

Fourth Five-Year Review Report

for the

Moss-American Superfund Site Milwaukee Milwaukee County, Wisconsin

Prepared by:

U.S. Environmental Protection Agency Region 5

Chicago, Illinois

Approved by Richard C Karl, Director

Superfund Division

Date:

3/18/2015

[This page left blank]

٤

ii

TABLE OF CONTENTS

LIST OF ACRONYMS	v
EXECUTIVE SUMMARY	vi
Five-Year Review Summary Form	ix
I. Introduction	1
II. PROGRESS SINCE THE LAST REVIEW	
In addition to implementing long-term stewardship procedures, follow-up actions are requir the remedy remains protective. These additional IC evaluation activities will include review work and preparing a final ICs map.	of title
System Operation/Operation and Maintenance (O&M) Activities	9
III. Five-Year Review ProcesS	9
Administrative Components	
Community Notification and Involvement	
Document Review	10
Data Review	10
Site Inspection	11
Interviews	11
IV. TECHNICAL ASSESSMENT	
Question A: Is the remedy functioning as intended by the decision documents?	15
Question B: Are the exposure assumptions, toxicity data, cleanup levels, and remedial act objectives (RAOs) used at the time of the remedy section still valid?	
Question C: Has any other information come to light that could call into question the prot of the remedy?16	ectiveness
V. Issues/Recommendations and follow-up actions	16
VI. Protectiveness statement	
VII. Next review	
A. SITE CHRONOLOGY	
B. BACKGROUND	
Physical Characteristics	
Hydrology/Hydrogeology	19
Land and Resource Use	20
History of Contamination	20
Initial Response	
Basis for Taking Action	21
Site Trespass – Soil	

iii

Recreational Use – River Sediment Exposure	
Residential Development – Soil	
C. REMEDIAL ACTIONS	
Remedy Selection	
Cleanup Goals	
Remedy Implementation	
Current Remedial Activity	
Operation and Maintenance Activities	
	· · ·

TABLES:

Table 1 - Protectiveness Determinations/Statements from the 2010 FYR

Table 2 - Status of Recommendations from the 2010 FYR

Table 3 - Summary of Implemented ICs

Table 4 - Comparison of groundwater data collected in 2008, 2010, & 2013

Table 5 - Chronology of Site Events

 Table 6 - GW Cleanup Goals

FIGURES:

Figure 1 – Site Map Figure 2 – Monitoring Well Network

ATTACHMENTS:

Attachment 1 – U.S. Army Corps of Engineers RSE Report

Attachment 2 – IC Review Technical Memorandum

Attachment 3 – Draft IC Map

Attachment 4 – Notice of State O&M Responsibility

Attachment 5 – 2013/2014 Site Survey

Attachment 6 – Notification of Next Five-Year Review

Attachment 7 – Public Notice Ad

Attachment 8 – Site Inspection Report

Attachment 9 – Follow-up to Site Inspection

Attachment 10 – State Responses to Interview Questions

SITE PHOTOS

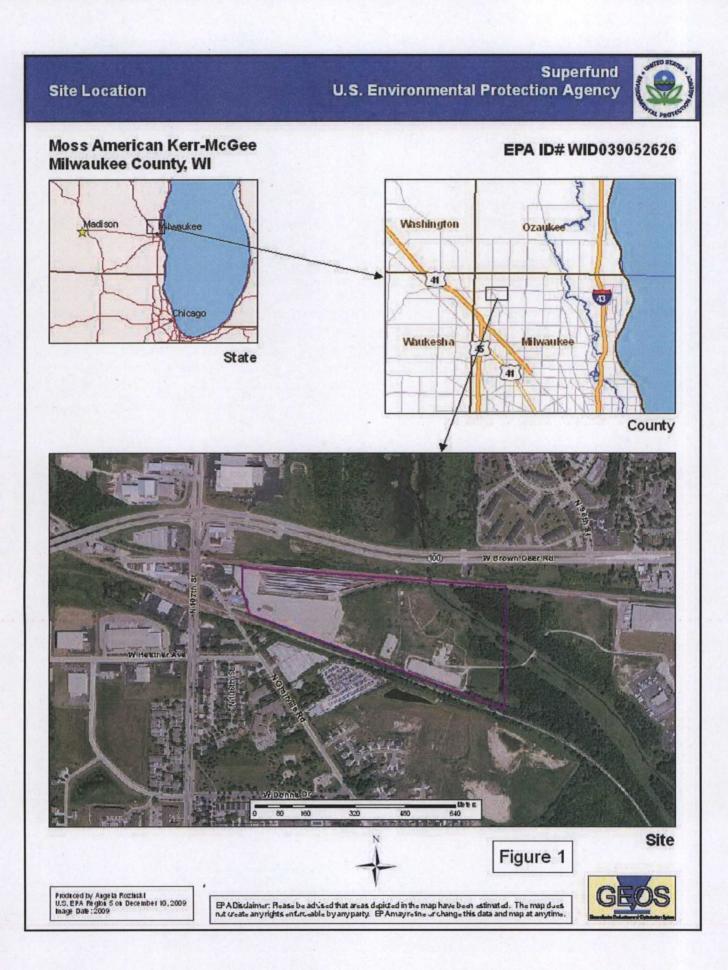
LIST OF ACRONYMS

ARAR	Applicable or Relevant and Appropriate Requirement	
BTEX	Benzene, Toluene, Ethyl Benzene, and/or Xylene(s)	
CD	Consent Decree	
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act	
CFR	Code of Federal Regulations	
COCs	Contaminants of Concern	
Corps	U.S. Army Corps of Engineers	
CPAH	Carcinogenic Polycyclic Aromatic Hydrocarbon(s)	
ECLR	Estimated Lifetime Cancer Risk	
EPA	United States Environmental Protection Agency	
ESD	Explanation of Significant Differences	•
ICs ·	Institutional Controls	
KMC ·	Kerr-McGee Chemical Corporation	
LTTD	Low Temperature Thermal Desorption	
LTS	Long-Term Stewardship	
MCL	Maximum Contaminant Level	
NCP	National Contingency Plan	
ŇPL	National Priorities List	
NR	Wisconsin Natural Resources Rule Citation	
O&M	Operation and Maintenance	
РАН	Polycyclic Aromatic Hydrocarbon(s)	
PALs	Preventive Action Limits	
PRP	Potentially Responsible Party	
RA	Remedial Action	
RAO	Remedial Action Objective	
RCL	Residual Cleanup Level	
RD	Remedial Design	
RI/FS	Remedial Investigation/Feasibility Study	
ROD	Record of Decision	
RSE	Remedial System Evaluation	
SDWA	Safe Drinking Water Act	
SSC	State Superfund Contract	
UU/UE	Unlimited Use/Unrestricted Exposure	
VOC	Volatile Organic Compound	
WDNR	Wisconsin Department of Natural Resources	

EXECUTIVE SUMMARY

The United States Environmental Protection Agency (EPA), in consultation with the Wisconsin Department of Natural Resources (WDNR), has completed the fourth five-year review (FYR) at the Moss-American Superfund site (Site) located in Milwaukee, Milwaukee County, Wisconsin. The purpose of a FYR is to review available information to determine if the remedy is and will continue to be protective of human health and the environment. The triggering action for this policy FYR was the signing of the previous FYR report on March 29, 2010.

The 88-acre Moss-American site is located in northwestern Milwaukee and is comprised of a former wood-treating facility plus several miles of the Little Menomonee River and its adjacent floodplain. (See Figure 1). From 1921 to 1976, T. J. Moss Tie Company and successor owners conducted wood-treating operations at the Site, causing polycyclic aromatic hydrocarbon (PAH) contamination of soil, groundwater, and sediment. In 1984, EPA placed the Site on the National Priorities List (NPL).


In September 1990, EPA signed a Record of Decision (ROD) to select a remedy for the Site. The cleanup was then completed in a series of phases, the first addressing contamination at the wood-treating facility property and the last addressing contaminated sediments of the Little Menomonee River. In March 1996, EPA, the State of Wisconsin, and potentially responsible party (PRP) Kerr-McGee Chemical Corporation (KMC) entered in to a consent decree (CD) requiring KMC to complete the remedial design and remedial action at the Site. From 1995-1998, KMC operated extraction wells to collect and remove free product (creosote). KMC installed a funnel-and-gate system to address contaminated groundwater in 1999-2000 and conducted thermal desorption soil treatment efforts from mid-2001 to early 2002. Lastly, contaminated sediments were removed from five segments of the Little Menomonee River beginning in late summer 2002 until completion in November 2009. During the cleanup, EPA modified the 1990 ROD remedy through an April 1997 Explanation of Significant Differences (ESD), a September 1998 ROD Amendment, and a November 2007 ESD.

In November 2009, EPA issued a Preliminary Close-out Report (PCOR) for the Site, which signified that construction of all response activities had been substantially completed. Currently, EPA and WDNR are working to optimize the efficiency of the groundwater treatment system.

Based on EPA's review, the remedy is protective of human health and the environment in the short term. Contaminated soils and sediments have attained cleanup goals and there is no current human exposure to contaminated groundwater. Institutional controls (ICs), in the form of deed restrictions, have been recorded to limit future re-use of the former wood-treating site and the floodplain downstream of the former facility. Long-term protectiveness requires additional remedial action to groundwater in order to achieve the cleanup standards and ensuring effective ICs are implemented, monitored, maintained, and enforced. To that end, additional IC evaluation actions such as review of title work and finalizing an ICs map will be performed. Also, long-term stewardship procedures will be developed and implemented through revision of the Operation and Maintenance (O&M) Plan. Long-term stewardship involves assuring effective procedures are in place to properly maintain and monitor the Site. Long-term stewardship will ensure effective ICs are maintained and monitored and the remedy continues to function as intended with regard to ICs.

vi

EPA will conduct the next FYR at the Site five years after completion of this review because hazardous substances, pollutants, or contaminants remain at the site above levels that allow for unlimited use and unrestricted exposure (UU/UE).

FIVE-YEAR REVIEW SUMMARY FORM

			'SI	TE IDEN	TIFICATIÒ)N			
Site Name:	Moss-Am	nerican Sup	perfund Si	te				·····	:
EPA ID:	WID0390	52626				· .	· ·		
Region: 5	·	• •	State: W	/I ·	City/Cou county)	nty: Milwaul	kee/Milwaukee	e (both city a	nd
				SITE S	STATUS				
NPL Status:	Final				•		•		
Multiple OU s No	s?			Has the Yes	site achiev	ed construct	ion completio	n?	
				REVIEW	STATUS				
Lead agency:	EPA						· · .		
Author name	e (Federal o	r State Pr	oject Mar	n <mark>ager):</mark> R	oss del Ros	ario			
Author affilia	ation: EPA	· .			•	,			
Review perio	d: 6/4/2014	- 3/17/201	5						
Date of site in	spection: 7	/16/2014					· - · ·	·	
Type of revie	w: Policy								
Review numb	ber: 4				•				
Triggering ac	tion date: 3	3/29/2010		:		3			
Due date <i>(five</i>	e years after	triggering	g action d	ate): 3/29	0/2015				
			Issu	ues/Recou	mmendatio	ns			
OU(s) withou	t Issues/Rec	commenda	tions Ide	ntified in	the Five-Y	ear Review:	,		
None		· · ·		• •	· .		·	· ~	
					. · · .	· · · ·	•	• •	·

Issues and Recommendations Identified in the Five-Year Review:								
OU(s): 01/Sitewide	Issue Category: Remedy Performance							
	Issue: The groundwater cleanup goals have not yet been met.							
	Recommendation: The State should consider implementing the recommendations of the 2011 Remedial Systems Evaluation Report (U.S. Army Corps of Engineers) to address remaining groundwater contamination and achieve current groundwater cleanup standards.							
Affect Current Protectiveness	rrent Affect Future Implementing Oversight Milestone							
No	Yes	State	EPA	12/31/2016				

OU(s): 01/Sitewide	Issue Category: Institutional Controls							
	Issue: Effective ICs must be monitored, maintained, and enforced. Long-term stewardship of ICs has not been addressed.							
	Recommendation: Review title work and prepare a final ICs map. Develop and implement long-term stewardship procedures through revision of the O&M Plan.							
Affect Current Protectiveness	Affect Future Protectiveness	Implementing Party	Oversight Party	Milestone Date				
No	Yes	State	EPA	03/29/2017				

OUI & Sitewide Protectiveness Statement

Protectiveness Determination:

Short-term Protective

Protectiveness Statement:

The remedy is protective of human health and the environment in the short term because it is functioning as intended. Contaminated soils and sediments have attained cleanup goals and there is no current human exposure to contaminated groundwater. ICs, in the form of deed restrictions, have been recorded to limit future re-use of the former wood-treating site and the floodplain downstream of the former facility. Long-term protectiveness requires additional remedial action to groundwater in order to achieve the cleanup standards, and ensuring effective ICs are implemented, monitored, maintained, and enforced. To that end, additional IC evaluation activities such as review of title work and finalizing an ICs map will be performed. Also, long-term stewardship procedures will be developed and implemented through revision of the O&M Plan. Long-term stewardship involves assuring effective ICs are maintained and monitor the Site. Long-term stewardship will ensure effective ICs are maintained and monitored and the remedy continues to function as intended with regard to ICs.

х

I. INTRODUCTION

The purpose of a FYR is to evaluate the implementation and performance of a remedy in order to determine if the remedy will continue to be protective of human health and the environment. The methods, findings, and conclusions of reviews are documented in FYR reports. In addition, FYR reports identify issues found during the review, if any, and document recommendations to address them.

EPA conducts FYRs pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 121 and the National Contingency Plan (NCP). CERCLA 121 states:

"If the President selects a remedial action that results in any hazardous substances, pollutants, or contaminants remaining at the site, the President shall review such remedial action no less often than each five years after the initiation of such remedial action to assure that human health and the environment are being protected by the remedial action being implemented. In addition, if upon such review it is the judgment of the President that action is appropriate at such site in accordance with section [104] or [106], the President shall take or require such action. The President shall report to the Congress a list of facilities for which such review is required, the results of all such reviews, and any actions taken as a result of such reviews."

EPA interpreted this requirement further in the NCP; 40 Code of Federal Regulations (CFR) Section 300.430(f)(4)(ii), which states:

"If a remedial action is selected that results in hazardous substances, pollutants, or contaminants remaining at the site above levels that allow for unlimited use and unrestricted exposure, the lead agency shall review such actions no less often than every five years after the initiation of the selected remedial action."

EPA conducted a FYR on the remedy implemented at the Moss-American Superfund site in Milwaukee, Milwaukee County, Wisconsin. EPA is the lead agency for developing and implementing the remedy for the Site. WDNR, as the support agency representing the State of Wisconsin, has reviewed all supporting documentation and provided input to EPA during the FYR process.

This is the fourth FYR for the Site. The triggering action for this policy review is the completion date of the previous FYR report, dated March 29, 2010. This FYR is required because hazardous substances, pollutants, or contaminants remain at the Site above levels that allow for UU/UE. The Site consists of one operable unit (OU), which is addressed in this FYR report.

II. PROGRESS SINCE THE LAST REVIEW

EPA and WDNR undertook no significant remedial action activities at the Site since the previous FYR, but from July to November 2011, EPA completed several punch-list tasks that were not completed during the 2009 river dredging work. These tasks included the removal of soil piles, concrete/jersey barriers, leftover pipe and equipment, a concrete pad, and a temporary storage

l

and/or staging area. EPA also removed a temporary river crossing at the request of WDNR. Also in 2011, WDNR assumed responsibility for O&M at the Site. At that time, EPA and WDNR agreed to temporarily shut down the groundwater treatment system to determine how groundwater quality would react to reducing the amount of available oxygen in the funnel and gate area.

Table 1 lists the protectiveness statement for the Site made in the 2010 FYR report and Table 2 lists the status of recommendations or follow-up actions.

OU #	Protectiveness Determination	Protectiveness Statement
01	Short-term Protective	The remedy at the Moss American Superfund Site currently protects human
(Sitewide)	Short-term Protective	The remedy at the Moss American Superrund Site currently protects human health and the environment in the short term. Contaminated soils and sediments have attained cleanup goals, and there is no current human exposure to contaminated groundwater. ICs, in the form of deed restrictions, have been recorded to limit the use of the former wood treating site and along the floodplain downstream of the plant. Long-term protectiveness will require achieving groundwater cleanup standards and compliance with effective ICs. In addition, current ICs will be reviewed and additional IC evaluation activities will be conducted to ensure that effective ICs are in place, maintained, monitored, and enforced.
		Although current data suggests site groundwater is meeting cleanup standards prior to discharging to the Little Menomonee River, there are areas within the funnel and gate that have elevated COC levels. To address this concern, an optimization study will be performed on the system to develop a solution to remediate the elevated COC levels at those locations.

Table 1: Protectiveness Determination/Statement from the 2010 FYR report

Table 2: Status of Recommendations from the 2010 FYR report

OU #	Issue	Recommendations/ Follow-up Actions	Party Respo nsible	Oversight Party	Original Milestone Date	Current Status	Completion Date (if applicable)
01	The funnel and gate groundwater treatment system may not be optimally capturing the groundwater contamination	Conduct optimization study to determine solution to elevated levels of COCs in local area of funnel and gate	PRP	EPA	4/15/2012 ,	Completed	3/22/2011 (
01	There is no IC Plan to ensure all necessary Site ICs are in place and effective in the long term.	Develop IC Plan to determine if ICs in effect are protective.	PRP	EPA	4/15/2012	Completed	9/2/2010

Recommendation 1

In March 2011 the U.S. Army Corps of Engineers (Corps), on behalf of EPA, completed a Remediation System Evaluation (RSE) at the Site that was designed to help improve the effectiveness, reduce operational costs, and improve technical operation of the groundwater funnel-and-gate cleanup system (see Attachment 1). The Corps recommended in the RSE report that EPA modify the groundwater monitoring program and perform additional investigations involving nonaqueous phase liquids (NAPLs), the source of Site-area groundwater contamination. Depending on the results of the NAPL characterization studies, the Corps recommended that one of the following treatment modifications be implemented:

- Excavate NAPL-impacted soil near a stagnant zone in the groundwater treatment area and apply subsurface amendments to the excavated area to further mitigate remaining contaminants; or
- In addition to excavating NAPL-impacted soil and using subsurface amendments, install an additional groundwater treatment gate in the northwest corner of the treatment area.

In July 2012, WDNR agreed to implement the Site characterization work described in the RSE report. Initial results of Site characterization work are included a State report dated October 2, 2013. Currently, WDNR is working to complete all the Site characterization work recommended in the RSE report.

Recommendation 2

After completing the third FYR report on March 29, 2010, EPA began a review of all ICs at the Site. In its review, described in a technical memorandum dated September 2, 2010 (see Attachment 2), EPA found that a total of four ICs in the form of deed restrictions are recorded on the Site – three on the former wood-treating facility property only, while the fourth deed restriction applies to the whole Site, including a 5-mile stretch of the Little Menomonee River and its floodplain. The deed restriction covering the river and its floodplain were recorded by Milwaukee County. EPA later discovered that three parcels of land within the floodplain were not owned by the county and, therefore, were not covered by the fourth deed restriction. However, governmental controls do cover these properties. MILWAUKEE, WIS., CODE §§ 225-22, 225-23 and 225.39 (2012) include requirements for connections to the city water supply and private well abandonment.

After reviewing all available information, EPA determined that additional deed restrictions were not necessary for the three privately-owned parcels for the following reasons:

• The potential for future groundwater use is low. The area surrounding the three privatelyowned parcels is served by the Milwaukee public water supply. City code mandates that every building intended for human habitation or occupancy located adjacent to a sanitary sewer, storm sewer or water main be connected to them; and wells on premises served by the municipal water system must be abandoned unless the city issues a permit after testing. One of the parcels is zoned parkland, making future residential development highly unlikely;

- Groundwater around the former wood-treating facility flows in a northeasterly direction (towards the river) and the three parcels are located south of the facility, which is upgradient of contaminated groundwater originating from the site. Consequently, site-related contaminants are not expected to be in the groundwater beneath the three parcels;
- The baseline risk assessment in the Site Remedial Investigation (RI) report found that a complete pathway for exposure through consumption of groundwater was not present. Thus, the actual risks posed by groundwater to nearby residents were minimal;
- Groundwater contamination at the site extended to a maximum depth of 20 feet below ground, limited to a 400-foot wide area near the processing area of the former wood-treating facility. According to the RI report, the upper aquifer where the contamination is found does not have the capacity to be a drinking water source. The intermediate and lower aquifers, which are capable of being a drinking water source, have not been shown to be contaminated; and,
- No Site remedial action components are located on the three privately-owned parcels.

Institutional Controls

ICs are required for the Site to ensure the protectiveness of the remedy. ICs are non-engineered instruments (such as administrative and/or legal controls) that help minimize the potential for exposure to contamination and protect the integrity of the remedy. Compliance with ICs is required to assure long-term protectiveness for any areas which do not allow for UU/UE. Table 3 (next page) summarizes the implemented and planned ICs at the Site. A draft map showing the area in which the ICs apply is included in Attachment 3. EPA or the State will prepare a final ICs map (see Section V – Issues/Recommendations).

The 1990 ROD requires ICs as a part of the remedy and calls for fencing the area and placing deed restrictions to prevent future redevelopment of the Site. The 1996 CD with KMC described deed restriction requirements in detail. Specifically, Appendix 6 of the (KMC) CD stipulated the following restrictions applicable to the entire Moss American site:

- 1. Any use of the site that interferes with implementation of the response action, impairs the effectiveness of any work performed, or damage any component of the remedy constructed pursuant to the ROD, CD, or SOW, is prohibited;
- 2. The installation, construction, or removal of any buildings, wells, piping, roads, ditches, or any structures is prohibited, except as approved by EPA and consistent with the CD and ROD: and
- 3. Applicable laws and regulations governing wetland and floodplain habitats shall be complied with.

Table 3:	Summary	of Impl	emented	and	Planned	ICs
----------	---------	---------	---------	-----	---------	-----

Media, engineered controls, and areas that do not support UU/UE based on current conditions	ICs Needed	ICs Called for in the Decision Documents	Impacted Parcel(s)	IC Objective(s)	Title of IC Instrument Implemented and Date (or planned)
Soil	Yes	Yes	Former wood treating Site - floodplain portion (County- owned)	Prohibit 1) Excavating or grading of land surface 2) penetration of existing cap(s)/cover(s) 3) Filling on covered areas 4) Construction, installation, or removal of a building, pipe, road, or any structure with a foundation that would sit on the cover 5) Plowing for agricultural cultivation 6) Extraction of groundwater for consumption or any purpose other than monitoring 7) Any activity that may damage any constructed remedy or impair its effectiveness. Limited to recreational use only.	Title: Declaration of Restrictions and Notice to Future Purchasers. Recorded in Milwaukee County Register's Office on June 30, 2000. Reference No. 7931311.
Soil	Yes	Yes	Former wood treating Site – Non- floodplain property (County- owned)	Prohibit non-industrial use. Prohibit 1) Excavating or grading of land surface 2) penetration of existing cap(s)/cover(s) 3) Filling on covered areas 4) Construction, installation, or removal of a building, pipe, road, or any structure with a foundation that would sit on the cover 5) Plowing for agricultural cultivation 6) Extraction of groundwater for consumption or any purpose other than monitoring 7) Any activity that may damage any constructed remedy or impair its effectiveness.	Title: Declaration of Restrictions and Notice to Future Purchasers. Recorded in Milwaukee County Register's Office on June 30, 2000. Reference No. 7931310.
Soil	Yes	Yes	Former wood treating site – Non- floodplain property owned by the railroad	Prohibit non-industrial use. Prohibit 1) Excavating or grading of land surface 2) penetration of existing cap(s)/cover(s) 3) Filling on covered areas 4) Construction, installation, or removal of a building, pipe, road, or any structure with a	Title: <i>Deed Restriction and</i> <i>Notice to Future Purchasers.</i> Recorded in Milwaukee County Register's Office on July 26, 2000. Reference No. 8756

Media, engineered controls, and areas that do not support UU/UE based on current conditions	ICs Needed	ICs Called for in the Decision Documents	Impacted Parcel(s)	IC Objective(s)	Title of IC Instrument Implemented and Date (or planned)
				foundation that would sit on the cover 5) Plowing for agricultural cultivation 6) Extraction of groundwater for consumption or any purpose other than monitoring 7) Any activity that may damage any constructed remedy or impair its effectiveness. Limited to industrial use only.	
Soil	Yes	Yes	Floodplain downstream from former wood treating Site	Prohibit any installation, construction, or removal of structures around areas remediated during response action (i.e., areas rerouted). Prohibit use of area for any activity that may damage or impair the response action.	Title: Amended Declaration of Restriction on Use of Real Property. Recorded in Milwaukee County Register's Office on June 30, 2000. Reference No. 7931309
Groundwater	Yes	Yes	Former wood treating Site	Prohibit consumption or other uses of groundwater. Note: No one in the area currently is using groundwater. Residents are connected to city water. According to the RI, the contaminated shallow groundwater does not have adequate capacity to be a drinking water source. Prohibit extraction of groundwater for consumption or any purpose other than groundwater monitoring or	Title: Amended Declaration of Restriction on Use of Real Property. Recorded in Milwaukee County Register's Office on June 30, 2000. Reference No. 7931309. Also see Reference Nos. 791311 and 791310 above.
Groundwater	Yes	Yes	Entire Site including the three privately- owned parcels downstream from the former wood treating site	remediation. Requires abandonment or permits for wells on parcels connected to the public water supply and connection of sold parcels adjacent to water main.	MILWAUKEE, WIS., CODE §§ 225-22, 225-23 and 225-39

In addition to the site-wide restrictions specified above, Appendix 6 of the CD described additional restrictions that applied only to the former wood preserving facility and those portions of the Site that contained trenches, collection basins, or treatment systems and the future landfill cover. These additional restrictions are as follow:

- 1. Use of groundwater in these areas is prohibited;
- 2. There shall be no residential use of the former wood preserving plant property;
- 3. Activities involving people are prohibited on those portions of the site described above, except as part of implementing and maintaining the remedial action called for in the ROD and CD; and
- 4. Penetration of the installed cover is prohibited, including but not limited to any excavation, drilling, mining, piercing, digging, or boring.

In 1996, both the county and the railroad entered into CDs with EPA to repay EPA's past costs at the Site and both the county and railroad recorded deed restrictions incorporating language largely identical to what was contained in Appendix 6 of the (KMC) CD, prohibiting activities that may interfere with the cleanup of the site, preventing any construction/installation/removal of buildings, pipes, roads or other structures on property without approval by EPA, prohibiting the consumption or use of groundwater at the former wood preserving site, and prohibiting excavating, drilling, piercing, digging, or boring of the soil cover. In 2000, the ICs for the former wood preserving plant property were updated by the county and railroad to reflect the intended uses of specific areas of the site: 1) recreational use throughout the floodplain areas of the river and 2) industrial use for the non-floodplain portions of the former wood preserving plant. These updated ICs were consistent with the 1998 ROD Amendment providing for industrial use of the former wood treating site, thereby allowing worker direct contact with contaminated soil cleaned to non-residential standards, as long as appropriate ICs were in place and applied.

As presented in Table 3, there are four deed restrictions in place, covering the following areas of the Site:

- 1. Areas of the former wood preserving plant currently owned by the railroad;
- 2. Areas of the former wood preserving plant, not on the floodplain, owned by the county;
- 3. Areas of the former wood preserving plant, located along the floodplain, owned by the county; and
- 4. The floodplain areas along the Little Menomonee River, owned by the county, starting outside of the former wood preserving plant and stretching all the way to the confluence with the Menomonee River.

The deed restriction for the floodplain portion of the former wood preserving plant limits usage to recreational use. The other two deed restrictions related to the former wood preserving plant, except the floodplain portion, limit the land to industrial use. The deed restriction applicable to the river floodplain outside of the former wood preserving plant is located primarily along a public parkway (Little Menomonee River Parkway). In 2014, the State of Wisconsin reviewed the enforceability of the deed restrictions and determined they were enforceable under State law. Consequently, an amendment to the language in the document was not necessary to ensure that the public is protected and that the remedy remains effective.

7.

While it appeared the four deed restrictions are adequate in minimizing the potential for nearby residents from being exposed to site-related contaminants and protect the integrity of the remedy, the previous FYR report (2010) found that a few sections of the Site were not covered by some form of IC. Specifically, two parcels owned by the City of Milwaukee and a parcel located on a residential lot, all three located just south of the former wood preserving plant, do not have any type of IC. However, as stated above, a city ordinance requires abandonment or permitting of wells on parcels connected to the city water supply. See MILWAUKEE, WIS., CODE §§ 225-22, 225-23 and 225.39 (2012). Also, groundwater restrictions are not needed for areas outside the former wood preserving plant property and these parcels do not contain remedial components.

As State law cited in the ICs changed since they were recorded, EPA asked WDNR to review the ICs for enforceability under current State law. By letter dated November 7, 2014, WDNR considered the language of the 1996 and more recent ICs recorded at the Site and opined that deed restrictions appear validly constructed and can be reasonably expected to remain enforceable and that the changes in statutory construction would not alter the force of the deed restrictions. Similarly, a 2012 settlement (in the Tronox, Inc. bankruptcy matter) that, among other things, released KMC's successor from the 1996 CD, did not alter the construction and enforceability of the recorded ICs.

The Moss-American Superfund site was declared "site-wide ready for reuse" on May 5, 2011.

Current Compliance

Compliance with ICs is required to ensure long-term protectiveness. Based on recent inspections and interviews, there are no known ICs compliance issues at the site. While the non-floodplain portion of the site, which lies within the former wood preserving plant property, can be used for industrial purposes consistent with the 1998 ROD Amendment and recorded ICs, recent inspections of the property revealed no such activities were occurring. Also, a representative from the railroad told EPA it has no plans to resume the railroad/freight activities on its portion of the property.

Long-term Stewardship

Long-term protectiveness requires compliance with effective ICs to ensure that the remedy continues to function as intended. Long-term protectiveness will be assured by conducting IC evaluation activities, including long-term stewardship procedures. Long-term stewardship will assure that effective ICs will be maintained, monitored and enforced. To achieve this goal, the existing O&M Plan will be reviewed and updated to incorporate long-term IC stewardship procedures such as regular inspection of ICs at the site and annual certification to EPA that ICs are in place and effective. EPA will also explore developing a communications plan and using the State's one call system.

Additional IC Follow-up Actions To Be Conducted

In addition to implementing long-term stewardship procedures, follow-up actions are required to assure the remedy remains protective. These additional IC evaluation activities will include review of title work and preparing a final ICs map.

System Operation/Operation and Maintenance (O&M) Activities

WNDR assumed responsibility for O&M duties in 2011 (Attachment 4) and has conducted the following activities at the Site:

- In consultation with EPA, WDNR shut down the groundwater treatment system in 2011 to determine the effects of reduced oxygen availability in the treatment zone of the funnel-and-gate system. The system is still shut down, pending review of the groundwater data; and,
- WDNR collected soil and groundwater samples in 2013 and 2014 as part of characterization work recommended by the Corps' RSE report (see Attachment 5).

The State also conducts routine maintenance activities at the site, including mowing and maintaining the Site fence.

III. FIVE-YEAR REVIEW PROCESS

Administrative Components

EPA notified the State that it was initiating the FYR on June 5, 2014 (see Attachment 6). The review was led by Ross del Rosario, EPA's Remedial Project Manager (RPM) for the Site and Susan Pastor, the Community Involvement Coordinator (CIC). Tom Wentland (WDNR) assisted in the FYR as the representative for the support agency.

The FYR consisted of the following components:

- Community involvement;
- Document review;
- Data review;
- FYR site inspection; and
- FYR Report development and review.

Community Notification and Involvement

EPA initiated activities to involve the community in the FYR process on June 5, 2014, when the CIC informed the RPM of her intent to update the Agency's web page for the Site (<u>www.epa.gov/Region5/sites/mossamerican</u>), which she then completed in August 2014. EPA also placed a newspaper ad in a local paper and contacted the local public library to ensure the repository at that location continued. EPA published a notice in the *Milwaukee Journal Sentinel*, on August 8, 2014, stating that it was beginning a FYR and inviting the public to submit any comments to EPA (Attachment 7). EPA will place the completed FYR report in the Site

information repository located at the Mill Road Library, 6431 N. 76th Street, Milwaukee, Wisconsin, and on the Site webpage.

Document Review

The RPM reviewed certain Site documents for this FYR, including the September 1990 ROD, the 1997 ESD, the 2007 ESD, the 1998 ROD Amendment, the previous (2010) FYR report, relevant State laws and regulations, existing ICs, the 2011 RSE report (Corps), monitoring data collected by the State in 2008, 2013 and 2014 (Attachment 5), the November 2014 letter from WDNR, and the Milwaukee Code of Ordinances. Applicable groundwater cleanup standards, as listed in the 1990 ROD, were also reviewed.

Data Review

Contaminated soils and sediments have attained cleanup goals and there is no current human exposure to contaminated groundwater. The only remaining media to address at the site is groundwater. Groundwater monitoring data were collected from 2000 to 2009, prior to the Tronox, Inc. bankruptcy filing, and in 2010 and 2013 following the filing. EPA performed a trend analysis of the 2000 to 2009 groundwater data as part of the previous (2010) FYR report. That analysis suggested an upward trend in concentrations for a handful of contaminants at certain wells (e.g. MW-34S – see Figure 2).

Table 4 (next page) summarizes the levels of contamination found in the groundwater for selected monitoring wells and contaminants of concern (COCs) in the 2008, 2010, and 2013 sampling surveys. In general, the data suggest groundwater quality improved from 2008 to 2013, although exceedances of the State's cleanup standards are still evident at these selected wells. In particular, monitoring well MW-34S, located on the north side of the former wood preserving plant property, continues to show multiple exceedances of cleanup standards for the PAH compounds naphthalene, benzo(a)pyrene, chrysene, and anthracene and with benzene.

The State conducted a groundwater survey in 2013 and concluded the following:

- 1. Total PAH concentrations have decreased at all on-Site sample locations since September 2010;
- 2. Free-phase product (DNAPL) is still present at MW-34S and TG1-1; however, no indication of free-phase product was present at MW-7S where an oily sheen was observed in September 2010;
- 3. Low-level groundwater impacts were detected at wells located further downstream along the Little Menomonee River where no PAH impacts were identified in 2010. The water samples contained traces of sediment, which may have contributed to this anomaly;
- 4. The sheet pile containment system (funnel) continues to be effective in preventing contaminated groundwater from discharging directly to the river without first going through the treatment gates;
- 5. Based on one round of data from newly-installed wells located immediately outside of the sheet pile, there is no evidence of a groundwater plume existing outside of the containment area.

A comparison of groundwater data taken prior to shutdown (2010) and post-shutdown (2013) indicates no degradation in groundwater quality; in fact, data show a slight improvement in groundwater quality (see Table 4). The site's monitoring well network is shown in Figure 2.

The State plans to conduct further groundwater and DNAPL characterization work in 2015. Upon completion of this work, the State will propose to EPA various options for meeting groundwater cleanup goals. These options are expected to be similar to those recommended in the Corps' 2011 RSE report. In its RSE report, the Corps recommended various combinations of source removal, *in-situ* treatment, additional treatment gate(s), and expanding the existing containment wall. The estimated costs to implement these options ranged from about \$200,000 to \$979,000.

Site Inspection

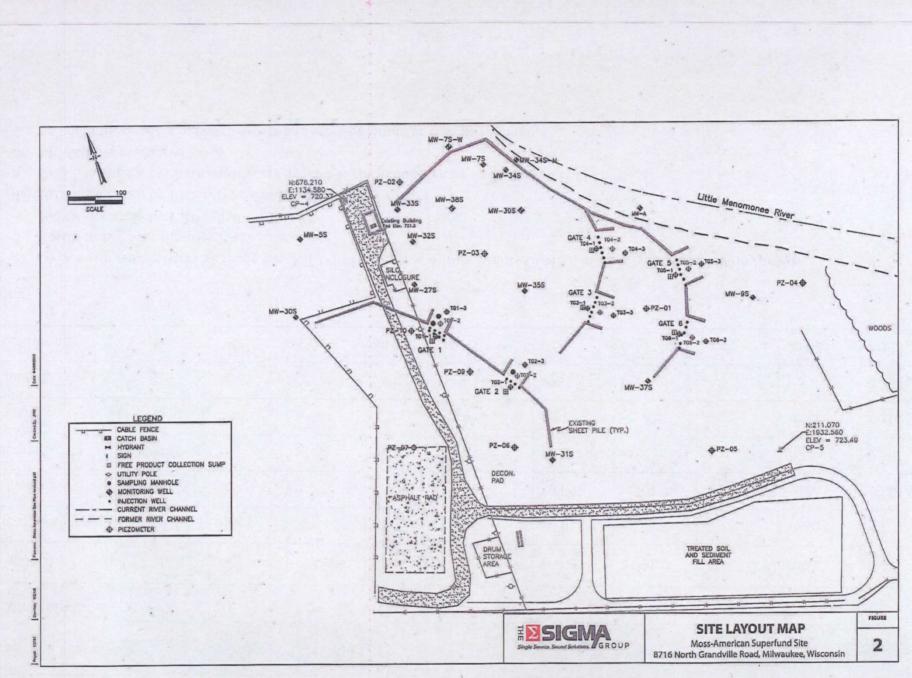
EPA and WDNR conducted a FYR site inspection July 16, 2014 (see Attachment 8). RPM Ross del Rosario (EPA) and Tom Wentland (WDNR) attended. The purpose of the FYR site inspection was to assess the protectiveness of the remedy. To achieve this objective, the following activities were performed:

- Site reconnaissance (along the perimeter fence);
- Groundwater treatment building inspection;
- Location and identification of groundwater monitoring wells and the treatment gates associated with the groundwater treatment system;
- Confirmation that in 2011, EPA's contractor had removed designated soil piles, debris, and excess cleanup equipment; and,
- Verification that the temporary bridge crossing the river had been removed (per WDNR request).

The RPM took photographs of various parts of the Site during the inspection (see attached photos). Afterwards, the RPM sent WDNR a list of recommended "housekeeping" items, such as mowing, for WDNR to complete in the near term (Attachment 9). WDNR completed these tasks during the week of November 21, 2014.

Interviews

The RPM interviewed the WDNR representative during the Site inspection. The purpose of the interview was to document how well the O&M phase of the project was going, to ascertain whether improvements to groundwater quality have been observed since the 2010 FYR was completed, and to discuss the progress in implementing the recommendations in the Corps' 2011 RSE report. WDNR reported that its O&M activities were generally minimal after shutting down the groundwater treatment system in 2011, that additional soil and groundwater sampling will be performed by the State's contractor in 2014 as part of characterization work called for in the Corps' RSE report, and that groundwater quality improved slightly from 2010 to 2013. Other relevant information gathered during the interview included the following:


- The groundwater treatment building was vandalized sometime in 2011 or 2012. WDNR personnel noted the damages caused by the event and sent photographs to EPA to document the damage incurred;
- There is a need to mow the area around the groundwater treatment building and adjacent areas were monitoring wells are located; and
- There were no changes to State or local laws that impact the protectiveness of remedy at the Site.

	WELL	MW-34S			, MW-338			MW-7S		
	YEAR	2008 ³	2010 ⁴	2013 ⁵	2008	2010	2013	2008	2010	2013
Contaminant	NR140 PAL (ppb) ¹									
Naphthalene	10	14,000 ²	11,000	4,100	76	100	0.201	22	1.6J ⁷	0.43
Benzo(a)pyrene	0.02	160	120	<186		<0.01	<0.018		< 0.011	<0.018
Chrysene	0.02	480	0.061	<0.062		<0.061	<0.018		< 0.065	<0.018
Benzene	0.5	7	6.2	7		<0.2	<0.27	0.9	0.9J	0.36J
Pyrene	50	2,400	1,400	222	-	<0.1	< 0.025		< 0.011	<0.025
Fluorene	80	2,500	1,700	330		49	0.251		1.5	0.83
Anthracene	600	840	450	88	1.1	0.62	0.132		<0.02	0.138

Table 4: Comparison of groundwater data collected in 2008, 2010, and 2013

Notes:

- 1. (Wisconsin Administrative Code Ch. NR 140) Preventive Action Limits (PALs), in µg/L (parts per billion (ppb))
- 2. Result in red font signifies PAL exceedance
- 3. 2008 data taken by PRP (2010 FYR report)
- 4. 2010 data taken by PRP after completion of 2010 FYR report
- 5. 2013 data taken by State contractor as part of the groundwater optimization study
- 6. "J" denotes estimated value
- 7. "<" denotes result is below the method detection limit for that parameter

A summary of the State's responses to EPA's questions are included as part of the inspection report (see Attachment 10).

IV. TECHNICAL ASSESSMENT

Question A: Is the remedy functioning as intended by the decision documents?

Answer A: Yes. The groundwater treatment system (funnel-and-gate) was operating for approximately ten years until early 2011, when EPA and WDNR agreed to temporarily shut down the system to determine the effect of reducing the availability of oxygen in the treatment gates. A comparison of groundwater data taken prior to shutdown (2010) and post-shutdown (2013) indicates no degradation in groundwater quality; in fact, data show a slight improvement in groundwater quality (see Table 4). Groundwater monitoring will continue in the near future as part of the ongoing groundwater optimization work. In addition, all necessary ICs are in place and enforceable in compliance with the ROD. However, the O&M Plan will be updated to ensure that long-term stewardship procedures are developed and implemented so that ICs are properly maintained, monitored, and enforced and additional IC evaluation activities will be conducted.

The State now has the lead role in the project because it is in the O&M phase. Under the O&M plan, the State conducts required semiannual and annual groundwater monitoring and general Site maintenance tasks such inspection for vandalism, evaluating the conditions of the pumps and blowers, and mowing. The perimeter fencing at the Site is in generally good condition and all gates leading into the site are locked. There is only one access point to the site, through railroad-owned property, which requires advance notification to the railroad of intent to enter the Site. The other access point, on county property opposite the railroad property, was no longer available as of 2011 because EPA demolished the temporary river crossing used to enter the Site.

The State is working to optimize the Site groundwater treatment system under a July 2012 cooperative agreement between EPA and WDNR. EPA is providing oversight and funding support for this work. The State conducted fieldwork in 2013 based on the recommendations in the Corps' 2011 RSE report. One important finding during the 2013 survey was that the sheet piling installed along the river near the treatment area continues to prevent untreated groundwater contaminants from discharging into the river. The survey results assure EPA and WDNR that contaminated groundwater in the treatment area continues to be treated in the funnel-and-gate system prior to discharging into the river.

Question B: Are the exposure assumptions, toxicity data, cleanup levels, and remedial action objectives (RAOs) used at the time of the remedy section still valid?

Answer B: Yes. However, changes to the groundwater cleanup objectives are being considered in view of the anticipated future recreational or industrial uses of the Site. WDNR has proposed using alternative concentration limits (ACLs) in lieu of the current PALs required by the ROD. The ROD discusses establishing a Wisconsin ACL where it is not technically or economically feasible to achieve a PAL. The State's PALs, which are indicative of the presence of contaminants in the groundwater, are generally more restrictive than respective maximum contaminant limits (MCLs) under the federal Safe Drinking Water Act. **Question C:** Has any other information come to light that could call into question the protectiveness of the remedy?

Answer C: No information has come to light to call into question the protectiveness of the remedy.

Technical Assessment Summary

EPA finds that the selected remedy, as constructed, is generally functioning as intended by the decision documents and no exposures to contaminated groundwater are occurring. Although the funnel-and-gate system was temporarily shut down in 2011, a comparison of groundwater data before and after the shutdown indicated no degradation in groundwater quality. Importantly, the sheet pile wall designed to prevent groundwater from entering the river before going through the treatment gates was found to be working as designed. Exposure assessments, toxicity data, and RAOs used at the time of remedy selection remain valid and are being addressed by the cleanup actions.

V. ISSUES/RECOMMENDATIONS AND FOLLOW-UP ACTIONS

Issues and Reco	mmendations Iden	tified in the Five-Y	ear Review:	
OU(s):	DU(s): Issue Category: Remedy Performance 1/Sitewide Issue: The groundwater cleanup goals have not yet been met. Recommendation: The State should consider implementing the recommendations of the 2011 Remedial Systems Evaluation Report (U.S. Army Corps of Engineers) to address remaining groundwater contamination and achieve current groundwater cleanup standards.			
01/Sitewide				
Affect Current Protectiveness	Affect Future Protectiveness	Implementing Party	Oversight Party	Milestone Date
No	Yes	State	EPA	12/31/2016

OU(s):	Issue Category: Institutional ControlsIssue: Effective ICs must be monitored, maintained, and enforced. Long stewardship of ICs has not been addressed.				
01/Sitewide					
	Recommendation: Review title work and prepare a final ICs map. I implement long term stewardship procedures through revision of the				
Affect Current Protectiveness	Affect Future Protectiveness	Implementing Party	Oversight Party	Milestone Date	
No	Yes	State	EPA	03/29/2017	

VI. PROTECTIVENESS STATEMENT

OU1 & Sitewide Protectiveness Statement

Protectiveness Determination: Short-term Protective

Protectiveness Statement:

The remedy is protective of human health and the environment in the short term because it is functioning as intended. Contaminated soils and sediments have attained cleanup goals and there is no current human exposure to contaminated groundwater. ICs, in the form of deed restrictions, have been recorded to limit future re-use of the former wood-treating site and the floodplain downstream of the former facility. Long-term protectiveness requires additional remedial action to groundwater in order to achieve the cleanup standards, and ensuring effective ICs are implemented, monitored, maintained, and enforced. To that end, additional IC evaluation activities such as review of title work and finalizing an ICs map will be performed. Also, long-term stewardship procedures will be developed and implemented through revision of the O&M Plan. Long-term stewardship involves assuring effective ICs are maintained and monitor the Site. Long-term stewardship will ensure effective ICs are maintained and monitored and the remedy continues to function as intended with regard to ICs.

VII. NEXT REVIEW

The next FYR for the Moss-American Superfund Site is required five years from the completion date of this review.

A. SITE CHRONOLOGY

Table 5: Chronology of Site Events

Event	Date
Initial discovery of contamination	April 1971
Pre-NPL responses (State-enforced removal of creosote-contaminated soil and sediment)	1970s
NPL proposed listing	September 8, 1983
Site placed on NPL	September 21, 1984
RI/FS conducted	September 1985 to May 1990
Proposed Plan issued	May 29, 1990
Record of Decision (ROD) signed	September 27, 1990
RD/RA Consent Decree entered	March 29, 1996
First Explanation of Significant Differences (ESD) signed	April 29, 1997
ROD Amendment signed	September 30, 1998
Second ESD signed	November 28, 2007
Remedial Design Approvals	
 Free product Funnel-and-gate system Soil Low Temperature Thermal Desorption (LTTD) Sediment (river segments) 	May 1995 September 1999 March 2000 - Segment 1 - September 2002 - Segments 2/3 - February 2004 - Segments 4/5 - March 2009
Remedial Action Construction	
 Groundwater funnel-and-gate installed Soils LTTD work conducted Sediment removal completed 	- November 1999 - June 2000 - May 2001- January 2002 - November 2009

Event	Date
First FYR Report signed Second FYR Report signed Third FYR Report signed	September 18, 2000 September 20, 2005 March 29, 2010
Prefinal Inspection Completed	November 20, 2009
Preliminary Closeout Report signed	November 25, 2009
Current Work - Develop IC Plan - Conduct Optimization Study	 Technical Memorandum (September 2010) U.S. Army Corps of Engineers RSE Report (March 2011)
Fourth FYR Site Inspection	July 16, 2014
Site declared "site-wide ready for reuse"	May 5, 2011
Fourth FYR Report signed	(Pending)

B. BACKGROUND

Physical Characteristics

The 88-acre Moss-American site is located in the northwestern section of the City of Milwaukee (see Figure 1) and contains a former wood-treating facility plus several miles of the Little Menomonee River and its adjacent floodplain. The wood-treating facility property is bounded by the intersection of Brown Deer and Granville Roads on the west, and Brown Deer Road and 91st Street on the east. Twenty-three acres are industrially-zoned and owned by the Union Pacific Railroad, which recently has used this property as an automobile/light truck loading and storage area. Milwaukee County owns the remaining 65 acres, which contains part of the former wood-treating facility and parklands. Releases from the facility contaminated sediments of the adjacent Little Menomonee River. The property along that river's floodplain corridor is primarily owned by the County, and to a much lesser extent, the City of Milwaukee and private owners.

Hydrology/Hydrogeology

The Site is characterized by topographic features resulting from glacial processes. Local relief from the area is generally less than 100 feet, giving rise to rolling topography characteristic of glaciated areas. Average annual precipitation is between 29 and 30 inches with monthly averages ranging from 1.1 inches in February to 3.8 inches in July. The Little Menomonee River is a tributary to the Menomonee River, which discharges to the Milwaukee Harbor Estuary about 0.9 miles from Lake Michigan. The Menomonee River watershed includes approximately 137 square miles, with about 10 square miles belonging to the Little Menomonee River. Channelization has been carried out on approximately 80 percent of the perennial stream length of the watershed.

Three aquifers underlie the region: 1) sand and gravel, 2) dolomite, and 3) sandstone. The sand and gravel aquifer can be as thick as 250 feet in some areas, but varies in thickness by as much as 160 feet. The primary sources of the recharge to the sand and gravel aquifer are downward percolation of precipitation and surface water recharge from streams. The dolomite aquifer consists of Silurian- and Devonian-age dolomites, with groundwater flowing primarily through joints and bedding planes. Recharge results mainly from percolation through the overlying glacial deposits. The sandstone aquifer consists of the Cambrian- and Ordovician-age sandstones and dolomites. Recharge to that aquifer occurs primarily from percolation through overburden deposits 25 miles west of the Site, where the confining unit is absent.

Land and Resource Use

Wood-treating operations using creosote were conducted from approximately 1921 to 1976. Past site aerial photos showed that land usage patterns have changed considerably during that time. Photos from the 1930s to the 1950s showed the wood-treating plant operating in a relatively sparsely populated setting, with several farms surrounding the operations. From the 1960s to the present, residential and commercial use of nearby property increased considerably and agricultural and farming operations were phased out almost completely. Industrial parks and multi-lane highways also traversed the Site setting. County-owned land along the river corridor features recreational hiking and bicycle trails. These features have had a direct bearing on Site soil cleanup standards and sediment management at the Site.

Heavy commercial traffic presently surrounds the former wood treating facility. Retail establishments such as restaurants, home supply centers, auto dealerships, and repair shops dominate the nearby landscape. While the area is zoned primarily for commercial use, a heavy density of residential properties exists, with a few recreational areas (parks) abutting the commercial district.

The potential for Site groundwater use in the future is low given the availability of city water and a local ordinance requiring the abandonment or permitting of wells on parcels connected to the water main. In addition, the surficial upper aquifer (less than 20 feet below ground surface) where Site contamination is found does not have the capacity to be a drinking water source. ICs restrict groundwater use at the former wood preserving plant property.

History of Contamination

In 1921, the T. J. Moss Tie Company established a wood-preserving facility west of the Little Menomonee River. The plant preserved railroad ties, poles, and fence posts with creosote, a mixture of numerous chemical compounds derived from coal tar. While No. 6 fuel oil was also used, no evidence of pentachlorophenol usage was found. Creosote plant operations often contain storage facilities for creosote and fuels; a boiler for making steam, heating the creosote and applying the creosote to the wood; areas for unloading and storing incoming timbers; rail cars for transporting the creosote; and a drying area for subsequent storage. Creosote is the major source of PAHs, which comprise the main driver of risk at this site. Potential for release of PAHs existed throughout the storage, application, and drying processes.

From 1921 to 1971, the facility discharged wastes to settling ponds that ultimately discharged to the Little Menomonee River. These discharges ceased when the plant diverted its process water discharge to the Milwaukee sanitary sewerage system. Production ceased in 1976.

Kerr-McGee purchased the facility in 1963 and changed the facility's name to Moss-American. The name was changed again in 1974 to Kerr-McGee Chemical Corporation - Forest Products Division. The operator name changed to Kerr-McGee Chemical LLC (KMC) in 1998 and later became Tronox Inc., which Kerr-McGee had spun off in 2006, before Anadarko Petroleum Corp. purchased Kerr-McGee. In January 2009, Tronox filed for Chapter 11 bankruptcy. The federal government obtained settlements that addressed the Site on February 14, 2012, in the Tronox Inc. bankruptcy matter; and on January 21, 2015, in litigation with Anadarko Petroleum Corp.

Initial Response

Under a State order, KMC cleaned out eight former settling ponds and dredged about 1,700 feet of river to remove creosote-contaminated soil and sediment. From 1972 through 1973, three different dredging efforts were conducted in the Little Menomonee River within the first mile downstream of the facility.

In 1983, EPA proposed the Site for inclusion on the NPL. EPA placed the Site on the NPL in September 1984.

Basis for Taking Action

EPA conducted a baseline human health and ecological risk assessment as part of the remedial investigation effort for the Site. Major site contaminants fell into the chemical groups of PAHs and BTEX (benzene, toluene, ethylbenzene, xylene) compounds. PAHs are a primary component of creosote blends and have been associated with lung, stomach, and skin cancers. As for the BTEX compounds, benzene has been associated with occurrences of leukemia, while toluene and xylenes appear to cause depression of the human central nervous system.

According to the risk assessment, three exposure scenarios were defined to describe potential human exposures for current site conditions and potential future uses. These were:

- Site trespass (Current)
- Recreation use of the river (Current)
- Residential development (Potential)

Site Trespass – Soil

Risks associated with site trespass ranged from an excess lifetime cancer risk (ELCR) of 3×10^{-4} to 5×10^{-6} , with carcinogenic PAHs being the driving force on risk. Inhalation exposure had an ELCR less than 1×10^{-7} .

Recreational Use – River Sediment Exposure

Exposure to site sediments varied in each of the stream "segments" downstream from the former creosote processing area. The term "segment" denotes an area between major east-west highway bridges over the river at approximately one to one and a quarter mile intervals. Sediment exposure risks to humans were higher in segments 1, 2, and 3 - on the order of 1×10^{-4} ELCR due to CPAH exposure. In river segments 4 and 5, the ELCR dropped to 5×10^{-5} and 3×10^{-5} , respectively. Based on human exposure alone, exposure to CPAHs in sediment presented an ELCR at the upper (1×10^{-4}) range of EPA's acceptable risk range (1×10^{-6} to 1×10^{-4}). However, sediments also presented an unacceptable risk to aquatic habitat. While not viewed as an applicable or relevant and appropriate requirement (ARAR) at the time of risk assessment, literature cited by WDNR indicated that 388 mg/kg (parts per million or ppm) of CPAHs in sediment should be a "to be considered" value for acceptable long-term aquatic habitat protection.

Residential Development – Soil

ELCRs associated with residential development ranged from 2×10^{-2} to 2×10^{-4} , with carcinogenic PAHs being the driving force.

C. REMEDIAL ACTIONS

Remedy Selection

EPA selected a remedy for the Site in the ROD signed on September 27, 1990. The remedy included measures to address contaminated site soil and groundwater and Little Menomonee River sediment. Remedy components included:

- Excavation of highly-contaminated soil with treatment in a bioslurry vessel;
- Disposal and cover of treated soil and lesser-contaminated soils on-site, with revegetation of the excavated areas;
- Fencing and ICs were also required to minimize potential dermal contact (ICs, in the form of deed restrictions, were further addressed in a 1998 ROD Amendment);
- Removal and off-site disposal of highly-contaminated sediments from the Little Menomonee River, creation of a new channel in the vicinity of the Little Menomonee River and then diverting flow into the new channel, and filling the dewatered existing channel with soils from the new channel excavation; and,
- Collection and treatment of contaminated site groundwater, presumably using a biological treatment system.

Remedial action goals were to reduce risks posed by CPAHs in soils to below an ECLR of 1 x 10^{-4} and establish 6.1 mg/kg CPAHs as the acceptable treatability variance. For sediments, the new channel would ensure exposure to below 3 mg/kg CPAHs in sediment for acceptable long-term exposure to CPAHs in the aquatic habitat. Removing the worst of the contaminated sediments in the existing channel, calculated at a value of 388 mg/kg of CPAHs or higher, would

help minimize migration potential from the old channel to the new. Groundwater remediation goals were to prevent migration of contaminated Site groundwater into the Little Menomonee River, and to attain concentrations in Chapter NR 140 of the Wisconsin Administrative Code for COCs at the site. Groundwater COCs are PAHs and the BTEX compounds.

The overall RAOs for the specific media addressed in the ROD were:

- **On-site soil**: Minimize threats to human health and the environment from on-site contaminants via direct contact, inhalation, or ingestion and to prevent further contaminant migration into the groundwater and subsequently to the river;
- Contaminated sediment in the Little Menomonee River: Minimize direct contact or ingestion of contaminants in sediment; minimize acute and chronic effects on aquatic life from contaminants; and minimize migration of contaminants downstream to the Menomonee River; and,
- **Groundwater**: Prevent release of contaminants through the surficial groundwater aquifer to the Little Menomonee River surface water or sediment and remove contaminants from groundwater such that concentrations do not exceed applicable State groundwater standards.

Cleanup Goals:

Soil: Because no chemical-specific ARARs have been defined for CPAHs, the concentration level that correlates to the 1×10^{-4} ELCR level (6.1 mg/kg) was selected as the contaminant-specific goal for the soil cleanup goal.

Sediment: To meet the sediment RAOs, a new channel for the river will prevent contact with, or ingestion of, contaminated sediment by human or aquatic life. The target concentrations and volume of sediment removed in the old channel as part of the re-channelization efforts was also based on an ELCR level of 1×10^{-4} , corresponding to 388 mg/kg CPAHs in sediment. In addition, in areas where sediment was excavated in lieu of rerouting the river (mostly in the downstream portion of the river), sediments exceeding the calculated CPAH background level (15 mg/kg) would be removed.

Groundwater: Groundwater cleanup levels for the COCs were based on PALs established in Wisc. Admin. Code Ch. NR 140. PALs were derived primarily to inform the regulatory agency of potential groundwater contamination problems and are applicable both to controlling new releases as well as to restoring groundwater quality contaminated by past releases of contaminants. Table 6 (next page) lists the cleanup goals for Site COCs:

Table 6:	Groundwater	Cleanup Goals
----------	-------------	---------------

Contaminant of Concern	Cleanup Concentration (µg/L (ppb))
Anthracene	600
Benzo(a)pyrene	0.02
Benzo(b)fluoranthene	0.02
Chrysene	0.02
Fluoranthene	80
Fluorene	80
Naphthalene	10
Pyrene	50
Benzene	0.067
Toluene	68.6
Ethylbenzene	272
Xylene	. 124

Enforcement

In March 1996, EPA, the State of Wisconsin, and KMC entered into a CD that required KMC to implement the ROD remedy. The February 2012 settlement in the Tronox Inc. bankruptcy matter subsequently released KMC from the 1996 CD.

Remedy Implementation

Groundwater Remediation: In November 1999, KMC began construction of the groundwater cleanup system by:

- Installing temporary structural sheet piling;
- Excavating treatment gate areas;
- Dismantling wells/piping associated with the free product recovery system;
- Preparing a blend of clean sand and other clean soils for gate backfill;
- Grading gate areas after backfill;
- Replacing temporary sheet piling with permanent Waterloo sheet piling;
- Constructing and on-Site treatment building;
- Installing injection wells for introduction of nutrient, air/oxygen, and/or microbe sources into the gate areas to enhance groundwater contaminant degradation;
- Installing new monitoring wells to help determine gate performance and supplement existing monitoring wells to judge aquifer response in attaining goals; and
- Installing piping runs to convey nutrients from the treatment building to the individual gates.

KMC completed most of the construction by April 2000.

Soil Treatment: The purpose of the soil LTTD procedure was not to actually "burn" the contaminated soils, but to heat them above the boiling points of the PAH and BTEX contaminants to drive them off the soil particles for collection. Once successfully treated, the soil was to be returned to their place of excavation. However, the volume of the treated soil exceeded the original volume estimate so some was stockpiled on Site. Some of the treated soils were later graded in place and other treated soils were used as fill in the old river channel.

Sediment Work: Sediment management activity at the Site involved dredging in localized areas, creating a new stream channel in relatively clean soil areas, diverting current stream flow into the new channel areas, dewatering the original channel, removing contaminant sediments from the original channel, and filling the original channel segments with clean cuttings from new channel excavation.

Reach (segment) 1 remediation work was conducted from October 2002 to January 2003. Over 16,000 cubic yards of sediments were excavated and disposed of off-site during this phase of the project. Sediment remediation work involving Reaches 2 and 3 was performed in two phases. Phase 1 work was performed from March 1, 2004 to July 16, 2004. Phase 2 activities began on September 13, 2004, and continued until December 30, 2004. The remediation of Reaches 2 and 3 accomplished the following: (1) 9000 feet of new channel length was created; (2) 8,060 feet of previous river channel were filled in; (3) 2,515 feet of river channel were dredged instead of rerouted to meet sediment cleanup objectives; and (4) 8,563 cubic yards of highly contaminated sediments were excavated and disposed of off-site.

After Tronox filed for bankruptcy and stopped work on Reach 4/5, EPA took over the remaining sediment remedial action. Contaminated sediments above background levels were excavated in the 4,300-foot section on this stretch of the river. In all, over 5,500 cubic yards of contaminated sediment were removed and disposed of off-site. EPA completed this work on November 19, 2009. Subsequently, EPA issued a preliminary construction completion report (PCOR) on November 25, 2009, to document completion of all response actions at the Site.

Amendments to the ROD

April 1997 ESD: In April 1997, EPA signed, with WDNR concurrence, an ESD concerning site contaminated groundwater collection and treatment. Predesign results indicated that, compared to groundwater management originally described in the ROD, a funnel and gate system could offer certain advantages. While exhibiting certain heterogeneity, soils at the Moss-American site generally are relatively fine-grained, resulting in slow groundwater movement. This allows adequate time for contaminant treatment as water is directed through a gate. Design information indicated that, once optimum nutrient/air dosages were established, groundwater contaminants at the Moss-American site could undergo effective aerobic degradation.

September 1998 ROD Amendment: EPA issued a ROD Amendment in September 1998 which changed the soil treatment technology to LTTD from bioslurry technology. Pilot testing done by KMC indicated reasonably good soils treatment of the lighter PAH soil contaminants using the bioslurry technology, but saw reduced treatment efficiency for the larger PAH compounds. Thus, EPA determined that a change to LTTD from the bioslurry technology was appropriate.

The 1998 ROD Amendment also incorporated more recently developed State cleanup standards for soil related contaminants. It allowed for non-residential direct contact cleanup exposure scenarios if appropriate deed restrictions were recorded.

The ROD Amendment withdrew a waiver of State liner/leachate provisions, but provided for a Corrective Action Management Unit (CAMU).

Based on review of groundwater monitoring network analyses and related soils data, the ROD Amendment also added some additional COCs, such as naphthalene.

The ROD Amendment also addressed compliance with Wis. Admin. Code Ch. NR 700, requiring protection of groundwater from site contaminants that pose a threat as a source of groundwater contamination. The ROD Amendment provided for groundwater protection from residual contaminant levels (RCLs) in the soil where attainment of groundwater PALs was not being realized. Groundwater protection component RCLs were provided for naphthalene, fluorene, benzo(a)pyrene, toluene, xylene(s), ethylbenzene, and benzene. The ROD Amendment also provided for protection from soil contamination through direct contact under industrial exposure scenarios. In addition, the ROD Amendment considered floodplain portions that might be affected by soil remediation technology, as well as possible recreational use of portions of the site.

2007 ESD: In November 2007, EPA issued an ESD acknowledging that rerouting of Reach 4/5 would not be necessary or efficient to achieve Site cleanup goals. Instead, EPA selected intermittent dredging of hot spot areas of contaminated sediments, along with off-site disposal of the contaminated sediments for Reach 4/5.

Current Remedial Activity

The only remaining remedial activity at the Site is groundwater restoration work. As described above, a groundwater treatment system, consisting of the funnel and gate system, air sparging, and a network of monitoring wells, is currently in place. The State shut down the system temporarily in 2011 to see if reduced oxygen will affect performance in the treatment gates. In coordination with EPA, the State is implementing recommendations made in the 2011 RSE report prepared by the Corps for optimizing the existing system. The first phase of the work, which began in 2013, involved characterizing the remaining contamination in soil and groundwater within the treatment area of the groundwater treatment system. Groundwater and soil samples were collected in 2013 and 2014 as part of this effort.

Operation and Maintenance Activities

A groundwater monitoring program is in place that requires semiannual and annual monitoring of the well network. As part of its O&M responsibilities, the State is responsible for carrying out these periodic groundwater surveys. The State conducted the most recent groundwater sampling in 2013 as part of the groundwater treatment system optimization effort. In addition to periodic groundwater sampling, the State will be performing routine maintenance activities at the site, including mowing and maintaining the Site fence.

Attachment 1

U.S. Army Corps of Engineers RSE Report (March 2011)

REMEDIATION SYSTEM EVALUATION MOSS-AMERICAN SUPERFUND SITE MILWAUKEE, WISCONSIN

Final Report March 2011

Prepared by: US Army Corps of Engineers Environmental and Munitions Center of Expertise and Seattle District

> Prepared for: US Environmental Protection Agency Region 5

Corps of Engineers

US Environmental Protection Agency

Table of Contents

EXECUTIVE SUMMARY	i	i
1.0 INTRODUCTION		1
1.1 Purpose		I
1.2 Team Composition		I
1.3 Documents Reviewed		1
1.4 Site Location, History, and Characteristics		2
2.0 PERFORMANCE OBJECTIVES		
3.0 SYSTEM DESCRIPTION	,	
3.1 Groundwater Treatment System	······	5
3.2 Monitoring Program	······	1
4.0 SYSTEM PERFORMANCE		3
4.1 Groundwater Flow		3
4.2 Groundwater Chemical Concentrations		3
4.3 Treatment Gates)
5.0 REMEDY OPTIMIZATION OPTIONS	1	l ·
5.1 Recommendations to Improve Effectiveness		Ĺ
5.2 Recommendations to Improve Site Closeout		2
6.0 SUMMARY		

List of Tables

1.	Groundwater	Cleanup	Goals	

2. Monitoring Program

3. Cost Assumptions

4. Remedy Optimization Options Evaluation Summary

List of Figures

- 1. Site Location
- 2. Proposed Additional Monitoring Locations for Chemical Analysis

3. Potential NAPL Investigation Program

List of Appendices

A. Groundwater Modeling Documentation

B. Trend Analyses

C. Effective Solubility of Naphthalene

EXECUTIVE SUMMARY

This document presents the results of a Remediation System Evaluation (RSE) conducted for the Moss-American Superfund Site in Milwaukee, Wisconsin. The RSE process is designed to help site operators and managers improve effectiveness, reduce operation costs, improve technical operation, and gain site closeout. The observations and recommendations given within this RSE report are not intended to imply a deficiency in the work of either the designers or operators, but are offered as constructive suggestions to fill data gaps and optimize remedy performance.

This RSE report focuses primarily on optimizing system performance, in particular addressing the stagnant groundwater zone that is limiting flow through the treatment gates and elevated COC concentrations in the vicinity of MW-34S. Recommendations include:

- Monitoring program modifications to further delineate source and dissolved-phase contaminant extent. These modifications would result in additional costs of approximately \$22,500. Benefits include ensuring that contaminants are not migrating through or around the sheet pile wall, as well as providing necessary information for implementing treatment enhancements, which would ultimately lead to earlier site closeout.
- Additional NAPL investigation. This investigation would cost approximately \$72,000.
 Identification of source areas would allow targeted removal, thereby diminishing long-term contributions to the dissolved-phase plume and shortening time to achievement of cleanup objectives.
- Depending on results of characterization efforts, it is recommended that one of the following treatment modifications be implemented:
 - NAPL-impacted soil excavation and enhanced dissolved-phase treatment. This option would cost roughly \$381,000 for the stagnant zone near MW-34S; costs for similar work near TG1-1 have not been developed but could be readily scaled from the estimate for the MW-34S area based on results from field investigations. Aggressive removal of identified source material (NAPL) and subsurface amendments of ORC Advanced® would greatly shorten time until achievement of cleanup objectives.
 - 2) Limited NAPL-impacted soil removal and installation of additional gate in NW corner. Costs for this option are estimated to be roughly \$979,000. This option adheres closely to the original design, which included a gate in the northern portion of the sheet pile wall. Installation of a gate in the wall should improve flow and eliminate the stagnant zone, thereby resulting in more effective treatment of the dissolved-phase plume. Risk

management and design considerations would determine whether the gate is installed near MW-34S or MW-7S.

ii

1.0 INTRODUCTION

1.1 Purpose

The Remediation System Evaluation (RSE) as identified in the U.S. Army Corps of Engineers (USACE) Guidance is intended to achieve a number of goals, including:

- Assuring there is a clear system objective (an end to the project),
- Reducing costs and optimizing the system performance considering current conditions and new technologies,
- Evaluating the protectiveness of the system in accordance with the National Contingency Plan (the NCP and CERCLA requires reviews at least every five years), and
- Assuring adequate maintenance of government-owned equipment by operators. [not directly applicable to this RP-run system]

The Third Five-Year Review Report (EPA, 2010) concluded that the site is currently protective, but recommended that an optimization study be performed "to develop a solution to remediate the elevated" contaminant of concern (COC) levels found in areas within the funnel and gate system. Due to development of stagnation in groundwater flow and resulting reduction in flow through the treatment gates, these elevated COC levels persist, with consequences for long-term operations and overall costs. Because a site visit was not included in the scope for this study, the focus of this RSE was directed at optimizing system performance, with the intent of ensuring cleanup objectives can be reached within a reasonable timeframe, thereby reducing long-term costs. This report provides a brief background on the site, current operations, and recommendations for changes and additional actions. The cost impacts of the recommendations are also discussed.

1.2 Team Composition

This team conducting the RSE consisted of Mike Bailey (hydrogeologist, USACE Environmental & Munitions Center of Expertise), Mandy Michalsen (engineer, USACE Seattle District), and Sharon Gelinas (hydrogeologist, USACE Seattle District).

1.3 Documents Reviewed

Remedial Investigation Report, Moss-American Site, January 9, 1990

Superfund Record of Decision (ROD), Moss-American Co., Inc, USEPA, September 27, 1990

Explanation of Significant Differences (ESD), Moss-American Co., Inc, USEPA, April, 29, 1997

Superfund ROD Amendment, Moss-American Co., Inc, USEPA, September 30, 1998

ESD, Moss-American Co., Inc, USEPA, November 2007

Third Five-Year Review Report for Moss-American Superfund Site, USEPA, April 2010

Groundwater Monitoring Reports for the Moss-American Site from 1998-2008, Roy F. Weston, Inc (Weston)

Groundwater Remedial System Drawings, Weston, Kerr-McGee Corporation, March 1998

Response to Comments on Focused Remedial Alternatives Evaluation for Soil and Sediment, Moss-American Site, Weston, January 12, 1996

Integrated Review Comments of Soil and Groundwater Remedy, Moss-American Site, Weston, January 20, 1997

Response to Comments on Intermediate (60%) Groundwater Design, Moss-American Site, Weston, February 3, 1997

Comments on Prefinal Design - Groundwater, Moss-American Site, USEPA, October 30, 1997

Supplemental GeoProbe Soil Investigation Report, Moss-American Site, Weston, May 2, 2001

1.4 Site Location, History, and Characteristics

1.4.1 Location

The Moss-American site is located in the northwestern section of the City of Milwaukee (Figure 1). The 88-acre site is comprised of a former wood treating facility plus several miles of the Little Menomonee River and its adjacent floodplain soils. The wood treating, using creosote, was conducted on land bounded roughly by the intersection of Brown Deer and Granville Roads on the west, and Brown Deer and 91st Street on the east.

With the cessation of wood treating operations, 23 acres of site land are now owned by the Union Pacific Railroad (railroad), which, until very recently, used this land as an automobile/light truck loading and storage area. Recent business conditions curtailed most of the vehicle storage/transfer function. Industrial site zoning and usage of this portion of the site remain intact. Milwaukee County (the county) owns the remainder of the land comprising the former wood treating facility, approximately 65 acres.

The Little Menomonee River flows approximately 5 miles to its confluence with the Menomonee River. Land along the floodplain corridor is owned primarily by the City of Milwaukee, the County, and to a much lesser extent, private owners.

1.4.2 History

Wood treating operations using creosote were conducted from approximately 1921 to 1976. Past site aerial photos show that land usage patterns have changed considerably with the passage of time. Photos from the 1930s to the 1950s show the wood treating plant operating in a relatively sparsely populated setting, where several farms surrounded the manufacturing operation. From the 1960s to the present, residential and commercial use of nearby property has increased considerably, and agricultural and farming operations have been phased out almost completely. Industrial parks and multi-lane highways also traverse the site setting. County owned land along the river corridor now features recreational hiking and bicycle trails. These features have had a direct bearing on site soil cleanup standards and sediment management at the site.

In 1921, the T. J. Moss Tie Company established a wood preserving facility west of the Little Menomonee River. The plant preserved railroad ties, poles, and fence posts with creosote, a mixture of numerous chemical compounds derived from coal tar. Creosote plant operations often contain storage facilities for creosote and fuels, a boiler for making steam, heating the creosote and applying the creosote

to the wood, areas for unloading and storing incoming timbers, rail cars for transporting the creosote, and a drying area for subsequent storage. Creosote is the major source of a class of contaminants called polycyclic aromatic hydrocarbons (PAHs) which are the main driver of risk at this site. Potential for release of PAHs existed throughout the storage, application, and drying processes.

From 1921 to 1971, the facility discharged wastes to settling ponds that ultimately discharged to the Little Menomonee River. These discharges ceased when the plant diverted its process water discharge to the Milwaukee sanitary sewerage system. Production at the facility ceased in 1976.

Kerr-McGee purchased the facility in 1963 and changed the facility's name to Moss-American. The name was changed again in 1974 to Kerr-McGee Chemical Corporation - Forest Products Division. In 1998, the name of this company changed to Kerr-McGee Chemical LLC (KMC). Tronox assumed ownership of the site in 2006 when it was spun off from Kerr-McGee. In January 2009, Tronox filed for Chapter 11 bankruptcy.

1.4.3 Hydrogeology Setting

The site overlies a surficial water-bearing unit and confining bed. The water-bearing unit consists of a thin mantle of fill, alluvium, and weathered till. This thin layer of material would not yield sufficient water to wells to be classified as a true aquifer. The confining bed is the unweathered till of the Oak Creek Formation.

The surficial unit comprises everything above the confining bed. It includes extensive fill deposits, . alluvial deposits along the river, and the weathered upper few feet of the Oak Creek Formation. The fill is highly variable and has been added to the site at different times for different reasons. Alluvial deposits are associated with the Little Menomonee River. They consist of sand and gravel channel deposits and silt and clay flood deposits. The till is part of the Oak Creek Formation, which consists of glacial till, lacustrine clay, silt and sand, and some glaciofluvial sand and gravel. The till is fine grained, commonly containing 80 to 90 percent silt and clay. The till was generally weathered to a depth of 2 to 10 feet.

The unweathered part of the Oak Creek Formation consists of a confining bed between the surficial water-bearing unit and underlying regional aquifers. The formation is a dense, silty clay till with interbedded lacustrine units. Below the site, the glacial deposits are approximately 150 feet thick and underlain by the dolomite aquifer. The minimum thickness of the confining bed below the site is at least 40 feet. Slug tests conducted during the RI on the most permeable parts of the Oak Creek Formation indicate average hydraulic conductivities of 10^{-5} to 10^{-6} cm/s [0.03 to 0.003 feet per day (ft/day)]. The overall hydraulic conductivity of the entire unit is probably less than the values reported.

Prior to implementation of the remedy, groundwater flowed toward the low-lying areas adjacent to the river. Groundwater discharged to these areas either migrates downriver through alluvial sands, or is lost to the atmosphere by evapotranspiration. Groundwater and surface water elevation data suggest that discharge to the river may vary seasonally. During dry periods, the Little Menomonee River is probably a losing stream (the river discharges to groundwater). Conversely, during wetter conditions, it is likely a gaining stream.

Constrained and channeled by the funnel and gate system, the groundwater within the shallow groundwater-bearing zone generally flows northeastward toward the Little Menomonee River. A review

of data presented in the quarterly and annual groundwater monitoring reports by Weston indicate that in the topographically higher (western) portion of the site, the horizontal hydraulic gradient is relatively steep, at approximately 0.032 feet per foot (ft/ft) to the northeast. The topography of the site levels out near the river, as does the potentiometric surface with a northerly hydraulic gradient of approximately 0.013 ft/ft. The estimated hydraulic gradients within the treatment gates ranged from 0.0007 to 0.0043 ft/ft. The hydraulic gradient is relatively flat within the treatment gate area with an overall hydraulic gradient from TG1 to TG5 of approximately 0.0026 ft/ft in an easterly direction. Lowest hydraulic gradients are found in the area encompassing monitoring wells MW-7S, MW-33S, MW-34S, and MW-38S.

The hydraulic conductivity of the deposits located on the topographically higher, western portion of the site is in the range of 10^{-5} to 10^{-6} cm/s. In contrast, the hydraulic conductivity of material used to backfill areas within the funnel and gate remedial system is approximately 10^{-3} cm/s (3 ft/day). Using a hydraulic gradient of 0.032 ft/ft, an assumed effective porosity of 0.3, and a hydraulic conductivity of 0.03 ft/day, the groundwater flow velocity in the western portion of the site is calculated to be approximately 0.0032 ft/day. Near the river, using a hydraulic gradient of 0.013 ft/ft, a porosity of 0.3, and a hydraulic conductivity of 3 ft/day, the velocity of groundwater flow is calculated to be approximately 0.13 ft/day. The groundwater flow velocities within the treatment gates are estimated to range from 0.0066 to 0.1049 ft/day.

1.4.4 Description of Groundwater Plume

Historically, non-aqueous phase liquid (NAPL) has been identified in monitoring wells MW-34S, MW-7S and TG1-1. Recent NAPL occurrences in these wells have been limited to observations of sheen. The current dissolved-phase plume boundary is primarily in an area encompassing monitoring wells MW-7S, MW-33S, MW-34S, and MW-38S (Figure 2), which coincides in large part with the groundwater stagnation zone. There are also exceedances of State groundwater standards at MW-35S and treatment gate wells TG1-1, TG2-3 and TG4-1. In general, PAH concentrations measured in groundwater samples collected from the rest of the site were at relatively low levels with only sporadic detections.

Monitoring well MW-34S exceeds cleanup standards for numerous contaminants of concern including anthracene, benzene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, fluoranthene, fluorene, naphthalene, and pyrene. Monitoring well MW-7S exceeds standards for benzene and naphthalene, although trends for both contaminants are decreasing. In addition, increasing concentrations are identified for several COCs at these, and other, wells. Statistical analysis by EPA Region 5 indicates that multiple PAH contaminant concentrations are increasing, with current concentrations higher than the period just after construction of the funnel and gate system. Monitoring well MW-33S continues to exceed standards for naphthalene. Current contaminant concentrations from well MW-33S are also higher for anthracene and fluorene than they were shortly after implementation of the remedy.

2.0 PERFORMANCE OBJECTIVES

The focus of this RSE was on the groundwater remedy; the soil and sediment remedies were not evaluated. Groundwater remediation goals were to prevent migration of contaminated site groundwater into the Little Menomonee River and to attain concentrations in NR 140 of the Wisconsin Administration Code for COCs at the site. Groundwater contaminants of concern and their associated State preventative action levels (PAL) are listed in Table 1.

The remedial action objective (RAO) for groundwater as stated in the ROD was to: Prevent release of contaminants through the surficial groundwater aquifer to the Little Menomonee River surface water or sediment and remove contaminants from groundwater such that concentrations don't exceed applicable State groundwater standards.

3.0 SYSTEM DESCRIPTION

The groundwater remedy consisted of a funnel and gate system to capture and treat contaminated groundwater prior to discharge to the Little Menomonee River. The following section provides a description of the groundwater treatment system and associated monitoring program.

3.1 Groundwater Treatment System

A funnel and gate system was selected as the preferred alternative in the 1997 ESD. Pre-design results indicated that the relatively fine-grained site sediments would be well suited for this type of system. Groundwater flow was relatively uniform toward the Little Menomonee River with discontinuous zones of increased permeability (i.e. gravel fill and silty sand) acting to guide the direction of the contaminant plume. In the ESD, groundwater was predicted to move slowly through the treatment gates, which would provide adequate residence time for contaminant treatment.

The funnel and gate system is constructed of Waterloo sheet piling, which has an internal cavity sealable joint. This type of joint reduces the potential for leakage of contaminants through the joints. Early designs (60%) of the funnel and gate system showed two sets of funnel and gates: two gates on an upper funnel and three gates on a lower funnel located adjacent/parallel to the river. Installation was proposed in a phased approach. The upper funnel and gates would be installed and tested for performance. The lower funnel and gates, which had a higher potential to negatively impact the river, would then be installed following verification of the upper funnel and gate performance. This phased approach was not approved by the regulators because contaminants adjacent to the river would continue to be discharged during the test performance period.

The final design of the funnel and gate system changed the lower funnel and gates to a sheet pile containment wall with two sets of funnel/treatment gates to the east. Using this design, the entire system could be installed at one time and the potential for untreated contaminants reaching the river would be reduced. In considering the design change for the final funnel and gate system, it is uncertain if this system was thought to be capable of mobilizing contaminants located in the northwest corner of the sheet pile area toward the eastern gates for treatment. A groundwater model was reportedly developed for the 60% design, but was not available for review during this RSE.

The treatment gates consist of an area backfilled with a mixture of clean sand/soil and line of injection wells. The injection wells were installed at the up-gradient edge of the gate area and were designed to distribute air or other nutrients, as necessary. NAPL collection sumps were installed up-gradient of the gates to prevent potential plugging and/or treatment performance problems.

Treatment at the gates consists of air injection to enhance biodegradation of COCs. Dissolved oxygen concentrations in the gate area have been measured at less than 1 to over 4 mg/L. Well packers were installed at Gate 5 in June 2000 to help direct the air injection; however, no discernable changes in dissolved oxygen levels were observed until 2003. Packers were also proposed at Gates 1 and 2, but could not be properly installed. Nutrients were added at Gate 1 from June 2001 through October 2002 using a solution containing potassium nitrate (KNO₃) and potassium phosphate (KHPO₄). Nutrient augmentation was discontinued due to inconclusive evidence that it was enhancing biodegradation. Air injection has been the only treatment since that time.

3.2 Monitoring Program

Performance monitoring for the funnel and gate system consists of an evaluation of groundwater hydraulics and groundwater chemical analyses. The groundwater monitoring program has been revised several times, most recently in 2006/2007. During this last revision, twenty-two monitoring wells and piezometers across the site that were no longer sampled were abandoned. In addition, two monitoring wells were installed within the northwest area of the sheet pile for the funnel and gate system. Monitoring wells currently sampled as part of the monitoring program are shown in Table 2. All of the wells and piezometers are screened in the shallow groundwater-bearing zone underlying the site (surficial aquifer).

Water level measurements are collected on an annual basis at all monitoring wells and piezometers at the site to evaluate groundwater hydraulics. Chemical analyses are collected annually except at monitoring wells MW-7S, MW-34S, MW-38S, and MW-39S, where samples are collected semi-annually. Piezometers installed in 2002 and the middle performance monitoring well at each gate are not included in the chemical monitoring program. In addition to the on-site monitoring wells listed in Table 2, 11 shallow groundwater monitoring wells (MW-A through MW-K) located along the Little Menomonee River are sampled to monitor groundwater chemical conditions between the old and new river channels.

Analytical parameters collected at each well include benzene, toluene, ethylbenzene, and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), and field parameters: pH, oxidation-reduction potential, dissolved oxygen, specific conductance, temperature, and turbidity. Samples collected at the treatment performance monitoring wells at each gate also are analyzed for microbial enumeration, nitrate-nitrogen (NO₃-N), nitrite-nitrogen (NO₂-N), total Kjeldahl nitrogen (TKN), ammonia-nitrogen (NH₃-N), phosphate-phosphorous (PO₄-P), orthophosphate (ORP), biological oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC).

4.0 SYSTEM PERFORMANCE

4.1 Groundwater Flow

Groundwater elevation data collected since the funnel and gate system was completed in 2000 were reviewed to evaluate flow through the system. Groundwater at the site generally flows from south to north toward the Little Menomonee River. Due to the presence of the sheet pile wall along the north and west portion of the system, groundwater is directed toward the eastern treatment gates.

The groundwater flow evaluation indicates that there are several areas of concern where groundwater may not be hydraulically contained or treated by the gates:

- Groundwater flow maps consistently indicate the presence of a stagnation zone in the northwest corner of the sheet pile area near MW-34S and MW-7S. Groundwater elevation data show that there is only a very slight gradient between these two wells. The boring log for MW-7S indicates the surficial aquifer in this area is composed of low permeable materials (very fine sand and silt), which, coupled with the low gradient, would result in a very low groundwater velocity. The borelog for MW-34S was not available for review.
- Groundwater elevation data at MW-33S and PZ-02 indicate that groundwater may be flowing around the end of the sheet pile wall. A head difference of about 0.5 feet is typically measured between MW-33S and PZ-02. Borelogs for these two wells were not available for review.
- Groundwater elevation data from performance wells at gates 1, 3, and 4 frequently show the gradient is reversed (flowing from down-gradient of the gate toward the up-gradient side). It should be noted that the magnitude of the calculated gradient is very low, so the possibility of measurement error (i.e water levels, top of casing survey) should also be considered.

Two monitoring wells, MW-38S and MW-39S, located near the groundwater stagnation zone, were installed in 2006 to help delineate the remaining dissolved-phase plume in the northwestern portion of the system. These wells were never surveyed and have never been used in the preparation of groundwater flow maps. These wells could be surveyed and used in future construction of groundwater flow maps to help evaluate groundwater flow across the site.

4.2 Groundwater Chemical Concentrations

Contaminants in groundwater are consistently detected above cleanup goals in two areas: 1) in the northwest section of the sheet pile area in the groundwater stagnation zone at monitoring wells MW-7S, MW-33S, MW-34S, and MW-38S, and 2) up-gradient of Gate 1 in TG1-1.

4.2.1 Contaminant Concentrations in Northwest Corner of Site

Trend analyses for the most prevalent contaminants (benzene, naphthalene, fluorene, and benzo(a)pyrene) show that there are decreasing trends or no trends for wells in the northwest corner (Appendix B). Trend testing results confirmed decreasing naphthalene concentrations in MW-7S and MW-38S and decreasing benzene concentrations in MW-7S, indicating that natural attenuation is occurring in these areas. However, these trends cannot be used in a predictive sense, because overall trends indicate that PALs

should have been achieved within the past year or two. Instead, recent sampling results suggest that trends may be asymptotically "bottoming-out."

Measurable NAPL has historically been detected at MW-34S. In 2008, 3.24 inches of NAPL was measured. Since that time measurements have decreased to trace detections, although dissolved-phase concentrations of naphthalene continue to exceed 10,000 μ g/L (September 2009 data). Given high dissolved-phase PAH concentrations and typical inaccuracies with NAPL measurements, it is assumed that some NAPL remains in the vicinity of MW-34S and could be a continued source to the dissolved-phase plume. It should also be noted that the soil excavation completed during the installation of the funnel and gate system only occurred to the southeast of MW-34S and did not extend into the current dissolved-phase plume area (see Groundwater Remedial System drawings, March 1998). Presence of NAPL and the development of a stagnation zone in the funnel and gate system have the potential to greatly extend time to restoration.

Besides the extended time to restoration, there are several potential issues with the remaining dissolvedphase plume. As suggested in the 2010 Five-Year Review, the pattern of water levels near MW-7S/MW-34S could indicate that the sheet pile barrier to the north does not form a sufficiently competent barrier to groundwater flow. Thus, contaminated groundwater could be flowing through joints in the sheet pile wall near MW-34S and discharging to the river. In addition, the flow evaluation indicated that groundwater has been moving around the end of the sheet pile wall near MW-33S. Since there are no chemical samples collected north of the sheet pile wall, contamination migration along this pathway cannot be ruled out.

4.2.2 Contaminant Concentrations Up-gradient of Gate 1

Concentrations of benzene and PAHs in groundwater are typically measured above PALs at up-gradient performance monitoring well TG1-1. Trend tests show concentrations of naphthalene, fluorene, and benzo(a)pyrene have been increasing, indicating a continued source of contamination in this area (Appendix B). NAPL was historically detected in TG1-1 up to 11 inches thick; however, only trace or sheen thickness has been observed since 2003. As with MW-34S, naphthalene concentrations in TG1-1 currently exceed 10,000 μ g/L (September 2009 data), which suggests that a NAPL source persists in the area. Since the extent and magnitude of the remaining contamination in soil and groundwater near Gate 1 is uncertain and contaminant concentrations continue to rise, time to restoration cannot currently be estimated. Most of the monitoring wells used to define the historical extent of the groundwater contamination near Gate 1 have been abandoned. However, there are several piezometers used only for hydraulic monitoring near Gate 1 that could be sampled to help delineate the remaining dissolved-phase plume.

4.3 Treatment Gates

With the exception of Gate 1, contaminant concentrations up-gradient and down-gradient of the treatment gates indicate that much of the historical groundwater contamination has been removed. Several PAHs (benzo(a)pyrene, benzo(f)fluorene, and chrysene) are sporadically detected above PALs in monitoring wells near Gates 3 and 4, however, concentrations are low, just above the cleanup goal of $0.02 \mu g/L$. Even with the potential gradient reversal at Gates 3 and 4, the treatment gates appear to be functioning adequately.

The only gate area with significant remaining contamination is Gate 1. Even though groundwater concentrations are elevated at TG1-1, there are typically no detections of PAHs in the down-gradient performance monitoring well, TG1-3. Oxygen levels measured in Gate 1 are also low, signifying that the injected oxygen is being consumed, and the gate is functioning adequately.

5.0 REMEDY OPTIMIZATION OPTIONS

Previous assessments in annual reports and Five-Year Reviews determined that the existing funnel and gate remedy was having limited success in the northwest corner of the site due to development of a stagnant zone in groundwater. Investigations recommended to ensure effectiveness of the remedy and to inform decisions about ways to improve effectiveness and shorten time to site closeout are discussed below (Section 5.1). Section 5.2 evaluates three options to hasten site closeout through source removal and/or groundwater gradient enhancements.

5.1 Recommendations to Improve Effectiveness

5.1.1 Monitoring Program Modification

The primary areas of concern for the monitoring program are the lack of chemical data outside the sheet pile wall near MW-7S and MW-34S, where there is a possibility that contaminants could be passing through the joints or migrating around the end of the wall, and the extent of remaining contamination near TG1-1. A secondary area of concern is the extent of the dissolved-phase plume in the interior of the funnel and gate system. The following enhancements to the monitoring program are recommended (see Figure 2 for well locations):

- Install two monitoring wells outside the sheet pile wall to the north of MW-34S and to the west of MW-7S to determine if contaminants are migrating through the sheet pile wall.
- Develop and sample piezometer PZ-02 to determine if contaminants are migrating around the end of the sheet pile wall.
- Develop and sample piezometers PZ-07, -09, and -10 to determine the up-gradient extent of remaining contamination near TG1-1.
- Develop and sample piezometer PZ-03 to confirm the extent of the dissolved-phase plume in the interior of the funnel and gate system.
- Survey MW-38S and MW-39S and include water levels from these wells in groundwater flow maps.

Costs for modifying the monitoring program include \$13,100 for the installation and development of two monitoring wells (includes oversight and reporting) and \$5,000 for development of five existing piezometers. Prior to development of the piezometers, their construction should be verified (i.e. depth, well screen interval). Additional costs of about \$5,900 for labor and laboratory analysis would also be accrued during each sampling event. Costing assumptions are described in Table 3. If contaminants are not detected in new monitoring locations after four sampling events, the wells/piezometers could be dropped from the program.

5.1.2 NAPL Investigation

Removal of residual NAPL in areas near MW-34S and TG1-1 would eliminate this continued contaminant source to the dissolved-phase plume and shorten time to site closeout. A localized direct push soil and groundwater investigation could be implemented to spatially delineate residual NAPL contamination in these areas. NAPL is likely not uniformly distributed in site soil, which means absence of NAPL in a particular soil boring would not necessarily preclude NAPL presence in nearby soil. In order to improve NAPL delineation during the investigation, grab groundwater samples could be collected by the direct push rig during completion of soil borings. Groundwater samples with

naphthalene concentrations approaching 9,100 μ g/L¹ would indicate NAPL presence in the vicinity of the soil boring. A schematic of a potential NAPL investigation program is provided on Figure 3. Locations where NAPL presence, soil concentrations or groundwater naphthalene concentrations greater than 9,100 μ g/L were detected would be considered for inclusion in an excavation footprint. This investigation for each area would cost an estimated **\$36,000** based on assumptions described in Table 3.

5.2 Recommendations to Improve Site Closeout

Remedy optimization options were developed primarily to address the elevated COC concentrations in the vicinity of MW-34S and the stagnant groundwater zone that is limiting flow through the treatment gates. Because treatment at Gate 1 is currently effective and the remedy is functioning as intended, future work to shorten time to site closeout in that area is discretionary and of secondary importance to work in the MW-34S area. Consequently, costs for enhancements to the remedy near Gate 1 have not been developed but should be readily scalable from those for the MW-34S area. Implementation of these options would be influenced by the results of investigations discussed in Section 5.1.

Options were evaluated for effectiveness using a simplified numerical groundwater model and by considering implementability, and if applicable, cost (Table 4). It should be noted that a more robust numerical model would likely be needed if the selected remedy optimization includes significant modifications to the groundwater flow system, such as with the installation of a new gate or extraction wells. For those options which were deemed technically ineffective or for which there was insufficient site information, costs have not been developed and are not presented herein.

The groundwater model was designed to simulate groundwater flow only in the vicinity of the funnel and gate system and was calibrated to water level data collected during the 3rd quarter of 2009. Details on the model setup, calibration, and results are presented in Appendix A. The following simplifying assumptions were utilized:

- The flow system is steady state,
- The surficial unit (shallow aquifer zone) is uniformly 15-feet thick,
- The topographically higher, western portion of the site has a lower hydraulic conductivity than the topographically lower portion within the funnel and gate system, and
- The sheet pile barrier has a bulk hydraulic conductivity of 1×10^{-7} cm/s.

5.2.1 NAPL-Impacted Soil Excavation and Enhanced Dissolved-Phase Treatment

Locations identified during the NAPL investigation where NAPL presence, soil concentrations or groundwater naphthalene concentrations representing a significant percentage of the solubility level were detected could be considered for inclusion in an excavation footprint. We have assumed that an area centered around MW-34S extending 50 ft from the wall and 75 ft along the wall would be included in the excavation footprint (Figure 3). Excavation costs near TG1-1 are not included but could be scaled from MW-34S, depending on the results of field investigations. Based on current data, it is believed that excavation near TG1-1 would be less extensive than near MW-34S and costs proportionally lower.

¹ Estimated effective naphthalene groundwater water solubility in presence of NAPL calculated assuming a typical creosote composition; calculations are included in Appendix C for reference.

Available boring logs² for nearby wells MW-7S and MW-39S indicate that depth to the confining clay layer is 10-12 feet bgs. An average depth of 15 feet has been assumed for the thickness of the surficial unit in the numerical groundwater model, so this excavation depth was assumed as well. A lined staging and dewatering area for excavated soil could be prepared near the excavation pit and could be sloped to allow dewatering water to collect in the excavation pit. A sump could be included to capture any product seeping from the dewatering water. Groundwater could be allowed to accumulate in the excavation pit, the bottom of which could be sloped to function as a sump as well. Any accumulated product in the excavation could be removed by pumping. Excavation, materials, handling and associated activities would cost an estimated **\$202,000** based on assumptions described in Table 3.

Although the final depth of sheet pile wall installation into the clay layer is not known, preliminary design documents indicate a target final depth of 3 ft below the clay layer surface, i.e. a final sheet pile wall depth of ~ 18 ft bgs. Because the sheet pile wall will function as a retaining wall during excavation, and the engineering rule for minimum wall depth is 2x the excavation height, the wall section adjacent to the excavation area will need to be improved to safely meet depth requirements. Assuming a 15 ft excavation, the required improved sheet pile wall depth in this area would be 50 ft bgs. Materials and installation for the improved 50 ft x 75 ft section of sheet pile wall would cost an estimated **\$94,000** based on assumptions described in Table 3.

Oxygen Releasing Compound Advanced (ORC Advanced[®]) could be incorporated into the excavation backfill to enhance biodegradation of dissolved-phase contaminants in both the excavation and groundwater. Because molecular oxygen would subsequently diffuse into groundwater surrounding the ORC Advanced[®] amended backfilled area, biodegradation of dissolved-phase contaminants would be enhanced in surrounding groundwater as well. The groundwater model also showed that there would be some localized groundwater flow into the ORC backfilled area (Figure A-4).

ORC Advanced® is a proprietary formulation of food-grade, calcium oxy-hydroxide that produces a controlled release of molecular oxygen for a period of up to 12 months upon hydration by groundwater³ and has been demonstrated to enhance treatment of PAHs⁴ and benzene⁵ in groundwater. The recommended application rate for ORC Advanced® is 0.1-0.3 percent by weight of excavated soil. Approximately 5.2 tons of ORC Advanced® would be required for an excavated soil mass of 2,600 tons⁶, which would cost an estimated **\$86,000** based on assumptions described in Table 3.

Total cost for this option, assuming excavation only in the MW-34S area, would be approximately **\$381,000**. In addition, limited design work not included in this estimate may be necessary for sheet pile shoring and excavation.

³ Information for ORC Advanced is available online: http://www.regenesis.com/contaminated-site-remediationproducts/enhanced-aerobic-bioremediation/orc-advanced/

² The MW-34S boring log was not available during our analysis.

⁴ Koenigsberg, S. and Sandefur C. The Use of Oxygen Release Compound for the Accelerated Bioremediation of Aerobically Degradable Contaminants: The Advent of Time-Release Electron Acceptors. (1999, Winter) *Remediation.* 6(4), 3-29.

⁵ Bianchi-Mosquera, G. C., Allen-King, R. M., Mackay, D. M. Enhanced Degradation of Dissolved Benzene and Toluene Using a Solid Oxygen-Releasing Compound. (1994, Winter). *GWMR* X(X), 120-128.

⁶ Assumes excavation volume of 2083 cy and bulk density of 1.26 ton/cy.

Despite evidence for decreasing trends in some wells, groundwater in the vicinity of NAPL-impacted wells MW-34S and TG1 will likely not attenuate within a reasonable timeframe. Targeted NAPL removal in these areas followed by addition of ORC Advanced[®] would enhance dissolved-phase attenuation in the TG1 and MW-34S areas and decrease restoration timeframes in nearby wells MW-7S and MW-38S as well.

5.2.2 Limited NAPL-Impacted Soil Removal and Installation of Additional Gate in NW Corner The installation of a new treatment gate with air injection system in the northwest corner of the sheet pile, similar to the original design concept, could also be adopted. A new gate would increase the hydraulic gradient in the NW corner and eliminate the stagnation zone and the potential for groundwater to flow around the end of the sheet pile, as well as provide long-term treatment for any remaining dissolved-phase contaminants. Excavation of NAPL-containing soils near MW-34S could be conducted in conjunction with the installation of the gate system, thereby potentially eliminating the need for structural sheet pile during excavation as discussed in Section 5.2.1.

Two gate scenarios were evaluated: one installed to the north of MW-34S and one installed to the west of MW-7S. Both scenarios include limited excavation of NAPL-containing soil near MW-34S that is easily accessible without requiring reinforcement of the sheet pile wall. The groundwater model shows that if a new gate is installed to the north of MW-34S, the majority of groundwater flow from the upper treatment gates (Gate 1 and 2) would be directed toward the new gate (Figure A-8), eliminating the stagnation zone. Potential issues with installation of this gate include the proximity to the river, slope stability issues and a limited buffer zone between the treatment gate and the river. Concern about contaminant discharge to the river from the treatment gate should be alleviated by performance data from existing gates. Engineering complications associated with proximity of the river would have to be resolved during design.

A new gate to the west of MW-7S could also induce groundwater flow in the area of the stagnant dissolved-phase plume. The groundwater model shows that groundwater from Gates 1 and 2 would continue to flow toward the eastern treatment gates and groundwater within the dissolved-phase plume would flow toward the new gate near MW-7S. Costs for either gate scenario would total approximately **\$979,000**. These costs do not include additional modeling or design work that may be necessary, especially if proximity to the river requires special design considerations.

It should be noted that a gate near NW-34S is preferred over one near MW-7S for hydraulic reasons, because it does a better job of improving flow through the stagnant zone. However, risk management and design considerations may make a gate near MW-7S preferable.

5.2.3 Groundwater Flow Modification to Enhance Treatment of Existing Funnel & Gate System Groundwater flow modifications using the existing funnel and gate configuration could be implemented to induce a hydraulic gradient across the site and eliminate the zone of stagnation in the northwest corner. Excavation of NAPL-containing soils around MW-34S could also be conducted in conjunction with the flow modifications as described in Section 5.2.1.

Two model scenarios were evaluated: 1) installation of extraction wells down-gradient of Gates 5 and 6 and 2) installation of a large scale re-circulation cell that includes an injection well near MW-7S and an extraction well down-gradient of Gate 5. The groundwater model shows that even with extraction wells, the groundwater stagnation area may still exist (Figure A-6). The extraction wells induce a slight gradient

across the site as there is a reduction in flow around the end of the sheet pile near MW-33S. Due to the low permeability soils, groundwater extraction rates were predicted to be less than 1 gpm. Since the gradient across the site would still be very low, it could take over 30 years for contaminated groundwater near the stagnation zone to reach the eastern treatment gates.

The groundwater model shows that with a large scale re-circulation cell groundwater within the stagnation zone would flow toward the eastern treatment gates; however, there could be increased flow around the end of the sheet pile near MW-33S due to mounding effects (Figure A-7). Again, the low permeability materials would limit the extraction/injection rates. When compared to the extraction well scenario, the gradient across the site is increased, but it could still take over 20 years for contaminated groundwater near the stagnation zone to reach the eastern treatment gates. In addition, such flow modification would encourage contaminated groundwater flow into areas that currently contain low-level contamination, thereby potentially increasing the volume of groundwater contaminated above cleanup levels at the site.

Planting poplar trees by the final gate pairs has also been proposed in lieu of extraction wells to induce a gradient across the site. In addition to the low gradient issues stated above, poplar trees would only have a seasonal influence on the water levels at the site. Also rejected as ineffective was extension of the sheet pile wall near MW-33S. Preliminary modeling showed no improvements to flow in the stagnant zone. Due to problems associated with persistence of the stagnation zone, sheet pile wall bypassing due to groundwater mounding, and excessive transport times to reach treatment gates, manipulations to hydraulic gradients (in the context of the existing funnel & gate system) are of questionable effectiveness. Costs were not developed for these scenarios due to perceived ineffectiveness at achieving desired results.

6.0 SUMMARY

The observations and recommendations contained in this report are not intended to imply a deficiency in the work of either the designers or operators, but are offered as constructive suggestions to fill data gaps and optimize remedy performance. These recommendations obviously have the benefit of operational data unavailable to the original designers. The RSE process is designed to help site operators and managers improve effectiveness, reduce operation cost, improve technical operation, and expedite site closeout.

Improvements to site characterization and the groundwater monitoring program were recommended in order to evaluate effectiveness and protectiveness of the system as installed and better understand subsurface conditions in advance of remedy alterations. At a minimum it is recommended that the limited monitoring program adjustments and subsurface characterization activities discussed in Sections 5.1.1 and 5.1.2 be seriously considered. These recommendations include:

- Installation of two monitoring wells outside the sheet pile wall to determine if contaminants are migrating through the wall [addresses effectiveness of the wall and evaluates protectiveness for receptors in the river]
- Conversion of PZ-02 (by developing and sampling) to a monitoring well to determine if contaminants are migrating around the end of the wall [addresses effectiveness of the wall and evaluates protectiveness for receptors in the river]
- Conversion of several piezometers (PZ-03, -07, -09, and -10) to monitoring wells to better understand residual source and dissolved-phase contaminant extent [feeds into design for system modifications leading to quicker site closeout]
- Direct push soil and groundwater investigation in the stagnant zone to delineate persistent source area [feeds into design for system modifications leading to quicker site closeout]

In addition, the following options were evaluated with the goal of improving system performance and shortening time to achievement of cleanup objectives:

- NAPL-impacted soil excavation and enhanced dissolved-phase treatment
- Limited NAPL-impacted soil removal and installation of additional gate in NW corner
- Groundwater flow modification to enhance treatment of existing funnel & gate system

Of these, the first two have the greatest potential to improve treatment efficiency and shorten time to achievement of cleanup objectives. However, the second option, which is most similar to the original design, has the potential to discharge contaminants above PALs to the Little Menomonee River. This potential is considered unlikely given a considerable record of successful treatment in the existing gates at the site. The third option was found to be ineffective or of limited benefit because of the difficulty associated with enhancing the hydraulic gradient in the low permeability soils and protracted times to site closeout.

Results from field investigations could determine the most cost-effective option for improving system performance. If minimal amounts of NAPL are encountered, the assumed need for sheet pile wall improvement and volume of soil excavation and ORC Advanced[®] quantities required may be reduced thereby resulting in a lower estimated cost. Likewise, institution of the original design concept of a

treatment gate in the NW corner may be sufficient to flush and treat remaining dissolved-phase contaminants. If significant quantities of NAPL are found, more aggressive excavation, followed by amending the backfilled area with ORC Advanced®, may be more suitable to achieving site cleanup goals in a reasonable timeframe. A determination may have to be made whether the latter option requires an additional decision document.

TABLES AND FIGURES

Table 1. Groundwater Cleanup Goals

Constituent	PAL (µg/L)
Anthracene	600
Benzo(a)pyrene	0.02
Benzo(b)fluoranthene	0.02
Chrysene	0.02
Fluoranthene	80
Fluorene	80
Naphthalene	8
Pyrene	50
Benzene	0.5
Toluene	68.6
Ethylbenzene	140
Xylene	124

Notes:

PAL – Wisconsin Department of Natural Resources (WDNR) Preventative Action Level, Ch. NR 140, Wis. Adm. Code μg/L – microgram per liter

	Monitoring	Screened Interval	Analytical	Water Level
Well ID	Purpose	(feet bgs)	Sampling	Measurements
MW-7S	Containment	10-15	Semi-Annual	Semi-Annual
MW-34S	Containment	*	Semi-Annual	Semi-Annual
MW-38S	Containment	10-15	Semi-Annual	Semi-Annual
MW-398	Containment	10-15	Semi-Annual	Semi-Annual
MW-5S	Containment	12-17	Annual	Annual
MW-9S	Containment	8-13	Annual	Annual
MW-27S	Containment	*	Annual	Annual
MW-30S	Containment	*	Annual	Annual
MW-31S	Containment	*	Annual	Annual
MW-32S	Containment	*	Annual	Annual
MW-33S	Containment	*	Annual	Annual
MW-34S	Containment	*	Annual	Annual
MW-37S	Containment	*	Annual	Annual
MW-38S	Containment	*	Annual	Annual
MW-39S	Containment	*	Annual	Annual
TG1-1	Treatment	*	Annual	Annual
TG1-2	Treatment	*		Annual
TG1-3	Treatment	*	Annual	Annual
TG2-1	Treatment	*	Annual	Annual
TG2-2	Treatment	.*		Annual
TG2-3	Treatment	*	Annual	Annual
TG3-1	Treatment	*	Annual	Annual
TG3-2	Treatment	*		Annual
TG3-3	Treatment	*	Annual	Annual
TG4-1	Treatment	. * .	Annual	Annual
TG4-2	Treatment	*	7 1111020	Annual
TG4-3	Treatment	*	Annual	Annual
TG5-1	Treatment	*	Annual	Annual
TG5-2	Treatment	*	7101000	Annual
TG5-3	Treatment	*	Annual	Annual
TG6-1	Treatment	*	Annual	Annual
TG6-2	Treatment	*		Annual
TG6-3	Treatment	· + · · ·	Annual	Annual
PZ-01	Piezometer	*		Annual
PZ-02	Piezometer	* ·		Annual
PŹ-03	Piezometer	*		Annual
PZ-04	Piezometer	*		Annual
PZ-05	Piezometer	*		Annual
PZ-06	Piezometer	*		Annual
PZ-07	Piezometer	*		Annual
PZ-09	Piezometer	*		Annual
PZ-10	Piezometer	*		Annual

Table 2. Monitoring Program

Table 2 Notes:

Piezometer - Additional water level measurements locations to verify hydraulic containment Containment - Shallow and Containment Performance Monitoring Wells Treatment – Treatment Performance Monitoring Wells

Annual – Sampled during 3rd Quarter (September) Semi-Annual – Sampled during 1st and 3rd Quarter (March and September)

-- Not sampled

* Well construction details not available, proposed construction included a 5-foot screen interval and total depth of 10-12 feet bgs.

21

Contraction of the second

Recommendation	Effectiveness	Implementability	Cost
5.1.1 Monitoring program modification	Evaluates effectiveness of remedy to gain site closure.	Easily implemented by installing two new wells and using existing piezometers.	\$22K
5.1.2 NAPL investigation	Evaluates the extent of residual NAPL. Reduces uncertainty in the required excavation extent to gain site closeout.	Easily implemented using direct- push technology.	\$72K
5.2.1 NAPL-impacted soil excavation and enhanced dissolved-phase treatment (MW-34S area only)	Removal of residual NAPL would eliminate the continued source to the dissolved-phase plume and shorten the time to site closeout. ORC will enhance bioremediation in the vicinity of the excavation.	Moderate effort to improve sheet pile wall near MW-34S prior to excavation. ORC Advanced can easily be incorporated into excavation backfill.	\$381K
5.2.2a Limited NAPL-impacted soil removal and installation of additional gate in NW corner	Limited removal of residual NAPL would eliminate a continued source to the dissolved-phase plume and shorten the time to site closeout. The treatment gate near the excavation would eliminate the groundwater zone of stagnation and provide long-term treatment of any remaining dissolved- phase contaminants. More hydraulically effective than a gate near MW-7S.	Moderate effort to remove sheet pile wall, excavate residual NAPL, install gate near MW-34S and install air injection system. State no longer has concerns with a treatment gate close to the river. Proximity to river may make this more complicated than a gate near MW-7S.	\$979K
5.2.2b Limited NAPL-impacted soil removal and installation of additional gate west of MW-7S	Limited removal of easily accessible residual NAPL would eliminate a continued source to the dissolved- phase plume and shorten time to site closeout. A treatment gate to the west of MW-7S would eliminate the groundwater zone of stagnation and provide long-term treatment of any remaining dissolved-phase contaminants. Less hydraulically effective than gate near MW-34S.	Moderate effort to remove sheet pile wall, excavate residual NAPL, install new gate near MW-7S and install air injection system. The State no longer has concerns with a treatment gate close to the river. Possibly easier to implement than a gate near MW-34S.	\$979K

Table 4. Remedy Optimization Options Evaluation Summary

Note: Table 3 of this report omitted due to confidential business information (CBI) content

Recommendation	Effectiveness	Implementability	Cost
5.2.3a Groundwater flow modification to enhance treatment of existing funnel & gate system – install extraction wells	Installation of extraction wells down- gradient of Gates 5 & 6 would only induce a slight hydraulic gradient across the site; thus it would take years for contaminants to reach the treatment gates. Deemed ineffective.	Moderate effort to install extraction wells and treat groundwater prior to discharge. Long-term treatment of remaining dissolved-phase contaminants may not be necessary if source removed.	Not costed, ineffective
5.2.3b Groundwater flow modification to enhance treatment of existing funnel & gate system – large scale re- circulation cell	The re-circulation cell would induce flow in the groundwater zone of stagnation, however, there could be increased flow around the end of the sheet pile. Flow modification would encourage contaminated groundwater to migrate into areas that currently contain low-level contamination. Deemed ineffective.	Moderate effort to install extraction/injection wells and piping. Long-term treatment of remaining dissolved-phase contaminants may not be necessary if source removed.	Not costed, ineffective.

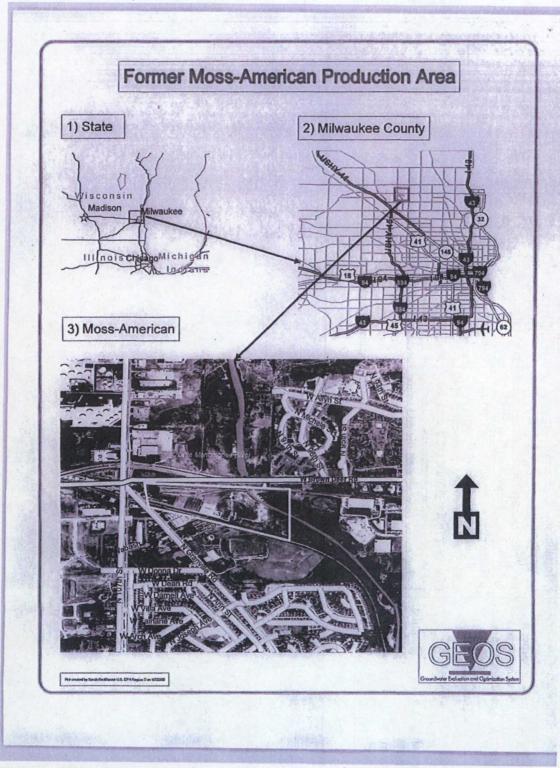


Figure 1. Site Location

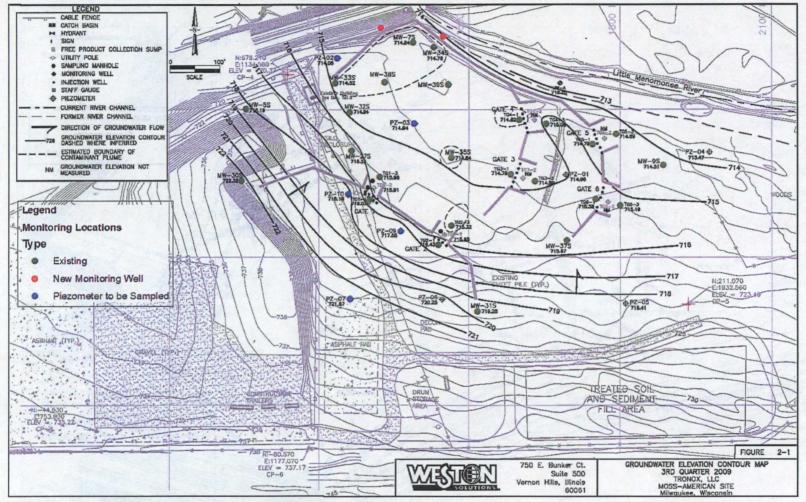


Figure 2. Proposed Additional Monitoring Locations for Chemical Analysis

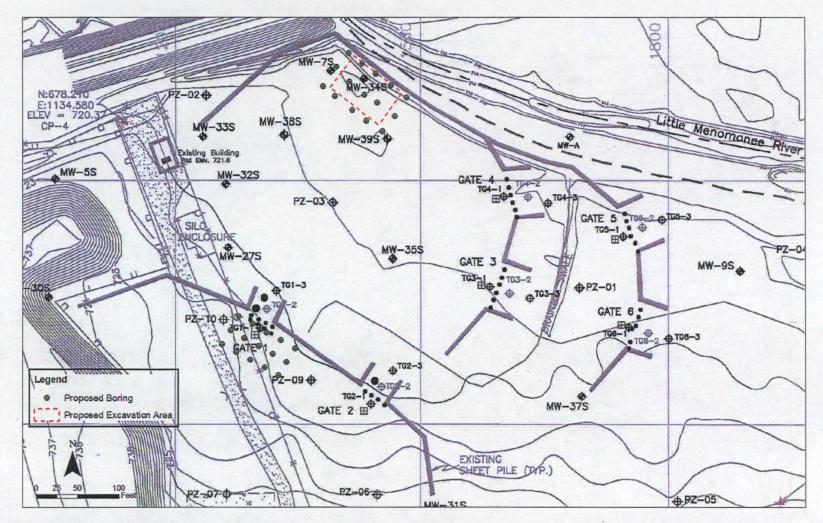


Figure 3. Potential NAPL Investigation Program

Appendix A Groundwater Modeling Documentation

1. Computer Code

MODFLOW-2000 (Harbaugh et al., 2000) was utilized for the groundwater flow model. The Department of Defense Groundwater Modeling System (GMS) version 7.1 (EMRL, 2005) was used as the software platform and graphical-user interface for the groundwater flow model.

MODFLOW has a modular structure that allows it to be easily modified to simulate different aspects of the project. The model must use one flow and one solver package available. Those utilized for the Moss American model are:

- Layer Property Flow Package This package defines how hydraulic properties of the model layers are defined, read, and utilized during the simulation. It differs from other flow packages in that all input data that define hydraulic properties are independent of model cell dimensions.
- Pre-conditioned Conjugate Gradient Solver Package This package contains the information that defines the simultaneous equations that must be solved at each cell. Convergence information is output with this package if the solver fails to meet closure criteria.

Boundary condition packages are optional packages used to simulate various site-specific features of the project. The boundary condition packages utilized for the Moss American model are:

- Horizontal Flow Barrier (HFB) This package is used to simulate the effects of the sheet pile walls, slurry trenches, or other objects which act as a barrier (or partial barrier) to horizontal flow.
- Well This package is used to simulate injection wells or extraction wells.

2. Groundwater Model Design

Due to the limited site information, a simplified model was developed to screen groundwater flow modification alternatives at the Moss American site.

2.1. Domain and Grid

The model domain includes the area surrounding the funnel and gate system from just up-gradient of the southern-most gate system to the river. The simplified model consists of one layer with a uniform cell size of 10 feet horizontal and 15 feet thick and is shown in Figure A-1. The top elevation of each cell was interpolated from survey data of existing wells. It was assumed that the model lower boundary (top of the confining till unit) was uniformly 15 feet below ground surface (bgs).

2.2. Boundaries

Numerical models require boundary conditions, such that the hydraulic head or groundwater flux must be specified along all the outer edges of the system and any internal cells to which conditional head values must be determined (i.e., extraction well cells, drain cells). The boundary conditions used for the Moss American model include:

• A specified head boundary was used to represent the river elevation at the north-eastern boundary.

- A specified head boundary was used to simulate groundwater flow from upgradient of the model domain. Due to the limited site information, recharge was accounted for in the upgradient specified head instead of using the recharge package.
- Groundwater flows from the south to the north toward the river; therefore the north-western and south-eastern boundaries were specified as no flow.

2.3. Material Properties

Hydrologic properties were assigned to individual grid cells based on average properties referenced in the quarterly/annual groundwater monitoring reports. Based on slug tests completed during the remedial investigation (RI), the hydraulic conductivity of material location on the topographically higher, western portion of the site ranged from 0.03 to 0.003 ft/d. Based on the laboratory-performed hydraulic conductivity analyses conducted on material used to backfill areas of the site located along the river, the hydraulic conductivity of the material on the topographically lower portion of the site within the funnel and gate system is approximately 3 ft/d.

According to design documents, the funnel and gate system was constructed using internal cavity sealable joint sheet piles. Bulk hydraulic conductivity values for Waterloo Barriers, which have a sealable joint, have been reported at less than 1×10^{-8} cm/s. A conservative estimate for the hydraulic conductivity of 1×10^{-7} cm/s (0.00028 ft/d) was used to represent the sheet pile at the Moss American site.

2.4. Calibration

The purpose of model calibration is to establish that the model can reproduce field-measured hydraulic heads and flows. During the calibration process, model input parameters are adjusted so that field-measured heads and flows are reasonably correlated and are considered to provide a good representation of actual site conditions.

The Moss American groundwater model was calibrated to water levels collected during the 3rd quarter of 2009. Hydraulic conductivity values were varied until modeled water levels provided a reasonable match to the observed values and the residuals of the modeled versus observed heads were minimized. All water level values were weighted equally. Table A-1 presents the residual calibration statistics and Figure A-2 shows the graphical representation.

Table A-1. Residual Calibration Statistics

Mean Residual (Head)	-0.076
Mean Absolute Residual (Head)	0.611
Root Mean Squared Residual (Head)	0.715
Mean Weighted Residual (Head+Flow)	-0.149
Mean Absolute Weighted Residual (Head+Flow)	1.20
Root Mean Squared Weighted Residual	1.40
(Head+Flow)	
Sum of Squared Weighted Residual (Head+Flow)	62.8

The final hydraulic conductivity values used for the model are shown on Figure A-1 and were:

- South/Western area 0.2 and 0.5 ft/d
- Funnel and gate area 3.0 ft/d

3. Predictive Simulations

The calibrated model was used to evaluate modifications to the funnel and gate system that could improve groundwater flow in the north-west section near monitoring wells MW-7S and MW-34S. MODPATH was used to depict the flow paths of fictitious contaminant particles for each scenario, which are shown in green on the Figures A-3 through A-9. Arrows along the flow paths were placed every 10-years to represent the relative time-frame for contaminant migration. It should be noted that since the model was run at steady state, particles are shown to eventually pass through the sheet pile walls if the groundwater does not flow toward the treatment gates.

3.1. Current Conditions

Figure A-3 shows the groundwater elevation contours for the current funnel and gate configuration. The model shows that there is a stagnation point area near MW-7S and MW-34S as indicated by the slow particles moving through the sheet pile wall and that groundwater near MW-33S may be moving around the end of the sheet pile wall. Particles generated at Gate 1 are shown to migrate toward the eastern gates / indicating that this part of the flow system is functioning as intended.

3.2. Excavation at MW-34S

Figure A-4 shows the groundwater elevation contours for the Excavation at MW-34S scenario. This scenario includes excavation of NAPL containing soils around MW-34S (shown in red on Figure A-4) and backfill with sand and ORC. The model shows that there will still be a stagnation area near MW-7S and MW-34S, however, the presence of the higher permeability backfill material may induce localized flow toward the treated excavation area. This scenario does not impact the potential groundwater moving around the end of the sheet pile near MW-33S.

3.3. Small Scale Re-Circulation Cell, Excavation at MW-34S

Figure A-5 shows the groundwater elevation contours for the small scale re-circulation cell and excavation at MW-34S. This scenario includes excavation of NAPL containing soils around MW-34S (shown in red on Figure A-5) and backfill with sand and ORC. In addition, a small re-circulation cell would be installed in the north east portion of the system to help distribute ORC to the dissolved phase plume. An extraction well would be installed near MW-34S and an injection well would be installed near MW-34S. Due to the low permeability soils near this area, pumping/injection would be very low (0.5 gpm). The model shows that this type of circulation cell could adequately distribute ORC throughout the remaining dissolved phase plume, however, there will likely be some groundwater mounding near MW-33S that could increase the amount of flow around the end of the sheetpile wall. Additional costs may include treatment of contaminated groundwater prior to re-injection.

3.4. Groundwater Extraction near Gate 5 and 6, Excavation at MW-34S

Figure A-6 shows the groundwater elevation contours for groundwater extraction near Gates 5 and 6 and excavation at MW-34S. This scenario includes excavation of NAPL containing soils around MW-34S (shown in red on Figure A-6) and backfill with sand and ORC. Two groundwater extraction wells would be installed east of Gates 5 and 6. Due to the low permeability materials, groundwater extraction rates would only be about 0.75 gpm near Gate 5 and 0.25 near Gate 6. The model shows that the groundwater stagnation area near MW-7S and MW-34S still exists, however, flow no longer goes around the end of the sheet pile near MW-33S and groundwater near MW-38S will eventually reach the eastern treatment gates. Since the gradient is very low, it may still take over 30 years for the contaminated groundwater to reach the eastern treatment gates.

3.5. Large Scale Re-Circulation Cell, Excavation at MW-34S

Figure A-7 shows the groundwater elevation contours for the large scale re-circulation cell and excavation at MW-34S. This scenario includes excavation of NAPL containing soils around MW-34S (shown in red on Figure A-7) and backfill with sand and ORC. One extraction well would be installed near Gate 5 and one injection well would be installed near MW-7S to induce flow across the system. Due to the low permeability materials, groundwater extraction/injection rates would be very low (0.25 gpm). The model shows that groundwater near MW-7S and MW-34S would flow toward the eastern treatment gates. Groundwater mounding near MW-33S could increase the amount of flow around the end of the sheet pile wall.

3.6. New Gate North of MW-34S, Excavation at MW-34S

Figure A-8 shows the groundwater elevation contours for a new gate north of MW-34S and excavation at MW-34S. This scenario includes excavation of NAPL containing soils around MW-34S (shown in red on Figure A-8) and backfill with sand and ORC. A new gate with air injection treatment would be installed to the north of MW-34S. The model shows that flow is induced toward the gate from the up-gradient treatment gates, near the area of stagnation at MW-7S, and near MW-33S where groundwater is potentially migrating around the end of the sheet pile.

3.7. New Gate West of MW-7S, Excavation at MW-34S

Figure A-9 shows the groundwater elevation contours for a new gate west of MW-7S and excavation at MW-34S. This scenario includes excavation of NAPL containing soils around MW-34S (shown in red on Figure A-9) and backfill with sand and ORC. A new gate with air injection treatment would be installed to the west of MW-7S. The model shows that flow is induced toward the gate from the area of stagnation and near MW-33S where groundwater is potentially migration around the end of the sheet pile. This new gate configuration shows that groundwater flow from the up-gradient Gates 1 and 2 still flows toward the eastern gates.

4. References

Environmental Modeling Research Laboratory (EMRL), 2005. Groundwater Modeling System (GMS) version 6.5. Brigham Young University, Provo, UT. 2005.

Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000. MODFLOW-2000, the US Geological Survey modular ground-water model – User guide to modularization concepts and the ground-water flow process; USGS Open File Report 00-92, 121 p. 2000.

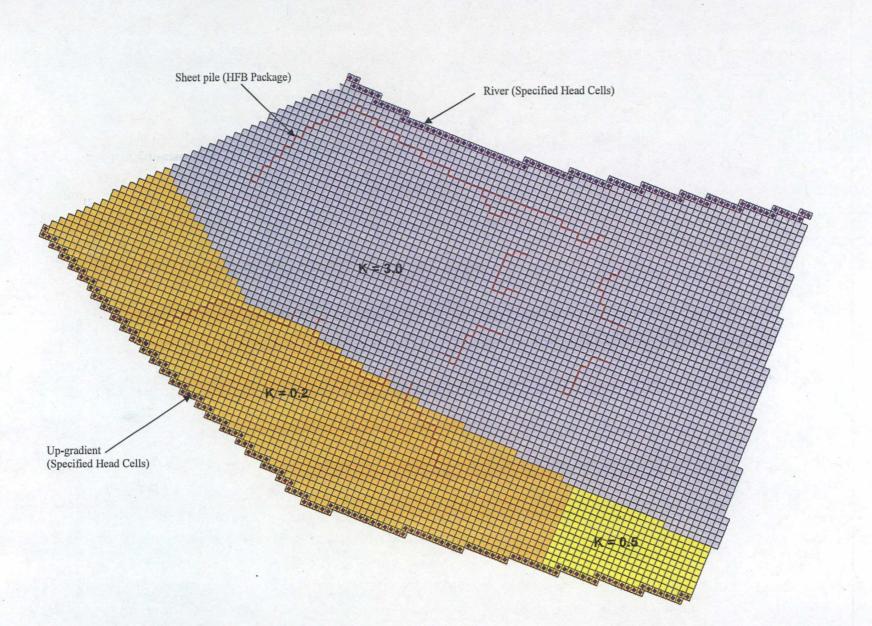


Figure A-1. Model grid and hydraulic conductivity zones.

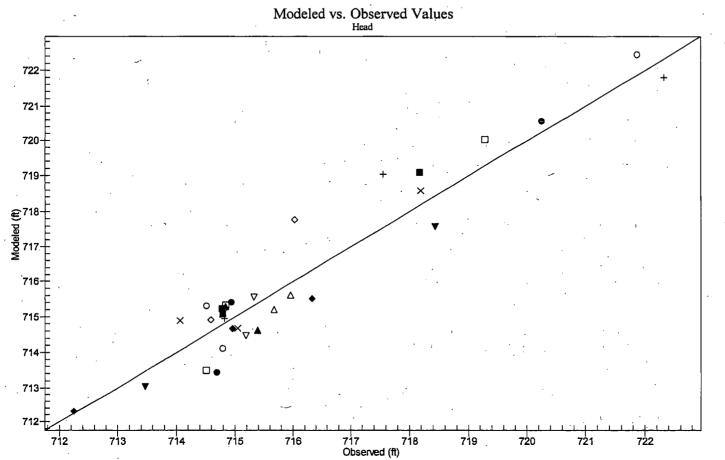


Figure A-2. Modeled versus observed heads.

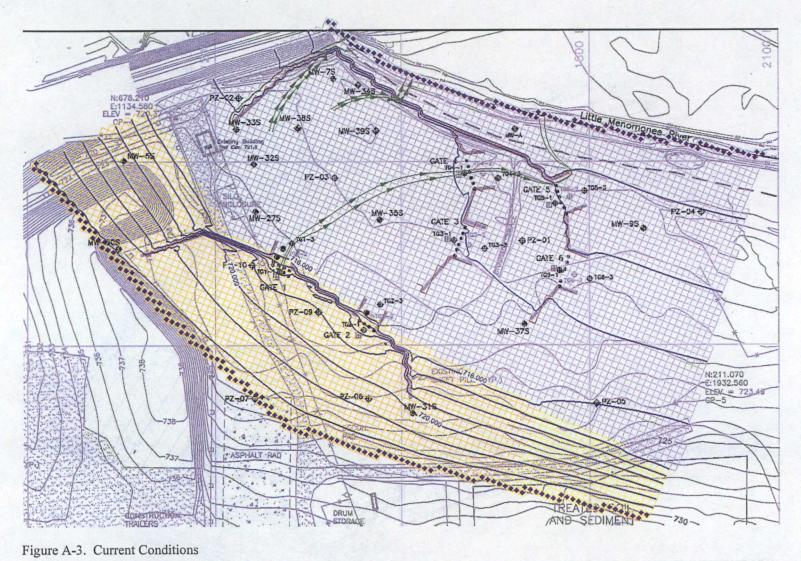


Figure A-3. Current Conditions

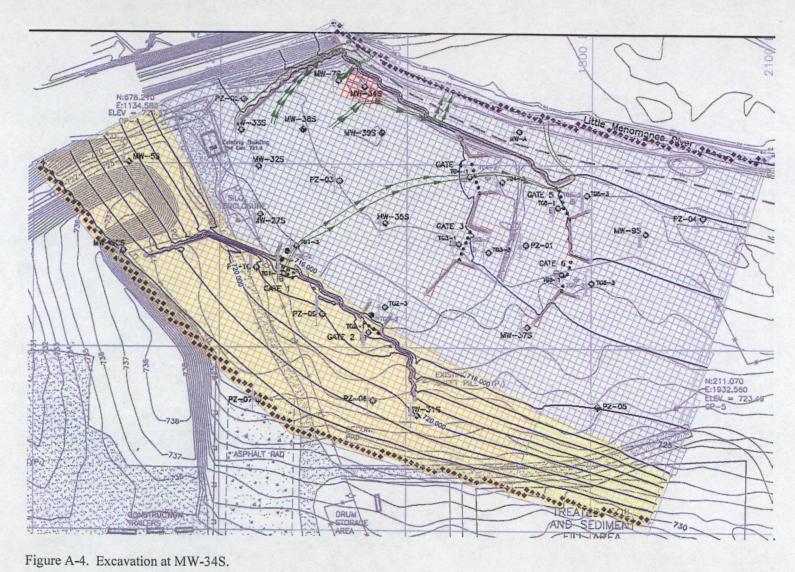


Figure A-4. Excavation at MW-34S.

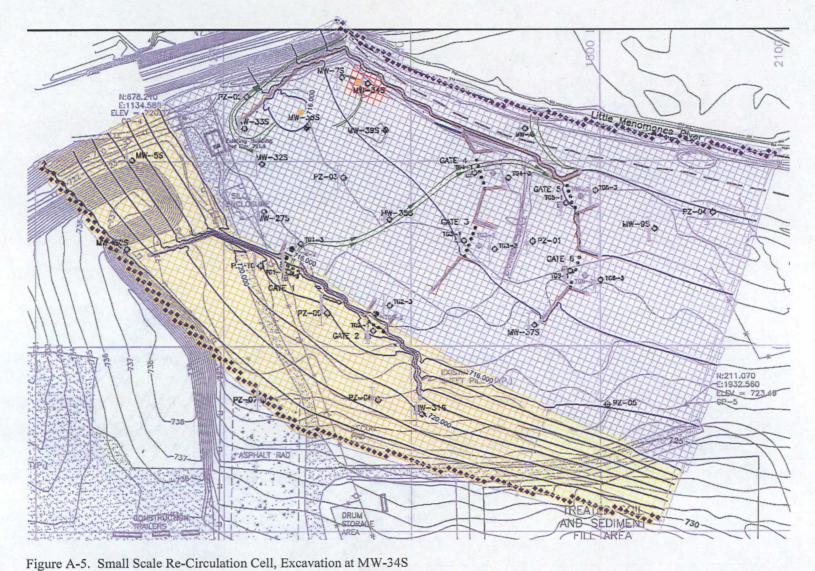


Figure A-5. Small Scale Re-Circulation Cell, Excavation at MW-34S

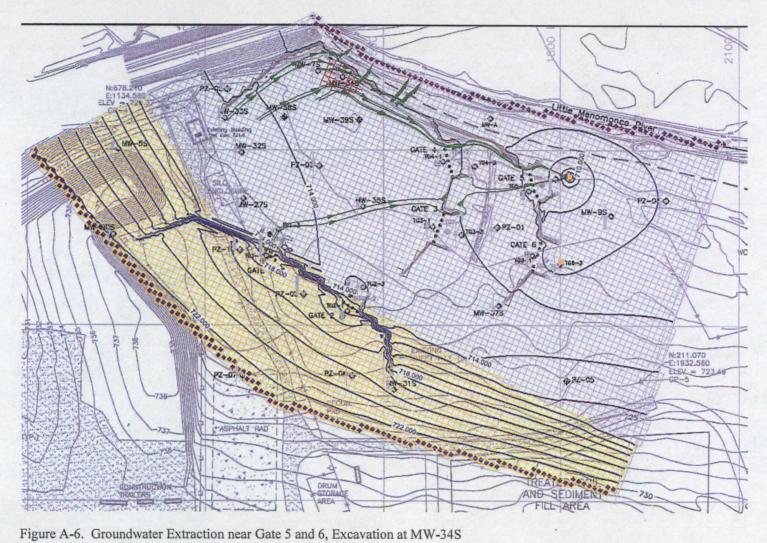


Figure A-6. Groundwater Extraction near Gate 5 and 6, Excavation at MW-34S

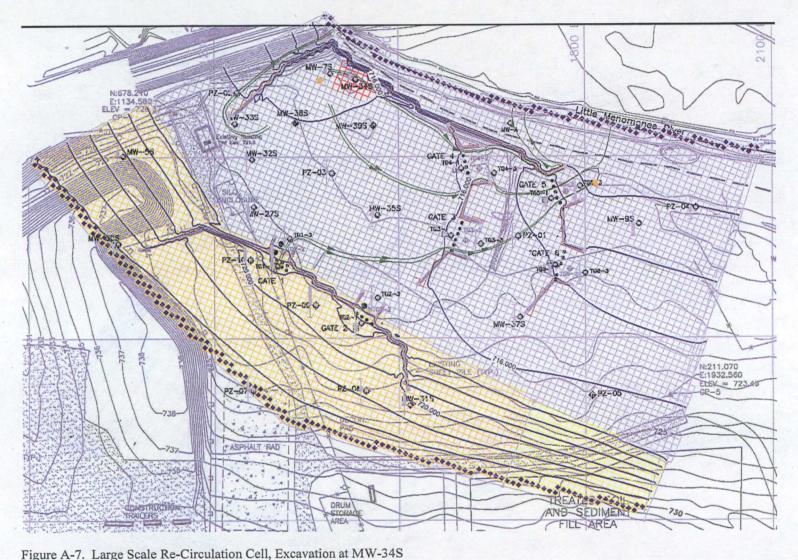


Figure A-7. Large Scale Re-Circulation Cell, Excavation at MW-34S

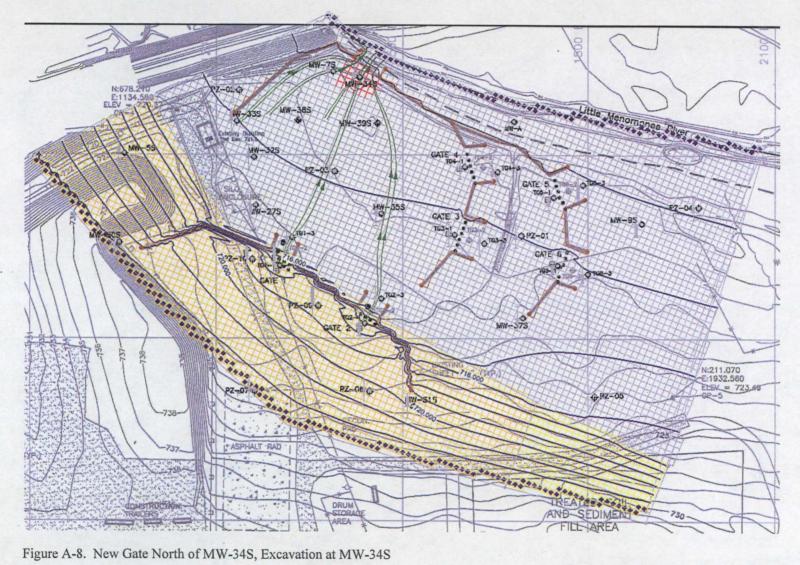
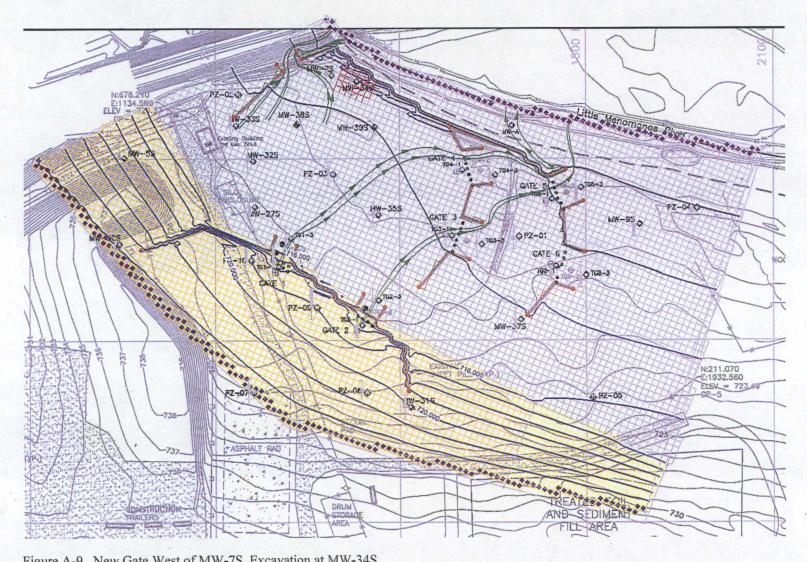
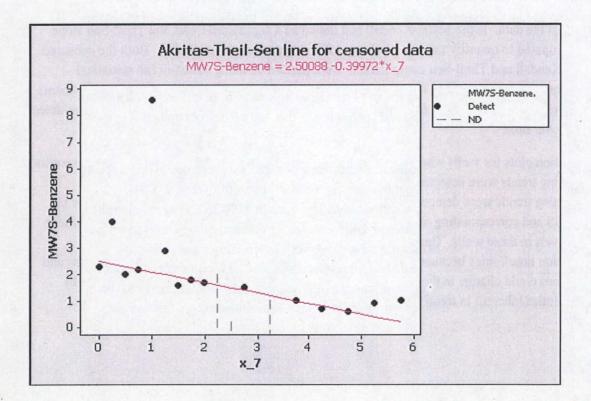


Figure A-8. New Gate North of MW-34S, Excavation at MW-34S




Figure A-9. New Gate West of MW-7S, Excavation at MW-34S

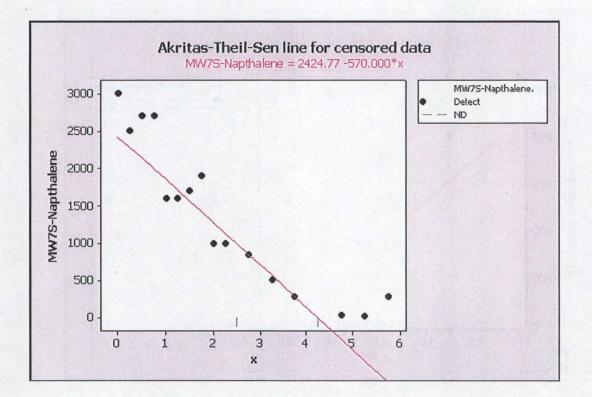
Appendix B

Trend Testing Methods.

Trend presence was determined at the 5% significance level using the censored Mann-Kendall trend test, which is a non-parametric procedure that accommodates datasets with non-detects. The censored Mann-Kendall test looks for trends in rankings of the data, rather than in absolute values of the data. If the Mann-Kendall test indicated a significant trend, the Theil-Sen slope was computed to quantify the rate of change of concentrations in each well. Both the censored Mann-Kendall and Theil-Sen computations were performed using the MiniTab statistical software program using MiniTab scripts from Helsel 2005a (available from PracticalStats.com). Trend testing was completed for wells and contaminants that had sufficient number of non-detect values over time.

Regression plots for wells where significant trends were detected are presented in this Appendix. Increasing trends were detected for naphthalene, fluorene and benzo(a)pyrene in TG1-1. Decreasing trends were detected for naphthalene and benzene in MW-7S and naphthalene in MW-38S and corresponding regression equations were used to estimate timeframes to achieve PAL levels in these wells. Caution should be applied when interpreting these predicted restoration timeframes because (a) trend testing results are based on current site conditions and ' conditions could change in the future resulting in a different restoration timeframes and (b) uncertainties inherent in trend testing translates into uncertainties in predicted timeframes. **Trend Testing Results.**

Predicted Time to PALs: Benzene in MW-7S


y = 2.500 - 0.3997 x

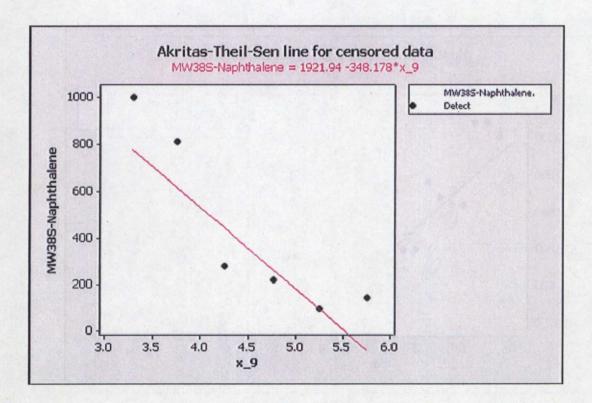
[Benzene PAL concentration, $\mu g/L$] = 2.500 – 0.3997 * [Predicted Time to PAL, years]

 $[0.5 \ \mu g/L] = 2.500 - 0.3997 * [Predicted Time to PAL, years]$

[Predicted Time to PAL, years] = { $[0.5 \,\mu g/L] - 2.500$ } ÷ {-0.3997}

[Predicted Time to PAL, years] = 5 years

Predicted Time to PAL: Naphthalene in MW7S


y = 2425 - 570 x

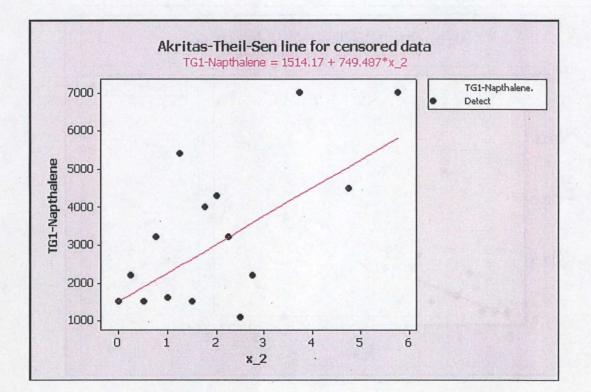
[Naphthalene PAL concentration, $\mu g/L$] = 2425 – 570 * [Predicted Time to PAL, years]

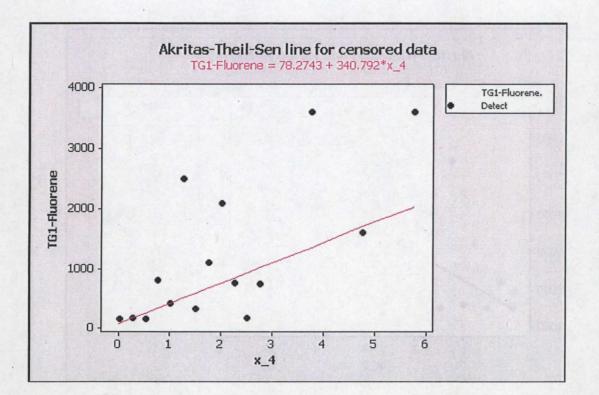
 $[8 \mu g/L] = 2425 - 570 * [Predicted Time to PAL, years]$

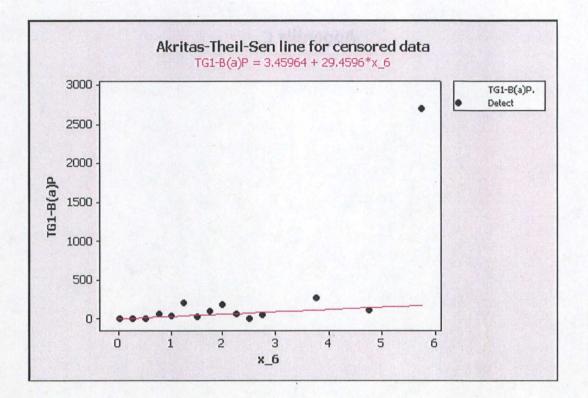
[Predicted Time to PAL, years] = $\{[8 \ \mu g/L] - 2425\} \div \{-570\}$

[Predicted Time to PAL, years] = 4.2 years

Predicted Time to PALs: Naphthalene in MW-38S


y = 1922 - 348.2 x


[Benzene PAL concentration, $\mu g/L$] = 1922 – 348.2 * [Predicted Time to PAL, years]


 $[8 \mu g/L] = 1922 - 348.2 * [Predicted Time to PAL, years]$

[Predicted Time to PAL, years] = { $[8 \mu g/L] - 1922$ } ÷ {-348.2}

[Predicted Time to PAL, years] = 5.5 years

Appendix C

/

		molecular weight,		single compound solubility in	effective solubility
constituent	weight percent NAPL	g/mol	mole fraction	water, ug/L	assuming γ = 1
naphthalene	25.1	128.17	0.29	31000	9094
phenanthrene	22.4	178.23	0.19		
acenaphthene	9.2	154.21	0.089	· · · · · · · · · · · · · · · · · · ·	
fluoranthene	8.2	202.25	0.061		
2-methylnaphthale	7.5	142.2	0.079		
fluorene	6.7	166.22	0.060		•
dibenzofuran	6.1	168.19	0.054	·'	
pyrene	4.8	202.25	0.036		
anthracene	2.9	178.23	0.024		
benzo(a)anthracer_	1.8	228.29	0.012		
check sum	95		0.90 -	-	

equivalent MWT creosote

149.80401

Estimated effective water solubility of naphthalene in groundwater assuming typical creosote weight fraction, where NAPL constituents less than 2 percent were not included (Pacific Sound Resources RI/FS, 1998). A groundwater activity correction factor (gamma) of 1 was used for this estimate but the actual value is less less than 1, which means thae actual effective solubility estimate for naphthalene would be less than 9094 µg/L.

2

Attachment 2

IC Review Technical Memorandum (September 2, 2010)

TECHNICAL MEMORANDUM

DATE: September 2, 2010

SUBJECT: Moss American - Need for Additional Restrictions

FROM:

TO:

Ross del Rosario, RPM

File

Discussion

The March 29, 2010 five-year review report for Moss American site described the four institutional controls recorded for the site. Three of these institutional controls are recorded on the former wood treating facility property, while the fourth institutional control applied to the whole site – the former facility and the 5-mile stretch of the Little Menomonee River, along with the floodplain on both banks of the river. Milwaukee County owns most of the downstream areas at the site and recorded the institutional controls which covered the downstream portion of the river and its floodplain on its property. However, during the review, it was discovered that three parcels of land within the river floodplain downstream of the former facility were not covered by those recorded institutional controls because Milwaukee County does not own them. Two of these parcels are owned by the City of Milwaukee and the third by a private homeowner. This technical evaluation focuses on whether additional restrictions will need to be placed on these three parcels, to ensure potential receptors are adequately protected from risks posed by site contaminants.

Findings and Recommendations

Based on information gathered provided below, institutional controls do not need to be recorded on the three downstream parcels of land not covered by the instruments the county recorded This finding was based primarily on information provided in the 1988 remedial investigation (RI) and a review of the institutional controls in place. The following relevant findings were gathered:

• The potential for future use of groundwater is low since the surrounding area is being adequately served by Milwaukee's public water supply. While there is no prohibition on installing a drinking water well in the area, the city's building and zoning code mandates that any building intended for human habitation or occupancy and located adjacent to a sanitary sewer, storm sewer, or water main be connected to the city's public water supply (see Chapter 225 of the city's building and zoning code). All three parcels in question meet the city's criteria for being connected to its water supply. Also, one of the city-owned parcels is zoned park land, so future development is highly unlikely on this particular parcel;

- According to the 1988 RI report, groundwater around the former wood treating facility tlows in a northeasterly direction towards the river (see attached Figure 4 of RI). This would suggest that groundwater around the 3 parcels, which are south of the former wood treating facility, are located upgradient of the contaminated groundwater at the former wood treating facility. Consequently, site-related contaminants, with their associated risks, are not expected to be in the groundwater surrounding the three parcels;
- In the exposure assessment portion of the baseline risk assessment (BRA) found in the RI, some potential exposure pathways identified earlier were not determined to be complete pathways. One of these, exposure to humans through consumptive use of the groundwater, was eliminated from consideration for several reasons there were no drinking water wells in the vicinity, the availability of public water supply, etc. Given the incomplete pathway of groundwater, especially outside of the former wood treating facility are minimal, at best; and
- Groundwater contamination extends to a maximum depth of 20 feet below ground, limited to a 400-foot wide area near the former processing area of the facility and extending towards the river running through the site. According to the RI, this surficial upper aquifer does not have capacity as a drinking water source. Any drinking water well theoretically will have to be screened at the intermediate or lower aquifers which have not been shown to be contaminated. This is due to presence of sand and clay lenses that are acting as barriers to contaminants migrating downward from the surficial upper aquifer.

Conclusion

For reasons stated above, it is my best professional judgment that contaminants in groundwater at the former wood processing facility do not pose a threat to residents living on the three parcels along the floodplain not covered by the county deed restriction. Thus, additional restrictions for these three parcels are not necessary at this time.

Attachments

	· · · · · · · · · · · · · · · · · · ·	
Media, Engineered		-
Controls, & Areas that		Title of Institutional Control
do not support UU/UE	IC Objective	•
based on current		Instrument Implemented
conditions		· · · ·
conumons		
Former Wood Treating Site –	By limiting usage to recreational use	Title: Deed Restriction and Notice to
Soil	along the river floodplain, it is	Future Purchasers. Recorded in
	unnecessary to remediate soil	Milwaukee County Register's Office
Floodplain portion (County-	contamination on the property to	on June 30, 2000. Reference No.
owned)	residential soil cleanup standards and	79313111. Enforceable by EPA,
	will allow for implementation of the	WDNR, and their successors or
	selected floodplain remedy described in the 1990 ROD.	assigns. Prohibits 1) Excavating or grading of land surface 2) penetrating
	(iie 1990 KOD.	existing cap(s)/cover(s) 3) Filling on
	· · ·	covered areas 4) Construction,
		installation, or removal of a building,
	· · · · · ·	pipe, road, or any structure with a
		foundation that would sit on the cover
		5) Plowing for agricultural cultivation
		6) Extraction of gw for consumption or
		any purpose other than gw monitoring
· .		7) Any activity that may damage any constructed remedy or impair its
		effectiveness.
	· · · ·	
		Limited to recreational use.
Former Wood Treating Site – Soil	Prohibits non-industrial use. Amended from 1996 deed restriction as result of	Title: Deed Restriction and Notice to Future Purchasers. Recorded in
3011 ,	1998 ROD Amendment and	Milwaukee County Register's Office
· · ·	compliance with State law.	on June 30, 2000. Reference No.
		79313110. Enforceable by EPA,
Non-floodplain property		WDNR, and their successors or
owned by the county		assigns.
		Timitad to induction
		Limited to industrial use.
Former Wood Treating Site –	Prohibits non-industrial use. Amended	Title: Deed Restriction and Notice to
Soil	from 1996 deed restriction as a result of	Future Purchasers.
· · · ·	1998 ROD Amendment and	
	compliance with State law.	Limited to industrial use. Enforceable
Non floodplain property		by EPA, WDNR, and their successors
Non-floodplain property owned by the railroad		or assigns
owned by the fail oad	· · · ·	
Floodplain downstream from	Prohibits any installation, construction,	Title: Amended Declaration of
former Wood Treating Site –	or removal of structures around areas	Restriction on Use of Real Property
	remediated during response action (i.e.,	
Soil	areas rerouted).	Recorded in Milwaukee County
		Register's Office on June 30, 2000.
		Reference No. 7931309.
• · · ·	Prohibits use of area for any activity	
·····		

Institutional Controls for Moss American (from 3/29/10 Five-Year Review)

Media, Engineered Controls, & Areas that do not support UU/UE based on current conditions	IC Objective	Title of Institutional Control Instrument Implemented
· · · · · · · · · · · · · · · · · · ·	that may damage or impair the response action.	
Former Wood Treating Site – Groundwater	Prohibits consumption or other uses of groundwater. Note: No one in the area currently is using groundwater. Residents áre connected to city water. According to the RI, the contaminated shallow groundwater does not have adequate capacity as a drinking water source.	Title: Amended Declaration of Restriction on Use of Real Property Recorded in Milwaukee County Register's Office on June 30, 2000. Reference No. 7931309. Enforceable by EPA, WDNR, and their successors or assigns
Groundwater – Downstream from former wood treating site (focus on 3 parcels of land not owned by the county)	Prohibit groundwater use until cleanup standards are achieved.	(Need is under review)
Surface Water Site-wide	Ensure no inappropriate uses	(Need is under review)
Other Remedy Components	Ensure no interference with remedy components	(Need is under review)

Plumbing and Drainage 225-01

CHAPTER 225 PLUMBING AND DRAINAGE

TABLE

SUBCHAPTER 1 STATE RULES AND LOCAL ENFORCEMENT

225-01	Adoption of State Law
225-02	Retroactivity of Various Wisconsin Administrative Code Plumbing Provisions
225-1	Administration
225-2	Registration of Plumbing Businesses
225-3	Plumbing Permits Required
225-4	Drainage of Yard Areas and Roofs
225-5	Drain Tile
225-6	Trench Drains
225-7	Flooding in Critical Backwater Area
225-8	Sump Pump Regulations
225-9	Abandonment of Sewer and Water Connections
225-10	Main House Trap
225-11	Trapping Prohibited
225-12	Building Sewers and Drains in Combined Sewer Areas
225-13	Permite

SUBCHAPTER 2 SEWAGE DISPOSAL SYSTEMS

225-14	Definitions
225-15	Permit Required for Individual
•	Sewage Disposal System
225-16	Examination
225-17	Independent Plumbing and
	Drainage System
225-18	Maintenance of Individual
14-14 A.	Sewage Disposal System
225-19	Hearings
225-20	Rules and Regulations
225-21	Inspection and Enforcement
225-22	Municipal Service
225-23	Private Sewage Systems

SUBCHAPTER 3 GAS PIPING SYSTEMS

225-31	Gas Piping Systems; Scope
225-32	Gas Piping and Fittings
225-33	Abandoned Gas Piping

SUBCHAPTER 4 WELL ABANDONMENT AND WELL OPERATION PERMIT

225-35	Scope
225-37	Definitions
225-39	Abandonment Required
225-41	Well Operation Permit
225-43	Abandonment Procedure
225-45	Penalties

SUBCHAPTER 1

STATE RULES AND LOCAL ENFORCEMENT

225-01. Adoption of State Law. Except as otherwise provided in this chapter, the city of Milwaukee adopts ss. 145.01, 145.06, 145.11, 145.15(4) and 145.175, Wis. Stats., as amended, and chs. Comm 81 to 87, Wis. Adm. Code, as amended, as part of this code.

225-02. Retroactivity of Various Wisconsin Administrative Code Plumbing Provisions. Sections Comm 82.21, 82.30, 82.31 and 82.41, Wis. Adm. Code, as amended, shall apply retroactively if upon inspection of any part of an existing plumbing system a condition is identified that tends to create a potential health hazard. If such a condition is identified by the department, then the plumbing system or any part thereof shall be repaired, renovated, replaced, or removed in conformity and compliance with ss. Comm 82.21, 82.30, 82.31 and 82.41, Wis. Adm. Code, as amended.

225-1. Administration. 1. ENFORCEMENT. The commissioners of neighborhood services, health and public works, where specified, or their duly authorized representatives, shall enforce this chapter.

2. DUTIES. a. The commissioner of neighborhood services shall:

a-1. Register upon application every master plumber carrying on his or her trade or business in the city.

a-2. Inspect all plumbing and drainage installations, including connections to main sewer. a-3. Conduct and witness tests as regulated in this chapter. continues to operate the system in such a manner as to cause the development of any public health nuisance or the pollution of any public watercourse, the commissioner of health shall operate the system and make whatever changes he deems necessary in the system, including reconstruction, repair or alteration to attain its proper operation; or the commissioner of neighborhood services shall cause connection to be made to the sanitary or combined sewer, and the cost of reconstruction, repair or alteration and the cost of operation of the system shall be made at the expense of the city; the cost of the connection to the sanitary or combined sewer and the sums so expended in the abatement or removal of any nuisance or nuisances in such cases shall be a lien in the same manner as any tax upon real estate upon the premises served by the individual sewage disposal system; the sums to be collected in the manner specified in s. 17-12, city charter.

4. Nothing in this subchapter shall be construed so as to take away any of the powers of the city to abate a nuisance by an action under applicable provisions of state law, charter or simple ordinance, in cases where there is the development of any public health nuisance or the pollution of any watercourse.

225-19. Hearings. 1. BY WRITTEN REQUEST. If the commissioner of health refuses to issue a permit for construction or alteration of an individual sewage disposal system, the applicant for the permit may file in the office of the commissioner of health a written request for a public hearing by the commissioner. The commissioner shall hold a public hearing at a time and place designated by him within 20 days of the date on which the written request was filed. The petitioner for the hearing shall be notified of the time and place of the hearing not less than 5 days prior to the date on which the hearing is to be held. The proceedings of such hearings, together with the findings and decision of the commissioner of health, shall be reduced to writing and placed on file in the office of the commissioner, and a copy shall be served on the petitioner by the commissioner of health or by delivery to the petitioner by registered mail, return receipt requested.

2. REVIEW. Any persons, jointly or severally, aggrieved by the decision of the commissioner of health, or any taxpayer, or any officer, department, board or bureau of the city, may seek relief by having the decision reviewed by the circuit court by certiorari, if the petition for the writ is presented to the court within 20 days after the date on which a copy of the hearing

Plumbing and Drainage 225-19

proceedings with the commissioner's decision was served on the person who filed the petition for hearing, and if the person aggrieved notifies the commissioner within 10 days after a copy of the hearing proceedings with the commissioner's decision was served on him of his intention to present such petition to the court. Such petition, duly verified, shall set forth that such decision is illegal in whole or in part, specifying the grounds.

225-20. Rules and Regulations. The commissioner of health is authorized to make and adopt written rules and regulations necessary to carry out the provisions of this subchapter. Such rules and regulations shall have the same force and effect as the provisions of this code, and the penalty for violation thereof shall be the same as the penalty for violation of the provisions of this subchapter. A copy of such rules and regulations shall be kept on file in the city clerk's office, in the legislative reference bureau, and in the office of the commissioner of health.

225-21. Inspection and Enforcement. Within 3 days after the commissioner of health issues a permit for the construction or alteration of an individual sewage disposal system, he shall transmit to the commissioner of neighborhood services a copy of the permit. The commissioner of neighborhood services, or an authorized representative, shall make such inspections as necessary to assure that every individual sewage system is constructed, installed or altered in accordance with the requirements set forth in the permit, and the commissioner of neighborhood services may prosecute any person who violates the terms of a valid permit issued by the commissioner of health.

225-22. Municipal Service. To preserve public health, comfort and safety, every building intended for human habitation or occupancy and located adjacent to a sanitary sewer, storm sewer or water main shall be connected to each or all in a manner prescribed in this section.

225-23 Plumbing and Drainage

1.a. Every building shall be provided with a supply of potable water in compliance with this section.

b. All property shall be connected to the water main prior to sale, except as provided in par. c.

c. If a property is not connected to the water main because of an existing well, the owner is not required to connect if a statement concerning the property is recorded by the property owner with the register of deeds stating that there is no connection to the public water main at this time and connection is required by ordinance to be made within 30 days after the sale of such property.

d. All property shall be connected to the public water main within 30 days of sale.

e. All property shall be connected to the public water main immediately if upon inspection the private well proves not to be* working properly or if the well proves to be tested unsafe in accordance with s. 225-37-4.

2. When sanitary sewers approved by the Wisconsin department of natural resources and the department of public works become available, the use of a private sewerage system shall be discontinued within the time stipulated by order of the commissioner but not to exceed a period of one year.

a. When public sewers become available to any premises served by a private sewage disposal system, the private sewage system shall be discontinued and the building sewer shall be connected to the public sanitary sewer within the time allotted under sub. 2 except where a hardship can be justified by letter, but not to exceed 30 days after the sale of such properties. Such properties shall be connected to the public sewer immediately if upon inspection the private disposal system proves not to be working properly.

b. A building shall be deemed to have the facility available if the premises on which the building is located has been determined by the commissioner of public works to be served by the respective facility.

225-23. Private Sewage Systems.

1. ADOPTION. This section is adopted pursuant to s. 59.70(5), Wis. Stats.

a. This section shall be subject to the provisions of ch. 145, Wis. Stats., and all subsequent rules and regulations promulgated thereunder regarding private sewage systems.

b. This section shall not be more lenient or more stringent than the rules and regulations promulgated pursuant to ch. 145, Wis. Stats.

2. ISSUING AGENT. The commissioner shall act as the issuing agent and is assigned the duties of administering the private sewage system program.

3.

SANITARY PERMIT, a Validity.

a-1. No person may install a private sewage system unless the owner of the property on which the private sewage system is to be installed holds a valid sanitary permit.

a-2. No person may sell at retail a septic tank for installation unless the purchaser holds a valid sanitary permit.

a-3. A sanitary permit is valid for 2 years from the date of issue and renewable for similar periods thereafter.

a-4. A sanitary permit may be transferred from the holder to a subsequent owner of the land, except that the subsequent owner must obtain a new copy of the sanitary permit from the issuing agent.

b. Application Forms. The issuing agent shall use the sanitary permit forms provided by the Wisconsin department of commerce.

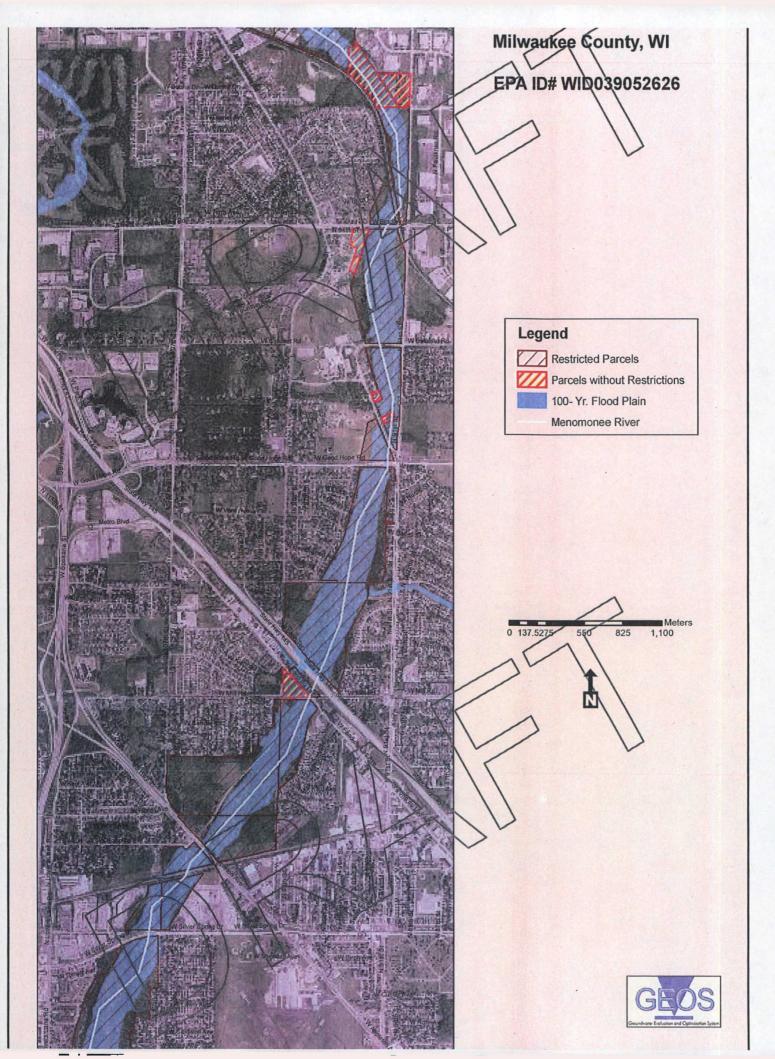
c. Application Process. c-1. The applicant shall submit the completed sanitary permit application to the issuing agent.

c-2. The issuing agent shall review the certified soil tester reports for the proposed private sewage systems and verify the report at the proposed site if necessary.

c-3. The issuing agent shall approve or disapprove application for sanitary permits and assist applicants in preparing an approvable application.

c-4. The issuing agent shall issue written notice to each applicant whose sanitary permit application is disapproved. Each notice shall:

c-4-a. State the specific reasons for disapproval and amendments to the application, if any, which would render the application approvable.


c-4-b. Inform the applicant of the right to appeal and the procedures for conducting an appeal to the commission under s. 200-17.

4. FEES. a. The fee for a sanitary permit shall be as specified for a septic system or holding tank under s. 200-33.

a-1. The city may not charge more than one fee for a sanitary permit or the renewal of a sanitary permit in any 12 month period.

Attachment 3

IC Map

Attachment 4

Notice of State O & M Responsibility (March 10, 2011)

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604-3590

MAR 1 0 2011

REPLY TO THE ATTENTION OF:

- SR-6J

Mark Gordon, Supervisor Wisconsin Dept. of Natural Resources Remediation and Redevelopment Policy and Technical Resources Section 101 S Webster Street - RR/5 Madison, WI 53703

Re: Moss-American Superfund Site, Milwaukee, Wisconsin - Remaining Activities

Dear Mr. Gordon:

In light of the recent settlement of the Tronox bankruptcy case involving the Moss American Superfund site in Milwaukee, Wisconsin, our respective agencies are now responsible for carrying out the remaining remedial action work and operation and maintenance (O&M) activities, at this Superfund site. At this juncture, we need to determine and document the responsibility for performing O&M. This involves the operation of the groundwater treatment system (funnel and gate system), annual and semiannual groundwater monitoring, and maintenance activities such as grass cutting and/or fence repairs.

As we discussed in our January 19, 2011 conference call, the key to determining the start of the O&M activities for the groundwater treatment system is when the system became operational and functional (O&F). If this had originally been a fund-lead site, a long-term response action (LTRA) period would have ensued following the O&F determination. The U.S. Environmental Protection Agency would have operated and maintained the groundwater treatment system during the LTRA period. In this case, LTRA would have lasted ten years, because groundwater cleanup objectives were not met in less time. At the end of the LTRA period, the operation of the groundwater treatment system is considered O&M. Our regulations require the State to assume site O&M activities.

In reviewing relevant site information with Tom Wentland of WDNR, we believe that O&F was achieved sometime around January or February of 2001, based on construction completion of the groundwater treatment system in July 2000 and a shakedown period of around 5-6 months. Selecting an O&F date of February 2001 would indicate that O&M for the groundwater treatment system should start March 1, 2011. A written response from WDNR confirming the O&F date no later than February 2001, and start of the O&M period as March 1, 2011, would be appreciated. In addition, we would like to coordinate with you regarding the remaining remedial action activities at the site. We have approximately \$725,000 from the Tronox bankruptcy settlement. In addition, we have approximately \$700,000 of remedial action money remaining in the work assignment for previous Fund-lead remedial measures conducted at the site. The State of Wisconsin has already provided their cost share for this remedial action funding through an existing state superfund contract with EPA. Remedial action cost share funding will not be necessary from Wisconsin when/if bankruptcy funding is used to conduct remaining remedial action activities. We are working on determining the expected costs of and schedule for the remaining remedial action activities at the site, which include removing the haul roads and optimizing the groundwater treatment system. This information will be forwarded to you as soon as it is ready; and we can then engage in discussions about conducting the remaining remedial actions and O&M.

I look forward to completion of all Moss American site activities. In the meantime, please feel free to contact me at (312) 353-8826.

Sincerely,

Thomas R. Short, Jr., Chief

Remedial Response Branch 2

cc: Tom Wentland, WDNR

Attachment 5

2013/2014 Site Survey

October 2, 2013

Project #13701

Mr. Thomas A. Wentland Waste Management Engineer Wisconsin Department of Natural Resources 1155 Pilgrim Road, P.O. Box 408 Plymouth, WI 53073-0408

RE: Groundwater Sampling and Remedial Optimization Evaluation Former Moss-American Site 8716 North Grandville Road, Milwaukee, Wisconsin

Dear Mr. Wentland:

The Sigma Group; Inc. (Sigma) greatly appreciates the opportunity to perform environmental related services at the former Moss-American facility located at 8716 North Grandville Road, Milwaukee, Wisconsin (the Site). This report presents the data collected during the April 2013 groundwater monitoring activities, provides a thorough evaluation of the existing subsurface conditions, and proposes a strategy to optimize the site remediation in conformance with the Record of Decision (ROD) issued by the United States Environmental Protection Agency (USEPA) for the site.

The following sections provide a brief background of the project site and remediation completed to date, a discussion of the subsurface sampling and site evaluation activities, and a discussion of a potential remedial action to effectively enhance the remediation of the remaining petroleum-related contaminants present at the site.

SITE HISTORY AND REMEDIATION ACTIVITIES

The former Moss-American facility is located in the northwestern section of the City of Milwaukee at the southeast corner of the intersection of West Brown Deer and Granville Roads, at 8716 Granville Road. The 88-acre site includes the former location of the Moss-American creosoting facility, several miles of the Little Menomonee River - a portion of which flows through the eastern half of the site - and adjacent flood plain soils (Figure 1). After creosote operations ceased, approximately 23-acres of the site were purchased by the Union Pacific Railroad for loading and storage. The remaining area of approximately 65-acres of land is undeveloped Milwaukee County parkland.

The Little Menomonee River flows approximately 6.5 miles downstream of the former creosoting facility to its confluence with the Menomonee River. Land along the floodplain corridor is owned primarily by the City of Milwaukee, County of Milwaukee and, to a much lesser extent, private owners.

Site creosote operations were conducted from approximately 1921 to 1976. Based on the USEPA document, land usage patterns in the area changed considerably over time. Photos from the 1930s to the 1950s indicate that the creosote plant operated in a relatively

1300 West Canal Street | Milwaukee, WI 53233 | 414-643-4200 414-643-4210 www.thesIgmagroup.com

sparsely populated setting with several farms surrounded the manufacturing operation. From the 1960s to the present time, residential and commercial use of nearby property increased considerably, and agricultural and farming operations have almost completely phased out. Industrial parks and multi-lane highways traverse the site setting. From 1921 to 1971, the facility discharged wastes to settling ponds that ultimately discharged to the Little Menomonee River. These discharges ceased when the plant diverted its process water discharge to the Milwaukee sanitary sewerage system. Production at the facility ceased in 1976.

In 1983, the facility was proposed for inclusion on the National Priorities List (NPL) pursuant to Section 105 of CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act). Subsequent remedial investigation conducted by the USEPA in late 1980s identified the presence of free product liquids associated with site groundwater. The most of the site soil contamination was associated with former creosote processing areas. Relatively high concentrations of petroleum-related constituents including Poly Aromatic Hydrocarbons (PAH) as/well as benzene, toluene, ethylbenzene and xylenes (BTEX) were detected in the upper 10 feet of site soil. Shallow groundwater was also identified with relatively high petroleum related impacts. However, little to no groundwater impacts were identified deeper than 20 feet below ground surface.

Pursuant to the USEPA Record of Decision for the Moss-American Site (dated 1990) and subsequent ROD Amendment (dated 1998), remedial action was implemented at the site. The USEPA led actions included: a) excavation of highly contaminated soils and on-site treatment; b) on-site placement of the treated and lower contaminated soils under an appropriate cover; c) re-vegetation of the excavated areas; d) removal and off-site disposal of highly contaminated sediments from sections of the Little Menomonee River; e) construction of a new channel and redirection of river flow into the new channel; and, f) a groundwater remedy consisting of a funnel-and-gate system with in-situ aerobic treatment of the contaminated groundwater prior to its flow to the river.

The installed groundwater remedial system consisted of sheetpile cutoff walls to prevent flow of contaminated groundwater to the river and several funnel and gate systems for in situ aerobic treatment of groundwater (bio-sparging) prior to flow to the river. The remediation system has been effective in treating the majority of the identified groundwater plume area with the exception of the north-central portion of the plume. Over several years of operation of the funnel and gate system a zone of stagnation appears to have developed within the containment wall. Persistently high concentrations of select PAH compounds have been observed at two locations which include: a) monitoring well MW-34S along the cut-off wall; and b) monitoring well TG1-1 located at Gate 1 of the funnel and gate system. A system performance assessment completed by the US Army Corp of Engineers (USACE) on behalf of the USEPA indicates additional remedial efforts are necessary to address these two areas.

ADDITIONAL DATA COLLECTION AND GROUNDWATER MONITORING

In accordance with the Scope of Work provided by the WDNR, Sigma performed the following activities:

<u>Soil Boring / Monitoring Well Installation</u> – Two Wisconsin Administrative Code (WAC) Chapter NR141 compliant groundwater monitoring wells were installed immediately outside the sheetpile cutoff wall (Figure 2) – one located northeast of MW-34S indentified as MW-34S-N and one northwest of MW-7S identified as MW-7S-W. Standard hollow-stem augur drilling methods was used to install these wells. During boring advancement continuous soil sampling was performed for field and laboratory analysis. Soil samples were collected and described on the basis of color, grain size, plasticity, and other characteristics. A description of the observed soil characteristics are summarized on the soil boring logs, included as Appendix A.

Following the completion of the soil boring each borehole was completed as a monitoring well. Each well was constructed of 2-in diameter, 10-ft long PVC screen set at a depth of 13 feet below ground and completed with a 2-inch diameter PVC riser and stick-up with protective casing. All drill cuttings generated during the drilling activities were contained in drums and stored at a secure location on-site pending waste characterization and coordination for off-site disposal. Figure 2 depicts the approximate location of each monitoring well.

<u>Elevation and Location Survey</u> – Following completion of well installation activities, an engineering survey was performed to establish the location and elevation of the newly installed wells with respect to the nearby monitoring wells. In accordance with the RFP two existing wells (MW-38S and MW-39S) were also included in the survey. The survey data was used to generate water level elevations (Table 1), update the site map (Figure 2) and prepare a groundwater elevation contour map (Figure 3).

<u>Well Development</u> – Following the requirements of the WAC Ch. NR141.21, the two newly installed monitoring wells and three existing piezometers (PZ-02, PZ-03, and PZ-10) were developed prior to groundwater sampling to ensure good hydraulic connection with the saturated subsurface materials. Piezometers PZ-07 and PZ-09 were proposed to be developed but obstructions in the well prevented development from occurring. The groundwater generated during the well development process was contained in 55-gallon drums and disposed off-site at the Port Washington Water Treatment facility

<u>Groundwater Monitoring</u> – In accordance with the RFP, Sigma completed one round of groundwater monitoring of the wells listed in **Table 1**. Please note six wells were unable to be sampled due to the presence of obstructions within the well casing or wells could not be located. All the wells were purged and sampled using disposable bailers except five wells. A peristaltic pump and dedicated sampling tubes were used to sample the three peizometers PZ-02, PZ-03 and PZ-10 (due to small well diameter) and two monitoring wells MW-34S and TG1-1 (due to the presence of free phase petroleum product at the bottom of these wells). Special care was taken during sampling of MW-34S and TG1-1 to avoid introducing any free product in the groundwater sample by gently lowering the sampling tubes in the well casing and positioning the tube intake several feet above the bottom of the well and the free product interface.

Groundwater monitoring activities included the collection of water samples and the measurement of field parameters including water levels, dissolved oxygen (DO), oxidation-

reduction potential (REDOX), pH, temperature, turbidity, specific conductance, and ferrous iron from all the wells. A total of 35 groundwater samples were collected and submitted to Synergy Environmental Lab, INC. of Appleton, Wisconsin for laboratory analysis of BETX and PAH (EPA Method 8260 and 8270D, respectively). Selected groundwater samples (identified in the RFP) were also submitted to CT Laboratories of Baraboo, Wisconsin and Terra System, Inc. of Claymont, Delaware for bioremediation parameter analyses (microbial enumeration, nitrate-nitrogen, nitrite nitrogen, total kjeldahl nitrogen, ammonianitrogen, total phosphate-phosphorous, orthophosphate, biochemical oxygen demand, chemical oxygen demand, and total organic carbon) to help evaluate the biodegradation potential of the residual subsurface impacts. Laboratory analytical reports are included in **Appendix B** and the data are summarized in **Tables 2** through **5**.

SUMMARY OF SITE CONDITIONS

Site Hydrogeology

Based on the two soil borings completed by Sigma shallow subsurface materials consist predominantly of fine-grained silt and clay mixed with occasional sand and gravel. This is consistent with the surficial unit described in the reports provided by the WDNR:

"The site overlies a surficial water-bearing unit and confining bed. The water-bearing unit consists of a thin mantle of fill, alluvium, and weathered till. This thin layer of material would not yield sufficient water to wells to be classified as a true aquifer. The confining bed is the unweathered till of the Oak Creek Formation.

The surficial unit comprises everything above the confining bed. It includes extensive fill deposits, alluvial deposits along the river, and the weathered few feet of the Oak Creek Formation. The fill is highly variable and has been added to the site at different times for different reasons. Alluvial deposits are associated with the Little Menomonee River. They consist of sand and gravel channel deposits and silt and clay flood deposits. The till is part of the Oak Creek Formation, which consists of glacial till, lacustrine clay, silt and sand, and some glaciofluvial sand and gravel. The till is fine grained, commonly containing 80 to 90 percent silt and clay. The till was generally weathered to a depth of 2 to 10 feet.

The unweathered part of the Oak Creek Formation consists of a confining bed between the surficial water-bearing unit and underlying regional aquifers. The formation is a dense, silty clay till with interbedded lacustrine units. Below the site, the glacial deposits are approximately 150 feet thick and underlain by the dolomite aquifer. The minimum thickness of the confining bed below the site is at least 40 feet."

Review of the groundwater elevation data (Table 1) and groundwater elevation contour map (Figure 3) indicates the shallow groundwater flow at the Moss-American site is predominantly to the northeast towards the Little Menomonee River. A relatively flat hydraulic gradient (0.005 ft/ft to 0.0067 ft/ft)) is observed inside the sheet-pile area. The hydraulic gradient becomes steeper (0.02 ft/ft to 0.033 ft/ft)) near the upgradient and downgradient locations of the sheet-pile area. A comparison of the April 2013 groundwater flow map with the flow map generated for the September 2010 monitoring

event (Groundwater Monitoring Report, Q3 2010 prepared by Weston Solutions, Inc.) indicates a similar groundwater flow pattern.

Soil Conditions

During drilling of monitoring well MW-7S-W, petroleum product sheen was encountered within the soil samples collected at the depth intervals of 4' to 6' and 6' to 8'. Saturated conditions were encountered at a depth of 5' bgs. No product sheen or oil residue was observed in soil samples collected at deeper depths (8' to 14'). Based on discussions with the WDNR Project Manager a field decision was made to containerize the soil sample from 4' to 6' interval for BTEX and PAH analysis. It is noteworthy that no PID readings or oily sheen was observed at the soil boring completed during the installation of the monitoring well MW-34S-N. Additional soil boring investigation is needed to define the extent of the soil impacts identified at MW-7S-W.

Review of the analytical data from soil boring MW-7S-W indicates the presence of several PAH compounds in excess of the WDNR Residual Contaminant Levels (RCLs) for groundwater pathway and direct contact. The constituents detected exceeding the groundwater RCL standards include Benzo(a)pyrene, Benzo(b)fluoranthene, Chrysene, Fluorene, and Naphthalene (estimated). The constituents detected above the direct contact RCLs include Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(b)fluoranthene, Benzo(k)fluoranthene and Phenanthrene. A summary the complete soil analytical results are presented in Table 2.

Groundwater Conditions

Groundwater samples collected from 35 monitoring wells and piezometers in April 2013 from on- and off-site locations were analyzed for BTEX and PAHs. The laboratory analytical results are summarized and presented in **Table 3**. The table also includes groundwater quality data obtained during September 2010 groundwater sampling performed by Weston Solutions, Inc.

Free-phase Product – The presence of free-phase product was observed at two well locations: MW-34S and TG1-1. The free-phase product observed at these wells appears to be highly viscous and present at the bottom of the well identifying it as a heavier than water non-aqueous phase liquid (NAPL). No free-phase NAPL product was identified in the other monitoring well MW-7S where product sheen was observed in the past or other monitoring and remediation wells on-site. Nonetheless, the extent of the free phase product does not appear to be well defined and further evaluation is needed.

Newly Installed Monitoring Wells – Groundwater quality data collected from the two newly installed monitoring wells (MW-7S-W and MW-34S-N) located immediately outside the remediation sheet pile do not indicate the presence of any PAH or BTEX compounds in excess of the WAC Ch. NR140 Enforcement Standards (ES). However, two PAH constituents (Fluorene and Naphthalene) were identified above their respective WAC Ch. NR140 Preventive Action Limits (PAL) within the groundwater sample collected from monitoring well MW-7S-W. It is noteworthy that an oily sheen was discovered during monitoring well installation activities at MW-7S-W. The

groundwater impact detected within groundwater sample collected from MW-7S-W may be associated the shallow soil impacts observed at this location.

Distribution of PAH Compounds – Of the 35 wells sampled only eight were detected with PAH compounds in excess of the WAC NR140 Groundwater Standards. At four monitoring well locations (MW-7S-W, MW-E, MW-F and MW-H) four PAH compounds were detected above their respective PALs (Fluorene and Naphthalene at MW-7S-W; Benzo(b)fluoranthene at MW-E, MW-F and MW-H; and Chrysene at MW-F and MW-H).

At four other locations (MW-34S, TG1-1, PZ-03 and MW-I) both PALs and ESs for several PAH compounds were exceeded. Free phase product was encountered in two of these locations (MW-34S, TG1-1), therefore, groundwater samples from these wells are expected to have relatively high concentrations of dissolved PAH compounds. The groundwater sample from monitoring well PZ-03 located in the north central portion of the sheet-pile area contains Benzo(a)flouranthene at 1.45 microgram per liter (μ g/L) and Chrysene at 1.47 μ g/L, both exceeding the respective groundwater ESs.

Two PAH compounds, Benzo(b)fluoranthane and Chrysene, were detected in the groundwater sample from monitoring well MW-I at concentrations exceeding the groundwater ES and PAL, respectively. It is important to note that no PAH compounds were detected at this location during the September 2010 sampling event. Similar low level PAH compounds detected at MW-E, MW-F and MW-H with concentrations at or above the PALs where no PAH were detected in September 2010. Considering the location of these wells (approximately 2 miles downstream along the Little Menomonee River from the source site, see Figure 1-2, Figure 1-3 and Figure 1-4 by Weston Solutions, Inc. included as Appendix C) it is likely that the presence of sediments in the sample may have caused this anomaly. Also a review of historical groundwater quality data from these locations could provide further clarifications.

In Situ Measurements – In situ measurements were collected from all 35 sampling points and the data are summarized and presented in **Table 4.** A review of the data indicates groundwater pH ranges between 6.9 and 7.7 standard units (S. U.). The observed pH range represents a neutral groundwater condition and is conducive to microbial activities. The observed dissolved oxygen (DO) concentrations in groundwater range between 0.49 mg/L and 3.1 mg/L, with lower DO readings observed in wells with PAH impacts and higher DO levels observed in wells further away from the dissolved groundwater plume. Depleted DO levels are indicative of on-going biodegradation of the petroleum constituents dissolved in groundwater. Oxidationreduction potential (REDOX) measurements observed during the April 2013 monitoring range between -160 mV and +173 mV, with negative values observed at wells with groundwater impacts. Large negative values are indicative of on-going biodegradation. Observed ferrous iron readings range between 0 and 8 mg/L, with higher readings observed in wells with PAH impacts. Ferrous iron is a byproduct of the biodegradation process and as such higher than background readings indicates high level of bioactivity.

Biodegradation Parameters – Nine wells were sampled for biodegradation parameters to evaluate the bioremediation potential of the dissolved plume. These parameters include: microbial enumeration, nitrate-nitrogen, nitrite nitrogen, total kjeldahl nitrogen, ammonia-nitrogen, total phosphate-phosphorous, orthophosphate, biochemical oxygen demand, chemical oxygen demand, and total organic carbon. Biodegradation parameters are summarized and presented in **Table 5**.

The total heterotrophic plate counts reported by CT Laboratories range between 11,000 colony forming units per liter (cfu/L) and 620,000 cfu/L representing low to moderate bacterial populations in the subsurface. A comparison with the September 2010 data indicates a reduction in bacterial populations in six of the nine sample locations. The petroleum degraders plate counts reported by Terra System Inc. range between 120,000 cfu/L and 36,000,000 cfu/L. (Note: petroleum degraders are a subset of the total heterotrophic bacteria and therefore, petroleum degraders plate count is typically lower than the total heterotrophic plate counts. Due to extended incubation time used by Terra System lab, [3 weeks instead of 1 week by CT Lab] during analysis, the significantly higher petroleum degrader population count was reported compared to the total heterotrophic plate count reported by CT Lab). Nonetheless, the presence of moderate bacterial populations indicates on-going bioactivity.

Review of the other biodegradation data presented in **Table 5** also suggests low to moderate bioactivity (low nitrate-nitrogen and relatively low BOD/COD readings).

SUMMARY

Results of the groundwater monitoring completed in April 2013 indicate groundwater conditions have improved at the site. Figure 4 presents the distribution of the total PAHs detected in groundwater in September 2010 and April 2013. The distribution map was developed using only those PAH compounds with WDNR groundwater standards. A review of the plot indicates:

- Total PAH concentrations have decreased at all on-site sample locations since September 2010;
- Free-phase product is still present at MW-34S and TG1-1, however, no indication of free-phase product was present at MW-7S where an oily-sheen was observed in September 2010.
- Low level groundwater impacts were detected at wells located further downstream along the Little Menomonee River where no PAH impacts were identified in 2010. The presence of sediment in samples may have contributed to this anomaly. Future monitoring should include low flow sampling to evaluate if sediment in the samples is biasing the results.
- The sheet-pile containment and in-situ treatment systems have effectively contained and remediated the majority of the groundwater impacts.
- Based on one round of data from the newly installed wells located immediately outside the sheet-pile area no indication of groundwater plume migration outside the containment area is evident.

 Groundwater quality data from monitoring well MW-33S and piezometers PZ-02 located near the northwest portion of the sheet-pile area show decreasing concentrations of total PAHs; the data also indicate no plume migration around the containment area.

CONCLUSIONS

The following conclusions can be made based on an evaluation of the groundwater quality data obtained from the Moss-America site:

• Free-phase dense NAPL product is still present at depth at two monitoring wells (MW-34S and TG1-1). The lateral extent of the product area appears to be limited, however, further delineation is needed to confirm the product zone is stable.

 A product sheen was identified in a soil sample collected from the water table interface at soil boring location MW-7S-W; relatively low level of groundwater impacts and no soil impacts observed at depth suggests this may be an isolated area of soil impact. Further delineation is needed to confirm the limited extent of soil impact.

 The integrity of the steel sheet-pile containment structure appears to be sound; no leakage through the steel sheeting or plume migration around the containment structure is evident based on one round of data from the two newly installed wells (MW-7Ş-W and MW-34S-N) and an existing peizometer (PZ-02).

 Reduction in the dissolved PAH concentrations in groundwater appear to be ongoing and natural attenuation of the dissolved phase constituents in groundwater away for the free-product area is likely occurring.

- Natural attenuation in groundwater is also evident at downgradient off-site wells located further south along the Little Menomonee River.
- The enhanced bioremediation system operated at the site appears to have mitigated the majority of the groundwater impacts with the exception of the free-phase NAPL at two isolated locations and dissolved PAH impacts at north-central portion (PZ-03) within the sheet-pile containment structure.

REMEDIAL OPTIMIZATION EVALUATION

Based on the above conclusions Sigma recommends the following activities to move the site to case closure:

- Implement the Geoprobe[®] soil boring program as recommended by the Army Corps of Engineers (USACE Final Report, dated March 2011) to better delineate the lateral and vertical extend of the two free-phase product areas.
- Depending upon the results of the soil boring programs implement additional remedial action to address the free-product areas.

 Implement additional soil boring/hand boring investigation activities to further define the product sheen discovered at MW-7S-W located outside the sheet-pile area.

Depending upon the results of the soil boring investigations a combination of remedial technologies could be implemented to address the two free product areas and groundwater plume and move the site to case closure. Attached **Table 6** presents an array of appropriate and effective remedial technologies to address the identified site conditions. Option 3 is recommended as an appropriate interim action to meet the goal of restoring groundwater quality in the reasonable period of time consistent with NR 140.24(2) Wisconsin Admin. Code requirements. This option includes the following elements:

- 1) Excavate shallow product sheen area identified at MW-7S (located outside north of the sheet-pile area) and treat excavated materials on-site;
- Install slurry walls to create secondary containment measures around the two free-phase product areas (MW-34S and TG1-1) by injecting bentonite-cement slurry and creating a low-permeability barrier inside the sheet-pile structure;
- 3) Install four bio-enhancement wells equipped with iSOC units in the vicinity of PZ-03 to provide an oxygen rich environment and promote enhanced biodegradation of the dissolved PAH plume.
- 4) Add bio-amendments (PETREX by CL Solutions) for two events to enhance hydrocarbon degrader bacterial population.
- 5) Implement groundwater monitoring to evaluate on-going RNA of PAH compounds and assess the stability of the free-phase product areas; the following wells and piezometers are to be included in the monitoring program:

PZ-02, PZ-03, PZ-09 & PZ-10; MW-A, MW-7S, MW-7S-W, MW-9S, MW-27S, MW-32S, MW-33S, MW-34S, MW-34S-N, MW-37S, MW-38S, MW-39S, MW-E, MW-F, MW-I, TG1-1, TG1-3, TG2-3, TG3-3, TG4-3, TG5-3, TG6-3.

6) The groundwater monitoring program will include low flow PAH sampling and measurement of field parameters.

We trust the information provided is satisfactory to WDNR. Please feel free to call Sigma at 414-643-4125 if you have any questions or comments.

Sincerely,

THE SIGMA GROUP, INC.

Mafizul Islam, P.E.

Senior Project Manager

Randy E. Boness, P.G. Geoscience Group Leader

List of Attachments

FIGURES

- Figure 1
- Figure 2

Figure 3

Figure 4

TABLES

Table 1 Table 2 Table 3 Table 4 Table 5

APPENDICES

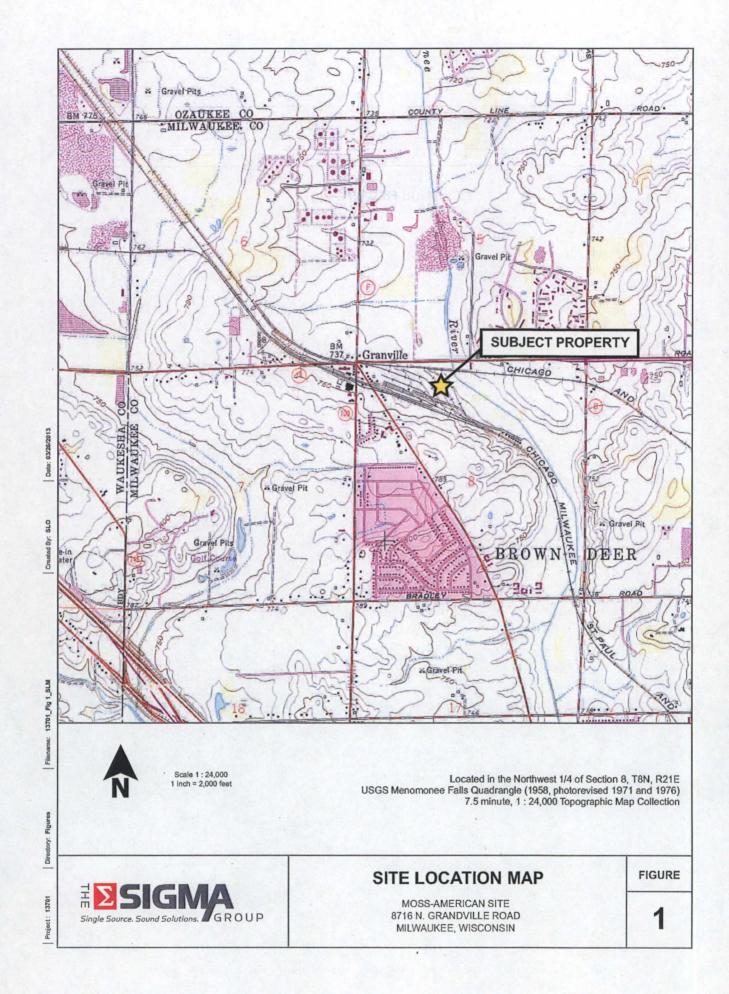
Appendix A	<u>'</u>	Soil Boring Logs
Appendix B	-	Laboratory Analytical Reports
Appendix C	4	Figures 1-2, 1-3 & 1-4

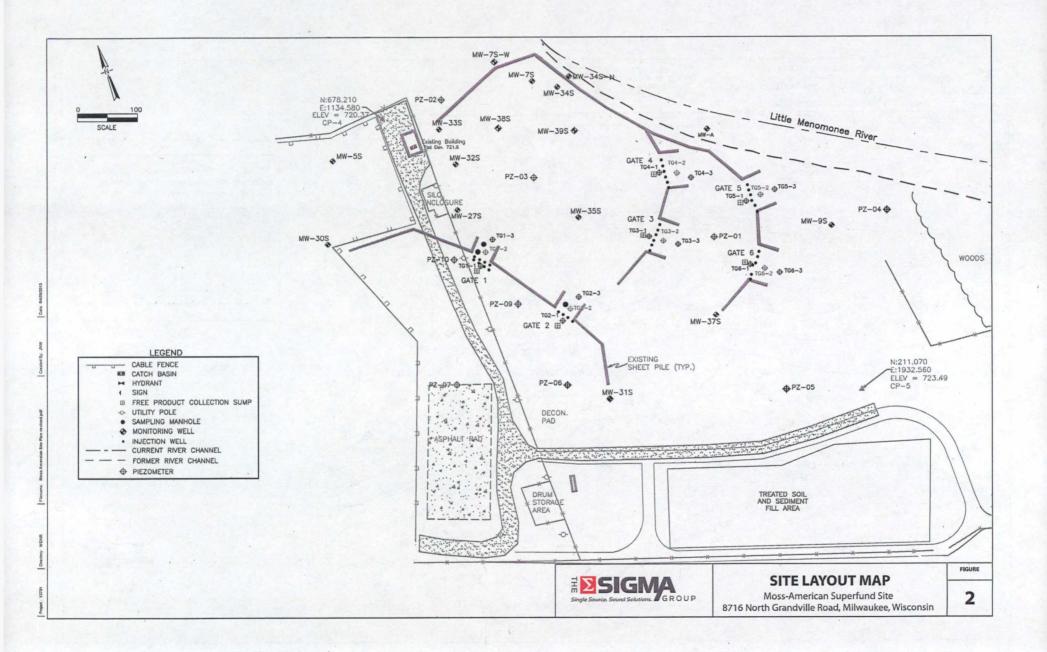
-

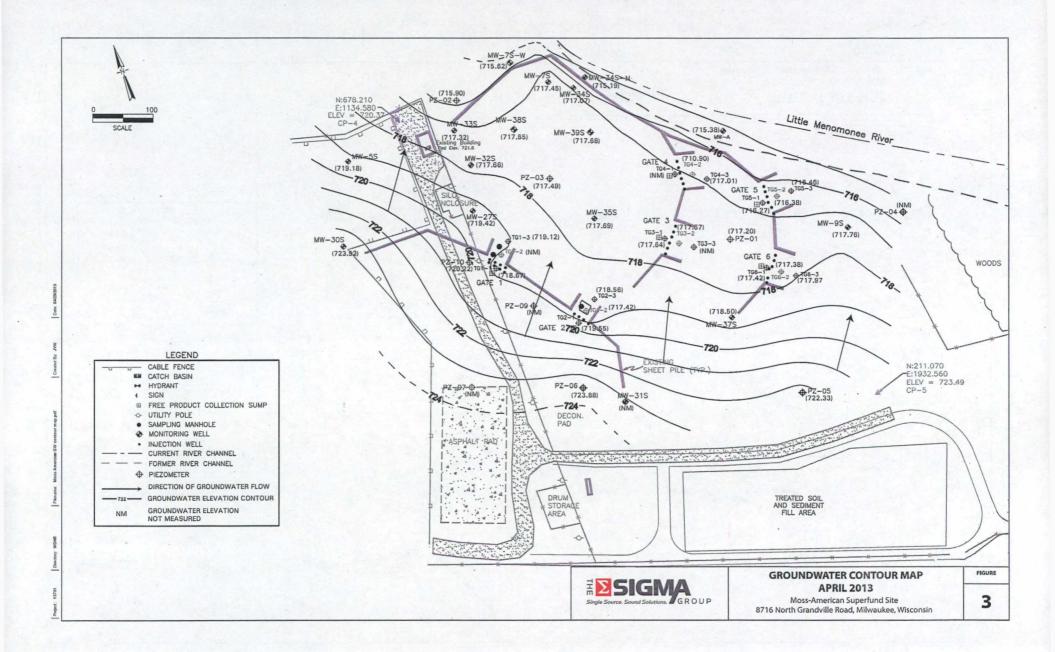
· · ·

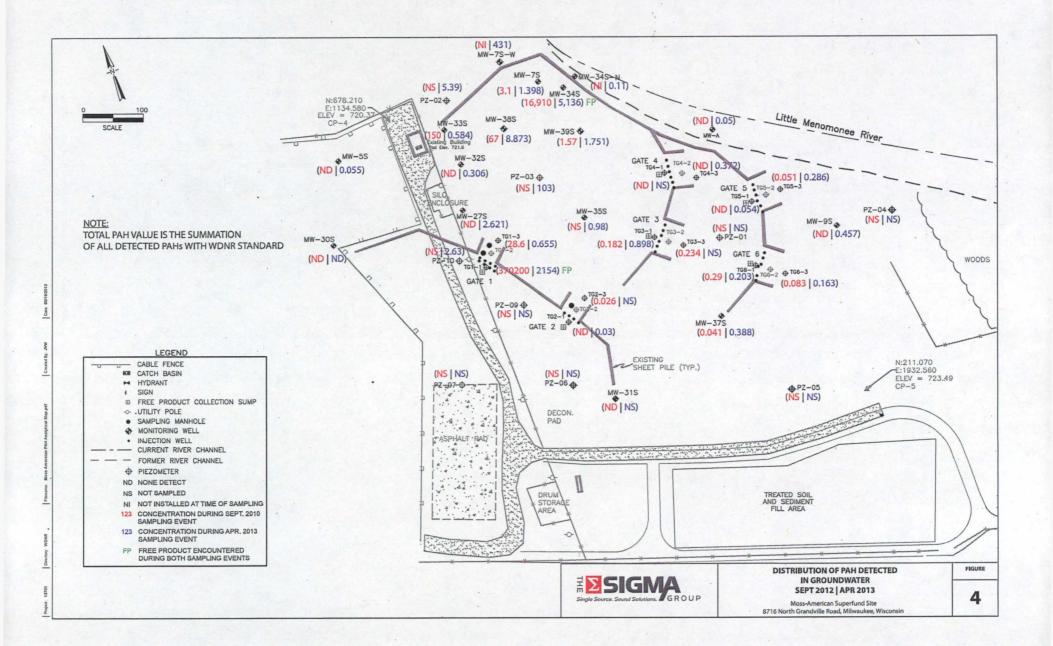
FIGURES

~


. . .


· · · · ·


· · · ·


.

1300 West Canal Stratt | Milwaukaa, WI 53233 | 414-643 4200 414 643 4210 | www.thasigmagroup.com

· · · ·

، جو بے

,

TABLES

I:\Wisconsin Dept of Natural Resources\13701- Moss-America/Reports\Moss-American Report 2013.docx

Report 2013.docx

	· • • • •	na i roječe no			
Soil S	ample Location:	MW-7S-W		· ·	
Sample	Depth (feet bgs):	4-6	Groundwater	Non-Industrial	Industrial
Sample	Collection Date:	3/28/13	Pathway	Direct Contact	Direct Contact
Depth to Ground	water (feet bgs):	5	RCL ⁴	RCL ⁵	RCL ⁶
Unsaturated/Smear Zone (U)	· /				
			NS	NS	NS
Organic Vapor Monitor	ppm		NO NO		
PVOCs & Detected VOCs	· ·		:	1	
Benzene	μg/kg	<25	5.1	1,490	7,410
Ethylbenzene	µg/kg ⊨	<25	1,570	7,470	37,000
Toluene	μg/kg	.<25	1,107.2	818,000	818,000
Xylenes (total)	μg/kg	<75	3,940	258,000	258,000
PAHs					
Acenaphthene	μg/kg	47,000	NS	3,440,000	33,000,000
Acenaphthylene	µg/kg	520 J	NS.	- 487,000	487,000
Anthracene	μg/kg	30,700	196,744.2	17,200,000	100,000,000
Benzo(a)anthracene	μg/kg ՝	11,100	NS	148	2,110
Benzo(a)pyrene	µg/kg	2,720	470	15	211
Benzo(b)fluoranthene	μg/kg	5,400	480	148	2,110
Benzo(ghi)perylene	· µg/kg	740 J	NS	NS	. NS
Benzo(k)fluoranthene	µg/kg	2,260	NS	1,480	21,100
Chrysene	µg/kg	9,300	1,45.1	14,800	211,000
Dibenzo(a,h)anthracene	µ́g/kg	<446	NS NS	15	211
Fluoranthene	µg/kg	69,000	88,817.9	2,290,000	22,000,000
Fluorene	μg/kg	47,000	14,814.8	2,290,000	22,000,000
Indeno(1,2,3-cd)pyrene	µg/kg	710 J	NS	148	2,110
1-Methylnaphthalene	µg/kg	13,200	NS	15,600	53,100
2-Methylnaphthalene	μg/kg	<412	NS	229,000	368,000
Naphthalene	μg/kg	1050 J	658.7	2,150	26,000
Phenanthrene	μg/kg	142,000	NS	115,000	115,000
Pyrene	μg/kg :	46,000	54,472.5	1,720,000	16,500,000

Table 1 Soil Analytical Data Moss-American, 8716 N. Grandville Road, Milwaukee, WI Sigma Project No. 13701

Notes:

1. Unsaturated/smear zone versus satured soil conditions based on:

(1) measured water levels in adjacent/nearby monitoring wells,

(2) soil moisture conditions recorded on soil boring logs, and/or

(3) soil moisture contents reported on laboratory analytical reports.

2. Analytical units:

μg/kg = micrograms per kilogram (equivalent to parts per billion, ppb) mg/kg = milligrams per kilogram (equivalent to parts per million, ppm)

7. NS = no standard established

8. Laboratory flags:

9. Exceedances:

"J" = Analyte detected between Limit of Detection and Limit of Quantitation

BOLD = Concentration exceeds Groundwater Pathway RCL

ITALICS = Concentration exceeds Non-Industrial OR Industrial Direct Contact RCL (unsaturated soil samples only)

Sigma Environmental Services, Inc.

TABLE 2	
Water Level Elevation and Product Thickness	
MOSS – AMERICAN SUPERFUND SITE	
PROJECT NO. 13701	

	·					· · · · ·				
Well ID	Depth of Well	Depth of	Ground	TOC	Groundwater	Depth to	Product	Diameter	Well Material	Comment
	(ft.)	Water	Elevation	Elevation	Elevation	Product	Thickness	(in.)		
		(ft.)	(ft. MSL)	(ft. MSL)	(ft. MSL)	(ft.)	(ft.)			
MW-5S	19.75	5.45	723.41	724.63	719.18	NP	NP	2	Steel	
<u>MW-7S</u>	15.40	4.14	719.47	721.59	717.45	NP	NP	2.	Steel	
MW-7S-W	16.85	4.22	716.41	719.84	715.62	NP	NP	2 .	PVC	free product on probe
MW-9S	15.30	3.90	719.15	721.66	717.76	NP	NP	2	Steel	
MW-27S	17.39	3.68	720.57	723.10	719.42	NP	NP	2	PVC	
MW-30S	14.72	3.42	725.35	727.34	723.92	NP	NP	2	Steel	
MW-31S					•	•				can't locate, possibly buried (Tom W.)
MW-32S	14.95	5.13	719.68	722.79	717.66	NP	NP	2	Steel	
MW-33S	14.95	4.49	719.25	721.81	717.32	NP .	NP	2	Steel	
MW-34S	14.97	4.45	718.97	721.52	717.07	13.5	1.47	2	Steel	product on well, product at 13.5'
MW-34S-N	18.15	3.52	715.41	718.71	715.19	NP	NP	2	PVC	
MW-35S	14.63	4.06	718.14	721.75	717.69	NP	NP	2	Steel	
MW-37S	15.00	4.80	721.33	723.30	718.50	NP	· NP	2	Steel	
MW-38S	18.20	4.09 `	718.36	721.74	717.65	NP	, NP	2	Steel	· · · · · · · · · · · · · · · · · · ·
MW-39S	17.93	3.42	717.80	721.10	717.68	NP	NP	2	Steel	
TG1-1	15.10	4.65	719.77	723.32	718.67	14	1.10	2	Steel	product at 14.00'
TG1-2			720.06	722.81		NP	NP	. 2	Steel	
TG1-3	14.62	3.41	719.56	722.53	719.12	' NP	NP.	2	Steel	
TG2-1	15.00	4.25	720.67	723.80	719.55	NP	NP	2	Steel	
TG2-2	14.80	5:63	720.62	723.05	717.42	NP	NP	2	Steel	
TG2-3	OB	4.05	720.06	722.61	718:56	NP	NP	2 '	Steel	obstructed at 4.22'
TG3-1	14.60	3.41	719.14	721.05	717.64	NP	NP	2	Steel	· · · · · · · · · · · · · · · · · · ·
TG3-2	14.25	3.25	718.87	720.92	717.67	NP	NP	2	Steel	
TG3-3	OB	OB	718.35	720.60		NP	NP	2	Steel	obstructed at 3.06'
TG4-1	OB	OB	718.06	721.14		NP	NP	2	Steel	obstructed at 4.23'
TG4-2	14.93	3.85	718.26	720.75	716.90	NP	NP	2	Steel	

Sigma Environmental Services, Inc.

:

I:\Wisconsin Dept of Natural Resources\13701- Moss-America\LabTables\Field WL Data

i .

TABLE 2Water Level Elevation and Product ThicknessMOSS – AMERICAN SUPERFUND SITEPROJECT NO. 13701

Well ID	Depth of Well (ft.)	Depth of Water	Ground Elevation	TOC Elevation	Groundwater Elevation	Depth to Product	Product Thickness	Diameter (in.)	Well Material	Comment
	(,	(ft.)	(ft. MSL)	(ft. MSL)	(ft. MSL)	(ft.)	(ft.)	()		
TG4-3	14.28	3.03	718.01	720.04	717.01	NP	' NP	2	Steel	
TG5-1	14.65	4.85	717.60	721.12	716.27	NP	NP	2	Steel	· · · · · · · · · · · · · · · · · · ·
TG5-2	14.80	4.25	718.18	720.63	716.38	NP	NP	2	Steel	
TG5-3	15.02	3.53	718.17	719.99	716.46	NP	NP	2	Steel	
TG6-1	15.02	4.54	719.47	721.96	717.42	NP	NP	2	Steel	
TG6-2	14.23	4.67	719.70	722.05	717.38	NP	NP	2	Steel	
TG6-3	14.65	4.50	719.58	722.47	717.97	[;] NP	NP	2 .	Steel	
PZ-01	14.90	3.85	718.04	721.05	717.20	NP	NP	1.5	PVC	
PZ-02	14.85	5.94	718.89	721.84	715.90	NP	NP	1.5	PVC	
PZ-03	14.85	4.60	719.00	722.09	717.49	NP	NP	1.5	PVC	
PZ-04	OB	OB	717.30	720.22		NP	NP	1.5	PVC	obstruction at 3.81'
PZ-05	14.82	5.10	724.34	727.43	722.33	NP	NP	1.5	PVC	
PZ-06	13.40	3.91	724.62	727.79 [.]	723.88	NP	NP	1.5	PVC	
PZ-07	OB	OB	725.78	728.72		NP	NP	1.5	PVC	obstruction at 4.44'
PZ-09	OB	OB	721.12	724.08	-	NP	NP	1.5	PVC	obstruction at 3.2'
PZ-10	14.95	4.83	722.04	725.05	720.22	NP	NP	1.5	PVC	·
MW-A	11.80	0.77	716.73	716.15	715.38	NP	NP	2	PVC	
MW-B	11.63	0.70	714.92	714.49	713.79	NP	NP	2	PVC	• • • • • • • • • • • • • • • • • • • •
MW-C	12.50	0.00	714.18	713.82	713.82	· NP	NP	2	PVC	well submerged inside flush mount
MW-D	12.00	0.20	716.21	715.85	715.65	NP	NP	2	PVC	
MW-E	18.85	1.17	713.26	712.83	711.66	NP	NP	2	PVC	
MW-F	19.55	1.95	713. <u>52</u>	713.10	711.15	NP	NP	. 2	PVC	
MW-G	13.83	1.55	713.21	712.75	711.20	NP	NP	2	PVC	
MW-H	18.10	0.00	710.40	710.07	710.07	NP	NP	2	PVC	······································
MW-I	9.00	1.50	710.27	709.92	708.42	NP	NP	2	PVC	
MW-J	14.75	0.00	710.08	709.85	709.85	NP	NP	2	PVC	well submerged inside flush mount
MW-K	NS	NS	707.13	706.70	NS	NS	NS	2	PVC	well completely submerged under

Notes:

1. NP = no product

2. OB = obstruction

3. NS = not sampled, MW-K not sampled due to being completely submerged under water

Sigma Environmental Services, Inc.

I:\Wisconsin Dept of Natural Resources\13701- Moss-America\LabTables\Field WL Date

Table 3 **Groundwater Analytical Data** Moss American - 8716 North Granville Road, Milwaukee, Wi Sigma Project No. 13701

Well	Location:	NR 140	NR 140	MW	-5S	MW	1-7S	MW-7S-W	MW	-95	MW	-27S	MW-	-305	MW-31S	MW-	-325	MW	-335	MW-	34S
· · · · · · · · · · · · · · · · · · ·	Date:	ES	PAL	9/27/10	4/4/13	9/28/10	4/4/13	4/5/13	9/30/10	4/4/13	9/27/10	4/4/13	9/28/10	4/4/13	9/29/10	9/27/10	4/4/13	9/28/10	4/4/13	9/28/10	4/4/13
PVOCs & Detected VOCs			_									_			·						
Benzene	µg/L	5	0.5	<0.2	<0.27	0.9 J	0.36 J	<0.27	<0.2	<0.27	<0.2	<0.27	<0.2	<0.27	<0.2	<0.2	<0.27	<0.2	<0.27	6.2	7
Ethylbenzene	µg/L	700	140	<0.2	<0.82	0.3 J	<0.82	<0.82	<0.2	<0.82	<0.2	<0.82	<0.2	<0.82	<0.2	<0.2	<0.82	0.5 J	<0.82	26	28.4
Toluene	μg/L	1,000	200	<0.2	<0.8	<0.2	<0.8	<0.8	<0.2	<0.8	<0.2	<0.8	<0.2	<0.8	<0.2	<0.2	<0.8	0.3 J	<0.8	1,1	1.39 J
Xylenes, Total	µg/L	10,000	1,000	<0.6	<2.41	1.8 J	1.7 J	1.56 J	<0.6	<2.41	<0.6	<2.41	<0.6	<2.41	<0.6	<0.6	<2.41	3.1	<2.41	49	49.2
PAHs												_									
Acenaphthene	µg/L	NS	NS	<0.51	<0.021	8.3	5	291	<0.52	0.028 J	<0.52	0.113	<0.53	<0.021	<0.52	<054	<0.021	100	0.66	2100	410
Acenaphthylene	μg/L	NS	NS	<1	<0.02	<8.2	0.17	2.45 J	<1	<0.02	<1	0.022 J	<1.1	<0.02	<1	<1.1	<0.02	<1	<0.02	<200	<20
Anthracene	µg/L	3,000	600	<0.02	0.030 J	<0.022	0.138	183	<0.021	0.048 J	<0.021	0.14	<0.021	0.113	<0.021	<0.022	0.057 J	0.62	0.132	450	88
Benzo(a)anthracene	µg/L	NS	NS	<0.01	<0.025	<0.011	<0.025	<2.5	<0.01	0.025	<0.01	<0.025	<0.011	<0.025	<0.01	<0.011	<0.025	<0.01	<0.025	310	54 J
Benzo(a)pyrene	µg/L	0.2	0.02	<0.01	<0.018	<0.011	<0.018	<1.8	< 0.01	<0.018	<0.01	< 0.018	<0.011	<0.018	<0.01	<0.011	<0.018	<0.01	<0.018	120	<18
Benzo(b)fluoranthene	µg/L	0.2	0.02	<0.0081	<0.02	<0.0086	<0.02	<2	<0.0084	<0.02	<0.0084	<0.02	<0.0084	< 0.02	< 0.0084	<0.0086	<0.02	<0.0081	<0.02	100	26.1 J
Benzo(ghi)perylene	µg/L	NS	NS	<0.061	<0.023	<0.065	<0.023	<2.3	<0.063	<0.023	<0.063	<0.023	<0,063	<0.023	<0.063	<0.065	<0.023	<0.061	<0.023	<61	<23
Benzo(k)fluoranthene	µg/L	NS	NS	<0.0081	<0.027	<0.0083	<0.027	<2.7	<0.0084	<0.027	<0.0084	<0.027	<0.0084	<0.027	< 0.0084	<0.0086	<0.027	<0.0081	<0.027	59	<27
Chrysene	µg/L	0.2	0.02	<0.061	<0.018	<0.065	<0.018	<1.8	<0.063	<0.018	<0.063	<0.018	<0.063	<0.018	<0.063	<0.065	<0.018	<0.061	<0.018	340	50 J
Dibenzo(a,h)anthracene	_µg/L_	NS	NS	<0.02	<0.023	<0.022	<0.023	<2.3	<0.021	<0.023	<0.021	<0.023	<0.021	<0.023	<0.021	<0.022	<0.023	<0.02	<0.023	<23	<23
Fluoranthene	µg/L	400	80	<0.02	<0.026	<0.022	<0.026	14.4	<0.021	<0.026	<0.021	0.037 J	<0.021	<0.026	<0.021	<0.022	<0.026	0.028 J	<0.026	1800	320
Fluorene	µg/L	400 .	80	<0.1	<0.02	1.5	0.83	162	<0.1	0.029 J	<0.1	0.075	<0.11	<0.02	<0.1	<0.11	<0.02	49	0.251	1700	330
Indeno(1,2,3-cd)pyrene	µg/L	NS	NS	<0.04	<0.027	<0.043	<0.027	<2,7	<0.042	<0.027	<0.042	<0.027	<0.042	<0.027	<0.042	<0.043	<0.027	< 0.04	<0.027	<49	<27
1-Methylnaphthalene	µg/L	NS	NS	NA	<0.019	NA	9.7	.136	NÀ	0.027 J	NA	0.115	ŇA	<0.019	NA.	NA	0.019 J	NA	0.057 J	NA	315
2-Methylnaphthalene	µg/L	NS	NS	NA	<0.016	NA	8.9	15.2	NA	0.041 J	NA	0.222	NA	<0.016	NA	NA	0.025 J	NA	0.025 J	NA	470
Naphthalene	µg/L	100	10	<1	0.025 J	1.6 J	0.43	64	<1	0.38	<1	2.34	<1.1	0.024 J	<1	<1.1	0.249	100	0.201	11000	4100
Phenanthrene	µg/L	NS	NS	<0.04	<0.018	<0.043	0.034 J	177	<0.042	0,044 J	0.073 J	0.106	0.046 J	0.029 J	<0.042	<0.043	0.022 J	15	0.08	4600	800
Pyrene	µg/L	250	50	<0.1	<0.025	<0.11	<0.025	7.5 J	<0.1	<0.025	<0.1	0.029 J	<0.11	<0.025	<0.1	<0.11	<0.025	. <0.1	<0.025	1400	222
Notes:		-														-					

1. NR 140 ES = Wisconsin Administrative Code, Chapter NR 140 Enforcement Standard

2. NR 140 PAL = Wisconsin Administrative Code, Chapter NR 140 Preventive Action Limit

3. NS = no standard

4. NA = not analyzed

5. µg/L = micrograms per liter (equivalent to parts per billion, ppb)
 6. Laboratory flags: "J" = Analyte detected between Limit of Detection and Limit of Quantitation.

- 7. Exceedances:
- BOLD = Concentration exceeds NR 140 ES ITALICS = Concentration exceeds NR 140 PAL

Page 1 of 4

Sigma Environmental Services, Inc.

I:\Wisconsin Dept of Natural Resources\13701- Moss-America\LabTables\Groundwater\Table 3 Analytical

Table 3 Groundwater Analytical Data Moss American - 8716 North Granville Road, Milwaukee, Wi Sigma Project No. 13701

We	Il Location:	NR 140	NR 140	MW-34S-N	MW-365	MW	-375	MW	-385	MŴ	-39S	TG	1-1	TG	1-3	TG	2-1	TG2-3	TG	3-1	TG3-3
	Date:	ES	PAL	4/5/13	9/28/10	9/29/10	4/4/13	9/28/10	4/4/13	9/28/10	4/4/13	9/29/10	4/3/13	9/29/10	4/3/13	9/29/10	4/3/13	9/29/10	9/29/10	4/3/13	9/29/10
PVOCs & Detected VOCs			_									1			-						
Benzene	μg/L	5	0.5	<0.27	<0.2	<0,2	<0.27	1.9	0.96	<0,2	<0.27	0.3 J	<0.27	<0.2	<0.27	<0.2	<0.27	<0.2	<0.2	<0.27	<0.2
Ethylbenzene	μg/L	700	140	<0.82	<0.2	<0.2	<0.82	0.9 J	1.4 J	<0.2	<0.82	30	18.4	<0:2	<0.82	. <0.2	<0.82	<0.2	<0.2	<0.82	<0.2
Toluene	µg/L	1,000	200	<0.8	<0.2	<0.2	<0.8	<0,2	<0.8	<0.2	<0.8	<0.2	<0.8	<0.2	<0.8	<0.2	<0.8	<0.2	<0.2	<0.8	<0.2
Xylenes, Total	µg/L	10,000	1,000	<2.41	<0.6	<0.6	<2.41	0.9 J	1.41 J	<0.6	<2.41	55.	31.3	<0.6	<2.41	<0.6	<2.41	<0.6	<0.6	<2.41	<0.6
PAHs																					
Acenaphthene	μg/L	NS	NS	0.059 J	0.6 J	<0.52	0.025 J	4	4.2	3.3	5.8	90000	262	2.9	1.77	<0.58	<0.021	<0.55	<0.54	0,099	<0.52
Acenaphthylene	µg/L	NS .	NS	<0.02	<1.1	<1	<0.02	<3.2	0.153	<13	0.127	4000 J	<10	<1.	<0.02	<1.2	<0.02	<1.1	<1.1	0.056 J	<1
Anthracene	μg/L	3,000	600	0.023 J	<0.022	<0.021	<0.02	<0.022	0.263	0.13	0.136	20000	23.6 J	0.12	0.113	<0.023	0.035 J	<0.022	<0.022	0.189	0.023 J
Benzo(a)anthracene	μg/L	NŚ	ŃS	<0.025	0.017 J	<0.01	<0.025	<0.011	0.039 J	<0.011	0.069 J	14000	<12.5	<0.01	0.025 J	<0.012	<0.025	<0.011	<0.011	0.076 J	<0.01
Benzo(a)pyrene	µg/L	0.2	0.02	<0.018	<0.011	0.027 J	<0.018	<0.011	0.032 J	<0.044	0.027 J	7300	<9	<0.01	<0.018	<0.012	<0.018	<0.011	<0.011	0.04 J	<0.01
Benzo(b)fluoranthene	μg/L	0.2	0.02	<0.02	<0.0089	0.014 J	<0.02	<0.0089	0.079	<0.0085	0.057 J	4900	<10	< 0.0083	<0.02	<0.0093	<0.02	<0.0088	<0.0087	0.073	<0.0083
Benzo(ghi)perylene	μg/L	NS	NS	<0.023	<0.067	0.08 J	<0.023	<0.067	0.077	<0.063	<0.023	3000	<11.5	<0.062	<0.023	<0.069	<0.023	<0.066	<0.065	0.065 J	<0.062
Benzo(k)fluoranthene	μg/L	NS	NS	<0.027	<0.0089	0.01 J	<0.027	<0.0089	<0.027	<0.0085	<0.027	2900	<13.5	<0.0083	<0.027	<0.0093	<0.027	<0.0088	<0.0087	0.029 J	<0.0083
Chrysene	μg/L	0.2	0.02	<0.018	<0.067	<0.062	<0.018	<0.067	0.052 J	<0.063	0.054 J	14000	<9	<0.062	<0.018	<0.069	<0.018	<0.066	<0.065	0.061	<0.062
Dibenzo(a,h)anthracene	µg/L	NS	NS	<0.023	<0.022	<0.021	<0.023	<0.022	<0.023	<0.021	<0.023	1200	<11.5	<0.021	<0.023	<0.023	<0.023	<0.022	<0.022	<0.023	<0.021
Fluoranthene	μg/L	400	80	<0.026	0.5	<0.021	<0.026	<0.22	0.103	0.19	0.32	82000	28.1 J	27	0.155	<0.023	<0.026	0.026 J	0.062 J	0.244	0.061 J
Fluorene	μg/L	400	80 ·	0.034 J	0.12 J	<0.1	0.028 J	<0.11	0.152	1.1	0.73	75000	135	1.4	0.259	<0.12	<0.02	<0.11	0.12 J	0.068	0.15 J
Indeno(1,2,3-cd)pyrene	µg/L	NS	NS	<0.027	<0.045	<0.041	<0.027	<0.044	0.04 J	<0.042	<0.027	2600	<13.5	<0.041	<0.027	<0.046	<0.027	<0.044	<0.044	0.044 J	<0.042
1-Methylnaphthalene	μg/L	NS	NS	0.055 J	NA	NA	0.025 J	NA	1.99	NA	0.169	NA .	169	NA	<0.019	NA	<0.019	NA	NA.	<0.019	NA
2-Methylnaphthalene	µg/L	NS	NS	0.039 J	NA	NA	0.044 J	NA	7.9	NA	0.117	NA	164	NA	0.017 J	NA	<0.016	NA	NA	0.017 J	NA
Naphthalene	µg/L	100	10	0.053 J	<1.1	<1	0.36	67	8.1	<1.1	0.211	110000	1950	<1	0.024 J	<1.2	<0.023	<1.1	<1.1	0.024 J	<1
Phenanthrene	µg/L	NS	NS	0.057 J	0.053 J	<0.041	0.037 J	<0.044	0.15	0.056 J	0.252	200000	113	0.59	0.035 J	<0.046	<0.018	<0.044	<0.044	0.069	0.1 J
Pyrene	μg/L	250	50	<0.025	0.36 J	<0.1	<0.025	<0.11	0.092	0.15 J	0.216	57000	17.7 J	0.16 J	0.104	<0.12	<0.025	<0.11	<0:11	0,199	<0.1

Page 2 of 4

Sigma Environmental Services, Inc.

I:\Wisconsin Dept of Natural Resources\13701- Moss-America\LabTables\Groundwater\Table 3 Analytical

Table 3	
Groundwater Analytical Data	
Moss American - 8716 North Granville Road, Milwaui	kee, Wl
Sigma Project No. 13701	

Weil	Location:	NR 140	NR 140	TG4-1	TG	4-3	TG	5-1	TG	5-3	TG	6-1	TG	6-3	PZ-02	PZ-03	PZ-10	MM	/-A	MV	N-B
	Date:	ES	PAL	9/29/10	9/29/10	4/3/13	9/29/10	4/3/13	9/29/10	4/3/13	9/29/10	4/3/13	9/29/10	4/3/13	4/4/13	4/4/13	4/4/13	9/30/10	4/4/13	9/27/10	4/5/13
PVOCs & Detected VOCs						<u> </u>													-		
Benzene	µg/L	5	0.5	<0.2	<0.2	<0.27	<0.2	<0.27	<0.2	<0.27	<0.2	<0.27	<0.2	<0.27	<0.27	0.44 J	<0.27	<0.2	<0.27	<0.2	<0.27
Ethylbenzene	µg/L	700	140	<0.2	<0.2	<0.82	<0.2	<0.82	<0.2	<0.82	<0.2	<0.82	<0.2	<0.82	<0.82	2.68	<0.82	<0.2	<0.82	<0.2	<0.82
Toluene	µg/L	1,000	200	<0.2	<0.2	<0.8	<0.2	<0.8	<0.2	<0.8	<0.2	<0,8	<0.2	<0.8	<0.8	<0.8	<0.8	<0.2	<0.8	<0.2	<0.8
Xylenes, Total	µg/L	10,000	1,000	<0.6	<0.6	<2.41	<0.6	<2.41	<0.6	<2.41	<0.6	<2.41	<0.6	<2.41	<2.41	1.92 J	<2.41	<0.6	<2.41	<0.6	<2.41
PAHs																					
Acenaphthene	µg/L	NS	NS	<0.54	<0.52	<0.021	<0.52	<0.021	<0.52	<0.021	0.63 J	0.232	<0.52	<0.021	79	116	5.2	<0.51	<0.021	<0.53	<0.021
Acenaphthylene	µg/L	NS	NS	<1.1	<1	0.021 J	<1	<0.02	<1	<0.02	<1.1	<0.02	<1	<0.02	1.01 J	0.99 J	0.095	<1	<0.02	<1.1	<0.02
Anthracene	µg/L	3,000	. 600	<0.022	<0.021	0.127	<0.021	0.054 J	<0.021	0.087	0.023 J	0,031 J	-<0.021-	0.042 J	<0.4	2.37 -	0.31	<0.021	0.025 J	<0.021	<0.02
Benzo(a)anthracene	µg/L	NS	NS	<0.011	<0.01	0.033 J	<0.01	<0.025	<0.01	<0.025	<0.011	<0.025	<0.01	<0.025	<0.5	2.03	0.128	<0.01	<0.025	<0.011	<0.025
Benzo(a)pyrene	_µg/L	0.2	0.02	<0.011	<0.01	0.024 J	<0.01	<0.018	<0.01	<0.018	<0.011	<0.018	<0.01	<0.018	<0.36	0.71 J	0.07	<0.01	<0.018	<0.011	<0.018
Benzo(b)fluoranthene	µg/L	0.2	0.02	<0.0086	<0.0084	0.044 J	<0.0084	<0.02	< 0.0083	<0.02	<0.0091	<0.02	<0.0084	<0.02	<0.4	1.45	0.169	<0.0082	<0.02	<0.0086	<0.02
Benzo(ghi)perylene	□µg/L	ŃS	NS	<0.065	<0.063	0.042 J	<0.063	<0.023	<0.062	<0.023	<0.068	<0.023	<0.063	<0.023	<0.46	<0.46	0,108	<0.062	<0.023	<0.064	<0.023
Benzo(k)fluoranthene	µg/L	NS	NS	<0.0086	<0.0084	<0.027	<0.0084	<0.027	<0.0083	<0.027	<0.0091	<0.07	<0.0084	<0.027	<0.54	<0.54	0.064 J	<0.0082	<0.027	<0.0086	<0.027
Chrysene	µg/L	0.2	0.02	<0.065	<0.063	0.023 J	<0.063	<0.018	<0.062	<0.018	<0.068	<0.018	<0.063	<0.018	<0.36	1.47	0.132	<0.062	<0.018	<0.064	<0.018
Dibenzo(a,h)anthracene	µg/L	NS	NS	<0,022	<0.021	<0.023	<0.021	<0.023	<0.021	<0.023	<0.023	<0.023	<0.021	<0.023	<0.46	<0.46	<0.023	<0.021	<0.023	<0.021	<0.023
Fluoranthene	µg/L	400	80	<0.022	<0.021	0.083 J	<0.021	<0.026	0.051 J	0,096	0.047 J	0.069 J	0.083 J	0.069 J	<0,52	10.7	0.41	<0.021	<0.026	<0.021	<0.026
Fluorene	µg/L	400	80	<0.11	<0.1	<0.02	<0.1	<0.02	<0.1	<0.02	0.22 J	0.048 J	<0.1	<0.02	3.6	33	0.92	<0.1	<0.02	<0.11	<0.02
Indeno(1,2,3-cd)pyrene	µg/L	NS	NS	<0.043	<0.042	<0.027	<0.042	<0.027	<0.041	<0,027	<0.045	<0.027	<0.042	<0.027	<0.54	<0.54	0.071 J	<0.041	<0.027	<0.043	<0.027
1-Methylnaphthalene	µg/L	NS	NŚ	NA	NA	<0.019	NA	<0.019	NA	<0.019	NA	<0.019	NA	<0,019	0.B J	47	3.4	NA	<0.019	NA	<0.019
2-Methylnaphthalene	μg/L	NS	NS	NA	NA	<0.016	NA	<0.016	NA	0.020 J	NA	0.019 J	NA	<0.016	<0,32	<0.32	2,82	NA	<0.016	NA	<0.016
Naphthalene	µg/L	/100	· 10	<1.1	<1	<0.023	<1	<0.023	<1	<0.023	<1.1	<0.023	<1	<0.023	.1.79	47	0.32	<1	<0.023	<1.1	0.034 J
Phenanthrene	μg/L	NS	NS	<0.043	<0.042	0.037 J	<0.042	0.027 J	<0.041	0.027 J	<0.045	0.025 J	<0.042	0.021 J	< 0.36	1.87	1.36	<0.041	0.026 J	<0.043	0.037 J
Pyrene	µg/L	250	50	<0.11	<0.1	0.071 J	<0.1	<0.025	<0.1	0.103	<0.11	0.055 J	<0.1	0.052 J	<0.5	7.1	0.299	<0.1	0.025	<0.11	0.025

Page 3 of 4

Sigma Environmental Services, Inc.

I:\Wisconsin Dept of Natural Resources\13701- Moss-America\LabTables\Groundwater\Table 3 Analytical

Table 3 Groundwater Analytical Data Moss American - 8716 North Granville Road, Milwaukee, Wi Sigma Project No. 13701

w	ell Location:	NR 140	NR 140	MV	V-C	MV	V-D	MV.	N-E	M	N-F	MV	V-G	MV	V-H	M	N-I	M	۲.N	MW-K
	Date:	ES	PAL	9/27/10	4/5/13	9/27/10	4/5/13	9/30/10	4/5/13	9/30/10	4/5/13	9/30/10	.4/5/13	9/28/10	4/5/13	9/28/10	4/5/13	9/28/10	4/5/13	9/28/10
PVOCs & Detected VOCs		·								•										
Benzene	μg/L	<u>5</u> .	0.5	<0.2	<0.27	<0.2	<0,27	<0.2	<0.27	<0.2	<0.27	<0.2	<0.27	<0.2	<0.27	<0.2	<0.27	<0.2	<0.27	<0.2
Ethylbenzene	µg/L	700	140	<0.2	<0.82	<0.2	<0.82	<0.2	<0.82	<0.2	<0.82	<0.2	<0.82	<0.2	<0.82	<0.2	<0.82	<0.2	<0.82	<0.2
Toluene	µg/L	1,000	200	<0.2	<0.8	<0.2	<0.8	<0.2	<0.8	<0.2	<0.8	<0.2	<0.8	<0.2	<0.8	<0.2	<0.8	<0.2	<0.8	<0.2
Xylenes, Total	µg/L	10,000	1,000	<0.6	<2.41	<0.6	<2.41	<0.6	<2.41	<0.6	<2.41	<0.6	<2.41	<0.6	<2.41	<0.6	<2.41	<0.6	<2.41	<0.6
PAHs																•				
Acenaphthene	μg/L	NS	NS	<0.54	<0.021	<0.55	<0.021	<0.56	<0.021	<0.51	<0.021	<0.51	<0.021	<0.52	<0,021	<0.52	<0.021	<0.54	<0.021	<0.53
Acenaphthylene	µg/L	NS	NS	<1.1	<0.02	<1.1	<0.02	<1.1	<0.02	<1	<0.02	<1	<0.02	<1	<0.02	<1	<0.02	<1.1	<0.02	<1.1
Anthracene	μg/L	3,000	600	<0.022	<0.02	<0.022	<0.02	<0.022	<0.02	<0.021	<0.02	<0.02	<0.02	<0.021	<0.02	<0.021	<0.02	<0.021	<0.02	0.022 J
Benzo(a)anthracene	µg/L	NS	NS	<0.011	<0.025	<0.011	<0.025	<0.011	<0.025	<0.01	0.03 J	<0.01	<0.025	<0.01	0.053 J	<0.01	0.055 J	<0.011	0.026 J	<0.011
Benzo(a)pyrene	μg/L	0.2	0.02	<0.0111	<0.018	<0.011	<0.018	0.02 J	0.038 J	<0.01	0.039 J	<0.01	<0.018	<0.01	0.049 J	<0.01	0.093	<0.011	0.025 J	<0.011
Benzo(b)fluoranthene	µg/L	0.2	0.02	<0.0087	0.039 J	<0.0088	<0.02	<0.009	0.063	<0.0082	0.065	<0.0082	<0.02	<0.0083	0.107	<0.0084	0.222	<0.0086	0.055 J	<0.0085
Benzo(ghi)perylene	µg/L	NS.	NS	<0.065	0.026 J	<0,066	0.038 J	0.12 J	0.44	<0.062	0,188	<0.061	0.047 J	<0.062	0.107	<0.063	0,152	<0.064	0.054 J	<0.064
Benzo(k)fluoranthene	µg/L	NS	NS	<0.0087	<0.027	<0.0088	<0.027	<0.009	<0.027	<0.0082	<0.027	<0.0082	<0.027	<0.0083	<0.027	<0.0084	0.071 J	<0.0086	<0.027	<0.0085
Chrysene	µg/L	0.2	0.02	<0.065	0.028 J	<0.066	0.02 J .	<0.067	<0.018	<0.062	0.06	<0.061	<0.018	<0.062	0.082	<0.063	0.111	<0.064	0.038 J	<0.064
Dibenzo(a,h)anthracene	μg/L	NS	NS	<0.022	<0.023	<0.022	<0.023	<0.022	<0.023	<0.021	<0.023	<0.02	<0.023	<0.021	<0.023	<0.021	<0.023	<0.021	<0.023	<0.021
Fluoranthene	µg/L	400	80	<0.022	0.052 J	<0.022	<0.026	<0.022	<0.026	<0.021	0.087	<0.02	<0.026	<0.021	0.153	<0.021	0.196	<0.021	0.061 J	<0.021
Fluorene	µg/L	400	80	<0.11	<0.02	.<0.11	<0.02	<0.11	<0.02	<0.1	<0.02	<0.1	<0.02	.<0.1	<0.02	<0.1	<0.02	<0.11	<0.02	<0.11
Indeno(1,2,3-cd)pyrene	µg/L	NS	NS	<0.043	<0.027	<0.044	<0.027	<0.045	0.094	<0.041	0.04 J	<0.041	<0.027	<0.042	0.041 J	<0.042	0.093	<0.043	<0.027	<0.043
1-Methylnaphthalene	µg/L	NS	NS	NA	0.11	NA	<0.019	NA	0.02 J	NA	<0.019	NA	<0.019	NA	<0.019	ŇA	<0.019	NA	0.025 J	NA
2-Methylnaphthalene	µg/L	NS	NS	NA	<0.016	NA'	<0.016	NA	<0.016	NA	<0.016	NA	<0.016	NA	<0.016	NA	<0.016	NA	<0.016	NA
Naphthalene	µg/L	100	10	<1.1	<0.023	<1.1	<0.023	<1.1	<0.023	. <1	0.027 J	<1	<0.023	<1	<0.023	<1	<0.023	<1.1	0.032 J	<1.1
Phenanthrene	μg/L	NS	NS	<0.043	0.044 J	<0.044	<0.018	<0.045	0.018 J	<0.041	0.062	<0.041	0.02 J	<0.042	0.044 J	<0.042	0.087	< 0.043	0.047 J	<0.043
Pyrene	µg/L	250	50	<0.11	0.046 J	<0.11	<0.025	<0.11	0.034 J	<0.1	0.127	<0.1	0.033 J	<0.1	0.15	<0.1	0.16	<0.11	0.058 J	<0.11

Page 4 of 4

Sigma Environmental Services, Inc.

I:\Wisconsin Dept of Natural Resources\13701- Mose-America\LabTables\Groundwater\Table 3 Analytical

l able 4
Groundwater In Situ Measurements
Moss American - 8716 North Grandville Road, Milwaukee, WI
Sigma Project No. 13701

[·		•	In Situ	Measurem	ents	
	Deta			Ferrous	Dissolved	Redox
Well Identification	Date		Temperature	Iron	Oxygen	Potential
· .		рӉ	(° C)	(mg/l)	(mg/l)	(mV)
MW-5S	9/27/10	6.57	12.15	NA	11.20	36.1
10100-33	4/4/13	7.2	9.0	3.0	2,00	35
MW-7S	9/28/10	6.89	13.12	NA NA	0.8	-70
10100-73	4/4/13	7.1	5.9	3.6	0.8 1.40	-70 -15
MW-7S-W	4/5/13	7.2	6.1	0.0	1.40	-182
MW-9S	9/30/10	6.69	13.75	NA	1.7	-162 -21.3
10100-93	4/4/13	7.3	5.6	8.0	1.50	
MW-27S	9/27/10	6.47	14.51	8.0 NA	0.8	-36 -70.1
111111-275	4/4/13	7.3	7.5	3.0		-70.1
MW-305	9/28/10	6.72	13.87	<u>3.0</u> NA	<u> </u>	45.5
10100-305						• • •
MIN 240	4/4/13	7.3	7.6	0.8	1.90	40
MW-31S MW-32S	9/29/10	6.90 6.40	13.37 16.49	NA . NA	0.8 2.4	-16.1
14144-222	9/27/10		6.4			-57.6
	4/4/13	7.4		6.8	1.40	-159
MW-33S	9/28/10	6.34	14.60 6 5	NA	3.7	-18.2
	4/4/13	<u>6.9</u>	6.5	3.6	1.10 NS	-15 NC
MW-34S	9/28/10	NS 7.0	NS	NS		NS 160
MW-34S-N	4/4/13 4/5/13	7.2	6.2 6.0	7.0	0.49 2.4	<u>-160</u> 131
MW-345-N MW-35S	9/28/10	6.46	16.26	0.0 NA	0.8	-38.9
	9/28/10	6.71	15.58	NA NA	3.0	-38.9 -18.6
MW-37S	4/4/13	7.7		0.0	3.0 1.30	122
	9/28/10	6.87	7.4 14.32	NA	1.30	-43.3
MW-38S						
MW-39S	4/4/13	7.0	7.9	2.0	1.10	-33
10100-395	9/28/10	6.75	16.04	NA	0.4	-48.3
T04.4	4/4/13	7.6	6.5 NA	4.2	0.97	-104
TG1-1	9/29/10	NA	NA	NA	NA	NA
	4/3/13	7.2	5.8	4.0	0.85	-120
TG1-3	9/29/10	6.97	16.08	NA	1.68	-124.0
	4/3/13	7.1	5.1	3.6	0.55	-88
TG2-1	9/29/10	6.77	14.23	NA	0.76	-2.5
	4/3/13	7.2	5.2	0.0	0.60	12
TG2-3	9/29/10	6.88	16.63	NA	1.12	-113.6
T00.4	4/3/13	NA	NA ·	NA	<u>NA</u> .	NA
TG3-1	9/29/10	6.81	16.75	NA	3.04	-67.1
	4/3/13	7.2	5.6	2.4	1.30	-96
TG3-3	9/29/10	6.79	16.79	NA	1.19	-81.5
	4/3/13	NS C 07	NS 15.92	NS ·	NS 5.40	<u>NS</u>
TG 4 -1	9/29/10	6.97	15.83	NA	5.16	70.4
	4/3/13	:NS	NS 15.00	NS	NS	NS 0.0
TG4-3	9/29/10	7.16	15.96	NA	5.63	-6.3
705 (4/3/13	7.1	6.2	· 4.2	0.90	-129
TG5-1	9/29/10	6.89	15.68	NA	5.37	81.0
	4/3/13	7.0	6.1	4.0	1.00	-8
TG5-3	9/29/10	7.08	15.31	NA	1.04	-36.5
	4/3/13	. 7.1	6.4	1.4	1.00	-14
TG6-1	9/29/10	6.86	16.71	NA	0.72	-110.7
	4/3/13	7.3	5.8	0.0	1.20	-107

Sigma Environmental Services, Inc.

····			Project No. 137	• •		
			In Situ	Measurem	ents	
	Data			Ferrous	Dissolved	Redox
Well Identification	Date	рН	Temperature (°C)	Iron (mg/i)	Ox <u>yg</u> en (mg/l)	Potential (mV)
TG6-3	9/29/10	6.58	15.76	NA	1.33	-46.4
	4/3/13	7.3	3.8	4.2	1.40	-14
PZ-02	4/4/13	7.0	6.0	4.0	1.00	-12
PZ-03	4/4/13	7.2	6.8	4.0	0.95	-20
PZ-10	4/4/13	7.2	- 5.8	7.0	1.40	-103
MW-A	9/30/10	6.76	14.09	NA	0.43	-48
	4/5/13	7.3	5.8	4.0	1.70	173
MW-B	9/27/10	6.87	13.58	NA	0.98	19.6
	4/5/13	7.3	4.7	1.0	1.40	27
MW-C	9/27/10	7.01	12.83	NA	1.28	-53.5
	4/5/13	7.3	6.9	2.0	1.20	-31
MW-D	9/27/10	6.71	13.82	NA	1.64	-87.6
	4/5/13	7.4	5.7	4.0	1.80	75
MW-E	9/30/10	7.16	12.57	NA	NA	NA
	4/5/13	7.5	7.5	0.0	1.10	-10
MW-F	9/30/10	7.04	13.59	NA	2.57	85.4
	4/5/13	7.4	8.2	3.6	1.24	-60
MW-G	9/30/10	6.85	14.32	NA	2.25	83.9
	4/5/13	7.2	7.3	0.0	3.00	-10
MW-H	9/28/10	7.05	13.13	NA	1.47	8.4
	4/5/13	7.3	7.3	4.0	1.60	-30
MW-I	9/28/10	7.08	15.07	NA ·	1.50	-52.4
	4/5/13	7.7	4.8	0.0	3.10	40

Table 4 Groundwater *In Situ* Measurements Moss American - 8716 North Grandville Road, Milwaukee, WI Sigma Project No. 13701

MW-K Notes:

MW-J

1. ° C = degrees Celcius

9/28/10

4/5/13

9/28/10

2. mg/l = milligrams per liter (equivalent to parts per million, ppm)

7.14

7.3

7.03

3. mV = millivolts

4. NA = not analyzed

5. NS = not sampled (obstructions occurred in TG2-3 and TG4-1 preventing sampling on 4/3/13)

11.69

7.3

16.82

2.16

2.90

2.03

1.1

46

108.4

NA

0.0

NA

Sigma Environmental Services, Inc.

Table 5
Groundwater Bioremediation Data
Moss American - 8716 North Grandville Road, Milwaukee, Wi
Sigma Project No. 13701

Well Identification	Date	Nitrate-Nitrogen	Nitrite-Nitrogen	Total Kjeldahl Nitrogen	Ammonia- Nitrogen	Total Phosphate- Phosphorous	Orthophosphate	Biochemical Oxygen Demand	Chemical Oxygen Demand	Total Organic Carbon	Heterotrophic Plate Count ^e	Sub-Petroleur Degraders ^b
	••••••	mg/L	mg/L	mg/L	mg/L	.mg/L	mg/L	mg/L	mg/L	mg/L	cfu/L	cfu/L
TG1-1	9/29/10	<0.04	<0.015	<1.3	0.79	<0.25	<0.03	29.2	415.0	11.4	3,690,000	1,850,000
	4/3/13	<0.08	<0.04	1.6	0.4	<0.13	<0.18	7.0	. 51.0	14.0	300,000	160,000
TG1-3'	9/29/10	<0.04	<0.015	1.9	1.9	<0.25	< 0.03	<3.6	28.5	10.8	6,300,000	100,000
	4/3/13	0.17	<0.04	1.8	0.93	0.31	<0.18	7.2	66.0	14.0	250,000	130,000
TG2-1	9/29/10	<0.04	<0.015	<0.5	0.37 *	<0.25	<0.03	<1.4	7.1 *	2.3	610,000	240,000
	4/3/13	<0.08	<0,04	<0.4	<0.04	0.16	<0.18	· <2.0	<13	5.6	550,000	8,000,000
TG2-3	9/29/10	<0.04	<0.015	0,84 *	<0.2	<0.25	< 0.03	<2	19.0	6.6	160,000	360,000
	4/3/13	· NS	NS	NS	NS	NS	. NS	NS	NS	NS_	NS	NS
TG3-1	9/29/10	<0.04	<0.015	1.2	<0.2	0.28 *	<0,03	<2.1	28.1	11.1	40,000	80,000
	4/3/13	0.21	<0.04	0.85	0.32	1.6	<0.18	3.5	42.0	24.0	500,000	22,000,000
TG3-3	9/29/10	<0.04	<0.015	2.1	1.7	<0,25	<0.03	8.3	25.3	8.5	300,000	20,000
	4/3/13	NS	NS	NS	NS	NS	NS	NS	NS	NS ·	· NS	NS
TG4-1	9/29/10	<0.04	<0.015	0.51 *	0,25 *	<0.25	0,072 *	<1.5	22.1	8.8	180,000	30,000
	4/3/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
TG4-3	9/29/10	<0.04	<0.015	1.0	0.68	<0.25	< 0.03	<1.6	23.3	9.1	810,000	430,000
	4/3/13	0.19	<0.04	0.78	0.44	0.29	<0.18	<2.0	20.0	13	66,000	2,000,000
TG5-1	9/29/10	<0.04	<0.015	0.71	<0.2	<0.25	0.1	<1.6	11.9	4.6	540,000	<10,000
	4/3/13	<0.08	<0.04	<0.4	<0.04	0.17	<0.18	<2.0	16	7.5	120,000	3,800,000
TG5-3	9/29/10	<0.04	<0.015	1.2	0.9	<0.25	<0.03	<1.3	14.2	5.0	1,680,000	<10,000
	4/3/13	0.18	<0.04	1.1	0.3	0.17	<0.18	2.0	15.0	13.0	11,000	1,000,000
TG6-1	9/29/10	<0.04	<0.015	3	2.2	0.34	<0.03	<2.6	28.9	12	220,000	60,000
	4/3/13	0.18	<0.04	1.3	0.64	0.14	<0.18	4.7	19	4.2	620,000	36,000,000
TG6-3	9/29/10	<0.04	<0.015	0.9 *	0.53 *	<0.25	< 0.03	<1.3	14.2	6.8	<10,000	<10,000
	4/3/13	0.19	<0.04	0.66	0.38	0.18	<0.18	<2.0	38	20	150,000	120,000
lotes: . cfu/L = colony fo . mg/L = milligram . Laboratory flags:	s per liter (equiva			imit of Quantitatio	on.							

5. ⁶ = analysis was completed by CT Laboratories using an incubation period of one week

6. ^b = analysis was completed by Terra System, Inc. using an incubation period of three weeks

Page 1 of 1

Sigma Environmental Services, Inc.

I:\Wisconsin Dept of Natural Resources\13701- Moss-America\LabTables\Groundwater\Table 5 Bio

APPENDIX A

SOIL BORING AND WELL CONSTRUCTION LOGS

/ I:\Wisconsin Dept of Natural Resources\13701- Moss-America\Reports\Moss-American Report 2013.docx

Ļ

١,

SOIL BORING LOG INFORMATION

Form 4400-122

Rev. 7-98

			Re	<u> </u>	Wastewater 🛛 m/Redevelopment 🖾		Waste J Other		gement								·.
				- -			•							Pa		of	1 .
	ity/Proj 16 N		^{me} dville	Poad		ľ	.icense/l	Permit	Monit	oring Na	mber		Bering	, Numb		N-78	
				of crew chief (first, last) and Firm		- Date Dri	lling S	larted		Dat	e Drilli	ng Co	mpleted			ling Method
Bri	an STRA						3/28/2013				.		3/28/2	1012			ollow stem
	nique V		D,	DNR Well ID No.	Common Well Name	e F	inal Sta			-	Surface	e Eleva		2015	Bo		Diameter
		V621	, <u>, , , , , , , , , , , , , , , , , , </u>		MW-7S-W]	Feet	MSL	ļ			t MS			8.3	inches
	Grid O Plane	rigin	∐ (¢	stimated: □) or B N,	oring Location		La	t	<u> </u>	<u>.</u>	. 8	Local (ind Lo		I		ПЕ
NW		of N	w_:	/4 of Section 8,	T 8 N, R 21 E		Long		•	<u> </u>	"		Feel				Feet 🛛 W
Facili	ty ID			County Milwaukee	2	Co. 41	unty Co I	de :		Fown/Ci vaukee	•	Village					
Sai	nple	<u> </u>	1		,	1.1.	•						Soil	Prop	erties	· · ·	<u> </u>
	8 E	່	ti l	Soil	Rock Description							စ					
ь ө	Att.	Jound	In Fe		eologic Origin For			0	 U	ਬ	A	essiv	e e		Ϊţ		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	E	ach Major Unit			SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	foistu onter	Liquid	Plasticity Index	200	RQD/ Comm
	24	<u>1</u> 9			rass, dk brown, mo	oist,	;	D ML	<u>0</u> 1		0	ΝÖ	20	그그	P P	4	<u>~~</u> 0
ss	13.		- - - - - 2	\partially frozen						10							
ľ		3	Ē.	SILT, med and o moist	lk brown, very den	nse,											
2 SS	24 7	2 2 2	Ę^					ML			- 0						
X		2 5	-3 -3				:									•	
3 H	24	22	E-4	COARSE SANI	D and GRAVEL, m	ned			μIJ	丨	0						Lab sample
3 SS	-10	20 26	E_5	brown/grey, loo	se, wet, product			sw	s.D		-						(4-6')
N		12		Water at approx	, 5'				ø	【目】					•		
ss V	24 15	2 7	6 E		an, med dense, we	t, sl	ight		ÎÎÎÎ		0						
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		9 4	-7	product				ML									
_		-	-8	_med grey/brown		•	7		╎╷╷								
ss V	24 15	3 6		SILT with trace	small gravel, med						0						
M		10 15	-9	grey/brown, mee	l dense, med plasti	icity	',			目							
6	24	4		lt brown/tan, ver	y dense					目	0						
ss (V	20	/	-11		•			ML									
Δ		10	-12			۰.				目							ĺ
7 SS \\	24 19	ь 8	F				•			旧	0						
Å		15 13	-13														ĺ
·			F-14	End of boring at	14'. Monitoring w	ve11		-		とろ							
				MW-7S-W insta	lled with bottom o	of							•			!	
				casing at 13'.													
		fy that	the info	rmation on this form is	true and correct to the	heet	ofmyb	nowle									L
Signat	-									Servic	es. In	<u>с.</u>				Tel· 4	14-643-4200
-		В	Q2	Juscol						e, WI 5							14-643-4210

State of Wisconsin

Department of Natural Resources

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

State of Wisconsin Department of Natural Resources

# SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

_			<u>Rc</u>	oute To;	Watershed/W		•		Waste ]		ement									
					Remediation	/Redev	/elopment 🛛		Other		•		•							
										1						Pag	że 1	of	1	
	ity/Proj					<u>.                                    </u>			License/	Permit	/Moni	loring Ni	imbër		Boring	Numb			~ ~ ~	
			dville		1. 616	1.02	<u> </u>		-	111' - C			10-		- <b>0</b>				S-N	
		a By:	Name	of crew cl	hief (first, last)	and Fu	r <b>m</b>		Date Dri	lling S	tarted		Da	e Drilli	ng Cor	npleteo	1		ing Method	
Br	ian 2STR/	1								3/28	/201	3			3/28/2	2013		hollow stem		
	Inique V		),	DNR V	Well ID No.	Com	mon Well Na	me	Final Sta				Surface	e Eleva		.015	Bo		Diameter	
		N622	·	T .			/W-34S-N			Feet I	MSL	. 1		Fee	t MS	L		8.3	inches	
	l Grid C	rigin	[] (c	stimated:	) or Bo				.		• .	1		Local (	irid Lo	cation			•	
	Plane				N,	E	S/C/N		La										ΠE	
NW	ity ID	of N	W 1	1/4 of Sec	tion 8, County	т 8	N, R 21		Long		Ciult	Town/Ci		Villago					Feet 🛛 W	
racii	ity iD				Milwaukee				41			waukee	•	• mage						
Sa	mple	1	T	r						┍╌╌┛				1	Soil	Prop	erties		• •	
	· · ·	1			. Soil/F	tock D	escription	'	•		·				· · · -	<b>_</b>				
	Length Att. & Recovered (in)	Blow Counts	Depth In Feet				Origin For				ŀ			Compressive Strength	ļ				ង	
a d	ere A	ပိ	ЧЦ	•		-	or Unit			cs	hic		Ð	pres	ent ent	ц ц	icity		men /	
Number and Type	en en en	low	Sept							nsi	da s	Log Well Diagram	PID/FID	E E	Moisture Content	i, je	Plastic Index	P 200	RQD/ Comments	
11	24	13	-	TOPS	SOIL and gr	ass, d	lk brown, v	/ery		ML	315	<u><u>v</u></u>		1007	20			-	<u> </u>	
ss	11	2	1	\dense	, moist, par	tially	frozen		ſ		$\prod$									
	V	ļ	E	SILT,	, lt and dk b	rown	, soft, mois	st to	wet	ML			0				Į		,	
2	24	· 1	<u>-</u> 2		·					·		411								
2 SS	Ō	woh	-3						,					· ·				1		
	l I		E,							ļ								1		
, 1	24	₁	<b>E</b> -4	,																
3 SS	4	woh							-							· ·		•		
			F-5	SILT	with slight	CLA	Y, med gre	y/bi	rown,	CL-MI		図目	0							
.	24	4	Ē6	very s	soft, wet	5 71			г		11111	ぬ目	· 0	•		ļ				
ss	1	3	Ē		r at approx. with trace s		gravel me	d or					U							
- 1		4	E-7		ly dense, w		Eravol, mo	ч Бr	,,	i										
.			E8		,			•					•				1.1			
SS	24 20	3	Ę		wn/grey								0							
		WOH	E9							ML										
_	¥		E-10			•				[			·							
ss	24 16		E	lt grey	Ý				·				0			. · ·				
		4 4 8	<b>E</b> -11	no gra	avel					ļ				•	·	ŀ				
·	Y	-	E 12				:		۰.	ľ										
7 SS	24 19		È '2			1.			· · ·	SP	Ш	「日日	0						· .	
		36	-13		RSE SAND with trace s			d		· · · · ·	ĺΤΤ								· .	
ľ	¥ 2	10	-14	grev/	prown/red, 1	med d	lense, wet	u		ML					1					
	1				f boring at			wel	<u></u>							ĺ				
				MW-	34S-N insta	lled v	with botton	n of												
	1			casing	g at 13'.					ľ										
	I		<u> </u>	L						<b></b>	<u> </u>	<u> </u>		I	I	<u> </u>		-	<u> </u>	
	-	ty that	the info	ormation c	on this form is	true an	1.00													
Signal	UFC	Q.	An	usa	1/				1a Envi W. Canal					1C.					414-643-4200	
,	•	27	7	man				500.	w. Canal	SL IVII	i wauk	<u></u> , wi ).						rax, 4	• •	

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

State of Wisconsin	·.		
Department of Natural Resources Route To:		Vaste Management	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name	Local Grid Location of Well		Well Name
		î. [] E.	
8716 N. Grandville Road Facility License, Permit or Monitoring No.	I. S Local Grid Origin (cstimated: )		MW-7S-W Wis. Unique Well No. [DNR Well Number
Facinty Electise, remit of Monitoring No.			
-	Lat Long	or	VN621
Facility ID	St. Plane ft. N	ft. E. S/C/N	Date Well Installed
	Section Location of Waste/Source		03/28/2013
Type of Well	<u>NW</u> 1/4 of <u>NW</u> 1/4 of Sec. <u>8</u>	T 8 NR 21 DW	Well Installed By: (Person's Name and Firm)
Well Code 11/mw	Location of Well Relative to Waste/Source		Brian
Distance from Waste/ Enf. Stds. Source ft. Apply	u 🗆 Upgradient s 🗆 Sidegra d 🗆 Downgradient n 🖾 Not Kr	adient	GESTRA
A. Protective pipe, top elevation	ft. MSL	1. Cap and lock?	🛛 Yes 🗆 No
		2. Protective cover p	
B. Well casing, top elevation	ft. MSL	a. Inside diameter	<u>4.0</u> in.
C. Land surface elevation		b. Length:	<u>4.0</u> ft.
		c. Material:	Steel 🛛 04
D. Surface seal, bottom ft. MSL	or <u>1.0</u> ft.		Other 🛛 🛄
12. USCS classification of soil near screen:	A / A	d. Additional prot	ection? 🗍 Yes 🛛 No
	w⊠ sp⊡l \\  X	If yes, describe	:
		$\langle \rangle$	Bentonite 🖾 30
Bedrock 🗆		3. Surface seal:	Concrete 🗍 01
13. Sieve analysis attached?	ś⊠No 888		Other D
14. Drilling method used: Rotar	y □ 5 0	4. Material between	well casing and protective pipe:
Hollow Stem Aug		in material corritori	Bentonite 🖾 30
-			Other 🛛
15. Drilling fluid used: Water 02 A	ir ⊡01		l: a. Granular/Chipped Bentonite 🛛 3 3
Drilling Mud 003 Non			ud weight Bentonite-sand slurry 🔲 3 5
		cLbs/gal m	
16. Drilling additives used?	s 🖾 No	d% Benton	
			volume added for any of the above
Describe		f. How installed:	
17. Source of water (attach analysis, if required			Tremie pumped 🔲 02
			Gravity 🛛 08
	0: 	6. Bentonite seal:	a.Bentonite granules 🔲 33
		b. □1/4 in. ⊠3	3/8 in. 🗍 1/2 in. Bentonite chips 🖾 3 2
E. Bentonite seal, top ft. MSL	or0_ft. 🔪 👹 👹	/ c	Other 🛛
		7. Fine sand material	: Manufacturer, product name & mesh size
F. Fine sand, top ft. MSL of	or1.0_ft. 🔪 📓 📓	a	#4000
·		_ b. Volume added	ft ³
G. Filter pack, top ft. MSL of	or <u>2.0</u> ft.	8. Filter pack materia	al: Manufacturer, product name & mesh size
		a	#5
H. Screen joint, top ft. MSL of	or <u>3.0</u> ft	b. Volume added	<u></u>
		9. Well casing:	Flush threaded PVC schedule 40 🛛 23
I. Well bottom ft. MSL o	or <u>13.0</u> ft.	st tron easing.	Flush threaded PVC schedule 80 24
J. Filter pack, bottom ft. MSL of	r <u>13.0</u> ft		PVC
3. Finer pack, bottom IL MSL (		10. Screen material:	
	14.0	a. Screen Type:	Factory cut 🖾 11
K. Borehole, bottom ft. MSL of	or <u>14.0</u> ft.	•	Continuous slot 🔲 0 1
0.2			Other 🛛 🛄
L. Borehole, diameter <u>8.3</u> in.	warman -	b. Manufacturer	
0.07		c. Slot size:	<u>     0.010      in.</u>
M. O.D. well casing <u>2.25</u> in.		d. Slotted length:	
		11. Backfill material (	
N. I.D. well casing <u>2.00</u> in.		•	Other 🗆
			· · · · · · · · · · · · · · · · · · ·
I hereby certify that the information on this form	is true and correct to the best of my know	wledge.	
Signature 2 0 -4	Firm Sigma Environment	al Services, Inc.	Tel: 414-643-4200
DOLLAND.	~	filwaukee, WI 53233	Fax: 414-643-4210
Please complete both Fornis 4400-113A and 4400-113			

Please complete both Fornis 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forficiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

. .

...

Remediation/Redevelopment El         Other         Form 440-111A         Rov. 748           Brits N. Crandville Road         Local Grid Local and Well         MWE	State of Wisconsin Department of Natural Resources Route To:	Watershed/Wastewater	Waste Management	MONITORING WELL CONSTRUCTION
17.81 Lorandville Road       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <td><u></u></td> <td>Remediation/Redevelopment</td> <td>Other</td> <td></td>	<u></u>	Remediation/Redevelopment	Other	
Bit Up Lasses, Permit or Monitoring No.       Lat.       Lat.       Log.       or         Facility ID       St. Rear.       N.N.       or       or         Section Incallon of Wald/Source       St. Status       OU262013       OU262013         Source Nam.       Apply       d       Description of Wald Reduce to Water Source       OU2 of pack and the status       OU26000 Nume and Firm)         Source and pack control of Wald Reduce to Water Source       Control of Wald Reduce to Water Source       OU       OU26000 Nume and Firm)         Source and pack control of Wald Reduce to Water Source       Control of Wald Reduce to Water Source       OU       OUE 1       OUE 1         D. Source and boots       R. MSL       In MSL 1       In Machine       St. Source 40       In Machine       OUE 1         S. Surface scall.       Control of Wald Reduce Machine       St. Machine       St. Surface scall.       Control of Wald Reduce Machine       St. Surface scall.       Control of Wald Reduce Machine       St. Surface scall.       Control of Wald Reduce Machine       St. Surface scall.       St. Machi	Facility/Project Name			
Bit Up Lasses, Permit or Monitoring No.       Lat.       Lat.       Log.       or         Facility ID       St. Rear.       N.N.       or       or         Section Incallon of Wald/Source       St. Status       OU262013       OU262013         Source Nam.       Apply       d       Description of Wald Reduce to Water Source       OU2 of pack and the status       OU26000 Nume and Firm)         Source and pack control of Wald Reduce to Water Source       Control of Wald Reduce to Water Source       OU       OU26000 Nume and Firm)         Source and pack control of Wald Reduce to Water Source       Control of Wald Reduce to Water Source       OU       OUE 1       OUE 1         D. Source and boots       R. MSL       In MSL 1       In Machine       St. Source 40       In Machine       OUE 1         S. Surface scall.       Control of Wald Reduce Machine       St. Machine       St. Surface scall.       Control of Wald Reduce Machine       St. Surface scall.       Control of Wald Reduce Machine       St. Surface scall.       Control of Wald Reduce Machine       St. Surface scall.       St. Machi	8716 N. Grandville Road	lt. □s		MW-34S-N
Facility ID       St. Plane       R. N.       R. E. S/C/N.       Date Well insulated in the stead of Washed Source         Type of Vidit       NW. 1/4 of NW. 1/4 of Soc. 8. T. 8. N. R. 21 0 W       Bit in the stead of Washed Source       Oct. Lot Number       Distance from Vasies       D	Facility License, Permit or Monitoring No.	Local Grid Origin 📋 (estimated:	) or Well Location	1 1
String       It. N.       It. S.       String       String         Type of Well       NW. 14 of NW. 14 of Sec. 8. T. 8. N.R. 2.       BV       Well Insulide By: (Person's Name and Firm)         Disarce in the Water of Water Source       a.       N.R. 2.       Well Insulide By: (Person's Name and Firm)         Disarce in the Water of Water Source       a.       N.R. 2.       Well Insulide By: (Person's Name and Firm)         Disarce in the Water of Water Source       a.       Port of Water Source       B. Well Code 11/mw       Bitm         A. Protective over pie:       a.       Code antice eventsion       f. NSL       C.       C.       Cand antice eventsion       f. NSL       C.         B. Weil cating, top elevation       f. NSL       I.       C.       C.       Metrial:       Section       G.       <	Facility (D)	· · ·		Dete Well Leadelle J
Type of Well         NW         1/4 of Sec.         B         N, R.         21         Disk         Well leaded by: (Person's Name and Firm)           Distance from Wanted R.         Constitution of NM Relieve to WaterSource and Downgradient         Subgradient         Subgradient </td <td></td> <td></td> <td></td> <td></td>				
Distance from Wastef       Pirf. Stds.       0       1       Upgradient       1       Solegradient       0       CESTEA         A. Protective pipe, top elevation       ft. MSL       0       It compares the section of the sect	Type of Well	NW		Well Installed By: (Person's Name and Firm)
Source         R         Apply         d         Dewngrutient         Not Known         GESTEA           A. Protective spice, top elevation         ft. MSL         1. Cap and lock?         B' Ye   No           B. Weil casing, top elevation         ft. MSL         2. Protective cover pipe: a. Inside diameter:         40. In           D. Surface seal, bottom         ft. MSL or         1.0. R         4.0. St. Length:         40. R           D. Surface seal, bottom         ft. MSL or         1.0. R         4. Additional protection?         C test St. St. St. St. St. St. St. St. St. St			Source Gov. Lot Number	Brian
A. Protective pipe, top elevation       ft. MSL         B. Well using, top elevation       ft. MSL         C. Land suffice elevation       ft. MSL         C. Land suffice elevation       ft. MSL         C. Land suffice elevation       ft. MSL         D. Suffice sail, bottom       ft. MSL         IV USCS classification of soil near screen:       d. 0         IV USCS classification of soil near screen:       d. Additional protection?         IV USCS classification of soil near screen:       d. Additional protection?         IV USCS classification of soil near screen:       d. Additional protection?         IV USCS classification of soil near screen:       d. Additional protection?         IV USCS classification of soil near screen:       d. Additional protection?         IV USCS classification of soil near screen:       d. Additional protection?         IV Stree said. bottom       CL B work of B 41         Other D       -         15. Drilling Mud loo3 None GS 9       B.         16. Drilling additives used?       Yes B No         17. Source of vater (utach analysis, if required):       Trensic 0         17. Source of vater (utach analysis, if required):       ft.         18. Drilling additives used?       ft. MSL or 10       ft.         19. Soure diver, top       ft. MSL or 10 <td>Source Apply</td> <td></td> <td><b>U</b> .</td> <td>GESTRA</td>	Source Apply		<b>U</b> .	GESTRA
B. Weil easing, top elevation       ft. MSL         C. Land nurfice elevation       ft. MSL         D. Surface scal, bottom       ft. MSL or         12. USCS dessification of soil near screen:       0. In idia definition:         12. USCS dessification of soil near screen:       0. In idia definition:         12. USCS dessification of soil near screen:       0. In idia definition:         13. Bielink BI       CC G MG MS MS SP 88         SML SC ML 8. MHH CL SC GH       1. Additional protection?         13. Bielink BI       Concrete         14. Diffing method used:       Rotary D 1         15. Drilling fluid used:       Water D 2         16. Drilling additives used?       Yes S No         17. Source of vater (attach analysis, if required):       0		ft. MSL	I. Cap and lock?	⊠ Yes □ No
C. Land number elevation       ft. MSL or       10       ft. MSL or       10       ft. MSL or       10       ft. MSL or       00         D. Surface seal, bottom       ft. MSL or       10       ft. MSL or       00       ft. MSL or       00         The Source of water (attach analysis, if required):       ft. MSL or       00       ft. MSL or       00       ft. MSL or       00         16. Drilling additives used?       12 yes g0 No       ft. MSL or       00       ft. MSL or       00       ft. MSL or       00         17. Scoree of water (attach analysis, if required):       ft. MSL or       10       ft. MSL or       10       ft. MSL or       00       ft. MSL or       00       ft. MSL or       00       ft. How installed:       material: Manufacture, product name & mesh size       a       b. Volume added ft. Bentonite d0 2 2 a       ft. How installed:       ft. MSL or       00       ft. How installed:       ft. How installed:       f			2. Protective cover	pipe:
C. Matrice L. Bottom       R. MSL or       10. ft         12. USC3 classification of soil near screen:       0 ft       0 ft         CP		· [] ]		
12. USCS dassification of soil near screen:       If yes, describe:       If yes, d			<b>N</b>	
GP □ GM □ GC □ GW □ SW □ SP B       SP B         Bedrock □       13. Siver analysis attached?       □ Yes BN 0         14. Deilling method used:       Rotary □ 50         Hollow Stem Auger B41       Other □		or <u>1.0</u> ft.		
Sind       SC       ML       MH       CL       SC       Hollow       Concrete       0         13. Sieve analysis attached?       Yes       SN       No       Other       -         14. Drilling method used:       Rotary       D 50       Material between well casing and protective pipe:       Berlannite       Source       Berlannite       Source       Other       -         15. Drilling fluid used:       Water       O 2       Air       O 1       Differed       -       Source       <				
Betrock []       3. Surface seal:       Concrete []       0 ther         13. Sieve analysis attached?       I Yes Ø No       0 ther		а сны Ма	H N N	
G. Filter pack, top ft. MSL or 2.0 ft. H. Screen joint, top ft. MSL or 3.0 ft. H. Screen joint, top ft. MSL or 12.0 ft. J. Well bottom ft. MSL or 13.0 ft. J. Filter pack, bottom ft. MSL or 13.0 ft. L. Borchole, diameter 8.3 in. M. O.D. well casing 2.25 in. H. D. well casing 2.00 in. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Firm Sigma Env			3. Surface seal:	
G. Filter pack, top ft. MSL or 2.0 ft. H. Screen joint, top ft. MSL or 3.0 ft. H. Screen joint, top ft. MSL or 12.0 ft. J. Well bottom ft. MSL or 13.0 ft. J. Filter pack, bottom ft. MSL or 13.0 ft. L. Borchole, diameter 8.3 in. M. O.D. well casing 2.25 in. H. D. well casing 2.00 in. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Firm Sigma Env	13. Sieve analysis attached?	s 🖾 No 🛛 🗱 🖁	×	
G. Filter pack, top ft. MSL or 2.0 ft. H. Screen joint, top ft. MSL or 3.0 ft. H. Screen joint, top ft. MSL or 12.0 ft. J. Well bottom ft. MSL or 13.0 ft. J. Filter pack, bottom ft. MSL or 13.0 ft. L. Borchole, diameter 8.3 in. M. O.D. well casing 2.25 in. H. D. well casing 2.00 in. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Firm Sigma Env	14. Drilling method used: Rotar	y ⊡ 50 🛛 👹 🖁	4. Material between	well casing and protective pipe:
G. Filter pack, top ft. MSL or 2.0 ft. H. Screen joint, top ft. MSL or 3.0 ft. H. Screen joint, top ft. MSL or 12.0 ft. J. Well bottom ft. MSL or 13.0 ft. J. Filter pack, bottom ft. MSL or 13.0 ft. L. Borehole, diameter 8.3 in. M. O.D. well casing 2.25 in. H. D. Well casing 2.00 in. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Sigma 20, 233, 225, and 229, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with thes, 281, 289, 291, 292, and 299, Wis. Stats, failure of the these forms may result in a forficiture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 525, 200, or impression of the sector and work of the difficult information on these forms may result in a forficture of between 510 and 525, 200, or impression of the one year, depending on the program and conduct involved. Tersonally identifiable information on these		r⊠41 👹	8	Bentonite 🖾 30
G. Filter pack, top ft. MSL or 2.0 ft. H. Screen joint, top ft. MSL or 3.0 ft. H. Screen joint, top ft. MSL or 12.0 ft. J. Well bottom ft. MSL or 13.0 ft. J. Filter pack, bottom ft. MSL or 13.0 ft. L. Borchole, diameter 8.3 in. M. O.D. well casing 2.25 in. H. D. well casing 2.00 in. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Firm Sigma Env	Othe	x 🗆 📜 🛛 🎇 🖁	×	Other 🛛
G. Filter pack, topft. MSL orft.			5. Annular space se	
G. Filter pack, topft. MSL orft.		ir ∐01   881 8	bLbs/gal	
G. Filter pack, top ft. MSL or 2.0 ft. H. Screen joint, top ft. MSL or 3.0 ft. H. Screen joint, top ft. MSL or 12.0 ft. J. Well bottom ft. MSL or 13.0 ft. J. Filter pack, bottom ft. MSL or 13.0 ft. L. Borchole, diameter 8.3 in. M. O.D. well casing 2.25 in. H. D. well casing 2.00 in. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Firm Sigma Env		<u>د در کار کار کار کار کار کار کار کار کار کا</u>	cLbs/gai	
G. Filter pack, top ft. MSL or 2.0 ft. H. Screen joint, top ft. MSL or 3.0 ft. H. Screen joint, top ft. MSL or 12.0 ft. J. Well bottom ft. MSL or 13.0 ft. J. Filter pack, bottom ft. MSL or 13.0 ft. L. Borehole, diameter 8.3 in. M. O.D. well casing 2.25 in. H. D. Well casing 2.00 in. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Sigma 20, 233, 225, and 229, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with thes, 281, 289, 291, 292, and 299, Wis. Stats, failure of the these forms may result in a forficiture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 525, 200, or impression of the sector and work of the difficult information on these forms may result in a forficture of between 510 and 525, 200, or impression of the one year, depending on the program and conduct involved. Tersonally identifiable information on these	16. Drilling additives used?	us⊠No 🛛 👹 🖁	8 d% Bento	
G. Filter pack, top ft. MSL or 2.0 ft. H. Screen joint, top ft. MSL or 3.0 ft. H. Screen joint, top ft. MSL or 12.0 ft. J. Well bottom ft. MSL or 13.0 ft. J. Filter pack, bottom ft. MSL or 13.0 ft. L. Borehole, diameter 8.3 in. M. O.D. well casing 2.25 in. H. D. Well casing 2.00 in. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Sigma 20, 233, 225, and 229, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with thes, 281, 289, 291, 292, and 299, Wis. Stats, failure of the these forms may result in a forficiture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 525, 200, or impression of the sector and work of the difficult information on these forms may result in a forficture of between 510 and 525, 200, or impression of the one year, depending on the program and conduct involved. Tersonally identifiable information on these			f. How installed	-
G. Filter pack, top $ft. MSL \text{ or } 2.0 \text{ ft.}$ H. Screen joint, top $ft. MSL \text{ or } 3.0 \text{ ft.}$ H. Screen joint, top $ft. MSL \text{ or } 3.0 \text{ ft.}$ J. Well bottom $ft. MSL \text{ or } 13.0 \text{ ft.}$ J. Filter pack, bottom $ft. MSL \text{ or } 13.0 \text{ ft.}$ J. Filter pack, bottom $ft. MSL \text{ or } 13.0 \text{ ft.}$ L. Borehole, diameter $8.3$ in. M. O.D. well casing $2.25$ in. M. O.D. well casing $2.25$ in. H. D. well casing $2.00$ in. ft. MSL  or  14.0  ft. h. D. Well casing $2.00$ in. ft. MSL  or  14.0  ft. h. D. Well casing $2.00$ in. ft. MSL  or  14.0  ft. h. D. Well casing $2.00$ in. ft. MSL  or  14.0  ft. h. D. Well casing $2.00$ in. ft. MSL  or  14.0  ft. h. D. Well casing $2.00$ in. ft. MSL  or  14.0  ft. h. MSL  or  14.0  ft. h. MSL  or  14.0  ft. h. Maufacturer h. Maufac		📓 🖁		
G. Filter pack, top ft. MSL or 2.0 ft. H. Screen joint, top ft. MSL or 3.0 ft. H. Screen joint, top ft. MSL or 12.0 ft. J. Well bottom ft. MSL or 13.0 ft. J. Filter pack, bottom ft. MSL or 13.0 ft. L. Borehole, diameter 8.3 in. M. O.D. well casing 2.25 in. H. D. Well casing 2.00 in. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Sigma 20, 233, 225, and 229, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with thes, 281, 289, 291, 292, and 299, Wis. Stats, failure of the these forms may result in a forficiture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 525, 200, or impression of the sector and work of the difficult information on these forms may result in a forficture of between 510 and 525, 200, or impression of the one year, depending on the program and conduct involved. Tersonally identifiable information on these	17. Source of water (attach analysis, if required	i):		
G. Filter pack, top ft. MSL or 2.0 ft. H. Screen joint, top ft. MSL or 3.0 ft. H. Screen joint, top ft. MSL or 12.0 ft. J. Well bottom ft. MSL or 13.0 ft. J. Filter pack, bottom ft. MSL or 13.0 ft. L. Borehole, diameter 8.3 in. M. O.D. well casing 2.25 in. H. D. Well casing 2.00 in. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Sigma 20, 233, 225, and 229, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with thes, 281, 289, 291, 292, and 299, Wis. Stats, failure of the these forms may result in a forficiture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 525, 200, or impression of the sector and work of the difficult information on these forms may result in a forficture of between 510 and 525, 200, or impression of the one year, depending on the program and conduct involved. Tersonally identifiable information on these			6. Bentonite seal:	a. Bentonite granules 🔲 33
G. Filter pack, top ft. MSL or 2.0 ft. H. Screen joint, top ft. MSL or 3.0 ft. H. Screen joint, top ft. MSL or 12.0 ft. J. Well bottom ft. MSL or 13.0 ft. J. Filter pack, bottom ft. MSL or 13.0 ft. L. Borehole, diameter 8.3 in. M. O.D. well casing 2.25 in. H. D. Well casing 2.00 in. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Sigma 20, 233, 225, and 229, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with thes, 281, 289, 291, 292, and 299, Wis. Stats, failure of the these forms may result in a forficiture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 525, 200, or impression of the sector and work of the difficult information on these forms may result in a forficture of between 510 and 525, 200, or impression of the one year, depending on the program and conduct involved. Tersonally identifiable information on these	Ļ		§ / b. □1/4 in. ⊠	
G. Filter pack, top ft. MSL or 2.0 ft. H. Screen joint, top ft. MSL or 3.0 ft. H. Screen joint, top ft. MSL or 12.0 ft. J. Well bottom ft. MSL or 13.0 ft. J. Filter pack, bottom ft. MSL or 13.0 ft. L. Borehole, diameter 8.3 in. M. O.D. well casing 2.25 in. H. D. Well casing 2.00 in. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Sigma 20, 233, 225, and 229, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with thes, 281, 289, 291, 292, and 299, Wis. Stats, failure of the these forms may result in a forficiture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 525, 200, or impression of the sector and work of the difficult information on these forms may result in a forficture of between 510 and 525, 200, or impression of the one year, depending on the program and conduct involved. Tersonally identifiable information on these	E. Bentonite seal, top ft. MSL	or0.0_ft	Š / c	
G. Filter pack, top ft. MSL or 2.0 ft. H. Screen joint, top ft. MSL or 3.0 ft. H. Screen joint, top ft. MSL or 12.0 ft. J. Well bottom ft. MSL or 13.0 ft. J. Filter pack, bottom ft. MSL or 13.0 ft. L. Borehole, diameter 8.3 in. M. O.D. well casing 2.25 in. H. D. Well casing 2.00 in. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Thereby certify that the information on this form is true and correct to the best of my knowledge. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Firm Sigma Environmental Services, Inc. Sigma 20, 233, 225, and 229, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with thes, 281, 289, 291, 292, and 299, Wis. Stats, failure of the these forms may result in a forficiture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, and oh. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 201, 202, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 523, 287. 291, 292, 293, 293, and 299, Wis. Stats, failure to filt these forms may result in a forficture of between 510 and 525, 200, or impression of the sector and work of the difficult information on these forms may result in a forficture of between 510 and 525, 200, or impression of the one year, depending on the program and conduct involved. Tersonally identifiable information on these			7. Fine sand materi	-
G. Filter pack, top       ft. MSL or       2.0       ft.         H. Screen joint, top       ft. MSL or       3.0       ft.         H. Screen joint, top       ft. MSL or       3.0       ft.         J. Well bottom       ft. MSL or       13.0       ft.         J. Well bottom       ft. MSL or       13.0       ft.         J. Filter pack, bottom       ft. MSL or       13.0       ft.         J. Filter pack, bottom       ft. MSL or       14.0       ft.         L. Borehole, bottom       ft. MSL or       14.0       ft.         L. Borehole, diameter       8.3       in.       .       .         M. O.D. well casing       2.25       in.       .       .         N. I.D. well casing       2.00       in.       .       .       .         I hereby certify that the information on this form is true and correct to the best of my knowledge.       .       .       .       .         Signalure       D. Manufacturer       .       .       .       .       .       .         Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau.       .       .       .       .       .       .       .       .       .       .	F. Fine sand, top tt. MSL		a b. Volume adder	
H. Screen joint, top       ft. MSL or       3.0       ft.         H. Screen joint, top       ft. MSL or       3.0       ft.         J. Well bottom       ft. MSL or       13.0       ft.         J. Filter pack, bottom       ft. MSL or       13.0       ft.         J. Filter pack, bottom       ft. MSL or       13.0       ft.         J. Filter pack, bottom       ft. MSL or       13.0       ft.         K. Borehole, bottom       ft. MSL or       14.0       ft.         K. Borehole, diameter       8.3       in.       Continuous slot       0 11         L. Borehole, diameter       8.3       in.       0.010       in         M. O.D. well casing       2.25       in.       0.010       in         N. I.D. well casing       2.00       in.       0.010       in         Hereby certify that the information on this form is true and correct to the best of my knowledge.       11       Backfill material (below filter pack):       None Ø 14         N. I.D. well casing       2.00       in.       Film       Signa Environmental Services, Inc.       Tel: 414-643-4200         Signature       BCM_MARM       Film       Signa Environmental Services, Inc.       Tel: 414-643-420       Fax: 414-643-420         1300 W. C	G. Filter pack, top ft. MSL	or <u>2.0</u> ft.	8. Filter pack mate	
1. Well bottom       ft. MSL or       13.0       ft.         J. Filter pack, bottom       ft. MSL or       13.0       ft.         J. Filter pack, bottom       ft. MSL or       13.0       ft.         J. Filter pack, bottom       ft. MSL or       13.0       ft.         J. Filter pack, bottom       ft. MSL or       13.0       ft.         K. Borehole, bottom       ft. MSL or       14.0       ft.         L. Borehole, diameter       8.3       in.       Continuous slot       01         L. Borehole, diameter       8.3       in.       0.010       in         M. O.D. well casing       2.25       in.       0.010       in         N. I.D, well casing       2.00       in.       0.10       in         Hereby certify that the information on this form is true and correct to the best of my knowledge.       None Ø 14         Signature       B O M M 400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 166, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or in personment for up to one year, depending on the program and conduct involved. Personally identifiable information on these				#5
1. Well bottom       ft. MSL or       13.0       ft.       Flush threaded PVC schedule 80       24         J. Filter pack, bottom       ft. MSL or       13.0       ft.       10.       Screen material:       PVC	H. Screen joint, top ft. MSL	or ft		
J. Filter pack, bottom       ft. MSL or       13.0       ft.         K. Borehole, bottom       ft. MSL or       14.0       ft.         L. Borehole, diameter       8.3       in.       01         L. Borehole, diameter       8.3       in.       01         M. O.D. well casing       2.25       in.       0.010       in         Hereby certily that the information on this form is true and correct to the best of my knowledge.       0.010       in         Signature       B       C       14.0-43.4200         Firm       Sigma Environmental Services, Inc.       Tel: 414-643-4200         13.00 W. Canal St Milwaukce, WI 53233       Tel: 414-643-4210         Please complete both Forms 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by cis. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forefuture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these		120 .	9. Well casing:	
J. Filter pack, bottom       ft. MSL or       13.0       ft.         K. Borehole, bottom       ft. MSL or       14.0       ft.         L. Borehole, diameter       8.3       in.       01         L. Borehole, diameter       8.3       in.       01         M. O.D. well casing       2.25       in.       0.010       in         Hereby certily that the information on this form is true and correct to the best of my knowledge.       0.010       in         Signature       B       C       14.0-43.4200         Firm       Sigma Environmental Services, Inc.       Tel: 414-643-4200         13.00 W. Canal St Milwaukce, WI 53233       Tel: 414-643-4210         Please complete both Forms 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by cis. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forefuture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these	I. Well bottom ft. MSL	or <u>13.0</u> ft.		
a. Screen Type;       Factory cut 🖾 11         K. Borehole, bottom       ft. MSL or       14.0         L. Borehole, diameter       8.3       in.         M. O.D. well casing       2.25       in.         M. O.D. well casing       2.25       in.         N. I.D. well casing       2.00       in.         I hereby certify that the information on this form is true and correct to the best of my knowledge.       None 🖄 14         Signature       Signature       Firm         Signature       Firm       Sigma Environmental Services, Inc.       Tel: 414-643-4200         Please complete both Forms 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by vis. 16b, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may consument for up to one year, depending on the program and conduct involved. Personally identifiable information on these			10. Screen material:	
L. Borehole, diameter       8.3       in.         L. Borehole, diameter       8.3       in.         M. O.D. well casing       2.25       in.         M. O.D. well casing       2.25       in.         M. I.D. well casing       2.00       in.         I hereby certify that the information on this form is true and correct to the best of my knowledge.       None Ø 14         Signature       J       J         J. D. Well casing       100         Firm       Sigma Environmental Services, Inc.       Tel: 414-643-4200         1300 W. Canal St Milwaukee, WI 53233       Fax: 414-643-4210         Please complete both Forms 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these	•		a. Screen Type;	Factory cut 🖾 11
L. Borchole, diameter <u>8.3</u> in. M. O.D. well casing <u>2.25</u> in. M. O.D. well casing <u>2.00</u> in. I hereby certify that the information on this form is true and correct to the best of my knowledge. I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature <u>J. J. J</u>	K. Borehole, bottom ft. MSL	or <u>14.0</u> ft.		
M. O.D. well casing       2.25       in.         M. O.D. well casing       2.00       in.         I.D. well casing       2.00       in.         I. hereby certily that the information on this form is true and correct to the best of my knowledge.       None Ø 1.4         Signature       D.D. Well casing       1.4         J. Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 16h, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these	L. Borchole, diameter 8.3 in		b. Manufacturer	. )
M. O.D. well casing <u>2.25</u> in. M. O.D. well casing <u>2.00</u> in. I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature <u>BOMMENT</u> Please complete both Forms 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chis. 166, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these		,	<b>`</b>	<u>0.010</u> in.
N. I.D. well casing       2.00       in.       11. Backfill material (below filter pack):       None ⊠ 1.4         I hereby certify that the information on this form is true and correct to the best of my knowledge.       Other □	M. O.D. well casing2.25 in.		d. Slotted lengt	:
I hereby certify that the information on this form is true and correct to the best of my knowledge.         Signature       Signature         Downset       Firm         Signature       Signa Environmental Services, Inc.         1300 W. Canal St Milwaukce, WI 53233       Fax: 414-643-4210         Please complete both Forms 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 166, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these		·	11. Backfill material	
Signature         Firm         Signa Environmental Services, Inc.         Tel: 414-643-4200           1300 W. Canal St Milwaukce, WI 53233         Fax: 414-643-4210           Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by clss. 16fb, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these	N. I.D. well casing			
Journal         State         <		n is true and correct to the best of m	y knowledge.	· · · · · · · · · · · · · · · · · · ·
Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these	Signature	· Sigma Enviror		Tel: 414-643-4200
291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these				Fax: 414-643-4210
result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these				
JOINTS IS BRUIKEINGEN TO DE USED TOT ATTY OTHER POLIDOSE, THOLE, SEE HIE HISTORICHONS TOT THOLE INFORMATION, INCLUDING WHELE THE COMPRISED TOTALS SOUTH AT SERVICE				

.. .**..** 

....

-

1

. 4

4

APPENDIX B

LABORATORY ANALYTICAL REPORTS

# Synergy Environmental Lab, INC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

## STACY OSZUSCIK/MAFISUL ISLAM SIGMA ENVIRONMMENTAL 1300 W. CANAL STREET MILWAUKEE, WI 53233

Report Date 16-Apr-13

		5 A				• •					
•	OSS-AME. 701	RICA		•			Invo	ice # E249'	79		
	5024979A COMPOSI	TE 1						· ·			
Sample Matrix	Soil 3/28/2013				١						
•		Reșult	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
norganic Metals		,						5			
TCLP Arsenic		< 0.05	mg/l	0.05		1	6010B		4/9/2013	ESC	1
TCLP Barium		0.87	mg/l	0.15	,	1	6010B		4/9/2013	ESC	1
TCLP Cadmium		< 0.05	mg/l	0.05		1	6010B		4/9/2013	ESC	1
TCLP Chromium		< 0.05	mg/l	0.05		1	6010B		4/9/2013	ESC	1
TCLP Copper		< 0.05	mg/l	0.05		1	6010B		4/9/2013	ESC	1
TCLP Lead		< 0.05	mg/l	0.05		1	6010B		4/9/2013	ESC	1
TCLP Mercury		< 0.001	mg/l	0.001		1	7470A		4/8/2013	ESC	1
TCLP Nickel		< 0.05	mg/l	0.05		1	6010B		4/9/2013	ESC	1.
TCLP Selenium		< 0.05	′mg/l`	0.05		1	6010B		4/9/2013	ESC	1
TCLP Silver		< 0.05	mg/l	0.05		1	6010B		4/9/2013	ESC	1
TCLP Zinc		0.13	mg/l	0.05		1	6010B		4/9/2013	ESC	I
Organic								•			
PCB'S											
PCB-1016		< 0.0065	mg/kg	0.0065	0.017	1	EPA 8082A	•	4/9/2013	ESC	1
PCB-1221		< 0.0054	- mg/kg	0.0054	0.017	1 -	EPA 8082A		4/9/2013	ESC	I
PCB-1232		< 0.0042	mg/kg	0.0042	0.017	1	EPA 8082A		. 4/9/2013	ESC	1
PCB-1242		< 0.0032	mg/kg	. 0.0032	0.017	1	EPA 8082A	•	4/9/2013	ESC	ł
PCB-1248	·	< 0.0032	mg/kg	0.0032	0.017	1	EPA 8082A		4/9/2013	ESC	ĩ
PCB-1254	ſ	< 0.0047	mg/kg	0.0047	0.017	1	EPA 8082A		4/9/2013	ESC	1
PCB-1260		< 0.0049	mg/kg	0.0049	0.017	1	EPA 8082A		4/9/2013	ESC	1
TCLP SVOC's			·.						•		
TCLP o-Cresol		< 0.1	mg/l	0.1		1	8270C		4/10/2013	ESC	1.
TCLP m & p-Cresol		< 0.1	mg/l	0.1		1	8270C		4/10/2013	ESC	1
TCLP 1,4-Dichlorobe	nzene	< 0.1	mg/l	0.1		1	8270C		4/10/2013	ESC	1
TCLP 2,4-Dinitrotolu		< 0.1	mg/l	0.1		1	8270C		4/10/2013		1
TCLP Hexachlorober		< 0.1	mg/l	0.1		i	8270C		4/10/2013	ESC	1
TCLP Hexachlorobut		< 0.1	mg/l	0.1		1	8270C		4/10/2013	ESC	i
TCLP Hexachloroeth		< 0.1	mg/l	0.1		1	8270C		4/10/2013	ESC	1
TCLP Nitrobenzene	-	< 0.1	mg/l	0.1		1	8270C		4/10/2013	ESC	1
TCLP Pentachloroph	enol	< 0.1	mg/l	0.1		1	8270C	·	4/10/2013	ESC	1
TCLP Phenol		< 0.1	mg/l	0.1	•	1	8270C		4/10/2013	ESC	1

WI DNR Lab Certification # 445037560

Page 1 of 3

Project Name MOSS-AM Project # 13701	ERICA				Invo	oice # E2497	79				:	
Lab Code 5024979A Sample ID COMPOS			-									
Sample Matrix Soil			•	-								
Sample Date 3/28/2013												
	Result	Unit		LOQ Dil	Method	Ext Date	Run Date	-	Code			
TCLP Pyridine TCLP 2,4,6-Trichlorophenol	< 0.1 < 0.1	. mg/l mg/l	0.1 0.1		8270C 8270C		4/10/2013 4/10/2013	ESC ESC	1 1			
TCLP 2,4;5-Trichlorophenol	< 0.1	mg/l	0.1		· 8270C		4/10/2013	ESC	. t			
TCLP VOC's		5		•.	•	·.					•	
TCLP Benzene	< 0.05	mg/l	0.05	. 1	8260B	· ·	4/6/2013	ESC	1			
TCLP Carbon Tetrachloride	< 0.05	∙ mg/l	0.05				4/6/2013	ESC	1			
TCLP Chlorobenzene	< 0.05	mg/l	0.05	1	8260B		4/6/2013	ESC	I			
TCLP Chloroform TCLP 1,2-Dichloroethane	< 0.25 < 0.05	mg/l mg/l	0.25 0.05	- 1	8260B · 8260B		4/6/2013 4/6/2013	ESC ESC	1			
TCLP 1,1-Dichloroethene	< 0.05	mg/l	0.05	1		•	4/6/2013	ESC	i	• •		
TCLP Methyl Ethyl Ketone	< 0.5	mg/l	0.5	.1	8260B	:	4/6/2013	ESC	ł		•	
TCLP Tetrachloroethene	< 0.05	mg/l	0.05	1	8260B		4/6/2013	ESC	1			
TCLP Trichloroethene	< 0.05	mg/l	0.05	. 1	8260B		4/6/2013	ESC	1		-	
TCLP Vinyl Chloride	< 0.05	mg/l	0.05		8260B		4/6/2013	ESC	1			
Wet Chemistry General		• •										
Free Liquid	None	•		. 1	9095A	•	4/11/2013	ESC	1		-	•
Reactive Cyanide	< 0.125	mg/kg	0.125	0.125 1	9093A 9012B		4/8/2013	ESC	1			
Reactive Sulfide	49	mg/kg	25	25 1	EPA 9034	•	4/5/2013	ESC	i.			
Specific Gravity	2.1	g/cm3		1	2710F		4/4/2013	ESC	1			
Solids, Total %	85.4	%		1	2540G		4/6/2013	ESC	1			
pH Chlorides	8.4 60	su mg/kg	0.8	- 10 10 1	EPA 9045D 9056		4/9/2013 4/5/2013	ESC ESC	1			
	> 170	Deg. F			D93		4/9/2013	ESC	i			
Flash Point		D • B. 1		1	075		4/3/2013	ESC				
		2.6.1		1	075		4/3/2013					
Lab Code 5024979B	a	2.0			075	•			I			
Lab Code 5024979B Sample ID MW-7S-W	a	2.69.1				• . •			I			
Lab Code 5024979B Sample ID MW-7S-W Sample Matrix Soil	a					•			•			
Lab Code 5024979B Sample ID MW-7S-W	a	Unit	LOD I		Method	Ext Date			Code			
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013	/ (4-6')		LOD I	LOQ Dil		Ext Date	Run Date		Code			
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013	/ (4-6')		LOD I			Ext Date			Code			
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013	/ (4-6') Result	Unit	LOD I		Method	Ext Date	Run Date	Analyst	Code			
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General General Solids Percent	/ (4-6')		LOD I	LOQ Dil		Ext Date			Code			
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General General Solids PercentGeneralOrganicImage: Control of the second	/ (4-6') Result	Unit	LOD I	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code			
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General General Solids Percent	7 (4-6') <b>Result</b> 92.4	Unit %	``, `.	LOQ Dil	<b>Method</b> 5021	Ext Date	<b>Run Date</b> 4/4/2013	<b>Analyst</b> MDK	.t			
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General General Solids Percent	/ (4-6') Result	Unit % ug/kg	7.9	LOQ Dil 1 25 1	<b>Method</b> 5021 GRO95/8021	Ext Date	Run Date 4/4/2013 4/5/2013	Analyst MDK CJR	Code 1			
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General General Solids Percent	(4-6') Result 92.4 <25 <25 <25 <25 <25	Unit %	``, `.	LOQ Dil 1 25 1	<b>Method</b> 5021	Ext Date	<b>Run Date</b> 4/4/2013	<b>Analyst</b> MDK	.1 1 1 1 1			
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General3/28/2013GeneralSolids PercentOrganicBTEXBenzeneEthylbenzeneToluenem&p-Xylene	7 (4-6') Result 92.4 225 225 225 225 25 50	Unit % ug/kg ug/kg ug/kg ug/kg ug/kg	7.9 7.7 8.4 16	25 1 25 1 27 1 50 1	Method 5021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	Ext Date	Run Date 4/4/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013	Analyst MDK CJR CJR CJR CJR CJR	.1 1 1 1 1			
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General3/28/2013GeneralSolids PercentOrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-XyleneSolids Percent	(4-6') Result 92.4 <25 <25 <25 <25 <25	Unit % ug/kg ug/kg ug/kg	7.9 7.7 8.4	LOQ Dil 1 25 1 25 1 27 1	<b>Method</b> 5021 GRO95/8021 GRO95/8021 GRO95/8021	Ext Date	Run Date 4/4/2013 4/5/2013 4/5/2013 4/5/2013	Analyst MDK CJR CJR CJR CJR CJR CJR CJR	.1 1 1 1 1			
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General3/28/2013GeneralSolids PercentOrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-XylenePAH SIM	V (4-6') <b>Result</b> 92.4 <25 <25 <25 <50 <25	Unit % ug/kg ug/kg ug/kg ug/kg ug/kg	7.9 7.7 8.4 16 10	25 [ 25 ] 27 ] 32 ]	Method 5021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021		Run Date 4/4/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013	Analyst MDK CJR CJR CJR CJR CJR CJR CJR	.1 1 1 1 1			
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General3/28/2013GeneralSolids PercentOrganicBTEXBenzeneEthylbenzeneEthylbenzeneSoliden StateToluenem&p-Xyleneo-XylenePAH SIMAcenaphtheneSolid State	V (4-6') <b>Result</b> 92.4 92.4 <25 <25 <50 <25 47000	Unit % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.9 7.7 8.4 16 10 436	25 [ 25 ] 27 ] 32 ] 1386 20	Method 5021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	<i>4/4/</i> 2013	Run Date 4/4/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013	Analyst MDK CJR CJR CJR CJR CJR CJR MDK	.1 1 1 1 1			
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General3/28/2013GeneralSolids PercentOrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-XylenePAH SIMAcenaphtheneAcenaphthylene	<pre>/ (4-6') Result 92.4 92.4 &lt; 25 &lt; 25 &lt; 25 &lt; 25 &lt; 50 &lt; 25 47000 520 "J"</pre>	Unit % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.9 7.7 8.4 16 10 436 384	25 [ 25 ] 25 ] 27 ] 32 ] 1386 24 1218 24	Method 5021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D	4/4/2013 4/4/2013	Run Date 4/4/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013	Analyst MDK CJR CJR CJR CJR CJR CJR CJR MDK MDK	.1 1 1 1 1			-
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General3/28/2013GeneralSolids PercentOrganicBTEXBenzeneEthylbenzeneEthylbenzeneSoliden StateToluenem&p-Xyleneo-XylenePAH SIMAcenaphtheneSolid State	V (4-6') <b>Result</b> 92.4 92.4 <25 <25 <50 <25 47000	Unit % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.9 7.7 8.4 16 10 436	25 [ 25 ] 27 ] 32 ] 1386 20	Method 5021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D	<i>4/4/</i> 2013	Run Date 4/4/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013	Analyst MDK CJR CJR CJR CJR CJR CJR MDK	.1 1 1 1 1			-
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General3/28/2013GeneralSolids PercentOrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-XylenePAH SIMAcenaphtheneAcenaphthyleneAnthraceneBenzo(a)anthracenebenzo(a)apyreneSolida percene	/ (4-6')         Result         92.4         92.4         25         25         25         47000         520 "J"         30700         11100         ' 2720	Unit % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.9 7.7 8.4 16 10 436 384 390 458 348	LOQ Dil 25 1 25 1 27 1 32 1 1386 24 1218 24 1242 24 1242 24 1242 24 1458 24 1106 24	Method 5021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D	4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013	Run Date 4/4/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013	Analyst MDK CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK	I 1 1 1 1 1 1 1 1 1 1 1 1			-
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General3/28/2013GeneralSolids PercentOrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-XylenePAH SIMAcenaphtheneAcenaphthyleneAnthraceneBenzo(a)anthraceneBenzo(a)pyreneBenzo(b)fluoranthene	/ (4-6')         Result         92.4         92.4         92.4         92.4         92.5         425         25         47000         520 "J"         30700         11100         ' 2720         5400	Unit % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.9 7.7 8.4 16 10 436 384 390 458 348 392	LOQ Dil 25 1 25 1 27 1 32 1 1386 24 1218 24 1242 24 1242 24 1458 24 1106 24 1246 24	Method 5021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013	Run Date 4/4/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013	Analyst MDK CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK	I 1 1 1 1 1 1 1 1 1 1 1 1			-
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General3/28/2013GeneralSolids PercentOrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-XylenePAH SIMAcenaphtheneAcenaphthyleneAnthraceneBenzo(a)anthraceneBenzo(b)fluorantheneBenzo(b)fluoranthene	/ (4-6')         Result         92.4         92.4         92.4         92.4         92.5         <25	Unit % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.9 7.7 8.4 16 10 436 384 390 458 348 392 454	25 1 25 1 25 1 27 1 32 1 1386 24 1218 24 1242 24 1242 24 1242 24 1242 24 1458 24 1106 24 1246 24 144 26	Method 5021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013	Run Date 4/4/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013	Analyst MDK CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General3/28/2013GeneralSolids PercentOrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-XylenePAH SIMAcenaphtheneAcenaphthyleneAnthraceneBenzo(a)anthraceneBenzo(b)fluorantheneBenzo(b)fluorantheneBenzo(b)fluorantheneBenzo(b)fluoranthene	/ (4-6')         Result         92.4         92.4         92.4         92.4         92.5         425         25         47000         520 "J"         30700         11100         ' 2720         5400	Unit % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.9 7.7 8.4 16 10 436 384 390 458 348 392 454 432	LOQ Dil 25 [ 25 ] 27 ] 32 ] 1386 20 1218 20 1242 20 1242 20 1242 20 1242 20 1242 20 1242 20 1242 20 1242 20 1242 20 1244 20 1246 20 1444 20 1376 20	Method 5021 5021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013	Run Date 4/4/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013	Analyst MDK CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	I 1 1 1 1 1 1 1 1 1 1 1 1			-
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General3/28/2013GeneralSolids PercentOrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-XylenePAH SIMAcenaphtheneAcenaphthyleneAnthraceneBenzo(a)anthraceneBenzo(b)fluorantheneBenzo(b)fluorantheneBenzo(g,h,i)peryleneBenzo(k)fluorantheneBenzo(k)fluorantheneChrysene	/ (4-6')         Result         92.4         92.4         92.4         92.4         92.4         92.5         425         25         47000         520 "J"         30700         11100         2720         5400         740 "J"         2260	Unit % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.9 7.7 8.4 16 10 436 384 390 458 348 392 454	LOQ Dil 25 [ 25 ] 27 ] 32 ] 1386 20 1218 20 1242 20 1242 20 1242 20 1242 20 1242 20 1242 20 1242 20 1242 20 1242 20 1244 20 1246 20 1444 20 1376 20	Method 5021 5021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013	Run Date 4/4/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013	Analyst MDK CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General3/28/2013GeneralSolids PercentOrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-XylenePAH SIMAcenaphtheneAcenaphthyleneAnthraceneBenzo(a)anthraceneBenzo(a)anthraceneBenzo(a)pyreneBenzo(b)fluorantheneBenzo(b)fluorantheneBenzo(g,h,i)peryleneBenzo(k)fluorantheneChryseneDibenzo(a,h)anthraceneFluorantheneFluoranthene	/ (4-6')         Result         92.4         92.4         92.4         92.4         92.5         25         25         25         47000         520 "J"         30700         11100         2720         \$400         740 "J"         2260         9300         < 446	Unit % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.9 7.7 8.4 16 10 436 384 390 458 348 390 458 348 392 454 432 362 446 422	LOQ Dil 25 1 25 1 25 1 27 1 50 1 32 1 1386 24 1218 24 1242 24 1245 24 1245 24 1246 24 1246 24 1376 24 1376 24 1420 24 1344 24	Method 5021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013	Run Date 4/4/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013	Analyst MDK CJR CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General3/28/2013GeneralSolids PercentOrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-XylenePAH SIMAcenaphtheneAcenaphtheneAcenaphthyleneAnthraceneBenzo(a)anthraceneBenzo(a)pyreneBenzo(b)fluorantheneBenzo(b)fluorantheneBenzo(g,h,i)peryleneBenzo(g,h)anthraceneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluoranthene	/ (4-6')         Result         92.4         92.4         92.4         92.4         92.5         25         25         25         47000         520 "J"         30700         11100         2720         5400         740 "J"         2260         9300         < 446	Unit % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.9 7.7 8.4 16 10 436 384 390 458 348 390 458 348 392 454 432 362 446 422 444	LOQ Dil 25 1 25 1 27 1 50 1 32 1 1386 24 1218 24 1242 24 1245 24 1245 24 1246 24 1246 24 1246 24 1376 24 1412 24	Method 5021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013	Run Date 4/4/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013	Analyst MDK CJR CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			_
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General3/28/2013GeneralSolids PercentOrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-XylenePAH SIMAcenaphtheneAcenaphthyleneAnthraceneBenzo(a)anthraceneBenzo(a)anthraceneBenzo(b)fluorantheneBenzo(k)fluorantheneBenzo(k)fluorantheneBenzo(g,h,i)peryleneBenzo(k)fluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluoreneIndeno(1,2,3-cd)pyrene	/ (4-6')         Result         92.4         92.4         92.4         92.4         92.4         92.4         92.5         25         47000         520 "J"         30700         11100         2720         5400         740 "J"         2260         9300         < 446	Unit % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.9 7.7 8.4 16 10 436 384 390 458 348 392 454 432 362 446 422 444 478	LOQ Dil 25 1 25 1 27 1 50 1 32 1 1386 24 1218 24 1242 24 1242 24 1242 24 1246 24 1246 24 1246 24 1376 24 1376 24 1412 24 1344 20 1344 24 1412 24 1522 24	Method 5021 5021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013	Run Date 4/4/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013	Analyst MDK CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-
Lab Code5024979BSample IDMW-7S-WSample MatrixSoilSample Date3/28/2013General3/28/2013GeneralSolids PercentOrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-XylenePAH SIMAcenaphtheneAcenaphtheneAcenaphthyleneAnthraceneBenzo(a)anthraceneBenzo(a)pyreneBenzo(b)fluorantheneBenzo(b)fluorantheneBenzo(g,h,i)peryleneBenzo(g,h)anthraceneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluoranthene	/ (4-6')         Result         92.4         92.4         92.4         92.4         92.5         25         25         25         47000         520 "J"         30700         11100         2720         5400         740 "J"         2260         9300         < 446	Unit % ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	7.9 7.7 8.4 16 10 436 384 390 458 348 390 458 348 392 454 432 362 446 422 444	LOQ Dil 25 1 25 1 25 1 27 1 32 1 1386 24 1218 24 1218 24 1218 24 1248 24 1248 24 1458 24 1406 24 1412 24 1412 24 1412 24 1412 24 1412 24 1522 24 1316 24	Method 5021 5021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013 4/4/2013	Run Date 4/4/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013 4/5/2013	Analyst MDK CJR CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-

WI DNR Lab Certification # 445037560

Page 2 of 3

Project Name Proiect #	MOSS-AMERIC 13701	CA					In	woice # E249	79		
Lab Code Sample ID Sample Matrix Sample Date	5024979B MW-7S-W (4- Soil 3/28/2013	-6')									
	R	esult	Unit	LOD	LOQ	Dil	Method	Ext Date	<b>Run Date</b>	Analyst	Code
Naphthalene	10	)50 "J"	ug/kg	442	1404	20	M8270D	4/4/2013	4/5/2013	MDK	1
Phenanthrene	14	2000	ug/kg	448	1422	20	M8270D	4/4/2013	4/5/2013	MDK	1
Pyrene	46	5000	ug/kg	462	1472	20	M8270D	4/4/2013.	4/5/2013	MDK	1
"J" Flag:	Analyte detected bety	veen LOD and	LOQ	I	OD Limi	t of De	tection	LOO Li	mit of Quantita	ation	

Code Comment

1

Laboratory QC within limits.

ESC denotes sub contract lab - Certification #998093910

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

**Authorized Signature** 

Michaelplul

CHAIN C CUSTODY	RECORD				SVI	nerg		,									( 14	57	
Lab I.D. #	144 - S		]											Pag	ge 1	of	L		
Account No. :	Quote No.:			nvirc	>nme	ental	La	16	, 1	nc	*	1		5 Y 10 1 1			Reque	and an and a second sec	
Project #: 13701	and the second			1990	Prospect (	Ct. • Appleton		5491	4			(R	shes	accep	pted or	nly with	PRequir	norizatio	n)
Sampler: (signature) & On	usil	in the				5 • FAX 920-7			4					X	Norm	al Tun	n Aroun	d	
Project (Name / Location): Mo	53-America	a / 8"	716 N.	Grandy	ille Rd	MKE. WI	-	An	alys	is Red	ques	ted	-			Othe	r Analy	sis	
Reports To: Stacy Oscus.	cik+	Invoice		nafizu															
Company The Sigma		Compa		SA															
Address 1300 W. Cana		Addres			10		95)	CR d			ENE	()							
City State Zip MKE, WI		City Sta	ate Zip				Sep	0.06	TIL	(1)	THAL	524.2	00	20					
Phone 414-643	- 4200	Phone					DRC	HD D	NITE	8270 A 80	APHT	EPA	8260 ETAI	4					
FAX 914-645.	- 4210	FAX		-	F		(Mod	MID	ATE /	EPA	N +	DW (	EPA 3A M	000	X				ID/
Lab I.D. Sample I.D.	Collection Date Time Col	mp Grab	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO (Mod DRO Sep 95)	IRON	LEAD NITRATE / NITRITE	PAH (EPA 8270) PVOC (EPA 8021)	PVOC + NAPHTHALENE	VOCI	VOC (EPA 8260) 8-RCRA METALS	Prot	19				ID
Sol4979 A Composite1	3-28 3pm )	<	N	6	Soil	-								X				1	3
B mw-75-W,	3-29 9 am	X	N	2	Soil	-		-		X				)	×			(	00
(4.0.1					1.5			+				+			-				
								-	-			-		-					_
						(1997)													
				100															
Comments/Special Instructions (*\$		HOTAL	Drickieg				12 A in												
Note: produce Sample Integrity - To be complet	ct was	see	na		melt		bar		R	m	d By	: (sig	gn )				Time	Date	2
r	C On Ice		302	yeseil		7:30am	4-	1-1	3						112				_
Cooler seal intact upon receipt:	Yes No	R	eceived	in Laborato	ry ву: М	and 12	her		-		Tim	1e:8	13	0			ate: 4	1.2-13	5

# CT LABORA

CT Laboratories LLC • 1230 Lange Ct • Baraboo, WI 53913

## 608-356-2760 • www.ctlaboratories.com

delivering more than data from your environmental analyses

# ANALYTICAL REPORT

Project Name: MOSS AMERICA	N		Page 1 of 8	
Project Phase:	х х.		Arrival Tempera	ture: See COC
Contract #: 2582		·	Report Date: 4/2	29/2013
Project #: 13701			Date Received:	4/4/2013
Folder #: 96399	,	·	Reprint Date:	4/29/2013
Purchase Order #: 13701		· · · · ·		•

CT LAB Sample#: 280995 Sample Description: TG1-3

SIGMA

MAFIZUL ISLAM 1300 W CANAL STREET MILWAUKEE, WI 53233

Sampled: 4/3/2013 1012

Analyte Inorganic Results	Result	Units	LOD		Dilution	Qualifier	Prep Date/Time	Analysis Analyst Date/Time		Method
									÷	
BOD 5-Day	7.2	mg/L	2.0	N/A	1		4/4/2013 17:00	4/9/2013	14:09 LJS	SM 5210B
Total COD	66- 66-	mg/L	13	42	1	•	4/15/2013 12:00	4/15/2013	17:35 LJS	EPA 410.4
Total Kjeldahl Nitrogen	1.8	mg/L	. 0.40	1.4	<u></u> 1		4/9/2013 15:00	4/11/2013	12:46 LJS	ASTM D3590
Total Phosphorus	0.31	· mg/L	0.13 *	0.43	1.			4/10/2013	16:35 EJC	EPA 365.1
Heterotrophic Plate Count	250000	cfu/L	20.0		- 1			4/4/2013	12:00 CES	SM 9215D
Ammonia Nitrogen Total	0.93	mg/L	0.040	0.14	. 1	М		4/12/2013	12:10 MM	L SM 4500-NH3H
Total Organic Carbon	14 ⁻	_mg/L	0.40	1.2	1			4/8/2013	19:48 BMS	6 EPA 9060A
Nitrate Nitrogen Total	0.17	mg/L	0.080 *	0.28	1			4/4/2013	12:03 MM	EPA 300.0
Nitrite Nitrogen Total	<0.040	mg/L	0.040	0.12	1			4/4/2013	12:03 MM	L EPA 300.0
Orthophosphate Total	<0.18	mg/L	0.18	0.59	· 1		. •	4/4/2013	12:03 MM	L EPA 300.0
Sub Lab Results								· .		
Petroleum Deg. Count	ATTACHE	D.	N/A	N/A	1			4/29/2013	00:00 PML	_

Solid sample results reported on a Dry Weight Basis

# CT LABORATORIES

delivering more than data from your environmental analyses

SIGMA Project Name: MOSS AMERICAN Project #: 13701 Project Phase:

Contract #: 2582 Folder #: 96399 Page 2 of 8

4/10/2013 16:44

4/4/2013 12:00

EJC

4/12/2013 12:14 MML SM 4500-NH3H

EPA 365.1

CES SM 9215D

Analyte	• .	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
norganic Results	x-			• •							
-	·	-2.0		2.0	N/A	4		414/0040 47.00			CN 5040D
BOD 5-Day		<2.0	mg/L			1		4/4/2013 17:00	4/9/2013 14:		SM 5210B
otal COD		<13	mg/L	13	42	1		4/15/2013 12:00	4/15/2013 17:	· ·	EPA 410.4
otal Kjeldahl Nitrogen		<0.40	mg/L	0.40	1.4	1		4/9/2013 15:00	4/11/2013 12:		ASTM D3590
otal Phosphorus		0.16	mg/L	0.13 *	0.43	1			4/10/2013 16:	42 EJC	EPA 365.1
leterotrophic Plate Count		550000	cfu/L	20.0		. 1	· ·	•	4/4/2013 12:	00 CES	SM 9215D
mmonia Nitrogen Total		<0.040	mg/L	0.040	0.14	1.			4/12/2013 12:	13 MML	SM 4500-NH3I
otal Organic Carbon		5.6	mg/L	0.40	1.2	1			4/8/2013 20:	)1 BMS	EPA 9060A
itrate Nitrogen Total		<0.080	mg/L	0.080	0.28	1		· · ·	4/4/2013 12:	22 MML	EPA 300.0
itrite Nitrogen Total		<0.040	mg/L	0.040	0.12	1			4/4/2013 12:	22 MML	EPA 300.0
rthophosphate Total		<0.18	mg/L	0.18	0.59	1		·	4/4/2013 12:	22 MML	EPA 300.0
ub Lab Results		•			•		• •				
etroleum Deg. Count		ATTACHE	D .	N/A	N/A	1		۱ ۱ ۱	4/29/2013 00:	00 PML	
CT-LAB Sample#: 280998	Sample De	scription: TG3-1						· ·		Sampled	: 4/3/2013 1100
nalyte		Result	Units .	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
organic Results					·						
OD 5-Day		3.5	mg/L	2.0	N/A	1		4/4/2013 17:00	4/9/2013 14:	09 LJS	SM 5210B
otal COD		42	mg/L	· 13	42	1		4/15/2013 12:00	4/15/2013 17:	35 LJS	EPA 410.4
otal Kjeldahl Nitrogen		0.85	mg/L	0.40 *	1.4	! 1		4/9/2013 15:00	4/11/2013 12:		ASTM D3590

0.43

0.14

1

1

1

Solid sample results reported on a Dry Weight Basis

1.6

0.32

500000

mg/L

cfu/L

mg/L

0.13

20.0

0.040

**Total Phosphorus** 

Heterotrophic Plate Count

Ammonia Nitrogen Total

# CT LABORATORIES

delivering more than data from your environmental analyses

SIGMA Project Name: MOSS AMERICAN Project #: 13701 Project Phase: Contract #: 2582 Folder #: 96399 Page 3 of 8

CT LAB Sample#: 280998 Sample De	scription: TG3-	1		•	•			Sampled:	4/3/2013 1100
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analyst Date/Time	Method
Total Organic Carbon	24	mg/L	0.40	1.2	1			4/8/2013 20:14 BMS I	EPA 9060A
Nitrate Nitrogen Total	0.21	mg/L	0.080 *	0.28	1			4/4/2013 12:40 MML I	EPA 300.0
Nitrite Nitrogen Total	<0.040	mg/L	0.040	0.12	' 1			4/4/2013 12:40 MML I	EPA 300.0
Orthophosphate Total	<0.18	mg/L	0.18	0.59	1		-	4/4/2013 12:40 MML I	EPA 300.0
Sub Lab Results		•	,						. •
Petroleum Deg. Count	ATTACHE	D	N/A	N/A	1			4/29/2013 00:00 PML	
CT LAB Sample#: 280999 Sample De	scription: TG4-	3	<u> </u>		-	·	· · · ·	Sampled:	4/3/2013 1305
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Ргер	Analysis Analyst	Method
							Date/Time	Date/Time	
Inorganic Results							Date/Time	Date/Time	
Inorganic Results BOD 5-Day	<2.0		2.0	N/A	. 1	Q	Date/Time		
BOD 5-Day	<2.0 20	mg/L mg/L	2.0	N/A 42	. 1	Q	· .	4/9/2013 14:09 LJS	SM 5210B EPA 410.4
BOD 5-Day Total COD		-			1	Q	4/4/2013 17:00	4/9/2013 14:09 LJS 4 4/15/2013 17:35 LJS I	
BOD 5-Day Total COD Total Kjeldahl Nitrogen	20	mg/L	. 13 *	42	1 1 1 1	Q	4/4/2013 17:00 4/15/2013 12:00	4/9/2013 14:09 LJS 5 4/15/2013 17:35 LJS 1 4/11/2013 12:52 LJS /	EPA 410.4
BOD 5-Day Total COD Total Kjeldahl Nitrogen Total Phosphorus	20 0.78	mg/L mg/L	13 * 0.40 *	42 1.4	1 1 1 1	Q	4/4/2013 17:00 4/15/2013 12:00	4/9/2013 14:09 LJS 3 4/15/2013 17:35 LJS 4 4/11/2013 12:52 LJS / 4/10/2013 16:46 EJC 1	EPA 410.4 ASTM D3590
BOD 5-Day Total COD Total Kjeldahl Nitrogen Total Phosphorus Heterotrophic Plate Count	20 0.78 0.29	mg/L mg/L mg/L	13 * 0.40 * 0.13 *	42 1.4	1 1 1 1 1 1	Q	4/4/2013 17:00 4/15/2013 12:00	4/9/2013 14:09 LJS 4/15/2013 17:35 LJS 4/15/2013 17:35 LJS 4/11/2013 12:52 LJS / 4/10/2013 16:46 EJC 4/10/2013 16:46 EJC 4/4/2013 12:00 CES 5	EPA 410.4 ASTM D3590 EPA 365.1
	20 0.78 0.29 66000	mg/L mg/L mg/L cfu/L	13 * 0.40 * 0.13 * 20.0	42 1.4 0.43	1 1 1 1 1 1	Q .	4/4/2013 17:00 4/15/2013 12:00	4/9/2013 14:09 LJS 4 4/15/2013 17:35 LJS 4 4/11/2013 12:52 LJS 4 4/10/2013 16:46 EJC 4 4/4/2013 12:00 CES 4 4/12/2013 12:16 MML 4	EPA 410.4 ASTM D3590 EPA 365.1 SM 9215D
BOD 5-Day Total COD Total Kjeldahl Nitrogen Total Phosphorus Heterotrophic Plate Count Ammonia Nitrogen Total	20 0.78 0.29 66000 0.44	mg/L mg/L mg/L cfu/L mg/L	13 * 0.40 * 0.13 * 20.0 0.040	42 1.4 0.43 0.14	1 1 1 1 1 1 1	Q	4/4/2013 17:00 4/15/2013 12:00	4/9/2013 14:09 LJS 3 4/15/2013 17:35 LJS 4 4/11/2013 12:52 LJS / 4/10/2013 16:46 EJC 4 4/4/2013 12:00 CES 3 4/12/2013 12:16 MML 3 4/8/2013 20:53 BMS 4	EPA 410.4 ASTM D3590 EPA 365.1 SM 9215D SM 4500-NH3H

0.59

N/A

1

1

0.18

N/A

Sub Lab Results Petroleum Deg. Count

Orthophosphate Total

.

Solid sample results reported on a Dry Weight Basis

<0.18

ATTACHED

mg/L

4/29/2013 00:00 PML

4/4/2013 12:59 MML EPA 300.0

# CTLABORATORIES delivering more than data from your environmental analyses

Г

SIGMA Project Name: MOSS AMERICAN-Project #: 13701 Project Phase:

Contract #: 2582 Folder #: 96399 Page 4 of 8

Analyse		Decult	11-14-	LOD	LOQ	Dilution	Qualifier		'Analus'-		Method
Analyte	•••	Result	Units			Dilution	Quaimer	Prep Date/Time	Analysis Date/Time	Analyst	
norganic Results								· · ·	· · ·		
BOD 5-Day		<2.0	mg/L	2.0	N/A	1	Q	4/4/2013 17:00	4/9/2013 14:09	) LJS	SM 5210B
Total COD		16	. mg/L	13 *	42	1		4/15/2013 12:00	4/15/2013 17:3	5 LJS	EPA 410.4
Total Kjeldahl Nitrogen		<0.40	mg/L	0.40	. 1.4	. 1		4/9/2013 15:00	4/11/2013 12:56	5 LJS	ASTM D3590
Total Phosphorus		0.17	ˈmɡ/L	0.13 *	0.43	1	• 1		4/10/2013 16:48	B EJC	EPA 365.1 -
Heterotrophic Plate Count		120000	cfu/L	20.0		1			4/4/2013 12:00	CES	SM 9215D
Ammonia Nitrogen Total		<0.040	- mg/L	0.040	0.14	1			4/12/2013 12:17	MML	SM 4500-NH3
Total Organic Carbon		7.5	mg/L	0.40	1.2	1	· · ·		4/8/2013 21:48	BMS	EPA 9060A
Nitrate Nitrogen Total	• .	<0.080	mg/L	0.080	0.28	1	•		4/4/2013 13:13	7 MML	EPA 300.0
Nitrite Nitrogen Total		<0.040	mg/L	0.040	0.12	1		·	4/4/2013 13:13	^{7.} MML	EPA 300.0
Orthophosphate Total	÷	<0.18	mg/L	0.18	0.59	1			4/4/2013 13:13	/ MML	EPA 300.0
Sub Lab Results		•••••					· ·		۰.		
Petroleum Deg. Count			D	. <b>N/A</b>	N/A	1	•		4/29/2013 00:00	D PML	
CT LAB Sample#: 281001 S	ample De	scription: TG5-3	}					· . ·		Sampled	: 4/3/2013 1250
Analyte	· · ·	Result	Units		LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Date/Time	Analyst	Method
norganic Results									• •		
BOD 5-Day		2.0	mg/L	2.0	N/A	1	Q	4/4/2013 17:00	4/9/2013 14:09	) LJS	SM 5210B
Total COD		15	mg/L	13 *	42	1		4/15/2013 12:00	4/15/2013 17:3	5 LJS	EPA 410.4
Total Kjeldahl Nitrogen	•	1.1	mg/L	0.40 *	1.4	1		4/9/2013 15:00	4/11/2013 12:5	7 LJS	ASTM D3590
Total Phosphorus		0.17	mg/L	0.13 *	0.43	. 1			4/10/2013 16:50	) EJC	EPA 365.1
Heterotrophic Plate Count	•	11000	cfu/L	20.0		. 1			4/4/2013 12:00	CES	SM 9215D
ictorophilo r late obuilt								· · · · · · · · · · · · · · · · · · ·			

.Solid sample results reported on a Dry Weight Basis

# CTLABORATORIES delivering more than data from your environmental analyses

.

SIGMA Project Name: MOSS AMERICAN Project #: 13701 Project Phase:

Contract #: 2582 Folder #: 96399 Page 5 of 8

otal Organic Çarbon litrate Nitrogen Total litrite Nitrogen Total orthophosphate Total <b>ub Lab Results</b> etroleum Deg. Count CT LAB Sample#: 281002 Sample Descrip nalyte norganic Results OD 5-Day otal COD		mg/L mg/L mg/L mg/L	0.40 0.080 * 0.040 0.18 N/A	1.2 0.28 0.12 0.59 N/A	1 1 1 1			4/8/2013 4/4/2013 4/4/2013 4/4/2013 4/29/2013	13:36 13:36 13:36 00:00	MML MML MML PML	EPA 9060A EPA 300.0 EPA 300.0 EPA 300.0
itrite Nitrogen Total orthophosphate Total <b>ub Lab Results</b> etroleum Deg. Count CT LAB Sample#: 281002 Sample Descrip nalyte norganic Results OD 5-Day	<0.040 <0.18 ATTACHED ption: TG6-1 Result	mg/L mg/L	0.040 0.18 N/A	0.12 0.59 N/A	1 . 1			4/4/2013 4/4/2013 4/29/2013	13:36 13:36 00:00	MML MML PML	EPA 300.0 EPA 300.0 4/3/2013 1230
orthophosphate Total ub Lab Results etroleum Deg. Count CT LAB Sample#: 281002 Sample Descrip nalyte torganic Results OD 5-Day	<0.18 ATTACHED ption: TG6-1 Result	mg/L	0.18 N/A	0.59 N/A	1 . 1	· · · · · · · · · · · · · · · · · · ·		4/4/2013 4/29/2013	13:36 00:00	ЙМL РМL	EPA 300.0 4/3/2013 123
ub Lab Results etroleum Deg. Count CT LAB Sample#: 281002 Sample Descrip nalyte norganic Results OD 5-Day	ATTACHED ption: TG6-1 Result		N/A	N/A	· 1	······		4/29/2013	00:00	PML	4/3/2013 123
etroleum Deg. Count CT LAB Sample#: 281002 Sample Descrip nalyte norganic Results OD 5-Day	ption: TG6-1 <b>Result</b>		· · · · · · · · · · · · · · · · · · ·	· · · · · ·							
CT LAB Sample#: 281002 Sample Descrip nalyte norganic Results OD 5-Day	ption: TG6-1 <b>Result</b>		· · · · · · · · · · · · · · · · · · ·	· · · · · ·		· · · · · · · · · · · · · · · · · · ·					
CT LAB Sample#: 281002 Sample Descrip nalyte norganic Results OD 5-Day	ption: TG6-1 Result	Units	LOD	LOQ			·····	-	S	ampled:	
norganic Results OD 5-Day		Units	LOD	LOQ			· · · · · ·				
norganic Results OD 5-Day	· .				Dilution	Qualifier	Prep Date/Time	Analys Date/Ti		nalyst	Method
OD 5-Day											
	4.7	mg/L	2.0	N/A	1	Q	4/4/2013 17:00	4/9/2013	14.00	LJS	SM 5210B
	4.7 19	mg/L	, 2.0 , 13 *	42	י 1	ч.	4/15/2013 12:00	4/15/2013		LJS	EPA 410.4
atal Kialdahi Nitragan	1.3	mg/L	0.40 *	42 1.4	1		4/9/2013 15:00		12:58	LJS	ASTM D3590
otal Kjeldahl Nitrogen otal Phosphorus	0.14	mg/L	0.40	0.43	1		4/5/2013 15:00	4/10/2013		EJC	EPA 365.1
eterotrophic Plate Count	620000	cfu/L	20.0	0.45	1			4/4/2013	•		SM 9215D
mmonia Nitrogen Total	0.64	mg/L	0.040	0.14	. 1			4/12/2013			SM 4500-NH
	<b>4.2</b>	-	0.40	1.2	· I 1			4/12/2013			EPA 9060A
otal Organic Carbon itrate Nitrogen Total	4.2 0.18	mg/L mg/L	0.40	0.28	- I '4			4/8/2013		MML	
itrite Nitrogen Total	<0.18 <0.040	mg/L	0.040	0.28				4/4/2013			EPA 300.0
rthophosphate Total	<0.18	mg/L	0.18	0.12	1		•	4/4/2013			EPA 300.0
		Ŧ	-								
ub Lab Results etroleum Deg. Count	ATTACHED		N/A	N/A				4/29/2013	00.00	PML	

Solid sample results reported on a Dry Weight Basis

# **C** T LABO R H delivering more than data from your environmental analyses

SIGMA Project Name: MOSS AMERICAN Project #: 13701 Project Phase:

Contract #: 2582 Folder #: 96399 Page 6 of 8

CT LAB Sample#: 281003 Sample	Description: TG6-3	3						Samp	oled: 4/3/2013 1240
halyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analy Date/Time	st Method
norganic Results							· · ·		
SOD 5-Day	<2.0	mg/L	2.0	N/A	1	Q.	4/4/2013 17:00	4/9/2013 14:09 LJ	IS SM 5210B
otal COD	38	mg/L	13 *	42	1		4/15/2013 12:00	4/15/2013 17:35 LJ	IS EPA 410.4
otal Kjeldahl Nitrogen	0.66	mg/L	0.40 *	1.4	1		4/9/2013 15:00	4/11/2013 12:59 LJ	IS ASTM D3590
otal Phosphorus	0.18	mg/L	0.13 *	0.43	. 1		· · ·	4/10/2013 16:59 EJ	JC EPA 365.1
leterotrophic Plate Count	150000	cfu/L	20.0		. 1	•	. *	4/4/2013 12:00 CE	ES SM 9215D
mmonia Nitrogen Total	0.38	mg/L	0.040	0.14	1	•		4/12/2013 12:24 MI	ML SM 4500-NH3H
otal Organic Carbon	20	mg/L	. 0.40	1.2	1			4/8/2013 22:24 BM	VIS EPA 9060A
litrate Nitrogen Total	0.19	mg/L	0.080 *	0.28	1			4/4/2013 14:13 MI	ML EPA 300.0
Nitrite Nitrogen Total	<0.040	mg/L	0.040	0.12	1			4/4/2013 14:13 MI	ML EPA 300.0
Orthophosphate Total	<0.18	mg/L	0.18	0.59	1	•		4/4/2013 14:13 Mi	ML EPA 300.0
ub Lab Results									
Petroleum Deg. Count	ATTACHE	D	N/A	N/A	1			4/29/2013 00:00 PM	ΛL
CT LAB Sample#: 281004 Sample	Description: TG1-1	I .	·· · · · · · · · · · · · · · · · · · ·	-		· .		Samr	oled: 4/3/2013 1407
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analysis Analy Date/Time	st Method
norganic Results									
30D 5-Day	7.0	mg/L	2.0	N/A	1	Q	4/4/2013 17:00	4/9/2013 14:09 LJ	IS SM 5210B
Total COD	51	mg/L	13	42	. 1		4/15/2013 12:00	4/15/2013 17:35 LJ	IS EPA 410.4
otal Kjeldahl Nitrogen	1.6	mg/L	0.40	1.4	1	•	4/9/2013 15:00	4/11/2013 13:01 LJ	IS ASTM D3590
Total Phosphorus	<0.13	mg/L	0.13	0.43	1			4/10/2013 17:01 EJ	JC EPA 365.1
•									
leterotrophic Plate Count	300000	cfu/L	20.0		1			4/4/2013 12:00 CI	ES SM 9215D

Solid sample results reported on a Dry Weight Basis

# **(** T LABORATO R delivering more than data from your environmental analyses

.

SIGMA Project Name: MOSS AMERICAN Project #: 13701 Project Phase:

Contract #: 2582 Folder #: 96399 Page 7 of 8

				<u> </u>						
Analyte	Result	Units	LOD	LOQ	Dilution	Qualifier	Prep Date/Time	Analys Date/Tir	is Analyst ne	Method
otal Organic Carbon	14	mg/L	0.40	1.2	1	· .		4/8/2013	22:37 BMS	EPA 9060A
litrate Nitrogen Total	< 0.080	mg/L	0.080	0.28	1	•	•	4/4/2013	14:31 MML	EPA 300.0
litrite Nitrogen Total	<0.040	mg/L	0.040	0.12	1			4/4/2013	14:31 MML	EPA 300.0
Orthophosphate Total	<0.18	mg/L	0.18	0.59	1			4/4/2013	14:31 MML	EPA 300.0
oub Lab Results	· .									
Petroleum Deg. Count	ATTACHE	D	N/A	N/A	1			4/29/2013	00:00 PML	

# Solid sample results reported on a Dry Weight Basis

# CT 1 A B U delivering more than data from your environmental analyses

SIGMA[.] Project Name: MOSS AMERICAN Project #: 13701 Project Phase:

Contract #: 2582 Folder #: 96399 Page 8 of 8

Notes: * Indicates Value in between the LOD (limit of detection) and the LOQ (limit of quantitation).

All samples were received intact and properly preserved unless otherwise noted. The results reported relate only to the samples tested. This report shall not be reproduced, except in full, without written approval of this laboratory. The Chain of Custody is attached. Pat M. Letterer Project Manager 608-356-2760 Submitted by:

	QC Qualifiers	
Code	Description	Current CT Laboratorles Certifications
3	Analyte detected in the associated Method Blank.	Illinois NELAP ID# 002413
;	Toxicity present in BOD sample.	Kansas NELAP ID# E-10368
)	Diluted Out.	Kentucky ID# 0023
Ξ	Safe, No Total Collform detected.	Pennsylvania NELAP ID# 68-04201
:	Unsafe, Total Coliform detected, no E: Coli detected.	-
3.	Unsafe, Total Coliform detected and E. Coli detected.	New Jersey NELAP ID# WI001
1	Holding time exceeded.	North Carolina ID# 674
ļ	Estimated value.	Wisconsin (WDNR) Chemistry ID# 157066030
-	Significant peaks were detected outside the chromatographic window.	Wisconsin (DATCP) Bacteriology ID# 105-289
л	Matrix spike and/or Matrix Spike Duplicate recovery outside acceptance limits.	DoD-ELAP A2LA Cert # 3317.013
<b>1</b> 5	Insufficient BOD oxygen depletion.	Alaska ID # UST-099
)	Complete BOD oxygen depletion.	Louisiana ID # 115843
)	Concentration of analyte differs more than 40% between primary and confirmation analysis.	
2	Laboratory Control Sample outside acceptance limits.	Virginia ID# 460203
2	See Narrative at end of report.	ISO/IEC 17025-2005 A2LA Cert # 3317.01
5	Surrogate standard recovery outside acceptance limits due to apparent matrix effects.	GA EPD Stipulation ID 115843, Exp 6-30-13
-	Sample received with improper preservation or temperature.	
J	Analyte concentration was below detection limit.	
/	Raised Quantitation or Reporting Limit due to limited sample amount or dilution for matrix background interference.	
v	Sample amount received was below program minimum.	
(	Analyte exceeded calibration range.	
1	Replicate/Duplicate precision outside acceptance limits.	
<u>.</u>	Specified calibration criteria was not met.	



April 26, 2013

Dennis Linley CT Laboratories 1230 Lange Ct. Baraboo, WI 53913

RE: Hydrocarbon-Utilizer Count Report for Moss-American Samples Collected from 1300 W. Canal Street, Milwaukee, WI on April 3, 2013

Dear Dennis

Attached is the analytical report for hydrocarbon-utilizing microbial counts for the Moss-American Samples collected from 1300 W. Canal Street, Milwaukee, WI site on April 3, 2013. The samples were received at Terra Systems, Inc. on April 4, 2013. The counts of dieselutilizing bacteria ranged from low to moderate,  $1.2 \times 10^2$  in TG6-3 to  $3.6 \times 10^4$  colony-forming units (CFU/mL) in TG6-1. The groundwater contains low to moderate numbers of microorganisms capable of degrading hydrocarbon contaminants under aerobic conditions.

Please let us know if you have any questions about these microbial counts or if I can be of further assistance on this project.

Sincerely, TERRA SYSTEMS, INC.

michael & lee, PRI.

Michael D. Lee, Ph.D. Vice-President Research and Development



Page 1 of 1

Dennis Linley CT Laboratories 1230 Lange Ct. Baraboo, WI 53913

Sample Collected: Sample Received: Sample Location: April 3, 2013 April 4, 2013 Sigma Environmental Moss-American

# HYDROCARBON-UTILIZERS MINERAL AGAR

DESCRIPTION	MATRIX	RESULT
TG1-1	Groundwater	1.6 x 10 ² CFU/mL
TG1-3	Groundwater	1.3 x 10 ² CFU/mL
TG2-1	Groundwater	8.0 x 10 ³ CFU/mL
TG3-1	Groundwater	$2.2 \times 10^4 \text{ CFU/mL}$
TG4-3	Groundwater	$2.0 \times 10^3 $ CFU/mL
TG5-1	Groundwater	$3.8 \times 10^3  \text{CFU/mL}$
TG5-3	Groundwater	1.0 x 10 ³ CFU/mL
TG6-1	Groundwater	$3.6 \times 10^4 \text{ CFU/mL}$
TG6-3	Groundwater	$1.2 \ge 10^2 \text{ CFU/mL}$

Diesel vapors supported the growth of hydrocarbon-utilizing bacteria that were plated on Noble Agar, a washed agar with very low organic content, which was amended with inorganic nutrients.

Respectfully submitted,

michael & lee, PRI.

Michael D. Lee, Ph.D. Laboratory Manager Terra Systems, Inc.

> 130 Hickman Road • Suite 1 • Claymont Delaware 19703 • 302-798-9553 • Fax 302-798-9554 • wvw.terrasystems.net

				•										No	1 of 1		•
TERR	A SYST	EMS, INC. 1, Claymont, DE 19703 phone 302-	709.0557 (	2.009.0554			•									Cha	in of Custod
		NVIRONMENTAL Project	Name: Moss	-AMERI	CAN							Pa	iramete	ers for A	nalysis		<u></u>
		and the second	Manager/Contact: /		· _ · · · · · · · · · · · · · · · · · ·	400)	Lot:	2		·			· ·				
ocation: 12	LUSAUKE		414-643				- 0	eleur S					· ·				
Samplur.	Tom M	COY :					Number of Containers	is the wide									
Date	Time	Sample Identification	Sample Technique	Matrix	Prøser- vative	Container Type	Nun	Sub Patraleur Degraders									Remarks
+/3/13	10:12	TG1-3		GW	Ana	STOCILE	1	X					· · ·				
4/3/13	10:25	<u>TGZ-1</u>		GUÙ	Time	·	<u> </u>	×		-	<b></b>		ļ				
	moc	TG3-1		GN	Tione	ļļ		$\leq$			ļ						
4/3/17		TG4-3		ΕÛ	Time	· ;		X			ļ		<u> </u>				· · · · · · · · · · · · · · · · · · ·
4/3/13	12:58	TGS-1		6.W	Trace		+	$ \times $		-	<u> </u>						· · · · · · · · · · · · · · · · · · ·
	12:50	TG5-3 TG6-1		GW GW	Thone		+- <del>'</del> -	X		+	 		<u> </u>				
+/3/13	12:40	TG6-3		GW	now		1,	. <u>×</u> ×									
	14:07	TG[-1		GU	hone		17	$\overline{\mathbf{x}}$									
4										-   .	1						
							-			-	1		1	1			
•		· ,										· .					
n ( <del></del>																	
		· · · · ·			<b>.</b>								·			í	
	<u> </u>					· · ·				ļ	<u> </u>						
	uished by (sig			elved by (sign	ature)		Date/ti		_	Shipp	ed to:			-			-
<u> </u>	J' - C	× 4/3/13 16:3	C 🥬			<u>¶/y//</u>	'3	10ig		-							
	· · ·									-			;				
······		·				<u> </u>				-							
		······				1				Date/	lime:			<u>.</u>			· · · · · · · · · · · · · · · · · · ·
									<del></del>		ar/Airbill	numbe	ər:				· · · · · · · · · · · · · · · · · · ·
Cooler Ten	nperature:	°C	pH:		· · ·	Comments:										•	
	<u> </u>	•															
				•		ŕ						•					

Rev. 2/2013	CHAIN OF CU	STO	<b>&gt;Y</b>													P	age j	1	of
Company: Signa Environmentel Project Contact: Mafricul [slans	CT LABORATO	RI	E \$	4					nge C 356-2	760	Fax 6	bo, WI 508-35 bratori	6-2766	2   EI	port To MAIL: ompar	MI	sla iSN	m@ ra E	the signagro
Project Name: Moss-America, Con	ler #. 96399 Ipany: SIGMA et: MOSS AMERICAN	u w yi yi w y		•••••	1 1 2 3 4 5 4 5	þ	rogra SM olid V	R	CRA	SDW Othe	'A N :r	IPDES	_	IN   El	voice to MAIL:	0:*			Environmenta Canal Stree WE 53233
Location: Milwaukee, WI Loge	red By: JLS PM: PM					P	0#		13	70	1				ompar ddress	1y: 5:	NO	m 	22
Sampled By: TOM McCay			<b>нида:</b> Ктид	× 4 #	****	•				*Par	y listed	is respo	nsible fi	or pay	ment of	invoice	as per	CTLab	oratories' terms and cond
Client Special Instructions			 		ו	Ē	 T	AN	ALYS	ES RE		TED				-			Turnaround Time Normal RUSH* ate Needed:
Matrix: GW – groundwater SW - surface water WW - wastewat		Filtered? KN	BoD	1 marineli		e a f	NHA		Z V ord	Arions 1C Tar	)'00F					Total # Containers	Designated MS/MSD	Rus	sh analysis requires pri Laboratories' approva Surcharges: 24 hr 200% 2-3 days 100%
S - soil/sediment SL - sludge A - air Collection Grab/ Sample #	M - misc/waste		$\left  - \right $		<u>}</u>	1		Fill	- ] in Sp		<u> </u>	otties	ner Te			<u></u>	ă		4-9 days 50% CT Lab 1D #
Date         Time         Comp (1,2,3, etc)           4/3/13         10:12         GLU         1	TG1-3	N	1	Ī	1	17		T.						T		5	· ·		Lab use only
4/3/13 10:25 GW 2 -	TG2-1		Ŕ			TX IX	÷			恔	╞──╂╴		┼╌┥		·	5	·		280995
4/3/13 11:00 GW 3	TG3-1	2	X	X		tx		5	Ì	坛	┠╼╼╂╸	_	╬╌╍╢			5			280998
4/3/13 13:05 GW B	<del>-64-3</del>	N	X	Ťx	X	İx	X	ť	<u>(x</u> )	İX			<u> </u>			5	- ·	$\uparrow$	280999
	TGS-1	N	X	X	X	ľх		Ť	<u> X</u>	X						5	1		28000
	TG5-3	N	X	X	X	X	ĺΧ	:	< X	X						5			281001
4/13/13/12:30GW 4	TG6-1	と	X	X	<u> </u>	2				X						5	1		291002
	TG6-3 -	N	X	X	<u> </u>	X	ΊX	X	$\langle   X \rangle$	X						5	<u> </u>		281003,
4/3/3 N:07 GW 9 -	<u>rg[-1</u>	N	X	×			ίX	X		X						5			281004
	······																		· · · · · · · · · · · · · · · · · · ·
Relinquisted By:	Dase/Time 4/3/3 16:30	Reci	eived (	By:					_		~	Di	ite/Timi	e r t			tce	e Prese	Lab Use Only ent (195 No
Received by:	Date/Time	Reco	eived	for L	aborat	tery l	by:		P	$\mathcal{D}$		Da	ne Un	ଧ୍ୟ	13	2) 2)		iempe Cooler	
	· · · · · · · · · · · · · · · · · · ·							1	7					7		0		4	Hulio MISS.

# CT Laboratories Terms and Conditions

Where a purchaser (Clioni) places an order for laboratory, consulting or sampling services from CT Laboratories (CTL). CTL shall provide the ordered services pursuant to those Terms and Conditions, and the rotated Duciation, or as agreed in a negotiated contract. In the observe of a writion accogning to the contrary, the Order constitutes an acceptance by the Client of CTL's after to do business under those Terms and Conditions, and the rotated Conditions. No contrary or additional terms and conditions oppressed in a Client's document shall agreement of boccome of an of the contract created upon acceptance of these Terms and Contribute, unless accepted by CTL in advance of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the projection of the start of the pro

1. ORDERS AND RECEIPT OF SAMPLES (Sample Acceptance Policy) 1.1 The Cient may place the Order (Lo., specify a Scope of Work) et ar by subming a purchase order to CTL in willing, by talephone (confirmed in writing) or by negotiated contract. Whichever option the Cient selects for placing the Order, the Order shall not be valid unless it contains sufficient specification to enable CTL to carry out the Cient's requirements. It is the policy of CT Laboratories that samples not meeting the acceptance criteria, outlined in the NELAC standards and Social S.S.J.2 of the DOD QSM, will not be accepted by the laboratory or will be qualified on the specific and report. All samples submitted to the laboratory must: (1) be accompanied by proper, bull and complete documentation, including sample identification, location, date and time of collector's name, type of proservation (if any), type of sample, any special commands concerning the sample and any additional pertinent fields on the chain-of-custedy. In the absence of any of the required information, the laboratory will attempt to contact the client to obtain the information; if unable to obtain the necessary information, the final report will be qualified. (2) be labeled appropriately with a unique sample identification written with indetible into an water restant labels. If the laboratory cannot detarmine the identity of a sample, it will be rejected and the distribution with a written written written with a written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written written writ sample container. If the container is inappropriate, the client will be contacted for further instructions or resampling, it analysis is possible, the final report will be qualified. CT Laboratories can provide a sampling guide containing approved containers and preservations for analytical methods requested. (4) adhere to specified holding times. If samples are received with less than X the holding time remaining for the requested lest, CT Laboratories will make its best effort to analyze the samples and notify the client. If holding times are exceeded, the final report will be qualified, (5) contain adequals sample volume to perform the necessary lesting. If sufficient volume is not present, the sample will be rejected and the cleant will be contacted for further instructions or resampling. If samples show signs of damano, containhalion or instances preservation, the client will be notified. If analysis can be performed, the linal report will be qualified. If not, the samples will be rejected and the client notified for further instructions or resampling.

preservation, the ditent will be included. It durings that interform will be dualined, in no, the semples was de related and the circle interfaces and the circle interfaces and the circle interfaces and the circle intervations of relation of any hardware in the lab's a baby to process work use to contamination of instruments or work areas, the Circle will be required disclosure, cause interruptions in the lab's a baby to process work use to contamination of instruments or work areas, the Circle will be responsible for the costs of dean up and recovery. 1.3 Prior to Sample Acceptance, the online risk of loss or damage to samples remains with the Circle, in no event will CTL have any responsibility or labby to the action or inaction of any carlor stripping or delivering any samples to or from CTL's premises. Circle is assure that any samples

containing any hazardous substance which is to be delivered to CTL a premises will be packaged, labeled, transported and delivered properly and in accordance with applicable laws.

## **2 PAYMENT TERMS**

2.1 Services performed by CTL will be in accordance with prices quoted and later confirmed in writing or as stated in the Price Schedules. Invoices may be submitted to Client upon completion of any sample delivery group. Payment in advance is required for all Clients except those whose credit has been established with CTL. For Clients with approved credit, payment terms are not 30 days from the date of invoice by CTL. All overdue payments are subject to an additional interest and service charge of one and one-hall percent (1.5%) (or the maximum rate permissible by law, whichover is losser) per month or portion thereof from the due date until the date of payment. All tees are charged or billed directly to the Client. The billing of a third party will not be accepted without a stalement, signed by the third party that adknowledges and accepte payment responsibility. CTL may support work and withhold delivery of date under this order at any time in the event Client fails to make timely payment of as involces. Client shall be responsibility or all costs and expenses of collection including reasonable attamey's fees. CTL reserves the right to refuse to proceed with work at any time based upon an unfavorable Client credit report.

# 3. CHANGE ORDERS, TERMINATION

3.1 Changes to the Scope of Work, price, or result delivery dela may be initiated by CTL after Sample Acceptance due to any condition which conditions with analysical, QA or other protocols warranted in these Terms and Conditions. CTL will not proceed with such changes until an agreement with the Cleart is reached on the emount of any cost, schedule change or technical change to the Scope of Work, and each agreement is documented in writing.

3.2 Channes to the Scope of Work, including but not limited to increasing or decreasing the work, changing test and analysis specification or acceleration in the performance of the work may be initiated by the Client after sample acceptance. Such a change will be documented in writing and may result to a channe in cost and turnaround time commitment. CTL's acceptance of such changes is contingent upon technical feasibility and operational capacity.

3.3 Suspension or termination of all or any part of the work may be influined by the Clerk, CTL will be compensated consistent with Section 2 of these Terms and Conditions, CTL will complete all work in process and be paid in full for all work completed.

## A WARRANTIES AND LARD ITY

4.1 Where applicable, CTL will use analytical methodologies which are in substantial contornity with published test methods. CTL has implemented these methods in its Leboratory Quality Manuels and inferenced Standard Operating Procedures and where the nature or composition of the sample requires it, CTL reserves the right to deviate from these methodologies as necessary or appropriate, based on the reasonable judgment of CTL, which deviations, if any, will be made on a basis consistent with recognized standards of the industry and/or CTL's Laboratory Quality Manuals. Client may request that CTL perform according to a muscal agreed Quality Assumpce Project Plan (QAPP). In the event that samples arrive prior to a greement on a QAPP, CTL will proceed with analyses under its standard Quality Manuals than in effect, and CTL will not be responsible for any resampling or other charges if work must be repeated to comply with a subsequently finalized QAPP.

4.2 CTL shall start preparation and/or enalysis within holding times provided that Sample Acceptance occurs within this period, CTL, will use its bost efforts to meet hotding times and will proceed with the work provide that, in CTL's Judgment, the chain-of-custody or definition of the Scope of Work provide sufficient guidance. Reanalysis of samples to comply with CTL's Quality Manuals will be deemed to have mot hotding lines provided the initial analysis was performed within the applicable holding time. When reanalysis demonstrates that sumplo matrix interference is the cause of faburo to meet any Quality Manual readments, the warranty will be deemed to have been met.

4.3 CTL warmuts that it possesses and montains all loanses and certificators which are required to perform services under fuces Terms and Conditors provided that such requirements are specified in writing to CTL prior to Sample Acceptance. CTL will notify the Client in writing of any decertification or revocation of any loanse, or notice of either, which affects work in progress.

4.4 The warranty obligations set forth in Sections 4.1.4.2 and 4.3 are the sole and exclusive warranties given by CTL in connection with any services performed by CTL or any Results generated from such services, and CTL gives and makes NO OTHER REPRESENTATION OR

4.4 In a warranty congeners and total a second with a second with an and the second at the instance performed by CTL in contracted in the second with a second with a second with any services performed by CTL in contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the contracted in the

occasioned by the services performed or by application or use of the reports prepared.

4.7 In no overstability or leading us your sponsibility or leading to the reasonable control of CTL. Such causes and circumstances shall include, but not be limited to, acts of God, acts of Client, ents or orders of any governmental authority, strikes or other labor disputes, natural disasters, accidents, ware, civil disturbances, equipment breakdown, matrix interformes or unknown highly contaminated samples that impact instrument operation, unavailability of supplies from usual supplices, difficulties or delays in transportation, and or delay services, or any other cause boyond CTL's reasonable control.

## 5. RESULTS, WORK PRODUCT

5.1 Data or information provided to CTL or generated by services performed under this agreement shell only become the property of the Client upon receipt in full by CTL of payment for the whole Onter. Ownership of any analytical method, QA/QC protocols, antiwaro programs or equilament doveloped by CTL for performance of work will be retained by CTL, and Client shall not disclose such information to any third party.

5.2 Data and sample materials provided by Clant's request, and the result obtained by CTL shall be held in confidence (unless such information is generally evaliable to the public or is in the public domain or Client has failed to pay CTL for all services rondered or is otherwise in breach of these Terms and Contritions), subject to any disclosure required by law or bgal process.

5.3 Should the Results delivered by CTL be used by the Client or Client's client, even though subsequently determined not to meet the warranties described in these Terms and Conditions, then the compensation will be adjusted based upon mutual agreement. In no case shell the Client unreasonably withhold CTL's right to independently defend its data.

5.4 CTL reserves the right to subcontract services ordered by the Client to enother laboratories, if, in CTL's sole judgment, it is reasonably necessary, appropriate or advisable to do so, and with the Client's permission. CTL will in no way be liable for any subcontracted services and

all applicable waranties, guarantees and insurance are those of the subcontracted laboratory. 5.5 CTL shall dispose of the Cliente samples to the Cliente samples to the Client, in a manner consistent with U.S. Environmental Protection Agency regulations or other applicable Federal, state or local requirements. Any samples for projects that are canceled or not accepted, or for which nearn was requested, will be nearned to the Clent at their own expenses. CTL reserves the right to return to the Clent any sample or unused portion of a sample that is not within CTL's pormitted canability or the capabilities of CTL's designated wasta disposal vendor(s).

5.6 Unloss a different time paried is egreed to in any order under these Terms and Conditions, CTL agrees to retain all records for five (6) years.

5.7 In the event that CTL is required to respond to logal process related to services for Client, Client agrees to reinthurse CTL for hourly charges for personnel involved in the response and attorney fees reasonably incurred in obtaining advice concerning the response, scenaration to teatily, and appearances related to the legal process, bravel and al reasonable expenses associated with the bigation.

## 6. INSURANCE

6.1 CTL shall maintain in force during the performance of services under these Terms and Conditions, Workers' Compensation and Employer's Liability Insurance in accordance with the base of the status howing jurisdiction over CTL's employees who are engaged in the performance of the work, CTL shall also maintain during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to the during use portantial to

### 7. AUDIT

7.1 Upon prior notice to CTL, the Client may sudit and inspect CTL's records and accounts overing reinsurative costs, related to work dans for the Care, for a partial data and it has work. The purpose of any such audit shall be only for vertification of such costs, and CTL, shall not be required to provide access to cost records where prices are expressed as fixed fees or published unit prices

# Synergy Environmental Lab, INC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

MAFIZUL ISLAM SIGMA ENVIRONMMENTAL 1300 W. CANAL STREET MILWAUKEE, WI 53233

Report Date 12-Apr-13

								i			
Project Name Proiect #	MOSS-AME 13701	RICAN					Invoi	ice # E250	01	• •	
Lab Code	5025001A										
Sample ID	TG1-3			•		•					
Sample Matrix											
Sample Date	4/3/2013										
Sample Date	4/5/2015	<b>D</b> 1/	<b>TT T</b>	1.05							<b>c</b> 1
	•	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic									·		
BTEX											
Benzene		< 0.27	ug/l	0.27	0.85	1	GRO95/8021	·	4/8/2013	CJR	1
Ethylbenzene		< 0.82	ug/l	0.82	2.6	1	GRO95/8021		4/8/2013	CJR	1
Toluene		< 0.8	ug/l	0.8	2.6	1	GRO95/8021		4/8/2013	CJR	1
m&p-Xylene		< 1.6	ug/l	1.6	5.2	1	GRO95/8021		4/8/2013	CJR	1
o-Xylene		< 0.81	ug/l	0.81	2.6	1	GRO95/8021		4/8/2013	СЛ	1
PAH SIM											
Acenaphthene		1.77	ug/l	0.021	0.068	ì	M8270D	4/9/2013	4/11/2013	MDK	1
Acenaphthylene		< 0.02	ug/l	0.02	0.063	1	M8270D	4/9/2013	4/11/2013	MDK	1 .
Anthracene		0.113	ug/l	0.02	0.064	- 1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(a)anthracer	ne	0.025 "J"	· ug/l	0.025	0.078	1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(a)pyrene		< 0.018	ug/l	0.018	0.058	1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(b)fluoranth	ene	< 0.02	ug/l	0.02	0.063	1	M8270D	4/9/2013.	4/11/2013	MDK	1
Benzo(g,h,i)peryle	ene	< 0.023	ug/l	0.023	0.075	1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(k)fluoranth	ene	< 0.027	ug/l	0.027	0.087	. 1	M8270D	4/9/2013	4/11/2013	MDK	ł
Chrysene		< 0.018	ug/l	0.018	0.058	1	M8270D	4/9/2013	4/11/2013	MDK	I
Dibenzo(a,h)anthr	racene	< 0.023	ug/l	0.023	0.072	. 1	M8270D	4/9/2013	4/11/2013	MDK	1
Fluoranthene		0.155	ug/l	0.026	0.084	1	M8270D	4/9/2013	4/11/2013	MDK	1
Fluorene		0.259	ug/l	0.02	0.063	1	M8270D	4/9/2013	4/11/2013	MDK	1
Indeno(1,2,3-cd)p	•	< 0.027	ug/l	0.027	0.085	1	M8270D	4/9/2013	4/11/2013	MDK	I
I-Methyl naphtha		< 0.019	ug/l	0.019	0.061	1	M8270D	4/9/2013	4/11/2013	MDK	1
2-Methyl naphthal	lene	0.017 "J"	ug/l	0.016	0.052	1	M8270D	4/9/2013	4/11/2013	MDK	1
Naphthalene		0.024 "J"	ug/l	0.023	0.075	1	M8270D	4/9/2013	4/11/2013	MDK	1
Phenanthrene		0.035 "J"	. ug/l	0.018	0.059	1	M8270D	4/9/2013	4/11/2013	MDK	1
Pyrene	•	0.104	ug/l	0.025	0,08	1	M8270D	4/9/2013	4/11/2013	MDK	1

## **Project Name** MOSS-AMERICAN Invoice # E25001 Project # 13701 5025001B Lab Code TG2-1 Sample ID Sample Matrix Water Sample Date 4/3/2013 Unit Result LOD LOQ Dil Method

Ext Date Run Date Analyst Code

				~~ x	~	u	DAT DATE	Kun Date		
Organic										
BTEX										
		•							·	
Benzene	< 0.27	ug/l	0.27	0.85	. 1	GRO95/8021		4/8/2013	CJR	1
Ethylbenzene	< 0.82	ug/l	0.82	2.6	1	GRO95/8021		4/8/2013	CJR	1
Toluene	< 0.8	ug/l	0.8	2.6	. I	GRO95/8021		4/8/2013	СJR	1
m&p-Xylene	< 1.6	ug/l	1.6	5.2	1	GRO95/8021		4/8/2013	CJR	1
o-Xylene	< 0.81	ug/l	0.81	2.6	1	GR095/8021	<i>c</i> -	4/8/2013	СJR	1
PAH SIM			1.4							
Acenaphthene	< 0.021	ug/l	0.021	0.068	1	M8270D	4/9/2013	4/11/2013	MDK	1
Acenaphthylene	, < 0.02	ug/i	0.02	0.063	1	M8270D	4/9/2013	4/11/2013	MDK	1
Anthracene	0.035 " <b>J</b> "	ug/l	0.02	0.064	1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(a)anthracene	< 0.025	ug/l	0.025	0.078	1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(a)pyrene	< 0.018	ug/l	0.018	0.058	. 1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(b)fluoranthene	< 0.02	ug/l	0.02		1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(g,h,i)perylene	< 0.023	ug/l	0.023	0.075	1	M8270D	4/9/2013	4/11/2013	MDK	i
Benzo(k)fluoranthene	· < 0.027	ug/l	0.027	0.087	1	M8270D	4/9/2013	4/11/2013	MDK	1
Chrysene	< 0.018	ug/l	0.018	0.058	1	M8270D	4/9/2013	4/11/2013	MDK	1
Dibenzo(a,h)anthracene	< 0.023	ug/l	0.023	0.072	1	M8270D -	4/9/2013	4/11/2013	MDK	1
Fluoranthene	< 0.026	ug/l	0.026	0.084	1	M8270D	4/9/2013	4/11/2013	MDK	1
Fluorene	< 0.02	ug/l	0.02	0.063	1	M8270D	. 4/9/2013	4/11/2013	MDK	1
Indeno(1,2,3-cd)pyrene	< 0.027	ug/l	0.027	0.085	1	M8270D	4/9/2013	4/11/2013	MDK	1
1-Methyl naphthalene	< 0.019	ug/l	0.019	0.061	1	M8270D	4/9/2013	4/11/2013	MDK	1
2-Methyl naphthalene	< 0.016	ug/l	0.016	0.052	1	M8270D	4/9/2013	4/11/2013	MDK	1
Naphthalene	< 0.023	ug/l	0.023	0.075	1	M8270D	4/9/2013	4/11/2013	MDK	1
Phenanthrene	< 0.018	ug/l	0,018	0.059	1	M8270D	4/9/2013	4/11/2013	MDK	1
Pyrene	< 0.025	ug/l	0.025	0.08	1	M8270D	4/9/2013	4/11/2013	MDK	1
;								• •		
Lab Code 5025001C						/				
Sample ID TG3-1										
Sample Matrix Water										
Sample Matrix Water						•				
Sample MatrixWaterSample Date4/3/2013	Devel	T								
	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Sample Date 4/3/2013 Organic	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Sample Date 4/3/2013 Organic BTEX			· .			· · ·	Ext Date			
Sample Date 4/3/2013 Organic BTEX Benzene	< 0.27	ug/l	0.27	0.85	1	GRO95/8021	Ext Date	4/9/2013	CJR	1
Sample Date 4/3/2013 Organic BTEX Benzene Ethylbenzene	< 0.27 < 0.82	ug/l ug/l	0.27 0.82	0.85	1	GRO95/8021 GRO95/8021	Ext Date	4/9/2013 4/9/2013	CJR CJR	1
Sample Date 4/3/2013 Organic BTEX Benzene Ethylbenzene Toluene	< 0.27 < 0.82 < 0.8	ug/l ug/l ug/l	0.27 0.82 0.8	0.85 2.6 2.6	1 1 1	GRO95/8021 GRO95/8021 GRO95/8021	Ext Date	4/9/2013 4/9/2013 4/9/2013	CIR CIR CIR	1
Sample Date 4/3/2013 Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene	< 0.27 < 0.82 < 0.8 < 1.6	ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6	0.85 2.6 2.6 5.2	1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	Ext Date	4/9/2013 4/9/2013 4/9/2013 4/9/2013	CJR CJR CJR CJR	1 1 1 1
Sample Date 4/3/2013 Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene	< 0.27 < 0.82 < 0.8	ug/l ug/l ug/l	0.27 0.82 0.8	0.85 2.6 2.6	1 1 1	GRO95/8021 GRO95/8021 GRO95/8021	Ext Date	4/9/2013 4/9/2013 4/9/2013	CIR CIR CIR	1
Sample Date 4/3/2013 Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81	ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81	0.85 2.6 2.6 5.2 2.6	1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021		4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	CJR CJR CJR CJR CJR CJR	1 1 1 1
Sample Date 4/3/2013 Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099	ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021	0.85 2.6 2.6 5.2 2.6 0.068	1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D	<i>4/9/</i> 2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013	CJR CJR CJR CJR CJR MDK	1 1 1 1
Sample Date 4/3/2013 Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099 0.056 "ت"	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02	0.85 2.6 2.6 5.2 2.6 0.068 0.068	1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D	4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK	l 1 1 1 1
Sample Date 4/3/2013 Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099 0.056 "J" 0.189	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.02	0.85 2.6 2.6 5.2 2.6 0.068 0.068 0.063 0.064	1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR MDK MDK MDK	1 1 1 1 1 1 1
Sample Date 4/3/2013 Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099 0.056 "J" 0.189 0.076 "J"	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.02 0.022	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078	1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR MDK MDK MDK MDK	1 1 1 1 1 1 1
Sample Date 4/3/2013 Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099 0.056 "J" 0.189 0.076 "J" 0.04 "J"	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.022 0.025 0.018	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058	1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK	1 1 1 1 1 1 1
Sample Date 4/3/2013 Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099 0.056 "J" 0.189 0.076 "J" 0.04 "J" 0.073	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.022 0.025 0.018 0.02	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063	1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1
Sample Date 4/3/2013 Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099 0.056 "J" 0.189 0.076 "J" 0.04 "J" 0.073 0.065 "J"	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.02 0.025 0.018 0.02 0.023	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075	1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1
Sample Date 4/3/2013 Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099 0.056 "J" 0.189 0.076 "J" 0.04 "J" 0.073 0.065 "J" 0.029 "J"	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.02 0.023 0.023 0.027	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087	1 1 1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1
Sample Date 4/3/2013 Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099 0.056 "J" 0.189 0.076 "J" 0.04 "J" 0.073 0.065 "J" 0.029 "J" 0.029 "J"	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.02 0.023 0.023 0.027 0.018	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK	
Sample Date     4/3/2013       Organic     BTEX       Benzene     Ethylbenzene       Toluene     m&p.Xylene       o-Xylene     PAH SIM       Acenaphthene     Acenaphthylene       Anthracene     Benzo(a)anthracene       Benzo(a)pyrene     Benzo(a)pyrene       Benzo(a)fluoranthene     Benzo(k)fluoranthene       Chrysene     Dibenzo(a,h)anthracene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099 0.056 "J" 0.189 0.076 "J" 0.04 "J" 0.073 0.065 "J" 0.029 "J" 0.029 "J"	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.02 0.023 0.027 0.018 0.023	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	
Sample Date       4/3/2013         Organic       BTEX         Benzene       Ethylbenzene         Toluene       m&p.Xylene         o-Xylene       PAH SIM         Acenaphthene       Acenaphthylene         Anthracene       Benzo(a)anthracene         Benzo(a)pyrene       Benzo(a)pyrene         Benzo(b)fluoranthene       Benzo(k)fluoranthene         Chrysene       Dibenzo(a,h)anthracene         Fluoranthene       Fluoranthene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099 0.056 "J" 0.189 0.076 "J" 0.04 "J" 0.073 0.065 "J" 0.029 "J" 0.029 "J" 0.023 0.244	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.023 0.023 0.027 0.018 0.023 0.023 0.026	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	
Sample Date       4/3/2013         Organic       BTEX         Benzene       Ethylbenzene         Toluene       m&p.Xylene         o-Xylene       PAH SIM         Acenaphthene       Acenaphthylene         Anthracene       Benzo(a)anthracene         Benzo(a)pyrene       Benzo(g,h,i)perylene         Benzo(g,h,i)perylene       Benzo(g,h)anthracene         Fluoranthene       Fluoranthene         Fluoranthene       Fluoranthene         Fluoranthene       Fluoranthene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099 0.056 "J" 0.189 0.076 "J" 0.04 "J" 0.073 0.065 "J" 0.029 "J" 0.029 "J" 0.023 0.244 0.068	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.023 0.023 0.027 0.018 0.023 0.026 0.02	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063	1 1 1 1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	
Sample Date4/3/2013OrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-XylenePAH SIMAcenaphtheneAcenaphthyleneAnthraceneBenzo(a)anthraceneBenzo(a)anthraceneBenzo(a)pyreneBenzo(g,h,i)peryleneBenzo(g,h,i)peryleneBenzo(g,h,i)neryleneBenzo(g,h,inthraceneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluorantheneFluoranthene<	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099 0.056 "J" 0.189 0.076 "J" 0.04 "J" 0.073 0.065 "J" 0.029 "J" 0.029 "J" 0.023 0.244 0.068 0.044 "J"	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.023 0.023 0.027 0.018 0.023 0.026 0.022	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063 0.085	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	
Sample Date4/3/2013OrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-Xyleneo-Xyleneo-XylenePAH SIMAcenaphtheneAcenaphthyleneAnthraceneBenzo(a)anthraceneBenzo(a)anthraceneBenzo(a)pyreneBenzo(b)fluorantheneBenzo(g,h,i)peryleneBenzo(k)fluorantheneChryseneDibenzo(a, h)anthraceneFluorantheneFluoreneIndeno(1,2,3-cd)pyreneI-Methyl naphthaleneIndeno(1,2,3-cd)pyrene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099 0.056 "J" 0.189 0.076 "J" 0.04 "J" 0.073 0.065 "J" 0.029 "J" 0.029 "J" 0.061 < 0.023 0.244 0.068 0.044 "J" < 0.019	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.02 0.025 0.025 0.018 0.023 0.027 0.018 0.023 0.027 0.018	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.075 0.087 0.058 0.072 0.084 0.072 0.084 0.063 0.085 0.061	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/1/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	
Sample Date4/3/2013OrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-Xyleneo-XylenePAH SIMAcenaphtheneAcenaphthyleneAnthraceneBenzo(a)anthraceneBenzo(a)pyreneBenzo(b)fluorantheneBenzo(x)pyreneBenzo(x)pyreneBenzo(x)pyreneBenzo(x)fluorantheneChryseneDibenzo(a, h)anthraceneFluorantheneFluorantheneFluoreneIndeno(1,2,3-cd)pyrene1-Methyl naphthalene2-Methyl naphthalene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099 0.056 "J" 0.189 0.076 "J" 0.04 "J" 0.04 "J" 0.065 "J" 0.029 "J" 0.029 "J" 0.029 "J" 0.023 0.244 0.068 0.044 "J" < 0.019 0.017 "J"	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.023 0.027 0.018 0.023 0.027 0.018	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.075 0.087 0.058 0.072 0.084 0.072 0.084 0.063 0.085 0.061 0.052	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/1/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	
Sample Date4/3/2013OrganicBTEXBenzeneEthylbenzeneToluenem&p-Xyleneo-Xyleneo-XylenepAH SIMAcenaphtheneAcenaphthyleneAnthraceneBenzo(a)anthraceneBenzo(a)pyreneBenzo(b)fluorantheneBenzo(g,h,i)peryleneBenzo(x,h)anthraceneFluorantheneFluorantheneFluoreneIndeno(1,2,3-cd)pyreneI-Methyl naphthalene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 0.099 0.056 "J" 0.189 0.076 "J" 0.04 "J" 0.073 0.065 "J" 0.029 "J" 0.029 "J" 0.061 < 0.023 0.244 0.068 0.044 "J" < 0.019	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.02 0.025 0.025 0.018 0.023 0.027 0.018 0.023 0.027 0.018	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.075 0.087 0.058 0.072 0.084 0.072 0.084 0.063 0.085 0.061	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/1/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	

WI DNR Lab Certification # 445037560

٢

-	MOSS-AME	RICAN					Invo	bice # E250	01				
Project #	13701												
Lab Code	5025001C							•					
Sample ID	TG3-1												
Sample Matrix	Water												-
Sample Date	4/3/2013												
		Result	Unit	LOD	LOQ Dil		Method	Ext Date	Run Date An	alvst	Code		
Phenanthrene		0.069	ug/l	0.018	-	1	M8270D	4/9/2013		DK	1		
Pyrene		0.199	ug/1	0.025		1	M8270D	4/9/2013		DK	1		
1 ji dilo		0.177	-9.	0.025		•					•		
Lab Code	5025001D			•	· ,								
Sample ID	TG4-3			,						· .	•	• •	·
Sample Matrix	Water							1	• •				
-	4/3/2013		•		•								-
Sample Date	4/3/2013		•					<u>.</u>					
		Result	Unit	LOD	LOQ Dil		Method	Ext Date	Run Date An	alyst	Code		
Organic	•				• •		÷ .						
BTEX				•	· •		•	· · · ·		· ·			•
Benzene		< 0.27		0.27	0.85	1	GRO95/8021		4/9/2013 C	no.	t		
Ethylbenzene		< 0.82	ug/l ug/l	0.27		1	GR095/8021 GR095/8021			IR .	31 - 1 - 1		
Toluene		< 0.82	ug/1.	0.82		1	GRO95/8021			IR III	1		
m&p-Xylene		< 1.6	ug/i	1:6		1	GRO95/8021	• • •		IR	1		
o-Xylene		< 0.81	ug/l	0.81	2.6		GRO95/8021			IR	1		
PAH SIM		· •.•1 ,	чġ.	0.01	2.0	•	010050/0021				•	•	
		- 0.021		0.001	0.070		1492700	400012	4/11/2013 MI	74	.1		
Acenaphthene		< 0.021	ug/l	0.021		1 1 ·	M8270D M8270D	4/9/2013 4/9/2013		OK DK	1		
Acenaphthylene Anthracene		·0.021 "J" 0.127	ug/l ug/l	0.02		1 · 1	M8270D	4/9/2013		ЭК ЭК			
Benzo(a)anthracer	1 <b>6</b>	0.033 "J"	ug/l	0.025		1	M8270D M8270D	4/9/2013		)K	1 \ 1		
Benzo(a)pyrene		0.024 "J"	ug/l	0.018		1	M8270D	4/9/2013		)K	1		
Benzo(b)fluoranth	епе	0.044 "J"	ug/l	0.02		1	M8270D	4/9/2013		OK ·	1		
Benzo(g,h,i)peryle		0.042 "J"	ug/l	0.023	0.075	1	M8270D	4/9/2013	4/11/2013 MI	)K	1		
Benzo(k)fluoranth		< 0.027	ug/l	0.027	0.087	1	M8270D	4/9/2013	4/11/2013 MI	)K	1		
Chrysene		0.023 <b>"J</b> "	ug/i	0.018	0.058	1	M8270D	4/9/2013	4/11/2013 MI	ЭK	1		•
Dibenzo(a,h)anthr	acene	< 0.023	ug/l	0.023	0.072	1	M8270D	4/9/2013	4/11/2013 MI	OK	1		
Fluoranthene		0.083 "J"	ug/l	0.026		1	M8270D	4/9/2013		)K	1.		
Fluorene		< 0.02	ug/l	0.02		1	M8270D	4/9/2013		)K	1		
Indeno(1,2,3-cd)p		< 0.027	ug/l	0.027		1	M8270D	4/9/2013	-	OK	-1		
1-Methyl naphthal		< 0.019	ug/l	0.019		1	M8270D	4/9/2013		OK OK	1		
2-Methyl naphthal	ene	< 0.016	ug/l	0.016		1	M8270D	4/9/2013		OK NK	1		
Naphthalene		< 0.023	ug/l	0.023		1	M8270D	4/9/2013 4/9/2013	4/11/2013 MI 4/11/2013 MI	)K	1 .		
Phenanthrene		0.037 "J"	``ug∕l	0.018 0.025	0.059 1 0.08 1	1	M8270D M8270D	4/9/2013	4/11/2013 MI		1		
Pyrene		0.071 " <b>J</b> "	ug/i	0.025	0.00		141027010	4//2013	4/11/2015 Wil		1		
Lab Code	5025001E	•			•								
Sample ID	TG5-1												
Sample Matrix						•							•
-	4/3/2013			• •			•		· .				
Sample Date	4/3/2013									• .	<u> </u>		
· ,		Result	Unit	LOD	LOQ Dil		Method	Ext Date	Run Date An	alyst	Code		
Organic													
BTEX			•						•				
Benzene		< 0.27	ug/l	0.27	0.85	1	GRO95/8021		4/9/2013 C	ID.	1		
Ethylbenzene		< 0.82	ug/l	0.82		1	GRO95/8021		4/9/2013 C		1.		
Toluene		< 0.8	ug/l	0.8		1	GRO95/8021			IR	1		
m&p-Xylene		< 1.6	ug/l	1.6		1	GRO95/8021			IR	1		
o-Xylene		< 0.81	ug/l	0.81		1	GRO95/8021		4/9/2013 C		1		
PAH SIM			<b>U</b> ¹										
		< 0.021		0.021	0.069	1	M8270D	4/9/2013	4/11/2013 MI	ж	1		
Acenaphthene Acenaphthylene		< 0.021 < 0.02	ug/l	0.021 0.02		1 1	M8270D M8270D	4/9/2013		DK DK	1		
Acenaphthylene Anthracene	• •	< 0.02 0.054 "J"	ug/l ug/l	0.02		1 1	M8270D M8270D	4/9/2013		JK JK	I I		
Benzo(a)anthracer	e	< 0.025	ug/l	0.025		1	M8270D	4/9/2013		)K )K	- 1 - 1		
Benzo(a)pyrene		< 0.018	ug/l	0.018		1	M8270D	4/9/2013		OK	1		
Benzo(b)fluoranth	ene	< 0.02	ug/l	0.02		1	M8270D	4/9/2013		OK	1		
Benzo(g,h,i)peryle		< 0.023	ug/l	0.023		1	M8270D	4/9/2013		ЭК .	1		
			-	•									

Page 3 of 23

Project Name Proiect #	MOSS-AMEI 13701	RICAN				Invoid	e# E2500	)1	. •	
Lab Code	5025001E									
Sample ID	TG5-1									
Sample Matrix										
Sample Date	4/3/2013									
Sample Date	4/5/2015	Result	Unit		.OQ Dil	Method	Ext Date	Run Date	Analyst	Code
D				0.027	0.087 1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(k)fluorantl	nene	< 0.027 < 0.018	ug/l ug/l	0.027	0.087 1	M8270D M8270D	4/9/2013 4/9/2013	4/11/2013	MDK	1
Chrysene Dibenzo(a,h)anth	Rcene	< 0.023	ug/l	0.010	0.072 1	M8270D	4/9/2013	4/11/2013	MDK	1
Fluoranthene	accito	< 0.026	ug/l	0.026	0.084 1	M8270D	4/9/2013	4/11/2013	MDK	1
Fluorene		< 0.02	ug/l	0.02	0.063 1	M8270D	4/9/2013	4/11/2013	MDK	1
Indeno(1,2,3-cd)p	yrene	< 0.027	ug/l	0.027	0.085 1	M8270D	4/9/2013	4/11/2013	MDK	1 .
1-Methyl naphtha	lene	< 0.019	ug/l	0.019	0.061 1	M8270D	4/9/2013	4/11/2013	MDK	1
2-Methyl naphtha	lene	< 0.016	ug/l	0.016	0.052 1	M8270D	4/9/2013	4/11/2013	MDK [†]	1
Naphthalene		< 0.023	ug/t	0.023	0.075 1	M8270D	4/9/2013	4/11/2013	MDK	.1
Phenanthrene		0.027 "J"	ug/l	0.018	0.059 1	M8270D	4/9/2013	4/11/2013	MDK	1
Pyrene	÷.	_ < 0.025	ug/l	0.025	0.08 1	M8270D	4/9/2013	4/11/2013	MDK	1
Lab Code	5025001F				•					· ·
Sample ID	TG5-3									
Sample ID Sample Matrix		•				,				
-										
Sample Date	4/3/2013				00 5			<b>D</b> . <b>D</b> :		0.1
		Result [–]	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code
Organic										
BTEX										
Benzene		< 0.27	ug/l	0.27	0.85 1	GRO95/8021		4/9/2013	CJR	ł
Ethylbenzene		< 0.82	ug/l	0.82	2.6 1	GR095/8021		4/9/2013	CJR	1
Toluene		< 0.8	ug/l	0.8	2.6 1	GRO95/8021		4/9/2013	СЛ	1
m&p-Xylene		< 1.6	ug/l	1.6	5.2 1	GRO95/8021		4/9/2013	CJR	1
o-Xylene		< 0.81	ug/l	0.81	· 2.6 1	GRO95/8021		4/9/2013	СJR	1
PAH SIM										
Acenaphthene		< 0.021	ug/l	0.021	0.068 1	M8270D	4/9/2013	4/11/2013	MDK	1
Acenaphthylene		< 0.02	ug/1	0.02	0.063 1	M8270D	4/9/2013	4/11/2013	MDK	i
Anthracene	1 ⁻¹	0.087	ug/l	0.02	0.064 1	M8270D	4/9/2013	4/11/2013	MDK	i
Benzo(a)anthrace	ne	< 0.025	ug/l	0.025	0.078 1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(a)pyrene		< 0.018	ug/l	0.018	0.058 1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(b)fluorant		< 0.02	ug/1 .	0.02	0.063 1	M8270D M8270D	4/9/2013 4/9/2013	4/11/2013 4/11/2013	MDK MDK	· 1 1
Benzo(g,h,i)peryl Benzo(k)fluorant		< 0.023 < 0.027	ug/l ug/l	0.023	0.073 1	M8270D M8270D	4/9/2013	4/11/2013	MDK	1
Chrysene	nene	< 0.018	ug/l	0.018	0.058 1	M8270D	4/9/2013	4/11/2013	MDK	1
Dibenzo(a,h)anth	racene	< 0.023	ug/l	0.023	0.072 1	M8270D	4/9/2013	4/11/2013	MDK	1
Fluoranthene		0.096	ug/l	0.026	0.084 1	M8270D	4/9/2013	4/11/2013	MDK	1
Fluorene		< 0.02	ug/l	0.02	0.063 1	M8270D	4/9/2013	4/11/2013	MDK	1
Indeno(1,2,3-cd)	pyrene	< 0.027		0.027	0.085 1	M8270D	4/9/2013	4/11/2013	MDK	1
1-Methyl naphth		< 0.019	ug/l	0.019	0.061 1	M8270D	4/9/2013	4/11/2013	MDK	1
2-Methyl naphth	alene	0.020 "J"	ug/l	0.016	0.052 1	M8270D	4/9/2013	4/11/2013	MDK	1
Naphthalene Phenanthrene		< 0.023 0.027 <b>"J</b> "	ug/l ug/l	0.023 0.018	0.075 1 0.059 1	M8270D M8270D	<ul> <li>4/9/2013</li> <li>4/9/2013</li> </ul>	4/11/2013 4/11/2013	MDK MDK	1 1
Pyrene		0.103	ug/l	0.018	0.039 1	M8270D	4/9/2013	4/11/2013	MDK	1
ryielle		0.105	ugri	. 0.025	0.00 1	11027015	4//2015	4/1//2015	MDR .	•
Lab Code	5025001G	· · ·								•
Sample ID	TG6-1			•					1	·
Sample Matri										
Sample Date	4/3/2013									
Sample Date	1/5/2015	D	1 J : 4	ton		Mathad	E-4 Doto	Dun Data	Amalizat	Code
_		Result	Unit	LOD	LOQ Dil	Method	EXI Date	Run Date	Auaiyst	Code
Organic										
BTEX				•			•			
DIDA		< 0.27	ug/l	0.27	0.85 1	GRO95/8021		4/9/2013	CJR	1
Benzene										
		< 0.82	ug/l	0.82	2.6 1	GRO95/8021		4/9/2013	CJR	1
Benzene			ug/l ug/l	0.82 0.8	2.6 1 2.6 1	GRO95/8021 GRO95/8021		4/9/2013 4/9/2013	CJR CJR	1
Benzene Ethylbenzene		< 0.82	-							

Page 4 of 23

	MOSS-AME 13701	ERICAN Invoice # E25001										
Lab Code	5025001G											
Sample ID	TG6-1									•		
Sample Matrix	Water											
Sample Date	4/3/2013											
Sample Date	4/5/2015		<b>T</b> T •4	LOD	100		N.C. (1 1	E-4 D-4-	D D-4.	4 14	C . J .	
		Result	Unit	LOD	LOQ	DЦ	Method	Ext Date	Run Date	Analyst	Code	1
PAH SIM											_	
Acenaphthene		0.232	ug/l	0.021			M8270D	4/9/2013	4/11/2013	MDK	1	
Acenaphthylene		< 0.02	ug/l	0.02			M8270D	4/9/2013	4/11/2013	MDK	1	
Anthracene	_	0.031 "J"	ug/l	0.02			M8270D	4/9/2013 4/9/2013	4/11/2013 4/11/2013	MDK MDK	1 .	
Benzo(a)anthracen	e	< 0.025 < 0.018	ug/l	0.025 0.018			M8270D M8270D	4/9/2013	4/11/2013	MDK	1	
Benzo(a)pyrene Benzo(b)fluoranth	9 <b>0</b> .4	< 0.018	ug/l ug/l	· 0.018			M8270D M8270D	4/9/2013	4/11/2013	MDK	- 1	
Benzo(g,h,i)peryle		< 0.02	ug/l	0.02			M8270D	4/9/2013	4/11/2013	MDK	1	
Benzo(k)fluoranthe		< 0.025	ug/l	0.025			M8270D	4/9/2013	4/11/2013	MDK	1	
Chrysene	aic	< 0.018	ug/1	0.018			M8270D	4/9/2013	4/11/2013	MDK	i	
Dibenzo(a,h)anthra	CERE	< 0.023	ug/l	0.023			M8270D	4/9/2013	4/11/2013	MDK	1	
Fluoranthene		0.069 "J"	ug/l	0.026			M8270D	4/9/2013	4/11/2013	MDK	1	
Fluorene		0.048 "J"	ug/l	0.02			M8270D	4/9/2013	4/11/2013	MDK	1	
Indeno(1,2,3-cd)py	rene	< 0.027	ug/l	0.027			M8270D	4/9/2013	4/11/2013	MDK	1 -	
1-Methyl naphthal		< 0.019	ug/l	0.019	0.061	1	M8270D	4/9/2013	4/11/2013	MDK	1	
2-Methyl naphthal		0.019 "Ј".	ug/l	0.016	0.052	1	M8270D	4/9/2013	4/11/2013	MDK	1	
Naphthalene		< 0.023	ug/l	0.023	0.075	5 1	M8270D	4/9/2013	4/11/2013	MDK	1	Т
Phenanthrene		0.025 "J"	, ug/l	0.018	0.059	) 1	M8270D	4/9/2013	4/11/2013	MDK-	1	
Pyrene		0.055 " <b>J</b> "	ug/l	0.025	0.08	1	M8270D	4/9/2013	4/11/2013	MDK	1	
Lab Code	5025001H											
	TG6-3											
Sample ID												·
~	117-4											
Sample Matrix												
Sample Matrix Sample Date	Water 4/3/2013	• •										
-		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code	
Sample Date		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code	
Sample Date Organic		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code	
Sample Date Organic BTEX					_			Ext Date		-		
Sample Date Organic BTEX Benzene		< 0.27	ug/l	0.27	0.85	; 1	GRO95/8021	Ext Date	4/9/2013	CJR	ľ	
Sample Date Organic BTEX Benzene Ethylbenzene		< 0.27 < 0.82	ug/l ug/l	0.27 0.82	0.85 2.6	i 1 i 1	GRO95/8021 GRO95/8021	Ext Date	4/9/2013 4/9/2013	CJR CJR		
Sample Date Organic BTEX Benzene Ethylbenzene Toluene		< 0.27 < 0.82 < 0.8	ug/l ug/l ug/l	0.27 0.82 0.8	0.85 2.6 2.6		GRO95/8021 GRO95/8021 GRO95/8021	Ext Date	4/9/2013 4/9/2013 4/9/2013	CJR CJR CJR	1 1	
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene		< 0.27 < 0.82	ug/l ug/l ug/l ug/l	0.27 0.82	0.85 2.6 2.6		GRO95/8021 GRO95/8021	Ext Date	4/9/2013 4/9/2013	CJR CJR	1 1	
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene		< 0.27 < 0.82 < 0.8 < 1.6	ug/l ug/l ug/l	0.27 0.82 0.8 1.6	0.85 2.6 2.6 5.2		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	Ext Date	4/9/2013 4/9/2013 4/9/2013 4/9/2013	CJR CJR CJR CJR	t 1 1	
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM		< 0.27 < 0.82 < 0.8 < 1.6 < 0.81	ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81	0.85 2.6 2.6 5.2 2.6		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021		4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	CJR CJR CJR CJR CJR	l 1 1 1	
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene		< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021	ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021	0.85 2.6 5.2 2.6 5.2 2.6	5 1 5 1 5 1 5 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D	<i>4/9/</i> 2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	CJR CJR CJR CJR CJR MDK	t 1 1	
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene		< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02	0.85 2.6 5.2 2.6 0.068 0.063	i 1 i 1 i 1 i 1 i 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D	4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013	CJR CJR CJR CJR CJR MDK MDK	l 1 1 1	
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene	4/3/2013	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 0.042 "J"	ug/i ug/i ug/i ug/i ug/i ug/i ug/i	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.02	0.85 2.6 2.6 5.2 2.6 0.068 0.068 0.063 0.064	5 1 5 1 5 1 5 1 5 1 5 1 5 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK	l 1 1 1	
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracen	4/3/2013	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 0.042 "J" < 0.025	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.02 0.022	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D	4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR MDK MDK	t 1 1 1 1 1 1	
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracen Benzo(a)pyrene	4/3/2013 e	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 0.042 "J"	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.02	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR MDK MDK MDK MDK	t 1 1 1 1 1 1	
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe	4/3/2013 e	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.042 "J" <0.025 <0.018	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.02 0.02 0.025 0.018	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK	t 1 1 1 1 1 1	
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracen Benzo(a)pyrene	4/3/2013 e ene ne	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.042 "J" <0.025 <0.018 <0.02	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.02 0.02 0.025 0.018 0.02	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK	t 1 1 1 1 1 1	
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(g,h,i)perylet	4/3/2013 e ene ne	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.042 "J" <0.025 <0.018 <0.02 <0.023	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.02 0.02 0.025 0.018 0.02 0.023	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK	t 1 1 1 1 1 1	
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(g,h,i)perylet Benzo(k)fluoranthe	e ene ne ene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 0.042 "J" < 0.025 < 0.018 < 0.02 < 0.023 < 0.027 < 0.018 < 0.023	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.02 0.025 0.018 0.02 0.023 0.023 0.027	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087	i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK	t 1 1 1 1 1 1	
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(g,h,i)perylet Benzo(k)fluoranthe Chrysene	e ene ne ene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 0.042 "J" < 0.025 < 0.018 < 0.02 < 0.023 < 0.027 < 0.018	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.02 0.023 0.027 0.018 0.023 0.023	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084	5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK		
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthylene Anthracene Benzo(a)anthracen Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(g,h, i)peryle Benzo(g,h, i)peryle Benzo(g,h, i)netrat Fluoranthene Fluorene	e ene ne acene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 0.042 "J" < 0.025 < 0.018 < 0.02 < 0.023 < 0.027 < 0.018 < 0.023 0.069 "J" < 0.02	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.02 0.023 0.027 0.018 0.023 0.026 0.02	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063	5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK		
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthylene Anthracene Benzo(a)anthracen Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(g,h, i)perylei Benzo(g,h)anthra Fluoranthene Fluorene Indeno(1,2,3-cd)py	e ene ne ene acene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 0.042 "J" < 0.025 < 0.018 < 0.02 < 0.023 < 0.027 < 0.018 < 0.023 0.069 "J" < 0.02 < 0.027	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	0.27 0.82 0.8 1.6 0.81 0.02 0.022 0.022 0.025 0.018 0.022 0.023 0.027 0.018 0.023 0.026 0.022	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063 0.085	5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK		
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthylene Anthracene Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(b)fluoranthe Benzo(k)fluoranthe Chrysene Dibenzo(a,h)anthra Fluoranthene Fluorene Indeno(1,2,3-cd)py 1-Methyl naphthale	e ene ne ene acene rrene ene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 0.042 "J" < 0.025 < 0.018 < 0.02 < 0.023 < 0.027 < 0.018 < 0.023 0.069 "J" < 0.02 < 0.023 < 0.027 < 0.025	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.02 0.023 0.027 0.018 0.026 0.02 0.027 0.019	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.072 0.084 0.063 0.072 0.084 0.063 0.085 0.061	5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK		
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthylene Anthracene Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Benzo(k)fluoranthe Chrysene Dibenzo(a,h)anthrae Fluoranthene Fluorene Indeno(1,2,3-cd)py 1-Methyl naphthale 2-Methyl naphthale	e ene ne ene acene rrene ene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 0.042 "J" < 0.025 < 0.018 < 0.02 < 0.023 < 0.027 < 0.018 < 0.023 0.069 "J" < 0.02 < 0.023 < 0.027 < 0.018	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.02 0.023 0.027 0.018 0.020 0.023 0.026 0.021 0.021	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.075 0.087 0.058 0.072 0.084 0.063 0.085 0.061 0.052	i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1         i       1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK		
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthylene Anthracene Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Benzo(k)fluoranthe Chrysene Dibenzo(a,h)anthrae Fluoranthene Fluorene Indeno(1,2,3-cd)py 1-Methyl naphthale	e ene ne ene acene rrene ene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 0.042 "J" < 0.025 < 0.018 < 0.02 < 0.023 < 0.027 < 0.018 < 0.023 0.069 "J" < 0.02 < 0.023 < 0.027 < 0.018 < 0.021	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.022 0.023 0.026 0.023 0.026 0.023 0.026 0.023	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.063 0.075 0.087 0.087 0.087 0.085 0.072 0.084 0.063 0.061 0.052 0.075	5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK		
Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthylene Anthracene Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Benzo(k)fluoranthe Chrysene Dibenzo(a,h)anthrae Fluoranthene Fluorene Indeno(1,2,3-cd)py 1-Methyl naphthale 2-Methyl naphthale	e ene ne ene acene rrene ene	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 0.042 "J" < 0.025 < 0.018 < 0.02 < 0.023 < 0.027 < 0.018 < 0.023 0.069 "J" < 0.02 < 0.023 < 0.027 < 0.018	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.02 0.023 0.027 0.018 0.020 0.023 0.026 0.021 0.021	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.063 0.075 0.087 0.085 0.072 0.084 0.063 0.063 0.063 0.065 0.061 0.052 0.075 0.059	5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1         5       1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK		

	MOSS-AME 13701	RICAN					Invoid	ce# E2500	)1		
Lab Code Sample ID Sample Matrix	50250011 TG1-1 Water	I			۱			· .			
Sample Date	4/3/2013										
		Result	Unit [•]	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic BTEX		•		τ.							
		< 0.27	 	0.27	0.85	1	GRO95/8021		4/9/2013	CJR	i
Benzene Ethylbenzene		18.4	ug/l ug/l		2.6	1	GRO95/8021 GRO95/8021		4/9/2013	CJR	1
Toluene		< 0.8	ug/l	0.8	2.6	1	GRO95/8021		4/9/2013	CJR	1
m&p-Xylene		19.9	ug/l	1.6	5.2	1	GRO95/8021		4/9/2013	СЛ	1
o-Xylene		11.4	ug/l	0.81	2.6	1	GRO95/8021		4/9/2013	CJR	1
PAH SIM											
Acenaphthene		262	ug/l	10.5	. 34		M8270D	4/9/2013	4/12/2013	MDK	1
Acenaphthylene		< 10	ug/l	• 10	31.5		M8270D	4/9/2013	4/12/2013	MDK	1
Anthracene		23.6 "J"	ug/l	. 10	32		M8270D	4/9/2013	4/12/2013	MDK	1
Benzo(a)anthracer	ne	< 12.5	ug/l	12.5 9.	39 29		M8270D M8270D	4/9/2013 4/9/2013	4/12/2013 4/12/2013	MDK MDK	1
Benzo(a)pyrene Benzo(b)fhorsath	ene	<9 <10	ug/l ug/l	9. 10	29 31.5		M8270D M8270D	4/9/2013	4/12/2013	MDK MDK	1
Benzo(b)fluoranth Benzo(g,h,i)peryle		<11.5	ug/1 ug/1	11.5	37.5		M8270D M8270D	4/9/2013	4/12/2013	MDK	1
Benzo(k)fluoranth		< 13.5	ug/l	13.5	43.5		• M8270D	4/9/2013	4/12/2013	MDK	i
Chrysene		< 9	ug/l	9	29		M8270D	4/9/2013	4/12/2013	MDK	Ē.
Dibenzo(a,h)anthr	acene	<11.5	ug/l	11.5	36	500	M8270D	4/9/2013	4/12/2013	MDK	1
Fluoranthene		28.1 "J"	ug/l	13	42	500	M8270D	4/9/2013	4/12/2013	MDK	1-
Fluorene		135	ug/l	10	31.5		M8270D	4/9/2013	4/12/2013	MDK	1
Indeno(1,2,3-cd)p	-	< 13.5	ug/l	13.5	42.5		M8270D	4/9/2013	4/12/2013	MDK	1
1-Methyl naphthal		169	ug/l	9.5	30.5		M8270D	4/9/2013	4/12/2013	MDK	1
2-Methyl naphthal	ene	164	ug/l	8 11.5	.26 37.5		M8270D M8270D	· 4/9/2013 4/9/2013	4/12/2013 4/12/2013	MDK MDK	1
Naphthalene Phenanthrene		1950 113	ug/l ug/l	9	29.5		M8270D M8270D	4/9/2013	4/12/2013	MDK	1
Pyrene	· *	יע" 17.7	ug/l	12.5	20,5 40		M8270D	4/9/2013	4/12/2013	MDK	1
Lab Code	5025001J					•					
Sample ID	PZ-02										
Sample Matrix	Water										
Sample Date	4/4/2013										
		Result	Unit	LOD	LOQ	Dil	Method .	Ext Date	Run Date	Analyst	Code
Organic								1			
BTEX											
Benzene		< 0.27	ug/l	0.27	0.85	1	GRO95/8021		4/9/2013	CJR	L
Ethylbenzene		< 0.82	ug/I	0.82	2.6		GRO95/8021		4/9/2013	СJR	I
Toluene		< 0.8	ug/l	0.8	2.6		GRO95/8021		4/9/2013	СЛR	1 '
m&p-Xylene		< 1.6	ug/l	1.6	5.2		GRO95/8021		4/9/2013	CJR	1
o-Xylene		< 0.81	ug/l	0.81	2.6	<u>,</u> 1	GRO95/8021		4/9/2013	CJR	1
PAH SIM				_		_					
Acenaphthene		79	ug/l	0.42	1.36		M8270D	4/9/2013	4/12/2013	MDK	1
Acenaphthylene		1.01 "J"	ug/l	0.4			M8270D	4/9/2013	4/12/2013	MDK	1
Anthracene Benzo(a)anthrace	ne	< 0.4 < 0.5	ug/l ug/l	· 0.4 0.5	1.28 1.56		M8270D M8270D	4/9/2013 4/9/2013	4/12/2013 4/12/2013	MDK MDK	I I
Benzo(a)pyrene		< 0.36	ug/i	0.36	1.16		M8270D M8270D	4/9/2013	4/12/2013	MDK	1
Benzo(b)fluoranth	nene	< 0.4	ug/l	0.4	1.10		M8270D	4/9/2013	4/12/2013	MDK	1
Benzo(g,h,i)peryl		< 0.46	ug/l	0.46	1.5		M8270D	4/9/2013	4/12/2013	MDK	1
Benzo(k)fluoranth		< 0.54	ug/l	0.54	1.74		M8270D	4/9/2013	4/12/2013	MDK	1
Chrysene		< 0.36	ug/l	0.36	1.16		·M8270D	4/9/2013	4/12/2013	MDK	I
Dibenzo(a,h)anthi	racene	< 0.46	ug/l	0.46	1.44		M8270D	4/9/2013	4/12/2013	MDK	1
Fluoranthene		< 0.52	ug/l	0.52			M8270D	4/9/2013	4/12/2013	MDK	1
Fluorene		3.6	ug/l	· 0.4 0.54			M8270D M8270D	4/9/2013	4/12/2013	MDK MDK	1 1
Indeno(1,2,3-cd)p 1-Methyl naphtha	-	< 0.54 0.8 "J"	ug/l ug/l	0.34			M8270D M8270D	4/9/2013 4/9/2013	4/12/2013 4/12/2013	MDK MDK	1
2-Methyl naphtha		< 0.32	ug/l	0.33			M8270D M8270D	4/9/2013	4/12/2013	MDK	1
		1.79	ug/l	0.46			M8270D	4/9/2013	4/12/2013	MDK	1
Naphthalene		1. <b>/9</b>	ug/I	0.46	1.5	20	M8270D	4/9/2013	4/12/2013	MUK	1

• • • • • •

Page 6 of 23

, ,									~ •		
	MOSS-AME 13701	RICAN				į	Invoi	ce # E250	01		
Lab Code	5025001J			-							
Sample ID	PZ-02			,							
Sample Matrix	Water										
Sample Date	4/4/2013										
Sample Date		Deen H	11		1.00	D:I	Mathad	F-4 D-4-	Dun Data	A malwat	Code
Discontinues		Result	Unit		LOQ		Method	Ext Date	Run Date	-	Code
Phenanthrene Pyrene		< 0.36 < 0.5	ug/l ug/l	0.36 0.5			M8270D M8270D	4/9/2013 4/9/2013	4/12/2013 4/12/2013	MDK MDK	1
Lab Code	5025001K										
Sample ID	MW-33S										
Sample Matrix	Water		•		-						
Sample Date	4/4/2013										
Sample Date	, 1/1/2015	Deem 14	11-14	100	100	<b>D</b> :1	Mathad	Fre Data	Dun Data	Amplicat	Code
		Result	Unit	LOD	LOQ	DI	Method	Ext Date	Run Date	Analyst	Code
Organic										1	
BTEX									•		
Benzene		< 0.27	µg/l	0.27	0.85	1	GRO95/8021		4/9/2013	CJR	1
Ethylbenzene		< 0.82	ug/l	0.82			GRO95/8021		4/9/2013	CJR	1
Toluene		< 0.8	ug/l	0.8			GRO95/8021		4/9/2013	CJR	1
m&p-Xylene		< 1.6	ug/l	1.6			GRO95/8021 GRO95/8021		4/9/2013 4/9/2013	CJR	E
.o-Xylene PAH SIM		< 0.81	ug/l	0.81	2.6	1	GRU93/8021		4/9/2013	CJR .	. 1
					`					MDK	· .
Acenaphthene Acenaphthylene		0.66 < 0.02	_ ug/l	0.021 0.02	0.068		M8270D M8270D	4/9/2013 4/9/2013	4/11/2013 4/11/2013	MDK MDK	1
Acenaphthylene Anthracene		0.132	ug/l ug/l	0.02			M8270D M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(a)anthracene	B	< 0.025	ug/l	0.025			M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(a)pyrene		< 0.018	uġ/l	0.018			M8270D	4/9/2013	4/11/2013	MDK	i
Benzo(b)fluoranthe	me ·	< 0.02	ug/l	0.02	0.063	1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(g,h,i)peryler		< 0.023	ug/l	0.023	0.075		M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(k)fluoranthe	ne .	< 0.027	ug/l	0.027			M8270D	4/9/2013	4/11/2013	MDK	1
Chrysene		< 0.018	ug/l	0.018	0.058 0.072		M8270D M8270D	4/9/2013 4/9/2013	4/11/2013 4/11/2013	MDK · MDK	1
Dibenzo(a,h)anthra Fluoranthene	Cene	< 0.023 < 0.026	ug/l ug/l	0.023			M8270D M8270D	4/9/2013	4/11/2013	MDK	1
Fluorene		0.251	ug/l	0.020			M8270D	4/9/2013	4/11/2013	MDK	1
Indeno(1,2,3-cd)py	rene	< 0.027	ug/l	0.027	0.085		M8270D	4/9/2013	4/11/2013	MDK	1
I-Methyl naphthale		0.057 "J"	ug/l	<b>0</b> .019	0.061	1	M8270D	4/9/2013	4/11/2013	MDK	1
2-Methyl naphthale	ene	0.025 <b>"J</b> "	ug/l	0.016			M8270D	4/9/2013	4/11/2013	MDK	I .
Naphthalene		0.201	ug/l	0,023	0.075		M8270D	4/9/2013	4/11/2013	MDK	1
Phenanthrene		0.08	ug/l	0.018	0.059		M8270D	4/9/2013	4/11/2013	MDK	`I 1
Ругепе		< 0.025	ug/l	0.025	0.08	1	M8270D	4/9/2013	4/11/2013	MDK	1
Lab Code	5025001L										
Sample ID	MW-32S							~			
Sample Matrix	Water										
Sample Date	4/4/2013										
-	•	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic						•					-
-											
BTÉX			-			-	OB OCCUPACION		10000	010	
Benzene		< 0.27	ug/l	0.27			GRO95/8021		4/9/2013	CJR	1
Ethylbenzene Toluene		< 0.82 < 0.8	∙ug/l ug/l	0.82			GRO95/8021 GRO95/8021		4/9/2013 4/9/2013	CJR CJR	1
m&p-Xylene		< 1.6	ug/l	1.6			GRO95/8021		4/9/2013	CJR	1
o-Xylene		< 0.81	ug/l	0.81	2.6		GRO95/8021		4/9/2013	CJR	1
PAH SIM	-										
Acenaphthene		< 0.021	ug/l	0.021	0.068	1	M8270D	4/9/2013	4/11/2013	MDK	1
Acenaphthylene		< 0.02	ug/l	0.02			M8270D '	4/9/2013	4/11/2013	MDK	1
Anthracene		0.057 <b>"J</b> "	ug/l	0.02			M8270D	4/9/2013	4/11/2013	MDK	1 ·
Benzo(a)anthracene		< 0.025	ug/l	0.025	0.078		M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(a)pyrene		< 0.018	ug/l	0.018			M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(b)fluoranthe Benzo(g,h,i)peryler		< 0.02 < 0.023	ug/l	0.02 0.023	0.063 0.075		M8270D M8270D	4/9/2013 4/9/2013	4/11/2013 4/11/2013	MDK MDK	1. 1
Denzo(g,n,i)pervier		< 0.025	ug/l	0.023	0.073	1	MOLIVID	7/7/2013		MUIN	1

Page 7 of 23

					í –					
Project Name Project #	MOSS-AME 13701	RICAN				Invoi	ice # E250	01		
Lab Code	5025001L									
Sample ID	MW-32S					· .				
Sample Matrix	Water									
Sample Date	4/4/2013								1	
•	1	Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code
Benzo(k)fluorantl	nene	< 0.027	ug/l	0.027	0.087 1	M8270D	4/9/2013	4/11/2013	MDK	1
Chrysene		< 0.018	ug/l	0.018	0.058 1	M8270D	4/9/2013	4/11/2013	MDK	i
Dibenzo(a,h)anth	гасепе	< 0.023	ug/l	0.023	0.072 1	M8270D	4/9/2013	4/11/2013	MDK	1
Fluoranthene		< 0.026	ug/l	0.026	0.084 1	M8270D	4/9/2013	4/11/2013	MDK	I
Fluorene		< 0.02	ug/l	0.02	0.063 1	M8270D	4/9/2013	4/11/2013	MDK	1
Indeno(1,2,3-cd)p	-	< 0.027	ug/l	0.027	0.085 1	M8270D	4/9/2013	4/11/2013	MDK	1
I-Methyl naphtha		0.019 "J"	ug/l	0.019	0.061 1	M8270D	4/9/2013	4/11/2013	MDK	1
2-Methyl naphtha	lene	0.025 "J"	ug/l	0.016		M8270D	4/9/2013	4/11/2013	MDK	1
Naphthalene Phenanthrene		0.249 0.022 "J"	ug/l	0.023	0.075 1		4/9/2013	4/11/2013	MDK	1
Pyrene	•	< 0.025	ug/l ug/l	0.018	0.059 1 0.08 I	M8270D M8270D	4/9/2013 4/9/2013	4/11/2013 4/11/2013	MDK MDK	1
1 970.00			ug i	0.025	0.00 1	M02/0D	472015	111/2013	MUK .	1
Lab Code	5025001M									
Sample ID	MW-38S			<i>*</i> .					· .	
Sample Matrix	Water									
Sample Date	4/4/2013				·		. •			
•		Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code
Organic			0110	102	LOQ DA	·	Dat Date	Nun Date	Addiyst	Cout
BTEX										
Benzene		0.96	ug/l	0.27	0.85 1	GRO95/8021		4/9/2013	CJR	1
Ethylbenzene		1.4 "J"	ug/I	0.82	2.6 1	GRO95/8021	•	4/9/2013	CJR	1
Toluene		< 0.8	ug/l		<ul><li>2.6</li></ul>	GRO95/8021		4/9/2013	CJR ·	1
m&p-Xylene		< 1.6	ug/l	1.6	5.2 1	GRO95/8021		4/9/2013	СЛ	ſ
o-Xylene		1.41 "J"	ug/l	0.81	2.6 1	GRO95/8021		4/9/2013	СJR	I
PAH SIM										
Acenaphthene		4.2	ug/l	0.021	0.068 1	M8270D	4/9/2013	4/11/2013	MDK	1
Acenaphthylene		0.153	ug/1	0.02	0.063 1	M8270D	4/9/2013	4/11/2013	MDK	1
Anthracene		0.263	ug/l	0.02	0.064 1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(a)anthrace Benzo(a)pyrene	ne	0.039 " <b>J"</b> 0.032 <b>"J"</b>	ug/l	0.025 0.018	0.078 1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(b)fluoranth	ene	0.032	ug/l ug/l	0.018	0.058 1 0.063 1	M8270D M8270D	4/9/2013 .4/9/2013	4/11/2013 4/11/2013	MDK MDK	1 1
Benzo(g,h,i)peryle		0.077	ug/l	0:023	0.003 1	M8270D	4/9/2013	4/11/2013	MDK MDK	1
Benzo(k)fluorantl		< 0.027	ug/1	0.027	0.087 1	M8270D	4/9/2013	4/11/2013	MDK	i
Chrysene		0.052 " <b>J</b> "	ug/l	0.018	0.058 1	M8270D				1
					0.000		4/9/2013	4/11/2013	MDK	
Dibenzo(a,h)anthi	acene	< 0.023	ug/l	0.023	0.072 1	M8270D	4/9/2013 4/9/2013	4/11/2013 4/11/2013	MDK MDK	1
Fluoranthene	racene	0.103	ug/l	0.023 0.026	0.072 1 0.084 1	M8270D M8270D				1 1
Fluoranthene Fluorene		0.103 0.152	ug/l ug/l	0.023 0.026 0.02	0.072 1 0.084 1 0.063 1	M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK	1 . L
Fluoranthene Fluorene Indeno(1,2,3-cd)p	yrene	0.103 0.152 0.04 "J"	ug/l ug/l ug/l	0.023 0.026 0.02 0.027	0.072 1 0.084 1 0.063 1 0.085 1	M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK	1. 1. 1.
Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphtha	yrene lene	0.103 0.152 0.04 "J" 1.99	ug/l ug/l ug/l ug/l	0.023 0.026 0.02 0.027 0.019	0.072         1           0.084         1           0.063         1           0.085         1           0.061         1	M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK	1 . L 1
Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphtha 2-Methyl naphtha	yrene lene	0.103 0.152 0.04 "J" 1.99 7.9	ug/1 ug/t ug/1 ug/1 ug/1	0.023 0.026 0.02 0.027 0.019 0.016	0.072         1           0.084         1           0.063         1           0.085         1           0.061         1           0.052         1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK	1 . L 1 1
Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphtha 2-Methyl naphtha Naphthalene	yrene lene	0.103 0.152 0.04 "J" 1.99 7.9 8.1	ug/l ug/l ug/l ug/l ug/l ug/l	0.023 0.026 0.02 0.027 0.019 0.016 0.023	0.072         1           0.084         1           0.063         1           0.085         1           0.061         1           0.052         1           0.075         1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK	1 1 1 1
Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphtha 2-Methyl naphtha	yrene lene	0.103 0.152 0.04 "J" 1.99 7.9	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.023 0.026 0.02 0.027 0.019 0.016 0.023 0.018	0.072         1           0.084         1           0.063         1           0.085         1           0.061         1           0.052         1           0.075         1           0.059         1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1
Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphtha 2-Methyl naphtha Naphthalene Phenanthrene Pyrene	yrene lene lene	0.103 0.152 0.04 "J" 1.99 7.9 8.1 0.15	ug/l ug/l ug/l ug/l ug/l ug/l	0.023 0.026 0.02 0.027 0.019 0.016 0.023	0.072         1           0.084         1           0.063         1           0.085         1           0.061         1           0.052         1           0.075         1           0.059         1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK	1 1 1 1
Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphtha 2-Methyl naphtha Naphthalene Phenanthrene Pyrene Lab Code	yrene lene lene 5025001N	0.103 0.152 0.04 "J" 1.99 7.9 8.1 0.15	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.023 0.026 0.02 0.027 0.019 0.016 0.023 0.018	0.072         1           0.084         1           0.063         1           0.085         1           0.061         1           0.052         1           0.075         1           0.059         1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1
Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphtha 2-Methyl naphtha Naphthalene Phenanthrene Pyrene Lab Code Sample ID	yrene lene Jene 5025001N MW-39S	0.103 0.152 0.04 "J" 1.99 7.9 8.1 0.15	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.023 0.026 0.02 0.027 0.019 0.016 0.023 0.018	0.072         1           0.084         1           0.063         1           0.085         1           0.061         1           0.052         1           0.075         1           0.059         1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1
Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphtha 2-Methyl naphtha Naphthalene Phenanthrene Pyrene Lab Code	yrene lene 5025001N MW-39S Water	0.103 0.152 0.04 "J" 1.99 7.9 8.1 0.15	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.023 0.026 0.02 0.027 0.019 0.016 0.023 0.018	0.072         1           0.084         1           0.063         1           0.085         1           0.061         1           0.052         1           0.075         1           0.059         1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1
Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphtha 2-Methyl naphtha Naphthalene Phenanthrene Pyrene Lab Code Sample ID	yrene lene Jene 5025001N MW-39S	0.103 0.152 0.04 "J" 1.99 7.9 8.1 0.15	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.023 0.026 0.02 0.027 0.019 0.016 0.023 0.018	0.072         1           0.084         1           0.063         1           0.085         1           0.061         1           0.052         1           0.075         1           0.059         1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1
Fluoranthene Fluorene Indeno(1,2,3-cd)p I-Methyl naphtha 2-Methyl naphtha Naphthalene Phenanthrene Pyrene Lab Code Sample ID Sample Matrix	yrene lene 5025001N MW-39S Water	0.103 0.152 0.04 "J" 1.99 7.9 8.1 0.15	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.023 0.026 0.02 0.027 0.019 0.016 0.023 0.018 0.025	0.072         1           0.084         1           0.063         1           0.085         1           0.061         1           0.052         1           0.075         1           0.059         1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK MDK MDK	1 1 2 1 1 1 1 1 1 1 1 1 1
Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphtha 2-Methyl naphtha Naphthalene Phenanthrene Pyrene Lab Code Sample ID Sample Matrix Sample Date	yrene lene 5025001N MW-39S Water	0.103 0.152 0.04 "J" 1.99 7.9 8.1 0.15 0.092	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.023 0.026 0.02 0.027 0.019 0.016 0.023 0.018 0.025	0.072 1 0.084 1 0.063 1 0.085 1 0.061 1 0.052 1 0.075 1 0.059 1 0.08 1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK MDK MDK	1 1 2 1 1 1 1 1 1 1 1 1 1
Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphtha 2-Methyl naphtha Naphthalene Phenanthrene Pyrene Lab Code Sample ID Sample Matrix Sample Date	yrene lene 5025001N MW-39S Water	0.103 0.152 0.04 "J" 1.99 7.9 8.1 0.15 0.092	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.023 0.026 0.02 0.027 0.019 0.016 0.023 0.018 0.025	0.072 1 0.084 1 0.063 1 0.085 1 0.061 1 0.052 1 0.075 1 0.059 1 0.08 1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK MDK MDK	1 1 2 1 1 1 1 1 1 1 1 1 1
Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphtha 2-Methyl naphtha Naphthalene Phenanthrene Pyrene Lab Code Sample ID Sample Matrix Sample Date	yrene lene 5025001N MW-39S Water	0.103 0.152 0.04 "J" 1.99 7.9 8.1 0.15 0.092	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.023 0.026 0.02 0.027 0.019 0.016 0.023 0.018 0.025	0.072 1 0.084 1 0.063 1 0.085 1 0.061 1 0.052 1 0.075 1 0.059 1 0.08 1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK MDK MDK	1 1 2 1 1
Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphtha 2-Methyl naphtha 2-Methyl naphtha Naphthalene Phenanthrene Pyrene Lab Code Sample ID Sample Matrix Sample Date Organic BTEX	yrene lene 5025001N MW-39S Water	0.103 0.152 0.04 "J" 1.99 7.9 8.1 0.15 0.092	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.023 0.026 0.02 0.027 0.019 0.016 0.023 0.018 0.025	0.072 1 0.084 1 0.063 1 0.085 1 0.061 1 0.052 1 0.075 1 0.059 1 0.08 1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1
Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphtha 2-Methyl naphtha Naphthalene Phenanthrene Pyrene Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene	yrene lene 5025001N MW-39S Water	0.103 0.152 0.04 "J" 1.99 7.9 8.1 0.15 0.092	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 Unit	0.023 0.026 0.02 0.027 0.019 0.016 0.023 0.018 0.025	0.072 1 0.084 1 0.063 1 0.085 1 0.061 1 0.052 1 0.075 1 0.059 1 0.08 1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1
Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphtha 2-Methyl naphtha Naphthalene Phenanthrene Pyrene Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene	yrene lene 5025001N MW-39S Water	0.103 0.152 0.04 "J" 1.99 7.9 8.1 0.15 0.092	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.023 0.026 0.02 0.027 0.019 0.016 0.023 0.018 0.025	0.072 1 0.084 1 0.063 1 0.085 1 0.061 1 0.052 1 0.075 1 0.059 1 0.08 1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK MDK MDK MDK CJR	1 1 1 1 1 1 1 1 1 1 1 1

Page 8 of 23

Project Name Project #			·		Invoi	ce # E250	01		•		
Lab Code Sample ID Sample Matrix Sample Date	5025001N MW-39S Water 4/4/2013										
•		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
PAH SIM										•	
Acenaphthene		5.8	ug/l	0.021	0.068	1	M8270D	4/9/2013	4/11/2013	MDK	1
Acenaphthylene		0.127	ug/l	0.02		1	M8270D	4/9/2013	4/11/2013	MDK .	1
Anthracene		0.136	ug/l	0.02	0.064	1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(a)anthracer	ne	0.069 <b>"J</b> "	ˈug/l	0.025	0.078	1	M8270D	4/9/2013	4/11/2013	MDK	.1
Benzo(a)pyrene		0.027 " <b>J</b> "	ug/l	0.018		1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(b)fluoranth		0.057 " <b>J</b> "	ug/l	0.02		1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(g,h,i)peryle		< 0.023	ug/l	0.023		1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(k)fluoranth	ene	< 0.027	ug/l	0.027	0.087	1	M8270D	4/9/2013	4/11/2013	MDK	1
Chrysene		0.054 "J"	ug/l	0.018		1	M8270D	4/9/2013	4/11/2013	MDK MDK	1 1
Dibenzo(a,h)anthr	acene	< 0.023	ug/l	0.023		1	M8270D	4/9/2013	4/11/2013	MDK MDK	1
Fluoranthene Fluorene		0.32 0.73	ug/l ug/l	0.026		1	M8270D M8270D	4/9/2013 4/9/2013	4/11/2013 4/11/2013	MDK	1
Indeno(1,2,3-cd)p	urene	< 0.027	ug/l	0.02	0.085	1	M8270D M8270D	4/9/2013	4/11/2013	MDK	i l
1-Methyl naphthal		0.169	ug/i ug/i	0.027	-	1	M8270D M8270D	4/9/2013	4/11/2013	MDK	1
2-Methyl naphthai		0.117	ug/l	0.015		1	M8270D	4/9/2013	4/11/2013	MDK	i
Naphthalene		0.211	ug/l	0.023		1	M8270D	4/9/2013	4/11/2013	MDK	1
Phenanthrene		0.252	ug/l	0.018	0.059	1	M8270D	4/9/2013	4/11/2013	MDK	1
Pyrene		0.216	ug/l	0.025	0.08	1	· M8270D	4/9/2013	4/11/2013	MDK	t
Lab Code	50250010								-		
Lau Coue	50250010										
	D7 02							· ·			
Sample ID	PZ-03							· ·			
Sample ID Sample Matrix	Water										
-									•		
Sample Matrix	Water	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code.
Sample Matrix Sample Date	Water	Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code.
Sample Matrix Sample Date	Water	Result	Unit	LOD	LOQI	Dil	Method	Ext Date	Run Date	Analyst	Code.
Sample Matrix Sample Date Organic BTEX	Water				-			Ext Date	· .		Code.
Sample Matrix Sample Date Organic BTEX Benzene	Water	0.44 "J"	· ug/l	0.27	0.85	<b>Dil</b> 1 1	GR095/8021	Ext Date	<b>Run Date</b>	Analyst CJR CJR	
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene	Water		· ug/l ug/l		0.85 2.6	1		Ext Date	4/9 <u>/20</u> 13	CJR	1.
Sample Matrix Sample Date Organic BTEX Benzene	Water	0.44 "J" 2.68	· ug/l	0.27 0.82	0.85 2.6 2.6	1 1	GRO95/8021 GRO95/8021	Ext Date		CJR CJR	1. 1
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene	Water	0.44 "J" 2.68 < 0.8	· ug/l ug/l ug/l	0.27 0.82 0.8	0.85 2.6 2.6	1 1 1	GRO95/8021 GRO95/8021 GRO95/8021	Ext Date		CJR CJR CJR	1. 1. 1.
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene	Water	0.44 "J" 2.68 < 0.8 < 1.6	· ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6	0.85 2.6 2.6 5.2	1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	Ext Date		CJR CJR CJR CJR	1. 1. 1. 1.
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM	Water	0.44 "J" 2.68 < 0.8 < 1.6	· ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6	0.85 2.6 2.6 5.2 2.6	1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	Ext Date		CJR CJR CJR CJR	1. 1. 1. 1.
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Totuene m&p-Xylene o-Xylene	Water	0.44 "J" 2.68 < 0.8 < 1.6 1.92 "J"	· ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81	0.85 2.6 2.6 5.2 2.6 1.36	1 1 1 .1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	<b>Contract</b>	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	CJR CJR CJR CJR CJR CJR	1 1 1 1 1 1
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene	Water	0.44 "J" 2.68 < 0.8 < 1.6 1.92 "J" 116 -	ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.42	0.85 2.6 2.6 5.2 2.6 1.36 1.26	1 1 1 1 20	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D	4/9/2013	- 4/9/2013 - 4/9/2013 - 4/9/2013 - 4/9/2013 - 4/9/2013 - 4/12/2013	CJR CJR CJR CJR CJR MDK	ł . 1 1 1 1 1
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene	Water 4/4/2013	0.44 "J" 2.68 < 0.8 < 1.6 1.92 "J" 116 - 0.99 "J"	ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.42 0.4	0.85 2.6 5.2 2.6 1.36 1.26 1.28	1 1 1 1 20 20	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D	4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/12/2013 4/12/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK	1 . 1 1 1 1 1 1 1
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene	Water 4/4/2013	0.44 "J" 2.68 < 0.8 < 1.6 1.92 "J" 116 - 0.99 "J" 2.37	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.42 0.4 0.4 0.4 0.5 0.36	0.85 2.6 5.2 2.6 1.36 1.26 1.28 1.56 1.16	1 1 1 1 20 20 20	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK	1 . 1 1 1 1 1 1 1 1
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranth	Water 4/4/2013 ne eene	0.44 "J" 2.68 < 0.8 < 1.6 1.92 "J" 116 0.99 "J" 2.37 2.03 0.71 "J" 1.45	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.42 0.4 0.4 0.4 0.5 0.36 0.4	0.85 2.6 5.2 2.6 1.36 1.26 1.28 1.56 1.16 1.26	1 1 1 1 20 20 20 20	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracer Benzo(a)pyrene	Water 4/4/2013 ne eene	0.44 "J" 2.68 < 0.8 < 1.6 1.92 "J" 116 0.99 "J" 2.37 2.03 0.71 "J" 1.45 < 0.46	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.42 0.4 0.4 0.5 0.36 0.4 0.46	0.85 2.6 5.2 2.6 1.36 1.26 1.28 1.56 1.16 1.26 1.5	1 1 1 1 1 20 20 20 20 20 20 20 20 20	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK	7 . 1 1 1 1 1 1 1 1 1 1 1 1 1
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranth Benzo(g,h,i)peryle Benzo(k)fluoranth	Water 4/4/2013 ne ne me	0.44 "J" 2.68 < 0.8 < 1.6 1.92 "J" 116 0.99 "J" 2.37 2.03 0.71 "J" 1.45 < 0.46 < 0.54	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.42 0.4 0.4 0.5 0.36 0.4 0.46 0.54	0.85 2.6 2.2 2.6 1.36 1.26 1.28 1.56 1.16 1.26 1.5 1.74	1 1 1 1 20 20 20 20 20 20 20 20 20 20 20 20	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranth Benzo(g,h,i)peryle Benzo(k)fluoranth Chrysene	Water 4/4/2013 ne ene ene ene	0.44 "J" 2.68 < 0.8 < 1.6 1.92 "J" 116 0.99 "J" 2.37 2.03 0.71 "J" 1.45 < 0.46 < 0.54 1.47	- ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.42 0.4 0.4 0.5 0.36 0.4 0.54 0.54 0.36	0.85 2.6 5.2 2.6 1.36 1.26 1.28 1.56 1.16 1.26 1.5 1.74 1.16	1 1 1 1 20 20 20 20 20 20 20 20 20 20 20 20	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK	7 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracer Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranth Benzo(g,h,i)peryle Benzo(k)fluoranth Chrysene Dibenzo(a,h)anthr	Water 4/4/2013 ne ene ene ene	0.44 "J" 2.68 < 0.8 < 1.6 1.92 "J" 116 0.99 "J" 2.37 2.03 0.71 "J" 1.45 < 0.46 < 0.54 1.47 < 0.46	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.42 0.4 0.4 0.5 0.36 0.4 0.54 0.54 0.36 0.46	0.85 2.6 5.2 2.6 1.36 1.26 1.28 1.56 1.16 1.26 1.5 1.74 1.16 1.44	1 1 1 1 20 20 20 20 20 20 20 20 20 20 20 20 20	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracer Benzo(b)fluoranth Benzo(k)fluoranth Benzo(k)fluoranth Chrysene Dibenzo(a,h)anthr Fluoranthene	Water 4/4/2013 ne ene ene ene	0.44 "J" 2.68 < 0.8 < 1.6 1.92 "J" 116 0.99 "J" 2.37 2.03 0.71 "J" 1.45 < 0.46 < 0.54 1.47 < 0.46 1.07	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.42 0.4 0.4 0.4 0.5 0.36 0.4 0.54 0.36 0.52	0.85 2.6 5.2 2.6 1.36 1.26 1.28 1.56 1.16 1.26 1.5 1.74 1.16	1 1 1 1 20 20 20 20 20 20 20 20 20 20 20 20 20	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene o-Xylene o-Xylene o-Xylene o-Xylene O-Xylene O-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracer Benzo(a)anthracer Benzo(b)fluoranth Benzo(g,h,i)peryle Benzo(k)fluoranth Chrysene Dibenzo(a,h)anthr Fluoranthene Fluorene	Water 4/4/2013 ne ene me ene acene	0.44 "J" 2.68 < 0.8 < 1.6 1.92 "J" 116 0.99 "J" 2.37 2.03 0.71 "J" 1.45 < 0.46 < 0.54 1.47 < 0.46 10.7 33	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	0.27 0.82 0.8 1.6 0.81 0.42 0.4 0.4 0.4 0.5 0.36 0.54 0.54 0.52 0.4	0.85 2.6 2.2 2.6 1.36 1.26 1.28 1.56 1.16 1.26 1.5 1.74 1.16 1.44 1.68 1.26	1 1 1 1 1 20 20 20 20 20 20 20 20 20 20 20 20 20	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene o-Xylene o-Xylene o-Xylene PAH SIM Acenaphthene Accenaphthylene Anthracene Benzo(a)anthracer Benzo(a)anthracer Benzo(b)fluoranth Benzo(b)fluoranth Benzo(k)fluoranth Chrysene Dibenzo(a,h)anthr Fluoranthene Fluorene Indeno(1,2,3-cd)py	Water 4/4/2013	0.44 "J" 2.68 < 0.8 < 1.6 1.92 "J" 116 0.99 "J" 2.37 2.03 0.71 "J" 1.45 < 0.46 < 0.54 1.47 < 0.46 10.7 33 < 0.54	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	0.27 0.82 0.8 1.6 0.81 0.42 0.4 0.4 0.4 0.4 0.36 0.44 0.54 0.54 0.52 0.4 0.54	0.85 2.6 2.2 2.6 1.36 1.26 1.28 1.56 1.16 1.26 1.5 1.74 1.16 1.44 1.68 1.26 1.7	1 1 1 1 1 20 20 20 20 20 20 20 20 20 20 20 20 20	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene o-Xylene o-Xylene o-Xylene PAH SIM Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(b)fluoranth Benzo(g,h,i)peryle Benzo(k)fluoranth Chrysene Dibenzo(a,h)anthr Fluoranthene Fluorene Indeno(1,2,3-cd)p i-Methyl naphthal	Water 4/4/2013	0.44 "J" 2.68 < 0.8 < 1.6 1.92 "J" 116 0.99 "J" 2.37 2.03 0.71 "J" 1.45 < 0.46 < 0.54 1.47 < 0.46 10.7 33 < 0.54 47	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	0.27 0.82 0.8 1.6 0.81 0.42 0.4 0.4 0.4 0.4 0.5 0.36 0.44 0.54 0.52 0.4 0.54 0.54 0.54 0.54	0.85 2.6 2.6 5.2 2.6 1.36 1.26 1.28 1.56 1.16 1.5 1.74 1.16 1.44 1.68 1.26 1.7 1.22	1 1 1 1 20 20 20 20 20 20 20 20 20 20 20 20 20	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene o-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracer Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranth Benzo(g,h,i)peryle Benzo(k)fluoranth Chrysene Dibenzo(a,h)anthr Fluoranthene Fluorene Indeno(1,2,3-cd)p 1-Methyl naphthal 2-Methyl naphthal	Water 4/4/2013	0.44 "J" 2.68 < 0.8 < 1.6 1.92 "J" 116 0.99 "J" 2.37 2.37 2.03 0.71 "J" 1.45 < 0.46 < 0.54 1.47 < 0.46 10.7 33 < 0.54 47 < 0.32	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	0.27 0.82 0.8 1.6 0.81 0.42 0.4 0.4 0.4 0.46 0.54 0.46 0.54 0.46 0.52 0.4 0.52 0.4 0.54 0.52	0.85 2.6 2.6 5.2 2.6 1.36 1.28 1.56 1.16 1.26 1.5 1.74 1.16 1.44 1.68 1.26 1.7 1.22 1.04	1 1 1 1 1 20 20 20 20 20 20 20 20 20 20 20 20 20	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracen Benzo(a)anthracen Benzo(a)pyrene Benzo(b)fluoranth Benzo(g,h,i)peryle Benzo(a,h)anthr Fluoranthene Fluorene Indeno(1,2,3-cd)p i-Methyl naphthal	Water 4/4/2013	0.44 "J" 2.68 < 0.8 < 1.6 1.92 "J" 116 0.99 "J" 2.37 2.03 0.71 "J" 1.45 < 0.46 < 0.54 1.47 < 0.46 10.7 33 < 0.54 47	ug/i ug/i ug/i ug/i ug/i ug/i ug/i ug/i	0.27 0.82 0.8 1.6 0.81 0.42 0.4 0.4 0.4 0.4 0.5 0.36 0.44 0.54 0.52 0.4 0.54 0.54 0.54 0.54	0.85 2.6 2.6 5.2 2.6 1.36 1.28 1.56 1.16 1.26 1.5 1.74 1.16 1.44 1.66 1.27 1.22 1.04	1 1 1 1 20 20 20 20 20 20 20 20 20 20 20 20 20	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/9/2013	4/9/2013 4/9/2013 4/9/2013 4/9/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013 4/12/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

Page 9 of 23

Project Name Proiect #	MOSS-AME 13701	RICAN	N				Invoic	e# E2500	)1			
Lab Code	5025001P											
Sample ID	MW-7S		•									
-												
Sample Matrix												
Sample Date	4/4/2013											
		Result	Unit	LOD	loq i	Dil	Method	Ext Date	<b>Run Date</b>	Analyst	Code	
Organic		•										
BTEX												
Benzene		0.36 "J"	ug/l	0.27	0.85	1	GRO95/8021		4/9/2013	CJR	1	
Ethylbenzene		< 0.82	ug/l	0.82	2.6	1	GRO95/8021		4/9/2013	CJR	1	
Toluene		< 0.8	ug/l	0.8	2.6	1	GRO95/8021		4/9/2013	CJR	1	
m&p-Xylene		< <u>1</u> .6 1.7 "J" ^	ug/l ug/l	1.6 0.81	5.2 2.6	1 1	GRO95/8021 · GRO95/8021		4/9/2013	CJR CJR	1 1	
o-Xylene		1.7 J	ug/i	0.01	2.0	1	GK095/8021		4/9/2013	UK	1	
PAH SIM							<b>N</b>					
Acenaphthene		5.0	ug/l	0.021	0.068	1	M8270D	4/9/2013	4/11/2013	MDK	1	
Acenaphthylene		0.17	ug/l	0.02	0.063	1	M8270D	4/9/2013	4/11/2013	MDK	1	
Anthracene		0.138	ug/l	0.02	0.064	1	M8270D	4/9/2013	4/11/2013	MDK	1	
Benzo(a)anthrace	ne	< 0.025	ug/l	0.025	0.078	1	M8270D	4/9/2013	4/11/2013	MDK	· 1	
Benzo(a)pyrene		< 0.018	ug/l	0.018	0.058	1	M8270D	4/9/2013	4/11/2013	MDK	1	
Benzo(b)fluoranth		< 0.02	ug/l	0.02	0.063	1	M8270D	4/9/2013	4/11/2013	MDK	1	
Benzo(g,h,i)peryle Benzo(k)fluoranth		< 0.023 < 0.027	ug/l	0.023 0.027	0.075 0.087	1 1	M8270D M8270D	4/9/2013 4/9/2013	4/11/2013	MDK MDK	1	
Chrysene	lene	< 0.027	ug/l ug/l	0.027	0.058		M8270D	4/9/2013	4/11/2013 4/11/2013	MDK	I	'
Dibenzo(a,h)anth	mcane.	< 0.023	ug/l	0.013	0.072	1	M8270D	4/9/2013	4/11/2013	MDK	1	
Fluoranthene	acciic	< 0.025	ug/l	0.025	0.072	1	M8270D	4/9/2013 4/9/2013	4/11/2013	MDK	1	
Fluorene		0.83	ug/l	0.02	0.063	· 1	M8270D	4/9/2013	4/11/2013	MDK	1	
Indeno(1,2,3-cd)p	vrene	< 0.027	ug/l	0:027	0.085	1	M8270D	4/9/2013	4/11/2013	MDK .	1	
1-Methyl naphtha	-	9.7	ug/l	0.019	0.061	1	M8270D	4/9/2013	4/11/2013	MDK	1	
2-Methyl naphtha		8.9	ug/l	0.016	0.052	1	M8270D	4/9/2013	4/11/2013	MDK	I	
Naphthalene		0.43	ug/l	0.023	0.075	1	M8270D	4/9/2013	4/11/2013	MDK	I	
Phenanthrene		0.034 " <b>J</b> "	ug/l	0.018	0.059	1	M8270D	4/9/2013	4/11/2013	MDK	1	
Рутепе		< 0.025	ug/l	0.025	0.08	· 1	M8270D	4/9/2013	4/11/2013	MDK	I	
	50250010											
Lab Code	5025001Q											
Sample ID	MW-34S	· .										
Sample Matrix	Water											
Sample Date	4/4/2013											
		Result	Unit	LOD	LOO I	Dil	Method	Ext Date	Run Date	Analyst	Code	
Organic					-					•	,	
		• ·										
BTEX		•				•						
Benzene		7.0	ug/l	0.27	0.85	1	GRO95/8021		4/9/2013	СJR	1	
Ethylbenzene		28.4	ug/l	0.82	2.6	1	GRO95/8021		4/9/2013	CJR	1	
Toluene		1.39 "J"	ug/l	0.8	2.6	1	GRO95/8021		4/9/2013	CJR	1	
m&p-Xylene		34 15.2	ug/l	1.6	5.2 2.6	1	GRO95/8021		4/9/2013	CJR	1	
o-Xylene PAH SIM		1.5.2	ug/l	0.81	2.0		GRO95/8021		4/9/2013	CJR	1	
Acenaphthene		410	ug/l	. 21			M8270D	4/9/2013	4/11/2013	MDK	1	
Acenaphthylene		< 20	ug/l	20	63		M8270D	4/9/2013	4/11/2013	MDK	1	
Anthracene		88 54 "J"	ug/l	20	64		M8270D	4/9/2013	4/11/2013	MDK	1	
Benzo(a)anthrace	ne		ug/l	25	. 78		M8270D	4/9/2013	4/11/2013	MDK	1	
Benzo(a)pyrene Benzo(b)fluoranti	hene	<18 26.1 "J"	ug/l ug/l	18 20	58 63		M8270D M8270D	4/9/2013 4/9/2013	4/11/2013	MDK	l 1	
Benzo(B)nuoranu Benzo(g,h,i)peryl		20.1 J ^a <23	ug/l ug/l	20	03 75		M8270D M8270D	4/9/2013	4/11/2013 4/11/2013	MDK MDK	1	
Benzo(k)fluorantl		< 27	ug/l	23	87		M8270D M8270D	4/9/2013	4/11/2013	MDK MDK	1	
Chrysene	-	50 "J"	ug/l	18	58		M8270D	4/9/2013	4/11/2013	MDK	1 .	
Dibenzo(a,h)anth	racene	< 23	ug/l	23	· 72		M8270D M8270D	4/9/2013	4/11/2013	MDK	1	
Fluoranthene		320	ug/l	26	84		M8270D	4/9/2013	4/11/2013	MDK	i	
Fluorene		330	ug/l	20	63		M8270D	4/9/2013	4/11/2013	MDK	1	
Indeno(1,2,3-cd)p	yrene	< 27	ug/l	27	· 85	1000	M8270D	4/9/2013	4/11/2013	MDK	1	
1-Methyl naphtha	lene	315 -	ug/l	19	61	1000	M8270D	4/9/2013	4/11/2013	MDK	I	
2-Methyl naphtha	lene	470	ug/l	16	52		M8270D	4/9/2013	4/11/2013	MDK	1	
Naphthalene		` 4100	ug/l	23	75	1000	M8270D	4/9/2013	4/11/2013	MDK	1	
		-										

Page 10 of 23

Durtest Name	MOSS-AME	DICAN					¥	- # 12260	0.1		
Project Name 1 Project #					. Invoi	ce# E250					
Lab Code Sample ID	5025001Q MW-34S										
	Water										
Sample Matrix		•									
Sample Date	4/4/2013										
		Result	Unit		LOQ		Method		Run Date	Analyst	Code
Phenanthrene Pyrene		800 222	ug/i ug/l	18 25			M8270D M8270D	4/9/2013 4/9/2013	4/11/2013 4/11/2013	MDK MDK	1
Lab Code	5025001R										
Sample ID	MW-27S										
Sample Matrix	Water										•
-	4/4/2013										
Sample Date	4/4/2013	Dec. 14	11	LOD	100	D:I		E-4 D-4-		A	<b>C</b> -1-
		Result	Unit	LOD	LOQ	DII,	Method	Ext Date	Run Date	Analyst	Code
Organic				-							
BTEX											
Benzene		< 0.27	ug/l	0.27	0.85		GRO95/8021		4/9/2013	CJR	1
Ethylbenzene		< 0.82	ug/l	0.82	2.6		GRO95/8021		4/9/2013	CJR	1 ·
Toluene		< 0.8	ug/l	0.8	2,6		GRO95/8021		4/9/2013	СЛ	1
m&p-Xylene	-	< 1.6 < 0.81	ug/l	1:6 0.81	5.2 2.6		GRO95/8021 GRO95/8021		4/9/2013 4/9/2013	CJR CJR	1
• 0-Xylene		< 0.81	ug/l	. 0.81	2.0	1	GR095/8021		4/9/2013	UK .	1.
PAH SIM	-		-	A		-			411.100.00	MDW	
Acenaphthene		0.113 0.022 "J"	ug/l	0.021	0.068	•	M8270D M8270D	4/9/2013 4/9/2013	4/11/2013	MDK MDK	1
Acenaphthylene Anthracene		0.022 "J" 0.14	ug/l ug/l	0.02	0.063		M8270D M8270D	4/9/2013	.4/11/2013 4/11/2013	MDK	1 1
Benzo(a)anthracene		< 0.025	ug/l	0.025	0.078		M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(a)pyrene		< 0.018	ug/l	0.018	0.058		M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(b)fluoranthe	ne	< 0.02	ug/l	0.02	0.063	1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(g,h,i)perylen		< 0.023	ug/l	0.023	0.075		M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(k)fluoranthe	ne	< 0.027	ug/l	0.027	0.087		M8270D	4/9/2013	4/11/2013	MDK	1 ·
Chrysene		< 0.018	ug/l	0.018	0.058		M8270D	4/9/2013	4/11/2013	MDK	1
Dibenzo(a,h)anthra Fluoranthene	cene	0.023 < <b>"ت</b> " 0.037	ug/l ug/l	0.023 0.026	0.072 0.084		M8270D M8270D	4/9/2013 4/9/2013	4/11/2013 4/11/2013	MDK MDK	1 1,
Fluorene		0.075	ug/l	0.020			M8270D	4/9/2013	4/11/2013	MDK	1
Indeno(1,2,3-cd)py	rene	< 0.027	ug/l	-0.027	0.085		M8270D	4/9/2013	4/11/2013	MDK	1
I-Methyl naphthale		0.115	ug/l	0.019	0.061	1	M8270D	4/9/2013	4/11/2013	MDK	1
2-Methyl naphthale	ne	0.222	ug/l	0.016	0.052	1	M8270D	4/9/2013	4/11/2013	MDK	1
Naphthalene		2.34	ug/l	0.023	0.075		M8270D	4/9/2013	4/11/2013	MDK .	I
Phenanthrene		0.106	ug/l	0.018	0.059		M8270D	4/9/2013	4/11/2013	MDK	1
Pyrene		0.029 " <b>J</b> "	ug/l	0.025	0.08	1	M8270D	4/9/2013	4/11/2013	MDK	1
Lab Code	5025001S										
Sample ID	MW-37S		-								
Sample Matrix	Water										
Sample Date	4/4/2013			· · ·					·		·
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organia		1000010		202	<b>x</b>						
Organic	. •						•				
BTEX						_					
Benzene		< 0.27	ug/l	0.27	0.85		GRO95/8021		4/9/2013	CJR	1
Ethylbenzene		< 0.82 < 0.8	ug/1 ug/1	0.82	2.6 2.6		GRO95/8021 GRO95/8021		4/9/2013 4/9/2013	CJR CJR	1 1
Toluene m&p-Xylene		< 0.8 < 1.6	ug/l ug/l	0.8 1.6	2.0 5.2		GR095/8021 GR095/8021		4/9/2013	CJR	1
o-Xylene		< 0.81	ug/l	0.81	2.6		GRO95/8021		4/9/2013	CJR	1
PAH SIM					2.0	-					
Acenaphthene		0.025 "J"	ug/l	0.021	0.068	1	M8270D	4/9/2013	4/11/2013	MDK	1
Acenaphthylene		< 0.02	ug/i ug/l	0.021	0.063		M8270D	4/9/2013	4/11/2013	MDK	1
Anthracene		< 0.02	ug/l	0.02	0.064		M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(a)anthracene		< 0.025	ug/l	0.025	0.078		M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(a)pyrene		< 0.018	ug/l	0.018	0.058		M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(b)fluoranthe		< 0.02	ug/l	0.02	0.063		M8270D	4/9/2013	4/11/2013	MDK ·	1
Benzo(g,h,i)perylen	ie .	< 0.023	ug/l	0.023	0.075	1	M8270D	4/9/2013	4/11/2013	MDK	1

Page 11 of 23

Project NameMOSS-AMERICANProject #13701							Invoi	ce # E2500	Л		
	5025001S							·	·		
Lab Code Sample ID	MW-37S										
Sample Matrix	Water						/				
Sample Date	4/4/2013						•		•		
<b>-</b>	••••	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Benzo(k)fluoranthe	ne	< 0.027	ug/l	0.027	0.087	1	M8270D	4/9/2013	4/11/2013	MDK	1
Chrysene		< 0.018	ug/l	0.018	0,058	1	M8270D	4/9/2013	4/11/2013	MDK	1
Dibenzo(a,h)anthra	cene	< 0.023	ug/l	0.023	0.072	1	M8270D	4/9/2013	4/11/2013	MDK	i
Fluoranthene		< 0.026	ug/1	0.026	0.084	1	M8270D	4/9/2013	4/11/2013	MDK	1
Fluorene	-	0.028 " <b>J</b> "	ug/l	0.02	0.063	1	M8270D	4/9/2013	4/11/2013	MDK	1
Indeno(1,2,3-cd)py		< 0.027	ug/l	0.027	0.085	1	M8270D	4/9/2013	4/11/2013	MDK	1
1-Methyl naphthale		0.025 " <b>J</b> ".	ug/l	0.019	0.061	1	M8270D	4/9/2013	4/11/2013	MDK	ł
2-Methyl naphthale	ne	0.044 "J"	ug/l	0.016	0.052	1	M8270D	4/9/2013	4/11/2013	MDK	1
Naphthalene Phenanthrene		0.36 0.037 "J"	ug/l	0.023 0.018	0.075 0.059	1	M8270D	4/9/2013	4/11/2013	MDK	1
Pyrene		< 0.025	ug/1 ug/1	0.018		1	M8270D M8270D	4/9/2013 4/9/2013	4/11/2013 4/11/2013	MDK MDK	1 1
ryiene		< 0.025	ugh	0.025	. 0.08	1	1416270D	4/7/2013	4/11/2013	MUK	ſ
Lab Code	5025001T		-								
Sample ID	MW-9S	-									
Sample Matrix	Water										
Sample Date	4/4/2013	•							,		
ampie zate		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
rganic					-						
BTEX											
Benzene		< 0.27	ug/l	0.27	0.85	. 1	GRO95/8021		4/9/2013	CJR	1
Ethylbenzene		< 0.82	ug/l	0.27	2.6	1	GR095/8021 GR095/8021		4/9/2013	CJR	1
Toluene		< 0.8	ug/l	0.8	2.6	. 1	GR095/8021		4/9/2013	СЛ	1
m&p-Xylene		< 1.6	ug/l	1.6	5.2	1	GRO95/8021		4/9/2013	CJR	1
o-Xylene		< 0.81	ug/l	0.81	2.6	1	GRO95/8021		4/9/2013	CJR	1
PAH SIM			•								
Acenaphthene		0.028 " <b>J</b> "	ug/l	0.021	0.068	1	M8270D	4/9/2013	4/11/2013	MDK	1
Acenaphthylene		< 0.02	ug/l	0.02	0.063	i	M8270D	4/9/2013	4/11/2013	MDK	1
Anthracene		0.048 "J"	ug/l	.0.02	0.064	1	M8270D	4/9/2013	4/11/2013	MDK	i
Benzo(a)anthracen	9	< 0.025	ug/l	0.025	0.078	1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(a)pyrene		< 0.018	ug/l	0.018	0.058	1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(b)fluoranthe		< 0.02	ug/l	0.02	0.063	1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(g,h,i)peryle		< 0.023	ug/l	0.023	0.075	1	M8270D	4/9/2013	4/11/2013	MDK	1
Benzo(k)fluoranthe	me	< 0.027	ug/1	0.027	0.087	1	M8270D	4/9/2013	4/11/2013	MDK	I
Chrysene Dibenzo(a,h)anthra	cene	< 0.018 < 0.023	ug/l ug/l	0.018	0.058	1	M8270D M8270D	4/9/2013 4/9/2013	.4/11/2013 4/11/2013	MDK MDK	1
Fluoranthene		< 0.025	ug/l	0.025	0.072	1	M8270D	4/9/2013	4/11/2013	MDK	1
Fluorene		0.029 "J"	ug/l	0.02	0.063	î	M8270D	4/9/2013	4/11/2013	MDK	1
Indeno(1,2,3-cd)py	rene	< 0.027	ug/l	0.027	0.085	i		4/9/2013	4/11/2013	MDK	i
I-Methyl naphthal		0.027 "J"	ug/1	0.019		1	M8270D	4/9/2013	4/11/2013	MDK	1
2-Methyl naphthal	ene	0.041 <b>"J</b> "	ug/l	0.016	0.052	1	M8270D	4/9/2013	4/11/2013	MDK	ĩ
Naphthalene		0.38	ug/l	0.023	0.075	ł	M8270D	4/9/2013	4/11/2013	MDK	1
Phenanthrene		0.044 "J"	ug/l	0:018	0.059	1	M8270D	4/9/2013	4/11/2013	MDK	1
Pyrene		< 0.025	ug/l	0.025	. 0.08	1	M8270D	4/9/2013	4/11/2013	MDK	1
Lab Code	5025001U										
Sample ID	PZ-10								1		
Sample Matrix	Water										
Sample Date	4/4/2013			•			· .				
•		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
rganic					-					• •	
BTEX											
			-	<b>.</b>	a'						-
Benzene		< 0.27	ug/l	0.27	0.85	1	GRO95/8021		4/9/2013	CJR ·	1
Ethylbenzene		< 0.82	ug/l	0.82	2.6	1	GRO95/8021		4/9/2013	CJR	1
Toluene m&p-Xylene		< 0.8 < 1.6	ug/l	0.8 1.6	2.6 5.2	1- 1	GRO95/8021 GRO95/8021		4/9/2013	CJR	1
		× 1.0	ug/l	1.0	J.Z	1			4/9/2013	CJR	1
o-Xylene	•	< 0.81	ug/l	0.81	2.6	1	· GRO95/8021		4/9/2013	CJR	1

Page 12 of 23

1

•	10SS-AME 3701	RICAN					Invoid	ce# E250	01			
Lab Code Sample ID Sample Matrix Sample Date	5025001U PZ-10 Water 4/4/2013				•							
		Result	Unit	LOD	LOQ Di	1	Method	Ext Date	Run Date	Analyst	Code	
PAH SIM	·.		:									
Acenaphthene		5.2	ug/l	0.021	0.068	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Acenaphthylene		0.095	ug/l	0.02	0.063	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Anthracene		0.34	ug/l	0.02	0.064	1	M8270D	4/10/2013	4/11/2013	MDK	1.	
Benzo(a)anthracene		0.128	ug/l	0.025	0.078	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Benzo(a)pyrene		0.07	ug/l	0.018	0.058	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Benzo(b)fluoranthen		0.169	ug/l	0.02	0.063	1.	M8270D	4/10/2013	4/11/2013	MDK	1	
Benzo(g,h,i)perylene		0.108	ug/l	0.023	0.075	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Benzo(k)fluoranthen	ne	0.064 "J"	ug/l	0.027	0.087	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Chrysene		0.132	ug/l	0.018	0.058	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Dibenzo(a,h)anthrac	ene	< 0.023	ug/l	0.023	0.072	1	M8270D	4/10/2013	4/11/2013	MDK	, 1	
Fluoranthene		0.41	ug/l	0.026	0.084	1	M8270D	4/10/2013	4/11/2013	MDK	I	
Fluorene		0.92	ug/l	0.02	0.063	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Indeno(1,2,3-cd)pyre		0.071 " <b>J</b> "	ug/l	0.027	0.085	1	M8270D	4/10/2013	4/11/2013	MDK	1	
1-Methyl naphthaler		3.4	ug/l	0.019	0.061	1	M8270D	4/10/2013	4/11/2013	MDK	1	
2-Methyl naphthaler	ne	2.82	ug/l	0.016	0.052	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Naphthalene		0.32	ug/l	0.023	0.075	1	M8270D ·	4/10/2013	4/11/2013	MDK	1	
Phenanthrene		1.36	ug/l	0.018	0.059	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Pyrene		0.299	ug/l	0.025	0.08	1	M8270D	4/10/2013	4/11/2013	MDK	1	
240 0000	5025001V MW-30S											
	Water											
	4/4/0012											
Sample Date	4/4/2013	, D14	TT_#4				Nő sék s J	E-4 D-4-	Deve Dete	A T	<b>C</b> - <b>J</b> -	
	4/4/2013	Result	Unit	LOD	LOQ Di	I "	Method	Ext Date	Run Date	Analyst	Code	
Organic	4/4/2013	Result	Unit	LOD	LOQ Di		Method	Ext Date	Run Date	Analyst	Code	
	4/4/2013	Result	Unit	LOD	LOQ Di	l 	Method	Ext Date	Run Date	Analyst	Code	
Organic	4/4/2013	<b>Result</b> < 0.27	Unit ug/l	LOD	LOQ Di	۱ ^	<b>Method</b> GRO95/8021	Ext Date	<b>Run Date</b> 4/10/2013	Analyst CJR	Code	
Organic BTEX	4/4/2013		· .		0.85	~	•	Ext Date	·	-		
Organic BTEX Benzene	4/4/2013 	< 0.27	ug/l ug/l ug/l	0.27	0.85 2.6 2.6	 1	GRO95/8021 GRO95/8021 GRO95/8021	Ext Date	4/10/2013	CJR CJR CJR	1	
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene	4/4/2013	< 0.27 < 0.82 < 0.8 < 1.6	ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6	0.85 2.6 2.6 5.2	- 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	Ext Date	4/10/2013 4/10/2013 4/10/2013 4/10/2013	CJR CJR CJR CJR	1 1 1 1	
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene	4/4/2013	< 0.27 < 0.82 < 0.8	ug/l ug/l ug/l	0.27 0.82 0.8	0.85 2.6 2.6	 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021	Ext Date	4/10/2013 4/10/2013 4/10/2013	CJR CJR CJR	1 1 1	
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene	4/4/2013	< 0.27 < 0.82 < 0.8 < 1.6	ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6	0.85 2.6 2.6 5.2	- 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	Ext Date	4/10/2013 4/10/2013 4/10/2013 4/10/2013	CJR CJR CJR CJR	1 1 1 1	
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene	4/4/2013	< 0.27 < 0.82 < 0.8 < 1.6	ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6	0.85 2.6 2.6 5.2	- 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	Ext Date	4/10/2013 4/10/2013 4/10/2013 4/10/2013	CJR CJR CJR CJR	1 1 1 1	-
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM	4/4/2013	<0.27 <0.82 <0.8 <1.6 <0.81	ug/l ug/l ug/l ug/l og/l	0.27 0.82 0.8 1.6 0.81	0.85 2.6 2.6 5.2 2.6	1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021		4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	CJR CJR CJR CJR CJR CJR	1 1 1 1	
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene	4/4/2013	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021	ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021	0.85 2.6 2.6 5.2 2.6 0.068	 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D	4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK	1 1 1 1 1	
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene	4/4/2013	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02	0.85 2.6 2.6 5.2 2.6 0.068 0.063	- 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D	4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK	1 1 1 1 1	
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene	4/4/2013	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.113	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.02	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064	- 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK	1 1 1 1 1 1 1 1 1	
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthen	ю.	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.113 <0.025	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.02 0.025	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR MDK MDK MDK MDK	1 1 1 1 1 1 6 6 6	•
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	ю.	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.113 <0.025 <0.018	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.02 0.025 0.018	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 6 6	
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(g,h,i)perylene Benzo(k)fluoranthen	ю. Э	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.113 <0.025 <0.018 <0.02 <0.023 <0.027	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.02 0.023 0.027	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 6 6 6 6 6 6	· ·
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(g,h,i)perylene Benzo(k)fluoranthen Chrysene	ie e	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.113 <0.025 <0.018 <0.02 <0.023 <0.027 <0.018	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.02 0.023 0.027 0.018	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 6 6 6 6 6 6 6 6	
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(g,h,i)perylene Benzo(a,h)anthrac	ie e	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.113 <0.025 <0.018 <0.02 <0.023 <0.027 <0.018 <0.023	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.023 0.027 0.018 0.023	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 6 6 6 6 6 6 6 6 6	•
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(g,h,i)perylene Benzo(a,h)anthrac Fluoranthene	ie e	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.113 <0.025 <0.018 <0.02 <0.023 <0.027 <0.018 <0.023 <0.023 <0.023 <0.023 <0.026	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.023 0.027 0.018 0.023 0.023 0.026	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 6 6 6 6 6 6 6 6 6 6	•
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(g,h,i)perylene Benzo(k)fluoranthen Chrysene Dibenzo(a,h)anthrac Fluoranthene Fluorene	le e ene	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.113 <0.025 <0.018 <0.02 <0.023 <0.027 <0.018 <0.023 <0.023 <0.026 <0.02	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.023 0.027 0.018 0.023 0.026 0.02	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 6 6 6 6 6 6 6 6 6 6 6 1	•
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(g,h,i)perylene Benzo(k)fluoranthen Chrysene Dibenzo(a,h)anthrac Fluoranthene Fluorene Indeno(1,2,3-cd)pyret	le ene ene	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.113 <0.025 <0.018 <0.02 <0.023 <0.027 <0.018 <0.023 <0.023 <0.022 <0.023 <0.022 <0.022 <0.022 <0.022	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.023 0.027 0.018 0.023 0.026 0.02 0.027	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063 0.085		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 6 6 6 6 6 6 6 6 6 6 6 6 1 1 1 6	
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(g,h,i)perylene Benzo(k)fluoranthen Chrysene Dibenzo(a,h)anthrac Fluoranthene Fluorene Indeno(1,2,3-cd)pyre 1-Methyl naphthalen	le b le ene ene le	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.113 <0.025 <0.018 <0.023 <0.027 <0.018 <0.023 <0.026 <0.02 <0.027 <0.019	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.023 0.027 0.018 0.023 0.026 0.027 0.019	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063 0.072 0.084 0.063 0.085 0.061		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 6 6 6 6 6 6 6 6 6 6 6 1 1	•
Organic BTEX Benzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(b)fluoranthen Benzo(k)fluoranthen Benzo(k)fluoranthen Chrysene Dibenzo(a,h)anthrac Fluoranthene Fluorene Indeno(1,2,3-cd)pyre 1-Methyl naphthalen 2-Methyl naphthalen	le b le ene ene le	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.113 <0.025 <0.018 <0.02 <0.023 <0.027 <0.018 <0.023 <0.022 <0.023 <0.022 <0.022 <0.022 <0.022 <0.027 <0.019 <0.016	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.023 0.023 0.027 0.018 0.023 0.026 0.023 0.026 0.027 0.019 0.016	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063 0.072 0.084 0.063 0.085 0.061 0.052		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 6 6 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1	
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(k)fluoranthen Benzo(k)fluoranthen Chrysene Dibenzo(a,h)anthrac Fluorene Indeno(1,2,3-cd)pyre 1-Methyl naphthalene	le b le ene ene le	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.113 <0.025 <0.018 <0.02 <0.023 <0.027 <0.018 <0.023 <0.026 <0.02 <0.027 <0.019 <0.016 0.024 "J"	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.023 0.027 0.018 0.023 0.026 0.022 0.027 0.019 0.016 0.023	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.075 0.087 0.087 0.087 0.087 0.087 0.085 0.072 0.084 0.063 0.063 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.065 0.075 0.068 0.075 0.068 0.075 0.075 0.068 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1	
Organic BTEX Benzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthen Benzo(b)fluoranthen Benzo(k)fluoranthen Benzo(k)fluoranthen Chrysene Dibenzo(a,h)anthrac Fluoranthene Fluorene Indeno(1,2,3-cd)pyre 1-Methyl naphthalen 2-Methyl naphthalen	le b le ene ene le	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 0.113 <0.025 <0.018 <0.02 <0.023 <0.027 <0.018 <0.023 <0.022 <0.023 <0.022 <0.022 <0.022 <0.022 <0.027 <0.019 <0.016	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.023 0.023 0.027 0.018 0.023 0.026 0.023 0.026 0.027 0.019 0.016	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063 0.072 0.084 0.063 0.085 0.061 0.052		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 6 6 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1	

Page 13 of 23

Project NameMOSS-AMEProject #13701	RICAN		•		Invoid	ce# E2500	)1				
Lab Code5025001WSample IDMW-5SSample MatrixWaterSample Date4/4/2013							÷				
	Result	Unit	LOD L	LOQ Dil	Method	Ext Date	<b>Run Date</b>	Analyst	Code		
Organic BTEX					• •			·		· ,	
Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81	ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81	0.85 1 2.6 1 2.6 1 5.2 1 2.6 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	,	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	CJR CJR CJR CJR CJR	1 1 1 1		
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	<0.021 <0.02 0.030 "J" <0.025 <0.018 <0.02 <0.023 <0.027 <0.018 <0.027 <0.018 <0.023 <0.027 <0.018 <0.023 <0.026 <0.02	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.021 0.02 0.025 0.018 0.023 0.023 0.027 0.018 0.023 0.026 0.02	0,068         I           0.063         I           0.064         I           0.078         I           0.058         I           0.063         I           0.075         I           0.087         I           0.058         I           0.058         I           0.058         I           0.072         I           0.084         I           0.063         I	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	)   .   		
Indeno(1,2,3-cd)pyrene 1-Methyl naphthalene 2-Methyl naphthalene Naphthalene Phenanthrene Pyrene Lab Code 5025001X	< 0.027 < 0.019 < 0.016 0.025 "J" < 0.018 < 0.025	ug/l ug/l ug/l ug/l ug/l ug/l	0.027 0.019 0.016 0.023 0.018 0.025	0.085 1 0.061 1 0.052 1 0.075 1 0.059 1 0.08 1	M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK	ŧ / 1 1 1 1	• 1	
Sample IDMW-ASample MatrixWaterSample Date4/4/2013	Result	Unit	LODI	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code		
Organic											
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM	< 0.27 < 0.82 < 0.8 < 1.6 < 0.81	ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81	0.85 1 2.6 1 2.6 1 5.2 1 2.6 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021		4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	CJR CJR CJR CJR CJR	1 1 1 1		
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h, i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene	< 0.021 < 0.02 0.025 "J" < 0.025 < 0.018 < 0.02 < 0.023 < 0.027 < 0.018 < 0.023 < 0.027 < 0.018 < 0.023 < 0.026 < 0.02 < 0.027	ug/I ug/I ug/I ug/I ug/I ug/I ug/I ug/I	0.021 0.02 0.025 0.018 0.023 0.023 0.027 0.018 0.023 0.026 0.02 0.027	0.068         1           0.063         1           0.064         1           0.078         1           0.058         1           0.063         1           0.077         1           0.087         1           0.0758         1           0.087         1           0.084         1           0.084         1           0.063         1           0.085         1	M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	<pre></pre>		
Indeno(1,2,3-cd)pyrene 1-Methyl naphthalene 2-Methyl naphthalene Naphthalene	< 0.027 < 0.019 < 0.016 < 0.023	ug/l ug/l ug/l ug/l	0.027 0.019 0.016 0.023	0.085 1 0.061 1 0.052 1 0.075 1	M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK	1 . 1 1 1		

Page 14 of 23

•	MOSS-AME 13701	ERICAN				Invoi	ce # E250	01			
Lab Code	5025001X										
Sample ID	MW-A							· · · ·			
			•								
Sample Matrix											
Sample Date	4/4/2013										
-	-	Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code	
Phenanthrene	•	0.026 "J"	ug/l	0.018	-	M8270D	4/10/2013	4/11/2013	MDK	1	
Рутеле		< 0.025	ug/l	0.025		M8270D	4/10/2013	4/11/2013	MDK	1	
1 )10110		0.025	-0.	0.025	0.00 1		010/2013	01112013	MEDIC	•	
Lab Code	5025001Y										. ~
Sample ID	MW-B										
Sample Matrix									•		
-											
Sample Date	4/5/2013	· •									
		Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code	
Organic											
BTEX											
		- 0.07		0.07	0.05	CD 000 /0001		1100010	OT		
Benzene		< 0.27	ug/l	0.27		GRO95/8021		4/10/2013	CJR	1	
Ethylbenzene		< 0.82	ug/l	0.82		GRO95/8021		4/10/2013	CJR	ŀ	
Toluene		< 0.8	ug/l	0.8		GRO95/8021	•	4/10/2013	СЛR	1 -	
m&p-Xyiene		< 1.6	ug/l	1.6		GRO95/8021		4/10/2013	СЛ	1	
o-Xylene		< 0.81	ug/l	0.81	2.6 1	GRO95/8021		4/10/2013	СЛ	1.	
PAH SIM		· .									
Acenaphthene		< 0.021	ug/ł	0.021	0.068 1	M8270D	4/10/2013	4/11/2013	MDK	I	
Acenaphthylene		< 0.02	ug/l	0.02	0.063 1	M8270D	4/10/2013	4/11/2013	MDK	1	
Anthracene		< 0.02	ug/l	0.02	0.064 1	M8270D	4/10/2013	4/11/2013	MDK	1	
Benzo(a)anthracen	e ·	< 0.025	ug/l	0.025	0.078 1	M8270D	4/10/2013	4/11/2013	MDK	i	
Benzo(a)pyrene		< 0.018	ug/l	0.018		M8270D	4/10/2013	4/11/2013	MDK	1	
Benzo(b)fluoranthe		< 0.02	ug/l	0.02		M8270D	4/10/2013	4/11/2013	MDK	I	
Benzo(g,h,i)peryler		< 0.023	ug/l	0.023	0.075 1	M8270D	4/10/2013	4/11/2013	MDK	1	
Benzo(k)fluoranthe	me	< 0.027	ug/l	0.027	0.087 1	M8270D	4/10/2013	4/11/2013	MDK	1	
Chrysene		< 0.018	ug/l	0.018	0.058 1	M8270D	4/10/2013	4/11/2013	MDK	1	
Dibenzo(a,h)anthra	icene	< 0.023	ug/l	0.023	0.072 1	M8270D	4/10/2013	4/11/2013	MDK	1	
Fluoranthene		< 0.026	ug/l	0.026		M8270D	4/10/2013	4/11/2013	MDK	1	
Fluorene		< 0.02	ug/l	0.02		M8270D	4/10/2013	4/11/2013	MDK	1	
Indeno(1,2,3-cd)py	•	< 0.027	ug/l	0.027	0.085 1	M8270D	4/10/2013	4/11/2013	MDK	1	
1-Methyl naphthale		< 0.019	ug/l.	0.019		M8270D	4/10/2013	4/11/2013	MDK	1	
2-Methyl naphthale	ane	< 0.016	ug/l	0.016		M8270D	4/10/2013	4/11/2013	MDK	1	
Naphthalene		0.034 " <b>J</b> "	ug/l	0.023	0.075 1	M8270D	4/10/2013	4/11/2013	MDK	1	
Phenanthrene		0.037 " <b>J</b> " < 0.025	ug/l	0.018 0.025	0.059 1 0.08 I	M8270D M8270D	4/10/2013 4/10/2013	4/11/2013	MDK MDK	1.	
Pyrene			ug/l	0.025	0.08 1	W10270D	410/2013	4/11/2013	MDR	1	
Lab Code	5025001Z					÷.,					
Sample ID	MW-C								•		
Sample Matrix											
Sample Matrix Sample Date	4/5/2013			`							
Sample Date	4/3/2013										~
		Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date	Analyst	Code	
Organic											
BTEX							•	•			
Benzene		< 0.27		0.07	0.85 1	CBO05/9031		4/10/2013	сm		
		< 0.27	ug/l	0.27 0.82		GRO95/8021 GRO95/8021			CJR CJR	1	
Ethylbenzene Toluene		< 0.82	ug/l ug/l	0.82	-	GRO95/8021 GRO95/8021		4/10/2013 4/10/2013	CJR CJR	ו 1	
m&p-Xylene		< 1.6	ug/1 ug/1	1.6		GRO95/8021		4/10/2013	CJR	1	
o-Xylene		< 0.81	-	0.81	2.6 1	GRO95/8021 GRO95/8021		4/10/2013	CJR	1	
PAH SIM		~ 0,01	ug/I	v.01	2.0 1	01075/0041		1012013	ыĸ	•	
		•									
Acenaphthene		< 0.021	ug/l	0.021	0.068 1	M8270D	4/10/2013	4/11/2013	MDK	1	
Acenaphthylene		< 0.02	ug/l	0.02	0.063 1	M8270D	4/10/2013	4/11/2013	MDK	1	
Anthracene		< 0.02	ug/l	0.02	0.064 1	M8270D	4/10/2013	4/11/2013	MDK	1	
Benzo(a)anthracene		< 0.025	ug/l	0.025	0.078 1	M8270D	4/10/2013	4/11/2013	MDK	1	
Benzo(a)pyrene		< 0.018	ug/l	0.018	0.058 1	M8270D	4/10/2013	4/11/2013	MDK	1	•
Benzo(b)fluoranthe		0.039 "J"	ug/l	0.02	0.063 1	M8270D	4/10/2013	4/11/2013	MDK	1	•
Benzo(g,h,i)peryler	IC .	0.026 "J"	ug/l	0.023	0.075 1	M8270D	4/10/2013	4/11/2013	MDK	1	

Page 15 of 23

•	MOSS-AME 13701	RICAN					Invoic	e# E2500	)1		
Lab Code Sample ID Sample Matrix Sample Date	5025001Z MW-C Water 4/5/2013		×	•			·				
Benzo(k)fluoranth Chrysene	ene	<b>Result</b> < 0.027 0.028 " <b>J</b> "	Unit ug/l	LOD 0.027 0.018	LOQ Di 0.087 0.058	<b> </b> 11	Method M8270D M8270D	Ext Date 4/10/2013 4/10/2013	Run Date 4/11/2013 4/11/2013	<b>Analyst</b> MDK MDK	<b>Code</b> 1
Dibenzo(a,h)anthr Fluoranthene Fluorene		<0.023 0.052 "J" <0.02	ug/l ug/l ug/l ug/l	0.023 0.026 0.02	0.072 0.084 0.063	1 1 1	M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK	1 1 1
Indeno(1,2,3-cd)p 1-Methyl naphthal 2-Methyl naphthal Naphthalene	ene	< 0.027 0.11 < 0.016 < 0.023	ug/l ug/l ug/l ug/l	0.027 0.019 0.016 0.023	0.085 0.061 0.052 0.075	1 1 1 1	M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013	MDK MDK MDK MDK	1 1 1
Phenanthrene Pyrene	505001 4 4	0.044 "J" 0.046 "J"	ug/l ug/l	0.018 0.025	0.059 0.08	1 1	M8270D M8270D	4/10/2013 4/10/2013	4/11/2013 4/11/2013	MDK MDK	1
Lab Code Sample ID	525001AA MW-D			·		•			• •		۰.
Sample ID Sample Matrix	•	·		•							
Sample Date	4/5/2013										•
	-	Result	Unit	LOD	LOQ Di	ĺ	Method	Ext Date	Run Date	Analyst	Code
Organic BTEX											
Benzene Ethylbenzene		< 0.27 < 0.82	. ug/l ug/l	0.27 0.82	0.85 2.6	1	GRO95/8021 GRO95/8021		4/10/2013 4/10/2013	CJR CJR	1 · 1
Toluene		< 0.8	ug/l	0.8	2.6	1	GRO95/8021		4/10/2013	CJR	1 ·
m&p-Xylene		< 1.6	ug/l	1.6	5.2	1	GR095/8021		4/10/2013	CJR	1
o-Xylene PAH SIM		< 0.81	ug/l	0.81	2.6	1	GR095/8021		4/10/2013	CJR	1
Acenaphthene		< 0.021	ug/l	0.021	0.068	1	M8270D	4/10/2013	4/11/2013	MDK	1
Acenaphthylene		< 0.02	ug/l	0.02	0.063	1	M8270D	4/10/2013	4/11/2013	MDK	1
Anthracene Benzo(a)anthracen		< 0.02 < 0.025	ug/i	0.02 0.025	0.064 0.078	1 1	M8270D M8270D	4/10/2013	4/11/2013 4/11/2013	MDK	1
Benzo(a)pyrene		< 0.023	ug/l ug/l	0.023	0.078	1	M8270D M8270D	4/10/2013 4/10/2013	4/11/2013	MDK MDK	1
Benzo(b)fluoranth	ene	< 0.02	ug/l	0.02	0.063	1	M8270D	4/10/2013	4/11/2013	MDK	1
Benzo(g,h,i)peryle		0.038 " <b>J</b> "	ug/l	0.023	0.075	1	M8270D	4/10/2013	4/11/2013	MDK	1
Benzo(k)fluoranth Chrysene	ene .	< 0.027 0.02 "J"	ug/l ug/l	0.027 0.018	0.087 0.058	1	M8270D M8270D	4/10/2013 4/10/2013	4/11/2013 4/11/2013	MDK MDK	1
Dibenzo(a,h)anthr	acene	< 0.023	ug/l		0.072	1	M8270D M8270D	4/10/2013	4/11/2013	MDK	1
Fluoranthene		< 0.026	ug/l	0.026	0.084	1	M8270D	4/10/2013	4/11/2013	MDK	1
Fluorene		< 0.02	ug/l	0.02	0.063	1	M8270D	4/10/2013	4/11/2013	MDK	1
Indeno(1,2,3-cd)py 1-Methyl naphthal		< 0.027 < 0.019	ug/l ug/l	0.027 0.019	0.085 0.061	1 1	M8270D M8270D	4/10/2013 4/10/2013	4/11/2013 4/11/2013	MDK MDK	1
2-Methyl naphthal	-	< 0.015	ug/l	0.015	0.052	i	M8270D M8270D	4/10/2013	4/11/2013	MDK	1
Naphthalene		< 0.023	ug/l	0.023	0.075	1	M8270D	4/10/2013	4/11/2013	MDK	1
Phenanthrene		< 0.018	ug/l	0.018	0.059	1	M8270D	4/10/2013	4/11/2013	MDK	1
Pyrene		< 0.025	ug/l	0.025	0.08	1	M8270D	4/10/2013	4/11/2013	MDK	1
Lab Code	525001BB										
Sample ID	MW-E						•				
Sample Matrix								-			
Sample Date	4/5/2013			_			, •		•		
		Result	Unit	LOD	LOQ Di	I	Method	Ext Date	Run Date	Analyst	Code
Organic BTEX											
Benzene		< 0.27	ug/l	0.27	0.85	1	GRO95/8021		4/10/2013	CJR	1
Ethylbenzene		< 0.82	ug/l	. 0.82	2.6	1	GRO95/8021		4/10/2013	CJR	1
Toluene m&p-Xylene		< 0.8 < 1.6	ug/l ug/l	0.8 1.6	2.6 5.2	1 1	GRO95/8021 GRO95/8021		4/10/2013 4/10/2013	CJR CJR	1
0-Xylene		< 0.81	ug/l	0.81	3.2 2.6	1	GRO95/8021 GRO95/8021		4/10/2013		1
-			2								

Page 16 of 23

Project Name	MOSS-AM	ERICAN					Invoi	<b>ce</b> # E2500	)1 '		•
Project #	13701				·			·			
Lab Code	525001BE	3						•			
Sample ID	MW-E										
Sample Matri	Water										
-	4/5/2013										
Sample Date	4/5/2015	<b>D</b>	TT 74	LOD	100	<b>N</b> /1	16.0.1	<b>F</b> ( <b>D</b> (	Due Data	A ma lucat	Cada
		Result	Unit	LOD	LOQ	ווע	Method	Ext Date	Run Date	Analyst	Code
PAH SIM											
Acenaphthene		< 0.021	ug/l	0.021	0.068		M8270D	4/10/2013	4/11/2013	MDK	1
Acenaphthylene		< 0.02	ug/l	0.02	0.063		M8270D	4/10/2013	4/11/2013	MDK	1
Anthracene		< 0.02	ug/l	0.02	0.064		M8270D	4/10/2013	4/11/2013	MDK	1
Benzo(a)anthrac	ene	< 0.025	ug/I	0.025	0.078		M8270D	4/10/2013	4/11/2013	MDK	1
Benzo(a)pyrene		0.038 "J"	ug/l	0.018			M8270D M8270D	4/10/2013	4/11/2013	MDK MDK	i t
Benzo(b)fluoran		0.063	ug/l	0.02 0.023	0.063 0.075		M8270D M8270D	4/10/2013 4/10/2013	4/11/2013	MDK	1
Benzo(g,h,i)pery		0.44 < 0.027	ug/l ug/l	0.023	0.073		M8270D M8270D	4/10/2013	4/11/2013	MDK	1
· Benzo(k)fluoran	filche	< 0.027	ug/1 ug/1	0.027	0.087		M8270D	4/10/2013	4/11/2013	MDK	1
Chrysene Dibenzo(a b)ant	bracene	< 0.018	ug/l	0.013	0.038		M8270D	4/10/2013	4/11/2013	MDK	1
Dibenzo(a,h)ant Fluoranthene	mutteric	< 0.025	ug/l	0.025	0.084		M8270D	4/10/2013	4/11/2013	MDK	1
Fluorene		< 0.02	ug/l	0.02	0.063		M8270D	4/10/2013	4/11/2013	MDK	1
Indeno(1,2,3-cd)	pyrene.	0.094	ug/l	0.027	0.085		M8270D	4/10/2013	4/11/2013	MDK	1
1-Methyl naphth		0.02 "J"	ug/l	0.019	0.061		M8270D	4/10/2013	4/11/2013	MDK	1
2-Methyl naphth		< 0.016	ug/l	0.016	0.052	1	M8270D	4/10/2013	4/11/2013	MDK	1
Naphthalene		< 0.023	ug/l	0.023	0.075	I	M8270D	4/10/2013	4/11/2013	MDK	1
Phenanthrene		0.018 "J"	ug/l	0.018	0.059		M8270D	4/10/2013	4/11/2013	MDK	1,
Pyrene		0.034 " <b>J</b> "	ug/l、	0.025	0.08	1	M8270D	4/10/2013	4/11/2013	MDK	I
	525001CC	-		•	•						
Lab Code	MW-F										
Sample ID		·									
Sample Matri	ix Water										•
Sample Date	4/5/2013										
Sample Date		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
-		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic BTEX					-			Ext Date	1		
Organic BTEX Benzene		< 0.27	ug/l	0.27	0.85	- 1	GR095/8021		4/10/2013	СЛ	1
Organic BTEX Benzene Ethylbenzene		<0.27 <0.82	ug/l ug/l	0.27 0.82	0.85 2.6	- - 5 1	GRO95/8021 GRO95/8021	Ext Date	4/10/2013 4/10/2013	CJR CJR	1 1
Organic BTEX Benzene Ethylbenzene Toluene		<0.27 <0.82 <0.8	ug/l ug/l ug/l	0.27 0.82 0.8	0.85 2.6 2.6	- 1 5 1 5 1	GRO95/8021 GRO95/8021 GRO95/8021		4/10/2013 4/10/2013 4/10/2013	CJR CJR CJR	1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene		<0.27 <0.82 <0.8 <1.6	ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6	0.85 2.6 2.6 5.2	- 1 5 1 5 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021		4/10/2013 4/10/2013 4/10/2013 4/10/2013	CJR CJR CJR CJR	1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene		<0.27 <0.82 <0.8	ug/l ug/l ug/l	0.27 0.82 0.8	0.85 2.6 2.6	- 1 5 1 5 1	GRO95/8021 GRO95/8021 GRO95/8021		4/10/2013 4/10/2013 4/10/2013	CJR CJR CJR	1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM		<0.27 <0.82 <0.8 <1.6 <0.81	ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81	0.85 2.6 2.6 5.2 2.6	- 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	•	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	CJR CJR CJR CJR CJR CJR	1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene	4/5/2013	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021	ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81	0.85 2.6 2.6 5.2 2.6 0.068	- 1 1 1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D	4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013	CJR CJR CJR CJR CJR MDK	1 1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene	4/5/2013	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02	ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02	0.85 2.6 2.6 5.2 2.6 0.068 0.063	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D	4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK	1 1 1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene	4/5/2013	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 <0.02	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.02	0.85 2.6 5.2 2.6 0.068 0.068 0.063 0.064		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK	1 1 1 1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthrac	4/5/2013	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 <0.02 0.03 "J"	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.02 0.025	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthrac Benzo(a)pyrene	4/5/2013	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 <0.02 0.03 "J" 0.039 "J"	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthrac Benzo(a)pyrene Benzo(b)fluoran	4/5/2013 zene	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 <0.02 0.03 "J" 0.039 "J" 0.065	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.02	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063	1 1 1 1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthrac Benzo(a)pyrene Benzo(b)fluoran Benzo(g,h,i)pery	4/5/2013 exene whene ylene	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 <0.02 <0.02 0.03 "J" 0.039 "J" 0.065 0.188	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.02 0.023	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075	- 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthrac Benzo(a)pyrene Benzo(b)fluoran Benzo(g,h,i)pery Benzo(k)fluoran	4/5/2013 exene whene ylene	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 <0.02 0.03 "J" 0.039 "j" 0.065 0.188 <0.027	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.02 0.023 0.023 0.027	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthrac Benzo(a)pyrene Benzo(b)fluoran Benzo(g,h,i)pery Benzo(k)fluoran Chrysene	4/5/2013	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 <0.02 0.03 "J" 0.039 "j" 0.065 0.188 <0.027 0.06	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.02 0.023 0.023 0.027 0.018	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthrac Benzo(a)pyrene Benzo(b)fluoran Benzo(a,h,i)pery Benzo(a,h)ant	4/5/2013	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 <0.02 0.03 "J" 0.039 "j" 0.065 0.188 <0.027	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.02 0.023 0.023 0.027	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthrac Benzo(a)anthrac Benzo(b)fluoran Benzo(b)fluoran Benzo(c),h i)pery Benzo(k)fluoran Chrysene Dibenzo(a,h)ant Fluoranthene	4/5/2013	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 <0.02 0.03 "J" 0.039 "J" 0.065 0.188 <0.027 0.06 <0.023	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.02 0.023 0.027 0.018 0.023	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthrac Benzo(a)pyrene Benzo(b)fluoran Benzo(b)fluoran Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery	4/5/2013 Sene Athene Jlene Athene hracene	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 <0.02 <0.02 0.03 "J" 0.065 0.188 <0.027 0.06 <0.023 0.087	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.02 0.023 0.027 0.018 0.023 0.026	0.85 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthrac Benzo(a)anthrac Benzo(a)pyrene Benzo(a)pyrene Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benz(	4/5/2013 Sene Athene ylene tuhene hracene	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 <0.02 <0.02 0.03 "J" 0.065 0.188 <0.027 0.06 <0.023 0.087 <0.02	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.02 0.023 0.027 0.018 0.023 0.026 0.02	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063 0.085		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthrac Benzo(a)pyrene Benzo(b)fluoran Benzo(b)fluoran Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery Benzo(g,h,i)pery	4/5/2013 Alterne Athene Athene Athene Athene Athene Athene Athene Athene Athene	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 <0.02 <0.02 0.03 "J" 0.065 0.188 <0.027 0.06 <0.023 0.087 <0.02 0.04 "J"	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.02 0.023 0.027 0.018 0.023 0.026 0.02 0.022	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.075 0.087 0.058 0.072 0.084 0.063 0.085 0.061 0.052		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthrac Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoran Benzo(g,h,i)pery Benzo(k)fluoran Chrysene Dibenzo(a,h)ant Fluoranthene Fluorene Indeno(1,2,3-cd) i-Methyl napht	4/5/2013 Alterne Athene Athene Athene Athene Athene Athene Athene Athene Athene	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 <0.02 <0.02 0.03 "J" 0.065 0.188 <0.027 0.06 <0.023 0.087 <0.02 0.04 "J" <0.019	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.02 0.02 0.02 0.02 0.023 0.027 0.018 0.023 0.026 0.023 0.027 0.018	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.075 0.087 0.058 0.072 0.084 0.063 0.085 0.061 0.052 0.075		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	
Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthylene Anthracene Benzo(a)anthrac Benzo(a)aptyrene Benzo(b)fluoran Benzo(b)fluoran Benzo(k)fluoran Chrysene Dibenzo(a,h)ant Fluoranthene Fluorene Indeno(1,2,3-cd) i-Methyl napht	4/5/2013 Alterne Athene Athene Athene Athene Athene Athene Athene Athene Athene	<0.27 <0.82 <0.8 <1.6 <0.81 <0.021 <0.02 <0.02 <0.02 0.03 "J" 0.039 "J" 0.065 0.188 <0.027 0.06 <0.023 0.087 <0.02 0.04 "J" <0.019 <0.016	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.025 0.018 0.02 0.023 0.027 0.018 0.023 0.026 0.02 0.023 0.026 0.02 0.027 0.019 0.016	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.063 0.075 0.087 0.087 0.087 0.072 0.084 0.063 0.063 0.061 0.052 0.075 0.059		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Page 17 of 23

# Project NameMOSS-AMERICANProject #13701

Lab Code	525001DD											
Sample ID	MW-G	· ·										
Sample Matrix	Water	•										
Sample Date	4/5/2013											
Sample Date	4/3/2013	Result	Unit		LOQ	D:I	Method	Ert Data	Run Date	Analyst	Cada	
o ·		RESUIT	Unit	LOD	LUQ	DI	MELIUU	EXI Date	Run Date	Auaiysi	Coue	
Organic												
BTEX								,				
Benzene		< 0.27	ug/l	0.27	0:85	1	GRO95/8021		4/10/2013	CJR	1 .	
Ethylbenzene		< 0.82	ug/l	0.82	2.6	1	GRO95/8021		4/10/2013	CJR	ĩ	
Toluene		< 0.8	ug/l	0.8	2.6	1	GRO95/8021		4/10/2013	CJR .	1	
m&p-Xylene		. <1.6	ug/l	1.6	5.2	1	GRO95/8021		4/10/2013	CJR	1	
o-Xylene		< 0.81	ug/l	0.81	2.6	1	GRO95/8021		4/10/2013	СJR	1	
PAH SIM ·							. •					
Acenaphthene	· .	< 0.021	ug/l	0.021	0.068	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Acenaphthylene		< 0.02	ug/l	0.02	0.063	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Anthracene	•	< 0.02	ug/l	0.02	0.064	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Benzo(a)anthracen	e	< 0.025	ug/l	0.025	0.078	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Benzo(a)pyrene		< 0.018	.ug/l	0.018	0.058	ĩ	M8270D	4/10/2013	4/11/2013	MDK	· 1	
Benzo(b)fluoranth		< 0.02	ug/l	. 0.02	0.063	I	M8270D	4/10/2013	4/11/2013	MDK	I	
Benzo(g,h,i)peryle		0.047 "J"	ug/l	0.023	0.075	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Benzo(k)fluoranth	ene	< 0.027	ug/l	0.027	0.087	I	M8270D	4/10/2013	4/11/2013	MDK [.]	1	
Chrysene		< 0.018	ug/l	0.018	0.058	I	M8270D	4/10/2013	4/11/2013	MDK	1	
Dibenzo(a,h)anthr	icene	< 0.023	ug/l	0.023	0.072	l	M8270D	4/10/2013	4/11/2013	MDK	1	
Fluoranthene	•	< 0.026	ug/l		0.084	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Fluorene Indeno(1,2,3-cd)py		< 0.02 < 0.027	ug/l	0.02 0.027	0.063 0.085	1	M8270D M8270D	4/10/2013 4/10/2013	4/11/2013	MDK MDK	1	
1-Methyl naphthal		< 0.027	ug/l ug/l	0.027	0.063	1	M8270D M8270D	4/10/2013	4/11/2013 4/11/2013	MDK MDK	1	
2-Methyl naphthal		< 0.015	ug/l	0.019	0.052	1	M8270D M8270D	4/10/2013	4/11/2013	MDK	1	
Naphthalene	She	< 0.023	ug/l	0.023	0.075	1	M8270D	4/10/2013	4/11/2013	MDK	1	
Phenanthrene		0.02 "J"	· ug/l	0.018	0.059	- î	M8270D	4/10/2013	4/11/2013	MDK	1	
			-8			-					-	
Pyrene		0.033 "J"	ug/1.	0.025	0.08	. 1	M8270D	4/10/2013	4/11/2013	MDK	1	
Pyrene	60 6001 D.D.	0.033 "J"	ug/l.	0.025	0.08	, 1,	M8270D	4/10/2013	4/11/2013	MDK	1	
Lab Code	525001EE	0.033 "J"	ug/l	0.025	0.08	. • <b>1</b> ,	M8270D	4/10/2013	4/11/2013	MDK	1	
Lab Code Sample ID	MW-H	0.033 "J"	ug/l.	0.025	0.08	. • <b>1</b> ,	M8270D	4/10/2013	4/11/2013	MDK	1	
Lab Code	MW-H	0.033 "J"	ug/l	0.025	0.08	. • <b>I</b> ,	M8270D	4/10/2013	4/11/2013	MDK	1	
Lab Code Sample ID	MW-H	0.033 "J"	ug/l.	0.025	0.08	. • <b>I</b> .	M8270D	4/10/2013	4/11/2013	MDK	1	
Lab Code Sample ID Sample Matrix	MW-H Water	0.033 "J" Result	ug/l. Unit				M8270D Method				•	
Lab Code Sample ID Sample Matrix Sample Date	MW-H Water	· .			0.08				4/11/2013 Run Date		•	-
Lab Code Sample ID Sample Matrix Sample Date Organic	MW-H Water	· .									•	•
Lab Code Sample ID Sample Matrix Sample Date	MW-H Water	· .									•	
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene	MW-H Water	Result < 0.27	Unit ug/l	<b>LOD</b> 0.27	LOQ		Method GR095/8021		<b>Run Date</b> 4/10/2013	<b>Analyst</b> CJR	•	-
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene	MW-H Water	<b>Result</b> < 0.27 < 0.82	Unit ug/l ug/l	LOD 0.27 0.82	0.85 2.6	Dil	<b>Method</b> GRO95/8021 GRO95/8021		<b>Run Date</b> 4/10/2013 4/10/2013	Analyst CJR CJR	Code	- -
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene	MW-H Water	<b>Result</b> < 0.27 < 0.82 < 0.8	Unit ug/l ug/l ug/l	LOD 0.27 0.82 0.8	0.85 2.6 2.6	<b>Dil</b> 1 1	<b>Method</b> GRO95/8021 GRO95/8021 GRO95/8021		<b>Run Date</b> 4/10/2013 4/10/2013 4/10/2013	Analyst CJR CJR CJR CJR	<b>Code</b> 1 1	- -
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene	MW-H Water	<pre></pre>	Unit ug/l ug/l ug/l ug/l	LOD 0.27 0.82 0.8 1.6	0.85 2.6 2.6 5.2	Dił 1 1	Method GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021		<b>Run Date</b> 4/10/2013 4/10/2013 4/10/2013 4/10/2013	Analyst CJR CJR CJR CJR CJR	<b>Code</b> 1 1 1 1	- -
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene	MW-H Water	<b>Result</b> < 0.27 < 0.82 < 0.8	Unit ug/l ug/l ug/l	LOD 0.27 0.82 0.8	0.85 2.6 2.6	<b>Dil</b> 1 1	<b>Method</b> GRO95/8021 GRO95/8021 GRO95/8021		<b>Run Date</b> 4/10/2013 4/10/2013 4/10/2013	Analyst CJR CJR CJR CJR	<b>Code</b> 1 1	<b>.</b>
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM	MW-H Water	<b>Result</b> <0.27 <0.82 <0.8 <1.6 <0.81	Unit ug/l ug/l ug/l ug/l	LOD 0.27 0.82 0.8 1.6 0.81	0.85 2.6 2.6 5.2	Dił 1 1	<b>Method</b> GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	Ext Date	<b>Run Date</b> 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	Analyst CJR CJR CJR CJR CJR CJR	<b>Code</b> 1 1 1 1	- -
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene	MW-H Water	<b>Result</b> < 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021	Unit ug/l ug/l ug/l ug/l	LOD 0.27 0.82 0.8 1.6	0.85 2.6 2.6 5.2 2.6 0.068	Dił 1 1	<b>Method</b> GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D		<b>Run Date</b> 4/10/2013 4/10/2013 4/10/2013 4/10/2013	Analyst CJR CJR CJR CJR CJR	<b>Code</b> 1 1 1 1	-
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene	MW-H Water	<b>Result</b> < 0.27 < 0.82 < 0.8 < 1.6 < 0.81	Unit ug/l ug/l ug/l ug/l ug/l ug/l	LOD 0.27 0.82 0.8 1.6 0.81 0.021 0.02	0.85 2.6 2.6 5.2 2.6 0.068 0.063	<b>Dil</b> 1 1 1 1 1 1	Method GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D	Ext Date 4/10/2013 4/10/2013	Avn Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013	Analyst CJR CJR CJR CJR CJR CJR MDK MDK	1 1 1 1 1 1 1 1	-
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene	MW-H Water 4/5/2013	Result < 0.27 < 0.82 < 0.8 < 1.6 < 0.81 <	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	LOD 0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.02	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064	<b>Dil</b> 1 1 1 1 1 1 1	Method GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D	Ext Date 4/10/2013 4/10/2013 4/10/2013	Aun Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013	Analyst CJR CJR CJR CJR CJR CJR MDK MDK MDK	1 1 1 1 1 1 1 1 1 1	- -
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracer	MW-H Water 4/5/2013	Result < 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < < 0.021 < 0.02 < 0.02 < 0.02 < 0.023 "J"	Unit ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	LOD 0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.02 0.022	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078	<b>Dil</b> 1 1 1 1 1 1 1 1	Method GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D	Ext Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013	Aun Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	Analyst CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1 1 1	-
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracer Benzo(a)pyrene	MW-H Water 4/5/2013	Result < 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 < 0.02 0.053 "J" 0.049 "J"	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	LOD 0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.02 0.025 0.018	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058	<b>Dil</b> 1 1 1 1 1 1 1	Method GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D	Ext Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	Aun Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	Analyst CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK	Code 1 1 1 1 1 1 1 1 1 1 1 1 1	
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranth	MW-H Water 4/5/2013 e	Result < 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 < 0.02 0.053 "J" 0.049 "J" 0.107	Unit ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	LOD 0.27 0.82 0.8 1.6 0.81 0.021 0.02 0.02 0.025 0.018 0.02	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063	<b>Dil</b> 1 1 1 1 1 1 1 1 1	Method GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	Ext Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	Aun Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	Analyst CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK	Code 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Accnaphthylene Anthracene Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranth Benzo(g,h,i)peryle	MW-H Water 4/5/2013 e ene	Result < 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 < 0.02 0.053 "J" 0.049 "J" 0.107 0.107	Unit ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	LOD 0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.02 0.02 0.02 0.018 0.02 0.023	0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075	<b>Dil</b> 1 1 1 1 1 1 1 1 1 1	Method GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	Ext Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	Aun Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	Analyst CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK	Code 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Accnaphthylene Anthracene Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranth Benzo(g,h,i)peryle Benzo(k)fluoranth	MW-H Water 4/5/2013 e ene	Result < 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 < 0.02 0.053 "J" 0.049 "J" 0.107 0.107 < 0.027	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	LOD 0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.02 0.025 0.018 0.02 0.023 0.027	LOQ 0.85 2.6 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087	<b>Dil</b> 1 1 1 1 1 1 1 1 1 1	Method GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	Ext Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013           4/10/2013           4/10/2013           4/10/2013           4/10/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013	Analyst CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK	Code 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Accnaphthylene Anthracene Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranth Benzo(g,h,i)peryle Benzo(k)fluoranth Chrysene	MW-H Water 4/5/2013 e ene ne ene	Result < 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 < 0.02 0.053 "J" 0.049 "J" 0.107 < 0.027 0.082	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	LOD 0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.02 0.02 0.02 0.02 0.018 0.02 0.023 0.027 0.018	LOQ 0.85 2.6 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058	<b>Dil</b> 1 1 1 1 1 1 1 1 1 1 1	Method GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	Ext Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013           4/10/2013           4/10/2013           4/10/2013           4/10/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013	Analyst CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	Code 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Accnaphthylene Anthracene Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranth Benzo(g,h,i)peryle Benzo(a,h)anthr	MW-H Water 4/5/2013 e ene ne ene	Result < 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 < 0.02 0.053 "J" 0.049 "J" 0.107 < 0.027 0.082 < 0.023	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	LOD 0.27 0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.02 0.023 0.027 0.018 0.027	LOQ 0.85 2.6 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072	<b>Dil</b> 1 1 1 1 1 1 1 1 1 1 1	Method GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	Ext Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/10/2013           4/10/2013           4/10/2013           4/10/2013           4/10/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013	Analyst CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	Code 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranth Benzo(g,h,i)peryle Benzo(a,h)anthr Fluoranthene	MW-H Water 4/5/2013 e ene ne ene	Result < 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 < 0.02 0.053 "J" 0.049 "J" 0.107 < 0.027 0.082 < 0.023 0.153	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	LOD 0.27 0.82 0.88 1.6 0.81 0.02 0.025 0.018 0.02 0.023 0.027 0.018 0.023 0.023 0.023	LOQ 0.85 2.6 2.6 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084	<b>Dil</b> 1 1 1 1 1 1 1 1 1 1 1 1	Method GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	Ext Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	Aun Date           4/10/2013           4/10/2013           4/10/2013           4/10/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013	Analyst CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	Code 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranth Benzo(g,h,i)peryle Benzo(a,h)anthr Fluoranthene Fluorene	MW-H Water 4/5/2013 e e ene ne ene	Result < 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 < 0.02 0.053 "J" 0.049 "J" 0.107 < 0.027 0.082 < 0.023 0.153 < 0.02	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	LOD 0.27 0.82 0.88 1.6 0.81 0.02 0.025 0.018 0.02 0.025 0.018 0.023 0.027 0.018 0.023 0.026 0.02	LOQ 0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063	<b>Dil</b> 1 1 1 1 1 1 1 1 1 1 1 1 1	Method GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	Ext Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	Aun Date           4/10/2013           4/10/2013           4/10/2013           4/10/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013	Analyst CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	Code 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthene Acenaphthene Benzo(a)anthracer Benzo(a)anthracer Benzo(a)pyrene Benzo(a)pyrene Benzo(a,h)anthr Fluoranthene Fluorene Indeno(1,2,3-cd)py	MW-H Water 4/5/2013 e e e e e e e e e e e e e e e e e e	Result < 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 < 0.02 0.053 "J" 0.049 "J" 0.107 < 0.027 0.082 < 0.023 0.153	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	LOD 0.27 0.82 0.8 1.6 0.81 0.021 0.025 0.018 0.022 0.025 0.018 0.022 0.023 0.027 0.018	LOQ 0.85 2.6 2.6 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084	<b>Dil</b> 1 1 1 1 1 1 1 1 1 1 1 1	Method GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	Ext Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	Aun Date           4/10/2013           4/10/2013           4/10/2013           4/10/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013	Analyst CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	Code 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Lab Code Sample ID Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracer Benzo(a)pyrene Benzo(b)fluoranth Benzo(g,h,i)peryle Benzo(a,h)anthr Fluoranthene Fluorene	MW-H Water 4/5/2013 e e e e e e e e e e e e e e e e e e e	Result < 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 < 0.02 < 0.02 0.053 "J" 0.049 "J" 0.107 < 0.027 0.082 < 0.023 0.153 < 0.02 0.02 0.021 < 0.021 < 0.02 < 0.021 < 0.02 < 0.02 < 0.02 < 0.02 < 0.027 < 0.022 < 0.022 < 0.027 < 0.027 < 0.027 < 0.027 < 0.027 < 0.022 < 0.027 < 0.022 < 0.027 < 0.022 < 0.022 < 0.027 < 0.022 < 0.022 < 0.027 < 0.022 < 0.022 < 0.022 < 0.027 < 0.022 < 0.027 < 0.022 < 0.022 < 0.027 < 0.027	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	LOD 0.27 0.82 0.88 1.6 0.81 0.02 0.025 0.018 0.02 0.025 0.018 0.023 0.027 0.018 0.023 0.026 0.02	LOQ 0.85 2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063 0.085	<b>Dil</b> 1 1 1 1 1 1 1 1 1 1 1 1 1	Method GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	Ext Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	Run Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4	Analyst CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	Code 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Lab Code Sample ID Sample Matrix Sample Matrix Sample Date Organic BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthylene Anthracene Benzo(a)anthracer Benzo(a)anthracer Benzo(a)pyrene Benzo(a)pyrene Benzo(b)fluoranth Benzo(g,h,i)peryle Benzo(k)fluoranth Chrysene Dibenzo(a,h)anthr Fluoranthene Fluorene Indeno(1,2,3-cd)py 1-Methyl naphthal	MW-H Water 4/5/2013 e e e e e e e e e e e e e e e e e e e	Result < 0.27 < 0.82 < 0.8 < 1.6 < 0.81 < 0.021 < 0.02 < 0.02 0.053 "J" 0.049 "J" 0.107 0.107 < 0.027 0.082 < 0.023 0.153 < 0.02 0.021 < 0.021 < 0.022 < 0.022 < 0.023 < 0.023 < 0.023 < 0.021 < 0.022 < 0.022 < 0.022 < 0.022 < 0.027 < 0.022 < 0.021 < 0.021 < 0.021 < 0.021 < 0.021 < 0.021 < 0.021 < 0.021 < 0.022 < 0.022 < 0.021 < 0.021 < 0.021 < 0.022 < 0.022 < 0.022 < 0.021 <	Unit ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	LOD 0.27 0.82 0.8 1.6 0.81 0.02 0.025 0.018 0.02 0.025 0.018 0.023 0.027 0.018	LOQ 0.85 2.6 2.6 5.2 2.6 0.068 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063 0.072 0.084 0.063 0.063	Dil 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Method GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	Ext Date 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	Aun Date           4/10/2013           4/10/2013           4/10/2013           4/10/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013           4/11/2013	Analyst CJR CJR CJR CJR CJR CJR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	Code 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-

WI DNR Lab Certification # 445037560

Page 18 of 23

Project Name MOSS-AME Project # 13701	RICAN		·		Invoi	ce # E2500	01			,	
Lab Code 525001EE Sample ID MW-H			· .		•						
Sample Matrix Water Sample Date 4/5/2013											
Phenanthrene Pyrene	<b>Result</b> 0.044 " <b>J</b> " 0.15	Unit ug/l ug/l	LOD LOO 0.018 0.0 0.025 0.	-	<b>Method</b> M8270D M8270D	Ext Date 4/10/2013 4/10/2013	Run Date 4/11/2013 4/11/2013	<b>Analyst</b> MDK MDK	<b>Code</b> 1 1		
Lab Code 525001FF							•				
Sample ID MW-I		:	~								•
Sample Matrix Water											
Sample Date 4/5/2013	Result	Unit	LOD LOQ	) Dil	Method	Ext Date	Run Date	Analyst	Code		
Organic	Moun	oun	DOD DOQ	2 011			Nun Date	Analyse		·	
BTEX					•		·				
Benzene	< 0.27	ug/l	0.27 0.	85 1	GRO95/8021		4/10/2013	CJR	1	•	
Ethylbenzene	< 0.82	ug/l	0.82	2.6 1	GRO95/8021		4/10/2013	CJR	1		
Toluene	< 0.8	ug/l		2.6 1	GR095/8021	•	4/10/2013	CJR	1		
m&p-Xylene	< 1.6 < 0.81	ug/l		5.2 1 2.6 1	GRO95/8021 GRO95/8021		4/10/2013 4/10/2013	CJR CJR -	1 1		
o-Xylene PAH SIM	< 0.81	⊡ ug/l	0.61 2	2.6 1	'UKU93/8021		4/10/2013	CIK -	. 1		
	< 0.021	ug/l	0.021 0.0	68 1	M8270D	4/10/2013	4/11/2013	MDK	1		
Acenaphthene Acenaphthylene	< 0.021	ug/l ug/l	0.021 0.0		M8270D M8270D	· · 4/10/2013	4/11/2013		1		
Anthracene	< 0.02	ug/l	0.02 0.0		M8270D	4/10/2013	4/11/2013	MDK	1		
Benzo(a)anthracene	0.055 "J"	ug/l	0.025 0.0		M8270D	4/10/2013	4/11/2013	MDK	1		
Benzo(a)pyrene	0.093	ug/l	0.018 0.0	58 1	M8270D	4/10/2013	4/11/2013	MDK	1		
Benzo(b)fluoranthene	0.222	ug/l	0.02 0.0		M8270D	4/10/2013	4/11/2013	MDK	1		
Benzo(g,h,i)perylene	0.152	ug/l	0.023 0.0		- M8270D	4/10/2013	4/11/2013	MDK			
Benzo(k)fluoranthene	0.071 "J"	ug/l ug/l	-0.027 0.0 0.018 0.0		M8270D M8270D	4/10/2013 4/10/2013	4/11/2013 4/11/2013	MDK MDK	1 1		
Chrysene Dibenzo(a,h)anthracene	0.111 < 0.023	ug/l	0.018 0.0		M8270D M8270D	4/10/2013	4/11/2013	MDK	1		·
Fluoranthene	0.196	ug/l	0.026 0.0		M8270D	4/10/2013	4/11/2013	MDK	1		
Fluorene	< 0.02	ug/l	0.02 0.0			4/10/2013	4/11/2013	MDK	1		
Indeno(1,2,3-cd)pyrene	0.093	ug/l	0.027 0.0	85 1	M8270D	4/10/2013	4/11/2013	MDK	1		
1-Methyl naphthalene	< 0.019	ug/l	0.019 0.0		M8270D	4/10/2013	4/11/2013	MDK	1		
2-Methyl naphthalene	< 0.016	ug/l	0.016 0.0		M8270D	4/10/2013	4/11/2013	MDK	1		
Naphthalene	< 0.023	ug/l	0.023 0.0		M8270D M8270D	4/10/2013	4/11/2013	MDK	1	-	•
Phenanthrene Pyrene	0:087 0.16	ug/l ug/l	0.018 0.0 0.025 0.0	59 1 08 1	M8270D M8270D	4/10/2013 4/10/2013	4/11/2013 4/11/2013	MDK MDK	1		
		ug i		. oo	1102100	1 . 2013	#7112015	MDIL			
Lab Code 525001GG											
Sample ID MW-J			,			•					
Sample Matrix Water					· -						
Sample Date 4/5/2013	Result	Unit	LOD LOO	) Dil	Method	Ext Date	Run Date	Analyst	Code		
Organic											
BTEX							• •				
Benzene	< 0.27	ug/l	0.27 0.	85 1	GRO95/8021		4/10/2013	CJR	1		
Ethylbenzene	< 0.82	ug/l	0.82 2	2.6 1	GRO95/8021		4/10/2013	CJR	1	•	
Toluene	< 0.8	ug/l		2.6 1	GRO95/8021		4/10/2013	CJR	1		
m&p-Xylene	< 1.6	ug/l		5.2 1	GR095/8021		4/10/2013	CJR	1		
o-Xylene PAH SIM	< 0.81	ug/l	0.81 2	2.6 1	GRO95/8021		- 4/10/2013	CJR	1		
	- 0 - 0.		0.001 0.0	د ۱	MOTOD	4/10/0012	A/11/2012	MDV	,		
Acenaphthene Acenaphthylene	< 0.021 < 0.02	ug/l . ug/l	0.021 0.0		M8270D M8270D	4/10/2013 4/10/2013	4/11/2013 4/11/2013	MDK MDK	1		
Anthracene	< 0.02	ug/i ug/i	0.02 0.0		M8270D M8270D	4/10/2013	4/11/2013	MDK	I		
Benzo(a)anthracene	0.026 "J"	ug/l	0.025 0.0		M8270D	4/10/2013	4/11/2013	MDK	1		
Benzo(a)pyrene	0.025 "J"	ug/l	0.018 0.0		M8270D	4/10/2013	4/11/2013	MDK	1		
Benzo(b)fluoranthene	0.055 "J"	ug/l	0.02 0.0		M8270D	4/10/2013	4/11/2013	MDK	1		
Benzo(g,h,i)perylene	0.054 "J"	ug/l	0.023 0.0	75 Í	M8270D	4/10/2013	4/11/2013	MDK	1		
								. ·			

Page 19 of 23

Project Name	MOSS-AME	RICAN				Invo	ice# E250	11	
-	13701				_	Invo.			
Lab Code	525001GG				. `				
Sample ID	MW-J								
Sample Matrix	Water		•						
Sample Date	4/5/2013								
· · · · · · · · · · · · ·		Result	Unit		LOQ Dil	Method	Ext Date	Run Date Analy	yst Code
Benzo(k)fluoranthe		< 0.027	ug/l	0.027	0.087 1	M8270D	4/10/2013	4/11/2013 MDK	
Chrysene	410	0.038 "J"	ug/l	0.018	0.058 1	M8270D	4/10/2013	4/11/2013 MDK	
Dibenzo(a,h)anthra	cene	< 0.023	ug/l	0.023	0.072 1	M8270D	4/10/2013	4/11/2013 MDK	
Fluoranthene	•	0.061 " <b>J</b> "	ug∕l	0.026	0.084 1		4/10/2013	4/11/2013 MDK	
Fluorene		< 0.02	ug/l	0.02	0.063 1	M8270D	4/10/2013	4/11/2013 MDK	1
Indeno(1,2,3-cd)py		< 0.027	ug/l	0.027	0.085 1	M8270D	4/10/2013	4/11/2013 MDK	
1-Methyl naphthale		0.025 " <b>J</b> "	ug/l	0.019	0.061 1	M8270D	4/10/2013	4/11/2013 MDK	
2-Methyl naphthale Naphthalene	me	< 0.016 0.032 "J"	ug/l ug/l	0.016 0.023	0.052 1 0.075 1	M8270D M8270D	4/10/2013 4/10/2013	4/11/2013 MDK 4/11/2013 MDK	
Phenanthrene		0.047 " <b>J</b> "	ug/l	0.023	0.075 1	M8270D M8270D	4/10/2013	4/11/2013 MDK	•
Pyrene		0.058 " <b>J</b> "	ug/l	0.025	0.08 1		4/10/2013	4/11/2013 MDK	
•			0-		-				-
Lab Code	525001HH					•			
Sample ID	DUPLICA	ΓE #1		·		· ·			
Sample Matrix	Water								
Sample Date	4/5/2013	•							
		Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date Analy	yst Code
Organic									
BTEX									
Benzene		< 0.27	ug/l	0.27	0.85 1	GRO95/8021		4/10/2013 CJR	1
Ethylbenzene Toluene	-	< 0.82 < 0.8	ug/l	0.82	2.6 1	GRO95/8021		4/10/2013 CJR	l
m&p-Xylene		< 1.6	ug/l ug/l	0.8 1.6	2.6 ·1 5.2 1	GRO95/8021 GRO95/8021		4/10/2013 CJR 4/10/2013 CJR	1 1
o-Xylene		< 0.81	ug/l	0.81	2.6 1	GR095/8021		4/10/2013 CJR	1
Lab Code	525001II -								
Sample ID	DUPLICA	ГЕ #2					•		
Sample Matrix	Water								
Sample Date	4/5/2013								
. ·		Result	Unit ·	LOD	LOQ Dil	Method	Ext Date	Run Date Analy	yst Code
Organic			· .					-	
BTEX									
Benzene		< 0.27	ug/l	0.27	0.85 1	GRO95/8021		4/10/2013 CJR	1
Ethylbenzene	-	< 0.82	ug/l	0.82	2.6 1	GRO95/8021		4/10/2013 CJR	1
Toluene m&p-Xylene		< 0.8 < 1.6	ug/l ug/l	0.8 1.6	2.6 1 5.2 1	GRO95/8021 GRO95/8021		4/10/2013 CJR 4/10/2013 CJR	· 1
o-Xylene		< 0.81	ug/l	0.81	2.6 1	GR095/8021 GR095/8021		4/10/2013 CJR	l
				,,,,,,					•
Lab Code	525001JJ								
Sample ID	DUPLICA	IE #3							
Sample Matrix									
Sample Date	4/5/2013							• •	
		Result	Unit	LOD	LOQ Dil	Method	Ext Date	Run Date Analy	yst Code
Organic	• •							•	
BTEX				•					
BIEA Benzene		< 0.27		0.07	0.95	CB ODE/0001		4100012 000	
Ethylbenzene		< 0.27	ug/l ug/l	0.27 0.82		GRO95/8021 GRO95/8021		4/10/2013 CJR 4/10/2013 CJR	. 1
Toluene		< 0.82	ug/l	0.82		GR095/8021 GR095/8021		4/10/2013 CJR	1
m&p-Xylene		< 1.6	ug/l	1.6	5.2 1	GRO95/8021		4/10/2013 CJR	· 1
o-Xylene		< 0.81	ug/l	0.81	2.6 1	GRO95/8021		4/10/2013 CJR	

Project Name         MOSS-AMERICAN Project #         Invoice #         E25001           Lab Code         \$25001KK         Sample ID         DUPLICATE #4           Sample Date         4/5/2013         Water           Sample Date         4/5/2013         Result         LOD         LOQ         Diu         Method         Ext Date         Run Date         Amaly           Organic         TEX         Result         Unit         LOD         LOQ         Diu         Method         Ext Date         Run Date         Amaly           Organic         Text         -         0.27         ug/l         0.22         0.65         1         GRO95/8021         4/10/2013         C/R           Britzx         -         0.02         ug/l         0.82         2.6         1         GRO95/8021         4/10/2013         C/R           Sample Date         525001LL         525001LL         52.5         1         GRO95/8021         4/10/2013         C/R           Sample Date         FQUP BLANK         Water         3/2/2013         1         GRO95/8021         4/10/2013         C/R           Britzx         -         -         0.27         ug/l         0.82         2.6         1         GRO95/8	t Code I I I I I I
Sample Di Sample Date         UUPLICATE #4           Sample Matrix Sample Date         Water           Sample Date         4/5/2013           Result         Unit         LOD         LOQ         Dil         Method         Ext Date         Run Date Analy           Organic         Result         Unit         LOD         LOQ         Dil         Method         Ext Date         Run Date Analy           Organic         BTEX          Constraine         < 0.27	. 1 1 1 1
Sample Date         4/5/2013           Result         Unit         LOD         LOD         LOD         Method         Ext Date         Run Date         Analy           Organic         BTEX         Brizzne         < 0.27         ug/l         0.28         1         GR095/8021         4/10/2013         C/R           Benzene         < 0.82         ug/l         0.82         2.6         1         GR095/8021         4/10/2013         C/R           Tolucene         < 0.82         ug/l         0.81         2.6         1         GR095/8021         4/10/2013         C/R           m&p-Xylene         < 1.6         ug/l         1.6         5.2         1         GR095/8021         4/10/2013         C/R           Sample Dat         EQUIP BLANK         Sample Matrix         Water         Sample Matrix         Water         Sample Matrix         Water         Sample Name         < 0.27         0.85         1         GR095/8021         4/10/2013         C/R           Benzene         < 0.27         ug/l         0.27         0.85         1         GR095/8021         4/10/2013         C/R           Benzene         < 0.27         ug/l         0.82         2.6         1         GR095/8021 </th <th>. 1 1 1 1</th>	. 1 1 1 1
Organic BTEX         Series of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	. 1 1 1 1
Organic BTEX         Second State	. 1 1 1 1
BTEX         Barazene         < 0.27         ug/l         0.27         0.85         I         GR095/8021         4/10/2013         C/R           Ehylbenzene         < 0.82	1 1 1
Ethylbenzare         < 0.82         ug/l         0.82         2.6         I         GRO95/8021         4/10/2013         CTR           Tolluene         < 0.8	1 1 1
Toluene         < 0.8         ug/l         0.8         2.6         1         GRO95/8021         4/10/2013         CJR           m&p-Xylene         < 1.6	1 1
m&p-Xylene         < 1.6         ug/l         1.6         5.2         1         GRO95/8021         4/10/2013         CIR           e-Xylene         < 0.81	I
o-Xylene         < 0.81         ug/l         0.81         2.6         1         GR095/8021         4/10/2013         CIR           Lab Code Sample ID         EQUIP BLANK         EQUIP BLANK         Sample Matrix         Water         Sample Matrix         Water         Sample Matrix         Water         Note the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	
Lab Code Sample ID         525001LL EQUIP BLANK           Sample Matrix         Water           Sample Date         4/5/2013           Result         Unit         LOD         LOD         Dit         Method         Ext Date         Run Date         Analy           Organic BTEX         Result         Unit         LOD         LOD         Dit         GR095/8021         4/10/2013         CIR           Benzene         < 0.82         ug/l         0.82         2.6         1         GR095/8021         4/10/2013         CIR           Benzene         < 0.82         ug/l         0.82         2.6         1         GR095/8021         4/10/2013         CIR           Toluene         < 0.88         ug/l         0.82         2.6         1         GR095/8021         4/10/2013         CIR           wdre         < 0.81         ug/l         0.8         2.6         1         GR095/8021         4/10/2013         CIR           wdre         < 0.81         ug/l         0.81         2.6         1         GR095/8021         4/10/2013         CIR           Sample Date         4/5/2013         ug/l         0.81         2.6         1         GR095/8021         4/10/2013	-
Sample ID Sample Matrix         EQUIP BLANK           Sample Matrix         Water           Sample Date         4/5/2013           Result         Unit         LOD         LOQ         Dil         Method         Ext Date         Run Date         Analy           Organic         BTEX         Sample Date               Additional (1000)         CIR           Benzene         < 0.27         ug/l         0.82         2.6         1         GR095/8021         4/10/2013         CIR           Ethylbenzene         < 0.82         ug/l         0.82         2.6         1         GR095/8021         4/10/2013         CIR           Toluene         < 0.8         ug/l         0.82         2.6         1         GR095/8021         4/10/2013         CIR           Add Code         S25001MM         sample Matrix         Water         sample Matrix         Water         sample Matrix         Water           Sample Date         4/5/2013         Unit         LOD         LOQ         Dil         Method         Ext Date         Run Date         Analy           Organic         Benzene         < 0.81         ug/l         0.82         2.6<	
Sample Matrix Sample Date         Water 4/5/2013           Result         Unit         LOP         Dit         Method         Ext Date         Run Date         Analy           Organic BTEX         Benzene         < 0.27         ug/l         0.27         0.85         1         GR095/8021         4/10/2013         C/R           Benzene         < 0.82	
Sample Date         4/5/2013           Result         Unit         LOD         LOQ         Dil         Method         Ext Date         Run Date         Analy           Organic         BTEX         Benzene         < 0.27	
Result         Unit         LOQ         Dit         Method         Ext Date         Run Date         Analy           Organic BTEX           Benzene         < 0.27	
Organic BTEX         Solution	
BTEX         Benzene       < 0.27	Code
Ethylbenzene       < 0.82	
Toluene       < 0.8	1
m&p-Xylene       < 1.6	1
o-Xylene       < 0.81       ug/l       0.81       2.6       1       GRO95/8021       4/10/2013       CJR.         Lab Code       525001MM       TB       TB       TB       Sample 1D       TB       Vater.       Sample Date       4/5/2013       Sample Date       4/5/2013       Sample Date       A/5/2013       Method       Ext Date       Run Date       Analy         Organic       Benzene       < 0.27	1
Sample ID       TB         Sample Matrix       Water         Sample Date       4/5/2013         r       Result       Unit       LOD       LOQ       Di       Method       Ext Date       Run Date       Analy         Organic       BTEX       Benzene       < 0.27       ug/l       0.27       0.85       1       GRO95/8021       4/10/2013       CJR         Ethylbenzene       < 0.82	1
Sample Matrix Sample Date         Water. 4/5/2013           Result         Unit         LOD         LOQ         Dil         Method         Ext Date         Run Date         Analy           Organic BTEX                                                                                                      <	
Sample Date         4/5/2013           Result         Unit         LOD         LOQ         Dil         Method         Ext Date         Run Date         Analy           Organic         BTEX                                                                                                      <	
Result         Unit         LOD         LOQ         Dil         Method         Ext Date         Run Date         Analy           Organic BTEX         Benzene         < 0.27	
Organic BTEX <th< th=""></th<>	
BTEX         Benzene       < 0.27	Code
Ethylbenzene         < 0.82         ug/l         0.82         2.6         1         GRO95/8021         4/10/2013         CJR           Toluene         < 0.8	
Toluene         < 0.8         ug/l         0.8         2.6         1         GR095/8021         4/10/2013         CJR           m&p-Xylene         < 1.6	1
m&p-Xylene         < 1.6         ug/l         1.6         5.2         1         GR095/8021         4/10/2013         CJR           o-Xylene         < 0.81	1
o-Xylene <0.81 ug/l 0.81 2.6 1 GR095/8021 4/10/2013 CJR Lab Code 525001NN Sample ID MW-7S-W	1 ` 1
Sample ID MW-7S-W	I
Sample Matrix Water	
Sam-1- D-4- 4/8/2012	
Sample Date 4/5/2013	<b>.</b>
Result Unit LOD LOQ Dil Method Ext Date Run Date Analy	Coue
Organic	
BTEX	
Benzene         < 0.27         ug/l         0.27         0.85         1         GR095/8021         4/11/2013         CJR           Ethylbenzene         < 0.82	1
Toluene <0.8 ug/l 0.8 2.6 1 GR095/8021 4/11/2013 CJR	1
m&p-Xylene <1.6 ug/l 1.6 5.2 l GR095/8021 4/11/2013 CJR	1
o-Xylene 1.56 "J" ug/l 0.81 2.6 I GRO95/8021 4/11/2013 CJR	1
PAH SIM	
Acenaphthene 291 ug/l 2.1 6.8 100 M8270D 4/10/2013 4/12/2013 MDK	
Acenaphthylene         2.45 "J"         ug/l         2         6.3         100         M8270D         4/10/2013         4/12/2013         MDK           Anthracene         183         ug/l         2         6.4         100         M8270D         4/10/2013         4/12/2013         MDK	1
Anthracene         183         ug/l         2         6.4         100         M8270D         4/10/2013         4/12/2013         MDK           Benzo(a)anthracene         < 2.5	1
Benzo(a)pyrene <1.8 ug/l 1.8 5.8 100 M8270D 4/10/2013 4/12/2013 MDK	1
Benzo(b)fluoranthene <2 ug/l 2 6.3 100 M8270D 4/10/2013 4/12/2013 MDK	1

.

WI DNR Lab Certification # 445037560

Page 21 of 23

Project Name 🔡 🛛 🗎	MOSS-AME	RICAN					Invo	ice # E250	01		·.
	13701										
Lab Code	525001NN							• .			
Sample ID	MW-7S-W										· .
Sample Matrix	Water										
Sample Date	4/5/2013										
Sample Date	4/3/2013	<b>.</b> .									
<b>D</b>		Result	Unit	-	LOQ		Method	Ext Date		-	
Benzo(g,h,i)peryler Benzo(k)fluoranthe		< 2.3	ug/ł	2.3				4/10/2013	4/12/2013	MDK	1
Chrysene	ne	< 2.7	ug/1	2.7		100		4/10/2013	4/12/2013	MDK	1
Dibenzo(a,h)anthra	сева	< 1.8 < 2.3	ug/l	1.8 2.3			M8270D M8270D	4/10/2013 4/10/2013	4/12/2013	MDK	1
Fluoranthene	conc	<i>ح</i> 2.5	ug/l · ug/l	2.5			M8270D M8270D	4/10/2013	4/12/2013 4/12/2013	MDK MDK	1 1
Fluorene		162	ug/l	2.0				4/10/2013	4/12/2013	MDK	1
Indeno(1,2,3-cd)py	rene	< 2.7	ug/l	2.7				4/10/2013	4/12/2013	MDK	1
1-Methyl naphthale	ene	136	ug/l	1.9		100		4/10/2013	4/12/2013	MDK	1
2-Methyl naphthale	ne .	15.2	ug/l	1.6	5.2	100	M8270D	4/10/2013	4/12/2013	MDK	1
Naphthalene		64	ug/l	2.3	(7.5	. 100	M8270D	4/10/2013	4/12/2013	MDK	1
Phenanthrene		177	ug/l	1.8		100	M8270D	4/10/2013	4/12/2013	MDK	1
Pyrene		7.5 "J"	ug/l	2.5	• 8	100	M8270D	4/10/2013	4/12/2013	MDK	1
Lab Code	52500100										
		,									
Sample ID	MW-34S-N										
Sample Matrix	Water										
Sample Date	4/5/2013										
		Result	Unit	LOD	LOQ	Dil	Method	Ext Date	<b>Run Date</b>	Analyst	Code
Oronnia											
OIZAIIIC											
							•		· · ·		
BTEX		< 0.27			0.85	1	GP 005/8021		4/11/2012	CIB.	
BTEX Benzene		< 0.27	ug/l	0.27	0.85	1	GRO95/8021		4/11/2013	CJR CJR	. 1
BTEX		< 0.82	ug/l	0.82	2.6	1	GRO95/8021		4/11/2013	СЛ	1
BTEX Benzene Ethylbenzene		< 0.82 < 0.8	ug/l ug/l	0.82 0.8	2.6 2.6	1 1	GRO95/8021 GRO95/8021		4/11/2013 4/11/2013	CJR CJR	1 1
BTEX Benzene Ethylbenzene Toluene		< 0.82	ug/l	0.82	2.6	1	GRO95/8021		<u>4/11/2013</u> 4/11/2013 4/11/2013	СЛ	1
BTEX Benzene Ethylbenzene Toluene m&p-Xylene		< 0.82 < 0.8 < 1.6	ug/l ug/l ug/l	0.82 0.8 1.6	2.6 2.6 5.2	1 1 1	GRO95/8021 GRO95/8021 GRO95/8021		4/11/2013 4/11/2013	CJR CJR CJR	1 1 1
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM		< 0.82 < 0.8 < 1.6 < 0.81	ug/l ug/l ug/l ug/l	0.82 0.8 1.6 0.81	2.6 2.6 5.2 2.6	1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021	4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR	1 1 1
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene		< 0.82 < 0.8 < 1.6 < 0.81	ug/l ug/l ug/l ug/l ug/l	0.82 0.8 1.6 0.81 0.021	2.6 2.6 5.2 2.6 0.068	1 1 1 1	GR095/8021 GR095/8021 GR095/8021 GR095/8021 M8270D	4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR MDK	1 1 1
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM		<0.82 <0.8 <1.6 <0.81 	ug/l ug/l ug/l ug/l ug/l ug/l	0.82 0.8 1.6 0.81 0.021 0.02	2.6 2.6 5.2 2.6 0.068 0.063	1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D	4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR MDK MDK	1 1 1 1
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene		< 0.82 < 0.8 < 1.6 < 0.81	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.82 0.8 1.6 0.81 0.021	2.6 2.6 5.2 2.6 0.068	1 1 1 1	GR095/8021 GR095/8021 GR095/8021 GR095/8021 M8270D	4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR MDK MDK MDK	1 1 1 1 1 1
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene		<0.82 <0.8 <1.6 <0.81 	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.82 0.8 1.6 0.81 0.021 0.02 0.02	2.6 2.6 5.2 2.6 0.068 0.063 0.064	1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D	4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR MDK MDK	1 1 1 1 1
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthe	ne	<0.82 <0.8 <1.6 <0.81 	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.82 0.8 1.6 0.81 0.021 0.02 0.02 0.025	2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078	1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CJR CJR CJR CJR MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1 1
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(g,h,i)perylen	ne	<0.82 <0.8 <1.6 <0.81	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.82 0.8 1.6 0.81 0.021 0.02 0.02 0.025 0.018	2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058	1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR MDK MDK MDK MDK MDK	1 1 1 1 1 1 1 1 1
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(g,h,i)perylen Benzo(k)fluoranthe	ne	<0.82 <0.8 <1.6 <0.81 	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.82 0.8 1.6 0.81 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087	1 1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK	1 1 1 <u>1</u> <u>1</u> <u>1</u> 1 1 1
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(k)fluoranthe Chrysene	ne ne	<0.82 <0.8 <1.6 <0.81 0.059 "J" <0.02 0.023 "J" <0.025 <0.018 <0.02 <0.023 <0.027 <0.018	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.02 0.023 0.023 0.027 0.018	2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058	1 1 1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK MDK	
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)apyrene Benzo(a)pyrene Benzo(a)huoranthe Benzo(a,h,i)perylen Benzo(a,h)anthracene	ne ne	<0.82 <0.8 <1.6 <0.81 0.059 "J" <0.02 0.023 "J" <0.025 <0.018 <0.02 <0.023 <0.027 <0.018 <0.023	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.82 0.8 1.6 0.81 0.02 0.025 0.025 0.018 0.02 0.023 0.023 0.027 0.018 0.023	2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072	1 1 1 1 1 1 1 1 1 1 1 1 1	GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(g,h,i)perylen Benzo(g,h,i)perylen Benzo(a,h)anthrac Fluoranthene	ne ne	<0.82 <0.8 <1.6 <0.81	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.82 0.8 1.6 0.81 0.02 0.025 0.025 0.018 0.02 0.023 0.027 0.018 0.023 0.023	2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(a,h)anthrac Fluoranthene Fluorene	ne ne cene	<0.82 <0.8 <1.6 <0.81 0.059 "J" <0.02 0.023 "J" <0.025 <0.018 <0.02 <0.023 <0.027 <0.018 <0.023 <0.027 <0.018 <0.023 <0.023	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.82 0.8 1.6 0.81 0.02 0.025 0.028 0.025 0.028 0.023 0.022 0.023 0.027 0.018 0.023 0.026 0.02	2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.058 0.075 0.087 0.058 0.072 0.084 0.063		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(a,h,i)perylen Benzo(a,h)anthrac Fluoranthene Fluoranthene Fluorant	ne ne cene rene	<0.82 <0.8 <1.6 <0.81	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.82 0.8 1.6 0.81 0.02 0.02 0.025 0.018 0.02 0.023 0.027 0.018 0.023 0.026 0.022	2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063 0.085		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(a)fluoranthe Benzo(a,h)anthracene Benzo(a,h)anthracene Benzo(a,h)anthracene Benzo(a,h)anthracene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyr I-Methyl naphthale	ne ne cene rene ne	<0.82 <0.8 <1.6 <0.81	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.82 0.8 1.6 0.2 0.02 0.025 0.028 0.025 0.028 0.022 0.023 0.027 0.018 0.023 0.026 0.022 0.027 0.019	2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063 0.085 0.061		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	
BTEX Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(a,h,i)perylen Benzo(a,h)anthrac Fluoranthene Fluoranthene Fluorant	ne ne cene rene ne	<0.82 <0.8 <1.6 <0.81	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.82 0.8 1.6 0.021 0.02 0.025 0.018 0.02 0.023 0.027 0.018 0.023 0.026 0.02 0.021 0.026 0.021	2.6 2.6 5.2 2.6 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063 0.085 0.061 0.052		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	
Benzene Ethylbenzene Toluene m&p-Xylene o-Xylene PAH SIM Acenaphthene Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthe Benzo(g,h,i)perylen Benzo(g,h,i)perylen Benzo(g,h,i)perylen Benzo(g,h,i)nthrac Chrysene Diberzo(a,h)anthrac Fluoranthene Fluorene Indeno(1,2,3-cd)pyr I-Methyl naphthale 2-Methyl naphthale	ne ne cene rene ne	<0.82 <0.8 <1.6 <0.81	ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1 ug/1	0.82 0.8 1.6 0.2 0.02 0.025 0.028 0.025 0.028 0.022 0.023 0.027 0.018 0.023 0.026 0.022 0.027 0.019	2.6 2.6 5.2 2.6 0.068 0.063 0.064 0.078 0.058 0.063 0.075 0.087 0.058 0.072 0.084 0.063 0.085 0.061		GRO95/8021 GRO95/8021 GRO95/8021 GRO95/8021 M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D M8270D	4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013 4/10/2013	4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013 4/11/2013	CIR CIR CIR CIR MDK MDK MDK MDK MDK MDK MDK MDK MDK MDK	

"J" Flag: Analyte detected between LOD and LOQ

WI DNR Lab Certification # 445037560

LOQ Limit of Quantitation

Invoice # E25001

Code	Comment
1	Laboratory QC within limits.
6	The surrogate recovery not within established limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

LOD Limit of Detection

Authorized Signature

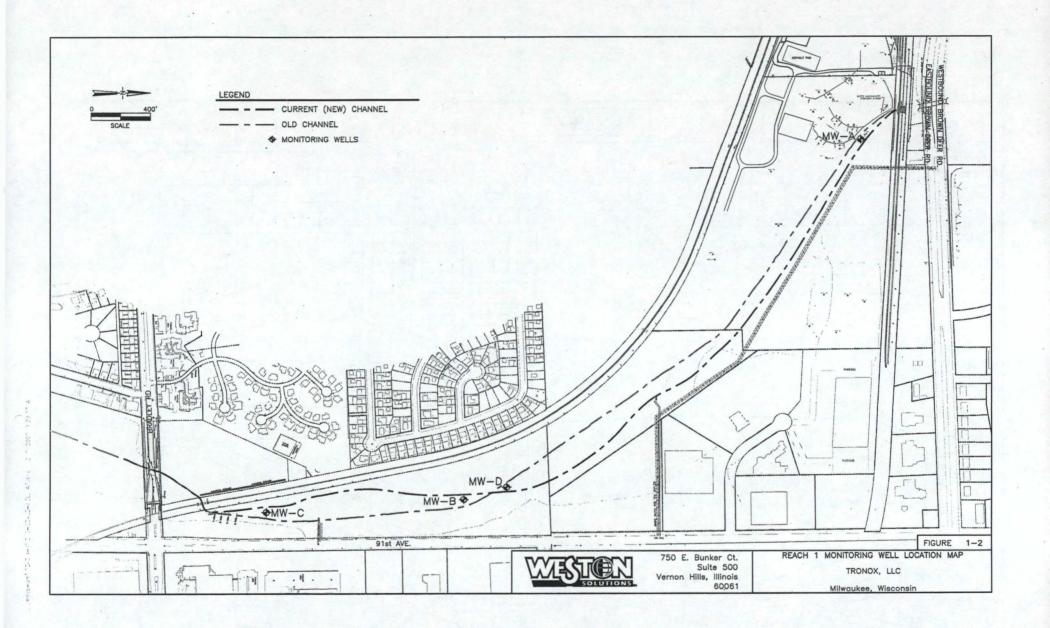
Michaelphil

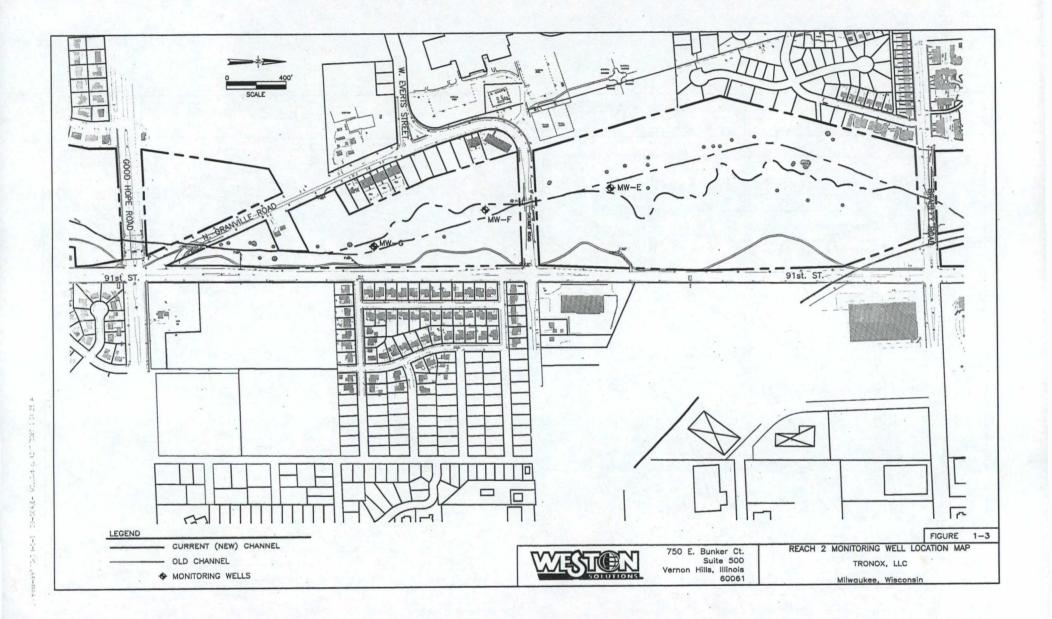
Account No. : Project #:		The second of the second second	The Property and the second second second second second second second second second second second second second				and a second second second second second second second second second second second second second second second	AND INCOMENTATION OF THE							Statement of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local			
Project #:								ental Lab, Inc.					Sample Handling Request Rush Analysis Date Required					
	3701	10	and and		1000	Bronnost			1014			(		s accept				
Sampler: (signatu	(e) OU	i hu los			92	0-830-245	Ct. • Appleton 5 • FAX 920-7	33-06	31					Xr	lormal	Turn A	round	
		loss-Ame	erica	'n	Milw	Aukee	E, WT		Anal	ysis	Requ	este	d		0	ther /	nalysis	s
	afizul	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	Invoice		Ma DA M	men America	MA CON R.	mi M.	0	-	* 200 X	T	T	X			T	
	na Enviror	North Contraction of the second second	Compa	nv	11. E	1990	1 11 64				161					T		
		anal Street	Contraction of			0/		15) 95)			ЦЦ					111		
			THE REAL PROPERTY.	and the second second	Non	41		Sep 9		ш	ALE		4.2)					
		WI53233	City Sta	ite Zip	1/	VC	7	ROS		TRIT	021 HTH		(09	2				
	643-412	and an interest with the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	Phone					d D P		IN /	PA 8		A 82					
AX 414	-643-42	In the second second second second	FAX			0	The second	(Mo		ATE		ATE	MUL I	E L		T		PIC
Lab I.D.	Sample I.D.	Collection Date Time Cor	mp Grab	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO (Mod DRO Sep 95) GRO ( Mod GRO Sep 95)	LEAD	NITRATE / NITRITE	PVOC (EPA 8021) PVOC (EPA 8021) PVOC + NAPHTHALENE	SULF	VOC (EPA 8260)	B. E				
5075001A	TG1-3	4/3/1310:12	1	N	4	GW	HCL				X			X				
B	TG2-1	4/3/13 10125	3	N,	4	GW	HCL	<u>89</u> 29		2				X				
	TG3-1	73/13 11:00		N	4	GW	HCL			5				X				
D	TG4-3	43/13 13:05	212	M	- 1	GW	HCL			X	ì					++		
2	TGS-1 TGS-3	43/3 12:5B 43/3 12:5D	ES GLOS	1	-T	GW	HCL				d t			X				
F	TG6-1	4/8/312:30		2	- T	GW	HCL				V-			Ŷ				
H	TG6-3	4/3/13 12:40		N	1	GW	HCL	1			X			X				
Ţ	TGI-T	4/3/1314:07		N	4	GW	HCL	and the		İ	1			X				
I	P2-07	4/4/0 10:45	California	N	4	GW	HCL				1	1.		X				
Comments/Spec		Specify groundwat	ter "GW", I	Drinking	Water "DW", V	Vaste Water	"WW", Soil "S	", Air "A	", Oil	. Slud	ge etc.	N. I					Salt S	
		ST WHEN C																
	and the second	a marken in			1	general a C	r . volgesou	ANT DA	214			1	energy	W. X. W	a autor p	and the	en dese Committela	-201-20
Sample Integri	y · To be comple	ated by receiving la	ab. Be	- Al	ed Aversian	§.	Time 1430	294	1,3	Rece	lived B	y: (s	ign )	nau yu Muutae	inter Called	Tin	ne (	Date
	Shipmont : De		-		1	)	17100	1/2/		0.0.0	No.H	L		1.085		r <u></u> eA		
Temp. of Te		"C On Ice:					THE DE LAND					See.		Charles .		-	-	1
Cooler seal intac	upon receipt	YesNo	-	a a ta ta ta a a d	in Laborator		Titum.	Rot					19	Consider	ing Maria	Det	9: 4-b-	

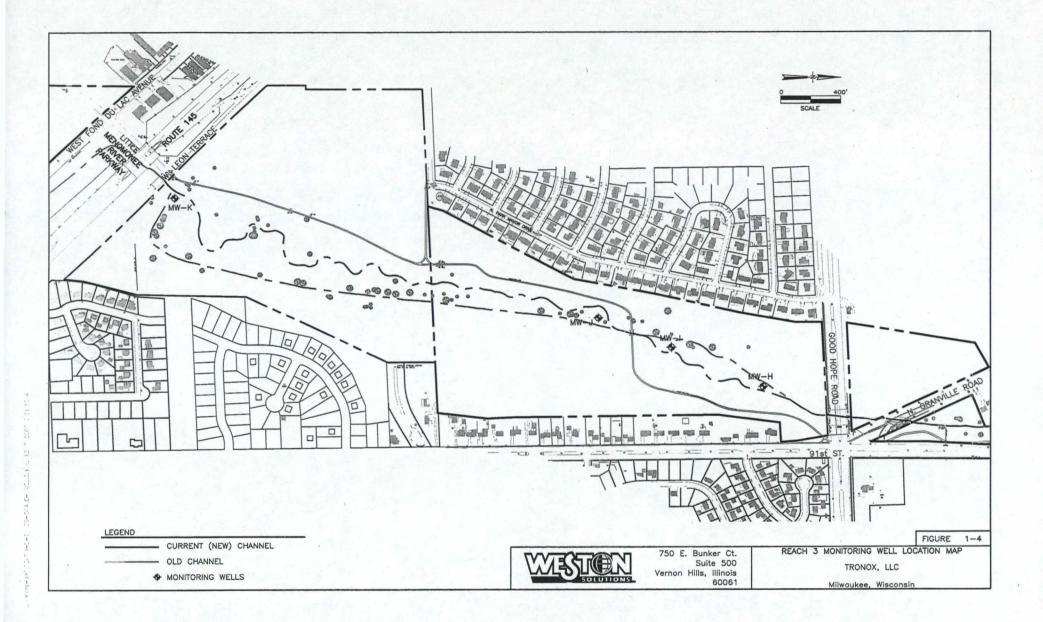
Lab I.D. #		1		-	nviro		ant al		-		-	-	Г				# <u>N</u> ⁰ 2_ of			
Account No. :		Quote No.:		Man	IIVITO		III CII	line (C		3	883	G				sh Anal				
Project #:	13701				1990	Prospect (	t. • Appleton	14/1	540	14				Rus	hes a	ccepted	only wit	h prior	authori	zation)
Sampler: (signatu	e) AU	Malox					• FAX 920-7									X Nor	rmal Tu	Irn Ard	bund	
Project (Name	Location): Mo:	ss-Americ	an	-	Milwan	kee, w	E		A	naly	sis l	Requ	este	be			Oth	er An	alysis	
Reports To:M	afizul I:	slam	Invoice	To:	Cap State	R. Carlo	in the		1			T		T			11			
	na Environi	and the state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the secon	Compa	ny	THE PARTY	C. Lakel 1	The BREAK													
	West Canal		Addres	-		e	7	2	98)			L	¥							
			-	1222	San	1	Contraction of the second	Sep 95)	dag .	1	ш	L	-	1.2)						1.
	lilwaukee, wi		City Sta	ate Zip	PI	0		0 S	08	-	TIL (O	21)	È	527	TS I		1			1
	643-412		Phone	4-5-1	/	(	2	DR	IGF		NIT 827	A 80	TE	EPA	METALS	<b></b>	- Hereiter			
FAX 414	-643-42	10	FAX		The state of the		The second	Nod	Mod		TE/	EP .	LT T	N (	AM	Ē				PID
Lab I.D.	Sample I.D.	Collection Date Time Co	mp Grab	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO (Mod DRO	GRO ( Mod GRO Sep 95)	LEAD	PAH (EPA 8270)	PVOC (EPA 8021)	SULFA	VOC DW (EPA 524.2)	8-RCRA					FIC
5025001k	MW-335	\$4/311:45		N	4	GW	Hel				X		1			X				
L	MW-32S	4/4/01135		N	4	GW	ACL				Y	6				X				
M		4/4/1311115		N	4	GW	HCL				X	4				X				1
N		4/4/011:25		N	4.	GW	HCL				X					X			1	
0	P2-03	4/4/13/11:05	-	N	4	GW	HCL				1		-			X				
P		4/4/310:55		N	4	GW	HCL	1		_	X		-	-	-	X				
Q	MW-345			N	4	GW	HCL				-		-	-	_					
R	and the second second second state of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	4/4/1312:11		N	1	GW	HCL			-	Ý		-		-	Ŷ				
	100 313	4/4/13	1 1 1	N	i l	GW	HCL		-		-5		-		-	x				
Comments/Spe	cial Instructions (*)		ater "GW",	Drinking	Water "DW", V			", Aiı	r "A",	, Oil,	Sludç	ge etc	.)							
Method of	ty - To be comple Shipment : Duc emp. Blank.	sham	lab.	Just	Hed By Ision	\$	Time /4130	41	ate	13	Rece	ived	By: (	sigr	1)			Time	) C	Date
A STATE AND A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A	emp. Blank t upon receipt:			leceived	in Laborator	v By:	- ND.						Fime					Date:		1 1

Lab I.D. #	TRACT GREAT						ner						Page	3_of	4.	7
Account No. :		Quote No.:	1		inviro	onme	ntal	La	b,	Inc	- 22	-			ng Requ	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se
Project #: 1	3701	1	10	e antica			1.06	-			BA	(Rusi	Rush An		A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPERTY OF A REAL PROPER	ired
Sampler: (signate		hulos			1990	0-830-2455	<ul> <li>FAX 920-7</li> </ul>	733-06	4914 31						um Arour	
	/Location):Mc	55-Ame	rica	1	Milwan	kee. W	L		Anal	ysis Re	aues	ted		Oth	ner Anal	vsis
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	lafizul ]		Invoice	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s							T	T				TT
			Compa		a same me		The second				1		-	min		n - min
	MAEnviro		1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	No.	Ne		95)			¥					
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	00 West (	the second second second second second second second second second second second second second second second s			10	N'A	- Alexandre	Sep 9 Sep 9		ш	TEN	1.2)	家市			
	Milwaukee			ate Zip	X	1	, horal	0 S O		TIH (0)	TE	524	STX .			
	4-643-4		Phone	Market .	57	00	HOM	(Mod DRO		827 827	APH APH	DW (EPA 524.2 (EPA 8260)				
FAX 41	4-643-1	1210	FAX		2-1-	S.W	. /	Mod		EPA		EPA (	WH	442		PIC
Lab I.D.	Sample I.D.	Collection Date Time Col	mp Grab	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO (Mod DRO Sep 95) GRO ( Mod GRO Sep 95)	<b>LEAD</b>	NITRATE / NITRITE PAH (EPA 8270)	PVOC (EFA 8021) PVOC + NAPHTHALENE	VOC DW (EPA E	B-RCF			FI
5025001T	MW-95	4/4/3 13:10		N	4	GW	HCL			X		- 1- 1-	X		and the second	
ч	PZ-10	4/4/3 13:30	1 -1	N	4	GW	HCL			X			X		H-H-	
V	MW-305	4/4/1314:00	COMPLE	N	4	GW	HCL			X			- X			
W	MW-55	4/4/13/4:05		N	4	GW	HCL			X			Č			
×	MW-A MW-B	4/4/13 15:05		1	4	GW	HCL			X			-			
Ŧ	MW-C	15/139:55		A	- J	GW	HCL	-		X			X			
25001 AA	MW-D	4/5/13 10140	1	N	1	GN	HCL			X			X			
BB	MW-E	4/5/311:06	S. S. Starting	N.	Ý	GW	HCL	18		X			X			
ec	MW-F	4/5/131132	go hised	N	4	GN	HCL			X		L	X			
Comments/Spe	cial Instructions (*	Specify groundwa	ter "GW",	Drinking	Water "DW", V	Waste Water	"WW", Soil "S			Sludge						
Method o	ity - To be comple	whom	ab. R	elineris	By: Asian	3	Time 14130	4/s/	13	Receive	ed By:	(sign	)	nin kur Helenser Storenser	Time	Date
A CARLES A CARLES	emp. Blank					A Z R W	100 g	10			1		1. S. S. S. S. S. S. S. S. S. S. S. S. S.		States of the	
Cooler seal Inta	ct upon receipt:	YosNo	-		in Laborator	and the second	- 1-7			-		e: 16			Date: 4	1

з


Quote No.: Quote No.: SIAM Mental ME 53233 S 10			Prospect Cl -830-2455	ntal t. • Appleton • FAX 920-7	, WI 549 733-0631 A	14	s Requ	ested	_ Rush Ana	Handling R Ilysis Date Rid d only with price ormal Turn Al Other A	equired or authorization round
slam mental val Street WI 53233 S	Invoice To: Company Address City State Zip	920-	-830-2455		733-0631 A			ested	shes accepted	d only with pric ormal Turn A	or authorization round
slam mental val Street WI 53233 S	Invoice To: Company Address City State Zip	920-	-830-2455		733-0631 A			ested		ormal Turn A	round
slam mental val Street WI 53233 S	Invoice To: Company Address City State Zip	lilwaukee Mar	e,WI	,		nalysi				Other A	nalysis
slam mental val Street WI 53233 S	Invoice To: Company Address City State Zip	son	we	,							
mental val Street WI 53233 S	Address City State Zip	son	ive	,	95)				1 1 1 1		
val street WI 53233 S	City State Zip	son	N	,	95)		1				
WI 53233 S	City State Zip	No	1	1			N.				
5		11			Sep (	E	()	24.2)			
	I FIIONE		-6	1	PRO BRO	ITRI	9021 911	A 52	XIS ALS		
	FAX	<u>iliden singen s</u>		<u> </u>	O po	N/=	A 82 PA		T HET	* Post	
Collection	P T	No. of	Sample		W) (W	ATE	C (EP	FATI	E E		F
Date Time Co	omp Grab Filtered Y/N	No. of Containers	Type	Preservation	DRO (Mod DRO Sep 95) GRO ( Mod GRO Sep 95) IROM	LEAD NITRATE / NITRITE	PAH (EPA 8270) PVOC (EPA 8021) PVOC - NAPHTU	SULFATE VOC DW (EPA 524.2)	8-HO		
1/5/3 11:581	N	4.	and an other designation in the low sectors where the	Hel			X		X		
4/5/13 12:20	N	4	GN	HCL			X		X	TTOP	
	N	4		HCL			X		X		
15/13:10	M	4		HCL			X		X		
1/4/13 -		2		ACC	1 S. E.	-		1	X		
	Stational Property and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	2		HCL					X		
15/13-	statements interestatements when all a statements	3		ACC				-			
	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		GW	HCL		_			X		
4/5/13 -	N,	2		HCL		1			X		
	N	2		HCL					X		
	15/3 11:58 15/3 12:20 15/3 12:20 15/3 12:46 15/3 13:10 4/4/3 - 4/4/3 - 4/4/3 - 4/5/3 - 4/5/3 - 4/5/3 -	15/3 11:5811 N 15/3 12:20 N 15/3 12:46 N 15/3 13:10 N 14/13 - N 14/13 - N 14/13 - N 14/13 - N 14/13 - N 14/13 - N 14/13 - N 15/13 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 - N 15/15 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


Lab I.D. #						7		-	ier		14. 7						F	age <u>5</u>	_of =	2		
Account No. :		Quot	te No.:	:		E	nviro	onme	ntal	La	b	, 1	n	C.	Г			ple Ha				
Project #: j	3701	-	7	d			1000	Prospect C	t. • Appleton	14/1	5401	1			1		es ac	Analysi cepted on	ly with	prior a	uthori	
Sampler: (signatu	re) On	-1	in	a					• FAX 920-7						L		7	Norm	al Tur	n Arou	ind	
Project (Name	/Location): M	055-	-Am	S	icar	7	Milu	sankee	,WI		An	alys	sis F	leque	ste	d			Othe	er Ana	lysis	
Reports To: M	afisulIs	lan	1	1	Invoice	То:									3							
Company S15	ma Enviro	nme	ntal	1	Compa	пу		I.														
Address (30	o West Can	al s	i+.	,	Addres	S .	101	MA	2	Sep 95)	ce d			(EPA 8021) + NAPHTHALENE		<u>N</u> .						
City State Zip	Milwankee	, WJ	E	(	City Sta	ate Zip	12	10		DRO (Mod DRO Sep G	000	LEAD	()	21) THAI		524.	S					
	1-643-41	25		I	Phone		k	/		DRO (Mod DRO		/ NIT	PAH (EPA 8270)	PVOC (EPA 8021) PVOC + NAPHTH		EPA 826	A ETA	1				
FAX 41	4-643-4	210	2		FAX			Comple	<u> </u>	(Moc		ATC	(EPA	C (EF	ATE	(EPA	AAA	1				PID/ FID
Lab I.D.	Sample I.D.	Date	Time	Comp	Grab	Filtered Y/N	No. of Containers	Sample Type (Matrix)*	Preservation	DRO	NORI	LEAD	PAH	PVO	SULFATE	VOC DW (EPA 524 VOC (EPA 8260)	8-RC					1.15
S2500) MW	MW-78-W MW-345-N	4/5/3	8:10			N	4	GW	HCL				X	1			X					
00	MW-345-N	45/3	8:0	5		N	4	GW	Hec		-	_	X				X			_		
											-	-	-						+			
																3			1			
					-						-	-	+		$\vdash$		-		-			
2																						
2							1.11				-	-	-			-	-					
Comments/Sne	ial Instructions (**	Specify	droupo	iwater	"GW"	Drinking	Water "DW" V	Naste Water	"WW" Soil "S	" Air	"A" (	Dil S	luda	e etc.)			-					
Continenciope			ground			e		6					and a									
							(															
	Section 2	-	-			1	7.	1996			1											
	ty - To be complet Shipment :	ed by	receivii	ng lab	R	olinguist	ned By: (algh	1)	14:30	4/5	te/c	R	ecei	ved B	iy: (s	sign )				Time		Date
	emp. Blank	-			-	1	0	,		-								1	-	1		
Cooler seal intac	t upon receipt: 🚞	Yes	^	No	R	eceived	in Laborator	y By:	TH	R.	-	_		Т	ime:	10				Date:	4-6	-13


#### APPENDIX C

#### FIGURES 1-2, 1-3 & 1-4

I:\Wisconsin Dept of Natural Resources\13701- Moss-America\Reports\Moss-American Report 2013.docx







Notification of Next Five-Year Review



UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604-3590

REPLY TO THE ATTENTION OF:

June 4, 2014

Thomas Wentland, State Project Manager Wisconsin Department of Natural Resources Southeast District Office/Plymouth Service Center 1155 Pilgrim Road Plymouth, WI 53073

Re: Moss-American Superfund Site – Notification of Five-Year Review Start

TOM Dear Mr. Wentland:

This letter is to notify you that the United States Environmental Protection Agency (EPA) is beginning the process of working on the next five-year review for the Moss-American Superfund Site in Milwaukee, Wisconsin. This review for Moss-American will be conducted according to the requirements of Section 121 of CERCLA, as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA). Its objective is to evaluate the remedy implemented at the site and determine if it remains protective of human health and the environment.

The five-year review report is due no later than late March 2015. We are providing you this notification so that EPA and WDNR can begin the necessary coordination activities. At the earliest convenience, I would like to discuss key action items with you, such as the site inspection, issuance of the required public notice, getting input from the public, and any other issues that are of concern to you.

I look forward working with you on this next five-year review for Moss-American. If you have any questions, you can reach me at (312) 886-6195.

Sincerely

Ross del Rosario Remedial Project Manager

Public Notice Ad



#### EPA Begins Review of Moss-American Superfund Site Milwaukee, Wisconsin

The U.S. Environmental Protection Agency is conducting a five-year review of the Moss-American Superfund site. The site comprises 88 acres of a former creosote facility at the intersection of Brown Deer and Granville roads and a portion of the Little Menomonee River, adjacent to the former facility. The Superfund law requires regular checkups of sites that have been cleaned up or where cleanup has been ongoing for at least five years – with waste managed on-site – to make sure the cleanup continues to protect people and the environment. This is the fourth five-year review of this site.

EPA cleaned up polycyclic aromatic hydrocarbon, or PAH, contamination in the site's soil and sediment. About six miles of the Little Menomonee River was also rerouted or dredged.

More information is available at the Mill Road Library, 6431 N. 76th St., Milwaukee, and at www.epa.gov/Region5/sites/mossamerican. The review should be completed by March 2015.

The five-year review is an opportunity for you to tell EPA about site conditions and any concerns you have. Contact:

Susan Pastor Community Involvement Coordinator 312-353-1325

pastor.susan@epa.gov

#### Ross Del Rosario

Remedial Project Manager 312-886-6195 delrosario.rosauro@epa.gov

You may also call EPA toll-frèe at 800-621-8431, 8:30 a.m. to 4:30 p.m., weekdays.

4419411-0

## Site Inspection Report

### Five-Year Review Site Inspection Checklist

I. SITE INF	ORMATION				
Site name: Moss American NPL Site	Date of inspection: 07/16/14				
Location and Region: Milwaukee, WI (R5)	EPA ID: WID039052626				
Agency, office, or company leading the five-year review: U.S. EPA – Region 5, assisted by WDNR	Weather/temperature: 67°F Sunny, wind speed approx. <5 mph				
Remedy Includes: (Check all that apply)  Landfill cover/containment X Access controls X Institutional controls X Groundwater pump and treatment (Funnel & Surface water collection and treatment X Other_Soil – Low-temp. thermal desorption		tion			
Attachments:	X Inspection team roster attached Site map attached				
II. INTERVIEWS	(Check all that apply)				
1. O&M site manager: Name: Tom Wentland, (WDN Interviewed Mr. Wentlant <u>at site</u> □ at office □ by p Problems, suggestions; X Report attached					
2. O&M staff: WDNR performing O & M – Not req	uired to be onsite				
Name Interviewed at site □ at office □ by phone Phone Problems, suggestions; □ Report attached	Title ne no. <u>(920)</u> 893-8528	Date			
	encies (i.e., State and Tribal offices, emergency r h or environmental health, zoning office, recorder ll in all that apply.				

		and the second	
-			
	III ON-SITE DOCUMENTS &	RECORDS VERIFIED (Check	all that apply)
	O&M Documents	Theorem Ventres (chook	
•	O&M manual	□ Readily available	Up to dat
	□ As-built drawings	□ Readily available	N/A Up to dat
	X Maintenance logs	□ Readily available	N/A Up to dat
	Remarks		N/A
2.	Site-Specific Health and Safety Plan	X Readily available	Up to dat
	Contingency plan/emergency response	e plan 🛛 Readily available	N/A Up to dat
	Remarks	and a contract of the second	N/A
	O&M and OSHA Training Records	□ Readily available	Up to dat
	Remarks		MA
	Permits and Service Agreements	Readily available	Up to dat
	Effluent discharge	□ Readily available	×N □ Up to dat
	□ Waste disposal, POTW	□ Readily available	□ Up to dat
	Other permits	🗆 Readily available	$\square$ Up to dat
	Remarks		xN
-	Gas Generation Records	eadily available	$\Box$ Up to date xN

Questions during Moss-American FYR site inspection:

- 1. Are there any changes in State or local laws you are aware of that may impact the protectiveness at the Moss-American site?
- 2. What is the state of groundwater quality, based on comparison of 2013 test results with the 2010 survey?
- 3. Describe field activities the State has performed since taking over the O & M responsibilities in 2012?
- 4. Are there any O & M activities (e.g., groundwater monitoring, security, mowing) that the State has not been able to perform? If there are any, please describe such activities and reasons why they haven't been performed?
- 5. Have there been incidents of trespassing/vandalism/etc. that you are aware of since the last five-year review in 2010?

#### **DelRosario**, Ross

Wentland, Thomas A - DNR < Thomas.Wentland@wisconsin.gov>
Tuesday, July 22, 2014 10:46 AM
DelRosario, Ross
2014 FYR Answers to Site Inspection Questions.
removed.txt

1. No.

- 2. Based on the results of a groundwater monitoring and site evaluation report completed in April of 2013, performed by the Sigma Group, contractor for the Wisconsin Department of Natural Resources, the site exhibits improvement in groundwater quality from the previous groundwater monitoring event completed in September 2010 performed by Weston Solutions, Inc. The noted improvements are summarized as follows:
  - a. Total PAH concentrations have decreased at all on-site sample locations since September 2010.
  - b. No indication of free-phase product was present at MW-7S where an oily-sheen was observer in September 2010.
  - c. The sheet-pile containment and in-situ treatment systems have effectively contained and remediated the majority of the groundwater impacts.
  - d. Based on one round of data from the newly installed wells located immediately outside the sheet-pile area no indication of groundwater plume migration outside the containment area is evident.
  - e. Groundwater quality data from monitoring well MW-33S and piezometer PZ-02 located near the northeast portion of the sheet-pile area show decreasing concentrations of total PAHs; the data also indicate no plum migration around the containment area.
- 3. The Wisconsin Department of Natural Resources contracted with the Sigma Group, to conduct groundwater monitoring and site evaluation in April of 2013.
- 4. No, we have not proposed any activities at the site since the 2013 sampling. Although there is nothing limiting our activity at the site.
- 5. Vandalism discovered June 2012. Control building was broken into and many items were damaged. See attached photos.

We are committed to service excellence. Visit our survey at <u>http://dnr.wi.gov/customersurvey</u> to evaluate how I did.

Thomas A. Wentland Waste Management Engineer Wisconsin Department of Natural Resources 1155 Pilgrim Road, Plymouth, WI 53073 Phone: 920-893-8528 Fax: 920-892-6638 thomas.wentland@wi.gov



	Remarks	<u> (</u>		_
6.	Settlement Monument Records Remarks	□ Readily ava	2	date xN/A
7.	Groundwater Monitoring Records	xReadily avai	N/A	 date □
	Remarks			Ξ
8.	Leachate Extraction Records Remarks	ALL STATES - Disc.	3	date xN/A
9.	Discharge Compliance Records	□ Readily ava		
	□ Water (effluent)	□ Readily ava	ailable 🛛 Up to c	xN/A date xN/A
	Remarks	Alter In 1994		
10.	Daily Access/Security Logs Remarks			date xN/A
	IV	. O&M COSTS		
1.	D PRP in-house	ontractor for State	* Started in 2011	~
2.		ce 0_(Est. from PRP)	Breakdown attached	
	Total annual cost by	year for review po		
	From To Date From To	Total cost	<ul> <li>□ Breakdown attached</li> <li>□ Breakdown attached</li> </ul>	
	Date Date	Total cost	_ □ Breakdown attached	
	Date Date From To	Total cost	□ Breakdown attached	
- 12	Date Date	Total cost		14356

	From To		🗆 Brea	kdown attached	in the
	Date	Date	Total cost		
			M Costs During Review Peri perating the gw system (abou		ble.
E			IONAL CONTROLS XAp		9
1		1.	eter of the former wood treating		-
	Fencing damaged	Location sh	nown on site map	XGate	
	Remarks Walk throug	h of the site did no	t reveal any major damage to	N/A the fencing around the si	te
			in go to		
01	her Access Restrictions	E an E all the		State Marine State	
	Signs and other secur Remarks_Gates/fencin		□ Location shown on site ood order.	map 🗆 N/A	
		Service State			
In	stitutional Controls (ICs	9			
	Implementation and of Site conditions imply I		nlamontad		
	Site conditions imply I	Cs not property in	plemented		
				Yes	No
				N/A	
	Site conditions imply I	Cs not being fully	enforced	1.1.1	
				Yes	No
				1 05	
				N/A	
	Type of monitoring (e., Frequency	g., self-reporting, c	lrive by)		
			ded evaluation on effectivenes	ss of deed restrictions put	in pla
	Contact _Keith Watson	n (Tronox)	Project Manager		
	Nam	e	Title		
				Date	Pho
				e no.	1 IIC
	Reporting is up to date				
	Reporting is up-to-date				
				Yes	

	Demosts are varified by the load accord	N/A	
	Reports are verified by the lead agency	Yes	
		N/A	
	Specific requirements in deed or decision documents have been met	□ Yes.	
	Violations have been reported	N/A	
		Yes	
	Other problems or suggestions:	N/A	_
2.	Adequacy       xICs are adequate       ICs are inadequate         Remarks       Deed restrictions placed by the county and the railroad are in effect.	N/A	
<b>D. Ge</b> 1.	neral           Vandalism/trespassing         □         Location shown on site map         XNo vandalism evident           Remarks		
2.	Land use changes on site  N/A Remarks		
3.	Land use changes off site  N/A Remarks		
3.			
	Remarks         VI. GENERAL SITE CONDITIONS		_
3. A. Ro 1.	Remarks       VI. GENERAL SITE CONDITIONS         ads       x Applicable       N/A         Roads damaged       I Location shown on site map	Road     adequat     N/A	e
<b>A. Ro</b> 1.	Remarks         VI. GENERAL SITE CONDITIONS         ads x Applicable       N/A         Roads damaged       Location shown on site map         Remarks_Roads in and out of the site were in good condition and traffic along it were generation.	adequat N/A	e
<b>A. Ro</b> 1.	Remarks       VI. GENERAL SITE CONDITIONS         ads       x Applicable       N/A         Roads damaged       I Location shown on site map	adequat N/A	e

	VII. LANI	<b>DFILL COVERS</b>	X N/A
A. I	andfill Surface		
1.	Settlement (Low spots) Areal extent Remarks	Depth	□ Settlement not evident
2.	Cracks Lengths Width Remarks	□ Location shown on site map s Depths	
3.	Erosion Areal extent Remarks	□ Location shown on site map Depth	
4.	Holes Areal extent Remarks	□ Location shown on site map Depth	☐ Holes not evident
5.	Vegetative Cover □ Gra □ Trees/Shrubs (indicate size and Remarks		olished 🗆 No signs of stress
5.	Alternative Cover (armored roo Remarks	ck, concrete, etc.)	□ N/A
7.	Bulges Areal extent Remarks	□ Location shown on site map Height	□ Bulges not evident
3.	Wet Areas/Water Damage Wet areas Ponding Seeps Soft subgrade Remarks	□ Wet areas/water damage not e □ Location shown on site map □ Location shown on site map □ Location shown on site map □ Location shown on site map	evident Areal extent Areal extent Areal extent Areal extent

C. P.	channel.)			
1.	Flows Bypass Bench	□ Location shown on si	te map okay	□ N/A or
	Remarks			
2.	Bench Breached	□ Location shown on site map	okay	□ N/A or
	Remarks			
3.	Bench Overtopped	□ Location shown on si	-	□ N/A or
	Remarks		okay	y 
C. L		ion control mats, riprap, grout bags, ill allow the runoff water collected b		
1.	Settlement Areal extent Remarks		□ No evidence of sett	lement
2.	Material type	□ Location shown on site map Areal extent	<u> </u>	radation
3.	Erosion Areal extent Remarks	□ Location shown on site map Depth	□ No evidence of ero	sion
4.	Undercutting Areal extent Remarks	□ Location shown on site map Depth	□ No evidence of und	lercutting
5.	Obstructions Type_ Location shown on si Size Remarks	te map Areal exter	□ No obstructions	
6.	Excessive Vegetative G D No evidence of exces Vegetation in channe Location shown on si Remarks	sive growth Is does not obstruct flow		

1.	Gas Vents	e	and the second second
	□ Properly secured/locked □ Functioning		Routinely sampled     Good
	□ Evidence of leakage at penetration □ N/A Remarks	□ Needs Maintenance	condition
2.	Gas Monitoring Probes □ Properly secured/locked □ Functioning		□ Routinely sampled □ Good condition
1	Evidence of leakage at penetration		□ Needs Maintenance □ N/A
	Remarks		
3.	Monitoring Wells (within surface area of landfill)		
5.	Properly secured/locked  Functioning		□ Routinely sampled □ Good condition
	□ Evidence of leakage at penetration		□ Needs Maintenance □ N/A
	Remarks		<u> </u>
4.	Leachate Extraction Wells		
4.	Properly secured/locked     Functioning		□ Routinely sampled □ Good condition
	□ Evidence of leakage at penetration		□ Needs Maintenance □ N/A
	Remarks		
5.	Settlement Monuments		□ Routinely surveyed □ N/A
	Remarks	and the second second	
E. Ga	as Collection and Treatment Applicable X N/A		
1.	Gas Treatment Facilities		and Bargardi
		Collection for reuse	
	Good condition Needs Maintenance Remarks		
2.	Gas Collection Wells, Manifolds and Piping Good condition I Needs Maintenance Remarks		
3.	Gas Monitoring Facilities (e.g., gas monitoring of adja ☐ Good condition ☐ Needs Maintenance ☐ Remarks	acent homes or buildings ] N/A	)

F. C	over Drainage Layer		X N/A
1.	Outlet Pipes Inspected Remarks	□ Functioning	X N/A
2.	Outlet Rock Inspected Remarks	□ Functioning	X N/A
G. D	etention/Sedimentation Por	nds 🛛 Applicable	X N/A
1.	Siltation Areal extent Siltation not evident Remarks	Depth	□ N/A
2.	Erosion not evident	xtent Depth	
3.	Outlet Works Remarks	□ Functioning □ N/A	-
4.	Dam Remarks	□ Functioning □ N/A	
H. R	etaining Walls	□ Applicable X N/A	Constant Street Street Street
1.	Deformations Horizontal displacement_ Rotational displacement_ Remarks_	□ Location shown on site map Vertical displac	cement
2.	Degradation Remarks	□ Location shown on site map	Degradation not evident
I. Pe	rimeter Ditches/Off-Site Di	scharge	□ N/A
1.	Siltation □ Loca Areal extent Remarks	tion shown on site map □ Siltation Depth	n not evident
2.	Vegetative Growth       □ Location shown on site map       □ N/A         □ Vegetation does not impede flow         Areal extent       Type         Remarks		
3.	Erosion Areal extent	□ Location shown on site map Depth	Erosion not evident

	Remarks
•	Discharge Structure Functioning N/A Remarks
	VIII. VERTICAL BARRIER WALLS
	Settlement     □ Location shown on site map     □ Settlement not evident       Areal extent      Depth       Remarks
<b>.</b>	Performance Monitoring Type of monitoring Performance not monitored Frequency Evidence of breaching Head differential Remarks
	□ Applicablė □ N/A
•	Pumps, Wellhead Plumbing, and Electrical
	Pumps, Wellhead Plumbing, and Electrical         □ Good condition       □ All required wells properly operating □ Needs Maintenance X N/A
2.	Pumps, Wellhead Plumbing, and Electrical         Good condition       All required wells properly operating         Remarks:       Facility does not use extraction wells. Instead, it uses a "funnel and gate" system.         Extraction System Pipelines, Valves, Valve Boxes, and Other Appurtenances         Good condition       Needs Maintenance
1. 2. 3.	Pumps, Wellhead Plumbing, and Electrical         Good condition       All required wells properly operating Deeds Maintenance X N/A         Remarks: Facility does not use extraction wells. Instead, it uses a "funnel and gate" system.         Extraction System Pipelines, Valves, Valve Boxes, and Other Appurtenances         Good condition       Needs Maintenance         Remarks:         Spare Parts and Equipment         Readily available       Good condition

2.	Surface Water Collection System Pipelines, Valves, Valve Boxes, and Other Appurtenances  Good condition Needs Maintenance Remarks
3.	Spare Parts and Equipment Readily available Good condition Requires upgrade Needs to be provided Remarks
C.	Treatment System
1.	Treatment Train (Check components that apply)         Metals removal       Oil/water separation         Air stripping       Carbon adsorbers         Filters
	<ul> <li>Additive (e.g., chelation agent, flocculent)</li> <li>XOthersAir Sparging using a funnel and gate to bring contaminated gw to treatment zone</li> <li>Good condition Needs Maintenance</li> <li>Sampling ports properly marked and functional</li> <li>Sampling/maintenance log displayed and up to date</li> <li>XEquipment properly identified</li> <li>Quantity of groundwater treated annually</li> <li>Quantity of surface water treated annually</li> <li>Remarks</li> </ul>
2.	Electrical Enclosures and Panels (properly rated and functional)         N/A       Good condition         Remarks       Functioning as intended
3.	Tanks, Vaults, Storage Vessels         Image: N/A       Image: Good condition         Image: Remarks_Holding tank inside gw treatment building not being used
4.	Discharge Structure and Appurtenances          Image: N/A       Image: Good condition       Image: Needs Maintenance         Remarks       Image: Needs Maintenance
5.	Treatment Building(s)         N/A       X Good condition (esp. roof and doorways)         Chemicals and equipment properly stored         Remarks
6.	Monitoring Wells (pump and treatment remedy)         Properly secured/locked       X Functioning         X Good
	□ All required wells located □ Needs Maintenance □ N/A Remarks

D. N	Ionitoring Data			
1.	Monitoring Data       X Is routinely submitted on time     Is of acceptable quality			
2.	Monitoring data suggests: X Groundwater plume is effectively contained declining			
D. N	Aonitored Natural Attenuation			
1.	Monitoring Wells (natural attenuation remedy)  Properly secured/locked □ Functioning □ Routinely sampled Good condition			
	□ All required wells located □ Needs Maintenance X N/A Remarks			
	X. OTHER REMEDIES			
	If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.			
	XI. OVERALL OBSERVATIONS			
A.	Implementation of the Remedy			
	Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).			
B.	Adequacy of O&M			
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.			
C.	Early Indicators of Potential Remedy Problems			
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs, that suggest that the protectiveness of the remedy may be compromised in the future.			
D.	Opportunities for Optimization			
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.			

### Follow-up to Site Inspection



UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604-3590

REPLY TO THE ATTENTION OF

July 17, 2014

Thomas Wentland, State Project Manager Wisconsin Department of Natural Resources Southeast District Office/Plymouth Service Center 1155 Pilgrim Road Plymouth, WI 53073

Re: Moss-American Superfund Site Five-Year Review Inspection/Interview Followup

Dear Mr. Wentland:

It was a pleasure meeting with you at the site yesterday, as part of a site inspection and interview for the upcoming five-year review. As a follow-up to the site visit, EPA would like to summarize key points we discussed during the visit:

- 1. The site needs to be mowed, particularly in the areas where the monitoring wells are located. You agreed that WDNR will perform this task, which is part of O & M responsibilities which the State is required to perform, prior to the end of summer. You indicated that an existing State contract for mowing services can used for Moss-American and the expense is below the threshold requiring additional approval/authorization. We also agreed that, if necessary, EPA may be able to provide funding assistance via the existing cooperative agreement, if WDNR requests it. Per our discussion, we would like the mowing completed prior to September 30, 2014;
- 2. Based on our conversation yesterday, you will modify your initial responses to the list of questions we provided you in advance of the site visit. You indicated that this will require minimal effort and should be completed quickly. EPA requests that the modified responses to our questions be submitted to us no later than July 25, 2014;
- 3. We verified that the river crossing located on the eastern side of the site has been removed. This was performed as part of the additional removal activities performed by EPA's contractor in the summer and fall of 2011.

EPA appreciates your assistance in conducting this five-year review inspection on Moss-American. If you have any additional suggestions/thoughts on what we discussed during the visit, please feel free to contact me at your convenience. I can be reached at (312) 886-6195.

Sincerely, Migant

Ross del Rosario Remedial Project Manager

State Responses to Interview Questions

#### **DelRosario**, Ross

From:Wentland, Thomas A - DNR < Thomas.Wentland@wisconsin.gov>Sent:Tuesday, July 22, 2014 10:46 AMTo:DelRosario, RossSubject:2014 FYR Answers to Site Inspection Questions.Attachments:removed.txt

1. No.

2. Based on the results of a groundwater monitoring and site evaluation report completed in April of 2013, performed by the Sigma Group, contractor for the Wisconsin Department of Natural Resources, the site exhibits improvement in groundwater quality from the previous groundwater monitoring event completed in September 2010 performed by Weston Solutions, Inc. The noted improvements are summarized as follows:

a. Total PAH concentrations have decreased at all on-site sample locations since September 2010.

b. No indication of free-phase product was present at MW-7S where an oily-sheen was observer in September 2010.

c. The sheet-pile containment and in-situ treatment systems have effectively contained and remediated the majority of the groundwater impacts.

d. Based on one round of data from the newly installed wells located immediately outside the sheet-pile area no indication of groundwater plume migration outside the containment area is evident.

- e. Groundwater quality data from monitoring well MW-33S and piezometer PZ-02 located near the northeast portion of the sheet-pile area show decreasing concentrations of total PAHs; the data also indicate no plum migration around the containment area.
- 3. The Wisconsin Department of Natural Resources contracted with the Sigma Group, to conduct groundwater monitoring and site evaluation in April of 2013.
- 4. No, we have not proposed any activities at the site since the 2013 sampling. Although there is nothing limiting our activity at the site.
- 5. Vandalism discovered June 2012. Control building was broken into and many items were damaged. See attached photos.

1

We are committed to service excellence. Visit our survey at <u>http://dnr.wi.gov/customersurvey</u> to evaluate how I did.

Thomas A. Wentland Waste Management Engineer Wisconsin Department of Natural Resources 1155 Pilgrim Road, Plymouth, WI 53073 Phone: 920-893-8528 Fax: 920-892-6638 thomas.wentland@wi.gov Questions during Moss-American FYR site inspection:

- 1. Are there any changes in State or local laws you are aware of that may impact the protectiveness at the Moss-American site?
- 2. What is the state of groundwater quality, based on comparison of 2013 test results with the 2010 survey?
- 3. Describe field activities the State has performed since taking over the O & M responsibilities in 2012?
- 4. Are there any O & M activities (e.g., groundwater monitoring, security, mowing) that the State has not been able to perform? If there are any, please describe such activities and reasons why they haven't been performed?
- 5. Have there been incidents of trespassing/vandalism/etc. that you are aware of since the last five-year review in 2010?

## Moss-American Superfund Site 4th Five-Year Review Report

## Site Photos June 2014

#### **View of Groundwater Treatment Building**



#### **Inside Groundwater Treatment Building**



View of monitoring well in treatment area



View of Little Menomonee River near western edge of site



View of monitoring well network



View of river downstream from gw treatment building



View of site looking to the west



Monitoring well near groundwater treatment building



View of river near demolished river crossing



View of site to the north

