Chemical Datasheet

NITRIC ACID, OTHER THAN RED FUMING

Chemical Identifiers

<table>
<thead>
<tr>
<th>CAS Number</th>
<th>UN/NA Number</th>
<th>DOT Hazard Label</th>
<th>USCG CHRIS Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>7697-37-2</td>
<td>2031</td>
<td>Corrosive Oxidizer</td>
<td>none</td>
</tr>
</tbody>
</table>

NFPA 704

<table>
<thead>
<tr>
<th>Diamond</th>
<th>Hazard</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Health</td>
<td>4</td>
<td>Can be lethal.</td>
</tr>
<tr>
<td>4</td>
<td>Flammability</td>
<td>0</td>
<td>Will not burn under typical fire conditions.</td>
</tr>
<tr>
<td>0</td>
<td>Instability</td>
<td>0</td>
<td>Normally stable, even under fire conditions.</td>
</tr>
<tr>
<td>ox</td>
<td>Special</td>
<td>OX</td>
<td>Possesses oxidizing properties.</td>
</tr>
</tbody>
</table>

(NFPA, 2010)

General Description

A pale yellow to reddish brown liquid with reddish brown vapors and a suffocating odor. Very toxic by inhalation. Corrosive to metals or tissue. Accelerates the burning of combustible material and may cause ignition of combustible materials upon contact. Prolonged exposure to low concentrations or short term exposure to high concentrations may result in adverse health effects. Density 12 lb / gal.

Hazards

Reactivity Alerts

- Strong Oxidizing Agent
- Known Catalytic Activity
- Water-Reactive

Air & Water Reactions

Fumes in air. Fully soluble in water with the release of heat. Reacts violently with water with the production of heat, fumes, and spattering.

https://cameochemicals.noaa.gov/report?key=CH19337
Fire Hazard
Excerpt from ERG Guide 157 [Substances - Toxic and/or Corrosive (Non-Combustible / Water-Sensitive)]:

Non-combustible, substance itself does not burn but may decompose upon heating to produce corrosive and/or toxic fumes. For UN1796, UN1826, UN2031 at high concentrations and for UN2032, these may act as oxidizers, also consult ERG Guide 140. Vapors may accumulate in confined areas (basement, tanks, hopper/tank cars, etc.). Substance may react with water (some violently), releasing corrosive and/or toxic gases and runoff. Contact with metals may evolve flammable hydrogen gas. Containers may explode when heated or if contaminated with water. (ERG, 2016)

Health Hazard
Excerpt from ERG Guide 157 [Substances - Toxic and/or Corrosive (Non-Combustible / Water-Sensitive)]:

TOXIC; inhalation, ingestion or contact (skin, eyes) with vapors, dusts or substance may cause severe injury, burns or death. Reaction with water or moist air may release toxic, corrosive or flammable gases. Reaction with water may generate much heat that will increase the concentration of fumes in the air. Fire will produce irritating, corrosive and/or toxic gases. Runoff from fire control or dilution water may be corrosive and/or toxic and cause pollution. (ERG, 2016)

Reactivity Profile
NITRIC ACID ignites upon contact with alcohols, amines, ammonia, beryllium alkyls, boranes, dicyanogen, hydrazines, hydrocarbons, hydrogen, nitroalkanes, powdered metals, silanes, or thiols [Bretherick 1979. p.174]. The reaction of finely divided antimony and nitric acid can be violent [Pascal 10:504. 1931-34]. Bromine pentafluoride reacts violently with strong nitric acid and strong sulfuric acid [Mellor 2, Supp. 1:172. 1956]. Fuming nitric acid reacts with hydrogen selenide with incandescence [Berichte 3:658]. Fuming nitric acid reacts with hydrogen sulfide with incandescence [Berichte 3:658]. A mixture of finely divided magnesium and nitric acid is explosive [Pieters 1957. p. 28]. Nitric acid oxidizes magnesium phosphate with incandescence [Mellor 8:842. 1946-47]. Experiments show that mixtures of over 50% nitric acid by weight in acetic anhydride may act as detonating explosives [BCISC 42:2. 1971]. An etching agent of equal portions of acetone, nitric acid, and 75% acetic acid exploded four hours after it was prepared and placed in a closed bottle. This is similar to a formulation for the preparation of tetranitromethane a sensitive explosive [Chem. Eng. News 38: 56. 1960]. Phosphine is violently decomposed by concentrated nitric acid, and flame is produced. Warm fuming nitric acid, dropped in a container of phosphine gas produces an explosion [Edin. Roy. Soc. 13:88. 1835]. An explosion occurs when nitric acid is brought into contact with phosphorus trichloride [Comp. Rend. 28:86]. The exothermic nitration of phthalic acid or phthalic anhydride by fuming nitric acid-sulfuric acid may give mixtures of the potentially explosive phthaloyl nitrates or nitrites or their nitro derivatives [Chem. & Ind. 20:790. 1972]. The reaction of sodium azide and strong nitric acid is energetic [Mellor 8, Supp 2:315. 1967]. Nitric acid can react with uranium with explosive violence [Katz and Rabinowitch 1951]. Reacts violently with water with the production of heat, fumes, and spattering.

Belongs to the Following Reactive Group(s)
- Acids, Strong Oxidizing

Potentially Incompatible Absorbents
Use caution: Liquids with this reactive group classification have been known to react with the absorbents listed below.
- Cellulose-Based Absorbents
- Expanded Polymeric Absorbents

Response Recommendations

Isolation and Evacuation
Excerpt from ERG Guide 157 [Substances - Toxic and/or Corrosive (Non-Combustible / Water-Sensitive)]:

As an immediate precautionary measure, isolate spill or leak area in all directions for at least 50 meters (150 feet) for
liquids and at least 25 meters (75 feet) for solids.

SPILL: Increase, in the downwind direction, as necessary, the isolation distance shown above.

FIRE: If tank, rail car or tank truck is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2016)

Firefighting
Excerpt from ERG Guide 157 [Substances - Toxic and/or Corrosive (Non-Combustible / Water-Sensitive)]:

Note: Some foams will react with the material and release corrosive/toxic gases.

SMALL FIRE: CO2 (except for Cyanides), dry chemical, dry sand, alcohol-resistant foam.

LARGE FIRE: Water spray, fog or alcohol-resistant foam. Move containers from fire area if you can do it without risk. Use water spray or fog; do not use straight streams. Dike fire-control water for later disposal; do not scatter the material.

FIRE INVOLVING TANKS OR CAR/TRAILER LOADS: Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Do not get water inside containers. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. (ERG, 2016)

Non-Fire Response
Excerpt from ERG Guide 157 [Substances - Toxic and/or Corrosive (Non-Combustible / Water-Sensitive)]:

ELIMINATE all ignition sources (no smoking, flares, sparks or flames in immediate area). All equipment used when handling the product must be grounded. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk. A vapor-suppressing foam may be used to reduce vapors. DO NOT GET WATER INSIDE CONTAINERS. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material. Prevent entry into waterways, sewers, basements or confined areas.

SMALL SPILL: Cover with DRY earth, DRY sand or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain. Use clean, non-sparking tools to collect material and place it into loosely covered plastic containers for later disposal. (ERG, 2016)

Protective Clothing
Skin: Wear appropriate personal protective clothing to prevent skin contact.

Eyes: Wear appropriate eye protection to prevent eye contact.

Wash skin: The worker should immediately wash the skin when it becomes contaminated.

Remove: Work clothing that becomes wet or significantly contaminated should be removed and replaced.

Change: No recommendation is made specifying the need for the worker to change clothing after the work shift.

Provide: Eyewash fountains should be provided (when concentration is pH<2.5) in areas where there is any possibility that workers could be exposed to the substance; this is irrespective of the recommendation involving the wearing of eye protection. Facilities for quickly drenching the body should be provided (when concentration is pH<2.5) within the immediate work area for emergency use where there is a possibility of exposure. [Note: It is intended that these facilities provide a sufficient quantity or flow of water to quickly remove the substance from any body areas likely to be exposed. The actual determination of what constitutes an adequate quick drench facility depends on the specific circumstances. In certain instances, a deluge shower should be readily available, whereas in others, the availability of water from a sink or hose could be considered adequate.] (NIOSH, 2016)
DuPont Tychem® Suit Fabrics

<table>
<thead>
<tr>
<th>Chemical</th>
<th>CAS Number</th>
<th>State</th>
<th>QC</th>
<th>SL</th>
<th>TF</th>
<th>TP</th>
<th>C3</th>
<th>BR</th>
<th>RC</th>
<th>TK</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitric acid (50%)</td>
<td>7697-37-2</td>
<td>Liquid</td>
<td>>480</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitric acid (70%)</td>
<td>7697-37-2</td>
<td>Liquid</td>
<td>>480</td>
<td>>480</td>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitric acid (90%)</td>
<td>7697-37-2</td>
<td>Liquid</td>
<td>>480</td>
<td>>480</td>
<td>>480</td>
<td>>480</td>
<td>>480</td>
<td>>480</td>
<td>>480</td>
<td>>480</td>
<td>>480</td>
</tr>
</tbody>
</table>

> indicates greater than.
A blank cell indicates the fabric has not been tested. The fabric may or may not offer barrier.

Special Warnings from DuPont

1. Serged and bound seams are degraded by some hazardous liquid chemicals, such as strong acids, and should not be worn when these chemicals are present.

2. CAUTION: This information is based upon technical data that DuPont believes to be reliable. It is subject to revision as additional knowledge and experience are gained. DuPont makes no guarantee of results and assumes no obligation or liability...

(DuPont, 2016)

First Aid

Eye: If this chemical contacts the eyes, immediately wash the eyes with large amounts of water, occasionally lifting the lower and upper lids. Get medical attention immediately. Contact lenses should not be worn when working with this chemical.

Skin: If this chemical contacts the skin, immediately flush the contaminated skin with water. If this chemical penetrates the clothing, immediately remove the clothing and flush the skin with water. Get medical attention promptly.

Breathing: If a person breathes large amounts of this chemical, move the exposed person to fresh air at once. If breathing has stopped, perform mouth-to-mouth resuscitation. Keep the affected person warm and at rest. Get medical attention as soon as possible.

Swallow: If this chemical has been swallowed, get medical attention immediately. (NIOSH, 2016)

Physical Properties

Chemical Formula: HNO₃

Flash Point: data unavailable

Lower Explosive Limit (LEL): data unavailable

Upper Explosive Limit (UEL): data unavailable

Autoignition Temperature: data unavailable

Melting Point: -44 °F (NIOSH, 2016)

Vapor Pressure: 48 mm Hg (NIOSH, 2016)

Vapor Density (Relative to Air): data unavailable

Specific Gravity: 1.5 at 77 °F (NIOSH, 2016)

Boiling Point: 181 °F at 760 mm Hg (NIOSH, 2016)

Molecular Weight: 63 (NIOSH, 2016)

Water Solubility: Miscible (NIOSH, 2016)

Ionization Potential: 11.95 eV (NIOSH, 2016)
Final AEGLs for Nitric Acid (7697-37-2)

<table>
<thead>
<tr>
<th>Exposure Period</th>
<th>AEGL-1</th>
<th>AEGL-2</th>
<th>AEGL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 minutes</td>
<td>0.16 ppm</td>
<td>43 ppm</td>
<td>170 ppm</td>
</tr>
<tr>
<td>30 minutes</td>
<td>0.16 ppm</td>
<td>30 ppm</td>
<td>120 ppm</td>
</tr>
<tr>
<td>60 minutes</td>
<td>0.16 ppm</td>
<td>24 ppm</td>
<td>92 ppm</td>
</tr>
<tr>
<td>4 hours</td>
<td>0.16 ppm</td>
<td>6 ppm</td>
<td>23 ppm</td>
</tr>
<tr>
<td>8 hours</td>
<td>0.16 ppm</td>
<td>3 ppm</td>
<td>11 ppm</td>
</tr>
</tbody>
</table>

(NAC/NRC, 2016)

ERPGs (Emergency Response Planning Guidelines)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>ERPG-1</th>
<th>ERPG-2</th>
<th>ERPG-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitric Acid WFNA (7697-37-2)</td>
<td>1 ppm</td>
<td>10 ppm</td>
<td>78 ppm</td>
</tr>
</tbody>
</table>

▶ indicates that odor should be detectable near ERPG-1.

(AIHA, 2016)

PACs (Protective Action Criteria)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>PAC-1</th>
<th>PAC-2</th>
<th>PAC-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitric acid (7697-37-2)</td>
<td>0.16 ppm</td>
<td>24 ppm</td>
<td>92 ppm</td>
</tr>
</tbody>
</table>

(DOE, 2016)

EPA Consolidated List of Lists

<table>
<thead>
<tr>
<th>Regulatory Name</th>
<th>CAS Number/ 313 Category Code</th>
<th>EPCRA 302 EHS TPQ</th>
<th>EPCRA 304 EHS RQ</th>
<th>CERCLA RQ</th>
<th>EPCRA 313 TRI</th>
<th>RCRA Code</th>
<th>CAA 112(r) RMP TQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitric acid</td>
<td>7697-37-2</td>
<td>1000 pounds</td>
<td>1000 pounds</td>
<td>1000 pounds</td>
<td>313</td>
<td></td>
<td>15000 pounds</td>
</tr>
<tr>
<td>Nitric acid (con 80% or greater)</td>
<td>7697-37-2</td>
<td>1000 pounds</td>
<td>1000 pounds</td>
<td>1000 pounds</td>
<td>X</td>
<td>15000 pounds</td>
<td></td>
</tr>
</tbody>
</table>

"X" indicates that this is a second name for an EPCRA section 313 chemical already included on this consolidated list. May also indicate that the same chemical with the same CAS number appears on another list with a different chemical name.

(EPA List of Lists, 2015)

DHS Chemical Facility Anti-Terrorism Standards (CFATS)

<table>
<thead>
<tr>
<th>Chemical of Interest</th>
<th>CAS Number</th>
<th>Min Conc</th>
<th>STQ</th>
<th>Security Issue</th>
<th>Min Conc</th>
<th>STQ</th>
<th>Security Issue</th>
<th>Min Conc</th>
<th>STQ</th>
<th>Security Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitric acid</td>
<td>7697-37-2</td>
<td>80.00 %</td>
<td>15000 pounds</td>
<td>toxic</td>
<td>68.00 %</td>
<td>400 pounds</td>
<td>EXP/IEDP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

https://cameochemicals.noaa.gov/report?key=CH19337
EXP/IEDP = explosives/improvised explosive device precursors.

(DHS, 2007)

<table>
<thead>
<tr>
<th>Alternate Chemical Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>• NITRIC ACID, OTHER THAN RED FUMING</td>
</tr>
</tbody>
</table>