 ± 3 80 (12)	2 33 ± 1 16 (3)	
p-value	294	657	
For those answering yes how often does the child p blanket or toy in their mouth?	out this		
Never	5 90 ± 3 16 (>2)	3 20 ± 1 48 (10)	
Rarely	4 94 ± 2 56 (17)	3 40 ± 1 84 (10)	
Sometimes	7 69 ± 3 59 (16)	2 67 ± 1 53 (3)	
Frequently	6 14 ± 2 85 (7)	$350 \pm 267$ (8)	
Always	5 13 ± 1 64 (8)	$4\ 00 \pm 1\ 41$ (4)	
p-value	111	915	
How often does the child put things other than food their mouth?	i into		
Never	5 97 ± 2 91 (34)	3 09 ± 1 64 (11)	
Rarely	6 14 ± 3 09 (64)	3 17 ± 1 42 (18)	
Sometimes	6 83 ± 4 59 (63)	3 71 ± 2 31 (17)	
Frequently	7 91 ± 4 87 (35)	3 46 ± 2 76 (13)	
Always	5 68 ± 3 60 (28)	3 43 ± 1 27 (7)	
p-value	119	924	
How often does the child put their mouth on furnit the window sill?	ure of on		
Never	6 59 ± 4 13 (100)	3 08 ± 1 98 (25)	
Rarely	$622 \pm 297$ (49)	$4\ 00 \pm 2\ 32\ (17)$	
Sometimes	$660 \pm 396$ (48)	$300 \pm 141(17)$	
Frequently	$705 \pm 536$ (20)	$400 \pm 233$ (8)	
Always	$6\ 00\pm 2\ 51$ (8)	$450 \pm 071$ (2)	
p-value	935	383	
-	- 6 10		
How often does the child swallow things other than Never	$6 29 \pm 4 00 (170)$	3 29 ± 2 11 (45)	
Rarely	$684 \pm 320$ (57)	$3 29 \pm 2 11 (43)$ $3 50 \pm 1 72 (18)$	
Sometimes	$800 \pm 485$ (14)	$420 \pm 192$ (5)	
Frequently	$775 \pm 340$ (4)	$500 \pm (1)$	
Always	$7.00 \pm (1)$	5002 (1)	
* ** ** ** ** **	,		

# Table 6 —(cont) Mean Blood Lead Values Compared to Questionnaire Factors by GroupBig River Mine Tailings Superfund Site Lead Exposure Study, Missouri 1997

	STUDY	CONTROL
FACTOR	Mean + SD (n)	Mean + SD (n)
How often does the child put paint chips in their mouth?		
Never	6 47 ± 3 97 (216)	3 45 ± 1 99 (65)
Rarely	6 25 ± 3 30 (4)	4 50 ± 2 12 (2)
Sometimes	$750 \pm 191$ (4)	
p-value	868	464
Does your household have a vegetable garden?		
Yes	6 64 ± 4 72 (66)	3 08 ± 1 83 (12)
No	6 44 ± 3 55 (159)	3 51 ± 2 02 (57)
p-value	733	503
For those with a vegetable garden how often does the ch eat vegetables grown in your garden?	uld	
Never	4 79 ± 2 91 (14)	3 50 ± 2 17 (6)
Rarely	5 07 ± 1 77 (14)	$300 \pm (1)$
Sometimes	6 80 ± 3 47 (20)	4 00 ± 2 83 (2)
Frequently	8 41 ± 7 66 (17)	$3\ 00\ \pm$ (2)
Always	7 25 ± 3 50 (4)	2 33 ± 1 53 (3)
p-value	184	896
How often does the child eat vegetables grown elsewhere the local area?	e in	
Never	6 07 ± 3 11 (99)	4 00 ± 2 94 (13)
Rarely	6 35 ± 3 17 (40)	2 65 ± 1 04 (20)
Sometimes	6 48 ± 4 14 (54)	3 41 ± 1 99 (22)
Frequently	7 40 ± 3 87 (25)	4 00 ± 1 76 (10)
Always	10 80 ± 13 03 (5)	4 25 ± 1 71 (4)
p-value	072	224
Has the child ever been treated with traditional folk, or herbal medications?		
Yes	6 73 ± 3 75 (15)	$320 \pm 205$ (5)
No	6 43 ± 3 87 (209)	3 46 ± 2 01 (63)
p-value	766	781

Table 6 —(cont) Mean Blood Lead Values Compared to Questionnaire Factors by GroupBig River Mine Tailings Superfund Site Lead Exposure Study, Missouri 1997

. .____.

. .___

_____

Table 6 --- (cont) Mean Blood Lead Values Compared to Questionnaire Factors by Group Big River Mine Tailings Superfund Site Lead Exposure Study, Missouri 1997

	STUDY	CONTROL	
FACTOR	<u>Mean ± SD (n)</u>	Mean <u>+</u> SD (n)	
Amount of money spent on food per week in h	ousehold		
≤\$25	$525 \pm 299$ (4)	$100 \pm (1)$	
\$25 \$50	6 18 ± 2 87 (39)	3 00 ± 1 22 (17)	
\$50 \$75	5 92 ± 3 53 (85)	3 65 ± 2 21 (26)	
\$75 \$100	7 39 ± 4 61 (67)	4 00 ± 2 29 (17)	
> \$100	7 07 ± 4 31 (30)	$300 \pm 153$ (7)	
p-value	157	209	

1 P values for factors with two categories are from t test factors with more than two categories are from Analysis of Variance All are two tailed significance2 Results do not include responses of don t know' or refused There were 98 such responses

in the study group and 31 such responses in the control group

Vanable ¹	Correlation Coefficient	p-value*	Number of Childre
Questionnaire			
Age	011	866	2
How often' do you dry sweep	157	018	7
How off n do ou mop	099	18	
How often do ou wet wipe	068	10 د	
How oft n do you dry dust	י0	716	
How often child plays outdoors	094	158	
How often child plays on grassy area	101	I	
Iow often child plays on concrete asphalt	011	868	
Io v often child plays in dirt	178	056	2
Iow often child takes food outside	15	0	
Iow often child takes pacifier outside	018	788	<b>،</b>
Io often child asnes hands betor -ating	031	66	
Iow often child vashes before sleeping	1.5	047	
Io v often child - ashes after pla me in a rt	IIo	OSS	
Iow often child us d pacifie last six month	0 5	60	
low often child's cks thumb	00	.968	
low often child cheves fingemails	1	066	
low often child cames ta onte to around	16	078	10
low often child puts blanket toy in mouth	0	46	10
low often child puts other trungs in mouth	059	_8	2_
o often child puts mouth on furnitu or and il	006	5 <u>-</u> 4 و.	
ow often child swallow things other than tood	111	098	
lother s highest le 1 of education	191	004	
Ioney spent on tood per eek	1	045	
ross household income before taxes		000	
-	<u> </u>	000	
Environmental Samples			
ad concentration in tap ater	069	00د	
ed concentration in vacuum bag	0 4	6	19
ead concentration in and soil	1	046	
ad concentration in play area soil	10	I	16
ad concentrat on found in the drip line soil	_17	00	
ad loading in floor cassette vacuum	7 د_	000	(
ad conc ntration n floo assett m	194	004	
ad loading in undo sill dust upe	19د_	000	1:
pserved visible soiling of dust wipe sampling material	181	008	18
& for all indoor surfaces	57 د.	000	ť
₹F >0 for indoor surfaces	_17	00	185
UF 20 7 for indoor surfaces	074	410	16
IF for indoor friction surf es onl	د	000	6
UF for indoor surfaces by room	، ډو.	000	6
IF for indoor surfaces by room and frict on	د4ر	000	6
E for indoor for non surfaces on i veight d b dit	6	01	98
E for indoor surfaces weighted b d/t b room	_4>	016	98
F for indoor surfaces weighted by d t by room and inction	66 د	000	98
F for all outdoor surfaces	2.57	000	6
F >0 for outdoor surfaces	063	68د	19
F 20 7 for outdoor surfaces	016	850	144
1 Bolded variables have a significant correlation at the 0 10 level			
2 Two-tailed significance level			
3 All How often questions utilized Likert scale of 1 (never) through the state of 1 (never	sch 5 (abvarz)		

Table 7 Correlation Coefficients and Level of Significance for Questionnaire and Environmental Data with
Blood Lead Levels in Study Group Big River Mine Tailings Superfund Site Lead Fransure Study MO 1997

Ş

Vanable ⁱ	Correlation Coefficient	p- aluc	Number of Childre
Questionnaire			
Age	091	460	69
How often do you dry sy p	106	86 د	69
Ho oft n do ou mop	088	474	69
How often do rou v twip	187	14	69
How often do ou dry dust	131	16	69
How oft n h ld pl ys outdoors	10	400	69
How often child plays on grassy area	45 د.	004	69
How often child pla s on conc teraspnalt	083	4 4	68
How often child pla 's n d rt	_19	0 0	69
How often child takes food outside	077	28د.	69
Ho oftn hild ak sp 1 o isd	051	21	63
Ho often chila asnes n nas a tor cating	04	7 S	63
Ho often child ash so o le-p g	0 8	5 4	69
Ho often child ashes afte pla ane in dirt	051	- 10	69
Ho often child used p cut er last s mo ths	_19	0 4	68
Ho often child sucks thumo	0 1	SO	69
How often child ch v s fingernails	095	4 6	69
H w ft hld carrys f t to aro d	0 9	8 6	زن د
Ho often hild p ts bl n to in mo th	10-4	دد.	د د
Ho often h ld p ts oth r th ngs n mo th	0 5	ود	66
Ho often child puts mouth on furn ture or undo s ll	110	، 0 د	69
Ho often hild svallo things oth r thin tood	144	ۍ بر 8دــ	69
Mother s highest level of educ tion	_\$4	013	69
Money spent on lood per end	201	_10	09
Gross hous hold income ce tax s		0	9
		Ū	,
Environmental Samples	_	_	
Lead co c ntrat on the at	1	_ \$	69
Lead con entration n v um b g	119	4 د.	58
Lead concentration in ard soil	_ 9	048	69
Lead o c trato n pl ea sol	15	_40	\$د
Lead concentration found in the drip line soil	11	_\$4	69
Lead load ng in floor casser'e a u m	1 1	00د	64
Lead concentration in floor cassett acuum	1-4	_9	64
Leadlodngm ndosldust p	104	41	65
Observed visible so ling of dust of sampling miterial	14	06	69
XRF for all indoor surfaces	11	60د	69
XRF >0 for indoor s rfac s	0-+	754	دد
$\mathbf{XRF} \ge 0.7$ for indoor surfaces	19	۵ د	
XRF for indoor tri t on surfa es onl	1	16	69
CRF for indoor surfaces b room	116	لمبان	69
KRF for indoor surfaces by room and frict on	1 4	1 4	69
XRF for indoor friction surfaces only eighted b d t	_ 9	_6	18
KRF for indoors rfeseight dbd.tbroom	_0	4 0	13
CRF for indoor surfaces weighted by d/t by room and friction	_00	_ \$	13
CRF for all outdoor surfaces	101	406	69
CRF >0 for outdoor rfaces	64	754	22
CRF >0 7 for o tdoor surfaces	0 0	846	44

 Table 8 — Correlation Coefficients and Level of Significance for Questionnaire and Environmental Data with

 Blood Lead Levels in Control Group Big River Mine Tailings Superfund Site Lead Exposure Study MO 1997

All Ho often qu stions ut lized Likert scale of 1 (n er) through > (al = 3) d/t = damaged area/total all area. Contains only XRF values  $\geq 0.7$ 

4

79

ς

Lerd Concentration in Vacuum Bag	130 068 197	010 888 192	008 912 199
Lerd Lording in	315	026	019
Window Sill	000	705	779
Dust Wipe	218	209	219
Le 1d Concenti 111011 m	048	020	028
17001 Vacuum	469	764	667
Casselle	230	221	232
	Pearson Couldution Coefficient =	Pearson Correlation Coefficient =	Perrson Contchtion Coefficient =
	I wo tailed significance level =	Two-tailed significance level =	Two tailed significance level =
	Number of samples =	Number of samples =	Number of sumples =
	Lend Concentration In Drip Line Soil	Lend Concentration in Play Aren Soil	Lend Goncentr Huon On Y 11 d Soul

Study Missouri U.							
		ר ו ר ו גי יי אי גי יי אי	1 1 C cc.1t f1 1 11 r1 cum C ft	L ILA Hugan Wirt Sill Dr.(Wh	ו ו כ ח חנו לו ל D 1 בנו 15 11	Lend Cnntriti 113 A SH 9	Le 1 Con estrati n in Yi r 1 Soll
Ui İşitel Avi İs XRF fi İnli RIL	l rs n C rrchatt וו C ארלו וו וו וא ו tcd signil כן ד Ni או ד ול	1.)0 007 201	070 285 211	4115 000 221	388 000 231	041 544 222	111 091 233
A F CAUXRT O II R N F		2C) (00) 201	100 (.80 2.11	715 000 122	34) 000 231	007 920 222	014 827 233
1 Bolded concluti	1 Bolded conclutions are significant at the 0.05 c	05 oi less level					

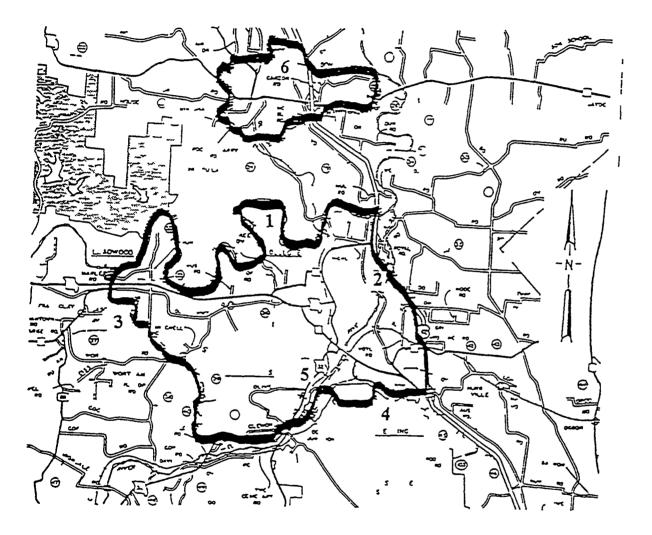
1 դիլ, 10 ---- ( տուվ սիսու Աշկայու ՆԱԼ - Սամ ավ Տով է ում Mc սչառց ալիշ Տնակչ Area Big River Mine 1 տիաչ։ Տարշոնան Հում Exposure

i is Licchefed from Modeled	
e and Median of I ercent Contribution of Level from Selected Sources ¹ in the Study Arcy	ation Scheme Big River Mine I ulings Superfund Site I end I xposure Study Missouri 1997
<b>Fable 11</b>	CI ISSIFIC

	Wistel ile St	e St urce	l mt	1 mt S tree	2	Scil		Certmon
	WV	IVVI	ΡV	ΡVΙ	۶۱	172	СV	CVI
Wrste I iles	47 83+-35 65+ (7 1 1 )	22 +86 2 (69 41 )	U 2 =46 (3 4 5)	02 ~6 % (47 )	ŧ	1	5 %1 → 6 € ( £31)	136472) (268)
I und Chips	1 2 4 0 ( 55 0)	( f0)	J 7° 971 4 ( 82 25 )	( 85 65 ) ( 85 65 )		1	0 8 887 ( 1585)	5 83- 11 ( 58 CI)
Soils	583	515	5	£	1		4156	4956
sjrfi mutary	5 72- 18 ( کلهک)	58 •60 t (21 05 )	1 6 KU 3 (16 05 )	2 +×K8 5 ( 23   5 )	0 1 •<51 (16 84	2.5 +18.) (81.)	27 - 176 ( 117 )	د درس ۱۹ ( ۱۹۵)
	_							

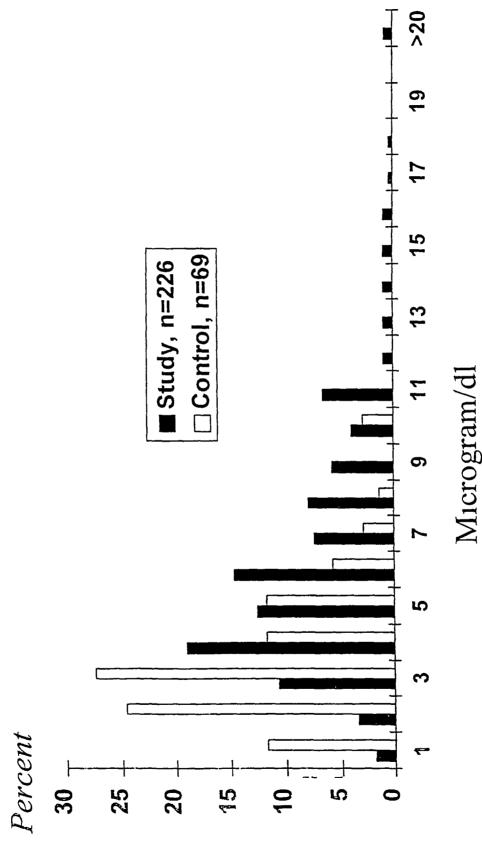
as WV (Waste Volume) 1 V (Punt Volume) SV (Soil Volume) and CV (Common Volume) The second level addition illy weights by the Lend sources are waste pile paint soil or common (cannot differentiate between the possible sources. The first level of the classification scheme developed weights the percent attributed to a source catebory based on the volume sum of the particles an ityzed. These are identified ir retion of lead determined in each priticle as shown by WVL (Wrste Volume Lend) PVI (Print Volume I end) SVL (Soil Volume Lead) and CVL (Common Volume Lead)

Sold determination was only used for characterization of the study and control areas imples


Values in pricinflesis represent medirin percent it.cs 2 n 5

The prediction model developed for the classification scheme uses a least squares upportionment method. Due to the mature of a model incartive entries are bound to occur but they are all less than 10/ 1 his subjects a reasonable prediction of potential sources

-----




Big River Mine Tailings Superfund Site Lead Exposure Study, Missouri 1997



1 B g River Tailings Pil 2 National Tailings Pla 3 Leadwood Tailing Pile 4 F d ral Tailings File Lis Ia Lib r e 6 Bo e Terr Tailings Pile





. . . .....

95-50 30'7-__ BIG | [ ER (MD) [ EAD _ HIDY

DATE

### BIG RIVER MINE TAILINGS SUPERFUND SITE LEAD STUDY

### QUESTIONNAIRE

DATE Month Day Year _____ INTERVIEWER _____

NAME OF RESPONDENT ______ CHILD S NAME ______

#### SECTION I HOUSEHOLD CHARACTERISTICS

The following questions must be answered by the parent or legal guardian of the child Circle applicable answer

1 Who is answering these questions?

First I would like to ask you some questions about the home child s name lives in Where child has lived most of the time in the last 90 days

2 What year was this house built? Oldest part

06=1960 1969
07=1970 1979
08=1980 1989
09=1990 present
88=refused
99=don t know

.....

1

- 3 Is the home *child s name* lives in rented or owned?
  - 1=rented 2=owned 3=other______ 8=refused 9=don t know
- 4 What type of water pipes does your home contain?

1=lead	6=mixed, specify
2=plastic	7=other specify
3=galvanized steel	8=refused
4=copper	9=don t know
5=iron	

> What is the source of water to your house? Circle one per column

	Drinking	Cooking
Public water	1	1
Well	2	2
Other	3	3
Refused	8	8
Don t know	9	9

6 What type of water does child s name normally use for

	Drinking	Cooking
Public water	1	1
Well	2	2
Bottled	3	3
Refused	8	8
Don t know	9	9

_

- 7 is the later in your kitchen falcet filtered or treated?
  - 1=Yes 2=No 8=Refused 9=Don t Know

8 Has any part of your house been repainted sanded or stripped chemically or by heat within the last year? If NO go to question 9

8a If YES approximately when was this most recently done?

Month Year (Enter 99 if respondent doesn t know months) 8=Refused

8b And in what part of the house was the work done? (Circle all that apply)

> 1=bedroom? 2=living room? 3=bathroom? 4=kitchen 5=outside walls? 6=porch? 7=deck? 8=refused 9=other______

- 9 How often do you use air conditioning the summer? If NEVER go to question 10
  - never1rarely2sometimes3frequently4always5refused8don t know9
- ^Qa And where is your air conditioning used? (circle all that apply)

central?	1
lıvıng/famılıy room	2
child s bedroom	3
other bedroom	4
kitchen	5
refused	8
other	

- 10 Has anyone ever used any materials from mines or smelters such as chat or slag or lead industry material in or around your house or yard?
  - 1=Yes 2=No 8=Refused 9=Don t know
- 11 Do you have any pets that go in and out of the house?

1=Yes 2=No 8=Refused 9=Don t know

SECTION II ENVIRONMENTAL SOURCES

Next I have some questions about a number of activities you or other household members may do or mny have done in the last three months. These include things you may have done for work hobbies or chores at home or at another place.

		Don t know	6	6	6	6	6	6
	ver iome?	Refused	8	œ	œ	80	80	8
	Did he/she shower before coming home?	No	2	7	7	7	5	7
	Did he/ before	Yes	-	-		_	-	-
		Don t know	6	6	6	6	6	6
	Were those clothes worn home?	Rcfused	œ	œ	œ	œ	æ	œ
IIFR	/ere those clat worn home?	No	2	2	3	3	7	2
176 IF WURK/OHIFR	3	Yes	-	-	~		-	-
чс МС		Don t know	6	6	6	6	6	6
	wmc ere?	Refused	80	œ	æ	<b>e</b> 0	<b>o</b> g	æ
	Was this done at home work or elsewhere?	BOTH	S	Ś	Ś	S	S.	Ś
YES	Wns th work	Work/ OIIII R	4	4	4	4	4	4
12a IF YES		HOMF	m	£		ñ	<b>~</b>	ſ.
		Don 1 know	6	6	6	6	6	6
f your		Refused	×	80	80	œ	8	80
mbers o		No	7	3	7	7	7	3
any mc	ly)	Ycs	-	-	1	-	-	<b></b>
12 In the last 90 days have any members of your	your houschold (Cırcle all that apply)		Painted pictures with artists paints? (not children s paints)	b Painted stained or refinished furmiture?	Painted the inside or outside of a home or building?	d Work with staincd glass?	c Cast lead into fishing sinkers bullets or anything else?	f Worked with soldering sheets of metal?
-			EI A	Ą	U	þ	U	-

~

	¢,	Don t know	6	6	6	6	6	6	6	6	6
	Dtd he/she shower before coming home?	Rcfused	8	8	æ	<b>a</b> a	80	æ	æ	æ	80
	Did he/sl before co	No	2	7	7	7	2	7	7	7	7
ILR		Ycs	~	-		-		-	-	-	-
12b IF WORK/OIHFR		Don t k <i>no</i> w	6	6	6	6	6	6	6	6	6
12b IF	olhes e7	Rcfused	×	œ	æ	×	80	8	œ	8	8
	Weru those clothes worn home ⁿ	No	3	3	5	c	2	3	7	5	5
	Weru	Yes	-	-	-	-	-	-			-
		Don I know	~	6	6	6	6	6	6	6	6
		Rcfused	8	80	8	æ	8	æ	8	8	8
	e at home Isewhere ^o	BOTH	s	5	S	Ś	Ś	s	s	Ś	Ś
	Was this done at home work or elsewhere?	Work/ O1111 R	۲	4	۲	4	4	4	4	4	4
121 IL YFS	и	HOMF	3	£	£	£	£	£	۳.	3	ς,
		Don t know	6	6	6	6	6	6	6	6	6
our		Refused	æ	80	×	ŝ	8	×	8	8	80
bers of y		No	2	2	2	7	3	7	3	7	3
iny mem	-	Yes	-	-	-	-	-	-	-	-	-
12 In the last 90 days have any members of your your household	(Circle all that apply)		g Soldering pipes or sheets of metal?	h Repaired auto radiators?	<ul> <li>Worked on auto bodies</li> <li>or auto maintenance³</li> <li>(includes mechanics)</li> </ul>	<pre>J Worked at a sewage treatment plant?</pre>	k Made pottery ⁹	1 Ridden a dirt bike mountain bike or ATV in the local area?	m Welding ⁹	n Cleaned or reparred firearms/	<ul> <li>Visited indoor firearm target ranges/</li> </ul>
					1_7				-		

	Ċ.	d Don t know	6	6	6	6	6	6	6	6	6	6	6
	Did he/she shower bcfore coming home?	Refused	×	œ	æ	œ	*	80	80	æ	8	æ	<b>60</b>
	ł he/sho ore con	No	7	3	2	7	3	3	2	7	7	3	2
a	Did Def	Yes	-	-	-	-	-	-	-			-	-
III O/XNC		Don 1 know	6	6	6	6	6	6	6	6	6	6	6
12b IF WORK/OFHI R		Refused	œ	œ	80	œ	8	ø	80	œ	æ	æ	8
	ose clothes worn home ⁹	Å	2	7	2	3	2	7	7	2	7	3	7
	Were those clothes worn home	Yes	-	-	-	-	-	-	-		-	-	-
		Don t know	6	6	6	6	6	6	6	6	6	6	6
	и <u>С</u> .	Refused	æ	8	æ	×	œ	œ	œ	8	×	8	æ
	is thirs done at home work or elsewhere?	BOTH	Ś	ŝ	s	Ś	S	Ś	ŝ	Ś	Ś	S	Ś
	Was this done at home work or elsewhere?	Work/ OTHER	4	4	4	Ţ	4	4	4	4	4	ŧ	4
12a IF YFS	-	IIOMF	m	E	£	m	m	ŗ.	ĩ	£	m	£	e
		Don t know	6	6	6	6	6	6	6	6	6	6	6
your		Refused	89	80	æ	œ	80	æ	8	80	**	œ	82
oers of		No	7	7	7	7	7	3	3	3	3	7	7
iy meml		Ycs	-	-	-	-	-	-	-			-	-
12 In the last 90 days have any members of your your household	(Circle all that apply)		Wire/cable cutting or splicing?	Casting or smelting lead?	Plastics manufacture /	Baltery manufacture ⁹	Ptpe machining ⁹	Flectroplating + ith lead solutions?	Refining gasoline?	Paint glaze and ink? manufacture?	Rubber manufacture?	Scrap metal recovery?	Other lead related job or activity? SPECIFV
12			d	5	-	18	1	3	>	\$	×	2	2

Now I d like to ask you some questions about the mine related persons living in this home

13 Have any people living in this house worked in mining or a mining related job such as material handling or transportation in the last 90 days?

1=Yes 2=No (If no skip to question 18) 8=Refused 9=Don t know

#### 14 What type of mining or mine related work was done?

	YES	NO	Refused	Don t know
a Underground	1	2	8	9
b Surface	1	2	8	9
c Milling	1	2	8	9
d Transportation/				
handling	1	2	8	9
e Clencal/Admin	1	2	8	9
f Smelter	1	2	8	9
g Other	1	2	8	9
If Other specify			<u> </u>	

15 What type of mine materials were worked with? Circle all that apply

	YES	NO	Refused	Don t know
a Lead	1	2	8	9
b Zinc	1	2	8	9
c Silver	1	2	8	9
d Molybdenum	1	2	8	9
e Coal	1	2	8	9
f Limes one	1	2	8	9
g Clav	1	2	8	9
h Other	1	2	8	9
If Other spec fy				

16 Does this person wear his/her clothes home after working?

never1rarelv2sometimes3frequently4alwavs5refused8don t know9

17 Does this person come home from work without showering?

never1rarelv2sometimes3frequently4always5refused8don t know9

#### SECTION III BEHAVIORAL FACTORS

Now I d like to ask you some questions about your diet and food preparation

18 When food or drinks are prepared served or stored how often are they placed in clay pottery or ceramic dishes which were homemade or made in another country?

never	1
rarely	2
sometimes	3
frequently	4
always	5
refused	8
don t know	9

- 19 When food or drinks are prepared served or stored how often are they placed in copper or pewter dishes or containers?
  - never1rarely2sometimes3frequently4alwavs5refused8don t know9
- 20 When food or drinks are stored or put away how often are they stored in the original can after being opened?
  - never1rarelv2sometimes3frequently4always5refused8don t know9

#### 21 How often do you vacuum?

never1rarely2sometimes3frequently4always5refused8don t know9

## 21a How often do you dry sweep?

never	1
rarely	2
sometimes	3
frequently	4
always	5
refused	8
don t know	9

21b How often do you mop?

never1rarely2sometimes3frequently4always5refused8don t know9

21c How often do vou wet wipe?

never1rarely2sometimes3frequently4always5refused8don t know9

21d How often do you dry dust?

never1rarely2sometimes3frequently4always5refused8don t know9

21e How often do you use other house cleaning methods? Sperify_____

never1rarely2sometimes3frequently4always5refused8don t know9

22 How often do you clean the following rooms?

	times per month	how long each time (in minutes)
kıtchen		
child s bedroom		
living/family room		

23 Do you have a vacuum cleaner? If No go to 24

1=yes 2=no 8=refused 9=don t know

23a How long ago was the vacuum cleaner last used? _____(days)

23b How long ago was the vacuum cleaner bag emptied or last changed?_____(days)

Now I have a few other questions about smoking in your household

24 Does anyone smoke tobacco products in *your* home? Circle responses (1 pack = 20 cigarettes)

l=Yes
2=No (If no skip to question 26)
8=Refused
9=Don t know

25 How many people smoke in this house? Include regular visitors/baby sitters

number of people 8=refused 99=don t know

#### Participant Child Questionnaire

Now I need to ask a number of questions about child s name

26 How long has child s name been living in this home?

Years _____ Months _____

If less than 90 days obtain previous address

27 What is child s name date of birth?

(MO/DA/YR)___/__/

88=refused 99=don t know

28 Is child s name a boy or girl?

1=boy 2=girl

29 Which of the following best describes child s name racial background?

1=Black 2=White 3=Asian or Pacific Islander 4=American Indian/Alaska native 8=Refused 9=Don t know

33 Juse to question 29 is Black or White is child s name Ilipanic?

1=Yes 2=No 8=Refused 9=Don t know

1-14

If child is two years old or younger ask questions 31 32 and 33

31 Does child s name currently breast feed?

```
1=Yes (If yes skip to 33)
2=No
8=Refused
9=Don t know
```

32 If response to above question is NO was child s name breast fed?

 1=Yes
 If YES for how long?

 2=No
 ______

 8=Refused
 ______

 9=Don t know
 ______

33 Does the child s name currently take a bottle?

- l=Yes 2=No 8=Refused 9=Don t know
- 34 How many hours during the day does *child s name* usually spend playing on the floor when he or she is in this house?

(88=refused)

____Hours

(99=don t know)

35 How often does child s name play outdoors?

never	1
rarely	2
sometimes	3
frequently	4
always	5
refused	8
don t know	9

36 If YES then how many hours a day on the average does child s name play outdoors?

Hours (88=refused) (99=don t know)

37 Where does *child s name* usually play when outside this house? *Circle one* 

1=Back yard7=Other (specify)2=Front yard8=Refused3=Side yard9=Don t know4=Street or side walk

38 When *child s name* is not playing around the house? where does *he/she* usually play? *Circle one* 

1=Neighbor s yard 2=Plavground 3=Near or around creek or ditch 4=On or near sidewalks or streets >=Park 6=Onlv plavs around the home 7=Other (Specify) 8=Refused 9=Don t know

· · · · - - ·

- 39 How often does child s name play on a grassv area?
  - never1rarely2sometimes3frequently4always5refused8don t know9
- +0 Ho n often does child s nan e play on concrete/asphalt^o

never	1
rarely	2
sometimes	3
frequently	4
always	5
refused	8
don t know	9

#### 41 How often does child s name play in dirt?

- never1rarely2sometimes3frequently4alwavs5refused8don t know9
- 42 Is there any park or common play areas where the *child s name* plays?

43 Does child s name crawl?=1 or walk?=2 or both?=3

44 How often does child s name take food snacks or candy outside to eat?

never1rarelv2sometimes3frequently4always5refused8don t know9

45 How often does child s name take a bottle or pacifie outside with him/her?

never	1
rarely	2
sometimes	3
frequently	4
always	5
refused	8
don t know	9

--- ---

- 46 How often does child s name wash hands or face before eating?
  - never1rarely2sometimes3frequently4always5refused8don t know9
- 47 How often does child s name wash hands or face before going to sleep?
  - never1rarelv2sometimes3frequently4alwavs5refused8don t know9

48 How often does child s name wash hands or face after playing with dirt or sand?

- never1rarely2sometimes3frequently4alwavs5refused8don t know9
- 49 How many times is child s name bathed or given a shower per week?

per week	(88=refused)	(99=don t know)
----------	--------------	-----------------

- 50 How often has child s name used a pacifier in the last 6 moi ths?
  - never1rarely2sometimes3frequently4always5refused8don t know9

- 51 How often does child s name suck his/her thumb or fingers?
  - never1rarely2sometumes3frequently4always5refused8don t know9
- 52 How often does child s name chew on his/her fingernails?
  - never1rarelv2sometimes3frequently4alwavs5refused8don t know9
- 53 Does child s name have a favorite blanket or toy? If NO go to question 56

-----

- 1=yes 2=no 8=refused 9=don t know
- 54 How often does child s name carry this around during the day?

never	1
rarely	2
sometimes	3
frequently	4
always	5
refused	8
don t krow	9

- 55 How often does child s name put this blanket or toy in his/her mouth?
  - never1rarely2sometimes3frequently4always5refused8don t know9
- 56 How often does child s name put things other than food into his/her mouth?
  - never1rarely2sometimes3frequently4always5refused8don t know9
- 57 How often does child s name put his/her mouth on furniture or on the window sill?
  - never1rarely2sometimes3frequently4always5refused8don t know9
- 58 How often does child s name swallow things other than food?
  - never1rarely2sometimes3frequently4always5refused8don t know9

Specify items swallowed_____

- 59 How often does *child s name* put paint chips in his/her mouth?
  - never1rarely2sometimes3frequently4always5refused8don t know9
- 60 Does your household have a vegetable garden? If NO go to question 62
  - 1=Yes 2=No 8=Refused 9=Don t know
- 61 How often does child s name eat vegetables grown in your garden?
  - never1rarelv2sometimes3frequently4alwavs5refused8don t know9
- 62 How often does *child s name* eat vegetables grown elsewhere in the local area? (*neighbor s garden or local farmer s market*)
  - never1rarely2sometimes3frequently4always5refused8don t know9
- 63 Has cn ld s name ever been treated with Laditional folk or heibal medications?

1=Yes 2=No 8=Refused 9=Don t know If yes what was the medicine called?

### SECTION IV DEMOGRAPHIC AND SOCIOECONOMIC FACTORS

64 How many people live in this house? No _____

64a Could you tell me their names and ages and their relationship to child s name?

NAME	AGE	RELATIONSHIP	(relationship categories) Mother
			Father Siblings
			Grandparents Other
			Refused Don t know

65 What is the highest year of education that was completed by the mother of this child? Circle one

No schooling	1
Elementary School	2
High School(Ged=012)	3
Technical or Trade School	4
Junior/Community College	5
Four Yr College/University	6
Attended Graduate School(higher)	7
Refused to answer	8
Don t know	9

66 What is the number that corresponds to the amount of money spent or food per week in this houshold?

> 01=\$25 or less 02=\$25 to \$50 03=\$00 to \$75 04=\$75 to \$100 05=more than \$100 08=Refused 1 22 09=Don t know

> > _____

67 What number corresponds to the total gross household income before taxes?

01=\$4 999 or less	07=\$30 000 to 34 999
02=\$5 000 to \$9 999	08=\$35 000 to \$39 999
03=\$10 000 to \$14 999	09=\$40 000 to more
04=\$15 000 to \$19 999	88=Refused to answer
05=\$20 000 to \$24 999	99≡Dont know
06=\$25 000 to \$29 999	

End This completes the questionnaire Do you have any questions or comments about it?

_____

```
Thank you very much for your time
```

1 24



Mel Carnahan Gove nor

Coleen Kivlahan M.D. M.S.P.H. Director

P O Box 570 Jefferson City MO 65102-0570 314 751 6400 FAX 314 751-6010

# RELEASE OF MEDICAL INFORMATION TO PARTICIPANT'S PHYSICIAN

# BIG RIVER MINE TAILINGS SUPERFUND SITE AND SURROUNDING AREA BLOOD LEAD & ENVIRONMENTAL EXPOSURE STUDY

I understand that medical information about me has been and/or will be collected during the lead exposure study I request that this information be released to my physician to assist him/her in providing any necessary medical advice and care

<u>Participant</u>	<u>Physician</u>		
Name (Please print)	Name (Plea	se print)	
Signature	Street		
Date	Cıty	State	Zıp



Mel Carnahan Governor

Coleen Kiviahan M D M S P H Di = 0

PO 0x 570 Jefe or City MO up 02-0570 314 751 6400 FAX 3 4 751 6010

# **REQUEST FOR PARTICIPANT REIMBURSEMENT**

# BIG RIVER MINE TAILINGS SUPERFUND SITE AND SURROUNDING AREA BLOOD LEAD & ENVIRONMENTAL EXPOSURE STUDY

I understand that I will be paid \$1000 by mailed check for agreeing to participate in the lead exposure study and that this will be the only monetary reimbursement I will receive My name and mailing address are

Printed Name	Street				
Signature	Cıty	State	Zıp		
Date					

۶ρ



Mel Carnahan Governor Coleen Kivlahan M.D. M.S.P.H Direc or

PC Box 570 Jefferson City MO 65102 0570 314 751 64 0 FAX 314 751 6010

# Participant Consent to Environmental Sampling In and Around Home

I understand that the health department's lead exposure study will include some environmental sampling in and around the homes of the participants The sampling will include drinking water, vacuum bags, household dust, interior and exterior paint, and yard soil The samples will be taken by St Francois County Health Department and they will carry and show identification

If my home is selected for sampling, I will allow reasonable access to properly identified representatives/contractors I understand there will be no cost to me for this sampling and that I will be notified of the results Prior to any sampling I will be contacted by phone for the arrangement of a convenient date and time

Printed name	Signature
Today s Date	Address
Daytime Phone	
Nighttime Phone	Directions to home

----

A



Mel Carnahan Gove nor

Coleen Kivlahan M.D. M.S.P.H. Di ec or

P O Box 570 Jefferson City MO 65102-0570 314 751-6400 FAX 314 751-6010

# RELEASE OF MEDICAL INFORMATION TO DENT COUNTY HEALTH DEPARTMENT

# BIG RIVER MINE TAILINGS SUPERFUND SITE AND SURROUNDING AREA BLOOD LEAD & ENVIRONMENTAL EXPOSURE STUDY

I understand that medical information about me has been and/or will be collected during the lead exposure study I request that this information be released to the Dent County Health Department to assist in providing any necessary follow up

Participant

Name (Please print)

Signature

Date

### MISSOURI DEPARTMENT OF HEALTH

### CONSENT FOR PARTICIPATION IN RESEARCH ACTIVITIES DESLOGE/BIG RIVER MINE TAILINGS SUPERFUND SITE BLOOD LEAD STUDY

This study is intended to determine if children living near the Desloge/Big River Superfund Site have higher blood lead levels than children not living in the area The research study is being conducted by St Louis University School of Public Health in cooperation with the Missouri Department of Health St Francois County Department of Health U S Environmental Protection Agency and Agency for Toxic Substances and Disease Registry

Investigators on this study and their telephone numbers are

Ana Maria Murgueytio MD MPH, Assistant Professor	314 977 8134
Gregory Evans Ph D Associate Professor	314 977 8133
David Sterling Ph D Assistant Professor	314 977 8123

Drs Murgueytio Evans and Sterling have requested my participation in this research study <u>Desloge/Big River Mine Tailings Superfund Site Blood Lead Study</u> I understand that the purpose of this research is to investigate childhood lead poisoning in the communities near the Big River Mine Tailings Superfund Site as well as various environmental behavioral demographic sociocultural and economic factors as they relate to blood lead levels of children in communities near the Superfund site compared to blood lead levels of children living in an area distant to the Superfund site. My participation will involve answering a questionnaire allowing my child to prov de blood for laboratory analysis and to allow the investigators to take samples of the soil and dust in my home for laboratory analysis. My participation will also include allowing the investigators to take samples of soil from my yard around my home. The participation is an one time event and should involve approximately 2 1/2 hours of my time. I understand that the risks for my child if I agree on his/her participation in the study are minor discomfort for the blood drawing and probably bruising in the area of the needle stick. I understand that if discomforts do óccur the investigators will try to minimize them as appropriate

I understand that the information collected will be evaluated by the investigators and in cooperation with the other state and federal agencies. I understand that the results of the research study will be published but that mv and my child s identity will not be revealed and that the records will remain confidential. In order to maintain confidentiality Drs Murguevtio Evans and Sterling will not use my name my child s name or our personal identifying information and that other forms used for this study will be kept along with the results in a locked file cabinet

I understand that the possible benefits of my child s participation in the research is that, if elevated blood lead levels are determined my child will be referred for further follow up and environmental assessment by an appropriate public health agency The results might also be important to the design of future studies to develop appropriate interventions to help my child or other children with elevated blood lead levels

I understand that my child s participation is voluntary and that refusal to participate will involve no penalty to me or my child or loss of any benefits to which my child is otherwise entitled I understand that I may withdraw my child s participation in the research study at any time without penalty or prejudice Specifically I understand that I need not answer any questions

### MISSOURI DEPARTMENT OF HEALTH

asked by the Investigators if I do not wish to and that I can stop my child s participation at any point without needing to give a reason Since participation is voluntary I understand that I or my child will not be charged for any part of this research project or for the services provided and that an alternative to this study is not to participate. To the best of my knowledge my child is not participating in any other medical research study

Any questions that I may have concerning my child s participation in this research study will be answered by Dr Ana Maria Murgueytio Dr Gregory Evans or Dr David Sterling whose telephone numbers are listed above for my contact I understand I will be compensated with a small amount of money by the University for my child s participation If I have any questions about my child s rights as research participants or in the event I believe my child has suffered an injury as a result of participation in the research project, I may contact the Chairperson of the St Louis University Institutional Review Board at 314 577 8108 who will review the matter with me identify other resources that may be available to me and provide further information as to how to proceed

I have read the above statement and have been able to ask questions and express concerns which have been satisfactorily answered by the investigators I believe I understand the purpose of the study as well as the potential risks and benefits that are involved I hereby give my informed and free consent for my and my child s participation in this study

Date Vi th/D /Yes	
Parent/Guardian Signature	
Parent/Guardian Name (Printed)	
Witness Signature	
Witness Name (Printed)	

I certify that I have explained to the above individual(s) the nature and purpose of this research study the potential benefits and possible risks associated with participation have answered any questions that have been raised and have witnessed the above signature

These elements of informed consent conform to the assurance given by St Louis University to the Department of Health and Human Services to protect the rights of persons who participate in research studies I have provided the participant with a copy of this signed consent document

Date _____

Investigator Signature

# ith phone calls to area residents ) | | | | | 2 Calle Ullaced June wave

ycars Both probrams scrve lower income f unifies ady Journal St iff Writer

ne calls from the St Francois Hcalth department to about

By Renee Jean

vood Bonne Terre Last Terre and surrounding areas

households in Park Hills

The source of the elevated levels is currently unknown according to lactors range from old pipes to how often a family dusts County wide statistics on blood lead levels are 3crtrun who said that contributing not currently available

Census workers who are from will clearly identify themselves on rancois County Health Department Mineral Area College or the St.

dents living in the households the number of children under six the address of the resident and the agformation about the number of resi The census takers will gather in the phone Bertram said of the house

trepate in the voluntary blood lead Those households with children under six will be contacted to par study Bertrain said.

s found in some St Francois

about clevated blood lead

of Hcalth will gather informa

e study conducted under the

ancois County

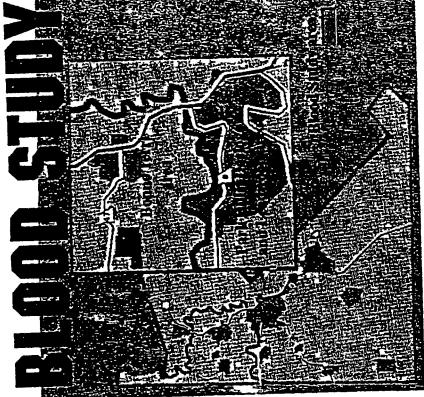
ces of the Missour Depart

ludy to be conducted in areas wind of mine tailings piles in

holds for an upcoming blood an accurate census of

y Bertram Environmental man with the health depart said the phone calls will es

art Thursday according to of with the health department. cording to statistics between


ty chuldren

nd 30 percent of children par

Results of the study will be used to make recommendations to the Department of Natural Resources and to help residents reduce the (See BLOOD, page 3)

> programs have had higher than nal levels of lead in their d stream over the past two

ting in the well baby clinic and



incluhood of exposure to le man for the Missouri Depart Continued from page 1 cording to Brian Quinn a Hcalth

cause docreased intelligen paired neural develo Childhood exposure to le and ability to maintain a slc hearin decreased growth ture Bertram said

For more information ¹ Box 570 Jefferson City A Environmental Epidemiol or cultual fuce a box/yg2 lead study contact the Department of Health

# LEAU-CAPUDULL census takers to open, study

Census takers gathering back ground information for an upcorning lead-exposur study 1 SL'Francois County will begin door to-door surveys Saturday in Bonne Terre and that study participants, whose Desloge health department officials, parents will be contacted at a later reported today  $f_{1} = f_{1} + f_{2} + f_{3}$  time about  $f_{1} = f_{2} + f_{3} + f_{4}$ 

R-sponse to the consus has not been as smooth as officials would like with some readents refusing to - partie information, but officials

say they are consident they will reach optimum participation levels In both study and control areas. *

¹ The lead-exposure study will gather' information on blood-lead I vels of SL Francois County children in Bonne Terre Vierre Du Lac, Deslo, Leadington - Park Hills Leadwood and Mitchell That תו בנהרים ונתון הוצשל זמו וווא לטווב. formation is completed. (> ~ +

Officials want to have at least 250 caulde a eged six months to six years participate in the upcoming study in SL Francois County

- We hope people will realize that this part of the study is just intended to gather accurate population data and to vicnufy potential study par ecupants Answering census ques-? uons doesn t obligate anyone to be)

Dal Journal Staf Writer ( 1 said Gary Bottom and and study" sanuarian with the SL Francois County Health Department, 5

> Questions from censos takers "are mamly designed to determine power-

Questions include hanse, age, sex and humber of chaldren lying in the bome, as well as the length of readency

A minor-image ceasus is current ly under way in Salem, an area chesca because of similarities to the study area in SL Francois County

Salem has no mining history bot other factors are similar including socio-economic make up population and bouses of similar age and type according to officials with the Missour Department of Health.

Calls to Salem residents started today and healm officials said they want to have a group of at least 150 children participate. Blood and environmental samples will eventually be taken in that area, with about the same une-frame as that in St. Fran ccus County

The coctrol group is cruzial to the outcome of the study because data ; (See STUDY page 2)

gained there will be used as a baseline of comparison for blood lead data gathered in SL Francois County

5. 7

The purpose of the lead-exposure study is to evaluate environmental and other factors that have led to elevaled blood lead levels in some St. Francois County children.

According to statistics between 25 and 30 percent of chi dren par trapating in the well baby clinic and WIC programs have had higher than normal levels of lead in their blood stream over the past two years. Both programs serve lower income families

The source of el-vated lead level. is currently unknown, according to official in previous interviews

1 3

Bertram said contributing factors range from old pupes to how often a family dusts.

Environmental factors that could contribute to elevated lead levels will also be considered in the study which will make recommendations about lowering the levels to the Department of Natural Resources.

Childhood exposure to lead may cause decreased intelligence, in paired neural development decreased growth and bearing actury and inability to maintain a steady posture

For more information about the study contact the Missouri Depart ment of Heal,h, Burcau of Epymonmental Epidemiology at 1 800 392 72-5

# Missouri Department of Health Big River Area Lead Study Residential Census Guidance

### Background Information

The Missouii Department of Health (DOH) will conduct a study to determine whether the lead tailing piles in the Park Hills and Bonne Terre areas may be affecting the health of local residents The study will focus on children between six months and six years of age since they are at higher risk for lead exposure

Prior to the study, a census of residents in the study area and a comparison area will be conducted Salem, Missouri will serve as the comparison area since it is demographically similar to the study area

### Census Description

### Information Using the "Household Census Forms"

- + How many people live at the residence
- For those six years old and younger, what are their names, birthdates (or age), sex, race and time at the residence
- + Age of the home
- Address and phone numbers

### Method

- ♦ Call if you have the phone number
- Visit the homes that you don't have phone numbers for
- If you get no answer, or if nobody is home, call or return to the home on a different day of the week at a different time of day
- If you cannot get a response from a home, ask a neighbor
- Document every attempt you make on the census form

### Safety

- Weat a visible picture I D
- Do not visit or call after 8 30 p m
- Stay on sidewalks and avoid walking through the yards
- Respectfully decline an invitation to go inside the home

• If a person is hostile do not argue with them

### Other Important Tips

- + If a resident refuses politely try to find out why
- If a resident questions who you are what you are doing or wants more information on lead exposure, refer them to

# Gai y Bertram St Francois County Health Department (314)431-1947

## Always be pleasant and smile

### Sample Introduction

Hello, I am (your name) from Mineral Area College We are working with the Missouri Department of Health conducting a census of your neighborhood for a future study May I ask you a few questions? It will only take a moment

4-4

.....

### Missouri Department of Health Household Census Form Big River Blood Lead Exposure Study Missouri

Interviewer #						
Telephone Call Number 1 2	3 4 5 6 7	8 9 ≥10	(Mark a	n λ on e	ach numbe	that apply s)
Date/T m 1	D e/T m 2					
Date/Tim 4	Date/T m 5					
Die/Tum 7	D c/Tim 8		Date/T r	m 9	<u></u>	
D te/T m 10						
Visit Number 1 2 3 4 5	6 7 8 9 ≥	10 (Mark ar	Xoeal	h umberti	htppi)	
Date/Tum i	Date/T m		DιTr	n 3		
Date/Tura 4	Date/Tun 5		D te/Tin	n 6		<u></u> ,
Date/Tim 7	Date/Tim 8		Date/Tin	ne 9		
Date/Tim 10						
Name of Responder						
1 How many members in this house 0 1 2 3	sehold? (C 4 5	Circle number) 6 7	8		9	≥10
2 What is your relationship in this	household?	(1 Pare	n <del>r,</del> 2 Child	d 3 Othe	r family n	nember 4 Other)
3 What are the names dates of bir between ages 0 and 72 months of a	-	+	residenc	æ of pe	rsons in	the household
			Age			Time at
First and Last Name (0 72 )	vionths)	Date of Birth -	(opt)	Sex	Race	Residence
e - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						
			ļ			
				ļ		
If no date of birth is available						
PRINT						
Residential Address	(Street, R. R. B	'n	_ с	ıt <u>y</u>		
Telephone (Home)				ip cod	e	
Mailing Address (1 d Terest)	(Str LR.R. Bo #)		-			
City		le				
What is the age of this house (years	\$17					

St. Francois County Health Center

Jane C Hartrup R N B S Administrator

Jon L Peacock Environmental Sanitarian III PO Box Q Park Hills Missoun 63601

1025 West Main

Counties Served Iron Madison St Francois & Ste Genevieve

(573) 431 1947 FAX 431 7326

August 28 1995

Lead may be found in the soil in your yard It also may be in the paint on your home Somntimes lead may be found in the dust in your home or even in the water you drink

Lead is most dangerous to children. It can hirt them without you knowing it. Even tiny amounts of lead are bad It can harm their brain and change the way they think and act. Large amounts of lead can cause serious injury or death

We are trying to find out how much your child has been e posed to lead Onl, 250 homes will be tested in St Francois County Your home has been chosen to be tested for lead You will be contacted by a health department worker. They will either call or stop by your home. When you are contacted pleace let then know f you would like of have your home tested.

If you are interested someone will contact you at a later date and set up a time that is good for you to have your home tested. The te ting will include

- * the soil from your yard
- * the dust in your home

To St Francois County Parents

- * the paint on your house and
- * the water in your home

We will also test one of your children under the age of c for lead A nurse will take a small blood sample from your child

These tests will all be done at our home and will take about 2 hours. This will tell your of your child is being foread by lead on your home

Thank you

Jane Hartiu, RN

Administritor

AN EQUAL OPPORTUNITY/AFFIRMATIVE ACTION EMPLOYER

۶۶ ^{ای}

~

# **Attention Salem Parents** Free Testing for Lead in Salem Homes With Children 6 Months to 6 Years Old

The Missoun Department of Health and Saint Louis University are conducting lead testing in Salem Lead may be found in the dirt in your yard point on your home or in the water you drink. It is especially dange ous to children Low levels effect the way they think and act High levels of lead exposure can cause serious injury or death

Testing of 150 horres in Solam Missouri has already begun. You are eligible to have your horre tested for lead if

- 1 You live in the aty limits of Salem (Any dwelling
- including mobile homes and apartments )
- 2 You have lived in your home for at least 90 days
- 3 You have a child in the home between 6 months and 6 years of age

The testing takes about two hours and is done for free It includes soil from your yard dust in your home paint on your house and water in your home. It also includes a blood test for your child under the age of 6 A nurse will take a small sample from your child. There is a questionnaire that will be conducted with the parent or guardian of the child. These tests will tell you if your child is being poisoned by lead in or around your home. In addition to the free test, you will be paid fifteen dollars (\$15.00) for your time.

If you me t the three requirements listed above and want to have your home tested please contact the Dent County Health Department at (314) 729 3106

# SAMPLING TEAMS

Sampling Team/Initial Date	Members/Responsibilities
1 Primary July 19 1995	Gary Bertram XRF Environmental Samples
	Jane Hartrup R N Blood Interview
	Environmental Samples
	Sharon Bach R N Blood Interview
	Environmental Samples
2 Primary July 19 1995	Jon Peacock XRF Environmental Samples
	Diane Eaton R N Blood Interview
	Environmental Samples
	Jane Howard R N Blood Interview
	Environmental Samples
3 Primary September 20	Brad Wilson XRF Environmental Samples
1995	Dorothy Wilson L P N Blood Interview
	Environmental Samples
	Sharon Johnson L P N Blood Interview
	Environmental Samples
4 Back up July 19 1995	Robert Royal XRF Environmental Samples
	Barbara Huff R N Blood Interview
	Environmental Samples
	Judy McCarty Interview Environmental
	Samples

### BIG RIVER MINE TAILINGS LEAD STUDY

### CASE 95 0059

### SPECIMEN COLLECTION AND SHIPPING PROTOCOL

Division of Environmental Health Laboratory Sciences National Center for Environmental Health Centers for Disease Control and Prevention Atlanta Georgia 30333

crised 67 Cu/95

10-2

}

INTRODUCTION	page 3			
WHOLE BLOOD COLLECTION AND PROCESSING	page 4			
A COLLECTION PROCEDURE	page 4			
B PROCESSING PROCEDURE	page 5			
SHIPMENT OF SPECIMENS TO CDC ATLANTA GA	page 6			
A BEGINNING OF STUDY AND GENERAL INSTRUCTIONS	page 6			
B SPECIMEN SHIPPING LIST	page 6			
C REFRIGERATED SPECIMENS	page 7			
SPECIMEN TESTS				
FLOW CHART				
A BLOOD COLLECTION AND PROCESSING PROTOCOL page				

### INTRODUCTION

The proper collection processing storage and shipment of physiologic specimens from participants in this study is critical to the success of the study. The following sections describe the procedures which must be followed for all specimen collections. These procedures must be strictly adhered to in order to avoid contamination loss or degradation of the specimens. Please familiarize yourself with the study protocol and insure that you understand the concept of the study the role of all the personnel involved and your own role.

Please note that if participants are required to report to the collection site in a fasting state blood collection should be accomplished early in the visit to avoid discomfort to the subject and an adverse impact on compliance Blood collection must be completed and processed under carefully controlled conditions of good laboratory practice Blood processing must be accomplished promptly to avoid degradation of the specimen

It is extremely important that all records associated with each participant be maintained in an organized and complete manner to ensure that all information is properly collected and accurate Specimens should be labeled promptly and processed as a unit or run and precautions must be taken to avoid patient specimen label record mix ups. This type of error is usually the most common error in the laboratory setting but careful planning and a well organized work area will keep such errors at a minimum. Some of the information required for the specimen label and shipping list will be collected at the time of specimen collection. Problems in blood collection should be noted in the sample log and in the comments section of the shipping list.

### **II WHOLE BLOOD COLLECTION**

# UNIVERSAL PRECAUTIONS SHOULD ALWAYS BE FOLLOWED IN THE COLLECTION AND HANDLING OF HUMAN BLOOD)

- A Collection procedure
  - 1 Materials needed per participant

Disposable gloves Gauze sponges Alcohol wipes (2) Bandaid 3 mL purple top vacutainer tube (1) 23g 3/4 butterfly needle with 12 tubing with multiple sample lucr adapter 22g Vacutainer needle 5 mL Synnges (to be used with butterfly or syringe needle for hard to get venipunctures) Sharps disposal container for used needles Pre printed labels Tourniquet Vacutainer needle holder (pediatric size for 3 mL tubes) Vacutainer needle holder with pediatric tube adapter Refrigerator or container with ice packs

### OTE USE ONLY THE SUPPLIES PROVIDED BY CDC WHICH HAVE BEEN SCREENED FOR LEAD

2 Venipuncture procedure

Locate a suitable table and chair for blood collection and lay out blood collection supplies

Locate the puncture site Hold with 2 fingers on one side of the alcohol wipe so that only the other side touches the puncture site Wipe the area in a circular motion beginning with a narrow radius and moving outward so as not to cross over the area already cleaned Repeat with a second alcohol wipe

Locate vein and cleanse in manner previously described then apply the tourniquet If it is necessary to feel the vein again do so but after you feel it, cleanse with alcohol prep again and dry with a sterile gauze square

Fix the vein by pressing down on the vein about 1 inch below the proposed point of entry into the skin and pull the skin taut Approach the vein in the same direction the vein is running holding the needle so that a 15 ° angle with the examinee s arm

Push the needle with bevel facing up firmly and deliberately into the vein Activate the vacuum collection tube If the needle is in the vein blood will flow freely into the tube If no blood enters the tube probe for the vein until entry is indicated by blood flowing into the tube

After blood flow is established loosen the tourniquet. Collect ONE 3ml purple top tube per participant and after collection invert the tubes gently to mix the blood with the contained anticoagulant Release the tourniquet entirely after the last tube has filled Withdraw the needle with a swift motion

When the needle is out of the arm press gauze firmly over the puncture site Heavy pressure as the needle is being withdrawn should be avoided to prevent the sharp point of the needle from cutting the vein

If blood cannot be collected using the vacutainer system pre screened syringes have been provided for sample collection USE ONLY THE SYRINGES WHICH HAVE BEEN PROVIDED After collecting the blood (3 mL) in the syringe transfer the blood as soon as possible to the purple top tube This may be accomplished by pushing the needle used to collect the blood from the subject into the stopper of the purple top tube and allowing the vacuum in the tube to transfer the blood from the syringe If the stopper has to be removed in order to transfer the blood extreme care must be taken to avoid contamination of the top of the tube and the stopper Invert the tubes immediately to mix

Have the examinee raise his arm (not bend it) and continue to hold the gauze in place for several minutes This will help prevent hematomas

Report to the physician any reaction experienced by the participant during the venipuncture procedure

Place a bandaid on the subject s arm

### B Processing procedure

Assign an id number to each participant and the tube with the preprinted labels provided

Extra labels are provided for paperwork or any other document to cross reference the number assigned with the participant to whom it was assigned

Record each collection on the inventory/shipping list provided

Place tubes in the storage boxes provided Refrigerate (DO NOT FREEZE) these tubes until they can be sent back to CDC

Place each box in a zip lock back before shipping

### II SHIPMENT OF SPECIMENS TO CDC ATLANTA GA

### A BEGINNING OF STUDY AND GENERAL INSTRUCTIONS

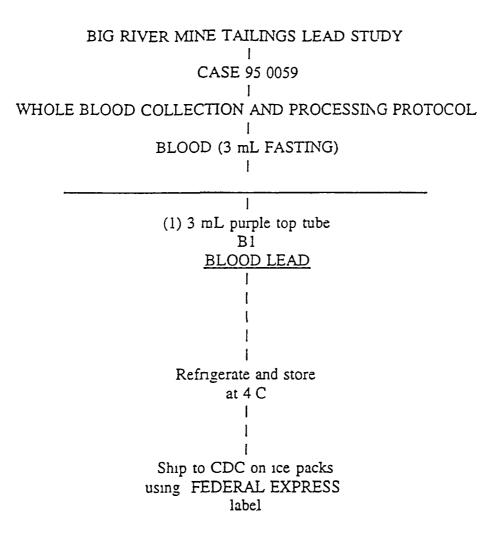
- 1 Determine the times FEDERAL EXPRESS packages are picked up in order to connect with the best flights to Atlanta Georgia Shipments to Atlanta may be scheduled weekly and scheduled on Monday through Thursday mornings IMPORTANT Since the materials packed in accordance with the instructions below will remain cool (over cold packs) only about 2 days shipments should not arrive in Atlanta on weekends or on Federal holidays If another carrier is used inquire about their requirements when shipping blood specimens
- 2 Inquire about regulations in your area concerning shipment of human blood Whole blood shipments will require the use of cold packs to keep the materials cool during shipment (NOT FROZEN) Also make sure the specimens will be received at CDC within 24 hours For all shipments do not pack shippers with the specimens and coolant until just before shipment
- 3 Telephone or fax the laboratory at CDC the day the shipment is mailed Tel (404) 488 4305 Fax (404) 488 4192 Speak with Charles Dodson

### **B** SPECIMEN SHIPPING LIST

- 1 For each shipment fill out a Specimen Shipping List provided by CDC Please give the following information on the shipping lists
  - a Page number eg 1 of 4
  - b Shipment Number number shipments sequentially starting with 1
  - c Total number of refrigerated shippers containing whole blood specimens which are being mailed in this shipment
  - d Type of Specimens whole blood serum or urine
  - e Number of Specimens number of each type of specimen shipped
  - f Name Title Signature and Phone Number of person sending shipment or initials as indicated on the continuation sheets
  - g Date shipped
  - h Specimen ID for each participant e g 95 0059 0001 For each participant, check (X) each individual specimen type/aliquot included in this shipment
  - 1 Date Collected eg MM DD YY
  - J Comments Specify any deviations from collection storage and shipment protocols and date of occurrence

Make a copy of the completed shipping list. The original to be shipped with the spec mens and the copy etained for your records

LEAD


THE ABOVE TEST IS PERFORMED UTILIZING WHOLE BLOOD COLLECTED IN 3 mL PURPLE TOP TUBES CONTAINING 4 5 MG OF EDTA(K3) AND 0 012 MG OF POTASSIUM SORBATE IN 0 06 mL OF 7 5% EDTA(K3) SOLUTION (PURIFIED WATER TO VOLUME)

PB

A TOTAL OF 3 mL OF BLOOD IS ALL THAT IS REQUIRED FROM EACH PARTICIPANT

. _._ ____

--



NOTE ALL ITEMS IN QUOTES AND UNDERLINED ARE LABELS

-----

_____

### MHOLE BLOOD COLLECTION/SHIKKING FOR

### BIG RIVEP MINE TAILINGS LEAD STUDY

### CDC STUDY NO 95 0059

B1 = BLOOD LEAD For each specimen collected indicate below the participant id number mark the spaces with an (X) to indicate that blood was collected or (O) if unable to collect

PARTICIPANT D NO	B1	COLLECTION DATE	COMMENTS (SPECIFY DEVIATIONS IN COLLECTION, STORAGE, OR SHIPMENT)
<u> </u>	<u>~~~~~~~~~</u> [	<u>`````````````````````````````````````</u>	atta
		·	
	_		
·····			
	<u> </u>		······································
	╂		

### SPECIMEN SHIPPING SUMMARY BIG RIVER MINE TAILINGS LEAD STUDY CDC STUDY NUMBER <u>95 0059</u>

_

Shipment Number	
Shipment Date	
Shipped By (PRINT)	
Signature	
Number of Shippers (Boxes)	
Received By	
Signature	
Date Received	

Appendix 11 Environmental Sampling Protocols and Forms

· · -

### SOP 100 Environmental Sampling Protocol Indoor Environmental Assessment Form Standard Operating Procedure for Big River Study

**Purpose** The purpose of this SOP is to establish uniform procedures for the collection of information for the 'Indoor Environmental Assessment Form

Application The procedure outlined in this SOP are applicable to all personnel collecting environmental samples for the Big River Study

General Guidelines An Indoor Environmental Assessment Form and Home Schematic Form will be completed for each residence and will include the study child s bedroom the main entry area room and up to two other indicated play areas This form will contain information by room assessed concerning room type, surface and substrate type, damage type and source if present total and damaged area XRF measurements obtained and general comments A different form is used for each room

### Selection of Sample Locations

- 1 The Home Schematic Form (FRM 100) will be completed and include a floor plan diagram of all living and play areas within the residence
- 2 The study child bedroom the main entrance area and up to two additional play areas, will be determined from the parent/guardian and indicated on the home schematic Each of these areas will have a separate Indoor Environmental Assessment Form (FRM 110) completed
- 3 The numbering sequence will be the study child s bedroom as #1 the play areas as #2 through #4 and the main entry area as #5
- 4 Closets will only be included if there are no doors on the closet or is large enough to be considered as a walk in closet and will be included as part of the area being assessed
- 5 An enclosed porch area will be considered as a separate indoor room Otherwise it will be considered as an outdoor area

11-2

1

6 On form indicate surfaces with similar paint histories Identify all friction surfaces all surfaces less then three feet from floor and all surfaces greater than three feet from floor and greater than one square foot in area

Sampling Equipment Sampling equipment will consist of a minimum of

- Tape measures large and small
- "Indoor Environmental Assessment Forms and Home Schematic Form"
- Pen
- Portable XRF unit (this can be used following completion of all assessment forms)
- Step ladder
- Random number generator

## Method of Sampling

- 1 On the 'Home Schematic Form (FRM 100)' indicate all living areas by floor indicate family dwelling type, number of floors, total number of rooms and floors, and draw a rough schematic on the backside of the form for each floor Circle the designated child bedroom, occupant main entry area, and up to two additional child play areas Using the Global Positioning System (GPS) determine latitude and longitude from a secured position in the backyard or porch area and indicate on form The GPS will need to stabilize for up to fifteen minutes prior to recording reading
- 2 For each area/room being assessed a separate assessment form (FRM 110) is to be completed
- 3 Complete the general information part of the form identifying and describing the room area Circle or write in the information as indicated
- 4 A diagram of the room should be sketched on the reverse side of the form, or use the Home Schematic" diagram if feasible (if so indicate use on back of form) Each common history painted surface within the room should be indicated (surface number) and assessed as to surface type and substrate type If the surface is determined to contain (0 7 mg/cm or greater), then additional information of damage and source if any height from floor to the lowest part and total and damaged area measurement should be completed

- For surface type use the numbered selections given, and for substrate type the underlined bold letters Only one response for each should be entered If the correct response is not given, indicate other and write in the correct response
- For damage type and source enter <u>up to three</u> responses from the underlined <u>bold</u> letters
- Total square feet should be estimated/measured to the nearest foot and be inclusive of all surfaces with similar painting history
- Height from floor should be estimated to the nearest foot
- Damaged square feet, if present, should be estimated/measured to the nearest foot and be inclusive of all surfaces with similar painting history If there is no damage a 0' should be entered
- The numbering system should start from the main entry into the room/area, as viewed when in the room, and go in a clockwise manner For example, if all doors or windows appear to have a _ common painting history, only one of the doors or windows need be indicated with the total area, damage and source inclusive of all doors or windows The surface indicated should be the surface in which XRF measurements are performed
- 5 XRF measurements are to be determined for representative similar paint history areas on the following painted surfaces
  - All surfaces less than three feet from the floor which are greater than one square foot in combined homogenous (similar paint history) area or are indicated as damaged
  - All friction surfaces including,
    - Representative window stools
    - Representative window sashes, stops, troughs and casings from only operable windows
    - Representative doors, jams and casings,
  - Surfaces <u>over three feet</u> from the floor which <u>are indicated as</u> <u>damaged</u> or <u>greater than ten square feet</u> in combined homogenous (similar paint history) area
  - Any surface which shows indication of chewing This information should be marked in the comments area
- 6 XRF Measurements (Recorded on to FRM 110)
  - At start and end of the sampling day the XRF Use and Custady (FRM 130) form must be completed

- Prior to each XRF measurement the clear button should be pressed
- The XRF measurement recorded should be the indicated 'L' shell reading after the error has reached a plus or minus 0.1 mg/cm² Mark '>' if indicated by the spectrum reading (note this should never be greater then >5) If the spectrum reading indicates a result cannot be accurately obtained, or a reading cannot be obtained for other reasons, mark 99 as the response
- If more than one reading is made, record all readings in same space keeping in line with XRF sample number recorded
- If surface is visibly soiled/dusty, place a piece of plastic or paper between the instrument and surface and/or wipe surface with a non alcohol wipe as necessary
- The XRF calibration check (FRMs 120) should be performed prior to use at each new location/residence, the instrument is knocked, dropped or other impact, turned off for more than one hour, and at the completion of each sampling day (See 'Calibration Check Form)
- Mark yes (Y) or no (N) for spectrum indication if lead is buried below top layer of paint or material
- Indicate XRF sample number given on the instrument
- Enter any comments relevant to interpretation of XRF measurements or other potential exposure observations
- 7 At the end of each sample day after the final XRF calibration check the XRF data should be down loaded into a prepared data file (SOP 920) After checking that data was properly downloaded, the instrument data file can be erased for the next use

11-5

### SOP 150 Environmental Sampling Protocol Paint Sample Collection Standard Operating Procedure for Big River Study

**Purpose** The purpose of this SOP is to establish uniform procedures for the collection of paint samples from study residences

**Application** The procedure outlined in this SOP are applicable to all personnel collecting environmental samples for the Big River Study

**General Guidelines** Paint samples will be collected from potential primary lead paint sources on the interior and exterior of the residence as determined from the 'Indoor and Outdoor Environmental Assessment" form and XRF results These samples will be stored and analyzed as needed for either confirmatory results of lead content or source characterization determinations Disposable gloves will be worn for the collection of each sample

Selection of Sample Locations Interior paint chip samples will only be obtained from each surface with different painting histories in the study child s bedroom and main play area(s) indicated as having damage which may result in release of paint and which are indicated as having lead content equal or greater than 0.7 mg/cm² by XRF analysis Or for which a valid XRF reading cannot be obtained and where the square foot area is greater than 10 and the material is indicated as damaged

One exterior paint chip sample will be collected from each painted surface which appears to have a different painting history which are **indicated as having damage** which may result in release of paint **and** which are indicated as having lead content equal or greater than 0 ⁷ mg/cm² by XRF analysis **Or** for which a valid XRF reading cannot be obtained **and** where the square foot area is greater than 100 **and** the material is indicated as damaged

07/30/95

11-6

In all cases paint chip samples will only be removed from previously damaged areas which are as representative as can reasonably be achieved

Sampling Equipment Sampling equipment will consist of a minimum of

- Disposable gloves
- Razor or utility knife
- Chiseled edge scraper
- Wet wipes for decontamination
- 4-mil re-sealable bag for sample storage
- Step ladder

Method of Sampling Samples will be collected as a sample of convenience No damage to painted surfaces will be made Since paint samples will only be obtained from damaged surfaces, the sample will be collected at a site of damage which is representable of the paint If no damaged sites are available no samples will be obtained and this will be recorded

- 1 Label sample container with residence ID sticker and sample number (sample number will increase sequentially starting with P-1)
- 2 Place on new pair of disposable gloves
- 3 Obtain an approximate 2 inch square sample from a representable damaged area
- 4 Complete sample location information on "Paint Chip Sample Collection (FRM 150)" form
  - Indicate if sample came from (I) indoor, (O) outdoor, or (D) detached surface
  - If indoor give room number If outdoor indicate wall letter
  - Indicate surface number assigned on "Indoor or Outdoor Environmental Assessment form
  - Describe sample location if not clearly indicated on schematic Environmental Assessment form drawing Include any relevant comments to interpretation of data
  - If no damaged areas exist, indicate on the proper Environmental Assessment form in the Comments section that paint chip sample could not be obtained

2

5 Place all collected samples into a large zip lock storage freezer tag and label with residence ID number

## SOP 200 Environmental Sampling Protocol Dust Floor Vacuum Collection Standard Operating Procedure for Big River Study

**Purpose** The purpose of this SOP is to establish uniform procedures for the collection of dust floor vacuum samples from residences

Application The procedure outlined in this SOP are applicable to all personnel collecting environmental samples for the Big River Study

General Guidelines Up to five indoor composite dust vacuum samples will be collected from the study child's bedroom and play area(s) on to a 0 8 um poly cellulose acetate filter using a personal sampling pump with a nozzle attachment Disposable gloves will be worn for the collection of each sample All sample pumps should be charged daily and fully discharged and recharged once per week

#### Selection of Sample Locations

- 1 The bedroom and main play area(s) of the study child, and main entry way location (this will be the entrance most used by the occupants) will be determined from the parent/guardian being interviewed See Home Schematic' FRM 100
- 2 The bedroom, up to three additional play areas and the main entry area will be sampled
- 3 If there are greater than three play areas, then carpeted play areas will first be sampled followed by a random selection of non-carpeted areas, up to a total of three play areas If all areas are carpeted then a random selection of three play areas will be sampled
- 4 If the area is carpeted a vacuum sample will be taken from the center area
- 5 If the area is not carpeted, a vacuum sample will be taken from the wall corner to the right of the main entry into the room (as viewed when in the room facing the entry)

Sempling Equipment Sampling equipment will consist of a minimum of

07 30/95 SOP 200

11-9

ł

- Disposable gloves
- Calibrated sampling pump
- Pre-weighed or matched weight 0 8 um MCE filter in 37 mm sampling cassette
- Vacuum nozzle attachment
- tygon tubing
- 4 mil resealable plastic bags
- Small tape measure or template
- Wet-wipe for decontamination
- Random number generator

## Method of Sampling

- Label sample cassette and storage container with sample number (should be V-1 for each residence)
- 2 Calibrate sampling pump to 2.5 L/m air flow or check with rotometer (may be calibrated at the beginning of the day and checked at the end of the day with a primary calibration standard SOP 210 and FRM 210) Indicate that a rotometer air flow check was performed each use on the sample form If the rotometer is off by more than one half of a division correct the air flow and indicate N under calibration check, otherwise Y If the air flow needed to be corrected, recalibrate pump as soon as reasonably possible with a primary calibration standard
- 3 Place on new pair of disposable gloves
- 4 Measure one square foot  $(25 \text{ cm}^2)$  area or use decontaminated template
- 5 Hold nozzle at 45° angle from the floor and sweep in the same direction at a rate of 2 seconds per stroke, overlapping each stroke only slightly, until the entire area has been covered Repeat the process at 90° from the initial direction
- 6 Complete "Floor Dust Vacuum Collection (FRM 200) form
  - Dimensions of wiped area (possibilities exist where a square foot area may not be available)
  - Calibration check of pump was performed and satisfactory (Y) or needed to be corrected (N)
  - Visible soil or dust on general inspection from one foot distance
  - Surface very smooth (1) means no irregularities during vacuum (such as very smooth hard surface floor), to very rough (5) means many irregularities (such as thick shag carpet)

- 7 Continue the process at each sample site until all samples have been collected on to the same filter cassette
- 8 Place filter cassette into storage container
- 9 Decontaminate or dispose of sampling nozzle Decontaminate template if used with wet-wipe

## SOP 210 Environmental Sampling Protocol Sampling Pump Calibration Standard Operating Procedure for Big River Study

**Purpose** The purpose of this SOP is to establish uniform procedures for the calibration and calibration checks of sampling pumps used for dust , vacuum samples

Application The procedure outlined in this SOP are applicable to all environmental sampling for the Big River Study

**General Guidelines** At the beginning of each sampling day the sampling pumps to be used for dust floor vacuum collection samples will be calibrated with a primary standard to 2 5 L/minute. The rotometer setting will be recorded and checked during the sample day as a qualitative measure. At the end of each sampling day the sampling pump is then checked against the primary standard to determine the end of day flow rate Also, between each sampling day all pumps are to be charged. Once per week the pump batteries are to be depleted and recharged to avoid creation of a battery memory.

## Equipment

- Sampling pumps
- Filter and cassette same as to be used in field collection
- Tygon tubing
- Primary calibration standard (Dry calc calibrator)

## Methodology

- 1 Attach sampling pump to primary calibration standard with filter and cassette in line between the two
- 2 Start sampling pump and adjust flow to 2 5 L plus or minus 0 1 L
- 3 After sampling pump has been adjusted perform a minimum of three and preferably ten flow rate checks and record the average and number

of tests perfomed Also record the pump rotometer setting to the nearest half reading

- 4 Complete enter date, name of individual performing calibration, sampling pump SN and time on the Calibration Form (FRM 210)
- 5 At the end of the calibration day check the calibration
  - Connecting the sampling pump to the primary standard with a filter and cassette between the two
  - Perform a minimum of three, and preferably ten flow rate checks and record the average and number of tests perfomed

٤

- Record the results, time and name of individual performing the calibration on the same form (FRM 210)
- 6 Connect the sampling pump to the charger at the end of each sampling day
- 7 Once per week set the charger on drain and trickle charge

## SOP 250

## Environmental Sampling Protocol Window Stool Dust Wipe Sampling Standard Operating Procedure for Big River Study

**Purpose** The purpose of this SOP is to establish uniform procedures for the collection of interior dust wipe samples from residences

بر

1

**Application** The procedure outlined in this SOP are applicable to all personnel collecting environmental samples for the Big River Study

General Guidelines Wipe sample site selection and collection will be performed after the 'Indoor Environmental Assessment (FRM 110)" form has been completed Up to five wipe samples will be obtained from selected operable window stools to form one composite sample for analysis The areas to be sampled will be the study child s bedroom and main play area(s) All surface areas sampled will be measured Disposable gloves will be worn for the collection of each sample

#### Selection of Sample Locations

- The study child bedroom and main play area(s) will be determined from the parent/guardian being interviewed See Home Schematic form (FRM 100)
- 2 The number of operable windows in each room will be determined by trial or information from the parent/guardian being interviewed
- 3 If the number of operable windows is five or less, all windows are selected for sampling
- 4 If the number of operable windows is greater than five then random sampling for one window stool in each room of the operable windows will be performed If there are fewer than five rooms the remaining operable windows will be randomly sampled until a total of five windows are sampled

Sampling Equipment Sampling equipment will consist of a minim m f

- Disposable gloves
- Wash n Dry Wipes or similar approved product

07/30/95

- Measuring tape
- 4-mil re sealable plastic containers
- Random number generator

# Method of Sampling

- Complete "Wipe Sampling (FRM 250)' form header information (Residence ID sticker Composite sample number Date, Inspector initials and general description of composite samples)
- 2 Label sample collection bag with composite sample number (this should be W-1 for each residence)
- 3 Prior to the collection of each sample for the composite complete the following information on the sample form
  - the room number and surface number of the sample site from the "Indoor Environmental Assessment" form
  - Dimensions of the area to be wiped to the closest inch This should be a rectangular area adjacent to the window sash, and not to include edges along the side of the vertical window casing
  - Soiling Index questions
    - If visible loose soil/dust is visible on a general inspection within one foot of the window stool, then yes, otherwise no
    - If visible movement is observed when a light puff of air is blown on the window stool within one foot, then yes, otherwise no
    - After each of the three wipes look at the wipe sample for visible soil/dust collection
  - Smoothness of surface This recorded after sampling A very smooth (1) surface would have no grooves felt or catching edges during the wipe sample A very rough (5) surface would contain numerous ridges and/or catching edges during the wipe sample
  - General comments concerning conditions or sampling procedure which may affect interpretation of results
- 4 Place on new pair of disposable gloves
- 5 If the wipe sample media used comes from a continuous roll, such as Wash'n Dry, then the first towelet should be removed and disposed of If this is the first wipe removed during the day, the first two towelets should be disposed
- 6 Remove a new towelet and place flat at one end of the window sill and wipe in an 'S' pattern over the entire surface making sure that each

stroke only slightly overlaps the previous stroke Fold the wipe in half with the dirt side inside and the re-wipe the sill at 90° from the first wipe Fold the wipe again in the same manner and re-wipe the stool similar to the first wipe Again fold the dirt side inside and place into the pre-labeled sample container

## SOP 300 Environmental Sampling Protocol Vacuum Bag Collection Standard Operating Procedure for Big River Study

**Purpose** The purpose of this SOP is to establish uniform procedures for the collection of vacuum bag samples from residences

Application The procedure outlined in this SOP are applicable to all personnel collecting environmental samples for the Big River Study

**General Guidelines** Contents of the vacuum cleaner will be collected by placing disposable vacuum cleaner bags, or emptying non-disposable bags into the collection container Disposable gloves will be worn for the collection of each sample

#### Selection of Sample Locations

- 1 The resident will be requested to identify and open (or give permission to open) the household vacuum cleaner. If there is more than one vacuum cleaner the one indicated as being used primarily for the bedroom and play area(s) of the study child will be used
- 2 If resident will not allow disposable bag to be removed, and contents cannot be emptied, then no samples will be obtained and so indicated on the collection form

Sampling Equipment Sampling equipment will consist of a minimum of

- Disposable gloves
- 4-mil plastic re-sealable bags (12" x 15") Small garbage bags of at least 0 6 mil with twist ties may be used for disposable bag samples

## Method of Sampling

- 1 Label sample container with sample residence ID sticker and number Sample number should be B-1 for each residence
- 2 Place on new pair of disposable gloves
- 3 If vacuum bag is disposable type, place entire bag into sample collection container

07/30/95

- 4 If vacuum bag is non-disposable empty contents of vacuum cleaner into sample collection container
- 5 Seal sample collection container
- 6 Complete Vacuum Cleaner Bag Collection (FRM 300) form

### SOP 350 Environmental Sampling Protocol Drinking Water Sample Collection Standard Operating Procedure for Big River Study

**Purpose** The purpose of this SOP is to establish uniform procedures for the collection of drinking water samples from residences

Application The procedure outlined in this SOP are applicable to all personnel collecting environmental samples for the Big River Study

**General Guidelines** First draw kitchen cold tap drinking water samples will be collected into sample containers with nitric acid preservative supplied by the laboratory performing the analysis Disposable gloves will be worn for the collection of each sample

Selection of Sample Locations The drinking water sample will be collected from the cold tap of the kitchen faucet

Sampling Equipment Sampling equipment will consist of a minimum of

- Disposable gloves
- 250 or 1000 ml polyethylene bottles containing nitric acid stabilizer supplied by the laboratory performing the analysis

# Method of Sampling

- 1 When the site visit is being arranged the resident will be requested not to use the kitchen water tap for eight hours prior to site visit
- 2 Label sample collection container with sample number (should be W-1 for each location)
- 3 Place on new pair of disposable gloves
- 4 Place collection container under cold water kitchen faucet
- 5 Fill container
- 6 Seal sample collection container
- 7 Complete "Drinking Water Collection (FRM 350)' form
  - Sample location and date identifiers (number date and may c to ,

07/30/95

### SOP 400 Environmental Sampling Protocol Outdoor Environmental Assessment Form Standard Operating Procedure for Big River Study

**Purpose** The purpose of this SOP is to establish uniform procedures for the collection of information for the Outdoor Environmental Assessment Form'

**Application** The procedure outlined in this SOP are applicable to all personnel collecting environmental samples for the Big River Study

General Guidelines An Outdoor Environmental Assessment Form (FRM 400" will be completed for each residence and will include all exterior painted areas. This form will contain information by exterior wall or detached areas, assessing surface and substrate type, damage type and source if present total and damaged area, XRF measurements obtained and general comments. A different form is used for each wall with a reasonably assumed similar painting history.

#### Selection of Sample Locations

- 1 All outdoor representative homogenous (surfaces with similar painting histories) surfaces whether attached or detached from the residence and which are greater than ten square-feet in surface area any damaged surface bordering a non vegetated soil or hard surface play area and representable window sashes casings, stops and wells doors, jams and casings will be included on the Outdoor Environmental Assessment Form' If any painted play equipment, fences our structures within the yard are present they should be identified on the detached form
- 2 The Wall numbering sequence which identifies the distinct side of the residence will start at the street address main entrance side to the residence as A and will increase alphabetically in a clockwise direction
- S mpling Equipment Sampling equipment will consist of a minimum of
- Tape measures large and small

07/0/95 Re ision 1 09/19/95

- Outdoor Environmental Assessment Forms (FRM 400)"
- Clip board
- Pen
- Portable XRF unit (this can be used following completion of all assessment forms)
- Step ladder
- Random number generator

## Method of Sampling

- 1 A separate form will be completed for each distinct Wall area which is reasonably assumed to have a similar painting history (typically side of residence) and for detached surface areas (play area equipment, fences and other detached painted surfaces) being assessed Draw an aerial schematic of the yard on the first form used, indicating the designated Wall letter and insure that all detached surfaces are indicated (the "Away From House Soil Collection" form can be used if feasible, but indicate such use on the back of the form) Each form used should have a side view schematic numbering the surfaces as is reasonable in the diagram
- 2 Complete the general information part of the form identifying and describing the area
- 3 Each painted surface should be indicated (surface number) and assessed as to surface type and substrate type If, after XRF analysis the surface is found to contain lead at 0 7 mg/cm² or greater, then information on damage and source if any, and total and damaged area measurement should be completed
  - For surface type use the numbered selections given, and for substrate type the underlined bold letters Only one response for each should be entered Of the correct response is not given, indicate 'other' and write in the correct response
  - For damage type and source enter up to three responses from the underlined bold letters
  - Total square feet should be estimated/measured to the nearest foot and be inclusive of all surfaces with similar painting history
  - Damaged square feet, if present, should be estimated/measured to the nearest foot, and be inclusive of all surfaces with similar painting history If there is no damage a "0" should be entered

- 4 XRF measurements will be determined on all painted surfaces greater than ten square feet in surface area and any damaged surface bordering a non vegetated soil or hard surface play area Only the ground level floor and items which can be reached with a small step ladder will be tested
  - At start and end of the sampling day the XRF Use and Custody (FRM 130) form must be completed
  - Prior to each XRF measurement the clear button should be pressed
  - The XRF measurement record should be the indicated L shell reading after the error has reached a plus or minus 0 1 mg/cm² Mark > if indicated by the spectrum reading (note this should never be greater then >5) If the spectrum reading indicates a result cannot be accurately obtained or a reading cannot be obtained for other reasons mark 99 as the response
  - If more than one reading is made, record all readings in same space keeping in line with XRF sample number recorded
    - If surface is visibly soiled/dusty, place a piece of plastic or paper between the instrument and surface Wipe surface with a non alcohol wipe as necessary
    - The XRF calibration check should be performed prior to use at each new location the instrument is knocked dropped or other impact or turned off for more than one hour (See Calibration Check' Form FRM 120)
    - At the end of each sample day the XRF data should be down loaded into a prepared data file After checking that data was properly downloaded the instrument data file can be erased for the next use (SOP 920)
  - Mark yes (Y) or no (N) for spectrum indication if lead is buried below top layer of paint or material
  - Indicate XRF sample number given on the instrument
  - Enter any comments relevant to interpretation of XRF measurements or other potential exposure observations
- 5 For play area equipment and other detached painted surfaces in the comments section indicate the Wall letter which is opposite the surfative Draw separate schematics as may be needed

4 If a designated region does not contain any soil within the designated region of the structure then no sample will be taken from this region. If fewer than four regions have soil areas for sampling then additional soil samples will be taken from the largest existing region in a random selection site as described above. If four samples have still not been collected, then the next largest region will be selected, and so on

Sampling Equipment Sampling equipment will consist of a minimum of

- Disposable gloves
- Slotted 7/8 inch soil recovery probe
- Wet wipes and paper towels for decontamination
- Bucket of water and brush for decontamination
- 4-mil resealable plastic bags (8 x 8')
- Large zip-lock freezer bags
- Large tape measure
- Knife

# Method of Sampling

- 1 Label sample storage container with composite sample number
- 2 Complete 'Soil Collection (FRM 450)" form for composite sample to be obtained This will entail determining the percent of bare ground to covered ground in sectioned area Covered ground is considered vegetation (as described below) and hard surfaces (concrete asphalt, etc.), and, testing the soil consistency in a location adjacent to where the sample is to be collected
  - Soil compaction is determined by pressing on the intact soil. If the soil will not compress or give to the pressure it is compact (1). If the soil easily compresses and if spaces by seen between soil particles it is loose (5).
  - If soil breaks-up or crumples easily with finger pressure into small particles it is easily broken (1) If soil must be pried apart or impact force used to break up is is difficult (5)
  - Soil which is wet enough to thickly pour out of the hand is considered wet (1) to soil with no obvious moisture as dry (5)
  - A soil surface area which is totally covered with grass or other live organic material with a root system is vegetated (1) A totall baic soil surface area is non vegetated (5)

- 3 The direction of the sectioned area facing away from the residence and that wall letter designation should be recorded for each sample in the composite
- 4 Place on new pair of disposable gloves
- 5 Remove any visible paint chips and other non soil debri prior to taking sample and indicate presence of paint chips on sample site form in description section for sample area
- 6 Insert soil probe at least two inches into soil and remove with sample
- 7 Remove any vegetation from top of soil sample
- 8 Cut out top half inch of sample and slide into collection container
- 9 Dispose of any remaining soil and wipe residual soil from sample probe
- 10 Continue the process at each sample site placing each new composite into sample container until at least four samples have been collected
- 11 De contaminate sample probe (and knife if not disposable) by wiping off all visible soil with gloved hand and paper towels/wipes Place soil probe into bucket and brush inside and outside of probe Change water as appropriate

د

#### SOP 500 Environmental Sampling Protocol Away From House Soil Collection Standard Operating Procedure for Big River Study

**Purpose** The purpose of this SOP is to establish uniform procedures for the collection of away from house soil samples from study residences

**Application** The procedure outlined in this SOP are applicable to all personnel collecting environmental samples for the Big River Study Within the study area a side by-side soil sample of six inch depth will be obtained in a similar fashion

**General Guidelines** Away from house composite yard soil samples of up to five one half inch each of normal top soil without vegetation will be collected Disposable gloves will be worn for the collection of each sample

#### Selection of Sample Locations

- 1 An aerial view diagram of the residence and property will be sketched, on the reverse side of the 'Soil Collection (FRM 450) Form", and divided visually into four approximate equivalent yard areas extending from the corner of the residence to the nearest corner of the property boundary Wherever possible the natural outlines of the residence and yard will be used to segregate the areas, and the exterior wall letter designations will be indicated on the sketch A fifth area will be used depending on the property and residence configuration
- 2 The sample areas will be identified with the main street entrance area as '1' and increasing count in a clockwise direction This should correspond with the exterior wall letter designations as much as possible
- 3 Within each of the selected areas non-vegetated regions which are not child play areas will be indicated which are greater than three and one half feet from the house wall If there is more than one non-vegetated non-play area, one will be randomly selected for sampling Samples will be collected from the center of each sample area and at least three feet from any water run off source

- 4 If there are no non vegetated non plav areas a sample site will be selected at the approximate mid point of the region. The vegetated material will be removed from the sample prior to addition to the composite sample collection container.
- 5 If a designated region does not contain any soil outside of three and one half feet of the structure then no sample will be taken from this region If fewer than four regions have soil areas for sampling then additional soil samples will be taken from the largest existing region in a random selection site as described above. If four samples have still not been collected then the next largest region will be selected and so on

Sampling Equipment Sampling equipment will consist of a minimum of

- Disposable gloves
- Slotted 7/8 inch soil recovery probe
- Wet wipes and paper towels for decontamination
- Bucket of water and brush for decontamination
- 4 mil resealable plastic bags (8 x 8 for 1/2 cores 12 x 15 for 6 cores)
- Extra large (for six-inch cores) and large (for one half-inch cores) ziplock freezer bags
- Large and small tape measure
- Knife
- Random number generator

## Method of Sampling

- 1 Label sample storage container with residence ID sticker and composite sample number Sample number should be a sequential number for all soil samples starting with S ?
- 2 Complete Soil Collection (FRM 450) form for composite sample to be obtained This will entail checking sample type at top of form and determining the percent of bare ground to covered ground in sectioned area Covered ground is considered vegetation (as described below) and hard surfaces (concrete asphalt etc) and testing the soil consistency in a location adjacent to where the sample is to be collected
  - Soil compaction is determined by pressing on the intact soil. If the soil will not compress or give to the pressure it is compact (1). It the soil easily compresses and if spaces by seen between soil particles it is loose (5).

- If soil breaks up or crumples easily with finger pressure into small particles it is easily broken (1) If soil must be pried apart or impact force used to break up is difficult (5)
- Soil which is wet enough to thickly pour out of the hand is considered wet (1) to soil with no obvious moisture as dry (5)
- A soil surface area which is totally covered with grass or other live organic material with a root system is vegetated (1) A totally bare soil surface area is non-vegetated (5)
- 3 The direction of the sectioned area facing away from the residence, the distance to the closest perpendicular wall, and that walls letter designation should be recorded for each sample in the composite
- 4 Place on new pair of disposable gloves
- 5 Insert soil probe at least two inches for one half inch samples, and eight inches for six inch soil samples, into soil and remove with sample
  - When samples are collected within the 'study area' (not the control area), wherever a half inch sample is collected for a soil composite a six-inch sample will also be obtained within six-inches of the half-inch core site A separate composite sample will be collected for the six inch cores
- 6 Remove any vegetation from top of soil sample
- 7 Cut out top half inch, or six inches of sample, as appropriate, and slide or place into collection container
- 8 Dispose of any remaining soil and wipe residual soil from sample probe
- 9 Continue the process at each sample site placing each new composite into sample container until at all samples have been collected
- 10 Place sample collection container into extra large zip lock freezer storage bag for six-inch samples and a large zip-lock freezer bag for half-inch samples
- 11 De-contaminate sample probe (and knife if not disposable) by wiping off all visible soil with gloved hand and paper towels/wipes Place soil probe into bucket and brush inside and outside of probe Change water as appropriate

## SOP 550

Environmental Sampling Protocol Home Play Area Soil Collection Standard Operating Procedure for Big River Study

**Purpose** The purpose of this SOP is to establish uniform procedures for the collection of soil samples within child play areas of each residence

**Application** The procedure outlined in this SOP are applicable to all personnel collecting environmental samples for the Big River Study

**General Guidelines** A composite of soil samples one-half inch each of normal top soil without vegetation will be collected from the indicated child play areas of the house Disposable gloves will be worn for the collection of each sample

## Selection of Sample Locations

- 1 The aerial view diagram of the residence sketched and areas indicated for the Away From House Soil Collection (FRM 450) Form may be used or a new sketch made The study child play areas will be marked as indicated by the parent/guardian being interviewed Sand boxes and other non soil areas will not be included
- 2 Each of the non-vegetated play areas indicated (up to five) will be sampled If there are more than five play area sites that are non-vegetated up to a total of five will be randomly selected If there are less than four, a random sample among all sites will be performed until there are a minimum of four samples collected
- 3 Samples will be collected from the center of each sample area

Sampling Equipment Sampling equipment will consist of a minimum of

- Disposable gloves
- Slotted 7/8 inch soil recovery probe
- Wet wipes and paper towels for decontamination
- Bucket of water and brush for decontamination
- 4 mil resealable plastic bags (8 x 8 for 1/2 cores 12 x 15 for 6 cores)

0/95د/07

- Extra large zip-lock freezer bags
- Large tape measure
- Knife

## Method of Sampling

- 1 Label sample storage container with composite sample number
- 2 Complete 'Soil Collection (FRM 450) form for composite sample to be obtained This will entail determining determining the percent of bare ground to covered ground in sectioned area Covered ground is considered vegetation (as described below) and hard surfaces (concrete, asphalt, etc.), and, testing the soil consistency in a location adjacent to where the sample is to be collected
  - Soil compaction is determined by pressing on the intact soil. If the soil will not compress or give to the pressure it is compact (1). If the soil easily compresses and if spaces by seen between soil particles it is loose (5).
  - If soil breaks-up or crumples easily with finger pressure into small particles it is easily broken (1) If soil must be pried apart or impact force used to break-up is difficult (5)
  - Soil which is wet enough to thickly 'pour' out of the hand is considered wet (1) to soil with no obvious moisture as dry (5)
  - A soil surface area which is totally covered with grass or other live organic material with a root system is vegetated (1) A totally bare soil surface area is non vegetated (5)
- 3 The direction of the sectioned area facing away from the residence, the distance to the closest perpendicular wall, and that walls letter designation should be recorded for each sample in the composite
- 4 Place on new pair of disposable gloves
- 5 Insert soil probe at least two inches into soil and remove with sample
- 6 Remove any vegetation from top of soil sample
- 7 Cut out top half-inch of sample and slide into collection container
- 8 Dispose of any remaining soil and wipe residual soil from sample probe
- 9 Continue the process at each sample site placing each new composite into sample container until at least four samples have been collected
- 10 Place sample collection container into large zip-lock freezer storage bag
- 11 De contaminate sample probe (and knife if not disposable) by wiping off all visible soil with gloved hand and paper towels/wipes Place soil probe

## SOP 600

## Environmental Sampling Protocol Community Play Area Soil Collection Standard Operating Procedure for Big River Study

**Purpose** The purpose of this SOP is to establish uniform procedures for the collection of soil samples from community/neighborhood child play areas

Application The procedure outlined in this SOP are applicable to all personnel collecting environmental samples for the Big River Study

**General Guidelines** A composite of up to five soil samples one half inch each of normal top soil without vegetation will be collected from each indicated community/neighborhood child play area Disposable gloves will be worn for the collection of each sample

## Selection of Sample Locations

- 1 Study children common community play areas will be determined from the parent/guardian interview information
- 2 For each community play area an aerial view diagram of the play area will be sketched All non-vegetated play areas greater than ten square feet will be indicated Sand boxes and other non-soil areas will not be included If there are fewer than four non-vegetated play areas, then the vegetated play areas will be indicated
- 3 Up to five non-vegetated areas will be randomly selected If there are fewer than five areas then a random selection among the vegetated areas will be made until there are five sample areas The sample areas will be identified with the north most area as '1' and increasing count in a clockwise direction
- 4 Samples will be collected from the center of each selected sample area

Simpling Equipment Sampling equipment will consist of a minimum of

- Disposable gloves
- Slotted 7/8 inch soil recovery probe
- Wet wipes and paper towels for decontamination

07/30/95

11-33

- Bucket of water and brush for decontamination
- 4-mil resealable plastic bags (8 x 8 for 1/2 cores 12 x 15 for 6 cores)
- Large zip lock freezer bags
- Large tape measure
- Knife
- Random number generator

## Method of Sampling

- 1 Label sample storage container with composite sample number
- 2 Complete Soil Collection (FRM 450) form for composite sample to be obtained This will entail determining the percent of bare ground to covered ground in sectioned area Covered ground is considered vegetation (as described below) and hard surfaces (concrete, asphalt etc.), and testing the soil consistency in a location adjacent to where the sample is to be collected
  - Soil compaction is determined by pressing on the intact soil. If the soil will not compress, or give, to the pressure it is compact (1). If the soil easily compresses and if spaces by seen between soil particles it is loose (5).
  - If soil breaks up or crumples easily with finger pressure into small particles it is easily broken (1) If soil must be pried apart or impact force used to break up is difficult (5)
  - Soil which is wet enough to thickly 'pour out of the hand is considered wet (1) to soil with no obvious moisture as dry (5)
  - A soil surface area which is totally covered with grass or other live organic material with a root system is vegetated (1) A totally bare soil surface area is non-vegetated (5)
- 3 Place on new pair of disposable gloves
- 4 Insert soil probe at least two inches into soil and remove with sample
- 5 Remove any vegetation from top of soil sample
- 6 Cut out top half inch of sample and slide into collection container
- 7 Dispose of any remaining soil and wipe residual so l from sample probe
- 8 Continue the process at each sample site placing each new composite into sample container until at all samples have been collected
- 9 Place sample collection container into a large zip lock freezer sto agbag

10 De contaminate sample probe (and knife if not disposable) by wiping off all visible soil with gloved hand and paper towels/wipes Place soil probe into bucket and brush inside and outside of probe Change water as appropriate

د

## SOP 900 Environmental Sampling Protocol Field QA/QC Samples Standard Operating Procedure for Big River Study

**Purpose** The purpose of this SOP is to establish uniform procedures for the collection and submittal of laboratory spike samples as an assessment of laboratory quality control, laboratory blanks to assess media component contamination field blank samples to assess field methodology contamination and field second collection samples to assess variability in the media sampled

Application The procedure outlined in this SOP are applicable to all environmental sampling for the Big River Study

**General Guidelines** All laboratories involved in the sample analysis will be accredited through the American Industrial Hygiene Association Laboratory Accreditation Program for metal analysis, and, be a participant in the Lead Proficiency and Analytical Testing (LPAT) program with satisfactory proficiency ratings, and, be accredited for drinking water analysis within a State

As one of the components to assess laboratory analysis quality control the following will be performed

- Spiked vacuum filter (20%) wipe (2%), soil (2 5%) and water (2 5%) samples prepared by a third party laboratory using NIST standards will be submitted with normal field samples
- Split soil (5%) and water (5%) samples will be submitted to a second laboratory for sample preparation and analysis concentration verification
- Media blanks for each lot used of filters, sample storage containers, and gloves, for laboratory use will be maintained and analyzed for interference by the laboratory

To assess possible contamination from presence in the field the fo¹lo sing wi¹l be performed

07/31/95 SOP 900 Revision 1 10/26/95

I

- One field blank per sampling day per sampling team will be submitted for laboratory analysis of vacuum filters and wipes
- One field blank per every 40th residence per sampling team will be submitted for laboratory analysis of wipe media and wipe samples of latex gloves

To assess variability of the analytes within the soil sample media a second sample will be taken for 5% of the soil samples within six inches of the first sample

**Spiked Laboratory Samples** Dust spiked samples shall be submitted as part of the regular sample submittals by the Field Project Manager in a manner so that the laboratory cannot distinguish the spiked samples from the field samples Spiked wipe samples will be submitted for every 50 field wipe samples Spiked vacuum filters will be submitted for every 5 field vacuum samples Spiked soil samples will be submitted for every 40 field soil samples Spiked water samples will be submitted for every 40 field collected water samples

The spiked samples will be given the sample number and ID of the location of the last home performed on the sample day each spike is submitted On the appropriate sample form the word "Spike" will be entered

The following NIST Standard Reference Materials (SRM's) will be used for the spikes

- Wipe samples NIST Lead Paint Dust Standard Powdered Lead Based Paint SRM 1579a
- Filter samples NIST Standard Urban Particulate Standard SRM 1648
- Water samples NIST traceable solutions for lead by graphite furnace absorption
- Soil samples NIST Standard Montana II Soil SRM 2711

**Split Samples** Split samples of soil will be obtained for 5% of the samples and submitted to a second laboratory for analysis verification

Water samples will be split in the field by taking a 500 ml sample and using this sample to fill two 250 ml containers supplied by the laboratory One of these samples will be sent to the secondary laboratory

From each set of 20 sequential soil prepared by the laboratory a random sample will be selected and sent to the second laboratory

Split samples will be given a separate sample number to distinguish between the two with the word Split Sample entered in the comments section of the appropriate form

Laboratory Media Blanks Laboratory media blanks for filters, wipes gloves and sample storage containers will be maintained or sent to the laboratory for each lot number

- Filters will be supplied by the laboratory
- Water containers will be supplied by the laboratory
- Gloves will be supplied by the contractor
- Other sample storage containers will be supplied by the contractor (4 mil and 8-mil zip-lock bags)

**Field Blanks** Field sampling media blanks for filters and wipes will be supplied to the laboratory at a rate of one per sampling day per sampling team Field blanks for gloves and sample bag containers will be submitted at a rate of 1 per 40 sampling sites per sampling team. These will be submitted with the field samples collected each week. The field sample blanks will be collected during the sampling at the final sample site of the day.

Filter field blanks will be obtained by removing the end-plugs on a filter cassette, then re-inserting the end-plugs and placing into a similar labeled sample container as the field samples A sample collection form (FRM 200) is completed with the words 'Field Blank" written in the comments section

Wipe field blanks will be obtained by first removing and disposing of the top wipe, and then removing three wipes and placing into a similar labeled sample container as the field samples A sample collection form (FRM 250) is completed with the words 'Field Blank' written in the comments section

07 31/95 SOP 900 Revision 1 10/26/95

Glove field blanks will be obtained by removing two gloves as would normally be performed and placing on the hands Three successive wipes, after throwing away the first wipe, will be made of the gloves and the wipes submitted as field blanks for the gloves in a sample container The words "Glove Field Blank" and the ID number are written on the sample container and the chain of custody form

Sample bag field blanks will be obtained by removing a sample bag, one of each size as would normally be performed and placing into a sample container The words "Sample Bag (bag type) Field Blank and the ID number are written on the sample container and the chain of custody form

If two field sample blank results in a row are greater than detectable but below the quantitative limit, the field sampling methodology will be reviewed and observed to determine contaminant sources or mechanisms. If and field sample blank result is greater than the quantitative limit, the field sampling methodology will be reviewed and observed to determine contaminant sources or mechanisms.

Second Samples A second one and one-half inch soil sample will be collected within six inches of each soil sample for every twenty samples taken to form a second composite The soil collection form (FRM 450) will be completed and the words 'Second Sample' will be written in the comments section A sequential sample number will be given (S 2)

## SOP 910

## Environmental Sampling Protocol Sample Chain of Custody, Storage and Transport Standard Operating Procedure for Big River Study

**Purpose** The purpose of this SOP is to establish uniform procedures for completion and compliance with the chain of custody requirements storage requirements and transport of samples to the laboratory or secondary storage location

Application The procedure outlined in this SOP are applicable to all environmental sampling for the Big River Study

**General Guidelines** At the end of each sample day Chain of Custody Record (FRM 910)' forms will be completed for each residence sampled that day The samples are stored at the designated storage location and conditions each day Once per week the samples are transported by the field project manager or designated individual to Saint Louis University or the selected laboratory

## Equipment

- Refrigerator or coolers and ice packs for water samples which are not stabilized with nitric acid
- Storage containers (rigid cardboard boxes or similar container) for soils filters, wipes paint chips and vacuum bags

#### Methodology

- 1 At the end of each sampling day all collected environmental samples from each residence will be entered onto a Chain of Custody Record' form (FRM 910)
- 2 At the end of each sampling day all samples will be stored in secured locations. The water samples will be stored in a designated refrigerator or cooler with ice packs if not stabilized with nitric acid. All other samples will be stored in a solid storage container such as a rigid cardboard box with a lid or other sim lar container.

07/20/95 SOP 210 Revision 1 09/19/95

11-40

I

ی۔

- 3 Once per week all samples will be transported to Saint Louis University or the Laboratory by the Field Project Manager or designated individual
- 4 Whenever the samples change hands such as from environmental technicians to individual transporting samples to the laboratory accepting the samples the chain of custody record will remain with the samples and be completed (signed and dated) by all associated individuals
- 5 A copy of the Chain of Custody form when it is first completed each day, and a second copy with the final transfer signature from the laboratories will be made and kept on file at Saint Louis University
- 6 Samples are to remain in control of the individual who last signed for the samples such as within eye-sight or stored in an appropriate secured location

1/30/95 SOP 10 Revision 1 09 19 95

	2
	and Associated Forms Princeted County Numbers D., D
	040
_	1
<b>FRM 010</b>	Z
1 0	1
RN	
<b>[</b>	
	100
	2
	1 12
	otor
	ç
	A c c
	l vu
	c

List of SOP's and Associated Forms, Expected Sumple Numbers Pci Residence, and Sample Type Codes

				Sample No	Sumple No	Code
	Soil				-	
500	Away I rom I louse	Soil Collection	450	-	~	~
450	Drip Line	Soil Collection	450	4	5	~
550	I lome Play Areas	Soil Collection	450	4	\$	~
600	Community Play Areas	Soil Collection	150	4		\
000	Duet I loor Vatuum	I loor Dust Vocuum Collection	000	-		
007			100	-		>
		Sampling I ump Cilibration	210			
300	Vacuum Brg	Floor Dust V1cuum B1g Collection	300	0	-	-
150	Print Chips	Print Chip Collection	150	5	20	_
350	Drinking Water	Drinking Water Collection	350	0		M
250	Window Stool Dust Wipe	Dust Wipe Collection	250	4	\$	0
		Home Schematic	001			
100	Indoor Environmental Assessment	Indoor Lnvironmental Assessment	110	25	150	<b>XRI</b>
		XRF Calibration Check	120			
		XRF Use and Custody	130			
		Home Schemitic	100			
007	Contract Former of American		001			
004			001	70	001	<b>XIKI</b>
		XRF Use and Custody	071			
016		Chain of Custody	016			
210	Sampling I ump Calibration	Sampling Pump Culibration	210			
600	Field QA/QC Sampling	Field QA/QC Samples	006			
016	Sample Ch un of Custody Storage and Transport	Cham of Custody	400			
920	XRF Data Computer Downlo id	XRF Downlord Logsheet	920			

11-42

# FRM 015

## Check List of Items Each Sampling Team Should Have Available At Each Sampling Location

Check	Items Each Sampling Team Should Have Immediately Accessible	No
	Residence file with all forms and ID labels (Should also always have extra forms)	1
	Writing board/clip board	1
·····	Pens/pencils and indelible markers	l each
	Flashlight	1
	Calculator	1
	Paper Towels	2 rolls
	Baby wipes	2 boxes
	Utility knife	1
	Razor knife	1
	Bucket	1
	Bottle brush	1
	Alconox soap	I container
	Distilled water and pouring container	l container
	Framing square	1
	Measuring tapes small and large	l each
	Gloves to wear when collecting all samples (latex or vinyl)	2 boxes
	Tweezers	1
	Sample collection bags 4 mil 8 x 8 (for cassettes wipes and 1/2 inch soils)	2 boxes
	Sample collection bags 4 mil 12 x 15 (for vacuum bags and 6 inch soils)	2 boxes
	Small freezer zip lock bags (for double baggin, 1/2 inch soil samples)	2 boxes
	Large treezer zip lock bags (for double baigin 6 inch soil samples and combinin all samples from residence)	2 bores
	Soil coring tool	1
	Filter cassettes	l box
	Drinking water collection containers (200 ml) supplied by lab	2
	500 ml container for measuring split water samples	1
	Small screwdriver for adjusting sampling pump as needed	1
	Tygon tubing cut to length with 45° on one end for vacuuming and extra as needed	As needed
	Sampling pump (Calibrated to 2.5 L/minute)	1
	XRF Unit (Also case with transport information and calibration standards)	1
	Dosimetry rin_s to wear when using XRF	1
	Global Positioning System (GPS)	1

___ _

. _

_ - - - -

----

### FRM 100 Home Schematic

#### Put ID Sticker Here

On back side of form draw rough schematic floor plan of each floor which contains living space and label each room by its type Indicate 'Study Childs Bedroom Circle up to four primary play areas of study child

2.

First Floor	Second Floor	Basement (If living or play space only)	Other
 	· · · · · · · · · · · · · · · · · · ·		
	1		

Is this (Check One) Single famil	y 4 Units	or less	4 Units or more	
Location is/has (Check One)	Basement	Slab	Trailer	
Total number of floors above ground			<u></u>	
Total Number of Rooms in Residence				

Suggested room type names	5		
Study Child Bedroom (SBDR)	Bathrooms (BTR #)	Living Room (LR)	Dining Room (DR)
Other Bedrooms (BDR #)	Family Room (FR)	Play Room (PR)	Kitchen (K)
Breakfast Room (BRKR)	Nursery (NSRY)	Porch (P)	Hallways (H #)
Occupant Main Entrance (ME)	••••		• • •

Global Positioning S	System (performed	l at secured back yard location)
<ul> <li>Allow to operate for</li> </ul>	fifteen minutes prio	to recordin_ readings
I atitude	٥ 	minutes
Longitude	0	minutes
		and a second second second second second second second second second second second second second second second

Date ( XRI :	(MM/D)	Date (MM/DD/YY)//////	//-			KRF Calab	<u>XRF Culturation Check</u>	<u>icc k</u>			Ի դեւ ս1	
Inspt Initial	Ime	Response Verification	One (0 29 mg/cm ² )	mg/cm ² )	<u>Source Chuch</u> Two (1 0 mg/cn	<u>Source Chuch</u> Two (1 0 mg/cm ² )	Three (1 63 mg/cm )	3 mg/cm )	Lour Brek of Two	of Two	<b>Ατιιοη/Communits</b>	
			Sample No	Result	Sample No	Result	Sample No	Result	Sample No	Result		
			Average		*							
										-		Т
			Average	×		\$						
									,			T
												Τ
	3	* *	Average	1	~ ~ ~ ~ ~							<u> </u>
												Т
			Avernge	*								
	**** ****	** ** ** *	Average	2 * *	** **	* *	**	* *		*		T
ş		***	Avernge	**	* * *		* *	* *	***	5		
												T
	-											
		*	Average	× 、	\$							Ī
Perform	all calibrati	Perform all calibration checks on top of instrument case	of instrument c	.								٦

XRF Cubration Check

-

Perform each calibration check 20 seconds each for three trials and average Perform calibration checks

I not to use at each location I strate that so cked/dropped or other shift numpact Instrument was turned off for one hour If any value is off be more than 20 / from the average then repeat test Check if performed

11-47

## FRM 150 July 29 1995 Paint Chip Collection

Put ID Sticker Here	Date (MM/DD/YY) _ / _ /

	In/Qut/	Room No or	Surface	Comments/location
	<u>D</u> etatched	Wall letter	No	
P 1				
P 2			ļ	
P 3				
<u>P 4</u>				
P 5		· · · · · · · · · · · · · · · · · · ·		
P 6		<u></u>		
P 7				
P 8				
P 9				
P 10		<u></u>		
P 11				
P 12				
P 13				
P 14				
P 15				
P 16				
P 17				
P 18				
P-19				
P 20			1	
P 21				
P 22				
P 23				
P 24			1	
P 25				
P 26			[	
P 27			1	
P 28			1	
P 29				
P 30				
P 31				
P 32			1	

### FRM 200 - Floor Dust Vacuum Collection

Put ID Sticker	Composite Sample Number <u>V-</u>
Here	Date (MM/DD/YY) _ / _ /
	Inspector Initials (F/M/L)//

General Composite Description

Location and Description for each composite (See Indoor Environmental Assessment Diagram)

1 Room number _____ Floor type (carpet wood tile linoleum other _____ General Comments

Dimensions of vacuumed area (inches) X Calibration check Y N Visible Soil/dust (Circle One) Y N Surface very smooth (1) to very rough (5) (Cirlce One) 1 2 3 4 5

2 Room number ____ Floor type (carpet wood tile linoleum other _____ General Comments

Dimensions of vacuumed area (inches)	X		Calıl	oration	check	Y	Ν
Visible Soil/dust (Circle One) Y	N						
Surface verv smooth (1) to verv rough (5)	) (Cirlce One)	1	2	3	4	5	

3 Room number ____ Floor type (carpet wood tile linoleum other _____ General Comments

Dimensions of vacuumed area (inc	hes)	X		Calıb	ration	check	Y	Ν
Visible Soil/dust (Circle One)	Y	N						
Surface very smooth (1) to very ro	ugh (5) (	Cirlce One)	1	2	3	4	5	_

4 Room number _____ Floor type (carpet wood tile linoleum other ______ General Comments

Dimensions of vacuumed area (inches) X Calibration check Y N Visible Soil/dust (Circle One) Y N Surface very smooth (1) to very rough (5) (Cirice One) 1 2 3 4 5

Dimensions of vacuumed area (inches)	Can	bration	спеск	Ŷ	IN .
Visible Soil/dust (Circle One) Y N					
Surface very smooth (1) to very rough (5) (Cirl e One) 1	2	3	4	5	

	.ck	A ¢ I Number														
ן ולי	Post Calibi ition check	I low R IL Check (I )														
	ost Calil	Cal I r itor Nime														
	³ d	lime														
		Rotometer Setting														
	Calibration	Averngm _e Number														
		Flow Rate Average (L)														
		1 me														
		Pump SN														
		Calibrator Name														<u>טר עומגיזיזע צואזישנוצאית אזועוצג ריד ס אצראער אס ד יא י</u>
		Date						- 5								TIE TO BREADE BUILT IN

11-51

c r

# I IXIVE 2.1 U Sumpling Pump Calibration Form

Dust Wipe Collection	FRM	250	Into 29	1005
Dust Wipe Collection	LUM	230	Jun 29	1992

Put ID Sticker	Composite	Sample Nu	mber <u>D</u>	Date (MM/DI	<u>۲</u> ۲۲)	/_/
Here	Incodes In	unale (E/M				
	inspector in	itiais (F/M	/L)_/_/_			
General Composite Descripti	on	<u></u>	<u></u>			
					<u> </u>	
Location and Description	on for each com	posite (See	Environmental A	ssessment Diagram	n)	
1 Room number	Su	rface numb	er Comr	ments		
Dimensions of wiped ar	ea (inches)	x				
Soiling Index (Circle Y	•					
Visible loose soil/du			First wipe Vi		Y	N
Visible Movement w	hen blown Y	N				N
				isible soiling	Y	N
Smoothness of surface	very smooth (	l) to very r	ou ₅ h (5) I		4	5
2 Room number	Sur	face numb	er Comn	nents		
	(mahaa)	v				
Dimensions of wiped ar Soiling Index (Circle Y		^				
Visible loose soil/dus		N	First wine Vi	cuble coulung	Y	N
Visible Movement w		N N	Second wine	Visible souling	Ŷ	N
v ISIDIE MOVEMENT w	nen biown i	14		isible soiling	Ŷ	N
Smoothness of surface	very smooth (	l) to verv r			4	5
		.,				
Room number	Sur	face numb	er Comn	nents		
Dimensions of wiped ar	ea (inches)	Y				
Soiling Index (Circle Y		^				
Visible loose soil/dus		N	First wine Vi	sible soiling	Y	N
Visible Movement w				-	Y	N
VISION PROVENIENT W	nen blown 1		Third wipe V	-	Ŷ	N
Smoothness of surface	very smooth ()	I) to very re			4	5
4 Room number	Sur	face numb	er Comn	nents		
Dimensions of wiped ar		X				
Soiling Index (Circle Y			<b>-</b>	- 1. 1 1	.,	.,
Visible loose soil/dus		N	First wipe Vis	-	Y	N
Visible Movement w	nen blown Y	N	Second wipe	-	Y	N
Concertance of automatic		1) to	Third wipe V	-	Y	N
Smoothness of surface	very smooth (	j to very r	יר (ג) וו ^{קוור}	2 3		5
5 Room number	Sur	face numb	er Comn	nents		
Dimensions of wiped ar	ea (inches)	^				
Soiling Index (Circle Y						
-		N	First wipe Vi	sible soilin_	Y	N
Visible loose soil/dus						
Visible loose soil/dus Visible Movement w	hen blown Y	N	Secord wipe	Visible soilin.	Y	N
	hen blown Y	N	Secord wipe Third wipe V		Y Y	N N

# FRM 300 Floor Dust Vacuum Bag Collection

		1 D			
Put ID Sticker	Sample Num	iber <u>B</u>		Date (MM/DD/YY) _ / _ /	
Here	• . •			, ,	
	Inspector Ini	tials (F	/M/L) _	_/_/_	
Comments					
		<u> </u>			
		·			
Brand					
Medal					
Model					
Disposable Bag (Circ	le Anel	v	N		
	ne Onej	I	14		
How full (Circle One	e) Full	4/د	1/2	Less than 1/2	
If a sample could not	be collected in	idicate	reason t	below	
Refused by oc	cupant				
No vacuum pr	esent				
<u>.</u>					
Other					

____ ......

_

_

----

		Se	rrivi 4UU Separate Page For Each Side Of Si	<b>FOR Each</b>	Each Side Of Str	DUTDOOR PAINTED : ucture Dr	OUTDOOR ENVIRONMENTAL ASSESSMENT PAINTED SURFACES ONLY ructure Draw Diagram On Reverse Side Of Shi	MENTA S ONLY ON Re	L ASSES verse Sid	OUTDOOR ENVIRONMENTAL ASSESSMENT PAINTED SURFACES ONLY Iructure Draw Diagram On Reverse Side Of Sheet (Indicate North)
Put ID Sticker	ker	Ň	WHERE SUPPLIED [Write Highlighted Letter in Space Provided	LIED [Writh	Highlighte	d Letter in :	Space Prov	ded		
Here		Da	Date (MM/DD/YY)/	- <u>-</u>		ector Initials	Inspector Initials (F/M/L) /	_/_/	X	XRF N0 Prgc_of
Wall Letter	(Start v	(Start with front entrance and go clockwise) OR	ance and go	clockwise) (		- E I	If detatched areas	d areas		
Direction fa	Direction facing away from residence? (Circle One	m residence?	(Circle On	шł	ŝ	SW W	( MN			
Any visible	Any visible paint chips present on the ground? (Circle One	esent on the c	ground? (Cii		Yes No	~	Total No Doors	Doors		Total No Windows
Surface No	Surface Type	Substrate Type	Damage Type	Damage Source	Total (sqft)	Damage (sqfl)	XRF (mg/cm )	Burted Y or N	XRF Sample	Comments
-									2	
2										
3										
4										
ŝ										
<u>ه</u>										
~									}   	
æ										
6										
10										
:										
12										
13										
14				-						
<ol> <li>1 Door</li> <li>2 Door Jam</li> <li>2 Door C sing</li> <li>4 Wall</li> <li>4 Wall</li> <li>5 Stair T cad</li> <li>5 Stair T cad</li> <li>5 Stair T cad</li> <li>6 Stair Riscr</li> <li>7 Win Well</li> <li>8 Win Cas nq</li> <li>9 Win Lash</li> <li>10 Post</li> </ol>	11 Rail 12 Floor 13 Und Floor 14 Ea e 15 Pi y Cquip 16 Furn ture 17 Structu e 20 Other	Wood Metal Siding MAsonry Brick Other Not Known	Chipping Peeling Flaking CRacking Loose None Other	Water Gouge Aging/Use Scrape WEather None None	General Con Indicate O	General Comments Indicate Other in space provided	provided			

### F KIVI 910 CHAIN OF CUSTODY RECORD

(O She t for Each Residenci)

P c __ of __ Date __ /__ / __

Put ID StickerBReStd9ContactDadSterlinPh DCIHHereSant LouLnersity(14)9S13(W)ContactDaSchool of Pbl cHealth66(14)9S10(F)Lndeil Bl dStLouNO6108StStStSt

	Sample Number	Laboratorv Number	Date Collected	Sample Area (inches) $\lambda_{}$ or Core Depth	Comments
		<u> </u>	· <u> </u>	or Core Depth	
1					
2					
s					
<u> </u>					
5				<u> </u>	
<u> </u>				······································	
6					
7					
8					
9					
10					
11					
12		1			
		<u> </u>			
د ا		<u> </u>			
14		<u> </u>			
Ŀ					
16					
17					
18					
19					
20					

	Signature	Company	Date/Time	Comments	
Relinquished Bv					
Recieved Bv					
Relinquished By					
Recieved By					
Relinquished By					
Recieved By					

Prefix before sample number indicates matrix type P Paint chip W Drinking Water with nitric acid preservative (supplied by lab) V Hand vacuum with 0.8u MCE filter for dust/soil B Vacuum bag with dust/soil sample S Soil sample D Wipe sample to include dimensions of area tested

07/31/95

Appendix 12 Environmental Laboratory Certifications

12 1

. _

. . . . . . . . . .

Appendix 14 Laboratory Detection and Quantification Limits for Environmental Samples

-----

Appendix 16 Nist Standard Reference Materials used for Spikes

. _.. . . . . _ . _

# NIST STANDARD REFERENCE MATERIALS USED FOR SPIKES

Sample Type	Standard Reference Material (SRM)
Wipe	NIST Lead Paint Dust Standard Powdered Lead Based Paint SRM 1579a
Vacuum Cassette Filter	NIST Standard Urban Particulate Standard SRM 1648
Soil	NIST Standard Montana II Soil SRM 2711
Water	NIST Trace Metals in Water Standard SRM 1643d

---

Appendix 17 Intended and Achieved Frequency of Environmental Sample Quality Control

the second second second second

- --- --- ---

# INTENDED AND ACHIEVED FREQUENCY OF ENVIRONMENTAL SAMPLE QUALITY CONTROL

4

T

Quality Control Type	Dust Wipe	Vacuum Bag	Soil	Vacuum Cassette	Drinking Water	Latex Gloves	Collection bags
SRM		NA				NA	NA
• Intended	2%		2 5%	20%	2.5%		
<ul> <li>Achieved</li> </ul>	1 9%		2 4%	20%	2 3%		
Field Blanks ¹		NA	NA		NA		
<ul><li>Intended</li><li>Achieved</li></ul>	l/d fiditamn 1/da fiditamn			1/day/fildtam 1/d /fildteam		2 5% 1%	2 5% 1 5 %
Side By Side Intended Achieved	NA	NA	۵% ک 1%	NA	NA	NA	NA
Split • Intended • Achieved	NA	5% 53%	ى% 2 3%	NA	5% 59%	NA	NA

NA Not applicable This type of quality control was not performed Field blacks for dust where and vacuum filter cassetter were of

Field blanks for dust wipes and vacuum filter cassettes were obtained on a daily basis for each field team