Appendix I BMP Structural Design Report

BMP Structural Design Report - Northern Impoundment

San Jacinto River Waste Pits Site Harris County, Texas

International Paper Company and McGinnes Industrial Maintenance Corporation

June 14, 2022

Contents

1.	Introd	1					
2.	Geotechnical Data						
	2.1	2					
	2.2	Subsurface Geology	3				
	2.3	2.3 Hydraulic Conditions					
	2.4	Geotechnical Design Parameters	4				
		2.4.1 Saturated and Buoyant Unit weights, γ	5				
		2.4.2 Undrained Shear Strength, S _u	5				
		2.4.3 Undrained Modulus, E_u and Poisson coefficient, v_u	5				
		2.4.4 Drained modulus, E' and Poisson Coefficient, v'	5				
		2.4.5 Effective Stress Parameters, ϕ' and c'	6				
		2.4.6 Over-Consolidation Ratio, OCR	6				
		2.4.7 Consolidation Parameters	(
		2.4.8 Hydraulic Conductivity	7				
-			1				
3.	Desig	8					
	3.1	3.1 In-Situ Soil Parameters					
	3.2	3.2 River Water Levels					
	3.3	River Flood Levels	8				
	3.4	Scour	9				
	3.5	Wind	9				
	3.6	Vessel Impact	9				
4.	Load	Combinations	11				
5.	Desig	gn Criteria	12				
	5.1	Failure Modes	12				
	5.2	Safety Factors	12				
		5.2.1 Embedment Depth	12				
		5.2.2 Sheet Pile Sections	13				
		5.2.3 Tie-Rod Sections	13				
		5.2.4 Walers	13				
	5.3	Deflection	14				
	5.4	14					
	Alluv	15					
	(-)		15				
	(-)		15				
	(-)		15				
	(-)		15				
6.	BMP	Design	15				

GHD | International Paper Company and McGinnes Industrial Maintenance Corporation | 11215702 (6) | BMP Structural Design Report - Northern Impoundment i

Contents

6.1	Analysis	15			
6.2	Analysis Sections	16			
	Cross-	16			
	6.2.1 Section C1	16			
	6.2.2 Cross-Section C2	17			
	6.2.3 Cross-Section C3 and C3A	18			
	6.2.4 Cross-Section C4	19			
	6.2.5 Cross-Section C4A	20			
	6.2.6 Cross-Section C5	20			
	6.2.7 Cross-Section C6 and C7	21			
6.3	Structural Components	23			
6.4	Wind Load Evaluation	23			
6.5	Barge Impact				
	6.5.1 Analysis Model	24			
	6.5.2 Results	24			
	Pile Driveability and	25			
6.6	Vibration Analysis	25			
6.7	Design Summary	25			
	6.7.1 Analysis Notes	26			
Addit	tional Considerations / Limitations	26			
7.1	Barge Impact	26			
7.2	Seepage through Sheet Piles	26			
7.3	Foundation Substructure of I-10 Bridge				

Table index

7.

Table 2-1	Unit Weights	5
Table 2-2	Undrained Elastic Modulus	5
Table 2-3	Drained Elastic Modulus	6
Table 2-4	Effective Strength Parameters	6
Table 2-5	Over-Consolidation Ratio OCR	7
Table 2-6	Consolidation Parameters	7
Table 2-7	Hydraulic Conductivity	7
Table 2-8	Geotechnical Parameters for Design	7
Table 3-1	95th Percentile Velocity - Hydrodynamic Model	11
Table 5-1	Safety Factors for Passive Pressures - EM 1110-2-2504	13
Table 5-2	Allowable Stresses for Sheet Piles - EM 1110-2-2504	13
Table 5-3	Overstrength Factors for Tie-Rod - AISC 360	13
Table 5-4	Overstrength Factor for Walers - AISC 360	14
Table 5-5	Loss of Thickness due to Corrosion	15

GHD | International Paper Company and McGinnes Industrial Maintenance Corporation | 11215702 (6) | BMP Structural Design Report - Northern Impoundment ii

Table 6-1	Barge Impact Analysis Output	24
Table 6-2	Summary of BMP Design	25

Figure index

Figure 1-1	Northern Impoundment BMP Alignment - Plan View	1
Figure 1-2	Typical Cross-Section of the BMP	2
Figure 2-1	Locations of Geotechnical Soundings	3
Figure 2-2	Grouping of Geotechnical Information	4
Figure 5-1	Typical Thickness Loss - Nucor Skyline Catalog, Ports & Marine Construction	14
Figure 6-1	General Extents of the Analysis Cross-Sections	16
Figure 6-2	Analysis Section C1	17
Figure 6-3	Analysis Section C2	17
Figure 6-4	Analysis Section C3	18
Figure 6-5	Analysis Section C3A	18
Figure 6-6	Analysis Section C4	19
Figure 6-7	Analysis Section C4A	20
Figure 6-8	Analysis Section C5	20
Figure 6-9	Analysis Section C6	21
Figure 6-10	Analysis Section C7	21
Figure 7-1	Discharge - Pressure Drop Relationship, Arcelor Mittal	27
Figure 1	Sounding Location Plan	

Attachments

Attachment 1	Geotechnica	al Parameters and Data Profiles			
Attachment 2	BMP Analysis - PLAXIS Output				
Attachment 3	Structural C	alculations			
	3.1	BMP Calculations			
	3.2	Wind Load Evaluation			
	3.3	Sheet Pile Seepage Evaluation			
	3.4	Barge Impact Evaluation			
Attachment 4	poundment Preliminary Vibration Analysis				

1. Introduction

This Best Management Practice (BMP) Design Structural Report (Report) was prepared by GHD Services Inc. (GHD), on behalf of International Paper Company (IPC) and McGinnes Industrial Maintenance Corporation (MIMC; collectively referred to as the Respondents) for the Northern Impoundment of the San Jacinto River Waste Pits Superfund Site in Harris County, Texas (Site). The Northern Impoundment is located immediately north of the Interstate Highway-10 (I-10) Bridge over the San Jacinto River. The remedial activities described in the 2017 United States Environmental Protection Agency (EPA) Record of Decision (ROD) require the removal of the waste material within the Northern Impoundment, much of which is submerged in the river. The excavation depths to remove the waste material are anticipated to extend tens of feet (ft) below the riverbed. An engineered barrier or cofferdam (best management practice [BMP] wall) encircling the Northern Impoundment will be required to divert water around the Northern Impoundment and allow excavation of the waste material. This report summarizes the design criteria, geotechnical parameters, structural analysis and calculations, and various other considerations required to design the BMP.

The BMP will consist of a double sheet pile wall approximately 3,340 ft in length (i.e., two parallel sheet pile walls connected with tie-rod anchors). The proposed alignment presented in the Northern Impoundment 90% Remedial Design (90% RD) locates the BMP at least 30 ft away from the toe of the anticipated excavation slopes on all sides of the impoundment with the exception of locations along the southern extent, which is slightly less in some places, as shown on Figure 1-1. The area outside the excavation limits and directly adjacent to the sheet piles provides an intentional separation, hereafter referred to as a "bench," and allows the BMP to be relatively independent of the excavation area. The bench is wider than 30 ft in several places and allows for potential over-excavation to deeper elevations, if necessary.

Figure 1-1 Northern Impoundment BMP Alignment - Plan View

The BMP will be a temporary structure, expected to remain in place for approximately 7 years. A typical cross-section of the BMP is shown on Figure 1-2.

Figure 1-2 Typical Cross-Section of the BMP

2. Geotechnical Data

2.1 Geotechnical Investigations

In order to define the geotechnical conditions of the Northern Impoundment, four geotechnical investigations were conducted as listed, below:

- Remediation investigation (RI) in 2011.
- First Phase Pre-Design Investigation (PDI-1) in 2018.
- Second Phase Pre-Design Investigation (PDI-2) in 2019.
- Supplemental Design Investigation in 2021.

The Geotechnical Engineering Report (Appendix B of the 90% RD) includes additional details, field logs, laboratory results, and a summary of these investigations. During these four investigations, a total of 43 geotechnical boreholes were drilled. During the recent SDI, two piezometers were installed, and cone penetration tests (CPT) were also performed at 13 locations on or close to the alignment of the proposed BMP. Figure 2-1 shows the locations of the geotechnical soundings.

Figure 2-1 Locations of Geotechnical Soundings

2.2 Subsurface Geology

The geology in the vicinity of the Northern Impoundment is highly heterogeneous and critical for the design of the BMP. A detailed description of the Site geology is provided in Geotechnical Engineering Report (Appendix B of the 90% RD). The approximate subsurface stratigraphy within the Northern Impoundment, as determined from the various geotechnical investigations, is comprised of the following three layers.

Surficial Alluvium Sediments

The Surficial Alluvium Sediments are fairly heterogenous, consisting of silty sands, sands silts, lean clays, and sandy clays. The cohesive sediments are typically very soft to firm and the cohesionless granular sediments are loose-to-compact. The thickness of the sediments ranges between 10 to 30 ft.

Beaumont Clay Formation

The Beaumont Clay Formation was generally encountered starting at elevations ranging between -20 ft to -35 ft North American Vertical Datum of 1988 (NAVD88). This formation is composed of a stiff-to-very-stiff high plasticity clay (fat clay) and interspersed with seams or lenses of sandy materials. The formation extended to approximate elevations of -80 ft NAVD88 on the western side and -65 ft NAVD88 on the eastern side of the Northern Impoundment.

Beaumont Sand Formation

The Beaumont Sand Formation was generally encountered at elevations ranging between -50 ft to -70 ft NAVD88. This formation is essentially composed of compact-to-dense silty sand to clayey sand.

2.3 Hydraulic Conditions

During the SDI in 2021, piezometers were installed in borings SJMW-16 and SJMW-17 and the water levels were logged in these piezometers at regular time intervals. The monitored data show that the water level in the river fluctuates with the tides between elevations 0 to 3 ft NAVD88 (with an average of 1.5 ft) while the piezometric level in the Beaumont Sand fluctuates between elevations -4 to -2 ft NAVD88 (with an average value of approximately -2.5 ft).

2.4 Geotechnical Design Parameters

Figure 2-2 shows the grouping of available data from various geotechnical investigations for the Northern Impoundment into four sectors. The following sections outline the various geotechnical parameters recommended for the analysis of the BMP based on review of these four sectors.

Figure 2-2 Grouping of Geotechnical Information

2.4.1 Saturated and Buoyant Unit weights, γ

The total unit weight, γ_s was estimated based on the water content values considering a specific density, G of 2.7. The variation of γ_s with elevation for the alluvium sediment, Beaumont Clay and Beaumont Sand is shown in Enclosure 1.A of Attachment 1.

Table 2-1 presents the saturated and buoyant unit weights to be considered in the analysis.

Table 2-1 Un	it Weights			
Sector	Saturated Unit w (Buoyant Unit W	veight /eight), pounds pe	er cubic feet (lb/ft ³)
Sector	Alluvions Sediments	Beaumont Clay	Beaumont Sand	Fill
1 to 4	118 (55.6)	125 (62.6)	130 (67.5)	130 (68)

2.4.2 Undrained Shear Strength, Su

The undrained shear strength (S_u) profiles based on the vane test measurements and CPT soundings are shown in Attachment 1.

- 1. Alluvium Sediments: Enclosure 2.A1, 2.A2, 2.A3.
- 2. Beaumont Clay: Enclosure 2.B.

2.4.3 Undrained Modulus, Eu and Poisson coefficient, vu

The undrained elastic modulus E_u was estimated based on correlations with the undrained shear strength S_u . The E_u profiles shown in Attachment 1 for the Alluvium Sediments and Beaumont Clay layer (Enclosures 3.A1, 3.A2, 3.A3, and 3.B) were defined using Equations 2-1 and 2-2, below.

- 1. Alluvium Sediments: $E_u = 400$. Su [2-1].
- 2. Beaumont Clay: $E_u = 300$. Su [2-2].

Table 2-2 presents the E_u values to be considered in the analysis.

Table 2-2	Undrained Elasti	c Modulus
-----------	------------------	-----------

Sector	Undrained Elastic Modulus Eu, tsf					
	Alluvium Sediments	Beaumont Clay	Beaumont Sand	Fill		
1 to 4	50 (Enclosure 3.A)	400 (for the first 10 ft following the Alluvium/Clay interface) 500 (for the remaining clay thickness) (Enclosure 3.B)	N/A	N/A		

Undrained Poisson Coefficient $v_u = 0.5$ is to be considered in the design (corresponding to the theoretical value).

2.4.4 Drained modulus, E' and Poisson Coefficient, v'

For the cohesive deposits (Alluvium Sediments and Beaumont Clay), the drained elastic modulus E' was evaluated from the undrained modulus (see Table 2-3) using the following theoretical equation:

$$E' = E_u. (1+v')/1.5$$
 [2-3]

Assuming v' (drained Poisson coefficient) value of 0.3, Equation 2-3 becomes:

E' = 0.87 Eu

For cohesionless soils (Beaumont sand and cohesionless layers of the Alluvium Sediments), the drained elastic modulus was estimated using equation 2-4 based on correlations using the CPT results.

E' = 0.015. 10 $^{0.55lc+1.68}$. (qt - σ_{vo}) [2-4]

Where:

- qt is the tip resistance.
- σ_{vo} is the total vertical stress.
- Ic is the CPT behavior index.

Table 2-3 presents E' values to be considered in the analysis.

Table 2-3	Drained Elastic Modulus
	2.4

Santar	Drained Elastic Modulus E', tsf					
Sector	Alluvium Sediments	Beaumont Clay	Beaumont Sand	Fill		
1 to 4	43.5	0.87. Eu¹	1040 (See Enclosure 3.C)	150		

Notes:

```
<sup>1</sup> Refer to for values of E<sub>u</sub>
```

Drained Poisson Coefficient v' = 0.3 is to be considered in the design.

2.4.5 Effective Stress Parameters, ϕ' and c'

The friction angle ϕ ' and the effective cohesion c' for both the cohesive Alluvium Sediments and the Beaumont Clay were defined based on a limited number of triaxial tests results.

The friction angle ϕ ' for the cohesionless alluvium sediments and Beaumont Sand was defined from CPT results correlation presented in the literature - Equation 7-5. Enclosures 4.A and 4.C in Attachment 1 show ϕ ' profiles as defined from this equation for cohesionless alluvium sediments and Beaumont sand, respectively.

$$\phi' = 17.6 + 11. \log ((q_t - \sigma_{vo}) / \sigma'_{vo})$$
 [2-5]

The effective strength parameters to be used in the design are presented in Table 2-4.

 Table 2-4
 Effective Strength Parameters

Sector	Alluvium Sediments		Beaumont Clay		Beaumont Sand		Fill	
	f', degree	c', psf	f', degree	c', psf	f', degree (°)	c', psf	f', degree	c', psf
1 to 4	26 (See Enclosure 4.A)	42	28 (See Enclosure 4.B)	150	37 (See Enclosure 4.C)	0	32	0

2.4.6 Over-Consolidation Ratio, OCR

The over-consolidation ratio (OCR = σ'_p/σ'_{vo}) values were defined from correlations-based CPT results (using Equation 2-6). The estimated OCR value profiles are shown in Enclosure 5.A of Attachment 1.

OCR = 0.33.
$$(q_t - \sigma_{vo})$$
 [2-6]

Where:

- qt is the tip resistance.
- σvo is the total vertical stress.

The OCR values to be used for the design are presented in Table 2-5.

 Table 2-5
 Over-Consolidation Ratio OCR

Contor	OCR			
Sector	Alluvium Sediments	Beaumont Clay	Beaumont Sand	Fill
1 to 4	1.0	See Enclosure 5.A	N/A	N/A

2.4.7 Consolidation Parameters

Consolidation Parameters

The consolidation parameters based on consolidation tests are listed in Table 2-6.

Sector	Parameters	Alluvium Sediments	Beaumont Clay	Beaumont Sand	Fill
	Recompression, cr	0.04	0.02		
	Compression Index, cc	0.32	0.25		
1 to 4	Initial Void Ratio, eo	0.95	0.68	N/A	N/A
	Pre-Consolidation	- c'm	Varies with OCR		
	pressure, σ' _p	= σ _{νο}	(See Enclosure 5.A)		

2.4.8 Hydraulic Conductivity

The hydraulic conductivity k profiles were derived from the CPT results and in-situ tests (Enclosure 6.A of Attachment 1). The k values suggested for the design are summarized below in Table 2-7.

Table 2-7	Hvdraulic	Conductivity

Table 2-6

Contor	Hydraulic Conductivity, ft/day				
Sector	Alluvium Sediments	Beaumont Clay	Beaumont Sand	Fill	
1 to 4	1.1 x 10 ⁻³	8.6 x 10 ⁻³	0.9	3	

2.4.9 Geotechnical Parameters Summary

A summary of the geotechnical parameters to be considered in the design are provided in Table 2-8.

Table 2-8 Geotechnical Parameters for Design

Definition	Unit	Alluvium Sediments	Beaumont Clay	Beaumont Sand	Fill
Unit weight (saturated), γ	lb/ft ³	118	125	130	130
Undrained Young Modulus, E_u	tsf	50 Enclosure 3.A	400 to 500 Enclosure 3.B	-	-
Drained Modulus, E'	tsf	43.5	0.87. E _u	1040	150
Undrained Poisson Coefficient, ν_{u}	-	0.5	0.5	-	-
Drained Poisson coefficient, v'	-	0.3	0.3	0.3	0.3
Friction Angle, ϕ'	degree	26	28	37	30
Effective Cohesion, c'	Pounds per square feet (psf)	42	150	0	0
Undrained Shear Strength, Su	tsf	Enclosures 2.A1 to 2.A3	Enclosure 2.B	-	-
Over-Consolidation Ratio, OCR	-	1	10 to 2	-	-
Hydraulic Conductivity, k	ft/day	1.1 x 10 ⁻³	8.6 x 10 ⁻³	0.9	3

Definition	Unit	Alluvium Sediments	Beaumont Clay	Beaumont Sand	Fill
Recompression Index, cr	-	0.03	0.03	-	-
Compression Index, cc	-	0.32	0.29	-	-
Initial void ratio, eo	-	0.95	0.68	-	-
cc/(1+e _o)	-	0.16	0.15	-	-

3. Design Parameters

The following guidelines and standards were primarily used to develop the design of the BMP:

- American Society of Civil Engineers (ASCE) 7-16, Minimum Design Loads and Associated Criteria for Building and Other Structures.
- Engineering Manual (EM) 1110-2-2504, Design of Sheet Pile Walls by United States Army Corps of Engineers (USACE).
- American Institute of Steel Contractors (AISC) 360-16, Steel Construction Manual 15th Edition.

ASCE 7-16 categorizes structures into four Risk Categories (I through IV). During excavation season, the BMP may be considered similar to facilities that process, handle, or store toxic substances. Hence, the BMP is considered a Risk Category IV structure since its failure may pose a significant hazard to the community.

USACE EM 1110-2-2504 defines the following load case conditions based on severity and probability of occurrences during the design life of the structure:

- Usual: Service level loading experienced frequently such as static earth pressure, hydrostatic pressures after installation of the BMP and during excavation with normal water levels in the river.
- Unusual: Loads larger than those considered usual and experienced less frequently such as 100-year probability storm events and flood levels in the river.
- **Extreme:** Worst-case scenario loads, rarely experienced during the design life of the structure, such as hurricane level winds and flood levels in the river.

3.1 In-Situ Soil Parameters

The soil parameters required for the design and analysis of the BMP are discussed in Section 2.4. The subsurface soils include fine grained material that is expected to behave differently in drained (long-term) and undrained (short-term) condition. Both drained and undrained behaviors were analyzed.

3.2 River Water Levels

The loading from the river water with a density of 62.4 pounds per cubic feet (lb/ft³) was applied as hydrostatic pressure. The different water elevations corresponding to various load case conditions are as follows:

- **Usual** +5 ft NAVD88.
- Unusual +9 ft NAVD88.
- **Extreme** +9 ft NAVD88.

3.3 River Flood Levels

Based on the Federal Emergency Management Agency's (FEMA) Flood Map (effective on January 16, 2017), the Northern Impoundment is designated as a special flood hazard area Zone AE. Based on the anticipated project

duration, and as the excavation will be completed seasonally outside the flooding event season (November to April), FEMA flood load was not considered for the design of the BMP.

3.4 Scour

The presence of the BMP will affect the natural flow state of the San Jacinto River in the vicinity of the Northern Impoundment. The hydrodynamic analyses evaluating the effects of the BMP on the flow velocity and associated shear stress is provided in the Hydrodynamic Modeling Report (Appendix F of the 90% RD). The evaluation indicated that the BMP diverted flow to the north side of the Northern Impoundment, decreasing velocities adjacent to the I-10 Bridge. The increased flow also corresponded with increased shear stress at the southwest and north side of the BMP. The increased shear stress along the southwest corner will likely be mitigated by planned road improvements and elevation increase of the access road, which were not included in the hydrodynamic modeling

The 95th percentile shear stress with the BMP in place, has a maximum value of 2.3 pascals (Pa) and an average value of 0.11 Pa. The maximum value of the 95th percentile shear stress difference is 1.84 Pa with an average value difference of less than 0.01 Pa. The critical shear stress value of 0.15 Pa indicates that the particles are mobile and there is potential for scour or sediment deposition along the outside perimeter of the BMP.

The magnitude of scour and deposition is currently being determined. As large changes in the riverbed elevation will affect the design of the BMP, scour protection measures such as rock rip-rap may be required around the outside perimeter of the wall.

3.5 Wind

The 3-second gust design wind speeds and hurricane exposure are defined in ASCE 7-16 Chapter 26. The web-based hazard tool by ASCE (https://asce7hazardtool.online) provides site-specific information. The standard design wind speeds relate to a maximum recurrence interval (MRI) of 100-years. The wind speeds for Risk Category IV structure in hurricane exposure areas correspond to MRI of 3000-years. All wind speeds are defined at 33-ft above ground level.

- Design wind velocity, 3-second gust, MRI 100-years, $V_{100} = 116$ mile per hour (mph).
- Design wind velocity, 3-second gust, MRI 3000-years, V₃₀₀₀ = 154 mph.
- Exposure Category C.
- Wind directionality, K_d = 0.85 (solid freestanding wall).
- Topographic Factor, $K_{zt} = 1.0$.
- Ground Elevation Factor, K_e = 1.0.
- Velocity Pressure Exposure Coefficient, K_z = 0.85.

Velocity Pressure, $q_z = 0.00256 \text{ K}_z \text{ K}_{zt} \text{ K}_d \text{ K}_e \text{ V}^2$.

Using V = V₁₀₀, $qz_{100} = 24.89 \text{ lb/ft}^2$ (Unusual load condition).

Using V = V_{3000} , qz_{3000} = 43.87 lb/ft² (Extreme load condition).

3.6 Vessel Impact

Given the heavy barge traffic in the San Jacinto River, the BMP will likely be exposed to potential barge impact. An impact could be the result of a barge coming off its mooring and drifting toward the BMP during a storm or it could be the result of a towed barge veering off course. The segment of the river around the BMP actively used by barges is shown on Figure 5-1. The barges traveling in the navigational waterway, either empty or loaded, would be likely to make contact with the BMP at an angle. The barges moored directly north of the BMP would be likely to make head-on contact with the BMP.

Impact Force

The kinetic energy from impact can be determined as follows, where velocity may be either the flow velocity or the navigation speed. The energy of impact will be lower for any impact angle other than head-on collision.

Kinetic Energy of Impact = 0.5 x Mass x (Velocity x cosine (α))²

Where:

cosine (α) = directional factor for impact angle relative to the velocity vector.

= 1 for Head-on impact, i.e., 0 degrees relative to velocity vector.

The Kinetic Energy will be absorbed by the structure but the barge itself will absorb some energy and suffer damage. AASHTO¹ method to determine impact force absorbed by bridge piers is being used for evaluating the BMP. This method is conservative since the BMP have a larger profile area than the typical bridge piers to absorb impact and distribute the energy.

Figure 3-1 Navigational Waterway - Northern Impoundment

USACE developed design guidelines outlining minimum impact forces for hurricane protection structures in the New Orleans area.² These include structures in protected waterways not exposed to tidal surge (Zone 1A). The conditions at the Northern Impoundment are similar. The extreme load condition criterion for Zone 1A corresponds to an impact force of 400 kips from a light barge applied at the top of the wall with hydrostatic pressure induced by the 100-year still water level and wind load applied on any exposed portion of the wall. It should be noted that heavier vessels did not govern the design as the velocities of these vessels were considerably less.

AASHTO requires all bridge piers located in navigable waterway crossings to be designed for ship and barge impact. The required minimum impact load corresponds to a 195-ft long, 35-ft wide, and 12-ft tall empty hopper barge (displacement = 200-ton), drifting toward the structure. This barge size is representative of the barges in the area.

¹ AASHTO LRFD Bridge Design Specifications, Section 3.14

² USACE Hurricane and Storm Damage Risk Reduction System Design Guidelines, Section 5.2.1.

The Texas Department of Transportation (TxDOT)'s design criteria for the dolphin and fender system protecting the I-10 Bridge piers includes impact from a 30,000-barrel (BBL) barge, one of the larger barges in the area. A typical 30,000 BBL barge is 300-ft long, 54-ft wide, and 12-ft tall. In laden condition, the barge is loaded to full capacity and displaces 30,000 BBL equivalent or approximately 168,500 cubic feet of water. Thus, the barge weighs approximately 5,250 US-tons or 10,500 kips in laden condition. In ballasted condition, the barge carries only fuel and ballast water, and weighs approximately 910 US-tons or 1,820 kips. It should be noted that, unlike the Northern Impoundment BMP, the I-10 Bridge piers are directly within the navigable waterway and have a higher likelihood of collisions. As such, it is understandable that TxDOT would utilize stringent criteria to avoid frequent repairs to the piers and prevent collapse of the I-10 Bridge overpass.

The head-on impact from the 54 ft wide, 30,000 BBL barge will be evaluated. An impact width of 50-ft will be assumed to account for variations in the barge bow shapes.

Impact Velocity

The hydrodynamic model (Appendix F) evaluated the flow velocities for three = storm conditions at 2-year, 10-year, and 1000-year recurrence intervals, both with and without the BMP present. The 95^{th} percentile velocities for the river flow from the analysis report are summarized in Table 3-1.

Based upon this data, the barge impact criteria for the BMP will be evaluated for flow velocity of 2.20 feet per second (ft/s).

 Table 3-1
 95th Percentile Velocity - Hydrodynamic Model

95 th Percentile Velocity	Existing Cond	itions (No BMP)		With BMP in P	lace	
feet per second (ft/s)	2-Year	10-Year	100-Year	2-Year	10-Year	100-Year
Maximum	2.21	1.45	0.73	2.16	2.20	1.04
Average	0.51	0.50	0.35	0.46	0.50	0.36

4. Load Combinations

The following load combinations (LC) are appropriate for the structural design in accordance with Allowable Stress Design in ASCE 7-16.

LC# 1	D + H + F
LC#1A	D + H + F + I
LC#5	D + H + F + 0.6W

Where:

D = Dead load.

F = Fluid load (hydrostatic pressure).

H = Lateral earth pressures (active and passive).

W = Wind Load on surface above water.

LC#1 was evaluated for both Usual and Unusual load conditions. LC#1A was used to evaluate the barge impact as extreme load condition with water level at +9 ft NAVD88. An impact at lower water levels will cause less rotation in the structure.

LC#5 combines wind load with other loads acting on the BMP. It is noted that wind load is applicable only to the exposed height of BMP above ground or water level. At the design water level for Unusual conditions (+9 ft NAVD88), the BMP exterior would not be exposed to wind.

A parametric evaluation was performed for the effect of wind loads on the design of BMP using LC#5. The 0.6 reduction factor for wind load was conservatively ignored for the evaluation. The net load ($F + W_{Exterior} - W_{Interior}$) on the BMP, calculated as sum of the hydrostatic load and the wind load applied to both interior (above ground) and exterior (above water level), was compared to the hydrostatic load with water level at +9 ft NAVD88 acting alone. The net load was determined to be lower. Given that D + H are common to both load cases, LC#5 did not govern over LC#1 and not evaluated further.

ASCE 7-16 recommends reduction in the load factor for resisting (passive) lateral earth pressure to 0.6. The intent of the reduction is to design structures resistant to overturning by reducing the resistance. Since the BMP wall was designed for overturning (rotational) stability with adequate embedment as described in Section 6, a reduction for lateral earth pressure was not considered.

5. Design Criteria

5.1 Failure Modes

The three primary failure modes for sheet pile wall systems are described below:

- 1. The unstable slopes may cause a deep-seated rotational failure of the entire soil mass. The slope failures are independent of the sheet pile embedment and location of the anchor system. This type of failure can be remedied by changing the geometry of the retained material or improving the soil strength.
- 2. The sheet piles with inadequate embedment depth can be subjected to rigid-body rotational failure due to the lateral pressures exerted by the retained material. The classical design procedures, such as the "free earth" Limit Equilibrium Method calculate the sheet pile embedment depths by balancing the active pressures behind the wall against the passive pressures provided by soil in front of the sheet piles. Adequate embedment depth is achieved at depth where the sum of horizontal forces and sum of moments is zero. Rigid-body rotational failure can be prevented by incorporating safety factors to decrease the passive pressures as appropriate for different loading conditions.
- 3. The sheet pile systems with stable slopes and adequate embedment may fail if the sheet pile sections, tie-rods, and/or the anchor components are overstressed or inadequately sized. Such failures can be prevented by incorporating safety factor in design by limiting the allowable stress as appropriate for different loading conditions.

5.2 Safety Factors

The following safety factors and allowable stress limits are adopted in the design of the BMP to prevent the failure modes described in Section 5.1.

5.2.1 Embedment Depth

EM 1110-2-2504 recommends the minimum safety factors provided in Table 5-1 to determine embedment depth for cantilever or anchored sheet pile wall systems. It should be noted that the safety factors are suitable for the "free earth" Limit Equilibrium Method where the sheet pile is considered a rigid body allowed to rotate about a point below ground level, and the active and passive pressures are balanced to determine the embedment depth. Adequate embedment depth is achieved at depth where the sum of horizontal forces and sum of moments is zero. The pressures, and resulting forces in the system, are considered independent of the wall displacement in the Limit Equilibrium Method.

The cantilever wall BMP presented in the 2020 Northern Impoundment 30% Remedial Design (30% RD) acted as both a floodwall and a retaining wall by maintaining differential water and soil elevations. However, the current BMP system in the new alignment primarily serves as a floodwall by maintaining a different water elevation between the excavation

area and the San Jacinto River. The sheet piles are terminated in the fine grain soils of the Beaumont Clay layer. Hence, both the undrained (Q-Case) and drained (S-Case) conditions were evaluated to determine the stability of the BMP.

Loading	Floodwalls	Retaining Walls		
Case	Fine-Grain Soils	Free-Draining Soils	Fine-Grain Soils	Free-Draining Soils
Usual	1.50 Q-Case 1.10 S-Case	1.50 S-Case	2.00 Q-Case 1.50 S-Case	1.50 S-Case
Unusual	1.25 Q-Case 1.10 S-Case	1.25 S-Case	1.75 Q-Case 1.25 S-Case	1.25 S-Case
Extreme	1.10 Q-Case 1.10 S-Case	1.10 S-Case	1.50 Q-Case 1.10 S-Case	1.10 S-Case

Table 5-1 Safety Factors for Passive Pressures - EM 1110-2-2504

5.2.2 Sheet Pile Sections

EM 1110-2-2504 recommends the maximum allowable stresses for the sheet piles subject to different load case conditions, included in Table 5-2. By definition of the various load case conditions (Section 4), the BMP is subject to Unusual and Extreme load case conditions less frequently than the Usual load case conditions. Hence, the allowable stresses are increased for the more severe loading scenarios to avoid overly conservative design solutions for rare events.

Table 5-2 Allowable Stresses for Sheet Piles - EM 1110-2-2504

Load Case Conditions	Combined Bending and Axial Stress	Shear Stress
Usual	0.50 Fy	0.33 Fy
Unusual	0.67 F _y	0.44 F _y
Extreme	0.88 Fy	0.58 Fy

5.2.3 Tie-Rod Sections

The tie-rod sections, included in Table 5-3, are designed using allowable stress design methods in accordance with AISC 360. The tie-rods are critical to balance the forces and displacements of the BMP.

 Table 5-3
 Overstrength Factors for Tie-Rod - AISC 360

Limit State	Overstrength Factors
Tensile Yielding	1.67
Tensile Rupture	2.00
Tensile Rupture of Threaded Parts	2.00

If one tie-rod fails, the loads will be redistributed to the adjacent tie-rods. The tie-rod are designed for 150 percent of the demand loads, accounting for a tie-rod failure event where the loads are redistributed to adjacent tie-rods and preventing progressive failure and thereby, increasing the safety factor.

5.2.4 Walers

The walers are longitudinal beams connected to the tie-rods on the exterior face of the sheet piles. The walers distribute the loads from the sheet piles to the tie-rods and minimize variations in displacement along the BMP. In order to provide a continuous longitudinal beam, the individual waler beams will be spliced using bolted connections.

The walers are evaluated as simply supported multi-span beams with tie-rods providing the support reactions. The walers are also evaluated for condition with a longer span (150 percent) accounting for a tie-rod failure thus able to redistribute loads to the adjacent tie-rods. The walers are designed using the allowable stress design method in accordance with AISC 360, provided in Table 5-4.

Table 5-4 Overstrength Factor for Walers - AISC 360

Limit State	Overstrength Factors
Flexure or Bending Stress	1.67
Shear	1.67

5.3 Deflection

Total system displacement comprised of structural steel deformation, rotation and translation of the entire BMP and soil system was evaluated for the proposed BMP.

Neither EM 1110-2-2504 nor ASCE 7-16 provide guidance on limiting system deflection. For a cantilever sheet pile system, structural steel can deform significantly before structural failure occurs; hence, structural steel deformation could not be used as a limiting parameter in the previous submittal (30% RD).

The combination of tie-rod anchors and adequate embedment of sheet piles restrain the deflection in the sheet piles. The deflection at the top of the sheet pile translate to local deformations in the structure. These deformations are accounted for by the bending stress in the sheet piles and tensile stress in the tie-rods. The stresses will be limited within the allowable stress (Section 5.2) and within the elastic range (less than F_y) to avoid structural failure of the BMP.

5.4 Corrosion Protection

Design of the Northern Impoundment BMP structure is expected to be for temporary, short-term use. The sheet piles are assumed to remain in place for a period of approximately 7 years after installation. Figure 5-1 shows the five exposure zones typically considered for corrosion. It also shows a schematic for varying thickness loss along the height of the steel sheet piles exposed to marine environment.

Figure 5-1 Typical Thickness Loss - Nucor Skyline Catalog, Ports & Marine Construction

The loss of thickness due to corrosion relative to different exposure conditions are listed in Table 5-5. The corrosion rates are representative of industry-wide accepted rates where Site-specific data is unavailable. Since the Northern Impoundment is located in brackish water, an average of total thickness loss for the river (0.008 inches) and seawater (0.027 inches) exposure is appropriate (these two values are indicated in bold font in Table 5-5, below). The duration of exposure to each zone varies significantly on the exterior and interior face of the BMP. It is conservative to assume the same thickness loss on both sides of the sheet pile. A uniform sacrificial thickness of 0.035-inches

(2 x 0.0175 inches) was included for each side of the sheet pile for the entire height of the wall. No additional maintenance will be required for the seven-year period.

Table 5-5 Loss of Thickness due to Corrosion

Description of Exposure ¹	Loss in 5 Years ¹ (inches)	Loss in 25 Years ¹ (inches)	Loss in 7 Years ² (inches)
Common fresh water (river, ship canal) in the zone of high attack (water line).	0.006	0.022	0.008
Very polluted fresh water (sewage, industrial effluent) in the zone of high attack (water line).	0.012	0.051	0.016
Sea water in temperate climate in the zone of high attack (low water and splash zone).	0.022	0.074	0.027
Sea water in temperate climate in the zone of permanent immersion or in the intertidal zone.	0.010	0.035	0.013

Notes:

¹ Eurocode 3 - Design of Steel Structures, Part 5: Piling, BS EN 1993-5:2007.

² Interpolated between 5 Years and 25 Years.

6. BMP Design

6.1 Analysis

The BMP cross-sections were analyzed for stability and determining stress in the structural components using Plaxis 2D, a finite element software program developed by Bentley Systems, Inc. The program can model complex soil profiles, structural sections and perform soil-structure interaction analysis to achieve a solution with compatible forces and displacements. The analysis also incorporates a time variable simulating the various stages of construction, such as end of sheet pile installation, adding fill between the walls, installing tie-rods, dewatering the excavation area after BMP is installed, and excavation to allow for consolidation or dissipation of porewater pressures. The stages and consolidation periods assumed for the analysis are described in Section 6.2.

EM 1110-2-2504 recommends applying the safety factors (Section 5.2.1) to determine the effective soil parameters used to calculate passive pressures. This recommendation is suitable for the "free earth" Limit Equilibrium Method where the sheet pile is considered a rigid body allowed to rotate about a point below ground level, and the active and passive pressures are balanced to determine the embedment depth. The pressures, and resulting forces in the system, are considered independent of the wall displacement.

The finite element analyses using soil-structure interaction incorporate the non-linear behavior of the soil, wall displacements and flexibilities of the sheet pile and anchors. The active and passive pressures vary as the system flexes to achieve a solution by balancing the forces and displacements in the entire system. By inherently balancing the forces and displacements, the system achieves a larger safety factor against rotational failure than the Limit Equilibrium Method. Thus, the safety factors are not applied to determine effective soil parameters for calculating passive pressures.

For the purposes of the analyses, the water level in the fill material between the two sheet pile walls is assumed to be at the same level as the river. Porewater pressure distributions are recalculated in steady state flow calculations following changes in water levels. Final "dewatering" of excavations assumes a phreatic level approximately 1 foot below the excavation level in the excavation area. No dewatering from well points below the excavation or wall was considered.

The program provides outputs of resultant forces such as shear and moment for the sheet piles, tension force for the tie-rod, and deflection at each stage of analysis. The structural components are designed for the largest governing forces. The Plaxis outputs for each of the analysis sections (described Section 6.2) are included in Attachment 2.

6.2 Analysis Sections

The BMP behavior varies with the height of the sheet piles above riverbed and the subsurface strata. Hence, multiple cross-sections were evaluated to account for the variations in riverbed elevations, cross-slope of the riverbed along the BMP alignment, thickness of Alluvium Sediments, anticipated top of Beaumont Clay layers, and distance of the BMP to excavation. The extents of each section are shown on Figure 6-1. These extents are approximate and may change in the final design to accommodate design optimizations, and other considerations for standardizing construction to achieve an economical solution.

It should be noted that the proposed alignment for the BMP along the south side of the Northern Impoundment, parallel to I-10, had to be modified to achieve a working solution as described in Section 6.2.7.

Figure 6-1 General Extents of the Analysis Cross-Sections

The following sections present the various cross-sections analyzed to determine the appropriate embedment depth for the sheet piles to achieve stability, size the sheet piles and tie-rods for the BMP. The cross-sections show distance on the horizontal axis and elevation (NAVD88) on the vertical axis. The sheet piles are typically centered at distance 0 on the horizontal axis as the sections are taken along the BMP alignment. The cross-sections also show the approximate excavation surface near the BMP. The distance to the excavation area varies along the BMP alignment but the cross-sections are considered representative for the extents shown in Section 6.2

6.2.1 Cross-Section C1

Cross-Section C1 (Figure 6-2) represents the Site condition where the riverbed is sloping away from the Northern Impoundment. The approximate retained height on the exterior and interior side is 19 ft and 16 ft, respectively.

Figure 6-2 Analysis Section C1

The following stages of construction were defined for the analysis of Cross-Section C1:

- 1. Install exterior and interior sheet piles.
- 2. Fill between the sheet piles to elevation +3 ft NAVD88. Minimum time interval assumed as 10 days.
- 3. Install tie-rods at elevation +3 ft NAVD88.
- 4. Fill between the sheet piles to elevation +9 ft NAVD88. Minimum time interval assumed as 6 days.
- 5. Dewater to riverbed. Minimum time interval assumed as 4 days.
- 6. Excavate to 50 percent depth of material to be removed. Minimum time interval assumed as 14 days.
- 7. Dewater to final level (-20 ft NAVD88). Minimum time interval assumed as 3 days.
- 8. Excavate to 100 percent depth of material to be removed. Minimum time interval assumed as 14 days.

6.2.2 Cross-Section C2

Cross-Section C2 (Figure C-3) represents the site condition where the riverbed is fairly even along the BMP alignment. The approximate retained height on both the exterior and interior sides is 24 ft. The large height above the riverbed overstressed the sheet piles and tie-rods. Hence, a 30 ft wide bench raised up to elevation -10 ft NAVD88 is required on the interior side to reduce the stresses.

The sheet piles and tie-rods required for Cross-Section C2 are among the largest standard sections available. The tie-rods are required to be installed at elevation -5 ft NAVD88, significantly below the normal water levels in the river, which has the potential to pose a safety hazard during construction.

The following stages of construction were defined for the analysis of Cross-Section C2:

- 1. Install exterior and interior sheet piles.
- 2. Fill between the sheet piles to elevation -7 ft NAVD88. Minimum time interval assumed as 7 days.
- 3. Install tie-rods at elevation -5 ft NAVD88.
- 4. Fill between the sheet piles to elevation -1 ft NAVD88. Minimum time interval assumed as 7 days.
- 5. Fill between the sheet piles to elevation +5 ft NAVD88. Minimum time interval assumed as 7 days.
- 6. Fill between the sheet piles to elevation +9 ft NAVD88. Minimum time interval assumed as 7 days.
- 7. Dewater to riverbed. Minimum time interval assumed as 4 days.
- 8. Excavate to 50 percent depth of material to be removed. Minimum time interval assumed as 14 days.
- 9. Dewater to final level (-29 ft NAVD88). Minimum time interval assumed as 3 days.
- 10. Excavate to 100 percent depth of material to be removed. Minimum time interval assumed as 14 days.

6.2.3 Cross-Section C3 and C3A

Cross-Sections C3 and C3A (Figure 6-4 and Figure 6-5, respectively) represent the site condition where the riverbed is fairly even along the BMP alignment. The riverbed starts sloping toward the excavation area along Cross-Section C3. The approximate retained height on both the exterior and interior sides is 14 ft.

Figure 6-5 Analysis Section C3A

The following stages of construction stages were defined for the analysis of Cross-Section C3:

- 1. Install exterior and interior sheet piles.
- 2. Fill between the sheet piles to elevation 0 ft NAVD88. Minimum time interval assumed as 10 days.
- 3. Install tie-rods at elevation 0 ft NAVD88.

- 4. Fill between the sheet piles to elevation +3 ft NAVD88. Minimum time interval assumed as 3 days.
- 5. Fill between the sheet piles to elevation +9 ft NAVD88. Minimum time interval assumed as 10 days.
- 6. Dewater to riverbed. Minimum time interval assumed as 4 days.
- 7. Excavate to 50 percent depth of material to be removed. Minimum time interval assumed as 14 days.
- 8. Dewater to final level (-26 ft NAVD88). Minimum time interval assumed as 3 days.
- 9. Excavate to 100 percent depth of material to be removed. Minimum time interval assumed as 14 days.

The following stages of construction stages were defined for the analysis of Cross-Section C3A:

- 1. Install exterior and interior sheet piles.
- 2. Fill between the sheet piles to elevation 0 ft NAVD88. Minimum time interval assumed as 10 days.
- 3. Install tie-rods at elevation +3 ft NAVD88.
- 4. Fill between the sheet piles to elevation +9 ft NAVD88. Minimum time interval assumed as 6 days.
- 5. Dewater to riverbed. Minimum time interval assumed as 4 days.
- 6. Excavate to 50 percent depth of material to be removed. Minimum time interval assumed as 14 days.
- 7. Dewater to final level (-18 ft NAVD88). Minimum time interval assumed as 3 days.
- 8. Excavate to 100 percent depth of material to be removed. Minimum time interval assumed as 14 days.

6.2.4 Cross-Section C4

Cross-Section C4 (Figure 6-6) represents the site condition where the riverbed slopes away steeply from the Northern Impoundment. The approximate retained heights on the exterior and interior sides are 22 ft and 12 ft, respectively.

Figure 6-6 Analysis Section C4

The following stages of construction stages were defined for the analysis of Cross-Section C4:

- 1. Install exterior and interior sheet piles.
- 2. Fill between the sheet piles to elevation -3 ft NAVD88. Minimum time interval assumed as 10 days.
- 3. Install tie-rods at elevation 0 ft NAVD88.
- 4. Fill between the sheet piles to elevation +9 ft NAVD88. Minimum time interval assumed as 6 days.
- 5. Dewater to riverbed. Minimum time interval assumed as 4 days.
- 6. Excavate to 50 percent depth of material to be removed. Minimum time interval assumed as 14 days.
- 7. Dewater to final level (-22 ft NAVD88). Minimum time interval assumed as 3 days.
- 8. Excavate to 100 percent depth of material to be removed. Minimum time interval assumed as 14 days.

6.2.5 Cross-Section C4A

Cross-Section C4A (Figure 6-7) represents the Site condition where the riverbed slopes away from the Northern Impoundment. The approximate retained heights on the exterior and interior sides are 17 ft and 12 ft, respectively.

Figure 6-7 Analysis Section C4A

The following stages of construction stages were defined for the analysis of Cross-Section C4A:

- 1. Install exterior and interior sheet piles.
- 2. Fill between the sheet piles to elevation 0 ft NAVD88. Minimum time interval assumed as 10 days.
- 3. Install tie-rods at elevation +6 ft NAVD88.
- 4. Fill between the sheet piles to elevation +9 ft NAVD88. Minimum time interval assumed as 6 days.
- 5. Dewater to riverbed. Minimum time interval assumed as 4 days.
- 6. Excavate to 50 percent depth of material to be removed. Minimum time interval assumed as 14 days.
- 7. Dewater to final level (-21 ft NAVD88). Minimum time interval assumed as 3 days.
- 8. Excavate to 100 percent depth of material to be removed. Minimum time interval assumed as 14 days.

6.2.6 Cross-Section C5

Cross-Section C5 (Figure 6-8) represents the site condition where the riverbed slopes away steeply from the Northern Impoundment. The approximate retained heights on the exterior and interior sides are 24 ft and 17 ft, respectively.

Figure 6-8 Analysis Section C5

The following stages of construction stages were defined for the analysis of Cross-Section C5:

- 1. Install exterior and interior sheet piles.
- 2. Fill between the sheet piles to elevation -1 ft NAVD88. Minimum time interval assumed as 10 days.
- 3. Install tie-rods at elevation 0 ft NAVD88.

- 4. Fill between the sheet piles to elevation +9 ft NAVD88. Minimum time interval assumed as 6 days.
- 5. Dewater to riverbed. Minimum time interval assumed as 4 days.
- 6. Excavate to 50 percent depth of material to be removed. Minimum time interval assumed as 14 days.
- 7. Dewater to final level (-16 ft NAVD88). Minimum time interval assumed as 3 days.
- 8. Excavate to 100 percent depth of material to be removed. Minimum time interval assumed as 14 days.

6.2.7 Cross-Section C6 and C7

Cross-Sections C6 and C7 (Figure 6-9 and Figure 6-10, respectively) represent the BMP cross-sections along the alignment parallel to the I-10 Bridge. In the original alignment, the BMP was placed directly at the edge of the existing berm (0 on the horizontal axis) and excavation limits extended to the sheet pile. The existing ground elevation is fairly even and close to Elevation +5 ft NAVD88.

The BMP design elevation at bottom of excavation is -14 ft NAVD88 and -20 ft NAVD88 for Section C6 and Section C7, respectively. Several concepts, as described below, were evaluated to determine a working solution along the original alignment. Due to the significantly large height retained above the anticipated excavation bottom, lack of a bench to keep the BMP design independent of the excavation depths, and active excavation along the face of the BMP, the concepts were considered unfeasible. Hence, the BMP was moved farther to the South, to allow maintaining a sloped bench beginning at Elevation 0 ft NAVD88 and extending into the excavation area.

Figure 6-10 Analysis Section C7

In attempts to minimize the footprint of the southern wall and minimize encroaching onto the TxDOT right-of-way to the south of the Northern Impoundment, several different wall types were evaluated, as detailed below.

Alternative 1: Combination Wall With Tie-back Anchors

This alternative included a combination wall system of tubular pipe piles and Z-shaped sheet piles aligned along the excavation perimeter and connected to the Z-shaped sheet pile anchor walls with steel tie-rods for support. The steel piles would have had to have been driven deep into the hard sand layers to achieve adequate embedment depth for stability. The anchor walls also would have had to be placed farther back beyond the right-of-way to be located outside the estimated failure planes to avoid rotational failure.

In order to avoid driving into the sand layers due to concerns with driveability and associated vibrations related to large tubular sections (Section 6.6), this option was considered unfeasible.

Alternative 2: Cantilever Concrete Secant Pile

This alternative included overlapping concrete piles installed along the excavation perimeter. All piles would have had to be cast-in-place by drilling to the desired depth, placing reinforcement (secondary piles only), and pouring concrete. The primary unreinforced concrete piles would have been built first at regular spacing to allow for secondary reinforced concrete piles. After the primary piles had achieved the desired strength, the secondary reinforced concrete piles would have been built by coring through the edges of the primary piles, placing reinforcement, and pouring concrete to create an overlapping continuous concrete wall. The secondary piles could have only been drilled after the primary piles had achieved full strength. The piles would have been required to be embedded in the hard sand layers to achieve adequate embedment depth for stability.

There were concerns about constructability of this system since it would have required drilling deep into the sand layers and achieving quality overlap in the field to create a relatively watertight seam. The large cantilever height of the wall above the excavation area was also a concern for safety. Hence, this alternative was considered unfeasible.

Alternative 3: Concrete Secant Pile With Tieback Anchors

This alternative included installation of concrete piles similar to Alternative 2 combined with the tie-back anchors similar to Alternative 1. Due to the same concerns as Alternative 1 and Alternative 2, this option was considered unfeasible.

Alternative 4: Combination Wall With Brace Piles

This alternative included a combination wall system similar to Alternative 1 with the tie-back anchor system replaced by brace piles. The brace piles would have been 42 inch diameter, 1.5 inch wall thickness, and spaced at 10.5 ft spacing on-center, installed at an angle of 35 degrees (from vertical) within the excavation area. The brace piles would have had to be driven to Elevation -52 ft NAVD88 to achieve the required capacity to brace the combination wall.

Due to concerns with constructability of the combination wall, raker piles, and excavating around the brace piles to an elevation of -20 ft NAVD88, this option was considered unfeasible.

Alternative 5: Double Wall System

This alternative includes two sheet pile walls spaced 30 ft apart, connected with tie-rods and walers, and filled with aggregate. Similar to the other sections of the BMP, the sheet piles could be terminated in the Beaumont Clay layer. Due to lack of space to the south, the double wall would have had to be set at the edge of the excavation limits, which would have caused the large height retained above the excavation bottom to overstress the sheet piles and the tie-rod system. The retained height of less than 20-ft reduced the stresses. Building a soil bench from the bottom of the excavation to elevation -10 ft NAVD 88 reduced the retained height but encroached on the excavation area (bench width + 3:1 slope from edge of the bench to the excavation bottom).

In order to avoid encroaching on the limits of the excavation area and to avoid excavation along the face of the BMP altogether, the BMP had to be moved farther back beyond the TxDOT right-of-way boundary to allow for inclusion of the required bench and to reduce the retained height.

Design Section: Double Wall System Offset from Original Alignment

Ultimately, the wall type that proved to be structurally sound was the double wall system described in Alternative 5, set back from the edge of the excavation to provide a bench. Under this design, a reduced retained height is achieved by moving the wall alignment away from the excavation area. The approximate retained heights on the exterior and interior side are 7 ft and 9 ft, respectively.

The following stages of construction stages were defined for the analysis of Cross-Sections C6 and C7:

- 1. Install exterior and interior sheet piles.
- 2. Cut between the sheet piles to elevation 0 ft NAVD88.
- 3. Install tie-rods at elevation 0 ft NAVD88.
- 4. Fill between the sheet piles to elevation +9 ft NAVD88.
- 5. Dewater to riverbed. Minimum time interval assumed as 4 days.
- 6. Excavate to 50 percent depth of material to be removed. Maintain soil slope at 3H:1V from elevation 0 ft NAVD88 to excavation bottom. Minimum time interval assumed as 14 days.
- 7. Dewater to final level (-20 ft NAVD88). Minimum time interval assumed as 3 days.
- 8. Excavate to 100 percent depth of material to be removed. Maintain soil slope at 3H:1V from elevation 0 ft NAVD88 to excavation bottom. Minimum time interval assumed as 14 days.

6.3 Structural Components

The material grades used for design of the key structural components are summarized below:

- **Sheet Piles** ASTM A572 Grade 60 (Yield stress, $F_y = 60$ kilopounds for square inch [ksi]).
- *Tie rods* ASTM A615 Grade 120 ($F_y = 120$ ksi)).
- Walers
 ASTM A36
 Grade 36 (F_y = 36 ksi).

For purposes of the design, the standard sections for sheet pile and tie-rods were selected from the Nucor Skyline Technical Product Manual. The manual also included the section properties used for design calculations. Alternative sections with equivalent properties are available from other manufacturers and may be used in construction.

The detailed calculations for the sheet pile, tie-rods, and walers are provided in Attachment 3.

6.4 Wind Load Evaluation

As described in Section 3.5, the design wind loads correspond to a 100-year storm (Unusual load condition) or the 3000-year hurricane level wind (Extreme load condition). Typically, the wind load is applied to the face of the BMP exposed above water or ground level. At the design water level for the Unusual and Extreme load conditions (i.e., Elevation +9 ft NAVD88) the exterior face of the BMP would not be exposed to the wind. Assuming the excavation area remained completely dewatered, the wind loads acting on the interior face of the BMP will be counteracted by the hydrostatic loads from the water on the outside.

A parametric evaluation was performed for the effect of wind loads on the design of BMP using LC#5 (Section 4). The 0.6 reduction factor for wind load was conservatively ignored for the evaluation. The net load (F + W_{Exterior} - W_{Interior}) on the BMP, calculated as sum of the hydrostatic load and the wind load applied to both interior (above ground) and exterior (above water level), was compared to the hydrostatic load with water level at +9 ft NAVD88 acting alone. There is low probability that the hurricane level winds will develop on-Site without an increase in water levels. Hence, combining hurricane level winds with normal water levels (i.e., Elevation +5 ft NAVD88) when the BMP is most exposed, is a conservative approach. The calculated net load was smaller than the hydrostatic loads corresponding to the Unusual condition water levels acting alone. Thus, the wind loads do not govern the design.

Additional details of various scenarios considered for the parametric evaluation are provided in Attachment 3.

6.5 Barge Impact

The barge impact loads were evaluated in Plaxis for two Cross-Sections (C2 and C4) as they represent the two largest exposed heights above the riverbed and are expected to be the most critical sections.

6.5.1 Analysis Model

A 400 ft long three-dimensional (3D) model was created with the same stratigraphy, material properties and stages as the analysis sections described in Section 6.2. The linear elastic plates representing the sheet piles are assigned orthotropic parameters to capture the difference in sheet pile stiffness of the vertical and horizontal directions. The barge impact load was applied at the middle of the model, as a static uniformly distributed load over a 50 ft x1 ft area at top of the wall (+9 ft NAVD88). Due to the instantaneous nature of the impact, the loads are evaluated using the undrained soil parameters and considered an Extreme load condition, with the impact at top of the wall with the water levels at +9 ft NAVD88.

The following two scenarios, enveloping multiple impact velocities and barge displacement (ballasted or laden) were evaluated. The loads correspond to higher velocities of flow for impact with a barge in ballasted condition, hence conservative for the analysis. However, for the laden condition, the loads represent the limiting loads.

Case 1: 20 kip/ft x 50 ft = 1000 kip:

- Corresponds to contact with 54 ft barge in ballasted condition at impact velocity of 3.8 ft/s.
- Contact with 54 ft barge in laden condition at impact velocity of 1.6 ft/s.

Case 2: 28 kip/ft x 50 ft = 1400 kip:

- Corresponds to contact with 54 ft barge in ballasted condition at impact velocity of 5.3 ft/s.
- Contact with 54 ft barge in laden condition at impact velocity of 2.2 ft/s.

6.5.2 Results

The barge impact loads caused localized deformation of the wall along with increase in soil shear strains. However, the strains did not indicate a global failure. In this scenario, there would be localized damage to the BMP on the exterior side due to limiting flexural capacity. The analysis results are summarized in Table 6-1.

Analysis Sections	Design Load (kip/ft)	Total Applied Force (kip)	Analysis Demands Per LF				
			Moment (kip-ft)	Shear (kip)	Deflection (ft)	DCR - Moment	DCR - Shear
C2, AZ 40-700N	20	1000	342.4	64.5	1.4	1.11	0.19
	28	1400	465.9	68.5	2.8	1.51	0.21
C4, AZ 26-700	20	1000	159.6	39.6	0.8	0.81	0.14
	28	1400	251.2	39.6	1.6	1.28	0.14

 Table 6-1
 Barge Impact Analysis Output

Detailed analyses, results, and plots are provided in Attachment 3.

As cross-Section C2 is not near the navigational waterway, it was evaluated for impact with barge in ballasted condition only, under the assumption that any impact would be from moored barges. Under this scenario, the sheet piles would be overstressed by 11 percent (moment capacity) at an impact velocity of 3.8 ft/s, beyond the 95th percentile maximum velocity expected in the river.

Cross-Section C4 is closer to the navigational waterway and would be expected to may potentially encounter impact with barges, ballasted or laden, as they are towed. Under this scenario, the sheet piles would be overstressed by 28 percent (moment capacity) at an impact velocity of 5.3 ft/s and 2.2 ft/s for barges in ballasted and laden condition,

respectively. The limiting condition is representative of the navigation speeds as the 95th percentile maximum velocity in the river is expected to be 2.2 ft/s. The stresses could be lowered by utilizing a larger sheet pile section, such as AZ36-700N.

However, the impact loads reduce significantly at lower velocity of impact. The barges and tugboats typically slow down as the width of the navigational waterway reduces closer to the I-10 Bridge Pier. It is recommended that navigational signs be posted on the exterior face of the BMP to require marine vessels to reduce speeds along the eastern side of the BMP.

Also, in lieu of the BMP absorbing the impact, protective appurtenances such as rubber fenders on the exterior face of the BMP and/or sacrificial monopile dolphins (large diameter steel pipe piles) located away from the BMP, may be provided to protect the BMP from potential vessel impact.

6.6 Pile Driveability and Vibration Analysis

The BMP presented in the 30% RD included two cantilever wall alternatives; a combination wall with large diameter tubular pipe piles paired with intermediary Z-shaped sheet piles, and another with double H-beams. Both of the cantilever wall alternatives would have had to be driven in excess of elevation -80 ft NAVD88 to achieve adequate embedment for stability.

Pile driveability and vibration analyses were performed on these robust wall types and included in the 30% RD. The driveability of the cantilever walls was analyzed using GRLWEAP, a one-dimensional wave analysis equation program. The analysis indicated that a large diesel impact hammer would be required to install the BMP. The details of the GRLWEAP analysis are again included in the Geotechnical Engineering Report (Appendix B of the 90% RD). The analysis also indicated that the vibration caused by driving these robust piles would adversely impact the stability of ground slopes adjacent to the pile installation. These potential effects were further evaluated and described in detail in Attachment 4.

The concerns raised from the 30% RD Pile Driveability & Vibration Analysis are not applicable to the current design and alignment of the BMP. The 90% RD BMP design mitigates the adverse impacts of driving piles to deep elevations by terminating the sheet piles within the Beaumont Clay Formation.

6.7 Design Summary

The summary of the structural design for the various representative sections analyzed is provided in Table 6-2. The tie-rod spacing shown in the summary includes closer spacing than the spacing used in the analysis to incorporate additional safety factor against potential progressive failure described in Section 5.2.3. The closely spaced tie-rods increase the stiffness of the system, and the overall stresses and deflection in the BMP are expected to improve.

Analysis Section	Sheet Pile Section		Tie Rod Section			
	Nucor Skyline	Length (feet)	Diameter (inches)	Spacing (feet)	Waler Section	
C1	AZ26-700	50	2.25	5	MC 12X35	
C2	AZ40-700	55	3.00	5	MC 18X45.8	
C3	AZ26-700	50	2.25	5	MC 12X35	
C3A	AZ26-700	50	2.25	5	MC 12X35	
C4	AZ26-700	50	2.25	5	MC 12X35	
C4A	AZ26-700	50	2.25	5	MC 12X35	
C5	AZ26-700	60	2.25	5	MC 12X35	
C6	AZ26-700	60	2.25	5	MC 12X35	
C7	AZ26-700	60	2.25	5	MC 12X35	

 Table 6-2
 Summary of BMP Design

6.7.1 Analysis Notes

- 1. As the site conditions for Cross-Sections C3 and C3A have an overlap, it is recommended that the construction stages for Cross-Section 3 be followed for both as a conservative approach.
- 2. There is potential for the sheet piles to deflect towards the river before the tie-rods are installed. The sheet piles should be temporarily braced during fill and during tie-rod installation.
- 3. The interior side of Cross-Sections 6 and 7 should maintain the natural soils from elevation 0 ft NAVD88 to the bottom of the excavation at slope of 3H:1V.

7. Additional Considerations / Limitations

7.1 Barge Impact

The barge impact analyses showed that the sheet piles are overstressed due to impact from a laden 30,000 BBL barge 2.2 ft/s velocity. Although, the stresses in the sheet piles can be reduced by utilizing a larger steel section, barge impact is a rare event and other means to mitigate impacts need to be considered.

The impact loads reduce significantly at lower velocity of impact. The barges and tugboats typically slow down as the width of the navigational waterway narrows closer to the I-10 Bridge Piers. It is recommended that navigational signs be posted on the exterior face of the BMP to require reducing speeds along the eastern side of the BMP.

Also, in lieu of the BMP absorbing the impact, protective appurtenances, such as rubber fenders on the exterior face of the BMP and/or sacrificial monopile dolphins (large diameter steel pipe piles) located away from the BMP, may be provided to protect the BMP from potential vessel impact.

7.2 Seepage through Sheet Piles

The BMP is considered a temporary structure and will be removed after the remedial action (RA) is complete. The steel sheet piles, except for the interlocks are completely impervious. The Beaumont Clay Formation is also considered an impervious material for movement of water within the soils. The seepage or discharge through the sheet pile interlocks is proportional to the pressure drop across the interlocks in a horizontal plane. The vertical flow through the interlocks is negligible as the sheet piles will be terminated in the Beaumont Clay Formation and hence, no seepage is expected from under and/or around the sheet piles.

Figure 7-1 shows a general relationship³ of discharge through interlocks and the pressure-drop across the sheet piles for the following three conditions. The example highlighted in the figure compares the anticipated seepage through the interlocks for the same pressure-drop for each of the three conditions:

- 1. Standard Interlocks, no sealant, or welds.
- 2. Interlocks filled with plugged soil during sheet pile installation.
- 3. Interlocks filled with filler material or sealants.

Compared to the standard interlocks, the interlocks filled with plugged soils during pile installation and those filled with a sealant material allow 70 percent and 25 percent of the seepage, respectively. However, at the maximum tested pressure-drop (approximately 100 kiloPascal, or 30 feet of standing water), the three interlock conditions allowed the same volume of seepage.

It is anticipated that the soft sediments will plug the interlocks of the sheet pile during installation. The fill material between the walls of the BMP will also create a pressure-gradient instead of an abrupt pressure-drop across the

³ Arcelor Mittal, Impervious Steel Sheet Pile Walls, Design & Practical Approach.

exterior sheet pile wall of the BMP. In addition, the two sets of interlocks (exterior and interior wall) at any vertical cross-section will minimize the potential of the seepage through the BMP.

During normal operations, any seepage from the river into the excavation area can be managed as part of the waste removal process. If the excavation area is flooded due to a heavy rain or storm, the pressure-drop between the exterior and interior side of the BMP will reduce and the resultant pressure-drop will still only allow seepage toward the interior of the BMP. The interlock seepage calculations are provided in Attachment 3. It is recommended that the interlocks be sealed to prevent seepage into the excavation area which would increase the volume of water required for treatment during the RA.

Figure 7-1 Discharge - Pressure Drop Relationship, Arcelor Mittal

There are several proprietary interlock sealant materials available that reduce the amount of seepage through the interlocks. These materials are added to the interlocks required to cure in dry prior to forming pairs or installation. Some sealant materials expand after contacting water to form a tight joint, but due to the same expansion properties, they have a limited handling time for in-water installation. The performance of the sealant is highly dependent on the handling and installation procedures. Two proprietary materials - WADIT (bituminous material) and Sikaswell-S2 (Arcelor Mittal Roxan Plus system) may be viable alternatives for sealing interlocks and reducing seepage.

The interlocks may be made 100 percent impervious by welding all interlocks for the entire height above water and a few feet below the riverbed by excavating the soils after installing sheet piles. However, this requires field welding of the sheet piles and potentially performing the welds in wet conditions. Welding the sheet interlocks is not a preferred alternative as sheet piles would then not be able to be extracted from the Site without cutting all the welds after the RA is complete.

7.3 Foundation Substructure of I-10 Bridge

The BMP alignment along the south side by the I-10 Bridge had to be revised to avoid encroaching into the excavation area and reducing the stresses in the structural components. The revised alignment locates the BMP close to the fence / guardrails of the I-10 Bridge. The details of the bridge's foundation substructure are unknown at the time of the 90% RD submittal. The BMP design and alignment will have to be reevaluated and potentially revised if the foundation substructure conflicts with the BMP sheet piles.

Attachments

Attachment 1

Geotechnical Parameters and Data Profiles

ENCLOSURE 1.A
Wet Bulk Unit Weight

-110

Atterberg Limits and **Moisture Content**

w, w_I, w_p - Sediments (%)

00

C

w, w, w, - Beaumont Clay (%)

80

٥

0

Liquid Limit

Plastic Limit

60

0 20 40 60

0

20 40

MEAN (ALL DATA)

SJGB003

SJGB004

SIGB005 SJGB018

SJGB019 SJGB020 SJGB021

SJGB022 SJGB024 SJGB028

SJGB029

SJGB053 SJSB030

SJSB031

SJSB032

SJSB033

SJSB047

SJSB050

SJSB057

Blow Counts (N-Values)

ENCLOSURE 2.A

Enclosure 2.A1

Su - Alluvium Sediments - CPT-01 to CPT-04

San Jacinto River Waste Pit Northern Impoundment remedial Design GHD Project No 11215702

Enclosure 2.A2

Su - Alluvium Sediments - CPT-04 - CPT-06

San Jacinto River Waste Pit Northern Impoundment remedial Design GHD Project No 11215702

Enclosure 2.A3

Su - Alluvium Sediment - CPT-06 - CPT-10

San Jacinto River Waste Pit Northern Impoundment remedial Design GHD Project No 11215702

ENCLOSURE 2.B

Enclosure 2.B

San Jacinto River Waste Pit Northern Impoundment Remedial Design GHD Project No 11215702

ENCLOSURE 3.A

Enclosure 3.A

Eu - Alluvium Sediments - Sectors 1 to 3

ENCLOSURE 3.B

Enclosure 3.B

ENCLOSURE 3.C

Enclosure 3.C

Es - Beaumont Sand - Sectors 1 to 3

ENCLOSURE 4.A

Enclosure 4.A

ENCLOSURE 4.B

 ϕ ' (°) - Beaumont Clay - Sectors 1 to 3

ENCLOSURE 4.C

 ϕ ' (°) - Beaumont Sand - Sector 1 to 3

ENCLOSURE 5.A

Enclosure 5.A

OCR - Beaumont clay - Sectors 1 to 3

ENCLOSURE 6.A

Enclosure 6.A

k - Alluvium Sediments and Beaumont Clay

Attachment 2

BMP Analysis - PLAXIS Output

ATTACHMENT 2.1

Subject	stlus9A sisylenA 2IXAJ9 - y1emmu2	Checked by		Date				
Project	San Jacinto River Waste Pits	Sheets by	J. Jeyakanthan	Date	ZZ0Z/ <i>L</i> Z/S			
tneilC	IP and MIMC	Job Number	20721212	təədz	τ	ło	7	

Joelduz	stlusəЯ sizylanA ZIXAJ9 - yıammuZ	Срескед ру		Date				
Project	San Jacinto River Waste Pits	Sheets by	l. Jeyakanthan	Date	2/22/2			
tnsilO	DMIM bue 91	Job Number	20751511	təədz	τ	ło	7	

0 0 9 0 3 3 0 2 2 2	(ff) gniseq2	(ni) si O	(1)	BCF (ft)	(1 1) vəl∃ qiT	(11) d1anol	agerc	Condition	Section						
ο ο 9 ο ε ο ς- ε					-										
ο ο 9 ο ε ο ς- ε		52.2 09					leusU	100ior()							
0 0 9 0 8 0 5- 2	ΟL		60	0		EO	leusunU	กริกเธาน	τ						
0 0 9 0 8 0 5-	OT	\$7.2	09-	8	T#-	05	leusU	h - wiewh will							
ο ο 9 ο ε ο ς-							leusunU	Dinarainea							
0 0 9 0 8 0 9							leusU	Drained							
0 0 9 0 8 0 0	9	00.8	07- 01 84-	υl	97-	55	leusunU	חשווובת	C						
0 0 9 0 8 0		0010		OT	0.5	66	leusU	hanishhnU	7						
ο ο 9 ο ε ο							leusunU								
0 0 9 0 8 8 0							leusU	Drained							
ο ο 9 ο ε	9	9 9	52.2 99- 01	99- of 8 1 -	ττ	-40	07- 67	leusunU		3					
ο ο 9 ο ε				_			lensU	Dndrained	-						
ο ο 9 ο ε							 Jensnu∩								
ο ο 9 ο ε															
0 0 9 0	0T	ΟΤ	Οτ	OT	Οτ	0T	Οτ	2.25	99- of 8 1 -	ττ	-40	67	Jensnu∩		A£
0 0 9 0								DaniarbnU J							
0 0 9 0															
0 0 9 0								Drained							
0 0 9	8	2.25	64-	9	9	9	-38	<i>۲</i> ۲	Iensnuo		4				
0 0 9								Undrained							
0 0 9		ļ		L					<u> </u>						
0 0 9										IPNSO	Drained				
0	Οτ	2.25	64-	9	-38	<i>۲</i> ۲			44						
0								Dndrained							
0							Ippenuo	 							
0							Inneo	Drained							
0	9	52.2	₽S-	75	-48	۲S	IeusU		S						
0							leusunU	Denisrbn∪							
0							leusU	pester G							
0	01		51		01	6.7	leusunU	penieru	5						
	ОТ	6 7.7	QC-	71	84-	/5	leusU	bogicsball	٩						
							leusunU	กลุ่มเยาตนด							
							leusU	Drained							
0	5	56.6	29-	02	25-	19	leusunU	קונונכמ	L						
0	C	C7'7	70	07	70	то	leusU	Undrained	,						
							leusun∪								

88QVAN ni znoitsvel3 IIA BSF = Beaumont Sand Formation BCF = Beaumont Clay Formation Unusual = Unusual Load Condition, Water at Elev +9 ft Usual = Usual Load Condition, End of Excavation S2 + (γsl2 from search + stnemibed) benishou = benishou :sətoN

5ubject	stlusəЯ sizylenA ZIXAJ9 - yısmmu2	Срескед ру		916D			
Project	San Jacinto River Waste Pits	Sheets by	l. leyakanthan	əteO	2727/2022		
tn9ilO	IP and MIMC	Job Number	20787211	təədz	7	ło	7

ţəəl	stlusəЯ sizylenA SIXAJ9 - yısmmu2	Срескед ру		Date		
ject	San Jacinto River Waste Pits	 2μεετε pλ	nedtnekeyel .L	Date	2/27/5	
ţu	IP and MIMC	Job Number	20251211	təədz	7	ło

sizvlenA	Drainage	-	D	peol bnems	sp	
Section	Condition	agetz	TnemoM	Shear	boA siT	Deflection
		leusU	00089	0062	02776	65'0
	Drained	leusunU	84170	0976	114320	58.0
τ		leusU	101900	0676	172000	99.0
	Undrained	leusunU	114900	0680T	130200	28.0
	,	leusU				
č	Drained	lensnu∪	120600	14920	138414	18.0
7		leusU	124300	18000	09E8LT	88.0
	Undrained	leusunU	772200	18840	172100	60.L
	,G	leusU	096ZS	0600T	80330	97.0
	pəuieiu	leusunU	06EE7	02211	08566	02.0
5		leusU	06130	15210	100200	09.0
	onarainea	leusunU	111500	13140	SSISOI	SZ.0
	P = = 1000	leusU	01029	ST78	04410	74.0
vc	paniยาน	leusunU	08618	0896	JJ2220	69.0
Ac	Pedicaball	leusU	08130	0866	091811	SS:0
	กลุ่มเยากมด	leusunU	115300	08511	131300	۲۲.0
	hogical	leusU	07695	6372	02696	0.27
V	กอบเคเต	leusunU	94330	5486	109450	0.29
+	Podicyball	leusU	07687	11820	122980	9:32
	ougrained	leusunU	00928	11130	118130	81.0
	Peories O	leusU	00679	0869	00819	0.38
~ ~ ~	paniยาน	leusunU	080SZ	7200	0699Z	5 .0
₩₽		leusU	08798	0552	02062	0.22
	ouqualuea	leusunU	01026	0558	08106	62.0
	Posicial	leusU	08659	0016	08682	97.0
	กอนเอาต	leusunU	02262	10330	08078	۷9.0
с	bogicsball	leusU	08780	10440	01156	0.40
		lensnuU	105600	06111	08986	85.0
	hadies(leusU	59000	2240	75460	72.0
9	กวามเกาต	leusunU	38720	0079	02526	0.42
0	hanieshall	leusU	4J500	0229	00296	££.0
	סוומומוובמ	leusunU	20400	7430	J08720	0.44
	Drained	leusU	22000	210 <i>1</i>	27200	S4.0
2	กวามตาต	leusunU	88730	0288	02859	6.73
,	henicshall	leusU	27330	096Z	09985	0.42
		leusunU	07917	8140	09559	7 9.0

flection = ft dl = boЯ-9iT Shear = Ib per Lineal Feet teet Lineal Feet Lineal Feet :stinU

ATTACHMENT 2.2

Client	IPC and MIMC	Job Number	11215702	Sheet	
Project	San Jacinto River Waste Pits Site	Sheets by	J. Jeyakanthan	Date	5/27/2022
Subject	Soil Parameters - PLAXIS Analysis	Checked by		Date	

Parameters	Units	Sediment Hardening Soil	
Unsaturated unit weight	γ_unsat	lbf/ft ³	95
Saturated unit weight	γ_sat	lbf/ft ³	120
Secant stiffness in standard drained triaxial test	E_50 ^{ref}	lbf/ft ²	105000
Tangent stiffness for primary oedometer loading	E_oed^ref	lbf/ft ²	105000
Unloading / reloading stiffness	E_ur^ref	lbf/ft ²	315000
Power for stress-level dependency of stiffness	power (m)		0.5
Effective cohesion	c_ref	lbf/ft ²	42
Effective friction angle	φ (phi)	٥	26
Saturated permeability - horizontal	k_x	ft/day	0.00113
Saturated permeability - vertical	k_y	ft/day	0.00113

		Mohr-Coulomb				
Parameters	Units	BCF	BSF	Fill	Rock fill	
Unsaturated unit weight	γ_unsat	lbf/ft ³	100	105	105	108
Saturated unit weight	γ_sat	lbf/ft ³	125	130	130	130
Effective Young's modulus	E	lbf/ft ²	8.60E+05	2.00E+06	300000	1044000
Effective Poisson's ratio	v (nu)		0.3	0.3	0.3	0.3
Effective cohesion	c_ref	lbf/ft ²	150	0	0	0
Effective friction angle	φ (phi)	٥	28	37	32	38
Saturated permeability - horizontal	k_x	ft/day	8.50E-03	0.88	3	3
Saturated permeability - vertical	k_y	ft/day	8.50E-03	0.88	3	3

BCF = Beaumont Clay Formation

BSF = Beaumont Sand Formation

Section C1 Soil Profile with BMP @ Analysis Stage 0 (Sheet Pile Installation)

Section C2 Soil Profile with BMP @ Analysis Stage 0 (Sheet Pile Installation)

Section C3 Soil Profile with BMP @ Analysis Stage 0 (Sheet Pile Installation)

Section C3A Soil Profile with BMP @ Analysis Stage 0 (Sheet Pile Installation)

Section C4 Soil Profile with BMP @ Analysis Stage 0 (Sheet Pile Installation)

Section C4a Soil Profile with BMP @ Analysis Stage 0 (Sheet Pile Installation)

Section C5 Soil Profile with BMP @ Analysis Stage 0 (Sheet Pile Installation)

Section C6 Soil Profile with BMP @ Analysis Stage 0 (Sheet Pile Installation)

Section C7 Soil Profile with BMP @ Analysis Stage 0 (Sheet Pile Installation)

San Jacinto Section C1 - Drained Model

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/37), Total displacements $u_{\rm x}$

3.1.1.1.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/62), Total displacements $u_{\rm x}$

3.1.1.1.3 Calculation results, Plate, Backfill 3 [Phase_5] (5/90), Total displacements $u_{\rm x}$

3.1.1.1.1.4 Calculation results, Plate, Backfill 4 [Phase_6] (6/105), Total displacements $u_{\rm x}$

3.1.1.1.1.5 Calculation results, Plate, Dewater-SS [Phase_7] (7/145), Total displacements $\rm u_{x}$

3.1.1.1.1.6 Calculation results, Plate, Excavate 1 [Phase_8] (8/158), Total displacements u_x

3.1.1.1.1.7 Calculation results, Plate, Dewater-SS [Phase_9] (9/178), Total displacements $\rm u_{x}$

3.1.1.1.1.8 Calculation results, Plate, Excavate 2 [Phase_10] (10/186), Total displacements $\rm u_{x}$

3.1.1.1.1.9 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/216), Total displacements $\rm u_{x}$

3.1.2.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/37), Shear forces Q

3.1.2.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/62), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Backfill 3 [Phase_5] (5/90), Shear forces Q

3.1.2.1.4 Calculation results, Plate, Backfill 4 [Phase_6] (6/105), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Dewater-SS [Phase_7] (7/145), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Excavate 1 [Phase_8] (8/158), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Dewater-SS [Phase_9] (9/178), Shear forces Q

3.1.2.1.8 Calculation results, Plate, Excavate 2 [Phase_10] (10/186), Shear forces Q

3.1.2.1.9 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/216), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/37), Bending moments M

3.1.2.2.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/62), Bending moments M

3.1.2.2.3 Calculation results, Plate, Backfill 3 [Phase_5] (5/90), Bending moments M

22

3.1.2.2.4 Calculation results, Plate, Backfill 4 [Phase_6] (6/105), Bending moments M

3.1.2.2.5 Calculation results, Plate, Dewater-SS [Phase_7] (7/145), Bending moments M

24

3.1.2.2.6 Calculation results, Plate, Excavate 1 [Phase_8] (8/158), Bending moments M

3.1.2.2.7 Calculation results, Plate, Dewater-SS [Phase_9] (9/178), Bending moments M

3.1.2.2.8 Calculation results, Plate, Excavate 2 [Phase_10] (10/186), Bending moments M

3.1.2.2.9 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/216), Bending moments M

3.2.1.1.3 Calculation results, Node-to-node anchor, Backfill 3 [Phase_5] (5/90), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [lbf]	N _{min} [lbf]	N _{max} [lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	6679.710	0.000	6679.710
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	6679.710	0.000	6679.710

3.2.1.1.4 Calculation results, Node-to-node anchor, Backfill 4 [Phase_6] (6/105), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	34.081	0.000	34.081
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	34.081	0.000	34.081

3.2.1.1.5 Calculation results, Node-to-node anchor, Dewater-SS [Phase_7] (7/145), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	78.942	0.000	78.942
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	78.942	0.000	78.942

3.2.1.1.6 Calculation results, Node-to-node anchor, Excavate 1 [Phase_8] (8/158), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	79.149	0.000	79.149
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	79.149	0.000	79.149

3.2.1.1.7 Calculation results, Node-to-node anchor, Dewater-SS [Phase_9] (9/178), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	91.414	0.000	91.414
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	91.414	0.000	91.414

3.2.1.1.8 Calculation results, Node-to-node anchor, Excavate 2 [Phase_10] (10/186), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	91.526	0.000	91.526
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	91.526	0.000	91.526
3.2.1.1.9 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_11] (11/216), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	110.304	0.000	110.304
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	110.304	0.000	110.304

San Jacinto Section C1- Undrained Model

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/42), Total displacements $u_{\rm x}$

3.1.1.1.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/85), Total displacements $u_{\rm x}$

3.1.1.1.3 Calculation results, Plate, Consolidate [Phase_22] (22/167), Total displacements $\rm u_{x}$

3.1.1.1.1.4 Calculation results, Plate, Backfill 3 [Phase_5] (5/173), Total displacements $u_{\rm x}$

3.1.1.1.1.5 Calculation results, Plate, Backfill 4 [Phase_6] (6/188), Total displacements $u_{\rm x}$

3.1.1.1.1.6 Calculation results, Plate, Consolidate [Phase_23] (23/201), Total displacements $\rm u_{x}$

3.1.1.1.1.7 Calculation results, Plate, Dewater-SS [Phase_7] (7/217), Total displacements u_x

3.1.1.1.1.8 Calculation results, Plate, Consolidate [Phase_24] (24/236), Total displacements $\rm u_{x}$

3.1.1.1.1.9 Calculation results, Plate, Excavate 1 [Phase_8] (8/242), Total displacements $\rm u_{x}$

3.1.1.1.1.10 Calculation results, Plate, Dewater-SS [Phase_9] (9/250), Total displacements $\rm u_{x}$

3.1.1.1.1.1 Calculation results, Plate, Consolidate [Phase_25] (25/272), Total displacements $\rm u_{x}$

3.1.1.1.1.12 Calculation results, Plate, Excavate 2 [Phase_10] (10/277), Total displacements $\rm u_{x}$

3.1.1.1.1.13 Calculation results, Plate, Consolidate [Phase_26] (26/388), Total displacements $\rm u_{x}$

3.1.1.1.1.14 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/402), Total displacements $u_{\rm x}$

3.1.2.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/42), Shear forces Q

3.1.2.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/85), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Consolidate [Phase_22] (22/167), Shear forces Q

3.1.2.1.4 Calculation results, Plate, Backfill 3 [Phase_5] (5/173), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Backfill 4 [Phase_6] (6/188), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Consolidate [Phase_23] (23/201), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Dewater-SS [Phase_7] (7/217), Shear forces Q

3.1.2.1.8 Calculation results, Plate, Consolidate [Phase_24] (24/236), Shear forces Q

3.1.2.1.9 Calculation results, Plate, Excavate 1 [Phase_8] (8/242), Shear forces Q

3.1.2.1.10 Calculation results, Plate, Dewater-SS [Phase_9] (9/250), Shear forces Q

3.1.2.1.11 Calculation results, Plate, Consolidate [Phase_25] (25/272), Shear forces Q

3.1.2.1.12 Calculation results, Plate, Excavate 2 [Phase_10] (10/277), Shear forces Q

3.1.2.1.13 Calculation results, Plate, Consolidate [Phase_26] (26/388), Shear forces Q

3.1.2.1.14 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/402), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/42), Bending moments M

3.1.2.2.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/85), Bending moments M

3.1.2.2.3 Calculation results, Plate, Consolidate [Phase_22] (22/167), Bending moments M

3.1.2.2.4 Calculation results, Plate, Backfill 3 [Phase_5] (5/173), Bending moments M

3.1.2.2.5 Calculation results, Plate, Backfill 4 [Phase_6] (6/188), Bending moments M

3.1.2.2.6 Calculation results, Plate, Consolidate [Phase_23] (23/201), Bending moments M

3.1.2.2.7 Calculation results, Plate, Dewater-SS [Phase_7] (7/217), Bending moments M

3.1.2.2.8 Calculation results, Plate, Consolidate [Phase_24] (24/236), Bending moments M

3.1.2.2.9 Calculation results, Plate, Excavate 1 [Phase_8] (8/242), Bending moments M

3.1.2.2.10 Calculation results, Plate, Dewater-SS [Phase_9] (9/250), Bending moments M

39

3.1.2.2.11 Calculation results, Plate, Consolidate [Phase_25] (25/272), Bending moments M

3.1.2.2.12 Calculation results, Plate, Excavate 2 [Phase_10] (10/277), Bending moments M

3.1.2.2.13 Calculation results, Plate, Consolidate [Phase_26] (26/388), Bending moments M

3.1.2.2.14 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/402), Bending moments M

3.2.1.1.3 Calculation results, Node-to-node anchor, Consolidate [Phase_22] (22/167), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [lbf]	N _{min} [lbf]	N _{max} [lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	1344.816	0.000	1690.653
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	1344.816	0.000	1690.653

3.2.1.1.4 Calculation results, Node-to-node anchor, Backfill 3 [Phase_5] (5/173), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [lbf]	N _{min} [lbf]	N _{max} [lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	8165.002	0.000	8165.002
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	8165.002	0.000	8165.002

3.2.1.1.5 Calculation results, Node-to-node anchor, Backfill 4 [Phase_6] (6/188), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	60.696	0.000	60.696
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	60.696	0.000	60.696

3.2.1.1.6 Calculation results, Node-to-node anchor, Consolidate [Phase_23] (23/201), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	59.037	0.000	60.826
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	59.037	0.000	60.826

3.2.1.1.7 Calculation results, Node-to-node anchor, Dewater-SS [Phase_7] (7/217), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	112.247	0.000	112.247
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	112.247	0.000	112.247

3.2.1.1.8 Calculation results, Node-to-node anchor, Consolidate [Phase_24] (24/236), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	112.383	0.000	112.383
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	112.383	0.000	112.383

3.2.1.1.9 Calculation results, Node-to-node anchor, Excavate 1 [Phase_8] (8/242), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	117.162	0.000	117.162
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	117.162	0.000	117.162

3.2.1.1.10 Calculation results, Node-to-node anchor, Dewater-SS [Phase_9] (9/250), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	119.379	0.000	119.379
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	119.379	0.000	119.379

3.2.1.1.11 Calculation results, Node-to-node anchor, Consolidate [Phase_25] (25/272), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	113.890	0.000	119.676
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	113.890	0.000	119.676

3.2.1.1.12 Calculation results, Node-to-node anchor, Excavate 2 [Phase_10] (10/277), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	115.613	0.000	119.676
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	115.613	0.000	119.676

3.2.1.1.13 Calculation results, Node-to-node anchor, Consolidate [Phase_26] (26/388), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	113.616	0.000	119.676
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	113.616	0.000	119.676

3.2.1.1.14 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_11] (11/402), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	21	1	-15.000	3.000	130.503	0.000	130.503
Element 2-2 (Node-to-node anchor)	1407	2	15.000	3.000	130.503	0.000	130.503

San Jacinto Section C2-Drained Analysis

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/51), Total displacements $u_{\rm x}$

3.1.1.1.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/69), Total displacements $u_{\rm x}$

3.1.1.1.3 Calculation results, Plate, Excavation 2 [Phase_10] (10/71), Total displacements $\rm u_{x}$

3.1.1.1.1.4 Calculation results, Plate, Backfill 3 [Phase_5] (5/116), Total displacements $u_{\rm x}$

3.1.1.1.1.5 Calculation results, Plate, Backfill 4 [Phase_6] (6/128), Total displacements $u_{\rm x}$

3.1.1.1.1.6 Calculation results, Plate, Buttress fill [Phase_4] (7/153), Total displacements u_x

3.1.1.1.1.7 Calculation results, Plate, Excavation 1 [Phase_8] (8/264), Total displacements u_x

3.1.1.1.1.8 Calculation results, Plate, Dewater [Phase_7] (4/392), Total displacements $u_{\rm x}$

3.1.1.1.1.9 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/443), Total displacements $\rm u_{x}$

3.1.2.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/51), Shear forces Q

3.1.2.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/69), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Excavation 2 [Phase_10] (10/71), Shear forces Q

3.1.2.1.4 Calculation results, Plate, Backfill 3 [Phase_5] (5/116), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Backfill 4 [Phase_6] (6/128), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Buttress fill [Phase_4] (7/153), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Excavation 1 [Phase_8] (8/264), Shear forces Q

3.1.2.1.8 Calculation results, Plate, Dewater [Phase_7] (4/392), Shear forces Q

18

3.1.2.1.9 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/443), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/51), Bending moments M

20

3.1.2.2.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/69), Bending moments M

3.1.2.2.3 Calculation results, Plate, Excavation 2 [Phase_10] (10/71), Bending moments M

3.1.2.2.4 Calculation results, Plate, Backfill 3 [Phase_5] (5/116), Bending moments M

3.1.2.2.5 Calculation results, Plate, Backfill 4 [Phase_6] (6/128), Bending moments M

3.1.2.2.6 Calculation results, Plate, Buttress fill [Phase_4] (7/153), Bending moments M

25

3.1.2.2.7 Calculation results, Plate, Excavation 1 [Phase_8] (8/264), Bending moments M

3.1.2.2.8 Calculation results, Plate, Dewater [Phase_7] (4/392), Bending moments M

3.1.2.2.9 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/443), Bending moments M

3.2.1.1.2 Calculation results, Node-to-node anchor, Backfill 2 [Phase_3] (3/69), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	12.093	0.000	12.093
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	12.093	0.000	12.093

3.2.1.1.3 Calculation results, Node-to-node anchor, Excavation 2 [Phase_10] (10/71), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	125.084	0.000	125.093
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	125.084	0.000	125.093

3.2.1.1.4 Calculation results, Node-to-node anchor, Backfill 3 [Phase_5] (5/116), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	31.818	0.000	31.818
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	31.818	0.000	31.818

3.2.1.1.5 Calculation results, Node-to-node anchor, Backfill 4 [Phase_6] (6/128), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	57.108	0.000	57.108
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	57.108	0.000	57.108

3.2.1.1.6 Calculation results, Node-to-node anchor, Buttress fill [Phase_4] (7/153), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	56.782	0.000	57.108
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	56.782	0.000	57.108

3.2.1.1.7 Calculation results, Node-to-node anchor, Excavation 1 [Phase_8] (8/264), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	125.085	0.000	125.085
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	125.085	0.000	125.085

3.2.1.1.8 Calculation results, Node-to-node anchor, Dewater [Phase_7] (4/392), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	123.318	0.000	123.318
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	123.318	0.000	123.318

3.2.1.1.9 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_11] (11/443), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	146.008	0.000	146.008
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	146.008	0.000	146.008

San Jacinto Section C2-Undrained Analysis

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/33), Total displacements $u_{\rm x}$

3.1.1.1.1.2 Calculation results, Plate, Consoldate [Phase_26] (14/64), Total displacements $u_{\rm x}$

3.1.1.1.3 Calculation results, Plate, Backfill 2 [Phase_3] (3/80), Total displacements $u_{\rm x}$

3.1.1.1.1.4 Calculation results, Plate, Consolidate [Phase_25] (8/104), Total displacements $\rm u_{x}$

3.1.1.1.5 Calculation results, Plate, Backfill 3 [Phase_5] (5/114), Total displacements $u_{\rm x}$

3.1.1.1.1.6 Calculation results, Plate, Consolidate [Phase_11] (15/128), Total displacements $\rm u_{x}$

3.1.1.1.1.7 Calculation results, Plate, Backfill 4 [Phase_6] (6/139), Total displacements $u_{\rm x}$

3.1.1.1.1.8 Calculation results, Plate, Consolidate [Phase_7] (10/156), Total displacements $\rm u_{x}$

3.1.1.1.9 Calculation results, Plate, Consolidate [Phase_16] (24/190), Total displacements $\rm u_{x}$

3.1.1.1.1.10 Calculation results, Plate, Dewater -SS [Phase_14] (16/239), Total displacements $u_{\rm x}$

11

3.1.1.1.1.1 Calculation results, Plate, Consolidation [Phase_17] (17/254), Total displacements $u_{\rm x}$

3.1.1.1.1.12 Calculation results, Plate, Excavation 1 [Phase_18] (18/257), Total displacements $\rm u_{x}$

3.1.1.1.1.1 Calculation results, Plate, Consolidation [Phase_20] (20/272), Total displacements $\rm u_{x}$

3.1.1.1.1.14 Calculation results, Plate, Excavation 2 [Phase_21] (21/274), Total displacements $\rm u_{x}$

3.1.1.1.1.15 Calculation results, Plate, Consolidate [Phase_8] (11/286), Total displacements $\rm u_{x}$

3.1.1.1.1.16 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/294), Total displacements $\rm u_{x}$

3.1.1.1.1.17 Calculation results, Plate, Buttress fill [Phase_4] (7/452), Total displacements $\rm u_{x}$

3.1.2.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/33), Shear forces Q

3.1.2.1.2 Calculation results, Plate, Consoldate [Phase_26] (14/64), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Backfill 2 [Phase_3] (3/80), Shear forces Q

3.1.2.1.4 Calculation results, Plate, Consolidate [Phase_25] (8/104), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Backfill 3 [Phase_5] (5/114), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Consolidate [Phase_11] (15/128), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Backfill 4 [Phase_6] (6/139), Shear forces Q

3.1.2.1.8 Calculation results, Plate, Consolidate [Phase_7] (10/156), Shear forces Q

3.1.2.1.9 Calculation results, Plate, Consolidate [Phase_16] (24/190), Shear forces Q

3.1.2.1.10 Calculation results, Plate, Dewater -SS [Phase_14] (16/239), Shear forces Q

3.1.2.1.11 Calculation results, Plate, Consolidation [Phase_17] (17/254), Shear forces Q

3.1.2.1.12 Calculation results, Plate, Excavation 1 [Phase_18] (18/257), Shear forces Q

3.1.2.1.13 Calculation results, Plate, Consolidation [Phase_20] (20/272), Shear forces Q

3.1.2.1.14 Calculation results, Plate, Excavation 2 [Phase_21] (21/274), Shear forces Q

3.1.2.1.15 Calculation results, Plate, Consolidate [Phase_8] (11/286), Shear forces Q

3.1.2.1.16 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/294), Shear forces Q

3.1.2.1.17 Calculation results, Plate, Buttress fill [Phase_4] (7/452), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/33), Bending moments M

3.1.2.2.2 Calculation results, Plate, Consoldate [Phase_26] (14/64), Bending moments M

3.1.2.2.3 Calculation results, Plate, Backfill 2 [Phase_3] (3/80), Bending moments M

3.1.2.2.4 Calculation results, Plate, Consolidate [Phase_25] (8/104), Bending moments M

3.1.2.2.5 Calculation results, Plate, Backfill 3 [Phase_5] (5/114), Bending moments M

40

3.1.2.2.6 Calculation results, Plate, Consolidate [Phase_11] (15/128), Bending moments M

3.1.2.2.7 Calculation results, Plate, Backfill 4 [Phase_6] (6/139), Bending moments M

3.1.2.2.8 Calculation results, Plate, Consolidate [Phase_7] (10/156), Bending moments M

3.1.2.2.9 Calculation results, Plate, Consolidate [Phase_16] (24/190), Bending moments M

3.1.2.2.10 Calculation results, Plate, Dewater -SS [Phase_14] (16/239), Bending moments M

3.1.2.2.11 Calculation results, Plate, Consolidation [Phase_17] (17/254), Bending moments M

3.1.2.2.12 Calculation results, Plate, Excavation 1 [Phase_18] (18/257), Bending moments M

3.1.2.2.13 Calculation results, Plate, Consolidation [Phase_20] (20/272), Bending moments M

3.1.2.2.14 Calculation results, Plate, Excavation 2 [Phase_21] (21/274), Bending moments M

3.1.2.2.15 Calculation results, Plate, Consolidate [Phase_8] (11/286), Bending moments M

3.1.2.2.16 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/294), Bending moments M

3.1.2.2.17 Calculation results, Plate, Buttress fill [Phase_4] (7/452), Bending moments M

3.2.1.1.3 Calculation results, Node-to-node anchor, Backfill 2 [Phase_3] (3/80), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	16.962	0.000	16.962
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	16.962	0.000	16.962

3.2.1.1.4 Calculation results, Node-to-node anchor, Consolidate [Phase_25] (8/104), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	16.002	0.000	17.056
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	16.002	0.000	17.056

3.2.1.1.5 Calculation results, Node-to-node anchor, Backfill 3 [Phase_5] (5/114), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	43.081	0.000	43.081
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	43.081	0.000	43.081

3.2.1.1.6 Calculation results, Node-to-node anchor, Consolidate [Phase_11] (15/128), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	41.212	0.000	43.094
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	41.212	0.000	43.094

3.2.1.1.7 Calculation results, Node-to-node anchor, Backfill 4 [Phase_6] (6/139), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	75.842	0.000	75.842
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	75.842	0.000	75.842

3.2.1.1.8 Calculation results, Node-to-node anchor, Consolidate [Phase_7] (10/156), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	73.172	0.000	75.842
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	73.172	0.000	75.842

3.2.1.1.9 Calculation results, Node-to-node anchor, Consolidate [Phase_16] (24/190), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	68.519	0.000	75.842
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	68.519	0.000	75.842

3.2.1.1.10 Calculation results, Node-to-node anchor, Dewater -SS [Phase_14] (16/239), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	177.112	0.000	177.112
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	177.112	0.000	177.112

3.2.1.1.11 Calculation results, Node-to-node anchor, Consolidation [Phase_17] (17/254), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	174.822	0.000	178.359
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	174.822	0.000	178.359

3.2.1.1.12 Calculation results, Node-to-node anchor, Excavation 1 [Phase_18] (18/257), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	175.087	0.000	178.359
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	175.087	0.000	178.359

3.2.1.1.13 Calculation results, Node-to-node anchor, Consolidation [Phase_20] (20/272), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	164.030	0.000	178.359
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	164.030	0.000	178.359

3.2.1.1.14 Calculation results, Node-to-node anchor, Excavation 2 [Phase_21] (21/274), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	164.128	0.000	178.359
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	164.128	0.000	178.359

3.2.1.1.15 Calculation results, Node-to-node anchor, Consolidate [Phase_8] (11/286), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	159.181	0.000	178.359
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	159.181	0.000	178.359

3.2.1.1.16 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_22] (22/294), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	172.099	0.000	178.359
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	172.099	0.000	178.359

3.2.1.1.17 Calculation results, Node-to-node anchor, Buttress fill [Phase_4] (7/452), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_5_1	279	1	-15.000	-5.000	71.675	0.000	75.842
Element 4-4 (Node-to-node anchor)	6009	2	15.000	-5.000	71.675	0.000	75.842

San Jacinto Section C1 - Drained Model

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Backfill 2 [Phase_3] (3/15), Total displacements $u_{\rm x}$

3.1.1.1.1.2 Calculation results, Plate, Backfill 3 [Phase_5] (5/30), Total displacements $u_{\rm x}$

3.1.1.1.3 Calculation results, Plate, Backfill 4 [Phase_6] (6/43), Total displacements $u_{\rm x}$

3.1.1.1.1.4 Calculation results, Plate, Dewater-ss [Phase_16] (16/69), Total displacements $\rm u_{x}$

3.1.1.1.1.5 Calculation results, Plate, Excavate 1 [Phase_18] (18/72), Total displacements $\rm u_{x}$

3.1.1.1.1.6 Calculation results, Plate, Dewater 2 - ss [Phase_19] (19/83), Total displacements $\rm u_x$

3.1.1.1.1.7 Calculation results, Plate, Excavate 2 [Phase_21] (21/86), Total displacements u_x

3.1.1.1.1.8 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/101), Total displacements $\rm u_{x}$

3.1.1.1.1.9 Calculation results, Plate, Backfill 1 [Phase_2] (2/175), Total displacements $u_{\rm x}$

10

3.1.2.1.1 Calculation results, Plate, Backfill 2 [Phase_3] (3/15), Shear forces Q

3.1.2.1.2 Calculation results, Plate, Backfill 3 [Phase_5] (5/30), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Backfill 4 [Phase_6] (6/43), Shear forces Q

3.1.2.1.4 Calculation results, Plate, Dewater-ss [Phase_16] (16/69), Shear forces Q

14

3.1.2.1.5 Calculation results, Plate, Excavate 1 [Phase_18] (18/72), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Dewater 2 - ss [Phase_19] (19/83), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Excavate 2 [Phase_21] (21/86), Shear forces Q

3.1.2.1.8 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/101), Shear forces Q

3.1.2.1.9 Calculation results, Plate, Backfill 1 [Phase_2] (2/175), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Backfill 2 [Phase_3] (3/15), Bending moments M

3.1.2.2.2 Calculation results, Plate, Backfill 3 [Phase_5] (5/30), Bending moments M

3.1.2.2.3 Calculation results, Plate, Backfill 4 [Phase_6] (6/43), Bending moments M

3.1.2.2.4 Calculation results, Plate, Dewater-ss [Phase_16] (16/69), Bending moments M

3.1.2.2.5 Calculation results, Plate, Excavate 1 [Phase_18] (18/72), Bending moments M

24

3.1.2.2.6 Calculation results, Plate, Dewater 2 - ss [Phase_19] (19/83), Bending moments M

3.1.2.2.7 Calculation results, Plate, Excavate 2 [Phase_21] (21/86), Bending moments M

26

3.1.2.2.8 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/101), Bending moments M

3.1.2.2.9 Calculation results, Plate, Backfill 1 [Phase_2] (2/175), Bending moments M

3.2.1.1.2 Calculation results, Node-to-node anchor, Backfill 3 [Phase_5] (5/30), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	14.298	0.000	14.298
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	14.298	0.000	14.298

3.2.1.1.3 Calculation results, Node-to-node anchor, Backfill 4 [Phase_6] (6/43), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	37.201	0.000	37.201
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	37.201	0.000	37.201

3.2.1.1.4 Calculation results, Node-to-node anchor, Dewater-ss [Phase_16] (16/69), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	89.443	0.000	89.443
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	89.443	0.000	89.443

3.2.1.1.5 Calculation results, Node-to-node anchor, Excavate 1 [Phase_18] (18/72), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	89.442	0.000	89.443
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	89.442	0.000	89.443

3.2.1.1.6 Calculation results, Node-to-node anchor, Dewater 2 - ss [Phase_19] (19/83), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	94.411	0.000	94.411
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	94.411	0.000	94.411

3.2.1.1.7 Calculation results, Node-to-node anchor, Excavate 2 [Phase_21] (21/86), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	94.363	0.000	94.411
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	94.363	0.000	94.411

3.2.1.1.8 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_22] (22/101), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	115.272	0.000	115.272
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	115.272	0.000	115.272

San Jacinto Section C3A - Undrained Model

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/20), Total displacements $u_{\rm x}$

3.1.1.1.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/32), Total displacements $u_{\rm x}$

3

3.1.1.1.3 Calculation results, Plate, Consolidate [Phase_25] (25/63), Total displacements $\rm u_{x}$

3.1.1.1.1.4 Calculation results, Plate, Backfill 3 [Phase_5] (5/76), Total displacements $u_{\rm x}$

3.1.1.1.5 Calculation results, Plate, Backfill 4 [Phase_6] (6/85), Total displacements $u_{\rm x}$

3.1.1.1.1.6 Calculation results, Plate, Consolidate [Phase_26] (26/101), Total displacements $\rm u_{x}$

3.1.1.1.7 Calculation results, Plate, Dewater-ss [Phase_16] (16/116), Total displacements $\rm u_{x}$

3.1.1.1.1.8 Calculation results, Plate, Consolidate [Phase_17] (17/128), Total displacements $u_{\rm x}$

3.1.1.1.1.9 Calculation results, Plate, Excavate 1 [Phase_18] (18/131), Total displacements $\rm u_x$

3.1.1.1.1.10 Calculation results, Plate, Dewater 2 - ss [Phase_19] (19/134), Total displacements $\rm u_x$

3.1.1.1.1.1 Calculation results, Plate, Consolidate [Phase_20] (20/150), Total displacements $\rm u_{x}$

3.1.1.1.1.12 Calculation results, Plate, Excavate 2 [Phase_21] (21/154), Total displacements $\rm u_{x}$

3.1.1.1.1.13 Calculation results, Plate, Consolidate [Phase_7] (7/178), Total displacements $\rm u_{x}$

3.1.1.1.1.14 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/188), Total displacements $\rm u_{x}$

3.1.2.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/20), Shear forces Q

16

3.1.2.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/32), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Consolidate [Phase_25] (25/63), Shear forces Q

18

3.1.2.1.4 Calculation results, Plate, Backfill 3 [Phase_5] (5/76), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Backfill 4 [Phase_6] (6/85), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Consolidate [Phase_26] (26/101), Shear forces Q

21

3.1.2.1.7 Calculation results, Plate, Dewater-ss [Phase_16] (16/116), Shear forces Q

3.1.2.1.8 Calculation results, Plate, Consolidate [Phase_17] (17/128), Shear forces Q

3.1.2.1.9 Calculation results, Plate, Excavate 1 [Phase_18] (18/131), Shear forces Q

3.1.2.1.10 Calculation results, Plate, Dewater 2 - ss [Phase_19] (19/134), Shear forces Q

3.1.2.1.11 Calculation results, Plate, Consolidate [Phase_20] (20/150), Shear forces Q

3.1.2.1.12 Calculation results, Plate, Excavate 2 [Phase_21] (21/154), Shear forces Q

3.1.2.1.13 Calculation results, Plate, Consolidate [Phase_7] (7/178), Shear forces Q

3.1.2.1.14 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/188), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/20), Bending moments M

3.1.2.2.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/32), Bending moments M

3.1.2.2.3 Calculation results, Plate, Consolidate [Phase_25] (25/63), Bending moments M

3.1.2.2.4 Calculation results, Plate, Backfill 3 [Phase_5] (5/76), Bending moments M

33

3.1.2.2.5 Calculation results, Plate, Backfill 4 [Phase_6] (6/85), Bending moments M

34

3.1.2.2.6 Calculation results, Plate, Consolidate [Phase_26] (26/101), Bending moments M

3.1.2.2.7 Calculation results, Plate, Dewater-ss [Phase_16] (16/116), Bending moments M

3.1.2.2.8 Calculation results, Plate, Consolidate [Phase_17] (17/128), Bending moments M

3.1.2.2.9 Calculation results, Plate, Excavate 1 [Phase_18] (18/131), Bending moments M

3.1.2.2.10 Calculation results, Plate, Dewater 2 - ss [Phase_19] (19/134), Bending moments M

3.1.2.2.11 Calculation results, Plate, Consolidate [Phase_20] (20/150), Bending moments M

3.1.2.2.12 Calculation results, Plate, Excavate 2 [Phase_21] (21/154), Bending moments M

3.1.2.2.13 Calculation results, Plate, Consolidate [Phase_7] (7/178), Bending moments M

3.1.2.2.14 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/188), Bending moments M

3.2.1.1.3 Calculation results, Node-to-node anchor, Consolidate [Phase_25] (25/63), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [lbf]	N _{min} [lbf]	N _{max} [lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	-220.246	-220.246	39.821
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	-220.246	-220.246	39.821

3.2.1.1.4 Calculation results, Node-to-node anchor, Backfill 3 [Phase_5] (5/76), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	19.787	-220.246	19.787
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	19.787	-220.246	19.787

3.2.1.1.5 Calculation results, Node-to-node anchor, Backfill 4 [Phase_6] (6/85), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	54.668	-220.246	54.668
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	54.668	-220.246	54.668

3.2.1.1.6 Calculation results, Node-to-node anchor, Consolidate [Phase_26] (26/101), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	51.478	-220.246	54.668
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	51.478	-220.246	54.668

3.2.1.1.7 Calculation results, Node-to-node anchor, Dewater-ss [Phase_16] (16/116), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	117.881	-220.246	117.881
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	117.881	-220.246	117.881

3.2.1.1.8 Calculation results, Node-to-node anchor, Consolidate [Phase_17] (17/128), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	115.800	-220.246	118.164
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	115.800	-220.246	118.164

3.2.1.1.9 Calculation results, Node-to-node anchor, Excavate 1 [Phase_18] (18/131), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	115.918	-220.246	118.164
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	115.918	-220.246	118.164

3.2.1.1.10 Calculation results, Node-to-node anchor, Dewater 2 - ss [Phase_19] (19/134), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	116.224	-220.246	118.164
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	116.224	-220.246	118.164

3.2.1.1.11 Calculation results, Node-to-node anchor, Consolidate [Phase_20] (20/150), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	111.236	-220.246	118.164
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	111.236	-220.246	118.164

3.2.1.1.12 Calculation results, Node-to-node anchor, Excavate 2 [Phase_21] (21/154), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	111.329	-220.246	118.164
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	111.329	-220.246	118.164

3.2.1.1.13 Calculation results, Node-to-node anchor, Consolidate [Phase_7] (7/178), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	111.326	-220.246	118.164
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	111.326	-220.246	118.164

3.2.1.1.14 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_22] (22/188), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	13	1	-15.000	3.000	131.277	-220.246	131.277
Element 2-2 (Node-to-node anchor)	411	2	15.000	3.000	131.277	-220.246	131.277

San Jacinto Section C3 - Drained Model

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Backfill 2 [Phase_3] (3/17), Total displacements $u_{\rm x}$

3.1.1.1.1.2 Calculation results, Plate, Backfill 3 [Phase_5] (5/39), Total displacements $u_{\rm x}$

3
3.1.1.1.3 Calculation results, Plate, Backfill 4 [Phase_6] (6/59), Total displacements $u_{\rm x}$

4

3.1.1.1.1.4 Calculation results, Plate, Dewater 2 [Phase_19] (19/70), Total displacements $\rm u_{x}$

3.1.1.1.1.5 Calculation results, Plate, Excavate 2 [Phase_21] (21/73), Total displacements u_x

San Jacinto Section C3 - Drained Model

3.1.1.1.1.6 Calculation results, Plate, Backfill 1 [Phase_2] (2/121), Total displacements $u_{\rm x}$

7

3.1.1.1.1.7 Calculation results, Plate, Dewater [Phase_16] (16/165), Total displacements $u_{\rm x}$

3.1.1.1.8 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/186), Total displacements $\rm u_{x}$

3.1.2.1.1 Calculation results, Plate, Backfill 2 [Phase_3] (3/17), Shear forces Q

3.1.2.1.2 Calculation results, Plate, Backfill 3 [Phase_5] (5/39), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Backfill 4 [Phase_6] (6/59), Shear forces Q

3.1.2.1.4 Calculation results, Plate, Dewater 2 [Phase_19] (19/70), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Excavate 2 [Phase_21] (21/73), Shear forces Q

14

3.1.2.1.6 Calculation results, Plate, Backfill 1 [Phase_2] (2/121), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Dewater [Phase_16] (16/165), Shear forces Q

16

3.1.2.1.8 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/186), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Backfill 2 [Phase_3] (3/17), Bending moments M

3.1.2.2.2 Calculation results, Plate, Backfill 3 [Phase_5] (5/39), Bending moments M

3.1.2.2.3 Calculation results, Plate, Backfill 4 [Phase_6] (6/59), Bending moments M

3.1.2.2.4 Calculation results, Plate, Dewater 2 [Phase_19] (19/70), Bending moments M

3.1.2.2.5 Calculation results, Plate, Excavate 2 [Phase_21] (21/73), Bending moments M

3.1.2.2.6 Calculation results, Plate, Backfill 1 [Phase_2] (2/121), Bending moments M

3.1.2.2.7 Calculation results, Plate, Dewater [Phase_16] (16/165), Bending moments M

3.1.2.2.8 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/186), Bending moments M

San Jacinto Section C3 - Drained Model

3.2.1.1.2 Calculation results, Node-to-node anchor, Backfill 3 [Phase_5] (5/39), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [lbf]	N _{min} [lbf]	N _{max} [lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	5656.977	0.000	5656.977
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	5656.977	0.000	5656.977

3.2.1.1.3 Calculation results, Node-to-node anchor, Backfill 4 [Phase_6] (6/59), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	29.575	0.000	29.575
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	29.575	0.000	29.575

3.2.1.1.4 Calculation results, Node-to-node anchor, Dewater 2 [Phase_19] (19/70), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	80.342	0.000	80.342
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	80.342	0.000	80.342

3.2.1.1.5 Calculation results, Node-to-node anchor, Excavate 2 [Phase_21] (21/73), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	80.334	0.000	80.347
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	80.334	0.000	80.347

3.2.1.1.7 Calculation results, Node-to-node anchor, Dewater [Phase_16] (16/165), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	75.786	0.000	75.786
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	75.786	0.000	75.786

3.2.1.1.8 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_22] (22/186), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	93.585	0.000	93.585
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	93.585	0.000	93.585

San Jacinto Section C3 - Undrained Model

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/28), Total displacements $u_{\rm x}$

3.1.1.1.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/40), Total displacements $u_{\rm x}$

3.1.1.1.3 Calculation results, Plate, Install tie [Phase_8] (4/44), Total displacements $u_{\rm x}$

3.1.1.1.1.4 Calculation results, Plate, Backfill 3 [Phase_5] (5/52), Total displacements $u_{\rm x}$

3.1.1.1.5 Calculation results, Plate, Consolidate [Phase_9] (8/63), Total displacements $u_{\rm x}$

3.1.1.1.1.6 Calculation results, Plate, Backfill 4 [Phase_6] (6/74), Total displacements $\mathbf{u}_{\mathbf{x}}$

3.1.1.1.1.7 Calculation results, Plate, Consolidate [Phase_17] (17/85), Total displacements $\rm u_{x}$

3.1.1.1.1.8 Calculation results, Plate, Dewater 2 - ss [Phase_19] (19/89), Total displacements $\rm u_x$

3.1.1.1.1.9 Calculation results, Plate, Excavate 2 [Phase_21] (21/92), Total displacements $\rm u_{x}$

3.1.1.1.1.10 Calculation results, Plate, Consolidate [Phase_7] (7/98), Total displacements $\rm u_{x}$

3.1.1.1.1.1 Calculation results, Plate, Consolidate [Phase_25] (25/139), Total displacements $\rm u_{x}$

3.1.1.1.1.12 Calculation results, Plate, Dewater-ss [Phase_16] (16/156), Total displacements $u_{\rm x}$

3.1.1.1.1.13 Calculation results, Plate, Consolidate [Phase_20] (20/172), Total displacements $\rm u_{x}$

14

3.1.1.1.1.14 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/180), Total displacements $\rm u_{x}$

3.1.1.1.1.15 Calculation results, Plate, Consolidate [Phase_26] (26/217), Total displacements $\rm u_{x}$

3.1.2.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/28), Shear forces Q

3.1.2.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/40), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Install tie [Phase_8] (4/44), Shear forces Q

3.1.2.1.4 Calculation results, Plate, Backfill 3 [Phase_5] (5/52), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Consolidate [Phase_9] (8/63), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Backfill 4 [Phase_6] (6/74), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Consolidate [Phase_17] (17/85), Shear forces Q

3.1.2.1.8 Calculation results, Plate, Dewater 2 - ss [Phase_19] (19/89), Shear forces Q

3.1.2.1.9 Calculation results, Plate, Excavate 2 [Phase_21] (21/92), Shear forces Q

25

3.1.2.1.10 Calculation results, Plate, Consolidate [Phase_7] (7/98), Shear forces Q

26

3.1.2.1.11 Calculation results, Plate, Consolidate [Phase_25] (25/139), Shear forces Q

3.1.2.1.12 Calculation results, Plate, Dewater-ss [Phase_16] (16/156), Shear forces Q

3.1.2.1.13 Calculation results, Plate, Consolidate [Phase_20] (20/172), Shear forces Q

3.1.2.1.14 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/180), Shear forces Q

3.1.2.1.15 Calculation results, Plate, Consolidate [Phase_26] (26/217), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/28), Bending moments M

3.1.2.2.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/40), Bending moments M

3.1.2.2.3 Calculation results, Plate, Install tie [Phase_8] (4/44), Bending moments M

34

3.1.2.2.4 Calculation results, Plate, Backfill 3 [Phase_5] (5/52), Bending moments M

3.1.2.2.5 Calculation results, Plate, Consolidate [Phase_9] (8/63), Bending moments M

36

3.1.2.2.6 Calculation results, Plate, Backfill 4 [Phase_6] (6/74), Bending moments M

3.1.2.2.7 Calculation results, Plate, Consolidate [Phase_17] (17/85), Bending moments M

3.1.2.2.8 Calculation results, Plate, Dewater 2 - ss [Phase_19] (19/89), Bending moments M

39

3.1.2.2.9 Calculation results, Plate, Excavate 2 [Phase_21] (21/92), Bending moments M

3.1.2.2.10 Calculation results, Plate, Consolidate [Phase_7] (7/98), Bending moments M

3.1.2.2.11 Calculation results, Plate, Consolidate [Phase_25] (25/139), Bending moments M

3.1.2.2.12 Calculation results, Plate, Dewater-ss [Phase_16] (16/156), Bending moments M

3.1.2.2.13 Calculation results, Plate, Consolidate [Phase_20] (20/172), Bending moments M

3.1.2.2.14 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/180), Bending moments M

3.1.2.2.15 Calculation results, Plate, Consolidate [Phase_26] (26/217), Bending moments M

3.2.1.1.3 Calculation results, Node-to-node anchor, Install tie [Phase_8] (4/44), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [lbf]	N _{min} [lbf]	N _{max} [lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	3.676	0.000	3.676
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	3.676	0.000	3.676

3.2.1.1.4 Calculation results, Node-to-node anchor, Backfill 3 [Phase_5] (5/52), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [lbf]	N _{min} [lbf]	N _{max} [lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	7964.177	0.000	7964.177
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	7964.177	0.000	7964.177

3.2.1.1.5 Calculation results, Node-to-node anchor, Consolidate [Phase_9] (8/63), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [lbf]	N _{min} [lbf]	N _{max} [lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	7563.015	0.000	7964.177
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	7563.015	0.000	7964.177

3.2.1.1.6 Calculation results, Node-to-node anchor, Backfill 4 [Phase_6] (6/74), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	44.247	0.000	44.247
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	44.247	0.000	44.247

3.2.1.1.7 Calculation results, Node-to-node anchor, Consolidate [Phase_17] (17/85), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	98.117	0.000	100.213
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	98.117	0.000	100.213

3.2.1.1.8 Calculation results, Node-to-node anchor, Dewater 2 - ss [Phase_19] (19/89), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	99.567	0.000	100.213
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	99.567	0.000	100.213

3.2.1.1.9 Calculation results, Node-to-node anchor, Excavate 2 [Phase_21] (21/92), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	94.469	0.000	100.213
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	94.469	0.000	100.213

3.2.1.1.10 Calculation results, Node-to-node anchor, Consolidate [Phase_7] (7/98), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	94.486	0.000	100.213
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	94.486	0.000	100.213

3.2.1.1.12 Calculation results, Node-to-node anchor, Dewater-ss [Phase_16] (16/156), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	99.455	0.000	99.455
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	99.455	0.000	99.455

3.2.1.1.13 Calculation results, Node-to-node anchor, Consolidate [Phase_20] (20/172), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	94.421	0.000	100.213
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	94.421	0.000	100.213

3.2.1.1.14 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_22] (22/180), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	106.155	0.000	106.155
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	106.155	0.000	106.155

3.2.1.1.15 Calculation results, Node-to-node anchor, Consolidate [Phase_26] (26/217), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	18	1	-15.000	0.000	40.647	0.000	44.310
Element 3-3 (Node-to-node anchor)	1141	2	15.000	0.000	40.647	0.000	44.310

San Jacinto Section C4A - Drained Model

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/12), Total displacements $u_{\rm x}$

2

3.1.1.1.1.2 Calculation results, Plate, Backfill 3 [Phase_5] (5/38), Total displacements $u_{\rm x}$

3.1.1.1.3 Calculation results, Plate, Backfill 4 [Phase_6] (6/52), Total displacements $u_{\rm x}$

3.1.1.1.1.4 Calculation results, Plate, Dewater [Phase_7] (7/84), Total displacements $u_{\rm x}$

3.1.1.1.1.5 Calculation results, Plate, Excavate 1 [Phase_8] (8/92), Total displacements $u_{\rm x}$

6

3.1.1.1.1.6 Calculation results, Plate, Dewater [Phase_9] (9/104), Total displacements $u_{\rm x}$

7

3.1.1.1.1.7 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/129), Total displacements $\rm u_x$

San Jacinto Section C4A - Drained Model

3.1.1.1.1.8 Calculation results, Plate, Backfill 2 [Phase_3] (3/462), Total displacements $u_{\rm x}$

3.1.1.1.1.9 Calculation results, Plate, Excavate 2 [Phase_10] (10/471), Total displacements $\rm u_{x}$

3.1.2.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/12), Shear forces Q

11

3.1.2.1.2 Calculation results, Plate, Backfill 3 [Phase_5] (5/38), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Backfill 4 [Phase_6] (6/52), Shear forces Q

13

3.1.2.1.4 Calculation results, Plate, Dewater [Phase_7] (7/84), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Excavate 1 [Phase_8] (8/92), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Dewater [Phase_9] (9/104), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/129), Shear forces Q

3.1.2.1.8 Calculation results, Plate, Backfill 2 [Phase_3] (3/462), Shear forces Q

3.1.2.1.9 Calculation results, Plate, Excavate 2 [Phase_10] (10/471), Shear forces Q

19

3.1.2.2.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/12), Bending moments M

3.1.2.2.2 Calculation results, Plate, Backfill 3 [Phase_5] (5/38), Bending moments M

3.1.2.2.3 Calculation results, Plate, Backfill 4 [Phase_6] (6/52), Bending moments M

3.1.2.2.4 Calculation results, Plate, Dewater [Phase_7] (7/84), Bending moments M

3.1.2.2.5 Calculation results, Plate, Excavate 1 [Phase_8] (8/92), Bending moments M

24

3.1.2.2.6 Calculation results, Plate, Dewater [Phase_9] (9/104), Bending moments M

25

3.1.2.2.7 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/129), Bending moments M

3.1.2.2.8 Calculation results, Plate, Backfill 2 [Phase_3] (3/462), Bending moments M

3.1.2.2.9 Calculation results, Plate, Excavate 2 [Phase_10] (10/471), Bending moments M

3.2.1.1.2 Calculation results, Node-to-node anchor, Backfill 3 [Phase_5] (5/38), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 3 lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	11.764	0.000	11.764
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	11.764	0.000	11.764

3.2.1.1.3 Calculation results, Node-to-node anchor, Backfill 4 [Phase_6] (6/52), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 3 lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	32.565	0.000	32.565
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	32.565	0.000	32.565

3.2.1.1.4 Calculation results, Node-to-node anchor, Dewater [Phase_7] (7/84), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	59.425	0.000	59.425
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	59.425	0.000	59.425

3.2.1.1.5 Calculation results, Node-to-node anchor, Excavate 1 [Phase_8] (8/92), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 3 lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	59.601	0.000	59.601
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	59.601	0.000	59.601

3.2.1.1.6 Calculation results, Node-to-node anchor, Dewater [Phase_9] (9/104), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	61.621	0.000	61.621
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	61.621	0.000	61.621

3.2.1.1.7 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_11] (11/129), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	76.687	0.000	76.687
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	76.687	0.000	76.687

3.2.1.1.9 Calculation results, Node-to-node anchor, Excavate 2 [Phase_10] (10/471), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	61.790	0.000	61.790
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	61.790	0.000	61.790

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/14), Total displacements $u_{\rm x}$

2

3.1.1.1.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/32), Total displacements $u_{\rm x}$

3.1.1.1.3 Calculation results, Plate, Backfill 4 [Phase_6] (6/60), Total displacements $u_{\rm x}$

3.1.1.1.1.4 Calculation results, Plate, Dewater-ss [Phase_16] (16/73), Total displacements $\rm u_{x}$

3.1.1.1.5 Calculation results, Plate, Consolidate [Phase_25] (25/96), Total displacements $\rm u_{x}$

3.1.1.1.1.6 Calculation results, Plate, Backfill 3 [Phase_5] (5/115), Total displacements $u_{\rm x}$

3.1.1.1.1.7 Calculation results, Plate, Consolidate [Phase_7] (7/238), Total displacements $\rm u_{x}$

3.1.1.1.1.8 Calculation results, Plate, Consolidation [Phase_17] (17/248), Total displacements $u_{\rm x}$

3.1.1.1.1.9 Calculation results, Plate, Excavate 1 [Phase_18] (18/254), Total displacements $\rm u_{x}$

3.1.1.1.1.10 Calculation results, Plate, Dewater 2 - ss [Phase_19] (19/259), Total displacements $\rm u_x$

3.1.1.1.1.1 Calculation results, Plate, Consolidation [Phase_20] (20/276), Total displacements $\rm u_{x}$

3.1.1.1.1.12 Calculation results, Plate, Excavate 2 [Phase_21] (21/279), Total displacements $\rm u_{x}$

3.1.1.1.1.13 Calculation results, Plate, Consolidate [Phase_8] (8/397), Total displacements $\rm u_{x}$

3.1.1.1.1.14 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/403), Total displacements $\rm u_{x}$

3.1.2.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/14), Shear forces Q

16

3.1.2.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/32), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Backfill 4 [Phase_6] (6/60), Shear forces Q

18

3.1.2.1.4 Calculation results, Plate, Dewater-ss [Phase_16] (16/73), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Consolidate [Phase_25] (25/96), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Backfill 3 [Phase_5] (5/115), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Consolidate [Phase_7] (7/238), Shear forces Q

22

3.1.2.1.8 Calculation results, Plate, Consolidation [Phase_17] (17/248), Shear forces Q

3.1.2.1.9 Calculation results, Plate, Excavate 1 [Phase_18] (18/254), Shear forces Q

3.1.2.1.10 Calculation results, Plate, Dewater 2 - ss [Phase_19] (19/259), Shear forces Q

3.1.2.1.11 Calculation results, Plate, Consolidation [Phase_20] (20/276), Shear forces Q

3.1.2.1.12 Calculation results, Plate, Excavate 2 [Phase_21] (21/279), Shear forces Q

3.1.2.1.13 Calculation results, Plate, Consolidate [Phase_8] (8/397), Shear forces Q

3.1.2.1.14 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/403), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/14), Bending moments M

3.1.2.2.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/32), Bending moments M

3.1.2.2.3 Calculation results, Plate, Backfill 4 [Phase_6] (6/60), Bending moments M

3.1.2.2.4 Calculation results, Plate, Dewater-ss [Phase_16] (16/73), Bending moments M

3.1.2.2.5 Calculation results, Plate, Consolidate [Phase_25] (25/96), Bending moments M

3.1.2.2.6 Calculation results, Plate, Backfill 3 [Phase_5] (5/115), Bending moments M

3.1.2.2.7 Calculation results, Plate, Consolidate [Phase_7] (7/238), Bending moments M

3.1.2.2.8 Calculation results, Plate, Consolidation [Phase_17] (17/248), Bending moments M

3.1.2.2.9 Calculation results, Plate, Excavate 1 [Phase_18] (18/254), Bending moments M

3.1.2.2.10 Calculation results, Plate, Dewater 2 - ss [Phase_19] (19/259), Bending moments M

3.1.2.2.11 Calculation results, Plate, Consolidation [Phase_20] (20/276), Bending moments M

3.1.2.2.12 Calculation results, Plate, Excavate 2 [Phase_21] (21/279), Bending moments M

3.1.2.2.13 Calculation results, Plate, Consolidate [Phase_8] (8/397), Bending moments M

3.1.2.2.14 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/403), Bending moments M

43

3.2.1.1.3 Calculation results, Node-to-node anchor, Backfill 4 [Phase_6] (6/60), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	61.610	0.000	61.610
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	61.610	0.000	61.610

3.2.1.1.4 Calculation results, Node-to-node anchor, Dewater-ss [Phase_16] (16/73), Table of node-to-node anchors

Structural element	Node [10 ³]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 3 lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	83.845	0.000	83.845
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	83.845	0.000	83.845

3.2.1.1.5 Calculation results, Node-to-node anchor, Consolidate [Phase_25] (25/96), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [lbf]	N _{min} [lbf]	N _{max} [lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	1219.793	0.000	1697.559
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	1219.793	0.000	1697.559

3.2.1.1.6 Calculation results, Node-to-node anchor, Backfill 3 [Phase_5] (5/115), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	19.686	0.000	19.686
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	19.686	0.000	19.686

3.2.1.1.7 Calculation results, Node-to-node anchor, Consolidate [Phase_7] (7/238), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	67.536	0.000	72.202
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	67.536	0.000	72.202

3.2.1.1.8 Calculation results, Node-to-node anchor, Consolidation [Phase_17] (17/248), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	80.532	0.000	83.845
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	80.532	0.000	83.845

3.2.1.1.9 Calculation results, Node-to-node anchor, Excavate 1 [Phase_18] (18/254), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N_{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	80.732	0.000	83.845
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	80.732	0.000	83.845

3.2.1.1.10 Calculation results, Node-to-node anchor, Dewater 2 - ss [Phase_19] (19/259), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	81.223	0.000	83.845
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	81.223	0.000	83.845

3.2.1.1.11 Calculation results, Node-to-node anchor, Consolidation [Phase_20] (20/276), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	79.006	0.000	83.845
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	79.006	0.000	83.845

3.2.1.1.12 Calculation results, Node-to-node anchor, Excavate 2 [Phase_21] (21/279), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	79.065	0.000	83.845
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	79.065	0.000	83.845

3.2.1.1.13 Calculation results, Node-to-node anchor, Consolidate [Phase_8] (8/397), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	78.587	0.000	83.845
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	78.587	0.000	83.845

3.2.1.1.14 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_22] (22/403), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N_{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17338	1	-15.000	6.000	90.178	0.000	90.178
Element 1-1 (Node-to-node anchor)	14762	2	15.000	6.000	90.178	0.000	90.178

San Jacinto Section C4 - Drained Model

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/26), Total displacements $u_{\rm x}$

3.1.1.1.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/45), Total displacements $u_{\rm x}$

3

3.1.1.1.3 Calculation results, Plate, Backfill 3 [Phase_5] (5/89), Total displacements $u_{\rm x}$

4
3.1.1.1.1.4 Calculation results, Plate, Backfill 4 [Phase_6] (6/102), Total displacements $u_{\rm x}$

3.1.1.1.1.5 Calculation results, Plate, Dewater [Phase_7] (7/163), Total displacements $u_{\rm x}$

3.1.1.1.1.6 Calculation results, Plate, Exc 1 [Phase_8] (8/168), Total displacements $u_{\rm x}$

3.1.1.1.1.7 Calculation results, Plate, Dewater 2 [Phase_9] (9/180), Total displacements u_x

3.1.1.1.1.8 Calculation results, Plate, Exc 2 [Phase_10] (10/185), Total displacements $u_{\rm x}$

3.1.1.1.1.9 Calculation results, Plate, GW 9ft [Phase_11] (11/214), Total displacements $u_{\rm x}$

3.1.2.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/26), Shear forces Q

3.1.2.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/45), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Backfill 3 [Phase_5] (5/89), Shear forces Q

3.1.2.1.4 Calculation results, Plate, Backfill 4 [Phase_6] (6/102), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Dewater [Phase_7] (7/163), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Exc 1 [Phase_8] (8/168), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Dewater 2 [Phase_9] (9/180), Shear forces Q

3.1.2.1.8 Calculation results, Plate, Exc 2 [Phase_10] (10/185), Shear forces Q

3.1.2.1.9 Calculation results, Plate, GW 9ft [Phase_11] (11/214), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/26), Bending moments M

3.1.2.2.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/45), Bending moments M

3.1.2.2.3 Calculation results, Plate, Backfill 3 [Phase_5] (5/89), Bending moments M

3.1.2.2.4 Calculation results, Plate, Backfill 4 [Phase_6] (6/102), Bending moments M

3.1.2.2.5 Calculation results, Plate, Dewater [Phase_7] (7/163), Bending moments M

3.1.2.2.6 Calculation results, Plate, Exc 1 [Phase_8] (8/168), Bending moments M

3.1.2.2.7 Calculation results, Plate, Dewater 2 [Phase_9] (9/180), Bending moments M

3.1.2.2.8 Calculation results, Plate, Exc 2 [Phase_10] (10/185), Bending moments M

3.1.2.2.9 Calculation results, Plate, GW 9ft [Phase_11] (11/214), Bending moments M

3.2.1.1.3 Calculation results, Node-to-node anchor, Backfill 3 [Phase_5] (5/89), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	22.606	0.000	22.606
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	22.606	0.000	22.606

3.2.1.1.4 Calculation results, Node-to-node anchor, Backfill 4 [Phase_6] (6/102), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	49.371	0.000	49.371
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	49.371	0.000	49.371

3.2.1.1.5 Calculation results, Node-to-node anchor, Dewater [Phase_7] (7/163), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	89.975	0.000	89.975
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	89.975	0.000	89.975

3.2.1.1.6 Calculation results, Node-to-node anchor, Exc 1 [Phase_8] (8/168), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	90.064	0.000	90.064
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	90.064	0.000	90.064

3.2.1.1.7 Calculation results, Node-to-node anchor, Dewater 2 [Phase_9] (9/180), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	96.891	0.000	96.891
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	96.891	0.000	96.891

3.2.1.1.8 Calculation results, Node-to-node anchor, Exc 2 [Phase_10] (10/185), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	96.968	0.000	96.968
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	96.968	0.000	96.968

3.2.1.1.9 Calculation results, Node-to-node anchor, GW 9ft [Phase_11] (11/214), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 3 lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	109.451	0.000	109.451
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	109.451	0.000	109.451

San Jacinto Section C4 - Undrained Model

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/29), Total displacements $u_{\rm x}$

3.1.1.1.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/47), Total displacements $u_{\rm x}$

3.1.1.1.3 Calculation results, Plate, Consolidate [Phase_25] (25/88), Total displacements $\rm u_{x}$

3.1.1.1.1.4 Calculation results, Plate, Backfill 3 [Phase_5] (5/111), Total displacements $u_{\rm x}$

3.1.1.1.5 Calculation results, Plate, Backfill 4 [Phase_6] (6/125), Total displacements $u_{\rm x}$

3.1.1.1.1.6 Calculation results, Plate, Consolidate [Phase_7] (7/252), Total displacements $\rm u_{x}$

3.1.1.1.1.7 Calculation results, Plate, Dewater-ss [Phase_16] (16/266), Total displacements $\rm u_{x}$

3.1.1.1.1.8 Calculation results, Plate, Excavate 1 [Phase_18] (18/271), Total displacements $\rm u_{x}$

3.1.1.1.1.9 Calculation results, Plate, Dewater 2 - ss [Phase_19] (19/275), Total displacements $\rm u_x$

3.1.1.1.1.10 Calculation results, Plate, Consolidation [Phase_20] (20/296), Total displacements $\rm u_{x}$

3.1.1.1.1.1 Calculation results, Plate, Excavate 2 [Phase_21] (21/299), Total displacements $\rm u_{x}$

3.1.1.1.1.12 Calculation results, Plate, Consolidate [Phase_8] (8/309), Total displacements $\rm u_{x}$

3.1.1.1.1.13 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/379), Total displacements $\rm u_{x}$

3.1.1.1.1.14 Calculation results, Plate, Consolidation [Phase_17] (17/438), Total displacements $u_{\rm x}$

3.1.2.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/29), Shear forces Q

3.1.2.1.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/47), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Consolidate [Phase_25] (25/88), Shear forces Q

3.1.2.1.4 Calculation results, Plate, Backfill 3 [Phase_5] (5/111), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Backfill 4 [Phase_6] (6/125), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Consolidate [Phase_7] (7/252), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Dewater-ss [Phase_16] (16/266), Shear forces Q

3.1.2.1.8 Calculation results, Plate, Excavate 1 [Phase_18] (18/271), Shear forces Q

3.1.2.1.9 Calculation results, Plate, Dewater 2 - ss [Phase_19] (19/275), Shear forces Q

3.1.2.1.10 Calculation results, Plate, Consolidation [Phase_20] (20/296), Shear forces Q

3.1.2.1.11 Calculation results, Plate, Excavate 2 [Phase_21] (21/299), Shear forces Q

3.1.2.1.12 Calculation results, Plate, Consolidate [Phase_8] (8/309), Shear forces Q

3.1.2.1.13 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/379), Shear forces Q

3.1.2.1.14 Calculation results, Plate, Consolidation [Phase_17] (17/438), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/29), Bending moments M

3.1.2.2.2 Calculation results, Plate, Backfill 2 [Phase_3] (3/47), Bending moments M

3.1.2.2.3 Calculation results, Plate, Consolidate [Phase_25] (25/88), Bending moments M

3.1.2.2.4 Calculation results, Plate, Backfill 3 [Phase_5] (5/111), Bending moments M

3.1.2.2.5 Calculation results, Plate, Backfill 4 [Phase_6] (6/125), Bending moments M

3.1.2.2.6 Calculation results, Plate, Consolidate [Phase_7] (7/252), Bending moments M

3.1.2.2.7 Calculation results, Plate, Dewater-ss [Phase_16] (16/266), Bending moments M

3.1.2.2.8 Calculation results, Plate, Excavate 1 [Phase_18] (18/271), Bending moments M

3.1.2.2.9 Calculation results, Plate, Dewater 2 - ss [Phase_19] (19/275), Bending moments M

3.1.2.2.10 Calculation results, Plate, Consolidation [Phase_20] (20/296), Bending moments M

3.1.2.2.11 Calculation results, Plate, Excavate 2 [Phase_21] (21/299), Bending moments M

3.1.2.2.12 Calculation results, Plate, Consolidate [Phase_8] (8/309), Bending moments M

3.1.2.2.13 Calculation results, Plate, Water rise 9 ft [Phase_22] (22/379), Bending moments M

3.1.2.2.14 Calculation results, Plate, Consolidation [Phase_17] (17/438), Bending moments M

43

3.2.1.1.3 Calculation results, Node-to-node anchor, Consolidate [Phase_25] (25/88), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [lbf]	N _{min} [lbf]	N _{max} [lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	1815.652	0.000	1973.295
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	1815.652	0.000	1973.295

3.2.1.1.4 Calculation results, Node-to-node anchor, Backfill 3 [Phase_5] (5/111), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	42.235	0.000	42.235
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	42.235	0.000	42.235

3.2.1.1.5 Calculation results, Node-to-node anchor, Backfill 4 [Phase_6] (6/125), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	97.231	0.000	97.231
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	97.231	0.000	97.231

3.2.1.1.6 Calculation results, Node-to-node anchor, Consolidate [Phase_7] (7/252), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	100.836	0.000	108.588
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	100.836	0.000	108.588

3.2.1.1.7 Calculation results, Node-to-node anchor, Dewater-ss [Phase_16] (16/266), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	122.974	0.000	122.974
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	122.974	0.000	122.974

3.2.1.1.8 Calculation results, Node-to-node anchor, Excavate 1 [Phase_18] (18/271), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N_{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	117.495	0.000	122.974
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	117.495	0.000	122.974

3.2.1.1.9 Calculation results, Node-to-node anchor, Dewater 2 - ss [Phase_19] (19/275), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	118.835	0.000	122.974
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	118.835	0.000	122.974

3.2.1.1.10 Calculation results, Node-to-node anchor, Consolidation [Phase_20] (20/296), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N_{min} [lbf]	N_{max} [10 3 lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	112.645	0.000	122.974
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	112.645	0.000	122.974

3.2.1.1.11 Calculation results, Node-to-node anchor, Excavate 2 [Phase_21] (21/299), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N_{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	112.976	0.000	122.974
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	112.976	0.000	122.974

3.2.1.1.12 Calculation results, Node-to-node anchor, Consolidate [Phase_8] (8/309), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	110.345	0.000	122.974
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	110.345	0.000	122.974

3.2.1.1.13 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_22] (22/379), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N_{min} [lbf]	N_{max} [10 3 lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	118.728	0.000	122.974
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	118.728	0.000	122.974

3.2.1.1.14 Calculation results, Node-to-node anchor, Consolidation [Phase_17] (17/438), Table of node-to-node anchors

Structural element	Node [10 3]	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 3 lbf]
NodeToNodeAnchor_2_1	31646	1	-15.000	0.000	116.833	0.000	122.974
Element 2-2 (Node-to-node anchor)	26818	2	15.000	0.000	116.833	0.000	122.974

San Jacinto Section C5 - Drained Model

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/155), Total displacements $u_{\rm x}$

San Jacinto Section C5 - Drained Model

3.1.1.1.1.2 Calculation results, Plate, Backfill 2 [Phase_6] (6/184), Total displacements $u_{\rm x}$

3

3.1.1.1.3 Calculation results, Plate, Dewater-ss [Phase_3] (3/204), Total displacements $\rm u_{x}$

3.1.1.1.1.4 Calculation results, Plate, Excavate 1 [Phase_16] (16/208), Total displacements $\rm u_x$

3.1.1.1.1.5 Calculation results, Plate, Dewater 2-ss [Phase_17] (17/219), Total displacements $\rm u_{x}$

3.1.1.1.1.6 Calculation results, Plate, Excavate 2 [Phase_19] (19/222), Total displacements $\rm u_{x}$

3.1.1.1.1.7 Calculation results, Plate, Water rise 9 ft [Phase_20] (20/244), Total displacements $u_{\rm x}$

3.1.2.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/155), Shear forces Q

3.1.2.1.2 Calculation results, Plate, Backfill 2 [Phase_6] (6/184), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Dewater-ss [Phase_3] (3/204), Shear forces Q

3.1.2.1.4 Calculation results, Plate, Excavate 1 [Phase_16] (16/208), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Dewater 2-ss [Phase_17] (17/219), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Excavate 2 [Phase_19] (19/222), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Water rise 9 ft [Phase_20] (20/244), Shear forces Q

15

3.1.2.2.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/155), Bending moments M

3.1.2.2.2 Calculation results, Plate, Backfill 2 [Phase_6] (6/184), Bending moments M

17

3.1.2.2.3 Calculation results, Plate, Dewater-ss [Phase_3] (3/204), Bending moments M

3.1.2.2.4 Calculation results, Plate, Excavate 1 [Phase_16] (16/208), Bending moments M

3.1.2.2.5 Calculation results, Plate, Dewater 2-ss [Phase_17] (17/219), Bending moments M

3.1.2.2.6 Calculation results, Plate, Excavate 2 [Phase_19] (19/222), Bending moments M

3.1.2.2.7 Calculation results, Plate, Water rise 9 ft [Phase_20] (20/244), Bending moments M

3.2.1.1.2 Calculation results, Node-to-node anchor, Backfill 2 [Phase_6] (6/184), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	36.061	0.000	36.061
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	36.061	0.000	36.061

3.2.1.1.3 Calculation results, Node-to-node anchor, Dewater-ss [Phase_3] (3/204), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	70.754	0.000	70.754
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	70.754	0.000	70.754

3.2.1.1.4 Calculation results, Node-to-node anchor, Excavate 1 [Phase_16] (16/208), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	70.656	0.000	70.754
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	70.656	0.000	70.754

3.2.1.1.5 Calculation results, Node-to-node anchor, Dewater 2-ss [Phase_17] (17/219), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	78.972	0.000	78.972
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	78.972	0.000	78.972

3.2.1.1.6 Calculation results, Node-to-node anchor, Excavate 2 [Phase_19] (19/222), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	78.969	0.000	78.974
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	78.969	0.000	78.974

3.2.1.1.7 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_20] (20/244), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	87.008	0.000	87.008
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	87.008	0.000	87.008

San Jacinto Section C5 - Undrained Model

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/356), Total displacements $u_{\rm x}$

3.1.1.1.1.2 Calculation results, Plate, Consolidate [Phase_4] (7/448), Total displacements $\rm u_{x}$

3.1.1.1.3 Calculation results, Plate, Backfill 2 [Phase_6] (6/475), Total displacements $u_{\rm x}$

3.1.1.1.1.4 Calculation results, Plate, Consolidate [Phase_7] (8/492), Total displacements $\rm u_{x}$

3.1.1.1.5 Calculation results, Plate, Consolidation [Phase_15] (15/518), Total displacements $\rm u_{x}$

3.1.1.1.1.6 Calculation results, Plate, Excavate 1 [Phase_16] (16/526), Total displacements u_x

3.1.1.1.7 Calculation results, Plate, Dewater 2-ss [Phase_17] (17/530), Total displacements $u_{\rm x}$

3.1.1.1.1.8 Calculation results, Plate, Consolidation [Phase_18] (18/549), Total displacements $\rm u_{x}$

3.1.1.1.1.9 Calculation results, Plate, Excavate 2 [Phase_19] (19/551), Total displacements $\rm u_{x}$

3.1.1.1.1.10 Calculation results, Plate, Consolidate [Phase_9] (10/562), Total displacements $\rm u_{x}$

3.1.1.1.1.1 Calculation results, Plate, Water rise 9 ft [Phase_20] (20/573), Total displacements $\rm u_{x}$

3.1.2.1.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/356), Shear forces Q

3.1.2.1.2 Calculation results, Plate, Consolidate [Phase_4] (7/448), Shear forces Q

14

3.1.2.1.3 Calculation results, Plate, Backfill 2 [Phase_6] (6/475), Shear forces Q

15

3.1.2.1.4 Calculation results, Plate, Consolidate [Phase_7] (8/492), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Consolidation [Phase_15] (15/518), Shear forces Q

17

3.1.2.1.6 Calculation results, Plate, Excavate 1 [Phase_16] (16/526), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Dewater 2-ss [Phase_17] (17/530), Shear forces Q

3.1.2.1.8 Calculation results, Plate, Consolidation [Phase_18] (18/549), Shear forces Q

3.1.2.1.9 Calculation results, Plate, Excavate 2 [Phase_19] (19/551), Shear forces Q

3.1.2.1.10 Calculation results, Plate, Consolidate [Phase_9] (10/562), Shear forces Q

3.1.2.1.11 Calculation results, Plate, Water rise 9 ft [Phase_20] (20/573), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Backfill 1 [Phase_2] (2/356), Bending moments M

3.1.2.2.2 Calculation results, Plate, Consolidate [Phase_4] (7/448), Bending moments M

3.1.2.2.3 Calculation results, Plate, Backfill 2 [Phase_6] (6/475), Bending moments M

3.1.2.2.4 Calculation results, Plate, Consolidate [Phase_7] (8/492), Bending moments M

3.1.2.2.5 Calculation results, Plate, Consolidation [Phase_15] (15/518), Bending moments M

3.1.2.2.6 Calculation results, Plate, Excavate 1 [Phase_16] (16/526), Bending moments M

3.1.2.2.7 Calculation results, Plate, Dewater 2-ss [Phase_17] (17/530), Bending moments M

3.1.2.2.8 Calculation results, Plate, Consolidation [Phase_18] (18/549), Bending moments M

3.1.2.2.9 Calculation results, Plate, Excavate 2 [Phase_19] (19/551), Bending moments M

3.1.2.2.10 Calculation results, Plate, Consolidate [Phase_9] (10/562), Bending moments M

3.1.2.2.11 Calculation results, Plate, Water rise 9 ft [Phase_20] (20/573), Bending moments M

3.2.1.1.2 Calculation results, Node-to-node anchor, Consolidate [Phase_4] (7/448), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [lbf]	N _{min} [lbf]	N _{max} [lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	1002.085	0.000	1017.717
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	1002.085	0.000	1017.717

3.2.1.1.3 Calculation results, Node-to-node anchor, Backfill 2 [Phase_6] (6/475), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	61.820	0.000	61.820
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	61.820	0.000	61.820

3.2.1.1.4 Calculation results, Node-to-node anchor, Consolidate [Phase_7] (8/492), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	60.187	0.000	62.288
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	60.187	0.000	62.288

3.2.1.1.5 Calculation results, Node-to-node anchor, Consolidation [Phase_15] (15/518), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	92.222	0.000	94.012
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	92.222	0.000	94.012

3.2.1.1.6 Calculation results, Node-to-node anchor, Excavate 1 [Phase_16] (16/526), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	94.533	0.000	94.533
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	94.533	0.000	94.533

3.2.1.1.7 Calculation results, Node-to-node anchor, Dewater 2-ss [Phase_17] (17/530), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	95.112	0.000	95.112
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	95.112	0.000	95.112

3.2.1.1.8 Calculation results, Node-to-node anchor, Consolidation [Phase_18] (18/549), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	89.456	0.000	95.112
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	89.456	0.000	95.112

3.2.1.1.9 Calculation results, Node-to-node anchor, Excavate 2 [Phase_19] (19/551), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	89.562	0.000	95.112
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	89.562	0.000	95.112

3.2.1.1.10 Calculation results, Node-to-node anchor, Consolidate [Phase_9] (10/562), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	87.265	0.000	95.112
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	87.265	0.000	95.112

3.2.1.1.11 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_20] (20/573), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	17	1	-15.000	0.000	98.678	0.000	98.678
Element 3-3 (Node-to-node anchor)	1113	2	15.000	0.000	98.678	0.000	98.678

San Jacinto Section C6 - Drained Model

PLAXIS Report

3.1.1.1.1.1 Calculation results, Plate, Exc [Phase_2] (2/8), Total displacements u_x

3.1.1.1.1.2 Calculation results, Plate, Dewater-SS [Phase_7] (7/18), Total displacements $\rm u_{x}$

San Jacinto Section C6 - Drained Model

3.1.1.1.3 Calculation results, Plate, Excavate 1 [Phase_8] (8/33), Total displacements $u_{\rm x}$

3.1.1.1.1.4 Calculation results, Plate, Dewater -SS [Phase_9] (9/43), Total displacements $\rm u_{x}$

3.1.1.1.1.5 Calculation results, Plate, Excavate 2 [Phase_10] (10/49), Total displacements $\rm u_{x}$

3.1.1.1.1.6 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/58), Total displacements $u_{\rm x}$

3.1.1.1.1.7 Calculation results, Plate, Install Rod [Phase_12] (4/138), Total displacements u_x

3.1.1.1.1.8 Calculation results, Plate, Backfill 1 [Phase_6] (6/190), Total displacements $u_{\rm x}$

3.1.2.1.1 Calculation results, Plate, Exc [Phase_2] (2/8), Shear forces Q

3.1.2.1.2 Calculation results, Plate, Dewater-SS [Phase_7] (7/18), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Excavate 1 [Phase_8] (8/33), Shear forces Q

3.1.2.1.4 Calculation results, Plate, Dewater -SS [Phase_9] (9/43), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Excavate 2 [Phase_10] (10/49), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/58), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Install Rod [Phase_12] (4/138), Shear forces Q

3.1.2.1.8 Calculation results, Plate, Backfill 1 [Phase_6] (6/190), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Exc [Phase_2] (2/8), Bending moments M

3.1.2.2.2 Calculation results, Plate, Dewater-SS [Phase_7] (7/18), Bending moments M

3.1.2.2.3 Calculation results, Plate, Excavate 1 [Phase_8] (8/33), Bending moments M

3.1.2.2.4 Calculation results, Plate, Dewater -SS [Phase_9] (9/43), Bending moments M

3.1.2.2.5 Calculation results, Plate, Excavate 2 [Phase_10] (10/49), Bending moments M

3.1.2.2.6 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/58), Bending moments M

3.1.2.2.7 Calculation results, Plate, Install Rod [Phase_12] (4/138), Bending moments M

3.1.2.2.8 Calculation results, Plate, Backfill 1 [Phase_6] (6/190), Bending moments M

3.2.1.1.2 Calculation results, Node-to-node anchor, Dewater-SS [Phase_7] (7/18), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	47.168	-53.811	47.168
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	47.168	-53.811	47.168

3.2.1.1.3 Calculation results, Node-to-node anchor, Excavate 1 [Phase_8] (8/33), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	67.699	-53.811	67.699
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	67.699	-53.811	67.699

3.2.1.1.4 Calculation results, Node-to-node anchor, Dewater -SS [Phase_9] (9/43), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	73.769	-53.811	73.769
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	73.769	-53.811	73.769

3.2.1.1.5 Calculation results, Node-to-node anchor, Excavate 2 [Phase_10] (10/49), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	75.459	-53.811	75.459
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	75.459	-53.811	75.459

3.2.1.1.6 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_11] (11/58), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	92.571	-53.811	92.571
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	92.571	-53.811	92.571

3.2.1.1.7 Calculation results, Node-to-node anchor, Install Rod [Phase_12] (4/138), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [lbf]	N _{min} [lbf]	N _{max} [lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	-53.811	-53.811	0.000
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	-53.811	-53.811	0.000

3.2.1.1.8 Calculation results, Node-to-node anchor, Backfill 1 [Phase_6] (6/190), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	26.567	-53.811	26.567
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	26.567	-53.811	26.567

San Jacinto Section C6 - Undrained Model

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Install sheet pilen and tie rod [Phase_1] (1/5), Total displacements u_x

3.1.1.1.1.2 Calculation results, Plate, Exc [Phase_2] (2/8), Total displacements u_x

3.1.1.1.3 Calculation results, Plate, Backfill 1 [Phase_6] (6/27), Total displacements $u_{\rm x}$

3.1.1.1.1.4 Calculation results, Plate, Dewater-SS [Phase_7] (7/33), Total displacements $\rm u_{x}$

3.1.1.1.1.5 Calculation results, Plate, Consolidate [Phase_3] (3/47), Total displacements $u_{\rm x}$

3.1.1.1.1.6 Calculation results, Plate, Excavate 1 [Phase_8] (8/63), Total displacements $u_{\rm x}$

3.1.1.1.1.7 Calculation results, Plate, Consolidate [Phase_5] (5/79), Total displacements $u_{\rm x}$

8

3.1.1.1.1.8 Calculation results, Plate, Dewater -SS [Phase_9] (9/85), Total displacements $\rm u_{x}$

3.1.1.1.1.9 Calculation results, Plate, Consolidate [Phase_13] (13/91), Total displacements $\rm u_{x}$

3.1.1.1.1.10 Calculation results, Plate, Excavate 2 [Phase_10] (10/100), Total displacements $\rm u_x$

3.1.1.1.1.1 Calculation results, Plate, Consolidate [Phase_14] (14/110), Total displacements $\rm u_{x}$

3.1.1.1.1.12 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/121), Total displacements $u_{\rm x}$

13

3.1.2.1.1 Calculation results, Plate, Install sheet pilen and tie rod [Phase_1] (1/5), Shear forces Q

3.1.2.1.2 Calculation results, Plate, Exc [Phase_2] (2/8), Shear forces Q

[*103 lbf/ft]

3.1.2.1.3 Calculation results, Plate, Backfill 1 [Phase_6] (6/27), Shear forces Q

3.1.2.1.4 Calculation results, Plate, Dewater-SS [Phase_7] (7/33), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Consolidate [Phase_3] (3/47), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Excavate 1 [Phase_8] (8/63), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Consolidate [Phase_5] (5/79), Shear forces Q

3.1.2.1.8 Calculation results, Plate, Dewater -SS [Phase_9] (9/85), Shear forces Q

3.1.2.1.9 Calculation results, Plate, Consolidate [Phase_13] (13/91), Shear forces Q

22

3.1.2.1.10 Calculation results, Plate, Excavate 2 [Phase_10] (10/100), Shear forces Q

3.1.2.1.11 Calculation results, Plate, Consolidate [Phase_14] (14/110), Shear forces Q

3.1.2.1.12 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/121), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Install sheet pilen and tie rod [Phase_1] (1/5), Bending moments M

26
3.1.2.2.2 Calculation results, Plate, Exc [Phase_2] (2/8), Bending moments M

3.1.2.2.3 Calculation results, Plate, Backfill 1 [Phase_6] (6/27), Bending moments M

3.1.2.2.4 Calculation results, Plate, Dewater-SS [Phase_7] (7/33), Bending moments M

3.1.2.2.5 Calculation results, Plate, Consolidate [Phase_3] (3/47), Bending moments M

30

3.1.2.2.6 Calculation results, Plate, Excavate 1 [Phase_8] (8/63), Bending moments M

3.1.2.2.7 Calculation results, Plate, Consolidate [Phase_5] (5/79), Bending moments M

32

3.1.2.2.8 Calculation results, Plate, Dewater -SS [Phase_9] (9/85), Bending moments M

3.1.2.2.9 Calculation results, Plate, Consolidate [Phase_13] (13/91), Bending moments M

34

3.1.2.2.10 Calculation results, Plate, Excavate 2 [Phase_10] (10/100), Bending moments M

3.1.2.2.11 Calculation results, Plate, Consolidate [Phase_14] (14/110), Bending moments M

3.1.2.2.12 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/121), Bending moments M

3.2.1.1.3 Calculation results, Node-to-node anchor, Backfill 1 [Phase_6] (6/27), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	51.957	-19.784	51.957
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	51.957	-19.784	51.957

3.2.1.1.4 Calculation results, Node-to-node anchor, Dewater-SS [Phase_7] (7/33), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	60.359	-19.784	60.359
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	60.359	-19.784	60.359

3.2.1.1.5 Calculation results, Node-to-node anchor, Consolidate [Phase_3] (3/47), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	55.586	-19.784	60.359
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	55.586	-19.784	60.359

3.2.1.1.6 Calculation results, Node-to-node anchor, Excavate 1 [Phase_8] (8/63), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	96.340	-19.784	96.340
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	96.340	-19.784	96.340

3.2.1.1.7 Calculation results, Node-to-node anchor, Consolidate [Phase_5] (5/79), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	85.586	-19.784	96.340
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	85.586	-19.784	96.340

3.2.1.1.8 Calculation results, Node-to-node anchor, Dewater -SS [Phase_9] (9/85), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	89.912	-19.784	96.340
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	89.912	-19.784	96.340

3.2.1.1.9 Calculation results, Node-to-node anchor, Consolidate [Phase_13] (13/91), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	89.432	-19.784	96.340
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	89.432	-19.784	96.340

3.2.1.1.10 Calculation results, Node-to-node anchor, Excavate 2 [Phase_10] (10/100), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	96.701	-19.784	96.701
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	96.701	-19.784	96.701

3.2.1.1.11 Calculation results, Node-to-node anchor, Consolidate [Phase_14] (14/110), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	92.250	-19.784	96.701
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	92.250	-19.784	96.701

3.2.1.1.12 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_11] (11/121), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_1_1	7709	1	30.000	0.000	108.719	-19.784	108.719
Element 1-1 (Node-to-node anchor)	5729	2	60.000	0.000	108.719	-19.784	108.719

San Jacinto Section C7 - Drained Model

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Install sheet pile [Phase_1] (1/5), Total displacements $u_{\rm x}$

3.1.1.1.1.2 Calculation results, Plate, Dewater2- SS [Phase_9] (9/23), Total displacements $\rm u_{x}$

3.1.1.1.3 Calculation results, Plate, Excavate [Phase_25] (25/30), Total displacements $u_{\rm x}$

3.1.1.1.1.4 Calculation results, Plate, Dewater -SS [Phase_7] (7/43), Total displacements $\rm u_{x}$

3.1.1.1.1.5 Calculation results, Plate, Excavate 1 [Phase_8] (8/59), Total displacements $u_{\rm x}$

3.1.1.1.1.6 Calculation results, Plate, Excavate 2 [Phase_10] (10/67), Total displacements $\rm u_{x}$

3.1.1.1.1.7 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/81), Total displacements $u_{\rm x}$

3.1.1.1.1.8 Calculation results, Plate, Backfill [Phase_6] (6/120), Total displacements $u_{\rm x}$

3.1.2.1.1 Calculation results, Plate, Install sheet pile [Phase_1] (1/5), Shear forces Q

3.1.2.1.2 Calculation results, Plate, Dewater2- SS [Phase_9] (9/23), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Excavate [Phase_25] (25/30), Shear forces Q

3.1.2.1.4 Calculation results, Plate, Dewater -SS [Phase_7] (7/43), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Excavate 1 [Phase_8] (8/59), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Excavate 2 [Phase_10] (10/67), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/81), Shear forces Q

3.1.2.1.8 Calculation results, Plate, Backfill [Phase_6] (6/120), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Install sheet pile [Phase_1] (1/5), Bending moments M

3.1.2.2.2 Calculation results, Plate, Dewater2- SS [Phase_9] (9/23), Bending moments M

3.1.2.2.3 Calculation results, Plate, Excavate [Phase_25] (25/30), Bending moments M

3.1.2.2.4 Calculation results, Plate, Dewater -SS [Phase_7] (7/43), Bending moments M

3.1.2.2.5 Calculation results, Plate, Excavate 1 [Phase_8] (8/59), Bending moments M

22

3.1.2.2.6 Calculation results, Plate, Excavate 2 [Phase_10] (10/67), Bending moments M

3.1.2.2.7 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/81), Bending moments M

3.1.2.2.8 Calculation results, Plate, Backfill [Phase_6] (6/120), Bending moments M

3.2.1.1.2 Calculation results, Node-to-node anchor, Dewater2- SS [Phase_9] (9/23), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	43.178	-68.047	43.178
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	43.178	-68.047	43.178

3.2.1.1.4 Calculation results, Node-to-node anchor, Dewater -SS [Phase_7] (7/43), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	32.012	-68.047	32.012
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	32.012	-68.047	32.012

3.2.1.1.5 Calculation results, Node-to-node anchor, Excavate 1 [Phase_8] (8/59), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	42.880	-68.047	42.880
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	42.880	-68.047	42.880

3.2.1.1.6 Calculation results, Node-to-node anchor, Excavate 2 [Phase_10] (10/67), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	51.494	-68.047	51.494
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	51.494	-68.047	51.494

3.2.1.1.7 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_11] (11/81), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	65.370	-68.047	65.370
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	65.370	-68.047	65.370

3.2.1.1.8 Calculation results, Node-to-node anchor, Backfill [Phase_6] (6/120), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	16.415	-68.047	16.415
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	16.415	-68.047	16.415

San Jacinto Section C7 - Undrained Model

PLAXIS Report

3.1.1.1.1 Calculation results, Plate, Install sheet pile [Phase_1] (1/5), Total displacements $u_{\rm x}$

3.1.1.1.2 Calculation results, Plate, Excavate [Phase_25] (25/7), Total displacements $u_{\rm x}$

3.1.1.1.3 Calculation results, Plate, Backfill [Phase_6] (6/27), Total displacements $u_{\rm x}$

4

3.1.1.1.1.4 Calculation results, Plate, Dewater -SS [Phase_7] (7/34), Total displacements $\rm u_{x}$

3.1.1.1.1.5 Calculation results, Plate, Consolidate [Phase_3] (4/47), Total displacements $u_{\rm x}$

3.1.1.1.1.6 Calculation results, Plate, Excavate 1 [Phase_8] (8/58), Total displacements $u_{\rm x}$

3.1.1.1.7 Calculation results, Plate, Consolidation [Phase_5] (5/76), Total displacements $\rm u_{x}$

3.1.1.1.1.8 Calculation results, Plate, Dewater2- SS [Phase_9] (9/80), Total displacements $\rm u_{x}$

3.1.1.1.1.9 Calculation results, Plate, Consolidation [Phase_12] (15/85), Total displacements $u_{\rm x}$

3.1.1.1.1.10 Calculation results, Plate, Excavate 2 [Phase_10] (10/91), Total displacements $\rm u_{x}$

3.1.1.1.1.1 Calculation results, Plate, Consolidation [Phase_16] (16/99), Total displacements $\rm u_x$

3.1.1.1.1.12 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/111), Total displacements $u_{\rm x}$

3.1.2.1.1 Calculation results, Plate, Install sheet pile [Phase_1] (1/5), Shear forces Q

3.1.2.1.2 Calculation results, Plate, Excavate [Phase_25] (25/7), Shear forces Q

3.1.2.1.3 Calculation results, Plate, Backfill [Phase_6] (6/27), Shear forces Q

3.1.2.1.4 Calculation results, Plate, Dewater -SS [Phase_7] (7/34), Shear forces Q

3.1.2.1.5 Calculation results, Plate, Consolidate [Phase_3] (4/47), Shear forces Q

3.1.2.1.6 Calculation results, Plate, Excavate 1 [Phase_8] (8/58), Shear forces Q

3.1.2.1.7 Calculation results, Plate, Consolidation [Phase_5] (5/76), Shear forces Q

3.1.2.1.8 Calculation results, Plate, Dewater2- SS [Phase_9] (9/80), Shear forces Q

3.1.2.1.9 Calculation results, Plate, Consolidation [Phase_12] (15/85), Shear forces Q

3.1.2.1.10 Calculation results, Plate, Excavate 2 [Phase_10] (10/91), Shear forces Q

3.1.2.1.11 Calculation results, Plate, Consolidation [Phase_16] (16/99), Shear forces Q

24

3.1.2.1.12 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/111), Shear forces Q

3.1.2.2.1 Calculation results, Plate, Install sheet pile [Phase_1] (1/5), Bending moments M

3.1.2.2.2 Calculation results, Plate, Excavate [Phase_25] (25/7), Bending moments M

3.1.2.2.3 Calculation results, Plate, Backfill [Phase_6] (6/27), Bending moments M

28

3.1.2.2.4 Calculation results, Plate, Dewater -SS [Phase_7] (7/34), Bending moments M

3.1.2.2.5 Calculation results, Plate, Consolidate [Phase_3] (4/47), Bending moments M

3.1.2.2.6 Calculation results, Plate, Excavate 1 [Phase_8] (8/58), Bending moments M

3.1.2.2.7 Calculation results, Plate, Consolidation [Phase_5] (5/76), Bending moments M

3.1.2.2.8 Calculation results, Plate, Dewater2- SS [Phase_9] (9/80), Bending moments M

3.1.2.2.9 Calculation results, Plate, Consolidation [Phase_12] (15/85), Bending moments M

3.1.2.2.10 Calculation results, Plate, Excavate 2 [Phase_10] (10/91), Bending moments M

3.1.2.2.11 Calculation results, Plate, Consolidation [Phase_16] (16/99), Bending moments M

3.1.2.2.12 Calculation results, Plate, Water rise 9 ft [Phase_11] (11/111), Bending moments M

37

3.2.1.1.3 Calculation results, Node-to-node anchor, Backfill [Phase_6] (6/27), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	31.346	0.000	31.346
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	31.346	0.000	31.346

3.2.1.1.4 Calculation results, Node-to-node anchor, Dewater -SS [Phase_7] (7/34), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	40.121	0.000	40.121
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	40.121	0.000	40.121

3.2.1.1.5 Calculation results, Node-to-node anchor, Consolidate [Phase_3] (4/47), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	37.023	0.000	40.121
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	37.023	0.000	40.121

3.2.1.1.6 Calculation results, Node-to-node anchor, Excavate 1 [Phase_8] (8/58), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	58.660	0.000	58.660
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	58.660	0.000	58.660

3.2.1.1.7 Calculation results, Node-to-node anchor, Consolidation [Phase_5] (5/76), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	53.490	0.000	58.660
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	53.490	0.000	58.660

3.2.1.1.8 Calculation results, Node-to-node anchor, Dewater2- SS [Phase_9] (9/80), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	54.435	0.000	58.660
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	54.435	0.000	58.660

3.2.1.1.9 Calculation results, Node-to-node anchor, Consolidation [Phase_12] (15/85), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	53.878	0.000	58.660
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	53.878	0.000	58.660

3.2.1.1.10 Calculation results, Node-to-node anchor, Excavate 2 [Phase_10] (10/91), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	57.699	0.000	58.660
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	57.699	0.000	58.660

3.2.1.1.11 Calculation results, Node-to-node anchor, Consolidation [Phase_16] (16/99), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	55.925	0.000	58.660
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	55.925	0.000	58.660

3.2.1.1.12 Calculation results, Node-to-node anchor, Water rise 9 ft [Phase_11] (11/111), Table of node-to-node anchors

Structural element	Node	Local number	X [ft]	Y [ft]	N [10 ³ lbf]	N _{min} [lbf]	N_{max} [10 ³ lbf]
NodeToNodeAnchor_2_1	6499	1	110.000	0.000	65.557	0.000	65.557
Element 2-2 (Node-to-node anchor)	8339	2	80.000	0.000	65.557	0.000	65.557

Attachment 3

Structural Calculations

- **3.1 BMP Calculations**
- 3.2 Wind Load Evaluation
- 3.3 Sheet Pile Seepage Evaluation
- **3.4 Barge Impact Evaluation**

ATTACHMENT 3.1

nt	International Maintenance	Paper Com Corporatio	ipany & Mc n	Ginnes Indu	ustrial	Job Numbe	r <u>11215</u>	702	Sh	eet	1
ect	San Jacinto F	liver Waste	Pits Site			Sheets Bv	I.Goe	1	Da	ate 06/0	8/202
	BMP Design	Summary					S Chi	ilka	= •)8/202
ect —	Bin Boolgin	ourninary				Checked By	<u>0.0m</u>	lina	Da	ate <u></u>	0,202
	Elevati	ons (ft)	Usual	Unusual		Steel Sheet	Pile, Fy		60	ksi	
	Top of Wall		+9	+9							
	Top of Wate	er Outside	+5	+9							
	Looding	Condition		Allowable S	tress Factor						
	Loading	Condition	Moment &	Axial Load	Sh	ear					
	Usual, U		0.	50	0.	33					
	Unusual, UN	U	0.	67	0.	44					
	Extreme, EX	Т	0.	88	0.	58					
	Sacrificial th	iickness (tc)	- for accoun	ting corrosio	'n	0.0175	in				
	Corroded fla	ange thickne	ess (trf) - two	exposed fac	es	tf-(2tc)	in				
	Corroded w	eb thickness	s (trw) - two	exposed face	es	tw-(2tc)	in 3				
	Corroded se	ection modu	lus Sr			(trf/tf)*S	in [°] /ft				
	Corroded Se	ection Capa	cities				Momen	t (kin.ft	/ I F)		
	Nucor	Section	S (in ³ /ft)	tf(in)	trf(in)	Sr (in³/ft)	U		EXT		
	AZ 18	8-700	33.50	0.35	0.32	30.19	75	100	132		
	AZ 20	5-700	48.40	0.48	0.45	44.87	112	149	196	,	
	AZ 40	-700N	74.30	0.67	0.63	70.41	176	234	308		
	AZ 52	2-700	95.90	0.95	0.91	92.35	231	307	404		
	Nucor	Section	$\Lambda (in^2/ft)$	tw(in)	trw(in)	Λ (in ² /ft)	Shear	r (kip / L	F)		
	Nucon	Section	γ_{v} (iii / ii)			$\tau_{\rm vr}$ (iii / iii)	U	UNU	EXT		
	AZ 18	3-700	5.86	0.35	0.32	5.28	104	139	183		
	AZ 2	200				0.20			-		
		5-700	8.69	0.48	0.45	8.06	160	212	279		
	AZ 40	-700 -700N	8.69 10.25	0.48	0.45	8.06 9.56	160 189	212 252	279 331		
	AZ 40 AZ 52	-700N 2-700	8.69 10.25 13.30	0.48 0.52 0.67	0.45 0.49 0.63	8.06 9.56 12.60	160 189 250	212 252 332	279 331 437		
	AZ 40 AZ 52 Sheet Pile D	-700 -700N 2-700 Design Sumn	8.69 10.25 13.30	0.48 0.52 0.67	0.45 0.49 0.63	8.06 9.56 12.60	160 189 250	212 252 332	279 331 437		
	AZ 40 AZ 53 Sheet Pile D Section	-700 -700N 2-700 Design Sumn Sheet Pil	8.69 10.25 13.30 nary	0.48 0.52 0.67 Moment (0.45 0.49 0.63 kip.ft / LF)	8.06 9.56 12.60 Shear (k	160 189 250	212 252 332 Gove	279 331 437 rning		
	AZ 40 AZ 53 Sheet Pile D Section	-700 -700N 2-700 Design Sumn Sheet Pil	8.69 10.25 13.30 hary le Section	0.48 0.52 0.67 Moment (U	0.45 0.49 0.63 kip.ft / LF) UNU	8.06 9.56 12.60 Shear (k U	160 189 250 iip / LF) UNU	212 252 332 Gove	279 331 437 rning CR		
	AZ 40 AZ 52 Sheet Pile D Section	-700 -700N 2-700 Design Sumn Sheet Pil AZ26	8.69 10.25 13.30 hary le Section	0.48 0.52 0.67 Moment (U 101.9	0.45 0.49 0.63 kip.ft / LF) UNU 114.9	8.06 9.56 12.60 Shear (k U 9.5	160 189 250 	212 252 332 Gove D(0.	279 331 437 rning CR 91		
	AZ 40 AZ 53 Sheet Pile D Section C1 C2	-700 -700N 2-700 Sheet Pil AZ2(AZ4(8.69 10.25 13.30 hary le Section 5-700 0-700	0.48 0.52 0.67 Moment (U 101.9 154.3	0.45 0.49 0.63 kip.ft / LF) UNU 114.9 172.2	8.06 9.56 12.60 Shear (k U 9.5 18.0	160 189 250 ip / LF) UNU 10.9 18.8 12.1	212 252 332 Gove Di 0. 0.	279 331 437 rning CR 91 88		
	AZ 40 AZ 53 Sheet Pile D Section C1 C2 C3	-700 -700N 2-700 Sheet Pil AZ26 AZ40 AZ26	8.69 10.25 13.30 hery e Section 5-700 5-700 5-700	0.48 0.52 0.67 Moment (U 101.9 154.3 96.1	0.45 0.49 0.63 kip.ft / LF) UNU 114.9 172.2 111.2	8.06 9.56 12.60 Shear (k U 9.5 18.0 12.5	160 189 250 iip / LF) UNU 10.9 18.8 13.1 11 5	212 252 332 Gove D0 0. 0. 0.	279 331 437 rning CR 91 88 86 86		
	AZ 40 AZ 52 Sheet Pile D Section C1 C2 C3 C3A	-700 -700N 2-700 Sheet Pil AZ2(AZ2(AZ2(AZ2(AZ2(AZ2(AZ2(AZ2(8.69 10.25 13.30 hery le Section 5-700 5-700 5-700 5-700	0.48 0.52 0.67 Moment (U 101.9 154.3 96.1 98.1 78.0	0.45 0.49 0.63 kip.ft / LF) UNU 114.9 172.2 111.2 112.3	8.06 9.56 12.60 Shear (k U 9.5 18.0 12.5 10.0	160 189 250 iip / LF) UNU 10.9 18.8 13.1 11.5 11.1	212 252 332 Gove Do 0. 0. 0. 0.	279 331 437 rning CR 91 88 86 87 70		
	AZ 40 AZ 53 Sheet Pile D Section C1 C2 C3 C3A C4	-700 -700N 2-700 Sheet Pil AZ2(AZ2(AZ2(AZ2(AZ2(AZ2(AZ2(AZ2(8.69 10.25 13.30 hary le Section 5-700 5-700 5-700 5-700 5-700 5-700 5-700 5-700 5-700 5-700	0.48 0.52 0.67 Moment (U 101.9 154.3 96.1 98.1 78.9 86.5	0.45 0.49 0.63 kip.ft / LF) UNU 114.9 172.2 111.2 112.3 87.6 93.0	8.06 9.56 12.60 Shear (k U 9.5 18.0 12.5 10.0 11.8 7.6	160 189 250 ip / LF) UNU 10.9 18.8 13.1 11.5 11.1 8.6	212 252 332 Gove D0 0. 0. 0. 0. 0.	279 331 437 rning CR 91 88 86 87 70 77		
	AZ 40 AZ 53 Sheet Pile D Section C1 C2 C3 C3A C4 C4 C4A	-700 -700N 2-700 Sheet Pil AZ26 AZ26 AZ26 AZ26 AZ26 AZ26 AZ26 AZ26	8.69 10.25 13.30 hery le Section 5-700 5-700 5-700 5-700 5-700 5-700 5-700 5-700 5-700	0.48 0.52 0.67 Moment (U 101.9 154.3 96.1 98.1 78.9 86.5 93.7	0.45 0.49 0.63 kip.ft / LF) UNU 114.9 172.2 111.2 112.3 87.6 93.0 102.6	8.06 9.56 12.60 Shear (k U 9.5 18.0 12.5 10.0 11.8 7.6 10.4	160 189 250 iip / LF) UNU 10.9 18.8 13.1 11.5 11.1 8.6 11.2	212 252 332 Gove D0 0. 0. 0. 0. 0. 0. 0.	279 331 437 rning CR 91 88 86 87 70 77 84		
	AZ 40 AZ 53 Sheet Pile D Section C1 C2 C3 C3A C4 C4 C4A C5 C5	-700 -700N 2-700 Sheet Pil AZ2(AZ2(AZ2(AZ2(AZ2(AZ2(AZ2(AZ2(8.69 10.25 13.30 hary e Section 5-700	0.48 0.52 0.67 Moment (U 101.9 154.3 96.1 98.1 78.9 86.5 93.7 41 5	0.45 0.49 0.63 kip.ft / LF) UNU 114.9 172.2 111.2 112.3 87.6 93.0 102.6 50.4	8.06 9.56 12.60 9.5 18.0 12.5 18.0 12.5 10.0 11.8 7.6 10.4 6.8	160 189 250 iip / LF) UNU 10.9 18.8 13.1 11.5 11.1 8.6 11.2 7 4	212 252 332 Gove D0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	279 331 437 rning CR 91 88 86 87 70 77 84 37		

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	2
Proiect	San Jacinto River Waste Pits Site	 Sheets By	I.Goel	Date _	06/08/2022
Subject	BMP Design Summary	Checked By_	S.Chilka	Date_	06/08/2022

Tie Rod - Waler Design Summary

	Tie Ro	d - Analysis (Output		Design =	
Section	Dia (in)	Dia (in) Spacing Tension Demand		150%	DCR	
	Dia (III)	(ft)	Load (kips)	Load (kips)	Demand	
C1	2.25	10	131			
C3A	2.25	10	131	66	08	0.45
C4A	2.25	10	90	00	50	0.45
C6	2.25	10	109			
C2	3	6	178	149	223	0.57
C3	2.25	6	105	00	121	0.61
C5	2.25	6	99	00	131	0.01
C4	2.25	8	123	77	115	0.53
C7	2.25	5	66	66	98	0.45

Note: Demand Load factored for 5 ft spacing

Waler Waler			9	Splice Conne	Splice		
Section	vvaler	Section	Plate Size	Plate Thk.	No of	Bolt Dia	Connection
	Section	DCR	(in X in)	(in)	Bolts	(in)	DCR
C1	MC 12X35	0.64	24X8	0.75	12	1.25	0.59
C2	MC 18X45.8	0.76	24X8	1.25	12	1.375	0.82
C3	MC 12X35	0.85	24X8	0.75	12	1.25	0.79
C3A	MC 12X35	0.64	24X8	0.75	12	1.25	0.59
C4	MC 12X35	0.74	24X8	0.75	12	1.25	0.69
C4A	MC 12X35	0.64	24X8	0.75	12	1.25	0.59
C5	MC 12X35	0.85	24X8	0.75	12	1.25	0.79
C6	MC 12X35	0.64	24X8	0.75	12	1.25	0.59
C7	MC 12X35	0.64	24X8	0.75	12	1.25	0.59

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	3
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date _	06/03/2022
, Subiect —	Check for revised tie rod spacing for design	. Checked Bv_	S.Chilka	Date_	06/03/2022

Check for revised tie rod spacing for design

Modulus of Elasticity, E

29000 ksi

	Tie Rod	Section	Tie Rod S	pacing , S	EA/S/I	(C (lin /ft))		
Section	Dia (in)	Area, A	Docign (ft)	Analysis	EA/3 (I	(1)		
	Dia (III)	(in ²)	Design (IL)	(ft)	Design	Analysis		
C1	2.25	4	5	10	23200.0	11600.0		
C2	3	7.06	5	6	40948.0	34123.3		
C3	2.25	4	5	6	23200.0	19333.3		
C3A	2.25	4	5	10	23200.0	11600.0		
C4	2.25	4	5	8	23200.0	14500.0		
C4A	2.25	4	5	10	23200.0	11600.0		
C5	2.25	4	5	6	23200.0	19333.3		
C6	2.25	4	5	10	23200.0	11600.0		
C7	2.25	4	5	5	23200.0	23200.0		

Higher EA/S values from design when compared to analysis case confirms that the revised tie rod spacing is conservative.

Client Project Subject	International Paper Company & McGinnes Industrial Maintenance Corporation San Jacinto River Waste Pits Site Tie Rod Design Calculation	_ Job Number_ _ Sheets By _ Checked By	11215702 I.Goel S.Chilka	Sheet Date	4 06/03/2022 06/03/2022
DES	IGN OF TIE ROD SECTION, AISC 360-16				
	Tie Rod Design - Sec C1, C3A, C4A, C6				
	MATERIAL PROPERTIES				
	Steel Yield Stress	Fybar := 120ks	Ĩ		
	Steel Tensile Stress	F _{ubar} := 150ks	i		
	Tie Rod with 2.25in nominal diameter				

 Tie rod nomina I Diameter
 d_{bar} := 2.25in
 Refer table below from Nucor Skyline Manual

Tie rod approx. major Thread Diameter

d_{bthr} := 2.44in

Refer table below from Nucor Skyline Manual

Grade 120 ksi Yield Strength / Grade 150 ksi Ultimate Strength								
Nominal Diameter in mm	Grade	Min. Net Area Thru Threads in ² mm ²	Min. Ultimate Strength kips kN	Min. Yield Strength kips kN	Nominal Weight Ibs/ft kg/m	Approx. Major Thread Diameter in mm	Thread Orientation	Max. Length ft m
1 26	150	0.850 549	128 567	102 454	3.1 4.6	1 % 28.6	Left Hand	60 18.3
1 ¼ 32	150	1.250 807	188 834	150 667	4.5 6.7	1 ½ 38.1	Left Hand	60 18.3
1 % 36	150	1.580 1019	237 1054	190 843	5.7 8.5	1 % 41.3	Left Hand	60 18.3
1 ¾ 46	150	2.600 1677	390 1735	320 1423	9.1 13.5	2 50.8	Left Hand	60 18.3
2 ¼ 57	150	4.000 2581	600 2669	480 2135	13.6 20.2	2 % 6 62.0	Left Hand	60 18.3
2 ½ 65	150	5.190 3350	778 3457	622 2766	18.3 27.2	2 ¾ 69.9	Left Hand	60 18.3
3 75	150	7.060 4554	1059 4702	847 3766	24.0 35.7	3 ¼ 82.6	Left Hand	60 18.3

Nucor Skyline's high strength threaded bar is cold rolled, threaded, quenched and tempered 4140 grade smooth rounds.

Sacrificial thickness - for accounting corrosion

Refer Basis of Design report

Client_	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number 11215702 Sheet ⁵
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel Date06/03/2022
Subject —	Tie Rod Design Calculation	Checked By S.Chilka Date 06/03/2022
	Bar Area - Unthreaded Portion (net area)	$A_{\text{barn}} \coloneqq \frac{\pi}{4} \cdot \left(d_{\text{bar}} - 2t_{\text{c}} \right)^2 = 3.85 \cdot \text{in}^2$
	Bar Area - Threaded Portion (gross area)	$A_{\text{barg}} \coloneqq \frac{\pi}{4} \cdot \left(d_{\text{bthr}} - 2t_{\text{c}} \right)^2 = 4.54 \cdot \text{in}^2$
	Length of Tie Rod	L _{bar} := 30ft
	ANALYSIS DEMAND LOADS	
	Tie rod Spacing	S _{bara} := 10ft
	Tie rod Tension Demand	F _{barda} := 131.3kip
	REVISED DEMAND LOADS FROM WAL	ER ANALYSIS
	Revised tie rod spacing	S _{bar} := 5ft
	Revised tie rod tension demand	$F_{bard} := rac{F_{barda} \cdot S_{bar}}{S_{bara}} = 65.65 \cdot kip$
	Tie Rod Demand Load to safeguard again	inst Progressive Failure
	In certain situations, progressive collapse of the struc condition, i.e failure of a tie rod. The load from the faile	ture may be a consequence of an extreme ed tie rod is redistributed to adiacent tie rods

in certain situations, progressive collapse of the structure may be a consequence of an extreme condition, i.e failure of a tie rod. The load from the failed tie rod is redistributed to adjacent tie rods which normally accounts for an increase in the demand load on the tie rod by 50% in the typical design situation.

Tie rod Tension Demand - considering Progressive failure

$$F_{pbard} := 1.5 \cdot F_{bard} = 98.48 \cdot kip$$

	International Paper Company & McCinnes Industrial		
Client	Maintenance Corporation	Job Number11215702	Sheet 6
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel	Date 06/03/2022
Subject —	Tie Rod Design Calculation	_ Checked ByS.Chilka	Date 06/03/2022
	ALLOWABLE STRESS DESIGN CAPAC	CITY - AISC 360-16	
	D2 Tensile Strength of the Tie Rod		
	Overstrength Factors	$\Omega_{ty} \coloneqq 1.67$	Tensile Yielding
		$\Omega_{tr} \coloneqq 2.0$	Tensile Rupture
	Allowable tensile strength based on limit state of tensile yielding of gross section, Eq D2-1	$P_{ny} \coloneqq \frac{F_{ybar} \cdot A_{barg}}{\Omega_{ty}} = 326.4 \cdot kip$	
	Shear Lag Factor, Table D3.1- Case1	U := 1	
	Allowable tensile strength based on limit state of tensile rupture in net section, Eq D2-2	$P_{nr} := rac{F_{ubar} \cdot A_{barn} \cdot U}{\Omega_{tr}} = 289 \cdot kipting$)
	J3.6 Tensile Strength of Threaded Parts		
	Overstrength Factors	$\Omega_{thr}\coloneqq$ 2.0	
	Nominal Tensile Stress, Table J3.2 - Case 8	$F_{nt} := 0.75 \cdot F_{ubar} = 112.5 \cdot ksi$	
	Allowable Tensile Strength of threaded parts based on limit state of tension rupture, Eq J3-1	$R_{nt} := \frac{F_{nt} \cdot A_{barn}}{\Omega_{thr}} = 216.8 \cdot kip$	
	Allowable Tensile Strength	$F_{barc} := min(P_{ny}, P_{nr}, R_{nt}) = 2$	16.8 · kip

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number_	11215702	Sheet _	7
Proiect	San Jacinto River Waste Pits Site	_ Sheets By	I.Goel	Date 0	6/03/2022
Subject —	Tie Rod Design Calculation	Checked By_	S.Chilka	Date 0	6/03/2022
0 0 0 0 0 0 0		000			

Capacity Check

$$DCR_{2} := \left(\begin{array}{c} F_{pbard} \\ F_{barc} \end{array} \right) \text{ if } F_{barc} \geq F_{pbard} = 0.45$$

"Increase Bar Size" otherwise

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	8
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date_	06/03/2022
Subject	Tie Rod Design Calculation	Checked By	S.Chilka	Date	06/03/2022
		Onconcu By			

DESIGN OF TIE ROD SECTION, AISC 360-16

Tie Rod Design - Sec C2

MATERIAL PROPERTIES

Steel Yield Stress

Steel Tensile Stress

Tie Rod with 3in nominal diameter

Tie rod nominal Diameter

Tie rod approx. major Thread Diameter

d_{bthr} := 3.25in

d_{bar} := 3in

Fybar := 120ksi

F_{ubar} := 150ksi

Refer table below from Nucor Skyline Manual

Refer table below from Nucor Skyline Manual

Grade 120 ksi Yield Strength / Grade 150 ksi Ultimate Strength								
Nominal Diameter in mm	Grade	Min. Net Area Thru Threads in ² mm ²	Min. Ultimate Strength kips kN	Min. Yield Strength kips kN	Nominal Weight Ibs/ft kg/m	Approx. Major Thread Diameter in mm	Thread Orientation	Max. Length ft m
1 26	150	0.850 549	128 567	102 454	3.1 4.6	1 ½ 28.6	Left Hand	60 18.3
1 ¼ 32	150	1.250 807	188 834	150 667	4.5 6.7	1 ½ 38.1	Left Hand	60 18.3
1 % 36	150	1.580 1019	237 1054	190 843	5.7 8.5	1 % 41.3	Left Hand	60 18.3
1 ¾ 46	150	2.600 1677	390 1735	320 1423	9.1 13.5	2 50.8	Left Hand	60 18.3
2 ¼ 57	150	4.000 2581	600 2669	480 2135	13.6 20.2	2 ¾ 6 62.0	Left Hand	60 18.3
2 ½ 65	150	5.190 3350	778 3457	622 2766	18.3 27.2	2 ¾ 69.9	Left Hand	60 18.3
3 75	150	7.060 4554	1059 4702	847 3766	24.0 35.7	3 ¼ 82.6	Left Hand	60 18.3

Nucor Skyline's high strength threaded bar is cold rolled, threaded, quenched and tempered 4140 grade smooth rounds.

Sacrificial thickness - for accounting corrosion

Refer Basis of Design report

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number <u>11215702</u>	Sheet 9
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel	Date 06/03/2022
, Subiect —	Tie Rod Design Calculation	– Checked By <u>S.Chilka</u>	Date 06/03/2022
	Bar Area - Unthreaded Portion (net area)	$A_{barn} := \frac{\pi}{4} \cdot \left(d_{bar} - 2t_c \right)^2 = 6.9$	·in ²
	Bar Area - Threaded Portion (gross area)	$A_{\text{barg}} := \frac{\pi}{4} \cdot \left(d_{\text{bthr}} - 2t_{\text{c}} \right)^2 = 8.1$.2∙in ²
	Length of Tie Rod	L _{bar} := 30ft	
	ANALYSIS DEMAND LOADS		
	Tie rod Spacing	S _{bara} := 6ft	
	Tie rod Tension Demand	F _{barda} := 178.4kip	
	REVISED DEMAND LOADS FROM WAL	ER ANALYSIS	
	Revised tie rod spacing	S _{bar} := 5ft	
	Revised tie rod tension demand	$F_{bard} := rac{F_{barda} \cdot S_{bar}}{S_{bara}} = 148.67 \cdot$	kip
	Tie Rod Demand Load to safeguard aga	inst Progressive Failure	
	reme e rods ⁄pical		

Tie rod Tension Demand - considering Progressive failure

$$F_{pbard} := 1.5 \cdot F_{bard} = 223 \cdot kip$$

Client	Maintenance Corporation	Job Number 11215702	Sheet ¹⁰
Project	San Jacinto River Waste Pits Site	Sheets ByI.Goel	
Subject —	Tie Rod Design Calculation	Checked By S.Chilka	_ Date <u>06/03/2022</u>
	ALLOWABLE STRESS DESIGN CAPA	CITY - AISC 360-16	
	D2 Tensile Strength of the Tie Rod		
	Overstrength Factors	$\Omega_{ty} \coloneqq$ 1.67	TensileYielding
		$\Omega_{tr} \coloneqq 2.0$	Tensile Rupture
	Allowable tensile strength based on limit state of tensile yielding of gross section, Eq D2-1	$P_{ny} := \frac{F_{ybar} \cdot A_{barg}}{\Omega_{ty}} = 583.3 \cdot ki$	ρ
	Shear Lag Factor, Table D3.1- Case1	U := 1	
	Allowable tensile strength based on limit state of tensile rupture in net section, Eq D2-2	$P_{nr} := \frac{F_{ubar} \cdot A_{barn} \cdot U}{\Omega_{tr}} = 517.8 \cdot 10^{-10}$	kip
	J3.6 Tensile Strength of Threaded Parts		
	Overstrength Factors	$\Omega_{thr}\coloneqq$ 2.0	
	Nominal Tensile Stress, Table J3.2 - Case 8	F _{nt} := 0.75 · F _{ubar} = 112.5 · ksi	
	Allowable Tensile Strength of threaded parts based on limit state of tension rupture, Eq J3-1	$R_{nt} := \frac{F_{nt} \cdot A_{barn}}{\Omega_{thr}} = 388.4 \cdot kip$	
	Allowable Tensile Strength	$F_{barc} := min(P_{ny}, P_{nr}, R_{nt}) = 3$	388.4 · kip

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number_	11215702	Sheet 11
Proiect	San Jacinto River Waste Pits Site	_ Sheets By	I.Goel	Date 06/03/2022
Subject	Tie Rod Design Calculation	_ Checked Bv_	S.Chilka	Date 06/03/2022
		= 0		

Capacity Check

$$\mathsf{DCR}_2 := \left| \begin{array}{c} \frac{\mathsf{F}_{pbard}}{\mathsf{F}_{barc}} & \text{if} \quad \mathsf{F}_{barc} \geq \mathsf{F}_{pbard} &= 0.57 \\ \\ \text{"Increase Bar Size" otherwise} \end{array} \right|$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	12
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date	06/03/2022
Subject	Tie Rod Design Calculation	Checked By	S.Chilka	Date	06/03/2022
		Onconcu Dy-			

DESIGN OF TIE ROD SECTION, AISC 360-16

Tie Rod Design - Sec C5, C3

MATERIAL PROPERTIES

Steel Yield Stress

Steel Tensile Stress

Tie Rod with 2.25in nominal diameter

Tie rod nominal Diameter

Tie rod approx. major Thread Diameter

d _{bthr} :=	2.44in

d_{bar} := 2.25in

Fybar := 120ksi

F_{ubar} := 150ksi

Refer table below from Nucor Skyline Manual

Refer table below from

Nucor Skyline Manual

Grade 120 ksi Yield Strength / Grade 150 ksi Ultimate Strength								
Nominal Diameter In	Grade	Min. Net Area Thru Threads In ² mm ²	Min. Ultimate Strength kips kN	Min. Yield Strength kips kN	Nominal Weight Ibs/ft kg/m	Approx. Major Thread Diameter In mm	Thread Orientation	Max. Length ft m
1 26	150	0.850 549	128 567	102 454	3.1 4.6	1% 28.6	Left Hand	60 18.3
1 % 32	150	1.250 807	188 834	150 667	4.5 6.7	1 % 38.1	Left Hand	60 18.3
136 36	150	1.580 1019	237 1054	190 843	5.7 8.5	1% 413	Left Hand	60 18.3
1 % 46	150	2.600 1677	390 1735	320 1423	9.1 13.5	2 50.8	Left Hand	60 18.3
2 % 57	150	4.000 2581	600 2669	480 2135	13.6 20.2	2 %s 62.0	Left Hand	60 18.3
2 % 65	150	5.190 3350	778 3457	622 2766	18.3 27.2	2 % 69.9	Left Hand	60 18.3
3 75	150	7.060 4554	1059 4702	847 3766	24.0 35.7	3 % 82.6	Left Hand	60 18.3

Nucor Skyline's high strength threaded bar is cold rolled, threaded, quenched and tempered 4140 grade smooth rounds.

Sacrificial thickness - for accounting corrosion

Refer Basis of Design report

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number11215702	Sheet 13		
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel	Date 06/03/2022		
Subject	Tie Rod Design Calculation	Checked By S.Chilka	Date 06/03/2022		
	Bar Area - Unthreaded Portion (net area)	$A_{barn} := \frac{\pi}{4} \cdot (d_{bar} - 2t_c)^2 = 3.85$	i∽in ²		
	Bar Area - Threaded Portion (gross area)	$A_{\text{barg}} := \frac{\pi}{4} \cdot \left(d_{\text{bthr}} - 2t_{\text{c}} \right)^2 = 4.5$	4 · in ²		
	Length of Tie Rod	L _{bar} := 30ft			
	ANALYSIS DEMAND LOADS				
	Tie rod Spacing	S _{bara} := 6ft			
	Tie rod Tension Demand	F _{barda} := 105.2kip			
	REVISED DEMAND LOADS FROM WAL	ER ANALYSIS			
	Revised tie rod spacing	S _{bar} := 5ft			
	Revised tie rod tension demand	$F_{bard} := \frac{F_{barda} \cdot S_{bar}}{S_{bara}} = 87.67 \cdot k$	р		
	Tie Rod Demand Load to safeguard against Progressive Failure				
	In certain situations, progressive collapse of the struc condition, i.e failure of a tie rod. The load from the fail which normally accounts for an increase in the dema	cture may be a consequence of an ext ed tie rod is redistributed to adjacent tie and load on the tie rod by 50% in the ty	reme e rods pical		

Tie rod Tension Demand - considering Progressive failure

design situation.

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702	Sheet ¹⁴
Project	San Jacinto River Waste Pits Site	Sheets By LGoel	Date 06/03/2022
Subject	Tie Rod Design Calculation	Checked By S.Chilka	Date 06/03/2022
	ALLOWABLE STRESS DESIGN CAPAC	CITY - AISC 360-16	
	D2 Tensile Strength of the Tie Rod		
	Overstrength Factors	$\Omega_{ty}\coloneqq$ 1.67	TensileYielding
		$\Omega_{tr} \coloneqq 2.0$	Tensile Rupture
	Allowable tensile strength based on limit state of tensile yielding of gross section, Eq D2-1	$P_{ny} := \frac{F_{ybar} \cdot A_{barg}}{\Omega_{ty}} = 326.4 \cdot kip$	
	Shear Lag Factor, Table D3.1- Case1	U := 1	
	Allowable tensile strength based on limit state of tensile rupture in net section, Eq D2-2	$P_{nr} := rac{F_{ubar} \cdot A_{barn} \cdot U}{\Omega_{tr}} = 289 \cdot kip$	
	J3.6 Tensile Strength of Threaded Parts		
	Overstrength Factors	$\Omega_{thr} \coloneqq$ 2.0	
	Nominal Tensile Stress, Table J3.2 - Case 8	F _{nt} := 0.75 · F _{ubar} = 112.5 · ksi	
	Allowable Tensile Strength of threaded parts based on limit state of tension rupture, Eq J3-1	$R_{nt} := \frac{F_{nt} \cdot A_{barn}}{\Omega_{thr}} = 216.8 \cdot kip$	
	Allowable Tensile Strength	$F_{barc} := min(P_{ny}, P_{nr}, R_{nt}) = 21$	6.8 · kip

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number_	11215702	Sheet15
Proiect	San Jacinto River Waste Pits Site	_ Sheets By	I.Goel	Date 06/03/2022
Subject	Tie Rod Design Calculation	_ Checked Bv_	S.Chilka	Date 06/03/2022
		- eneercea by-		

Capacity Check

$$\label{eq:DCR2} \text{DCR}_2 \coloneqq \left| \begin{array}{c} \frac{F_{pbard}}{F_{barc}} & \text{if} \quad F_{barc} \geq F_{pbard} & = 0.61 \\ \\ \text{"Increase Bar Size" otherwise} \end{array} \right|$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	16
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date_	06/03/2022
Subject	Tie Rod Design Calculation	Checked By	S.Chilka	Date	06/03/2022
		Oncolled By-			

DESIGN OF TIE ROD SECTION, AISC 360-16

Tie Rod Design - Sec C4

MATERIAL PROPERTIES

Steel Yield Stress

Steel Tensile Stress

Tie Rod with 2.25in nominal diameter

Tie rod nominal Diameter

Tie rod approx. major Thread Diameter

d_{bthr} := 2.44in

d_{bar} := 2.25in

Fybar := 120ksi

F_{ubar} := 150ksi

Refer table below from Nucor Skyline Manual

Refer table below from Nucor Skyline Manual

	Grade 120 ksi Yield Strength / Grade 150 ksi Ultimate Strength							
Nominal Diameter in mm	Grade	Min. Net Area Thru Threads in² mm²	Min. Ultimate Strength kips kN	Min. Yield Strength kips kN	Nominal Weight Ibs/ft kg/m	Approx. Major Thread Diameter in mm	Thread Orientation	Max. Length ft m
1 26	150	0.850 549	128 567	102 454	3.1 4.6	1 % 28.6	Left Hand	60 18.3
1 ¼ 32	150	1.250 807	188 834	150 667	4.5 6.7	1 ½ 38.1	Left Hand	60 18.3
1 ¾ 36	150	1.580 1019	237 1054	190 843	5.7 8.5	1 % 41.3	Left Hand	60 18.3
1 ¾ 46	150	2.600 1677	390 1735	320 1423	9.1 13.5	2 50.8	Left Hand	60 18.3
2 ¼ 57	150	4.000 2581	600 2669	480 2135	13.6 20.2	2 % 6 62.0	Left Hand	60 18.3
2 ½ 65	150	5.190 3350	778 3457	622 2766	18.3 27.2	2 ¾ 69.9	Left Hand	60 18.3
3 75	150	7.060 4554	1059 4702	847 3766	24.0 35.7	3 ¼ 82.6	Left Hand	60 18.3

Nucor Skyline's high strength threaded bar is cold rolled, threaded, quenched and tempered 4140 grade smooth rounds.

Sacrificial thickness - for accounting corrosion

Refer Basis of Design report

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702	Sheet ¹⁷			
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel	Date 06/03/2022			
Subject	Tie Rod Design Calculation	Checked By S.Chilka	Date 06/03/2022			
	Bar Area - Unthreaded Portion (net area)	$A_{barn} := \frac{\pi}{4} \cdot (d_{bar} - 2t_c)^2 = 3.85$	i∙in ²			
	Bar Area - Threaded Portion (gross area)	$A_{\text{barg}} \coloneqq \frac{\pi}{4} \cdot \left(d_{\text{bthr}} - 2t_{\text{c}} \right)^2 = 4.5$	4∙in ²			
	Length of Tie Rod	L _{bar} := 30ft				
	ANALYSIS DEMAND LOADS					
	Tie rod Spacing	S _{bara} := 8ft				
	Tie rod Tension Demand	F _{barda} := 122.98kip				
	REVISED DEMAND LOADS FROM WALER ANALYSIS					
	Revised tie rod spacing S _{bar} := 5ft					
	Revised tie rod tension demand	$F_{bard} := rac{F_{barda} \cdot S_{bar}}{S_{bara}} = 76.86 \cdot ki$	p			
	Tie Rod Demand Load to safeguard again	inst Progressive Failure				
	In certain situations, progressive collapse of the struc condition, i.e failure of a tie rod. The load from the fail	cture may be a consequence of an ext ed tie rod is redistributed to adjacent tie	reme e rods			

condition, i.e failure of a tie rod. The load from the failed tie rod is redistributed to adjacent tie rods which normally accounts for an increase in the demand load on the tie rod by 50% in the typical design situation.

Tie rod Tension Demand - considering Progressive failure

$$F_{pbard} := 1.5 \cdot F_{bard} = 115.29 \cdot kip$$

Client	 International Paper Company & McGinnes Industrial Maintenance Corporation 	Job Number 11215702	Shoot 18
Drojoct	San Jacinto River Waste Pits Site	Shoets ByGoel	Date 06/03/2022
Subject	Tie Rod Design Calculation	Checked By S.Chilka	Date 06/03/2022
,	ALLOWABLE STRESS DESIGN CAPAC	CITY - AISC 360-16	
	D2 Tensile Strength of the Tie Rod		
	Overstrength Factors	$\Omega_{ty} \coloneqq 1.67$	TensileYielding
		$\Omega_{tr} \coloneqq 2.0$	Tensile Rupture
	Allowable tensile strength based on limit state of tensile yielding of gross section, Eq D2-1	$P_{ny} \coloneqq \frac{F_{ybar} \cdot A_{barg}}{\Omega_{ty}} = 326.4 \cdot kip$	
	Shear Lag Factor, Table D3.1- Case1	U := 1	
	Allowable tensile strength based on limit state of tensile rupture in net section, Eq D2-2	$P_{nr} := \frac{F_{ubar} \cdot A_{barn} \cdot U}{\Omega_{tr}} = 289 \cdot kip$	
	J3.6 Tensile Strength of Threaded Parts		
	Overstrength Factors	$\Omega_{thr}\coloneqq$ 2.0	
	Nominal Tensile Stress, Table J3.2 - Case 8	$F_{nt} := 0.75 \cdot F_{ubar} = 112.5 \cdot ksi$	
	Allowable Tensile Strength of threaded parts based on limit state of tension rupture, Eq J3-1	$R_{nt} := \frac{F_{nt} \cdot A_{barn}}{\Omega_{thr}} = 216.8 \cdot kip$	
	Allowable Tensile Strength	$F_{barc} := min(P_{ny}, P_{nr}, R_{nt}) = 21$.6.8 · kip

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number_	11215702	Sheet19
Proiect	San Jacinto River Waste Pits Site	_ Sheets By	I.Goel	Date 06/03/2022
Subject	Tie Rod Design Calculation	_ Checked Bv_	S.Chilka	Date 06/03/2022
		- 011001100 07_		

Capacity Check

$$DCR_{2} := \left(\begin{array}{c} F_{pbard} \\ F_{barc} \end{array} \right) \text{ if } F_{barc} \geq F_{pbard} = 0.53$$

"Increase Bar Size" otherwise

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	20
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date_	06/03/2022
Subject	Tie Rod Design Calculation	Checked By	S.Chilka	Date	06/03/2022
		enconce by			

DESIGN OF TIE ROD SECTION, AISC 360-16

Tie Rod Design - Sec C7

MATERIAL PROPERTIES

Steel Yield Stress

Steel Tensile Stress

Tie Rod with 2.25in nominal diameter

Tie rod nominal Diameter

Tie rod approx. major Thread Diameter

d_{bthr} := 2.44in

d_{bar} := 2.25in

Fybar := 120ksi

F_{ubar} := 150ksi

Refer table below from Nucor Skyline Manual

Refer table below from Nucor Skyline Manual

Grade 120 ksi Yield Strength / Grade 150 ksi Ultimate Strength								
Nominal Diameter in mm	Grade	Min. Net Area Thru Threads in ² mm ²	Min. Ultimate Strength kips kN	Min. Yield Strength kips kN	Nominal Weight Ibs/ft kg/m	Approx. Major Thread Diameter in mm	Thread Orientation	Max. Length ft m
1 26	150	0.850 549	128 567	102 454	3.1 4.6	1 % 28.6	Left Hand	60 18.3
1 ¼ 32	150	1.250 807	188 834	150 667	4.5 6.7	1 ½ 38.1	Left Hand	60 18.3
1 ⅔ 36	150	1.580 1019	237 1054	190 843	5.7 8.5	1 % 41.3	Left Hand	60 18.3
1 ¾ 46	150	2.600 1677	390 1735	320 1423	9.1 13.5	2 50.8	Left Hand	60 18.3
2 ¼ 57	150	4.000 2581	600 2669	480 2135	13.6 20.2	2 % 6 62.0	Left Hand	60 18.3
2 ½ 65	150	5.190 3350	778 3457	622 2766	18.3 27.2	2 ¾ 69.9	Left Hand	60 18.3
3 75	150	7.060 4554	1059 4702	847 3766	24.0 35.7	3 ¼ 82.6	Left Hand	60 18.3

Nucor Skyline's high strength threaded bar is cold rolled, threaded, quenched and tempered 4140 grade smooth rounds.

Sacrificial thickness - for accounting corrosion

Refer Basis of Design report

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702 Sheet ²¹
Proiect	San Jacinto River Waste Pits Site	
Subject —	Tie Rod Design Calculation	Checked By S.Chilka Date 06/03/2022
,	Bar Area - Unthreaded Portion (net area)	$A_{barn} := \frac{\pi}{4} \cdot \left(d_{bar} - 2t_c \right)^2 = 3.85 \cdot in^2$
	Bar Area - Threaded Portion (gross area)	$A_{\text{barg}} \coloneqq \frac{\pi}{4} \cdot \left(d_{\text{bthr}} - 2t_{\text{c}} \right)^2 = 4.54 \cdot \text{in}^2$
	Length of Tie Rod	L _{bar} := 30ft
	ANALYSIS DEMAND LOADS	
	Tie rod Spacing	S _{bara} := 5ft
	Tie rod Tension Demand	F _{barda} := 65.6kip
	REVISED DEMAND LOADS FROM WAL	ER ANALYSIS
	Revised tie rod spacing	S _{bar} := 5ft
	Revised tie rod tension demand	F _{bard} := $\frac{F_{barda} \cdot S_{bar}}{S_{bara}}$ = 65.6 · kip
	Tie Rod Demand Load to safeguard agai	nst Progressive Failure
	In certain situations, progressive collapse of the struc condition, i e failure of a tie rod. The load from the faile	ture may be a consequence of an extreme

condition, i.e failure of a tie rod. The load from the failed tie rod is redistributed to adjacent tie rods which normally accounts for an increase in the demand load on the tie rod by 50% in the typical design situation.

Tie rod Tension Demand - considering Progressive failure

$$F_{pbard} := 1.5 \cdot F_{bard} = 98.4 \cdot kip$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number <u>11215702</u>	Sheet <u>22</u>
Project	Tie Rod Design Calculation	Charles By S Chilka	Date 06/03/2022
Subject —	ALLOWABLE STRESS DESIGN CAPAC	CITY - AISC 360-16	
	D2 Tensile Strength of the Tie Rod		
	Overstrength Factors	$\Omega_{ty} \coloneqq 1.67$	TensileYielding
		$\Omega_{tr} := 2.0$	Tensile Rupture
	Allowable tensile strength based on limit state of tensile yielding of gross section, Eq D2-1	$P_{ny} := \frac{Tybar^{A}barg}{\Omega_{ty}} = 326.4 \cdot kip$	
	Shear Lag Factor, Table D3.1- Case1	U := 1 Fubar·Abarp·U	
	Allowable tensile strength based on limit state of tensile rupture in net section, Eq D2-2	$P_{nr} := \frac{ddar darn}{\Omega_{tr}} = 289 \cdot kip$)
	J3.6 Tensile Strength of Threaded Parts		
	Overstrength Factors	$\Omega_{thr} \coloneqq 2.0$	
	Nominal Tensile Stress, Table J3.2 - Case 8	$F_{nt} := 0.75 \cdot F_{ubar} = 112.5 \cdot ksi$	
	Allowable Tensile Strength of threaded parts based on limit state of tension rupture, Eq J3-1	$R_{nt} := \frac{1 \text{ nt}^{-1} \text{ Dbarn}}{\Omega_{thr}} = 216.8 \cdot \text{kip}$	
	Allowable Tensile Strength	$F_{barc} := min(P_{ny}, P_{nr}, R_{nt}) = 21$	L6.8·kip

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number_	11215702	Sheet23
Proiect	San Jacinto River Waste Pits Site	_ Sheets By	I.Goel	Date 06/03/2022
Subject —	Tie Rod Design Calculation	Checked By_	S.Chilka	Date 06/03/2022
0 0 0 0 0 0 0		000		

Capacity Check

$$\label{eq:DCR2} \text{DCR}_2 \coloneqq \left(\begin{array}{c} \frac{F_{pbard}}{F_{barc}} & \text{if} \quad F_{barc} \geq F_{pbard} \\ \text{"Increase Bar Size" otherwise} \end{array} \right) = 0.45$$

Client Project Subject	International Paper Company & McGinnes Industrial Maintenance Corporation San Jacinto River Waste Pits Site Waler Section & Splice Connection Design Calculation	Job Number_ Sheets By Checked By	11215702 I.Goel S.Chilka	Sheet 24 Date 06/03/2022 Date 06/03/2022		
Analy	rsis Demand Load on Waler - Sec C1, C3A	, C4A, C6				
	Tie Rod Tension Demand Load from Analysis	T _{roda} := 131.3ki	<mark>'p</mark>			
	Te Rod Spacing	S _{roda} := 10ft				
	The tie rod spacing assumed in analysis results in large demand loads and section size for waler. To optimize section selection, tie rods will be closely spaced. Closely spaced tie rods will result in lower demand loads.					
	Revised Tie Rod Spacing	$S_{rod} \approx 5 ft$				
		S	Suc 4			

Revised Tie Rod Tension Demand

Demand Load on waler

 $\mathbf{w}_{dl} \coloneqq \frac{\mathbf{T}_{rod}}{\mathbf{S}_{rod}} = 13.13 \cdot \frac{kip}{\mathrm{ft}}$

Demand Load on Waler to safeguard against progressive failure

In certain situations, progressive collapse of the structure may be a conseequence of an extreme condition ie. failure of a tie rod. The wailing to the main wall will need to be checked to ensure that it will not collapse if the span between tie rods doubles following the loss of a tie rod.

SAP2000 analysis is used to calculate the bending moment and shear force demand on the waler for both the cases. Case 1 - without failure of a tie rod and, Case 2 - with failure of a tie rod.

For Case 1 - Continuous beam with four equal spans of length Srod is anaylzed For Case 2 - Continuous beam with three spans of length Srod - 2Srod - Srod is analyzed

Waler Design is governed by the demands from Case 2

GHP			
Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702	Sheet ²⁵
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel	Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka	Date 06/03/2022
Ben	ding Moment Diagram - Case 1		
		Point of zero	o moment
Z	₹		25.67
Bendin	g Moment demand from SAP2000 - Mdsap = 32	2.5Kip-ft	
Sh	ear Force Diagram - Case 1		
Z 26.34	-34-18	-39:31	
Shear F	Force demand from SAP2000 - Vdsap = 39.5Kip		

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet _	26
Project	San Jacinto River Waste Pits Site	- Sheets By	I.Goel	Date 06	6/03/2022
Subject <u>\</u>	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date_06	6/03/2022

Bending Moment Diagram - Case 2

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number	11215702	Sheet	27
Proiect	San Jacinto River Waste Pits Site	- Sheets By	I.Goel	Date	06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date	06/03/2022

Waler Cross-Section

Waler is made of two channel sections C1 and C2

Design of corroded waler section, AISC 360-16

Bending moment demand on waler from SAP2000

 $M_{dsap} := 90 kip \cdot ft$

Shear force demand on waler from SAP2000

V_{dsap} := 66∙kip

Bending moment demand on C1 or C2

$$Md := \frac{M_{dsap}}{2} = 45 \cdot kip \cdot ft$$

Shear force demand on C1 or C2

$$Vd := \frac{V_{dsap}}{2} = 33 \cdot kip$$

	International Danar Company & MaCinnes Industrial		
Client	Maintenance Corporation	_ Job Number	Sheet ²⁸
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	- Checked By S.Chilka	Date06/03/2022
	Steel yield stress	Fy := 36ksi	
	Steel tensile stress	Fu := 58ksi	
	Modulus of Elasticity of steel	E := 29000ksi	
	Sacrificial thickness - for accounting corrosion	tc := 0.0175in	Refer Basis of Design report
Chan	nel Section Dimensional Parameters (MC12X35))	
	Depth	d := 12in	
	Web thickness	tw := 0.4375in	
	Flange thickness	tf := 0.6875in	
	Flange width	bf := 3.75in	
	Distance	k := 1.3125in	
Corre	oded Channel Section Dimensional Parameters	(MC12X35)	
	Web thickness	$twc := tw - 2tc = 0.4 \cdot in$	
	Flange thickness	$tfc := tf - 2tc = 0.65 \cdot in$	

Client N	Maintenance Corporation	Job Number_	11215702	Sheet	29
Project S	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date_	06/03/2022
Subject V	Valer Section & Splice Connection Design Calculation	Checked Bv	S.Chilka	Date_	06/03/2022

Sectional Properties of Corroded Section

Plastic modulus about x axis

$$Zx := \left[(bf) \cdot \frac{(d)^2}{4} \right] - \left[[(bf) - (twc)] \cdot \frac{[(d) - [2 \cdot (tfc)]]^2}{4} \right] = 39.28 \cdot in^3$$

Elastic modulus about x axis

$$Sx := \frac{\left[\left[(bf) \cdot \frac{(d)^3}{12} \right] - \left[[(bf) - (twc)] \cdot \frac{\left[(d) - [2 \cdot (tfc)] \right]^3}{12} \right] \right]}{(d) \cdot 0.5} = 33.12 \cdot in^3$$

Torsion constant

$$J_{w} := \frac{\left[\left[2 \cdot (bf) \cdot (tfc)^{3} \right] + \left[\left[(d) - (tfc) \right] \cdot (twc)^{3} \right] \right]}{3} = 0.94 \cdot in^{4}$$

Moment of Inertia about external edge of web parallel to y axis

Iyo :=
$$\left[\left[(d) - \left[2 \cdot (tfc) \right] \right] \cdot \frac{(twc)^3}{3} \right] + \left[(bf)^3 \cdot (tfc) \cdot \frac{2}{3} \right] = 23.17 \cdot in^4$$

Cross sectional area

Ac :=
$$[2 \cdot (bf) \cdot (tfc)] + [[(d) - [2 \cdot (tfc)]] \cdot (twc)] = 9.2 \cdot in^2$$

Client	International Paper Company & McGinnes Industrial	100 Number 11215702 Sheet 30
Dreiset	San Jacinto River Waste Pits Site	_ 500 Number 60el 5te 6/03/2022
Project	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Distance of centroid from external edge of web $xc := \frac{\left[\left[(d) - \left[2 \cdot (tfc) \right] \right] \cdot \frac{(twc)^2}{2} \right]}{Ac}$	$\frac{+\left[(bf)^{2} \cdot (tfc)\right]}{= 1.09 \cdot in}$
	Moment of inertia about y axis	$Iy := Iyo - (Ac \cdot xc^2) = 12.21 \cdot in^4$
	Distance between flange centroids	ho := (d) $-$ (tfc) = 11.35·in
	Warping torsional constant	
	$Cw := \frac{\left[(tfc) \cdot (bf)^3 \cdot [(d) - (tfc)]^2 \right]}{12 \cdot \left[[6 \cdot (bf) \cdot (tfc)]^2 \right]}$	$[[3 \cdot (bf) \cdot (tfc)] + [2 \cdot (twc) \cdot [(d) - (tfc)]]]$ $[co)] + [(twc) \cdot [(d) - (tfc)]]]$
		$Cw = 316.03 \cdot in^6$
	radius of gyration about y axis	$ry := \sqrt{\frac{Iy}{Ac}} = 1.15 \cdot in$
	Overstrength factor for flexure	$\Omega f := 1.67$
	Overstrength factor for shear	$\Omega \mathbf{v} \coloneqq 1.67$
Class	sification of sections for local buckling - Section	B4.1
	Classification of flanges in flexure - Table B4.1b (c	ase 10)
	Width - to - Thickness Ratio for flange	$a_{f} := \frac{bf}{tfc} = 5.75$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number11215702	Sheet
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	- Checked By S.Chilka	Date <u>06/03/2022</u>
	Limiting width to thickness ratio for compact flange section about major/minor axis	$\lambda_{cf} \coloneqq 0.38 \cdot \sqrt{\frac{E}{Fy}} = 10.79$	
	Limiting width to thickness ratio for non compact flange section about major/minor axis	$\lambda_{nf} := 1 \sqrt{\frac{E}{Fy}} = 28.38$	
	Classification of web in flexure - Table B4.1b (case	e 15)	
	Width - to - Thickness Ratio for web	$a_{W} := \frac{(d) - [2 \cdot (k - 2tc)]}{twc} = 23.47$	
	Limiting width to thickness ratio for compact web section about major/minor axis	$\lambda_{cw} := 3.76 \cdot \sqrt{\frac{E}{Fy}} = 106.72$	
	Limiting width to thickness ratio for non compact web section about major/minor axis	$\lambda_{nw} := 5.7 \sqrt{\frac{E}{Fy}} = 161.78$	
	$cn_{ff} := "Compact flange" if a_f \leq \lambda_{cf}$	= "Compact flange"	
	"Non compact flange" if $\lambda_{cf} \leq 3$	$a_f \leq \lambda_{nf}$	
	"Slender flange" otherwise		
	$cn_{wf} := $ "Compact web" if $a_w \le \lambda_{cw}$	= "Compact web"	
	"Non compact web" if $\lambda_{CW} \le a_{W}$ "Slender flange web" otherwise	$\gamma \leq \lambda_{\rm nw}$	
Allow	vable Stress Shear Design - Chapter G		
	Web area	$Aw := (d) \cdot (twc) = 4.83 \cdot in^2$	

Web plate buckling coefficient

Kv := 5.34

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702	Sheet 32
Broject	San Jacinto River Waste Pits Site	Sheets By LG0el	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	- Checked By <u>S.Chilka</u>	Date
		$\mathbf{r} := 1.1 \cdot \left(\mathbf{K} \mathbf{v} \cdot \frac{\mathbf{E}}{\mathbf{F} \mathbf{y}} \right)^2 = 72.15$	
		r1 := $\frac{(d) - [2 \cdot (tfc)]}{twc} = 26.57$	
	Web shear coefficient, Eq G2-3 and Eq G2-4	$Cv1 := \begin{vmatrix} 1 & \text{if } r \ge r1 \\ \frac{r}{r1} & \text{if } r < r1 \end{vmatrix}$	
		Cv1 = 1	
	Nominal shear strength, Eq G2-1	$Vn := 0.6 \cdot Cv1 \cdot Aw \cdot Fy = 104.33 \cdot kip$	
	Allowable shear strength	$vc := \frac{Vn}{\Omega v} = 62.47 \cdot kip$	
	Check for shear strength	Checkvc := $\frac{Vd}{vc}$ if $vc \ge Vd$ "Revise waler section"	if vc < Vd
		Checkvc = 0.53	
Allow	vable Stress Flexure design about major axis - C	hapter F	
	Yielding - Section F2.1		

Nominal flexural strength for yielding, Eq F2-1 $Mnyld := Fy \cdot Zx = 117.83 \cdot kip \cdot ft$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702 Sheet ³³
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
		,
	Lateral Torsional Buckling - Section F2.2	
	Unbraced length	$Lb := S_{rod} \cdot 2 = 120 \cdot in$
	Limiting unbraced length for yielding Eq F2-5	$Lp := 1.76 \cdot ry \cdot \sqrt{\frac{E}{Fy}} = 57.55 \cdot in$
	Eq F2-8b	$cf := \left(\frac{ho}{2}\right) \cdot \sqrt{\frac{Iy}{Cw}} = 1.12$
	Eq F2-7	rts := $\sqrt{\frac{\sqrt{Iy \cdot Cw}}{Sx}} = 1.37 \cdot in$
	Eq F2-6 $Lr := 1.95 \cdot rts \cdot \frac{E \cdot \sqrt{\left(J \cdot \frac{cf}{Sx \cdot ho}\right) + \sqrt{\left(J \cdot \frac{cf}{Sx}\right)}}{(0)}}{(0)}$	$\frac{\frac{cf}{Sx \cdot ho}^{2} + \left[6.76 \cdot \left(0.7 \cdot \frac{Fy}{E} \right)^{2} \right]}{0.7 \cdot Fy} = 245.54 \cdot in$
	From SAP2000 analysis, for calculation of Cb (Lp<	Lb<=Lr)

Noment at quarter point of unbraced segment	$Ma := 28.4 \text{kip} \cdot \text{ft}$
Moment at center line of unbraced segment	Mb := 67.8kip·ft
Moment at three quarter point of unbraced segment	Mc := 28.4kip·ft
Maximum moment in unbraced segment	Mabs := 89.8kip·ft

	International Paper Company & McGinnes Industrial	44045700 01 34
Client	Maintenance Corporation	Job Number <u>11215702</u> Sheet <u>34</u>
Project	San Jacinto River Waste Pits Site	Sheets By <u>I.Goel</u> Date <u>06/03/2022</u>
Subject —	Waler Section & Spice Connection Design Calculation	Checked By S.Chika Date 00/03/2022
	Plastic moment capacity	Mp := Mnyld
	Lateral torsional buckling modification factor, Eq F1-1	
	$Cb := 12.5 \cdot \frac{Ma}{[(2.5 \cdot Mabs) + (3 \cdot Ma)]}$	$\frac{abs}{abs} = 1.69$
	Nominal flexural strength for lateral torsional buckling - Eq F2-2	$Mnltb := Cb \cdot \left[Mp - (Mp - 0.7 \cdot Fy \cdot Sx) \cdot \frac{(Lb - Lp)}{(Lr - Lp)} \right]$
	Nominal flow ral strength	$Mnltb = 171.54 \cdot kip \cdot ft$
		$Mn = rank(why) = rr/.85 \cdot kip \cdot n$
	Design flexure strength	$mc := \frac{1}{\Omega f} = 70.56 \cdot k_{1} p \cdot ft$
	Check for flexural strength	Checkme := $\frac{Md}{mc}$ if $mc \ge Md$ "Revise waler section" if $mc < Md$
Defle	ction Check	Checkmc = 0.64

Limiting Deflection

$$L_{\text{ld}} := \frac{\text{Lb}}{360} = 0.33 \cdot \text{in}$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	35
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date	06/03/2022
, Subiect —	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date_	06/03/2022
	Maximum deflection from SAP2000 analysis	L _{md} := 0.18in			

Demand to Capacity Ratio

Check_d := $\begin{vmatrix} L_{md} \\ L_{ld} \end{vmatrix}$ if $L_{ld} \ge L_{md}$ "Revise unbraced length" if $L_{ld} < L_{md}$

 $\text{Check}_{d} = 0.54$

Bolted Splice Plate Connection Design for Waler, Allowable Stress Design -AISC 360-16

From SAP2000 analysis, point of zero moment in typical span for case 1 is ~1.2' and for case 2 is ~1.7' from tie rod anchorage. Point of splice connection for design is 1.5' from tie rod anchorage.

Resultant Web Force at Point of Splice Connection

Bending moment demand at point of splice, from SAP2000 analysis

 $Msd := 11 kip \cdot ft$

Horizontal force in web due to moment at point of splice

$$H_{W} := \frac{Msd\cdot 4}{[d - [2\cdot(k - 2tc)]]} = 55.9 \cdot kip$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet <u>36</u>
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date 06/03/2022
, Subiect —	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date <u>06/03/2022</u>
	Resultant web force at point of splice connection	$V_r := \sqrt{Vd^2 + H}$ $\frac{H_w}{2}$	$\overline{{\rm M}_{\rm W}}^2 = 64.92 \cdot {\rm kip}$	
	Web Moment = $\frac{H_w}{2} \left(\frac{D}{2}\right)$ $H_w = \frac{Web Moment}{D/4}$			
Facto	red shear resistance of bolts in shear			
	No of shear planes	Ns := 1	Í	Bolt in shear (V) and tension (T)
	Section J3, Table J3.2	÷		
	Using HDG Group A, A325 bolts		Ľ	
	Nominal shear stress when threads are not excluded from shear planes	Fnv := 54ksi		
	Taking 1.25" nominal diameter bolt			
	Bolt nominal diameter	db := 1.25in		
	Nominal unthreaded body area of bolt	$Ab := 3.14 \cdot (db)^2$	$^{2} \cdot 0.25 = 1.23 \cdot \text{in}^{2}$	

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number Sheet 37
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel Date 06/03/2022
, Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Nominal shear strength of bolt	$Rn := Fnv \cdot Ab \cdot Ns = 66.23 \cdot kip$
	Overstrength factor	$\Omega b := 2$
	Allowable shear strength of bolt	$Rr := \frac{Rn}{\Omega b} = 33.12 \cdot kip$
	No of bolts required on each side of the web splice	Nb := $\frac{V_r}{Rr} = 1.96$
	No of bolts provided on each side of the web splice	Nf := 6
	No of bolt columns in connection pattern along the length of splice plate	Nr := 3

Bolt Connection Pattern

Table J3.3, for 1.25" bolt dia, standard hole dia is 1.375"

Hole diameter

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number Sheet
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel Date _06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Minimum center to center spacing allowed b/w holes, Sec J3.3	$Smin := \frac{8 \cdot (db)}{3} = 3.33 \cdot in$
	Minimum clear spacing allowed b/w holes, Sec J3.3	Semin := $db = 1.25 \cdot in$
	Table J3.4, minimum edge distance allowed for 1.25" bolt dia	Semin := 1.625in
	Providing a splice plate of 24"X8", 0.75" thickness	for the connection
	No of splice plates in the connection	Nsp := 1
	Eq. J4-3 and J4-4, strength of elements in shear	
	Depth of splice plate	dsp := 8in
	Thickness of splice plate	Twsp := 0.75in
	Reduced thickness of splice plate - for accounting corrosion	twsp := Twsp $-$ tc = 0.73 \cdot in
	Gross area subject to shear	Agv := $dsp \cdot twsp = 5.86 \cdot in^2$
	Nominal shear yielding strength	$Rnsy := 0.6 \cdot Fy \cdot Agv \cdot Nsp = 126.58 \cdot kip$
	Overstrength factor	Ω spsy := 1.5

Client_	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number1215702 Sheet
Project	San Jacinto River Waste Pits Site	_ Sheets ByS Chilka Date06/03/2022
Subject —	Waler Section & Spice Connection Design Calculation	Checked By S.Crilika Date 00/03/2022
	Allowable shear yielding strength	$\operatorname{Rrsy} := \frac{\operatorname{Rnsy}}{\Omega \operatorname{spsy}} = 84.38 \cdot \operatorname{kip}$
	Demand to Capacity Ratio	Checksy := $\frac{Vd}{Rrsy}$ if $Rrsy \ge Vd$ "Revise splice plate" if $Rrsy < Vd$
		Checksy = 0.39
	Net area subject to shear	Anv := $\left\lfloor dsp - \left(Nf \cdot \frac{dbh}{Nr}\right) \right\rfloor \cdot twsp = 3.85 \cdot in^2$
	Nominal shear rupture strength	$Rnsr := 0.6 \cdot Fu \cdot Anv \cdot Nsp = 133.83 \cdot kip$
	Overstrength factor	Ω spsr := 2
	Allowable shear rupture strength	$\operatorname{Rrsr} := \frac{\operatorname{Rnsr}}{\Omega \operatorname{spsr}} = 66.91 \cdot \operatorname{kip}$
	Demand to Capacity ratio	Checksr := $\frac{Vd}{Rrsr}$ if $Rrsr \ge Vd$ "Revise splice plate" if $Rrsr < Vd$
		Checksr = 0.49

	International Paper Company & McGinnes Industrial					
Client	Maintenance Corporation	Job Number 11	215702	Sheet 40		
Project	San Jacinto River Waste Pits Site	Sheets ByI.	Goel	Date 06/03/2022		
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S	.Chilka	Date06/03/2022		
	Maximum spacing and edge distance - Section J3-	5				
	Maximum edge distance $Semax := \begin{bmatrix} 12 \cdot \min(tw, Twsp) & \text{if } 12 \cdot \min(tw, Twsp) \le 6 \text{in} \\ 6 \text{in} & \text{if } 12 \cdot \min(tw, Twsp) > 6 \text{in} \end{bmatrix}$ Maximum center to center longitudinal spacing allowed b/w holes					
	Smax := $24 \cdot \min(tw, Twsp)$ if $24 \cdot \min(tw, Twsp) \le 12in = 10.5 \cdot in$ 12in if $24 \cdot \min(tw, Twsp) > 12in$					
	Distance of bolt from splice plate edge	Seprov := 2in				
	Distance of bolt from channel section flange inner edge					
	Sepprov := Seprov + $[(d - dsp) \cdot 0.5 - k] = 2.69 \cdot in$					
	Spacing provided between bolts	Sprov := 4in				
	Check for bolt edge distance provided					
	Secheck := "Okay" if Semin ≤ ma "Not Okay" otherwise	x(Sepprov, Seprov) :	≤ Semax = "Ok	ay"		
	Check for spacing provided between bolts					
	Scheck := "Okay" if (max(Smin,) "Not Okay" otherwise	$Scmin + dbh) \le Sprc$	$Sov \leq Smax$) = "	Okay"		

	International Paper Company & McGinnes Industrial			
Client	Maintenance Corporation	Job Number_	11215702	Sheet 41
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date 06/03/2022

Block Shear Rupture Check, Eq. J4-5

Fallure by tearing out of shaded portion

Multiple-Row Beam-End Connections

(b) Cases for which $U_{bs} = 0.5$

Fig. C-J4.1. Failure surface for block shear rupture limit state.

No of bolts in the outermost edge of the connection pattern which is in tension

Nbr := 3

Net Area resisting the tensile stress

Ant :=
$$Nsp \cdot [Seprov + (Nbr - 1)Sprov - [dbh \cdot (Nbr - 0.5)]] \cdot twsp = 4.81 \cdot in^{2}$$

Net Area resisting the shear stress

Avn := Nsp
$$\cdot \left[dsp - Seprov - \left[\left[\left(\frac{Nf}{Nr} \right) - 0.5 \right] \cdot dbh \right] \right] \cdot twsp = 2.88 \cdot in^2$$

Gross area resisting the shear stress

Avg := Nsp·(dsp - Seprov)·twsp = $4.39 \cdot in^2$

Nominal block shear strength

Ubs := 0.5

 $Rbs := [(0.6 \cdot Fu \cdot Avn) + (Ubs \cdot Fu \cdot Ant)] = 239.77 \cdot kip$

$$\begin{array}{ll} \text{Rnbs} := & \text{Rbs} \quad \text{if} \quad \text{Rbs} \leq \left[(0.6 \cdot \text{Fy} \cdot \text{Avg}) + (\text{Ubs} \cdot \text{Fu} \cdot \text{Ant}) \right] & = 234.34 \cdot \text{kip} \\ & \left[(0.6 \cdot \text{Fy} \cdot \text{Avg}) + (\text{Ubs} \cdot \text{Fu} \cdot \text{Ant}) \right] \quad \text{if} \quad \text{Rbs} > \left[(0.6 \cdot \text{Fy} \cdot \text{Avg}) + (\text{Ubs} \cdot \text{Fu} \cdot \text{Ant}) \right] \end{array}$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number1215702 Sheet42
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Overstrength Factor	Ω bs := 2
	Allowable block shear strength	$\text{Rrbs} := \frac{\text{Rnbs}}{\Omega \text{bs}} = 117.17 \cdot \text{kip}$
	Demand to Capacity Ratio	Checkbs := $\begin{vmatrix} Vd \\ Rrbs \end{vmatrix}$ if $Rrbs \ge Vd$ "Revise splice plate" if $Rrbs < Vd$
		Checkbs = 0.28
	Bearing Resistance Check, Eq. J3-6a	
	Nominal bearing strength at bolt holes	Rnb := $2.4 \cdot (db) \cdot twsp \cdot Fu \cdot Nf = 764.73 \cdot kip$
	Overstrength Factor	$\Omega bh := 2$
	Allowable bearing strength at bolt holes	$\operatorname{Rrb} := \frac{\operatorname{Rnb}}{\Omega \operatorname{bh}} = 382.36 \cdot \operatorname{kip}$
	Demand to Capacity Ratio	
	Checkbh := $\frac{V_r}{Rrb}$ if $Rrb \ge$ "Revise splice p	$V_r = 0.17$ plate or bolts" if $Rrb < V_r$
	Tearout Resistance Check, Eq. J3-6c	
	lc for edge bolts	lco := Seprov $-\left(\frac{dbh}{2}\right) = 1.31 \cdot in$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number1215702Sheet ⁴³
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel Date06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	- Checked By S.Chilka Date 06/03/2022
	lc for inner bolts	lci := Sprov $- dbh = 2.63 \cdot in$
	Inner bolts on each side of splice	Ni := 0
	For edge bolts, nominal tearout strength at bolt holes	Rnto := $1.2 \cdot twsp \cdot Fu \cdot lco \cdot (Nf - Ni) = 401.48 \cdot kip$
	For inner bolts. nominal tearout strength at bolt holes	Rnti := $1.2 \cdot twsp \cdot Fu \cdot lci \cdot Ni = 0 \cdot kip$
	Total nominal tearout strength at bolt holes	Rnt := Rnto + Rnti = 401.48 · kip
	Overstrength factor	Ω bt := 2
	Allowable tearout strength at bolt holes	$Rrt := \frac{Rnt}{\Omega bt} = 200.74 \cdot kip$
	Demand to Capacity Ratio	
	Checkth := $\frac{V_r}{Rrt}$ if $Rrt \ge V_r$ "Revise splice p	$V_r = 0.32$ plate or bolts" if $Rrt < V_r$
	Slip Resistance Check, Eq. J3-4	
	For class A surfaces	$\mu \coloneqq 0.3$
		Du := 1.13
	Minimum bolt pretension, Table J3.1 for Group A, A325 bolts	Tb := 81kip

Client Project Subject	International Paper Company & McGinnes Industrial Maintenance Corporation San Jacinto River Waste Pits Site Waler Section & Splice Connection Design Calculation	Job Number <u>11215702</u> Sheets By <u>I.Goel</u> Checked By <u>S.Chilka</u>	Sheet44 Date06/03/2022 Date06/03/2022
		hf := 1	
	Nominal slip resistance of bolts	$Rsr := Nf \cdot Ns \cdot \mu \cdot Du \cdot Tb \cdot hf = 164.$	75∙kip
	Overstrength Factor	Ωsr := 1.5	
	Allowable slip resistance of bolts	$\operatorname{Rrslr} := \frac{\operatorname{Rsr}}{\Omega \operatorname{sr}} = 109.84 \cdot \operatorname{kip}$	
	Demand to Capacity Ratio		

Checkslr := $\begin{vmatrix} V_r \\ Rrslr \end{vmatrix}$ if $Rrslr \ge V_r = 0.59$ "Revise bolts size" if $Rrslr < V_r$

Design Summary

Provide rectangular splice plate of 24"X8",0.75" thickness. On each side of web splice bolted plate connection, provide 6 - 1.25" dia HDG Group A - A325 bolts.

	International Paper Company & McGinnes Industrial			. 45
Client	Maintenance Corporation	Job Number_	11215702	Sheet 45
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date 06/03/2022

Analysis Demand Load on Waler - Sec C2

Tie Rod Tension Demand Load from Analysis

Tie Rod Spacing

The tie rod spacing assumed in analysis results in large demand loads and section size for waler. To optimize section selection, tie rods will be closely spaced. Closely spaced tie rods will result in lower demand loads.

Revised Tie Rod Spacing

 $S_{rod} := 5 ft$

 $S_{roda} := 6ft$

 $T_{roda} := 178.4 kip$

Revised Tie Rod Tension Demand

 $T_{rod} := T_{roda} \cdot \frac{S_{rod}}{S_{roda}} = 148.67 \cdot kip$

Demand Load on waler

 $w_{dl} := \frac{T_{rod}}{S_{rod}} = 29.73 \cdot \frac{kip}{ft}$

Demand Load on Waler to safeguard against progressive failure

In certain situations, progressive collapse of the structure may be a conseequence of an extreme condition ie. failure of a tie rod. The wailing to the main wall will need to be checked to ensure that it will not collapse if the span between tie rods doubles following the loss of a tie rod.

SAP2000 analysis is used to calculate the bending moment and shear force demand on the waler for both the cases. Case 1 - without failure of a tie rod and, Case 2 - with failure of a tie rod.

For Case 1 - Continuous beam with four equal spans of length Srod is anaylzed For Case 2 - Continuous beam with three spans of length Srod - 2Srod - Srod is analyzed

Waler Design is governed by the demands from Case 2

GHL			
Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number_ <u>11215702</u>	Sheet ⁴⁶
Project _	San Jacinto River Waste Pits Site	Sheets By I.Goel	Date 06/03/2022
Subject –	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka	Date _06/03/2022
Ben	ding Moment Diagram - Case 1	Point of zero	moment
Z	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩		
Bendin	g Moment demand from SAP2000 - Mdsap = 73	3.4Kip-ft	
Sh	ear Force Diagram - Case 1		
Z B Z Z Z		68 8	8
Shear	Force demand from SAP2000 - Vdsap = 89Kip		

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date 06/03/2022
Bend	ing Moment Diagram - Case 2			
		Point of	of zoro momont	

53.5

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number	11215702	Sheet	48
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date _	06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By	S.Chilka	Date_	06/03/2022

Waler Cross-Section

Waler is made of two channel sections C1 and C2

Design of corroded waler section, AISC 360-16

Bending moment demand on waler from
SAP2000 $M_{dsap} := 203.26 \text{kip·ft}$ Shear force demand on waler from SAP2000 $V_{dsap} := 149 \cdot \text{kip}$ Bending moment demand on C1 or C2 $Md := \frac{M_{dsap}}{2} = 101.63 \cdot \text{kip·ft}$ Shear force demand on C1 or C2 $Vd := \frac{V_{dsap}}{2} = 74.5 \cdot \text{kip}$

Steel yield stress

Fy := 36ksi

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702	Sheet ⁴⁹
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka	Date 06/03/2022
·	Steel tensile stress	Fu := 58ksi	
	Modulus of Elasticity of steel	E := 29000ksi	
	Sacrificial thickness - for accounting corrosion	tc := 0.0175in	Refer Basis of Design report
Chan	nel Section Dimensional Parameters (MC18X45.	8)	
	Depth	d := 18in	
	Web thickness	tw := 0.5in	
	Flange thickness	tf := 0.625in	
	Flange width	bf := 4in	
	Distance	k := 1.4375in	
Corre	oded Channel Section Dimensional Parameters (MC18X45.8)	
	Web thickness	twc := tw $- 2$ tc = 0.47 \cdot in	
	Flange thickness	tfc := tf -2 tc = 0.59·in	
Secti	onal Properties of Corroded Section		
	Plastic modulus about x axis		
	$Zx := \left[(bf) \cdot \frac{(d)^2}{4} \right] - \left[[(bf) - (twc)] \cdot \frac{[(d)^2]}{4} \right]$	$\frac{-\left[2\cdot(\mathrm{tfc})\right]^2}{4} = 73.98 \cdot \mathrm{in}^3$	

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	50
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date _	06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date_	06/03/2022

Elastic modulus about x axis

$$Sx := \frac{\left[\left[(bf) \cdot \frac{(d)^3}{12} \right] - \left[[(bf) - (twc)] \cdot \frac{\left[(d) - [2 \cdot (tfc)] \right]^3}{12} \right] \right]}{(d) \cdot 0.5} = 60.24 \cdot in^3$$

Torsion constant

$$J_{w} := \frac{\left[\left[2 \cdot (bf) \cdot (tfc)^{3} \right] + \left[\left[(d) - (tfc) \right] \cdot (twc)^{3} \right] \right]}{3} = 1.13 \cdot in^{4}$$

Moment of Inertia about external edge of web parallel to y axis

Iyo :=
$$\left[\left[(d) - \left[2 \cdot (tfc) \right] \right] \cdot \frac{(twc)^3}{3} \right] + \left[(bf)^3 \cdot (tfc) \cdot \frac{2}{3} \right] = 25.74 \cdot in^4$$

Cross sectional area

Ac :=
$$[2 \cdot (bf) \cdot (tfc)] + [[(d) - [2 \cdot (tfc)]] \cdot (twc)] = 12.54 \cdot in^2$$

Distance of centroid from external edge of web

$$\operatorname{xc} := \frac{\left[\left[\left[(d) - \left[2 \cdot (tfc) \right] \right] \cdot \frac{(twc)^2}{2} \right] + \left[(bf)^2 \cdot (tfc) \right] \right]}{\operatorname{Ac}} = 0.9 \cdot \operatorname{in}$$

Moment of inertia about y axis

$$Iy := Iyo - (Ac \cdot xc^2) = 15.63 \cdot in^4$$

	International Paper Company & McGinnes Industrial		51
Client	Maintenance Corporation	_ Job Number1215702	Sheet 51
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel	Date 06/03/2022
Subject —	Distance between flange centroids	ho := (d) - (tfc) = 17.41 · in	Date
	Warpingtorsionalconstant		
	$Cw := \frac{\left[(tfc) \cdot (bf)^3 \cdot [(d) - (tfc)]^2 \right]}{12 \cdot [[6 \cdot (bf) \cdot (tfc)]^2]}$	$\frac{[[3 \cdot (bf) \cdot (tfc)] + [2 \cdot (twc) \cdot [(d) - (tfc)]]}{[c)] + [(twc) \cdot [(d) - (tfc)]]]}$	<u>)]]]</u>
	Cw = 99	$97.31 \cdot \text{in}^6$	
	radius of gyration about y axis	$ry := \sqrt{\frac{Iy}{Ac}} = 1.12 \cdot in$	
	Overstrength factor for flexure	$\Omega f := 1.67$	
	Overstrength factor for shear	$\Omega v := 1.67$	
Class	ification of sections for local buckling - Section	B4.1	
	Classification of flanges in flexure - Table B4.1b (ca	ase 10)	
	Width - to - Thickness Ratio for flange	$a_{f} \coloneqq \frac{bf}{tfc} = 6.78$	
	Limiting width to thickness ratio for compact flange section about major/minor axis	$\lambda_{cf} \coloneqq 0.38 \cdot \sqrt{\frac{E}{Fy}} = 10.79$	
	Limiting width to thickness ratio for non compact flange section about major/minor axis	$\lambda_{\rm nf} := 1 \sqrt{\frac{\rm E}{\rm Fy}} = 28.38$	
	Classification of web in flexure - Table B4.1b (case	15)	
	Width - to - Thickness Ratio for web	$a_{W} := \frac{(d) - [2 \cdot (k - 2tc)]}{twc} = 32.68$	

	International Paper Company & McGinnes Industrial		44045700	5 2
Client		_ Job Number_	11215702	
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date06/03/2022
	Limiting width to thickness ratio for compact web section about major/minor axis	$\lambda_{cw} \coloneqq 3.76 \cdot \sqrt{\frac{E}{F}}$	$\frac{1}{y} = 106.72$	
	Limiting width to thickness ratio for non compact web section about major/minor axis	$\lambda_{nw} \coloneqq 5.7 \sqrt{\frac{E}{Fy}}$	= 161.78	
	$cn_{ff} :=$ "Compact flange" if $a_f \le \lambda_{cf}$	= "Comp	oact flange"	
	"Non compact flange" if $\lambda_{cf} \leq a$	$f \leq \lambda_{nf}$		
	"Slender flange" otherwise			
	$cn_{wf} := "Compact web" if a_{w} \le \lambda_{cw} "Non compact web" if \lambda_{cw} \le a_{w} "Slender flange web" otherwise$	= "Compa $\leq \lambda_{nw}$	act web"	
Allov	wable Stress Shear Design - Chapter G			
	Web area	$Aw := (d) \cdot (twc)$	$= 8.37 \cdot in^2$	
	Web plate buckling coefficient	Kv := 5.34		

$$r := 1.1 \cdot \left(Kv \cdot \frac{E}{Fy} \right)^2 = 72.15$$

r1 :=
$$\frac{(d) - [2 \cdot (tfc)]}{twc} = 36.17$$

Web shear coefficient, Eq G2-3 and Eq G2-4

 $Cv1 := \begin{vmatrix} 1 & \text{if } r \ge r1 \\ \frac{r}{r1} & \text{if } r < r1 \end{vmatrix}$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702	Sheet ⁵³
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel	Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka	Date 06/03/2022
,	Nominal shear strength, Eg G2-1	Cv1 = 1 $Vn := 0.6 \cdot Cv1 \cdot Aw \cdot Fv = 180.79 \cdot kin$	
	Allowable shear strength	$vc := \frac{Vn}{\Omega v} = 108.26 \cdot kip$	
	Check for shear strength	Checkvc := $\frac{Vd}{vc}$ if $vc \ge Vd$ "Revise waler section"	if vc < Vd
		Checkvc = 0.69	
Allow	vable Stress Flexure design about major axis - C	hapter F	
	Yielding - Section F2.1		
	Nominal flexural strength for yielding, Eq F2-1	Mnyld := $Fy \cdot Zx = 221.93 \cdot kip \cdot ft$	
	Lateral Torsional Buckling - Section F2.2		
	Unbraced length	$Lb := S_{rod} \cdot 2 = 120 \cdot in$	
	Limiting unbraced length for yielding Eq F2-5	$Lp := 1.76 \cdot ry \cdot \sqrt{\frac{E}{Fy}} = 55.77 \cdot in$	
	Eq F2-8b	$cf := \left(\frac{ho}{2}\right) \cdot \sqrt{\frac{Iy}{Cw}} = 1.09$	
	Eq F2-7	rts := $\sqrt{\frac{\sqrt{Iy \cdot Cw}}{Sx}} = 1.44 \cdot in$	

	Í				
	International Paper Company & McGinnes Industrial		4045700	.	54
Client	Maintenance Corporation	Job Number 1	1215702	Sheet	
Project	San Jacinto River Waste Pits Site	Sheets By	.Goel	Date _	06/03/2022
Subject —	Water Section & Splice Connection Design Calculation	Checked By	S.Chilka	Date _	06/03/2022
	Eq F2-6 $Lr := 1.95 \cdot rts \cdot \frac{E \cdot \sqrt{\left(J \cdot \frac{cf}{Sx \cdot ho}\right) + \sqrt{\left(J \cdot \frac{cf}{Sx}\right)}}}{(0.000)}$	$\frac{\mathrm{cf}}{\mathrm{Sx}\cdot\mathrm{ho}}\right)^2 + \left[6.76\cdot\left(0.7\right)^2\right]$	$\overline{\frac{7 \cdot \frac{Fy}{E}}{2}} = 197.09$	9∙in	
	From SAP2000 analysis, for calculation of Cb (Lp<	Lb<=Lr)			
	Moment at quarter point of unbraced segment	Ma := 64.3kip·ft			
	Moment at center line of unbraced segment	Mb := 153.5kip·ft			
	Moment at three quarter point of unbraced segment	Mc := 64.3kip·ft			
	Maximum moment in unbraced segment	Mabs := 203.3kip·fi	t		
	Plastic moment capacity	Mp := Mnyld			
	Lateral torsional buckling modification factor, Eq F1-1				
	$Cb := 12.5 \cdot \frac{Ma}{[(2.5 \cdot Mabs) + (3 \cdot Ma)]}$	$\frac{\text{abs}}{1 + (4 \cdot \text{Mb}) + (3 \cdot \text{Mc})}$	= 1.69		
	Nominal flexural strength for lateral torsional buckling - Eq F2-2	Mnltb := $Cb \cdot \left[Mp - \right]$	(Mp – 0.7·Fy·Sx	(Lb - (Lb - (Lr -)))	Lp) Lp)
		Mnltb = 300.9·kip·f	ìt		

Client	International Paper Company & McGinnes Industrial Maintenance Corporation San Jacinto River Waste Pits Site	_ Job Number Sheet Sheet Sheets By LGoel Date06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Nominal flexural strength	$Mn := min(Mnyld, Mnltb) = 221.93 \cdot kip \cdot ft$
	Design flexure strength	$mc := \frac{Mn}{\Omega f} = 132.89 \cdot kip \cdot ft$
	Check for flexural strength	Checkme := $\begin{vmatrix} Md \\ mc \end{vmatrix}$ if mc \ge Md "Revise waler section" if mc < Md
		Checkmc = 0.76
Defle	ection Check	
	Limiting Deflection	$L_{ld} := \frac{Lb}{360} = 0.33 \cdot in$
	Maximum deflection from SAP2000 analysis	$L_{md} := 0.25in$
	Demand to Capacity Ratio	Check _d := $\begin{vmatrix} L_{md} \\ L_{ld} \end{vmatrix}$ if $L_{ld} \ge L_{md}$ "Revise unbraced length" if $L_{ld} < L_{md}$
		$\text{Check}_{d} = 0.75$

International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	56
San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date_	06/03/2022
Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date_	06/03/2022
	International Paper Company & McGinnes Industrial Maintenance Corporation San Jacinto River Waste Pits Site Waler Section & Splice Connection Design Calculation	International Paper Company & McGinnes Industrial Maintenance Corporation Job Number_ San Jacinto River Waste Pits Site Sheets By Waler Section & Splice Connection Design Calculation Checked By	International Paper Company & McGinnes Industrial Maintenance Corporation Job Number 11215702 San Jacinto River Waste Pits Site Sheets By I.Goel Waler Section & Splice Connection Design Calculation Checked By S.Chilka	International Paper Company & McGinnes Industrial Job Number 11215702 Sheet Maintenance Corporation Job Number 11215702 Sheet San Jacinto River Waste Pits Site Sheets By I.Goel Date Waler Section & Splice Connection Design Calculation Checked By S.Chilka Date

Bolted Splice Plate Connection Design for Waler, Allowable Stress Design - AISC 360-16

From SAP2000 analysis, point of zero moment in typical span for case 1 is \sim 1.2' and for case 2 is \sim 1.7' from tie rod anchorage. Point of splice connection for design is 1.5' from tie rod anchorage.

Resultant Web Force at Point of Splice Connection

Bending moment demand at point of splice, from SAP2000 analysis

Msd := 24.88kip·ft

Horizontal force in web due to moment at point of splice

 $H_{W} := \frac{Msd\cdot 4}{[d - [2\cdot(k - 2tc)]]} = 78.59 \cdot kip$

Resultant web force at point of splice connection

$$V_r := \sqrt{Vd^2 + H_W^2} = 108.29 \cdot kip$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	57
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date	06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By	S.Chilka	- Date	06/03/2022
Cabjoor					

Factored shear resistance of bolts in shear

No of shear planes

Section J3, Table J3.2

Using HDG Group A, A325 bolts

Nominal shear stress when threads are not excluded from shear planes

Taking 1.375" nominal diameter bolt

Bolt nominal diameter

Nominal unthreaded body area of bolt

Nominal shear strength of bolt

Overstrength factor

Allowable shear strength of bolt

No of bolts required on each side of the web splice

No of bolts provided on each side of the web splice

No of bolt columns in connection pattern along the length of splice plate

Nf := 6

Nr := 3

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	58
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date _	06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date	06/03/2022

Bolt Connection Pattern

Table J3.3, for 1.375" bolt dia, standard hole dia is 1.5"

Hole diameterdbh := 1.5inMinimum center to center spacing allowed b/w
holes, Sec J3.3 $Smin := \frac{8 \cdot (db)}{3} = 3.67 \cdot in$ Minimum clear spacing allowed b/w
holes, Sec J3.3 $Scmin := db = 1.38 \cdot in$ Table J3.4, minimum edge distance allowed
for 1.375" bolt diaSemin := 1.72inProviding a splice plate of 24"X8", 1.25" thickness for the connectionNo of splice plates in the connectionNsp := 1

Client_	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number11215702 Sheet
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel Date06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Eq. J4-3 and J4-4, strength of elements in shear	
	Depth of splice plate	dsp := 8in
	Thickness of splice plate	Twsp := 1.25in
	Reduced thickness of splice plate - for accounting corrosion	$twsp := Twsp - tc = 1.23 \cdot in$
	Gross area subject to shear	$Agv := dsp \cdot twsp = 9.86 \cdot in^2$
	Nominal shear yielding strength	$Rnsy := 0.6 \cdot Fy \cdot Agv \cdot Nsp = 212.98 \cdot kip$
	Overstrength factor	Ω spsy := 1.5
	Allowable shear yielding strength	$\operatorname{Rrsy} := \frac{\operatorname{Rnsy}}{\Omega \operatorname{spsy}} = 141.98 \cdot \operatorname{kip}$
	Demand to Capacity Ratio	Checksy := $\frac{Vd}{Rrsy}$ if $Rrsy \ge Vd$ "Revise splice plate" if $Rrsy < Vd$
		Checksy = 0.52
	Net area subject to shear	Anv := $\left[dsp - \left(Nf \cdot \frac{dbh}{Nr} \right) \right] \cdot twsp = 6.16 \cdot in^2$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number <u>11215702</u> Sheet <u>60</u>
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Nominal shear rupture strength	$Rnsr := 0.6 \cdot Fu \cdot Anv \cdot Nsp = 214.45 \cdot kip$
	Overstrength factor	Ω spsr := 2
	Allowable shear rupture strength	$\operatorname{Rrsr} := \frac{\operatorname{Rnsr}}{\Omega \operatorname{spsr}} = 107.23 \cdot \operatorname{kip}$
	Demand to Capacity ratio	Checksr := $\frac{Vd}{Rrsr}$ if $Rrsr \ge Vd$ "Revise splice plate" if $Rrsr < Vd$
		Checksr = 0.69
	Maximum spacing and edge distance - Section J3-	5
	Maximum edge distance	
	Semax := 12·min(tw, Twsp) 6in if 12·min(tw,	if $12 \cdot \min(tw, Twsp) \le 6in = 6 \cdot in$ Twsp) > 6in
	Maximum center to center longitudinal spacing allowed b/w holes	
	Smax := 24·min(tw,Twsp) 12in if 24·min(tw,	if $24 \cdot \min(tw, Twsp) \le 12in = 12 \cdot in$ Twsp) > 12in
	Distance of bolt from splice plate edge	Seprov := 2in

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	_ Sheet ⁶¹
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date 06/03/2022
	Distance of bolt from channel section flange inner edge			
	Sepprov := Seprov +	$- [(d - dsp) \cdot 0.5 -$	$[-k] = 5.56 \cdot in$	
	Spacing provided between bolts	Sprov := 4in		
	Check for bolt edge distance provided			
	Secheck := "Okay" if Semin ≤ m "Not Okay" otherwise	ax(Sepprov,Sepro	$(ov) \leq Semax = "C$	Dkay"
	Check for spacing provided between bolts			
	Scheck := "Okay" if (max(Smin, "Not Okay" otherwise	Scmin + dbh) ≤ 3	$Sprov \leq Smax) =$	"Okay"
	Block Shear Rupture Check, Eq. J4-5			
	Fallure by tearing out of shaded portion			
	Beam Cope Shear area	ens∎e ea	Multiple-Row End Connect	Beam- lons

(b) Cases for which $U_{bs} = 0.5$

Fig. C-J4.1. Failure surface for block shear rupture limit state.

No of bolts in the outermost edge of the connection pattern which is in tension

Client	International Paper Company & McGinnes Industrial	125 Number 11215702 Sheet 62
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
·	Net Area resisting the tensile stress	
	Ant := $Nsp \cdot [Seprov + (Nbr - 1)]$)Sprov – $[dbh \cdot (Nbr - 0.5)]$ ·twsp = 7.7·in ²
	Net Area resisting the shear stress	
	Avn := Nsp· $\left[dsp - Seprov - \right] $	$\frac{\mathrm{Nf}}{\mathrm{Nr}} - 0.5 \mathrm{]\cdot dbh} \mathrm{]]\cdot twsp} = 4.62 \cdot \mathrm{in}^2$
	Gross area resisting the shear stress	Avg := Nsp·(dsp - Seprov)·twsp = $7.39 \cdot in^2$
	Nominal block shear strength	Ubs := 0.5
		$Rbs := [(0.6 \cdot Fu \cdot Avn) + (Ubs \cdot Fu \cdot Ant)] = 384.23 \cdot kip$
	Rnbs := Rbs if Rbs $\leq [(0.6 \cdot Fy \cdot Avg) + (Ubs \cdot Fu \cdot Avg) + (Ubs \cdot Fu \cdot Avg) + (Ubs \cdot Fu \cdot Ant)]$ if R	$Fu \cdot Ant)] = 383.12 \cdot kip$ $Rbs > [(0.6 \cdot Fy \cdot Avg) + (Ubs \cdot Fu \cdot Ant)]$
	Overstrength Factor	Ωbs := 2
	Allowable block shear strength	$\text{Rrbs} := \frac{\text{Rnbs}}{\Omega \text{bs}} = 191.56 \cdot \text{kip}$
	Demand to Capacity Ratio	Checkbs := $\frac{Vd}{Rrbs}$ if $Rrbs \ge Vd$ "Revise splice plate" if $Rrbs < Vd$
		Checkbs = 0.39

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702 Sheet ⁶³
Brojoct	San Jacinto River Waste Pits Site	Shoets By G0el Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	- Checked By S.Chilka Date 06/03/2022
	Bearing Resistance Check, Eq. J3-6a	
	Nominal bearing strength at bolt holes	Rnb := $2.4 \cdot (db) \cdot twsp \cdot Fu \cdot Nf = 1.42 \times 10^3 \cdot kip$
	Overstrength Factor	$\Omega bh := 2$
	Allowable bearing strength at bolt holes	$\operatorname{Rrb} := \frac{\operatorname{Rnb}}{\Omega \operatorname{bh}} = 707.7 \cdot \operatorname{kip}$
	Demand to Capacity Ratio	
	Checkbh := $\frac{V_r}{Rrb}$ if $Rrb \ge$ "Revise splice"	$V_r = 0.15$ plate or bolts" if $Rrb < V_r$
	Tearout Resistance Check, Eq. J3-6c	
	Ic for edge bolts	lco := Seprov $-\left(\frac{dbh}{2}\right) = 1.25 \cdot in$
	lc for inner bolts	lci := Sprov $- dbh = 2.5 \cdot in$
	Inner bolts on each side of splice	Ni := 0
	For edge bolts, nominal tearout strength at bolt holes	Rnto := $1.2 \cdot twsp \cdot Fu \cdot lco \cdot (Nf - Ni) = 643.37 \cdot kip$

For inner bolts. nominal tearout strength at bolt holes

Rnti := $1.2 \cdot twsp \cdot Fu \cdot lci \cdot Ni = 0 \cdot kip$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number 11215702	Sheet ⁶⁴
Proiect	San Jacinto River Waste Pits Site	Sheets By I.Goel	Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka	Date 06/03/2022
,	Total nominal tearout strength at bolt holes	Rnt := Rnto + Rnti = 643.37·kip	
	Overstrength factor	$\Omega bt := 2$	
	Allowable tearout strength at bolt holes	$\operatorname{Rrt} := \frac{\operatorname{Rnt}}{\Omega \operatorname{bt}} = 321.68 \cdot \operatorname{kip}$	
	Demand to Capacity Ratio		
	Checkth := $\frac{V_r}{Rrt}$ if $Rrt \ge V_r$ "Revise splice p	$V_r = 0.34$ blate or bolts" if $Rrt < V_r$	
	Slip Resistance Check, Eq. J3-4		
	For class A surfaces	$\mu := 0.3$	
		Du := 1.13	
	Minimum bolt pretension, Table J3.1 for Group A, A325 bolts	Tb := 97kip	
		hf := 1	
	Nominal slip resistance of bolts	$Rsr := Nf \cdot Ns \cdot \mu \cdot Du \cdot Tb \cdot hf = 197.3 \cdot ki_j$)
	Overstrength Factor	Ω sr := 1.5	
	Allowable slip resistance of bolts	$\operatorname{Rrslr} := \frac{\operatorname{Rsr}}{\Omega \operatorname{sr}} = 131.53 \cdot \operatorname{kip}$	

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet 6	35
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date 06/0	3/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date 06/0	3/2022

Demand to Capacity Ratio

Checkslr :=
$$\begin{vmatrix} V_r \\ Rrslr \end{vmatrix}$$
 if $Rrslr \ge V_r = 0.82$
"Revise bolts size" if $Rrslr < V_r$

Design Summary

Provide rectangular splice plate of 24"X8",1.25" thickness. On each side of web splice bolted plate connection, provide 6 - 1.375" dia HDG Group A - A325 bolts.

	International Paper Company & McGinnes Industrial			66	
Client	Maintenance Corporation	Job Number_	11215702	Sheet 00	
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date 06/03/2022	
Subject	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date 06/03/2022	
				_ 0.00	

Analysis Demand Load on Waler - Sec C5, C3

Tie Rod Tension Demand Load from Analysis

Tie Rod Spacing

The tie rod spacing assumed in analysis results in large demand loads and section size for waler. To optimize section selection, tie rods will be closely spaced. Closely spaced tie rods will result in lower demand loads.

Revised Tie Rod Spacing

 $S_{rod} := 5 ft$

 $S_{roda} := 6ft$

 $T_{roda} := 105.2 kip$

Revised Tie Rod Tension Demand

 $T_{rod} := T_{roda} \cdot \frac{S_{rod}}{S_{roda}} = 87.67 \cdot kip$

Demand Load on waler

 $w_{dl} := \frac{T_{rod}}{S_{rod}} = 17.53 \cdot \frac{kip}{ft}$

Demand Load on Waler to safeguard against progressive failure

In certain situations, progressive collapse of the structure may be a conseequence of an extreme condition ie. failure of a tie rod. The wailing to the main wall will need to be checked to ensure that it will not collapse if the span between tie rods doubles following the loss of a tie rod.

SAP2000 analysis is used to calculate the bending moment and shear force demand on the waler for both the cases. Case 1 - without failure of a tie rod and, Case 2 - with failure of a tie rod.

For Case 1 - Continuous beam with four equal spans of length Srod is anaylzed For Case 2 - Continuous beam with three spans of length Srod - 2Srod - Srod is analyzed

Waler Design is governed by the demands from Case 2

<u>u</u>				
	International Paper Company & McGinnes Industrial			
Client	Maintenance Corporation	Job Number_	11215702	Sheet67
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date 06/03/2022
Ben	ding Moment Diagram - Case 1		Point of zero m	noment
				Ioment
Z			-43.26	34.27
Bending	g Moment demand from SAP2000 - Mdsap = 43	.26Kip-ft		
Sh	ear Force Diagram - Case 1			
Z S S S S S	-48-84 -4		-5 P-48 45.6	1 S
Shear F	Force demand from SAP2000 - Vdsap = 52.5Kip			

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	69
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date_	06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By	S.Chilka	Date	06/03/2022
Project Subject	San Jacinto River Waste Pits Site Waler Section & Splice Connection Design Calculation	Sheets By Checked By	I.Goel S.Chilka	Date _ Date _	06/03/2 06/03/2

Waler Cross-Section

Waler is made of two channel sections C1 and C2

Design of corroded waler section, AISC 360-16

Bending moment demand on waler from
SAP2000 $M_{dsap} := 119.85 \text{kip·ft}$ Shear force demand on waler from SAP2000 $V_{dsap} := 87.7 \cdot \text{kip}$ Bending moment demand on C1 or C2 $Md := \frac{M_{dsap}}{2} = 59.92 \cdot \text{kip·ft}$ Shear force demand on C1 or C2 $Vd := \frac{V_{dsap}}{2} = 43.85 \cdot \text{kip}$

	International Danas Company & McCinnes Industrial			
Client	Maintenance Corporation	_ Job Number1	1215702	Sheet ⁷⁰
Project	San Jacinto River Waste Pits Site	Sheets ByI	I.Goel	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By	S.Chilka	Date06/03/2022
	Stool viold stross	F 2/1 -		
	Steel yield Stress	Fy := 36Ks1		
	Steel tensile stress	Fu := 58ksi		
	Modulus of Elasticity of steel	E := 29000ksi		
	Sacrificial thickness - for accounting corrosion	tc := 0.0175in		Refer Basis of Design report
Chan	nel Section Dimensional Parameters (MC12X35)			
	Depth	d := 12in		
	Web thickness	tw := 0.4375in		
	Flange thickness	tf := 0.6875in		
	Flange width	bf := 3.75in		
	Distance	k := 1.3125in		
Corro	ded Channel Section Dimensional Parameters (MC12X35)		
	Web thickness	twc := tw - 2tc = 0).4·in	
	Flange thickness	tfc := tf - 2tc = 0.6	65·in	

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet 71
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By	S.Chilka	Date 06/03/2022

Sectional Properties of Corroded Section

Plastic modulus about x axis

$$Zx := \left[(bf) \cdot \frac{(d)^2}{4} \right] - \left[[(bf) - (twc)] \cdot \frac{[(d) - [2 \cdot (tfc)]]^2}{4} \right] = 39.28 \cdot in^3$$

Elastic modulus about x axis

$$Sx := \frac{\left[\left[(bf) \cdot \frac{(d)^3}{12} \right] - \left[\left[(bf) - (twc) \right] \cdot \frac{\left[(d) - \left[2 \cdot (tfc) \right] \right]^3}{12} \right] \right]}{(d) \cdot 0.5} = 33.12 \cdot in^3$$

Torsion constant

$$J_{w} := \frac{\left[\left[2 \cdot (bf) \cdot (tfc)^{3} \right] + \left[\left[(d) - (tfc) \right] \cdot (twc)^{3} \right] \right]}{3} = 0.94 \cdot in^{4}$$

Moment of Inertia about external edge of web parallel to y axis

$$Iyo := \left[\left[(d) - \left[2 \cdot (tfc) \right] \right] \cdot \frac{(twc)^3}{3} \right] + \left[(bf)^3 \cdot (tfc) \cdot \frac{2}{3} \right] = 23.17 \cdot in^4$$

Cross sectional area

$$Ac := [2 \cdot (bf) \cdot (tfc)] + [[(d) - [2 \cdot (tfc)]] \cdot (twc)] = 9.2 \cdot in^2$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702 Sheet ⁷²
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Distance of centroid from external edge of web $xc := \frac{\left[\left[(d) - [2 \cdot (tfc)]\right] \cdot \frac{(twc)^2}{2}\right]}{Ac}$	$\boxed{\left + \left[(bf)^2 \cdot (tfc) \right] \right } = 1.09 \cdot in$
	Moment of inertia about y axis	$Iy := Iyo - (Ac \cdot xc^2) = 12.21 \cdot in^4$
	Distance between flange centroids	ho := $(d) - (tfc) = 11.35 \cdot in$
	Warping torsional constant	
	$Cw := \frac{\left[(tfc) \cdot (bf)^3 \cdot [(d) - (tfc)]^2 \right]}{12 \cdot \left[[6 \cdot (bf) \cdot (tfc)]^2 \right]}$	$\frac{\left \left[[3 \cdot (bf) \cdot (tfc)] + [2 \cdot (twc) \cdot [(d) - (tfc)]] \right]}{tfc) \right] + [(twc) \cdot [(d) - (tfc)]]}$
		$Cw = 316.03 \cdot in^6$
	radius of gyration about y axis	$ry := \sqrt{\frac{Iy}{Ac}} = 1.15 \cdot in$
	Overstrength factor for flexure	$\Omega f := 1.67$
	Overstrength factor for shear	$\Omega \mathbf{v} := 1.67$
Clas	sification of sections for local buckling - Section	B4.1
	Classification of flanges in flexure - Table B4.1b (case 10)
		bf

Width - to - Thickness Ratio for flange

$$a_{f} := \frac{bf}{tfc} = 5.75$$

Client	International Paper Compa Maintenance Corporation	any & McGinnes Industrial	_ Job Number_	11215702	Sheet 73
Project	San Jacinto River Waste P	its Site	_ Sheets By	I.Goel	Date 06/03/2022
, Subject —	Waler Section & Splice Co	nnection Design Calculation	Checked By	S.Chilka	Date <u>06/03/2022</u>
	Limiting width to thick flange section about	ness ratio for compact major/minor axis	$\lambda_{cf} \coloneqq 0.38 \cdot \sqrt{\frac{E}{Fy}}$	y = 10.79	
	Limiting width to thick compact flange section	ness ratio for non on about major/minor axis	$\lambda_{nf} := 1 \sqrt{\frac{E}{Fy}} =$	28.38	
	Classification of we	b in flexure - Table B4.1b (case	e 15)		
	Width - to - Thickness	Ratio for web	$a_{\mathbf{W}} := \frac{(\mathbf{d}) - [2 \cdot (\mathbf{d})]}{\mathbf{tw}}$	$\frac{k-2tc)]}{c} = 23.47$	
	Limiting width to thick section about major/r	ness ratio for compact web ninor axis	$\lambda_{cw} := 3.76 \cdot \sqrt{\frac{E}{F_1}}$	$\frac{1}{y} = 106.72$	
	Limiting width to thick web section about ma	ness ratio for non compact ajor/minor axis	$\lambda_{nw} := 5.7 \sqrt{\frac{E}{Fy}}$	= 161.78	
	cn _{ff} := "C	Compact flange" if $a_f \leq \lambda_{cf}$	= "Comp	act flange"	
	ע"	Non compact flange" if $\lambda_{cf} \leq a$	$a_f \le \lambda_{nf}$		
	"S	lender flange" otherwise			
	cn _{wf} := "C	ompact web" if $a_W \leq \lambda_{CW}$	= "Compa	ct web"	
	"N	on compact web" if $\lambda_{CW} \leq a_W$	$\lambda_{nw} \leq \lambda_{nw}$		
	"S	ender flange web" otherwise			
Allow	vable Stress Shear Desi	gn - Chapter G			
	Web area		$Aw := (d) \cdot (twc)$	$=4.83 \cdot in^2$	
	Web plate buckling c	pefficient	Kv := 5.34		

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702	Sheet ⁷⁴
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka	Date 06/03/2022
		$r := 1.1 \cdot \left(Kv \cdot \frac{E}{Fy} \right)^2 = 72.15$	
		r1 := $\frac{(d) - [2 \cdot (tfc)]}{twc} = 26.57$	
	Web shear coefficient, Eq G2-3 and Eq G2-4	Cv1 := $\begin{vmatrix} 1 & \text{if } r \ge r1 \\ \frac{r}{r1} & \text{if } r < r1 \end{vmatrix}$	
		Cv1 = 1	
	Nominal shear strength, Eq G2-1	$Vn := 0.6 \cdot Cv1 \cdot Aw \cdot Fy = 104.33 \cdot kip$	
	Allowable shear strength	$vc := \frac{Vn}{\Omega v} = 62.47 \cdot kip$	
	Check for shear strength	Checkvc := $\begin{vmatrix} Vd \\ vc \end{vmatrix}$ if $vc \ge Vd$ "Revise waler section"	if vc < Vd
		Checkvc = 0.7	
Allov	vable Stress Flexure design about major axis - C	hapter F	
	Yielding - Section F2.1		

Nominal flexural strength for yielding, Eq F2-1 $Mnyld := Fy \cdot Zx = 117.83 \cdot kip \cdot ft$

	International Paper Company & McGinnes Industrial	11215702 Shoet 75
Client	San Jacinto River Waste Rite Site	Job Number 11213702 Sneet 10 Objects Dots 06/03/2022 Dots 06/03/2022
Project	Waler Section & Splice Connection Design Calculation	Sheets By Date Date 06/03/2022
Subject —		Checked By <u>3.Clinka</u> Date <u>30,00,2022</u>
	Lateral Torsional Buckling - Section F2.2	
	Unbraced length	$Lb := S_{rod} \cdot 2 = 120 \cdot in$
	Limiting unbraced length for yielding Eq F2-5	$Lp := 1.76 \cdot ry \cdot \sqrt{\frac{E}{Fy}} = 57.55 \cdot in$
	Eq F2-8b	$cf := \left(\frac{ho}{2}\right) \cdot \sqrt{\frac{Iy}{Cw}} = 1.12$
	Eq F2-7	rts := $\sqrt{\frac{\sqrt{Iy \cdot Cw}}{Sx}} = 1.37 \cdot in$
	Eq F2-6 $Lr := 1.95 \cdot rts \cdot \frac{E \cdot \sqrt{\left(J \cdot \frac{cf}{Sx \cdot ho}\right) + \sqrt{\left(J \cdot \frac{cf}{Sx}\right)}}{(0)}}{(0)}$	$\frac{cf}{bx \cdot ho}^{2} + \left[6.76 \cdot \left(0.7 \cdot \frac{Fy}{E} \right)^{2} \right] = 245.54 \cdot in$
	From SAP2000 analysis, for calculation of Cb (Lp <i< th=""><th>_b<=Lr)</th></i<>	_b<=Lr)
	Moment at quarter point of unbraced segment	Ma := 37.9kip·ft
	Moment at center line of unbraced segment	$Mb := 90.5 kip \cdot ft$
	Moment at three quarter point of unbraced segment	$Mc := 37.9 kip \cdot ft$
	Maximum moment in unbraced segment	Mabs := 119.85kip·ft

	International Paper Company & McGinnes Industrial	70
Client	Maintenance Corporation	_ Job Number 11215702 Sheet 76
Project	San Jacinto River Waste Pits Site Waler Section & Splice Connection Design Calculation	_ Sheets ByGoel Date06/03/2022
Subject —	Plastic moment capacity	Mp := Mnyld
	Lateral torsional buckling modification factor, Eq F1-1	
	$Cb := 12.5 \cdot \frac{M}{[(2.5 \cdot Mabs) + (3 \cdot Mas)]}$	$\frac{abs}{(4 \cdot Mb) + (3 \cdot Mc)]} = 1.69$
	Nominal flexural strength for lateral torsional buckling - Eq F2-2	$Mnltb := Cb \cdot \left[Mp - (Mp - 0.7 \cdot Fy \cdot Sx) \cdot \frac{(Lb - Lp)}{(Lr - Lp)} \right]$
		$Mnltb = 171.53 \cdot kip \cdot ft$
	Nominal flexural strength	$Mn := min(Mnyld, Mnltb) = 117.83 \cdot kip \cdot ft$
	Design flexure strength	$mc := \frac{Mn}{\Omega f} = 70.56 \cdot kip \cdot ft$
	Check for flexural strength	Checkmc := $\frac{Md}{mc}$ if $mc \ge Md$ "Revise waler section" if $mc < Md$
		Checkmc = 0.85
Defle	ection Check	
	Limiting Deflection	$L_{ld} := \frac{Lb}{360} = 0.33 \cdot in$

Maximum deflection from SAP2000 analysis

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	77
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date _	06/03/2022
, Subject —	Waler Section & Splice Connection Design Calculation	Checked By	S.Chilka	Date _	06/03/2022
Casjoot					

Demand to Capacity Ratio

Check_d := $\begin{vmatrix} L_{md} \\ L_{ld} \end{vmatrix}$ if $L_{ld} \ge L_{md}$ "Revise unbraced length" if $L_{ld} < L_{md}$

 $\text{Check}_{d} = 0.63$

Bolted Splice Plate Connection Design for Waler, Allowable Stress Design - AISC 360-16

From SAP2000 analysis, point of zero moment in typical span for case 1 is ~1.2' and for case 2 is ~1.7' from tie rod anchorage. Point of splice connection for design is 1.5' from tie rod anchorage.

Resultant Web Force at Point of Splice Connection

Bending moment demand at point of splice, from SAP2000 analysis

$$Msd := 14.7 kip \cdot ft$$

Horizontal force in web due to moment at point of splice

$$H_{W} := \frac{Msd\cdot 4}{[d - [2\cdot(k - 2tc)]]} = 74.71 \cdot kip$$

Resultant web force at point of splice connection

$$V_r := \sqrt{Vd^2 + H_W^2} = 86.62 \cdot kip$$

Client	International Paper Company & McGinnes Industrial	Job Number 11215702 Sheet 78	
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel Date 06/03/2022	2
Subject	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/202	2
	$Web Moment = \frac{Hw}{2} \left(\frac{D}{2}\right)$	H_{w} H_{w} H_{w} 2	
Facto	$H_{w} = \frac{Web Moment}{D/4}$		
racio			
	No of shear planes	Ns := 1 Bolt in shear (V) and tension (T)	
	Section J3, Table J3.2		
	Using HDG Group A, A325 bolts		
	Nominal shear stress when threads are not excluded from shear planes	Fnv := 54ksi	
	Taking 1.25" nominal diameter bolt		
	Bolt nominal diameter	db := 1.25in	
	Nominal unthreaded body area of bolt	Ab := $3.14 \cdot (db)^2 \cdot 0.25 = 1.23 \cdot in^2$	
	Nominal shear strength of bolt	$Rn := Fnv \cdot Ab \cdot Ns = 66.23 \cdot kip$	

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702	Sheet79
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka	Date 06/03/2022
	Overstrength factor	$\Omega b := 2$	
	Allowable shear strength of bolt	$\operatorname{Rr} := \frac{\operatorname{Rn}}{\Omega b} = 33.12 \cdot \operatorname{kip}$	
	No of bolts required on each side of the web splice	Nb := $\frac{V_r}{Rr} = 2.62$	
	No of bolts provided on each side of the web splice	Nf := 6	
	No of bolt columns in connection pattern along the length of splice plate	Nr := 3	

Bolt Connection Pattern

Table J3.3, for 1.25" bolt dia, standard hole dia is 1.375"

Hole diameter

dbh := 1.375in

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number1215702 Sheet ⁸⁰
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel Date06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Minimum center to center spacing allowed b/w holes, Sec J3.3	$Smin := \frac{8 \cdot (db)}{3} = 3.33 \cdot in$
	Minimum clear spacing allowed b/w holes, Sec J3.3	Scmin := $db = 1.25 \cdot in$
	Table J3.4, minimum edge distance allowed for 1.25" bolt dia	Semin := 1.625in
	Providing a splice plate of 24"X8", 0.75" thickness	for the connection
	No of splice plates in the connection	Nsp := 1
	Eq. J4-3 and J4-4, strength of elements in shear	
	Depth of splice plate	dsp := 8in
	Thickness of splice plate	Twsp := 0.75in
	Reduced thickness of splice plate - for accounting corrosion	twsp := Twsp $-$ tc = 0.73 \cdot in
	Gross area subject to shear	Agv := $dsp \cdot twsp = 5.86 \cdot in^2$
	Nominal shear yielding strength	$Rnsy := 0.6 \cdot Fy \cdot Agv \cdot Nsp = 126.58 \cdot kip$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number1215702 Sheet ⁸¹
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Overstrength factor	Ωspsy := 1.5
	Allowable shear yielding strength	$\operatorname{Rrsy} := \frac{\operatorname{Rnsy}}{\Omega \operatorname{spsy}} = 84.38 \cdot \operatorname{kip}$
	Demand to Capacity Ratio	Checksy := $\begin{vmatrix} Vd \\ Rrsy \end{vmatrix}$ if $Rrsy \ge Vd$ "Revise splice plate" if $Rrsy < Vd$
		Checksy = 0.52
	Net area subject to shear	Anv := $\left[dsp - \left(Nf \cdot \frac{dbh}{Nr} \right) \right] \cdot twsp = 3.85 \cdot in^2$
	Nominal shear rupture strength	$Rnsr := 0.6 \cdot Fu \cdot Anv \cdot Nsp = 133.83 \cdot kip$
	Overstrength factor	Ω spsr := 2
	Allowable shear rupture strength	$\operatorname{Rrsr} := \frac{\operatorname{Rnsr}}{\Omega \operatorname{spsr}} = 66.91 \cdot \operatorname{kip}$
	Demand to Capacity ratio	Checksr := $\frac{Vd}{Rrsr}$ if $Rrsr \ge Vd$ "Revise splice plate" if $Rrsr < Vd$
		Checksr = 0.66

Client	Maintenance Corporation	Job Number_	11215702	_ Sheet					
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	_ Date <u>06/03/2022</u>					
Subject —	Waler Section & Spice Connection Design Calculation	Checked By_	S.Chiika	_ Date					
	Maximum spacing and edge distance - Section J3-5								
	Maximum edge distance								
	Semax := $12 \cdot \min(tw, Twsp)$ if $12 \cdot \min(tw, Twsp) \le 6in = 5.25 \cdot in$ 6in if $12 \cdot \min(tw, Twsp) > 6in$								
	Maximum center to center longitudinal spacing allowed b/w holes								
	Smax := 24·min(tw, Twsp) i 12in if 24·min(tw,	if 24·min(tw,Tw ,Twsp) > 12in	$(sp) \le 12in = 10.5$	5. in					
	Distance of bolt from splice plate edge	Seprov := 2in							
	Distance of bolt from channel section flange inner edge								
	Sepprov := Seprov + $[(d - dsp) \cdot 0.5 - k] = 2.69 \cdot in$								
	Spacing provided between bolts	Sprov := 4in							
	Check for bolt edge distance provided								
	Secheck := "Okay" if Semin ≤ ma "Not Okay" otherwise	ax(Sepprov, Sepro	$(ov) \leq Semax = "O$	Okay"					
	Check for spacing provided between bolts								
	Scheck := "Okay" if (max(Smin, "Not Okay" otherwise	$Scmin + dbh) \leq 3$	$Sprov \leq Smax) =$	"Okay"					

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	_ Sheet ⁸³
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date 06/03/2022

Block Shear Rupture Check, Eq. J4-5

Fallure by tearing out of shaded portion

Multiple-Row Beam-End Connections

(b) Cases for which $U_{bs} = 0.5$

Fig. C-J4.1. Failure surface for block shear rupture limit state.

No of bolts in the outermost edge of the connection pattern which is in tension

Nbr := 3

Net Area resisting the tensile stress

Ant :=
$$Nsp \cdot [Seprov + (Nbr - 1)Sprov - [dbh \cdot (Nbr - 0.5)]] \cdot twsp = 4.81 \cdot in^{2}$$

Net Area resisting the shear stress

$$Avn := Nsp \cdot \left[dsp - Seprov - \left[\left[\left(\frac{Nf}{Nr} \right) - 0.5 \right] \cdot dbh \right] \right] \cdot twsp = 2.88 \cdot in^2$$

Gross area resisting the shear stress

$$Avg := Nsp \cdot (dsp - Seprov) \cdot twsp = 4.39 \cdot in^2$$

Nominal block shear strength

Ubs := 0.5

 $Rbs := [(0.6 \cdot Fu \cdot Avn) + (Ubs \cdot Fu \cdot Ant)] = 239.77 \cdot kip$

(A:	D
	\geq
\sim	\sim

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702 Sheet ⁸⁴
Proiect	San Jacinto River Waste Pits Site	Sheets By I.Goel Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
·	Rnbs := Rbs if Rbs $\leq [(0.6 \cdot Fy \cdot Avg) + (Ubs \cdot Fu)]$ $[(0.6 \cdot Fy \cdot Avg) + (Ubs \cdot Fu \cdot Ant)]$ if Rb	$Fu \cdot Ant)] = 234.34 \cdot kip$ os > [(0.6 \cdot Fy \cdot Avg) + (Ubs \cdot Fu \cdot Ant)]
	Overstrength Factor	Ω bs := 2
	Allowable block shear strength	$\text{Rrbs} := \frac{\text{Rnbs}}{\Omega \text{bs}} = 117.17 \cdot \text{kip}$
	Demand to Capacity Ratio	Checkbs := $\begin{vmatrix} Vd \\ Rrbs \end{vmatrix}$ if $Rrbs \ge Vd$ "Revise splice plate" if $Rrbs < Vd$
		Checkbs $= 0.37$
	Bearing Resistance Check, Eq. J3-6a	
	Nominal bearing strength at bolt holes	Rnb := $2.4 \cdot (db) \cdot twsp \cdot Fu \cdot Nf = 764.73 \cdot kip$
	Overstrength Factor	$\Omega bh := 2$
	Allowable bearing strength at bolt holes	$\operatorname{Rrb} := \frac{\operatorname{Rnb}}{\Omega \operatorname{bh}} = 382.36 \cdot \operatorname{kip}$
	Demand to Capacity Ratio	
	Checkbh := $\frac{V_r}{Rrb}$ if $Rrb \ge$ "Revise splice"	$V_r = 0.23$ plate or bolts" if $Rrb < V_r$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number11215702Sheet ⁸⁵			
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel Date _06/03/2022			
Subject —	Waler Section & Splice Connection Design Calculation	- Checked By S.Chilka Date 06/03/2022			
	Tearout Resistance Check, Eq. J3-6c				
	lc for edge bolts	lco := Seprov $-\left(\frac{dbh}{2}\right) = 1.31 \cdot in$			
	lc for inner bolts	$lci := Sprov - dbh = 2.63 \cdot in$			
	Inner bolts on each side of splice	Ni := 0			
	For edge bolts, nominal tearout strength at bolt holes	Rnto := $1.2 \cdot twsp \cdot Fu \cdot lco \cdot (Nf - Ni) = 401.48 \cdot kip$			
	For inner bolts. nominal tearout strength at bolt holes	Rnti := $1.2 \cdot twsp \cdot Fu \cdot lci \cdot Ni = 0 \cdot kip$			
	Total nominal tearout strength at bolt holes	Rnt := Rnto + Rnti = 401.48 · kip			
	Overstrength factor	Ω bt := 2			
	Allowable tearout strength at bolt holes	$\operatorname{Rrt} := \frac{\operatorname{Rnt}}{\Omega \operatorname{bt}} = 200.74 \cdot \operatorname{kip}$			
	Demand to Capacity Ratio				
	Checkth := $\frac{V_r}{Rrt}$ if $Rrt \ge V_r$ "Revise splice p	$V_r = 0.43$ plate or bolts" if $Rrt < V_r$			

Client Maintenance Corporation Project San Jacinto River Waste Pits Site Subject Waler Section & Splice Connection I Subject Slip Resistance Check, Eq. J3 For class A surfaces For class A surfaces Minimum bolt pretension, Table J A, A325 bolts Nominal slip resistance of bolts Suppression	Design Calculation	_ Job Number1 Sheets By Checked By μ := 0.3 Du := 1.13 Tb := 81kip hf := 1	11215702 I.Goel S.Chilka	Sheet <u>86</u> Date <u>06/03/2022</u> Date <u>06/03/2022</u>
oject <u>San Jacinto River Waste Pits Site</u> ubject <u>Waler Section & Splice Connection I</u> Slip Resistance Check, Eq. J3 For class A surfaces Minimum bolt pretension, Table J A, A325 bolts Nominal slip resistance of bolts	J3.1 for Group	. Sheets By Checked By μ := 0.3 Du := 1.13 Tb := 81kip hf := 1	I.Goel S.Chilka	Date 06/03/2022 Date 06/03/2022
bject <u>Slip Resistance Check, Eq. J3</u> For class A surfaces Minimum bolt pretension, Table J A, A325 bolts	Ja.1 for Group	Checked By $\mu := 0.3$ Du := 1.13 Tb := 81kip hf := 1	<u>S.Chilka</u>	Date
Slip Resistance Check, Eq. J3 For class A surfaces Minimum bolt pretension, Table & A, A325 bolts Nominal slip resistance of bolts	J3.1 for Group	μ := 0.3 Du := 1.13 Tb := 81kip hf := 1		
For class A surfaces Minimum bolt pretension, Table & A, A325 bolts Nominal slip resistance of bolts	J3.1 for Group	μ := 0.3 Du := 1.13 Tb := 81kip hf := 1		
Minimum bolt pretension, Table 、 A, A325 bolts Nominal slip resistance of bolts	J3.1 for Group	Du := 1.13 Tb := 81kip hf := 1		
Minimum bolt pretension, Table 、 A, A325 bolts Nominal slip resistance of bolts	J3.1 for Group	Tb := 81kip hf := 1		
Nominal slip resistance of bolts		hf := 1		
Nominal slip resistance of bolts				
		$Rsr := Nf \cdot Ns \cdot \mu \cdot Du$	u·Tb·hf = 164.75	kip
Overstrength Factor		Ωsr := 1.5		
Allowable slip resistance of bolts	;	$\operatorname{Rrslr} := \frac{\operatorname{Rsr}}{\Omega \operatorname{sr}} = 109$	9.84∙kip	
Demand to Capacity Ratio	1			
Checkslr :=	$\frac{V_{r}}{Rrslr} \text{if } Rrslr \ge V$	r = 0	0.79	
	"Revise bolts size"	If $\operatorname{Rrslr} < \operatorname{V}_{r}$		
Design Summary				

	Job Number	11215702	Sheet	87
s Site	Sheets By	I.Goel	Date _	06/03/2022
nection Design Calculation	Checked By	S.Chilka	Date_	06/03/2022
- -	s Site nection Design Calculation	Job Number s Site Sheets By nection Design Calculation Checked By	Job Number 11215702 s Site Sheets By I.Goel nection Design Calculation Checked By S.Chilka	Job Number 11215702 Sheet s Site Sheets By I.Goel Date nection Design Calculation Checked By S.Chilka Date

Analysis Demand Load on Waler - Sec C4

Tie Rod Tension Demand Load from Analysis

Tie Rod Spacing

The tie rod spacing assumed in analysis results in large demand loads and section size for waler. To optimize section selection, tie rods will be closely spaced. Closely spaced tie rods will result in lower demand loads.

Revised Tie Rod Spacing

 $S_{rod} := 5 ft$

 $S_{roda} := 8ft$

 $T_{roda} := 122.98 kip$

Revised Tie Rod Tension Demand

Demand Load on waler

 $w_{dl} := \frac{T_{rod}}{S_{rod}} = 15.37 \cdot \frac{kip}{ft}$

Demand Load on Waler to safeguard against progressive failure

In certain situations, progressive collapse of the structure may be a conseequence of an extreme condition ie. failure of a tie rod. The wailing to the main wall will need to be checked to ensure that it will not collapse if the span between tie rods doubles following the loss of a tie rod.

SAP2000 analysis is used to calculate the bending moment and shear force demand on the waler for both the cases. Case 1 - without failure of a tie rod and, Case 2 - with failure of a tie rod.

For Case 1 - Continuous beam with four equal spans of length Srod is anaylzed For Case 2 - Continuous beam with three spans of length Srod - 2Srod - Srod is analyzed

Waler Design is governed by the demands from Case 2

Gib			
Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702	Sheet ⁸⁸
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel	Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka	Date 06/03/2022
Ben	ding Moment Diagram - Case 1	Point of zero	moment
Z A		31.99	30.05
Bending	g Moment demand from SAP2000 - Mdsap = 37	7.93Kip-ft	
Sh	ear Force Diagram - Case 1		
Z	-40.82 -40.82 -46.01	-46.04	30.84
Shear F	Force demand from SAP2000 - Vdsap = 46.01Kip		

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	90
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date	06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date	06/03/2022

Waler Cross-Section

Waler is made of two channel sections C1 and C2

Design of corroded waler section, AISC 360-16

Bending moment demand on waler from SAP2000

 $M_{dsap} := 105.1 kip \cdot ft$

Shear force demand on waler from SAP2000

 $V_{dsap} := 76.9 \cdot kip$

Bending moment demand on C1 or C2

$$Md := \frac{M_{dsap}}{2} = 52.55 \cdot kip \cdot ft$$

Shear force demand on C1 or C2

$$Vd := \frac{V_{dsap}}{2} = 38.45 \cdot kip$$

	International Paper Company & McGinnes Industrial		
Client	Maintenance Corporation	_ Job Number11215702	Sheet ⁹¹
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	- Checked By S.Chilka	Date <u>06/03/2022</u>
	Steel yield stress	Fy := 36ksi	
	Steel tensile stress	Fu := 58ksi	
	Modulus of Elasticity of steel	E := 29000ksi	
	Sacrificial thickness - for accounting corrosion	tc := 0.0175in	Refer Basis of Design report
Chan	nel Section Dimensional Parameters (MC12X35))	
	Depth	d := 12in	
	Web thickness	tw := 0.4375in	
	Flange thickness	tf := 0.6875in	
	Flange width	bf := 3.75in	
	Distance	k := 1.3125in	
Corro	oded Channel Section Dimensional Parameters ((MC12X35)	
	Web thickness	$twc := tw - 2tc = 0.4 \cdot in$	
	Flange thickness	$tfc := tf - 2tc = 0.65 \cdot in$	

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	92
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date_	06/03/2022
, Subiect ——	Waler Section & Splice Connection Design Calculation	Checked By	S.Chilka	Date_	06/03/2022

Sectional Properties of Corroded Section

Plastic modulus about x axis

$$Zx := \left[(bf) \cdot \frac{(d)^2}{4} \right] - \left[[(bf) - (twc)] \cdot \frac{[(d) - [2 \cdot (tfc)]]^2}{4} \right] = 39.28 \cdot in^3$$

Elastic modulus about x axis

$$Sx := \frac{\left[\left[(bf) \cdot \frac{(d)^3}{12} \right] - \left[[(bf) - (twc)] \cdot \frac{\left[(d) - \left[2 \cdot (tfc) \right] \right]^3}{12} \right] \right]}{(d) \cdot 0.5} = 33.12 \cdot in^3$$

Torsion constant

$$J_{w} := \frac{\left[\left[2 \cdot (bf) \cdot (tfc)^{3} \right] + \left[\left[(d) - (tfc) \right] \cdot (twc)^{3} \right] \right]}{3} = 0.94 \cdot in^{4}$$

Moment of Inertia about external edge of web parallel to y axis

Iyo :=
$$\left[\left[(d) - \left[2 \cdot (tfc) \right] \right] \cdot \frac{(twc)^3}{3} \right] + \left[(bf)^3 \cdot (tfc) \cdot \frac{2}{3} \right] = 23.17 \cdot in^4$$

Cross sectional area

Ac :=
$$[2 \cdot (bf) \cdot (tfc)] + [[(d) - [2 \cdot (tfc)]] \cdot (twc)] = 9.2 \cdot in^2$$

Client	International Paper Company & McGinnes Industrial	Job Number 11215702 Sheet 93
Dreiset	San Jacinto River Waste Pits Site	_ 500 Number 60el Date6/03/2022
Project	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Distance of centroid from external edge of web $xc := \frac{\left[\left[(d) - \left[2 \cdot (tfc) \right] \right] \cdot \frac{(twc)^2}{2} \right]}{Ac}$	$+ \left[(bf)^2 \cdot (tfc) \right] = 1.09 \cdot in$
	Moment of inertia about y axis	$Iy := Iyo - (Ac \cdot xc^2) = 12.21 \cdot in^4$
	Distance between flange centroids	ho := (d) $-$ (tfc) = 11.35·in
	Warpingtorsionalconstant	
	$Cw := \frac{\left[(tfc) \cdot (bf)^3 \cdot [(d) - (tfc)]^2 \right]}{12 \cdot \left[[6 \cdot (bf) \cdot (tfc)]^2 \right]}$	$[[3 \cdot (bf) \cdot (tfc)] + [2 \cdot (twc) \cdot [(d) - (tfc)]]]$ $[co)] + [(twc) \cdot [(d) - (tfc)]]]$
		$Cw = 316.03 \cdot in^6$
	radius of gyration about y axis	$ry := \sqrt{\frac{Iy}{Ac}} = 1.15 \cdot in$
	Overstrength factor for flexure	$\Omega f := 1.67$
	Overstrength factor for shear	$\Omega \mathbf{v} := 1.67$
Class	sification of sections for local buckling - Section	B4.1
	Classification of flanges in flexure - Table B4.1b (c	ase 10)
	Width - to - Thickness Ratio for flange	$a_{f} := \frac{bf}{tfc} = 5.75$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number11215702	Sheet94
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka	Date <u>06/03/2022</u>
	Limiting width to thickness ratio for compact flange section about major/minor axis	$\lambda_{cf} \coloneqq 0.38 \cdot \sqrt{\frac{E}{Fy}} = 10.79$	
	Limiting width to thickness ratio for non compact flange section about major/minor axis	$\lambda_{\rm nf} := 1 \sqrt{\frac{\rm E}{\rm Fy}} = 28.38$	
	Classification of web in flexure - Table B4.1b (case	e 15)	
	Width - to - Thickness Ratio for web	$a_{W} := \frac{(d) - [2 \cdot (k - 2tc)]}{twc} = 23.47$	
	Limiting width to thickness ratio for compact web section about major/minor axis	$\lambda_{cw} := 3.76 \cdot \sqrt{\frac{E}{Fy}} = 106.72$	
	Limiting width to thickness ratio for non compact web section about major/minor axis	$\lambda_{nw} := 5.7 \sqrt{\frac{E}{Fy}} = 161.78$	
	$cn_{ff} := $ "Compact flange" if $a_f \leq \lambda_{cf}$	= "Compact flange"	
	"Non compact flange" if $\lambda_{of} \leq a$	$a_f \leq \lambda_{nf}$	
	"Slender flange" otherwise	1 111	
	$cn_{wf} := "Compact web" if a_w \le \lambda_{cw}$	= "Compact web"	
	"Non compact web" if $\lambda_{CW} \leq a_{W}$	$\lambda_{nw} \le \lambda_{nw}$	
	"Slender flange web" otherwise		
Allow	vable Stress Shear Design - Chapter G		
	Web area	$Aw := (d) \cdot (twc) = 4.83 \cdot in^2$	

Web plate buckling coefficient

Kv := 5.34

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702	Sheet ⁹⁵
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel	Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka	Date 06/03/2022
		$r := 1.1 \cdot \left(Kv \cdot \frac{E}{Fy} \right)^2 = 72.15$	
		$r1 := \frac{(d) - [2 \cdot (tfc)]}{twc} = 26.57$	
	Web shear coefficient, Eq G2-3 and Eq G2-4	Cv1 := $\begin{vmatrix} 1 & \text{if } r \ge r1 \\ \frac{r}{r1} & \text{if } r < r1 \end{vmatrix}$	
		Cv1 = 1	
	Nominal shear strength, Eq G2-1	$Vn := 0.6 \cdot Cv1 \cdot Aw \cdot Fy = 104.33 \cdot kip$	
	Allowable shear strength	$vc := \frac{Vn}{\Omega v} = 62.47 \cdot kip$	
	Check for shear strength	Checkvc := $\begin{vmatrix} Vd \\ vc \end{vmatrix}$ if $vc \ge Vd$ "Revise waler section"	if vc < Vd
		Checkvc = 0.62	
Allow	vable Stress Flexure design about major axis - Cl	hapter F	
	Yielding - Section F2.1		

Nominal flexural strength for yielding, Eq F2-1 $Mnyld := Fy \cdot Zx = 117.83 \cdot kip \cdot ft$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number <u>11215702</u> Sheet <u>96</u>
Subject	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Lateral Torsional Buckling - Section F2.2	
	Unbraced length	$Lb := S_{rod} \cdot 2 = 120 \cdot in$
	Limiting unbraced length for yielding Eq F2-5	$Lp := 1.76 \cdot ry \cdot \sqrt{\frac{E}{Fy}} = 57.55 \cdot in$
	Eq F2-8b	$cf := \left(\frac{ho}{2}\right) \cdot \sqrt{\frac{Iy}{Cw}} = 1.12$
	Eq F2-7	rts := $\sqrt{\frac{\sqrt{Iy \cdot Cw}}{Sx}} = 1.37 \cdot in$
	Eq F2-6 $Lr := 1.95 \cdot rts \cdot \frac{E \cdot \sqrt{\left(J \cdot \frac{cf}{Sx \cdot ho}\right) + \sqrt{\left(J \cdot \frac{cf}{Sx}\right)}}{(0)}}{(0)}$	$\frac{\frac{\text{cf}}{\text{sx-ho}}^2 + \left[6.76 \cdot \left(0.7 \cdot \frac{\text{Fy}}{\text{E}}\right)^2\right]}{0.7 \cdot \text{Fy}} = 245.54 \cdot \text{in}$
	From SAP2000 analysis, for calculation of Cb (Lp <i< th=""><th>⊥b<=Lr)</th></i<>	⊥b<=Lr)
	Moment at guarter point of unbraced segment	$Ma := 33.3 kip \cdot ft$

	•	5		1,100.	SSISMp It	
Moment at c	enter line of unb	praced segmer	t	Mb :=	79.4kip•ft	
Moment at th segment	nree quarter poi	nt of unbraced		Mc :=	33.3kip·ft	
Maximum m	oment in unbrad	ced segment		Mabs	:= 105.1kip∙ft	

Client	International Paper Company & McGinnes Industrial	Job Number 11215702 Sheet 97
Dreiget	San Jacinto River Waste Pits Site	Shoote By Goel Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Plastic moment capacity	Mp := Mnyld
	Lateral torsional buckling modification factor, Eq F1-1	
	$Cb := 12.5 \cdot \frac{Ma}{[(2.5 \cdot Mabs) + (3 \cdot Ma)]}$	$\frac{abs}{a + (4 \cdot Mb) + (3 \cdot Mc)]} = 1.68$
	Nominal flexural strength for lateral torsional buckling - Eq F2-2	$Mnltb := Cb \cdot \left[Mp - (Mp - 0.7 \cdot Fy \cdot Sx) \cdot \frac{(Lb - Lp)}{(Lr - Lp)} \right]$
		$Mnltb = 171.42 \cdot kip \cdot ft$
	Nominai fiexurai strength	$Mn := \min(Mnyld, Mnltb) = 117.83 \cdot kip \cdot ft$ $ma := \frac{Mn}{M} = 70.56 kip \cdot ft$
	Design flexure strength	$\Omega \Omega $
	Check for flexural strength	Checkmc := $\frac{Md}{mc}$ if mc \ge Md "Revise waler section" if mc < Md
Defle	ction Check	Checkmc = 0.74

Limiting Deflection

$$L_{\text{ld}} := \frac{\text{Lb}}{360} = 0.33 \cdot \text{in}$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	98
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date_	06/03/2022
, Subiect —	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date_	06/03/2022
,		,			
	Maximum deflection from SAP2000 analysis	L _{md} := 0.19in			

Demand to Capacity Ratio

Check_d := $\begin{vmatrix} L_{md} \\ L_{ld} \end{vmatrix}$ if $L_{ld} \ge L_{md}$ "Revise unbraced length" if $L_{ld} < L_{md}$

 $\text{Check}_{d} = 0.57$

Bolted Splice Plate Connection Design for Waler, Allowable Stress Design -AISC 360-16

From SAP2000 analysis, point of zero moment in typical span for case 1 is ~1.2' and for case 2 is ~1.7' from tie rod anchorage. Point of splice connection for design is 1.5' from tie rod anchorage.

Resultant Web Force at Point of Splice Connection

Bending moment demand at point of splice, from SAP2000 analysis

 $Msd := 12.9kip \cdot ft$

Horizontal force in web due to moment at point of splice

$$H_{W} := \frac{Msd\cdot 4}{[d - [2\cdot(k - 2tc)]]} = 65.56 \cdot kip$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date 06/03/2022
, Subiect —	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date 06/03/2022
	Resultant web force at point of splice connection	$V_r := \sqrt{Vd^2 + H}$ $\frac{H_w}{2}$	$\overline{{\rm I}_{\rm W}}^2 = 76 \cdot {\rm kip}$	
	Web Moment = $\frac{H_w}{2} \left(\frac{D}{2}\right)$ $H_w = \frac{Web Moment}{D/4}$			
Facto	red shear resistance of bolts in shear			
	No of shear planes	Ns := 1	Í.	Bolt in shear (V) and tension (T)
	Section J3, Table J3.2	Ļ		-
	Using HDG Group A, A325 bolts		L e	
	Nominal shear stress when threads are not excluded from shear planes	Fnv := 54ksi		
	Taking 1.25" nominal diameter bolt			
	Bolt nominal diameter	db := 1.25in		
	Nominal unthreaded body area of bolt	$Ab := 3.14 \cdot (db)$	$^{2} \cdot 0.25 = 1.23 \cdot in^{2}$	

Client	International Paper Company & McGinnes Industrial Maintenance Corporation San Jacinto River Waste Pits Site	_ Job Number11215702 Sheets ByI.Goel	Sheet 100 Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka	Date 06/03/2022
	Nominal shear strength of bolt	$Rn := Fnv \cdot Ab \cdot Ns = 66.23 \cdot kip$	
	Overstrength factor	$\Omega b := 2$	
	Allowable shear strength of bolt	$Rr := \frac{Rn}{\Omega b} = 33.12 \cdot kip$	
	No of bolts required on each side of the web splice	Nb := $\frac{V_r}{Rr} = 2.29$	
	No of bolts provided on each side of the web splice	Nf := 6	
	No of bolt columns in connection pattern along the length of splice plate	Nr := 3	

Bolt Connection Pattern

Table J3.3, for 1.25" bolt dia, standard hole dia is 1.375"

Hole diameter

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number1215702 Sheet ¹⁰¹
Proiect	San Jacinto River Waste Pits Site	Sheets By I.Goel Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Minimum center to center spacing allowed b/w holes, Sec J3.3	Smin := $\frac{8 \cdot (db)}{3} = 3.33 \cdot in$
	Minimum clear spacing allowed b/w holes, Sec J3.3	Scmin := $db = 1.25 \cdot in$
	Table J3.4, minimum edge distance allowed for 1.25" bolt dia	Semin := 1.625in
	Providing a splice plate of 24"X8", 0.75" thickness	for the connection
	No of splice plates in the connection	Nsp := 1
	Eq. J4-3 and J4-4, strength of elements in shear	
	Depth of splice plate	dsp := 8in
	Thickness of splice plate	Twsp := 0.75in
	Reduced thickness of splice plate - for accounting corrosion	$twsp := Twsp - tc = 0.73 \cdot in$
	Gross area subject to shear	Agv := $dsp \cdot twsp = 5.86 \cdot in^2$
	Nominal shear yielding strength	Rnsy := 0.6 · Fy·Agv·Nsp = 126.58 · kip
	Overstrength factor	Ω spsy := 1.5

Client Project Subject	International Paper Company & McGinnes Industrial Maintenance Corporation San Jacinto River Waste Pits Site Waler Section & Splice Connection Design Calculation	Job Number 11215702 Sheet 102 Sheets By I.Goel Date 06/03/2022 Checked By S.Chilka Date 06/03/2022
	Allowable shear yielding strength	$\operatorname{Rrsy} := \frac{\operatorname{Rnsy}}{\Omega \operatorname{spsy}} = 84.38 \cdot \operatorname{kip}$
	Demand to Capacity Ratio	Checksy := $\begin{vmatrix} Vd \\ Rrsy \end{vmatrix}$ if $Rrsy \ge Vd$ "Revise splice plate" if $Rrsy < Vd$
		Checksy = 0.46
	Net area subject to shear	Anv := $\left[dsp - \left(Nf \cdot \frac{dbh}{Nr} \right) \right] \cdot twsp = 3.85 \cdot in^2$
	Nominal shear rupture strength	Rnsr := $0.6 \cdot Fu \cdot Anv \cdot Nsp = 133.83 \cdot kip$
	Overstrength factor	$\Omega spsr := 2$
	Allowable shear rupture strength	$Rrsr := \frac{Rnsr}{\Omega spsr} = 66.91 \cdot kip$
	Demand to Capacity ratio	Checksr := $\frac{Vd}{Rrsr}$ if $Rrsr \ge Vd$ "Revise splice plate" if $Rrsr < Vd$
		Checksr = 0.57

GHD								
Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702	Sheet ¹⁰³					
Project	San Jacinto River Waste Pits Site	Sheets ByI.Goel	Date 06/03/2022					
Subject	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka	Date 06/03/2022					
·	Maximum spacing and edge distance - Section J3-	5						
	Maximum edge distance							
	Semax := $12 \cdot \min(tw, Twsp)$ if $12 \cdot \min(tw, Twsp) \le 6in = 5.25 \cdot in$ 6in if $12 \cdot \min(tw, Twsp) > 6in$							
	Maximum center to center longitudinal spacing allowed b/w holes							
	Smax := 24·min(tw, Twsp) i	$f 24 \cdot \min(tw, Twsp) \le 12in = 10$	0.5·in					
	12in if 24·min(tw,	Twsp) > 12in						
	•	• /						
	Distance of bolt from splice plate edge	Seprov := 2in						
	Distance of bolt from channel section flange inner edge							
	Sepprov := Seprov + $[(d - d)]$	$(sp) \cdot 0.5 - k] = 2.69 \cdot in$						
	Spacing provided between bolts	Sprov := 4in						
	Check for bolt edge distance provided							
	Secheck := "Okay" if Semin ≤ ma "Not Okay" otherwise	$x(Sepprov, Seprov) \le Semax =$	"Okay"					
	Check for spacing provided between bolts							
	Scheck := "Okay" if (max(Smin,) "Not Okay" otherwise	Semin + dbh) \leq Sprov \leq Smax)	= "Okay"					

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet 104
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	
Subject —	Waler Section & Splice Connection Design Calculation	Checked Bv_	S.Chilka	

Block Shear Rupture Check, Eq. J4-5

Fallure by tearing out of shaded portion

Multiple-Row Beam-End Connections

(b) Cases for which $U_{bs} = 0.5$

Fig. C-J4.1. Failure surface for block shear rupture limit state.

No of bolts in the outermost edge of the connection pattern which is in tension

Nbr := 3

Net Area resisting the tensile stress

Ant :=
$$Nsp \cdot [Seprov + (Nbr - 1)Sprov - [dbh \cdot (Nbr - 0.5)]] \cdot twsp = 4.81 \cdot in^{2}$$

Net Area resisting the shear stress

Avn := Nsp
$$\cdot \left[dsp - Seprov - \left[\left[\left(\frac{Nf}{Nr} \right) - 0.5 \right] \cdot dbh \right] \right] \cdot twsp = 2.88 \cdot in^2$$

Gross area resisting the shear stress

Avg := Nsp·(dsp - Seprov)·twsp = $4.39 \cdot in^2$

Nominal block shear strength

Ubs := 0.5

 $Rbs := [(0.6 \cdot Fu \cdot Avn) + (Ubs \cdot Fu \cdot Ant)] = 239.77 \cdot kip$

$$\begin{array}{ll} \text{Rnbs} := & \text{Rbs} \quad \text{if} \quad \text{Rbs} \leq \left[(0.6 \cdot \text{Fy} \cdot \text{Avg}) + (\text{Ubs} \cdot \text{Fu} \cdot \text{Ant}) \right] & = 234.34 \cdot \text{kip} \\ & \left[(0.6 \cdot \text{Fy} \cdot \text{Avg}) + (\text{Ubs} \cdot \text{Fu} \cdot \text{Ant}) \right] \quad \text{if} \quad \text{Rbs} > \left[(0.6 \cdot \text{Fy} \cdot \text{Avg}) + (\text{Ubs} \cdot \text{Fu} \cdot \text{Ant}) \right] \end{array}$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number1215702 Sheet ¹⁰⁵
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Overstrength Factor	Ω bs := 2
	Allowable block shear strength	$Rrbs := \frac{Rnbs}{\Omega bs} = 117.17 \cdot kip$
	Demand to Capacity Ratio	Checkbs := $\begin{vmatrix} Vd \\ Rrbs \end{vmatrix}$ if $Rrbs \ge Vd$ "Revise splice plate" if $Rrbs < Vd$
		Checkbs = 0.33
	Bearing Resistance Check, Eq. J3-6a	
	Nominal bearing strength at bolt holes	Rnb := $2.4 \cdot (db) \cdot twsp \cdot Fu \cdot Nf = 764.73 \cdot kip$
	Overstrength Factor	$\Omega bh := 2$
	Allowable bearing strength at bolt holes	$\operatorname{Rrb} := \frac{\operatorname{Rnb}}{\Omega \operatorname{bh}} = 382.36 \cdot \operatorname{kip}$
	Demand to Capacity Ratio	
	Checkbh := $\frac{V_r}{Rrb}$ if $Rrb \ge$ "Revise splice p	$V_r = 0.2$ plate or bolts" if $Rrb < V_r$
	Tearout Resistance Check, Eq. J3-6c	
	lc for edge bolts	lco := Seprov $-\left(\frac{dbh}{2}\right) = 1.31 \cdot in$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number1215702Sheet ⁰⁶
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel Date06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	lc for inner bolts	lci := Sprov $- dbh = 2.63 \cdot in$
	Inner bolts on each side of splice	Ni := 0
	For edge bolts, nominal tearout strength at bolt holes	Rnto := $1.2 \cdot twsp \cdot Fu \cdot lco \cdot (Nf - Ni) = 401.48 \cdot kip$
	For inner bolts. nominal tearout strength at bolt holes	Rnti := $1.2 \cdot twsp \cdot Fu \cdot lci \cdot Ni = 0 \cdot kip$
	Total nominal tearout strength at bolt holes	Rnt := Rnto + Rnti = 401.48 · kip
	Overstrength factor	Ω bt := 2
	Allowable tearout strength at bolt holes	$\operatorname{Rrt} := \frac{\operatorname{Rnt}}{\Omega \operatorname{bt}} = 200.74 \cdot \operatorname{kip}$
	Demand to Capacity Ratio	
	Checkth := $\frac{V_r}{Rrt}$ if $Rrt \ge$ "Revise splice"	$V_r = 0.38$ plate or bolts" if $Rrt < V_r$
	Slip Resistance Check, Eq. J3-4	
	For class A surfaces	μ := 0.3
		Du := 1.13
	Minimum bolt pretension, Table J3.1 for Group A, A325 bolts	Tb := 81kip

Client Project Subject	International Paper Company & McGinnes Industrial Maintenance Corporation San Jacinto River Waste Pits Site Waler Section & Splice Connection Design Calculation	Job Number <u>11215702</u> Sheets By <u>I.Goel</u> Checked By <u>S.Chilka</u>	Sheet <u>107</u> Date <u>06/03/2022</u> Date <u>06/03/2022</u>
		hf := 1	
	Nominal slip resistance of bolts	$Rsr := Nf \cdot Ns \cdot \mu \cdot Du \cdot Tb \cdot hf = 164.75 \cdot$	kip
	Overstrength Factor	Ω sr := 1.5	
	Allowable slip resistance of bolts	$\operatorname{Rrslr} := \frac{\operatorname{Rsr}}{\Omega \operatorname{sr}} = 109.84 \cdot \operatorname{kip}$	
	Demand to Capacity Ratio		

Checkslr := $\frac{V_r}{Rrslr}$ if $Rrslr \ge V_r$ = 0.69 "Revise bolts size" if $Rrslr < V_r$

Design Summary

Provide rectangular splice plate of 24"X8",0.75" thickness. On each side of web splice bolted plate connection, provide 6 - 1.25" dia HDG Group A - A325 bolts.

	International Paper Company & McGinnes Industrial			
Client	Maintenance Corporation	Job Number_	11215702	Sheet 108
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date 06/03/2022

Analysis Demand Load on Waler - Sec C7

Tie Rod Tension Demand Load from Analysis

Tie Rod Spacing

The tie rod spacing assumed in analysis results in large demand loads and section size for waler. To optimize section selection, tie rods will be closely spaced. Closely spaced tie rods will result in lower demand loads.

Revised Tie Rod Spacing

 $S_{rod} := 5 ft$

 $T_{roda} := 65.6 kip$

 $S_{roda} := 5 ft$

Revised Tie Rod Tension Demand

Demand Load on waler

 $w_{dl} := \frac{T_{rod}}{S_{rod}} = 13.12 \cdot \frac{kip}{ft}$

Demand Load on Waler to safeguard against progressive failure

In certain situations, progressive collapse of the structure may be a conseequence of an extreme condition ie. failure of a tie rod. The wailing to the main wall will need to be checked to ensure that it will not collapse if the span between tie rods doubles following the loss of a tie rod.

SAP2000 analysis is used to calculate the bending moment and shear force demand on the waler for both the cases. Case 1 - without failure of a tie rod and, Case 2 - with failure of a tie rod.

For Case 1 - Continuous beam with four equal spans of length Srod is anaylzed For Case 2 - Continuous beam with three spans of length Srod - 2Srod - Srod is analyzed

Waler Design is governed by the demands from Case 2

GHL				
Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number	11215702	Sheet ¹⁰⁹
Proiect	San Jacinto River Waste Pits Site	_	I.Goel	Date 06/03/2022
Subject -	Waler Section & Splice Connection Design Calculation	- Checked Bv_	S.Chilka	Date 06/03/2022
Ben	iding Moment Diagram - Case 1	/ F	Point of zero me	oment
Z	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩		-32.38	25.65
Bendin	g Moment demand from SAP2000 - Mdsap = 32	2.4Kip-ft		
Sh	ear Force Diagram - Case 1			
Z	82.95.78 87.05 74.16 74.16 74.16 74.16		-39.28 34.16	E 92
Shear F	Force demand from SAP2000 - Vdsap = 39.3Kip			

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number	11215702	Sheet ¹¹⁰
Proiect	San Jacinto River Waste Pits Site	- Sheets By	I.Goel	Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked Bv_	S.Chilka	Date 06/03/2022

Bending Moment Diagram - Case 2

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	111
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date _	06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By_	S.Chilka	Date	06/03/2022

Waler Cross-Section

Waler is made of two channel sections C1 and C2

Design of corroded waler section, AISC 360-16

Bending moment demand on waler from SAP2000

 $M_{dsap} := 90 kip \cdot ft$

Shear force demand on waler from SAP2000

 $V_{dsap} := 66 \cdot kip$

Bending moment demand on C1 or C2

 $Md := \frac{M_{dsap}}{2} = 45 \cdot kip \cdot ft$

Shear force demand on C1 or C2

$$Vd := \frac{V_{dsap}}{2} = 33 \cdot kip$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702	Sheet ¹¹²
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	- Checked By S.Chilka	Date 06/03/2022
	Steel yield stress	Fy := 36ksi	
	Steel tensile stress	Fu := 58ksi	
	Modulus of Elasticity of steel	E := 29000ksi	
	Sacrificial thickness - for accounting corrosion	tc := 0.0175in	Refer Basis of Design report
Chan	nel Section Dimensional Parameters (MC12X35))	
	Depth	d := 12in	
	Web thickness	tw := 0.4375in	
	Flange thickness	tf := 0.6875in	
	Flange width	bf := 3.75in	
	Distance	k := 1.3125in	
Corre	oded Channel Section Dimensional Parameters ((MC12X35)	
	Web thickness	twe := $tw - 2tc = 0.4 \cdot in$	
	Flange thickness	tfc := tf $-2tc = 0.65 \cdot in$	

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet113
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By	S.Chilka	Date 06/03/2022

Sectional Properties of Corroded Section

Plastic modulus about x axis

$$Zx := \left[(bf) \cdot \frac{(d)^2}{4} \right] - \left[[(bf) - (twc)] \cdot \frac{[(d) - [2 \cdot (tfc)]]^2}{4} \right] = 39.28 \cdot in^3$$

Elastic modulus about x axis

$$Sx := \frac{\left[\left[(bf) \cdot \frac{(d)^3}{12} \right] - \left[[(bf) - (twc)] \cdot \frac{\left[(d) - [2 \cdot (tfc)] \right]^3}{12} \right] \right]}{(d) \cdot 0.5} = 33.12 \cdot in^3$$

Torsion constant

$$J_{w} := \frac{\left[\left[2 \cdot (bf) \cdot (tfc)^{3} \right] + \left[\left[(d) - (tfc) \right] \cdot (twc)^{3} \right] \right]}{3} = 0.94 \cdot in^{4}$$

Moment of Inertia about external edge of web parallel to y axis

Iyo :=
$$\left[\left[(d) - \left[2 \cdot (tfc) \right] \right] \cdot \frac{(twc)^3}{3} \right] + \left[(bf)^3 \cdot (tfc) \cdot \frac{2}{3} \right] = 23.17 \cdot in^4$$

Cross sectional area

Ac :=
$$[2 \cdot (bf) \cdot (tfc)] + [[(d) - [2 \cdot (tfc)]] \cdot (twc)] = 9.2 \cdot in^2$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702	Sheet ¹¹⁴
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel	Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka	Date 06/03/2022
	Distance of centroid from external edge of web $xc := \frac{\left[\left[(d) - \left[2 \cdot (tfc) \right] \right] \cdot \frac{(twc)^2}{2} \right]}{Ac}$	$\frac{1}{1 + \left[(bf)^2 \cdot (tfc) \right]} = 1.09 \cdot in$	
	Moment of inertia about y axis	$Iy := Iyo - (Ac \cdot xc^2) = 12.21 \cdot in^4$	
	Distance between flange centroids	ho := (d) – (tfc) = $11.35 \cdot in$	
	Warpingtorsionalconstant		
	$Cw := \frac{\left[(tfc) \cdot (bf)^3 \cdot [(d) - (tfc)]^2 \right]}{12 \cdot \left[[6 \cdot (bf) \cdot (tf) \right]}$	$[[3 \cdot (bf) \cdot (tfc)] + [2 \cdot (twc) \cdot [(d) - (tfc)]]$ fc)] + [(twc) \cdot [(d) - (tfc)]]]	c)]]]
		$Cw = 316.03 \cdot in^6$	
	radius of gyration about y axis	$ry := \sqrt{\frac{Iy}{Ac}} = 1.15 \cdot in$	
	Overstrength factor for flexure	$\Omega f := 1.67$	
	Overstrength factor for shear	$\Omega \mathbf{v} := 1.67$	
Class	sification of sections for local buckling - Section	B4.1	
	Classification of flanges in flexure - Table B4.1b (c	ase 10)	
	Width - to - Thickness Ratio for flange	$a_{f} := \frac{bf}{tfc} = 5.75$	

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number11215702	Sheet115
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka	Date <u>06/03/2022</u>
	Limiting width to thickness ratio for compact flange section about major/minor axis	$\lambda_{cf} \coloneqq 0.38 \cdot \sqrt{\frac{E}{Fy}} = 10.79$	
	Limiting width to thickness ratio for non compact flange section about major/minor axis	$\lambda_{nf} := 1 \sqrt{\frac{E}{Fy}} = 28.38$	
	Classification of web in flexure - Table B4.1b (case	e 15)	
	Width - to - Thickness Ratio for web	$a_{W} := \frac{(d) - [2 \cdot (k - 2tc)]}{twc} = 23.47$	
	Limiting width to thickness ratio for compact web section about major/minor axis	$\lambda_{cw} := 3.76 \cdot \sqrt{\frac{E}{Fy}} = 106.72$	
	Limiting width to thickness ratio for non compact web section about major/minor axis	$\lambda_{nw} := 5.7 \sqrt{\frac{E}{Fy}} = 161.78$	
	$cn_{ff} := "Compact flange" if a_f \leq \lambda_{cf}$	= "Compact flange"	
	"Non compact flange" if $\lambda_{cf} \leq 3$	$a_f \leq \lambda_{nf}$	
	"Slender flange" otherwise		
	$cn_{wf} := $ "Compact web" if $a_w \le \lambda_{cw}$	= "Compact web"	
	"Non compact web" if $\lambda_{CW} \le a_{W}$ "Slender flange web" otherwise	$v \leq \lambda_{\rm NW}$	
Allowable Stress Shear Design - Chapter G			
	Web area	$Aw := (d) \cdot (twc) = 4.83 \cdot in^2$	

Web plate buckling coefficient

Kv := 5.34

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702	Sheet 116
Droigot	San Jacinto River Waste Pits Site	Shoots By I Goel	Date 06/03/2022
Subject	Waler Section & Splice Connection Design Calculation	- Checked By S.Chilka	Date <u>06/03/2022</u>
		$\mathbf{r} \coloneqq 1.1 \cdot \left(\mathbf{Kv} \cdot \frac{\mathbf{E}}{\mathbf{Fy}} \right)^2 = 72.15$	
		r1 := $\frac{(d) - [2 \cdot (tfc)]}{twc} = 26.57$	
	Web shear coefficient, Eq G2-3 and Eq G2-4	Cv1 := $\begin{vmatrix} 1 & \text{if } r \ge r1 \\ \frac{r}{r1} & \text{if } r < r1 \end{vmatrix}$	
		Cv1 = 1	
	Nominal shear strength, Eq G2-1	$Vn := 0.6 \cdot Cv1 \cdot Aw \cdot Fy = 104.33 \cdot kip$	
	Allowable shear strength	$vc := \frac{Vn}{\Omega v} = 62.47 \cdot kip$	
	Check for shear strength	Checkvc := $\begin{vmatrix} Vd \\ vc \end{vmatrix}$ if $vc \ge Vd$ "Revise waler section"	if vc < Vd
		Checkvc = 0.53	
Allov	vable Stress Flexure design about major axis - C	hapter F	
	Yielding - Section F2.1		

Nominal flexural strength for yielding, Eq F2-1 $Mnyld := Fy \cdot Zx = 117.83 \cdot kip \cdot ft$

	International Paper Company & McGinnes Industrial		
Client	Maintenance Corporation	Job Number 11215702 Sheet 117	
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel Date 06/03/202	22
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/202	22
	Lateral Torsional Buckling - Section F2.2		
	Unbraced length	$Lb := S_{rod} \cdot 2 = 120 \cdot in$	
		$Lp := 1.76 \cdot rv \cdot \sqrt{\frac{E}{E}} = 57.55 \cdot in$	
	Limiting unbraced length for yielding Eq F2-5	√ Fy	
	Eq F2-8b	$cf := \left(\frac{ho}{2}\right) \cdot \sqrt{\frac{Iy}{c}} = 1.12$	
		$(2)_{\mathcal{N}} CW$	
	Eq F2-7	rts := $\sqrt{\frac{\sqrt{19 \cdot Cw}}{Sx}} = 1.37 \cdot in$	
		V 5	
	Fa F2-6		
		$(1)^2$	
	$E \cdot \int \left(J \cdot \frac{cI}{Sx \cdot ho} \right) + \int \left(J \cdot \frac{c}{Sx} \cdot ho \right) dx$	$\frac{\text{cI}}{\text{sybo}}$ + $6.76 \cdot \left(0.7 \cdot \frac{\text{Fy}}{\text{F}} \right)$	
	$Lr := 1.95 \cdot rts \cdot \frac{\sqrt{-5.7 \text{ Ho}}}{\sqrt{-5.7 \text{ Ho}}} \sqrt{-5.7 \text{ Ho}}$	$\frac{1}{2} = 245.54 \cdot in$	
	From SAP2000 analysis, for calculation of Cb (Lp<	_D<=Lr)	

Moment at quarter point of unbraced segment	Ma := 28.4kip·ft
Moment at center line of unbraced segment	Mb := 67.7kip·ft
Moment at three quarter point of unbraced segment	Mc := 28.4kip·ft
Maximum moment in unbraced segment	Mabs := 89.7kip·ft

	International Paper Company & McGinnes Industrial	440
Client	Maintenance Corporation	_ Job Number <u>11215702</u> Sheet <u>118</u>
Project	San Jacinto River Waste Pits Site	_ Sheets ByS Chilka Date06/03/2022
Subject —	Waler Section & Spice Connection Design Calculation	- Checked By S.Chilka Date 00/03/2022
	Plastic moment capacity	Mp := Mnyld
	Lateral torsional buckling modification factor, Eq F1-1	
	$Cb := 12.5 \cdot \frac{Ma}{[(2.5 \cdot Mabs) + (3 \cdot Ma)]}$	$\frac{abs}{abs} = 1.68$
	Nominal flexural strength for lateral torsional buckling - Eq F2-2	$Mnltb := Cb \cdot \left[Mp - (Mp - 0.7 \cdot Fy \cdot Sx) \cdot \frac{(Lb - Lp)}{(Lr - Lp)} \right]$
		Mnltb = 171.52·kip·ft
	Nominal flexural strength	$Mn := min(Mnyld, Mnltb) = 117.83 \cdot kip \cdot ft$
	Design flexure strength	$mc := \frac{Mn}{\Omega f} = 70.56 \cdot kip \cdot ft$
	Check for flexural strength	Checkmc := $\frac{Md}{mc}$ if $mc \ge Md$ "Revise waler section" if $mc < Md$
Defle	ection Check	Checkmc = 0.64

Limiting Deflection

$$L_{\text{ld}} := \frac{\text{Lb}}{360} = 0.33 \cdot \text{in}$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	119
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date _	06/03/2022
, Subject —	Waler Section & Splice Connection Design Calculation	Checked Bv_	S.Chilka	Date_	06/03/2022
Cubjeet					
	Maximum deflection from SAP2000 analysis	$L_{md} := 0.18in$			

Demand to Capacity Ratio

 $Check_d := \begin{cases} \frac{L_{md}}{L_{ld}} & \text{if } L_{ld} \ge L_{md} \\ \\ \text{"Revise unbraced length"} & \text{if } L_{ld} < L_{md} \end{cases}$

 $\text{Check}_{d} = 0.54$

Bolted Splice Plate Connection Design for Waler, Allowable Stress Design -AISC 360-16

From SAP2000 analysis, point of zero moment in typical span for case 1 is ~1.2' and for case 2 is ~1.7' from tie rod anchorage. Point of splice connection for design is 1.5' from tie rod anchorage.

Resultant Web Force at Point of Splice Connection

Bending moment demand at point of splice, from SAP2000 analysis

 $Msd := 11 kip \cdot ft$

Horizontal force in web due to moment at point of splice

$$H_{W} := \frac{Msd\cdot 4}{[d - [2\cdot(k - 2tc)]]} = 55.9 \cdot kip$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date 06/03/2022
, Subiect —	Waler Section & Splice Connection Design Calculation	Checked Bv_	S.Chilka	Date 06/03/2022
	Resultant web force at point of splice connection $\int \frac{1}{p_2} $	$V_r := \sqrt{Vd^2 + H}$ $\frac{H_w}{2}$	$\overline{I_{W}}^{2} = 64.92 \cdot \text{kip}$	
	Web Moment = $\frac{H_w}{2} \left(\frac{D}{2} \right)$			
	$H_w = \frac{D/4}{D/4}$			
Facto	red shear resistance of bolts in shear			
	No of shear planes	Ns := 1	Í.	Bolt in shear (V) and tension (T)
	Section J3, Table J3.2	÷		
	Using HDG Group A, A325 bolts		L d	
	Nominal shear stress when threads are not excluded from shear planes	Fnv := 54ksi		
	Taking 1.25" nominal diameter bolt			
	Bolt nominal diameter	db := 1.25in		
	Nominal unthreaded body area of bolt	$Ab := 3.14 \cdot (db)^2$	$^{2} \cdot 0.25 = 1.23 \cdot \text{in}^{2}$	

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number11215702	Sheet121
Project	San Jacinto River Waste Pits Site	Sheets ByI.Goel	Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	- Checked By S.Chilka	Date <u>06/03/2022</u>
	Nominal shear strength of bolt	$Rn := Fnv \cdot Ab \cdot Ns = 66.23 \cdot kip$	
	Overstrength factor	$\Omega b := 2$	
	Allowable shear strength of bolt	$Rr := \frac{Rn}{\Omega b} = 33.12 \cdot kip$	
	No of bolts required on each side of the web splice	$Nb := \frac{V_r}{Rr} = 1.96$	
	No of bolts provided on each side of the web splice	Nf := 6	
	No of bolt columns in connection pattern along the length of splice plate	Nr := 3	

Bolt Connection Pattern

Table J3.3, for 1.25" bolt dia, standard hole dia is 1.375"

Hole diameter

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number1215702Sheet
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel Date06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	- Checked By S.Chilka Date 06/03/2022
	Minimum center to center spacing allowed b/w holes, Sec J3.3	$Smin := \frac{8 \cdot (db)}{3} = 3.33 \cdot in$
	Minimum clear spacing allowed b/w holes, Sec J3.3	Scmin := $db = 1.25 \cdot in$
	Table J3.4, minimum edge distance allowed for 1.25" bolt dia	Semin := 1.625in
	Providing a splice plate of 24"X8", 0.75" thickness	s for the connection
	No of splice plates in the connection	Nsp := 1
	Eq. J4-3 and J4-4, strength of elements in shear	
	Depth of splice plate	dsp := 8in
	Thickness of splice plate	Twsp := 0.75in
	Reduced thickness of splice plate - for accounting corrosion	$twsp := Twsp - tc = 0.73 \cdot in$
	Gross area subject to shear	Agv := $dsp \cdot twsp = 5.86 \cdot in^2$
	Nominal shear yielding strength	Rnsy := 0.6·Fy·Agv·Nsp = 126.58·kip
	Overstrength factor	Ω spsy := 1.5

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number11215702 Sheet ¹²³
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel Date06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	- Checked By <u>S.Chilka</u> Date <u>06/03/2022</u>
	Allowable shear yielding strength	$\operatorname{Rrsy} := \frac{\operatorname{Rnsy}}{\Omega \operatorname{spsy}} = 84.38 \cdot \operatorname{kip}$
	Demand to Capacity Ratio	Checksy := $\frac{Vd}{Rrsy}$ if $Rrsy \ge Vd$ "Revise splice plate" if $Rrsy < Vd$
		Checksy = 0.39
	Net area subject to shear	Anv := $\left[dsp - \left(Nf \cdot \frac{dbh}{Nr} \right) \right] \cdot twsp = 3.85 \cdot in^2$
	Nominal shear rupture strength	Rnsr := 0.6·Fu·Anv·Nsp = 133.83·kip
	Overstrength factor	Ω spsr := 2
	Allowable shear rupture strength	$\operatorname{Rrsr} := \frac{\operatorname{Rnsr}}{\Omega \operatorname{spsr}} = 66.91 \cdot \operatorname{kip}$
	Demand to Capacity ratio	Checksr := $\frac{Vd}{Rrsr}$ if $Rrsr \ge Vd$ "Revise splice plate" if $Rrsr < Vd$
		Checksr = 0.49

	International Paper Company & McCinnes Inductrial						
Client	Maintenance Corporation	Job Number	11215702	Sheet			
Project	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date 06/03/2022			
Subject —	Waler Section & Splice Connection Design Calculation	Checked By	S.Chilka	Date06/03/2022			
	Maximum spacing and edge distance - Section J3-	5					
	Maximum edge distance						
	Semax := $12 \cdot \min(tw, Twsp)$ if $12 \cdot \min(tw, Twsp) \le 6in = 5.25 \cdot in$ 6in if $12 \cdot \min(tw, Twsp) > 6in$						
	Maximum center to center longitudinal spacing allowed b/w holes						
	Smax := 24·min(tw, Twsp) i 12in if 24·min(tw,	f 24∙min(tw, Tws Twsp) > 12in	$(xp) \le 12in = 10.5$	in			
	Distance of bolt from splice plate edge	Seprov := 2in					
	Distance of bolt from channel section flange inner edge						
	Sepprov := Seprov + [(d - d	$\mathrm{dsp})\cdot 0.5 - \mathrm{k}] = 2.0$	59∙in				
	Spacing provided between bolts	Sprov := 4in					
	Check for bolt edge distance provided						
	Secheck := "Okay" if Semin ≤ ma "Not Okay" otherwise	ax(Sepprov,Sepro	$v) \leq Semax = "O$	kay"			
	Check for spacing provided between bolts						
	Scheck := "Okay" if (max(Smin,) "Not Okay" otherwise	$Scmin + dbh) \le S$	'prov ≤ Smax) = '	"Okay"			

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet 125
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	
Subject —	Waler Section & Splice Connection Design Calculation	Checked Bv_	S.Chilka	Date 06/03/2022

Block Shear Rupture Check, Eq. J4-5

Fallure by tearing out of shaded portion

Multiple-Row Beam-End Connections

(b) Cases for which $U_{bs} = 0.5$

Fig. C-J4.1. Failure surface for block shear rupture limit state.

No of bolts in the outermost edge of the connection pattern which is in tension

Nbr := 3

Net Area resisting the tensile stress

Ant :=
$$Nsp \cdot [Seprov + (Nbr - 1)Sprov - [dbh \cdot (Nbr - 0.5)]] \cdot twsp = 4.81 \cdot in^{2}$$

Net Area resisting the shear stress

Avn := Nsp
$$\cdot \left[dsp - Seprov - \left[\left[\left(\frac{Nf}{Nr} \right) - 0.5 \right] \cdot dbh \right] \right] \cdot twsp = 2.88 \cdot in^2$$

Gross area resisting the shear stress

Avg := Nsp·(dsp - Seprov)·twsp = $4.39 \cdot in^2$

Nominal block shear strength

Ubs := 0.5

 $Rbs := [(0.6 \cdot Fu \cdot Avn) + (Ubs \cdot Fu \cdot Ant)] = 239.77 \cdot kip$

$$\begin{array}{ll} \text{Rnbs} := & \text{Rbs} \quad \text{if} \quad \text{Rbs} \leq \left[(0.6 \cdot \text{Fy} \cdot \text{Avg}) + (\text{Ubs} \cdot \text{Fu} \cdot \text{Ant}) \right] & = 234.34 \cdot \text{kip} \\ & \left[(0.6 \cdot \text{Fy} \cdot \text{Avg}) + (\text{Ubs} \cdot \text{Fu} \cdot \text{Ant}) \right] \quad \text{if} \quad \text{Rbs} > \left[(0.6 \cdot \text{Fy} \cdot \text{Avg}) + (\text{Ubs} \cdot \text{Fu} \cdot \text{Ant}) \right] \end{array}$$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number 11215702 Sheet ¹²⁶
Project	San Jacinto River Waste Pits Site	Sheets By I.Goel Date 06/03/2022
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022
	Overstrength Factor	Ω bs := 2
	Allowable block shear strength	$\text{Rrbs} := \frac{\text{Rnbs}}{\Omega \text{bs}} = 117.17 \cdot \text{kip}$
	Demand to Capacity Ratio	Checkbs := $\begin{vmatrix} Vd \\ Rrbs \end{vmatrix}$ if $Rrbs \ge Vd$ "Revise splice plate" if $Rrbs < Vd$
		Checkbs = 0.28
	Bearing Resistance Check, Eq. J3-6a	
	Nominal bearing strength at bolt holes	Rnb := $2.4 \cdot (db) \cdot twsp \cdot Fu \cdot Nf = 764.73 \cdot kip$
	Overstrength Factor	$\Omega bh := 2$
	Allowable bearing strength at bolt holes	$\operatorname{Rrb} := \frac{\operatorname{Rnb}}{\Omega \operatorname{bh}} = 382.36 \cdot \operatorname{kip}$
	Demand to Capacity Ratio	
	Checkbh := $\frac{V_r}{Rrb}$ if $Rrb \ge$ "Revise splice p	$V_r = 0.17$ plate or bolts" if $Rrb < V_r$
	Tearout Resistance Check, Eq. J3-6c	
	Ic for edge bolts	lco := Seprov $-\left(\frac{dbh}{2}\right) = 1.31 \cdot in$

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number 500 Sheet			
Project	San Jacinto River Waste Pits Site	_ Sheets ByI.Goel Date06/03/2022			
Subject —	Waler Section & Splice Connection Design Calculation	Checked By S.Chilka Date 06/03/2022			
	lc for inner bolts	lci := Sprov $- dbh = 2.63 \cdot in$			
	Inner bolts on each side of splice	Ni := 0			
	For edge bolts, nominal tearout strength at bolt holes	Rnto := $1.2 \cdot twsp \cdot Fu \cdot lco \cdot (Nf - Ni) = 401.48 \cdot kip$			
	For inner bolts. nominal tearout strength at bolt holes	Rnti := 1.2·twsp·Fu·lci·Ni = 0·kip			
	Total nominal tearout strength at bolt holes	$Rnt := Rnto + Rnti = 401.48 \cdot kip$			
	Overstrength factor	$\Omega bt := 2$			
	Allowable tearout strength at bolt holes	$\operatorname{Rrt} := \frac{\operatorname{Rnt}}{\Omega \operatorname{bt}} = 200.74 \cdot \operatorname{kip}$			
	Demand to Capacity Ratio				
	Checkth := $\frac{V_r}{Rrt}$ if $Rrt \ge$ "Revise splice"	$V_r = 0.32$ plate or bolts" if $Rrt < V_r$			
	Slip Resistance Check, Eq. J3-4				
	For class A surfaces	μ := 0.3			
		Du := 1.13			
	Minimum bolt pretension, Table J3.1 for Group A, A325 bolts	Tb := 81kip			

Client Project Subject	International Paper Company & McGinnes Industrial Maintenance Corporation San Jacinto River Waste Pits Site Waler Section & Splice Connection Design Calculation	Job Number <u>11215702</u> Sheets By <u>I.Goel</u> Checked By <u>S.Chilka</u>	Sheet <u>128</u> Date <u>06/03/2022</u> Date <u>06/03/2022</u>
		hf := 1	
	Nominal slip resistance of bolts	$Rsr := Nf \cdot Ns \cdot \mu \cdot Du \cdot Tb \cdot hf = 164.75 \cdot 1000$	kip
	Overstrength Factor	Ω sr := 1.5	
	Allowable slip resistance of bolts	$\operatorname{Rrslr} := \frac{\operatorname{Rsr}}{\Omega \operatorname{sr}} = 109.84 \cdot \operatorname{kip}$	
	Demand to Capacity Ratio		

Checkslr := $\begin{vmatrix} V_r \\ Rrslr \end{vmatrix}$ if $Rrslr \ge V_r = 0.59$ "Revise bolts size" if $Rrslr < V_r$

Design Summary

Provide rectangular splice plate of 24"X8",0.75" thickness. On each side of web splice bolted plate connection, provide 6 - 1.25" dia HDG Group A - A325 bolts.

ATTACHMENT 3.2

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	_ Job Number_	11215702	Sheet	1
Proiect	San Jacinto River Waste Pits Site	_	I.Goel	Date	06/02/2022
Subject	BMP Design - Wind Load Parametric Study	Checked By	S.Chilka	Date	06/02/2022
		- Onconcu Dy-			

BMP Design - Wind Load Parametric Study Summary

BMP structural analysis is performed for hydrostatic load from flood stage water level at El. +9ft. Analysis doesn't include wind loads. Hence, this parametric study evaluates the effect of wind loads on the BMP. The net load combining wind and hystrostatic load, without a reduction factor (0.6) on wind, is compared to the design case hydrostatic load. As the net load is lower than the design case hydrostatic load, further analytical evaluation of wind loads is not required.

Evaluation results of extreme and unusual wind load cases for different mudline elevations are presented on the following pages.

ient	Maintenance Corporatio	n n	Acginnes industrial	Job Number	11215702	Sheet	2
oiect	San Jacinto River Waste	Pits Site	•	Sheets By	I.Goel	_ Date _	06/02/202
, ıbject —	BMP Design - Wind Load	d Parame	etric Study	_ Checked By_	S.Chilka	_ Date _	06/02/202
	<u>Mudline Elevation = Oft</u> Wind Load - Extreme Ca	: ase (EX)					
	Condition 1			Top of V	Nall/Water surface	2	
	Wind Load	e	ВМР	Exterior	lydrostatic Load		
	Mudline						
	Top of Wall elevation Mudline elevation Water Surface elevatior		9 ft 9 ft 9 ft				
	Hydrostatic Load on Ext	terior face	e (Design case hydrosta	tic load)			
	Density of water Total load on BMP Acting at height	$\begin{array}{l} \rho_w \\ H_{LEX1} \\ H_{1EX1} \end{array}$	62.4 lb/ft ³ 2.53 kip/ L.F 3 ft	per unit ft length from mudline ele	n of BMP evation		
	Wind Load on Interior f	ace					
	Wind pressure Total load on BMP Acting at height	q _{z3000} W _{LEX1i} H _{2EX1}	43.87 lb/ft ² 0.39 kip/ L.F 4.5 ft	Refer Basis of De per unit ft length from mudline ele	esign report n of BMP evation		
	Net Load on BMP Acting at height	N _{LEX1} H _{DIEX1}	2.13 kip/L.F	H _{LEX1} -W _{LEX1i} from mudline el	evation		
	Load Govern Check	- MIEXI	Design case hydrostat	tic load governs			

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	3
Proiect	San Jacinto River Waste Pits Site	 Sheets By	I.Goel	Date	06/02/2022
Subject	BMP Design - Wind Load Parametric Study	Checked By	S.Chilka	- Date	06/02/2022
		Checked Dy-		_ 4.0 _	

Wind Load - Extreme Case (EX)

Client_	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	5
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date_	06/02/2022
Subject	BMP Design - Wind Load Parametric Study	Checked By	S.Chilka	Date	06/02/2022
		Checked Dy-		_ 410 _	

Wind Load - Unusual Case (UN)

Client	Maintenance Corporatio	npany & i on		Job Number	11215702	Sheet 6				
Project	San Jacinto River Wast	e Pits Site	e	Sheets By	I.Goel	Date06/02/2022				
Subject —	BMP Design - Wind Loa	ad Param	etric Study	— Checked By—	S.Chilka	Date06/02/2022				
	Mudline Elevation = -1	<u>.0ft</u>								
	Wind Load - Extreme C	Case (EX)								
	Condition 1			Top of \	Wall/Water surfac	e				
	Wind Load				lydrostatic Load					
	Interior fac	ce	ВМР	Exterior	face					
	Mudline									
	Top of Wall elevation Mudline elevation Water Surface elevatio	-1 n	9 ft 0 ft 9 ft							
	Hydrostatic Load on Exterior face (Design case hydrostatic load)									
	Density of water Total load on BMP Acting at height	ρ _w H _{lex1} H _{1ex1}	62.4 lb/ft ³ 11.26 kip/ L.F 6.33 ft	per unit ft length from mudline ele	n of BMP evation					
	Wind Load on Interior	face								
	Wind pressure Total load on BMP Acting at height	q _{z3000} W _{LEX1i} H _{2EX1}	43.87 lb/ft ² 0.83 kip/ L.F 9.5 ft	Refer Basis of De per unit ft length from mudline ele	esign report n of BMP evation					
	Net Load on BMP	N _{LEX1}	10.43 kip/L.F	H _{LEX1} -W _{LEX1i}						
	Acting at height	H _{nIEX1}	6.1 ft	from mudline ele	evation					
	Load Govern Check		Design case hydrostat Hugy >= Nugy and Hugy	tic load governs >=Hplev1						

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	7
Project	San Jacinto River Waste Pits Site	 Sheets By	I.Goel	Date	06/02/2022
Subject	BMP Design - Wind Load Parametric Study	Checked By	S.Chilka	- Date	06/02/2022
		Checked Dy-		_ 410 _	

Wind Load - Extreme Case (EX)

Client_	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	9
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date_	06/02/2022
Subject	BMP Design - Wind Load Parametric Study	Checked By	S.Chilka	Date	06/02/2022

Wind Load - Unusual Case (UN)

Client	International Paper Con Maintenance Corporation	npany & I on	AcGinnes Industrial	Job Number	11215702	Sheet	10
Project	San Jacinto River Wast	e Pits Site	9	Sheets By	I.Goel	_ Date _	06/02/2022
Subject -	BMP Design - Wind Loa	ad Paramo	etric Study	— Checked By	S.Chilka	Date _	06/02/2022
	Mudline Elevation = -2	<u>Oft</u>					
	Wind Load - Extreme C	Case (EX)					
	Condition 1			Top of \	Nall/Water surfac	e	
	Wind Load Interior fac	ce	ВМР	Exterior	lydrostatic Load face		
	Mudline						
	Top of Wall elevation Mudline elevation Water Surface elevatio	-2 n	9 ft 0 ft 9 ft				
	Hydrostatic Load on Ex	terior face	e (Design case hydrosta	tic load)			
	Density of water Total load on BMP Acting at height	$ ho_w$ H _{LEX1} H _{1EX1}	62.4 lb/ft ³ 26.24 kip/ L.F 9.67 ft	per unit ft length from mudline ele	n of BMP evation		
	Wind Load on Interior	face					
	Wind pressure Total load on BMP Acting at height	q _{z3000} W _{LEX1i} H _{2EX1}	43.87 lb/ft ² 1.27 kip/ L.F 14.5 ft	Refer Basis of De per unit ft length from mudline ele	esign report n of BMP evation		
	Net Load on BMP	N _{LEX1}	24.97 kip/L.F	H _{LEX1} -W _{LEX1i}			
	Acting at height	H _{nIEX1}	9.4 ft	from mudline ele	evation		
	Load Govern Check		Design case hydrostat $H_{1EY1} >= N_{1EY1}$ and H_{1EY1}	tic load governs >=Hplev1			

Client	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	11
Proiect	San Jacinto River Waste Pits Site	Sheets By	I.Goel	Date	06/02/2022
Subject	BMP Design - Wind Load Parametric Study	Checked By	S.Chilka	Date	06/02/2022

Wind Load - Extreme Case (EX)

Load Govern Check

Design case hydrostatic load governs $H_{LEX1} >= N_{LUN1}$ and $H_{1EX1} >= H_{n|LUN1}$

12

Date ______06/02/2022

Sheet

Top of Wall

Water Surface

Client_	International Paper Company & McGinnes Industrial Maintenance Corporation	Job Number_	11215702	Sheet	13
Proiect	San Jacinto River Waste Pits Site	 Sheets By	I.Goel	Date	06/02/2022
Subject	BMP Design - Wind Load Parametric Study	Checked By	S.Chilka	Date	06/02/2022
	•	- Checked Dy-		_ 410 _	

Wind Load - Unusual Case (UN)

ATTACHMENT 3.3

	International Paper Company & McGinnes Industrial		
Client	Maintenance Corporation	Job Number <u>11215702</u>	Sheet
Project _	San Jacinto River Waste Pits Site	Sheets By <u>S. Chilka</u>	Date 06/05
Subject -	Sheet Pile Seepage Evaluation	Checked By	_ Date

Section	H (ft)	h (ft)	H (m)	h (m)	L (ft)	n
C1	19	22	5.8	6.7	370.0	161
C2, C5	24	20	7.3	6.1	910.0	396
C3, C3A	14	25	4.3	7.6	450.0	196
C4	22	18	6.7	5.5	310.0	135
C4A	17	27	5.2	8.2	650.0	283
C6, C7	9	35	2.7	10.7	950.0	414

H = Height of Water Column above Sediment

h = Thickness of Sediment Layers

L = Approximate length of each analysis sections

n = number of interlocks per lineal feet of BMP

Sheet Pile Width, b 27.56 in, half pair

L/b n =

Arcelor Mittal, Impervious Steel Sheet Piles, Design & Practical Approach

Q1 = Discharge per interlock, cubic feet per second

Q = Total Discharge, cubic feet per second

Q1 =	ρ H (0.5 H + h)	m3/s per interlock
Q =	n Q1	m3/s, total
Q =	(22.83E6) n Q1	gal/day or GPD

Inverse Resistivity (ρ) of Interlocks for various seal conditions

Materials by Arcelor Mittal. Other comparable but proprietary products available.

Watertightening System		ρ [10 ⁻¹⁰ m/s]		Application of the system	Cost ratio **
Hydrostatic pressure	100 kPa	200 kPa	300 kPa		
Empty interlock*	> 1000	*	-	-	0
Interlock with Beltan® Plus	< 600	-	-	easy	1.0
Interlock with Arcoseal™	< 600	-	-	easy	1.2
Interlock with ROXAN® Plus system	0.5	0.5	-	with care	1.8
Interlock with AKILA® system	0.3	0.3	0.5	with care	2.1
Welded interlock	0	0	0	after excavation for the interlock threaded on jobsite	5.0

1.00E-07 m/s, minimum inverse resistivity for standard interlocks

* Value available only at 150 kPa : \geq 4500

ρ

SF

Assume Use

Safety factor for test parameters 1.5

ρ, design 1.50E-07

Section	Q1 (m3/s)	Q (GPD)
C1	8.3E-06	30676
C2, C5	1.1E-05	96815
C3, C3A	6.2E-06	27927
C4	8.9E-06	27398
C4A	8.4E-06	54341
C6, C7	5.0E-06	46785

5/2022

1

Client	Internationa Maintenance	l Paper Cor e Corporati	mpany & N on	AcGinnes Industrial Job Number <u>11215702</u>	Sheet2
Project	San Jacinto	River Wast	te Pits Site	Sheets By S. Chilka	Date 06/05/2022
Subject	Sheet Pile S	eepage Ev	aluation	Checked By	Date
Subject -				Checked By	
	Assume Use	ρ SF ρ, design	6.00E-08 1.5 9.00E-08	m/s, maximum inverse resistivity for Beltan Plus or Arcose Safety factor for test parameters	al Seal
	Section	O1 (m3/s)	O (GPD)		
	C1	5.00E-06	18406		
	C2, C5	6.42E-06	58089		
	C3, C3A	3.75E-06	16756		
	C4	5.33E-06	16439		
	C4A	5.05E-06	32605		
	C6, C7	2.97E-06	28071		
	Accumo	0	E 00E 11	m/c maximum inverse resistivity for POYAN Plus System	
	Assume	ςΕ	5.00E-11 1 E	Safaty factor for tost parameters	
	036	ρ, design	7.50E-11	Salety factor for test parameters	
	Section	Q1 (m3/s)	Q (GPD)		
	C1	4.17E-09	15		
	C2, C5	5.35E-09	48		
	C3, C3A	3.12E-09	14		
	C4	4.45E-09	14		
	C4A	4.21E-09	27		
	C6, C7	2.48E-09	23		
	٨٩٩٢٩٩	0	3 00F-11	m/c maximum inverse resistivity for AKII A Seal	
		۶E h	1 5	Safety factor for test parameters	
	036	o, design	4.50F-11	Safety factor for test parameters	
		p) acc.8			
	Section	Q1 (m3/s)	Q (GPD)		
	C1	2.50E-09	9		
	C2, C5	3.21E-09	29		
	C3, C3A	1.87E-09	8		
	C4	2.67E-09	8		

C4A

C6, C7

2.52E-09

1.49E-09

16

14

٦

ATTACHMENT 3.4

Client	IP & MIMC	Job Number	11215702	Sheet	1
Project	San Jacinto River Waste Pits Site	Sheets by	S. Chilka	Date	6/10/2022
Subject	Barge Impact - Northern Impoundment	Checked by		Date	

Summary of Impact Force for different impact velocities (V)

Design Barge	30,000 BBL	
Width	54 ft	
Contact Length	50 ft	
Load Case 1	20 kip/LF =	1000 kip
Load Case 2	28 kip/LF =	1400 kip

	V (ft/s)	1.00	1.60	2.20	3.80	5.30	1
	V (knots)	0.59	0.95	1.30	2.25	3.14	1
20.000 001	KE of Impact	30	76	144	430	837	kip.ft
Dargo	Barge Damage Length	0.02	0.04	0.08	0.25	0.47	ft
Dalge,	Head-On Impact Force	71	182	344	1013	1401	kips
Ballast	30-deg Impact Force	54	137	258	760	1051	kips

	V (ft/s)	1.00	1.60	2.20	3.80	5.30	7
	V (knots)	0.59	0.95	1.30	2.25	3.14	
20.000 PPI	KE of Impact	172	440	832	2484	4831	kip.ft
Dargo	Barge Damage Length	0.10	0.25	0.47	1.32	2.39	ft
barge,	Head-On Impact Force	409	1035	1401	1494	1611	kips
Laden	30-deg Impact Force	307	777	1050	1120	1209	kips

Notes

Equivalent to Load Case 1 Equivalent to Load Case 2

Client	IP & MIMC	Job Number	11215702	Sheet	2
Project	San Jacinto River Waste Pits Site	Sheets by	S. Chilka	Date	6/10/2022
Subject	Barge Impact - Northern Impoundment	Checked by		Date	

Summary of Impact Force for different impact velocities (V)

Design Barge parameters from	ា TXDOT Bridg	ge Pier Design Criteria
Length	300 ft	
Width / Beam	54 ft	
Depth	12 ft	Hull Height
Water Unit Weight	63 pcf	Brackish water
Water Depth	20 ft	Flood Level to mudline

Two conditions of the barge - empty (ballast) and fully loaded (laden) are considered to determine the impact force for a head-on collision with the BMP

Ballast Draft	1.8 ft	Unloaded / Empty Barge
UKC Ratio, Ballast	10	Underkeel clearance to water depth ratio
Laden Draft	10 3 ft	Loaded Barge
UKC Ratio, Laden	1	Underkeel clearance to water depth ratio
Ballast Displacement	1820 kips	Lightship condition
Alternate Units	910 ST	813 LT
Laden Displacement	10500 kips	Total Weight of the Barge + Cargo
Alternate Units	5250 ST	4688 LT
Deadweight, DWT	9400 kips	Cargo Capacity
Alternate Units	4700 ST	4196 LT

Impact Force - AASHTO Section 3.14

ft/s	0.00	2.2 ft/	S	0.67 m/s
Kinetic Ene	ergy, $KE = \frac{C}{C}$	$\frac{WV^2}{29.2}$ kip	o.ft (Eq. 3	3.14.7-1)
Where,	W = Total or Lad V = Impact Velo C _H = Hydrodyna	den Displace city mic Mass Co	ement (tonne) pefficient	Note: 1 tonne = 0.98 LT
	С _н , Ballast	1.05 U	KC Ratio > 0.5	
	KE, Ballast	143 kip	.ft	194 kN.m
	С _н , Laden KE, Laden	1.05 U 823 kip	KC Ratio > 0.5 .ft	1117 kN.m

The total impact force on the barge pile is directly proportional to the horizontal damage length for a barge

Damage Length	$a_B = 10.2 \left(\sqrt{1 + \frac{KE}{5,672}} - 1 \right)$	(Eq. 3.14.12-1)
a _B , Ballast a _B , Laden	0.08 ft 0.46 ft	The 10.2 factor is for 35ft wide barge. It should be modified by (10.2 / (Barge Width /35 ft)) for others.
Impact Force, Ballast Impact Force, Laden	t 340 kip 1400 kip	(Eq. 3.14.11-1) (Eq. 3.14.11-2)

Client	IPC and MIMC	Job Number	11215702	Sheet	3
Project	San Jacinto River Waste Pits Site	Sheets by	I. Goel	Date	6/10/2022
Subject	San Jacinto Barge Impact Study Summary	Checked by	S. Chilka	Date	6/10/2022

Elevations (ft)	NAVD88
Top of Wall	+9
Top of Water Outside	+9

Loading Condition	Allowable Stress Factor				
Loading Condition	Moment & Axial Load	Shear			
Usual, U	0.50	0.33			
Unusual, UNU	0.67	0.44			
Extreme, EXT	0.88	0.58			

Sacrificial thickness (tc) - for accounting corrosion Corroded flange thickness (trf) - two exposed faces Corroded web thickness (trw) - two exposed faces Corroded section modulus Sr Corroded section area Avr

Corroded Section Capacities

Shoot Dilo Soction	$C(1) = \frac{3}{4}$	+f(in)	trf(in)	Sr (in ³ /ft)	Momen	t (kip.ft	/ LF)
Sheet Phe Section	5 (in /ft)	u(III)		Sr (in /ft)	U	UNU	EXT
AZ 26-700	48.40	0.48	0.45	44.87	112	149	196
AZ 40-700N	74.30	0.67	0.63	70.41	176	234	308
AZ 36-700N	66.80	0.59	0.56	62.84	157	209	275
AZ 52-700	95.90	0.95	0.91	92.35	231	307	404

Sheet Pile Section (in^2/ft) tw(in) trw(in) (in^2/ft)	² /ft) Shear (kip / LF)						
Sheet Plie Section	Α _ν (in /it)	uw(III)	(III)	A _{vr} (m /n)	U	UNU	EXT
AZ 26-700	8.69	0.48	0.45	8.06	160	212	279
AZ 40-700N	10.25	0.52	0.49	9.56	189	252	331
AZ 36-700N	8.67	0.44	0.41	7.98	158	210	276
AZ 52-700	13.30	0.67	0.63	12.60	250	332	437

Sheet Pile Design Summary - Barge Impact Study

	Design	Total	Analysi	is Demands	s per LF	DCP	DCP	
Analysis Sections	Load (kip/ft)	Applied Force (kip)	Moment (kip-ft)	Shear (kip)	Deflection (ft)	Moment	Shear	
C2, AZ 40-700N	20	1000	342.4	64.5	1.4	1.11	0.19	
	28	1400	465.9	68.5	2.8	1.51	0.21	
C4, AZ 26-700	20	1000	159.6	39.6	0.8	0.81	0.14	
	28	1400	251.2	39.6	1.6	1.28	0.14	

Total Force = Design Load x Contact Area (50 ft x 1 ft)

Alternative Sections	Design Load (kip/ft)	DCR - Moment	DCR - Shear
C4 A7 26 700N	20	0.58	0.14
C4, AZ 36-700N	28	0.91	0.14

Steel Sheet Pile, Fy = 60 ksi

0.0175 in

tf-(2tc) in tw-(2tc) in

(trf/tf)*S in³/ft (trw/tw)*Av in²/ft

Client	IPC and MIMC	Job Number	11215702	Sheet	4
Project	San Jacinto River Waste Pits Site	Sheets by	I. Goel	Date	6/10/2022
Subject	San Jacinto Barge Impact Study Summary	Checked by	S. Chilka	Date	6/10/2022

Analysis Output Results - Section C2 - 20kip/ft design load

Deflection Output

Client	IPC and MIMC	Job Number	11215702	Sheet	5
Project	San Jacinto River Waste Pits Site	Sheets by	I. Goel	Date	6/10/2022
Subject	San Jacinto Barge Impact Study Summary	Checked by	S. Chilka	Date	6/10/2022

Bending Moment Output

Shear Force Output

Client	IPC and MIMC	Job Number	11215702	Sheet	6
Project	San Jacinto River Waste Pits Site	Sheets by	I. Goel	Date	6/10/2022
Subject	San Jacinto Barge Impact Study Summary	Checked by	S. Chilka	Date	6/10/2022

Analysis Output Results - Section C2 - 28kip/ft design load

Deflection Output

Client	IPC and MIMC	Job Number	11215702	Sheet	7
Project	San Jacinto River Waste Pits Site	Sheets by	I. Goel	Date	6/10/2022
Subject	San Jacinto Barge Impact Study Summary	Checked by	S. Chilka	Date	6/10/2022

Bending Moment Output

Shear Force Output

Client	IPC and MIMC	Job Number	11215702	Sheet	8
Project	San Jacinto River Waste Pits Site	Sheets by	I. Goel	Date	6/10/2022
Subject	San Jacinto Barge Impact Study Summary	Checked by	S. Chilka	Date	6/10/2022

Analysis Output Results - Section C4 - 20kip/ft design load

Deflection Output

Client	IPC and MIMC	Job Number	11215702	Sheet	9
Project	San Jacinto River Waste Pits Site	Sheets by	I. Goel	Date	6/10/2022
Subject	San Jacinto Barge Impact Study Summary	Checked by	S. Chilka	Date	6/10/2022

Bending Moment Output

Shear Force Output

Client	IPC and MIMC	Job Number	11215702	Sheet	10
Project	San Jacinto River Waste Pits Site	Sheets by	I. Goel	Date	6/10/2022
Subject	San Jacinto Barge Impact Study Summary	Checked by	S. Chilka	Date	6/10/2022

Analysis Output Results - Section C4 - 28kip/ft design load

Deflection Output

Client	IPC and MIMC	Job Number	11215702	Sheet	11
Project	San Jacinto River Waste Pits Site	Sheets by	I. Goel	Date	6/10/2022
Subject	San Jacinto Barge Impact Study Summary	Checked by	S. Chilka	Date	6/10/2022

Bending Moment Output

Shear Force Output

Attachment 4

Northern Impoundment Preliminary Vibration Analysis

ENCLOSURE 4.1

Horizontal Seismic Coef.: 0g

L	0	0	001	06	Mohr-Coulomb	lioS floS	
L	0	33	0	120	Mohr-Coulomb	(???- 여 ðr-) MS -4	
L	0	55	0	120	Mohr-Coulomb	(81- of 8.11-) MS -4	
L	0	0	006	96	Mohr-Coulomb	(3.11- of 4.6-) JJ -E	
L	0	0	500	211	Mohr-Coulomb	(4.6- of 8.1-) sJD -2	
Piezometric Line	(") 8-!4d	(") .!Чd	'noiesion' (îsq)	Unit Weight (Pcf)	ləboM	əmsN	Color

Analysis Name: Deep - Spencer Block

Date: 04/21/2020

File Name: 18-2876 North Sta 5+00 Vibration (B058) - Soft Soil ACBM.gsz

Scale: 1:250

Method: Spencer Slip Surface Option: Block Factor of Safety: 2.82 Horz Seismic Coef.:

Porizontal Seismic Coef.: 00.1g

L	0	0	001	06	Mohr-Coulomb	lioS floS	
L	0	33	0	150	Mohr-Coulomb	(;?;?- 여 ð1-) MS -4	
L	0	55	0	150	Mohr-Coulomb	(81- of 8.11-) MS -4	
L	0	0	006	96	Mohr-Coulomb	3- CL (-3.4 to -11.5)	
L	0	0	500	211	Mohr-Coulomb	(4.6- of 8.1-) sJD -2	
Piezometric Line	(") 8-!4d	(") .!Чd	'noiesion' (îsq)	Unit Weight (Pcf)	ləboM	əmsN	Color

(0f.0=D3) Asner Block (EQ=0.10)

Date: 04/21/2020

File Name: 18-2876 North Sta 5+00 Vibration (B058) - Soft Soft Soft Star

Scale: 1:250

Horizontal Seismic Coef.: 00.2g

L	0	0	001	06	Mohr-Coulomb	lio2 flo2	
L	0	33	0	150	Mohr-Coulomb	(;?;?- 여 ð1-) MS -4	
L	0	55	0	150	Mohr-Coulomb	(81- of 8.11-) MS -4	
L	0	0	006	96	Mohr-Coulomb	(3. CL (-3.4 to -11.5)	
L	0	0	500	211	Mohr-Coulomb	(4.6- of 8.1-) sJD -2	
Piezometric Line	(") 8-!4d	(") .!Чd	'noiesion' (îsq)	Unit Weight (Pcf)	ləboM	əmsN	Color

Analysis Name: Deep - Spencer Block (EQ=0.20)

Date: 04/21/2020

File Name: 18-2876 North Sta 5+00 Vibration (B058) - Soft Soft Soft Star

Scale: 1:250

Horizontal Seismic Coef.: 00.3g

L	0	0	001	06	Mohr-Coulomb	lioS floS	
L	0	33	0	150	Mohr-Coulomb	(???- 여 ðr-) MS -4	
L	0	55	0	150	Mohr-Coulomb	(81- of 8.11-) MS -4	
L	0	0	006	96	Mohr-Coulomb	(3.11- of 4.6-) JJ -E	
L	0	0	500	211	Mohr-Coulomb	(4.6- of 8.1-) sJD -2	
Piezometric Line	(") 8-!4d	(") .!Чd	'noiesion' (îsq)	Unit Weight (Pcf)	ləboM	əmsN	Color

Analysis Name: Deep - Spencer Block (EQ=0.30)

Date: 04/21/2020

File Name: 18-2876 North Sta 5+00 Vibration (B058) - Soft Soft Soft Star

Scale: 1:250

Date: 04/21/2020

Scale: 1:250

Method: Spencer Slip Surface Option: Entry and Exit Factor of Safety: 2.02 Horz Seismic Coef.: 0.1

Date: 04/21/2020

Scale: 1:250

Scale: 1:250

Scale: 1:250

ENCLOSURE 4.2

Appendix D Northern Impoundment Preliminary Vibration Analysis

Appendix D - Northern Impoundment Preliminary Vibration Analysis

San Jacinto River Waste Pits Site Harris County, Texas

GHD | 5551 Corporate Boulevard Suite 200 Baton Rouge Louisiana 70808 USA 11187072 | Report No 13

Table of Contents

7.	6.			ġ					4			ω	Ņ	. `
Refe	Conc	5.2	5.1	Othe		4.2		4.1	Slope	3.2	3.1	Estin	Driva	Intro
rences	clusions	Impact to Structures	Settlement	r Potential Vibration Impacts	4.2.1Pseudostatic Approach	Impact of Vibrations from Pile Driving on Slope Stability7	4.1.1 Effects of Material Thickness and Strength (Cohesive Material) on Stability54.1.2 Effects of Friction Angle (Cohesionless Material) on Stability	Analysis Approach	e Stability	Peak Particle Acceleration (g force)4	Peak Particle Velocity (PPV)	nation of Vibration Velocity and Acceleration	ability and Hammer Types	duction

1. Introduction

by Ardaman & Associates, Inc. (Ardaman) indicates that a cantilever wall that consists of a tubular Northern Impoundment into five cells. The preliminary geotechnical engineering analysis performed phased construction approach utilizing a cantilever retaining wall as the BMP to segregate the use of a Best Management Practice (BMP). The ROD describes the BMP as being implementable pipe pile with a pair of intermediary sheet pile (PAZ66/AZ38-700N) combination-wall system Appropriate Requirements (ARARs). The 30% Preliminary Remedial Design (30% RD) presents a waste material during removal activities to ensure compliance with Applicable or Relevant and County, Texas selected by the EPA in the October 2017 Record of Decision (ROD), provides for the Vertical Datum 1988 (NAVD88) would be required to implement this approach. (combi-wall) and/or double H-Beam wall to be driven in excess of elevation -80 feet North American (based on information available at that time) and effective preventing or minimizing the release of The remedy for the Northern Impoundment at the San Jacinto River Waste Pits Site in Harris

one-dimensional wave analysis equation program, indicates that a large diesel impact hammer is by Ardaman and the initial results based on wave equation analysis using GRLWEAP, a of waste to the San Jacinto River. the stability of the slope in the vicinity of the pile installation and result in the potential for a release analysis performed by Ardaman, indicates that the vibration caused by pile driving could decrease required to drive the piles to the specified depth. The GRLWEAP analysis is provided in the Ardaman Geotechnical Engineering Report (Appendix B). As discussed in Appendix B, further The installation of the combi-wall system using a conventional diesel impact hammer was analyzed

preliminary evaluation of the potential effects of vibrations during pile driving due to the following: This report expands on the vibration impact analysis performed by Ardaman. It includes a

- failure caused by the acceleration force from vibrations acting on the slope The potential release of waste from the Northern Impoundment to surface water from a slope
- ٠ from the vibrations. failure due to the development of excess pore water pressure caused by the ground motion The potential release of waste from the Northern Impoundment to surface water from a slope
- constituents due to the shifting of the waste material from the area in which settlement occurred. settlement caused by the vibrations, from the pore water that potentially could contain waste The potential release of waste from the Northern Impoundment from densification and
- The potential impact of vibrations on surrounding structures.

Figure 1 is a map of the Northern Impoundment showing the boring locations and the cross Section location evaluated for purposes of slope stability analysis

Figure 1 - Northern Impoundment Boring Locations, Topography, and Cross Section A-A' Location

2. Drivability and Hammer Types

Pile drivability and the equipment requirements are important aspects of a vibration impact analysis, as vibrations are directly related to the site conditions and the equipment necessary to drive the piles to the specified depths. The preliminary evaluation of initial inputs (such as peak particle velocity (PPV), ground acceleration, frequencies, etc.) required for the vibration analyses is largely related to the type of equipment used to advance the piles.

GHD Services Inc. (GHD) performed an additional evaluation using GRLWEAP based on data from borings SJGB053 and SJGB057 (see Figure 1 for boring locations) to predict the drivability of 66-inch and 84-inch diameter open-ended tubular steel pipe piles to a target depth of at least 100 feet. For this evaluation, Mohr-Coulomb parameters were inferred for the various soil layers interpreted from the boring logs. The GHD assessment also assumed the use of a pile toe inside friction reducer, which effectively prevents the development of significant internal friction during driving.

driving refusal is predicted with the 84-inch diameter pipe pile for both hammers (D100-42 and is greater if driving is temporarily interrupted, resulting in "setup" (i.e., significantly increased shaft hammer. However, the results also indicated that a significant risk of driving refusal could occur at diameter pipe pile using an American Pile Driving Equipment (APE) D100-42 and D80-42 impact NAVD88 is likely impracticable without a larger hammer. D80-42) which indicates that driving the 84-inch diameter piles to a target depth of -100 feet resistance due to radial consolidation of cohesive soils in contact with the pile shaft). Premature elevation -70 feet NAVD88 where a dense sand layer is encountered. The risk of premature refusal The GHD analysis showed that it may be possible to achieve the target depth with the 66-inch

pipe pile. The 84-inch diameter pile would require an even larger hammer that would produce are based on the evaluations performed by Ardaman and GHD using a D100-42 hammer to higher vibrations than are considered in this report. advance the piles through the dense sand. These evaluations assume a maximum 66-inch diameter The inputs for the vibration analysis presented herein (PPV, ground acceleration, frequencies, etc.)

incorporate information on the impact of specific pile driving equipment anticipated to be used The drivability analyses would require updating during future phases of the remedial design to

Estimation of Vibration Velocity and Acceleration

ω

of damage potential during pile driving. The PPV values are used to calculate peak particle incorporates the pile driving equipment and soil type to predict the PPV, which is the best indicator this study, the CalTrans (2013) method was selected, as it uses the wave propagation theory and generated by pile driving are complex due to the effect of soil damping and geometric damping. For acceleration, a value that is then used in the slope stability analyses. The vibrations are then propagated through the soil as elastic waves. However, the wave motions During pile driving, ground vibrations are generated as a result of elastic deformation of the soil.

3.1 Peak Particle Velocity (PPV)

impact hammer can be represented by: driving using a propagation model. Based on the CalTrans document, the estimated PPV from an CalTrans (2013) published a method for predicting vibration amplitudes, in terms of PPV, for pile

$$PPV_{Impact Hammer} = PPV_{Ref} (25/D)^n \times (E_{equip}/E_{Ref})^{0.5}$$

Where:

$$PPV_{Ref} = 0.65$$
 in/sec for a reference pile driver at 25 ft
 $D = distance$ from pile hammer to the receiver in ft
is the vibration attenuation rate through ground and is between 1.1 and 1.5
(see table extracted from the Caltran's doucment below)
 $E_{Ref} = 36,000$ ft - lb (rated energy of reference pile driver
 $E_{equip} = rated$ energy of impact hammer in ft - lbs

n

ranges from 17.5 inches per second (in/sec) at a distance of 5 feet from the pile to 0.26 in/sec at a The calculated PPV values based on the maximum rated energy of the APE D100-42 hammer

distance of 100 feet from the pile for a Class I soil type (n=1.4). The soil classes from the CalTrans document are listed below.

Soil Class	Description of Soil Material	Value of "n" measured by Woods and Jedele	Suggested Value of "n"
I	Weak or soft soils: loose soils, dry or partially saturated peat and muck, mud, loose beach sand, and dune sand, recently plowed ground, soft spongy forest or jungle floor, organic soils, top soil. (shovel penetrates easily)	Data not available	1.4
п	Competent soils: most sands, sandy clays, silty clays, gravel, silts, weathered rock. (can dig with shovel)	1.5	1.3
ш	Hard soils: dense compacted sand, dry consolidated clay, consolidated glacial till, some exposed rock. (cannot dig with shovel, need pick to break up)	1.1	1.1
IV	Hard, competent rock: bedrock, freshly exposed hard rock. (difficult to break with hammer)	Data not available	1.0

This range of PPVs is used as input to estimate the peak particle acceleration (g force) as discussed in the following section.

3.2 Peak Particle Acceleration (g force)

Wiss (1967) presented a range of observed soil frequencies (f) during pile driving and a typical soil frequencies range for three soil types. For alluvial fill, the soil frequency is typically between 5 and 10 cycles per second (cps). For clay soil, the frequency is between 13 and 25 cps; and for sandy soil, the frequency is between 30 and 40 cps. The peak acceleration (A) as a function of PPV and soil frequency (CalTrans 2013) is:

 $A = 2\pi fV$ where V = PPV and A is in the same unit as PPV or $A_g = 0.0163 fV$ where A_g is the peak acceleration in term of g-force

Using the range of PPVs calculated from the previous Section and a soil frequency of 7.5 cps for alluvial fill, which is the predominant soil type for the upper 30 feet, the peak particle acceleration (g-force) ranges from 2.1g at a distance of 5 feet from the pile to 0.03g at a distance of 100 feet from the pile. At a distance of 20 feet from the pile, the peak particle acceleration is approximately 0.3g. These peak particle acceleration values will be used to evaluate the effects of pile driving vibrations on slope stability. As depicted in the *Preliminary 30% Remedial Design - Northern Impoundment*, the pile locations are anticipated to be closer than 20 feet from the slope; therefore, the peak particle acceleration values at the slope would be even greater.

4. Slope Stability

According to Lamens (2020): "the stability of a slope may be negatively affected by pile driving in two ways: (a) through dynamic or inertia-related effects and (b) through excess pore pressure development, diminishing the effective stress and, correspondingly, the mobilizable shear strength in the soil".

4.1 Analysis Approach

geotechnical information at the top and at the bottom of the slope, so that the soil profile along the appropriate geometrical and geotechnical properties. This is typically done by collecting stability of the slope. Accordingly, it is critical to establish a representative soil model with slope is properly captured in the analysis. reduction of factor of safety due to the vibrations), it is first required to evaluate the pre-pile driving In order to properly assess the influence of pile driving on the slope stability (i.e. to analyze the

slope and the slope soil profile had to be developed from adjacent borings located more than during the sampling. There is also uncertainty because there are not any borings directly on the of the slope and the geotechnical data are limited because of poor recovery of this soft material surrounding boring logs (SJGB018 and 019) show very soft surficial material in areas near the toe area. Figure 1 shows the cross Section (A-A') location where the evaluation was performed. The and/or near the toe of a relatively steep slope and the slope stability evaluation focuses on this 100 feet apart. The northwestern part of the Northern Impoundment is one area where piles would be driven onto

be different than those observed in the limited number of borings, a parametric study was same conditions considering the vibration impacts. performed to evaluate how changes in material thicknesses and strength would affect slope stability (under static conditions). Thus, the slope stability of these two soil types was evaluated for these Due to the uncertainties in the soil conditions on the slope and the potential for these conditions to

the slope. The 6-inch thick articulated concrete block mat (ACBM) that is currently present on the would need to be further evaluated as the design progresses. vibrations from pile driving. The weight of the ACBM will increase the horizontal force and potential the ACBM would behave similarly to the underlying soil type under conditions in which there are northwest slope was not included in the preliminary evaluation as a cap material. It is expected that This preliminary evaluation focused on both cohesive (clay) and cohesionless (sand) material on for failure caused by the vibrations. The impact of vibrations on slopes on which ACBM is present

4.1.1 Effects of Material Thickness and Strength (Cohesive Material) on Stability

with undrained shear strength of 150 psf and the same thicknesses. with different material thickness and strength, considering a very soft (low strength) cohesive material with undrained shear strength of 100 pounds per square foot (psf) and thickness of 5, 10 material at the surface. The left side of Figure 2 shows the calculated factors of safety for cohesive and 15 feet on the slope. The right side of Figure 2 shows the factors of safety for cohesive material The following figures show how the factors of safety vary under static conditions (without vibrations)

Figure 2 - Effects of Sediments Properties and Layer Thickness (Cohesive Material) on Factors of Safety in a Slope Stability Analysis

These figures show that both the thickness and the strength affect the static slope stability. Based on the boring logs (SJGB018, 019, and 002), there is a potential for any of the conditions depicted on the above figures to exist somewhere along the slope.

4.1.2 Effects of Friction Angle (Cohesionless Material) on Stability

A cohesionless material on a slope similar to the slope at the northwest corner of the Northern Impoundment has the potential for a shallow slip surface failure. This type of failure is dependent on the slope geometry and the friction angle of the material. The material thickness does not influence the result. The following figures show how the factors of safety vary with the friction angles under static conditions for the geometry on northwestern slope.

Distance (ft)

Figure 3 - Effects of Sediments Properties (Cohesionless Material) on Factors of Safety in a Slope Stability Analysis

These figures show that if a low friction angle cohesionless material is on the slope in the northwest portion of the Northern Impoundment (at any thickness), the slope would be marginally stable for a shallow slip surface failure under static conditions. The higher friction angle material is more stable and likely more representative of the Northern Impoundment soils, but may still be susceptible to failure with vibrations as discussed below.

4.2 Impact of Vibrations from Pile Driving on Slope Stability

Two methods were considered for the initial and preliminary evaluation of vibrations due to pile driving on slope stability. The first method is a pseudostatic or seismic approach that is commonly used to evaluate seismic impacts on slope stability. The second method is the evaluation of failure due to the development of excess pore pressures (EPP) from vibrations during pile driving.

4.2.1 Pseudostatic Approach

In this method, the effect of the vibrations is represented by simulated accelerations that produce inertial forces that act on the centroid of the soil mass. This effect is incorporated in the limit equilibrium method model (Slope/W) through the use of a horizontal pseudostatic coefficient (k_h), which is often considered to be equal to $k_h = k^*Amax/g$, where Amax is the peak horizontal acceleration and k is a magnification factor. The k factor is usually determined from response analysis depending on the mode of vibration and soil damping. Based on published research on one-dimensional response during blasting and seismic events on a slope, the k factor ranges from 0.1 to 0.8 (Wong, et. al., 2000). Since the mechanisms involved during blasting and seismic events and those related to vibrations from pile driving are different, the use of the pseudostatic method is considered a preliminary assessment of influence of pile driving generated inertial forces on slope stability. For this study, the k factor is assumed to be 0.5 resulting in $k_h=0.5^*Amax/g$. The acceleration values evaluated in Section 3.2 were considered initially as Amax to estimate the

range of k_h . These coefficient values ranging from 0.02 to 0.15 were considered in the analysis based on the vibration from the impact hammer as described in Section 3.1. This is considered to represent a range of Amax that could occur from approximately 20 feet to 100 feet of the pile driving location. It is important to note that the use of the k_h in this study is based on the similar use of response peak ground acceleration (PGA) coefficient by Wong, et. al. (2000) in the analysis of slope stability due to vibrations from blasting. To our knowledge, no publication exists that provides direct correlation between the k_h and peak particle acceleration; thus, the results presented below should be considered qualitative. These results, however, can be used to compare with Ardaman's slope stability analysis results using different soil conditions and similar k_h values to highlight the influence of vibration on differing soil profiles and properties.

4.2.1.1 Cohesive Material

Results of the analyses showing the estimated impact of vibrations using different seismic coefficients for cohesive soils are provided below. The results are shown for a 10-foot thick material with undrained shear strength of 100 psf and 150 psf.

Figure 4 - Slope Stability Analysis with Varying kh for Cohesive Material

For the material with undrained shear strength of 100 psf, using the lower end seismic coefficient of 0.05 results in a slope that is marginally stable at a factor of safety of 1.10. The slope is unstable with a factor of safety of 0.84 when a seismic coefficient of 0.10 is applied. For the material with undrained shear strength of 150 psf, the slope is more stable, but the factor of safety is below 1.0 when a seismic coefficient of 0.15 is considered. The results shown in Figure 4 are for 10 feet of the

cohesive material on top of the slope. The slopes would be less stable if the material is thicker than 10 feet and more stable if the material is below 10 feet in thickness.

4.2.1.2 Cohesionless Material

Results of the analyses showing the estimated impact of vibrations using different seismic coefficients for shallow slip surface failures of cohesionless soils are below. The results are shown for both the 25-degree friction angle and the 30-degree friction angle. The 20-degree friction angle presented in Figure 3 was marginally stable under static conditions. Therefore, it was assumed the slope would not be stable under conditions in which there are vibrations and further evaluation was not conducted.

Figure 5 - Slope Stability Analysis with Varying kh for Cohesionless Material

For the 25-degree friction angle material, a low seismic coefficient (of 0.02) results in a slope that is marginally stable, and a seismic coefficient of only 0.04 produces a factor of safety below 1.0. The higher friction angle material (30 degrees) is more stable, but when a 0.08 seismic coefficient is applied, the factor of safety on the slope falls below 1.0. The stability against a shallow slip surface failure for the cohesionless material is not affected by the thickness of the material on the slope. The risk of a shallow slip surface failure during construction under this condition could result in a release of waste material from the Northern Impoundment to the San Jacinto River.

4.2.2 Excess Pore Pressure Approach

During both impact and vibratory pile driving, the formation of various stress waves will create ground motion, which can develop EPPs. These EPPs can affect the stability of the slope. It is of particular concern for cohesionless soils with the potential for liquefaction.

The correlation between ground motion and the generation of EPP is a function of site conditions and equipment used and typically is determined during a test pile program. Without test pile data, the preliminary evaluation presented below was performed based on available literature values for the EPP as a function of distance from the pile driving. The EPP values were estimated based on a study by Lamens (2020) correlating the measured EPP versus radial distance from a test pile program during the installation of tubular and steel sheet piles on a submerged sandy slope. Lamens (2020) compared the data from the test pile program with data from the literature and plotted the maximum EPP normalized with effective stress (referred to as relative excess pore water, ru,max) versus the normalized horizontal distance (x/D) where x is the radial distance from the pile and D is the diameter of the pile and curve fit all the data with an exponential function. The exponential function proposed by Lamens is:

$$r_{u\,max} = 2.6e^{-0.22(x/D)}$$

Comparison of the calculated values from this function to measured values from Lamens' test pile program indicates that the function typically overestimates the EPP. The measured ru,max values from the Lamens' test piles are in the order of 40% of the predicted values. Therefore, two EPP profiles within 40% of the predicted values from the exponential function were developed for the parametric slope stability evaluation. The first EPP profile assumed the EPP distribution is 0.33 times of ru,max and the second EPP profile assumed the EPP distribution is 0.38 times of ru,max. These EPP profiles are then incorporated in the Slope/W model to evaluate the slope stability due to pile driving.

Results of the slope stability analysis of the two simulated EPP profiles from pile driving for 10 feet of cohesionless material on the slope with an angle of internal friction of 30 degrees are presented in Figure 6 below.

Figure 6 - Slope Stability Analysis for Two Normalized Excess Pore Pressure Profiles

The factors of safety for the two profiles are 1.36 and 1.13. This is compared to the static factor of safety shown on Figure 3 of 1.6. The result of this parametric study indicates the generation of EPP due to pile driving on a sandy slope reduces the margin of safety of the slope. Accordingly, there is a potential that the generation of EPP could cause slope failure.

Other Potential Vibration Impacts

ŝ

surrounding structures are evaluated in the following section. The potential for settlement to occur from the vibrations and the potential impact of the vibrations to

5.1 Settlement

the release of waste material into the surface water. cause the release of pore water from locations beneath existing armored cap installed during the especially close to the pile. For the Northern Impoundment, the concern is whether settlement could Time Critical Removal Action (TCRA), or whether shifting of the soils from settlement could cause Settlement from vibrations due to pile driving may become problematic in loose, granular soils.

velocity, soil compression factor, to a seven factors model that includes PPV and depth of soil layer. using acceleration amplitude and cone penetration test (CPT) tip resistance, PPV and shear wave installation have been proposed by researchers during the last two decades. Models range from Several simplified methods for assessing densification or ground settlement during vibratory pile field conditions. proposed by Massarsch (2004) were used to provide settlement estimation for near field and far For this analysis, the seven factors empirical model proposed by Kim, et. al (1994) and the method

The Kim, et. al. (1994) method can be represented as:

 $lnY = 2.27 + 1.19x_1 - 0.71x_1^2 + 0.49x_2 - 0.68x_2^2 - 0.80x_3 + 1.09x_3^2 - 0.46x_4 + 0.06x_4^2 + 0.45x_5 - 0.38x_5^2 - 0.19x_6 - 0.1x_7$

Where:

initial relative density loose,	moisture content dry, sa	number of vibrations N = 60	fine	sand mixture coarse	confining pressure (p) 10 - 30	deviatoric stress (q) 2 - 15	velocity amplitude (v) 0.1 - 0	Factor Name Range	
medium dense	aturated	0 - 500,000	ım,	e,	0 psi	psi	0.7 in/s	Φ	
x7 is resp1 and 2	x_6 is resp1 and 2	x ₅ = -1+(N-60)/269970		x₄ is resp1, 0, 1	x ₃ = -1+(p-10)/10	x ₂ = -1+(q-2)/6.5	$x_1 = -1 + (v - 0.1)/0.3$	Factor	

stress, confining pressure, soil gradation, duration of vibration, relative density, and moisture pile for the APE D100-42 hammer type. The seven factors include vibration amplitude, deviatoric content of the soil. This model may not simulate the exact loading condition of driving piles, but is a intermediate vibration levels, which is recorded at an estimated distance of 50 feet and beyond the reasonable method to estimate the settlement within the range of expected vibrations from the pile This is an empirical prediction model for estimating vibration induced settlement for small to

surface. The estimated settlement ranges from 0 for a 5-foot thick layer to 0.8 inch for a 25-foot thick layer at a horizontal distance of 50 feet from the wall, Figure 1) and varying the thickness of loose and fine sand layer at a depth of 15 feet below ground driving. A parametric study was performed using the soil profile from boring SJSB027-G (see

pile within a zone of three times the pile diameter. The settlement is modeled as a function of a empirical constant based on the driving energy and the density state of the sand deposit. The model compression factor and the thickness of the compressible layer. The compression factor (α) is an is represented by the following equation: The Massarsch (2004) method provides settlement estimation for a sand deposit adjacent to the

$$S_{avg} = \frac{\propto (L+6D)}{3}$$
 where L is the thickness of layer and D is pile diameter

estimation of 0.6 inches for a very dense sand deposit to more than 3 inches for a very loose sand deposit. An estimated 15-foot thick sand deposit using the Massarsch model yielded a range of settlement

settlement was estimated within a zone that is within a distance of three times the pile diameter. Northern Impoundment within close proximity to the pile where up to more than 3 inches of Based on these equations, settlement likely would only be a potential issue from pile driving at the area to the San Jacinto River. This volumetric change could potentially release pore water from the material within this localized

5.2 Impact to Structures

underground utilities. Vibration amplitudes are closely related to the type of hammer used to drive estimates the piles. Vibration amplitudes estimated in this Section should be considered preliminary Ground vibrations due to pile driving could potentially impact surrounding structures and

may be required due to the presence of the dense clayey silty sand layer. Therefore, before guideline. However, as discussed in Section 3 above, the soil type and the hammer type in the approximately 0.24 in/sec for a Class I soil type using the CalTrans' equation discussed in hammer at this distance is estimated at 0.5 in/sec for a Class III soil type and the minimum PPV is potential combi-wall would be installed. The maximum calculated PPV based on the APE D100-42 depths are known to determine the potential impact on structures. completing the RD an evaluation would have to be conducted after the hammer type and pile vibratory hammer equation presents an uncertainty in the estimation of the PPV. A larger hammer Section 3. These calculated values are within the threshold values provided in the CalTrans' There are approximately 80 feet between the bridge piles and the nearest BMP Section where the The closest structures to the Northern Impoundment are the piles that support the I-10 Bridge.

of the pipeline, and an evaluation of the potential effect from vibrations should be conducted after this line. However, the owner of the Exxon Pipeline will need to be contacted to confirm the location 100 to 150 feet below ground surface and vibrations from the pile driving are not expected to affect the hammer type and pile depths are determined. The nearest known underground utility is the Exxon Pipeline with varying depths of approximately

Conclusions

6

containing ACBM. as the design progresses to account for changes to the BMP and to evaluate impacts on areas construction of the BMP proposed for the Northern Impoundment. This will continue to be evaluated A preliminary evaluation was performed to assess the potential effects of vibrations due to

very heterogeneous and therefore a preliminary parametric study was performed to show the factor condition of the soil material on the slope. Area boring logs indicate that the near surface material is 30% RD. If a larger hammer is required, the vibrations and potential for failure would be greater. cause a release of waste material to the San Jacinto River. It is important to note that the impact caused by pile driving. Any slope failure (even a shallow slip surface failure) has the potential to Impoundment. The parametric study shows that under certain conditions (material strength and impact the stability of the slope of the Northern Impoundment. A failure of this slope could cause 30% RD has the potential to produce vibrations and an acceleration force that could adversely hammer used in the evaluation may not be sufficient to drive some of the pile types that are in the thickness that may be present on the slope), the slope could potentially fail from the vibrations of safety on slope stability for a range of conditions that could be present at the Northern release of waste material to the San Jacinto River. A major uncertainty in this evaluation is the The results indicated that the impact hammer required to drive the piles that are included in the മ

effective stress, which may cause the slope to become unstable with a potential for failure. conditions, and the results indicate that the generated EPP from pile driving can reduce the from the vibrations. Again, a parametric analysis was performed under different geotechnical Another mechanism that was considered is the development of EPP caused by the ground motion

along areas of the slope where the geometry indicates that under certain conditions of material type slope. Due to this uncertainty, whether piles of the size and type required can be installed without driving, and the potential for failure is greatly dependent on the geotechnical properties on the Both of these mechanisms indicate that there is a risk of slope failure from vibrations caused by pile required. and thickness, there is a potential for instability. A more detailed slope stability evaluation is causing a slope failure due to vibrations cannot be determined until an investigation is conducted

proximity to the pile. preliminary evaluation indicated that any appreciable settlement would be localized within close There appears to be a lower risk of a potential release due to densification and settlement. The

from the vibrations should be within the threshold values considered acceptable, but may not be if a potential impact on structures are required. threshold values considered acceptable and to determine whether monitoring of vibrations and the after the hammer type and pile depths are known to determine whether vibrations are within large hammed needs to be used. A further evaluation will need to be conducted as part of the RD The preliminary evaluation of the potential impacts to surrounding structures indicates that the PPV

7. References

Transportation (CalTrans), Sep. 2013. "Transportation and Construction Vibration Guidance Manual", California Department of

pp. 806-817). (Geotechnical Special Publication; Vol. 1, No. 40). Published by ASCE. induced settlement. In A. T. Yeung, & G. Y. Felio (Eds.), Geotechnical Special Publication (40 ed., Kim, D. S., Drabkin, S., Rokhvarger, A., & Laefer, D. (1994). Prediction of low level vibration

offshore pile driving in a sandy slope. Géotechnique 70, No. 4, 281-291. Lamens, P., Askarinejad, A., Sluijsmans, R.W. & Feddema, A. (2020). Ground response during

Massarsch, K.R and Fellenius, B.H. (2014). Ground vibrations from pile and sheet pile driving. Part Foundations, Stockholm, May 21-23, pp. 131-138. 1 Building Damage. Proceedings of the DFIEFFC International Conference on Piling and Deep

Practices - Structure, 45th Annual Meeting, Highway Research Record, No. 155, pp 14-20 Wiss, John F (1967). Damage Effects of Pile Driving Vibration, Committee on Construction

Wong, H.N. and Pang, P.L.R. (2000). Assessment of Stability of Slopes Subjected to Blasting Vibration, Geo Report No. 15, Geotechnical Engineering Office, Civil Engineering Department, The Government of The Hong Kong Special Administrative Region.

GHD.com

