PHASE II PROPERTY ASSESSMENT

OF THE:

FORMER CHAMPION SPARK PLUG PROPERTY
900 UPTON AVENUE
TOLEDO, OHIO

PREPARED FOR:

CITY OF TOLEDO-DIVISION OF ENVIRONMENTAL SERVICES
348 SOUTH ERIE STREET
TOLEDO, OHIO 43604

PREPARED BY:

HULL & ASSOCIATES, INC. 3401 GLENDALE AVENUE SUITE 300 TOLEDO, OHIO 43614

SEPTEMBER 2015

TABLE OF CONTENTS

				PAGE
EXEC	UTIVE SU	MMAR'	r	1
1.0	INTROI	OUCTIO	DN	3
	<u>1.1</u>		<u>al</u>	
	<u>1.2</u>		ty Description	
	<u>1.3</u>		us Investigations	
	<u>1.4</u>		ability and Recognized Environmental Conditions	
	<u>1.5</u>		<u>e</u>	
	<u>1.6</u>		ions and Qualifications	
	<u>1.7</u>	Curren	t and Intended Land Use	8
2.0	PHASE	II DAT	A QUALITY OBJECTIVES	9
	<u>2.1</u>	Phase	Il Assessment Goals	9
	<u>2.2</u>		and Information to Support the Phase II Objectives	
	<u>2.3</u>	<u>Decisio</u>	on Process and Project Approach	9
		2.3.1	Inputs to the Decision Process	9
		2.3.2	Project Approach	
3.0	SAMPL	NG AI	ND SAMPLE ANALYSIS	11
4.0	PHASE	II ACTI	VITIES	12
	4.1	C	al	10
	<u>4.1</u> <u>4.2</u>		orings	
	<u>4.2</u> <u>4.3</u>		ampling and Analysis Methodology	
	<u>4.3</u> <u>4.4</u>		prary Monitoring Well Installation	
	<u>4.4</u> <u>4.5</u>		dwater Samplingdwater Sampling	
	<u>4.5</u> <u>4.6</u>		y Assurance	
5.0	REGION	NAL AN	ND PROPERTY-SPECIFIC GEOLOGY, HYDROGEOLOGY, AND PHYSICAL	
	CONDI	TIONS.		16
	<u>5.1</u>	Region	nal Geology and Hydrogeology	16
		5.1.1	Regional Geology	16
		5.1.2	Regional Hydrogeology	
		5.1.3	Regional Availability of Surface water and Groundwater as Sources for D	
			Water	16
	<u>5.2</u>	Prope	ty-Specific Geology, Hydrogeology, and Other Characteristics	1 <i>7</i>
		5.2.1	Property-Specific Geology	
		5.2.2	Property Specific Hydrology and Hydrogeology	17
			5.2.2.1 Recharge and Evaporation Rates	17
			5.2.2.2 Localized Groundwater Flow Conditions	17

i

TABLE OF CONTENTS (CONT.)

			PAGE
6.0	IDENTI	FICATION AND EVALUATION OF CHEMICALS OF CONCERN	18
	<u>6.1</u>	Detected COCs in Soil	18
	<u>6.2</u>	Detected COCs in Groundwater	
	6.3	COCs Detected in Soil Gas:	
	6.4	Data Quality Assurance	
7.0	DATA	EVALUATION	20
	<u>7.1</u>	Purpose of the Data Evaluation	20
	<u>7.2</u>	Evaluation of Data	
	<u>7.3</u>	Identification of Receptor Populations and Exposure Pathways	20
		 7.3.1 Future On-Property Commercial/Industrial Worker Receptor Population 7.3.2 Construction/Excavation Worker Receptor Population 	
	<u>7.4</u>	Summary of Data Evaluation	21
8.0	FINDIN	IGS	23
9.0	REPOR	T LIMITATIONS	25
10.0	REFERE	NCES	26
		LIST OF TABLES	
Table 1 Table 2 Table 3	2	Soil Sampling Summary (mg/kg) Groundwater Sampling Summary (ug/L) Soil-Gas Sampling Summary (ug/L)	
		LIST OF FIGURES	
Figure	1	Property Location Map	
Figure	2	Site Map with Sampling Locations	
Figure	3	Site Map with Sampling Results	
		LIST OF APPENDICES	
Appen	dix A	Project Personnel Resumes	
Appendix B		Work Plan	
Appendix C		Soil Boring/Monitoring Well Logs	
Appendix D		Laboratory Analytical Data/Chain of Custody Documentation	
Appendix E		Field Data Sheets Ohio Dan authorit of National Bosonicae Wall Land	
Appendix F		Ohio Department of Natural Resources Well Logs	

EXECUTIVE SUMMARY

General

The City of Toledo (Client) authorized Hull & Associates, Inc. (Hull) to complete a Phase II Environmental Site Assessment (Phase II) of the Former Champion Spark Plug property, comprised of approximately 18 acres formerly developed with industrial manufacturing buildings occupied by the Champion Sparkplug Company (Champion). The Site was first developed by Champion in 1936. Site buildings were razed in the early 1990s, 2000s and 2014. Many of the buildings razed in 2014 currently remain as debris piles at the Site with one of the buildings still partially standing. The Site has not been used for manufacturing purposes since the early 1990s. For the purposes of this report, the address is referred to as 900 Upton Avenue, Toledo, Lucas County, Ohio (Property). The location of the Property is shown on Figure 1.

WSP Environmental Strategies, LLC (WSP) conducted a Phase II assessment between June 2001 and August 2006 under the Ohio Voluntary Action Program (Ohio VAP). Activities conducted by WSP included installation of soil borings and monitoring wells, collection of soil, groundwater, and soil vapor samples, and closure of two underground storage tanks (USTs). Various Chemicals of Concern (COCs) were analyzed across the twelve (12) identified areas documented in the WSP Phase I. Results indicated that remedial activities were needed to address COCs in two identified areas: the South Manufacturing Bureau of Underground Storage Tank Regulations (BUSTR) Area (Area 5) and the South Manufacturing Area (Area 10). Soils were excavated in 2004 to remove polynuclear aromatic hydrocarbons (PAHs), with approximately 55 cubic yards removed from Area 5 and 22 cubic yards from Area 10. A No Further Action (NFA) letter was submitted on April 15, 2008. Ohio EPA issued a Covenant Not to Sue (CNS) with a groundwater use restriction and land use restriction to commercial/industrial use on November 17, 2008.

Hull completed a Phase I ESA (Phase I) in accordance with the scope and limitations of ASTM Practice E 1527-13, in December 2015 that identified the presence of potential impacts to media of the Property (i.e., soil, groundwater and soil gas) based on previous use of the Property and adjacent properties. Based on correspondence with the City of Toledo, Phase II assessment activities for the on-Property recognized environmental conditions (RECs), which are identified below, were the focus of Hull's assessment activities.

IA/REC#	Description	COCs
REC 1	CREC – 2008 CNS	No Additional Investigation
REC 2	Suspected on-Property USTs	BTEX/MTBE, TPH-GRO
REC 3	Release from Transformer(s)	Information Received from US EPA Indicating No
		Further Action Required
REC 4	Debris Piles – Data Gap	VOCs, PAHs, TPH-GRO, TPH-DRO, Metals
REC 5	No Current Owner Interview - Data	Attempt to Interview Current Owner during the
	Gap	Phase II

The Phase II assessment activities were conducted by Hull from May to June 2015. This report was executed under Hull project number COT235. The Property is currently undeveloped. Residential development is located adjacent west and north of the Site, while commercial/industrial use is present to the east and south. The objectives of the Phase II Property Assessment (Phase II PA) are to further characterize the environmental conditions at the Property and, due to the use of the property (demolition of structures) following the issuance of the CNS, to collect the necessary data to pursuant to ASTM E1903-11.

Phase II Assessment Activities

Although this Phase II was not Ohio VAP compliant, data were collected in accordance with Ohio Administrative Code (OAC) 3745-300-07(D) to identify and evaluate potential COCs in the RECs and to evaluate Property-specific geology and hydrogeology.

Although this is not an Ohio VAP compliant Phase II assessment, consistent with OAC 3745-300-07, sampling locations installed were biased toward areas where a release of hazardous substances has or may have occurred. Sampling was performed in general accordance with the sampling procedures specified in OAC 3745-300-07. A laboratory certified in accordance with OAC 3745-300-04 analyzed all samples.

The results of the Phase II Assessment indicated the following soil-related conclusions:

Several COCs were detected above the method detection limit; however no COCs exceeded respective single chemical direct contact commercial/industrial or construction/excavation standards within the applicable point of compliance (POC) (i.e., 2-foot POC for commercial/industrial receptors and 10-foot POC for construction/excavation workers).

The results of the Phase II assessment indicated the following groundwater-related conclusions:

1. Groundwater samples were collected from all six temporary monitoring wells (TMW-1 thru TMW-6) on the Property on June 11, 2015. Based upon sampling review of the laboratory analytical results, groundwater collected from four of the temporary monitoring wells exceed the VAP generic Unrestricted Potable Use Standards (UPUS) for one or more of the following COCs: arsenic, benzene, and m,p-xylenes. The Property is located within an Urban Setting Designation (USD) and also has a groundwater use restriction and land use restriction under the November 17, 2008 CNS.

1.0 INTRODUCTION

1.1 General

The City of Toledo (Client) authorized Hull & Associates, Inc. (Hull) to complete a Phase II Site Assessment (Phase II) of the Former Champion Spark Plug property, comprised of approximately 18 acres formerly developed with industrial manufacturing buildings occupied by Champion. For the purposes of this report, the address is referred to as 900 Upton Avenue, Toledo, Lucas County, Ohio (Property). The location of the Property is shown on Figure 1.

The Property is located on the south of Upton, east of Montrose Avenue, and the north side of Nebraska Avenue. The Property is accessible from Upton and Montrose. WSP Environmental Strategies, LLC (WSP) conducted a Phase II assessment between June 2001 and August 2006 under the Ohio Voluntary Action Program (Ohio VAP), which included installation of soil borings and monitoring wells. The Phase II assessment activities also included the collection of soil, groundwater, and soil vapor samples, and closure of two underground storage tanks (USTs). Various Chemicals of Concern (COCs) were analyzed across the twelve (12) identified areas from the Phase I. Results indicated that remedial activities were needed to address COCs in two identified areas: the South Manufacturing Bureau of Underground Storage Tank Regulations (BUSTR) Area (Area 5) and the South Manufacturing Area (Area 10). Soils were excavated in 2004 to remove polynuclear aromatic hydrocarbons (PAHs), with approximately 55 cubic yards removed from Area 5 and 22 cubic yards from Area 10. A No Further Action (NFA) letter was submitted on April 15, 2008 And Ohio EPA issued a Covenant Not to Sue (CNS) with a groundwater use restriction and land use restriction to commercial/industrial use on November 17, 2008.

Hull completed a Phase I ESA (Phase I) in accordance with the scope and limitations of ASTM Practice E 1527-13, in December 2014 that identified the presence of potential impacts to media of the Property (i.e., soil, groundwater and soil gas) based on previous use of the Property and adjacent properties. Based on correspondence with the City of Toledo, Phase II assessment activities focused on the on-Property recognized environmental conditions (RECs), which are identified below.

REC 1 - CREC - 2008 CNS

The WSP Phase II assessment was conducted between June 2001 and August 2006. Activities included installation of soil borings and monitoring wells, and the subsequent collection of soil, groundwater, and soil vapor samples. Phase II activities also included the closure of two on-Property underground storage tanks. Various COCs were analyzed across the twelve (12) identified areas from the Phase I. Results indicated that remedial activities were needed to address COCs in two identified areas: the South Manufacturing BUSTR Area (Area 5) and the South Manufacturing Area (Area 10). Soils were excavated in 2004 to remove

elevated concentrations of PAHs, with approximately 55 cubic yards removed from Area 5 and 22 cubic yards from Area 10. A NFA letter was submitted on April 15, 2008. Ohio EPA issued a CNS with a groundwater use restriction and land use restriction to commercial/industrial use on November 17, 2008. This CREC is also considered a REC.

REC 2 - Suspected on-Property USTs

What appeared to be fill ports for five or more USTs was observed on the north-central portion of the Site. Although leak detection for the USTs was listed on BUSTRs website, all structures at the Site as well as the utilities have been disconnected, rendering the leak detection inoperable. Based on previous LUSTs at the Site and the current condition of the UST system, the five remaining USTs are considered a REC.

Size	Contents	Installation Date	COCs
6,000-gallons	gasoline	10/1/1987	BTEX/MTBE
6,000-gallons		10/1/1987	
6,000-gallons		10/1/1987	
2,500		2/1/1992	
2,500		2/1/1992	

REC 3 – Release from Transformer(s)

Several releases of oil from electrical transformers were documented at the Site in 2012. While the City of Toledo and the U.S. EPA responded to the incidents, samplings results for the oil were not provided during the file review. Release from electrical transformers at the Site is considered a REC.

REC 4 - Debris Piles - Data Gap

Several buildings were razed at the Site in 2014. As a result of the demolition activities, several debris piles were created. In addition to the demolition debris piles, several dozen piles of apparent uncontrolled dumping were observed at the Site. These debris piles generally consist of tires (several hundred in total) yard debris and construction remodeling debris (drywall, paint, roofing materials, household refuse, etc.) These debris piles restrict observation of a significant portion of the Site. The limitation results in a significant data gap resulting in a REC.

REC 5 - No Current Owner Interview - Data Gap

The Client indicated that the Site is owned by Moorhouse Real Estate, LLC. Hull attempted to interview the current owner, but all attempts resulted in unopened returned mail. The absence of Owner feedback is a significant data gap that results in a REC.

The Phase II assessment activities were executed under Hull project number COT235 and were conducted by Hull in June of 2015.

This report was conducted for the purpose of summarizing the findings consistent with ASTM E1903-11.

Reporting for all Phase II assessment activities completed at the Property is summarized and provided herein.

This assessment was conducted by the following Hull personnel:

Project Managers: Hydrogeologists/Scientists:

Mr. J Matthew Beil, CPG Mr. James Carlson

Resumes for the personnel involved in the completion of this assessment are located in Appendix A.

1.2 Property Description

The location of the Property is shown in Figure 1. The Property is comprised of six parcels and is currently vacant. According to records maintained by the Lucas County Auditor, "Moorhouse Real Estate, LLC" currently owns the Property. The Property was previously developed as residential, commercial, and industrial uses.

The Property is currently vacant. The general Property features are illustrated on Figure 2. A general description of the Property information obtained from the Lucas County Auditor's Office is included below.

Address	Parcel ID	Acreage	Zoning
1102 Upton Avenue	04-11355	0.315	RD6 (Duplex Residence)
914 Upton Avenue	04-11370	14.761	Mx (Mixed Zone Parcel)
1013 Montrose Avenue	11-22444	0.080	RD6 (Duplex Residence)
1013 Montrose Avenue	11-22447	0.080	RD6 (Duplex Residence)
907 Montrose Avenue	11-22450	1.141	Mx (Mixed Zone Parcel)
719 Montrose Avenue	11-23980	1.585	IL (Limited Industrial)

Property Acreage: 17.962 acres

The Property was occupied by Champion Spark Plug from 1910 until2009. All structures at the Site have been razed, with the exception of one building. One wall of a building remains standing on the Site. Several subsurface rooms were observed during the Site reconnaissance. Some of these features appeared to be former basements, while others appeared to be utility tunnels. Debris piles from previous demolition activities, as well as apparent uncontrolled dumping are observed at the Site. Uses at the site since 1910 included residential and office building structures, gasoline fueling station, nickel plating and pickling building, metal rod cutting facility/factory, and a mill building.

1.3 Previous Investigations

WSP Environmental Strategies, LLC (WSP) conducted a Phase II assessment between June 2001 and August 2006 under the Ohio Voluntary Action Program (Ohio VAP), which included installation of soil borings and monitoring wells. The Phase II assessment activities also included the collection of soil, groundwater, and soil vapor samples, and closure of two underground storage tanks (USTs). Various Chemicals of Concern (COCs) were analyzed across the twelve (12) identified areas from the Phase I. Results indicated that remedial activities were needed to address COCs in two identified areas: the South Manufacturing Bureau of Underground Storage Tank Regulations (BUSTR) Area (Area 5) and the South Manufacturing Area (Area 10). Soils were excavated in 2004 to remove polynuclear aromatic hydrocarbons (PAHs), with approximately 55 cubic yards removed from Area 5 and 22 cubic yards from Area 10. A No Further Action (NFA) letter was submitted on April 15, 2008 And Ohio EPA issued a Covenant Not to Sue (CNS) with a groundwater use restriction and land use restriction to commercial/industrial use on November 17, 2008.

Hull completed a Phase I ESA (Phase I) in accordance with the scope and limitations of ASTM Practice E 1527-13, in December 2014 that identified the presence of potential impacts to media of the Property (i.e., soil, groundwater and soil gas) based on previous use of the Property and adjacent properties. Based on correspondence with the City of Toledo, Phase II assessment activities focused on the on-Property recognized environmental conditions (RECs), which are identified below.

REC 1 - CREC - 2008 CNS

The WSP Phase II assessment was conducted between June 2001 and August 2006. Activities included installation of soil borings and monitoring wells, and the subsequent collection of soil, groundwater, and soil vapor samples. Phase II activities also included the closure of two on-Property underground storage tanks. Various COCs were analyzed across the twelve (12) identified areas from the Phase I. Results indicated that remedial activities were needed to address COCs in two identified areas: the South Manufacturing BUSTR Area (Area 5) and the South Manufacturing Area (Area 10). Soils were excavated in 2004 to remove elevated concentrations of PAHs, with approximately 55 cubic yards removed from Area 5 and 22 cubic yards from Area 10. A NFA letter was submitted on April 15, 2008. Ohio EPA issued a CNS with a groundwater use restriction and land use restriction to commercial/industrial use on November 17, 2008. This CREC is also considered a REC.

REC 2 - Suspected on-Property USTs

What appeared to be fill ports for five or more USTs was observed on the north-central portion of the Site. Although leak detection for the USTs was listed on BUSTRs website, all structures at the Site as well as the utilities have been disconnected, rendering the leak detection inoperable. Based on previous LUSTs at the Site and the current condition of the UST system, the five remaining USTs are considered a REC.

Size	Contents	Installation Date	COCs
6,000-gallons	gasoline	10/1/1987	BTEX/MTBE
6,000-gallons		10/1/1987	
6,000-gallons		10/1/1987	
2,500		2/1/1992	
2,500		2/1/1992	

REC 3 - Release from Transformer(s)

Several releases of oil from electrical transformers were documented at the Site in 2012. While the City of Toledo and the U.S. EPA responded to the incidents, samplings results for the oil were not provided during the file review. Release from electrical transformers at the Site is considered a REC.

REC 4 - Debris Piles - Data Gap

Several buildings were razed at the Site in 2014. As a result of the demolition activities, several debris piles were created. In addition to the demolition debris piles, several dozen piles of apparent uncontrolled dumping were observed at the Site. These debris piles generally consist of tires (several hundred in total) yard debris and construction remodeling debris (drywall, paint, roofing materials, household refuse, etc.) These debris piles restrict observation of a significant portion of the Site. The limitation results in a significant data gap resulting in a REC.

REC 5 - No Current Owner Interview - Data Gap

The Client indicated that the Site is owned by Moorhouse Real Estate, LLC. Hull attempted to interview the current owner, but all attempts resulted in unopened returned mail. The absence of Owner feedback is a significant data gap that results in a REC.

The Phase II assessment activities were executed under Hull project number COT235 and were conducted by Hull in June of 2015.

1.4 Applicability and Recognized Environmental Conditions

The 2014 Phase I Assessment noted three RECs at the Property that had recommendations for further investigation, which are described above in Section 1.1 and are illustrated on Figure 2.

1.5 Purpose

This work was completed in accordance with ASTM Standard E1903-11, which covers the process for conducting Phase II ESAs with respect to the presence or the likely presence of substances including, but not

limited to, those within the scope of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) (e.g., hazardous substances), pollutants, contaminants, petroleum and petroleum products, etc. The assessment was conducted in sufficient detail to appropriately assess the RECs at the Property. The RECs are documented in the Phase I completed in December 2014, which is summarized in Section 1.1.

1.6 Limitations and Qualifications

Based on the current condition of the Site and the fact that the property received a CNS under the Ohio VAP, Hull focused the assessment to select areas that are most likely to have been negatively impacted during demolition activities, which post-dated the CNS issuance.

1.7 Current and Intended Land Use

The Property is currently vacant. The planned future land use at the Property is commercial/industrial with no developed structures intended for extended human occupancy.

2.0 PHASE II DATA QUALITY OBJECTIVES

Data quality objectives (DQOs) were developed and implemented in a manner consistent with U.S. EPA's "Guidance on Systemic Planning Using the Data Quality Objectives Process" according to their limitations and intended uses.

2.1 Phase II Assessment Goals

Based upon the RECs in Section 1.1, the goals for this Phase II assessment are as follows:

1. Collect data to further evaluate the nature and extent of the RECs identified above in Section 1.1.

2.2 Data and Information to Support the Phase II Objectives

Historical data and information for the Property was reviewed to attempt to identify any gaps that needed to be addressed during Phase II assessment activities, in order to evaluate the environmental conditions at the Property. Any data gaps identified were investigated through the collection of soil, groundwater, and/or vapor samples, as applicable. Chemical analytical methods for these samples were determined based on historical background information.

Although not a Ohio VAP compliant Phase II assessment, data obtained from the Phase II was evaluated in the context of the VAP generic numerical standards in accordance with the Property-specific pathway analyses and an emerging understanding of construction and redevelopment options. To the extent that the Phase II data exceed applicable standards, it was understood during all portions of the project that additional sampling may be required to more fully understand the potential effect of pathway completeness and exposures to receptor populations.

2.3 Decision Process and Project Approach

2.3.1 Inputs to the Decision Process

In consideration of future Property redevelopment efforts, a site conceptual model (SCM) was developed during the Phase II to identify complete exposure pathways, and current and reasonably anticipated future receptors. The SCM was developed to address exposures by both current and potential future receptor populations at the Property.

In development of the SCM and in the approach to developing the Phase II activities, the following questions were considered:

- 1. Do portions of the Property contain COCs that exceed applicable VAP standards, and do data gaps exist such that additional data are required to assess potentially complete exposure pathways and receptor populations?
- 2. For areas of the Property containing COCs exceeding applicable VAP standards, what are appropriate and cost-effective options for cleaning up the contamination or eliminating the pathways (i.e., through engineering and/or institutional controls) such that Property redevelopment can be accomplished?

The investigative approach), was defined based on results from the Phase I in order to assess the RECs at the Property. These investigations included, but were not limited to: soil sampling conducted during the advancement of soil borings, groundwater sampling from monitoring wells, and soil gas sampling, as applicable, to:

- 1. identify the presence and concentrations of COCs in soil, groundwater, and soil vapor; and
- 2. characterize the hydrogeology.

During the Phase II activities, it was understood that the findings of the assessment activities could result in:

- 1. a decision to conduct additional investigations for the re-delineation of existing or new RECs and to further define the information required to meet applicable standards; and
- 2. a decision to adjust Property redevelopment plans, including implementation of remedial activities, as necessary, to meet applicable standards.

Following completion of each portion of the Phase II assessment, a pathway analysis was completed for the purpose of evaluating current and potential exposure pathways. The results of this evaluation are presented in Section 7.

2.3.2 Project Approach

A Work Plan was prepared by Hull and approved by the U.S. EPA for the completion of the Phase II activities. A copy of the Work Plan is included in Appendix B.

3.0 SAMPLING AND SAMPLE ANALYSIS

Laboratory analysis of samples described in this report was conducted by Belmont/Pace Analytical Labs (Certified Lab # CL0032) in Englewood, Ohio. Laboratory procedures were conducted in accordance with the substantive requirements of the selected test methods.

Acceptable quality assurance and quality control procedures were employed in accordance with the approved QAPP for the City of Toledo. The field quality assurance and quality control procedures include the review of the laboratory's quality assurance program plan and standard operating procedures (SOPs) for consistency with field quality assurance and quality control procedures.

The use of specific methodologies in the form of SOPs to address quality control procedures employed when collecting field data ensures that data collection, field testing, field screening, and sampling techniques are consistent with achieving the purpose of the Phase II. The Work Plan is provided in Appendix B.

4.0 PHASE II ACTIVITIES

4.1 General

In general, this assessment was conducted to investigate the RECs documented in the December 2014 Phase I Assessment. The Phase II activities completed as part of this assessment are as follows:

2015 Phase II Activities

June 8th thru June 9, 2015

- Installation and soil sampling of Hull temporary monitoring wells HTMW-1/HSB-17, HTMW-2/HSB-2, HTMW-3/HSB-8, HTMW-4/HSB-10, HTMW-5/HSB-12, and HTMW-6/HSB-9.
- Installation and sampling of Hull soil borings HSB-1 through HSB-18

June 11th and June 12, 2015

 Groundwater sampling of Hull temporary monitoring wells HTMW-1, HTMW-2, HTMW-3, HTMW-4, HTMW-5, and HTMW-6.

June 24, 2015

Soil vapor sampling of soil vapor probes HSG-1 and HSG-2.

Data was collected to identify and evaluate potential COCs and to evaluate Property-specific geology and hydrogeology. Sampling locations were biased toward areas where a release of hazardous substances has or may have occurred. Sampling was performed to meet the data quality objectives defined within Section 2.0. A summary of all soil, groundwater and soil vapor samples collected during the Phase II assessment activities at the Property are presented in Tables 1, 2 and 3, respectively. The locations of the sampling locations (e.g., soil borings, temporary monitoring wells and soil vapor monitoring points) are shown on Figure 2.

4.2 Soil Borings

The geological and hydrogeological conditions, as well as the concentration and distribution of COCs in the surface and subsurface soils, were evaluated by installing continuously sampled, direct-push or hand-auger soil borings. The summary of the soil sampling is provided in Table 1. Locations of all soil borings are shown on Figure 2. Logs of the soil borings completed during this investigation are provided in Appendix C.

4.3 Soil Sampling and Analysis Methodology

Drilling and sampling operations for the above investigations were performed by Terra Probe using directpush technology. Drilling and sampling activities were conducted under the supervision of a Hull hydrogeologist. Locations of the soil borings were selected based on the suspected location of potential onand off-Property sources of contamination on the Property. Representative soil samples from these soil borings were analyzed for the applicable COCs for each REC. Soil sample screening results are shown on the boring logs in Appendix C. A summary of the soil sample analytical results is provided in Table 1. The soil laboratory reports and chain-of-custody documentation is included in Appendix D.

All soil borings installed using the direct-push methods were continuously sampled utilizing either a two-inch outside diameter (O.D.) by 48-inch/60-inch long dual-tube sampler with single-use acetate sampler liners or 2 1/4-inch O.D. by 48-inch/60-inch long dual tube sampler with single use acetate liner. Soil samples were collected from each distinct stratigraphic unit or a minimum of one sample per two-foot interval, whichever was greater. The field hydrogeologist wore clean nitrile gloves while handling each soil sample to maintain the integrity of the samples. Furthermore, the soil samplers were decontaminated in a non-phosphate soap solution and then rinsed with potable water between each sampling interval to minimize the potential of cross contamination and to ensure the integrity of the samples. All decontamination procedures were performed on-site under the observation of Hull's hydrogeologist.

A representative portion of each sample was immediately placed in clean, laboratory-supplied sample jars with *Teflon*-lined lids. The sample jars were properly labeled and immediately placed on ice in a cooler. Where soil was analyzed for VOCs, sample preservation Method 5035 was used and soil was placed into Terra CoreTM kits or equivalent to preserve the sample. The remaining soil from the appropriate sample interval was placed in a clean *Ziploc*® type bag for field headspace screening using a MiniRae photoionization detector (PID) equipped with a 10.6 or 11.7 eV lamp. Before screening any samples, the PID was calibrated in accordance with the manufacturer's specifications using a 100 parts per million (ppm) isobutylene gas standard. The portion of each soil sample collected for headspace screening was allowed to warm to ambient temperature to promote volatilization of any VOCs. The PID probe was carefully inserted through the seal of each bag and the maximum meter response from each sample was recorded in the soil boring log.

Visual observations and PID screening results were used to select samples from each soil boring location for laboratory analysis. Analyses included VOCs in accordance with U.S. EPA Method 8260; PAHs in accordance with U.S. EPA Method 8270, gasoline and diesel range total petroleum hydrocarbons (TPH GRO/DRO) in accordance with U.S. EPA Method 8015 Mod Ext/Mod Pur; and RCRA Metals in accordance with U.S. EPA Method 6010/7471 series.

Soil samples selected for analyses were analyzed by Belmont/Pace Labs (Certified Lab # CL0032).

4.4 Temporary Monitoring Well Installation

Sampling of groundwater was completed to identify the presence and concentration of COCs. The temporary

monitoring well locations are illustrated on Figure 2. Monitoring well/boring logs and well construction

diagrams are presented in Appendix C.

Six monitoring wells (HTMW-1 through HTMW-6) were installed at the Property on June 8 and June 9, 2015.

Each monitoring well was constructed of 1-inch diameter PVC. Ten-foot screens were installed from six to

sixteen feet below ground surface.

The six temporary monitoring wells (HTMW-1 through HTMW-6) are screened in the upper saturated zone,

and were installed by Terra Probe, utilizing a Geoprobe drill rig.

A Hull hydrogeologist observed all drilling, sampling, well installation procedures, described the soil types,

groundwater conditions, recorded well construction data, and observed decontamination activities.

4.5 Groundwater Sampling

Hull temporary monitoring wells, HTMW-1 through HTMW-6, were sampled on June 11 and June 12, 2015.

The groundwater field data sheets are included in Appendix E. The groundwater laboratory analytical

report and chain-of-custody documentation is included in Appendix D.

The temporary monitoring wells were sampled in accordance with the Phase II Work Plan developed for the

Property. Attempts were made to sample the monitoring wells utilizing low flow sampling techniques.

However, the sampler could not achieve stabilization at even the lowest setting on the low flow pump or the

wells went dry. The monitoring wells were then sampled with a peristaltic pump within 24 hours of being

pumped dry. Samples were submitted for laboratory analysis to evaluate the presence/absence of COCs

in the uppermost saturated zone at the Property. Equipment was decontaminated with potable water and

a non-phosphate detergent prior to use and between each monitoring well location to minimize the potential

for cross contamination.

Samples were submitted for chemical analysis by Belmont/Pace Labs (Certified Lab # CL0032) in

Englewood, Ohio. Groundwater samples were analyzed for one or more of the following: VOCs in

accordance with U.S. EPA Method 8260; PAHs in accordance with U.S. EPA Method 8270 and Ohio VAP

Metals in accordance with U.S. EPA Method 6010/7471 series.

HULL & ASSOCIATES, INC. 14 SEPTEMBER 2015 TOLEDO, OHIO COT235.100.0161

4.6 Quality Assurance

In general, for all Hull 2015 Phase II Activities QA/QC samples (field duplicates, matrix spike/matrix spike duplicates (MS/MSDs), field blanks, etc.) were collected to meet the scope of work, QAPP, or FSAP requirements, as applicable. In general, one duplicate, and equipment blank were collected for approximately every 20 soil or groundwater samples collected, as applicable. A trip blank was also included for every shipment containing samples submitted for VOC analysis. Laboratory analytical quality assurance data is provided in Appendix D.

5.0 REGIONAL AND PROPERTY-SPECIFIC GEOLOGY, HYDROGEOLOGY, AND PHYSICAL CONDITIONS

A review and evaluation of existing regional and Property-specific geological, hydrological and physical characteristics of the Property was completed. These findings, as applicable and necessary, are summarized below.

5.1 Regional Geology and Hydrogeology

5.1.1 Regional Geology

The Property is located in the City of Toledo, in the Maumee River Basin. According to the ODNR, Lucas County lies on a relatively flat glacial lake plain comprised of glacial sediments of Wisconsinan Age (ODNR, 2005). The glacial deposits range in thickness from zero feet where bedrock outcrops to 144 feet across Lucas County, with an average thickness of approximately 80 feet or more in the vicinity of the Property (ODNR, 1986).

5.1.2 Regional Hydrogeology

The surface drainage is generally to the northeast toward Lake Erie. The main rivers draining the region are the Ottawa River, Maumee River, and Swan Creek, a tributary of the Maumee River. There is no major groundwater divide in Lucas County.

Groundwater resources can be obtained from semi-confined sand and gravel aquifers within the glacial till and from limestone and dolomite of Silurian and Devonian age, which underlie the till. No public water supply wells have been located by the ODNR within a 1/2-mile distance of the Property, but ODNR records outside of this distance indicated that wells produce water from the carbonate bedrock. Bedrock at the Site is present at approximately 490 feet USGS.

Ground-surface elevation at the Site is approximately 615 feet (USGS). The topography is generally flat near the Property. Drainage from the Property appears to be toward the northwest toward the Ottawa River. Note that much of the natural topographic expression of the region has been disturbed by development.

5.1.3 Regional Availability of Surface water and Groundwater as Sources for Drinking Water

The Public Water System Inventory provided by the Ohio EPA was reviewed to obtain records of public water supplies within one-half mile of the Property boundary. According to Ohio EPA records, there are no public water wells located within a one-half mile radius of the Property. The City of Toledo provides water

to the Property. The Property is located in a Toledo City USD approved by the Director of the Ohio EPA. A map is attached showing the location of the Property in relation to the USD (see Figure 1).

The area surrounding the Property is a very poor area for even minimal domestic water supplies within the region. Hull searched the ODNR Division of Water online database of located and unlocated well logs for private/public/monitoring wells within 0.5-mile of the Property. Seven water monitoring wells were identified within 0.5-mile of the Property. The presence of these monitoring wells is not anticipated to negatively impact the Property. Copies of the ODNR water well logs are included in Appendix F.

Potentiometric surface maps in the WGS Phase II ESA from May 2005 indicates that the shallow groundwater at the Site flows to the northwest on the northern two-thirds of the Site and to the southwest on the southern one-third of the Site. Static water levels ranged from approximately 1.5 feet below ground surface to just over 10 feet below ground surface.

5.2 Property-Specific Geology, Hydrogeology, and Other Characteristics

5.2.1 Property-Specific Geology

Review of soil boring logs completed at the Property by Hull indicates that the Property is primarily underlain by silts and clays. Fill material was observed in some of the soil borings at depths less than two feet.

5.2.2 Property Specific Hydrology and Hydrogeology

5.2.2.1 Recharge and Evaporation Rates

The average annual precipitation in Toledo, Ohio is approximately 34 inches per year. Evaporation and surface water runoff serve to reduce the groundwater recharge rate. In relatively recent history, transpiration has been minimal at the Property. Recharge rates for northwest Ohio have been documented between 2 to 10 inches per year (Halfrisch, 2002, revised by Sprowls, 2010). The rate of recharge varies dependent on the nature of the surface cover. Future recharge will probably be reduced following development of the Property with storm water runoff being carried to detention basins and then to off-Property locations via storm sewers.

5.2.2.2 Localized Groundwater Flow Conditions

Groundwater was encountered at depths ranging from approximately 6 to 10 feet below ground surface. Each of the four monitoring wells installed at the Property terminated in a grey or brown and grey clayey silt. Based on historical information as well as hydrogeological properties of clayey silts, these soil are likely acting as an aquitard, restriction vertical migration of groundwater at the Site.

6.0 **IDENTIFICATION AND EVALUATION OF CHEMICALS OF CONCERN**

6.1 **Detected COCs in Soil**

The Hull Phase I ESA listed the following RECS and corresponding COCs:

IA/REC#	Description	COCs
REC 1	CREC – 2008 CNS	No Additional Investigation
REC 2	Suspected on-Property USTs	BTEX/MTBE, TPH-GRO
REC 3	Release from Transformer(s)	Information Received from US EPA Indicating No
		Further Action Required
REC 4	Debris Piles – Data Gap	VOCs, PAHs, TPH-GRO, TPH-DRO, Metals
REC 5	No Current Owner Interview - Data	Attempt to Interview Current Owner during the
	Gap	Phase II

During 2015 Phase II activities, metals, PAHs and VOCs were detected above laboratory practical quantitation limits (PQLs). None of the COCs exceeded the Ohio VAP Direct Contact for Commercial/Industrial or Construction/Excavation standards.

Detected metals in soil:

Arsenic	Barium	Chromium
Lead	Silver	

Detected PAHs in soil:

2-Methynahthalene	Acenaphthene	Benzo(a)anthracene
Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(ghi)perylene
Benzo(k)fluoranthene	Chrysene	Dibenz(ah)anthracene
Fluoranthene	Indeno(123,cd)pyrene	Naphthalene
Phenanthrene	Pyrene	-

Detected VOCs in soil:

124-Trimethylbenzene	1,2-Dichlorobenzene	1,3,5-Trimethylbenzene
1,4-Dichlorobenzene	2-Butanone	4-Isopropyltoluene
Butylbenzene	Cis-1,2-Dichloroethene	Ethylbenzene
Hexane	Isopropylbenzene	m,p-Xylenes
Naphthalene	n-Propylbenzene	o-Xylenes
Sec-Butylbenzene	Tetrachloroethene	Toluene
Trans-1,2-Dichloroethene	Trichloroethene	

Detected COCs in Groundwater

Laboratory analyses of the groundwater samples collected from six temporary monitoring wells (TMW-1 through TMW-6) revealed the presence of several COCs above laboratory PQLs. A total of four metals, one PAH, and three VOCs were detected in the June 2015 groundwater samples. Of these, arsenic, benzene, and m,p-xylenes exceeded the Ohio VAP UPUS standards. Laboratory analytical results are summarized in Table 2 and shown on Figure 3. Laboratory analytical data is provided in Appendix D.

Detected metals in groundwater:

Arsenic Barium Chromium Lead

Detected PAHs in groundwater:

Naphthalene

Detected VOCs in groundwater:

Benzene m,p-Xylenes Methyl-tert-butyl-ether

6.3 COCs Detected in Soil Gas:

Laboratory analyses of the soil gas samples collected from two soil gas implants (HSG-1 and HSG-2) identified several COCs above laboratory PQLs. Both sample locations were analyzed for BTEX and MTBE only. Each compound was detected in both samples with the exception of MTBE in HSG-2. Laboratory analytical results are summarized in Table 3. Laboratory analytical data is provided in Appendix D.

Detected VOCs in Soil Gas:

Benzene
Toluene
m,p-xylenes
Ethylbenzne
Methyl-tert-butyl-ether

6.4 Data Quality Assurance

Data collection activities and data analysis were reviewed to verify that analytical data generated as part of this Phase II investigation comply with the data quality objectives identified in Section 2.0.

Based on a review of the available data, it appears that no evidence of contamination was identified in trip blanks, field blanks or equipment blanks. Additionally, all data reported meet the appropriate reporting limits for comparison against applicable standards.

A summary of the analytical data is presented in Tables 1 through 3. Complete copies of the laboratory analytical data are provided in Appendix D.

7.0 DATA EVALUATION

Bulk soil data, bulk groundwater data and the results of two soil gas samples were evaluated assuming a commercial/industrial land use. Data evaluation was completed to provide a better understanding of the potential hazards and risks associated with a commercial/industrial use of the Property given the environmental conditions that have been identified on the basis of the surface and subsurface soils, soil gas and groundwater sampling that has been completed during this investigation.

7.1 Purpose of the Data Evaluation

Sampling and analysis activities conducted during the Phase II investigation identified COCs in soil, soil gas and groundwater at the Property. The data was evaluated with respect to the depth the soil sample was collected, the planned or anticipated end use of the property, and the recorded use restrictions on the property.

7.2 Evaluation of Data

Soil, soil vapor and groundwater analytical data were collected during the Phase II investigation. Soil analytical data identified 39 COCs detected above the PQL. While both acrolein and trichloroethene were detected at concentrations exceeding the respective direct contact generic numerical standard, neither detection were located within the two-foot point of compliance for commercial/industrial end use or the tenfoot point of compliance for construction and excavation work. Groundwater analytical data identified three chemicals that exceeded UPUS under the Ohio VAP; however, the groundwater underlying the property is not extracted for potable uses. Therefore, this exposure pathway is not complete. Finally, soil vapor analytical data collected from the property was evaluated using current guidelines of the Ohio VAP. There are currently no structures on the property and it is Hull's understanding that there are no plans for the construction of structures intended for extended human occupancy. Limited soil vapor data collected near the former UST area on the property suggests that no remedy is required to address soil vapor; however, this data set should be supplemented if structures are constructed on the property that are intended for extended human occupancy.

7.3 Identification of Receptor Populations and Exposure Pathways

The receptor populations are based on current use (i.e., undeveloped/vacant) and anticipated future use (i.e., commercial/industrial use), and have been identified. The following receptor populations have been identified at the Property:

- Future on-Property Commercial/Industrial Worker; and
- On-Property Construction/Excavation Worker.

7.3.1 Future On-Property Commercial/Industrial Worker Receptor Population

Anticipated future use of the Property is assumed to be industrial use. The Ohio VAP generic numerical direct contact soil standards for the commercial and industrial land use categories were used as a point of comparison for soil analytical data collected on the property.

7.3.2 Construction/Excavation Worker Receptor Population

If the Property were to be redeveloped in the future, construction activities including grading, excavating and filling, and construction of a parking lot or new structures may take place. Thus, activities by construction and excavation workers at the Property were also evaluated herein.

7.4 Summary of Data Evaluation

Soil and groundwater analytical data were compared to generic numerical standards of the Ohio VAP as a point of comparison. As noted in Section 7.2, acrolein and trichloroethene were each detected in a single soil sample location at concentrations exceeding their respective direct contact soil standard; however, both samples were collected outside the direct contact point of compliance for industrial land use and construction/excavation activities.

Groundwater analytical data were compared to UPUS in the Ohio VAP as a point of comparison. Based on this comparison, the maximum detected concentrations of arsenic, benzene and m,p-xylenes in the upper saturated zone underlying the property exceed their respective UPUS at one or more locations. The upper saturated zone underlying the property is not utilized for potable purposes on or near the property. In addition, the property is located within an USD and a restriction on the extraction of groundwater underlying the property is recorded at the Lucas County Recorder's Office. Therefore, potable use of groundwater underlying the property is considered incomplete.

Soil vapor analytical data was evaluated in accordance with the Ohio VAP guidelines and was determined not to significantly contribute to the overall risk or hazard exposures at the property.

Chemical of Concern	Location	
1,2,4-Trimethylbenzene	HSB-16 (also exceed at HSB-9)	
1,4-Dichlorobenzene	HSB-18	
Acrolein	HSB-9	
Benzene	HSB-9	
cis-1,2-Dichloroethene	HSB-16 (also exceed at HSB-13)	
Ethylbenzene	HSB-18 (also exceeds at HSB-9)	
Hexane	HSB-9 (also exceeds at HSB-18)	
Isopropylbenzene	HSB-9 (also exceeds at HSB-18)	
m,p-Xylenes	HSB-16 (also exceeds at HSB-9)	
Naphthalene	HSB-18 (also exceeds at HSB-9)	
n-Propylbenzene	HSB-9 (also exceeds at HSB-18)	
o-Xylene	HSB-16	
Tetrachloroethene	HSB-13 (also exceeds at HSB-16)	
trans-1,2-Dichloroethene	HSB-16	
Trichloroethene	HSB-13 (also exceeds at HSB-16)	

22

8.0 FINDINGS

Data were collected to identify and evaluate potential COCs at the property.

Sampling locations installed were biased toward areas where a release of hazardous substances has or

may have occurred. Sampling was performed in accordance with the approved Work Plan.

The results of the Phase II Assessment indicated the following:

Soil and groundwater analytical data were compared to generic numerical standards of the Ohio VAP as

a point of comparison. As noted in Section 7.2, acrolein and trichloroethene were each detected in a single

soil sample location at concentrations exceeding their respective direct contact soil standard; however, both

samples were collected outside the direct contact point of compliance for industrial land use and

construction/excavation activities.

Groundwater analytical data were compared to UPUS in the Ohio VAP as a point of comparison. Based

on this comparison, the maximum detected concentrations of arsenic, benzene and m,p-xylenes in the upper

saturated zone underlying the property exceed their respective UPUS at one or more locations. The upper

saturated zone underlying the property is not utilized for potable purposes on or near the property. In

addition, the property is located within an USD and a restriction on the extraction of groundwater underlying

the property is recorded at the Lucas County Recorder's Office. Therefore, potable use of groundwater

underlying the property is considered incomplete.

Soil vapor analytical data was evaluated in accordance with the Ohio VAP guidelines and was determined

23

not to significantly contribute to the overall risk or hazard exposures at the property.

SSOCIATES, INC.

HULL & ASSOCIATES, INC. TOLEDO, OHIO

SEPTEMBER 2015 COT235.100.0161

Chemical of Concern	Location
1,2,4-Trimethylbenzene	HSB-16 (also exceed at HSB-9)
1,4-Dichlorobenzene	HSB-18
Acrolein	HSB-9
Benzene	HSB-9
cis-1,2-Dichloroethene	HSB-16 (also exceed at HSB-13)
Ethylbenzene	HSB-18 (also exceeds at HSB-9)
Hexane	HSB-9 (also exceeds at HSB-18)
Isopropylbenzene	HSB-9 (also exceeds at HSB-18)
m,p-Xylenes	HSB-16 (also exceeds at HSB-9)
Naphthalene	HSB-18 (also exceeds at HSB-9)
n-Propylbenzene	HSB-9 (also exceeds at HSB-18)
o-Xylene	HSB-16
Tetrachloroethene	HSB-13 (also exceeds at HSB-16)
trans-1,2-Dichloroethene	HSB-16
Trichloroethene	HSB-13 (also exceeds at HSB-16)

9.0 REPORT LIMITATIONS

The conclusions and recommendations presented herein are based on the level of effort and investigative techniques defined under the Scope of Work. Hull has conducted this investigation in a manner consistent with sound engineering practices and with professional judgment. No other warranty or guarantee, expressed or implied, is made. This report does not attempt to evaluate past or present compliance with federal, state and local environmental or land use laws and regulations. Hull makes no guarantees regarding the completeness or accuracy of any information obtained in review of public or private files. Furthermore, this report is prepared for, and made available for the sole use of City of Toledo. The contents thereof may not be used or relied upon by any other person without the express written consent and authorization of City of Toledo.

10.0 REFERENCES

A variety of technical documents and publications were referred to during the course of this project. Some of the references consulted are presented below. Referenced documents and publications may or may not have been reviewed in their entirety. The guidelines and procedures presented in the documents and publications referenced have not been strictly adhered to unless stated otherwise.

- Hallfrisch, Michael. Groundwater Pollution Potential of Lucas County, Ohio. 2002 (Revised 2010).
- Ohio Administrative Code 3745-300-01, Definitions Rule for the Voluntary Action Program, March 2009.
- Ohio Administrative Code 3745-300-07, Phase II Property Assessment Procedures Rule for the Voluntary Action Program, March 2009.
- Ohio Administrative Code 3745-300-08, Generic Numerical Standards Rule for the Voluntary Action Program, March 2009.
- Ohio Administrative Code 3745-300-10, Ground Water Classification and Response Requirements for the Voluntary Action Program, March 2009.
- Ohio Department of Natural Resources, Division of Water. Well Log and Drilling Reports.
- Ohio Department of Natural Resources, Division of Geological Survey. Glacial Map of Ohio, 2005.
- Ohio Department of Natural Resources, County Bedrock Topography Maps.
- WSP Environmental Strategies, LLC, June 2001 thru August 2006, Phase II Environmental Site Assessment, Former Champion Sparkplug Property.
- Hull & Associates, Inc., Phase I Environmental Site Assessment, Former Champion Sparkplug Property, Hull Document #: COT235.100.0135, December 2014.
- Hull & Associates, Inc., Phase II Property Assessment Work Plan, Hull Document #: COT235.100.0157, May 2015.

TABLES

HULL & ASSOCIATES, INC. TOLEDO, OHIO

TABLE 1

SOIL SAMPLING SUMMARY (mg/kg)

					Station								T	l									
			20143/40	2014.1/4.0	Name	HSB-1	HSB-10	HSB-11	HSB-12	HSB-13	HSB-13	HSB-15	HSB-16	HSB-17	HSB-18	HSB-2	HSB-3	HSB-4	HSB-5	HSB-6	HSB-7	HSB-8	HSB-9
	CAS		2014 VAP Commerical/	2014 VAP Construction/	Depth Date	4 - 6 ft 6/8/2015	0 - 2 ft 6/8/2015	0 - 2 ft 6/9/2015	0 - 2 ft 6/8/2015	0 - 12 ft 6/9/2015	10 - 12 ft 6/9/2015	4 - 6 ft 6/9/2015	2 - 4 ft 6/9/2015	8 - 10 ft 6/8/2015	4 - 6 ft 6/9/2015	6 - 8 ft 6/8/2015	4 - 5 ft 6/9/2015	4 - 6 ft 6/9/2015	0 - 2 ft 6/9/2015	0 - 2 ft 6/9/2015	0 - 2 ft 6/9/2015	8 - 10 ft 6/8/2015	6 - 8 ft 6/8/2015
Parameter	Number	Units	Industrial Generic	Excavation Generic	Dale	COT235:	COT235:	COT235:	COT235:	COT235:	COT235:	COT235:	COT235:	COT235:	COT235:	COT235:	COT235:	COT235:	COT235:	COT235:	COT235:	COT235:	COT235:
			Direct Contact	Direct Contact	Sample	HSB-1:	HSB-10:	HSB-11:	HSB-12:	HSB-13:	HSB-13:	HSB-15:	HSB-16:	HSB-17:	HSB-18:	HSB-2:	HSB-3:	HSB-4:	HSB-5:	HSB-6:	HSB-7:	HSB-8:	HSB-9:
					ID	S040060	S000020	S000020	S000020	\$100120	\$100120	S040060	S020040	S080100	\$040060	\$060080	\$040050	S040060	S000020	S000020	S000020	S080100	\$060080
ASTM D2974-87	1	1 0/	\														1						
Percent Moisture D 2216		%	NS	NS			15.4	19.4	22.2	21.4		17	9.3	21.1	20.3				16.6	18.1	19.2	22.9	19.2
Percent Moisture		%	NS	NS		16.9	21.1	20.6	17.7		21.8	21.4	10.3	22.7	20.3	22	19.6	20.2	16.5	16.7	8.1	24.4	22.4
EPA 8015 Mod Ext					1				1	1				•			1		•	•			
Total Petroleum Hydrocarbons		mg/kg	NS 110	NS NS				<24.7		<25.4					<25				<24		<24.4		<24.6
TPH (C06-C12) TPH (C10-C20)		mg/kg mg/kg	NS NS	NS NS		<6	<6.23	<6.17 <12.4	<5.92	<12.7	<6.32	<6.2	6.83	<6.34	16.8 <12.5	<6.2	<5.95	<6.17	<5.99 <12	<5.88	<5.36 <12.2	<6.48	6.96 <12.3
TPH (C20-C34)		mg/kg	NS	NS				<12.4		<12.7					<12.5				<12		<12.2		<12.3
EPA 8270 by SIM																							
2-Methylnaphthalene	91-57-6	mg/kg	6,000	5,200			<0.0059	0.0092	0.027	<0.0063		0.014	0.34	<0.0063	2.9				<0.03	<0.0061	<0.0061	<0.0064	0.8
Acenaphthene Acenaphthylene	83-32-9 208-96-8	mg/kg mg/kg	90,000 90.000	780,000 780,000			<0.0059 <0.0059	<0.0062 <0.0062	<0.0064 <0.0064	<0.0063 <0.0063		<0.0059 <0.0059	<0.055 <0.055	<0.0063 <0.0063	0.0085 <0.0062				<0.03 <0.03	<0.0061 <0.0061	<0.0061 <0.0061	<0.0064 <0.0064	<0.0062 <0.0062
Anthracene	120-12-7	mg/kg	450,000	1,000,000			<0.0059	<0.0062	<0.0064	<0.0063		<0.0059	< 0.055	<0.0063	<0.0062				<0.03	<0.0061	<0.0061	<0.0064	<0.0062
Benzo(a)anthracene	56-55-3	mg/kg	58	1,200			<0.0059	0.013	0.021	<0.0063		0.016	0.2	<0.0063	<0.0062				<0.03	<0.0061	<0.0061	<0.0064	<0.0062
Benzo(a)pyrene Benzo(b)fluoranthene	50-32-8 205-99-2	mg/kg mg/kg	5.8 58	120			<0.0059 <0.0059	0.014 0.016	0.032	<0.0063 <0.0063		<0.0059 <0.0059	0.19 0.23	<0.0063 <0.0063	<0.0062 <0.0062				<0.03 <0.03	<0.0061 <0.0061	<0.0061 <0.0061	<0.0064 <0.0064	<0.0062 <0.0062
Benzo(g,h,i)perylene	191-24-2	mg/kg	45,000	390,000			<0.0059	0.012	0.034	<0.0063		<0.0059	0.15	<0.0063	<0.0062				<0.03	<0.0061	<0.0061	<0.0064	<0.0062
Benzo(k)fluoranthene	207-08-9	mg/kg	580	12,000			<0.0059	0.014	0.042	<0.0063		<0.0059	0.24	<0.0063	<0.0062				<0.03	<0.0061	<0.0061	<0.0064	<0.0062
Chrysene Dibenz(a,h)anthracene	218-01-9 53-70-3	mg/kg	5,800 5.8	120,000 120			<0.0059 <0.0059	0.015 <0.0062	0.043 0.0088	<0.0063 <0.0063		0.075 < 0.0059	0.32 0.064	<0.0063 <0.0063	<0.0062 <0.0062				<0.03 <0.03	<0.0061 <0.0061	<0.0061 <0.0061	<0.0064 <0.0064	<0.0062 <0.0062
Fluoranthene	206-44-0	mg/kg mg/kg	60,000	160,000			<0.0059	0.0062	0.0088	0.0065		0.0039	0.064	<0.0063	0.0072				0.042	<0.0061	0.0081	<0.0064	<0.0062
Fluorene	86-73-7	mg/kg	60,000	520,000			<0.0059	<0.0062	<0.0064	<0.0063		<0.0059	<0.055	<0.0063	0.013				<0.03	<0.0061	<0.0061	<0.0064	0.01
Indeno(1,2,3-cd)pyrene	193-39-5	mg/kg	58	1,200			<0.0059	0.01	0.021	<0.0063		<0.0059	0.14	<0.0063	<0.0062				<0.03	<0.0061	<0.0061	<0.0064	<0.0062
Naphthalene Phenanthrene	91-20-3 85-01-8	mg/kg mg/kg	450,000	560 1,000,000			<0.0059 <0.0059	0.0088	0.0072 0.043	<0.0063 0.0072		0.0087	0.38 0.27	<0.0063 <0.0063	3.4 0.021				<0.03 0.032	<0.0061 <0.0061	<0.0061 0.0081	<0.0064 <0.0064	0.29 0.019
Pyrene	129-00-0	mg/kg	45,000	390,000			<0.0059	0.022	0.071	<0.0063		0.031	0.42	<0.0063	0.0074				0.032	<0.0061	0.01	<0.0064	0.0091
W 6010B																							
Arsenic	7440-38-2 7440-39-3	mg/kg	77 680,000	690			18.8	7.59	17.2 219		26.6	16.2 158	2.22	16.7 253	8.92				5.8 210	2.27	3.59	9.31	3.98
Barium Cadmium	7440-39-3	mg/kg mg/kg	2,600	320,000 1,000			115 <0.587	117 <0.606	<0.524		1 70 <0.603	< 0.578	39.4 <0.516	<0.622	1 09 <0.571				< 0.554	48.2 <0.536	1 96 <0.533	120 <0.601	93.9 <0.62
Chromium	7440-47-3	mg/kg	NS	NS			26.8	23.6	19.7		19.1	25.1	8.88	20	22.6				14.8	12.6	4.93	26.1	18.4
Lead	7439-92-1	mg/kg	800	400			16.8	12.4	20.7		14.3	18	16.2	11.7	12.6				7.77	7.09	11.4	13.9	8.43
Selenium Silver	7782-49-2 7440-22-4	mg/kg mg/kg	20,000 20,000	11,000			<5.87 1.65	<6.06 <1.21	<5.24 1.49		<6.03 <1.18	<5.78 1.86	<5.16 <1.03	<6.22 1.18	<5.71 1.05				<5.54 <0.998	<5.36 <1.11	<5.33 <0.938	<6.01 <1.25	<6.2 <1.07
SW 7471A	7 . 1.0 22 .	9/ 1.9	20,000	11,7000		1							11.00						10.770		101700	20	1107
Mercury	7439-97-6	mg/kg	3.1	3.1			<0.11	<0.11	<0.121		<0.118	<0.121	<0.104	<0.125	<0.111				<0.111	<0.12	<0.107	< 0.12	<0.121
SW 8260A	1,20,00,7	1 /1	0.40	/00	П	<0.0110		İ	ı	ı	ı	İ	ſ	1			ı	İ	1	1	1		
1,1,1,2-Tetrachloroethane	630-20-6 71-55-6	mg/kg mg/kg	240 640	680 640		<0.0119 <0.0119																	
1,1,2,2-Tetrachloroethane	79-34-5	mg/kg	75	670		<0.0119																	
1,1,2-Trichlorethane	79-00-5	mg/kg	140	1,200		<0.0119																	
1,1-Dichloroethane 1,1-Dichloroethene	75-34-3 75-35-4	mg/kg mg/kg	420 1,200	1,700 360		<0.0119 <0.0119																	
1,1-Dichloropropene	563-58-6	mg/kg	NS NS	NS NS		<0.0119																	
1,2,3-Trichlorobenzene	87-61-6	mg/kg	NS 0.0	NS 10		<0.0119	-									-							
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	96-18-4 120-82-1	mg/kg mg/kg	3.8 400	19 400		<0.0119 <0.0119																	
1,2,4-Trimethyl-benzene	95-63-6	mg/kg	220	220		<0.0117																	
1,2-Dibromo-3-chloropropane	96-12-8	mg/kg	1.7	15		<0.0238	-									-							
1,2-Dibromoethane 1,2-Dichlorobenzene	106-93-4 95-50-1	mg/kg mg/kg	4.4 380	38 380		<0.0119 <0.0119																	
1,2-Dichloroethane	107-06-2	mg/kg	56	480		<0.0117																	
1,2-Dichloropropane	78-87-5	mg/kg	120	180		<0.0119																	
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	108-67-8 541-73-1	mg/kg mg/kg	180 NS	180 NS		<0.0119 <0.0119																	
1,3-Dichloropenzene 1,3-Dichloropropane	142-28-9	mg/kg mg/kg	1,500	1,500		<0.0119																	
1,4-Dichlorobenzene	106-46-7	mg/kg	310	2,600		<0.0119																	
2,2-Dichloropropane	594-20-7	mg/kg	NS 28 000	NS 28,000		<0.0119																	
2-Butanone 2-Chlorotoluene	78-93-3 95-49-8	mg/kg mg/kg	28,000 NS	28,000 NS		<0.0476 <0.0119																	
2-Hexanone	591-78-6	mg/kg	NS	NS NS		<0.0476																	
4-Chlorotoluene	106-43-4	mg/kg	NS 140	NS NS		<0.0119	-									-							
4-Isopropyltoluene 4-Methyl-2-pentanone	99-87-6 108-10-1	mg/kg mg/kg	160 3,400	160 3,400		<0.0119 <0.0476																	
Acetone	67-64-1	mg/kg	110,000	110,000		<0.119																	
Acetonitrile	75-05-8	mg/kg	9,200	26,000		<0.0953																	

TABLE 1

SOIL SAMPLING SUMMARY (mg/kg)

				1		•	1		1	1			1	1	1	1	1		1	1		1	1
					Station	HSB-1	HSB-10	HSB-11	HSB-12	HSB-13	HSB-13	HSB-15	HSB-16	HSB-17	HSB-18	HSB-2	HSB-3	HSB-4	HSB-5	HSB-6	HSB-7	HSB-8	HSB-9
			2014 VAP	2014 VAP	Name Depth	4 - 6 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 12 ft	10 - 12 ft	4 - 6 ft	2 - 4 ft	8 - 10 ft	4 - 6 ft	6 - 8 ft	4 - 5 ft	4 - 6 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	8 - 10 ft	6 - 8 ft
Acrolein	107-02-8	mg/kg	1.6	5.5	200	<0.119																	
Acrylonitrile	107-13-1	mg/kg	32	62		<0.0476						-									-		
Allyl Chloride	107-05-1	mg/kg	19	64		<0.0238																	
Benzene	71-43-2	mg/kg	140	1,200		<0.0119										<0.0127	<0.0124	<0.0123					
Bromobenzene Bromochloromethane	108-86-1 74-97-5	mg/kg mg/kg	NS NS	NS NS		<0.0119 <0.0119																	
Bromodichloromethane	75-27-4	mg/kg	35	300		<0.0119																	
Bromoform	75-25-2	mg/kg	6,200	130,000		< 0.0119																	
Butylbenzene	104-51-8	mg/kg	110	110		< 0.0119						-									-		
Carbon Disulfide	75-15-0	mg/kg	740	740		<0.0476																	
Carbon Tetrachloride	56-23-5	mg/kg	79	460		<0.0119																	
Chlorobenzene	108-90-7	mg/kg	760	760		<0.0119																	
Chloroform	75-00-3 67-66-3	mg/kg mg/kg	2,100 38	2,100 320		<0.0119 <0.0119																	
cis-1,2-Dichloroethene	156-59-2	mg/kg	2400	2400		<0.0117																	
cis-1,3-Dichloropropene	10061-01-5	mg/kg	NS	NS		< 0.0119																	
Dibromochloromethane (chlorodibromomethane)	124-48-1	mg/kg	84	770		< 0.0119																	
Dichlorodifluoromethane (Freon-12)	75-71-8	mg/kg	850	850		<0.0119																	
Ethylbenzene	100-41-4	mg/kg	480	480		<0.0119										<0.0127	<0.0124	<0.0123					
Hexachloro-1,3-butadiene	87-68-3	mg/kg	630	1,400		<0.0119																	
Hexane	110-54-3 98-82-8	mg/kg mg/kg	140 270	140 270		<0.0119 <0.0119																	
Isopropylbenzene m,p-Xylenes	179601-23-1	mg/kg mg/kg	NS NS	NS NS		<0.0119										<0.0254	<0.0248	<0.0246					
Methyl Bromide	74-83-9	mg/kg	82	550		<0.0230																	
Methyl Chloride	74-87-3	mg/kg	1,300	1,300		<0.0119																	
Methyl lodide	74-88-4	mg/kg	NS	NS		<0.0238						-									-		
Methylene Bromide	74-95-3	mg/kg	2,800	2,800		<0.0119																	
Methylene Chloride	75-09-2	mg/kg	3,300	3,300		<0.0119																	
Methyl-tert-butyl-ether	1634-04-4	mg/kg	5,700	8,900		<0.0238										<0.0254	<0.0248	<0.0246					
Naphthalene n-Propylbenzene	91-20-3 103-65-1	mg/kg mg/kg	450 260	560 260		<0.0119 <0.0119																	
o-Xylene	95-47-6	mg/kg	NS NS	NS NS		<0.0119										<0.0127	<0.0124	<0.0123					
sec-Butylbenzene	135-98-8	mg/kg	140	140		< 0.0119																	
Styrene	100-42-5	mg/kg	870	870		< 0.0119						-									-		
tert-Butylbenzene	98-06-6	mg/kg	180	180		<0.0119																	
Tetrachloroethene	127-18-4	mg/kg	170	170		<0.0119																	
Toluene	108-88-3	mg/kg	820 1,700	820 1,700		<0.0119										<0.0127	<0.0124	<0.0123					
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	156-60-5 10061-02-6	mg/kg mg/kg	NS NS	1,700 NS		<0.0119 <0.0119																	
Trichloroethene	79-01-6	mg/kg	51	17		<0.0117																	
Trichlorofluoromethane (Freon-11)	75-69-4	mg/kg	1,200	1,200		< 0.0119																	
Vinyl Acetate	108-05-4	mg/kg	2,700	620		<0.0238																	
Vinyl Chloride	75-01-4	mg/kg	50	280		<0.0119																	
SW 8260B										•						1							
1,1,1,2-Tetrachloroethane	630-20-6	mg/kg	240	680			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	71-55-6 79-34-5	mg/kg mg/kg	640 75	640 670			<0.121 <0.121	<0.123 <0.123	<0.107 <0.107		<0.116 <0.116	<0.121 <0.121	<0.125 <0.125	<0.135 <0.135	<0.125 <0.125				<0.126 <0.126	<0.118 <0.118	<0.106 <0.106	<0.141 <0.141	<0.141 <0.141
1,1,2-Trichlorethane	79-00-5	mg/kg	140	1,200			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
1,1-Dichloroethane	75-34-3	mg/kg	420	1,700			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
1,1-Dichloroethene	75-35-4	mg/kg	1,200	360			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
1,1-Dichloropropene	563-58-6	mg/kg	NS	NS			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
1,2,3-Trichlorobenzene	87-61-6	mg/kg	NS 0.0	NS 10			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	96-18-4	mg/kg	3.8	19			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
1,2,4-Trichlorobenzene 1,2,4-Trimethyl-benzene	120-82-1 95-63-6	mg/kg mg/kg	400 220	400 220			<0.121 <0.121	<0.123 <0.123	<0.107 <0.107		<0.116 <0.116	<0.121 <0.121	<0.125 0.873	<0.135 <0.135	<0.125 <0.125				<0.126 <0.126	<0.118 <0.118	<0.106 <0.106	<0.141 <0.141	<0.141 0.341
1,2-Dibromo-3-chloropropane	96-12-8	mg/kg	1.7	15			<0.121	<0.123	<0.107		<0.116	<0.121	<0.249	<0.133	<0.125				<0.126	<0.116	<0.108	<0.141	<0.282
1,2-Dibromoethane	106-93-4	mg/kg	4.4	38			<0.121	<0.123	<0.107		< 0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
1,2-Dichlorobenzene	95-50-1	mg/kg	380	380			<0.121	< 0.123	<0.107		< 0.116	<0.121	< 0.125	< 0.135	0.674				<0.126	< 0.118	< 0.106	< 0.141	< 0.141
1,2-Dichloroethane	107-06-2	mg/kg	56	480			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	< 0.135	< 0.125				<0.126	<0.118	<0.106	<0.141	<0.141
1,2-Dichloropropane	78-87-5	mg/kg	120	180			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
1,3,5-Trimethylbenzene	108-67-8	mg/kg	180	180			<0.121	<0.123	<0.107		<0.116	<0.121	0.701	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
1,3-Dichloropenzene 1,3-Dichloropropane	541-73-1 142-28-9	mg/kg	NS 1,500	NS 1,500			<0.121 <0.121	<0.123 <0.123	<0.107 <0.107		<0.116 <0.116	<0.121 <0.121	<0.125 <0.125	<0.135 <0.135	<0.125 <0.125				<0.126 <0.126	<0.118 <0.118	<0.106 <0.106	<0.141 <0.141	<0.141 <0.141
1,4-Dichloropene	106-46-7	mg/kg mg/kg	310	2,600			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125 0.249				<0.126	<0.118	<0.106	<0.141	<0.141
2,2-Dichloropropane	594-20-7	mg/kg	NS	2,600 NS			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
2-Butanone	78-93-3	mg/kg	28,000	28,000			<0.483	<0.492	<0.43		<0.465	<0.483	<0.498	<0.54	7.24				<0.503	<0.472	<0.426	<0.562	1.98
2-Chlorotoluene	95-49-8	mg/kg	NS NS	NS NS			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
2-Hexanone	591-78-6	mg/kg	NS	NS			<0.483	<0.492	<0.43		<0.465	<0.483	<0.498	<0.54	<0.498				<0.503	< 0.472	<0.426	<0.562	<0.563
4-Chlorotoluene	106-43-4	mg/kg	NS	NS			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
4-Isopropyltoluene	99-87-6	mg/kg	160	160			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	0.32				<0.126	<0.118	<0.106	<0.141	0.181
4-Methyl-2-pentanone	108-10-1	mg/kg	3,400 110,000	3,400			<0.483	<0.492	<0.43		<0.465	<0.483	<0.498	<0.54	<0.498				<0.503	<0.472 <1.18	<0.426	<0.562	<0.563
Acetone	67-64-1	mg/kg	110,000	110,000			<1.21	<1.23	<1.07		<1.16	<1.21	<1.25	<1.35	<1.25				<1.26	\1.18	<1.06	<1.41	<1.41

TABLE 1

SOIL SAMPLING SUMMARY (mg/kg)

					Station Name	HSB-1	HSB-10	HSB-11	HSB-12	HSB-13	HSB-13	HSB-15	HSB-16	HSB-17	HSB-18	HSB-2	HSB-3	HSB-4	HSB-5	HSB-6	HSB-7	HSB-8	HSB-9
			2014 VAP	2014 VAP	Depth	4 - 6 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 12 ft	10 - 12 ft	4 - 6 ft	2 - 4 ft	8 - 10 ft	4 - 6 ft	6 - 8 ft	4 - 5 ft	4 - 6 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	8 - 10 ft	6 - 8 ft
Acetonitrile	75-05-8	mg/kg	9,200	26,000			<0.966	<0.984	<0.859		<0.929	<0.967	<0.997	<1.08	<0.996				<1.01	<0.944	<0.851	<1.12	<1.13
Acrolein	107-02-8	mg/kg	1.6	5.5			<1.21	<1.23	<1.07		<1.16	<1.21	<1.25	<1.35	<1.25				<1.26	<1.18	<1.06	<1.41	3.23
Acrylonitrile	107-13-1	mg/kg	32	62			<0.483	<0.492	<0.43		<0.465	<0.483	<0.498	<0.54	<0.498				<0.503	<0.472	<0.426	<0.562	< 0.563
Allyl Chloride	107-05-1	mg/kg	19	64			<0.242	<0.246	<0.215		<0.232	<0.242	<0.249	<0.27	<0.249				<0.252	<0.236	<0.213	<0.281	<0.282
Benzene	71-43-2	mg/kg	140	1,200			<0.121	<0.123	<0.107		< 0.116	<0.121	<0.125	<0.135	< 0.125				<0.126	<0.118	<0.106	< 0.141	3.51
Bromobenzene	108-86-1	mg/kg	NS	NS			<0.121	<0.123	<0.107		< 0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	< 0.141
Bromochloromethane	74-97-5	mg/kg	NS	NS			<0.121	<0.123	<0.107		< 0.116	<0.121	<0.125	<0.135	< 0.125				<0.126	<0.118	<0.106	< 0.141	< 0.141
Bromodichloromethane	75-27-4	mg/kg	35	300			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
Bromoform	75-25-2	mg/kg	6,200	130,000			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
Butylbenzene	104-51-8	mg/kg	110	110			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	2.34				<0.126	<0.118	<0.106	<0.141	2.06
Carbon Disulfide	75-15-0	mg/kg	740	740			<0.483	<0.492	<0.43		<0.465	<0.483	<0.498	<0.54	<0.498				<0.503	< 0.472	<0.426	<0.562	< 0.563
Carbon Tetrachloride	56-23-5	mg/kg	79	460			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	< 0.125				<0.126	<0.118	<0.106	<0.141	< 0.141
Chlorobenzene	108-90-7	mg/kg	760	760			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
Chloroethane	75-00-3	mg/kg	2,100	2,100			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	< 0.141
Chloroform	67-66-3	mg/kg	38	320			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	<0.141
cis-1,2-Dichloroethene	156-59-2	mg/kg	2,400	2,400			<0.121	<0.123	<0.107		3.74	<0.121	5.24	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	< 0.141
cis-1,3-Dichloropropene	10061-01-5	mg/kg	NS	NS			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	< 0.135	< 0.125				<0.126	<0.118	<0.106	< 0.141	< 0.141
Dibromochloromethane (chlorodibromomethane)	124-48-1	mg/kg	84	770			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	< 0.135	< 0.125				<0.126	<0.118	<0.106	< 0.141	< 0.141
Dichlorodifluoromethane (Freon-12)	75-71-8	mg/kg	850	850			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	< 0.135	< 0.125				<0.126	<0.118	<0.106	< 0.141	< 0.141
Ethylbenzene	100-41-4	mg/kg	480	480			<0.121	<0.123	<0.107		<0.116	<0.121	0.13	< 0.135	1.65				<0.126	<0.118	<0.106	< 0.141	1.08
Hexachloro-1,3-butadiene	87-68-3	mg/kg	630	1,400			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	< 0.135	< 0.125				<0.126	<0.118	<0.106	< 0.141	< 0.141
Hexane	110-54-3	mg/kg	140	140			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	< 0.135	2.42				< 0.134	<0.118	<0.106	< 0.141	2.5
Isopropylbenzene	98-82-8	mg/kg	270	270			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	< 0.135	0.456				<0.126	<0.118	<0.106	< 0.141	0.892
m,p-Xylenes	179601-23-1	mg/kg	NS	NS			<0.242	<0.246	<0.215		<0.232	<0.242	0.593	< 0.27	<0.249				<0.252	<0.236	<0.213	<0.281	0.463
Methyl Bromide	74-83-9	mg/kg	82	550			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	< 0.141
Methyl Chloride	74-87-3	mg/kg	1,300	1,300			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	< 0.141
Methyl lodide	74-88-4	mg/kg	NS	NS			<0.242	<0.246	<0.215		<0.232	<0.242	<0.249	< 0.27	<0.249				<0.252	<0.236	<0.213	<0.281	<0.282
Methylene Bromide	74-95-3	mg/kg	2,800	2,800			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	< 0.135	< 0.125				<0.126	<0.118	<0.106	< 0.141	< 0.141
Methylene Chloride	75-09-2	mg/kg	3,300	3,300			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	< 0.135	< 0.125				<0.126	<0.118	<0.106	< 0.141	< 0.141
Methyl-tert-butyl-ether	1634-04-4	mg/kg	5,700	8,900			<0.242	<0.246	<0.215		< 0.232	<0.242	<0.249	< 0.27	< 0.249				< 0.252	< 0.236	< 0.213	<0.281	<0.282
Naphthalene	91-20-3	mg/kg	450	560			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	8.69				<0.126	<0.118	<0.106	<0.141	1.36
n-Propylbenzene	103-65-1	mg/kg	260	260			<0.121	<0.123	<0.107		<0.116	<0.121	<0.125	<0.135	2.35				<0.126	<0.118	<0.106	<0.141	4.18
o-Xylene	95-47-6	mg/kg	NS	NS			<0.121	<0.123	<0.107		<0.116	<0.121	0.703	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	< 0.141
sec-Butylbenzene	135-98-8	mg/kg	140	140			<0.121	<0.123	<0.107		<0.116	<0.121	0.145	<0.135	0.903				<0.126	<0.118	<0.106	<0.141	0.9
Styrene	100-42-5	mg/kg	870	870			<0.121	<0.123	<0.107		< 0.116	<0.121	<0.125	<0.135	<0.125				<0.126	<0.118	<0.106	<0.141	< 0.141
tert-Butylbenzene	98-06-6	mg/kg	180	180			<0.121	< 0.123	<0.107		< 0.116	<0.121	< 0.125	< 0.135	< 0.125				< 0.126	<0.118	<0.106	< 0.141	< 0.141
Tetrachloroethene	127-18-4	mg/kg	170	170			<0.121	< 0.123	<0.107		0.361	<0.121	0.195	< 0.135	< 0.125				< 0.126	<0.118	<0.106	< 0.141	< 0.141
Toluene	108-88-3	mg/kg	820	820			<0.121	<0.123	<0.107		<0.116	<0.121	0.505	< 0.135	<0.125				<0.126	<0.118	<0.106	< 0.141	< 0.141
trans-1,2-Dichloroethene	156-60-5	mg/kg	1,700	1,700			<0.121	< 0.123	< 0.107		< 0.116	< 0.121	0.125	< 0.135	< 0.125				<0.126	<0.118	<0.106	< 0.141	< 0.141
trans-1,3-Dichloropropene	10061-02-6	mg/kg	NS	NS			<0.121	< 0.123	< 0.107		< 0.116	< 0.121	< 0.125	< 0.135	< 0.125				<0.126	<0.118	<0.106	< 0.141	< 0.141
Trichloroethene	79-01-6	mg/kg	51	17		-	< 0.121	<0.123	< 0.107		123	< 0.121	14.4	< 0.135	< 0.125				<0.126	<0.118	<0.106	< 0.141	< 0.141
Trichlorofluoromethane (Freon-11)	75-69-4	mg/kg	1,200	1,200			<0.121	< 0.123	<0.107		< 0.116	<0.121	< 0.125	< 0.135	< 0.125				<0.126	<0.118	<0.106	<0.141	< 0.141
Vinyl Acetate	108-05-4	mg/kg	2,700	620			< 0.242	<0.246	< 0.215		< 0.232	<0.242	< 0.249	< 0.27	< 0.249				< 0.252	< 0.236	< 0.213	<0.281	<0.282
Vinyl Chloride	75-01-4	mg/kg	50	280			< 0.121	< 0.123	< 0.107		< 0.116	< 0.121	< 0.125	< 0.135	< 0.125				< 0.126	< 0.118	< 0.106	<0.141	< 0.141

Cidars standard
No Standard d
Exceeds Stando
Result is below

ard was utilized due to no VAP standard developed for the chemical oc concern. developed for the chemical of concern.

dard/Action Level.

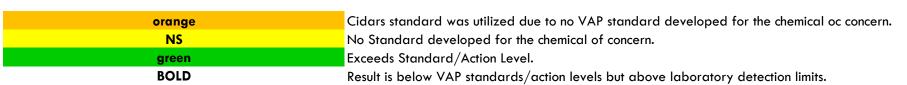
Result is below VAP standards/action levels but above laboratory detection limits.

TABLE 2

GROUNDWATER SAMPLING SUMMARY (ug/L)

				Crafter Nieur	HTMW-1	HTMW-1	HTMW-2	HTMW-3	HTMW-4	HTMW-5	HTMW-6
			2014 VAP	Station Name Date	6/11/2015	6/11/2015	6/11/2015	6/11/2015	6/12/2015	6/12/2015	6/11/2015
-	CAS		Generic	Date	, , , , , , , , , , , , , , , , , , ,	, ,	, , , , , , , , , , , , , , , , , , ,	, ,	<i>' '</i>	, ,	, ,
Parameters	Number	Units	Unrestricted	Sample	COT235:	COT235:	COT235:	COT235:	COT235:	COT235:	COT235:
			Potable Use	ID	HTMW-1:	HTMW-1:	HTMW-2:	HTMW-3:	HTMW-4:	HTMW-5:	HTMW-6:
			Standard		G061115	G061115A	G061115	G061115	G061215	G061215	G061215
EPA 8270 by SIM LVE											
2-Methylnaphthalene	91-57-6	υg/l	27		<1	<1	<1	<1	<1	3	<1
Acenaphthene	83-32-9	υg/l	400		<1	<1	<1	<1	<1	<1	<1
Acenaphthylene	208-96-8	υg/l	390		<1	<1	<1	<1	<1	<1	<1
Anthracene	120-12-7	υg/l	1,300		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	56-55-3	υg/l	0.92		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	50-32-8	υg/l	0.2		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)fluoranthene	205-99-2	υg/l	0.92		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	191-24-2	υg/l	470		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	207-08-9	υg/l	9.2		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	218-01-9	υg/l	92		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a,h)anthracene	53-70-3	υg/l	0.092		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	206-44-0	υg/l	630		<1	<1	<1	<1	<1	<1	<1
Fluorene	86-73-7	υg/l	220		<1	<1	<1	<1	<1	<1	<1
Indeno(1,2,3-cd)pyrene	193-39-5	υg/l	0.92		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Naphthalene	91-20-3	υg/l	1.4		<1	<1	<1	<1	<1	1.2	<1
Phenanthrene	85-01-8	υg/l	3,400		<1	<1	<1	<1	<1	<1	<1
Pyrene	129-00-0	υg/l	87		<1	<1	<1	<1	<1	<1	<1
SW 6010B											
Arsenic	7440-38-2	υg/l	10		9.9	<5	32	5.3	27	<5	27
Barium	7440-39-3	υg/l	2,000		107	<5	234	165	257	123	1,420
Cadmium	7440-43-9	υg/l	5		<2	<2	<2	<2	<2	<2	<2
Chromium	7440-47-3	υg/l	100		<5	<5	1 <i>7</i>	5.9	21	5.6	5.8
Lead	7439-92-1	υg/l	15		<5	<5	7.7	<5	9	<5	5.4
Selenium	7782-49-2	υg/l	50		<10	<10	<10	<10	<10	<10	<10
Silver	7440-22-4	υg/l	<i>7</i> 1		<2	<2	<2	<2	<2	<2	<2
SW 7470A											
Mercury	7439-97-6	ug/l	2		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
SW 8260B											
1,1,1,2-Tetrachloroethane	630-20-6	υg/l	5		<5	<5	<5	<5	<5	<5	<5
1,1,1-Trichloroethane	71-55-6	ug/I	200		<5	<5	<5	<5	<5	<5	<5
1,1,2,2-Tetrachloroethane	79-34-5	ug/l	0.66		<5	<5	<5	<5	<5	<5	<5
1,1,2-Trichlorethane	79-00-5	ug/l	5		<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethane	75-34-3	υg/I	24		<5	<5	<5	<5	<5	<5	<5
1,1-Dichloroethene	75-35-4	υg/I	7		<5	<5	<5	<5	<5	<5	<5
1,1-Dichloropropene	563-58-6	ug/I	NS		<5	<5	<5	<5	<5	<5	<5

TABLE 2


GROUNDWATER SAMPLING SUMMARY (ug/L)

HTMW-1 HTMW-1 HTMW-2 HTMW-3 HTMW-4 HTMW-5 HTMW-6 Station Name 2014 VAP 6/11/2015 6/12/2015 6/11/2015 Date 6/11/2015 6/11/2015 6/11/2015 6/12/2015 Generic CAS **Parameters** Units Unrestricted COT235: COT235: COT235: COT235: COT235: COT235: COT235: Number Sample Potable Use HTMW-1: HTMW-1: HTMW-2: HTMW-3: HTMW-4: HTMW-5: HTMW-6: ID Standard G061115 G061115A G061115 G061115 G061215 G061215 G061215 87-61-6 1,2,3-Trichlorobenzene NS <5 <5 <5 <5 <5 <5 <5 υg/l 96-18-4 <5 <5 <5 1,2,3-Trichloropropane υg/l 0.02 <5 <5 <5 <5 1,2,4-Trichlorobenzene 120-82-1 υg/l 70 <5 <5 <5 <5 <5 <5 <5 95-63-6 15 <5 <5 <5 <5 <5 1,2,4-Trimethylbenzene υg/l < 5 <5 96-12-8 <10 <10 <10 <10 <10 <10 1,2-Dibromo-3-chloropropane 0.2 <10 υg/l 106-93-4 0.05 <5 <5 <5 <5 <5 <5 <5 1,2-Dibromoethane υg/l 1,2-Dichlorobenzene 95-50-1 600 <5 <5 <5 <5 <5 <5 <5 υg/l 107-06-2 5 <5 <5 <5 <5 <5 <5 1,2-Dichloroethane υg/l <5 1.2-Dichloropropane 78-87-5 5 <5 <5 <5 <5 <5 <5 <5 υg/l <5 <5 1,3,5-Trimethylbenzene 108-67-8 υg/l 87 <5 <5 <5 <5 <5 1,3-Dichlorobenzene 541-73-1 NS <5 <5 <5 <5 <5 <5 <5 υg/l 142-28-9 290 <5 <5 <5 <5 <5 <5 <5 1,3-Dichloropropane υg/l 106-46-7 <5 <5 <5 1,4-Dichlorobenzene υq/I 75 <5 <5 <5 <5 594-20-7 υg/l NS <5 <5 <5 <5 <5 2,2-Dichloropropane <5 <5 <20 < 20 <20 78-93-3 ug/l 4900 <20 < 20 < 20 <20 2-Butanone 2-Chlorotoluene 95-49-8 υg/l NS <5 <5 <5 <5 <5 <5 <5 <20 <20 <20 2-Hexanone 591-78-6 υg/l NS <20 < 20 <20 <20 106-43-4 NS <5 <5 <5 <5 <5 <5 4-Chlorotoluene υg/l <5 <5 4-Isopropyltoluene 99-87-6 υg/l 170 <5 <5 <5 <5 <5 <5 4-Methyl-2-pentanone 108-10-1 υg/l 1000 <20 < 20 <20 <20 <20 <20 <20 <20 <20 < 20 <20 67-64-1 υg/l 12000 <20 < 20 < 20 Acetone Acetonitrile 75-05-8 ug/l 130 <40 <40 <40 <40 <40 <40 <40 <20 <20 <20 107-02-8 0.041 <20 < 20 <20 < 20 Acrolein υg/l 107-13-1 0.45 <20 <20 <20 <20 <20 <20 <20 Acrylonitrile ug/l Allyl Chloride 107-05-1 υg/l 2.1 <5 <5 <5 <5 <5 <5 <5 71-43-2 <5 <5 <5 <5 <5 <5 6.87 Benzene ug/l 5 <5 108-86-1 NS <5 <5 <5 <5 <5 υg/l <5 Bromobenzene Bromochloromethane 74-97-5 υg/l NS <5 <5 <5 <5 <5 <5 <5 75-27-4 80 <5 <5 <5 <5 <5 <5 <5 Bromodichloromethane υg/l 75-25-2 80 <5 <5 <5 <5 <5 <5 <5 **Bromoform** υg/l <5 <5 104-51-8 <5 <5 <5 <5 Butylbenzene υg/l 780 <5 *75*-1*5*-0 720 <20 <20 <20 <20 <20 <20 <20 Carbon Disulfide ug/l Carbon Tetrachloride 56-23-5 5 <5 <5 <5 <5 <5 <5 <5 υg/l 108-90-7 ug/l 100 <5 <5 <5 <5 <5 <5 <5 Chlorobenzene 75-00-3 21000 Chloroethane υg/l <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 Chloroform 67-66-3 80 <5 <5 ug/l cis-1,2-Dichloroethene 156-59-2 ug/l 5 <5 <5 <5 < 5 <5 <5 <5

TABLE 2

GROUNDWATER SAMPLING SUMMARY (ug/L)

			2014 VAP	Station Name	HTMW-1	HTMW-1	HTMW-2	HTMW-3	HTMW-4	HTMW-5	HTMW-6
			Generic	Date	6/11/2015	6/11/2015	6/11/2015	6/11/2015	6/12/2015	6/12/2015	6/11/2015
Parameters	CAS	Units	Unrestricted		COT235:						
	Number		Potable Use	Sample	HTMW-1:	HTMW-1:	HTMW-2:	HTMW-3:	HTMW-4:	HTMW-5:	HTMW-6:
			Standard	ID	G061115	G061115A	G061115	G061115	G061215	G061215	G061215
cis-1,3-Dichloropropene	10061-01-5	υg/l	5		<5	<5	<5	<5	<5	<5	<5
Dibromochloromethane (chlorodibromomethane)	124-48-1	ug/l	80		<5	<5	<5	<5	<5	<5	<5
Dichlorodifluoromethane (Freon-12)	75-71-8	ug/l	2800		<5	<5	<5	<5	<5	<5	<5
Ethylbenzene	100-41-4	ug/l	700		<5	<5	<5	<5	<5	<5	<5
Hexachloro-1,3-butadiene	87-68-3	ug/l	5		<5	<5	<5	<5	<5	<5	<5
Hexane	110-54-3	ug/l	250		<5	<5	<5	<5	<5	<5	<5
Isopropylbenzene	98-82-8	ug/l	5		<5	<5	<5	<5	<5	<5	<5
m,p-Xylenes	179601-23-1	ug/l	5		<10	<10	<10	<10	13.3	11.9	<10
Methyl Bromide	74-83-9	ug/l	7		<5	<5	<5	<5	<5	<5	<5
Methyl Chloride	74-87-3	ug/l	190		<5	<5	<5	<5	<5	<5	<5
Methyl lodide	74-88-4	ug/l	5		<10	<10	<10	<10	<10	<10	<10
Methylene Bromide	74-95-3	ug/l	150		<5	<5	<5	<5	<5	<5	<5
Methylene Chloride	75-09-2	ug/l	5		<5	<5	<5	<5	<5	<5	<5
Methyl-tert-butyl-ether	1634-04-4	ug/l	120		<10	<10	26.6	58	<10	<10	18.5
Naphthalene	91-20-3	ug/l	1.4		<5	<5	<5	<5	<5	<5	<5
n-Propylbenzene	103-65-1	ug/l	5		<5	<5	<5	<5	<5	<5	<5
o-Xylene	95-47-6	ug/l	5		<5	<5	<5	<5	<5	<5	<5
sec-Butylbenzene	135-98-8	ug/l	5		<5	<5	<5	<5	<5	<5	<5
Styrene	100-42-5	ug/l	100		<5	<5	<5	<5	<5	<5	<5
tert-Butylbenzene	98-06-6	ug/l	5		<5	<5	<5	<5	<5	<5	<5
Tetrachloroethene	127-18-4	ug/l	5		<5	<5	<5	<5	<5	<5	<5
Toluene	108-88-3	ug/l	1000		<5	<5	<5	<5	<5	<5	<5
trans-1,2-Dichloroethene	156-60-5	ug/l	100		<5	<5	<5	<5	<5	<5	<5
trans-1,3-Dichloropropene	10061-02-6	ug/l	NS		<5	<5	<5	<5	<5	<5	<5
Trichloroethene	79-01-6	ug/l	5		<5	<5	<5	<5	<5	<5	<5
Trichlorofluoromethane (Freon-11)	75-69-4	ug/l	1100		<5	<5	<5	<5	<5	<5	<5
Vinyl Acetate	108-05-4	υg/l	410		<10	<10	<10	<10	<10	<10	<10
Vinyl Chloride	75-01-4	υg/l	2		<1	<1	<1	<1	<1	<1	<1

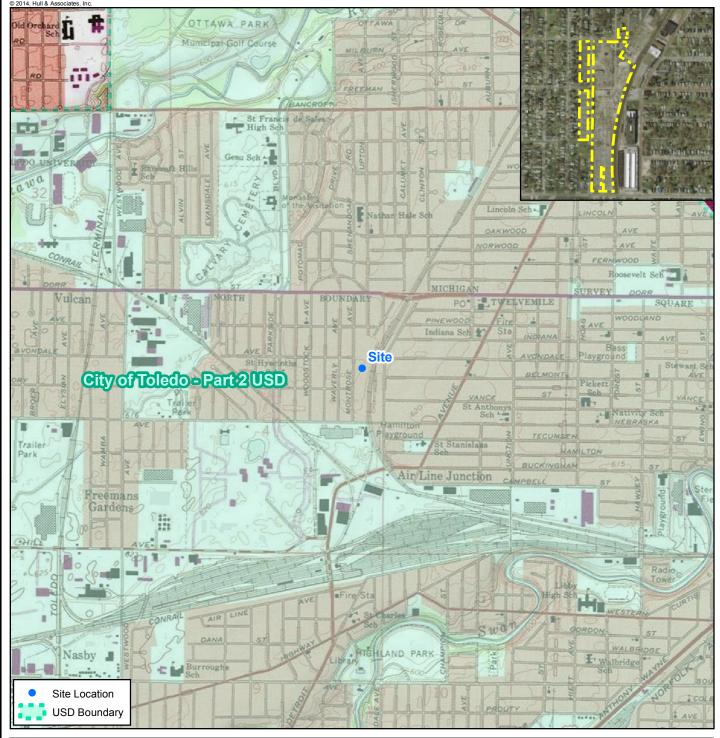
CITY OF TOLEDO FORMER CHAMPION SPARK PLUG PROPERTY 900 UPTON AVE, TOLEDO, LUCAS COUNTY, OHIO

TABLE 3

SOIL-GAS (AIR) SAMPLING SUMMARY (ug/m3)

		Units		Station Name	HSG-1	HSG-2
			2014 VAP	Date	6/24/2015	6/24/2015
Parameters	CAS Number		Generic Indoor Air Numerical Standard (commercial/ industrial land use category)	Sample ID	COT235: HSG-1: A062415	COT235: HSG-2: A062415
TO15 MSV AIR						
Benzene	71-43-2	ug/m3	16		10.3	9
Ethylbenzene	100-41-4	ug/m3	49		2.7	5.6
Methyl-tert-butyl-ether	1634-04-4	ug/m3	470		5	<1.2
Toluene	108-88-3	ug/m3	22,000		13.8	23.5
m,p-Xylenes	179601-23-1	ug/m3	NS		9.5	17.3
o-Xylene	95-47-6	ug/m3	NS		4.4	9.7

NS


No Standard developed for the chemical of concern.

BOLD

Result is below VAP standards/action levels but above laboratory detection limits.

FIGURES

HULL & ASSOCIATES, INC. TOLEDO, OHIO

DISCLAIMER

Hull & Associates, Inc. (Hull) has furnished this map to the company identified in the title block (Client) for its sole and exclusive use as a preliminary planning and screening tool and field verification is necessary to confirm these data. This map is reproduced from geospatial information compiled from third-party sources which may change over time. Areas depicted by the map are approximate and may not be accurate to mapping, surveying or engineering standards. Hull makes no representation or guarantee as to the content, accuracy, timeliness or completeness of any information or spatial location depicted on this map. This map is provided without warranty of any kind, including but not limited to, the implied warranties of merchantability or fitness for a particular purpose. In no event will Hull, its owners, officers, employees or agents, be liable for damages of any kind arising out of the use of this map by Client or any other party.

500 1.000 2.000

Quad: Toledo

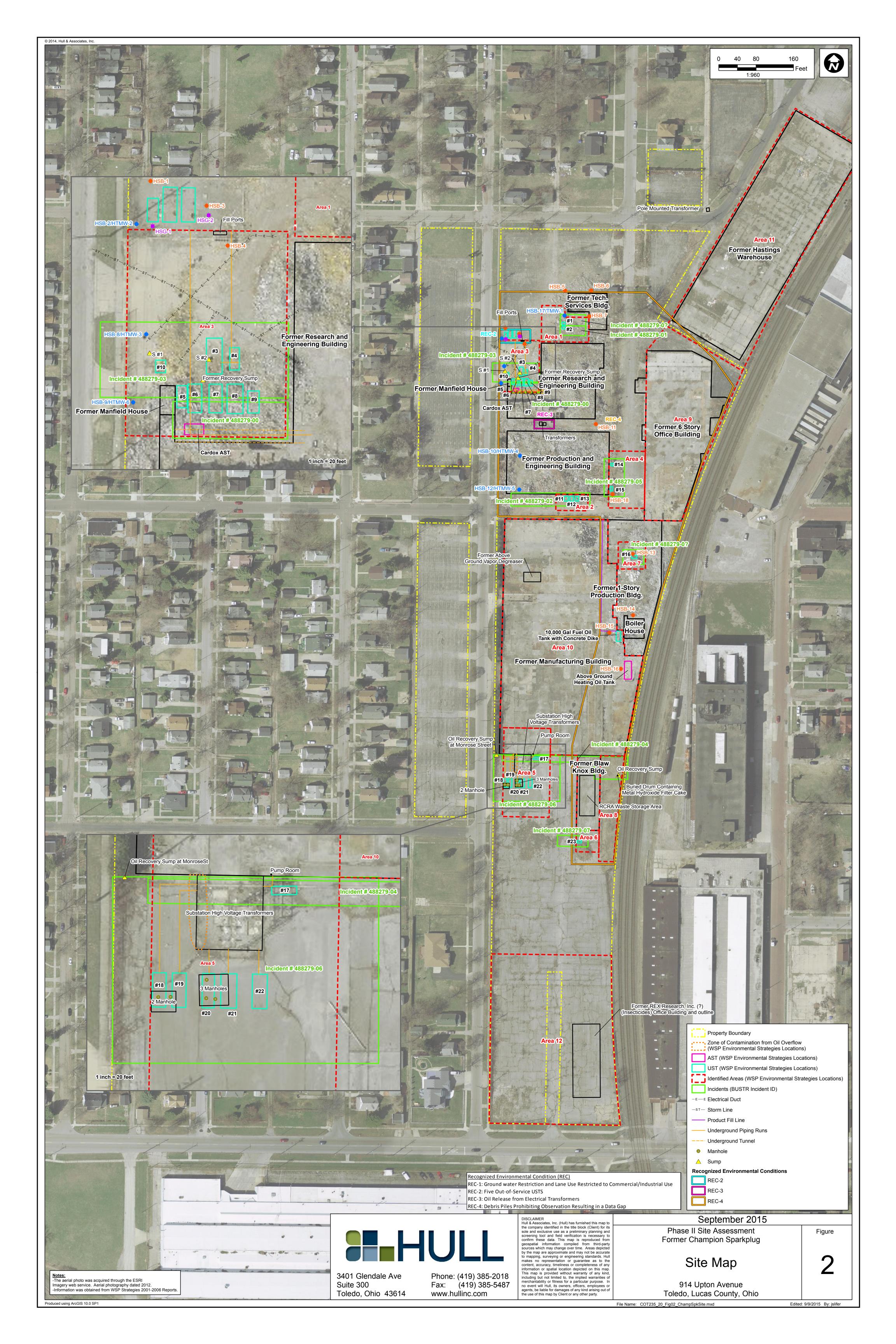
Source: The topographic map was acquired through the USGS Topographic Map web service.

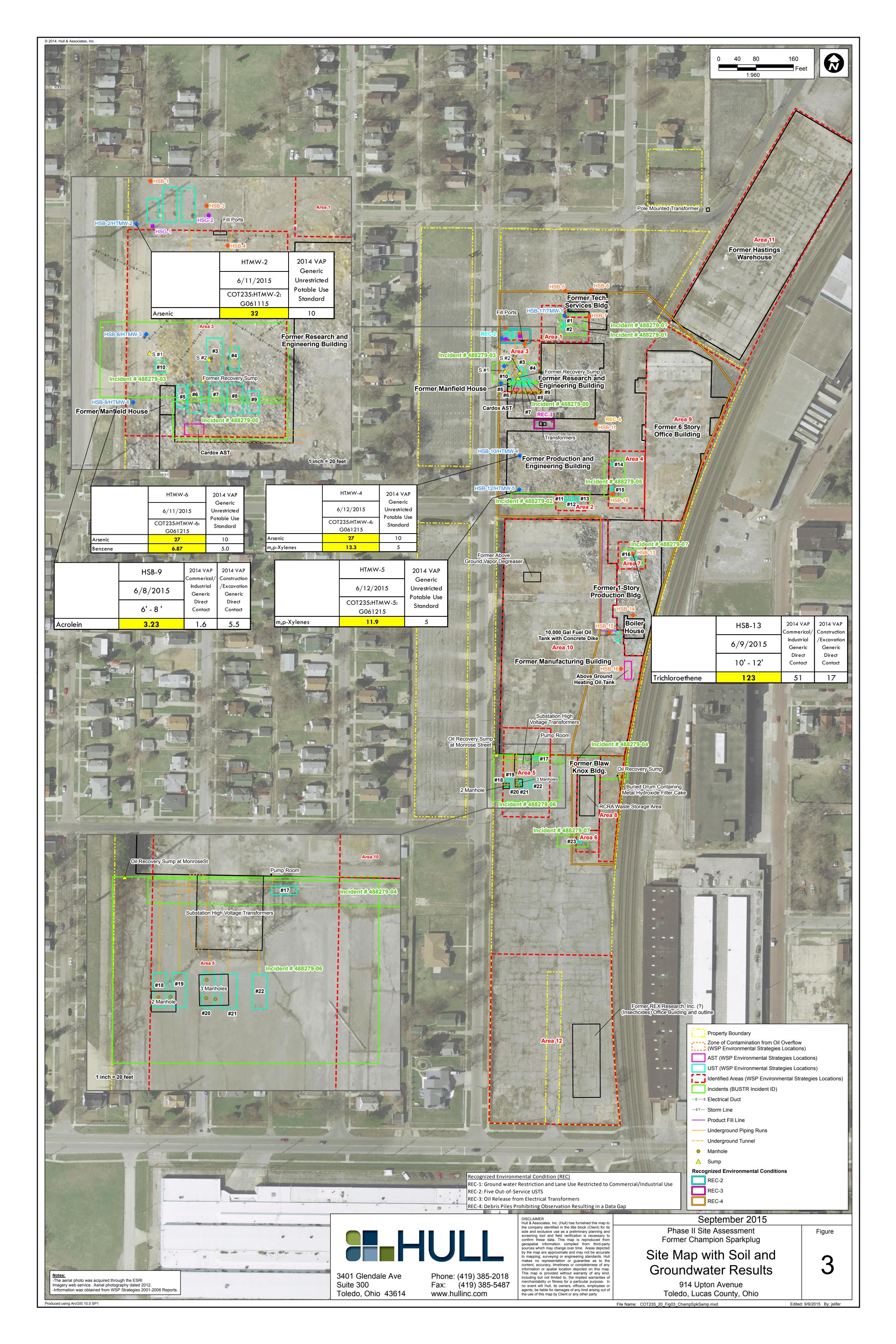
The aerial photo in the inset was acquired through the ESRI Imagery web service. Aerial photography dated 2012.

3401 Glendale Ave Suite 300 Toledo, Ohio 43614 Phone: (419) 385-2018 (419) 385-5487 www.hullinc.com

Site Location Map

Phase II Site Assessment


Former Champion Sparkplug


914 Upton Avenue Toledo, Lucas County, Ohio Date:

September 2015

COT235_20_Fig01_ChampSpkSLM.mxd Edited: 9/9/2015 By: jslifer

Figure

APPENDIX A

Project Personnel Resumes

J MATTHEW BEIL, CPG | Project Hydrogeologist

EDUCATION:

 Bachelor of Science, Geology, The University of Toledo, 2002

TRAINING:

- OSHA 1910.120, 40-Hour Health and Safety Training Course and Annual 8- Hour OSHA Refresher
- HeartSaver First Aid and CPR/AED
- Smith Systems Defensive Driving

CERTIFICATIONS:

 Certified Professional Geologist (AIPG) Matt has extensive experience in the environmental field, including groundwater sampling, soil sampling, explosive gas monitoring, installation of gas probes, vents, monitoring wells and piezometers. He also has been involved in construction observation and cost estimating for large industrial facilities. He completes comprehensive site history investigations, site walkovers, regulatory agency file reviews, and Phase I/II site assessments. Additionally, Matt has served as a field representative on construction projects that typically included demolition, excavation and placement of backfill, contract compliance assurance, and documentation for permanent records.

Matt's expertise includes:

Remedial Activities

- Conducts free product recovery, UST removal oversight, and associated closure sampling including field screening of excavated soils for presence of hydrocarbons with a PID.
- Performs contractor observation and documentation for site preparation and remedial activities such as chemical oxidation injection for remediation of groundwater.
- Performs cost estimating.
- Has assisted and performed asbestos surveys on a variety of facilties.

Environmental Assessment

- Serves as lead investigator and author for multiple Phase I and Phase II reports pursuant to ASTM and Ohio Voluntary Action Program (VAP) standards at residential, commercial, industrial, military, and agricultural sites in multiple states.
- Serves as staff hydrogeologist for Phase II ESAs. Responsible for soil boring and monitoring well installation; air, soil, water, and leachate field sampling and monitoring activities; explosive gas monitoring; data analysis and evaluation; and report preparation. Also develops project scopes and cost estimates.
- Decommissions monitoring and production wells to obtain compliance.
- Provides general GIS mapping support for many projects including Phase I and Phase II ESAs.

Geotechnical Investigations

 Conducts geotechnical drilling and sampling to obtain subsurface geologic information and to determine relevant engineering properties of site soils.

Selected project experience:

- Major Rehabilitation and Widening of Interstate IR 75 | Red Flag Study Geotechnical Investigation | Lucas and Wood Counties, Ohio
- Multi-million Dollar Remediation Project | Contractor Observation and Documentation | Confidential Site, Northwest Ohio

EDUCATION:

 Bachelor of Environmental Science, Bowling Green State University, 1997

TRAINING:

- OSHA 40-Hour Health and Safety Training (2010) and Annual Refreshers
- American Heart Association –
 Heart Saver First Aid (2012)
- BP Safety ATW/PTW Trained, Re-fresher (2010)
- Trenching and Excavation Workshop (2005)
- Radiation Safety and Nuclear Densitometer Operator Certification (2006)

James Carlson has more than ten years of experience in the environmental field, specializing in soil sampling and groundwater monitoring. He has worked on numerous projects overseeing petroleum underground storage tank closures, interim response action excavations, tier I and tier II evaluations, BIOSCREEN and Ohio Bureau of Underground Storage Tank (BUSTR)-SCREEN projects, and geotechnical sampling for agricultural projects across Ohio and Indiana. James also has considerable experience in contractor oversight for demolition, construction, and remediation projects.

James' expertise includes:

Environmental Assessment and Remediation

- Conducts geotechnical soil sampling for engineering and other projects in the states of Ohio and Indiana by gathering soil, water, and air samples, analyzing and compiling data, and reporting findings.
- Oversees petroleum underground storage tank closures/excavations; also operates petroleum remediation systems. Responsibilities include sampling, maintenance, reporting, compliance measures, and interaction with property owners and local state agencies.
- Conducts Tier I & II evaluations for the state of Ohio; collects samples using a drill and geoprobe rigs and sets groundwater monitoring wells across Ohio.

Regulatory Compliance

- Assists with the management of environmental monitoring programs to comply with federal, state, and local regulations.
- Assumes leadership in evaluation and interpreting laboratory and analytical data from a variety of media including soil and sediments, surface water, and groundwater.
- Performs groundwater modeling and applies stastistical techniques to assess potential impacts in groundwater quality at petroleum and other facilities.
- Develops reports for submission to regulatory agencies, private industries, and municipalities.

Selected project experience:

- Ohio Turnpike (SP-1) Demolition and Environmental Oversight Through Construction of New Plaza | West Unity, Ohio
- Ohio Turnpike (SP-2) Demolition and Environmental Oversight | Swanton,
 Ohio
- Ohio Turnpike (Swanton Maintenance Facility) Environmental and Excavation Activities Oversight | Swanton, Ohio
- Ohio Department of Transportation (Northwood Outpost) Geotechnical Drilling for Wind Turbine Project | Northwood, Ohio

APPENDIX B

Work Plan

HULL & ASSOCIATES, INC. TOLEDO, OHIO

WORK PLAN FOR A PHASE II PROPERTY ASSESSMENT

FOR THE:

FORMER CHAMPION SPARK PLUG PROPERTY
900 UPTON AVENUE
TOLEDO, OHIO

PREPARED FOR:

CITY OF TOLEDO-DIVISION OF ENVIRONMENTAL SERVICES
348 SOUTH ERIE STREET
TOLEDO, OHIO 43604

PREPARED BY:

HULL & ASSOCIATES, INC. 3401 GLENDALE AVENUE SUITE 300 TOLEDO, OHIO 43614

MAY 2015

TABLE OF CONTENTS

			F	PAGE
1.0	INTROD	UCTIO	N	1
	<u>1.1</u>	Genero	ıl	1
			y-specific Geology/Hydrogeology	
2.0	DATA G	QUALITY	OBJECTIVES	3
	<u>2.1</u>	Problen	n Statement	3
		2.1.1	Project Team	3
		2.1.2	Conceptual Site Model	
	2.2	Decision	ı Identification	6
			the Decision	
			oundaries	
		-	1 Rule	
			1 Error Limits	
			Optimization	
			Assurance Objectives for Measurement	
			<u>Considerations</u>	
3.0	SOIL AS	SESSMI	ENT	9
	0.1	.		•
			ves	
	<u>3.2</u>	SOII BOI	ing and Subsurface Investigation	9
		3.2.1	Sample Locations and Frequency	9
		3.2.2	Sample Designation	
		3.2.3	Sampling Equipment and Procedures	
		3.2.4	Headspace Screening of Soil Samples	
		3.2.5	Sample Handling-Chemical Analyses	10
			3.2.5.1 Sample Preservation	11
			3.2.5.2 Special Handling Considerations	11
		3.2.6	Chain-of-Custody	12
			3.2.6.1 Sample Labels	12
			3.2.6.2 Sample Seal	
			3.2.6.3 Field Logbook	
			3.2.6.4 Chain-of-Custody Record Sheet	
			3.2.6.5 Laboratory Logbook	
		3.2.7	Soil Classification and Field Descriptions	13
		3.2.8	Decontamination of Equipment	
		3.2.9	Decommissioning of Soil Borings	
			Disposal of Cuttings and Unused Soil Samples	
4.0				
4.0	SUIL GA	42 A22F	SSMENT	15

i

TABLE OF CONTENTS (CONT.)

				PAGE
	4.1	Object	tives	15
	<u>4.1</u> <u>4.2</u>		apor Investigation	
		4.2.1	Sample Locations and Frequency	15
		4.2.2	Sample Designation	
		4.2.3	Sample Handling-Chemical Analyses	
		4.2.4	Chain-of-Custody	
			4.2.4.1 Sample Labels	16
			4.2.4.2 Sample Seal	17
			4.2.4.3 Field Logbook	1 <i>7</i>
			4.2.4.4 Chain-of-Custody Record Sheet	1 <i>7</i>
			4.2.4.5 Laboratory Logbook	17
		4.2.5	Decontamination of Equipment	17
5.0	GROU	JNDWAT	TER ASSESSMENT	18
	<u>5.1</u>	Object	tives	18
	5.2		oring/One-inch Temporary Monitoring Well Construction and Installation	
			dures	18
		5.2.1	One-inch Temporary Monitoring Well Screen Depth	
		5.2.2	One-inch Temporary Monitoring Well Designation	
		5.2.3	Temporary One-inch Monitoring Well Installation, Equipment, and Procedu	res 18
			5.2.3.1 Direct Push Technology	
			5.2.3.2 Monitoring Well Construction Specifications	
			5.2.3.3 Temporary One-inch Monitoring Well Development	18
	<u>5.3</u>	Monito	oring Well Sampling	19
		5.3.1	Sample Locations and Frequency	
		5.3.2	Sample Designation	
		5.3.3	Sampling Equipment and Procedures	19
			5.3.3.1 Detection of Immiscible Layers	
			5.3.3.2 Water Level Measurements	
			5.3.3.3 Groundwater Purging	
			5.3.3.4 Sample Withdrawal	
			5.3.3.5 Slug/Bail Down Tests	21
		5.3.4	Sample Handling and Analysis	21
			5.3.4.1 Sample Preservation	
			5.3.4.2 Special Handling Considerations	
			5.3.4.3 Chain-of-Custody	22
			5.3.4.3.1 Sample Labels	
			5.3.4.3.2 Sample Seal	23

TABLE OF CONTENTS (CONT.)

		PAGE
	5.3.4.3.3 Field Logbook	
	5.3.4.3.4 Chain-of-Custody Record Sheet	
	5.3.4.3.5 Laboratory Logbook	23
6.0 ADDI	TIONAL ASSESSMENT	24
<u>6.1</u>	Utility Location	24
7.0 REFER	RENCES	25
	LIST OF TABLES	
Table 1	Soil Sampling Plan	
Table 2	Soil Gas Sampling Plan	
Table 3	Groundwater Sampling Plan	
	LIST OF FIGURES	
Figure 1	Property Location Map	
Figure 2	Property Plan and Proposed Sample Locations	
Figure 3	Preliminary Exposure Pathway – Conceptual Site Model	
	LIST OF APPENDICES	
Appendix A	OAC 3745-300-08 Generic Numerical Standards	

1.0 INTRODUCTION

1.1 General

This Work Plan has been prepared for the City of Toledo (Client) by Hull & Associates, Inc. (Hull) for field sampling at the Former Champion Spark Plug property to satisfy the Data Quality Objectives (DQOs) requirements under OAC 3745-300-07(C)(6). All work performed under this Work Plan is subject to the conditions listed in the February 18, 2013 QAPP update for the City of Toledo's Hazardous Substances and Petroleum Contaminated Sites 2012 Community-wide Coalition Assessment Grant. The property subject to this work plan is located at 900 Upton Avenue, Toledo, Lucas County, Ohio (Property) and is comprised of approximately 18 acres that is currently undeveloped. The location of the Property is shown on Figure 1.

1.2 Background

WSP Environmental Strategies, LLC (WSP) conducted a Phase II assessment between June 2001 and August 2006 under the Ohio Voluntary Action Program (Ohio VAP). Activities included installation of monitoring wells, collection of soil, groundwater, and soil vapor samples, and closure of two underground storage tanks (USTs). Various Chemicals of Concern (COCs) were analyzed across the twelve (12) identified areas from the Phase I. Results indicated that remedial activities were needed to address COCs in two identified areas: the South Manufacturing Bureau of Underground Storage Tank Regulations (BUSTR) Area (Area 5) and the South Manufacturing Area (Area 10). Soils were excavated in 2004 to remove polynuclear aromatic hydrocarbons (PAHs), with approximately 55 cubic yards removed from Area 5 and 22 cubic yards from Area 10. A No Further Action (NFA) letter was submitted on April 15, 2008. Ohio EPA issued a Covenant Not to Sue (CNS) with a groundwater use restriction and land use restriction to commercial/industrial use on November 17, 2008.

At the Request of the City of Toledo – Division of Environmental Services, Hull conducted a Phase I ESA at the Site in December 2015. The Phase I ESA identified the following Recognized Environmental Conditions (RECs):

IA/REC#	Description	COCs		
REC 1	CREC – 2008 CNS	No Additional Investigation		
REC 2	Suspected on-Property USTs	BTEX/MTBE, TPH-GRO		
REC 3	Release from Transformer(s)	Information Received from US EPA Indicating No		
		Further Action Required		
REC 4	Debris Piles – Data Gap	VOCs, PAHs, TPH-GRO, TPH-DRO, Metals		
REC 5	No Current Owner Interview -	Attempt to Interview Current Owner during the		
	Data Gap	Phase II		

1.3 Property-specific Geology/Hydrogeology

The Property is located in the City of Toledo, in the north central portion of Lucas County, Ohio, and lies on

the Lake Plain deposits of Central Lowland Physiographic Province. The county is situated on a lake plain

formed largely as the result of post-glacial events following the Wisconsinan glacial epoch. The lake plain

region is typified by relatively flat topography sloping regionally southeastward toward the Maumee River

and northeastward toward Lake Erie, with minor undulations scattered throughout the county.

The surface drainage is generally to the northeast toward Lake Erie. The main rivers draining the region

are the Ottawa River, Maumee River, and Swan Creek, a tributary of the Maumee River. There is no major

groundwater divide in Lucas County.

Groundwater resources can be obtained from semi-confined sand and gravel aguifers within the glacial till

and from limestone and dolomite of Silurian and Devonian age, which underlie the till. No public water

supply wells have been located by the ODNR within a 1/2-mile distance of the Property, but ODNR records

outside of this distance indicated that wells produce water from the carbonate bedrock. Bedrock at the Site

is present at approximately 490 feet USGS.

Ground-surface elevation at the Site is approximately 615 feet (USGS). The topography is generally flat

near the Property. Drainage from the Property appears to be toward the northwest toward the Ottawa

River. Note that much of the natural topographic expression of the region has been disturbed by

development.

Potentiometric surface maps in the WGS Phase II ESA from May 2005 indicates that the shallow groundwater

at the Site flows to the northwest on the northern two-thirds of the Site and to the southwest on the southern

one-third of the Site. Static water levels ranged from approximately 1.5 feet below ground surface to just

over 10 feet below ground surface.

HULL & ASSOCIATES, INC. TOLEDO, OHIO

MAY 2015 COT235.100.0157

2.0 DATA QUALITY OBJECTIVES

2.1 Problem Statement

The Property is currently undeveloped. Residential development is located adjacent west and north of the Site, while commercial/industrial use is present to the east and south. The objectives of the Phase II Property Assessment (Phase II PA) are to characterize the environmental conditions at the Property, due to the use of the property (demolition of structures) after the CNS was issued and, based on investigation findings, to identify the remediation needs and collect the necessary data to pursuant to ASTM E1903-11.

Data obtained from the Phase II PA will be evaluated in the context of VAP risk-based cleanup goals given assumptions of Property-specific pathway analyses. To the extent Phase II PA data exceed risk-based standards, additional delineation sampling may be required to more fully define the nature and extent of contamination.

2.1.1 Project Team

The proposed project team is presented below. The team members have been selected based on individual project experience related to the specific tasks required. A brief description of each individual's project responsibilities is provided below:

J Matthew Beil, Hull Project Manager (PM)

Mr. Beil will be the Hull Project Manager and oversee the implementation of the assessment activities and coordinate all work schedules/agendas with the Client. His responsibilities will also consist of the following:

- 1. administrate and supervise all phases of the project;
- determine that project objectives are met within financial and time constraints;
- 3. work with the Quality Assurance Officer (QAO) and field personnel to plan and conduct project operations, progress meetings, etc.; and
- 4. review reports and other work products prior to their issuance.

A designated Sample Team Leader and Health and Safety Officer for drilling and sampling activities will report to Mr. Beil, and will serve as Hull's on-site contact during drilling and sampling activities.

Michael T. Coonfare, Hull Senior Project Manager (SPM) - Certified Professional (CP)

Mr. Coonfare will be the Senior Project Manager and will review and oversee the completion of the Phase II Property Assessment.

Laboratory Director

The Laboratory Director will be primarily responsible for the overall operation of the laboratory including all samples analyzed and data reported. The Laboratory Director will also be responsible for initiating corrective action measures when analytical data do not meet the requirements of this plan or the laboratory's Quality Assurance Plan (QAP). The Client will maintain direct contact with the Laboratory.

Laboratory Project Manager

The Laboratory Project Manager will be the primary communications link between the laboratory and the Client. The Laboratory Project Manager will be responsible for relating any special needs of the field operations personnel to the laboratory. The Laboratory Project Manager will also provide the final review of all data packages before reporting results.

Laboratory QAO

The Laboratory QAO will be primarily responsible for implementing and monitoring compliance with the laboratory's QAP. The Laboratory QAO's duties will also include: conducting audits, reviewing all QC data, and reporting problems to the Laboratory Director for corrective action.

Site Safety Officer

A Site Safety Officer will be designated for the implementation of all fieldwork. The Site Safety Officer will ensure compliance with the health and safety plan (HASP) for the project. The purpose of the HASP is to define the health and safety considerations for on-site activities by Hull employees and subcontractors. The HASP is required by **OSHA 29 CFR 1910.120**. The basic requirements for the HASP of the project are delineated in the standard health and safety policies and procedures. All personnel on-site will be informed about the pertinent sections of the HASP. The Site Safety Officer assumes responsibility for providing leadership in safety and health matters for site operations by:

- 1. performing daily site-safety audits;
- communicating safety and health information to those working at the site;
- 3. communicating and coordinating safety practices with contractors;
- 4. conducting daily "tail-gate" safety discussions;
- 5. ensuring that emergency plans specific to the site have been established, discussed with personnel on-site, and are understood;
- 6. ensuring that communications equipment is readily available on-site;

- 7. checking that Hull employees, visitors and contractors read the HASP before entering or beginning work on the site;
- 8. ensuring that all minimum training and education requirements are met for on-site personnel;
- 9. advising or seeking advice from the Project Manager and safety and health consultant on issues that may require attention and/or correction; and
- ensuring that electrical work is performed safely, i.e., de-energize all circuits, if feasible, when doing electrical work. If de-energizing is not feasible, adherence to NFPA 70E requirements is required.

2.1.2 Conceptual Site Model

A Conceptual Site Model (CSM) forms an understanding of the chemical source areas, chemical release mechanisms, environmental transport media, potential human intake routes, and potential human receptors for the Property. The purpose of the CSM is to provide a framework for problem definition, identification of exposure pathways that may result in human health risks, indication of data gaps, and aid in identification of appropriate assessment and remediation measures. Chemical release mechanisms, environmental transport media, and potential human intake routes are identified for each potentially exposed receptor.

COCs were determined from the potential on- and off-Property sources as identified during the Phase I. Potential COCs identified include Volatile Organic Compounds (VOCs), Polynuclear Aromatic Hydrocarbons (PAHs), metals, Total Petroleum Hydrocarbons – Gasoline Range Organics (TPH-GRO), and TPH-Diesel Range Organics (TPH-DRO). These COCs may be governed by the following Property-specific transport mechanisms in association with applicable points of exposure:

- 1. volatilization of COCs in soil to ambient air (outdoor and/or indoor);
- 2. dust emissions of COCs in soil to ambient air;
- 3. direct contact with soil and/or groundwater;
- 4. leaching of COCs in soil to groundwater;
- volatilization of COCs in groundwater to ambient air (indoor and/or outdoor);
- 6. surface water run-off; and
- 7. free-phase migration.

The preliminary CSM (Figure 3) provides a baseline assessment of the Property and will be modified as additional data are obtained.

2.2 Decision Identification

Phase II PA data will be compared to applicable VAP risk-based cleanup goals. Data gaps will be identified and, to the extent appropriate, supplemental investigations may be necessary to address those data gaps.

The following decisions will be made from the Phase II PA:

- 1. Do portions of the Property contain COCs that exceed VAP risk-based cleanup goals; and
- 2. Do data gaps exist such that additional data are required to define nature and extent?

2.3 Inputs to the Decision

The investigative approach described in this FSAP was defined based on the findings of previous investigations and the Phase I Environmental Site Assessment (ESA) prepared by Hull. In general, points of investigation have been designated within REC areas at locations biased toward areas of greatest potential impact and sufficient to be representative of spatial distribution and temporal variations, where applicable. The investigation will employ soil sampling conducted during advancement of soil borings, groundwater sampling from temporary 1" monitoring wells and soil gas/vapor sampling to:

- 1. identify the presence and concentrations of COCs in soil, soil gas/vapor and groundwater;
- 2. assist in defining (to the extent feasible) the vertical and lateral extent of COCs in soils, soil gas and groundwater; and
- 3. identify and/or eliminate potential migration and exposure pathways.

Phase II PA findings may result in:

- 1. a decision to conduct additional investigations for the purpose of delineating the horizontal and vertical extent of COCs; and
- 2. a decision to implement Property remedial activities, as necessary.

2.4 Study Boundaries

The spatial boundary of the environmental investigation will be limited to areas that have been cleared by the City of Toledo at the request of Hull. Based on the available budget, Hull focused the investigation on areas where petroleum products were historically used, stored or processed. These areas include the Tech Services Building, Research and Development Building, Engineering Center and UST area located northwest of the Engineering Center. Proposed sampling locations are illustrated on Figure 2.

Soils will be investigated to various depths depending on depth to saturation, potential sources, and/or potential receptors. A groundwater characterization will be performed to evaluate the potential presence

of COCs in the upper saturated unit. If the intended end use of the Property is modified prior to the execution of this work plan that in turn modifies the point of compliance, the depth of soil investigation may be adjusted accordingly. It is further estimated that the temporary monitoring wells will not be installed at depths greater than 16 feet bgs.

2.5 Decision Rule

A decision rule usually compares an output parameter to an action level, which is then used to determine a course of action for the Property. Soil analytical results characterizing the upper two-foot soil horizon will be initially compared to the Ohio VAP Generic Numerical Standards for the anticipated commercial-industrial land use of the Property and soil analytical results characterizing the upper ten foot soil horizon will be initially compared to construction/excavation activity standards. Groundwater analytical results will be compared initially to Unrestricted Potable Use Standards and Risk-Derived Unrestricted Potable Use Standards. Soil gas analytical data will be reviewed in accordance with the current VAP rules.

Based on analytical results obtained from soil, soil gas/vapor and groundwater samples, the decision will be made whether to further investigate the Property. Should analytical concentrations of COCs exceed VAP cleanup goals, additional investigative activities may be needed to delineate the extent of contamination. Additionally, property-specific risk based criteria may be developed to determine if remedial activities are required.

Proposed groundwater sampling locations have been chosen to maximize the potential of detecting of COCs and further delineation of VOC concentrations on the Property. However, drilling locations may need to be altered due to inaccessibility. Relocation of soil borings will be acceptable if they are generally near the original proposed location (i.e. approximately 20 feet) and remain within the respective identified area they are intended to assess.

2.6 Decision Error Limits

The proposed sampling locations have been biased towards characterization of the RECs (2 and 4) and the COCs have been determined based on the potential sources resulting from these RECs. The possibility of not sampling an unsuspected impacted area or not analyzing for a chemical present in the environment does exist. At the same time, a decision was made to bias the sample locations to where the potential for maximum concentration of COCs may exist, which initially may be an overestimation.

2.7 Design Optimization

Optimization of the sampling and analysis was based on existing non-intrusive data such as record searches, previous intrusive sampling data from previous assessments, and a Property reconnaissance, evaluated as part of the Phase I. As mentioned previously, sampling and analysis will be directed towards the RECs, potentially resulting in a conservative interpretation of environmental conditions. Furthermore, field screening and visual observations may result in a subset of the samples being collected at depths that contain the highest concentrations of COCs.

2.8 Quality Assurance Objectives for Measurement

The overall QA objective for each project is to develop and implement procedures for field sampling, chain-of-custody, laboratory analysis, and reporting that will provide legally defensible results. Specific procedures for field sampling, chain-of-custody, and documentation are provided in later sections of this document. Laboratory procedures will be conducted in accordance with the substantive requirements of the selected test methods and the laboratory's Quality Assurance Plan.

2.9 Special Considerations

Quality assurance and control guidelines and specific methodologies in the form of Standard Operating Procedures (SOPs) that apply to this Work Plan are contained in the February 18, 2013 QAPP update for the City of Toledo's Hazardous Substances and Petroleum Contaminated Sites 2012 Community-wide Coalition Assessment Grant.

3.0 SOIL ASSESSMENT

3.1 Objectives

Soil sampling will be completed to identify Property hydrogeology and to characterize COCs within the on-Property RECs (2 and 4).

3.2 Soil Boring and Subsurface Investigation

The soil investigation will consist of installing sixteen soil borings and collecting surface soil grab samples on the Property to assess the soils to the appropriate point of compliance (i.e. commercial/industrial worker and construction and excavation worker receptor populations). All soil borings will terminate at a depth of approximately 16 feet bgs.

One soil sample will be collected for chemical analysis from each soil boring based on field screening (i.e., headspace screening using a photoionization detector (PID)) with an 11.7 eV lamp or direct observation (i.e., identification of coloration of soils suspected to be due to past activities). Visual soil descriptions (textural) will be documented on each boring log. Sample collection will be vertically distributed to address point of compliance considerations for commercial/industrial end use as well as potential exposure to the construction and excavation worker. A tabulation of sample intervals and chemical analytical parameters for the proposed soil samples at the Property is summarized on Table 1. The chemical analytical methods are described in section 3.2.5.

3.2.1 Sample Locations and Frequency

Proposed soil boring locations are shown on Figure 2. One soil sample will be collected from each soil boring for chemical analysis. Sample intervals will be biased towards the known point of compliance and depths where soils show the greatest evidence of impact by past activities at the Property. In some cases, samples deeper than ten feet bgs may be collected. For example, soils at the base of a former underground storage tank may exhibit the greatest signs of impact, but may be located greater than ten feet bgs. Hull reserves the right to modify the sampling intervals based on field observations of criteria discussed in Section 2.4.

3.2.2 Sample Designation

Soil samples will be identified according to the following sample identification number (SIN):

COT235:SBA1:S020040 (Example)

Soil Sample Depth (e.g., 2.0'-4.0')

Sample Type (Soil)

Soil Boring Designation

The soil sample identification will identify the station number (e.g., soil boring number SBA-1) and the depth interval of the sample.

Project Number

3.2.3 Sampling Equipment and Procedures

Soil borings will be advanced using direct-push technology utilizing a *Geoprobe* sampling system. Soil samples will be collected continuously with a four-foot by two-inch diameter macrosampler equipped with an acetate sleeve consistent with ASTM D 6282-98. Standard Operating Procedures for direct push sampling is provided in the February 18, 2013 QAPP update for the City of Toledo's Hazardous Substances and Petroleum Contaminated Sites 2012 Community-wide Coalition Assessment Grant.

Six of the soil borings will be converted to one-inch temporary groundwater monitoring wells using 3" Geoprobe ® drill rods.

3.2.4 Headspace Screening of Soil Samples

Soil samples will be field screened using a photo-ionization detector (PID) using an 11.7 eV lamp, as described in SOP No. F4008. The PID will be calibrated daily in the field consistent with the manufacturer's specifications.

3.2.5 Sample Handling-Chemical Analyses

At a minimum, soil samples will be collected to identify concentrations of COCs in potential source areas and affected material. One soil sample from each boring will be selected for chemical analysis to evaluate the concentration of COCs in soil. Visual observations and additional field screening techniques (i.e., PID screening) will be used to identify samples to submit for laboratory analysis. Sample selection may deviate from the above with the approval of Hull's Project Managers or Assessment Coordinator.

The soil analysis regime is presented in Table 1.

3.2.5.1 Sample Preservation

Samples collected for chemical or physical analysis will be stored in a manner to prevent the samples

from freezing in cold weather. Samples collected in weather conditions above freezing for chemical

analysis will be stored at approximately 4° Celsius by placing them on ice in a laboratory-supplied

cooler immediately after the samples are collected. In addition, the samples will be packed for

shipping in a manner to avoid disturbing the sample.

All soil samples being submitted to the laboratory for VOC analysis will be sampled and preserved

in the field in accordance with U.S. EPA Method 5035 using commercially-prepared sampling kits.

3.2.5.2 Special Handling Considerations

Volatile Organics

Those samples that are to be analyzed for VOCs will not be transferred from one container to

another. Transferring samples between containers may cause a loss of VOCs onto the walls of the

sampling containers. Headspace will not be present in the sample container, thus minimizing the

volatilization of organics from the sample. The laboratory will supply the appropriate glass

containers with Teflon-lined lids.

<u>Blanks</u>

Both trip blanks and equipment blanks will be collected to verify that sample handling and

equipment have not affected the integrity of the field samples.

Trip blanks will be prepared by the laboratory and will consist of filling bottles associated with

VOCs analysis with laboratory supplied reagent water. The trip blank will be subject to the same

handling and transportation procedures as the samples. Trip blanks will be required at the rate of

one per shipping container that contains VOC samples. Trip blanks will accompany sample

containers during sample collection and transportation. Trip blanks will be analyzed for VOCs only

or as directed by the Quality Assurance Officer.

To evaluate whether the sampling device has been effectively cleaned, equipment blanks will be

prepared by filling the sampling device with laboratory supplied reagent water, transferring the

sample to bottles, and submitting the sample to the laboratory for analysis. The water will be

collected in properly preserved containers specified by the laboratory. The sample will be

analyzed for identical methods as the soil sample.

HULL & ASSOCIATES, INC. TOLEDO, OHIO

MAY 2015 COT235.100.0157 The number of equipment blanks analyzed for a class of compounds will be equal to at least 5% of the total samples to be analyzed for those methods. It will be the sample team leader's responsibility to collect the appropriate number of equipment blanks for the day's sampling efforts.

3.2.6 Chain-of-Custody

The chain-of-custody will allow for the tracing of possession and handling of individual samples from the time of field collection through laboratory analysis. The chain-of-custody program will include: sample labels, sample seals, field logbook, and chain-of-custody form/sample analysis request sheet and laboratory logbook. All chain-of-custody procedures will be performed in accordance with SOP No. F3014.

3.2.6.1 Sample Labels

All sample labels will contain the following information:

- 1. sample I.D. number
- 2. sample collector's ID number
- 3. date and time of collection
- 4. place of collection
- 5. parameter(s) requested for analysis

3.2.6.2 Sample Seal

A seal will be placed on the sample container or on the shipping container to ensure that samples have not been disturbed during transportation.

3.2.6.3 Field Logbook

An up-to-date field logbook will be kept by each sampling team to document daily activities (if more than one group of individuals is sampling). The logbook will include a general list of tasks performed, additional data, or observations not listed on field data sheets, and document communication with on-site personnel or visitors as it applies to the project.

3.2.6.4 Chain-of-Custody Record Sheet

The chain-of-custody record will be maintained to trace sample possession and time of collection. The chain-of-custody will accompany each sample and record the:

1. sample number

- 2. signature of collectors
- 3. date and time of collection
- 4. sample type
- 5. sample location identification
- 6. number of containers
- 7. analytical parameters requested
- 8. signature of relinquished and dates of possession by each party
- 9. preservatives

3.2.6.5 Laboratory Logbook

The laboratory will maintain a record of the processing steps that are applied to each sample (i.e., sample preparation techniques, instrumental methods, experimental conditions, QC results). The time, date, and name of the person performing each processing will also be recorded.

3.2.7 Soil Classification and Field Descriptions

Samples will be classified in the field consistent with SOP No. F1006. In addition, pertinent observations noted during installation of the soil borings will be documented on the soil boring logs.

3.2.8 Decontamination of Equipment

Soil sampling equipment such as drilling tools will be decontaminated prior to arrival on-site consistent with SOP No. F1000. Decontamination will consist of washing each sampler with non-phosphate detergent and rinsing with distilled water between each sampling interval and decontaminating rods with a high-pressure steam cleaner. Rinseates will be placed in Department of Transportation (DOT) approved fifty-five gallon steel drums.

3.2.9 Decommissioning of Soil Borings

To the extent that no well is installed in the borehole, soil borings will be decommissioned consistent with SOP No. F2022. The surface will be finished to grade with asphalt or soil commensurate with the original surface conditions.

3.2.10 Disposal of Cuttings and Unused Soil Samples

Minimal cuttings should be generated during the installation of soil borings; however, excess soil generated will be properly stored and secured. Cuttings will be staged in a common area as agreed upon by the Property owner. The drummed cuttings will be sampled for proper disposal (returned to Property or taken to appropriate disposal facility).

4.0 SOIL GAS ASSESSMENT

4.1 Objectives

Soil gas sampling will be completed to characterize volatile COCs within the on-Property REC in the UST area only. The analytical data obtained through this sampling effort will be used to assess potential risk and hazard associated with the vapor intrusion to indoor air to the on-Property and off-Property industrial/commercial receptor population.

4.2 Soil Vapor Investigation

At each soil vapor sampling location, soils will be screened to determine the depth to saturation using direct push technologies. Once depth to saturation is recorded, a double woven stainless steel soil gas implant will be installed in the borehole, above saturation. Sand will be used to backfill the borehole to approximately two-inches above the top of the implant. Hydrated granular bentonite will be placed atop the sand pack to ground surface and ¼" poly tubing extended from the top of the soil gas implant to approximately two-feet above ground surface. Quick connect fittings will be placed at the end of the fittings to prevent ambient surface air from entering the soil vapor sampling system. A PID will be used to record the headspace for each sample point and at the same time the PID pump will be used to purge the soil vapor sampling system. After approximately one minute, the pump will be turned off and disconnected from the one-way quick-connect valve. A 6-liter summa canister, fitted with 8-hr flow control valve, will then be connected to the poly tubing and the valve will be opened to initiate sample collection.

After approximately 8 hours, the Summa canister's valves will be closed, disconnected, and shipped to a laboratory certified under the Ohio VAP for analysis using U.S. EPA Method TO-15.

As a quality control measure and in general accordance with Section 5.0 of the Ohio EPA's "Sample Collection and Evaluation of Vapor Intrusion to Indoor Air Guidance, dated May 2010", Hull will conduct leak testing for the sub-slab soil vapor probes installed at the Property. Following the installation and purging of one soil vapor sampling point, Hull will introduce clean water to the sample point to check for seal integrity.

4.2.1 Sample Locations and Frequency

Proposed soil vapor sample locations are shown on Figure 2. Two soil vapor collection points will be set as discussed in Section 4.2.

4.2.2 Sample Designation

Soil samples will be identified according to the following sample identification number (SIN):

COT235:BSG1:A011713 (Example)

Soil Sample Date (e.g., January 17, 2013)

Sample Type (Air)

Soil Boring Designation

Project Number

The soil sample identification will identify the station number (e.g., soil boring number SG-1) and the date the sample was collected.

4.2.3 Sample Handling-Chemical Analyses

One sub-slab soil vapor sample from each sample location will be selected for chemical analysis to evaluate the concentration of volatile COCs in soil vapor.

Soil samples selected for chemical analysis will be analyzed for VOCs in accordance with U.S. EPA Method TO-15.

4.2.4 Chain-of-Custody

The chain-of-custody will allow for the tracing of possession and handling of individual samples from the time of field collection through laboratory analysis. The chain-of-custody program will include: sample labels, sample seals, field logbook, and chain-of-custody form/sample analysis request sheet and laboratory logbook. All chain-of-custody procedures will be performed in accordance with SOP No. F3014.

4.2.4.1 Sample Labels

All sample labels will contain the following information:

- 1. sample I.D. number
- 2. sample collector's ID number
- 3. date and time of collection
- 4. place of collection
- 5. parameter(s) requested for analysis

4.2.4.2 Sample Seal

A seal will be placed on the sample container or on the shipping container to ensure that samples have not been disturbed during transportation.

4.2.4.3 Field Logbook

An up-to-date field logbook will be kept to document daily activities. The logbook will include a general list of tasks performed, additional data, or observations not listed on field data sheets, and document communication with on-site personnel or visitors as it applies to the project.

4.2.4.4 Chain-of-Custody Record Sheet

The chain-of-custody record will be maintained to trace sample possession and time of collection. The chain-of-custody will accompany each sample and record the:

- 1. sample number
- 2. signature of collectors
- 3. date and time of collection
- 4. sample type
- 5. sample location identification
- 6. number of containers
- 7. analytical parameters requested
- 8. signature of relinquished and dates of possession by each party
- 9. preservatives

4.2.4.5 Laboratory Logbook

The laboratory will maintain a record of the processing steps that are applied to each sample (i.e., sample preparation techniques, instrumental methods, experimental conditions, QC results). The time, date, and name of the person performing each processing will also be recorded.

4.2.5 Decontamination of Equipment

Soil sampling equipment such as drilling tools will be decontaminated prior to arrival on-site consistent with SOP No. F1000. Sample equipment is single-use; therefore, decontamination of equipment is not applicable.

5.0 GROUNDWATER ASSESSMENT

5.1 Objectives

An evaluation of groundwater occurrence will be completed to characterize the uppermost hydrogeologic conditions beneath the Property. COCs derived from potential on-Property sources, will also be considered.

5.2 Soil Boring/One-inch Temporary Monitoring Well Construction and Installation Procedures

5.2.1 One-inch Temporary Monitoring Well Screen Depth

The actual depth of the monitoring well will be determined during advancement of soil borings based on observations of hydrogeologic conditions. The well screen will be placed so that a minimum of 80% of the upper saturated unit is screened. The sand pack will extend a minimum of one foot above the screened interval as long as the soil above the saturated unit does not exhibit concentrations of chemicals of concern. The sand pack will also extend six inches below the base of the screened interval.

5.2.2 One-inch Temporary Monitoring Well Designation

Temporary monitoring well designation will use a chronological designation number for the Property being investigated (e.g., HTMW-2) as means of identifying the groundwater sample. The proposed monitoring well locations are provided on Figure 2.

5.2.3 Temporary One-inch Monitoring Well Installation, Equipment, and Procedures

5.2.3.1 Direct Push Technology

One-inch PVC screen and riser will be placed into the open borehole of select direct push borings at the Site. These temporary one-inch monitoring wells will be removed after groundwater sample collection.

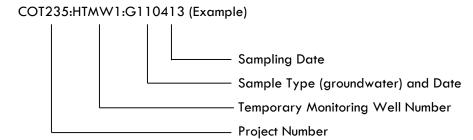
5.2.3.2 Monitoring Well Construction Specifications

Each temporary monitoring well will be constructed of schedule 40 one-inch PVC screen and riser. Because these sampling locations are temporary, no bentonite seal be installed. Each temporary one-inch monitoring well will be removed after groundwater sample collection.

5.2.3.3 Temporary One-inch Monitoring Well Development

Monitoring well development methods that may be used include bailing, surging, or over pumping. The method used will be determined by Hull based on field conditions; however, it is anticipated that development activities will generally consist of bailing or surging using a VOSS disposable bailer, properly decontaminated stainless steel bailer, Waterra tubing or a peristaltic pump.

Monitoring well development will consist of surging then removing a minimum of three to five well volumes. Water generated during development will be contained in Department of Transportation (DOT) approved fifty-five gallon closed-top steel drums and temporarily stored on the Property.


5.3 Monitoring Well Sampling

5.3.1 Sample Locations and Frequency

Groundwater samples will be collected from the monitoring wells and submitted to the laboratory for chemical analysis of a combination of VOCs, PAHs and VAP metals. The groundwater sampling regime is provided in Table 3. Sampling activities will include water level and immiscible layer measurements and sampling. Further details of sampling procedures are included in the following discussions.

5.3.2 Sample Designation

Groundwater samples will be identified according to the following SIN:

5.3.3 Sampling Equipment and Procedures

Following installation and development of a new monitoring well or acceptable inspection of an existing well, the procedures that will be performed at each monitoring well include:

- 1. measurement for immiscible layers
- 2. recording the water level measurement within the monitoring well
- 3. purging of the water within the well casing prior to sampling
- 4. collecting samples

These items are discussed below and will be performed in the order that they are presented in this document.

5.3.3.1 Detection of Immiscible Layers

Floating (light) and/or sinking (dense) non aqueous-phase liquids, if present, will be measured in the monitoring wells using an interface probe. Light non-aqueous phase liquids (LNAPL) will be detected by carefully lowering the interface probe into the monitoring well until the approximate static water

level is reached (i.e., water/immiscible layer interface). Dense non aqueous-phase liquids (DNAPL) will be detected by carefully lowering the probe to the bottom of each monitoring well. SOP No. F3008 provides a detailed description of the procedures that will be used to detect immiscible layers. The interface probe will be decontaminated in a manner consistent with the procedure used for the water level indicator as discussed in SOP No. F1000.

5.3.3.2 Water Level Measurements

An electric water level indicator will be used to measure the static water level elevation in each monitoring well. As a substitute, an interface probe may also be used to obtain water level measurements. Groundwater measurements will be conducted consistent with SOP No. F3008. The measurement will be taken to the nearest 0.01 foot using the Property's reference datum from the designated reference point on each monitoring well (e.g., top of the PVC riser). When measuring the total depth of the monitoring well with the water level indicator, it is necessary to add the distance from the sensor to the tip of the probe to the tape reading. The total depth of the monitoring well may also be determined using the interface probe, which does not require the addition of the distance between the sensor and the tip of the probe. In addition, the volume of water present in the monitoring well will be calculated as discussed in SOP No. F3008. A detailed description of the procedures to be followed when collecting groundwater samples is found in SOP No. F3008.

The water level indicator/interface probe will be decontaminated using a non-phosphate detergent wash, followed by rinsing with potable water, and then rinsing with distilled water. SOP No. F1000 provides a more detailed description of decontamination procedures.

5.3.3.3 Groundwater Purging

An attempt will be made to remove 3-5 well screen volumes prior to sample collection.

5.3.3.4 Sample Withdrawal

Groundwater will be extracted from the wells using low flow sampling techniques generally consistent with Hull SOP 3008. Due to the temporary nature of the monitoring wells at the Site, samples will be collected immediately after purging activities. Groundwater samples will be collected in laboratory-prepared glassware. In order to preserve sample quality, the sampling order will be as follows: volatile organic compounds, non-volatile organic compounds, and in-situ parameters (e.g., pH, specific conductance, and temperature).

Used sampling equipment, including poly tubing, gloves, or other protective clothing, will be properly disposed following contact with groundwater. Waste sampling equipment will be temporarily stored in a plastic trash bag until it can be transported to a dedicated waste receptacle. Field equipment will be decontaminated between wells in accordance with Hull SOP F1000. Purge water will be measured using a flow through cell, then collected and containerized in drums pending appropriate disposal.

5.3.3.5 Slug/Bail Down Tests

No slug/bail down tests will be conducted as part of this assessment.

5.3.4 Sample Handling and Analysis

Sample containers and preservatives will be provided by the laboratory.

5.3.4.1 Sample Preservation

Laboratory supplied containers may be pre-preserved. Alternatively, the laboratory may supply applicable preservatives that would be added to the sample containers in the field by sampling personnel. Further preservation following the collection of each sample will consist of placing the sample on ice in a cooler immediately after the sample is collected and properly labeled.

5.3.4.2 Special Handling Considerations

Volatile Organics

Those samples that are to be analyzed for VOCs will not be transferred from one container to another. Transferring samples between containers may cause a loss of volatile organic compounds onto the walls of the sampling containers. Headspace should not be present in the sample container, thus minimizing the volatilization of organics from the sample. The laboratory will supply the 40-ml glass vials with *Teflon*-lined lids and will also provide the proper preservatives.

Blanks

Both trip blanks and equipment blanks will be collected to verify that sample handling and equipment have not affected the integrity of the field samples.

Trip blanks will be prepared by the laboratory and will consist of filling bottles associated with VOCs analysis with laboratory supplied reagent water. The trip blank will be subject to the same handling and transportation procedures as the samples. Trip blanks will be required at the rate of one per shipping container. Trip blanks will be analyzed for VOCs only or as directed by the

Quality Assurance Officer. Trip blanks will accompany sample containers during sample collection

and transportation.

To ensure the sampling device has been effectively cleaned, equipment blanks will be prepared by

filling the sampling device with laboratory supplied reagent water, transferring the sample to

bottles, and submitting the sample to the laboratory for analysis. Disposable bailers should be

rinsed and filled with laboratory supplied reagent water then emptied prior to collecting the

equipment blank.

The number of equipment blanks analyzed for a class of compounds will be equal to at least 5% of

the total samples to be analyzed for those methods. It will be the sample team leader's responsibility

reduct stosponsionity

to collect the appropriate number of equipment blanks for the day's sampling efforts. If

contaminants are found in the equipment or trip blanks, the source of the contamination will, if

possible, be identified and corrective action, such as modifying the procedure and/or re-sampling

if appropriate, will be initiated.

Duplicates

A duplicate sample will be collected and analyzed to assess the quality of the data resulting from

the field sampling and analytical programs. The duplicate sample will be randomly collected from

one of the monitoring wells. The duplicate sample will be analyzed for each of the analytical

methods and will be collected and handled in the same manner as previously described for field

samples and blanks. The number of duplicate samples analyzed for a class of compounds will be

equal to at least 5% of the total samples to be analyzed for those methods.

5.3.4.3 Chain-of-Custody

The chain-of-custody will allow for the tracing of possession and handling of individual samples from

the time of field collection through laboratory analysis. The chain-of-custody program will include:

sample labels, sample seals, field logbook, chain-of-custody form/sample analysis request sheet,

and laboratory logbook. Chain-of-custody procedures will be performed consistent with SOP No.

F3014.

5.3.4.3.1 Sample Labels

Sample labels will contain the following information:

1. sample I.D. number

- 2. sample collector's ID number
- 3. date and time of collection
- 4. place of collection
- 5. parameter(s) requested for analysis

5.3.4.3.2 Sample Seal

A seal will be placed on the sample container or on the shipping container to ensure that samples have not been disturbed during transportation.

5.3.4.3.3 Field Logbook

An up-to-date field logbook will be kept by each sampling team to document daily activities (if more than one group of individuals is sampling). The logbook will include a general list of tasks performed, additional data or observations not listed on field data sheets, and document communication with on-site personnel or visitors as it applies to the project.

5.3.4.3.4 Chain-of-Custody Record Sheet

The chain-of-custody record will be maintained to trace sample possession and time of collection. The chain-of-custody will accompany each sample and record the:

- 1. sample number
- 2. signature of collectors
- 3. date and time of collection
- 4. sample type
- 5. sample location identification
- 6. number of containers
- 7. analytical parameters requested
- 8. signature of relinquished and dates of possession by each party
- 9. preservatives

5.3.4.3.5 Laboratory Logbook

The laboratory will maintain a record of the processing steps that are applied to each sample (i.e., sample preparation techniques, instrumental methods, experimental conditions, QC results). The time, date, and name of the person performing each processing will also be recorded.

6.0 ADDITIONAL ASSESSMENT

6.1 Utility Location

The Ohio Utility Protection Service will also be notified a minimum of 48-hours prior to commencement of field activities to provide any additional location information. In addition, Hull will contract with a third party private utility locator to help identify the presence of any buried utilities in the proposed sampling location areas.

7.0 REFERENCES

A variety of technical manuals, administrative documents, and publications were referred to in preparing this document. Some of the references consulted are presented below. Referenced documents and publications may or may not have been reviewed in their entirety. The guidelines and procedures presented in the documents and publications referenced have been strictly adhered to unless stated otherwise.

- Brockman, C. Scott, Ohio Department of Natural Resources, Division of Geological Survey, Physiographic Regions of Ohio (map), 1998.
- Hull & Associates, Inc. December 2014, Phase I Environmental Site Assessment Former Champion Spark Plug Site
- Ohio Environmental Protection Agency. Sample Collection and Evaluation of Vapor Intrusion to Indoor Air. May 2010.
- Ohio Environmental Protection Agency. Voluntary Action Program Regulations, OAC-3745-300-07 and OAC-3745-300-08.

TABLES

WORK PLAN FOR THE FORMER CHAMPION SPARK PLUG PROPERTY 900 UPTON AVENUE TOLEDO, LUCAS COUNTY, OHIO

TABLE 1

SOIL SAMPLING PLAN

			Depth* Soil Sample Interval		Contaminants of Concern					
REC#	REC	(feet BGS) (feet)	-	VOCs	BTEX/MTBE	PAHs	TPH-GRO	TPH-DRO	RCRA Metals	
		HSB-1	16			1		1		
REC-2	REC-2 UST	HSB-2	16	Highest PID above saturation		1		1		
KLC-2	031	HSB-3	16	riigilesi rib above saluralion		1		1		
		HSB-4	16			1		1		
		HSB-5	16		1		1	1	1	1
		HSB-6	16		1		1	1		1
		HSB-7	16		1		1	1	1	1
		HSB-8	16		1		1	1		1
		HSB-9	16		1		1	1	1	1
REC-4	Debris Piles	HSB-10	16		1		1	1		1
REC-4	Data Gap	HSB-11	16		1		1	1	1	1
		HSB-12	16	Highest DID or Indication of a Delegan	1		1	1		1
		HSB-13	16	Highest PID or Indication of a Release	1		1	1	1	1
		HSB-14	16		1		1	1		1
		HSB-15	16		1		1	1	1	1
		HSB-16	16		1		1	1		1

Notes:

^{*} Depth may vary depending on actual field conditions

WORK PLAN FOR THE FORMER CHAMPION SPARK PLUG PROPERTY 900 UPTON AVENUE TOLEDO, LUCAS COUNTY, OHIO

TABLE 2

SOIL GAS SAMPLING PLAN

REC	REC Desc	Boring ID	Boring Depth	Sample Depth*	BTEX/MTBE 01-01
2	UST	HSG-1	5 FT.	4.0-4.5 FT.	Х
2	USI	HSG-2	5 FT.	4.0-4.5 FT.	Х

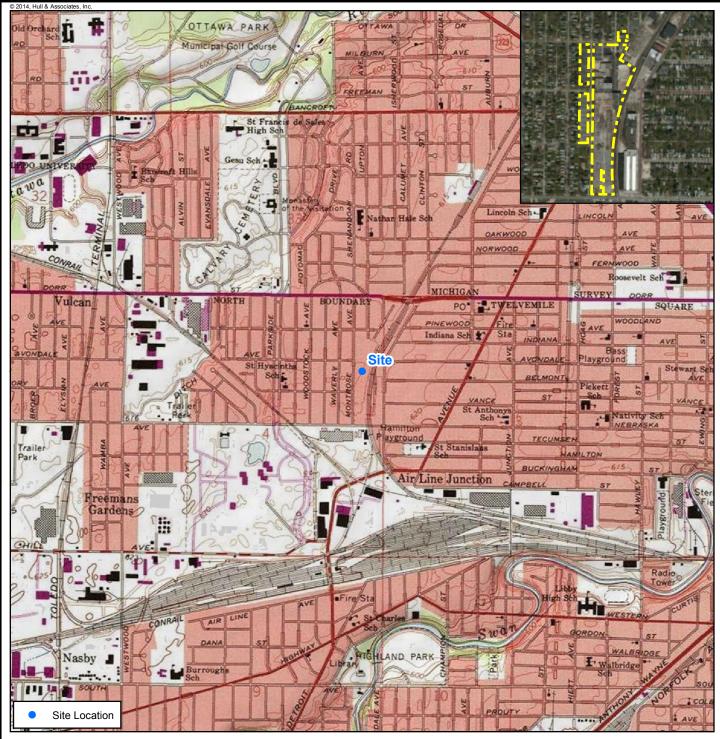
Notes:

^{*} Depth may vary depending on actual field conditions

WORK PLAN FOR THE FORMER CHAMPION SPARK PLUG PROPERTY 900 UPTON AVENUE TOLEDO, LUCAS COUNTY, OHIO

TABLE 3

GROUNDWATER SAMPLING PLAN*


REC	REC Desc	Well ID / Boring ID	Anticipated Well Depth from TOC** (ft)	VOCs	PAHs	RCRA Metals
		HTMW-1	16	Х	Х	Х
		HTMW-2	16	Х	Х	Х
2.4	USTs, Debris	HTMW-3	16	Х	Х	Х
2,4	Piles Data Gap	HTMW-4	16	Х	Х	Х
		HTMW-5	16	Х	Х	Х
		HTMW-6	16	Х	Х	Х

^{*} One round of sampling assumed for each of the six wells.

^{**} Top of Casing

FIGURES

HULL & ASSOCIATES, INC. TOLEDO, OHIO

DISCLAIMER Hull & Associates, Inc. (Hull) has furnished this map to the company identified in the title block (Client) for its sole and exclusive use as a preliminary planning and screening tool and field verification is necessary to confirm these data. This map is reproduced from geospatial information compiled from third-party sources which may change over time. Areas depicted by the map are approximate and may not be accurate to mapping, surveying or engineering standards. Hull makes no representation or guarantee as to the content, accuracy, timeliness or completeness of any information or spatial location depicted on this map. This map is provided without warranty of any kind, including but not limited to, the implied warranties of merchantability or fitness for a particular purpose. In no event will Hull, its owners, officers, employees or agents, be liable for damages of any kind arising out of the use of this map by Client or any other party.

500 1,000 2.000

Quad: Toledo

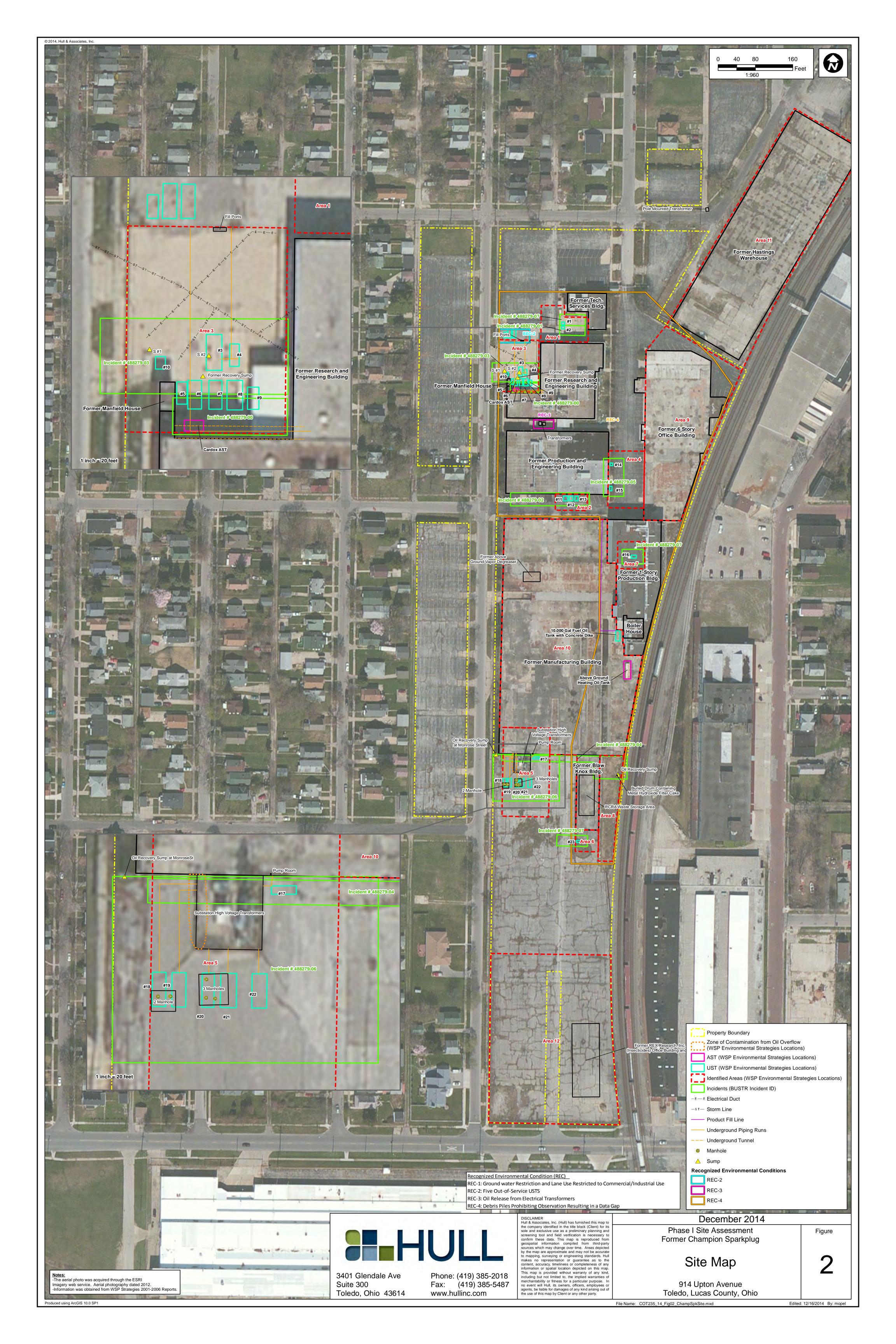
Source: The topographic map was acquired through the USGS Topographic Map web service.

The aerial photo in the inset was acquired through the ESRI Imagery web service. Aerial photography dated 2012.

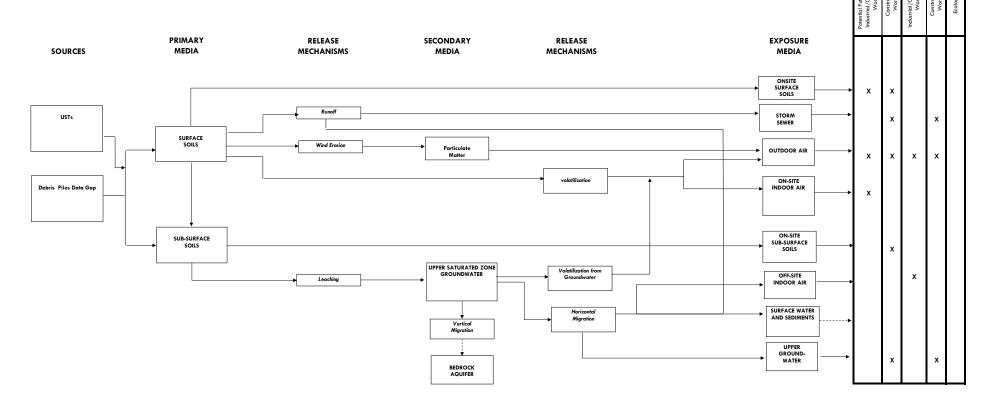
3401 Glendale Ave Suite 300 Toledo, Ohio 43614 Phone: (419) 385-2018 (419) 385-5487 www.hullinc.com

Site Location Map

Phase I Site Assessment


Former Champion Sparkplug

914 Upton Avenue Toledo, Lucas County, Ohio Date:


September 2014

COT235_14_Fig01_ChampSpkSLM.mxd Edited: 9/29/2014 By: jslifer

Figure

FIGURE 3 HULL & ASSOCIATES, INC. TOLEDO, OHIO WORK PLAN FOR A PHASE II PROPERTY ASSESSMENT FORMER CHAMPION SPARK PLUG PROPERTY PRELIMINARY EXPOSURE PATHWAY - CONCEPTUAL SITE MODEL CURRENT AND REASONABLY ANTICIPATED FUTURE COMPLETE EXPOSURE PATHWAYS CITY OF TOLEDO, LUCAS COUNTY, OHIO MAY 2015 COT235.100.0021.XLSX

X = Complete pathway with potentially significant exposure

------ = Incomplete Pathway

Potential Receptors

APPENDIX A

OAC 3745-300-08 Generic Numerical Standards

[Comment: For dates of non-regulatory government publications, publications of recognized organizations and associations, federal rules, and federal statutory provisions referenced in this rule, see paragraph (B) of rule 3745-300-01 of the Administrative Code titled "Incorporation by reference."]

(A) Generic numerical standards.

(1) Applicability.

- (a) Generic numerical standards listed in this rule for hazardous substances and petroleum may be used to demonstrate compliance with applicable standards provided the exposure scenario for the property comports with land use and activity patterns used to derive the generic numerical standard. Generic numerical standards are provided for complete exposure pathways to petroleum releases (paragraph (B) of this rule), direct contact with hazardous substances in soil to human receptors (paragraph (C) of this rule), unrestricted potable use for hazardous substances in ground water (paragraph (D) of this rule), and complete exposure pathways to human and ecological receptors from surface water and sediment (paragraphs (F), (G) and (H) of this rule).
- (b) If complete exposure pathways exist on a property that are not considered in the development of a generic numerical standard listed in this rule or if a generic numerical standard is not listed for chemicals of concern on a property, applicable standards must be derived in accordance with rule 3745-300-09 of the Administrative Code. Demonstration of compliance with applicable standards at a property may be made using a combination of generic numerical standards in accordance with this rule and standards developed through a property-specific risk assessment in accordance with rule 3745-300-09 of the Administrative Code.
- (c) If radioactive materials are identified at a property, the property may be subject to the Atomic Energy Act and regulations adopted thereunder and Chapters 3701. and 3747. of the Revised Code and rules adopted thereunder. If radionuclides or radioactive materials are present at a property, the cleanup of the radionuclides or radioactive material shall be conducted in compliance with requirements of the Ohio department of health. Remedy approval by the Ohio department of health shall be considered sufficient to meet applicable standards for radionuclides or radioactive materials for the voluntary action and may be considered a generic numerical standard.
- (d) If polychlorinated biphenyls are identified at a property, the property may be subject to cleanup levels or other provisions of the Toxic Substances Control Act and regulations adopted thereunder. Polychlorinated biphenyls shall be addressed within the voluntary action as a hazardous substance and meet either generic numerical standards in accordance with this rule or property-specific standards in accordance with rule 3745-300-09 of the Administrative Code.

(2) Assumptions.

(a) Summation of risk and hazard across complete exposure pathways.

If more than one complete exposure pathway exists to each receptor population, the incremental cancer risk and hazard indices determined for each exposure pathway must be summed to calculate a cumulative cancer risk and hazard index to each receptor population. All final cumulative human health carcinogenic risk and non-carcinogenic hazard levels are based on one significant figure.

- (b) If the generic numerical standards of this rule are applied to one or more exposure units or identified areas of the property and applicable standards, as determined in accordance with rule 3745-300-09 of the Administrative Code, are applied to one or more other areas of the property, then the volunteer must ensure that the risk and hazard levels for each receptor on the property do not exceed:
 - (i) One excess cancer in a population of 100,000 (1 x 10⁻⁵); and
 - (ii) A hazard index of 1.

All final cumulative human health carcinogenic risk and non-carcinogenic hazard levels are based on one significant figure.

- (c) Points of compliance. The volunteer must comply with the applicable standards at all points of compliance at the property, for each environmental media and complete exposure pathway, in accordance with paragraph (I) of rule 3745-300-07 of the Administrative Code.
- (3) A property-specific risk assessment must be conducted in accordance with the procedures established in rule 3745-300-09 of the Administrative Code to determine applicable standards instead of or in addition to using the generic numerical standards from this rule, if any of the following apply to the property:
 - (a) The complete exposure pathways as identified in accordance with paragraph (F)(1) of rule 3745-300-07 of the Administrative Code, include exposure pathways that are not considered in the development of standards listed in this rule. Such exposure pathways include, but are not limited to, volatilization of contaminants to indoor air or non-potable use of ground water;
 - (b) The exposure factors for the receptors identified in paragraph (E)(6) of rule 3745-300-07 of the Administrative Code are not considered in the development of standards listed in this rule;
 - (c) The chemicals of concern on the property consist of hazardous substances or petroleum that do not have generic numerical standards included in this rule. If only some of the chemicals of concern identified have a generic numerical standard listed in this rule, a

volunteer may use the applicable generic numerical standards for the chemicals of concern having listed standards and conduct a property-specific risk assessment in accordance with rule 3745-300-09 of the Administrative Code. When using a combination of generic numerical standards and applicable standards determined by a property-specific risk assessment conducted in accordance with rule 3745-300-09 of the Administrative Code, the volunteer must adjust the concentrations of the applicable standards to meet the human health risk and hazard levels described in paragraph (A)(2)(b) of this rule;

- (d) Concentrations of chemicals of concern in surface water or sediment exceed applicable standards determined in accordance with this rule;
- (e) Complete exposure pathways to important ecological resources other than sediment or surface water exist; or
- (f) It is determined that chemicals of concern on or emanating from the property are persistent, bioaccumulative, and toxic in animal tissue and the development of the generic standards, other than Ohio-specific sediment reference values contained in attachment H of Ohio EPA's "Guidance for Conducting Ecological Risk Assessments," do not consider bioaccumulative effects.
- (B) Generic numerical standards for petroleum.
 - (1) Applicability.
 - (a) The generic numerical standards referenced in paragraph (B)(3) of this rule apply to all petroleum releases regardless of the source or how the petroleum was released. After eligibility requirements in accordance with rule 3745-300-02 of the Administrative Code have been met, applicable standards for all petroleum releases on the property must be achieved in accordance with this chapter.
 - (b) The generic numerical standards referenced in paragraph (B)(3) of this rule apply to the exposure pathways for which rules adopted under division (B) of section 3737.882 of the Revised Code have numerical clean-up standards. If an exposure pathway is not addressed by a generic numerical standard under division (B) of section 3737.882 of the Revised Code, then the exposure pathway must be evaluated in accordance with rule 3745-300-09 of the Administrative Code.

(2) Assumptions.

(a) The points of compliance for generic petroleum standards are those identified in paragraph (I)(1) for rule 3745-300-07 of the Administrative Code. For example, exposure pathways that are encompassed within the generic direct-contact soil standard shall use the points of compliance indicated in paragraph (I)(1)(a)(i) of rule 3745-300-07

of the Administrative Code. The volunteer must comply with the applicable standards at all points of compliance at the property, for each environmental medium and complete exposure pathway, in accordance with paragraph (I) of rule 3745-300-07 of the Administrative Code.

- (b) Cumulative adjustment for multiple chemicals and summation of risk across complete exposure pathways that are required for chemicals of concern on the property in order to comply with paragraphs (A)(2)(a) and (E) of this rule may not necessarily apply for generic petroleum standards referenced in paragraph (B)(3) of this rule. Cumulative adjustment for multiple chemicals and summation of risk across complete exposure pathways to meet generic petroleum standards are required only when required by rules adopted under division (B) of section 3737.882 of the Revised Code.
- (c) When ground water exceeds unrestricted potable use standards, ground water response requirements in accordance with rule 3745-300-10 of the Administrative Code must be met. Properties with free product exceed applicable standards for unrestricted potable use of ground water.
- (d) Commercial and industrial land use categories (as described in paragraph (C)(2)(c) of this rule) require implementation of institutional controls in accordance with paragraph (C)(3) of rule 3745-300-11 of the Administrative Code.
- (3) Generic numerical clean-up standards for petroleum.

The generic numerical standards for petroleum at residential, commercial, or industrial properties are the standards established in rules adopted under division (B) of section 3737.882 of the Revised Code, as provided in division (B)(1) of section 3746.04 of the Revised Code. The state fire marshal's bureau of underground storage tank regulations administers the rules adopted under division (B) of section 3737.882 of the Revised Code. Property-specific standards for petroleum may be developed using rule 3745-300-09 of the Administrative Code.

- (C) Generic direct-contact soil standards for hazardous substances.
 - (1) Applicability.
 - (a) When applying generic direct-contact standards to soils on a property, a volunteer must select the generic land use or activity category which is consistent with the exposure factors for the generic land use or activity category contained in paragraph (C)(2)(c) of this rule. The exposure factor distributions used in the development of generic numerical standards are contained in Ohio EPA's "Support Document For the Development of Generic Numerical Standards and Risk Assessment Procedures." Generic direct-contact soil standards for commercial and industrial land uses are equal unless paragraph (B)(1)(b) of rule 3745-300-09 of the Administrative Code applies.

- (b) A property-specific risk assessment must be conducted in accordance with the procedures established in rule 3745-300-09 of the Administrative Code, to determine applicable standards instead of or in addition to using the generic direct-contact soil standards, if any conditions of paragraph (A)(3) of this rule apply.
- (c) Generic numerical standards for petroleum releases are identified in paragraph (B)(3) of this rule. The standards listed in paragraph (C)(3) of this rule apply to releases of hazardous substances.

(2) Assumptions.

(a) Single chemical.

The generic direct-contact soil standards presented in paragraph (C) of this rule assume a single chemical of concern is present within an identified area or exposure unit.

- (i) The single chemical generic direct-contact soil standards set forth in this rule are based on the following risk and hazard levels.
 - (a) For hazardous substances having carcinogenic effects, the chemical-specific carcinogenic risk must not exceed one excess cancer in a population of 100,000 (i.e., 1 x 10⁻⁵); and
 - (b) For hazardous substances having non-carcinogenic effects, the chemical-specific risk must not exceed a hazard index of 1.
- (ii) The concentration of a chemical of concern, as determined in accordance with paragraph (F)(5) of rule 3745-300-07 of the Administrative Code, must not exceed the single chemical generic direct-contact soil standard for that chemical.
- (b) Cumulative adjustment for multiple chemicals.

When more than one chemical of concern is present within an identified area or exposure unit and an applicable generic direct-contact soil standard for each of the chemicals of concern is contained in paragraphs (C)(3)(b), (C)(3)(c) or (C)(3)(d) of this rule, the standard for each chemical of concern must be adjusted for the presence of multiple chemicals in order to meet the risk and hazard levels described in paragraph (C)(2)(a) of this rule. A cumulative adjustment for multiple chemicals must also be made when using a combination of generic direct-contact soil standards and applicable standards determined by a property-specific risk assessment in accordance with rule 3745-300-09 of the Administrative Code. The incremental risk and hazard from direct contact to soils must be added to the incremental risk and hazard from other complete exposure pathways to the same receptor population, in accordance with (A)(2)(a) of this rule. All

final cumulative human health carcinogenic risk and non-carcinogenic hazard levels are based on one significant figure.

(c) Land use and activity categories.

The generic direct-contact soil standards established in this rule are based upon the intended use of the property after the completion of a voluntary action. Standards applied to commercial and industrial land use categories require implementation of institutional controls in accordance with paragraph (C)(3) of rule 3745-300-11 of the Administrative Code. Land use and activity categories must be determined as follows:

(i) Residential land use category.

Residential land use is land use with a high frequency of potential exposure of adults and children to dermal contact with soil, inhalation of vapors and particles from soil and ingestion of soil. Residential land use is considered protective for, and may be applied to, any and all categories of land use, without further restriction. Examples of residential land uses include, but are not limited to residences; day care facilities; schools, colleges and other educational institutions; nursing homes, elder care and other long-term health care facilities; and correctional facilities.

(ii) Commercial land use category.

Commercial land use is land use with potential exposure of adult workers during a business day and potential exposures of adults and children who are customers, patrons or visitors to commercial facilities during the business day. Commercial land use has potential exposure of adults to dermal contact with soil, inhalation of vapors and particles from soil and ingestion of soil. Examples of commercial land uses include, but are not limited to warehouses; retail gasoline stations; retail establishments; professional offices; hospitals and clinics; religious institutions; hotels; motels; and parking facilities.

(iii) Industrial land use category.

Industrial land use is land use with potential exposure of adult workers during a business day and potential exposures of adults and children who are visitors to industrial facilities during the business day. Industrial land use has potential exposure of adults to dermal contact with soil, inhalation of vapors and particles from soil and ingestion of soil. Examples of industrial land uses include, but are not limited to: lumberyards; power plants; manufacturing facilities such as metalworking shops, plating shops, blast furnaces, coke plants, oil refineries, brick factories, chemical plants and plastics plants; assembly plants; non-public airport areas; limited access highways; railroad switching yards; and marine port facilities.

(iv) Construction or excavation activities.

Construction or excavation activities include invasive activities that result in potential exposure of adult workers during the business day for a portion of one year. Exposures during construction or excavation activities are of greater intensity and shorter duration than those for the commercial and industrial land use categories. Construction or excavation activities have potential exposures of adults to dermal contact with soil, inhalation of vapors and particles from soil, and ingestion of soil. Examples of construction or excavation activities include but are not limited to maintenance or installation of utilities; installation of building footers or foundations; grading; trenching; or laying utility lines or cables; and repair of engineering controls where there is significant exposure to soils.

- (3) Generic numerical direct-contact soil standards.
 - (a) The generic direct-contact soil standards for carcinogenic and non-carcinogenic chemicals of concern are derived considering only the following exposures; ingestion of soil, dermal contact with soil, inhalation of volatile compounds in outdoor air and the inhalation and ingestion of particulate emissions. Any and all applicable exposures not considered within the generic direct-contact soil standards shall be addressed in accordance with rule 3745-300-09 of the Administrative Code.

The soil saturation concentrations are calculated using the U.S. EPA recommended soil saturation equation specified in paragraph (C)(3)(e) of this rule. This equation is not recommended for compounds that are at solid phase at ambient soil temperatures; therefore, no generic soil saturation values were calculated for those chemicals whose melting point is greater than seventeen degrees Celsius. Further, soil saturation values were determined only for those chemicals whose physicochemical parameters used to derive the soil saturation concentrations could be verified. The volunteer may use the equation specified in paragraph (C)(3)(e) of this rule, along with property-specific information, to calculate a property-specific soil saturation concentration in lieu of the generic soil saturation concentrations listed in tables I through III in paragraphs (C)(3)(b) through (C)(3)(d) of this rule.

(b) Table I: generic direct-contact soil standards for carcinogenic and non-carcinogenic chemicals of concern - residential land use category (values are in mg/kg).

Chemical Abstract Service Number (CAS #)	Chemical of Concern	Standard for Single Chemical Noncarcinogen	Standard for Single Chemical Carcinogen	Soil Saturation	Generic Direct Contact Soil Standard for a Single Chemical (mg/kg)
	V	olatile Organic Ch	emicals		
67-64-1	Acetone	64,000	NA	100,000	64,000
71-43-2	Benzene	94	64	920	64

Chemical Abstract Service Number (CAS #)	Chemical of Concern	Standard for Single Chemical Noncarcinogen	Standard for Single Chemical Carcinogen	Soil Saturation	Generic Direct Contact Soil Standard for a Single Chemical (mg/kg)
75-15-0	Carbon Disulfide	1,400	NA	1,400	1,400
56-23-5	Carbon Tetrachloride	5.5	6.6	1,400	5.5
108-90-7	Chlorobenzene	410	NA	740	410
75-00-3	Chloroethane	10,000	3,700	2,200	2,200
67-66-3	Chloroform	300	6.6	3,400	6.6
124-48-1	Dibromochloromethane	1,500	130	1,600	130
75-71-8	Dichlorodifluoromethane	380	NA	1,400	380
75-34-3	Dichloroethane, 1,1-	2,000	NA	2,300	2,000
107-06-2	Dichloroethane, 1,2-	1,400	8.7	2,900	8.7
75-35-4	Dichloroethene, 1,1-	410	NA	1,700	410
156-59-2	Dichloroethene, cis-1,2-	760	NA	2,200	760
156-60-5	Dichloroethene, trans-1,2-	180	NA	1,800	180
78-87-5	Dichloropropane, 1,2 -	23	19	1,100	19
542-75-6	Dichloropropene, 1,3 -	92	35	810	35
123-91-1	Dioxane, 1,4-	7,400	260	270,000	260
60-29-7	Ethyl Ether	15,000	NA	33,000	15,000
100-41-4	Ethylbenzene	3,600	NA	230	230
50-00-0	Formaldehyde	1,900	560	130,000	560
64-18-6	Formic acid	1,200	NA	170,000	1,200
110-54-3	Hexane, n-	530	NA	190	190
78-83-1	Isobutyl Alcohol	23,000	NA	40,000	23,000
67-56-1	Methanol	33,000	NA	110,000	33,000
78-93-3	Methyl Ethyl Ketone (MEK)	37,000	NA	100,000	37,000
108-10-1	Methyl Isobutyl Ketone (MIBK)	5,800	NA	16,000	5,800
1634-04-4	Methyl <i>tert</i> -Butyl Ether (MTBE)	21,000	850	6,700	850
75-09-2	Methylene Chloride	2,200	250	2,300	250
100-42-5	Styrene	9,500	NA	1,700	1,700
620.00.6	Tetrachloroethane,	2 200	27	750	27
630-20-6	1,1,1,2- Tetrachloroethane,	2,300	37	750	37
79-34-5	1,1,2,2-	4,500	11	1,700	11
127-18-4	Tetrachloroethene	510	17	380	17
108-88-3	Toluene	5,100	NA	520	520
71-55-6	Trichloroethane, 1,1,1-	6,100	NA	1,300	1,300
79-00-5	Trichloroethane, 1,1,2-	300	25	2,600	25
79-01-6	Trichloroethene	2,300	65	950	65
75-69-4	Trichlorofluoromethane	1,200	NA	1,600	1,200
96-18-4	Trichloropropane, 1,2,3-	450	1.5	1,100	1.5
75-01-4	Vinyl Chloride	98	4.6	1,100	4.6
1330-20-7	Xylenes, Total	1,000	NA	370	370
		i-Volatile Organic		0.0	,
83-32-9	Acenaphthene	3,500	NA	NA	3,500
98-86-2	Acetophenone	6,300	NA	NA	6,300

Chemical Abstract Service Number (CAS #)	Chemical of Concern	Standard for Single Chemical Noncarcinogen	Standard for Single Chemical Carcinogen	Soil Saturation	Generic Direct Contact Soil Standard for a Single Chemical (mg/kg)
107-13-1	Acrylonitrile	35	6.6	22,000	6.6
62-53-3	Aniline	220	1,500	62,000	220
120-12-7	Anthracene	18,000	NA	NA	18,000
92-87-5	Benzidine	190	0.04	NA	0.04
56-55-3	Benzo(a)anthracene	NA	11	NA	11
50-32-8	Benzo(a)pyrene	NA	1.1	NA	1.1
205-99-2	Benzo(b)fluoranthene	NA	11	NA	11
207-08-9	Benzo(k)fluoranthene	NA	110	NA	110
117-81-7	Bis (2-ethylhexyl) Phthalate (BEHP & DEHP)	1,300	620	190	190
85-68-7	Butyl Benzyl Phthalate	13,000	620	58	58
86-74-8	Carbazole	NA	430	NA	430
57-74-9	Chlordane	34	28	NA	28
218-01-9	Chrysene	NA	1,100	NA	1,100
53-70-3	Dibenz(a,h)anthracene	NA	1.1	NA	1.1
95-50-1	Dichlorobenzene, 1,2- (o)	2,300	NA	370	370
106-46-7	Dichlorobenzene, 1,4- (p)	3,500	60	NA	60
91-94-1	Dichlorobenzidine, 3,3-	NA	19	NA	19
72-54-8	Dichlorodiphenyldichloroet hane (DDD)	140	42	NA	42
72-55-9	Dichlorodiphenyldichloroet hene (DDE)	NA	29	NA	29
50-29-3	Dichlorodiphenyltrichloroet hane (DDT)	36	30	NA	30
94-75-7	Dichlorophenoxyacetic acid, 2,4-	630	NA	NA	630
84-66-2	Diethyl Phthalate	50,000	NA NA	590	590
105-67-9	Dimethylphenol, 2,4-	1,300	NA NA	NA	1,300
84-74-2	Di- <i>n</i> -butyl Phthalate	6,300	NA NA	110	110
99-65-0	Dinitrobenzene, 1,3- (m)	6.3	NA	NA	6.3
528-29-0	Dinitrobenzene, 1,2-	6.3	NA NA	NA	6.3
121-14-2	Dinitrotoluene, 2,4-	120	13	NA	13
606-20-2	Dinitrotoluene, 2,6-	63	13	NA	13
72-20-8	Endrin	19	NA NA	NA	19
107-21-1	Ethylene Glycol	110,000	NA NA	110,000	110,000
206-44-0	Fluoranthene	2,400	NA NA	NA	2,400
86-73-7	Fluorene	2,400	NA	NA	2,400
76-44-8	Heptachlor	31	1.8	NA	1.8
1024-57-3	Heptachlor Epoxide	0.81	0.95	NA	0.81
87-68-3	Hexachloro-1,3-Butadiene	13	83	1,000	13
118-74-1	Hexachlorobenzene	50	5.2	NA	5.2
67-72-1	Hexachloroethane	63	550	NA	63
193-39-5	Indeno(1,2,3-c,d)pyrene	NA NA	11	NA	11
78-59-1	Isophorone	12,000	9,100	4,600	4,600
98-82-8	Isopropylbenzene (Cumene)	2,700	NA NA	260	260

Chemical Abstract Service Number (CAS #)	Chemical of Concern	Standard for Single Chemical Noncarcinogen	Standard for Single Chemical Carcinogen	Soil Saturation	Generic Direct Contact Soil Standard for a Single Chemical (mg/kg)
58-89-9	Lindane	21	8.7	NA	8.7
108-39-4	m-cresol	3,100	NA	61,000	3,100
72-43-5	Methoxychlor	310	NA	NA	310
90-12-0	Methylnaphthalene, 1-	4,100	NA	360	360
91-20-3	Naphthalene	180	69	NA	69
98-95-3	Nitrobenzene	27	NA	1,500	27
86-30-6	Nitrosodiphenylamine, n-	1,300	1,700	NA	1,300
95-48-7	o-cresol	3,100	NA	NA	3,100
117-84-0	Octyl Phthalate, di-n-	2,500	NA	12	12
106-44-5	p-cresol	310	NA	NA	310
87-86-5	Pentachlorophenol	1,400	55	NA	55
108-95-2	Phenol	15,000	NA	NA	15,000
1336-36-3	Polychlorinated Biphenyls	1.2	4.0	NA	1.2
129-00-0	Pyrene	1,800	NA	NA	1,800
110-86-1	Pyridine	63	NA	400,000	63
93-72-1	Silvex	500	NA	NA	500
8001-35-2	Toxaphene	NA	7.8	NA	7.8
95-95-4	Trichlorophenol, 2,4,5-	6,300	NA	NA	6,300
88-06-2	Trichlorophenol, 2,4,6-	NA	770	NA	770
95-63-6	Trimethylbenzene, 1,2,4-	85	NA	250	85
108-67-8	Trimethylbenzene, 1,3,5-	69	NA	200	69
99-35-4	Trinitrobenzene, 1,3,5- (s)	1,900	NA	NA	1,900
108-05-4	Vinyl Acetate	1,400	NA	2,700	1,400
		Inorganic Chemi	cals		
7440-36-0	Antimony	30	NA	NA	30
7440-38-2	Arsenic, Inorganic	21	6.7	NA	6.7
7440-39-3	Barium and Compounds	15,000	NA	NA	15,000
7440-41-7	Beryllium and Compounds	150	16,000	NA	150
7440-43-9	Cadmium	72	22,000	NA	72
16065-83-1	Chromium (III)	110,000	NA	NA	110,000
18540-29-9	Chromium (VI)	230	3,300	NA	230
7440-48-4	Cobalt	1,400	14,000	NA	1,400
57-12-5	Cyanide, Free	1,500	NA	NA	1,500
7782-41-4	Fluorine (soluble fluoride)	4,500	NA	NA	4,500
7439-97-6	Mercury	7.6	NA	NA	7.6
7440-02-0	Nickel (Soluble Salts)	1,500	NA	NA	1,500
7782-49-2	Selenium and Compounds	380	NA	NA	380
7440-22-4	Silver	380	NA	NA	380
7440-28-0	Thallium	6.1	NA	NA	6.1
7440-62-2	Vanadium	680	NA	NA	680
7440-66-6	Zinc and Compounds	23,000	NA	NA	23,000

(c) Table II: generic direct-contact soil standards for carcinogenic and non-carcinogenic chemicals of concern - Commercial and Industrial Land Use Categories (values are in mg/kg).

Chemical Abstract Service Number (CAS #)	Chemical of Concern	Standard for Single Chemical Noncarcinogen	Standard for Single Chemical Carcinogen	Soil Saturation	Generic Direct Contact Soil Standard for a Single Chemical (mg/kg)			
Volatile Organic Chemicals								
67-64-1	Acetone	850,000	NA	100,000	100,000			
71-43-2	Benzene	170	140	920	140			
75-15-0	Carbon Disulfide	2,200	NA	1,400	1,400			
56-23-5	Carbon Tetrachloride	8.2	15	1,400	8.2			
108-90-7	Chlorobenzene	710	NA	740	710			
75-00-3	Chloroethane	18,000	68,000	2,200	2,200			
67-66-3	Chloroform	600	14	3,400	14			
124-48-1	Dibromochloromethane	59,000	2,300	1,600	1,600			
75-71-8	Dichlorodifluoromethane	520	NA	1,400	520			
75-34-3	Dichloroethane, 1,1-	3,000	NA	2,300	2,300			
107-06-2	Dichloroethane, 1,2-	17,000	19	2,900	19			
75-35-4	Dichloroethene, 1,1-	610	NA	1,700	610			
156-59-2	Dichloroethene, cis-1,2-	29,000	NA	2,200	2,200			
156-60-5	Dichloroethene, trans-1,2-	260	NA	1,800	260			
78-87-5	Dichloropropane, 1,2 -	31	41	1,100	31			
542-75-6	Dichloropropene, 1,3 -	130	84	810	84			
123-91-1	Dioxane, 1,4-	160,000	600	270,000	600			
60-29-7	Ethyl Ether	590,000	NA	33,000	33,000			
100-41-4	Ethylbenzene	8,500	NA	230	230			
50-00-0	Formaldehyde	2,900	1,200	130,000	1,200			
64-18-6	Formic acid	1,700	NA	170,000	1,700			
110-54-3	Hexane, <i>n</i> -	800	NA	190	190			
78-83-1	Isobutyl Alcohol	880,000	NA	40,000	40,000			
67-56-1	Methanol	240,000	NA	110,000	110,000			
78-93-3	Methyl Ethyl Ketone (MEK)	220,000	NA	100,000	100,000			
108-10-1	Methyl Isobutyl Ketone (MIBK)	97,000	NA	16,000	16,000			
1634-04-4	Methyl tert-Butyl Ether (MTBE)	28,000	1,900	6,700	1,900			
75-09-2	Methylene Chloride	4,900	570	2,300	570			
100-42-5	Styrene	29,000	NA	1,700	1,700			
630-20-6	Tetrachloroethane , 1,1,1,2-	88,000	81	750	81			
79-34-5	Tetrachloroethane, 1,1,2,2-	180,000	24	1,700	24			
127-18-4	Tetrachloroethene	1,700	53	380	53			
108-88-3	Toluene	33,000	NA	520	520			
71-55-6	Trichloroethane, 1,1,1-	11,000	NA	1,300	1,300			
79-00-5	Trichloroethane, 1,1,2-	12,000	55	2,600	55			
79-01-6	Trichloroethene	3,200	150	950	150			
75-69-4	Trichlorofluoromethane	1,600	NA	1,600	1,600			
96-18-4	Trichloropropane, 1,2,3-	18,000	28	1,100	28			

Chemical Abstract Service Number (CAS #)	Chemical of Concern	Standard for Single Chemical Noncarcinogen	Standard for Single Chemical Carcinogen	Soil Saturation	Generic Direct Contact Soil Standard for a Single Chemical (mg/kg)
75-01-4	Vinyl Chloride	210	12	1,100	12
1330-20-7	Xylenes, Total	1,500	NA	370	370
		olatile Organic Ch	emicals		
83-32-9	Acenaphthene	56,000	NA	NA	56,000
98-86-2	Acetophenone	110,000	NA	NA	110,000
107-13-1	Acrylonitrile	48	16	22,000	16
62-53-3	Aniline	540	7,400	62,000	540
120-12-7	Anthracene	280,000	NA	NA	280,000
92-87-5	Benzidine	3,400	030	NA	030
56-55-3	Benzo(a)anthracene	NA	76	NA	76
50-32-8	Benzo(a)pyrene	NA	7.7	NA	7.7
205-99-2	Benzo(b)fluoranthene	NA	77	NA	77
207-08-9	Benzo(k)fluoranthene	NA	770	NA	770
117-81-7	Bis (2-ethylhexyl) Phthalate (BEHP & DEHP)	22,000	4,800	190	190
85-68-7	Butyl Benzyl Phthalate	220,000	4,800	58	58
86-74-8	Carbazole	NA	3,400	NA	3,400
57-74-9	Chlordane	670	270	NA	270
218-01-9	Chrysene	NA	7,600	NA	7,600
53-70-3	Dibenz(a,h)anthracene	NA	7.7	NA	7.7
95-50-1	Dichlorobenzene, 1,2- (o)	4,600	NA	370	370
106-46-7	Dichlorobenzene, 1,4- (p)	17,000	130	NA	130
91-94-1	Dichlorobenzidine, 3,3-	NA	110	NA	110
72-54-8	Dichlorodiphenyldichloroethane (DDD)	4,100	470	NA	470
72-55-9	Dichlorodiphenyldichloroethene (DDE)	NA	310	NA	310
50-29-3	Dichlorodiphenyltrichloroethane (DDT)	1,000	350	NA	350
94-75-7	Dichlorophenoxyacetic acid, 2,4-	11,000	NA	NA	11,000
84-66-2	Diethyl Phthalate	900,000	NA	590	590
105-67-9	Dimethylphenol, 2,4-	22,000	NA	NA	22,000
84-74-2	Di-n-butyl Phthalate	110,000	NA	110	110
99-65-0	Dinitrobenzene, 1,3- (m)	110	NA	NA	110
528-29-0	Dinitrobenzene, 1,2-	110	NA	NA	110
121-14-2	Dinitrotoluene, 2,4-	2,200	98	NA	98
606-20-2	Dinitrotoluene, 2,6-	1,100	100	NA	100
72-20-8	Endrin	340	NA	NA	340
107-21-1	Ethylene Glycol	760,000	NA	110,000	110,000
206-44-0	Fluoranthene	37,000	NA	NA	37,000
86-73-7	Fluorene	37,000	NA	NA	37,000
76-44-8	Heptachlor	560	8.9	NA	8.9
1024-57-3	Heptachlor Epoxide	15	7.0	NA	7.0
87-68-3	Hexachloro-1,3-Butadiene	220	240	1,000	220
118-74-1	Hexachlorobenzene	900	28	NA	28

Chemical Abstract Service Number (CAS #)	Chemical of Concern	Standard for Single Chemical Noncarcinogen	Standard for Single Chemical Carcinogen	Soil Saturation	Generic Direct Contact Soil Standard for a Single Chemical (mg/kg)
67-72-1	Hexachloroethane	1,100	1,700	NA	1,100
193-39-5	Indeno(1,2,3-c,d)pyrene	NA	77	NA	77
78-59-1	Isophorone	140,000	71,000	4,600	4,600
98-82-8	Isopropylbenzene (Cumene)	5,700	NA	260	260
58-89-9	Lindane	550	70	NA	70
108-39-4	m-cresol	56,000	NA NA	61,000	56,000
72-43-5	Methoxychlor	5,600	NA	NA	5,600
90-12-0	Methylnaphthalene, 1-	66,000	NA	360	360
91-20-3	Naphthalene	280	150	NA	150
98-95-3	Nitrobenzene	170	NA	1,500	170
86-30-6	Nitrosodiphenylamine, <i>n</i> -	22,000	10,000	NA	10,000
95-48-7	o-cresol	56,000	NA	NA	56,000
117-84-0	Octyl Phthalate, di- <i>n</i> -	45,000	NA	12	12
106-44-5	p-cresol	5,600	NA	NA	5,600
87-86-5	Pentachlorophenol	17,000	280	NA	280
108-95-2	Phenol	66,000	NA	NA	66,000
1336-36-3	Polychlorinated Biphenyls	18	26	NA	18
129-00-0	Pyrene	28,000	NA	NA	28,000
110-86-1	Pyridine	1,100	NA	400,000	1,100
93-72-1	Silvex	9,000	NA	NA	9,000
8001-35-2	Toxaphene	NA	59	NA	59
95-95-4	Trichlorophenol, 2,4,5-	110,000	NA	NA	110,000
88-06-2	Trichlorophenol, 2,4,6-	NA	4,400	NA	4,400
95-63-6	Trimethylbenzene, 1,2,4-	120	NA	250	120
108-67-8	Trimethylbenzene, 1,3,5-	95	NA	200	95
99-35-4	Trinitrobenzene, 1,3,5- (s)	34,000	NA	NA	34,000
108-05-4	Vinyl Acetate	2,000	NA	2,700	2,000
	. ,	Inorganic Chemical		,	,
7440-36-0	Antimony	1,200	NA	NA	1,200
7440-38-2	Arsenic, Inorganic	610	82	NA	82
7440-39-3	Barium and Compounds	370,000	NA	NA	370,000
7440-41-7	Beryllium and Compounds	5,100	39,000	NA	5,100
7440-43-9	Cadmium	2,300	52,000	NA	2,300
16065-83-1	Chromium (III)	1,000,000	NA	NA	1,000,000
18540-29-9	Chromium (VI)	8,400	7,900	NA	7,900
7440-48-4	Cobalt	23,000	34,000	NA	23,000
57-12-5	Cyanide, Free	59,000	NA	NA	59,000
7782-41-4	Fluorine (soluble fluoride)	180,000	NA	NA	180,000
7439-97-6	Mercury	290	NA	NA	290
7440-02-0	Nickel (Soluble Salts)	44,000	NA	NA	44,000
7782-49-2	Selenium and Compounds	15,000	NA	NA	15,000
7440-22-4	Silver	15,000	NA	NA	15,000
7440-28-0	Thallium	230	NA	NA	230
7440-62-2	Vanadium	26,000	NA	NA	26,000
7440-66-6	Zinc and Compounds	880,000	NA	NA	880,000

(d) Table III: generic direct-contact soil standards for carcinogenic and non-carcinogenic chemicals of concern - construction and excavation activities category: (values are in mg/kg).

Chemical Abstract Service Number (CAS #)	Chemical of Concern	Standard for Single Chemical Noncarcinogen	Standard for Single Chemical Carcinogen	Soil Saturation	Generic Direct Contact Soil Standard for a Single Chemical (mg/kg)
		Volatile Organi	c Chemicals		
67-64-1	Acetone	320,000	NA	100,000	100,000
71-43-2	Benzene	150	540	920	150
75-15-0	Carbon Disulfide	190	NA	1,400	190
56-23-5	Carbon Tetrachloride	24	56	1,400	24
108-90-7	Chlorobenzene	2,100	NA	740	740
75-00-3	Chloroethane	5,500	470,000	2,200	2,200
67-66-3	Chloroform	430	55	3,400	55
124-48-1	Dibromochloromethane	390,000	16,000	1,600	1,600
75-71-8	Dichlorodifluoromethane	1,500	NA	1,400	1,400
75-34-3	Dichloroethane, 1,1-	2,500	NA	2,300	2,300
107-06-2	Dichloroethane, 1,2-	6,600	75	2,900	75
75-35-4	Dichloroethene, 1,1-	180	NA	1,700	180
156-59-2	Dichloroethene, cis-1,2-	190,000	NA	2,200	2,200
156-60-5	Dichloroethene, trans-1,2-	78	NA	1,800	78
78-87-5	Dichloropropane, 1,2 -	30	160	1,100	30
542-75-6	Dichloropropene, 1,3 -	38	330	810	38
123-91-1	Dioxane, 1,4-	87,000	2,300	270,000	2,300
60-29-7	Ethyl Ether	1,000,000	NA	33,000	33,000
100-41-4	Ethylbenzene	2,600	NA	230	230
50-00-0	Formaldehyde	3,500	4,700	130,000	3,500
64-18-6	Formic acid	1,500	NA	170,000	1,500
110-54-3	Hexane, n-	710	NA	190	190
78-83-1	Isobutyl Alcohol	1,000,000	NA	40,000	40,000
67-56-1	Methanol	1,000,000	NA	110,000	110,000
78-93-3	Methyl Ethyl Ketone (MEK)	15,000	NA	100,000	15,000
108-10-1	Methyl Isobutyl Ketone (MIBK)	12,000	NA	16,000	12,000
1634-04-4	Methyl tert-Butyl Ether (MTBE)	8,300	7,500	6,700	6,700
75-09-2	Methylene Chloride	1,500	2,200	2,300	1,500
100-42-5	Styrene	27,000	NA	1,700	1,700
100-42-0	Tetrachloroethane,	21,000	IAV	1,700	1,700
630-20-6	1,1,1,2-	58,000	310	750	310
	Tetrachloroethane,				
79-34-5	1,1,2,2-	970,000	94	1,700	94
127-18-4	Tetrachloroethene	540	220	380	220
108-88-3	Toluene	2,000	NA	520	520
71-55-6	Trichloroethane, 1,1,1-	33,000	NA	1,300	1,300
79-00-5	Trichloroethane, 1,1,2-	78,000	210	2,600	210

Chemical Abstract Service Number (CAS #)	Chemical of Concern	Standard for Single Chemical Noncarcinogen	Standard for Single Chemical Carcinogen	Soil Saturation	Generic Direct Contact Soil Standard for a Single Chemical (mg/kg)
79-01-6	Trichloroethene	960	560	950	560
75-69-4	Trichlorofluoromethane	4,800	NA	1,600	1,600
96-18-4	Trichloropropane, 1,2,3-	120,000	190	1,100	190
75-01-4	Vinyl Chloride	63	48	1,100	48
1330-20-7	Xylenes, Total	440	NA	370	370
1000 20 1		Semi-Volatile Orga		0.0	0.0
83-32-9	Acenaphthene	440,000	NA	NA	440,000
98-86-2	Acetophenone	850,000	NA	NA	850,000
107-13-1	Acrylonitrile	14	69	22,000	14
62-53-3	Aniline	1,300	44,000	62,000	1,300
120-12-7	Anthracene	1,000,000	NA	NA	1,000,000
92-87-5	Benzidine	2,600	2.5	NA	2.5
56-55-3	Benzo(a)anthracene	NA	680	NA	680
50-32-8	Benzo(a)pyrene	NA	69	NA	69
205-99-2	Benzo(b)fluoranthene	NA	690	NA	690
207-08-9	Benzo(k)fluoranthene	NA	6,900	NA	6,900
117-81-7	Bis (2-ethylhexyl) Phthalate (BEHP & DEHP)	170,000	42,000	190	190
85-68-7	Butyl Benzyl Phthalate	1,000,000	43,000	58	58
86-74-8	Carbazole	NA	30,000	NA	30,000
57-74-9	Chlordane	77	1,900	NA	77
218-01-9	Chrysene	NA	69,000	NA	69,000
53-70-3	Dibenz(a,h)anthracene	NA	69	NA	69
95-50-1	Dichlorobenzene, 1,2- (o)	12,000	NA	370	370
106-46-7	Dichlorobenzene, 1,4- (p)	15,000	510	NA	510
91-94-1	Dichlorobenzidine, 3,3-	NA	730	NA	730
72-54-8	Dichlorodiphenyldichloroet hane (DDD)	2,800	3,500	NA	2,800
72-55-9	Dichlorodiphenyldichloroet hene (DDE)	NA	2,200	NA	2,200
50-29-3	Dichlorodiphenyltrichloroet hane (DDT)	700	2,700	NA	700
94-75-7	Dichlorophenoxyacetic acid, 2,4-	8,500	NA	NA	8,500
84-66-2	Diethyl Phthalate	1,000,000	NA	590	590
105-67-9	Dimethylphenol, 2,4-	170,000	NA	NA	170,000
84-74-2	Di-n-butyl Phthalate	850,000	NA	110	110
99-65-0	Dinitrobenzene, 1,3- (m)	850	NA	NA	850
528-29-0	Dinitrobenzene, 1,2-	850	NA	NA	850
121-14-2	Dinitrotoluene, 2,4-	1,700	870	NA	870
606-20-2	Dinitrotoluene, 2,6-	8,600	880	NA	880
72-20-8	Endrin	1,700	NA	NA	1,700
107-21-1	Ethylene Glycol	1,000,000	NA	110,000	110,000
206-44-0	Fluoranthene	290,000	NA	NA	290,000
86-73-7	Fluorene	290,000	NA	NA	290,000
76-44-8	Heptachlor	85	52	NA	52

Chemical Abstract Service Number (CAS #)	Chemical of Concern	Standard for Single Chemical Noncarcinogen	Standard for Single Chemical Carcinogen	Soil Saturation	Generic Direct Contact Soil Standard for a Single Chemical (mg/kg)
1024-57-3	Heptachlor Epoxide	11	58	NA	11
87-68-3	Hexachloro-1,3-Butadiene	170	1,100	1,000	170
118-74-1	Hexachlorobenzene	85	170	NA	85
67-72-1	Hexachloroethane	8,500	8,000	NA	8,000
193-39-5	Indeno(1,2,3-c,d)pyrene	NA	690	NA	690
78-59-1	Isophorone	1,000,000	630,000	4,600	4,600
98-82-8	Isopropylbenzene (Cumene)	17,000	NA	260	260
58-89-9	Lindane	3,900	420	NA	420
108-39-4	m-cresol	430,000	NA	61,000	61,000
72-43-5	Methoxychlor	4,300	NA	NA	4,300
90-12-0	Methylnaphthalene, 1-	51,000	NA	360	360
91-20-3	Naphthalene	84	580	NA	84
98-95-3	Nitrobenzene	610	NA	1,500	610
86-30-6	Nitrosodiphenylamine, n-	17,000	71,000	NA	17,000
95-48-7	o-cresol	430,000	NA	NA	430,000
117-84-0	Octyl Phthalate, di-n-	340,000	NA	12	12
106-44-5	p-cresol	4,300	NA	NA	4,300
87-86-5	Pentachlorophenol	460	2,600	NA	460
108-95-2	Phenol	510,000	NA	NA	510,000
1336-36-3	Polychlorinated Biphenyls	42	230	NA	42
129-00-0	Pyrene	220,000	NA	NA	220,000
110-86-1	Pyridine	8,500	NA	400,000	8,500
93-72-1	Silvex	6,800	NA	NA	6,800
8001-35-2	Toxaphene	NA	500	NA	500
95-95-4	Trichlorophenol, 2,4,5-	850,000	NA	NA	850,000
88-06-2	Trichlorophenol, 2,4,6-	NA	29,000	NA	29,000
95-63-6	Trimethylbenzene, 1,2,4-	35	NA	250	35
108-67-8	Trimethylbenzene, 1,3,5-	280	NA	200	200
99-35-4	Trinitrobenzene, 1,3,5- (s)	430	NA	NA	430
108-05-4	Vinyl Acetate	100	NA	2,700	100
Inorganic Chemicals					
7440-36-0	Antimony	390	NA	NA	390
7440-38-2	Arsenic, Inorganic	420	640	NA	420
7440-39-3	Barium and Compounds	120,000	NA	NA	120,000
7440-41-7	Beryllium and Compounds	3,100	63,000	NA	3,100
7440-43-9	Cadmium	1,600	83,000	NA	1,600
16065-83-1	Chromium (III)	1,000,000	NA	NA	1,000,000
18540-29-9	Chromium (VI)	15,000	13,000	NA	13,000
7440-48-4	Cobalt	4,000	54,000	NA	4,000
57-12-5	Cyanide, Free	39,000	NA	NA	39,000
7782-41-4	Fluorine (soluble fluoride)	120,000	NA	NA	120,000
7439-97-6	Mercury	190	NA	NA	190
7440-02-0	Nickel (Soluble Salts)	21,000	NA	NA	21,000
7782-49-2	Selenium and Compounds	9,700	NA	NA	9,700

Chemical Abstract Service Number (CAS #)	Chemical of Concern	Standard for Single Chemical Noncarcinogen	Standard for Single Chemical Carcinogen	Soil Saturation	Generic Direct Contact Soil Standard for a Single Chemical (mg/kg)
7440-22-4	Silver	9,700	NA	NA	9,700
7440-28-0	Thallium	1,600	NA	NA	1,600
7440-62-2	Vanadium	17,000	NA	NA	17,000
7440-66-6	Zinc and Compounds	580,000	NA	NA	580,000

- (e) Calculating property-specific soil saturation concentrations.
 - (i) In lieu of using the generic soil saturation concentrations listed in table I through table III in paragraphs (C)(3)(b) through (C)(3)(d) of this rule, the volunteer may use the following equation to calculate a property-specific soil saturation concentration:

$$C_{sat} = \frac{S}{\rho_b} (K_d \rho_b + \theta_w + H' \theta_a)$$
Where:

 C_{sat} is the soil saturation concentration (mg/kg)

S is the water solubility (mg/L water)

 ρ_b is dry soil bulk density (kg/L)

 K_d is the soil - water partition coefficient (L/kg) (default is $K_d = K_{oc} \times f_{oc}$)

 $K_{\it oc}$ is the soil organic carbon/water partition coefficient (L/kg)

 f_{oc} is the fraction organic carbon of soil (g/g)

 θ_w is the water - filled soil porosity (L_{water}/L_{soil})

H' is the dimensionless Henry's Law constant

 θ_a is the air - filled soil porosity (L_{pore}/L_{soil}).

- (ii) All chemical-specific values for the above equation must be obtained from one of the following sources:
 - (a) U.S. EPA's "Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites;"
 - (b) Ohio EPA's "Support Document for the Development of Generic Numerical Standards and Risk Assessment Procedures;"
 - (c) Hazardous substances data bank;
 - (d) The physical properties database;

- (e) CHEMFATE chemical search;
- (f) Risk assessment information system; or
- (g) If chemical-specific values for the equation specified in this paragraph are not available in the sources listed in this paragraph, contact an Ohio EPA division of emergency and remedial response representative.
- (i) Physical values must be obtained from one of the following sources:
 - (a) Physical values must be obtained from one of the following sources:
 - (i) U.S. EPA's "Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites;" or
 - (ii) Property-specific data that meet the criteria contained in paragraph (D)(3)(b)(iv) of rule 3745-300-09 of the Administrative Code.
- (f) Table IV: generic direct-contact standards for lead (values are in mg/kg).

	Residential Land Use	Commercial/Industrial Land Use	Construction and Excavation Activities
Lead	400	1800	750

The lead standards contained in the table IV take into account other factors and assumptions in addition to the carcinogenic or non-carcinogenic risk of lead. Therefore, using the cumulative risk considerations contained in paragraph (C)(2)(b) of this rule is not appropriate and need not be performed.

- (D) Generic unrestricted potable use standards for hazardous substances in ground water.
 - (1) Applicability.
 - (a) The generic unrestricted potable use standards contained in paragraph (D)(3) of this rule apply as determined in accordance with rule 3745-300-10 of the Administrative Code.
 - (b) A property-specific risk assessment must be conducted in accordance with the procedures established in rule 3745-300-09 of the Administrative Code to determine applicable standards in place of or in addition to using the generic unrestricted potable use standards if any of paragraph (A)(3)(a) through (A)(3)(c) of this rule apply to the property, and those exposures are required to be evaluated under rule 3745-300-10 of the Administrative Code;

(c) The standards listed in paragraph (D)(3) of this rule apply to releases of hazardous substances. Generic numerical standards for petroleum releases are identified in paragraph (B)(3) of this rule.

(2) Assumptions.

The generic unrestricted potable use standards contained in table V in paragraph (D)(3)(b) of this rule or table VI in paragraph (D)(3)(c) of this rule were determined using the assumption that the ground water on, underlying and emanating from the property will be used as a source of water for drinking, cooking, showering and bathing.

- (a) The generic unrestricted potable use standards listed in table V in paragraph (D)(3)(b) of this rule are maximum contaminant levels or other regulatory established criteria which take into account factors and assumptions in addition to carcinogenic risk and non-carcinogenic hazards of the chemical. Therefore, the volunteer does not need to include the values for the chemicals of concern in table V in paragraph (D)(3)(b) of this rule in the cumulative adjustment for multiple chemicals required by paragraph (D)(2)(c) of this rule.
- (b) The risk-derived generic unrestricted potable use standards presented in table VI in paragraph (D)(3)(c) of this rule assume a single chemical of concern is present in the ground water on, underlying, or emanating from the property.
 - (i) The generic unrestricted potable use standards presented in table VI in paragraph (D)(3)(c) of this rule are based on the following risk and hazard levels:
 - (a) For hazardous substances having carcinogenic effects, the chemical-specific carcinogenic risk must not exceed one excess cancer in a population of 100,000 (i.e. 1 x 10⁻⁵); and
 - (b) For hazardous substances having non-carcinogenic effects, the chemical-specific hazard must not exceed a hazard index of 1.
 - (ii) The concentration of chemicals of concern, as determined in accordance with paragraph (F)(5) of rule 3745-300-07 of the Administrative Code, must not exceed the single chemical generic unrestricted potable use standard. Applicable ground water response requirements are included in rule 3745-300-10 of the Administrative Code.

(c) Multiple chemicals.

When more than one chemical of concern is present at a property and applicable generic unrestricted potable use standards for the chemicals of concern are contained in table VI in paragraph (D)(3)(c) of this rule, the values for each chemical of concern contained in

table VI must be adjusted for the presence of multiple chemicals in order to meet the human health risk and hazard levels described in paragraph (D)(2)(b)(i) of this rule. Those chemicals of concern present on the property that have applicable generic unrestricted potable use standards available in table V in paragraph (D)(3)(b) of this rule are not included within the multiple chemical adjustment. The cumulative adjustment must be made in accordance with paragraph (E)(2) of this rule. All final cumulative human health carcinogenic risk and non-carcinogenic hazard levels are based on one significant figure. A cumulative adjustment for multiple chemicals must also be made when using a combination of values listed in table VI and applicable standards determined by a property-specific risk assessment conducted in accordance with rule 3745-300-09 of the Administrative Code.

- (3) The generic unrestricted potable use standards for ground water.
 - (a) The generic unrestricted potable use standards for petroleum at commercial, industrial, and residential properties are the standards established in rules adopted under division (B) of section 3737.882 of the Revised Code, as provided by division (B)(1) of section 3746.04 of the Revised Code.
 - (b) Table V: generic unrestricted potable use standards based on maximum contaminant levels or other regulatory established criteria (values are in $\mu g/l$, or micrograms per liter).

Chemical Abstract Service Number (CAS #)	Chemical of Concern	Generic Unrestricted Potable Use Standard for a Single Chemical (μg/L)
	Volatile Organic Chemicals	
71-43-2	Benzene	5
56-23-5	Carbon Tetrachloride	5
108-90-7	Chlorobenzene	100
107-06-2	Dichloroethane, 1,2-	5
75-35-4	Dichloroethene, 1,1-	7
156-59-2	Dichloroethene, cis-1,2-	70
156-60-5	Dichloroethene, trans-1,2-	100
78-87-5	Dichloropropane, 1,2 -	5
100-41-4	Ethylbenzene	700
1634-04-4	Methyl tert-Butyl Ether (MTBE)	40
75-09-2	Methylene Chloride	5
100-42-5	Styrene	100
127-18-4	Tetrachloroethene	5
108-88-3	Toluene	1,000
71-55-6	Trichloroethane, 1,1,1-	200
79-00-5	Trichloroethane, 1,1,2-	5
79-01-6	Trichloroethene	5
75-01-4	Vinyl Chloride	2
1330-20-7	Xylenes, Total	10,000

Inorganic Chemicals	Chemical Abstract Service Number (CAS #)	Chemical of Concern	Generic Unrestricted Potable Use Standard for a Single Chemical (μg/L)
7440-36-0 Antimony 6 7440-38-2 Arsenic, inorganic 10 12001-28-4 Absestos 7° 7440-39-3 Barium and Compounds 2,000 7440-41-7 Beryllium and Compounds 4 7440-47-3 Chromium, Total 100 57-12-5 Cyanide, Free 200 7782-41-4 Fluorine (soluble fluoride) 4,000 7439-92-1 Lead 15 7439-97-6 Mercury 2 7782-49-2 Selenium and Compounds 50 7440-28-0 Thallium 2 Semi-Volatile Organic Chemicals and Pesticides 15972-60-8 15972-60-8 Alachlor 2 1912-24-9 Atrazine 3 50-32-8 Benzo(a)pyrene 0.2 117-81-7 Bis (2-ethylhexyl) Phthalate (BEHP & DEHP) 6 1563-66-2 Carbofuran 40 57-99-0 Dalapon 20 95-50-1 Dichlorobenzene, 1,2- (o) 600 106-46-7 Dichlor		Inorganic Chemicals	
7440-38-2 Arsenic, Inorganic 10 12001-28-4 Asbestos 7° 7440-39-3 Barium and Compounds 2,000 7440-41-7 Beryllium and Compounds 4 7440-43-9 Cadmium 5 7440-47-3 Chromium, Total 100 57-12-5 Cyanide, Free 200 7782-41-4 Fluorine (soluble fluoride) 4,000 7439-92-1 Lead 15 7439-97-6 Mercury 2 7782-49-2 Selenium and Compounds 50 7440-28-0 Thallium 2 Semi-Volatile Organic Chemicals and Pesticides 15972-60-8 Alachlor 2 1912-24-9 Atrazine 3 50-32-8 Benzo(a)pyrene 0.2 117-81-7 Bis (2-ethylhexyl) Phthalate (BEHP & DEHP) 6 1563-66-2 Carbofuran 40 57-74-9 Chlordane 2 75-99-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,2- (o) <td< td=""><td>7440-36-0</td><td>Antimony</td><td>6</td></td<>	7440-36-0	Antimony	6
12001-28-4 Asbestos	7440-38-2	•	10
7440-41-7 Beryllium and Compounds 4 7440-43-9 Cadmium 5 7440-47-3 Chromium, Total 100 57-12-5 Cyanide, Free 200 7782-41-4 Fluorine (soluble fluoride) 4,000 7439-92-1 Lead 15 7439-97-6 Mercury 2 7782-49-2 Selenium and Compounds 50 7440-28-0 Thallium 2 Semi-Volatile Organic Chemicals and Pesticides 15972-60-8 Alachlor 2 1912-24-9 Atrazine 3 50-32-8 Benzo(a)pyrene 0.2 117-81-7 Bis (2-ethylhexyl) Phthalate (BEHP & DEHP) 6 1563-66-2 Carbofuran 40 57-74-9 Chlordane 2 75-99-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorobenzene, 1,4- (p) 75 96-12-8 Dibromochloropropane (D	12001-28-4		7*
7440-41-7 Beryllium and Compounds 4 7440-43-9 Cadmium 5 7440-47-3 Chromium, Total 100 57-12-5 Cyanide, Free 200 7782-41-4 Fluorine (soluble fluoride) 4,000 7439-92-1 Lead 15 7439-97-6 Mercury 2 7782-49-2 Selenium and Compounds 50 7440-28-0 Thallium 2 Semi-Volatile Organic Chemicals and Pesticides 15972-60-8 Alachlor 2 1912-24-9 Atrazine 3 50-32-8 Benzo(a)pyrene 0.2 117-81-7 Bis (2-ethylhexyl) Phthalate (BEHP & DEHP) 6 1563-66-2 Carbofuran 40 57-74-9 Chlordane 2 75-99-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorobenzene, 1,4- (p) 75 96-12-8 Dibromochloropropane (D	7440-39-3	Barium and Compounds	2,000
7440-43-9 Cadmium 5 7440-47-3 Chromium, Total 100 57-12-5 Cyanide, Free 200 7782-41-4 Fluorine (soluble fluoride) 4,000 7439-92-1 Lead 15 7439-97-6 Mercury 2 7782-49-2 Selenium and Compounds 50 7440-28-0 Thallium 2 Semi-Volatile Organic Chemicals and Pesticides 15972-60-8 Alachlor 2 15972-60-9 Alachlor 2 15747-9 Chlordane 0.2 117-81-7 Bis (2-ethylhexyl) Phthalate (BEHP & DEHP) 6 57-7-9-0	7440-41-7	•	4
57-12-5 Cyanide, Free 200 7782-41-4 Fluorine (soluble fluoride) 4,000 7439-92-1 Lead 15 7439-97-6 Mercury 2 7782-49-2 Selenium and Compounds 50 7440-28-0 Thallium 2 Serni-Volatile Organic Chemicals and Pesticides 15972-60-8 Alachlor 2 1912-24-9 Atrazine 3 50-32-8 Benzo(a)pyrene 0.2 117-81-7 Bis (2-ethylhexyl) Phthalate (BEHP & DEHP) 6 1563-66-2 Carbofuran 40 57-74-9 Chlordane 2 75-99-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,2- (0) 600 106-48-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorobenzene, 1,4- (p) 75 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 174-60-1-6 Dioxin (7440-43-9	'	5
7782-41-4 Fluorine (soluble fluoride) 4,000 7439-92-1 Lead 15 7439-97-6 Mercury 2 7782-49-2 Selenium and Compounds 50 7440-28-0 Thallium 2 Semi-Volatile Organic Chemicals and Pesticides 15972-60-8 Alachlor 2 15972-60-8 Alachlor 2 15972-24-9 Atrazine 3 50-32-8 Benzo(a)pyrene 0.2 117-81-7 Bis (2-ethylhexyl) Phthalate (BEHP & DEHP) 6 1563-66-2 Carbofuran 40 57-74-9 Chlordane 2 75-90-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,2- (o) 600 106-46-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorophenoxyacetic acid, 2,4- 70 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 174-60-1-6 Dioxi	7440-47-3	Chromium, Total	100
7782-41-4 Fluorine (soluble fluoride) 4,000 7439-92-1 Lead 15 7439-97-6 Mercury 2 7782-49-2 Selenium and Compounds 50 7440-28-0 Thallium 2 Semi-Volatile Organic Chemicals and Pesticides 15972-60-8 Alachlor 2 15972-60-8 Alachlor 2 15972-24-9 Atrazine 3 50-32-8 Benzo(a)pyrene 0.2 117-81-7 Bis (2-ethylhexyl) Phthalate (BEHP & DEHP) 6 1563-66-2 Carbofuran 40 57-74-9 Chlordane 2 75-90-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,2- (o) 600 106-46-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorophenoxyacetic acid, 2,4- 70 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 174-60-1-6 Dioxi	57-12-5	Cvanide, Free	200
7439-92-1 Lead 15 7439-97-6 Mercury 2 7782-49-2 Selenium and Compounds 50 7440-28-0 Thallium 2 Semi-Volatile Organic Chemicals and Pesticides 15972-60-8 Alachlor 2 1912-24-9 Atrazine 3 50-32-8 Benzo(a)pyrene 0.2 117-81-7 Bis (2-ethylhexyl) Phthalate (BEHP & DEHP) 6 1563-66-2 Carbofuran 40 57-74-9 Chlordane 2 75-99-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,2- (o) 600 106-46-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorobenzene, 1,4- (p) 7 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,37,8-TCDD) 0.00003 85-00-7 Diquat<		•	
7439-97-6 Mercury 2 7782-49-2 Selenium and Compounds 50 7440-28-0 Thallium 2 Semi-Volatile Organic Chemicals and Pesticides 15972-60-8 Alachlor 2 1912-24-9 Atrazine 3 50-32-8 Benzo(a)pyrene 0.2 117-81-7 Bis (2-ethlylhexyl) Phthalate (BEHP & DEHP) 6 1563-66-2 Carbofuran 40 57-74-9 Chlordane 2 75-99-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,2- (o) 600 106-46-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorophenoxyacetic acid, 2,4- 70 103-23-1 Di(2-ethlylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin <td></td> <td>, , , , , , , , , , , , , , , , , , ,</td> <td>· · · · · · · · · · · · · · · · · · ·</td>		, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·
7782-49-2 Selenium and Compounds 50 7440-28-0 Thallium 2 Semi-Volatile Organic Chemicals and Pesticides 15972-60-8 Alachlor 2 1912-24-9 Atrazine 3 50-32-8 Benzo(a)pyrene 0.2 117-81-7 Bis (2-ethylhexyl) Phthalate (BEHP & DEHP) 6 1563-66-2 Carbofuran 40 57-74-9 Chlordane 2 75-99-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,2- (o) 600 106-46-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorophenoxyacetic acid, 2,4- 70 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-28-8 Endrin 2 106-93-4 Ethylene Dibro		Mercury	
Table Tabl		,	
15972-60-8 Alachlor 2 1912-24-9 Atrazine 3 50-32-8 Benzo(a)pyrene 0.2 117-81-7 Bis (2-ethylhexyl) Phthalate (BEHP & DEHP) 6 1563-66-2 Carbofuran 40 57-74-9 Chlordane 2 75-99-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,2- (o) 600 106-46-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorophenoxyacetic acid, 2,4- 70 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor Epoxide 0.2 118-74-1 H		·	
15972-60-8 Alachlor 2 1912-24-9 Atrazine 3 50-32-8 Benzo(a)pyrene 0.2 117-81-7 Bis (2-ethylhexyl) Phthalate (BEHP & DEHP) 6 1563-66-2 Carbofuran 40 57-74-9 Chlordane 2 75-99-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,2- (o) 600 106-46-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorophenoxyacetic acid, 2,4- 70 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor Epoxide 0.2 118-74-1 H		Semi-Volatile Organic Chemicals and Pesticides	
1912-24-9 Atrazine 3 50-32-8 Benzo(a)pyrene 0.2 117-81-7 Bis (2-ethylhexyl) Phthalate (BEHP & DEHP) 6 1563-66-2 Carbofuran 40 57-74-9 Chlordane 2 75-99-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,2- (o) 600 106-46-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorophenoxyacetic acid, 2,4- 70 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-49-4	15972-60-8	I The state of the	2
50-32-8 Benzo(a)pyrene 0.2 117-81-7 Bis (2-ethylhexyl) Phthalate (BEHP & DEHP) 6 1563-66-2 Carbofuran 40 57-74-9 Chlordane 2 75-99-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,2- (o) 600 106-46-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorobenzene, 1,4- (p) 75 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 <t< td=""><td></td><td></td><td></td></t<>			
117-81-7 Bis (2-ethylhexyl) Phthalate (BEHP & DEHP) 6 1563-66-2 Carbofuran 40 57-74-9 Chlordane 2 75-99-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,2- (o) 600 106-46-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorophenoxyacetic acid, 2,4- 70 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-43-5 Methoxychlor 40 23135-22-0			
1563-66-2 Carbofuran 40 57-74-9 Chlordane 2 75-99-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,2- (o) 600 106-46-7 Dichlorophenoxyacetic acid, 2,4- 75 94-75-7 Dichlorophenoxyacetic acid, 2,4- 70 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorobenzene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor <td></td> <td>\ /12</td> <td>-</td>		\ /12	-
57-74-9 Chlordane 2 75-99-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,2- (o) 600 106-46-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorophenoxyacetic acid, 2,4- 70 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vyda		· · · · · · · · · · · · · · · · · · ·	-
75-99-0 Dalapon 200 95-50-1 Dichlorobenzene, 1,2- (o) 600 106-46-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorophenoxyacetic acid, 2,4- 70 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorobenzene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorop			
95-50-1 Dichlorobenzene, 1,2- (o) 600 106-46-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorophenoxyacetic acid, 2,4- 70 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1			
106-46-7 Dichlorobenzene, 1,4- (p) 75 94-75-7 Dichlorophenoxyacetic acid, 2,4- 70 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlor		•	
94-75-7 Dichlorophenoxyacetic acid, 2,4- 70 103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5		, , , , , , , , , , , , , , , , , , ,	
103-23-1 Di(2-ethylhexyl)adipate 400 96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5		* '	-
96-12-8 Dibromochloropropane (DBCP) 0.2 88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5		· · · · · · · · · · · · · · · · · · ·	
88-85-7 Dinoseb 7 1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5			
1746-01-6 Dioxin (2,3,7,8-TCDD) 0.00003 85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5		· · · · · · · · · · · · · · · · · · ·	-
85-00-7 Diquat 20 145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5			<u> </u>
145-73-3 Endothall 100 72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5		, , , , ,	
72-20-8 Endrin 2 106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5		_ •	
106-93-4 Ethylene Dibromide (EDB) 0.05 107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5			
107-18-36 Glyphosate 700 76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5			
76-44-8 Heptachlor 0.4 1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5		` '	
1024-57-3 Heptachlor Epoxide 0.2 118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5		 	
118-74-1 Hexachlorobenzene 1 77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5		•	
77-47-4 Hexachlorocyclopentadiene 50 58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5		· · · · · · · · · · · · · · · · · · ·	
58-89-9 Lindane 0.2 72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5			
72-43-5 Methoxychlor 40 23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5		· ·	
23135-22-0 Oxamyl (Vydate) 200 87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5			
87-86-5 Pentachlorophenol 1 1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5			
1918-02-1 Picloram 500 1336-36-3 Polychlorinated Biphenyls 0.5		<u> </u>	İ
1336-36-3 Polychlorinated Biphenyls 0.5		1	
	93-72-1	Silvex (2,4,5 TP)	50

Chemical Abstract Service Number (CAS #)	Chemical of Concern	Generic Unrestricted Potable Use Standard for a Single Chemical (µg/L)		
122-34-9	Simazine	4		
8001-35-2	Toxaphene	3		
120-82-1	Trichlorobenzene, 1,2,4-	70		
Trihalomethanes (THMs)				
Not Available	Trihalomethanes, Total	80		

^{*} Units for this standard are in million fibers per liter, for all fibers longer than ten micrometers in length.

(c) Table VI: risk-derived generic unrestricted potable use standards (values are in $\mu g/l$, or micrograms per liter).

Chemical Abstract Service Number (CAS #)	Chemical of Concern	Standard for Single Chemical Noncarcinogen	Standard for Single Chemical Carcinogen	Generic Unrestricted Potable Use Standard for a Single Chemical (μg/L)
	Volatile Orga	nic Chemicals		
67-64-1	Acetone	14,000	NA	14,000
75-15-0	Carbon Disulfide	1,400	NA	1,400
75-00-3	Chloroethane	6,200	550	550
67-66-3	Chloroform	150	40	40
124-48-1	Dibromochloromethane	320	19	19
75-71-8	Dichlorodifluoromethane	2,100	NA	2,100
75-34-3	Dichloroethane, 1,1-	2,600	250	250
542-75-6	Dichloropropene, 1,3 -	270	16	16
123-91-1	Dioxane, 1,4-	1,600	140	140
60-29-7	Ethyl Ether	3,200	NA	3,200
50-00-0	Formaldehyde	3,200	NA	3,200
64-18-6	Formic acid	32,000	NA	32,000
110-54-3	Hexane, n-	910	NA	910
78-83-1	Isobutyl Alcohol	4,700	NA	4,700
67-56-1	Methanol	7,900	NA	7,900
78-93-3	Methyl Ethyl Ketone (MEK)	8,900	NA	8,900
108-10-1	Methyl Isobutyl Ketone (MIBK)	1,200	NA	1,200
630-20-6	Tetrachloroethane , 1,1,1,2-	470	56	56
79-34-5	Tetrachloroethane, 1,1,2,2-	930	7.0	7.0
75-69-4	Trichlorofluoromethane	3,800	NA	3,800
	Semi-Volatile O	rganic Chemicals		
83-32-9	Acenaphthene	950	NA	950
98-86-2	Acetophenone	1,600	NA	1,600
62-53-3	Aniline	110	280	110
120-12-7	Anthracene	4,700	NA	4,700
56-55-3	Benzo(a)anthracene	NA	0.63	0.63
205-99-2	Benzo(b)fluoranthene	NA	0.46	0.46
207-08-9	Benzo(k)fluoranthene	NA	22	22

Chemical Abstract Service Number (CAS #)	Chemical of Concern	Standard for Single Chemical Noncarcinogen	Standard for Single Chemical Carcinogen	Generic Unrestricted Potable Use Standard for a Single Chemical (μg/L)	
85-68-7	Butyl Benzyl Phthalate	3,200	110	110	
86-74-8	Carbazole	NA	79	79	
218-01-9	Chrysene	NA	63	63	
72-54-8	Dichlorodiphenyldichloroethane (DDD)	22	3.5	3.5	
72-55-9	Dichlorodiphenyldichloroethene (DDE)	NA	2.6	2.6	
50-29-3	Dichlorodiphenyltrichloroethane (DDT)	4.8	2.0	2.0	
84-66-2	Diethyl Phthalate	13,000	NA	13,000	
105-67-9	Dimethylphenol, 2,4-	310	NA	310	
84-74-2	Di- <i>n</i> -butyl Phthalate	1,500	NA	1,500	
107-21-1	Ethylene Glycol	32,000	NA	32,000	
206-44-0	Fluoranthene	420	NA	420	
86-73-7	Fluorene	630	NA	630	
67-72-1	Hexachloroethane	15	100	15	
193-39-5	Indeno(1,2,3-c,d)pyrene	NA	0.34	0.34	
78-59-1	Isophorone	3,200	1700	1,700	
98-82-8	Isopropylbenzene (Cumene)	1,400	NA	1,400	
108-39-4	m-cresol	790	NA	790	
90-12-0	Methylnaphthalene, 1-	1,100	NA	1,100	
91-20-3	Naphthalene	67	100	67	
86-30-6	Nitrosodiphenylamine, n-	310	300	300	
95-48-7	o-cresol	790	NA	790	
117-84-0	Octyl Phthalate, di-n-	630	NA	630	
106-44-5	p-cresol	79	NA	79	
108-95-2	Phenol	4,700	NA	4,700	
129-00-0	Pyrene	470	NA	470	
110-86-1	Pyridine	16	NA	16	
95-95-4	Trichlorophenol, 2,4,5-	1,600	NA	1,600	
88-06-2	Trichlorophenol, 2,4,6-	NA	120	120	
95-63-6	Trimethylbenzene, 1,2,4-	140	NA	140	
108-67-8	Trimethylbenzene, 1,3,5-	140	NA	140	
99-35-4	Trinitrobenzene, 1,3,5- (s)	470	NA	470	
108-05-4	Vinyl Acetate	4,300	NA	4,300	
Inorganic Chemicals					
7440-48-4	Cobalt	320	NA	320	
7440-02-0	Nickel (Soluble Salts)	320	NA	320	
7440-22-4	Silver	79	NA	79	
7440-62-2	Vanadium	130	NA	130	
7440-66-6	Zinc and Compounds	4,700	NA	4,700	

(E) Procedures for cumulative adjustment for multiple chemicals

(1) Concentration of chemicals of concern in soils.

(a) Several procedures may be used to adjust for the presence of multiple carcinogenic chemicals of concern in an identified area or exposure unit to comply with paragraph (C)(2)(b) of this rule. One method is to divide the exposure point concentration (chem_a) for each chemical of concern by the "Carcinogenic Single Chemical Direct-Contact Soil Standard" (GDCSC_a) in table I in paragraph (C)(3)(b) of this rule, table II in paragraph (C)(3)(b) of this rule. The resultant ratios are summed as an expression of estimated risk (see the equation below). When the summed ratios result in a value less than one, carcinogenic risk levels have been met on the property. When the summed ratios result in a value greater than one the carcinogenic risk levels are not met and remedial action is required.

$$(\frac{[chem_a]}{GDCSC_a} + \frac{[chem_b]}{GDCSC_b} + ...) = \frac{cumulative\ cancer\ risk\ ratio\ for\ direct\ contact\ soils\ on\ the\ property}$$

(b) Several procedures may be used to adjust for the presence of multiple non-carcinogenic chemicals of concern in an identified area or exposure unit to comply with paragraph (C)(2)(b) of this rule. One method is to divide the exposure point concentration (chem_a) for each chemical of concern by the "Non-carcinogenic Single Chemical Direct-Contact Soil Standard" (GDCSN_a) in table I in paragraph (C)(3)(b) of this rule, table II in paragraph (C)(3)(d) of this rule. The resultant ratios are summed as an expression of estimated hazard index (see the equation below). When the summed ratios result in a value less than one, non-carcinogenic risk levels have been met on the property. When the summed ratios result in a value greater than one the non-carcinogenic risk levels are not met and remedial action is required.

$$\left(\frac{[chem_a]}{GDCSN_a} + \frac{[chem_b]}{GDCSN_b} + ...\right) = \frac{cumulative\ noncancer\ risk\ ratio\ for\ direct\ contact\ soils\ on\ the\ property$$

Non-cancer risk ratios for non-carcinogenic chemicals of concern which do not exhibit the same toxic endpoint may be excluded from the calculation of the cumulative non-cancer risk ratio described above if a written justification for such exclusion is submitted. The consideration of all major toxic endpoints and mechanisms of action must include, at a minimum, those identified with the critical effect upon which the reference dose or reference concentration for each non-carcinogenic chemical of concern is based. The source for each reference dose and reference concentration for each non-carcinogenic chemical for which generic direct-contact soil standards have been derived, are cited in Ohio EPA's "Support Document for the Development of Generic Numerical Standards and Risk Assessment Procedures." It may be necessary to calculate more than one

- cumulative non-cancer risk ratio for a property resulting from the segregation of non-carcinogenic chemicals of concern on the basis of toxic endpoints or mechanisms of action.
- (c) For situations where a chemical of concern poses both carcinogenic and non-carcinogenic risks and a value for the chemical of concern is listed in both the "Standard for Single Chemical Carcinogens" column and the "Standard for Single Chemical Non-carcinogens" column contained in paragraph (C)(3) of this rule or an applicable single chemical carcinogen and non-carcinogen standard has been determined in accordance with rule 3745-300-09 of the Administrative Code, the chemical of concern must be included in the multiple carcinogenic chemical adjustment calculation under paragraph (E)(1)(a) of this rule and the adjustment calculation for multiple non-carcinogenic chemicals under paragraph (E)(1)(b) of this rule. The applicable standard for the chemical of concern will be the lowest of the values determined by using the equations in this paragraph or, if appropriate, the soil saturation concentration.
- (2) Concentration of chemicals of concern in ground water.
 - (a) Several procedures may be used to adjust for the presence of multiple carcinogenic chemicals of concern in groundwater to comply with paragraph (D)(2)(c) of this rule. One method is to divide the exposure point concentration (chem_a) for each chemical of concern by the "Carcinogenic Single Chemical Unrestricted Potable Use Standard" (GUPCS_a) in table VI in paragraph (D)(3)(c) of this rule. The resultant ratios are summed as an expression of estimated risk (see the equation below). When the summed ratios result in a value less than one, carcinogenic risk levels have been met on the property. When the summed ratios result in a value greater than one the carcinogenic risk levels are not met and remedial action is required.

$$(\frac{[\mathit{chem}_a]}{\mathit{GUPCS}_a} + \frac{[\mathit{chem}_b]}{\mathit{GUPCS}_b} + \ldots) = \underset{\mathit{ground water on the property}}{\mathit{cumulative cancer risk ratio for}}$$

(b) Several procedures may be used to adjust for the presence of multiple non-carcinogenic chemicals of concern in groundwater to comply with paragraph (D)(2)(c) of this rule. One method is to divide the exposure point concentration (chem_a) for each chemical of concern by the "Non-carcinogenic Single Chemical Unrestricted Potable Use Standard" (GUPNS_a) in table VI in paragraph (D)(3)(c) of this rule. The resultant ratios are summed as an expression of estimated hazard index (see the equation below). When the summed ratios result in a value less than one, non-carcinogenic hazard levels have been

met on the property. When the summed ratios result in a value greater than one the non-carcinogenic hazard levels are not met and remedial action is required.

$$(\frac{[chem_a]}{GUPNS_a} + \frac{[chem_b]}{GUPNS_b} + ...) = generic potable use ground water on the Property$$

Non-cancer risk ratios for non-carcinogenic chemicals of concern which do not exhibit the same toxic endpoint may be excluded from the calculation of the cumulative non-cancer risk ratio described above if a written justification for such exclusion is submitted. The consideration of all major toxic endpoints and mechanisms of action must include, at a minimum, those identified with the critical effect upon which the reference dose or reference concentration for each non-carcinogenic chemical of concern is based. The source for each reference dose and reference concentration for each non-carcinogenic chemical for which generic unrestricted potable use standards have been derived, are cited in Ohio EPA's "Support Document for the Development of Generic Numerical Standards and Risk Assessment Procedures." It may be necessary to calculate more than one cumulative non-cancer risk ratio for a property resulting from the segregation of non-carcinogenic chemicals of concern on the basis of toxic endpoints or mechanisms of action.

- (c) For situations where a chemical of concern poses both carcinogenic and non-carcinogenic risk and a value for the chemical of concern is listed in both the "Standard for Single Chemical Carcinogens" column and the "Standard for Single Chemical Non-carcinogens" column contained in table VI in paragraph (D)(3)(c) of this rule or an applicable single chemical carcinogen and non-carcinogen standard has been determined in accordance with rule 3745-300-09 of the Administrative Code, the chemical of concern must be evaluated in the adjustment calculation for multiple carcinogenic chemicals under paragraph (E)(2)(a) of this rule and the multiple non-carcinogenic chemical adjustment calculation under paragraph (E)(2)(b)of this rule. The applicable standard for the chemical of concern is the lowest value determined by using the equations in this paragraph.
- (F) Generic numerical standards for surface water.
 - (1) Applicability.

- (a) The generic numerical standards for surface water in paragraph (F)(2) of this rule apply to a property as determined in accordance with paragraph (F) of rule 3745-300-07 of the Administrative Code.
- (b) For all releases of petroleum on underlying or emanating to surface water of the state, the generic petroleum standards are contained within paragraph (B) of this rule.
- (2) Generic surface water standards.
 - (a) For all releases or source areas of hazardous substances on, underlying or emanating from the property to surface waters of the state, surface water chemical concentrations must be compared to the chemical criteria pursuant to Chapter 3745-1 of the Administrative Code. The outside mixing zone average criteria for human health and aquatic life and wildlife should be compared against ambient samples averaged over a thirty-day period. Single ambient samples are not to exceed the outside the mixing zone maximum. If all chemical constituents are below their corresponding chemical criteria, then the surface water may be eliminated as an exposure medium. If chemical constituents exceed their corresponding chemical criteria, then the surface water shall be further assessed in accordance with rule 3745-300-09 of the Administrative Code.

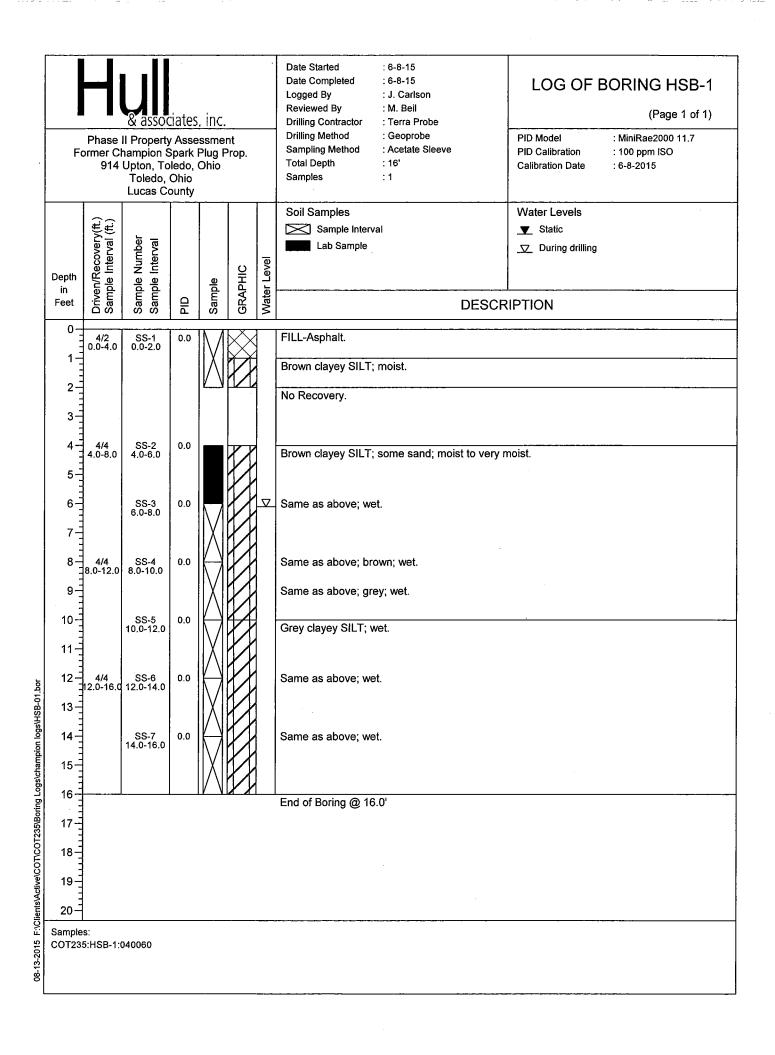
For the purposes of this rule, the generic numerical standards for surface water apply regardless of whether the release or source area of hazardous substances is a point source or nonpoint source.

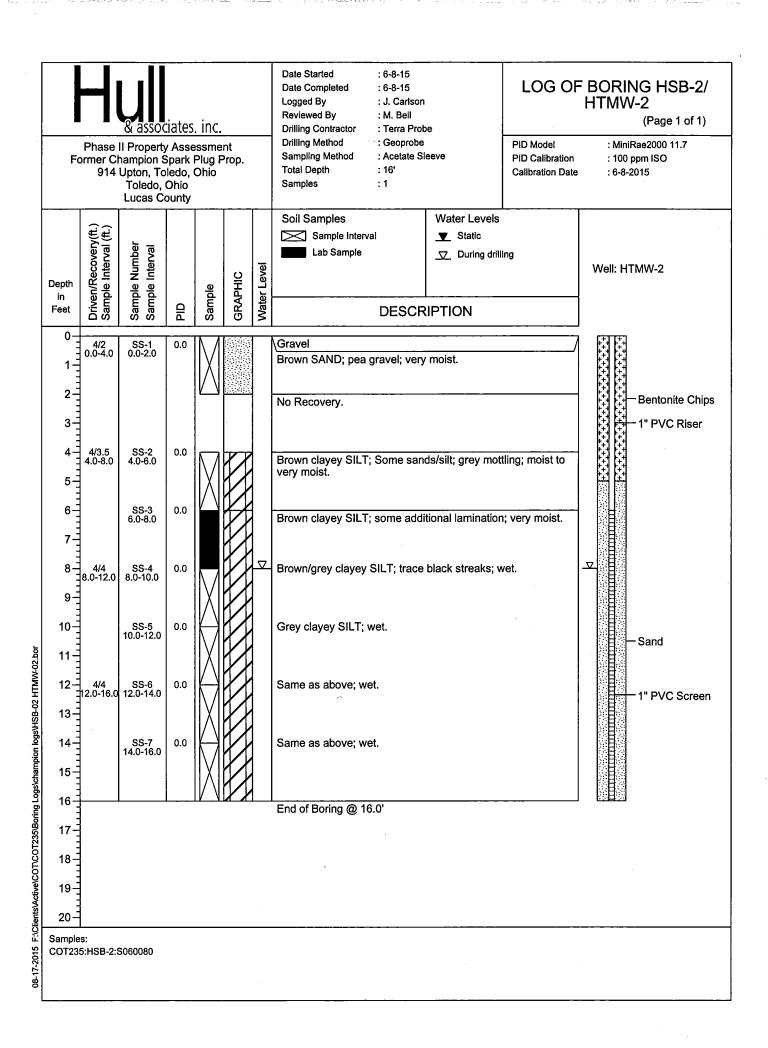
- (b) All regulated point source discharges of pollutants to surface waters of the state and any other regulated discharges that occur from or on the property must comply with all permit and other applicable requirements of the Federal Water Pollution Control Act and Chapter 6111. of the Revised Code, and the regulations adopted thereunder.
 - The permit and other applicable requirements of point source discharges include but are not limited to: (a) the national pollutant discharge elimination system permit issued pursuant to Chapter 3745-33 of the Administrative Code (also referred to as Ohio NPDES permits), and (b) the water quality certification issued pursuant to Chapter 3745-32 of the Administrative Code. A volunteer may obtain a consolidated standards permit for activities conducted in connection with a voluntary action which require permits from the director.
- (c) Storm water associated with industrial activity that is discharged to surface waters of the state or is discharged through a separate municipal storm sewer system must comply with the applicable requirements contained in 40 C.F.R. 122.26.
- (G) Generic numerical standards for human exposure to sediments.

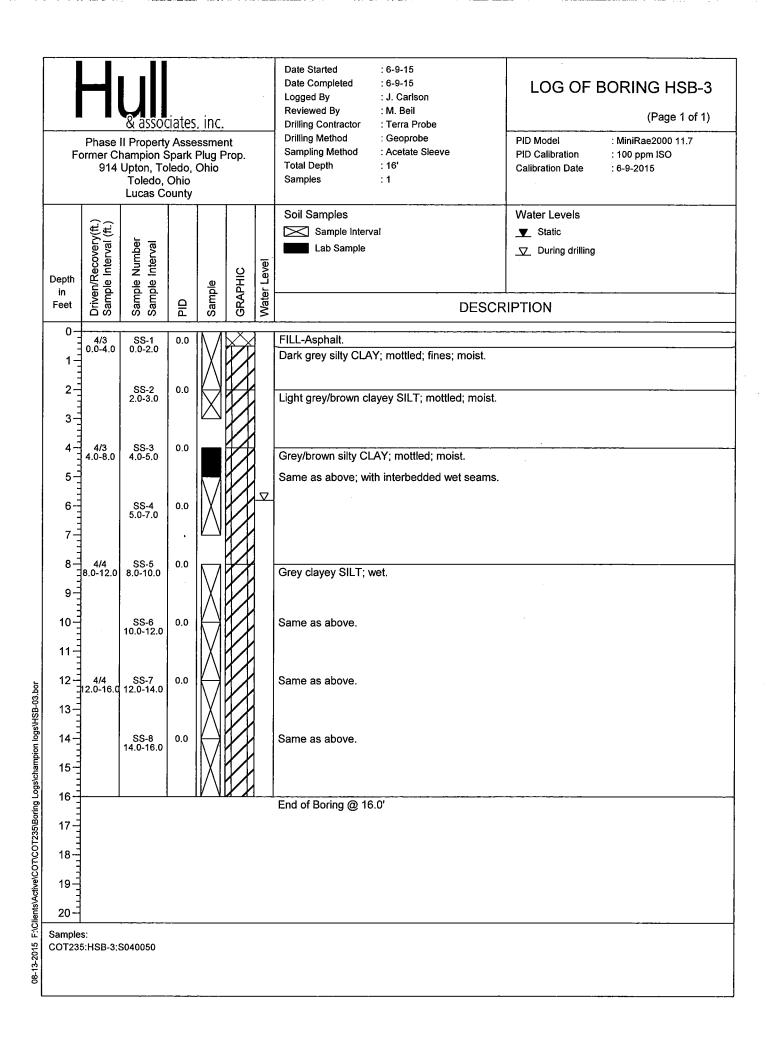
(1) Applicability.

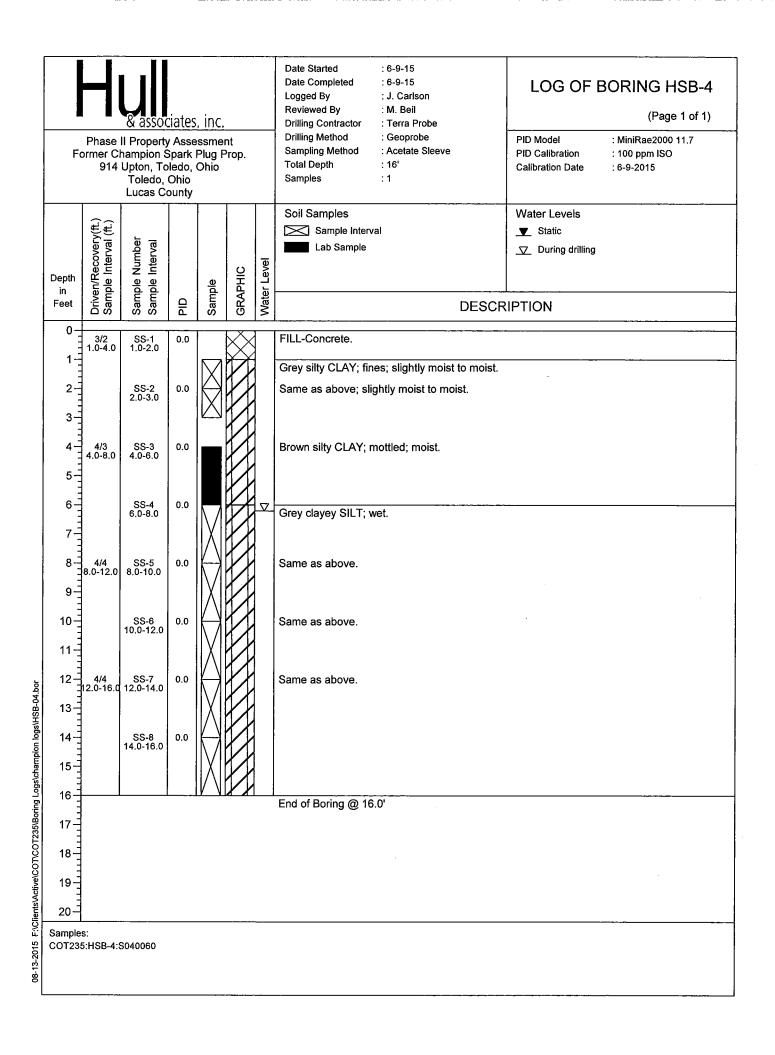
- (a) For purposes of this rule and rule 3745-300-07 of the Administrative Code, human health exposure pathways to sediment on or emanating from the property are considered complete when the surface water which contains the sediments:
 - (i) Produces or can produce a consistent supply of edible-sized fish and the chemicals of concern in the sediment are persistent, bioaccumulative and toxic; or
 - (ii) Is reasonably anticipated to support recreational activities such as wading, swimming, or boating.
- (b) For all releases of petroleum on, underlying or emanating to surface waters of the state which contains sediments, the generic petroleum standards are contained in paragraph (B) of this rule.
- (c) If the concentrations of chemicals of concern in sediment exceed the generic numerical standards for human exposure to sediment, the volunteer must conduct a human health property-specific risk assessment following the methodology outlined in paragraph (D) of rule 3745-300-09 of the Administrative Code or conduct a remedy in accordance with the 3745-300-11 of the Administrative Code.
- (2) Generic numerical standards for human exposure to sediment.
 - (a) Generic direct-contact standards for sediments are the generic direct-contact soil standards for residential land use specified in paragraph (C)(3)(b) of this rule. Cumulative adjustment for multiple chemicals must be evaluated in accordance with paragraph (C)(2)(b) of this rule.
 - (b) If chemicals of concern in sediment are persistent, bioaccumulative and toxic and the surface water containing the sediments produces or can produce a consistent supply of edible-sized fish, the volunteer must conduct a human health property-specific risk assessment in accordance with rule 3745-300-09 of the Administrative Code to evaluate fish consumption.
- (H) Generic numerical standards for exposure of important ecological resources to sediments.
 - (1) Applicability.
 - (a) The volunteer may smaples sediments directly and apply the applicable standards in accordance with (H)(2)(a) and (H)(2)(b) of this rule; or

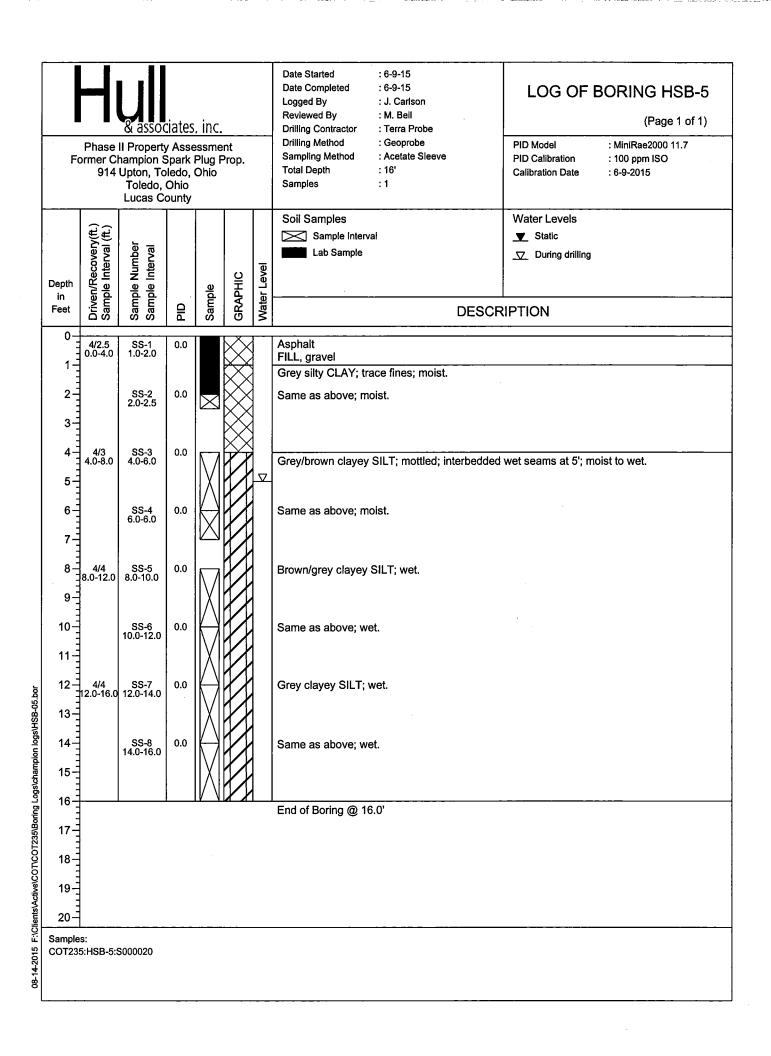
- (b) Demonstrate compliance with applicable standards in accordance with paragraph (F)(5) of rule 3745-300-09 of the Administrative Code.
- (2) Generic numerical standards for exposure of important ecological resources to sediments.
 - (a) The volunteer may compare the concentration of chemicals of concern in sediments on the property to the Ohio-specific sediment reference values contained in attachment H of Ohio EPA's "Guidance for Conducting Ecological Risk Assessments"; or
 - (b) For each chemical of concern for which the volunteer does not compare the sediment concentrations to the Ohio-specific sediment reference values, the ecotoxicologically-based benchmarks from the following hierarchy must be used:
 - (i) Consensus-based threshold effects concentration values contained in MacDonald, Ingersoll and Berger's "Development and Evaluation of Consensus-based Sediment Quality Guidelines for Freshwater Ecosystems"; or
 - (ii) U.S. EPA, region 5 ecological screening levels.
- (3) If concentrations of chemicals of concern do not exceed Ohio-specific sediment reference values or appropriate ecotoxicologically-based benchmarks and the provisions in paragraph (A)(3)(f) of this rule do not apply, then the applicable standards have been met.
- (4) The volunteer shall evaluate the sediments on the property in accordance with paragraph (F) of rule 3745-300-09 of the Administrative Code or conduct a remedy in accordance with rule 3745-300-11 of the Administrative Code if any of the following apply:
 - (a) The sediments on the property exceed applicable standards in accordance with this rule; or
 - (b) The sediment samples were not compared to the sediment values in accordance with paragraph (H)(2) of this rule.
- (I) Developing soil standards for leaching of chemicals of concern from soil to ground water.
 - (1) Applicability.
 - (a) Soil standards for leaching may be developed when one or more ground water zones are determined to meet unrestricted potable use standards and the potential for leaching of chemicals of concern from soil to ground water is determined to be a complete exposure pathway.

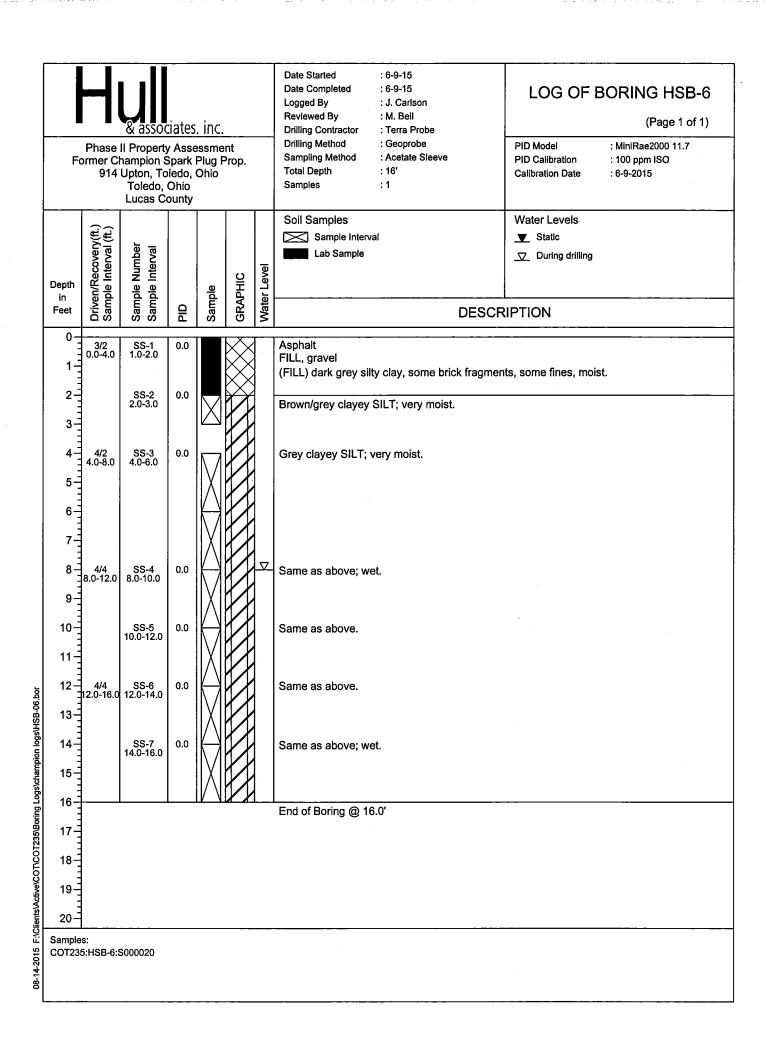

- (b) Soil standards for leaching may be developed when one or more ground water zones are determined to exceed unrestricted potable use standards and the potential for leaching of chemicals of concern from soil to ground water is a complete exposure pathway that must be evaluated in accordance with:
 - (i) Applicable ground water response requirements contained in paragraph (E) of rule 3745-300-10 of the Administrative Code; or
 - (ii) A pathway completeness determination in paragraph (F)(1) of rule 3745-300-07 of the Administrative Code.
- (2) Soil standards for leaching.
 - (a) Soil standards for leaching when the underlying ground water zone meets unrestricted potable use standards.
 - Soil standards for leaching are the soil concentrations determined to be protective of the applicable ground water zone and will not cause unrestricted potable use standards to be exceeded in the ground water zone as demonstrated in accordance with paragraph (F)(3)(a) of rule 3745-300-07 of the Administrative Code.
 - (b) Soil standards for leaching when the underlying ground water zone exceeds unrestricted potable use standards.
 - (i) Soil standards for leaching are the soil concentrations determined to be protective of the applicable ground water response requirements for the ground water zone as determined by rule 3745-300-10 of the Administrative Code.
 - (ii) Soil standards for leaching are the soil concentrations determined to be protective of any other applicable standard in ground water that must be met in accordance with a pathway completeness determination and the demonstration of compliance with applicable standards.

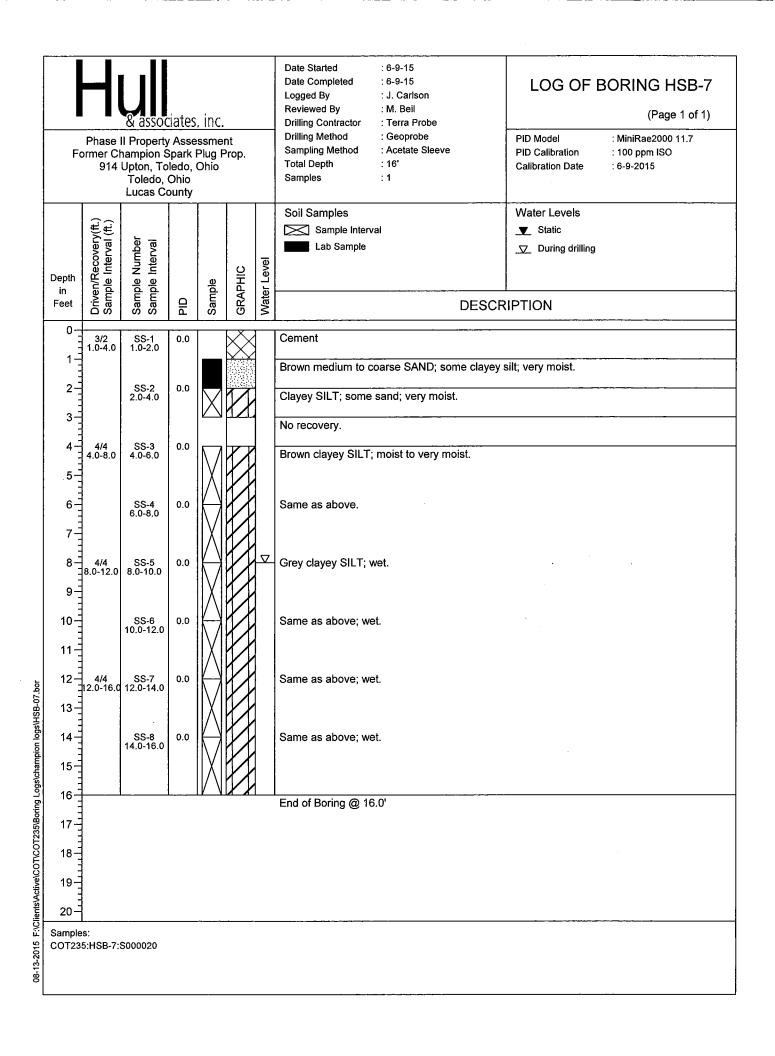

Effective:		03/01/2009
R.C. 119.032 review d	ates:	03/01/2014
Certification		
Date		
Date		

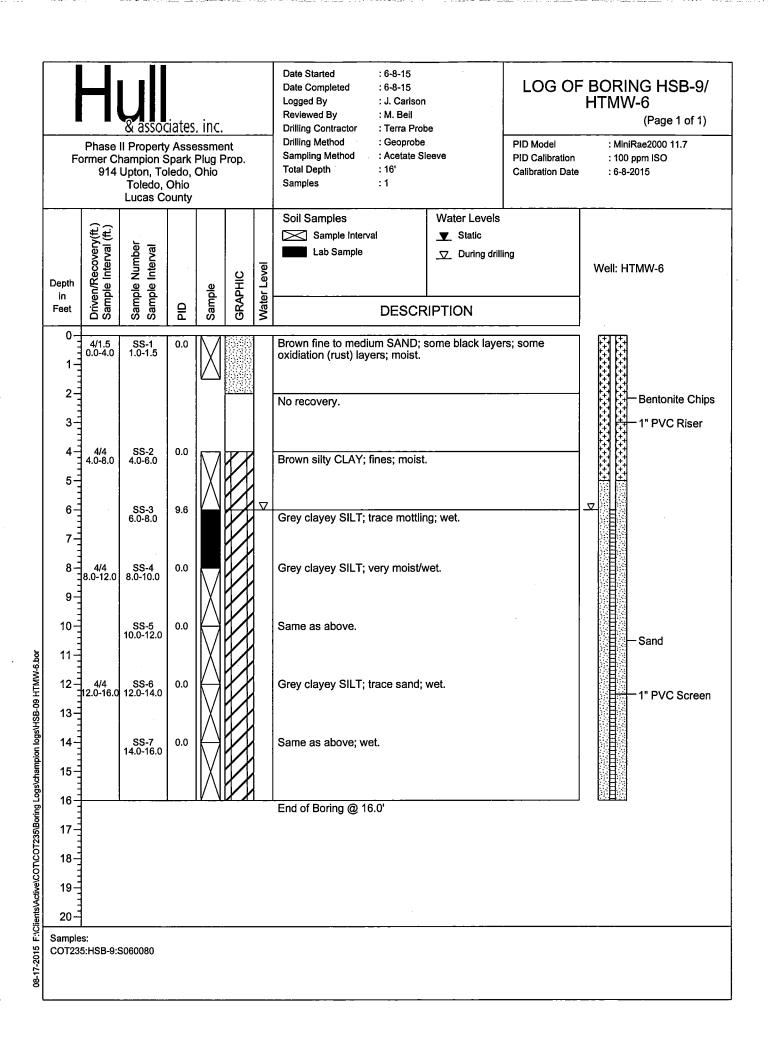

Promulgated Under: 119.03 Statutory Authority: 3746.04 Rule Amplifies: 3746

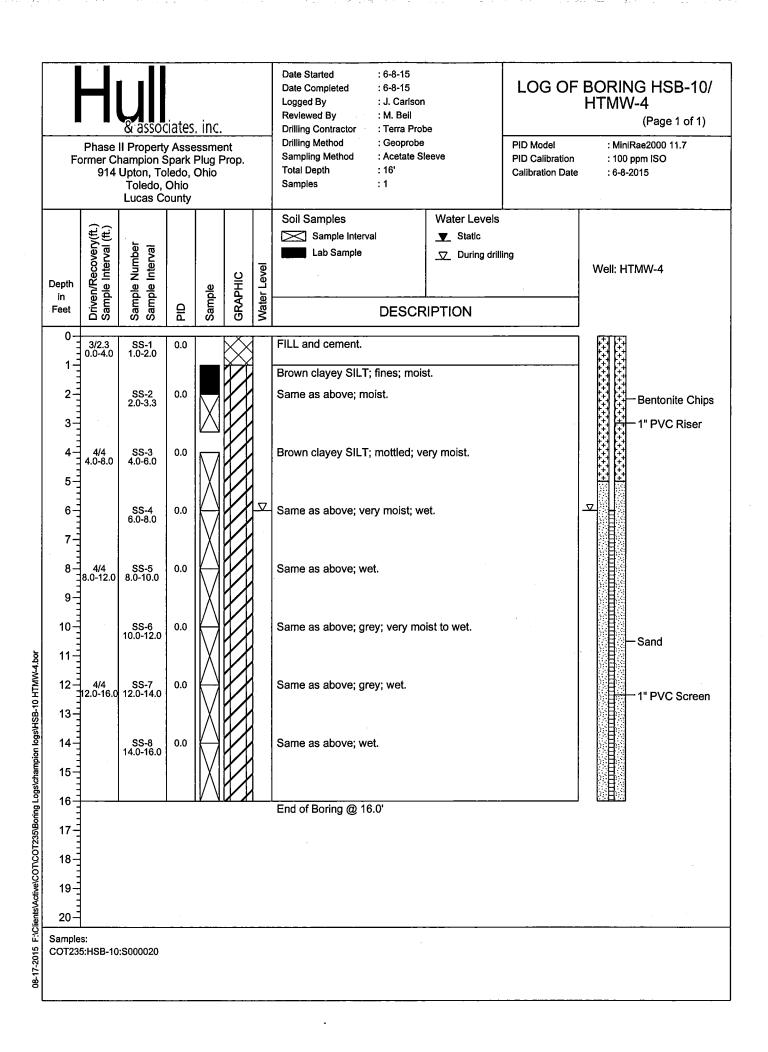

APPENDIX C

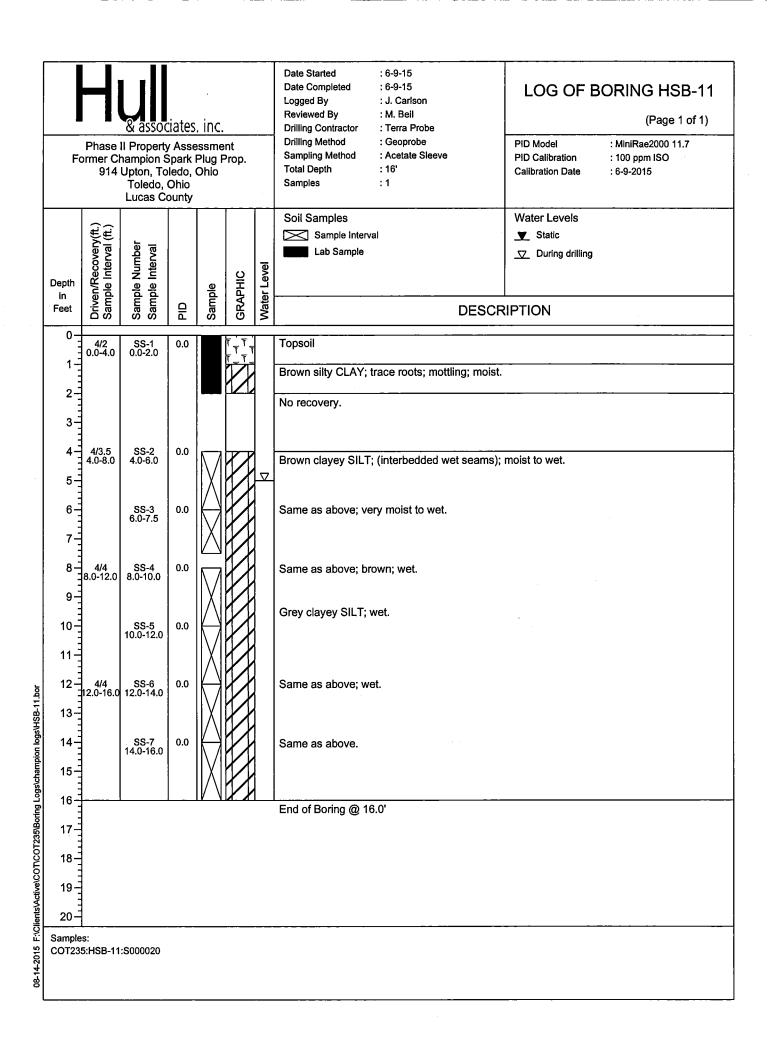

Soil Boring/Monitoring Well Logs

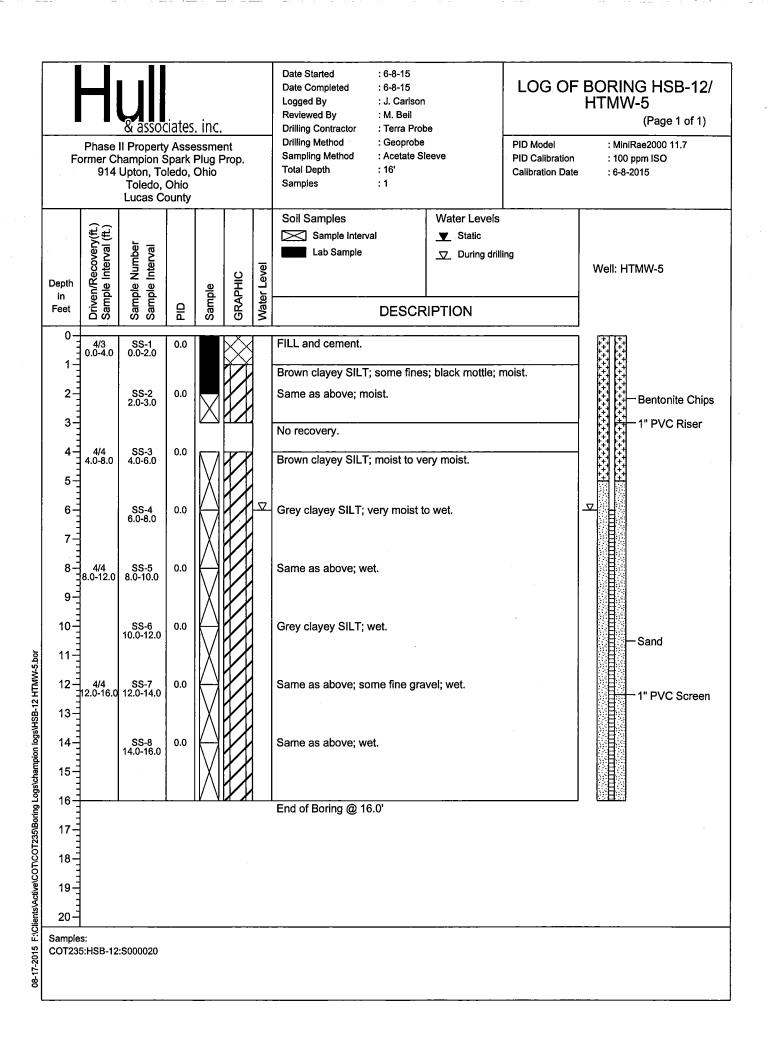


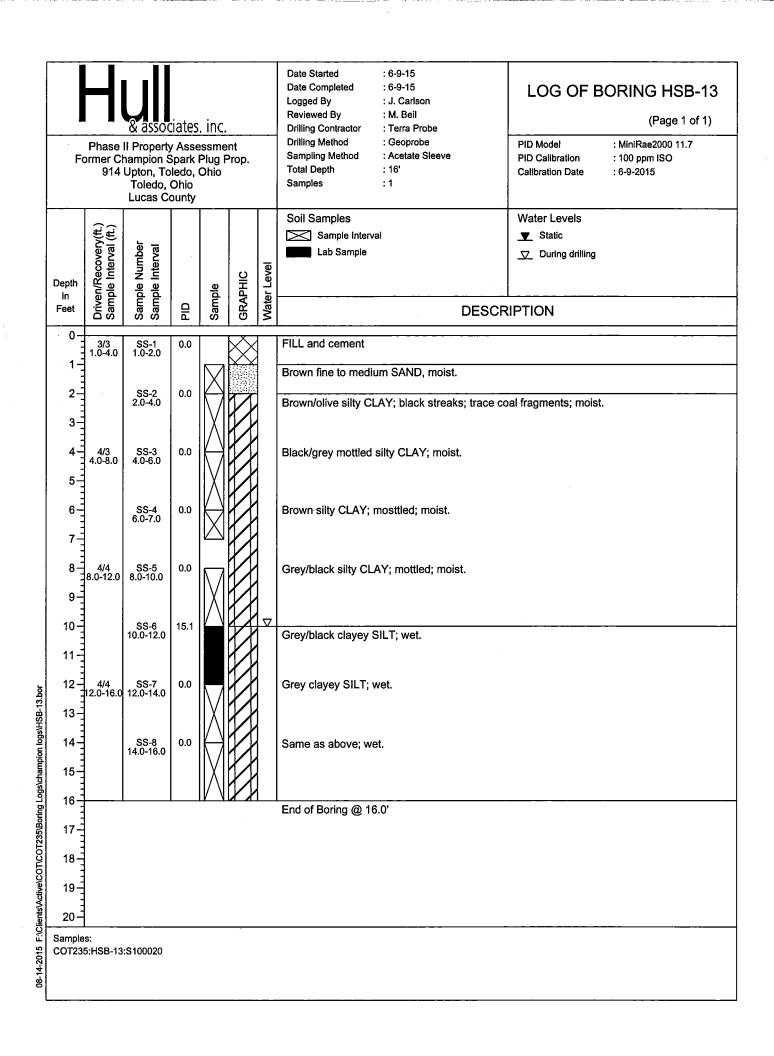


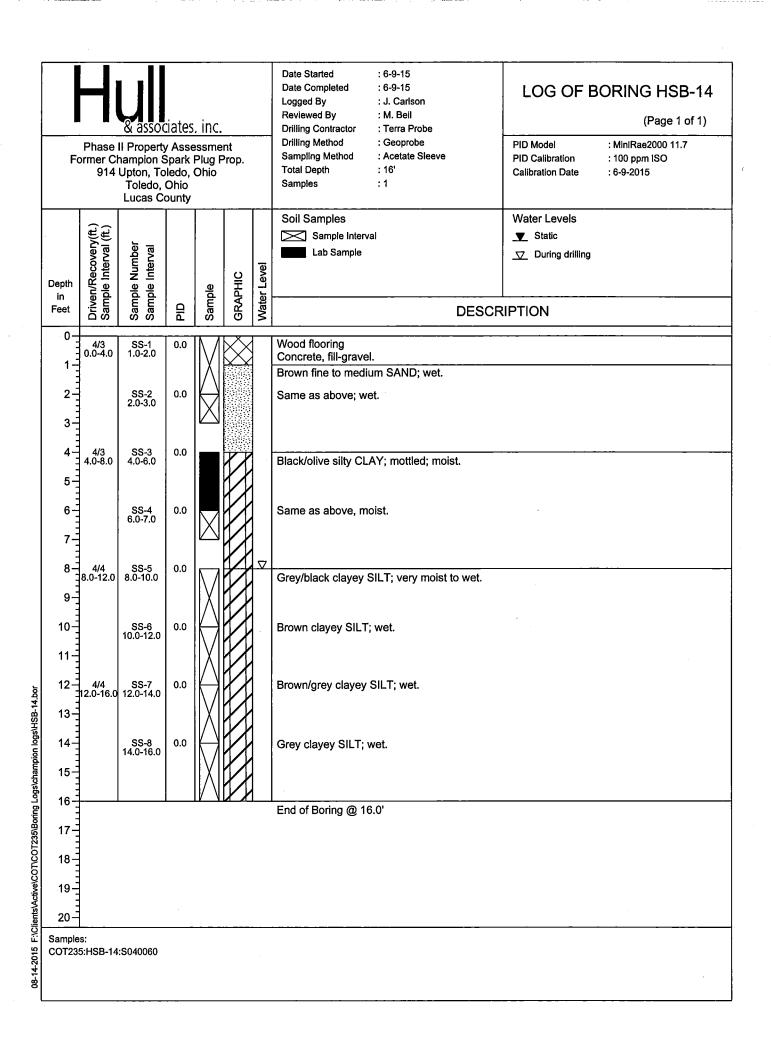


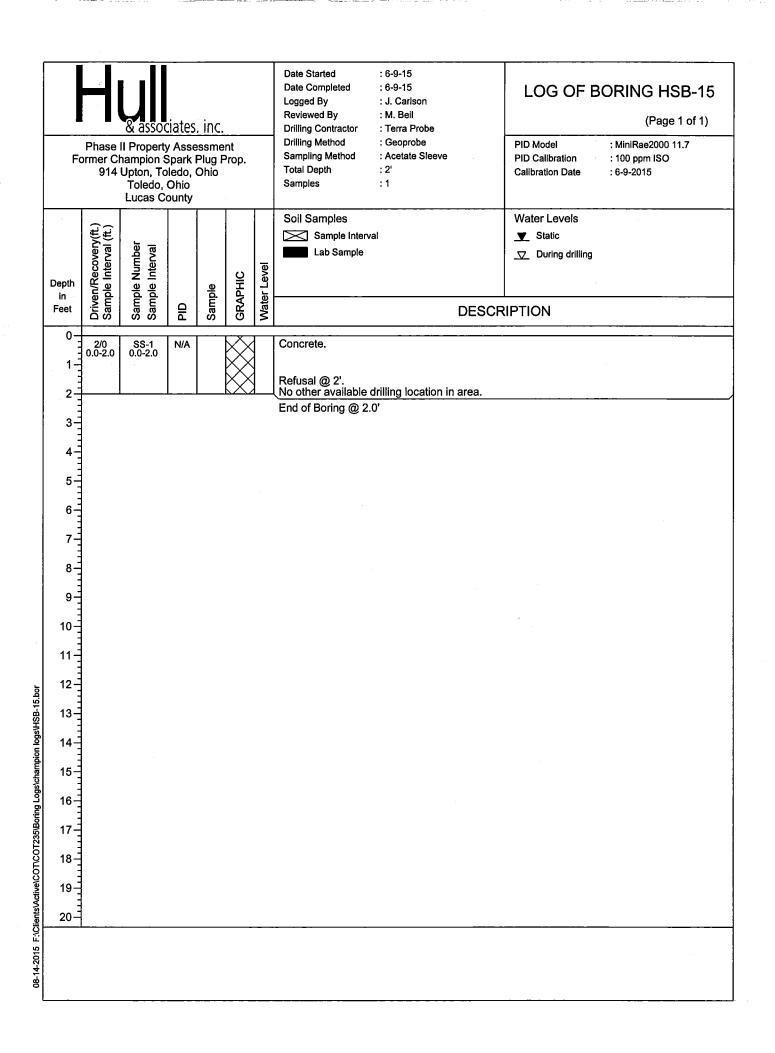


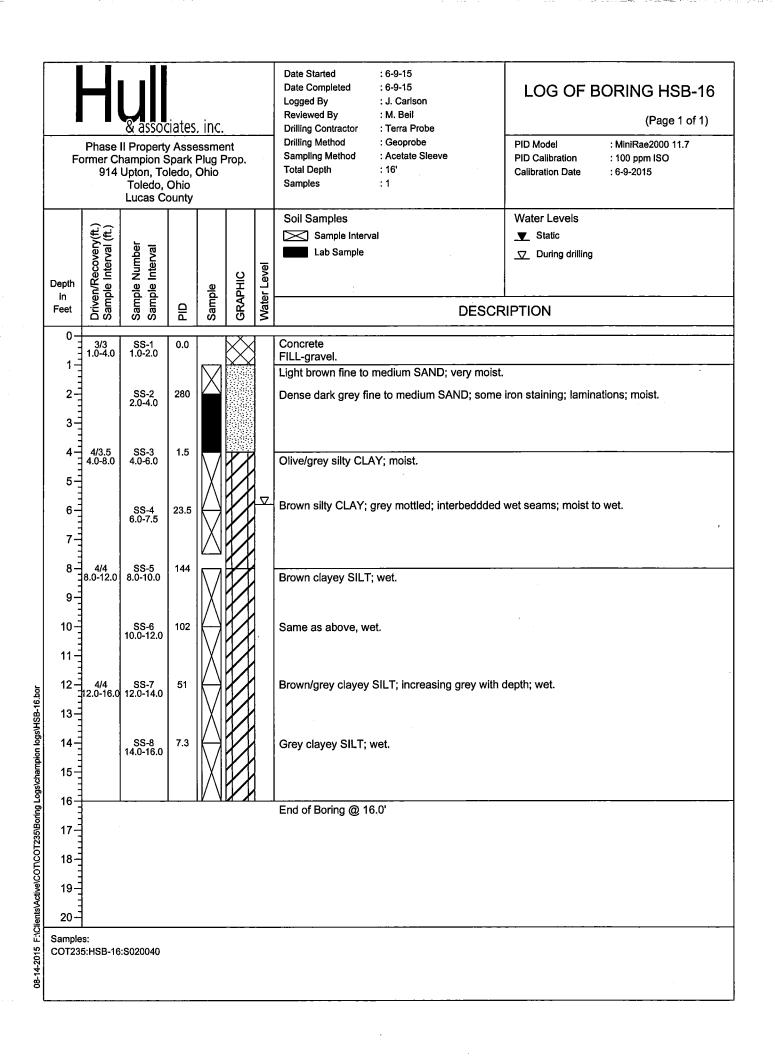


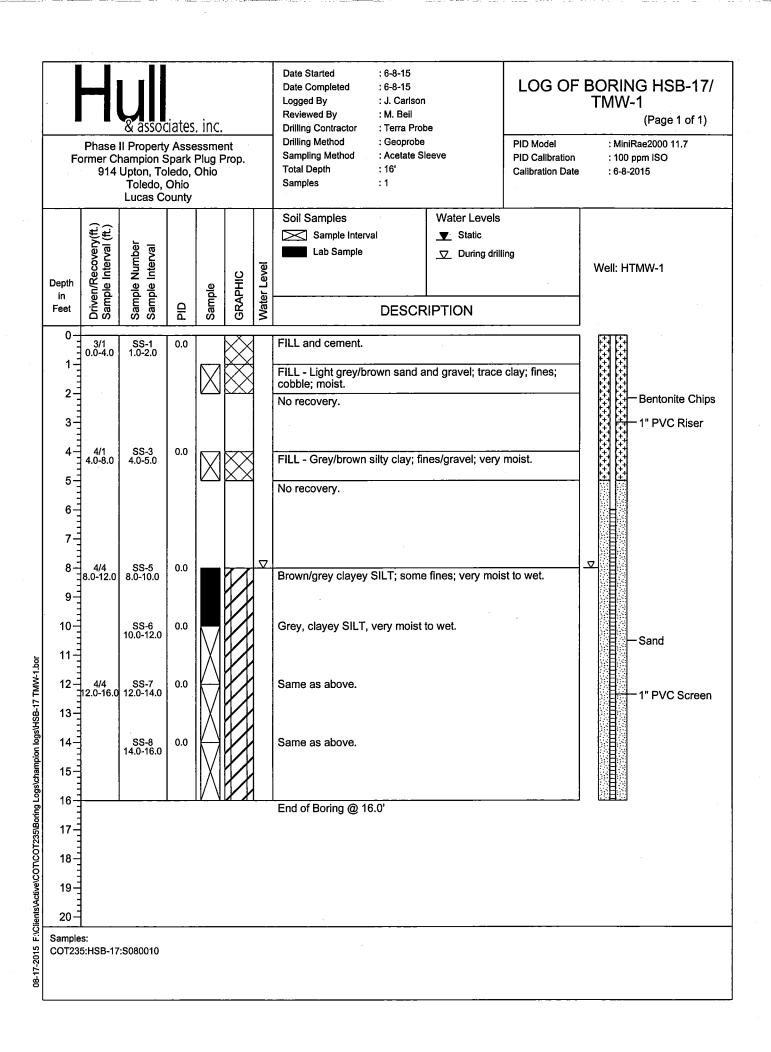


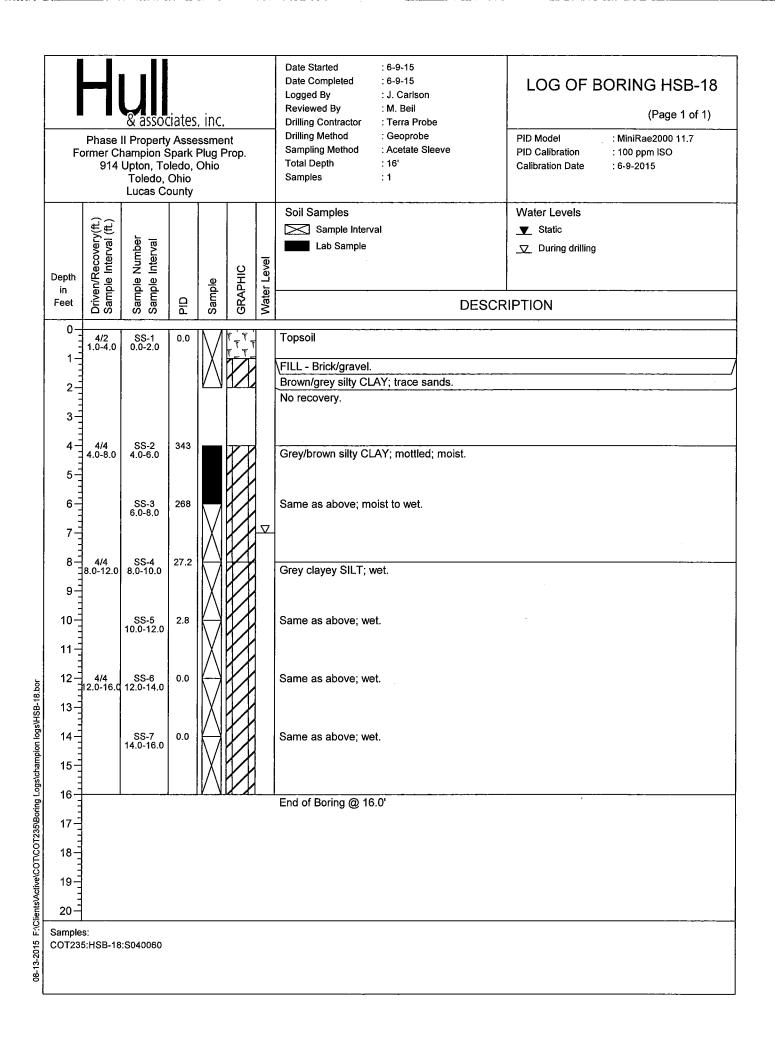

Date Started : 6-8-15 LOG OF BORING HSB-8/ **Date Completed** : 6-8-15 HTMW-3 Logged By : J. Carlson : M. Beil Reviewed By (Page 1 of 1) āssociates, inc. **Drilling Contractor** : Terra Probe **Drilling Method** : Geoprobe PID Model : MlniRae2000 11.7 Phase II Property Assessment Sampling Method : Acetate Sleeve Former Champion Spark Plug Prop. PID Calibration : 100 ppm ISO Total Depth : 16' 914 Upton, Toledo, Ohio Calibration Date : 6-8-2015 Samples : 1 Toledo, Ohio **Lucas County** Soil Samples Water Levels Driven/Recovery(ft.) Sample Interval (ft.) Sample Interval ▼ Static Sample Number Sample Interval Lab Sample □ During drilling Water Level Well: HTMW-3 GRAPHIC Depth Sample 吕 Feet **DESCRIPTION** 0 Cement 3/2 1.0-4.0 0.0 ∽FILL - Sand and Gravel 1 Sand and Gravel; moist to very moist. 2 SS-2 2.0-4.0 0.0 **Bentonite Chips** Olive silty CLAY; trace sand; oxidized mottling; moist. 3. 1" PVC Riser 4/3.4 4.0-8.0 SS-3 4.0-6.0 4 0.0 Same as above- moist. 5 SS-4 6.0-7.4 Grey silty CLAY; some mottling; wet seam at 6-6.5' moist to 6 0.0 7 SS-4 8.0-10.0 0.0 Grey silty CLAY; some black streaks; plastic; very moist to 8 4/4 8.0-12.0 wet. 9 SS-5 10.0-12.0 10 0.0 Grey clayey SILT; very moist to wet. -Sand 11 08-17-2015 F:\Clients\Active\COT\COT235\Boring Logs\champion logs\HSB-08 HTMW-3.bor 4/3.5 SS-6 12.0-16.0 12.0-14.0 12 0.0 Same as above; wet. 1" PVC Screen 13 SS-7 14.0-15.5 14 Same as above; wet. 15 16 End of Boring @ 16.0' 17 18 19-20 Samples: COT235:HSB-8:S080100

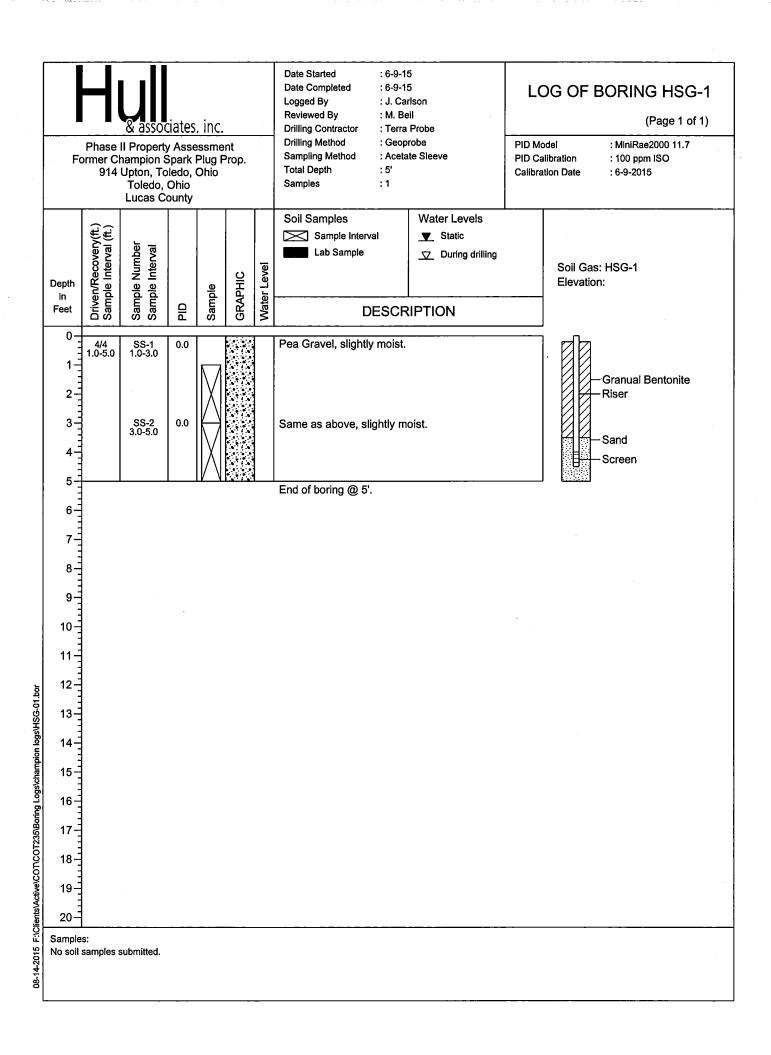


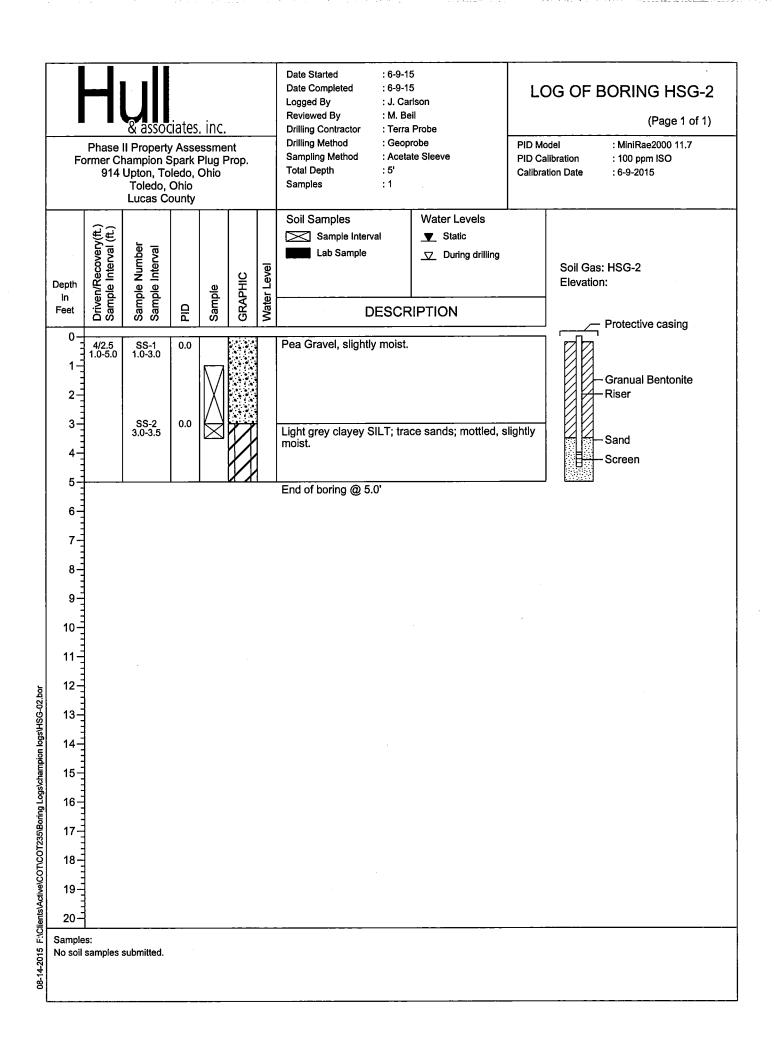












APPENDIX D

Laboratory Analytical Data/Chain of Custody Documentation

July 09, 2015

Matt Beil **Hull & Associates**

RE: Project: COT235 Former Champion

Pace Project No.: 10312331

Dear Matt Beil:

Enclosed are the analytical results for sample(s) received by the laboratory on June 29, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carolynne That

Carolynne Trout carolynne.trout@pacelabs.com **Project Manager**

Enclosures

cc: Elizabeth DeWitt, Hull and Associates

CERTIFICATIONS

Project: COT235 Former Champion

Pace Project No.: 10312331

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L

Florida/NELAP Certification #: E87605 Guam Certification #:14-008r

Georgia Certification #: 959 Georgia EPD #: Pace Idaho Certification #: MN00064

Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368

Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647

North Carolina Certification #: 530 North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: COT235 Former Champion

Pace Project No.: 10312331

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10312331001	COT235:HSG-1:A062415	Air	06/24/15 15:55	06/29/15 08:40
10312331002	COT235:HSG-2:A062415	Air	06/24/15 15:58	06/29/15 08:40

SAMPLE ANALYTE COUNT

Project: COT235 Former Champion

Pace Project No.: 10312331

Lab ID	Sample ID	Method	Analysts	Analytes Reported
10312331001	COT235:HSG-1:A062415	TO-15	DR1	6
10312331002	COT235:HSG-2:A062415	TO-15	DR1	6

ANALYTICAL RESULTS

Project: COT235 Former Champion

Pace Project No.: 10312331

Date: 07/09/2015 12:52 PM

Sample: COT235:HSG-1:A062415	Lab ID: 10	312331001	Collected: 06/24/	15 15:55	Received: 0	6/29/15 08:40 N	/latrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Me	thod: TO-15						
Benzene	10.3	ug/m3	0.52	1.61		07/02/15 22:01	71-43-2	
Ethylbenzene	2.7	ug/m3	1.4	1.61		07/02/15 22:01	100-41-4	
Methyl-tert-butyl ether	5.0	ug/m3	1.2	1.61		07/02/15 22:01	1634-04-4	
Toluene	13.8	ug/m3	1.2	1.61		07/02/15 22:01	108-88-3	
m&p-Xylene	9.5	ug/m3	2.8	1.61		07/02/15 22:01	179601-23-1	
o-Xylene	4.4	ug/m3	1.4	1.61		07/02/15 22:01	95-47-6	

ANALYTICAL RESULTS

Project: COT235 Former Champion

Pace Project No.: 10312331

Date: 07/09/2015 12:52 PM

Sample: COT235:HSG-2:A062415	Lab ID: 10	0312331002	Collected: 06/24/	15 15:58	Received: 0	6/29/15 08:40 M	Matrix: Air	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Me	ethod: TO-15						
Benzene	9.0	ug/m3	0.52	1.61		07/02/15 22:28	71-43-2	
Ethylbenzene	5.6	ug/m3	1.4	1.61		07/02/15 22:28	100-41-4	
Methyl-tert-butyl ether	ND	ug/m3	1.2	1.61		07/02/15 22:28	1634-04-4	
Toluene	23.5	ug/m3	1.2	1.61		07/02/15 22:28	108-88-3	
m&p-Xylene	17.3	ug/m3	2.8	1.61		07/02/15 22:28	179601-23-1	
o-Xylene	9.7	ug/m3	1.4	1.61		07/02/15 22:28	95-47-6	

QUALITY CONTROL DATA

Project: COT235 Former Champion

Pace Project No.: 10312331

QC Batch: AIR/23640 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Associated Lab Samples: 10312331001, 10312331002

METHOD BLANK: 2013459 Matrix: Air

Associated Lab Samples: 10312331001, 10312331002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/m3	ND	0.32	07/02/15 14:43	
Ethylbenzene	ug/m3	ND	0.88	07/02/15 14:43	
m&p-Xylene	ug/m3	ND	1.8	07/02/15 14:43	
Methyl-tert-butyl ether	ug/m3	ND	0.73	07/02/15 14:43	
o-Xylene	ug/m3	ND	0.88	07/02/15 14:43	
Toluene	ug/m3	ND	0.77	07/02/15 14:43	

LABORATORY CONTROL SAMPLE: 2013460

Date: 07/09/2015 12:52 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/m3	32.5	38.0	117	64-139	
Ethylbenzene	ug/m3	44.2	56.4	128	71-136	
m&p-Xylene	ug/m3	88.3	112	127	71-134	
Methyl-tert-butyl ether	ug/m3	36.7	41.1	112	73-134	
o-Xylene	ug/m3	44.2	57.3	130	75-134	
Toluene	ug/m3	38.3	45.6	119	70-129	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700

QUALIFIERS

Project: COT235 Former Champion

Pace Project No.: 10312331

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up


U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 07/09/2015 12:52 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: COT235 Former Champion

Pace Project No.: 10312331

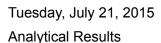
Date: 07/09/2015 12:52 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10312331001 10312331002	COT235:HSG-1:A062415 COT235:HSG-2:A062415	TO-15 TO-15	AIR/23640 AIR/23640		

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section Require	n A d Client Information:	Section B Required Project Inform		1 1 145		Section Invoice in	i C nformation:				i. Lug	en en A ligar						1	.51	56	6	Page:	(of	
Compar	MVII 1 MSSQLATES, IN-	Report To:	BE			Attention							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						Progr	am	114	3115030444010101010		
Address	3401 Gundale Ave 300	Copy To: 900 Up	ton	Ave	2	Company	y Name:									~	UST	Supe	erfund	E	mission	ıs	Clean Air	Act
7	Stedo, ONIO 43614		HIO			Address:											Voluntar	/ Clean	Up	Dry Cl	lean	RCRA	Ot	ther
Email To	Sledo, OHIO 43614 "MBEILCHULLING, COM	Purchase Order No.:	Toler	10))	Pace Que	ote Refere	nce:						.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Loc	cation of	:	e 1.1	1. ~		Reporting ug/m³	mg/m ³	
Phone:	SS-2018 Fax: ted Due Date/TAT: 54d.	Project Name: Chu	n Diov	. P16	purty:	Pace Pro	oject Manaç	ger/Sales Re	∍ p.							Sar	mpling b	y State	<u>o</u> H	11.0		PPBV Other	PPMV_	_
Reques	ted Due Date/TAT: 54d	Project Number: CO	72	35		Pace Pro	ofile #:									Rep	ort Leve	<u> 11</u>		iV	<u></u>	Other		
雅	'Section D Required Client Information AIR SAMPLE ID Sample IDs MUST BE UNIQUE	Valid Media Codes MEDIA CODE Tediar Bag TB 1 Liter Summa Can 1LC 6 Liter Summa Can 6LC Low Volume Puff LVP High Volume Puff HVP Other PM10	MEDIA CODE	PID Reading (Client only)	COMPOSITE STAR	COLLE		POSITE -	Canister Pressure (Initial Field - psig)	Canister Pressure (Final Field - psig)	C	mma an nber	Cor	Fic trol	w Numbe	Met	hod:		CB() (1) (1) (1) (1) (1) (1) (1) (1) (1) (Short			
ITEM#		Otter Pinto	AEDIA	PIDR	END/GRAB DATE	TIME	DATE	TIME	G Gar	Car (Fir						OMO.						1	Pace Lab	, ID
_	COT235: H54-1: A	062415	_		6-24-15		6-24	1555	-30	06	02	73	ess (0 1	44	1	, , ,			X		f	201	
9	COT 235: HSG-2: AC				6-24-15	a de la composição de l	6.54	1558	-30	-5	ΙĪΪ		CERT.	10						X			102	
3	V 20701134 21 A	70 E V ()		-				177													VEGLERAL SELECTION OF			
4								<u> </u>							1									
Ē		numerican de la companya de la companya de la companya de la companya de la companya de la companya de la comp																						19,00,000,000,000,000,000,000,000
6			1				A SALAMATAN SALAMATAN SALAMATAN					i l							annus di mertebe					~~~~~~
7									-															
					***************************************		<u> </u>	***************************************		-		-									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		;	THE PERSON NAMED IN COLUMN TO A POSSIBLE OF THE PERSON NAMED IN CO
9								***************************************																1200-1200-1200-1200-1200-1200-1200-1200
															1					11			;	
10											hi											<u> </u>		
11			 	-					<u> </u>	-												<u> </u>		AND THE PERSON NAMED IN COLUMN TWO PARTY.
12 Comme	ante •	R	I Elikyo)' IIS+	I JED BY / A	EBILIAT	ION	DATE	71	VΙΕ	AOC	EPTED	BY/	AFFI	LIATIO	V	DATE		TIME		SAM	PLE C	ONDITIO)NS
00111111			le le	\top		774. W		25.15	170		ALCOHOL:	$l \kappa_{x}$		hac			5-15	1	700			(<u>Z</u>)	(Z)	(Ž)
		4	7	Man 1		1100					1/2	ANAAX	Salary Contraction	7	gay		2915		b40	1	Am3	Ş	Š	(S)
		-			······································						1	Land a Ma.	\forall	Colly lang	<u></u>	800	han y bour	-		-		× ×	YNGKG	¥
											\vdash		1			_					personal services of the servi	<u> </u>	N.	<u> </u>
			·				O M (B) =	I R NAME A	NID SIG	VATURE.			50 (12)									<u> </u>	<u>></u>	
							PRINT Name	of SAMPLER:				(K		DATE Sig	ned (MM/I	DD / YY)					Temp in °C	Received on Ice	Custody Sealed Cooler	Samples Infact
	ORIG	INAL						70	<u> </u>		44.75.4. 	31-2										<u>oc</u>	స	S _B


Document Name: Air Sample Condition Upon Receipt

Document No.: F-MN-A-106-rev.09 Document Revised: 26Dec2013
Page 1 of 1
Issuing Authority:
Pace Minnesota Quality Office

Air Sample Condition (Upon Receipt	Client Name:		r-10110-24-21	Project i	#:	MON	1:103	123	And the second s
Courier:	HUII + ASS Fed Ex	USPS Other:_	□cl	ient		103123			
Custody Seal on Cooler/		По	Seals In	tact? [Yes	ПNо	Optional: Pr	oj. Due Date:	Proj. Name:
	ubble Wrap Bubble	,						Temi	o Blank rec: ☐Yes ☑N
Temp. (TO17 and TO13 sam	N. a ^r		-			om. Used:	☐B88A91216		☐72337080
	ezing to 6°C Correction Fac	Corrected Temp					B88A91325 Person Examining	-	□80512447 62915
ype of ice Received						,,,,,,,,,,			
	¥						Co	mments:	
Chain of Custody Presen	t?	Yes	□No	□N/A	1.				
Chain of Custody Filled C	Out?	Yes	□No	□N/A	2.				
Chain of Custody Relinqu	uished?	Yes	□No	□N/A	3.				
Sampler Name and/or Si	gnature on COC?	Yes	□No	□n/a	4.				
Samples Arrived within I	Hold Time?	Yes	□No	□n/a	5.				
Short Hold Time Analysi	s (<72 hr)?	Yes	No	□N/A	6.				
Rush Turn Around Time	Requested?	Yes	No	□N/A	7.				
Sufficient Volume?		Yes	□No	□N/A	8.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(
Correct Containers Used		Yes	□No	□N/A	9.				
-Pace Containers Used	j?	Yes	□No	□N/A	-				
Containers Intact?		Yes	□No	□N/A	10.		COTTO TO THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CO		ajar apan kana naminan kana pamajan injeniuri sihalidiki injernalar paminanja 1864 jah, priya menega ya sa
	W	heÁ		F-1	11.				
Sample Labels Match CO		Yes	No	□N/A	12.				
Samples Received:		~- _{\$}		***************************************					
Car	nisters		Flow	Controller	S			Stand	Alone G
Sample Number	Can ID	Sample No	umber		Can		Sample I	Number	Can ID
HSC-1	0273			 	0144	<u> </u>			
HSG-2	1183			- Apple	099	-			
		taryon and the state of the sta		_		**************************************		15-0000-0-15-0-100-0-1-0-0-100-00-00-00-00-00-00-00-	
				_	*************				
					*				

								re lana ramma malimena dinama lidikar de melani ina asaliker	

	acted:				Date/Ti	me:			YesNo
Comments/Reso	lution:		······································		·	replativare dan interfere kan belang di naga kan belang di naga kan belang di naga kan belang di naga kan bela	and a figure a little section as a first of the section and the section of the section and the		
		·			***************************************				
				>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			~~~~	

Project Manager Review:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

Work Order: 15F0709

Matt Beil

Hull & Associates - Toledo Office 3401 Glendale Avenue Toledo, OH 43614

TEL: (419) 385-2018 FAX (419) 385-5487

RE: COT235 Champion Spark Plug

PACE Analytical received 19 sample(s) on 6/11/2015 for the analyses presented in the following report.

PACE Analytical attests that all analytical methods were performed using acceptable methods, and that the QA/QC procedures stipulated in these methods were followed. USEPA's RCRA Program regards a statement of quality assurance as a legal means of assuring that acceptable and uniform laboratory methods and QA/QC practices were followed by the laboratory.

If you have any questions regarding the test results, please feel free to call me at (937) 832-8242.

Respectfully submitted,

James M. Lykens

Jason Lykins

Project Manager

Certifications: NELAP/NELAC - #04130

Ohio EPA Drinking water - #836

VAP - #CL0032

Ohio EPA Drinking water (Micro) - #872

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Work Order Sample Summary

The results of analyses performed on the following samples submitted to Belmont Labs are found in this report.

•				
Field Sample ID	Lab ID	Matrix	Method Reference	Subcontract Lab
COT235:HSB-1:S040060	15F0709-01	Soil	D 2216	
			NA	
			SW 8015B	
			SW 8260A	
COT235:HSB-2:S060080	15F0709-02	Soil	D 2216	
			SW 8015B	
			SW 8260A	
COT235:HSB-3:S040050	15F0709-03	Soil	D 2216	
			SW 8015B	
			SW 8260A	
OT235:HSB-4:S040060	15F0709-04	Soil	D 2216	
			SW 8015B	
			SW 8260A	
OT235:HSB-5:S000020	15F0709-05	Soil	3020	
			D 2216	
			SW 6010B	
			SW 7471A	
			SW 8015	Pace Analytical Services, Inc. In
			SW 8015B	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. In
COT235:HSB-6:S000020	15F0709-06	Soil	3020	
			D 2216	
			SW 6010B	
			SW 7471A	
			SW 8015B	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. In

15F0709

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Work Order Sample Summary

The results of analyses performed on the following samples submitted to Belmont Labs are found in this report.

Field Sample ID	Lab ID	Matrix	Method Reference	Subcontract Lab
COT235:HSB-7:S000020	15F0709-07	Soil	3020	
			D 2216	
			SW 6010B	
			SW 7471A	
			SW 8015	Pace Analytical Services, Inc. In
			SW 8015B	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. In
COT235:HSB-8:S080100	15F0709-08	Soil	3020	
			D 2216	
			SW 6010B	
			SW 7471A	
			SW 8015B	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. In-
COT235:HSB-9:S060080	15F0709-09	Soil	3020	
			D 2216	
			SW 6010B	
			SW 7471A	
			SW 8015	Pace Analytical Services, Inc. In-
			SW 8015B	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. In

15F0709

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Work Order Sample Summary

The results of analyses performed on the following samples submitted to Belmont Labs are found in this report.

Field Sample ID	Lab ID	Matrix	Method Reference	Subcontract Lab
COT235:HSB-10:S000020	15F0709-10	Soil	3020	
			D 2216	
			SW 6010B	
			SW 7471A	
			SW 8015B	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. In
COT235:HSB-11:S000020	15F0709-11	Soil	3020	
			D 2216	
			SW 6010B	
			SW 7471A	
			SW 8015	Pace Analytical Services, Inc. In
			SW 8015B	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. In
COT235:HSB-12:S000020	15F0709-12	Soil	3020	
			D 2216	
			SW 6010B	
			SW 7471A	
			SW 8015B	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. In

15F0709

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Work Order Sample Summary

The results of analyses performed on the following samples submitted to Belmont Labs are found in this report.

Field Sample ID	Lab ID	Matrix	Method Reference	Subcontract Lab
COT235:HSB-13:S100120	15F0709-13	Soil	3020	
			D 2216	
			SW 6010B	
			SW 7471A	
			SW 8015	Pace Analytical Services, Inc. Inc.
			SW 8015B	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. In-
COT235:HSB-14:S040060	15F0709-14	Soil	3020	
			D 2216	
			SW 6010B	
			SW 7471A	
			SW 8015B	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. Inc.
COT235:HSB-16:S020040	15F0709-15	Soil	3020	
			D 2216	
			SW 6010B	
			SW 7471A	
			SW 8015B	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. Inc.
COT235:HSB-17:S080100	15F0709-16	Soil	3020	
			D 2216	
			SW 6010B	
			SW 7471A	
			SW 8015B	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. In-

15F0709

CLIENT: Hull & Associates - Toledo Office Lab Order:

Project: COT235 Champion Spark Plug

Work Order Sample Summary

The results of analyses performed on the following samples submitted to Belmont Labs are found in this report.

Field Sample ID	Lab ID	Matrix	Method Reference	Subcontract Lab
COT235:HSB-18:S040060	15F0709-17	Soil	3020	
			D 2216	
			SW 6010B	
			SW 7471A	
			SW 8015	Pace Analytical Services, Inc. In
			SW 8015B	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. In
COT235:Trip	15F0709-18	Water	SW 8260B	
COT235:E. Blank:W060915	15F0709-19	Groundwater	3010	
			SW 6010B	
			SW 7470A	
			SW 8015	Pace Analytical Services, Inc. In
			SW 8015B	
			SW 8270C	Pace Analytical Services, Inc. In

15F0709

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-01 **Collection Date:** 6/8/2015 12:00:00PM

Client Sample ID: COT235:HSB-1:S040060 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date A	nalyzed
TPH GRO		SW 8015B					Analyst:	MLR	
Gasoline Range Organics, C6 - C12	BDL	6.00		mg/kg dry	1	1525157	6/17/2015 1:16:00PM	6/17/2015	3:06:00PM
Surrogate: Chlorobenzene-d5		83.5 %		70-	130	1525157	6/17/2015 1:16:00PM	6/17/2015	3:06:00PM
BTEX_MTBE_MS		SW 8260A					Analyst:	MLR	
Benzene	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
Ethylbenzene	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
Methyl tert-Butyl Ether	BDL	0.0238		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
m,p-Xylene	BDL	0.0238		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
o-Xylene	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
Toluene	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
Surrogate: 4-Bromofluorobenzene		93.6 %		62-	129	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
Surrogate: Dibromofluoromethane		90.2 %		71-	129	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
Surrogate: Toluene-d8		98.4 %		74-	124	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
Surrogate: 1,2-Dichloroethane-d4		88.6 %		70-	127	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
VOC 8260		SW 8260A					Analyst:	MLR	
1,1,1,2-Tetrachloroethane	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,1,1-Trichloroethane	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,1,2,2-Tetrachloroethane	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,1,2-Trichloroethane	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,1-Dichloroethane	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,1-Dichloroethene	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,1-Dichloropropene	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,2,3-Trichlorobenzene	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,2,3-Trichloropropane	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,2,4-Trichlorobenzene	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,2,4-Trimethylbenzene	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,2-Dibromo-3-chloropropane	BDL	0.0238		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,2-Dibromoethane	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,2-Dichlorobenzene	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,2-Dichloroethane	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,2-Dichloropropane	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,3,5-Trimethylbenzene	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,3-Dichlorobenzene	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,3-Dichloropropane	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
1,4-Dichlorobenzene	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
2,2-Dichloropropane	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
2-Butanone	BDL	0.0476		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
2-Chlorotoluene	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
2-Hexanone	BDL	0.0476		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015	3:29:00PM
4-Chlorotoluene	BDL	0.0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM		3:29:00PM
	DDL	***/		G -6)	•				

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-01 **Collection Date:** 6/8/2015 12:00:00PM

Client Sample ID: COT235:HSB-1:S040060 Matrix: Soil

Account	Analysis	Result	PQL	Qual Units	Dilution	Batch	Date Prepared	Date Analyzed
Account	4-Isopropyltoluene	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Accordination BDL	4-Methyl-2-pentanone	BDL	0.0476	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Acrolain BDL 0.119 mgkg dry 1 1523265 619-2015 12-80-07M 619-2015 2-20-07M Acrylomine' BDL 0.476 mgkg dry 1 1523265 619-2015 12-80-07M 619-2015 2-20-07M 619	Acetone	BDL	0.119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Actylonimic BDL 0.0476 mgkg dry 1 1 515265 (192015 12-0.0094) (192015 32-0.0094) Allyl chloride BDL 0.0218 mgkg dry 1 1 515265 (192015 12-0.0094) (192015 32-0.0094) Bromosher. BDL 0.0119 mgkg dry 1 1 515265 (192015 12-0.0094) (192015 32-0.0094) Bromosher. BDL 0.0119 mgkg dry 1 1 515265 (192015 12-0.0094) (192015 32-0.0094) Bromosher. BDL 0.0119 mgkg dry 1 1 515265 (192015 12-0.0094) (192015 32-0.0094) (192015 32-0.0094) Bromosher. BDL 0.0119 mgkg dry 1 1 515265 (192015 12-0.0094) (192015 32-0.0094) (192015 32-0.0094) Bromosher. BDL 0.0119 mgkg dry 1 1 515265 (192015 12-0.0094) (192015 32-0.	Acetonitrile	BDL	0.0953	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Marchenice Dir.	Acrolein	BDL	0.119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Bennece	Acrylonitrile	BDL	0.0476	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Bromechizone BDL	Allyl chloride	BDL	0.0238	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Bromodelformethane BDL 0.0119 mgkg dry 1 152565 6192015 12-000PM 6192015 32-000PM Bromodelformethane BDL 0.0119 mgkg dry 1 1525265 6192015 12-000PM 6192015 32-000PM Bromodelformethane BDL 0.0119 mgkg dry 1 1525265 6192015 12-000PM 6192015 32-000PM Bromodelformethane BDL 0.0119 mgkg dry 1 1525265 6192015 12-000PM 6192015 32-000PM 6192015 32-000	Benzene	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Browneichlaromethane BDL 0.0119 mg/kg dry 1 152265 6192015 125000PM 6192015 32900PM Browneichlaromethane BDL 0.0119 mg/kg dry 1 152265 6192015 125000PM 6192015 32900PM Bromobenzene	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM	
Brownsferm BDL 0.0119 mg/kg dry 1 152265 6192015 12500PM 6192015 32900PM Carbon Disulfide BDL 0.0119 mg/kg dry 1 152265 6192015 12500PM 6192015 32900PM Carbon Disulfide BDL 0.0119 mg/kg dry 1 152265 6192015 12500PM 6192015 32900PM Carbon Disulfide BDL 0.0119 mg/kg dry 1 152265 6192015 12500PM 6192015 32900PM 6102015 3290	Bromochloromethane	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
BDL 0.0119 mg/kg dry 1 1523265 6192015 123.000PM 6192015 329.00PM Carbon Disalfide BDL 0.0476 mg/kg dry 1 1523265 6192015 123.00PM 6192015 329.00PM Carbon Entendioride BDL 0.0119 mg/kg dry 1 1523265 6192015 123.00PM 6192015 329.00PM Carbon Entendioride BDL 0.0119 mg/kg dry 1 1523265 6192015 123.00PM 6192015 329.00PM Chlorochanae BDL 0.0119 mg/kg dry 1 1523265 6192015 123.00PM 6192015 329.00PM Chlorochanae BDL 0.0119 mg/kg dry 1 1523265 6192015 123.00PM 6192015 329.00PM 619	Bromodichloromethane	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Carbon Disulfide	Bromoform	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Carbon Tetrachloride BDL 0.0119 mg/kg dry 1 1525265 019/2015 12-000PM 019/2015 3-29 00PM 019	Bromomethane	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Chlorobenzene BDL 0.0119 mg/kg dry 1 1525265 6192015 125000PM 6192015 32900PM Chlorobenae BDL 0.0119 mg/kg dry 1 1525265 6192015 125000PM 6192015 32900PM 6192015	Carbon Disulfide	BDL	0.0476	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Chlorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/00PM 6/19/2015 32-90/0PM Chloroform BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/00PM 6/19/2015 32-90/0PM Chloroform BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/00PM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/00PM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/00PM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/00PM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/00PM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/00PM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/0PPM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/0PPM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/0PPM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/0PPM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/0PPM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/0PPM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/0PPM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/0PPM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/0PPM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/0PPM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50/0PPM 6/19/2015 32-90/0PM Colorocthane BDL 0.0119 mg/kg dry 1 1525265	Carbon Tetrachloride	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Chloroform BDL 0.0119 mg/kg dry 1 1525265 6192015 12:50.00PM 6192015 329.00PM 6192015 329.00	Chlorobenzene	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Chloromethane BDL 0.0119 mg/kg dry 1 1525265 6/192015 12:50.00PM 6/192015 329.00PM 6is-1,2-Dichloropropene BDL 0.0119 mg/kg dry 1 1525265 6/192015 12:50.00PM 6/192015 329.00PM 6/1920	Chloroethane	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
cis-1,2-Dichloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM cis-1,3-Dichloropropene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dibromochloromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dibromochloromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0238 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 00PM 6/19/2015 32:90 0PM Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50 0PM 6/19/2015 32:90 0PM 12:50 0PM 6/19/2015 32:90 0PM 12:50 0P	Chloroform	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Section Control Cont	Chloromethane	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Dibromochloromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12.50.00PM 6/19/2015 3.29.00PM Dibromomethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12.50.00PM 6/19/2015 3.29.00PM Dibromomethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12.50.00PM 6/19/2015 3.29.00PM Elhylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12.50.00PM 6/19/2015 3.29.00PM Elhylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12.50.00PM 6/19/2015 3.29.00PM Elhylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12.50.00PM 6/19/2015 3.29.00PM 6/19/2015	cis-1,2-Dichloroethene	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Dibromomethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12.50.00PM 6/19/2015 3.29.00PM Ethylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12.50.00PM 6/19/2015 3.29.00PM Ethylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12.50.00PM 6/19/2015 3.29.00PM Ethylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12.50.00PM 6/19/2015 3.29.00PM 6/19/2015 3.	cis-1,3-Dichloropropene	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Dichlorodifluoromethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50.00PM 6/19/2015 3:29.00PM Ethylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50.00PM 6/19/2015 3:29.00PM Ethylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50.00PM 6/19/2015 3:29.00PM Ethylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50.00PM 6/19/2015 3:29.00PM Ethylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50.00PM 6/19/2015 3:29.00PM Ethylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50.00PM 6/19/2015 3:29.00PM Ethylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50.00PM 6/19/2015 3:29.00PM Ethylbenzene BDL 0.0238 mg/kg dry 1 1525265 6/19/2015 12:50.00PM 6/19/2015 3:29.00PM Ethylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50.00PM 6/19/2015 3:29.00PM Ethylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50.00PM 6/19/2015 3:29.00PM Ethylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50.00PM 6/19/2015 3:29.00PM Ethylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50.00PM 6/19/2015 3:29.00PM Ethylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50.00PM 6/19/2015 3:29.00PM Dibromochloromethane	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM	
Ethylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50.00PM 6/19/2015 3:29.00PM Hexachlorobutadiene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50.00PM 6/19/2015 3:29.00PM Iodomethane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50.00PM 6/19/2015 3:29.00PM Isopropylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50.00PM 6/19/2015 3:29.00PM Methylene Chloride BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12-50.00PM 6/19/2015 3:29.00PM Methyl tert-Butyl Ether BDL 0.0238 mg/kg dry 1 1525265 6/19/2015 12-50.00PM 6/19/2015 3:29.00PM Methyl tert-Butyl Ether BDL 0.0238 mg/kg dry 1 1525265 6/19/2015 12-50.00PM 6/19/2015 3:29.00PM Naphthalene BDL 0.0119	Dibromomethane	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Hexachlorobutadiene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM 15000methane BDL 0.0238 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM 15000methane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene Chloride BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene Chloride BDL 0.0238 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene Chloride BDL 0.0238 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene Chloride BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene Chloride BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene Chloride BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene Chloride BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene Chloride BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene Chloride BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene Chloride BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene Chloride BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methylnene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM	Dichlorodifluoromethane	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
The color of the	Ethylbenzene	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Suppossible Suppossible	Hexachlorobutadiene	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Methylene Chloride BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methyl tert-Butyl Ether BDL 0.0238 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Methyl tert-Butyl Ether BDL 0.0238 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Naphthalene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Hexane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119	Iodomethane	BDL	0.0238	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Methyl tert-Butyl Ether BDL 0.0238 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM m,p-Xylene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM 6/19/2015 3:29:00PM 6/19/2015 3:29:00PM 6/19/2015 12:50:00PM 6/19/2015	Isopropylbenzene	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
m,p-Xylene BDL 0.0238 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM 1.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM 1.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6	Methylene Chloride	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Naphthalene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Hexane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM o-Xylene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM tert_Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM tert_Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Tetrachloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Tetrachloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,2-Dichloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,3-Dichloropropene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM 6/19/2015 3:	Methyl tert-Butyl Ether	BDL	0.0238	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
n-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Hexane BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM o-Xylene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM setr_Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM setr_Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene	m,p-Xylene	BDL	0.0238	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
n-Hexane BDL 0.0119 mg/kg dry 1 1525063 6/19/2015 1:03:00PM 6/19/2015 3:29:00PM n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM setr_Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM 6/19/2015 3:29:00PM 6/19/2015 3:29:00PM 6/19/2015 3:29:00PM 6/19/2015 3:29:00PM 6/19/2015 3:29:00	Naphthalene	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
n-Propylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM o-Xylene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Styrene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM tert_Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Tetrachloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Toluene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,2-Dichloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,3-Dichloropropene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,3-Dichloropropene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,3-Dichloropropene	n-Butylbenzene	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
o-Xylene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Styrene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM tert_Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Tetrachloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Toluene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,2-Dichloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,3-Dichloropropene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM 6	n-Hexane	BDL	0.0119	mg/kg dr	1	1526083	6/19/2015 1:03:00PM	6/19/2015 3:29:00PM
sec-Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Styrene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM tert_Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Tetrachloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Toluene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,2-Dichloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,3-Dichloropropene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM	n-Propylbenzene	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Styrene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM tert_Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Tetrachloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Toluene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,2-Dichloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,3-Dichloropropene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM	o-Xylene	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
tert_Butylbenzene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Tetrachloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Toluene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,2-Dichloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,3-Dichloropropene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM	sec-Butylbenzene	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Tetrachloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Toluene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,2-Dichloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,3-Dichloropropene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM	Styrene	BDL	0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Tetrachloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM Toluene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,2-Dichloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,3-Dichloropropene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM	tert_Butylbenzene		0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Toluene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,2-Dichloropthene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,3-Dichloropropene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM	Tetrachloroethene		0.0119	mg/kg dr	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
trans-1,2-Dichloroethene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM trans-1,3-Dichloropropene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM	Toluene		0.0119			1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
trans-1,3-Dichloropropene BDL 0.0119 mg/kg dry 1 1525265 6/19/2015 12:50:00PM 6/19/2015 3:29:00PM	trans-1,2-Dichloroethene		0.0119			1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
							6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
	Trichloroethene	BDL	0.0119	mg/kg dr		1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-01 **Collection Date:** 6/8/2015 12:00:00PM

Client Sample ID: COT235:HSB-1:S040060 Matrix: Soil

Analysis	Result	Pe	QL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
Trichlorofluoromethane	BDL	0.0	0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Vinyl Chloride	BDL	0.0	0119		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Vinyl acetate	BDL	0.0	0238		mg/kg dry	1	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Surrogate: 4-Bromofluorobenzene		99.2 %			62-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 3:29:00PM
Surrogate: 4-Bromofluorobenzene		93.6 %			62-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Surrogate: Dibromofluoromethane		90.2 %			71-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Surrogate: Dibromofluoromethane		102 %			71-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 3:29:00PM
Surrogate: Toluene-d8		106 %			74-	124	1526083	6/19/2015 1:03:00PM	6/19/2015 3:29:00PM
Surrogate: Toluene-d8		98.4 %			74-	124	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
Surrogate: 1,2-Dichloroethane-d4		103 %			70-	127	1526083	6/19/2015 1:03:00PM	6/19/2015 3:29:00PM
Surrogate: 1,2-Dichloroethane-d4		88.6 %			70-	127	1525265	6/19/2015 12:50:00PM	6/19/2015 3:29:00PM
PMOIST		D 2216						Analyst:	NL
Percent Moisture	16.9				% by Weight	1	1526192	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-02 **Collection Date:** 6/8/2015 11:00:00AM

Client Sample ID: COT235:HSB-2:S060080 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	BDL	6.20		mg/kg dry	1	1525157	6/17/2015 1:16:00PM	6/17/2015 3:34:00PM
Surrogate: Chlorobenzene-d5		72.2 %		70-	130	1525157	6/17/2015 1:16:00PM	6/17/2015 3:34:00PM
BTEX_MTBE_MS		SW 8260A					Analyst:	MLR
Benzene	BDL	0.0127		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 4:37:00PM
Ethylbenzene	BDL	0.0127		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 4:37:00PM
Methyl tert-Butyl Ether	BDL	0.0254		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 4:37:00PM
m,p-Xylene	BDL	0.0254		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 4:37:00PM
o-Xylene	BDL	0.0127		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 4:37:00PM
Toluene	BDL	0.0127		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 4:37:00PM
Surrogate: 4-Bromofluorobenzene		87.8 %		62-	129	1526079	6/20/2015 1:55:00PM	6/20/2015 4:37:00PM
Surrogate: Dibromofluoromethane		90.4 %		71-	129	1526079	6/20/2015 1:55:00PM	6/20/2015 4:37:00PM
Surrogate: Toluene-d8		98.9 %		74-	124	1526079	6/20/2015 1:55:00PM	6/20/2015 4:37:00PM
Surrogate: 1,2-Dichloroethane-d4		88.4 %		70-	127	1526079	6/20/2015 1:55:00PM	6/20/2015 4:37:00PM
PMOIST		D 2216					Analyst:	NL
Percent Moisture	22.0			% by Weight	1	1526192	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-03 **Collection Date**: 6/9/2015 9:40:00AM

Client Sample ID: COT235:HSB-3:S040050 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	BDL	5.95		mg/kg dry	1	1525157	6/17/2015 1:16:00PM	6/17/2015 9:14:00PM
Surrogate: Chlorobenzene-d5		93.2 %		70-	130	1525157	6/17/2015 1:16:00PM	6/17/2015 9:14:00PM
BTEX_MTBE_MS		SW 8260A					Analyst:	MLR
Benzene	BDL	0.0124		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 5:11:00PM
Ethylbenzene	BDL	0.0124		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 5:11:00PM
Methyl tert-Butyl Ether	BDL	0.0248		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 5:11:00PM
m,p-Xylene	BDL	0.0248		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 5:11:00PM
o-Xylene	BDL	0.0124		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 5:11:00PM
Toluene	BDL	0.0124		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 5:11:00PM
Surrogate: 4-Bromofluorobenzene		91.4 %		62-	129	1526079	6/20/2015 1:55:00PM	6/20/2015 5:11:00PM
Surrogate: Dibromofluoromethane		94.4 %		71-	129	1526079	6/20/2015 1:55:00PM	6/20/2015 5:11:00PM
Surrogate: Toluene-d8		97.0 %		74-	124	1526079	6/20/2015 1:55:00PM	6/20/2015 5:11:00PM
Surrogate: 1,2-Dichloroethane-d4		93.1 %		70-	127	1526079	6/20/2015 1:55:00PM	6/20/2015 5:11:00PM
PMOIST		D 2216					Analyst:	NL
Percent Moisture	19.6			% by Weight	1	1526192	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-04 **Collection Date:** 6/9/2015 10:40:00AM

Client Sample ID: COT235:HSB-4:S040060 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	BDL	6.17		mg/kg dry	1	1525157	6/17/2015 1:16:00PM	6/17/2015 4:30:00PM
Surrogate: Chlorobenzene-d5		54.0 %	C, S-04	70-	130	1525157	6/17/2015 1:16:00PM	6/17/2015 4:30:00PM
BTEX_MTBE_MS		SW 8260A					Analyst:	MLR
Benzene	BDL	0.0123		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 5:47:00PM
Ethylbenzene	BDL	0.0123		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 5:47:00PM
Methyl tert-Butyl Ether	BDL	0.0246		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 5:47:00PM
m,p-Xylene	BDL	0.0246		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 5:47:00PM
o-Xylene	BDL	0.0123		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 5:47:00PM
Toluene	BDL	0.0123		mg/kg dry	1	1526079	6/20/2015 1:55:00PM	6/20/2015 5:47:00PM
Surrogate: 4-Bromofluorobenzene		88.1 %		62-	129	1526079	6/20/2015 1:55:00PM	6/20/2015 5:47:00PM
Surrogate: Dibromofluoromethane		96.9 %		71-	129	1526079	6/20/2015 1:55:00PM	6/20/2015 5:47:00PM
Surrogate: Toluene-d8		95.9 %		74-	124	1526079	6/20/2015 1:55:00PM	6/20/2015 5:47:00PM
Surrogate: 1,2-Dichloroethane-d4		95.4 %		70-	127	1526079	6/20/2015 1:55:00PM	6/20/2015 5:47:00PM
PMOIST		D 2216					Analyst:	NL
Percent Moisture	20.2			% by Weight	1	1526192	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-05 **Collection Date:** 6/9/2015 12:50:00PM

Client Sample ID: COT235:HSB-5:S000020 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	BDL	5.99		mg/kg dry	1	1525201	6/18/2015 12:25:00PM	6/18/2015 2:43:00PM
Surrogate: Chlorobenzene-d5		76.2 %		70	130	1525201	6/18/2015 12:25:00PM	6/18/2015 2:43:00PM
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	0.998		mg/kg dry	1	1527130	7/1/2015 1:54:00PM	7/2/2015 3:16:59AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	5.80	1.11		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:20:02AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	210	1.11		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:20:02AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.554		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:20:02AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	14.8	1.11		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:20:02AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	7.77	1.11		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:20:02AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	5.54		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:20:02AM
HG		SW 7471A					Analyst:	CW
Mercury	BDL	0.111		mg/kg dry	1	1525141	6/17/2015 10:37:00AM	6/17/2015 1:43:00PM
VOC 8260_5035		SW 8260B					Analyst:	MLR
1,1,1,2-Tetrachloroethane	BDL	0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
1,1,1-Trichloroethane	BDL	0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
1,1,2,2-Tetrachloroethane	BDL	0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
1,1,2-Trichloroethane	BDL	0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
1,1-Dichloroethane	BDL	0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
1,1-Dichloroethene	BDL	0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
1,1-Dichloropropene	BDL	0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
1,2,3-Trichlorobenzene	BDL	0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
1,2,3-Trichloropropane	BDL	0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
1,2,4-Trichlorobenzene	BDL	0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
1,2,4-Trimethylbenzene	BDL	0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
1,2-Dibromo-3-chloropropane	BDL	0.252	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
1,2-Dibromoethane	BDL	0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-05 **Collection Date:** 6/9/2015 12:50:00PM

Client Sample ID: COT235:HSB-5:S000020 Matrix: Soil

1,2-Dichlorobenzene	PM 6/19/2015 6:54:00PM PM 6/19/2015 6:54:00PM
1,2-Dichloropropane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 1,3,5-Trimethylbenzene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 1,3-Dichlorobenzene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 1,3-Dichloropropane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 1,4-Dichlorobenzene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2,2-Dichloropropane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Butanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Hexanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Chlorotoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:00	PM 6/19/2015 6:54:00PM PM 6/19/2015 6:54:00PM
1,3,5-Trimethylbenzene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 1,3-Dichlorobenzene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 1,3-Dichloropropane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 1,4-Dichlorobenzene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2,2-Dichloropropane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Butanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Hexanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Chlorotoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Sopropyltoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001<	PM 6/19/2015 6:54:00PM PM 6/19/2015 6:54:00PM
1,3-Dichlorobenzene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 1,3-Dichloropropane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 1,4-Dichlorobenzene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2,2-Dichloropropane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Butanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Chlorotoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Chlorotoluene BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Isopropyltoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Methyl-2-pentanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:	PM 6/19/2015 6:54:00PM PM 6/19/2015 6:54:00PM
1,3-Dichloropropane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 1,4-Dichlorobenzene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2,2-Dichloropropane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Butanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Chlorotoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Chlorotoluene BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Chlorotoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Isopropyltoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Methyl-2-pentanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001<	PM 6/19/2015 6:54:00PM PM 6/19/2015 6:54:00PM
1,4-Dichlorobenzene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2,2-Dichloropropane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Butanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Chlorotoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Hexanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Chlorotoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Isopropyltoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Methyl-2-pentanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM PM 6/19/2015 6:54:00PM
2,2-Dichloropropane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Butanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Chlorotoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Hexanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Chlorotoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Isopropyltoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Methyl-2-pentanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM PM 6/19/2015 6:54:00PM
2-Butanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Chlorotoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Hexanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Chlorotoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Isopropyltoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Methyl-2-pentanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM PM 6/19/2015 6:54:00PM
2-Chlorotoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 2-Hexanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Chlorotoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Isopropyltoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Methyl-2-pentanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM PM 6/19/2015 6:54:00PM PM 6/19/2015 6:54:00PM PM 6/19/2015 6:54:00PM
2-Hexanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Chlorotoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Isopropyltoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Methyl-2-pentanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM PM 6/19/2015 6:54:00PM PM 6/19/2015 6:54:00PM
4-Chlorotoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Isopropyltoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Methyl-2-pentanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM PM 6/19/2015 6:54:00PM
4-Isopropyltoluene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001 4-Methyl-2-pentanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
4-Methyl-2-pentanone BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	
	'M 6/19/2015 6:54:00PM
Acetone BDI 1.26 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	
DDD	PM 6/19/2015 6:54:00PM
Acetonitrile BDL 1.01 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Acrolein BDL 1.26 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Acrylonitrile BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Allyl chloride BDL 0.252 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Benzene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Bromobenzene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Bromochloromethane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Bromodichloromethane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Bromoform BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Bromomethane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Carbon Disulfide BDL 0.503 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Carbon Tetrachloride BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Chlorobenzene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Chloroethane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Chloroform BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Chloromethane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
cis-1,2-Dichloroethene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
cis-1,3-Dichloropropene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Dibromochloromethane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Dibromomethane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Dichlorodifluoromethane BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Ethylbenzene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Hexachlorobutadiene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Iodomethane BDL 0.252 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Isopropylbenzene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Methylene Chloride BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Methyl tert-Butyl Ether BDL 0.252 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
m,p-Xylene BDL 0.252 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM
Naphthalene BDL 0.126 R-01 mg/kg dry 25 1525265 6/19/2015 12:50:001	PM 6/19/2015 6:54:00PM

7/21/2015 **PACE Analytical** Date:

CLIENT: Hull & Associates - Toledo Office 15F0709 Lab Order:

COT235 Champion Spark Plug Project:

Lab ID: 15F0709-05 Collection Date: 6/9/2015 12:50:00PM Client Sample ID:

COT235:HSB-5:S000020 Matrix: Soil

Analysis	Result		PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
n-Butylbenzene	BDL		0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
n-Hexane	BDL		0.134	R-01	mg/kg dry	25	1526083	6/19/2015 1:03:00PM	6/19/2015 6:52:00PM
n-Propylbenzene	BDL		0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
o-Xylene	BDL		0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
sec-Butylbenzene	BDL		0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
Styrene	BDL		0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
tert_Butylbenzene	BDL		0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
Tetrachloroethene	BDL		0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
Toluene	BDL		0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
trans-1,2-Dichloroethene	BDL		0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
trans-1,3-Dichloropropene	BDL		0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
Trichloroethene	BDL		0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
Trichlorofluoromethane	BDL		0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
Vinyl Chloride	BDL		0.126	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
Vinyl acetate	BDL		0.252	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
Surrogate: 4-Bromofluorobenzene		102 %			62-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
Surrogate: 4-Bromofluorobenzene		98.9 %			62-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 6:52:00PM
Surrogate: Dibromofluoromethane		99.2 %			71-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
Surrogate: Dibromofluoromethane		100 %			71-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 6:52:00PM
Surrogate: Toluene-d8		99.9 %			74-	124	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
Surrogate: Toluene-d8		106 %			74-	124	1526083	6/19/2015 1:03:00PM	6/19/2015 6:52:00PM
Surrogate: 1,2-Dichloroethane-d4		103 %			70-2	127	1526083	6/19/2015 1:03:00PM	6/19/2015 6:52:00PM
Surrogate: 1,2-Dichloroethane-d4		96.6 %			70-	127	1525265	6/19/2015 12:50:00PM	6/19/2015 6:54:00PM
PMOIST		D 2216						Analyst:	NL
Percent Moisture	16.5				% by Weight	1	1526192	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-06 **Collection Date:** 6/9/2015 12:10:00PM

Client Sample ID: COT235:HSB-6:S000020 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	BDL	5.88		mg/kg dry	1	1525157	6/17/2015 1:16:00PM	6/17/2015 5:37:00PM
Surrogate: Chlorobenzene-d5		95.2 %		70-1	130	1525157	6/17/2015 1:16:00PM	6/17/2015 5:37:00PM
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	1.11		mg/kg dry	1	1527130	7/1/2015 1:54:00PM	7/2/2015 3:23:01AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	2.27	1.07		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:28:16AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	48.2	1.07		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:28:16AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.536		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:28:16AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	12.6	1.07		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:28:16AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	7.09	1.07		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:28:16AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	5.36		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:28:16AM
HG		SW 7471A					Analyst:	CW
Mercury	BDL	0.120		mg/kg dry	1	1525141	6/17/2015 10:37:00AM	6/17/2015 1:43:00PM
VOC 8260_5035		SW 8260B					Analyst:	MLR
1,1,1,2-Tetrachloroethane	BDL	0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
1,1,1-Trichloroethane	BDL	0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
1,1,2,2-Tetrachloroethane	BDL	0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
1,1,2-Trichloroethane	BDL	0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
1,1-Dichloroethane	BDL	0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
1,1-Dichloroethene	BDL	0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
1,1-Dichloropropene	BDL	0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
1,2,3-Trichlorobenzene	BDL	0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
1,2,3-Trichloropropane	BDL	0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
1,2,4-Trichlorobenzene	BDL	0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
1,2,4-Trimethylbenzene	BDL	0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
1,2-Dibromo-3-chloropropane	BDL	0.236	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
1,2-Dibromoethane	BDL	0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-06 **Collection Date:** 6/9/2015 12:10:00PM

Client Sample ID: COT235:HSB-6:S000020 Matrix: Soil

1,2-Dichloroethane BDL 0.118 R-01 mg/kg dry 25 152 1,2-Dichloropropane BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM 25265 6/19/2015 12:50:00PM 25265 6/19/2015 12:50:00PM 25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM 6/19/2015 7:29:00PM 6/19/2015 7:29:00PM
1,2-Dichloropropane BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	
		6/19/2015 7:29:00PM
1,3,5-Trimethylbenzene BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	0/17/2013 /.27:001141
		6/19/2015 7:29:00PM
1,3-Dichlorobenzene BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
1,3-Dichloropropane BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
1,4-Dichlorobenzene BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
2,2-Dichloropropane BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
2-Butanone BDL 0.472 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
2-Chlorotoluene BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
2-Hexanone BDL 0.472 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
4-Chlorotoluene BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
4-Isopropyltoluene BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
4-Methyl-2-pentanone BDL 0.472 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Acetone BDL 1.18 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Acetonitrile BDL 0.944 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Acrolein BDL 1.18 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Acrylonitrile BDL 0.472 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Allyl chloride BDL 0.236 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Benzene BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Bromobenzene BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Bromochloromethane BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Bromodichloromethane BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Bromoform BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Bromomethane BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Carbon Disulfide BDL 0.472 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Carbon Tetrachloride BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Chlorobenzene BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Chloroethane BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Chloroform BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Chloromethane BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
cis-1,2-Dichloroethene BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
cis-1,3-Dichloropropene BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Dibromochloromethane BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Dibromomethane BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Dichlorodifluoromethane BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Ethylbenzene BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Hexachlorobutadiene BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Iodomethane BDL 0.236 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Isopropylbenzene BDL 0.118 R-01 mg/kg dry 25 152	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
	25265 6/19/2015 12:50:00PM	6/19/2015 7:29:00PM

CLIENT:Hull & Associates - Toledo OfficeLab Order:15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-06 **Collection Date:** 6/9/2015 12:10:00PM

Client Sample ID: COT235:HSB-6:S000020 Matrix: Soil

Analysis	Result		PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
n-Butylbenzene	BDL		0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
n-Hexane	BDL		0.118	R-01	mg/kg dry	25	1526083	6/19/2015 1:03:00PM	6/19/2015 7:26:00PM
n-Propylbenzene	BDL		0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
o-Xylene	BDL		0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
sec-Butylbenzene	BDL		0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Styrene	BDL		0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
tert_Butylbenzene	BDL		0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Tetrachloroethene	BDL		0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Toluene	BDL		0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
trans-1,2-Dichloroethene	BDL		0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
trans-1,3-Dichloropropene	BDL		0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Trichloroethene	BDL		0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Trichlorofluoromethane	BDL		0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Vinyl Chloride	BDL		0.118	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Vinyl acetate	BDL		0.236	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Surrogate: 4-Bromofluorobenzene		99.1 %			62-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 7:26:00PM
Surrogate: 4-Bromofluorobenzene		100 %			62-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Surrogate: Dibromofluoromethane		99.5 %			71-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Surrogate: Dibromofluoromethane		101 %			71-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 7:26:00PM
Surrogate: Toluene-d8		101 %			74-	124	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
Surrogate: Toluene-d8		105 %			74-	124	1526083	6/19/2015 1:03:00PM	6/19/2015 7:26:00PM
Surrogate: 1,2-Dichloroethane-d4		106 %			70-	127	1526083	6/19/2015 1:03:00PM	6/19/2015 7:26:00PM
Surrogate: 1,2-Dichloroethane-d4		93.2 %			70-	127	1525265	6/19/2015 12:50:00PM	6/19/2015 7:29:00PM
PMOIST		D 2216						Analyst:	NL
Percent Moisture	16.7				% by Weight	1	1526192	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-07 **Collection Date:** 6/9/2015 11:05:00AM

Client Sample ID: COT235:HSB-7:S000020 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	BDL	5.36		mg/kg dry	1	1525157	6/17/2015 1:16:00PM	6/17/2015 6:05:00PM
Surrogate: Chlorobenzene-d5		71.2 %		70-	130	1525157	6/17/2015 1:16:00PM	6/17/2015 6:05:00PM
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	0.938		mg/kg dry	1	1527130	7/1/2015 1:54:00PM	7/2/2015 3:41:10AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	3.59	1.07		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:34:46AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	196	1.07		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:34:46AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.533		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:34:46AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	4.93	1.07		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:34:46AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	11.4	1.07		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:34:46AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	5.33		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:34:46AM
HG		SW 7471A					Analyst:	CW
Mercury	BDL	0.107		mg/kg dry	1	1525141	6/17/2015 10:37:00AM	6/17/2015 1:43:00PM
VOC 8260_5035		SW 8260B					Analyst:	MLR
1,1,1,2-Tetrachloroethane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,1,1-Trichloroethane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,1,2,2-Tetrachloroethane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,1,2-Trichloroethane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,1-Dichloroethane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,1-Dichloroethene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,1-Dichloropropene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,2,3-Trichlorobenzene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,2,3-Trichloropropane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,2,4-Trichlorobenzene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,2,4-Trimethylbenzene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,2-Dibromo-3-chloropropane	BDL	0.213	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,2-Dibromoethane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-07 **Collection Date:** 6/9/2015 11:05:00AM

Client Sample ID: COT235:HSB-7:S000020 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,2-Dichloroethane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,2-Dichloropropane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,3,5-Trimethylbenzene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,3-Dichlorobenzene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,3-Dichloropropane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
1,4-Dichlorobenzene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
2,2-Dichloropropane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
2-Butanone	BDL	0.426	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
2-Chlorotoluene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
2-Hexanone	BDL	0.426	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
4-Chlorotoluene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
4-Isopropyltoluene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
4-Methyl-2-pentanone	BDL	0.426	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Acetone	BDL	1.06	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Acetonitrile	BDL	0.851	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Acrolein	BDL	1.06	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Acrylonitrile	BDL	0.426	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Allyl chloride	BDL	0.213	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Benzene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Bromobenzene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Bromochloromethane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Bromodichloromethane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Bromoform	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Bromomethane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Carbon Disulfide	BDL	0.426	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Carbon Tetrachloride	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Chlorobenzene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Chloroethane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Chloroform	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Chloromethane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
cis-1,2-Dichloroethene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
cis-1,3-Dichloropropene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Dibromochloromethane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Dibromomethane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Dichlorodifluoromethane	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Ethylbenzene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Hexachlorobutadiene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Iodomethane	BDL	0.213	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Isopropylbenzene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Methylene Chloride	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Methyl tert-Butyl Ether	BDL	0.213	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
m,p-Xylene	BDL	0.213	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Naphthalene	BDL	0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-07 **Collection Date:** 6/9/2015 11:05:00AM

Client Sample ID: COT235:HSB-7:S000020 Matrix: Soil

Analysis	Result		PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
n-Butylbenzene	BDL		0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
n-Hexane	BDL		0.106	R-01	mg/kg dry	25	1526083	6/19/2015 1:03:00PM	6/19/2015 7:59:00PM
n-Propylbenzene	BDL		0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
o-Xylene	BDL		0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
sec-Butylbenzene	BDL		0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Styrene	BDL		0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
tert_Butylbenzene	BDL		0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Tetrachloroethene	BDL		0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Toluene	BDL		0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
trans-1,2-Dichloroethene	BDL		0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
trans-1,3-Dichloropropene	BDL		0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Trichloroethene	BDL		0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Trichlorofluoromethane	BDL		0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Vinyl Chloride	BDL		0.106	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Vinyl acetate	BDL		0.213	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Surrogate: 4-Bromofluorobenzene		99.8 %			62-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 7:59:00PM
Surrogate: 4-Bromofluorobenzene		101 %			62-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Surrogate: Dibromofluoromethane		103 %			71-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Surrogate: Dibromofluoromethane		101 %			71-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 7:59:00PM
Surrogate: Toluene-d8		105 %			74-	124	1526083	6/19/2015 1:03:00PM	6/19/2015 7:59:00PM
Surrogate: Toluene-d8		102 %			74-	124	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
Surrogate: 1,2-Dichloroethane-d4		104 %			70-2	127	1526083	6/19/2015 1:03:00PM	6/19/2015 7:59:00PM
Surrogate: 1,2-Dichloroethane-d4		97.4 %			70-	127	1525265	6/19/2015 12:50:00PM	6/19/2015 8:06:00PM
PMOIST		D 2216						Analyst:	NL
Percent Moisture	8.10				% by Weight	1	1526192	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-08 **Collection Date:** 6/8/2015 10:20:00AM

Client Sample ID: COT235:HSB-8:S080100 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	BDL	6.48		mg/kg dry	1	1525157	6/17/2015 1:16:00PM	6/17/2015 6:34:00PM
Surrogate: Chlorobenzene-d5		59.5 %	C, S-04	70	130	1525157	6/17/2015 1:16:00PM	6/17/2015 6:34:00PM
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	1.25		mg/kg dry	1	1527130	7/1/2015 1:54:00PM	7/2/2015 3:46:11AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	9.31	1.20		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:40:37AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	120	1.20		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:40:37AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.601		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:40:37AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	26.1	1.20		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:40:37AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	13.9	1.20		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:40:37AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	6.01		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:40:37AM
HG		SW 7471A					Analyst:	CW
Mercury	BDL	0.120		mg/kg dry	1	1525141	6/17/2015 10:37:00AM	6/17/2015 1:43:00PM
VOC 8260_5035		SW 8260B					Analyst:	MLR
1,1,1,2-Tetrachloroethane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,1,1-Trichloroethane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,1,2,2-Tetrachloroethane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,1,2-Trichloroethane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,1-Dichloroethane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,1-Dichloroethene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,1-Dichloropropene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,2,3-Trichlorobenzene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,2,3-Trichloropropane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,2,4-Trichlorobenzene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,2,4-Trimethylbenzene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,2-Dibromo-3-chloropropane	BDL	0.281	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,2-Dibromoethane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-08 **Collection Date:** 6/8/2015 10:20:00AM

Client Sample ID: COT235:HSB-8:S080100 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,2-Dichloroethane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,2-Dichloropropane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,3,5-Trimethylbenzene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,3-Dichlorobenzene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,3-Dichloropropane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
1,4-Dichlorobenzene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
2,2-Dichloropropane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
2-Butanone	BDL	0.562	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
2-Chlorotoluene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
2-Hexanone	BDL	0.562	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
4-Chlorotoluene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
4-Isopropyltoluene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
4-Methyl-2-pentanone	BDL	0.562	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Acetone	BDL	1.41	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Acetonitrile	BDL	1.12	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Acrolein	BDL	1.41	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Acrylonitrile	BDL	0.562	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Allyl chloride	BDL	0.281	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Benzene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Bromobenzene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Bromochloromethane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Bromodichloromethane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Bromoform	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Bromomethane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Carbon Disulfide	BDL	0.562	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Carbon Tetrachloride	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Chlorobenzene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Chloroethane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Chloroform	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Chloromethane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
cis-1,2-Dichloroethene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
cis-1,3-Dichloropropene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Dibromochloromethane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Dibromomethane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Dichlorodifluoromethane	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Ethylbenzene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Hexachlorobutadiene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Iodomethane	BDL	0.281	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Isopropylbenzene	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Methylene Chloride	BDL	0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Methyl tert-Butyl Ether	BDL	0.281	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
m,p-Xylene		0.201	D 01				(10/0015 10 50 000)	(110/2015 4.02.007)
,p,	BDL	0.281	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM

CLIENT:Hull & Associates - Toledo OfficeLab Order:15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-08 **Collection Date:** 6/8/2015 10:20:00AM

Client Sample ID: COT235:HSB-8:S080100 Matrix: Soil

Analysis	Result		PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
n-Butylbenzene	BDL		0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
n-Hexane	BDL		0.141	R-01	mg/kg dry	25	1526083	6/19/2015 1:03:00PM	6/19/2015 4:02:00PM
n-Propylbenzene	BDL		0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
o-Xylene	BDL		0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
sec-Butylbenzene	BDL		0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Styrene	BDL		0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
tert_Butylbenzene	BDL		0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Tetrachloroethene	BDL		0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Toluene	BDL		0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
trans-1,2-Dichloroethene	BDL		0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
trans-1,3-Dichloropropene	BDL		0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Trichloroethene	BDL		0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Trichlorofluoromethane	BDL		0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Vinyl Chloride	BDL		0.141	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Vinyl acetate	BDL		0.281	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Surrogate: 4-Bromofluorobenzene		101 %			62-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 4:02:00PM
Surrogate: 4-Bromofluorobenzene		98.7 %			62-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Surrogate: Dibromofluoromethane		98.5 %			71-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Surrogate: Dibromofluoromethane		102 %			71-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 4:02:00PM
Surrogate: Toluene-d8		106 %			74-	124	1526083	6/19/2015 1:03:00PM	6/19/2015 4:02:00PM
Surrogate: Toluene-d8		100 %			74-	124	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
Surrogate: 1,2-Dichloroethane-d4		106 %			70-	127	1526083	6/19/2015 1:03:00PM	6/19/2015 4:02:00PM
Surrogate: 1,2-Dichloroethane-d4		93.9 %			70-	127	1525265	6/19/2015 12:50:00PM	6/19/2015 4:03:00PM
PMOIST		D 2216						Analyst:	NL
Percent Moisture	24.4				% by Weight	1	1526192	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-09 **Collection Date:** 6/8/2015 1:25:00PM

Client Sample ID: COT235:HSB-9:S060080 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	6.96	6.34		mg/kg dry	1	1525157	6/17/2015 1:16:00PM	6/17/2015 7:02:00PM
Surrogate: Chlorobenzene-d5		56.5 %	C, S-04	70-1	130	1525157	6/17/2015 1:16:00PM	6/17/2015 7:02:00PM
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	1.07		mg/kg dry	1	1527130	7/1/2015 1:54:00PM	7/2/2015 3:51:55AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	3.98	1.24		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:47:36AM
ICP_Ba		SW 6010B					Analyst:	RJE
- Barium	93.9	1.24		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:47:36AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.620		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:47:36AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	18.4	1.24		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:47:36AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	8.43	1.24		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:47:36AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	6.20		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:47:36AM
HG		SW 7471A					Analyst:	CW
Mercury	BDL	0.121		mg/kg dry	1	1525141	6/17/2015 10:37:00AM	6/17/2015 1:43:00PM
VOC 8260_5035		SW 8260B					Analyst:	MLR
1,1,1,2-Tetrachloroethane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,1,1-Trichloroethane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,1,2,2-Tetrachloroethane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,1,2-Trichloroethane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,1-Dichloroethane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,1-Dichloroethene	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,1-Dichloropropene	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,2,3-Trichlorobenzene	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,2,3-Trichloropropane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,2,4-Trichlorobenzene	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,2,4-Trimethylbenzene	0.341	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,2-Dibromo-3-chloropropane	BDL	0.282	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,2-Dibromoethane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-09 **Collection Date:** 6/8/2015 1:25:00PM

Client Sample ID: COT235:HSB-9:S060080 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,2-Dichloroethane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,2-Dichloropropane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,3,5-Trimethylbenzene	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,3-Dichlorobenzene	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,3-Dichloropropane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
1,4-Dichlorobenzene	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
2,2-Dichloropropane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
2-Butanone	1.98	0.563	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
2-Chlorotoluene	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
2-Hexanone	BDL	0.563	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
4-Chlorotoluene	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
4-Isopropyltoluene	0.181	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
4-Methyl-2-pentanone	BDL	0.563	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Acetone	BDL	1.41	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Acetonitrile	BDL	1.13	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Acrolein	3.23	1.41	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Acrylonitrile	BDL	0.563	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Allyl chloride	BDL	0.282	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Benzene	3.51	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Bromobenzene	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Bromochloromethane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Bromodichloromethane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Bromoform	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Bromomethane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Carbon Disulfide	BDL	0.563	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Carbon Tetrachloride	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Chlorobenzene	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Chloroethane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Chloroform		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Chloromethane	BDL BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
cis-1,2-Dichloroethene	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
cis-1,3-Dichloropropene		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Dibromochloromethane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Dibromomethane	BDL BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Dichlorodifluoromethane	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Ethylbenzene	1.08	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
-								
Hexachlorobutadiene	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM 6/19/2015 12:50:00PM	6/19/2015 4:37:00PM 6/19/2015 4:37:00PM
Iodomethane Isopropylhenzene	BDL 0.892	0.282 0.141	R-06 R-06	mg/kg dry mg/kg dry	25 25	1525265 1525265	6/19/2015 12:50:00PM 6/19/2015 12:50:00PM	6/19/2015 4:37:00PM 6/19/2015 4:37:00PM
Isopropylbenzene								
Methylene Chloride	BDL	0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Methyl tert-Butyl Ether	BDL	0.282	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
m,p-Xylene	0.463	0.282	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM

CLIENT:Hull & Associates - Toledo OfficeLab Order:15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-09 **Collection Date:** 6/8/2015 1:25:00PM

Client Sample ID: COT235:HSB-9:S060080 Matrix: Soil

Analysis	Result		PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
Naphthalene	1.36		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
n-Butylbenzene	2.06		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
n-Hexane	2.50		0.141	R-06	mg/kg dry	25	1526083	6/19/2015 1:03:00PM	6/19/2015 4:36:00PM
n-Propylbenzene	4.18		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
o-Xylene	BDL		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
sec-Butylbenzene	0.900		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Styrene	BDL		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
tert_Butylbenzene	BDL		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Tetrachloroethene	BDL		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Toluene	BDL		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
trans-1,2-Dichloroethene	BDL		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
trans-1,3-Dichloropropene	BDL		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Trichloroethene	BDL		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Trichlorofluoromethane	BDL		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Vinyl Chloride	BDL		0.141	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Vinyl acetate	BDL		0.282	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Surrogate: 4-Bromofluorobenzene		103 %			62-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 4:36:00PM
Surrogate: 4-Bromofluorobenzene		99.6 %			62-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Surrogate: Dibromofluoromethane		95.0 %			71	129	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Surrogate: Dibromofluoromethane		97.2 %			71	129	1526083	6/19/2015 1:03:00PM	6/19/2015 4:36:00PM
Surrogate: Toluene-d8		98.9 %			74	124	1526083	6/19/2015 1:03:00PM	6/19/2015 4:36:00PM
Surrogate: Toluene-d8		95.0 %			74	124	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
Surrogate: 1,2-Dichloroethane-d4		101 %			70	127	1526083	6/19/2015 1:03:00PM	6/19/2015 4:36:00PM
Surrogate: 1,2-Dichloroethane-d4		90.1 %			70	127	1525265	6/19/2015 12:50:00PM	6/19/2015 4:37:00PM
PMOIST		D 2216						Analyst:	NL
Percent Moisture	22.4				% by Weight	1	1526192	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-10 **Collection Date:** 6/8/2015 3:10:00PM

Client Sample ID: COT235:HSB-10:S000020 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	BDL	6.23		mg/kg dry	1	1525157	6/17/2015 1:16:00PM	6/17/2015 7:30:00PM
Surrogate: Chlorobenzene-d5		63.2 %	C, S-04	70	130	1525157	6/17/2015 1:16:00PM	6/17/2015 7:30:00PM
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	1.65	1.07		mg/kg dry	1	1527130	7/1/2015 1:54:00PM	7/2/2015 3:57:57AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	18.8	1.17		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:55:00AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	115	1.17		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:55:00AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.587		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:55:00AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	26.8	1.17		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:55:00AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	16.8	1.17		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:55:00AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	5.87		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 1:55:00AM
HG		SW 7471A					Analyst:	CW
Mercury	BDL	0.110		mg/kg dry	1	1525141	6/17/2015 10:37:00AM	6/17/2015 1:43:00PM
VOC 8260_5035		SW 8260B					Analyst:	MLR
1,1,1,2-Tetrachloroethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,1,1-Trichloroethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,1,2,2-Tetrachloroethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,1,2-Trichloroethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,1-Dichloroethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,1-Dichloroethene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,1-Dichloropropene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,2,3-Trichlorobenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,2,3-Trichloropropane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,2,4-Trichlorobenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,2,4-Trimethylbenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,2-Dibromo-3-chloropropane	BDL	0.242	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,2-Dibromoethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-10 **Collection Date:** 6/8/2015 3:10:00PM

Client Sample ID: COT235:HSB-10:S000020 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,2-Dichloroethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,2-Dichloropropane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,3,5-Trimethylbenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,3-Dichlorobenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,3-Dichloropropane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
1,4-Dichlorobenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
2,2-Dichloropropane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
2-Butanone	BDL	0.483	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
2-Chlorotoluene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
2-Hexanone	BDL	0.483	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
4-Chlorotoluene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
4-Isopropyltoluene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
4-Methyl-2-pentanone	BDL	0.483	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Acetone	BDL	1.21	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Acetonitrile	BDL	0.966	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Acrolein	BDL	1.21	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Acrylonitrile	BDL	0.483	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Allyl chloride	BDL	0.242	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Benzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Bromobenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Bromochloromethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Bromodichloromethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Bromoform	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Bromomethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Carbon Disulfide	BDL	0.483	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Carbon Tetrachloride	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Chlorobenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Chloroethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Chloroform	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Chloromethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
cis-1,2-Dichloroethene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
cis-1,3-Dichloropropene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Dibromochloromethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Dibromomethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Dichlorodifluoromethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Ethylbenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Hexachlorobutadiene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Iodomethane	BDL	0.242	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Isopropylbenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Methylene Chloride	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Methyl tert-Butyl Ether	BDL	0.242	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
m,p-Xylene	BDL	0.242	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Naphthalene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-10 **Collection Date:** 6/8/2015 3:10:00PM

Client Sample ID: COT235:HSB-10:S000020 Matrix: Soil

Analysis	Result		PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
n-Butylbenzene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
n-Hexane	BDL		0.121	R-01	mg/kg dry	25	1526083	6/19/2015 1:03:00PM	6/19/2015 5:10:00PM
n-Propylbenzene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
o-Xylene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
sec-Butylbenzene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Styrene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
tert_Butylbenzene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Tetrachloroethene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Toluene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
trans-1,2-Dichloroethene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
trans-1,3-Dichloropropene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Trichloroethene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Trichlorofluoromethane	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Vinyl Chloride	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Vinyl acetate	BDL		0.242	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Surrogate: 4-Bromofluorobenzene		101 %			62-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 5:10:00PM
Surrogate: 4-Bromofluorobenzene		101 %			62-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Surrogate: Dibromofluoromethane		101 %			71-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Surrogate: Dibromofluoromethane		99.6 %			71-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 5:10:00PM
Surrogate: Toluene-d8		104 %			74-	124	1526083	6/19/2015 1:03:00PM	6/19/2015 5:10:00PM
Surrogate: Toluene-d8		102 %			74-	124	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
Surrogate: 1,2-Dichloroethane-d4		101 %			70-	127	1526083	6/19/2015 1:03:00PM	6/19/2015 5:10:00PM
Surrogate: 1,2-Dichloroethane-d4		96.6 %			70-	127	1525265	6/19/2015 12:50:00PM	6/19/2015 5:11:00PM
PMOIST		D 2216						Analyst:	NL
Percent Moisture	21.1				% by Weight	1	1526192	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-11 **Collection Date:** 6/9/2015 4:25:00PM

Client Sample ID: COT235:HSB-11:S000020 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	BDL	6.17		mg/kg dry	1	1525239	6/19/2015 11:00:00AM	6/19/2015 12:12:00PM
Surrogate: Chlorobenzene-d5		79.5 %		70-	130	1525239	6/19/2015 11:00:00AM	6/19/2015 12:12:00PM
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	1.21		mg/kg dry	1	1527130	7/1/2015 1:54:00PM	7/2/2015 4:04:35AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	7.59	1.21		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:02:59AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	117	1.21		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:02:59AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.606		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:02:59AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	23.6	1.21		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:02:59AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	12.4	1.21		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:02:59AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	6.06		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:02:59AM
HG		SW 7471A					Analyst:	CW
Mercury	BDL	0.110		mg/kg dry	1	1525141	6/17/2015 10:37:00AM	6/17/2015 1:43:00PM
VOC 8260_5035		SW 8260B					Analyst:	MLR
1,1,1,2-Tetrachloroethane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,1,1-Trichloroethane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,1,2,2-Tetrachloroethane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,1,2-Trichloroethane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,1-Dichloroethane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,1-Dichloroethene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,1-Dichloropropene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,2,3-Trichlorobenzene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,2,3-Trichloropropane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,2,4-Trichlorobenzene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,2,4-Trimethylbenzene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,2-Dibromo-3-chloropropane	BDL	0.246	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,2-Dibromoethane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-11 **Collection Date**: 6/9/2015 4:25:00PM

Client Sample ID: COT235:HSB-11:S000020 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,2-Dichloroethane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,2-Dichloropropane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,3,5-Trimethylbenzene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,3-Dichlorobenzene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,3-Dichloropropane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
1,4-Dichlorobenzene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
2,2-Dichloropropane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
2-Butanone	BDL	0.492	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
2-Chlorotoluene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
2-Hexanone	BDL	0.492	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
4-Chlorotoluene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
4-Isopropyltoluene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
4-Methyl-2-pentanone	BDL	0.492	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Acetone	BDL	1.23	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Acetonitrile	BDL	0.984	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Acrolein	BDL	1.23	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Acrylonitrile	BDL	0.492	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Allyl chloride	BDL	0.246	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Benzene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Bromobenzene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Bromochloromethane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Bromodichloromethane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Bromoform	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Bromomethane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Carbon Disulfide	BDL	0.492	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Carbon Tetrachloride	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Chlorobenzene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Chloroethane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Chloroform	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Chloromethane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
cis-1,2-Dichloroethene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
cis-1,3-Dichloropropene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Dibromochloromethane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Dibromomethane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Dichlorodifluoromethane	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Ethylbenzene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Hexachlorobutadiene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Iodomethane	BDL	0.246	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Isopropylbenzene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Methylene Chloride	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Methyl tert-Butyl Ether	BDL	0.246	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
m,p-Xylene	BDL	0.246	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Naphthalene	BDL	0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-11 **Collection Date:** 6/9/2015 4:25:00PM

Client Sample ID: COT235:HSB-11:S000020 Matrix: Soil

Analysis	Result		PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
n-Butylbenzene	BDL		0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
n-Hexane	BDL		0.123	R-01	mg/kg dry	25	1526083	6/19/2015 1:03:00PM	6/19/2015 8:33:00PM
n-Propylbenzene	BDL		0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
o-Xylene	BDL		0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
sec-Butylbenzene	BDL		0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Styrene	BDL		0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
tert_Butylbenzene	BDL		0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Tetrachloroethene	BDL		0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Toluene	BDL		0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
trans-1,2-Dichloroethene	BDL		0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
trans-1,3-Dichloropropene	BDL		0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Trichloroethene	BDL		0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Trichlorofluoromethane	BDL		0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Vinyl Chloride	BDL		0.123	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Vinyl acetate	BDL		0.246	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Surrogate: 4-Bromofluorobenzene		101 %			62-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 8:33:00PM
Surrogate: 4-Bromofluorobenzene		99.0 %			62-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Surrogate: Dibromofluoromethane		101 %			71	129	1526083	6/19/2015 1:03:00PM	6/19/2015 8:33:00PM
Surrogate: Dibromofluoromethane		101 %			71	129	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Surrogate: Toluene-d8		101 %			74	124	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Surrogate: Toluene-d8		105 %			74	124	1526083	6/19/2015 1:03:00PM	6/19/2015 8:33:00PM
Surrogate: 1,2-Dichloroethane-d4		93.5 %			70	127	1525265	6/19/2015 12:50:00PM	6/19/2015 8:41:00PM
Surrogate: 1,2-Dichloroethane-d4		103 %			70	127	1526083	6/19/2015 1:03:00PM	6/19/2015 8:33:00PM
PMOIST		D 2216						Analyst:	NL
Percent Moisture	20.6				% by Weight	1	1526198	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-12 **Collection Date:** 6/8/2015 4:05:00PM

Client Sample ID: COT235:HSB-12:S000020 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	BDL	5.92		mg/kg dry	1	1525239	6/19/2015 11:00:00AM	6/19/2015 5:31:00PM
Surrogate: Chlorobenzene-d5		91.8 %		70	130	1525239	6/19/2015 11:00:00AM	6/19/2015 5:31:00PM
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	1.49	1.17		mg/kg dry	1	1527130	7/1/2015 1:54:00PM	7/2/2015 4:10:14AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	17.2	1.05		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:23:15AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	219	1.05		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:23:15AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.524		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:23:15AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	19.7	1.05		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:23:15AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	20.7	1.05		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:23:15AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	5.24		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:23:15AM
HG		SW 7471A					Analyst:	CW
Mercury	BDL	0.121		mg/kg dry	1	1525141	6/17/2015 10:37:00AM	6/17/2015 1:43:00PM
VOC 8260_5035		SW 8260B					Analyst:	MLR
1,1,1,2-Tetrachloroethane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,1,1-Trichloroethane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,1,2,2-Tetrachloroethane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,1,2-Trichloroethane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,1-Dichloroethane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,1-Dichloroethene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,1-Dichloropropene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,2,3-Trichlorobenzene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,2,3-Trichloropropane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,2,4-Trichlorobenzene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,2,4-Trimethylbenzene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,2-Dibromo-3-chloropropane	BDL	0.215	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,2-Dibromoethane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-12 **Collection Date:** 6/8/2015 4:05:00PM

Client Sample ID: COT235:HSB-12:S000020 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,2-Dichloroethane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,2-Dichloropropane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,3,5-Trimethylbenzene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,3-Dichlorobenzene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,3-Dichloropropane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
1,4-Dichlorobenzene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
2,2-Dichloropropane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
2-Butanone	BDL	0.430	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
2-Chlorotoluene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
2-Hexanone	BDL	0.430	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
4-Chlorotoluene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
4-Isopropyltoluene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
4-Methyl-2-pentanone	BDL	0.430	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Acetone	BDL	1.07	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Acetonitrile	BDL	0.859	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Acrolein	BDL	1.07	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Acrylonitrile	BDL	0.430	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Allyl chloride	BDL	0.215	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Benzene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Bromobenzene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Bromochloromethane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Bromodichloromethane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Bromoform	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Bromomethane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Carbon Disulfide	BDL	0.430	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Carbon Tetrachloride	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Chlorobenzene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Chloroethane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Chloroform	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Chloromethane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
cis-1,2-Dichloroethene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
cis-1,3-Dichloropropene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Dibromochloromethane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Dibromomethane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Dichlorodifluoromethane	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Ethylbenzene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Hexachlorobutadiene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Iodomethane	BDL	0.215	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Isopropylbenzene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Methylene Chloride	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Methyl tert-Butyl Ether	BDL	0.215	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
m,p-Xylene	BDL	0.215	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Naphthalene	BDL	0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM

CLIENT:Hull & Associates - Toledo OfficeLab Order:15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-12 **Collection Date:** 6/8/2015 4:05:00PM

Client Sample ID: COT235:HSB-12:S000020 Matrix: Soil

Analysis	Result		PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
n-Butylbenzene	BDL		0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
n-Hexane	BDL		0.107	R-01	mg/kg dry	25	1526083	6/19/2015 1:03:00PM	6/19/2015 5:44:00PM
n-Propylbenzene	BDL		0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
o-Xylene	BDL		0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
sec-Butylbenzene	BDL		0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Styrene	BDL		0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
tert_Butylbenzene	BDL		0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Tetrachloroethene	BDL		0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Toluene	BDL		0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
trans-1,2-Dichloroethene	BDL		0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
trans-1,3-Dichloropropene	BDL		0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Trichloroethene	BDL		0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Trichlorofluoromethane	BDL		0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Vinyl Chloride	BDL		0.107	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Vinyl acetate	BDL		0.215	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Surrogate: 4-Bromofluorobenzene		99.8 %			62-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 5:44:00PM
Surrogate: 4-Bromofluorobenzene		101 %			62-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Surrogate: Dibromofluoromethane		102 %			71-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Surrogate: Dibromofluoromethane		101 %			71-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 5:44:00PM
Surrogate: Toluene-d8		105 %			74-	124	1526083	6/19/2015 1:03:00PM	6/19/2015 5:44:00PM
Surrogate: Toluene-d8		102 %			74-	124	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
Surrogate: 1,2-Dichloroethane-d4		101 %			70-2	127	1526083	6/19/2015 1:03:00PM	6/19/2015 5:44:00PM
Surrogate: 1,2-Dichloroethane-d4		94.6 %			70-	127	1525265	6/19/2015 12:50:00PM	6/19/2015 5:45:00PM
PMOIST		D 2216						Analyst:	NL
Percent Moisture	17.7				% by Weight	1	1526198	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-13 **Collection Date:** 6/9/2015 3:25:00PM

Client Sample ID: COT235:HSB-13:S100120 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	BDL	6.32		mg/kg dry	1	1525239	6/19/2015 11:00:00AM	6/19/2015 1:10:00PM
Surrogate: Chlorobenzene-d5		41.8 %	C, S-04	70-	130	1525239	6/19/2015 11:00:00AM	6/19/2015 1:10:00PM
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	1.18		mg/kg dry	1	1527130	7/1/2015 1:54:00PM	7/2/2015 4:16:17AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	26.6	1.21		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:32:16AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	170	1.21		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:32:16AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.603		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:32:16AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	19.1	1.21		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:32:16AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	14.3	1.21		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:32:16AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	6.03		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:32:16AM
HG		SW 7471A					Analyst:	CW
Mercury	BDL	0.118		mg/kg dry	1	1525141	6/17/2015 10:37:00AM	6/17/2015 1:43:00PM
VOC 8260_5035		SW 8260B					Analyst:	MLR
1,1,1,2-Tetrachloroethane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,1,1-Trichloroethane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,1,2,2-Tetrachloroethane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,1,2-Trichloroethane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,1-Dichloroethane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,1-Dichloroethene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,1-Dichloropropene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,2,3-Trichlorobenzene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,2,3-Trichloropropane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,2,4-Trichlorobenzene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,2,4-Trimethylbenzene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,2-Dibromo-3-chloropropane	BDL	0.232	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,2-Dibromoethane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-13 **Collection Date:** 6/9/2015 3:25:00PM

Client Sample ID: COT235:HSB-13:S100120 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,2-Dichloroethane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,2-Dichloropropane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,3,5-Trimethylbenzene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,3-Dichlorobenzene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,3-Dichloropropane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
1,4-Dichlorobenzene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
2,2-Dichloropropane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
2-Butanone	BDL	0.465	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
2-Chlorotoluene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
2-Hexanone	BDL	0.465	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
4-Chlorotoluene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
4-Isopropyltoluene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
4-Methyl-2-pentanone	BDL	0.465	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Acetone	BDL	1.16	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Acetonitrile	BDL	0.929	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Acrolein	BDL	1.16	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Acrylonitrile	BDL	0.465	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Allyl chloride	BDL	0.232	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Benzene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Bromobenzene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Bromochloromethane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Bromodichloromethane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Bromoform	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Bromomethane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Carbon Disulfide	BDL	0.465	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Carbon Tetrachloride	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Chlorobenzene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Chloroethane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Chloroform	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Chloromethane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
cis-1,2-Dichloroethene	3.74	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
cis-1,3-Dichloropropene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Dibromochloromethane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Dibromomethane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Dichlorodifluoromethane	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Ethylbenzene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Hexachlorobutadiene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Iodomethane	BDL	0.232	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Isopropylbenzene	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Methylene Chloride	BDL	0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Methyl tert-Butyl Ether	BDL	0.232	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
m,p-Xylene							6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
ш,р-луши	BDL	0.232	R-06	mg/kg dry	25	1525265	0/17/2013 12.30.00FM	0/17/2013 9.13.00FM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-13 **Collection Date:** 6/9/2015 3:25:00PM

Client Sample ID: COT235:HSB-13:S100120 Matrix: Soil

Analysis	Result		PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
Naphthalene	BDL		0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
n-Butylbenzene	BDL		0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
n-Hexane	BDL		0.116	R-06	mg/kg dry	25	1526083	6/19/2015 1:03:00PM	6/19/2015 9:07:00PM
n-Propylbenzene	BDL		0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
o-Xylene	BDL		0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
sec-Butylbenzene	BDL		0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Styrene	BDL		0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
tert_Butylbenzene	BDL		0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Tetrachloroethene	0.361		0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Toluene	BDL		0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
trans-1,2-Dichloroethene	BDL		0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
trans-1,3-Dichloropropene	BDL		0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Trichloroethene	123		2.32		mg/kg dry	500	1526079	6/20/2015 1:55:00PM	6/20/2015 7:30:00PM
Trichlorofluoromethane	BDL		0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Vinyl Chloride	BDL		0.116	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Vinyl acetate	BDL		0.232	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Surrogate: 4-Bromofluorobenzene		99.9 %			62-1	129	1526083	6/19/2015 1:03:00PM	6/19/2015 9:07:00PM
Surrogate: 4-Bromofluorobenzene		97.2 %			62-1	129	1526079	6/20/2015 1:55:00PM	6/20/2015 7:30:00PM
Surrogate: 4-Bromofluorobenzene		99.8 %			62-1	129	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Surrogate: Dibromofluoromethane		90.7 %			71-1	129	1526079	6/20/2015 1:55:00PM	6/20/2015 7:30:00PM
Surrogate: Dibromofluoromethane		102 %			71-1	129	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Surrogate: Dibromofluoromethane		103 %			71-1	129	1526083	6/19/2015 1:03:00PM	6/19/2015 9:07:00PM
Surrogate: Toluene-d8		99.0 %			74-1	124	1526079	6/20/2015 1:55:00PM	6/20/2015 7:30:00PM
Surrogate: Toluene-d8		94.7 %			74-1	124	1526083	6/19/2015 1:03:00PM	6/19/2015 9:07:00PM
Surrogate: Toluene-d8		108 %			74-1	124	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
Surrogate: 1,2-Dichloroethane-d4		102 %			70-1	127	1526083	6/19/2015 1:03:00PM	6/19/2015 9:07:00PM
Surrogate: 1,2-Dichloroethane-d4		91.3 %			70-1	127	1526079	6/20/2015 1:55:00PM	6/20/2015 7:30:00PM
Surrogate: 1,2-Dichloroethane-d4		93.2 %			70-1	127	1525265	6/19/2015 12:50:00PM	6/19/2015 9:15:00PM
PMOIST		D 2216						Analyst:	NL
Percent Moisture	21.8				% by Weight	1	1526198	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-14 **Collection Date:** 6/9/2015 2:45:00PM

Client Sample ID: COT235:HSB-14:S040060 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	BDL	6.20		mg/kg dry	1	1525239	6/19/2015 11:00:00AM	6/19/2015 1:38:00PM
Surrogate: Chlorobenzene-d5		59.2 %	C, S-04	70-1	130	1525239	6/19/2015 11:00:00AM	6/19/2015 1:38:00PM
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	1.86	1.20		mg/kg dry	1	1527130	7/1/2015 1:54:00PM	7/2/2015 4:22:13AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	16.2	1.16		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:39:41AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	158	1.16		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:39:41AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.578		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:39:41AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	25.1	1.16		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:39:41AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	18.0	1.16		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:39:41AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	5.78		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:39:41AM
HG		SW 7471A					Analyst:	CW
Mercury	BDL	0.121		mg/kg dry	1	1525141	6/17/2015 10:37:00AM	6/17/2015 1:43:00PM
VOC 8260_5035		SW 8260B					Analyst:	MLR
1,1,1,2-Tetrachloroethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,1,1-Trichloroethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,1,2,2-Tetrachloroethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,1,2-Trichloroethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,1-Dichloroethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,1-Dichloroethene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,1-Dichloropropene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,2,3-Trichlorobenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,2,3-Trichloropropane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,2,4-Trichlorobenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,2,4-Trimethylbenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,2-Dibromo-3-chloropropane	BDL	0.242	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,2-Dibromoethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-14 **Collection Date:** 6/9/2015 2:45:00PM

Client Sample ID: COT235:HSB-14:S040060 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,2-Dichloroethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,2-Dichloropropane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,3,5-Trimethylbenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,3-Dichlorobenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,3-Dichloropropane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
1,4-Dichlorobenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
2,2-Dichloropropane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
2-Butanone	BDL	0.483	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
2-Chlorotoluene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
2-Hexanone	BDL	0.483	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
4-Chlorotoluene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
4-Isopropyltoluene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
4-Methyl-2-pentanone	BDL	0.483	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Acetone	BDL	1.21	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Acetonitrile	BDL	0.967	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Acrolein	BDL	1.21	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Acrylonitrile	BDL	0.483	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Allyl chloride	BDL	0.242	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Benzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Bromobenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Bromochloromethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Bromodichloromethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Bromoform	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Bromomethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Carbon Disulfide	BDL	0.483	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Carbon Tetrachloride	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Chlorobenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Chloroethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Chloroform	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Chloromethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
cis-1,2-Dichloroethene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
cis-1,3-Dichloropropene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Dibromochloromethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Dibromomethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Dichlorodifluoromethane	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Ethylbenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Hexachlorobutadiene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Iodomethane	BDL	0.242	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Isopropylbenzene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Methylene Chloride	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Methyl tert-Butyl Ether	BDL	0.242	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
m,p-Xylene	BDL	0.242	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Naphthalene	BDL	0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-14 **Collection Date**: 6/9/2015 2:45:00PM

Client Sample ID: COT235:HSB-14:S040060 Matrix: Soil

Analysis	Result		PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
n-Butylbenzene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
n-Hexane	BDL		0.121	R-01	mg/kg dry	25	1526083	6/19/2015 1:03:00PM	6/19/2015 9:41:00PM
n-Propylbenzene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
o-Xylene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
sec-Butylbenzene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Styrene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
tert_Butylbenzene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Tetrachloroethene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Toluene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
trans-1,2-Dichloroethene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
trans-1,3-Dichloropropene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Trichloroethene	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Trichlorofluoromethane	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Vinyl Chloride	BDL		0.121	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Vinyl acetate	BDL		0.242	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Surrogate: 4-Bromofluorobenzene		98.3 %			62-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Surrogate: 4-Bromofluorobenzene		98.6 %			62-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 9:41:00PM
Surrogate: Dibromofluoromethane		103 %			71	129	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Surrogate: Dibromofluoromethane		100 %			71	129	1526083	6/19/2015 1:03:00PM	6/19/2015 9:41:00PM
Surrogate: Toluene-d8		101 %			74	124	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Surrogate: Toluene-d8		105 %			74	124	1526083	6/19/2015 1:03:00PM	6/19/2015 9:41:00PM
Surrogate: 1,2-Dichloroethane-d4		95.7 %			70	127	1525265	6/19/2015 12:50:00PM	6/19/2015 9:50:00PM
Surrogate: 1,2-Dichloroethane-d4		101 %			70	127	1526083	6/19/2015 1:03:00PM	6/19/2015 9:41:00PM
PMOIST		D 2216						Analyst:	NL
Percent Moisture	21.4				% by Weight	1	1526198	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-15 **Collection Date:** 6/9/2015 1:30:00PM

Client Sample ID: COT235:HSB-16:S020040 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	6.83	5.49		mg/kg dry	1	1525239	6/19/2015 11:00:00AM	6/19/2015 2:06:00PM
Surrogate: Chlorobenzene-d5		77.5 %		70-1	130	1525239	6/19/2015 11:00:00AM	6/19/2015 2:06:00PM
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	1.03		mg/kg dry	1	1527130	7/1/2015 1:54:00PM	7/2/2015 4:28:35AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	2.22	1.03		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:47:26AM
ICP_Ba		SW 6010B					Analyst:	RJE
- Barium	39.4	1.03		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:47:26AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.516		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:47:26AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	8.88	1.03		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:47:26AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	16.2	1.03		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:47:26AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	5.16		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:47:26AM
HG		SW 7471A					Analyst:	CW
Mercury	BDL	0.104		mg/kg dry	1	1525141	6/17/2015 10:37:00AM	6/17/2015 1:43:00PM
VOC 8260_5035		SW 8260B					Analyst:	MLR
1,1,1,2-Tetrachloroethane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,1,1-Trichloroethane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,1,2,2-Tetrachloroethane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,1,2-Trichloroethane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,1-Dichloroethane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,1-Dichloroethene	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,1-Dichloropropene	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,2,3-Trichlorobenzene	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,2,3-Trichloropropane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,2,4-Trichlorobenzene	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,2,4-Trimethylbenzene	0.873	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,2-Dibromo-3-chloropropane	BDL	0.249	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,2-Dibromoethane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-15 **Collection Date:** 6/9/2015 1:30:00PM

Client Sample ID: COT235:HSB-16:S020040 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,2-Dichloroethane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,2-Dichloropropane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,3,5-Trimethylbenzene	0.701	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,3-Dichlorobenzene	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,3-Dichloropropane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
1,4-Dichlorobenzene	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
2,2-Dichloropropane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
2-Butanone	BDL	0.498	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
2-Chlorotoluene	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
2-Hexanone	BDL	0.498	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
4-Chlorotoluene	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
4-Isopropyltoluene	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
4-Methyl-2-pentanone	BDL	0.498	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Acetone	BDL	1.25	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Acetonitrile	BDL	0.997	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Acrolein	BDL	1.25	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Acrylonitrile	BDL	0.498	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Allyl chloride	BDL	0.249	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Benzene	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Bromobenzene	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Bromochloromethane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Bromodichloromethane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Bromoform	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Bromomethane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Carbon Disulfide	BDL	0.498	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Carbon Tetrachloride	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Chlorobenzene	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Chloroethane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Chloroform	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Chloromethane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
cis-1,2-Dichloroethene	5.24	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
cis-1,3-Dichloropropene	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Dibromochloromethane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Dibromomethane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Dichlorodifluoromethane	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Ethylbenzene	0.130	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Hexachlorobutadiene	BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Iodomethane	BDL	0.123	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Isopropylbenzene		0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Methylene Chloride	BDL BDL	0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Methyl tert-Butyl Ether	BDL BDL	0.123	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
m,p-Xylene	0.593	0.249	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
ш,р-луши	0.373	0.247	17-00	mg/ng ury	23	1323203	5,15,2015 12.50.001W	0.12.2010 10.24.001W1

CLIENT:Hull & Associates - Toledo OfficeLab Order:15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-15 **Collection Date:** 6/9/2015 1:30:00PM

Client Sample ID: COT235:HSB-16:S020040 Matrix: Soil

Analysis	Result		PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
Naphthalene	BDL		0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
n-Butylbenzene	BDL		0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
n-Hexane	BDL		0.125	R-06	mg/kg dry	25	1526084	6/20/2015 9:07:00PM	6/20/2015 11:45:00PM
n-Propylbenzene	BDL		0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
o-Xylene	0.703		0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
sec-Butylbenzene	0.145		0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Styrene	BDL		0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
tert_Butylbenzene	BDL		0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Tetrachloroethene	0.195		0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Toluene	0.505		0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
trans-1,2-Dichloroethene	0.125		0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
trans-1,3-Dichloropropene	BDL		0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Trichloroethene	14.4		0.498		mg/kg dry	100	1526079	6/20/2015 1:55:00PM	6/20/2015 8:04:00PM
Trichlorofluoromethane	BDL		0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Vinyl Chloride	BDL		0.125	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Vinyl acetate	BDL		0.249	R-06	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Surrogate: 4-Bromofluorobenzene		104 %			62-	129	1526084	6/20/2015 9:07:00PM	6/20/2015 11:45:00PM
Surrogate: 4-Bromofluorobenzene		98.2 %			62-	129	1526079	6/20/2015 1:55:00PM	6/20/2015 8:04:00PM
Surrogate: 4-Bromofluorobenzene		97.5 %			62-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Surrogate: Dibromofluoromethane		99.2 %			71-	129	1526079	6/20/2015 1:55:00PM	6/20/2015 8:04:00PM
Surrogate: Dibromofluoromethane		101 %			71-	129	1526084	6/20/2015 9:07:00PM	6/20/2015 11:45:00PM
Surrogate: Dibromofluoromethane		105 %			71-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Surrogate: Toluene-d8		98.2 %			74-	124	1526079	6/20/2015 1:55:00PM	6/20/2015 8:04:00PM
Surrogate: Toluene-d8		98.1 %			74-	124	1526084	6/20/2015 9:07:00PM	6/20/2015 11:45:00PM
Surrogate: Toluene-d8		99.1 %			74-	124	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Surrogate: 1,2-Dichloroethane-d4		102 %			70-	127	1525265	6/19/2015 12:50:00PM	6/19/2015 10:24:00PM
Surrogate: 1,2-Dichloroethane-d4		97.0 %			70-	127	1526079	6/20/2015 1:55:00PM	6/20/2015 8:04:00PM
Surrogate: 1,2-Dichloroethane-d4		104 %			70-	127	1526084	6/20/2015 9:07:00PM	6/20/2015 11:45:00PM
PMOIST		D 2216						Analyst:	NL
Percent Moisture	10.3				% by Weight	1	1526198	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-16 **Collection Date:** 6/8/2015 2:20:00PM

Client Sample ID: COT235:HSB-17:S080100 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	BDL	6.34		mg/kg dry	1	1525239	6/19/2015 11:00:00AM	6/19/2015 2:34:00PM
Surrogate: Chlorobenzene-d5		61.0 %	S-04, C	70-1	130	1525239	6/19/2015 11:00:00AM	6/19/2015 2:34:00PM
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	1.18	1.18		mg/kg dry	1	1527130	7/1/2015 1:54:00PM	7/2/2015 4:34:24AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	16.7	1.24		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:53:46AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	253	1.24		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:53:46AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.622		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:53:46AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	20.0	1.24		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:53:46AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	11.7	1.24		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:53:46AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	6.22		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 2:53:46AM
HG		SW 7471A					Analyst:	CW
Mercury	BDL	0.125		mg/kg dry	1	1525141	6/17/2015 10:37:00AM	6/17/2015 1:43:00PM
VOC 8260_5035		SW 8260B					Analyst:	MLR
1,1,1,2-Tetrachloroethane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,1,1-Trichloroethane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,1,2,2-Tetrachloroethane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,1,2-Trichloroethane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,1-Dichloroethane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,1-Dichloroethene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,1-Dichloropropene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,2,3-Trichlorobenzene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,2,3-Trichloropropane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,2,4-Trichlorobenzene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,2,4-Trimethylbenzene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,2-Dibromo-3-chloropropane	BDL	0.270	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,2-Dibromoethane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-16 **Collection Date:** 6/8/2015 2:20:00PM

Client Sample ID: COT235:HSB-17:S080100 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,2-Dichloroethane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,2-Dichloropropane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,3,5-Trimethylbenzene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,3-Dichlorobenzene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,3-Dichloropropane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
1,4-Dichlorobenzene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
2,2-Dichloropropane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
2-Butanone	BDL	0.540	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
2-Chlorotoluene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
2-Hexanone	BDL	0.540	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
4-Chlorotoluene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
4-Isopropyltoluene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
4-Methyl-2-pentanone	BDL	0.540	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Acetone	BDL	1.35	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Acetonitrile	BDL	1.08	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Acrolein	BDL	1.35	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Acrylonitrile	BDL	0.540	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Allyl chloride	BDL	0.270	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Benzene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Bromobenzene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Bromochloromethane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Bromodichloromethane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Bromoform	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Bromomethane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Carbon Disulfide	BDL	0.540	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Carbon Tetrachloride	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Chlorobenzene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Chloroethane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Chloroform	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Chloromethane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
cis-1,2-Dichloroethene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
cis-1,3-Dichloropropene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Dibromochloromethane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Dibromomethane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Dichlorodifluoromethane	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Ethylbenzene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Hexachlorobutadiene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Iodomethane	BDL	0.270	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Isopropylbenzene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Methylene Chloride	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Methyl tert-Butyl Ether	BDL	0.270	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
m,p-Xylene	BDL	0.270	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Naphthalene	BDL	0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-16 **Collection Date**: 6/8/2015 2:20:00PM

Client Sample ID: COT235:HSB-17:S080100 Matrix: Soil

Analysis	Result		PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
n-Butylbenzene	BDL		0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
n-Hexane	BDL		0.135	R-01	mg/kg dry	25	1526083	6/19/2015 1:03:00PM	6/19/2015 6:18:00PM
n-Propylbenzene	BDL		0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
o-Xylene	BDL		0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
sec-Butylbenzene	BDL		0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Styrene	BDL		0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
tert_Butylbenzene	BDL		0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Tetrachloroethene	BDL		0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Toluene	BDL		0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
trans-1,2-Dichloroethene	BDL		0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
trans-1,3-Dichloropropene	BDL		0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Trichloroethene	BDL		0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Trichlorofluoromethane	BDL		0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Vinyl Chloride	BDL		0.135	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Vinyl acetate	BDL		0.270	R-01	mg/kg dry	25	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Surrogate: 4-Bromofluorobenzene		99.5 %			62-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Surrogate: 4-Bromofluorobenzene		101 %			62-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 6:18:00PM
Surrogate: Dibromofluoromethane		103 %			71-	129	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Surrogate: Dibromofluoromethane		100 %			71-	129	1526083	6/19/2015 1:03:00PM	6/19/2015 6:18:00PM
Surrogate: Toluene-d8		105 %			74-	124	1526083	6/19/2015 1:03:00PM	6/19/2015 6:18:00PM
Surrogate: Toluene-d8		102 %			74-	124	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Surrogate: 1,2-Dichloroethane-d4		95.3 %			70-	127	1525265	6/19/2015 12:50:00PM	6/19/2015 6:19:00PM
Surrogate: 1,2-Dichloroethane-d4		104 %			70-	127	1526083	6/19/2015 1:03:00PM	6/19/2015 6:18:00PM
PMOIST		D 2216						Analyst:	NL
Percent Moisture	22.7				% by Weight	1	1526198	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-17 **Collection Date:** 6/9/2015 3:55:00PM

Client Sample ID: COT235:HSB-18:S040060 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO		SW 8015B					Analyst:	MLR
Gasoline Range Organics, C6 - C12	16.8	6.09		mg/kg dry	1	1525239	6/19/2015 11:00:00AM	6/19/2015 7:24:00PM
Surrogate: Chlorobenzene-d5		88.0 %		70-	130	1525239	6/19/2015 11:00:00AM	6/19/2015 7:24:00PM
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	1.05	1.05		mg/kg dry	1	1527130	7/1/2015 1:54:00PM	7/2/2015 4:52:09AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	8.92	1.14		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 3:00:43AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	109	1.14		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 3:00:43AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.571		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 3:00:43AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	22.6	1.14		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 3:00:43AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	12.6	1.14		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 3:00:43AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	5.71		mg/kg dry	1	1526108	6/23/2015 12:30:00PM	7/3/2015 3:00:43AM
HG		SW 7471A					Analyst:	CW
Mercury	BDL	0.111		mg/kg dry	1	1525141	6/17/2015 10:37:00AM	6/17/2015 1:43:00PM
VOC 8260_5035		SW 8260B					Analyst:	MLR
1,1,1,2-Tetrachloroethane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,1,1-Trichloroethane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,1,2,2-Tetrachloroethane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,1,2-Trichloroethane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,1-Dichloroethane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,1-Dichloroethene	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,1-Dichloropropene	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,2,3-Trichlorobenzene	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,2,3-Trichloropropane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,2,4-Trichlorobenzene	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,2,4-Trimethylbenzene	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,2-Dibromo-3-chloropropane	BDL	0.249	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,2-Dibromoethane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-17 **Collection Date:** 6/9/2015 3:55:00PM

Client Sample ID: COT235:HSB-18:S040060 Matrix: Soil

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,2-Dichlorobenzene	0.674	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,2-Dichloroethane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,2-Dichloropropane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,3,5-Trimethylbenzene	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,3-Dichlorobenzene	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,3-Dichloropropane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
1,4-Dichlorobenzene	0.249	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
2,2-Dichloropropane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
2-Butanone	7.24	0.498	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
2-Chlorotoluene	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
2-Hexanone	BDL	0.498	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
4-Chlorotoluene	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
4-Isopropyltoluene	0.320	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
4-Methyl-2-pentanone	BDL	0.498	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Acetone	BDL	1.25	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Acetonitrile	BDL	0.996	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Acrolein	BDL	1.25	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Acrylonitrile	BDL	0.498	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Allyl chloride	BDL	0.249	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Benzene	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Bromobenzene	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Bromochloromethane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Bromodichloromethane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Bromoform	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Bromomethane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Carbon Disulfide	BDL	0.498	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Carbon Tetrachloride	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Chlorobenzene	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Chloroethane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Chloroform	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Chloromethane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
cis-1,2-Dichloroethene	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
cis-1,3-Dichloropropene	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Dibromochloromethane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Dibromomethane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Dichlorodifluoromethane	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Ethylbenzene	1.65	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Hexachlorobutadiene	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Iodomethane	BDL	0.249	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Isopropylbenzene	0.456	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Methylene Chloride	BDL	0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Methyl tert-Butyl Ether	BDL	0.249	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
m,p-Xylene	BDL	0.249	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-17 **Collection Date:** 6/9/2015 3:55:00PM

Client Sample ID: COT235:HSB-18:S040060 Matrix: Soil

Analysis	Result		PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
Naphthalene	8.69		0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
n-Butylbenzene	2.34		0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
n-Hexane	2.42		0.125	R-06	mg/kg dry	25	1526084	6/20/2015 9:07:00PM	6/21/2015 12:19:00AM
n-Propylbenzene	2.35		0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
o-Xylene	BDL		0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
sec-Butylbenzene	0.903		0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Styrene	BDL		0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
tert_Butylbenzene	BDL		0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Tetrachloroethene	BDL		0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Toluene	BDL		0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
trans-1,2-Dichloroethene	BDL		0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
trans-1,3-Dichloropropene	BDL		0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Trichloroethene	BDL		0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Trichlorofluoromethane	BDL		0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Vinyl Chloride	BDL		0.125	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Vinyl acetate	BDL		0.249	R-06	mg/kg dry	25	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Surrogate: 4-Bromofluorobenzene		127 %			62-	129	1526084	6/20/2015 9:07:00PM	6/21/2015 12:19:00AM
Surrogate: 4-Bromofluorobenzene		114 %			62-	129	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Surrogate: Dibromofluoromethane		97.6 %			71-	129	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Surrogate: Dibromofluoromethane		98.4 %			71-	129	1526084	6/20/2015 9:07:00PM	6/21/2015 12:19:00AM
Surrogate: Toluene-d8		92.0 %			74-	124	1526084	6/20/2015 9:07:00PM	6/21/2015 12:19:00AM
Surrogate: Toluene-d8		93.2 %			74	124	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Surrogate: 1,2-Dichloroethane-d4		92.9 %			70	127	1526079	6/20/2015 1:55:00PM	6/20/2015 9:49:00PM
Surrogate: 1,2-Dichloroethane-d4		103 %			70	127	1526084	6/20/2015 9:07:00PM	6/21/2015 12:19:00AM
PMOIST		D 2216						Analyst:	NL
Percent Moisture	20.3				% by Weight	1	1526198	6/24/2015 5:00:00PM	6/24/2015 5:00:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-18 **Collection Date:** 6/8/2015 10:20:00AM

Client Sample ID: COT235:Trip Matrix: Water

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
BTEX_MTBE_MS_TB		SW 8260B					Analyst:	EAH
Benzene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Ethylbenzene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Methyl tert-Butyl Ether	BDL	10.0		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
m,p-Xylene	BDL	2.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
o-Xylene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Toluene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Surrogate: 4-Bromofluorobenzene		95.4 %		85-	-115	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Surrogate: Dibromofluoromethane		92.4 %		85-	-115	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Surrogate: Toluene-d8		92.4 %		85-	-115	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Surrogate: 1,2-Dichloroethane-d4		93.6 %		85-	-115	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
VOC 8260_TB		SW 8260B					Analyst:	ЕАН
1,1,1,2-Tetrachloroethane	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
1,1,1-Trichloroethane	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
1,1,2,2-Tetrachloroethane	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
1,1,2-Trichloroethane	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
1,1-Dichloroethane	BDL	2.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
1,1-Dichloroethene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
1,1-Dichloropropene	BDL	5.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
1,2-Dibromoethane	BDL	5.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
1,2-Dichloroethane	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
1,2-Dichloropropane	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
1,3-Dichloropropane	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
2,2-Dichloropropane	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
2-Butanone	BDL	10.0		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
2-Chlorotoluene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
2-Hexanone	BDL	10.0		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
4-Chlorotoluene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
4-Methyl-2-pentanone	BDL	10.0		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Acetone	BDL	10.0		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Acetonitrile	BDL	40.0		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Acrolein	BDL	20.0		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Acrylonitrile	BDL	10.0		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Allyl chloride	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Benzene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Bromobenzene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Bromochloromethane	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Bromodichloromethane	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Bromoform	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Bromomethane	BDL	2.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-18 **Collection Date:** 6/8/2015 10:20:00AM

Client Sample ID: COT235:Trip Matrix: Water

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
Carbon Tetrachloride	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Chlorobenzene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Chloroethane	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Chloroform	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Chloromethane	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
cis-1,2-Dichloroethene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
cis-1,3-Dichloropropene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Dibromochloromethane	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Dibromomethane	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Dichlorodifluoromethane	BDL	2.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Ethylbenzene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Iodomethane	BDL	10.0		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Methylene Chloride	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Methyl tert-Butyl Ether	BDL	10.0		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
m,p-Xylene	BDL	2.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
n-Hexane	BDL	5.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
o-Xylene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Styrene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Tetrachloroethene	BDL	2.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Toluene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
trans-1,2-Dichloroethene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
trans-1,3-Dichloropropene	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Trichloroethene	BDL	2.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Trichlorofluoromethane	BDL	2.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Vinyl Chloride	BDL	1.00		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Vinyl acetate	BDL	10.0		ug/L	1	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Surrogate: 4-Bromofluorobenzene		95.4 %		85	-115	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Surrogate: Dibromofluoromethane		92.4 %		85	-115	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Surrogate: Toluene-d8		92.4 %		85	-115	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM
Surrogate: 1,2-Dichloroethane-d4		93.6 %		85	-115	1524311	6/11/2015 5:00:00PM	6/11/2015 7:05:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Lab ID: 15F0709-19 **Collection Date**: 6/9/2015 4:50:00PM

Client Sample ID: COT235:E. Blank:W060915 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
TPH GRO							Analyst:	MLR
Gasoline Range Organics, C6 - C12	BDL	5.00		mg/L	1	1525063	6/15/2015 12:58:00PM	6/15/2015 3:50:00PM
Surrogate: Chlorobenzene-d5		103 %		70-	-130	1525063	6/15/2015 12:58:00PM	6/15/2015 3:50:00PM
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	0.00200		mg/L	1	1525086	6/16/2015 9:00:00AM	6/16/2015 7:50:52PM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	BDL	0.00500		mg/L	1	1525086	6/16/2015 9:00:00AM	6/16/2015 7:50:52PM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	BDL	0.00500		mg/L	1	1525086	6/16/2015 9:00:00AM	6/16/2015 7:50:52PM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.00200		mg/L	1	1525086	6/16/2015 9:00:00AM	6/16/2015 7:50:52PM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	BDL	0.00500		mg/L	1	1525086	6/16/2015 9:00:00AM	6/16/2015 7:50:52PM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	BDL	0.00500		mg/L	1	1525086	6/16/2015 9:00:00AM	6/16/2015 7:50:52PM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	0.0100		mg/L	1	1525086	6/16/2015 9:00:00AM	6/16/2015 7:50:52PM
HG		SW 7470A					Analyst:	CW
Mercury	BDL	0.000200		mg/L	1	1525083	6/16/2015 9:45:00AM	6/17/2015 9:40:00AM

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Petroleum Hydrocarbons by GC FID - Quality Control

Lab Order:

15F0709

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1525063 - GC Prep										
Blank (1525063-BLK1)				Prepared &	& Analyzed:	06/15/15				
Gasoline Range Organics, C6 - C12	BDL	5.00	mg/L							
Surrogate: Chlorobenzene-d5	0.359		mg/L	0.4000		89.8	70-130			
LCS (1525063-BS1)				Prepared &	& Analyzed:	06/15/15				
Gasoline Range Organics, C6 - C12	9.51	5.00	mg/L	10.00		95.1	83.3-106			
Surrogate: Chlorobenzene-d5	0.326		mg/L	0.4000		81.5	70-130			
Batch 1525157 - GC Prep										
Blank (1525157-BLK1)				Prepared &	& Analyzed:	06/17/15				
Gasoline Range Organics, C6 - C12	BDL	5.00	mg/kg wet							
Surrogate: Chlorobenzene-d5	0.381		mg/L	0.4000		95.2	70-130			
LCS (1525157-BS1)				Prepared &	& Analyzed:	06/17/15				
Gasoline Range Organics, C6 - C12	9.06	5.00	mg/kg wet	10.00		90.6	79.3-112			
Surrogate: Chlorobenzene-d5	0.363		mg/L	0.4000		90.8	70-130			
Batch 1525201 - GC Prep										
Blank (1525201-BLK1)				Prepared &	& Analyzed:	06/18/15				
Gasoline Range Organics, C6 - C12	BDL	5.00	mg/kg wet							
Surrogate: Chlorobenzene-d5	0.400		mg/L	0.4000		100	70-130			
LCS (1525201-BS1)				Prepared &	& Analyzed:	06/18/15				
Gasoline Range Organics, C6 - C12	9.50	5.00	mg/kg wet	10.00		95.0	79.3-112			
Surrogate: Chlorobenzene-d5	0.371		mg/L	0.4000		92.8	70-130			

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Lab Order:

15F0709

Petroleum Hydrocarbons by GC FID - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1525239 - GC Prep										
Blank (1525239-BLK1)				Prepared &	Analyzed:	06/19/15				
Gasoline Range Organics, C6 - C12	BDL	5.00	mg/kg wet							
Surrogate: Chlorobenzene-d5	0.368		mg/L	0.4000		92.0	70-130			
LCS (1525239-BS1)				Prepared &	Analyzed:	06/19/15				
Gasoline Range Organics, C6 - C12	9.92	5.00	mg/kg wet	10.00		99.2	79.3-112			
Surrogate: Chlorobenzene-d5	0.369		mg/L	0.4000		92.2	70-130			
Matrix Spike (1525239-MS1)	Sour	ce: 15F0709	-11	Prepared &	Analyzed:	06/19/15				
Gasoline Range Organics, C6 - C12	11.8	6.24	mg/kg dry	12.47	4.58	58.2	16-134			
Surrogate: Chlorobenzene-d5	0.323		mg/L	0.4000		80.8	70-130			
Matrix Spike Dup (1525239-MSD1)	Sour	ce: 15F0709	-11	Prepared &	Analyzed:	06/19/15				
Gasoline Range Organics, C6 - C12	10.6	6.16	mg/kg dry	12.31	4.58	48.6	16-134	11.4	22	
Surrogate: Chlorobenzene-d5	0.273		mg/L	0.4000		68.2	70-130			S-

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Lab Order:

15F0709

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1525086 - PREP_ICP_W										
Blank (1525086-BLK1)				Prepared &	Analyzed:	06/16/15				
Arsenic	BDL	0.00500	mg/L							
Barium	BDL	0.00500	mg/L							
Cadmium	BDL	0.00200	mg/L							
Chromium	BDL	0.00500	mg/L							
Lead	BDL	0.00500	mg/L							
Selenium	BDL	0.0100	mg/L							
Silver	BDL	0.00200	mg/L							
LCS (1525086-BS1)				Prepared &	Analyzed:	06/16/15				
Arsenic	0.956	0.00500	mg/L	1.000	•	95.6	85-115			
Barium	1.03	0.00500	mg/L	1.000		103	85-115			
Cadmium	0.994	0.00200	mg/L	1.000		99.4	85-115			
Chromium	0.983	0.00500	mg/L	1.000		98.3	85-115			
Lead	0.987	0.00500	mg/L	1.000		98.7	85-115			
Selenium	0.993	0.0100	mg/L	1.000		99.3	85-115			
Silver	0.972	0.00200	mg/L	1.000		97.2	85-115			
LCS Dup (1525086-BSD1)				Prepared &	Analyzed:	06/16/15				
Arsenic	0.948	0.00500	mg/L	1.000		94.8	85-115	0.829	20	
Barium	1.02	0.00500	mg/L	1.000		102	85-115	1.41	20	
Cadmium	0.984	0.00200	mg/L	1.000		98.4	85-115	1.03	20	
Chromium	0.971	0.00500	mg/L	1.000		97.1	85-115	1.27	20	
Lead	0.974	0.00500	mg/L	1.000		97.4	85-115	1.35	20	
Selenium	0.988	0.0100	mg/L	1.000		98.8	85-115	0.530	20	
Silver	0.957	0.00200	mg/L	1.000		95.7	85-115	1.54	20	
Duplicate (1525086-DUP1)	Sou	rce: 15F0621-	02	Prepared &	Analyzed:	06/16/15				
Arsenic	BDL	0.00500	mg/L		ND				20	
Barium	0.273	0.00500	mg/L		0.280			2.35	20	
Cadmium	BDL	0.00200	mg/L		ND				20	
Chromium	0.00127	0.00500	mg/L		0.00125			1.43	20	
Lead	BDL	0.00500	mg/L		ND				20	
Selenium	0.00384	0.0100	mg/L		0.00244			44.7	20	
Silver	0.00197	0.00200	mg/L		0.00191			3.04	20	

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Total Metals by ICP - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1525086 - PREP_ICP_W										
Matrix Spike (1525086-MS1)	Sour	rce: 15F0407	-14	Prepared &	& Analyzed:	06/16/15				
Arsenic	0.926	0.00500	mg/L	1.000	0.00754	91.8	75-125			
Barium	0.980	0.00500	mg/L	1.000	0.0289	95.1	75-125			
Cadmium	0.879	0.00200	mg/L	1.000	0.000410	87.9	75-125			
Chromium	0.889	0.00500	mg/L	1.000	0.00285	88.6	75-125			
Lead	0.884	0.00500	mg/L	1.000	ND	88.4	75-125			
Selenium	0.956	0.0100	mg/L	1.000	0.00780	94.8	75-125			
Silver	0.930	0.00200	mg/L	1.000	0.00181	92.8	75-125			
Matrix Spike Dup (1525086-MSD1)	Sour	rce: 15F0407	-14	Prepared &	& Analyzed:	06/16/15				
Arsenic	0.936	0.00500	mg/L	1.000	0.00754	92.9	75-125	1.13	20	
Barium	0.978	0.00500	mg/L	1.000	0.0289	95.0	75-125	0.151	20	
Cadmium	0.883	0.00200	mg/L	1.000	0.000410	88.2	75-125	0.385	20	
Chromium	0.892	0.00500	mg/L	1.000	0.00285	88.9	75-125	0.389	20	
Lead	0.887	0.00500	mg/L	1.000	ND	88.7	75-125	0.395	20	
Selenium	0.967	0.0100	mg/L	1.000	0.00780	95.9	75-125	1.17	20	
Silver	0.928	0.00200	mg/L	1.000	0.00181	92.6	75-125	0.188	20	
Post Spike (1525086-PS1)	Sour	rce: 15F0407	-14	Prepared &	& Analyzed:	06/16/15				
Arsenic	0.886		mg/L	1.000	0.00754	87.9	75-125			
Barium	0.957		mg/L	1.000	0.0289	92.8	75-125			
Cadmium	0.863		mg/L	1.000	0.000410	86.2	75-125			
Chromium	0.872		mg/L	1.000	0.00285	86.9	75-125			
Lead	0.867		mg/L	1.000	0.000779	86.6	75-125			
Selenium	0.944		mg/L	1.000	0.00780	93.6	75-125			
Silver	0.899		mg/L	1.000	0.00181	89.7	75-125			
Batch 1526108 - PREP_ICP_S										
Blank (1526108-BLK1)				Prepared:	06/23/15 An	alyzed: 07	/01/15			
Arsenic	BDL	1.00	mg/kg wet	-		-				
Barium	BDL	1.00	mg/kg wet							
Cadmium	BDL	0.500	mg/kg wet							
Chromium	BDL	1.00	mg/kg wet							
Lead	BDL	1.00	mg/kg wet							
Selenium	BDL	5.00	mg/kg wet							

15F0709

Lab Order:

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Lab Order:

15F0709

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1526108 - PREP_ICP_S										
LCS (1526108-BS2)				Prepared: (06/23/15 A	nalyzed: 07	7/01/15			
Arsenic	92.5	1.00	mg/kg wet	100.0		92.5	80-120			
Barium	101	1.00	mg/kg wet	100.0		101	80-120			
Cadmium	96.0	0.500	mg/kg wet	100.0		96.0	80-120			
Chromium	96.4	1.00	mg/kg wet	100.0		96.4	80-120			
Lead	97.3	1.00	mg/kg wet	100.0		97.3	80-120			
Selenium	96.1	5.00	mg/kg wet	100.0		96.1	80-120			
LCS Dup (1526108-BSD2)				Prepared: (06/23/15 A	nalyzed: 07	7/01/15			
Arsenic	93.5	1.00	mg/kg wet	100.0		93.5	80-120	1.04	20	
Barium	102	1.00	mg/kg wet	100.0		102	80-120	0.345	20	
Cadmium	96.3	0.500	mg/kg wet	100.0		96.3	80-120	0.308	20	
Chromium	97.1	1.00	mg/kg wet	100.0		97.1	80-120	0.689	20	
Lead	97.3	1.00	mg/kg wet	100.0		97.3	80-120	0.0296	20	
Selenium	96.3	5.00	mg/kg wet	100.0		96.3	80-120	0.201	20	
Duplicate (1526108-DUP1)	Sou	rce: 15F1040	-01	Prepared: (06/23/15 A	nalyzed: 07	7/01/15			
Arsenic	3.38	0.935	mg/kg dry		2.68			23.2	20	F
Barium	17.0	0.935	mg/kg dry		8.29			69.1	20	I
Cadmium	BDL	0.468	mg/kg dry		ND				20	
Chromium	3.50	0.935	mg/kg dry		2.99			15.6	20	
Lead	2.70	0.935	mg/kg dry		2.07			26.6	20	F
Selenium	BDL	4.68	mg/kg dry		ND				20	
Matrix Spike (1526108-MS1)	Sou	rce: 15F1040	-01	Prepared: (06/23/15 A	nalyzed: 07	7/01/15			
Arsenic	80.2	0.888	mg/kg dry	88.79	2.68	87.3	75-125			
Barium	86.4	0.888	mg/kg dry	88.79	8.29	87.9	75-125			
Cadmium	67.9	0.444	mg/kg dry	88.79	ND	76.5	75-125			
Chromium	76.1	0.888	mg/kg dry	88.79	2.99	82.3	75-125			
Lead	72.5	0.888	mg/kg dry	88.79	2.07	79.3	75-125			
Selenium	76.5	4.44	mg/kg dry	88.79	ND	86.1	75-125			

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Lab Order: 15F0709

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Liiiit	Ollits	Level	Result	70KEC	Limits	KI D	Limit	Notes
Batch 1526108 - PREP_ICP_S										
Matrix Spike Dup (1526108-MSD1)	Sour	ce: 15F1040	-01	Prepared: (06/23/15 A	nalyzed: 07	//01/15			
Arsenic	87.1	0.970	mg/kg dry	97.01	2.68	87.0	75-125	8.28	20	
Barium	96.9	0.970	mg/kg dry	97.01	8.29	91.4	75-125	11.5	20	
Cadmium	72.8	0.485	mg/kg dry	97.01	ND	75.0	75-125	6.93	20	
Chromium	82.6	0.970	mg/kg dry	97.01	2.99	82.1	75-125	8.24	20	
Lead	79.4	0.970	mg/kg dry	97.01	2.07	79.7	75-125	9.12	20	
Selenium	81.1	4.85	mg/kg dry	97.01	ND	83.6	75-125	5.94	20	
Post Spike (1526108-PS1)	Sour	ce: 15F1040	-01	Prepared: (06/23/15 A	nalyzed: 07	//01/15			
Arsenic	84.3	0.919	mg/kg dry	91.91	2.68	88.8	75-125			
Barium	98.3	0.919	mg/kg dry	91.91	8.29	97.9	75-125			
Cadmium	72.8	0.460	mg/kg dry	91.91	ND	79.2	75-125			
Chromium	80.8	0.919	mg/kg dry	91.91	2.99	84.7	75-125			
Lead	77.8	0.919	mg/kg dry	91.91	2.07	82.4	75-125			
Selenium	82.2	4.60	mg/kg dry	91.91	ND	89.5	75-125			
Batch 1527130 - PREP_ICP_S										
Blank (1527130-BLK1)				Prepared: (07/01/15 A	nalyzed: 07	//02/15			
Silver	BDL	1.00	mg/kg wet							
LCS (1527130-BS1)				Prepared: (07/01/15 A	nalyzed: 07	//02/15			
Silver	89.5	1.00	mg/kg wet	100.0		89.5	80-120			
LCS Dup (1527130-BSD1)				Prepared: (07/01/15 A	nalyzed: 07	7/02/15			
Silver	89.7	1.00	mg/kg wet	100.0		89.7	80-120	0.181	20	
Duplicate (1527130-DUP1)	Sour	rce: 15F1653	-18	Prepared: (07/01/15 A	nalyzed: 07	//02/15			
Silver	10.5	2.92	mg/kg dry	•	10.4	-		0.551	20	

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Analyte	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1527130 - PREP_ICP_S									
Matrix Spike (1527130-MS1)	Source	e: 15F1653-18	Prepared: (07/01/15 A	nalyzed: 07	/02/15			
Silver	271	2.92 mg/kg dry	292.3	10.4	89.3	75-125			
Matrix Spike Dup (1527130-MSD1)	Source	e: 15F1653-18	Prepared: (07/01/15 A	nalyzed: 07	/02/15			
Silver	260	2.86 mg/kg dry	286.5	10.4	87.2	75-125	4.20	20	
Post Spike (1527130-PS1)	Sourc	e: 15F1653-18	Prepared: (07/01/15 A	nalyzed: 07	/02/15			
Silver	0.958	mg/L	1.000	0.0358	92.2	75-125			·

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Mercury Analysis - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1525083 - PREP_HG_W										
Blank (1525083-BLK1)				Prepared: 0	06/16/15 A	nalyzed: 06	/17/15			
Mercury	BDL	0.000200	mg/L			-				
LCS (1525083-BS1)				Prepared: 0	06/16/15 A	nalyzed: 06	/17/15			
Mercury	0.00626	0.000200	mg/L	0.006250		100	80-120			
LCS Dup (1525083-BSD1)				Prepared: 0	06/16/15 A	nalyzed: 06	/17/15			
Mercury	0.00582	0.000200	mg/L	0.006250		93	80-120	7	20	
Matrix Spike (1525083-MS1)	Sou	rce: 15F0709-	-19	Prepared: 0	06/16/15 A	nalyzed: 06	/17/15			
Mercury	0.00629	0.000200	mg/L	0.006250	ND	101	70-130			
Matrix Spike Dup (1525083-MSD1)	Sou	rce: 15F0709-	-19	Prepared: 0	06/16/15 A	nalyzed: 06	/17/15			
Mercury	0.00642	0.000200	mg/L	0.006250	ND	103	70-130	2	30	
Batch 1525141 - PREP_HG_S										
Blank (1525141-BLK1)				Prepared &	Analyzed:	06/17/15				
Mercury	BDL	0.100	mg/kg wet							
LCS (1525141-BS1)				Prepared &	Analyzed:	06/17/15				
Mercury	0.850	0.100	mg/kg wet	0.8333		102	80-120			
LCS Dup (1525141-BSD1)				Prepared &	Analyzed:	06/17/15				
Mercury	0.867	0.100	mg/kg wet	0.8333		104	80-120	2	20	
Matrix Spike (1525141-MS1)	Sou	rce: 15F0959-	-01	Prepared &	Analyzed:	06/17/15				
Mercury	1.47	0.144	mg/kg dry	1.198	0.258	101	70-130			

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Mercury Analysis - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1525141 - PREP_HG_S

Matrix Spike Dup (1525141-MSD1)	Source:	15F0959-01	Prepared &	: Analyzed:	06/17/15				
Mercury	1.45	0.137 mg/kg dry	1.143	0.258	104	70-130	2	30	

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Allalyte	Result	LIIIII	Units	Level	Resuit	70KEC	Lillits	KPD	Lillit	Notes
Batch 1524311 - VOC PREP										
Blank (1524311-BLK1)				Prepared &	& Analyzed:	06/11/15				
1,1,1,2-Tetrachloroethane	BDL	1.00	ug/L							
1,1,1-Trichloroethane	BDL	1.00	ug/L							
,1,2,2-Tetrachloroethane	BDL	1.00	ug/L							
,1,2-Trichloroethane	BDL	1.00	ug/L							
,1-Dichloroethane	BDL	2.00	ug/L							
,1-Dichloroethene	BDL	1.00	ug/L							
,1-Dichloropropene	BDL	5.00	ug/L							
,2-Dibromoethane	BDL	5.00	ug/L							
,2-Dichloroethane	BDL	1.00	ug/L							
,2-Dichloropropane	BDL	1.00	ug/L							
,3-Dichloropropane	BDL	1.00	ug/L							
,2-Dichloropropane	BDL	1.00	ug/L							
-Butanone	BDL	10.0	ug/L							
-Chlorotoluene	BDL	1.00	ug/L							
-Hexanone	BDL	10.0	ug/L							
-Chlorotoluene	BDL	1.00	ug/L							
-Methyl-2-pentanone	BDL	10.0	ug/L							
cetone	BDL	10.0	ug/L							
cetonitrile	BDL	40.0	ug/L							
crolein	BDL	20.0	ug/L							
crylonitrile	BDL	10.0	ug/L							
llyl chloride	BDL	1.00	ug/L							
enzene	BDL	1.00	ug/L							
enzene	BDL	1.00	ug/L							
romobenzene	BDL	1.00	ug/L							
Bromochloromethane	BDL	1.00	ug/L							
romodichloromethane	BDL	1.00	ug/L							
Bromoform	BDL	1.00	ug/L							
romomethane	BDL	2.00	ug/L							
Carbon Disulfide	BDL	5.00	ug/L							
arbon Tetrachloride	BDL	1.00	ug/L							
Chlorobenzene	BDL	1.00	ug/L							
Chloroethane	BDL	1.00	ug/L							
Chloroform	BDL	1.00	ug/L							
Chloromethane	BDL	1.00	ug/L							
is-1,2-Dichloroethene	BDL	1.00	ug/L							
is-1,3-Dichloropropene	BDL	1.00	ug/L							
Dibromochloromethane	BDL	1.00	ug/L							
ibromomethane	BDL	1.00	ug/L							
Dichlorodifluoromethane	BDL	2.00	ug/L							
thylbenzene	BDL	1.00	ug/L							
thylbenzene	BDL	1.00	ug/L							
odomethane	BDL	10.0	ug/L							
Methylene Chloride	BDL	1.00	ug/L							
Methyl tert-Butyl Ether	BDL	10.0	ug/L							

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Acetonitrile

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1524311 - VOC PREP										
Blank (1524311-BLK1)				Prepared &	Analyzed:	06/11/15				
Methyl tert-Butyl Ether	BDL	10.0	ug/L							
m,p-Xylene	BDL	2.00	ug/L							
m,p-Xylene	BDL	2.00	ug/L							
n-Hexane	BDL	5.00	ug/L							
o-Xylene	BDL	1.00	ug/L							
o-Xylene	BDL	1.00	ug/L							
Styrene	BDL	1.00	ug/L							
Tetrachloroethene	BDL	2.00	ug/L							
Toluene	BDL	1.00	ug/L							
Toluene	BDL	1.00	ug/L							
trans-1,2-Dichloroethene	BDL	1.00	ug/L							
trans-1,3-Dichloropropene	BDL	1.00	ug/L							
Trichloroethene	BDL	2.00	ug/L							
Trichlorofluoromethane	BDL	2.00	ug/L							
Vinyl Chloride	BDL	1.00	ug/L							
Vinyl acetate	BDL	10.0	ug/L							
Surrogate: 4-Bromofluorobenzene	47.3		ug/L	50.00		94.6	85-115			
Surrogate: 4-Bromofluorobenzene	47.3		ug/L	50.00		94.6	85-115			
Surrogate: Dibromofluoromethane	46.3		ug/L	50.00		92.6	85-115			
Surrogate: Dibromofluoromethane	46.3		ug/L	50.00		92.6	85-115			
Surrogate: Toluene-d8	46.4		ug/L	50.00		92.8	85-115			
Surrogate: Toluene-d8	46.4		ug/L	50.00		92.8	85-115			
Surrogate: 1,2-Dichloroethane-d4	46.5		ug/L	50.00		93.0	85-115			
Surrogate: 1,2-Dichloroethane-d4	46.5		ug/L	50.00		93.0	85-115			
LCS (1524311-BS1)				Prepared &	Analyzed:	06/11/15				
1,1,1,2-Tetrachloroethane	21.6	1.00	ug/L	20.00		108	84.3-118			
,1,1-Trichloroethane	19.5	1.00	ug/L	20.00		97.6	82-122			
1,1,2,2-Tetrachloroethane	22.7	1.00	ug/L	20.00		114	81-124			
,1,2-Trichloroethane	19.7	1.00	ug/L	20.00		98.5	83.5-120			
1,1-Dichloroethane	18.3	2.00	ug/L	20.00		91.4	80.5-126			
1,1-Dichloroethene	18.6	1.00	ug/L	20.00		92.8	77.4-125			
1,1-Dichloropropene	18.8	5.00	ug/L	20.00		94.0	81.8-121			
1,2-Dibromoethane	22.1	5.00	ug/L	20.00		110	79.9-120			
1,2-Dichloroethane	20.4	1.00	ug/L	20.00		102	79.4-122			
,2-Dichloropropane	19.7	1.00	ug/L	20.00		98.6	82-121			
,3-Dichloropropane	19.6	1.00	ug/L	20.00		98.2	81.7-121			
2,2-Dichloropropane	18.8	1.00	ug/L	20.00		94.2	78.8-135			
2-Butanone	41.0	10.0	ug/L	40.00		102	53-155			
2-Chlorotoluene	20.9	1.00	ug/L	20.00		105	83.4-119			
2-Hexanone	44.2	10.0	ug/L	40.00		111	60.4-146			
1-Chlorotoluene	21.0	1.00	ug/L	20.00		105	81.9-124			
-Methyl-2-pentanone	43.5	10.0	ug/L	40.00		109	77.6-125			
Acetone	38.4	10.0	ug/L	40.00		96.0	40.3-166			
Acatonitrila	10.9	40.0	na/I	20.00		00.0	54.7.135			

19.8

40.0

ug/L

20.00

99.0

54.7-135

15F0709

Lab Order:

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Lab Order:

15F0709

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1524311 - VOC PREP										
LCS (1524311-BS1)				Prepared &	: Analyzed:	06/11/15				
Acrolein	38.8	20.0	ug/L	40.00	-	97.0	56.4-141			
Acrylonitrile	20.9	10.0	ug/L	20.00		105	72.1-130			
Allyl chloride	18.2	1.00	ug/L	20.00		91.2	77.7-127			
Benzene	18.9	1.00	ug/L	20.00		94.6	84.6-119			
Benzene	18.9	1.00	ug/L	20.00		94.6	84.6-119			
romobenzene	20.8	1.00	ug/L	20.00		104	81.6-123			
romochloromethane	17.9	1.00	ug/L	20.00		89.3	84.9-123			
romodichloromethane	19.6	1.00	ug/L	20.00		97.8	81.5-121			
romoform	22.4	1.00	ug/L	20.00		112	74.8-125			
romomethane	18.3	2.00	ug/L	20.00		91.3	60.9-164			
arbon Disulfide	17.4	5.00	ug/L	20.00		86.8	78.7-125			
arbon Tetrachloride	19.8	1.00	ug/L	20.00		99.0	82.9-122			
hlorobenzene	20.8	1.00	ug/L	20.00		104	87.7-115			
hloroethane	17.1	1.00	ug/L	20.00		85.6	79.5-133			
hloroform	18.2	1.00	ug/L	20.00		91.1	80.8-125			
hloromethane	17.6	1.00	ug/L	20.00		88.2	67.2-136			
s-1,2-Dichloroethene	18.5	1.00	ug/L	20.00		92.3	79.7-126			
s-1,3-Dichloropropene	19.2	1.00	ug/L	20.00		96.2	79.4-123			
ibromochloromethane	22.1	1.00	ug/L	20.00		110	77.3-123			
ibromomethane	19.6	1.00	ug/L	20.00		98.2	84.2-120			
ichlorodifluoromethane	17.7	2.00	ug/L	20.00		88.5	79-132			
thylbenzene	20.8	1.00	ug/L	20.00		104	85.2-118			
thylbenzene	20.8	1.00	ug/L	20.00		104	85.2-118			
odomethane	15.6	10.0	ug/L	20.00		78.2	45.5-132			
lethylene Chloride	17.4	1.00	ug/L	20.00		87.0	73.8-131			
lethyl tert-Butyl Ether	18.2	10.0	ug/L	20.00		91.2	75.8-123			
lethyl tert-Butyl Ether	18.2	10.0	ug/L	20.00		91.2	75.8-123			
,p-Xylene	42.4	2.00	ug/L	40.00		106	85.7-119			
,p-Xylene	42.4	2.00	ug/L	40.00		106	85.7-119			
-Hexane	18.7	5.00	ug/L	20.00		93.4	78.8-130			
Xylene	21.3	1.00	ug/L	20.00		107	82.9-121			
-Xylene	21.3	1.00	ug/L	20.00		107	82.9-121			
tyrene	21.1	1.00	ug/L	20.00		106	82.3-120			
etrachloroethene	20.8	2.00	ug/L	20.00		104	84.2-119			
oluene	18.8	1.00	ug/L	20.00		93.8	85.8-119			
oluene	18.8	1.00	ug/L	20.00		93.8	85.8-119			
ans-1,2-Dichloroethene	17.8	1.00	ug/L	20.00		89.0	82.7-123			
ans-1,3-Dichloropropene	19.9	1.00	ug/L	20.00		99.4	82.3-121			
richloroethene	18.5	2.00	ug/L	20.00		92.3	82.2-120			
richlorofluoromethane	18.4	2.00	ug/L	20.00		91.8	82.6-132			
inyl Chloride	18.3	1.00	ug/L	20.00		91.4	81.2-132			
inyl acetate	21.2	10.0	ug/L	20.00		106	68.3-149			
urrogate: 4-Bromofluorobenzene	48.3		ug/L	50.00		96.6	85-115			
urrogate: 4-Bromofluorobenzene	48.3		ug/L	50.00		96.6	85-115			
Surrogate: Dibromofluoromethane	46.1		ug/L	50.00		92.1	85-115			

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Result Limit Units Spike Source		%REC		RPD	
Description	%REC	Limits	RPD	Limit	Notes
Surrogate: Toluene-d8	06/11/15				
Surrogate: Toluene-d8	92.1	85-115			
Surrogate: 1,2-Dichloroethane-d4	92.4	85-115			
Batch 1525265 - VOC PREP Blank (1525265 - BLK1)	92.4	85-115			
Batch 1525265 - VOC PREP Blank (1525265-BLK1)	93.1	85-115			
Blank (1525265-BLK1)	93.1	85-115			
1,1,1,2-Tetrachloroethane					
1,1,1-Trichloroethane BDL 0.00250 mg/kg wet 1,1,2,2-Tetrachloroethane BDL 0.00250 mg/kg wet 1,1,2-Trichloroethane BDL 0.00250 mg/kg wet 1,1-Dichloroethane BDL 0.00250 mg/kg wet 1,1-Dichloroptopene BDL 0.00250 mg/kg wet 1,1-Dichloroptopene BDL 0.00250 mg/kg wet 1,2,3-Trichloroptopane BDL 0.00250 mg/kg wet 1,2,4-Trinchlorobenzene BDL 0.00250 mg/kg wet 1,2-Dirichloroptopane BDL 0.00250 mg/kg wet 1,2-Dirinethylbenzene BDL 0.00250 mg/kg wet 1,2-Dirinoro-3-chloropropane BDL 0.00250 mg/kg wet 1,2-Dichlorobenzene BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3-S-Trimethylbenzene BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichlorobenzene BDL <t< td=""><td>06/19/15</td><td></td><td></td><td></td><td></td></t<>	06/19/15				
1,1,2,2-Tetrachloroethane BDL 0.00250 mg/kg wet 1,1,1-Dichloroethane BDL 0.00250 mg/kg wet 1,1-Dichloroethane BDL 0.00250 mg/kg wet 1,1-Dichloroethene BDL 0.00250 mg/kg wet 1,1-Dichloropene BDL 0.00250 mg/kg wet 1,2,3-Trichlorobenzene BDL 0.00250 mg/kg wet 1,2,3-Trichloropropane BDL 0.00250 mg/kg wet 1,2,4-Trimethylbenzene BDL 0.00250 mg/kg wet 1,2,4-Trimethylbenzene BDL 0.00250 mg/kg wet 1,2,2-Dichlorobenzene BDL 0.00250 mg/kg wet 1,2-Dichlorobenzene BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichlorobenzene BDL 0.00250 mg/kg wet 1,4-Dichloropropane BDL 0.00250 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
1,1,2-Trichloroethane BDL 0.00250 mg/kg wet 1,1-Dichloroethane BDL 0.00250 mg/kg wet 1,1-Dichloroethane BDL 0.00250 mg/kg wet 1,1-Dichloropropene BDL 0.00250 mg/kg wet 1,2,3-Trichlorobropane BDL 0.00250 mg/kg wet 1,2,4-Trichloropropane BDL 0.00250 mg/kg wet 1,2,4-Trimethylbenzene BDL 0.00250 mg/kg wet 1,2,4-Trimethylbenzene BDL 0.00250 mg/kg wet 1,2,4-Trimethylbenzene BDL 0.00250 mg/kg wet 1,2-Dibromo-3-chloropropane BDL 0.00250 mg/kg wet 1,2-Dibromoethane BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
1,1-Dichloroethane BDL 0.00250 mg/kg wet 1,1-Dichloroethene BDL 0.00250 mg/kg wet 1,1-Dichloropropene BDL 0.00250 mg/kg wet 1,2,3-Trichlorobenzene BDL 0.00250 mg/kg wet 1,2,3-Trichloropropane BDL 0.00250 mg/kg wet 1,2,4-Trichlorobenzene BDL 0.00250 mg/kg wet 1,2,4-Trimethylbenzene BDL 0.00250 mg/kg wet 1,2-Dibromo-3-chloropropane BDL 0.00250 mg/kg wet 1,2-Dibromoethane BDL 0.00250 mg/kg wet 1,2-Dichlorobenzene BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Trimethylbenzene BDL 0.00250 mg/kg wet 1,3-Dichlorobenzene BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichloropropane BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250<					
1,1-Dichloroethene BDL 0.00250 mg/kg wet 1,1-Dichloropropene BDL 0.00250 mg/kg wet 1,2,3-Trichlorobenzene BDL 0.00250 mg/kg wet 1,2,3-Trichloropropane BDL 0.00250 mg/kg wet 1,2,4-Trichlorobenzene BDL 0.00250 mg/kg wet 1,2,4-Trimethylbenzene BDL 0.00250 mg/kg wet 1,2-Dibromo-3-chloropropane BDL 0.00250 mg/kg wet 1,2-Dibromo-thane BDL 0.00250 mg/kg wet 1,2-Dichlorobenzene BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Srimethylbenzene BDL 0.00250 mg/kg wet 1,3-Dichlorobenzene BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichloropropane BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250					
1,1-Dichloroethene BDL 0.00250 mg/kg wet 1,1-Dichloropropene BDL 0.00250 mg/kg wet 1,2,3-Trichlorobenzene BDL 0.00250 mg/kg wet 1,2,3-Trichloropropane BDL 0.00250 mg/kg wet 1,2,4-Trinchlorobenzene BDL 0.00250 mg/kg wet 1,2-1-Trinchlorobenzene BDL 0.00250 mg/kg wet 1,2-Dibromo-3-chloropropane BDL 0.00250 mg/kg wet 1,2-Dibromo-thane BDL 0.00250 mg/kg wet 1,2-Dichlorobenzene BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Srimethylbenzene BDL 0.00250 mg/kg wet 1,3-Dichlorobenzene BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Hexanone BDL 0.00250					
1,1-Dichloropropene BDL 0.00250 mg/kg wet 1,2,3-Trichlorobenzene BDL 0.00250 mg/kg wet 1,2,3-Trichloropropane BDL 0.00250 mg/kg wet 1,2,4-Trichlorobenzene BDL 0.00250 mg/kg wet 1,2,4-Trimethylbenzene BDL 0.00250 mg/kg wet 1,2-Dibromo-3-chloropropane BDL 0.00500 mg/kg wet 1,2-Dichlorobenzene BDL 0.00250 mg/kg wet 1,2-Dichlorobenzene BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Trimethylbenzene BDL 0.00250 mg/kg wet 1,3-Dichlorobenzene BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichlorobenzene BDL 0.00250 mg/kg wet 1,4-Dichloropropane BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Hexanone BDL 0.00250 mg/kg wet 2-Hexanone BDL 0.00250 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
1,2,3-Trichloropropane BDL 0.00250 mg/kg wet 1,2,4-Trichlorobenzene BDL 0.00250 mg/kg wet 1,2,4-Trimethylbenzene BDL 0.00250 mg/kg wet 1,2-Dibromo-3-chloropropane BDL 0.00250 mg/kg wet 1,2-Dibromoethane BDL 0.00250 mg/kg wet 1,2-Dichlorobenzene BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Dichlorobenzene BDL 0.00250 mg/kg wet 1,3-Dichlorobenzene BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichlorobenzene BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Butanone BDL 0.0100 mg/kg wet 2-Chlorotoluene BDL 0.00250 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg					
1,2,3-Trichloropropane BDL 0.00250 mg/kg wet 1,2,4-Trichlorobenzene BDL 0.00250 mg/kg wet 1,2,4-Trimethylbenzene BDL 0.00250 mg/kg wet 1,2-Dibromo-3-chloropropane BDL 0.00250 mg/kg wet 1,2-Dibromoethane BDL 0.00250 mg/kg wet 1,2-Dichlorobenzene BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3-5-Trimethylbenzene BDL 0.00250 mg/kg wet 1,3-Dichlorobenzene BDL 0.00250 mg/kg wet 1,3-Dichlorobenzene BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichlorobenzene BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Butanone BDL 0.00250 mg/kg wet 2-Butanone BDL 0.00250 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Hexanone BDL 0.00250 mg/kg wet					
1,2,4-Trimethylbenzene BDL 0.00250 mg/kg wet 1,2-Dibromo-3-chloropropane BDL 0.00500 mg/kg wet 1,2-Dibromoethane BDL 0.00250 mg/kg wet 1,2-Dichlorobenzene BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Trimethylbenzene BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichloropropane BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Butanone BDL 0.0100 mg/kg wet 2-Chlorotoluene BDL 0.0100 mg/kg wet 2-Hexanone BDL 0.00250 mg/kg wet 4-Sopropyltoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.00250 mg/kg wet Acetone BDL 0.0250 mg/kg wet <					
1,2,4-Trimethylbenzene BDL 0.00250 mg/kg wet 1,2-Dibromo-3-chloropropane BDL 0.00500 mg/kg wet 1,2-Dibromoethane BDL 0.00250 mg/kg wet 1,2-Dichlorobenzene BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Frimethylbenzene BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichlorobenzene BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Butanone BDL 0.0100 mg/kg wet 2-Chlorotoluene BDL 0.0100 mg/kg wet 2-Hexanone BDL 0.0100 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.00250 mg/kg wet Acetone BDL 0.0250 mg/kg wet					
1,2-Dibromo-3-chloropropane BDL 0.00500 mg/kg wet 1,2-Dibromoethane BDL 0.00250 mg/kg wet 1,2-Dichloroethane BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3,5-Trimethylbenzene BDL 0.00250 mg/kg wet 1,3-Dichlorobenzene BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichlorobenzene BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Butanone BDL 0.00250 mg/kg wet 2-Chlorotoluene BDL 0.00250 mg/kg wet 2-Hexanone BDL 0.00250 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Hexanone BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.0250 mg/kg wet					
1,2-Dibromoethane BDL 0.00250 mg/kg wet 1,2-Dichlorobenzene BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3,5-Trimethylbenzene BDL 0.00250 mg/kg wet 1,3-Dichlorobenzene BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichlorobenzene BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Butanone BDL 0.0100 mg/kg wet 2-Chlorotoluene BDL 0.00250 mg/kg wet 2-Hexanone BDL 0.00250 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Isopropyltoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.0100 mg/kg wet Acetone BDL 0.0250 mg/kg wet Acetonitrile BDL 0.0250 mg/kg wet Acrole					
1,2-Dichlorobenzene BDL 0.00250 mg/kg wet 1,2-Dichloroptopane BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3,5-Trimethylbenzene BDL 0.00250 mg/kg wet 1,3-Dichlorobenzene BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichloropenzene BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Butanone BDL 0.0100 mg/kg wet 2-Chlorotoluene BDL 0.00250 mg/kg wet 2-Hexanone BDL 0.0100 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Loporopyltoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.0100 mg/kg wet Acetoni BDL 0.0250 mg/kg wet Acetonitrile BDL 0.0250 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrolein					
1,2-Dichloroethane BDL 0.00250 mg/kg wet 1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3,5-Trimethylbenzene BDL 0.00250 mg/kg wet 1,3-Dichlorobenzene BDL 0.00250 mg/kg wet 1,4-Dichloropropane BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Butanone BDL 0.0100 mg/kg wet 2-Chlorotoluene BDL 0.00250 mg/kg wet 2-Hexanone BDL 0.0100 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Isopropyltoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.0100 mg/kg wet Acetonitrile BDL 0.0250 mg/kg wet Acetonitrile BDL 0.0250 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrolein BDL 0.0100 mg/kg wet Acrolein BDL 0.0100 mg/kg wet					
1,2-Dichloropropane BDL 0.00250 mg/kg wet 1,3,5-Trimethylbenzene BDL 0.00250 mg/kg wet 1,3-Dichlorobenzene BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichlorobenzene BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Butanone BDL 0.0100 mg/kg wet 2-Chlorotoluene BDL 0.00250 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Isopropyltoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.0100 mg/kg wet Acetone BDL 0.0250 mg/kg wet Acetonitrile BDL 0.0250 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrolein BDL 0.0100 mg/kg wet Acrolein BDL 0.0100 mg/kg wet Acroloide BDL <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
1,3,5-Trimethylbenzene BDL 0.00250 mg/kg wet 1,3-Dichlorobenzene BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichlorobenzene BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Butanone BDL 0.0100 mg/kg wet 2-Chlorotoluene BDL 0.00250 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Isopropyltoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.0100 mg/kg wet Acetone BDL 0.0250 mg/kg wet Acetone BDL 0.0250 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Allyl chloride BDL 0.0100 mg/kg wet					
1,3-Dichlorobenzene BDL 0.00250 mg/kg wet 1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichlorobenzene BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Butanone BDL 0.0100 mg/kg wet 2-Chlorotoluene BDL 0.00250 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Isopropyltoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.0100 mg/kg wet Acetone BDL 0.0250 mg/kg wet Acetone BDL 0.0250 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Allyl chloride BDL 0.0100 mg/kg wet					
1,3-Dichloropropane BDL 0.00250 mg/kg wet 1,4-Dichlorobenzene BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Butanone BDL 0.0100 mg/kg wet 2-Chlorotoluene BDL 0.00250 mg/kg wet 2-Hexanone BDL 0.00250 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Isopropyltoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.0100 mg/kg wet Acetone BDL 0.0250 mg/kg wet Acetonitrile BDL 0.0250 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrylonitrile BDL 0.0100 mg/kg wet Allyl chloride BDL 0.00500 mg/kg wet					
1,4-Dichlorobenzene BDL 0.00250 mg/kg wet 2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Butanone BDL 0.0100 mg/kg wet 2-Chlorotoluene BDL 0.00250 mg/kg wet 2-Hexanone BDL 0.00250 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Isopropyltoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.0100 mg/kg wet Acetone BDL 0.0250 mg/kg wet Acetonitrile BDL 0.0250 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrylonitrile BDL 0.0100 mg/kg wet Allyl chloride BDL 0.00500 mg/kg wet					
2,2-Dichloropropane BDL 0.00250 mg/kg wet 2-Butanone BDL 0.0100 mg/kg wet 2-Chlorotoluene BDL 0.00250 mg/kg wet 2-Hexanone BDL 0.0100 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Isopropyltoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.0100 mg/kg wet Acetone BDL 0.0250 mg/kg wet Acetonitrile BDL 0.0250 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrylonitrile BDL 0.0100 mg/kg wet Allyl chloride BDL 0.00500 mg/kg wet					
2-Butanone BDL 0.0100 mg/kg wet 2-Chlorotoluene BDL 0.00250 mg/kg wet 2-Hexanone BDL 0.0100 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Isopropyltoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.0100 mg/kg wet Acetone BDL 0.0250 mg/kg wet Acetonitrile BDL 0.0200 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrylonitrile BDL 0.0100 mg/kg wet Allyl chloride BDL 0.00500 mg/kg wet					
2-Chlorotoluene BDL 0.00250 mg/kg wet 2-Hexanone BDL 0.0100 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Isopropyltoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.0100 mg/kg wet Acetone BDL 0.0250 mg/kg wet Acetonitrile BDL 0.0250 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrylonitrile BDL 0.0100 mg/kg wet Allyl chloride BDL 0.00500 mg/kg wet					
2-Hexanone BDL 0.0100 mg/kg wet 4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Isopropyltoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.0100 mg/kg wet Acetone BDL 0.0250 mg/kg wet Acetonitrile BDL 0.0250 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrylonitrile BDL 0.0100 mg/kg wet Allyl chloride BDL 0.00500 mg/kg wet					
4-Chlorotoluene BDL 0.00250 mg/kg wet 4-Isopropyltoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.0100 mg/kg wet Acetone BDL 0.0250 mg/kg wet Acetonitrile BDL 0.0250 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrylonitrile BDL 0.0100 mg/kg wet Allyl chloride BDL 0.00500 mg/kg wet					
4-Isopropyltoluene BDL 0.00250 mg/kg wet 4-Methyl-2-pentanone BDL 0.0100 mg/kg wet Acetone BDL 0.0250 mg/kg wet Acetonitrile BDL 0.0200 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrylonitrile BDL 0.0100 mg/kg wet Allyl chloride BDL 0.00500 mg/kg wet					
4-Methyl-2-pentanone BDL 0.0100 mg/kg wet Acetone BDL 0.0250 mg/kg wet Acetonitrile BDL 0.0200 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrylonitrile BDL 0.0100 mg/kg wet Allyl chloride BDL 0.00500 mg/kg wet					
Acetone BDL 0.0250 mg/kg wet Acetonitrile BDL 0.0200 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrylonitrile BDL 0.0100 mg/kg wet Allyl chloride BDL 0.00500 mg/kg wet					
Acetonitrile BDL 0.0200 mg/kg wet Acrolein BDL 0.0250 mg/kg wet Acrylonitrile BDL 0.0100 mg/kg wet Allyl chloride BDL 0.00500 mg/kg wet					
Acrolein BDL 0.0250 mg/kg wet Acrylonitrile BDL 0.0100 mg/kg wet Allyl chloride BDL 0.00500 mg/kg wet					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
Allyl chloride BDL 0.00500 mg/kg wet					
Benzene BDL 0.00250 mg/kg wet					
Bromobenzene BDL 0.00250 mg/kg wet					
Bromodichloromethane BDL 0.00250 mg/kg wet Bromoform BDL 0.00250 mg/kg wet					

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Surrogate: 1,2-Dichloroethane-d4

Lab Order:

15F0709

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Resuit	Limit	Units	Level	Resuit	%REC	Limits	KPD	Limit	Notes
Batch 1525265 - VOC PREP										
Blank (1525265-BLK1)				Prepared &	Analyzed:	06/19/15				
Bromomethane	BDL	0.00250	mg/kg wet							
Carbon Disulfide	BDL	0.0100	mg/kg wet							
Carbon Tetrachloride	BDL	0.00250	mg/kg wet							
Chlorobenzene	BDL	0.00250	mg/kg wet							
Chloroethane	BDL	0.00250	mg/kg wet							
Chloroform	BDL	0.00250	mg/kg wet							
Chloromethane	BDL	0.00250	mg/kg wet							
is-1,2-Dichloroethene	BDL	0.00250	mg/kg wet							
is-1,3-Dichloropropene	BDL	0.00250	mg/kg wet							
Dibromochloromethane	BDL	0.00250	mg/kg wet							
Dibromomethane	BDL	0.00250	mg/kg wet							
Dichlorodifluoromethane	BDL	0.00250	mg/kg wet							
Ethylbenzene	BDL	0.00250	mg/kg wet							
Iexachlorobutadiene	BDL	0.00250	mg/kg wet							
odomethane	BDL	0.00500	mg/kg wet							
sopropylbenzene	BDL	0.00250	mg/kg wet							
Methylene Chloride	BDL	0.00250	mg/kg wet							
Methyl tert-Butyl Ether	BDL	0.00500	mg/kg wet							
n,p-Xylene	BDL	0.00500	mg/kg wet							
Japhthalene	BDL	0.00250	mg/kg wet							
-Butylbenzene	BDL	0.00250	mg/kg wet							
-Propylbenzene	BDL	0.00250	mg/kg wet							
-Xylene	BDL	0.00250	mg/kg wet							
ec-Butylbenzene	BDL	0.00250	mg/kg wet							
styrene	BDL	0.00250	mg/kg wet							
ert_Butylbenzene	BDL	0.00250	mg/kg wet							
etrachloroethene	BDL	0.00250	mg/kg wet							
Toluene	BDL	0.00250	mg/kg wet							
rans-1,2-Dichloroethene	BDL	0.00250	mg/kg wet							
rans-1,3-Dichloropropene	BDL	0.00250	mg/kg wet							
richloroethene	BDL	0.00250	mg/kg wet							
richlorofluoromethane	BDL	0.00250	mg/kg wet							
Vinyl Chloride	BDL	0.00250	mg/kg wet							
/inyl acetate	BDL	0.00500	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	49.0		ug/L	50.00		98.0	62-129			
Surrogate: Dibromofluoromethane	44.6		ug/L	50.00		89.1	71-129			
Surrogate: Toluene-d8	50.4		ug/L	50.00		101	74-124			
2 . 12 D: 11 .1 14	45.5		/1	50.00		01.4	70 127			

ug/L

50.00

91.4

70-127

45.7

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Lab Order:

15F0709

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

1,1,1-Trichloroethane 0.0193 0.00250 mg/kg wet 0.02000 96.6 8 1,1,2,2-Tetrachloroethane 0.0200 0.00250 mg/kg wet 0.02000 100 75 1,1,2-Trichloroethane 0.0202 0.00250 mg/kg wet 0.02000 101 84 1,1-Dichloroethane 0.0188 0.00250 mg/kg wet 0.02000 93.8 75 1,1-Dichloroethene 0.0202 0.00250 mg/kg wet 0.02000 101 77 1,1-Dichloropropene 0.0203 0.00250 mg/kg wet 0.02000 102 82 1,2,3-Trichlorobenzene 0.0213 0.00250 mg/kg wet 0.02000 107 82 1,2,4-Trichlorobenzene 0.0202 0.00250 mg/kg wet 0.02000 101 80 1,2,4-Trichlorobenzene 0.0222 0.00250 mg/kg wet 0.02000 111 81 1,2,4-Trimethylbenzene 0.0208 0.00250 mg/kg wet 0.02000 104 84 1,2-Dibromo-3-chloropropane 0.0201 0.0050 mg/kg wet 0.02000 101	84.9-116 79.4-125 74-127 82.1-122 82.9-117 80.5-117 81.2-120
1,1,2,2-Tetrachloroethane 0.0200 0.00250 mg/kg wet 0.02000 100 75 1,1,2-Trichloroethane 0.0202 0.00250 mg/kg wet 0.02000 101 84 1,1-Dichloroethane 0.0188 0.00250 mg/kg wet 0.02000 93.8 75 1,1-Dichloroethene 0.0202 0.00250 mg/kg wet 0.02000 101 77 1,1-Dichloropropene 0.0203 0.00250 mg/kg wet 0.02000 102 82 1,2,3-Trichlorobenzene 0.0213 0.00250 mg/kg wet 0.02000 107 82 1,2,3-Trichloropropane 0.0202 0.00250 mg/kg wet 0.02000 101 80 1,2,4-Trimethylbenzene 0.0222 0.00250 mg/kg wet 0.02000 111 81 1,2-Dibromo-3-chloropropane 0.0208 0.00250 mg/kg wet 0.02000 101 78 1,2-Dibromoethane 0.0203 0.00250 mg/kg wet 0.02000 101 78 1,2-Dichlorobenzene 0.0208 0.00250 mg/kg wet 0.02000 104 82 <th>79.7-120 84.9-116 79.4-125</th>	79.7-120 84.9-116 79.4-125
1,1,2-Trichloroethane 0.0202 0.00250 mg/kg wet 0.02000 101 84 1,1-Dichloroethane 0.0188 0.00250 mg/kg wet 0.02000 93.8 75 1,1-Dichloroethane 0.0202 0.00250 mg/kg wet 0.02000 101 7 1,1-Dichloropropene 0.0203 0.00250 mg/kg wet 0.02000 102 82 1,2,3-Trichlorobenzene 0.0213 0.00250 mg/kg wet 0.02000 107 82 1,2,3-Trichloropropane 0.0202 0.00250 mg/kg wet 0.02000 101 80 1,2,4-Trichlorobenzene 0.0222 0.00250 mg/kg wet 0.02000 111 81 1,2-A-Trimethylbenzene 0.0208 0.00250 mg/kg wet 0.02000 104 84 1,2-Dibromo-3-chloropropane 0.0201 0.00500 mg/kg wet 0.02000 101 78 1,2-Dibromoethane 0.0203 0.00250 mg/kg wet 0.02000 102 84 1,2-Dichlorobenzene 0.0208 0.00250 mg/kg wet 0.02000 96.5 81	84.9-116 79.4-125 74-127 82.1-122 82.9-117 80.5-117 81.2-120
1,1-Dichloroethane 0.0188 0.00250 mg/kg wet 0.02000 93.8 75 1,1-Dichloroethene 0.0202 0.00250 mg/kg wet 0.02000 101 7 1,1-Dichloropropene 0.0203 0.00250 mg/kg wet 0.02000 102 82 1,2,3-Trichlorobenzene 0.0213 0.00250 mg/kg wet 0.02000 107 82 1,2,3-Trichloropropane 0.0202 0.00250 mg/kg wet 0.02000 101 86 1,2,4-Trichlorobenzene 0.0222 0.00250 mg/kg wet 0.02000 111 81 1,2,4-Trimethylbenzene 0.0208 0.00250 mg/kg wet 0.02000 104 84 1,2-Dibromo-3-chloropropane 0.0201 0.00500 mg/kg wet 0.02000 101 78 1,2-Dibromoethane 0.0203 0.00250 mg/kg wet 0.02000 102 84 1,2-Dichlorobenzene 0.0208 0.00250 mg/kg wet 0.02000 104 83 1,2-Dichloropropane 0.0194 0.00250 mg/kg wet 0.02000 96.5 81	79.4-125 74-127 82.1-122 82.9-117 80.5-117 81.2-120
1,1-Dichloroethene 0.0202 0.00250 mg/kg wet 0.02000 101 7 1,1-Dichloropropene 0.0203 0.00250 mg/kg wet 0.02000 102 82 1,2,3-Trichlorobenzene 0.0213 0.00250 mg/kg wet 0.02000 107 82 1,2,3-Trichloropropane 0.0202 0.00250 mg/kg wet 0.02000 101 80 1,2,4-Trichlorobenzene 0.0222 0.00250 mg/kg wet 0.02000 111 81 1,2,4-Trimethylbenzene 0.0208 0.00250 mg/kg wet 0.02000 104 82 1,2-Dibromo-3-chloropropane 0.0201 0.00500 mg/kg wet 0.02000 101 78 1,2-Dibromoethane 0.0203 0.00250 mg/kg wet 0.02000 102 84 1,2-Dichlorobenzene 0.0193 0.00250 mg/kg wet 0.02000 104 85 1,2-Dichloropropane 0.0194 0.00250 mg/kg wet 0.02000 96.5 81 1,3-Dichlorobenzene 0.0209 0.00250 mg/kg wet 0.02000 105 82	74-127 82.1-122 82.9-117 80.5-117 81.2-120
1,1-Dichloropropene 0.0203 0.00250 mg/kg wet 0.02000 102 82 1,2,3-Trichlorobenzene 0.0213 0.00250 mg/kg wet 0.02000 107 82 1,2,3-Trichloropropane 0.0202 0.00250 mg/kg wet 0.02000 101 80 1,2,4-Trichlorobenzene 0.0222 0.00250 mg/kg wet 0.02000 111 81 1,2,4-Trimethylbenzene 0.0208 0.00250 mg/kg wet 0.02000 104 84 1,2-Dibromo-3-chloropropane 0.0201 0.00500 mg/kg wet 0.02000 101 78 1,2-Dibromoethane 0.0203 0.00250 mg/kg wet 0.02000 102 84 1,2-Dichlorobenzene 0.0208 0.00250 mg/kg wet 0.02000 104 85 1,2-Dichloropropane 0.0193 0.00250 mg/kg wet 0.02000 96.5 81 1,2-Dichloropropane 0.0194 0.00250 mg/kg wet 0.02000 97.0 82 1,3-Dichlorobenzene 0.0209 0.00250 mg/kg wet 0.02000 105 82	82.1-122 82.9-117 80.5-117 81.2-120
1,2,3-Trichlorobenzene 0.0213 0.00250 mg/kg wet 0.02000 107 82 1,2,3-Trichloropropane 0.0202 0.00250 mg/kg wet 0.02000 101 80 1,2,4-Trichlorobenzene 0.0222 0.00250 mg/kg wet 0.02000 111 81 1,2,4-Trimethylbenzene 0.0208 0.00250 mg/kg wet 0.02000 104 84 1,2-Dibromo-3-chloropropane 0.0201 0.00500 mg/kg wet 0.02000 101 78 1,2-Dibromoethane 0.0203 0.00250 mg/kg wet 0.02000 102 84 1,2-Dichlorobenzene 0.0208 0.00250 mg/kg wet 0.02000 104 85 1,2-Dichloropropane 0.0193 0.00250 mg/kg wet 0.02000 96.5 81 1,2-Dichloropropane 0.0194 0.00250 mg/kg wet 0.02000 97.0 82 1,3-Dichlorobenzene 0.0209 0.00250 mg/kg wet 0.02000 105 82 1,3-Dichloropropane 0.0212 0.00250 mg/kg wet 0.02000 106 84	82.9-117 80.5-117 81.2-120
1,2,3-Trichloropropane 0.0202 0.00250 mg/kg wet 0.02000 101 86 1,2,4-Trichlorobenzene 0.0222 0.00250 mg/kg wet 0.02000 111 81 1,2,4-Trimethylbenzene 0.0208 0.00250 mg/kg wet 0.02000 104 84 1,2-Dibromo-3-chloropropane 0.0201 0.00500 mg/kg wet 0.02000 101 78 1,2-Dibromoethane 0.0203 0.00250 mg/kg wet 0.02000 102 84 1,2-Dichlorobenzene 0.0208 0.00250 mg/kg wet 0.02000 104 85 1,2-Dichloropropane 0.0193 0.00250 mg/kg wet 0.02000 96.5 81 1,2-Dichloropropane 0.0194 0.00250 mg/kg wet 0.02000 97.0 82 1,3,5-Trimethylbenzene 0.0209 0.00250 mg/kg wet 0.02000 105 82 1,3-Dichlorobenzene 0.0212 0.00250 mg/kg wet 0.02000 106 84 1,3-Dichloropropane 0.0203 0.00250 mg/kg wet 0.02000 101 86	80.5-117 81.2-120
1,2,4-Trichlorobenzene 0.0222 0.00250 mg/kg wet 0.02000 111 81 1,2,4-Trimethylbenzene 0.0208 0.00250 mg/kg wet 0.02000 104 84 1,2-Dibromo-3-chloropropane 0.0201 0.00500 mg/kg wet 0.02000 101 78 1,2-Dibromoethane 0.0203 0.00250 mg/kg wet 0.02000 102 84 1,2-Dichlorobenzene 0.0208 0.00250 mg/kg wet 0.02000 104 85 1,2-Dichloroptopane 0.0193 0.00250 mg/kg wet 0.02000 96.5 81 1,2-Dichloroptopane 0.0194 0.00250 mg/kg wet 0.02000 97.0 82 1,3,5-Trimethylbenzene 0.0209 0.00250 mg/kg wet 0.02000 105 82 1,3-Dichlorobenzene 0.0212 0.00250 mg/kg wet 0.02000 106 84 1,3-Dichloropropane 0.0203 0.00250 mg/kg wet 0.02000 101 86	81.2-120
1,2,4-Trimethylbenzene 0.0208 0.00250 mg/kg wet 0.02000 104 84 1,2-Dibromo-3-chloropropane 0.0201 0.00500 mg/kg wet 0.02000 101 78 1,2-Dibromoethane 0.0203 0.00250 mg/kg wet 0.02000 102 84 1,2-Dichlorobenzene 0.0208 0.00250 mg/kg wet 0.02000 104 85 1,2-Dichloroethane 0.0193 0.00250 mg/kg wet 0.02000 96.5 81 1,2-Dichloropropane 0.0194 0.00250 mg/kg wet 0.02000 97.0 82 1,3,5-Trimethylbenzene 0.0209 0.00250 mg/kg wet 0.02000 105 82 1,3-Dichlorobenzene 0.0212 0.00250 mg/kg wet 0.02000 106 84 1,3-Dichloropropane 0.0203 0.00250 mg/kg wet 0.02000 101 82	
1,2-Dibromo-3-chloropropane 0.0201 0.00500 mg/kg wet 0.02000 101 78 1,2-Dibromoethane 0.0203 0.00250 mg/kg wet 0.02000 102 84 1,2-Dichlorobenzene 0.0208 0.00250 mg/kg wet 0.02000 104 85 1,2-Dichloroethane 0.0193 0.00250 mg/kg wet 0.02000 96.5 81 1,2-Dichloropropane 0.0194 0.00250 mg/kg wet 0.02000 97.0 82 1,3-Dichlorobenzene 0.0209 0.00250 mg/kg wet 0.02000 105 82 1,3-Dichloropropane 0.0212 0.00250 mg/kg wet 0.02000 106 84 1,3-Dichloropropane 0.0203 0.00250 mg/kg wet 0.02000 101 82	84.5-117
1,2-Dibromoethane 0.0203 0.00250 mg/kg wet 0.02000 102 84 1,2-Dichlorobenzene 0.0208 0.00250 mg/kg wet 0.02000 104 85 1,2-Dichloroethane 0.0193 0.00250 mg/kg wet 0.02000 96.5 81 1,2-Dichloropropane 0.0194 0.00250 mg/kg wet 0.02000 97.0 82 1,3,5-Trimethylbenzene 0.0209 0.00250 mg/kg wet 0.02000 105 82 1,3-Dichlorobenzene 0.0212 0.00250 mg/kg wet 0.02000 106 84 1,3-Dichloropropane 0.0203 0.00250 mg/kg wet 0.02000 101 88	
1,2-Dichlorobenzene 0.0208 0.00250 mg/kg wet 0.02000 104 85 1,2-Dichloroethane 0.0193 0.00250 mg/kg wet 0.02000 96.5 81 1,2-Dichloropropane 0.0194 0.00250 mg/kg wet 0.02000 97.0 82 1,3,5-Trimethylbenzene 0.0209 0.00250 mg/kg wet 0.02000 105 82 1,3-Dichlorobenzene 0.0212 0.00250 mg/kg wet 0.02000 106 84 1,3-Dichloropropane 0.0203 0.00250 mg/kg wet 0.02000 101 88	78.3-114
1,2-Dichloroethane 0.0193 0.00250 mg/kg wet 0.02000 96.5 81 1,2-Dichloropropane 0.0194 0.00250 mg/kg wet 0.02000 97.0 82 1,3,5-Trimethylbenzene 0.0209 0.00250 mg/kg wet 0.02000 105 82 1,3-Dichlorobenzene 0.0212 0.00250 mg/kg wet 0.02000 106 84 1,3-Dichloropropane 0.0203 0.00250 mg/kg wet 0.02000 101 88	84.6-115
1,2-Dichloropropane 0.0194 0.00250 mg/kg wet 0.02000 97.0 82 1,3,5-Trimethylbenzene 0.0209 0.00250 mg/kg wet 0.02000 105 82 1,3-Dichlorobenzene 0.0212 0.00250 mg/kg wet 0.02000 106 84 1,3-Dichloropropane 0.0203 0.00250 mg/kg wet 0.02000 101 88	85.8-114
1,3,5-Trimethylbenzene 0.0209 0.00250 mg/kg wet 0.02000 105 82 1,3-Dichlorobenzene 0.0212 0.00250 mg/kg wet 0.02000 106 84 1,3-Dichloropropane 0.0203 0.00250 mg/kg wet 0.02000 101 88	81.8-120
1,3-Dichlorobenzene 0.0212 0.00250 mg/kg wet 0.02000 106 84 1,3-Dichloropropane 0.0203 0.00250 mg/kg wet 0.02000 101 88	82.7-117
1,3-Dichloropropane 0.0203 0.00250 mg/kg wet 0.02000 101 8	82.7-119
	84.9-116
1.4-Dichlorobenzene 0.0214 0.00250 mg/kg wet 0.02000 107 84	85-115
1,1 Blemorodenzene 0.0214 0.00250 mg/kg wet 0.02000 107 0	84.7-116
2-Butanone 0.0370 0.0100 mg/kg wet 0.04000 92.5 54	54.1-152
2-Chlorotoluene 0.0212 0.00250 mg/kg wet 0.02000 106 83	83.5-119
2-Hexanone 0.0400 0.0100 mg/kg wet 0.04000 100 63	63.8-138
4-Chlorotoluene 0.0220 0.00250 mg/kg wet 0.02000 110 8	84-119
4-Isopropyltoluene 0.0212 0.00250 mg/kg wet 0.02000 106 82	82.1-119
4-Methyl-2-pentanone 0.0402 0.0100 mg/kg wet 0.04000 100 77	77.9-124
Acetone 0.0454 0.0250 mg/kg wet 0.04000 114 47	47.4-167
Acetonitrile 0.0205 0.0200 mg/kg wet 0.02000 103 59	59.5-141
Acrolein 0.0379 0.0250 mg/kg wet 0.04000 94.8 64	64.9-133
Acrylonitrile 0.0204 0.0100 mg/kg wet 0.02000 102 71	71.6-124
Allyl chloride 0.0195 0.00500 mg/kg wet 0.02000 97.4 71	71.6-127
Benzene 0.0200 0.00250 mg/kg wet 0.02000 99.9 83	83.9-117
Bromobenzene 0.0211 0.00250 mg/kg wet 0.02000 106 84	84.4-117
Bromochloromethane 0.0203 0.00250 mg/kg wet 0.02000 102 85	85.7-120
Bromodichloromethane 0.0195 0.00250 mg/kg wet 0.02000 97.4 82	82.6-117
Bromoform 0.0211 0.00250 mg/kg wet 0.02000 105 78	78.3-117
Bromomethane 0.0166 0.00250 mg/kg wet 0.02000 83.2 58	58.3-155
Carbon Disulfide 0.0194 0.0100 mg/kg wet 0.02000 96.8 78	78.1-122
Carbon Tetrachloride 0.0206 0.00250 mg/kg wet 0.02000 103 74	74.6-128
Chlorobenzene 0.0208 0.00250 mg/kg wet 0.02000 104 86	86.3-115
Chloroethane 0.0194 0.00250 mg/kg wet 0.02000 96.9 57	57.9-140
Chloroform 0.0181 0.00250 mg/kg wet 0.02000 90.5 75	79.1-123
Chloromethane 0.0203 0.00250 mg/kg wet 0.02000 102 66	66.5-130
cis-1,2-Dichloroethene 0.0188 0.00250 mg/kg wet 0.02000 94.2 75	79.6-122
cis-1,3-Dichloropropene 0.0201 0.00250 mg/kg wet 0.02000 101 85	85.2-116

CLIENT: Hull & Associates - Toledo Office

44.7

Project: COT235 Champion Spark Plug

Surrogate: 1,2-Dichloroethane-d4

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1525265 - VOC PREP										
LCS (1525265-BS1)				Prepared &	Analyzed:	06/19/15				
Dibromochloromethane	0.0201	0.00250	mg/kg wet	0.02000		100	79.7-119			
Dibromomethane	0.0194	0.00250	mg/kg wet	0.02000		97.0	85.2-116			
Dichlorodifluoromethane	0.0211	0.00250	mg/kg wet	0.02000		106	69.1-141			
Ethylbenzene	0.0207	0.00250	mg/kg wet	0.02000		103	82.6-118			
Hexachlorobutadiene	0.0214	0.00250	mg/kg wet	0.02000		107	76.4-123			
Iodomethane	0.0200	0.00500	mg/kg wet	0.02000		99.8	66.9-137			
Isopropylbenzene	0.0207	0.00250	mg/kg wet	0.02000		103	82.1-118			
Methylene Chloride	0.0150	0.00250	mg/kg wet	0.02000		75.0	62.1-129			
Methyl tert-Butyl Ether	0.0180	0.00500	mg/kg wet	0.02000		89.8	77-124			
m,p-Xylene	0.0421	0.00500	mg/kg wet	0.04000		105	82-120			
Naphthalene	0.0206	0.00250	mg/kg wet	0.02000		103	78.9-119			
n-Butylbenzene	0.0216	0.00250	mg/kg wet	0.02000		108	80-123			
n-Propylbenzene	0.0214	0.00250	mg/kg wet	0.02000		107	81.4-120			
o-Xylene	0.0212	0.00250	mg/kg wet	0.02000		106	85.2-117			
sec-Butylbenzene	0.0206	0.00250	mg/kg wet	0.02000		103	81.7-118			
Styrene	0.0210	0.00250	mg/kg wet	0.02000		105	85.7-116			
tert_Butylbenzene	0.0202	0.00250	mg/kg wet	0.02000		101	82.2-116			
Tetrachloroethene	0.0210	0.00250	mg/kg wet	0.02000		105	79.1-126			
Toluene	0.0210	0.00250	mg/kg wet	0.02000		105	82.7-119			
trans-1,2-Dichloroethene	0.0183	0.00250	mg/kg wet	0.02000		91.4	79.3-124			
trans-1,3-Dichloropropene	0.0206	0.00250	mg/kg wet	0.02000		103	85.5-118			
Trichloroethene	0.0216	0.00250	mg/kg wet	0.02000		108	83.1-122			
Trichlorofluoromethane	0.0208	0.00250	mg/kg wet	0.02000		104	74.3-141			
Vinyl Chloride	0.0192	0.00250	mg/kg wet	0.02000		96.0	71.1-129			
Vinyl acetate	0.0194	0.00500	mg/kg wet	0.02000		97.0	61.7-158			
Surrogate: 4-Bromofluorobenzene	48.9		ug/L	50.00		97.8	62-129			
Surrogate: Dibromofluoromethane	44.1		ug/L	50.00		88.2	71-129			
Surrogate: Toluene-d8	50.2		ug/L	50.00		100	74-124			

ug/L

50.00

89.4

70-127

15F0709

Lab Order:

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Batch 1526079 - VOC PREP

Carbon Disulfide

Chlorobenzene

Chloromethane

cis-1,2-Dichloroethene

Chloroethane

Chloroform

Carbon Tetrachloride

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (1526079-BLK1)			Prepared & Analyzed: 06/20/15
1,1,1,2-Tetrachloroethane	BDL	0.00250	mg/kg wet
1,1,1-Trichloroethane	BDL	0.00250	mg/kg wet
1,1,2,2-Tetrachloroethane	BDL	0.00250	mg/kg wet
1,1,2-Trichloroethane	BDL	0.00250	mg/kg wet
1,1-Dichloroethane	BDL	0.00250	mg/kg wet
1,1-Dichloroethene	BDL	0.00250	mg/kg wet
1,1-Dichloropropene	BDL	0.00250	mg/kg wet
1,2,3-Trichlorobenzene	BDL	0.00250	mg/kg wet
1,2,3-Trichloropropane	BDL	0.00250	mg/kg wet
1,2,4-Trichlorobenzene	BDL	0.00250	mg/kg wet
1,2,4-Trimethylbenzene	BDL	0.00250	mg/kg wet
1,2-Dibromo-3-chloropropane	BDL	0.00500	mg/kg wet
1,2-Dibromoethane	BDL	0.00250	mg/kg wet
1,2-Dichlorobenzene	BDL	0.00250	mg/kg wet
1,2-Dichloroethane	BDL	0.00250	mg/kg wet
1,2-Dichloropropane	BDL	0.00250	mg/kg wet
1,3,5-Trimethylbenzene	BDL	0.00250	mg/kg wet
1,3-Dichlorobenzene	BDL	0.00250	mg/kg wet
1,3-Dichloropropane	BDL	0.00250	mg/kg wet
1,4-Dichlorobenzene	BDL	0.00250	mg/kg wet
2,2-Dichloropropane	BDL	0.00250	mg/kg wet
2-Butanone	BDL	0.0100	mg/kg wet
2-Chlorotoluene	BDL	0.00250	mg/kg wet
2-Hexanone	BDL	0.0100	mg/kg wet
4-Chlorotoluene	BDL	0.00250	mg/kg wet
4-Isopropyltoluene	BDL	0.00250	mg/kg wet
4-Methyl-2-pentanone	BDL	0.0100	mg/kg wet
Acetone	BDL	0.0250	mg/kg wet
Acetonitrile	BDL	0.0200	mg/kg wet
Acrolein	BDL	0.0250	mg/kg wet
Acrylonitrile	BDL	0.0100	mg/kg wet
Allyl chloride	BDL	0.00500	mg/kg wet
Benzene	BDL	0.00250	mg/kg wet
Bromobenzene	BDL	0.00250	mg/kg wet
Bromochloromethane	BDL	0.00250	mg/kg wet
Bromodichloromethane	BDL	0.00250	mg/kg wet
Bromoform	BDL	0.00250	mg/kg wet
Bromomethane	BDL	0.00250	mg/kg wet

0.0100 mg/kg wet

0.00250 mg/kg wet

0.00250 mg/kg wet

0.00250 mg/kg wet

0.00250 mg/kg wet

0.00250 mg/kg wet

0.00250 mg/kg wet

BDL

BDL

BDL

 BDL

BDL

BDL

BDL

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Lab Order:

15F0709

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	1526079	- VOC	PREP

Blank (1526079-BLK1)			Prepared & Analyzed: 06/20/15
cis-1,3-Dichloropropene	BDL	0.00250 mg/kg w	vet
Dibromochloromethane	BDL	0.00250 mg/kg w	vet
Dibromomethane	BDL	0.00250 mg/kg w	vet
Dichlorodifluoromethane	BDL	0.00250 mg/kg w	vet
Ethylbenzene	BDL	0.00250 mg/kg w	vet
Hexachlorobutadiene	BDL	0.00250 mg/kg w	vet
Iodomethane	BDL	0.00500 mg/kg w	vet
Isopropylbenzene	BDL	0.00250 mg/kg w	vet
Methylene Chloride	BDL	0.00250 mg/kg w	vet
Methyl tert-Butyl Ether	BDL	0.00500 mg/kg w	vet
m,p-Xylene	BDL	0.00500 mg/kg w	vet
Naphthalene	BDL	0.00250 mg/kg w	vet
n-Butylbenzene	BDL	0.00250 mg/kg w	vet
n-Propylbenzene	BDL	0.00250 mg/kg w	vet
o-Xylene	BDL	0.00250 mg/kg w	vet
sec-Butylbenzene	BDL	0.00250 mg/kg w	vet
Styrene	BDL	0.00250 mg/kg w	vet
tert_Butylbenzene	BDL	0.00250 mg/kg w	vet
Tetrachloroethene	BDL	0.00250 mg/kg w	vet
Гoluene	BDL	0.00250 mg/kg w	vet
trans-1,2-Dichloroethene	BDL	0.00250 mg/kg w	vet
trans-1,3-Dichloropropene	BDL	0.00250 mg/kg w	vet
Trichloroethene	BDL	0.00250 mg/kg w	vet
Trichlorofluoromethane	BDL	0.00250 mg/kg w	vet
Vinyl Chloride	BDL	0.00250 mg/kg w	vet
Vinyl acetate	BDL	0.00500 mg/kg w	vet
Surrogate: 4-Bromofluorobenzene	48.3	ug/L	50.00 96.5 62-129
Surrogate: Dibromofluoromethane	45.9	ug/L	50.00 91.8 71-129
Surrogate: Toluene-d8	49.5	ug/L	
Surrogate: 1,2-Dichloroethane-d4	47.4	ug/L	50.00 94.8 70-127

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Lab Order:

15F0709

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	LIIIII	Ullits	Level	Result	70KEC	Lillits	KPD	Lillit	Notes
Batch 1526079 - VOC PREP										
LCS (1526079-BS1)				Prepared &	: Analyzed:	06/20/15				
1,1,1,2-Tetrachloroethane	0.0207	0.00250	mg/kg wet	0.02000	-	103	84.1-115			
1,1,1-Trichloroethane	0.0198	0.00250	mg/kg wet	0.02000		98.9	80-124			
,1,2,2-Tetrachloroethane	0.0202	0.00250	mg/kg wet	0.02000		101	79.7-120			
,1,2-Trichloroethane	0.0195	0.00250	mg/kg wet	0.02000		97.6	84.9-116			
,1-Dichloroethane	0.0200	0.00250	mg/kg wet	0.02000		100	79.4-125			
,1-Dichloroethene	0.0208	0.00250	mg/kg wet	0.02000		104	74-127			
,1-Dichloropropene	0.0202	0.00250	mg/kg wet	0.02000		101	82.1-122			
,2,3-Trichlorobenzene	0.0204	0.00250	mg/kg wet	0.02000		102	82.9-117			
,2,3-Trichloropropane	0.0201	0.00250	mg/kg wet	0.02000		100	80.5-117			
,2,4-Trichlorobenzene	0.0213	0.00250	mg/kg wet	0.02000		107	81.2-120			
,2,4-Trimethylbenzene	0.0210	0.00250	mg/kg wet	0.02000		105	84.5-117			
,2-Dibromo-3-chloropropane	0.0190	0.00500	mg/kg wet	0.02000		94.8	78.3-114			
,2-Dibromoethane	0.0206	0.00250	mg/kg wet	0.02000		103	84.6-115			
,2-Dichlorobenzene	0.0210	0.00250	mg/kg wet	0.02000		105	85.8-114			
,2-Dichloroethane	0.0196	0.00250	mg/kg wet	0.02000		98.2	81.8-120			
,2-Dichloropropane	0.0198	0.00250	mg/kg wet	0.02000		99.3	82.7-117			
,3,5-Trimethylbenzene	0.0215	0.00250	mg/kg wet	0.02000		107	82.7-119			
3-Dichlorobenzene	0.0214	0.00250	mg/kg wet	0.02000		107	84.9-116			
,3-Dichloropropane	0.0201	0.00250	mg/kg wet	0.02000		100	85-115			
,4-Dichlorobenzene	0.0212	0.00250	mg/kg wet	0.02000		106	84.7-116			
Butanone	0.0367	0.0100	mg/kg wet	0.04000		91.7	54.1-152			
-Chlorotoluene	0.0211	0.00250	mg/kg wet	0.02000		106	83.5-119			
-Hexanone	0.0379	0.0100	mg/kg wet	0.04000		94.8	63.8-138			
-Chlorotoluene	0.0217	0.00250	mg/kg wet	0.02000		109	84-119			
-Isopropyltoluene	0.0215	0.00250	mg/kg wet	0.02000		107	82.1-119			
-Methyl-2-pentanone	0.0403	0.0100	mg/kg wet	0.04000		101	77.9-124			
cetone	0.0397	0.0250	mg/kg wet	0.04000		99.3	47.4-167			
cetonitrile	0.0171	0.0200	mg/kg wet	0.02000		85.4	59.5-141			
crolein	0.0359	0.0250	mg/kg wet	0.04000		89.7	64.9-133			
acrylonitrile	0.0199	0.0100	mg/kg wet	0.02000		99.4	71.6-124			
llyl chloride	0.0203	0.00500	mg/kg wet	0.02000		101	71.6-127			
Benzene	0.0204	0.00250	mg/kg wet	0.02000		102	83.9-117			
romobenzene	0.0208	0.00250	mg/kg wet	0.02000		104	84.4-117			
Bromochloromethane	0.0209	0.00250	mg/kg wet	0.02000		104	85.7-120			
romodichloromethane	0.0193	0.00250	mg/kg wet	0.02000		96.7	82.6-117			
romoform	0.0205	0.00250	mg/kg wet	0.02000		102	78.3-117			
romomethane	0.0147	0.00250	mg/kg wet	0.02000		73.6	58.3-155			
arbon Disulfide	0.0200	0.0100	mg/kg wet	0.02000		99.8	78.1-122			
arbon Tetrachloride	0.0206	0.00250	mg/kg wet	0.02000		103	74.6-128			
hlorobenzene	0.0211	0.00250	mg/kg wet	0.02000		105	86.3-115			
hloroethane	0.0195	0.00250	mg/kg wet	0.02000		97.5	57.9-140			
Chloroform	0.0192	0.00250	mg/kg wet	0.02000		96.2	79.1-123			
Chloromethane	0.0208	0.00250	mg/kg wet	0.02000		104	66.5-130			
is-1,2-Dichloroethene	0.0203	0.00250	mg/kg wet	0.02000		101	79.6-122			
is-1,3-Dichloropropene	0.0198	0.00250	mg/kg wet	0.02000		99.0	85.2-116			

45.4

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Surrogate: 1,2-Dichloroethane-d4

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Lab Order:

15F0709

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1526079 - VOC PREP										
LCS (1526079-BS1)				Prepared &	Analyzed:	06/20/15				
Dibromochloromethane	0.0200	0.00250	mg/kg wet	0.02000		100	79.7-119			
Dibromomethane	0.0199	0.00250	mg/kg wet	0.02000		99.6	85.2-116			
Dichlorodifluoromethane	0.0226	0.00250	mg/kg wet	0.02000		113	69.1-141			
Ethylbenzene	0.0211	0.00250	mg/kg wet	0.02000		106	82.6-118			
Hexachlorobutadiene	0.0211	0.00250	mg/kg wet	0.02000		105	76.4-123			
Iodomethane	0.0196	0.00500	mg/kg wet	0.02000		98.2	66.9-137			
Isopropylbenzene	0.0210	0.00250	mg/kg wet	0.02000		105	82.1-118			
Methylene Chloride	0.0146	0.00250	mg/kg wet	0.02000		73.2	62.1-129			
Methyl tert-Butyl Ether	0.0185	0.00500	mg/kg wet	0.02000		92.4	77-124			
m,p-Xylene	0.0428	0.00500	mg/kg wet	0.04000		107	82-120			
Naphthalene	0.0204	0.00250	mg/kg wet	0.02000		102	78.9-119			
n-Butylbenzene	0.0219	0.00250	mg/kg wet	0.02000		109	80-123			
n-Propylbenzene	0.0214	0.00250	mg/kg wet	0.02000		107	81.4-120			
o-Xylene	0.0211	0.00250	mg/kg wet	0.02000		106	85.2-117			
sec-Butylbenzene	0.0210	0.00250	mg/kg wet	0.02000		105	81.7-118			
Styrene	0.0212	0.00250	mg/kg wet	0.02000		106	85.7-116			
tert_Butylbenzene	0.0209	0.00250	mg/kg wet	0.02000		104	82.2-116			
Tetrachloroethene	0.0215	0.00250	mg/kg wet	0.02000		107	79.1-126			
Toluene	0.0205	0.00250	mg/kg wet	0.02000		103	82.7-119			
trans-1,2-Dichloroethene	0.0197	0.00250	mg/kg wet	0.02000		98.4	79.3-124			
trans-1,3-Dichloropropene	0.0204	0.00250	mg/kg wet	0.02000		102	85.5-118			
Trichloroethene	0.0210	0.00250	mg/kg wet	0.02000		105	83.1-122			
Trichlorofluoromethane	0.0223	0.00250	mg/kg wet	0.02000		112	74.3-141			
Vinyl Chloride	0.0181	0.00250	mg/kg wet	0.02000		90.6	71.1-129			
Vinyl acetate	0.0200	0.00500	mg/kg wet	0.02000		100	61.7-158			
Surrogate: 4-Bromofluorobenzene	48.5		ug/L	50.00		97.0	62-129			
Surrogate: Dibromofluoromethane	46.9		ug/L	50.00		93.8	71-129			
Surrogate: Toluene-d8	49.0		ug/L	50.00		98.0	74-124			

ug/L

50.00

90.9

70-127

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Lab Order:

15F0709

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Datah	1526079	VOC	DDED
Katen	1526079	- VOIC	PKEP

Matrix Spike (1526079-MS1)	Source: 15F0709	-03	Prepared &	Analyzed:	06/20/15	
1,1,1,2-Tetrachloroethane 0.043	0.00609	mg/kg dry	0.04870	ND	88.3	48-135
1,1,1-Trichloroethane 0.04	0.00609	mg/kg dry	0.04870	ND	84.4	48.5-123
1,1,2,2-Tetrachloroethane 0.039	0.00609	mg/kg dry	0.04870	ND	81.9	42.8-135
1,1,2-Trichloroethane 0.04	0.00609	mg/kg dry	0.04870	ND	85.8	51.9-138
1,1-Dichloroethane 0.043	0.00609	mg/kg dry	0.04870	ND	89.0	61-129
1,1-Dichloroethene 0.042	0.00609	mg/kg dry	0.04870	ND	88.0	40.5-127
1,1-Dichloropropene 0.033	35 0.00609	mg/kg dry	0.04870	ND	79.1	43.6-119
1,2,3-Trichlorobenzene 0.024	17 0.00609	mg/kg dry	0.04870	ND	50.7	10-110
1,2,3-Trichloropropane 0.04	0.00609	mg/kg dry	0.04870	ND	84.7	46.3-128
1,2,4-Trichlorobenzene 0.02	73 0.00609	mg/kg dry	0.04870	ND	56.1	11.4-130
1,2,4-Trimethylbenzene 0.04	14 0.00609	mg/kg dry	0.04870	ND	84.9	23.6-153
,2-Dibromo-3-chloropropane 0.04	19 0.0122	mg/kg dry	0.04870	ND	86.0	30-146
1,2-Dibromoethane 0.044	18 0.00609	mg/kg dry	0.04870	ND	92.0	51.1-136
,2-Dichlorobenzene 0.03°	77 0.00609	mg/kg dry	0.04870	ND	77.4	30.6-137
,2-Dichloroethane 0.04		mg/kg dry	0.04870	ND	90.4	65.3-124
,2-Dichloropropane 0.04		mg/kg dry	0.04870	ND	85.2	63.6-124
1,3,5-Trimethylbenzene 0.04		mg/kg dry	0.04870	ND	85.4	30.5-140
,3-Dichlorobenzene 0.03		mg/kg dry	0.04870	ND	78.4	29.9-136
,3-Dichloropropane 0.04.		mg/kg dry	0.04870	ND	88.4	57.4-127
4-Dichlorobenzene 0.03		mg/kg dry	0.04870	ND	79.0	35.7-131
Butanone 0.079		mg/kg dry	0.09741	ND	81.8	34.7-149
Chlorotoluene 0.03		mg/kg dry	0.04870	ND	77.4	36.5-129
Hexanone 0.08		mg/kg dry	0.09741	ND	83.5	34.3-134
Chlorotoluene 0.03		mg/kg dry	0.04870	ND	76.7	32-131
Isopropyltoluene 0.03		mg/kg dry	0.04870	ND	77.9	26.8-131
Methyl-2-pentanone 0.086		mg/kg dry	0.09741	ND	89.1	49.4-137
petone 0.08		mg/kg dry	0.09741	ND	92.0	12.2-177
cetonitrile 0.03		mg/kg dry	0.04870	ND	79.2	41.1-152
crolein 0.05		mg/kg dry	0.09741	ND	53.2	10-200
crylonitrile 0.042		mg/kg dry	0.04870	ND	87.5	53.8-136
llyl chloride 0.042		mg/kg dry	0.04870	ND	87.3	45.6-131
enzene 0.04.		mg/kg dry	0.04870	ND	89.5	60.7-122
romobenzene 0.03		mg/kg dry	0.04870	ND	77.7	38-133
romochloromethane 0.04		mg/kg dry	0.04870	ND	96.4	69.8-130
romodichloromethane 0.042		mg/kg dry	0.04870	ND	86.4	53.1-131
romoform 0.03		mg/kg dry	0.04870	ND	78.5	48.5-127
romomethane 0.03:		mg/kg dry	0.04870	ND	72.4	14.9-168
arbon Disulfide 0.03		mg/kg dry	0.04870	ND	80.0	43.4-118
arbon Tetrachloride 0.04		mg/kg dry	0.04870	ND	82.2	38.6-121
Chlorobenzene 0.04		mg/kg dry	0.04870	ND	85.8	45.5-130
Chloroethane 0.04		mg/kg dry	0.04870	ND	88.9	6.47-154
Chloroform 0.04		mg/kg dry	0.04870	ND ND	86.0	62.1-128
Chloromethane 0.04		mg/kg dry	0.04870	ND ND	94.8	50.1-132
cis-1,2-Dichloroethene 0.044		mg/kg dry	0.04870	ND ND	94.8	60.5-127
cis-1,3-Dichloropropene 0.04		mg/kg dry	0.04870	ND	90.3 85.9	54.5-125
U.04	1.7 0.00009	mg/kg ury	0.048/0	ND	03.7	54.5-125

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Ratch	1526079	- VOC	DDFD
рятсп	1520079	- ٧١/١.	PREF

Matrix Spike (1526079-MS1)	Sour	ce: 15F0709-	03	Prepared &	Analyzed:	06/20/15	
Dibromochloromethane	0.0422	0.00609	mg/kg dry	0.04870	ND	86.7	53.4-133
Dibromomethane	0.0421	0.00609	mg/kg dry	0.04870	ND	86.4	64.1-127
Dichlorodifluoromethane	0.0419	0.00609	mg/kg dry	0.04870	ND	86.0	10-184
Ethylbenzene	0.0411	0.00609	mg/kg dry	0.04870	ND	84.3	40.3-129
Hexachlorobutadiene	0.0293	0.00609	mg/kg dry	0.04870	ND	60.1	4.02-123
Iodomethane	0.0432	0.0122	mg/kg dry	0.04870	ND	88.6	36.1-142
Isopropylbenzene	0.0380	0.00609	mg/kg dry	0.04870	ND	78.1	42.2-121
Methylene Chloride	0.0311	0.00609	mg/kg dry	0.04870	ND	63.9	45.8-146
Methyl tert-Butyl Ether	0.0414	0.0122	mg/kg dry	0.04870	ND	85.0	59.8-132
m,p-Xylene	0.0822	0.0122	mg/kg dry	0.09741	ND	84.4	42-130
Naphthalene	0.0296	0.00609	mg/kg dry	0.04870	ND	60.8	7.89-150
n-Butylbenzene	0.0341	0.00609	mg/kg dry	0.04870	ND	70.1	19.6-127
n-Propylbenzene	0.0363	0.00609	mg/kg dry	0.04870	ND	74.5	32.9-126
p-Xylene	0.0419	0.00609	mg/kg dry	0.04870	ND	85.9	41.7-135
ec-Butylbenzene	0.0376	0.00609	mg/kg dry	0.04870	ND	77.1	26.8-130
Styrene	0.0397	0.00609	mg/kg dry	0.04870	ND	81.4	40.5-132
ert_Butylbenzene	0.0417	0.00609	mg/kg dry	0.04870	ND	85.6	36.1-129
Tetrachloroethene	0.0390	0.00609	mg/kg dry	0.04870	ND	80.1	35.6-128
Toluene	0.0418	0.00609	mg/kg dry	0.04870	ND	85.8	49.9-125
trans-1,2-Dichloroethene	0.0422	0.00609	mg/kg dry	0.04870	ND	86.6	51.1-127
trans-1,3-Dichloropropene	0.0416	0.00609	mg/kg dry	0.04870	ND	85.5	54.9-126
Trichloroethene	0.0432	0.00609	mg/kg dry	0.04870	ND	88.7	46.6-132
Trichlorofluoromethane	0.0401	0.00609	mg/kg dry	0.04870	ND	82.3	13.7-140
/inyl Chloride	0.0357	0.00609	mg/kg dry	0.04870	ND	73.4	34.8-130
Vinyl acetate	0.0116	0.0122	mg/kg dry	0.04870	ND	23.8	10-127
Surrogate: 4-Bromofluorobenzene	46.0		ug/L	50.00		92.0	62-129
Surrogate: Dibromofluoromethane	47.4		ug/L	50.00		94.8	71-129
Surrogate: Toluene-d8	48.3		ug/L	50.00		96.5	74-124
Surrogate: 1,2-Dichloroethane-d4	46.2		ug/L	50.00		92.4	70-127

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Lab Order:

15F0709

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1526079 - VOC PREP										
Matrix Spike Dup (1526079-MSD1)	Sour	ce: 15F0709	-03	Prepared &	Analyzed:	06/20/15				
1,1,1,2-Tetrachloroethane	0.0453	0.00604	mg/kg dry	0.04835	ND	93.6	48-135	5.10	19.8	
1,1,1-Trichloroethane	0.0412	0.00604	mg/kg dry	0.04835	ND	85.2	48.5-123	0.331	22.7	
1,1,2,2-Tetrachloroethane	0.0424	0.00604	mg/kg dry	0.04835	ND	87.6	42.8-135	5.99	26.1	
1,1,2-Trichloroethane	0.0437	0.00604	mg/kg dry	0.04835	ND	90.3	51.9-138	4.38	21.2	
1,1-Dichloroethane	0.0445	0.00604	mg/kg dry	0.04835	ND	91.9	61-129	2.47	19.8	
1,1-Dichloroethene	0.0425	0.00604	mg/kg dry	0.04835	ND	87.9	40.5-127	0.900	27.5	
1,1-Dichloropropene	0.0396	0.00604	mg/kg dry	0.04835	ND	82.0	43.6-119	2.87	24.8	
1,2,3-Trichlorobenzene	0.0293	0.00604	mg/kg dry	0.04835	ND	60.5	10-110	16.9	29.9	
1,2,3-Trichloropropane	0.0433	0.00604	mg/kg dry	0.04835	ND	89.5	46.3-128	4.72	23.9	
1,2,4-Trichlorobenzene	0.0312	0.00604	mg/kg dry	0.04835	ND	64.4	11.4-130	13.1	38.3	
1,2,4-Trimethylbenzene	0.0451	0.00604	mg/kg dry	0.04835	ND	93.3	23.6-153	8.69	24.9	
1,2-Dibromo-3-chloropropane	0.0460	0.0121	mg/kg dry	0.04835	ND	95.2	30-146	9.37	25.5	
1,2-Dibromoethane	0.0469	0.00604	mg/kg dry	0.04835	ND	97.0	51.1-136	4.56	19.7	
1,2-Dichlorobenzene	0.0423	0.00604	mg/kg dry	0.04835	ND	87.4	30.6-137	11.5	24.7	
1,2-Dichloroethane	0.0453	0.00604	mg/kg dry	0.04835	ND	93.6	65.3-124	2.75	19.5	
1,2-Dichloropropane	0.0424	0.00604	mg/kg dry	0.04835	ND	87.6	63.6-124	2.05	20.3	
1,3,5-Trimethylbenzene	0.0459	0.00604	mg/kg dry	0.04835	ND	94.8	30.5-140	9.76	23.8	
1,3-Dichlorobenzene	0.0424	0.00604	mg/kg dry	0.04835	ND	87.6	29.9-136	10.4	25.2	
1,3-Dichloropropane	0.0439	0.00604	mg/kg dry	0.04835	ND	90.8	57.4-127	2.00	21	
1,4-Dichlorobenzene	0.0411	0.00604	mg/kg dry	0.04835	ND	85.0	35.7-131	6.52	24.4	
2-Butanone	0.0793	0.0242	mg/kg dry	0.09670	ND	82.0	34.7-149	0.577	22	
2-Chlorotoluene	0.0409	0.00604	mg/kg dry	0.04835	ND	84.5	36.5-129	8.04	24.2	
2-Hexanone	0.0811	0.0242	mg/kg dry	0.09670	ND	83.9	34.3-134	0.252	23.2	
4-Chlorotoluene	0.0397	0.00604	mg/kg dry	0.04835	ND	82.1	32-131	6.07	23.4	
4-Isopropyltoluene	0.0412	0.00604	mg/kg dry	0.04835	ND	85.2	26.8-131	8.28	26.4	
4-Methyl-2-pentanone	0.0861	0.0242	mg/kg dry	0.09670	ND	89.0	49.4-137	0.842	23.6	
Acetone	0.0842	0.0604	mg/kg dry	0.09670	ND	87.1	12.2-177	6.23	33.5	
Acetonitrile	0.0392	0.0483	mg/kg dry	0.04835	ND	81.0	41.1-152	1.52	37.8	
Acrolein	0.0465	0.0604	mg/kg dry	0.09670	ND	48.1	10-200	10.9	47.8	
Acrylonitrile	0.0361	0.0242	mg/kg dry	0.04835	ND	74.8	53.8-136	16.5	26.2	
Allyl chloride	0.0420	0.0121	mg/kg dry	0.04835	ND	86.8	45.6-131	1.36	30.6	
Benzene	0.0437	0.00604	mg/kg dry	0.04835	ND	90.4	60.7-122	0.215	19.7	
Bromobenzene	0.0413	0.00604	mg/kg dry	0.04835	ND	85.4	38-133	8.71	21.4	
Bromochloromethane	0.0477	0.00604	mg/kg dry	0.04835	ND	98.7	69.8-130	1.58	18.5	
Bromodichloromethane	0.0439	0.00604	mg/kg dry	0.04835	ND	90.7	53.1-131	4.12	20.5	
Bromoform	0.0437	0.00604	mg/kg dry	0.04835	ND	90.3	48.5-127	13.3	21.6	
Bromomethane	0.0344	0.00604	mg/kg dry	0.04835	ND	71.1	14.9-168	2.61	22.3	
Carbon Disulfide	0.0389	0.0242	mg/kg dry	0.04835	ND	80.4	43.4-118	0.294	33.4	
Carbon Tetrachloride	0.0405	0.00604	mg/kg dry	0.04835	ND	83.7	38.6-121	1.02	23.4	
Chlorothere	0.0441	0.00604	mg/kg dry	0.04835	ND	91.1	45.5-130	5.32	21.3	
Chloroethane	0.0447	0.00604	mg/kg dry	0.04835	ND	92.3	6.47-154	3.02	86.4	
Chloroform	0.0437	0.00604	mg/kg dry	0.04835	ND	90.4	62.1-128	4.31	19.3	
Chloromethane	0.0442	0.00604	mg/kg dry	0.04835	ND	91.4	50.1-132	4.33	24.6	
cis-1,2-Dichloroethene	0.0438	0.00604	mg/kg dry	0.04835	ND	90.6	60.5-127	0.454	19.7	
cis-1,3-Dichloropropene	0.0431	0.00604	mg/kg dry	0.04835	ND	89.0	54.5-125	2.81	21.4	

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Lab Order:

15F0709

Volatile Organic Compounds by EPA Method 8260B - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1526079 - VOC PREP

Matrix Spike Dup (1526079-MSD1)	Sour	Source: 15F0709-03			Analyzed:	06/20/15			
Dibromochloromethane	0.0460	0.00604	mg/kg dry	0.04835	ND	95.0	53.4-133	8.46	20.7
Dibromomethane	0.0436	0.00604	mg/kg dry	0.04835	ND	90.1	64.1-127	3.46	19.5
Dichlorodifluoromethane	0.0418	0.00604	mg/kg dry	0.04835	ND	86.5	10-184	0.150	68.6
Ethylbenzene	0.0430	0.00604	mg/kg dry	0.04835	ND	89.0	40.3-129	4.69	22.6
Hexachlorobutadiene	0.0330	0.00604	mg/kg dry	0.04835	ND	68.4	4.02-123	12.0	57.3
Iodomethane	0.0434	0.0121	mg/kg dry	0.04835	ND	89.8	36.1-142	0.560	25.2
Isopropylbenzene	0.0403	0.00604	mg/kg dry	0.04835	ND	83.2	42.2-121	5.65	23.9
Methylene Chloride	0.0320	0.00604	mg/kg dry	0.04835	ND	66.2	45.8-146	2.88	38.6
Methyl tert-Butyl Ether	0.0417	0.0121	mg/kg dry	0.04835	ND	86.2	59.8-132	0.672	27.1
m,p-Xylene	0.0864	0.0121	mg/kg dry	0.09670	ND	89.3	42-130	4.94	24.6
Naphthalene	0.0364	0.00604	mg/kg dry	0.04835	ND	75.3	7.89-150	20.5	30.8
n-Butylbenzene	0.0378	0.00604	mg/kg dry	0.04835	ND	78.2	19.6-127	10.2	29
n-Propylbenzene	0.0380	0.00604	mg/kg dry	0.04835	ND	78.6	32.9-126	4.62	24.9
o-Xylene	0.0434	0.00604	mg/kg dry	0.04835	ND	89.8	41.7-135	3.65	21.7
ec-Butylbenzene	0.0412	0.00604	mg/kg dry	0.04835	ND	85.2	26.8-130	9.19	26.3
Styrene	0.0417	0.00604	mg/kg dry	0.04835	ND	86.1	40.5-132	4.88	22.4
ert_Butylbenzene	0.0455	0.00604	mg/kg dry	0.04835	ND	94.1	36.1-129	8.73	24.5
Tetrachloroethene	0.0407	0.00604	mg/kg dry	0.04835	ND	84.2	35.6-128	4.20	22.8
Toluene	0.0423	0.00604	mg/kg dry	0.04835	ND	87.5	49.9-125	1.23	20.4
trans-1,2-Dichloroethene	0.0426	0.00604	mg/kg dry	0.04835	ND	88.0	51.1-127	0.873	30.8
trans-1,3-Dichloropropene	0.0431	0.00604	mg/kg dry	0.04835	ND	89.1	54.9-126	3.39	21.3
Trichloroethene	0.0435	0.00604	mg/kg dry	0.04835	ND	90.0	46.6-132	0.724	20
Trichlorofluoromethane	0.0396	0.00604	mg/kg dry	0.04835	ND	82.0	13.7-140	1.22	24.1
Vinyl Chloride	0.0346	0.00604	mg/kg dry	0.04835	ND	71.6	34.8-130	3.21	53.5
Vinyl acetate	0.0119	0.0121	mg/kg dry	0.04835	ND	24.7	10-127	2.98	49.6
Surrogate: 4-Bromofluorobenzene	45.7		ug/L	50.00		91.4	62-129		
Surrogate: Dibromofluoromethane	48.0		ug/L	50.00		95.9	71-129		
Surrogate: Toluene-d8	48.6		ug/L	50.00		97.3	74-124		
Surrogate: 1,2-Dichloroethane-d4	45.5		ug/L	50.00		91.1	70-127		

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Lab Order: 15F0709

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	Lillit	Ollits	Level	Result	70KEC	Lillits	KFD	Lillit	Notes
Batch 1526083 - VOC PREP										
Blank (1526083-BLK1)				Prepared &	Analyzed:	06/19/15				
n-Hexane	BDL	0.00250	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	49.3		ug/L	50.00		98.6	62-129			
Surrogate: Dibromofluoromethane	50.7		ug/L	50.00		101	71-129			
Surrogate: Toluene-d8	52.9		ug/L	50.00		106	74-124			
Surrogate: 1,2-Dichloroethane-d4	53.1		ug/L	50.00		106	70-127			
LCS (1526083-BS1)				Prepared &	Analyzed:	06/19/15				
n-Hexane	0.0160	0.00250	mg/kg wet	0.02000		80.2	67.2-144			
Surrogate: 4-Bromofluorobenzene	49.6		ug/L	50.00		99.2	62-129			-
Surrogate: Dibromofluoromethane	50.6		ug/L	50.00		101	71-129			
Surrogate: Toluene-d8	51.9		ug/L	50.00		104	74-124			
Surrogate: 1,2-Dichloroethane-d4	53.6		ug/L	50.00		107	70-127			
Batch 1526084 - VOC PREP										
Blank (1526084-BLK1)				Prepared &	Analyzed:	06/20/15				
n-Hexane	BDL	0.00250	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	49.1		ug/L	50.00		98.3	62-129			
Surrogate: Dibromofluoromethane	51.8		ug/L	50.00		104	71-129			
Surrogate: Toluene-d8	54.2		ug/L	50.00		108	74-124			
Surrogate: 1,2-Dichloroethane-d4	52.1		ug/L	50.00		104	70-127			
LCS (1526084-BS1)				Prepared &	Analyzed:	06/20/15				
n-Hexane	0.0237	0.00250	mg/kg wet	0.02000		119	67.2-144			
Surrogate: 4-Bromofluorobenzene	50.4		ug/L	50.00		101	62-129			
Surrogate: Dibromofluoromethane	51.7		ug/L	50.00		103	71-129			
Surrogate: Toluene-d8	51.8		ug/L	50.00		104	74-124			
Surrogate: 1,2-Dichloroethane-d4	51.4		ug/L	50.00		103	70-127			

CLIENT: Hull & Associates - Toledo Office Lab Order:

Project: COT235 Champion Spark Plug

Volatile Organic Compounds by EPA Method 8260A/B - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1525265 - VOC PREP										
Blank (1525265-BLK1)				Prepared &	Analyzed:	06/19/15				
1,1,1,2-Tetrachloroethane	BDL	0.00500	mg/kg wet							
1,1,1-Trichloroethane	BDL	0.00500	mg/kg wet							
,1,2,2-Tetrachloroethane	BDL	0.00500	mg/kg wet							
,1,2-Trichloroethane	BDL	0.00500	mg/kg wet							
,1-Dichloroethane	BDL	0.00500	mg/kg wet							
,1-Dichloroethene	BDL	0.00500	mg/kg wet							
,1-Dichloropropene	BDL	0.00500	mg/kg wet							
,2,3-Trichlorobenzene	BDL	0.00500	mg/kg wet							
,2,3-Trichloropropane	BDL	0.00500	mg/kg wet							
,2,4-Trichlorobenzene	BDL	0.00500	mg/kg wet							
,2,4-Trimethylbenzene	BDL	0.00500	mg/kg wet							
,2-Dibromo-3-chloropropane	BDL	0.0100	mg/kg wet							
,2-Dibromoethane	BDL	0.00500	mg/kg wet							
,2-Dichlorobenzene	BDL	0.00500	mg/kg wet							
,2-Dichloroethane	BDL	0.00500	mg/kg wet							
,2-Dichloropropane	BDL	0.00500	mg/kg wet							
,3,5-Trimethylbenzene	BDL	0.00500	mg/kg wet							
,3-Dichlorobenzene	BDL	0.00500	mg/kg wet							
3-Dichloropropane	BDL	0.00500	mg/kg wet							
,4-Dichlorobenzene	BDL	0.00500	mg/kg wet							
2-Dichloropropane	BDL	0.00500	mg/kg wet							
-Butanone	BDL	0.0200	mg/kg wet							
-Chlorotoluene	BDL	0.00500	mg/kg wet							
-Hexanone	BDL	0.0200	mg/kg wet							
-Chlorotoluene	BDL	0.00500	mg/kg wet							
-Isopropyltoluene	BDL	0.00500	mg/kg wet							
-Methyl-2-pentanone	BDL	0.0200	mg/kg wet							
Acetone	BDL	0.0500	mg/kg wet							
Acetonitrile	BDL	0.0400	mg/kg wet							
Acrolein	BDL	0.0500	mg/kg wet							
acrylonitrile	BDL	0.0200	mg/kg wet							
allyl chloride	BDL	0.0100	mg/kg wet							
Benzene	BDL	0.00500	mg/kg wet							
Benzene	BDL	0.00500	mg/kg wet							
Bromobenzene	BDL	0.00500	mg/kg wet							
romochloromethane	BDL	0.00500	mg/kg wet							
Bromodichloromethane	BDL	0.00500	mg/kg wet							
Fromoform	BDL	0.00500	mg/kg wet							
romomethane	BDL	0.00500	mg/kg wet							
Carbon Disulfide	BDL	0.0200	mg/kg wet							
Carbon Tetrachloride	BDL	0.00500	mg/kg wet							
Chlorobenzene	BDL	0.00500	mg/kg wet							
Chloroethane	BDL	0.00500	mg/kg wet							
Chloroform	BDL	0.00500	mg/kg wet							
Chloromethane	BDL	0.00500	mg/kg wet							

15F0709

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Lab Order: 15F0709

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Allaryte	Result	Lillit	Omts	Level	Result	70ICEC	Lillits	KI D	Liiiit	Notes
Batch 1525265 - VOC PREP										
Blank (1525265-BLK1)				Prepared &	Analyzed:	06/19/15				
cis-1,2-Dichloroethene	BDL	0.00500	mg/kg wet							
cis-1,3-Dichloropropene	BDL	0.00500	mg/kg wet							
Dibromochloromethane	BDL	0.00500	mg/kg wet							
Dibromomethane	BDL	0.00500	mg/kg wet							
Dichlorodifluoromethane	BDL	0.00500	mg/kg wet							
Ethylbenzene	BDL	0.00500	mg/kg wet							
Ethylbenzene	BDL	0.00500	mg/kg wet							
Iexachlorobutadiene	BDL	0.00500	mg/kg wet							
odomethane	BDL	0.0100	mg/kg wet							
sopropylbenzene	BDL	0.00500	mg/kg wet							
Methylene Chloride	BDL	0.00500	mg/kg wet							
Methyl tert-Butyl Ether	BDL	0.0100	mg/kg wet							
Methyl tert-Butyl Ether	BDL	0.0100	mg/kg wet							
n,p-Xylene	BDL	0.0100	mg/kg wet							
n,p-Xylene	BDL	0.0100	mg/kg wet							
Japhthalene	BDL	0.00500	mg/kg wet							
-Butylbenzene	BDL	0.00500	mg/kg wet							
-Propylbenzene	BDL	0.00500	mg/kg wet							
-Xylene	BDL	0.00500	mg/kg wet							
-Xylene	BDL	0.00500	mg/kg wet							
ec-Butylbenzene	BDL	0.00500	mg/kg wet							
styrene	BDL	0.00500	mg/kg wet							
ert_Butylbenzene	BDL	0.00500	mg/kg wet							
Cetrachloroethene	BDL	0.00500	mg/kg wet							
Coluene	BDL	0.00500	mg/kg wet							
Toluene	BDL	0.00500	mg/kg wet							
rans-1,2-Dichloroethene	BDL	0.00500	mg/kg wet							
rans-1,3-Dichloropropene	BDL	0.00500	mg/kg wet							
richloroethene	BDL	0.00500	mg/kg wet							
Crichlorofluoromethane	BDL	0.00500	mg/kg wet							
Vinyl Chloride	BDL	0.00500	mg/kg wet							
/inyl acetate	BDL	0.0100	mg/kg wet							
urrogate: 4-Bromofluorobenzene	49.0		ug/L	50.00		98.0	62-129			
Surrogate: 4-Bromofluorobenzene	49.0		ug/L	50.00		98.0	62-129			
Gurrogate: Dibromofluoromethane	44.6		ug/L	50.00		89.1	71-129			
Surrogate: Dibromofluoromethane	44.6		ug/L	50.00		89.1	71-129			
lurrogate: Toluene-d8	50.4		ug/L	50.00		101	74-124			
Surrogate: Toluene-d8	50.4		ug/L	50.00		101	74-124			
Surrogate: 1,2-Dichloroethane-d4	45.7		ug/L	50.00		91.4	70-127			
urrogate: 1,2-Dichloroethane-d4	45.7		ug/L	50.00		91.4	70-127			

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Volatile Organic Compounds by EPA Method 8260A/B - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1525265 - VOC PREP										
LCS (1525265-BS1)				Prepared &	Analyzed:	06/19/15				
1,1,1,2-Tetrachloroethane	0.0200	0.00500	mg/kg wet	0.02000	-	100	84.1-115			
1,1,1-Trichloroethane	0.0193	0.00500	mg/kg wet	0.02000		96.6	80-124			
1,1,2,2-Tetrachloroethane	0.0200	0.00500	mg/kg wet	0.02000		100	79.7-120			
1,1,2-Trichloroethane	0.0202	0.00500	mg/kg wet	0.02000		101	84.9-116			
1,1-Dichloroethane	0.0188	0.00500	mg/kg wet	0.02000		93.8	79.4-125			
1,1-Dichloroethene	0.0202	0.00500	mg/kg wet	0.02000		101	74-127			
1,1-Dichloropropene	0.0203	0.00500	mg/kg wet	0.02000		102	82.1-122			
1,2,3-Trichlorobenzene	0.0213	0.00500	mg/kg wet	0.02000		107	82.9-117			
1,2,3-Trichloropropane	0.0202	0.00500	mg/kg wet	0.02000		101	80.5-117			
1,2,4-Trichlorobenzene	0.0222	0.00500	mg/kg wet	0.02000		111	81.2-120			
1,2,4-Trimethylbenzene	0.0208	0.00500	mg/kg wet	0.02000		104	84.5-117			
1,2-Dibromo-3-chloropropane	0.0201	0.0100	mg/kg wet	0.02000		101	78.3-114			
1,2-Dibromoethane	0.0203	0.00500	mg/kg wet	0.02000		102	84.6-115			
1,2-Dichlorobenzene	0.0208	0.00500	mg/kg wet	0.02000		104	85.8-114			
1,2-Dichloroethane	0.0193	0.00500	mg/kg wet	0.02000		96.5	81.8-120			
1,2-Dichloropropane	0.0194	0.00500	mg/kg wet	0.02000		97.0	82.7-117			
1,3,5-Trimethylbenzene	0.0209	0.00500	mg/kg wet	0.02000		105	82.7-119			
1,3-Dichlorobenzene	0.0212	0.00500	mg/kg wet	0.02000		106	84.9-116			
1,3-Dichloropropane	0.0203	0.00500	mg/kg wet	0.02000		101	85-115			
1,4-Dichlorobenzene	0.0214	0.00500	mg/kg wet	0.02000		107	84.7-116			
2,2-Dichloropropane	0.0193	0.00500	mg/kg wet	0.02000		96.5	80.6-126			
2-Butanone	0.0370	0.0200	mg/kg wet	0.04000		92.5	54.1-152			
2-Chlorotoluene	0.0212	0.00500	mg/kg wet	0.02000		106	83.5-119			
2-Hexanone	0.0400	0.0200	mg/kg wet	0.04000		100	63.8-138			
4-Chlorotoluene	0.0220	0.00500	mg/kg wet	0.02000		110	84-119			
4-Isopropyltoluene	0.0212	0.00500	mg/kg wet	0.02000		106	82.1-119			
4-Methyl-2-pentanone	0.0402	0.0200	mg/kg wet	0.04000		100	77.9-124			
Acetone	0.0454	0.0500	mg/kg wet	0.04000		114	47.4-167			
Acetonitrile	0.0205	0.0400	mg/kg wet	0.02000		103	59.5-141			
Acrolein	0.0379	0.0500	mg/kg wet	0.04000		94.8	64.9-133			
Acrylonitrile	0.0204	0.0200	mg/kg wet	0.02000		102	71.6-124			
Allyl chloride	0.0195	0.0100	mg/kg wet	0.02000		97.4	71.6-127			
Benzene	0.0200	0.00500	mg/kg wet	0.02000		99.9	83.9-117			
Benzene	0.0200	0.00500	mg/kg wet	0.02000		99.9	83.9-117			
Bromobenzene	0.0211	0.00500	mg/kg wet	0.02000		106	84.4-117			
Bromochloromethane	0.0203	0.00500	mg/kg wet	0.02000		102	85.7-120			
Bromodichloromethane	0.0195	0.00500	mg/kg wet	0.02000		97.4	82.6-117			
Bromoform	0.0211	0.00500	mg/kg wet	0.02000		105	78.3-117			
Bromomethane	0.0166	0.00500	mg/kg wet	0.02000		83.2	58.3-155			
Carbon Disulfide	0.0194	0.0200	mg/kg wet	0.02000		96.8	78.1-122			
Carbon Tetrachloride	0.0206	0.00500	mg/kg wet	0.02000		103	74.6-128			
Chlorobenzene	0.0208	0.00500	mg/kg wet	0.02000		104	86.3-115			
Chloroethane	0.0194	0.00500	mg/kg wet	0.02000		96.9	57.9-140			
Chloroform	0.0181	0.00500	mg/kg wet	0.02000		90.5	79.1-123			
Chloromethane	0.0203	0.00500	mg/kg wet	0.02000		102	66.5-130			

15F0709

Lab Order:

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Lab Order: 15F0709

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Allalyte	Result	Lillit	Omis	LCVCI	Result	70KEC	Lillits	KI D	Lillit	INOICS
Batch 1525265 - VOC PREP										
LCS (1525265-BS1)				Prepared &	Analyzed:	06/19/15				
cis-1,2-Dichloroethene	0.0188	0.00500	mg/kg wet	0.02000		94.2	79.6-122			
cis-1,3-Dichloropropene	0.0201	0.00500	mg/kg wet	0.02000		101	85.2-116			
Dibromochloromethane	0.0201	0.00500	mg/kg wet	0.02000		100	79.7-119			
Dibromomethane	0.0194	0.00500	mg/kg wet	0.02000		97.0	85.2-116			
Dichlorodifluoromethane	0.0211	0.00500	mg/kg wet	0.02000		106	69.1-141			
Ethylbenzene	0.0207	0.00500	mg/kg wet	0.02000		103	82.6-118			
Ethylbenzene	0.0207	0.00500	mg/kg wet	0.02000		103	82.6-118			
Hexachlorobutadiene	0.0214	0.00500	mg/kg wet	0.02000		107	76.4-123			
odomethane	0.0200	0.0100	mg/kg wet	0.02000		99.8	66.9-137			
sopropylbenzene	0.0207	0.00500	mg/kg wet	0.02000		103	82.1-118			
Methylene Chloride	0.0150	0.00500	mg/kg wet	0.02000		75.0	62.1-129			
Methyl tert-Butyl Ether	0.0180	0.0100	mg/kg wet	0.02000		89.8	77-124			
Methyl tert-Butyl Ether	0.0180	0.0100	mg/kg wet	0.02000		89.8	77-124			
n,p-Xylene	0.0421	0.0100	mg/kg wet	0.04000		105	82-120			
n,p-Xylene	0.0421	0.0100	mg/kg wet	0.04000		105	82-120			
Japhthalene	0.0206	0.00500	mg/kg wet	0.02000		103	78.9-119			
-Butylbenzene	0.0216	0.00500	mg/kg wet	0.02000		108	80-123			
-Propylbenzene	0.0214	0.00500	mg/kg wet	0.02000		107	81.4-120			
-Xylene	0.0212	0.00500	mg/kg wet	0.02000		106	85.2-117			
-Xylene	0.0212	0.00500	mg/kg wet	0.02000		106	85.2-117			
ec-Butylbenzene	0.0206	0.00500	mg/kg wet	0.02000		103	81.7-118			
tyrene	0.0210	0.00500	mg/kg wet	0.02000		105	85.7-116			
ert Butylbenzene	0.0202	0.00500	mg/kg wet	0.02000		101	82.2-116			
etrachloroethene	0.0210	0.00500	mg/kg wet	0.02000		105	79.1-126			
oluene	0.0210	0.00500	mg/kg wet	0.02000		105	82.7-119			
Coluene	0.0210	0.00500	mg/kg wet	0.02000		105	82.7-119			
rans-1,2-Dichloroethene	0.0183	0.00500	mg/kg wet	0.02000		91.4	79.3-124			
rans-1,3-Dichloropropene	0.0206	0.00500	mg/kg wet	0.02000		103	85.5-118			
richloroethene	0.0216	0.00500	mg/kg wet	0.02000		108	83.1-122			
richlorofluoromethane	0.0208	0.00500	mg/kg wet	0.02000		104	74.3-141			
/inyl Chloride	0.0192	0.00500	mg/kg wet	0.02000		96.0	71.1-129			
Vinyl acetate	0.0194	0.0100	mg/kg wet	0.02000		97.0	61.7-158			
urrogate: 4-Bromofluorobenzene	48.9		ug/L	50.00		97.8	62-129			
Surrogate: 4-Bromofluorobenzene	48.9		ug/L	50.00		97.8	62-129			
Surrogate: Dibromofluoromethane	44.1		ug/L	50.00		88.2	71-129			
Surrogate: Dibromofluoromethane	44.1		ug/L	50.00		88.2	71-129			
Surrogate: Toluene-d8	50.2		ug/L	50.00		100	74-124			
Surrogate: Toluene-d8	50.2		ug/L	50.00		100	74-124			
Surrogate: 1,2-Dichloroethane-d4	44.7		ug/L	50.00		89.4	70-127			
Surrogate: 1,2-Dichloroethane-d4	44.7		ug/L	50.00		89.4	70-127			

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Lab Order: 15F0709

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1526079 - VOC PREP										
Blank (1526079-BLK1)				Prepared &	Analyzed:	06/20/15				
Benzene	BDL	0.00500	mg/kg wet							
Ethylbenzene	BDL	0.00500	mg/kg wet							
Methyl tert-Butyl Ether	BDL	0.0100	mg/kg wet							
m,p-Xylene	BDL	0.0100	mg/kg wet							
o-Xylene	BDL	0.00500	mg/kg wet							
Toluene	BDL	0.00500	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	48.3		ug/L	50.00		96.5	62-129			
Surrogate: Dibromofluoromethane	45.9		ug/L	50.00		91.8	71-129			
Surrogate: Toluene-d8	49.5		ug/L	50.00		99.0	74-124			
Surrogate: 1,2-Dichloroethane-d4	47.4		ug/L	50.00		94.8	70-127			
LCS (1526079-BS1)				Prepared &	Analyzed:	06/20/15				
Benzene	0.0204	0.00500	mg/kg wet	0.02000		102	83.9-117			
Ethylbenzene	0.0211	0.00500	mg/kg wet	0.02000		106	82.6-118			
Methyl tert-Butyl Ether	0.0185	0.0100	mg/kg wet	0.02000		92.4	77-124			
m,p-Xylene	0.0428	0.0100	mg/kg wet	0.04000		107	82-120			
o-Xylene	0.0211	0.00500	mg/kg wet	0.02000		106	85.2-117			
Toluene	0.0205	0.00500	mg/kg wet	0.02000		103	82.7-119			
Surrogate: 4-Bromofluorobenzene	48.5		ug/L	50.00		97.0	62-129			
Surrogate: Dibromofluoromethane	46.9		ug/L	50.00		93.8	71-129			
Surrogate: Toluene-d8	49.0		ug/L	50.00		98.0	74-124			
Surrogate: 1,2-Dichloroethane-d4	45.4		ug/L	50.00		90.9	70-127			
Matrix Spike (1526079-MS1)	Sour	ce: 15F0709	-03	Prepared &	Analyzed:	06/20/15				
Benzene	0.0436	0.0122	mg/kg dry	0.04870	ND	89.5	60.7-122			
Ethylbenzene	0.0411	0.0122	mg/kg dry	0.04870	ND	84.3	40.3-129			
Methyl tert-Butyl Ether	0.0414	0.0244	mg/kg dry	0.04870	ND	85.0	59.8-132			
m,p-Xylene	0.0822	0.0244	mg/kg dry	0.09741	ND	84.4	42-130			
o-Xylene	0.0419	0.0122	mg/kg dry	0.04870	ND	85.9	41.7-135			
Toluene	0.0418	0.0122	mg/kg dry	0.04870	ND	85.8	49.9-125			
Surrogate: 4-Bromofluorobenzene	46.0		ug/L	50.00		92.0	62-129			
Surrogate: Dibromofluoromethane	47.4		ug/L	50.00		94.8	71-129			
Surrogate: Toluene-d8	48.3		ug/L	50.00		96.5	74-124			
Surrogate: 1,2-Dichloroethane-d4	46.2		ug/L	50.00		92.4	70-127			

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Lab Order:

15F0709

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1526079 - VOC PREP										
Matrix Spike Dup (1526079-MSD1)	Sou	rce: 15F0709	-03	Prepared &	Analyzed:	06/20/15				
Benzene	0.0437	0.0121	mg/kg dry	0.04835	ND	90.4	60.7-122	0.215	19.7	
Ethylbenzene	0.0430	0.0121	mg/kg dry	0.04835	ND	89.0	40.3-129	4.69	22.6	
Methyl tert-Butyl Ether	0.0417	0.0242	mg/kg dry	0.04835	ND	86.2	59.8-132	0.672	27.1	
m,p-Xylene	0.0864	0.0242	mg/kg dry	0.09670	ND	89.3	42-130	4.94	24.6	
o-Xylene	0.0434	0.0121	mg/kg dry	0.04835	ND	89.8	41.7-135	3.65	21.7	
Toluene	0.0423	0.0121	mg/kg dry	0.04835	ND	87.5	49.9-125	1.23	20.4	
Surrogate: 4-Bromofluorobenzene	45.7		ug/L	50.00		91.4	62-129			
Surrogate: Dibromofluoromethane	48.0		ug/L	50.00		95.9	71-129			
Surrogate: Toluene-d8	48.6		ug/L	50.00		97.3	74-124			
Surrogate: 1,2-Dichloroethane-d4	45.5		ug/L	50.00		91.1	70-127			
Batch 1526083 - VOC PREP										
Blank (1526083-BLK1)				Prepared &	Analyzed:	06/19/15				
n-Hexane	BDL	0.00500	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	49.3		ug/L	50.00		98.6	62-129			
Surrogate: Dibromofluoromethane	50.7		ug/L	50.00		101	71-129			
Surrogate: Toluene-d8	52.9		ug/L	50.00		106	74-124			
Surrogate: 1,2-Dichloroethane-d4	53.1		ug/L	50.00		106	70-127			
LCS (1526083-BS1)				Prepared &	Analyzed:	06/19/15				
n-Hexane	0.0160	0.00500	mg/kg wet	0.02000		80.2	67.2-144			
Surrogate: 4-Bromofluorobenzene	49.6		ug/L	50.00		99.2	62-129			
Surrogate: Dibromofluoromethane	50.6		ug/L	50.00		101	71-129			
Surrogate: Toluene-d8	51.9		ug/L	50.00		104	74-124			
Surrogate: 1,2-Dichloroethane-d4	53.6		ug/L	50.00		107	70-127			

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0709

Project: COT235 Champion Spark Plug

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

R-06 The sample was diluted due to the presence of high levels of target analytes, resulting in elevated reporting limits.

R-01 The sample was diluted due to matrix interference, resulting in elevated reporting limits.

R RPD outside of accepted recovery limits.

C Sample Result Confirmed

BDL Analyte is below detection limits

Sample preservation was met unless otherwise noted.

Suite 200

Suite 135

Suite 300

Bedford, OH 44146

Suite 300

2nd Floor 146 W. Main St. St. Clairsville, OH

> Campbells Run Business Center Pittsburgh, PA

REPORT TO:

MATT BEIL

300 Business Center Dr., Suite 320

Toledo, OH
3401 Glendale Ave.

6397 Emerald Pkwy 8445 Keystone Crossing 4770 Duke Dr.

CHAIN OF CUSTODY RECORD

PAGE l 유

NO. 1030 Page 87 of 139

	COOLER TEMPERATURE S °C /C=	TIME:	RELINQUISHED BY: DATE:	TIME:	REMNQUISHED BY: DATE:	1 TIME: 1730	RELINOUISHED BY) DATE: 6-10-15	CUT235 : HSB 12 : \$000020	COT235 : HSB 11 :5000020	COT235 : HSB 10 : 3000020	COT235: HSB 9 :3060080	COT235 : HSB 8 : \$080100	COT235 NSB 7 SO00020	COT235 : HSB6 : \$000020	(0)7235 HSB 5 3000020	COT236 : HSB 4 : \$040060	COT235 : HSB 3 : SOH0050	(57235 HSB 2 S060080	COT235: HSB-1 :5040060	PROJECT NO.: SAMPLE LOCATION : SAMPLE MATRIX & ID		Order # Pm will Email	Samplers: J. SARSON	Project #: COT 235 Phase: OHIO		client C174 OF TOLEDO	P: (614) 793-8777 P: (800) 241-7173 P: (513) 459-9677	Dublin, OH 43016 Indianapolis, IN 46240 Mason, OH 45040 P; (440) 232-9945
•	DISTRIBUTION:	2	RECEIVED BY:		RECEIVED BY:	roex b	RECEIVED BY:	6	6	6	6	6	6	6	6	1	-	-	-	NO. OF CONT.	W-WATER X-CONCRETE	SG-SOIL GAS SS-SUBSLAB	P-PRODUCT S-SOIL	G-GROUNDWATER IA-INDOOR AIR	AA-AMBIENT AIR C-ASBESTOS D-SEDIMENT	SAMPLE MATRIX	P: (419) 385-2018	Toledo, OH 43614
PINK	YELLOW	7	3		4	W DITAC		Ω	·C	-0	0	9	-9	A	-0	-0	4	Ω	a	SAMPLE TYPE (discrete composite)		1	F-Na ₂ S ₂ O ₃ (0.008%) G-HCL pH <2	D-NaOH pH>12	A-Cool only, <4 deg. C B-HNO ₃ pH<2	2000	P: (800) 241-7173	St. Clairsville, OH 43950
-RETAINED BY HULL	-LAB USE (MUST BE RETURNED WITH REPORT) -LAB USE	TIME:	DATE: 6-11.	TIME:	DATE:	TIME: 1700	DATE: 6-10-15	6-8-15/1605	6-9-15/1625	6-8-15/510	6-8-15/1325	6-8-15/1020	6-9-15/1105	6-9-15/1210	69-15/1250	0101/5H69	6-9-15/0940	6-8-15/1100	6-8-15/1200	COLLECTION DATE/TIME	424		M-Methanol S-Sodium	K-Stored in dark	H-EDTA I-5ml 1:1 HCL J-none	PRESERVATIVES	P: (412) 446-0315	Pittsburgh, PA 15205
	D WITH REPORT	2	J,					Z	Z	7	Z	7	7	7.	7.	7	Z.	Z	Z	METALS			F5u- filtered with 5 micron	0.45 micron	N - Not filtered	METALS	PRESER	\
TURN AROUND TIME:	n) NOTES:	Required Limits:	Regulatory Program:	Airbill Number:	Method of Delivery:	Deliver To:		×	X	×	×	×	×	×	×	×	×	×	×	0	Tex	1/2		85	60	_	PRESERVATIVES	
ND TIME:			VAP OND	on File 8	FEDCX	THUE MA		X	X	×	X	×	XXX	X	X	×	×	×	×	THIP	H.	5/6/1/	20	8	82170			ANAL
STANDARD DAYS				8055 5578 7726		AURIA (1) CEV		×		X		X		X						COMMENTS	RA	M	Net	8 als	0/5			ANALYSES

2	
-	(1)
]	
Indianandir IN	
]	C
-	

	P: (614) 793-8777 P: (800) 241-7173	Dublin, OH 43016	Suite 200	6397 Emerald Pkwy	Dublin, OH				
	P: (800) 241-7173	Indianapolis, IN 46240	Suite 135	6397 Emerald Pkwy 8445 Keystone Crossing 4770 Duke Dr.	Dublin, OH Indianapolis, IN Mason, OH				
	P: (513) 459-9677	Mason, OH 45040 P: (440) 232-9945	Suite 300	4770 Duke Dr.	Mason, OH				
		P: (440) 232-9945	Bedford, OH 44146	4 Hemisphere Way	Bedford, OH				
(P: (419) 385-2016	Toledo, OH 43614	Suite 300	3401 Glendale Ave.	Toledo, OH	y			
	P: (800) 241-7173	Toledo, OH 43614 St. Clairsville, OH 43950	2nd Floor	146 W. Main St.	St. Clairsville, OH		CH/		(
	P: (412) 446-0315	Pittsburgh, PA 15205	300 Business Center Dr., Suite 320	Campbells Run Business Center	Pitts burgh, PA		CHAIN OF CUSTODY RECORD		
PRESERVATIVES / /	\			REPORT TO:			CORD		
		ANALYSES		MIN DELC	MATIR	į		P	
_	_					NO. 1032		PAGE _ OF _	S
				Pa	ge	88	of	13	9

AS RECEIVED °C	COOLER TEMPERATURE	TIME:	TIME:	RELINQUISHED BY:	TIME: 1220	RELINGUISHED BY: DATE: 6-10-15				COT235 E.BLANK WOLOGIS	COT235 TRIP	GT235 HB18 SO40060	C-723 NSB17 5080100	(0T235 HSB16 3020040	COT235 HSB 14 5040060	COT255 HSB 13 5100120	PROJECT NO.: SAMPLE LOCATION : SAMPLE MATRIX & ID		Order#	250	9	- 1 P	Client City of Toked o
	DISTRIBUTION:	NECE VED BY		RECEIVED BY:	phigun !	RECEIVED BY:	500)		0	ω	6	6	6	6	6	NO. OF CONT.	VAPOR W-WATER X-CONCRETE	SG-SOIL GAS SS-SUBSLAB	P-PRODUCT S-SOII	G-GROUNDWATER IA-INDOOR AIR	AA-AMBIENT AIR C-ASBESTOS	SAMPLE MATRIX
YELLOW	WHITE	T)		CUCX	100	& (78x			-	1	9	4	0	d	0	SAMPLE TYPE (discrete, composite)		G-HOL PHI VE	F-Na ₂ S ₂ O ₃ (0.008%) G-HCl nH C2 G-HCl nH C2	C-H ₂ SO ₄ pH<2 D-NaOH pH>12	A-Cool only, <4 deg. C B-HNO ₃ pH<2	
-LAB USE -RETAINED BY HUI.L	-LAB USE (MUST BE RETURNED WITH REPORT)	DATE: 6 -	TIME:	DATE:	TIME: 170-	DATE: 6-10-15	 (2)			6-9-15/1650	-/-	6-9-15/1555	68-15/14	6-9-15 /13:	69-15/14S	69-15/1525	COLLECTION DATE/TIME			M-Methanol S-Sodium	J-none K-Stored in dark	H-EDTA I-5ml 1:1 HCL	PRESERVATIVES
	URNED WITH REP	1115								50 2	1	SS 2	1420 N	1330 N	2	2	IME METALS			F5u- filtered with 5 micron	F45u- filtered with 0.45 micron	N - Not filtered	METALS
	ORT) NOTES:	Regulatory Program:	Airbill Number:	Method of Delivery:	Deliver To:					×	X	X	X	X	X	X	1	Cs TEX H.	In		vith		
JND TIME:		VAC	on File	Feeltx	THE IN	7				× ×		XXX	X	^ X	×	\times	Tr	21	IK	85	70/80	50	
STANDARD		OHIO	91	_	relytical	11. (X		X	X	X	×	X	RC	RA	1	Me	80 tal.		
DAYS									7	Equipment Blank	TEIP BLANK		Note DATE		- HSBIS	,	COMMENTS						

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

June 24, 2015

Jason Lykins
Pace Analytical Services, Inc.
25 Holiday Drive
Englewood, OH 45322

RE: Project: 15F0709

Pace Project No.: 50121072

Dear Jason Lykins:

Enclosed are the analytical results for sample(s) received by the laboratory on June 12, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mick Mayse

mick.mayse@pacelabs.com

Project Manager

Wich Wayse

Enclosures

cc: Ms. Alicia Barnes, Pace Englewood
Ms. Christina Schneider, Pace Englewood

Pace Analytical Services, Inc.
Not NELAP Accredited
4860 Blazer Parkway

Dublin, OH 43017 (614)486-5421 Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

CERTIFICATIONS

Project: 15F0709
Pace Project No.: 50121072

Indiana Certification IDs

7726 Moller Road, Indianapolis, IN 46268 Illinois Certification #: 200074 Indiana Certification #: C-49-06 Kansas Certification #:E-10177/ E-10247 Kentucky UST Certification #: 0042 Kentucky WW Certification #:98019 Louisiana/NELAP Certification #: 04076

Ohio VAP Certification #: CL-0065 Oklahoma Certification #: 2014-148 Pennsylvania Certification #: 68-05340 Texas Certification #: T104704355-15-8 West Virginia Certification #: 330 Wisconsin Certification #: 999788130 USDA Soil Permit #: P330-10-00128

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

SAMPLE SUMMARY

Project: 15F0709
Pace Project No.: 50121072

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50121072001	15F0709-05	Solid	06/09/15 12:50	06/12/15 16:31
50121072002	15F0709-06	Solid	06/09/15 12:10	06/12/15 16:31
50121072003	15F0709-07	Solid	06/09/15 11:05	06/12/15 16:31
50121072004	15F0709-08	Solid	06/08/15 10:20	06/12/15 16:31
50121072005	15F0709-09	Solid	06/08/15 13:25	06/12/15 16:31
50121072006	15F0709-10	Solid	06/08/15 15:10	06/12/15 16:31
50121072007	15F0709-11	Solid	06/09/15 16:25	06/12/15 16:31
50121072008	15F0709-12	Solid	06/08/15 16:05	06/12/15 16:31
50121072009	15F0709-13	Solid	06/09/15 15:25	06/12/15 16:31
50121072010	15F0709-14	Solid	06/09/15 14:45	06/12/15 16:31
50121072011	15F0709-15	Solid	06/09/15 13:30	06/12/15 16:31
50121072012	15F0709-16	Solid	06/08/15 14:20	06/12/15 16:31
50121072013	15F0709-17	Solid	06/09/15 15:55	06/12/15 16:31
50121072014	15F0709-19	Water	06/09/15 16:50	06/12/15 16:31

SAMPLE ANALYTE COUNT

Project: 15F0709
Pace Project No.: 50121072

Lab ID	Sample ID	Method	Analysts	Analytes Reported
50121072001	15F0709-05	EPA 8015 Mod Ext	KAV	4
		EPA 8270 by SIM	JCM	19
		ASTM D2974-87	PM1	1
50121072002	15F0709-06	EPA 8270 by SIM	TBP	19
		ASTM D2974-87	PM1	1
50121072003	15F0709-07	EPA 8015 Mod Ext	KAV	4
		EPA 8270 by SIM	TBP	19
		ASTM D2974-87	PM1	1
50121072004	15F0709-08	EPA 8270 by SIM	TBP	19
		ASTM D2974-87	PM1	1
50121072005	15F0709-09	EPA 8015 Mod Ext	KAV	4
		EPA 8270 by SIM	JCM	19
		ASTM D2974-87	PM1	1
50121072006	15F0709-10	EPA 8270 by SIM	JCM	19
		ASTM D2974-87	PM1	1
50121072007	15F0709-11	EPA 8015 Mod Ext	KAV	4
		EPA 8270 by SIM	JCM	19
		ASTM D2974-87	PM1	1
50121072008	15F0709-12	EPA 8270 by SIM	JCM	19
		ASTM D2974-87	PM1	1
50121072009	15F0709-13	EPA 8015 Mod Ext	KAV	4
		EPA 8270 by SIM	TBP	19
		ASTM D2974-87	PM1	1
50121072010	15F0709-14	EPA 8270 by SIM	JCM	19
		ASTM D2974-87	PM1	1
50121072011	15F0709-15	EPA 8270 by SIM	TBP	19
		ASTM D2974-87	PM1	1
50121072012	15F0709-16	EPA 8270 by SIM	TBP	19
		ASTM D2974-87	PM1	1
50121072013	15F0709-17	EPA 8015 Mod Ext	KAV	4
		EPA 8270 by SIM	JCM, TBP	19
		ASTM D2974-87	PM1	1
50121072014	15F0709-19	EPA 8015 Mod Ext	KAV	4
		EPA 8270 by SIM LVE	TBP	19

SUMMARY OF DETECTION

Project: 15F0709
Pace Project No.: 50121072

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
- Individual Control of the Control			Office		- Tilaly Zoa	Qualificit
50121072001	15F0709-05					
EPA 8270 by SIM	Fluoranthene	0.042	mg/kg	0.030	06/20/15 05:15	
EPA 8270 by SIM	Phenanthrene	0.032	mg/kg	0.030	06/20/15 05:15	
EPA 8270 by SIM	Pyrene	0.032	mg/kg	0.030	06/20/15 05:15	
ASTM D2974-87	Percent Moisture	16.6	%	0.10	06/19/15 11:52	
50121072002	15F0709-06					
ASTM D2974-87	Percent Moisture	18.1	%	0.10	06/19/15 11:52	
0121072003	15F0709-07					
EPA 8270 by SIM	Fluoranthene	0.013	mg/kg	0.0061	06/23/15 13:22	
EPA 8270 by SIM	Phenanthrene	0.0081	mg/kg	0.0061	06/23/15 13:22	
EPA 8270 by SIM	Pyrene	0.010	mg/kg	0.0061	06/23/15 13:22	
ASTM D2974-87	Percent Moisture	19.2	%	0.10	06/19/15 11:52	
0121072004	15F0709-08					
ASTM D2974-87	Percent Moisture	22.9	%	0.10	06/19/15 11:52	
0121072005	15F0709-09					
EPA 8270 by SIM	Fluorene	0.010	mg/kg	0.0062	06/20/15 06:21	
EPA 8270 by SIM	2-Methylnaphthalene	0.80	mg/kg	0.0062	06/20/15 06:21	
EPA 8270 by SIM	Naphthalene	0.29	mg/kg	0.0062	06/20/15 06:21	
EPA 8270 by SIM	Phenanthrene	0.019	mg/kg	0.0062	06/20/15 06:21	
EPA 8270 by SIM	Pyrene	0.0091	mg/kg	0.0062	06/20/15 06:21	
ASTM D2974-87	Percent Moisture	19.2	%	0.10	06/19/15 11:52	
0121072006	15F0709-10					
ASTM D2974-87	Percent Moisture	15.4	%	0.10	06/19/15 11:52	
0121072007	15F0709-11					
EPA 8270 by SIM	Benzo(a)anthracene	0.013	mg/kg	0.0062	06/20/15 06:53	
EPA 8270 by SIM	Benzo(a)pyrene	0.014	mg/kg	0.0062	06/20/15 06:53	
EPA 8270 by SIM	Benzo(b)fluoranthene	0.016	mg/kg	0.0062	06/20/15 06:53	
EPA 8270 by SIM	Benzo(g,h,i)perylene	0.012	mg/kg	0.0062		
EPA 8270 by SIM	Benzo(k)fluoranthene	0.014	mg/kg	0.0062	06/20/15 06:53	
EPA 8270 by SIM	Chrysene	0.015	mg/kg	0.0062		
EPA 8270 by SIM	Fluoranthene	0.027	mg/kg	0.0062	06/20/15 06:53	
EPA 8270 by SIM	Indeno(1,2,3-cd)pyrene	0.010	mg/kg	0.0062	06/20/15 06:53	
EPA 8270 by SIM	2-Methylnaphthalene	0.0092	mg/kg	0.0062		
EPA 8270 by SIM	Naphthalene	0.0088	mg/kg	0.0062	06/20/15 06:53	
EPA 8270 by SIM	Phenanthrene	0.018	mg/kg	0.0062		
EPA 8270 by SIM	Pyrene	0.022	mg/kg	0.0062	06/20/15 06:53	
ASTM D2974-87	Percent Moisture	19.4	%	0.10	06/19/15 11:53	
0121072008	15F0709-12					
EPA 8270 by SIM	Benzo(a)anthracene	0.021	mg/kg	0.0064	06/20/15 07:10	
EPA 8270 by SIM	Benzo(a)pyrene	0.032	mg/kg	0.0064	06/20/15 07:10	
EPA 8270 by SIM	Benzo(b)fluoranthene	0.039	mg/kg	0.0064	06/20/15 07:10	
EPA 8270 by SIM	Benzo(g,h,i)perylene	0.024	mg/kg	0.0064	06/20/15 07:10	
EPA 8270 by SIM	Benzo(k)fluoranthene	0.042	mg/kg	0.0064	06/20/15 07:10	
EPA 8270 by SIM	Chrysene	0.043	mg/kg	0.0064	06/20/15 07:10	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

SUMMARY OF DETECTION

Project: 15F0709
Pace Project No.: 50121072

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50121072008	15F0709-12					
EPA 8270 by SIM	Dibenz(a,h)anthracene	0.0088	mg/kg	0.0064	06/20/15 07:10	
EPA 8270 by SIM	Fluoranthene	0.077	mg/kg	0.0064	06/20/15 07:10	
EPA 8270 by SIM	Indeno(1,2,3-cd)pyrene	0.021	mg/kg	0.0064	06/20/15 07:10	
EPA 8270 by SIM	2-Methylnaphthalene	0.027	mg/kg	0.0064	06/20/15 07:10	
EPA 8270 by SIM	Naphthalene	0.0072	mg/kg	0.0064	06/20/15 07:10	
EPA 8270 by SIM	Phenanthrene	0.043	mg/kg	0.0064	06/20/15 07:10	
EPA 8270 by SIM	Pyrene	0.071	mg/kg	0.0064	06/20/15 07:10	
STM D2974-87	Percent Moisture	22.2	%	0.10	06/19/15 11:53	
0121072009	15F0709-13					
PA 8270 by SIM	Fluoranthene	0.0065	mg/kg	0.0063	06/23/15 15:34	
EPA 8270 by SIM	Phenanthrene	0.0072	mg/kg	0.0063	06/23/15 15:34	
STM D2974-87	Percent Moisture	21.4	%	0.10	06/19/15 12:42	
0121072010	15F0709-14					
EPA 8270 by SIM	Benzo(a)anthracene	0.016	mg/kg	0.0059	06/20/15 07:43	
EPA 8270 by SIM	Chrysene	0.075	mg/kg	0.0059	06/20/15 07:43	
EPA 8270 by SIM	Fluoranthene	0.024	mg/kg	0.0059	06/20/15 07:43	
EPA 8270 by SIM	2-Methylnaphthalene	0.014	mg/kg	0.0059	06/20/15 07:43	
EPA 8270 by SIM	Naphthalene	0.0087	mg/kg	0.0059	06/20/15 07:43	
EPA 8270 by SIM	Phenanthrene	0.016	mg/kg	0.0059	06/20/15 07:43	
EPA 8270 by SIM	Pyrene	0.031	mg/kg	0.0059	06/20/15 07:43	
ASTM D2974-87	Percent Moisture	17.0	%	0.10	06/19/15 12:42	
0121072011	15F0709-15					
EPA 8270 by SIM	Benzo(a)anthracene	0.20	mg/kg	0.055	06/22/15 12:36	
EPA 8270 by SIM	Benzo(a)pyrene	0.19	mg/kg	0.055	06/22/15 12:36	
EPA 8270 by SIM	Benzo(b)fluoranthene	0.23	mg/kg	0.055	06/22/15 12:36	
PA 8270 by SIM	Benzo(g,h,i)perylene	0.15	mg/kg	0.055	06/22/15 12:36	
EPA 8270 by SIM	Benzo(k)fluoranthene	0.24	mg/kg	0.055	06/22/15 12:36	
PA 8270 by SIM	Chrysene	0.32	mg/kg	0.055	06/22/15 12:36	
EPA 8270 by SIM	Dibenz(a,h)anthracene	0.064	mg/kg	0.055	06/22/15 12:36	
PA 8270 by SIM	Fluoranthene	0.52	mg/kg	0.055	06/22/15 12:36	
EPA 8270 by SIM	Indeno(1,2,3-cd)pyrene	0.14	mg/kg	0.055	06/22/15 12:36	
EPA 8270 by SIM	2-Methylnaphthalene	0.34	mg/kg	0.055	06/22/15 12:36	
EPA 8270 by SIM	Naphthalene	0.38	mg/kg	0.055	06/22/15 12:36	1d
EPA 8270 by SIM	Phenanthrene	0.27	mg/kg	0.055	06/22/15 12:36	
EPA 8270 by SIM	Pyrene	0.42	mg/kg	0.055	06/22/15 12:36	
ASTM D2974-87	Percent Moisture	9.3	%	0.10	06/19/15 12:42	
0121072012	15F0709-16					
ASTM D2974-87	Percent Moisture	21.1	%	0.10	06/19/15 12:42	
0121072013	15F0709-17					
EPA 8270 by SIM	Acenaphthene	0.0085	mg/kg	0.0062	06/20/15 08:20	
EPA 8270 by SIM	Fluoranthene	0.0072	mg/kg	0.0062	06/20/15 08:20	
EPA 8270 by SIM	Fluorene	0.013	mg/kg	0.0062	06/20/15 08:20	
EPA 8270 by SIM	2-Methylnaphthalene	2.9	mg/kg	0.062	06/22/15 13:26	
EPA 8270 by SIM	Naphthalene	3.4	mg/kg	0.062	06/22/15 13:26	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

SUMMARY OF DETECTION

Project: 15F0709
Pace Project No.: 50121072

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50121072013	 15F0709-17					
EPA 8270 by SIM	Phenanthrene	0.021	mg/kg	0.0062	06/20/15 08:20	
EPA 8270 by SIM	Pyrene	0.0074	mg/kg	0.0062	06/20/15 08:20	
ASTM D2974-87	Percent Moisture	20.3	%	0.10	06/19/15 12:42	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0709
Pace Project No.: 50121072

Percent Moisture

Date: 06/24/2015 08:36 AM

Sample: 15F0709-05	Lab ID: 501	21072001	Collected: 06/09/	15 12:50	Received: 06	S/12/15 16:31 N	/latrix: Solid	
Results reported on a "dry weigh	t" basis and are ad,	justed for p	ercent moisture, sa	ample s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8015 TPH Ohio Microwave	Analytical Met	hod: EPA 80	15 Mod Ext Prepara	ation Me	ethod: EPA 3546			
Total Petroleum Hydrocarbons	ND	mg/kg	24.0	1	06/15/15 13:40	06/15/15 20:08		
ГРН (C10-C20)	ND	mg/kg	12.0	1	06/15/15 13:40	06/15/15 20:08		
ГРН (C20-C34)	ND	mg/kg	12.0	1	06/15/15 13:40	06/15/15 20:08		
Surrogates								
-Pentacosane (S)	90	%.	30-153	1	06/15/15 13:40	06/15/15 20:08	629-99-2	
270 MSSV PAH by SIM	Analytical Metl	hod: EPA 82	70 by SIM Preparat	tion Met	hod: EPA 3546			
Acenaphthene	ND	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	83-32-9	
Acenaphthylene	ND	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	208-96-8	
anthracene	ND	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	120-12-7	
Benzo(a)anthracene	ND	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	56-55-3	
Benzo(a)pyrene	ND	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	50-32-8	
Benzo(b)fluoranthene	ND	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	205-99-2	
Benzo(g,h,i)perylene	ND	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	191-24-2	
Benzo(k)fluoranthene	ND	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	207-08-9	
Chrysene	ND	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	218-01-9	
Dibenz(a,h)anthracene	ND	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	53-70-3	
Fluoranthene	0.042	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	206-44-0	
Fluorene	ND	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	86-73-7	
ndeno(1,2,3-cd)pyrene	ND	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	193-39-5	
-Methylnaphthalene	ND	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	91-57-6	
Naphthalene	ND	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	91-20-3	1d
Phenanthrene	0.032	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	85-01-8	
Pyrene	0.032	mg/kg	0.030	5	06/18/15 14:20	06/20/15 05:15	129-00-0	
Surrogates		5 0						
-Fluorobiphenyl (S)	40	%.	38-110	5	06/18/15 14:20	06/20/15 05:15	321-60-8	
o-Terphenyl-d14 (S)	50	%.	32-111	5	06/18/15 14:20	06/20/15 05:15	1718-51-0	
Percent Moisture	Analytical Met	hod: ASTM	D2974-87					

0.10 1

06/19/15 11:52

16.6

Collected: 06/09/15 12:10 Received: 06/12/15 16:31

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

Matrix: Solid

06/22/15 14:45 06/23/15 13:05 1718-51-0

ANALYTICAL RESULTS

Lab ID: 50121072002

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Project: 15F0709
Pace Project No.: 50121072

Sample: 15F0709-06

p-Terphenyl-d14 (S)

Date: 06/24/2015 08:36 AM

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 ND Acenaphthene mg/kg 0.0061 06/22/15 14:45 06/23/15 13:05 83-32-9 Acenaphthylene ND mg/kg 0.0061 06/22/15 14:45 06/23/15 13:05 208-96-8 Anthracene ND mg/kg 0.0061 06/22/15 14:45 06/23/15 13:05 120-12-7 1 Benzo(a)anthracene ND mg/kg 0.0061 1 06/22/15 14:45 06/23/15 13:05 56-55-3 Benzo(a)pyrene NΠ ma/ka 0.0061 06/22/15 14:45 06/23/15 13:05 50-32-8

Delizo(a)pyrelie	ND	mg/kg	0.0001		00/22/13 14.43	00/23/13 13.03	30-32-0
Benzo(b)fluoranthene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:05	205-99-2
Benzo(g,h,i)perylene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:05	191-24-2
Benzo(k)fluoranthene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:05	207-08-9
Chrysene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:05	218-01-9
Dibenz(a,h)anthracene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:05	53-70-3
Fluoranthene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:05	206-44-0
Fluorene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:05	86-73-7
Indeno(1,2,3-cd)pyrene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:05	193-39-5
2-Methylnaphthalene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:05	91-57-6
Naphthalene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:05	91-20-3
Phenanthrene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:05	85-01-8
Pyrene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:05	129-00-0
Surrogates							
2-Fluorobiphenyl (S)	41	%.	38-110	1	06/22/15 14:45	06/23/15 13:05	321-60-8

32-111

 Percent Moisture
 Analytical Method: ASTM D2974-87

 Percent Moisture
 18.1 %
 0.10 1
 06/19/15 11:52

%.

52

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0709
Pace Project No.: 50121072

Percent Moisture

Date: 06/24/2015 08:36 AM

Sample: 15F0709-07	Lab ID: 501		Collected: 06/09/1				Matrix: Solid	
Results reported on a "dry weight	t" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8015 TPH Ohio Microwave	Analytical Meth	nod: EPA 80	15 Mod Ext Prepara	ition Me	thod: EPA 3546			
Total Petroleum Hydrocarbons	ND	mg/kg	24.4	1	06/15/15 13:40	06/15/15 19:47		
TPH (C10-C20)	ND	mg/kg	12.2	1	06/15/15 13:40	06/15/15 19:47		
ГРН (С20-С34)	ND	mg/kg	12.2	1	06/15/15 13:40	06/15/15 19:47		
Surrogates n-Pentacosane (S)	57	%.	30-153	1	06/15/15 13:40	06/15/15 19:47	629-99-2	
3270 MSSV PAH by SIM	Analytical Meth	nod: EPA 82	70 by SIM Preparat	ion Meth	nod: EPA 3546			
Acenaphthene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	83-32-9	
Acenaphthylene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	208-96-8	
Anthracene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	120-12-7	
Benzo(a)anthracene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	56-55-3	
Benzo(a)pyrene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	50-32-8	
Benzo(b)fluoranthene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	205-99-2	
Benzo(g,h,i)perylene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	191-24-2	
Benzo(k)fluoranthene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	207-08-9	
Chrysene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	218-01-9	
Dibenz(a,h)anthracene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	53-70-3	
Fluoranthene	0.013	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	206-44-0	
- Fluorene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	86-73-7	
ndeno(1,2,3-cd)pyrene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	193-39-5	
-Methylnaphthalene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	91-57-6	
Naphthalene	ND	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	91-20-3	
Phenanthrene	0.0081	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	85-01-8	
Pyrene	0.010	mg/kg	0.0061	1	06/22/15 14:45	06/23/15 13:22	129-00-0	
Surrogates								
2-Fluorobiphenyl (S)	51	%.	38-110	1		06/23/15 13:22		
-Terphenyl-d14 (S)	42	%.	32-111	1	06/22/15 14:45	06/23/15 13:22	1718-51-0	
Percent Moisture	Analytical Meth	nod: ASTM [D2974-87					

0.10 1

06/19/15 11:52

19.2

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0709
Pace Project No.: 50121072

Pyrene

Surrogates 2-Fluorobiphenyl (S)

p-Terphenyl-d14 (S)

Percent Moisture
Percent Moisture

Date: 06/24/2015 08:36 AM

Sample: 15F0709-08	Lab ID: 5012	21072004	Collected:	06/08/1	5 10:20	Received: 06	/12/15 16:31 N	//atrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	usted for per	cent moi	sture, sa	mple si	ze and any dilut	ions.		
Parameters	Results	Units	Repo	rt Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Meth	od: EPA 8270	by SIM	Preparati	on Meth	od: EPA 3546			
Acenaphthene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	83-32-9	
Acenaphthylene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	208-96-8	
Anthracene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	120-12-7	
Benzo(a)anthracene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	56-55-3	
Benzo(a)pyrene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	50-32-8	
Benzo(b)fluoranthene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	205-99-2	
Benzo(g,h,i)perylene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	191-24-2	
Benzo(k)fluoranthene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	207-08-9	
Chrysene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	218-01-9	
Dibenz(a,h)anthracene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	53-70-3	
Fluoranthene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	206-44-0	
Fluorene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	193-39-5	
2-Methylnaphthalene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	91-57-6	
Naphthalene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	91-20-3	
Phenanthrene	ND	mg/kg		0.0064	1	06/22/15 14:45	06/23/15 12:15	85-01-8	

0.0064

38-110

32-111

0.10

1

1

06/22/15 14:45 06/23/15 12:15 129-00-0

06/22/15 14:45 06/23/15 12:15 321-60-8

06/22/15 14:45 06/23/15 12:15 1718-51-0

06/19/15 11:52

ND

55

61

22.9

mg/kg

%.

%.

%

Analytical Method: ASTM D2974-87

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0709
Pace Project No.: 50121072

Percent Moisture

Date: 06/24/2015 08:36 AM

Sample: 15F0709-09 Lab ID: 50121072005 Collected: 06/08/15 13:25 Received: 06/12/15 16:31 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 8015 Mod Ext Preparation Method: EPA 3546 8015 TPH Ohio Microwave Total Petroleum Hydrocarbons ND mg/kg 24.6 1 06/15/15 13:40 06/15/15 20:16 TPH (C10-C20) ND mg/kg 12.3 1 06/15/15 13:40 06/15/15 20:16 TPH (C20-C34) ND 12.3 06/15/15 13:40 06/15/15 20:16 mg/kg Surrogates 34 %. 30-153 06/15/15 13:40 06/15/15 20:16 629-99-2 n-Pentacosane (S) 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 ND 0.0062 06/18/15 10:24 06/20/15 06:21 83-32-9 Acenaphthene mg/kg 1 ND 0.0062 06/18/15 10:24 06/20/15 06:21 208-96-8 Acenaphthylene mg/kg 1 ND 06/18/15 10:24 06/20/15 06:21 120-12-7 Anthracene mg/kg 0.0062 1 Benzo(a)anthracene ND mg/kg 0.0062 1 06/18/15 10:24 06/20/15 06:21 56-55-3 Benzo(a)pyrene ND mg/kg 0.0062 06/18/15 10:24 06/20/15 06:21 50-32-8 Benzo(b)fluoranthene ND mg/kg 0.0062 06/18/15 10:24 06/20/15 06:21 205-99-2 ND 0.0062 06/18/15 10:24 06/20/15 06:21 191-24-2 Benzo(g,h,i)perylene mg/kg 1 Benzo(k)fluoranthene ND mg/kg 0.0062 06/18/15 10:24 06/20/15 06:21 207-08-9 1 Chrysene ND mg/kg 0.0062 06/18/15 10:24 06/20/15 06:21 218-01-9 1 Dibenz(a,h)anthracene ND mg/kg 0.0062 06/18/15 10:24 06/20/15 06:21 53-70-3 1 Fluoranthene ND mg/kg 0.0062 06/18/15 10:24 06/20/15 06:21 206-44-0 1 0.010 Fluorene mg/kg 0.0062 06/18/15 10:24 06/20/15 06:21 86-73-7 1 Indeno(1,2,3-cd)pyrene ND mg/kg 0.0062 1 06/18/15 10:24 06/20/15 06:21 193-39-5 2-Methylnaphthalene 0.80 mg/kg 0.0062 1 06/18/15 10:24 06/20/15 06:21 91-57-6 Naphthalene 0.29 mg/kg 0.0062 1 06/18/15 10:24 06/20/15 06:21 91-20-3 Phenanthrene 0.019 mg/kg 0.0062 1 06/18/15 10:24 06/20/15 06:21 85-01-8 Pyrene 0.0091 mg/kg 0.0062 06/18/15 10:24 06/20/15 06:21 129-00-0 Surrogates 42 2-Fluorobiphenyl (S) %. 38-110 1 06/18/15 10:24 06/20/15 06:21 321-60-8 55 p-Terphenyl-d14 (S) %. 32-111 1 06/18/15 10:24 06/20/15 06:21 1718-51-0 Analytical Method: ASTM D2974-87 **Percent Moisture**

0.10

1

06/19/15 11:52

19.2

%

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

Sample: 15F0709-10 Lab ID: 50121072006 Collected: 06/08/15 15:10 Received: 06/12/15 16:31 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
270 MSSV PAH by SIM	Analytical Meth	nod: EPA 8270	by SIM Preparati	on Met	hod: EPA 3546			
Acenaphthene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	83-32-9	
Acenaphthylene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	208-96-8	
Anthracene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	120-12-7	
Benzo(a)anthracene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	56-55-3	
Benzo(a)pyrene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	50-32-8	
Benzo(b)fluoranthene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	205-99-2	
Benzo(g,h,i)perylene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	191-24-2	
Benzo(k)fluoranthene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	207-08-9	
Chrysene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	218-01-9	
Dibenz(a,h)anthracene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	53-70-3	
Fluoranthene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	206-44-0	
Fluorene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	86-73-7	
ndeno(1,2,3-cd)pyrene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	193-39-5	
2-Methylnaphthalene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	91-57-6	
Naphthalene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	91-20-3	
Phenanthrene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	85-01-8	
Pyrene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 06:37	129-00-0	
Surrogates								
?-Fluorobiphenyl (S)	41	%.	38-110	1	06/18/15 10:24	06/20/15 06:37	321-60-8	
-Terphenyl-d14 (S)	57	%.	32-111	1	06/18/15 10:24	06/20/15 06:37	1718-51-0	
Percent Moisture	Analytical Meth	nod: ASTM D29	974-87					
Percent Moisture	15.4	%	0.10	1		06/19/15 11:52		

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0709
Pace Project No.: 50121072

Percent Moisture

Date: 06/24/2015 08:36 AM

Sample: 15F0709-11	Lab ID: 501	21072007	Collected: 06/09/	15 16:25	Received: 06	3/12/15 16:31 N	Matrix: Solid	
Results reported on a "dry weight	" basis and are adj	iusted for p	ercent moisture, s	ample s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8015 TPH Ohio Microwave	Analytical Meth	nod: EPA 80	15 Mod Ext Prepar	ation Me	ethod: EPA 3546			
Total Petroleum Hydrocarbons	ND	mg/kg	24.7	1	06/15/15 13:40	06/15/15 20:23		
ГРН (C10-C20)	ND	mg/kg	12.4	1	06/15/15 13:40	06/15/15 20:23		
TPH (C20-C34)	ND	mg/kg	12.4	1	06/15/15 13:40	06/15/15 20:23		
Surrogates								
-Pentacosane (S)	74	%.	30-153	1	06/15/15 13:40	06/15/15 20:23	629-99-2	
3270 MSSV PAH by SIM	Analytical Meth	nod: EPA 82	70 by SIM Prepara	tion Met	hod: EPA 3546			
Acenaphthene	ND	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	83-32-9	
Acenaphthylene	ND	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	208-96-8	
Anthracene	ND	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	120-12-7	
Benzo(a)anthracene	0.013	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	56-55-3	
Benzo(a)pyrene	0.014	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	50-32-8	
Benzo(b)fluoranthene	0.016	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	205-99-2	
Benzo(g,h,i)perylene	0.012	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	191-24-2	
Benzo(k)fluoranthene	0.014	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	207-08-9	
Chrysene	0.015	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	218-01-9	
Dibenz(a,h)anthracene	ND	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	53-70-3	
Fluoranthene	0.027	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	206-44-0	
Fluorene	ND	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	86-73-7	
ndeno(1,2,3-cd)pyrene	0.010	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	193-39-5	
2-Methylnaphthalene	0.0092	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	91-57-6	
Naphthalene	0.0088	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	91-20-3	
Phenanthrene	0.018	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	85-01-8	
Pyrene	0.022	mg/kg	0.0062	1	06/18/15 10:24	06/20/15 06:53	129-00-0	
Surrogates								
2-Fluorobiphenyl (S)	37	%.	38-110	1	06/18/15 10:24	06/20/15 06:53	321-60-8	2d
o-Terphenyl-d14 (S)	52	%.	32-111	1	06/18/15 10:24	06/20/15 06:53	1718-51-0	
Percent Moisture	Analytical Meth	nod: ASTM I	D2974-87					

0.10 1

19.4

REPORT OF LABORATORY ANALYSIS

06/19/15 11:53

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

Sample: 15F0709-12 Lab ID: 50121072008 Collected: 06/08/15 16:05 Received: 06/12/15 16:31 Matrix: Solid

8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene ND mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 83-32-9 Acenaphthylene ND mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 208-96-8 Anthracene ND mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 120-12-7 Benzo(a)anthracene 0.021 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 56-55-3 Benzo(a)pyrene 0.032 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 50-32-8 Benzo(b)fluoranthene 0.039 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 205-99-2 Benzo(k)fluoranthene 0.042 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 207-08-9 Chrysene 0.043 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 218-01-9 Dibenz(a,h)anthracene <	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Acenaphthylene Acenaphthylene ND mg/kg ND Mg/kg	8270 MSSV PAH by SIM	Analytical Meth	nod: EPA 8270	0 by SIM Preparati	ion Met	thod: EPA 3546			
Anthracene ND mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 120-12-7 Benzo(a)anthracene 0.021 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 56-55-3 Benzo(a)pyrene 0.032 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 50-32-8 Benzo(b)fluoranthene 0.039 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 205-99-2 Benzo(g,h,i)perylene 0.024 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 191-24-2 Benzo(k)fluoranthene 0.042 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 191-24-2 Benzo(k)fluoranthene 0.042 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 207-08-9 Chrysene 0.043 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 207-08-9 Chrysene 0.0043 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 191-24-2 Benzo(a)mintracene 0.0088 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 191-24-2 Benzo(a)mintracene 0.0088 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 206-44-0 Fluoranthene 0.077 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 206-44-0 Fluorene ND mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 206-44-0 Fluorene ND mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 206-44-0 Fluorene 0.021 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 193-39-5 2-Methylnaphthalene 0.027 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 193-39-5 2-Methylnaphthalene 0.027 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 193-39-5 Pyrene 0.043 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 191-20-3 Pyrene 0.071 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 120-00-0 Surrogates 2-Fluorobiphenyl (S) 38 %. 38-110 1 06/18/15 10:24 06/20/15 07:10 121-00-0 Percent Moisture Analytical Method: ASTM D2974-87	Acenaphthene	ND	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	83-32-9	
Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(k)fluora	Acenaphthylene	ND	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	208-96-8	
Benzo(a)pyrene	Anthracene	ND	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	120-12-7	
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(k)f	Benzo(a)anthracene	0.021	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	56-55-3	
Benzo(g,h,i)perylene Benzo(k)fluoranthene 0.042 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 191-24-2 Benzo(k)fluoranthene 0.042 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 207-08-9 Chrysene 0.043 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 218-01-9 Dibenz(a,h)anthracene 0.0088 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 53-70-3 Fluoranthene 0.077 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 206-44-0 Fluorene ND mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 206-44-0 Indeno(1,2,3-cd)pyrene 0.021 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 193-39-5 2-Methylnaphthalene 0.027 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 193-39-5 2-Methylnaphthalene 0.0072 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 193-39-5 Phenanthrene 0.0072 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 191-20-3 Phenanthrene 0.043 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 129-00-0 Surrogates 2-Fluorobiphenyl (S) 38 %. 38-110 1 06/18/15 10:24 06/20/15 07:10 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87	Benzo(a)pyrene	0.032	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	50-32-8	
Benzo(k)fluoranthene Benzo(k)f	Benzo(b)fluoranthene	0.039	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	205-99-2	
Chrysene	Benzo(g,h,i)perylene	0.024	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	191-24-2	
Dibenz(a,h)anthracene 0.0088 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 53-70-3 Fluoranthene 0.077 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 206-44-0 Fluorene ND mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 206-44-0 Fluorene ND mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 86-73-7 ndeno(1,2,3-cd)pyrene 0.021 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 193-39-5 2-Methylnaphthalene 0.027 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 91-57-6 Naphthalene 0.0072 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 91-20-3 Phenanthrene 0.043 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 85-01-8 Pyrene 0.071 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 129-00-0	Benzo(k)fluoranthene	0.042	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	207-08-9	
Fluoranthene	Chrysene	0.043	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	218-01-9	
ND mg/kg	Dibenz(a,h)anthracene	0.0088	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	53-70-3	
ndeno(1,2,3-cd)pyrene 0.021 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 193-39-5 2-Methylnaphthalene 0.027 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 91-57-6 Naphthalene 0.0072 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 91-20-3 Phenanthrene 0.043 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 85-01-8 Pyrene 0.071 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 129-00-0 Surrogates 2-Fluorobiphenyl (S) 38 %. 38-110 1 06/18/15 10:24 06/20/15 07:10 321-60-8 2-Ferphenyl-d14 (S) 46 %. 32-111 1 06/18/15 10:24 06/20/15 07:10 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87	Fluoranthene	0.077	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	206-44-0	
2-Methylnaphthalene	Fluorene	ND	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	86-73-7	
Naphthalene 0.0072 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 91-20-3 Phenanthrene 0.043 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 85-01-8 Pyrene 0.0071 mg/kg 0.0064 1 06/18/15 10:24 06/20/15 07:10 129-00-0 Surrogates 2-Fluorobiphenyl (S) 38 %. 38-110 1 06/18/15 10:24 06/20/15 07:10 321-60-8 p-Terphenyl-d14 (S) 46 %. 32-111 1 06/18/15 10:24 06/20/15 07:10 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87	ndeno(1,2,3-cd)pyrene	0.021	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	193-39-5	
Phenanthrene	2-Methylnaphthalene	0.027	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	91-57-6	
Pyrene	Naphthalene	0.0072	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	91-20-3	
Surrogates 2-Fluorobiphenyl (S) 38 %. 38-110 1 06/18/15 10:24 06/20/15 07:10 321-60-8 D-Terphenyl-d14 (S) 46 %. 32-111 1 06/18/15 10:24 06/20/15 07:10 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87	Phenanthrene	0.043	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	85-01-8	
2-Fluorobiphenyl (S) 38 %. 38-110 1 06/18/15 10:24 06/20/15 07:10 321-60-8 o-Terphenyl-d14 (S) 46 %. 32-111 1 06/18/15 10:24 06/20/15 07:10 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87	Pyrene	0.071	mg/kg	0.0064	1	06/18/15 10:24	06/20/15 07:10	129-00-0	
p-Terphenyl-d14 (S) 46 %. 32-111 1 06/18/15 10:24 06/20/15 07:10 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87	Surrogates								
Percent Moisture Analytical Method: ASTM D2974-87	2-Fluorobiphenyl (S)	38		38-110	1	06/18/15 10:24	06/20/15 07:10	321-60-8	
•	o-Terphenyl-d14 (S)	46	%.	32-111	1	06/18/15 10:24	06/20/15 07:10	1718-51-0	
200	Percent Moisture	Analytical Meth	hod: ASTM D2	2974-87					
recent Moisture 22.2 % 0.10 1 06/19/15 11:53	Percent Moisture	22.2	%	0.10	1		06/19/15 11:53		

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0709 Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

Analytical Method: EPA 8015 Mod Ext Preparation Method: EPA 3546 Total Petroleum Hydrocarbons ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C20-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C20-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C20-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C20-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C20-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C20-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C20-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C20-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C20-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 PH (C20-C34) ND mg/kg 1 0.0063 1 06/22/15 12:32 0	Sample: 15F0709-13	Lab ID: 501	21072009	Collected: 06/09/1	5 15:25	Received: 06	3/12/15 16:31 N	fatrix: Solid	
Analytical Method: EPA 8015 Mod Ext Preparation Method: EPA 3546 Total Petroleum Hydrocarbons ND mg/kg 25.4 1 06/15/15 13:40 06/15/15 20:30 PH (C10-C20) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C20-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C20-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C20-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C30-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C30-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C30-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30 PH (C30-C34) ND mg/kg 1.0063 1 06/22/15 12:32 06/23/15 15:34 83-32-9 Recenaphthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 Renzo(a)phracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 Renzo(a)phracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 56-55-3 Renzo(a)pyrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 56-55-3 Renzo(a)phracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 50-32-8 Renzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 16:34 209-99-2 Renzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 16:34 209-99-2 Renzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 16:34 209-99-2 Renzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 16:34 201-99-2 Renzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 16:34 218-01-9 Renzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 16:34 218-01-9 Renzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 16:34 218-01-9 Renzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 16:34 218-01-9 Renzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 16:34 218-01-9 Renzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 16:34 218-01-9 Renzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 16:34 218-01-9 Renzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 16:34 218-01-9 Renzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 16:34 218-01-9 R	Results reported on a "dry weigh	t" basis and are ad	justed for pe	ercent moisture, sa	mple s	ize and any dilu	tions.		
Petroleum Hydrocarbons	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
PH (C10-C20)	8015 TPH Ohio Microwave	Analytical Met	hod: EPA 801	5 Mod Ext Prepara	ation Me	ethod: EPA 3546			
PH (C20-C34) ND mg/kg 12.7 1 06/15/15 13:40 06/15/15 20:30	Total Petroleum Hydrocarbons	ND	mg/kg	25.4	1	06/15/15 13:40	06/15/15 20:30		
## Pentagosane (S) 72	TPH (C10-C20)	ND	mg/kg	12.7	1	06/15/15 13:40	06/15/15 20:30		
Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Analytical Method: Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Analytical Method: Analytical Method: Analytical Method: EPA 3546 Analytical Method: Analytical Method: Analytical Method: Analytical Method: Analytical Method: Analytical Method: Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87	TPH (C20-C34)	ND	mg/kg	12.7	1	06/15/15 13:40	06/15/15 20:30		
Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Accenaphthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 83-32-9 Accenaphthylene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 Anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 208-96-8 Anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 56-55-3 Benzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 56-55-3 Benzo(a)pyrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 50-32-8 Benzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 205-99-2 Benzo(g)h,i)perylene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 205-99-2 Benzo(g)h,i)perylene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 205-99-2 Benzo(g)h,i)perylene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 207-08-9 Chrysene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 207-08-9 Chrysene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 218-01-9 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 218-01-9 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 218-01-9 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 218-01-9 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 218-01-9 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-37-7 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-37-7 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-37-7 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-37-7 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-37-7 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-37-7 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-37-7 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-37-7 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34	Surrogates								
ND mg/kg	n-Pentacosane (S)	72	%.	30-153	1	06/15/15 13:40	06/15/15 20:30	629-99-2	
ND mg/kg	3270 MSSV PAH by SIM	Analytical Metl	hod: EPA 827	'0 by SIM Preparat	ion Met	hod: EPA 3546			
Anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 120-12-7 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 56-55-3 denzo(a)pyrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 50-32-8 denzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 50-32-8 denzo(g)h,i)perylene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 205-99-2 denzo(g,h,i)perylene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 191-24-2 denzo(k)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 207-08-9 denzo(k)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 207-08-9 denzo(k)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 218-01-9 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-24-0 denzo(a)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-24	Acenaphthene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:34	83-32-9	
Senzo(a)anthracene	Acenaphthylene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:34	208-96-8	
Senzo(a)pyrene	Anthracene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:34	120-12-7	
Renzo(b)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 205-99-2 Renzo(g,h,i)perylene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 191-24-2 Renzo(k)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 207-08-9 Renzo(k)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 218-01-9 Renzo(k)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 218-01-9 Renzo(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 53-70-3 Reluoranthene 0.0065 mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 Reluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 86-73-7 Reluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Reluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-57-6 Reluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-57-6 Reluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-57-6 Reluoranthrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 Reluoranthrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 Reluoranthrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 Reluoranthrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 Reluoranthrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 Reluoranthrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 Reluoranthrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 Reluoranthrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 Reluoranthrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 Reluoranthrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 Reluoranthrene Reluoranthrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 Reluoranthrene Reluoranthrene Reluoranthrene Reluoranthrene Reluoranthrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 Reluoranthrene Reluoranthrene Reluoranthrene Reluoranthrene Reluoranthrene Reluoranthrene Reluoranthrene Reluoranthrene Reluoranthrene Reluoranthrene Reluoranthrene Reluoranthrene Reluoranthrene Reluoranthrene Reluoranthrene R	Benzo(a)anthracene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:34	56-55-3	
Renzo(g,h,i)perylene	Benzo(a)pyrene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:34	50-32-8	
Benzo(g,h,i)perylene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 191-24-2 Benzo(k)fluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 207-08-9 Chrysene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 218-01-9 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 218-01-9 Cluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 218-01-9 Cluoranthene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 Cluorene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 86-73-7 Indeno(1,2,3-cd)pyrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-57-6 Amblylinaphthalene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3	Benzo(b)fluoranthene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:34	205-99-2	
ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 218-01-9 Dibenz(a,h)anthracene Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 53-70-3 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 86-73-7 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12	Benzo(g,h,i)perylene	ND		0.0063	1	06/22/15 12:32	06/23/15 15:34	191-24-2	
ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 218-01-9 Dibenz(a,h)anthracene Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 53-70-3 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 206-44-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 86-73-7 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Dibenz(a,h)anthracene ND mg/kg 0.0063 1 06/22/15 12	Benzo(k)fluoranthene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:34	207-08-9	
Fluoranthene	Chrysene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:34	218-01-9	
Fluoranthene	Dibenz(a,h)anthracene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:34	53-70-3	
Fluorene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 86-73-7 ndeno(1,2,3-cd)pyrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 ndeno(1,2,3-cd)pyrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-57-6 ndeno(1,2,3-cd)pyrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 85-01-8 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 85-01-8 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 ndenothrane ND mg/kg 0.0	Fluoranthene	0.0065	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:34	206-44-0	
ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 193-39-5 15.4	Fluorene	ND		0.0063	1	06/22/15 12:32	06/23/15 15:34	86-73-7	
R-Methylnaphthalene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-57-6 Naphthalene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 Phenanthrene 0.0072 mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 85-01-8 Phenanthrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 85-01-8 Phenanthrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Surrogates P-Fluorobiphenyl (S) 49 %. 38-110 1 06/22/15 12:32 06/23/15 15:34 321-60-8 Phenanthrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87	ndeno(1,2,3-cd)pyrene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:34	193-39-5	
Naphthalene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 91-20-3 Phenanthrene 0.0072 mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 85-01-8 Pyrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Surrogates 2-Fluorobiphenyl (S) 49 %. 38-110 1 06/22/15 12:32 06/23/15 15:34 321-60-8 9-Terphenyl-d14 (S) 46 %. 32-111 1 06/22/15 12:32 06/23/15 15:34 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87	7. 7	ND	0 0	0.0063	1	06/22/15 12:32	06/23/15 15:34	91-57-6	
Phenanthrene		ND	0 0	0.0063	1	06/22/15 12:32	06/23/15 15:34	91-20-3	
Pyrene ND mg/kg 0.0063 1 06/22/15 12:32 06/23/15 15:34 129-00-0 Surrogates P-Fluorobiphenyl (S) 49 %. 38-110 1 06/22/15 12:32 06/23/15 15:34 321-60-8 D-Terphenyl-d14 (S) 46 %. 32-111 1 06/22/15 12:32 06/23/15 15:34 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87	Phenanthrene		0 0						
Surrogates 38-110 1 06/22/15 12:32 06/23/15 15:34 321-60-8 2-Fluorobiphenyl (S) 49 %. 38-110 1 06/22/15 12:32 06/23/15 15:34 321-60-8 32-111 1 06/22/15 12:32 06/23/15 15:34 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87	Pyrene		0 0						
2-Fluorobiphenyl (S) 49 %. 38-110 1 06/22/15 12:32 06/23/15 15:34 321-60-8 o-Terphenyl-d14 (S) 46 %. 32-111 1 06/22/15 12:32 06/23/15 15:34 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87	Surrogates		3- 3						
Percent Moisture Analytical Method: ASTM D2974-87		49	%.	38-110	1	06/22/15 12:32	06/23/15 15:34	321-60-8	
	o-Terphenyl-d14 (S)	46	%.	32-111	1	06/22/15 12:32	06/23/15 15:34	1718-51-0	
Percent Moisture 21.4 % 0.10 1 06/19/15 12:42	Percent Moisture	Analytical Met	hod: ASTM D	2974-87					
	Percent Moisture	21.4	%	0.10	1		06/19/15 12:42		

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

Sample: 15F0709-14 Lab ID: 50121072010 Collected: 06/09/15 14:45 Received: 06/12/15 16:31 Matrix: Solid

Acenaphthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 83-32-9 Acenaphthylene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 208-96-8 Anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 120-12-7 Benzo(a)anthracene 0.016 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 56-55-3 Benzo(a)pyrene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 50-32-8 Benzo(b)fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 50-32-8 Benzo(g),h)perylene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 205-99-2 Benzo(g),h)perylene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 207-08-9 Chrysene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 207-08-9 Chrysene 0.075 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 218-01-9 Dibenz(a,h)anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 207-08-9 Fluoranthene 0.024 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 0	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua	
Acenaphthylene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 208-96-8 Anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 120-12-7 Benzo(a)anthracene 0.016 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 56-55-3 Benzo(a)pyrene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 56-55-3 Benzo(b)fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 56-55-3 Benzo(b)fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 50-92-2 Benzo(b)fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 205-99-2 Benzo(k)fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 207-08-9 Chrysene 0.075 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 207-08-9 Chrysene 0.075 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-49-19 Chrysene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15	8270 MSSV PAH by SIM	Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546								
Anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 120-12-7 denzo(a)anthracene 0.016 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 56-55-3 denzo(a)pyrene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 56-55-3 denzo(b)fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 50-32-8 denzo(b)fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 205-99-2 denzo(b)fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 205-99-2 denzo(b)fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 207-08-9 denzo(k)fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 218-01-9 denzo(a)anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 218-01-9 denzo(a)anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 218-01-9 denzo(a)anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 denzo(a)anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 denzo(a)anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 denzo(a)anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 193-39-5 denzo(a)anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 193-39-5 denzo(a)anthracene 0.014 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 193-39-5 denzo(a)anthracene 0.014 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 193-39-5 denzo(a)anthracene 0.016 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 193-39-5 denzo(a)anthracene 0.016 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 129-00-0 denzo denz	Acenaphthene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	83-32-9		
Senzo(a) anthracene	Acenaphthylene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	208-96-8		
Benzo(a)pyrene	Anthracene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	120-12-7		
Benzo(b)fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 205-99-2 Benzo(g,h,i)perylene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 191-24-2 Benzo(k)fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 207-08-9 Chrysene 0.075 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 207-08-9 Chrysene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 218-01-9 Dibenz(a,h)anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 218-01-9 Dibenz(a,h)anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 193-39-5 C-Methylnaphthalene 0.014 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-57-6 Naphthalene 0.0087 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-57-6 Naphthalene 0.016 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 85-01-8 C-Yerene 0.031 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 129-00-0 Surrogates C-Fluorobiphenyl (S) 40 %. 38-110 1 06/18/15 10:24 06/20/15 07:43 321-60-8 D-Terphenyl-d14 (S) Analytical Method: ASTM D2974-87	Benzo(a)anthracene	0.016	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	56-55-3		
Benzo(g,h,i)perylene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 191-24-2 Benzo(k)fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 207-08-9 Chrysene 0.075 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 218-01-9 Dibenz(a,h)anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 53-70-3 Fluoranthene 0.024 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 86-73-7 Indenot(1,2,3-cd)pyrene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 193-39-5 2-Methylnaphthalene 0.014 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-57	Benzo(a)pyrene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	50-32-8		
Benzo(k)fluoranthene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 207-08-9 Chrysene 0.075 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 218-01-9 Dibenz(a,h)anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 53-70-3 Fluoranthene 0.024 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 53-70-3 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 86-73-7 Indeno(1,2,3-cd)pyrene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 193-39-5 Plenanthracene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-57-6 Naphthalene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-20-3 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-20-3 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-20-3 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-20-3 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-20-3 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-20-3 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-20-3 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-20-3 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-20-3 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-20-3 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-20-3 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-50-8 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-50-8 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-50-8 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-50-8 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-50-8 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-50-8 Plenanthrene Noundary mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-50-8 Plenanthrene Nou	Benzo(b)fluoranthene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	205-99-2		
Chrysene 0.075 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 218-01-9 Dibenz(a,h)anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 53-70-3 Fluoranthene 0.024 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 86-73-7 Indeno(1,2,3-cd)pyrene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 193-39-5 2-Methylnaphthalene 0.014 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-57-6 Naphthalene 0.0087 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-20-3 Phenanthrene 0.031 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 129-00-0	Benzo(g,h,i)perylene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	191-24-2		
Dibenz(a,h)anthracene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 53-70-3 Fluoranthene 0.024 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 206-44-0 Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 86-73-7 Indeno(1,2,3-cd)pyrene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 193-39-5 P-Methylnaphthalene 0.014 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-57-6 INDENTIFY OF THE PROPERTY	Benzo(k)fluoranthene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	207-08-9		
Fluoranthene O.024 mg/kg O.0059 1 O6/18/15 10:24 O6/20/15 07:43 206-44-0 Fluorene ND mg/kg O.0059 1 O6/18/15 10:24 O6/20/15 07:43 O	Chrysene	0.075	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	218-01-9		
Fluorene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 86-73-7 ndeno(1,2,3-cd)pyrene ND mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 193-39-5 2-Methylnaphthalene 0.014 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-57-6 Naphthalene 0.0087 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-20-3 Phenanthrene 0.016 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 85-01-8 Pyrene 0.031 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 85-01-8 Pyrene 0.031 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 129-00-0 Surrogates 2-Fluorobiphenyl (S) 40 %. 38-110 1 06/18/15 10:24 06/20/15 07:43 321-60-8 0-Terphenyl-d14 (S) 53 %. 32-111 1 06/18/15 10:24 06/20/15 07:43 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87	Dibenz(a,h)anthracene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	53-70-3		
ND mg/kg	Fluoranthene	0.024	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	206-44-0		
2-Methylnaphthalene	Fluorene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	86-73-7		
Naphthalene 0.0087 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 91-20-3 Phenanthrene 0.016 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 85-01-8 Pyrene 0.031 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 129-00-0 Surrogates 2-Fluorobiphenyl (S) 40 %. 38-110 1 06/18/15 10:24 06/20/15 07:43 321-60-8 2-Terphenyl-d14 (S) 53 %. 32-111 1 06/18/15 10:24 06/20/15 07:43 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87	ndeno(1,2,3-cd)pyrene	ND	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	193-39-5		
Phenanthrene	2-Methylnaphthalene	0.014	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	91-57-6		
Pyrene 0.031 mg/kg 0.0059 1 06/18/15 10:24 06/20/15 07:43 129-00-0 Surrogates 2-Fluorobiphenyl (S) 40 %. 38-110 1 06/18/15 10:24 06/20/15 07:43 321-60-8 b-Terphenyl-d14 (S) 53 %. 32-111 1 06/18/15 10:24 06/20/15 07:43 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87	Naphthalene	0.0087	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	91-20-3		
Surrogates 2-Fluorobiphenyl (S) 40 %. 38-110 1 06/18/15 10:24 06/20/15 07:43 321-60-8 b-Terphenyl-d14 (S) 53 %. 32-111 1 06/18/15 10:24 06/20/15 07:43 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87	Phenanthrene	0.016	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	85-01-8		
2-Fluorobiphenyl (S) 40 %. 38-110 1 06/18/15 10:24 06/20/15 07:43 321-60-8 o-Terphenyl-d14 (S) 53 %. 32-111 1 06/18/15 10:24 06/20/15 07:43 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87	Pyrene	0.031	mg/kg	0.0059	1	06/18/15 10:24	06/20/15 07:43	129-00-0		
o-Terphenyl-d14 (S) 53 %. 32-111 1 06/18/15 10:24 06/20/15 07:43 1718-51-0 Percent Moisture Analytical Method: ASTM D2974-87	Surrogates									
Percent Moisture Analytical Method: ASTM D2974-87	2-Fluorobiphenyl (S)				1					
·	o-Terphenyl-d14 (S)	53	%.	32-111	1	06/18/15 10:24	06/20/15 07:43	1718-51-0		
Percent Moisture 17.0 % 0.10 1 06/19/15 12:42	Percent Moisture	Analytical Met	hod: ASTM D2	2974-87						
	Percent Moisture	17.0	%	0.10	1		06/19/15 12:42			

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0709 Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

Sample: 15F0709-15 Lab ID: 50121072011 Collected: 06/09/15 13:30 Received: 06/12/15 16:31 Matrix: Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
270 MSSV PAH by SIM	Analytical Metl	nod: EPA 8270	by SIM Preparati	on Met	hod: EPA 3546			
Acenaphthene	ND	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	83-32-9	
Acenaphthylene	ND	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	208-96-8	
Anthracene	ND	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	120-12-7	
Benzo(a)anthracene	0.20	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	56-55-3	
Benzo(a)pyrene	0.19	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	50-32-8	
Benzo(b)fluoranthene	0.23	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	205-99-2	
Benzo(g,h,i)perylene	0.15	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	191-24-2	
Benzo(k)fluoranthene	0.24	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	207-08-9	
Chrysene	0.32	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	218-01-9	
Dibenz(a,h)anthracene	0.064	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	53-70-3	
luoranthene	0.52	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	206-44-0	
luorene	ND	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	86-73-7	
ndeno(1,2,3-cd)pyrene	0.14	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	193-39-5	
2-Methylnaphthalene	0.34	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	91-57-6	
laphthalene	0.38	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	91-20-3	1d
Phenanthrene	0.27	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	85-01-8	
Pyrene	0.42	mg/kg	0.055	10	06/18/15 10:24	06/22/15 12:36	129-00-0	
Surrogates								
-Fluorobiphenyl (S)	57	%.	38-110	10	06/18/15 10:24	06/22/15 12:36	321-60-8	
-Terphenyl-d14 (S)	78	%.	32-111	10	06/18/15 10:24	06/22/15 12:36	1718-51-0	
ercent Moisture	Analytical Meth	nod: ASTM D2	974-87					
Percent Moisture	9.3	%	0.10	1		06/19/15 12:42		

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0709 Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

Sample: 15F0709-16 Lab	ID: 50121072012 Collec	ed: 06/08/15 14:20	Received:	06/12/15 16:31	Matrix: Solid
------------------------	------------------------	--------------------	-----------	----------------	---------------

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV PAH by SIM	Analytical Metl	nod: EPA 8270	by SIM Preparati	on Met	hod: EPA 3546			
Acenaphthene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	83-32-9	
Acenaphthylene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	208-96-8	
Anthracene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	120-12-7	
Benzo(a)anthracene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	56-55-3	
Benzo(a)pyrene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	50-32-8	
Benzo(b)fluoranthene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	205-99-2	
Benzo(g,h,i)perylene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	191-24-2	
Benzo(k)fluoranthene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	207-08-9	
Chrysene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	218-01-9	
Dibenz(a,h)anthracene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	53-70-3	
- Fluoranthene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	206-44-0	
Fluorene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	86-73-7	
ndeno(1,2,3-cd)pyrene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	193-39-5	
2-Methylnaphthalene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	91-57-6	
Naphthalene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	91-20-3	
Phenanthrene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	85-01-8	
Pyrene	ND	mg/kg	0.0063	1	06/22/15 12:32	06/23/15 15:51	129-00-0	
Surrogates								
2-Fluorobiphenyl (S)	46	%.	38-110	1	06/22/15 12:32	06/23/15 15:51	321-60-8	
-Terphenyl-d14 (S)	46	%.	32-111	1	06/22/15 12:32	06/23/15 15:51	1718-51-0	
Percent Moisture	Analytical Meth	nod: ASTM D2	2974-87					
Percent Moisture	21.1	%	0.10	1		06/19/15 12:42		

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0709
Pace Project No.: 50121072

Percent Moisture

Date: 06/24/2015 08:36 AM

Sample: 15F0709-17	Lab ID: 501	21072013	Collected: 06/09/1	5 15:55	Received: 06	3/12/15 16:31 N	latrix: Solid	
Results reported on a "dry weight	t" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8015 TPH Ohio Microwave	Analytical Metl	nod: EPA 80	15 Mod Ext Prepara	ition Me	ethod: EPA 3546			
Total Petroleum Hydrocarbons	ND	mg/kg	25.0	1	06/15/15 13:40	06/15/15 20:37		
TPH (C10-C20)	ND	mg/kg	12.5	1	06/15/15 13:40	06/15/15 20:37		
TPH (C20-C34) Surrogates	ND	mg/kg	12.5	1	06/15/15 13:40	06/15/15 20:37		
n-Pentacosane (S)	77	%.	30-153	1	06/15/15 13:40	06/15/15 20:37	629-99-2	
3270 MSSV PAH by SIM	Analytical Meth	nod: EPA 82	70 by SIM Preparati	ion Met	hod: EPA 3546			
Acenaphthene	0.0085	mg/kg	0.0062	1	06/19/15 10:33	06/20/15 08:20	83-32-9	
Acenaphthylene	ND	mg/kg	0.0062	1	06/19/15 10:33	06/20/15 08:20	208-96-8	
Anthracene	ND	mg/kg	0.0062	1	06/19/15 10:33	06/20/15 08:20	120-12-7	
Benzo(a)anthracene	ND	mg/kg	0.0062	1	06/19/15 10:33	06/20/15 08:20	56-55-3	
Benzo(a)pyrene	ND	mg/kg	0.0062	1	06/19/15 10:33	06/20/15 08:20	50-32-8	
Benzo(b)fluoranthene	ND	mg/kg	0.0062	1	06/19/15 10:33	06/20/15 08:20	205-99-2	
Benzo(g,h,i)perylene	ND	mg/kg	0.0062	1	06/19/15 10:33	06/20/15 08:20	191-24-2	
Benzo(k)fluoranthene	ND	mg/kg	0.0062	1	06/19/15 10:33	06/20/15 08:20	207-08-9	
Chrysene	ND	mg/kg	0.0062	1	06/19/15 10:33	06/20/15 08:20	218-01-9	
Dibenz(a,h)anthracene	ND	mg/kg	0.0062	1	06/19/15 10:33	06/20/15 08:20	53-70-3	
Fluoranthene	0.0072	mg/kg	0.0062	1	06/19/15 10:33	06/20/15 08:20	206-44-0	
Fluorene	0.013	mg/kg	0.0062	1	06/19/15 10:33	06/20/15 08:20	86-73-7	
ndeno(1,2,3-cd)pyrene	ND	mg/kg	0.0062	1	06/19/15 10:33	06/20/15 08:20	193-39-5	
2-Methylnaphthalene	2.9	mg/kg	0.062	10	06/19/15 10:33	06/22/15 13:26	91-57-6	
Naphthalene	3.4	mg/kg	0.062	10	06/19/15 10:33	06/22/15 13:26	91-20-3	
Phenanthrene	0.021	mg/kg	0.0062	1	06/19/15 10:33	06/20/15 08:20	85-01-8	
Pyrene	0.0074	mg/kg	0.0062	1	06/19/15 10:33	06/20/15 08:20	129-00-0	
Surrogates								
2-Fluorobiphenyl (S)	49	%.	38-110	1		06/20/15 08:20		
-Terphenyl-d14 (S)	37	%.	32-111	1	06/19/15 10:33	06/20/15 08:20	1718-51-0	
Percent Moisture	Analytical Metl	nod: ASTM I	D2974-87					

0.10 1

20.3

REPORT OF LABORATORY ANALYSIS

06/19/15 12:42

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

Sample: 15F0709-19	Lab ID: 501	21072014	Collected: 06/09/1	15 16:50	Received: 06	6/12/15 16:31 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 TPH Ohio	Analytical Meth	nod: EPA 80	015 Mod Ext Prepara	ation Me	thod: EPA 3510			
Total Petroleum Hydrocarbons	ND	mg/L	0.80	1	06/15/15 10:24	06/15/15 22:12		
TPH (C10-C20)	ND	mg/L	0.40	1	06/15/15 10:24	06/15/15 22:12		
TPH (C20-C34)	ND	mg/L	0.40	1	06/15/15 10:24	06/15/15 22:12		
Surrogates		-						
n-Pentacosane (S)	62	%.	20-109	1	06/15/15 10:24	06/15/15 22:12	629-99-2	
8270 MSSV PAHLV	Analytical Meth	nod: EPA 82	270 by SIM LVE Prep	oaration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	06/15/15 14:15	06/16/15 12:13	83-32-9	
Acenaphthylene	ND	ug/L	1.0	1	06/15/15 14:15	06/16/15 12:13	208-96-8	
Anthracene	ND	ug/L	0.10	1	06/15/15 14:15	06/16/15 12:13	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	1	06/15/15 14:15	06/16/15 12:13	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	1	06/15/15 14:15	06/16/15 12:13	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	1	06/15/15 14:15	06/16/15 12:13	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	06/15/15 14:15	06/16/15 12:13	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	0.10	1	06/15/15 14:15	06/16/15 12:13	207-08-9	
Chrysene	ND	ug/L	0.50	1	06/15/15 14:15	06/16/15 12:13	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	06/15/15 14:15	06/16/15 12:13	53-70-3	
Fluoranthene	ND	ug/L	1.0	1	06/15/15 14:15	06/16/15 12:13	206-44-0	
Fluorene	ND	ug/L	1.0	1	06/15/15 14:15	06/16/15 12:13	86-73-7	
ndeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	06/15/15 14:15	06/16/15 12:13	193-39-5	
2-Methylnaphthalene	ND	ug/L	1.0	1	06/15/15 14:15	06/16/15 12:13	91-57-6	
Naphthalene	ND	ug/L	1.0	1	06/15/15 14:15	06/16/15 12:13	91-20-3	
Phenanthrene	ND	ug/L	1.0	1	06/15/15 14:15	06/16/15 12:13	85-01-8	
Pyrene	ND	ug/L	1.0	1	06/15/15 14:15	06/16/15 12:13	129-00-0	
Surrogates		J						
2-Fluorobiphenyl (S)	55	%.	21-114	1	06/15/15 14:15	06/16/15 12:13	321-60-8	
p-Terphenyl-d14 (S)	52	%.	25-131	1	06/15/15 14:15	06/16/15 12:13	1718-51-0	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

QC Batch: OEXT/39677 Analysis Method: EPA 8015 Mod Ext
QC Batch Method: EPA 3546 Analysis Description: EPA 8015 TPH Ohio

Associated Lab Samples: 50121072001, 50121072003, 50121072005, 50121072007, 50121072009, 50121072013

METHOD BLANK: 1317906 Matrix: Solid

Associated Lab Samples: 50121072001, 50121072003, 50121072005, 50121072007, 50121072009, 50121072013

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Total Petroleum Hydrocarbons	mg/kg	ND	19.9	06/15/15 18:41	
TPH (C10-C20)	mg/kg	ND	10	06/15/15 18:41	
TPH (C20-C34)	mg/kg	ND	10	06/15/15 18:41	
n-Pentacosane (S)	%.	82	30-153	06/15/15 18:41	

LABORATORY CONTROL SAMPLE:	1317907					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Total Petroleum Hydrocarbons	mg/kg	82.8	75.5	91	43-88	3 L3
n-Pentacosane (S)	%.			86	30-153	3

MATRIX SPIKE & MATRIX SP	PIKE DUPLICA	TE: 13179	08		1317909							
			MS	MSD								
	50	121090001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Total Petroleum Hydrocarbons	mg/kg	ND	222	223	216	161	93	68	10-136	29	20	R1
n-Pentacosane (S)	%.						97	67	30-153			

61

20-109

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

n-Pentacosane (S)

Date: 06/24/2015 08:36 AM

QC Batch: OEXT/39682 Analysis Method: EPA 8015 Mod Ext
QC Batch Method: EPA 3510 Analysis Description: EPA 8015 TPH Ohio

%.

Associated Lab Samples: 50121072014

METHOD BLANK: 1317950 Matrix: Water

Associated Lab Samples: 50121072014

Down store	l laita	Blank	Reporting	A I I	O !: !:
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Total Petroleum Hydrocarbons	mg/L	ND	0.80	06/15/15 21:57	
TPH (C10-C20)	mg/L	ND	0.40	06/15/15 21:57	
TPH (C20-C34)	mg/L	ND	0.40	06/15/15 21:57	
n-Pentacosane (S)	%.	49	20-109	06/15/15 21:57	

LABORATORY CONTROL SAMPLE: 1317951 LCS LCS Spike % Rec Parameter Conc. Result % Rec Limits Qualifiers Units Total Petroleum Hydrocarbons mg/L 2.5 2.1 86 39-100

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

QC Batch: OEXT/39685 Analysis Method: EPA 8270 by SIM LVE

QC Batch Method: EPA 3510 Analysis Description: 8270 Water PAH LV by SIM MSSV

Associated Lab Samples: 50121072014

METHOD BLANK: 1318085 Matrix: Water

Associated Lab Samples: 50121072014

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
2-Methylnaphthalene	ug/L	ND	1.0	06/16/15 09:46	
Acenaphthene	ug/L	ND	1.0	06/16/15 09:46	
Acenaphthylene	ug/L	ND	1.0	06/16/15 09:46	
Anthracene	ug/L	ND	0.10	06/16/15 09:46	
Benzo(a)anthracene	ug/L	ND	0.10	06/16/15 09:46	
Benzo(a)pyrene	ug/L	ND	0.10	06/16/15 09:46	
Benzo(b)fluoranthene	ug/L	ND	0.10	06/16/15 09:46	
Benzo(g,h,i)perylene	ug/L	ND	0.10	06/16/15 09:46	
Benzo(k)fluoranthene	ug/L	ND	0.10	06/16/15 09:46	
Chrysene	ug/L	ND	0.50	06/16/15 09:46	
Dibenz(a,h)anthracene	ug/L	ND	0.10	06/16/15 09:46	
Fluoranthene	ug/L	ND	1.0	06/16/15 09:46	
Fluorene	ug/L	ND	1.0	06/16/15 09:46	
Indeno(1,2,3-cd)pyrene	ug/L	ND	0.10	06/16/15 09:46	
Naphthalene	ug/L	ND	1.0	06/16/15 09:46	
Phenanthrene	ug/L	ND	1.0	06/16/15 09:46	
Pyrene	ug/L	ND	1.0	06/16/15 09:46	
2-Fluorobiphenyl (S)	%.	60	21-114	06/16/15 09:46	
p-Terphenyl-d14 (S)	%.	73	25-131	06/16/15 09:46	

LABORATORY CONTROL SAMPLE:	1318086					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Methylnaphthalene	ug/L		5.5	55	29-110	
Acenaphthene	ug/L	10	6.5	65	39-117	
Acenaphthylene	ug/L	10	6.8	68	40-120	
Anthracene	ug/L	10	7.0	70	48-126	
Benzo(a)anthracene	ug/L	10	7.7	77	51-134	
Benzo(a)pyrene	ug/L	10	6.0	60	48-141	
Benzo(b)fluoranthene	ug/L	10	6.7	67	49-139	
Benzo(g,h,i)perylene	ug/L	10	4.5	45	44-134	
Benzo(k)fluoranthene	ug/L	10	6.4	64	48-140	
Chrysene	ug/L	10	6.9	69	53-136	
Dibenz(a,h)anthracene	ug/L	10	4.4	44	44-132	
Fluoranthene	ug/L	10	8.9	89	50-135	
Fluorene	ug/L	10	7.1	71	44-124	
Indeno(1,2,3-cd)pyrene	ug/L	10	4.6	46	45-132	
Naphthalene	ug/L	10	5.9	59	30-112	
Phenanthrene	ug/L	10	8.4	84	47-128	
Pyrene	ug/L	10	9.1	91	50-134	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

LABORATORY CONTROL SAMPLE: 1318086

Spike	LCS	LCS	% Rec
Conc.	Result	% Rec	Limits

Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Fluorobiphenyl (S)	%.			63	21-114	
p-Terphenyl-d14 (S)	%.			74	25-131	

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	TE: 13180	87		1318088							
			MS	MSD								
	5	0120787009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
2-Methylnaphthalene	ug/L	ND	10	10	4.9	4.6	49	46	16-116	7	20	
Acenaphthene	ug/L	ND	10	10	5.7	5.2	57	52	28-116	10	20	
Acenaphthylene	ug/L	ND	10	10	5.8	5.4	58	54	34-115	9	20	
Anthracene	ug/L	ND	10	10	6.0	5.6	60	56	39-121	7	20	
Benzo(a)anthracene	ug/L	ND	10	10	5.9	5.7	59	57	31-127	3	20	
Benzo(a)pyrene	ug/L	ND	10	10	3.6	3.8	36	38	10-121	7	20	
Benzo(b)fluoranthene	ug/L	ND	10	10	4.2	3.8	42	38	10-119	9	20	
Benzo(g,h,i)perylene	ug/L	ND	10	10	2.6	2.9	26	29	10-108	14	20	
Benzo(k)fluoranthene	ug/L	ND	10	10	3.8	4.4	38	44	10-118	14	20	
Chrysene	ug/L	ND	10	10	5.8	5.6	58	56	32-127	5	20	
Dibenz(a,h)anthracene	ug/L	ND	10	10	2.6	3.0	26	30	10-104	15	20	
Fluoranthene	ug/L	ND	10	10	7.6	6.9	76	69	38-131	10	20	
Fluorene	ug/L	ND	10	10	6.3	5.6	63	56	33-121	10	20	
Indeno(1,2,3-cd)pyrene	ug/L	ND	10	10	2.7	3.0	27	30	10-108	10	20	
Naphthalene	ug/L	ND	10	10	5.2	4.9	52	49	16-119	6	20	
Phenanthrene	ug/L	ND	10	10	7.3	6.6	73	66	32-130	10	20	
Pyrene	ug/L	ND	10	10	7.6	6.9	76	69	39-131	10	20	
2-Fluorobiphenyl (S)	%.						50	44	21-114			
p-Terphenyl-d14 (S)	%.						72	53	25-131			

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	TE: 13180	89 MS	MSD	1318090							
Parameter	5 Units	0120789005 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
2-Methylnaphthalene	ug/L	ND	11.1	11.1	4.2	4.4	37	39	16-116	6	20	
Acenaphthene	ug/L	ND	11.1	11.1	4.6	5.1	42	46	28-116	11	20	
Acenaphthylene	ug/L	ND	11.1	11.1	4.8	5.3	43	48	34-115	10	20	
Anthracene	ug/L	ND	11.1	11.1	5.0	5.6	45	51	39-121	12	20	
Benzo(a)anthracene	ug/L	ND	11.1	11.1	5.0	5.0	45	45	31-127	0	20	
Benzo(a)pyrene	ug/L	ND	11.1	11.1	3.6	3.7	33	33	10-121	1	20	
Benzo(b)fluoranthene	ug/L	ND	11.1	11.1	3.7	3.9	33	35	10-119	5	20	
Benzo(g,h,i)perylene	ug/L	ND	11.1	11.1	2.5	2.6	23	23	10-108	1	20	
Benzo(k)fluoranthene	ug/L	ND	11.1	11.1	3.7	3.7	34	33	10-118	2	20	
Chrysene	ug/L	ND	11.1	11.1	4.6	4.7	41	42	32-127	3	20	
Dibenz(a,h)anthracene	ug/L	ND	11.1	11.1	2.6	2.6	23	23	10-104	1	20	
Fluoranthene	ug/L	ND	11.1	11.1	6.3	6.9	57	62	38-131	9	20	
Fluorene	ug/L	ND	11.1	11.1	5.2	5.8	47	52	33-121	11	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	ATE: 13180			1318090							
			MS	MSD					_			
	5	50120789005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Indeno(1,2,3-cd)pyrene	ug/L	ND ND	11.1	11.1	2.7	2.7	24	25	10-108	0	20	
Naphthalene	ug/L	ND	11.1	11.1	4.1	4.2	37	38	16-119	2	20	
Phenanthrene	ug/L	ND	11.1	11.1	5.8	6.6	52	58	32-130	12	20	
Pyrene	ug/L	ND	11.1	11.1	6.4	6.9	57	62	39-131	8	20	
2-Fluorobiphenyl (S)	%.						34	35	21-114			
p-Terphenyl-d14 (S)	%.						39	44	25-131			

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

QC Batch: OEXT/39725 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270 MSSV PAH by SIM

Associated Lab Samples: 50121072001

METHOD BLANK: 1320351 Matrix: Solid

Associated Lab Samples: 50121072001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
2-Methylnaphthalene	mg/kg	ND	0.0050	06/19/15 23:15	
Acenaphthene	mg/kg	ND	0.0050	06/19/15 23:15	
Acenaphthylene	mg/kg	ND	0.0050	06/19/15 23:15	
Anthracene	mg/kg	ND	0.0050	06/19/15 23:15	
Benzo(a)anthracene	mg/kg	ND	0.0050	06/19/15 23:15	
Benzo(a)pyrene	mg/kg	ND	0.0050	06/19/15 23:15	
Benzo(b)fluoranthene	mg/kg	ND	0.0050	06/19/15 23:15	
Benzo(g,h,i)perylene	mg/kg	ND	0.0050	06/19/15 23:15	
Benzo(k)fluoranthene	mg/kg	ND	0.0050	06/19/15 23:15	
Chrysene	mg/kg	ND	0.0050	06/19/15 23:15	
Dibenz(a,h)anthracene	mg/kg	ND	0.0050	06/19/15 23:15	
Fluoranthene	mg/kg	ND	0.0050	06/19/15 23:15	
Fluorene	mg/kg	ND	0.0050	06/19/15 23:15	
Indeno(1,2,3-cd)pyrene	mg/kg	ND	0.0050	06/19/15 23:15	
Naphthalene	mg/kg	ND	0.0050	06/19/15 23:15	
Phenanthrene	mg/kg	ND	0.0050	06/19/15 23:15	
Pyrene	mg/kg	ND	0.0050	06/19/15 23:15	
2-Fluorobiphenyl (S)	%.	48	38-110	06/19/15 23:15	
p-Terphenyl-d14 (S)	%.	75	32-111	06/19/15 23:15	

LABORATORY CONTROL SAMPLE:	1320352					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Methylnaphthalene	mg/kg	.33	0.20	60	39-104	
Acenaphthene	mg/kg	.33	0.17	53	43-108	
Acenaphthylene	mg/kg	.33	0.17	53	44-110	
Anthracene	mg/kg	.33	0.19	59	44-112	
Benzo(a)anthracene	mg/kg	.33	0.22	66	43-124	
Benzo(a)pyrene	mg/kg	.33	0.23	71	44-124	
Benzo(b)fluoranthene	mg/kg	.33	0.22	67	44-123	
Benzo(g,h,i)perylene	mg/kg	.33	0.23	70	44-118	
Benzo(k)fluoranthene	mg/kg	.33	0.26	80	42-122	
Chrysene	mg/kg	.33	0.24	72	44-124	
Dibenz(a,h)anthracene	mg/kg	.33	0.23	71	44-119	
Fluoranthene	mg/kg	.33	0.20	61	45-119	
Fluorene	mg/kg	.33	0.18	54	44-113	
Indeno(1,2,3-cd)pyrene	mg/kg	.33	0.23	70	44-119	
Naphthalene	mg/kg	.33	0.18	56	42-103	
Phenanthrene	mg/kg	.33	0.18	55	44-113	
Pyrene	mg/kg	.33	0.22	68	45-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

LABORATORY CONTROL SAMPLE:	1320352					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Fluorobiphenyl (S)	%.			51	38-110	
p-Terphenyl-d14 (S)	%.			69	32-111	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

 QC Batch:
 OEXT/39726
 Analysis Method:
 EPA 8270 by SIM

 QC Batch Method:
 EPA 3546
 Analysis Description:
 8270 MSSV PAH by SIM

 Associated Lab Samples:
 50121072005, 50121072006, 50121072007, 50121072008, 50121072010, 50121072011

METHOD BLANK: 1320355 Matrix: Solid

Associated Lab Samples: 50121072005, 50121072006, 50121072007, 50121072008, 50121072010, 50121072011

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
2-Methylnaphthalene	mg/kg	ND ND	0.0050	06/18/15 12:59	
Acenaphthene	mg/kg	ND	0.0050	06/18/15 12:59	
Acenaphthylene	mg/kg	ND	0.0050	06/18/15 12:59	
Anthracene	mg/kg	ND	0.0050	06/18/15 12:59	
Benzo(a)anthracene	mg/kg	ND	0.0050	06/18/15 12:59	
Benzo(a)pyrene	mg/kg	ND	0.0050	06/18/15 12:59	
Benzo(b)fluoranthene	mg/kg	ND	0.0050	06/18/15 12:59	
Benzo(g,h,i)perylene	mg/kg	ND	0.0050	06/18/15 12:59	
Benzo(k)fluoranthene	mg/kg	ND	0.0050	06/18/15 12:59	
Chrysene	mg/kg	ND	0.0050	06/18/15 12:59	
Dibenz(a,h)anthracene	mg/kg	ND	0.0050	06/18/15 12:59	
Fluoranthene	mg/kg	ND	0.0050	06/18/15 12:59	
Fluorene	mg/kg	ND	0.0050	06/18/15 12:59	
Indeno(1,2,3-cd)pyrene	mg/kg	ND	0.0050	06/18/15 12:59	
Naphthalene	mg/kg	ND	0.0050	06/18/15 12:59	
Phenanthrene	mg/kg	ND	0.0050	06/18/15 12:59	
Pyrene	mg/kg	ND	0.0050	06/18/15 12:59	
2-Fluorobiphenyl (S)	%.	71	38-110	06/18/15 12:59	
p-Terphenyl-d14 (S)	%.	90	32-111	06/18/15 12:59	

LABORATORY CONTROL SAMPLE:	1320356					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Methylnaphthalene	mg/kg	.33	0.24	73	39-104	
Acenaphthene	mg/kg	.33	0.21	63	43-108	
Acenaphthylene	mg/kg	.33	0.21	64	44-110	
Anthracene	mg/kg	.33	0.23	69	44-112	
Benzo(a)anthracene	mg/kg	.33	0.24	73	43-124	
Benzo(a)pyrene	mg/kg	.33	0.26	78	44-124	
Benzo(b)fluoranthene	mg/kg	.33	0.24	74	44-123	
Benzo(g,h,i)perylene	mg/kg	.33	0.26	78	44-118	
Benzo(k)fluoranthene	mg/kg	.33	0.28	85	42-122	
Chrysene	mg/kg	.33	0.26	78	44-124	
Dibenz(a,h)anthracene	mg/kg	.33	0.26	78	44-119	
Fluoranthene	mg/kg	.33	0.22	65	45-119	
Fluorene	mg/kg	.33	0.20	61	44-113	
Indeno(1,2,3-cd)pyrene	mg/kg	.33	0.25	77	44-119	
Naphthalene	mg/kg	.33	0.20	62	42-103	
Phenanthrene	mg/kg	.33	0.22	66	44-113	
Pyrene	mg/kg	.33	0.22	67	45-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

LABORATORY CONTROL SAMPLE: 1320356

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
		Conc.	Result			Qualifiers
2-Fluorobiphenyl (S)	%.			61	38-110	
p-Terphenyl-d14 (S)	%.			69	32-111	

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	ATE: 13203	57		1320358							
			MS	MSD								
	5	0120998004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
2-Methylnaphthalene	mg/kg	ND	.39	.39	0.27	0.29	62	68	10-131	8	20	
Acenaphthene	mg/kg	ND	.39	.39	0.20	0.21	52	53	25-117	2	20	
Acenaphthylene	mg/kg	ND	.39	.39	0.23	0.24	53	56	27-123	5	20	
Anthracene	mg/kg	42.8 ug/kg	.39	.39	0.27	0.27	57	58	20-123	1	20	
Benzo(a)anthracene	mg/kg	138 ug/kg	.39	.39	0.36	0.36	57	59	23-124	1	20	
Benzo(a)pyrene	mg/kg	130 ug/kg	.39	.39	0.36	0.38	58	65	23-120	7	20	
Benzo(b)fluoranthene	mg/kg	140 ug/kg	.39	.39	0.36	0.37	55	60	24-117	5	20	
Benzo(g,h,i)perylene	mg/kg	103 ug/kg	.39	.39	0.40	0.32	76	57	12-122	22	20 F	R1
Benzo(k)fluoranthene	mg/kg	156 ug/kg	.39	.39	0.43	0.43	69	71	14-123	1	20	
Chrysene	mg/kg	160 ug/kg	.39	.39	0.44	0.42	73	67	22-124	6	20	
Dibenz(a,h)anthracene	mg/kg	41.1 ug/kg	.39	.39	0.32	0.26	72	57	26-113	21	20 F	R1
Fluoranthene	mg/kg	261 ug/kg	.39	.39	0.47	0.44	54	46	21-125	7	20	
Fluorene	mg/kg	ND	.39	.39	0.18	0.21	44	53	19-127	16	20	
Indeno(1,2,3-cd)pyrene	mg/kg	97.5 ug/kg	.39	.39	0.39	0.33	75	59	15-121	18	20	
Naphthalene	mg/kg	35.0 ug/kg	.39	.39	0.26	0.32	58	74	15-125	20	20 1	1d
Phenanthrene	mg/kg	119 ug/kg	.39	.39	0.29	0.32	45	53	10-139	10	20	
Pyrene	mg/kg	239 ug/kg	.39	.39	0.45	0.45	54	55	17-132	0	20	
2-Fluorobiphenyl (S)	%.						45	51	38-110			
p-Terphenyl-d14 (S)	%.						67	61	32-111			

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

QC Batch: OEXT/39741 Analysis Method: EPA 8270 by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270 MSSV PAH by SIM

Associated Lab Samples: 50121072013

METHOD BLANK: 1321299 Matrix: Solid

Associated Lab Samples: 50121072013

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
2-Methylnaphthalene	mg/kg	ND	0.0050	06/20/15 07:44	
Acenaphthene	mg/kg	ND	0.0050	06/20/15 07:44	
Acenaphthylene	mg/kg	ND	0.0050	06/20/15 07:44	
Anthracene	mg/kg	ND	0.0050	06/20/15 07:44	
Benzo(a)anthracene	mg/kg	ND	0.0050	06/20/15 07:44	
Benzo(a)pyrene	mg/kg	ND	0.0050	06/20/15 07:44	
Benzo(b)fluoranthene	mg/kg	ND	0.0050	06/20/15 07:44	
Benzo(g,h,i)perylene	mg/kg	ND	0.0050	06/20/15 07:44	
Benzo(k)fluoranthene	mg/kg	ND	0.0050	06/20/15 07:44	
Chrysene	mg/kg	ND	0.0050	06/20/15 07:44	
Dibenz(a,h)anthracene	mg/kg	ND	0.0050	06/20/15 07:44	
Fluoranthene	mg/kg	ND	0.0050	06/20/15 07:44	
Fluorene	mg/kg	ND	0.0050	06/20/15 07:44	
Indeno(1,2,3-cd)pyrene	mg/kg	ND	0.0050	06/20/15 07:44	
Naphthalene	mg/kg	ND	0.0050	06/20/15 07:44	
Phenanthrene	mg/kg	ND	0.0050	06/20/15 07:44	
Pyrene	mg/kg	ND	0.0050	06/20/15 07:44	
2-Fluorobiphenyl (S)	%.	79	38-110	06/20/15 07:44	
p-Terphenyl-d14 (S)	%.	87	32-111	06/20/15 07:44	

LABORATORY CONTROL SAMPLE:	1321300					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Methylnaphthalene	mg/kg	.33	0.23	69	39-104	
Acenaphthene	mg/kg	.33	0.28	83	43-108	
Acenaphthylene	mg/kg	.33	0.28	83	44-110	
Anthracene	mg/kg	.33	0.26	78	44-112	
Benzo(a)anthracene	mg/kg	.33	0.31	94	43-124	
Benzo(a)pyrene	mg/kg	.33	0.31	94	44-124	
Benzo(b)fluoranthene	mg/kg	.33	0.33	98	44-123	
Benzo(g,h,i)perylene	mg/kg	.33	0.27	81	44-118	
Benzo(k)fluoranthene	mg/kg	.33	0.30	90	42-122	
Chrysene	mg/kg	.33	0.31	92	44-124	
Dibenz(a,h)anthracene	mg/kg	.33	0.29	86	44-119	
Fluoranthene	mg/kg	.33	0.31	92	45-119	
Fluorene	mg/kg	.33	0.30	89	44-113	
Indeno(1,2,3-cd)pyrene	mg/kg	.33	0.28	85	44-119	
Naphthalene	mg/kg	.33	0.23	68	42-103	
Phenanthrene	mg/kg	.33	0.29	87	44-113	
Pyrene	mg/kg	.33	0.32	97	45-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

LABORATORY CONTROL SAMPLE: 1321300

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
2-Fluorobiphenyl (S)	%.		- Nosuit	68	38-110	- Qualificis
p-Terphenyl-d14 (S)	%.			78	32-111	

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	TE: 13213	01		1321302							
			MS	MSD								
	50	0121073001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
2-Methylnaphthalene	mg/kg	0.020	.38	.38	0.30	0.31	73	78	10-131	4	20	
Acenaphthene	mg/kg	< 0.0029	.38	.38	0.33	0.33	86	88	25-117	1	20	
Acenaphthylene	mg/kg	0.011	.38	.38	0.34	0.34	87	86	27-123	2	20	
Anthracene	mg/kg	0.011	.38	.38	0.30	0.30	75	77	20-123	2	20	
Benzo(a)anthracene	mg/kg	0.025	.38	.38	0.35	0.35	85	86	23-124	1	20	
Benzo(a)pyrene	mg/kg	0.027	.38	.38	0.33	0.33	81	80	23-120	2	20	
Benzo(b)fluoranthene	mg/kg	0.033	.38	.38	0.35	0.35	83	85	24-117	1	20	
Benzo(g,h,i)perylene	mg/kg	0.019	.38	.38	0.28	0.27	68	67	12-122	2	20	
Benzo(k)fluoranthene	mg/kg	0.032	.38	.38	0.34	0.33	80	79	14-123	3	20	
Chrysene	mg/kg	0.035	.38	.38	0.35	0.35	83	85	22-124	1	20	
Dibenz(a,h)anthracene	mg/kg	0.0084	.38	.38	0.30	0.30	76	78	26-113	1	20	
Fluoranthene	mg/kg	0.051	.38	.38	0.35	0.36	79	81	21-125	1	20	
Fluorene	mg/kg	< 0.0029	.38	.38	0.34	0.34	89	91	19-127	1	20	
Indeno(1,2,3-cd)pyrene	mg/kg	0.018	.38	.38	0.29	0.29	72	73	15-121	1	20	
Naphthalene	mg/kg	0.014	.38	.38	0.30	0.30	74	75	15-125	0	20	
Phenanthrene	mg/kg	0.046	.38	.38	0.36	0.36	82	83	10-139	0	20	
Pyrene	mg/kg	0.048	.38	.38	0.38	0.38	86	89	17-132	2	20	
2-Fluorobiphenyl (S)	%.						75	74	38-110			
p-Terphenyl-d14 (S)	%.						75	77	32-111			

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

QC Batch: OEXT/39757 Analysis Method: EPA 8270 by SIM
QC Batch Method: EPA 3546 Analysis Description: 8270 MSSV PAH by SIM

Associated Lab Samples: 50121072002, 50121072003, 50121072004

METHOD BLANK: 1322730 Matrix: Solid

Associated Lab Samples: 50121072002, 50121072003, 50121072004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
2-Methylnaphthalene	mg/kg	ND	0.0050	06/23/15 08:39	
Acenaphthene	mg/kg	ND	0.0050	06/23/15 08:39	
Acenaphthylene	mg/kg	ND	0.0050	06/23/15 08:39	
Anthracene	mg/kg	ND	0.0050	06/23/15 08:39	
Benzo(a)anthracene	mg/kg	ND	0.0050	06/23/15 08:39	
Benzo(a)pyrene	mg/kg	ND	0.0050	06/23/15 08:39	
Benzo(b)fluoranthene	mg/kg	ND	0.0050	06/23/15 08:39	
Benzo(g,h,i)perylene	mg/kg	ND	0.0050	06/23/15 08:39	
Benzo(k)fluoranthene	mg/kg	ND	0.0050	06/23/15 08:39	
Chrysene	mg/kg	ND	0.0050	06/23/15 08:39	
Dibenz(a,h)anthracene	mg/kg	ND	0.0050	06/23/15 08:39	
Fluoranthene	mg/kg	ND	0.0050	06/23/15 08:39	
Fluorene	mg/kg	ND	0.0050	06/23/15 08:39	
Indeno(1,2,3-cd)pyrene	mg/kg	ND	0.0050	06/23/15 08:39	
Naphthalene	mg/kg	ND	0.0050	06/23/15 08:39	
Phenanthrene	mg/kg	ND	0.0050	06/23/15 08:39	
Pyrene	mg/kg	ND	0.0050	06/23/15 08:39	
2-Fluorobiphenyl (S)	%.	59	38-110	06/23/15 08:39	
p-Terphenyl-d14 (S)	%.	82	32-111	06/23/15 08:39	

LABORATORY CONTROL SAMPLE:	1322731					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Methylnaphthalene	mg/kg	.33	0.20	59	39-104	
Acenaphthene	mg/kg	.33	0.21	64	43-108	
Acenaphthylene	mg/kg	.33	0.21	64	44-110	
Anthracene	mg/kg	.33	0.25	74	44-112	
Benzo(a)anthracene	mg/kg	.33	0.22	66	43-124	
Benzo(a)pyrene	mg/kg	.33	0.25	75	44-124	
Benzo(b)fluoranthene	mg/kg	.33	0.23	69	44-123	
Benzo(g,h,i)perylene	mg/kg	.33	0.24	73	44-118	
Benzo(k)fluoranthene	mg/kg	.33	0.28	84	42-122	
Chrysene	mg/kg	.33	0.26	79	44-124	
Dibenz(a,h)anthracene	mg/kg	.33	0.25	74	44-119	
Fluoranthene	mg/kg	.33	0.36	108	45-119	
Fluorene	mg/kg	.33	0.22	66	44-113	
Indeno(1,2,3-cd)pyrene	mg/kg	.33	0.24	73	44-119	
Naphthalene	mg/kg	.33	0.19	57	42-103	
Phenanthrene	mg/kg	.33	0.22	67	44-113	
Pyrene	mg/kg	.33	0.31	94	45-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

LABORATORY CONTROL SAMPLE: 1322731

Spike LCS LCS % Rec ameter Units Conc. Result % Rec Limits

Parameter Units Conc. Result % Rec Limits Qualifiers

2-Fluorobiphenyl (S) %. 64 38-110

p-Terphenyl-d14 (S) %. 87 32-111

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	ATE: 13235	43		1323544							
			MS	MSD								
	5	0120607002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
2-Methylnaphthalene	mg/kg	ND	.79	.81	0.47	0.55	59	69	10-131	16	20	
Acenaphthene	mg/kg	ND	.79	.81	0.51	0.56	64	70	25-117	9	20	
Acenaphthylene	mg/kg	ND	.79	.81	0.53	0.56	66	70	27-123	6	20	
Anthracene	mg/kg	ND	.79	.81	0.53	0.52	66	64	20-123	3	20	
Benzo(a)anthracene	mg/kg	ND	.79	.81	0.42	0.45	52	55	23-124	6	20	
Benzo(a)pyrene	mg/kg	ND	.79	.81	0.44	0.48	54	60	23-120	10	20	
Benzo(b)fluoranthene	mg/kg	ND	.79	.81	0.39	0.44	48	54	24-117	12	20	
Benzo(g,h,i)perylene	mg/kg	ND	.79	.81	0.60	0.47	75	58	12-122	24	20	R1
Benzo(k)fluoranthene	mg/kg	ND	.79	.81	0.49	0.55	61	68	14-123	12	20	
Chrysene	mg/kg	ND	.79	.81	0.48	0.51	59	63	22-124	7	20	
Dibenz(a,h)anthracene	mg/kg	ND	.79	.81	0.57	0.50	71	62	26-113	14	20	
Fluoranthene	mg/kg	23.4 ug/kg	.79	.81	0.50	0.49	59	58	21-125	2	20	
Fluorene	mg/kg	ND	.79	.81	0.52	0.56	65	69	19-127	6	20	
Indeno(1,2,3-cd)pyrene	mg/kg	ND	.79	.81	0.55	0.48	69	59	15-121	15	20	
Naphthalene	mg/kg	ND	.79	.81	0.46	0.51	58	64	15-125	11	20	
Phenanthrene	mg/kg	24.4 ug/kg	.79	.81	0.52	0.51	62	61	10-139	2	20	
Pyrene	mg/kg	17.5 ug/kg	.79	.81	0.47	0.50	57	60	17-132	5	20	
2-Fluorobiphenyl (S)	%.						65	69	38-110			
p-Terphenyl-d14 (S)	%.						61	60	32-111			

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	TE: 13235	56		1323557							
			MS	MSD								
	50	0121252008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
2-Methylnaphthalene	mg/kg	ND	.39	.39	0.29	0.26	73	66	10-131	12	20	
Acenaphthene	mg/kg	ND	.39	.39	0.23	0.17	57	44	25-117	27	20	R1
Acenaphthylene	mg/kg	ND	.39	.39	0.20	0.18	51	45	27-123	15	20	
Anthracene	mg/kg	ND	.39	.39	0.19	0.19	48	49	20-123	1	20	
Benzo(a)anthracene	mg/kg	ND	.39	.39	0.23	0.22	57	57	23-124	2	20	
Benzo(a)pyrene	mg/kg	ND	.39	.39	0.24	0.23	60	58	23-120	5	20	
Benzo(b)fluoranthene	mg/kg	ND	.39	.39	0.24	0.21	60	54	24-117	12	20	
Benzo(g,h,i)perylene	mg/kg	ND	.39	.39	0.21	0.22	52	56	12-122	6	20	
Benzo(k)fluoranthene	mg/kg	ND	.39	.39	0.30	0.27	74	69	14-123	9	20	
Chrysene	mg/kg	ND	.39	.39	0.25	0.24	63	62	22-124	3	20	
Dibenz(a,h)anthracene	mg/kg	ND	.39	.39	0.23	0.23	57	58	26-113	0	20	
Fluoranthene	mg/kg	ND	.39	.39	0.22	0.19	56	50	21-125	14	20	
Fluorene	mg/kg	ND	.39	.39	0.21	0.21	52	53	19-127	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	ATE: 13235	56		1323557							
			MS	MSD								
	5	0121252008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Indeno(1,2,3-cd)pyrene	mg/kg	ND	.39	.39	0.21	0.22	54	57	15-121	4	20	
Naphthalene	mg/kg	ND	.39	.39	0.22	0.19	54	47	15-125	14	20	
Phenanthrene	mg/kg	ND	.39	.39	0.21	0.19	53	48	10-139	12	20	
Pyrene	mg/kg	ND	.39	.39	0.21	0.28	52	70	17-132	29	20	R1
2-Fluorobiphenyl (S)	%.						47	45	38-110			
p-Terphenyl-d14 (S)	%.						58	65	32-111			

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

QC Batch: OEXT/39758 Analysis Method: EPA 8270 by SIM
QC Batch Method: EPA 3546 Analysis Description: 8270 MSSV PAH by SIM

Associated Lab Samples: 50121072009, 50121072012

METHOD BLANK: 1322750 Matrix: Solid

Associated Lab Samples: 50121072009, 50121072012

D	11-2-	Blank	Reporting	A I I	O a a l'C a ma
Parameter	Units	Result	Limit	Analyzed	Qualifiers
2-Methylnaphthalene	mg/kg	ND	0.0050	06/23/15 13:38	
Acenaphthene	mg/kg	ND	0.0050	06/23/15 13:38	
Acenaphthylene	mg/kg	ND	0.0050	06/23/15 13:38	
Anthracene	mg/kg	ND	0.0050	06/23/15 13:38	
Benzo(a)anthracene	mg/kg	ND	0.0050	06/23/15 13:38	
Benzo(a)pyrene	mg/kg	ND	0.0050	06/23/15 13:38	
Benzo(b)fluoranthene	mg/kg	ND	0.0050	06/23/15 13:38	
Benzo(g,h,i)perylene	mg/kg	ND	0.0050	06/23/15 13:38	
Benzo(k)fluoranthene	mg/kg	ND	0.0050	06/23/15 13:38	
Chrysene	mg/kg	ND	0.0050	06/23/15 13:38	
Dibenz(a,h)anthracene	mg/kg	ND	0.0050	06/23/15 13:38	
Fluoranthene	mg/kg	ND	0.0050	06/23/15 13:38	
Fluorene	mg/kg	ND	0.0050	06/23/15 13:38	
Indeno(1,2,3-cd)pyrene	mg/kg	ND	0.0050	06/23/15 13:38	
Naphthalene	mg/kg	ND	0.0050	06/23/15 13:38	
Phenanthrene	mg/kg	ND	0.0050	06/23/15 13:38	
Pyrene	mg/kg	ND	0.0050	06/23/15 13:38	
2-Fluorobiphenyl (S)	%.	62	38-110	06/23/15 13:38	
p-Terphenyl-d14 (S)	%.	80	32-111	06/23/15 13:38	

LABORATORY CONTROL SAMPLE:	1322751					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Methylnaphthalene	mg/kg	.33	0.21	63	39-104	
Acenaphthene	mg/kg	.33	0.22	67	43-108	
Acenaphthylene	mg/kg	.33	0.22	66	44-110	
Anthracene	mg/kg	.33	0.23	70	44-112	
Benzo(a)anthracene	mg/kg	.33	0.24	71	43-124	
Benzo(a)pyrene	mg/kg	.33	0.26	78	44-124	
Benzo(b)fluoranthene	mg/kg	.33	0.25	74	44-123	
Benzo(g,h,i)perylene	mg/kg	.33	0.25	76	44-118	
Benzo(k)fluoranthene	mg/kg	.33	0.29	87	42-122	
Chrysene	mg/kg	.33	0.27	80	44-124	
Dibenz(a,h)anthracene	mg/kg	.33	0.26	78	44-119	
Fluoranthene	mg/kg	.33	0.33	99	45-119	
Fluorene	mg/kg	.33	0.23	69	44-113	
Indeno(1,2,3-cd)pyrene	mg/kg	.33	0.25	76	44-119	
Naphthalene	mg/kg	.33	0.20	60	42-103	
Phenanthrene	mg/kg	.33	0.24	71	44-113	
Pyrene	mg/kg	.33	0.31	92	45-123	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

LABORATORY CONTROL SAMPLE: 1322751

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
2-Fluorobiphenyl (S) p-Terphenyl-d14 (S)	%. %.			66 93	38-110 32-111	

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	TE: 13227	52		1322753							
			MS	MSD								
	50	0121590002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
2-Methylnaphthalene	mg/kg	0.99	.4	.4	1.0	1.1	3	19	10-131	6	20	MO
Acenaphthene	mg/kg	0.0064	.4	.4	0.25	0.24	62	59	25-117	4	20	
Acenaphthylene	mg/kg	ND	.4	.4	0.25	0.24	62	60	27-123	5	20	
Anthracene	mg/kg	ND	.4	.4	0.27	0.25	65	62	20-123	5	20	
Benzo(a)anthracene	mg/kg	ND	.4	.4	0.27	0.25	66	60	23-124	9	20	
Benzo(a)pyrene	mg/kg	ND	.4	.4	0.27	0.26	68	64	23-120	7	20	
Benzo(b)fluoranthene	mg/kg	ND	.4	.4	0.27	0.24	66	60	24-117	10	20	
Benzo(g,h,i)perylene	mg/kg	ND	.4	.4	0.27	0.24	66	60	12-122	10	20	
Benzo(k)fluoranthene	mg/kg	ND	.4	.4	0.30	0.28	74	70	14-123	5	20	
Chrysene	mg/kg	ND	.4	.4	0.29	0.27	71	67	22-124	5	20	
Dibenz(a,h)anthracene	mg/kg	ND	.4	.4	0.27	0.25	67	62	26-113	7	20	
Fluoranthene	mg/kg	0.015	.4	.4	0.30	0.23	72	54	21-125	26	20	R1
Fluorene	mg/kg	0.013	.4	.4	0.27	0.30	63	71	19-127	11	20	
Indeno(1,2,3-cd)pyrene	mg/kg	ND	.4	.4	0.27	0.24	67	61	15-121	10	20	
Naphthalene	mg/kg	0.54	.4	.4	0.71	0.69	42	37	15-125	3	20	
Phenanthrene	mg/kg	0.030	.4	.4	0.30	0.29	67	64	10-139	4	20	
Pyrene	mg/kg	0.012	.4	.4	0.27	0.26	64	63	17-132	1	20	
2-Fluorobiphenyl (S)	%.						61	60	38-110			
p-Terphenyl-d14 (S)	%.						68	65	32-111			

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

QC Batch: PMST/10777 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 50121072001, 50121072002, 50121072003, 50121072004, 50121072005, 50121072006, 50121072007,

50121072008

SAMPLE DUPLICATE: 1321652 50121018001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 18.4 Percent Moisture % 18.3 0 5

SAMPLE DUPLICATE: 1321653

Date: 06/24/2015 08:36 AM

		50121072006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	15.4	14.3	8		5 R1

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: 15F0709
Pace Project No.: 50121072

QC Batch: PMST/10778 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 50121072009, 50121072010, 50121072011, 50121072012, 50121072013

SAMPLE DUPLICATE: 1321258

50121072009 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 21.4 Percent Moisture % 21.3 0 5

SAMPLE DUPLICATE: 1321259

Date: 06/24/2015 08:36 AM

		50121073003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	7.7	10.6	32		5 R1

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALIFIERS

Project: 15F0709
Pace Project No.: 50121072

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 06/24/2015 08:36 AM

1d Due to the extract's physical characteristics, the analysis was performed at dilution.	1d	Due to the extract's physical	characteristics, the anal	ysis was performed at dilution.
---	----	-------------------------------	---------------------------	---------------------------------

- 2d Surrogate recovery outside laboratory control limits due to matrix interferences; confirmed by similar results from analysis of an in-hold re-extract sample on 06/23/15 15:18 on 50MSS3.
- L3 Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 15F0709
Pace Project No.: 50121072

Date: 06/24/2015 08:36 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50121072001	15F0709-05	EPA 3546	OEXT/39677	EPA 8015 Mod Ext	GCSV/15699
50121072003	15F0709-07	EPA 3546	OEXT/39677	EPA 8015 Mod Ext	GCSV/15699
50121072005	15F0709-09	EPA 3546	OEXT/39677	EPA 8015 Mod Ext	GCSV/15699
50121072007	15F0709-11	EPA 3546	OEXT/39677	EPA 8015 Mod Ext	GCSV/15699
50121072009	15F0709-13	EPA 3546	OEXT/39677	EPA 8015 Mod Ext	GCSV/15699
50121072013	15F0709-17	EPA 3546	OEXT/39677	EPA 8015 Mod Ext	GCSV/15699
50121072014	15F0709-19	EPA 3510	OEXT/39682	EPA 8015 Mod Ext	GCSV/15697
50121072014	15F0709-19	EPA 3510	OEXT/39685	EPA 8270 by SIM LVE	MSSV/18231
50121072001	15F0709-05	EPA 3546	OEXT/39725	EPA 8270 by SIM	MSSV/18277
50121072002	15F0709-06	EPA 3546	OEXT/39757	EPA 8270 by SIM	MSSV/18294
50121072003	15F0709-07	EPA 3546	OEXT/39757	EPA 8270 by SIM	MSSV/18294
50121072004	15F0709-08	EPA 3546	OEXT/39757	EPA 8270 by SIM	MSSV/18294
50121072005	15F0709-09	EPA 3546	OEXT/39726	EPA 8270 by SIM	MSSV/18257
50121072006	15F0709-10	EPA 3546	OEXT/39726	EPA 8270 by SIM	MSSV/18257
50121072007	15F0709-11	EPA 3546	OEXT/39726	EPA 8270 by SIM	MSSV/18257
50121072008	15F0709-12	EPA 3546	OEXT/39726	EPA 8270 by SIM	MSSV/18257
50121072009	15F0709-13	EPA 3546	OEXT/39758	EPA 8270 by SIM	MSSV/18295
50121072010	15F0709-14	EPA 3546	OEXT/39726	EPA 8270 by SIM	MSSV/18257
50121072011	15F0709-15	EPA 3546	OEXT/39726	EPA 8270 by SIM	MSSV/18257
50121072012	15F0709-16	EPA 3546	OEXT/39758	EPA 8270 by SIM	MSSV/18295
50121072013	15F0709-17	EPA 3546	OEXT/39741	EPA 8270 by SIM	MSSV/18280
50121072001	15F0709-05	ASTM D2974-87	PMST/10777		
50121072002	15F0709-06	ASTM D2974-87	PMST/10777		
50121072003	15F0709-07	ASTM D2974-87	PMST/10777		
50121072004	15F0709-08	ASTM D2974-87	PMST/10777		
50121072005	15F0709-09	ASTM D2974-87	PMST/10777		
50121072006	15F0709-10	ASTM D2974-87	PMST/10777		
50121072007	15F0709-11	ASTM D2974-87	PMST/10777		
50121072008	15F0709-12	ASTM D2974-87	PMST/10777		
50121072009	15F0709-13	ASTM D2974-87	PMST/10778		
50121072010	15F0709-14	ASTM D2974-87	PMST/10778		
50121072011	15F0709-15	ASTM D2974-87	PMST/10778		
50121072012	15F0709-16	ASTM D2974-87	PMST/10778		
50121072013	15F0709-17	ASTM D2974-87	PMST/10778		

SUBCONTRACT ORDER

Pace Analytical Services 15F0709

1074 50121072

SENDING LABORATORY:

Pace Analytical Services

25 Holiday Drive

Englewood, OH 45322

Phone: 937.832.8242 Fax: 937.832.2868

Project Manager:

Jason Lykins

RECEIVING LABORATORY:

Pace Analytical Services, Inc. Indianapolis Office

7726 Moller Road

Indianapolis, IN 46268

Phone:(317) 875-5894

Fax: -

Analysis	Due	Expires	Laboratory ID	Comments
			-001	
Sample ID: 15F0709-05		oled:06/09/15 12:50		VAP
TPH C10-34	06/25/15 16:00	06/23/15 12:50		
PAH_FULL_8270	- 06/25/15 16:00	06/23/15 12:50		
Containers Supplied:				
Sample ID: 15F0709-06	Soil Sam	oled:06/09/15 12:10	out	VAP
PAH_FULL_8270	06/25/15 16:00	06/23/15 12:10	Programme Control of Mark School Control (Control of Control of Co	T & N &
	00/23/13 10:00	00/23/13 12.10		<u> </u>
Containers Supplied:				
			MM.	N. Company
Sample ID: 15F0709-07	Soil Sam	oled:06/09/15 11:05	003	VAP
PAH_FULL_8270	06/25/15 16:00	06/23/15 11:05		- '
TPH C10-34	06/25/15 16:00	06/23/15 11:05		
Containers Supplied:				
GI. ID. 1770/00 00	G.:11	J-3-06/09/15 10:30	lo _L	VAP
Sample ID: 15F0709-08		oled:06/08/15 10:20		W VAF
PAH_FULL_8270	06/25/15 16:00	06/22/15 10:20		
Containers Supplied:				
			An/	
Sample ID: 15F0709-09	Soil Sam	oled:06/08/15 13:25		VAP

06/25/15 16:00

06/25/15 16:00

PAH FULL 8270

Containers Supplied:

TPH C10-34

06/22/15 13:25

06/22/15 13:25

Page 130 of 139

SUBCONTRACT ORDER

Pace Analytical Services 15F0709

Analysis	Due	Expires	Laboratory ID	Comments
			ANA I	
Sample ID: 15F0709-10	Soil Sai	mpled:06/08/15 15:10	UVV	VAP
PAH_FULL_8270	06/25/15 16:00	06/22/15 15:10	3	
Containers Supplied:				
			NO	W7
Sample ID: 15F0709-11		mpled:06/09/15 16:25		VAP
TPH C10-34	06/25/15 16:00	06/23/15 16:25		
PAH_FULL_8270	06/25/15 16:00	06/23/15 16:25		
Containers Supplied:				
· · · · · · · · · · · · · · · · · · ·			108	
Sample ID: 15F0709-12		mpled:06/08/15 16:05		VAP
PAH_FULL_8270	06/25/15 16:00	06/22/15 16:05		
Containers Supplied:				
			JOK.	
Sample ID: 15F0709-13	Soil Sa	mpled:06/09/15 15:25		VAP
PAH_FULL_8270	06/25/15 16:00	06/23/15 15:25		
TPH C10-34	06/25/15 16:00	06/23/15 15:25		•
Containers Supplied:				
			0[0	
Sample ID: 15F0709-14		mpled:06/09/15 14:45	ULTIN	VAP
PAH_FULL_8270	06/25/15 16:00	06/23/15 14:45		
Containers Supplied:				
			011	TAD.
Sample ID: 15F0709-15	Soil Sa	mpled:06/09/15 13:30		VAP
PAH_FULL_8270	06/25/15 16:00	06/23/15 13:30		N.
Containers Supplied:	·			
Sample ID: 15F0709-16	Soil Sa	mpled:06/08/15 14:20	Via	VAP
	06/25/15 16:00	06/22/15 14:20	- And the second	
PAH_FULL_8270	00/23/13 10:00	/ 00122113 14.20 ·		
Containers Supplied:	p. di	≠ C		

Released By Released By

Date Old 4:3

Received By
Received By

G/D/15 1:30

6/12/15 16:31

Page 131 of 139

SUBCONTRACT ORDER

Pace Analytical Services 15F0709

Analysis	Due	Expires	Laboratory ID	Comments	
Sample ID: 15F0709-17	Soil San	npled:06/09/15 15:55	013	VAP	
PAH_FULL_8270	06/25/15 16:00	06/23/15 15:55			
TPH C10-34	06/25/15 16:00	06/23/15 15:55			
Containers Supplied:					·.
Sample ID: 15F0709-19	Groundw San	npled:06/09/15 16:50	014	VAP	· · · · · · · · · · · · · · · · · · ·
TPH C10-34	06/25/15 16:00	06/16/15 16:50			
PAH_FULL_8270	06/25/15 16:00	06/16/15 16:50			j
Containers Supplied:					

Page 132 of 139

Sai	nple Condit	ton Upon Receipt		
Face Analytical Client Name	Pace E	inglewood	Project #_	50121072
Courier: Fed Ex UPS USPS Clier Tracking #:	nt Commerc	cial ace Other		
Custody Seal on Cooler/Box Present:	no	Seals intact: yes	no	Date/Time 5035A kits placed in freezer
Packing Material: Bubble Wrap Bubble	Bags Nor	ne Wother <u>Bo</u>		
Thermometer 123456ABCDEF	Type of Ice:	Wet Blue None	Samples on ice	cooling process has begun
Cooler Temperature 5,5°C (Corrected, if applicable)	ice Visible	in Sample Containers:	yes no	ials of person examining
Temp should be above freezing to 6°C		Comments:	contents:	MB G/12/15
Chain of Custody Present:	₩Yes □No	□N/A 1.		
Chain of Custody Filled Out:	Ülyeş □No	□N/A 2.	<u> </u>	
Chain of Custody Relinquished:	© Yes □No	□N/A 3.		
Sampler Name & Signature on COC:	□Yes □No	₩N/A 4.	9 B B B	
Short Hold Time Analysis (<72hr):	∰Yes □No	DNA 5. Groundu	uader Holel t	1'me 6/16/15 ME
Rush Turn Around Time Requested:	□Yes □No	☑ N/A 6.		
Containers Intact:	Yes No	□n/a 7.		
Sample Labels match COC:	Øes □No	□N/A 8.		
-Includes date/time/ID/Analysis				· · · · · · · · · · · · · · · · · · ·
All containers needing acid/base pres. have been checked?	□Yes □No	9. (Circle) HNO	3 H2SO4 N	aOH HCI
exceptions: VOA, coliform, TOC, O&G				
All containers needing preservation are found to be in correcommendation (<2, >9, >12) unless otherwise noted.	mpliance with EPF	`		
Headspace in VOA Vials (>6mm):	□Yes □No	10.		
Trip Blank Present:	□Yes □No	TIMA 21.		
Trip Blank Custody Seals Present	□Yes □No	DAVA -	D	
Project Manager Review."		/	<i>///</i>	
Samples Arrived within Hold Time:	PYes □No	□N/A 12.	<u> </u>	
Sufficient Volume:	Dyes □No	□N/A 13.	·	
Correct Containers Used:	Ayes □No	□N/A 14.		
Client Notification/ Resolution:			Field Data Requi	red? Y / N
Person Contacted:	·	Date/Time:	· · · · · · · · · · · · · · · · · · ·	
Comments/ Resolution:			w- w	· · · · · · · · · · · · · · · · · · ·
		•	·	
		·		
		· · · · · · · · · · · · · · · · · · ·		····
20.				
Project Manager Review:	Mayor		Date:	6/12/15

Sample Container Count

Face Analytical

Project # 58 /2/072

CLIENT: Pace Englewood cocpage of 0,0,0

#QI 202

Comments pH <2 pH>12 Sample Line Item DG9H AG1U WGFU AG0U R 4/6 BP2N BP2U BP2S BP3N BP3U BP3S AG3S AG1H BP3C BP1U SP5T

_			į	:								
	:	:		:		!			: :			
	;				!		;		İ			
	:				1							
					!			•				
·	Ũ	ڡۣ	77	80	29	Q	2	て	ũ	2	S	و
_	Y											
_	-							! ! !				
	-						<u> </u> !		-	-		
	i						-	<u> </u>				
L												
ŀ	-							-	 .			
-			<u> </u>							!	-	
-				1			<u> </u>		-			<u> </u>
		-					-	-	-	-		ļ
								_	<u> </u> -			
			<u> </u>					 .				
			-				-		1		-	
		<u> </u>		<u> </u>					<u> </u>	-	- :	1
				ļ. 					+	-		
	-	L -	-		-	-	-	-		-	-	_
1. 0001. 0 10 to 1000												
			1									^
3	•	,	7 6	2 4	25	, «	7	- 0	0 0	9 ç	5 4	- 2
1		ł	ı	1	1	•	1	1	•	•	i	•

		Container Codes					-	
	DG9H	DG9H 40mL HCL amber voa vial	AGOU	AGOU 100mL unpreserved amber glass	BP1N	BP1N 1 liter HNO3 plastic	DG9P	DG9P 40mL TSP amber vial
	AG1U	AG411 4lifer unpreserved amber glass	AG1H	AG1H 1 liter HCL amber glass	BP1S	BP1S 1 liter H2SO4 plastic	DG9S	DG9S 40mL H2SO4 amber vial
-	WGFU	WGFU 4oz clear soil iar	AG1S	AG1S 1 liter H2SO4 amber glass	BP1U	BP1U 1 liter unpreserved plastic	реэт	DG9T 40mL Na Thio amber vial
	R	R terra core kit	AG1T	AG1T 1 liter Na Thiosulfate amber glass	BP1Z	BP1Z 1 liter NaOH, Zn, Ac	Deson	DG9U 40mL unpreserved amber vial
	BP2N	BP2N 500mL HNO3 plastic	AG2N	AG2N 500mL HNO3 amber glass	BP2A	BP2A 500mL NaOH, Asc Acid plastic	SP5T	SP5T 120mL Coliform Na Thiosulfate
	BP2U	500mL unpreserved plastic	AG2S	AG2S 500mL H2SO4 amber glass	BP20	BP20 500mL NaOH plastic	JGFU	JGFU 4oz unpreserved amber wide
	BP2S		AG2U	AG2U 500mL unpreserved amber glass	BP2Z	BP2Z 500mL NaOH, Zn Ac	ב	U Summa Can
1	BP3N	250mL HNO3 plastic	AG3U	AG3U 250mL unpreserved amber glass	AF	AF Air Fitter	VG9H	VG9H 40mL HCL clear vial
	BP3U	250mL unpreserved plastic	BG1H	BG1H 1 liter HCL clear glass	ВРЗС	BP3C 250mL NaOH plastic	VG9T	VG9T #0mL Na Thio. clear vial
	BP3S	BP3S 250mL H2SO4 plastic	BG1S	BG1S 1 liter H2SO4 clear glass	BP3Z	BP3Z 250mL NaOH, Zn Ac plastic	VG9U	VG9U 40mL unpreserved clear vial
	AG3S	AG3S 250mL H2SO4 glass amber	BG1T	BG1T 1 liter Na Thiosulfate clear glass	ပ	C Air Cassettes	VSG	VSG Headspace septa vial & HCL
	AG1S	AG1S 1 liter H2SO4 amber glass	BG1U	BG1U 1 liter unpreserved glass	DG9B	DG9B 40mL Na Bisulfate amber vial	WGFX	WGFX 4oz wide jar w/hexane wipe
Pag	BP1U	BP1U 1 liter unpreserved plastic	BP1A	BP1A 1 liter NaOH, Asc Acid plastic	реэм	DG9M 40mL MeOH clear vial	ZPLC	ZPLC Ziploc Bag
)								•

Page 46 of 47 ge 134 of 139

Sample Container Count

Face Analytical management

yo	
lewoo	
e Grand	

CLIENT: Rice Englewood COC ID#

Sample Line

Project # 5012/072

Comments pH <2 pH>12 DG9H AG1U WGFU AG0U R 4/6 BP2N BP2U BP2S BP3N BP3U BP3S AG5 AG1H BP3C BP1U SP5T 3 ltem

	_	Container Codes				2		
	DG9H	DG9H 40mL HCL amber voa vial	AGOU	AG0U 100mL unpreserved amber glass	BP1N	BP1N 1 liter HNO3 plastic	DG9P	DG9P 40mL TSP amber vial
	AG10	AG1U 1liter unpreserved amber glass	AG1H	AG1H 1 liter HCL amber glass	BP1S	BP1S 1 liter H2SO4 plastic	DG9S	DG9S 40mL H2SO4 amber vial
	WGFU	WGFU 4oz clear soil jar	AG1S	AG1S 1 liter H2SO4 amber glass	BP1U	BP1U 1 liter unpreserved plastic	DG9T	DG9T 40mL Na Thio amber vial
	œ	R terra core kit	AG1T	AG1T 1 liter Na Thiosulfate amber glass	BP1Z	BP12 1 liter NaOH, Zn, Ac	DG90	DG9U 40mL unpreserved amber vial
	BP2N	BP2N 500mL HNO3 plastic	AG2N	AG2N 500mL HNO3 amber glass	BP2A	BP2A 500mL NaOH, Asc Acid plastic	SP5T	SP5T 120mL Coliform Na Thiosulfate
	BP2U	500mL unpreserved plastic	AG2S	AG2S 500mL H2SO4 amber glass	BP20	BP2O 500mL NaOH plastic	JGFU	JGFU 4oz unpreserved amber wide
	BP2S	BP2S 500mL H2SO4 plastic	AG2U	AG2U 500mL unpreserved amber glass	BP2Z	BP2Z 500mL NaOH, Zn Ac	כ	U Summa Can
	BP3N	BP3N 250mL HNO3 plastic	AG3U	AG3U 250ml_ unpreserved amber glass	AF [AF Air Filter	VG9H	VG9H 40mL HCL clear vial
	BP3U	BP3U 250mL unpreserved plastic	BG1H	BG1H 1 liter HCL clear glass	BP3C	BP3C 250mL NaOH plastic	VG9T	VG9T 40mL Na Thio. clear vial
	BP3S	BP3S 250mL H2SO4 plastic	BG1S	BG1S 1 liter H2SO4 clear glass	BP3Z	BP3Z 250mL NaOH, Zn Ac plastic	VG9U	VG9U 40mL unpreserved clear vial
	AG3S	AG3S 250mL H2SO4 glass amber	BG1T	BG1T 1 liter Na Thiosulfate clear glass	ပ	C Air Cassettes	VSG	VSG Headspace septa vial & HCL
	AG18	AG1S 1 liter H2SO4 amber glass	BG1U	BG1U 1 liter unpreserved glass	DG9B	DG9B 40mL Na Bisulfate amber vial	WGFX	WGFX 4oz wide jar w/hexane wipe
Pa	BP1U	BP1U 1 liter unpreserved plastic	BP1A	BP1A 1 liter NaOH, Asc Acid plastic	DG9M	DG9M 40mL MeOH clear vial	ZPLC	ZPLC Ziploc Bag

Page 135 of 139

Jason Lykins

From: Matt Beil

Sent: Wednesday, July 08, 2015 4:02 PM

To: Jason Lykins Cc: James Carlson

Subject: RE: COT235 Champion Spark Plug

Follow Up Flag: Follow up Flag Status: Flagged

Categories: Red Category

Jason,

The sample logged in as COT235:HSB-15:S040060 should be the HSB-14 sample -- COT235:HSB-14:S040060.

From: Jason Lykins [mailto:jasonl@belmontlabs.com]

Sent: Tuesday, July 07, 2015 10:18 AM

To: Matt Beil

Subject: RE: COT235 Champion Spark Plug

Importance: High

Matt, the metals data that was ran over the weekend was just reviewed late yesterday.

I'm ready to generate the final report and EDD now. I will need to have the Pace Indy lab generate the EDD for their PAH and TPH C10-34 report.

I need one thing clarified. On page 2 of the attached COC, we did not receive sample jars labeled for COT235:HSB-14:S040060. We did receive sample jars labeled for COT235:HSB-15:S040060 (which was not on the COC). We logged the sample in as COT235:HSB-15:S040060. Please let me know if this needs to be changed. Thank you,

Jason Lykins Client Services Manager Pace Analytical Services, Inc. 25 Holiday Drive | Englewood, Ohio 45322

Tel 937.832.8242 | Fax 937.832.2868 | Cel 937.974.8290 | Email jasonl@belmontlabs.com

CONFIDENTIALITY NOTICE: This e-mail message, including any attachments, is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure, or distribution is prohibited. If you have received this e-mail by mistake please contact the sender by reply e-mail, and destroy all copies of the original message.

From: Matt Beil [mailto:mbeil@hullinc.com] Sent: Tuesday, June 30, 2015 9:20 AM

To: Jason Lykins

Subject: COT235 Champion Spark Plug

Jason,

Do you know when this data is due?

J Matthew Beil, CPG Project Manager

HULL | Toledo, Ohio

ALTERNATIVE ENERGY | BROWNFIELDS | ENVIRONMENTAL | SHALE OIL & GAS | WASTE MANAGEMENT p: 419.385.2018 | f: 419.385.5487 | c: 419.283.3664 web | directions to offices

Sample Receipt Summary

15F0709

Client: Hull & Associates - Toledo Office Project Manager: Jason Lykins

Project: COT235 Champion Spark Plug Project Number: COT235 Champion Spark Plug

Report To:

Matt Beil

3401 Glendale Avenue

Toledo OH 43614

Phone: (419) 385-2018 Fax: (419) 385-5487

WO Due Date: 6/25/2015 5:00:00PM

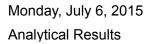
TAT (Days): 10

Received By: Scott Pander

Received: 6/11/2015 11:15:00AM

Logged In By: Peggy Whitaker

Logged In: 6/11/2015 2:32:00PM


Receipt Temp (C):	5.0
Custody Seals	True
Container Intact	True
COC/Labels agree	True
Received on ice	True
VOC vials had zero head space	True
Approved Container	True
Sufficient volume received	True
Received within HT	True
Shipped By:	Fed Ex
Number of Containers	8

Samples Received:

Laboratory ID:	Field ID:	Date/Time Sampled:	Matrix:
15F0709-19	COT235:E. Blank:W060915	6/9/2015 4:50:00PM	Groundwater
15F0709-02	COT235:HSB-2:S060080	6/8/2015 11:00:00AM	Soil
15F0709-03	COT235:HSB-3:S040050	6/9/2015 9:40:00AM	Soil
15F0709-04	COT235:HSB-4:S040060	6/9/2015 10:40:00AM	Soil
15F0709-05	COT235:HSB-5:S000020	6/9/2015 12:50:00PM	Soil
15F0709-06	COT235:HSB-6:S000020	6/9/2015 12:10:00PM	Soil
15F0709-07	COT235:HSB-7:S000020	6/9/2015 11:05:00AM	Soil
15F0709-08	COT235:HSB-8:S080100	6/8/2015 10:20:00AM	Soil
15F0709-11	COT235:HSB-11:S000020	6/9/2015 4:25:00PM	Soil
15F0709-10	COT235:HSB-10:S000020	6/8/2015 3:10:00PM	Soil
15F0709-09	COT235:HSB-9:S060080	6/8/2015 1:25:00PM	Soil
15F0709-12	COT235:HSB-12:S000020	6/8/2015 4:05:00PM	Soil

15F0709-13	COT235:HSB-13:S100120	6/9/2015	3:25:00PM	Soil
15F0709-14	COT235:HSB-14:S040060	6/9/2015	2:45:00PM	Soil
15F0709-15	COT235:HSB-16:S020040	6/9/2015	1:30:00PM	Soil
15F0709-16	COT235:HSB-17:S080100	6/8/2015	2:20:00PM	Soil
15F0709-17	COT235:HSB-18:S040060	6/9/2015	3:55:00PM	Soil
15F0709-18	COT235:Trip	6/8/2015	10:20:00AM	Water
15F0709-01	COT235:HSB-1:S040060	6/8/2015	12:00:00PM	Soil

Sample Notes:

Work Order: 15F0878

Matt Beil

Hull & Associates - Toledo Office 3401 Glendale Avenue Toledo, OH 43614

TEL: (419) 385-2018 FAX (419) 385-5487

RE: COT235 Champion Spark Plug

PACE Analytical received 9 sample(s) on 6/13/2015 for the analyses presented in the following report.

PACE Analytical attests that all analytical methods were performed using acceptable methods, and that the QA/QC procedures stipulated in these methods were followed. USEPA's RCRA Program regards a statement of quality assurance as a legal means of assuring that acceptable and uniform laboratory methods and QA/QC practices were followed by the laboratory.

If you have any questions regarding the test results, please feel free to call me at (937) 832-8242.

Respectfully submitted,

James M. Lykens

Jason Lykins

Project Manager

Certifications: NELAP/NELAC - #04130

Ohio EPA Drinking water - #836 Ohio EPA Drinking water (Micro) - #872

VAP - #CL0032

PACE Analytical Date: 7/6/2015

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Work Order Sample Summary

The results of analyses performed on the following samples submitted to Belmont Labs are found in this report.

Field Sample ID	Lab ID	Matrix	Method Reference	Subcontract Lab
COT235:HTMW-1:G061115	15F0878-01	Groundwater	SW 6010B	
			SW 7470A	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. In
COT235:HTMW-2:G061115	15F0878-02	Groundwater	SW 6010B	
			SW 7470A	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. In
COT235:HTMW-3:G061115	15F0878-03	Groundwater	SW 6010B	
			SW 7470A	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. Inc.
COT235:HTMW-4:G061215	15F0878-04	Groundwater	SW 6010B	
			SW 7470A	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. Inc.
COT235:HTMW-5:G061215	15F0878-05	Groundwater	SW 6010B	
			SW 7470A	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. Inc.
COT235:HTMW-6:G061215	15F0878-06	Groundwater	SW 6010B	
			SW 7470A	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. Inc.
COT235:HTMW-1:G061115A	15F0878-07	Groundwater	SW 6010B	
			SW 7470A	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. Inc.

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Work Order Sample Summary

The results of analyses performed on the following samples submitted to Belmont Labs are found in this report.

Field Sample ID	Lab ID	Matrix	Method Reference	Subcontract Lab
COT235:E. Blank 2:W061215	15F0878-08	Groundwater	SW 6010B	
			SW 7470A	
			SW 8260B	
			SW 8270C	Pace Analytical Services, Inc. In
COT235:TRIP -2: -	15F0878-09	Water	SW 8260B	

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-01 **Collection Date:** 6/11/2015 12:30:00PM

Client Sample ID: COT235:HTMW-1:G061115 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 7:41:05AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	0.00986	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 7:41:05AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	0.107	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 7:41:05AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 7:41:05AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	BDL	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 7:41:05AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	BDL	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 7:41:05AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	0.0100		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 7:41:05AM
HG		SW 7470A					Analyst:	CW
Mercury	BDL	0.000200		mg/L	1	1525083	6/16/2015 9:45:00AM	6/17/2015 9:40:00AM
VOC 8260		SW 8260B					Analyst:	ЕАН
1,1,1,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,1,1-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,1,2,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,1,2-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,1-Dichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,1-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,1-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,2,3-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,2,3-Trichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,2,4-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,2,4-Trimethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,2-Dibromo-3-chloropropane	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,2-Dibromoethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,2-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,2-Dichloroethane	BDL	5.00		ug/L ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,2-Dichloropropane	BDL	5.00		ug/L ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,3,5-Trimethylbenzene	BDL	5.00		ug/L ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
-,-,5 111110111101110	DDL	3.00		45 L		1020170		

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-01 **Collection Date:** 6/11/2015 12:30:00PM

Client Sample ID: COT235:HTMW-1:G061115 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,3-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,3-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
1,4-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
2,2-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
2-Butanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
2-Chlorotoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
2-Hexanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
4-Chlorotoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
4-Isopropyltoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
4-Methyl-2-pentanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Acetone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Acetonitrile	BDL	40.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Acrolein	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Acrylonitrile	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Allyl chloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Benzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Bromobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Bromochloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Bromodichloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Bromoform	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Bromomethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Carbon Disulfide	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Carbon Tetrachloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Chlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Chloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Chloroform	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Chloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
cis-1,2-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
cis-1,3-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Dibromochloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Dibromomethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Dichlorodifluoromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Ethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Hexachlorobutadiene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Iodomethane	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Isopropylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Methylene Chloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Methyl tert-Butyl Ether	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
m,p-Xylene	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Naphthalene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
n-Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
n-Hexane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
n-Propylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
o-Xylene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-01 **Collection Date:** 6/11/2015 12:30:00PM

Client Sample ID: COT235:HTMW-1:G061115 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
sec-Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Styrene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
tert_Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Tetrachloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Toluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
trans-1,2-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
trans-1,3-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Trichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Trichlorofluoromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Vinyl Chloride	BDL	1.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Vinyl acetate	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Surrogate: 4-Bromofluorobenzene		94.5 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Surrogate: Dibromofluoromethane		93.2 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Surrogate: Toluene-d8		93.1 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM
Surrogate: 1,2-Dichloroethane-d4		94.3 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 3:12:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-02 **Collection Date:** 6/11/2015 4:25:00PM

Client Sample ID: COT235:HTMW-2:G061115 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:02:33AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	0.0323	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:02:33AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	0.234	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:02:33AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:02:33AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	0.0170	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:02:33AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	0.00769	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:02:33AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	0.0100		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:02:33AM
HG		SW 7470A					Analyst:	CW
Mercury	BDL	0.000200		mg/L	1	1525083	6/16/2015 9:45:00AM	6/17/2015 9:40:00AM
VOC 8260		SW 8260B					Analyst:	ЕАН
1,1,1,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,1,1-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,1,2,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,1,2-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,1-Dichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,1-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,1-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,2,3-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,2,3-Trichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,2,4-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,2,4-Trimethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,2-Dibromo-3-chloropropane	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,2-Dibromoethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,2-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,2-Dichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,2-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,3,5-Trimethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-02 **Collection Date:** 6/11/2015 4:25:00PM

Client Sample ID: COT235:HTMW-2:G061115 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,3-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,3-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
1,4-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
2,2-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
2-Butanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
2-Chlorotoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
2-Hexanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
4-Chlorotoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
4-Isopropyltoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
4-Methyl-2-pentanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Acetone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Acetonitrile	BDL	40.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Acrolein	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Acrylonitrile	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Allyl chloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Benzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Bromobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Bromochloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Bromodichloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Bromoform	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Bromomethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Carbon Disulfide	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Carbon Tetrachloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Chlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Chloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Chloroform	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Chloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
cis-1,2-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
cis-1,3-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Dibromochloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Dibromomethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Dichlorodifluoromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Ethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Hexachlorobutadiene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Iodomethane	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Isopropylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Methylene Chloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Methyl tert-Butyl Ether	26.6	10.0		ug/L ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
m,p-Xylene	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Naphthalene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
n-Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
n-Hexane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
n-Propylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM

7/6/2015 **PACE Analytical** Date:

CLIENT: Hull & Associates - Toledo Office 15F0878 Lab Order:

COT235 Champion Spark Plug Project:

Lab ID: 15F0878-02 Collection Date: 6/11/2015 4:25:00PM Client Sample ID: COT235:HTMW-2:G061115

Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
o-Xylene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
sec-Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Styrene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
tert_Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Tetrachloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Toluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
trans-1,2-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
trans-1,3-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Trichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Trichlorofluoromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Vinyl Chloride	BDL	1.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Vinyl acetate	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Surrogate: 4-Bromofluorobenzene		93.2 %		85	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Surrogate: Dibromofluoromethane		93.3 %		85	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Surrogate: Toluene-d8		93.6 %		85	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM
Surrogate: 1,2-Dichloroethane-d4		93.7 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 2:53:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-03 **Collection Date:** 6/11/2015 3:10:00PM

Client Sample ID: COT235:HTMW-3:G061115 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:14:29AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	0.00533	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:14:29AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	0.165	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:14:29AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:14:29AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	0.00586	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:14:29AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	BDL	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:14:29AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	0.0100		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:14:29AM
HG		SW 7470A					Analyst:	CW
Mercury	BDL	0.000200		mg/L	1	1525083	6/16/2015 9:45:00AM	6/17/2015 9:40:00AM
VOC 8260		SW 8260B					Analyst:	EAH
1,1,1,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,1,1-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,1,2,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,1,2-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,1-Dichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,1-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,1-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,2,3-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,2,3-Trichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,2,4-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,2,4-Trimethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,2-Dibromo-3-chloropropane	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,2-Dibromoethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,2-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,2-Dichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,2-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,3,5-Trimethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-03 **Collection Date:** 6/11/2015 3:10:00PM

Client Sample ID: COT235:HTMW-3:G061115 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,3-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
1,4-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
2,2-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
2-Butanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
2-Chlorotoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
2-Hexanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
4-Chlorotoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
4-Isopropyltoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
4-Methyl-2-pentanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Acetone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Acetonitrile	BDL	40.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Acrolein	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Acrylonitrile	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Allyl chloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Benzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Bromobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Bromochloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Bromodichloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Bromoform	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Bromomethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Carbon Disulfide	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Carbon Tetrachloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Chlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Chloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Chloroform	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Chloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
cis-1,2-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
cis-1,3-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Dibromochloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Dibromomethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Dichlorodifluoromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Ethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Hexachlorobutadiene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Iodomethane	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Isopropylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Methylene Chloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Methyl tert-Butyl Ether	58.0	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
m,p-Xylene	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Naphthalene	BDL	5.00		ug/L ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
n-Butylbenzene	BDL	5.00		ug/L ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
n-Hexane	BDL BDL	5.00		ug/L ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
n-Propylbenzene	BDL BDL	5.00			1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
	BDL BDL	5.00		ug/L		1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
o-Xylene	DUL	3.00		ug/L	1	1323190	0/13/2013 2.00.001 W	0/15/2015 5.52.00FW

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-03 **Collection Date:** 6/11/2015 3:10:00PM

Client Sample ID: COT235:HTMW-3:G061115 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
sec-Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Styrene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
tert_Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Tetrachloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Toluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
trans-1,2-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
trans-1,3-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Trichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Trichlorofluoromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Vinyl Chloride	BDL	1.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Vinyl acetate	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Surrogate: 4-Bromofluorobenzene		94.2 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Surrogate: Dibromofluoromethane		93.8 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Surrogate: Toluene-d8		93.4 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM
Surrogate: 1,2-Dichloroethane-d4		94.5 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 3:32:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-04 **Collection Date:** 6/12/2015 9:00:00AM

Client Sample ID: COT235:HTMW-4:G061215 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:19:32AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	0.0272	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:19:32AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	0.257	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:19:32AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:19:32AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	0.0208	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:19:32AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	0.00940	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:19:32AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	0.0100		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:19:32AM
HG		SW 7470A					Analyst:	CW
Mercury	BDL	0.000200		mg/L	1	1525083	6/16/2015 9:45:00AM	6/17/2015 9:40:00AM
VOC 8260		SW 8260B					Analyst:	ЕАН
1,1,1,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,1,1-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,1,2,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,1,2-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,1-Dichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,1-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,1-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,2,3-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,2,3-Trichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,2,4-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,2,4-Trimethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,2-Dibromo-3-chloropropane	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,2-Dibromoethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,2-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,2-Dichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,2-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,3,5-Trimethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-04 **Collection Date:** 6/12/2015 9:00:00AM

Client Sample ID: COT235:HTMW-4:G061215 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,3-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,3-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
1,4-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
2,2-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
2-Butanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
2-Chlorotoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
2-Hexanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
4-Chlorotoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
4-Isopropyltoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
4-Methyl-2-pentanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Acetone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Acetonitrile	BDL	40.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Acrolein	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Acrylonitrile	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Allyl chloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Benzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Bromobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Bromochloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Bromodichloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Bromoform	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Bromomethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Carbon Disulfide	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Carbon Tetrachloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Chlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Chloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Chloroform	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Chloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
cis-1,2-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
cis-1,3-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Dibromochloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Dibromomethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Dichlorodifluoromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Ethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Hexachlorobutadiene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Iodomethane	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Isopropylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Methylene Chloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Methyl tert-Butyl Ether	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
m,p-Xylene	13.3	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Naphthalene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
n-Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
n-Hexane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
n-Propylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
				=				

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-04 **Collection Date:** 6/12/2015 9:00:00AM

Client Sample ID: COT235:HTMW-4:G061215 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
o-Xylene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
sec-Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Styrene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
tert_Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Tetrachloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Toluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
trans-1,2-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
trans-1,3-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Trichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Trichlorofluoromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Vinyl Chloride	BDL	1.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Vinyl acetate	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Surrogate: 4-Bromofluorobenzene		94.2 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Surrogate: Dibromofluoromethane		93.3 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Surrogate: Toluene-d8		93.9 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM
Surrogate: 1,2-Dichloroethane-d4		94.5 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 3:51:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-05 **Collection Date:** 6/12/2015 9:30:00AM

Client Sample ID: COT235:HTMW-5:G061215 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:25:42AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	BDL	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:25:42AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	0.123	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:25:42AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:25:42AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	0.00559	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:25:42AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	BDL	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:25:42AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	0.0100		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:25:42AM
HG		SW 7470A					Analyst:	CW
Mercury	BDL	0.000200		mg/L	1	1525083	6/16/2015 9:45:00AM	6/17/2015 9:40:00AM
VOC 8260		SW 8260B					Analyst:	ЕАН
1,1,1,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,1,1-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,1,2,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,1,2-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,1-Dichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,1-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,1-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,2,3-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,2,3-Trichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,2,4-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,2,4-Trimethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,2-Dibromo-3-chloropropane	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,2-Dibromoethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,2-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,2-Dichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,2-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,3,5-Trimethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,3-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-05 **Collection Date:** 6/12/2015 9:30:00AM

Client Sample ID: COT235:HTMW-5:G061215 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,3-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
1,4-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
2,2-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
2-Butanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
2-Chlorotoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
2-Hexanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
4-Chlorotoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
4-Isopropyltoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
4-Methyl-2-pentanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Acetone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Acetonitrile	BDL	40.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Acrolein	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Acrylonitrile	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Allyl chloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Benzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Bromobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Bromochloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Bromodichloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Bromoform	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Bromomethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Carbon Disulfide	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Carbon Tetrachloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Chlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Chloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Chloroform	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Chloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
cis-1,2-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
cis-1,3-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Dibromochloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Dibromomethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Dichlorodifluoromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Ethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Hexachlorobutadiene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Iodomethane	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Isopropylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Methylene Chloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Methyl tert-Butyl Ether	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
m,p-Xylene	11.9	10.0		ug/L ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
							6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Naphthalene n Putylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM 6/15/2015 4:11:00PM
n-Butylbenzene	BDL	5.00		ug/L	1	1525190		
n-Hexane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
n-Propylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
o-Xylene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-05 **Collection Date:** 6/12/2015 9:30:00AM

Client Sample ID: COT235:HTMW-5:G061215 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
sec-Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Styrene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
tert_Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Tetrachloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Toluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
trans-1,2-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
trans-1,3-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Trichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Trichlorofluoromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Vinyl Chloride	BDL	1.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Vinyl acetate	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Surrogate: 4-Bromofluorobenzene		94.5 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Surrogate: Dibromofluoromethane		92.5 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Surrogate: Toluene-d8		93.7 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM
Surrogate: 1,2-Dichloroethane-d4		95.3 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 4:11:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-06 **Collection Date:** 6/11/2015 3:35:00PM

Client Sample ID: COT235:HTMW-6:G061215 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:40:43AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	0.0270	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:40:43AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	1.42	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:40:43AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:40:43AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	0.00577	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:40:43AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	0.00535	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:40:43AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	0.0100		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:40:43AM
HG		SW 7470A					Analyst:	CW
Mercury	BDL	0.000200		mg/L	1	1525083	6/16/2015 9:45:00AM	6/17/2015 9:40:00AM
VOC 8260		SW 8260B					Analyst:	EAH
1,1,1,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,1,1-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,1,2,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,1,2-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,1-Dichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,1-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,1-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,2,3-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,2,3-Trichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,2,4-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,2,4-Trimethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,2-Dibromo-3-chloropropane	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,2-Dibromoethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,2-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,2-Dichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,2-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,3,5-Trimethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-06 **Collection Date:** 6/11/2015 3:35:00PM

Client Sample ID: COT235:HTMW-6:G061215 Matrix: Groundwater

Analysis	Result	PQL	Qual Units	Dilution	Batch	Date Prepared	Date Analyzed
1,3-Dichlorobenzene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,3-Dichloropropane	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
1,4-Dichlorobenzene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
2,2-Dichloropropane	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
2-Butanone	BDL	20.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
2-Chlorotoluene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
2-Hexanone	BDL	20.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
4-Chlorotoluene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
4-Isopropyltoluene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
4-Methyl-2-pentanone	BDL	20.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Acetone	BDL	20.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Acetonitrile	BDL	40.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Acrolein	BDL	20.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Acrylonitrile	BDL	20.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Allyl chloride	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Benzene	6.87	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Bromobenzene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Bromochloromethane	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Bromodichloromethane	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Bromoform	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Bromomethane	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Carbon Disulfide	BDL	20.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Carbon Tetrachloride	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Chlorobenzene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Chloroethane	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Chloroform	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Chloromethane	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
cis-1,2-Dichloroethene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
cis-1,3-Dichloropropene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Dibromochloromethane	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Dibromomethane	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Dichlorodifluoromethane	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Ethylbenzene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Hexachlorobutadiene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Iodomethane	BDL	10.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Isopropylbenzene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Methylene Chloride	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Methyl tert-Butyl Ether	18.5	10.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
m,p-Xylene	BDL	10.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Naphthalene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
n-Butylbenzene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
n-Hexane	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
n-Propylbenzene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
.,	-32						

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-06 **Collection Date:** 6/11/2015 3:35:00PM

Client Sample ID: COT235:HTMW-6:G061215 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
o-Xylene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
sec-Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Styrene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
tert_Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Tetrachloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Toluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
trans-1,2-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
trans-1,3-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Trichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Trichlorofluoromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Vinyl Chloride	BDL	1.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Vinyl acetate	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Surrogate: 4-Bromofluorobenzene		94.8 %		85	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Surrogate: Dibromofluoromethane		93.7 %		85	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Surrogate: Toluene-d8		93.2 %		85	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM
Surrogate: 1,2-Dichloroethane-d4		94.2 %		85	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 4:30:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-07 **Collection Date:** 6/11/2015 12:30:00PM

Client Sample ID: COT235:HTMW-1:G061115A Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:46:19AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	BDL	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:46:19AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	BDL	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:46:19AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:46:19AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	BDL	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:46:19AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	BDL	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:46:19AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	0.0100		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:46:19AM
HG		SW 7470A					Analyst:	CW
Mercury	BDL	0.000200		mg/L	1	1525083	6/16/2015 9:45:00AM	6/17/2015 9:40:00AM
VOC 8260		SW 8260B					Analyst:	ЕАН
1,1,1,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,1,1-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,1,2,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,1,2-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,1-Dichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,1-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,1-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,2,3-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,2,3-Trichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,2,4-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,2,4-Trimethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,2-Dibromo-3-chloropropane	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,2-Dibromoethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,2-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,2-Dichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,2-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,3,5-Trimethylbenzene	BDL	5.00		ug/L ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,3-Dichlorobenzene	BDL	5.00		ug/L ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
1,5 Diemorocenzent	BDL	5.00		ug/L	1	1525190	2.00.001741	

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-07 **Collection Date:** 6/11/2015 12:30:00PM

Client Sample ID: COT235:HTMW-1:G061115A Matrix: Groundwater

2-Butanone	Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
2.2-Dichloropropane BDL 5.00 ugL 1 1525190 6152015 2.0000974 61520015 45000974 2.2-Dichloropropane BDL 2.00 ugL 1 1525190 6152015 2.0000974 61520015 45000974 45000	1,3-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
2-Huannene	1,4-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
2-Chicorolance	2,2-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
2-Hexanore BDL 2-0 mg/L 1 152190 6152015 2000PM 6150015 4500PM	2-Butanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
	2-Chlorotoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Absolpty Discovering BDL 5.00 ugL 1 1525190 6152015 200.00PM 6152015 430.00PM Absolpty	2-Hexanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Acctone	4-Chlorotoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Acctonice BDL 20.0 ug/L 1 1525 100 6152015 20.000PM 6152015 4.900PM 6152015 4.900PM 6152015 4.900PM 6152015 4.900PM 6152015 2.000PM 6152015 4.900PM 6152015 2.000PM 6152015 4.900PM 6152015 4.900PM </td <td>4-Isopropyltoluene</td> <td>BDL</td> <td>5.00</td> <td></td> <td>ug/L</td> <td>1</td> <td>1525190</td> <td>6/15/2015 2:00:00PM</td> <td>6/15/2015 4:50:00PM</td>	4-Isopropyltoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Acetosirine BDL 40.0 ugl. 1 1525190 6152015 2:00 00PM 6152015 4:00 00PM Acrolein BDL 20.0 ugl. 1 1525190 6152015 2:00 00PM 6152015 4:00 00PM Acrolein BDL 20.0 ugl. 1 1525190 6152015 2:00 00PM 6152015 4:00 00PM Acrolein BDL 5.00 ugl. 1 1525190 6152015 2:00 00PM 6152015 4:00 00PM Acrolein BDL 5.00 ugl. 1 1525190 6152015 2:00 00PM 6152015 4:00 00PM Bromobenzee BDL 5.00 ugl. 1 1525190 6152015 2:00 00PM 6152015 4:00 00PM Bromobenzee BDL 5.00 ugl. 1 1525190 6152015 2:00 00PM 6152015 4:00 00PM Bromobenzee BDL 5.00 ugl. 1 1525190 6152015 2:00 00PM 6152015 4:00 00PM Bromobenzee BDL 5.00 ugl. 1 1525190 6152015 2:00 00PM 6152015 4:00 00PM Bromobenzee BDL 5.00 ugl. 1 1525190 6152015 2:00 00PM 6152015 4:00 00PM Bromobenzee BDL 5.00 ugl. 1 1525190 6152015 2:00 00PM 6152015 4:00 00PM Bromobenzee BDL 5.00 ugl. 1 1525190 6152015 2:00 00PM 6152015 4:00 00PM Bromobenzee BDL 5.00 ugl. 1 1525190 6152015 2:00 00PM 6152015 4:00 00PM Bromobenzee BDL 5.00 ugl. 1 1525190 6152015 2:00 00PM 6152015 4:00 00PM 615201	4-Methyl-2-pentanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Acrolein BDL 20.0 ugl. 1 1525190 6152015 20.000PM 6152015 450.00PM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Acetone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Actylonitrile	Acetonitrile	BDL	40.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
BDL S.00	Acrolein	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Beauene	Acrylonitrile	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Bromobenzene BDL 5.00 ug/L 1 1525190 6152015 20.00PM 6152015 45.00PM Bromobenzene BDL 5.00 ug/L 1 1525190 6152015 20.00PM 6152015 45.00PM Bromobenzene BDL 5.00 ug/L 1 1525190 6152015 20.00PM 6152015 45.00PM	Allyl chloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Bromochloromethane BDL 5.00 ug/L 1 1525190 6152015 2.00.0PM 6152015 45.000PM 6152015 45.00	Benzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Bromodichloromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Bromoform BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Bromomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Carbon Disulfide BDL 2.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Carbon Disulfide BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Carbon Disulfide BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Carbon Disulfide BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Chlorochane BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Chlorochane BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Chlorochane BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Chlorochane BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Cis-1,3-Dichlorochene BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Cis-1,3-Dichlorochene BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Cis-1,3-Dichlorochene BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Cis-1,3-Dichlorochene BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Cis-1,3-Dichlorochane BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM Cis-1,3-Dichlorochane BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 45.000PM 6/15/2015	Bromobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Bromoform BDL 5.00 ug/L 1 1525190 6/15/2015 200.00PM 6/15/2015 45.000PM Carbon Disulfide BDL 20.0 ug/L 1 1525190 6/15/2015 200.00PM 6/15/2015 45.000PM Carbon Disulfide BDL 5.00 ug/L 1 1525190 6/15/2015 200.00PM 6/15/2015 45.000PM Carbon Disulfide BDL 5.00 ug/L 1 1525190 6/15/2015 200.00PM 6/15/2015 45.000PM Carbon Tetrachloride BDL 5.00 ug/L 1 1525190 6/15/2015 200.00PM 6/15/2015 45.000PM Chlorochane BDL 5.00 ug/L 1 1525190 6/15/2015 200.00PM 6/15/2015 45.000PM Chlorochane BDL 5.00 ug/L 1 1525190 6/15/2015 200.00PM 6/15/2015 45.000PM Chlorochane BDL 5.00 ug/L 1 1525190 6/15/2015 200.00PM 6/15/2015 45.000PM	Bromochloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Browner BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.000PM Carbon Disulfide BDL 20.0 ug/L 1 1525190 6152015 2.00.00PM 6152015 45.000PM Carbon Etrachloride BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.000PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L 1 1525190 6152015 2.00.00PM 6152015 45.00PM Chlorobenzene BDL Sol ug/L	Bromodichloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Carbon Disulfide BDL 20.0 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 450.00PM Chlorobenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 450.00PM Chlorochane BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 450.00PM Chlorochane BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 450.00PM Chlorochane BDL 5.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 450.00PM 6/15/2015 4	Bromoform	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Carbon Tetrachloride BDL 5.00 ug/L 1 1525190 6/15/2015 20000PM 6/15/2015 4/5000PM Chlorobenzene BDL 5.00 ug/L 1 1525190 6/15/2015 200.00PM 6/15/2015 4/50.00PM Chlorochane BDL 5.00 ug/L 1 1525190 6/15/2015 200.00PM 6/15/2015 4/50.00PM Chloroform BDL 5.00 ug/L 1 1525190 6/15/2015 200.00PM 6/15/2015 4/50.00PM Chloroform BDL 5.00 ug/L 1 1525190 6/15/2015 200.00PM 6/15/2015 4/50.00PM Chloroformethane BDL 5.00 ug/L 1 1525190 6/15/2015 200.00PM 6/15/2015 4/50.00PM Dibromochloromethane BDL 5.00 ug/L 1 1525190 6/15/2015 200.00PM 6/15/2015 4/50.00PM Dibrlorodifluoromethane BDL 5.00 ug/L 1 1525190 6/15	Bromomethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Chlorobenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00.00PM 6/15/2015 4:50.00PM Chlorocthane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00.00PM 6/15/2015 4:50.00PM Chlorocthane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00.00PM 6/15/2015 4:50.00PM Chlorocthane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00.00PM 6/15/2015 4:50.00PM	Carbon Disulfide	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Chloroethane BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Chloroform BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Chloromethane BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,2-Dichloroethene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4.50.00PM Cis-1,3-Dichloropropene 6	Carbon Tetrachloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Chloroform BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM cis-1,2-Dichloroethene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM cis-1,2-Dichloroethene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM cis-1,3-Dichloropropene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM Dibromochloromethane BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM Dichlorodifluoromethane BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM Ethylbenzene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM Ethylbenzene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM Ethylbenzene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM Ethylbenzene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM Ethylbenzene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM Ethylbenzene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM Ethylbenzene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM Ethylbenzene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM Ethylbenzene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM Ethylbenzene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM Ethylbenzene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM Ethylbenzene BDL S.00 ug/L 1 1525190 6/15/2015 2.00.00PM 6/15/2015 4:50.00PM Ethylbenzene BDL S.00 ug/L	Chlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Chloromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM cis-1,2-Dichloroethene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM cis-1,3-Dichloropropene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM cis-1,3-Dichloropropene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dibromochloromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dibromochlane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/	Chloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
cis-1,2-Dichloroethene BDL 5.00 ug/L 1 1525190 6/15/2015 2:0:0:0PM 6/15/2015 4:50:00PM cis-1,3-Dichloropropene BDL 5.00 ug/L 1 1525190 6/15/2015 2:0:0:0PM 6/15/2015 4:50:00PM Dibromochloromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:0:0:0PM 6/15/2015 4:50:00PM Dibromochloromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:0:0:0PM 6/15/2015 4:50:00PM Dibromomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:0:0:0PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:0:0:0PM 6/15/2015 4:50:00PM Hexachlorobutadiene BDL 5.00 ug/L 1 1525190 6/15/2015 2:0:0:0PM 6/15/2015 4:50:00PM Idomethane BDL 5.00 ug/L 1 152	Chloroform	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Second Control of the Control of t	Chloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Dibromochloromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dibromomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dibromomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluoromethane Dichlorodifluorom	cis-1,2-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Dibromomethane BDL S.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Dichlorodifluoromethane BDL S.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL S.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL S.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM 6/15/2015	cis-1,3-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Dichlorodifluoromethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00P	Dibromochloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Ethylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lexachlorobutadiene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/	Dibromomethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Hexachlorobutadiene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lodomethane BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lsopropylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lsopropylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl Ether BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl Ether BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl Ether BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl Ether BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl Ether BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl Ether BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl Ether BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl Ether BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl Ether BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl Ether BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl Ether BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl Ether BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl Ether BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl Ether BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl Ether BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM lethyl tert-Butyl t	Dichlorodifluoromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Iodomethane BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Isopropylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Methylene Chloride BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Methyl tert-Butyl Ether BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM m.p-Xylene BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Naphthalene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Butylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190	Ethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Iodomethane BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Isopropylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Methylene Chloride BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Methyl tert-Butyl Ether BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM m.p-Xylene BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Naphthalene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Butylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190	Hexachlorobutadiene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Methylene Chloride BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Methyl tert-Butyl Ether BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM m,p-Xylene BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Naphthalene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Butylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Hexane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM o-Xylene BDL 5.00 ug/L 1 1525190 6/15/2015 </td <td>Iodomethane</td> <td>BDL</td> <td>10.0</td> <td></td> <td>ug/L</td> <td>1</td> <td>1525190</td> <td>6/15/2015 2:00:00PM</td> <td>6/15/2015 4:50:00PM</td>	Iodomethane	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Methyl tert-Butyl Ether BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM m.p-Xylene BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Naphthalene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Butylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Hexane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM o-Xylene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM	Isopropylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
m,p-Xylene BDL 10.0 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM Naphthalene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Butylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Hexane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/1	Methylene Chloride		5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Naphthalene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Butylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Hexane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM o-Xylene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM	Methyl tert-Butyl Ether	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
n-Butylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Hexane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM o-Xylene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM	m,p-Xylene	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
n-Butylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Hexane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM o-Xylene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM	Naphthalene		5.00			1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
n-Hexane BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM o-Xylene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM	n-Butylbenzene		5.00			1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
n-Propylbenzene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM o-Xylene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM	•							6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
o-Xylene BDL 5.00 ug/L 1 1525190 6/15/2015 2:00:00PM 6/15/2015 4:50:00PM	n-Propylbenzene		5.00			1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
			5.00			1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
	sec-Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-07 **Collection Date:** 6/11/2015 12:30:00PM

Client Sample ID: COT235:HTMW-1:G061115A Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
Styrene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
tert_Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Tetrachloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Toluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
trans-1,2-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
trans-1,3-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Trichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Trichlorofluoromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Vinyl Chloride	BDL	1.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Vinyl acetate	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Surrogate: 4-Bromofluorobenzene		94.7 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Surrogate: Dibromofluoromethane		94.0 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Surrogate: Toluene-d8		93.4 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM
Surrogate: 1,2-Dichloroethane-d4		94.8 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 4:50:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-08 **Collection Date:** 6/12/2015 10:10:00AM

Client Sample ID: COT235:E. Blank 2:W061215 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
ICP_Ag		SW 6010B					Analyst:	RJE
Silver	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:51:00AM
ICP_As		SW 6010B					Analyst:	RJE
Arsenic	0.00558	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:51:00AM
ICP_Ba		SW 6010B					Analyst:	RJE
Barium	0.109	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:51:00AM
ICP_Cd		SW 6010B					Analyst:	RJE
Cadmium	BDL	0.00200		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:51:00AM
ICP_Cr		SW 6010B					Analyst:	RJE
Chromium	BDL	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:51:00AM
ICP_Pb		SW 6010B					Analyst:	RJE
Lead	BDL	0.00500		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:51:00AM
ICP_Se		SW 6010B					Analyst:	RJE
Selenium	BDL	0.0100		mg/L	1	1527039	6/29/2015 1:15:00PM	7/5/2015 8:51:00AM
HG		SW 7470A					Analyst:	CW
Mercury	BDL	0.000200		mg/L	1	1525083	6/16/2015 9:45:00AM	6/17/2015 9:40:00AM
VOC 8260		SW 8260B					Analyst:	ЕАН
1,1,1,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,1,1-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,1,2,2-Tetrachloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,1,2-Trichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,1-Dichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,1-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,1-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,2,3-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,2,3-Trichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,2,4-Trichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,2,4-Trimethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,2-Dibromo-3-chloropropane	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,2-Dibromoethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,2-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,2-Dichloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,2-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,3,5-Trimethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,3-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-08 **Collection Date:** 6/12/2015 10:10:00AM

Client Sample ID: COT235:E. Blank 2:W061215 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
1,3-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
1,4-Dichlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
2,2-Dichloropropane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
2-Butanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
2-Chlorotoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
2-Hexanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
4-Chlorotoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
4-Isopropyltoluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
4-Methyl-2-pentanone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Acetone	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Acetonitrile	BDL	40.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Acrolein	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Acrylonitrile	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Allyl chloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Benzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Bromobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Bromochloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Bromodichloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Bromoform	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Bromomethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Carbon Disulfide	BDL	20.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Carbon Tetrachloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Chlorobenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Chloroethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Chloroform	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Chloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
cis-1,2-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
cis-1,3-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Dibromochloromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Dibromomethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Dichlorodifluoromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Ethylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Hexachlorobutadiene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Iodomethane	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Isopropylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Methylene Chloride	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Methyl tert-Butyl Ether	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
m,p-Xylene	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Naphthalene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
n-Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
n-Hexane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
n-Propylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
o-Xylene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
sec-Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-08 **Collection Date:** 6/12/2015 10:10:00AM

Client Sample ID: COT235:E. Blank 2:W061215 Matrix: Groundwater

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
Styrene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
tert_Butylbenzene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Tetrachloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Toluene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
trans-1,2-Dichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
trans-1,3-Dichloropropene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Trichloroethene	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Trichlorofluoromethane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Vinyl Chloride	BDL	1.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Vinyl acetate	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Surrogate: 4-Bromofluorobenzene		94.4 %		85	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Surrogate: Dibromofluoromethane		92.9 %		85	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Surrogate: Toluene-d8		93.4 %		85	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM
Surrogate: 1,2-Dichloroethane-d4		94.4 %		85	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 5:09:00PM

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-09 **Collection Date:** 6/11/2015 12:30:00PM

Client Sample ID: COT235:TRIP -2: - Matrix: Water

Analysis	Result	PQL	Qual Units	Dilution	Batch	Date Prepared	Date Analyzed
VOC 8260_TB		SW 8260B				Analyst:	EAH
1,1,1,2-Tetrachloroethane	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
1,1,1-Trichloroethane	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
1,1,2,2-Tetrachloroethane	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
1,1,2-Trichloroethane	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
1,1-Dichloroethane	BDL	2.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
1,1-Dichloroethene	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
1,1-Dichloropropene	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
1,2-Dibromoethane	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
1,2-Dichloroethane	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
1,2-Dichloropropane	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
1,3-Dichloropropane	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
2,2-Dichloropropane	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
2-Butanone	BDL	10.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
2-Chlorotoluene	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
2-Hexanone	BDL	10.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
4-Chlorotoluene	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
4-Methyl-2-pentanone	BDL	10.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Acetone	BDL	10.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Acetonitrile	BDL	40.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Acrolein	BDL	20.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Acrylonitrile	BDL	10.0	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Allyl chloride	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Benzene	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Bromobenzene	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Bromochloromethane	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Bromodichloromethane	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Bromoform	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Bromomethane	BDL	2.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Carbon Disulfide	BDL	5.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Carbon Tetrachloride	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Chlorobenzene	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Chloroethane	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Chloroform	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Chloromethane	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
cis-1,2-Dichloroethene	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
cis-1,3-Dichloropropene	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Dibromochloromethane	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Dibromomethane	BDL	1.00	ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Dichlorodifluoromethane	BDL	2.00	ug/L ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Ethylbenzene	BDL	1.00	ug/L ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Iodomethane	BDL	10.0	ug/L ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Methylene Chloride	BDL BDL	1.00		1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
wich yield Chioride	ÐDL	1.00	ug/L	1	1323170	5,15,2515 2.00.001 W	5, 15,2015 2.54.001 W

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Lab ID: 15F0878-09 **Collection Date:** 6/11/2015 12:30:00PM

Client Sample ID: COT235:TRIP -2: - Matrix: Water

Analysis	Result	PQL	Qual	Units	Dilution	Batch	Date Prepared	Date Analyzed
Methyl tert-Butyl Ether	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
m,p-Xylene	BDL	2.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
n-Hexane	BDL	5.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
o-Xylene	BDL	1.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Styrene	BDL	1.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Tetrachloroethene	BDL	2.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Toluene	BDL	1.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
trans-1,2-Dichloroethene	BDL	1.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
trans-1,3-Dichloropropene	BDL	1.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Trichloroethene	BDL	2.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Trichlorofluoromethane	BDL	2.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Vinyl Chloride	BDL	1.00		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Vinyl acetate	BDL	10.0		ug/L	1	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Surrogate: 4-Bromofluorobenzene		94.4 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Surrogate: Dibromofluoromethane		92.8 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Surrogate: Toluene-d8		93.5 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM
Surrogate: 1,2-Dichloroethane-d4		92.1 %		85-	-115	1525190	6/15/2015 2:00:00PM	6/15/2015 2:34:00PM

CLIENT:Hull & Associates - Toledo OfficeLab Order:15F0878

Project: COT235 Champion Spark Plug

Total Metals by ICP - Quality Control

Prepared: 16/29/15 Analyzed: 19/25 Statistical Propared: 16/29/15 Analyzed: 19/25 Statistical Prop											
Batch 1527039 - PREP ICP W		D		** **	-		A/DEC		DDD		37.
Prepared: 16/29/15 Analyzed: 19/25 Statistical Propared: 16/29/15 Analyzed: 19/25 Statistical Prop	Analyte	Kesult	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
BBUL 0,00500 mg/L 0,0000 0,0000 mg/L 0,0000 0,0000 mg/L 0,0000 0,0000 mg/L 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	Batch 1527039 - PREP_ICP_W										
Barium	Blank (1527039-BLK1)				Prepared: (06/29/15 Ar	nalyzed: 07	//05/15			
Cadmium	Arsenic	BDL	0.00500	mg/L							
Chromium BDL 0,00500 mg/L	Barium	BDL	0.00500	mg/L							
Read	Cadmium	BDL	0.00200	mg/L							
Selenium BDL 0.0100 mg/L	Chromium	BDL	0.00500	mg/L							
Note	Lead	BDL	0.00500	mg/L							
Prepared: 06/29/15 Analyzed: 07/05/15 Prep	Selenium	BDL	0.0100	mg/L							
Arsenic 0.938 0.00500 mg/L 1.000 93.8 85-115	Silver	BDL	0.00200	mg/L							
Barium	LCS (1527039-BS1)				Prepared: (06/29/15 Ar	nalyzed: 07	7/05/15			
Cadmium 0.946 0.00200 mg/L 1.000 94.6 85-115 Chromium 0.962 0.00500 mg/L 1.000 96.2 85-115 Lead 0.961 0.00500 mg/L 1.000 96.1 85-115 Selenium 0.957 0.0100 mg/L 1.000 95.7 85-115 Silver 0.960 0.0020 mg/L 1.000 95.7 85-115 LCS Dup (1527039-BSD1) Prepared: 06/29/15 Analyzed: 07/05/15 Arsenic 0.922 0.00500 mg/L 1.000 92.2 85-115 1.74 20 Barium 1.07 0.00500 mg/L 1.000 92.2 85-115 1.82 20 Chromium 0.924 0.00500 mg/L 1.000 94.4 85-115 1.94 20 Lead 0.941 0.00500 mg/L 1.000 94.1 85-115 1.37 20 Silver 0.941 0.0020<	Arsenic	0.938	0.00500	mg/L	1.000		93.8	85-115			
Chromium	Barium	1.09	0.00500	mg/L	1.000		109	85-115			
Lead 0.961 0.00500 mg/L 1.000 96.1 mg/L 85-115 Selenium 0.957 0.0100 mg/L 1.000 95.7 mg/L 85-115 Silver 0.960 0.00200 mg/L 1.000 96.0 mg/L 85-115 Prepared: 06/29/15 Analyzed: 07/05/15 Asenic 0.922 mg/L 0.00500 mg/L 1.000 mg/L 1.000 mg/L 85-115 mg/L 1.74 mg/L 20 Cadmium 0.929 mg/L 0.00200 mg/L 1.000 mg/L 92.9 mg/L 85-115 mg/L 1.82 mg/L 20 Chromium 0.944 mg/L 0.00500 mg/L 1.000 mg/L 94.4 mg/L 85-115 mg/L 1.94 mg/L 20 Chromium 0.941 mg/L 0.00500 mg/L 1.000 mg/L 94.4 mg/L 85-115 mg/L 1.94 mg/L 20 Selenium 0.941 mg/L 0.00500 mg/L 1.000 mg/L 94.1 mg/L 85-115 mg/L 2.09 mg/L Arsenic 0.941 mg/L 0.00200 mg/L 0.003 mg/L 0.003 mg/L 0.0323 mg/L 41.5 mg/L 2.0 Arsenic 0.0212 m	Cadmium	0.946	0.00200	mg/L	1.000		94.6	85-115			
Selenium 0.957 0.0100 mg/L 1.000 95.7 85-115	Chromium	0.962	0.00500	mg/L	1.000		96.2	85-115			
No. No.	Lead	0.961	0.00500	mg/L	1.000		96.1	85-115			
Prepared: 06/29/15 Analyzed: 07/05/15 Arsenic 0.922 0.00500 mg/L 1.000 92.2 85-115 1.74 20 Barium 1.07 0.00500 mg/L 1.000 107 85-115 2.14 20 Cadmium 0.929 0.00200 mg/L 1.000 92.9 85-115 1.82 20 Chromium 0.944 0.00500 mg/L 1.000 94.4 85-115 1.94 20 Cadmium 0.941 0.00500 mg/L 1.000 94.4 85-115 1.94 20 Cadmium 0.941 0.00500 mg/L 1.000 94.1 85-115 2.09 20 Cadmium 0.944 0.0100 mg/L 1.000 94.1 85-115 1.37 20 Cadmium 0.944 0.0100 mg/L 1.000 94.1 85-115 1.37 20 Cadmium 0.941 0.00200 mg/L 1.000 94.1 85-115 2.04 20 Cadmium 0.0212 0.00500 mg/L 1.000 94.1 85-115 2.04 20 Cadmium 0.00391 0.00500 mg/L 0.0323 41.5 20 Cadmium 0.000391 0.00200 mg/L 0.0334 8.08 20 Cadmium 0.000391 0.00200 mg/L 0.00367 6.33 20 Chromium 0.0166 0.00500 mg/L 0.00769 9.60 20 Cadmium 0.00199 0.0100 mg/L 0.00769 9.60 20 Cadmium 0.00199 0.0100 mg/L 0.00678 109 20	Selenium	0.957	0.0100	mg/L	1.000		95.7	85-115			
Arsenic 0.922 0.00500 mg/L 1.000 92.2 85-115 1.74 20 Barium 1.07 0.00500 mg/L 1.000 107 85-115 2.14 20 Cadmium 0.929 0.00200 mg/L 1.000 92.9 85-115 1.82 20 Chromium 0.944 0.00500 mg/L 1.000 94.4 85-115 1.94 20 Lead 0.941 0.00500 mg/L 1.000 94.1 85-115 2.09 20 Selenium 0.944 0.0100 mg/L 1.000 94.1 85-115 1.37 20 Silver 0.941 0.00200 mg/L 1.000 94.1 85-115 2.04 20 Duplicate (1527039-DUP1) Source: 15F0878-02 Prepared: 06/29/15 Analyzed: 07/05/15 Arsenic 0.0212 0.00500 mg/L 0.0323 41.5 20 Barium 0.254 0.00500 mg/L 0.0323 41.5 20 Barium 0.0254 0.00500 mg/L 0.034 8.08 20 Cadmium 0.000391 0.00200 mg/L 0.00367 6.33 20 Chromium 0.0166 0.00500 mg/L 0.0170 2.11 20 Lead 0.00698 0.00500 mg/L 0.00769 9.60 20 Selenium 0.00199 0.0100 mg/L 0.00678 109 20	Silver	0.960	0.00200	mg/L	1.000		96.0	85-115			
Barium 1.07 0.00500 mg/L 1.000 107 85-115 2.14 20	LCS Dup (1527039-BSD1)				Prepared: (06/29/15 Ar	nalyzed: 07	7/05/15			
Cadmium 0.929 0.00200 mg/L 1.000 92.9 85-115 1.82 1.82 20 Chromium 0.944 0.00500 mg/L 1.000 94.4 85-115 1.94 20 Lead 0.941 0.00500 mg/L 1.000 94.1 85-115 2.09 20 Selenium 0.944 0.0100 mg/L 1.000 94.4 85-115 1.37 20 Silver 0.941 0.00200 mg/L 1.000 94.1 85-115 2.04 20 Duplicate (1527039-DUP1) Source: 15F0878-02 Prepared: 06/29/15 Analyzed: 07/05/15 Arsenic 0.0212 0.00500 mg/L 0.0323 41.5 20 Barium 0.254 0.00500 mg/L 0.234 8.08 20 Cadmium 0.000391 0.00200 mg/L 0.000367 6.33 20 Chromium 0.0166 0.00500 mg/L 0.0170 2.11 20 Lead 0.00698 0.00500 mg/L 0.00769 9.60 20 Selenium 0.00199 0.0100 mg/L 0.00678 109 20	Arsenic	0.922	0.00500	mg/L	1.000		92.2	85-115	1.74	20	
Chromium 0.944 0.00500 mg/L 1.000 94.4 85-115 1.94 20 Lead 0.941 0.00500 mg/L 1.000 94.1 85-115 2.09 20 Selenium 0.944 0.0100 mg/L 1.000 94.4 85-115 1.37 20 Silver 0.941 0.00200 mg/L 1.000 94.1 85-115 2.04 20 Duplicate (1527039-DUP1) Source: 15F0878-02 Prepared: 06/29/15 Analyzed: 07/05/15 Arsenic 0.0212 0.00500 mg/L 0.00500 mg/L 0.0323 41.5 20 Barium 0.254 0.00500 mg/L 0.0030 mg/L 0.0234 8.08 20 Cadmium 0.000391 0.00200 mg/L 0.00367 6.33 20 Chromium 0.0166 0.00500 mg/L 0.0170 2.11 20 Lead 0.00698 0.00500 mg/L 0.00769 9.60 20 Selenium 0.00199 0.0100 mg/L 0.00678 109 20	Barium	1.07	0.00500	mg/L	1.000		107	85-115	2.14	20	
Lead 0.941 0.00500 mg/L 1.000 94.1 85-115 2.09 20 Selenium 0.944 0.0100 mg/L 1.000 94.4 85-115 1.37 20 Silver 0.941 0.00200 mg/L 1.000 94.1 85-115 2.04 20 Duplicate (1527039-DUP1) Source: 15F0878-02 Prepared: 06/29/15 Analyzed: 07/05/15 Arsenic 0.0212 0.00500 mg/L 0.00500 mg/L 0.0323 41.5 20 Barium 0.254 0.00500 mg/L 0.0030 0.234 0.00367 63.3 20 Cadmium 0.000391 0.00200 mg/L 0.00367 63.3 20 6.33 20 Chromium 0.0166 0.00500 mg/L 0.0170 2.11 20 2.11 20 Lead 0.00698 0.00500 mg/L 0.00769 9.60 20 9.60 20 Selenium 0.00199 0.0100 mg/L 0.00678 109 20 109 20	Cadmium	0.929	0.00200	mg/L	1.000		92.9	85-115	1.82	20	
Selenium 0.944 0.0100 mg/L 1.000 94.4 85-115 1.37 20 Silver 0.941 0.00200 mg/L 1.000 94.1 85-115 2.04 20 Duplicate (1527039-DUP1) Source: 15F0878-02 Prepared: 06/29/15 Analyzed: 07/05/15 Arsenic 0.0212 0.00500 mg/L 0.0323 41.5 20 Barium 0.254 0.00500 mg/L 0.234 8.08 20 Cadmium 0.000391 0.00200 mg/L 0.000367 6.33 20 Chromium 0.0166 0.00500 mg/L 0.0170 2.11 20 Lead 0.00698 0.00500 mg/L 0.00769 9.60 20 Selenium 0.00199 0.0100 mg/L 0.00678 109 20	Chromium	0.944	0.00500	mg/L	1.000		94.4	85-115	1.94	20	
Silver 0.941 0.00200 mg/L 1.000 94.1 85-115 2.04 20 Duplicate (1527039-DUP1) Source: 15F0878-02 Prepared: 06/29/15 Analyzed: 07/05/15 Arsenic 0.0212 0.00500 mg/L 0.0323 41.5 20 Barium 0.254 0.00500 mg/L 0.234 8.08 20 Cadmium 0.000391 0.00200 mg/L 0.000367 6.33 20 Chromium 0.0166 0.00500 mg/L 0.0170 2.11 20 Lead 0.00698 0.00500 mg/L 0.00769 9.60 20 Selenium 0.00199 0.0100 mg/L 0.00678 109 20	Lead	0.941	0.00500	mg/L	1.000		94.1	85-115	2.09	20	
Duplicate (1527039-DUP1) Source: 15F0878-02 Prepared: 06/29/15 Analyzed: 07/05/15 Arsenic 0.0212 0.00500 mg/L 0.0323 41.5 20 Barium 0.254 0.00500 mg/L 0.234 8.08 20 Cadmium 0.000391 0.00200 mg/L 0.000367 6.33 20 Chromium 0.0166 0.00500 mg/L 0.0170 2.11 20 Lead 0.00698 0.00500 mg/L 0.00769 9.60 20 Selenium 0.00199 0.0100 mg/L 0.00678 109 20	Selenium	0.944	0.0100	mg/L	1.000		94.4	85-115	1.37	20	
Arsenic 0.0212 0.00500 mg/L 0.0323 41.5 20 Barium 0.254 0.00500 mg/L 0.234 8.08 20 Cadmium 0.000391 0.00200 mg/L 0.000367 6.33 20 Chromium 0.0166 0.00500 mg/L 0.0170 2.11 20 Lead 0.00698 0.00500 mg/L 0.00769 9.60 20 Selenium 0.00199 0.0100 mg/L 0.00678 109 20	Silver	0.941	0.00200	mg/L	1.000		94.1	85-115	2.04	20	
Barium 0.254 0.00500 mg/L 0.234 8.08 20 Cadmium 0.000391 0.00200 mg/L 0.000367 6.33 20 Chromium 0.0166 0.00500 mg/L 0.0170 2.11 20 Lead 0.00698 0.00500 mg/L 0.00769 9.60 20 Selenium 0.00199 0.0100 mg/L 0.00678 109 20	Duplicate (1527039-DUP1)	Sou	ırce: 15F0878-	02	Prepared: (06/29/15 Ar	nalyzed: 07	7/05/15			
Cadmium 0.000391 0.00200 mg/L 0.000367 6.33 20 Chromium 0.0166 0.00500 mg/L 0.0170 2.11 20 Lead 0.00698 0.00500 mg/L 0.00769 9.60 20 Selenium 0.00199 0.0100 mg/L 0.00678 109 20	Arsenic	0.0212	0.00500	mg/L		0.0323			41.5	20	
Chromium 0.0166 0.00500 mg/L 0.0170 2.11 20 Lead 0.00698 0.00500 mg/L 0.00769 9.60 20 Selenium 0.00199 0.0100 mg/L 0.00678 109 20	Barium	0.254	0.00500	mg/L		0.234			8.08	20	
Lead 0.00698 0.00500 mg/L 0.00769 9.60 20 Selenium 0.00199 0.0100 mg/L 0.00678 109 20	Cadmium	0.000391	0.00200			0.000367			6.33	20	
Selenium 0.00199 0.0100 mg/L 0.00678 109 20	Chromium	0.0166	0.00500	mg/L		0.0170			2.11	20	
	Lead	0.00698	0.00500	mg/L		0.00769			9.60	20	
Silver BDL 0.00200 mg/L ND 20	Selenium	0.00199	0.0100	mg/L		0.00678			109	20	
	Silver	BDL	0.00200	mg/L		ND				20	

CLIENT: Hull & Associates - Toledo Office

Project: COT235 Champion Spark Plug

Lab Order:

15F0878

Total Metals by ICP - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (1527039-MS1)	Sour	ce: 15F0878-	01	Prepared:	06/29/15 An	alyzed: 07	7/05/15		
Arsenic	0.931	0.00500	mg/L	1.000	0.00986	92.2	75-125		
Barium	1.13	0.00500	mg/L	1.000	0.107	102	75-125		
Cadmium	0.880	0.00200	mg/L	1.000	ND	88.0	75-125		
Chromium	0.905	0.00500	mg/L	1.000	0.000943	90.4	75-125		
Lead	0.892	0.00500	mg/L	1.000	ND	89.2	75-125		
Selenium	0.928	0.0100	mg/L	1.000	0.00705	92.1	75-125		
Silver	0.925	0.00200	mg/L	1.000	ND	92.5	75-125		
Matrix Spike Dup (1527039-MSD1)	Sour	rce: 15F0878-	01	Prepared:	06/29/15 Ana	alyzed: 07	7/05/15		
Arsenic	0.903	0.00500	mg/L	1.000	0.00986	89.3	75-125	3.12	20
Barium	1.09	0.00500	mg/L	1.000	0.107	98.0	75-125	3.75	20
Cadmium	0.853	0.00200	mg/L	1.000	ND	85.3	75-125	3.16	20
Chromium	0.872	0.00500	mg/L	1.000	0.000943	87.1	75-125	3.66	20
Lead	0.864	0.00500	mg/L	1.000	ND	86.4	75-125	3.22	20
Selenium	0.909	0.0100	mg/L	1.000	0.00705	90.2	75-125	2.14	20
Silver	0.909	0.00200	mg/L	1.000	ND	90.9	75-125	1.78	20
Post Spike (1527039-PS1)	Sour	rce: 15F0878-	01	Prepared:	06/29/15 An	alyzed: 07	7/05/15		
Arsenic	0.856		mg/L	1.000	0.00986	84.6	75-125		
Barium	1.11		mg/L	1.000	0.107	100	75-125		
Cadmium	0.855		mg/L	1.000	0.0000280	85.5	75-125		
Chromium	0.882		mg/L	1.000	0.000943	88.1	75-125		
Lead	0.867		mg/L	1.000	-0.000989	86.7	75-125		
Selenium	0.911		mg/L	1.000	0.00705	90.4	75-125		
Silver	0.914		mg/L	1.000	0.000372	91.3	75-125		

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Mercury Analysis - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1525083 - PREP HG W										
Datch 1323003 - 1 REI _HG_W										
Blank (1525083-BLK1)				Prepared: 06	6/16/15 A	nalyzed: 06	/17/15			
Mercury	BDL	0.000200	mg/L							
LCS (1525083-BS1)				Prepared: 06	5/16/15 A	nalyzed: 06	/17/15			
Mercury	0.00626	0.000200	mg/L	0.006250		100	80-120			
LCS Dup (1525083-BSD1)				Prepared: 06	6/16/15 A	nalyzed: 06	/17/15			
Mercury	0.00582	0.000200	mg/L	0.006250		93	80-120	7	20	
Matrix Spike (1525083-MS1)	Sour	ce: 15F0709-	19	Prepared: 06	6/16/15 A	nalyzed: 06	/17/15			
Mercury	0.00629	0.000200	mg/L	0.006250	ND	101	70-130			
Matrix Spike Dup (1525083-MSD1)	Soui	ce: 15F0709-	19	Prepared: 06	6/16/15 A	nalyzed: 06	/17/15			
Mercury	0.00642	0.000200	mg/L	0.006250	ND	103	70-130	2	30	

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1525190 - VOC PREP										
Blank (1525190-BLK1)				Prepared &	Analyzed:	06/15/15				
1,1,1,2-Tetrachloroethane	BDL	1.00	ug/L							
1,1,1,2-Tetrachloroethane	BDL	5.00	ug/L							
,1,1-Trichloroethane	BDL	1.00	ug/L							
,1,1-Trichloroethane	BDL	5.00	ug/L							
,1,2,2-Tetrachloroethane	BDL	1.00	ug/L							
,1,2,2-Tetrachloroethane	BDL	5.00	ug/L							
,1,2-Trichloroethane	BDL	1.00	ug/L							
,1,2-Trichloroethane	BDL	5.00	ug/L							
,1-Dichloroethane	BDL	2.00	ug/L							
,1-Dichloroethane	BDL	5.00	ug/L							
,1-Dichloroethene	BDL	1.00	ug/L							
,1-Dichloroethene	BDL	5.00	ug/L							
,1-Dichloropropene	BDL	5.00	ug/L							
,1-Dichloropropene	BDL	5.00	ug/L							
,2,3-Trichlorobenzene	BDL	5.00	ug/L							
,2,3-Trichloropropane	BDL	5.00	ug/L							
,2,4-Trichlorobenzene	BDL	5.00	ug/L							
,2,4-Trimethylbenzene	BDL	5.00	ug/L							
,2-Dibromo-3-chloropropane	BDL	10.0	ug/L							
,2-Dibromoethane	BDL	5.00	ug/L							
,2-Dibromoethane	BDL	5.00	ug/L							
,2-Dichlorobenzene	BDL	5.00	ug/L							
,2-Dichloroethane	BDL	1.00	ug/L							
,2-Dichloroethane	BDL	5.00	ug/L							
,2-Dichloropropane	BDL	1.00	ug/L							
,2-Dichloropropane	BDL	5.00	ug/L							
,3,5-Trimethylbenzene	BDL	5.00	ug/L							
,3-Dichlorobenzene	BDL	5.00	ug/L							
,3-Dichloropropane	BDL	1.00	ug/L							
,3-Dichloropropane	BDL	5.00	ug/L							
,4-Dichlorobenzene	BDL	5.00	ug/L							
,2-Dichloropropane	BDL	1.00	ug/L							
,2-Dichloropropane	BDL	5.00	ug/L							
-Butanone	BDL	10.0	ug/L							
-Butanone	BDL	20.0	ug/L							
-Chlorotoluene	BDL	1.00	ug/L							
-Chlorotoluene	BDL	5.00	ug/L							
-Hexanone	BDL	10.0	ug/L							
-Hexanone	BDL	20.0	ug/L							
-Chlorotoluene	BDL	1.00	ug/L							
-Chlorotoluene	BDL	5.00	ug/L							
-Isopropyltoluene	BDL	5.00	ug/L							
-Methyl-2-pentanone	BDL	10.0	ug/L							
-Methyl-2-pentanone	BDL	20.0	ug/L							
Acetone	BDL	10.0	ug/L							

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (1525190-BLK1) Prepared & Analyzed: 06/15/15 acetone BDL 20.0 ug/L	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
section section	Batch 1525190 - VOC PREP										
sectionalish BDL 400 ug/L cetionalish BDL 400 ug/L cetionalish BDL 200 ug/L cetionalish BDL 200 ug/L cetionalish BDL 100 ug/L tally chloride BDL 100 ug/L causene BDL 500 ug/L causene BDL 500 </th <th>Blank (1525190-BLK1)</th> <th></th> <th></th> <th></th> <th>Prepared &</th> <th>ኔ Analyzed:</th> <th>06/15/15</th> <th></th> <th></th> <th></th> <th></th>	Blank (1525190-BLK1)				Prepared &	ኔ Analyzed:	06/15/15				
secondrino BDL 40 0 mg/L cerolein BDL 20 0 mg/L cerolein BDL 20 0 mg/L cerolein BDL 10 0 mg/L cerolein BDL 10 0 mg/L Utyl chloride BDL 10 0 mg/L Utyl chloride BDL 10 0 mg/L deceracine BDL 10 0 mg/L entrome BDL 50 0 mg/L entrome BDL 50 0 mg/L teomochloromethane BDL 50 0 mg/L teomochloromethane BDL 50 0 mg/L teomochloromethane BDL 10 0 mg/L teomochloromethane BDL 10 0 mg/L teomochloromethane BDL 10 0 mg/L teomochloromethane BDL 10 0 mg/L teomochloromethane BDL 20 0 mg/L teomochloromethane BDL 20 0 mg/L teomochloromethane BDL 20 0 mg/L teomochloromethane BDL 20 0 mg/L teomochloromethane BDL	Acetone	BDL	20.0	ug/L							
Secretarian SDL 200 ug.	Acetonitrile	BDL	40.0	ug/L							
Recolor RDL 20.0 ug/L Componential RDL 10.0 ug/L Componential RDL	cetonitrile	BDL	40.0	ug/L							
cay lonitrile BDL 10.0 ugT. cay lonitrile BDL 20.0 ugT. High chloride BDL 500 ugT. July chloride BDL 500 ugT. cenzene BDL 500 ugT. cenzene BDL 500 ugT. comocherorene BDL 500 ugT. comocherorene BDL 100 ugT. comochioromethane BDL 100 ugT. comochioromethane BDL 100 ugT. comochioromethane BDL 500 ugT. comochideromethane BDL 50	crolein	BDL	20.0	ug/L							
Serioduric BDL 20.0	crolein	BDL	20.0	ug/L							
	crylonitrile	BDL	10.0	ug/L							
Tyte choride	crylonitrile	BDL	20.0	ug/L							
enzene BDL 1,00 wg/L romohenzene BDL 5,00 wg/L romohenzene BDL 5,00 wg/L romohenzene BDL 1,00 wg/L romohenzene BDL 1,00 wg/L romohendenae BDL 1,00 wg/L romohendenae BDL 1,00 wg/L romohendenae BDL 1,00 wg/L romohendenae BDL 1,00 wg/L romohendenae BDL 1,00 wg/L romohendenae BDL 5,00 wg/L romohendenae BDL 5,00 wg/L romohendenae BDL 5,00 wg/L romohendenae BDL 5,00 wg/L romohendenae BDL 5,00 wg/L romohendenae BDL 5,00 wg/L romohendenae BDL 5,00 wg/L romohendenae BDL 5,00 wg/L romohendenae BDL 5,00 wg/L romohendenae BDL 5,00 wg/L romohendenae BDL 5,00 wg/L romohendenae BDL 5,00 wg/L romohendenae BDL 1,00 wg/L romohendenae BDL 5,00 wg/L	llyl chloride	BDL	1.00	ug/L							
Remener RDL 1.00 Ug/L	allyl chloride	BDL	5.00	ug/L							
romobenzene BDL 1.00 ug/L romobenzene BDL 5.00 ug/L romochloromethane BDL 1.00 ug/L romochloromethane BDL 1.00 ug/L romodichloromethane BDL 5.00 ug/L romoform BDL 5.00 ug/L romoform BDL 5.00 ug/L romomethane BDL 5.00 ug/L hloroberace BDL 5.00 ug/L hloroberace BDL 5.00 ug/L hloroberace BDL 5.00 ug/L hloroform BDL 5.00 ug/L <td>enzene</td> <td>BDL</td> <td>1.00</td> <td>ug/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	enzene	BDL	1.00	ug/L							
romochoromethane BDL 5.00 ug/L romochloromethane BDL 1.00 ug/L romochloromethane BDL 5.00 ug/L romodichloromethane BDL 5.00 ug/L romodichloromethane BDL 5.00 ug/L romomoform BDL 5.00 ug/L romomethane BDL 5.00 ug/L romomethane BDL 5.00 ug/L arbon Disulfide BDL 5.00 ug/L arbon Disulfide BDL 5.00 ug/L arbon Tetrachloride BDL 5.00 ug/L hlorobenzene BDL <	enzene	BDL	5.00	ug/L							
Section Sect	romobenzene	BDL	1.00	ug/L							
romochloromethane romochlorome	romobenzene	BDL	5.00	ug/L							
comodichloromethane BDL 1.00 ug/L comodichloromethane BDL 5.00 ug/L comoform BDL 1.00 ug/L comomethane BDL 5.00 ug/L comomethane BDL 5.00 ug/L comomethane BDL 5.00 ug/L arbon Disulfide BDL 5.00 ug/L arbon Disulfide BDL 5.00 ug/L arbon Tetrachloride BDL 5.00 ug/L hibrorbenzene BDL 5.00 ug/L hibrorbenzene BDL 5.00 ug/L hibrorethane BDL 5.00 ug/L hibrorethane BDL 5.00 ug/L hibroroform BDL 5.00 ug/L hibrorofermane BDL 5.00 ug/L hibroromethane BDL 5.00 ug/L hibroromethane BDL 5.00 ug/L hibroromethane BDL 5.00<	romochloromethane	BDL	1.00	ug/L							
romodethoromethane BDL 5.00 ug/L romoform BDL 1.00 ug/L romomethane BDL 5.00 ug/L romomethane BDL 5.00 ug/L romomethane BDL 5.00 ug/L arbon Disulfide BDL 5.00 ug/L arbon Tetrachloride BDL 5.00 ug/L hlorobenzee BDL 5.00 ug/L hlorobenzee BDL 5.00 ug/L hlorobenzee BDL 1.00 ug/L hlorobenzee BDL 1.00 ug/L hlorobenzee BDL 5.00 ug/L	romochloromethane	BDL	5.00	ug/L							
romoform BDL 1.00 ug/L romoform BDL 5.00 ug/L romomethane BDL 2.00 ug/L arbon Disulfide BDL 5.00 ug/L arbon Disulfide BDL 5.00 ug/L arbon Tetrachloride BDL 5.00 ug/L arbon Tetrachloride BDL 5.00 ug/L hlorobenzene BDL 1.00 ug/L hlorobenzene BDL 1.00 ug/L hlorochane BDL 1.00 ug/L hlorochane BDL 5.00 ug/L hloroform BDL 5.00 ug/L hloroform BDL 5.00 ug/L hloroform BDL 5.00 ug/L hloroform BDL 5.00 ug/L hloroformethane BDL 5.00 ug/L hloromethane BDL 5.00 ug/L hloromethane BDL 5.00 ug/L	romodichloromethane	BDL	1.00	ug/L							
romoform BDL 5.00 ug/L romomethane BDL 2.00 ug/L romomethane BDL 5.00 ug/L arbon Disulfide BDL 5.00 ug/L arbon Disulfide BDL 5.00 ug/L arbon Tetrachloride BDL 5.00 ug/L horothenzene BDL 1.00 ug/L hlorobenzene BDL 1.00 ug/L hlorochane BDL 1.00 ug/L hlorochane BDL 1.00 ug/L hloroform BDL 1.00 ug/L hloromethane BDL 5.00 ug/L hloromethane BDL 5.00 ug/L s-1,2-Dichlorochene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L shoromochloromethane BDL 5.00 ug/L shoromochloromethane BDL	romodichloromethane	BDL	5.00								
romomethane BDL 2.00 ug/L romomethane BDL 5.00 ug/L arbon Disulfide BDL 5.00 ug/L arbon Estrachloride BDL 5.00 ug/L arbon Tetrachloride BDL 5.00 ug/L hlorobenzene BDL 1.00 ug/L hlorobenzene BDL 1.00 ug/L hlorochane BDL 1.00 ug/L hloroform BDL 5.00 ug/L hloroform BDL 1.00 ug/L hloromethane BDL 1.00 ug/L hloromethane BDL 5.00 ug/L s-1,2-Dichlorothene BDL 5.00 ug/L s-1,2-Dichloropropene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL <th< td=""><td>romoform</td><td>BDL</td><td>1.00</td><td>ug/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	romoform	BDL	1.00	ug/L							
romomethane BDL 5.00 ug/L arbon Disulfide BDL 5.00 ug/L arbon Disulfide BDL 20.0 ug/L arbon Tetrachloride BDL 5.00 ug/L arbon Tetrachloride BDL 1.00 ug/L hlorobenzene BDL 5.00 ug/L hloroferman BDL 5.00 ug/L hloroferman BDL 5.00 ug/L hloroferman BDL 5.00 ug/L hloromethane BDL 5.00 ug/L s-1,2-Dichlorotehne BDL 5.00 ug/L s-1,2-Dichlorotehne BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L irbromochloromethane BDL	romoform	BDL	5.00	ug/L							
arbon Disulfide BDL 5.00 ug/L arbon Disulfide BDL 5.00 ug/L arbon Tetrachloride BDL 5.00 ug/L arbon Tetrachloride BDL 1.00 ug/L hlorobenzene BDL 5.00 ug/L hlorobenzene BDL 5.00 ug/L hlorochane BDL 5.00 ug/L hloroform BDL 5.00 ug/L hloroform BDL 5.00 ug/L hloromethane BDL 5.00 ug/L hloromethane BDL 5.00 ug/L s-1,2-Dichloroethene BDL 5.00 ug/L s-1,2-Dichloroethene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L sibromochloromethane BDL 5.00 ug/L sibromochloromethane BDL 5.00 ug/L sibromomethane	romomethane	BDL	2.00	ug/L							
arbon Disulfide BDL 20.0 ug/L arbon Tetrachloride BDL 5.00 ug/L horosenzene BDL 1.00 ug/L hlorobenzene BDL 1.00 ug/L hlorocethane BDL 5.00 ug/L hloroform BDL 5.00 ug/L hloroform BDL 5.00 ug/L hloroform BDL 5.00 ug/L hloromethane BDL 5.00 ug/L hloromethane BDL 5.00 ug/L s-1,2-Dichloroethene BDL 5.00 ug/L s-1,2-Dichloroethene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L s-1,3-Dichloromethane BDL 5.00 ug/L ibromochloromethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL	romomethane	BDL	5.00	ug/L							
arbon Tetrachloride BDL 5.00 ug/L arbon Tetrachloride BDL 1.00 ug/L hlorobenzene BDL 5.00 ug/L hlorobenzene BDL 1.00 ug/L hloroethane BDL 1.00 ug/L hloroform BDL 5.00 ug/L hloroform BDL 5.00 ug/L hloromethane BDL 5.00 ug/L hloromethane BDL 5.00 ug/L s-1,2-Dichloroethene BDL 5.00 ug/L s-1,2-Dichloroethene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L ibromochloromethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL	arbon Disulfide	BDL	5.00	ug/L							
arbon Tetrachloride BDL 1.00 ug/L hlorobenzene BDL 5.00 ug/L hlorobenzene BDL 1.00 ug/L hloroethane BDL 5.00 ug/L hloroform BDL 5.00 ug/L hloroform BDL 5.00 ug/L hloromethane BDL 5.00 ug/L hloromethane BDL 5.00 ug/L s-1,2-Dichloroethene BDL 5.00 ug/L s-1,2-Dichloroethene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L ibromochloromethane BDL 5.00 ug/L ibromochloromethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L ichlorodifluoromethane <td>arbon Disulfide</td> <td>BDL</td> <td>20.0</td> <td>ug/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	arbon Disulfide	BDL	20.0	ug/L							
BDL S.00 ug/L	arbon Tetrachloride	BDL	5.00	ug/L							
BDL 1.00 ug/L BDL 1.00 ug/L	arbon Tetrachloride	BDL	1.00	ug/L							
shloroethane BDL 5.00 ug/L hloroform BDL 5.00 ug/L hloroform BDL 5.00 ug/L hloromethane BDL 5.00 ug/L hloromethane BDL 5.00 ug/L s-1,2-Dichloroethene BDL 5.00 ug/L s-1,2-Dichloroethene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L ibromochloromethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L	hlorobenzene	BDL	5.00	ug/L							
BDL 1.00 ug/L BDL 5.00 ug/L BDL 1.00 ug/L	hlorobenzene	BDL	1.00	ug/L							
shloroform BDL 5.00 ug/L shloroform BDL 1.00 ug/L shloromethane BDL 5.00 ug/L shloromethane BDL 1.00 ug/L s-1,2-Dichloroethene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 1.00 ug/L ibromochloromethane BDL 5.00 ug/L ibromochloromethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L	hloroethane	BDL	5.00	ug/L							
shloroform BDL 1.00 ug/L shloromethane BDL 5.00 ug/L shloromethane BDL 1.00 ug/L s-1,2-Dichloroethene BDL 5.00 ug/L s-1,2-Dichloropropene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 5.00 ug/L bibromochloromethane BDL 5.00 ug/L bibromochloromethane BDL 5.00 ug/L bibromomethane BDL 5.00 ug/L bibromochloromethane BDL 5.00 ug/L bibromochloromethane BDL 5.00 ug/L bibromochloro	hloroethane	BDL	1.00	ug/L							
shloromethane BDL 5.00 ug/L shloromethane BDL 1.00 ug/L sis-1,2-Dichloroethene BDL 5.00 ug/L sis-1,2-Dichloropropene BDL 5.00 ug/L sis-1,3-Dichloropropene BDL 5.00 ug/L sibromochloromethane BDL 5.00 ug/L sibromochloromethane BDL 5.00 ug/L sibromomethane BDL 5.00 ug/L sibromomethane<	hloroform	BDL	5.00	ug/L							
hloromethane hloro	hloroform	BDL	1.00	ug/L							
is-1,2-Dichloroethene BDL 5.00 ug/L is-1,2-Dichloroptropene BDL 1.00 ug/L is-1,3-Dichloroptropene BDL 5.00 ug/L bibromochloromethane BDL 5.00 ug/L bibromochloromethane BDL 1.00 ug/L bibromomethane BDL 5.00 ug/L	Chloromethane	BDL	5.00	ug/L							
s-1,2-Dichloroptopene s-1,3-Dichloroptopene s-1,3-Dichloroptopene s-1,3-Dichloroptopene s-1,3-Dichloroptopene BDL 1.00 ug/L ibromochloromethane BDL 5.00 ug/L ibromochloromethane BDL 1.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L	hloromethane	BDL	1.00	ug/L							
s-1,3-Dichloropropene BDL 5.00 ug/L s-1,3-Dichloropropene BDL 1.00 ug/L ibromochloromethane BDL 5.00 ug/L ibromochloromethane BDL 1.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L	s-1,2-Dichloroethene	BDL	5.00	ug/L							
BDL 1.00 ug/L ibromochloromethane BDL 5.00 ug/L ibromochloromethane BDL 1.00 ug/L ibromochloromethane BDL 5.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL 1.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L	s-1,2-Dichloroethene	BDL	1.00	ug/L							
bibromochloromethane BDL 5.00 ug/L bibromochloromethane BDL 1.00 ug/L bibromomethane BDL 5.00 ug/L bibromomethane BDL 1.00 ug/L bibromomethane BDL 1.00 ug/L bichlorodifluoromethane BDL 5.00 ug/L bichlorodifluoromethane BDL 5.00 ug/L bichlorodifluoromethane BDL 5.00 ug/L bichlorodifluoromethane BDL 5.00 ug/L bichlorodifluoromethane BDL 5.00 ug/L	is-1,3-Dichloropropene	BDL	5.00	ug/L							
ibromochloromethane BDL 1.00 ug/L ibromomethane BDL 5.00 ug/L ibromomethane BDL 1.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L	s-1,3-Dichloropropene	BDL	1.00	ug/L							
ibromomethane BDL 5.00 ug/L ibromomethane BDL 1.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L ichlorodifluoromethane BDL 2.00 ug/L thylbenzene BDL 5.00 ug/L	ibromochloromethane	BDL	5.00	ug/L							
ibromomethane BDL 1.00 ug/L ichlorodifluoromethane BDL 5.00 ug/L ichlorodifluoromethane BDL 2.00 ug/L thylbenzene BDL 5.00 ug/L	ibromochloromethane	BDL	1.00	ug/L							
bibromomethane BDL 1.00 ug/L sichlorodifluoromethane BDL 5.00 ug/L sichlorodifluoromethane BDL 2.00 ug/L thylbenzene BDL 5.00 ug/L	ibromomethane	BDL	5.00	ug/L							
thylbenzene BDL 2.00 ug/L 5.00 ug/L	bibromomethane	BDL	1.00								
thylbenzene BDL 5.00 ug/L	ichlorodifluoromethane		5.00	ug/L							
	richlorodifluoromethane	BDL	2.00	ug/L							
thylbenzene BDL 1.00 ug/L	thylbenzene	BDL	5.00	ug/L							
	thylbenzene	BDL	1.00	ug/L							

Project: COT235 Champion Spark Plug

Lab Order:

15F0878

	1	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

2 111111) 10	resur	2	Cinto	20101	resure	, orthe	Limito	ru b	2,,,,,,,	110105
Batch 1525190 - VOC PREP										
Blank (1525190-BLK1)				Prepared &	& Analyzed:	06/15/15				
Hexachlorobutadiene	BDL	5.00	ug/L							
Iodomethane	BDL	10.0	ug/L							
Iodomethane	BDL	10.0	ug/L							
Isopropylbenzene	BDL	5.00	ug/L							
Methylene Chloride	BDL	5.00	ug/L							
Methylene Chloride	BDL	1.00	ug/L							
Methyl tert-Butyl Ether	BDL	10.0	ug/L							
Methyl tert-Butyl Ether	BDL	10.0	ug/L							
m,p-Xylene	BDL	10.0	ug/L							
m,p-Xylene	BDL	2.00	ug/L							
Naphthalene	BDL	5.00	ug/L							
n-Butylbenzene	BDL	5.00	ug/L							
n-Hexane	BDL	5.00	ug/L							
n-Hexane	BDL	5.00	ug/L							
n-Propylbenzene	BDL	5.00	ug/L							
o-Xylene	BDL	5.00	ug/L							
o-Xylene	BDL	1.00	ug/L							
sec-Butylbenzene	BDL	5.00	ug/L							
Styrene	BDL	1.00	ug/L ug/L							
Styrene	BDL	5.00	ug/L ug/L							
tert_Butylbenzene	BDL	5.00	ug/L ug/L							
Tetrachloroethene	BDL	5.00	ug/L ug/L							
Tetrachloroethene	BDL	2.00	ug/L ug/L							
Toluene	BDL	5.00	ug/L ug/L							
Toluene	BDL	1.00	ug/L ug/L							
trans-1,2-Dichloroethene	BDL	5.00	ug/L ug/L							
trans-1,2-Dichloroethene	BDL	1.00	ug/L ug/L							
	BDL									
trans-1,3-Dichloropropene trans-1,3-Dichloropropene		5.00	ug/L							
	BDL BDL	1.00	ug/L							
Trichloroethene Trichloroethene	BDL	5.00 2.00	ug/L							
Trichlorofluoromethane			ug/L							
Trichlorofluoromethane Trichlorofluoromethane	BDL	5.00	ug/L							
	BDL	2.00	ug/L							
Vinyl Chloride	BDL	1.00	ug/L							
Vinyl Chloride	BDL	1.00	ug/L							
Vinyl acetate	BDL	10.0	ug/L							
Vinyl acetate	BDL	10.0	ug/L							
Surrogate: 4-Bromofluorobenzene	47.2		ug/L	50.00		94.3	85-115			
Surrogate: 4-Bromofluorobenzene	47.2		ug/L	50.00		94.3	85-115			
Surrogate: Dibromofluoromethane	46.4		ug/L	50.00		92.8	85-115			
Surrogate: Dibromofluoromethane	46.4		ug/L	50.00		92.8	85-115			
Surrogate: Toluene-d8	46.8		ug/L	50.00		93.7	85-115			
Surrogate: Toluene-d8	46.8		ug/L	50.00		93.7	85-115			
Surrogate: 1,2-Dichloroethane-d4	45.6		ug/L	50.00		91.1	85-115 85-115			
Surrogate: 1,2-Dichloroethane-d4	45.6		ug/L	50.00		91.1	85-115			

Project: COT235 Champion Spark Plug

4-Methyl-2-pentanone

Acetone

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1525190 - VOC PREP										
LCS (1525190-BS1)				Prepared &	Analyzed:	06/15/15				
1,1,1,2-Tetrachloroethane	21.8	5.00	ug/L	20.00		109	84.3-118			
1,1,1,2-Tetrachloroethane	21.8	1.00	ug/L	20.00		109	84.3-118			
1,1,1-Trichloroethane	19.1	5.00	ug/L	20.00		95.5	82-122			
,1,1-Trichloroethane	19.1	1.00	ug/L	20.00		95.5	82-122			
,1,2,2-Tetrachloroethane	22.0	5.00	ug/L	20.00		110	81-124			
,1,2,2-Tetrachloroethane	22.0	1.00	ug/L	20.00		110	81-124			
,1,2-Trichloroethane	19.5	5.00	ug/L	20.00		97.3	83.5-120			
,1,2-Trichloroethane	19.5	1.00	ug/L	20.00		97.3	83.5-120			
,1-Dichloroethane	18.4	5.00	ug/L	20.00		91.8	80.5-126			
,1-Dichloroethane	18.4	2.00	ug/L	20.00		91.8	80.5-126			
,1-Dichloroethene	18.3	5.00	ug/L	20.00		91.4	77.4-125			
,1-Dichloroethene	18.3	1.00	ug/L	20.00		91.4	77.4-125			
,1-Dichloropropene	18.9	5.00	ug/L	20.00		94.4	81.8-121			
,1-Dichloropropene	18.9	5.00	ug/L	20.00		94.4	81.8-121			
,2,3-Trichlorobenzene	24.3	5.00	ug/L	20.00		122	73.3-125			
,2,3-Trichloropropane	23.6	5.00	ug/L	20.00		118	75.7-124			
,2,4-Trichlorobenzene	23.6	5.00	ug/L	20.00		118	75.1-122			
,2,4-Trimethylbenzene	21.8	5.00	ug/L	20.00		109	76.5-124			
,2-Dibromo-3-chloropropane	22.8	10.0	ug/L	20.00		114	67.5-123			
,2-Dibromoethane	22.0	5.00	ug/L	20.00		110	79.9-120			
,2-Dibromoethane	22.0	5.00	ug/L	20.00		110	79.9-120			
,2-Dichlorobenzene	22.1	5.00	ug/L	20.00		110	83.3-118			
,2-Dichloroethane	20.0	5.00	ug/L	20.00		100	79.4-122			
,2-Dichloroethane	20.0	1.00	ug/L	20.00		100	79.4-122			
,2-Dichloropropane	19.5	5.00	ug/L	20.00		97.7	82-121			
,2-Dichloropropane	19.5	1.00	ug/L	20.00		97.7	82-121			
,3,5-Trimethylbenzene	21.6	5.00	ug/L	20.00		108	74.9-125			
,3-Dichlorobenzene	21.6	5.00	ug/L	20.00		108	75.3-129			
,3-Dichloropropane	19.6	1.00	ug/L	20.00		97.8	81.7-121			
,3-Dichloropropane	19.6	5.00	ug/L	20.00		97.8	81.7-121			
,4-Dichlorobenzene	21.2	5.00	ug/L	20.00		106	82.1-117			
,2-Dichloropropane	18.8	1.00	ug/L	20.00		94.0	78.8-135			
,2-Dichloropropane	18.8	5.00	ug/L	20.00		94.0	78.8-135			
-Butanone	40.1	10.0	ug/L	40.00		100	53-155			
-Butanone	40.1	20.0	ug/L	40.00		100	53-155			
-Chlorotoluene	20.9	1.00	ug/L	20.00		105	83.4-119			
-Chlorotoluene	20.9	5.00	ug/L	20.00		105	83.4-119			
-Hexanone	42.2	10.0	ug/L	40.00		106	60.4-146			
-Hexanone	42.2	20.0	ug/L	40.00		106	60.4-146			
-Chlorotoluene	21.1	1.00	ug/L	20.00		105	81.9-124			
-Chlorotoluene	21.1	5.00	ug/L	20.00		105	81.9-124			
-Isopropyltoluene	21.3	5.00	ug/L	20.00		106	72.6-127			
-Methyl-2-pentanone	42.1	10.0	ug/L	40.00		105	77.6-125			
1 Mathal 2 mantanana	40.1	20.0	- /1	40.00		105	77 6 125			

42.1

39.3

20.0

10.0

ug/L

ug/L

40.00

40.00

105

98.3

77.6-125

40.3-166

15F0878

Lab Order:

Project: COT235 Champion Spark Plug

Lab Order: 15F0878

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1525190 - VOC PREP										
LCS (1525190-BS1)	Prepared & Analyzed: 06/15/15									
Acetone	39.3	20.0	ug/L	40.00		98.3	40.3-166			
Acetonitrile	19.6	40.0	ug/L	20.00		98.0	54.7-135			
Acetonitrile	19.6	40.0	ug/L	20.00		98.0	54.7-135			
Acrolein	37.7	20.0	ug/L	40.00		94.2	56.4-141			
Acrolein	37.7	20.0	ug/L	40.00		94.2	56.4-141			
Acrylonitrile	20.2	10.0	ug/L	20.00		101	72.1-130			
Acrylonitrile	20.2	20.0	ug/L	20.00		101	72.1-130			
Allyl chloride	18.4	1.00	ug/L	20.00		92.0	77.7-127			
Allyl chloride	18.4	5.00	ug/L	20.00		92.0	77.7-127			
Benzene	18.7	1.00	ug/L	20.00		93.5	84.6-119			
Benzene	18.7	5.00	ug/L	20.00		93.5	84.6-119			
Bromobenzene	20.6	1.00	ug/L	20.00		103	81.6-123			
Bromobenzene	20.6	5.00	ug/L	20.00		103	81.6-123			
Bromochloromethane	18.1	1.00	ug/L	20.00		90.6	84.9-123			
Bromochloromethane	18.1	5.00	ug/L	20.00		90.6	84.9-123			
Bromodichloromethane	19.4	1.00	ug/L	20.00		97.2	81.5-121			
Bromodichloromethane	19.4	5.00	ug/L	20.00		97.2	81.5-121			
Bromoform	22.0	1.00	ug/L	20.00		110	74.8-125			
Bromoform	22.0	5.00	ug/L	20.00		110	74.8-125			
Bromomethane	18.4	2.00	ug/L	20.00		92.2	60.9-164			
Bromomethane	18.4	5.00	ug/L	20.00		92.2	60.9-164			
Carbon Disulfide	17.3	5.00	ug/L	20.00		86.6	78.7-125			
Carbon Disulfide	17.3	20.0	ug/L	20.00		86.6	78.7-125			
Carbon Tetrachloride	19.0	1.00	ug/L	20.00		95.2	82.9-122			
Carbon Tetrachloride	19.0	5.00	ug/L	20.00		95.2	82.9-122			
Chlorobenzene	20.9	1.00	ug/L	20.00		104	87.7-115			
Chlorobenzene	20.9	5.00	ug/L	20.00		104	87.7-115			
Chloroethane	18.1	1.00	ug/L	20.00		90.7	79.5-133			
Chloroethane	18.1	5.00	ug/L	20.00		90.7	79.5-133			
Chloroform	18.1	1.00	ug/L	20.00		90.3	80.8-125			
Chloroform	18.1	5.00	ug/L	20.00		90.3	80.8-125			
Chloromethane	18.4	1.00	ug/L	20.00		92.2	67.2-136			
Chloromethane	18.4	5.00	ug/L	20.00		92.2	67.2-136			
eis-1,2-Dichloroethene	18.4	1.00	ug/L	20.00		92.2	79.7-126			
cis-1,2-Dichloroethene	18.4	5.00	ug/L	20.00		92.2	79.7-126			
cis-1,3-Dichloropropene	19.6	1.00	ug/L	20.00		98.0	79.4-123			
eis-1,3-Dichloropropene	19.6	5.00	ug/L	20.00		98.0	79.4-123			
Dibromochloromethane	22.0	1.00	ug/L	20.00		110	77.3-123			
Dibromochloromethane	22.0	5.00	ug/L	20.00		110	77.3-123			
Dibromomethane	19.8	1.00	ug/L	20.00		98.9	84.2-120			
Dibromomethane	19.8	5.00	ug/L	20.00		98.9	84.2-120			
Dichlorodifluoromethane	17.5	2.00	ug/L	20.00		87.5	79-132			
Dichlorodifluoromethane	17.5	5.00	ug/L	20.00		87.5	79-132			
Ethylbenzene	20.9	1.00	ug/L	20.00		104	85.2-118			
Ethylbenzene	20.9	5.00	ug/L	20.00		104	85.2-118			

Project: COT235 Champion Spark Plug

Lab Order:

15F0878

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1525190 - VOC PREP										
LCS (1525190-BS1)				Prepared &	Analyzed:	06/15/15				
Hexachlorobutadiene	21.2	5.00	ug/L	20.00		106	76.1-121			
Iodomethane	17.3	10.0	ug/L	20.00		86.6	45.5-132			
Iodomethane	17.3	10.0	ug/L	20.00		86.6	45.5-132			
Isopropylbenzene	20.7	5.00	ug/L	20.00		104	84.9-117			
Methylene Chloride	17.0	1.00	ug/L	20.00		85.1	73.8-131			
Methylene Chloride	17.0	5.00	ug/L	20.00		85.1	73.8-131			
Methyl tert-Butyl Ether	18.4	10.0	ug/L	20.00		91.9	75.8-123			
Methyl tert-Butyl Ether	18.4	10.0	ug/L	20.00		91.9	75.8-123			
m,p-Xylene	42.2	2.00	ug/L	40.00		106	85.7-119			
m,p-Xylene	42.2	10.0	ug/L	40.00		106	85.7-119			
Naphthalene	20.4	5.00	ug/L	20.00		102	59-132			
n-Butylbenzene	21.5	5.00	ug/L	20.00		107	70.6-128			
n-Hexane	18.2	5.00	ug/L	20.00		91.2	78.8-130			
n-Hexane	18.2	5.00	ug/L	20.00		91.2	78.8-130			
n-Propylbenzene	20.8	5.00	ug/L	20.00		104	83.1-119			
o-Xylene	21.2	1.00	ug/L	20.00		106	82.9-121			
o-Xylene	21.2	5.00	ug/L	20.00		106	82.9-121			
sec-Butylbenzene	21.0	5.00	ug/L	20.00		105	77.3-121			
Styrene	21.1	5.00	ug/L	20.00		105	82.3-120			
Styrene	21.1	1.00	ug/L	20.00		105	82.3-120			
tert_Butylbenzene	21.2	5.00	ug/L	20.00		106	69.6-130			
Tetrachloroethene	20.8	5.00	ug/L	20.00		104	84.2-119			
Tetrachloroethene	20.8	2.00	ug/L	20.00		104	84.2-119			
Toluene	18.8	1.00	ug/L	20.00		94.0	85.8-119			
Toluene	18.8	5.00	ug/L	20.00		94.0	85.8-119			
trans-1,2-Dichloroethene	17.8	1.00	ug/L	20.00		88.8	82.7-123			
trans-1,2-Dichloroethene	17.8	5.00	ug/L	20.00		88.8	82.7-123			
trans-1,3-Dichloropropene	19.8	1.00	ug/L	20.00		99.0	82.3-121			
trans-1,3-Dichloropropene	19.8	5.00	ug/L	20.00		99.0	82.3-121			
Trichloroethene	18.4	2.00	ug/L	20.00		92.2	82.2-120			
Trichloroethene	18.4	5.00	ug/L	20.00		92.2	82.2-120			
Trichlorofluoromethane	18.3	2.00	ug/L	20.00		91.3	82.6-132			
Trichlorofluoromethane	18.3	5.00	ug/L	20.00		91.3	82.6-132			
Vinyl Chloride	17.9	1.00	ug/L	20.00		89.6	81.2-132			
Vinyl Chloride	17.9	1.00	ug/L	20.00		89.6	81.2-132			
Vinyl acetate	20.7	10.0	ug/L	20.00		104	68.3-149			
Vinyl acetate	20.7	10.0	ug/L	20.00		104	68.3-149			
Surrogate: 4-Bromofluorobenzene	47.3		ug/L	50.00		94.7	85-115			
Surrogate: 4-Bromofluorobenzene	47.3		ug/L	50.00		94.7	85-115			
Surrogate: Dibromofluoromethane	45.9		ug/L	50.00		91.9	85-115			
Surrogate: Dibromofluoromethane	45.9		ug/L	50.00		91.9	85-115			
Surrogate: Toluene-d8	46.4		ug/L	50.00		92.9	85-115			
Surrogate: Toluene-d8	46.4		ug/L	50.00		92.9	85-115			
Surrogate: 1,2-Dichloroethane-d4	46.1		ug/L	50.00		92.3	85-115			
Surrogate: 1,2-Dichloroethane-d4	46.1		ug/L	50.00		92.3	85-115			

PACE Analytical Date: 7/6/2015

CLIENT: Hull & Associates - Toledo Office Lab Order: 15F0878

Project: COT235 Champion Spark Plug

Notes and Definitions

R RPD outside of accepted recovery limits.

BDL Analyte is below detection limits

Sample preservation was met unless otherwise noted.

WATER

TO:		<u>E</u> <u>Ma</u>	TT	08° Be	78 1L	NO. 1033 Page 40 of 65
000 822	SCH Medic		ANALYS	ES		
V		($\overline{}$	\leftarrow	/ COMMENTS
$\frac{2}{\sqrt{2}}$					-	
3				-	 	
\mathcal{L}				ļ	ļ	
<u>X</u>						Note DATE
X				İ	ł	
X						
•					_	
\mathbf{V}		\vdash				
		-			-	<u> </u>
<u> </u>			-			Dup.
						·
			,			
-	P0-	۸ م	Inal	. بار.	. 1	

		j			CHA	IN OF CUSTODY RE	CORD							- 1	0	PAGE	. OF _
		<u> </u>														NO.	1033
Oublin, OH Indian 6397 Emerald Pkwy 8445 K	apolis, fN Cossing	Mason, OH 4770 Duke Dr.	Bedford, OH 4 Homisphere Way	oledo, OH 3401 Giendale Ave.	St. Ctairs ville, OH	Pitts burgh, PA Campbells Run Business Center			REPOR	т то:	V	MA	TT	BE	ال	· · · · ·	
Suite 200 Suite 1		Suite 300	Bedford, OH 44148	Suite 300	2nd Floor	300 Business Center Dr., Suite 320		_									L
	apolis, IN 46240		P: (440) 232-9945	Toledo, OH 43614	St. Clairsville, OH 43950	Pittsburgh, PA 15205	_	/_		, ,		A	NALYSE	:S	· /		
P: (614) 793-8777 P: (800	0) 241-7173	P: (513) 459-9677		P: (419) 385-2018	P: (800) 241-7173	P: (412) 448-0315	PRESE	RVATIV	_{ES} /	/	/		/	/	/	/ /	
Client: City o				SAMPLE MATRIX		ESERVATIVES H-EDTA	METALS			222		\mathcal{T}			_/		•
site: Furmer Cl	Lampion	(12) 1 y 9	D Uplon Ave	C-ASBESTOS D-SEDIMENT	A-Cool only, <4 deg. C B-HNO ₃ pH<2	1-5ml 1:1 HCL	N - Not filtered		265		1/4	/	/	/	/	/ / ·	
Project #: COT 23	35'	Phase: 7.	١٥١٥ رامات	G-GROUNDWATER	C-H ₂ SO ₄ pH<2 D-NaOH pH>12	J-none K-Stored in dark L-NH4CI	F45u- filtered with 0.45 micron		/ B/	/ / LV/	Metal	,	/	/	/ ,	/ /	
	grison			L-LEACHATE P-PRODUCT	E-ZnAcetate + NaOH, pH>9 F-Na ₂ S ₂ O ₃ (0.008%)	M-Methanol	Fou-filtered with 5	1 /			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/	/	' /	· /	/	
Samplers: 3.0	72000			S-SOIL SG-SOIL GAS	G-HCL pH <2	8-Sodium	Micron	/	w/~	5/	- /	/	/	/	/	/	
Purchase Order #				\$5-SUBSLAB VAPOR			1	1/9		Z/Q	<u> </u>	/	/	/	/	/	
				W-WATER X-CONCRETE			1]/&	7/\	ング	<u>, </u>	/	/	/	/	/	
PROJECT NO.:	SAMPLE LOC	ATION : SAM	IPLE MATRIX & ID	NO. OF CONT.	SAMPLE TYPE (discrete, composite)	COLLECTION DATE/TIME	METALS	<u> </u>	/~	194	/_/	'/				СОММЕ	ENTS
H: RESTO	TMW-	1:40	كااال	4		6-11-15 /1230	. 10	X	X	X							
	TMW-		201110	4	_	6-11-15-/1625	+	乂	X	X							
	TMW-		161115	4		6-11-15/1510	N	X	X	X							
0T235 H	Tmw-	4 : GC	061215	1:4	_	16-12 /0900	1 2	X	X	$ \mathcal{X} $		[Note DATE	=
OT235 : H			061215	4		6-12 /0930	N	X	X	X							
COT235 : HO	TMW-	-6 :G	061115	4		6-11-15 /1535	N	X	X	X							
<u> </u>	RIP-Z	:		~		_ / _	N	X			- 1						
GT235 : E	Blank	2 : W	061215	14 :	~	6-12 /1010	2	X	X	X				,			
	ÎMW-		1115A	14	_	6-11-15 /1230	N	X	X	X						Dup.	
<u> </u>		:				/			L T								
:		:				/											
:				(36)	of (TBXZ)												
BELINGOISHED BY:	<u> </u>	DATE: 6	2-15	RECEIVED BY	10.00	DATE: (0-12-15				-		/	1 1	1.			
		TIME: 130	٥		Shipper	TIME: 1360		Deliver -	To:	ŀ	ACC	<u>.</u>	<u>Inali</u>	utica			
REVINQUISHED BY:		DATE:		RECEIVED BY:		DATE:		Method	of Deliver		ED E			•			
		TIME:		<u> </u>		TIME:		Airbill No	umber:	ي	on F	نلا	8	155	9711	1430	
RELINQUISHED BY:		DATE:		RECEIVED BY:	, 8	DATE: 6-		Regulate	ory Progra	am: C	HIO	V	AP				
		TIME:		1-25	29	TIME:	0915	Require	d Limits:								_
COOLER TEM	PERATURE	L	1 105	DISTRIBUTION:	WHITE	-LAB USE (MUST BE RETURNE	D WITH REPOR	τ)	NOTES:	_	CUS	TO!	24 5	SEAL	= 45	S	
AS RECEIVED			t.c 108	_	AETTOM	-LAB USE				_					10.0	<u> </u>	
					PINK	-RETAINED BY HULL			TURN A	ROUND 1	IME:			STAV	<u>JDAR</u>	DA DA	YS

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

June 22, 2015

Jason Lykins Pace Analytical Services, Inc. 25 Holiday Drive Englewood, OH 45322

RE: Project: 15F0878

Pace Project No.: 50121172

Dear Jason Lykins:

Enclosed are the analytical results for sample(s) received by the laboratory on June 16, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mick Mayse

mick.mayse@pacelabs.com

Project Manager

Wich Wayse

Enclosures

cc: Ms. Alicia Barnes, Pace Englewood
Ms. Christina Schneider, Pace Englewood

(614)486-5421

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

CERTIFICATIONS

Project: 15F0878

Pace Project No.: 50121172

Indiana Certification IDs

7726 Moller Road, Indianapolis, IN 46268 Illinois Certification #: 200074 Indiana Certification #: C-49-06 Kansas Certification #:E-10177/ E-10247 Kentucky UST Certification #: 0042 Kentucky WW Certification #:98019 Louisiana/NELAP Certification #: 04076

Ohio VAP Certification #: CL-0065 Oklahoma Certification #: 2014-148 Pennsylvania Certification #: 68-05340 Texas Certification #: T104704355-15-8 West Virginia Certification #: 330 Wisconsin Certification #: 999788130 USDA Soil Permit #: P330-10-00128

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

SAMPLE SUMMARY

Project: 15F0878
Pace Project No.: 50121172

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50121172001	15F0878-01	Water	06/11/15 12:30	06/16/15 09:10
50121172002	15F0878-02	Water	06/11/15 16:25	06/16/15 09:10
50121172003	15F0878-03	Water	06/11/15 15:10	06/16/15 09:10
50121172004	15F0878-04	Water	06/12/15 09:00	06/16/15 09:10
50121172005	15F0878-05	Water	06/12/15 09:30	06/16/15 09:10
50121172006	15F0878-06	Water	06/11/15 15:35	06/16/15 09:10
50121172007	15F0878-07	Water	06/11/15 12:30	06/16/15 09:10
50121172008	15F0878-08	Water	06/12/15 10:10	06/16/15 09:10

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

SAMPLE ANALYTE COUNT

Project: 15F0878
Pace Project No.: 50121172

Lab ID	Sample ID	Method	Analysts	Analytes Reported
50121172001	15F0878-01	EPA 8270 by SIM LVE	TBP	19
50121172002	15F0878-02	EPA 8270 by SIM LVE	TBP	19
50121172003	15F0878-03	EPA 8270 by SIM LVE	TBP	19
50121172004	15F0878-04	EPA 8270 by SIM LVE	TBP	19
50121172005	15F0878-05	EPA 8270 by SIM LVE	TBP	19
50121172006	15F0878-06	EPA 8270 by SIM LVE	TBP	19
50121172007	15F0878-07	EPA 8270 by SIM LVE	TBP	19
50121172008	15F0878-08	EPA 8270 by SIM LVE	TBP	19

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

SUMMARY OF DETECTION

Project: 15F0878
Pace Project No.: 50121172

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50121172005	15F0878-05					
EPA 8270 by SIM LVE EPA 8270 by SIM LVE	2-Methylnaphthalene Naphthalene	3.0 1.2	ug/L ug/L	1.0 1.0	06/19/15 23:25 06/19/15 23:25	

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0878
Pace Project No.: 50121172

Sample: 15F0878-01	Lab ID: 501	21172001	Collected: 06/11/1	5 12:30	Received: 06	6/16/15 09:10 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAHLV	Analytical Meth	od: EPA 82	270 by SIM LVE Prep	aration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 12:58	83-32-9	
Acenaphthylene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 12:58	208-96-8	
Anthracene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 12:58	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 12:58	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 12:58	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 12:58	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 12:58	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 12:58	207-08-9	
Chrysene	ND	ug/L	0.50	1	06/17/15 13:01	06/18/15 12:58	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 12:58	53-70-3	
Fluoranthene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 12:58	206-44-0	
Fluorene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 12:58	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 12:58	193-39-5	
2-Methylnaphthalene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 12:58	91-57-6	
Naphthalene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 12:58	91-20-3	
Phenanthrene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 12:58	85-01-8	
Pyrene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 12:58	129-00-0	
Surrogates		-						
2-Fluorobiphenyl (S)	43	%.	21-114	1	06/17/15 13:01	06/18/15 12:58	321-60-8	
p-Terphenyl-d14 (S)	48	%.	25-131	1	06/17/15 13:01	06/18/15 12:58	1718-51-0	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0878
Pace Project No.: 50121172

Sample: 15F0878-02	Lab ID: 501	21172002	Collected: 06/11/1	5 16:25	Received: 06	6/16/15 09:10 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAHLV	Analytical Meth	nod: EPA 82	270 by SIM LVE Prep	aration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:11	83-32-9	
Acenaphthylene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:11	208-96-8	
Anthracene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:11	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:11	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:11	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:11	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:11	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:11	207-08-9	
Chrysene	ND	ug/L	0.50	1	06/17/15 13:01	06/18/15 13:11	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:11	53-70-3	
Fluoranthene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:11	206-44-0	
Fluorene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:11	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:11	193-39-5	
2-Methylnaphthalene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:11	91-57-6	
Naphthalene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:11	91-20-3	
Phenanthrene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:11	85-01-8	
Pyrene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:11	129-00-0	
Surrogates		Ū						
2-Fluorobiphenyl (S)	66	%.	21-114	1	06/17/15 13:01	06/18/15 13:11	321-60-8	
p-Terphenyl-d14 (S)	76	%.	25-131	1	06/17/15 13:01	06/18/15 13:11	1718-51-0	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0878
Pace Project No.: 50121172

Sample: 15F0878-03	Lab ID: 501	21172003	Collected: 06/11/1	5 15:10	Received: 06	6/16/15 09:10 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV PAHLV	Analytical Meth	nod: EPA 82	270 by SIM LVE Prep	aration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:25	83-32-9	
Acenaphthylene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:25	208-96-8	
Anthracene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:25	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:25	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:25	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:25	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:25	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:25	207-08-9	
Chrysene	ND	ug/L	0.50	1	06/17/15 13:01	06/18/15 13:25	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:25	53-70-3	
Fluoranthene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:25	206-44-0	
Fluorene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:25	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:25	193-39-5	
2-Methylnaphthalene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:25	91-57-6	
Naphthalene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:25	91-20-3	
Phenanthrene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:25	85-01-8	
Pyrene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:25	129-00-0	
Surrogates		Ū						
2-Fluorobiphenyl (S)	62	%.	21-114	1	06/17/15 13:01	06/18/15 13:25	321-60-8	
p-Terphenyl-d14 (S)	70	%.	25-131	1	06/17/15 13:01	06/18/15 13:25	1718-51-0	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0878
Pace Project No.: 50121172

Sample: 15F0878-04	Lab ID: 5012	21172004	Collected: 06/12/1	5 09:00	Received: 06	6/16/15 09:10 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAHLV	Analytical Meth	nod: EPA 82	270 by SIM LVE Prep	aration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:12	83-32-9	
Acenaphthylene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:12	208-96-8	
Anthracene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:12	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:12	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:12	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:12	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:12	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:12	207-08-9	
Chrysene	ND	ug/L	0.50	1	06/19/15 09:14	06/19/15 23:12	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:12	53-70-3	
Fluoranthene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:12	206-44-0	
Fluorene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:12	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:12	193-39-5	
2-Methylnaphthalene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:12	91-57-6	
Naphthalene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:12	91-20-3	
Phenanthrene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:12	85-01-8	
Pyrene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:12	129-00-0	
Surrogates		J						
2-Fluorobiphenyl (S)	60	%.	21-114	1	06/19/15 09:14	06/19/15 23:12	321-60-8	
p-Terphenyl-d14 (S)	60	%.	25-131	1	06/19/15 09:14	06/19/15 23:12	1718-51-0	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0878
Pace Project No.: 50121172

Sample: 15F0878-05	Lab ID: 501	21172005	Collected: 06/12/1	5 09:30	Received: 06	6/16/15 09:10 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV PAHLV	Analytical Meth	nod: EPA 82	270 by SIM LVE Prep	aration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:25	83-32-9	
Acenaphthylene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:25	208-96-8	
Anthracene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:25	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:25	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:25	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:25	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:25	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:25	207-08-9	
Chrysene	ND	ug/L	0.50	1	06/19/15 09:14	06/19/15 23:25	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:25	53-70-3	
Fluoranthene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:25	206-44-0	
Fluorene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:25	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:25	193-39-5	
2-Methylnaphthalene	3.0	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:25	91-57-6	
Naphthalene	1.2	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:25	91-20-3	
Phenanthrene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:25	85-01-8	
Pyrene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:25	129-00-0	
Surrogates		J						
2-Fluorobiphenyl (S)	59	%.	21-114	1	06/19/15 09:14	06/19/15 23:25	321-60-8	
p-Terphenyl-d14 (S)	65	%.	25-131	1	06/19/15 09:14	06/19/15 23:25	1718-51-0	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0878
Pace Project No.: 50121172

Sample: 15F0878-06	Lab ID: 501	21172006	Collected: 06/11/1	5 15:35	Received: 06	6/16/15 09:10 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAHLV	Analytical Meth	nod: EPA 82	270 by SIM LVE Prep	aration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:38	83-32-9	
Acenaphthylene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:38	208-96-8	
Anthracene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:38	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:38	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:38	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:38	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:38	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:38	207-08-9	
Chrysene	ND	ug/L	0.50	1	06/17/15 13:01	06/18/15 13:38	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:38	53-70-3	
Fluoranthene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:38	206-44-0	
Fluorene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:38	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:38	193-39-5	
2-Methylnaphthalene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:38	91-57-6	
Naphthalene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:38	91-20-3	
Phenanthrene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:38	85-01-8	
Pyrene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:38	129-00-0	
Surrogates		Ü						
2-Fluorobiphenyl (S)	68	%.	21-114	1	06/17/15 13:01	06/18/15 13:38	321-60-8	
p-Terphenyl-d14 (S)	70	%.	25-131	1	06/17/15 13:01	06/18/15 13:38	1718-51-0	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0878
Pace Project No.: 50121172

Sample: 15F0878-07	Lab ID: 501	21172007	Collected: 06/11/1	5 12:30	Received: 06	6/16/15 09:10 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV PAHLV	Analytical Meth	nod: EPA 82	270 by SIM LVE Prep	aration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:51	83-32-9	
Acenaphthylene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:51	208-96-8	
Anthracene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:51	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:51	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:51	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:51	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:51	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:51	207-08-9	
Chrysene	ND	ug/L	0.50	1	06/17/15 13:01	06/18/15 13:51	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:51	53-70-3	
Fluoranthene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:51	206-44-0	
Fluorene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:51	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	06/17/15 13:01	06/18/15 13:51	193-39-5	
2-Methylnaphthalene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:51	91-57-6	
Naphthalene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:51	91-20-3	
Phenanthrene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:51	85-01-8	
Pyrene	ND	ug/L	1.0	1	06/17/15 13:01	06/18/15 13:51	129-00-0	
Surrogates		J						
2-Fluorobiphenyl (S)	54	%.	21-114	1	06/17/15 13:01	06/18/15 13:51	321-60-8	
p-Terphenyl-d14 (S)	59	%.	25-131	1	06/17/15 13:01	06/18/15 13:51	1718-51-0	

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: 15F0878
Pace Project No.: 50121172

Sample: 15F0878-08	Lab ID: 501	21172008	Collected: 06/12/1	5 10:10	Received: 06	5/16/15 09:10 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV PAHLV	Analytical Meth	nod: EPA 82	270 by SIM LVE Prep	aration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:39	83-32-9	
Acenaphthylene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:39	208-96-8	
Anthracene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:39	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:39	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:39	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:39	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:39	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:39	207-08-9	
Chrysene	ND	ug/L	0.50	1	06/19/15 09:14	06/19/15 23:39	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:39	53-70-3	
Fluoranthene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:39	206-44-0	
Fluorene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:39	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	06/19/15 09:14	06/19/15 23:39	193-39-5	
2-Methylnaphthalene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:39	91-57-6	
Naphthalene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:39	91-20-3	
Phenanthrene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:39	85-01-8	
Pyrene	ND	ug/L	1.0	1	06/19/15 09:14	06/19/15 23:39	129-00-0	
Surrogates		ū						
2-Fluorobiphenyl (S)	73	%.	21-114	1	06/19/15 09:14	06/19/15 23:39	321-60-8	
p-Terphenyl-d14 (S)	85	%.	25-131	1	06/19/15 09:14	06/19/15 23:39	1718-51-0	

QUALITY CONTROL DATA

Project: 15F0878

Pace Project No.: 50121172

Date: 06/22/2015 11:58 AM

QC Batch: OEXT/39717 Analysis Method: EPA 8270 by SIM LVE

QC Batch Method: EPA 3510 Analysis Description: 8270 Water PAH LV by SIM MSSV

Associated Lab Samples: 50121172001, 50121172002, 50121172003, 50121172006, 50121172007

METHOD BLANK: 1319532 Matrix: Water

Associated Lab Samples: 50121172001, 50121172002, 50121172003, 50121172006, 50121172007

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
- alameter		· 			————
2-Methylnaphthalene	ug/L	ND	1.0	06/18/15 12:05	
Acenaphthene	ug/L	ND	1.0	06/18/15 12:05	
Acenaphthylene	ug/L	ND	1.0	06/18/15 12:05	
Anthracene	ug/L	ND	0.10	06/18/15 12:05	
Benzo(a)anthracene	ug/L	ND	0.10	06/18/15 12:05	
Benzo(a)pyrene	ug/L	ND	0.10	06/18/15 12:05	
Benzo(b)fluoranthene	ug/L	ND	0.10	06/18/15 12:05	
Benzo(g,h,i)perylene	ug/L	ND	0.10	06/18/15 12:05	
Benzo(k)fluoranthene	ug/L	ND	0.10	06/18/15 12:05	
Chrysene	ug/L	ND	0.50	06/18/15 12:05	
Dibenz(a,h)anthracene	ug/L	ND	0.10	06/18/15 12:05	
Fluoranthene	ug/L	ND	1.0	06/18/15 12:05	
Fluorene	ug/L	ND	1.0	06/18/15 12:05	
Indeno(1,2,3-cd)pyrene	ug/L	ND	0.10	06/18/15 12:05	
Naphthalene	ug/L	ND	1.0	06/18/15 12:05	
Phenanthrene	ug/L	ND	1.0	06/18/15 12:05	
Pyrene	ug/L	ND	1.0	06/18/15 12:05	
2-Fluorobiphenyl (S)	%.	50	21-114	06/18/15 12:05	
p-Terphenyl-d14 (S)	%.	71	25-131	06/18/15 12:05	

LABORATORY CONTROL SAMPLE:	1319533					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Methylnaphthalene	ug/L	10	7.5	75	29-110	
Acenaphthene	ug/L	10	8.5	85	39-117	
Acenaphthylene	ug/L	10	8.5	85	40-120	
Anthracene	ug/L	10	8.7	87	48-126	
Benzo(a)anthracene	ug/L	10	10.8	108	51-134	
Benzo(a)pyrene	ug/L	10	11.0	110	48-141	
Benzo(b)fluoranthene	ug/L	10	11.2	112	49-139	
Benzo(g,h,i)perylene	ug/L	10	10.1	101	44-134	
Benzo(k)fluoranthene	ug/L	10	11.3	113	48-140	
Chrysene	ug/L	10	10.8	108	53-136	
Dibenz(a,h)anthracene	ug/L	10	10.1	101	44-132	
Fluoranthene	ug/L	10	11.1	111	50-135	
Fluorene	ug/L	10	9.1	91	44-124	
Indeno(1,2,3-cd)pyrene	ug/L	10	10.1	101	45-132	
Naphthalene	ug/L	10	7.6	76	30-112	
Phenanthrene	ug/L	10	10.4	104	47-128	
Pyrene	ug/L	10	10.9	109	50-134	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: 15F0878
Pace Project No.: 50121172

Date: 06/22/2015 11:58 AM

LABORATORY CONTROL SAMPLE:	1319533					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Fluorobiphenyl (S)	%.			65	21-114	
p-Terphenyl-d14 (S)	%.			83	25-131	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 15F0878
Pace Project No.: 50121172

Date: 06/22/2015 11:58 AM

QC Batch: OEXT/39744 Analysis Method: EPA 8270 by SIM LVE

QC Batch Method: EPA 3510 Analysis Description: 8270 Water PAH LV by SIM MSSV

Associated Lab Samples: 50121172004, 50121172005, 50121172008

METHOD BLANK: 1321311 Matrix: Water

Associated Lab Samples: 50121172004, 50121172005, 50121172008

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
2-Methylnaphthalene	ug/L	ND	1.0	06/19/15 20:33	
Acenaphthene	ug/L	ND	1.0	06/19/15 20:33	
Acenaphthylene	ug/L	ND	1.0	06/19/15 20:33	
Anthracene	ug/L	ND	0.10	06/19/15 20:33	
Benzo(a)anthracene	ug/L	ND	0.10	06/19/15 20:33	
Benzo(a)pyrene	ug/L	ND	0.10	06/19/15 20:33	
Benzo(b)fluoranthene	ug/L	ND	0.10	06/19/15 20:33	
Benzo(g,h,i)perylene	ug/L	ND	0.10	06/19/15 20:33	
Benzo(k)fluoranthene	ug/L	ND	0.10	06/19/15 20:33	
Chrysene	ug/L	ND	0.50	06/19/15 20:33	
Dibenz(a,h)anthracene	ug/L	ND	0.10	06/19/15 20:33	
Fluoranthene	ug/L	ND	1.0	06/19/15 20:33	
Fluorene	ug/L	ND	1.0	06/19/15 20:33	
Indeno(1,2,3-cd)pyrene	ug/L	ND	0.10	06/19/15 20:33	
Naphthalene	ug/L	ND	1.0	06/19/15 20:33	
Phenanthrene	ug/L	ND	1.0	06/19/15 20:33	
Pyrene	ug/L	ND	1.0	06/19/15 20:33	
2-Fluorobiphenyl (S)	%.	60	21-114	06/19/15 20:33	
p-Terphenyl-d14 (S)	%.	88	25-131	06/19/15 20:33	

LABORATORY CONTROL SAMPLE:	1321312					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Methylnaphthalene	ug/L	10	5.8	58	29-110	
Acenaphthene	ug/L	10	6.9	69	39-117	
Acenaphthylene	ug/L	10	7.1	71	40-120	
Anthracene	ug/L	10	7.6	76	48-126	
Benzo(a)anthracene	ug/L	10	8.7	87	51-134	
Benzo(a)pyrene	ug/L	10	8.8	88	48-141	
Benzo(b)fluoranthene	ug/L	10	8.4	84	49-139	
Benzo(g,h,i)perylene	ug/L	10	7.7	77	44-134	
Benzo(k)fluoranthene	ug/L	10	9.6	96	48-140	
Chrysene	ug/L	10	8.4	84	53-136	
Dibenz(a,h)anthracene	ug/L	10	7.9	79	44-132	
Fluoranthene	ug/L	10	8.4	84	50-135	
Fluorene	ug/L	10	7.2	72	44-124	
Indeno(1,2,3-cd)pyrene	ug/L	10	8.0	80	45-132	
Naphthalene	ug/L	10	6.0	60	30-112	
Phenanthrene	ug/L	10	8.0	80	47-128	
Pyrene	ug/L	10	8.5	85	50-134	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: 15F0878
Pace Project No.: 50121172

Date: 06/22/2015 11:58 AM

LABORATORY CONTROL SAMPLE:	1321312					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Fluorobiphenyl (S)	%.			62	21-114	
p-Terphenyl-d14 (S)	%.			81	25-131	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALIFIERS

Project: 15F0878
Pace Project No.: 50121172

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Pace Analytical Services, Inc. 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 15F0878
Pace Project No.: 50121172

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50121172001	15F0878-01	EPA 3510	OEXT/39717	EPA 8270 by SIM LVE	MSSV/18255
50121172002	15F0878-02	EPA 3510	OEXT/39717	EPA 8270 by SIM LVE	MSSV/18255
50121172003	15F0878-03	EPA 3510	OEXT/39717	EPA 8270 by SIM LVE	MSSV/18255
50121172004	15F0878-04	EPA 3510	OEXT/39744	EPA 8270 by SIM LVE	MSSV/18269
50121172005	15F0878-05	EPA 3510	OEXT/39744	EPA 8270 by SIM LVE	MSSV/18269
50121172006	15F0878-06	EPA 3510	OEXT/39717	EPA 8270 by SIM LVE	MSSV/18255
50121172007	15F0878-07	EPA 3510	OEXT/39717	EPA 8270 by SIM LVE	MSSV/18255
50121172008	15F0878-08	EPA 3510	OEXT/39744	EPA 8270 by SIM LVE	MSSV/18269

SUBCONTRACT ORDER

Pace Analytical Services 15F0878

50121172

SENDING LABORATORY:

Pace Analytical Services

25 Holiday Drive

Englewood, OH 45322

Phone: 937.832.8242

Fax: 937.832.2868

Project Manager: Jason Lykins

RECEIVING LABORATORY:

Pace Analytical Services, Inc. Indianapolis Office

7726 Moller Road

Indianapolis, IN 46268

Phone:(317) 875-5894

Fax: -

Analysis	Due Expi	res	Laboratory ID	Comments	prints, the salt case was a salt as
			-001		
Sample ID: 15F0878-01	Groundw Sampled:06/1			VAP	
PAH_FULL_8270	06/29/15 16:00 06/18	8/15 12:30	•		
Containers Supplied:					
Sample ID: 15F0878-02	Groundw Sampled:06/1	1/15 16:25	aor	VAP	
PAH_FULL_8270	06/29/15 16:00 06/18	8/15 16:25			
Containers Supplied:					
Sample ID: 15F0878-03	Groundw Sampled:06/1	1/15 15:10	003	VAP	
PAH_FULL_8270	06/29/15 16:00 06/18	3/15 15:10			
Containers Supplied:	•				
C 1 YD 1879080 04	G I Samuladocus	117.00.00	apt	N/A D	
Sample ID: 15F0878-04	Groundw Sampled:06/12	· · · · · · · · · · · · · · · · · · ·		VAP	 _
PAH_FULL_8270 Containers Supplied:	06/29/15 16:00 06/19	9/15 09:00			
	· · · · · · · · · · · · · · · · · · ·				
Sample ID: 15F0878-05	Groundw Sampled:06/12	2/15 09:30	105	VAP	
PAH_FULL_8270	06/29/15 16:00 06/19	9/15 09:30			
Containers Supplied:					
Sample ID: 15F0878-06	Groundw Sampled:06/11	1/15 15.25	106	VAP	
PAH_FULL_8270	 	3/15 15:35		· ·	
Containers Supplied:	00/29/13 10:00 00/18			-	<i>;</i>
· · · · · · · · · · · · · · · · · · ·		- L	Is v		
Released By	Date	Recei	ved By	Date	•
Released By	Celle/15	ros	Healle	Ace 6/16/15	0910
Released by	Date	Kecer	ved By Y-3-4 (C		Page 20 of 23
		Ten	4.3.4		Page 60 of 65
	•	, _	·		

SUBCONTRACT ORDER

Pace Analytical Services

15F0878

Analysis	Due	Expires	Laboratory ID	Comments
Sample ID: 15F0878-07	Groundw Sampled	:06/11/15 12:30	007	VAP
PAH_FULL_8270 Containers Supplied:	06/29/15 16:00	06/18/15 12:30		
Sample ID: 15F0878-08	Groundw Sampled	:06/12/15 10:10	OPB.	VAP
PAH_FULL_8270 Containers Supplied:	06/29/15 16:00	06/19/15 10:10		

Released By

Date

Received By
Alle PACE

Date 16/15/05/0

Page 61 of 65

Received By

		Sample C	ondi	tion	Upon	Receipt					
e e 2 e e e e e e e e e e e e e e e e e	lient f	Name:Pac	`a '	M	,	٠	Droi	ect#	Con	2/172	
	meric i	vame. Loc		<u>u</u>	<u> </u>		- FIO	eci #_	7612	-1116	
Courier: Ded Ex UPS] 29211	Client C	ommei	rcial	Pace	e Other				•	
Tracking # (024 1 292)		98	OHIHE	Ciai	L_Face	ouie:					
Custody Seal on Cooler/Box Pre		€ yes ⊡ n	0	Seals	intact:	Pyes	☐ no			Time 5035A k d in freezer	its
Packing Material: Bubble Wra	ap _	Bubble Bags	□No	ne 🥝	Othe	10	Q.		<u> </u>		-
Thermometer 120456 A	BCDEF	- Type	of Ice:	Wet	Blue	None	☐ Sam	ples on ice,	cooling pro	cess has begu	un
Cooler Temperature 3.4	12		Visible	in Sa	≠ mple Co	ontainers:	yes		_		
(Corrected, if applicable)		_						Date and Ipi	tials of per	son examinin	ng .
Temp should be above freezing to 6°C	:				Comm	ents:		contents.	QIL	11510	U _A
Chain of Custody Present:			□No	□N/A	1.						
Chain of Custody Filled Out:			□No	- □N/A	2.		-		•		
Chain of Custody Relinquished:		□Yes		□n/a	3.						
Sampler Name & Signature on CO	C:	□Yes	□No		4.			·		·	
Short Hold Time Analysis (<72hr	r):	□Yes	CHA	□n/a	5.						
Rush Turn Around Time Reques	ted:	□Yes		□n/a	6.						
Containers Intact:			□No	□N/A	7.						
Sample Labels match COC:		(Des	□No	□n/a	8.						
-Includes date/time/ID/Analysis											
All containers needing acid/base pres. ha	ive been ch	hecked?	□No	(AVA	9. (Circle) HNO3	H2S	O4 Na	аОН	HCI	
exceptions: VOA, coliform, TOC, O&G		-		•							l
All containers needing preservation are recommendation (<2, >9, >12) unless of		•	vith EP/	\							l
Headspace in VOA Vials (>6mm):		□Yes	□No	[™] AVA	10.						
Trip Blank Present:		□Yes	□No	□ WA							
Trip Blank Custody Seals Present		□Yes	□No	□WA		1					İ
Project Manager Review						1//					
Samples Arrived within Hold Time:		Dres_	□No	□n/a	12.	NUMBER AND DESCRIPTION AND DES				and the second s	
Sufficient Volume:		Ø Yes _	No								
Correct Containers Used:		∐Yes	□No	□n/a	14.						
Client Notification/ Resolution:	Anima de la companya de la companya de la companya de la companya de la companya de la companya de la companya			***************************************		_	Field	Data Requi	ed?	Y / N	
Person Contacted:	m4.	(Historically)		Date/1	ime: _	bfgle5		_			
Comments/ Resolution:		Sec 5012	2068	3		· · · · · · · · · · · · · · · · · · ·					
	<u> </u>	<u> </u>	77								•
FULL PAH SIST	<u>Aud e</u>	ed not fu	VI f	157	540C				 		
.· ·				··						<u> </u>	
······································											
										 .	
	-+										
							 		· .		
Project Manager Review:		JUMP.	h/8			<u> </u>	-	Date:	Will	15	

Sample Container Count

	1) 100	α	
CLIENT:	VATU	1 4-4-	
O=1=141.			

Pace Analytical

COC PAGE of	A 110 11-0
COC ID#	Project # <u>57/12/177</u>

Sample Line	DG9H	AG1U	WGFU	AG0U	R 4/6	BP2N	BP2U	BP2S	BP3N	BP3U	BP3S	AG3S	AG1H	BP3C		36 SP5T	_	pH <2	pH>12	Comments
1												٠			J					
2									,											
3							.)													
4		•••																		The same section of the sa
5		 																	· 	
6																				MARKET IN THE STATE OF THE STAT
7 .	·														1					
8	ļ			-				ļ						ļ						Contractive Community Contractive Contract
9															ļ					
10																				
11	<u> . </u>			-																
12										l					1					

Container Codes

	Container Codes						
DG9H	40mL HCL amber voa vial	AG0U	100mL unpreserved amber glass	BP1N	1 liter HNO3 plastic	DG9P	40mL TSP amber vial
AG1U	1liter unpreserved amber glass	AG1H	1 liter HCL amber glass	BP1S	1 liter H2SO4 plastic	DG9S	40mL H2SO4 amber vial
WGFU	4oz clear soil jar	AG1S	1 liter H2SO4 amber glass	BP1U	1 liter unpreserved plastic	DG9T	40ml. Na Thio amber vial
R	terra core kit	AG1T	1 liter Na Thiosulfate amber glass	BP1Z	1 liter NaOH, Zn, Ac	DG9U	40mL unpreserved amber vial
BP2N	500mL HNO3 plastic	AG2N	500mL HNO3 amber glass	BP2A	500mL NaOH, Asc Acid plastic	SP5T	120mL Coliform Na Thiosulfate
BP2U	500mL unpreserved plastic	AG2S	500mL H2SO4 amber glass	BP20	500mL NaOH plastic	JGFU	4oz unpreserved amber wide
BP2S	500mL H2SO4 plastic	AG2U	500mL unpreserved amber glass	BP2Z	500mL NaOH, Zn Ac	U	Summa Can
BP3N	250mL HNO3 plastic	AG3U	250mL unpreserved amber glass	AF	Air Filter	VG9H	40mL HCL clear vial
BP3U	250mL unpreserved plastic	BG1H	1 liter HCL clear glass	BP3C	250mL NaOH plastic	VG9T	40mL Na Thio. clear vial
BP3S	250mL H2SO4 plastic	BG1S	1 liter H2SO4 clear glass	BP3Z	250mL NaOH, Zn Ac plastic	VG9U	40mL unpreserved clear vial
AG3S	250mL H2SO4 glass amber	BG1T	1 liter Na Thiosulfate clear glass	С	Air Cassettes	VSG	Headspace septa vial & HCL
AG1S	1 liter H2SO4 amber glass	BG1U	1 liter unpreserved glass	DG9B	40mL Na Bisulfate amber vial	WGFX	4oz wide jar w/hexane wipe
BP1U	1 liter unpreserved plastic	BP1A	1 liter NaOH, Asc Acid plastic	DG9M	40mL MeOH clear vial	ZPLC	Ziploc Bag

F-IN-Q-270-rev.05,02Apr2014

Sample Receipt Summary

15F0878

Client: Hull & Associates - Toledo Office Project Manager: Jason Lykins

Project: COT235 Champion Spark Plug Project Number: COT235 Champion Spark Plug

Report To:

Matt Beil

3401 Glendale Avenue

Toledo OH 43614

Phone: (419) 385-2018 Fax: (419) 385-5487

WO Due Date: 6/29/2015 5:00:00PM

TAT (Days): 10

Received By: Scott Pander

Received: 6/13/2015 9:15:00AM

Logged In By: Peggy Whitaker

Logged In: 6/15/2015 11:11:00AM

Receipt Temp (C): 4.0 **Custody Seals** True Container Intact True COC/Labels agree True Received on ice True VOC vials had zero head space True Approved Container True Sufficient volume received True Received within HT True Shipped By: Fed Ex **Number of Containers**

Samples Received:

Laboratory ID:	Field ID:	Date/Time Sampled:	Matrix:
15F0878-01	COT235:HTMW-1:G061115	6/11/2015 12:30:00PM	Groundwater
15F0878-02	COT235:HTMW-2:G061115	6/11/2015 4:25:00PM	Groundwater
15F0878-03	COT235:HTMW-3:G061115	6/11/2015 3:10:00PM	Groundwater
15F0878-04	COT235:HTMW-4:G061215	6/12/2015 9:00:00AM	Groundwater
15F0878-05	COT235:HTMW-5:G061215	6/12/2015 9:30:00AM	Groundwater
15F0878-06	COT235:HTMW-6:G061215	6/11/2015 3:35:00PM	Groundwater
15F0878-07	COT235:HTMW-1:G061115A	6/11/2015 12:30:00PM	Groundwater
15F0878-08	COT235:E. Blank 2:W061215	6/12/2015 10:10:00AM	Groundwater
15F0878-09	COT235:TRIP -2: -	6/11/2015 12:30:00PM	Water

Sample Notes:

APPENDIX E

Field Data Sheets

HULL & ASSOCIATES, INC. TOLEDO, OHIO

SE-HULL Forme Ch

Facility Name:	tormur Cha	mpion Propertu		Sampling Date: 6-27-2015											
Address:	900 Upton	Ave	}		Weather: SUNNY										
	Toledo, OH				indoor remperature:										
Hull Personnel:	J. CARLSON)				C	Outdoor Ten	nperature:	75°						
					-	Monito	ring Equipn	nent Used:	PID Mini Rae 11.7						
Job No.:	CGT 235				_	Ca	libration Do	ıte / Time:	6-24-	2015 0	1840				
AIR SAMPLING LOCATION	H5G-1	H5G-2			·										
Sampling Container Type	Summa	Svmma			•		1								
Summa Canister Ser No./Tag No.	0273	1183										. '			
Purge Time Start / Stop	0848 850	853 855			<u></u>										
Flow Controller No.	FC0144	FC1099													
Sample Type (Grab, Composite)	Composite	Omposite 0.0													
Pre-Sample PID Measurement	0.0	0:0					<u> </u>								
Sample Start Time	0850	0855													
	Time Hg	Time Hg	Time	Hg	Time	Hg	Time	Hg	Time	Hg	Time	Hg			
	1110 24	1110 24			<u> </u>	L									
	1520 8	1520 10													
	1555 6	1558 5													
Canister Vapor Pressure Readings (Time, Vapor Pressure Hg)															
(time, vapor rressure rig)															
										-					
Sample End Time	1555	1228													
Post-Sample PID Measurement	0	0													
Depth of Probe (ft. bgs)	4,5'	4.5													
Surface Condition (asphalt, concrete, etc.)	gravel	gravel													
Sample ID	COT235:HSG-1:A	COT235: HSG-2	: A0624	15											
NOTES	0624	15													
			·								<u> </u>				
Was ther precipitation in the previous	48-hours prior to sa	mpling? Yes	□No	If, YES, w	hat is the a	mount of p	recipitatio	0, Z	0						

BHULL

11200 "

GROUNDWATER SAMPLING FIELD DATA SHEET

			and Characteristics							Si	neet of
	Farmar	~ Max 3	Soule	Die Propo	~ \		Well ID:	HTMW-	-/		
Facility:	- OKYVVE	K Oramp	ion Spark 1 Tolero, c	FIR FIOLEN	110	_	Date:	10-11-	-15		<u> </u>
Address:	900 Up	iton hue	, 70000 C	7/10	<u> </u>	_	Weather:	PHy Cla	ovely		
Job No:						_	Temp/Wind:	70-80			
Huli Personnel:	<u></u>	ARISON				_	Barometric P:		<u>.</u>	·	
						G WELL DATA					
	Well Type:	1 00 00	ω ρ 1 ¹²	Depth of Water (ft	°): 5.90		(1,0)		WELL VOLUME O		
	Well Condition	2000	\ 	Total Depth (ft°):	_17.0	_		Gallons/Fo Depth		-	'ell Volume gallons)
	Purge / Sample Method:	· Fair. Pu	mp	Height of Water (f	t): /	1.10	_	0.041		•	-
	Type & Depth of Pump:			Well Screen Intervo	al (ft°): / A			0,047	x //./0	=	·
Water Qua	lity Monitoring Equip Used:	KORIE	R					1 -			
				<u> </u>	PURGIN	IG DATA					
Time:	Pumping Rate (ml/min)	Cumulative Volume	Depth to water (ft) ^a (0.3 max) ^b	Temp. (*C) (0.5)	pH (S.U.) (0.2)	Specific Cond. (uS/cm) (3%)	ORP (Mv or ml/g)) (20)	Turbidity (NTU) (10%)	DO (mg/1) (10%)	Comr	nents
1203	100	750 mL	5.90	18,4	9.3	2.02	-135	0	1,44	 :	
1217	300 maxel		_	15.5	8.7	1,90	-229	794	0.57		
1222	300	\$ /@ 0)	6.00	15.4	8.7	1.90	-228	302	250		
1227	300	1,00 Z5gol	6.00	15.4	8.7	1.89	-226	258	0.48		
1230	100 - 5			15,6	8.7	1,87	-225	270	244		
1	i										
								-			
					Г		SAMPLING DAT	TA			
EXPLOSIVE GA	AS READING PRIOR ELL LEVEL:		SAMPLE ID		DATE	TIME	ANA	LYSIS	PRESERVED?	FIELD FILTERED? Y / N	FILTER Size
0	PID Wellhead	COT235:1.	TMW-1:60	61115	6-11-15	1230			XI.S	N	
0	%LEL:		HTMW-1:GO		1,	, \					
a. Measurement fro	m top of casing										
	, per OhioEPA TEGD 5/2012, adju	st .				<u>.</u>	<u>'</u>				
depending on Sta	=		NOTES:								
•	1.5" well = 0.091, 2" well = 6" well = 1.468	•									
4 Well - 0.000,	/// // // // // // // // // // // // //	1000 ml									

GROUNDWATER SAMPLING FIELD DATA SHEET

	,	_	. 0 -	•			Well ID:	HTMW-	2_		
Facility:	Former Ch 900 Upton COT 235	iampion Sp	back Plug F	acility			Date:	6-11-15			
Address:	900 Upton	Rue	1			•	Weather:	Sunny 700	<u> </u>		
Job No:	COT 235					•	Temp/Wind:	3000 5-10	,		
Hull Personnel:	J.CARV		-		· · · · · · · · · · · · · · · · · · ·	•	Barometric P:	_			
					MONITORING	WELL DATA					
	Well Type:	PVC - 1"7	[A\=- 0	Depth of Water (ft°)					WELL VOLUME	CALCULATION:	
	Well Condition:	Gog 6	amp	Total Depth (ft ^a):	15,6		2,4	Gallons/Foo	ot of Feet of S Wa	•	Vell Volume (gallons)
	Purge / Sample Method:	Par Pin		Height of Water (ft)		89		Depth ^c		_	
	Type & Depth of Pump:		P	Well Screen Interval				0,041	x <u>6,8</u>	$\frac{9}{2} = \frac{2}{2}$	28
Water Qua	lity Monitoring Equip Used:	HORIBA		1				,			
				<u> </u>	PURGIN	G DATA					
Time:	Pumping Rate (ml/min)	Cumulative Volume	Depth to water (ft) ^a	Temp. (°C) (0.5)	pH (S.U.) (0.2)	Specific Cond. (uS/cm) (3%)	ORP (Mv or ml/g)) (20)	Turbidity (NTU) (10%)	DO (mg/l) (10%)	S/aw Com	ments
1134	100	300 ml	8.71	21,6	8.4	2,13	- 50	614	3,70	Very fine	VEITA
1138	100	750 ml	DRU	-110	0 - 1	., _				- changed	
1		1,3	J		· · · · · ·						Licher in Well
1625	100	SAMPL	ĘD	_	~	~	_)	~ *	* Not enough	
_										Mcker reac	
										, , , ,	7
									 		
							544000000000	•			
					;		SAMPLING DAT	A		FIELD	_
EXPLOSIVE G	AS READING PRIOR ELL LEVEL:		SAMPLE ID		DATE	TIME	ANAI	YSIS	PRESERVED?	FILTERED? Y / N	FILTER SIZE
0	PID Wellhead	COT235: N	TMW-2:6	081115	6-11-15	1625			ン ア	NO	
0	%LEL:			<u> </u>							
a. Measurement fro	om top of casing										
b. Stabilization Criterio	a, per OhloEPA TEGD 5/2012, adjus	•									
depending on Sto	ate Program. . 1.5" well = 0.091, 2" well = (1163	NOTES:								
	, 6" well = 1.468										

The state of the s			
	$\neg \cup$		

GROUNDWATER SAMPLING FIELD DATA SHEET Sheet _____ of ____

Facility: Address: Job No: Hull Personnel:	Former Cl 900 Up COT 235 J. CAR	Nampion ton Auc	Spark Pl Toleda	ug Proper	orky_		Well ID: Date: Weather: Temp/Wind: Barometric P:	HTMW, 6-11-15 PHy Clave 70-80			
					MONITORING	WELL DATA		<u> </u>			
	Well Type:	Temp PVC		Depth of Water (ft ^e	1: 6.75	(2.3)	4, 45			CALCULATION:	
	Well Condition:			Total Depth (ft°):	14.9	(2.3)	12.6	Gallons/Fo		Standing 1 ' ater	Well Volume (gallons)
	Purge / Sample Method:			Height of Water (ft	8,15			nnyl	x 8,79		33
	Type & Depth of Pump:			Well Screen Interva	(ft°): /0′			0,000	x <u>\delta, / .</u>	<u> </u>	
Water Qua	ality Monitoring Equip Used:										
			-		PURGING	DATA					
Time:	Pumping Rate (ml/min)	Cumulative Volume (I)	Depth to water (ft) ^a (0.3 max) ^b	Temp. (°C) (0.5)	pH (S.U.) (0.2)	Specific Cond. (uS/cm) (3%)	ORP (Mv or ml/g)) (20)	Turbidity (NTU) (10%)	DO (mg/l) (10%)	Cor	nments
1003	100	0.25 gal	DRY	Before F	RST Realis						-
		, _									
- 1010	100	1)00 m(ten Dr ~	19.3	11.7	3.51	-62	40.3	3,00		
1510	100 54	MPGD								** Not ev	wich water Readings
										tor witer	-Keachines
											
		<u> </u>	<u> </u>	·	I		SAMPLING DA	ГА			
EXPLOSIVE G	SAS READING PRIOR /ELL LEVEL:		SAMPLE ID		DATE	TIME	ANA	LYSIS	PRESERVED?	FIELD FILTERED? Y / N	FII TER SIZE
\bigcirc	PID Wellhead	COT 235:1	17mw-3: 10	061115	6-11-15	15/0			<i>y</i>	N	
0	 %LEL:										
a. Measurement for b. Stabilization Criter depending on S	rla, per OhioEPA TEGD 5/2012, adju	set	NOTES: ENO	ugh for	Sample	But could	ht take Rec	elis	333		
	i, 1.5" well = 0.091, 2" well = 3, 6" well = 1.468	0.163,		/	•			J			

GROUNDWATER SAMPLING FIELD DATA SHEET

	- 1			!			Well ID:	HTMW	1					
Facility:	Former Ch 900 Uplon COT 235	ampion Spack	EPlyg Popu	tu .			Date:	6-11-15		2-15				
Address:	900 Upton	Ave Toll	da JOHIO	J		_	Weather:	PHY Clove	,		,			
Job No:	COT 235					- _	Temp/Wind:	70-80						
Hull Personnel:	J. CARO	SOV		٠			Barometric P:							
					MONITORIN	G WELL DATA					·			
	Well Type	· PVC I''	Temp	Depth of Water (ft ^c	1: 6.25					CALCULATION:				
	Well Condition	1		Total Depth (ft ^a):	15.20		(1)	Gallons/Foot of Feet of Standing 1 Well Volume Depth ^c Water (gallons)						
	Purge / Sample Method	Par. Pung	2	Height of Water (ft):	8.95	J.	0.041 x 8.95 = 0.37						
	Type & Depth of Pump	·		Well Screen Interva	1 (ft°): 10			0.091	x <u>& , 73</u>	= -				
Water Qua	ality Monitoring Equip Used	: Noriba												
					PURGIN	IG DATA								
Time:	Pumping Rate (ml/min)	Cumulative Volume	Depth to water (ft) ^d (0.3 max) ^b	Temp. (°C) (0.5)	pH (S.U.) (0.2)	Specific Cond. (uS/cm) (3%)	ORP (Mv or ml/g)) (20)	Turbidity (NTU) (10%)	DO (mg/l) (10%)	Con	nments			
1358	100-200	1/000	·	13.2	10.5	0.595	-1/1	0	4.92					
MO1	100	1,100	DRY			,								
											1			
900	100	SAMPI	re								gh wader for			
					_	-				meter read	inte			
						 								
								·		<u> </u>				
										-				
					<u> </u>		SAMPLING DAT	TA .						
EXPLOSIVE G	SAS READING PRIOR ELL LEVEL:		SAMPLE ID		DATE	TIME	ANA	LYSIS	PRESERVED?	FIELD FILTERED? Y / N	FILTER SIZE			
0	PID Wellhead	CC7255 16	Tmw-4:G	061215	16-12-15	6900		<u>.</u>	y	N	-			
0	%LEL:			· · · · · · · · · · · · · · · · · · ·										
a. Measurement fr	om top of casing									a a				
	ia, per OhioEPA TEGD 5/2012, adju	ust			··	<u>-</u>								
depending on St	tate Program. , 1.5" well = 0.091, 2" well =	0.163	NOTES:			<u> </u>	·							
	, 1.5 Well = 0.091, 2 Well =	0.100,						•						

GROUNDWATER SAMPLING FIELD DATA SHEET

										SI	heet <u>/</u> of <u></u>
Facility:	Some Chains and Uptor COTZIS	a Spack P	ha Propertu				Well ID:	NTMW-5			
Address:	301 101	Toler	() Mus			-					
Job No:	CAT 275	nve, roue	o vijo			_	Temp/Wind:	PHy Clover			
Huil Personnel:	J. CHRLS	70				-	Barometric P:	<u> </u>			
	<u> </u>					-		· · · · · · · ·			
<u> </u>	Mall Tune	000 1115	<u> </u>	1	MONITORING	WELL DATA	(#2)		WELL VOLUME O	CALCULATION:	
	Well Type: Well Condition:		emp	Depth of Water (ft ^c	15.2	· · · · · · · · · · · · · · · · · · ·	(0.3)	Gallons/Fo			Vell Volume
	Purge / Sample Method:	<u> </u>		Total Depth (ft ^a): Height of Water (ft		7.95		Depth	Wat	jer ((gallons)
		- / W . , o p	2			1.13		0.041	_x 7.95	= 0,	32
	Type & Depth of Pump:			Well Screen Intervo	11 (tt²): 10°	· 			^		
Water Qua	ality Monitoring Equip Used:	<u>HOKIBA</u>		<u>-</u> .							
		,			PURGIN	G DATA					
Time:	Pumping Rate (mi/min)	Cumulative Volume (I)	Depth to water (ft) ^a (0.3 max) ^b	Temp. (*C) (0.5)	pH (S.U.) (0.2)	Specific Cond. (uS/cm) (3%)	ORP (Mv or ml/g)) (20)	Turbidity (NTU) (10%)	DO (mg/l) (10%)	Comr	ments
1335	200	1,000		14.7	11.5	1.33	-258	45,0	2.45		·
1340	100	2,000	DRY		11.4	0.875	-313	651	5,4		
			, ,								
0940	13-0	-	Post Sample	20.5	11.2	933	-43	83	6.3		
·											
										ļ	
					<u> </u>						
	_			<u> </u>			 				
							<u> </u>				
				<u> </u>			641121110224				
EXPLOSIVE G TO STATIC W	GAS READING PRIOR		SAMPLE ID		DATE	TIME	SAMPLING DAT		PRESERVED?	FIELD FILTERED? Y / N	FILTER SIZE
D	PID Wellhead	ピカナクマと・	14TMW-5:0	1.061715	6-17-15	0930			yes	No	
	%LEL:	1,01,233,1	· · / · · · · · · · · · · · · · · · · ·	1-011/	1 1/2						,
						 		· · ·			
a. Measurement fr b. Stabilization Criteri	rom top of casing Ia, per OhloEPA TEGD 5/2012, adju	st ·	<u> </u>		<u> </u>	<u> </u>	<u>J</u> .			<u> </u>	
depending on St			NOTES:						·		
c. 1" well = 0.041	, 1.5" well = 0.091, 2" well =	0.163,									
4" 11 = 0 / 51	2 4" 1 440										

GROUNDWATER SAMPLING FIELD DATA SHEET

Facility: Famer Champin Spark Plus Property. Address: 900 Upfor Aue 10000 Ot 10 Weather: PHyClands Temp/Wind: 70-80 5-10 np Barometric P: MONITORING WELL DATA Well Type: PVC 1 "Tomp Well Condition: 900 Total Depth of Water (ft*): 61/9 8 Total Depth (ft*): 17.6 Purge / Sample Method: Par, Rmp Type & Depth of Pump: Well Screen Interval (ft*): 7.92 Water Quality Monitoring Equip Used: NOR 18A						
Job No: CST 235 Temp/Wind: 70-80 5-10 mg/ Hull Personnel: 5. CAR 150N						
Job No: CST 235 Hull Personnel: 5. CARISON MONITORING WELL DATA Well Type: PVC 1 Tomp Well Condition: Good Purge / Sample Method: Par, Runp Type & Depth of Water (ft°): 1/1.6 Purge / Sample Method: Par, Runp Type & Depth of Pump: — Well Screen Interval (ft°): 10′ Water Quality Monitoring Equip Used: NOR 18A						
MONITORING WELL DATA						
Well Type: PVC L"Tomp Well Condition: Good Purge / Sample Method: Par, Runp Total Depth (ff°): 17.6 Well Screen Interval (ff°): 10 / Water Quality Monitoring Equip Used: NOR 18A Depth of Water (ff°): 61 / 8 Total Depth (ff°): 17.6 Height of Water (ff°): 7.92 Well Screen Interval (ff°): 10 / Water Quality Monitoring Equip Used: NOR 18A						
Well Type: PVC L"Tomp Well Condition: Good Purge / Sample Method: Par, Runp Total Depth (ff°): 17.6 Well Screen Interval (ff°): 10 / Water Quality Monitoring Equip Used: NOR 18A Depth of Water (ff°): 61 / 8 Total Depth (ff°): 17.6 Height of Water (ff°): 7.92 Well Screen Interval (ff°): 10 / Water Quality Monitoring Equip Used: NOR 18A						
Well Condition: Good Total Depth (ft°): 19.6 BA Total Dep						
Type & Depth of Pump: — Well Screen Interval (ff°): 10 / X (7.37) = 0,37 = 0,32						
Type & Depth of Pump: — Well Screen Interval (ff°): 10 / X (312 = 0,32) Water Quality Monitoring Equip Used: NOR1BA	·					
	$\frac{0.071}{2} \times \frac{7.77}{2} = 0.32$					
PURGING DATA						
Time: Pumping Rate (ml/min) Cumulative Volume (I) Depth to water (ft) Temp. (*C) (0.3 max) (0.5) PH (S.U.) (0.2) Specific Cond. (uS/cm) (uS/cm) (20) Turbidity (NTU) DO (mg/l) (10%) Comments						
1046 100 500ml 21.47 P.9 0.002 -Z6 103 9.96						
1059 100 1500ml DRY						
1540 100 Post SAMPLE 27,9 8,9 3.12 No 58,1 3,90						
SAMPLING DATA						
EXPLOSIVE GAS READING PRIOR SAMPLE ID DATE TIME ANALYSIS PRESERVED? FILTERED? TO STATIC WELL LEVEL: Y / N	FILTER SIZE					
O PID Wellhead COTZ3K: HTmwb: G061/15 19-11-15 15-35						
%LEL:						
a. Measurement from top of casing						
b. Stabilization Criteria, per OhloEPA TEGD 5/2012, adjust						
depending on State Program. NOTES:						
c. 1" well = 0.041, 1.5" well = 0.091, 2" well = 0.163, 4" well = 0.653, 6" well = 1.468						

APPENDIX F

Ohio Department of Natural Resources Well Logs

GeoPlus Water Well Report

Satellite view

Target Property:

Champion Sparkplug 900-914 UPTON AVE TOLEDO, Lucas County, Ohio 43607

Prepared For:

Historical Information Gatherers

Order #: 41213

Job #: 90695

Project #: 148131

Date: 09/25/2014

Table of Contents

Target Property Summary	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	. 1	
Database Findings Summary																						. 2	
Locatable Database Findings				٠				٠	٠	٠							•					. 4	
Waterwell Map																						. 6	i
Report Summary of Locatable Sites																		•			•	. 7	
Environmental Records Definitions																						. 4	7

Disclaimer

The information provided in this report was obtained from a variety of public sources. GeoSearch cannot ensure and makes no warranty or representation as to the accuracy, reliability, quality, errors occurring from data conversion or the customer's interpretation of this report. This report was made by GeoSearch for exclusive use by its clients only. Therefore, this report may not contain sufficient information for other purposes or parties. GeoSearch and its partners, employees, officers And independent contractors cannot be held liable For actual, incidental, consequential, special or exemplary damages suffered by a customer resulting directly or indirectly from any information provided by GeoSearch.

Target Property Summary

Champion Sparkplug 900-914 UPTON AVE TOLEDO, Lucas County, Ohio 43607

USGS Quadrangle: Toledo, OH Target Property Geometry: Area

Target Property Longitude(s)/Latitude(s):

(-83.586335, 41.651305), (-83.587088, 41.651771), (-83.587644, 41.651771), (-83.587644, 41.651341),(-83.588164, 41.651323), (-83.588164, 41.651036), (-83.589939, 41.651036), (-83.589957, 41.647449),(-83.589222, 41.647449), (-83.589222, 41.645709), (-83.588182, 41.645709), (-83.588254, 41.646893),(-83.588002, 41.648381), (-83.587303, 41.649996), (-83.586353, 41.651269), (-83.586335, 41.651305)

County/Parish Covered:

Lucas (OH)

Zipcode(s) Covered: Toledo OH: 43607

State(s) Covered:

ОН

Zone 2 areas have a predicted average indoor radon screening level between 2 and 4 pCi/L (picocuries per liter).

^{*}Target property is located in Radon Zone 2.

Database Findings Summary

FEDERAL LISTING

Database	Acronym	Locatable	Unlocatable	Search Radius (miles)
UNITED STATES GEOLOGICAL SURVEY NATIONAL WATER INFORMATION SYSTEM	<u>NWIS</u>	0	0	0.5000
SUB-TOTAL		0	0	

Database Findings Summary

STATE (OH) LISTING

Database	Acronym	Locatable	Unlocatable	Search Radius (miles)
WATER WELLS	<u>DNRWW</u>	38	0	0.5000
PUBLIC WATER SUPPLY WELLS AND INTAKES	<u>PWS</u>	0	0	0.5000
SUB-TOTAL		38	0	
TOTAL		38	0	

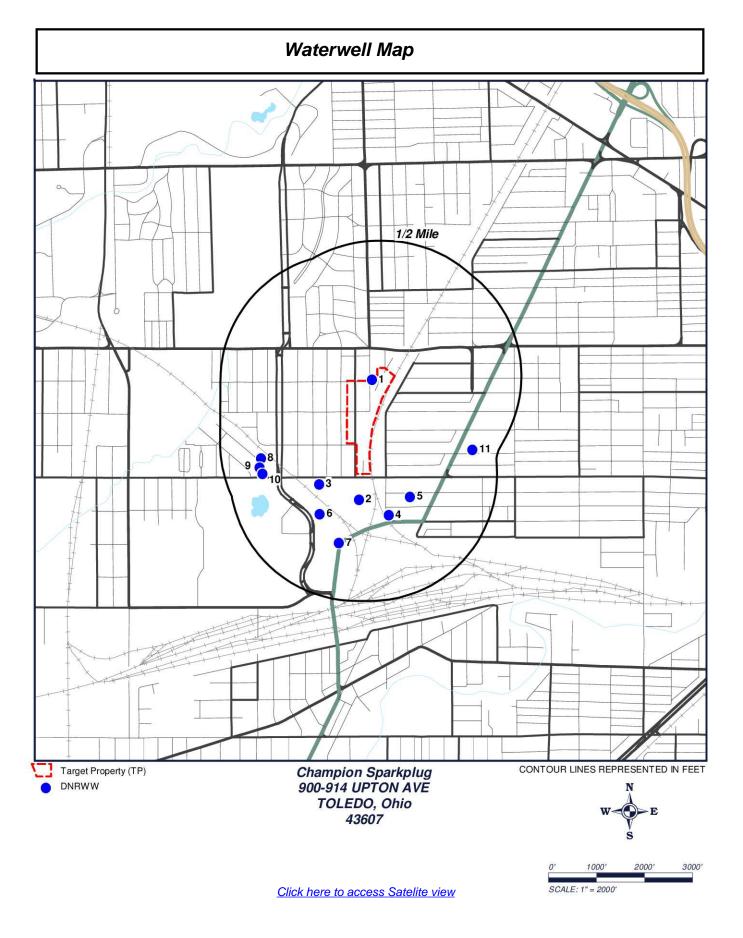
Locatable Database Findings

FEDERAL LISTING

Acronym	Search Radius (miles)	TP/AP (0 - 0.02)	1/8 Mile (> TP/AP)	1/4 Mile (> 1/8)	1/2 Mile (> 1/4)	1 Mile (> 1/2)	> 1 Mile	Total
NWIS	0.5000		0	0	0	NS	NS	0
SUB-TOTAL	·		0	0	0	0	0	0

Locatable Database Findings

STATE (OH) LISTING


Acronym	Search Radius (miles)	TP/AP (0 - 0.02)	1/8 Mile (> TP/AP)	1/4 Mile (> 1/8)	1/2 Mile (> 1/4)	1 Mile (> 1/2)	> 1 Mile	Total
DNRWW	0.5000	22	1	6	9	NS	NS	38
PWS	0.5000		0	0	0	NS	NS	0
SUB-TOTAL		22	1	6	9	0	0	38

TOTAL	22	2	1	6	9	0	0	38

NOTES:

NS = NOT SEARCHED

TP/AP = TARGET PROPERTY/ADJACENT PROPERTY

Report Summary of Locatable Sites

Map ID#	Database Name	Site ID#	Distance Site Name From Site	Address	City, Zip Code	PAGE #
1	DNRWW	795829	0.001 W	900 UPTON AVE		9
1	DNRWW	795830	0.001 W	900 UPTON AVE		<u>10</u>
1	DNRWW	795854	0.001 W	900 UPTON AVE		<u>11</u>
1	DNRWW	795855	0.001 W	900 UPTON AVE		<u>12</u>
1	DNRWW	795856	0.001 W	900 UPTON AVE		<u>13</u>
1	DNRWW	795857	0.001 W	900 UPTON AVE		<u>14</u>
1	DNRWW	755305	0.001 W	900 UPTON AVE		<u>15</u>
1	DNRWW	753014	0.001 W	900 UPTON AVE		<u>16</u>
1	DNRWW	753012	0.001 W	900 UPTON AVE		<u>17</u>
1	DNRWW	740800	0.001 W	900 UPTON AVE		<u>18</u>
1	DNRWW	740780	0.001 W	900 UPTON AVE		<u>19</u>
1	DNRWW	740779	0.001 W	900 UPTON AVE		<u>20</u>
1	DNRWW	740781	0.001 W	900 UPTON AVE		<u>21</u>
1	DNRWW	740782	0.001 W	900 UPTON AVE		<u>22</u>
1	DNRWW	740783	0.001 W	900 UPTON AVE		<u>23</u>
1	DNRWW	740784	0.001 W	900 UPTON AVE		<u>24</u>
1	DNRWW	740791	0.001 W	900 UPTON AVE		<u>25</u>
<u>1</u>	DNRWW	740799	0.001 W	900 UPTON AVE		<u>26</u>
<u>1</u>	DNRWW	753013	0.001 W	900 UPTON AVE		<u>27</u>
1	DNRWW	755303	0.001 W	900 UPTON AVE		<u>28</u>
1	DNRWW	755304	0.001 W	900 UPTON AVE		<u>29</u>
1	DNRWW	795828	0.001 W	900 UPTON AVE		<u>30</u>
2	DNRWW	2023566	0.1 S	1925 NEBRASKA AVE	TOLEDO, 43607	<u>31</u>
3	DNRWW	2023570	0.16 SW	1925 NEBRASKA AVE	TOLEDO	<u>32</u>
4	DNRWW	31700	0.18 S	BROWN RD	TOLEDO	<u>33</u>
4	DNRWW	216314	0.18 S	BROWN RD	TOLEDO	<u>34</u>
<u>4</u>	DNRWW	277089	0.18 S	BROWN RD	TOLEDO	<u>35</u>
<u>5</u>	DNRWW	2023567	0.19 S	1925 NEBRASKA AVE	TOLEDO	<u>36</u>
<u>6</u>	DNRWW	2023569	0.22 SW	1925 NEBRASKA AVE	TOLEDO	<u>37</u>
7	DNRWW	734132	0.29 S	99 FEARING BLVD		<u>38</u>
7	DNRWW	734133	0.29 S	99 FEARING BLVD		<u>39</u>
7	DNRWW	734131	0.29 S	99 FEARING BLVD		<u>40</u>
8	DNRWW	2039782	0.35 SW	2225 NEBRASKA AVE	TOLEDO	<u>41</u>
<u>8</u>	DNRWW	2039780	0.35 SW	2225 NEBRASKA	TOLEDO	<u>42</u>
9	DNRWW	2039781	0.36 SW	2225 NEBRASKA AVE	TOLEDO	<u>43</u>
<u>10</u>	DNRWW	2039779	0.35 SW	2225 NEBRASKA AVE	TOLEDO	<u>44</u>
<u>10</u>	DNRWW	2039777	0.36 SW	2225 NEBRASKA AVE	TOLEDO	<u>45</u>

Report Summary of Locatable Sites

DNRWW 2014664 0.41 SE 1602 W BANCROFT TOLEDO, 43606

8 of 48

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 795829

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 08/21/94

WELL DEPTH (ft.): 13
WELL USE: MONITOR
AQUIFER DESCRIPTION: SILT

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 795830

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 08/21/94

WELL DEPTH (ft.): 15
WELL USE: MONITOR
AQUIFER DESCRIPTION: SILT

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 795854

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 08/16/95

WELL DEPTH (ft.): 17
WELL USE: MONITOR
AQUIFER DESCRIPTION: SILT

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 795855

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 08/16/95

WELL DEPTH (ft.): 15
WELL USE: MONITOR
AQUIFER DESCRIPTION: SILT

Agon ER BEGORN HON. GET

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 795856

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 08/16/95

WELL DEPTH (ft.): 15
WELL USE: MONITOR
AQUIFER DESCRIPTION: SILT

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 795857

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 08/16/95

WELL DEPTH (ft.): 15
WELL USE: MONITOR
AQUIFER DESCRIPTION: SILT

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 755305

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 09/11/92

WELL DEPTH (ft.): 15
WELL USE: MONITOR

AQUIFER DESCRIPTION: SAND

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 753014

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 02/21/94

WELL DEPTH (ft.): 8
WELL USE: MONITOR

AQUIFER DESCRIPTION: SAND & CLAY
OWNER NAME: CHAMPION SPARK PLUM

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 753012

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 10/22/93

WELL DEPTH (ft.): 16
WELL USE: MONITOR
AQUIFER DESCRIPTION: SILT

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 740800

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 09/04/92

WELL DEPTH (ft.): 15
WELL USE: NOT REPORTED
AQUIFER DESCRIPTION: SAND

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 740780

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 12/09/91

WELL DEPTH (ft.): 16
WELL USE: NOT REPORTED
AQUIFER DESCRIPTION: SILT

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 740779

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 12/09/91

WELL DEPTH (ft.): 16
WELL USE: NOT REPORTED
AQUIFER DESCRIPTION: SILT

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 740781

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 12/09/91

WELL DEPTH (ft.): 16
WELL USE: NOT REPORTED
AQUIFER DESCRIPTION: SILT

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 740782

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 12/09/91

WELL DEPTH (ft.): 21
WELL USE: NOT REPORTED
AQUIFER DESCRIPTION: GRAVEL

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 740783

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 12/09/91

WELL DEPTH (ft.): 21
WELL USE: NOT REPORTED
AQUIFER DESCRIPTION: SILT

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 740784

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 12/09/91

WELL DEPTH (ft.): 16
WELL USE: NOT REPORTED
AQUIFER DESCRIPTION: SILT

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 740791

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 05/06/92

WELL DEPTH (ft.): 11
WELL USE: MONITOR
AQUIFER DESCRIPTION: SILT

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 740799

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 08/04/92

WELL DEPTH (ft.): 12
WELL USE: MONITOR

AQUIFER DESCRIPTION: SAND & GRAVEL OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 753013

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 12/17/93

WELL DEPTH (ft.): 9

WELL USE: NOT REPORTED

AQUIFER DESCRIPTION: LIMESTONE
OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 755303

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 09/11/92

WELL DEPTH (ft.): 17
WELL USE: MONITOR

AQUIFER DESCRIPTION: SAND

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 755304

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 09/11/92

WELL DEPTH (ft.): 15
WELL USE: MONITOR

AQUIFER DESCRIPTION: SAND

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 1

Distance from Property: 0.00 mi. W

WELL LOG NUMBER: 795828

LOCATION ADDRESS: 900 UPTON AVE

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 08/21/94

WELL DEPTH (ft.): 6
WELL USE: MONITOR

AQUIFER DESCRIPTION: SAND

OWNER NAME: CHAMPION SPARK PLUG

LONGITUDE: -83.58804 LATITUDE: 41.65112

Back to Report Summary

MAP ID# 2

Distance from Property: 0.10 mi. S

WELL LOG NUMBER: 2023566

LOCATION ADDRESS: 1925 NEBRASKA AVE

TOLEDO, OH 43607

DATE OF COMPLETION: 08/13/09

WELL DEPTH (ft.): 10
WELL USE: MONITOR

AQUIFER DESCRIPTION: CLAY

OWNER NAME: TECUMSEH PRODUCTS

LONGITUDE: -83.58905 LATITUDE: 41.64428

Back to Report Summary

MAP ID# 3

Distance from Property: 0.16 mi. SW

WELL LOG NUMBER: 2023570

LOCATION ADDRESS: 1925 NEBRASKA AVE

TOLEDO, OH

DATE OF COMPLETION: 08/13/09

WELL DEPTH (ft.): 10
WELL USE: MONITOR

AQUIFER DESCRIPTION: CLAY

OWNER NAME: TECUMSEH PRODUCTS

LONGITUDE: -83.59208 LATITUDE: 41.64517

Back to Report Summary

MAP ID# 4

Distance from Property: 0.18 mi. S

WELL LOG NUMBER: 31700 LOCATION ADDRESS: BROWN RD

TOLEDO, OH

DATE OF COMPLETION: 19610123

WELL DEPTH (ft.): 0
WELL USE: DOMESTIC

AQUIFER DESCRIPTION: ROCK

OWNER NAME: RAY & SON CRANDELL

LONGITUDE: -83.58677 LATITUDE: 41.64339

Back to Report Summary

MAP ID# 4

Distance from Property: 0.18 mi. S

WELL LOG NUMBER: 216314 LOCATION ADDRESS: BROWN RD

TOLEDO, OH

DATE OF COMPLETION: 19620109

WELL DEPTH (ft.): 0 WELL USE: DOMESTIC

AQUIFER DESCRIPTION: ROCK OWNER NAME: DON LUENGEN

LONGITUDE: -83.58677 LATITUDE: 41.64339

Back to Report Summary

MAP ID# 4

Distance from Property: 0.18 mi. S

WELL LOG NUMBER: 277089

LOCATION ADDRESS: BROWN RD

TOLEDO ON

 ${\bf TOLEDO,\,OH}$

DATE OF COMPLETION: 19640123

WELL DEPTH (ft.): 0
WELL USE: DOMESTIC

AQUIFER DESCRIPTION: LIMESTONE OWNER NAME: L M ROTHENBUHLER

LONGITUDE: -83.58677 LATITUDE: 41.64339

Back to Report Summary

MAP ID# 5

Distance from Property: 0.19 mi. S

WELL LOG NUMBER: 2023567

LOCATION ADDRESS: 1925 NEBRASKA AVE

TOLEDO, OH

DATE OF COMPLETION: 08/13/09

WELL DEPTH (ft.): 10
WELL USE: MONITOR

AQUIFER DESCRIPTION: CLAY

OWNER NAME: TECUMSEH PRODUCTS

LONGITUDE: -83.58515 LATITUDE: 41.64445

Back to Report Summary

MAP ID# 6

Distance from Property: 0.22 mi. SW

WELL LOG NUMBER: 2023569

LOCATION ADDRESS: 1925 NEBRASKA AVE

TOLEDO, OH

DATE OF COMPLETION: 08/13/09

WELL DEPTH (ft.): 10
WELL USE: MONITOR

AQUIFER DESCRIPTION: CLAY

OWNER NAME: TECUMSEH PRODUCTS

LONGITUDE: -83.59202 LATITUDE: 41.64347

Back to Report Summary

MAP ID# 7

Distance from Property: 0.29 mi. S

WELL LOG NUMBER: 734132

LOCATION ADDRESS: 99 FEARING BLVD

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 08/28/91

WELL DEPTH (ft.): 8 WELL USE: MONITOR

AQUIFER DESCRIPTION: SAND OWNER NAME: TOLEDO STAMPING

LONGITUDE: -83.59055 LATITUDE: 41.64180

Back to Report Summary

MAP ID# 7

Distance from Property: 0.29 mi. S

WELL LOG NUMBER: 734133

LOCATION ADDRESS: 99 FEARING BLVD

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 08/28/91

WELL DEPTH (ft.): 8
WELL USE: MONITOR

AQUIFER DESCRIPTION: SAND
OWNER NAME: TOLEDO STAMPING

LONGITUDE: -83.59055 LATITUDE: 41.64180

Back to Report Summary

MAP ID# 7

Distance from Property: 0.29 mi. S

WELL LOG NUMBER: 734131

LOCATION ADDRESS: 99 FEARING BLVD

NO CITY/ZIP REPORTED, OH

DATE OF COMPLETION: 08/28/91

WELL DEPTH (ft.): 9 WELL USE: MONITOR

AQUIFER DESCRIPTION: SAND OWNER NAME: TOLEDO STAMPING

LONGITUDE: -83.59055 LATITUDE: 41.64180

Back to Report Summary

MAP ID# 8

Distance from Property: 0.35 mi. SW

WELL LOG NUMBER: 2039782

LOCATION ADDRESS: 2225 NEBRASKA AVE

TOLEDO, OH

DATE OF COMPLETION: 09/07/12

WELL DEPTH (ft.): 10
WELL USE: MONITOR

AQUIFER DESCRIPTION: SAND

OWNER NAME: UNIVERSITY OF TOLEDO

LONGITUDE: -83.59638 LATITUDE: 41.64626

Back to Report Summary

MAP ID# 8

Distance from Property: 0.35 mi. SW

WELL LOG NUMBER: 2039780

LOCATION ADDRESS: 2225 NEBRASKA

TOLEDO, OH

DATE OF COMPLETION: 09/06/12

WELL DEPTH (ft.): 10 WELL USE: MONITOR

AQUIFER DESCRIPTION: SAND

OWNER NAME: UNIVERSITY OF TOLEDO

LONGITUDE: -83.59652 LATITUDE: 41.64663

Back to Report Summary

MAP ID# 9

Distance from Property: 0.36 mi. SW

WELL LOG NUMBER: 2039781

LOCATION ADDRESS: 2225 NEBRASKA AVE

TOLEDO, OH

DATE OF COMPLETION: 09/07/12

WELL DEPTH (ft.): 10 WELL USE: MONITOR

AQUIFER DESCRIPTION: SAND

OWNER NAME: UNIVERSITY OF TOLEDO

LONGITUDE: -83.59662 LATITUDE: 41.64612

Back to Report Summary

MAP ID# 10

Distance from Property: 0.35 mi. SW

WELL LOG NUMBER: 2039779

LOCATION ADDRESS: 2225 NEBRASKA AVE

TOLEDO, OH

DATE OF COMPLETION: 09/06/12

WELL DEPTH (ft.): 10 WELL USE: MONITOR

AQUIFER DESCRIPTION: SAND

OWNER NAME: UNIVERSITY OF TOLEDO

LONGITUDE: -83.59617 LATITUDE: 41.64583

Back to Report Summary

MAP ID# 10

Distance from Property: 0.36 mi. SW

WELL LOG NUMBER: 2039777

LOCATION ADDRESS: 2225 NEBRASKA AVE

TOLEDO, OH

DATE OF COMPLETION: 09/06/12

WELL DEPTH (ft.): 10

WELL USE: VAPOR EXTRACTION AQUIFER DESCRIPTION: SAND

OWNER NAME: UNIVERSITY OF TOLEDO

LONGITUDE: -83.59640 LATITUDE: 41.64576

Back to Report Summary

MAP ID# 11

Distance from Property: 0.41 mi. SE

WELL LOG NUMBER: 2014664

LOCATION ADDRESS: 1602 W BANCROFT

TOLEDO, OH 43606

DATE OF COMPLETION: 01/04/08

WELL DEPTH (ft.): 14
WELL USE: MONITOR
AQUIFER DESCRIPTION: SILT

OWNER NAME: ALL SEASON'S HEATING AND COOLING

LONGITUDE: -83.58038 LATITUDE: 41.64713

Back to Report Summary

Environmental Records Definitions - FEDERAL

NWIS United States Geological Survey National Water Information System

VERSION DATE: 07/02/14

This USGS National Water Information System database only includes groundwater wells. The USGS defines this well type as: A hole or shaft constructed in the earth intended to be used to locate, sample, or develop groundwater, oil, gas, or some other subsurface material. The diameter of a well is typically much smaller than the depth. Wells are also used to artificially recharge groundwater or to pressurize oil and gas production zones. Additional information about specific kinds of wells should be recorded under the secondary site types or the Use of Site field. Underground waste-disposal wells should be classified as waste-injection wells.

Environmental Records Definitions - STATE (OH)

DNRWW Water Wells

VERSION DATE: 01/21/14

The Ohio Department of Natural Resources (ODNR) Division of Soil and Water Resources maintains this water well database containing well log form information, such as the formations encountered during drilling, how the well was constructed and the efficiency of the well. Drillers have been required to fill out a Well Log and Drilling Report form and submit it to the ODNR Division of Water since 1947. Disclaimer: A significant number of wells in this database have very limited location information and therefore may not be locatable. Also, the agency provided spatial coordinates are not always accurate.

PWS Public Water Supply Wells and Intakes

VERSION DATE: 04/28/14

This database of public water supply wells and intakes is provided by the Ohio Environmental Protection Agency, Division of Drinking and Ground Waters. The data is utilized to locate drinking water source wells for analysis of ground water quality/quantity and source protection. In addition, many environmental regulations require the determination of the proximity to a public drinking water system source wells or intakes as part of a permitting process or risk assessment. Users of this data should be aware that inconsistencies and inaccuracies may exist if the data is compared to data from other time periods due to changes in methods of data collection and mapping.