

8030 Flint Street ◆ Lenexa, Kansas 66214 ◆ (913) 894-2600 ◆ FAX (913) 894-6295

August 19, 2002

ID #: Break:

Mr. Roy Crossland START Project Officer U.S. Environmental Protection Agency, Region 7 901 North 5th Street Kansas City, Kansas 66101

Subject:

Revised Removal Site Evaluation, Offsite Sediment and Soil Sampling

Sentinel Wood Treaters Site, Ava, Missouri

U.S. EPA Region 7 START 2, Contract No. 68-S7-01-41, Task Order No. 0077

Task Monitor: Eric Nold, On-Scene Coordinator

Dear Mr. Crossland:

The Tetra Tech EM Inc. Superfund Technical Assessment and Response Team (START) is submitting the enclosed removal site evaluation for offsite sediment and soil sampling conducted downgradient of the Sentinel Wood Treaters site. This document was originally submitted to EPA on August 1, 2002 and has been revised based on comments received by the On-Scene Coordinator, Mr. Eric Nold. If you have any questions or comments regarding this submittal, please contact the project manager at (913) 495-3910.

Sincerely,

Ted Faile, PG, CHMM

START Project Manager

Hieu Q. Vu, PE, **E**HMM

START Program Manager

Enclosures

REMOVAL SITE EVALUATION FOR OFFSITE SEDIMENT AND SOIL SAMPLING SENTINEL WOOD TREATERS SITE – AVA, MISSOURI

Superfund Technical Assessment and Response Team (START) 2

Contract No. 68-S7-01-41, Task Order No. 0077

Prepared For:

U.S. Environmental Protection Agency Region 7 901 North 5th Street Kansas City, Kansas 66101

August 19, 2002

Prepared By:

Tetra Tech EM Inc. 8030 Flint Street Lenexa, Kansas 66214 (913) 894-2600

CONTENTS

Secti			<u>Page</u>
1.0	INTRO	DDUCTION	1
2.0		DESCRIPTION AND PREVIOUS INVESTIGATIONS	
	2.1	LOCATION AND DESCRIPTION	1
3.0	REMO	VAL SITE EVALUATION ACTIVITIES	2
	3.1 3.2 3.3 3.4 3.6	TOPOGRAPHIC SURVEY SEDIMENT SAMPLING GROUNDWATER SAMPLING SOIL SAMPLING SAMPLE DELIVERY	2 4 4
4.0	ANAL	YTICAL RESULTS	6
·	4.1 4.2 4.3 4.4	SEDIMENT SAMPLE RESULTS SOIL SAMPLE RESULTS GROUNDWATER SAMPLE RESULTS IMMUNOASSAY SCREENING RESULTS	
5.0	CONC	LUSIONS	9
	5.1 5.2	PRE-REMEDIAL CONSIDERATIONS	
6.0	REFE	RENCES	10
App	endices		
Α	FIGU	IRES	
В.	DIOX	KIN IMMUNOASSAY SCREENING RESULTS AND TECHNOLOGY EVALUATI	ON
С	SUPE	ERFUND REMOVAL SITE EVALUATION FORM	
Atta	<u>chment</u>		
1	LAB	ORATORY DATA PACKAGES	

CONTENTS (Continued)

TABLES

<u>Table</u>	<u>Pa</u>	<u>ge</u>
1	SEDIMENT SAMPLE IDENTIFICATION SUMMARY	3
2	SOIL SAMPLE IDENTIFICATION SUMMARY	5
3	SEDIMENT SAMPLE RESULTS SUMMARY	8

1.0 INTRODUCTION

Tetra Tech EM Inc. (Tetra Tech) was tasked by the U.S. Environmental Protection Agency (EPA) Region 7 Superfund Division, under the Superfund Technical Assessment and Response Team (START) 2 Contract No. 68-S7-01-41, Task Order No. 0077, to conduct a Removal Site Evaluation (RSE) at the Sentinel Wood Treaters (Sentinel) Site in Ava, Missouri. The primary objective of the RSE was to assess potential contamination of an unnamed tributary to Prairie Creek, which drains the Sentinel site. Sediment and soil sampling was conducted downgradient of the site to determine whether any contaminants associated with the Sentinel site have impacted the tributary. Low levels of dioxin were previously reported in a sediment sample collected from the tributary, but it is unknown whether this contamination is attributable to historical operations at the site. As part of this task order, Tetra Tech START assisted EPA with conducting a topographic survey of the tributary, collecting sediment samples from the tributary, collecting soil samples from a residential garden near the tributary, and collecting a groundwater sample from a residential well near the site. The following sections will discuss previous investigations at the site, activities performed during the current RSE, and analytical results from environmental samples collected during the RSE.

2.0 SITE DESCRIPTION AND PREVIOUS INVESTIGATIONS

Information regarding the site's location, description, and relevant investigation history is discussed in this section.

2.1 LOCATION AND DESCRIPTION

The Sentinel Site is located in the City of Ava, Missouri, which is approximately 55 miles southeast of Springfield, Missouri (see Figure 1, Appendix A). The site is on the northern side of Northwest 12th Avenue, and was formerly used as a wood treatment facility from 1959 through the mid-1980s. It is currently used as a custom cabinet making facility, with two retail stores, Dollar General and Curtis Department Store, located along the front of the property near Northwest 12th Avenue. Land use surrounding the site is a mixture of residential, commercial and light industrial, and pasture land. The site is bisected by an unnamed tributary which empties into Prairie Creek approximately 2 miles south of the site (USGS 1982).

2.2 PREVIOUS INVESTIGATIONS

Previous investigations have been conducted at this site by the EPA, the Missouri Department of Natural Resources (MDNR), and the potentially responsible party (PRP), Sentinel Industries. The results of these investigations indicate that the site is a source of pentachlorophenol (PCP), dioxin, and other possible contaminants. In 2000-2001, the MDNR conducted an expanded site investigation (ESI) at the Sentinel Site. The scope of the ESI included sediment and surface water sampling from the unnamed tributary to Prairie Creek, downstream of the site. A sediment sample collected approximately 1,400 feet downstream of the site was reported to contain dioxin (2,3,7,8 dioxin total equivalents [TEQ]) at a concentration of 2.3 micrograms per kilogram (μg/kg).

3.0 REMOVAL SITE EVALUATION ACTIVITIES

Site activities for this RSE included a topographic survey; sampling of environmental media, including sediment samples from the unnamed tributary to Prairie Creek; one groundwater sample from a private well near the site; and soil samples from a residential garden located near the tributary. Surveying activities, sediment sampling, domestic well sampling, soil sampling, quality assurance (QA)/ quality control (QC) sampling, and deviations from the site-specific quality assurance project plan (QAPP) will be discussed in this section.

3.1 TOPOGRAPHIC SURVEY

Tetra Tech START team members met with EPA personnel at the site during the week of April 22, 2002, to conduct surveying of the tributary south of the site. The stream was surveyed from Northwest 12th Avenue to a point approximately 1,500 feet downstream (south) of Northwest 12th Avenue (see Figure 2, Appendix A). For sampling purposes, this segment of the tributary was divided into 56 cells, each of which were approximately 28 feet long. The center of every third cell was then designated for sampling by marking with colored tape and a wooden stake (if possible).

3.2 SEDIMENT SAMPLING

Tetra Tech START team members returned to Ava the week of April 29, 2002, to collect sediment samples from the tributary. Samples were collected from every third cell (19 of the 56 cells) which were designated for sampling the previous week. In addition, two background samples were collected from two branches of the tributary located upstream of the Sentinel site. A field duplicate was also collected,

2

G9011/0077

for a total of 22 sediment samples. Samples were collected starting at the most downstream location and progressing upstream. The samples were collected using disposable pie pans and stainless steel spoons. New nitrile gloves were worn for the collection of each sample to avoid cross-contamination. Each sediment sample consisted of nine aliquots (subsamples) which were homogenized in the pie pan and then transferred into three 8-ounce jars. The jars were then labeled and placed in iced coolers. One of the sample jars collected for each sample was retained by Tetra Tech START for screening analysis using High Performance Dioxin/Furan Immunoassay Kits. The dioxin screening was conducted at the Tetra Tech START mobile laboratory facilities in Lenexa, Kansas during the week of May 13, 2002. The two remaining sample jars were delivered to the EPA Region 7 Laboratory in Kansas City, Kansas, for analysis of dioxins/furans and semivolatile organic compounds (SVOC).

Table 1 summarizes the sediment sample identification numbers and the associated stream cell identification numbers.

TABLE 1

SEDIMENT SAMPLE IDENTIFICATION SUMMARY
SENTINEL WOOD TREATERS SITE – AVA, MISSOURI

EPA Sample ID.	Stream Cell ID.
1506-1	254
1506-2	251
1506-3	248
1506-4	245
1506-5	242
1506-6	239
1506-7	236
1506-8	233
1506-9	230
1506-10	227
1506-11	224

EPA Sample ID	Stream Cell'1D
1506-12	221
1506-13	218
1506-14	215
1506-15	212
1506-16	209
1506-16-FD	209
1506-17	206
1506-18	203
1506-19	· 200
1506-20	NA (Background to NW)
1506-21	NA (Background to NE)

Notes:

EPA U.S. Environmental Protection Agency

FD Field duplicate

1D Identification number

NA Not applicable NE Northeast NW Northwest

G9011/0077

3.3 GROUNDWATER SAMPLING

On April 30, 2002, one groundwater sample was collected from a private well at the residence of Ms. Julane Williams. The Williams' residence is located approximately 2,000 feet northeast of the Sentinel site (see Figure 3, Appendix A). A sample previously collected from this well by MDNR in December 2000 had a reported dioxin TEQ level of 0.000003 micrograms per liter (µg/L), or 3.0 picograms per liter (pg/L). The sample was collected from a spigot on the southeastern side of the house, between the front door and the garage. The sample (EPA ID 1521-1) was collected directly into two, 1-gallon jugs and submitted to the EPA Region 7 Laboratory for analysis of dioxins/furans and pentachlorophenol (PCP).

3.4 SOIL SAMPLING

Tetra Tech START team members returned to Ava on May 7, 2002, to collect soil samples from two garden plots at the residence of Ms. Kelly Morpeth. The Morpeth residence is located adjacent to the Prairie Creek tributary, about 0.5 mile downstream of the site (see Figure 3, Appendix A). Soil samples were collected from two depths at six locations using a Geoprobe™ slam bar apparatus. The samples were collected from depths of 0 to 6 inches and 18 to 24 inches, using a Geoprobe™ Macro-Core soil sampler with disposable acetate liners. For each sample, soil was packed into two 40-milliliter vials, with as little head space as possible, for analysis of volatile organic compounds (VOC). Additional sample material was placed into two 8-ounce jars, one for laboratory analysis of SVOCs and the other for screening analysis using High Performance Dioxin/Furan Immunoassay Kits. The dioxin screening was conducted at the Tetra Tech START mobile laboratory facilities in Lenexa, Kansas during the week of May 13, 2002. The containers were all labeled and placed into an iced cooler. Samples for VOC and SVOC analysis were submitted to the EPA Region 7 Laboratory. Table 2 summarizes the EPA sample identification numbers and sample locations for all soil samples.

TABLE 2

SOIL SAMPLE IDENTIFICATION SUMMARY
SENTINEL WOOD TREATERS SITE – AVA, MISSOURI

EPA Sample ID	Location
1535-1	SS1, 0 to 6 inches bgs
1535-2	SB1, 18 to 24 inches bgs
1535-3	SS2, 0 to 6 inches bgs
1535-4	SB2, 18 to 24 inches bgs
1535-5	SS3, 0 to 6 inches bgs
1535-6	SB3, 18 to 24 inches bgs
1535-7	SS4, 0 to 6 inches bgs
1535-8	SB4, 18 to 24 inches bgs
1535-9	SS5, 0 to 6 inches bgs
1535-10	SB5, 18 to 24 inches bgs
1535-11	SS6, 0 to 6 inches bgs
1535-12	SB6, 18 to 24 inches bgs
1535-13-FB	NA (soil trip blank)

Notes:

EPA U.S. Environmental Protection Agency

ID Identification numberbgs Below ground surface

3.5 QUALITY ASSURANCE AND QUALITY CONTROL SAMPLING

One field duplicate sediment sample was collected for QA/QC purposes. In addition, one matrix spike and matrix spike duplicate (MS/MSD) soil sample and one soil trip blank were submitted for analysis of VOCs.

3.6 SAMPLE DELIVERY

Tetra Tech START delivered the sediment and groundwater samples to the EPA Region 7 Laboratory on May 1, 2002. The soil samples were delivered to the EPA Region 7 Laboratory on May 8, 2002. The samples, sample collection field sheets, and chain-of-custody (COC) forms were submitted to Ms. Nicole Roblez at the EPA Region 7 Laboratory. Copies of the sample collection field sheets and COC forms are included with the data packages in Attachment 1.

4.0 ANALYTICAL RESULTS

Analytical results for the sediment, soil and groundwater samples are discussed in the following sections.

4.1 SEDIMENT SAMPLE RESULTS

Table 3 summarizes the analytical results of the sediment samples. The sediment sample data indicate that very low levels of dioxins have been released to the tributary and that the Sentinel site source is an apparent source of this dioxin. Dioxin TEQ levels in the two background samples (1506-20 and -21) were 0.011 and 0.008 μg/kg. Dioxin TEQ levels in samples collected downstream of the site ranged from 0.130 μg/kg to 0.595 μg/kg. The average TEQ levels for all downstream sediment samples was 0.316 μg/kg. While the data clearly indicates the site as a source of dioxins to the surface water pathway, the TEQ levels in all samples were below 1.0 μg/kg, a removal action level used consistently by EPA at other dioxin sites in Region 7. The MDNR Cleanup Levels for Missouri (CALM) guidance does not have a standard for dioxin (MDNR 2001).

The Sentinel site also appears to be a source of SVOC contamination within the tributary. Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene and indeno(1,2,3,cd)pyrene were all reported in downstream samples at levels significantly above background and, at many locations, above the respective CALM level (MDNR 2001). Other SVOCs were also reported in the samples, though at concentrations below their respective CALM levels. In general, the highest levels of SVOCs were found in samples 1506-8 through -19, which were collected within the upper portion (i.e., that portion closest to the site) of the surveyed stream segment. However, several SVOCs were also reported in one of the background samples (1506-21), indicating there may be another source of these compounds in addition to Sentinel. Three of the compounds reported in background sample 1506-21, benzo(a)pyrene, benzo(b)fluoranthene, and di-n-octylphthalate, were reported at levels above the CALM guidance. The extent of SVOC contamination in the tributary is unknown. Levels of benzo(a)pyrene, benzo(b)fluoranthene, and dibenz(a,h)anthracene were reported above the CALM limits in sample 1506-1, the sample collected furthest from the site.

With the exception of di-n-octylphthalate, all of the SVOCs reported in the sediment samples are polycyclic aromatic hydrocarbons (PAHs). PAHs are a group of over 100 different chemicals that are formed during the incomplete burning of coal, oil and gas, garbage, or other organic substances. They are also found in diesel fuel, asphalt, coal tar, crude oil, creosote, and roofing tar, and a few are used in medicines or to make dyes, plastics, and pesticides (ATSDR 2002). Therefore, while it is likely that

G9011/00**7**7

much of the PAH contamination in the tributary is directly related to former wood treatment operations at Sentinel, other likely sources include the asphalt parking area immediately south of the site, or the asphalt pavement on Northwest 12th Avenue.

PCP, a contaminant linked to this and other wood treater sites, was not reported above the detection limits in any of the sediment samples.

4.2 SOIL SAMPLE RESULTS

Soil samples collected from the Morpeth garden did not contain any reportable levels of VOCs or SVOCs, with one exception. Sample 1535-9, collected from Boring 5 at a depth of 0 to 6 inches bgs, contained 11,000 μg/kg of bis(2-ethylhexyl)phthalate (DEHP). However, this concentration is far below the CALM guidance level of 410,000 μg/kg for this SVOC. DEHP is found in polyvinyl chloride (PVC) plastic products such as toys, vinyl upholstery, shower curtains, adhesives, and coatings. Vinyl plastic may contain up to 40% DEHP. DEHP is also used in inks, pesticides, cosmetics, and vacuum pump oil (ATSDR 2002). Consultation with the laboratory chemist confirmed that this single detection of DEHP was most likely the result of a small piece of plastic in the soil sample.

4.3 GROUNDWATER SAMPLE RESULTS

The groundwater sample collected from the Williams residential well did not contain any reportable levels of dioxins or PCP.

4.4 IMMUNOASSAY SCREENING RESULTS

All 22 sediment samples and six of the garden soil samples were also analyzed using High Performance Dioxin/Furan Immunoassay Kits developed by Cape Technologies of South Portland, Maine. The dioxin screening was conducted at the Tetra Tech START mobile laboratory facilities in Lenexa, Kansas during the week of May 13, 2002. A detailed discussion of the screening results is presented in Appendix B. With one exception, the screening results did not indicate dioxin TEQ levels greater than 1.0 µg/kg in any of the soil or sediment samples. The TEQ screening result for the sediment sample collected from Cell 242 (1506-5) was reported at 1.21 µg/kg (1.14 µg/kg adjusted value), however, this value appears to be a false positive based on the EPA Region 7 laboratory results for this sample (0.13 µg/kg). A performance analysis of the immunoassay kits, based on a comparison with the EPA Region 7 laboratory data, is also included in Appendix B.

G9011/0077

TABLE 3

SEDIMENT SAMPLE RESULTS SUMMARY
SENTINEL WOOD TREATERS SITE – AVA, MISSOURI

			I M							E	PA Sampl	e ID (150	6-) & Ce	li ID 🛬										
		111	-2	-3	4 1	-5	-6-	1.73	- 8	9	10 &	-11	-12	-13	-14	×-15×	-16	-16-FD	317	-18	19	-20	-21	MDNR CALM
(Compound:	Units	254	251	248	245	242.	239	236;	233	230	227	. 224	221	218	215	212	209	209	206	-203	200	ÑĀ	ŇA	(µg/kg),
2,3,7,8-Dioxin Total Equivalents	μg/kg	0.365	0.207	0.334	0.595	0.130	0.274	0.264L	0.163	0.242	0.1 96L	0.567	0.429	0.514	0.162	0.427	0.255	0.289	0.242	0.250	0.410	0.011	0.008	NA
Anthracene	μg/kg	ND	ND	ND	ND	ND	ND	160	ND	ND	480	700	ND	ND	910	ND	ND	ND	ND	650	640	ND	ND	8,500,000
Benzo(a)anthracene	μg/kg	910J	ND	590	530J	ND	680J	860J	1700J	800J	2400J	2800J	1900J	1200J	3100	1800	1200	2000J	1600J	4700	5600	ND	820	1,000
Benzo(a)pyrene	μg/kg	980J	ND	700	610J	ND	690Ј	810J	1400J	.790J	2100J	2900J	1700J	1200J	2500J	2100J	1400J	2200J	1400J	4900J	6700J	ND	890J	200
Benzo(b)fluoranthene	μg/kg	1100J	ND	860	670J	ND	790J	860J	1400J	810J	2100J	3100J	1900J	1200J	2500J	2600J	1800J	2000J	1300J	5800J	8900J	ND	1200J	900
Benzo(g,h,i)perylene	μg/kg	1300J	ND	ND	770J	ND	830J	960J	1800J	1100J	2900J	1800J	2000J	1100J	2800J	1300J	660J	2200J	1800J	3500J	4500J	ND	510J	NA
Benzo(k)fluoranthene	μg/kg	890J	ND	650	620J	ND	670J	690J	1400J	800J	1700J	2800J	1500J	1100J	1900J	2300J	1500J	1700J	1200J	5200J	7000J	ND	1100J	8,000
bis(2-Ethylhexyl)phthalate	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	1800J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	500	410,000
Carbazole	μg/kg	ND	ND	ND	ND	ND	ND	ND	620	ND	1000	ND	850	600	1800	ND	ND	880	530	730	840	ND	ND	82,000
Chrysene	μg/kg	1400J	ND	870	· 820J	ND	1000J	1100J	2100J	1100J	3200J	4500	2600J	1700J	3800	2800	2000	2900J	2100J	6400	8900	ND	1500	36,000
Di-n-octylphthalate	μg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	.ND	ND	ND	ND	ND	ND	ND	ND	730J	300
Dibenz(a,h)anthracene	μg/kg	490J	ND	ND	ND	ND	ND	ND	640J	ND	1000J	750J	740J	ND	1200J	ND	ND	810J	740J	1200J	1600J	ND	ND	200
Fluoranthene	μg/kg ^s	1700	ND	1700	1200	670	1700	2000	4600	1700	8200	11000	5500	4300	11000	6100	4300	5700	3000	14000	'17000	ND	3100	1,600,000
Fluorene	μg/kg	ND .	ND	ND	ND	ND	ND	ND	130	ND	ND	ND	ND	ND	410	ND	ND	ND	ND	ND	ND	ND	ND	1,100,000
Indeno(1,2,3,cd)pyrene	μg/kg	1400J	ND	ND	690J	ND	780J	820J	1700J	950J	2800J	2100J	2200J	1100J	3000J	1200J	870J	2100J	1700J	3500J	4600J	ND	590J	3,000
Phenanthrene	μg/kg	1000	ND .	710	540	ND	850	1400	2900	1300	4600	5300	3100	2200	7000	2200	1600	3000	2800	6200	7600	ND	2300	NA
Pyrene	μg/kg	3300	590	2000	2900J	780	2200	2600	5100	2900	9800	11000	6700	4000	8600	6300	4600	7000	5600	14000	19000	ND	3000	2,100,000

Notes:

μg/kg Micrograms per kilogram
CALM Cleanup Levels for Missouri

FD Field duplicate

J Concentration is estimated

Actual concentration is greater than the reported value

MDNR Missouri Department of Natural Resources

mg/kg Milligrams per kilogram
NA No CALM standard available

ND Not detected

Concentrations in boldface type exceed MDNR CALM standards.

5.0 CONCLUSIONS

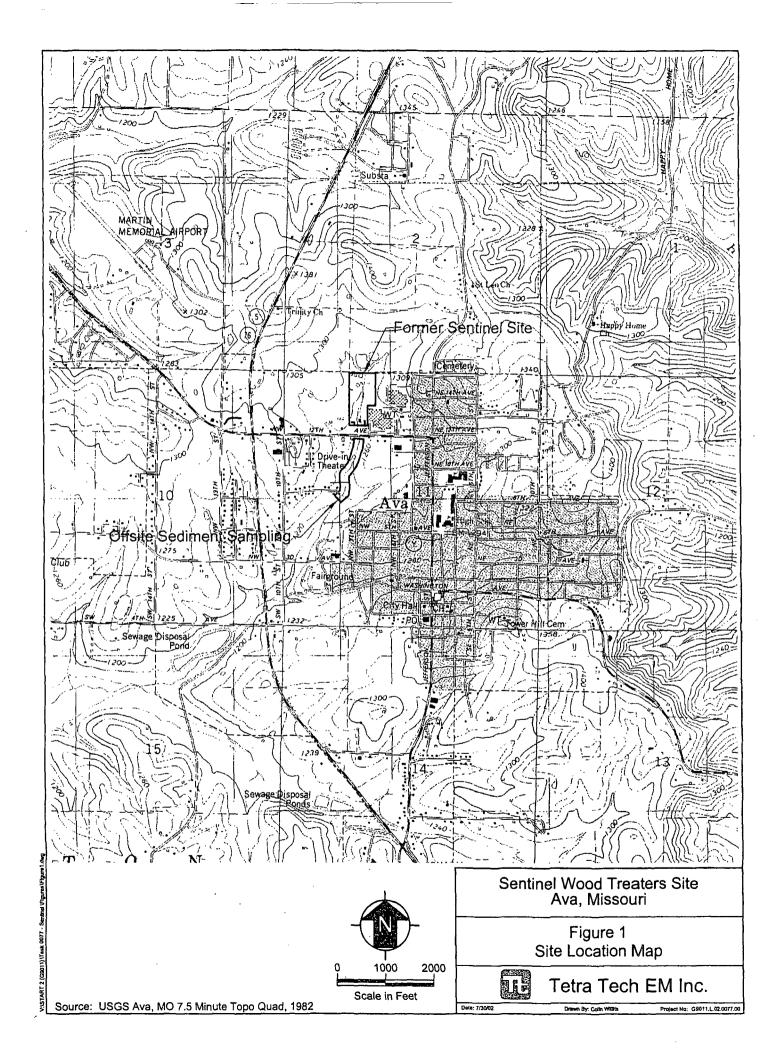
This section provides conclusions and recommendations with respect to potential future activities under the Superfund pre-remedial and removal programs.

5.1 PRE-REMEDIAL CONSIDERATIONS

Based on the tributary sediment data collected during this RSE, the Sentinel site appears to be a source of offsite dioxin and PAH contamination. The extent of dioxin and PAH contamination within the tributary is unknown, but reportable levels of these compounds are known to extend at least 1,500 feet downstream of the site (the extent of the sampling area encompassed by this RSE). Dioxin levels in the sediment do not appear to warrant further investigation at this time, because all reported concentrations were below 1.0 µg/kg. However, PAH levels in sediment exceed MDNR CALM levels throughout the 1,500-foot segment of the tributary sampled during the RSE. If EPA determines that the PAH levels identified in the sediment samples pose a potential threat to human health or the environment, additional sediment sampling may be considered to further characterize the extent and other potential sources of this contamination.

5.2 REMOVAL CONSIDERATIONS

Removal activities are currently underway at the Sentinel site. The purpose of these removal activities is to reduce or eliminate any further off-site migration of contaminants. Therefore, it may be assumed that the contamination levels (or at least that portion of the contamination contributed by Sentinel) reported in the off-site sediment samples represent a worst-case scenario. However, existing PAH levels in the sediment do exceed MDNR CALM levels. If EPA determines that these levels pose a potential threat to human health or the environment, off-site removal actions associated with the tributary may be warranted.

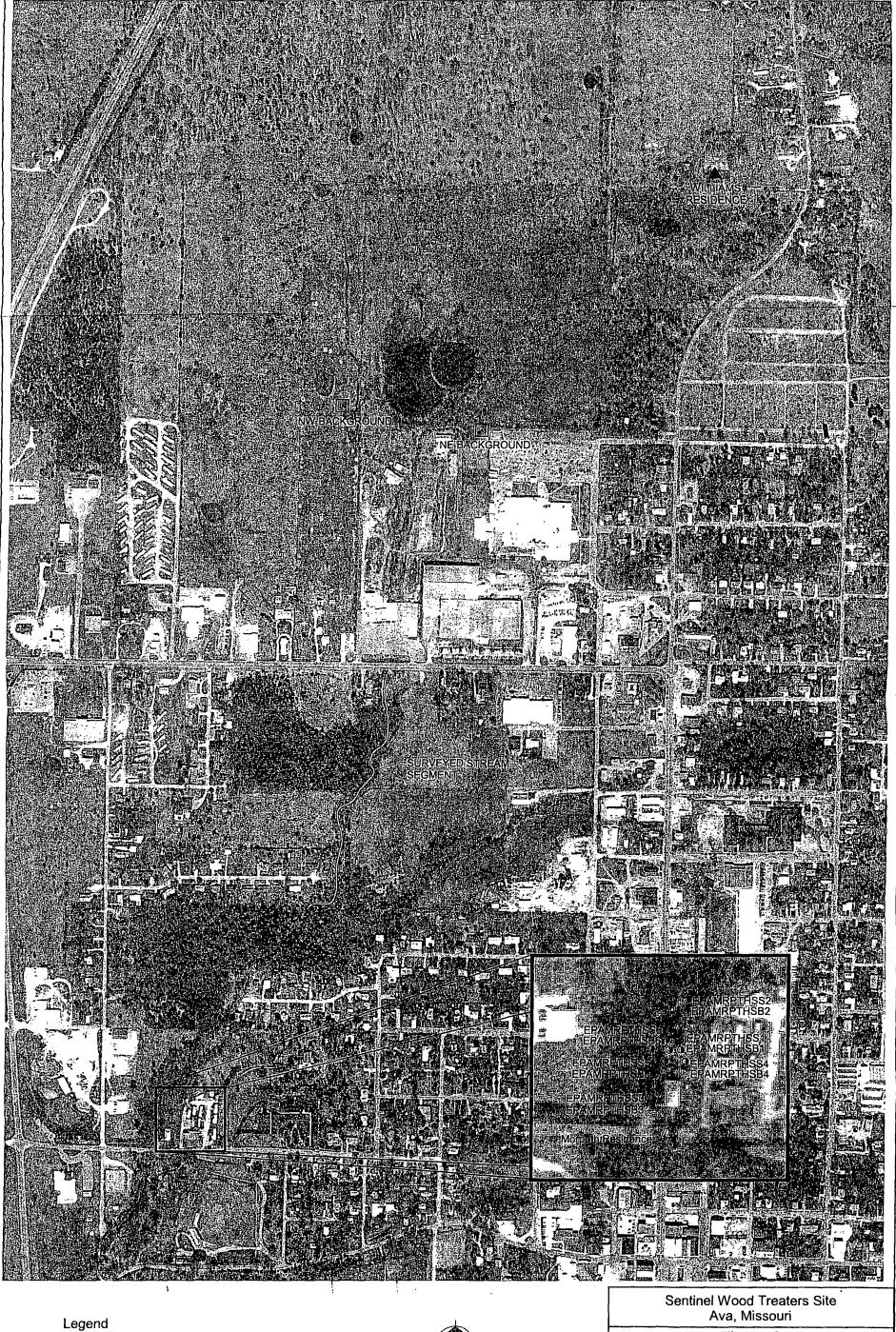

6.0 REFERENCES

- Agency for Toxic Substances and Disease Registry (ATSDR). 2002. The ATSDR ToxFAQsTM
 http://www.atsdr.cdc.gov/toxfaq.html. U. S. Department of Health and Human Services, Public Health Service. Atlanta, Georgia.
- Missouri Department of Natural Resources (MDNR). 2001. Cleanup Levels for Missouri (CALM).

 Division of Environmental Quality, Hazardous Waste Program. Jefferson City, Missouri. July.
- U. S. Geological Survey (USGS). 1982. 7.5-Minute Topographic Map. Ava, Missouri, Quadrangle. Washington, DC.

APPENDIX A

Figures



Project No: G9011.L.02.0077.00

Drawn By: Colin Willits

Date: 7/30/02

Source: Ava, MO DOQ 1995

- ▲ Private well sample
- Sediment sample
- Surface and subsurface soil sample

500

500 Feet

Figure 3
Soil, Groundwater, and Background Sediment
Sample Locations

Tetra Tech EM Inc.

Date: 7/30/02

Drawn By: Colin Willits Project No: G9011.L.02.0077.00

APPENDIX B

Dioxin Immunoassay Screening Results and Technology Evaluation

1.0 INTRODUCTION

A Removal Site Evaluation (RSE) was conducted to assess potential contamination of an unnamed tributary to Prairie Creek, which drains the Sentinel site. As part of the RSE, twenty-two sediment samples, including one field duplicate and two background samples, were collected from the tributary and submitted to the mobile laboratory unit (MLU) operated by Tetra Tech and to the EPA Region 7 Laboratory. The samples were analyzed by both laboratories for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-furans (PCDD/F).

Samples were prepared and analyzed by the MLU using Cape Technologies' High Performance Dioxin/Furan Immunoassay Kit. For the extraction and cleanup of these samples, Tetra Tech adhered to the procedures outlined in Application Note AN-008 (DRAFT), "Analysis of PCDD/F in Soils and Sediments at Low to Mid Parts per Trillion Using Rapid Extraction and Rapid One-step Cleanup" (see Attachment 1). Once the cleanup procedure was complete, sample extracts were analyzed using an immunoassay kit, following the procedures outlined in the DF1 Kit Insert (IN-DF1) (see Attachment 2). Split (confirmation) samples were prepared and analyzed by the Region 7 Environmental Protection Agency (EPA) Laboratory using a gas chromatography/high resolution mass spectrometry (GC/HRMS). Results for both sets of analyses are presented in the following section. Calculations and laboratory notes for the MLU samples are provided in Attachment 3.

2.0 RESULTS

Results from the MLU are reported as total dioxin equivalents (TEQs) in parts per trillion (ppt). Results from the EPA Laboratory report individual dioxin concentrations as well as the TEQs in ppt. The TEQs for both sets of analyses are presented in Table 1.

3.0 DISCUSSION

Both quantitative and semi-quantitative data comparisons can be made between the EPA laboratory data and the MLU data. Data can be compared quantitatively by calculating the relative percent difference (RPD) between the two data sets, and semi-quantitatively by determining the number of false positives and false negatives when compared against the removal action level of 1.0 part per billion (ppb). The comparisons are discussed in detail in the following sections.

TABLE 1 PCDD/F RESULTS PRESENTED AS TEQs FOR SEDIMENT SAMPLES SENTINEL WOOD TREATERS SITE - AVA, MISSOURI

Sample Cell Number	EPA Laboratory Results (ppt)	MLU Results (ppt)
254	365	162
. 251	207	225
248	. 334	450
245	595	ND
242	130	1,210
239	274	368
236	264 L	820
233	163	541
230	242	413
227	196 L	360
224	567	600
221	429	244
218	514	244
215	162	183
212	427	145
209	255	265
209 (Field Duplicate)	289	202
206	242	45
203	250	82
200	410	82
Background-Northwest	10.7	ND
Background-Northeast	7.89	ND

Notes:

EPA

U. S. Environmental Protection Agency Actual Value Greater Than The Value Reported Mobile Laboratory Unit L

MLU

ND

Not Detected

ppt

Parts Per Trillion

3.1 Quantitative Comparison

There are several factors that should be taken into consideration before the MLU results may be compared to the EPA results. One factor is that all calculations for the enzyme immunoassay (EIA) kits are based upon the toxic equivalency factor (TEF) values established in 1997 by the World Health Organization (WHO); the data generated by the EPA laboratory is based on older TEF values. The difference between the older TEF values and the WHO TEF values are presented in Table 2.

TABLE 2
CHANGES IN TEFS MADE BY THE WORLD HEALTH ORGANIZATION IN 1997
SENTINEL WOOD TREATERS SITE - AVA, MISSOURI

Compound 2	Old TEF Values.	WHO TEF Values
1,2,3,7,8-PCDD	0.5	1.0
OCDD	0.001	0.0001
OCDF	0.001	0.0001

Notes: OCDD Octachlorodibenzodioxin

OCDF Octachlorodibenzofuran
PCDD Pentachlorodibenzodioxin
TEFs Toxic Equivalency Factors
WHO World Health Organization

In order to make a the most meaningful comparison between the MLU data and the EPA data, the EPA data first needs to be recalculated using the WHO TEFs. The recalculated EPA data are found in Table 3. (Note that the actual values may differ slightly due to rounding errors.)

Another factor that needs to be considered when comparing the two data sets is the specificity of the EIA kits. According to IN-DF1 (see Attachment 2), the anti-dioxin antibody in the EIA kit binds to different PCDD/F congeners with different affinities. These affinities, expressed as percent crossreactivities relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are roughly parallel the WHO TEF values. The values for the individual PCDD/F congeners are multiplied by the percent crossreactivity values, instead of the TEF values, to establish a predicted EIA value.

Using the EPA Laboratory data, a correlation can be established between the actual values and the predicted EIA values for each congener, thereby determining what is known as the calibration adjustment factor (CAF). This adjustment factor is incorporated into most of the 4000 series methods, and is a

common practice. The EIA results are multiplied by the CAF to obtain results which are more comparable to the EPA laboratory data because the corrected EIA results now account for the different crossreactivities for the different congeners. The corrected EIA results are presented in Table 3.

RPDs were calculated for all samples with non-qualified, positive values, inputting the recalculated EPA results (based on the WHO TEFs) and the corrected EIA values into the following formula:

RPD =
$$\frac{|X - X_1|}{0.5(X + X_1)}$$
 x 100

where

X = Recalculated EPA Results

 X_1 = Corrected EIA Results

According to EPA data assessment guidelines, good comparability is defined as any RPD less than 67, fair comparability is defined as any RPD between 67 and 167, and poor comparability is defined as any RPD greater than 167. The differences in samples analyzed by the EPA verses the MLU could be attributed to many things including, but not limited to, sample characteristics (homogeneity, moisture content), differences in analytical techniques used, or the amount of sample used for the analysis (dilution factor). The RPDs between the two data sets are presented in Table 3.

Samples collected from Cells 254, 251, 248, 239, 230, 224, 221, 218, 215, 209, and 209 FD exhibited good comparability. Samples collected from Cells 242, 233, 212, 206, 203, and 200 exhibited fair comparability. RPDs for samples collected from Cell 245, background-northwest, and background-northeast could not be calculated because dioxin was not detected in the MLU samples. RPDs for samples collected from Cells 227 and 236 could not be calculated because these results were qualified by EPA. (The actual values were greater than the value reported [L]).

3.2 Semi-quantitative Comparison

A semi-quantitative comparison of the data sets can be made with respect to a particular level of interest, in this case the presumed action level of 1.0 ppb, or 1,000 ppt. Using the recalculated EPA laboratory results (based on the WHO TEFs) and the corrected EIA values, the data are compared

TABLE 3 RPDS FOR MLU AND EPA LABORATORY DATA SENTINEL WOOD TREATERS SITE - AVA, MISSOURI

Sample Cell Number	Recalculated EPA Laboratory Results (ppt)	Adjusted MEU Results (ppt)=+4-2	Calculated RPD
254	269	193	32.9
251	171	267	43.8
248	291	534	58.9
. 245	520	ND	NA
242	137	1,142	157.2
239	220	437	66.1
236	235 L	974	NA
233	163	642	119.0
230	251	474	61.5
227	168 L	414	NA
224	479	690.	36.1
221	438	280	44.0
218	426	280	41.4
215	135	210	43.5
212	366	167	74.7
209	218	305	33.3
209 (Field Duplicate)	250	233	7.0
206	198	51	118.1
203	211	97	74.0
200	359	97	114.9
Background-Northwest	10	ND	NA
Background-Northeast	3	ND	NA

Notes:

EPA

U. S. Environmental Protection Agency Actual Value Greater Than The Value Reported

MLU

Mobile Laboratory Unit Not Applicable Not Detected NA ND Parts Per Trillion ppt

RPD Relative Percent Difference using the following parameters. In "quantifying" the EPA laboratory data, positive (P) results are those values equal to or greater than 1,000 ppt, and negative (N) results are those values less than 1,000 ppt. In comparing the MLU data, correct positive (CP) results are those which are equal to or greater than 1,000 ppt, when the corresponding EPA laboratory results are positive; correct negative (CN) results are those which are less than 1,000 ppt, when the EPA laboratory results are negative; false positive (FP) results are those MLU results which are greater than 1,000 ppt, when the EPA laboratory results are negative; and false negative (FN) results are those MLU results which are less than 1,000 ppt, when the EPA laboratory results are positive. A semi-quantitative analysis based on this system of comparison is presented in Table 4.

As indicated on Table 4, all sample comparisons were correct negatives (CN), with the exception of the sample from Cell 242. For this sample, the MLU result was determined to be a false positive. As stated before, this could be attributed to several factors including, but not limited to, sample characteristics (homogeneity, moisture content), differences in analytical techniques used, or the amount of sample used for the analysis (dilution factor).

3.3 Cost Comparison

The costs of using the EIA kits include the chemist's labor, expendable materials (such as reagents, disposable glassware, etc.) and the cost of the kits themselves. The approximate cost breakdown on a per sample basis for this project is provided below:

Labor (2 hours @ \$50/hour)	\$100
Expendable Materials	\$10
DF1 EIA Kit	\$75
SP3 Sample Preparation Kit	\$15
Total Cost per Sample	\$200

The cost for a full PCDD/PCDF laboratory analysis by GC/HRMS generally ranges from \$700 to \$900 per sample, so the EIA kits do represent a potentially significant cost savings. The costs of laboratory equipment required for the EIA kits, such as a photometer, micropipettor, repeating pipettors, orbital shaker and centrifuge have not been considered for this cost comparison with fixed laboratory services. However, this equipment can be purchased for approximately \$5,000 to \$6,000.

TABLE 4 SEMI-QUANTITATIVE ANALYSIS OF MLU AND EPA LABORATORY DATA SENTINEL WOOD TREATERS SITE - AVA, MISSOURI

Sample Cell Number	Recalculated EPA Results (ppt)	Semi-Quantitative Results	Adjusted MLU Results (ppt)	Semi-Quantitative Results
254	269	N	193	CN
251	171	N	267	CN .
248	291	N	534	CN
245	520	N	ND	CN
242	137	N	1,142	FP
239	220	N	437	CN
236	235 L	N-biased low	974	CN
233	163	N	642	CN
230	251	N	474	CN
227	168 L	N-biased low	414	CN
224	479	N	690	CN
221	438	N	280	CN
218	426	N	280	CN
215	135	N	210	CN
212	366	N	167	CN
209	218	N	305	CN
209 (Field Duplicate)	250	N	233	CN
206	198	N	51	CN
203	211	N	97	CN
200	359	N	97	CN
Background- Northwest	10	N	ND	CN
Background— Northeast	3	N	ND	CN

Notes:

CN

Correct Negative

L MLU Actual Value Greater Than The Value Reported

EPA

Environmental Protection Agency

ND Not Detected

FP

False Positive

Ν

Mobile Laboratory Unit Negative

ppt

Parts Per Trillion

4.0 USES AND LIMITATIONS OF THE EIA KIT

According to the literature available at the Cape Technologies website (<u>www.cape-tech.com</u>), the EIA kits should be used as an initial rapid screening tool with the objective being to reduce the number of samples analyzed by slower, more expensive fixed laboratory methods. Screening results which exhibit positive hits at or near a site-specific action level, along with a certain percentage (typically 5 to 20 percent) of the negative results, should be analyzed by a fixed laboratory for confirmation. The EIA kits are intended to supplement conventional methods, not replace them.

The kits may be used to establish quantitative results; however, proper quality control samples should be incorporated into the method. Because of the level of technology employed by the kits, they should be used only by an analyst who is well trained and has good knowledge of chemistry.

A site-specific CAF should be determined, either through confirmatory analyses, historical data, or site similarity. For this site, the established CAF may be applicable to other wood treater sites based on a presumed similarity of waste characteristics. Confirmatory results from another wood treater site could be used to verify the CAF applied to the MLU sample data for this site.

5.0 CONCLUSIONS

A comparison of EPA Laboratory and MLU data sets for 22 sediment samples showed that approximately 50 percent of the samples exhibited good comparability, 27.3 percent of the samples exhibited fair comparability, and 22.7 percent of the samples exhibited no comparability. Only one (4.5 percent) of the samples exhibited a false positive result with respect to a presumed action level of 1.0 ppb. Based on these results, the EIA kits appear to have performed adequately for their intended use. There were approximately five samples which would have been recommended for confirmatory analysis (those with sample results above 500 ppt), in addition to one or both of the background samples.

In addition to the 22 sediment samples discussed in this report, the RSE also included the collection of soil samples from a residential garden located adjacent to the tributary. The EIA kits were used by the MLU to analyze six of these soil samples. Because none of these samples were sent to the EPA Laboratory for confirmation, the MLU results could not be used for the comparative analysis discussed in this report. However, based on the performance analysis for the sediment samples, the MLU soil sample results should be considered usable data and are presented in Table 5.

TABLE 5
PCDD/F RESULTS PRESENTED AS TEQs FOR SOIL SAMPLES
SENTINEL WOOD TREATERS SITE - AVA, MISSOURI

Sample Number	Sample Depth (inches bgs)	MLU Results (ppt)
G1	0 - 6	ND
G2	18 - 24	ND
G3	0 - 6	ND
. G4	18 - 24	308
G5	18 - 24	210
G6	0 - 6	460

Notes:

bgs

Below Ground Surface

MLU

Mobile Laboratory Unit

ND

Not Detected

ppt

Parts Per Trillion

It should be noted that all of the soil sample results are below 500 ppt, and the MLU data are therefore reliable without confirmation sample data.

ATTACHMENT 1

APPLICATION NOTE AN-008

High Performance Dioxin/Furan Immunoassay Kit

Application Note AN-008 (DRAFT)

Analysis of PCDD/Fs in soil and sediment at low to midppt using rapid extraction and rapid one-step cleanup

Contents of this Application Note

- A. Introduction
- B. Summary of Procedure
- C. Reagents Required
- D. Equipment Required
- E. Supplies Required
- F. Detailed Sample Preparation Procedure
- G. Data Reduction and Interpretation of Immunoassay Results
- H. Validation Data Supporting this Method

A. Introduction

This Application Note describes a rapid immunoassay specific extraction and rapid one step cleanup to prepare soil or sediment samples for screening analysis at low to mid ppt (pg/g) using the CAPE Technologies High Performance Dioxin/Furan Immunoassay Kit. The method described here is a slightly modified version of US EPA Method 4025. It includes a much faster and simpler extraction and cleanup than typically required for GC-MS analysis. Using this method, one analyst can screen up to 20 samples per day in a facility as simple as a small mobile laboratory. This Application Note is intended to be used in conjunction with the DF1 Dioxin/Furan Immunoassay Kit and its insert (IN-DF1) and the SP2 and SP2-ST Sample Preparation Kits and their inserts (IN-SP2 and IN-SP2-ST). Please read this Application Note carefully as part of planning your sample preparation and analysis. The documents cited in this Application Note are available by email from CAPE Technologies or at the CAPE Technologies web site (www.cape-tech.com).

B. Summary of Procedure

- 1. Weigh soil or sediment sample. Add sodium sulfate and mix. Add 4:1 hexane:acetone and extract sample by shaking 2-3 hours. Remove the supernatant hexane:acetone extract.
- 2. Evaporate an aliquot of the supernatant hexane:acetone extract using a hydrocarbon keeper such as tetradecane, redissolve in hexane, and load onto a coupled acid-silica:activated carbon mini-column.
- 3. Force hexane through the system until the sample has passed through carbon mini-column.
- 4. Transfer carbon mini-column to empty reservoir and wash with 1:1 toluene:hexane.
- 5. Reverse carbon mini-column on reservoir and elute with toluene.
- 6. Evaporate the toluene to exchange sample into water-miscible keeper solution.
- 7. Perform the immunoassay procedure as described in the kit insert IN-DF1.
- 8. Interpret the immunoassay results as described in section G of this Application Note.

www.cape-tech.com

C. Reagents Required

- 1. Anhydrous sodium sulfate, approx. 20 g per sample; reagent grade
- 2. Hexane, approx. 60 mL per sample; HPLC grade or better of mixed isomer type (CASRN 73513-42-5; this is typically 85% n-hexane with remainder methylcyclopentane and other hexane isomers; n-hexane could also be used, but is more expensive.
- 3. Acetone, approx. 5 mL per sample; HPLC grade or better (CASRN 67-64-1).
- 4. Toluene, ultra-pure or residue grade (probably the best grade available, such as Burdick & Jackson), approx. 20 mL per sample. All non-volatile residue in the toluene will end up in the EIA sample, so maximum purity at this step is critical.
- 5. Methanol, approx. 1 mL per sample; reagent grade.
- 6. Tetradecane or similar high boiling aliphatic hydrocarbon keeper, approx. 0.25 mL per sample.

D. Equipment Required

- Equipment for performing the DF1 Immunoassay; summarized in section G of the kit insert (IN-DF1) and described in detail in Equipment List (EL-001)
- 2. Balance for weighing sample (0.1 g or better readability)
- 3. Orbital platform shaker for mixing during extraction
- 4. Centrifuge with capacity for holding 40 mL vials (28 mm outside diameter x 98 mm high, flat bottoms)
- 5. Fume hood and solvent exchange system for samples of approx. 10 mL in glass tubes (refer to IN-DF1, section I3)
- 6. Computer with Microsoft Excel (for Win97 or later, or for Mac OS9 or later) for data analysis. Solver Addin must be installed and available (look under **Tools** menu).

E. Supplies Required

- 1. DF1 Immunoassay Kit and supplies specified in section G of the kit insert (IN-DF1)
- 2. Pipet bulbs and glass Pasteur pipets for transfer of extracts
- 3. Pipettors and glass pipets and/or graduated cylinders for measuring approx. 5 to 15 mL
- 4. Glass vials (2 to 12 mL) with Teflon lined caps for storage of sample extracts
- 5. Glass tubes (15-20 mL) for evaporation of carbon column eluates
- 6. SP3 Sample Preparation Kit containing materials for sample extraction, prepacked disposable acid silica columns, and prepacked disposable carbon mini-columns.
- 7. SP2-ST Starter Sample Preparation Kit containing reusable hardware for manual execution of the column cleanup procedure described in Section F below
- 8. SP2-RK rack for holding SP3 and SP2-ST reservoirs (glass columns like 25 mL pipets; 16 mm dia. by 30 cm long)
- 9. Basin or other receptacle to catch waste from carbon mini-column procedure

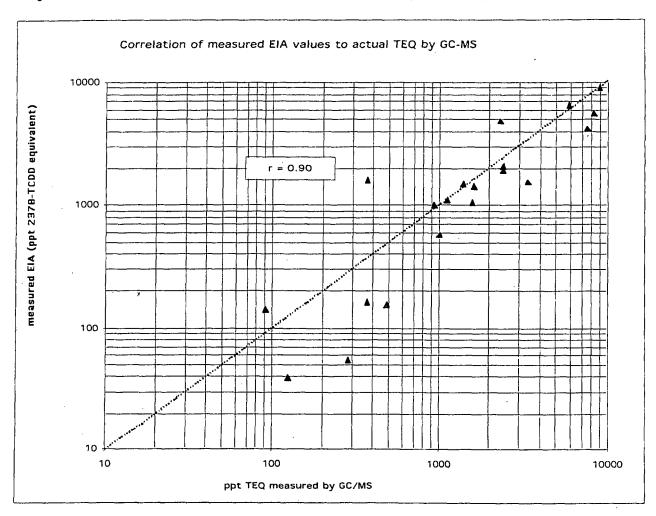
F. Detailed Sample Preparation Procedure

Before beginning this procedure, please read section F carefully, especially step F12. This section has several references to the DF1 Kit Insert (IN-DF1), which has a detailed description of the EIA procedure in section J. Steps I1 and J1-2 of the EIA procedure should be performed before step F11 below. Steps J3-6 of the EIA procedure should be done at the end of step F11 and before starting step F12 below. Advance preparation of acid silica is required before step F5 below.

 Weigh sample: Use CAPE Technologies Sample Preparation Kit (SP3-12 or SP3-60). Using wooden spatula from Sample Preparation Kit, mix sample thoroughly and weigh 5 g into 40 mL extraction vial from Sample Preparation Kit. Quality assurance samples to verify method performance (unspiked and spiked method blanks and reference soils) should be included at this point.

- 2. Extract sample: Add 10-20 g anhydrous sodium sulfate to extraction vial and mix with wooden spatula until sample is free flowing. Add 3 steel mixing balls from the SP3 Kit, then 20 mL of 4:1 hexane:acetone. Read and follow precautions and other instructions in SP3 Kit insert (IN-SP3). Cap vials tightly and extract by shaking 2-3 hours at 350 rpm on orbital platform shaker. Extraction vials should lie flat on their sides for maximum agitation.
- 3. <u>Spin extract and store</u>: Centrifuge extraction vial for 10-15 minutes at 1000 x g or less. <u>Caution</u>: <u>Exceeding this force during centrifugation can cause breakage of glass vials</u>. Remove a portion of the supernatant hexane:acetone extract to a clean vial with Teflon lined cap for storage. The concentration of soil matrix in the extract will be 0.25 mg soil equivalent per μL.
- 4. Evaporate aliquot of extract: Using glass capillary micropipettor, add 1000 μL of hexane:acetone extract (equivalent to 250 mg of sample) and 100-250 μL of tetradecane or similar hydrocarbon keeper to a glass tube or vial and evaporate (to remove acetone before adding to acid silica). When hexane and acetone are gone, add 1-2 mL of hexane and mix vigorously until all residue is redissolved. Note on sample load and target sensitivity: Different target sensitivities can be achieved by using different volumes of extract in this step to set up different sample loads. Consult Table 3 of the DF1 Kit Insert (IN-DF1) for quidance. The procedure described in step F12 below allows recovery of 80% of the prepared sample for introduction to the EIA tube. According to Table 3 of IN-DF1, 200 mg of sample equivalent per EIA tube translates to a nominal sensitivity of 50 pg/g. This means that an aliquot of extract equivalent to 200 mg of a 50 pg/g TEQ sample would contain (under ideal conditions, 100% extraction efficiency, 100% cleanup recovery, etc.) 10 pg TEQ. This corresponds to Standard 2 (IN-DF1, Table 1) and should be consistently detectable. Note on sample load and quality assurance: The analyst is responsible for quality assurance and should consider each different sample load level to be a separate method with respect to blanks, spikes, and other quality assurance samples.
- 5. Prepare acid silica column: Remove endcaps from acid silica column of SP3 Kit and place in SP2-RK rack. Place basin underneath to catch waste solvent. Add 10 mL of hexane to acid silica column and let flow through by gravity until the bed is fully wetted and hexane begins dripping from the reservoir tip. No air gaps or bubbles should be visible in the sodium sulfate/silica bed. This procedure should be done one column at a time to avoid drying of columns. DO NOT ALLOW TOP OF BED TO GO DRY; IT IS CRITICAL TO AVOID AIR BUBBLES IN ACID SILICA COLUMN.
- 6. Attach carbon mini-column to acid silica column: Remove a carbon mini-column (SP3 Kit) from its pouch and use a Pasteur pipet to fill square cut end with hexane. As hexane is dripping from reservoir tip, place mini-column firmly onto tip with a twisting action. Be sure top of mini-column is full of hexane so that it can be attached without air bubbles. Flow will nearly stop, with solvent front advancing very slowly through carbon mini-column. The reservoir and column assemblies can be left alone at this point until all are assembled and ready for step F7. DO NOT ALLOW TOP OF BED TO GO DRY.
- 7. <u>Complete prewash</u>: Several mL of hexane should remain in reservoir above sodium sulfate/silica. Twist stopper/stopcock assembly (SP2-ST Kit) firmly into top of reservoir. Using 20 mL syringe (SP2-ST Kit), pressurize the reservoir, close the stopcock, and remove the syringe. The hexane should flow immediately through the column at 0.5 to 2.0 mL/min. Catch solvent in waste basin. Stop prewash with 2-5 mm of hexane remaining on top of sodium sulfate, then remove stopcock from reservoir. <u>DO NOT ALLOW TOP OF BED TO GO DRY</u>.
- 8. Load sample onto carbon mini-column: Using glass capillary micropipettor, add redissolved sample from step F4 to the reservoir. Using a Pasteur pipet, gently rinse the sides of the reservoir with 10 mL of hexane. Twist stopper/stopcock assembly (SP2-ST Kit) firmly into top of reservoir and pressurize as before. Maintain pressure to keep hexane flowing all the way through the acid silica column. Catch solvent in waste basin. When air penetrated the neutral silica layer (bottom 1-2 cm layer at bottom of column, just above tip of column), release pressure to stop flow. IT IS NECESSARY TO RUN THE SOLVENT ALL THE WAY THROUGH THE ACID SILICA BED, BUT DO NOT ALLOW TOP OF CARBON MINI-COLUMN TO GO DRY.

- 9. Wash carbon mini-column: Remove carbon mini-column from the acid silica column, attach square cut end to a clean and empty reservoir (SP2-ST Kit), and place in rack over waste capture basin. Add 7 mL of 1:1 toluene:hexane and pressurize as before. Catch solvent in waste basin. When solvent level reaches tip of reservoir, release pressure to stop flow. DO NOT ALLOW TOP OF CARBON MINI-COLUMN TO GO DRY.
- 10. <u>Elute sample</u>: Remove carbon mini-column from tip of reservoir and replace on same reservoir in reverse orientation, slant cut end first. Add 10 mL of toluene and pressurize as before. Capture eluate in clean 16 x 125 mm borosilicate glass tube, allowing air to drive last of toluene through carbon mini-column.
- 11. Add keeper and evaporate solvent: Keeper solution (80:20 methanol:tetraethylene glycol [TEG] + 100 ppm Triton X-100) is made by adding methanol to a stock vial which is part of the DF1 kit (see the DF1 Kit Insert IN-DF1 section I1 for instructions). Add 62.5 μL of TEG-Triton-methanol keeper solution to each evaporation tube containing a toluene eluate. Evaporate the toluene at 60-75°C under a gentle stream of nitrogen as described in the immunoassay kit insert IN-DF1, section I3. When only keeper remains, centrifuge at 1-2000 x g for 2 minutes to concentrate all of the sample at the bottom of the tube.
- 12. <u>Dilute sample with methanol</u>: <u>Before beginning this step you should have completed steps 1 through 6 described in section J of the DF1 Immunoassay Kit Insert (IN-DF1). Once these beginning EIA steps are completed, add 50 μL of methanol (setting 2.5 of Repeater Plus pipettor with 1.0 mL tip) to each evaporation tube and mix vigorously for 15 seconds. Let stand for at least 15 seconds to allow liquid to flow back to bottom of tube, then remove 50 μL for EIA analysis. <u>Note: This procedure recovers 80% of the prepared sample for introduction to the EIA tube</u>. Dilution and EIA loading should be done in batches of 4 samples or fewer to minimize concentration changes due to methanol evaporation before pipetting. Add the sample directly to the water in EIA tube, not above the water or onto side of EIA tube. Mix each tube individually as soon as sample is added.</u>
- 13. Run EIA: Perform remainder of EIA as described in section J of DF1 Immunoassay Kit Insert (IN-DF1).


G. Data Reduction and Interpretation of Immunoassay Results

- Open Calculation Module C (Microsoft Excel workbook downloadable from CAPE Technologies web site [www.cape-tech.com] or available by email from CAPE Technologies). Select "Introduction" worksheet and read the information on background and procedure, then select the "DF1 low-mid ppt quantitative" worksheet. <u>Install Excel "Solver" Add-In if it is not already done</u>.
- 2. Enter optical density (OD) data for standards and samples into designated spaces.
- 3. Perform non-linear curve fitting procedure using Excel "Solver" function.
- 4. Verify sample load (200 mg sample equivalent per EIA tube).
- 5. Read original sample ppt values for each sample in designated row.
- 6. Final interpretation of data will be based also on analyst experience, knowledge of individual samples, and especially on results for quality assurance samples.

www.cape-tech.com

H. Validation Data Supporting this Method

Correlation between immunoassay screening analysis and TEQ as determined by high resolution gas chromatography-high resolution mass spectrometry (HRGC-HRMS): A set of 21 soil samples from a wood treatment facility were prepared and analyzed as described in Sections F and G above. Each EIA tube received prepared extract equivalent to 200 mg of original sample. Subsamples of each sample were analyzed separately by HRGC-HRMS. The TEQ values were calculated from TEF values and individual congener concentrations as measured by HRGC-HRMS. The line represents $x \approx y$.

ATTACHMENT 2

DF1 KIT INSERT

High Performance Dioxin/Furan Immunoassay Kit

DF1 Kit Insert (IN-DF1)

Contents of This Insert

- A. Intended Use
- B. Background Information
- C. Test Principles
- D. Performance Characteristics
- E. Precautions
- F. Materials Provided
- G. Materials Supplied by the User
- H. Suggestions for Pipettor Use
- Preparation of PCDD/F Sample Extracts for EIA by Solvent Exchange
- J. EIA Analysis of Standards and Prepared Samples
- K. Interpretation of the Results
- L. Limitations of the Procedure
- M. Storage
- N. Quality Assurance
- O. References
- P. General Limited Warranty

A. Intended Use

The CAPE Technologies High Performance Dioxin/Furan Immunoassay Kit is an Enzyme ImmunoAssay (EIA) for analysis of PolyChlorinated DibenzoDioxins and PolyChlorinated DibenzoFerans (PCDD/Fs) in prepared sample extracts. Extracts of fly ash, soil, stack gas, tissue, sediment, food, water, or other samples which have been prepared by conventional extraction methods can be exchanged to a water miscible solvent system for EIA analysis. Samples can also be prepared by immunoassay specific methods for analysis by EIA. Please read this kit insert and other related CAPE Technologies literature carefully to gain maximum understanding of the capabilities and limitations of the test. Refer to Technical Notes and Application Notes available from the CAPE Technologies web site (http://www.cape-tech.com) for discussion of technical issues and for individual applications for different sample matrices. Note: Samples analyzed by EIA must contain either no mass-labeled internal standards or immunoassay compatible internal standards. For discussion of issues related to internal standards, consult CAPE Technologies Technical Note TN-001.

B. Background Information

PCDD/Fs are a family of compounds with the same general structure. There are 75 dibenzodioxin congeners and 135 dibenzofuran congeners, containing from 1 to 8 chlorine atoms on the dibenzodioxin or dibenzofuran nucleus. Only 7 of the 75 PCDD congeners and 10 of the 135 PCDF congeners contain the 2,3,7,8 chlorination pattern thought to be required for dioxin-like toxicity. Only these 17 of the 210 total PCDD/F congeners contribute to the Toxic Equivalency (TEQ) of a sample, which is generally the critical analytical target. Based on a variety of toxicity tests, these 17 congeners have been assigned Toxic Equivalency Factors (TEFs) of 1.0 to 0.0001 relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

The PCDD/F congener composition of samples can be highly variable. Because PCDD/Fs are formed unintentionally by a variety of chemical and combustion processes, samples usually contain a mixture of many different congeners. Samples from different sources often have very different mixtures of congeners which are consistent within the source. In most samples, the majority of the PCDD/F mass present does not contribute significantly to the total sample TEQ. Also, in most samples, only a few PCDD/F congeners are responsible for the majority of the TEQ. This immunoassay is designed to measure sample TEQ by responding to the toxic PCDD/F congeners in correlation with their TEFs. Variation in accuracy among samples may occur solely because of the variability of congener composition noted above. Best kit performance will be obtained when all samples are from a single group which shares as many properties as

possible (common source of contamination, similar congener composition, similar sample matrix, etc.). To maximize accuracy, the congener composition of the target sample population should be known.

Both screening and quantitative analysis are possible with this kit. Consult the appropriate CAPE Technologies Application Note for details. Please also consult CAPE Technologies Technical Note TN-004 for further discussion of quantitative use of the kit.

C. Test Principles

PCDD/Fs are typically extracted with organic solvents which are incompatible with the EIA. Before introduction of the sample into the EIA a solvent exchange is required. PCDD/Fs have very low volatility and are retained during this solvent exchange in a small volume of a keeper solution (Triton X-100 detergent in tetraethylene glycol [TEG]) after evaporation of the original solvent. Methanol is added to dilute this solution and the methanol-TEG-Triton mixture is added directly to the EIA tubes. It should be noted that the literature value for solubility of 2,3,7,8-TCDD in methanol is 10 ppm, which is 5000 times higher than the concentration of the highest standard recommended for this kit. Additionally, the solubility of PCDD/Fs in methanol is augmented significantly by the addition of TEG and Triton X-100. These factors assure the solubility of PCDD/Fs in the EIA system.

During the first EIA incubation, PCDD/Fs are specifically bound by the anti-dioxin antibodies, which have been immobilized on the EIA tube surface. After washing away the unbound material, the bound PCDD/Fs remain and a competitor-HorseRadish Peroxidase (HRP) conjugate is added. Bound PCDD/Fs occupy the dioxin binding sites of the antibodies in proportion to the PCDD/F content of the sample and prevent binding of the competitor-HRP conjugate. After a short incubation, unbound conjugate is removed and the test tubes are washed thoroughly. The amount of conjugate bound by the anti-dioxin antibody is inversely related to the amount of PCDD/Fs originally present in the sample.

Finally, a solution of chromogenic HRP substrate and hydrogen peroxide is added to the test tubes. Color development is directly proportional to enzyme concentration and <u>inversely</u> related to the PCDD/F concentration in the original sample. The test tubes are analyzed using a tube reader or spectrophotometer to measure the optical density (OD) at 450 nm. The OD values of unknown samples are compared to the OD values of standards to determine the level of PCDD/Fs in the samples.

D. Performance Characteristics

Sensitivity and Reproducibility

Standard curve data developed by CAPE Technologies for the High Performance Dioxin/Furan Immunoassay Kit are given in Table 1. Response values are expressed as a percentage of the negative control, which is 100 ppm Triton X-100 in 80-20 methanol-TEG. The detection limit of the kit is approximately 4 pg 2,3,7,8-TCDD per EIA tube. Results for samples which are compared to the standards shown in Table 1 must be related to the original sample concentration by back calculation using the proper dilution and volume factors. Matrix detection limits will vary according to matrix, sample size, and dilution factor. Consult the appropriate CAPE Technologies Application Note for further information. The data in Table 1 can be used to determine if kit performance is acceptable. If your results for the standards in Table 1 are not consistently within the percent of negative control ranges given, contact CAPE Technologies for assistance.

Table 1: Sensitivity and Reproducibility of the EIA Standard Curve. Data are accumulated responses for 2,3,7,8-TCDD standards in methanol/Triton over ten months. No sample matrix was present. A total of 41 tests were run in four different labs. The detection limit, which is approximated by the I85 or the concentration giving 85% of the negative control OD, was 3.9±1.4 pg/tube (mean±SD). The midpoint of the curve, defined as the I50 or the concentration giving 50% of the negative control OD, was 21.9±7.4 pg/tube (mean±SD).

Standard Number	1	2	3	4
ng/mL 2378-TCDD in standard (50 µL per EIA tube)	0.064	0.2	0.64	2
pg 2378-TCDD per EIA tube	3.2	10	32	100
mean percent of negative control (%NC)	87	66	41	29
standard deviation (SD)	6	7	7	6
range of mean±2SD	74-99	51-80	27-55	17-40

Specificity

The anti-dioxin antibody in this kit binds to different PCDD/F congeners with different affinities. The specificity of the test is predominantly for PCDD/Fs which contain 3 to 6 chlorines, with a strong preference for the 2,3,7,8 chlorinated congeners. Test specificity roughly parallels the TEF values of the individual PCDD/F congeners. Crossreactivity data given in the following table are reactivities relative to 2,3,7,8-TCDD.

<u>Table 2: Specificity of the EIA</u>. Response curves were prepared for each congener as noted. The percent crossreactivity = $(((congener \mid_{50}) \div (2,3,7,8\text{-TCDD}\mid_{50})) \times 100)$. Values are typically based on 2 to 4 independent curves, each containing at least 4 concentrations.

Compound	*	Compound	
	Percent.		Percent
Toxic Dioxin Congeners	Crossreactivity	Other PCDD/F Congeners	Crossreactivity
2,3,7,8-TCDD	100	2,3-dichlorodibenzo-p-dioxin	0.13
1,2,3,7,8-PeCDD	105	2,7-dichlorodibenzo-p-dioxin	0.003
1,2,3,4,7,8-HxCDD	1.6	2,3-dichlorodibenzofuran	0.02
1,2,3,6,7,8-HxCDD	7.9	2,7-dichlorodibenzofuran	< 0.002
1,2,3,7,8,9-HxCDD	39	2,3,7-trichlorodibenzo-p-dioxin	24
1,2,3,4,6,7,8-HpCDD	0.7	2,3,8-trichlorodibenzofuran	0.26
OCDD .	<0.001	1,2,3,4-TCDD	< 0.001
		1,2,3,4-TCDF	<0.001
		1,3,6,8-TCDD	0.05
Toxic Furan Congeners		1,3,6,8-TCDF	0.007
2,3,7,8-TCDF	20		
1,2,3,7,8-PeCDF	4.6		
2,3,4,7,8-PeCDF	17	PolyChlorinated Biphenyls	
1,2,3,4,7,8-HxCDF	0.4	3,3',4,4' (PCB 77)	0.4
1,2,3,6,7,8-HxCDF	1.0	3,3',4,4',5 (PCB 126)	0.5
1,2,3,7,8,9-HxCDF	3.3	2,2',4,4',5 (PCB 153)	<0.1
2,3,4,6,7,8-HxCDF	4.9	3,3',4,4',5,5' (PCB 169)	<0.1
1,2,3,4,6,7,8-HpCDF	0.02	Aroclor 1254	<0.1
1,2,3,4,7,8,9-HpCDF	0.9		
OCDF	< 0.001		

E. Precautions

- · Important: Please read the following precautions carefully.
- Follow precautions and instructions in this insert to achieve the best results.

Safety:

- This kit should only be used by properly trained personnel in an appropriate laboratory environment.
- Treat PCDD/Fs, solutions that contain PCDD/Fs, and potentially contaminated samples as hazardous materials.
- Use gloves, proper protective clothing, and means to contain and handle hazardous material where appropriate.
- Obtain (if appropriate) permits pertaining to the handling, analysis and transport of dioxin-containing materials.
- Stop solution is 1N hydrochloric acid. Handle carefully.

Storage and Use of Kit:

- Do not freeze test kit components or expose them to temperatures greater than 37°C (99°F).
- . If desiccant in tube bag is not blue, do not use kit; contact CAPE Technologies.
- Do not expose substrate to direct sunlight.
- If substrate is blue before adding to EIA tubes, do not use; contact CAPE Technologies.

- Store all test kit components at 2°C to 6°C (36 °F to 43°F) when not in use.
- Storage at ambient temperature (20°C to 27°C or 68°F to 81°F) on the day of use or overnight before the day of use is acceptable. Do not store at ambient temperature for extended periods.
- Allow all reagents to reach ambient temperature (20°C to 27°C or 68°F to 81°F) before beginning
 the test. This typically requires at least 60 minutes at ambient temperature to warm from
 recommended storage conditions. Warming will occur faster if bottles and tube bags are
 removed from the kit box.
- Do not use test kit after the expiration date.
- Do not use components from one test kit with components from a different test kit.

Sample Preparation:

- Because this EIA recognizes many of the congeners in mass labeled internal standard mixtures designed for GC-MS methods, EIA samples must contain either immunoassay compatible internal standards or no internal standards. For specific recommendations regarding mass labeled internal standards, consult CAPE Technologies Technical Note TN-001.
- Water immiscible solvents in sample extracts must be evaporated completely before diluting in methanol for the EIA. Residual solvents or excessive oil may cause precipitation when the sample is added to the EIA tubes. If this occurs, the test result may be invalid and the cause should be corrected before repeating the analysis. Quality assurance methods such as comparison of spiked and unspiked sample extracts are essential for determining the validity of such results. Contact CAPE Technologies for assistance with selection of appropriate quality assurance methods.

EIA Protocol:

 When adding standards and samples to the EIA tubes, the methanol solutions must be dispensed directly into the liquid and not above the liquid surface or onto the side of the tube.
 Each EIA tube must be mixed briefly as soon as the sample or standard is added, until the tube contents appear uniform.

Interpretation of Results:

- Consult the appropriate CAPE Technologies Application Note for proper interpretation of results.
- Proper quality assurance is the responsibility of the analyst and is strongly encouraged. Your quality
 assurance plan should include GC-MS confirmation of some fraction of both positive and negative
 results.
- Distribution of PCDD/Fs in samples may vary greatly. The analyst is responsible for adequate frequency, distribution, and homogenization of samples.

F. Materials Provided

The contents of this kit are described in a separate Materials List (ML-DF1-12 or ML-DF1-60).

G. Materials Supplied by the User

- Sample preparation supplies and equipment (the SP1 and SP2 Sample Preparation Kits contain vials
 and other supplies for rapid preparation of soil, food, or other samples). You must consult the relevant
 Application Note for equipment, reagents, and supplies required for your application. Visit the CAPE
 Technologies web site (www.cape-tech.com) or contact CAPE Technologies if additional technical
 assistance is required.
- The remainder of this list gives only those materials needed for a generic solvent exchange and the EIA portion of the analysis...
- HPLC or analytical grade methanol for solvent exchange
- · Sample evaporation system for solvent exchange (nitrogen or other gas source)
- · Glass tubes or vials for solvent exchange
- · Glass vials (1-2 mL) with Teflon lined caps for storage of standards after opening ampoules

- 1 variable volume glass capillary positive displacement pipettor for dispensing 50 to 100 μL of standards, samples, and keeper (Drummond 275 or equivalent)*
- 1 Eppendorf Repeater or Repeater Plus Pipettor and minimum of 6 tips (one 0.5 or 1 mL, four 10 or 12.5 mL, and one 50 mL), for pipetting 50 μL to 1.0 mL volumes (or equivalent repeating pipettor)*
- Artel Differential Photometer or other means for measuring OD of finished immunoassay tubes at 450 nm (alternatives include conventional spectrophotometers, other tube readers, or microplate readers)*
- · Marking pen
- Watch or timer
- Reagent grade or bottled distilled water for sample dilution and tube washing
- · Basin or other system for capture and disposal of wash water and other waste liquids.
 - * see Recommended Equipment List (EL-001) for more information

H. Suggestions for Pipettor Use

- Please read these suggestions carefully before performing your first EIA.
- Use empty tubes and extra tips to practice your pipettor technique before analyzing samples. For the glass capillary positive displacement pipettor, use methanol; for the Repeater pipettor, use water.
- Use a different tip for each reagent dispensed with the Eppendorf Repeater Plus Pipettor to avoid reagent cross-contamination, especially between conjugate and substrate. Label four 10 or 12.5 mL tips "water", "Conjugate", "Substrate", and "Stop".
- Draw the desired reagent volume into the Repeater pipettor and dispense at least one portion of reagent back into the container to properly engage the ratchet mechanism. If this is not done, the first volume delivered will be inaccurate.
- When adding reagents to the EIA tubes using the Repeater pipettor, direct the liquid stream down the side of the tube just below the rim to avoid splashback.
- When using the glass capillary positive displacement pipettor for adding samples or standards to EIA tubes, the solution <u>must</u> be dispensed directly into the water in the tube, <u>not</u> above the liquid level or onto the side of the tube. The tubes <u>must</u> be individually mixed immediately after the addition of methanol-TEG-Triton solutions to distribute the analyte evenly and to avoid locally high or low concentrations at the antibody coated surface of the tube.
- When using the glass capillary positive displacement pipettor for standards and samples, the following approach (as for a GC autosampler) has proven effective. After each pipetting operation, repeatedly rinse both inside and outside of the capillary by pipetting several methanol aliquots to a waste container. When changing capillaries, rinse the plunger to minimize carryover. If capillaries are not changed after each standard, water on the outside of the capillary must be removed to avoid contamination of the standard with water.

I. Preparation of PCDD/F Sample Extracts for EIA by Solvent Exchange

- Prepare keeper working solution from stock: Locate the 8 mL vial labeled "TEG-Triton X-100 keeper" and stand upright for several minutes (or centrifuge briefly) to allow TEG-Triton mixture to drain away from lid. Make working solution of keeper by adding 6.0 mL of analytical grade methanol to the vial and mixing thoroughly. This solution of 100 ppm Triton X-100 in 80/20 methanol/TEG will be used for adding keeper to extracts prior to solvent exchange.
- 2. <u>Select sample size and keeper volume for solvent exchange</u>: The following is a <u>generic</u> extract preparation procedure which is appropriate for samples which have gone through the full cleanup procedure prior to GC/MS analysis (using immunoassay compatible internal standards or no internal standards). For other samples, consult the appropriate Application Note. <u>Use of this EIA for screening analysis depends upon the same amount of each sample being introduced into the EIA. This quantity (the sample load in "mg Sample Equivalent Delivered to EIA Tube") is dictated by your target</u>

<u>level and must be determined in advance</u>. Consult Table 3 below (or your Application Note) to determine the appropriate sample load.

Table 3: Sample Load Selection Guide:

(Correspondence among EIA standards, sample TEQ levels, and amount of sample used in the EIA)

How to use Table 3: Locate your target concentration in the body of the table, then read the "ma Sample Equivalent Delivered to EIA Tube" at the top of that column. This is the amount of sample you must load into each EIA tube. If your decision level occurs in more than one table column, use the one farthest to the left (corresponding to lower standards). This will allow less sample to be used, giving less potential for matrix interferences. This process of estimating the amount of sample needed is illustrated by the examples below. Note that these values are the amount of sample actually delivered to the EIA tube and do not account for replication or the extra volume required to assure that a given volume can be comfortably recovered from the evaporation tube. Read the paragraph immediately below Table 3 and/or consult the appropriate Application Note for selection of keeper volume.

Important Note: Table 3 is for guidance only because it assumes 100% recovery through the sample preparation procedure, including sample extraction efficiency and extract cleanup. Guidance on data interpretation is given in Section K below.

- Example 1: When using 10 mg sample equivalent per EIA tube, a nominal sample concentration of 1 ppb would be approximately equivalent to Standard 2 (.2 ppb or 10 pg/EIA tube 2,3,7,8-TCDD).
- Example 2: To make a nominal sample concentration of 10 ppt (0.01 ppb) approximately equivalent to Standard 2 (10 pg/EIA tube), use 1000 mg sample equivalent per EIA tube.
- Example 3: When using 1000 mg sample equivalent per EIA tube, a nominal sample concentration of 0.1 ppb would be approximately equivalent to Standard 4 (2.0 ppb 2,3,7,8-TCDD).

	2378-TCDE) Standards											
	(50 µL per	EIA tube)	mg Sample Equivalent Delivered to EIA Tube										
	stock ppb	pg/tube	0.1 mg	1 mg	10 mg	100 mg	1000 mg	10,000 mg					
Standard 2	0.2	10	100 ppb TEQ	10	1	0.1	0.01	0.001					
Standard 3	0.64	32	320	32	3.2	0.32	0.032	0.0032					
Standard 4	2.0	100	1000	100	10	1	0.1	0.01					
			Target Conc	entratio	n in Origini	al Sample (ppb TEQ)						

Selection of keeper volume: It is best to exchange only enough sample for immediate analysis, plus an extra amount to cover waste in pipetting. Leave the rest of the sample in toluene or other low volatility solvent. For analysis at high pg/g levels, where only a small fraction of the sample may be used in the EIA, evaporate the sample from 150 μ L of keeper. After evaporation, add 120 μ L of methanol to reconstitute the sample to 150 μ L, allowing recovery of one or two 50 μ L aliquots for single or duplicate EIA analysis. In this case, the total amount of sample exchanged is 3x the amount delivered to each EIA tube. For analysis at low pg/g levels, where maximum sample recovery is critical, evaporate the sample from 62.5 μ L of keeper. After evaporation, add 50 μ L of methanol to reconstitute the sample to 62.5 μ L, allowing recovery of one 50 μ L aliquot, representing 80% of the original sample, for single tube EIA analysis. In this case, the total amount of sample exchanged is 1.25x the amount delivered to the EIA tube. For example, 5 g of sample equivalent would be exchanged so that 4 g of sample equivalent could be added to the EIA tube.

3. Perform solvent exchange: Use a clean glass tube or conical vial for evaporating each sample to be analyzed. Add the amount of methanol-TEG-Triton keeper solution (determined in the preceding section) to each evaporation tube or vial. Add sample in volatile solvent such as toluene, hexane, isooctane, or acetone. Solvents with boiling points higher than toluene (111°C) should be avoided if possible. Evaporate solvent completely under dry gas stream such as nitrogen. After removing the original solvent, rinse the sides of the tube once with 2 mL of dichloromethane and evaporate again. Recovery will not be adversely affected if the sample remains under the gas stream for a few minutes after complete evaporation of the solvent. The original solvent must be completely gone- there should be no solvent odor. Application of gentle heat (50°C) is acceptable. During solvent exchange the TEG and Triton X-

- 100 function as a "keeper", similar to the conventional use of dodecane or tetradecane. When the original solvent is completely evaporated, the PCDD/Fs stay in solution in the TEG-Triton and are easily diluted with methanol.
- 4. <u>Reconstitute sample</u>: Centrifuge the evaporation tubes for 2 minutes at 1-2000 x g to collect the residual TEG-Triton in the bottom of the tube. Add a volume of methanol to each tube equal to 80% of the original keeper volume used (replacing the evaporated methanol). Mix vigorously for 15 seconds to dissolve the keeper and sample completely. Sonication or longer mixing times are not necessary. <u>Pipet the redissolved sample into the EIA tube which has been prepared, then mix immediately (as noted in Section J below)</u>. <u>Perform this sample dilution and EIA loading procedure in batches of 4 or fewer samples</u>. This will minimize changes in sample concentration due to evaporation of the methanol.

J. EIA Analysis of Standards and Prepared Samples

Prepare samples according to the directions above in "Preparation of PCDD/F Sample Extracts by Solvent Exchange" or in the appropriate Application Note. The following steps explain how to analyze your prepared samples using the CAPE Technologies High Performance Dioxin/Furan Immunoassay Kit. For quick reference, a summary of this protocol is provided on a separate sheet (PS-DF1). The number of tubes per run should be limited by the amount of time it takes to add Competitor-HRP Conjugate in step 9 below, and is typically 20 or fewer. This is the largest batch size that can be done on one filling of the 10 mL tip of the Eppendorf Repeater Plus pipettor. Follow precautions in Section E above. Do not expose Substrate to direct sunlight.

- Warm reagents: Bring all reagents to ambient temperature as described in Section E (Precautions, Storage and Use of Kit).
- 2. Prepare wash 1: Locate the vial labeled "0.5 mL neat Triton X-100". Make a wash solution of 100 ppm (0.01% v/v) Triton in reagent grade or bottled distilled water by adding 10 μL of Triton X-100 to 100 mL of water and mixing thoroughly (this will typically take several minutes on a magnetic stirrer). This amount is sufficient for 20 tubes (20 tubes x 4 washes per tube x 1 mL/wash/tube = 80 mL nominal). This wash can be prepared in larger volumes and stored at room temperature.
- 3. <u>Prepare tubes</u>: Place the anti-Dioxin antibody coated tubes in the rack and label them. Put the standard tubes first, from low to high concentration, then the sample tubes.
- 4. <u>Prerinse tubes</u>: Rinse tubes once by filling each tube with reagent grade or bottled distilled water. Dump water out and tap inverted tubes on absorbent material to remove excess water.
- Add water for sample incubation: Insert the 10 or 12.5 mL pipet tip labeled "water" into the Repeater pipettor and set volume to 500 μL. Dispense one 500 μL aliquot of reagent grade or bottled distilled water into each tube.
- 6. Add standards: Using a glass capillary positive displacement pipettor, pipet 50 μL of standard solution into each EIA standard tube. The solutions must be dispensed directly into the liquid and not above the liquid surface or onto the side of the tube. Immediately after addition, mix each tube briefly until appearance is homogeneous. The mixing should be vigorous enough to visibly swirl the liquid around the bottom of the tubes.
- 7. Add samples: Using a glass capillary positive displacement pipettor, pipet 50 µL of prepared sample into each EIA sample tube. The solutions must be dispensed directly into the liquid and not above the liquid surface or onto the side of the tube. Immediately after addition, mix each tube briefly until appearance is homogeneous. Mix the rack of tubes by shaking for 10 seconds after adding the last sample. The mixing should be vigorous enough to visibly swirl the liquid around the bottom of the tubes. Incubate at room temperature for 2 to 24 hours. For longer incubation times, cover the rack of tubes or place in a closed plastic bag or other airtight container with limited headspace. The amount of time taken for addition of negative control, standard and sample has little effect on the results because of the long sample incubation. (It is preferred to incubate overnight at this point rather than 2 hours because of the slight improvement in sensitivity [up to two-fold] with the longer incubation). Also, results may be affected by proportionally higher variations in incubation time among samples, due to the sample addition process.
- 8. Wash 1: Dump or aspirate the EIA tube contents into a suitable waste container. Tap inverted tubes on absorbent material to remove excess liquid. Insert a 50 mL pipet tip into the Repeater pipettor and

- set volume to 1.0 mL. Dispense one 1 mL aliquot of 100 ppm Triton X-100 in water (made in step J2 above) into each tube. Dump or aspirate the EIA tube contents into a suitable waste container. Repeat this wash step three more times for a total of 4 washes. Be certain to shake or tap out as much wash solution as possible on each wash, especially the last one.
- 9. Add conjugate: Insert the 10 or 12.5 mL pipet tip labeled "conjugate" into the Repeater pipettor and set volume to 500 μL. Dispense one 500 μL aliquot of "Competitor-HRP Conjugate" into each tube. Incubate tubes at room temperature for 15 minutes. Timing for this step is the most important of the EIA steps. Rapid and accurate addition of conjugate and consistent incubation times are necessary to maintain equal treatment within and among runs.
- 10. <u>Wash 2</u>: Repeat the wash procedure described in step 6 above <u>except use reagent grade or bottled</u> <u>distilled water with no detergent added</u>.
- 11. <u>Add substrate</u>: Insert the 10 or 12.5 mL pipet tip labeled "substrate" into the Repeater pipettor and set volume to 500 μL. Dispense one 500 μL aliquot of "HRP Substrate Solution" into each tube. Incubate at room temperature for 30 minutes.

WARNING: Stop solution is 1N hydrochloric acid. Handle carefully.

- 12. Add stop solution: Insert the 10 or 12.5 mL pipet tip labeled "stop" into the Repeater pipettor and set volume to 500 μL. Dispense one 500 μL aliquot of "Stop Solution" into each tube. The Stop Solution converts the developed color to yellow. If Stop Solution is not added, all tubes will eventually turn dark blue. Read the tubes as soon as possible after stopping; the yellow color is stable for only 30 minutes.
- 13. Read OD values: To use the Artel Differential Photometer, add at least 1 mL of reagent grade or bottled distilled water to a blank test tube and insert the tube into the left well of the photometer. Dry the outside of each EIA tube, insert tube into the right well of the photometer, and record the absorbance (optical density [OD]) of each tube. Alternatively, read the absorbance of each sample at 450 nm using a tube reader, conventional spectrophotometer, or microplate reader. Consult the Recommended Equipment List (EL-001) for information on how to contact Artel.

K. Interpretation of the Results

- 1. After each EIA run, calculate for each standard and sample the %NC value (OD as a percent of the negative control OD). The %NC values for standards should be compared to Table 1 to determine if the EIA has been performed properly. Refer to Table 3 and/or the appropriate Application Note for instructions on interpretation of sample results. Contact CAPE Technologies if additional assistance is required regarding interpretation of results.
- 2. The CAPE Technologies High Performance Dioxin/Furan Immunoassay Kit is designed primarily for screening decisions. Quantitative interpretation of data may be possible in certain situations. Consult the appropriate Application Note and Technical Note TN-004 for discussion of this topic. Quantitative interpretation can be performed using Module C from the CAPE Technologies web site (www.capetech.com). This Microsoft Excel workbook file contains background information and operating instructions. The file utilizes a four parameter equation designed specifically for immunoassays and used in most commercial immunoassay software. Module C plots the actual data and the calculated four parameter solution, and determines sample concentrations based on the calculated curve fitting solution. It is necessary to use all the standards listed in Table 1 to produce an acceptable curve fit. Contact CAPE Technologies if additional assistance is required regarding interpretation of results.

L. Limitations of the Procedure

The CAPE Technologies High Performance Dioxin/Furan Immunoassay Kit is designed for screening of samples according to their TEQ by responding to the toxic PCDD/F congeners in approximate correlation with their TEFs. Quantitative interpretation of data may be possible in certain situations. Consult the appropriate Application Note and Technical Note TN-004 for discussion of this topic. Confirmation of positive samples and a portion of the negative samples by GC-MS analysis is strongly recommended. Other quality assurance methods and samples should be used at all stages of sample preparation and analysis.

Samples which appear heterogeneous during the first incubation (step J7 above) may be invalid due to phase separation. Adequate sample cleanup based on the protocol in the chosen Application Note must be assured by the analyst. Contact CAPE Technologies if this is a recurrent problem.

Samples analyzed by EIA must contain either immunoassay compatible internal standards or no internal standards. Consult Technical Note TN-001 and Calculation Module D for discussion and other assistance.

The distribution of PCDD/Fs can be extremely heterogeneous. Adequate sample number, distribution, and homogeneity are the responsibility of the analyst.

To ensure accurate and reliable results, every effort should be made to perform the CAPE Technologies High Performance Dioxin/Furan Immunoassay Kit at temperatures between 20°C (68°F) and 27°C (81°F).

M. Storage

- Store all test kit components at 2°C to 6°C (36 °F to 43°F) when not in use.
- Do not expose test kit components to temperatures greater than 37°C (99°F). Storage at ambient temperature (20°C to 27°C or 68°F to 81°F) on the day of use is acceptable. Prolonged exposure (many days) or repeated exposure to ambient temperatures may cause a loss of reagent (especially conjugate) activity, resulting in decreased OD values for all tubes.
- · Do not freeze test kit components. Kits which have been frozen must not be used.
- · If desiccant in tube bag is not blue, do not use kit; contact CAPE Technologies.
- Do not use test kit components after the expiration date printed on the kit box label.

N. Quality Assurance

- Samples which appear milky during the first EIA incubation may contain more oil than can be tolerated by the test. These samples should be diluted or cleaned more, then analyzed again by EIA.
- Response values for 2,3,7,8-TCDD standards typically should be in the ranges given in Table 1.
- If a blue color does not develop in the negative control test tube within 15 minutes after adding the substrate solution, the test is invalid and must be repeated. If the problem persists, contact CAPE Technologies.
- The antibody used in this immunoassay recognizes PCDD/F congeners based on structure, not mass. Therefore, conventional stable isotope labeled internal standards are detected as native material. Typical levels of conventional stable isotope labeled internal standards can not be used with this EIA. Please consult Technical Note TN-001 for recommendations on the use of immunoassay compatible mass labeled internal standards. Contact CAPE Technologies if additional assistance is required regarding these issues. Immunoassay compatible internal standards are available from Wellington Laboratories (Guelph, Ontario, Canada).
- Replication, check samples, standard reference materials, and other QA samples and methods can and should be used with this kit, with the exception of conventional stable isotope labeled internal standards (as noted in the above paragraph). The Starter Kit DF1-ST includes two toluene check samples which should be used to determine if the solvent exchange portion of the sample preparation has been performed properly. Consult Wellington Laboratories to obtain additional QA materials.

O. References

All of the documents cited in this and other CAPE Technologies literature are available from the CAPE Technologies web site at "www.cape-tech.com". Application Notes describe procedures for analysis of a variety of matrices, TEQ levels, and sample preparation methods. Technical Notes provide discussion and recommendations pertaining to important technical issues. Technical References are papers from technical journals or other sources which provide extensive background information about selected topics relevant to immunochemical analysis of PCDD/Fs. Additional questions can be directed to CAPE Technologies using the contact information from the web site.

P. General Limited Warranty

CAPE Technologies, LLC ("CAPE Technologies") warrants the products manufactured by it against defects in materials and workmanship when used in accordance with the applicable instructions for a period not to extend beyond the expiration date printed on the product. CAPE Technologies MAKES NO OTHER WARRANTY, EXPRESSED OR IMPLIED. THERE IS NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. The warranty provided herein and the data, specifications and descriptions of CAPE Technologies products appearing in CAPE Technologies' published catalogues and product literature may not be altered except by express written agreement signed by an officer of CAPE Technologies. Representations, oral or written, which are inconsistent with this warranty or such publications are not authorized and if given, should not be relied upon.

In the event of a breach of the foregoing warranty, CAPE Technologies' sole obligation shall be to repair or replace, at its option, any product or part thereof that proves defective in materials or workmanship within the warranty period, provided the customer notifies CAPE Technologies promptly of any such defect. The exclusive remedy provided herein shall not be deemed to have failed of its essential purpose so long as CAPE Technologies is willing and able to repair or replace any nonconforming CAPE Technologies product or part. CAPE Technologies shall not be liable for consequential, incidental, special or any other indirect damages resulting from economic loss or property damage sustained by any customer from the use of its products.

Copyright 2000, CAPE Technologies, LLC.
CAPE Technologies is a trademark of CAPE Technologies, LLC.
Eppendorf, Repeater and Repeater Plus are trademarks of Eppendorf-Netheler-Hinz GmbH.
Drummond is a trademark of Drummond Scientific Co.
Artel is a trademark of Artel, Inc.
Microsoft and Excel are trademarks of Microsoft Corporation.

ATTACHMENT 3

MLU CALCULATIONS AND LABORATORY NOTES

Coupled Column Cleanup of Sentinal hexane:acetone extracts

Table 1: Standards data

Standard pg/tube ->	Neg. Cntl.	3,2	19	32	100
OD rep. 1	1.20	1.05	0.76	0.45	6.33
OD rep. 2					
mean OO	1.20	1.05	0.76	0.45	0.33
% of NC OD	100.0	87.5	63.3	37.5	27.5

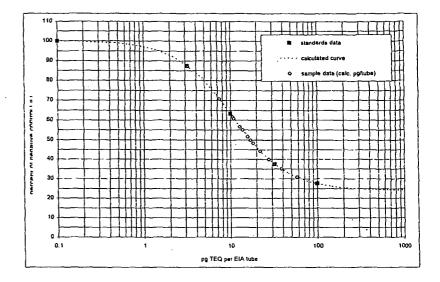
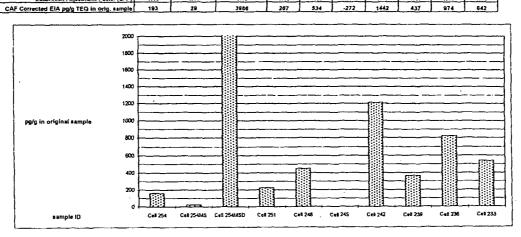

Table 3: Squares of diffs, actua	l vs. calc. curves				
x	0.1	3.2	_10_	32	100
y pred.	99,97	87.58	63,24	37.60	27.45
(y-y pred)^2	0.00	0.01	0.01	0.01	0.00

Table 2: Starting / final values for A-D A B C D										
	A	8	C	0						
	100.1	1.37	10.4	24.2						

Table 4: Sum of squares of diffs, from Table 3


Σίγ-γ predγ*2 0.03

_	Table 5: Calc. I	85 and (50	values (pg/tube)	
l	(85 =	3,8	∤50 ≃	15.9

SAMPLE DATA

sample ID	l	L				M8-	MB+	Cell 254	Cell 254MS	Cell 254MSD	Cell 251	Cell 248	Cell 245	Cell 242	Celt 239	Cell 236	Cell 233
sample into	keeper control after std 4			keeper evap control + 50 P9	keeper added after ev 50	hexane control unspiked, put thru column cleanup	hexana control+50 pg, put thru column cleanup	Cell 254	Cell 254MS	Cell 254MSD	Cell 251	Cell 248	Cell 245	Cell 242	Ce# 239	Cell 238	Cell 233
OD rep. 1						0.74	0.42	0.68	0.73	0,37	0.66	0.60	0.65	0.48	0.62	0,53	0.58
OD rep. 2																	
calc. mean OD	#DIV/O?	#DIV/0!	#DIV/01	#DIV/0!	#DIV/01	0.74	0.42	0.68	0,73	0.37	0.66	0.60	0.85	0.48	0.62	0.53	0.5B
catc. % of NC OD	#DIV/0!	#DIV/01	#DIV/0!	#DIV/0!	#DIV/01	62	35	57	61	31	55	50	71	40	52	44	48
calc. pg/tube		#DIV/0!	#D(V/0!	#O1V/01		10.6	38.6	12.8	11.0	57,5	13.8	16.9	7.4	27.6	15.8	22.1	18.2
blank subtracted pg/tube		=0	#DIV/01	#DIV/01		=0	27.9	2.3	0.3	46,9	3	6	-3	17	5	11	7.6
						g SE per tub	e (enter data)	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0,025	0.025
					uncorrected El	A pg/g TEQ is	n orig, sample	516	439	2300	551	676	297	1103	630	883	727
				bt	blank corrected EIA pg/g TEQ in orig. sample				14	1875	126	251	-128	679	206	458	302
				recover	recovery corrected EIA pg/g TEQ in orig. sample				25	3356	225	450	-229	1214	368	820	541
					Calibratio	n Adjustment	Factor (CAF)	1.19	1,19	1.19	1.19	1,19	1.19	1,19	1.19	1.19	1.19
		1															1

coupled column cleanup of Leeder hexane; acetone extracts

Table 1: Standards data

Standard pg/tube>	Neg. Cntl.	3.2	10	32	100
00 rep. 1	1.21	1.03	0.74	0.45	0.30
OD rep. 2					
mean OD	1,21	1.03	0.74	0.45	0.30
% of NC OD	100.0	85.1	61.7	37.2	24.8

Table 3: Squares of diffs, ectual	vs. catc. curves				
×	0.1	3.2	10	32	100
y pred.	100.10	84.85	61.53	36.82	24.97
(v-v pred)^2	0.01	0.00	0.14	0.14	0.03

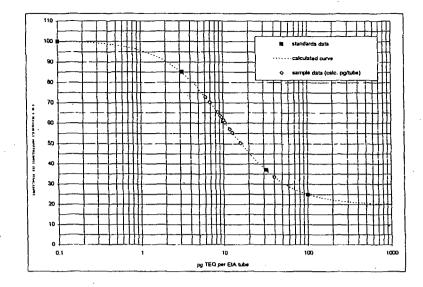
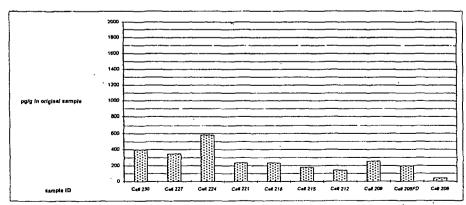

Table 2: Star	ting / final val	ues for A-D	
Α,	В	С	D
100,4	1,19	10.6	19.8

Table 4: Sum of squares of diffs, from Table 3

\[\sum_{(Y-Y)} \text{pred}^2 = 0.39 \]

Table 5: Calc. I85 and I50 values (pg/tube)


[85 = 3.2 | [50 = 16.3]

SAMPLE DATA

AMPLE DATA		,															
sample ID						MB-	MB+	Cell 230	Ceft 227	Cell 224	Cell 221	Cell 218	Cell 215	Cell 212	Cell 209	Cell 209FD	Cell 206
sample info	keeper control after std 4		keeper evap control + 20 pg	keeper evzp control + 50' pg	keeper added after ev 50	hexane control unspiked, put thru column cleanup	hexane control +50 pg. put thru column cleanup	Cell 230	Cell 227	Call 224	Cell 221	Cell 218	Cell 215	Cell 212	Cell 209	Cell 209FD	Cell 206
OD rep. 1						0.88		0.67	0.69	0.61	0.74	0,74	0.77	0.79	0.73	0.78	0.85
OB rep. 2																	
calc, mean OD	#DIVID!	#DIVIO!	#DIVID!	#DIV/OI	#DIV/0!	0.88		0.67	0.69	0.61	0.74	0.74	0,77	0.79	0.73	0.76	0.85
calc. % of NC OD	#DIV/0!	#DIV/O!	#DIVIO!	#DIV/01	#DIV/0!	73	34	55	57	50	61	81	64	. 65	60	63	70
calc, pg/fube		#DIV/Ot	#DIV/OI	#DIV/0!		6.2	40.0	12.9	12.1	16.0	10.2	10.2	9.2	8.5	10.5	9.5	6.9
blank subtracted pg/tube	J	=0	#DIV/01	#DFV/01		*	33.9	6.6	5.9	9.8	4	4	3	2	4	3	0.7
	_					g SE per bui	be (enter data)	0.025	0,025	0.025	0.025	0,025	0.025	0.025	0.025	0,025	0.025
					uncorrected E	IA pg/g TEQ	in orig, sample	517	483	640	406	406	366	342	420	379	276
					blank corrected EIA pg/g TEQ in orig. sample				236	394	160	160	120	95	174	133	29
				recove	recovery corrected EIA pg/g TEQ in orig. sample				348	581	236	236	177	140	257	196	43
					Catibration Adjustment Factor (CA)				1,19	1.19	1,19	1.19	1.19	1.19	1.10	1.19	1,19
					1 F C	TEO L	-1-	474	444	***	700	350	***	167	308	***	41

* NOTE: 1889 sample was containfunded and therebye no usable data was potential from this sample. The average cate, % of MC OD was used from the \$51602 and the \$52102 sample betters to determine the recovery corrected \$64 page TRQ in original particular.

coupled column cleanup of Leeder hexane:acetone extracts

Table 1: Standards data

Standard pg/tube>	Neg. Cntl.	3.2	10	32	100
OD rep. 1	1.25	1.05	0.50	6.46	0.33
OD rep. 2					
mean OD	1.25	1.05	0.80	0.46	0.33
% at NC OD	100.0	84.0	64.0	36.6	26.4

Table 3: Squares of diffs. actual v	s. calc. curve		·		
×	0.1	3.2	10 '	32	100
y pred.	99,64	85.03	62.63	38,09	25,81

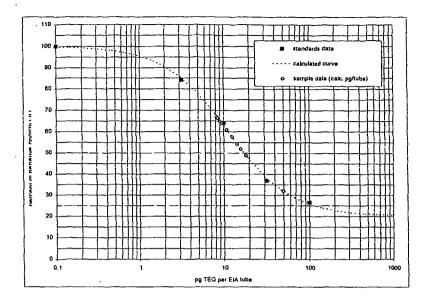
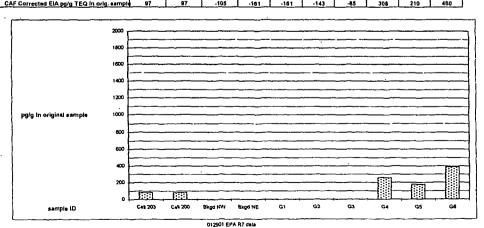
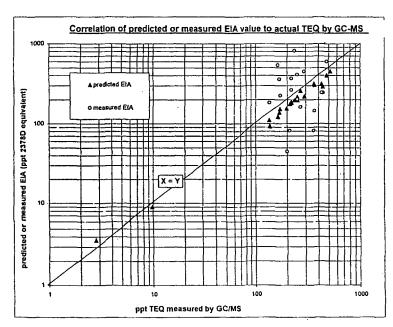

Table 2: Sta	rting / final va	lues for A-D	
Α	В	C	۵
100.0	1.18	11.2	20.2

Table 4: Sum of squares of diffs. from Table 3

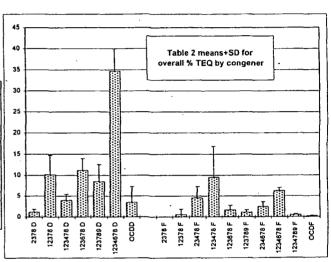
[(y-y pred)*2 5.09


Table 5: Ćalc. 185 and 150 values (pg/tube)

185 = 3.2 150 = 17.3


SAMPLE DATA

Gr Will GE GF 111. 1																	
sample (D	T		I		I	MB-	MÐ+	Celi 203	Cell 200	Bkgd NW	Bkgd NE	Q1	G2	GJ	G4	G5	G.6
sample info	keeper control after atd 4				keeper added after ev 50	hexane control unspiked, put thru column cleanup	hexane control +50 pg, put thru column cleanup		Cell 200	Bkgd NW	Bkgd NE	G1	GZ	G3	G4	G5	G6
OD rep. 1			I		1	0.76	0.40	0.72	0.72	0.81	0.84	0.84	0.83	0.80	0.65	0.68	0.61
OD rep. 2											· .						
calc, mean OD	#DIV/0!	#DIV/01	#DIV/01	#DIV/01	#D(V/0)	0.76	0.40	0.72	0.72	0.61	0.84	0.84	0.83	0.80	0.55	0.68	0.61
calc. % of NC OD	#D[V/0!	#DIV/0!	#D(V/0)	#DIV/01	#DIV/0!	61	32	58	58	65	67	67	66	64	52	54	49
cate. pg/tube		#DIV/0(#D(V/01	#DIV/01		10.8	49,4	12.4	12.4	9.1	8.2	8.2	8.5	9,4	15.8	14.2	18.3
blank subtracted pg/tube		=0	#D(V/0)	#DIV/dl		≈c	38.5	1,6	1.6	-1.7	-3_	7	-2	1	5	3	7.5
						g SE per tu	be (enter data	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025
					uncorrected E	IA pg/g TEQ	in orig, sampl	496	496	354	326	328	340	377	532	569	731
					blank corrected E	IA pg/g TEQ	in orig, sampl	63	63	-68	-104	-104	-93	-55	200	137	299
				recove	ry corrected ElA	pg/g TEQ i	orig. sampl	82	82	-88	-135	-135	-120	-72	259	177	387
					C:	alibration Adju	stment Facto	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19	1.19
				CA	E Corrected EIA	maio TEO Is	orla esmot	97	97	-105	.181	-161	-143	.94	308	210	480



Dioxin worksheet for calculation and correlation of TEQ. and predicted EIA response 25-b4-02 data from Angela Suarez 070802

				not co	ncentrati	od by ca	nagener fr		made /bu	CC-Her															
\neg		[note-		ppice	1	on by co	i genner ne	4 44CR S	impie (by	GC-883)	- 1		1	1	- 1		1		1		1		1 1	1 1	1
- 1		new		Cell	Cell	Cell	Cell	Cell	Cett	Ceil	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Cell	Bkgd	Rkod
- 1		WHO		254	251	248	245	242	239	236	233	230	227	224	221	218	215	212		209FD	206	203	200	NW	NE
-1		values)		234	231	240	275	242	435	230	233	230	221	224	221	410	213	***	203	ZUSFU	200	203	200		, WE
4	congener	TEF	-%CR	- 0	- 3		7											 ;					- ,		1
D1 D2	2378 D 12378 D	1	100	<u>~</u>	19	30		12	22		17	28	21	6	36	38	17	44	32	36		29	57		- 4
3	123478 D	0.1	1.6	154		98		38	81	174	61	110	76	187	133	95	46	145	103	97	73	88	157		
D4	123678 D	0.1	7.9	421		322		139	264	265	172	258	195	572	460	515	151	399	257	292	215		386		1
D5	123789 D	0.1	39	307		194		81		168	112	198	129	363	237	245	99	287	1691	194	135	160			7
06	1234678 D	0.01	0.72	13700		8880		4D40		7870	5100	7710		16300		14300	4400	12400	7270	8670	6630	6870			131
07	OCOD	0.0001				67900				62100	40200	56600			109000		37300	96500	60200	65500	59900				
_																									
<u> </u>	2378 F	0.1	20	- 0		- 2	2	0	0		0	0	0	4	2	3	2	4	- 1	2	3	<u>6</u>		- 0	. 0
F2 F3	12378 F 23478 F	0.05	4.6 17			20 28		<u>3)</u>		53 19	10		9	11 56	- 21 34	27	17		23	0	19		10		- 9
F4	123478 F	0.1	0.4	 	 ''	359		330		120	310	15 480	219	373	1000	57 435	120	278	93	26 100	234				
F5	123678 F	0.1	1	98	28	110				32	20	18	19	39	52	63	15	100	61	72	24		91		
F6	123789 F	0.1	3.3	0	18	47		11		23	15	23	16	77	57	96	27	60	28	34	30				1 0
-71	234678 F	101	4.9		56	93	157	36	7	59	43		51	146		170	40	96	68	80	61	65	109	0	o
FB	1234678 F	0.01	0.022	2010	1180			921	1260	1470	884	1270	914	2920	2760	3320	847	2310	1370	1570	1070	1200			21
F9	1234789 F	0.01	0,94	165				75		141	81	136	93	307	268	327	90	249	132		114				0
11	OCOF	10.0001	0.0001	8960	5080	9250	10900	4620	6260	5360	3790	5050	3630	12000	12600	13600	3970	7980	5200	5530	4840	4410	7350	123	0
	pot TEQ by group		7 dioxins	236	134	192	386	82	157	182	108	170	120	353	266	281	96	266	166	191	141	157	272	2 7	3
			IO furans	32	36	99	134	55	63	52	55	81	48	126	173	144	39	100	52	59	57	55			0
_	5 to	taí hepta						54		100	65			209	175	192	58	160			65				2
		ppt TEO	HPCOD	137	64	89	178	40	78	77	51	77	54	163	133	143	44	124	73	87	66	69	116	<u> </u>	لئسا
	% TEQ by group		dloxins	8.8	79	66	74	60	71	78	- 66	68	71	74	61	66	71	73	76	76	71	74	76	5 76	92
			0 furans							22	34	32		26	39	34	29	27	24		29			4 24	
_	5 to	ital hepta												44		45					43				
		% TEC	HpC00	51	37	31	34	30	35	33	31	31	32	34	30	34	33	34	33	35	34	32	32	2 40	47
	% pred. EIA by group		7 dioxins	99	93	92	94	92	87	94	94	95	94	94	92	91	93	94	94	94	93	95	94	4 99	100
			10 furans	1 1	7	. 8	s e	8	13		6	5	6	94	в	9	7	. 6	94 6	6	93	5	l e	6 1	. 0
-,							,														,			,	
ŀ	avo, T	EF = TE												0.003			0 003				0.003				
ŀ			ppt conc				159269			77694 235				157421 479	140086	146296 426	47151 135	120901 368			73373 198				
٦ŀ			red. EIA)							197				402	290	313		306			156				
"	pred, EIA as													4		74		- H			79				
12	P1 845, E314 WA		ured ELA					1210	_					600		244		145			45				1 3
r																								· · · · · · · · · · · · · · · · · · ·	

	- 1	Table 1:	mber																						
D1 23	78 D	Cell 254 C	eii 251 C		ell 245 C	ell 242 (ell 236 C	ell 233 (ell 230 C	227 C	Cell 224 C				ell 212 C				ell 203 C	ell 200 B	kad NW B			
	378 D	Ö	19	5 30	62	12	2 22	34	17	28 .	21	60	36 3	4 38	17	44	3 32	3 36	4 22	4 29	. 57	0	0		
	478 D	15	7	10	20	4	В	17	6	11	8	19	13	10	5	15	10	10	7	9	16	1	0		
	8678 D	42	23	32	63	14	26	27	17	26	20	57	46	52	15	40	26	29	22	25	39	1	ŏ		
DS 123	3789 D	31	14	19	44	8	14	17	11	20	13	36	24	25	10	29	17	. 19	14	16	29	1	1		
D6 123	4678 C	137	64	89	178	40	76	77	51	77	54	163	133	143	44	124	73	87	56	69	116	4	1		
07 0	CDD	11	5	7	13	3	7	6	4	6	4	12	11	11	4	10	5	7	6	5	9	0	1		
		0	0	0	O .	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0		
	378 F	0	0	0	0	0	С.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	378 F	0	3	1 14	0 34	2 4	13 29	3	D 6	0 7	0 7	1 28	1	1	0	0	0	0	0	0	0	0	0		
1	3478 F	0	0	36	21	33	29	12	31	48	22	37	17 100	28 44	9 12	20 28	11 9	13 10	10 23	8 23	18 22	0 2			
1 1 1	3676 F	10	3	11	17	2	2	3	2	2	2	4	5	5	2	10	6	7	23	23	9	0	i I		
	3789 F	ō	2	5	9	ĩ	2	2	2	2	2	8	6	10	3	6.	3	3	3	2	4	ā			
F7 234	4678 F	0	6	9	16	4	1	6	4	6	5	15	12	17	4	10	7	8	6	6	11	0	0		
F8 123	4578 F	20	12	20	32	9	13	15	9	13	9	29	28	33	8	23	14	16	11	12	19	1	0		
	4789 F	. 2	1	2	3	1	1	1	1	1	1	3	3	3	1	2	1	1	1	1	2	0	0		ſ
F1d O	COF	1	1	_1	1	0	_1_	_1_	0	_1	0	1	_1	1:	0	_1	1	1	0	0	1	0	0		
																									1
tota	at TEQ	269	171	291	520	137	220	235	163	251	168	479	438	426	135	366	218	250	198	211	359	10	3		ļ
		Table 2: sample no Cell 254 C	ımber			ell 242		Çell 236 (Cell 230 (Cell 227 (Cell 224 (Cell 221 (Cell 218	Cell 215 (Cell 212 (Cell 209 C	eil 209FC (Call 206 (Cell 203	Cell 200 E	Skqd NW B	kgd NE	mean	sp
	378 D	0.0	1.7	1.8	1.3	0.8	1.0	2.2	1.0	0.9	1.0	1.2	0.6	0.9	1.4	1.2	1.4	1.4	2.1	2.0	2.1	0.0	0.0	1.2	0.7
D2 12 D3 12	378 D	0.0 5.7	11.2 4.2	10.3 3.4	12,0 3.9	8.5 2.8	10.0 3.7	14.3 7.4	10.2 3.7	11.2 4.4	12.2 4.5	12.6 3.9	8.2 3.0	8.9 2.2	12.5 3.4	12.1	14.5 4.7	14.3 3.9	11.1 3.7	13.6	15,7 4,4	0.0 6.2	0.0	10.2	4.6
D4 12	3678 D	15.7	13.3	11.1	12.1	10.2	12.0	11.3	10.6	10.3	11.6	11.9	10.5	12.1	11.2	10.9	11.8	11.7	10.9	11.6	10,7	14.2	0.0	11.2	1.4 2.8
	3789 D	11.4	8.2	6.7	8.4	5.9	6.3	7.2	6.9	7.9	7.7	. 7.6	5.4	5.8	7.3	7.8	7.7	7.6	6.8	7.6	8.1	12.9	24.9	8.5	4.0
D6 123		51.0	37.4	30.5	34.2	29.5	35.2	32.7	31.3	30.8	32.2	34.0	30.3	33.6	32.5	33.9	33,3	34.6	33.5	32.5	32,3	39.8	47.3	34.7	5.3
D71_0	CDD	4.1	2.9	2.3	2.4	2.4	3.3	2.6	2.5	2.3	2.3	2.6	2.5	, 2.7	2.8	2.6	2.8	2.6	3.0	2.6	2.5	2.9	20.4	3.5	3.8
F1 2	378 F	0.0	0,1	0.1	0.0	0,0	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0,1	0,1	0.1	0.0	0,1	0.0	0.0	0.0	0.0
	2378 F	0,0	1,9	0.3	0.1	1.1	5.9	1.1	0.3	0.2	0.3	0.1	0.2	0.3	0.3	0.1	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.6	1.3
	3478 F	0.0	5.4	4.9	6,6	2.7	13.0	4.0	3,6	3.0	4.1	5.8	3.6	6.7	6.4	5.5	5.2	5.1	4.8	3.7	5.1	0.0	0.0	4.5	2.7
	3478 F	0.0	0,0	12.3	4.1 -	24.1	1.0	5.1	19.0	19.2	13.0	7.6	22.6	10.2	8.9	7.6	4,3	4.0	11.8	10.8	6.1	17.3	0.0	9.5	7.3
	3678 F	3,6 0,0	1,7 1,0	3.8 1.6	3.3 1.7	1.2 0.8	1.0 0.7	1.4	1.2	0.7 0.9	1.1 0.9	0,8 1.6	1.2	1.5 2.3	1.1 2.0	2.7 1.6	2.8 1.3	2.9 1.4	1.2	1.1 0.7	2,5 1,2	0.0 0.0	0.0	1.7	1.1 0.6
1 1	4678 F	0.0	3,3	3.2	3.0	2.6	0.3	2.5	2.6	2.5	3.1	3.0	2.8	4.0	2.9	2.6	3.1	3.2	3.1	3.1	3.0	0.0	0.0	2.5	1.2
F8 123		7.5	6.9	6.8	6.2	6.7	5.7	6,3	5.4	5.1	5.4	6,1	6.3	7.8	6.3	6.3	6.3	6.3	5.4	5.7	5.3	6.6	7.5	6.3	0.7
	34789 F	0,6	0,7	0.7	0,6	0.5	0.6	0.6	0.5	0,5	0.6	0,6	0.6	0.8	0.7	0.7	0.5	0.6	0.6	0.5	0.5	0.0	0.0	0.5	0.2
FIG C	COF	0,3	0.3	0.3	0.2	0.3	0.3	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.2	0,2	0.2	0.2	0.2	0.2	0,1	0.0	0.2	0.1
D2 12	ſ	Table 3: sample ni Cell 254 (10 10	ımber						Cell 233 (Cell 230 (12 3	Cell 227	Cell 224 12 2	Cell 221 (Cell 218 13 4	Cell 215	Cell 212 (Cell 209 C	12 2	Cell 206 : 11 3	Cell 203	Cell 200 I	Bkqd NW E 9 9	3kqd NE 5 5	overati rank 12 3	
	3478 D	5	7	9	8	7	8	4	7	7	7	В	8	11	В	В	7	8	8	7	8	6	5	8	
	3678 D	2	2	3	2	3	3	3	3	4	4	3	3	2	3	3	3	3	4	3	3	3	5	2	
	3789 D	3 1	4	6	4	8	5	5	5	5	5	5	6	7	5 1	4	4	4	5 1	5	4	•	2	5	
D6 123	0CDD	5	9	11	11	1 10	1 9	1 9	1 10	1 10	1 10	1 10	1 10	1	10	1 10	1 11	1111	10	1 10	1 11	7	3		
F1 2	376 F 2378 F	10 10	16 10	17 15	17	17 12	17 6	17	17 15	17	17 15	17 15	17	17 16	17 15	18 17	18 17	15 17	18 17	17 18	17 16	9	5	17	
	2378 F 3478 F	10	1U 6	15	18 5	12 8	2	13 B	15 8	16 A	15 8	7	18 7	15 6	13	7	1/ 6	6	7	16 8	16 7	9	5	171	
	3478 F	10	17	2	7	2	10	7	2	2	2	4	2	3	4	5	8	7	2	4	5	2	5	141	
	3678 F	7	11	ā	ė	11	12	12	11	13	11	13	12	12	13	9	10	10	13	12	10	9	5	1 11	
	3789 F	10	13	13	12	14	13	14	13	11	13	11	11	10	11	12	13	13	12	13	13	9	5	13	
	4678 F	10	8	10	10		15	10	9	9	9	9	9	8	9	11	9	9	9	9	9	9	5	10	
F8 123	34878 F	4	5	5	6	5	7	6	6	6	6	6	5	5	7	6	5	5	8	6	6	5	4 1	161	

P	roject No: 66	ronmental 1011 L.φ2.φφ77. Dioxin F.	夕 Date: <u>ち</u>	13/02	A) Page: Made by: _Arack Checked by:	of <u>II</u> Suarez
					Preliminary:	Final
Mary	13,2003			grante summerspring a consequence of a		,
Ex	traction	•	en e	e i Spanner of the Albert		
				i i jumiku .		e e e e e e e e e e e e e e e e e e e
- T	Began at	10.00 AM	(10.00	hours)	منابع المامعات عليه أمامتان المحكم بأرامها الله	i i i i i i i i i i i i i i i i i i i
		xet approx s				
	Added a	blox 30 d	Nason C	sodium su	(fate), 5g	Sand or
	and m	ixed with	wooden s	patula	(steal) -	- Odd 20 ml verson a starte
						Orpm. Checked.
	Checked	Samples a	to make	Sure -	they mixed.	at 30 mine
	Mixed on	ocbital S	haker ad	ditional_	245 m	m. 4h 30min.
1	NOTE: Sa	ndes were let	t on orbital	Shaker (s	topped after 2hg	Omin) Overnight.
	Sample	(De) Arret	035 2	Λ I C	Iney	were NOT mixing of ant Entract (ml)
	HomID		mple(g)	Hmt. Jame	(9)	unit Edract (ml)
		208 - 5	60		60 0	268
	4506-Y	208 - 5	25 32 (2)			
			+	5/10/02		
Saude	Cell	Collection	Ant. of	OD	Calculated	NE
	I.O.#	Date / Time	Sample (g)		onc. (pr	
1	254	4/29/02 14:20	5.17	0.68	0.162	5 16/02
2	251	4/29/02 14:35	5.20	0.66	0.225	
3	248	4/29/02 14:45	5.13	0.60		
4	245	4/29/02 14:55	5.16	0.85	n.d.	
5	242	4/29/02 15:10	5.03	0.48	1,21	
<i>و</i> 7	239	4/29/02 15:25 4/29/02 15:35	5.15	0.62	0.368	
g	233	1 1 1 1	5.28	0.58	0.820	5/16/02
9	230	4/29/02 15:45 4/29/02 15:55	5.08 5.20	0.50 0.67	0.541	5/17/02
10	227	4/24/02 16:05		0.69	0.413	_
11	224	4/29/02 16:25	5.00 5.11	0.64	0.6036	
12	221	4/29/02 16:50	5.14	074	0.600	
	218	4/29/02 17:05	5.12	1 1 1	0.244	
13 14	215	4/29/02 17:15	5.26	0.74	0.183	
	212	4/29/02 17:25	5.25	0.77	0.145	A SEC. SEC. SEC. SEC. SEC. SEC. SEC. SEC.
15 16	209	4/29/02 17:50	508	0.79 0.73	· · · · · · · · · · · · · · · · · · ·	Section of the sectio
16 F0	209	4/29/02 17:50	5.10		0.365	5/14/02
14 10		7123102 11.30	· · · · · ·	0.76	0.262	JANUA.

	O.,.c.	EPA				
		9011.6.02.0077.9		•		rez
	Ma. MC	O Proxin. Fi	<u>, ela Scieening</u>	•	ed by:	Final
				Fremm	inary:	. I IIIai
Sample	Cell	Collection	Amt. of	OD	Calculated	
#	I.0.#	Pate / Time	Sample (a)	Reading	conc. (bob)	Date
וח	206	4tzaloz 18:05	5.36	U	0.045	5/17/02
8	203	4/29/02 18:20	5.14	0.83-072	580.0	5/21/02
19	200	4129/02 18:35	5.25	0.72	0.082	
20	Bkgd-NW			0.81	n.d	<u> </u>
21	Blagd-NE			0.84	n.a	5/21/07
1 MS	254	4/29/02 14:20	4.91	0.73	0.025	5116loz
1 mso	254	4/29/02 14:20	5.34	0.37	3,356	5/16/03
May 1	4,2007	2:				
- San	sples we	ne mixed an	· additional 1	hr L check	ed after 3) minutes.
- San	uples we	re centrifuge	st at 800 s	pm for 15	min.	
				OCCEC		
Note:	END	OF EXTRE	SC I TOW T	KOCEZZ		
) _ L		- 40 - 60 - 60	مدرر المطالم	250 000	
- 47	5// O# 6	extraction so. The torget	here concer	TATION WUS	For oranget	16 1.0 ook
U.C.	1000 00	la l	(600)		101 7101	Va. 1
- To v	each ce	nfer of ca pired to ch	libration curv	e , 25 ma	Soil Couivalem	t needs
40	be ao	oried to ch	ean-up colu	nn lacid si	lica column	1. This
is	ecuival	lent to app	olyina 100	ul of extra	ct to the c	column.
- In	order to	lent to appr have enough	Sample So	sample volu	me is not a	n issue
2	00 N e	3 extract wil	1 be added -	to the colum	un. This w	llgive
5	io m soil	I equivalent in	Sample 0.vac	poration tube	2. Half of	this will
b	e instrod	uced to EA	A SO FIA	tube to ach	veve 25 mg	æg.
					U	
		,		FT		
						· ·
_	1(1-)-/\					
_		V - 1	1, 1		o oo on	next page
			1			

Client: EPA	Page:3 of
Project No: 69011.L.02.0077.00 Date: 5/14/02	Made by: A. Suárez
Ava MO Dioxin Field Screening	Checked by:
	Preliminary: Final
Clean-Up:	
- Preparation of acid Silica column:	
· Remove and caps from column and place	ce in holder
. Add 10 ml of hexane to column and	
until it drips from end. Don't allow to	op to go dry.
· Using Place Carbon column square en	1, on acid silica
Column. Fill to of carbon column	n with hexane using
pasteur pipet before placing it onto) cate acid silica
Column so no air bubbles develop. Do	> not let go dry
- Several me of herane should remain	in acid solica column
· Pressurize columns using 20 ml syrnge	2 and Stopper/STOPcale
· Allow all but 2-5 ml of hexane to	a flandlar i colura
Open Stopcale whom for fow 12 to stop	Do tollo to as dry
Chen stopcace asign + 1800 +2 10 2106	. 10% 1 5 10 3 15 90 31 9 ·
- Sample preparation:	
· Remove 200 ul of extract and place in	Quantation test tube
· Add 200 ul of tetradecane Reever to	
· Allaw a cetone: nexame to evaporate	
· Re-constitute cample with approx. 20	0-250 ul of hexane
and vortex ende to make Sure	all Sample goes back
into solution.	
into solution. Transfer all contents? At this point there are 50 Sea in Samo	
· At this point there are 50 seg in samp	le evaporation tube
- Cleanup procedure:	
· Transfer all contents of evaporation tube	to acid sinca column,
ringing the evaporation tube with se	
. Flush acid silica column with 25	not of horozo making
Sure to cince sides of silica c	alcomp with hexage.
· Flush using stopper stopcock ossembly	
· After all 25 ml has been placed o	on column, let berone
run through acid silica column un	til it reaches neutral
	On collination on thet

Client: EPA	Page: of
Project No: 6901. C 02.0077.00 Date: 5/14/02	Made by: A Suarez
Ava MD. D. Dx:n Field Screening	Checked by:
	Preliminary: Final
- Clean Up Procedure (con:+):	
. Do not let carbon colum as dry	Diarins are trapped
- Do not let carbon colum go dry here and to to some let column	so the dry would
lose the sample	
· Transfer carbon colum to empty	reservoir attach
square end to column	
· Add 7 ml of 1:1 toluene: hex	are and pressurize
os before. To NOT Let carbon	Column go dry
· Kemove carbon column, and invert i	t, and replace stant
end onto empty reservoir	
· Add 10 ml of toluene and pres	surize as before, catching
elute into Clean borosilicate gla	as s tube. Allow carbon
column to go dry at this po	int. Sevaporation tube
- Evaporation Procedure	
· Add 100 ul of Kaeper Solin (80:20 me	transl. Tetraethyleneglycol Cle
+ 100 ppm Triton x-100) to evapora- Place tubes in waterbooth set at 75	-oc will a contle
Stream of nitrogen gas.	
· when only Reeper remains, centrifuge	at 2000 ran for 200in
to concentrate all of Sample at be	How of tube; there should
be 20 ul of non-volatile resi	
NOTE: END OF CLEANUP PROCEDURE	
EIA: Bring all reagents to room temper	ature prior to use
- Preparation of tubes & wash solin:	GO .
· Place 10 ml of Triton X-100 in 10	onl of distilled water
and mix thoroughly larger Volum	ne can be made
to Store at room temperature.	
- Place antibody coeffed tubes (ac-tubes) in	n rack and lake men
Place standard tubes first, from low to h - Ringe tubes by filling them up complet	ugh. distilled
Tringe Tubes by tilling them up complet	rely worter.
- Dump water and top on absorbent	bother 10 is work
excess water	

	Client:	EPA				5/r	<u> </u>	ا مہ	Page:	5		of	
الحا	Project No	: GAGII.	L.\$2.\$\$7	7.00	Date:	5/15	102	. J _ I			A. Si	várez	
	AVa	MO Di	oxin Fi	ج لما ج	xreen.	, va				ed by:			
•				<u></u>		0	-			nary:		Final	
								_ ·					
EI	A (con	4):		t man morter		· · · · · · · · · · · · · · · · · · ·	a ilm sa adam						(°0
					i wang ina	er recommende van					. 3	ુ તુ	tutes
- D) \	500.	0 of	yiet;	Ned ,	vite.	2	w e	ach	tube	70	Record	لطريم
_ A(13 PC 13	0 of	e of stands	7642	and		مر مرا	0	6	each -	tu ho	(000100	(10 to)
	rectly	UNDF	R (into) iq	人.	Mix	'\m	med:	امله				Совенир	1146167
	and the same of the same of the same of		mum of	The second secon	majoration , marketing , we ,	* Lance	······································			*********** *****		of parameters are a result for the confidence of the contract	aniferan arya area
						31	bret	<u> </u>	<u>,9</u>				
Dau	s Activi	ties:				1	++	<u></u>	1. 1				
	 ,		n-trifuge	2 01	- RT)() r _a		6	15	Min u	tec		1
_ \\!	2/6		ft set	. () ()	richt	CU	000	2 h +	19	1.0.00			
~ (o	acid	5.1.ca/ca/	olumns	were	11212	ocreo	(w.4	R h	xane	and le	off set	overnia	nt
				<u> </u>	 	-	+		1				
Ma	4 15,	2008	>	1				1				4	M 12 1 1 1
	<u>O</u>				<u> </u>	<u> </u>				1 1	÷	<u> </u>	
7	1	11:00	Follow		1	ے کے	مام			L	1 0 0	, , , , , , , , , , , , , , , , , , , 	
				Proce	anis 2	100	CR	anw	b or	A CT	A OS	Willia	
	07-11	ay 14,	2002			<u> </u>			-(4		· · · · · · · · · · · · · · · · · · ·
_ \	12+20-	بلیم	1.20 c +1	1001	ΩN	4		C0./	ביר	20.00	الممار		d
	La contraction	um	was tu	CITIEN	OIL	ω,	app	IOX	-4.15	o alk	<u>. 410</u>	C GIIOU	7700
			to 75°C			بك ا		م ا د		~~	ieedi		· · · · · · · · · · · · · · · · · · ·
	1 1 1	t a ti			WOUG F		18 (nux	, • i	:	. (
	00	<u> </u>	me	ļ	 	+	1-1	_			15162	5/16	102
D				<u></u>	2	-					1	Ęvą	
nur	ر لاص:		ple #			2			tion	, ,		Jnc	
١٠٠	7		_ Carbon dr		1 (-	किस	4 00	- 10:0	4 14.	م ت	1.0	32
[[Tops of	1 1 1	- Carbond	(σ)	30			7					
اا	silica	# 5		1	35	-			+ +			<u> </u>	
- ! !	ns were		e - Carbon de		40	<u> </u>			<u> </u>		-		1-1
<u> </u>	lin color		1 -Carbono	7	43		-		1 1				ļ
tor S	ef #1	1 2	5		50		-		<u> </u>		<u> </u>		to the same of the same of
		<u> </u>			the Ir	and the same of the same of the same of					 	e e e e e e e e e e e e e e e e e e e	
			Ms,		349 14				<u> </u>	<u> </u>	<u> </u>		ing in the s
			MSD	4	38 14	(- 					<u> </u>	÷	!
		(/)	<u> </u>	der contraction	410 14			4	; ;		- -		
		<u> </u>	1 B		480 14		44					7	<u></u>
1114		1 1 1	12x	1	HI 647:	: 54		.	:	10:6	ን/. ່	[V.	. 22

Client: EPA	Page: of
Project No: CRØII.L \$2.\$\$ 77.\$\$ Date: 5/15/62	Made by: A. Suarez
Ava Mo Dioxin Field Screening	Checked by:
	Preliminary: Final
	,
Daily Activities (Con't):	
	11
- Contents of extraction vials, the ext	tract were transferred
to a 8 ml storage vial using F	
- 200 ul of extract were transferred	
and 200 ul of n-tetradecane (n-T	
were mixed. Tubes sat for app	
- Samples 1-MS, and 1-MSD and MB-	+ were spiked with
10 ul of 10 ppb stock sola.	
- Samples were transferred to colun	
Tubes were ringed with hexane	
- Approx 10-12 mL of hexane was	
- An additional 10-12 mL of hexans	
column a second time and	
allowed to "go dry" up to 1-	
neutral silica layer	
- Carbon columns were transferred to	Clean reservoir
- 7 ml of litherane: toluene were	
and pressurized as before DON	107 LET CARBON COLUMN
GO DRY!	and market a compared the control of the control of
- Flip carbon Column and add 17	
prescurize. Catch liquid in t	
air all the way through the	+ L
- Add 100 ul of Keoper and evapor - Centrifue tubes for 2 minutes to	raved
- Prepare EIA Tubes	Sween as the in Dallan
· Fill with water and dump	
· FIII with 500 Ml H20	
- Reconstitute samples by adding 80	One MeOH, 2 tubes
- Place 50ul of reconstituted sample	le directally into
1001011111111111111111111111111111111	
- Place 50 M of standards in E - Incubate overright, covered w	IA tule as weller
- Incubate overnight, covered w	the alleminum toyle

•			Clie	nt:	E	<u>= 7</u>	A												Ρ	age	: _		7			of		1	
ı		3	Proi	ect	No	: <u>e</u>	19911	. <u>L</u> .q	020	Ø77	. Ø	5	Dat	te:	5	16	Ø2		Ν	/lad	e by	γ; <u> </u>		Α.	. Si	يكس	يما	\	
•			_				\mathcal{Q}																						
		-						_,-							(O 			Р	reli	mina	ary:			_	_ F	inal		
	_											4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	n, unambo na Irr				-					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.		*				
	7	Ue	1	6,	λC	∞	₹_					ļ	; ;	<u> </u>	ļ								ļ		***	ļ			i i
)							_		 	<u> </u>	-	ļ	-						· 	; ;						
	D	2:1					nes									es -	fo	۲	c	100	ىبر	م	4	Ε	I_	Ą	۵.	2	
				نعدا	740	عم	01	<u> </u>	<u> </u>	ملي	ال	<u> </u>	<u> </u>	٥2	<u> </u>											<u></u>			
				<u> </u>							ļ		1				_												<u></u>
		_					4/2					C	N _	a	7 8	S∶c	ی د	۲۳	•	બ	d	ما	لص	بهمر	人				
							5					C	 	-	1.														
							we																						
		-					san Wbe																				`		
				•	t i	1 :	wee	- 1	- 1	1	i	ŧ		1	ŧ	~~~	ی	360				OCT	•					c.l.	<u> </u>
				7.0	١,	بي.			2	. د	<u> </u>				3				π,		C			3/ ₁	6/6	2		ررد 	1/0z
		S	Lme	ole.	Pre	0		Sa	mol	e #		C	ean	مس	Bea	an			الراء	par.	4.00			Inc	مام	±ε			ubate
		4	.~4	R	×				9				20/					(B.	5 18	:34	_	21.	18	42	je		Je	115 Q
			Lo	3	. 3				10		-			5:	19								,	7	<u> </u>	i		:30	and the second second
				0					11_		ļ	ļ	-1	5:	22					_						i ! !			
							4+0		12	_	-	 		5:	38	છ				_ _			ļ 				ļ		
							Ŋ		13		ļ	-		5:3		1			-		ļ j		: !			<u> </u>			<u> </u>
	4 TO		0	فلقر	į				14		·	<u>:</u>	:	<u>5 ; 3</u>	i						<u>i</u>								
		not	״ער						15		1	-	1	7: c	19														
	4 V	.,					7		lu Fl	+-	<u> </u>		-1-	1 . 1	L					-	<u> </u>		<u> </u> 				-		اد سدچ سسد
ALL S)W	nit	r B	aek	Δ		# +		7	-	-		1	7 :	†													-	
۲ \	1,2	a to	Δ	ech			3		η _B		1		1	1:2	1						ļ	<u></u>	10-	, V			V	J	
	1 1	ì		1		<u>.</u> و. ل	t _L		1B+				ŗ	7:2	i .				18	:	 	d-1	4	6:4	3 9	1	:30	20:1	5
	<u></u>		1-A:			TV		1																					
																										<u> </u>	ļ		
		_	E=	LA	J	<i>2</i> 02	< S	مإر	4.0	۸ ر	باحر	\$ 6	Xeq	arc	2d	us	~	გ	2°	ير ﴿	٥	<u></u>	 તિ	<u>fon</u>	-X	لع	٠'اه		
				a	W		200	ml		dis	411	ed_	#	20	<u> </u>								ļ			<u> </u>	-		
		_	E	T A	<u></u>	ub	e 5	بل	eve	<u>. d</u>	un	Pe	d	a	vd		ررس		1	4. د	1		mL		<u> </u>	<u> </u>			
				E1	4	w	c.sh	__	4 .	DW.	es	 	+	ap	وزم	8-	b			1			1	1 :	sh	<u> </u>		1	
		-	۱ ۰۶٬	M	<u> </u>	CC	nju	gat	e	ad	aec	<u> </u>	ar	d	i	آدن	to at	red		15	m	امد	بحو	2	parlements according				
		_					بزنم							1					<u> </u> 				ļ,						
							ubs						Q.											رج		<u> </u>		<u> </u>	
		(<u>با.ر</u> ،	<u></u>	<u>سار</u> 	()	2 TT	>6-	2	0) V		O O	معو	\	CYC	0	U.	_ر	1.60	ימי	18		-0-4	١			 		

	G9011. L 102.0077.00 Date:	•	A. Suárez
Ava	MO Dioxin Field Serv	Checked by Preliminary:	
		ne e estra companya de como como como como como como como com	Blank
ETA Reg	ultsi	Corrected	Corrected
		Calculated	Calculated
Sample		Sande conc (pg/g) paytube
/ Os	1.20		
s	1.05		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.76		
Standard 2	0.4135		
8 4 45	6.33		50pg Spired
S 55	0 21		
	0.68	169	0.3 % Reco
/ IMS 286		25	and the configuration of the c
IMSD		3356	46.9 (-89.2
3	0.66	325	3
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.60	450 - 229	4
19 4 5	0.85		-3 7
Samples	0.48	1214	
	0.62	368	11
7 8	0.53	820	7/2
0		<u> 541</u>	7.4 10.6 * % Recov
S SMB C (MBS	0.74		27.9 \$ 55.8
(44 (1103	0.42		3.6
			* Add this to all
	has account for part	hatch of comple	values to achie
CAN	ubes prepared for next when left to incubate	Qual ni ht	Calculated politube
2 2 7 7	WOOD 101 TO 101 CM DUTIE		Suicurez agrisue
		ATTOUS	
	A AM	W V	
	HAMILE	1.0	
	1/V / 2/10	00	

Client: FP	A		Page	: _9	of
Project No: G90	1.6.92 2077.00	Date: 5/17/		e by: A.Su	dren .
Ava Mo. Dioxin				ked by:	8
1 100 10.0. PA CHAP		7. 9		ninary:	Final
				, mary :	
m 15 000				سان و دېرستندېد معیدست	derine and the mean of the fi
May 17, 2002	managang dan salah s				The second secon
				para palamana en a contra caba de la contra d La contra de la contra del contra de la contra del la contra de la contra del la	Andrews
- Six garden	Samples	voice takeon	Jh 10,10,6	Ano pitro	ction
proceedure.		i i .		the state of the s	
- they were	checked	after =	an minute	s, and all	726)
vell	<u> </u>				
- They were	2 left 5	hakin .	805h	somia mo	re
		7			
Sample	Callection	Antof	60	Calculated	
# Depth	Date / Time	Sanda (a)	Reading	Concertial	\sim $^{\prime}$
61 0-6		5.06	0.84	n.a	
62 18-24		5.05	0.83	n.d	
63 0-4		5.12	0.80	n.d	
64 18-24		5.06	0.45	· • • • • • • • • • • • • • • • • • • •	
65 18-24		5∞	0.68	0.17	
66 0-4		5.02	0.61	0.38	
- Sander from	~ May 16 ,	2002, wer	e taken .	through res	it of EIA
	0				
ETA Results:		Corr	ected prent	strong Blan	k Corrected
		Cala	whated who	35 /2 Calcul	lated paltube
Sampa#	OD Reading	Same	k (onc (pg/g)	and the same of th	. 0
	1.21				
Sp. 15 25 25 35 55 55 55 55 55 55 55 55 55 55 55 55	1.03				
- g 4 Z	0.74				
8/35	6.45				
0 4	0.30				
55	0.26				
/9	0.67		413		6.8
(10	0.69		360		5.9
Samples 3 11	0.61		600		9.8
/ 12	0.74		244		4
13	0.74		244		Y
14	0.77	the same and the s	183		3
		The state of the s			20

Client: EPA			Page:	of
Project No: GABI	1.L. 62.9077.000 [Date: 5/17/\$2	Made by:	A Svarez
Ava No. Dis	sxin Field &	reening	Checked by:	
		0	Preliminary:	Final
	anning the page and the stage of	on the engineering and a special resource of the last		
May 17,2002				
CIA Results ([t'na]			
		principal Calculated		e Corrected
Sample # 01	D Reading C	orcentration (poly)		ated pay tube
15	0.79	145 RP		2 RPB
16	6.73	265 > 27	.0	28.6
SOMPLE IS FD	0.76	202/		
17 2 MS	0.85	45		0.7
Blankis MSB	0.83			6.2 % Rawery
D. CIII2D	0.83			32.8 -> 65.6%
May 20 2002				
Daily activities	3:			
- Extraction on	ials were ce	ntrifuged 4	at a time	for 15 min
at 800 rg	pm.	0 0		manifestation and the contract of the contract
- Supernate	was remove	d and place	ed un is	torage
vial		d 4 pan	ple from p	narous extraction through
- There wir w	samples, plus	- MB " were	taken ut	trough
Cleanup	placed un	FIA UM	reo and I	ift to
inculate	Doernigh	X		
		7111/		
				000
		J Y		

	Clie Pro		Vo. /	<u>-5</u>	77	100	. ØØ7	'28)d		te: 5/	20/02	<i>۱</i> کا	rage: Made		11 A.:	- oi Suai	 ez		
	Λ	ieci i	WV 6	<u>7</u> -11	NIL.	<u></u>	Fiet	1	186	10. <u>01</u>	9								
		,	, , , ,		بالدرو	V	1-4	×			7						inal		
												- '	i Ciii ii	iiiaiy.			1110		
M		~	200	5	^~		ned		1			1		1					
1 a			pu	٦	TU	NCD II I	1000		-i					المحددة وحدد المال		5low	-	5/2	1.
		 		 	 				†	1	Bagin				Time	<u>م</u>	, .	دار س	= 1/1
D	Ic		e Pref	<u>†-</u>	C		#	320	: 1	Leanup	20				aposation	7-1	ub.		
Vmi	HO	Map!	८ गांध	1-	<u> </u>	18 0wb	14	2000	910 1	-18 -18	1 1				:55				
+	<u> </u>	9		 	 	19			i	1 1	14	o:05		19	.33	. اله	<i>حا</i> 0	/\	.4
+-	 					20			7	21_		1-							-
	-		So	1#	-	1			1	25	 	/		10	ر م				-
	<u> </u>		nada			21			-	28				19:					-
	<u> </u>	nie	wedn	hen	<u> -</u> _	GI			1	32					.25				
	<u> </u> 				-	G2			1	34				19:	55				
	 				}	63			7	27				7					
	 -			-	-	64				24		-	-						:
		-	- 60	#)	65	1 3		.,	28		\- <u>-</u>]					-	-
	-			<u>}</u>	<u></u>	66				32		-					-		
	-			-	-	MB			1	:36		$ u_{\perp}$		_				<u> </u>	-
	ļ			ļ		MB:	S		15	:39	16:	05		19:1	5			-	-
			_	-		-	_		 				<u> </u>	_			B	lank vecte	
	<u> </u>		-	-			_		ļ			<u>^</u>					Co	recte	d
Jay	97	90	05		ļ							Çor	ecto				ca	lcule & It	12
T				<u> S</u>	اعيدد			0.0	Read	ling	- 4	alc.	Same	ple Conc	(polo)		- (Alt	رلله
				-	03		_		25									-	<u>- </u>
_				<u> </u>	-l-s	<u> </u>		_	לט		1-1-				<u> </u>		-		
				-	25			0	80										}
	-	-			3,			0	.ન(<u> </u>	1 1								-
-	ļ			ļ	45			O	.3	<u> </u>				_			-	-	+
				ļ	18			0	.72	<u> </u>			(CO)	82				1.6	1
	ļ	-		-	19			0	72		 		89 - 87	L			-	1.4	2
	ON	9.		ļ	20			0	8	<u> </u>		_	- 8	8			-	_1.	1
70 00 C		100		<u> </u>	21			0	81	1			- 13	35 35				-3 -3	ļ.
high C	<u>>\</u>				Gl			0	81	1			- 1	35					
-0-	مر				<u>G2</u>			0	8 81 81	3			- 17	20				-2	•
	1				G 3		-		18.	6			1	72 59				_ (
0	.				C,L	1 3		3	8. (2). (5			a	59				5 3	; ;
					65				0.0	8			}	177				3	
					SC				ما.	1				387				1.5 10.8	
	1		1]	MO				1	(_								108	. 0

APPENDIX C , Superfund Removal Site Evaluation Form

I. SITE NAME AND LOCATION:			
NAME: Sentinel Wood Treaters Site (Off-site Sediment Sampling)			
ADDRESS OR OTHER LOCATION IDENTIFIER: 412 NW 12th Avenue			
CITY: Ava	STATE: Mis	ssouri	ZIP: 65608
DIRECTIONS TO SITE: From Springfield, east on Highway 60 to Highway 14 (aka NW 12 th Avenue) in Ava, Missouri. East approximately ½ mile on NW MAP ATTACHED: X (In attached report).			
II. PROGRAM CONTACTS:			
REQUESTED BY: Eric Nold		DATE OF REQUEST	Γ: May 15, 2001
AGENCY/OFFICE: US EPA Region 7 Superfund Division			
MAILING ADDRESS: 901 N. 5th Street			
CITY: Kansas City	STATE: Kar	nsas	ZIP: 66101
TELEPHONE: (913) 551-7488	FAX: (913) :	551-7948	
EVALUATOR: T. Elliott			
AGENCY/OFFICE: Tetra Tech EM Inc.			
MAILING ADDRESS: 8030 Flint Street			
CITY: Lenexa	STATE: Kar	ısas	ZIP: 66214
TELEPHONE: (913) 495-3957	FAX: (913)	894-6295	
III. REMOVAL SITE EVALUATION CRITERIA [40 CFR 300.4]	10(e)]		
IS THERE A RELEASE AS DEFINED BY THE NCP:			YES ■ or NO □
EXPLAIN: Detectable levels of dioxin and elevated levels of polynuclear arom a tributary to Prairie Creek which drains the Sentinel site. Contaminant level background sediment from the same tributary.	natic hydrocarbo els in sediment o	ons (PAHs) were reported downstream of the site a	I in sediment samples collected from re significantly higher than those in
(A RELEASE is defined as any spilling, leaking, pumping, pouring, emitting, into the environment (including the abandonment of barrels, containers, and o contaminant), but excludes: workplace exposures; engine exhaust emissions; n For purposes of the NCP, release also means threat of release.)	ther closed rece	ptacles containing any h	azardous substances or pollutant or

IS THE SOURCE A FACILITY OR VESSEL AS DEFINED BY THE NCP:

YES or NO 🗆

EXPLAIN: The source area includes former lagoons and operations areas where hazardous substances were deposited.

(A FACILITY is defined as any building, structure, installation, equipment, pipe or pipeline (including any pipe into a sewer or POTW), well, pit, pond, lagoon, impoundment, ditch, landfill, storage container, motor vehicle, rolling stock, or aircraft or any site or area, where a hazardous substance has been deposited, stored, disposed of, or placed, or otherwise come to be located; but does not include any consumer product in consumer use or any vessel. A VESSEL is defined as any description of watercraft or other artificial contrivance used, or capable of being used, as a means of transportation on water other than a public vessel.)

SUPERFUND REMOVAL SITE EVALUATION and

DOES THE RELEASE INVOLVE A HAZARDOUS SUBSTANCE, OR POLLUTANT OR CONTAMINANT AS DEPINED BY THE NCP: EXPLAIN: Dioxin and PAHs are considered hazardous substances pursuant to CERCLA. (A HAZARDOUS SUBSTANCE means any substance, element, compound, mixture, solution, hazardous waste, toxic pollutant, natural mixture designated pursuant to the CWA, CERCLA, SDWA, CAA or TSCA. The term does not include petroleum products, natural gas, natural gas, synthetic gas or mixtures of natural and synthetic gas. The definition of POLLUTANT or CONTAMINANT includes, but is not limited to, ony element, substance, compound, or mixture, including disease-causing agents, which after release into the environment and upon exposure, ingestion, inhalation, or assimilation into any grants, either directly from the environment or indirectly by ingestion through food chains, will or may reasonably be anticipated to cause death, disease, behavioral abnormalities, cancer, genetic mutation, physical deformations, in such organisms or their offspring. The term does not include petroleum products, natural gas, natural gas iquids, liquefied natural gas, synthetic gas or mixtures of natural and synthetic gas). IS THE RELEASE SUBJECT TO THE LIMITATIONS ON RESPONSE: YES □ or No ■ EXPLAIN: The LIMITATIONS ON RESPONSE provisions of the NCP (40 CFR 180-460(8)) states that removals shall may be undertaken in response to a release-of a naturally occurring substances in its unafhered or natural form, from produce that are a part of the structure of, and result in expasure within, residential buildings or business or community structures, or into public or private drinting water supplies due to destripation of the system through ordinary use.) DOES THE QUANTITY OR CONCENTRATION WARRANT RESPONSE: EXPLAIN: Dioxin levels in the sediment samples were below 1.0 micrograms per kilogram (1g/kg) in all samples. Levels of certain PAHs, including benzo(a) partitioned to destripation of the system through the production of the partition of the partition of the	REMOVAL PRELIMINARY ASSESSMENT	
AS DEFINED BY THE NCP: EXPLAIN: Dioxin and PAHs are considered hazardous substances pursuant to CERCLA. (A HAZARDOUS SUBSTANCE means any substance, element, compound, mixture, solution, hazardous waste, toxic pollutant, hazardous air pollutant, or imminently hazardous chemical substance or mixture dissipated pursuant to the CWA, CERCLA, SDWA, CAA or TSCA. The term does not include petroleum products, natural gas, natural gas laquids, inquelfed natural gas, synthetic gas or mixtures of natural and synthetia gas. The definition of POLLUTANT or CONTAMINANT includes, but is not limited to, any element, substance, compound, or mixture, including disease-causing agents, which after release into the environment and upon expansare, ingestion, inhalaction, or assimilation into any organisms entire directly from environment or indirectly by ingestion through food chains, will or may reasonably be anticipated to cause death, disease, behavioral abnormalities, cancer, genetic mutation, physiological malifunctions or physical deformations, in such organisms or their offspring. The term does not include petroleum products, natural gas, indured gas synthetic gas or mixtures of natural and synthetic gas). IS THE RELEASE SUBJECT TO THE LIMITATIONS ON RESPONSE: YES or NO EXPLAIN: The LIMITATIONS ON RESPONSE provisions of the NCP (40 CFR 300.400(8) stores that removals that people undertaken in response to a release: of a naturally occurring substance in its underteed or natural form, from products that are a part of the arrieture of, and result in exposure within, residential buildings or business or community structures; or into public or private drinking water supplied to the deterioration of the system through ordinary use.) DOES THE QUANTITY OR CONCENTRATION WARRANT RESPONSE: YES or NO EXPLAIN: Dioxin levels in the sediment samples were below 1.0 micrograms per kilogram (µg/kg) in all samples. Levels of certain PAHs, including benzo(a) anthracene, benzo(a) pyrene, exceeded Missouri Department of Natural Resources	III. REMOVAL SITE EVALUATION CRITERIA [40 CFR 300.410(e)] (continued):	
A HAZARDOUS SUBSTANCE means any substance, element, compound, mixture, solution, hazardous vaste, toxic pollutant, hazardous of imminently hazardous chemical substance or mixture designated pursuant to the CWA. CERCLA, SDWA, CAA or TSC4. The term does not include petroleum products, natural gas, natural gas ilquids, liquefied natural gas, synthetic gas or mixtures of natural and synthetic gas. The definition of POLLUTANT or CONTAMINANT includes, but is not limited to, any element, substance, compound, or mixture, including diseases-causing agents, which after release into the environment and upon exposure, ingestion, inhalation, or assimilation into any organism, either directly from the environment or indirectly by ingestion malfunctions or physical deformations, in such organisms or their offspring. The term does not include petroleum products, natural gas, instural gas inquired, liquefied natural gas, synthetic gas or mixtures of natural and synthetic gas). IS THE RELEASE SUBJECT TO THE LIMITATIONS ON RESPONSE: YES or NO EXPLAIN: (The LIMITATIONS ON RESPONSE provisions of the NCP (40 CFR 300 400/8) stores that removals shall not be undertaken in response to a release; of a naturally occurring substance in its unaltered or natural form; from products that are a port of the structure of, and result in exposure within, residential buildings or business or community structures; or impublic or private strukting water supplies due to deterioration of the system through ordinary use) DOES THE QUANTITY OR CONCENTRATION WARRANT RESPONSE: EXPLAIN: Dioxin levels in the sediment samples were below 1.0 micrograms per kilogram (µg/kg) in all samples. Levels of certain PAHs, including benzo(a) anthracene, benzo(a) pyrene, benzo(b) fluoranthene, dibenz(a) hanthracene and indeno(1,2,3,cd) pyrene, exceeded Missouri Department of Natural Resources (MDNR) risk-based criteria. However, the quantity of contaminated sediment may be relatively low (due to predominance of bedrock streambed) and the concentrations of these com	DOES THE RELEASE INVOLVE A HAZARDOUS SUBSTANCE, OR POLLUTANT OR CONTAMINANT AS DEFINED BY THE NCP:	YES ■ or NO □
imminently hazardous chemical substance or mixture designated pursuant to the CWA. CERCLA, SDWA, CAA or TSC4. The term does not include petroleum products, natural gas, natural gas liquids, liquefied natural gas, synthetic gas or mixtures of natural and synthetic gas. The definition of POLLUTANT or CONTAMINANT includes, but is not limited to, any element, substance, compound, or mixture, including diseases-causing agents, which after release into the environment and upon exposure, ingestion, inhalation, or assimilation into any organism, either directly from the environment or indirectly by ingestion malfunctions or physical deformations, in such organisms or their offspring. The term does not include petroleum products, natural gas, natural gas liquids, liquefied natural gas, synthetic gas or mixtures of natural and synthetic gas). IS THE RELEASE SUBJECT TO THE LIMITATIONS ON RESPONSE: YES □ or NO ■ EXPLAIN: (The LIMITATIONS ON RESPONSE proxisions of the NCP (40 CER 300 400(8) stokes that removals shall not be undertaken in response to a release: of a naturally occurring substance in its unalizered or natural form, from products that are a part of the structure of and result in exposure within, residential buildings or business or community structures, or into public or proteed brishing water supplies due to deterioration of the structure of and result in exposure within, residential buildings or business or community structures, or into public or proteed brishing water supplies due to deterioration of the structure of and result in exposure within, residential buildings or business or community structures, or into public or proteed brishing water supplies due to deterioration of the structure of and result in exposure within, residential buildings or business or community structures, or into public or proteed brishing water supplies due to deterioration of the structure of and result in exposure within, residential buildings or business or community structures, or into public or proteed by the public pub	EXPLAIN: Dioxin and PAHs are considered hazardous substances pursuant to CERCLA.	
EXPLAIN: (The LIMITATIONS ON RESPONSE provisions of the NCP (40 CFR 300.400(8)) states that removals shall not be undertaken in response to a release: of a naturally occurring substance in its unaltered or natural form, from products that are a part of the structure of, and result in exposure within, residential buildings or business or community structures; or into public or private drinking water supplies due to deteritoration of the system through ordinary use.) DOES THE QUANTITY OR CONCENTRATION WARRANT RESPONSE: EXPLAIN: Dioxin levels in the sediment samples were below 1.0 micrograms per kilogram (µg/kg) in all samples. Levels of certain PAHs, including enzo(a) anthracene, benzo(a) pyrene, benzo(b) fluoranthene, dibenz(a,h) anthracene and indeno(1,2,3,cd) pyrene, exceeded Missouri Department of Natural Resources (MDNR) risk-based criteria. However, the quantity of contaminated sediment may be relatively low (due to predominance of bedrock streambed) and the concentrations of these compounds may not be high enough to warrant further response. HAS A PRP BEEN IDENTIFIED: YES or NO EXPLAIN: The probable primary PRP is Sentinel Wood Treaters. IV. CONDITIONS TO WARRANT REMOVAL [40 CFR 300.415(b)(2)]: ACTUAL OR POTENTIAL EXPOSURE TO HAZARDOUS SUBSTANCES, POLLUTANTS, YES or NO CONTAMINANTS: EXPLAIN: Children or adults walking in the stream may be exposed to sediment contamination. ACTUAL OR POTENTIAL CONTAMINATION OF DRINKING WATER SUPPLIES: YES or NO EXPLAIN: HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN DRUMS, BARRELS, YES or NO CORDITIONS OF THE CONTAMINATION OF CONTAMINANTS IN DRUMS, BARRELS, YES or NO CORDITIONS OF THE CONTAMINATION OF CONTAMINANTS IN DRUMS, BARRELS,	imminently hazardous chemical substance or mixture designated pursuant to the CWA, CERCLA, SDWA, CAA or TSCA. The term do products, natural gas, natural gas liquids, liquefied natural gas, synthetic gas or mixtures of natural and synthetic gas. The definit CONTAMINANT includes, but is not limited to, any element, substance, compound, or mixture, including disease-causing agents, the environment and upon exposure, ingestion, inhalation, or assimilation into any organism, either directly from the environment of through food chains, will or may reasonably be anticipated to cause death, disease, behavioral abnormalities, cancer, genetic	es not include petroleum ion of POLLUTANT or which after release into rindirectly by ingestion mutation, physiological
in its unaltered or natural form; from products that are a part of the structure of, and result in exposure within, residential buildings or business or community structures; or into public or private drinking water supplies due to deterioration of the system through ordinary use.] DOES THE QUANTITY OR CONCENTRATION WARRANT RESPONSE: EXPLAIN: Dioxin levels in the sediment samples were below 1.0 micrograms per kilogram (µg/kg) in all samples. Levels of certain PAHs, including benzo(a) anthracene, benzo(a) pyrene, benzo(b) fluoranthene, dibenz(a,h) anthracene and indeno(1,2,3,cd) pyrene, exceeded Missouri Department of Natural Resources (MDNR) risk-based criteria. However, the quantity of contaminates destiment may be relatively low (due to predominance of bedrock streambed) and the concentrations of these compounds may not be high enough to warrant further response. HAS A PRP BEEN IDENTIFIED: EXPLAIN: The probable primary PRP is Sentinel Wood Treaters. IV. CONDITIONS TO WARRANT REMOVAL [40 CFR 300.415(b)(2)]: ACTUAL OR POTENTIAL EXPOSURE TO HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS: EXPLAIN: Children or adults walking in the stream may be exposed to sediment contamination. ACTUAL OR POTENTIAL CONTAMINATION OF DRINKING WATER SUPPLIES: YES □ or NO ■ EXPLAIN: HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN DRUMS, BARRELS, OR BULK STORAGE CONTAINERS:		YES □ or NO ■
EXPLAIN: Dioxin levels in the sediment samples were below 1.0 micrograms per kilogram (µg/kg) in all samples. Levels of certain PAHs, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene and indeno(1,2,3,cd)pyrene, exceeded Missouri Department of Natural Resources (MDNR) risk-based criteria. However, the quantity of contaminated sediment may be relatively low (due to predominance of bedrock streambed) and the concentrations of these compounds may not be high enough to warrant further response. HAS A PRP BEEN IDENTIFIED: EXPLAIN: The probable primary PRP is Sentinel Wood Treaters. IV. CONDITIONS TO WARRANT REMOVAL [40 CFR 300.415(b)(2)]: ACTUAL OR POTENTIAL EXPOSURE TO HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS: EXPLAIN: Children or adults walking in the stream may be exposed to sediment contamination. ACTUAL OR POTENTIAL CONTAMINATION OF DRINKING WATER SUPPLIES: YES Or NO EXPLAIN: HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN DRUMS, BARRELS, OR BULK STORAGE CONTAINERS:	in its unaltered or natural form; from products that are a part of the structure of, and result in exposure within, residential buildings or business or commun	
benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene and indeno(1,2,3,cd)pyrene, exceeded Missouri Department of Natural Resources (MDNR) risk-based criteria. However, the quantity of contaminated sediment may be relatively low (due to predominance of bedrock streambed) and the concentrations of these compounds may not be high enough to warrant further response. HAS A PRP BEEN IDENTIFIED: EXPLAIN: The probable primary PRP is Sentinel Wood Treaters. IV. CONDITIONS TO WARRANT REMOVAL [40 CFR 300.415(b)(2)]: ACTUAL OR POTENTIAL EXPOSURE TO HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS: EXPLAIN: Children or adults walking in the stream may be exposed to sediment contamination. ACTUAL OR POTENTIAL CONTAMINATION OF DRINKING WATER SUPPLIES: EXPLAIN: HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN DRUMS, BARRELS, OR BULK STORAGE CONTAINERS:	DOES THE QUANTITY OR CONCENTRATION WARRANT RESPONSE:	YES 🗆 or NO 🖪
EXPLAIN: The probable primary PRP is Sentinel Wood Treaters. IV. CONDITIONS TO WARRANT REMOVAL [40 CFR 300.415(b)(2)]: ACTUAL OR POTENTIAL EXPOSURE TO HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS: EXPLAIN: Children or adults walking in the stream may be exposed to sediment contamination. ACTUAL OR POTENTIAL CONTAMINATION OF DRINKING WATER SUPPLIES: EXPLAIN: HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN DRUMS, BARRELS, OR BULK STORAGE CONTAINERS: YES □ or NO ■	benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene and indeno(1,2,3,cd)pyrene, exceeded Natural Resources (MDNR) risk-based criteria. However, the quantity of contaminated sediment may be relatively low (du	lissouri Department of
IV. CONDITIONS TO WARRANT REMOVAL [40 CFR 300.415(b)(2)]: ACTUAL OR POTENTIAL EXPOSURE TO HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS: EXPLAIN: Children or adults walking in the stream may be exposed to sediment contamination. ACTUAL OR POTENTIAL CONTAMINATION OF DRINKING WATER SUPPLIES: EXPLAIN: HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN DRUMS, BARRELS, OR BULK STORAGE CONTAINERS: YES □ or NO ■	HAS A PRP BEEN IDENTIFIED:	YES ■ or NO 🗆
ACTUAL OR POTENTIAL EXPOSURE TO HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS: EXPLAIN: Children or adults walking in the stream may be exposed to sediment contamination. ACTUAL OR POTENTIAL CONTAMINATION OF DRINKING WATER SUPPLIES: EXPLAIN: HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN DRUMS, BARRELS, OR BULK STORAGE CONTAINERS: YES □ or NO □ OF NO □	EXPLAIN: The probable primary PRP is Sentinel Wood Treaters.	
OR CONTAMINANTS: EXPLAIN: Children or adults walking in the stream may be exposed to sediment contamination. ACTUAL OR POTENTIAL CONTAMINATION OF DRINKING WATER SUPPLIES: EXPLAIN: HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN DRUMS, BARRELS, OR BULK STORAGE CONTAINERS: YES □ or NO ■	IV. CONDITIONS TO WARRANT REMOVAL [40 CFR 300.415(b)(2)]:	
ACTUAL OR POTENTIAL CONTAMINATION OF DRINKING WATER SUPPLIES: EXPLAIN: HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN DRUMS, BARRELS, OR BULK STORAGE CONTAINERS: YES □ or NO ■	,	YES ■ or NO
EXPLAIN: HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN DRUMS, BARRELS, OR BULK STORAGE CONTAINERS: YES □ or NO ■	EXPLAIN: Children or adults walking in the stream may be exposed to sediment contamination.	,
HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN DRUMS, BARRELS, OR BULK STORAGE CONTAINERS: YES □ or NO ■	ACTUAL OR POTENTIAL CONTAMINATION OF DRINKING WATER SUPPLIES:	YES 🗆 or NO 🐯
OR BULK STORAGE CONTAINERS:	EXPLAIN:	
EXPLAIN:	HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN DRUMS, BARRELS, OR BULK STORAGE CONTAINERS:	YES 🗀 or NO 🖪
	EXPLAIN:	

REMOVAL PRELIMINARY ASSESSMENT IV. CONDITIONS TO WARRANT REMOVAL [40 CFR 300.415(b)(2)] (continued): HIGH LEVELS OF HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS YES □ or NO ■ IN NEAR-SURFACE SOILS: **EXPLAIN:** CONDITIONS SUSCEPTIBLE TO IMPACT FROM ADVERSE WEATHER CONDITIONS: YES Or NO EXPLAIN: THREAT OF FIRE OR EXPLOSION: YES Or NO EXPLAIN:. POTENTIAL FOR OTHER FEDERAL OR STATE RESPONSE MECHANISMS: YES or NO **EXPLAIN:** OTHER SITUATIONS OR FACTORS WHICH POSE A THREAT: YES Or NO **EXPLAIN:** V. POTENTIAL REMOVAL ACTIONS [40 CFR 300.415(d)]: (NOTE: The following identifies potential removal actions which may be determined to be appropriate pending further review and study. The proposed actions should be considered preliminary proposals and are subject to change.) SITE SECURITY: YES Or NO EXPLAIN: STABILIZATION OR REMOVAL OF SURFACE IMPOUNDMENTS: YES ■ or NO □ **EXPLAIN:** Former lagoons onsite may be contributing to off-site migration of contaminants into the tributary. CAPPING OF CONTAMINATED SOIL: YES □ or NO **EXPLAIN:** USE OF CHEMICALS TO CONTROL/RETARD SPREAD OF CONTAMINATION: YES Or NO EXPLAIN: CONTAMINATED SOIL EXCAVATION: YES Or NO **EXPLAIN:** REMOVAL OF DRUMS, TANKS, OR BULK STORAGE CONTAINERS: YES 🗆 or NO 🖀 **EXPLAIN:** CONTAINMENT, TREATMENT, OR DISPOSAL OF HAZARDOUS SUBSTANCES, POLLUTANTS. YES 🔳 or NO 🗌 **OR CONTAMINANTS:** EXPLAIN: Contaminated soil and groundwater onsite may be contributing to off-site migration of contaminants into the tributary.

<u> </u>	01/17	NE ALTERNATIVE WATER CURRY FEC.	====			VEC CI NO
PF	COVIL	DE ALTERNATIVE WATER SUPPLIES:				YES 🗆 or NO 🖫
E	(PLA)	IN:				
L				•		
VI		MOVAL SITE EVALUATION DETERM SESSMENT FINDINGS AND RECOMM			INAR	Y
x	RE	MOVAL NOT WARRANTED—REMOVA	AL S	ITE EVALUATION TERMINATED)	
(Ci	te one	or more of the criteria from SECTION III. REMO)VAL	SITE EVALUATION CRITERIA, as the b	asis for	the above determination.)
		NOT A RELEASE				NOT A FACILITY OR VESSEL
		NOT A HAZARDOUS SUBSTANCE OR POLL	JUTA	NT OR CONTAMINANT		SUBJECT TO RESPONSE LIMITATIONS
ļ _	X	INSUFFICIENT QUANTITY OR CONCENTRA	ATIC	N	X	WILLING/CAPABLE PRP IDENTIFIED
no off	be sig	ENT: While PAH levels exceed MDNR risk-b gnificant enough to warrant a response by EPA nigration of contaminants in the future. Any furonse.	۹. In	addition, the PRP is already conducting	g remov	val actions onsite which should eliminate
	RE	MOVAL RECOMMENDED EMERO	GEN	CY TIME-CRITICAL	NO	N-TIME-CRITICAL
	te one o	or more of the conditions or factors from Section IV	v. co	ONDITIONS TO WARRANT A REMOVAL		
-		EXPOSURE TO HAZARDOUS SUBSTANCES	OR F	OLLUTANTS OR CONTAMINANTS	Τ	ADVERSE WEATHER IMPACTS
		CONTAMINATED DRINKING WATER		FIRE/EXPLOSION THREAT		CONTAMINATED SOIL
		DRUMS, BARRELS OR CONTAINERS		NO OTHER RESPONSE MECHANISM		OTHER FACTORS
		one or more of the removal actions listed in Section aich are recommended.)	V. RI	EMOVAL ACTIONS WHICH MAY BE AP	PROPE	RIATE, as examples of the types of response
		SITE SECURITY		DRAINAGE CONTROL		IMPOUNDMENT STABILIZATION
ľ		REMOVAL OF DRUMS, BARRELS, ETC.		SOIL CAPPING		SOIL EXCAVATION
		CONTAIN/TREAT/DISPOSE OF WASTES		CHEMICAL CONTROLS		ALT. DRINKING WATER SUPPLIES
CC	MME	ENT:		_		
	AD	DITIONAL REMOVAL SITE EVALUAT	ION	RECOMMENDED		
		or more of the conditions or factors from Section IV site evaluation be performed.)	7. CC	ONDITIONS TO WARRANT A REMOVAL	ACTI	ON, as a basis for recommending that
, .		EXPOSURE TO HAZARDOUS SUBSTANCES	OR P	OLLUTANTS OR CONTAMINANTS		ADVERSE WEATHER IMPACTS
		CONTAMINATED DRINKING WATER		FIRE/EXPLOSION THREAT		CONTAMINATED SOIL
		DRUMS, BARRELS OR CONTAINERS		NO OTHER RESPONSE MECHANISM		OTHER FACTORS
(Ide	ntify o	ne or more of the removal actions listed in Section ich may be appropriate pending the results of furth	V. RE	MOVAL ACTIONS WHICH MAY BE AP te evaluation.)	PROPE	RIATE, as examples of the types of response
		SITE SECURITY		DRAINAGE CONTROL		IMPOUNDMENT STABILIZATION
		REMOVAL OF DRUMS, BARRELS, ETC.		SOIL CAPPING		SOIL EXCAVATION
		CONTAIN/TREAT/DISPOSE OF WASTE		CHEMICAL CONTROLS		ALTERNATIVE DRINKING WATER SUPPLIES
CC	MME	ENT:	~			

VII. ADDITIONAL INFORMATION OR COMMENTS:

EPA USE ONLY

VIII. CERTIFICATION

SIGNATURE:

POSITION/TITLE:

OFFICE/AGENCY:

SUPERFUND REMOVAL SITE EVALUATION

and

REMOVAL PRELIMINARY ASSESSMENT

(Supplemental Waste Inventory Sheet)

IX. HAZARDOUS SUBSTANCES, POLLUTANTS OR CONTAMINANT INFOR

MATERIAL DESCRIPTION	CONTAINER INFORMATION											
TRADE NAME/ACTIVE INGREDIENTS	NUMBER of CONTAINERS	SIZE	ТҮРЕ	SOLID or LIQUID	% FULL	CONDITION						
			 									
		ļ	 		 							
		<u> </u>	-									
												
	_	 	 									
			 		 							
			 									
			 									
		<u> </u>	 									
			 									
			 									
			у									
		· · · · · · · · · · · · · · · · · · ·										
				· ·								
			ļ									
			<u> </u>			 						
				<u> </u>								
· · · · · · · · · · · · · · · · · · ·	- 											
····												
· · · · · · · · · · · · · · · · · · ·			ļ									

ATTACHMENT 1

Laboratory Data Packages

SEDOMENT

United States Environmental Protection Agency

Region 7 Laboratory 25 Funston Road Kansas City, KS 66115

30 Date: 5/29/2002

Subject: Transmittal of Sample Analysis Results for ASR #: 1506

Activity Number: ERN15

Activity Description: Sentinel Wood Treating Co. sediment sampling

From: Michael Thomas, Associate Laboratory Director

Regional Laboratory, Environmental Services Division

To: Eric Nold SUPR/EFLR

This is the sample analysis results transmittal for the above-referenced Analytical Services Request (ASR). The data contained in this transmittal have been approved by the Regional Laboratory. This transmittal contains all of the sample analysis results for this ASR. The Regional Laboratory should be notified within 14 days if any changes are needed to the contents of this report. If you have any questions, comments or data changes, please contact the Laboratory Customer Service Department at 913-551-5295.

cc: Analytical Data File

ASR Number: 1506

Summary of Activity Information

5/29/2002

Activity Leader: Nold, Eric

Org: SUPR/EFLR

Phone: (913) 551-7488

Activity Number: ERN15

Activity Desc: Sentinel Wood Treating Co. sediment sampling

Location: Ava State: Missouri

Type: Superfund/Oil

Superfund Name: Sentinel Wood Treating Co. Inc.

Site ID: 07YD

Site OU:

Purpose: Site characterization

Explanation of Codes, Units and Qualifiers used on this report.

Sample QC Codes: QC Codes identify the type of

Units: Specific units in which results are reported.

sample for quality control purposes.

ng/kg = Nanograms per Kilogram

= Field Sample

ug/kg = Micrograms per Kilogram

FD = Field Duplicate

Data Qualifiers: Specific codes used in conjunction with data values to provide additional information on the quality of reported results, or used to explain the absence of a specific value.

,

(Blank) = Values have been reviewed and found acceptable for use.

J = The associated numerical value is an estimated quantity. K = Actual value of the sample is less than the value reported.

L = Actual value of the sample is greater than the value reported.

U = Not detected at or above the reportable level shown.

Sample Information Summary

Activity Number: ERN15

ASR Number: 1506

Activity Desc: Sentinel Wood Treating Co. sediment sampling

Sample QC Number Code	_e Matrix	Location	External Sample No.	Start Date	Start Time	End Date	End Time	Receipt Date
1	Şoil	Cell 254/Creek sediment sample		04/29/2002	14:20	•		05/01/2002
2	Soil	Cell 251/Creek sediment sample		04/29/2002	14:35			05/01/2002
3	Soil	Cell 248/Creek sediment sample		04/29/2002	14:45	•	•	05/01/2002
4-	Soil	Cell 245/Creek sediment sample		04/29/2002	14:55			05/01/2002
5 -	Soil	Cell 242/Creek sediment sample		04/29/2002	15:10			05/01/2002
6 - <u> </u>	Soil	Cell 239/Creek sediment sample		04/29/2002	15:25			05/01/2002
7 - <u> </u>	Soil	Cell 236/Creek sediment sample		04/29/2002	15:35			05/01/2002
8-	Soil	Cell 233/Creek sediment sample		04/29/2002	15:45			05/01/2002
9	Soil	Cell 230/Creek sediment sample		04/29/2002	15:55			05/01/2002
10-	Şoil	Cell 227/Creek sediment sample		04/29/2002	16:05			05/01/2002
11-	Soil	Cell 224/Creek sediment sample		04/29/2002	16:25			05/01/2002
12-	Soil	Cell 221/Creek sediment sample		04/29/2002	16:50			05/01/2002
13-	Soil	Cell 218/Creek sediment sample		04/29/2002	17:05			05/01/2002
14-	Soil	Cell 215/Creek sediment sample		04/29/2002	17:15			05/01/2002
15-	Soil	Cell 212/Creek sediment sample		04/29/2002	17:25			05/01/2002
16-	Soil	Cell 209/Creek sediment sample		04/29/2002	17:50			05/01/2002
16-FD	Soil	Cell 209/Creek sediment sample - Field Duplicate of sample 16		04/29/2002	17:50			05/01/2002
17	Soil	Cell 206/Creek sediment sample		04/29/2002	18:05			05/01/2002
18	Soil	Cell 203/Creek sediment sample		04/29/2002	18:20			05/01/2002
19	Soil	Cell 200/Creek sediment sample		04/29/2002	18:35			05/01/2002
20	Soil	Background - Northwest on creek of former lagoon/Creek sediment sample		04/30/2002	8:45			,05/01/2002
21	, Soil	Background - Northeast on creek of former lagoon/Creek sediment sample		04/30/2002	9:05			05/01/2002

Activity Number: ERN15 ASR Number: 1506 RLAB Approved Analysis Comments

Activity Desc: Sentinel Wood Treating Co. sediment sampling 5/29/2002

Analysis

Comments About Results For This Analysis

PCDD/PCDF in Soil by GC/HRMS

The samples contained polychlorinated diphenyl ethers, compounds that may form PCDFs during the analysis process. Any affected isomers (1,2,3,6,7,8-HxCDF in samples 1-4, 6, 9, 11, 13-16, 16FD, 17, and 19; 1,2,3,7,8-PeCDF in samples 2, 5, and 7; 1,2,3,4,7,8-HxCDF in samples 5, 7, 8, 9, 12, 14, and 20; and 2,3,7,8-TCDF in samples 12, 13, 14, 15, and 16FD) should be regarded as estimated maximum possible concentrations. These isomers were "K-coded" in all of the samples indicated. The impact on the results is that the detection limits for these isomers are somewhat elevated. Since they are not included in the equivalence calculation the values reported for 2,3,7,8-TCDD equivalence may be lower than the actual values.

Low levels of 1,2,3,4,6,7,8-HpCDD, OCDD, and OCDF contamination were found in one of the laboratory method blanks. Only samples containing this compound at a level greater than five times the contamination level of the blank are reported without being qualified. All samples that contained this compound but at a level less than five times the contamination in the blank have the result "U-coded" indicating the method reporting limit has been raised to the level found in the sample. Only OCDF was qualified in sample 1506-21.

Semi-Volatile Organic Compounds in Soil

Indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene were J-coded in samples -18 and -19 due to their exceeding the calibration range of the instrument. The reported values may be somewhat lower than the actual values.

Bis(2-ethylhexyl)phthalate in sample -10 and benzo(g,h,i)perylene in samples -1, -4, -6, -7, -8, -9, -10, -12, -13, -14, -16FD, and -17 were J-coded due to the continuing calibrations not meeting accuracy specifications. The reported values may be as much as 100% and 30% higher, respectively, than the actual values.

Benzo(a)anthracene and chrysene in samples -1, -4, -6, -7, -8, -9, -10, -12, -13,-16FD, and -17; pyrene in sample -4; bis(2-ethylhexyl)phthalate in sample -10; benzo(a)pyrene, benzo(b)fluoranthene, benzo (g,h,i)perylene, benzo(k)fluoranthene, and indeno(1,2,3-cd)pyrene in samples -1, -4, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -16FD, -17, -18, -19, and -21; dibenzo(a,h)anthracene in samples -1, -8,-10, -11, -12, -14, -16FD, -17, -18, and -19, and di-n-octylphthalate in sample -21 were J-coded. Although the analytes in question have been positively identified in the samples, the quantitations are estimates (J-coded) due to the internal standards not meeting accuracy specifications. The actual concentrations for these analytes may be higher than the reported values.

RLAB Approved Sample Analysis Results

5/29/2002

Activity Desc: Sentinel Wood Treating Co. sediment sampling

Activity Number: ERN15

ASR Number: 1506

Analysis / Analyte	Units	1		2	3	4
PCDD/PCDF in Soil by GC/HRMS						
2,3,7,8-Tetrachlorodibenzo-p-dioxin	ng/kg	19.5	U	2.82	5.12	6.51
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	ng/kg	97.6	U	19.1	30	62.4
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	ng/kg	154		71.5	98	204
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	ng/kg	421		226	322	627
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	ng/kg	307		139	194	435
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	ng/kg	13700		6370	8880	17800
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	ng/kg	110000		50200	67900	125000
2,3,7,8-Tetrachlorodibenzo-p-furan	ng/kg	19.5	U	1.18	2.19	2.01
1,2,3,7,8-Pentachlorodibenzo-p-furan	ng/kg	97.6	U	66 K	20.3	7.78
2,3,4,7,8-Pentachlorodibenzo-p-furan	ng/kg	97.6		18.4	28.3	68.5
1,2,3,4,7,8-Hexachlorodibenzo-p-furan	ng/kg	160	Ų	100 U	359	213
1,2,3,6,7,8-Hexachlorodibenzo-p-furan	ng/kg	97.6	K	28.2 K	110 K	140
1,2,3,7,8,9-Hexachlorodibenzo-p-furan	ng/kg	97.6	Ų	17.6	46.8	88.6
2,3,4,6,7,8-Hexachlorodibenzo-p-furan	ng/kg	97.6	U	56	92.6	157
1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	ng/kg	2010		1180	1970	3210
1,2,3,4,7,8,9-Heptachlorodibenzo-p-furan	ng/kg	165	•	111	198	317
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-furan	ng/kg	8960		5080	9250	10900
2,3,7,8-Dioxin Total Equivalents	ng/kg	365		207	334	595
emi-Volatile Organic Compounds in Soil	-	-				
Acenaphthene	ug/kg	400	u	390 U	420 U	420
Ačenaphthylene	ug/kg	400		390 U	420 U	420
Acetophenone	ug/kg'	400		390 U	420 U	420
Anthracene	ug/kg	400		390 U	420 U	420
Atrazine	ug/kg	400		390 U	420 U	420
Benzaldehyde	ug/kg	400		390 U	420 U	420
Benzo(a)anthracene	ug/kg	910		390 U	590	530
Benzo(a) pyrene	ug/kg	. 980		390 U	700	610
Benzo(b)fluoranthene	ug/kg	1100		390 U	860	670
Benzo(g,h,i)perylene	ug/kg	1300		390 U .	420 U	770 .
Benzo(k)fluoranthene	ug/kg	890		390 U	650	620
Biphenyl	ug/kg	400	U	390 U	420 U	420
bis(2-Chloroethoxy)methane	ug/kg	400		390 U	420 U	420
bis(2-Chloroethyl)ether	ug/kg	400	U	390 U	420 U	420
bis(2-Chloroisopropyl)ether	ug/kg	400		390 U	420 U	420
bis(2-Ethylhexyl)phthalate	ug/kg	400		390 U	420 U	420
4-Bromophenyl-phenylether	ug/kg	400	U	390 U	420 U	420
Butylbenzylphthalate	ug/kg	400		390 U	420 U	420
Caprolactam	ug/kg	400		390 U	420 U	420
Carbazole	ug/kg	400		390 U	420 U	420
4-Chioro-3-methylphenol	ug/kg	400		390 U	420 U	420
4-Chloroaniline	ug/kg	400		390 U	420 U	420
2-Chloronaphthalene	ug/kg	400		390 U	420 U	420
2-Chiorophenol	ug/kg	400		390 U	420 U	420 (
4-Chlorophenyl-phenylether	ug/kg	400		390 U	420 U	420
Chrysene	ug/kg	1400		390 U	870	820 k
Di-n-butylphthalate	ug/kg	400		390 U	420 U	420 (
Di-n-octylphthalate	ug/kg	400		390 U	420 U	420 (
Dibenz(a,h)anthracene	ug/kg	490	•	390 U	420 U	420 (

ASR Number: 1506

Activity Desc: Sentinel Wood Treating Co. sediment sampling

Analysis / Analyte	Units	1	2	3	4
Dibenzofuran	ug/kg	400 U	390 U	420 U	420
3,3'-Dichlorobenzidine	ug/kg	400 U	390 U	420 U	420
2,4-Dichlorophenol	ug/kg	400 U	390 U	420 U	420
Diethylphthalate	ug/kg	400 U	390 U	420 U	420
2,4-Dimethylphenol.	ug/kg	400 U	390 U	420 · U	420
Dimethylphthalate	ug/kg	400 U	390 U	420 U	420
4,6-Dinitro-2-methylphenol	ug/kg	1000 U	990 U	1100 U	1100
2,4-Dinitrophenol	ug/kg	1000 U	990 U	1100 U	1100
2,4-Dinitrotoluene	ug/kg	· 400 U	390 U	420 U	420
2,6-Dinitrotoluene	ug/kg	400 U	390 U	420 U	420
Fluoranthene	ug/kg	1700	390 U	1700	1200
Fluorene	ug/kg	400 U	390 U	420 U	420
Hexachlorobenzene	ug/kg	400 U	390 U	420 U	420
Hexachlorobutadiene	ug/kg	400 U	390 U	420 U	420
Hexachlorocyclopentadiene	ug/kg	400 U	390 U	420 U	420
Hexachloroethane	ug/kg	400 U	390 U	420 U	420
Indeno(1,2,3-cd)pyrene	ug/kg	1400 J	390 U	420 U	690
Isophorone	ug/kg	400 U	390 U	420 U	420
2-Methylnaphthalene	ug/kg	400 U	390 U	420 U	420
2-Methylphenol	ug/kg	400 U	390 U	. 420 U	420
4-Methylphenol	ug/kg	400 U	390 U	420 U	420
Naphthalene	ug/kg	400 U	390 U	420 U	420
2-Nitroaniline	ug/kg `	1000 U	990 U	1100 U	*1100
3-Nitroaniline	ug/kg	1000 U	990 U	1100 U	1100
4-Nitroaniline	ug/kg	1000 U	990 U	1100 U	1100
Nitrobenzene	ug/kg	400 U	390 U	420 U	420
2-Nitrophenol	ug/kg	400 U	390 U	420 U	420
4-Nitrophenol	ug/kg	1000 U	990 U	1100 U	1100
N-nitroso-di-n-propylamine	ug/kg	400 U	390 U	420 U	420
N-nitrosodiphenylamine	ug/kg	400 U	390 U	420 U	· 420
Pentachlorophenol	ug/kg	1000 U	990 U	1100 U	1100
Phenanthrene	ug/kg	1000	390 U	710	540
Phenol	ug/kg	400 U	390 U	420 U	420
Pyrene .	ug/kg	3300	590	2000	2900
2,4,5-Trichlorophenol	ug/kg 	1000 U	990 U	1100 U	1100
2.4.6-Trichlorophenol	ug/kg	400 U	390 U	420 U	420

ASR Number: 1506 Activity Number: ERN15

Activity Desc: Sentinel Wood Treating Co. sediment sampling

Units

ng/kg

5-_

1.06

11.6

38.3

139

81.2

4040

0.987 U

7.3

15.9

10.5

35.1

330 K

31 K

32300

RLAB Approved Sample Analysis Results 5/29/2002 6-__ 8-2.19 5.2 1.67 22.1 33.6 16.7 80.6 174 61 264 265 172 138 168 112 7760 7670 5100 72400 62100 40200 0.997 U 0.988 U 1.6 7.07 53 K 9.69 16.4 18.7 11.6 262 120 K 310 K 21 K 32.3 20.1 22.2 22.8 15.1 57.3 58.6 43 1260 1470 884

Semi-Volatile	Organic	Compounds	in Sail

Analysis / Analyte

PCDD/PCDF in Soil by GC/HRMS

2,3,7,8-Tetrachlorodibenzo-p-dioxin

1,2,3,7,8-Pentachlorodibenzo-p-dioxin

1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin

1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin

1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin

2,3,7,8-Tetrachlorodibenzo-p-furan

1,2,3,7,8-Pentachlorodibenzo-p-furan

2,3,4,7,8-Pentachlorodibenzo-p-furan

1,2,3,4,7,8-Hexachlorodibenzo-p-furan

1,2,3,6,7,8-Hexachlorodibenzo-p-furan

1,2,3,7,8,9-Hexachlorodibenzo-p-furan

2,3,4,6,7,8-Hexachlorodibenzo-p-furan

1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin

1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin

	=/0/ //0// / · · · · · · · · · · · · · ·	J. J				
	1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	ng/kg	921	1260	.1470	884
	1,2,3,4,7,8,9-Heptachlorodibenzo-p-furan	ng/kg	74.8	124	141	80.5
	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-furan	ng/kg	4620	6260	5360	3790
	2,3,7,8-Dioxin Total Equivalents	ng/kg	130	274	264 L	163
s	emi-Volatile Organic Compounds in Soil					
	Acenaphthene	ug/kg	420 U	400 U	400 U	420 U
	Acenaphthylene	ug/kg	³ 420 U	400 U	400 U	420 U
	Acetophenone	ug/kg	420 U	400 U	400 U	420 U
	Anthracene	ug/kg	420 U	400 U	160	420 U
	Atrazine	ug/kg	420 U	400 U	400 U	420 U
	Benzaldehyde	ug/kg	420 _. U	400 U	400 U	420 U
	Benzo(a)anthracene	ug/kg	420 U	680 J	860 J	1700 J
	Benzo(a)pyrene	ug/kg	420 U	690 J	810 J	1400 J
	Benzo(b)fluoranthene	ug/kg	420 U	790 J	860 J	1400 J
	Benzo(g,h,i)perylene	ug/kg	420 U	830 J	960 J	1800 J
	Benzo(k)fluoranthene	ug/kg	420 U	670 J	690 J	1400 J
	Biphenyl	ug/kg	420 U	400 U	400 U	420 U
	bis(2-Chloroethoxy)methane	ug/kg	420 U	400 U	400 U	420 U
	bis(2-Chloroethyl)ether	ug/kg	420 U	400 U	400 U	420 U
	bis(2-Chloroisopropyl)ether	ug/kg	420 U	400 U	400 U	420 U
	bis(2-Ethylhexyl)phthalate	ug/kg	420 U	400 U	400 U	420 U
	4-Bromophenyl-phenylether	ug/kg	420 U	400 U	400 U	420 U
	Butylbenzylphthalate ,	ug/kg	420 U	400 U	400 U	420 U
	Caprolactam	ug/kg	420 U	400 U	400 U	420 U
	Carbazole	ug/kg	420 U	400 U	400 U	620
	4-Chloro-3-methylphenol	ug/kg .	420 U	400 U	400 U	420 U
	4-Chloroaniline	ug/kg	420 U	400 U	400 U	420 U
	2-Chloronaphthalene	ug/kg	420 U	400 U	400 U	420 U
	2-Chlorophenol	ug/kg	420 U	400 U	400 U	420 U
	4-Chlorophenyl-phenylether	ug/kg	420 U.	400 U	400 U	420 U
	Chrysene	'ug/kg	420 U	1000 J	1100 J	2100 J
	Di-n-butylphthalate	ug/kg	420 U	400 U	400 U	420 U
	Di-n-octylphthalate	ug/kg	420 U	400 U	400 U	420 U
	Dibenz(a,h)anthracene	ug/kg	420 U	400 U	400 U	640 J
		-				

ASR Number: 1506

Activity Desc: Sentinel Wood Treating Co. sediment sampling

Analysis / Analyte	Units	5	6	7	8
Dibenzofuran	ug/kg	420 U	400 U	400 U	420 (
3,3'-Dichlorobenzidine	ug/kg	420 U	400 U	400 U	420 l
2,4-Dichlorophenol	ug/kg	420 U	400 U	400 U	420 l
Diethylphthalate	ug/kg	420 U	400 U	400 U	420 U
2,4-Dimethylphenol	ug/kg	420 U	400 U	400 U	420 (
Dimethylphthalate	ug/kg	420 U	400 U	400 U	420 l
4,6-Dinitro-2-methylphenol	ug/kg	.1100 U -	1000 U	1000 U .	1100 (
2,4-Dinitrophenol	ug/kg	1100 U	1000 U	1000 U	1100 1
2,4-Dinitrotoluene	ug/kg	420 U	400 U	400 U	420 (
2,6-Dinitrotoluene	ug/kg	420 U	400 U	400 U	420 1
Fluoranthene	ug/kg	670	1700	2000	4600
Fluorene	ug/kg	420 U	400 U	400 U	130
Hexachlorobenzene	ug/kg	420 U	400 U	400 U	420
Hexachlorobutadiene	ug/kg	420 U	400 U	400 U	420
Hexachlorocyclopentadiene	ug/kg	420 U	400 U	400 U	420
Hexachloroethane	ug/kg	420 U	400 U	400 U	420
Indeno(1,2,3-cd)pyrene	ug/kg	420 U	780 J	820 J	1700
Isophorone	ug/kg	420 U	400 U	400 U	420
2-Methylnaphthalene	ug/kg	.420 U	400 U	400 U	420
2-Methylphenol	ug/kg	420 ·U	400 U	400 U	.420
4-Methylphenol	ug/kg	420 U	400 U	400 U	420
Naphthalene	ug/kg	420 U	400 U	400 U	420
2-Nitroaniline	ug/kg	1100 U	1000 U	1000 U	1100
3-Nitroaniline	ug/kg	1100 U	1000 U	1000 U	1100
4-Nitroaniline	ug/kg	1100 U	1000 U	1000 U	1100
Nitrobenzene	ug/kg	420 U	400 U	400 U	420
2-Nitrophenol	ug/kg	420 U	400 U	400 U	420
4-Nitrophenol	ug/kg	1100 U	1000 U	1000 U	1100
N-nitroso-di-n-propylamine	ug/kg	420 U	400 U	400 U	420
N-nitrosodiphenylamine	ug/kg	420 U	400 U	400 U	420
Pentachlorophenol	ug/kg	1100 U	1000 U	. 1000 U	1100
Phenanthrene	ug/kg	420 U	850	1400	2900
Phenol	ug/kg	420 U	400 U	400 U	420
Pyrene	ug/kg	780	2200	2600	5100
2,4,5-Trichlorophenol	ug/kg	1100 U	1000 U	1000 U	1100
2,4,6-Trichlorophenol	ug/kg	, 420 U	400 U	400 U	420

ASR Number: 1506

Activity Desc: Sentinel Wood Treating Co. sediment sampling

Analysis / Analyte	Units	9	10	11	12
PCDD/PCDF in Soil by GC/HRMS					
2,3,7,8-Tetrachlorodibenzo-p-dioxin	ng/kg	2.26	1.69	5.57	2.52
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	ng/kg	28.1	20.5	60.2	36.1
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	ng/kg	110	75.6	187	133
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	ng/kg	258	195	572	460
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	ng/kg	198	129	363	237
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	ng/kg	7710	5420	16300	13300
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin		56600	38800	124000	109000
2,3,7,8-Tetrachlorodibenzo-p-furan	ng/kg	0.992 U	0.99 U	3.5	2 1
1,2,3,7,8-Pentachlorodibenzo-p-furan	ng/kg	8.2	8.53	11.3	21
2,3,4,7,8-Pentachlorodibenzo-p-furan	ng/kg	14.8	13.8	56	33.6
1,2,3,4,7,8-Hexachlorodibenzo-p-furan	ng/kg	480 K	219	373	1000 1
1,2,3,6,7,8-Hexachlorodibenzo-p-furan	ng/kg	18 K	18.5	39 K	52.1
1,2,3,7,8,9-Hexachlorodibenzo-p-furan	ng/kg	22.8	15.7	77.4	56.9
2,3,4,6,7,8-Hexachlorodibenzo-p-furan	ng/kg	63.8	51.4	146	124
1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	ng/kg	1270	914	2920	2760
1,2,3,4,7,8,9-Heptachlorodibenzo-p-furan	ng/kg	136	93.3	307	268
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-furan	ng/kg	5050	3630	12000	12600
2,3,7,8-Dioxin Total Equivalents	ng/kg	242	196 L	567	429
Semi-Volatile Organic Compounds in Soil					5
Acenaphthene	ug/kg	420 U	420 U	440 U	430
Acenaphthylene	ug/kg	420 U	420 U	440 U	430
Acetophenone	ug/kg	420 U	420 U	440 U	430
Anthracene	ug/kg	420 U	480	700	430
Atrazine	ug/kg	420 U	420 U	440 U	430
Benzaldehyde	ug/kg	420 U	420 U	440 U	430
Benzo(a)anthracene	ug/kg	800 J	2400 J	2800 J	1900 .
Benzo(a)pyrene	ug/kg	790 J	2100 J	2900 J	1700
Benzo(b)fluoranthene	ug/kg	810 J	2100 J	3100 J	1900
Benzo(g,h,i)perylene	ug/kg	1100 J	2900 J	1800 J	2000
Benzo(k)fluoranthene	ug/kg	800 J	1700 J	2800 J	1500
Biphenyl	ug/kg	420 U	420 U	440 U	430
bis(2-Chloroethoxy)methane	ug/kg	420 U	420 U	440 U	430
bis(2-Chloroethyl)ether	ug/kg	420 U	420 U	440 U	430
bis(2-Chloroisopropyl)ether	ug/kg	420 U	420 U	440 U	430
bis(2-Ethylhexyl)phthalate	ug/kg	420 U	1800 J	440 U	430
4-Bromophenyl-phenylether	ug/kg	420 U	420 U	440 U	430
Butylbenzylphthalate	ug/kg	420 U	420 U	440 U	430
Caprolactam	ug/kg	420 U	420 U	440 U	430
Carbazole	ug/kg	420 U	1000	440 U	850
4-Chloro-3-methylphenol	ug/kg	420 U	420 U	440 U	430
4-Chloroaniline	ug/kg.	420 U	420 U	440 U	430
2-Chloronaphthalene	ug/kg	420 U	420 U	440 U	430
2-Chlorophenol	ug/kg	420 U	420 U	440 U	430
4-Chlorophenyl-phenylether	ug/kg	420 U .	420 U	440. U	430
Chrysene	ug/kg	1100 J	3200 J	4500	2600
Di-n-butylphthalate	ug/kg	420 U	420 U	440 U	430
Di-n-octylphthalate	ug/kg	420 U	420 U	440 U	430
Dibenz(a,h)anthracene	ug/kg	420 U	1000 J	750 J	740

ASR Number: 1506

Activity Desc: Sentinel Wood Treating Co. sediment sampling

Analysis / Analyte	Units	9	10	11	12
Dibenzofuran	ug/kg	420 U	420 U	440 U	430
3,3'-Dichlorobenzidine	ug/kg	420 U	420 U	440 U	430
2,4-Dichlorophenol	ug/kg	420 U	420 U	440 U	430
Diethylphthalate	ug/kg	420 U	420 U	440 U	430
2,4-Dimethylphenol	ug/kg	420 U	420 U	440 U	430
Dimethylphthalate	ug/kg	420 U	420 U	440 U	. 430
4,6-Dinitro-2-methylphenol	ug/kg	1100 U	1100 U	1100 U	1100
2,4-Dinitrophenol	ug/kg	1100 U	1100 U	1100 U	1100
2,4-Dinitrotoluene	ug/kg	420 U	420 U	440 U	430
2,6-Dinitrotoluene	ug/kg	420 U	420 U	. 440 U	430
Fluoranthene	ug/kg	1700	8200	11000	5500
Fluorene	ug/kg	420 U	420 U	440 U	430
Hexachlorobenzene	ug/kg	420 U	420 U	440 U	430
Hexachlorobutadiene	ug/kg	420 U	420 U	440 U	430
Hexachlorocyclopentadiene	ug/kg	420 U	420 U	440 U	430
Hexachloroethane	ug/kg	420 U	420 U	440 U	430
Indeno(1,2,3-cd)pyrene	ug/kg	950 J	2800 J	2100 J	2200
Isophorone	ug/kg	420 U	420 U	440 U	430
2-Methylnaphthalene	ug/kg	420 U	420 U	440 U	430
2-Methylphenol	ug/kg	420 U	420 U	440 U	430
4-Methylphenol	ug/kg	420 U	420 Ú	440 U	430
Naphthalene	ug/kg	420 U	420 U	440 U	430
2-Nitroaniline	ug/kg "	* 1100 U	1100 U	1100 U	1100
3-Nitroaniline	ug/kg ′	1100 U	1100 U	1100 U	1100
4-Nitroaniline	ug/kg	1100 U	1100 U	1100 U	1100
Nitrobenzene	ug/kg	420 U	420 U	440 U	430
2-Nitrophenol	· ug/kg	420 U	420 U	440 U	430
4-Nitrophenol	ug/kg	1100 U	1100 U	1100 U	1100
N-nitroso-di-n-propylamine	ug/kg	420 U	420 U	440 U	430
N-nitrosodiphenylamine	ug/kg	420 U	420 U	440 U	430
Pentachlorophenol	ug/kg	1100 U	1100 U	1100 U	1100
Phenanthrene	ug/kg	1300	4600	5300	3100
Phenol	ug/kg	420 U	· 420 U	440 U	430
Pyrene	ug/kg	2900	9800	. 11000	6700
2,4,5-Trichlorophenol	ug/kg	1100 U	1100 U	1100 U	1100
2,4,6-Trichlorophenol	ug/kg	420 Ú	420 U	440 U	430

RLAB Approved Sample Analysis Results

5/29/2002

Activity Number: ERN15 Activity Desc: Sentinel Wood Treating Co. sediment sampling

ASR Number: 1506

Analysis / Analyte	Units	13	- -	14		15	-	16
PCDD/PCDF in Soil by GC/HRMS								
2,3,7,8-Tetrachlorodibenzo-p-dioxin	ng/kg	3.85		1.89		4.41		3.05
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	ng/kg	37.7		16.9		44.4		31.6
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	ng/kg	95.2		46.1		145		103
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	ng/kg	515		151		399		257
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	ng/kg	245		99		287		169
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	ng/kg	14300		4400		12400		7270
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	ng/kg	113000		37300		96500		60200
2,3,7,8-Tetrachlorodibenzo-p-furan	ng/kg	2.7	κ	1.7	κ	3.5	Κ	1,45
1,2,3,7,8-Pentachlorodibenzo-p-furan	ng/kg	27		8.3		5.46		4.84
2,3,4,7,8-Pentachlorodibenzo-p-furan	ng/kg	56.8		17.2		40		22.6
1,2,3,4,7,8-Hexachlorodibenzo-p-furan	ng/kg	435		120	K	278		93
1,2,3,6,7,8-Hexachlorodibenzo-p-furan	ng/kg	63	κ	15	κ	100	ĸ	61
1,2,3,7,8,9-Hexachlorodibenzo-p-furan	ng/kg	98.2		26.5		59.5		27.7
2,3,4,6,7,8-Hexachlorodibenzo-p-furan	ng/kg	170		39.8		96		67.6
1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	ng/kg	3320		847		2310		1370
1,2,3,4,7,8,9-Heptachlorodibenzo-p-furan	ng/kg	327		90.4		249		132
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-furan	ng/kg	13600		3970		7980		5200
2,3,7,8-Dioxin Total Equivalents	ng/kg	514		162		427	,	255
Semi-Volatile Organic Compounds in Soil								
Acenaphthene	ug/kg	410	U	400	Ú	430	Ù	400
Ačenaphthylene	ug/kg	410		400	Ü	430		400
Acetophenone	ug/kg	410		400		430		400
Anthracene	ug/kg	410		910		430		400
Atrazine	ug/kg	410		400	U	430		400
Benzaldehyde	ug/kg	410		400	-	430		400
Benzo(a)anthracene	ug/kg	1200		3100		1800	-	1200
Benzo(a) pyrene	ug/kg	1200		2500	J	2100	J	1400
Benzo(b)fluoranthene	ug/kg	1200		2500		2600		1800
Benzo(g,h,i)perylene	ug/kg	1100		2800		1300		660
Benzo(k)fluoranthene	ug/kg	1100	J	1900	J	2300		1500
Biphenyl	ug/kg	410	U	400	U	430	U	400
bis(2-Chloroethoxy)methane	ug/kg	410	υ	400	υ	430	υ	400
bis(2-Chloroethyl)ether	ug/kg	410	U	400	U	. 430	U	400
bis(2-Chloroisopropyl)ether	ug/kg	410	U	400	U	430	U	400
bis(2-Ethylhexyl)phthalate	ug/kg	410	U	400	U -	430		400
4-Bromophenyl-phenylether	ug/kg	410	U	400	υ	430		400
Butylbenzylphthalate	ug/kg	410	U	400	U	430		400
Caprolactam	ug/kg	410	U	400	U	430	U	400
Carbazole	ug/kg	600		1800		430		400
4-Chloro-3-methylphenol	ug/kg	410	U.	400	U	. 430		400
4-Chloroaniline	ug/kg .	410	υ	400	U	430		400
2-Chloronaphthalene	ug/kg	410	U	400		430		400
2-Chlorophenol	ug/kg	410		400		430		400
4-Chlorophenyl-phenylether	ug/kg	410		400		430		400
Chrysene	ug/kg	1700		3800	-	2800	-	2000
Di-n-butylphthalate	ug/kg	410		400	υ	430	U.	400
Di-n-octylphthalate	ug/kg	410		400		430		400
Dibenz(a,h)anthracene	ug/kg	. 410		1200		430		400

ASR Number: 1506

Activity Desc: Sentinel Wood Treating Co. sediment sampling

Analysis / Analyte	Units	13		14	15	-	16
Dibenzofuran	ug/kg	410 l	υ	400 U	430	U	400
3,3'-Dichlorobenzidine	ug/kg	410 l	U	400 U	430	U	400
2,4-Dichlorophenol	ug/kg	· 410 l	U	400 U	430	U	400
Diethylphthalate	ug/kg	410 l	U	400 U	430	U	400
2,4-Dimethylphenol	ug/kg	410 (U	400 U	430	·U	400
Dimethylphthalate	ug/kg	410 l	U	400 U	430	U	400
4,6-Dinitro-2-methylphenol	ug/kg	1000 l	U	1000 U	1100	U	1000
2,4-Dinitrophenol	ug/kg	1000 l	U	1000 U	1100	U	1000
2,4-Dinitrotoluene	ug/kg	410 l	U	400 U	430	U	400
2,6-Dinitrotoluene	ug/kg	410 l	U	400 U	430	U	400
Fluoranthene	ug/kg	4300		11000	6100	•	4300
Fluorene	ug/kg	410 \	U	410	430	υ	400
Hexachlorobenzene	ug/kg	410 l	U	400 U	: 430	U	400
Hexachlorobutadiene	ug/kg	410 l	U	400 ,U	430	U	400
Hexachlorocyclopentadiene	ug/kg	٠ 410 ل	J	400 U	430	U	400
Hexachloroethane	ug/kg	410 l	U	400 U	430	υ	400
Indeno(1,2,3-cd)pyrene	ug/kg	1,100 J	J	3000 J	1200	J	870
Isophorone	ug/kg	410 L	J	400 U	430	U	400
2-Methylnaphthalene	ug/kg	410 L	J	400 U	430	U	400
2-Methylphenol	ug/kg	410 L	. ر	400 U	430	U	400
4-Methylphenol	ug/kg	410 L	J	400 U	430	U	400
Naphthalene	ug/kg	410 L	J	400 U	430	U	400
2-Nitroaniline	ug/kg	1000 L	J	1000 U	1100	U *	1000
3-Nitroaniline	· ug/kg	1000 L	J	1000 U	1100	U	1000
4-Nitroaniline	ug/kg	1000 L	į	1000 U	1100	U	1000
Nitrobenzene	ug/kg	410 L	J	400 U	430	U	400
2-Nitrophenol	ug/kg	410 (j	400 U	430	U	400
4-Nitrophenal	ug/kg	1000 L	J	1000 U	1100	U	1000
N-nitroso-di-n-propylamine	ug/kg	410 L	J	400 U	430	U	400
N-nitrosodiphenylamine	ug/kg	410 L	J	400 U	430	U	400
Pentachlorophenol	ug/kg	1000 L	٠. ر	1000 U	1100	U	1000
Phenanthrene	ug/kg	2200		7000	2200		1600
Phenol	ug/kg	410 L	J	400 U	430	U	400
Pyrene	ug/kg	4000		8600	6300		4600
2,4,5-Trichlorophenol	ug/kg	1000 0	.	1000 บ	1100	υ .	1000
2,4,6-Trichlorophenol	ug/kg	410 U	j	400 U	430	U	400

ASR Number: 1506

Activity Desc: Sentinel Wood Treating Co. sediment sampling

Analysis / Analyte	Units	16-FD	17	18	19
PCDD/PCDF in Soil by GC/HRMS					
2,3,7,8-Tetrachlorodibenzo-p-dioxin	ng/kg	3.45	4.08	4.32	7.47
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	ng/kg	35.9	22	28.8	56.5
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	ng/kg	97.2	73.2	87.8	157
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	ng/kg	292	215	245	386
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	ng/kg	194	135	160	291
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	ng/kg	8670	6630	6870	11600
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	ng/kg	65500	59900	54400	90500
2,3,7,8-Tetrachlorodibenzo-p-furan	ng/kg	1.8 K	2.82	0.967 U	2.86
1,2,3,7,8-Pentachlorodibenzo-p-furan	ng/kg	4.98 U	4.85 U	5.37	9.7
2,3,4,7,8-Pentachlorodibenzo-p-furan	ng/kg	25.7	19.1	15.8	36.5
1,2,3,4,7,8-Hexachlorodibenzo-p-furan	ng/kg	99.6	234	228	218
1,2,3,6,7,8-Hexachlorodibenzo-p-furan	ng/kg	72 K	24 K	23.3	91 K
1,2,3,7,8,9-Hexachlorodibenzo-p-furan	ng/kg	34.4	29.5	15.8	43.2
2,3,4,6,7,8-Hexachlorodibenzo-p-furan	ng/kg	79.8	60.5	64.8	109
1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	ng/kg	1570	1070	1200	1900
1,2,3,4,7,8,9-Heptachlorodibenzo-p-furan	ng/kg	147	114	110	193
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-furan	ng/kg	5530	4840	4410	7350
2,3,7,8-Dioxin Total Equivalents	ng/kg	289	242	250	410
Semi-Volatile Organic Compounds in Soil					
Acenaphthene	ug/kg	410 U	390 U	390 U	450 L
Acenaphthylene	ug/kg	410 U	390 U	390 U	450 (
Acetophenone	ug/kg	410 U	390 U	390 U	450 L
Anthracene	ug/kg	410 U	390 U	650	640
Atrazine	ug/kg	410 U	390 U	390 U	450 L
Benzaldehyde	ug/kg	410 U	390 U	390 U	450 L
Benzo(a)anthracene	ug/kg	2000 J	1600 J	4700	5600
Benzo(a)pyrene	ug/kg	2200 J	1400 J	4900 J	6700 J
Benzo(b)fluoranthene	ug/kg	2000 J	1300. J	5800 J	8900 J
Benzo(g,h,i)perylene	ug/kg	2200 J	1800 J	3500 J	4500 J
Benzo(k)fluoranthene	ug/kg	1700 J	1200 J	5200 J	7000 J
Biphenyl	ug/kg	410 U	390 U	390 U	450 l
bis(2-Chloroethoxy)methane	ug/kg	410 U	390 U	390 U	450 L
bis(2-Chloroethyl)ether	ug/kg	410 U	390 U	390 U	450 L
bis(2-Chloroisopropyl)ether	ug/kg	410 U	390 U	390 U	450 L
bis(2-Ethylhexyl)phthalate	ug/kg	. 410 U	390 U	390 U	450 L
4-Bromophenyl-phenylether	ug/kg	410 U	390 U	390 U	450 L
Butylbenzylphthalate	ug/kg	410 U	390 U	390 U	450 L
Caprolactam	ug/kg	410 U	390 U	390 U	450 L
Carbazole	ug/kg	88Ó	530	730	840
4-Chloro-3-methylphenol	ug/kg	410 U	390 U	390 U	450 L
4-Chloroaniline	ug/kg	410 U	390 U	390 U	450 L
2-Chloronaphthalene	ug/kg	410 U	390 U	390 U	450 L
2-Chlorophenol	ug/kg	410 U	390 U	390 U	450 l
4-Chlorophenyl-phenylether	ug/kg	410 U	390 U	390 U	450 (
Chrysene	ug/kg	2900 J	2100 J	6400	8900
Di-n-butylphthalate	ug/kg	410 U	390 U	390 U	450 L
Di-n-octylphthalate	ug/kg	410 U	390 U	390 U	450 U
Di in ootjipiitiioiato	-54.115	5	555 5	350 0	430 C

ASR Number: 1506

Activity Desc: Sentinel Wood Treating Co. sediment sampling

Analysis / Analyte	Units	16-FD		17		18		19	_
Dibenzofuran	ug/kg	410	U	390	U	390	U	450	Į
3,3'-Dichlorobenzidine	ug/kg	410	U	390	U	390	U	450	ţ
2,4-Dichlorophenol	ug/kg	410	U	390	U	390	U	450	
Diethylphthalate	ug/kg	· 410	U	390	U	390	U	450	
2,4-Dimethylphenol	ug/kg	410	U	390	U	390	U	450	
Dimethylphthalate	ug/kg	410	U	390	U	390	U	450	
4,6-Dinitro-2-methylphenol	ug/kg	1000	U	990	U	980	U	1100	
2,4-Dinitrophenol	ug/kg	1000	U	990	U	980	U	1100	ı
2,4-Dinitrotoluene	ug/kg	410	U	390	U	390	υ	450	ı
2.6-Dinitrotoluene	ug/kg	410	U	390	U	390	U	450	į
Fluoranthene	ug/kg	5700		3000		14000		17000	į
Fluorene	ug/kg	410	U	390	U	390	U	450	į
Hexachlorobenzene	ug/kg	410	U	390	U	390	U	450	,
Hexachlorobutadiene	ug/kg	410	ប	390	U	390	U	450	j
Hexachlorocyclopentadiene	ug/kg	410	U	390	U	390	U	450)
Hexachloroethane	ug/kg	410	U	390	U	390	U	450	j
Indeno(1,2,3-cd)pyrene	ug/kg	2100	J	1700	J	3500	J	4600)
Isophorone	ug/kg	410	U	390	U	390	U	450)
2-Methylnaphthalene	ug/kg	410	U	390	U	390	U	450)
2-Methylphenol	ug/kg	410	U	390	·U	390	U	450)
4-Methylphenol	ug/kg	410	U.	390	U	390	บ	450)
Naphthalene	ug/kg	410	U	390	U	390	U	450)
2-Nitroaniline	ug/kg	1000	U	990	U	980	U	1100)
3-Nitroaniline	ug/kg	1000	U	990	U	980	U	1100)
4-Nitroaniline	ug/kg	1000	U	990	U	980	U	1100)
Nitrobenzene	ug/kg	410	U	390	U	390	U	450)
2-Nitrophenol	ug/kg	410	U	390	U	390	U	450)
4-Nitrophenol	ug/kg	1000	U	990	U	980	U	1100)
N-nitroso-di-n-propylamine	ug/kg	410	U	390	U	390	U	450)
N-nitrosodiphenylamine	ug/kg	410	U	390	U	390	U	450)
Pentachlorophenol	ug/kg	1000	U	990	U	980	บั	1100)
Phenanthrene	ug/kg	3000		2800		6200		7600	
Phenoi ·	ug/kg	410	U	390	U	390	U	450)
Pyrene	ug/kg	7000		5600		14000		19000)
2,4,5-Trichlorophenol	ug/kg	1000	U	990	U	980	U	1100)
2,4,6-Trichlorophenol	ug/kg	410	U	390	U	390	U	450)

ASR Number: 1506 Activity Number: ERN15

Activity Desc: Sentinel Wood Treating Co. sediment sampling

Analysis / Analyte	Units	20	21	
PCDD/PCDF in Soil by GC/HRMS	. ,			
2,3,7,8-Tetrachlorodibenzo-p-dioxin	ng/kg	0.984 U	0.978 U	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	ng/kg	4.92 U	4.89 U	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	ng/kg	6.07	4.89 U	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	ng/kg	13.9	4.89 U	
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	ng/kg	12.7	6.89	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	ng/kg	391	131	
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	ng/kg	2800	5640	
2,3,7,8-Tetrachlorodibenzo-p-furan	ng/kg	0.984 U	0.978 U	
1,2,3,7,8-Pentachlorodibenzo-p-furan	ng/kg	4.92 U	4.89 U	
2,3,4,7,8-Pentachlorodibenzo-p-furan	ng/kg	4.92 U	4.89 U	
1,2,3,4,7,8-Hexachlorodibenzo-p-furan	ng/kg	17 K	4.89 U	
1,2,3,6,7,8-Hexachlorodibenzo-p-furan	ng/kg	4.92 U	4.89 U	
1,2,3,7,8,9-Hexachlorodibenzo-p-furan	ng/kg	4.92 U	4.89 U	·
2,3,4,6,7,8-Hexachlorodibenzo-p-furan	ng/kg	4.92 U	4.89 U	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	ng/kg	64.3	20.8	•
1,2,3,4,7,8,9-Heptachlorodibenzo-p-furan	ng/kg	4.92 U	4.89 U	
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-furan	ng/kg	123	43.9 U	
2,3,7,8-Dioxin Total Equivalents	ng/kg	10.7	7.89	
Semi-Volatile Organic Compounds in Soil				
Acenaphthene	ug/kg	460 U	430 U	
Acenaphthylene	ug/kg	460 U	430 U	y
Acetophenone	ug/kg	460 U	430 U	
Anthracene	ug/kg	460 U	430 U	
Atrazine	ug/kg	460 U	430 U	
Benzaldehyde	ug/kg	460 U	430 U	
Benzo(a)anthracene	ug/kg	460 U	820	•
Benzo(a) pyrene	ug/kg	460 U	890 J	
Benzo(b) fluoranthene	ug/kg	460 U	1200 J	·
Benzo(g,h,i)perylene	ug/kg	460 U	510 J	
Benzo(k)fluoranthene	ug/kg	460 U	1100 J	
Biphenyl	ug/kg	460 U	430 U	
bis(2-Chloroethoxy)methane	ug/kg	. 460 U	430 U	
bis(2-Chloroethyl)ether	ug/kg	460 U	430 U	
bis(2-Chloroisopropyl)ether	ug/kg	460 U	430 U	
bis(2-Ethylhexyl)phthalate	ug/kg	460 ⁽ U	500	
4-Bromophenyl-phenylether	ug/kg	460 U	430 U	
Butylbenzylphthalate	ug/kg	460 U	430 U	
Caprolactam	ug/kg	460 U	430 U	·
Carbazole	ug/kg	. 460 U	430 U	•
4-Chloro-3-methylphenol	ug/kg:	460 U	430 U	
4-Chloroaniline	ug/kg	460 U	430 U	
2-Chloronaphthalene	ug/kg	460 U	430 U	
2-Chlorophenol	ug/kg	460 U	430 U	
4-Chlorophenyl-phenylether	ug/kg	460 U	430 U	
Chrysene	ug/kg	460 U	1500	
Di-n-butylphthalate	ug/kg	460 U	430 U	
Di-n-octylphthalate	ug/kg	460 U	730 J	
Dibenz(a,h)anthracene	ug/kg	460 U	430 U	

ASR Number: 1506

Activity Desc: Sentinel Wood Treating Co. sediment sampling

Analysis / Analyte	Units	20	21	
Dibenzofuran	ug/kg	460 U	430 U	
3,3'-Dichlorobenzidine	ug/kg ·	460 U	430 U	•
2,4-Dichlorophenol	ug/kg	460 U	430 U	
Diethylphthalate	ug/kg	460 U	430 U	
2,4-Dimethylphenol	ug/kg	460 U	430 U	
Dimethylphthalate	ug/kg	460 U	430 U	•
4,6-Dinitro-2-methylphenol	ug/kg	1200 U	1100 U	
2,4-Dinitrophenol	ug/kg	1200 U	1100 U	
2,4-Dinitrotoluene	ug/kg	460 U	430 U	
2,6-Dinitrotoluene	ug/kg	460 U	430 U	
Fluoranthene	ug/kg	460 U	3100	
Fluorene	ug/kg	460 U	430 U	
Hexachlorobenzene	ug/kg	460 U	430 U	
Hexachlorobutadiene	ug/kg	460 U	430 U	
Hexachlorocyclopentadiene	ug/kg	460 Û	430 U	
Hexachloroethane	ug/kg	460 U	430 U	
Indeno(1,2,3-cd)pyrene	ug/kg	460 U	590 J	
Isophorone	ug/kg	460 U	430 U	
2-Methylnaphthalene	ug/kg	460 U	430 U	
2-Methylphenol	ug/kg	460 U	430 U	
4-Methylphenol	ug/kg	460 U	430 U	
Naphthalene	ug/kg	460 U	430 U	
2-Nitroaniline	ug/kg	1200 U	1100 U	
3-Nitroaniline	ug/kg	1200 U	1100 U	
4-Nitroaniline	ug/kg	1200 U	1100 U	
Nitrobenzene	ug/kg	460 U	430 U	
2-Nitrophenol	ug/kg	460 U	430 U.	
4-Nitrophenol	ug/kg	1200 U	1100 U	
N-nitroso-di-n-propylamine	ug/kg	460 U	430 U	
N-nitrosodiphenylamine	ug/kg	460 U	430 U	
Pentachlorophenol	ug/kg	1200 U	1100 U	
Phenanthrene	ug/kg	460 U	2300	
Phenol	ug/kg	460 U	430 U	
Pyrene	ug/kg	460 U	3000	
2,4,5-Trichlorophenol	ug/kg	1200 U	1100 U	
2,4,6-Trichlorophenol	ug/kg	460 U	430 U	

ctivity # ERNIS

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

ACTIVITY LEADER(Print) NAME OF SURVEY OR ACTIVITY Sampling DATE OF COLLECTION Eric No.12 / Ted Faile Setup (Wood Treating Co. Sedment) DAY MONTH	SHEET
ACTIVITY LEADER(Print) NAME OF SURVEY OR ACTIVITY Samples DATE OF COLLECTION Section 1 Wood Treating Co. Sedment CONTENTS OF SHIPMENT	YEAR L Of j
TYPE OF CONTAINERS SAMPLED MEDIA DESCRIVEN	LABORATORY
SAMPLE VOA SET TO OTHER REMARKS/OT (Condition of s	HER INFORMATION Imples upon receipt, Inumbers, etc.)
1506-1 21, X PEDD/PCDF	<u> </u>
11 -2 21 8 SINCE 12	1501
$u = 3$ 2^{11}	<u> </u>
4 211	ι.
11 -5 211 11 11 11 11	1\
u -6 2.1	ν
1 2 1°	٠(
u -8 211 u u	((
1 - 9 Zii	16
4 -10 2''	16
411 2.1	10
4 -12 2,1	. 16
4-13 2.1	·
4-19 2.1	
4-15 211	
16 2''	()
4-160 211	(1
4-17 2.1	. ((
4-18 2''	Li
L -19 2"	()
211	()
W-21 211 (° "C	l c
1 2 M Dr. 74 30-1-1 (k. 20no	Record het.
DESCRIPTION OF SHIPMENT MODE OF SHIPMENT	3-50,
41 PIECE(S) CONSISTING OF BOX(ES) COMMERCIAL CARRIER:	2
COURIER	
ICE CHEST(S): OTHER SAMPLER CONVEYED (SHIPPING DOCL	MENT NUMBER)
PERSONNEL CUSTODY RECORD	
O P INDA (Which Day)	ANGE OF CUSTODY
SEALED UNSEALED AS SEALED UNSEALED W.	~
RELINQUISHED BY PREASON FOR CH	ANGE OF CUSTODY
1 1 1	

US EPA Region VII Kansas City, KS

ASR Number:	1506	Sample Number:	1	QC Code:		Matrix: Soil	Tag	ID:	1506-1-
Activity Number:	ERN15		Activ	ty Leader: No	d, Eric				
Activity Desc:	Sentinel '	Wood Treating Co.	sedim	ent sampling					
Location:	Ava			State: Mis	souri	Ту	pe: Super	fund	
Superfund Name:	Sentinel '	Wood Treating Co.	inc.			Site	ID : 07YD	Site	OU:
Location Desc:	_Cel	1254							
			Exter	nal Sample Nu	mber:		··		
Expected Conc:	Circle On	ne: Low Medium	High	•		1	Date	Tim	e (24 Hr)
Latitude:				Sample Colle	ction:	Start <u>4 / 2</u>	9102	14:	<u> ೩</u> 0
Longitude:						End/_	/	:	
Laboratory Analys	ses:								
Container		Preservative		Holding Time	Anal	ysis			
1 - 8 oz glass		4 Deg C		14. Days	Semi-	Volatile Organic C	ompounds	in Soil	
1 - 8 oz glass		4 Deg C		365 Days	PCD	PCDF in Soil by	GC/HRMS		
Sample Comment	s:					У			
•	·								•
7-aliquot,									
•)		•							

Sample collected by: Pritchart / Dealy

Creek sediment sample

US EPA Region VII Kansas City, KS

ASR Number:	1506	Sample Number	: 2	QC Code:		Matrix:	Soil	Tag	ID:	1506-2
Activity Number:	ERN15		Activ	rity Leader: No	ld, Eric					
Activity Desc:	Sentinel	Wood Treating Co.	sedim	nent sampling						
Location:	Ava			State: Mis	ssouri		Type:	Superf	und	
Superfund Name:	Sentinel '	Wood Treating Co.	Inc.				Site ID:	07YD	Site	OU:
Location Desc:	_Ce	1 251								
			Exter	nal Sample Nu	mber:		· · · · · · · · · · · · · · · · · · ·			
Expected Conc:	Circle On	ne: Low Medium	High				Date	•	Time	(24 Hr)
Latitude:				Sample Colle	ction:	Star	t <u>4 /29 /c</u>	یک	14 : 3	کے
Longitude:						En	d//_	 ,	:_	
Laboratory Analys	es:									
Container	1	Preservative		Holding Time	Anal	ysis				
1 - 8 oz glass		4 Deg C		14 Days	Semi-	Volatile (Organic Comp	oounds	in Soil	
1 - 8 oz glass	•	4 Deg C		365 Days	PCDE	D/PCDF in	Soil by GC/I	HRMS		ŧ
Sample Comments	s:									
9-aliquot)									
Crok c.	٠ ٠.	• .								

Sample collected by: Pritchard / Dealy

US EPA Region VII Kansas City, KS

ASR Number:	1506	Sample Number:	3	QC Code:		Matrix: So	oil 	Tag	ĺD:	1506-3-
Activity Number:	ERN15		Activ	ity Leader: No	d, Eric	- - .	· · · ·			
Activity Desc:	Sentinel \	Wood Treating Co.	sedim	ent sampling						
Location:	Ava			State: Mis	souri		Type:	Superf	und	
Superfund Name:	Sentinel \	Wood Treating Co.	Inc.			•	Site ID:	07YD	Site	OU:
Location Desc:	C	11 248								
			Exter	nal Sample Nu	mber:					
Expected Conc:	Circle On	e Low Medium	High				Date	•	Time	(24 Hr)
Latitude:				Sample Colle	ction:	Start _	1/29/0	<u>a</u> .	14:	15
Longitude:		-			,	End _	//_		:_	
Laboratory Analys	es:					-			-	
Container	F	Preservative		Holding Time	Anal	ysis				
1 - 8 oz glass	4	Deg C		365 Days	PCDE	PCDF in S	oil by GC/I	HRMS		
1 - 8 oz glass	4	Deg C		14 Days	Semi-	Volatile Org	anic Comp	ounds i	n Soil	
Sample Comment	s:			· y						
9-aliquo	<i>t</i> ,									

US EPA Region VII Kansas City, KS

ASR Number:	1506 Sample Nu	mber: 4	QC Code:		Matrix:	Soil	Tag II	D: 1506-
Activity Number: Activity Desc:	ERN15 Sentinel Wood Treatin		ty Leader: No ent sampling	ld, Eric	. ,			
Location:	Ava		State: Mis	souri		Туре	: Superfu	ınd
Superfund Name:	Sentinel Wood Treatin	g Co. Inc.				Site ID	: 07YD	Site OU:
Location Desc:	Cell 24	5						
		Extern	nal Sample Nu	mber:				<u> </u>
Expected Conc:	Circle One: Low Me	dium High				Da	te	Time (24 Hr)
Latitude:			Sample Colle	ction:	Star	t 4/29	<u>/02</u>	14:55
Longitude:					En	d/	/	:
Laboratory Analys	ses:							
Container	Preservative	į	Holding Time	Anal	ysis			•
1 - 8 oz glass	4 Deg C		14 Days	Semi-	Volatile (Organic Con	npounds ir	Soil
1 - 8 oz glass	4 Deg C		365 Days	PCDD	/PCDF ir	n Soil by GC	/HRMS	•
Sample Comment	s:			·				
9-aliquot,					,			

Sample collected by: Pritchard / Deal

Creek sediment sample

US EPA Region VII Kansas City, KS

ASR Number:	1506	Sam	ole Number:	5	QC Code	:	Matrix: So	oil	Tag ID	: 1506-5- _.
Activity Number:	ERN15			Activi	ty Leader: N	old, Eric	-			
Activity Desc:		Wood	Treating Co.	sedim	ent sampling	•				
Location:	Ava				State: M	issouri		Type: S	Superfun	d
Superfund Name:	Sentinel	Wood .	Treating Co.	Inc.				Site ID:	D7YD	Site OU:
Location Desc:	Ce	Ш	242							
				Exter	nal Sample N	umber:	 	· · · · · · · · · · · · · · · · · · ·		
Expected Conc:	Circle O	ne: Lo	Medium	High				Date	•	Time (24 Hr)
Latitude:					Sample Coll	ection:	Start :	4 /29 /0	2 1	5:10
Longitude:			_				End			:
Laboratory Analys	ses:						•			
Container		Preser	vative		Holding Time	Anal	lysis			
1 - 8 oz glass		4 Deg	С		14 Days	Semi-	-Volatile Org	anic Compo	ounds in	Soil
1 - 8 oz glass		4 Deg	С		365 Days	PCDE	D/PCDF in S	oil by GC/H	RMS	
Sample Comment	s:	, у			·					
9-aliquet										
00.4	1 .		_							

Sample collected by: Pritchard / Dealy

US EPA Region VII Kansas City, KS

ASR Number:	1506	Sample Number	: 6	QC Code	:	Matrix:	Soil	Tag	ID:	1506-6
Activity Number:	ERN15		Activ	rity Leader: N	lold, Eric					
Activity Desc:	Sentine	Wood Treating Co.	sedin	nent sampling						
Location:	Ava	,		State: N	lissouri		Тур	e: Superi	fund	
Superfund Name:	Sentinel	Wood Treating Co.	inc.				Site II	o: 07YD	Site	OU:
Location Desc:	_Ce	11 239								
	•		Exter	rnal Sample N	lumber:					
Expected Conc:	Circle O	ne: Low Medium	High				Da	ate	Time	⊋ (24 Hr)
Latitude:	—			Sample Col	lection:	Sta	rt 4/29	102	15:	25
Longitude:		· ·			·	En	d/	_/	:_	
Laboratory Analys	ses:				_					
Container		Preservative		Holding Time	e Anal	ysis		•		
1 - 8 oz glass		4 Deg C		365 Days	PCDD	PCDF i	n Soil by G	C/HRMS		
1 - 8 oz glass		4 Deg C		14 Days	Semi-	Volatile (Organic Co	mpounds	in Soil	
Sample Comment	s:				·		<u> </u>			
9-aliano Creek se	f,									
creek se	dimen	T Sample								

Sample collected by: Pritchard (Dealy

US EPA Region VII Kansas City, KS

ASR Number:	1506	Sample Number:	7	QC Cod	e:	Matrix:	Soil	Tag	ID:	1506-7
Activity Number:	ERN15		Activi	ty Leader:	Nold, Eric		•			
Activity Desc:	Sentinel	Wood Treating Co.	sedime	ent sampling						
Location:	Ava			State:	Missouri [*]		Туре	: Superf	und	
Superfund Name:	Sentinel	Wood Treating Co.	Inc.			•	Site ID	: 07YD	Sit	e OU:
Location Desc:	Cel	1 236								
			Extern	nal Sample	Number:	:				
Expected Conc:	Circle Or	ne Low Medium	High				Da	te	Tim	e (24 Hr)
Latitude:				Sample Co	llection:	Star	+4/29	102	1 5 :	3 <i>5</i>
Longitude:						End	d/	/	;	
Laboratory Analys	ses:									
Container		Preservative	ł	Holding Tim	ie Anal	ysis				
1 - 8 oz glass		4 Deg C		365, Day	s PCDE)/PCDF in	Soil by GC	C/HRMS		
1 - 8 oz glass		4 Deg C		14 Day	s Semi-	Volatile C	Organic Con	npounds	in Soil	İ
Sample Comment	s:			·			у			
9-21: 1		. •								

Creek sediment sample

US EPA Region VII Kansas City, KS

ASR Number:	1506	Sample Number:	8	QC Code):	Matrix: Soil	Tag	ID:	1506-8
Activity Number:	ERN15		Activi	ty Leader: N	Vold, Eric				
Activity Desc:	Sentinel V	Vood Treating Co.	sedime	ent sampling					
Location:	Ava			State: N	/lissouri	Type:	Supe	fund	
Superfund Name:	Sentinel V	Vood Treating Co.	Inc.			Site ID:	07YD	Site	e OU:
Location Desc:	Cel	1 233							
			Exterr	nal Sample N	lumber:				
Expected Conc:	Circle One	e: Low Medium	High			Date	•	Tim	e (24 Hr)
Latitude:				Sample Co	lection:	Start 4 / 29 / 9	<u>02</u>	15:	45
Longitude:		<u> </u>				End//		:-	
Laboratory Analys	ses:								
Container	F	Preservative	1	Holding Time	e Anal	ysis			
1 - 8 oz glass	4	Deg C		365 Days	PCDD	PCDF in Soil by GC/	HRMS		
1 - 8 oz glass	4	Deg C		14 Days	Semi-	Volatile Organic Comp	oounds	in Soil	
Sample Comment	s:	у .		· ,					
9-aliqu	s+			,					

Sample collected by: Pritchard / Dealy

Creek Sediment Sample

US EPA Region VII Kansas City, KS

ASR Number:	1506	Sample Number:	9	QC Code	e:	Matrix:	Soil	Tag	ID: 1500
Activity Number:	ERN15		Activit	y Leader: !	Vold, Eric				
Activity Desc:	Sentinel W	ood Treating Co.	sedime	nt sampling					
Location:	Ava			State: N	Missouri		Type:	Superf	und
Superfund Name:	Sentinel Wo	ood Treating Co.	Inc.				Site ID:	07YD	Site OU:
Location Desc:	Cell	230							
			Extern	al Sample I	Number:				
Expected Conc:	Circle One:	Low Medium	High				Date	•	Time (24 H
Latitude:				Sample Co	llection:	Star	t 4 /29/	02	15:55
Longitude:						End	i//_	 .	:
Laboratory Analys	ses:			·- ·				 -	
Container	Pr	eservative	Н	olding Tim	e Anal	ysis			
1 - 8 oz glass	4 [Deg C		365 Days	PCDD	P/PCDF in	Soil by GC/	HRMS	
1 - 8 oz glass	4 [Deg C		14 Days	s Semi-	Volatile C	organic Com	oounds i	in Soil

9-aliquet, Creek Sediment sound

US EPA Region VII Kansas City, KS

ASR Number:	1506	Sample Number:	10	QC Cod	de:	Matrix: S	oil 	Tag	ID:	1506-10
Activity Number:	ERN15		Activ	ity Leader:	Nold, Eric					
Activity Desc:	Sentinel V	Vood Treating Co.	sedim	ent sampling	9					
Location:	Ava			State:	Missouri		Type:	Superf	und	
Superfund Name:	Sentinel V	Vood Treating Co.	Inc.				Site ID:	07YD	Sit	te OU:
Location Desc:	_Ce1	1 227							·	
			Exter	nal Sample	Number:		·	·		
Expected Conc:	Circle One	e: Low Medium	High				Date)	Tin	ne (24 Hr)
Latitude:				Sample C	ollection:	Start	4/29/	<u>0 9</u>	16:	05
Longitude:						End			;	
Laboratory Analys	ses:									
Container	P	reservative		Holding Tin	ne Anal	ysis				
1 - 8 oz glass	. 4	Deg C		365 Day	s PCDD	/PCDF in S	Soil by GC/I	HRMS		
1 - 8 oz glass	4	Deg C		14 Day	/s Semi-	Volatile Orç	ganic Comp	oounds i	in Soi	l
Sample Comment	s:						, ,	·		· · · · · · · · · · · · · · · · · · ·
9-aliquo Creek S	+1				÷					
Creek S	edimen	+ Sample								

US EPA Region VII Kansas City, KS

ASR Number:	1506	Sample Number:	11	QC Code:	_	Matrix: Soil	Tag	ID:	1506-11
Activity Number:				ity Leader: No	ld, Eric				
•		ood Treating Co.	sedim						
Location:				State: Mis	ssouri	Type:	Superf	fund	
Superfund Name:	Sentinel W	ood Treating Co.	Inc.			Site ID:	07YD	Si	te OU:
Location Desc:	Cell	224							
			Exter	nal Sample Nu	mber:				
Expected Conc:	Circle One:	Low Medium	High			Date	е	Tin	ne (24 Hr)
				Sample Colle	ction:	Start 4 / 29/	02	16	25
Longitude:						End//			·
Laboratory Analys	es:				·-	****		•	
Container	Pr	eservative		Holding Time	Anal	ysis			•
1 - 8 oz glass	4	Deg C		365 Days	PCDD	D/PCDF in Soil by GC/	HRMS		
1 - 8 oz glass	4	Deg C		14 Days	Semi-	Volatile Organic Com	pounds	in Soi	d.

Creek Sediment Sample

US EPA Region VII Kansas City, KS

ASR Number:	1506 Sample Number	: 12	QC Code	<u> </u>	Matrix: Soil	Tag ID): 1506-12
Activity Number:	ERN15	Activit	y Leader: N	old, Eric			
Activity Desc:	Sentinel Wood Treating Co.	sedime	nt sampling				
Location:	Ava		State: M	issouri	Type:	Superfu	nd
Superfund Name:	Sentinel Wood Treating Co.	inc.			Site ID:	07YD	Site OU:
Location Desc:	Cell 221						··
		Extern	al Sample N	umber:			-
Expected Conc:	Circle One: Low Medium	High			Date	•	Time (24 Hr)
Latitude:			Sample Coll	ection:	Start 4/29/	<u>o2</u> 1	6:50
Longitude:					End//_		:
Laboratory Analys	ses:						
Container	Preservative	H	lolding Time	Anal	ysis		
1 - 8 oz glass	4 Deg C		365 Days	PCDD	PCDF in Soil by GC/l	HRMS	
1 - 8 oz glass	4 Deg C		14 Days	Semi-	Volatile Organic Comp	ounds in	Soil
Sample Comment	s:						
9-alique	.+						

Creek Sediment

Sample

US EPA Region VII Kansas City, KS

ASR Number:	1506 S	Sample Number:	: 13	QC Code:	 .	Matrix:	Soil	Tag I	D:	1506-13-
Activity Number:		and Transfer Co		ity Leader: No	d, Eric					
•		ood Treating Co.	seaim							
Location:	Ava			State: Mis	souri		Type	Superfu	und	
Superfund Name:	Sentinel Wo	ood Treating Co.	Inc.				Site ID:	07Y D	Site	∍OU:
Location Desc:	Cell	218								
		•	Exter	nal Sample Nu	mber:		<u>.</u>	·		
Expected Conc:	Circle One:	Low Medium	High				Dat	е	Tim	e (24 Hr)
Latitude:				Sample Colle	ction:	Star	4 4/29/	۵2.	<u>17:</u>	05
Longitude:						En	d//	 .	:	
Laboratory Analys	es:			•			<u> </u>			
Container	Pre	eservative		Holding Time	Anai	ysis	•			
1 - 8 oz glass	4 🕻	Deg C		365 Days	PCDD	PCDF in	n Soil by GC	/HRMS		
1 - 8 oz glass	4 5	Deg C		14 Days	Semi-	Volatile (Organic Com	pounds i	n Soil	
Sample Comment	s:					У	,			

9-aliquot,

Creek sediment sample

Sample collected by: Pritchard / Dealy

US EPA Region VII Kansas City, KS

ASR Number:	1506 S	ample Number:	14	QC Code:	_	Matrix: Soil	•	Tag ID:	1506-14
Activity Number:	ERN15		Activ	ity Leader: No	ld, Eric	•			
Activity Desc:	Sentinel Wo	od Treating Co.	sedim	ent sampling					
Location:	Ava			State: Mis	ssouri		Type: Su	perfund	
Superfund Name:	Sentinel Wo	od Treating Co.	Inc.			;	Site ID: 07	YD S	ite OU:
Location Desc:	Cell	315							
			Exter	nal Sample Nu	mber:				
Expected Conc:	Circle One:	Low Medium	High	•			Date	Tir	ne (24 Hr)
Latitude:				Sample Colle	ction:	Start <u>4</u>	129/0	2 17	:15
Longitude:									
Laboratory Analys	ses:						· · · · · · · · · · · · · · · · · · ·		
Container	Pre	servative		Holding Time	Anal	ysis			
1 - 8 oz glass	4 D	eg C		365 Days	PCDD	/PCDF in Soil	by GC/HRI	MS	
1 - 8 oz glass	4 D	eg C		14 Days	Semi-	Vola <u>t</u> ile Organ	ic Compou	nds in So	il
Sample Comment	s:								
9-aliquo	+								

Sample collected by: Pritchard / Dealy

Creek Sediment Sample

US EPA Region VII Kansas City, KS

ASR Number:	1506	Sample Number:	15	QC Code	e:	Matrix: Soil	Tag II): 1506 - 15
Activity Number:	ERN15		Activ	ity Leader: 1	Nold, Eric			 , . <u>-</u>
Activity Desc:	Sentinel	Wood Treating Co.	sedim	ent sampling				
Location:	Ava			State: 1	Missouri	Type:	Superfu	nd
Superfund Name:	Sentinel	Wood Treating Co.	Inc.			Site ID:	07YD	Site OU:
Location Desc:	_Ce	11 915						· · · · · · · · · · · · · · · · · · ·
			Exter	nal Sample I	Number:			
Expected Conc:	Circle Or	ne: Low Medium	High			. Date	9	Time (24 Hr)
Latitude:				Sample Co	llection:	Start 4/29/	<u>oa</u> _	7:25
Longitude:						End//		<u></u> :
Laboratory Analys	ses:		•					
Container		Preservative		Holding Tim	e Anal	ysis		
1 - 8 oz glass		4 Deg C		14 Days	s Semi-	Volatile Organic Com	pounds in	Soil
1 - 8 oz glass		4 Deg C		365 Days	s PCDD	/PCDF in Soil by GC/	HRMS	
Sample Comment	s:						·	
•							•	
9-aliams	_							
	_							
9-aliquot Creek see	d.men	+ Sample						

US EPA Region VII Kansas City, KS

ASR Number:	1506	Sample Number:	16	QC Cod	de:	Matrix:	Soil	Tag I	ID:	1506-16
Activity Number:		Wood Treating Co.		ity Leader: ent samplin						
Location:		V		,	Missouri		Type:	Superf	und	
Superfund Name:	Sentinel	Wood Treating Co.	Inc.				Site ID:	•		e OU:
Location Desc:	Ce	11 209								
			Exter	nal Sample	Number:					
Expected Conc:	Circle Or	ne: Low Medium	High				Date)	Tim	e (24 Hr)
Latitude:				Sample C	ollection:	Star	t 4 /29 /	<u></u>	<u>ن</u>	50
Longitude:						End	d//_	 -	;	
Laboratory Analys	ses:									
Container		Preservative		Holding Tir	me Anal	ysis	•			
1 - 8 oz glass		4 Deg C		365 Day	ys PCDD)/PCDF ir	Soil by GC/	HRMS		
1 - 8 oz glass		4 Deg C		14 Day	ys Semi-	Volatile C	Organic Comp	ounds i	n Soi	l
Sample Comment	s:		,							
9-aliquot					,					

Sample collected by: Pritchard / Dealy

Creek Sediment Sample

US EPA Region VII Kansas City, KS

ASR Number:	1506	Sample Number	16:250	QC Co	de: F	D	Matrix:	Soil	Tag	ID:	16 1506-28-FD
Activity Number:	ERN15		Activit	y Leader:	Nold	, Eric					· · · · · · · · · · · · · · · · · · ·
Activity Desc:	Sentinel	Wood Treating Co.	sedime	nt samplir	ng						
Location:	Ava			State:	Miss	ouri		Тур	e: Superi	fund	
Superfund Name:	Sentinel	Wood Treating Co.	Inc.					Site II	D : 07YD	Si	te OU:
Location Desc:	Field Du	plicate of sample 2	16								
		2,	Extern	al Sample	Num	ber:					
Expected Conc:	Circle Or	ne: Low Medium	High					Da	ate	Tin	ne (24 Hr)
Latitude:				Sample C	Collect	tion:	Star	t 4/29	102	<u>/7</u> :	50
Longitude:							. End	ı/	<u>/</u>	:	·
Laboratory Analys	ses:										
Container		Preservative	Н	lolding Ti	me	Anai	ysis	-			
1 - 8 oz glass		4 Deg C		14 Da	ys S	Semi-	Volatile C	organic Cor	mpounds	in Soi	I
1 - 8 oz glass		4 Deg C		365 Da	ıys l	PCDE)/PCDF in	Soil by G	C/HRMS		
Sample Comment	s:										
Cell 200	i F	ield Duplie	ar								

Creek sediment sample

US EPA Region VII Kansas City, KS

ASR Number:	1506	Sample Number:	: 17	QC Code:	<u> </u>	Matrix: Soil		Tag ID:	1506-17-
Activity Number: Activity Desc:		ood Treating Co.	•	Leader: N	old, Eric				
Location:	Ava			State: M	issouri		Type: S	uperfund	
Superfund Name:	Sentinel W	ood Treating Co.	Inc.		•		Site ID: 0	7YD Si	ite OU:
Location Desc:	Cell	206							
			Externa	l Sample N	umber:				
Expected Conc:	Circle One	: Low Medium	High				Date	- Tir	ne (24 Hr)
Latitude:		-	S	Sample Coll	ection:	Start <u>4</u>	12910	2 18	:05
Longitude:		-				End			<u>:</u>
Laboratory Analys	ses:								
Container	Pı	reservative	Ho	olding Time	Anal	ysis			
1 - 8 oz glass	4	Deg C		365 Days	PCDD	/PCDF in Soil	by GC/HR	RMS	
1 - 8 oz glass	. 4	Deg C		14 Days	Semi-	Volatile Orgar	ic Compou	unds in So	il .

9-aliquet Creek sedment sample

Sample collected by: Pritchard / Dealy

US EPA Region VII Kansas City, KS

ASR Number:	1506	Sample Number:	18	QC Code:	 -	Matrix:	Soil	Tag I	D: 1506-18
Activity Number: Activity Desc:		Wood Treating Co.		ty Leader: No ent sampling	ld, Eric				
Location:	Ava			State: Mis	souri		Type	: Superf	und
Superfund Name:	Sentinel	Wood Treating Co.	Inc.	•			Site ID:	07YD	Site OU:
Location Desc:	Cel	1 203							
			Exteri	nal Sample Nu	mber:				
Expected Conc:	Circle Or	e: Low Medium	High				Dat	e	Time (24 Hr)
Latitude:				Sample Colle	ction:	Star	t 4 / 29/	<u>၀</u>	18:20
Longitude:						En	d//		:
Laboratory Analys	ses:								
Container		Preservative		Holding Time	Anal	ysis			
1 - 8 oz glass		4 Deg C		365 Days	PCDD	/PCDF i	n Soil by GC	/HRMS	
1 - 8 oz glass		4 Deg C	-	14. Days	Semi-	Volatile (Organic Com	pounds i	n Soil
Sample Comment	s:					у.			
,		•							
9- 91.945	L								

Sample collected by: Pritchard / Dealy

Creek Sediment Sample

US EPA Region VII Kansas City, KS

ASR Number:	1506 S	Sample Number:	19	QC Code	:	Matrix: Soil	Tag	ID:	1506-19
Activity Number:	ERN15		Activity	Leader: N	old, Eric				
Activity Desc:	Sentinel Wo	ood Treating Co.	sediment	sampling					
Location:	Ava			State: M	issouri	Ty	pe: Supe	rfund	
Superfund Name:	Sentinel Wo	ood Treating Co.	Inc.			Site	ID : 07YD	Si	te OU:
Location Desc:	Cell	200							
		,	External	Sample N	umber:				
Expected Conc:	Circle One:	Low Medium	High				ate	Tin	ne (24 Hr)
Latitude:		· 	S	ample Coll	ection:	Start 4/26	1/02	18	35
Longitude:		· ·				End/			:
Laboratory Analys	ses:								
Container	Pre	eservative	Но	lding Time	Anal	ysis			
1 - 8 oz glass	4 0	eg C		365 Days	PCDE	PCDF in Soil by C	C/HRMS		
1 - 8 oz glass	. 40	eg C		14 Days	Semi-	Volatile Organic Co	ompounds	in So	il
Sample Comment	s:								
91									

Sample collected by: Pritchard / Dealy

Creek sediment

US EPA Region VII Kansas City, KS

ASR Number:	1506 Sample Nu	mber: 20 	QC Code:	Matri	x: Soil	Tag ID:	1506-20
Activity Number:			ty Leader: Nol	d, Eric			
Activity Desc:	Sentinel Wood Treating	g Co. sedime	ent sampling				
Location:	Ava		State: Mis	souri	Type:	Superfund	l
Superfund Name:	Sentinel Wood Treatin	g Co. Inc.			Site ID:	07YD :	Site OU:
Location Desc:	Background	Northwe	- 02 CI	reek ,	of former	Lago.	<u> </u>
	-	Extern	nal Sample Nui	nber:		<u> </u>	
Expected Conc:	Circle One: Low Me	dium High			Date	e T	ime (24 Hr)
Latitude:			Sample Collection	ction: s	tart <u>4/30/</u>	<u>es 8</u>	:45
Longitude:				E	End//		_:
Laboratory Analys	ses:				· · · · · · · · · · · · · · · · · · ·		
Container	Preservative	i	Holding Time	Analysis		•	
1 - 8 oz glass	4 Deg C		14 Days	Semi-Volatil	e Organic Com	pounds in S	ioil
1 - 8 oz glass	4 Deg C	·	365 Days	PCDD/PCDF	in Soil by GC/	HRMS	
Sample Comment	s:						······································
9. Kliquot			(Sample	location	•	
Creek Sedi	ment scripte.		*-	former	—		
		C	eck !	الم	Blan	>	

Sample collected by: Pritcherd / Dealy

US EPA Region VII Kansas City, KS

ASR Number:	1506 Sample Nun	iber: 21	QC Code:	Matrix: Soil	Tag ID:	1506-21
Activity Number:		-	y Leader: Nold, E	iric		
Activity Desc:	Sentinel Wood Treating	j Co. sedimei	nt sampling			
Location:	Ava	9	State: Missou	ri T	ype: Superfund	
Superfund Name:	Sentinel Wood Treating	, Co. Inc.		Sit	e ID: 07YD S	ite OU:
Location Desc:	Backgrond -	Nothe	art un co	eck of f.	orner La	رجدي
,	-	Extern	al Sample Numb	er:		
Expected Conc:	Circle One: Low Med	ium High			Date Tir	ne (24 Hr)
Latitude:			Sample Collection	n: Start 4/3	30/02 9	<u>: 05</u>
Longitude:	·			End/_		:
Laboratory Analys	ses:					
Container	Preservative	. н	olding Time A	nalysis		
1 - 8 oz glass	4 Deg C		365 Days PC	DD/PCDF in Soil.by	GC/HRMS	
1 - 8 oz glass	4. Deg C		14 Days Se	mi-Volatile Organic	Compounds in Sc	il
Sample Comment	s:			, , , , , , , , , , , , , , , , , , , ,		~ Sc~
0	•		(•	-X L
4-alique+			` ~	icek	,'-	W
	man + 5 comple		1 / 0	•	, '	-
reek sedu	ment sample		ı		•	
				•		
	•		' -		1	
	•		:	i omec	(
			; - ; £	irmer	1	
				irmer Lagan		
				irmer Lagun		
				irmer Lagan		
				Lagun		
		e de la companya de l		Lagun		
	or and a second			Lagun		

Sample collected by: Pritchad / Dealy

United States Environmental Protection Agency

Region 7 Laboratory 25 Funston Road Kansas City, KS 66115

Date: 5/21/2002

Subject: Transmittal of Sample Analysis Results for ASR #: 1535

Activity Number: ERN16

Activity Description: Sentinel Wood Treating Co.-Res. Garden sampling

From: Michael Thomas, Associate Laboratory Director

Regional Laboratory, Environmental Services Division

To: Eric Nold SUPR/EFLR

This is the sample analysis results transmittal for the above-referenced Analytical Services Request (ASR). The data contained in this transmittal have been approved by the Regional Laboratory. This transmittal contains, all of the sample analysis results for this ASR. The Regional Laboratory should be notified within 14 days if any changes are needed to the contents of this report. If you have any questions, comments or data changes, please contact the Laboratory Customer Service Department at 913-551-5295.

cc: Analytical Data File

ASR Number: 1535 Summary of Activity Information

5/21/2002

Activity Leader: Nold, Eric Org: SUPR/EFLR Phone: (913) 551-7488

Activity Number: ERN16

Activity Desc: Sentinel Wood Treating Co.-Res. Garden sampling

Location: Ava State: Missouri Type: Superfund/Oil

Superfund Name: Sentinel Wood Treating Co. Inc.

Site ID: 07YD

Site OU:

Purpose: Site characterization

Explanation of Codes, Units and Qualifiers used on this report.

Sample QC Codes: QC Codes identify the type of Units: Specific units in which results are reported.

sample for quality control purposes.

ug/kg = Micrograms per Kilogram

= Field Sample
FB = Field Blank

Data Qualifiers: Specific codes used in conjunction with data values to provide additional information on

the quality of reported results, or used to explain the absence of a specific value.

(Blank) = Values have been reviewed and found acceptable for use.

U = Not detected at or above the reportable level shown.

ASR Number: 1535

Sample Information Summary

Activity Desc: Sentinel Wood Treating Co.-Res. Garden sampling

Sample QC Number Code	IVIATRIY	Location	External Sample No.	Start Date	Start Time	End Date	End Time	Receipt Date
1	Soil	Morpeth property/ (0-6")		05/07/2002	14:00			05/08/2002
2	Soil	Morpeth garden/#1 (18-24")		05/07/2002	14:20			05/08/2002
3	Soil	Morpeth garden/#2 (0-6")		05/07/2002	13:20			05/08/2002
4	Soil	Morpeth garden/#2 (18-24")		05/07/2002	13:40			05/08/2002
5	Soil	Morpeth garden/#3 (0-6")		05/07/2002	14:40			05/08/2002
6	Soil	Morpeth garden/#3 (18-24")		05/07/2002	15:30			05/08/2002
7	Soil	Morpeth garden/#4 (0-6")		05/07/2002	15:20			05/08/2002
8	Soil	Morpeth garden/#4 (18-24")		05/07/2002	15:15			05/08/2002
9	Soil	Morpeth garden/#5 (0-6")		05/07/2002	16:10			05/08/2002
10	Soil	Morpeth garden/#5 (18-24")		05/07/2002	15:50			05/08/2002
11	Soil	Morpeth garden/#6 (0-6")		05/07/2002	16:35			05/08/2002
12	Soil	Morpeth garden/#6 (18-24")		05/07/2002	16:25			05/08/2002
13-FB	Soil	Routine soil VOA Trip Blank sample		05/07/2002	13:20			05/08/2002

Activity Number: ERN16 ASR Number: 1535 RLAB Approved Analysis Comments

Activity Desc: Sentinel Wood Treating Co.-Res. Garden sampling 5/21/2002

Analysis Comments About Results For This Analysis

Semi-Volatile Organic Compounds in Soil

Dilutions were necessary because of high levels of analyte compounds in sample -9. This resulted in elevated (6 times) reporting limits in sample -9.

ASR Number: 1535

Activity Desc: Sentinel Wood Treating Co.-Res. Garden sampling

Analysis / Analyte	Units	1	2	3	4
Semi-Volatile Organic Compounds in	n Soil				
Acenaphthene	ug/kg	420 U	400° U	420 Ù	370 l
Acenaphthylene	ug/kg	420 U	400 U	420 U	370 (
Acetophenone	ug/kg	420 U	400 U	420 U	370 (
Anthracene	ug/kg	420 U	400 U	420 U	370 l
Atrazine	ug/kg	420 U	400 U	420 U	370 (
Benzaldehyde	ug/kg	420 U	400 U	420 U	370 (
Benzo(a)anthracene	ug/kg	420 U	400 U	420 U	370
Benzo(a)pyrene	υg/kg	420 U	400 U	420 U	370
Benzo(b)fluoranthene	ug/kg	420 U	400 U	420 U	370
Benzo(g,h,i)perylene	ug/kg	420 U	400 U	420 U	370
Benzo(k)fluoranthene	ug/kg	420 U	400 U	420 U	370
Biphenyl	ug/kg	420 U	400 U	420 U	370
bis(2-Chloroethoxy)methane	ug/kg	420 U	400 U	420 U	370
bis(2-Chloroethyl)ether	ug/kg	420 U	400 U	420 U	370
bis(2-Chloroisopropyl)ether	ug/kg	420 U	400 U	420 U	370
bis(2-Ethylhexyl)phthalate	ug/kg	420 U	400 U	420 U	370
4-Bromophenyl-phenylether	ug/kg	420 U	400 U	420 U	370
Butylbenzylphthalate	ug/kg	420 U	400 U	420 U	370
Caprolactam	ug/kg	420 U	400 U	420 U	370
Carbazole	ug/kg	420 U	400 U	420 U	370
4-Chloro-3-methylphenol	ug/kg	420 U	400 U	420 U	370
4-Chloroaniline	ug/kg	420 U	400 Ü	420 U	370
2-Chloronaphthalene	ug/kg	420 U	400 U	420 U	370
2-Chlorophenoi	ug/kg	420 U	400 U	420 U	370
4-Chlorophenyl-phenylether	ug/kg	420 U	400 U	420 U	370
Chrysene	ug/kg	420 Ú	400 U	420 U	370
Di-n-buty/phthalate	ug/kg	420 U	. 400 U	420 U	370
Di-n-octylphthalate	ug/kg	420 U	400 U	420 U	370
Dibenz(a,h)anthracene	ug/kg	420 U	400 U	420 U	370
Dibenzofuran	ug/kg	420 U	400 U	420 ⊍	370
3,3'-Dichlorobenzidine	ug/kg	420 U	400 U	420 U	370
2,4-Dichlorophenol	ug/kg	420 U	400 U	420 U	370
Diethylphthalate	ug/kg	420 U	400 U	420 U	370
2,4-Dimethylphenol	ug/kg	420 U	400 U	420 U	370
Dimethylphthalate	ug/kg ·	420 U	400 U	420 U	370
4,6-Dinitro-2-methylphenol	ug/kg	1100 U	1000 U	1100 U	940
2,4-Dinitrophenol	ug/kg	1100 U	1000 U	1100 U	940
2,4-Dinitrotoluene	ug/kg	420 U	400 U	420 U	370
2,6-Dinitrotoluene	ug/kg	420 U	400 U	420 U	370
Fluoranthene	ug/kg	420 U	400 U	420 U	370
Fluorene	ug/kg	420 U	400 U	420 U	370
Hexachlorobenzene	ug/kg	420 U	400 U	420 U	370
Hexachlorobutadiene	ug/kg	420 U	400 U	420 U	370
Hexachlorocyclopentadiene	ug/kg	420 U	400 U	420 U	370
Hexachloroethane	ug/kg	′ 420 U	400 U	420 U	370
Indeno(1,2,3-cd)pyrene	ug/kg	420 U	400 U	420 U	370
Isophorone	ug/kg	420 U	400 U	420 U	370
2-Methylnaphthalene	ug/kg	420 U	400 U	420 U	370
2-Methylphenol	ug/kg	420 U	400 U	420 U	370

RLAB Approved Sample Analysis Results

13 U

11 U

5/21/2002

Activity Desc: Sentinel Wood Treating Co.-Res. Garden sampling

Activity Number: ERN16

ASR Number: 1535

4-__ Analysis / Analyte Units 2-__ 1-_ 3-__ 4-Methylphenol ug/kg 420 U 400 U 420 U 370 U Naphthalene ug/kg 420 U 400 U 420 U 370 U 2-Nitroaniline ug/kg 1100 U 1000 U 1100 U 940 U 3-Nitroaniline ug/kg 1100 U 1000 U 1100 U 940 U 4-Nitroaniline ug/kg 1100 U 1000 U 1100 U 940 Ù Nitrobenzene ug/kg 420 U 400 U 420 U 370 U 420 U 2-Nitrophenol ug/kg 400 U 420 U 370 U 1100 U 1000 U 4-Nitrophenol ug/kg 1100 U 940 U N-nitroso-di-n-propylamine ug/kg 420 U 400 U 420 U 370 U N-nitrosodiphenylamine 420 U 400 U 420 U 370 U ug/kg Pentachlorophenol ug/kg 1100 U 1000 U 1100 U 940 U Phenanthrene ug/kg 420 U 400 U 420 U 370 U Phenol 420 U 400 U ug/kg 420 U 370 Ù Pyrene ug/kg 420 U 400 U 420 U 370 U 1100 U 1000 U 2,4,5-Trichlorophenol ug/kg 1100 U 940 U 2,4,6-Trichlorophenol 420 U ug/kg 400 U 420 U 370 U VOCs in Solid Matrices by GC/MS ug/kg 13 U Acetone 12 U 13 U 1111 Benzene 13 U 12 U ug/kg 13 U 11 U 13 U Bromodichloromethane ug/kg 12 U 13 U 11 U **Bromoform** ug/kg 13 U 12 U 13 U 11 U 13 U Bromomethane ug/kg 12 U 13 U 11 U 12 U 2-Butanone 13 U ug/kg 13 U 11 U Carbon Disulfide ug/kg 13 U 12 U 13 U 11 U Carbon Tetrachloride 13 U ug/kg 12 U 13 U 11 U Chlorobenzene ug/kg 13 U 12 U 13 U 11 U Chloroethane 13 U ug/kg 12 U 13 U 11 U Chloroform ug/kg 13 U 12 U 13 U 11 13 U Chloromethane ug/kg 12 U 13 U 11 U 13 U Cyclohexane ug/kg 12 U 13 U 11 U 1,2-Dibromo-3-Chloropropane 13 U 12 U ug/kg 13 U 11 U Dibromochloromethane ug/kg 13 U 12 U 13 U 11 U 1,2-Dibromoethane ug/kg 13 U 11 U 12 U 13 U 1,2-Dichlorobenzene ug/kg 13 U 12 U 11 U 13 U ug/kg 13 U 1,3-Dichlorobenzene 12 U 11 U 13 U 1,4-Dichlorobenzene ug/kg 13 U 12 U 13 U 11 U 13 U Dichlorodifluoromethane ug/kg 12 U 11 U 13 U 1,1-Dichloroethane ug/kg 13 U 12 U 13 U 11 U 13 U 1,2-Dichloroethane ug/kg 12 U 11 U 13 U 1,1-Dichloroethene 13 U ug/kg 12 U 13 U 11 U cis-1,2-Dichloroethene ug/kg 13 U 12 U 13 U 11 U trans-1,2-Dichloroethene ug/kg 13 U 12 U 13 U 11 U 1,2-Dichloropropane ug/kg 13 U 12 U 13 U 11 U 13 U cis-1,3-Dichloropropene ug/kg 12 U 13 U 11 U trans-1,3-Dichloropropene ug/kg 13 U 12 U 13 U 11 U Ethyl Benzene ug/kg 13 U 12 U 13 U 11 U 2-Hexanone 13 U ug/kg 12 U 13 U 11 U Isopropylbenzene ug/kg 13 U 12 U 13 U 11 U ug/kg 13 U Methyl Acetate 12 U 13 U 11 U Methyl tert-butyl ether ug/kg 13 U 12 U

RLAB Approved Sample Analysis Results

Activity Desc: Sentinel Wood Treating Co.-Res. Garden sampling

Activity Number: ERN16

ASR Number: 1535

Analysis / Analyte	Units	1	2	3	4	
Methylcyclohexane	ug/kg	13 U	12 U	13 U	11 U	
Methylene Chloride	ug/kg	13 U	12 U	13 U	11 U	
4-Methyl-2-Pentanone	ug/kg	13 U	12 U	13 U	11 U	
Styrene	ug/kg	13 U	12 U	. 13 U	11 U	
1,1,2,2-Tetrachloroethane	ug/kg	13 U	12 U	13 U	11 U	
Tetrachloroethene	ug/kg	13 U	12 U	13 U	11 U	
Toluene	ug/kg	13 U	12 U	13 U	11 U	
1,2,4-Trichlorobenzene	ug/kg	13 U	12 U	13, U '	11 U	
1,1,1-Trichloroethane	ug/kg	13 U	12 U	13 U	11 U	
1,1,2-Trichloroethane	ug/kg	13 U	12 U	13 U	11 6	
Trichloroethene	ug/kg	13 U	12 U	13 U	11 L	
Trichlorofluoromethane	ug/kg	13 U	12 U	13 U	11 L	
1,1,2-Trichlorotrifluoroethane	ug/kg	13 U	12 U	13 U	11 L	
Vinyl Chloride	ug/kg	13 U	12 U	13 U	11 L	
total Xylene	ug/kg	13 U	12 U	13 U	11 t	

ASR Number: 1535

Activity Desc: Sentinel Wood Treating Co.-Res. Garden sampling

Analysis / Analyte	Units	5	6	7	8
Semi-Volatile Organic Compounds	in Soil			···	
Acenaphthene	ug/kg	400 U	370 U	420 U	390
Acenaphthylene	ug/kg	400 U	370 U	420 U	390
Acetophenone	ug/kg	400 U	370 U	420 U	390
Anthracene	ug/kg	400 U	370 U	420 U	390
Atrazine	ug/kg	400 U	370 U	420 U	390
Benzaldehyde	ug/kg	400 U	370 U	420 U	390
Benzo(a)anthracene	ug/kg	400 U	370 U	420 U	390
Benzo(a)pyrene	ug/kg	400 U	370 U	420 U	390
Benzo(b)fluoranthene	ug/kg	400 U	370 U	420 U	390
Benzo(g,h,i)perylene	ug/kg	400 U	370 U	420 U	. 390
Benzo(k)fluoranthene	ug/kg	400 U	370 U	420 U	390
Biphenyl	ug/kg	400 U	370 U	420 U	390
bis(2-Chloroethoxy)methane	ug/kg	400 U	370 U	420 U	390
bis(2-Chloroethyl)ether	ug/kg	400 U	370 U	420 U	390
bis(2-Chloroisopropyl)ether	ug/kg	400 U	370 U	420 U	390
bis(2-Ethylhexyl)phthalate	ug/kg	400 U	370 U	420 U	390
4-Bromophenyl-phenylether	ug/kg	400 U	370 U	420 U	390
Butylbenzylphthalate	ug/kg	400 U	370 U	• 420 U	390
Caprolactam	ug/kg	400 U	370 U	420 U	390
Carbazole	ug/kg	400 U	370 U	420 U	390
4-Chloro-3-methylphenol	ug/kg	400 U	370 U	420 U	390
4-Chloroaniline	ug/kg	. 400 U	370 U	420 U	390
2-Chloronaphthalene	ug/kg	400 U	370 U	420 U	390
2-Chlorophenol	ug/kg	400 U	370 U	420 U	390
4-Chlorophenyl-phenylether	ug/kg	400 U	370 U	420 U	390
Chrysene	ug/kg	400 U	370 U	420 U	390
Di-n-butylphthalate	ug/kg	400 U	370 U	420 U	390
Di-n-octylphthalate	ug/kg	400 U	370 U	420 U	390
Dibenz(a,h)anthracene	ug/kg	400 U	370 U	420 U	390
Dibenzofuran	ug/kg	400 U	370 U	420 U	390
3,3'-Dichlorobenzidine	ug/kg	400 U	370 U	420 U	390
2,4-Dichlorophenol	ug/kg	400 U	370 U	420 U	390
Diethylphthalate	ug/kg	400 U	370 U	420 U	390
2,4-Dimethylphenol	ug/kg	400 U	370 U	420 U	390
Dimethylphthalate	ug/kg	400 U	370 U	420 U	390
4,6-Dinitro-2-methylphenol	ug/kg	1000 U	930 U	1100 U	990
2,4-Dinitrophenol	ug/kg	1000 U	930 U	1100 U	990
2,4-Dinitrotoluene	ug/kg	400 U	370 U	420 U	390
2,6-Dinitrotoluene	ug/kg	400 U	370 U	420 U	390
Fluoranthene	ug/kg	400 U	370 U	420 U	390
Fluorene	ug/kg	400 U	370 U	420 U	390
Hexachlorobenzene	ug/kg	400 U	370 U	420 U	390
Hexachlorobutadiene	ug/kg	400 U	370 U	420 U	390
Hexachlorocyclopentadiene	ug/kg	400 U	370 U	420 U	390
Hexachloroethane	ug/kg	400 U	370 U	420 U	390
Indeno(1,2,3-cd)pyrene	ug/kg	400 U	370 U	420 U	390
Isophorone	ug/kg	400 U	370 U	420 U	390
2-Methylnaphthalene	ug/kg	400 U	370 U	420 U	390
2-Methylphenol	ug/kg	. 400 U	370 U	420 U	390

ASR Number: 1535

Activity Desc: Sentinel Wood Treating Co.-Res. Garden sampling

Naphthalene	Analysis / Analyte	Units	5	6	7	8
2-Nitroaniline	4-Methylphenol	ug/kg	400 U	370 U	420 U	390 U
3-hitroaniline	Naphthaiene	ug/kg	400 U	370 U .	420 U	390 U
4-Nitropaniline	2-Nitroaniline	ug/kg	1000 U	930 U	1100 U	990 U
Nitrobenzene	3-Nitroaniline	ug/kg	1000 U	. 930 U	1100 U	990 U
2-Nitrophenol	4-Nitroaniline	ug/kg	1000 U	930 U	1100 U	990 U
4-Nitrophenol ug/kg 400 U 370 U 1100 U 930 U 1100 U 930 U N-Introso-din-propylamine ug/kg 400 U 370 U 420 U 390 U 930 U 100 U 100 U 930 U 100 U	Nitrobenzene	ug/kg	400 U	370 U	420 U	390 U
N-nitroso-din-propylamine ug/kg 400 U 370 U 420 U 390 U N-nitrosodiphenylamine ug/kg 400 U 370 U 420 U 390 U 390 U Phenathericophenol ug/kg 400 U 370 U 420 U 390 U Phenathericophenol ug/kg 400 U 370 U 420 U 390 U Phenathericophenol ug/kg 400 U 370 U 420 U 390 U Phenal Ug/kg 400 U 370 U 420 U 390 U 2,4,6-Trichlorophenol ug/kg 1000 U 930 U 1100 U 990 U 390 U 420 U 430 U 420 U 4	2-Nitrophenol	ug/kg ·	400 U	370 U	420 U	390 Ü
N-nitrosodiphenylamine ug/kg 400 U 370 U 420 U 390 U 991 U 991 U 991 U 992 U 1100 U 993 U 1100 U 393 U 393 U 1100 U 393 U 100 U 393 U 1100 U 393 U 100 U 2,4,6-Trichlorophenol ug/kg 400 U 370 U 420 U 390 U VOCs in Solid Matrices by GC/MS ***Acstone*** Ug/kg 12 U 11 U 13 U 12 U 12	4-Nitrophenol	ug/kg	1000 U	930 U ¹	1100 U	990 U
N-introsodiphenylamine ug/kg 1000 U 370 U 420 U 390 U Pertachlorophenol ug/kg 1000 U 930 U 1100 U 990	N-nitroso-di-n-propylamine	ug/kg	400 U	370 U	420 U	390 U
Phenoal		ug/kg	400 U	370 U	420 U	390 U
Phanol ug/kg 400 U 370 U 420 U 390 U Pyrene ug/kg 400 U 370 U 420 U 390 U 2,4,5-Trichlorophenol ug/kg 1000 U 370 U 420 U 390 U 2,4,5-Trichlorophenol ug/kg 400 U 370 U 420 U 390 U VOCs in Solid Matrices by GC/MS V 400 U 370 U 420 U 390 U Acatone ug/kg 12 U 11 U 13 U 12 U Berzene ug/kg 12 U 11 U 13 U 12 U Bromodichloromethane ug/kg 12 U 11 U 13 U 12 U Bromoform ug/kg 12 U 11 U 13 U 12 U Bromofichloromethane ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U	Pentachlorophenol	ug/kg	1000 U	930 U	1100 U	990 U
Pyrene ug/kg 400 U 370 U 420 U 390 U 20 390 U 100 U 390 U 1100 U 390 U 100 U 390 U 300 U 390 U 300 U 390 U 300 U 390 U	• •			370 U	420 U	390 U
Pyrene	Phenol	ug/kg	400 U	370 U	420 U	390 U
Z,4,6-Trichlorophenol ug/kg 400 U 370 U 420 U 390 U VOCs in Solid Matrices by GC/MS Acetone ug/kg 12 U 11 U 13 U 12 U Benzane ug/kg 12 U 11 U 13 U 12 U Bromodichloromethane ug/kg 12 U 11 U 13 U 12 U Bromomethane ug/kg 12 U 11 U 13 U 12 U Bromomethane ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U 11 U 13 U 12 U Carbon Disuffide ug/kg 12 U 11 U 13 U 12 U Carbon Tetrachloride ug/kg 12 U 11 U 13 U 12 U Chloroethane ug/kg 12 U 11 U 13 U 12 U Chloroethane	Pyrene		400 U	370 U	420 U	390 U
Acetone	2,4,5-Trichlorophenol	ug/kg	1000 U	930 U	1100 U	990 U
Acetone	2,4,6-Trichlorophenol	ug/kg	400 U	370 U	. 420 U	390 U
Benzene	VOCs in Solid Matrices by GC/MS					
Bromoform ug/kg 12 U 11 U 13 U 12 U 12 U 12 U 13 U 12 U 15	Acetone	ug/kg	12 U	11 U	13 U	12 U
Bromoform ug/kg 12 U 11 U 13 U 12 U 12 U 15 U 15 U 15 U 16 U 16 U 17 U 16 U 17 U 17 U 17 U 17	Benzene	ug/kg	12 U	11 U	13 U	12 U
Bromomethane ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U 11 U 13 U 12 U 2-Butanone ug/kg 12 U 11 U 13 U 12 U 12 U 13 U 12 U 13 U 12 U 14 U 15	Bromodichloromethane	ug/kg	12 U	11 U	13 U	12 U
2-Butanone ug/kg 12 U 11 U 13 U 12 U Carbon Disulfide ug/kg 12 U 11 U 13 U 12 U Carbon Tetrachloride ug/kg 12 U 11 U 13 U 12 U Chlorobenzene ug/kg 12 U 11 U 13 U 12 U Chlorobenzene ug/kg 12 U 11 U 13 U 12 U Chloroform ug/kg 12 U 11 U 13 U 12 U Chloroform ug/kg 12 U 11 U 13 U 12 U Chloroform ug/kg 12 U 11 U 13 U 12 U Chloromethane ug/kg 12 U 11 U 13 U 12 U 12 U 11 U 13 U 12 U 12	Bromoform	ug/kg	12 U	11 U	13 U	12 U
2-Butenone ug/kg 12 U 11 U 13 U 12 C Carbon Disulfide ug/kg 12 U 11 U 13 U 12 C Carbon Disulfide ug/kg 12 U 11 U 13 U 12 C Carbon Tetrachloride ug/kg 12 U 11 U 13 U 12 C C Chlorobenzene ug/kg 12 U 11 U 13 U 12 C C Chlorobenzene ug/kg 12 U 11 U 13 U 12 C C C C C C C C C C C C C C C C C C	Bromomethane	ug/kg	12 U	11 U	13 U	12 U
Carbon Tetrachloride ug/kg 12 U 11 U 13 U 12 U Chlorobenzene ug/kg 12 U 11 U 13 U 12 U Chloroethane ug/kg 12 U 11 U 13 U 12 U Chloroform ug/kg 12 U 11 U 13 U 12 U Chloromethane ug/kg 12 U 11 U 13 U 12 U Cyclohexane ug/kg 12 U 11 U 13 U 12 U 1,2-Dibromo-3-Chloropropane ug/kg 12 U 11 U 13 U 12 U Dibromochloromethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dibromoethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,3-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,1-Dichlorodethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg	2-Butanone	ug/kg	12 U	11 U	13 U	12 U
Chlorobenzene ug/kg 12 U 11 U 13 U 12 U Chloroform ug/kg 12 U 11 U 13 U 12 U Chloroform ug/kg 12 U 11 U 13 U 12 U Chloroform ug/kg 12 U 11 U 13 U 12 U Chloromethane ug/kg 12 U 11 U 13 U 12 U Chloromethane ug/kg 12 U 11 U 13 U 12 U 12 U 11 U 13 U 12 U 12	Carbon Disulfide	ug/kg	12 U	11 U	13 U	12 U
Chloroethane ug/kg 12 U 11 U 13 U 12 U Chloroform ug/kg 12 U 11 U 13 U 12 U Chloroform ug/kg 12 U 11 U 13 U 12 U Chloromethane ug/kg 12 U 11 U 13 U 12 U 12 U 11 U 13 U 12 U 12	Carbon Tetrachloride	ug/kg	12 U	11 U	13 U	12 U
Chloroform ug/kg 12 U 11 U 13 U 12 U Chloromethane ug/kg 12 U 11 U 13 U 12 U Cyclohexane ug/kg 12 U 11 U 13 U 12 U 1,2-Dibromo-3-Chloropropane ug/kg 12 U 11 U 13 U 12 U 1,2-Dibromo-3-Chloropropane ug/kg 12 U 11 U 13 U 12 U 1,2-Dibromoethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dibromoethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,3-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 14 U 15	Chlorobenzene	ug/kg	12 U	11 U	13 U	12 U
Chloromethane ug/kg 12 U 11 U 13 U 12 U 12 U 13 U 12 U 14 U 15	Chloroethane	ug/kg	12 U	11 U	13 U	12 U
Cyclohexane ug/kg 12 U 11 U 13 U 12 U 1,2-Dibromo-3-Chloropropane ug/kg 12 U 11 U 13 U 12 U Dibromochloromethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dibromoethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,3-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichlorodifluoromethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloroprop	Chloroform	ug/kg	12 U .	11 U	13 U	12 U
1,2-Dibromo-3-Chloropropane ug/kg 12 U 11 U 13 U 12 U Dibromochloromethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dibromoethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,3-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U <td< td=""><td>Chloromethane</td><td>ug/kg</td><td>12 U</td><td>11 U</td><td>13 U</td><td>12 U</td></td<>	Chloromethane	ug/kg	12 U	11 U	13 U	12 U
Dibromochloromethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dibromoethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,3-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U Dichlorodif/luoromethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropane ug/kg 12 U 11 U 13 U 12 U cis-1,3-Dichloroprop	Cyclohexane	ug/kg	12 U	11 U	13 U	12 U
1,2-Dibromoethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,3-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U Dichlorodifluoromethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethene ug/kg 12 U 11 U 13 U 12 U cis-1,2-Dichloroethene ug/kg 12 U 11 U 13 U 12 U trans-1,2-Dichloropropene ug/kg 12 U 11 U 13 U 12 U trans-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U Ethyl Benzene ug/kg 12 U 11 U 13 U 12 U	1,2-Dibromo-3-Chloropropane	ug/kg	12 U	11 U	13 U	12 U
1,2-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,3-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U Dichlorodiffluoromethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U cis-1,2-Dichloroethane ug/kg 12 U 11 U 13 U 12 U trans-1,2-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropane ug/kg 12 U 11 U 13 U 12 U cis-1,3-Dichloropropane ug/kg 12 U 11 U 13 U 12 U <t< td=""><td>Dibromochloromethane</td><td>ug/kg</td><td>12 U</td><td>11 U</td><td>13 U</td><td>12 U</td></t<>	Dibromochloromethane	ug/kg	12 U	11 U	13 U	12 U
1,3-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U 1,4-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U Dichlorodifluoromethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1	1,2-Dibromoethane	ug/kg	12 U	11 U	13 U	12 ປ
1,4-Dichlorobenzene ug/kg 12 U 11 U 13 U 12 U Dichlorodifluoromethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropene ug/kg 12 U 11 U 13 U 12 U 1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U Ethyl Benzene ug/kg 12 U 11 U 13 U 12 U 2-Hexanone ug/kg 12 U 11 U 13 U 12 U Isopropylbenzene<	1,2-Dichlorobenzene	ug/kg	12 U	11 U	13 U	12 U
Dichlorodifluoromethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethene ug/kg 12 U 11 U 13 U 12 U cis-1,2-Dichloroethene ug/kg 12 U 11 U 13 U 12 U trans-1,2-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropane ug/kg 12 U 11 U 13 U 12 U cis-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U trans-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U Ethyl Benzene ug/kg 12 U 11 U 13 U 12 U 2-Hexanone ug/kg 12 U 11 U 13 U 12 U Isopropylbenzene ug/kg 12 U 11 U 13 U 12 U Methyl Acetate ug/kg 12 U 11 U 13 U 12 U	1,3-Dichlorobenzene	ug/kg	12 U	1·1 U	13 U	12 U
1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethane ug/kg 12 U 11 U 13 U 12 U cis-1,2-Dichloroethane ug/kg 12 U 11 U 13 U 12 U trans-1,2-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropane ug/kg 12 U 11 U 13 U 12 U cis-1,3-Dichloropropane ug/kg 12 U 11 U 13 U 12 U trans-1,3-Dichloropropane ug/kg 12 U 11 U 13 U 12 U Ethyl Benzene ug/kg 12 U 11 U 13 U 12 U Ethyl Benzene ug/kg 12 U 11 U 13 U 12 U lsopropylbenzene ug/kg 12 U 11 U 13 U 12 U Methyl Acetate ug/kg 12 U 11 U 13 U 12 U	1,4-Dichlorobenzene	ug/kg	12 U	11 U	13 U .	12 U
1,2-Dichloroethane ug/kg 12 U 11 U 13 U 12 U 1,1-Dichloroethene ug/kg 12 U 11 U 13 U 12 U cis-1,2-Dichloroethene ug/kg 12 U 11 U 13 U 12 U trans-1,2-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropane ug/kg 12 U 11 U 13 U 12 U cis-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U trans-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U Ethyl Benzene ug/kg 12 U 11 U 13 U 12 U 2-Hexanone ug/kg 12 U 11 U 13 U 12 U Isopropylbenzene ug/kg 12 U 11 U 13 U 12 U Methyl Acetate ug/kg 12 U 11 U 13 U 12 U	Dichlorodifluoromethane	ug/kg	12 U	11 U	13 U	12 U
1,1-Dichloroethene ug/kg 12 U 11 U 13 U 12 U cis-1,2-Dichloroethene ug/kg 12 U 11 U 13 U 12 U trans-1,2-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropane ug/kg 12 U 11 U 13 U 12 U cis-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U trans-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U Ethyl Benzene ug/kg 12 U 11 U 13 U 12 U 2-Hexanone ug/kg 12 U 11 U 13 U 12 U lsopropylbenzene ug/kg 12 U 11 U 13 U 12 U Methyl Acetate ug/kg 12 U 11 U 13 U 12 U	1,1-Dichloroethane	ug/kg	12 U	11 U	13 U	12 U
cis-1,2-Dichloroethene ug/kg 12 U 11 U 13 U 12 U trans-1,2-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropane ug/kg 12 U 11 U 13 U 12 U cis-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U trans-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U Ethyl Benzene ug/kg 12 U 11 U 13 U 12 U 2-Hexanone ug/kg 12 U 11 U 13 U 12 U lsopropylbenzene ug/kg 12 U 11 U 13 U 12 U Methyl Acetate ug/kg 12 U 11 U 13 U 12 U	1,2-Dichloroethane	ug/kg	12 U	11 U	13 U	. 12 U
trans-1,2-Dichloroethene ug/kg 12 U 11 U 13 U 12 U 1,2-Dichloropropane ug/kg 12 U 11 U 13 U 12 U cis-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U trans-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U Ethyl Benzene ug/kg 12 U 11 U 13 U 12 U 2-Hexanone ug/kg 12 U 11 U 13 U 12 U Isopropylbenzene ug/kg 12 U 11 U 13 U 12 U Methyl Acetate ug/kg 12 U 11 U 13 U 12 U	1,1-Dichloroethene	ug/kg	12 U	11 U	13 U	12 U
1,2-Dichloropropane ug/kg 12 U 11 U 13 U 12 U cis-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U trans-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U Ethyl Benzene ug/kg 12 U 11 U 13 U 12 U 2-Hexanone ug/kg 12 U 11 U 13 U 12 U Isopropylbenzene ug/kg 12 U 11 U 13 U 12 U Methyl Acetate ug/kg 12 U 11 U 13 U 12 U	cis-1,2-Dichloroethene	ug/kg	12 U	11 U	13 U	12 U
cis-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U trans-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U Ethyl Benzene ug/kg 12 U 11 U 13 U 12 U 2-Hexanone ug/kg 12 U 11 U 13 U 12 U Isopropylbenzene ug/kg 12 U 11 U 13 U 12 U Methyl Acetate ug/kg 12 U 11 U 13 U 12 U	trans-1,2-Dichloroethene	ug/kg	12 U	11 U	. 13 U	12 U
trans-1,3-Dichloropropene ug/kg 12 U 11 U 13 U 12 U Ethyl Benzene ug/kg 12 U 11 U 13 U 12 U 2-Hexanone ug/kg 12 U 11 U 13 U 12 U Isopropylbenzene ug/kg 12 U 11 U 13 U 12 U Methyl Acetate ug/kg 12 U 11 U 13 U 12 U				11 U		12 U
Ethyl Benzene ug/kg 12 U 11 U 13 U 12 U 2-Hexanone ug/kg 12 U 11 U 13 U 12 U Isopropylbenzene ug/kg 12 U 11 U 13 U 12 U Methyl Acetate ug/kg 12 U 11 U 13 U 12 U	cis-1,3-Dichloropropene	ug/kg	12 U	11 U	13 U	12 U
Ethyl Benzene ug/kg 12 U 11 U 13 U 12 U 2-Hexanone ug/kg 12 U 11 U 13 U 12 U Isopropylbenzene ug/kg 12 U 11 U 13 U 12 U Methyl Acetate ug/kg 12 U 11 U 13 U 12 U	trans-1,3-Dichloropropene			11 U	13 U	. 12 U
2-Hexanone ug/kg 12 U 11 U 13 U 12 U Isopropylbenzene ug/kg 12 U 11 U 13 U 12 U Methyl Acetate ug/kg 12 U 11 U 13 U 12 U	Ethyl Benzene			11 U	•	. 12 U
Isopropylbenzene ug/kg 12 U 11 U 13 U 12 U Methyl Acetate ug/kg 12 U 11 U 13 U 12 U	•		12 U	. 11 U		12 U
Methyl Acetate ug/kg 12 U 11 U 13 U 12 U						12 U
						12 U
					•	12 U

ASR Number: 1535

RLAB Approved Sample Analysis Results

Activity Desc: Sentinel Wood Treating Co.-Res. Garden sampling

Analysis / Analyte	Units	5	6	7	8	
Methylcyclohexane	ug/kg	12 U	11 U	13 U	12 U	
Methylene Chloride	ug/kg	12 U	11 U	13 U	12 U	
4-Methyl-2-Pentanone	ug/kg	12 U	11 U	13 U	12 U	
Styrene	ug/kg	12 U	11 U	13 U	12 U	
1,1,2,2-Tetrachloroethane	ug/kg	12 U	11 U	13 U	12 U	
Tetrachloroethene	ug/kg	12 U	11 U	13 U	12 U	
Toluene	ug/kg	12 U	11 U	13 U	12 U	
1,2,4-Trichlorobenzene	ug/kg	12 U	11 U	13 U	12 U	
1,1,1-Trichloroethane	ug/kg	12 U	11 U	13 U	12 U	
1,1,2-Trichloroethane	ug/kg	12 U	11 U	13 U	12 U	
Trichloroethene	ug/kg	12 U	11 U	13 U	12 U	
Trichlorofluoromethane	ug/kg	12 U	11 U	13 U	12 U	
1,1,2-Trichlorotrifluoroethane	ug/kg	12 U	11 U	13 U	12 U	
Vinyl Chloride	ug/kg	12 U	11 U	13 U	12 U	
total Xylene	ug/kg	12 U	11 U	13 U	12 U	

RLAB Approved Sample Analysis Results

Activity Number: ERN16 ASR Number: 1535

Activity Desc: Sentinel Wood Treating Co.-Res. Garden sampling 5/21/2002

Analysis / Analyte	Units	9	10	11	12
Semi-Volatile Organic Compounds	in Soil			The state of the s	
Acenaphthene	ug/kg	2700 U	420 U	420 U	380 (
Acenaphthylene	ug/kg	2700 U	420 U	420 U	380 (
Acetophenone	ug/kg	2700 U	420 U	420 U	380 (
Anthracene	ug/kg	2700 U	420 U	420 U	380 (
Atrazine	ug/kg	2700 U	420 U	420 U	380 (
Benzaldehyde	ug/kg	2700 U	420 U	420 U	380 (
Benzo(a)anthracene	ug/kg	2700 U	420 U	420 U	380 (
Benzo(a)pyrene	ug/kg	2700 U	420 U	420 U	380 (
Benzo(b)fluoranthene	ug/kg	2700 U	420 U	420 U .	380 (
Benzo(g,h,i)perylene	ug/kg	2700 U	420 U	420 U	380
Benzo(k)fluoranthene	ug/kg	2700 U	420 U	420 U	380 (
Biphenyi	ug/kg	2700 U	420 U -	420 U	380
bis(2-Chloroethoxy)methane	ug/kg	2700 U	420 U	420 U	380
bis(2-Chloroethyl)ether	ug/kg	2700 U	420 U	420 U	380
bis(2-Chloroisopropyl)ether	ug/kg	2700 U	420 U	420 U	380
bis(2-Ethylhexyl)phthalate	ug/kg	11000	420 U	420 U	380 (
4-Bromophenyl-phenylether	ug/kg	2700 U	420 U	420 U	380
Butylbenzylphthalate	ug/kg	2700 U	420 U	420 U	380
Caprolactam	ug/kg	2700 U	420 U	420 U	380
Carbazole	ug/kg	2700 Ü	420 U	420 U	380
4-Chloro-3-methylphenol	ug/kg	2700 U	420 U	420 U	. , 380
4-Chloroaniline	ug/kg	2700 U	420 U	420 U	380
2-Chloronaphthalene	ug/kg	2700 U	420 U	420 U	380
2-Chiorophenol	ug/kg	2700 U	420 U	420 U	380
4-Chlorophenyl-phenylether	ug/kg	2700 U	420 U	420 U	380
Chrysene	ug/kg	2700 U	420 U	420 U	380
Di-n-butylphthalate	ug/kg	2700 U	420 U	420 U ·	380
Di-n-octylphthalate	ug/kg	2700 U	420 U	420 U	380
Dibenz(a,h)anthracene	ug/kg	2700 U	420 U	420 U	380
Dibenzofuran	ug/kg	2700 U	420 U	420 U	380
3,3'-Dichlorobenzidine	ug/kg	2700 U 🔩	420 U	420 U	380
2,4-Dichlorophenol	ug/kg	2700 U	420 U	420 U	380
Diethylphthalate	ug/kg	2700 U	420 U	420 U	380
2,4-Dimethylphenol	ug/kg	2700 U	420 U	420 U	380
Dimethylphthalate	ug/kg	2700 U	420 U	420 U	380
4,6-Dinitro-2-methylphenol	ug/kg	6700 U	1100 U	1100 U	970
2,4-Dinitrophenol	ug/kg	6700 U	1100 U	1100 U	970
2,4-Dinitrotoluene	ug/kg	2700 U	420 U	420 U	380
2,6-Dinitrotoluene	ug/kg	2700 U	420 U	420 U	380
Fluoranthene	ug/kg	2700 U	420 U	420 · U	380
Fluorene	ug/kg	2700 U	420 U	420 U	380
Hexachlorobenzene	ug/kg	2700 U	420 U	420 U	380
Hexachlorobutadiene	ug/kg	2700 U	420 U	420 U	380
Hexachlorocyclopentadiene	ug/kg	2700 U	420 U	420 U	380
Hexachloroethane	ug/kg	2700 U	420 U	420 U	380
Indeno(1,2,3-cd)pyrene	ug/kg	2700 U	420 U	420 U	380
Isophorone	ug/kg	2700 U	420 U	420 U	380
2-Methylnaphthalene	ug/kg	2700 U	420 U	420 U	380
2-Methylphenol	· ug/kg	2700 U	420 U	420 U	380

Activity Number: ERN16 AS

ASR Number: 1535

Activity Desc: Sentinel Wood Treating Co.-Res. Garden sampling

Analysis / Analyte	Units	9	10	11	12	
4-Methylphenol	ug/kg	2700 U	420 U	420 U	380 U	
Naphthalene	ug/kg	2700 U	420 U	420 U	380 U	
2-Nitroaniline	. ug/kg	6700 U	1100 U	1100 U	970 U	
3-Nitroaniline	ug/kg	6700 U	1100 U	1100 U	970 U	
4-Nitroaniline	ug/kg	6700 U	1100 U	1100 U	970 U	
Nitrobenzene	ug/kg	2700 U	420 U	420 U	380 U	
2-Nitrophenol	ug/kg	2700 U	420 U	420 U	. 380 U	
4-Nitrophenol	ug/kg	6700 U	1100 ¹ U	1100 U	970 U	
N-nitroso-di-n-propylamine	ug/kg	2700 U	420 U	420 U	380 U	
N-nitrosodiphenylamine	ug/kg	2700 U	420 U	420 U	380 U	
Pentachlorophenol	ug/kg	6700 U	1100 U	1100 U	970 U	
Phenanthrene	ug/kg	2700 U	420 U	420 U	380 U	
Phenol	ug/kg	2700 U	420 U	420 U	380 U	
Pyrene	ug/kg	2700 U	420 U	420 U	380 U	
2,4,5-Trichlorophenal	ug/kg	6700 U	1100 U	1100 U	970 U	
2,4,6-Trichlorophenol	ug/kg	2700 U	420 U	420 U	380 U	
VOCs in Solid Matrices by GC/MS			-			
Acetone	ug/kg	14 U	13 U	13 U	12 U	
Benzene	ug/kg	14 U	13 U	13 U	12 U	
Bromodichloromethane	ug/kg	14 U	13 U	13 U	12 U	
Bromoform	ug/kg	14 U	13 U	13 U	12 U	
Bromomethane	ug/kg	14 U	13 U	13 U	12 U	
2-Butanone	ug/kg	' 14 U	13 U	13 U	12 U	
Carbon Disulfide	ug/kg	14 U	13 U	13 U	12 U	
Carbon Tetrachloride	ug/kg	14 U	13 U	13 U	12 U	
Chlorobenzene	ug/kg	14 U	13 U	13 U	12 U	
Chloroethane	ug/kg	14 U	13 U	13 U	12 U	
Chioroform	ug/kg	14 U	13 U	13 U	12 U	
Chloromethane	ug/kg	14 U	13 U	13 Ù	12 U	
Cyclohexane	ug/kg	14 U	13 U	13 U	12 U	
1,2-Dibromo-3-Chloropropane	ug/kg	14 U	13 U	13. U	12 U	
Dibromochloromethane	ug/kg	14 U	13 U	. 13 U	12 U	
1,2-Dibromoethane	ug/kg	14 U	13 U	13 U	12 U	
1,2-Dichlorobenzene	ug/kg	14 U	13 U	13 U .	12 U	
1,3-Dichlorobenzene	ug/kg	14 U	13 U	13 U	12 U	
1,4-Dichlorobenzene	ug/kg	14 U	13 U	13 U	12 U	
Dichlorodifluoromethane	ug/kg	14 U	13 U	13 U	12 U	
1,1-Dichloroethane	ug/kg	14 U	13 U	13 U	12 U	
1,2-Dichloroethane	ug/kg	14 U	13 U	13 U	12 U	
1,1-Dichloroethene	ug/kg	14 U	13 U	13 U	12 U	
cis-1,2-Dichloroethene	ug/kg	14 U	13 U	13 U	12 U	
trans-1,2-Dichloroethene	ug/kg	14 U	13 U	13 U	12 U	
1,2-Dichloropropane	ug/kg	14 U	13 U	· 13 U	12 U	
cis-1,3-Dichloropropene	ug/kg	14 U	13 U	13 U	. 12 U	
trans-1,3-Dichloropropene	ug/kg	14 U	13 U	13 U	12 U	
Ethyl Benzene	ug/kg	14 U.	13 U	13 U	12 U	
2-Hexanone	ug/kg	14 U	13 U	13 U	12 U	
Isopropylbenzene	ug/kg	14 U	13 U	13 U	12 U	
Methyl Acetate	ug/kg	14 U	13 U	13 U	12 U	
Methyl tert-butyl ether	ug/kg	14 U	13 U	13 U	12 U	

ASR Number: 1535

RLAB Approved Sample Analysis Results

Activity Desc: Sentinel Wood Treating Co.-Res. Garden sampling

Analysis / Analyte	Units	9	10	11	12	
Methylcyclohexane	ug/kg	14 U	13 U	13 U	12 U	
Methylene Chloride	ug/kg	14 U	13 U	13 U	12 U	
4-Methyl-2-Pentanone	ug/kg	14 U	13 U	13 U	12 U	
Styrene	ug/kg	. 14 U	13 U	13 U	12 U	
1,1,2,2-Tetrachloroethane	ug/kg	14 U	13 U	13 U	12 U	
Tetrachloroethene	ug/kg -	14 U	13 U	13 U	12 U	
Toluene	ug/kg	14 U	13 U	13 U	12 U	
1,2,4-Trichlorobenzene	ug/kg	14 U	13 U	13 U	12 U	
1,1,1-Trichloroethane	ug/kg	14 U	13 U	13 U	12 U	
1,1,2-Trichloroethane	ug/kg	14 U	13 U	13 U	12 U	
Trichloroethene	ug/kg	14 U	13 U	13 U	12 U	
Trichlorofluoromethane	ug/kg	14 U	13 U	13 U -	12 U	
1,1,2-Trichlorotrifluoroethane	ug/kg	14 U	13 U	. 13 U	12 U	
Vinyl Chloride	ug/kg	14 U	13 U	13 U	12 U	
total Xylene	ug/kg	14 U	13 U	13 U	12 U	

ASR Number: 1535

Activity Desc: Sentinel Wood Treating Co.-Res. Garden sampling

Analysis / Analyte	Units	13-FB		
VOCs in Solid Matrices by GC/MS				
Acetone	ug/kg	11 U	•	
Benzene	ug/kg	11 U		
Bromodichloromethane	ug/kg	11 U		
Bromoform	ug/kg	11 U		
Bromomethane	ug/kg	11 U		•
2-Butanone	ug/kg	11 U		
Carbon Disulfide	ug/kg	11 U		
Carbon Tetrachloride	ug/kg	11 U		
Chlorobenzene	ug/kg	11 U		
Chloroethane	ug/kg	11 U		•
Chloroform	ug/kg	11 U		
Chloromethane	ug/kg	11 U		
Cyclohexane	ug/kg	11 U		
1,2-Dibromo-3-Chloropropane	ug/kg	11 U		
Dibromochloromethane	ug/kg	11 U		
1,2-Dibromoethane	ug/kg	11 U		
1,2-Dichlorobenzene	ug/kg	11 U		•
1,3-Dichlorobenzene	ug/kg	11 U		
1,4-Dichlorobenzene	ug/kg	11 U		
Dichlorodifluoromethane	ug/kg	11 U		
1,1-Dichloroethane	ug/kg	11 U		
		4		· y
1,2-Dichloroethane	ug/kg	11 U 11 U		
1,1-Dichloroethene	ug/kg			
cis-1,2-Dichloroethene	ug/kg	11 U		
trans-1,2-Dichloroethene	ug/kg	11 U	•	
1,2-Dichloropropane	ug/kg	11 U		
cis-1,3-Dichloropropene	ug/kg	11 U		
trans-1,3-Dichloropropene	ug/kg	11 U		
Ethyl Benzene	ug/kg	11 U		
2-Hexanone	ug/kg	11 U 11 U		
Isopropylbenzene	ug/kg			
Methyl Acetate Methyl tert-butyl ether	ug/kg	11 U 11 U		
	ug/kg	11 U		
Methylcyclohexane	ug/kg			
Methylene Chloride	ug/kg	11 U		
4-Methyl-2-Pentanone	ug/kg	11 U		
Styrene	ug/kg	11 U		•
1,1,2,2-Tetrachloroethane	ug/kg	11 U		
Tetrachloroethene	ug/kg 	11 U		
Toluene	ug/kg	11 U		
1,2,4-Trichlorobenzene	ug/kg	11 U	•	
1,1,1-Trichloroethane	ug/kg 	11 U		
1,1,2-Trichloroethane	ug/kg 	11 U		
Trichloroethene	ug/kg	11 U		
Trichlorofluoromethane	ug/kg	11 U		
1,1,2-Trichlorotrifluoroethane	ug/kg	11 U		
Vinyl Chloride	ug/kg	11 U		
total Xylene	ug/kg	11 U		

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

l	ACTIVITY LEADER(Print)		NAME	OF SURVEY	OR ACTIVIT	Y				DAT	E OF COLLECTION	رن ت الا		HEET
-	Eric Nold		·	Sen.	tivel 10	rd Tre	ati	Ν	2			DAY MONTH	YEAR	1	of
L	CONTENTS OF SHIP	MENT.						_	ر 						
	SAMPLE		TYF	E OF CONTAIN	VERS	VOL CET	S		LED M		RECEIVING LABORATORY REMARKS/OTHER INFORMATION				
	NUMBER	CUBITAINER	BOTTLE	BOTTLE	BOLLFE	VOA SET (2 VIALS EA)	aje	soil	sediment	ž "		(condition of		on receipt	•
	1636	NUME	. OF CON	AINERS-PER S	SAMPLE NUMBER) ≩	š	× ×	5	+				
9 1	1535-1	<u> </u>			!	11		1	_	\bot	\perp	····			
	-2				1	1		1							
	-3				1	1.		1	-						
1	-4				,	1		1							
ł	-5				-/-	1,1/			\dashv	+	+			Α 's	5/1/62
ŀ		 			1	4 1/1	اطمئ		-	+	+	.11.2		On -	5/1/02 IS/MSD
ł	-6					1 10	4	۲	+	+	*	Nok: Triple v	Dhime	Fr N	STAZD
ŀ	-7-7	<u> </u>			' '	100		4		+	+			-	
-					, i	1.1		4	_						
	1 -9				1	01		4			\perp				
	-10				1	11		1							
I	-11	·			١	, ,		1							
ı	1112				1	• 1		1		+				······	····
ı	12 52					,			-	+	+				
ŀ	V-13-FB						\vdash	-	-+	+-	+				
1					,		Ħ	-	\mp	+	=				
ļ					-	/ }	\vdash	_	\rightarrow	+	-				
				<u>-</u>		(2)		_	\perp	1	7				
l				~v°,	1	M		1	1		1				
İ				The same of the sa	4	KIV	1/4	B		4					
Î					5/7	S	}			4	∇	7. 7. 7.			
ł					1/0:		9		, 	+	1				
ŀ								7	*	+	+				
ł		 		· · · · · · · · · · · · · · · · · · ·	 	 			+	+-	+				
ŀ							-		+	+	+		1	24 /	
-							\vdash		+	+-	46	m un	e. K	esd	
Į												bet.	3-2	2	
	DESCRIPTION OF SI	HIPMENT			М	ODE OF SH	IPME	NT							
	PIECE(S) C	ONSISTING OF		_ BOX(ES)	_	COMME	RCIA	L C	ARRI	ER:_					
١	ICE CHEST				-	COURIE									
l	IGE UNEST	(3). 0711611				SAMPL	ER C	ONV	EYED			(SHIPPING DO	UMENT	NUMBE	R)
	PERSONNEL CUSTO									_					
	RELINQUISHED BY	(SAMPLER)	DATE	TIME	REGE	VED BY	0	. ,	0		R	EASON FOR CI	HANGE	OF CU	STODY
	Suchaik.	. Dealy	5/8/	12 13	12 []	LAM.	K	X,	Vá.		<u></u>	Atraly515			
ŀ	SEALED	UNSEALE	DATE		RECE	VED BY		OMS	SE ∳ }L	.ED	П	EASON FOR C	HANGE	OF CL	JSTODY
				-			•				`	,, .			
-	TSEALED	UNSEALE			- SEA	LED		UN:	SEAI	_ED	Н				
t	RELINQUISHED BY		DATE	TIME		IVED BY					R	EASON FOR C	HANGE	OF C	JSTODY
1															
ŀ	Terairo	UNSEALE	:61	1	SEA	LED		UN	SEA	LED	П				

US EPA Region VII Kansas City, KS

	Sample Number: 1	QC Code:	Matrix: S	Soil Ta	g ID: 1535-1
Activity Number: ERN16	Ac	ctivity Leader: No	ıld, Eric		
Activity Desc: Sentine	el Wood Treating CoRe	s. Garden samplin	ıg		
Location: Ava		State: Mis	ssouri	Type: Supe	erfund
Superfund Name: Sentine	el Wood Treating Co. Inc	<u>,</u>		Site ID: 07Y0	Site OU:
Location Desc:	Morpeth's,	-		عا-0, ا ل از	<u>"</u>
	Ex	ternai Sample Nu	ımber:		
Expected Conc: Circle (One: Low Medium Hi	gh		Date	Time (24 Hr)
Latitude:		Sample Colle	ection: Start	5/7/02	14:00
Longitude:					•
aboratory Analyses:					
Container	Preservative	Holding Time	Analysis		
2 - 40mL VOA vial	4 Deg C	14 Days	VOCs in Solid M	latrices by GC/MS	3
1 - 8 oz glass	4 Deg C	14 Days	Semi-Volatile Or	ganic Compound:	s in Soil
			,	/	
				garder 2.	lots building

Sample collected by: F. Faile Dealy & Hodge

ASR Number:	1535 Sample Number	: 2 QC Code:	Watrix: Soil	1 ag ID: 1535-2
Activity Number:	ERN16	Activity Leader: No	ld, Eric	
Activity Desc:	Sentinel Wood Treating Co.	-Res. Garden samplin	g	
Location:	Ava	State: Mis	souri Ty	ype: Superfund
Superfund Name:	Sentinel Wood Treating Co.	Inc.	Site	e ID: 07YD Site OU:
Location Desc:	Morpeth gard	External Sample Nu		
Expected Conc:	Circle One: Low Medium	High		Date Time (24 Hr)
Latitude:		Sample Colle	ction: Start <u>5/</u>	1/02 14:20
Longitude:			End/_	
Laboratory Analyse	es:			
Container	Preservative	Holding Time	Analysis	•
2 - 40mL VOA via	al 4 Deg C	14 Days	VOCs in Solid Matrices	by GC/MS
1 - 8 oz glass	4 Deg C	14 Days	Semi-Volatile Organic (Compounds in Soil
Sample Comments	:			,

US EPA Region VII Kansas City, KS

ASR Number:	1030 8	sample Number	. s	QC Code:		Matrix: Soil	lag	ID:	1535-3
Activity Number:	ERN16		Activit	y Leader: No	ld, Eric				
Activity Desc:	Sentinel Wo	ood Treating Co.	-Res. G	arden samplin	g			•	
Location:	Ava			State: Mis	souri	· · · · ·	Гуре: Super	fund	
Superfund Name:	Sentinel Wo	ood Treating Co.	Inc.	•		Sit	te ID: 07YD	Site	ou:
Location Desc:	Morpet	n garde	h,	#2,0-	· Lo"				
	,	J		al Sample Nu		·····			-
Expected Conc:	Circle One:	Low Medium	High				Date	Time	(24 Hr)
Latitude:	· —			Sample Colle	ction:		7/02		
Longitude:						End/_	/	:_	
Laboratory Analys	ses:						==		
Container	Pro	eservative	F	lolding Time	Analy	ysis			
2 - 40mL VOA v	ial 4 [Deg C		14 Days	VOCs	in Solid Matrice	s by GC/MS		
1 - 8 oz glass	4 [Deg C		14 Days	Semi-\	Volatile Organic	Compounds	in Soil	

Sample Comments:

ASR Number:	1535 Samp	le Number: 4	QC Cod	le:	Matrix: Soil	Tag ID:	1535-4
Activity Number:	ERN16	Act	ivity Leader:	Nold, Eric			
Activity Desc:	Sentinel Wood T	reating CoRes	. Garden samp	oling			
Location:	Ava		State:	Missouri	Type:	Superfund	
Superfund Name:	Sentinel Wood T	reating Co. Inc.			Site ID:	07YD S	ite OU:
Location Desc:	Morpeth	garden	, #2	18-24"			
	,	. 1	ernal Sample				· · · · · · · · · · · · · · · · · · ·
Expected Conc:	Circle One: Low	v Medium Hig	ከ		Date) Tiı	me (24 Hr)
Latitude:		_	Sample Co	ollection:	Start 5/7/	02 13	<u>:40</u>
Longitude:					End//_		<u></u>
Laboratory Analys	ies:			·			
Container	Preserv	vative .	Holding Tin	ne Analy	/sis		
2 - 40mL VOA v	ial 4 Deg C	;	14 Day	s VOCs	in Solid Matrices by 0	3C/MS	
1 - 8 oz glass	4 Deg C	;	14 Day	s Semi-\	Volatile Organic Comp	oounds in Sc	oil

ASR Number: 1	1535 8	ample Number:	5	QC Code:		Matrix:	Soil	<u> </u>	Tag I	D:	1535-5
Activity Number: E	ERN16		Activ	ity Leader: No	d, Eric	•	-				
Activity Desc: S	Sentinel Wo	od Treating CoF	Res.	Garden samplin	g						
Location: A	Ava			State: Mis	souri			Туре:	Superfu	und	
Superfund Name: S	Sentinel Wo	od Treating Co. I	nc.				Si	te ID:	07YD	Site	OU:
Location Desc: _	Morpet	n garde	ر ط	#3,0-4	60						
		<u> </u>	Exter	nal Sample Nu	mber:				·		
Expected Conc: C	Circle One:	Low Medium	High					Date)	Time	(24 Hr)
Latitude:		· ——		Sample Colle	ction:	Sta	rt <u>5/</u>	7_/	_ ع	14:4	0
Longitude: _						En	d/	/_		:_	
Laboratory Analyse	s:										
Container	Pre	servative		Holding Time	Analy	ysis					
	4.0	eg C		14 Days	VOCs	in Solid	Matrice	s by C	SC/MS		
2 - 40mL VOA via	4 0	og o						•			

US EPA Region VII Kansas City, KS

ASR Number:	1535	Sample Number:	. 0	QC Code:	—	Matrix: Soil	(ag	ID:	1535-6
Activity Number:	ERN16		Activit	y Leader: No	d, Eric				
Activity Desc:	Sentinel V	Vood Treating Co	Res. G	arden samplin	g				
Location:	Ava			State: Mis	souri		Type: Super	fund	
Superfund Name:	Sentinel V	Vood Treating Co.	Inc.			Si	te ID: 07YD	Site	e OU:
Location Desc:	Morpe	th garden		3, 18-24 al Sample Nu					
Expected Conc:	Circle On	e: Low Medium					Date	Tim	e (24 Hr)
Latitude:				Sample Colle	ction:	Start _5	7.102	15	<u>30</u>
Longitude:						End/_	/	;	
Laboratory Analys	ses:								
Container	F	Preservative	F	lolding Time	Anal	ysis			
2 - 40mL VOA v	ial 4	Deg C		14 Days	VOCs	in Solid Matrice	s by GC/MS		
1 - 8 oz glass	4	Deg C		14 Days	Semi-	Volatile Organic	Compounds	in Soil	
Sample Comments	s:	. ,		,					

Triple volume for VOA's (for MS/MSD)

US EPA Region VII Kansas City, KS

ASR Number:	1535	Sample Number	': <i>(</i>	QC Code:		Matrix: Soil	Tag	ID: 1535-7
Activity Number:	ERN16		Activ	rity Leader: No	ld, Eric			-
Activity Desc:	Sentinel 1	Wood Treating Co.	Res.	Garden samplin	g			
Location:	Ava	·		State: Mis	souri	Туре	: Superi	fund
Superfund Name:	Sentinel 1	Wood Treating Co.	Inc.			Site ID	: 07YD	Site OU:
Location Desc:	Moro	eth garde	Zh,	#4 0-	6 "			
	, ,	J		rnal Sample Nu				
Expected Conc:	Circle On	e: Low Medium	High			Dat	e	Time (24 Hr)
Latitude:				Sample Colle	ction:	Start <u>5/7</u> /	02	15:20
Longitude:					•	End//	·	;
Laboratory Analys	ses:							
Container	ı	Preservative		Holding Time	Anal	ysis		
2 - 40mL VOA v	ial 4	4 Deg C		14 Days	VOCs	in Solid Matrices by	GC/MS	
1 - 8 oz glass	4	4 Deg C		14 Days	Semi-	Volatile Organic Com	pounds	in Soil

Sample Comments:

US EPA Region VII Kansas City, KS

ASR Number:	1535	Sample Number	: 8	QC Co	de:	Matrix: Soil	Tag	ID: 1535-8
Activity Number:	ERN16		Activ	ity Leader:	Nold, Eric			
Activity Desc:	Sentinel	Wood Treating Co.	-Res.	Garden sam	pling			
Location:	Ava			State:	Missouri	Туре	: Super	fund
Superfund Name:	Sentinel	Wood Treating Co.	Inc.		a	Site ID	: 07YD	Site OU:
Location Desc:	More	en garder	#	4, 18-	24"			
	١.	J		rnal Sample				·
Expected Conc:	Circle O	ne: Low Medium	High			Dat	te	Time (24 Hr)
Latitude:				Sample C	ollection:	Start <u>5/7</u> /	02	15:15
Longitude:						End//		:
Laboratory Analys	es:							
Container		Preservative		Holding Ti	me Anal	ysis		
2 - 40mL VOA vi	ial	4 Deg C		14 Da	ys VOCs	in Solid Matrices by	GC/MS	
1 - 8 oz glass		4 Deg C		14 Da	ys Semi-	Volatile Organic Com	pounds	in Soil

Sample Comments:

ASK Number.	1000	ampie Number.	<u> </u>	Coue.	'	viatrix. Soil	1 aç	, ID.	1000-9
Activity Number:	ERN16	,	Activity Lead	ler: Noi	d, Eric				
Activity Desc:	Sentinel Wo	od Treating CoF	Res. Garden :	samplin	9				
Location:	Ava		Sta	te: Mis	souri	,	Type: Supe	rfund	
Superfund Name:	Sentinel Wo	od Treating Co. I	nc.	·		Si	te ID: 07YD	Site	OU:
Location Desc:	Morpeth	.)	±5, External Sam						
Expected Conc:	Circle One:	Low Medium	High				Date	Time	(24 Hr)
Latitude:			Sampl	e Colle	ction:	Start 5/	7/02	16:	10
Longitude:						End/	/	:	
Laboratory Analys	es:						-	-	
Container	Pre	servative	Holding	Time	Analy	sis			
2 - 40mL VOA vi	al 4 D	eg C	['] 14	Days	VOCs i	n Solid Matrice	s by GC/MS		
1 - 8 oz glass	4 D	eg C	14	Days	Semi-V	olatile Organic	Compounds	s in Soil	
Sample Comments			у						

US EPA Region VII Kansas City, KS

ASR Number:	1535	Sample	e Number	: 10	QC Code:		Matrix: S	Soil	Tag	ID:	1535-10
Activity Number:	ERN16			Activ	vity Leader: No	ld, Eric					
Activity Desc:	Sentinel \	Nood Tr	eating Co.	Res.	Garden samplin	ıg					
Location:	Ava		-		State: Mis	ssouri		Type:	Superf	und	
Superfund Name:	Sentinel \	Nood Tr	eating Co.	. Inc.				Site ID:	07YD	Site	e OU:
Location Desc:	Morpi	th	garde	m	., #5,	18-24	<i>l</i>				
	1	,	J		rnal Sample Nu			 -			
Expected Conc:	Circle On	e: Low	Medium	High				Date	•	Tim	e (24 Hr)
Latitude:			-		Sample Colle	ection:	Start	5/7/	02	15	50
Longitude:			-				End	//_		:	
Laboratory Analys	ses:						,				
Container	ı	reserva	ative		Holding Time	Analy	ysis			-	
2 - 40mL VOA v	ial 4	Deg C			14 Days	VOCs	in Solid M	latrices by 0	GC/MS		
1 - 8 oz glass	· .	Deg C			14 Days	Semi-	Volatile Or	ganic Com	pounds	in Soil	

,Sample Comments:

ASK Number:	1555 5	ample Number.			Watrix: 5011	l ag ID	: 1535-11-
Activity Number:	ERN16	•	Activity Leader:	Nold, Eric			
Activity Desc:	Sentinel Wo	od Treating CoI	Res. Garden samp	oling			
Location:	Ava		State:	Missouri	Type:	Superfur	nd
Superfund Name:	Sentinel Wo	od Treating Co. I	nc.		Site ID:	07YD	Site OU:
Location Desc:	Marpet						
			External Sample	Number:		·	
Expected Conc:	Circle One:	Low Medium	High		Date	e	Time (24 Hr)
Latitude:			Sample Co	ollection:	Start <u>5/7</u> /	02 1	4:35
Longitudos					End//		:
Longitude.							
	es:						
		eservative	Holding Tin	ne Analy	ysis		
Laboratory Analys	Pre	eservative Deg C	Holding Tin 14 Day		ysis in Solid Matrices by (GC/MS	

ASR Number:	1535	Sample Number:	12	QC Code:		Matrix: Soil	Tag I	D: 1	535-12
Activity Number:	ERN16		Activit	y Leader: No	ld, Eric				
Activity Desc:	Sentinel V	Vood Treating Co	Res. G	arden samplin	g				
Location:	Ava			State: Mis	souri	Тур	e: Superf	ųnd	
Superfund Name:	Sentinel V	Vood Treating Co.	Inc.			Site I	D : 07YD	Site	OU:
Location Desc:	Morpe	th garden							<u>·</u>
				al Sample Nu	mber:	···			
Expected Conc:	Circle On	e: Low Medium	High			Da	ate	Time ((24 Hr)
Latitude:				Sample Colle	ction:	Start <u>5 / 7</u>	102	le:2	<u>5</u>
Longitude:		·				End/	<i>J</i>	:_	
Laboratory Analys	ies:								
Container	, F	reservative	H	lolding Time	Analy	/sis			
2 - 40mL VOA vi	al 4	Deg C		14 Days	VOCs	in Solid Matrices by	y GC/MS		
1 - 8 oz glass	. 4	Deg C		14 Days	Semi-\	/olatile Organic Co	mpounds i	n Soil	
Sample Comments	s:	•		,					

ASR Number:	1535	Sampl	e Numbei	r: 13	QC Cod	e: FB	Matrix:	Soil ·	Tag	ID:	1535-13-FB
Activity Number:	ERN16			Activ	ity Leader:	Nold, Eric	;				
Activity Desc:	Sentinel W	ood Tr	eating Co	Res.	Garden samp	oling					
Location:	Ava				State:	Missouri		Type:	Superf	und	
Superfund Name:	Sentinel W	ood Tr	eating Co	. Inc.				Site ID:	07YD	Site	∍ OU:
Location Desc:	Routine so	il VOA	Trip Blanl	samp	ole						
				Exte	rnal Sample	Number:					
Expected Conc:	Circle One	: Low	Medium	High				Date	9	Tim	e (24 Hr)
Latitude:			_		Sample Co	llection:	Sta	15/7/	02	3_:	20_
Longitude:					<u></u> :		En	d//		:_	
Laboratory Analys	es:										
Container	Pi	reserva	ative		Holding Tim	ne Ana	lysis				
2 - 40mL VOA vi	al 4	Deg C			14 Day	s VOC	s in Solid	Matrices by	GC/MS		
Sample Comments	s:										,

GROWDWATER

United States Environmental Protection Agency

Region 7 Laboratory 25 Funston Road Kansas City, KS 66115

Date: 5/24/2002

Subject: Transmittal of Sample Analysis Results for ASR #: 1521

Activity Number: ERN15

Activity Description: Sentinel Wood Treating Co. sediment sampling

From: Michael Thomas, Associate Laboratory Director

Regional Laboratory, Environmental Services Division

To: Eric Nold SUPR/EFLR

This is the sample analysis results transmittal for the above-referenced Analytical Services Request (ASR). The data contained in this transmittal have been approved by the Regional Laboratory. This transmittal contains all of the sample analysis results for this ASR. The Regional Laboratory should be notified within 14 days if any changes are needed to the contents of this report. If you have any questions, comments or data changes, please contact the Laboratory Customer Service Department at 913-551-5295.

cc: Analytical Data File

ASR Number: 1521

Summary of Activity Information

5/24/2002

Activity Leader: Nold, Eric

Org: SUPR/EFLR

Phone: (913) 551-7488

Activity Number: ERN15

Activity Desc: Sentinel Wood Treating Co. sediment sampling

Location: Ava

State: Missouri

Type: Superfund/Oil

Superfund Name: Sentinel Wood Treating Co. Inc.

Site ID: 07YD

Site OU:

Purpose: Site characterization

Explanation of Codes, Units and Qualifiers used on this report.

Sample QC Codes: QC Codes identify the type of

Units: Specific units in which results are reported.

sample for quality control

pg/L

= Picograms per Liter

= Field Sample

ug/L

= Micrograms per Liter

Data Qualifiers: Specific codes used in conjunction with data values to provide additional information on the quality of reported results, or used to explain the absence of a specific value.

(Blank) = Values have been reviewed and found acceptable for use.

U = Not detected at or above the reportable level shown.

ASR Number: 1521

Sample Information Summary

Activity Desc: Sentinel Wood Treating Co. sediment sampling

5/24/2002

Sample QC		Location	External	Start	Start	End	End	Receipt	
Numbe Code Matrix			Sample No.	Date	Time	Date	Time	Date	
	1 - Water	Williams house/Sample collected from spicket next to front door		04/30/2002	9:30		(05/01/2002	

ASR Number: 1521

RLAB Approved Analysis Comments

Activity Desc: Sentinel Wood Treating Co. sediment sampling

5/24/2002

Analysis

Comments About Results For This Analysis

Herbicides in Drinking Water by GC/EC

The contract laboratory extracted the sample outside the holding time (< 24 hours). All extracts were analyzed well within their applicable holding time. Since the sample was non-detect and all applicable QC data were acceptable, no data were qualified.

ASR Number: 1521

RLAB Approved Sample Analysis Results

Activity Desc: Sentinel Wood Treating Co. sediment sampling

5/24/2002

Analysis / Analyte	Units	1		,		
lerbicides in Drinking Water by GC/EC						
Pentachlorophenol	ug/L	0.04	U			
PCDD/PCDF in Water by GC/HRMS						
2,3,7,8-Tetrachlorodibenzo-p-dioxin	pg/L	9.84	U			
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	pg/L	49.2	U ·			
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	pg/L	49.2	U			
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	pg/L	+ 49.2 U	U			
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	pg/L	49.2	U ·			
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	pg/L	49.2 \	U			
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxi	pg/L	98.4 (U			
2,3,7,8-Tetrachlorodibenzo-p-furan	pg/L	9.84 (U			
1,2,3,7,8-Pentachlorodibenzo-p-furan	pg/L	49.2 l	U			
2,3,4,7,8-Pentachlorodibenzo-p-furan	pg/L	49.2 l	U			
1,2,3,4,7,8-Hexachlorodibenzo-p-furan	pg/L	49.2 l	U			
1,2,3,6,7,8-Hexachlorodibenzo-p-furan	pg/L	49.2 (Ü			
1,2,3,7,8,9-Hexachlorodibenzo-p-furan	pg/L	49.2 l	U .			
2,3,4,6,7,8-Hexachlorodibenzo-p-furan	pg/L	49.2 l	U			
1,2,3,4,6,7,8-Heptachlorodibenzo-p-furan	pg/L	49.2 l	U .			
1,2,3,4,7,8,9-Heptachlorodibenzo-p-furan	pg/L	49.2 l	U			
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-furan	pg/L	98.4 l	J			
2.3.7.8-Dioxin Total Equivalents	pg/L	0 t	IJ			

ictivity# ERNIS

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

ACTIVITY LEADER(F			NAME	OF SURV	EY OR ACTIVIT	Y					DATE OF COLLECTION SHEET DAY MONTH YEAR / Of]
Eric Noil 6		ule	Seature	1 Wust	Treoto, Co.	لمنك	inc	<u> </u>	enpl	ما	DAY MONTH YEAR OF
CONTENTS OF SHIP	MENT						_				
SAMPLE		TYF	E OF CONTAIN	ERS	VOA SET	S			MEDIA	ther	RECEIVING LABORATORY REMARKS/OTHER INFORMATION
NUMBER	CUBITAINER	BOTTLE	BOTTLE	BOTTLE	(2 VIALS EA)	water	Sod	sediment	Ē,	,,,,,,,	(condition of samples upon receipt, other sample numbers, etc.)
160. 1	NUME		TAINERS PER S	AMPLE NUM	IBER] <u>*</u> 	×	8	=		<u> </u>
1521 - 1		2,,			-	X		_	_		Svocs Water
											Svocs Water
				1							
-			-					7			
								1	\dashv		
	<u> </u>		and the second of			\vdash		-	+	_	
			<u>grander.</u>			-		4			
	·			\ \ \ .		1					
		/		Ula	7//						·
			. ^	NY?				\neg	\dashv		
	ļ	+	104			+	\vdash	-	-		
		 	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1 ()	\vdash		\dashv	-		
				و کر	413202	\perp		_			
		1	7								
y											
	· ,		Alexandra Park						\top		
		/				T		1	+		
	/					+		-	\dashv		
ļ						-		\dashv			
											
									\top		
			 			T		_	十		
				<u></u>		-		+	+		01 0- 0 11
/	\ .	ļ	•			-		+	-		Clr. Lenp, Recd
/											D.W. 3-5 c
DESCRIPTION OF SI	HIPMENT				MODE OF SH	IPME	NT				
PIECE(S) C	ONSISTING O	F	BOX(ES)		СОММ		AL C	ARR	IER:		
ICE CHEST	(S): OTHER _			- 1	COURI	-					
TOE OFFICE	(0). 0111211				-X-SAMPL	ER C	ONV	EYE	D		(SHIPPING DOCUMENT NUMBER)
PERSONNEL CUSTO			والأخفيان المروف ومعروب	فاحت بالمستوال							
RELINQUISHED BY	(SAMPLER)	DAT	E OF TIME	RE	CEIVED BY	٠ ٨	, n		/	****	REASON FOR CHANGE OF CUSTODY
140		$-\sqrt{\lambda}$	1 /2 /4. /	\geq_{t_i}	Micoli &	191	ili			\	hemaly
SEALED RELINQUISHED BY	UNSEAL	ED H 5	E TIME		SEALED CEIVED BY		UNE	ΈA	LEC	- 7	REASON FOR CHANGE OF CUSTODY
		MOAT	11100							•	REASON FOR CENANGE OF COSTODY
SEALED	LINESCI			<u> </u>	SEALED		UN	SEA	\LEC	, _	
RELINQUISHED BY	UNSEAL	DAT	E TIME		ECEIVED BY		O IN	مے د	1 m C L	<u> </u>	REASON FOR CHANGE OF CUSTODY
SEALED	UNSEAL	ED		\vdash	SEALED		UN	SEA	ALE	٦٥	1

US EPA Region VII Kansas City, KS

Activity Number: ERN1:		vity Leader: No	ld, Eric		•
Location: Ava	el Wood Treating Co. sedir	State: Mis	ssouri	Type: Super	fund
	el Wood Treating Co. Inc.			Site ID: 07YD	
Location Desc: _ し、	Mans House	- Spick	t next t	fron	t day
	Exte	ernal Sample Nu	mber:		
Expected Conc: Circle	One: Low Medium High	n .		Date	Time (24 Hr)
Latitude:		Sample Colle	ection: Start <u>4</u>	130102	9:30
Longitude:			End	<i></i>	<u> </u>
_aboratory Analyses:	-				
Container	Preservative	Holding Time	Analysis	•	
1 - 1 Liter amber glass	4 Deg C	365 Days	PCDD/PCDF in Wat	er by GC/HRM	s Vac
1 - 128oz amber glass	4 Deg C, HCL to pH<2, sodium sulfite	14 Days	Somi Volatiles in Dr	inking Water by	GC/MS (PC)
			- 0 1		

pH: 6.5

cond: > could not be determined

turb.

Sample collected by: Pritchard / Dealy