SIXTH FIVE-YEAR REVIEW REPORT FOR

FINDETT CORP/HAYFORD BRIDGE ROAD GROUNDWATER SUPERFUND SITE

ST. CHARLES COUNTY, MISSOURI

Prepared by

U.S. Environmental Protection Agency Region 7 Lenexa, Kansas

Robert D. Jurgens, Director Superfund and Emergency Management Division

TABLE OF CONTENTS

I.	INTRODUCTION Site Background FYR Summary Form	1
11.	RESPONSE ACTION SUMMARY Basis for Taking Action Response Actions Status of Implementation IC Summary Table Of note, ICs were not required in the OU2 Action Memorandum Systems Operations/Operation and Maintenance	3 4 7 11 11
III.	PROGRESS SINCE THE LAST REVIEW	
IV.	FYR PROCESS Community Notification, Involvement and Site Interviews Data Review Site Inspection	15 17
V.	 TECHNICAL ASSESSMENT QUESTION A: Is the remedy functioning as intended by the decision documents? QUESTION B: Are the exposure assumptions, toxicity data, cleanup levels and Remedial Action Objectives (RAOs) used at the time of the remedy selection still valid? QUESTION C: Has any other information come to light that could call into question the protectiveness of the remedy? 	24 26
VI.	ISSUES/RECOMMENDATIONS Other Findings	
VII.	PROTECTIVENESS STATEMENT	33
VIII.	NEXT REVIEW	35

APPENDIX A – REFERENCE LIST

APPENDIX B – FIGURES

Figure 1: Site Location Map Figure 2: Aerial Site Plan Figure 3: OU1 Monitoring Well Locations Figure 4: OU3 Monitoring Well Locations

- Figure 5: OU2 Excavation Areas
- Figure 6: Groundwater Plume Map

APPENDIX C – LIST OF TABLES

Table 1: Fall 2021 OU1 Groundwater Data Table 2: Fall 2022 OU1 Groundwater Data Table 3: Fall 2023 OU1 Groundwater Data Table 4: Spring 2024 OU1 Groundwater Data Table 5: OU3 Groundwater Sampling Results Summary Table 6: OU3 Geochemical-MNA Parameter Data Table 7: OU1 March 2023 DPT Groundwater Sampling Results Table 8: OU1 March 2023 Soil-Gas Sampling Results

APPENDIX D - SITE CHRONOLOGY

APPENDIX E - FIVE-YEAR REVIEW PUBLIC NOTICES

APPENDIX F - SITE INSPECTION CHECKLIST

APPENDIX G - MONITORING WELL TREND CHARTS

APPENDIX H - OU3 HYDROGRAPHS

APPENDIX I - REMEDIAL TIMEFRAME ANALYSIS

APPENDIX J - FYR INTERVIEW RECORDS

APPENDIX K - PHOTOGRAPHS

APPENDIX L - 1976 REPORT OF INVESTIGATION AND NPDES PERMIT

APPENDIX M - 1984 AND 1987 SAMPLING REPORTS AND DATA TRANSMITTALS

APPENDIX N - OU1/OU2 ENVIRONMENTAL COVENANT AND EPWF ORDINANCE

APPENDIX O - APRIL 2009 FIRE INCIDENT RESPONSE RECORD

LIST OF ABBREVIATIONS AND ACRONYMS

ASAOC	Administrative Settlement Agreement and Order on Concent
BERA	Administrative Settlement Agreement and Order on Consent Baseline Ecological Risk Assessment
	Below Ground Surface
bgs CAG	Community Advisory Group
CAG	Consent Decree
CFR	Code of Federal Regulations
cis-1,2-DCE	cis-1,2-Dichloroethene
COC	Contaminant of Concern
COPEC	Contaminant of Potential Ecological Concern
CPAR	Contingency Plan Action Report
DCA	Dichloroethane
DCE	Dichloroethene
EE/CA	Engineering Evaluation/Cost Analysis
EPA	U.S. Environmental Protection Agency
EPWF	Elm Point Well Field
ESD	Explanation of Significant Differences
FYR	Five-Year Review
GETS	Groundwater Extraction and Treatment System
gpm	Gallons per minute
HBR	Hayford Bridge Road
ICs	Institutional Controls
MCL	Maximum Contaminant Level
mg/kg	Milligrams per kilogram
MNA	Monitored Natural Attenuation
MoDNR	Missouri Department of Natural Resources
NPL	National Priorities List
OU	Operable Unit
РСВ	Polychlorinated Biphenyl
PCE	Tetrachloroethene
ppb	Parts per billion
ppm	Parts per million
PRP	Potentially Responsible Party
RAO	Remedial Action Objective
RCP	Remedial Contingency Plan
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
RP	Responsible Party
RSL	Regional Screening Level
SLERA	Screening Level Ecological Risk Assessment
TCA	Trichloroethane
TCE	Trichloroethene
ug/kg	Micrograms per kilogram
ug/L	Micrograms per liter
USACE	U.S. Army Corps of Engineers
UJACL	

UU/UEUnlimited use and unrestricted exposureVCVinyl chlorideVOCVolatile Organic Compound

I. INTRODUCTION

The purpose of a Five-Year Review is to evaluate the implementation and performance of a remedy. It determines if the remedy is and will continue to be protective of human health and the environment. The methods, findings, and conclusions of reviews are documented in FYR reports such as this one. In addition, FYR reports identify issues found during the review, if any, and document recommendations to address them.

The U.S. Environmental Protection Agency is preparing this FYR pursuant to the *Comprehensive Environmental Response, Compensation, and Liability Act* Section 121, consistent with the *National Oil and Hazardous Substances Pollution Contingency Plan* (40 CFR Section 300.430(f)(4)(ii)), and considering EPA policy.

This is the sixth FYR for the Findett Corp./Hayford Bridge Road Groundwater Superfund site. The triggering action for this statutory FYR is the signature date of the previous FYR. The FYR has been prepared because hazardous substances, pollutants or contaminants remain at the site above levels that allow for unlimited use and unrestricted exposure.

The site consists of four Operable Units in total. However, only OU1, OU2, and OU3 are included in this FYR. OU1 addresses surface soils on the former Findett Corporation property as well as contaminated groundwater on the former Findett and Cadmus Corporation properties. OU2 addresses surface soil contamination on the former Cadmus property. OU3 addresses affected groundwater that has migrated beyond the OU1 and OU2 property boundaries. Lastly, OU4 addresses a separate and distinct contaminated source area associated with the Huster Road Substation owned by Ameren Missouri. OU4, the Ameren Huster Road Substation, is not addressed in this FYR because a final remedy has not been implemented.

This sixth FYR for the Findett Corp./Hayford Bridge Road Groundwater Superfund site was led by James Curry (EPA Remedial Project Manager). Participants included Jessica Evans (EPA Community Involvement Coordinator), Daniel O'Crowley (EPA Hydrogeologist), Keke Gibb (EPA Ecological Risk Assessor), Ann Jacobs (EPA Human Health Risk Assessor), Daniel Lyskowski (EPA attorney-advisor) and Jonathan Clark (MoDNR Project Manager). The potentially responsible parties were notified of the initiation of the FYR. The review began on May 30, 2024.

Site Background

The site is located within the city of St. Charles, Missouri near the intersection of Elm Point Road and Huster Road. The site is defined as the properties formerly owned by Findett and Cadmus (OU1/OU2), the extent of groundwater contamination that migrated from OU1 and OU2 (Hayford Bridge Road Groundwater – OU3), and the extent of soil and groundwater contamination from the Huster Road Substation owned by Ameren (Huster Road Substation – OU4).

The site is in an area comprised of mixed industrial, agricultural, and residential uses in the flood plain of the Mississippi River. Commercial and residential development is expected to increase around the site due to the proximity to Highway 370, which acts as a bypass around the city and Interstate Highway 70. The former Findett and Cadmus properties were purchased by a private party via tax sale

in early 2024. Commercial development is anticipated at these properties in the future. The site is near the Elm Point Wellfield which provides water for the residents of the city of St. Charles, Missouri as well as portions of the surrounding county.

Findett Service Company began operating in 1962 as an industrial facility, which reprocessed heat transfer fluids, hydraulic fluids, solvents, and catalysts for several companies and corporations. The catalyst business spun off as a separate company, Cadmus, in 1973. The process fluids and materials contained hazardous substances, including volatile organic compounds and polychlorinated biphenyls. Releases of VOC and PCB contamination into soils and groundwater occurred due to inadequate waste management practices while the businesses were operating.

Site Name: Findett Cor	p./Hayford	Bridge Road Superfund site				
EPA ID: MOD00633397	'5					
Region: 7	State: MO	O City/County: St. Charles/St. Charles				
NPL Status: Non-NPL						
Multiple OUs? Yes		Has the site achieved construction completion? No				
Lead agency: EPA						
Author name (Federal	or State Pro	roject Manager): James Curry				
Author affiliation: EPA						
Review period: 5/30/2	024 - 5/20/	/2025				
Date of site inspection	: 10/23/202	24				
Type of review: Statutory						
Review number: 6						
Triggering action date:	Triggering action date: 7/20/2020					
Due date (five years a)	ter triggeri	ing action date): 7/20/2025				

II. RESPONSE ACTION SUMMARY

Basis for Taking Action

Exposures to contaminated soil and groundwater at the three OUs evaluated in this FYR are associated with significant human health risks due to the exceedance of the EPA's risk management criteria for reasonable maximum exposure scenarios. The following hazardous substances have been identified at the source area and are considered contaminants of concern in both soil and groundwater: PCBs, benzene, 2-butanone (methyl ethyl ketone), chlorobenzene, chloroethane, 1,1-dichloroethane (DCA), 1,1-dichloroethene (DCE), cis-1,2-DCE, 1,1,1-trichloroethane (TCA), 1,1,2,2-perchloroethane (PCA), perchloroethene (PCE), 1,1,2-TCA, trichloroethene (TCE), toluene, vinyl chloride (VC), and xylene.

A focused risk assessment and Engineering Evaluation/Cost-Analysis was conducted for OU2 and found that PCB and VOC-contaminated surface soils on the Cadmus property posed a direct contact human health threat as well as a continuing threat of groundwater contamination.

The OU3 human health risk assessment found that contaminated groundwater poses an unacceptable risk due to potential exposure of contaminated groundwater from either private wells or the EPWF. The EPA also evaluated the possibility of groundwater contamination emanating into homes via vapor intrusion. It was determined, based on groundwater concentrations, that this pathway was not a concern. Finally, the EPA evaluated ecological risks associated with OU3 and found that there were no ecological receptors for groundwater.

Response Actions

<u>0U1</u>

The site originally came to the attention of the EPA in the late 1970s when the Findett Corporation reported handling PCBs. During an EPA inspection, an unlined "quench pond" was identified on the boundary between the Findett and Cadmus properties. Findett utilized the quench pond by releasing hot residues from the recycling processes into it. In 1977 and 1981, Findett excavated the pond and disposed of contaminated soils off the site. OU1 was established to address shallow contaminated groundwater on and beneath the former Findett and Cadmus properties as well as surface and near-surface soils around the quench pond on the Findett property.

The OU1 Record of Decision, signed on December 28, 1988, did not explicitly define Remedial Action Objectives. However, the ROD indicated that the goal of the remedy was to contain groundwater contamination in the shallow aquifer.

The selected remedial actions included:

- Hydraulic control of the shallow contaminated plume using groundwater extraction wells screened in the upper granular unit;
- Groundwater treatment using air stripping to remove organic contaminants, with an option for further treatment of groundwater using Granular Activated Carbon;
- Discharge of treated groundwater to the sewage treatment plant; and
- Off-site disposal and treatment of contaminated surface and near-surface soil excavated around the Findett quench pond.

Of note, the OU1 ROD did not call for Institutional Controls at the site.

A ROD amendment was signed on September 25, 1995. The amendment specified that bioremediation would be performed and expected to achieve a 50% reduction in PCB concentrations in soil within 2 years and achieve the 25 parts per million performance standards within 5 years. If these performance standards were not achieved on schedule, then the original excavation and off-site disposal remedy would be implemented.

In 2003, Findett requested to drop the bioremediation remedy due to logistical issues and instead proceed with surface and near-surface soil excavation. A soil removal was conducted at OU1 in April 2003 primarily to address PCBs, but VOCs were also present. The excavation was to reach a maximum depth of 5 feet below ground surface; however, the actual excavation never exceeded 3.5 feet bgs, due to the shallow water table. The lateral extent of excavation was based on a 25-ppm action level for PCBs in shallow soils. Additional backfill was placed to within 6 inches of grade. Seventy-one truckloads of contaminated soil were removed and transported to the Clean Harbors Lone Mountain Facility in Waynoka, Oklahoma.

<u>0U2</u>

In 1995, the EPA completed an evaluation of the Cadmus property, designated as OU2, which resulted in an EE/CA to address the PCB-contaminated soil at the site. Threats to human health and the environment led to a Non-Time-Critical Removal Action entailing the excavation and off-site disposal of contaminated soils on the Cadmus property. The OU2 Removal Action Memorandum, signed on November 7, 1995, does not explicitly define RAOs. However, the proposed Removal Action included:

• Excavation and off-site disposal of all soils contaminated with PCBs above 25 ppm and located above the water table at the Cadmus property.

Like OU1, a soil excavation completed at OU2 in 2001 was based on a 25-ppm PCB action level and advanced to a maximum depth of 5 feet bgs, or to the groundwater table, whichever came first. The depth of excavation was stopped short of 5 feet at most locations due to the shallow groundwater table and the presence of an active oil pipeline along the southern boundary of the Cadmus property. Approximately 1,075 cubic yards of soil were removed. The extent of the OU2 Removal Action can be found in Appendix B.

<u>0U3</u>

Contaminants, including benzene, VC, cis-1,2-DCE, and chloroethane, were found above Maximum Contaminant Levels in monitoring wells located just north of the Findett property and migrating towards the EPWF, which serves as the source of drinking water for St. Charles. This groundwater plume was identified and addressed as OU3. The EPA issued a ROD for OU3 on September 28, 2005. A CD was entered on July 3, 2007 with the OU3 RPs – Findett, The Goodyear Tire & Rubber Company, Mallinckrodt LLC, General Motors Corporation, ACF Industries, and Pharmacia Corporation (collectively, the HBR OU3 Group). The RAO for OU3 was to protect human health by eliminating exposure to groundwater contaminated above regulatory standards or risk-based standards for site-related contaminants. Cleanup levels for the OU3 COCs are as follows:

Contaminant	Cleanup Level (ug/L)
Cis-1,2-DCE	70
Vinyl Chloride	2
Benzene	5
Chloroethane	5

Table 1: OU3 Cleanup Levels

Major components of the selected remedy included:

- Monitored natural attenuation to prevent contamination from reaching the EPWF (Appendix B, Figure 2) and reduce the contamination in the aquifer to achieve performance standards within an estimated cleanup time frame between 10 and 20 years.
- Groundwater monitoring to measure and track: (1) the degradation rate(s) of the COCs in the body of the plume, (2) the boundaries of the plume to verify that they are not expanding, (3) the EPWF to verify that this system remains protected, and (4) the influent stream to the city's water treatment plant to verify that it remains uncontaminated.
- Upgrade of the aeration unit at the city's Elm Point Water Treatment Plant to effectively remove VOCs at the concentrations documented in the OU3 aquifer and to minimize maintenance for the city to operate.
- A Remedial Contingency Plan to require timely action if the natural attenuation processes do not achieve the expected outcomes of 1) maintaining an uncontaminated Elm Point Well Field, and 2) achieving performance standards in the aquifer within 10 to 20 years. If necessary, additional Remedial Actions unspecified to allow for the use of new technologies could be required by the contingency plan.
- Institutional Controls to ensure that no drinking water wells would be installed in the OU3 contaminated aquifer, contaminated groundwater would not be used for potable purposes and ponds/lakes would not be constructed below the upper cohesive soils and into the contaminated aquifer.

<u>0U4</u>

In December 2010, contamination was discovered at CW-5, located just north of a nearby substation operated by Ameren. On March 25, 2011, the EPA invoked an Emergency Contingency Plan Response under OU3 that required the RPs to collect more data and prepare an Emergency Action Response Report. The requirements to address what was then believed to be migration of contamination from OU1/OU3 were included in an administrative settlement agreement and order on consent for Emergency Response Action signed by the Hayford Bridge Road OU3 Group on September 28, 2012.

The EPA subsequently entered an Enforcement Action Memorandum with the HBR OU3 Group to investigate around the substation, which was completed in April 2012. A final Removal Action Report was issued in 2015 confirming the contamination found in groundwater at monitoring well CW-5 was not a result of the OU3 plume and instead originated from a separate source area at the Ameren Huster Road substation.

Due to the discovery of a different source and responsible party (Ameren), the EPA issued a Notice of Completion of Work in May 2015 to the OU3 RPs. On January 2, 2018, the EPA entered an ASAOC with Ameren to complete an RI/FS. Work under the RI/FS is ongoing, and a final remedy has yet to be selected.

Status of Implementation

<u>0U1</u>

On May 14, 1990, Findett and the EPA entered a Consent Decree requiring Findett to conduct the Remedial Actions for this OU to address shallow contaminated groundwater near the source area as well as surface soils at the Findett property. The EPA required Findett to construct, operate and maintain a groundwater extraction and treatment system that would hydraulically contain contamination in the shallow groundwater and prevent migration from the source area. The OU1 ROD also stipulated that treated water is to be discharged to the sanitary sewer system.

Following the October 1991 approval by the EPA and city of St. Charles, Missouri, Findett began operating the GETS on November 21, 1991. The GETS was originally designed with one extraction well, EW-1. However, low pumping rates from EW-1 – approximately 0.5 gpm – led to Findett modifying the design to include monitoring well MW-6 as an additional extraction well. The modification was completed in April 1992 and increased the total extraction rate to 12-14 gpm (PDT, 1992).

Although the design of the GETS was modified to include the additional extraction well, the system itself was not designed or constructed to withstand temperatures below 40 degrees Fahrenheit. For the first 13 years of operation, the OU1 GETS was shut down every year between October and April to keep the system from freezing and breaking.

The GETS was modified in 2004 to withstand lower temperatures so it would operate year-round. However, the system was still subject to freezing and extended periods of downtime when temperatures fell below 15 degrees Fahrenheit (USACE, 2015).

The site has also been flooded multiple times throughout its history, including during the historic floods of 1993 as well as smaller floods in 2008 and 2019. Moreover, the high iron content of the groundwater at the source area has been a recurring issue that impacts the operability of the GETS and presents significant maintenance challenges.

Consistent with the remedy selected for surface soils in the 1990 ROD, Findett submitted a remedial design plan to excavate and dispose of contaminated surface soils off-site in May 1992. On June 28, 1994, Findett submitted results from a bioremediation field trial and requested amendment of the ROD to allow implementation of the technology. The EPA amended the OU1 ROD in 1995 to document the change but kept the excavation and off-site disposal as an alternative due to uncertainty with bioremediation, because it was considered an innovative technique at the time.

The EPA finalized and approved Findett's design for the biotreatment process on July 23, 1997. Construction activities were completed and biotreatment was initiated by August 1999. Within 2 years the biotreatment process had achieved a promising 80% reduction in PCB concentrations. Findett then proposed ending the biotreatment effort and conducting the excavation and off-site disposal method due to logistical and scheduling issues for Findett. The EPA and Missouri Department of Natural Resources approved the corresponding work plans, resulting in completion of the soils Remedial Action in April 2003. A final estimated volume of excavated soils was never provided.

In August 2020, the company operating the OU1 remedy on behalf of Findett, SantoLubes, submitted ability-to-pay information to the EPA demonstrating that they were unable to pay for the continued operation and maintenance of the GETS at OU1. In September 2020, the EPA was informed that SantoLubes would no longer continue to operate the GETS. A cash-out CD was entered on April 22, 2024, with SantoLubes Manufacturing LLC and several related parties.

The EPA assumed operational control of the GETS in February 2021 on an interim basis with the intent to negotiate a settlement with other RPs for OU1. The EPA installed a new extraction well, EW-2, in 2022 to replace the low-production extraction well, EW-1. A new tray air stripper treatment unit was also installed in 2023.

The new tray air stripper treatment unit was placed inside one of the last remaining structures on the former Findett property to help increase its resiliency to extreme cold temperatures. Despite the redesign of the system, the GETS continues to be plagued by much of the same issues previously noted. For instance, an extended period of extreme cold temperatures in January 2024 caused water in the treatment unit to freeze and pipes to burst. This incident resulted in the system being inoperable for 2-3 weeks.

Noting the challenges that have impacted the operability of the GETS since 1991, and the possible corresponding impacts to the downgradient groundwater plume of OU3, the EPA is enforcing the RCP of the OU3 ROD and CD to evaluate additional Remedial Actions for the source area that would be more resilient, aggressive and accelerate the cleanup of the site. At the time of writing for this FYR, the HBR OU3 Group is conducting investigative work to delineate the extent of VOCs present at the source area. Additionally, based on the continual challenges with the GETS, the EPA shut down the system in February 2025 to allow further study of the mobility of the source area and the overall efficacy of the system. The EPA expects to receive a Contingency Plan Action Report in summer 2025 that will recommend additional remedial options to accelerate the remedial timeframe in addition to ensuring the protection of the EPWF.

Lastly, a Screening Level Ecological Risk Assessment has never been conducted for OU1 and OU2. Previous FYRs included a SLERA as an Issue and Recommendation, citing the lack of confirmation sampling from the OU2 Removal Action in 2001 as well as data gaps from previous sampling efforts at OU1 and OU3. The EPA is in discussions with the HBR OU3 Group to conduct a SLERA to address these data gaps.

<u>0U2</u>

Pursuant to an ASAOC the EPA issued on October 4, 2000, responsible parties conducted a Removal Action in 2001 for PCB-contaminated surface soils. The parties responsible for the OU2 Removal Action were ACF Industries, Cadmus, General Motors Company, The Goodyear Tire & Rubber Company, Mallinckrodt Inc. and Pharmacia Corporation (formerly known as Monsanto Company).

Excavation and off-site disposal of contaminated soils at OU2 began on June 11, 2001. All soil excavation, disposal, backfilling, compaction of backfill, and demobilization was completed by July 10, 2001. Verification soil sampling of the excavation sidewalls and floor was not required per the ASAOC. However, soil sampling conducted during source investigations in the 1980's identified elevated concentrations of PCBs and volatile organic compounds at depths exceeding 5 feet below ground surface (CH2M Hill, 1990). All PCB-remediation waste was transported to Safety-Kleen's permitted landfill for this material in Waynoka, Oklahoma. Contaminated groundwater beneath the OU2 excavation is considered part of the source area for OU3.

<u>0U3</u>

On July 3, 2007, the court entered a CD requiring the HBR OU3 Group to implement the MNA remedy, consistent with the 2005 ROD. The design was completed in April 2008, and the construction of the monitoring well network was completed during the summer of 2008. The Remedial Design/Remedial Action Construction Completion Report was submitted in December 2008, which the EPA conditionally approved in May 2009. The city ordinance to implement the required groundwater ICs was approved in February 2010 (Appendix L).

The 2005 ROD and subsequent 2007 CD called for an upgrade to the city's aeration treatment unit at the city's water treatment plant. A Design Report for Contingent Air Stripping Towers was submitted in February 2011 but never implemented. The HBR OU3 Group and the city of St. Charles agreed to change the aeration upgrade requirement to a contingency in the spring of 2010 so the city could proceed in implementing their own planned improvements. The EPA concurred with the change.

On March 25, 2011, the EPA invoked an Emergency Contingency Plan Response that required the OU3 RPs to collect more data and to prepare an Emergency Action Response because cis-1,2-DCE had been detected in the EPWF. Between 2011 and 2015, the OU3 Group performed additional investigations and response actions to address this additional area of contamination.

Based on the analytical data collected by the OU3 Group in 2011, as well as independent testing by Ameren in 2012, the EPA subsequently identified the Ameren substation as a "major source of contamination contributing significantly to the contamination in the EPWF" (EPA, 2013a).

The EPA conducted a limited vapor intrusion evaluation in January 2023 at the Deerfield Village mobile home park, located east of Huster road. All contaminants were detected at more than one order of magnitude below respective removal management levels, which are the levels at which EPA Region 7 often requires installation of a vapor intrusion mitigation system. In addition, groundwater concentrations near the Deerfield Village mobile home park were found to be below vapor intrusion screening levels for shallow groundwater vapor source.

In November 2023, the EPA triggered the Non-Emergency Response Contingency Action of the OU3 RCP due to exceedances of MCLs at point of compliance wells and the estimated remedial timeframe for OU3 exceeding the 10-20-year timeframe established in the ROD. A Contingency Plan Summary Report was submitted to the EPA on December 26, 2023. The EPA proceeded with the non-emergency contingency response approach and requested submittal of a CPAR with proposal of additional response actions to address the exceedances and timeframe in a May 10, 2024 letter to the HBR OU3 Group.

On June 26, 2024, the EPA received an MNA Evaluation Report from the HBR OU3 Group. The EPA identified issues with the OU3 remedy, particularly with the aquifers ability to fully degrade site COCs. The EPA responded to the MNA Evaluation Report in a comment letter on August 13, 2024, clarifying expectations for additional response work within the OU3 aquifer to address this concern. HBR OU3 Group submitted their CPAR Work Plan on September 6, 2024, within the required 120-day timeframe. Field work for the CPAR Work Plan began in December 2024 and includes soil sampling and analysis to evaluate additional Remedial Actions to target residual contamination in the source area.

IC Summary Table

Media, engineered controls and areas that do not support UU/UE based on current conditions	ICs Needed	ICs Called for in the Decision Documents	Impacted Parcel(s)	IC Objective	Title of IC Instrument Implemented and Date (or planned)
Soils	Yes	No	Former Findett and Cadmus Properties	Restrict residential land use. Restrict soil disturbance. Require notice to construction workers. Restrict building construction.	environmental covenant implemented May 2, 2019.
Groundwater	Yes	No	Former Findett and Cadmus Properties	Restrict the drilling of wells and prohibit the use of groundwater.	environmental covenant Implemented May 2, 2019.
Groundwater	Yes	Yes	Former Findett and Cadmus Properties, and OU3	Restrict the drilling of drinking water wells and the constructions of ponds or lakes below the confining clay layer.	City Ordinance implemented February 19, 2010.

Table 2: Summary of Planned and/or Implemented ICs

Of note, ICs were not required in the OU2 Action Memorandum.

Systems Operations/Operation and Maintenance

As noted above, the EPA operated the OU1 GETS during most of the FYR period. The operability of the OU1 GETS continues to be impacted by issues that have plagued it since it was first constructed in November 1991. These issues include environmental and technical challenges, such as periods of extreme cold temperatures, iron fouling of the extraction pumps, well screens, and floods. Residual soil contamination at the OU1 source area continues to be a threat to the remedial timeframe for OU3. The EPA is using the existing OU3 enforcement agreement to pursue additional Remedial Actions for the source area that are more aggressive and effective at treating soil contamination at the source area. As noted above, the EPA has shut down the GETS to better understand whether it is achieving the results intended when it was selected as part of the OU1 remedy.

At OU3, CW8 and its sentinel wells are currently sampled monthly by the OU3 Group. Interior wells MW-C8, MW-C13, MW-C15 and sentinel wells MW-C16, MW-C17, MW-C18, and MW-C19 are sampled semiannually. The rest of the OU3 monitoring well network is sampled annually. Nested monitoring wells MW-C18 and MW-C19 were placed in a marshy area that is subject to recurrent floods and often prevents access during annual monitoring events (Figure 4). A gravel pad was installed in May 2025 to resolve this flooding issue and ensure these monitoring wells can be accessed for sampling as necessary.

III. PROGRESS SINCE THE LAST REVIEW

This section includes the protectiveness determinations and statements from the most recent FYR as well as the recommendations from the most recent FYR and the status of those recommendations.

	Protectiveness	
OU #	Determination	Protectiveness Statement
1	Protectiveness Deferred	A protectiveness determination of the remedy at OU1 cannot be made until further information is obtained. Further information will be obtained by performing a SLERA and collecting additional soil samples to document that the soil is below ecological risk management levels. In addition, the remedy will need to be assessed to determine whether there are other Remedial Actions that can be taken at OU1 to maintain hydraulic containment and lessen the remedial timeframe for OU3 to meet the RAOs.
2	Protectiveness Deferred	A protectiveness determination of the remedy at OU2 cannot be made until further information is obtained. Further information will be obtained by performing a SLERA and collecting additional soil samples to document that the soil is below both human health and ecological risk management levels.
3	Protective	The OU3 remedy continues to be protective through MNA. Long-term protectiveness of the Remedial Action will continue to be verified through semiannual sampling of the downgradient groundwater.

Table 3: Protectiveness Determinations/Statements from the 2020 FYR

			Current	Current Implementation	Completion Date (if
OU #	lssue	Recommendations	Status	Current Implementation Status Description	applicable)
0U1/0U2	The continued contaminant mass flux from OU1 into OU3 increases the remedial timeframe for both OUs; and eventually the added contaminant mass load into OU3 may adversely impact the ability of OU3 to achieve its RAOs in a reasonable timeframe.	Evaluate options for augmentation of the OU1 remedy. This could consist of targeted source treatment activities within OU1, additional extraction wells and/or higher pumping rates for existing extraction wells.	Ongoing	The HBR OU3 Group is conducting investigative work to delineate the extent of VOCs present at the source area. The EPA expects to receive a CPAR in 2025 that will recommend additional remedial options to accelerate the remedial timeframe.	Ongoing
0U1/0U2	No ecological risk assessment has been conducted to date in OUs 1 and 2. In addition, since 1,4-dioxane is associated with 1,1,1-TCA, which was recently detected in OU1 soil, 1,4-dioxane should be included in the required SLERA.	A SLERA needs to be performed for soils for both terrestrial and aquatic habitats in OU1 and OU2. A SLERA would include all available site data and would also assess data gaps. If data gaps are found, samples need to be collected. Once the necessary data are collected, the SLERA would screen all site chemicals of potential ecological concern	Ongoing	The EPA has requested the HBR OU3 Group prepare a SLERA Work Plan.	Ongoing

Table 4: Status of Recommendations from the 2020 FYR

		(COPECs). If the hazard quotients are greater than 1, that COPEC moves into a baseline ecological risk assessment (BERA). If PCBs are found, then the SLERA immediately moves into a BERA.			
OU2	Confirmation soil sampling was not conducted after the 2003 PCB soil Removal Action.	Conduct soil sampling in areas of previous Removal Action to determine whether soil levels are below human health risk levels.	Ongoing	Additional soil sampling is being completed during the OU3 CPAR process.	Ongoing

IV. FYR PROCESS

Community Notification, Involvement and Site Interviews

The EPA guidance allows for different levels of outreach and public engagement during the FYR process, depending on the nature of the site and the level of community interest. Community involvement activities during a FYR typically include notifying the community that the FYR will be conducted and, again, when it is completed. Because the Findett Corp./Hayford Bridge Road site has significant public interest, the EPA expanded its community involvement activities for this site during this FYR process.

The agency provided opportunities for project stakeholders to be involved throughout the FYR process by establishing an active and robust FYR team, communicating with stakeholders face-to-face and via conference call and providing updates at regularly scheduled Community Advisory Group meetings. The EPA held official FYR interviews within a 31-day window starting on October 21st and ending on November 21st, 2024. Additionally, EPA project staff have been accessible and available throughout the FYR process to answer questions from stakeholders and members of the public.

A public notice was made available by newspaper postings, press release and e-mail notifications. Public notice of the FYR start was posted in the *Mid Rivers News Magazine* and the *St. Charles County Community News* newspaper on June 5, 2024, stating that the EPA has started the sixth FYR and inviting the public to attend a meeting with the EPA on June 26, 2024. The EPA also issued a press release, sent emails to the site's email distribution lists and posted a public notice in the magazines referenced above inviting the public to participate in interviews with the EPA to support the FYR. The results of the review and the report will be made available on the Site Profile Page for the Findett Corp./Hayford Bridge Road Superfund site at: <u>http://www.epa.gov/superfund/findettcorp</u>. Members of the public who might not have internet access can view the documents online at this location: Kathryn Linnemann Branch Public Library, 2323 Elm St, St Charles, MO 63301.

During the FYR process, interviews were conducted to document any perceived problems or successes with the remedy that has been implemented to date. Of note, the interviews for this FYR were conducted between October-November 2024, prior to the start of field work for the CPAR. Interview records to support this FYR can be found in Appendix I. The results of these interviews are summarized below.

- The city of St. Charles and broader community are concerned about the migration of the OU3 plume towards the EPWF, as well as the remedial timeframe and ability of the aquifer to attenuate contaminants.
- The city of St. Charles, the CAG, and the OU3 Group are concerned that the OU1 GETS is not effectively containing contaminants and preventing migration from OU1 and OU2 into OU3.
- The city of St. Charles and members of the CAG have expressed their concerns regarding the performance and lines of evidence to support the OU3 MNA remedy and would like to see a more active approach to achieving the cleanup goals.
- The city of St. Charles believes the site poses a vapor intrusion risk and does not agree with the limited evaluation conducted by the EPA in 2023. The EPA found there is no current risk from vapor intrusion to the residents residing in the Deerfield Village mobile home park.
- The city of St. Charles expressed their concern regarding the transfer of ownership of the former Findett and Cadmus properties overlaying the OU3 source area.
- The city of St. Charles and the CAG are dissatisfied with the design of the Site Profile Page, stating that the website is too cumbersome and difficult to navigate.
- The city of St. Charles and the CAG have expressed concern and interest with engaging the broader community for the site. Specifically, local school districts, Universities, the County of St. Charles, the trauma center at St. Joseph Hospital the Developmental Disability Resource Board of St. Charles County, local grocery stores, and the county health department were all recommended as groups or organizations the EPA should reach out to for current and future community engagement activities for the site.
- The city of St. Charles, CAG and individuals in the community have shared that the EPA needs to improve its ability to effectively communicate technical information with members of the public who often have no scientific or engineering backgrounds.

Since the last FYR, the EPA has significantly increased engagement efforts to ensure outreach activities address the needs and concerns of the community. A summary of these efforts is described below. As the site continues to move through the Superfund process, the agency is dedicated to remaining flexible and evolving what tools and resources are used to stay engaged with the community and stakeholders:

- An independent technical advisor has been assigned to interpret and present highly technical site documents.
- A local EPA resource has been assigned to the site and is available to meet and discuss site information with the community or stakeholders.
- Updated fact sheets were developed in 2024 with background information and updates.
- The EPA provided a technical advisor in 2023 to support the formation of the CAG and remains available as a resource for the group.
- The EPA participates in routine meetings with the city of St. Charles to discuss site technical information.
- A facilitator has been obtained through the EPA to facilitate the meetings between the EPA and the city of St. Charles to ensure the discussions are productive, organized, and all questions/concerns from the participants are addressed.
- The site team has made improvements to the Site Profile Page to address feedback received from the community and stakeholders. This has included highlighting recently added documents and organizing the site information presented.
- The EPA posts draft documents to the Site Profile pages and includes associated comments.
- Weekly site updates are sent to members of the CAG.
- The EPA reached out to organizations that were recommended by the FYR interview participants.
- The EPA is evaluating the use of other resources and tools to engage with the broader community.

Data Review

This FYR included a review of relevant information contained in a variety of site-related documents. The information review primarily focused on documents produced after July 2020 (start of the FYR timeframe), but also included older information necessary for an adequate understanding of the site history. Well figures, COC tables, trend charts and remedial timeframe calculations, are contained in Appendices B, C, G, and H.

<u>0U1</u>

Due to SantoLubes' inability to pay for operation of the GETS, as well as the associated groundwater monitoring, the EPA assumed operational control of the OU1 GETS in February 2021, including associated groundwater monitoring. During this FYR period, the EPA conducted groundwater monitoring in September 2021, October 2022, September 2023, and May 2024.

Routine monitoring currently consists of sampling seventeen monitoring wells, two extraction wells and the effluent of the treatment system. The seventeen monitoring wells are: MW-2, MW-4, MW-5, MW-5B, UA-2, LA-3, UA-3, LA-4, UA-4, LA-5, MW-7, MW-8, MW-9, UA-11, UA-12, UA-13, and EW-1. The two extraction wells are: EW-2 and MW-6. A summary of the sampling results from May 2024 is included in Table 5 (TetraTech, 2024b). Tables containing groundwater monitoring results from September 2021 through May 2024 can be found in Appendix C. A map of the OU1 well network can be found in Appendix B.

Monitoring Well	1,1- DCA	1,1- DCE	Cis-1,2- DCE	VC	1,4- Dioxane	1,2- DCB	1,4- DCB	Chlorobenzene	Benzene	PCBs
MCL/RSL	2.8*	7	70	2	0.46*	600	75	100	5	0.5
MW-2	5.3	ND	ND	18	3.1	ND	ND	ND	1.9	ND
MW-4	1.5	ND	ND	3.8	12	ND	ND	ND	ND	ND
MW-5	ND	ND	61	75	2.1	ND	ND	ND	ND	ND
MW-5B	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
UA-2	5.6	ND	ND	8.5	15	ND	ND	ND	2.4	ND
LA-3	ND	ND	4.5	2	ND	0.50	0.63	1.6	ND	ND
UA-3	0.79	ND	20	6.2	2.7	1.5	1.9	7.3	ND	ND
LA-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
UA-4	ND	ND	ND	ND	0.23	ND	ND	ND	ND	ND
LA-5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW-7	4.0	ND	ND	2.1	7.9	ND	ND	ND	ND	2.1
MW-8	ND	ND	14	16	1.6	ND	ND	ND	2.8	3.9
MW-9	8.9	5.8	ND	19	0.98	ND	ND	ND	8.3	ND
UA-11	3.3	41	840	270 J	0.71	0.52	0.57	1.1	4.3	ND
UA-12	160	ND	18,000 J	8,700 J	510	530	800	1,600	100	4.7 J
UA-13	2	ND	4.3	2.4	10	ND	ND	ND	ND	17 J
EW-1	85	19	8,800 J	3,100 J	380	920	1,400	1,600	76	132 J
EW-2	8.4	0.79	130 J	93 J	8.1	ND	ND	ND	120 J	1.2
MW-6	44	10	460 J	180 J	71	4.9	0.63	4.9	91	1.5
Influent	29	4.7	690	270 J	34	1.8	0.50	2.6	100	1.6
Effluent	ND	ND	0.83	ND	33	ND	ND	ND	ND	ND

Table 5. OU1 Groundwater Monitoring Results May 2024

Notes:

- * No EPA MCL established. Cleanup levels rounded to two significant figures and based upon 1E-06 excess lifetime cancer risk (EPA, 2024).
- Of note, the remedy for OU1 is a containment remedy, not a restoration remedy. Therefore, there are no cleanup goals for OU1.
- $\odot\,\text{MCL}$ or regional screening level exceedances are highlighted.
- O RSL = Regional Screening Level
- $\odot\,\text{ND}$ = not detected at laboratory reporting limit
- O J = Estimated Value
- \odot All concentrations in micrograms per liter
- \odot 1,2-DCB = 1,2-dichlorobenzene
- \odot 1,4-DCB = 1,4-dichlorobenzene
- \odot Data Source: Tetra Tech, 2024b

As indicated in Table 4, multiple compounds exceeded their respective MCL or regional screening level throughout OU1. Most groundwater contamination was identified in monitoring wells screened in the shallow groundwater. Monitoring wells screened in the deeper groundwater, MW-5B, LA-3, LA-4 and LA-5, showed few detections for site contaminants of concern, apart from the detection of vinyl chloride at 2 ug/L in LA-3.

The highest concentrations of COCs were identified in former extraction well EW-1 and UA-12, which are within a few feet of each other in the former quench pond area. Monitoring well UA-11, which is the only monitoring well located on the former Cadmus property, had MCL or RSL exceedances for 1,1-DCA, 1,1-DCE, cis-1,2-DCE, vinyl chloride, and 1,4-dioxane. This is a possible indicator that residual soil contamination not addressed during the OU2 Removal Action is contributing to the groundwater plume.

1,4-Dioxane, which is not currently a COC, was identified in multiple wells throughout the site at levels exceeding the EPA RSL.

In 2024, the HBR OU3 Group conducted Mann-Kendall and Sen's Slope analyses for select OU1 monitoring wells as part of their OU3 MNA evaluation (UES, 2024a). The analyses were conducted using data collected from August 2008 to September 2023. The trend analysis data are included in Appendix G. A summary of the Mann-Kendall analyses is provided in Table 6 below.

Monitoring Well	TCE	1,2-DCE (total)	Vinyl Chloride	Benzene
MW-2	NA	Decreasing	Decreasing	Decreasing
MW-4	NA	Increasing	No Trend	No Trend
MW-5	Decreasing	Decreasing	Decreasing	Decreasing
UA-2	NA	No Trend	Decreasing	Decreasing
LA-3	Decreasing	Decreasing	Decreasing	NA
UA-3	NA	Decreasing	No Trend	Decreasing
EW-1	Decreasing	No Trend	Decreasing	Decreasing
MW-6	Decreasing	No Trend	Decreasing	Decreasing

Table 6: Mann-Kendall Analyses OU1

Notes:

- No Trend = Trend not significant at 95% confidence interval.
- N/A = not applicable
- Increasing trends highlighted
- Data Source: UES, 2024a

Most of the monitoring wells indicated decreasing or no trend for the site contaminants of concern analyzed. The only identified increasing trend was 1,2-DCE in monitoring well MW-4. Additionally, the calculated Sen's Slope for vinyl chloride in MW-4 was 0.2225. A positive Sen's Slope can be an indicator of a future increasing trend. MW-4 is located north and off-site of the Findett property. The increasing trend of 1,2-DCE, as well as the positive Sen's Slope for vinyl chloride, in MW-4 is an indication that groundwater contamination in OU1 is contributing to the OU3 groundwater plume.

As part of the OU3 MNA Evaluation (UES, 2024a), a mass flux analysis was conducted and calculated the following mass flux rates for deeper contaminant migration from OU1 to OU3:

- Benzene: 0.044 kg/year
- 1,2-DCE (total): 0.57 kg/year
- Vinyl Chloride: 0.42 kg/year

Based on the calculated flux rates, it appears the OU1 GETS is not exerting sufficient hydraulic capture to contain the OU1 groundwater plume.

In March 2024, the EPA collected direct-push groundwater samples at two boring locations along the southern extent of the former Cadmus property, and two boring locations south, upgradient, of the former Cadmus property. Samples were collected at multiple depths. Multiple site contaminants of concern were identified in groundwater samples from borings located on the Cadmus property. The following contaminants of concern were detected at one or more locations at concentrations exceeding their respective MCLs: cis-1,2-DCE, TCE, and vinyl chloride.

The following contaminants of potential concern that were detected above regulatory levels but are not currently listed contaminants of concern for the site are: 1,1,2-TCA, 1,2,3-trichloropropane, 1,2-DCA, chloroform and methylene chloride (Tetra Tech, 2024a). No site contaminants of concern were

identified in samples collected upgradient of the Cadmus property. These results indicate the potential for residual soil contamination that was not addressed during the OU2 Removal Action is an ongoing source the OU1 groundwater plume. A map of the boring locations and the associated data can be found in Appendix C.

In March 2024, the EPA collected eight soil gas samples in the vicinity of the Cadmus property and in the city right-of-way south and west of the Cadmus property (Tetra Tech, 2024a). Soil gas sample results were compared to the EPA's vapor intrusion screening levels for exterior soil gas with a Target Risk Value of 10⁻⁶ and a hazard quotient of 1.0 The highest concentrations of volatile organic compounds were identified in sampling location SG-9, located adjacent to the former quench pond. Vapor intrusion screening levels exceedances were also noted in SG-01 through SG-03, located along the city right of way west of the Cadmus property. The following compounds were identified in one or more locations at concentrations exceeding the exterior soil gas vapor intrusion screening levels: 1,2,4-trimethylbenzene, 1,2-dichlorobenzene, 1,3-butadiene, 1,4-dichlorobenzene, benzene, chlorobenzene, ethylbenzene, m and/or p-Xylene, trichloroethane, and vinyl chloride. A map of the boring locations and the associated soil gas data can be found in Appendix C.

<u>0U2</u>

There is no monitoring data to review for this OU. The remedy for OU2 was a PCB soil removal. Wells for the OU1 remedy are in both OU1 and OU2.

<u>0U3</u>

The OU3 monitoring network consists of fourteen perimeter compliance point monitoring wells, MW-C1 through MW-C10 and MW-C16 through MW-C19, five interior monitoring wells within the affected area, MW-C11 through MW-C15, as well as City Well W-8. Influent/effluent sampling is currently being conducted by Ameren under OU4 and those data are shared with the HBR OU3 Group. The HBR OU3 Group conducts annual sampling of the entire OU3 monitoring network, and semi-annual monitoring of certain designated sampling locations.

The latest annual sampling event was conducted in November through December 2023. A summary of the sampling results is included in Table 8 below. Historical sampling results can be found in Appendix C.

Monitoring	1,1-DCA	Trans-	Cis-1,2-	Vinyl	Benzene	1,4-Dioxane
Well		1,2-DCE	DCE	Chloride		
MCL/RSL	2.8*	100	70	2	5	0.46*
MW-C3	ND	ND	0.9J	0.3J	ND	ND
MW-C4	ND	ND	ND	ND	ND	1.03
MW-C8	ND	ND	2.5	7.4	ND	0.92
MW-C11	1.0J	ND	11.2	1.9	0.2J	ND
MW-C12	0.3J	ND	7.9	0.3J	ND	ND
MW-C13	4.2	0.2J	22	9.0	16.6	6.59
MW-C15	6.1	ND	40.5	59.1	16.9	4.08
MW-C16	ND	ND	0.4J	ND	ND	ND
MW-C17	1.1J	ND	4.4	4.3	ND	ND

Table 7: Annual Groundwater Monitoring Results November-December 2023

Notes:

- All units in ug/L
- * No EPA MCL established. Cleanup levels rounded to two significant figures and based upon 1E-06 excess lifetime cancer risk (EPA, 2024).
- Listed contaminants of concern for OU3 are shaded in.
- MCL or regional screening level exceedances are highlighted.
- Monitoring wells MW-C1, MW-C2, MW-C5, MW-C6, MW-C7, MW-C9, MW-C10, and MW-C14 were not included on this table due to no detections of site contaminants of concern.
- ND = Not detected at laboratory reporting limit
- J = Analyte detected at the laboratory reporting limit

As indicated in Table 8, concentrations of vinyl chloride in monitoring wells MW-C8, MW-C13, MW-C15, and MW-C17 exceeded the MCL. Concentrations of benzene in MW-C13 and MW-C15 exceeded the MCL. Additionally, concentrations of 1,4-dioxane, which is not currently a site contaminant of concern, exceeded the regional screening level in MW-C4, MW-C8, MW-C13, and MW-C15. Site contaminants of concern were not detected in the following monitoring wells: MW-C1, MW-C2, MW-C5, MW-C6, MW-C7, MW-C9, MW-C10, and MW-C14.

City Well W-8 was sampled multiple times during this FYR period, see Appendix C. Vinyl chloride was detected multiple times at concentrations up to 1.7 ug/L, cis-1,2-DCE was detected multiple times at concentrations up to 1.0J ug/L, and 1,1-DCA was detected during two sampling events at 0.1 J ug/L. There were no MCL or risk-based cleanup level exceedances for OU3 COCs in CW8 during this FYR period.

In 2024, the HBR OU3 Group conducted a MNA Evaluation of the well network (UES, 2024a). As part of the MNA Evaluation, Mann-Kendall analyses was conducted for select monitoring wells. For most of the monitoring wells, the analyses were conducted using data collected from August 2008 to November/December 2023. A date range of June 2018 to December 2023 was used for CW-16 and CW-17 to exclude non-detect values from earlier sampling events. The trend analysis data are included in Appendix G. A summary of the Mann-Kendall analyses is provided in Table 7 below.

Monitoring Well	Cis-1,2-DCE	Vinyl Chloride	Benzene
MW-C3	N/A	Decreasing	N/A
MW-C8	No Trend	No Trend	N/A
MW-C11	Decreasing	Decreasing	Decreasing
MW-C12	Decreasing	Decreasing	Decreasing
MW-C13	No Trend	No Trend	Decreasing
MW-C15	Increasing	Increasing	Increasing
MW-C16	No Trend	No Trend	N/A
MW-C17	Increasing	Increasing	N/A

Table 8: Mann-Kendall Analyses OU3

Notes:

- No Trend = Trend not significant at 95% confidence interval.
- N/A = not applicable
- Increasing trends highlighted

The Mann-Kendall analyses identified increasing trends of vinyl chloride and cis-1,2-DCE in monitoring wells MW-C15 and MW-C17, as well as benzene in MW-C15. Decreasing trends of cis-1,2-DCE, vinyl chloride and benzene were identified in MW-C11, MW-C12, as well as a decreasing trend of vinyl chloride in MW-C3, and a decreasing trend of benzene in MW-C13. The trend analysis did not identify a significant trend at a 95% confidence interval for cis-1,2-DCE and vinyl chloride in MW-C8, MW-C13, and MW-C16.

The MNA Evaluation concluded that concentration trends in the OU3 groundwater plume were related to natural attenuation processes, as well as migration from OU1 due to incomplete hydraulic containment.

The MNA Evaluation also included hydrographs from the OU3 monitoring well network. The hydrographs show a 5-foot difference in groundwater elevation between the shallow and deep monitoring wells, which are screened with just a 10-foot vertical difference. This difference in groundwater elevation indicates that a downward hydraulic vertical gradient could be driving contamination deeper. Hydrographs for OU3 are provided in Appendix H.

Site Inspection

The inspection of the site was conducted on October 22, 2024. In attendance were EPA Remedial Project Manager James Curry, EPA Section Supervisor Susan Fisher, MoDNR Project Manager Jonathan Clark, and the current owner of the former Findett and Cadmus properties. The purpose of the inspection was to assess the protectiveness of the remedy. During the site inspection, monitoring wells for the site were examined for locks and any needs for repairs or replacement. Components of the OU1 GETS were also inspected, including the extraction well pumps and piping, tray air stripper blower and tower, and the discharge and exhaust were checked for any leaks or blockages.

The most significant OU1 issue identified during the FYR site inspection was the lack of a sealed and locked cover for well EW-1. This was resolved by installing a locked and sealed cover shortly after the site inspection. No other issues that could impact remedy protectiveness were observed. The site Inspection Checklist and pictures can be found in Appendices F and K.

V. TECHNICAL ASSESSMENT

QUESTION A: Is the remedy functioning as intended by the decision documents?

OU1 Question A Summary:

The OU1 groundwater remedy documented in the 1988 Record of Decision is a containment remedy, not a restoration remedy. Thus, cleanup goals were never defined for OU1. Sampling data from OU1 and the adjacent OU3 has documented that migration of contamination in the shallow aquifer continues to impact off-site areas in OU3, located hydraulically downgradient from OU1. Thus, the OU1 groundwater remedy does not appear to be functioning as intended by the OU1 Record of Decision. Risk of direct contact exposure to contamination was addressed in April 2003, when surface soils were excavated and disposed of off the site.

Additional treatment of the source area is currently being evaluated by the HBR OU3 Group via the OU3 Contingency Plan to address residual contamination in the subsurface at the source area for the benefit of the OU3 remedy (UES, 2024b). The EPA approved a work plan from the HBR OU3 Group to investigate the source area in November 2024. The outcome of the CPAR being prepared by the HBR OU3 Group is expected to result in a more effective means of remediating residual contamination in the source area contributing to the OU3 plume and ensure the long-term protection of the EPWF.

OU1 Remedial Action Performance

Increasing trends of site contaminants of concern have been identified in OU1 monitoring well MW-4 and OU3 monitoring wells MW-C15 and MW-C17, indicating insufficient capture is exerted by the groundwater extraction and treatment system to prevent off-site migration from OU1.

This contaminant mass flux impacts the effectiveness of the OU3 MNA remedy and demonstrates that insufficient capture is being exerted by the groundwater extraction and treatment system. The previous excavation to 3.5 feet bgs has removed the potential for direct contact exposure at the source area. However, some residual contaminant mass is present below the limit of excavation and is contributing to the OU1 groundwater plume.

It is recommended that focused source characterization and treatment be completed to better define and reduce the mass of the remaining groundwater contamination and mitigate off-site migration from OU1. Additionally, a thorough evaluation of the existing groundwater extraction and treatment system is recommended to determine its effectiveness and determine if improvements would be appropriate.

OU1 System Operations and Maintenance

The EPA assumed operations and maintenance of the groundwater extraction and treatment system from Santolubes in February 2021. Due to diminished capacity because of iron-fouling and deterioration, extraction well EW-1 was replaced by a new extraction well EW-2, which was installed at a better location on the site in 2022. In August 2023, the EPA installed a new tray-style air stripper at the site. The OU1 GETS has generally operated consistently throughout the FYR period with some shutdown intervals due to pump failures, well screen cleaning, iron fouling, which is a persistent problem, routine treatment system maintenance of extraction wells, and periods of extreme cold temperatures causing the water to freeze and pipes to burst. Scheduled and unscheduled shutdown durations varied from a few hours to a few weeks.

No ongoing operations and maintenance are necessary for OU1 soils.

OU1 Implementation of Institutional Controls and Other Measures

ICs are in place to prohibit installation of domestic and public water supply wells and containing restrictions on the construction of ponds or lakes in areas of known groundwater contamination and to restrict land use at the former Findett and Cadmus properties. EPA approval is required prior to disturbance of soils or construction of onsite buildings. Residential use of the property is prohibited.

OU1 Expected Progress Towards Meeting Remedial Action Objectives

The OU1 Record of Decision did not explicitly define Remedial Action Objectives. However, the Record of Decision indicated that the goal of the remedy was to contain groundwater contamination in the shallow aquifer. Based on data collected in OU1 and OU3, it appears the groundwater extraction and treatment system has not exerted sufficient hydraulic capture to contain the OU1 groundwater plume. Insufficient time for performance monitoring has elapsed since installation of the new extraction well to determine if capture has been successful. However, historical groundwater migration from OU1 appears to be impacting OU3.

OU2 Question A Summary:

The shallow contaminated soils in OU2 were addressed through excavation on the former Cadmus property pursuant to an ASAOC with multiple RPs. The excavation and soil removal were consistent with the EE/CA and Action Memorandum and were effective in removing hazardous substances to slightly less than 5 feet bgs. Confirmation samples of the excavation floor and sidewall were not required per the ASAOC. Additional characterization of OU2 soils is currently being evaluated through the CPAR by the HBR OU3 Group to determine whether OU2 soils are contributing to OU1 groundwater contamination to enhance the OU3 remedy (UES, 2024b).

OU2 Remedial Action Performance

Removal of contaminated soils have addressed the potential for direct contact exposure at and above the limit of excavation at OU2. However, some residual contaminant mass may be present below the limit of excavation and could be contributing to the OU1 groundwater plume. The EPA recommends that additional focused source characterization and treatment be completed to better define and reduce any remaining contaminant mass remaining in OU2 soils.

Expected Progress Towards Meeting Remedial Action Objectives

The OU2 Action Memorandum did not explicitly define Remedial Action Objectives. However, the primary objective of the Removal Action was to remove direct contact exposure to surface soils impacted by PCBs and other hazardous substances while also reducing the contribution of soil contamination to OU1 groundwater contamination. This objective has been met, although there may still be soil contamination below the limit of excavation in OU2 contributing to OU1 groundwater contamination.

OU3 Question A Summary:

The RAO for OU3 as defined in the ROD is to "protect human health by eliminating exposure to groundwater contaminated above regulatory standards or risk-based standards for site contaminants." This is currently being achieved through the utilization of the Wellhead Protection District ordinance which addresses the IC requirements of the OU3 ROD. The district ordinance prohibits the drilling of private drinking water wells and construction of ponds or lakes 15-ft bgs. Consistent with the *National Oil and Hazardous Substances Pollution Contingency Plan*, the OU3 remedy is intended to restore the aquifer to unlimited uses. However, the projected remedial timeframe for OU3 is extending beyond the 20-year timeframe established in the ROD, and contamination is being detected above cleanup levels at point of compliance wells. Therefore, the remedy is not functioning as intended by the decision document and additional remedial actions will be implemented through the ongoing OU3 remedial contingency process.

<u>QUESTION B:</u> Are the exposure assumptions, toxicity data, cleanup levels and Remedial Action <u>Objectives (RAOs) used at the time of the remedy selection still valid?</u>

Question B Summary:

For OU1, the ROD did not explicitly define RAOs. However, the ROD indicated that the goal of the remedy was to contain groundwater contamination in the shallow aquifer. The remedial goal of containing contaminated groundwater and preventing migration remains valid but is not currently being achieved.

For OU2, the EPA completed an evaluation of the Cadmus property, designated as OU2, which resulted in an EE/CA primarily to address PCB-contaminated soil at the site. The OU2 Action Memorandum, signed on November 7, 1995, does not explicitly define RAOs. However, the proposed Removal Action

required the excavation of PCB-contaminated soils and off-site disposal of all soils contaminated with PCBs above 25 ppm and located above the water table at the Cadmus property. Those removal goals remain valid.

For OU3, the Remedial Action Objective was to protect human health by eliminating exposure to groundwater contaminated above regulatory standards or risk-based standards for site-related contaminants. This RAO remains valid.

The cleanup levels identified for soil and groundwater contaminants of concern at the time of remedy selection remain valid. However, future groundwater monitoring reports should use the EPA's current tapwater regional screening levels for 1,1-dichloroethane, for which toxicity values have changed since the time of remedy selection, and for 1,4-dioxane, which has been detected in multiple monitoring efforts and should be added to the list of contaminants of concern.

Changes in Standards and To Be Considereds

For OU1 groundwater, chemical-specific cleanup levels were not identified in the 1988 Record of Decision, which called for hydraulic containment. Thus, there have been no changes in standards identified as applicable or relevant and appropriate requirements or in To Be Considered.

For OU1 and OU2 soil, the PCB cleanup level of 25 ppm was selected based on the Toxic Substances Control Act PCB Spill Cleanup Policy for low occupancy areas, which was determined a To Be Considered requirement. The last update to the Toxic Substances Control Act PCB Spill Cleanup policy was on August 29, 2023. It became effective on February 26, 2024, see <u>https://www.ecfr.gov/current/title-40/chapter-I/subchapter-R/part-761</u>. These updates impacted the implementation of the policy but did not change the cleanup levels. The current cleanup level of 25 ppm for PCB at this site remains valid in accordance with 40 CFR Part 761.61(a)(4). However, if development of OU1 and OU2 were to occur, the cleanup level for low occupancy areas would no longer be valid.

For OU3 groundwater, four contaminants of concern were identified in the 2005 ROD. MCLs, which are Federal Applicable or Relevant and Appropriate Requirements, were used to identify the cleanup levels for three of the contaminants of concern: benzene (5 μ g/L), cis-1,2-DCE (70 μ g/L) and VC (2 μ g/L).

These values remain unchanged today. For the fourth contaminant of concern, chloroethane, a riskbased concentration of 5 μ g/L, based on the Region 9 PRG Table, was identified in the Record of Decision as the cleanup level. The Region 9 PRG Table relied upon an outdated toxicity value. Today, the current EPA tapwater regional screening level for chloroethane, based on a non-cancer hazard quotient of 1, is 8,300 μ g/L. This value is considered appropriate for sites in industrial/nonresidential settings where access is restricted. Because the cleanup level is lower than the current regional screening level, it remains valid for the protection of human health.

Contaminant	Performance Standard (ppb) in 2005 ROD	Current MCL or RSL
Benzene	5(a)	5
cis-1,2-Dichloroethene	70(a)	70
Chloroethane or Ethyl Chloride	5(b)	8300(c)
Vinyl Chloride	2(a)	2

Table 10. Comparison of OU3 groundwater cleanup levels tocurrent MCLs or tapwater regional screening levels.

Note:

• All units in ug/L (ppb)

• (a)National Primary Drinking Water Regulations <u>https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations</u>

• (b) Risk-based cleanup level in Record of Decision

• (c) Current tapwater screening level based on noncancer hazard quotient of 1.0 (EPA, 2024)

Changes in Toxicity and Other Contaminant Characteristics

As noted above, the cleanup levels identified for soil and groundwater contaminants of concern remain valid. However, additional contaminants are being monitored in site groundwater.

Although identified as a chemical of potential concern, 1,1-DCA was screened out as a contaminant of concern in the 2005 Record of Decision because the detected concentrations were less than the risk-based concentration at that time, which was 810 μ g/L. Cancer toxicity values were not available for 1,1-DCA in 2005 but have since become available. Using these new toxicity values, the current EPA tapwater regional screening level based on an excess cancer risk of 1 x 10⁻⁶ (one in one million) is 2.8 μ g/L, meaning that the risk-based concentration used in 2005 poses greater than a 1 x 10⁻⁴ (one in 10,000) excess cancer risk in comparison with the regional screening level.

1,4-dioxane and 1,1-DCA should be added as contaminants of concern for groundwater.

For OU3, the HBR OU3 Group will be conducting further source area sampling events during the FYR period to determine the extent of residual contamination that could be remediated to further enhance performance in OU3. Establishing soil cleanup goals for those COCs contributing to groundwater contamination is appropriate.

Changes in Risk Assessment Methods

There have been no changes in risk assessment methodologies since the last FYR that would affect the protectiveness of the remedy.

Changes in Exposure Pathways

Human Health Risk Assessment

The former Findett and Cadmus properties were purchased by a private party in early 2024. The purchaser informed the EPA that they intend to use the properties for aboveground storage. The EPA made the purchaser aware of the environmental covenant on the two properties that prohibits the disturbance of soils on the two parcels. The EPA has also advised the purchaser to install a vapor mitigation system to ensure VOCs do not accumulate within the former Cadmus building, which is the only viable structure on the two parcels.

For OU3, a developer has expressed interest in establishing residential uses for a 23-acre parcel near OU3. The EPA determined that the proposed expansion plans were not incompatible with the selected remedy for the site and issued a comfort letter for the 23-acre parcel on April 26, 2024. However, should site conditions change, follow-up on future residential development will be important to ensure that there are no new exposure pathways created by development of the 23-acre parcel.

As stated in the previous FYR, the potential for vapor intrusion should be further investigated if there is a change or anticipated change in land use at OU1 or OU2. Ownership of the OU1 and OU2 properties has changed during this FYR period. The EPA understands the new owner intends to use these two parcels for above ground storage. This use is not incompatible with existing environmental covenants on the site. The new owner is currently using the former Cadmus building for storage purposes and spends 1-2 hours per week onsite (EPA, 2025).

The EPA is not aware of any unanticipated toxic byproducts or daughter products as the breakdown chemicals of PCE have been included as COCs. The EPA is not aware of any physical site changes that have occurred during this FYR period that would impact the protectiveness of the remedy.

Ecological Risk

A SLERA was completed for the 2005 OU3 RI/FS. The findings from that assessment, as confirmed in the 2005 ROD, stated there is no complete pathway between OU3 groundwater and ecological receptors since groundwater does not discharge to surface water.

No ecological risk assessment has been conducted to date in OU1 and OU2. The previous FYR indicated that soil hotspots had been removed, confirmation soil samples had not been analyzed, and therefore the residual levels of PCBs in soil had not been confirmed.

Consistent with the findings of the previous FYR, there remains a potential for ecological receptors to be adversely impacted in the site's ecological habitats. The completion of a SLERA has been recommended in the previous two FYRs citing the lack of soil confirmation sampling during the OU2

Removal Action and historical samples taken from a nearby creek. Therefore, a SLERA should be completed within this FYR period. If soil or sediment samples show concentrations of PCBs above the ecological screening levels listed in Table 12, then the SLERA moves into a BERA and additional data collection may be necessary.

		0 0	· · ·	
	Chronic (ug/L)	Acute (ug/L)	(ug/kg)	(mg/kg)
Freshwater	0.014	0.014		
Sediment			59.8	
Soil (wildlife based-soil				0.33
invertebrates)				0.55

Table 12. Total PCB Ecological Screening Levels (EPA 2018)

1,4-dioxane is associated with 1,1,1-TCA which has been detected in OU1 soil, so 1,4-dioxane should be included in the required screening level ecological risk assessment in OU1 and OU2.

The completed SLERA will need to be included as an addendum to the sixth FYR.

Regarding species with special species status during this FYR period, the species status of the tricolored bat has been changed to proposed endangered and the monarch butterfly and the western regal fritillary have been added as a proposed threatened species. The Suckley's cuckoo bumble bee was listed as proposed endangered. However, no critical habitats for any threatened or endangered species have been identified near the site.

QUESTION C: Has any other information come to light that could call into question the protectiveness of the remedy?

No other information has come to light that could call into question the protectiveness of the remedy.

VI. ISSUES/RECOMMENDATIONS

Issues/Recommendations

OU(s) without Issues/Recommendations Identified in the FYR:

None

0U1/OU2	 Issue Category: Other Note: There is potential ecological risk due to historic discharges and lack of confirmation sampling from previous response actions. Issue: No ecological risk assessment has been conducted to date in OUs 1 and 2. Soil confirmation sampling was also not conducted for the previous excavations at the site. Additionally, there were historic discharges of PCB-contaminated liquids to nearby ditches. Historic investigations indicate the potential presence of PCBs above ecological concern, but below human health concern, in these ditches. Recommendation: Perform a SLERA for soils and sediment in and around 			
	OU1 and OU2 for both terrestrial and aquatic habitats.			
Affect Current Protectiveness	Affect Future Protectiveness	Party Responsible	Oversight Party	Milestone Date
No	Yes	PRP	EPA/State	7/1/2026

Issues and Recommendations Identified in the FYR:				
OU1, OU2, OU3	Issue Category: Remedy Performance			
	Issue: Continued contaminant migration from OU1 and OU2 into OU3 impacts the remedial timeframe for OU3. Contaminant migration into OU3 has already pushed the estimated remedial timeframe outside of the 20-year goal established in the OU3 ROD.			
	Recommendation: Complete the ongoing OU3 contingency process to evaluate and implement additional remedial actions to prevent contaminant migration. A thorough evaluation of the existing groundwater extraction and treatment system should be completed to determine its effectiveness and if improvements would be appropriate.			
Affect Current Protectiveness	Affect Future Protectiveness	Party Responsible	Oversight Party	Milestone Date
No	Yes	PRP	EPA/State	7/1/2026

OU3	Issue Category: Remedy Performance

	Issue: The estimated remedial timeframe for OU3 is longer than the 10-20-year timeframe established in the ROD.								
	and implement ad timeframe for OU3	Recommendation: Complete the ongoing contingency process for OU3 and implement additional remedial actions to accelerate the remedial timeframe for OU3 and restore the aquifer to unlimited use and unrestricted exposure.							
Affect Current Protectiveness	Affect Future Protectiveness	Party Responsible	Oversight Party	Milestone Date					
No	Yes	PRP	EPA/State	7/1/2026					

0U3	Issue Category: Re	medy Performance						
	Issue: Vinyl chloride routinely exceeds the MCL at point of compliance well MW-C17 and fluctuates at point of compliance well MW-C16. Increasing trends of COCs have also been observed at monitoring wells MW-C15 and MW-C17. In addition, differences in groundwater elevations between the shallow and deep monitoring wells indicate a downward vertical gradient that could draw contamination deeper in the aquifer.							
	Recommendation: Complete the ongoing contingency process for OU3 and implement additional remedial actions to mitigate the risk to the EPWF and restore the aquifer to unlimited use and unrestricted exposure. Conduct additional sampling to confirm the vertical extent of contamination.							
Affect Current Protectiveness	Affect Future Protectiveness	Party Responsible	Oversight Party	Milestone Date				
No	Yes	PRP	EPA/State	7/1/2026				

Other Findings

In addition, the following are recommendations that were identified during the FYR but do not affect current and/or future protectiveness:

- Cancer toxicity values were not available for 1,1-DCA in 2005 but have since become available. 1,1-DCA is recommended to be added as a COC for the site.
- Add 1,4-dioxane as a COC.
- Establish soil cleanup goals for OU1 and OU2 for benzene, cis-1,2-dichloroethene, chloroethane (ethyl chloride), and vinyl chloride.
- The environmental covenant for OU1 and OU2 restricts the construction of enclosed buildings on the parcels without EPA approval. Follow-up on property developments at the site to ensure no new pathways of exposure are created as part of the redevelopment and that land use restrictions, redevelopment requirements, and institutional controls are properly implemented to protect human health.
- If the OU1 GETS continues operating in the future, then the Operation & Maintenance plan should be updated to increase resiliency to extreme weather events, prevent excessive iron buildup, and increase extraction rates.
- Modifications to decision documents should be made to include the existing institutional controls for the former Findett and Cadmus properties.
- An ESD should be produced for OU3 to clarify that the aeration treatment upgrade at the city's drinking water treatment plant is no longer a requirement but is instead a potential contingency action.
- Fire response records indicate that a 3% foaming solution was used at the site in response to the April 2009 explosion at the Findett facility. The EPA recommends further assessment of potential PFAS contamination at the site.

VII. PROTECTIVENESS STATEMENT

Operable Unit: 01	Protectiveness Determination:	Planned Addendum			
	Protectiveness Deferred	Completion Date:			
		07/31/2026			

Protectiveness Statement: A protectiveness determination of the remedy at OU1 cannot be made at this time until further information is obtained. Further information will be obtained by performing a SLERA and collecting additional soil and sediment samples to document that the media is below ecological risk management levels. In addition, to ensure that the remedy is protective in the long-term, the remedy will need to be assessed to determine whether there are other Remedial Actions that can be taken at OU1 to treat residual contamination and lessen the remedial timeframe for OU3 to meet the RAOs.

Protectiveness Statement(s)

 Operable Unit: 02
 Protectiveness Determination: Protectiveness Deferred
 Planned Addendum

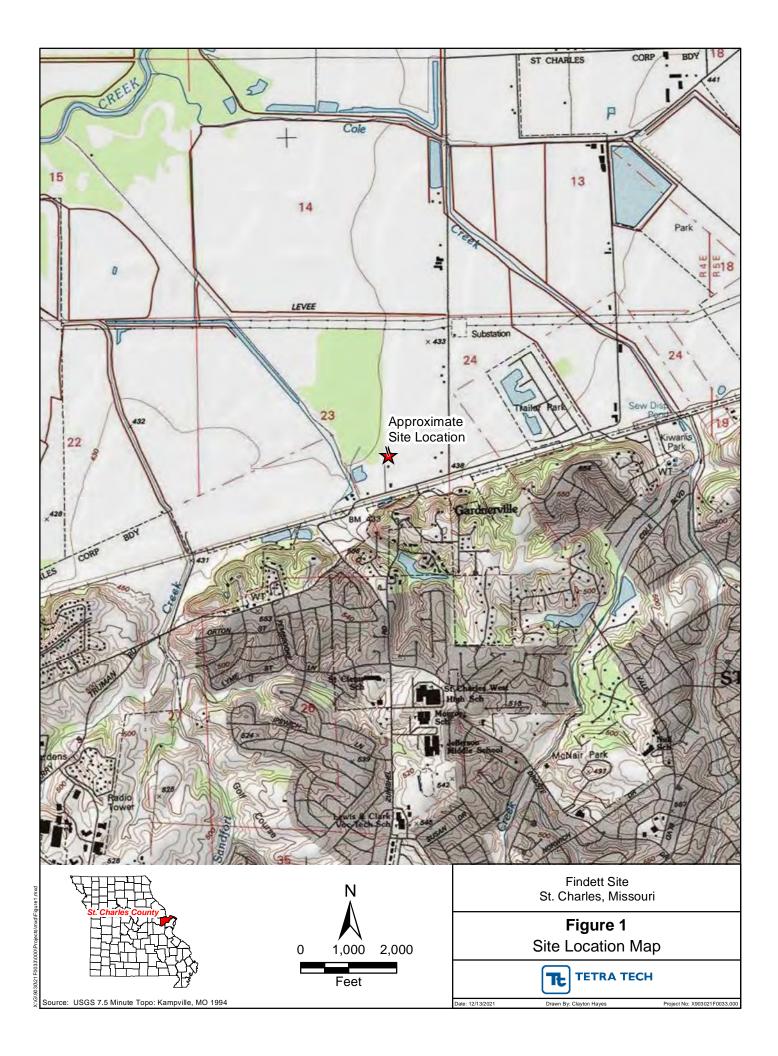
 Protectiveness Deferred
 Completion Date: 07/31/2026

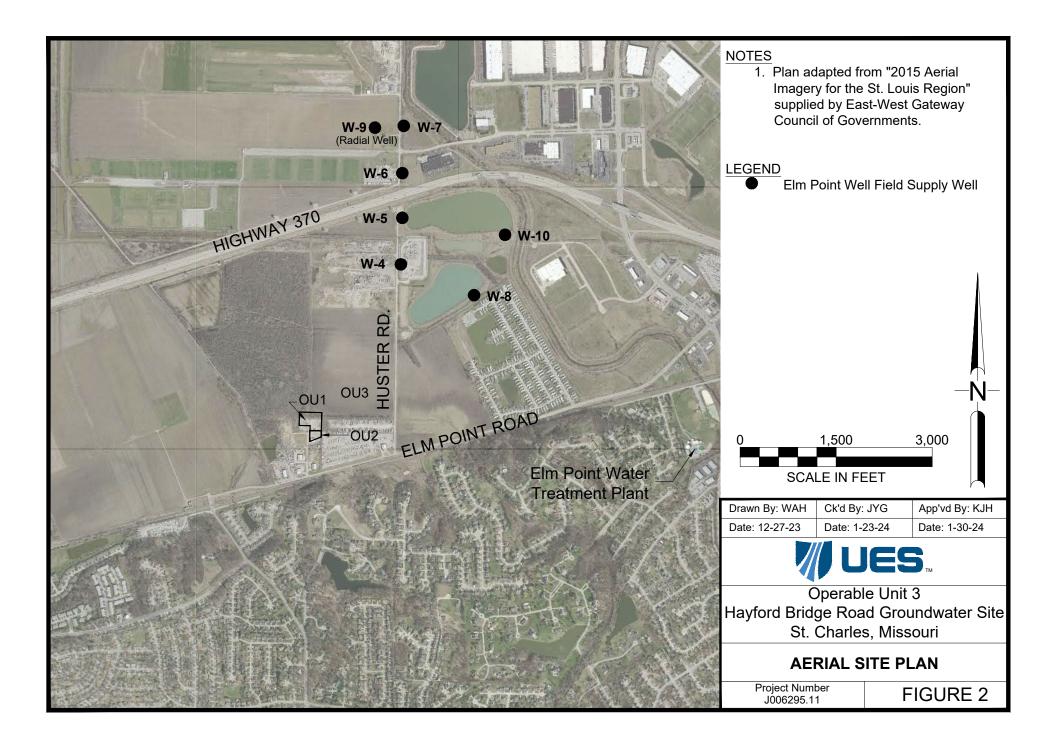
 Protectiveness Statement: A protectiveness determination of the remedy at OU2 cannot be made until further information is obtained. Further information will be obtained by performing a SLERA and collecting additional soil samples to document that the soil is below ecological risk

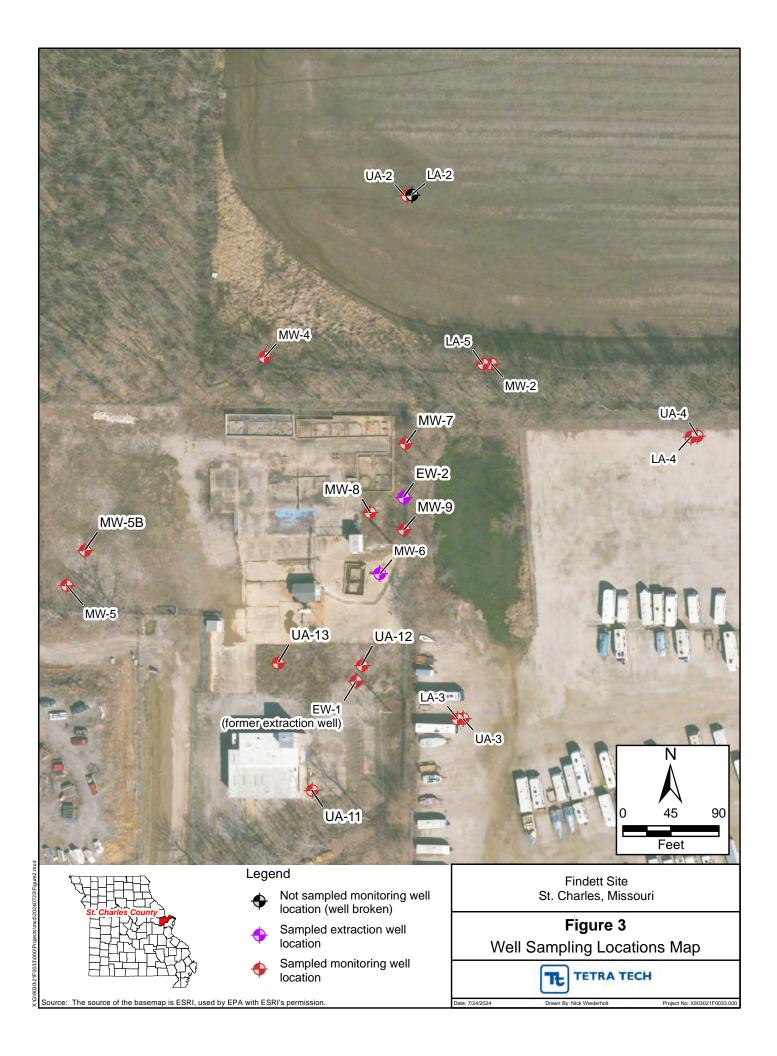
management levels.

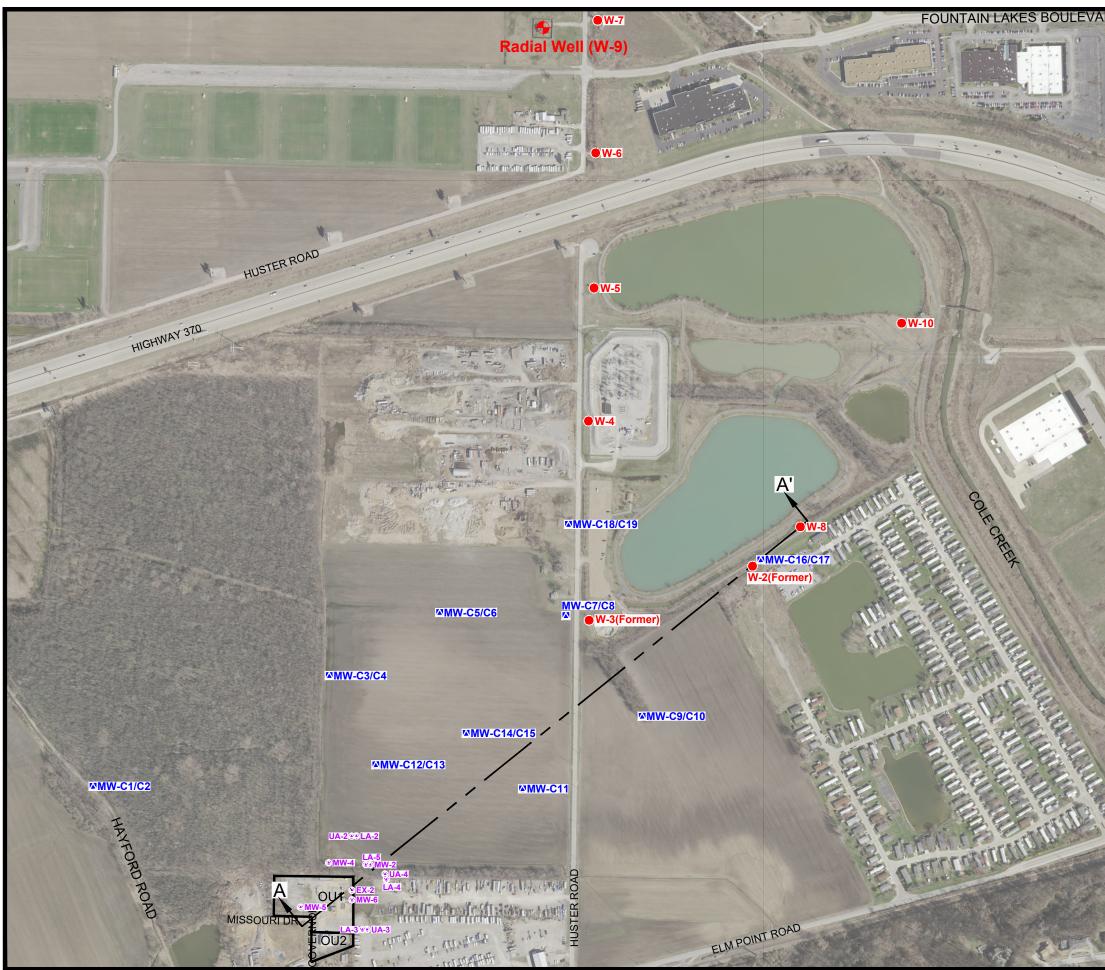
Protectiveness Statement(s)											
Operable Unit: 03	Protectiveness Determination:	Planned Addendum									
	Short-term Protective	Completion Date:									
		N/A									
Protectiveness Statement: The remedy at OU3 currently protects human health and the											
environment because	no current exposures to the groundwate	er contamination in OU3 have									
been identified. Howe	ever, for the remedy to be protective in the time of the second	ne long-term, the following									
actions need to be tak	en to ensure long-term protectiveness:	implement additional remedial									
actions to mitigate exe	ceedances at point of compliance wells a	nd risk to the EPWF, remediate									
contamination at the	source area to restore the aquifer to unli	mited use and unrestricted									
exposure, and conduc	t additional sampling to confirm the vert	ical extent of the plume.									

VIII. NEXT REVIEW

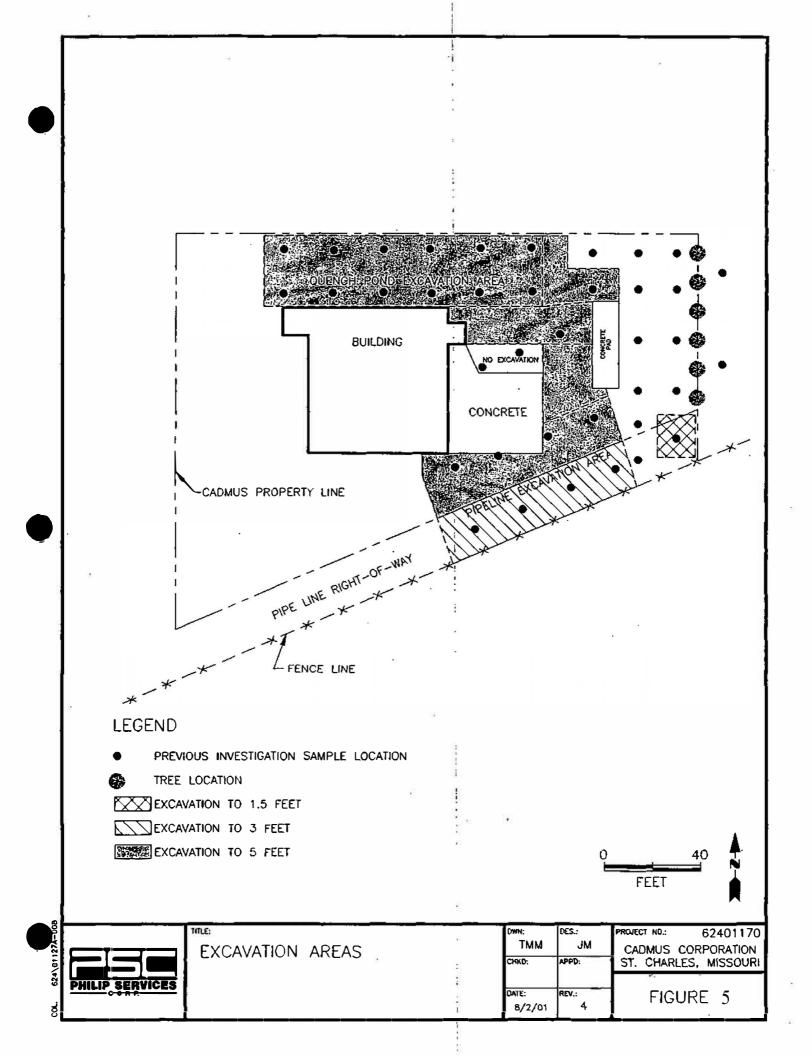

The next FYR report for the Findett Corp./Hayford Bridge Road Superfund site is required 5 years from the completion date of this review.

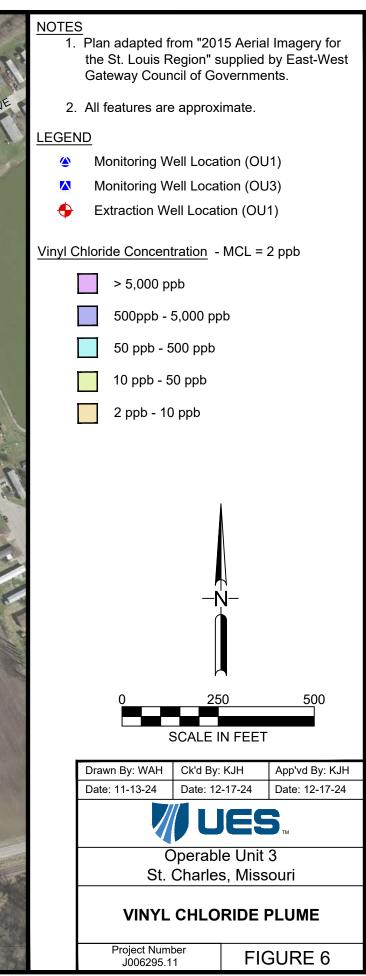

APPENDIX A – REFERENCE LIST


- CH2M Hill, 1988, Phase I Remedial Investigation Technical Memorandum, Findett/Hayford Road Ground Water, St Charles, MO, July 29.
- CH2M Hill, 1990, Contaminant Source Soil Investigation, Technical Memorandum, Operable Unit 2, Hayford Bridge Road Groundwater Site, St. Charles, MO, June 18.
- Frankson, R., K.E. Kunkel, S.M. Champion, and B.C. Stewart, 2022: Missouri State Climate Summary 2022. NOAA Technical Report NESDIS 150-MO, NOAA/NESDIS, Silver Spring, MD, 5 pp.
- Geotechnology, 2009, Evaluation of Operable Unit 1 Hayford Bridge Road Groundwater Site, St. Charles, Missouri, February 12.
- Geotechnology, 2005, Remedial Investigation and Feasibility Study Report, Operable Unit 3, Hayford Bridge Road Groundwater Site, St. Charles, MO, July.
- PDT Technical Services, 1992, *Remedial Action Findett Corporation Monthly Report*, May 6, 1992.
- TetraTech, 2024a, Soil-Gas and Groundwater Investigation Report, Findett/Hayford Bridge Road Superfund Site, OU-1 Findett Site, St. Charles, Missouri, May 13.
- TetraTech, 2024b, Monitoring Well and Groundwater Extraction and Treatment System Sampling Trip Report and Data Summary, Findett Corporation, St. Charles, MO, August 1.
- UES, 2024a, Monitored Natural Attenuation Evaluation, Operable Unit 3, Hayford Bridge Road Groundwater Site, St. Charles, MO, October 18.
- UES, 2024b, Revised CPAR Investigation Work Plan Operable Unit 3, Hayford Bridge Road Groundwater Site, St. Charles, Missouri, November 11.
- U.S. Army Corps of Engineers, 2015, Fourth Five-Year Review Report Findett/Hayford Bridge Road Groundwater Superfund Site, St. Charles, MO September 9, 2015.
- U.S. Environmental Protection Agency, 1999, *Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites*: Office of Solid Waste and Emergency Response, OSWER Directive 9200.4-17P, April 21. <u>https://www.epa.gov/sites/default/files/2014-02/documents/d9200.4-17.pdf</u>
- U.S. Environmental Protection Agency, 2001, *Comprehensive FYR Guidance: Office of Solid Waste and Emergency Response (5204G)*, EPA 540-R-01-007, OSWER No. 9355.7-03B-P, June. <u>https://semspub.epa.gov/work/HQ/128607.pdf</u>


- U.S. Environmental Protection Agency, 2011, *Recommended Evaluation of Institutional Controls,* Supplement to the Comprehensive FYR Guidance: Office of Solid Waste and Emergency Response, OSWER Directive 9355.7-18, September 13. <u>https://semspub.epa.gov/work/HQ/175441.pdf</u>
- U.S. Environmental Protection Agency, 2012, Assessing Protectiveness at Sites for Vapor Intrusion, Supplement to the Comprehensive FYR Guidance: Office of Solid Waste and Emergency Response, OSWER Directive 9200.2-84, December 3. <u>https://semspub.epa.gov/work/HQ/176385.pdf</u>
- U.S. Environmental Protection Agency, 2013a, Amendment to Enforcement Action Memorandum, Request for Time-Critical Removal Action Amendment at the Findett Corp. a/k/a Hayford Bridge Road Groundwater Superfund Site, St. Charles, St. Charles County, Missouri. <u>https://semspub.epa.gov/src/document/07/30284177</u>
- U.S. Environmental Protection Agency, 2013b, *Guidance for Evaluating Completion of Groundwater Restoration Remedial Actions*: Office of Solid Waste and Emergency Response, OSWER Directive 9355.0-129, November 25. https://semspub.epa.gov/work/HQ/175206.pdf
- U.S. Environmental Protection Agency, 2014, *Recommended Approach for Evaluating Completion of Groundwater Restoration Remedial Actions at a Groundwater Monitoring Well*: Office of Solid Waste and Emergency Response, OSWER Directive 9283.1-44, August 11. <u>https://semspub.epa.gov/work/HQ/173689.pdf</u>
- U.S. Environmental Protection Agency, 2015, Ground Water Technical Considerations during the FYR Process: Ground Water Forum Issue Paper, EPA-542-F-15-010, April. <u>https://www.epa.gov/sites/default/files/2015-06/documents/gwf_fyr_issue_paper.pdf</u>
- U.S. Environmental Protection Agency, 2018, Groundwater Statistics Tool (Version 2) and User's Guide: Office of Solid Waste and Emergency Response, September. <u>https://semspub.epa.gov/work/HQ/100001733.pdf</u> and <u>https://semspub.epa.gov/src/document/11/100001734</u>
- U.S. Environmental Protection Agency, 2018, Region 4 Ecological Risk Assessment Supplemental Guidance, March 2018 Update: EPA Region 4. <u>https://www.epa.gov/sites/default/files/2018-</u> 03/documents/era_regional_supplemental_guidance_report-march-2018_update.pdf
- U.S. Environmental Protection Agency, 2024, *Regional Screening Levels*, November. <u>https://www.epa.gov/risk/regional-screening-levels-rsls</u>
- U.S. Environmental Protection Agency, 2025, Findett call with Property Owner, February 26.

APPENDIX B – FIGURES





ARD	fc E G	or the St. Louis F ast-West Gatew overnments.		by
	2. A	Il features are s	hown approxima	te only.
the second second	3. S	ee Figure 3 for (Cross-Section A-	-A'.
		Well of Elm Poi	nt Well Field	
	•	Radial Well - El	m Point Well Fie	ld
		OU3 Monitorinc	Well Location (I	Existina)
No. 1		-	Well Location (I	
	-	o o r Morittoring		Lxioting)
		0	500	1000
			500	1000
the state		APPRO	XIMATE SCALE	IN FEET
		Drawn By: WAH Date: 12-5-23	Ck'd By: KJH Date: 12-6-23	App'vd By: KJH Date: 12-6-23
and the			GEOTECHNOL(A UES Company	
A STATE		Hayford Brid	Dperable Unit ge Road Grou Charles, Miss	undwater Site
		AI	ERIAL SITE N	/IAP

Project Number J006295.11	FIGURE 4

APPENDIX C – TABLES

TABLE 1Fall 2021GROUNDWATER SAMPLE SUMMARY AND RESULTSFINDETT CORP. SITE – ST. CHARLES, MISSOURI

Well Number	Monitoring Well Location	Sample	Measured SWL	Lab Sample Number	Benzene ¹	Chloro- benzene ¹	1,1-DCA ¹	1,1-DCE ¹	<i>cis</i> -1,2- DCE ¹	TCE ¹	VC ¹	1,4 Dioxane ²	PCBs (Aroclors) ³
vv en r uniber	filomeoring () en Location	Date	(ft amsl)		Concentration (µg/L)								
			(it unis))	EPA MCL	5	100	NE	7	70	5	2	NE	0.5
				Ν	IONITORIN	G WELLS							
MW-2	North of Findett property along brushline in agricultural field	9/20/2021	420.46	9030-4	1.0 U	1.0 U	1.3	1.0 U	1.0 U	1.0 U	1.8	0.62	1.0 U
MW-4	North of Findett property along brushline in agricultural field	9/20/2021	420.15	9030-2	3.2	1.0 U	2.8	1.0 U	6.0	1.0 U	25	7.7	1.0 U
MW-5	Southwest corner of Findett property	9/22/2021	NA	9030-14	1.0 U	1.0 U	1.0 U	1.0 U	79	1.0 U	64	0.89	1.0 U
MW-5B	Southwest corner of Findett property	9/22/2021	NA	9030-15	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U	1.0 U
LA-2*	North of Findett property in agricultural field	NS	NS	NA									
UA-2	North of Findett property in agricultural field	9/20/2021	420.24	9030-1	2.2	1.0 U	6.0	1.0 U	3.4	1.0 U	5.9	13	1.0 U
LA-3	Western part of RV storage lot east of the Findett property	9/21/2021	415.71	9030-7	1.0 U	1.0 U	1.0 U	1.0 U	3.6	1.0 U	2.6	0.20 U	1.0 U
UA-3	Western part of RV storage lot east of the Findett property	9/21/2021	425.01	9030-8	1.0 U	12	1.0 U	1.0 U	3.2	1.0 U	6.7	0.98	1.0 U
LA-4	Northern part of RV storage lot east of the Findett property	9/21/2021	411.71	9030-6	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U	1.0 U
UA-4	Northern part of RV storage lot east of the Findett property	9/21/2021	423.84	9030-5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U	1.0 U
LA-5	North of Findett property along brushline in agricultural field	9/20/2021	411.62	9030-3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.20 U	1.0 U
			GROUN	DWATER EX	KTRACTION	AND TREAT	TMENT SYST	EM				-	
EW-1	Former Extraction Well	9/21/2021	426.56	9030-10	130	2,200	130	4.8	28,000	1.0 U	7,800	310	10
MW-6	Current Extraction Well	9/21/2021	381.34	9030-11 9030-11-FD	170 170	2.3 2.0	32 31	3.7 3.5	740 730	1.0 U 1.0 U	330 330	22 19	1.7 J 1.9 J
Air Stripper Effluent	Air stripper spigot in system piping prior to discharge to sanitary sewer	9/21/2021	NA	9030-9	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	17	1.0 U

Notes:

¹ Analyzed EPA SW-846 Method 8260

² Analyzed via EPA Method 8260 SIM

³ Analyzed via EPA Method 8082

Bold values exceed the MCL

* Well is broken; unable to collect sample

	No sample collected	NS	Not sampled
amsl	Above mean sea level	PCE	Tetrachloroethene
DCA	Dichloroethane	SWL	Static water level
DCE	Dichloroethene	TCA	Trichloroethane
EPA	U.S. Environmental Protection Agency	TCE	Trichloroethene
ft	Feet	U	Not detected at concentration at or above reporting limit
FD	Field duplicate	VC	Vinyl chloride
J	Estimated value		
MCL	EPA Maximum Contaminant Level		
µg/L	Micrograms per liter		
NA	Not applicable		
NE	Not established		

TABLE 2 Fall 2022 **GROUNDWATER SAMPLE SUMMARY AND RESULTS** FINDETT CORP. SITE – ST. CHARLES, MISSOURI

Well Number	Monitoring Well Location	Sample Date	Top of Casing	Depth to Water (ft btoc)	Measured SWL	Lab Sample Number	Benzene ^{1,4}	Chloro- benzene ¹	1,2-DCB ^{1,4}	1,4-DCB ^{1,4}	1,1-DCA ^{1,4}	1,1-DCE ^{1,4}	<i>cis</i> -1,2- DCE ^{1,4}	<i>trans</i> -1,2- DCE ^{1,4}	TCE ^{1,4}	VC ^{1,4}	1,4-Dioxane ²	PCBs (All Aroclors) ³
		Dute	(ft amsl)	(10 0000)	(ft amsl)	ED4 MCI	-	100	(00			Concentr	ration (µg/L)	100			NE	0.5
						EPA MCL	5 10011700101	100	600	75	NE	7	70	100	5	2	NE	0.5
						N	IONITORIN	G WELLS										
MW-2	North of Findett property along brush line in agricultural field	10/3/2022	431.76	14.31	417.45	2200333-04	1.0 U	1.0 U	1.0 U	1.0 U	2.9 J	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	7.2	3.4 J	1.0 U
MW-4	North of Findett property along brush line in agricultural field	10/3/2022	433.15	16.25	416.90	2200333-02	5.8	1.0 U	1.0 U	1.0 U	2.2 J	1.0 UJ	8.1 UJ	1.0 UJ	1.0 U	14	8.0 J	1.0 U
MW-5	Southwest corner of Findett property	10/5/2022	431.50	9.60	421.90	2200333-16	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	39	1.0 U	1.0 U	25	0.19 UJ	1.0 U
MW-5B	Southwest corner of Findett property	10/5/2022	431.50	19.90	411.60	2200333-17	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	0.19 UJ	1.1
LA-2*	North of Findett property in agricultural field	NS	431.90	NA	NA	NS												
UA-2	North of Findett property in agricultural field	10/3/2022	432.05	15.05	417.00	2200333-01	1.0 U	1.0 U	1.0 U	1.0 U	2.0 J	1.0 UJ	1.1 UJ	1.0 UJ	1.0 U	2.1	12 J	1.0 U
LA-3	Western part of RV storage lot east of the Findett property	10/4/2022	431.21	15.55	415.66	2200333-11	1.0 U	1.8	1.0 U	1.0 U	1.0 UJ	1.0 UJ	3.3 UJ	1.0 UJ	1.0 U	3.0	0.19 UJ	1.0 U
UA-3	Western part of RV storage lot east of the Findett property	10/4/2022	431.31	8.00	423.31	2200333-12	1.0 U	11	1.6	1.6	1.0 UJ	1.0 UJ	1.2 UJ	1.0 UJ	1.0 U	3.2	1.1 J	1.0 U
LA-4	Northern part of RV storage lot east of the Findett property	10/4/2022	432.11	19.80	412.31	2200333-10	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U	0.19 UJ	1.0 U
UA-4	Northern part of RV storage lot east of the Findett property	10/4/2022	432.12	10.25	421.87	2200333-09	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U	0.19 UJ	1.0 U
LA-5	North of Findett property along brush line in agricultural field	10/3/2022	431.92	19.25	412.67	2200333-03	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U	0.19 UJ	1.0 U
MW-7	Northeast corner of Findett property along eastern side of property	10/4/2022	434.21	17.65	416.56	2200333-13	1.0 U	1.0 U	1.0 U	1.0 U	3.0	1.0 U	1.0 U	1.0 U	1.0 U	1.1	6.1 J	12.3
MW-8	Along eastern side of property near new extraction well (EW-2)	10/4/2022	438.10	21.80	416.30	2200333-14	4.1	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	180	1.0 U	1.5	93	2.4 J	35
MW-9	Along eastern side of property south of new extraction well (EW-2)	10/4/2022	431.82	15.44	416.38	2200333-15	19	1.0 U	1.0 U	1.0 U	23	1.5	660	1.0 U	1.0 U	160	7.8 J	1.0 U
					GROUN	DWATER EX	KTRACTION	AND TREAT	FMENT SYST	ГЕМ								
EW-1	Former Extraction Well	10/5/2022	433.86	8.50	425.36	2200333-18	94	1,900	910	1,300	83	15	12,000	250	1.0 U	3,300	480 J	70.1 J
EW-2	Current Extraction Well	10/4/2022	434.82	38.80	396.02	2200333-07 2200333-08	160 160	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	13 J 13 J	1.8 J 1.9 J	220 UJ 220 UJ	1.0 UJ 1.0 UJ	1.0 U 1.0 U	210 200	37 J 39 J	1.0 U 1.0 U
MW-6	Current Extraction Well	10/4/2022	432.14	45.25	386.89	2200333-06	13	6.3	7.2	1.0 U	62 J	6.2 J	1,200 UJ	3.6 J	6.7	300	20 J	2.6
Air Stripper Effluent	Air stripper spigot in system piping prior to discharge to sanitary sewer	10/4/2022	NA	NA	NA	2200333-05	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 U	37 J	1.0 U

Notes:

¹ Analyzed via EPA SV	V-846 Method 8260	DCE	Dichloroethene	SWL		
² Analyzed via EPA Me	ethod 8260 SIM	EPA	U.S. Environmental Protection Agency	TCE		
³ Analyzed via EPA Me	ethod 8082	ft	Feet	U		
⁴ Only VOCs exceeding	MCLs are included in the data table.	J	Estimated value	UJ		
Bold values exceed the l	MCL	MCL	EPA Maximum Contaminant Level	VC		
* Well is broken; unab	le to collect sample	μg/L	Micrograms per liter			
	No sample collected	NA	Not applicable			
amsl	Above mean sea level	NE	Not established			
btoc	Below top of casing	NS	Not sampled			
DCA	Dichloroethane	PCB	Polychlorinated biphenyl			
DCB	Dichlorobenzene	SIM	Selected ion monitoring			

Static water level

Trichloroethene

Not detected at concentration at or above reporting limit

Not detected at concentration at or above reporting limit; the reporting limit is an estimate

Vinyl chloride

Volatile organic compound

TABLE 3 Fall 2023 GROUNDWATER SAMPLE SUMMARY AND RESULTS FINDETT CORP. SITE – ST. CHARLES, MISSOURI

Well Number	Monitoring Well Location	Sample Date	Top of Casing (ft amsl)	Depth to Water	Measured SWL	Lab Sample Number	Benzene ^{1,4}	Chloro- benzene ^{1,4}	1,2-DCB ^{1,4}	1,4-DCB ^{1,4}	1,1-DCA ^{1,4}	1,1-DCE ^{1,4}	<i>cis</i> -1,2- DCE ^{1,4}	<i>trans</i> -1,2- DCE ^{1,4}	TCE ^{1,4}	VC ^{1,4}	1,4-Dioxane ²	PCBs (All Aroclors) ³
		Date	(It anisi)	(ft btoc)	(ft amsl)							Concentra	ation (µg/L)		_		· · · · · ·	
						EPA MCL	5	100	600	75	NE	7	70	100	5	2	NE	0.5
	MONITORING WELLS																	
MW-2	North of Findett property along brush line in agricultural field	9/18/2023	431.76	13.65	418.11	2300368-04	1.8	0.50 U	0.50 U	0.50 U	3.8	0.50 U	1.7	0.50 U	0.50 U	18	2.4	1.0 U
MW-4	North of Findett property along brush line in agricultural field	9/18/2023	433.15	15.30	417.85	2300368-02	4.1	0.24	0.50 U	0.50 U	2.3	0.50 U	5.2	0.50 U	0.50 U	14	8.8	1.0 U
MW-5		9/20/2023	431.50	9.24	422.26	2300368-18	0.16	0.36	0.50 U	0.50 U	0.50 U	0.50 U	27 J	0.50 U	0.50 U	19 J	3.9	1.0 U
MW-5B		9/20/2023	431.50	17.31	414.19	2300368-17	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.40	0.50 U	0.50 U	0.50 U	14	1.0 U
LA-2*	North of Findett property in agricultural field	NS	431.90	NA	NA	NS												
UA-2		9/18/2023	432.05	14.15	417.90	2300368-01	0.32	0.50 U	0.50 U	0.50 U	0.96	0.50 U	0.97	0.50 U	0.50 U	1.1	2.5	1.0 U
LA-3	Western part of RV storage lot east of the Findett property	9/19/2023	431.21	13.98	417.23	2300368-08	0.50 U	1.7	0.50 U	0.50 U	0.50 U	0.50 U	3.2	0.50 U	0.50 U	2.4	0.20 U	1.0 U
UA-3	Western part of RV storage lot east of the Findett property	9/19/2023	431.31	7.40	423.91	2300368-09	0.59	12	2.2	2.8	0.54	0.50 U	2.7	0.50 U	0.50 U	4.2	0.88	1.0 UJ
LA-4	Northern part of RV storage lot east of the Findett property	9/19/2023	432.11	9.95	422.16	2300368-07	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.20 U	1.0 U
UA-4	Northern part of RV storage lot east of the Findett property	9/19/2023	432.12	17.54	414.58	2300368-05 2300368-06	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U	0.20 U 0.20 U	1.0 U 1.0 U
LA-5	North of Findett property along brush line in agricultural field	9/18/2023	431.92	17.35	414.57	2300368-03	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.20 U	1.0 U
MW-7	Northeast corner of Findett property along eastern side of property	9/19/2023	434.21	16.90	417.31	2300368-11	0.25	0.30	0.50 U	0.33	3.6	0.50 U	0.45	0.50 U	0.50 U	0.50 U	10	1.0 U
MW-8	Along eastern side of property near new extraction well (EW-2)	9/19/2023	438.10	21.00	417.10	2300368-12	3.0	0.11	0.50 U	0.50 U	0.34	0.50 U	28 J	0.50 U	0.57	15	1.0	4.4
MW-9	Along eastern side of property south of new extraction well (EW-2)	9/19/2023	431.82	14.70	417.12	2300368-10	14	0.36	0.50 U	0.50 U	23 J	1.1	310 J	1.5	0.50 U	100 J	7.6 J	1.0 U
UA-13	In rock area in between the two buildings on site	9/20/2023	NA	10.49	NA	2300368-19	0.50 U	0.25	0.50 U	0.50 U	3.3	0.50 U	9.1	0.35	0.27	7.5	4.3	9.2
GROUNDWATER EXTRACTION AND TREATMENT SYSTEM																		
EW-1	Former Extraction Well	9/19/2023	433.86	6.91	426.95	2300368-13	150 J	2,200 J	1,200 J	1,800 J	120 J	28 J	20,000 J	460 J	0.84	5,100 J	280	14
EW-2		9/20/2023	434.82	50.00	384.82	2300368-15	120 J	0.67	0.51	0.42	8.9	0.50 U	110 J	0.45	0.50 U	78 J	16	1.0 U
MW-6	Current Extraction Well	9/20/2023	432.14	47.00	385.14	2300368-14	64 J	4.7	5.1	1.6	52 J	11	1,500 J	3.3	3.6	570 J	45	1.0 U
Air Stripper Effluent	Air stripper spigot in system piping prior to discharge to sanitary sewer	9/20/2023	NA	NA	NA	2300368-16	0.80	0.18	0.50 U	0.50 U	0.20	0.50 U	7.2	0.11	0.50 U	0.50 U	3.8	1.0 U

Notes:

¹ Analyzed via EPA SW	7-846 Method 8260	DCE	Dichloroethene
² Analyzed via EPA Me	thod 8260 SIM	EPA	U.S. Environmental Protection Agency
³ Analyzed via EPA Me	thod 8082	ft	Feet
⁴ Only VOCs exceeding	MCLs are included in the data table.	J	Estimated value
Bold values exceed the M	ACL .	MCL	EPA Maximum Contaminant Level
* Well is broken; unable	e to collect sample	µg/L	Micrograms per liter
	No sample collected	NA	Not applicable
amsl	Above mean sea level	NE	Not established
btoc	Below top of casing	NS	Not sampled
DCA	Dichloroethane	PCB	Polychlorinated biphenyl
DCB	Dichlorobenzene	SIM	Selected ion monitoring

SWL	Static water level
TCE	Trichloroethene
U	Not detected at concentration at or above reporting limit
UJ	Not detected at concentration at or above reporting limit; the reporting limit is an e
VC	Vinyl chloride
VOC	Volatile organic compound

n estimate

TABLE 4 Spring 2024 GROUNDWATER SAMPLE SUMMARY AND RESULTS FINDETT CORP. SITE – ST. CHARLES, MISSOURI

t							M1550	UKI											
Well Number	Monitoring Well Location	Sample Date	Top of Casing (ft amsl)	Depth to Water	Measured SWL	Lab Sample Number	Benzene ^{1,4}	Chloro- benzene ^{1,4}	1,2-DCB ^{1,4}	1,4-DCB ^{1,4}	1,1-DCA ^{1,4}	1,1-DCE ^{1,4}	<i>cis</i> -1,2- DCE ^{1,4}	<i>trans</i> -1,2- DCE ^{1,4}	TCE ^{1,4}	VC ^{1,4}	1,4-Dioxane ²	PCBs (All Aroclors) ³	Iron ⁵
		Date	(it anisi)	(ft btoc)	(ft amsl)							Co	oncentration (μg/L)					
						EPA MCL	5	100	600	75	NE	7	70	100	5	2	NE	0.5	NE
						Ν	IONITORIN	G WELLS											
MW-2	North of Findett property along brush line in agricultural field	5/13/2024	431.76	5.45	426.31	2400191-07	1.9	0.50 U	0.50 U	0.50 U	5.3	0.50 U	2.6 U	0.50 U	0.50 U	18	3.1	1.0 U	
MW-4	North of Findett property along brush line in agricultural field	5/13/2024	433.15	7.10	426.05	2400191-02	0.50 U	0.50 U	0.50 U	0.50 U	1.5	0.50 U	1.2 U	0.50 U	0.50 U	3.8	12	1.0 U	
MW-5	Southwest corner of Findett property	5/13/2024	431.50	3.35	428.15	2400191-03	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	61	0.50 U	0.50 U	75	2.1	1.0 U	
MW-5B	Southwest corner of Findett property	5/13/2024	431.50	13.12	418.38	2400191-04	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.20 U	0.98 U	
LA-2*	North of Findett property in agricultural field	NS	431.90	NA	NA	NS													
UA-2	North of Findett property in agricultural field	5/13/2024	432.05	5.90	426.15	2400191-01	2.4	0.50 U	0.50 U	0.50 U	5.6	0.50 U	4.0 U	0.50 U	0.50 U	8.5	15	1.0 U	
LA-3	Western part of RV storage lot east of the Findett property	5/14/2024	431.21	9.90	421.31	2400191-17	0.50 U	1.6	0.50	0.63	0.50 U	0.50 U	4.5	0.50 U	0.50 U	2.0	0.20 U	1.0 U	
UA-3	Western part of RV storage lot east of the Findett property	5/14/2024	431.31	2.70	428.61	2400191-18	0.50 U	7.3	1.5	1.9	0.79	0.50 U	20	0.50 U	0.50 U	6.2	2.7	1.0 UJ	
LA-4	Northern part of RV storage lot east of the Findett property	5/14/2024	432.11	2.28	429.83	2400191-11	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.20 U	1.0 U	
UA-4	Northern part of RV storage lot east of the Findett property	5/14/2024	432.12	13.63	418.49	2400191-21	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.23	1.0 U	
LA-5	North of Findett property along brush line in agricultural field	5/13/2024	431.92	13.52	418.40	2400191-05	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.20 U	1.0 U	
MW-7	Northeast corner of Findett property along eastern side of property	5/14/2024	434.21	8.10	426.11	2400191-13	0.50 U	0.50 U	0.50 U	0.50 U	4.0	0.50 U	0.50 U	0.50 U	0.50 U	2.1	7.9	2.1	
MW-8	Along eastern side of property near new extraction well (EW-2)	5/14/2024	438.10	12.05	426.05	2400191-12	2.8	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	14	0.50 U	0.50 U	16	1.6	3.9	
MW-9	Along eastern side of property south of new extraction well (EW-2)	5/14/2024	431.82	5.73	426.09	2400191-14	8.3	0.50 U	0.50 U	0.50 U	8.9	0.50 U	3.3 U	0.50 U	0.50 U	19	0.98	1.0 U	
UA-11	East side of warehouse building	5/14/2024	NA	4.70	NA	2400191-23	4.3	1.1	0.52	0.57	3.3	5.8	840	3.7	0.50 U	270 J	0.71	1.0 U	
UA-12	In rock area northeast of EW-1	5/14/2024	NA	4.70	NA	2400191-22	100	1,600	530	800	160	41	18,000 J	79	2.9	8,700 J	510	4.7 J	
UA-13	In rock area in between the two buildings on site	5/14/2024	NA	4.25	NA	2400191-19	0.50 U	0.50 U	0.50 U	0.50 U	2.0	0.50 U	4.3	0.50 U	0.50 U	2.4	10	17 J	
	č					2400191-20	0.50 U	0.50 U	0.50 U	0.50 U	2.0	0.50 U	4.1	0.50 U	0.50 U	2.4	10	7.2	
EW-1	Former Extraction Well	5/14/2024	433.86	3.51	430.35	2400191-16	76	1,600	920	1,400	85	19	8,800 J	140	0.50 U	3,100 J	380	132 J	
GROUNDWATER EXTRACTION AND TREATMENT SYSTEM																			
EW-2	Current Extraction Well	5/13/2024	434.82	50.50	384.32	2400191-10	120 J	0.50 U	0.50 U	0.50 U	8.4	0.79	130 J	0.50 U	0.50 U	93 J	8.1	1.2	
MW-6	Current Extraction Well	5/13/2024	432.14	33.83	398.31	2400191-09	91	4.9	3.3	0.63	44	10	460 J	3.4	0.54	180 J	71	1.5	
Combined Influent	Air stripper spigot in system piping on the influent side of the system	5/13/2024	NA	NA	NA	2400191-06	100	2.6	1.8	0.50	29	4.7	690	3.0	0.50 U	270 J	34	1.6	
Air Stripper	Air Stripper Effluent Air stripper spigot in system piping prior to discharge to sanitary sewer					2400191-26													9,000
* *		5/13/2024	NA	NA	NA	2400191-08	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.83	0.50 U	0.50 U	0.50 U	33	1.0 U	

Notes:

¹ Analyzed via EPA SW	V-846 Method 8260									
² Analyzed via EPA Me	Analyzed via EPA Method 8260 SIM									
³ Analyzed via EPA Me	Analyzed via EPA Method 8082									
⁴ Only VOCs exceeding	Only VOCs exceeding MCLs in at least one sample or are site COCs are included in the data table.									
⁵ Analyzed via EPA Me	ethod 6010									
Bold values exceed the l	MCL									
* Well is broken; unab	le to collect sample									
	No sample collected									
amsl	Above mean sea level									
btoc	Below top of casing									
COC	Contaminants of concern									
DCA	Dichloroethane									
DCB	Dichlorobenzene									

DCE Dichloroethene EPA U.S. Environmental Protection Agency Feet ft J Estimated value MCL EPA Maximum Contaminant Level μg/L Micrograms per liter Not applicable NA Not established NE

PCB Polychlorinated biphenyl

SIM Selected ion monitoring

SWL Static water level

Trichloroethene

TCE

U

UJ

VC

VOC

Not detected at concentration at or above reporting limit

Not detected at concentration at or above reporting limit; the reporting limit is an estimate

Vinyl chloride

Volatile organic compound

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
			•	OU3	Monitoring Wells	•		•
	8/18/04							
	9/9/04							
	8/08							
	10/08							
	3/09							
	6/09							
	8/09							
	11/09							
	3/10							_
	6/10							-
	9/10							-
	11/10							-
	03/11							
	6/11							NT
	9/11							-
	12/11							_
	3/12							-
	6/12							-
	9/12							-
MW-C1	12/12							-
	3/13							-
	6/13		1	Not San	npled Due To Flooding	g I I		-
	9/13							-
	12/13							-
	4/14							-
	10/14							-
	5/15							
	12/15							
	6/16 12/16							
	6/17 11/17							
	6/18		0.2 J					
	12/18		0.2 0					
	8/19					0.2 J		
	12/19					0.2 J		
	12/19							
	11/21							
	11/22					0.7 J		0.75 J
	11/22					0.7 0		

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established				
	8/18/04											
	9/9/04											
	8/08											
	10/08											
	3/09											
	6/09											
	8/09											
	11/09											
	3/10											
	6/10											
	9/10											
	11/10											
	03/11											
	6/11							NT				
	9/11											
	12/11											
	3/12											
	6/12											
	9/12											
MW-C2	12/12											
10100-02	3/13											
	6/13	6/13 Not Sampled Due To Flooding										
	9/13											
	12/13											
	4/14											
	10/14											
	5/15											
	12/15											
	6/16											
	12/16											
	6/17											
	11/17											
	6/18											
	12/18											
	8/19											
	12/19											
	12/20											
	11/21											
	11/22					0.3 J						
	11/23											

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	8/18/04							
	9/9/04							
	08/08					3,140		-
	10/08					87.4		-
	11/08					13.3		-
	3/09							-
	6/09	4.4 5.2						-
	8/09	(resample 2Q)						-
	8/09	5.5 (3Q)						
	11/09	7.4						-
	3/10	4.1						-
	6/10	3.6 / 4.9						-
	9/10	2.9 / 2.9						-
	11/10	2.6						NT
	03/11	2.4/2.1						-
	6/11	2.2						-
	9/11 12/11	4.1 4.4						-
	3/12	4.4						
	6/12	3.6						-
MW-C3	9/12	3.8						
	12/12	3.3						
	3/13	3.6						
	6/13	3.6]
	9/13	4.6						
	12/13							-
	4/14	3.6						-
	10/14							-
	5/15	3.4						
	12/15	5.2						0.541
	6/16	5.2						0.54J
	12/16	1.8J						
	6/17 11/17	3.5						0.70 J
	6/18	3.5 2.1						0.70 J
	12/18	0.6 J						0.96 J
	8/19	3.9				21.7		0.63 J
	12/19	2.0 J						
	12/20	1.6 J	0.4 J					0.31 J
	11/21	1.2 J	0.6 J					
	11/22	0.6 J	0.9 J					
	11/23	0.3 J	0.9 J					

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	8/18/04							
	9/9/04							-
	08/08					2,870		-
	10/08					534		-
	11/08					20.1		-
	3/09							-
	6/09							-
	8/09							-
	11/09							-
	3/10							-
	6/10							-
	9/10							
	11/10							-
	03/11							NT
	6/11							-
	9/11							-
	12/11							-
	3/12							-
	6/12					21.2		-
MW-C4	9/12							-
	12/12							-
	3/13							-
	6/13 9/13							-
	12/13							
	4/14							-
	10/14							-
	5/15							-
	12/15							
	6/16							
	12/16							
	6/17							
	11/17							
	6/18							1.02
	12/18							0.40 J
	8/19					121		1.37
	12/19							0.78 J
-	12/20							
	11/21							
	11/22							0.71 J
	11/23							1.03

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	8/18/04							
	9/9/04							
	08/08							
	10/08							
	3/09							-
	6/09							-
	8/09							-
	11/09							-
	3/10							-
	6/10							-
	9/10							-
	11/10							-
	03/11							-
	6/11							NT
	9/11							-
	12/11							-
	3/12							-
	6/12							-
	9/12							-
MW-C5	12/12							-
	3/13							-
	6/12							-
	9/13							-
	12/13							-
	4/30							-
	10/14							-
	5/15							
	12/15							
	6/16							
	12/16							
	6/17	1.0J						
	11/17							
	6/18							
	12/18		ļ					
	8/19							
	12/19		ļ					
	12/20							
	11/21							
	11/22							
	11/23							

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	8/18/04							
	9/9/04							-
	08/08					2,590		-
	10/08					2.9J		-
	11/08					2.5J		-
	3/09							-
	6/09							-
	8/09							-
	11/09							-
	3/10							-
	6/10							-
	9/10							-
	11/10							-
	03/11							NT
	6/11							
	9/11							-
	12/11							-
	3/12							-
	6/12							-
MW-C6	9/12							-
	12/12							-
	3/13 6/13							-
	9/13							-
	12/13							-
	4/14							-
	10/14							-
	5/15							
	12/15	0.9J						
	6/16	1.0J						
	12/16							
	6/17							
	11/17							
	6/18							
	12/18							
	8/19	0.5 J				198		
	12/19							
	12/20	0.3 J						
	11/21							
	11/22							
	11/23							

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	8/18/04							
	9/9/04							
	08/08							
	10/08							
	3/09							-
	6/09							-
	8/09							-
	11/09							-
	3/10							-
	6/10							
	9/10							-
	11/10							
	03/11							
	6/11							NT
	9/11							-
	12/11							
	3/12							
	6/12							-
	9/12							
MW-C7	12/12							
	3/13							
	6/13							-
	9/13							
	12/13							-
	4/14							
	10/14							
	5/15							
	12/15							
	6/16							
	12/16							
	6/17							
	11/17							
	6/18							
	12/18							
	8/19	0.6 J	0.5 J					
	12/19							
	11/20							
	11/21							ļ
	11/22							ļ
	11/23							

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	8/18/04							
	9/9/04							
	08/08	1.1J						
	10/08	0.9J	1.1J					-
	3/09							-
	6/09	1.4J	1.3J					-
	8/09	2.3	2.0J					-
	11/09	2.2	1.2J					-
	3/10	2.5	1.2J					-
	6/10	3.3	1.6J					-
	9/10	3.8 / 3.8						-
	11/10	2.5						-
	03/11	7.2						-
	6/11	5.6						NT
	9/11	7.9/8.6						-
	12/11	4.2/4.6						-
	3/12	2.6						-
	6/12	5.2						-
	9/12	4.5						-
	12/12	7.0						
MW-C8	3/13	2.5						-
	6/13	3.5 / 3.6						
	9/13							-
	12/13	2.5						
	4/14	4.9	6.2					-
	10/14	5.4						-
	5/15	5.1						
	12/15		3.3J					1.02
	6/16	0.7J	2.6J					0.72J
	12/16		1.9J					
	6/17		2.9J					0.76J
	11/17	32.2	11.6		2.8J			3.68
	6/18							
	12/18	2.8	2.7		0.5 J			0.66 J
	8/19	7.3	4.9	0.1 J	0.6 J	0.2 J		1.0
	12/19	6.6	2.3					0.38 J
	11/20	3.4	3.6		0.4 J			1.61
	11/21		0.3 J					
	11/22	0.5 J	2.1					0.87 J
	11/23	7.4	2.5					0.92 J
	5/24	5.5	1.8 J]

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	8/18/04							
	9/9/04							
	08/08							
	10/08							
	3/09							
	6/09							
	8/09							
	11/09							
	3/10							
	6/10							
	9/10							
	11/10							
	03/11							
	6/11							NT
	9/11							
	12/11							
	3/12							
	6/12							
	9/12							
MW-C9	12/12							
	3/13							
	6/13							
	9/13							
	12/13							
	4/14							
	10/14							
	5/15							
	12/15							
	6/16							
	12/16							
	6/17							
	11/17							
	6/18							
	12/18							
	8/19							
	12/19							
F	11/20							
	11/21							
	11/22							
	11/23							

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	8/18/04							
	9/9/04							
	08/08							
	10/08							
	3/09							
	6/09							
	8/09							
	11/09							
	3/10							
	6/10							
	9/10							
	11/10							
	03/11							
	6/11							NT
	9/11							
	12/11							
	3/12							
	6/12							
	9/12							
MW-C10	12/12							
	3/13							
	6/13							
	9/13							
	12/13							
	4/14							
	10/14							
	5/15							
	12/15							
	6/16							
	12/16							
	6/17							
	11/17							
	6/18							
	12/18							
	8/19							
	12/19							
	11/20							
	11/21						0.2 J	
	11/22							
	11/23							

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	8/18/04	10/27	69/71		9.7/9.3			
	9/9/04	25/24	25/58		6.8/6.7			
	08/08	433	402	7.6J	85.7			
	10/08	159	185	2.9	36.5		3.3J	
	3/09	218/211	196/190	3.3/3.1	39.4/39.0		5.3/5.1	
	6/09	151/158	178/189	2.7/2.8	30.4/32.3			
	8/09	41.3	61.4	0.7J	8.3			
	11/09	90.8	119	1.8J	16.1			
	3/10	39.4	60.3	1.0J	7.8		1.5J	
	6/10	26	50.3	1.0J	6.4			
	9/10	21.7	36.4					
	11/10	20.4	43.5		5.3			
	03/11	21.7	49.2		6			
	6/11	17.1	39.9					NT
	9/11	21.4	34.3					
	12/11	14.6	29.4					
	3/12	19.6	36.7					
	6/12	18.4	33.3					
	9/12	13.5	33.2					
MW-C11	12/12	16.1	56.6		5.8			
10100-011	3/13	21.5	46.9		5.2			
	6/13	25.7	41.9		6.2			
	9/13	11.2	25.9					
	12/13	12.5	28.5					
	5/14	22.1	30.8					
	10/14	20.3 / 20.6	30.1 / 30.2					
	5/15	19.1	28.2					
	12/15	5.3	14	0.5J	1.9J			
	6/16	3.5	9.5		1.3J			
	12/16	4.1	10.5		1.3J			
	6/17	2.4	8.6					
	11/17	8.8	18.7		2.2J			
	6/18	10.4	22.9	0.3 J	2.6			
	12/18	6.0	22.9		2.2			
	8/19	3.0	6.9	0.2 J	1.0 J	14.6		
	12/19	3.8	12	0.2 J	1.2 J	4.4		
	12/20	5.5	13.8	0.1 J	1.4 J			
	11/21	5.9	16.5	0.2 J	1.6 J			
	11/22	2.3	13.3		1.1 J			
	11/23	1.9	11.2	0.2J	1.0 J			

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	08/08	6.4	31.1	88.9	4.2J			
	10/08	6.0	33.9	88.1	4.3J			
	3/09	5.6	31.7	64.2	3.8J			
	6/09	7.9/7.7	39.5/40.1	68.0/68.1	4.0J/4.2J			
	8/09	5.6	35.6	57.9	3.4J			
	11/09	8.6	42.5	55	3.7J			
	3/10	5.4	31.5	33.2	2.8J			
	6/10	6.4	39.1	36.6	3.0J			
	9/10	2.6	24.2	36.5				
	11/10	3.2	33.6	34.0				
	03/11	3.2	28	22.3				
	6/11	4.3	34.7	28.4				
	9/11	4.1	29.7	25.8				NT
	12/11	2.7/2.5	25.8/26.5	32.7/32.0				
	3/12		15.5/13.8	24.5/20.1				
	6/12	2.5	25.1	25.2				
	9/12	3.2	22.8	35.6				
	12/12	5.1	19.9	31.8				
MW-C12	3/13	3.8	19.7	43.0				
10100-012	6/13	3.1	24.5	14.1				
	9/13		20.1	15.5				
	12/13	3.4	20.2	22.7				
	5/14	3.5 / 3.8	13.3 / 14.4	8.8 / 9.3				
	10/14		13.6	4.6				1
	5/15	2.4/2.4	21.4/21.6	8.8/8.9				
	12/15	2.9	26.2	8.3	2.3J			
	6/16	3.1	24.6	5.3	2.2J			
	12/16	3.5	30.7	8.4	2.7J			
	6/17	2.2	26.2	5.5				
	11/17	2.7	25.6	5.3	2.4J			
	6/18	0.8 J / 0.8 J	9.3 / 9.7	1.8 / 1.8	0.9 J / 1.0 J		0.1 J	
	12/18	0.8 J	12.9	2.4	0.9 J			
	8/19	1.3 J	16.5	2.8	0.8 J			
	12/19	1.3 J	16.5	4.0	0.9 J			
	12/20	1.1 J	11.6	1.9	0.6 J			
	11/21	0.8 J	13.2	1.7	0.5 J			
	11/22	0.8 J	13.1	2.1	0.5 J			
	11/23	0.3 J	7.9		0.3J			

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	08/08	9.7	37.7	101	5.1			
	10/08	7.0	40.6	93.2	4.9J			-
	3/09	11.5	54.9	66.9	5.1		1.7J	
	6/09	22.7	90.8	62.9	6.3			-
	8/09	16.0/16.4	79.2/79.6	56.7/56.1	5.5/5.6			-
	11/09	10.5	50	51.8	3.9J			-
	3/10	12.9	52	40.8	4.0J			-
	6/10	19.5 / 20.1	67.5 / 71.6	38.4 / 39.1	4.8J / 5.2		1.5J	-
	9/10	15.7	66.8	36.5				-
	11/10	10.6	63.5	35.4				-
	03/11	18.2	81.2	32.2				-
	6/11	20.3	80.1	29.2				- NT
	9/11	36.4	128	27.6	7.3			
	12/11	8.9	91.1		10.0			-
	3/12	38.6	170	42.3	10.0			-
	6/12	36.9	143	22.3	8.2			-
	9/12	56.8	173	35.8	12.3			
	12/12	53.8	226	34.1				
	3/13	39.4	163	38.0	10.0			
	6/13	57.3 / 57.3	195 / 188	20.4 / 21.2	14.2 / 13.6			
MW-C13	9/13	39.6	158	20.7	10.0			
	12/13	53.7	179	26.0	12.9			
	5/14	64.2	152	16.7	11.1			-
	10/14	25.7 / 24.9	214 / 219	7.3/7.5	23/23			-
	5/15	54.9	202	25.0	14.8			
	12/15	41.9	188	24.9	13.4			9.4
	6/16 12/16	41.4 51.2	216 196	26.0 33.7	14J 16			5.94 2.17
	6/17	39.4	196	24.4	16			7.94
	11/17	42.3	134	24.4	10.8			18.5
	6/18	25.9	115	21.4	8.4		0.3 J	15.4
	12/18	67.0	190	46.4	14.1		0.5 J	8.32
	8/19	18.9	16.6	15.2	3.2	183	0.0 0	8.42
	12/19	8.3	13.7	13.5	1.3 J	2.0 J		4.43
	6/20	23.1	27.2	27.8	4.5	0.2 J	0.2 J	12.8
	12/20	34.4	35.4	45.3	6.0	0.2 J	0.2 J	10.4
	5/21	16.1	26.8	82.9	6.1	0.5 J	0.2 J	10.5
	11/21	8.6	19.2	21.1	1.8 J	0.0 J	0.1 J	
	6/22	21.5	28.7	106	8.0			10.9
	11/22	4.6	22.9	12.3	1.7 J		0.1 J	1.07
	9/23	41.8	55.3	84.1	7.5			8.67
	11/23	9.0	22	16.6	4.2		0.2 J	6.59
	5/24	33.8	48.4	81.4	7.4		0.1 J	8.91

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	08/08	0.8J						
	10/08	1.2J	1.1J					
	3/09	3.9	1.5J					
	6/09	1.6J	1.1J					
	8/09	0.6J						
	11/09	1.1J/1.0J						
	3/10							
	6/10							
	9/10							
	11/10							
	03/11							
	6/11							
	9/11							NT
	12/11							
	3/12							
	6/12							
	9/12							
	12/12							
MW-C14	3/13							_
	6/13							_
	9/13							
	12/13							
	5/14							
	10/14							
	5/15							
	12/15							
	6/16							
	12/16							
	6/17							
	11/17							
	6/18		0.6 J	0.2 J				
	12/18							
	8/19					0.2 J		
	12/19							
	12/20							
	11/21							
	11/22							
	11/23							

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	08/08	2.0	2.2J	0.7J				
	10/08	0.8J						
	3/09							-
	6/09	0.8J						-
	8/09	0.9J						-
	11/09	1.9J	1.8J	0.6J				-
	3/10	3.4	4.3J	1.2J				-
	6/10	3.1	4.2J	1.1J				-
	9/10							-
	11/10	2.5	6.5					-
	03/11							
	6/11	2.9						NT
	9/11	2.7						
	12/11	2.1						
	3/12							-
	6/12	0.7						-
	9/12	2.7						-
	12/12 3/13	2.2						-
	6/13	2.2						-
	9/13							
MW-C15	12/13							-
	5/14	22.5 / 23.2						-
	10/14	12.4						
	5/15							
	12/15	1.8J						2.37
	6/16	1.6J						2.0
	12/16	0.6J						0.99J
	6/17							2.25
	11/17	40.8	12.9	5.2	2.5J			11.8
	6/18	122	59.5	26.2	8.6		0.1 J	19.9
	12/18	67.5	66.9	18.5	8.1			11.6
	8/19	45.9	37.8	10.9	4.8	16.6		9.57
	12/19	12.5	12.8	4.2				2.36
	6/20	47.3	27.2	7.1	4.4			4.08
	12/20	73.7		20.1	7.1			5.61
	5/21	45.8	78.8	19.8	5.0		0.1 J	4.61
	11/21		0.4 J		0.2 J			
	6/22	8.2	11.8	6.2				1.96
	11/22	22.3		7.1	2.9			4.89
	9/23	71.6	49.2	19.7	7.7			8.05
	11/23	59.1	40.5	16.9	6.1			4.08
	5/24	37.6	49.3	33.2	5.0			5.14

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	08/08							
	10/08							
	3/09							_
	6/09							
	8/09							_
	11/09							-
	3/10	1.7J	1.4J					
	6/10	2.3						_
	9/10							
	11/10							_
	03/11							_
	6/11							_
	9/11							NT
	12/11							_
	3/12							-
	6/12							_
	9/12							-
	12/12							
	3/13							-
	6/13							
	9/13							-
	12/13							
	4/14							
MW-C16	10/14							
	5/15							
	12/15							
	6/16							
	12/16							
	6/17							
	11/17	1.1J						
	6/18							
	12/18							
	8/19	3.2	1.7 J		0.5 J	2.2		0.86 J
	12/19	0.6 J	0.5 J			0.9 J		
	12/20	2.4	1.0 J		0.4 J			0.4 J
	11/21							
	11/22	0.3 J						
	6/23	0.6J /0.6J	0.6 J / 0.6 J		0.2J / 0.2J			NT
	9/26/23	7.6	1.7 J		0.9 J			NT
	11/6/23	1.7	0.5 J		0.2 J			NT
	11/20/23							
	12/4/23		0.4 J					NT
	4/12/24							NT
	4/25/24		0.6 J					NT
	6/3/24	10.6	2.8		1.3 J			NT
	6/13/24	4.6	4.7		1.5 J			NT
	6/17/24	3.2	1.3 J		0.6 J			NT

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	08/08							
	10/08							
	3/09							
	6/09							
	8/09							
	11/09							
	3/10							-
	6/10	4.2						-
	9/10	4.3						-
	11/10							-
	03/11							-
	6/11							
	9/11							NT
	12/11							-
	3/12							-
	6/12							
	9/12							-
	12/12							-
	3/13							-
	6/13							-
	9/13					5.2		-
	12/13							-
	4/14	4.8						-
	10/14	7.8						-
	5/15							
MW-C17	12/15							
	6/16							
	12/16 6/17							
	11/17	2.9						
	6/18	2.9						
	12/18	3.5	2.1		0.6 J			3.52
	8/19	2.6	0.9 J		0.0 3	14.2		1.47
	12/19	1.1 J	0.5 J			14.2		0.86 J
	6/20	1.5 J	0.3 J					1.8
	11/20	3.2	1.0 J		0.4 J			1.81
	5/21	3.0	1.6 J		0.5 J	0.5 J		0.89 J
	11/21	1.6 J	1.7 J		0.4 J			
	6/22	4.2	3.0					
	11/22	5.4	3.5		0.9 J			
	6/23	7.9 / 6.7	4.6 / 4.6		1.4 J / 1.4J			NT
	9/6/23	9.2	4.2		1.3 J			
	9/26/23	5.0	4.2		1.1 J			NT
	10/25/23	8.2	4.4		1.4 J / 1.4J			NT
	11/6/23	10.2	4.7		1.3 J			NT
	11/20/23	7.9	4.0		1.1 J			
	12/4/23	4.3	4.4		1.1 J			NT
	4/12/24	0.3 J	3.3		0.8 J			NT
	4/25/24	3.2	2.9		0.7 J			NT
	5/15/24	4.9	4.1		1.0 J			
	6/3/24	13.2	6.5		1.7 J			NT
	6/13/24	4.6	4.7		1.1 J			NT
	6/17/24	6.6	5.0		1.2 J			

TABLE 5 VOC DETECTION SUMMARY OU3 - HAYFORD BRIDGE ROAD GROUNDWATER SITE ST. CHARLES, MISSOURI

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	12/15							
	6/16							0.6J
	12/16							
	6/17							
	11/17							
	6/18							
MW-C18	12/18							
	8/19				not sampled due	e to flooding		
	12/19				not sampled due	e to flooding		
	12/20		1		not sampled due	e to flooding		T
	11/21							
	9/26/23							NT
	11/23		0.2 J					
	12/15							
	6/16							0.6J
	12/16							
	6/17							
	11/17							
	6/18							
MW-C19	12/18							
	8/19				not sampled due			
	12/19				not sampled due			
	12/20				not sampled due	e to flooding		1
	11/21							
	9/26/23							NT
	11/23				City Wells			
								1
	6/18							
	12/18							
W-4	8/19				NS			
	12/19				NS			
	12/20				NS			
	11/21				NS			
	6/18 12/18							
	8/19		I	1	NS		<u> </u>	1
W-5	12/19				NS			
	12/19				NS			
	11/21				NS			
	6/18							
	12/18							1
	8/19		I	1	NS			1
W-6	12/19				NS			
	12/19				NS			
	11/21		0.5 J		110			

TABLE 5 VOC DETECTION SUMMARY OU3 - HAYFORD BRIDGE ROAD GROUNDWATER SITE ST. CHARLES, MISSOURI

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	6/18				NS			
	12/18				NS			
W-7	8/19				NS			
VV-7	12/19							
	12/20				NS			•
	11/21							
	6/18				NS			
	12/18				NS			
	8/19	0.4 J	0.4 J					
	12/19	0.3 J	0.4 J					
	4/20							
	9/20							
	12/20							
	3/21							
	11/21		0.3 J					
	10/11/23		0.55					NT
	10/12/23							NT
	10/13/23		0.2 J					NT
	10/16/23		0.2 J					NT
	10/10/23	0.5 J	0.4 J					NT
W-8	10/23/23	0.3 J	0.4 J					NT
	11/6/23	0.6 J	0.4 J					NT
	11/20/23	0.5 J	0.4 J		0.1 J			NT
	12/4/23	0.4 J	0.4 J					NT
	4/11/24	1.7	1.0 J					NT
	4/12/24	0.07 J	0.8 J					NT
	4/15/24	0.5 J	0.6 J		0.1 J			NT
	4/22/4		0.4 J					NT
	4/25/24		0.4J					NT
	6/3/24							NT
	6/4/24							NT
	6/5/24							NT
	6/10/24	0.3 J	0.5 J					NT
	6/17/24		0.4 J					NT
	6/18							
	12/18							
Radial Well (W-9)	8/19							
(****)	12/19							
	12/20							
	11/21							
	6/18							
	12/18					0.2 J / 0.1 J		
W-10	8/19							1.26
	12/19							
	12/20							
	11/21							

TABLE 5 VOC DETECTION SUMMARY OU3 - HAYFORD BRIDGE ROAD GROUNDWATER SITE ST. CHARLES, MISSOURI

Monitoring Well	Date (mo/yr)	Vinyl Chloride MCL=2 ppb	Cis-1,2- Dichloroethene MCL=70 ppb	Benzene MCL=5 ppb	1,1-Dichloroethane PRG=810 ppb	Toluene MCL=1,000 ppb	Trans-1,2- Dichloroethene MCL=100 ppb	1,4-dioxane MCL not established
	6/18							
	12/18							
	8/19							
Effluent	12/19							
	12/20							
	11/21							
	11/22							
	12/20							
Influent	11/21							
	11/22							

Notes:

J = Estimated value below the reporting limit.

NT = Not tested

NS = Not sampled

Blank indicates parameter not detected.

Acetone and methylene chloride detections in various samples in the low part per billion range are due to laboratory effects.

PRG = Preliminary Remediation Goal, USEPA Region 9

Shading indicates the concentration exceeds the MCL.

Historic detections at City Wells W-4, W-5, and W-6 are from the North Plume which has a source located at the Ameren Huster Road Substation. Table 3 also contains City Well information. City Well data added to Table 2 starting with the June 2018 sampling event.

June 2023 results at Monitoring Wells MW-C16 and -C17 include samples split with 212/City (listed first in table) using an electric pump on 6/13/23 (non-QAPP approved samples) and samples collected using a peristaltic pump on 6/14/23 (QAPP-approved samples). September 26, 2023 results are split samples with 212/City using an electric pump (non-QAPP approved samples).

									Dissolved			
		Dissolved				Ferrous		Carbon	Organic			
Monitoring	Date	Oxygen	ORP	Nitrate	Sulfate	Iron	Chloride	Dioxide	Carbon	Ethane	Ethene	Methane
Well	(mo/yr)	(mg/l)	(mV)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	µg/l)
	5/15	0.01	-75.22	< 0.05	76	6.4	76	78.8	1.6	<4.0	<6.0	4.4
	12/15	<0.1	-115	< 0.05	22	7.3	20	39.6	2.1	<4.0	<6.0	33.3
	6/16 12/16	<0.1 <0.1	-65 -68.16	0.076 0.021 J	61 60	5.7 5.8	70 85	34.4 81.4	2.1 1.6	<4.0 <4.0	<6.0 <6.0	10 15.4
	6/17	0.05	-65.54	<0.0213	55	5.6	100	52.5	1.8	<4.0	< 6.0	21.5
	11/17	<0.1	-59.86	0.041 J	94	3.5	62	43.4	2.1	<4.0	<6.0	11.7
	6/18	<0.1	-40.25	0.020 J	49	5.5	55	53.6	3.0	<7.0	<10.0	12.9
MW-C1	12/18	<0.1	-145.29	<0.050	47	3.4	78	33.8	2.0	<7.0	<10.0	9.0
	8/19	1.17	155.7	0.034 J	59	6.6	84	27.8	2.1	<7.0	<10.0	31.8
	12/19	<0.1	-208	0.026 J	60	5.1	77	61.3	5.2	<7.0	<10.0	91.2
	12/20	<0.1	197	<0.1	62	5.5	78	37.2	1.6	<7.0	<10.0	8.2
	11/21	0.48	-118.5	< 0.050	71	5.5	89	49.1	1.3	<7.0	<10.0	8.0
	11/22	0.35	-68.2	<0.050 H	50	6.1	100	34.4	1.3	<7.0	<10.0	16.5
	11/23 5/15	0.12 0.04	-143 -99.39	<0.050 <0.05	60 28	4.4 7.4	82 31	41.7 65.9	1.4 1.8	<7.0 <4.0	<10.0 <6.0	12.8 80.5
	12/15	<0.1	-99.39	<0.05	51	6.2	70	55.5	2.1	<4.0	<6.0	22.4
	6/16	<0.1	-73	0.012 J	37	4.2	49	54.6	2.1	<4.0	<6.0	22.4
	12/16	<0.1	-86.56	0.013 J	34	7.7	48	61.6	2.0	<4.0	<6.0	32.4
	6/17	<0.1	-96.73	< 0.050	34	7.5	43	70.9	2.0	<4.0	<6.0	4.8
	11/17	<0.1	-39.80	<0.05	26	6.4	32	76.0	1.8	<4.0	<6.0	29.0
MW-C2	6/18	<0.1	-86.50	0.026 J	32	7.7	23	43.7	2.2	<7.0	<10.0	26.3
10100 02	12/18	<0.1	-11.19	<0.050	27	7.1	31	38.6	2.1	<7.0	<10.0	22.9
	8/19	<0.1	-18.50	0.041 J	24	7.4	19	24.4	1.9	<7.0	<10.0	19.2
	12/19	<0.1	-81	0.152	33	7.6	32	49.4	2.0	<7.0	<10.0	31.6
	12/20 11/21	<0.1 0.29	119 -125.2	0.014 J <0.050	34 40	7.5 8.1	28 43	29.2 59.1	1.9 1.7	<7.0 <7.0	<10.0 <10.0	17.1 11.7
	11/21	0.29	-68.9	<0.050 H	40	7.0	61	31.6	1.7	<7.0	<10.0	17.9
	11/23	0.12	-161.9	<0.050	33	8.1	36	44.4	2.0	<7.0	<10.0	16.0
	5/15	0.03	-74.36	< 0.050	32	4.4	27	47.7	1.7	<4.0	<6.0	33.9
	12/15	<0.1	-113	<0.050	59	6.0	23	31.8	1.6	<4.0	<6.0	26.5
	6/16	<0.1	-82	0.012 J	60	3.8	30	47.5	1.5	<4.0	<6.0	18.6
	12/16	<0.1	-110.17	0.011 J	82	7.7	45	41.3	1.1	<4.0	<6.0	35.2
	6/17	<0.1	-77.96	0.011 J	62	4.3	32	50.8	1.4	<4.0	<6.0	9.4
	11/17	<0.1	-103.85	0.017 J	53	6.9	26	32.7	1.2	<4.0	<6.0	20
MW-C3	6/18 12/18	0.08	-67.58	0.032	49 48	5.3 7.7	25 24	32.2	1.5 1.7	<7.0 <7.0	<10.0	26.3
	8/19	<0.1 <0.1	-26.10 -9.30	0.019 0.048 J	40 43S	14	24	48.6 16.2	2.4	<7.0	<10.0 <10.0	24.3 1000
	12/19	<0.1	-116	0.040 J	27	14	34	36.5	2.4	<7.0	<10.0	965
	12/20	0.30	197	<0.100	30	2.1	40	22.3	2.0	<7.0	<10.0	218
	11/21	0.38	-115.1	<0.050	32	1.7	49	37.1	1.6	<7.0	<10.0	28.8
	11/22	0.40	5.1	<0.050	33	1.9	55	22.0	1.4	<7.0	<10.0	46.6
	11/23	0.15	-163	<0.05 H	36	2.8	63	25.1	1.6	<7.0	<10.0	57.5
	5/15	0.01	-89.9	<0.05	24	6.2	9	55	1.7	<4.0	<6.0	29.0
	12/15	<0.1	-107	0.01	18	5.8	8	46.4	2.0	<4.0	<6.0	26.6
	6/16	<0.1	-96	0.018 J	18	5.8	10	65.9	1.8	<4.0	<6.0	29.2
	12/16	<0.1	-37.49 -98.24	0.074 <0.050	17	6	10	61.8	1.9	<4.0	<6.0	53.6
	6/17 11/17	<0.1 <0.1	-96.24	<0.050 0.01 J	15 21	7.2 6.9	10 10	71.5 58.7	1.8 1.6	<4.0 <4.0	<6.0 <6.0	33.0 27.9
	6/18	0.04	-91.99	0.01 J	21	7.2	10	48.2	1.8	<7.0	<10.0	27.9
MW-C4	12/18	<0.1	-43.62	0.022 J	18 S	6.9	11	49.2	1.7	<7.0	<10.0	23.6
	8/19	<0.1	18.2	0.042 J	24	7.9	18	19.9	3.0	<7.0	<10.0	1070
	12/19	<0.1	-91	0.018 J	15	5.6	18	62.3	3.2	<7.0	<10.0	1690
	12/20	0.31	111	<0.100	14	3.9	15	27.3	2.2	<7.0	<10.0	855
	11/21	0.72	-99.9	<0.050	17	3.2	19	47.8	2.2	<7.0	<10.0	322
	11/22	0.79	-17.5	<0.050	16	3.5	17	31.7	2.0	<7.0	<10.0	334
	11/23	0.13	-141.9	<0.05 H	16	1.4	22	42	1.9	<7.0	<10.0	70.0

del/Dec 2023/

J006295.11 Dec 2023 GWM Table 4 Indparameters

									Dissolved			
		Dissolved				Ferrous		Carbon	Organic			
Monitoring	Date	Oxygen	ORP	Nitrate	Sulfate	Iron	Chloride	Dioxide	Carbon	Ethane	Ethene	Methane
Well	(mo/yr)	(mg/l)	(mV)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	µg/l)
	5/15	0.41	-27.15	<0.050	38	1.2	16	35.0	<1.0	<4.0	<6.0	2.6
	12/15	<0.1	-94	0.027 J	44	4.6	14	63	0.9	<4.0	<6.0	3.3
	6/16	<0.1	-43	0.026 J	41	2.1	14	37	0.9 J	<4.0	<6.0	2.2
	11/16	<0.1	-70.5	0.016 J	46	5.2 S	15	32.5	0.9 J	<4.0	<6.0	3.2
	6/17	<0.1	-47.19	0.041 J	41	3.4	15	40.0	0.8 J	<4.0	<6.0	5.7
	11/17 6/18	<0.1 0.12	-48.51 168.41	0.043 J 0.025 J	42 40	4.9 4.4	14 15	44.8 26.6	0.9 J 0.9 J	<4.0 <7.0	<6.0 <10.0	5.2 4.5
MW-C5	12/18	<0.12	39.07	0.025 J 0.012 J	40	4.4	16	30.1	0.9 J	<7.0	<10.0	5.3
	8/19	<0.1	204.1	0.012 J	34	4.9	16	14.8	0.0 J	<7.0	<10.0	4.6
	12/19	0.2	286	0.015 J	38	6.2	18	34.8	0.9 J	<7.0	<10.0	5.8
	12/20	0.38	249	< 0.050	38	5.2	19	24.4	1.1	<7.0	<10.0	5.6
	11/21	0.24	-118.4	< 0.050	43	7.8	16	37.2	0.8 J	<7.0	<10.0	5.9
	11/22	0.37	-39.5	<0.050	39	5.5	20	23.0	0.9 J	<7.0	<10.0	<4.0
	11/23	-151	0.15	<0.05 H	41	5.9	21	35.6	0.6 J	<7.0	<10.0	5.2
	5/15	0.02	-92.22	< 0.05	42	4.9	13	41.5	<1.0	<4.0	<6.0	5.4
	12/15	<0.1	-114	< 0.05	45	5.4	20	82.3	1.0	<4.0	<6.0	15.0
	6/16	< 0.1	-75	0.010 J	39	4.6	14	42.3	1.2	<4.0	<6.0	22.8
	11/16 6/17	0.68 <0.1	-78 -72.95	0.017 J 0.029 J	46 46	4.9 5.2	13 16	34.1 40.7	0.9 J 0.8 J	<4.0 <4.0	<6.0 <6.0	5.3 6.7
	11/17	<0.1	-72.95	0.029 J 0.022 J	40	4.0	10	40.7	0.8 J 0.9 J	<4.0 <4.0	<6.0	4.9
	6/18	0.12	130.84	<0.022 3	43	4.0	14	33.3	0.9 J	<7.0	<10.0	4.9 5.0
MW-C6	12/18	0.12	22.21	0.026 J	40	5.1	16	36.9	0.9 J	<7.0	<10.0	7.4
	8/19	<0.1	-116.6	0.055	30	24	20	35.5	4.0	<7.0	<10.0	1050
	12/19	<0.1	513	0.020 J	28	5.5	19	33.6	1.2	<7.0	<10.0	441
	12/20	<0.1	168	< 0.050	23	1.7	21	28.7	1.3	<7.0	<10.0	138
	11/21	0.28	-101.4	<0.050	33	2.7	18	24.3	0.9 J	<7.0	<10.0	25.7
	11/22	0.68	-37.9	<0.050	32	2.7	21	21.3	1.0 J	<7.0	<10.0	17.0
	11/23	0.11	-156.9	<0.05 H	35	2.0	22	24.7	0.9 J	<7.0	<10.0	24.7
	5/15	0.13	-7.92	< 0.050	29	2.2	37	47.5	1.0	<4.0	<6.0	15.7
	12/15	0.5	-84	< 0.050	29	3.1	47	48.7	1.2	<4.0	<6.0	17.9
	6/16 11/16	<0.1	-9.2 -21.12	0.011 J 0.011 J	32 28	2.2 3.2	38	57.1	1.4 1.0	<4.0	<6.0 <6.0	15.0 29.6
	6/17	<0.1 1.21	114.29	0.011 J 0.029 J	28	0.38	43 44	49.8 54.6	0.8 J	<4.0 <4.0	<6.0	29.6
	11/17	<0.1	71.42	<0.029 3	20	2.7	44	67.5	1.0	<4.0	<6.0	27.7
	6/18	0.22	25.57	0.011 J	30	8.0	50	48.5	0.9 J	<7.0	<10.0	17.5
MW-C7	12/18	<0.1	11.56	0.013 J	35	4.1	50	54.0	0.9 J	<7.0	<10.0	11.5
	8/19	<0.1	214.1	0.033 J	37	4.0	45	36.8	1.0	<7.0	<10.0	13.5
	12/19	<0.1	11.7	<0.050	35	3.0	49	53.3	1.0	<7.0	<10.0	12.6
	11/20	<0.1	194	<0.050	35	5.5	46	38.3	1.2	<7.0	<10.0	13.1
	11/21	0.28	-65.8	< 0.050	42	3.9	45	46.4	1.0 J	<7.0	<10.0	6.8
	11/22	0.46	-31.6	<0.050 H		3.4	44	24.6	1.0	<7.0	<10.0	8.4
	11/23	0.12	-100	<0.05 H	39	4.0	41	34.1	1.2	<7.0	<10.0	10.6
	5/15 12/15	0.14 <0.1	-95.82 -142	<0.050 <0.050	86 138	6.4 6.5	15 17	36.2 25.2	1.2 1.3	7.8 <4.0	<6.0 <6.0	116 72.4
	6/16	<0.1	-142	<0.050 0.022 J	100	6.0	20	37.8	1.3	<4.0 <4.0	<6.0	49.6
	11/16	<0.1	-99	0.022 J 0.04 J	100	5.8 S	18	37.8	1.3	<4.0	< 6.0	49.0
	6/17	<0.1	-80.49	<0.04 3	107	6.6	20	47.3	0.9 J	<4.0	<6.0	63.9
	11/17	<0.1	78.91	< 0.050	47	11	34	55.9	1.6	<4.0	69.7	885
	6/18	5.53	259.36	0.142	56	6.1	27	34.3	1.1	<7.0	<10.0	<4.0
MW-C8	12/18	<0.1	-6.71	0.017 J	87	6.8	16	35.0	0.9 J	<7.0	<10.0	25.5
	8/19	<0.1	60.00	0.032 J	82	7.2	16	23.7	1.0	<7.0	11.6	111
	12/19	<0.1	-102	0.011 J	70	7.6	20	32.6	1.0	<7.0	<10.0	29.9
	11/20	0.10	215	<0.050	49	6.9	21	40.7	1.6	8.6	<10.0	33.7
	11/21	7.04	108.3	0.180	42	0.21	46	21.4	1.0 J	<7.0	<10.0	6.9
	11/22	0.38	-74.6	<0.050 H	79	6.5	22	22.6	1.1	<7.0	<10.0	19.9
	11/23	0.08	-162.9	<0.05 H	81	8.0	18	34.0	1.2	7.4	<10.0 del/De	30.5

del/Dec 2023/

J006295.11 Dec 2023 GWM Table 4 Indparameters

									Dissolved			
		Dissolved				Ferrous		Carbon	Organic			
Monitoring	Date	Oxygen	ORP	Nitrate	Sulfate	Iron	Chloride	Dioxide	Carbon	Ethane	Ethene	Methane
Well	(mo/yr)	(mg/l)	(mV)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	µg/l)
	5/15	0.04	-6.23	1.37	165	0.36	43	23	<1.0	<4.0	<6.0	<2.0
	12/15	<0.1	-42	1.15	156	0.45	47	39	1.0	<4.0	<6.0	<2.0
	6/16	<0.1	-3.0	2.15	160	0.17	47	25.2	0.93	<4.0	<6.0	<2.0
	11/16 6/17	<0.1 <0.1	-6.83 137.18	1.55 2.32	167 155	0.4 0.086	52 52	27.8 46.6	0.9 J 0.8 J	<4.0 <4.0	<6.0 <6.0	<2.0 <2.0
	11/17	<0.1	50.88	2.32	149	0.000	50	32.4	0.8 J 0.7 J	<4.0	<6.0	<2.0
	6/18	<0.1	125.26	5.80	146	0.10	51	21.8	1.0	<7.0	<10.0	<4.0
MW-C9	12/18	<0.1	119.74	0.31	160	0.29	49	18.0	0.8 J	<7.0	<10.0	<4.0
	8/19	<0.1	458.4	3.13	136	0.04	48	14.5	1.0	<7.0	<10.0	<4.0
	12/19	<0.1	5.30	3.22	145	0.24	53	33.6	0.9 J	<7.0	<10.0	<4.0
	11/20	<0.1	226.0	3.68	151	0.15	60	21.6	1.1	<7.0	<10.0	<4.0
	11/21	0.35	114.2	13.0	142	0.009 J	56	30.4	1.0 J	<7.0	<10.0	<4.0
	11/22	0.32	14.4	5.47 H	177	0.034	58	19.3	0.9 J	<7.0	<10.0	<4.0
	11/23	0.15	-29 -95.16	5.15 H	159	<0.02	51	23.8	1.0	<7.0	<10.0	<4.0
	5/15 12/15	0.52 <0.1	-95.16	<0.050 0.068	156 141	8.4 8.7	18 24	37.1 69	<1.0 1.0	<4.0 <4.0	<6.0 <6.0	2.6 1.9 J
	6/16	<0.1	-114	0.068 0.024 J	141	8.4	24	42.6	1.0 J	<4.0	<6.0	2.1
	11/16	0.99	115.41	0.31	147	0.34	22	37	0.9 J	<4.0	<6.0	<2.0
	6/17	0.03	-87.20	< 0.050	132	9.5	24	59.6	0.8 J	<4.0	<6.0	4.9
	11/17	<0.1	-59.18	<0.050	129	9.8	23	45.2	1.1	<4.0	<6.0	4.6
MW-C10	6/18	0.09	-80.90	0.010 J	131	9.2	25	35.9	0.9 J	<7.0	<10.0	<4.0
	12/18	<0.1	-46.66	0.016 J	131	9.4	24	38.9	0.9 J	<7.0	<10.0	4.8
	8/19	<0.1	88.50	0.021 J	134	10	25	20.3	1.0 J	<7.0	<10.0	4.1
	12/19	< 0.1	-77	0.022 J	125	9.5	27	44.9	0.9 J	<7.0	<10.0	4.0
	11/20 11/21	0.49 1.53	180 -118.1	0.012 J 0.064	136 150	9.7 7.3	36 37	31.0 20.3	1.1 0.7 J	<7.0 <7.0	<10.0 <10.0	4.4 <4.0
	11/21	0.35	-110.1	0.004 0.012 JH	160	9.9	35	20.3	0.7 J 0.9 J	<7.0	<10.0	<4.0
	11/22	0.05	-152.6	<0.05 H	150	20	34	41.9	0.9 J	<7.0	<10.0	<4.0
	5/15	0.02	-85.8	< 0.05	111	4.6	45	30.6	<1.0	<4.0	6.4	13.5
	12/15	<0.1	-98	<0.05	114	4.6	48	32.3	1.2	<4.0	<6.0	5.7
	6/16	<0.1	-96	0.012 J	122	4.2	51	39.8	0.9 J	<4.0	<6.0	3.6
	12/16	<0.1	-80.25	0.015 J	119	5.0	53	41.4	0.8 J	<4.0	<6.0	3.4
	6/17	<0.1	-42.12	0.013 J	103	4.7	57	55.0	0.7 J	<4.0	<6.0	5.1
	11/17	< 0.1	-31.31	0.02 J	78	6.1	39	43.3	0.9 J	<4.0	<6.0	9.2
MW-C11	6/18 12/18	0.54 <0.1	-21.98 34.5	0.075	77 74	6.3 6.9	34 38	29.6 34.3	1 J 1.1	<7.0 <7.0	<10.0 <10.0	9.8 6.2
	8/19	<0.1	158.7	<0.050	99	6.1	42	14.0	1.1	<7.0	<10.0	148
	12/19	<0.1	-58.6	0.015 J	68	6.7	40	32.0	2.1	<7.0	<10.0	135
	12/20	<0.1	128	0.017 J	73	9.6	41	23.9	1.2	<7.0	<10.0	9.1
	11/21	0.21		0.027 J	83	8.8	42	34.7	0.8 J	<7.0	<10.0	8.3
	11/22	0.40	16.1	0.042 J	104	6.8	46	23.7	1.0	<7.0	<10.0	11.2
	11/23	0.26	-122.8	0.139	85	7.5	47	36.5	0.9	<7.0	<10.0	6.6
	5/15	1.50	-77.1	0.127	144	7.3	68	50.3	<1.0	6.1	<6.0	11.6
	12/15	<0.1	98 79	0.074	136	8.0	59	29.8	1.2	4.9	<6.0	9.7
	6/16 12/16	<0.1 0.26	-78 -73.52	0.189 0.043 J	133 144	7.4 8.4	68 88	58.2 61.8	1.1 0.9 J	3.4 J 5.5	<6.0 <6.0	6.7 9.7
	6/17	<0.1	-73.52	0.043 J	133	8.8	98	57.8	0.9 J	8.5	< 6.0	9.7 7.4
	11/17	<0.1	-97.33	0.0400	120	5.4	116	46.4	0.6 J	9.4	<6.0	8.2
	6/18	0.76	-64.84	0.606	112 S	4.7	146	25.4	0.8 J	<7.0	<10.0	4.2
MW-C12	12/18	1.25	-26.09	0.289	108	7.0	162	42.4	0.5 J	<7.0	<10.0	4.3
	8/19	<0.1	212.3	0.013 J	109	11	134	27.6	0.8 J	<7.0	<10.0	6.7
	12/19	<0.1	-94	0.014 J	109	10	134	49.1	0.8 J	<7.0	<10.0	16.4
	12/20	<0.1	171	0.143	120	9.7	199	45.6	0.6 J	<7.0	<10.0	6.5
	11/21	0.18	-129.7	0.011 J	121	11	250	41.6	<1.0	<7.0	<10.0	7.8
	11/22	0.36	-31.1	< 0.050	122	12	203	41.4	<1.0	<7.0	<10.0	5.5
ll l	11/23	0.10	-105.6	0.148	120	8.1	227	39.0	0.5 J	<7.0	<10.0	4.9

del/Dec 2023/

J006295.11 Dec 2023 GWM Table 4 Indparameters

									Dissolved			
	_	Dissolved				Ferrous		Carbon	Organic			
Monitoring	Date	Oxygen	ORP	Nitrate	Sulfate	Iron	Chloride	Dioxide	Carbon	Ethane	Ethene	Methane
Well	(mo/yr)	(mg/l)	(mV)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	µg/l)
	5/15	0.01	-102.57	<0.050	137	9.4	70	47.1	1.0	63.9	35.6	114.0
	12/15	<0.1	-114	0.010	109	9.8	57	36.7	1.7	62.7	29.1	179
	6/16	<0.1	-95	0.020 J	109	18	70	65.3	1.5	61.1	51.7	152
	12/16	<0.1	-80.57	0.076	135	11	77	54.7	1.1	56.2	28	76.4
	6/17	<0.1	-91	0.068	73	11	80	76.7	1.6	56.0	24.9	142
	11/17	<0.1	-68.56	0.013 J	55	11	67	59	1.5	142	40.6	294
	6/18	<0.1	-82.89	0.071	56	11	84	47.6	1.6	125	25.3	259
	12/18	<0.1	-62.63	< 0.050	99	10	105	50.0	1.0	120	39.4	161
MW-C13	8/19	< 0.1	50.90	0.061	40S	9.7	77	38.2	3.8	427	<10.0	1020
	12/19	0.21	-118	0.022 J	44	5.5	108	61.8	2.2	<7.0	24.6	1670
	6/20 12/20	<0.1	-37	0.020	34 35	5.5	69	27.5 55.2	2.6	138	22.8	346
	5/21	<0.1 NT	106 NT	<0.050	35	6.3	71 95	59.2	1.9	70.3	14.3 16.9	658
	11/21	0.28	-120.3	<0.050 <0.050	111	4.9 10	263	40.2	1.9 <1.0	48.8 15.7	<10.9	1100 21.5
	6/22	0.28	-120.3	<0.050	32 S	3.8	112	24.7	1.4	<350	18.6	494 B
	11/22	0.22	6.1	0.948	124	2.3	195	27.0	0.5 J	15.4	<10.0	29.4
	9/23	0.40 NT	NT	0.365	79	8.6	94	35.4	0.5 5	80	17.2	99.9
	11/23	0.24	-87.2	0.305	105	2.0	126	36.8	0.9 J	22.4	<10.0	62.5
	5/15	0.04	-15.75	1.14	177	1.4	31	33.7	<1.0	<4.0	<6.0	<2.0
	12/15	<0.1	-22	1.29	169	1.1	29	24.6	1.2	<4.0	<6.0	1.6 J
	6/16	<0.1	45	4.49	151	0.34	32	37.9	0.9 J	<4.0	<6.0	1.6 J
	12/16	0.22	53.76	13	161	0.23	31	43.5	0.8 J	<4.0	<6.0	<2.0
	6/17	<0.1	281.44	3.29	168	0.074	34	42.5	0.8 J	<4.0	<6.0	<2.0
	11/17	<0.1	80.52	10.1	134	0.11	31	44.2	1 J	<4.0	<6.0	4.7
	6/18	0.05	138.97	3.10	151	0.042	32	23.4	1.0	<7.0	<10.0	4.2
MW-C14	12/18	0.1	94.58	3.43	160	<0.40	31	24.5	0.9 J	<7.0	<10.0	<5.5
	8/19	<0.1	490.9	2.72	139	2.9	30	15.3	1.2	<7.0	<10.0	<4.0
	12/19	0.52	902.2	13.7	112	0.02J	30	29.2	0.9 J	<7.0	<10.0	5.1
	12/20	0.30	242	13.1	125	<0.02	29	21.1	0.8 J	<7.0	<10.0	4.3
	11/21	0.26	184.2	14.4	133	3.1	27	14.1	0.7 J	<7.0	<10.0	<4.0
	11/22	0.35	83.1	6.83	158	<0.020	25	20.4	1.0 J	<7.0	<10.0	<4.0
	11/23	0.36	-29.1	5.04	164	0.58	24	35.0	0.6 J	<7.0	<10.0	<4.0
	5/15	0.11	-107.36	<0.050	106	11	25	62.4	1.2	<4.0	<6.0	465
	12/15	<0.1	-124	<0.050	44	9.9	20	41.7	2.4	<4.0	15.2	850
	6/16	<0.1	-111	0.027 J	42	20	18	62.0	2.0	<4.0	11.5	742
	12/16	<0.1	-27.53	0.051	57	11	19	63.8	2.0	<4.0	8.7	875
	6/17	<0.1	-108.67	0.012 J	49	11	24	68.8	1.8	<4.0	<6.0	685
	11/17	<0.1	-77.41	< 0.050	47	11	34	55.9	1.6	<4.0	69.7	885
	6/18	<0.1	-100.62	0.026 J	47	10	45	43.2	1.6	63.7	77.5	650
	12/18	<0.1	-59.64	< 0.050	34	11	37	52.1	1.8	225	57.7	342
MW-C15	8/19	<0.1	28.5	0.046 J	37	18	29	24.2	2.9	270	45.5	748
	12/19	< 0.1	116.4	< 0.050	94	12	30	48.4	1.4	<7.0	17.9	164
	6/20	0.38	-16	0.018	92	9.3	31	21.5	2.0	38.8	36.3	191
	12/20	<0.1	135 NT	0.011 J	75	11	37	22.5	1.4	57.1	35.0	555
	5/21	NT 6.52	NT	< 0.050	97	13	31	65.5	1.3	30.7	22.4	560
	11/21	6.52	28.3	0.288	180	0.072	32	23.2	1.3	<7.0	<10.0	10.4
	6/22	0.4	-83.1	0.146	130	8.6	34	26.7	1.5	27.0	14.5	314 B
	11/22	0.39	-46.2	0.009 J	115	11	39	30.3	1.4	35.3	19.9	256
	9/23 11/23	NT 0.1	NT	0.074	92 117	3.2 12	34	36.6	0.8	57.1	56.1 30.0	129
	11/23	0.1	-153.6	0.011 J	117	12	35	22.9	1.0 J	41.4	39.9	113

	7								Dissolved			
		Dissolved				Ferrous		Carbon	Organic			
Monitoring	Date	Oxygen	ORP	Nitrate	Sulfate	Iron	Chloride	Dioxide	Carbon	Ethane	Ethene	Methane
Well	(mo/yr)	(mg/l)	(mV)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(µg/l)	(µg/l)	µg/l)
	5/15	2.68	-92.44	<0.050	32	5.5	10	83.1	1.8	<4.0	<6.0	129
	12/15	<0.1	-145	<0.050	28	6.1	12	40.5	1.9	<4.0	<6.0	65.4
	6/16	<0.1	-120	0.015 J	80	6.5	13	55.5	1.4	<4.0	<6.0	11.2
	11/16	0.11	-87.05	0.011 J	43	5.8	13	52.2	1.4	<4.0	<6.0	28.9
	6/17	0.02	-69.29	0.030 J	27	6.1	24	63.4	1.5	<4.0	<6.0	62.1
	11/17	< 0.1	-72.37	0.023 J	54	6.4	19	49.8	1.1	<4.0	<6.0	31.2
MW-C16	6/18 12/18	0.17	40.85 80.09	0.125	40 42	0.075	63 50	31.0 27.8	2.6 1.3	<7.0	<10.0	29.5 19.7
	8/19	<0.1 <0.1	-82.60	<0.050 0.043 J	42 58	4.20	21	21.0	1.3	<7.0 <7.0	<10.0 <10.0	169
	12/19	<0.1	-02.60 114	0.043 J 0.027 J	85S	4.20	66	44.6	1.2	<7.0	<10.0	86.5
	12/19	3.70	317	0.027 J	102	1.5	63	32.1	1.4	<7.0	<10.0	97.9
	11/21	2.61	72.4	0.0110	243	0.024	105	39.2	0.9 J	<7.0	<10.0	6.8
	11/22	2.71	179.3	0.031 J	125	0.034	77	34.0	1.2	<7.0	<10.0	11.7
	11/23	5.42	77.8	0.074	102	< 0.02	45	56.2	1.2	<7.0	<10.0	5.5
	5/15	5.02	31.56	<0.050	99	6.3	14	68.8	1.2	<4.0	<6.0	19.8
	12/15	0.13	-158	0.01 J	112	6.9	24	38.5	1.4	<4.0	<6.0	9.0
	6/16	<0.1	-105	0.026 J	91	6.4	16	48.0	1.5	<4.0	<6.0	20.6
	11/16	0.96	63.18	1.02	64	0.13	22	27.6	1.8	<4.0	<6.0	<2
	6/17	0.04	-67.28	0.012 J	73	6.6	17	59.2	1.2	<4.0	<6.0	27.9
	11/17	<0.1	30.59	0.011 J	15	7.0	10	43.9	2.2	<4.0	<6.0	690
	6/18	NT	NT	1.60	56	0.064	35	10.7	1.8	<7.0	<10.0	<4.0
	12/18	<0.1	-7.43	<0.050	23	7.0	18	48.3	2.0	<7.0	<10.0	199
MW-C17	8/19	<0.1	-72.50	0.38 J	<10	7.8	15	35.7	2.0	<7.0	<10.0	201
	12/19	<0.1	-5.20	0.023 J	12	7.4	18	54.2	1.9	<7.0	<10.0	113
	6/20	<0.1	-38.00	0.010	11	7.5	14	25	2.2	<7.0	<10.0	130
	11/20	0.11	212	<0.050	45	6.3	27	40.9	2.4	9.6	<10.0	99.6
	5/21	NT	NT	0.039	17	8.7	16	48.6	2.1	<7.0	<10.0	550
	11/21	0.29	26.1	0.017 J	151	3.4	52	32.8	1.9	<7.0	<10.0	307
	6/22	0.39	-108	<0.050	22	6.4	10	12.4	2.5	<7.0	<10.0	885 B
	11/22	0.3	-94.3	<0.050	105	5.5	33	36.5	2.1	<70.0	<100	519 B
	9/23	NT	NT	<0.05	25	1.3	13	22.4	1.5	<7.0	10.4	700
	11/23	0.28	-151.9	<0.05	23	8.1	20	60.8	2.1	<7.0	<10.0	860
	12/15	<0.1	-100	0.032 J	75	6.7	28	69.0	1.2	<4.0	<6.0	26.9
	6/16	<0.1	87	0.023 J	69	5.8	27	41.0	1.2	<4.0	<6.0	26.3
	11/16	<0.1	-81.3	<0.050	72	7.9S	23	34.9	1.0	<4.0	<6.0	34.8
	6/17	<0.1	-82.77	0.012 J	71	6.0	24	43.2	0.8 J	<4.0	<6.0	25.4
	11/17	<0.1	-74.72	< 0.050	68	8.5	28	43.7	1.0	<4.0	<6.0	21.7
	6/18	0.04	-64.44	<0.050	52	4.6	18	36.9	1.0	<7.0	<10.0	18.9
MW-C18	12/18	<0.1	-3.95	<0.050	55	7.5	33	42.3	1.3	<7.0	<10.0	18.3
	8/19						pled Due 1					
	12/19						pled Due T					
	12/20					r	pled Due 1				10.5	
	11/21	0.27	80.4	<0.050	47	8.4	285	37.2	<1.0	<7.0	<10.0	17.6
	11/22	0.00	10.0	0.0-0		r	pled Due 1				40.0	4.65
	11/23	0.26	-13.9	<0.050 H	52	4.6	45	28.7	0.5 J	<7.0	<10.0	102

Monitoring Well	Date (mo/yr)	Dissolved Oxygen (mg/l)	ORP (mV)	Nitrate (mg/l)	Sulfate (mg/l)	Ferrous Iron (mg/l)	Chloride (mg/l)	Carbon Dioxide (mg/l)	Dissolved Organic Carbon (mg/l)	Ethane (µg/l)	Ethene (µg/l)	Methane µg/l)
	12/15	<0.1	-103	<0.050	10	6.1	8	74.9	1.6	<4.0	<6.0	70.4
	6/16	<0.1	-100	0.010 J	10	7.6	10	64.4	1.7	<4.0	<6.0	88.2
	11/16	0.16	-88.83	0.066	10 S	8.8 S	9	31.0	1.5	<4.0	4.3 J	132
	6/17	<0.1	-68.65	0.013 J	10 J	8.1	12	72.6	1.3	<4.0	<6.0	84.0
	11/17	<0.1	-79.26	0.010 J	13	7.2	8	62.9	1.7	<4.0	<6.0	48.4
	6/18	0.05	-60.75	0.016 J	9 JS	2.3	8	59.5	1.5	<7.0	<10.0	30.9
MW-C19	12/18	0.37	88.92	0.194	15	0.7	19	40.6	1.7	<7.0	<10.0	21.6
	8/19					Not Sam	pled Due T	o Floodin	g			
	12/19					Not Sam	pled Due T	o Floodin	g			
	12/20					Not Sam	pled Due T	o Floodin	g			
	11/21	0.30	-69.3	0.010 J	6 J	0.095	22	34.4	1.4	<7.0	<10.0	28.3
	11/22					Not Sam	pled Due T	o Flooding	g			
	11/23	0.22	-116	<0.05	10	3.9	9.0	41.8	1.1	<7.0	<10.0	35.4

Notes:

Data from the last eight years is included in the table.

J = Estimated value below the reporting limit.

NT = Not tested or anomalous results due to equipment problems in the field.

H = Holding times exceeded.

S = Spike Recovery outside recovery limits.

B = Analyte detected in associated Method Blank.

					indett /]	Hayfor - Amer	AMPLE ed Bridge en Huste Charles,	e Road er Roa	l Superfu d Substa	und Sit																				
3-18	240006	3-19	240006	53-20	240000	53-21	240006	53-22	24000	63-23	240006	53-24	240006	3-25	240006	3-26	240006	53-27	240000	63-28	240006	53-29	240006	53-30	240006	53-31	240006	53-32	240006	j 3 -:
(68') ate	GW-13	(45')	GW-14	(69')	GS-14	(45')	GW-14	(28')	UA-	-11	Field B	Blank	GW-04	(64')	GW-04		GW-05	(65')	GW-05 dupli		GW-05	(45')			EW	-1	Rins: Blar		Trip B	
Data Flag			Result (µg/L)																				Result (µg/L)						Result (µg/m ³)	
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	_
	ND ND		22 ND		25 ND		470 ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	-
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		88		ND		ND	
	ND	UJ	ND	UJ	ND	UJ	ND		ND		ND	UJ	ND	UJ	ND	UJ	ND	UJ	ND	UJ	ND	UJ	ND	UJ	ND		ND	UJ	ND	<u> </u>
	ND ND		ND 3.5		ND 3.5		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	-
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		24		ND		ND	
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	\vdash
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		960		ND		ND	
	ND		26		31		770		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
	ND ND		1.4 ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	-
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		55		ND		ND	
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		1,400		ND		ND	
	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	\vdash
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
	ND		11		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		7.8	
	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		100 ND		ND ND		ND ND	-
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
	ND	TTT	ND	TT	ND	TIT	ND		ND		ND	UJ	ND	UJ	ND	UJ	ND	UJ	ND	TT	ND	UJ	ND	TTT	ND		ND	UJ	ND	L
	ND ND	UJ	ND ND	UJ	ND ND	UJ	ND ND		ND ND		ND ND	UJ	ND ND	UJ	ND ND	ÛĴ	ND ND	ÛĴ	ND ND	UJ	ND ND	UJ	ND ND	UJ	ND ND		ND ND	UJ	ND ND	Ľ
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		1,900		ND		ND	
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		45		ND		ND	_
	ND ND		5.6 ND		5.5 ND		84 ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		0.85 ND		ND ND	-
	120		15		13		280		1,200		ND		ND		ND		ND		ND		ND		ND		17,000		ND		ND	
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	-
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		22		ND		ND	
	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND 21		ND ND		ND ND	\vdash
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
	ND ND		ND ND		ND ND		ND 33		ND ND	$\left - \right $	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	┡
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		25		ND		ND	
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	F
	ND ND		3.8 ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND 240		ND ND		ND ND	╞
	ND ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND ND		390		ND		ND	┢
	ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	
	ND ND		3.0 ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND	╞
	ND ND		5.0		5.1		ND 69		ND 380		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		4,300		ND ND		ND ND	╞
	2,2		0.0		0.11				200					1								I			.,				- , -	4

				Sample Number:	2400063		2400063-18	240006	3-19	24000	63-20	24000	63-21	24000	63-22	24000	63-23	240006	53-24	24000)63-25	24000)63-26	2400063-27	240000		240000	63-29	240006	3-30	240006	3-31	2400063	3-32	2400063	3-3
				Sample Name:	GW-13	(68')	GW-13 (68') duplicate	GW-13	(45')	GW-14	4 (69')	GS-14	(45')	GW-14	4 (28')	UA·	-11	Field B	Blank	GW-04	4 (64')	GW-0	4 (45')	GW-05 (65')	GW-05 dupli		GW-05	5 (45')	GW-05	(25')	EW-	-1	Rinsa Blan		Trip Bl	an
Analyte	CAS Number	Tapwater RSL TR = 10-6; HQ = 1.0 (µg/L)	MCL	VISL Target Groundwater Concentration TR = 10-6; HQ = 1.0 (µg/L)			Result Data (µg/L) Flag																													
1,1,1-Trichloroethane	71-55-6	8,000	200	31,100	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
1,1,2,2-Tetrachloroethane	79-34-5	0.076	NE	14.1	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
1,1,2-Trichloroethane	79-00-5	0.28	5	22.8	ND		ND	ND		22		25		470		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
1,1,2-Trichlorotrifluoroethane	76-13-1	10,000	NE	1,020	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
1,1-Dichloroethane	75-34-3	2.8	NE	33.4	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		88		ND		ND	
1,1-Dichloroethene	75-35-4	280	7	821	ND		ND	ND	UJ	ND	UJ	ND	UJ	ND		ND		ND	UJ	ND	UJ	ND	UJ	ND UJ		UJ	ND	UJ	ND	UJ	ND		ND	UJ	ND	
1,2,3-Trichlorobenzene	87-61-6	7	NE	NE	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
1,2,3-Trichloropropane	96-18-4	0.00075	NE	93.7	ND		ND	ND		3.5		3.5		ND	_	ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
1,2,4-Trichlorobenzene	120-82-1	1.2	70	151	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		24		ND		ND	
1,2,4-Trimethylbenzene	95-63-6	56	NE 0.2	1040	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND ND		ND	
1,2-Dibromo-3-Chloropropane	96-12-8	0.00033	0.2	0.34	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
1,2-Dibromoethane 1,2-Dichlorobenzene	106-93-4 95-50-1	0.0075 300	0.05	0.769 11200	ND ND	\vdash	ND	ND		ND		ND		ND		ND ND		ND		ND		ND		ND ND	ND		ND		ND		ND		ND ND		ND	
1,2-Dichloroethane	95-50-1 107-06-2	0.17	600	9.78	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		960		ND		ND	
·	78-87-5	0.17	5	28.7	ND		ND	ND		26		31		770		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
1,2-Dichloropropane 1,3,5-Trimethylbenzene	108-67-8	60	5 NE	733	ND		ND ND	ND ND		1.4 ND		ND ND		ND ND	_	ND ND		ND ND		ND ND	_	ND ND		ND ND	ND ND		ND ND		ND ND		ND ND		ND ND		ND	
1,3-Dichlorobenzene	541-73-1	NE	NE	NE NE	ND ND		ND	ND ND		ND	-	ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		55		ND		ND ND	
1,4-Dichlorobenzene	106-46-7	0.48	75	11.3	ND ND		ND	ND		ND		ND		ND		ND		ND		ND		ND	_	ND	ND		ND		ND		1,400		ND		ND	
2-Butanone	78-93-3	5,600	NE	9,410,000	ND ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
2-Hexanone	591-78-6	38	NE	34,500	ND ND		ND	ND		ND		ND		ND		ND		ND		ND		ND	_	ND	ND		ND		ND		ND		ND		ND	
4-Methyl-2-Pentanone	108-10-1	6,300	NE	2,330,000	ND		ND	ND		ND		ND		ND		ND		ND ND		ND		ND		ND	ND	-	ND		ND		ND		ND		ND	
Acetone	67-64-1	18,000	NE	NE	ND		ND	ND		11		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		7.8	
Benzene	71-43-2	0.46	5	6.93	ND		ND	ND		ND		ND		ND		ND		ND ND		ND		ND		ND	ND		ND		ND		100		ND		ND	
Bromochloromethane	74-97-5	83	NE	2,940	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
Bromodichloromethane	75-27-4	0.13	80	3.82	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
Bromoform	75-25-2	3.3	80	510	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
Bromomethane	74-83-9	7.5	NE	73	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
Carbon Disulfide	75-15-0	810	NE	5,210	ND		ND	ND	UJ	ND	UJ	ND	UJ	ND		ND		ND	UJ	ND	UJ	ND	UJ	ND UJ	ND	UJ	ND	UJ	ND	UJ	ND		ND	UJ	ND	l
Carbon Tetrachloride	56-23-5	0.46	5	1.81	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
Chlorobenzene	108-90-7	78	100	1,720	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		1,900		ND		ND	
Chloroethane	75-00-3	8,300	NE	38,600	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		45		ND		ND	
Chloroform	67-66-3	0.22	80	3.55	ND		ND	ND		5.6		5.5		84		ND		ND		ND		ND		ND	ND		ND		ND		ND		0.85		ND	
Chloromethane	74-87-3	190	NE	1,090	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
cis-1,2-Dichloroethene	156-59-2	25	70	1,050	110		120	120		15		13		280		1,200		ND		ND		ND		ND	ND		ND		ND		17,000		ND		ND	
cis-1,3-Dichloropropene	10061-01-5	NE	NE	NE	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
Cyclohexane	110-82-7	13,000	NE	4,290	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
Dibromochloromethane	124-48-1	0.87	80	NE	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	_
Dichlorodifluoromethane	75-71-8	200	NE	31.2	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	_
Ethyl Benzene	100-41-4	1.5	700	15.2	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		22		ND		ND	
Isopropylbenzene	98-82-8	450	NE	3,730	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
m and/or p-Xylene	179601-23-1	NE	NE	NE	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		21		ND		ND	
Methyl Acetate	79-20-9	20,000	NE	NE	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
Methyl tert-butyl ether	1634-04-4	14	NE	1,970	ND	\square	ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
Methylcyclohexane	108-87-2	200	NE	23.7	ND	\square	ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
Methylene Chloride	75-09-2	11	5	9,230	ND		ND	ND		ND		ND		33		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
o-Xylene	95-47-6	190	NE	2,070	ND	\mid	ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		25		ND		ND	
Styrene	100-42-5	1,200	100	39,000	ND		ND	ND	<u> </u>	ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
Tetrachloroethene	127-18-4	11	5	65.2	ND		ND	ND	 	3.8		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
Toluene	108-88-3	1,100	1,000	80,700	ND	\square	ND	ND	 	ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		240		ND		ND	
trans-1,2-Dichloroethene	156-60-5	68	100	457	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		390		ND		ND	
trans-1,3-Dichloropropene	10061-02-6	NE	NE	NE	ND	\square	ND	ND	<u> </u>	ND		ND		ND		ND		ND		ND		ND		ND	ND		ND	\mid	ND		ND		ND		ND	
Trichloroethene	79-01-6	0.49	5	7.43	ND	\square	ND	ND	 	3.0		ND		ND		ND		ND		ND		ND		ND	ND		ND		ND		ND		ND		ND	
Trichlorofluoromethane	75-69-4	5,200	NE	NE 2.45	ND		ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND		ND	$ \vdash $	ND		ND		ND		ND	
Vinyl Chloride	75-01-4	0.019	2	2.45	5.0		ND	ND		5.0		5.1		69		380		ND		ND		ND		ND	ND		ND		ND		4,300		ND		ND	

Notes:

CAS = Chemical Abstracts Services Registry Number

HQ = Hazard Quotient

ID = Identification

J = Estimated value

MCL = Maximum Contaminant Level

MEK = Methyl ethyl ketone

MIBK = Methyl Isobutyl ketone

MTBE = Methyl tert-butyl ether

 $\mu g/L = Micrograms per liter$

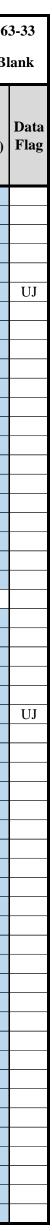
ND = Not detected

NE = Not established

NR = Not reported

RSL = Regional Screening Level

TR = Target Risk


UJ = Analyte not detected at concentration at or above reporting limit. Reporting limit is an estimate.

Color Coding:

Analyte not detected Concentration exceeds benchmark

TABLE 7

CROUNDWATER SAMPLE RESULTS - MARCH 2024

		Sample Number:	240006		24000		24000		240006		24000		24000		240006		240006	
	1	Sample Name:	SG-0	1	SG	02	SG	-03	SG-	05	SG	06	SG	07	SG-	08	SG-()9
Analyte	CAS Number	VISL Sub-Slab and near source Soil-gas (Commercial) TR = 10-6; HQ = 1.0 (µg/m ³)	Result (µg/m ³)	Data Flag	Result (µg/m ³)	Data Flag	Result (µg/m ³)	Data Flag	Result (µg/m ³)	Data Flag	Result (µg/m ³)	Data Flag	Result (µg/m ³)	Data Flag	Result (µg/m ³)	Data Flag	Result (µg/m ³)	Data Flag
1,1,1-Trichloroethane	71-55-6	730,000	ND		ND		ND	_	ND		ND		ND		ND		ND	
1,1,2,2-Tetrachloroethane	79-34-5	7.05	ND		ND		ND		ND		ND		ND		ND		ND	
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane	79-00-5 76-13-1	25.6	ND ND		ND ND	-	ND ND	-	ND ND		ND ND		ND ND		ND ND		ND ND	
1,1-Dichloroethane	75-34-3	256	570		4.4		ND		ND		ND		ND		1.2		31	1
1,1-Dichloroethene	75-35-4	29,200	ND		1.4		ND		1.5		ND		ND		0.25		12	
1,2,4-Trichlorobenzene	120-82-1	292	ND		ND		ND		ND		ND		ND		ND		ND	
1,2,4-Trimethylbenzene	95-63-6	8,760	ND		7.2		3.3		4.5		2.7		2.4		4.8		2,100	ļ
1,2-Dibromoethane 1,2-Dichlorobenzene	<u> </u>	0.681 29,200	ND 1,100		<u>ND</u> 74		ND 19		ND ND		ND ND		ND ND		ND ND		ND 19,000	
1,2-Dichloroethane	107-06-2	15.7	7.2		0.83		ND		0.19		0.11	J	0.15		0.32		19,000 ND	
1,2-Dichloropropane	78-87-5	110	ND		ND		ND		ND		ND		ND		ND		ND	
1,2-Dichlorotetrafluoroethane	76-14-2	NE	ND		ND		ND		ND		ND		ND		ND		ND	
1,3,5-Trimethylbenzene	108-67-8	8,760	ND		ND		1.1		1.4		ND		ND		4.2		760	
1,3-Butadiene	106-99-0	13.6	190 540		3.5		4.3		4.6		6.0		7.4		ND ND		ND	
1,3-Dichlorobenzene 1,4-Dichlorobenzene	541-73-1 106-46-7	NE 37.2	540 52		30 270		8.5 59		ND ND		ND ND		<u>ND</u> 1.6		ND 2.6		1,900 27,000	
1,4-Dioxane	123-91-1	81.8	ND		4.4		ND		ND		ND		ND		ND		ND	
2,2,4-Trimethylpentane	540-84-1	NE	ND		ND		ND		12		6.4		20		8.7		ND	
2-Butanone	78-93-3	730,000	ND		5.1		16		34		21		39		46		ND	
2-Hexanone	591-78-6	4,380	ND		ND		ND		ND		ND		ND		ND		ND	
2-Propanol 4-Ethyltoluene	67-63-0 622-96-8	29,200 NE	ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND		ND ND	
4-Ethyltoluene 4-Methyl-2-Pentanone	108-10-1	438,000	ND ND		2.9		1.9		1.8		ND ND		ND ND		ND ND		860	
Acetone	67-64-1	NE	ND		96		31		140		73		150		550		210	
Allyl Chloride	107-05-1	68.1	ND		ND		ND		ND		ND		ND		ND		ND	
Benzene	71-43-2	52.4	870	J	27		15		7.4		6.2		12		120		10,000	
Benzyl Chloride	100-44-7	8.34	ND		ND		ND		ND		ND		ND		ND		ND	
Bromodichloromethane Bromoform	75-27-4 75-25-2	11 372	ND ND		ND ND		ND ND	-	ND ND		ND ND		ND ND		ND ND		ND ND	
Bromomethane	73-23-2	730	ND		ND		ND		ND		ND		ND		ND		ND	
Carbon Disulfide	75-15-0	102,000	49		1.0		1.4		1.8		4.4	J	13		4.2		3.7	
Carbon Tetrachloride	56-23-5	68.1	ND		0.62		0.41		0.42		0.39		ND		ND		ND	
Chlorobenzene	108-90-7	7,300	130		1,100	J	860		18 ND		2.8	J	6.0		5.3		160,000	J
Chloroethane Chloroform	75-00-3 67-66-3	584,000 17.8	330 ND		<u> </u>		ND ND		ND ND		ND ND		ND ND		0.89 ND		26 0.31	
Chloromethane	74-87-3	13,100	22		1.4		1.6		1.8		1.5		0.68		6.0		26	
cis-1,2-Dichloroethene	156-59-2	5,840	340		260		10		0.25		2.1		2.1		12		22	
cis-1,3-Dichloropropene	10061-01-5	NE	ND		ND		ND		ND		ND		ND		ND		ND	
Cyclohexane	110-82-7	876,000	38		1.9		2.5		6.4		3.8		11		25		1200	ļ
Dibromochloromethane Dichlorodifluoromethane	<u> 124-48-1</u> 75-71-8	NE 14,600	ND ND		ND 1.9		ND 1.9		ND 1.9		ND 1.8		ND ND		ND ND		ND ND	
Ethyl Acetate	141-78-6	10,200	ND		ND		ND		ND		ND		ND		ND		ND	
Ethyl Benzene	100-41-4	164	ND		8.3		5.7		6.6		5.0		6.4		8.4		2,600	
Heptane	142-82-5	58,400	ND		9.5		5.7		14		10		19		26		3,000	
Hexachlorobutadiene	87-68-3	18.6	ND		ND	ļ	ND		ND 20		ND		ND 24		ND 120		ND	
Hexane m and/or p-Xylene	<u>110-54-3</u> 179601-23-1	102,000 NE	160 42		7.7 28		8.9 7.6		<u> </u>		<u> </u>		<u> </u>		120 17		7200 5,600	
Methyl tert-butyl ether	1634-04-4	1,570	42 ND		 ND		ND		ND		A.4 ND		ND		ND		3,800 ND	
Methylene Chloride	75-09-2	40,900	ND		ND		ND		ND		ND		ND		ND		ND	
o-Xylene	95-47-6	14,600	25		11		3.7		2.8		2.1		3.6		11		1,200	
Propene	115-07-1	438,000	1,100	J	31		29		50		48		120		690		ND	
Styrene Tetrachloroethene	<u> </u>	146,000 1,570	ND 16		ND 3.0		1.8		1.2 0.65		3.4		1.4		2.5		ND 360	т
Tetrahydrofuran	127-18-4	292,000	16 17		3.0 8.3		<u> </u>		0.65 ND		0.62 ND		2.0 ND		2.4 2.7		<u> </u>	J
Toluene	108-88-3	730,000	ND		10		1.0		15		12		16		48		3,000	
trans-1,2-Dichloroethene	156-60-5	5,840	ND		0.60		ND		ND		ND		ND		5.0		150	
trans-1,3-Dichloropropene	10061-02-6	NE	ND		ND		ND		ND		ND		ND		ND		ND	
Trichloroethene	79-01-6	100	3.0		0.95		0.27		0.26		ND	т	0.15		4.1		75	
Trichlorofluoromethane Vinyl Acetate	75-69-4 108-05-4	NE 29,200	ND ND		1.2 ND		1.2 ND		1.2 ND		1.1 ND	J	ND ND		ND ND		ND ND	
Vinyl Bromide	593-60-2	29,200	ND		ND		ND		ND		ND		ND ND		ND		ND	
Vinyl Chloride	75-01-4	92.9	1,200	J	250	J	14	J	0.21	J	2.5	J	2.4	J	280	J	260	J
J			_,	÷		v	- 1	1 ⁻		. ř		, v					200	

Notes:

AMB = Ambient

C = Estimated concentration because of calculated sampling rate CAS = Chemical Abstracts Services Registry Number

HQ = Hazard Quotient

ID = Identification

J = Estimated value

MC = Manor Chemical MEK = Methyl ethyl ketone MIBK = Methyl isobutyl ketone MTBE = Methyl tert-butyl ether $\mu g/m^3$ = Micrograms per cubic meter ND = Not detected

TABLE 8

EXTERIOR SOIL-GAS SAMPLE RESULTS - MARCH 2024

Findett / Hayford Bridge Road Superfund Site

OU1 - Ameren Huster Road Substation

St. Charles, Missouri

NE = Not established

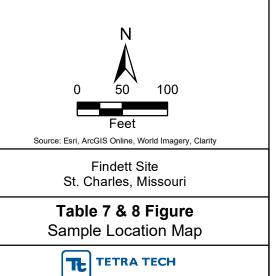
NR = Not reportedSG = Soil-gas

TR = Target Risk

VISL= Vapor Intrusion Screening Level

Color Coding:

Analyte not detected


Concentration exceeds benchmark

Legend

🖶 Manhole

- Groundwater sample location
 - Soil gas sample location
 - Soil gas and groundwater sample location

APPENDIX D – SITE CHRONOLOGY

Events Prior to Third FYR (USEPA 2010)	Date
Site discovered by EPA	1976
Findett Corp. conducted first quench pond soil excavation	1977
Findett Corp. conducted second quench pond soil excavation	1981
Findett conducted PCB investigation	1982-1984
US EPA proposed site for NPL	1984
US EPA conducted RI/FS at OU1	1987-1988
US EPA signed ROD for OU1	1988
US EPA removed site from NPL candidacy	1989
Findett signed Consent Decree to conduct OU1 selected remedy	1990
Findett installed extraction well 1 (EW-1)	1991
Findett added pump to MW-6 to supplement extraction rates	1992
USEPA signed OU1 ROD Amendment to allow soils bioremediation	1995
USEPA signed OU2 removal action Decision Document	1995
Findett implemented OU1 soils bioremediation	1999-2001
RPs signed ASAOC to conduct the OU2 Removal Action	2000
USEPA completed first FYR Report	2000
RPs completed OU2 soil removal action	2001
RPs signed ASAOC to conduct RI/FS for OU3	2001
Findett ended OU1 soils bioremediation and completed excavation	2003
Findett modified OU1 GETS to operate all year	2003
RPs conducted OU3 RI/FS	2005
USEPA signed ROD for OU3 selected remedy	2005
USEPA completed second FYR Report	2005
Consent Decree entered by court to conduct OU3 remedy	2007
RPs implemented OU3 remedy	2008
RPs completed hydraulic control study of OU1	2009
Explosion in process building at OU1 ends onsite business	2009
USEPA completed third FYR Report	2010
Events Subsequent to Third FYR (USEPA 2010)	
USEPA invoked the Emergency Contingency Plan Response based on	2011
detections of contaminants in the EPWF at CW-5	
Emergency Action Response (EAR) for OU3 approved by USEPA	2011
USEPA issued a Letter to Findett for a thorough evaluation of OU1	2011
because contaminants not hydraulically contained at source area	
OU3 RPs completed plume mapping which identified a northern VOC	2011-2012
plume associated with the Ameren Huster Road Substation property	
The OU3 RPs issued a Well Field Expansion Evaluation Report	2012
Ameren invited to join the EAR Settlement Agreement, but declined due	2012
to ongoing investigation	
Ameren conducted independent Preliminary Screening Site	2012
Investigation (PSSI) confirming VOCs across substation property	

	1
USEPA issued an Enforcement Action Memorandum (EAM) to approve	2012
Time Critical Removal Action (TCRA) to further explore the slug of	
contamination in the alluvial aquifer downgradient of OU1 and the	
Ameren substation property	
The OU3 RPs entered an ASAOC to perform emergency response actions	2012
to protect the EPWF	
Ameren entered an ASAOC to investigate the substation as a source of	2012
contamination and to contain and treat contaminated groundwater	
USEPA issued an EAM Amendment for additional response action based	2013
on identification of Ameren as major source of contamination	
OU3 RPs issued a MNA report and Semi-Annual Monitoring Report for	2014
OU3 in advance of the Fourth FYR	
OU3 RPs issued an Addendum to the 2014 MNA Report, which included	2015
provisions for the installation of two additional nested monitoring wells	
in the MNA network	
USEPA issued a Notice of Completion of Work to the OU3 RPs for work	2015
associated with the 2012 Settlement Agreement and terminated the	
ASAOC	
USEPA completed Fourth FYR Report	2015
EPA entered an ASAOC with Ameren to complete an RI/FS for OU4	2018
OU1/OU2 Environmental Covenant Established	2019
OU4 Final Human Health Risk Assessment	2019
US EPA completed fifth FYR Report	2020
USEPA issues removal action memorandum and assumes operation of	2021
OU1 GETS	
USEPA installs new extraction well (EW-2) and new Tray Air Stripper	2022
system	
USEPA invokes Non-Emergency Contingency Response at OU3 for	2023
detections of contaminants at compliance point wells and estimated	
remedial timeframe exceeding the 20-year limit	
Former Findett and Cadmus properties purchased by private party	2024
USEPA conducts Soil Gas and Direct Push Groundwater Sampling at OU1	2024
OU3 RPs submit MNA Evaluation Report in advance of Sixth FYR	2024
OU3 RPs begin EPA-approved CPAR Investigation field work	2024

APPENDIX E – FYR PUBLIC NOTICE

PUBLIC NOTICE

<u>Region 7</u> Iowa, Kansas, Missouri, Nebraska and Nine Tribal Nations Sixth Five-Year Review Started Findett Corp. Superfund Site St. Charles, St. Charles County, Missouri June 2024

The U.S. Environmental Protection Agency (EPA) Region 7 has started the Sixth Five-Year Review for the Findett Corp. Superfund Site. Five-Year Reviews are required by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), commonly known as Superfund, when hazardous substances remain on-site above levels that permit unrestricted use and unlimited exposure.

Five-Year Reviews provide an opportunity to evaluate the site remedy to determine whether it remains protective of human health and the environment. This Five-Year Review Report is anticipated to be complete by July 2025.

Site project information is available to the public at web repositories. To view cleanup documents, please visit EPA's Site Profile page at: www.epa.gov/superfund/findettcorp (see Site Documents & Data).

If you do not have internet access, you can view these documents online at this location: **Kathryn Linnemann Branch Public Library**, 2323 Elm Street, St. Charles, MO 63301; 636-946-6294.

EPA will hold a **Public Meeting** on Thursday, June 27, from 7 to 8 p.m. at St. Peter Catholic Church, 221 1st Capitol Drive, St. Charles, MO 63301.

EPA will provide information on the Five-Year Review for Operable Units 1-3. A Technical Presentation will begin at 7 p.m., and then EPA will facilitate a Question-and-Answer session until 8 p.m. Additional information can be found on the Site Profile page at the link listed above (under Announcements and Key Topics).

If you have questions about the site or upcoming meeting, please contact **Jessica Evans**, EPA community involvement coordinator, at evans.jessica@epa.gov or 314-296-8182.

Missouri, Nebraska and Nine Tribal Nations

Region 7

Iowa, Kansas,

PUBLIC NOTICE

Sixth Five-Year Review Started Findett Corp. Superfund Site St. Charles, St. Charles County, Missouri October 2024

The U.S. Environmental Protection Agency (EPA) Region 7 has started the Sixth Five-Year Review for the Findett Corp. Superfund Site. Five-Year Reviews are required by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), commonly known as Superfund, when hazardous substances remain on-site above levels that permit unrestricted use and unlimited exposure. Five-Year Reviews provide an opportunity to evaluate the site remedy to determine whether it remains protective of human health and the environment. This Five-Year Review Report is anticipated to be completed by July 2025.

EPA is requesting feedback, including any questions or concerns, from the community about the site to consider as part of the Five-Year Review process. EPA will hold in-person interviews in St. Charles, Missouri, during the week of Oct. 21, 2024. Additionally, interviews can be scheduled over the phone or virtually until Nov. 21, 2024. If you would like to take part in one of the in-person interviews, please contact **Jessica Evans** by Oct. 11 at <u>evans.jessica@epa.gov</u> or 314-296-8182.

EPA held a public meeting to describe the Five-Year Review process in June 2024. The presentation was recorded and is available at the QR Code below. Additional site project information is available to the public on EPA's Site Profile page at: <u>www.epa.gov/superfund/findettcorp</u>. If you do not have internet access, you can view these documents online at this location: **Kathryn Linnemann Branch Public Library**, 2323 Elm St., St. Charles, MO 63301; 636-946-6294.

U.S. Environmental Protection Agency, Region 7 11201 Renner Boulevard, Lenexa, KS 66219 Toll-free: 1-800-223-0425 **APPENDIX F – FYR SITE INSPECTION CHECKLIST**

Five-Year Review Site Inspection Checklist

I. SITE INFORMATION				
Site name: Findett Corp./Hayford Bridge Road	Date of inspection: 10/24/2024			
Location and Region: St. Charles, MO – Region 7	EPA ID: MOD006333975			
Agency, office, or company leading the five-year review: EPA Region 7	Weather/temperature: 70 F, Sunny			
Remedy Includes: (Check all that apply)				
Attachments: □ Inspection team roster attached	Site map attached			
II. INTERVIEWS (C	Check all that apply)			
 O&M site manager Refer to attached intervie Name Interviewed □ at site □ at office □ by phone Pho Problems, suggestions; ⊠ Report attached 	Title Date			
2. O&M staff Name Interviewed □ at site □ at office □ by phone Phone Problems, suggestions; □ Report attached	Title Date			

Agency	Agency		
Name Title Date Phone no. Problems; suggestions; □ Report attached			
Agency	Name		DatePhone no.
Contact	Problems; suggestions; Rep	ort attached	
Contact	Agency		
Name Title Date Phone no. Problems; suggestions; □ Report attached	Contact		
Contact Name Title Date Phone no. Problems; suggestions; □ Report attached	Name	Title	DatePhone no.
Contact Name Title Date Phone no. Problems; suggestions; □ Report attached	Agency		
Name Title Date Phone no. Problems; suggestions; □ Report attached			
Contact Name Title Date Phone no. Problems; suggestions; □ Report attached	Name	Title	
Contact Name Title Date Phone no. Problems; suggestions; □ Report attached	Agency		
Name Title Date Phone no. Problems; suggestions; □ Report attached			
	Name	Title	
o attached interview forms.	Other interviews (optional)	⊠ Report attached.	
	o attached interview forms.		

	III. ON-SITE DOCUME	NTS & RECORDS VERIFIED(Check all that apply	/)
1.	O&M Documents ☑ O&M manual ☑ As-built drawings ☑ Maintenance logs Remarks	☑ Readily available☑ Readily available	Up to date] N/A] N/A] N/A
2.	Site-Specific Health and Safety Pla ⊠ Contingency plan/emergency re Remarks	esponse plan 🛛 Readily ava		
3.	O&M and OSHA Training Records Remarks	-	-] N/A
4.	Permits and Service Agreements Air discharge permit Effluent discharge Waste disposal, POTW Other permits Remarks 	☐ Readily availabl □ Readily available □ Readily availabl	e 🛛 Up to da	ate ⊠N/A IN/A ate ⊠N/A
5.	Gas Generation Records Remarks	-	•] N/A
6.	Settlement Monument Records Remarks	Readily available	-	te ⊠N/A
7.	Groundwater Monitoring Records Remarks	s ⊠ Readily available I	⊠ Up to date □	N/A
8.	Leachate Extraction Records Remarks	Readily available	e 🛛 Up to da	te 🛛 N/A
9.	Discharge Compliance Records Air Water (effluent) Remarks 	□ Readily available □ Readily available		

10.	Daily Access/Security Logs Remarks	Readily availab	-
		IV. O&M COSTS	
1.		□ Contractor for State ⊠ Contractor for PRP Contractor for Federal Facility	
2.	 Funding mechanism/agre Original O&M cost estimate 	Up to date ement in place 	
		ate Total cost	Breakdown attached Breakdown attached
	FromTo	ate Total cost	 Breakdown attached Breakdown attached
	FromTo	ate Total cost	 Breakdown attached Breakdown attached
		ate Total cost	
3.		High O&M Costs During Review	
A. Fer		ID INSTITUTIONAL CONTROLS	
1.	-	Location shown on site map	⊠ Gates secured □ N/A
B. Otl	her Access Restrictions		

1.	Signs and other security measures Location shown on site map Remarks	⊠ N/A			-
C. Ins	titutional Controls (ICs)				
1.	Implementation and enforcement Site conditions imply ICs not properly implemented Site conditions imply ICs not being fully enforced	□ Yes ⊠ No	⊠ No □ N/A	□ N/A	
	Type of monitoring (<i>e.g.</i> , self-reporting, drive by) Frequency Responsible party/agency				-
	Contact Name Title Dat	e Phone I	10.		-
	Reporting is up-to-date Reports are verified by the lead agency	⊠ Yes ⊠ Yes		□ N/A □ N/A	
	Specific requirements in deed or decision documents have been met Violations have been reported Other problems or suggestions:	⊠ Yes □ Yes	□ No □ No	□ N/A ⊠ N/A	
2.	Adequacy ⊠ ICs are adequate □ ICs are inadequade Remarks	quate		□ N/A	-
D. Ge					
1.	Vandalism/trespassing ⊠ Location shown on site map □ No va Remarks	andalism	evident		-
2.	Land use changes on site IN/A Remarks: The former Findett and Cadmus properties were purchased new property owner has started an aboveground storage operation, p property. Currently, there are vehicles and equipment being stored of Cadmus building.	particular	ly on the	former Cad	
	A prospective purchaser of property overlaying the operable unit 3 gr contact with the EPA in 2024. The EPA was informed by the prospecti excavate top soil on the property for use as backfill at the Deer Field F raise the grade above the floodplain.	ve purcha	aser that	they plan to)

		VI.	GENERAL SITE CONDITIC	ONS		
A. Ro	oads 🛛 Applicable	⊠ N/A				
1.	Roads damaged Remarks		on shown on site map			3 N/A
B. Ot	her Site Conditions					
	Remarks					
	<u> </u>					
		/II. LANDF	FILL COVERS D Applicat	ole ⊠N/	Ά	
A. La	N ndfill Surface					
A. La 1.			FILL COVERS			vident
	ndfill Surface Settlement (Low spots)		Location shown on site Depth	e map	□ Settlement not e	
	ndfill Surface Settlement (Low spots) Areal extent		Location shown on site Depth	e map	□ Settlement not e	
1.	ndfill Surface Settlement (Low spots) Areal extent Remarks Cracks Lengths	 Widths	Location shown on site Depth Location shown on site Depths	e map	Settlement not e	
1.	ndfill Surface Settlement (Low spots) Areal extent Remarks Cracks	 Widths	Location shown on site Depth Location shown on site Depths	e map	Settlement not e	
1.	ndfill Surface Settlement (Low spots) Areal extent Remarks Cracks Lengths Remarks Erosion	Widths_	Location shown on site Depth Location shown on site Depths	e map e map	 Settlement not e Cracking not evic 	Jent
1.	ndfill Surface Settlement (Low spots) Areal extent Remarks Cracks Lengths Remarks Erosion Areal extent	Widths_	Location shown on site Depth Location shown on site Depths Location shown on site Depths	e map e map	 Settlement not e Cracking not evic 	Jent
1.	ndfill Surface Settlement (Low spots) Areal extent Remarks Cracks Lengths Remarks Erosion Areal extent	Widths_	 Location shown on site Depth Location shown on site Depths Depths Location shown on site 	e map e map	 Settlement not e Cracking not evic 	Jent
1.	ndfill Surface Settlement (Low spots) Areal extent Remarks Cracks Lengths Remarks Erosion Areal extent Remarks Holes	 Widths	Location shown on site Location shown on sit	e map	 Settlement not e Cracking not evic 	dent
1. 2. 3.	ndfill Surface Settlement (Low spots) Areal extent Remarks Cracks Lengths Remarks Erosion Areal extent Remarks	Widths	Location shown on site Depth Location shown on site Depths Location shown on site Depth	e map	Settlement not e	dent

6.	Alternative Cover (armored rock Remarks	k, concrete, etc.) □ N/A	
7.	Bulges Areal extent Remarks	Location shown on site map Height	Bulges not evident
8.	Wet Areas/Water Damage Uet areas Ponding Seeps Soft subgrade Remarks	 Wet areas/water damage not Location shown on site map 	t evident Areal extent Areal extent Areal extent Areal extent
9.	Slope Instability Slides Areal extent Remarks	Location shown on site map	□ No evidence of slope instability
B. Be	(Horizontally constructed mound	⊠ N/A Is of earth placed across a steep la velocity of surface runoff and inter	
1.	Flows Bypass Bench Remarks	•	□ N/A or okay
2.	Bench Breached Remarks		□ N/A or okay
3.	Bench Overtopped Remarks	Location shown on site map	□ N/A or okay
C. Let	-	llow the runoff water collected by	pions that descend down the steep the benches to move off of the
1.	Areal extent	ation shown on site map 🛛 🗆 No Depth	o evidence of settlement

2.	Material type	al Degradation Location shown on site map No evidence of degradation Areal extent s			
3.	Erosion Areal extent Remarks			□ No evidence of erosion	
4.	Areal extent Remarks	Depth_		No evidence of undercutting	
5.	Obstructions Type □ Location shown on site Size Remarks	·	Areal exte	obstructions nt	
6.	Excessive Vegetative Gro D No evidence of excessiv Vegetation in channels Location shown on site Remarks	ve growth does not obstruc map	t flow Areal exte	nt	
D. Co	over Penetrations	cable 🛛 N/A			
1.	 Evidence of leakage at N/A 	penetration	□ Routinely sat □ Nee	mpled 🛛 Good condition eds Maintenance	
2.	Gas Monitoring Probes Properly secured/locke Evidence of leakage at Remarks	penetration	□ Nee	mpled	
3.	Monitoring Wells (within Properly secured/locke Evidence of leakage at Remarks	d □ Functioning penetration	□ Routinely sat □ Nee	mpled Good condition ds Maintenance N/A	

4.	Leachate Extraction Wells Properly secured/locked Functioning Routinely sampled Good condition Evidence of leakage at penetration Remarks
5.	Settlement Monuments □ Located □ Routinely surveyed □ N/A Remarks
E. Gas	Collection and Treatment Applicable N/A
1.	Gas Treatment Facilities Gas Treatment Facilities Collection for reuse Good condition Needs Maintenance Remarks
2.	Gas Collection Wells, Manifolds and Piping Good condition Needs Maintenance Remarks
3.	Gas Monitoring Facilities (e.g., gas monitoring of adjacent homes or buildings) Good condition Needs Maintenance N/A Remarks
F. Cove	er Drainage Layer 🗆 Applicable 🖾 N/A
1.	Outlet Pipes Inspected □ Functioning □ N/A Remarks
2.	Outlet Rock Inspected □ Functioning □ N/A Remarks
G. Det	ention/Sedimentation Ponds
1.	Siltation Areal extent Depth Depth Siltation not evident Remarks
2.	Erosion Areal extent Depth □ Erosion not evident Remarks
3.	Outlet Works □ Functioning Remarks

4. Dam Dunctioning N/A Remarks_____

H. Re	taining Walls	Applicable	⊠ N/A	
1.	Deformations Horizontal displacement_ Rotational displacement_ Remarks		Vertical displac	Deformation not evident ement
2.	Degradation Remarks	Location show		Degradation not evident
I. Per	imeter Ditches/Off-Site Disc	charge	Applicable	⊠ N/A
1.	Siltation Locat Areal extent Remarks	Depth_		not evident
2.	Vegetative Growth Vegetation does not im Areal extent Remarks 	pede flow Type		□ N/A
3.	Erosion Areal extent Remarks			Erosion not evident
4.	Discharge Structure Remarks	-		
		/ERTICAL BARRIE	R WALLS 🗆 Ap	plicable 🛛 N/A
1.	Settlement Areal extent Remarks	 Location show Depth 	vn on site map	Settlement not evident
2.	Performance Monitoring Performance not monit Frequency Head differential Remarks 	cored	D Evidence	of breaching
	IX. GROUNDW	ATER/SURFACE \	WATER REMEDIES	6 ⊠ Applicable □ N/A
A. Gr	oundwater Extraction Wells	, Pumps, and Pip	elines 🛛 App	licable 🗆 N/A

1.	Pumps, Wellhead Plumbing, and Electrical □ Good condition □ All required wells properly operating ⊠ Needs Maintenance □ N/A Remarks: High iron content in the groundwater at OU1 necessitates frequent maintenance. Extremely low temperatures experienced in recent winters led to frozen plumbing and system shutdown.		
2.	Extraction System Pipelines, Valves, Valve Boxes, and Other Appurtenances□ Good condition☑ Needs MaintenanceRemarks: High iron content in the groundwater at OU1 leads to frequent fouling of the system thatnecessitates frequent maintenance. Extremely low temperatures in recent winters led to pipes freezingand bursting at OU1. These conditions resulted in an extended shutdown period of the GETS.		
3.		ent □ Good condition □ Requires upgrade ⊠ Needs to be provided quent fouling of the system and extreme weather events necessitates keeping ailable to minimize system downtime.	
B. Surface Water Collection Structures, Pumps, and Pipelines			
1.	Collection Structures, Pu Good condition Remarks	Imps, and Electrical	
2.	Surface Water Collection System Pipelines, Valves, Valve Boxes, and Other Appurtenances Good condition Needs Maintenance Remarks		
3.	Spare Parts and Equipme Readily available Remarks		
C. Trea	itment System	⊠ Applicable □ N/A	
1.	Treatment Train (Check ⊂ □ Metals removal ⊠ Air stripping □ Filters □ Additive (<i>e.g.</i> , chelatic	 Oil/water separation Bioremediation Carbon adsorbers 	
	Others Good condition	⊠ Needs Maintenance	
	□ Sampling ports proper	ly marked and functional e log displayed and up to date	
	☑ Quantity of groundwa □ Quantity of surface wa Remarks	ter treated annually2.5 million gallons ter treated annually	

ſ

2.	Electrical Enclosures and Panels (properly rated and functional) N/A Good condition Needs Maintenance Remarks			
3.	Tanks, Vaults, Storage Vessels N/A Good condition Remarks			
4.	Discharge Structure and Appurtenances □ N/A			
5.	Treatment Building(s) □ N/A ⊠ Good condition (esp. roof and doorways) □ Needs repair ⊠ Chemicals and equipment properly stored Remarks			
6.	Monitoring Wells (pump and treatment remedy) □ Properly secured/locked I Functioning I Routinely sampled I Good condition I required wells located I Needs Maintenance I N/A Remarks			
D. Monitoring Data				
1.	Monitoring Data ⊠ Is routinely submitted on time ⊠ Is of acceptable quality			
2.	Monitoring data suggests: Groundwater plume is effectively contained Contaminant concentrations are declining 			
D. N	Ionitored Natural Attenuation			
1.	Monitoring Wells (natural attenuation remedy) ☑ Properly secured/locked ☑ Functioning ☑ Routinely sampled ☑ Good condition ☑ All required wells located □ Needs Maintenance □ N/A Remarks			
	X. OTHER REMEDIES			
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.			
	XI. OVERALL OBSERVATIONS			
Α.	A. Implementation of the Remedy			

Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).

The operable unit 3 remedy is taking longer than the 10-20-year timeframe established in the Record of Decision. The EPA has triggered contingency action in accordance with the ROD and responsible parties are performing work pursuant to the OU3 Consent Decree to accelerate the timeframe to achieving cleanup goals. The operable unit 1 remedy has extracted and treated significant contaminant mass since the EPA assumed operational control of the GETS in 2021. However, sampling at operable unit 1 indicates small amounts of contamination may be outside the capture radius of the GETS and moving towards operable unit 3. The EPA expects contingency action performed by responsible parties at operable unit 3 to eliminate migration of contamination and the need for the GETS to operate.

Additionally, the overall effectiveness of the GETS is limited by the slow rate of diffusion from contaminated cohesive soils. The EPA also expects contingency actions performed by responsible parties to reduce the overall levels of contamination at the source area.

B. Adequacy of O&M

Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.

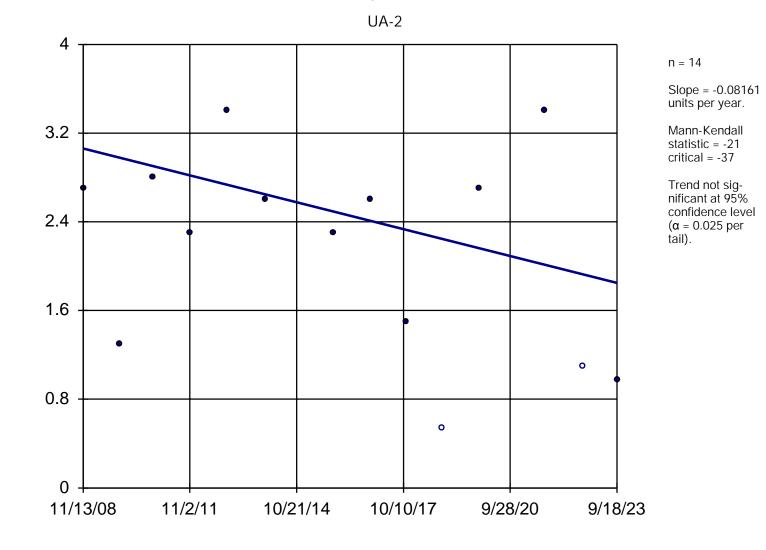
Technical challenges persist with the operation of the GETS due to the high iron content of the groundwater in the area in addition to extreme weather events resulting in system failure. A different approach to source remediation is being evaluated via the Remedial Contingency Plan of OU3. However, the environmental covenant on the former Findett and Cadmus properties prevents exposure by prohibiting the drilling of wells and disturbance of soils at the source area. In addition, the city's Well Head Protection ordinance prevents the drilling of wells and construction of ponds and lakes below the confining layer of soils. These covenants are currently preventing human exposure to contamination.

C. Early Indicators of Potential Remedy Problems

Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs, that suggest that the protectiveness of the remedy may be compromised in the future.

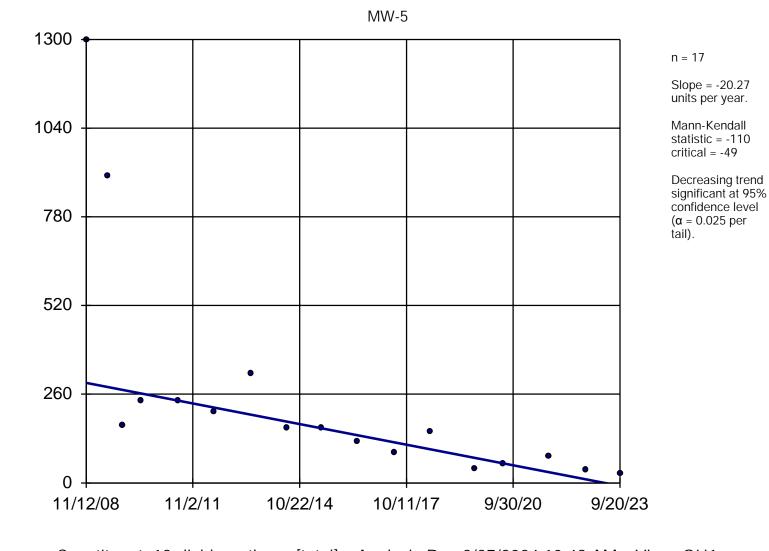
Extreme weather events have led to unscheduled repairs of the GETS. In early 2024, extreme cold led to pipes bursting. This was caused by a fuse blowing out due to the single heater unit overworking. The EPA installed an additional heater in the GETS building to prevent this issue in the future; however, extended periods of extreme cold could result in a repeat of this event. Alternative remedies that would provide the necessary source control should be proposed and implemented by responsible parties.

D. Opportunities for Optimization


Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.

The EPA expects responsible parties to evaluate and propose additional remedial actions to more effectively prevent the migration of contaminants in the groundwater from the source area.

APPENDIX G – MONITORING WELL TREND CHARTS


Sanitas[™] v.10.0.16 Sanitas software licensed to Geotechnology. EPA Hollow symbols indicate censored values.

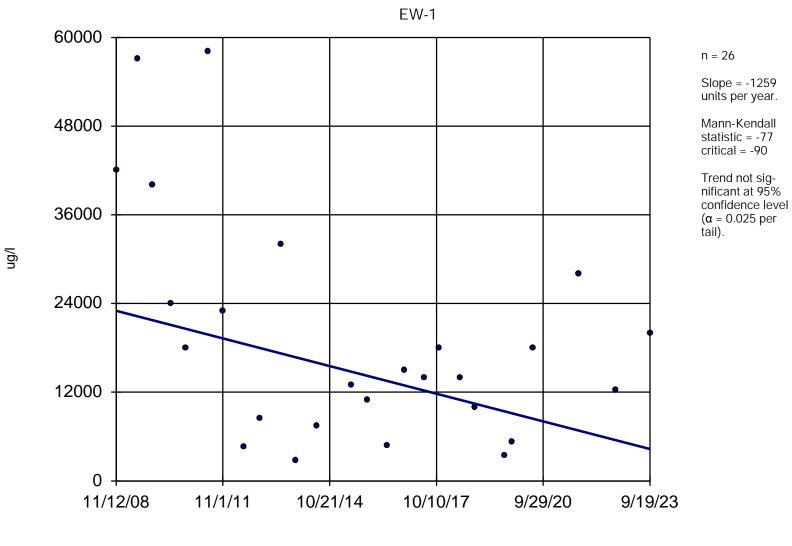
Sen's Slope Estimator

Constituent: 12-dichloroethene [total] Analysis Run 3/27/2024 10:48 AM View: OU1 OU3 HBR Data: OU3 Master Data File

l/gu

Sen's Slope Estimator

Constituent: 12-dichloroethene [total] Analysis Run 3/27/2024 10:48 AM View: OU1 OU3 HBR Data: OU3 Master Data File


l/bn

Sen's Slope Estimator

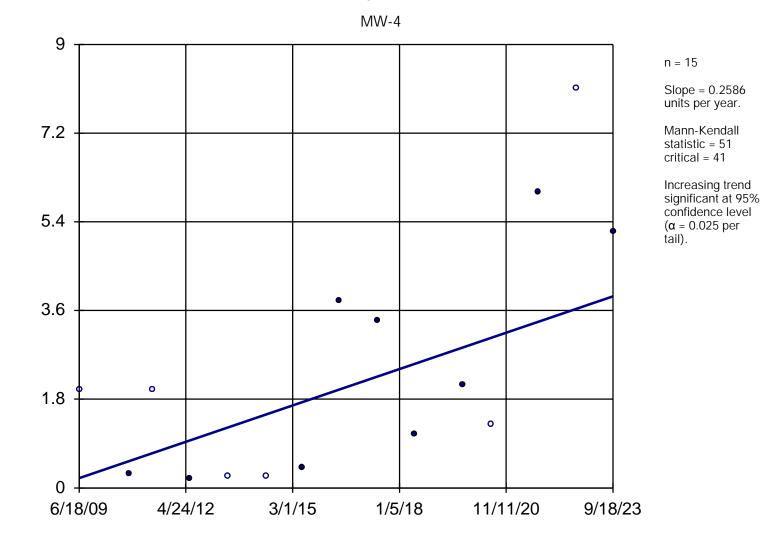
MW-6 4000 n = 27 Slope = -22.03 units per year. 0 3200 Mann-Kendall statistic = -50 critical = -96 Trend not sig-nificant at 95% ۰ confidence level 2400 (α = 0.025 per tail). 0 1600 • • ο • • 800 • 0 11/12/08 11/2/11 10/22/14 10/11/17 9/30/20 9/20/23

Constituent: 12-dichloroethene [total] Analysis Run 3/27/2024 10:48 AM View: OU1 OU3 HBR Data: OU3 Master Data File

l/gu

Sen's Slope Estimator

Constituent: 12-dichloroethene [total] Analysis Run 3/27/2024 10:48 AM View: OU1 OU3 HBR Data: OU3 Master Data File

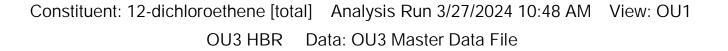

Sen's Slope Estimator

UA3 1900 n = 15 Slope = -58.28 units per year. 1520 Mann-Kendall statistic = -89 critical = -41 Decreasing trend significant at 95% confidence level 1140 (α = 0.025 per tail). 760 • 380 • 0 0 6/17/09 4/23/12 1/5/18 11/11/20 9/19/23 2/28/15

Constituent: 12-dichloroethene [total] Analysis Run 3/27/2024 10:48 AM View: OU1 OU3 HBR Data: OU3 Master Data File

l/gu

Sen's Slope Estimator



Constituent: 12-dichloroethene [total] Analysis Run 3/27/2024 10:48 AM View: OU1 OU3 HBR Data: OU3 Master Data File

l/gu

Sen's Slope Estimator

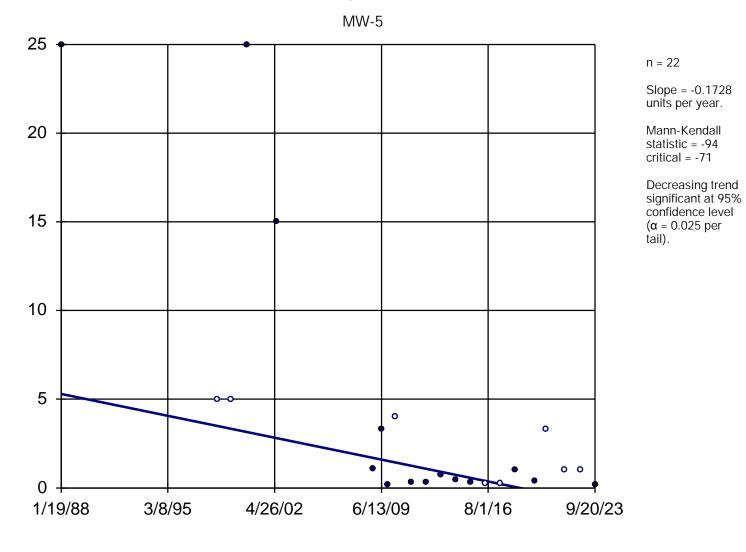
LA3 80 n = 15 Slope = -1.077 • units per year. 64 Mann-Kendall statistic = -56 critical = -41 Decreasing trend significant at 95% confidence level • 48 (α = 0.025 per tail). 32 • 16 • • 0 0 11/17/08 11/5/11 10/12/17 10/24/14 9/30/20 9/19/23

l/bn

Sen's Slope Estimator

MW2 10 n = 26 Slope = -0.07256 units per year. 8 Mann-Kendall statistic = -143 critical = -90 Decreasing trend significant at 95% confidence level 0 6 (α = 0.025 per tail). 4 • 2 • • 0 0 0 0 6/18/98 7/6/03 8/11/13 8/30/18 7/24/08 9/18/23

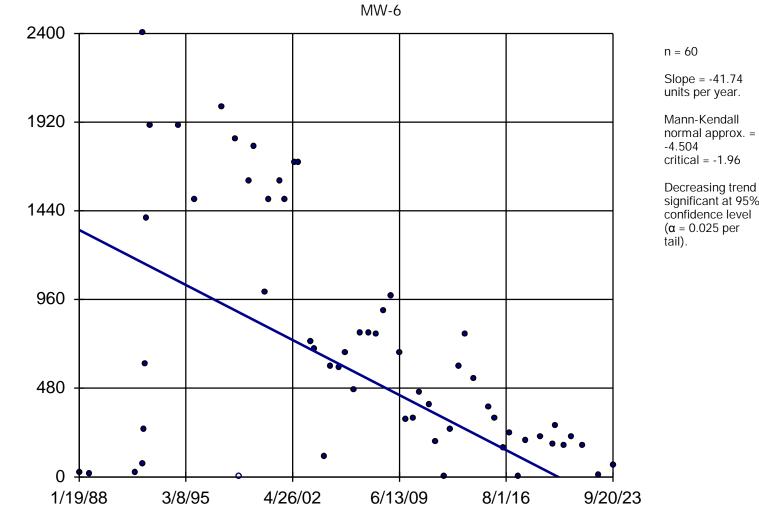
Constituent: 12-dichloroethene [total] Analysis Run 3/27/2024 10:48 AM View: OU1 OU3 HBR Data: OU3 Master Data File


Sen's Slope Estimator

UA-2 8900 n = 36 Slope = -31.59 units per year. 7120 Mann-Kendall statistic = -497 critical = -145 Decreasing trend significant at 95% confidence level 5340 (α = 0.025 per tail). 3560 1780 • 0 1/19/88 3/8/95 6/12/09 7/30/16 9/18/23 4/25/02

OU3 HBR Data: OU3 Master Data File

View: OU1

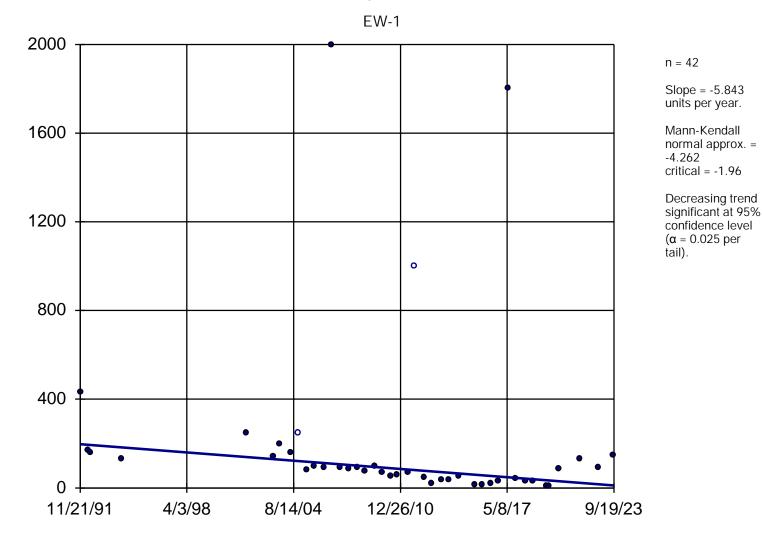

Constituent: Benzene Analysis Run 3/27/2024 10:48 AM

Sen's Slope Estimator

Constituent: Benzene Analysis Run 3/27/2024 10:48 AM View: OU1 OU3 HBR Data: OU3 Master Data File

Sen's Slope Estimator

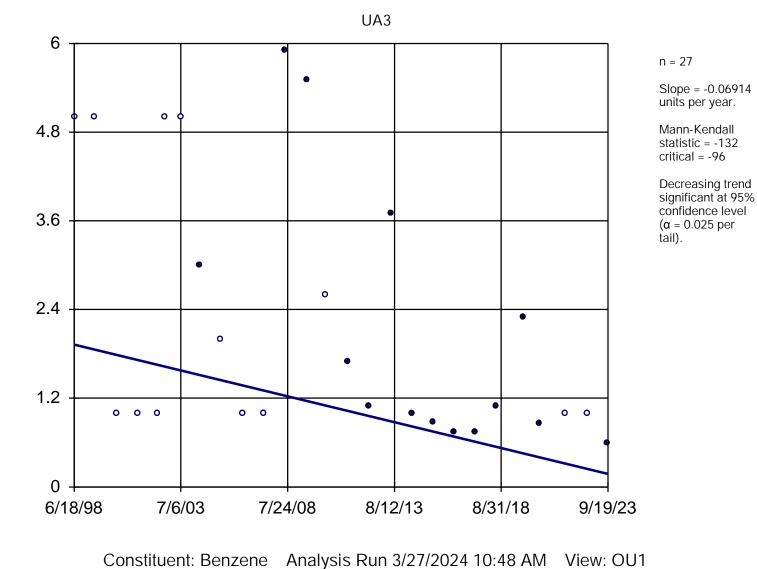
Constituent: Benzene Analysis Run 3/27/2024 10:48 AM


Data: OU3 Master Data File

OU3 HBR

normal approx. =

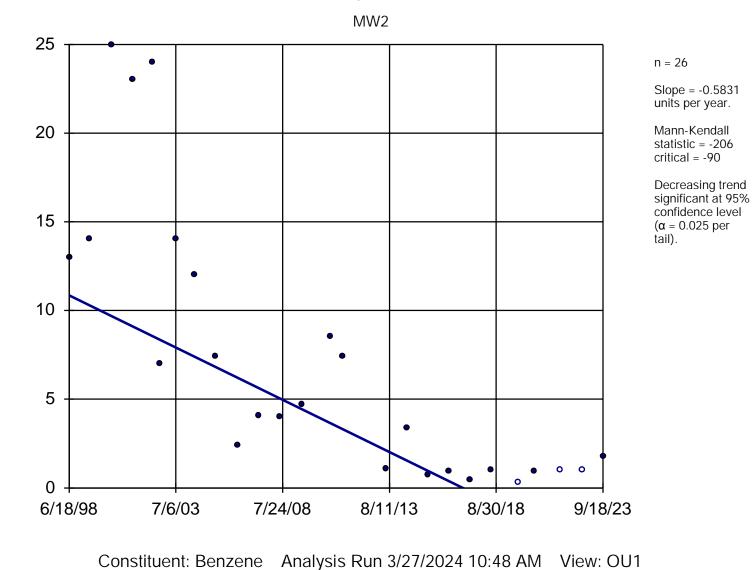
significant at 95% confidence level ($\alpha = 0.025$ per


View: OU1

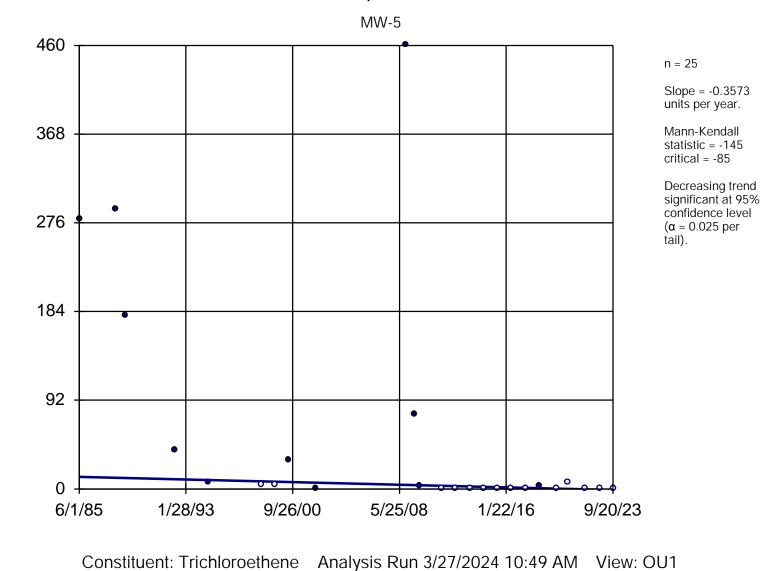
Sen's Slope Estimator

Constituent: Benzene Analysis Run 3/27/2024 10:48 AM View: OU1 OU3 HBR Data: OU3 Master Data File

Sen's Slope Estimator

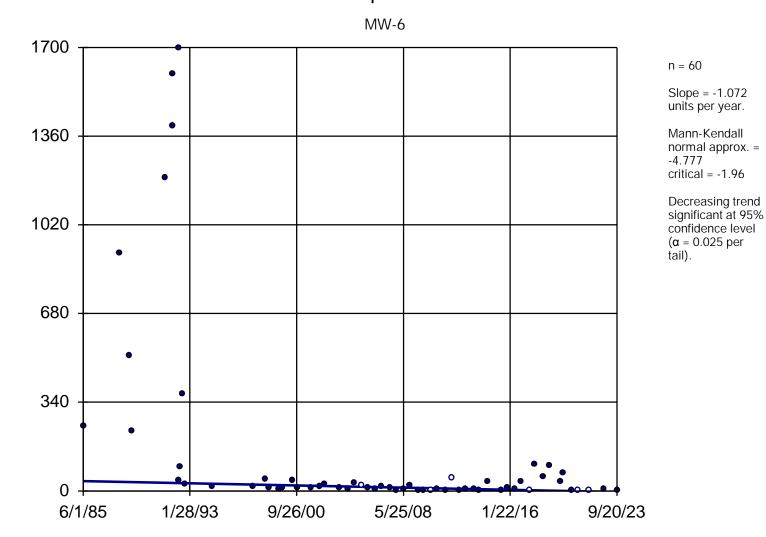

OU3 HBR Data: OU3 Master Data File

Sen's Slope Estimator

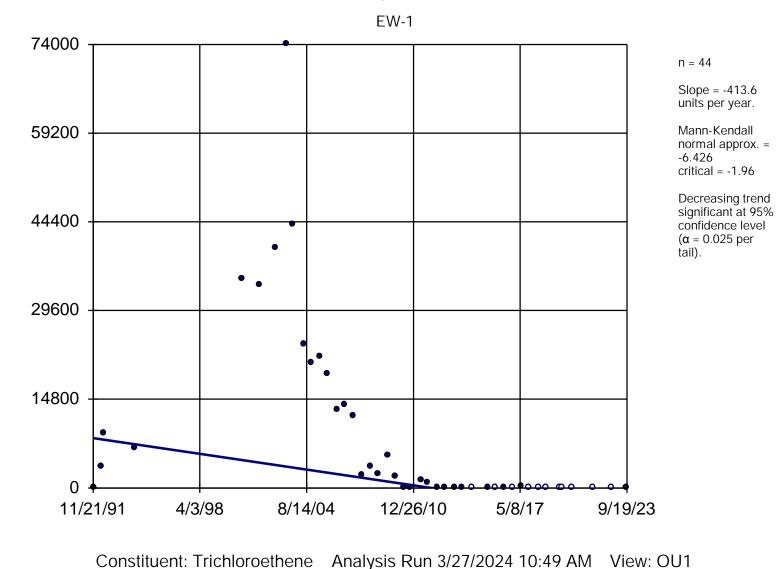

MW-4 200 n = 25 Slope = -0.01347 units per year. 160 Mann-Kendall statistic = -15 critical = -85 Trend not sig-nificant at 95% confidence level 120 (α = 0.025 per tail). 80 40 • 。 0 6/9/99 2/22/09 1/1/14 11/9/18 9/18/23 4/16/04

> Constituent: Benzene Analysis Run 3/27/2024 10:48 AM View: OU1 OU3 HBR Data: OU3 Master Data File

Sen's Slope Estimator



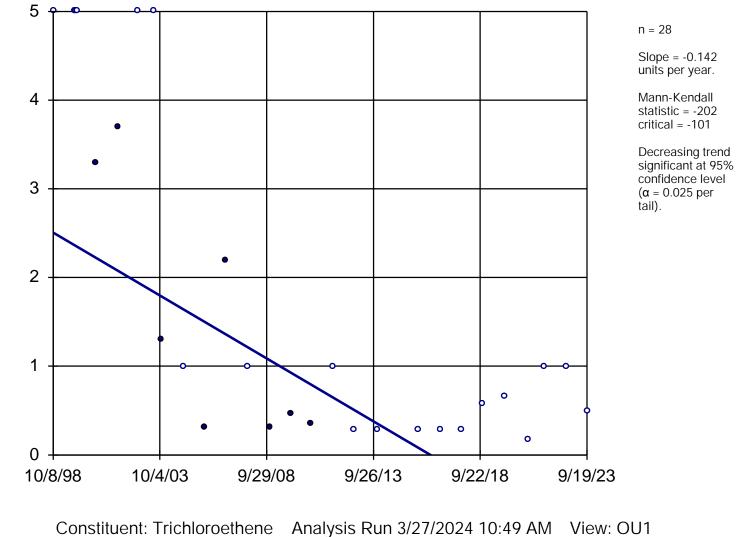
OU3 HBR Data: OU3 Master Data File


Sen's Slope Estimator

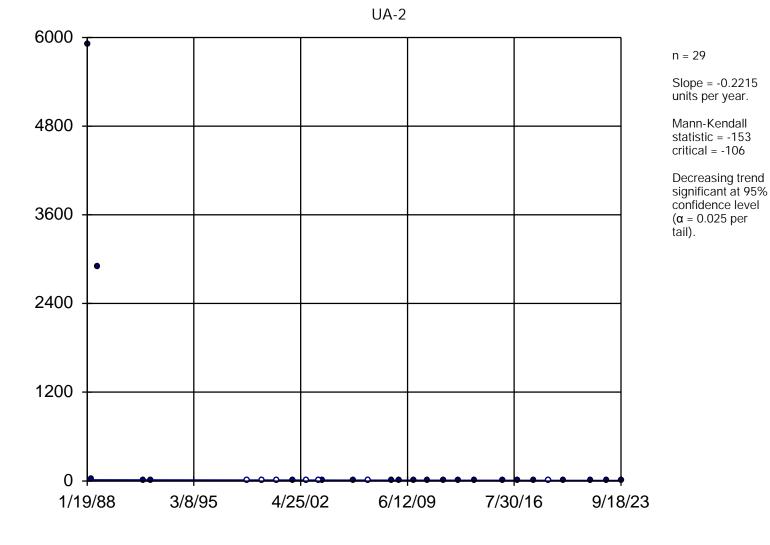
OU3 HBR Data: OU3 Master Data File

Sen's Slope Estimator

Constituent: Trichloroethene Analysis Run 3/27/2024 10:49 AM View: OU1 OU3 HBR Data: OU3 Master Data File

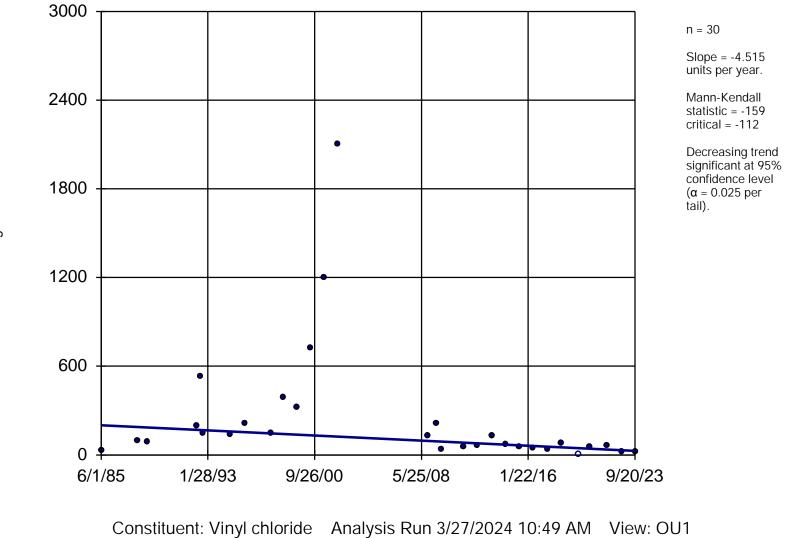


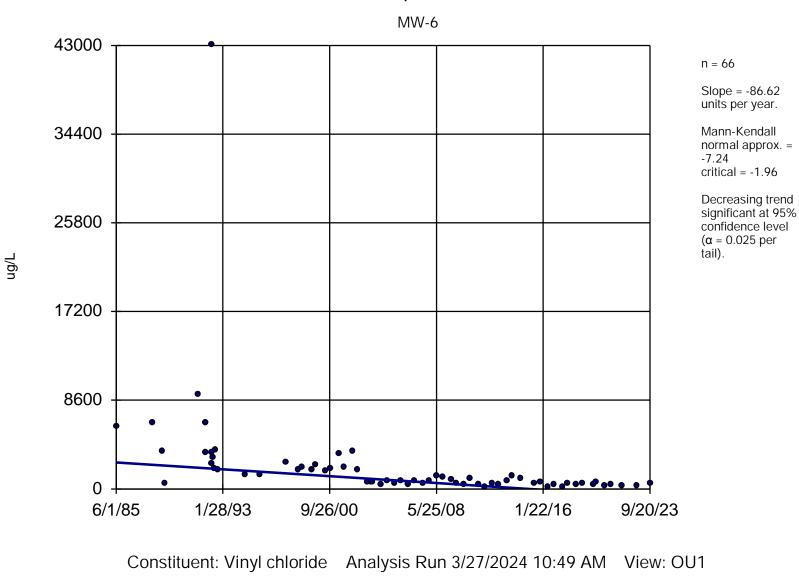
Sen's Slope Estimator


it: Trichloroethene Analysis Run 3/27/2024 10:49 AM V OU3 HBR Data: OU3 Master Data File

Sen's Slope Estimator

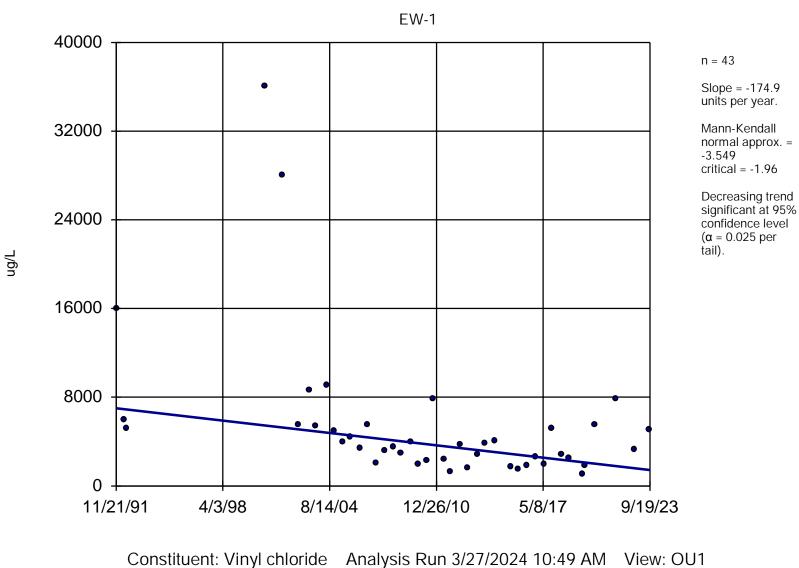
LA3


Sen's Slope Estimator


Constituent: Vinyl chloride Analysis Run 3/27/2024 10:49 AM View: OU1 OU3 HBR Data: OU3 Master Data File

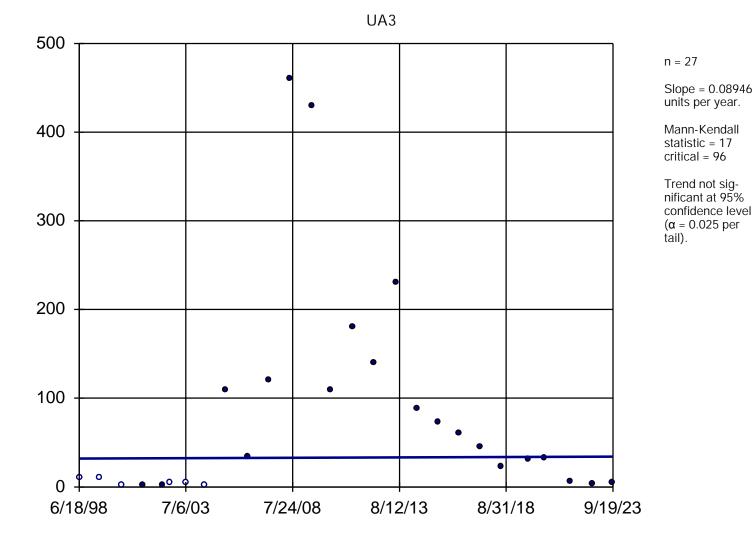
Sen's Slope Estimator

MW-5



OU3 HBR Data: OU3 Master Data File

Sen's Slope Estimator

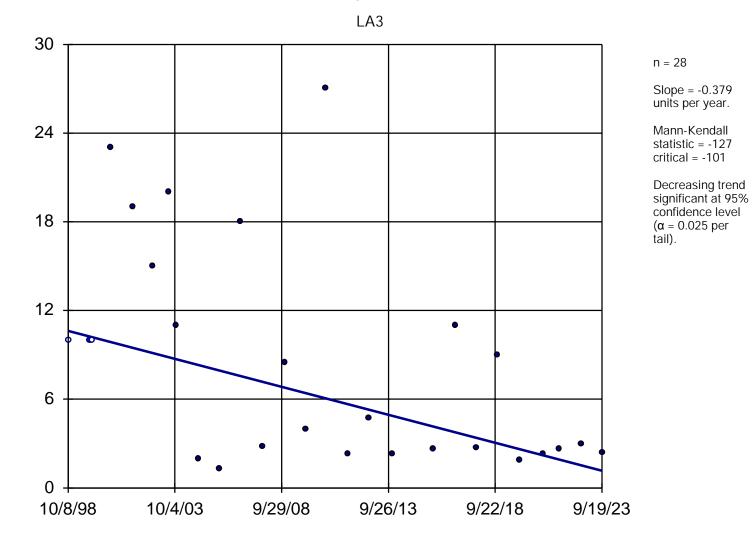


OU3 HBR

Data: OU3 Master Data File

Sen's Slope Estimator

Sen's Slope Estimator


Constituent: Vinyl chloride Analysis Run 3/27/2024 10:49 AM View: OU1 OU3 HBR Data: OU3 Master Data File

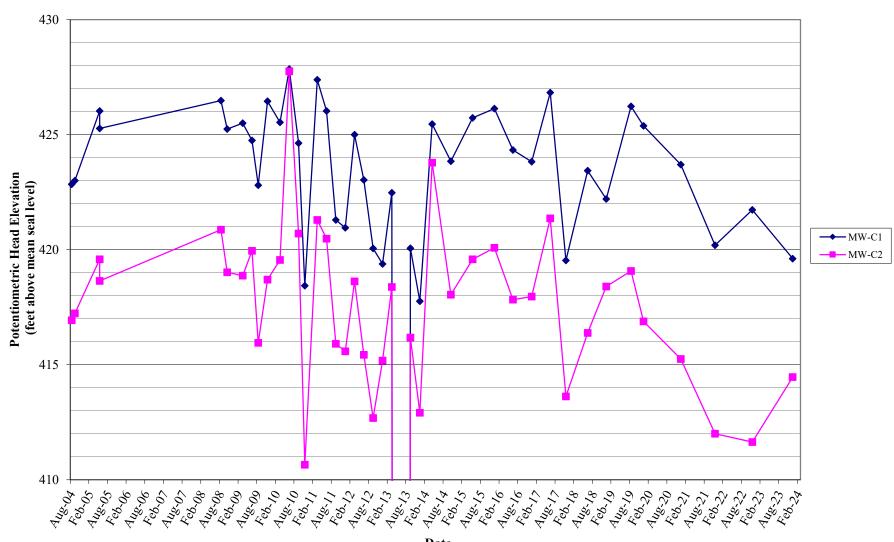
Sen's Slope Estimator

MW-4 30 n = 25 Slope = 0.2225 units per year. • 24 Mann-Kendall statistic = 81 critical = 85 Trend not sig-nificant at 95% confidence level 18 (α = 0.025 per tail). • 12 • 6 • 0 0 • 0 0 ο ο 0 6/9/99 4/16/04 1/1/14 11/9/18 2/22/09 9/18/23

Constituent: Vinyl chloride Analysis Run 3/27/2024 10:49 AM View: OU1 OU3 HBR Data: OU3 Master Data File

Sen's Slope Estimator

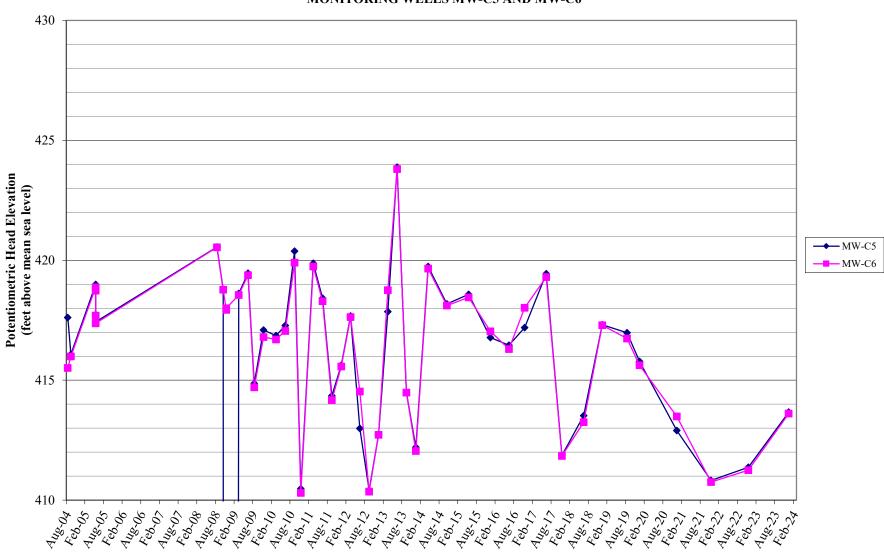
Constituent: Vinyl chloride Analysis Run 3/27/2024 10:49 AM View: OU1 OU3 HBR Data: OU3 Master Data File

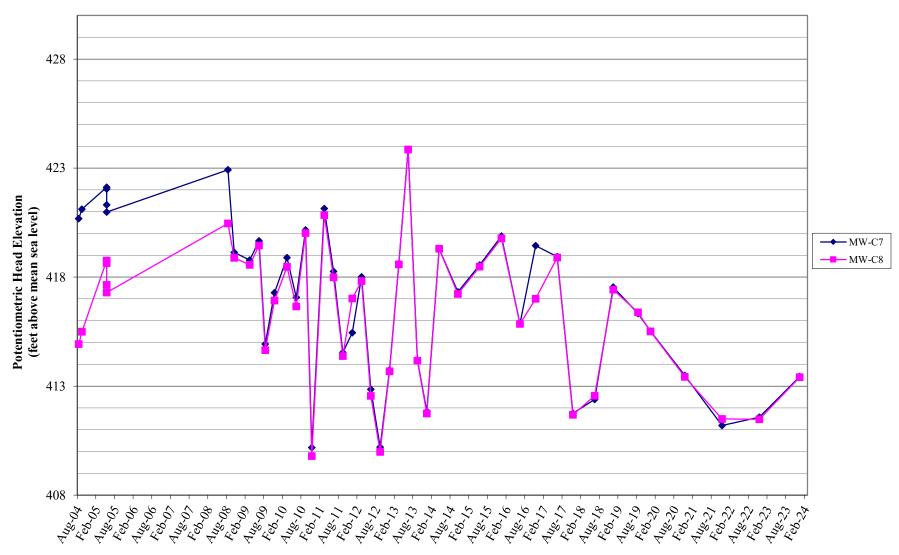

Sen's Slope Estimator

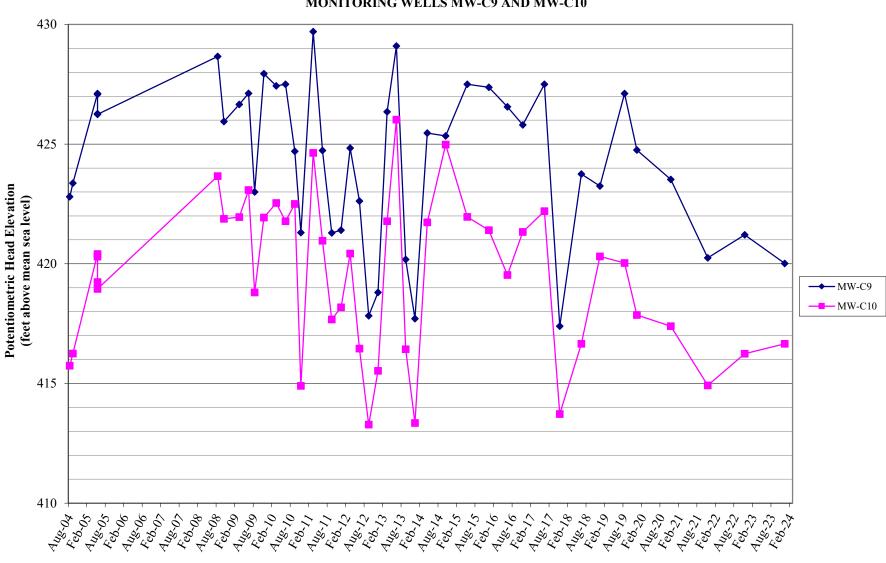
MW2 20 n = 26 Slope = -0.1771 units per year. 16 Mann-Kendall statistic = -109 critical = -90 Decreasing trend significant at 95% confidence level ۰ 12 (α = 0.025 per tail). • 8 0 • 0 • 4 0 0 6/18/98 7/6/03 7/24/08 8/11/13 8/30/18

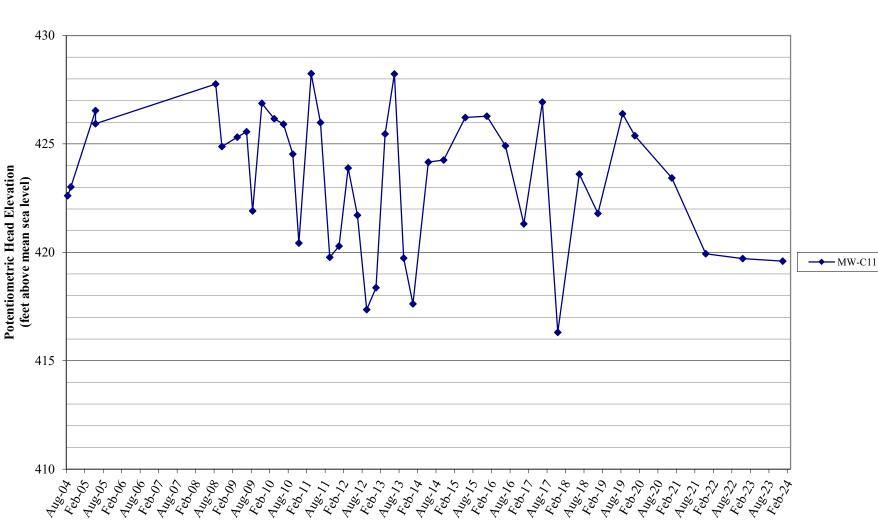
Constituent: Vinyl chloride Analysis Run 3/27/2024 10:49 AM View: OU1 OU3 HBR Data: OU3 Master Data File

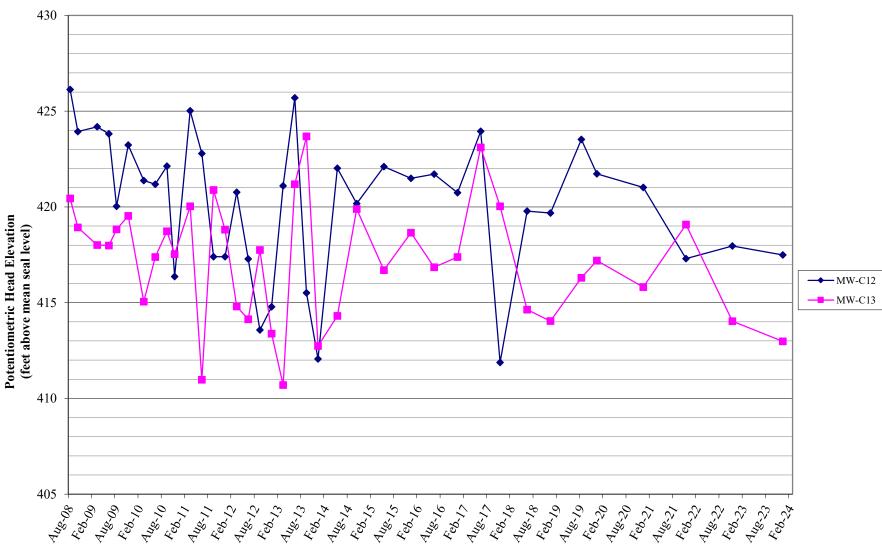
9/18/23

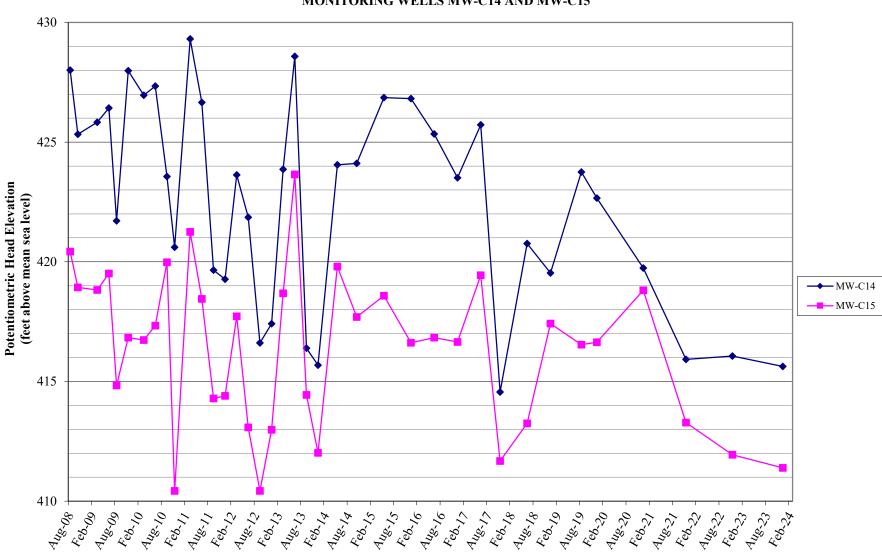

APPENDIX H – OU3 HYDROGRAPHS

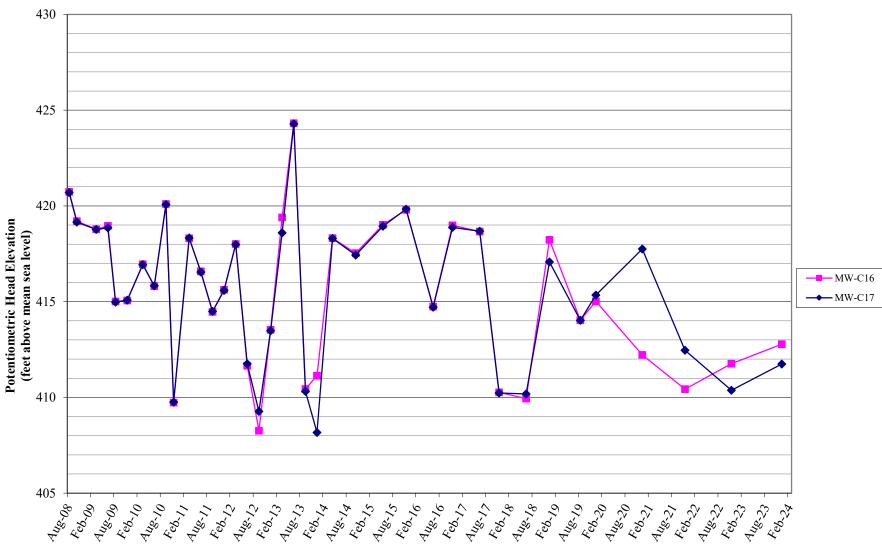

GROUNDWATER HYDROGRAPH MONITORING WELLS MW-C1 AND MW-C2


GROUNDWATER HYDROGRAPH MONITORING WELLS MW-C3 AND MW-C4

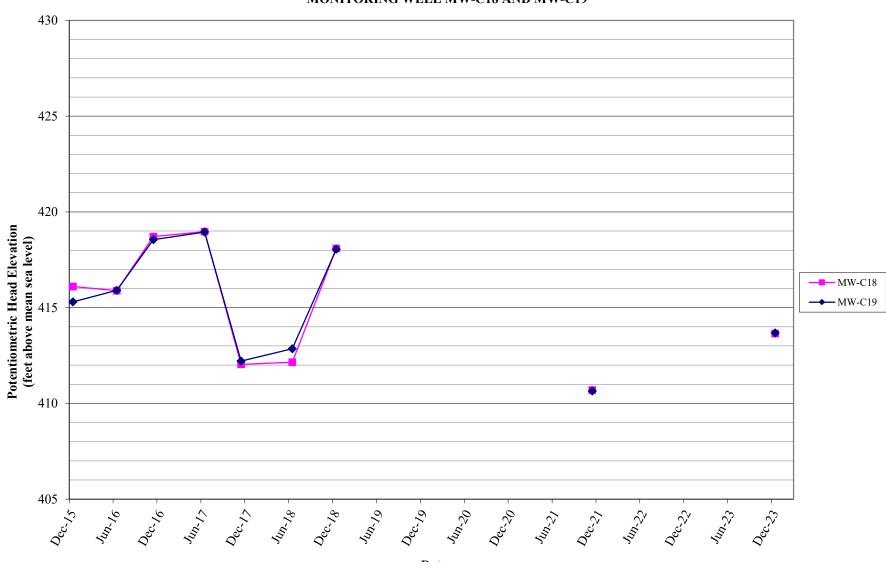

GROUNDWATER HYDROGRAPH MONITORING WELLS MW-C5 AND MW-C6


GROUNDWATER HYDROGRAPH MONITORING WELLS MW-C7 AND MW-C8


GROUNDWATER HYDROGRAPH MONITORING WELLS MW-C9 AND MW-C10

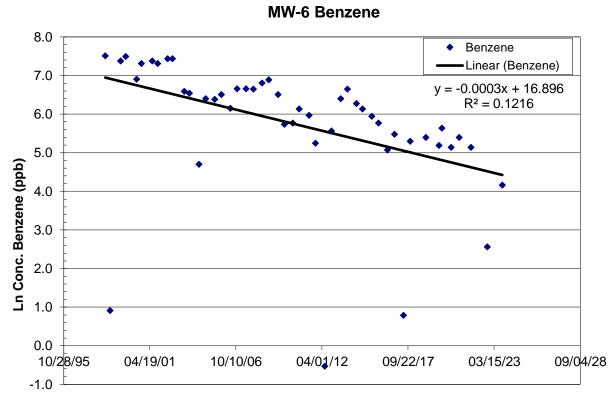

GROUNDWATER HYDROGRAPH MONITORING WELL MW-C11

GROUNDWATER HYDROGRAPH MONITORING WELLS MW-C12 AND MW-C13

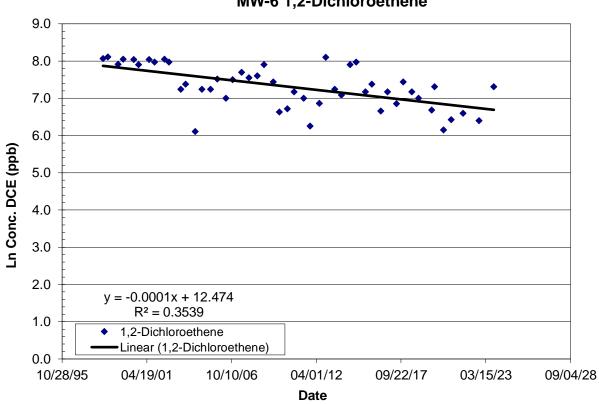


GROUNDWATER HYDROGRAPHS MONITORING WELLS MW-C14 AND MW-C15

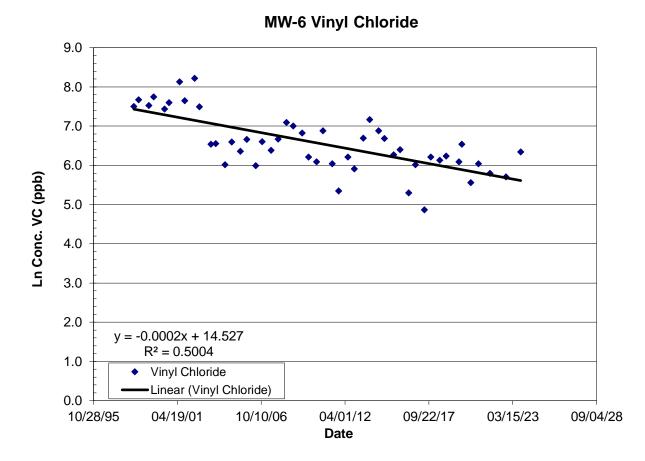
GROUNDWATER HYDROGRAPH MONITORING WELL MW-C16 AND MW-C17


OPERABLE UNIT 3 HAYFORD BRIDGE ROAD GROUNDWATER SITE

GROUNDWATER HYDROGRAPH MONITORING WELL MW-C18 AND MW-C19


Date

APPENDIX I – REMEDIAL TIMEFRAME ANALYSIS


Date

Regression Stati	stics			
R	0.403			
R ²	0.163			
Adjusted R ²	0.144			
Standard Error	1.579			
Observations	47			
Regression (Tre			Confidence	
- · ·	Coefficients	Standard Error	Lower 95%	Upper 95%
Regression (Tre Slope (In(conc) per day)				Upper 95%
- · ·	Coefficients -0.000265	Standard Error	Lower 95%	Upper 95%
Slope (In(conc) per day)	Coefficients -0.000265	Standard Error	Lower 95%	
Slope (In(conc) per day) Remedial Timeframe Estima	Coefficients -0.000265	Standard Error	Lower 95% -0.000446	Upper 95% -0.00008
Slope (In(conc) per day) Remedial Timeframe Estima MCL (ppb)	Coefficients -0.000265 Ites 5	Standard Error	<i>Lower</i> 95% -0.000446 5	<i>Upper 95%</i> -0.00008

Regression Stati	stics			
R	0.576			
R ²	0.332			
Adjusted R ²	0.317			
Standard Error	0.467			
Observations	48			
	Coefficients	Standard Error	Lower 95%	Upper 95%
Slope (In(conc) per day)	Coefficients -0.000125	Standard Error 0.000026	Lower 95% -0.000178	
Slope (In(conc) per day) Remedial Timeframe Estima	-0.000125			
	-0.000125			<u>Upper 95%</u> -0.00007
Remedial Timeframe Estima	-0.000125		-0.000178	-0.00007
Remedial Timeframe Estima MCL (ppb)	-0.000125 Ites 70		-0.000178	-0.00007

MW-6 1,2-Dichloroethene

Regression Stati	stics			
R	0.695			
R ²	0.483			
Adjusted R ²	0.472			
Standard Error	0.533			
Observations	48			
	Coefficients	Standard Error	Lower 95%	Upper 95%
Slope (In(conc) per day)	-0.000196	0.000030	-0.000257	-0.00013
Remedial Timeframe Estim	ates			
Remedial Timeframe Estim MCL (ppb)	ates 2		2	
			2 570	57
MCL (ppb)	2			57 -5.65

ſ

APPENDIX J – FYR INTERVIEW RECORDS

		INTERVIEV	V RECORD	
4	Site Name: Findett Corp. Superfur	nd Site	EPA ID No.: MOD006	333975
	Subject: Findett Corp. Sixth Five-Y with PRP Technical Consultant	ear Review Interview	Time: Click or tap here to enter text.	Date: 10/23/2024
	Type: 🛛 In Person 🛛 Telephone	Email D Other: Click o	or tap here to enter	text.
	Location: Site Work/Office	🗆 Home 🖾 Other: Click o	r tap here to enter t	ext.
		Contact M	Made By:	
	Name: James Curry	Title: RPM	Organization: U.S. En	vironmental Protection Agency
		Individual	Contacted:	а.
	Name: Kenny Hemmen, RG	Title: Project Manager	Organization: Geote	chnology, LLC
	Telephone No: E-Mail Address: Street Address: City, State, Zip: St. Louis, MO			
		Summary of (Conversation	
	1. What is your overall impression Our overall impression is positive action objective (RAO) with no exp support the estimated remedial ti OU3 MNA remedy.	as the OU3 Monitored Nat posure risk. The OU1 reme	ural Attenuation (MNA dy has not sufficiently) remedy is achieving the remedial contained or reduced the source to remedial options to enhance the
	your office regarding the site?			porting activities, etc.) conducted by
	Our OU3 groundwater sampling, to USEPA.	esting and reporting is perf	ormed semi-annually a	and in close coordination with
	3. Have there been any complaints If so, please give details of the even	, violations, or other incide nts and results of the respo	ents related to the site onses.	requiring a response by your office?
	No, based on our knowledge of OL	J3.		
	4. Are you aware of any events, ind response from local authorities? If	so, please give details.	site such as vandalism,	trespassing, or emergency
	No, based on our knowledge of OU	13.		
ł	 Is the remedy functioning as exp Yes, with evaluation of potential re OU3 MNA remedy. The performane 	medial options being perfo	ormed in cooperation	with USEPA to possibly enhance the with no exposure risk.
	6. What does the monitoring data	show? Are there any trend	s that show contamina	int levels are decreasing?
ŀ	The OU3 groundwater monitoring indicates numerous decreasing con	data are summarized in ou	r October 18, 2024 OU	3 MNA Evaluation report and

cooperatively with USEPA to evaluate potential remedial options that can possibly enhance the OU3 MNA remedy.

7. Do you have any comments regarding the site's management or operation? No

8. Have there been any significant changes in the O&M requirements, maintenance schedules, or sampling routines since start-up or in the last five years? If so, do they affect the protectiveness or effectiveness of the remedy? Please describe changes and impacts.

OU3 groundwater monitoring is performed semi-annually with additional groundwater sampling efforts (e.g., City Well W-8) performed more frequently in close coordination with USEPA. The OU3 MNA remedy has protected human health by eliminating exposure to contaminated groundwater through extensive groundwater sampling and testing and also by the City of St. Charles Wellhead Protection District ordinance prohibiting the installation of private water wells and construction of ponds/lakes below the upper cohesive soil layer.

9. Have there been opportunities to optimize O&M, or sampling efforts? Please describe changes and resultant or desired cost savings or improved efficiency.

OU3 groundwater sampling efforts are coordinated closely with USEPA and the City of St. Charles which has resulted in improved efficiency.

10. Any other general comments? No

City of St. Charles FYR Interview Form October 23, 2024

Interviewees:

John Phillips, Utilities Superintend, City of St. Charles – Public Works Department Paul Michalski, 212 Environmental Todd Aseltyne, 212 Environmental

Findett Corporation Superfund Site, Operable Unit Nos. 1, 2, and 3

- 1. What do you know about the Findett Corp. Superfund Site (Site)? How did you first become aware of contamination associated with the Site?
 - Engagement with current City staff began in around 2017.
 - Initial engagement from the City was via conversations with the USEPA.
 - Infrequent data sharing from Geotechnology (now UES) regarding conditions beneath Operable Unit No. 3 (typically provided in semiannual reports) through 2023.
 - There were significant gaps in communication from the USEPA regarding conditions beneath Operable Units No. 1 and No. 2 until December 2023 when Clint Sperry was replaced as the Site Manager by James Curry.
- 2. What are your concerns about the Site and its cleanup? What is your biggest concern?
 - The City is concerned with an apparent expansion of the chlorinated solvent plume to the north and east away from Operable Unit Nos. 1-3.
 - Directly related to this is the lack of performance data related to the operation, maintenance, and monitoring of the groundwater extraction and treatment system in Operable Unit No. 1 including routine monitoring of the influent and effluent flow rates and dissolved phase concentrations.
 - Concern regarding the run time and efficacy of the groundwater extraction and treatment system in Operable Unit No. 1.
 - Concern regarding adequacy of the lines of evidence and evaluation of the natural attenuation remedy being relied upon within Operable Unit No. 3 and information being shared regarding proposed future corrective measures being considered for Operable Unit Nos. 1 through 3. Remnants of dissolved phase constituents is a cause of concern, as they remain more than 36 years following execution of the agreed upon remedy for Operable Unit Nos. 1 and 2.

- Continued concerns regarding the vapor intrusion pathway and limited evaluation conducted in 2024.
- Continued concerns regarding 1,4-dioxane and PFAS concentrations in soil, groundwater, and vapor as emerging hazardous chemicals.
- Continued concerns regarding PCBs in soil, groundwater, and vapor.
- Concern regarding USEPA decision to allow the sale of a property that had recently been considered for renomination onto the National Priority List to a third party via a tax sale.
- 3. How are you currently receiving information for the Site?
 - Currently conducting facilitated routine meetings with the USEPA (with part of the focus on Operable Unit Nos. 1 thorough 3) in fulfillment of the Office of Inspector General recommendations regarding community engagement for the Findett Superfund Site. These meetings began in February 2024.
 - Exchanging data and information via a SharePoint site maintained by the USEPA.
 - City is hopeful that the current collaboration continues with the USEPA until corrective measures are determined effective in Operable Unit Nos. 1 thorough 3.
- 4. Whom would you contact when you have questions about the Site?
 - James Curry, the Site Manager, regarding technical matter
 - Daniel Lyskowski, regarding legal matters
 - Chain of command at the USEPA including Susan Fisher, then Tabitha Adkins, followed by Bob Jurgens
- 5. What is your opinion of the government's commitment to cleaning up hazardous waste at the Site?
 - In our perspective, it appears that certain evaluation, investigation, and corrective measures were only conducted at the Findett Superfund Site at the urging of the City after the City evaluated and collected its own data.
- 6. Is the information from EPA or the state clear and easy to understand?
 - There is not an issue with clarity or ease of understanding, there has been a lack of adequate data collected from Operable Unit Nos. 1 through 3 to evaluate the efficacy of the final correction measures.

- Currently frequency of data collection may not fully capture current conditions beneath Operable Unit Nos. 1 through 3
- 7. What kind of information about the Site do you want or need and how can we provide you with that information? (Newsletter, Fact Sheets, Internet, Community Meetings, websites, bulletin boards, other) How often?
 - USEPA continues to rely upon the Site Profile Page to provide data and reports to the City; however, as the EPA admits, this website is cumbersome and difficult to navigate. The City would prefer that all future data, reports, and correspondence, etc. be shared via the SharePoint Site established by the USEPA. Alternatively, the USEPA could directly transmit a link to the City which serves to notify the City that new information is available and also provides a more streamlined navigation of the Site Profile Page.
 - Please refer to the City's response to Question No. 2 regarding the additional data and information that the City is requesting from the USEPA with respect to the corrective measures taken in Operable Unit Nos. 1 through 3.
- 8. Would you like to be added to the electronic mailing list? If so, please provide your e-mail address.
 - The City is currently signed up to receive updates via the electronic mailing list but has failed to receive any updates or information since July 26, 2023. Please add the following to the electronic mailing list:

Jim Wright <u>Jim.Wright@stcharlescitymo.gov</u> John Phillips <u>John.Phillips@stcharlescitymo.gov</u> Paul Michalski <u>paul.michalski@212environmental.com</u> Todd Aseltyne todd.aseltyne@212environmental.com

- 9. Do you think that there are stakeholders in the community who are not having their concerns addressed? If so, who should we speak with to learn of these stakeholders' needs?
 - Based on the City's public meetings conducted in 2022 and 2023, as well as the Office of Inspector General's evaluation there were significant inadequacies in stakeholder engagement by the USEPA prior to 2024. The City continues to remain concerned about the timeliness and appropriateness of the USEPA's efforts to engage the broader community regarding their stated concerns for the cleanup of the Findett Superfund Site.

- 10. Do you know of any individuals or groups that are interested in the Site and may have special needs or need special considerations (deaf, blind, homebound, etc.)?
 - The Developmental Disability Resource Board of St. Charles County has previously expressed concern.
- 11. Is there anyone in particular whom you think we should be sure to include in our community interviews?
 - The County of St. Charles should be contacted regarding corrective measures at the Findett Superfund Site. Specifically, the USEPA should contact John Greifzu, Assistant Director of Administration
 - Additionally, it is important for the USEPA to contact the City of St. Charles School District (Superintendent: Jason Sefrit), Orchard Farm School District (Superintendent: Wade Steinhoff, (Superintendent)), Francis Howell School District (Superintendent: Kenneth Roumpos, (Superintendent)), as well as Lindenwood University (President: John Porter, (Superintendent)).

12. Is there anything else you would like to share about the site?

• The City should continue to receive real time information to be shared by the USEPA regarding corrective measures for Operable Unit Nos. 1 through 3.

	INTERVIEV	V RECORD	
Please fill out the information involvement coordinator, at 3 This form can be sent back to 11201 Renner Blvd., Lenexa, k	14-296-8182 or <u>evans.jes</u> the e-mail address provic	sica@epa.gov.	essica Evans, community EPA Region 7, Attn: Jessica Evans,
Site Name: Findett Corp. Superfu		EPA ID No.: MOD006	333975
Subject: Findett Corp. Superfund Review	l Site Sixth Five-Year	Time: 1830	Date: 10/24/2024
Type: X In Person □ Telephone Location (if needed): □ Site □ V		ner: Community Adviso	ry Group (CAG) Meeting
	Interviewer Inforr	nation (If needed)	
Name: Jessica Evans/JP Curry/Susan Fisher	Title: Community Involvement Coordinator, Remedial Project Manager, Section Supervisor	Organization: Enviro	onmental Protection Agency
	Contact in	formation	
Name:	Title: N/A	Organization: CAG/c	ommunity members
Telephone No: N/A E-Mail Address: N/A Street Address: N/A City, State, Zip: N/A	1	1	

Summary of Conversation

1. What do you know about the Findett Corp. Superfund Site (Site)? How did you first become aware of contamination associated with the Site?

Because of the water contamination we get half of our water from St. Louis because we cannot produce enough water for St. Charles. Found out from social media (Facebook).

Pretty extensive knowledge of contamination and remedial efforts with my employment background. First became aware when mayor put out public notice and went to the public meeting.

There was a meeting in St. Peters I went to and got the information. Discussed two different ways of cleaning it up, monitor vs. dig and haul. At the time it was decided to monitor it, don't remember discussion on injections. I may have been a property owner at the time and concerned with what was going on.

Went to the meeting. I'm on the other side of the city. General concern for contamination of water.

Learned a lot when I first met James and the other people interested in the clean up of the site.

2. What are your concerns about the Site and its cleanup? What is your biggest concern?

Biggest concern is the amount of misinformation about this issue. Main reason I joined the CAG to listen to what is going on. At previous meetings, drew a lot of troublemakers. OU4: the city and Ameren suing each other made them shut up which fueled even more misinformation. Conspiracy theories running rampant. Bogus water filters being sold/advertised. Kara has had to ban people from her FB page.

Biggest concern with the site is first we had to get public involved to trigger the contingencies that were supposed to happen in the original Consent Decree. Second, making sure we are doing a comprehensive investigation and making sure we are initiating remedies/implementing remedies that will solve the problem and not push off into the future.

The city didn't look harder at this over the years. And are the MCL levels correct? Are they set at the right level to be protective?

The city was on the stance that any amount is too much. How real is that? The political side of numbers where they are at. Lobbyists of chemical companies. Not confident anyone knows what the real number is at. Biggest concern – this is just an attrition game. 20 plus years. Mayor said its not his problem, brings up during election. Have four people here at this meeting. Not in news anymore. Nobody is getting sick but may get sick in 20 years. Pushing it down, kicking it down the line doing the minimum. EPA doesn't have enough power to do it. Lawyers of the big companies have the money to do the minimum requirements. Hear about other stuff not related to this with other sites that have the radiation. We are trying to do something to keep it moving forward. As a citizen, what do I tell people in my group and why nothing is happening and why it is taking so long to do something that shouldn't take so long. Doing this because someone made a law that we have to do it. It's not doing anything to help.

Nothing further to add.

Once the fix is implemented, it takes a long time for it to work.

The fix they are allowed to use because it is cheapest. They could do fixes today but it costs more. Is there a solution that would have worked faster. Is this the fastest, best, efficient manner to clean it up? The citizens would want to know the best approach is being used.

3. How are you currently receiving information for the Site?

Receive information from social media (EPA, Facebook, Reddit). Facebook is a lot more conspiracy minded.

Site Profile Page and EPA weekly updates

EPA emails, city task force, Facebook

Site Profile Page, CAG, EPA

EPA

4. Whom would you contact when you have questions about the Site? All – EPA

5. What is your opinion of the government's commitment to cleaning up hazardous waste at the Site?

I trust EPA, city is more of a mixed bag due to lawsuit. Assumed they will be tight lipped about OUs 1-3. For Ameren, I am surprised how cooperative they have been. Don't know much about the other PRPs.

It is just overwhelmingly frustrating to watch a massively underfunded and an agency that has been stripped of their talent do what they can with what they have and that is not enough. This is not a new problem. See it all over the country on almost every site. Unfortunately, EPA has to stick to a priority list to benefit human health and currently we have clean water and are not a priority.

I was apart of it for 12 years. I see a lot. The lack of what was doing was being done. There were off the record conversations and sometimes that needs to be done. I'm glad individuals are taking this seriously and I hope and pray everybody is safe.

The individuals at the city/federal level are truly deeply concerned and doing the best they can. The people who run the city/federal politicians have ulterior motives that takes them from doing what is the best for the rest of us. Have to the best you can given the change in politics. Things change based on who is in charge. At the end of the day the people doing to work are doing the best they can. Know people at the city. Before this whole thing. You could tell they want to do what's right. People above them are tying their hands. Can only do what people on the top are telling you what you can do.

Our water treatment plants are capable of eliminating all these chemicals at the faucet level. Can be used during political season but they stop worrying about it after that.

6. Is the information from EPA or the state clear and easy to understand?

At my level, no and no. This isn't just the data on the website but also the way you talk to people. It's a matter of being a subject matter expert and discussing with the public.

The weekly updates are great. The Site Profile Page is not great. So many complaints about finding information; document navigation is an issue. The number one complaint I've heard is the Site Profile Page it is so hard to find anything.

50/50; at some of other websites (MoDNR) you can track down and get different layers and can't find it again.

The meetings that have happened; when you take a scientific person that is very deep in their domain of knowledge they can't express themselves to the common person. Made those meetings so difficult – no need to say vinyl chloride a thousand times because it seems like you're talking over us. It makes big, long words and make it unclear. Simplify what is said in a lot less time. Would've alleviated a lot of the fear. If I don't understand, then you are doing something against me. Those types of public meetings – what works better – instead of having those people talk. If you don't have public speakers who are trained to be public speakers. Need to hire somebody to express it in a way that is so much better.

7. What kind of information about the Site do you want or need and how can we provide you with that information? (Newsletter, Fact Sheets, Internet, Community Meetings, websites, bulletin boards, other) How often?

There has to be a way to assure people water is safe at the faucet. Bogus filter sellers confusing fluoride and vinyl chloride. Say your water is safe in a simple way while also communicating clean up.

Have to find a way to reach the collective public better. Right now, we have just different facets of our population utilizing different information. The people not on social media are missing information. Have to find a way to reach those not on Facebook. Information going out – hard to have an opinion on that but as far as who we are reaching – have to reach all corners of the population.

Being down there so long and being myself I look for things. Keep my eyes/ears open. Go down talk to those doing tests in the area. It is hard to get people involved as long as they can turn on tap and not hear it on the news.

Tried to get city paper to say something about the group and it didn't happen. A lot of good information but right now it is slow. Talking about a five-year plan, not in the news and people are not concerned about what they are not scared of. Hard to say how to get people involved. Not much to add. Fear is the only thing that works these days. Don't want to manufacture fear to get the word out. Make messages as clear as we can. 8. Would you like to be added to the electronic mailing list? If so, please ensure your email address is provided. would like to be added. 9. Do you think that there are stakeholders in the community who are not having their concerns addressed? If so, who should we speak with to learn of these stakeholders' needs? If someone was really concerned they would reach out. No, they would have found us. 10. Do you know of any individuals or groups that are interested in the Site and may have special needs or need special considerations (deaf, blind, disabled, homebound, etc.)? All - We don't know who doesn't know. That is the biggest problem. 11. Is there anyone in particular whom you think we should be sure to include in our community interviews? A lot of recommendations. Not an immediate danger. Water treatment plant is capable of filtering all of the chemicals out for now. There is so much news that is scary and of immediate concern this can be safely ignored/can kicked down the road. Still have clean water, not a priority for them. Need to ask them first. Various grocery stores in town. Interview somebody from hospital (St. Joe (SSM) on fifth street). Only trauma center in St. Charles County. One of the biggest hospitals in the county. All the hospitals. County health department. 12. Is there anything else you would like to share about the site? Thankful for off the record conversations.

INTERVIEW RECORD

Please fill out the information below. If you have questions please contact Jessica Evans, community involvement coordinator, at 314-296-8182 or <u>evans.jessica@epa.gov</u>.

This form can be sent back to the e-mail address provided above or sent to: EPA Region 7, Attn: Jessica Evans, 11201 Renner Blvd., Lenexa, KS 66219

Site Name: Findett Corp. Superfund Site	EPA ID No.: MOD006	333975
Subject: Findett Corp. Superfund Site Sixth Five-Year Review	Time: 1830	Date: 10/24/2024

Type: □ In Person □ Telephone X Email □ Other:

Location (if needed): \Box Site \Box Work/Office X Home \Box Other:

	Interviewer Infor	mation (If needed)
Name: Jessica Evans/JP Curry/Susan Fisher	Title: Community Involvement Coordinator, Remedial Project Manager, Section Supervisor	Organization: Environmental Protection Agency
	Contact ir	nformation
Name:	Title: CAG Group Co- Chair, Community Resident	Organization: CAG/community members
Telephone No:		
E-Mail Address:		
Street Address: City, State, Zip: St. Charles, M	0	

Summary of Conversation

1. What do you know about the Findett Corp. Superfund Site (Site)? How did you first become aware of contamination associated with the Site?

I was informed of a public meeting the mayor was calling for the community related to OU4 and Ameren's potential as a responsible party near the Site, so I attended in hopes that my background/career in environmental consulting could be of use

2. What are your concerns about the Site and its cleanup? What is your biggest concern?

My biggest concern is obviously that we have chosen an MNA strategy that is simply not working. Not only is there still substantial contamination in the ground, but there is compelling evidence that it is continuing to migrate and expand throughout our city's wellfield. None of this was being addressed until my mayor called a public meeting about a separate responsible party contaminating our wellfield and we learned that contingencies that were supposed to have been enacted as detailed in the original consent decree in relation to this site were not. I also have grave concerns that I still have not seen anything close to a comprehensive investigative effort to identify and delineate the plume both vertically and horizontally, so I'm confused as to how we are going to make competent remedial decisions when we lack the data to do so.

3. How are you currently receiving information for the Site?

City Task Force, Site Profile Page and EPA weekly updates

4. Whom would you contact when you have questions about the Site?

EPA – Jessica Evans. Her communication has been fantastic since the initial city public meeting, but it's concerning that it took our mayor crying for help before any of us were even aware this was happening, and I work in the industry and still didn't know about it.

5. What is your opinion of the government's commitment to cleaning up hazardous waste at the Site?

It is infuriatingly frustrating to watch a massively underfunded agency stripped of their long-time expertise and knowledge do what they can with what they have. It's not enough, and this is not a new problem, as we see it all over the country on almost every government funded Site that's been dumped on the EPA to clean up after the corporate entities responsible get to walk away unscathed. Unfortunately, EPA has to stick to their priority list to benefit human health, and currently we have clean water, so I know how that ends for us, with water customers footing the bill for someone else's contamination.

6. Is the information from EPA or the state clear and easy to understand?

The weekly updates are great. The Site Profile Page is not great. It is incredibly difficult to navigate to find documents, and there has to be a better way to improve the userface. This is the number one complaint I have heard from community members and other CAG members trying to remain informed. I've also been less than impressed with the representatives and speakers that EPA has sent to present at the public meetings. This does not include Susan and Jessica, but the "experts" and project managers that have been sent to address the public at large. We need trained public speakers who can effectively communicate already confusing information to the public in layman's terms. It is

very obvious that the people who have been sent to answer questions in front of the community are equal parts woefully uninformed about the Site history, and unequipped to handle public speaking from a community concerned about their health.

7. What kind of information about the Site do you want or need and how can we provide you with that information? (Newsletter, Fact Sheets, Internet, Community Meetings, websites, bulletin boards, other) How often?

We have to find a way to reach the lost corners of our community better. Right now, we have different demographics of our population utilizing different information based on available resources to them, which isn't always factual or helpful in working toward a solution. We also have a wide variety of community demographics not represented in our CAG group because both ours and the EPA's outreach just simply isn't getting to them. I don't have a facebook, and if I wasn't connected via the CAG group or City Task Force, I wouldn't know where to go, because those not on social media are missing information.

8. Would you like to be added to the electronic mailing list? If so, please ensure your email address is provided.

9. Do you think that there are stakeholders in the community who are not having their concerns addressed? If so, who should we speak with to learn of these stakeholders' needs?

I think there are, but they either don't know where to address those concerns, or have been fatigued by a lack of response/action.

10. Do you know of any individuals or groups that are interested in the Site and may have special needs or need special considerations (deaf, blind, disabled, homebound, etc.)?

We don't know who doesn't know. That is the biggest problem.

11. Is there anyone in particular whom you think we should be sure to include in our community interviews?

– Interview somebody from hospital (St. Joe (SSM) on fifth street). Only trauma center in St. Charles County. One of the biggest hospitals in the county and serves a large portion of it.

12. Is there anything else you would like to share about the site?

I'm not sure why MNA was chosen as the remediation option, particularly when we knew there was a drinking water source nearby, but that absolutely cannot be the remedial action going forward. As previously stated, there is compelling evidence this plume is migrating (likely due to the influence of the wellfield) and expanding. I'm only 35, so I don't know what the going strategy was for sites like this when this agreement was made, but risking a drinking water source for 70,000 people plus multiple commercial customers at the expense of the taxpayers is precisely the opposite of what the EPA is supposed to be doing. It is absolutely not the fault of the individuals working on this Site on behalf of the EPA, and it's frustrating to watch everyone walk on eggshells week after week because no one has the authority to actually take action.

INTERVIEW RECORD

Please fill out the information below. If you have questions please contact Jessica Evans, community involvement coordinator, at 314-296-8182 or <u>evans.jessica@epa.gov</u>.

This form can be sent back to the e-mail address provided above or sent to: EPA Region 7, Attn: Jessica Evans, 11201 Renner Blvd., Lenexa, KS 66219

Site Name: Findett Corp. Superfund Site	EPA ID No.: MOD006	333975
Subject: Findett Corp. Superfund Site Sixth Five-Year Review	Time: 1030	Date: 11/19/2024

Type: \Box In Person x Telephone \Box Email \Box Other:

Location (if needed):
Site Work/Office Home Other: Telephone conversation

	Interviewer Inform	nation (If needed)
Name: Jessica Evans/JP Curry	Title: CIC/RPM	Organization: EPA R7
	Contact in	formation
Name:	Title:	Organization: N/A
Telephone No:		
E-Mail Address:		
Street Address:		
City, State, Zip:		
	Summary of	Conversation

1. What do you know about the Findett Corp. Superfund Site (Site)? How did you first become aware of contamination associated with the Site?

I'm old time St. Charles. Familiar with Findett/Cadmus way back in early days when it hit the newspaper. Been following since day one. Family was in construction business. Aware of underground contamination – we did work in that area. Recently, hasn't been in papers much but follow St. Charles Wellhead District so that's another way I became aware of what has been going on. Have done considerable environmental sampling and studying reports recently. Under contract to purchase properties in and around the site.

2. What are your concerns about the Site and its cleanup? What is your biggest concern?

To use a worn out phrase, it is what it is. Concerned about future movement and whether or not it will eventually disappear or is this going to be a problem for a long time. If so, will containment help situation/reduce it or will it get worse. What happens in the future and how predictable is that? What is the level of confidence of that?

3. How are you currently receiving information for the Site?

St. Charles Wellhead District – their information on their website is sporadic and confusing. JP has been very helpful, including conference call once with Daniel Lyskowski; was very helpful and clear. Met with Geotechnology a couple times (doing ongoing testing) and more specific – I hired my own environmental consultant (Jim Foley) and relied on him to interpret what I should and should not do (Herlacher). JP has reports from Herlacher.

4. Whom would you contact when you have questions about the Site?

I would clearly contact Mr. Foley or JP. I question city consultant (212) motives. I'm sure he is qualified but his views are slanted. Not a fan of 212. Been in a few conversations with him, did not like the way the conversations went. Did not appreciate their criticisms. Understand vapor intrusion is a big deal and we have to be cautions, past present/future.

5. What is your opinion of the government's commitment to cleaning up hazardous waste at the Site?

I think it is positive. I don't fully understand the effort of remediation going forward but I trust it is in good hands. Government is doing what they need to/have to. Don't question that. Generally think it is positive. Unclear about subsurface efforts to control the movement.

JP – March effort/sampling event was to fully understand southern boundary.

Will there be random tests like that in the future? Is there a five-year plan going forward

JP – working with PRPs – going to be doing work at that property. So far it is limited just to that property. Theres a possibility it goes into closer to Elm Point Wellfield area to ensure wells do not exceed MCLs. So far focusing on source area.

6. Is the information from EPA or the state clear and easy to understand?

Kind of. As a nonscientist, I often get lost in the big words. I don't know if there's a regular update in plain English that would be helpful. I'm sure what you send out is thorough and accurate, I'm just not sure on what schedule that is sent out, not sure that I understand it. I understand that contaminants and chemicals, etc. have big words and big names, not sure if there's a simple way to explain that, but that is a tough task. I don't know how you simplify it for developers.

7. What kind of information about the Site do you want or need and how can we provide you with that information? (Newsletter, Fact Sheets, Internet, Community Meetings, websites, bulletin boards, other) How often?

I want to say say every six months, but I'm not sure of the tests are created/changed that often but it is good in layman's language what the contaminants are doing. If they are as expected/surprising/more concern and then to put that simple progress/lack of progress into a summary. But I'm not sure how often it is to reasonably give that information. How often are Geotech wells monitored?

JP – contamination in them monitored every six months. Entire well monitored annually.

Who gets those reports?

JP – EPA gets them and make them publicly available.

8. Would you like to be added to the electronic mailing list? If so, please ensure your email address is provided. Yes. EPA has email address.

9. Do you think that there are stakeholders in the community who are not having their concerns addressed? If so, who should we speak with to learn of these stakeholders' needs?

I don't know of any. This has been so visible, and JP has been there when he needs to be. And I think people can get answers if they investigate. If they don't know it's because they didn't ask the right people or the right questions. Would not be inclined to blame the government. 10. Do you know of any individuals or groups that are interested in the Site and may have special needs or need special considerations (deaf, blind, disabled, homebound, etc.)? I do not.

11. Is there anyone in particular whom you think we should be sure to include in our community interviews? Have you done this with staff at St. Charles city?

JP – Yes.

St. Chares County - a lot of engineers running around. JP has worked hard to talk to the neighbors around the site. Sometimes they are not cooperative. JP has pretty much reached out to those who are affected.

12. Is there anything else you would like to share about the site?

Yes; are we confident that the correct environmental decisions are based on fact vs. political. Don't have reason to believe political. Has it ever or could it be? I just question whether this site has merit and facts behind it rather than politics.

Where does this end? Is there an end to the contaminants? It is 20 years out. When and where does it end or will we be talking about this forever? Do we know that answer?

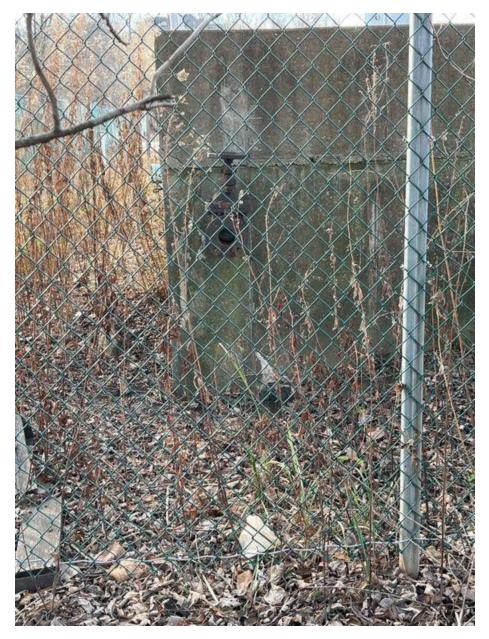
I mentioned it earlier but, explanations – get them simplified. Chemicals to non experts. Effort to make it more understood by the broader spectrum.

Is anything we are doing/any of the contaminants is anything affected by Ameren claims. Has the Ameren contaminants connected with the Findett contaminants. Do we know that answer – is that a real problem? Or will that go away?

Developers don't like surprises and so it is hard to ask the government to predict what's going to happen here but if there was a best guess – developers can plan for it. Like if the contaminant was going to go away in 10 years. That's what we plan on. That may be impossible. I'm sure you're doing what you can.

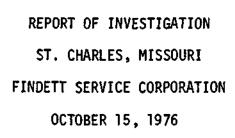
APPENDIX K – PHOTOGRAPHS

October 24, 2024. EW-1 has loose, silver-colored, metal disk as a lid. Disk was replaced with metal lock in January 2025.


December 10, 2024. Concrete trough mentioned in 1976 EPA Report of Investigation discovered.

December 10, 2024. Second angle of concrete trough where historic discharges to north ditch occurred.

December 10, 2024. Small creek originating from surface pond on neighboring property to Findett along north ditch area.



December 10, 2024. Unknown pipe protruding from concrete foundation believed to be coming from under eastern storage tank area.

December 10, 2024. Unknown PVC pipe protruding from concrete foundation on eastern side of former Findett Corp. operations area.

APPENDIX L – 1976 REPORT OF INVESTIGATION AND NPDES PERMIT

Gip 0006333975 1.0 04# 10-15 795

BY

U. S. ENVIRONMENTAL PROTECTION AGENCY Region VII Surveillance and Analysis Division

INTRODUCTION

At the request of the Oil and Hazardous Materials Section, a sampling investigation of the Findett Service Corporation was conducted by the Water Section in July, 1976. This report presents the results of the investigation.

INVESTIGATIVE PERSONNEL

Investigative Phase:

Date: July 23-24, 1976 Personnel: Robert Greenall Title: Chemist Personnel: Stephen Busch Title: Sanitary Engineer

FACILITY DESCRIPTION

€

The Findett Service Corporation reclaims used Monsanto hydraulic and heat transfer fluids by removing contaminants and products of degradation. The fluids are distilled and filtered. Residues from the distillations are put into a retention pond and filter paper and filter cartridges are sent to a landfill. Recoveries of fluids are estimated by the Company to be approximately 90 percent.

Estimated wastewater flow at the time of sampling was approximately five gallons per minute (19 liters per minute). The maximum flow was estimated by Company personnel to be 40 gallons per minute (151 liters per minute). The number of hours of weekly operation vary with available work and manpower.

Wastewater is discharged to a branch of the Dardene Creek which ultimately discharges to the upper Mississippi River. No wastewater treatment is provided.

MONITORING PROCEDURE

An ISCO 1680 automatic wastewater compositor was installed at the facility discharge trough on July 21, 1976. The samples were composited over a period of approximately 24 hours and were collected through July 24, 1976. Grab samples were taken on July 23 from a small ditch leading from the retention basin to the creek and from

-2-

the creek at the edge of the property line. The results of the monitoring are presented in the attached tables.

FINDINGS

1. Two discharges from the facility to the creek were observed. A concrete trough discharged continuously during plant operation and was sampled with a wastewater compositor. A grab sample taken from this discharge on July 24 contained 78 μ g/ml polychlorinated biphenyls (PCB). The other discharge was from a pipe which was connected to a solvent tank. This line is used only when solvents in the tank are changed. The solvent is drained into barrels and the tank is washed with water. The wash water is discharged to the creek. No discharge was made during the sampling period.

2. On the south side of the facility is a retention pond which is used to hold residue from the distillation process. A row of wooden pallets had been laid on one side of the pond and barrels labeled, "hydraulic fluid," had been turned on their side on the pallets to drain. A small ditch led from the pond to the creek. At the time of the sampling the pond was full and any addition of liquid would have caused a discharge to the creek. A grab sample taken from liquid in the ditch on July 23 contained 180,000 μ g/l PCB and 2408 mg/l oil and grease.

3. At sometime in the past, oil had been dumped in the creek on the north side of the plant. There were four distinct areas where the creek bank was covered with oil. At the point of one oil dump, there were nine empty five gallon buckets which had contained some type of oil. Another area was littered with oil barrel tops. A grab sample taken from the creek at the edge of the property line on July 23 contained 20 mg/l oil and grease, and 639 ug/l PCB.

RESULTS OF ORGANIC ANALYSIS

(

FINDETT COMPANY

1. Grab sample taken from retention basin ditch on July 23, 1976.

Several PCB components were identified including the dichloro, trichloro, tetrachloro, pentachloro, and hexachloro biphenyl isomers. A significant amount of a bromine containing compound was present but could not be identified.

> 180,000 PPB of PCB as AROCLOR 1242

2. Grab sample taken from the creek at property line on July 23, 1976.

A small amount of bromobenzene was detected by GC/MS.

639 PPB of PCB as AROCLOR 1242

3. Grab sample taken from effluent trough on July 24, 1976.

No significant components detected by GC/MS.

78 PPB of PCB as AROCLOR 1242

	STORET_NO002284	• • • • •	CONPOSITE	SANPLE DATA		·-····································
				······································		
	DATE/TIME	220776 1000 230776 0855		230776 (DARE	
	TYPE OF SAMPLER					
1	LAB NO.	953150	4	1\$C0 164 953152	90 <u>.HS</u>	
) i	PARAMETERS	······································				ARITH HEAN
	00095 CNDUCTVY AT 25C N	1CROMHO 303.00			D3.00	303.0000
	00340CODH1_LEVEL	_MG/L300.00			10.00K	
	00403 LAB PH 00530 RESIDUE TOT NFLT.	SU 9.00 MG/L 6.00		·	9.00 -	9.0000
` <u>÷</u>	00610 NH3~N TOTAL	MG/L 0.40	K		0.40K	0.4000
	00625 TOT KJEL N 00630 NOZENOS N-TOTAL	.HG/L	L		0.40L	0.4000
		NG/L 1.56			0.32 0.20L	0,9400
	TOT. CADHIUH CD. TOT	_UG/LL.00	<u>к</u>		1.00K	
	01034 CHROMIUMCR+TOT 	UG/L 5.00			5.00K	5.0000
	01051 LEAD PB+TOT	.UG/L15+00 VG/L30+00			29.00 35.00	
	01967_ NICKEL NI+TOTAL	_VG/L20.00			20.00	32.5000
	01092 ZINC ZN.TOT	UG/L 10.00	ĸ	· · · · · · · · · · · · · · · · · · ·	12.00	11.0000
ð	_ 03105 ALUMINUM ALTOT	• • • • •	GRAB SA	HPLE DATA	20.01	
ð		230274_0905	G R A B S A 23077 <u>6 0915</u>	NPLE DATA 239776 935240776 1	20.01	17.5000
	DATEZTINE	230 <u>776 0</u> 905 953151	G R A B S A 23077 <u>6 0915</u> 953400	HPLE DATA <u>239776 8935</u> 240776 8 953401	20.01	17.5000
		• • • • • 230776_0905 953151	G R A B S A 23077 <u>6 0915</u> 953400	HPLE DATA 	20.0 h	17.5000
	DATE/TIME _LAB NO PARAMETERS 00010_WATERTEMP 00560 OIL-GRSEFREON-IR	23077 <u>6</u> 0905 	G R A B S A 230776 0915 953400 *** K 2406.00	NPLE DATA 	20.0 h	17.5000
	DATE/TIME _LAB NO PARAMETERS 00010_WATERTEMP 00560 OIL-GRSEFREON-IR	23077 <u>6</u> 0905 	G R A B S A 23077 <u>6 0915</u> 953400	NPLE DATA 	20.01	17.5000
	DATE/TIME _LAB NO PARAMETERS 00010_WATERTEMP 00560 OIL-GRSEFREON-IR	230776_0905 	6 R A B S A 230776 0915 953400 x 2408.00	NPLE DATA 	20.0 [^]	ARITH HEAN
		230274 0905 	6 R A B S A 23077 <u>6 0915</u> 953400 × 64 × 2408.00	M P L E D A T A 239776 8933 240776 953401 953153 000 20,40	20.01 	ARITH HEAN
		230274 0905 	6 R A B S A 23077 <u>6 0915</u> 953400 × 64 × 2408.00		20.01 	ARITH HEAN
		230274 0905 	G R A B S A 230776 0915 953400 K 2408.00 ICABLE	M P L E D A T A 239776 933 240776 1 953401 953153 000 20,40	20.0 [^]	ARITH HEAN
		230274 0905 	6 R A B S A 23077 <u>6 0915</u> 953400 × 64 × 2408.00	M P L E D A T A 239776 8933 240776 953401 953153 000 20,40	20.0 [^]	ARITH HEAN
		230274 0905 	G R A B S A 230776 0915 953400 K 2408.00 ICABLE	M P L E D A T A 239776 933 240776 1 953401 953153 000 20,40	20.0 [^]	ARITH HEAN
		230274 0905 	G R A B S A 230776 0915 953400 K 2408.00 ICABLE	M P L E D A T A 239776 933 240776 1 953401 953153 000 20,40	20.0 [^]	ARITH HEAN
		230274 0905 	G R A B S A 230776 0915 953400 K 2408.00 ICABLE	M P L E D A T A 239776 933 240776 1 953401 953153 000 20,40	20.0 [^]	ARITH HEAN
		230274 0905 	G R A B S A 230776 0915 953400 K 2408.00 ICABLE	M P L E D A T A 239776 933 240776 1 953401 953153 000 20,40	20.0 [^]	ARITH HEAN
		230274 0905 	G R A B S A 230776 0915 953400 K 2408.00 ICABLE	M P L E D A T A 239776 933 240776 1 953401 953153 000 20,40	20.0 [^]	ARITH HEAN

.

ţ

K.

. . .

SEP - 3 (495)

CHRISTOPHER S. BOND GOVERNOR

JAJAES L. WILSON DIRECTOR

missouri department of natural resources

101-1-Maniatore t.

P.O. Box 1368 . Jefferson City, Missouri 65101

314-751-3241

File Number: 3.500 St. Charles County Findett Corporation Permit Number: MO-0092754

August 27, 1976

Mr. John T. Rogers, Add-In Corporation c/o Mr. Milton A. Tegethoff R. R. #1, Box 13 St. Charles, MO 63301

Dear Permittee:

Pursuant to the Federal Water Pollution Control Act, under the authority granted to the State of Missouri and in compliance with the Missouri Clean Water Law, we have issued and are enclosing your National Pollutant Discharge Elimination System (NPDES) Permit to Discharge from your above-referenced facility.

Please READ your permit carefully: Your NPDES Permit to Discharge includes standard and special conditions which must be followed to remain in compliance with the requirements of the Federal Water Pollution Control Act and the Missouri Clean Water Law.

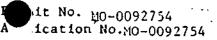
Monitoring report's required by the special conditions must be submitted on a periodic basis. Copies of the necessary report forms are enclosed. If you have any questions concerning these reports, please do not hesitate to call this office or our regional office.

This NPDES Permit is both your Federal discharge permit and your new State operating permit and replaces all previous State operating permits for this facility. In all future correspondence regarding this facility, please refer to your NPDES Permit number, the facility name and the file number listed at the top of this page.

I am sure that you appreciate the importance of eliminating pollution from our Nation's waters and will abide by the terms and conditions of the NPDES Permit. If you have any questions concerning this permit, please do not hesitate to call this office or our regional office at 8360 Watson Rd., St. Louis, MO 63119, phone (314) 849 1313.

Yours truly

James L. Wilson Director Department of Natural Resources


HLW/ RHH/hc Enclosure

cc: EPA - Permit Branch Billing Dept - Permit Branch SLKO -

Division of Environmental Quality

DEPARTMENT OF

Missouri 63301

MISSOURI CLEAN WATER COMMISSION AUTHORIZATION TO DISCHARGE UNDER "HE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the Federal Water Pollution Control Act, Public Law 92-500, 92nd Congress, (He einafter, the Act) as amended, and the Missouri Clean Water Law, (Chapter 204 R.S.Mo. Cum. Supp. 1973, hereinafter, the Law).

Owner: Mr. John T. Rogers, Add-In Corporation

Owner's Address: c/o Mr. Milton A. Tegethoff, R. R. #1, Box 13, St. Charles,

Facility Name: Findett Corporation

Facility Address: R. R. #1, St. Charles, Missouri 63301

Legal Description: NE4, SE4, Sec. 23, T47N, R4E, St. Charles County

Receiving Stream & Basin: Branch of Dardenne Creek - Upper Mississippi River Basin (Alton Dam to Des Moines River) is authorized to discharge from the facility described herein, in accordance with effluent limitations and monitoring requirements as set forth herein:

FACILITY DESCRIPTION

An untreated discharge of process and cooling waters to a stormwater ditch from a chemical recycling operation having an estimated average daily flow of 15,500 gallons.

This permit shall become effective on August 27, 1976 , unless appealed in accordance with Section 204.051.6 of the Law.

This permit and the authorization to discharge shall expire at midnight, 8/26/81

Dated this 27th day of August, 1976

James L. Wilson Director, Department of Natural Resources Permit Administrator for Missouri Clean We

Commission

Page 2 of 3 Permit No. MO-0092754 1

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

The permittee is authorized to discharge from outfall(s) with serial number(s) as specified in the application for this permit. The effluent limitations shall become effective on the dates specified herein. Such discharges shall be controlled, limited and monitored by the permittee as specified below:

EFFLUENT LIMITATIONS

MONITORING REQUIREMENTS

		Interim Limitations	Interim Limitations	Final Limitations		
			Issuance	7/1/77		
fective Da		[Della		
itfall Numb			Daily	Daily	Measurement	Sample
fluent Par	ameter(s)		Average	Average	Frequency	Туре
Outfall \$						
Flow-m ³ /I	ay (MGD)		no limits	no limits	once/month	24 hour tota
pH - Unit	s		6.0-9.0	6.0-9.0	once/month	grab
	be averaged)				·	0,
Suspended	Solids		100 mg/1	30 mg/1	once/quarter	****
Oil & Gre			100 mg/1	15 mg/1	once/quarter	****
Aluminum			no limits	5 mg/1	once/quarter	****
Copper			no limits	1.0 mg/1*	once/quarter	****
inc			no limits	1.0 mg/1	once/quarter	****
Lead			nolimits	0.1 mg/1	once/quarter	****
Flouride			no límits	3.0 mg/1	once/quarter	***
Anmonia			no limits	0.3 mg/1	once/quarter	****
Phenols		· .	no limits	1.0 mg/1	once/quarter	****
Temperatu	re		**	**	once/month	grab
Poly-chic	rinated i		***	***	once/quarter	***
Bipheny	ls			\$ I	- -	
Chemical	Oxygen		no limits	100 mg/1	once/quarter	****
Demand						
			hall not excee	1 0.025 mg/1	when the concentra	tion
of	zinc is 1.0	ng/1.	0	! [
** Rec	eiving strea	n temperature to the efflue	+ 5°F. Temper	ature of the	receiving stream s	hall not
*** The	re shall he	no measureable	concentration	of poly-child	rinated biphenyls	in the
eff	luent discha	rep.	concencracion		timated ofphenyis	IN LNE
			nde up of 4 ci	ab samules co	llected within a 2	4 hour
per	iod with a m	inimum of 2 ho	urs between ea	ch grab.	site of a start	,4 HOUL
		 	<u> </u>		· · · · · · · · · · · · · · · · · · ·	·
	wante chall	to submitted	quarterly			1/28/77
nicoring re	eports shall	be submitted	quarterry	, the fi	rst report is due	1/20///

There shall be no discharge of floating solids or visible foam in other than trace amounts.

STANDARD CONDITIONS

In addition to specified conditions stated herein, this permit is subject to the attached PART I standard conditions dated October 1, 1975 , and hereby incorporated as though fully set forth herein.

C. SCHEDULE OF COMPLIANCE See Attached

Page 3 of 3 Permit No. MO-0092754 ŧ.

SCHEDULE OF COMPLIANCE

The permittee shall achieve elimination of the existing discharges in accordance with the following schedule:

- 1. Submit reports of progress toward eliminating the present discharge on the following dates:
 - a. November 30, 1976
 - b. March 31, 1977
- 2. Achieve compliance with final effluent limitations by June 30, 1977

SPECIAL CONDITION

Permittee is to abandon the treatment facilities described herein and shall connect the tributary waste load to trunk sewers within 180 days of notice of availability if trunk sewers operated by one of the authorities outlined in Section VI, Subsection 6.01 A, B, or C of CWC Regulation 5 are made available to thesite during the time a valid discharge permit exists. APPENDIX M – 1984 AND 1987 SAMPLING REPORTS AND DATA TRANSMITTALS

of Laboratory Data

DATE 5/14/84

SUBJECT Transmittal of Laboratory Data

Charles P. Hensley Branch, ENSV FROM

10 Ketter

Att Oberle

Analyses have been completed for the following activities and the data results are attached.

Activity No.	Description
ABAS	Fridett
	· · · · · · · · · · · · · · · · · · ·

Attachments

cc: Data Files

MAY 17 1984

E&EK.C.K.

DATA QUALIFIERS FOR EPA REGION VII

- U not detected. For EPA VII lab data U is applied only in conjunction with detection limits. For contract lab data it is applied to contract required limits.
- M The value indicated is below the quantitation limit but above the detection limit.
- J The value is of unknown quality. Approximate value.
- I analysis attempted but no result can be reported.

FIELD SHEET U.S. Environmental Protection ENVIRONMENT SERVICES DIVISION, 25 FUNSTON	
SITE Identification: FINDETT	ST. CHARLES, MO :
: COLLECTION DATA: YR 83 MO 11 DAY 16	TIME 0855 LEADER: OBERLE :
SAMPLE NUMBER: AA9508 SAMPLED MEDIA: SOIL, DUST, RINSATE, SEDI SAMPLE SPLIT: XYES /NO Fingtt	SHO 4: 8
: SAMFLE CONTAINER: : TAG COLOR : :	PRESERVATIVE :ANALYSIS REQUESTED; STE
PT.JAR PERTE PORTLE BLUE	- PcB's
DEPTH: 0-2" FAN #: SAMPLERE: Buchanen / Obula	ALIQUOTS: <u>5</u>
COMMENTS OF FIELD PER	RSONNEL
* 2772 DECEPTELIAN	for segment (50-100') istward of junction of
SCIEX RESULTS: 20	at drainage ditch o
· 	

.

FIELD SHEET U.S. Environmental Protection Agency, Region VII -ENVIRONMENT SERVICES DIVISION, 25 FUNGTON ROAD, KANSAS CITY, KS 66115 ST. CHARLES, KO SITE Identification: FINDETT COLLECTION DATA: YR 83 MG IL DAY 16 TIME 0930 LEADER: OBERLE SAMPLE NUMBER: AA9510 SM0 #: 10 SAMPLED MEDIA: SOIL, DUST, RINSATE, SEDIMENT OTHER _____ SAMPLE SPLIT: ALYES / __NO FINDETT _____ _____ SAMPLE CONTAINER: : TAG COLOR : PRESERVATIVE TARALYSIS REDUES PT. JAR FBRIEE FSEFLE <u>و د ا</u> BLUE 003 DEPTH: 0-2" ALIQUOTS: <u>5</u>.... PAN #: ____ SAMPLERS: Bachanan/ Oherles _____ COMMENTS OF FIELD PERSONNEL Sample Bint #2 SITE DESCRIPTION: FIN 240ft west of Findett Property line along north drainage ditch 50ft sayment SCIEX RESULTS: ____

		• •
	 	-

FIELD SHEET U.S. Environmental Protection Asency, Resion VII 👘 ENVIRONMENT SERVICES DIVISION, 25 FUNSTON ROAD, KANSAS CITY, KS 66115 _____ : SITE Identification: FINDETT ST. CHARLES, MO COLLECTION DATA: YR 83 NO IL DAY JG TIME 2930 LEADER: OBERLE SAMPLE NUMBER: AA9511 SMO **#**: 11 SAMPLED MEDIA: SOIL, DUST, RINSATE, BEDIMENT, OTHER SAMPLE SPLIT: XYES / LIND FINDET T SAMPLE CONTAINER: : TAG COLOR : PRESERVATIVE ANALYSIS REQUESTEI ARIOALTY PURPLE FT. JAR Frank LE PolluTAPRI DEPTH: 02 M PAN 1: ____ ALIQUOTS: ____ SAMPLERS: ___ Aberla- / Berchanan-----COMMENTS OF FIELD PERSONNEL Sough frient # 2 2 vaft west of Fundett Ruperty line along noth drainage creek 5 aft segment SITE DESCRIPTION: FIN SCIEX RESULTS: _____

FIELD SHEET U.S. Environmental Protection Adency, Resion VII ENVIRONMENT SERVICES DIVISION, 25 FUNSTON ROAD, KANSAS CITY, KS 68115 SITE Identification: FINDETT ST. CHARLES, Ha COLLECTION DATA: YR 83 HO 1 DAY 16 TIME 1020 L'EADER: OBERLE SAMPLE NUMBER: AA9512 SH0 #: 12 SAMPLED MEDIA: SOIL, DUST, RINSATE, GEDIMENT OTHER _____ SAMPLE SPLIT: ______NO FIN DETT SAMPLE CONTAINER: : TAG COLOR : PRESERVATIVE ANALYSIS REGUES PT. JAR Fedd LE Feititie BLUE FAN #: ____ ALIQUOTS: ____ DEPTH: ________ SAMPLERS:__Buchavan / Obeste____ ------COMMENTS OF FIELD PERSONNEL 300-250' Nof Elm Point Rd SITE DESCRIPTION: FIN along east clitch of Hanford Road. 50 ft sequent SCIEX RESULTS: _

FIELD SHEET U.S. Environmental Protection Asency, Region VII ENVIRONMENT SERVICES DIVISION, 25 FUNSTON ROAD, KANSAS CITY, KS 66115 ______ SITE Identification: FINDETT ST. CHARLES, MO HO IL DAY 16 TIME 1020 CULLECTION DATA: YR 83 L'EADER: DBERLE SAMPLE NUMBER: AA9513 SMD #: 13 SAMPLED MEDIA: SOIL, DUST, RINSATE, SEDIMENT OTHER _____ SAMPLE SPLIT: XYES / __NO FINDETT : FRESERVATIVE TAG COLOR SAMPLE CONTAINER: : ANALYSIS REQUESTED _____ PRIORIT PURPLE PT. JAR Bituto Feilin - T DEPTH: 0-2" PAN : ____ ALIQUOTS: ____ SAMPLERS:____ Oberle/Buchanon COMMENTS OF FIELD PERSONNEL Sample Paint #3 SITE DESCRIPTION: FIN 200-250 ft North of Clan Point Red along Hayford Bridge Rd. Saft segment. SCIEX RESULTS: ___

FIELD SHEET U.S. Environmental Protection Asency, Resion VII ENVIRONMENT SERVICES DIVISION, 25 FUNSTON ROAD, KANSAS CITY, KS 65115 SITE Identification: FINDETT ST. CHARLES, HO COLLECTION DATA: YR 83 MO IL DAY JE TIME 1045 LEADER: OBERLE SAMPLE NUMBER: AA9514 SHO #: 14 SAMPLED MEDIA: SOIL, DUST, RINSATE, GEDIMEND OTHER _____ SAMPLE SPLIT: XYES / LLND PHOBETT SAMPLE CONTAINER: : TAG COLOR : PRESERVATIVE IONALYSIS REQUES _____ PT. JAR REUE 003 DEPTH: 0-24 FAN #: ____ ALIQUOTS: _ SAMPLERS: Dutanon COMMENTS OF FIELD FERSONNEL Sample Polar # 4 112 ft segment of Hayford Ad east drainage ditch 21000 ft & N. of Elm Point Ad SITE DESCRIPTION: FIN SCIEX RESULTS:

: SITE Identificat	tion: Fl	INDETT			ST.	CHARL	 ES, M	
COLLECTION DATA	: YR 83	мо Щ	DAY J	ТІНЕ	1042	LEAD	ER: 0	BER
SANFLE	Е NUMBER	: AA95	15		SMO #:	15		
SAMPLED MEDIA: S SAMPLE SPLIT: A FINDATT	SOIL, DL YES / _	JST, RII NO	NSATE,	DIMENT	OTHER		~	
: SAMPLE CONTAINER		TAG	COLOR	: FRESE	RVATIVE	:ANAL	 15IS	 REQI
FT. JAR	;	PURFLE		;	PAIORITY POLLOTA	<u>t</u>		
							-	
	•					:		
• • •	;							
	*			•		•		
DEPTH: 0-2	<u>)</u> 4		FAN 1 :		ALIG	UOTS:	5	
: SAMPLERS;	Oher	2e/Bu	ehonan					
:		12						
	сом	IMENTS (DE FIELD	PERSONN	 EL			• ~ ~ -
: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			Sample	POINT	#4		gas	τ
: SITE DESCRIPTI	UN+ F1N		•	lafr.	Segnant	- fran	ndra	ina
• • •			. and t	. dita	segment halong ft noi T Rd.	Hay	ford	Rd
: SCIEX RESULTS:			VEN JI		V.	- <i>b</i>	~\$O.	

.

SITE Igentificatio	FINDETT		ST.	CHARLES, H
COLLECTION DATA: Y	R 83 MO 🥂 DA	Y 16 TIME	0930	LEADER: D
SAMPLE N	UMBER: AA9527		SKO #:	2
SAMPLED MEDIA: SOI SAMPLE SPLIT: XYE Fiboett	S /NO	E, SEDIMENT,	·	oter_
SAMPLE CONTAINER:	TAG COLOF	R : PRESE	RVATIVE	ANALYSIS (
a = 1/2 GAL J.	: P unte : M unt e : Blue	:		: <u>001</u> 310 : 003 -
	•			; – ; –
	•	•		• : :
	:	:		*
DEPTH: Austo SAMPLERS:	·	# :	ALIQU	ots:₽́А
		·		
	COMMENTS OF FI			
SITE DESCRIPTION	: FIN 5 a	mple Point Math du	amage c	reek
SCIEX RESULTS:		Math du app apaox proper	1/aft we	st of Fin

, , , ,

-

.

.

SITE Identification	FINDETT	ST.	CHARLES, MO
COLLECTION DATA: YR	83 NO IL DAY J	5 TIME 2930	LEADER: OBER
SAMPLE NU	MBER: AA9528	SHD #:	3
SAMPLED MEDIA: SOIL Sample Split: Xyes Findett	/ <u>_</u> 0И \	EDIMENT, OTHER 🔊	
: SAMPLE CONTAINER: :	TAG COLOR	: PRESERVATIVE	ANALYSIS REC
2-1/2 GAL J.	PURFLE F urf le	Paioaity Pollatonts	: 0 21 - 4 5 : 0 21 - 1 5
:		:	: -
		4 9 9	*
	•	*	*
DEPTH: D-2. SAMPLERS:BG	FAN :: charring obert	ALIQU	IOTS: <u>NA</u>
	COMMENTS OF FIELD	 FERSONNEL	
SITE DESCRIPTION:		ple Point #2	Findett
SCIEX RESULTS:	dr	ainage dita	in moth
		•	

- -- -

.

.....

TITLESFINDETT	
HATRIX: SEDIMENT	
UNITS: UG/NG	

1

۰.

SAMPLE HUMBERS

		AA9509	AA9511	AA9513	AA9515
CONFOUND	STORET				
2,4,6 TRICHLOROPHENOL	34624	10000.0	10000.0	400.U	400.U
F-CHLORO-H-CRESOL	34455	20000.0	20000.0	800.U	800.U
2-CHLOROFHENDL	34589	10000.0	10000.0	400.U	. 400.0
2.4 DICHLOROFHENOL	34604	10000.0	10000.0	400.U	400.U
2.4 DIMETRYLFRENOL	34609	10000.0	10000.0	400.0	400.U
2-NITROPHENDL	34594	20000.0	20000.0	800.U	800.U
4-NITROPHENOL	34649	100000'N	100000.U	4000.U	4000.0
2.4-DINITROPHENOL	34619	50000.U	50000.0	2000.0	2000.U
4.6 DINITRO-2-HETHYLFHENDL	34660	20000.U	20000.0	800.0	800.0
FENTACHLOROFHENOL	39061	20000.U	20000.0	800.0	800.U
FIIENOL	34695	<u>32000.J</u>	10000.U	400.U	400.0

۸.

TITLESFINHEIT HAIFIX: WATER UNITS: UG/L

ANALYSIS TYPE: CONTRACT ACTO DEGANTES PATE: 377784 HETHOD 1:9300 may SAMPLE PREP: ANALYST: TLD REVIEWER: AMAL LARSENCOTEC

1

SAMPLE NUMBERS

· 1	AA9528
STORET	
34623	10.0
34452	20.U
34596	10.0
34601	10.0
34606	10.0
34591	20.0
34646	100.0
34616	50.0
34657	20.U
39032	20.0
34694	10.U
	S10RET4 34621 34452 34506 34601 34606 34591 34646 34616 34657 39032

TITLE:FINDETT MATRIX: SEDIMENT UNITS: UG/NG ANALYSIS TYPE: CONTRACT BASE-NEU ORGANICS DATE: 370784 HETHUD 1: 9301N08 SAMPLE PREP: ANALYST: TLD REVIEWER: LAB:ENCOIRC

•

~

SAMPLE NUMPERS

		AA9509	AA9511	AA9513	AA9515
Сонголир	STORET				
ACENAFHTIENE	3420B	10000.0	10000.0	400.U	400.11
PENZIDINE	39121	40000.0	40000.U	1609.0	1600.0
1.2.4 TRICHLOROBENZENE	34554	10000.0	10000.0	400.0	400,11
NEXACHLOROKENZENE	39701	10000.0	10000.0	400.0	400.1
	34399	10000.0	10000.0	400-0	400.0
HEXACHLORDETHANE	34276	10000.0	10000.0	400.0	400.0
RIS(2-CHLORDETHYL)ETHER	34584	10000.0	10000.0	400.0	400.0
2-CHLORDNAFHTHALENE				400.0	400.0
1+2 DICHLORDBENZENE	34539	10000.0	10000.0		
1.3 DICHLOROBENZENE	34569	10000.0	10000.0	400.0	400.1
I.4 UICHLORDBENZENE	34574	10000.U	10000.0	400.0	400.0
3,3' DICHLOROBENZIDINE	34634	20000.0	20000.0	800.0	800.U
2.4 DINITROTOLUENE	34614	20000.0	20000.0	800.U	800.0
2,6 DINITROTOLUENE	34629	10000.0	10000.U	400.U	400.0
1.2 DIFHENYLHYDRAZINE	34349	20000.0	20000.U	800.U	800.0
FLUORANTHENE	34379	10000.0	10000.0	400.U	400.U
4-CHLOROFHENYL FHENYL ETHER	34644	10000.U	10000.0	400.U	400 · U
4-BROKOFHENYL FHENYL ETHER	34639	10000.0	10000.0	490.0	400.U
PIS(2-CHLOROISOFROPYL)ETHER	34286	20000.1	20000.0	800.U	800.U
BIS(2-CHLORDETHOXY) HETHANE	34281	20000.0	20000.U	900.0	800.U
HEXACHLOROPUTADIENE	39705	10000.0	10000.0	400.U	400.U
HEXACHLOROCYCLOPENIADIENE	34389	10000.U	10000.0	400.U	400.0
LSOPHORONE	34421	10000.0	10000.0	400.U	400.0
NAFHTHALENE	34411	10000.0	10000.0	400.U	400.0
NITROBENZENE	34450	10000.0	10000.0	400.U	400.U
N-NITROSON [PHENYLAM]NE	34436	10000.U	10000.U	400 JU	400.1)
N-NITROSODI-N-PROPYLAMINE	34431	10000.0	10000.0	400.U	400.0
BISI2-ETHYLHEXYL) EHTHALATE	39102 -	-	10000,U	400.U	- 84 . H
BENZYL BUTYL PHTHALATE	34295	10000.0	10000.0	400,0	400.0
DI-N-BUTYL PHTHALATE	39112	10000.0	10000.0	400.U	432.1
NI-N-DCTYL PHTHALATE	34599	10000.0	13000.1	400.U	400.0
DIETHYL PHTHALATE	34339	10000.0	10000.0	400.U	400.U
DINETHYL PHTHALATE	34344	10000.0	10000.0	400.0	400.0
RENZO(A)ANTHRACENE	34529	10000.0	53000.J	400.0	400.0
BENZO(A)FYRENE	34250	20000.0	20000.U	-	
PENZO(R)FLUORANTHENE	34230	20000.0	20000.0		U.008
BENZO(K)FLUORANTKENE	• • • • •		4	800.0	800.0
CHRYSENE	34245	20000.0	20000.0	800.0	800.1
	34323	10000.0	10000.0	400.U	400.U
ACENAPHTHYLENE	34203	10000.0	10000.0	400.U	400.U
ANTHRACENE	34223	10000.0	10000.0	400 · U	400.U
PENZO(GHI)PERTLENE	34524	20000.U	20000.0	800.0	800.0
FLUDRENE	34384	10000.0	10000.0	400 J U	400.U
FHENANTHRENE	34464	10000.0	10000.0	400.U	400.U
DIPENZO(A.H)ANTHRACENE	34559	20000.0	20000.0	800°N	800.U
INDENO(1+2+3+CD)PYRENE	34406	20000.0	20000.0	800+U	800.U
FYRENE	34472	10000.0	10000.0	400.0	400.U

TITLESFINDETT HATRIX! WATER UNITS: UG/L

APALYSIS TYPE: CONTRACT PASS-NEU DEGADLOS PATE: 3/7/84BETROD T: 3/7/84

SAMPLE PREP: ANALYST: TLD LAB:ENCOICC

REVIENCE: AMC

٩.

SAMPLE NUMPLES

	0	49528
Сангалир	STORET	
ACENAPHTKENE	34205	10.0
BENZIDINE	39120	40.U
1,2,4 TRICHLOROPENZENE	34551	10.0
HEXACHLORDBENZENE	39700	10.9
HEXACHLORDETHANE	34396	19.0
RIS(2-CHLORGETHYL)ETHER	34273	10.0
2-CHLORONAPHIHALENE	34581	10.0
1+2 DICHLORDBENZENE	34536	10.0
J DICHLOROBENZENE	34566	10.0
A DICHLOROBENZENE	34571	10.0
3.3' DICHLOROBENZIDINE	34631	20.9
214 DINITROTOLUENE	34611	20.0
2.6 DINITROTOLUENE	34626	10.0
1.2 DIPHENYLHYDRAZINE	34346	20.0
FLUDRANTHENE	34376	10.0
4-CHLOROPHENYL FRENYL ETHER	34641	10.0
4-BROHOFHENYL PHENYL ETHER	34636	10.0
BIS(2-CHLOROISOPROFYL)ETHER	34293	20.0
BIS(2-CHLOROETHOXY)HETHANE	34278	20.0
HEXACHLOROPUTADIENE	39702	10.0
HEXACHLOROCYCLOPENTADIENE	34386	10.01
ISDEHORONE	34409	10.0
NAPHIKALENE	34408	10.0
NITROBENZENE	34447	10.0
N-NITROSODIPHENYLAMINE	34433	10.U
N-NITROSODI-N-PROFYLAMINE	34428	20.0
PIS(2-ETHYLHEXYL) PHIHALATE	39100	10.0
PENZYL BUTYL PHTHALATE	34393	10.0
DI-N-BUTYL PHIHALATE	39110	10.0
DI-N-OCIYL PHTHALAIE	34596	10.0
DIETHYL PHTHALATE	34336	21.0
PINETHYL PHTHALATE	34341	10.0
PENZO(A)ANTHRACENE	34526	10.0
PENZO(A)PYREHE	34247	20.U
BENZO(B)FLUORANTHENE	34230	20.U
PERZO(K)FLUORANTHENE	34242	20.0
CHRYSENE	34320	10.11
ACENAFHTHYLENE	34200	10.0
ANTHRACENE	34220	10.0
RENZO(GH1)FERYLENE	34521	20,0
FLUORENE	34381	10.0
PHENANTHRENE	34461	10.0
DIPENZO(A1H)ANTHRACENE	34556	20.0
INUCHO(1,2,3,CD)FYRENE	34403	20.0
PYRENE	34469	10.0

TTTLE:FINGENT	ANALYSIS TYLE: HSL EXTRACTABLES	SAMPLE FREF:
HATRIX: SEDINENT	Date: 3/8/84	AMALYST: TLD
UNITS: UG/KG	METHOD 1: 9301H06	LARIENCOTEC

SAMPLE NUMBERS

REVIEWER:

1

 \sim

• •

			AA9509	AA9511	AA9513	AA9515
CONFOUND		STORET!				
ANILINE		*****	10000.0	10000.0	400-U	400.U
PENZYL ALCOHOL		75212	20000.1	20000.0	800.U	800.0
4-CHLORDANILINE		11111	50000.0	50000.U	2000.U	, 2000.U
DIBENZOFURAN		75647	10000.U	10000.U	400.0	400.U
2 METHYLNAPHTHALENE		****	20000.0	20000.0	800.U	800.U
2-NITROAN 11 INE		*****	100000.0	100000.U	4000.U	4000.U
3-NITROANILINE		*****	100000.0	100000.0	4000.U	4000.U
4-NITROANILINE		11111	100000.0	100000.0	4000.0	4000.U
PENZOIC ACID		75315	100000.0	100000.0	4000.U	4000.0
2-HETHYLFHENDL		*****	10000.0	10000.0	400.U	400.U
4-METHYLFHENDL	ı	14111	10000.0	10000.0	400.U	400.0
2,4.5 TRICHLOROPHENOL		11111	100000.0	100000.U	4000.0	4000.U

....

TITLE:FINDETT	ANALYSIS TYPE: HSL EXIFACTAPLES	SAMPLE FREF:
HATEIX: WATER	DATE: 377784	ANALYST: ILU FEUIENER: AVAL
UNITS: UG/L	HETHOD T: YARAda	LAR:ENCOTEC

SAMPLE NUMBERS

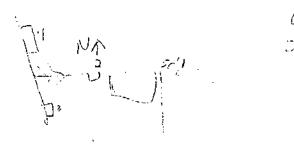
	۵	07528
CORFOUND	STORET#	
ANILINE	77089	10.11
BENZYL ALCOHOL	B1671	20.0
4-CHLOROANILINE	\$1311	50.0
PIRENZOFURAN	81302	10.0
2 HETHYLNAPHTHALENE	77416	20.U
2-NITROANSLINE	11111	100.0
3-NITROANILINE	*****	100.0
4-NITROANILINE		100.0
AENZOIC ACID	77247	100.0
2-HETHYLPHENOL	77152	10.0
4-HETHYLPHENDL	77151	10.U
2.4.5 TRICHLOROFHENOL	77687	100.0

٩

.

TITLE'FINDETT CONF., PCD'S MATRIX: SEDIMENT UNITS: UG/KG

ANALYSIS TYPE: PCE'S DATE: SZ11ZD4 METHUD I: EE065SR


SAMPLE PRIP; LAN. ANALYST: CMU REVIEWER: P. LAD:CPA 7

Сонралир	STORET	A4508	AA4609 62275	SAMPLE AA4510 62276	NUMBERS AA4511 G2277	194512 62270	AA1513 62279	62280	AA4616 62281
		1		2		3		- 4	
(B 1242	39499	300. U	3000. U	<u>530a0</u> . J	<u>33000</u> . J	30. U	38. U	30. U	30. U
CB 1254	- 37507	<u>6300</u> J	51 <u>01</u> , J	7200. J	£200. J	35. U	35. U	63, J	40. J
CB 1221	39491	250. U	2500.10	2500. U	2500. U	25.8	25. U	25. ប	40. J 25. U
CB 1232	39495	190. U	1000. 0	1000. U	1000. U	10. U	10. U	10. U	10. U
CB 1240	39503	<u>7000</u> , J	<u>8700</u> , J	3000, U	3660. U	30. U	30. U	39. U	30. U
CB 1260	39511	540. J	1000. U	1000. U	1000. U	10. U	10. U	10, U	10. U
'CB 1016	39514	300, U	3000, U	3000, U	3000. U	30. U	30.11	30, U	30, U

Amounts are estimated. Use only for quality time purposes

Use undetset. 1

5/14184

TITLE: FINDET1 CORP., PCB'S MATRIX: WATER UNITS: UG/L

1

÷.

J.

3

)

ŧ

1

1

à

3

•

2

3

3

ANALYSIS TYPE: POD'S DATE: 5/11/04 METHOD 1: ELOOSUP

SAMPLE PREP (Contractor ANALYST: CMB REVIEWER: RO. LAD; EPA 7

	COMPOUND	STORET	AAA<i>67</i> 62282	1	AA45 6220	ን ዳ 3	00 62287 02287	v	NUMBERS
PCB 1242 PCB 1254 PCB 1221 PCB 1232 PCB 1240 PCB 1260 PCB 1016		39496 39504 39400 39492 39500 39500 39500 34671	.96 .3 .1 .35 .1 .35 .1 .35	ດ 1 51 51 51	.35 .47 .3 .1 .35	U J U <u>1,27</u> U	.35 .4 .3 .1 .30 .35	ប ប ប ប ប ប	

Amounts are cotimated Usen"Stoc qualitative purposes

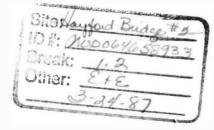
5/14/84

ecology and environment, inc.

CLOVERLEAF BUILDING 3, 6405 METCALF, OVERLAND PARK, KANSAS 66202, TEL. 913/432-9961

International Specialists in the Environment

MEMORANDUM


TO: Paul Doherty, RPO

THRU: Sharon Martin, AFITOM

FROM: Bob Wiggans, E&E/FIT

DATE: March 24, 1987

SUBJECT: Cadmus Corporation, St. Charles, Missouri Sampling Trip Report TDD # F-07-8612-03 PAN# FM00233SI Site #09G Project #001

INTRODUCTION

The Ecology and Environment Inc. Field Investigation Team (E&E/ FIT) was tasked by the Region VII office of the U. S. Environmental Protection Agency (EPA) to collect surface and subsurface soil samples, subsurface water samples, and drainage samples from the Cadmus Corporation site in St. Charles, Missouri (Figures 1 and 2). The objective of this sampling was to determine if previously detected volatile organic compound (VOC's) and polychlorinated biphenyl (PCB) contamination has migrated from the adjacent facility (Findett Corporation), or if this contamination may have originated from Cadmus. The data generated from this sampling effort will be used by the EPA as part of a remedial investigation of the Findett Corporation to be conducted in the near future.

The sampling plan called for four soil samples to be collected from each of four borings drilled to twenty feet. An additional boring was to be drilled if field screening results from the AID portable gas chromatograph showed PCB contamination in the two borings near the Findett quench pond. If water was encountered during the drilling operations, a water sample was to be collected at that point. In addition, surficial soil/sediment samples were to be collected from the drainage ditches along the south and east property lines, from along the edge of the guench pond, and from an off-site location as a backsamples were to around sample. A11 be analyzed for base/neutrals/acids, total metals, VOA's, and pesticides. Additionally, water samples were filtered for dissolved metals analysis.

SAMPLING

The field work for Cadmus Corporation was done in conjunction with other field work being done in the St. Louis area beginning January 26, 1987. The E&E/FIT, consisting of Robert Wiggans, Nancy Kepko, Neal Hudson, John Cook and Ron Wood, arrived on-site at Cadmus Corporation on January 29, 1987. The access agreement arranged with Cadmus Corp. (attached) required that a company representative be Trip Report Cadmus Corporation Paye 2

present at all times the E&E/FIT were on-site, and that work could not begin until after 12:00 noon each day. Sample locations are shown on Figure 3 and summarized in Table 1.

On January 29, 1987, soil/sediment samples were collected from the drainage ditches along the south and east property lines. Each sample consisted of five aliquots, 0-2 inches deep. Drilling at boring #1 located 24 feet north, 36 feet west of the northeast building corner, was iniated using the EPA, CME-45, drill rig. A composite soil sample was taken of the auger cuttings from 0-5 feet deep. Two, 24 inch, split spoon samples were then taken at depths of 5-7 feet and 7.5-9.5 feet. These were composited into one sample and was considered to be representive of the entire 5-10 foot depth. During the drilling of boring #1, water was encountered at approximately 6 Drilling was temporarily discontinued at 7.5 feet to take a feet. water sample from inside the hollow stem auger. There was not enough water in the boring to collect enough sample for all the parameters at this time. It was decided to discontinue drilling for the day to allow enough water to infiltrate into the boring to complete the water samples for that boring. PCB concentrations obtained from the field screening were: 25 ppm at 0-5 feet and less than 0.5, ppm at 5-10 feet. Field screening results are summarized in Table 2.

On January 30, 1987 the water sample for boring #1 was completed and drilling was resumed. Two 24-inch spilt spoon samples were taken in the interval from 10-15 feet and composited into one sample. Two 24-inch split spoon samples were also taken in the interval from 15-20 feet and composited into one sample. A cement bentonite grout mixture, in the ratio of 6 gallons of water to 94 # Type I Portland to 10 # bentonite, was used to backfill the boring as the augers were removed. Upon completion of the boring it was discovered that the water-core to the EPA steam generator had burst making the unit inoperable. Decontamination of the augers had to be postponed until a rental steam generator could be obtained. PCB concentrations obtained from the field screening were: less than 0.5 ppm from 10-15 feet, and less than 0.5 ppm from 15-20 feet.

Mike Worster, the President of Cadmus Corporation, had stated that he would not be available to be on-site as the Cadmus representative throughout the weekend, January 31 and February 1, and that he would not designate an alternate representive. The E&E/FIT therefore decided to postpone further work until the following week and to return to Kansas City.

On February 3, 1987 the E&E/FIT returned to St. Charles. Drilling was initiated on Boring #2, located 21 feet north, 5 feet west of the northeast building corner. Based on the results from the field screening on boring #1, it was decided to take two separate samples in the U-5 feet interval in an attempt to further delineate the possible zones of contamination in the upper 5 feet. In addition, one 24-inch Trip Report Cadmus Corporation Page 3

split spoon sample would be taken in each succeeding 5 foot interval and would be considered to be representative of the entire 5 foot column. One soil sample was collected from the auger cuttings 0-2.5 feet, and one 24-inch spolt spoon soil sample was taken from 2.5-4.5 feet. 24 inch split spoon soil samples were also taken at depths of: 7.5-9.5 feet, 12.5-14.5 feet, and 17.5-19.5 feet. Drilling was temporarily discontinued at 7.5 feet to collect a water sample (there was no problem of recharge in boring #2).

During removal of the center rod from the hollow stem augers, prior to grouting the boring, the pilot bit became wedged in the top 5 feet of auger flight. This prohibited full removal of the center rod. The auger flight had to be backed out 2.5 feet, while the top 5 feet of auger with the center rod was removed; before the boring could be backfilled with grout in the same manner as boring #1. PCB concentrations for boring #2 obtained from the field screening were: 1430 ppm from 0-2.5 feet, 35 ppm from 2.5-4.5 feet, 223 ppm from 7.5-9.5 feet, 10 µpm from 12.5-14.5 feet, 12 ppm from 17.5-19.5 feet, and 17 ppm for the water sample.

On February 4, 1987 drilling was initiated on boring #3 located 7 feet south, 21 feet east of the northeast building corner. Boring #3 had to be relocated further west than proposed in the work plan due to the close proximity of active propane storage tanks. Steve Vaughn, E&E/FIT, arrived on-site to assume the responsibility of drill rig operator. During set-up on the boring location, a hydraulic fitting to the drill rig sliding carriage burst. The E&E/FIT had to obtain and install a replacement fitting before continuing.

One soil sample from boring #3 was taken of the auger cuttings at 24 inch split spoon samples were taken at depths of: 0-2.5 feet. 2.5-4.5 feet, 7.5-9.5 feet, and 12.5-14.5 feet. Drilling was temporarily discontinued and a water sample was collected at approximately 10.0 feet. The clay in boring #3 was not as saturated as the clay in the previous 2 borings, but it was considerably more stiff. At 12.5 feet the CME-45 drill rig did not have enough power to drill deeper through the stiff material and drilling was discontinued at that point. As on boring #2, the center bit became wedged in the top five feet of auger flight during removal of the center rod. The same proceedure for back filling boring #3, with the cement/bentonite grout, was used as at boring #2. PCB concentrations for boring #3 obtained from the field screening were: 539 ppm at 0-2.5 feet, 415 ppm at 2.5-4.5 feet, 21 ppm at 7.5-9.5 feet, and 4.5 ppm at 12.5-14.5 feet.

On February 5, 1987 while setting up on boring #4, located on the south side of the building, the hydraulic pump on the drill rig failed. This required taking the rig to the CME facility in St. Louis for repair. Mr. Worster said that he would not be available to be

Trip Report Cadmus Corporation Page 4

on-site the next several days. It was therefore decided to discontinue drilling and collect two surficial samples 0-12 inches deep, along the drive on the south side of the building. These samples were collected by digging with a pick under approximately 12-18 inches of gravel cover. Sample locations were: 2 feet west, 17 feet south of the southeast building corner (I099G020); and 61 feet west, 27 feet south of the southeast building corner (I099G022). One off-site surface background sample was taken along Elm Point Road, west of the site entrance.

Due to the rig failure, the additional samples that were to be taken on the basis of the field screening results, were not taken. In addition, an off-site upgradient subsurface water sample that was to be taken to address HRS concerns, was not collected.

It was found that the proposed location for the sample along the edge of the quench pond was on Findett Corporation property. Findett Corporation would not grant access to their property to collect this sample.

Soil samples were hazard-packed, and all samples were delivered to the Region 7 EPA Lab on February 3, 1987.

DECONTAMINATION

Non expendable sampling equipment was decontaminated by using a water/alconox wash; followed by a potable water rinse, a methanol rinse, and a final rinse with deionized water. The drill rig equipment was decontaminated by using a Landa Corporation Model PHW3-710 steam generator and a water/alconox solution. This was followed by a potable water rinse, a methanol rinse, and a final rinse with deionized water. Potable water was obtained from the Sunset Hills fire station in St. Louis. A sample of this water was collected for analysis.

Contaminated disposable equipment was collected in plastic bags and turned over to the Region 7 EPA Lab in Kansas City, Kansas for disposition on February 6, 1987.

Auger cuttings were collected in 2 plastic lined, DOT approved, 55 gallon steel drums for each boring. The drums were placed on 4 foot X 4 foot wood pallets and stored on-site pending sample analysis. Mr. Worster stated that after consulting with the Cadmus Corp. lawyer, that he did not want to store the drums on-site as outlined in the work plan. The E&E/FIT called Region 7 EPA on this matter and was initially told that if Cadmus Corp. would not accept the drums, the undrummed auger cuttings were to be left on-site. Region 7 EPA Assistant Regional Counsel, J. Scott Pemberton, later determined that the cuttings should be drummed and left on-site, and that Mr. Worster would have to address his concerns to the EPA. Trip Report Cadmus Corporation Page 5

SUMMARY

A total of three borings were completed at the Cadmus Corporation site in St. Charles, MO. Four soil samples were collected from boring #1 to a total depth of 20 feet. Five soil samples were collected from boring #2 to a total depth of 19.5 feet. Four soil samples were collected from boring #3 to a total depth of 14.5 feet. One water sample was collected from each boring at depths ranging from approximately 6 feet to approximately 10 feet. Two surficial soil/sediment samples, consisting of 5 aliquots, from 0-2 inches, were collected along the south and east drainage ditches. One off-site background surficial sample was collected along Elm Point Road west of the facility entrance. Two soil samples, 0-12 inches deep, were collected from under the gravel cover, south of the main building. One sample was taken of the water obtained from the Sunset Hills Fire Department that was used for decontamination.

A final report will be prepared upon receipt of the data transmittal package. A completed 2070-13 SI form will be attached to the final report. Disposition of the drummed auger cuttings will be determined upon receipt of analytical data.

TABLE 1: SAMPLE SUMMARY CADMUS CORPORATION St. Charles, Missouri F-07-8612-03 FM00233SI

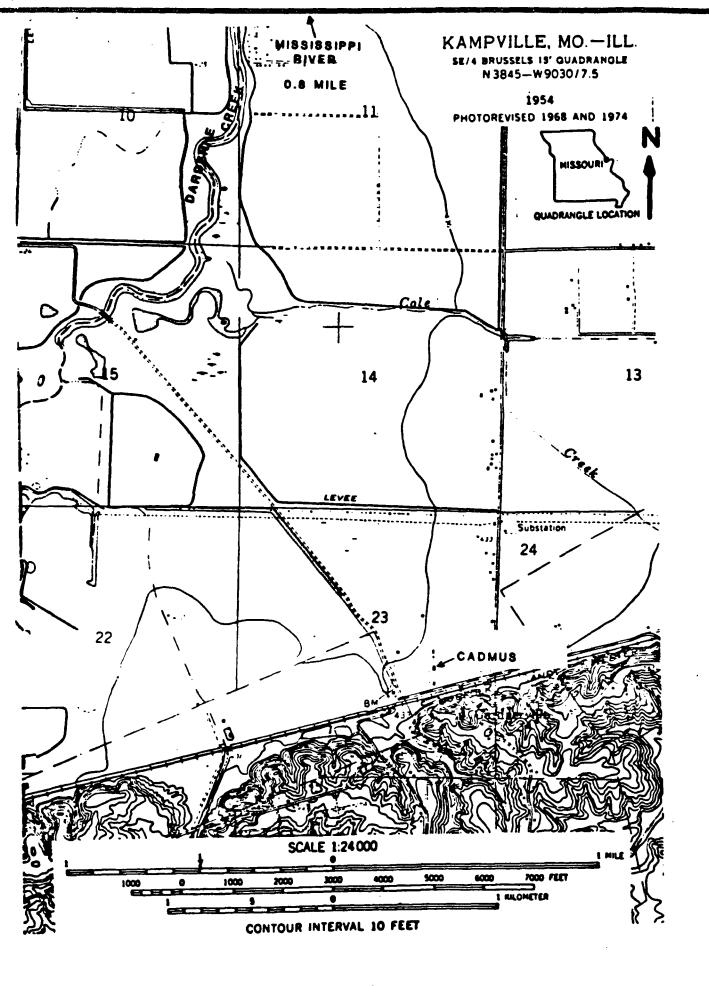
•

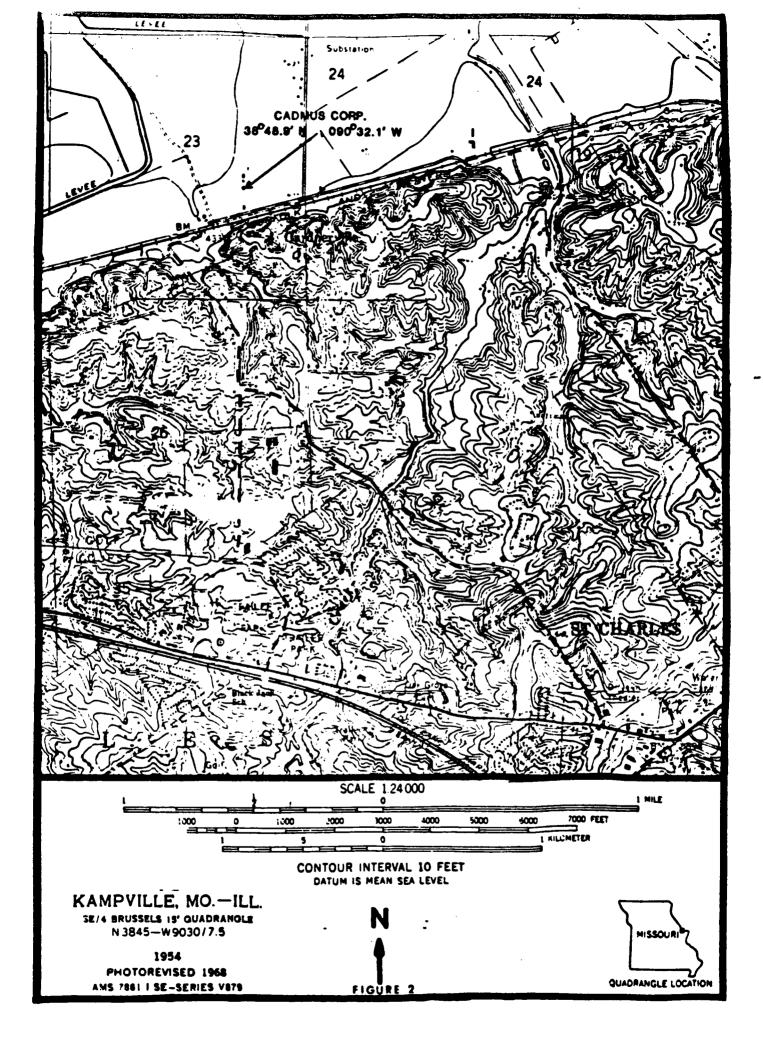
.

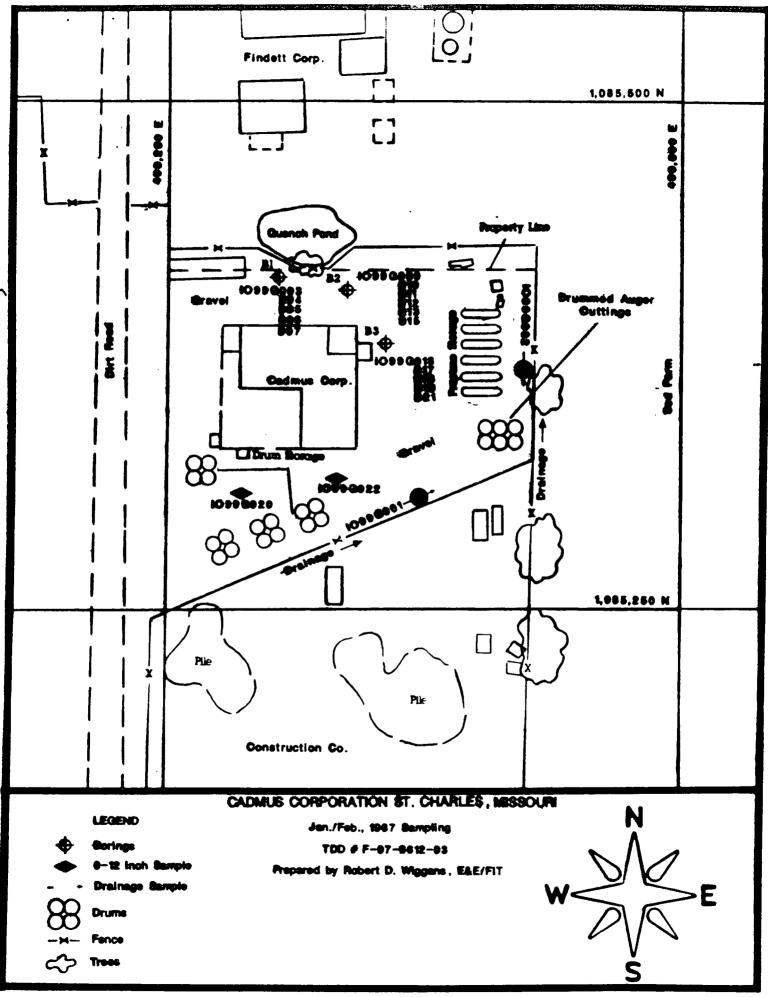
.

•

EPA Sample Number	Sample Location	Media	Date Sampled
Number 1099G 001 1099G 002 1099G 003 1099G 004 1099G 005 1099G 006 1099G 007 1099G 007 1099G 009 1099G 010 1099G 012 1099G 013 1099G 013 1099G 014 1099G 015 1099G 016	South Drainage Ditch East Drainage Ditch Boring 1, 0-5 feet Boring 1, 5-10 feet Boring 1, 10-15 feet Boring 1, 15-20 feet Boring 1 Field Blank Boring 2, 0-2.5 feet Boring 2, 2.5-4.5 feet Boring 2, 12.5-14.5 feet Boring 2 Duplicate of I099G013 Potable decon water Boring 2, 17.5-19.5 Boring 3, 0-2.5 feet	Media Soil/Sediment Soil/Sediment Soil Soil Soil Water Water Water Water Water Water Water Water Soil Soil Soil Soil Soil	Sampled 01/29/87 01/29/87 01/29/87 01/29/87 01/30/87 01/30/87 01/30/87 01/30/87 02/03/87 02/03/87 02/03/87 02/03/87 02/03/87 02/03/87 02/03/87 02/03/87 02/03/87 02/03/87
1099G 017 1099G 018 1099G 019 1099G 020	Boring 3, 2.5-4.5 feet Boring 3, 7.5-9.5 feet Boring 3, 12.5-14.5 feet 27'S, 61'W, of SE building corner, 0-12 inches	Soil Soil Soil Soil	02/04/87 02/04/87 02/04/87 02/05/87
1099G 020D 1099G 021 1099G 022 1099G 023	Duplicate of IO99G020 Boring 3 17'S, 2'W of SE building corner, 0-12 inches Off-site background	Soil Water Soil Soil	02/05/87 02/04/87 02/05/87 02/05/87


Note: Samples are requested to be analyzed for BNA, VOA, Metals (dissolved metals for water), and Pesticides. Sample locations are shown on Figure 3.


TABLE 2: FIELD SCREENING SUMMARY CADMUS CORPORATION St. Charles, Missouri F-07-8612-03 FM00233SI


•

Sample		Approximate	Date
Location	Media	Value	Tested
]]	1
Boring 1, 0-5 feet	Soil	25 ppm	01/30/87
Boring 1, 5-10 feet	Soil	<0.5 ppm	01/30/87
Boring 1, 10-15 feet	Soil	<0.5 ppm	02/03/87
Boring 1, 15-20 feet	Soil	<0.5 ppm	02/03/87
Boring 2, 0-2.5 feet	Soil	1430 ppm	02/04/87
Boring 2, 2.5-4.5 feet	Soil	35 ppm	02/04/87
Boring 2, 7.5-9.5 feet	Soi1	223 ppm	02/04/87
Boring 2, 12.5-14.5 feet	Soil	10 ppm	02/04/87
Boring 2, 17.5-19.5 feet	Soil	12 ppm	02/04/87
Boring 2	Water	17 ppm	02/04/87
Boring 3, 0-2.5 feet	Soil	539 ppm	02/05/87
Boring 3, 2.5-4.5 feet	Soil	415 ppm	02/05/87
Boring 3, 7.5-9.5 feet	Soil	21 ppm	02/05/87
Boring 3, 12.5-14.5 feet	Soil	4.5 ppm	02/05/87
East drainage ditch	Soil/Sediment	38 ppm	02/05/87

Note: Analyses, for PCB's only, performed by E&E/FIT.

LAW OFFICES

W. LAYTON STEWART SUITE 1140 314 NORTH BROADWAY ST. LOUIS, MISSOURI 63102

(314) 241-8544

January 19, 1987

Mr. J. Scott Pemberton Assistant Regional Counsel U.S. Environmental Protection Agency 726 Minnesota Avenue Kansas City, Kansas 66101

RE: Access to Cadmus Property

Dear Mr. Pemberton:

Consent is hereby given for your authorized representatives to enter and have access to the Cadmus Corporation real estate for the purpose of taking samples as set forth in the "Sampling Plan", page 3 of the Work Plan for Cadmus Corporation from Bob Wiggans, E4E/FIT, dated August 21, 1986, and from the locations described in the plat attached to said Work Plan as Figure 2, subject, however, to the following conditions:

Cadmus to have the right to have a representative (1) present at all times during the course of the work.

(2) All samples taken to be split with Cadmus, so that Cadmus has one of each sample.

(3) Work to begin each day not earlier than 12:00 Noon.

(4) Cadmus to be given 24 hours advance notice by phone to Mike Worster, 946-7710, of the arrival of your personnel.

(5) Upon completion of the work the property to be restored, as near as possible, to its original condition.

It is our understanding that a monitoring well on the Cadmus property is no longer scheduled as part of the work.

Very truly yours,

CADMUS CORPORATION

By Whayton Alewach Secretary and General Counsel

WL8:dd CC: Mr. Bob Wiggans

> Ecology and Environment, Inc. 4350 Shawnee Mission Pkwy., Shawnee Mission, KS 66205

Mr. Michael Worster Cadmus Corporation, P.O. Box 975 St. Charles, Missouri 63301

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 7 25 FUNSTON ROAD KANSAS CITY, KANSAS 66115

1 1 1987

Date:

MEMORANDUM

- SUBJECT: Data Transmittal for Activity #: _________, Site Description: _________ Corp_____,
- FROM: Robert D. Kleopfer, Ph.D. C. Acting Chief, Laboratory Branch, ENSV
- TO: Charles P. Hensley Acting Chief, Emergency Planning and Response Branch, ENSV

ATTN: _____

Attached is the data transmittal for the above referenced site.

This should be considered a ____ Partial ____ Corrected Complete

data transmittal (completes transmittal of _____). If you

have any questions or comments, please contact D. Simmons at 236-3881.

Attachments

cc: Data File

Biter ad	mu Coro
	064658933
Break: _ Other:	<u>9</u> <i>p</i> _A
	5-8-87
	/

EPA REGION VII DATA QUALIFICATION CODES

۰.

U - Compound was not detected.

• •

- M Compound was qualitatively identified; however, quantitative value is less than contract required detection limits (CLP data); or value is less than limit of quantitation (EPA data).
- J Compound was qualitatively identified; however, compound failed to meet all QA criteria and therefore is only an estimated value.
- I Analysis attempted, but no results can be reported.
- 0 Sample lost or not analyzed.
- L Value known to be higher than value reported.

					SHEET	Pro Ioni	-
SURVEILL	ANCE	AND		TAL PROTECTI			CITY, KANSAS 6 115
STATION IDENTIFI							
SURVEY NO		su	AVET LEADER_R	RERT D	WIGG	NS	STORET NO
DESCRIPTION	CARM	105	CORPORAT	ION , ST. C	HARLES ,	Ma.	FM0 Ø 233 SI
,				-	-		
GRAB SAMPLE DA	LEMP. 2	1	<u>рн</u>	80	FICAL COLL	OIL & GREASE	OTHER OTHER
00011 (GPM)		WA114 00010					
COLLECTION DATE			7_01_	DAY 29 1	IMI 1.500	SAMPLER NAME CODE	143 IO 996 00
	T		Y 00400	1			1 1
·	1.8					SAMPLER	1
COLLECTION DATE	<u>a</u>	¥8	MO	1	·····	NAMI CODI	NO
	1:00		L		L		11
COLLECTION DATE		ve	MO	. DAY	MI	NAME CODE	NO
			i de la	A	4	· ·	
COLLECTION DATE		Y*	MO	DAT	; ;; ;;	SAMPLEE NAMI CODF	1AB
	No.						
COMPOSITE SAMP					1600		
BEGÎN	N DATE: Y	•	7 no 01	DAY 29 -	1300	-	LAB NO <u>JO996 666 </u>
END	DATE Y	<u> </u>	<u> </u>	DAY 29. 110	1500	EQUIPMENT	CODE
FLOW BATE	\$00	,		1000 s 1	DF GAL DURING SITE PERIOD	Sampler na	ME CODE Neal Hudson
WATER CHEMISTRY	Y						
						•	TOPOLAN
SAMPLE CONT		- 1				LABORATORY	LAB NO 10996 00 1
SAMPLE CONT	AINER		TAG COLOR	PRESE		LABORATORY MOBILE BEGION	LAB NO <u>20996 00 00 1</u> ANALYSES
54MPLE CONT. 2 - 40m1		5	Lime	۳۱۵۵۱ ۲۰۵۵	IVA1:VE		
2-40m1	Vial	5	Lime	4° C	IVATIVE		ANALYSES
	Vial	5			1741175		ANALYSES
2-40ml 1-402 J	Vial Iar	5	Lime Purple	4° C 4° C			Nolatiles BIN, A
2-40m1	Vial Iar	5	Lime	4° C			ANALYSES Volatiles
2-40ml 1-402 J 1-402 J	Vial Iar Jar	5	Lime Purple	4° C 4° C			ANALYSES Volatiles BIN, <u>A</u> Pesticides
2-40ml 1-402 J	Vial Iar Jar	5	Lime Purple Aqua	4° C 4° C 4° C	IVA IJVE		Nolatiles BIN, A
2-40m1 1-402 J 1-402 J	Vial Iar Jar	5	Lime Purple Aqua	4° C 4° C 4° C	IVA IJVE		ANALYSES Volatiles BIN, <u>A</u> Pesticides
2-40m1 1-402 J 1-402 J	Vial Iar Jar	\$	Lime Purple Aqua	4° C 4° C 4° C	IVA IJVE		ANALYSES Volatiles BIN, <u>A</u> Pesticides
2-40m1 1-402 J 1-402 J 1-402 J	Vial Iar Jar	\$	Lime Purple Aqua	4° C 4° C 4° C	IVA IJVE		ANALYSES Volatiles BIN, <u>A</u> Pesticides
2-40m1 1-402 J 1-402 J 1-402 J	Vial Jar Jar Jar		Lime Purple Aqua White	4° c 4° c 4° c 4° c		MOBILE BIGION	ANALYSES Volatiles BIN, <u>A</u> Pesticides
2-40mi 1-402 J 1-402 J 1-402 J	Vial Iar Jar		Lime Purple Aqua White	4° C 4° C 4° C		MOBILE BIGION	ANALYSES Volatiles BIN, <u>A</u> Pesticides
2-40m1 1-402 J 1-402 J 1-402 J 1-402 J CONTACT FEMARKS 5	Vial Jar Jar Jar Jar	100	Lime Purple Aqua White	4° c 4° c 4° c 4° c 4° c 4° c 4° c 4° c		MDBILE BIGION	ANAIVSES Volatiles BIN, A Pesticides Metals 1-2
2-40m1 1-402 J 1-402 J 1-402 J 1-402 J CONTACT	Vial Jar Jar Jar Jar	100	Lime Purple Aqua White	4° c 4° c 4° c 4° c 4° c 4° c 4° c 4° c		MDBILE BIGION	ANALYSES Volatiles BIN, <u>A</u> Pesticides
2-40m1 1-402 J 1-402 J 1-402 J 1-402 J CONTACT	Vial Jar Jar Jar alic	- 	Lime Purple Aqua White ts nple lo	4° c 4° c 4° c 4° c 4° c 4° c 4° c 4° c		MDBILE BIGION	ANAIVSES Volatiles BIN, A Pesticides Metals 1-2
2-40m1 1-402 J 1-402 J 1-402 J 1-402 J CONTACT CONTACT EMARKS 5 Sedime VOA Lot	Vial Jar Jar Jar Jar alic ent		Lime Purple Aqua White Hs nple lo 986\$7	4° c 4° c 4° c 4° c 4° c 4° c 4° c 4° c		MDBILE BIGION	ANAIVSES Volatiles BIN, A Pesticides Metals 1-2
2-40m1 1-402 J 1-402 J 1-402 J 1-402 J CONTACT EEMAINS Sedime	Vial Jar Jar Jar Jar alic ent		Lime Purple Aqua White Hs nple lo 986\$7	4° c 4° c 4° c 4° c 4° c 4° c 4° c 4° c		MDBILE BIGION	ANAIVSES Volatiles BIN, A Pesticides Metals 1-2
2-40m1 1-402 J 1-402 J 1-402 J 1-402 J CONTACT CONTACT EMARKS 5 Sedime VOA Lot	Vial Jar Jar Jar Jar alic ent		Lime Purple Aqua White Hs nple lo 986\$7	4° c 4° c 4° c 4° c 4° c 4° c 4° c 4° c		MDBILE BIGION	ANAIVSES Volatiles BIN, A Pesticides Metals 1-2

•

•

SURVET N	TIFICATIO		HEVET LEADER_R	ORERT	D. WIGGA	NS	5108E1 NO	
						Mo		133 SI
STAB SAMPLE								·
710W 200059 (0PM) 200061 (CFS)	11MP	WATER 00010	РИ		MCAL COLI	OIL & GREASE	01H[8	01HE
			7 01	29	1ME_1600	SAMPLIE NAME CODE	1	099600
	T		80408					
COLIFCIION D)A1(<u></u>	MO	DAV	11M £	SAMPLER NAMI CODI	LAB	
		[,		
COLLICIION B	A11		mo		11M1	SAMPLEE NAME CODI	LAB NO	
COLLECTION D		TR	MO	_ DAT	TIMP	SAMPLEE NAME CODE	LAS	
				T				T
FLOW RA	EGIN DATE: END DATE:	ve	7 MO 7 MO MGD 30	DAY 29 1	_	EQUIPMENT	LAB NO. <u>20</u> CODE	
FLOW RA	EGIN DATE: END DATE:	ve	7_ mo _01_	DAY 29	IME 1600	EQUIPMENT	CODE	•
FLOW RA ATER-CHEMIS SAMPLE C	EGIN DATE: END DATE: 	ve _9 ·	7 mo mcd	DAY 29 1	IIME 1600 of gal during osite period	EQUIPMENT SAMPLEE NA	CODE	996 6 7 2
FLOW EA ATER-CHEMIS SAMPLE C 2 - 40 v	EGIN DATE: END DATE: 	ve _9 -	7_ mo _01 MGD 1AG COLOR Lime	DAV 29 1	IIME 1600 OF GAL DURING OSITE PERIOD SERVATIVE	EQUIPMENT SAMPLEE NA	CODE ME CODE LAB NO <u></u> MO <u></u> Volati	996 4 8 7 ALYSES Ies
FLOW RA ATER-CHEMIS SAMPLE C 2 - 40 v 1- 4 2 0	EGIN DATE: END DATE: STE	ve 9 ve 9 00050	т_ мо <u>Q1</u> мо <u></u> лас согор <i>Lime</i> <i>Purple</i>	DAY 29 1	IIME 1600 of GAL DURING OSITE PERIOD	EQUIPMENT SAMPLEE NA	CODE ME CODE LAB NO <u></u> AN <u></u> Volati <u></u> <u></u>	996 4 8 7 ALYSES Ies
slow RA TATER-CHEMIS SAMPLE C 2 - 40 v	EGIN DATE: END DATE: STE	ve 9 ve 9 00050	7_ mo _01 MGD 1AG COLOR Lime	DAV 29	11ME 1600 0 OF GAL DURING 0511E PERIOD 5ERVATIVE 4°C 1°C	EQUIPMENT SAMPLEE NA	CODE ME CODE LAB NO <u></u> AN <u></u> Volati <u></u> <u></u>	996 4 8 2 ALYSES <i>les</i> 2/A
51.0W BA ATER-CHEMIS SAMPLE C 2 - 40 V 1- 450 1 - 4 0	EGIN DATE: END DATE: STE	ve 9 ve 9 00050	- mo 01 mo 01 mo	DAV 29	11ME 1600 0 OF GAL DURING 0517E PERIOD SERVATIVE 4°C 1°C 1°C	EQUIPMENT SAMPLEE NA	CODE ME CODE LAB NO <u>IO</u> AN Volati B/N Pester	996 4 8 2 ALYSES <i>les</i> 2/A
FLOW BA TATER-CHEMIS SAMPLE C 2 - 40 v 1 - 40 v 1 - 40 v 1 - 40 v	EGIN DATE: END DATE: STE	ve 9 ve 9 00050	- mo 01 mo 01 mo	DAV 29	11ME 1600 0 OF GAL DURING 0517E PERIOD SERVATIVE 4°C 1°C 1°C	EQUIPMENT SAMPLEE NA	CODE ME CODE LAB NO <u>IO</u> AN Volati B/N Pester	996 4 8 2 ALYSES <i>les</i> 2/A
FLOW BA TATER-CHEMIS SAMPLE C 2 - 40 v 1 - 40 v 1 - 40 v 1 - 40 v	EGIN DATE: END DATE: STE	ve 9 ve 9 00050	- mo 01 mo 01 mo	DAV 29	11ME 1600 0 OF GAL DURING 0517E FERIOD SEEVATIVE 1°C 1°C 1°C	EQUIPMENT SAMPLEE NA	CODE ME CODE LAB NO <u>IO</u> AN Volati B/N Pester	996 A 9 2 ALIVSIS 105 1/A 2 des 2 des
FLOW EA TATER-CHEMIS SAMPLE C 2 - 40 v 1 - 24 - 0 1 - 4 0 1 - 4 0 0001ACT	EGIN DATE: END DATE: STE	ve 9	mo Ol mco lac color Lime Purple Agia Agg White	DAV 29	11ME 1600 0 OF GAL DURING 0517E FERIOD SEEVATIVE 1°C 1°C 1°C	EQUIPMENT SAMPLEE NA LABORATORY MOBILI EFGION	CODE ME CODE LAB NO <u>IO</u> AN Volati B/N Pester	996 4 8 2 ALYSES <i>les</i> 2/A
FLOW BA TATER-CHEMIS SAMPLE C 2 - 40 0 1 - 40 0 1 - 40 0 1 - 40 0 000000000000000000000000000000000	Edin Date: END Date: STE		mo Ql mco Jac color Lime Ryra Agra Mhite	DAV 29 1000 1000 0037 COMP 1000 COMP 100 COMP 1000 COMP 1	11ME 1600 0 OF GAL DURING 0517E FERIOD SEEVATIVE 1°C 1°C	EQUIPMENT SAMPLEE NA LABORATORY MOBILI EFGION	CODE IAB NO <u>IO</u> IAB NO <u>IO</u> AN Volati B/N Pestu Met	996 A 8 2 A 2 10 S 1/A 2. des 2. des 2. des 2. des

7.89	A-9783 I	6 75

ς.

.

.

•

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						D SHEET			
STATION IDENTIFICATION UNIT WARE REGREET D. WIGGEARS	. SURVEIL								C A 11E
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	the second s								(3 0 113
Of A State	SUEVET NO	-	54	NEVER LEADER_RO	BERT	D. WIGG	NS	510861 ND	
100° <	DESCRIPTION	CAR	MUS	CORPORATI	ON, ST.	CHARLES ,	Ма	FM0 Ø 23	<u> 351</u>
100° <									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				PH	PO	TICAL COLI	OIL & GELASE	OIH[8	OINIS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00001 ((*5)	600 70	01800	L	1			<u> </u>	I
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	COLLECTION BAT	16	m	7_01_	DAT 29	1MI 1515		148 <u></u>	996003
$\frac{1}{1 - 4 \circ 2} = 3 \circ 1 - 2 \circ 1 \circ$				0400				I	ſ
$\frac{1}{1 - 4 \circ 2} = 3 \circ 1 - 2 \circ 1 \circ$			L	L	L			<u>.</u>	1
$\frac{1}{1 + 4 \circ 2} = \frac{1}{3 \circ 2} = \frac{1}{2 \circ 2} = \frac{1}{1 \circ 1} = \frac{1}{1 \circ 2} = \frac{1}{1 \circ 2$	CONTELION DAT	11	¥8		DAT	1.006			•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1	1	1	1	1	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				L	I	1	<u> </u>		
$\frac{1}{1 - 4 \circ 2} = \frac{1}{3 \circ 1} = \frac{1}{1 \circ 1$						•			
$\frac{1}{1 - 4 \circ 2} = \frac{1}{3 \circ 1} = \frac{1}{1 \circ 1$,	_ <u>"</u>	** <u>0</u>	PAT	TIM1	HAMI (00)	NO	1
$\frac{1}{1 - 4 \circ 2} = \frac{1}{3 \circ 1} = \frac{1}{1 \circ 1$									
COMPOSITE SAMPLE DATA SIGN BATE TE \mathcal{P}_{1} HO \mathcal{O}_{1} DAT \mathcal{P}_{1} HMI 1515 IND DATE TE \mathcal{P}_{1} HO \mathcal{O}_{1} DAT \mathcal{P}_{1} HMI 1515 IND DATE TE \mathcal{P}_{1} HO \mathcal{O}_{1} DAT \mathcal{P}_{2} INT 1515 IND DATE TE \mathcal{P}_{1} HO \mathcal{O}_{1} DAT \mathcal{P}_{2} INT 1500 WATER CHEMISTRY IABRE CONTAMES IND COLOR PRESERVATIVE INFORMATIC CODE 2-40 ml Vials Lime 4.° C Volatiles 1-4 oz Jar Purple 4.° C B/N A 1-4 oz Jar Aqua 4.° C Pesticides 1-4 oz Jar Aqua 4.° C Metals 1-4 oz Jar Muhite 4.° C Metals 1-4 oz Jar Obit 1000 Contact VIII II 000 SAMPLE DATA DATE VIII 100 SAMPLE DATA DOTING LOCATION B 1 depth \mathcal{P}_{2} - SAMPLE \mathcal{I}_{1} VOL 101 H II 00 \mathcal{I}_{1}							SAMPLEE	LAB	
SIGN BATH: TR $\frac{9}{2}$ NO OL DAT $\frac{29}{2}$ THE $\frac{1515}{1515}$ LAS NO $\frac{10996003}{1000}$ IND DATE: TR $\frac{27}{20}$ NO $\frac{0}{100}$ DAT $\frac{29}{29}$ THE $\frac{1515}{1000}$ TOURAUTION TO BAL DURING NOTER COLL DAT $\frac{29}{29}$ THE $\frac{1515}{1000}$ TOURAUTION TO BAL DURING NOTER COLL DAT $\frac{29}{1000}$ TOURAUTION NOTER COLL DAT $\frac{10000}{1000}$ TOURAUTION NATE COLL DAT $\frac{10000}{1000}$ TOURAUTION NATE COLL DAT $\frac{10000}{1000}$ TOURAUTION	COLLECTION DAT	16		MO	DAT	1141	NAME CODE	NO	
SIGN BATH: TR $\frac{9}{2}$ NO OL DAT $\frac{29}{2}$ THE $\frac{1515}{1515}$ LAS NO $\frac{10996003}{1000}$ IND DATE: TR $\frac{27}{20}$ NO $\frac{0}{100}$ DAT $\frac{29}{29}$ THE $\frac{1515}{1000}$ TOURAUTION TO BAL DURING NOTER COLL DAT $\frac{29}{29}$ THE $\frac{1515}{1000}$ TOURAUTION TO BAL DURING NOTER COLL DAT $\frac{29}{1000}$ TOURAUTION NOTER COLL DAT $\frac{10000}{1000}$ TOURAUTION NATE COLL DAT $\frac{10000}{1000}$ TOURAUTION NATE COLL DAT $\frac{10000}{1000}$ TOURAUTION					[ł	
SIGN BATH: TR $\frac{9}{2}$ NO OL DAT $\frac{29}{2}$ THE $\frac{1515}{1515}$ LAS NO $\frac{10996003}{1000}$ IND DATE: TR $\frac{27}{20}$ NO $\frac{0}{100}$ DAT $\frac{29}{29}$ THE $\frac{1515}{1000}$ TOURAUTION TO BAL DURING NOTER COLL DAT $\frac{29}{29}$ THE $\frac{1515}{1000}$ TOURAUTION TO BAL DURING NOTER COLL DAT $\frac{29}{1000}$ TOURAUTION NOTER COLL DAT $\frac{10000}{1000}$ TOURAUTION NATE COLL DAT $\frac{10000}{1000}$ TOURAUTION NATE COLL DAT $\frac{10000}{1000}$ TOURAUTION	COMPOSITE SAM	PLE DAT	A						
IND DATE: YE 27 NO 01 DAT 29 THAT 1515 TOURMENT CODE 1000 ANT NOD NOD OUT ON CALL DURMENT CODE NOT TATE NOD NOD NOD NATER CHEMISTERY NATER CHEMISTERY IAD COLOR PESSIVATIVE NATER CHEMISTERY NATER CHEMISTERY IAD COLOR PESSIVATIVE NATER CHEMISTERY 1-4 OZ Jar Purple 4° C Volatiles 1-4 OZ Jar Agua 4° C PESSicial States 1-4 OZ Jar Muite 4° C Metals 1-4 OZ Jar White 4° C Metals 1-4 OZ Jar Nohite 4° C Metals 1-4 OZ Jar Nohite 4° C Metals 1-4 OZ Jar Nohite 4° C Metals				7 01	DAY 29	1515	· ·	LAR NO JO99	16663
1000 101 01 01 01 01 01 01 01 01 00 NOTE INTO THE OD NOTE CONTAINTS IADDA TOPY							-		
WATER CHEMISTRY LABORATORY LABORATORY LABORATORY LABORATORY LABORATORY LABORATORY LABORATORY LABORATORY LABORATORY LABORATORY ANALYSIS LABORATORY ANALYSIS LABORATORY ANALYSIS ANAL		ND DATE:	va <u>2</u>	<u>1</u>	DAT 29	141 <u>1515</u>	EQUIPMENT		
WATER CHEMISTRY LABORATORY LABORATORY LABORATORY LABORATORY LABORATORY LABORATORY LABORATORY LABORATORY LABORATORY LABORATORY ANALYSIS LABORATORY ANALYSIS LABORATORY ANALYSIS ANAL				•	1000		•		
LABPLE CONTAINED LABPLE CONTAINED LABPLE CONTAINED Volatiles LABPLE CONTAINED Vo	FLOW BATE	' <u> </u>	0050	MGD 300	157 COMP		SAMPLED NA	ME CODE	
$1 \times 10000000000000000000000000000000000$	WATER CHEMIST	RY						IAN NO IO9	96 AA Z
2-40 m1 vials Lime 4. e Volatiles 1-402 Jar Purple 4. e B/N A 1-402 Jar Aqua 4. e Pesticides 1-402 Jar White 4. e Metals 1-402 Jar White 4. e Metals contact	1		·	145 (010)		LEB W & 71148			
$\frac{1-4 \circ z}{1-4 \circ z} \frac{z}{3 \circ z} = \frac{1 \circ z}{4 \circ$				120 (0101					. 1 3 6 3
$\frac{1-4 \circ z}{1-4 \circ z} \frac{z}{3 \circ z} = \frac{1 \circ z}{4 \circ$				• •	•	•			
$1-4 \text{ oz } \text{ Jar } Aqua \qquad 4^{\circ} \text{ c} \qquad Pesticides$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } $	2- 40 ml	_via	15	Line	<u> </u>	<u>د</u>		Volatile	25
$1-4 \text{ oz } \text{ Jar } Aqua \qquad 4^{\circ} \text{ c} \qquad Pesticides$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $Metals \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $Metals \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } \text{ white } 4^{\circ} \text{ c} \qquad Metals$ $1-4 \text{ oz } \text{ Jar } Ja$									
$\frac{1-402 \text{ Jar white } 4^{\circ}\text{C}}{Baring \text{ location B 1 depth } p=5' - Same 1 \\ \text{VOA lot 41 } 100986007$	1-402	Ja	r	Purple	ય•	<u>c</u>		B/N A	
$\frac{1-402 \text{ Jar white } 4^{\circ}\text{C}}{Baring \text{ location B 1 depth } p=5' - Same 1 \\ \text{VOA lot 41 } 100986007$			1	·					
$1 - 4_{02} \text{ Jar white } 4^{\circ}\text{C} \text{ Metals}$	1-402	Jar	•	Aqua	<u>ц</u> •	C		Pesticid	es
$\frac{1}{1}$					•				
$\frac{1}{1}$	1-402	Jar		white.	ц •	د		Metale	
Boring location B 1 depth \$=5' - SAMPLE #1 NOA lot # 1\$\$\$\$6\$7		•							
Boring location B 1 depth \$=5' - SAMPLE #1 NOA lot # 1\$\$\$6\$7									·
Boring location B 1 depth \$=5' - SAMPLE #1 NOA lot # 1\$\$\$\$6\$7							<u>+</u>	·····	
Boring location B 1 depth \$=5' - SAMPLE #1 NOA lot # 1\$\$\$\$6\$7		•	ł						
Boring location B 1 depth \$=5' - SAMPLE #1 NOA lot # 1\$\$\$\$6\$7				<u> </u>					
Boring location B1 depth \$=5' - SAMPLE #1 VOA lot # I\$\$986\$7							SAMPLE X YET		
NOA lot # 10098607	CONTACT	· · · · · · · · ·		· · · · ·			анти 🗍 но 💷	•	1
NOA lot # 10098607	REMARKS:							•	
NOA lot # 10098607	•								
NOA lot # 10098607									
NOA lot # 10098607	Borine	lo	catio	m Bl	depth	Ø-5'	- SAMPL	5#1	
					- -------------		÷,··	•	
	NOA lot	47	IØØ	98667					
			-					• •	
					•				1

.

7-87A-9263 16 751

.

#5A-KC-78-36"

· ·				• • •	SHEET	- REGION V	eii .	
SURVEI	LLANCE					AD, KANSAS		AS 6 115
STATION IDENT			e.		111.000	vs		
1								
DESCRIPTION	CAP	MUS	CORPORATI	ON, ST.	<u>CHARLES, N</u>	Иа	FM0 Ø2.	<u>33 ≤ I</u>
GRAB SAMPLE	DATA							
110W	AIE	WA168	Рн	DO	FICAL COLI	OIL & GREASE	- 01HE8	Отнев
00061 ((/5)	00070	00010	l	<u></u>		<u>}</u>		1
	H	<u>, n</u>	7	DAT 29 1	Hat 1620 "		¹⁴⁰ O	996004
COLLECTION DA	n		MD	, DAV	184 {	SAMPLIE NAMI CODI	LAB	
						1		
COLLECTION DA	18	Y#		DAT1	IM	SAMPLIN NAMI CODI	LAB	
COLISCION DA	11	<u></u>	MO	DA7 1		SAMPLIE NAMI CODI	LAB	
Į.	BIN DATE: ND DATE:	vi <u>87</u>	- mo _QL_ mo _QL	DAY 29 11A	YK.	EQUIPMENT SAMPLEE NAA	CODE	96004
	·	0050	MGD 500	COMPO	HITE PERIOD			
WATER CHEMIST	۰.		1			LABORATORY	LAS NO <u>209</u>	96004
SAMPLE CO	NTAINER		TAG COLOR	PRESE	EVATIVE	MOBILE REGION	AHA	LYSES
2-40m1	Vial	5	Lime	<u>4</u> •	<u>c</u>		Nolatil	ور
1-402	Jar		Purple	નુ	C		B/N	
				ų٥	-			
1-403	Jar		Aqua	· · ·		· ·	Pestici	
1-4 02	Jar		white	<u> ५</u> ०	د		Meta	S
				•				
-	•							
					5	AMPLE 20 YEF SPLIT NO		
- Wain(),			· ·			····· ··· ···	•	1
REMARKS:			- <u></u>				· · ·	
Borine	100	catie	n Bl	depth	5-10'	- SAMPL	E#2	
VOA lot	-			-1	- ·		•	
402 10								
-				•				

· · · · ·				IAL PROTECTI		REGION		
SURVEIL			ANALYSIS D	IVISION, 25	FUNSTON R	DAD, KANSAS	CITY, KANS	AS 6 115
			INVER LEADER	BERT D	WIGGA	NS	STORET NO	
DESCRIPTION	<u>Cad</u>	MUS	CORPORAT	ON , ST. C	HARLES,	Ма	FM0 Ø2.	33 <u>< I</u>
GRAB SAMPLE								
FLOW	AIR	WATER	<u>рн</u>	<u>00</u>	FICAL COLI	OIL & GELASI	OTHER	011110
00041 ((15)	00030	00010	L	30 WZ	1345 7	Kanna	<u> </u>	
COLLECTION DAT	t	<u>,</u>		DAT	<u>1720</u>	NAMI (001	<u>10</u>	996005
			80486					
COLIECTION DAT		······································	M0	. DAY 14		SAMPLIE NAMI CODE	LAB	· ·
Convenies					<u> </u>			1
 		I	L	<u> </u>		 SAMPLEB	·	
COLLICIION BAT	•		MO	DAY 11	m1	NAME CODE	NO	1
l		<u> </u>		1	<u> </u>	1	I	L
COLLECTION DAT	<u>ا</u>	_**	MO	DAT T	MI	SAMPLER NAME CODE	NO	
COMPOSITE SAM	PLE DA	TA C	•	30 WK	1345 %	K		
810	IN DATE:	VR. <u> </u>	/ moQ/	30 W/ 044 <u>- 29</u> 11M 36 7//	1345 7		LAB NO. <u>509</u>	<u>96 ØØ 5</u>
EM	D DATE:	VR7	101	DAT -27 TIM	1720	FOUIPMENT	CODE:	
FLOW RATE			MGD	1000 1 0	OF GAL DURING	- SAMPLER NA	NE CODE	
WATER CHEMIST						•		
SAMPLE COM		·		l	VATIVE	LABORATORY MOBILE REGION	LAB NO	
SAMPLE CO.						MOSILE REGION		LYSES
2-40 ml	Vig	15	Lime	4°c	·		Volat	iles
	_					•		
1-402 3	Sar		Purple	ુ્ય• દ	•		B/N A	
1-402 3	55		Aqua	Ч°с	_		Pesticio	
			-19404			· ·		
1-402	Jar		White	५•०	•		Metal	5
	•							•
								•
						SAMPLE 🔀 YES SPLIT 🗋 NO 📖		
							•)
28MATKS:				······································			•	, , , , , , , , , , , , , , , , , , ,
Bartas	1011		<u> </u>	enth 10	-15 -	SAMPLE #	7 3	
· · · · · · · · · · · · · · · · · · ·					· • •		、 、	
VOA IO								
403 10	+ #	75	19/132					

PIPIB

` <u>SUR</u> VFIII		IRONMEN' ANALYSIS D					
STATION IDENTIF					<u> </u>	CITT, KAN37	<u> </u>
SURVET NO		SURVEY STADIN_R	BERT I	WIGGA	NS	STORET NO	
DESCRIPTION ,	<u>CADMUS</u>	CORPORAT	DON, ST.	CHARLES ,	Mo	FM0 Ø 2	<u>13 < 1</u>
GRAB SAMPLE D						· · · · · · · · · · · · · · · · · · ·	
FLOW	10MP %	<u></u>	B0	PICAL COLI	OIL & GREASE	OIHLE	01
00041 ((75)	00070 0001		<u> </u>			· .	<u>I</u>
	t te	87 01	BAT 30	11MI 1425	SAMPLEE NAME CODF	148 <u></u>	496 G
		00400				[
L			L	1		<u>المع</u> رية الم	· ·
COLLECTION DATE	· · · · · · · · · · · · · · · · · · ·	#0	. DAÝ	IIMI	NAME CODE		
							{
COLLICIION DATE			DA7	IIAL	SAMPLER NAME CODI	LAB	
T	<u>_</u>	1					
I			l	<u> </u>			
COLLECTION DATE	T\$		DAT	FIANT	SAMPLEE NAME CODE	LAB	
			1				
SAMPLE CONT SAMPLE CONT 2-40 ml	vials	1AG COLOP Lime	4	۵۷۵۱۱۷ <u>۲</u> ۵ ک	LABORATORY MOBILE REGION	LAB NO <u>IO99</u> ANAL Volafil	TSES
	1	Purple	્યુ				
1-408 Jo	<u>e</u>			<u> </u>	+	B/N.	<u>A</u>
•			ų	<u>ر</u> مد		•	
1-402 J	A T	Aqua	•	°C		Pestici	des
•	A T		•			•	des
1-402 J	A T	Aqua	•	°C		Pestici	des_
1-402 J	A T	Aqua	•	°C		Pestici	des_
1-402 J	A T	Aqua	•	°C		Pestici	des_
1-402 J	A T	Aqua	•	¢ر ∙ر		Pestici	des_
1-402 J	A T	Aqua	•	¢ر ∙ر	SAMPLE 27 YEF SPLIT	Pestici	des_
1-402 J	A T	Aqua	•	¢ر ∙ر	SAMPLE X YEF SPLIT NO	Pestici	des
1-402.3 1-402.3 CONTACT	ar	Aqua white	<u>ម</u>	¢ر ∙ر	SAMPLE 27 YEF SPLIT MO	Pestici	des
1-402.3 1-402.3 CONTACT	ar	Aqua white	<u>ម</u>	¢ر ∙ر	SPLIT HO	Pestici	des_
1-402 J 1-402 J contact nemates Boring	iar Sar Iocat	Aqua white	<u>ម</u>	¢ر ∙ر	SPLIT HO	Pestici Metal:	des
1-402 J 1-402 J CONTACT REMARKS BOTING VOA LOT	iar Jar locat # I00	Aqua white	4 Sample	¢ر ∙ر	SPLIT HO	Pestici Metal:	des

•

7-[24	 18 751

. .

STATION IDENTI				14131014, 23	FORSTOR R	OAD, KANSAS	CIIT, KAN	3A3 0 1
SURVET NO	<u></u>	54	AVEN LEADER_RO	RERT I	D. WIGG	ANS	STORET NO	
DESCRIPTION	CAPI	MUS	CORPORAT	DON, ST.	CHARLES ,	Mo	FMOØ	<u>133 si</u>
GRAB SAMPLE				T 90	TICAL COLI			T 01+
00034 (GPM)	AI8 00020	WA111	1					
			01_01		12.30	SAMPLE	المور المالي. رومو المالي	0 9960
COLLECTION DAT			00400	30	1230	NAMI CODI	NO <u></u>	
			L					
	"	Y8	MO	DAV	Tem (SAMPLEE NAMI CODE	LAB	•
								T
			•	A		SAMPLER	· LAB	
COLLECTION BAT	<u> </u>		<u>**0</u>	•••·	11#1	NAMI CODI	NO	
				<u> </u>	1			
COLLECTION BAT	IE	VR	MO	DAT	11MF	SAMPLEE NAME CODE	LAB	
FLOW RATE	30	0050	MGD 300		OF GAL DURING	EQUIPMENT		996 00
	R Y			1000 s 257 COMPC PRES	ERVATIVE	•	ME CODE	996 40
WATER CHEMIST	SC R Y NTAINER		MGD SOO	1000 s 257 COMPC PRES	DSITE PERIOD	- SAMPLER NA	ME CODE	IALYSES
vater chemisti sample con 2 - 40 ml	30 RY NTAIMEE <u>V</u> ¹ Q	- LS	MGD	- 1000 + 537 COMPC PRES	ERVATIVE	- SAMPLER NA	MF CODE LAB HO _ <u>IO</u> AN AN	iles
WATER CHEMISTI SAMPLE COP	۲۲ ۲۲ ۲۲ ۲۰۰۹ ۲۰۰۹) 15 3	MGD 300			- SAMPLER NA	ALE CODE	nivses files
WATER CHEMISTI SAMPLE COP 2-40ml 1-80oz	۲۲ ۲۲ ۲۴ ۲۴ ۲۴ ۲۴ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰) 15 5 	Line Purple	<u>المحمد المحمد المحم المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحم المحمد المحمد المحم المحمد المحمد المحم المحمد المحمد المحمد المحمد المحمد المحمد المحمد </u>	23116 PERIOD ERVATIVE	- SAMPLER NA	ALE CODE	A icide
WATER CHEMISTI SAMPLE COP 2 - 40 ml 1- 80 oz	RY NIAMIE Juig Juig Giner) 15 9 	Aqua	المال المالي مالي	03111 PERIOD ERVATIVE C C	SAMPLE NA	ALE CODE	A icide Metal
WATER CHEMIST SAMPLE COP 2-40 ml 1-80 02 1-80 02 1- 80 02 1- cubit	RY NIAMIE Juig Juig Giner) 15 9 	MGD 300 140 COLOR Lime Purple Aqua White	المال المالي مالي	03111 PERIOD ERVATIVE C C C C C C C C C C C C C C C C C C C	SAMPLEE NA	Ne code LAB NO <u>IO</u> AN Volat B/N Pest Total	A icide Metal
WATER CHEMIST SAMPLE COP 2-40 ml 1-80 oz 1-80 oz 1-80 oz	RY NIAMIE Juig Juig Giner) 15 9 	MGD 300 140 COLOR Lime Purple Aqua White	المال المالي مالي	03111 PERIOD ERVATIVE C C C C C C C C C C C C C C C C C C C	SAMPLE NA	Ne code LAB NO <u>IO</u> AN Volat B/N Pest Total	A icide Metal
WATER CHEMIST SAMPLE COP 2-40 ml 1-80 02 1-80 02 1- 80 02 1- cubit	RY NIAMIE Juig Juig Giner) 15 9 	MGD 300 140 COLOR Lime Purple Aqua White	المال المالي مالي	03111 PERIOD ERVATIVE C C C C C C C C C C C C C C C C C C C	SAMPLEE NA	Ne code LAB NO <u>IO</u> AN Volat B/N Pest Total	A icide Metal
WATER CHEMISTI SAMPLE COP 2-40 ml 1-8002 1-8002 1-8002 1-0007 1-0007 1-0007	RY NIAMIE JUI JUI Giner))))))	MGD 300 140 COLOR Lime Purple Aqua White	المون ب المون بالمون ب المون ب المون ب المون ب المون ب المون ب المو	23111 PERIOD ERVATIVE C C C C C C C C C C C C C	SAMPLEE NA	Ne code LAB NO <u>IO</u> AN Volat B/N Pest Total	A icide Metal

、 **、**

					SHEET	Y - REGION		
. SURVEI	LLANCE			-		OAD, KANSAS		AS 6 115
STATION IDENT	IFICATION	N	·			NS		
DESCRIPTION	<u>Car</u>	MUS	CORPORAT	ON, ST.	CHARLES ,	Ma	FM0 Ø 23	<u>13 < I</u>
L						<u> </u>		
GRAB SAMPLE	DATA	*	PH	00	T TICAL COLL	ON & GREASE	01412	OTHER
00034 (0PM)	AH	WA168		1			T .	0.000
			7 01		1 1M1 1400	SAMPLER	1	19600 1F
			00400					
	····	v#		. DAÝ	Print	SAMPLIE NAMI CODI	LAS	
					1	1		
COLLICIION DA	11	TI	MO	DA1	11#1	SAMPLER NAME CODI	iA8	
COLITCION BA	14		MO	DAT	Time	SAMPLER NAME CODF	LAB NO	
					· ·			
COMPOSITE SAN			7		1400		100	
							LAB NO. <u>509</u> 4	<u> 600 XF</u>
			L mo		OF GAL DURING	EQUIPMENT	CODI:	
FLOW RAT	۱ <u></u> ه	0050	MGD 500		OSITE PERIOD	SAMPLER NA	ME CODI	
WATER CHEMIST		. 	TAG COLOR	PDE	LERVATIVE	LABORATORY MOBILE REGION	LAB NO <u>209</u>	
2-40m1	vials		Lime	40	<u>ک</u>		Volatile	
1-80 02	Jug		Purple	<u></u> મ•	د		BIN,A	
	T		A	ų۰	Ċ.		Pesticid	
1-80 02	<u></u>		Aqua	•		<u> - </u>	resticae	<u>es</u>
1. cubita	iner		white	HN	03		Total Me	tals
1. cubite	ainer		Grey	HN	03		Dissolved	Metals
	•		, ,					
					<u></u>		······································	
CONTACT				· · · <u>·</u> · · ·	<u> </u>	SPLIT 🔀 NO	•	Х,
REMARKS						- -	•	
Fiel	d B	lank	80	10+ #	A 633601	62		
				ed but	I&& 986¢	7 on-site. y		- N ¹
other f	sac +>=		Nes Dana	al is he	the L-	flon beild	Jater tor	
transfere	d to	- 4h	e appropri	inte sa	mple con	tion beild	er and 1	NSN '
			11 - 11					•

7-174-9243 14 751

. 、、

@\$A-#C-78-16*

SUPVEL				TAL PROTECT		REGION		
STATION IDENT			ANALYSIS D	IVISION, 25	FUNSTON RC	DAD, KANSAS	CITY, KAN	SAS 6 115
			JEVET LEADER <u>Re</u>	RERT J	D. WIGGA	NS	STORET NO	
DESCEIPTIO	<u>CAD</u>	MUS	CORPORAT	ION, ST.	CHARLES ,	Ma	FMOØZ	<u>33 < I</u>
TRAB SAMPLE								<u> </u>
7LOW		*C WATER	PH	00	PICAL COLI	OIL & GEIASI	0126	OTHER
00061 (CIS)	00070		<u> </u>	<u></u>	<u></u>	<u> </u>	• •	
COLLICIION BA	176	va8	17 02	, DAT 3	1MI 1425	SAMPLIE NAME CODI	140	996009
			89469					
COLISCIION DA			================================	DAV	Teas)	SAMPLIE NAME CODI	KAB	
COLLICIION DA		<u>"</u>	×o	J	tim E	SAMPLIE NAMI CODI		· ·
	L		L]		SAMPLEE		
COLLECTION DA	"		MO	, DAY	1imi	NAMI CODI	NO	<u> </u>
			l	<u> </u>				
JLOW BAT	. s		MGD	COMPC	OF GAL DURING DSITE PERIOD	SAMPLER NAA	LAB NO <u>IO</u>	996 ØØ 9
· · · · · ·					~		· - · · · · · · · · · · · · · · · · · ·	
2-40ml	<u></u>	15	Lime	<u> </u>	<u> </u>		Volati	ies
<u>। - ५ • २</u>	707		Purple	4	• ــــــــــــــــــــــــــــــــــــ		BIN	A
1-40E	Jar		Aqua	્ય	• د		Pestic	ides
		6	1					
1-4 0+	Jar		white	ન	•c		Mieta	5
	Jar	-	White	<u> </u>	•c		Mietal	
	Jar		white	<u> </u>	•c		Meta	
1-4 oz	<u><u></u> <u></u> <u></u></u>		white	4			Meta	S
	<u>Jar</u>	-	white	<u>ч</u>			Meta	۸.
<u>1-4 оғ</u>							Meta	۱۹ ۱۹
0HTACT MARKS: Boring VOA Lot		rion [\$\$\$9	BZS				Meta	<u>م</u>

•

、 、 、 、

STATION IDENTI			AVAN ARABER RO	REAT J		NS		
						Mo		
DESCRIPTION	LAV	<u> 7115</u>	CONPORATI	<u>0N., SI.</u>	CHARLES ,	<u>MØ.</u>	FMOØZ	<u>,33</u> 5
GRAB SAMPLE D								
1LOW 00039 (GPM) 00061 (CFS)	18MP.	WA168	рн	00	TICAL COLI	OIL & GREASE	01HE8	
COLLICIION DAT		71 8	7 02	<u>3</u>	11MI 1440	SAMPLIE NAMI CODI	148 IC	2996
			80466					T
COLLECTION DAT	J		M0	. DAV	1		L (AB	<u></u>
						<u> </u>		T
COLLICION BAT		·		<u></u>		SAMPLEE	148 148	
]		M0	DAV	1041		#0	T
I				I	<u></u>		 LAB	
COLLECTION DATE	·		M0	DAV	11MF	NAME CODE	<u>***</u>	
WATER CHEMISTR	•	· _	TAG COLOR	PRES	ERVATIVE	LABORATORY MOBILE REGION	LAB NO <u>IO</u>	99 <u>6</u>
	L ITAINER	15	Lime		• C			ALVSES
SAMPLE CON	itainer Vic	Ls		ų				ALVSES
54MPLE CON 2. 40ml	via Via Sar	ls	Lime	<u>ન</u> ન	•e		Volat	ALVSUS Hile: A
5AMPLE CON 2- 40m1 1-408 3	i Vic Jar Jar	ls	Lime Purple	<u>ન</u> ન ન	•د • د		Volat TB/N	ALVSES File: A
52001 2-40m1 1-40B 3 1-402 3	i Vic Jar Jar		Lime Purple Aqua White	<u>ન</u> ન ન	•د •د •د		Volat TB/N Pestic	ALVSES File: A
5AMPLE CON 2- 40m1 1-40B 3 1-402 3	i Vic Jar Jar	Ls	Lime Purple Aqua	<u>ન</u> ન ન	•د •د •د		Volat TB/N Pestic	Aivses Filez A
5AMPLE CON 2- 40m1 1-40B 3 1-402 3	i Vic Jar Jar		Lime Purple Aqua White	<u>ન</u> ન ન	•ر • ر • ر		Volat TB/N Pestic	AIVSES Hiles A ide Is
5AMPLE CON 2- 40m1 1-403 5 1-403 5	i Vic Jar Jar		Lime Purple Aqua White	<u>ન</u> ન ન	•ر • ر • ر		Volat TB/N Pestic	AIVSES Filez A
5AMPLE CON 2- 40m1 1-403 5 1-403 5	i Vic Jar Jar		Lime Purple Aqua White	<u>ન</u> ન ન	•ر • ر • ر		Volat TB/N Pestic	AIVSES Hiles A ide Is
SAMPLE CON 2- 40 m1 1-403 1-403 1-403 CONTACT REMARKS	Jat Jat		Lime Purple Aqua White	<u>ન</u> ન ન	• <u>c</u> • <u>c</u> • <u>c</u>		Volat TB/N Pestic	Aivses Files A ide Is
5AMPLE CON 2- 40m1 1-403 5 1-403 5	Jar Jar Jar	•0 1	Lime Purple Aqua White BZ San	<u>ન</u> ન ન	• <u>c</u> • <u>c</u> • <u>c</u>		Volat TB/N Pestic	Aivses Files A ide Is

7.60	4.9783	10	75.

STATION IDEN				14 131014,	25 FUNSTON	KUAD, K	ANJAJ		
			EVET LEADER <u>Ra</u>	BERT_	D. WIGG	ANS		510861 NO	···
DESCRIPTIO	M <u>CAD</u>	MUS	CORPORAT	<u>10 N</u> , S	T. CHARLES	, Ma	<u>.</u>	FM0 02	33 SI
GRAB SAMPLE			Г ри		FICAL COLI		GRIASI	O I MER	
00061 (CFS)	A18 00020	WA168 00010						•	
COLLECTION 9	A76	<u></u>		. DAT_3_	11AL 1550	SAMPLEE NAME CODE		148 IC	996011
			00400						
COLLECTION D	A10	<u>, ''</u>	mo	. DAY		SAMPLER NAME CODE	·		
COLLECTION B	<u>-11</u>		<u> </u>	DAT	<u> </u>	SAMPLEE NAME CODE			T
·····				<u> </u>		SAMPLER		148	
COLLECTION B	A16]		MO	DAT	1	NAME CODI	<u> </u>	NO	
OMPOSITE SA								L	<u> </u>
	END DATE:	va _8-		DAT 3	TIME 1550 TIME 1550	•	OUIPMENT	LAB NO. <u>209</u> CODI:	<u>96011</u>
FLOW BA	END DATE: TE	va _8-	MGD	DAT 3	_ TIME	SA	OUIPMENT	CODE	
FLOW BA VATER CHEMIS SAMPLE C	END DATE: 18	va <u>8</u>	MGD MGD 300	DAY 3	TIME	54	OUIPMENT	CODI	796 Ø 1 [
FLOW BA VATER CHEMIS SAMPLE C 2 - 40 m	END DATE: 18	va <u>8</u>	MGD		TIME /550	54	OUIPMENT	CODI: AE CODI LAS NO <u>IOS</u> ANJ VOLQT	276 Ø 14 ALVSES iles
FIOW BA VATER CHEMIS SAMPLE C 2-40 m 1-40E	end date: II TRY DNTAINER Jor Jor	va <u>8</u>	MGD OZ MGD SOU VAG COLOR Lime Purple	DAV 3	- TIME /550 000 , OF BAL DURING OMPOSITE PERIOD PRESERVATIVE 40C	54	OUIPMENT	CODI	276 Ø 14 Aurses i les A
FIOW BA VATER CHEMIS SAMPLE C 2-40 m 1-40E	end date: II TRY DNTAINER Jor Jor	va <u>8</u>	MGD	DAV 3	_ тиме_/550 000 , 07 ВАL DURING 0MPOSITE PERIOD PRESERVATIVE ЦФС_ ЦФС_ ЦФС_	54	OUIPMENT	CODE: AE CODE LAB NO <u>ZOG</u> ANJ Volat B/N Pestic	276011 117585 11es A .ides
FLOW RA VATER CHEMIS SAMPLE C 2-40 m 1-402	end date: IF TRY DNTAINER Jor Jor	va <u>8</u>	MGD OZ MGD SOU VAG COLOR Lime Purple	DAV 3	- TIME /550 000 , OF BAL DURING OMPOSITE PERIOD PRESERVATIVE 40C	54	OUIPMENT	CODI	276011 117585 11es A .ides
FLOW BA VATER CHEMIS SAMPLE C 2 - 40 m	end date: IF TRY DNTAINER Jor Jor	va <u>8</u>	MGD OZ MGD 300 IAG COLOR Lime Purple Aqua	DAV 3	_ тиме_/550 000 , 07 ВАL DURING 0MPOSITE PERIOD PRESERVATIVE ЦФС_ ЦФС_ ЦФС_	54	OUIPMENT	CODE AE CODE LAB NOOA ANJ Volat B/N Pestic	276011 117585 11es A .ides
FLOW RA VATER CHEMIS SAMPLE C 2-40 m 1-402	end date: IF TRY DNTAINER Jor Jor Jor	va <u>8</u>	MGD OZ MGD 300 IAG COLOR Lime Purple Aqua	DAV 3	_ тиме_/550 000 , 07 ВАL DURING 0MPOSITE PERIOD PRESERVATIVE ЦФС_ ЦФС_ ЦФС_	54	OUIPMENT	CODE AE CODE LAB NOOA ANJ Volat B/N Pestic	276011 117585 11es A .ides
FLOW RA VATER CHEMIS SAMPLE C 2-40 m 1-402	end date: IF TRY DNTAINER Jor Jor Jor	va <u>8</u>	MGD OZ MGD 300 IAG COLOR Lime Purple Aqua	DAV 3	_ тиме_/550 000 , 07 ВАL DURING 0MPOSITE PERIOD PRESERVATIVE ЦФС_ ЦФС_ ЦФС_	54		CODE AE CODE LAB NOOA ANJ Volat B/N Pestic	276011 117585 11es A .ides
FIOW EA VATER CHEMIS SAMPLE C 2-40 m 1-402 1-402 1-402	end date: IF TRY DNTAINER Jor Jor Jor	va <u>8</u>	MGD OZ MGD 300 IAG COLOR Lime Purple Aqua	DAV 3	_ тиме_/550 000 , 07 ВАL DURING 0MPOSITE PERIOD PRESERVATIVE ЦФС_ ЦФС_ ЦФС_			CODE AE CODE LAB NOOA ANJ Volat B/N Pestic	276011 117585 11es A .ides
FIOW BA VATER CHEMIS SAMPLE C 2-40 m 1-402 1-402 1-402	END DATE: IF IRY DNTAINES JOY JOY JOY	va 8	MGD 300 HAG COLOR Lime Purple Aqua White		_ тиме <u>/55</u> 000 . OF BAL DURING OMPOSITE PERIOD PRESERVATIVE ЦФС ЦФС ЦФС ЦФС			CODE AE CODE LAB NOOA ANJ Volat B/N Pestic	276011 117585 11es A .ides
FIOW EA VATER CHEMIS SAMPLE C 2- 40 m 1-402 1-402 1-402 1-402 CONTACT EMARKS.	IND DATE: IF IRY DNTAINES JOY JOY JOY I VIGI JOY I VIGI JOY I VIGI	va 8 va 8 s	MGD OZ MGD 300 IAG COLOR Lime Purple Aqua		_ тиме <u>/55</u> 000 . OF BAL DURING OMPOSITE PERIOD PRESERVATIVE ЦФС ЦФС ЦФС ЦФС			CODE AE CODE LAB NOOA ANJ Volat B/N Pestic	276011 117585 11es A .ides

•

•

.

•

SURVEI				AL PROTECTI		REGION N Dad, Kansas		AS & 115
STATION IDENT	IFICATIO	N				N/S		
DESCRIPTION		<u> </u>	CURFORAI	on, st. c	<u>AARLES</u>	Mo	FRUØF	<u> </u>
GRAB SAMPLE	DATA		PH	1 80	TICAL COLI	OIL & GREASE	01468	
00054 (GFM)	AIR 00070	WA168 00010						Отиев
COLLECTION DA	74		7	, DAT 1	ME		148 IO	996012
			00400					
COLLECTION DA	14	YE	MO	, DAY 10	m;	SAMPLEE NAMI CODI	LAS	•
					· · · · · · · · · · · · · · · · · · ·			
COLLICIION DA	18	T#	#0	DAV 11	m(SAMPÍSE NAMI CODI	LAB	· · · · · · · · · · · · · · · · · · ·
COLLECTION DA	11	v	mo	DAY 11	MF	SAMPLER NAME CODE	LAB	
COMPOSITE SAN			-	<u>ل</u> ارد ا				
			7 mo				LAB NO. <u>509</u>	96 012
۱ I	ND DATE:	VI _ <u>87</u>	<u> </u>			EQUIPMENT .	CODI :	
FLOW RAT		0050	MGD \$00	1000 5 COMPOS	F GAL DURING	SAMPLER NAN	AE CODI	
WATER CHEMIST		. 1				LABORATORY	LAS NO	
SAMPLE CO	NTAINEE		TAG COLOR	PRESER		MOBILE BEGION	ANAI	ITSES
2. 40ml	Viq	<u>ls</u>	Line	4•	<u> </u>		Volatil	es
1-408	Jat	-	Purple	ન•	د		B/N	A
							•	
1-402	Jar		Aqua	. 4	<u>د</u>		Pesticie	
1-402	Jar		white	4•	و		Metal	5
	•							•
							·	
CON1AC1	<u> </u>					SAMPLE X YES SPLIT NO		<u></u>
REMARKS							•	<u>,</u>
			· · · · · · · · · · · · · · · · · · ·				•	
-			BZ So		ન			
			09860 071-17	l			•	
402 30		151	41192				• •	
					·			

.

. .

7-174-9243 16 751

and the state of the			ANALYSIS D	DIVISION, 2	5 FUNSTON R	OAD, KANSAS	CITY, KANSA	5 6 115
TATION IDENTI SURVET NO			EVET LEADER_R	ORERT	D. WIEG	9NS		
						Mo.		3≤I
RAB SAMPLE	DATA			 	FICAL COLI	OIL & GREASE		
FLOW 2 00054 (GPM) 2 00041 (CFS)	AIE 00070	WA168	рн		next con	On a Ottast	01HEB	Olives
			7 01		1m1_1510	SAMPLE	1 IAB TO	996013
COLLECTION DAT			00400	_ <u>^ ^ ^</u>			<u></u>	10913
COLLECTION DAT	14	···		DAV	Jimij	SAMPLIE NAMI CODE	LAS	•
				T			T	
				<u> </u>	<u></u>		· •••	
COLLECTION BAT	••		MO	<u> </u>	1imt		<u> </u>	· · ·
				<u></u>				
COLLECTION DAT	14	78 <u></u>	MO	_ DAT	1imt	SAMPLER NAMI CODF	LAB	
MPOSITE SAM	PLE DA						1	
910	IN DATE:	va?*	7_ MO	DAY 3	11ME 1510	•	LAB NO. 1099	6613
								• •
		27	1 07	3	1510			
••	ND DATE:	ve <u>87</u>	MO	_ DAY_3_		FOUIPMENT -	CODI:	
		-	MGD		TIME 1510	EQUIPMENT - SAMPLER NA		
	·	-	•		. OF GAL DURING	Sampler na		16013
FLOW RATE	R Y	-	•	1000 0057 COM	. OF GAL DURING	•	ME CODI	
FLOW RATE ATER CHEMIST SAMPLE COL	R Y	-	MGD SC	1000 0057 COM PB	D. OF GAL DURING	SAMPLER NA	ME CODE	YSES
FLOW RATE ATER CHEMIST SAMPLE COL	R Y	-	MGD	1000 0057 COM PB	D. OF GAL DURING	SAMPLER NA	ME CODE	YSES
FLOW BATH ATER CHEMIST SAMPLE CON 2-40m1	RY RY VIC		MGD 30		D. OF GAL DURING NOSITE PERIOD	SAMPLER NA	ME CODE LAB NO <u>O99</u> 	4385 45
FLOW BATH ATER CHEMIST SAMPLE COI 2-40ml	RY RY VIC		MGD SC		D. OF GAL DURING	SAMPLER NA	ME CODE	4385 45
FLOW RATE ATER CHEMIST SAMPLE COI 2-40m1 1-80 oz	RY RY Viale Jue	5 5	MGD TAG COLOR Lime Purple	אסט אסט איז איז גער	OL OF GAL DURING NOSITE PERIOD	SAMPLER NA	ARE CODE LAB NO ANAL Volatil B/N A	vsts e.S
FLOW RATE ATER CHEMIST SAMPLE COI 2-40m1 1-80 oz	RY RY Viale Jue	5 5	MGD 30	אסט אסט איז איז גער	D. OF GAL DURING NOSITE PERIOD	SAMPLER NA	ME CODE LAB NO <u>O99</u> 	vsts e.S
FLOW RATE ATER CHEMIST SAMPLE CON 2-40m1 1-80 02 1-80 02	RY NTAIMED Viale Jue		MGD TAG COLOR Lime Purple	אסט אסט אסט אסט אסט אסט אסט אסט אסט אסט	OL OF GAL DURING NOSITE PERIOD	SAMPLER NA	ARE CODE LAB NO ANAL Volatil B/N A	es
FLOW RATE ATER CHEMIST SAMPLE CON 2-40m1 1-8002 1-8002 1-8002	RY NTAIMED Jue Jue		MGD TAG COLOR Lime Purple Aqua White	المحمد المحم المحمد المحمد المحم المحمد المحمد ا	D. DI GAL DURING NOSITE PERIOD C. C. NO3	SAMPLER NA	ALE CODE LAB NO <u>IO99</u> ANAL Volatil B/N A Pestici Total M	es des etals
FLOW RATE ATER CHEMIST SAMPLE CON 2-40m1 1-8002 1-8002 1-8002	RY NTAIMED Jue Jue		MGD TAG COLOR Lime Purple Aqua	المحمد المحم المحمد المحمد المحم المحمد المحمد ا	C C	SAMPLER NA	ALE CODE LAB NO <u>IO99</u> ANAL Volatil B/N A Pestici	es des etals
FLOW RATE ATER CHEMIST SAMPLE CON 2-40m1 1-8002 1-8002 1-8002	RY NTAIMED Jue Jue		MGD TAG COLOR Lime Purple Aqua White	المحمد المحم المحمد المحمد المحم المحمد المحمد ا	D. DI GAL DURING NOSITE PERIOD C. C. NO3	SAMPLER NA	ALE CODE LAB NO <u>IO99</u> ANAL Volatil B/N A Pestici Total M	es des etals
FLOW RATE ATER CHEMIST SAMPLE CON 2-40m1 1-8002 1-8002 1-8002	RY NTAIMED Jue Jue		MGD TAG COLOR Lime Purple Aqua White	المحمد المحم المحمد المحمد المحم المحمد المحمد ا	D. DI GAL DURING NOSITE PERIOD C. C. NO3	SAMPLER MA	ALE CODE LAB NO <u>IO99</u> ANAL Volatil B/N A Pestici Total M	es des etals
FIOW RATE ATER CHEMIST SAMPLE CON 2-40m1 1-80 02 1-80 02 1-80 02 1-60 02 1-60 02	RY NTAIMED Jue Jue		MGD TAG COLOR Lime Purple Aqua White	المحمد المحم المحمد المحمد المحم المحمد المحمد ا	D. DI GAL DURING NOSITE PERIOD C. C. NO3	SAMPLER NA	ALE CODE LAB NO <u>IO99</u> ANAL Volatil B/N A Pestici Total M	es des etals
FIOW RATE ATER CHEMIST SAMPLE CON 2-40m1 1-80 02 1-80 02 1-80 02 1-60 02 1-60 02	RY NTAIMED Jue Jue		MGD TAG COLOR Lime Purple Aqua White	المحمد المحم المحمد المحمد المحم المحمد المحمد ا	D. DI GAL DURING NOSITE PERIOD C. C. NO3		ALE CODE LAB NO <u>IO99</u> ANAL Volatil B/N A Pestici Total M	es des etals
FIOW RATE ATER CHEMIST SAMPLE CON 2-40m1 1-80 02 1-80 02 1-80 02 1-60 02 1-60 02	RY NTAIMED Jue Jue		MGD TAG COLOR Lime Purple Aqua White	المحمد المحم المحمد المحمد المحم المحمد المحمد ا	D. DI GAL DURING NOSITE PERIOD C. C. NO3		ALE CODE LAB NO <u>IO99</u> ANAL Volatil B/N A Pestici Total M	es des etals
FIOW RATE ATER CHEMIST SAMPLE CON 2-40m1 1-8002 1-8002 1-8002 1-00000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-00000 1-00000 1-00000 1-00000 1-00000000	RY NTAIMED Viale Jue Jue	50030 5 5 7 7	MGD JAG COLOR Lime Purple Aqua White Grey		ISTRVATIVE C. C. C. C. C. NO3 NO3		ALE CODE LAB NO <u>IO99</u> ANAL Volatil B/N A Pestici Total M Dissolved	es des etals
FLOW RATE ATER CHEMISTI SAMPLE CON 2-40m1 1-8002 1-8002 1-8002 1-0000 1-00000 1-00000 1-00000 1-00000 1-00000000	RY NTAIMED Viale Jue Jue ainer ainer		MGD TAG COLOP Lime Purple Aqua White Grey W 2		D. DI GAL DURING NOSITE PERIOD C. C. NO3		ALE CODE LAB NO <u>IO99</u> ANAL Volatil B/N A Pestici Total M	es des etals
FLOW RATE ATER CHEMIST SAMPLE CON 2-40m1 1-8002 1-8002 1-8002 1-00000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-0000 1-00000 1-00000 1-0000 1-00000000	RY NTAIMED Viale Jue Jue ainer ainer		MGD TAG COLOP Lime Purple Aqua White Grey W 2		ISTRVATIVE C. C. C. C. C. NO3 NO3		ALE CODE LAB NO <u>IO99</u> ANAL Volatil B/N A Pestici Total M Dissolved	es des etals

SURVEN				TAL PROTEC		– REGION DAD, KANSAS		
STATION IDENTI	FICATIO	N				NS		<u> </u>
DESCRIPTION	CAD	MUS	CORPORAT	ION, ST.	CHARLES ,	Ма	<u>FM0 Ø2-</u>	<u> 3 < 7</u>
GRAB SAMPLE								
1LOW 00039 (GPM) 00041 (Cf5)	16MP	WA168	PN	P O	FICAL COLI	OIL & GREAST	01H(8	01118
COLLICITON 841	16	v 7	7 02	BAY 3	1mt 1510	SAMPLER NAME CODE	140 IO	996013D
					T		T	
	·	<u> </u>	···	<u> </u>		SAMPLER	L	
COLLICIION DA		<u>, ,, , , , , , , , , , , , , , , , , ,</u>	MO	. DAÝ		NAME CODI	NO	
		l					·	
COLLECTION BAT	18	<u>"</u>	M0	DAT	TI441	NAMI CODI	^{NO}	·
]		L	L		.I	1	l	
COLLECTION BAT		<u>, ''</u>	MO	DAY	1imi	SAMPLEE NAME CODI		<u> </u>
OMPOSITE SAM			7 mo	DAT_3	IME 1510	•	LAB NO. <u>209</u> 4	160130
		YR _ 8 -	MO. 02	DAY_3_1	1510			• •
FLOW BAT			•	1900		SAMPLER NA		
VATER CHEMIST		0050	MGD 300	COMP	OSITE PERIOD			
SAMPLE CO		·		PRE	LERVATIVE	ABORATORY	LAS NO <u>709</u>	76013D_
2.40m1	lair	s	Line	પ	<u>• د</u>		Volati	les
1-80 02	34		Purple	ંપ	• د		B/N	A
•								
1-80 02	్రాత		Aqua	<u>्</u> य	• ८		Pestici	des
<u>l·cubi</u>	tain	er	white	нл	103		Total M	tols
	•			•		·		•
1 · cubita	iner		Grey	HV	10,	┨───┤────	Dissolved	Metels
	•						· .	
ONTACT-						SAMPLE VES SPLIT X NO		
			<u> </u>				•	<u>ار</u> ۳
EMARKS:							•	
	ملم		for com	ple fro	m Boring	4+ Z.		
Yomi int				T C)	•	
8002 lo							• •	
-				•				

•

.

· ·

.

•

•		EN			SHEET	r - REGION	VII •	
SURVEI	LLANCE						CITY, KANSA	5 6 115
STATION IDENT			D.			NS		
SULALA NO		\$08	VIT IIADI#	RERI J	<u>W1664</u>	NS	STORET NO	
DESCRIPTIO	N <u>Carm</u>	145	CORPORAT	ON, ST.	CHARLES ,	Ma.	FMOØZ	<u>12 51</u>
	•							
GRAB SAMPLE								
1000 00019 (07M)		WATER	<u> </u>	00	FICAL COLI	OU & GREASE	OTHER	OTHER
00041 (CFS)		00010		<u> </u>	1	SAMPLER		
COLLECTION BA	M 1	<u> </u>	7 <u>0</u>	DAT	1M1_1415	NAMI CODI	<u>H0</u>	996004
			FF448					}
						SAMPLER	148	
COLLECTION DA	<u>1</u>	<u>"</u>	#0	· DAY	<u>'''''</u>	NAME CODE	NO	
				1	1		1	
COLLICION DA	.76	TR	MO	DA1	TIMI	SAMPLER NAME CODE	LAB	
	T T	1		1	T			<u></u>
				L	L		<u> </u>	<u> </u>
COLIFCTION DA	TE 1	YR	MO	DAT	11MF	SAMPLEE NAME CODE	LAB	
				1	T	1	T	<u> </u>
COMPOSITE SAN				1	1	1	4	
			OZ	DAY 10			LAB NO. 5099	16014
, i	ND DATE: Y	<u> </u>	MO2	DAY 5 1	mi <u>1415</u>	EQUIPMENT	CODI:	
FLOW BAT				1000 1	OF GAL DURING	- SAMPLEE NA	MI CODI	
WATER CHEMIST	500 R Y	150	300			<u>.</u>		
			1	1		I LABORATORY	LAB NO TOP	<u>76914</u>
SAMPLE CO								
	NTAINER		TAG COLOR	PRESI	EVATIVE	MOSHI SIGION	ANAL	<u>vsts</u>
2-40 mi			Line	्याः प्र•			Volatile	
2-40 ml	vials		Lime	4 •	د		Volatile	
	vials				د			
2.40 ml 1-80 02	vials Jug		Lime Purple	4• 4•	د		Volatile B/N A	LS
2-40 ml	vials Jug		Lime	4• 4•	د		Volatile	LS
2.40 ml 1-80 02 1-80 02	vials Jug Jug		Lime Purple Aqua	५• ५• ५	د د د		Volatile B/N A Pestici	es
2-40 ml 1-80 02	vials Jug Jug		Lime Purple	५• ५• ५	د		Volatile B/N A	es
2.40 ml 1-80 02 1-80 03 1-cubite	vials Jug Jug Jug		Lime Purple Aqua White	५• ५• ५ म	د د د ۷۰		Volatile B/N A Pesticie Total Me	es des tals
2.40 ml 1-80 02 1-80 02	vials Jug Jug Jug		Lime Purple Aqua	५• ५• ५ म	د د د		Volatile B/N A Pestici	es des tals
2.40 ml 1-80 02 1-80 03 1-cubite	vials Jug Jug Jug		Lime Purple Aqua White	५• ५• ५ म	د د د ۷۰		Volatile B/N A Pesticie Total Me	es des tals
2.40 ml 1-80 02 1-80 03 1-cubite	vials Jug Jug Jug		Lime Purple Aqua White	५• ५• ५ म	c c c Nos Nos		Volatile B/N A Pesticie Total Me	es des tals
2.40 ml 1-80 02 1-80 03 1-cubite	vials Jug Jug Jug		Lime Purple Aqua White	५• ५• ५ म	c c c Nos Nos		Volatile B/N A Pesticie Total Me	es des tals
2-40 m1 1-80 02 1-80 02 1-cubite 1-cubite	vials Jug Jug Jug		Lime Purple Aqua White	५• ५• ५ म	c c c Nos Nos		Volatile B/N A Pesticie Total Me	es des tals
2-40 m1 1-80 02 1-80 03 1-Cubite 1-Cubite 1-Cubite	vials Jug Jug Jug		Lime Purple Aqua White	५• ५• ५ म	c c c Nos Nos		Volatile B/N A Pesticie Total Me	es des tals
2-40 m1 1-80 02 1-80 02 1-80 02 1-cubite 1-cubite contact remarks:	vials Jug Jug ainer iner		Lime Purple Aqua White Grey	4• प• म म	c c c NO3 NO3		Volatile B/N A Pesticie Total Me Dissolved	es des tals
2-40 m1 1-80 02 1-80 02 1-80 02 1-cubite 1-cubite contact esmances Same	vials Jug Jug ainer iner	F #	Lime Purple Aqua White Grey ne decr	4• प• म म	c c c NO3 NO3		Volatile B/N A Pesticie Total Me Dissolved	es des tals
2-40 ml 1-80 02 1-80 02 1-80 02 1-cubita 1-cubita contact esmances Samp Stea	vials Jug Jug ainer iner ple of m cl	F H ean	Lime Purple Aqua White Grey ne dece	4• प• म म	c c c NO3 NO3		Volatile B/N A Pesticie Total Me Dissolved	es des tals
2-40 m1 1-80 02 1-80 02 1-80 02 1-cubite 1-cubite contact esmances Same	vials Jug Jug ainer iner ple of m cl t # B	F #	Lime Purple Aqua White Grey ne dece 14571	4• प• म म	c c c NO3 NO3		Volatile B/N A Pesticie Total Me Dissolved	es des tals

·

•.

.

•

.

. . .

• •

			UNVIT LIADIA <u>RO</u>						33 5
GRAB SAMPLE	DATA								
FLOW 00059 (GPM) 00061 (CFS)		WATER ODDIO	PH	D0	HICAL COLI	011 4	GREASE	OTHER .	\mathbf{T}^{-}
	_		02	DAT 05	17:45	SAMPLER NAME CODE			996
·	Γ	<u> </u>	00400		1	Τ			T
		va		A		SAMPLER		LAB	-
		<u>"</u>		. DAY		1 1	1	NO	T
	J		<u></u>	L		SAMPLER	J		- J
COLLICIION DA		<u>,"</u>	MD			NAME CODI	1	NO	T
	L	L	L	I				148	<u> </u>
COLLECTION DA	11	_YR	×o	DAY	11M1	NAMI CODI		NO	
	GIN DATE: END DATE: 183	ye. <u>9</u> ye. <u>9</u>	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DAY 03		• •	DUIPMENT (·
be flow bat WATER CHEMIST SAMPLE CO 2 - 40	GIN DATE: END DATE: 18	va <u>8</u> va <u>8</u> 30030	7_ MO. 02 MGD	DAT 03	IIME 17:45	•	DUIPMENT (E CODE	296 A
51 FLOW BAT WATER CHEMIST SAMPLE CO 2 - 40 1 - 403	GIN DATE: END DATE: 14	ve <u>9</u> ve <u>9</u>	7_ MD_02 	DAT 03	TIME 17:45		ATORY eiGION	code code Las no <u>IO</u> Ani Vdati S/W	
51 FLOW BAT WATER CHEMIST SAMPLE CO 2 - 40 1 - 403 1 - 403	GIN DATE: IND DATE: IRY , DNTAINED JG JG	va <u>8</u> va <u>8</u> 30030	7_ MD_02 	DAT 03	17:45 • OF GAL DURING • OF GAL • OF GAL		ATORY eiGION	E CODE	296 A ALVSES / PC / A
51 FLOW BAT WATER CHEMIST SAMPLE CO 2 - 40 1 - 403	GIN DATE: IND DATE: IRY , DNTAINED JG JG	va <u>8</u> va <u>8</u> 30030	7_ MD_02 	DAT 03	17:45 • OF GAL DURING • OF GAL • OF GAL		ATORY eiGION	code code LAB NO <u>IO</u> ANI Volati B/W Restic	296 A ALVSES / Ce ALVSES
51 FLOW BAT WATER CHEMIST SAMPLE CO 2 - 40 1 - 403 1 - 403	GIN DATE: IND DATE: IRY , DNTAINED JG JG	va <u>8</u> va <u>8</u> 30030	7_ MD_02 	DAT 03	17:45 • OF GAL DURING • OF GAL DURING • OSITE PERIOD • SERVATIVE • C • C		ATORY eiGION	code code LAB NO <u>IO</u> ANI Volati B/W Restic	296 A ALVSES /C. ALVSES
51 FLOW BAT WATER CHEMIST SAMPLE CO 2 - 40 1 - 403 1 - 403	GIN DATE: IND DATE: IRY , DNTAINED JG JG	va <u>8</u> va <u>8</u> 30030 	7_ MD_02 	DAT 03	17:45 • OF GAL DURING • OF GAL DURING • OSITE PERIOD • SERVATIVE • C • C		ATORY BIGION	code code LAB NO <u>IO</u> ANI Volati B/W Restic	296 A ALVSES /C. ALVSES

7-8PA-9262 16 751

•

STATION IDENTI			NEVET LEADER_RO						
							_	···· <u>-</u>	
DESCRIPTION	CAD	MUS	CORPORATI	ON, ST.	CHARLES ,	Mo.		FMOØ	<u>733 s</u>
GRAB SAMPLE									
FLOW	18MP	- MATHE	PH	PO	FICAL COLI	OIL	GRIASI	OTHER	
00061 (CFS)	00920		<u> </u>	L		3AM7188			2
	n	<u></u>	<u>7 0#</u>	DAT 4	11MI 1740	NAME CODI		<u> </u>	0996
		I							
COLLECTION DAT	10	¥8	MO	. DAY	11MJ	SAMPLIE NAMI CODI	·	LAB	
						,			
		ł	.	· · · · · ·		SAMPLER		· LAÐ	
COLLICIION DAT		<u>," —</u>	M0	DAY		NAME CODE	·	<u> </u>	1
		<u> </u>	L	l	<u> </u>				
COLLECTION DAT	14	<u>, va</u>	MO	DAT	11M1	SAMPLEE NAME CODI	·	LAB	
COMPOSITE SAM			7	A.]					
		¥8	7_ mo	DAY			•	LAB NO. <u>IO</u>	<u> </u>
		-		·					•
	ND DATE:	vi <u>2</u>	7 MO	DAT 4	11ME 1740		OUIPMENT	CODI:	
FLOW RATE		VR _ 2	7 MO	1000	IIME 1740	•			
FLOW RATE				1000	OF GAL DURING	54	MPLEE NAA		
FLOW RATE	R Y			1000 37 COMP	OF GAL DURING	54		LAS NO <u>T</u>	2996 Ø
FLOW RATE WATER CHEMISTI SAMPLE COM	R Y NTAINER		MGD 300 300 TAG COLOR	1000 57 COMP PRE	SERVATIVE			AE CODE LAB NO	NALYSES
FLOW RATE	R Y NTAINER		MGD 300	1000 57 COMP PRE	OF GAL DUEING			LAS NO <u>T</u>	NALYSES
FLOW RATE WATER CHEMIST SAMPLE COM 2 - 40 ml	R Y R Y NTAINER V i C	als	- MGD	1000 37 COMP PRE	SERVATIVE			AI CODI LAB NO NO LA 1	iles
FLOW RATE WATER CHEMIST SAMPLE CON 2 - 40 ml 1 - 402	RY NTAINER 	als	IAG COLOR Lime Purple	1000 37 COMP 788 - 식	SERVATIVE			AE CODE LAB NO	iles
FLOW RATE WATER CHEMIST SAMPLE CON 2 - 40 ml	RY NTAINER 	als	- MGD	1000 37 COMP 788 - 식	SERVATIVE			AI CODI LAB NO NO LA 1	iles I A
FIOW RATE WATER CHEMIST SAMPLE CON 2 - 40 m 1 - 402 1 - 402	RY NTAINER Jac	als	- MGD	1000 37 COMP 11 11 12 12	C C C			AE CODE LAB NO <u>IC</u> Volat B/A Pest	1 A
FLOW RATE WATER CHEMIST SAMPLE CON 2 - 40 ml 1 - 402	RY NTAINER Jac	als	IAG COLOR Lime Purple	1000 37 COMP 11 11 12 12	SERVATIVE			NE CODE LAB NO <u>TC</u> A Volat B/A	1 A
FLOW RATE WATER CHEMIST SAMPLE CON 2 - 40 m 1 - 402 1 - 402	RY NTAINER Jac	als	- MGD	1000 37 COMP 11 11 12 12	C C C			AE CODE LAB NO <u>IC</u> Volat B/A Pest	1 A
FIOW RATE WATER CHEMIST SAMPLE COM 2 - 40 m 1 - 402 1 - 402	RY NTAINER Jac	als	- MGD	1000 37 COMP 11 11 12 12	C C C			AE CODE LAB NO <u>IC</u> Volat B/A Pest	1 A
FLOW RATE WATER CHEMIST SAMPLE COM 2 - 40 m 1 - 402 1 - 402	RY NTAINER Jac	als	- MGD	1000 37 COMP 11 11 12 12	C C C		AMPLEE NAA	AE CODE LAB NO <u>IC</u> Volat B/A Pest	1 A
FLOW RATE WATER CHEMIST SAMPLE CON 2 - 40 m 1 - 402 1 - 402	RY NTAINER Jac	als	- MGD	1000 37 COMP 11 11 12 12	C C C		AMPLEE NAA	AE CODE LAB NO <u>IC</u> Volat B/A Pest	MAIVSES iles I A Aride als
FLOW RATE WATER CHEMIST SAMPLE COM 2 - 40 m 1 - 402 1 - 402 1 - 402	RY NTAINER Jac	als	- MGD	1000 37 COMP 11 11 12 12	C C C		AMPLEE NAA	AE CODE LAB NO <u>IC</u> Volat B/A Pest	naivses iles 1 A acide
FLOW RATE WATER CHEMIST SAMPLE CON 2 - 40 m 1 - 402 1 - 402 1 - 402 1 - 402	RY NTAINER Jac	als	- MGD	1000 37 COMP 11 11 12 12	C C C		AMPLEE NAA	AE CODE LAB NO <u>IC</u> Volat B/A Pest	MAIVSES iles I A Aride als
FLOW RATE WATER CHEMIST SAMPLE COM 2 - 40 m 1 - 4 02 1 - 4 02 1 - 4 02 1 - 4 02 CONTACT EIMARKS:	RY NTAINER JOC JOC	als	- MGD - 300 TAG COLOR Lime Purple Aiqua White	المەت 37	C C C		AMPLEE NAA	AE CODE LAB NO <u>IC</u> Volat B/A Pest	MALVSES
FLOW RATE WATER CHEMIST SAMPLE COM 2 - 40 m 1 - 4 02 1 - 4 02 1 - 4 02 1 - 4 02 Sor:	RY VIAINEE JOC JOC JOC JOC 	als	- MGD - 300 IAG COLOR Lime Purple Aiqua White Sample d	1000 37 COMP 988 44 44 44 44 44 44 44	C C C		AMPLEE NAA	AE CODE LAB NO <u>IC</u> Volat B/A Pest	naivsis : les 1 A wide tals
ELOW RATE WATER CHEMISTI SAMPLE CON 2 - 40 ml 1 - 4 02 1 - 4 02 1 - 4 02 CONTACT EIMARKS: Bor: VOA 10 f	RY WIANNER JOC JOC JOC JOC JOC - JOC - - - - - - - - - - - - -	als 	- MGD - 300 TAG COLOR Lime Purple Aiqua White	1000 337 COMP 44 44 44 44 44 44 44 44 44 44 44 44 44	C C C		AMPLEE NAA	AE CODE LAB NO <u>IC</u> Volat B/A Pest	MAIVSES iles I A Aride als

	_	_	
7-874	. 9783	18	751

	IFICATIO	N			25 FUNSTON RC				
					D. WIGGA				
DISCRIPTIO	N <u>CAR</u>	MUS	CORPORAT	ION, ST	CHARLES,	Mo		FMOØZ	<u>33 < I</u>
RAB SAMPLE	0.4.1.4								
FLOW		WATER	Рн	80	PICAL COLI	011	GREASE	- OTHER	OTHER
000at (CFS)	00070	00010	L						
COLLECTION DA	1 1	_ <u>n</u>	01	_ DAY_4_	. 11mt 1755				19601-
		L		<u> </u>					<u> </u>
COLLECTION DA		**	MO	DAT		SAMPLER NAME CODI		ND	
	<u> </u>					1			
COLLECTION DA	170	¥8		DAT	, 11M1	SAMPLER NAME COD		. LAB	
						T			1
	.	L				SAMPLER		LAB	
COLITCION DA		_ <u></u>	<u> </u>			NAME COD		NO	
MPOSITE SAA						1			<u></u>
			7_ mo <u>or</u>	DAT_4	11ME 1755			LAB NO. JOG	96617
	ND DATE:	ve <u>8</u> -	1_ mo_O&_	. DAT	1IME 1755	4	OUIPMENT		• •
FLOW PAT	II		MGD		00 . OF GAL DURING	•	MPLEE NAA		
ATER CHEMIST	_	0050	300	037 CO	MPOSITE PERIOD				
SAMPLE CO	NTAINER	·	TAG COLOR	ļ ,	RESERVATIVE		ATORY	LAS NO <u>709</u>	176 01 7
2-40m	via	<u>ls</u>	Lime	u	° C			Volati	les
1-407	T		Purple		° c			B/N,A	
1-704	34	{	Inple					<u>D//v//</u>	·,,
1-402	Jar	-	Aqua		1°C	ļ		Pestic	ides
				•	100		•	A1 1	`
1-402	<u></u> ,		White		1°C			Meta	1.5
									•
									•
								•	
						SAMPLE 🔀 SPLIT 🔲	NO	·····	* <u>*</u>
DN1AC1								•	
ONIACI									
								•	

•

•

•

•	· · · ·				D SHEET			
					TION AGENC			
STATION IDENT							<u>, ciri, kan</u>	
SURVET NO	• 	St	RVET LEADER_RO	BERT	D. WIEGA	NS	5108ET NO	
DESCRIPTION	CAP	MUS	CORPORATI	ION, ST	CHARLES ,	Mo.	FMOØZ	<u>33 < I</u>
GRAB SAMPLE	DATA	•6	Трн	T 00	FICAL COLL	OIL & GREASE	01116	
00054 (0PM)	A12 00070	WA112 00010	· · · · ·					
			7	<u>, </u>	.916	SAMPLIE	ر زمود ۱۸۵	aca s
COLLICIION DA	n 		<u>7</u> <u>02</u>	DAT		MAMI CODI	<u> </u>	996018
COLLECTION DA	••					SAMPLER	LAG	•
		<u>"</u>	M0	DAY	1100 f	NAMI CODI	<u>***</u>	1
		I	L	<u> </u>				
COLLECTION BA	14	TR	MO	DAT	1 int (SAMPLER NAME CODI	LAB	
						1		Ţ
		L	L	I				
COLLECTION DAT	18	78	MO	DAY	TIME	SAMPLEE NAMI CODI	LAB	
					I			
COMPOSITE SAN	PLE DAT		L	L				
			70	DAT 4	11MF 1915		LAS NO. 309	196018
			7 02_		_			• •
£1	ND DATE:	YR	MO	. DAY		EQUIPMEN	1 CODE:	
FLOW RATE	۱ <u> </u>	0030	MGD		S OF GAL DURING	SAMPLER N	AME CODE	
WATER CHEMIST							LAS NO TO	ac A10
		•		l	ESERVATIVE		-1· · · · · · · · · · · · · · · · · · ·	
SAMPLE CO				, , , , , , , , , , , , , , , , , , ,				ALYSES
2-40m		34	Lime	ן ע	90		Volat	:_<
~			<u> </u>		<u> </u>		Voig	
1-400	Jar	.	Purple	4	٥د		B/N	A
			10.00				1	
1-402	Jar	-	Aqua	L	loc		Pestic	ides
				·		· ·		
1-402	Jan	-	white	L	100		Meta	للع
	•							
								•
							<u> </u>	
						SAMPLE TEF		
CONTACT			<u> </u>	· · · · · · · · · · · · · · · · · · ·		5PLIT 🔲 NO 🔔	•	1
REMARKS:				·····	<u>,,, _, _, _, _, _, _, _, _, ., ., ., ., ., ., ., ., ., ., ., ., .,</u>		•	
•							•	
	1		11.0- 2					
Dori	مع ا				ple #3			
	104	# T:	૦ ૯ ૩ ન ન ન શ	51				
40 m1			५७३५५५१ १८१९७१५५१					•

7-8PA-9263 16 751

.

.

. .

STATION IDENT	FICATION				5 FUNSTON				
SURVET NO		SURVET	LEADER	DRERT	D. WIGG	ANS		STORET NO	
DESCRIPTIO	CAPM	nus Co	ORPORAT	70N, ST.	CHARLES ,	Mo.	·····	FMOØZ	33 57
								· · · · · · · · · · · · · · · · · · ·	
GRAB SAMPLE	1EMP .	<u> </u>	PH	D 0	FICAL COLI	01. 4	GREASE	OTHER	•
00054 (0PM) 00061 (CFS)	AHE 80078	00010						·	
COLLICION DA	14	n. <u>87</u>	_02	- PAT_4	1IME_2200	SAMPLER NAME CODI		140	9966
			99400						
COLLECTION DA	14	78	×0	- DAY	D MA (SAMPLIE NAME COD		LAB	
		<u> </u>						<u></u>	
	└─┈─┸	<u>I</u>		1	<u></u>	, , , , , , , , , , , , , , , , , , ,	<u>.</u>	148	I
COLLECTION DA	<u>"</u>	<u>"</u>	#0	. BAY		NAME COD		NO	
				<u> </u>					
COLLECTION DA	16	**	MO	. DAY	11451	SAMPLER NAME COD	·	LAB	
									\Box
FLOW RATE	f	-	MO	DAY 1000	TIME 200	•	•	(ODI:	
FLOW RAT	f 500 R Y			DAY_4 0371000 037COM	TIME 12:00	54	IGUIPMENT	AE CODE	7964
FLOW RATE	f 500 R Y		NGD 30	DAY_4 0371000 037COM	TIME LE CO	54 	IGUIPMENT	AE CODE	• -
FLOW RATE	R Y NTAINER		NGD 30	DAY_4	TIME LE CO	54 	IGUIPMENT	AE CODE	ALYSES
FLOW RATE WATER CHEMIST SAMPLE CO 2-40 m 1	r <u></u>	030 174 	NGD 300	DAV_4	TIME LE:00	54 	IGUIPMENT	145 NO <u>ZO</u> 145 NO <u>ZO</u> 4NI VOIA F	iles
FLOW RATE WATER CHEMIST SAMPLE CO 2-40 m 1 1 - 402	RY NIAINER Viale Jar		ngo 30 10 color 10 color	DAY_4_ 0000 0370000 0370000 0370000 0000		54 	IGUIPMENT	LAS NO <u>ZO</u> LAS NO <u>ZO</u> ANI UOLA F B/N	iles A
FLOW RATE WATER CHEMIST SAMPLE CO 2-40 m 1	RY NIAINER Viale Jar		NGD 300	DAY_4_ 0000 0370000 0370000 0370000 0000	TIME LE:00	54 	IGUIPMENT	145 NO <u>ZO</u> 145 NO <u>ZO</u> 4NI VOIA F	iles A
FLOW RATE WATER CHEMIST SAMPLE CO 2-40 m 1 1-402 1-402	RY NTAINER Viale Jar		ngo	DAY_4_ 000 037 COM PRI 4 4 4		54 	IGUIPMENT	AE CODE LAB NO ANJ UOLA H B/N Restic	ALVSES i les A
FLOW RATE WATER CHEMIST SAMPLE CO 2-40 m 1 1 - 402	RY NTAINER Viale Jar		ngo 30 10 color 10 color	DAY_4_ 000 037 COM PRI 4 4 4		54 	IGUIPMENT	LAS NO <u>ZO</u> LAS NO <u>ZO</u> ANI UOLA F B/N	ALVSES i les A
FLOW RATE WATER CHEMIST SAMPLE CO 2-40 m 1 1-402 1-402	RY NTAINER Viale Jar		ngo	DAY_4_ 000 037 COM PRI 4 4 4		54 	IGUIPMENT	AE CODE LAB NO ANJ UOLA H B/N Restic	ALVSES i les A
FLOW RATE WATER CHEMIST SAMPLE CO 2-40 m 1 1-402 1-402	RY NTAINER Viale Jar		ngo	DAY_4_ 000 037 COM PRI 4 4 4		54 	IGUIPMENT	AE CODE LAB NO ANJ UOLA H B/N Restic	ALVSES i les A
FLOW RATE WATER CHEMIST SAMPLE CO 2-40 ml 1-402 1-402	RY NTAINER Viale Jar		ngo	DAY_4_ 000 037 COM PRI 4 4 4				AE CODE LAB NO ANJ UOLA H B/N Restic	ALVSES i les A
FLOW RATE WATER CHEMIST SAMPLE CO 2-40 m 1 1-402 1-402	RY NTAINER Viale Jar		ngo	DAY_4_ 000 037 COM PRI 4 4 4				AE CODE LAB NO ANJ UOLA H B/N Restic	ALVSES iles A ides ls ·
FLOW RATE WATER CHEMIST SAMPLE CO 2-40 ml 1-402 1-402	RY NTAINER Viale Jar		ngo	DAY_4_ 000 037 COM PRI 4 4 4				AE CODE LAB NO ANJ UOLA H B/N Restic	ALVSES i les A
FLOW RATE WATER CHEMIST SAMPLE CO 2-40 ml 1-402 1-402	RY NTAINER Viale Jar		ngo	DAY_4_ 000 037 COM PRI 4 4 4				AE CODE LAB NO ANJ UOLA H B/N Restic	ALVSES Sles A i des ls
FLOW RATE WATER CHEMIST SAMPLE CO 2-40 m 1 1-402 1-402 1-402 CONTACT REMARKS:			ngo	DAY_4_ 000 037 COM PRI 4 4 4				AE CODE LAB NO ANJ UOLA H B/N Restic	ALVSES Sles A Sides Ls J

ł

7-174	.9263	10	75

•

ева-нс-78-16' ,

	TIFICATIO	N				NS	CITY, KANSAS	
							FM0 0 233	2 < 7
DESCRIPTIC		<u></u>		<u>10 N</u> SL	CHARLES ;		<u>FMU 973</u>	<u> </u>
RAB SAMPLE	DATA	~	PH	00	FICAL COLI	ON & GREASE		01418
00041 (CFS)	AH 00020	WATER					ŀ .	
COLLECTION D	A16	vi8		_ DAT	<u>"" 1445</u>	SAMPLER NAME CODE	148 109	96 020
	<u> </u>		80486					
	A11	¥8		_ DAV	11661	SAMPIIS NAMI CODI	LAB	·
				1			ΙΙΙ	
	114	TR	#0		1 AM 6	SAMPLIS NAME CODI	LAB	
COLLECTION D		·····	MO	_ DAT	Timt	SAMPLEE	LAB	
VVIIVIUM D	Î I							
FLOW RA	11 <u>-</u>				ME _/445_ OF GAL DURING ISITE PERIOD	SAMPLER NA	CODI	6626
FLOW RA ATER CHEMIS SAMPLE CO	11 1RY			1000 s 2052 COMPC	OF GAL DUEING	•	ME CODE	
ATER CHEMIS	11		MGD	1000 v 2052 COMPC	OF GAL DUEING ISITE PERIOD	SAMPLEE HA	ME CODI LAB NO <u>ZO99</u>	56.5
ATER CHEMIS SAMPLE CC	11 TRY DNTAINER 		MGD SC	1000 1 20532 COMPC PRESS	OF GAL DUEING SITE PEEIOD	SAMPLEE HA	ME CODE LAB NO ANALY:	56.5
ATER CHEMIS SAMPLE CO	11		MGD 30 TAG COLOR	1000 1 20532 COMPC PRESS	OF GAL DUEING 131TE PERIOD IEVATIVE • C	SAMPLEE HA	MI CODI LAB NO <u>ZO99</u> ANALYI VOLQHI L	515 E.S.
атек снеміз замріє со 40 m 1 40 m 40 m 1 	II IRY DNIAINER VIGI Jer Jer		MGD 30 TAG COLDE Lime Purple	اندون اندو اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون ان اندون اندون اندون اندون اندون اندون ان ان ان ان ان ان ان ان ان ا	OF GAL DUEING 131TE PERIOD IEVATIVE •	SAMPLEE HA	ALE CODE LAB NO <u>ZO99</u> ANALY NO LO 1 B/N A	sis es
атек снеміз замріє со 40 m 1 40 m 40 m	II IRY DNIAINER VIGI Jer Jer		MGD 30 TAG COLOR Lime Purple Aqua	اندون اندو اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون ان اندون اندون اندون اندون اندون اندون ان ان ان ان ان ان ان ان ان ا	0F GAL DUEING 1311E PEEIOD IEVATIVE • C	SAMPLEE HA	Al CODI LAB NO <u>IO99</u> ANALY Volatib B/N A Pesticid	sis es
ATER CHEMIS SAMPLE CO - 40 m 1 - 402	II IRY DNIAINER VIGI Jer Jer		MGD 30 TAG COLOR Lime Purple Aqua	اندون اندو اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون ان اندون اندون اندون اندون اندون اندون ان ان ان ان ان ان ان ان ان ا	0F GAL DUEING 1311E PEEIOD IEVATIVE • C	SAMPLEE HA	Al CODI LAB NO <u>IO99</u> ANALY Volatib B/N A Pesticid	sis es
ATER CHEMIS SAMPLE CO - 40 m 1 - 402	II IRY DNIAINER VIGI Jer Jer		MGD 30 TAG COLOR Lime Purple Aqua	اندون اندو اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون ان اندون اندون اندون اندون اندون اندون ان ان ان ان ان ان ان ان ان ا	OF GAL DUEING ISTE PERIOD	SAMPLEE HA	Al CODI LAB NO <u>IO99</u> ANALY Volatib B/N A Pesticid	sis es
ATER CHEMIS SAMPLE CO - 40 m 1 - 402 - 402	II IRY DNIAINER VIGI Jer Jer		MGD 30 TAG COLOR Lime Purple Aqua	اندون اندو اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون اندون ان اندون اندون اندون اندون اندون اندون ان ان ان ان ان ان ان ان ان ا	OF GAL DUEING ISTE PERIOD	SAMPLEE NA	Al CODI LAB NO <u>IO99</u> ANALY Volatib B/N A Pesticid	sis es
ATER CHEMIS SAMPLE CC - 40 m 1 - 402 - 402 - 402 - 402 MITACT.	TRY TRY DINTAINED Jar Jar Jar	0030	MGD 30 TAG COLOR Lime Purple Aqua White	1000 \ 20532 COMPC	OF GAL DUEING ISTE PERIOD	SAMPLER NA	Al CODI LAB NO <u>IO99</u> ANALY Volatib B/N A Pesticid	sis e.s

7-8PA-9763 (6 75)

.. ·

, s

.

•

. .

BSA-#IC-78-36

· SURVEII		E AND		AL PROTECTI		REGION N OAD, KANSAS		AS 6 115
STATION IDENT	FICATIO	N				NS		
						Mo		
						<u></u>		
GRAB SAMPLE								
FLOW	AHE 00070	WA118	PH	BO	FICAL COLI	OIL & GREASE	O1N60	OTHER
COLLECTION DAT	re	va9	7 01	DAT 5 1	_ <u></u>	SAMPLER NAME CODE	(A8 IO	496026D
			00400					
COLLICTION DA	1	VI		, DAV	mi	SAMPIER NAME CODE	LAB	•
COLLICTION DAT	16	ve	MD	DAT 1	M1	SAMPIJE NAME CODI	1A8	· · · · · · · · · · · · · · · · · · ·
COLITCION BAT	14	×*	MD	DAT 11	MI	SAMPLER NAMI CODI	LAB	
	ND DATE:	ve <u>8</u>	7MO2 7MO2 MGD	DAY 5 11M	- 1445	EQUIPMENT SAMPLER NAA	CODI:	76 626D
WATER CHEMIST	RY						LAS NO IOP	96020D
SAMPLE CO	NTAINER	·	TAG COLOR	PRI 568		LABORATORY MOBILE REGION		vses
2 - 40m1	via	15	Lime	ب •د	-		Volati	les
1-402	Jar		Porple	4•	د		B/N	A
1- 40E	Jar		Aqua	ય •	C		Peste	
1- 402			white	J •	e		Metals	
								•
			<u>_</u>			1 SAMPLE [] YEF		
CON1ACT						57LIT 🕅 NO		Ą
BEMARKS;	<u> </u>			<u></u>	<u> </u>		· · · ·	· ·
Duplie	ate	froi	n sample	locatio	n #1	west.		
voA wt							•	
402 lot			•				• •	
								•

•

27.2

.

the state of a second s

	LLANCE AND		TAL PROTECT		Y - REGION OAD, KANSAS		AS 6 115
l i					Ma		83 < I
GRAB SAMPLE	IEMP *C	PH	80	PICAL COLI	OIL & GREASE	- OTHER	01#68
COLLECTION DA	16 70			11MI 2200	SAMPLER NAME CODI	¹⁴⁸ _ <u></u>	<u>996021</u>
		80486	<u> </u>	<u>]</u>			
COLLECTION DA		<u>**0</u>	DAY		/ /	NO	
COLLECTION DA	<u>" "</u>	M0	DAY	1.mt	SAMPLEE NAMI CODI	· · · · · · · · · · · · · · · · · · ·	
COLLECTION DA	 '' ''	mo	DAY	11MF	SAMPLEE NAMI CODI	LAB NO]
COMPOSITE SAM							
E FLOW BAT WATER CHEMIST SAMPLE CO	r <u>sooso</u>	7	1000 1 017 COMPI	OF GAL DURING DSITE PERIOD	LABORATORY MOBILE BIGION		
2.40 .	al vials	Lime	<u> </u>	د		Volati	les
1-80 02	Jug	Purple	<u>4</u> •	C		BIN A	
1.80 02	Jug	Aqua	4 •	C		Pestici	des
1- cubit	tainet	white	ИН	0 <u>3</u>		Total Ma	tels
1. cubit	oiner	Grey	HN	03		Disrolved	Metels
CONIACI			L		SAMPLE 32 715 SPLIT NO	L	₹; *
40 ml la	+ & B6 + & B6 + + A62	3 युब य 81	boring .	location	3 W	3	

·

.

•

.

•

.

.

.....

STATION IDENTIFICAT	ION				OAD, KANSAS		343 0
					Mo		733 :
GRAB SAMPLE DATA	<u> </u>		<u> </u>				
00057 (0PM) AIE			00	FICAL COLI	OIL & GREASE	OTHER	
		7_02		1/00			
COLLICTION DATE		80400			NAME CODI	NO	
	······	#0	. DAY	1	SAMPLIE NAMI CODI		<u></u>
COLLICION DATE		MO	BAY	1imi	SAMPLER NAMI CODI	LAB	
COLLECTION DATE		mo	DAT	1imi	SAMPLER NAME CODE	NO	
FLOW BATE	30030	MGD 300	57 COMP	OF GAL DURING	LABORATORY	IAB NO <u>IO</u>	
WATER CHEMISTRY SAMPLE CONTAINED	• · ·	TAG COLOR Line	57 COMP			LAB NO <u>70</u>	ALTSES
WATER CHEMISTRY	als	TAG COLOR Line	ss compe	OSITE PERIOD	LABORATORY	LAS NO <u>TO</u> AN Volq1	valvses biles
WATER CHEMISTRY SAMPLE CONTAINED 2.40ml Nie	als	TAG COLOR	<u>۲۱۱۶</u> ۲۱۱۶ ۲	0311E PERIOD SERVATIVE • C.	LABORATORY	LAB NO <u>70</u>	valvses biles A
WATER CHEMISTRY SAMPLE CONTAINED 2.40 ml Vie 1-402 Jac	als	TAG COLOR Line Porple	<u>۲۱۱۱۶</u> ۲۱۱۱۶ ۲۱۱۶	0311E PERIOD SERVATIVE • C.	LABORATORY	LAS NO <u>TO</u> AN Volat B/N	vairses biles A ei da
WATER CHEMISTRY SAMPLE CONTAINED 2.40 ml Vie 1-402 Jac 1-402 Jac	als	TAG COLOR Lime Porple Aque	<u>۲۱۱۱۶</u> ۲۱۱۱۶ ۲۱۱۶	۰ د و د و د و د و د ا د و د ا د ا د ا د ا د ا د ا د ا د ا	LABORATORY	Nolal B/N Pestic	vairses biles A ei da
WATER CHEMISTRY SAMPLE CONTAINED 2.40 ml Vie 1-402 Jac	als	TAG COLOR Lime Porple Aque	<u>۲۱۱۱۶</u> ۲۱۱۱۶ ۲۱۱۶	• c • c		Nolal B/N Pestic	vairses biles A ei da
WATER CHEMISTRY SAMPLE CONTAINED 2.40 ml Vie 1-402 Jac 1-402 Jac	als	TAG COLOR Lime Porple Aque	<u>۲۱۱۱۶</u> ۲۱۱۱۶ ۲۱۱۶	• c • c	LABORATORY	Nolal B/N Pestic	vairses biles A ei da
WATER CHEMISTRY SAMPLE CONTAINED 2.40 ml Vie 1-402 Jas 1-402 Jas 1-402 Jas	als	TAG COLOR Lime Porple Aque	<u>۲۱۱۱۶</u> ۲۱۱۱۶ ۲۱۱۶	• c • c		Nolal B/N Pestic	vairses biles A e: da
WATER CHEMISTRY SAMPLE CONTAINED 2.40 ml Vid 1-402 Jar 1-402 Jar 1-402 Jar contact EEMARCS: SUF Face Sa	als 	Ind COLOR Lime Derple Aque white collected	<u>, २</u> ८०००० २१ २१ २१ २२ २२ २२ २२ २२ २२ २२	0317E PERIOD BERVATIVE • C • C • C • C • C • C • C • C		LAS NO <u>IO</u> AN Nolal B/N Pestic Mete	Alvie A A cid ls
WATER CHEMISTRY SAMPLE CONTAINED 2.40 ml Vie 1-402 Jac 1-402 Jac 1-402 Jac	als 	Lime Lime Aque white collected at the e	<u>, २</u> ८०००० २१ २१ २१ २२ २२ २२ २२ २२ २२ २२	0317E PERIOD BERVATIVE • C • C • C • C • C • C • C • C		LAS NO <u>IO</u> AN Nolal B/N Pestic Mete	AIV385

	FICATION			FUNSTON R				
SURVET NO		SUBVET LEADER	ORZAT	0W166A	<u>NS</u>	51	0861 NO	
DESCRIPTION	CARM	US COAPORAT	TION , ST.	CHARLES ,	Ма	··· · · · · · · · · · · · · · · · · ·	FMOØ	<u> 233 s</u>
GRAB SAMPLE D	DATA							
FLOW	11MP •	K PH WATER	90	FICAL COLI	01, 4 0	SREASE	01#12	
00001 (615)	00070	80018			1	ļ	·	<u> </u>
COLLECTION BAT	· · ·	<u>87 02</u>	_ DAT	1MI_1600	SAMPLEE NAME CODI			0 996
		00400			1			
					5AMPL(8			
COLLECTION BATH	<u> </u>	<u>** #0</u>	- DAV	114A1	NAME CODE	T	NO	
	l		1					
COLLECTION DATE	· · · · · ·	VP MO	_ DA1	11M1	SAMPLES NAMI CODE_			
COLLECTION DATE	i ·	rr MO		TIM1	SAMPLEE NAME CODE_		1AB	
T				T		Ī		
SAMPLE CON	TAINER	TAG COLOR		SERVATIVE	LABORA MOBILE		LAB NO <u>IO</u>	•
SAMPLE CON Z - 40 ml				512 VA TIVE				NALYSES
	Vial		4				AI	halvses
2-40 ml	Uial Jar	Line	<i>५</i> भ	٥٢			vola	haivses ti læs A
2-40ml 1-407	vial Jar Jar	Lime Porple	<u> ५</u> <u>भ</u>	تو اور			Vola B/N	hiles A ides
2-40ml 1-407 1-407	vial Jar Jar	Line Porple Aqua	<u> ५</u> <u>भ</u>	دو اوو او			Nola B/N Pesfic	hiles A .des
2-40ml 1-407 1-407	vial Jar Jar	Line Porple Aqua	<u> ५</u> <u>भ</u>	دو اوو او			Nola B/N Pesfic	hiles A .des
2-40ml 1-40m 1-40m	vial Jar Jar	Line Porple Aqua	<u> ५</u> <u>भ</u>	دو اوو او او		EIGION	Nola B/N Pesfic	hiles A .des
2-40ml 1-407 1-407	vial Jar Jar	Line Porple Aqua	<u> ५</u> <u>भ</u>	دو اوو او او	M0611	EIGION	Nola B/N Pesfic	Hiles A ides ides
2-40 ml 1-402 1-402 1-402 J	vial Jar Jar	Line Porple Aqua	<u> ५</u> <u>भ</u>	دو اوو او او		EIGION	Nola B/N Pesfic	4 4 4 4 4 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5
2-40 ml 1-402 1-402 1-402 J	vial Jar Jar	Line Porple Aqua	<u> ५</u> <u>भ</u>	دو اوو او او		EIGION	Nola B/N Pesfic	A
2-40 ml 1-402 1-402 1-402 1-402 1-402 3 CONTACT EMARKS Backy AC 400	Uial Jar Jar Tar Tar	Line Porple Aqua White d Sample	y y y collect	دو اوو اوو اوو اوو اوو اوو اوو اوو اوو ا		eiGiON	Nols B/N Pesfic Mefa	A ides

and an and a second second

. •

ANALYSIS TYPE: TOTAL METALS (CONTRACTOR)

TITLE: CADMUS LAB: PBS&J

-. • ...

· · ·,

SAMPLE PREP:____ ANALYST/ENTRY: E90

T

10996001

MATRIX: SEDIMENT UNITS: MG/KG METHOD: 9001M07 CASE: 6807 -7-REVIEWER: DATE: 04/02/87

SAMPLE NUMBERS

10996002 10996003

I099G004

•

COMPOUND

ALUMINUM	8700.		8300.		20000.		19000.	
ANTIMONY	30.0	U	30.0	U	30.0	U	30.0	U
ARSENIC	6,50		2.90		3.30	м	2.10	М
EARIUM .	78.0	м	97.0	M	150		99.0	М
RERYLLIUM	0.3	м	0.4	М	1.00	м	0.7	М
CADMIUM	1.30	М	2.00	М	2.50		2.00	М
CALCIUM	24000+		37000.		10000.		12000.	
CHROMIUM	14.0		17.0		23.0		20.0	
COBALT	5.70	М	7.50	М	6.90	M	4.70	М
COPPER	770		5700.		71.0		19.0	
1 R O N	14000.	J	16000.	J	25000.	L	19000.	J
LEAD		I	18.0	J	23.0	J	19.0	м
HAGNESIUM	19000.		17000.		6800.		6900.	
MANGANESE	340	J	500	L	350	L	300	Ł
MERCURY	0.1	U	0.2	ប	0.1	U	0.1	U
NICKEL	15.0	М	27.0		22.0		17.0	М
POTASSIUM	1200.	м	1300.	М	1600.	М	1500.	M
SELENIUM	2.50	U	3.20		2.50	U .	2,50	U
SILVER	5.00	U	5.00	U	5.00	U	5.00	U
SODIUM	2500.	U	2500.	U	2500.	U	2500.	ប
THALLIUM	5,00	U	5,00	U	5.00	U	5.00	U
TEN	20.0	ម	20.0	U	20.0	u	20.0	U
VANADIUM	33.0		32.0		41.0		39.0	
ZINC	110		100		84.0		10.0	U
CYANIDE	N/A	I	N/A	I	N/A	I	N/A	I

11 TITLE: CADMUS MATRIX: SEDIMENT METHOD: 9001M07 AB: PBS&J \$A---SAMPLE PREP:____ ANALYST/ENTRY: E90 REVIEWER: 7t SAMPLE NUMBERS 1 10996009 10996005 10996006 COMPOUND

1

11

1.8

ALUMINUM	20000.		15000.		13000.		14000.	
ANTIMONY	30.0	U	30.0	U	30.0	U	21.0	J
ARSENIC	140		2.60	U	2,50	м	5.00	U
BARIUM	390		140		150		190	
BERYLLIUM	1.10	М	0.6	М	0.8	м	11.0	
CADMIUM	2.80		1.80	м	2.00	м	2.70	
CALCIUM	13000.		13000.		18000.		9200.	
CHROMIUM	22.0		20.0		83.0		23.0	
COBALT	14.0	м	8.30	м	7.30	м	7,40	м
COPPER	47.0		18.0		3200.		470	
IRON	29000.	J	24000.	J	21000.	J	28000.	J
LEAD	8.70	J	18.0	J	9.10	J	15.0	J
MAGNESIUM	6300.		7900.		9200.		7000.	
MANGANESE	1700.	J	300	J	460	J	360	J
MERCURY	0.1	ប	0.1	U	0.16		0.17	
NICKEL	28.0		22.0		57.0		24.0	
POTASSIUM	1300.	М	1100.		1800.	М	2100.	M
SELENIUM	1.50	м	9.10		8.80		3.20	
SILVER	5.00	U	5.00	U	5.00	U	5.00	U
SODIUM	370	М	2500.	U	2500.	U	2500.	U
THALLIUM	5.00	U	5.00	U	5.00	U	5.00	U
TIN	20.0	Ð	20.0	U	20.0	U	20.0	U
VANADIUM	43.0		36.0		36.0		42.0	
ZINC	85.0		68.0		93.0		88.0	
CYANIDE	N/A	I	N/A	I	N/A	I	N/A	I
	I							

ANALYSIS TYPE: TOTAL METALS (CONTRACTOR)

Е,

UNITS: MG/KG CASE: 6807 DATE: 04/02/87

	ANALYSIS TYPE	: тс	TAL MET	ALS	CONTRACT	DR)		
TITLE: CADMUS LAB: PBS&J SAMPLE PREP:	_ ANALYST/ENTRY: E92	ME		ATER	²⁷ A.4	UNI Case Date	E: 6807	′87
			SAI	MPLE	NUMBERS	T	1	111
COMPOUND	1099G007		I099G00	08F	109960:	13	109960	13D
					i • •••• • • • •		:	
ALUMINUM	260000.		200	U	670000		6900	
ANTIMONY		J	60.0	U	60.0	U	60.0	U
ARSENIC		U	10.0	U	27.0	U	19.0	U
BARIUM	1400.		200	U	5800.		5300.	
BERYLLIUM	11.0		5.00	U	29.0		27.0	
CADMIUM	, 29.0		5.00	U ·	93.0		88.0	
CALCIUM	460000.		910	M	1200000	•	10000	000+
CHROMIUM	280		10.0	U	890		1100.	
COBALT	61.0	,	50.0	U	270	· .	240	
COPPER	910 280000,	3	25.0	-	24000.	J		10.000
IRON Lead	150	J	100 5.00	ប ប	73000. 510	· .	7600 210	
MAGNESIUM	190000	J	5000.	U	400000	J	300(
MANGANESE	5600.		15.0	U	22000.	•	20000.	////
MERCURY		U	0.33	U	1.50	ับ	1.20	· U
NICKEL	270	0	40.0	и	1100.	U U	1300.	' U
FOTASSIUM	17000.		5000.	U	59000.		60000.	
SELENIUM		I	00001	I	370001	I	00000+	I
SILVER	10.0	บ้	10.0	บ้	10.0	บ้	10.0	บ้
SODIUM	34000.	U I	5000.	U	35000.	U	39000.	U
201101	54000+		3000+		00000		37000+	

40.0

50.0

20.0

N/A

U

U

U

u

I

10.0

40.0

1100.

3300.

N/A

U

U

I

10.0

40.0

1100.

3000.

N/A

U

U

I

10.0

40.0

N/A

430

940

U

U

I

:

!

İ

1

1

.

;

-

ł

THALLIUM

VANADIUM

CYANIDE

NIT

ZINC

	ANALYSIS TYP	E: 1	TOTAL MET	ALS K	CONTRACT	OR)		
TITLE: CADMUS	· ·		ATRIX: S				TS: MG/KG	
LAB: PBS&J SAMPLE PREP:A	NALYST/ENTRY: E90		1ETHOD: 9 REVIEWER:	00100	12.4		E: 6807 E: 04/02/	87
		•		Q4-	A			-
			SA	MPLE	NUMBERS			
	I099G01	1	109960	12	I099G0	15	I099G0	16
COMPOUND		-	107700			.	107700	
ALUMINUM	13000.		12000.		24000.		8900.	
ANTIMONY	30.0	U	30.0	U	30.0	U	30.0	U
ARSENIC	5.00	U	3.80	М	9.80		2.70	М
BARIUM	. 190		190		220		94.0	м
BERYLLIUM	0.9	M	0.7	М	1.00	М	0.4	M
CADMIUM	2.90	Ì	10.0		2.40	M	1.80	M
CALCIUM	11000.		13000.		28000.		13000.	•
CHROMIUM	24.0	4	18.0		31.0		14.0	
COBALT	8.60	M	8.80	M	13.0	М	7.40	М
COPPER	1600.		46.0		38.0		78.0	
IRON	32000.	J '	22000.	J	32000.	J	9300.	J
, LEAD	10.0	J	9.00	J	9.60	J	9.90	J
MAGNESIUM	6600.		5900.		11000.		7700.	
MANGANESE	760	J	320	J	570	J	540	J
MERCURY	0,26		0.1	U	0.17		0.1	U
NICKEL	29.0		23.0		30.0		17.0	м
POTASSIUM	1400.	м	1100.	м	1900.	M	1100.	M .
SELENIUM		I	1,90	M		I	2.50	U
SILVER	5,00	U	5.00	Ü	5.00	U	5.00	U
SODIUM	2500.	ū	2500.	Ū	2500.	ũ	2500.	บิ
THALLIUM	5.00	ū	5.00	Ū	5,00	Ũ	5.00	Ū
TIN	20.0	Ū	20.0	Ū	20.0	บ	20.0	Ū
VANADIUM	35.0		29.0		51.0	-	33.0	-
ZINC	110		71.0		86.0		51.0	
CYANIDE	N/A	I	N/A	I	NZA	I	N/A	I

: .

, 1 :

· · · · · ·		1 I I	!			
	,	ANALYSIS	TYPE:	TOTAL METALS (CONTRACT	OR	
TITLE: CADMUS Lab: PBS&J Sample PREP:	A	NALYST/ENTRY: I	E92	MATRIX: WATER METHOD: 9001007 REVIEWER: 2-4	UNITS: Case: Date:	
				SAMPLE NUMBERS		
		10990	5014	10996021		
COMPO	מאטו					

	ALUMINUM	500	U	1000000.	
i	ANTIMONY	46.0	м	60.0	U
	ARSENIC	10.0	u	31.0	U
	BARIUM	200	U	4700.	
	BERYLLIUM	5,00	U	38.0	
	CADMIUM	5.00	U	110	
	CALCIUM	23000.		880000.	
	CHROMIUM	10.0	U	980	
	COBALT	50.0	u	170	
	COPPER	42.0	U	12000.	J
	TRON	860	U	79000.	
1	LEAD	5.00	< U -	460	J
1	MAGNESIUM	19000.		390000.	
	MANGANESE	17.0		14000.	
1	MERCURY	0.7	U	1.70	
:	NICKEL	40.0	U	850	
	POTASSIUM	5000.	U	61000.	
	SELENIUM		I		I
1	SILVER	10.0	U	10.0	U
	SODIUM	8400.		34000.	
i	THALLIUM	10.0	IJ	10.0	U
	TIN	40.0	U	40.0	U
	VANADIUM	50.0	U	1200.	
İ	ZINC	30.0		3200.	
: 	CYANIDE	N/A	I	N/A	I
4					

ANALYSIS TYPE: TOTAL METALS (CONTRACTOR)

TITLE: CADMUS

· · ·

• •

. ٠..

1 .

1

į

ţ

ţ

í

ł

l

AB: PBS&J

SAMPLE PREP:____ ANALYST/ENTRY: E90

MATRIX: SEDIMENT UNITS: MG/KG METHOD: 9001M07 CASE: 6807 DATE: 04/02/87

SAMPLE NUMBERS

I099G017 I099G018 I099G019

I099G020

		107700	T /	107700	τQ	10//00/	17	107700.	20
1	COMPOUND	I							
	ALUMINUM	24000+		25000,	1	19000.		1200.	
•	ANTIMONY	30.0	ប	30.0	ម	30.0	ប	30.0	U
	ARSENIC	6.20		5.40	J.	4.50	м	5.00	U
	BARIUM	190		180		140		14.0	м
	BERYLLIUM	1.10	М.	1.10	м	0.6	м	2.50	U
	CADMIUM	2.20	м	2.70		2.30	м	1.60	м
١	CALCIUM	10000.		13000.		47000.		2600	00.
	CHROMIUM	22.0		22.0		16.0		17.0	
	COBALT	7.50	M	7.40	М	7.40	м	2.20	М
1	COPPER	46.0		32.0		17.0		10000.	
	IRON	270000.	J	23000.	J	21000.	J	9900.	J
	LEAD	15.0	` J	14.0	J	11.0	J	6.90	J
ţ	MAGNESIUM	7000.		6600.		7200.		37000.	
	MANGANESE	340	L	380	L	420	J	250	J
	MERCURY	0.1	U	0.1	U	0.2		0.1	U
1	NICKEL	22.0		22.0		18.0	м	26.0	
	POTASSIUM	1700.	M	1600.	М	950	м	2500.	U
	SELENIUM	2.50	U	2.50	U	2,50	U	2.50	U
-	SILVER	5.00	U	5.00	u	5.00	U	5.00	U
4	SODIUM	2500.	U	2500.	U	2500.	U	400	М
	THALLIUM	5.00	U	5,00	u	5.00	U	5.00	U
1	TIN	20.0	U	20.0	U	20.0	U	20.0	U
	VANADIUM	43.0		46.0		34.0		8.00	Μ.,
	ZINC	89.0		88.0		58.0		140	i
;	CYANIDE	N/A	I	N/A	I	N/A	I	N/A	I

ANALYSIS TYPE: TOTAL METALS (CONTRACTOR)

TITLE: CADMUS	MATRIX: SEDIMENT	UNITS: MG/KG
AB: PBS&J BAMPLE PREF: ANALYST/ENTRY: E91	REVIEWER:	CASE: 6807
SHAFLE FREF + HURLISTZENTAT + C71	REVIEWER, Chamber	DATE: 04/02/8/

``

ł .

ł

٩

۱

ş

SAMPLE NUMBERS

İ

		1099602	OD	I099G02	22	1099602	3
	COMPOUND					I	1
	ALUMINUM	900		5400.		3000.	
	ANTIMONY	30.0	U	30.0	U	30.0	U
4	ARSENIC	5.00	U	2.60	м	5.00	U
	BARIUM	9+20	M	63,0	м	34.0	М
	BERYLLIUM	2,50	U	0.2	м	2,50	U
ł.	CADMIUM	1.10	М	1.20	м	0.9	М
	CALCIUM	280000.		130000.		230000.	
	CHROMIUM	15.0		13.0		10.0	
	COBALT	3.10	М	4.20	М	25.0	U
:	COPPER	8600.	•	5300.		65.0	
Т	IRON	8900.	J	13000.	J	8300.	J
	LEAD	6.30	J	16.0	J	120	J
	MAGNESIUM	35000.		17000.		21000.	
	MANGANESE	210	J	90.0	J	210	J
1	MERCURY	0.13		0.1	บ	0.1	U
İ	NICKEL	21.0		19.0	M	7.40	м
	POTASSIUM	2500.	U	710	М	590	м
	SELENIUM	2.50	U		I	2.50	U
	SILVER	5.00	U	5.00	U	5.00	U
•	SODIUM	2500.	U	2500,	U	2500.	U
	THALLIUM	5.00	U	5.00	U	5.00	U
	TIN	20.0	U	20.0	บ	20.0	υ.
:	VANADIUM	6.80	M	18.0	М	13.0	м
	ZINC	100		82.0		52.0	
	CYANIDE	N/A	I	N/A	I	N/A	I

:

ſ

ANALYSIS TYPE: DISSOLVED METALS (CONTRACTOR)

TITLE: CADMUS AB: PBS&J GAMPLE PREP:	ANALYST/ENTRY: E93	;	METHOD: 90 REVIEWER:	ATER 001M			FS: UG/L E: 6807 E: 04/02/	
			ωm	TT baba		I.		, ii *
	1099600	7	109960	08F	109960	13	I099GC	130
Сомроило	, — , — , — , — ,							
	_ I				1			
ALUMINUM	410	U	200	U	200	U	730	U
ANTIMONY	60.0	U	60.0	U	60.0	U I	49.0	М
ARSENIC	10.0	U	10.0	U	10.0	U	10.0	· U
BARIUM	80.0	ิท่	200	U	160	M	220	
BERYLLIUM	5.00	U	5,00	U	5.00	U	5.00	U
CADMIUM	5.00	U	5.00	U	5.00	U	5.00	U
CALCIUM	170000.		810	М	68000.		91000.	
CHROMIUM	10.0	U	10.0	U	15.0		10.0	U
COBALT	50.0	`U	50.0	U	50.0	U	50.0	U
COFPER	25.0	U	25.0	U	120	U	200	U
IRON	13000.		100	U	260	U	910	U
LEAD	20.0	J	5.00	U	15.0	L	14.0	J
MAGNESIUM	85000.		5000.	U	30000.		41000.	
MANGANESE	1300.		15.0	U	1900.		2900.	
MERCURY	1.90	U	0.52		0.89	U	0.83	U
NICKEL ,	40.0	U	40.0	U	40.0	U	20.0	м
POTASSIUM	5000.	υ	5000.	U	4700.	м	4800.	М
SELENIUM		1	5.70	J	6.10	L		I
SILVER	10.0	U	10.0	U	10.0	U	10.0	U
SODIUM	31000.		5000.	U	34000.		34000.	
THALLIUM	10.0	U	10.0	U	10.0	U	10.0	U
TIN	40.0	ป	40.0	U	40.0	U	40.0	บ
VANADIUM	50.0	U	50.0	U	50.0	U	50.0	U
ZINC	20.0	U	20.0	U	17.0	М	19.0	м
CYANIDE	N/A	I	NZA	I	N/A	I	N/A	I

TITLE: CADMUS		
CAB: PBS&J		
BAMPLE PREP:	ANALYST/ENTRY:	E93

MATRIX: WATER METHOD: 9001M07 REVIEWER: 01-2-DATE: 04/02/87

:

SAMPLE NUMBERS

I099G014

1

10996021

COMPOUND

•

1

		ļ		
ALUMINUM	80.0	U	1900.	
ANTIMONY	60.0	Uj	60.0	U
ARSENIC	10.0	U	10.0	U
BARIUM	200	U	89.0	М
BERYLLIUM	5.00	U	5.00	U
CADMIUM	5.00	U	5,00	U
CALCIUM	5000.	U	230000.	
CHROMIUM	10.0	U	12.0	
COBALT	50.0	U	50.0	U
COPPER	28.0	U	30.0	U
IRON	100	U	1300.	ប
LEAD	5.00	`U	22.0	J
MAGNESIUM	18000.		91000.	
MANGANESE	15.0	U	1100.	
MERCURY	0,58	U	1.00	IJ
NICKEL	40.0	U	40.0	U
POTASSIUM	5000.	U	5000.	U
SELENIUM		I		I
SILVER	10.0	U	10.0	U
SODIUM	8000.		29000.	
THALLIUM	10.0	U	10.0	U
TIN	40.0	U	40.0	U
VANADIUM	50.0	ບ	50.0	U
ZINC	20.0	U	20.0	U
CYANIDE	N/A	I	N/A	I

ALYSIS TYPE: VOLATILE AN SES

TITLE: CADMUS LAB: S-CUBED

- i

SAMPLE PREP:_____ ANALYST/ENTRY: E28

1

MATRIX: SEDIMENT METHOD: 9302M01 REVIEWER: 75V-7

UNITS: UG/KG CASE: 6807 DATE: 04/28/87

h

SAMPLE NUMBERS

	109960	01	I099G0	02	I099G0(03	I099G0(54
COMFOUND								
CHLOROMETHANE	14.0	U	15.0	U	14.0	U	15.0	υ
BROMOMETHANE	14.0	ບ	15.0	U	14.0	U	15.0	Ū
VINYL CHLORIDE	14.0	U	46.0		14.0	บ	24.0	-
CHLORDETHANE	14.0	U	15.0	U	14.0	U	15.0	U
METHYLENE CHLORIDE	17.0	U	77.0		22.0	U	10.0	Ū
ACETONE	17.0	U	180		30.0	Ð	11.0	Ū
CARBON DISULFIDE	7.00	U	7.60	U	6.80	U	7.30	ū
1,1 DICHLOROETHENE	7,00	U	7.60	U	6,80	U	4.00	M
1,1 DICHLOROETHANE	7,00	U	7.60	U	6.80	U	11.0	
TRANS-1,2,-DICHLOROETHENE	5.00	M	49.0		7,00	Ŀ	330	
CHLOROFORM	7.00	U	18.0		6.80	U	7.30	U
1,2,DICHLOROETHANE	7,00	U	7.60	U	6.80	U	7.30	U
PHRUTANONE		I	10.0	М		I		1
: #1 / TRICHLOROETHANE	7.00	Ų	7.60	U	6.80	U	2.00	м
CARBON TETRACHLORIDE	7,00	U	7.60	U	6,80	U	7.30	U
VINYL ACETATE		I		I		I		I
BROMODICHLOROMETHANE		I		I		I		I
1,1,2,2,-TETRACHLORDETHANE	7.00	U	7.60	U	6.80	IJ	7.30	Ų
1,2-DICHLOROPROPANE	7.00	U	7.60	U	6.80	บ	7,30	U
RANS-1,3-DICHLOROPROPENE	7.00	U	7.60	IJ	6.80	U	7.30	U
FRICHLOROETHENE	7.00	U	52.0		6.80	U	8,00	
DIBROMOCHLOROMETHANE	7.00	U	7.60	U	6.80	U	7.30	U
1,1,2-TRICHLOROETHANE	7.00	U	31.0		6.80	U	7.30	U
BENZENE	7.00	U	7.60	U	6.80	บ	2.00	M
CIS-1,3-DICHLOROPROPENE	7.00	U	7.60	U	6.80	U	7.30	U
C-CHEORDETHYE VINYL ETHER		I		I		I		I
BROMOFORM	7.00	U	7.60	U	6.80	บ	7.30	U
2-HEXANONE		I		I		I		I
H-METHYL-2-PENTANONE		I		I		I		I
TETRACHLOROETHENE	7.00	U	6.00	М	6.80	U	7.30	U
IOLUENE	7.00	U	7.60	U	6.80	U	7.30	U ·
HLOROBENZENE	7.00	U	7.30	U	6.80	U	21.0	
ETHYL BENZENE	7.00	U	7.60	υ	6+80	ບ	7.30	U
⊖TYRENE	7.00	U	7.60	U	6,80	U	7.30	U
TOTAL XYLENES	6.00	м	7.60	บ	6.80	U	7.30	U

Ŧ

TITLE: CADMUS	MATRIX: SEDIMENT	UNITS: UG/KG
LAB: S-CUBED	METHOD: 9302M01,	CASE: 6807
LAB: S-CUBED SAMPLE PREP: ANALYST/ENTRY: E30	REVIEWER:7	DATE: 04/28/87

SAMPLE NUMBERS

.

ł

i

COMPOUND	1099G	001	1099600	2	I099G003	3	I099G0	04	
COMPOUND									,
PHENOL	21000.	U	21000.	U	21000.	U	730	U	:
BIS(2-CHLOROETHYL) ETHER	21000.	U	21000.	U	21000+	U	730	U	
2-CHLOROPHENOL	21000.	U	21000.	U	21000.	U	730	U	
1,3 DICHLOROBENZENE	21000.	U	21000.	U	21000.	U	730	11	1
1,4 DICHLOROBENZENE	21000.	U	21000.	U	21000.	U	730	U	
BENZYL ALCOHOL	21000.	ប	21000.	U	21000.	U	730	U	
1,2 DICHLOROBENZENE	21000.	U	21000.	U	21000.	U	730	U	ŀ
2-METHYLPHENOL	21000.	U	21000.	U	21000.	U	730	U	
BIS(2-CHLOROISOPROPYL)ETH	ER 21000.	U	21000.	U	21000.	U	730	U)
4-METHYLFHENOL	21000.	U	21000.	U	21000.	U	730	U	;
N-NITROSO-DIFROFYLAMINE	21000.	U	21000.	U	21000.	U	730	U	
HEXACHLORDETHANE	21000.	U	21000.	U	21000.	U	730	υ	1
NITROBENZENE	21000.	U	21000.	U	21000.	U	730	U	•
ISOPHORONE	21000.	U	21000.	U	21000.	U	730	U	
2-NITROPHENOL	21000.	U	21000.	U	21000.	U	730	U	,
2,4-DIMETHYLPHENOL	21000.	U	21000.	U	21000.	U	730	Ð	:
BENZOIC ACID	100000.	U	100000.	U	100000.	U	3500.	U	
BIS(2-CHLOROETHOXY) METHA	NE 21000.	U	21000.	U	21000.	U	730	U	1
2,4 DICHLOROPHENOL	21000.	U	21000.	U	21000.	U	730	U	ì
1,2,4-TRICHLOROBENZENE	21000.	U	21000.	U	21000.	U	730	บ	
NAPHTHALENE	21000.	U	21000.	U	21000.	U	730	U	1
4-CHLOROANILINE	21000.	U	21000.	U	21000.	Ù	730	U	:
HEXACHLOROBUTADIENE	21000.	U	21000.	IJ	21000.	U	730	U	
4-CHLORO-3-METHYLPHENOL	21000.	U	21000.	U	21000.	U	730	U	1
2-METHYLNAPHTHALENE	21000.	U	21000.	U	21000.	U	730	U	·
HEXACHLOROCYCLOPENTADIENE	21000.	U	21000.	บ	21000.	U	730	U	;
2,4,6-TRICHLOROPHENDL	21000.	U	21000.	U	21000.	U	730	U	
2,4,5-TRICHLOROPHENOL	100000.	U	100000.	U	100000.	U	3500.	U	
2-CHLORONAFHTHALÉNE	21000.	U	21000.	U	21000.	U	730	U	- E
2-NITROANILINE	100000.	U	100000.	U	100000.	U	3500.	Ð	
DIMETHYLPHTHALATE	21000.	U	21000.	U	21000.	U	730	U	ł
ACENAPHTHYLENE	21000.	U	21000.	IJ	21000.	U	730	U	Ĩ
3-NITROANILINE	100000.	U	100000.	Ű	100000.	Ü	3500.	U	
ACENAPHTHENE	21000.	່ ບ	21000.	Ú.	21000.	U	730	U	ſ
2,4-DINITROPHENOL	100000.	υ	100000.	Ū	100000.	U	3500.	U	
4-NITROPHENOL	100000.	Ū	100000.	บ	100000.	Ū	3500.	U	
DIBENZOFURAN	21000.	Ū	21000.	Ū	21000.	Ū	730	U	ı
2,4-DINITROTOLUENE	21000.	Ū	21000.	Ū	21000.	Ū	730	Ū	,
	······································	-		-	· · · ·	-	•		

l

!

ALYSIS	TYPE:	SEMIVOLATILE	(PAGE 2)
--------	-------	--------------	----------

	ALYSIS	TYPE:	SEMIVOLA	TILE	PAGE 2)				
				,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
TITLE: CADMUS		1	MATRIX:	SEDIM	ENT	UNI	TS: UG/KG		·
LAB: S-CUBED			METHOD:	9302M		CAS	E: 6807		
SAMPLE PREP: ANALYST	ENTRY:	E32	REVIEWER	:	<u>sv</u> 7	DAT	E: 04/28/	87	
									1
			S	AMPLE	NUMBERS				-
•	TADD	G001	10996	~~~	100000	. –7	100000	~ ^	
COMPOUND	1077	6001	10996	002	1099GO0	13	I099G0	04	
CONFOORD		1							
2,6-DINITROTOLUENE	21000.	U	21000.	U	21000.	บ	73000.	U	Ŧ
DIETHYLPHTHALATE	21000.	ប	21000.	U	21000.	U	73000.	U	
4-CHLOROPHENYL PHENYL ETHEF	२ 21000	• U	21000.	U	21000.	ับ	73000.	U	
FLUORENE	21000.	U		, U	21000.	Ũ	73000.	IJ	
4-NITROANILINE	L00000.	U	100000.	, U	100000.	U	3500	00.0	
4,6-DINITRO-2-METHYLPHENOL	100000.	U	100000.	U	100000.	U	3500	00.0	,
N-NITROSODIPHENYLAMINE	21000.	U	21000.	U	21000.	U	73000.	U	
4-BROMOPHENYL PHENYL ETHER	21000.	U	21000.	U	21000.	U	73000.	U	
HEXACHLOROBENZENE	21000.	U	21000.	U	21000.	U	73000.	U	
	100000.	U	100000.	U	100000.	U	3500	00.0	ŀ
FHENANTHRENE	21000.	U	21000.	U	21000.	U	73000.	U	
ANTHRACENE	21000.	U	21000.	i U	21000.	U	73000.	U	·
DI-N-BUTYLPHTHALATE	21000.	U	21000.	U	21000.	U	73000.	U	
FLUORANTHENE	21000.	U	21000.	U	21000.	U	73000.	U	į.
PYRENE	21000.	U	21000.	U	21000.	U	73000.	U	ł
BUTYL BENZYL PHTHALATE	21000.	U	21000.	U	21000.	U	73000.	U	
3,3' DICHLOROBENZIDINE	43000.	U	43000.	U	42000.	U	1500	00.0	
BENZO(A)ANTHRACENE	21000.	U	21000.	U	21000.	Ū.	73000.	U	Í
BIS(2-ETHYLHEXYL)PHTHALATE	21000.	U	21000.	U	21000.	U	550	М	1
CHRYSENE	21000.	U	21000.	IJ	21000.	U	73000.	U	
DI-N-OCTYL PHTHALATE	21000.	U	21000.	U	21000.	U	73000.	IJ	1
BENZO(B)FLUORANTHENE	21000.	U	21000.	ບ	21000.	U	73000.	U	
BENZO(K)FLUORANTHENE	21000.	U	21000.	U	21000.	U	73000.	ŧ, I	
BENZO(A)PYRENE	21000.	U	21000.	υ	21000.	U	73000.	£1	
INDEND(1,2,3-CD)FYRENE	21000.	U	21000.	U	21000.	U	73000+	U	
DIBENZO(A,H)ANTHRACENE	21000.	U	21000.	U	21000.	U	73000.	U	1
BENZO(G,H,I)FERYLENE	21000.	U	21000.	U	21000.	ູບ	73000.	U	

TITLE: CADMUS	MATRIX: SEDIMENT
LAB: S-CUBED	METHOD: 9302M01 REVIEWER: 750 4
SAMPLE PREP: ANALYST/ENTRY: E34	REVIEWER: 72V 7

SEDIMENT 🕔	UNITS: UG/KG
9302M01 / /	CASE: 6807
9302M01 75V 4	DATE: 04/28/87

Ł

١

SAMPLE NUMBERS

I0996	001	I099G0(02	109960	03	I099G0	04	
					I			,
340	U	3600.	U	3300.	U	12.0	U	
340	U	3600.	េប	3300.	U	12.0	U	
340	U	3600.	U	3300.	Ŭ	12.0	U	
340	U	3600.	U	3300.	U	12.0	U	•
340	U	3600.	U	3300.	U	12.0	บ	1
340	U	3600.	U	3300.	U	12.0	U	
340	U	3600.	U	3300.	Ü	12.0	U	
340	U	3600.	U	3300.	U	12.0	U	1
670	U	7300.	ม	6600.	U	24.0	U	
	ย	7300.	U	6600.	U	24.0	U	
	U	7300.	U	6600.	U	24.0	U	ì
670	U	7300.	U	6600.	U.	24.0	ບ	'
670	U	7300.	U	6600.	U	24.0	U	
670	U	7300.	U	6600.	U	21.0	U	
670	U	7300.	U	6600.	U	24.0	U	
670	U	7300.	U	6600.	U	24.0	U	
670	U	7300.	U	6600.	U	24.0	U	
3400.	U	36000.	ប	33000.	U	120	U	
3400.	u	36000.	U	33000.	U	120	U	
6700.	u	73000.	U	66000.	U	240	บ	
3400.	U	36000.	U	33000.	U	120	U	
3400.	U	36000.	U	33000.	U	120	U	
3400.	U	36000.	U	33000.	U	120	U	,
3400.	μ	36000.	U	33000.	U	120	U	
1900.	h l	650000.		390000	•	140		
6700.	μ	73000.	U	66000.	U	240	U	ŗ
6700.	U	73000.	U	66000.	U	240	U	
	340 340 340 340 340 340 340 670 670 670 670 670 670 670 670 670 67	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

l

n n and policina and a second se

TITLE: CADMUS

A

Ш

LAB: S-CUBED

SAMPLE PREP: _____ ANALYST/ENTRY: E28

MATRIX: SEDIMENT METHOD: 9302M01 REVIEWER:

UNITS: UG/KG CASE: 6807 DATE: 04/28/87 1

ı.

SAMPLE NUMBERS

	I099G(05	109960	06	109960	09	1099G0:	10	1
COMPOUND								I	1
CHLOROMETHANE	440	U	57.0	U	14.0	U	15.0	U	
BROMOMETHANE	440	Ŭ	57.0	บั	14.0	Ū	15.0	ũ	
VINYL CHLORIDE	42.0	พี	33.0	พื	16.0	-	7.00	м	i
CHLOROETHANE	440	U	57.0	U	12.0	Ń	15.0	Û,	,
METHYLENE CHLORIDE	1100.	Ū	56.0	Ū	22.0	Ü	18.0	U	
ACETONE	480	Ū	89.0	Ū	61.0	1	180		
CARBON DISULFIDE	220	Ū	29.0	Ū	7.00	U	7.50	U i	i
1,1 DICHLOROETHENE	13.0	M	29.0	ี้ บิ	6.00	М	7.50	U	
1,1 DICHLORDETHANE	28.0	M	12.0	M	250		6.00	M	1
TRANS-1,2,-DICHLOROETHENE	1100.		520		19.0		14.0		·
CHLOROFORM	220	U	29.0	΄ U	7.00	U	7.50	U	
1,2,DICHLORDETHANE	220	U	29.0	U	7.00	U	7,50	U i	ì
2-BUTANONE	1900.	J	52.0	М	26.0	J		1	:
1,1,1 TRICHLOROETHANE	220	U	29.0	บ	40.0		7.50	U	
CARBON TETRACHLORIDE	220	U	29.0	U	7.00	U	7,50	U	į –
VINYL ACETATE		I		I		I		Ξ. ·	٠
BROMODICHLOROMETHANE		I		I		I		1	
1,1,2,2,-TETRACHLORDETHANE	220	U	29.0	U	7.00	U	7,50	U	F.
1,2-DICHLOROPROPANE	220	U	29.0	U .	7.00	U	7.50	U	'
TRANS-1,3-DICHLOROPROPENE	220	U	29.0	U	7.00	ย่	7,50	U	1
TRICHLOROETHENE	220	U	29¦i 0	U .	31.0		21.0		
DIBROMOCHLOROMETHANE	220	U	29.0	U	7.00	U	7.50	IJ	;
1,1,2-TRICHLOROETHANE	220	บ	29.0	¹ U	6.00	м	7.50	U	ł
BENZENE	220	U	29.0	U	24.0	I	7.50	U	
CIS-1,3-DICHLOROPROPENE	220	U	29.0	U	7.00	Ü	7.50	U	1
2-CHLOROETHYL VINYL ETHER		I		I		I		Т.	
BROMOFORM	220	U	29.0	U	7.00	U	7.50	U	•
2-HEXANONE		I		I		I		1	!
4-METHYL-2-FENTANONE		I		I		I		1	
TETRACHLOROETHENE	220	U	29.0	U	7.00	U	2.00	М	ł
TOLUENE	220	U	29.0	U	77.0		4.00	m	
CHLOROBENZENE	220	U	94.0		110		19.0		i
ETHYL BENZENE	220	U	29.0	U	7.00	U	7.50	U	•
STYRENE	220	U	29.0	្រប	7.00	·υ	7.50	Ð	I.
TOTAL XYLENES	220	U	29.0	.' U -	700	Ů	7.50	U	i.
		1		E, L	. !	1			

1.1.1

ł

TITLE: CADMUS

LAB: S-CUBED

SAMPLE PREP:____ ANALYST/ENTRY: E30

	SEDIMENT
METHOD:	9302M01
REVIEWER	
	/

UNITS:	UG/KG
CASE:	6807
DATE:	04/28/87

SAMPLE NUMBERS

	10996005	5	10996006	10996009	1099601 0
COMPOUND		ŀ	10770000	Ň	
PHENOL	21000.	U	19000. U	21000.	J 23000. U
BIS(2-CHLOROETHYL) ETHER	21000.	Ŭ	19000 U		
2-CHLOROPHENOL	21000.	U U	19000. U		U 23000. U J 23000. U
1,3 DICHLOROBENZENE	21000.	1			
		U			
1,4 DICHLOROBENZENE	21000.	U	19000. U		J 23000+ U
BENZYL ALCOHOL	21000.	U	19000. U		J 23000. U '
1,2 DICHLOROBENZENE	21000.	U	19000. U		J 23000. U
2-METHYLFHENOL	21000.	U	19000. U		J 23000, U
BIS(2-CHLOROISOPROPYL)ETH		U	19000. U		J 23000. U
4-METHYLPHENOL	21000.	U	19000. U	21000. L	
N-NITROSO-DIPROPYLAMINE	21000.	U	19000. U		J 23000. U
HEXACHLOROETHANE	21000.	U	19000. U		J 23000. U j
NITROBENZENE	21000.	U	19000 U	21000, L	
ISOPHORONE	21000.	U	19000. U		J 23000+ U
2-NITROPHENOL	21000.	U	19000. U	21000. L	J 23000+ U
2,4-DIMETHYLPHENOL	21000.	U	19000. U	-21000, U	J 23000. U ,
BENZOIC ACID	100000.	U	90000. U	100 000. U	J 110000+U
BIS(2-CHLOROETHOXY) METHA	NE 21000.	IJ	19000. U	21000, U	J 23000. U
2,4 DICHLOROPHENOL	21000.	U	19000. U	21000, L	J 23000. U
1,2,4-TRICHLOROBENZENE	21000.	U	19000. U	21000. L	J 23000. U
NAPHTHALENE	21000.	U	19000. U	21000. L	U 23000. U
4-CHLOROANILINE	21000.	U	19000. U	21000. U	J 23000. U
HEXACHLOROBUTADIENE	21000.	U	19000. U		J 23000, U
4-CHLORO-3-METHYLPHENOL	21000.	Ū	19000. U		J 23000. U
2-METHYLNAPHTHALENE	21000.	Ū	19000. U	21000. (
HEXACHLOROCYCLOPENTADIENE	21000.	Ü	19000. U	21000. L	
2,4,6-TRICHLOROPHENOL	21000.	ū	19000, U	21000. U	
2,4,5-TRICHLOROPHENOL	100000.	Ū	90000 U	100000. [
2-CHLORONAPHTHALENE	21000.	Ū	19000, U	21000. U	
2-NITROANILINE	100000.	Ü	90000 U	100000. L	
DIMETHYLPHTHALATE	21000.	Ū	19000. U	21000. L	1
	21000.	Ū	19000 U	21000, L	
3-NITROANILINE	100000.	ŭ	90000. U	100000. L	
ACENAPHTHENE	21000.	Ü	19000. U	21000. L	
2,4-DINITROPHENOL	100000.	U	90000 U		
4-NITROPHENOL	100000.	U U	90000 U		· · · · · · · · · · · · · · · · · · ·
		-			
DIBENZOFURAN	21000.	U	19000. U	5200. M	
2,4-DINITROTOLUENE	21000.	U	19000. U	21000.	1 23000. U

· .' .

j !!

1...

TITLE: CADMUS LAB: S-CUBED

;

.

SAMPLE PREP:_____ ANALYST/ENTRY: E32

MATRIX: SEDIMENT UNITS: UG/KG MATKIA. SEDITLER METHOD: 9302M01 REVIEWER: ______

CASE: 6807 DATE: 04/28/87

ł

L

ł.

Ì

ł

SAMPLE NUMBERS

	I099G0	05	I099G(006	I099G00	9	I099G 0	10
COMPOUND								
2,6-DINITROTOLUENE	21000.	U	19000.	U	21000.	U	23000.	U
DIETHYLPHTHALATE	21000.	U	19000.	U	21000.	U	23000.	U
4-CHLOROPHENYL PHENYL ETHE	R 21000.	บ	19000.	U	21000.	U	23000.	U
FLUORENE	21000.	U	19000.	U	21000.	Ù	23000.	U
4-NITROANILINE	100000.	U	90000.	U	100000.	U	1100	00.U
4,6-DINITRO-2-METHYLPHENOL	. 100000.	U	90000.	U	100000.	U	1100	00.0
N-NITROSODIFHENYLAMINE	21000.	U	19000.	บ	21000.	U	23000.	U
4-BROMOPHENYL PHENYL ETHER	21000.	U	19000.	U	21000.	U	23000.	U
HEXACHLOROBENZENE	21000.	Ч	19000.	U	21000.	U	23000.	U
PENTACHLOROPHENOL	100000.	þ	90000.	บ	100000.	U	1100	00.11
PHENANTHRENE	21000.	U	19000.	U	21000.	Ü	23000.	U
ANTHRACENE	21000.	U U	19000.	U	21000.	U	23000.	U
DI-N-BUTYLPHTHALATE	21000.	Ū.	19000.	บ	21000.	U	23000.	11
FLUORANTHENE	21000.	Ù	19000.	U	21000.	U	23000.	(!
PYRENE	21000.	U	19000.	U	21000.	U	23000.	U
BUTYL BENZYL PHTHALATE	21000.	U	19000.	U	21000.	U	23000.	U
3,3' DICHLOROBENZIDINE	43000.	U	37000.	υ	43000.	IJ	46000.	U
BENZD(A)ANTHRACENE	21000.	U	19000.	U	21000.	U	23000.	U
BIS(2-ETHYLHEXYL)PHTHALATE	21000.	U	19000.	U	21000.	U	23000.	U
CHRYSENE	21000.	U	19000.	U	21000.	บ	23000.	U
DI-N-DCTYL PHTHALATE	21000.	U	19000.	U	21000.	U	23000.	U
BENZO(B)FLUORANTHENE	21000.	U	19000.	U	21000.	U	23000.	U
BENZO(K)FLUORANTHENE	21000.	U	19000.	U	21000.	U	23000.	U
BENZO(A)FYRENE	21000.	U	19000.	ປ	21000.	U	23000.	U
INDENO(1,2,3-CD)PYRENE	21000.	U	19000.	υ	21000.	U	23000.	U
DIBENZO(A,H)ANTHRACENE	21000.	U	19000.	U	21000.	U	23000.	U
BENZO(G,H,I)FERYLENE	21000.	U	19000.	U	21000.	U	23000.	U

11. 11.

ALYSIS TYPE: PESTICIDES

TITLE: CADMUS La b : S-Cubed Sample Prep:	ANALYST/ENTRY:	E34	MATRIX: METHOD: REVIEWER	9302M R:		CAS	TS: UG/K(E: 6807 E: 04/28/	
COMPOUND	1099	6005	10990	3006	1099600)9:	I099G()10
COM SORD								
ALPHA-BHC	340	U	320	U	34000.	U	3600.	U
BETA-BHC	340	U	320	U	34000.	U	3600.	U
DELTA-BHC	340	U	320	บ	34000.	Ð	3600.	U
GAMMA-BHC	340	. U	320	· U	34000.	Ü	3600.	U
HEPTACHLOR	340	U	320	U	34000.	Ð	3600.	U
ALDRIN	340	U	320	ີ່ປ	34000+	U	3600.	U
HEPTACHLOR EPOXIDE	340	U	320	U	34000.	U	3600.	U
ENDOSULFAN I	340	U	320	U	34000.	U	3600.	U
DIELDRIN	670	U	630	U	67000.	U	7200.	U
4,4'-DDE	670	U	630	U	67000.	Ū	7200.	U
ENDRIN	670	U	630	- U	67000.	U	7200.	ប
ENDOSULFAN II	. 670	U	630	U	67000.	U	7200.	U
4,4'-DDD	670	U	630	U	67000.	U	7200.	U
ENDRIN ALDEHYDE	670	U	630	· U	67000.	U	7200.	U
ENDOSULFAN SULFATE	670	U	630	U	67000.	บ	7200.	บ
4,4'-DDT	670	U	630	U	67000.	U	7200.	U
ENDRIN KETONE	670	U	630	U	67000.	Ð	7200.	U
METHOXYCHLOR	3400.	U	3200.	U	340000	• U	36000.	U
CHLORDANE	3400.	U	3200.	U	340000	. U	36000.	บ
TOXAPHENE	6700.	U	6300.	U	670000	. U	72000.	U
AROCLOR-1016	3400.	U	3200.	, U	340000		36000.	U
AROCLOR-1221	3400.	บ	3200.	U	340000		36000.	U
AROCLOR-1232	3400.	U	3200,.	U 1	340000		36000.	IJ
AROCLOR-1242	3400.	U	3200'.	្រា	340000		36000.	U
AROCLOR-1248	6400.		3200.	u	12,000,00		5 V 630()00.
AROCLOR-1254	6700.	u	`6300.	U	670000		72000.	U
AROCLOR-1260	6700.	U	6300.	U	670000	, U	72000.	U

ı

Ì.

1

(¹

• 1

.

ł

TITLE: CADMUS

 $\pm 10^{-1}$

1

• 、

LAB: S-CUBED

SAMPLE PREP: _____ ANALYST/ENTRY: E28

MATRIX:	ŚE	DI	MENT	r
METHOD:	93	02	MOL	1
REVIEWER	1	_7	<u>5/</u>	

UNITS: UG/KG CASE: 6807 DATE: 04/28/87 i

ŧ

1 .

T

SAMPLE NUMBERS

			W11	III haalaaa	Romando				,
	I099G0	11	1099G0	12	I099G0:	15	1099GO	16	ł
СОМРОИНФ					:	1			
CHLOROMETHANE	74.0	U	67.0	ប	560	U	510	U	
BROMOMETHANE	74.0	U	67.0	U	560	U	510	U	•
VINYL CHLORIDE	220		270		560	U	450	М	
CHLOROETHANE	74.0	U	67.0	U	560	ប	510	U	
METHYLENE CHLORIDE	200	U	130	U	280	U	260	IJ	
ACETONE	200	U	67.0	្រប	560	ម	840		l.
CARBON DISULFIDE	37.0	U	33.0	U	280	U	260	U	
1,1 DICHLOROETHENE	37.0	U	4.00	м	280	U	260	9	l
1,1 DICHLOROETHANE	28.0	М	13.0	М	280	U	260		l
TRANS-1,2,-DICHLOROETHENE	750		1600.		1600,		1900.		
CHLOROFORM	37.0	U	33.0	U	280	U	260	U	•
1,2,DICHLOROETHANE	37.0	U	33.0	U	280	U	260	U	
2-BUTANONE	74.0	U		, I		I	3700.	J	
1,1,1 TRICHLOROETHANE	37.0	U	33.0	ี ป	280	U	260	U	
CARBON TETRACHLORIDE	37.0	U	33.0	U	280	U	260	U	1
VINYL ACETATE		I		I		I		1	.
BROMODICHLOROMETHANE		I		I		Ī		1	
1,1,2,2,-TETRACHLOROETHANE	37.0	U	33.0	ປ	280	ບົ	200	M	l
1,2-DICHLOROFROPANE	37.0	Ű	33.0	Ū	280	Ũ	260	Ŭ	1
TRANS-1,3-DICHLOROPROPENE	37.0	U	33.0	Ū	280	บ	260	Ū	
TRICHLOROETHENE	37.0	Ū	81.0	i	280	Ū	260	Ū	
DIBROMOCHLOROMETHANE	37.0	Ŭ	33.0	່ປ	280	Ū	260	U	
1,1,2-TRICHLOROETHANE	37.0	Ū	33.0	ี่บิ	280	Ū	260	Ū	l
BENZENE	3.00	พี่	3.00	- M	280	Ū	260	Ũ	l
CIS-1,3-DICHLOROPROPENE	37.0	U	33.0	U	280	Ū	260	U	
2-CHLOROETHYL VINYL ETHER		II		I		I		·I	
BROMOFORM	37.0	- U	33.0	υ	280	U	260	U	
2-HEXANONE		I		Ĩ		Ĩ		1	
4-METHYL-2-PENTANONE		II		Ī		Ī		1	1
TETRACHLOROETHENE	37.0	Ū.	33.0	υ	280	บ้	260	U.	1
TOLUENE	6.00	พี	33.0	U U	280	Ŭ	260	Ű	
CHLOROBENZENE	61.0		66.0		280	Ü	260	ų.	
ETHYL BENZENE	37.0	U	33.0	ย	280	Ŭ	260	Ü	
STYRENE	37.0	Ü	33.0	: U	280	1	260	Ű	
TOTAL XYLENES	37.0	U I	33.0		280	U U	260	U	ŧ
	37 • V	j in	3340	U	200	ų	200	U	
		1							

ł., 1.1

ļ 1 : 4

TITLE: CADMUS

LAB: 3	S-CUBED		
SAMPLE	PREP:	ANALYST/ENTRY:	E30

MATRIX: SEDIMENT METHOD: 9302M01 REVIEWER: _______ UNITS: UG/KG CASE: 6807 DATE: 04/28/87

SAMPLE NUMBERS

	109960	11	109960)12	I099G0	15	109960	16
COMPOUND								
PHENOL	23000.	υ	730	ับ	100	M	19000.	U
BIS(2-CHLOROETHYL) ETHER	23000.	U	730	บ บ	690	n U	19000.	0 U
2-CHLOROPHENOL	23000.	Ŭ	730	- U	690	บ	19000.	ы Н
1,3 DICHLOROBENZENE	23000.	บ	730	- U	690	Ŭ	19000.	U
1,4 DICHLOROBENZENE	23000.	ŭ	730	Ű	690	Ŭ	19000.	Ű
BENZYL ALCOHOL	23000.	ũ	730	Ŭ	690	บั	19000.	Ũ
1,2 DICHLOROBENZENE	23000.	Ū	730	Ŭ	690	Ŭ	19000.	Ŭ
2-METHYLPHENOL	23000.	ū	730	. Ŭ'	690	Ŭ	19000.	Ŭ
BIS(2-CHLOROISOPROPYL)ETH		Ū	730	ίŪΙ	690	ŭ	19000.	Ű
4-METHYLPHENOL	23000.	ບ	730	่ มี	690	Ū	19000.	ū
N-NITROSO-DIFROFYLAMINE	23000.	Ū	730	Ū	690	บ	19000.	Ü
HEXACHLORDETHANE	23000.	Ū	730	บ	690	ม	19000.	ū
NITROBENZENE	23000.	Ū	730	Ū	690	Ū	19000.	Ū
ISOPHORONE	23000.	Ū	730	บิ	690	ū	19000.	Ū
2-NITROPHENOL	23000.	Ŭ	730	Ŭ	690	Ŭ	19000.	ų.
2,4-DIMETHYLFHENOL	23000.	Ū	730	Ü	690	ŭ	19000.	Ű
BENZOIC ACID	110000.	บ	3500.	Ū	3400.	Ű	91000.	Ū
BIS(2-CHLOROETHOXY) METHAN		บั	730	υ	690	Ŭ	19000.	Ű
2,4 DICHLOROPHENOL	23000.	Ū	730	υ	690	ŭ	19000.	Ű
1,2,4-TRICHLOROBENZENE	23000.	Ū	730	ū	690	ū	19000.	Ű
NAPHTHALENE	23000.	U	730	. Ū	690	บ	19000.	Ũ
4-CHLORDANILINE	23000.	U	730	U	690	Ű	19000.	Ü
HEXACHLOROBUTADIENE	23000.	U	730	ບ	690	U	19000.	U
4-CHLORO-3-METHYLPHENOL	23000.	ับ	730	U	690	U	19000+	U
2-METHYLNAPHTHALENE	23000.	U	730	U	690	U	19000.	U
HEXACHLOROCYCLOPENTADIENE	23000.	U	730	່ປ່	690	U	19000.	U
2,4,6-TRICHLOROPHENOL	23000.	IJ	730	U	690	U	19000.	Ú
2,4,5-TRICHLOROPHENOL	110000.	U	3500.	U	3400.	U	91000.	U
2-CHLORONAPHTHALENE	23000.	U	730	U	690	U	19000.	U
2-NITROANILINE	110000.	U	3500.	1 U	3400.	Ü	91000.	U
DIMETHYLPHTHALATE	23000.	U	730	່ນ	690	U	19000.	U
ACENAPHTHYLENE	23000.	บ	730	υ	690 '	U	19000.	U
3-NITROANILINE	110000.	U	3500.	Ū	3400.	Ū	91000.	Ū
ACENAPHTHENE	23000.	Ū	730	บ้	690	Ū	19000.	Ū
2,4-DINITROPHENOL	110000.	U	3500.	Ū	3400.	Ū	91000.	Ü
4-NITROPHENOL	110000.	U	3500.	ΰ.	3400.	Ū	91000.	Ū
DIBENZOFURAN	23000.	U	730	Ũ	690	Ū	19000.	Ū
2,4-DINITROTOLUENE	23000.	U	730	Ũ	690	Ū	19000.	Ű

;

: .

ALYSIS TYPE: SEMIVOLATILL (PAGE 2)

TITLE: CADMUS LAB: S-CUBED

SAMPLE PREP:_____ ANALYST/ENTRY: E32


MATRIX: SEDIMENT UNI METHOD: 9302M01 CAS REVIEWER: 75/ 4 DAT

UNITS: UG/KG CASE: 6807 DATE: 04/28/87

ł

SAMPLE NUMBERS

	I099G0	11	1099G(012	I099G0	15	I099 G0	16
COMPOUND						I		
2,6-DINITROTOLUENE	23000.	U	730	U	690	ย	19000.	U
DIETHYLPHTHALATE	23000.	U	730	- U	690	ບ	19000.	U
4-CHLOROFHENYL PHENYL ETHE	R 23000.	U	730	U	690	U	19000.	U
FLUORENE	23000.	U	730	U	690	Ú	19000.	U
4-NITROANILINE	110000.	U	3500.	U	3400.	U	91000.	U
4,6-DINITRO-2-METHYLPHENOL	. 110000.	U	3500.	U	3400.	U	91000.	U
N-NITROSODIPHENYLAMINE	23000.	U	730	υ	690	ບ	19000.	U
4-BROMOPHENYL PHENYL ETHER	23000.	U	730	U	590	U	19000.	U
HEXACHLOROBENZENE	23000.	U	730	U	6 9 0	U	19000.	U
PENTACHLOROPHENOL	110000.	U	3500.	บ	3400.	U	91000.	U
PHENANTHRENE	23000.	ບ	730	บ	690	U	19000.	U
ANTHRACENE	23000.	U	730	U	690	U	19000.	U
DI-N-BUTYLPHTHALATE	23000.	U	730	U	690	U	19000.	U
FLUORANTHENE	23000,	U	730	U	690	U	19000.	U
FYRENE	23000.	U	730	U	690	บ	19000.	U
BUTYL BENZYL PHTHALATE	23000.	U	730	U	690	U	19000.	U
3,3' DICHLOROBENZIDINE	45000.	U	1500.	υ	1400.	U	37000.	U
BENZO(A)ANTHRACENE	23000.	U	730	U	690	U	19000.	U
BIS(2-ETHYLHEXYL)PHTHALATE	5400.	М	220	м	1100.	М	1400.	м
CHRYSENE	23000.	U	730	U	690	U	19000.	U
DI-N-OCTYL PHTHALATE	23000.	U	730	U	690	U	6900.	М
BENZO(B)FLUORANTHENE	23000.	U	730	U	690	U	19000.	U
BENZO(K)FLUORANTHENE	23000.	U	730	U	690	U	19000.	U
BENZO(A)FYRENE	23000.	U	730	U	690	U	19000.	U
INDENO(1,2,3-CD)PYRENE	23000.	U	730	U	690	Ű	19000.	U
DIBENZO(A,H)ANTHRACENE	23000.	U	,730	U	690	Ū	19000.	U
BENZO(G,H,I)PERYLENE	23000.	Ū	730	Ū	690	Ū	19000.	Ū

ANALYSIS TYPE: PESTICIDES

' i

· ·

i T

TITLE: CADMUS	MATRIX: SEDIMENT	UNITS: UG/KG
LAB: S-CUBED SAMPLE PREP: ANALYST/ENTRY: E34	METHOD: 9302M01 4 REVIEWER:	CASE: 6807
	3 Shi Yal E-WEn ISI I and Allin manual ni	DISTE. + 09720707

SAMPLE NUMBERS

	I099G(D11	10996012 10996015		15	10996016			
COMPOUND									
ALPHA-BHC	3600.	U	560	U	56.0	U	30000.	U	
BETA-BHC	3600.	U	560	U	56.0	U	30000.	U	
DELTA-BHC	3600.	U	560	U	56.0	Ü	30000.	U	
GAMMA-BHC	3600.	U	560	U	56.0	U	30000.	ប	t
HEPTACHLOR	3600.	บ	560	u	56.0	-ti	30000.	u	
ALDRIN	3600.	U	560	U	56.0	บ	30000.	U	
HEPTACHLOR EPOXIDE	3600.	Ú	560	U	56.0	U	30000.	u	
ENDOSULFAN I	3600.	ប	560	U	56.0	U	30000.	U	
DIELDRIN	7100.	Ú	1100.	5 U	110	ប	61000.	ប	
4,4'-DDE	7100.	U	1100.	u	110	U	61000.	U	· 1
ENDRIN	7100.	þ	1100.	U	110	U	61000.	U	`
ENDOSULFAN II	7100.	U U	1100.	U	110	U	61000.	U	
4,4'-DDD	7100.	U	1100.	U	110	U	61000.	U	
ENDRIN ALDEHYDE	7100.	U	1100.	U	110	U	61000.	U	
ENDOSULFAN SULFATE	7100.	U	1100.	U	110	U	61000.	U	
4 ,4'- DDT	7100.	U	1100.	ບ	110	U	61000.	U	i
ENDRIN KETONE	7100.	ប	1100.	υ	110	U	61000.	U	
METHOXYCHLOR	36000.	U	5600.	U	560	U	3000	00.U	
CHLORDANE	36000.	U	5600.	U	560	U	3000	00.0	
TOXAPHENE	71000.	U	11000.	u	1100.	U	6100	U.00	
AROCLOR-1016	36000.	U	5600.	U	560	U	3000	00.U	
AROCLOR-1221	36000.	U	5600.	ម	560	U	3000	00.0	ł
AROCLOR-1232	36000.	U	5600.	. U	560	U	3000	U+00	
AROCLOR-1242	36000.	U	5600.	. U	560	U	3000	00+U	
AROCLOR-1248	150000.		32000.		3200.		4200	0007	
AROCLOR-1254	71000.	U	ì1000.	U	1100.	U		00.0	
AROCLOR-1260	71000.	U	11000.	U	1100.	U	6100	00.0	

ł

e de la composición de la comp

I

ł

ł

ŧ

ŧ.

ŧ

TITLE: CADMUS

|

i i

LAB: S	S-CUBED		
SAMPLE	PREP:	ANALYST/ENTRY:	E28

MATRIX: SEDIMENT	UNITS: UG/KG
METHOD: 9302M01/	CASE: 6807
REVIEWER:	DATE: 04/28/87

١

1

ķ

SAMPLE NUMBERS

	I099G0)1.7	1099GO	18	109960	19	I099G02	20
COMPOUND								
CHLOROMETHANE	560	υ	65.0	บ	14.0	U	11.0	U A
BROMOMETHANE	560	Ū	65.0	บ	14.0	Ū	11.0	Ü
VINYL CHLORIDE	280	M	35.0	Ň	4.00	M	11.0	ų.
CHLORDETHANE	560	U	65.0	U	14.0	Ü	11.0	U
METHYLENE CHLORIDE	1500.	U	87.0	U	39.0	U	15.0	U!
ACETONE	560	U	65.0	U	14.0	U	11.0	- U - I
CARBON DISULFIDE	280	U	32.0	U	6.90	U	5.50	11
1,1 DICHLORDETHENE	280	ម	8.00	М	6.90	U	5,50	£1
1,1 DICHLORDETHANE	280		16.0	м	2.00	M	5.50	ų.
TRANS-1,2,-DICHLOROETHENE	3000.		480		120		5,50	U
CHLOROFORM	280	U	11.0	м	4.00	M	5.50	U
1,2,DICHLORDETHANE	280	U	61.0	J	33.0	J	5.50	U
2-BUTANONE	3000.	J	65.0	- U		I		Ţ 1
1,1,1 TRICHLOROETHANE	93.0	M ·	32.0	υ	6.90	U	5.50	U
CARBON TETRACHLORIDE	280	U	32.0	Ū	6.90	Ū	5.50	U
VINYL ACETATE		I		I		I		
BROMODICHLOROMETHANE		I		I		I		
1,1,2,2,-TETRACHLORDETHANE	280	ນື	32.0	ບ	6.90	บ่	5.50	H
1,2-DICHLOROPROPANE	280	Ũ	32.0	ū	6.90	ū	5.50	Ų.
TRANS-1,3-DICHLOROPROPENE	280	U	32.0	Ű	6.90	Ū	5.50	11
TRICHLOROETHENE	280	U	320		76.0		5.50	- <u>u</u> +
DIBROMOCHLOROMETHANE	280	U	32.0	U	6.90	U	5.50	U
1,1,2-TRICHLOROETHANE	280	U	42.0	U	28.0	U	5.50	U
BENZENE	280	U	32.0	U	6.90	Ŭ	5.50	U
CIS-1,3-DICHLOROPROPENE	280	U	32.0	U	6.90	U	5.50	U
2-CHLOROETHYL VINYL ETHER		Ι		ľ.		I		Ţ
BROMOFORM	280	U	32.0	ປິ	5.90	ປີ	5.50	U 1
2-HEXANONE		I		1		I		Ŧ
4-METHYL-2-PENTANONE		I		Ĩ		Ī		Т
TETRACHLOROETHENE	280	ບ	32.0	ບົ	6.00	ที่	5.50	ປ່
TOLUENE	280	Ū	32.0	Ű	6.90	U	5.50	Ū.
CHLOROBENZENE	280	Ũ	32.0	Ŭ	6.90	บ	5.50	Ü
ETHYL BENZENE	280	ŭ	32.0	U	5.90	บ	5.50	Ŭ
STYRENE	280	Ŭ	32.0	U	6.90	Ű	5.50	U I
TOTAL XYLENES	280	U	32.0	บ	6.90	U	5.50	- U - 1
j tyr y j7 hus. ZA i bushen IA huster	1. U V	U .	U 4. + V	0	0+70	U	0+4V	L)

ALYSIS TYPE: SEMIVOLATILL . , PAGE 1)

TITLE: CADMUS

.

e ji

LAB: S-CUBED

SAMPLE PREP: _____ ANALYST/ENTRY: E30

MATRIX: SEDIMENT METHOD: 9302M01 REVIEWER: 75/ 4

UNITS: UG/KG CASE: 6807 DATE: 04/28/87

SAMPLE NUMBERS

· · ·	I099G0	17	I099G(018	1099GC	19	10996(>20
COMPOUND								
1			:					
PHENOL	20000.	U	18000.	U U	180	М	550	U
BIS(2-CHLORDETHYL) ETHER	20000.	U	18000.	U	690	IJ	550	U
2-CHLOROPHENOL	20000.	U	18000.	U	690	Ų	550	U
1,3 DICHLOROBENZENE	20000.	U	18000.	U	690	Ú	550	IJ
1,4 DICHLOROBENZENE	20000.	U	18000.	U	690	U	550	1) 1)
BENZYL ALCOHOL	20000.	U	18000.	U	690	U	350	U
1,2 DICHLOROBENZENE	20000.	U	18000.	U	690	U	550	(J
2-METHYLPHENOL	20000.	U	18000.	U	690	U	550	9
BIS(2-CHLOROISOPROPYL)ETHE		U	18000.	U	690	U	550	U
4-METHYLFHENOL	20000.	U	18000.	U	690	U	550	U
N-NITROSO-DIFROPYLAMINE	20000.	U	18000.	U	690	U	S50	
HEXACHLORDETHANE	20000.	U	18000.	U	690	U	550	1
NITROBENZENE	20000.	U	18000.	U	690	u	550	ĹĮ
ISOPHORONE	20000.	U	18000.	U	690	U	550	l.
2-NITROPHENOL	20000.	U	18000.	U	690	U	550	£1
2,4-DIMETHYLPHENOL	20000.	U	18000.	' U	690	U	550	9
BENZOIC ACID	96000.	U	88000.	U	3300.	U	2700.	e e
BIS(2-CHLOROETHOXY) METHAN		u	18000.	U	690	U	350	13
2,4 DICHLOROPHENOL	20000.	U	18000.	U	690	U	550	ų,
1,2,4-TRICHLOROBENZENE	20000.	U	18000.	U	690	U	550	(†
NAPHTHALENE	20000.	U	18000.	U	690	Ü	550	Ð
4-CHLOROANILINE	20000.	U	18000.	់ ប	690	U	550	U
HEXACHLOROBUTADIENE	20000.	U	18000	1 U	690	U	550	U
4-CHLORO-3-METHYLPHENOL	20000.	h	18000'.	U	690	Ü	550	U
2-METHYLNAPHTHALENE	20000.	μ	18000.	U	690	U	550	()
HEXACHLOROCYCLOPENTADIENE	20000.	(J	18000.	. U	690	ບ	550	ប្រ
2,4,6-TRICHLOROPHENOL	20000.	μ	18000.	• U	690	U	550	U
2,4,5-TRICHLOROPHENOL	96000.	(J	88000.	U	3300.	U	2700.	11
2-CHLORONAPHTHALENE	20000.	U	18000.	U	6 90	ú	550	U
2-NITROANILINE	96000.	ບ່	88000.	U	3300.	U	2700.	U
DIMETHYLPHTHALATE	20000.	U	18000.	្រប	690	ប	550	IJ
ACENAPHTHYLENE	20000.	U	18000.	Ū	690	Ū	550	0
3-NITROANILINE	96000.	Ū	88000.	Ū	3300.	Ű	2700.	E
ACENAPHTHENE	20000.	Ū	18000.	ū	690	บ	550	Ð
2,4-DINITROPHENOL	96000.	บ	88000	. Ŭ	3300.	Ű	2700.	
4-NITROPHENOL	96000	U U	88000.	មើ	33001	Ű	2700.	Ų.
DIBENZOFURAN	20000.	Ű	18000.	ŭ	390	Ű	550	ů.
2,4-DINITROTOLUENE	20000.	Ű		ыÜ	390	ŭ	550	Ű
and a first and the second second second second second second second second second second second second second		·			1. A A A A	<u> </u>	ur ur v	

; I İ

ALYSIS TYPE: SEMIVOLATIL. (PAGE 2)

TITLE: CADMUS LAB: S-CUBED

 $\{1\}$

. :

SAMPLE PREP:_____ ANALYST/ENTRY: E32

MATRIX: SEDIMENT METHOD: 9302M01 REVIEWER: 75V 4

UNITS: UG/KG CASE: 6807 DATE: 04/28/87

SAMPLE NUMBERS

	I099G0:	17	I099G 0	18	I099G0	19	109960	20
COMPOUND								
2,6-DINITROTOLUENE	20000.	U	18000.	U	690	U	550	U
DIETHYLPHTHALATE	20000.	υ	18000.	U	690	U	550	υ
4-CHLOROPHENYL PHENYL ETHER	R 20000.	U	18000.	U	690	U	550	U
FLUORENE	20000.	U	18000.	U	690	Û	550	Ð
4-NITROANILINE	96000.	U	88000.	U	3300.	U	2700.	U
4,6-DINITRO-2-METHYLFHENOL	96000.	U	88000.	U	3300.	IJ	2700.	t i
N-NITROSODIPHENYLAMINE	20000.	U	18000.	U	690	U	550	:)
4-BROMOPHENYL PHENYL ETHER	20000.	U	18000.	U	690	U	550	U
HEXACHLOROBENZENE	20000.	U	18000.	ម	690	IJ	550	Ð
PENTACHLOROPHENOL	96000.	U	88000.	U	3300.	U	2700.	U
PHENANTHRENE	20000.	U	18000.	บ	690	U	550	U
ANTHRACENE	20000.	U	18000.	U	690	U	550	U
DI-N-BUTYLFHTHALATE	20000.	U	18000.	U	690	น	550	U
FLUORANTHENE	20000.	U	18000.	U	690	U	550	U
FYRENE	20000.	U	18000.	U	690	U	550	U.
BUTYL BENZYL PHTHALATE	20000.	U	18000.	U	690	U	550	U
3,3' DICHLOROBENZIDINE	40000.	U	36000.	U,	1400.	U	1100.	U
BENZO(A)ANTHRACENE	20000.	U	18000.	U	690	U	550	U
BIS(2-ETHYLHEXYL)PHTHALATE	20000.	U	18000.	U	390	м	2100.	J
CHRYSENE	20000.	บ	18000.	U	690	U	550	U
DI-N-OCTYL PHTHALATE	20000.	U	18000.	U	690	U	550	U
BENZO(B)FLUORANTHENE	20000.	U	18000.	U	690	U	550	U
BENZO(K)FLUORANTHENE	20000.	U	18000.	U	690	U	550	U
BENZO(A)PYRENE	20000.	U	18000.	U	690	U	550	U
INDENO(1,2,3-CD)PYRENE	20000.	U	18000.	U	690	U	550	U
DIBENZO(A+H)ANTHRACENE	20000.	U	18000.	U	690	U	550	IJ
BENZO(G,H,I)PERYLENE	20000.	U	18000.	U	690	U	550	U

TITLE: CADMUS	MATRIX: SEDIMENT	UNITS: UG/KG
LAB: S-CUBED	METHOD: 9302M01/	CASE: 6807
SAMPLE PREP: ANALYST/ENTRY: E34	REVIEWER: TSV 7	DATE: 04/28/87

SAMPLE NUMBERS

I

5

	10996	017	109960	18	109960	19	109960	20
COMPOUND								
ALPHA-BHC	17000.	U	15000.	u	560	Ű	45.0	U
BETA-BHC	17000.	บ	15000.	ū	560	บิ	45.0	Ū
DELTA-BHC	17000.	u	15000.	Ū.	560	Ū	45.0	U
GAMMA-BHC	17000.	Ű	15000.	Ü	560	Ū	45.0	Ū
HEPTACHLOR	17000.	U	15000.	U	560	u	45+0	U
ALDRIN	17000.	U	15000.	U	560	U	45.0	Ű
HEPTACHLOR EPOXIDE	17000.	U	15000.	U	560	U	45.0	U
ENDOSULFAN I	17000.	U	15000.	U	560	U	45.0	U
DIELDRIN	34000.	u	31000.	U	1100.	U	90.0	U
4,4'-DDE	34000.	U	31000.	U	1100.	U	90.0	U
ENDRIN	34000.	U	31000.	U	1100.	U	90.0	U
ENDOSULFAN II	34000.	U	31000.	U	1100.	U	90.0	U
4,4'-DDD	34000.	U	31000.	U	1100.	U	90.0	U
ENDRIN ALDEHYDE	34000.	U	31000.	U	1100.	U.	90.0	U
ENDOSULFAN SULFATE	34000.	Ű	31000.	Ű	1100.	Ü	90.0	U
4,4'-DIIT	34000.	บ	31000.	ū	1100.	น	90.0	Ū
ENDRIN KETONE	34000.	บ	31000.	ū	1100.	Ū	90.0	บ
METHOXYCHLOR	170000.	Ū	150000.	ũ	5600.	ü	450	บ
CHLORDANE	170000.	Ū	150000.	Ū	5600.	Ü	450	Ũ
TOXAPHENE	340000.	Ű	310000.	Ű	11000.	ũ	900	Ū
AROCLOR-1016	170000.	Ū	150000.	Ū	5600.	Ű	450	Ū
AROCLOR-1221	170000.	U	150000.	Ű	5600.	ũ	450	U
ARDCLOR-1232	170000.	Ü	150000.	ü	5600.	Ű	450	U
AROCLOR-1242	170000.	Ŭ	150000.	Ű	5600.	Ű	450	Ū
AROCLOR-1248	920000.		1100000.		43000.		2600.	
ARUCLOR-1254	340000.	U	310000.	u	11000.	U	900	U
AROCLOR-1260	340000.	þ	310000.	Ū	11000.	Ü	900	Ū

ANALYSIS TYPE: VOLATILE ANALYSES

TITLE: CADMUS	MATRIX: SEDIMENT	UNITS: UG/KG
LAB: S-CUBED	METHOD: 9302M01	CASE: 6807
SAMPLE PREP: ANALYST/ENTRY: E29	REVIEWER:	DATE: 04/28/87

SAMPLE NUMBERS

	I099G0	200	I099G02	2	1099G0:	23
COMPOUND						
CHLOROMETHANE	11.0	บ	12.0	U	11.0	Ü
BROMOMETHANE	11.0	Ŭ	12.0	Ŭ	11.0	U
VINYL CHLORIDE	11.0	Ŭ	12.0	Ŭ	11.0	Ű
CHLOROETHANE	11.0	บั	12.0	Ŭ	11.0	Ű
METHYLENE CHLORIDE	5,50	ŭ	29.0	บ	5.60	บ
ACETONE	11.0	Ŭ	40.0	U	11.0	U
CARBON DISULFIDE	5.50	Ŭ	5.80	Ŭ	5.60	U
1,1 DICHLOROETHENE	5.50	Ŭ	5.80	U	5.60	U
1,1 DICHLOROETHANE	5.50	Ŭ	5.80	Ŭ	5.60	Ü
TRANS-1,2,-DICHLOROETHENE	5,50	Ŭ	5,80	Ü	5.60	U
CHLOROFORM	5,50	บั	5.80	Ŭ	5.60	Ŭ
1,2,DICHLOROETHANE	5.50	Ŭ	6.00		5.60	Ŭ
2-BUTANONE	0.00	Ĩ	13.0	j,	0100	Ĩ
1,1,1 TRICHLOROETHANE	5.50	ບົ	5,80	บั	5.60	ບົ
CARBON TETRACHLORIDE	5.50	บ	5,80	ŭ	5.60	ũ
VINYL ACETATE		Ī		ī		Ĩ
BROMODICHLOROMETHANE		I		Ĩ		I
1,1,2,2,-TETRACHLORDETHANE	5.50	U	5.80	ບັ	5.60	U
1,2-DICHLOROPROPANE	5.50	U	5.80	U	5.60	U
TRANS-1,3-DICHLOROPROPENE	5.50	U	5.80	U	5.60	U
TRICHLOROETHENE	5.50	U	5.80	U	5.60	U
DIBROMOCHLOROMETHANE	5.50	U	5.80	U	5.60	U
1,1,2-TRICHLOROETHANE	5.50	U	5.80	U	5.60	U
BENZENE	5,50	U	5.80	U	5.60	Ū
CIS-1,3-DICHLOROPROPENE	5.50	U	5.80	U	5.60	U
2-CHLOROETHYL VINYL ETHER		I	÷	I		I
BROMOFORM	5.50	U	5.80	U	5.60	U
2-HEXANONE		I		I		I
4-METHYL-2-FENTANONE		I		: I		I
TETRACHLOROETHENE	5.50	U	5.80	U	5,60	U
TOLUENE	5.50	U	5.80	U	5.60	U
CHLOROBENZENE	5.50	U	5.80	U	5.60	ប
ETHYL BENZENE	5.50	U	5.80	U	5.60	U
STYRENE	5,50	U	5.80	U	5.60	U
TOTAL XYLENES	5.50	U	5.80	U	5.60	Ű

1

T

 \rightarrow

| | - 141 | - 141

ANALYSIS TYPE: SEMIVOLATILES (FAGE 1)

TITLE: CADMUS	MATRIX: SEDIMENT	UNITS: UG/KG
LAB: S-CUBED	METHOD: 9302M01/ /	CASE: 6807
SAMPLE PREP: ANALYST/ENTRY: E31	REVIEWER: _75V7	DATE: 04/28/87

SAMPLE NUMBERS

	I099G0	20D	1099GC	22	10996()23
COMPOUND						
PHENOL	17000.	U	580	U	560	Ú
BIS(2-CHLOROETHYL) ETHER	17000.	U	580	U	560	U
2-CHLOROPHENOL	17000.	U	580	U	560	U
1,3 DICHLOROBENZENE	17000.	U	580	U	560	U
1,4 DICHLOROBENZENE	17000.	U	580	U	560	U
BENZYL ALCOHOL	17000.	U	580	U	560	U
1,2 DICHLOROBENZENE	17000.	U	580	U	560	U
2-METHYLPHENOL	17000.	U	580	U	560	U
BIS(2-CHLOROISOPROPYL)ETHE	ER 17000.	U	580	U	560	U
4-METHYLPHENOL	17000.	U	580	ប	560	U
N-NITROSO-DIPROFYLAMINE	17000.	U	580	U	560	U
HEXACHLOROETHANE	17000.	U	580	U	560	U
NITROBENZENE	17000.	U	580	U	560	U
ISOPHORONE	17000.	U	580	U	560	U
2-NITROPHENOL	17000.	U	580	U	560	U
2,4-DIMETHYLPHENOL	17000.	U	580	U	560	U
BENZOIC ACID	82000.	U	2800.	U	2700.	U
BIS(2-CHLORDETHOXY) METHAN	E 17000.	U	580	U	560	U
2,4 DICHLOROPHENOL	17000.	U	580	U	560	U
1,2,4-TRICHLOROBENZENE	17000.	บ	580	U	560	U
NAPHTHALENE	17000.	U	580	U	560	U
4-CHLOROANILINE	17000.	U	580	U	560	U
HEXACHLOROBUTADIENE	17000.	U	580	U	560	U
4-CHLORO-3-METHYLPHENOL	17000.	U	` 580	U	560	u
2-METHYLNAPHTHALENE	17000.	U	580	U	560	U
HEXACHLOROCYCLOPENTADIENE	17000.	U	580	U	560	U
2,4,6-TRICHLOROPHENOL	17000.	U	580	U	560	U
2,4,5-TRICHLOROPHENOL	82000.	U	2800.	U	2700.	U
2-CHLORONAPHTHALENE	17000.	U	580	U	560	U
2-NITROANILINE	82000.	U	2800.	U	2700.	U
DIMETHYLPHTHALATE	17000.	U	580	υ	560	U
ACENAFHTHYLENE	17000.	Ű	580	Ū	560	Ū
3-NITROANILINE	82000.	Ū	2800.	Ū	2700.	Ū
ACENAPHTHENE	17000.	U	580	Ű	560	Ŭ
2,4-DINITROPHENOL	82000.	Ū	2800.	Ű	2700.	Ū
4-NITROPHENOL	82000.	Ū	2800.	Ū	2700.	Ũ
DIBENZOFURAN	17000.	Ū	580	บ	560	Ū
2,4-DINITROTOLUENE	17000.	Ū	580	Ū	560	Ū

it it

1 · · · ·

ANALYSIS TYPE: SEMIVOLATILES (PAGE 2)

TITLE: CADMUS Lab: S-Cubed			MATRIX: S METHOD: 9	7302 <u>M</u>	1, /	UNITS: UG/KG CASE: 6807
SAMPLE PREP: ANALYST	/ENTRY: E33		REVIEWER:	75	<u>v </u>	DATE: 04/28/87
			54	MPLE	NUMBERS	
COMPOUND	10996020	D	109960	22	109960	23
2,6-DINITROTOLUENE	17000.	U	580	U	560	Ŭ
DIETHYLPHTHALATE	17000.	U	580	່ບ	560	Ü
4-CHLOROPHENYL PHENYL ETHE	R 17000.	U	580	U	560	U
FLUORENE	17000.	บ	580	U	560	ບ
4-NITROANILINE	82000.	U	2800.	L U	2700.	U
4,6-DINITRO-2-METHYLPHENOL	82000.	U	2800.	U	2700.	U
N-NITROSODIPHENYLAMINE	17000.	U	580	U	560	U
4-BROMOPHENYL PHENYL ETHER	17000.	U	580	U	560	U
HEXACHLOROBENZENE	17000.	U	580	U	560	U
PENTACHLOROPHENOL	82000.	U	2800.	ับ	2700.	u
PHENANTHRENE	17000.	U	580	U	67.0	м
ANTHRACENE	17000.	U	580	U	560	U ·
DI-N-BUTYLPHTHALATE	17000.	U	580	, U	560	Ü
FLUORANTHENE	17000.	U	580	i u	560	U
PYRENE	17000.	U	580	U	130	м
BUTYL BENZYL PHTHALATE	17000.	U	580	U	560	U
3,3' DICHLOROBENZIDINE	34000.	U	1200.	U	1100.	U
BENZO(A)ANTHRACENE		U	580		62.0	M
^{非此} BIS(¹ 2-ETHYLHEXYL)PHTHALATE	4800.	M	580 ⁰	U	160	М
CHRYSENE	17000.	U	580	U	560	U
DI-N-OCTYL PHTHALATE	17000.	U	580	U	560	U
BENZO(B)FLUORANTHENE	17000.	U	580	U	560	U
BENZO(K)FLUORANTHENE	17000.	U	580	ប	560	ប
BENZO(A)FYRENE	17000.	U	` 580	บ	560	U
INDEND(1,2,3-CD)PYRENE	17000.	U	580	U	560	U
DIBENZO(A,H)ANTHRACENE	17000.	U	580	U	560	U
BENZO(G,H,I)FERYLENE	17000.	U	580	U	560	U
1				1.	r.	

ł •

4 ()

1

ł

· 'j

\$

ANALYSIS TYPE: PESTICIDES

TITLE: CADMUS	ANALYST/ENTRY: E35	MATRIX: SEDIMENT	UNITS: UG/KG
LAB: S-CUBED		METHOD: 9302M01	CASE: 6807
SAMPLE PREP:		REVIEWER: _73V4	DATE: 04/28/87
		; · · ,	

I099G020D I099G022

SAMPLE NUMBERS

I099G023

COMPOUND

a transformation and

ł,

÷

SOM SOME							
ALPHA-BHC	270	լ	47.0	U	91.0	Ú	
BETA-BHC	270	խ	47.0	ម	91.0	U	
DELTA-BHC	270	μ	47.0	U U	91.0	U	
GAMMA-BHC	270	þ	47.0	υ	91.0	U	
HEFTACHLOR	270	U	47.0	U	91.0	U	
ALDRIN	270	U	47.0	U	91.0	U	
HEFTACHLOR EFOXIDE	270	U	47.0	U	91.0	U	
ENDOSULFAN I	270	U	47.0	U	91.0	μ	
DIELDRIN	540	U	94.0	U	180	U	
4,4'-DDE	540	U	94.0	U	180	บ	
ENDRIN	540	U	94.0	U	180	μ	
ENDOSULFAN II	540	U	94.0	U	180	υ	
4,4'-DDD	540	υ	94.0	U	180	Ü	
ENDRIN ALDEHYDE	540	U	94.0	U	180	U	
ENDOSULFAN SULFATE	540	U	94.0	U	180	U	
4,4'-DDT	540	U	94.0	U	180	U	
ENDRIN KETONE	540	U	94.0	U	180	U	
METHOXYCHLOR	2700.	U	470	1 U	910	U Ü	
CHLORDANE	2700.	υ	470	່ນ	910	υ	
TOXAPHENE	5400.	U	940	U	1800.	U	
AROCLOR-1016	2700.	บ	470	U	910	U	
AROCLOR-1221	2700.	ບ	470	U	910	U	
AROCLOR-1232	2700.	U	470	U	910	U	
AROCLOR-1242	2700.	U	` 470	U	910	U	
AROCLOR-1248	3600.		2200.		2000.		
AROCLOR-1254	5400.	U	940	U	1800.	U	
AROCLOR-1260	5400.	U	940	U	1800.	U	
1							

TITLE: CADMUS LAB: S-CUBED ANALYST/ENTRY: LT

Бh

MATRIX: SEDIMEN, UNITS: UG/KG METHOD: 9302M01 CASE: 6807 REVIEWER: VISWANATHAN DATE: 4-28-87

TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO.	COMPOUND NAME**	FRACTION	N EST.	CONC.*
1099G017	NOTHING SIGNIFICANT FOUND	VDA		
10996017	POLYCHLORINATED BIPHENYL PEAKS	BNA	7900-16000) J
I099G017	FHENOXY BIFHENYL	BNA	27000	J
I099G018	NOTHING SIGNIFICANT FOUND	VOA		
I099G018	PHENOXY BIPHENYL	BNA	· 7800	J
10996019	NOTHING SIGNIFICANT FOUND	VDA		
I099G019	POLYCHLORINATED BIPHENYL PEAKS	BNA	330-1200	J
I099G019	PHENOXY BIPHENYL	BNA	870	J
I0996019	1,1'-OXYBIS(BENZENE)	BNA	240	J
I099G020	NOTHING SIGNIFICANT FOUND	VOA		
I099G020	BENZALDEHYDE	BNA	240	L
I099G020	HYDROCARBON ENVELOPE (~25 MIN.			
	WIDE PEAK AT BASE)	BNA		
I099G020D	NOTHING SIGNIFICANT FOUND	VOA		
I099G022	NOTHING SIGNIFICANT FOUND	VOA		
I099G022	HYDROCARBON ENVELOPE (~25 MIN.			
	WIDE PEAK AT BASE)	BNA		
I099G023	NOTHING SIGNIFICANT FOUND	VOA		
I099G023	TETRACHLOROBIPHENYL	BNA	330	J
10996023	HYDROCARBON ENVELOPE (~25 MIN.			
	WIDE PEAK AT BASE)	BNA		
I099G017	UNKNOWNS (2 PEAKS)	BNA :	13000-16000	L (
I099G019	UNKNOWN COMPOUNDS (6 PEAKS)	BNA	420-2400	J
I099G020D	UNKNOWN	VOA	14	J
10996023	UNKNOWN PHTHALATE	ENA	450	J

*This is a crude estimation based on response relative to an internal standard. An authentic standard has not been run.

****The compounds were identified using a library search routine.** Authentic standards have not been analyzed to verify compound mass spectra and retention times.

2

10 833 1. h c _1

TITLE: CADMUS LAB: S-CUBED ANALYST/ENTRY: LT

ł3

ł.

1

MATRIX: SEDIMENT UNITS: UG/KG METHOD: 9302M01 CASE: 6807 REVIEWER: VISWANATHAN/DATE: 4-28-87

TENTATIVELY IDENTIFIED COMPOUNDS

SAMFLE NO.	COMPOUND NAME**	FRACTIO	ON EST. C	CONC.*
10996001	NOTHING SIGNIFICANT FOUND	VOA		
10996001	NOTHING SIGNIFICANT FOUND	BNA		
10996002	NOTHING SIGNIFICANT FOUND	VOA		
10996002	FOLYCHLORINATED BIFHENYL PEAKS	BNA	10000-22000	J
1099G003	NOTHING SIGNIFICANT FOUND	BNA		•
1099G003	NOTHING SIGNIFICANT FOUND	V0A		
I0996004	NOTHING SIGNIFICANT FOUND NOTHING SIGNIFICANT FOUND	VOA VOA		
10996005 10996006	NOTHING SIGNIFICANT FOUND			
	NOTHING SIGNIFICANT FOUND			
I099G009 I099G009	1.1'-BIPHENYL	VOA BNA	100000	J
1099G009	1,1'-DIFFENTL 1,1'-OXYBIS(BENZENE)	BNA	150000	J
1099G009 1099G009	POLYCHLORINATED BIPHENYL FEAKS		41000-130000	
1099G009 1099G009	PHENOXY BIPHENYL ISOMERS(3 PEAKS		89000-210000	
1099G009 1099G009	1,1-CYCLOHEXYLIDINE BIS(BENZENE)	BNA	120000	, J
I099G009	NOTHING SIGNIFICANT FOUND	VOA	120000	ل
1099G010	1.1'-OXYBIS(BENZENE)	BNA	11000	J
1099G010	1,1'-BIPHENYL (PHENOXY)	BNA	22000	J
1099G011	NOTHING SIGNIFICANT FOUND	VOA		0
10776011	1,1'-OXYBIS(BENZENE)	BNA	44	J
10996012	NOTHING SIGNIFICANT FOUND	VOA		0
10996012	POLYCHLORINATED BIPHENYL PEAKS	BNA	250-1200	J
10996012	PHENOXY BIPHENYLS (2 PEAKS)	BNA	1200-2100	J
1099G012	1,1'-CYCLOHEXYLIDENE BIS (BENZENE		600	Ĵ
10996015	NOTHING SIGNIFICANT FOUND	VOA		-
1099G015	1.1'-OXYBIS (BENZENE)	BNA	760	J
1079G015	POLYCHLORINATED BIPHENYL PEAKS	BNA	330-1000	J
10996016	NOTHING SIGNIFICANT FOUND	VOA		
10996016	1,1'-OXYBIS(BENZENE)	BNA	13000	J
10996016	POLYCHLORINATED BIPHENYL PEAKS		13000-58000	ن ن
10996016	1,1'-CYCLOHEXYLIDINEBIS(BENZENE)	BNA	39000	Ĵ
10996004	UNKNOWN COMPOUNDS (4 PEAKS)	BNA	310-1200	Ľ
I099G005	UNKNOWN	BNA	7500	J
I099G006	UNKNOWN	BNA	2600	J
I099B009	UNKNOWN COMPOUNDS (>7 PEAKS)		69000-100000	J
10996010	UNKNOWN COMPOUNDS (4 PEAKS)		17000-42000	J
1099G012	UNKNOWN COMFOUNDS	BNA	790-2100	Ĵ
I099G015	UNKNOWN COMPOUNDS (10 PEAKS)	BNA	630-2400	J
10996016	UNKNOWN COMPOUNDS (4 PEAKS)		32000-68000	Ĵ
1				

*This is a crude estimation based on response relative to an internal standard. An authentic standard has not been run.

**The compounds were identified using a library search routine. Authentic standards have not been analyzed to verify compound mass spectra and retention times.

ANALYSIS TYPE: VOLATILE ANALYSES

TITLE: CADMUS	MATRIX: WATER	UNITS: UG/L
LAB: S-CUBED Sample prep: Analyst/entry: E24	METHOD: 9302M01 REVJEWER: 75V 4	CASE: 6807 DATE: 04/28/87
SHAFLE FREFTELELE HARLISTZENTRIT E24		DHIE . 04720787

SAMPLE NUMBERS

ţ.

	1099G0	07	109960	08F	1099GO	13	1099G0:	130
COMPOUND								
CHLOROMETHANE	100	U	10.0	U	10.0	U	10.0	U
BROMOMETHANE	100	Ú	10.0	Ü	10.0	Ü	10.0	IJ
VINYL CHLORIDE	310		10.0	U	130		180	
CHLOROETHANE	100	U	10.0	U -	10.0	U	10.0	U
METHYLENE CHLORIDE	50.0	μ	4.00	м	5.00	u	5.00	U
ACETONE	100	U	130	J	13.0	U	10.0	U
CARBON DISULFIDE	50.0	Ù	5.00	U	5.00	U	5.00	U
1,1 DICHLORDETHENE	19.0	M	5.00	บ	1.00	М	1.00	м
1,1 DICHLOROETHANE	26.0	M	5,00	U	9.00		8.00	
TRANS-1,2,-DICHLOROETHENE	1700.	i	5.00	u	220		250	
CHLOROFORM	50,0	u	5.00	U	5.00	U	5.00	U
1,2,DICHLOROETHANE	50.0	U	5.00	U	5.00	Ð	5.00	υ
2-BUTANONE		I		I		I		I
1,1,1 TRICHLOROETHANE	14.0	М	5.00	U	2.00	М	1.00	м
CARBON TETRACHLORIDE	50.0	U	5.00	U	5.00	U	5.00	U
VINYL ACETATE		I		I		I		I
BROMODICHLOROMETHANE		I		I		I		I
1,1,2,2,-TETRACHLORDETHANE	50.0	u	5.00	U	5.00	U	5.00	U
1,2-DICHLOROPROPANE	50.0	U	5.00	' U	5.00	U	5.00	U
TRANS-1,3-DICHLOROPROPENE	50.0	U	5.00	u	5.00	U	5.00	U
TRICHLOROETHENE	19.0	м	5.00	U	7.00		5.00	
DIBROMOCHLOROMETHANE	50.0	U	5.00	U	5.00	U	5.00	U
1,1,2-TRICHLOROETHANE	50.0	U	5.00	U	5.00	U	5.00	U
BENZENE	50.0	U	5.00	U	1.00	M	1.00	М
CIS-1,3-DICHLOROPROPENE	50.0	U	5.00	U	5.00	U	5.00	U
2-CHLOROETHYL VINYL ETHER		I		I		I		I
BROMOFORM	50.0	U	5.00	U	5.00	u	5.00	U
2-HEXANDNE		I		I		I		I
4-METHYL-2-PENTANONE		I		I		I		I
TETRACHLOROETHENE	50.0	U	5.00	U	5,00	U	5.00	U
TOLUENE	50.0	U	5.00	U	3.00	М	2.00	М
CHLOROBENZENE	50.0	U	5.00	U	12.0	J	10.0	J
ETHYL BENZENE	50.0	U	5.00	U	5.00	U	5.00	U
STYRENE	50.0	U	5.00	U	5.00	U	5.00	U
TOTAL XYLENES	50.0	U	5.00	U	5.00	U	5.00	U

ANALYSIS TYPE: SEMIVOLATILES (PAGE 1)

SAMPLE NUMBERS COMPOUND I099G007 I099G008F I099G013 I099G013D PHENOL 10.0 10.0 0 28.0 J 25.0 J BIS(2-CHLOROETHYL) ETHER 10.0 U 10.0 U 10.0 U 10.0 U 2-CHLOROFHENOL 10.0 U 10.0 U 10.0 U 10.0 U 1.3 DICHLOROBENZENE 10.0 U 10.0 <t< th=""><th>TITLE: CADMUS LAB: S-CUBED SAMPLE PREF: ANALYST/EN</th><th>TRY: E2</th><th>5</th><th>MATRIX: W METHOD: 9 REVIEWER:</th><th>302M0</th><th>* 4</th><th>UNIT Case Date</th><th>S: UG/L : 6807 : 04/28/8</th><th>37</th></t<>	TITLE: CADMUS LAB: S-CUBED SAMPLE PREF: ANALYST/EN	TRY: E2	5	MATRIX: W METHOD: 9 REVIEWER:	302M0	* 4	UNIT Case Date	S: UG/L : 6807 : 04/28/8	37
COMPOUND FHENOL 10.0 U 10.0 U 28.0 J 25.0 J BIS(2-CHLOROETHYL) ETHER 10.0 U 10.0 U 10.0 U 10.0 U 2-CHLOROPHENOL 10.0 U 10.0 U 10.0 U 10.0 U 1.3 DICHLOROBENZENE 10.0 U 10.0 U 10.0 U 10.0 U 1.4 DICHLOROBENZENE 10.0 U 10.0 U 10.0 U 10.0 U BENZYL ALCOHOL 10.0 U 10.0 U 10.0 U 10.0 U 1.2 DICHLOROBENZENE 10.0 U 10.0 U 10.0 U 2-METHYLPHENOL 10.0 U 10.0 U 10.0 U 10.0 U 2-METHYLPHENOL 10.0 U 10.0 U 10.0 U 10.0 U 2-METHYLPHENOL </td <th></th> <td></td> <td></td> <td>SA</td> <td>MPLE</td> <td>NUMBERS</td> <td></td> <td></td> <td></td>				SA	MPLE	NUMBERS			
BIS(2-CHLOROETHYL) ETHER 10.0 U 10.0 U 10.0 U 10.0 U 2-CHLOROPHENOL 10.0 U 10.0 U 10.0 U 10.0 U 1,3 DICHLOROBENZENE 10.0 U 10.0 U 10.0 U 10.0 U 1,4 DICHLOROBENZENE 10.0 U 10.0 U 10.0 U 10.0 U BENZYL ALCOHOL 10.0 U 10.0 U 10.0 U 10.0 U 1,2 DICHLOROBENZENE 10.0 U 10.0 U 10.0 U 10.0 U 1,2 DICHLOROBENZENE 10.0 U 10.0 U 10.0 U 10.0 U 2-METHYLPHENOL 10.0 U 10.0 U 10.0 U 10.0 U 8IS(2-CHLOROISOPROPYL)ETHER 10.0 U 10.0 U 10.0 U 10.0 U 4-METHYLPHENOL 10.0 U 10.0 U 10.0	COMPOUND	I099G0	07	1099G0	08F	109960	13	1099601	130
BIS(2-CHLOROETHYL) ETHER 10.0 U 10.0 U 10.0 U 10.0 U 2-CHLOROPHENOL 10.0 U 10.0 U 10.0 U 10.0 U 1,3 DICHLOROBENZENE 10.0 U 10.0 U 10.0 U 10.0 U 1,4 DICHLOROBENZENE 10.0 U 10.0 U 10.0 U 10.0 U BENZYL ALCOHOL 10.0 U 10.0 U 10.0 U 10.0 U 1,2 DICHLOROBENZENE 10.0 U 10.0 U 10.0 U 10.0 U 1,2 DICHLOROBENZENE 10.0 U 10.0 U 10.0 U 10.0 U 2-METHYLPHENOL 10.0 U 10.0 U 10.0 U 10.0 U 8IS(2-CHLOROISOPROPYL)ETHER 10.0 U 10.0 U 10.0 U 10.0 U 4-METHYLPHENOL 10.0 U 10.0 U 10.0	PHENO	10 0	51	10.0	п	28 A		25.0	,
2-CHLOROPHENOL 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 1,3 DICHLOROBENZENE 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 1,4 DICHLOROBENZENE 10.0 U 10.0 U 10.0 U 10.0 U BENZYL ALCOHOL 10.0 U 10.0 U 10.0 U 10.0 U 1,2 DICHLOROBENZENE 10.0 U 10.0 U 10.0 U 10.0 U 2-METHYLPHENOL 10.0 U 10.0 U 10.0 U 10.0 U BIS(2-CHLOROISOPROPYL)ETHER 10.0 U 10.0 U 10.0 U 10.0 U A-METHYLPHENOL 10.0 U 10.0 U 10.0 U 10.0 U A-METHYLPHENOL 10.0 U 10.0 U 10.0 U 10.0 U HEXACHLOROETHANE 10.0 U 10.0 U <									
1,3 DICHLOROBENZENE10.0U10.0U10.0U10.0U1,4 DICHLOROBENZENE10.0U10.0U10.0U10.0UBENZYL ALCOHOL10.0U10.0U10.0U10.0U1,2 DICHLOROBENZENE10.0U10.0U10.0U10.0U2-METHYLPHENOL10.0U10.0U10.0U10.0UBIS(2-CHLOROISOPROPYL)ETHER10.0U10.0U10.0U10.0U4-METHYLPHENOL10.0U10.0U10.0U10.0UN-NITROSO-DIPROPYLAMINE10.0U10.0U10.0U10.0UHEXACHLOROETHANE10.0U10.0U10.0U10.0UNITROBENZENE10.0U10.0U10.0U10.0U			_						
1,4 DICHLOROBENZENE 10.0 U 10.0 <td< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
BENZYL ALCOHOL 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 1.2 DICHLOROBENZENE 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 2-METHYLPHENOL 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U BIS(2-CHLOROISOPROPYL)ETHER 10.0 U 10.0 U 10.0 U 10.0 U 4-METHYLPHENOL 10.0 U 10.0 U 10.0 U 10.0 U 4-METHYLPHENOL 10.0 U 10.0 U 10.0 U 10.0 U 4-METHYLPHENOL 10.0 U 10.0 U 10.0 U 10.0 U 4-METHYLPHENOL 10.0 U 10.0 U 10.0 U 10.0 U 4-METHYLPHENOL 10.0 U 10.0 U 10.0 U 10.0 U HEXACHLORDETHANE 10.0 U									
1,2 DICHLOROBENZENE 10.0 U 10.0 <td< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
2-METHYLPHENOL 10.0 U 10.0 U <th>•</th> <td></td> <td>Ũ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•		Ũ						
4-METHYLPHENOL 10.0 U 10.0 U 9.00 M 8.00 M N-NITROSO-DIPROPYLAMINE 10.0 U 10.0 U 10.0 U 10.0 U HEXACHLORDETHANE 10.0 U 10.0 U 10.0 U 10.0 U NITROBENZENE 10.0 U 10.0 U 10.0 U 10.0 U		10.0	U				U		U
N-NITROSO-DIPROPYLAMINE 10.0 U 10.0	BIS(2-CHLORDISOPROPYL)ETHER	10.0	U	10.0	υ	10.0	U	10.0	IJ
HEXACHLORDETHANE 10.0 U 10.0 <th< td=""><th></th><td></td><td>U</td><td>10.0</td><td>U</td><td>9.00</td><td>M</td><td>8,00</td><td>М</td></th<>			U	10.0	U	9.00	M	8,00	М
NITROBENZENE 10.0 U 10.0 U 10.0 U	N-NITROSO-DIFROFYLAMINE	10.0	U	10.0	U		U	10.0	U
ISOPHORONE 10.0 U 10.0 U 10.0 U									
2-NITROPHENOL 10.0 U 10.0 U 10.0 U									
2,4-DIMETHYLPHENOL 10.0 U 10.0 U 4.00 M 4.00 M									
BENZOIC ACID 50.0 U 50.0 U 50.0 U 50.0 U									
BIS(2-CHLORDETHOXY) METHANE 10.0 U 10.0 U 10.0 U 10.0 U	•								
2,4 DICHLOROPHENOL 10.0 U 10.0 U 10.0 U									
1,2,4-TRICHLORDBENZENE 10.0 U 10.0 U 10.0 U 10.0 U									
NAPHTHALENE 10.0 U 10.0 U 10.0 U 10.0 U									
4-CHLORDANILINE 10.0 U 10.0 U 10.0 U 10.0 U									
HEXACHLOROBUTADIENE 10.0 U 10.0									
2-METHYLNAPHTHALENE 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U									
2,4,6-TRICHLOROPHENOL 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U									
2,4,5-TRICHLOROPHENOL 50.0 U 50.0 U 50.0 U 50.0 U									
2-CHLORONAPHTHALENE 10.0 U 10.0 U 10.0 U 10.0 U									.1
2-NITROANILINE 50.0 U 50.0 U 50.0 U 50.0 U									
DIMETHYLPHTHALATE 10.0 U 10.0 U 10.0 U 10.0 U									
ACENAPHTHYLENE 10.0 U 10.0 U 10.0 U 10.0 U									
3-NITRDANILINE 50.0 U 50.0 U 50.0 U 50.0 U									
ACENAPHTHENE 10.0 U 10.0 U 10.0 U 10.0 U									
2,4-DINITROPHENOL 50.0 U 50.0 U 50.0 U 50.0 U									
4-NITROPHENOL 50.0 U 50.0 U 50.0 U 50.0 U									
DIBENZOFURAN 10.0 U 10.0 U 9.00 M 9.00 M									
2,4-DINITROTOLUENE 10.0 U 10.0 U 10.0 U 10.0 U									

F.

TITLE: CADMUS	
---------------	--

- S-CUBED AB:
- SAMPLE PREP:_____ ANALYST/ENTRY: E26

MATRIX: WATER	UNITS: UG/L
METHOD: 9302M01 /	CASE: 6807
METHOD: 9302M01 REVIEWR:	DATE: 04/28/87

SAMPLE NUMBERS

COMPOUND	1099600	07	109960	08F	109960	13	109960	130
2,6-DINITROTOLUENE	10.0	U	10.0	U	10.0	U	10.0	U
DIETHYLPHTHALATE	4.00	N	10.0	U U	10.0	บ	10.0	U U
4-CHLOROPHENYL PHENYL ETHER	10.0	Ü	10.0	ŭ	10.0	н	10.0	ŭ
FLUORENE	10.0	ŭ	10.0	Ŭ	10.0	Ŭ	10.0	ũ
4-NITROANILINE	50.0	ü	50.0	ü	50.0	ů	50.0	ū
4,6-DINITRO-2-METHYLPHENOL	50.0	ΰ.	50.0	U	50.0	Ŭ	50.0	นี้
N-NITROSODIPHENYLAMINE	10.0	Ű	10.0	Ũ	10.0	Ü	10.0	ū
4-BROMOPHENYL PHENYL ETHER	10.0	ü	10.0	Ű	10.0	Ü	10.0	ū
HEXACHLOROBENZENE	10.0	Ū	10.0	ū	10.0	Ű	10.0	บ
PENTACHLOROPHENOL	50.0	Ű	50.0	ū	50.0	Ü	50.0	บ
PHENANTHRENE	10.0	ü	10.0	Ü	10.0	ū	10.0	Ū
ANTHRACENE	10.0	ū	10.0	บ	10.0	Ũ	10.0	Ū
DI-N-BUTYLPHTHALATE	10.0	U	10.0	i U	10.0	U	10.0	U
FLUORANTHENE	10.0	U	10.0	่ น 👘	10.0	U	10.0	U
PYRENE	10.0	U	10.0	U	10.0	U	10.0	U
BUTYL BENZYL PHTHALATE	10.0	u	10.0	U	10.0	U	10.0	U
3,3' DICHLOROBENZININE	20.0	u	20.0	u	20.0	U	20.0	U
BENZO(A)ANTHRACENE	10.0	U	10.0	U	10.0	U	10.0	U
BIS(2-ETHYLHEXYL)PHTHALATE	37.0	U	36.0	J	10.0	U	10.0	U
CHRYSENE	10.0	U	10.0	U U	10.0	u	10.0	u
DI-N-OCTYL PHTHALATE	10.0	U	8,00	M	10.0	U	10.0	ប
BENZO(B)FLUORANTHENE	10.0	U	10.0	ป	10.0	Ü	10.0	U
BENZO(K)FLUORANTHENE	10.0	U ·	10.0	Ú	10.0	U	10.0	U
BENZO(A)PYRENE	10.0	U	10.0	U	10.0	U	10.0	U
INDENO(1,2,3-CD)PYRENE	10.0	U	10.0	U.	10.0	U	10.0	U
DIBENZO(A,H)ANTHRACENE	10.0	U	10.0	U	10.0	U	10.0	บ
BENZO(G,H,I)PERYLENE	10.0	U	10.0	U	10.0	บ	10.0	U

÷ E

ן לבו הלהויל " הל

i

1111

 $\frac{1}{2}$

ANALYSIS TYPE: PESTICIDES

UNITS: UG/L TITLE: CADMUS MATRIX: WATER LAB: S-CUBED METHOD: 9302M01 CASE: 6807 DATE: 04/28/87 ANALYST/ENTRY: E27 REVIEWER: SAMPLE PREP:____ _<u>Z</u>∑⊻ 1 SAMPLE NUMBERS I099G007 10996008F I099Ġ013 I0996013D COMPOUND U 5,00 U 0.5 U ALPHA-BHC 0.5 0.05 U 0.05 5.00 U 0.5 U BETA-BHC 0.5 U U 0.5 0.5 0.05 5,00 Ù U DELTA-BHC U U 0.05 5.00 0.5 U GAMMA-BHC 0.5 U U U 0.05 5.00 U 0.5 U HEPTACHLOR 0.5 Н i U 0.5 11 0.5 U 0.05 11 5.00 U ALDRIN 0.5 U HEPTACHLOR EPOXIDE 0.5 U 0.05 U 5.00 U U U 0.05 5.00 U 0.5 ENDOSULFAN I 0.5 U U DIELDRIN 1.00 U 0.1 U 10.0 1.00 U U 0.1 U 10.0 Ù 1.00 U 4,4'-DDE 1.00 1.00 U 1.00 U 0.1 U 10.0 U ENDRIN ENDOSULFAN II 1.00 U 0.1 U 10.0 U 1.00 U 4,4'-DDD 10.0 U 1.00 H 1.00 U 0.1 U ENDRIN ALDEHYDE 1.00 U 0.1 U 10.0 U 1.00 U 10.0 ENDOSULFAN SULFATE 1.00 υ 0.1 U U 1.00 IJ U U 10.0 U 1.00 U 4,4'-DDT 1.00 0.1 U 10.0 Ù 1.00 U U 0.1 ENDRIN KETONE 1.00 5.00 0,, 5 U METHOXYCHLOR U U 50.0 U 5.00 0.5 U 5.00 U 5.00 U 50.0 U CHLORDANE 1.00 U 100 U 10.0 U TOXAPHENE 10.0 tł AROCLOR-1016 5.00 U 0.5 U 50.0 U 5.00 U 5.00 0.5 υ 50.0 υ 5.00 υ AROCLOR-1221 υ 0.5 5.00 U U 50.0 U 5.00 U AROCLOR-1232 U 0.5 50.0 U 5.00 U AROCLOR-1242 5.00 U AROCLOR-1248 19.0 0.5 U 4200. J 1100. J J 100 Ľ١ 1.00 U 10.0 U AROCLOR-1254 10.0 U U 10.0 U AROCLOR-1260 10.0 1.00 U : 5 100

ļ

11 H

AL YSTS	TYPE:	VOLATILE	AN.	SES
11 hai 1 w Ji W	1 1 1 1	~~~	FILLE	

TITLE: CADMUS

LAB: S-CUBED

11

SAMPLE PREP:____ ANALYST/ENTRY: E24

MATRIX: WATER METHOD: 9302M01 REVIEWER: 737

UNITS: UG/L CASE: 6807 DATE: 04/28/87

ł

SAMPLE NUMBERS

		1099601	4	10990	021	
	COMPOUND				· .	
	CHLOROMETHANE	10.0	U	200	U	
	BROMOMETHANE	10.0	U	200	U	
	VINYL CHLORIDE	10.0	U	290		
1	CHLORDETHANE	10.0	U	200	U	I.
	METHYLENE CHLORIDE	5.00	U	110	U	
	ACETONE	10.0	U	200	U	
	CARBON DISULFIDE	5.00	U	100	U	
	1,1 DICHLOROETHENE	5,00	U	26.0	м	
	1,1 DICHLOROETHANE	5.00	U	91.0	м	
	TRANS-1,2,-DICHLOROETHENE	5.00	U	2800.		
1	CHLOROFORM	5.00	J	64.0	м	
·	1,2,DICHLOROETHANE	5.00	U	400	, J	
	2-BUTANONE	10.0	υ	200	U	I
•	1,1,1 TRICHLOROETHANE	5.00	U	100	U	
	CARBON TETRACHLORIDE	5.00	U	100	U	
	VINYL ACETATE		I		' I	
	BROMODICHLOROMETHANE	1.00	М		I	
	1,1,2,2,-TETRACHLORDETHANE	5.00	ບ	100	ັບ	1
	1,2-DICHLOROPROPANE	5.00	U	100	U	!
	TRANS-1,3-DICHLOROFROPENE	5.00	U	100 I	i, U ,	
	TRICHLOROETHENE	5.00	U	1100.		
	DIBROMOCHLOROMETHANE	5.00	U	100	' U	1
	1,1,2-TRICHLOROETHANE	5.00	ບ	330		1
	BENZENE	5.00	U	100	U	
	CIS-1,3-DICHLOROPROPENE	5.00	υ	100	υ	
I	2-CHLOROETHYL VINYL ETHER		I	.	I	
٥	BROMOFORM	5.00	U	100	U	
	2-HEXANONE		I	i	i I	
	4-METHYL-2-PENTANONE		I	I	I	
	TETRACHLOROETHENE	5.00	U	100	U	
	TOLUENE	5,00	U	100	U	
	CHLOROBENZENE	5.00	U	100	บ	
	ETHYL BENZENE	5.00	U	100	U	
	STYRENE	5.00	U	100	Ð	
	TOTAL XYLENES	5.00	U	1.00	U	

TITLE: CADMUS LAB: S-CUBED

t _i

SAMPLE FREP:_____ ANALYST/ENTRY: E25

MATRIX: WATER METHOD: 9302M01 REVIEWER: 751 UNITS: UG/L CASE: 6807 DATE: 04/28/87

.

SAMPLE NUMBERS

		!		
	1099GC	14	10996021	
COMPOUND			}	
			$F_{\rm eff} = \frac{1}{1}$	
PHENOL	20.0		3.00 M	
BIS(2-CHLOROETHYL) ETHER	20.0	U	10.0 U	
2-CHLOROPHENOL	20.0	U	10.0 U	
1,3 DICHLOROBENZENE	20.0	U	10.0 U	
1,4 DICHLOROBENZENE	20.0	U	10.0 U	
BENZYL ALCOHOL	20.0	U	10.0 U	
1,2 DICHLOROBENZENE	20.0	U	10.0 U	
2-METHYLPHENOL	20.0	U	10.0 U	
BIS(2-CHLOROISOPROFYL)ETHER	50.0	IJ	10.0 0	
4-METHYLPHENOL	20.0	U	2+0 0 M	
N-NITROSO-DIFROPYLAMINE	20.0	U	10.0 U	
HEXACHLOROETHANE	20.0	U	10.0 U	!
NITROBENZENE	20.0	U	10.0 U	
ISOPHORONE	20.0	U	10.0 U	
2-NITROPHENOL	20.0	U	10.0 U	
2,4-DIMETHYLPHENOL	20.0	U	1.00 M	
BENZOIC ACID	100	U	50.0 U	
BIS(2-CHLOROETHOXY) METHANE	20.0	U	10.0 U	1
2,4 DICHLOROPHENOL	20.0	U	10.0 U	
1,2,4-TRICHLOROBENZENE	20.0	U	10.0 U	
NAPHTHALENE	20.0	U	10.0 Ü	
4-CHLOROANILINE	20.0	U	10.0 U	
HEXACHLOROBUTADIENE	20.0	U	10.0 U	
4-CHLORO-3-METHYLPHENOL	20.0	U	、10.0 U	
2-METHYLNAPHTHALENE	20.0	U	10.0 U	
HEXACHLOROCYCLOPENTADIENE	20.0	U	10.0 U	
2,4,6-TRICHLOROPHENOL	20.0	U	10.0 U	
2,4,5-TRICHLOROPHENOL	100	Ū	50,0 : U	
2-CHLORONAPHTHALENE	20.0	Ū	10.0	
2-NITROANILINE	100	Ū	50.0 U	1 1
DIMETHYLPHTHALATE	20.0	Ŭ	1010	1
ACENAPHTHYLENE	20.0	U U	10.0 0	
** *********	100	0	50.0	
ACENAFHTHENE	20.0	()	10.0	
2,4-DINITROPHENOL	100	9 ()	50.0 0	
4+NITROPHENOL	100	- U	50.0 1 H	1 · · · ·
DIBENZOFURAN	20.0	' U 1)	1.00 M	
2,4-DINITROTOLUENE			· · · · · · · · · · · · · · · · · · ·	
Z M - DIRIKUNULULNE	20.0	U	10.0 U	

ANALYSIS TYPE: SEMIVOLATILES (FAGE 2)

TITLE: CADMUS

LAB: S-CUBED

SAMPLE PREP:____ ANALYST/ENTRY: E26

MATRIX: WATERUNITS: UG/LMETHOD: 9302M01CASE: 6807REVIEWER: 75DATE: 04/28/87

SAMPLE NUMBERS

1099G014

10996021

COMPOUND

1 .

1 1

CONFOORD					
2,6-DINITROTOLUENE DIETHYLPHTHALATE	20.0	U ·	10.0	U	
DIETHYLPHTHALATE	20.0	U	10.0	U	
4-CHLOROPHENYL PHENYL ETHER	20.0	U	10.0	U	
FLUORENE	20.0	U	10.0	U	
FLUORENE 4-NITROANILINE	100	U	50.0	U	
4,6+DINITRO-2-METHYLPHENOL N-NITROSODIPHENYLAMINE	100	U	50.0	U	
N-NITROSODIPHENYLAMINE	20.0	U	10.0	U	
4-BROMOPHENYL PHENYL ETHER	20.0	11	10.0	11	
HEXACHLOROBENZENE	20.0	U	10.0	U	. 1
HEXACHLOROBENZENE PENTACHLOROPHENOL PHENANTHRENE ANTHRACENE DI-N-BUTYLPHTHALATE	100	U	50.0	U	
PHENANTHRENE	20.0	U	10.0	U	
ANTHRACENE	20.0	U	10.0	U	
DI-N-BUTYLPHTHALATE	20.0	Ü	10.0	U	
FLUDRANTHENE Pyrene	20,0	U	10.0	U	
PYRENE	20.0	Ų	10.0 10.0	U	
BUTYL BENZYL PHTHALATE	20.0	ų	10.0	u	
		U U	20.0	U	
3,3' DICHLOROBENZIDINE BENZO(A)ANTHRACENE	20.0	U U	10.0	U	
BIS(2-FTHYLHEXYL)PHTHALATE	20.0	11	16.0 10.0 10.0	J -	
CHRYSENE DI-N-OCTYL PHTHALATE BENZO(B)FLUORANTHENE	20.0	Ù	10.0	Ú	
DI-N-OCTYL PHTHALATE	20.0	U	10.0	U	
BENZO(B)FLUORANTHENE	20.0	U	10.0	U	
BENZO(K)FLUORANTHENE	20.0 20.0	U	10.0	U	
BENZO(A)FYRENE	20.0	U	10.0		
INDENO(1,2,3-CD)PYRENE	20.0	U	10.0	U	
DIBENZO(A,H)ANTHRACENE					
BENZO(G,H,I)PERYLENE	20.0	U	10.0	U	
			1	1	1 (

÷

ANALYSIS TYPE: PESTICIDES

TITLE: CADMUS	MATRIX: WATER	UNITS: UG/L
LAB: S-CUBED		CASE: 6807
SAMPLE FREP: ANALYST/ENTRY: E27	REVIEWER:	DATE: 04/28/87

SAMPLE NUMBERS

É

1 1

I099G014

I099G021

COMPOUND

.

ALPHA-BHC	0.05	U	0.5	U
BETA-BHC	0.05	U	0.5	U
DELTA-BHC	0.05	บ	0.5	U
GAMMA-BHC	0.05	U	0.5	U
HEPTACHLOR	0.05	U	0.5	(I
ALDRIN	0.05	U	0.5	U
HEPTACHLOR EPOXIDE	0.05	U	0.5	U
ÉNDOSULFAN I	0.05	U	0.5	0
DIELDRIN	С , 1	U	1.00	,U
4,4'-DDE	0.1	U	1.00	U
ENDRIN	0.1	U	1.00	U
ENDOSULFAN II	0.1	U	1.00	U
4,4'-000	0.1	IJ	1.00	U
ENDRIN ALDEHYDE	0.1	IJ	1.00	U
ENDOSULFAN SULFATE	0.1	U	1.00	U
4,4'-DDT	0 + 1	U	1.00	U
ENDRIN KETONE	0.1	υ	1.00	U
METHOXYCHLOR	0.5	U	5.00	U
CHLORDANE	0.5	U	5.00	U
TOXAPHENE	1.00	U	10.0	U
ARDCLOR-1016	0.5	U	5.00	U
AROCLOR-1221	0.5	U	5.00	บ
AROCLOR-1232	0.5	U	5.00	Ü
AROCLOR-1242	0.5	Ū	5.00	บ
AROCLOR-1248	0.5	Ū	280	٦.
ARDCLOR-1254	1.00	ບ້	10.0	ັບ
AROCLOR-1260	1.00	Ŭ	10.0	Ŭ
1117 - W - W 11 - T W W W		~		-

TITLE: CADMUS LAB: S-CUBED ANALYST/ENTRY: LT

1

ł

MATRIX: WATER UNITS: UG/L METHOD: 9302M01 CASE: 6807 REVIEWER: VISWANATHAN DATE: 4-28-87 75V

TENTATIVELY IDENTIFIED COMPOUNDS

SAMPLE NO.	COMPOUND NAME**	FRACTION	EST.	CONC.*
		VDA BNA VDA VDA BNA	12	J J
10996013	1.1'-OXYBIS(BENZENE)	BNA	350	J
I099G013	PHENOXY BIPHENYL ISOMERS(2 PEAKS		20-380	J
10996013			40-280	J
10776013D		VOA	40 200	0
I099G013D	1,1'-BIPHENYL	BNA	180	J
I099G013D	1,1'-DXYBIS(BENZENE)		330	J
I099G013D	PHENOXY BIPHENYL (2 ISOMERS)	BNA 2	00-300	\mathbf{J}
10996014	NOTHING SIGNIFICANT FOUND	VOA		
I099G014	CYCLOHEXEN-1-ONE	BNA	22	J
1099G021	NOTHING SIGNIFICANT FOUND	VOA		
10996021	CYCLOHEXEN-1-ONE	BNA	10	J .
I0996021	POLYCHLORINATED BIPHENYL PEAKS	BNA	13-36	Ĵ
I099G021	1.1'-OXYBIS(BENZENE)	BNA	78	J
I099G021	1,1'-BIPHENYL	BNA	73	.J
I0996007	UNKNOWN COMPOUNDS (6 PEAKS)	BNA	10-110	J
I099G008F	UNKNOWN COMFOUND	BNA	100	J
10996013	UNKNOWN PHOSPHORIC ACID ESTER	BNA	40	J
IO99G013	UNKNOWN COMPOUNDS (12 PEAKS)		43-330	J
I099G013D	UNKNOWN COMPOUNDS (13 PEAKS)		93-570	J
I099G014	UNKNOWN COMPOUND	BNA	150	Ľ,
I099G021	UNKNOWN COMPOUNDS (5 PEAKS)	BNA	11-89	J

*This is a crude estimation based on response relative to an internal standard. An authentic standard has not been run.

****The compounds** were identified using a library search routine. Authentic standards have not been analyzed to verify compound mass spectra and retention times.

APPENDIX N – OU1/OU2 ENVIRONMENTAL COVENANT AND EPWF ORDINANCE

14 L-13 S-11 E-14

20190502000206270 COVEN Bk:DE7068 Pg:1035 05/02/2019 02:10:54 PM 1/14

CERTIFIED-FILED FOR RECORD Mary E. Dempsey Recorder of Deeds St. Charles County, Missouri BY:CGRAF \$60.00

(ABOVE SPACE RESERVED FOR RECORDER'S USE)

Document Title: Environmental Covenant

Document Date: <u>4/11</u>, 2019

Grantor: Findett Real Estate Corporation 31 Eagle Cove Lane St. Charles, MO 63303

Grantee: Findett Real Estate Corporation 31 Eagle Cove Lane St. Charles, MO 63303

Department: U.S. Environmental Protection Agency, Region 7 Attn: Superfund Division 11201 Renner Boulevard Lenexa, Kansas 66219

Legal Description: See attached Exhibit A

LAW OFFICE OF ELLEN S GOLDMAN 7944 SANTA FE DR OVERLAND PARK, KS 66204

Page 1 of 11

20180502000206270 2/14 Bk:DE7068 Pg:1036

ENVIRONMENTAL COVENANT

This Environmental Covenant ("Covenant") is entered into by and between the Grantor, Findett Real Estate Corporation ("Owner"), a Missouri corporation, the Grantee, Findett Real Estate Corporation ("Holder"), and the U.S. Environmental Protection Agency, Region 7 ("EPA" or "Department") pursuant to the Missouri Environmental Covenants Act, Sections 260.1000 through 260.1039, RSMo ("MoECA"). Owner, Holder, and the EPA may collectively be referred to as the "Parties" herein.

RECITALS

WHEREAS, Owner is the owner in fee simple of certain real property commonly known and numbered as 8 Governor Drive, St. Charles, Missouri 63301, legally described in Exhibit A and depicted on the site map attached hereto as Exhibit B (the "Property");

WHEREAS, the Property is situated in St. Charles County, Missouri;

WHEREAS, Owner desires to grant to the Holder this Covenant for the purpose of subjecting the Property to certain activity and use limitations as provided for in the MoECA for the purpose of ensuring the protection of human health and the environment by minimizing the potential for exposure to contamination that remains on the Property and to ensure that the Property is not developed, used, or operated in a manner incompatible with the environmental response project implemented at the Property;

WHEREAS, the EPA enters into this Covenant as a "department" pursuant to the MoECA, with all the attendant rights of a "department" under such Act, which include, but are not limited to, having a right to enforce this Covenant;

WHEREAS, Holder enters into this covenant as a "holder" pursuant to the MoECA, with all the attendant rights of a "holder" under such Act, which include, but are not limited to, acquiring an interest in the Property and a right to enforce this Covenant;

WHEREAS, the EPA and responsible parties performed an investigation and "environmental response project" (as defined in the MoECA) at the Property, pursuant to the Comprehensive Environmental Response, Compensation and Liability Act, 42 U.S.C. §§ 9601 - 9675 ("CERCLA"). This Covenant is being filed with the appropriate recorder of deeds because contaminants of concern remain at the Property at levels that do not allow for unrestricted land use or unlimited exposures, following the investigation and remediation of the Property under CERCLA;

WHEREAS, the environmental response project conducted at the Property included the following activities:

• The Property began operating in 1962 as an industrial facility which reprocessed heat transfer fluids, hydraulic fluids, solvents and catalysts. The process fluids and materials contained hazardous substances including volatile organic compounds ("VOCs") and

polychlorinated biphenyls ("PCBs"). In the late 1980s, the EPA and Missouri Department of Natural Resources ("MDNR") conducted a remedial investigation of the Property pursuant to CERCLA. This investigation led to the signing of a Record of Decision ("ROD") for Operable Unit 1 ("OU1") on the Property on December 12, 1988. The selected remedy included the hydraulic control and treatment of the VOCcontaminated shallow groundwater plume and the offsite treatment and disposal of shallow soils, as well as a review of such remedial actions every five (5) years to ensure the protection of human health and the environment. On December 29, 1989, the EPA and Owner's predecessor, Findett Corporation, entered into a Consent Decree requiring Owner to conduct the remedial actions as set forth in the 1988 ROD. A groundwater extraction and treatment system ("GETS") was installed in 1991, and the contaminated soils were excavated and disposed of in an offsite facility. This resulted in the completion of the remedial action for OU1 in 2003. However, the Five-Year Review completed on September 25, 2015 ("Five-Year Review") noted that there were detections of contaminants above their regulatory standards or risk-based screening levels in the OU1 extraction wells and monitoring network, possible incomplete containment of the contamination, and concerns regarding the potential for non-continuous operation of the GETS. In 2016, the GETS was expanded to ensure continuous operations. The Five-Year Review suggested the implementation of institutional controls preventing future residential land use, construction of buildings onsite, and exposure to contaminated subsurface soils;

On October 4, 2000, the EPA entered into an Administrative Order on Consent ("AOC") with a group of responsible parties requiring removal of PCB-contaminated soils above 25 parts per million and located above the groundwater table at Operable Unit 2 ("OU2") on the Property. This AOC is on file with the EPA Region 7 Hearing Clerk under Docket No. CERCLA VII-2000-0028. The soil removal action was completed in July 2001. The Five-Year Review observed that, while the soil removal action was complete, some contaminants remained, so institutional controls should be implemented preventing future residential land use and exposure to contaminated subsurface soils and groundwater;

WHEREAS, upon completion of the response actions described above, contaminants of concern have remained on the Property above levels that are protective of unrestricted use of, and unlimited exposures at, the Property; and

WHEREAS, the remedies described above are deemed protective if and only if the activity and use limitations described in this Covenant remain in place for as long as the contaminants of concern remain at the Property above levels that allow for the unrestricted use of, and unlimited exposures at, the Property.

NOW THEREFORE, Owner, Holder, and the EPA as the "Department" as defined at Section 260.1003(3) of MoECA, agree to the following:

1. Parties.

The Owner, Holder, and the EPA are Parties to this Covenant, and may enforce it as provided in

Page 3 of 11

20190502000206270 4/14 BK: DE7068 Pg: 1038

Section 260.1030, RSMo.

2. Activity and Use Limitations.

Owner hereby subjects the Property to, and agrees to comply with, the following activity and use limitations:

- a. No Residential Land Use: Based on reports on file at the EPA's offices in Lenexa, Kansas and MDNR's offices in Jefferson City, Missouri, the Property currently meets the EPA's and MDNR's standards for non-residential use. Therefore, contaminants of concern remaining at the Property do not pose a significant current or future risk to human health or the environment so long as the following restrictions remain in place: The Property shall <u>not</u> be used for residential purposes, which for purposes of this Covenant include but are not limited to: single family homes, duplexes, multi-plexes, apartments, condominiums, schools, child-care facilities, or any land use where persons can be expected to reside.
- b. No Disturbance of Soil: Based on reports on file at the EPA's offices in Lenexa, Kansas and MDNR's offices in Jefferson City, Missouri, contaminants of concern remaining at the Property exceed the EPA's and MDNR's standards for non-residential use and construction worker exposure, but do not pose a significant current or future risk to human health or the environment with respect to non-residential uses of the property so long as the soil is not disturbed such that exposure would result. Therefore, soil on the Property shall not be excavated or otherwise disturbed in any manner without the prior written approval of the EPA or MDNR. If an Owner/Transferee desires to disturb soil at the Property, then such Owner/Transferee shall request permission to do so from the EPA or MDNR at least thirty (30) days before the soil disturbance activities are scheduled to begin. Based on the potential hazards associated with the soil disturbance activities, the EPA or MDNR may deny the request to disturb the soils as required to ensure human health and the environment or may, for that purpose, require specific protective or remedial actions before allowing such soil disturbance activities to occur. Contaminated soil may be disturbed if necessary during an emergency (such as water or gas main break, fire, explosion or natural disaster), in which case the Owner/Transferee shall ensure that notification is provided to the EPA or MDNR orally or in writing as soon as practicable, but no later than forty-eight (48) hours after the disturbance. Any contaminated soil disturbed as part of an emergency response action must be returned to its original location and depth, or properly characterized, managed and disposed of, in accordance with all applicable local, state, and federal requirements. Within thirty (30) days after such emergency has been abated, the Owner/Transferee shall provide a written report describing such emergency and any response actions.
- c. Construction Worker Notice: In the event that construction or excavation work is to be performed that may expose workers to contaminated soil on the Property, Owner/Transferee shall ensure that actual notice is provided in advance, both orally and in writing, to any person or entity performing any work that results in exposure to such soil, so that appropriate protective measures are taken to protect such workers' health and

safety in accordance with applicable health and safety laws and regulations. Such notice shall include, but not be limited to, providing a copy of this Covenant to any individuals responsible for the construction. Owner/Transferee shall maintain copies of any such written notice for a period of at least three (3) years, and shall provide copies of such records to the EPA or MDNR upon request.

- d. No Drilling or Use of Groundwater: Based on reports on file at the EPA's offices in Lenexa, Kansas and MDNR's offices in Jefferson City, Missouri, contaminants of concern remain in groundwater in one or more zones beneath the Property at levels exceeding the Maximum Contaminant Levels ("MCLs") set forth in the Safe Drinking Water Act, 42 U.S.C. §§ 300j-26, and regulations promulgated thereunder at 40 C.F.R. Part 141. The MCLs are the maximum permissible levels of contaminants in water which is delivered to any user of a public water system. Therefore, in addition to any applicable state or local well use restrictions, the following restrictions shall apply to the Property:
 - Groundwater from the Property shall not be consumed or otherwise used for any purpose, except as approved by the EPA or MDNR for the collection of samples for environmental analysis purposes, collection or treatment of groundwater for remedial purposes, or collection or treatment of groundwater as part of excavation or construction activities;
 - (ii) There shall be no drilling or other artificial penetration of any groundwaterbearing unit(s) containing contaminants, unless performed in accordance with a work plan approved by the EPA or MDNR; and
 - (iii) Installation of any new groundwater wells on the Property is prohibited, except for wells used for investigative, monitoring and/or remediation purposes installed in accordance with a work plan approved by the EPA or MDNR.

e. No Construction of Buildings:

Based on reports on file at the EPA's offices in Lenexa, Kansas and MDNR's offices in Jefferson City, Missouri, contaminants of concern remaining at the Property exceed the EPA's standards for residential use related to subsurface soil/groundwater to indoor air exposure for volatile contaminants. Therefore, no enclosed buildings may be constructed on the Property without written approval from the EPA or MDNR. If an Owner/Transferee desires to construct a building on the Property, then such Owner/Transferee shall request, in writing, approval from the EPA or MDNR at least sixty (60) days before construction is anticipated to begin. Based upon applicable authorities to protect from risk to human health and the environment associated with the construction, the EPA or MDNR may approve the request, deny the request, or may require specific protective or remedial actions before allowing construction activities to occur. Construction shall not be initiated prior to receipt of written approval from the EPA or MDNR.

If any person desires in the future to use the Property for any purpose or in any manner that is prohibited by this Covenant, the EPA and MDNR must be notified in advance so that a Modification, Temporary Deviation, or Termination request can be considered as described

Page 5 of 11

below. Further analyses and/or response actions may be required prior to any such use.

3. Running with the Land.

This Covenant shall be binding upon Owner and Owner's heirs, successors, assigns, and other transferees in interest (collectively referred to as "Transferees") during their period of ownership, and shall run with the land, as provided in Section 260.1012, RSMo, subject to amendment or termination as set forth herein. The term "Transferee(s)," as used in this Covenant, shall mean any future owner of any interest in the Property or any portion thereof, including, but not limited to, owners of an interest in fee simple, mortgagees (subject to applicable lender liability protections prescribed by law), easement holders, and/or lessees.

4. Location of Files and Records.

Records of this environmental response project for the Property are currently located at the EPA's offices in Lenexa, Kansas and MDNR's offices in Jefferson City, Missouri. Information regarding the environmental response project may be obtained by making a request to the EPA pursuant to the federal Freedom of Information Act, 5 U.S.C. § 552, or to MDNR pursuant to the Missouri "Sunshine Law", Chapter 610, RSMo. Requests should reference the site identification name of "Findett Corp., MOD006333975."

5. Enforcement.

Compliance with this Covenant may be enforced as provided in Section 260.1030, RSMo. MDNR (and any successor agencies) is expressly granted the power to enforce this Covenant. Failure to timely enforce compliance with this Covenant or the activity and use limitations contained herein by any party shall not bar subsequent enforcement by such party and shall not be deemed a waiver of the party's right to take action to enforce any non-compliance. Nothing in this Covenant shall restrict any person from exercising any authority under any other applicable law.

In addition to or in lieu of any other remedy authorized by law, prior to taking legal action to enforce this Covenant, the EPA may require Owner/Transferee to submit a plan to investigate and/or correct any alleged violation of this Covenant, in which case the EPA will provide written notification to the Holder. If such Owner/Transferee fails to act within the required timeframe or if the EPA finds a proposed remedy unacceptable, the EPA may pursue any remedy authorized by law. In such event, the EPA will provide written notification to the Holder, prior to or contemporaneously with any legal action taken to enforce this Covenant. Should MDNR decide to exercise its right to enforce this Covenant, MDNR shall so notify the EPA and Holder at least thirty (30) calendar days in advance of taking formal action to do so.

6. Right of Access.

Owner, on behalf of itself and any Transferees, hereby grants to the Holder, the EPA, MDNR, and their respectively authorized agents, contractors, and employees, the right to access the Property at all reasonable times for implementation, monitoring, inspection, or enforcement of

Page 6 of 11

this Covenant and the related environmental response project. Nothing herein shall be deemed to limit or otherwise impede the EPA's or MDNR's rights of access and entry under federal or state law or other agreement.

7. Compliance Reporting.

Owner/Transferee shall submit to Holder, the EPA, and MDNR, by no later than January 31st of each year, documentation verifying that the activity and use limitations imposed hereby were in place and complied with during the preceding calendar year. The Compliance Report shall include the following statement, signed by Owner/Transferee:

I certify that to the best of my knowledge, after thorough evaluation of appropriate facts and information, the information contained in or accompanying this submission is true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

In the event that an Owner, Transferee, or Holder becomes aware of any noncompliance with the activity and use limitations described in Paragraph 2 above, such person or entity shall notify all other Parties to this Covenant in writing as soon as possible, but no later than ten (10) business days thereafter.

8. Additional Rights.

Reserved.

9. Notice upon Conveyance.

Each instrument hereafter conveying any interest in the Property or any portion of the Property shall contain a notice of the activity and use limitations set forth in this Covenant, and provide the recording reference for this Covenant. The notice shall be substantially in the following form:

THE INTEREST CONVEYED HEREBY IS SUBJECT TO AN ENVIRONMENTAL COVENANT DATED_____, 2019, RECORDED IN THE OFFICE OF THE RECORDER OF DEEDS OF ST. CHARLES COUNTY, MISSOURI, ON_____, 2019, AS DOCUMENT_____, BOOK_____, PAGE____.

Owner/Transferee shall notify Holder, the EPA, and MDNR within ten (10) days following each conveyance of an interest in any portion of the Property. The notice shall include the name, address, and telephone number of the Transferee, and a copy of the deed or other documentation evidencing the conveyance.

10. Representations and Warranties.

Owner hereby represents and warrants to Holder and the EPA that:

Page 7 of 11

- a) that Owner has the power and authority to enter into this Covenant, to grant the rights and interests herein provided and to carry out all of Owner's obligations hereunder;
- b) that this Covenant will not materially violate or contravene or constitute a material default under any other agreement, document or instrument to which Owner is a party or by which Owner may be bound or affected; and
- c) that Owner is the sole owner of the Property and holds fee simple title, which is free, clear and unencumbered.

11. Amendments, Termination, and Temporary Deviations.

This Covenant may be amended or terminated by approval of the EPA (in consultation with MDNR), Holder, and the current Owner/Transferee of record at the time of such amendment or termination, pursuant to section 260.1027 RSMo. Any other Parties to this Covenant hereby waive the right to consent to any amendment to, or termination of, this Covenant. Following signature by all requisite persons or entities on any amendment or termination of this Covenant, Owner/Transferee shall record and distribute such documents as described below.

Temporary deviations from the obligations or restrictions specified in this Covenant may be approved by the EPA (in consultation with MDNR) in lieu of a permanent amendment to this Covenant. Owner/Transferee may submit a written request to the EPA to temporarily deviate from specified requirements described herein for a specific purpose and timeframe. Any such request shall be transmitted to Holder and the EPA as described below. The request must specifically invoke this paragraph of this Covenant, fully explain the basis for such temporary deviation, and demonstrate that protection of human health and the environment will be maintained. The EPA shall evaluate the request and convey approval or denial in writing, on a reasonably timely basis. Owner/Transferee may not deviate from the requirements of this Covenant unless and until such approval has been obtained.

12. Severability.

If any provision of this Covenant is found to be unenforceable in any respect, the validity, legality, and enforceability of the remaining provisions shall not in any way be affected or impaired.

13. Governing Law.

This Covenant shall be governed by and interpreted in accordance with the laws of the State of Missouri.

14. Recordation.

Within thirty (30) days after the date of the final required signature upon this Covenant or any amendment or termination thereof, Owner shall record this Covenant with the appropriate recorder of deeds for each county in which any portion of the Property is situated. Owner shall be responsible for any costs associated with recording this Covenant.

Page 8 of 11

20190502000206270 9/14 Bk:DE7068 Pg:1043

15. Effective Date.

The effective date of this Covenant shall be the date upon which the fully executed Covenant has been recorded with the office of the recorder of the county in which the Property is situated.

16. Distribution of Covenant.

Within thirty (30) days following the recording of this Covenant, or any amendment or termination of this Covenant, Owner/Transferee shall, in accordance with Section 260.1018, RSMo, distribute a file- and date-stamped copy of the Covenant as recorded with the appropriate recorder of deeds (including book and page numbers) to: (a) each of the Parties hereto; (b) each person holding a recorded interest in the Property, including any mortgagees or easement holders; (c) each person in possession of the Property; (d) each municipality or other unit of local government in which the Property is located; (e) MDNR; and (e) any other person designated herein.

17. Contact Information.

Any document or other item required by this Covenant to be given to another party hereto shall be sent to:

If to Owner/Transferee: Findett Real Estate Corporation 31 Eagle Cove Lane St. Charles, MO 63303

If to the EPA: Director, Superfund Division U.S. Environmental Protection Agency, Region 7 11201 Renner Blvd. Lenexa, KS 66219

<u>If to MDNR</u>: Superfund Section Chief Missouri Department of Natural Resources Hazardous Waste Program P.O. Box 176 Jefferson City, MO 65102-0176

Owner/Transferee, Holder, the EPA, or MDNR may change the designated recipient of such notices by providing written notice of the same to each other. If any notice or other submittal under this Covenant is received by a former Owner/Transferee who no longer has an interest in the Property, then such former Owner/Transferee shall notify the EPA, Holder, MDNR, and the current Owner/Transferee of the Property regarding the misdirected communication.

Page 9 of 11

20190502000206270 10/14 Bk:DE7068 Pg:1044

18. Reservation of Rights.

This Covenant is a necessary component of the environmental response project described above. Nothing in this Covenant shall be construed so as to relieve any Owner/Transferee from the obligation to comply with this Covenant during their period of ownership, or the obligation to comply with any other source of law. This Covenant is not a permit, nor does it modify any permit, order, agreement, decree, or judgment issued under any federal, State, or local laws or regulations, and the EPA does not warrant or aver in any manner that an Owner/Transferee's compliance with any aspect of this Covenant will result in compliance with any such requirements. The EPA and MDNR reserve all legal and equitable remedies available to enforce the provisions of this Covenant or any other legal requirement, and/or to address any imminent and substantial endangerment to the public health or welfare or the environment arising at, or posed by, the Property. Nothing herein shall be construed so as to prevent the EPA, MDNR, or Holder from taking any independent actions as allowed by law.

[REMAINDER OF PAGE INTENTIONALLY BLANK]

Page 10 of 11

20190502000206270 11/14 Bk:DE7068 Pg:1045

The undersigned represent and certify that they are authorized to sign this Covenant on behalf of their respective Parties.

IT IS SO AGREED:

FOR FINDETT REAL ESTATE CORPORATION, a Missouri Corporation

Date: April 5, 2019 Jantor Bv: Name: George Garrison

Title: President Address: 31 Eagle Cove Lane St. Charles, MO 63303

STATE OF South Carolina COUNTY OF Spartmburg

On this <u>f</u> day of <u>day</u>, 2019, before me a Notary Public in and for said state, personally appeared George Garrison, the president of Findett Real Estate Corporation, a Missouri corporation, known to me to be the person who executed the within Environmental Covenant on behalf of said limited liability company and acknowledged to me that he/she executed the same for the purposes therein stated.

Mous

Notary Public

Mitzi M. Morris My Commission Expires December 17 2023 State of South Carolina Page 11 of 11

20190502000206270 12/14 Bk:DE7068 Pg:1046

FOR THE EPA

By:

4/11/2019 Date:

Mary P. Pelerson, Director Superfund Division U.S. Environmental Protection Agency, Region 7 11202 Renner Boulevard Lenexa, KS 66219

STATE OF KANSAS

COUNTY OF JOHNSON

On this $\underline{//}^{n}$ day of $\underline{//}^{n}$, 2019, before me a Notary Public in and for said state, personally appeared Mary P. Peterson (or her designee), Director of the Superfund Program of the U.S Environmental Protection Agency, a federal agency, known to me to be the person who executed the within Covenant on behalf of said agency and acknowledged to me that she executed the same for the purposes therein stated.

NOTARY PUBLIC - S MILADY B

Wady Rif Notary Pul

20190502000206270 13/14 Bk:DE7068 Pg:1047

EXHIBIT A

Lots Five (5), Six (6), Seven (7), and Eight (8) of Gardnerville Industrial Park, a subdivision of part of the North half of the Southeast quarter of Section 23, Township 47 North, Rage 4 East, as said lots are shown on the Plat of said Subdivision recorded in Plat Book 8 page 17 of the St. Charles County Recorder's Office.

EXHIBIT B

20190502000206270 14/14 Bk:DE7068 Pg:1048

RECORD AS IS

St. Charles County Recorder's Office Mary E. Dempsey 201 North Second Street, Suite 338 St. Charles, MO 63301 (636) 949-7505 www.sccmo.org

		Receipt for S	Services				
Cashier	CGRAF		Batch	Batch # 1014171			
Customer Name	LAW OFFICE OF ELLEN O	OLDMAN/ENV	· ·	Date:	05/02/2019	Time:	02:10:54PM
						·	
Remarks	DR/CMG						
Date	Instrument No	Document Type	Transaction Type	GFNumbe			Pg/Am
5/2/2019 2:10:54 Party 1: FIND	PM 20190502000206270 DETT REAL ESTATE CORE	COVEN P Par	DE7068 1035 ty 2: FINDETT)	REAL EST	ATE CORP		14
		COVEN		Total:			\$60.00
		Fee Total:					\$60.0
CHECK	4704	ELLEN S GOLDMAN A	ATTNY		<u></u>		60.00
			Payment Total:				\$60.0

.

May 27, 2010

Mr. Steve Auchterlonie Remedial Project Manager EPA Region VII, Superfund Division 901 N. Fifth Street Kansas City, Kansas 66101

J006295.07

RECEIVED

JUN 0 1 2010

SUPERFUND DIVISION

Re: Revised Wellhead Protection District Ordinance City of St. Charles Remedial Design/Remedial Action Operable Unit 3 – Hayford Bridge Road Groundwater Site St. Charles, Missouri

Dear Mr. Auchterlonie:

Pursuant to the Consent Decree (07-1215) for the referenced site, and on behalf of the Hayford Bridge Road (HBR) OU3 Group, Geotechnology, Inc. is submitting the revised Wellhead Protection (WHP) District ordinance that was recently approved by the City of St. Charles. The WHP District ordinance addresses, in part, the institutional control requirements for OU3. Two parcels within the affected area of OU3 (i.e., Ostmann and Monsanto parcels) are not within City limits or jurisdiction. We understand that City of St. Charles officials are working with St. Charles County officials on an agreement that addresses the enforceability of the WHP ordinance with non-City residents/property owners within the City's WHP District.

Please contact me if you have questions or additional information is needed.

Very truly yours,

GEOTECHNOLOGY, INC.

Kenny J/Henrinen/RG, CGWP Senior Project Manager

KJH:kjh/jsj

cc: Ms. Candice McGhee; MDNR, Hazardous Waste Program 1738 East Elm, Jefferson City, Missouri 65101 The HBR OU3 Group Technical Committee

0401

Bill No. <u>10108</u>

Sponsor: Michael Klinghammer

An Ordinance Amending Chapter 156 of the Code of Ordinances by Amending Section 156.065 Pertaining to WHP Wellhead Protection District.

Be it Ordained by the Council of the City of St. Charles, Missouri, as Follows:

SECTION 1. Section 156.065 of the Code of Ordinances of the City of St. Charles, Missouri, is hereby amended to read as follows:

§ 156.065 WHP WELLHEAD PROTECTION DISTRICT.

(A) *Purpose*. The purpose of this section is to safeguard the public health, safety, and general welfare through the protection of groundwater used as a public water supply.

(B) Permitted uses. Any use permitted by right in an underlying zoning district shall also be permitted by right in an overlying Wellhead Protection District, the boundaries of which are illustrated on the map attached as Exhibit A. except for those conditional uses listed in § 156.065(C), as well as the following prohibited uses:

(1)— The production, use, handling, or storage of any extremely hazardous substance, greater than the exempted quantity, as defined in § 156.005.

(2)——Landfills, including but not limited to industrial and municipal landfills; open dumps; or any other waste disposal facility.

(3) --- Waste transfer stations and incinerators.

(4) - Waste disposal-wells and underground injection of liquid

wastes.

(5) --- Sewage lagoons or other impoundment of waste materials

(6) Wastewater treatment-plants.

(7) -- Cemeteries and graveyards for humans or domesticated

animals.

(8) -- Scrap and junk yards.

(9) Uncovered road salt storage.

(10) Vehicle service stations and convenience stores which sell motor fuel.

(11) Vehicle repair and service facilities, including but not limited to businesses such as vehicle mechanic services, transmission repair services, and oil changing services.

(12) Dry cleaning businesses.

(13) Furniture stripping businesses.

(14) -- Livestock feed lots.

(C) Conditional uses.

(1) The following uses may be permitted in the WHP Wellhead Protection District as a conditional use if approved by the City Council following recommendation by the Planning and Zoning Commission:

(a) The production, use, handling, or storage of any hazardous substance or liquid petroleum product.

(2) The following uses may be permitted 1,000 feet inside of the boundary perimeter of the WHP Wellhead Protection District as a conditional use if approved by the City Council following recommendation by the Planning and Zoning Commission:

(a) (b) Fleet maintenance repair and service facilities, including but not limited to mechanic services, transmission repair services and oil changing services in conjunction with and supplementary to a permitted business operation.

(b) (c) Construction of new underground storage tanks and associated pipes in compliance with applicable local, state and federal laws and in conjunction with the and supplementary to a permitted business operation.

(d) Dry cleaning business.

(e) Furniture stripping.

(f) Wastewater Pretreatment Facilities or other impoundments of waste material.

(g) Vehicle service stations and convenience stores which sell motor fuel.

NOTE: Underlined Text is Inserted. Struck Through Text is Deleted.

(h) Electrical power generator and substations.

(i) Closed-loop heat pump well systems, provided the entire length of the pipe system is sealed with a thermal grout.

(3) (2) In order to receive approval from the City Council, each facility which handles or uses regulated substances must fulfill the following requirements:

(a) Provide for the installation and maintenance of devices for secondary containment in case of inadvertent discharge from primary containers. Ensure the proper storage of regulated substances to insure the health and safety integrity and proper functionality of impervious floor surface.

(b) Submission of an emergency contingency plan for each facility to respond to unauthorized discharges.

(c) Posting of a bond or carrying of insurance which would pay for the cost of cleanup incurred as the result of inadvertent discharge.

(d) The three previous requirements must be approved in writing by both the Fire Chief and the Community Development Director, or their designees.

(D) Prohibited uses. The following uses are prohibited in the WHP Wellhead Protection District:

(1) The production, use, handling, or storage of any extremely hazardous substance, greater than the exempted quantity, as defined in § 156.005.

(2) Landfills, including but not limited to industrial and municipal landfills; open dumps; or any other waste disposal facility.

(3) Waste transfer stations and incinerators.

(4) Waste disposal wells and underground injection of liquid

wastes.

(5) Sewage lagoons.

(6) Wastewater treatment plants.

(7) Cemeteries and graveyards for humans or domesticated animals.

(8) Scrap and junk yards.

(9) Uncovered salt storage.

(10) Private potable water wells into known and potential sources of contamination, including, but not limited to those identified on Exhibit A.

(11) Ponds/lakes constructed deeper than 15 feet, in order to prohibit excavation below the upper cohesive solids into the underlying sand and gravel aquifer except at properties where site specific drilling data indicates deeper excavation, will not contact the sand and gravel aquifer to a maximum allowable excavation depth of five feet above the base of the upper cohesive soils.

(12) Open-loop heat pump well systems which utilize groundwater as the heat source and sink.

(13) Any use not described in divisions (B) or (C).

(D) (E) *Exemptions*. The following substances are not subject to the provisions of this chapter, as long as they are used, handled, or stored in a manner that does not result in contamination of the groundwater:

(1) Use of any regulated substance in an amount less than the exempted quantity for that substance.

(2) Any substance to the extent it is used for personal, family or household purposes, or is present in the same form and concentration as a product packaged for distribution and use by the general public. However, regulated substances used in the operation of a home business shall not be exempt from the provisions of these requirements.

(3) Any substance to the extent it is used in routine agricultural operations or is a fertilizer held for sale by a retailer to the user.

(4) Any substance to the extent it is used in a research laboratory, hospital or other medical facility, and is under the direct supervision of a technically qualified individual.

(5) Regulated substances contained in properly operating sealed units (transformers, refrigeration units, etc.) which are not operated as part of routine use and which are in operable condition.

(6) Motor fuels, lubricants, and coolants which are in use within operable internal combustion engines and attached fuel tanks.

NOTE: Underlined Text is Inserted. Struck Through Text is Deleted.

Bill No. _____10108

Radioactive materials regulated by the United States Nuclear (7) Regulatory Commission.

(8) Regulated substances in continuous transit through a WHP District.

(E)(F) Design standards. Within the WHP District, the design standards of the district upon which the WHP District is superimposed shall apply. In addition, the following design standards shall be required in a WHP Zoning District:

(1)Construction of new underground storage tanks and associated pipes is prohibited. Operation of existing underground storage tanks is permitted, as long as doing so is in compliance with applicable state and federal laws.

Other design measures as required to receive a conditional use (2) permit from the City Council.

- SECTION 2. This Ordinance shall be in full force and effect from and after the date of its passage and approval.
- SECTION 3. It is the intention of the city council, and it is hereby ordained that the provisions of this ordinance shall become and be made a part of the Code of Ordinances of the City of St. Charles, Missouri, and the sections of this ordinance may be renumbered to accomplish such intention.

Date Passed

2010 Date Approved by Mayor

Approved Michael J. Valenti, City Attorney

Larry Muench, Presiding Officer

Patricia M.

Attest:

T:\ORDINANC\CODEBK\156.065 WHP Wellhead Protection District.doc

NOTE: Underlined Text is Inserted. Struck Through Text is Deleted.

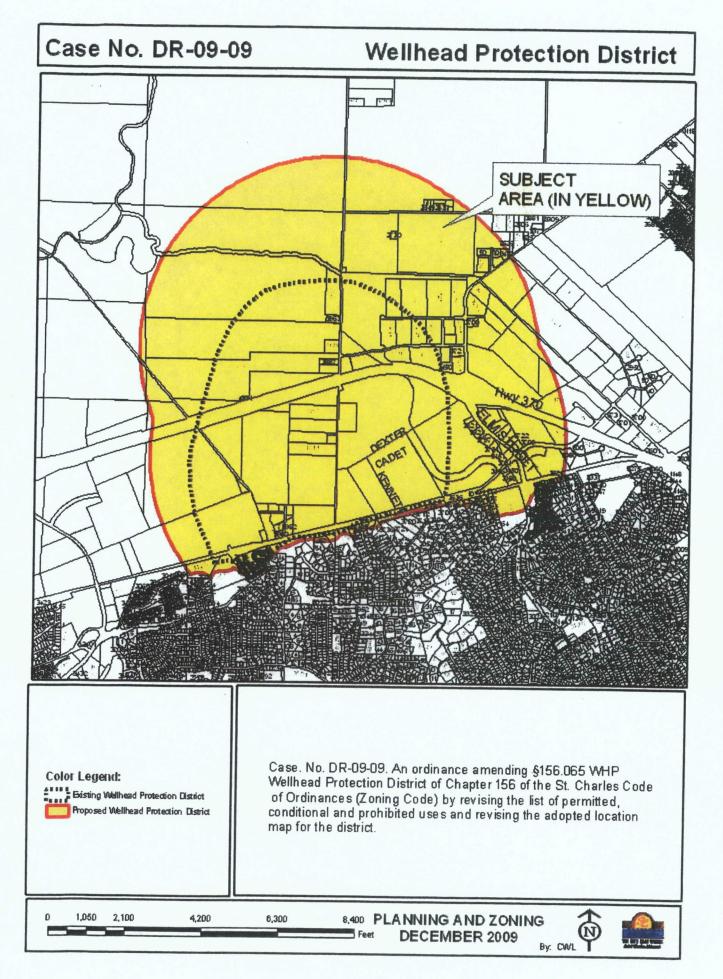
- Potential Contaminant Site .
- NPDES Outfall 0

0

- Underground Storage Tank .
- 0 Aboveground Storage Tank
 - N 2,600 1,300

Feet

L STL NACEDEPROACTYOFSTCHARLESWHPP_UPDATE_2008/GISMAPFILESPIGURE2_STCHARLES_MO_WHPP_POTENTIAL_CONTAM_SOURCES.MXD RHURSEY 9/15/2009 00:52:05


Approximate Extent of Hayford Bridge Road Groundwater Superfund Site/Findett Corp. Site Impact Wellhead Protection Area ٦ Parcels Railroad

- Sanitary Sewer (Gravity Main)
- Sanitary Sewer (Force Main) Hazardous Liquid Pipeline

Figure 2 Known and Potential Sources of Contamination within the Wellhead Protection Area St. Charles, MO

. . .

. 1 -

0 ~

~

AGENDA ITEM # 14

MEMORANDUM

DATE: December 21, 2009

TO: Planning and Zoning Commission

FROM: David Gipson, AICP Planning Manager

SUBJECT: Case No. DR-09-09 Amendment to §156.065 WHP Wellhead Protection District

This proposal is to amend §156.065 WHP Wellhead Protection District by revising the list of permitted, conditional and prohibited uses and revising the adopted location map for the district. The existing Wellhead Protection District was approved in May of 1998 to safeguard the public health, safety, and general welfare through the protection of groundwater used as a public water supply. The ordinance establishes a District Boundary and regulates or prohibits uses that could potentially contaminate the City's water supply. These regulations should not impact residential uses within the Wellhead Protection District.

The existing WHP was defined by a 10 year time of travel recharge area. The 10 year time of travel recharge area is a geographical area which provides the recharge (replenishment of underground water) to an aquifer(s) which is a current or potential potable water source (e.g. the City's drinking water) and, due to its geological properties, is highly susceptible to the introduction of pollutants. In this instance, it is being defined by an estimated amount of time for a water particle to travel from its source through the aquifer to the well sites (10 years). The proposed WHP boundary is being expanded based upon a Missouri Department of Natural Resources (MODNR) recommendation that the WHP area be defined by a fixed 1-mile radius.

Along with changes to the WHP boundary, there are some minor revisions proposed within the regulating ordinance. A list of prohibited and regulated uses can be found within the attached ordinance.

Recommended Motion

Motion to forward the proposed WHP Wellhead Protection District ordinance and boundary amendment to the St. Charles City Council with a favorable recommendation.

RCA FORM (OFFICE USE ONLY) MEETING/DATE: 02/02/10 Regular(X) Special() Comm. of Whole() ATTACHMENT: YES(X) NO() Report(X) Resolution() Ordinance()

Request for Council Action

Ward All; Sponsor: Michael Klinghammer

- Description: An Ordinance amending §156.065 WHP Wellhead Protection District of Chapter 156 of the St. Charles Code of Ordinances (Zoning Code) by revising the list of permitted, conditional and prohibited uses and revising the adopted location map for the district.
- Recommendation: Staff -- Approve(X) Disapprove() Board/Committee/Commission -- Approve (X) Disapprove ()

• Summary:

This proposal is to amend §156.065 WHP Wellhead Protection District by revising the list of permitted, conditional and prohibited uses and revising the adopted location map for the district. The existing Wellhead Protection District was approved in May of 1998 to safeguard the public health, safety, and general welfare through the protection of groundwater used as a public water supply. The ordinance establishes a District Boundary and regulates or prohibits uses that could potentially contaminate the City's water supply. These regulations should not impact residential uses within the Wellhead Protection District.

The existing WHP was defined by a 10 year time of travel recharge area. The 10 year time of travel recharge area is a geographical area which provides the recharge (replenishment of underground water) to an aquifer(s) which is a current or potential potable water source (e.g. the City's drinking water) and, due to its geological properties, is highly susceptible to the introduction of pollutants. In this instance, it is being defined by an estimated amount of time for a water particle to travel from its source through the aquifer to the well sites (10 years). The proposed WHP boundary is being expanded based upon a Missouri Department of Natural Resources (MODNR) recommendation that the WHP area be defined by a fixed 1-mile radius.

Along with changes to the WHP boundary, there are some minor revisions proposed within the regulating ordinance. A list of prohibited and regulated uses can be found within the attached ordinance.

The public hearing for this item was conducted by the City Council on January 5, 2010. The Bill is now being brought forward for introduction. The Staff Report from the Planning and Zoning Commission meeting has been included for reference. The Planning and Zoning Commission held a public hearing for this amendment at the December 21, 2009 meeting. There were three speakers during the public hearing. The Planning and Zoning Commission voted unanimously to approve the amendment and to forward the request to the City Council with a favorable recommendation.

• Budget Impact: (revenue generated, estimated cost, CIP item, etc.)

N/A

Account #

RCA prepared by: David Gipson	Dept.Director	M. O.d.
	Dept.Director	MJAIDON
O:\AGENDA\AGENDA\020210\DR-09	-09 Wellhead Amend Intro RCA.doc	1/27/1:

May 27, 2010

J006295.07

Mr. Steve Auchterlonie Remedial Project Manager EPA Region VII, Superfund Division 901 N. Fifth Street Kansas City, Kansas 66101

Re: Revised Wellhead Protection District Ordinance City of St. Charles Remedial Design/Remedial Action Operable Unit 3 – Hayford Bridge Road Groundwater Site St. Charles, Missouri

Dear Mr. Auchterlonie:

Pursuant to the Consent Decree (07-1215) for the referenced site, and on behalf of the Hayford Bridge Road (HBR) OU3 Group, Geotechnology, Inc. is submitting the revised Wellhead Protection (WHP) District ordinance that was recently approved by the City of St. Charles. The WHP District ordinance addresses, in part, the institutional control requirements for OU3. Two parcels within the affected area of OU3 (i.e., Ostmann and Monsanto parcels) are not within City limits or jurisdiction. We understand that City of St. Charles officials are working with St. Charles County officials on an agreement that addresses the enforceability of the WHP ordinance with non-City residents/property owners within the City's WHP District.

Please contact me if you have questions or additional information is needed.

Very truly yours,

GEOTECHNOLOGY, INC. Kenny/J. Herzimen, RG, CGWP

Kenny J. Hemmen, RG, CC Senior Project Manager

KJH:kjh/jsj

cc: Ms. Candice McGhee; MDNR, Hazardous Waste Program 1738 East Elm, Jefferson City, Missouri 65101 The HBR OU3 Group Technical Committee

Bill No. <u>10108</u>

Ordinance No. 10 - 26

Sponsor: Michael Klinghammer

An Ordinance Amending Chapter 156 of the Code of Ordinances by Amending Section 156.065 Pertaining to WHP Wellhead Protection District.

Be it Ordained by the Council of the City of St. Charles, Missouri, as Follows:

SECTION 1. Section 156.065 of the Code of Ordinances of the City of St. Charles, Missouri, is hereby amended to read as follows:

§ 156.065 WHP WELLHEAD PROTECTION DISTRICT.

(A) *Purpose*. The purpose of this section is to safeguard the public health, safety, and general welfare through the protection of groundwater used as a public water supply.

(B) Permitted uses. Any use permitted by right in an underlying zoning district shall also be permitted by right in an overlying Wellhead Protection District, the boundaries of which are illustrated on the map attached as Exhibit A. except for those conditional uses listed in § 156.065(C), as well as the following prohibited uses:

(1) The production, use, handling, or storage of any extremely hazardous substance, greater than the exempted quantity, as defined in § 156.005.

(2)——Landfills, including but not limited to industrial and municipal landfills; open dumps; or any other waste disposal facility.

(3) Waste transfer stations and incinerators.

(4) ---- Waste disposal wells and underground injection of liquid

wastes.

(5) Sewage lagoons or other impoundment of waste materials

(6) Wastewater treatment-plants.

(7) Cemeteries and graveyards for humans or domesticated

animals.

(8) --- Scrap and junk yards.

(9) Uncovered road salt storage.

(10) Vehicle service stations and convenience stores which sell motor fuel.

(11) — Vehicle repair and service facilities, including but not limited to businesses such as vehicle mechanic services, transmission repair services, and oil changing services.

(12) — Dry cleaning businesses.

(13) Furniture stripping businesses.

(14) Livestock feed lots.

(C) Conditional uses.

(1) The following uses may be permitted in the WHP Wellhead Protection District as a conditional use if approved by the City Council following recommendation by the Planning and Zoning Commission:

(a) The production, use, handling, or storage of any hazardous substance or liquid petroleum product.

(2) The following uses may be permitted 1,000 feet inside of the boundary perimeter of the WHP Wellhead Protection District as a conditional use if approved by the City Council following recommendation by the Planning and Zoning Commission:

(a) (b) Fleet maintenance repair and service facilities, including but not limited to mechanic services, transmission repair services and oil changing services in conjunction with and supplementary to a permitted business operation.

(b) (c) Construction of new underground storage tanks and associated pipes in compliance with applicable local, state and federal laws and in conjunction with the and supplementary to a permitted business operation.

(d) Dry cleaning business.

(e) Furniture stripping.

(f) Wastewater Pretreatment Facilities or other impoundments of waste material.

(g) Vehicle service stations and convenience stores which sell motor fuel.

NOTE: Underlined Text is Inserted. Struck Through Text is Deleted.

(h) ____Electrical power generator and substations.

(i) Closed-loop heat pump well systems, provided the entire length of the pipe system is sealed with a thermal grout.

(3) (2) In order to receive approval from the City Council, each facility which handles or uses regulated substances must fulfill the following requirements:

(a) Provide for the installation and maintenance of devices for secondary containment in case of inadvertent discharge from primary containers. Ensure the proper storage of regulated substances to insure the health and safety integrity and proper functionality of impervious floor surface.

(b) Submission of an emergency contingency plan for each facility to respond to unauthorized discharges.

(c) Posting of a bond or carrying of insurance which would pay for the cost of cleanup incurred as the result of inadvertent discharge.

(d) The three previous requirements must be approved in writing by both the Fire Chief and the Community Development Director, or their designees.

(D) <u>Prohibited uses.</u> The following uses are prohibited in the WHP Wellhead Protection District:

(1) The production, use, handling, or storage of any extremely hazardous substance, greater than the exempted quantity, as defined in § 156.005.

(2) Landfills, including but not limited to industrial and municipal landfills; open dumps; or any other waste disposal facility.

(3) Waste transfer stations and incinerators.

(4) Waste disposal wells and underground injection of liquid

wastes.

(5) Sewage lagoons.

(6) Wastewater treatment plants.

(7) Cemeteries and graveyards for humans or domesticated animals.

(8) Scrap and junk yards.

ι,

t

(9) Uncovered salt storage.

(10) Private potable water wells into known and potential sources of contamination, including, but not limited to those identified on Exhibit A.

(11) Ponds/lakes constructed deeper than 15 feet, in order to prohibit excavation below the upper cohesive solids into the underlying sand and gravel aquifer except at properties where site specific drilling data indicates deeper excavation, will not contact the sand and gravel aquifer to a maximum allowable excavation depth of five feet above the base of the upper cohesive soils.

(12) Open-loop heat pump well systems which utilize groundwater as the heat source and sink.

(13) Any use not described in divisions (B) or (C).

(D) (E) *Exemptions*. The following substances are not subject to the provisions of this chapter, as long as they are used, handled, or stored in a manner that does not result in contamination of the groundwater:

(1) Use of any regulated substance in an amount less than the exempted quantity for that substance.

(2) Any substance to the extent it is used for personal, family or household purposes, or is present in the same form and concentration as a product packaged for distribution and use by the general public. However, regulated substances used in the operation of a home business shall not be exempt from the provisions of these requirements.

(3) Any substance to the extent it is used in routine agricultural operations or is a fertilizer held for sale by a retailer to the user.

(4) Any substance to the extent it is used in a research laboratory, hospital or other medical facility, and is under the direct supervision of a technically qualified individual.

(5) Regulated substances contained in properly operating sealed units (transformers, refrigeration units, etc.) which are not operated as part of routine use and which are in operable condition.

(6) Motor fuels, lubricants, and coolants which are in use within operable internal combustion engines and attached fuel tanks.

NOTE: Underlined Text is Inserted. Struck Through Text is Deleted.

Bill No. ____10108

Radioactive materials regulated by the United States Nuclear (7) Regulatory Commission.

(8) Regulated substances in continuous transit through a WHP District.

(E)(F) Design standards. Within the WHP District, the design standards of the district upon which the WHP District is superimposed shall apply. In addition, the following design standards shall be required in a WHP Zoning District:

(1) Construction of new underground storage tanks and associated pipes is prohibited. Operation of existing underground storage tanks is permitted, as long as doing so is in compliance with applicable state and federal laws.

Other design measures as required to receive a conditional use (2)permit from the City Council.

- SECTION 2. This Ordinance shall be in full force and effect from and after the date of its passage and approval.
- SECTION 3. It is the intention of the city council, and it is hereby ordained that the provisions of this ordinance shall become and be made a part of the Code of Ordinances of the City of St. Charles, Missouri, and the sections of this ordinance may be renumbered to accomplish such intention.

Date Passed

2010 Date Approved by Mavor

Approved as to Michael J. Valenti, City Attorney

Larry Muench, Presiding Officer

Patricia M.

Attest:

T:\ORDINANC\CODEBK\156.065 WHP Wellhead Protection District.doc

NOTE: Underlined Text is Inserted. Struck Through Text is Deleted.

.

0

- 0 NPDES Outfall
- . Underground Storage Tank
- . Aboveground Storage Tank
- AN

1,300

2,600 Feet

	Railroad
	Sanitary Sewer (Gravity Main)
	Sanitary Sewer (Force Main)
	Hazardous Liquid Pipeline

ST. NLACLEDENPROACTYOFSTCHARLESIWHPP_UPDATE_2008/GISMAPFILESIFIGURE2_STCHARLES_MO_WHPP_POTENTIAL_CONTAM_SOLRCES.MXD. RHURSEY 9/15/2009.00.52:05

Parcels

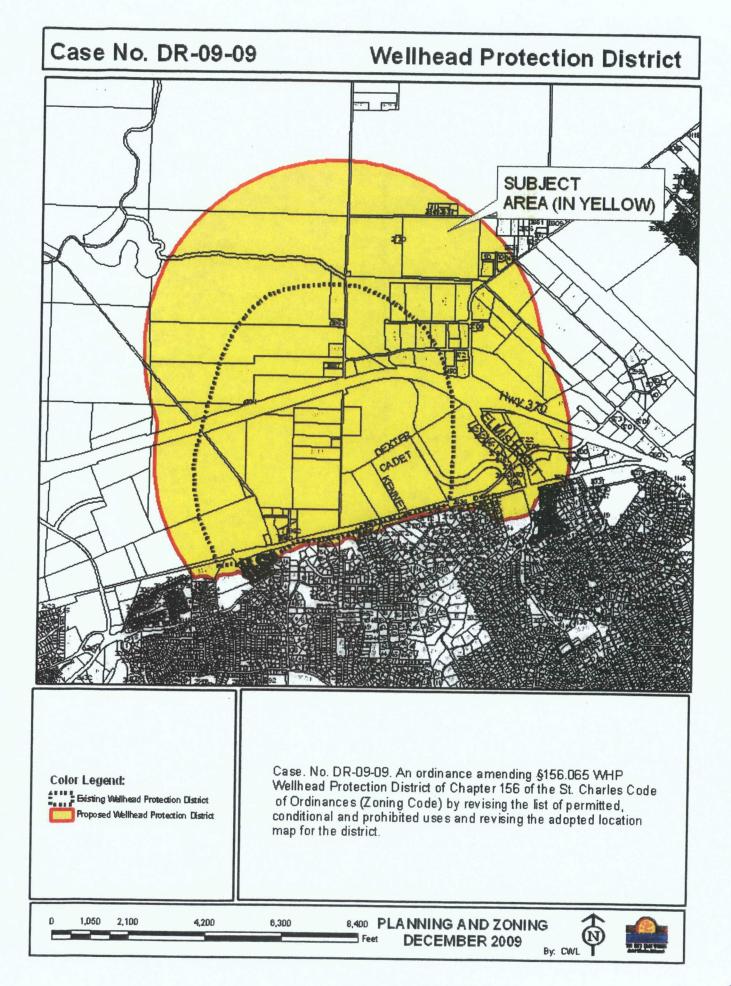

Wellhead Protection Area

Figure 2 Known and Potential Sources of Contamination within the Wellhead Protection Area St. Charles, MO

CH2MHILL

.

. . .

AGENDA ITEM # 14

MEMORANDUM

DATE: December 21, 2009

TO: Planning and Zoning Commission

FROM: David Gipson, AICP Planning Manager

SUBJECT: Case No. DR-09-09 Amendment to §156.065 WHP Wellhead Protection District

This proposal is to amend §156.065 WHP Wellhead Protection District by revising the list of permitted, conditional and prohibited uses and revising the adopted location map for the district. The existing Wellhead Protection District was approved in May of 1998 to safeguard the public health, safety, and general welfare through the protection of groundwater used as a public water supply. The ordinance establishes a District Boundary and regulates or prohibits uses that could potentially contaminate the City's water supply. These regulations should not impact residential uses within the Wellhead Protection District.

The existing WHP was defined by a 10 year time of travel recharge area. The 10 year time of travel recharge area is a geographical area which provides the recharge (replenishment of underground water) to an aquifer(s) which is a current or potential potable water source (e.g. the City's drinking water) and, due to its geological properties, is highly susceptible to the introduction of pollutants. In this instance, it is being defined by an estimated amount of time for a water particle to travel from its source through the aquifer to the well sites (10 years). The proposed WHP boundary is being expanded based upon a Missouri Department of Natural Resources (MODNR) recommendation that the WHP area be defined by a fixed 1-mile radius.

Along with changes to the WHP boundary, there are some minor revisions proposed within the regulating ordinance. A list of prohibited and regulated uses can be found within the attached ordinance.

Recommended Motion

Motion to forward the proposed WHP Wellhead Protection District ordinance and boundary amendment to the St. Charles City Council with a favorable recommendation.

Bill # 10/08

RCA FORM (OFFICE USE ONLY) MEETING/DATE: 02/02/10 Regular(X) Special() Comm. of Whole() ATTACHMENT: YES(X) NO() Report(X) Resolution() Ordinance()

Request for Council Action

Ward All; Sponsor: Michael Klinghammer

- Description: An Ordinance amending §156.065 WHP Wellhead Protection District of Chapter 156 of the St. Charles Code of Ordinances (Zoning Code) by revising the list of permitted, conditional and prohibited uses and revising the adopted location map for the district.
- Recommendation: Staff -- Approve(X) Disapprove() Board/Committee/Commission -- Approve (X) Disapprove ()

• Summary:

This proposal is to amend §156.065 WHP Wellhead Protection District by revising the list of permitted, conditional and prohibited uses and revising the adopted location map for the district. The existing Wellhead Protection District was approved in May of 1998 to safeguard the public health, safety, and general welfare through the protection of groundwater used as a public water supply. The ordinance establishes a District Boundary and regulates or prohibits uses that could potentially contaminate the City's water supply. These regulations should not impact residential uses within the Wellhead Protection District.

The existing WHP was defined by a 10 year time of travel recharge area. The 10 year time of travel recharge area is a geographical area which provides the recharge (replenishment of underground water) to an aquifer(s) which is a current or potential potable water source (e.g. the City's drinking water) and, due to its geological properties, is highly susceptible to the introduction of pollutants. In this instance, it is being defined by an estimated amount of time for a water particle to travel from its source through the aquifer to the well sites (10 years). The proposed WHP boundary is being expanded based upon a Missouri Department of Natural Resources (MODNR) recommendation that the WHP area be defined by a fixed 1-mile radius.

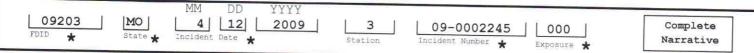
Along with changes to the WHP boundary, there are some minor revisions proposed within the regulating ordinance. A list of prohibited and regulated uses can be found within the attached ordinance.

The public hearing for this item was conducted by the City Council on January 5, 2010. The Bill is now being brought forward for introduction. The Staff Report from the Planning and Zoning Commission meeting has been included for reference. The Planning and Zoning Commission held a public hearing for this amendment at the December 21, 2009 meeting. There were three speakers during the public hearing. The Planning and Zoning Commission voted unanimously to approve the amendment and to forward the request to the City Council with a favorable recommendation.

Budget Impact: (revenue generated, estimated cost, CIP item, etc.) ٠

N/A

Account #


.

RCA prepared by: David Gipson	_ Dept.Director	Director of Admin	MAAn
O:\AGENDA\AGENDA\020210\DR-09	Dept.Director	Intro RCA.doc	1/27/1:

APPENDIX O – APRIL 2009 FIRE INCIDENT RESPONSE RECORD

A MM DD MO 04 12 FDID * State * Incident Date *	YYYY 2009 3 09-0002245 000 ∑ Change Basic Station Incident Number ★ Exposure ★ No Activity
	dicate that the address for this incident is provided on the Wildland Fire Census Tract 3115 - 00
X Street address Intersection In front of Rear of Adjacent to Directions X Street address Number/Milepost Prefix ST Apt./Suite/Room City Cross street or dire	CHARLES CITY MO 63301 -
C Incident Type * 111 Building fire Incident Type D Aid Given or Received *	E1 Date & Times Midnight is 0000 E2 Shift & Alarms Check boxes if dates are the same as Alarm Month Day Year Hr Min Sec Local Option Alarm + 04 12 2009 21:55:04 Shift or Alarms District Platoon
1 X Mutual aid received 2 Automatic aid recv. 3 Mutual aid given 4 Automatic aid given 5 Other aid given N None	ARRIVAL required, unless canceled or did not arrive X Arrival ★ 04 12 2009 22:02:13 CONTROLLED Optional, Except for wildland fires E3 Special Studies Controlled Last UNIT Least Unit Special Studies Last Unit 04 13 2009 02:23:28 Special Special
<pre>F Actions Taken ★ 10 Fire control or Primary Action Taken (1) 42 HazMat detection, Additional Action Taken (2)</pre>	G1 Resources * G2 Estimated Dollar Losses & Values Check this box and skip this section if an Apparatus or Personnel form is used. Apparatus Personnel Suppression 0020 0018 EMS O020 0018 Contents \$ 500, 000 PRE-INCIDENT VALUE: Optional
Additional Action Taken (3)	Check box if resource counts include aid received resources. Contents \$, 500, 000
Completed Modules H1*Casualties X Fire-2 Deaths Inj X Structure-3 Fire Civil Fire Cas4 Fire Serv. Cas5 EMS-6 H2 Detector HazMat-7 Required for Confined Wildland Fire-8 Detector alerted occ X Apparatus-9 2 Personnel-10 U U U Unknown	uries N None NN Not Mixed 1 Natural Gas: slow leak, no evauation or HazMat actions 20 Education use 2 Propane gas: <21 lb. tank (as in home BBQ grill)
J Property Use * Structures 131 Church, place of worship 161 Restaurant or cafeteria 162 Bar/Tavern or nightclub 213 Elementary school or kindergarten 215 High school or junior high 241 College, adult education 311 Care facility for the aged 331 Hospital	341Clinic,clinic type infirmary539Household goods,sales,repairs342Doctor/dentist office579Motor vehicle/boat sales/repair361Prison or jail, not juvenile571Gas or service station4191-or 2-family dwelling599Business office429Multi-family dwelling615Electric generating plant439Rooming/boarding house629Laboratory/science lab449Commercial hotel or motel700 %Manufacturing plant459Residential, board and care819Livestock/poultry storage(barn)464Dormitory/barracks882Non-residential parking garage519Food and beverage sales891Warehouse
Outside 124 Playground or park 655 Crops or orchard 669 Forest (timberland) 807 Outdoor storage area 919 Dump or sanitary landfill 931 Open land or field	936 Vacant lot 981 Construction site 938 Graded/care for plot of land 984 Industrial plant yard 946 Lake, river, stream Lookup and enter a Property Use code only if you have NOT checked a Property Use box: 960 Other street Property Use 961 Highway/divided highway 962 Residential street/driveway

K1 Person/Entit	ty Involved	ARCH TECHNOLOGY	636 - 946 - 2355
Local Option		Business name (if applicable)	Area Code Phone Number
Check This Box if same address as incident location. Then skip the three duplicate address lines.	Mr., Ms., Mrs. First Mr., Ms., Mrs. First Number Post Office Box MO State Zip Code	Prefix Street or Highway	
More people invo	olved? Check the	s box and attach Supplemental Forms (NFIR	RS-1S) as necessary
Then chec	person involved? ck this box and skip of this section.	ARCH TECHNOLOGY Business name (if Applicable)	Area Code Phone Number
<pre>same address as incident location. Then skip the three duplicate address lines.</pre>	Mr.,Ms., Mrs. First 8 Number Post Office Box <u>MO</u> [63301 State Zip Code	Name MI Last Name Prefix Street or Highway	SON Suffix DR Street Type Suffix LES CITY
Local Option Units were dispat arrived and found explosion. The s damage. There wa 9406A was on the Access was made t 9554 crew, then t crew went into hy structure where t supply from 9450 9400 arrived on t staged on Elm Poi obtained from the indicated that a It was unknown at was made operatio the fire was in t ladder pipe and w obtained and furt for decontaminati A second alarm wa	a chemical structure had as one worker scene and re- co the site a cransferred t vdraulics and there was hea on arrival of the scene and nt and person injured wor mixing proce this time work ns sector. he reactor b tithdraw all her recon ma on.	eport of a commercial building exp manufacturing facility that had e d approximately 50% fire involveme c at the facility who had suffered equested a full first alarm assign and the patient was removed and pl o SCCAD M1 who transported to St. I set up a ladder pipe operation d vy fire involvement. 9554 crew a f this unit. established Elm Point command. nnel were instructed to await ord ker and a plant employee who arri ss was initiated immediately prio hat chemicals were involved in th Recon was made of the incident si uilding and warehouse. The decis personnel to a safe location unti de. All personnel were withdrawn along with Hazmat and Command Pos up and the initial responding creation.	experienced a substantial ent and significant structural d burns from the explosion. mment. Laced in care of EMS (initially John-see SCCAD MARF). 9432 directed to the center of the assisted in establishing water Arriving fire units were ders from command. Information wed after the explosion or to the explosion occurring. The process or the fire. 9406C the. It was determined that sion was made to shut down the l a chemical inventory was to a safe location and staged
L Authorization			
19400	I I TT- b-		
Officer in charge		own Staff Member FC Position or rank	Assignment Month Day Year
Check 25 Box if 25 same as Officer Member making repo in charge.		C, JOHN W	Assignment Month Day Year

Narrative:

Units were dispatched to a report of a commercial building explosion. 9432 and 9554 arrived and found a chemical manufacturing facility that had experienced a substantial explosion. The structure had approximately 50% fire involvement and significant structural damage. There was one worker at the facility who had suffered burns from the explosion. 9406A was on the scene and requested a full first alarm assignment.

Access was made to the site and the patient was removed and placed in care of EMS (initially 9554 crew, then transferred to SCCAD M1 who transported to St. John-see SCCAD MARF). 9432 crew went into hydraulics and set up a ladder pipe operation directed to the center of the structure where there was heavy fire involvement. 9554 crew assisted in establishing water supply from 9450 on arrival of this unit.

9400 arrived on the scene and established Elm Point command. Arriving fire units were staged on Elm Point and personnel were instructed to await orders from command. Information obtained from the injured worker and a plant employee who arrived after the explosion indicated that a mixing process was initiated immediately prior to the explosion occurring. It was unknown at this time what chemicals were involved in the process or the fire. 9406C was made operations sector. Recon was made of the incident site. It was determined that the fire was in the reactor building and warehouse. The decision was made to shut down the ladder pipe and withdraw all personnel to a safe location until a chemical inventory was obtained and further recon made. All personnel were withdrawn to a safe location and staged for decontamination.

A second alarm was requested along with Hazmat and Command Post. When Hazmat arrived a gross DECON station was set up and the initial responding crews (9554, 9432, 9406A) were decontaminated and transported to a fire station for showers. Other building representative arrived and communicated with Command and Hazmat about the processing facility and chemical inventory.

A hazmat recon team was established to check out the fire building. This team also set up air monitoring stations down wind. Recon revealed substantial structural damage to two buildings with small spot fires burning throughout the building. It appeared that the reactor vessel was destroyed, but that most of the remaining inventory remained in tanks or drums. With this information a plan was established to set up a foam line to extinguish the spot fires and for an entry team to attempt to shut power down to the processing building, and shut off any valves in the damaged processing facility. The spot fires were extinguished quickly using less than 10 gallons of foam concentrate (at 3%). One gas fed fire could not be extinguished. The entry team shut off the power and valves in the facility and were able to shut off the propane feeding the gas fire. At this time the alarm was declared under control.

There was limited overhaul conducted and one small area under a large pile of metal debris continued to smolder. Air monitoring continued and readings obtained were: 0-VOC, 0-H2S, 7-20-CO, and 7 mrg gamma. Sampling was done on the standing water inside the structure and was negative, with the exception of one slightly lowered pH reading.

MODNR was contacted and the responding rep. (Skip Ricketts) was advised of the situation and a walk through was conducted. After all hazards were assessed the scene was turned over to the business representatives. Heritage Environmental was contacted by the business representatives for environmental clean up.

MM DD YYYY 09203 MO 4 12 2009 3 09-0002245 000 Complete FDID State Incident Date Station Incident Number Exposure Narrative
Narrative: 04/13/2009 08:39:58 GRZYB
On 04/12/2009 at 21:55:04 dispatched To Governor DR & Elm Point RD /St Charles City, MO 63301. The location is a Manufacturing, processing. The incident was determined to be a(n) Building fire.
22:02:13 arrived on scene. The following actions were performed on scene: Fire control or extinguishment, other Hazmat detection, monitoring, sampling, & ana Decontaminate persons or equipment
Units responding were: Unit 9404 responded. Unit 9406 responded. Unit 9408 responded. Unit 9412 responded. Unit 9420 responded. Unit 9426 responded. Unit 9432 responded. Unit 9440 responded.
Unit 9450 responded. Unit 9457 responded. Unit 9500 responded. Unit 9504 responded. Unit 9512 responded. Unit 9524 responded. Unit 9542 responded. Unit 9554 responded. Unit 9554 responded. Unit M01 responded. Unit M02 responded. Unit M9602 responded.
02:23:28 all units back in service.
INFO RECEIVED FROM INSURANCE FIRE INVESTIGATOR ROB MILLER, MIXING CHEMICALS FOR FIRST TIME
44 LBS OF FERRIC CHLORIDE (POWDER) 1000LBS OF MDB (METHYLENEDIOXYBENZENE)

Narrative:

EXPLOSION IN REACTOR VESSEL

PREVIOUSLY HAD MIXED SIMILAR CHEMICALS BUT NOT EXACT (ZINC CHLORIDE INSTEAD OF FERRIC CHLORIDE), ALSO SOME MATERIALS WERE USED RECYCLED MATERIALS. RONEY 5/12/09.

MM DD MM MM DD MM MM MM MM MM MM MM MM MM<	2009	3 09-000 Station Incident N			Delete	NFIRS -2 Fire		
B Property Details		C On-Site Materia or Products Enter up to three codes.		agricul		l, energy or		
B1 Estimated Number of residential living un building of origin whether or not all uni became involved	its in ts	or more boxes for each co 500 Flammables, On-site material (1)	de ente:	red. 1 0 2 X 3 0 4 0	Bulk storage or warehous 2 X Processing or manufactur 3 Packaged goods for sale 4 Repair or service			
B2 001 Buildings not invol	ved	On-site material (2)			Bulk storage or wa Processing or manu Packaged goods for Repair or service	facturing		
B3 None Acres burned (outside fires) Less than one acre		On-site material (3)			Bulk storage or wa: Processing or manu: Packaged goods for Repair or service	facturing		
D Ignition	E1	Cause of Ignition	posure re	aport.	E3 ^{Human Factors} Contributing To	Jgnition		
D1 38 Processing/manufacturin Area of fire origin *	2	Skip to section G Intentional Unintentional Failure of equipment or	heat sou	irce	Check all applicabl 1 Asleep 2 Possibly impa alcohol or dr	None None		
D2 72 Spontaneous combustion, Heat source *	4 [5 [U]	Act of nature Cause under investigation Cause undetermined after	n investi	Igation	3 Unattended pe 4 Possibly ment 5 Physically Di 6 Multiple pers	al disabled: sabled		
D3 UU Undetermined Item first ignited * 1 Check Box if fire spread	E 2 יייע	U Undetermined	TO IG	None X None	7 Age was a fac			
of origin D4 Type of material first ignited first ignited code is 00 or <70	L	tor Contributing To Ignition (Estimated age of person envolved	2 Female		
F1 Equipment Involved In Ignition	F 2 E	quipment Power	G	Fire Su	ppression Facto	ors		
Section G	Equipmen	t Power Source		Enter up	to three codes.	None		
Equipment Involved Brand		ipment Portability □Portable	Fir	e suppressio	on factor (1)			
Model		Stationary	Fire	e suppressio	n factor (2)			
Year	moved by a be use in	equipment normally can be one person, is designed to multiple locations, and no tools to install.	Firs	L	n factor (3)			
H_1 Mobile Property Involved H_2 M	lobile 1	Property Type & Mal	ke	1 12 12 12 12 12 12 12 12 12 12 12 12 12	l Use Pre-Fire Plan Av	ailablo		
None 1 Not involved in ignition, but burned Mobil	le property	time		Soth	me of the information pr is report may be based u	esented in		
2 Involved in ignition, but did not burn 3 Involved in ignition and burned	le property				om other Agencies son report attache lice report attach roner report attac her reports attach	ed hed		
Moblie property model		Year				-		
License Plate Number State VIN	Number			1				
					NFIRS-2 Revision	01/19/99		

I1 Structure Type * I2	Puilding Chat I	
If Fire was In enclosed building or a	Building Status * I3	Building * I4 Main Floor Size* NFIRS-3
portable/mobile structure complete		Height Structure
the rest of this form		the ROOF as part Fire
E		highest story
	X Occupied & operating	
3 Open structure 3	Idle, not routinely used	001 003 500
4 Air supported structure 4	Under major renovation Tota	UU1 , 003 , 500 al number of stories Total square feet
5 Trent 5[Vacant and secured at a	or above grade
6 Open platform (e.g. piers) 6	Vacant and unsecured	OR
7 Underground atmatters) 7	Being demolished	
7 Underground structure (work areas)	Tota	al number of stories
o connective structure (e.g. fences)	Undetermined	
0 Other type of structure	Gidecermined	Lenght in feet Width in feet
J1 Fire Origin t	100	
J1 Fire Origin * J3	Number of Stories	K Material Contributing Most
	Damaged By Flame	To Flame Spread
001 Below Grade Count	the ROOF as part of the highest st	orv
Story of fire origin		Check if no flame spread Skip To OR same as material first ignited Section I
	Number of stories w/ minor damage (1 to 24% flame damage)	OR unable to determine Section L
J2 Fire Spread *	is so sto riune damage/	K 1
	Number of stories w/ significant dama	
1 Confined to object of origin	- (25 to 49% flame damage)	Item contributing most to flame spread
2 Confined to room of origin	Number of stories w/ heavy damage	
3 Confined to floor of origin	(50 to 74% flame damage)	K 2
4 X Confined to building of origin		Type of material contributing Required only if item
5 Beyond building of origin 002	Number of stories w/ extreme damage	most of flame spread contributing code is 00 or<70
	(75 to 100% flame damage)	
L1 Presence of Detectors *	L3 Detector Power Supply	L5 Detector Effectiveness
(In area of the fire)	To access tower pubbil	
	1 Battery only	Required if detector operated
N None Present Skip to section M	2 Hardwire only	1 Alerted Occupants, occupants responded
1 Present	3 Plug in	
	4 Hardwire with battery	2 Occupants failed to respond
U X Undetermined		3 There were no occupants
	5 Plug in with battery	4 Failed to alert occupants
L2 Detector Type	6 Mechanical	U Undetermined
11-	7 Multple detectors &	To provide the second
1 🗍 Smoke	power supplies	L6 Detector Failure Reason
	0 Other	Required if detector failed to operate
2 Heat	U 🗌 Undetermined	
		1 Dower failure, shutoff or disconnect
3 Combination smoke - heat	L4 Detector Operation	2 Improper installation or placement
4 Sprinkler, water flow detection	1 Fire too small	
Gerection	to activate	3 Defective
5 More than 1 type present		4 Lack of maintenance, includes cleaning
	2 Operated (Complete Section L5)	5 Battery missing or disconnected
0	3 Failed to Operate	6 Battery discharged or dead
II Undetermined	(Complete Section L6)	0Other
U Undetermined	U Undetermined	U Undetermined
Mr. Provenue of the		
M1 Presence of Automatic Extinguishment :	System * M3 Automatic Extin	guishment M5 Automatic Extinguishment
N X None Present	System Operatio	
	Remuired of fire was within	designed range
1 Present Complete		Required in system failed
OI Section		
M2 Type of Automatic Extinguishment Syst	tem + 2 Operated & not e	MIECCIVE (M4)
Required if fire was within designed range	e of AES 3 Fire too small t	
1 🗌 Wet pipe sprinkler	4 Failed to operat	
2 Dry pipe sprinkler	0 Other	not reach fire
3 Other sprinkler system	U Undetermined	4 Wrong type of system
4 Dry chemical system		5 Fire not in area protected
5 Foam system	M4 Number of Sprin	
6 Halogen type system	Heads Operating	
7 Carbon dioxide (CO ₂) system	Required if system op	perated 8 Manual Intervention
		0 _ Other
0 Other special hazard system		U Undetermined
U Undetermined	Number of sprinkler h	heads operating NFIRS-3 Revision 01/19/99

A		ate * Incident Date * Station	and the second se	-0002245		Delete NFIRS - 9 Apparatus or Resources
	Apparatus or * Resource	Date and Times Check if same as alarm date Month Day Year Hour Min	Sent X	Number of * People	Use Check ONE box for each apparatus to indicate its main use at the incident.	Actions Taken
1	ID 9404	Dispatch X 4 12 2009 22:14 Arrival X 4 12 2009 22:40 Clear 4 13 2009 02:20	X	0	Suppression EMS Other	
2	ID 9406	Dispatch X 4 12 2009 21:57 Arrival X 4 12 2009 22:04 Clear 4 13 2009 02:20	x	1	Suppression EMS Other	
3	ID 9408	Dispatch X 4 12 2009 23:06 Arrival X 4 12 2009 23:20 Clear 4 13 2009 02:23	x	0	Suppression EMS Other	
4	ID 9412	Dispatch X 4 12 2009 21:59 Arrival X 4 12 2009 22:08 Clear 4 13 2009 02:12	X	3	Suppression EMS Other	
5	5420	Dispatch X 4 12 2009 22:03 Arrival X 4 12 2009 22:28 Clear 4 13 2009 02:23	x	3	Suppression EMS Other	
6	Type 72	Dispatch X 4 12 2009 22:18 Arrival X 4 12 2009 22:32 Clear 4 13 2009 02:18	x	0	Suppression EMS Other	
7	Type 12	Dispatch X 4 12 2009 21:55 Arrival X 4 12 2009 22:03 Clear 4 13 2009 02:22	x	3	Suppression EMS Other	
8	Type 11	Dispatch X 4 12 2009 21:59 Arrival X 4 12 2009 22:12 Clear 4 13 2009 02:23	x	3	Suppression EMS Other	
9	Type 11	Dispatch X 4 12 2009 22:02 Arrival X 4 12 2009 22:04 Clear 4 13 2009 02:20	x	<u>3</u>	Suppression EMS Other	

A	[09203 [M FDID ★	MM DD YYYY A Ate A Incident Date A Station		-0002245	Exposure 🛧 🖾 Cl	hange NFIRS - 9 Apparatus or Resources
B	Apparatus or * Resource	Date and Times Check if same as alarm date Month Day Year Hour Min	Sent X	Number of * People	Use Check ONE box for each apparatus to indicate its main use at the incident.	Actions Taken
1	ID 9457	Dispatch X 4 12 2009 21:59 Arrival X 4 12 2009 22:06 Clear 4 13 2009 02:06	x	2	Suppression EMS Other	
2	ID 9500	Dispatch X 4 12 2009 22:18 Arrival X 4 12 2009 22:34 Clear 4 13 2009 02:09	x		X Suppression EMS Other	
3	ID 9504	Dispatch X 4 12 2009 21:59 Arrival X 4 12 2009 22:05 Clear 4 13 2009 02:10	x		Suppression EMS Other	
4	ID 9512	Dispatch X 4 12 2009 22:02 Arrival X 4 12 2009 22:14 Clear 4 13 2009 00:58	x		Suppression EMS Other	
5	ID 9524	Dispatch X 4 12 2009 22:02 Arrival X 4 12 2009 22:11 Clear 4 13 2009 01:04	X		Suppression EMS Other	
6	ID 9534	Dispatch X 4 12 2009 22:02 Arrival X 4 12 2009 22:17 Clear 4 13 2009 00:54	x		Suppression EMS Other	
7	ID 9542	Dispatch X 4 12 2009 21:59 Arrival X 4 12 2009 22:07 Clear 4 13 2009 02:14	x		Suppression EMS Other	
8	ID 9554	Dispatch X 4 12 2009 21:56 Arrival X 4 12 2009 22:02 Clear 4 13 2009 02:23	x		Suppression EMS Other	
9	ID M01	Dispatch X 4 12 2009 21:59 Arrival X 4 12 2009 22:06 Clear X 4 12 2009 22:56	X		Suppression EMS Other	

	MM DD YYYY (0 4 12 200 ate * Incident Date *			-0002245		elete NFIRS - 9 Apparatus or Resources
B Apparatus or * Resource	Date and Time Check if same as alarm Month Day Yea	1 date	Sent X	Number of * People	Use Check ONE box for each apparatus to indicate its main use at the incident.	Actions Taken
1 ID M02 Type 76	Arrival X 4 12	2009 22:04 2009 22:15 2009 02:23	X		Suppression EMS Other	
2 ID M9602 Type 70	Arrival X 4 12	2009 22:25 2009 23:03 2009 02:07	x		Suppression EMS Other	
3 ID Type	Dispatch				Suppression EMS Other	
4 ID Type	Dispatch				Suppression EMS Other	
5 ID	Dispatch				Suppression EMS Other	
6 ID	Dispatch				Suppression EMS Other	
7 ID Type	Dispatch				Suppression EMS Other	
8 ID Type	Dispatch				Suppression EMS Other	
9 ID	Dispatch				Suppression EMS Other	
Type of Apparatus or Resources					ets ommand post ficer car nit and crew and crew y owned vehicle paratus/resource ined	
					212 21W 3	

A 09203	MM DD YYYY MO 4 12 2009 State * Incident Date *	3 Station		0002245		Delete	RS - 10 sonnel
B Apparatus or Resource Use codes listed belo	Check if same as alarm date	Hours/mins	x	appara	Use ONE box for each atus to indicate ain use at the ent.	Actions List up to 4 for each app and each per	actions baratus
1 ID 9404 Туре 92	Dispatch X 4 12 2009 Arrival X 4 12 2009 Clear 4 13 2009	22:40	Sent X		Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action . Taken	Action Taken
2 ID 9406 Type 92	Dispatch X 4 12 2001 Arrival X 4 12 2001 Clear 4 13 2001	22:04	Sent		Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action . Taken	Action Taken
50	GRZYB, MICHAEL	DC	Х				
3 ID 9408 Type 92	Dispatch X 4 12 200 Arrival X 4 12 200 Clear 4 13 200		Sent X		Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action . Taken	Action Taken

A 09203	MM DD YYYY MO <u>4</u> <u>12</u> 2009 State * Incident Date *	3 Station		0002245	000] Exposure ★	Delete	RS - 10 sonnel
B Apparatus or Resource	Check if same as alarm date	Hours/mins	x	appari	Use ONE box for each atus to indicate ain use at the ent.	h List up to 4 for each app and each per	actions
1 ID 9412 Type 12	Dispatch X 4 12 2005 Arrival X 4 12 2005 Clear 4 13 2005	22:08	Sent	<u></u> 1	Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken
4 5076 56	GOIN, BRIAN BERGNER, TOMMY BIRD, GARY	FF EM BC	X X X				
2 ID 9420 Type 11	Dispatch X 4 12 2009 Arrival X 4 12 2009 Clear 4 13 2009	22:28	Sent	<u></u>	Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken
2 5004 57	HAASE, DOUGLAS DETERMANN, SCOTT FECHT, DAVID	EM FFM CAP	X X X				
3 ID 9426 Type 72	Dispatch X 4 12 2003 Arrival X 4 12 2003 Clear 4 13 2003	22:32	Sent		Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Takon
					25		

A 09203	MM DD YYYY MO 4 12 2009 State *	3 Station		0002245	000 Exposure ★	Delete	TRS - 10 ersonnel
B Apparatus or Resource Use codes listed below	Check if same as alarm date	Hours/mins		appara	Use ONE box for each itus to indicate in use at the ent.	h tist up to	s Taken
1 ID 9432 Type 12	Dispatch X 4 12 2009 Arrival X 4 12 2009 Clear 4 13 2009	22:03	Sent X	<u>3</u>	Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken
25 373 5091	ODDIE, JOHN BLACKWELL, CHRIS MACKLEY, MATTHEW	CAP CAPM CAPM	X X X				
2 ID 9440 Type 11	Dispatch X 4 12 2009 Arrival X 4 12 2009 Clear 4 13 2009	22:12	Sent	<u>3</u>	Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken
07 502 6141	SEMROW, KEITH STONE, HAROLD WOHLER, SHAWN	FFE EM EM	X X X				
3 ID 9450 Type 11	Arrival X 4 12 200	9 22:02 9 22:04 9 02:20	Sent X		Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken
363 6110 65	PITTS, DAVID PICKER, RORY RISCH, MARTIN	CAPM FFM FF	X X X				

A 09203	MM DD YYYY MO 4 12 2009 State * Incident Date *	3 Station	09-0	002245	000 xposure ★	Delete	'IRS - 10 ersonnel
B Apparatus or Resource Use codes listed below	Check if same as alarm date Month Day Year	Hours/mins	x	appara	Use ONE box for each tus to indicate in use at the nt.	Tilst up to	o 4 actions apparatus personnel.
1 ID 9457 Туре 76	Dispatch X 4 12 2009 Arrival X 4 12 2009 Clear 4 13 2009	22:06	Sent L	2E	uppression MS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken
5010 5051	FIDLER, DAVE BERGMANN, JERAMY	FFM FFM	XX				
2 ID 9500 Type 00	Dispatch X 4 12 2009 Arrival X 4 12 2009 Clear 4 13 2009	22:34	Sent X		Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken
3 ID 9504 Type 00	Arrival X 4 12 200	9 21:59 9 22:05 9 02:10	Sent X		Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken

A 09203	MM DD YYYY (MO) 4 12 2009 State +	3 Station		0002245	000	Delete	TIRS - 10 ersonnel
B Apparatus or Resource Use codes listed below	Check if same as alarm date	Hours/mins	x	appara	Use ONE box for eac tus to indicate in use at the nt.	h List up t	as Taken
1 ID 9512 Type 00	Dispatch X 4 12 2009 Arrival X 4 12 2009 Clear 4 13 2009	22:14	Sent X		Suppression MS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken
2 ID 9524 Type 00	Dispatch X 4 12 2009 Arrival X 4 12 2009 Clear 4 13 2009	22:11	Sent X		Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken
3 ID 9534 Type 00	Dispatch X 4 12 200 Arrival X 4 12 200 Clear 4 13 200		Sent X		Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken

A 09203	MM DD YYYY (MO) 4 12 2009 State + Incident Date +	3 Station		0002245	000 Xposure ★	Delete	'IRS - 10 ersonnel
B Apparatus or Resource Use codes listed below	Check if same as alarm date	Hours/mins	x	appara	Use ONE box for each tus to indicate in use at the nt.	h List up to	as Taken o 4 actions apparatus personnel.
1 ID 9542 Type 00	Dispatch X 4 12 2009 Arrival X 4 12 2009 Clear 4 13 2009	22:07	Sent X		Suppression MS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken
2 ID 9554 Type 11	Dispatch X 4 12 2009 Arrival X 4 12 2009 Clear 4 13 2009	22:02	Sent		Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken
3 ID M01 Type 76	Dispatch X 4 12 200 Arrival X 4 12 200 Clear X 4 12 200		Sent		Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken

A 09203	MM DD YYYY MO 4 12 2009 State + Incident Date +	3 Station		0002245	000 Xposure ★	Delete	YIRS - 10 ersonnel
B Apparatus or Resource Use codes listed below	Check if same as alarm date	Hours/mins		appara	Use ONE box for each tus to indicate in use at the nt.		A Taken
1 ID M02 Туре 76	Dispatch X 4 12 2009 Arrival X 4 12 2009 Clear 4 13 2009	22:15	Sent X		Suppression MS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken
2 ID <u>M9602</u> Type 70	Dispatch X 4 12 200 Arrival X 4 12 200 Clear 4 13 200		Sent		Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken
3 ID Type	Dispatch		Sent		Suppression EMS Other		
Personnel ID	Name	Rank or Grade	Attend X	Action Taken	Action Taken	Action Taken	Action Taken

		D YYYY 2 2009	3 Station Ind	09-0002245 rident Number ★	Exposure	Delete X Change	NFIRS - 1S Supplemental
K1 Person/Ent: ☐ Check this box if same address as incident location. Then skip the three duplicate address lines.	ity Involved Mr.,Ms., Mrs. First Number Post office box MO [63301 State Zip Code		pplicable MI MI	VAN PELT Last Name	Phone 1	DF	Suffix Suffix
K2 Person/Entit Check this box if same address as incident location. Then skip the three duplicate address lines.	Mr.,Ms., Mrs. First	Business name if ap	MI	Last Name	Phone N		Suffix
K3 Person/Entit Check this box if same address as incident location. Then skip the three duplicate address lines.	Mr.,Ms., Mrs. First	Business name if ap Name Prefix Street or M	MI	Last Name	Phone 1	ĴĨ	suffix suffix et Type Suffix
K4 Person/Entit Check this box if same address as incident location. Then skip the three duplicate address lines.	Ly Involved	Business name if ap Name Prefix Street or b	MI	Last Name	Phone 1		Suffix suffix et Type Suffix
K5 Person/Ent: Check this box if same address as incident location. Then skip the three duplicate address lines.	ity Involved	Business name if a Name Prefix Street or	MI	Last Name	Phone	[Suffix set Type Suffix