Tittabawassee River, Saginaw River & Bay Site

Segments 4 & 5 EPA's Proposed Cleanup Options

Mary P. Logan – U.S. EPA Public Meeting October 19, 2016

Segments 4 & 5

- Part of larger TRSR&B site
- Starts ~ 11.5 miles downstream of Tridge
- Cleanup options are proposed by EPA for
 - 16 Bank Management Areas (BMAs)
 - 2 Sediment Management Areas (SMAs)
- Cleanup expected to begin in 2017

EPA's Proposed Options

- Bank Management Areas
 - − BMAs 4-1 through 4-6 and 5-1 through 5-10 → stabilize riverbanks
- Sediment Management Areas
 - SMA 5-1 → combination of removal, capping, and monitored natural recovery (MNR)
 - SMA 5-2 \rightarrow capping

Segments 4 & 5

Use along river includes residential, undeveloped, agricultural, and recreational areas

Segments 4 & 5 Investigations

Extensive investigations within Segments 4 & 5:

- Chemical sampling and analysis
- Stability evaluations
- Biological evaluations

Segments 4 & 5 Key Findings

- Dioxins/furans identified as key driver for Segments 4 & 5 sediment and bank soil
- Dioxins/furans are not evenly distributed within Segments 4 & 5
- Riverbank and sediment erosion varies
- Specific areas have been identified that will need cleanup

Segments 4 & 5 Management Areas

- BMAs
 - 16 currently identified
 - Range between 150 650 feet
 - About 1.1 miles total
- SMAs
 - 2 currently identified
 - Each about 0.7 acres
- Evaluations are ongoing
 - More areas may be identified

Segments 4 & 5 Management Areas (cont.)

Why Clean Up?

- Contaminated sediment deposits and riverbanks
 - Potential sources of dioxins/furans to the overall river system if they erode
- If these sources erode they may contribute to:
 - Bioaccumulation in fish
 - Downstream movement of contaminants

BMA CLEANUP OPTIONS

BMA Technologies

- **BMA Alternative 1: Stabilization** relies on natural and engineered approaches to reduce or prevent riverbank erosion. Native vegetation is always a key component.
- **BMA Alternative 2: Removal** involves the removal and off-site disposal of the targeted bank deposit using heavy equipment.

Riverbank Stabilization – Major Advantages/Limitations

- Advantages
 - Less disruption during construction
 - Less change to property and riverbank shape
 - Improves habitat quality
 - Cost effective
- Limitations
 - More short-term maintenance needed
 - Contaminants remain in place
 - Long-term monitoring required and possibly maintenance

Bank Stabilization

Banks after 1 – 3 growing seasons

Riverbank Removal – Major Advantages/Limitations

- Advantages
 - Least uncertainty about long-term performance
 - Flexibility for future land use
- Limitations
 - Significant disruption during construction
 - Removes existing habitat
 - Significantly changes riverbank shape and structure
 - May cause unintended changes in other banks
 - Implementation usually more costly and complex

Bank Removal

Bank Removal and Disposal

Recommended BMA Options

- All BMAs \rightarrow stabilize riverbanks
- Major considerations
 - Expected land owner/ community acceptance
 - Trade offs related to short and long-term effects
 - Potential impact on adjacent areas
 - Access and ability to assure long-term O&M
 - Cost effectiveness

SMA CLEANUP OPTIONS

SMA Technologies

- MNR relies on monitoring of natural processes to maintain or reduce contaminant levels and risks over time.
- **Capping** involves placing clean material like sand or gravel over contaminated sediment or letting geocell material fill naturally to isolate and stabilize the underlying sediment. Caps are designed to prevent erosion.
- Removal involves taking sediment out of the river in wet or dry conditions using heavy equipment. Water is managed, and the sediment is disposed in an approved location.

Segments 4 & 5 SMA Alternatives

- Each individual technology is an alternative for SMA 5-2
- Technologies were combined to create alternatives for SMA 5-1

SMA	Alt 1	Alt 2	Alt 3	Alt 4
5-1	MNR	Cap & MNR	Remove & MNR	Remove, Cap & MNR
5-2	MNR	Сар	Remove	

MNR – Major Advantages/Limitations

- Advantages
 - Non-invasive
 - Protects existing habitat
 - No construction or infrastructure
 - Low implementation cost
- Limitations
 - Contaminants remain in place
 - Can be slower in reducing risks compared to active approaches
 - Long-term monitoring required

Capping – Major Advantages/Limitations

- Advantages
 - Rapid risk reduction
 - Less infrastructure/disruption during construction
 - Can improve habitat quality
 - Cost effective
- Limitations
 - Contaminants remain in place
 - Long-term monitoring required and possibly maintenance

Sediment Capping – Sand/Stone

Sediment Capping – CCS

Dredging/Removal – Major Advantages/Limitations

- Advantages
 - Removes contaminants from river
 - Least uncertainty about long-term performance, if low residual levels achieved
 - Rapid risk reduction, if low residuals levels achieved
- Limitations
 - Significant infrastructure/disruption during construction
 - Residuals and resuspension
 - Implementation more costly and complex

Sediment Removal – Wet

Recommended SMA Options

- Recommended Options
 - SMA 5-1 \rightarrow Alt 4: combo of remove, cap and MNR
 - SMA 5-2 \rightarrow Alt 2: cap (likely CCS cap)
- Major considerations
 - Contaminant depth and profile
 - Stability evaluations
 - Adjacent work needed
 - Implementation challenges
 - Access and staging availability
 - Water depth/construction issues

SMA 5-2, ~ 0.7 acres

- Directly adjacent to BMA 5-6
- Dioxin deposit is buried below 1.0 to 1.7 ft
- Relatively stable area
- Road: ~ 1,700-ft through a sparsely wooded area

BMAs 5-4 thru 5-9 and SMA 5-2

SMA 5-1, ~ 0.7 acres

- Not near other work
- Dioxin deposit depth varies
 - Some close to surface
 - Mid-channel and downstream is buried below > 2 - 4 ft
- Upstream end has deep water
- Road: ~ 1,400-ft through an existing open field, and ~ 650-ft through a wooded area

Conceptual SMA 5-1 Combined Remedy

BMA 4-6 and SMA 5-1

SELECTING THE FINAL CLEANUP PLAN

EPA's Proposed Options

- Bank Management Areas
 - − BMAs 4-1 through 4-6 and 5-1 through 5-10 → stabilize riverbanks
- Sediment Management Areas
 - SMA 5-1 → combination of removal, capping, and monitored natural recovery (MNR)
 - SMA 5-2 \rightarrow capping

EPA's Evaluation Criteria

• Effectiveness

- Overall protection
- Compliance with laws and regulations
- Short- and long-term effectiveness
- Implementability
 - How difficult to complete
 - Owner/ community acceptance
- Cost
 - EPA's estimated costs for the proposed Segment 4 & 5 cleanups range from \$5.2 million to \$6 million

Recommended Alternatives

Recommended alternatives – best balance of effectiveness, implementability and cost

- Provides long-term effectiveness and permanence
- Minimizes short-term effects
- Can be built and are reliable to maintain

Public Process

Public Comment Period

- Public comment period for 45 days
 September 22 to November 6
- Submit comments
 - Orally here tonight
 - Written submit here or via mail
 - Email to russell.diane@epa.gov
 - Use the on-line form <u>https://www.epa.gov/mi/forms/tittabawassee-</u> <u>river-saginaw-river-and-bay-site-public-comment</u>

Next Steps

- EPA, working with MDEQ, will review and respond to public comments

 The plan may change based on comments
- EPA, working with MDEQ, will finalize the plan
- Dow will design the remedies

 Working with affected property owners
- EPA expects Dow to implement this work beginning in 2017

EPA Tittabawassee River, Saginaw River and Bay Cleanup Progress

END