

(

(

(

(

€ ,

(

(

. . .

POST OFFICE BOX 12291 RESEARCH TRIANGLE PARK NORTH CAROLINA 27709-2291 919-781-3550

STATIONARY SOURCE SAMPLING REPORT EEI REF. NO. 5448

> GENERAL REFINERY PLANT GARDEN CITY, GEORGIA

BENZENE, MERCURY, TOLUENE, TRIETHYLAMINE, AND XYLENE EMISSIONS TESTING

CONDENSER EXHAUST AND OIL POLISHER OUTLET

Performed For: RESOURCES CONSERVATION CO.

FEBRUARY 26-28, 1987

RECEIVED

FEB 1 5 1988

COC LOSS LTAL COLLES ITAL

REPORT CERTIFICATION

The sampling and analysis performed for this report was carried out under my direction and supervision.

Date March 31, 1987

Ċ

ſ

(

ſ

(

 \mathbf{C}

(

٤

Signature

B. Dwain Ritchie

I have reviewed all testing details and results in this test report and hereby certify that the test report is authentic and accurate.

ENTROPY

Date March 31, 1987

Signature

Walter S. Smith, P.E.

TABLE OF CONTENTS

		PAGE
INTRODUCT	ION	
1.1	Background	1-1
1.2	Process Test Locations	1-1
1.2.1	Condenser Exhaust	1-1
1.2.2	Oil Polisher Outlet	1-1
1.3	Test Participants	1-1
UMMARY O	F RESULTS	2-1
AMPLING	AND ANALYTICAL PROCEDURES	
3.1	Sampling Equipment	3-1
3.2	Volumetric Gas Flow Rates	3-1
3.2.1	Condenser Exhaust	3-1
3.2.2	Oil Polisher Outlet	3-1
3.3	Sample Acquisition	3-2
3.3.1	Condenser Exhaust	3-2
3.3.2	Oil Polisher Outlet	3-3
3.4	Sample Recovery	3-4
3.5	Sample Analysis	3-4
APPENDICE	S	
Α.	Test Results	
	1. Condenser Exhaust	
	2. Oil Polisher Outlet	

B. Field Data

t

(

(

C

(

۲**.**

C

(

C

C

1. Condenser Exhaust

2. Oil Polisher Outlet

C. Analytical Data

D. Calibration Data

E. Sampling and Analytical Procedures

INTRODUCTION

ľ

ſ

(

(

1.1 Background. Resources Conservation Co. was contracted by the United States Environmental Protection Agency to conduct cleanup operations at the defunct General Refinery Plant in Garden City, Georgia. Cleanup operations include the treatment and removal of industrial waste abandoned on the plant site.

To prepare a sludge waste product for removal from the site, the oil, moisture, and solids components are separated using a series of solvent, heating, and condensing processes. Resource Conservation Co. employed Entropy Inc. to measure emissions of benzene, mercury, toluene, triethylamine, and xylene at two of the process exhausts.

1.2 Process Test Locations

1.2.1 Condenser Exhaust. The combined effluent from several condensers was diverted from the normal exhaust path through a tee extension, as shown in Figure 1-1. The test equipment installed in the tee extension allowed the concurrent measurement of velocity and collection of emission samples. During each of four tests, three different pollutant-specific sampling trains were operated sequentially. Testing at the condenser exhaust was conducted on February 26, 27, and 28, 1987.

1.2.2 Oil Polisher Outlet. The oil polisher effluent, primarily steam, was sampled on February 27, 1987, during one test which was made possible by a process alteration arranged by Resource Conservation Co. Equipment inserted in the outlet pipe through two access ports allowed the concurrent collection of samples and measurement of velocity. The sampling arrangement is depicted in Figure 1-2.

1.3 Test Participants. Table 1-1 lists the personnel present during the test program.

1-1

l

ſ

C

ſ

ſ

 \mathbf{C}

(

ENTROPY

1-2

TABLE 1-1 TEST PARTICIPANTS

Resources Conservation Co.

Test Coordinators

Mark Tose R. Reams Goodloe, Jr.

Project Supervisor

B. Dwain Ritchie

Sampling Team Leaders

Anthony L. Mastrianni Brent W. Hall Robert W. Metz

Entropy Inc.

•

(

(

(

(

(

(

(

SUMMARY OF RESULTS

C

 \mathcal{L}

C

Ł

(

C

(

t

Table 2-1 summarizes the results of emission measurements performed at the condenser exhaust and the oil polisher outlet on February 27, 1987. Detailed test results are tabulated in Appendix A; field and analytical data are provided in Appendix B.

TABLE 2-1 SUMMARY OF EMISSIONS

			Run		
	1	2			Average
Condenser Exhaust					
Concentration, p	ppmvd				
Benzene	321	321	339	311	323
Mercury	< 0.00496	< 0.00496	< 0.00496	< 0.00496	< 0.00496
Toluene	164	144	145	132	146
Triethylamine	22,560	13.235	29.928	29,003	23,682
Xylene	200	182	191	161	184
Emission Rate, 1	Lb/Hr				
Benzene	0.00127	0.00127	0.000926	0.00108	0.00114
Mercury	< 0.00000052	< 0.00000041	< 0.000000042	< 0.00000037	< 0.00000043
Toluene	0.000769	0.000676	0.000469	0.000540	0.000614
Triethylamine	0.0985	0.0492	0.131	0.103	0.0954
Xylene	0.00108	0.000983	0.000710	0.000763	0.000884

Oil Polisher Outlet

Concentration, p	pmvd
Benzene	39.3
Mercury	< 0.0677
Toluene	1,502
Triethylamine	20,130
Xylene	8,271
Emission Rate, L	b/Hr
Benzene	0.000473
Mercury	< 0.00000210
Toluene	0.0214
Triethylamine	0.314
Xylene	0.135

2-1

SAMPLING AND ANALYTICAL PROCEDURES

(

1

C

٤

ŗ

(

(

ł

3.1 Sampling Equipment. The arrangements of sampling equipment at the condenser exhaust and the oil polisher outlet were shown in Figures 1-1 and 1-2. All equipment was manufactured by Nutech Corp. or Entropy Inc. Pertinent calibration data are presented in Appendix D.

3.2 Volumetric Gas Flow Rates.

3.2.1 Condenser Exhaust. As illustrated in Figure 1-1, gas flow rate was measured using a calibrated orifice; orifice pressure drop readings were recorded at two-minute intervals throughout each test run. The molecular weight of the sample gas was calculated using the molecular weights and concentrations of the significant constituents of the gas (ambient air and triethylamine). The gas moisture content was calculated assuming saturation. The volumetric gas flow rate was determined using these values in the following equation:

Equation 1
$$Q = Km$$
 $V_{abs}^{T_{abs}} * delta p$
 $P_{abs}^{T_{abs}} * Mol. Wt.$

Where:	Q	= flow rate, cfm
	ĸ	= orifice calibration coefficient
	T abs	= absolute temperature, ^O R
	Pabs	= absolute pressure, inches Hg
	delta p Mol. Wt.	= orifice pressure drop, inches H ₂ O = molecular weight of gas, lb/lb mole, wet

3.2.2 Oil Polisher Outlet. Gas flow rate was measured by taking readings at one-minute intervals throughout the single test run using an S-type pitot tube inserted into the oil polisher outlet duct through a drilled port 12 inches downstream of the sampling port (see Figure 1-2). The molecular weight of the sample gas was that of ambient air. The gas moisture content was calculated assuming saturation. The following equations were used to calculate the volumetric gas flow rate:

3-1

avg. delta p * T vs = 85.49 * Cp * Equation 2 P * Mol. Wt. Where: = average velocity, fps VS 85.49 = pitot calibration coefficient avg. delta p = differential pressure, inches H₂0 T_{-b} = absolute temperature, R Tabs = absolute temperature, Pabs = absolute pressure, inches Hg Mol. Wt. = molecular weight of gas, lb/lb mole, wet $Qsd = \frac{60}{144}$ Mfd * vs * A * $\frac{528}{15}$ Ps Ts 29.92 Equation 3 Where: Qsd = dry volumetric flow rate at standard conditions, cfm

60)/144 =	seconds per minute/cubic inches per cubic foot
Mf	'd =	dry mole fraction of the flue gas
vs	; =	average gas velocity, fps
Α	=	duct cross sectional area, square feet
52	- 8	standard absolute temperature, ^O R
29	.92 =	standard absolute pressure, inches Hg

3.3 Sample Acquisition.

Č

(

(

1

(

3.3.1 Condenser Exhaust. The condenser exhaust gas was sampled using the arrangement shown in Figure 1-1. The sample gas was diverted from the normal exhaust path by closing the exhaust valve and opening the ball valve in the tee extension in which the sample line was installed. Extracted by the negative pressure of an evacuated cylinder, the sample gas flowed through three adsorption tubes in series, a rotameter, a sonic orifice, a vacuum gauge, and into the cylinder.

Three pollutant-specific sampling trains were operated sequentially to collect the samples. Although duplicate samples (sample lines A and B) were taken during the operation of each train, only the samples from line A were analyzed; the duplicates were retained as backups. Table 3-1 summarizes the arrangements of the various adsorbent media for each sampling train (also documented on field data records, Appendix B) and states the capture objectives of each medium.

3-2

DENSER	EXHAUST	ADSORBENI	SAMPLING MEDIA	AND CAPTURE OBJECTIVES
		S	Sample Collection	Capture Objective
Train	n A			toluene, benzene, xylene
F	Position	1	charcoal	· · · ·
I	Position	2	charcoal	
I	Position	3	charcoal	
Trair	n B			triethylamine
I	Position	1	silica gel	-
I	Position	2	silica gel	
F	Position	3	silica gel	
Train	n C			mercury
I	Position	1 sil	vered Chromosorb	P
I	Position	2 sil	vered Chromosorb	Р
I	Position	3	silica gel	

3.3.2 Oil Polisher Outlet. The oil polisher outlet gas was sampled by the insertion of a sampling probe into the test port, as shown in Figure 1-2. Extracted by the negative pressure of an evacuated cylinder, the sample gas passed through a Mae West impinger charged with 15 mL of 0.5N nitric acid and a dry impinger (both submerged in ice), two adsorption tubes charged with activated charcoal, a sonic orifice, and into the cylinder. Table 3-2 identifies the capture objectives for each of the sampling train components and capture media.

TABLE 3-2

OIL POLISHER OUTLET SAMPLING TRAIN COMPONENTS AND CAPTURE OBJECTIVES

Train Component	Sample Collection <u>Medium</u>	Capture Objective
Mae West impinger	0.5N Nitric Acid Reagent	benzene toluene xylene triethylamine gaseous mercury
adsorbent tubes	charcoal	benzene toluene xylene

TABLE 3-1

(

Ć

(

(

(

(

CONI

3.4 Sample Recovery. The samples were transferred from the test site to the laboratory on ice in a cooler. The adsorbent tubes were transferred to a freezer for storage. The impinger reagent from the oil polisher outlet (OP) test was stored in a refrigerator after recovery. The reagent from the OP sample was bilayered with 47 mL in the aqueous layer and 3 mL in the organic phase. Blue ice packs were used to keep the samples cool during shipment to Oxford Laboratories. After receipt at Oxford Laboratories, the samples were stored in a freezer or refrigerator until analysis. Chain-of-custody records for the transfer of the samples to Oxford Laboratories are presented in Appendix C.

C

(

(

(

(

 $\langle f \rangle$

(

3.5 Sample Analysis. The silica gel adsorbent tubes and the aqueous portion of the OP reagent were analyzed for triethylamine according to the protocol in NIOSH Method 221. The silvered Chomosorb P tubes were desorbed with acid and analyzed for mercury by cold vapor atomic absorption. The aqueous portion of the OP reagent was also analyzed by cold vapor atomic absorption for mercury. Charcoal adsorbent tubes were analyzed for benzene, toluene, and xylenes by the protocol of NIOSH Method 1501. An aliquot of the OP reagent organic phase was diluted in methanol. A 50 uL aliquot of the methanol sample was placed in distilled water and analyzed by purge trap GC/PID. For all the adsorbent train analyses, the second "b" tube was analyzed separately from the primary "a" tube. The analytes were not detected on any of the "b" tubes, thus demonstrating that the pollutants were effectively captured on the "a" tubes.

3-4

APPENDIX A.1

ŗ

(

(

(

(

 \mathcal{C}

(

(

C

C

í,

A. TEST RESULTS

1. Condenser Exhaust

GAS FLOW RATE TABULATIONS

(

(

(

(

(

Ċ

(

(

(

(

Water %	: 1.1		Mfd =	0.989				
	Orifico	Gas	Baro.	Static	Molecula	r Weight	- Air	Flows
. .	Drifice	i emb		F(295.	10/10		HUFT	JUPH
Sample	Delta P	F	in. Hg	in. H20	Dry	Wet	Wet	Dry
CE-1A	0.307	50	30.4	-4.2	30.50	30.36	0.317	0.327
CE-1B	0.220	50	30.4	-4.0			0.268	0.277
CE-1C	0.330	50	30.4	-4.3			0.329	0.339
CE-2A	0.301	50	30.4	-4.1	29.78	29.65	0.318	0.327
CE-2B	0.157	50	30.4	-4.3			0.230	0.236
CE-2C	0.196	50	30.4	-4.2			0.257	0.264
CE-3A	0.148	50	30.4	-3.0	31.01	30.87	0.218	0.225
CE-3B	0.226	50	30.4	-5.0			0.270	0.278
CE-3C	0.211	50	30.4	-4.4			0.261	0.269
CE-4A	0.237	46	30.4	-4.2	30.94	30.80	0.276	0.286
CE-4B	0.147	48	30.4	-4.5			0.218	0.225
CE-4C	0.164	46	30.4	-4.6			0.229	0.238

FIELD DATA & RESULTS TABULATION General Refinery Plant Garden City, Georgia

Run	!	Sampling Location		Operator
CE-1Aa		Condenser	Ellaust	B. Dwain Ritchie
CE-2Aa		Condenser	Exhaust	Brent W. Hall
CE-3Aa		Condenser	Exhaust	Brent W. Hall
CE-4Aa		Condenser	Exhaust	Brent W. Hall

		CE-IAA	CE-ZAA	CE-JAA	CE-4Aa
	Run Date	2/26/87	2/26/87	2/27/87	2/28/87
	Run Start Time	1614	2233	315	1115
	Run Finish Time	1644	2303	345	1145
Theta	Net Run Time, Minutes	30	30	30	30
Qsd	Flue Gas Flow Rate, Dry SCFM*	0.327	0.327	0.225	0.286
Vc	Avg. Calibration Vol., Milliliters	39	39	39	39
Y	Calibration Meter Factor, Gamma	1.034	1.034	1.034	1.034
Vsc	Volume Of Gas Sampled, DSL*	1.21	1.21	1.21	1.21
	Benzene				
ForWt	Formula Weight, Lb/Lb-Mole	78.0	78.0	78.00	78.00
mg	Catch, Milligrams	1.26	1.26	1.33	1.22
ppmvd	Concentration, ppmv. Dry	321	321	339	311
Lb/Hr	Emission Rate, Lb/Hour	0.00127	0.00127	0.000926	0.00108
	Toluene				
	Formula Weight, Lb/Lb-Mole	92.13	92.13	92.13	92.13
	Catch, Milligrams	0.76	0.668	0.673	0.610
	Concentration, ppmv, Dry	164	144	145	132
	Emission Rate, Lb/Hour	0.000769	0.000676	0.000469	0.000540
	Xylene				
	Formula Weight, Lb/Lb-Mole	106.16	106.16	106.16	106.16
	Catch, Milligrams	1.07	0.971	1.02	0.862
	Concentration, ppmv, Dry	200	182	191	161
	Emission Rate, Lb/Hour	0.00108	0.000983	0.000710	0.000763

• 68 Deg. F - 29.92 Inches of Mercury (Hg)

(

(

ł

(

(

Ċ

(

Ĺ

C

(

5

ENTDODV

FIELD DATA & RESULTS TABULATION General Refinery Plant Garden City, Georgia

Run	Sampling Location	Operator
CE-1Ba	Condenser Ethaust	B. Dwain Ritchie
CE-2Ba	Condenser Exhaust	B. Dwain Ritchie
CE-3Ba	Condenser Exhaust	Brent W. Hall
CE-4Ba	Condenser Exhaust	Brent W. Hall

		CE-1Ba	CE-2Ba	CE-3Ba	CE-4Ba
	Run Date	2/26/87	2/26/87	2/27/87	2/28/87
	Run Start Time	1717	2328	420	1200
	Run Finisa Time	1733	2348	450	1230
Theta	Net Run Time, Minutes	20	20	30	30
Qsd	Flue Gas Flow Rate, Dry SCFM*	0.277	0.236	0.278	0.225
Vc	Avg. Calibration Vol., Milliliters	39	39	39	39
Y	Calibration Meter Factor, Gamma	1.034	1.034	1.034	1.034
Vac	Volume Of Gas Sampled, DSL*	0.825	0.817	1.25	1.25
	Triethylamine				
ForWt	Formula Weight, Lb/Lb-Mole	101.19	101.19	101.19	101.19
mg	Catch, Milligrams	78.3	45.5	157	152
ppmvd	Concentration, ppmv. Dry	22,560	13,235	29,928	29,003
Lb/Hr	Emission Rate, Lb/Hour	0.0985	0.0492	0.131	0.103

* 68 Deg. F - 29.92 Inches of Mercury (Hg)

(

C

(

ſ

(

Ċ

(

Ć

6

C

ENTDODV

FIELD DATA & RESULTS TABULATION General Refinery Plant

Garden City, Georgia

Run	Sampling Location	Operator
CE-1Ca	Condenser Exhaust	B. Dwain Ritchie
CE-2Ca	Condenser Exhaust	B. Dwain Ritchie
CE-3Ca	Condenser Exhaust	Brent W. Hall
CE-4Ca	Condenser Exhaust	Brent W. Hall

		CE-1Ca	CE-2Ca	<u>CE-3Ca</u>	CE-4Ca
	Run Date	2/26/87	2/27/87	2/27/87	2/28/87
	Run Start Time	1815	19	520	1250
	Run Finisb Time	1845	49	550	1320
Theta	Net Run Time, Minutes	30	30	30	30
Qsd	Flue Gas Flow Rate, Dry SCFM*	0.339	0.264	0.269	0.238
Vc	Avg. Calibration Vol., Millilite:	rs 39	39	39	39
Y	Calibration Meter Factor, Gamma	1.034	1.034	1.034	1.034
Vsc	Volume Of Gas Sampled, DSL*	1.21	1.21	1.21	1.21
	Mercury				
ForWt	Formula Weight, Lb/Lb-Mole	200.59	200.59	200.59	200.59
mg	Catch, Milligrams	< 0.00005	< 0.00005	< 0.00005	< 0.00005
ppmvd	Concentration, ppmv, Dry	< 0.00496	< 0.00496	< 0.00496	< 0.00496
Lb/Hr	Emission Rate, Lb/Hour	< 0.000000052	< 0.000000041	< 0.00000042	< 0.00000037

* 68 Deg. F - 29.92 Inches of Mercury (Hg)

٢

Ţ

(

C

(

Ć

(

C

L

(

ENTROPY

APPENDIX A.2

¢___

l

ſ

(

ر ر

Ľ

(

C

ί

C

1

C

A. TEST RESULTS

2. Oil Polisher Outlet

FIELD DATA & RESULTS TABULATION

t

Č

ſ

۲

(

 \mathbf{C}

C

C

C

(

PLANT: General Refinery Plant, Garden City, Georgia

	RUN	DATE	SAMPLING LOCATI	ON OPERATOR	RATOR	
	0P-1	2/27/87	Oil Polisher Out	let Robert W. M	Aetz	
				OP-1		
	Run Star	t Time		1114		
	Run Fini	sh Time		1117		
Theta	Net Run	Time, Minutes		2.5		
Ср	Pitot Tu	be Coefficien	t	0.84		
Pbar	Barometr	ic Pressure,	Inches Hg	30.4		
	Tank Sam	pling Paramet	ers			
V(tank)	Volume	of Tank, lit	ers	7.071		
t(pre)	Pretes	t Temperature	, deg. F	48		
Pa(pre)	Pretes	t Absolute Pr	essure, mmHg	772.2		
t(post)	Postte	st Temperatur	e, deg. F	48		
Pa(post)	Postte	st Absolute P	ressure, mmHg	772.2		
Vstd	' lume S	ampled. Dry S	CF•	0.0294		
Vlc	Volume o	f Water Colle	cted	32.0		
	in Im	pingers. mL				
v	Volume o	f Water Vapor	, SCF*	1.506		
XH20	Moisture	Content, Per	cent By Volume	98.1		
Mfd	Dry Mole	Fraction		0.019		
Md	Dry Mole	cular Weight,	Lb/Lb-Mole	28.84		
Ma	Wet Mole	cular Weight,	Lb/Lb-Mole	18.21		
Pg	Flue Gas	Static Press	ure, Inches H2O	0.0		
Ps	Absolute	Flue Gas Pre	seure, Inches Hg	30.4		
ts	Flue Gas	Temperature,	Degrees F	212		
Delta p	Average	Velocity Head	, Inches H2O	0.0786		
vs	Flue Gas	Velocity, Fe	et/Second	22.18		
A	Stack/Du	ct Area, Squa	re Inches	7.07		
Qad	Volumetr	ic Air Flow R	ate, Dry SCFM*	0.991		
Qaw	Volumetr	ic Air Flow R	ate, Wet ACFM	65.34		
	Benzene					
ForWt	Formu	la Weight. Lb	/Lb Mole	78.0		
mg	Catch	. Milligrams	,	0.106		
ppmvd	Conce	ntration, ppm	vd	39.3		
Lb/Hr	Emiss	ion Rate, Lb/	Ħr	0.000473		
	Manaumu					
	Farm	le Veicht th	(1 h Molo	200 50		
	Cohob	Millionene	ALD WOLE	200.59		
	Catch	., Milligrams		< 0.00047		
	Conce	ica Pata Ib		(0.0000310		
	1 S S	ion Rate, LD/	#1	0.0000210		
	Toluene					
	Formu	ia weight. Lb	/LD MOIE	92.13		
	Catch	, Milligrams		4.791		
	Conce	ntration, ppm	va	1,502		
	Emiss	ion Rate, Lb/	Hr	0.0214		

• 68 Degrees F -- 29.92 Inches of Mercury (Hg)

FNTRODV

<i>نغ</i> هد	<u>OP-1</u>
Triethylamine	
Formula Weight, Lb/Lb Mole	101.19
Catch. Milligrams	70.5
Concentration, ppmvd	20,130
Emission Rate. Lb/Hr	0.314
Xylenes	
Formula Weight, Lb/Lb Mole	106.16
Catch, Milligrams	30.389
Concentration, ppmvd	8,271
Emission Rate, Lb/Hr	0.135

• 68 Degrees F -- 29.92 Inches of Mercury (Hg)

Č

{

(

(

(

(

ł,

ι

C

í

Ś

APPENDIX B.1

C

(

C

(

) (

́(

(

Ĺ,

L

(

B. FIELD DATA

1. Condenser Exhaust

AIR FLOW RATE FIELD DATA	CE-IA
COMPANY NAME RESOURCE CONSERVATION	
ADDRESS GARDEN LITY, GA.	
SAMPLING LOCATION CONDENER EXMANST	PERSONNEL DR
DATE 2-24-97 DUCT DIMENSIONS DUCT	AREA (A)id.2
BAROMETRIC PRESSURE (P bar) 30.40 IN. Hg STATIC PRESSUR	е (Pg) <u>-4,2</u> м. н ₂ 0.
PITOT PROBE I.D PITOT TUBE COEFFICIENT (C.)	·

ASSUMED FLUE GAS MOLECULAR WT; MOISTURE CONTENT ASSUMED TO BE AT SATURATION LEVEL

RUN	24 HR. CLOCK TIME	EL APSED TIME	A P In Ha Orifice	TEMP. ^Q F	RLIN *	24 HR. CLOCK TIME	el apsed Time	р №. н ₂ 0	TEMP. °F
KEIA	1613	0	1.22	50					
		2	.35	50					
		Ľ.	.35	50					
}		6	.37	50					
		8	.42	50					
		13	.35	50					
1		<u>'Z</u>	.50	50					
1		14	.45	50					
		16	0.0	50					
		18	•35	50					
		20	.35	50					
		22	.26	50					
		24	.25	58				·	
1		26	·Þ	50					
		28	.33	50					
	1643	30		- PEX					
		Avg.	0.3066	50					
1									
]		l							
1									

F-1024 8-86

(

Ç

(

2

{

((

(

ť

(

C

1

ENTROPY

AIR FLOY	RATE FIELD DATA	CE-1B
COMPANY NAME RESOURCE LONS	SERVATION)	
ADDRESS GARDEN LITY, GA.	······································	· · · · · · · · · · · · · · · · · · ·
SAMPLING LOCATION CONDENSER E	XHAUST	PERSONNEL IM
DATE 2-26-87 DUCT DIFTENSIONS_	DUCT	AREA (A) IN.2
BAROMETRIC PRESSURE (Pbar) 30.4	LIN. Hg STATIC PRESSU	RE (Pg) - 4, 2 IN. H20
PITOT PROBE I.D F	PITOT TUBE COEFFICIENT (C	。)

ASSUMED FLUE GAS MOLECULAR WT; MOISTURE CONTENT ASSUMED TO BE AT SATURATION LEVEL

RUN 24 HR. RUN 24 HR. EL APSED Δp ΔP TEMP. ELAPSED TEMP. 8. alock alock TIME IN H-20 TIME IN_H2O ٩F ٩F TIME TIME CEIB 1717 Stat 1.30 50 50 2 0,00 4 0.45 Ф 0,35 6 S) 0.001 8 50 0.00 10 50 12 - 35 SD 14 :60 SD . (0 16 Ð 50 .55 18 20 1793 £0 مم Ava. 0,2202 50

F-1024 3-86

(

Č

5

(

(

(

C

L

(

CE.IC

COMPANY NAME RESOURSE
ADDRESS GARDEN LITY GA.
SAMPLING LOCATION CONDENSER EXHAUST PERSONNEL TM
DATE $2-26-87$ duct dimensions duct area (a) in ²
BAROMETRIC PRESSURE $(P_{bar}) = 30.40$ in Hg static pressure $(P_g) = 4.3$ in H ₂ 0
PITOT PROBE I.D PITOT TUBE COEFFICIENT (Cp)

ASSUMED FLUE GAS MOLECULAR WT; MOISTURE CONTENT ASSUMED TO BE AT SATURATION LEVEL

RUN	24 HR. CLOCK TIME	EL APSED TIME	Ω ρ IN. H ₂ 0	TEMP. ^Q F	RLIN	24 HR. CLOCK TIME	ELAPSED TIME	ρ №H ₂ 0	ΤΕ Ν1₽ . ⁰ F
CEIC	-1845	0	:40	50				1	
	1	2	. D	50					
		4	.15	57					
		6	.25	Ð -					
		8	.70	SD					
		10	-15	50					
		12	.20	50					
		14	.40	50					
•		<u>/6</u>	125	50					
		18	,40	50					
		10	•25	50					
		4	,20	50					
		24	.30	50					
		1 26	130	50					
		28	.50	50					
	1845	ን0	25	Ð					
I		Ava.	0.33001	50					
		1							

F-1024 B-86

Ç

(

(

(

(

Ç

(

Ç

Ĺ

CE.2A

COM	COMPANY NAME KESOURSE / DASERVATION											
ADD	ADDRESS GARDEN CITY, GA.											
SAMPLING LOCATION CONDENSER EXHAUST PERSONNEL TM												
DATE 2-26-87 DUCT DIMENSIONS DIATE ADEA (A)												
BARRATER DECEMBER (B) = 36.47)												
BAROMETRIC PRESSURE (P bar) = 0.70 IN. Hg STATIC PRESSURE (Pg) - 9. / IN. H20												
PITOT PROBE I.D PITOT TUBE COEFFICIENT (Cp)												
ASSUMED FLUE GAS MOLECULAR WT;												
MOIST	MOISTURE CONTENT ASSUMED TO BE AT SATURATION LEVEL											
RUN	24 HR.	EL APSED		TEMP		RLIN	24 HR.	ELAPSED	ΔΡ	TEMP.		
	TIME	TIME	IN_H2G	٩F			TIME	TIME	IN_H ₂ 0	٥F		
(674	17233	0	10 50	:52	1		 					
		2	10.50	\$	1							
		4	0.60	50	1							
		6	0.55	50-								
		8	0.35	50								
		10	0,13	50	ŀ							
		12	0.40	50								
		14	0,12	50								
		16	0.40	50								
		18	0,25	50								
		~~~	0,20	50								
		2.4	0,15	30								
		01	0,70	<u>50</u>								
		2P	0   0	<u> </u>								
	7302	30	0.00	30								
	2303			-50								
		Ava.	0.30059	50								
						i						

ENTROPY

- -

F-1024 8-86

1

-(____

(

(

(

Ċ

(

C

L

Ļ

1

L

CE-2B

COMPANY NAME KESOORSE CONSERVATION
ADDRESS GARDEN CITY, GA.
SAMPLING LOCATION CONDENSER EXHAUST PERSONNEL TM
DATE $2 - 26 - 87$ DUCT DIMENSIONS DUCT AREA (A) $n^2$
PAROMETRIC DESCRIPTION (D. ) 30.40 IN IL STATIC DESSURE (D.) -4.3 IN IL (
BARUMEIRIC PRESSURE (Par) W. Hg STATIC PRESSURE (g) 2

ASSUMED FLUE GAS MOLECULAR WT; MOISTURE CONTENT ASSUMED TO BE AT SATURATION LEVEL

RUN	24 HR. CLOCK ∏M€	EL APSED TIME	Ω ρ Ν. Η ₂ 0	TEMP. ^Q F		RLIN	24 HR. CLOCK TIME	elapsed Time		TEMP. °F
rE-2B	2328	Ð	0,00	50						
		2	0120	50						
		4	0.15	<del>5</del> D						
		6	0,25	50 -						
		8	0.13	50						
		10	0.20	50						
		12	10:25	50						
		14	0,25	5D						
		16	0,00	50						
		18	0.14.	50						
	2348	20	8.25	50						
		Avg.	0.1571	50						
	ļ									
			ļ							
			<u> </u>							
					4					
					-					
		ļ							l	
1		_		1			ļ			

ENTROPY

F-1024 B-86

ſ

7

(

(

(

Ċ

. (

(

(

C

ł,

7

(

(

C

(

 $\zeta$ 

(

**C** ...

C

ί.

4

8-86

I

t

(

									ĈE	·2C			
COM	PANY NA	HE RES	DURE	ONSE	RVA	TION	)			]			
ADDR	ESS <u>Gr</u>	ARDEN (	TTY, G	٠						;			
SAM	PLING LOC		NDENS	ER EX	<u>н 4 (</u>	ST		PERS	SONNEL I	ÎM			
DAT	DATE Z-27-87 DIJOT DEMENSIONS DIJOT AREA (A)												
DAD	DATE $\underline{-4.2}$ DUCT DIFFERSIONS $\underline{-4.2}$ IN $\underline{-4.2}$ I												
<b>BAR</b>		FREDDURE	bar		_ #1.	- rig - 3		- (- )		2			
PITO	T PROBE	I.D		Pr		TUBE C		T (Cp)					
ASSUM	ED FLUE	GAS MOLI	ECULAR W	/T; BE AT S#	TUR	ATION	LEYEL						
RUN	24 HR.			TTM	1	RLIN	24 HR.			TIME			
•	CLOCK TIME	TIME	IN. H20	0.F		•	CLOCK TIME	TIME	IN_H20	°F			
IE-ZC	019	0	0.12	50	1				;= 				
		2	0.10	50	]	}							
		4	0.15	50									
		6	10,13	50 -	<b>-</b>	1							
		8	0.10	50			ļ		1				
		10	0,10	50	Į.								
		12	0,25	50									
		14	6.30	50	1	1			1	1			

1		······					1
1		10	0,10	<u>5</u> 0			
		12	0,25	50			1
		14	6.30	S			
		16	0.23	50			
		1,8	0,24	50			
		20	0,29	SD			
		レント	0,25	Ð			
		24	0.28	58			1
		26	0.25	50			1
		28	10,22	50			1
	049	30	0.120	SD			1
							1
		this	1 10639	50			1
		-rig.	0.110-1				1
							1
					• •	ţ	

**-** ·

CE·3A

COMPANY N	AME	Esmect	Lowse	Rrg	TON	ş			
ADDRESS	GARDEN	CETY	, GA						
SAMPLING L DATE 2/2 BAROMETRIC PITOT PROS	0CATION -8/87 : PRESSURE BE I.D	Condition	/5 <b>918</b> SKONS PT	<u>- 1</u> N. Tot	Hg S TUBE C	TATIC PR	DUCT AREA ESSURE (Pg T (Cp)	SOMMEL _2 (A) ) <u>-3.0</u>	IN. H ₂ 0
RUN 24 HR CLOCK	ELAPSED		TEMP.	TUR	RLIN	LEYEL 24 HR. CLOCK TIME	EL APSED TIME		TEMP. °F
E-34 3:85	0 2 4 6 8 70 72 72 74 76 76 78 70 27 27 27 27 27 27 27 27 27 27 27 27 27	0.17 0.15 0.12 0.13 0.14 0.15 0.14 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.16	50 50 50 50 50 50 50 50 50 50 50 50 50 5						

F-1024 8-86

ſ

-(

(

{

(

C

(

C

C

L

i

# CE-3B

ſ

N

COMPANY NAME RESERVICE Conservations
ADDRESS Garden City, Ma
SAMOLING LOCATION Condesisor Exhaust DEDSONAL BUILT
Zhank?
DATE $-\frac{1}{100}$ duct dimensions duct area (A) in.
BAROMETRIC PRESSURE $(P_{bar}) \ge 0.7$ in Hg static pressure $(P_g) = 0.0$ in H ₂
PITOT PROBE I.D PITOT TUBE COEFFICIENT (Cp)

ASSUMED FLUE GAS MOLECULAR WT; MOISTURE CONTENT ASSUMED TO BE AT SATURATION LEVEL.

RUN	24 HR. CLOCK TIME	EL APSED TIME	Ω Ρ IN. H ₂ 0	TEMP. ^Q F		RLIN	24 HR. CLOCK TIME	ELAPSED TIME		TEMP. °F	
CE-38	0420	0	0,19	50							
-	22	12	10.17	50							
	24	4	0.28	572					<u> </u>	}	ļ
	24	6	0.28	50 -						<u> </u>	ł
	28	<u> </u>	10,27	50						<u> </u>	ł
	30	10	10,24	<u> </u>	ŀ						Į
	32	12	0.29	50							Į
	34	19	0.29	50							ł
	56	16	0.17	50							
		18	0.19	70							ł
1	40	10	0,30	50+					[		ł
	42	22	0,19	50							ł
	<u> </u>	24	0.07	50							
	46	16	0,22	50							ł
	48	28	0,20	30						ļ	ł
	0420	- 50-	1	5/2				<u> </u>		]	ł
	<b></b>								· ·		1
		hica	1 12/10	50	$\mathbf{I}$					[	1
		aug.	V. 22010	00				[	[ 		1
	<b> </b>	<u> </u>	·		1		<b> </b>		<u></u>		1
	<u> </u>				1						1
			1		1						1
					ł	ł					1
		<u> </u>			1				!		1
	· ·	!			<u> </u>			L		1	1

F-1024 8-86

(

Ċ

(

(

(

(

(

C

C

ENTROPY

AIR FLOW RATE FIELD DATA CE. 3C COMPANY NAME Resource Conservation ADDRESS Marchen Cite Sa SAMPLING LOCATION Condensor Exhaust PERSONNEL BUILT BAROMETRIC PRESSURE (P ... ) 30.4 IN. Hg STATIC PRESSURE (Pg) - 4.4 IN. Hg PITOT PROBE I.D. _____ PITOT TUBE COEFFICIENT (Cp) _____ ASSUMED FLUE GAS MOLECULAR WT; MOISTURE CONTENT ASSUMED TO BE AT SATURATION LEVEL. 24 HR. RUN 24 HR. RUN Δp EL APSED ELAPSED  $\Delta P$ TEMP. TEMP. CLOCK CTOCK TIME IN. HZQ TIME N. H-0 QF ۹Ę TME TIME CE3C 5201 D 10,19 150 2 033150 4 0,23150 6 174 50 В 10.24 50 0.32 '0 50 OR. 150 12 0 50 14 0.17 16 10.14 150 50 18 0.23 20 50 22 21 50 29 50 24 26 mzh 50 50 28 30 550 50 028 Ava. 10.211211 50

F-1024 3-86

(

Ċ

£

C

{

(

(

(

C

L

COM	PANY NAP	1E_ <u></u> <u></u>	Source	<u>5 Co</u>	بور	ERVA	Ton 9	2		
ADDR	ESS	SARDEN C	CITY, G	Ē.A						
SAM	PLING LOO		CONDEN	see E	XAA	KLET	-	PERS	SONNEL _	Bwlf-
DAT	E 2/28	187 DU	CT DIMENS	SIONS				DUCT AREA	(Å)	<mark>1N</mark> 2
		PRESSURE	(P. )30	o. 4	IN	H. 5		ESSURE (P.	1 - 4.2	<u></u>
		I D	bar Jan	/	- 41. TOT					2
PIIU		I. D			101					
SSUM TOISTI	ED FLUE	GAS MOLI	ECULAR W	MT; BE AT SA	TUR	ATION	LEYEL			
RUN	24 HR. CLOCK TIME	EL APSED TIME	Ω Ρ IN. H ₂ 0	TEMP. ^Q F		RLIN	24 HR. CLOCK TIME	el apsed Time	- ← P IN_H-20	TEMP. °F
E-4A	11:15	0	0.25	<b>9</b> 94,				·		
		Z	0.24	46						
		4	0.29	46						
		<u>(</u>	0.12	46					 	 
		8	0,17	46						
		/0	1,3	<u>46</u>						
	<u>_</u>		1.28	46						
		16	0.36	46				;		
		18	0.33	46						
		20	136	46						
		22	0.08	46						
		24	0.32	46			· ·			
		ιφ 7 0	0.32	46					•	
		20	0. </td <td>46</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	46						
	11.15		451	-16						
		Ava.	0,2370	6 A6						
		5								
									1	ļ
	·····	· · · · · · · · · · · · · · · · · · ·			1			i		Ì
					<b>.</b>					

I

F-1024 8-86

(

-(

{

C

(

(,

C

(

C

L

1

ENTROPY

ŧ

I,

AIR FLOW RATE FIELD DATA CE	·4E
COMPANY NAME RESUGREES CONSERVATION	
ADDRESS <u>GARDEN CETY</u> , GA.	
SAMPLING LOCATION CONDENSER IS KHALLST PERSONNEL BENE	
DATE $\frac{Z/28/87}{DUCT}$ duct dimensions duct area (A)	N.2
BAROMETRIC PRESSURE (P bar) 30,4 IN Hg STATIC PRESSURE (Pg) 4.5 IN. H	z ^o
PITOT PROBE I.D PITOT TUBE COEFFICIENT (Cp)	-

ASSUMED FLUE GAS MOLECULAR WT; MOISTURE CONTENT ASSUMED TO BE AT SATURATION LEVEL.

RUN	24 HR. CLOCK TIME	EL APSED TIME		TEM <del>P</del> . ^Q F	RLIN	24 HR. CLOCK TIME	ELAPSED TIME	p №. H ₂ 0	TEMP. °F
CE STATE	12:00	0	1 8.20	48					
CE-48		2	0.22	- 1					
		4	0.22						
		6	0.06						
		8	0.20			ļ			
		10	0.15						
		12	0.10						
		14	0.17						
		16	0,11						
		18	0.13						
		20	0.1/						
		22	0.05						 
		24	0.15			<u> </u>			
		24	0,1			 	[ 		
	17:73	40	0.19				· · · · · · · · · · · · · · · · · · ·		
	12.50	-90	676						
						<u> </u>		 	
		p/a	1 1473	48					
		Ary.	0.1712	70				1	
}						}	¦		
		1							
			1				i	<u>.</u>	
			<u>.</u>					1	1
• •									

ENTROPY

F-1024 3-86

C

-C

(

C

(

5

(

( ...

C

Ç

t

t

X.

.

AIR FLUW RATE FIELD DATA CE-4C
COMPANY NAME RESOURCES CONSERVATION
ADDRESS BARDEN CITY, GA.
SAMPLING LOCATION CONDENSER EXHAUST PERSONNEL BUILT
DATE $\frac{2}{28/87}$ duct dimensions duct area (A) IN ²
BAROMETRIC PRESSURE (P ) 30, / IN. Hg STATIC PRESSURE (Pg) - 4.6 IN. H20
PITOT PROBE I.D PITOT TUBE COEFFICIENT (Cp)

MOISTURE CONTENT ASSUMED TO BE AT SATURATION LEVEL.

RUN	24 HR. CLOCK TIME	EL APSED TIME		TEMP. ^Q F		RUN	24 HR. CLOCK TIME	ELAPSED TIME	Др №. H ₂ 0	TEMP. °F
CE-4C	1250	Q	0,20	46						
_		2	0.21	46			ļ	<u> </u>	1	
~		9	10.2.1	46					1	
		6	0./8							
		0	1 12							
		10	1/3							
	-	14	1.19							
		16	0,10							
		18	0.11							
		20	1.17							
		22	0.22					<u> </u>		
	ļ	24	0.13		7			[	<u> </u>	
		26	0.17				ļ			
		28	0.28						1	
	1320	50	and -	· · ·			<b> </b>	 		
	<u> </u>				1					
		Luin	01/471	46	1		}			
		<u>Fy</u>	VIIVIE		1			·		1
	}		1		1					
			1		1	l				
		<u> </u>	1	I	1	1				
			<u> </u>		]					
		1	1		I	1				

F-1026 8-86

5

£

(

(

(

3

C

L

C

÷

ENTROPY

ASSUMED FLUE GAS MOLECULAR WT;

ENTPOPY

 $v_{sc} = 17.64 * \frac{P_{3ar}}{(L_a + 460)} * v_a$ V3 = MIN. * 50 * VC/SEC

		-		1	1.7_	1 - 0			 Q -
CALI- BRATION	AMB. TEMP. (ta)	SECOLOS	VOLUME MILS (VC)	TIME	VOLUME	TIME	VOLUME	TIME SECONOS	VOLUME
INITIAL	51°F	BYRON	38	INA	138				
FINAL	47	MODEL 90	40		138	}			
AVERAGE	50	60 1	39	60	38	1			
VOLUME LI (Va)	TERS		1		1		1		L
VOLLIME ST	ANDARD		dsl		dsl		dsl		ist

30 NET TIME. MINUTES (MIN)

CLOCK TIME		ROTAMETER R	EADINGS	
HOURS	( K- SAMPLES	2 - SAMPLES	C. SAMPLES	0- SAMPLES
-9	47: CIMIA	1 873	21	
5	1 4/2	34		
10	42	1 13		
15	1 42	45		
20	44	43		
25	1 44	45		1
30077	1			
-	1			)
	1			



ADSORBENT SAMPLING TRAIN FIELD DATA

REGOURGE CONSERVATION

TEAM LEADER TOR

CE-11

11-41

TIME START

TIME FIN.

TECHNICIANS TM

PUMP # TANK

ADDRESS GAP DROND (174, GA.

COMPANY NAME _

ć

C ...

(

C

£

C

C

(

L

2170

F-1021 8-46

ADDRESS <u>CAREDEN LITY, GA</u> SAMPLING LOCATION <u>COUDENCE EXHAUST</u> THE START IS SAMPLING LOCATION <u>COUDENCE EXHAUST</u> THE START IS DATE 222-31 SAMPLING LOCATION <u>COUDENCE EXHAUST</u> THE START IS SAMPLING LOCATION <u>COUDENCE EXHAUST</u> THE START IS SAMPLING LOCATION <u>COUDENCE EXHAUST</u> THE START IS SAMPLING PRESSURE. IN. HO. (PBAR) <u>3D. (</u> RAMP # <u>M-25 TAUK</u> (CI (ORIFICE 1.0.) I (CI (OR	COMPAN	r NAME K	ESOURSE LON	SERVATION		FUNCE	-1B
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ADDRESS	GAR	DEN LITY, GA			TIME STA	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SAMPLIN	NG LOCAT	TON COUDEUS	EP EXHAUST		TIME FIN	179
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<u>L· 26 -</u>	8 / TEAM LEA	DER	TECHNIC	IANS TH	/
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BAROME		SSURE, IN. HG. (	BAR	PUMP # .	TI-25 MAN	<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L			·····			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		E.	<b>a</b> 1	ELL I	- <b>\</b>		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	le						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ų					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24-5	2				2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						<del></del>	<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	د	Ĩ					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	¥					
TYPICAL LABELLING FOR TUBE A (a): 1-A-a TYPICAL LABELLING FOR TUBE A (a): 1-A-a CLOCK TIME ROTAMETER READINGS HOURS J-SAMPLES 0-SAMPLES 0-SAMPLES Q 46 APPRIL A 1 46	▫<		$\rightarrow$				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	TYPICAL	. LABELL	ING FOR TUBE A (	a): 1-A-a			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CLOCK T	IME		ROTAMETER REA	DINGS		
$\frac{20}{100} + \frac{100}{100} + \frac{100}{1000} + \frac{100}{1000} + \frac{100}{1000} + \frac{100}{1000} + \frac{100}{1000} + \frac{1000}{1000} + 1000$	HOURS		1- SAMPLES	8- SAMPLES	C- SAMPLES	0- SA	MPLES
$\frac{10}{15} + \frac{16}{15} + 16$			46				
$\frac{320}{(MIN)}$ NET TIME. MINUTES $\frac{320}{(MIN)}$ $\frac{320}{(VC)}$	10		46	43			
$\frac{20 / 0 = F}{(MIN)}$ NET TIME. MINUTES $\frac{200}{(MIN)}$ $\frac{200}{(MIN)}$ NET TIME. MINUTES $\frac{200}{(MIN)}$ $\frac{200}{(M$	15		46	Y3			
$\frac{20}{(MIN)}$ NET TIME. MINUTES $\frac{20}{(MIN)}$ NET TIME. MINUTES $\frac{20}{(MIN)}$ NET TIME. MINUTES $\frac{20}{(MIN)}$ NET TIME. MINUTES $\frac{1000}{1000} \frac{1000}{1000} \frac{1000}{1000}$	20/	DEF		<u> </u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\frac{20}{(MIN)}$ NET TIME, MINITES $\frac{20}{(MIN)}$ NET TIME, MINITES $\frac{20}{(MIN)}$ NET TIME, MINITES $\frac{1000}{MIL}$ NET TIME, MINITES							
(MIN) $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	2	NET TIME, MIN	UTES			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(MIN	)		<b>-</b>			
CALI- AME. TIME, JECOME TIME, VOLIME TIME VOLIME TIME SECONDS MILS SECONDS SECONDS MILS SECONDS MILS SECONDS SECONDS MILS SECONDS SE			Marcege				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u>.</u>	- <b>2</b>	·c.		.0.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BRATION	TEMP.	SECOLOS MILS	SECONDS TILS	SECONDS MIL	SECONDS	MILS
FINAL       UH       36       39       1       1         AVERAGE       US       60       39       60       39       1       1         VOLUME       LITERS       i       1       1       1       1       1         VOLUME       STANDARD       ds1       ds1       ds1       ds1       ds1       ds1         VOLUME       STANDARD       ds1       ds1       ds1       ds1       ds1       ds1         VOLUME       STANDARD       ds1       ds1       ds1       ds1       ds1       ds1         Va       MIN.*       60 * Vc/SEC       Vsc = 17.64 *       Phar (Ca + 400) * Va       Va	INITIAL	146	40 4/mi	39 Main			i
AVERAGE       US       100       39       60       39         VOLUME LITERS       1       1       1       1         VOLUME STANDARD       ds1       ds1       ds1       ds1         VOLUME STANDARD       ds1       ds1       ds1       ds1         Va = MIN.*       60 * Vc/SEC       Vsc = 17.64 * $\frac{Phar}{(L_4 + 400)}$ * Va	FINAL	144-	36	39			i
VOLUME LITERS (Va)111VOLUME STANDARD (V _{5C} )dsldsldslVa = MIN. * $\frac{60}{1000}$ * V _c /SECV _{5C} = 17.64 * $\frac{PLar}{(L_a + 400)}$ * V _a	AVERAGE	45	100 39	60:39	<u> </u>		1
VOLUME STANDARDdsldsldsldsldsl $(V_{SC})$ $V_{SC}$ $V_{SC} = 17.64 * \frac{P_{Dar}}{(C_{A} + 400)} * V_{a}$	VOLUME L (Va	ITERS	<pre>/ 1</pre>	1		1	
$V_{a} = MIN. * \frac{60}{1000} * V_{c} / SEC \qquad V_{sc} = 17.64 * \frac{P_{bar}}{(L_{a} + 400)} * V_{a}$	VOLUME S	TANDARD	del	del		tel	del
$v_a = MIN. * \frac{60}{1000} * v_c/SEC$ $v_{sc} = 17.64 * \frac{P_{ar}}{(c_a + 400)} * v_a$	(V _{sc}	)					
$(t_{a} + 400)$ a			V. /SEC V	= 17.64 * Pbar	* v		
	$V_2 = MIN$	. * 60 *	· · / · · · · · · · · · · · · · · · · ·		· ·		

8-26

ENTROPY

	ADS01	RBENT S	AMPLIN	G TRAIN	FIELD I	DATA		
COMPANY NAME	RESOURARDEN ARBEN 10N CON	<u>CITY</u> <u>CITY</u> DE NSE TEAM LEA	DALER	VATIO	<u>л)</u> тес	HNICIANS	RUN CE	<b>*1</b> <b>™</b> / <u>B</u> 15 / <u>B</u> 45
BAROMETRIC PRE	SSURE. II	N. HG. (	Pgar) 3	0.40	PUM	P #	25 7AD	<u>K</u>
(a)						( OR		
A	$\rightarrow$			- <u>(</u>		>	1	
			E C				7.	
			3					
c	$\square$	$\sub$				· <b></b>		_
•	$\leftarrow$	$ \longrightarrow $						
TYPICAL LABELL	ING FOR 1	UHE A ( a	₽⁄ 1): 1-A-a		/			
CLOCK TIME			207.44	FTER OFA	DINGS			•
HOURS	SA- SAN	PLES	B- SAM	PLES	C. SAME	PLES	1 0- SAM	PLES
	44		44	~			1	
<u> </u>	E Z		4					
<u></u>				<u>منب (</u>	1 1 ·			
+0	144 D			<u>&gt;</u>	<u> </u>		 	
<u> </u>			· · · · · · · · · · · · · · · · · · ·	<del>de la constanta da</del>		······································	 	
		<u> </u>		· <u>/</u>	ļ		!	
	48		· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u>}</u>		1	
<u> </u>			! 				1	
30								
(MIN)	NET TI	ME. MINL	ITES					
		•						
i	· · · · · ·	,	2		_ ···			
A	· · · · · · · · · · · · · · · · · · ·		• 87		· · · · ·			
BRATION (ta)	SECURDS	VOLUME MILS (VC)	SECONOS	VOLUME	SECONDS	MILS	SECONDS	MILS
INITIAL 144	34	>	346,-	->				
FINAL 143	3	2	38-	~				
AVERAGE : 44	60	39	60	38	1	-	• •	
VOLUME LITERS (Va)		1		1		l	*	
VOLUME STANDARD		dsl		dsl		dsl		dsl
Va = MIN. * 60 *	V _C /SEC	v _{sc}	= 17.64	* <u>Par</u> (ta + )	460) * ^v a			4

ENTROPY

•

·• .

• •

٠ 1

F-1021 چستی ا

· -----

of the

(

۲...

(

ſ

) (

ť

C

Ç

Ç

L
. ADSORBENT SAMPLING TRAIN FIELD DATA N3-1 COMPANY NAME RESOURSE CE-24 RUN ADDRESS GARDEN GITA ER. TIME START 2233 SAMPLING LOCATION CONSER EXHAUST TIME FIN. 2235 2303 TEAM LEADER DR DATE 2426-87 TECHNICIANS IM PLMP # M-257 BAROMETRIC PRESSURE. IN. HG. (PBAR) 30.4 (6) (c) (ORIFICE 1.D.) (a)1 ġ TYPICAL LABELLING FOR TUBE A (2): 1-A-2 ROTAMETER READINGS CLOCK TIME 0- SAMPLES - SAMPLES 2-SAMPLES C. SAMPLES HOURS 43 46 0 46 43 5 43 46 ľD 43 46 15 2D Ψz 24 43 30 NET TIME, MINUTES (MIN) ·C· .0-**1** VOLUME WOLLME MILS TIME SECONOS TIME TIME MILS CALI-TIME SECOLOS TEM 550 BRATION (ta) (SEC) (ve) 39 38 UH INITIAL 39 38 FINAL 44 39 30 60 Ť. AVERAGE 44 60 VOLLINE LITERS (Va) 7 1 1 VOLUME STANDARD dsl dsi ds1 dsl  $(V_{sc})$ Vsc = 17.64 * Phar V3 = MIN. * 60 * VC/SEC  $(t_a + 460)$ * *a 1/20

-

ENTDODY

5-1024

Č

l

l

ſ

٤

Ł

C

Ć

ADSORBENT SAMPLING TRAIN FIELD DATA COMPANY NAME RESOURSE CONSERVATIONS RUN CE-2B+ ADDRESS GARDEN CITY, GA . TIME START 232P SAMPLING LOCATION CANDENSER EXHAOST TIME FIN. CATE 2-26-87 TEAM LEADER DR TECHNICIANS 14 BAROMETRIC PRESSURE. IN. HG. (P BAR) 30.4 P.MP # 11-25 THANK (a) (6) (0) (ORIFICE 1.3.) ł 2 TYPICAL LABELLING FOR TUBE A (2): 1-A-2 ROTAMETER READINGS CLOCK TIME D- SAMPLES SAMPLES C. SAMPLES SAMPLES 1a -HOURS **A**-46 43 2328 Ð 43 46 5 46 43 10 46 43 15 20 46 43 20 NET TIME, MINUTES (MIN) BYRON HODELSO - - 1 -C. -0-VOLUME MILS (VC) VOLUME VOLUME TIME VOLUME SECONOS SECON CALI-TEM BRATION ASECI (ta) 38 30  $\mu$ INITIAL 39 FINAL 39 39 60 AVERAGE 44 ł 60 VOLUME LITERS 1 1 1 VOLUME STANDARD dsl del dsl dsl (Vsc)  $v_{sc} = 17.64 * \frac{P_{ar}}{(T_a + 460)} * v_a$ Va = HIN. * 60 * Vc/SEC 10/20

FNTROPY

F-1024

(

(

(

ſ

E

C

C

( ADSORBENT SAMPLING TRAIN FIELD DATA RUN CE-2 COMPANY NAME RESOURCE CONSERVATION ADDRESS CARDEN LITY GA . TIME START ON ſ · SAMPLING LOCATION LONDENSER EXAMOST 04Ō TIME FIN. DATE 2-27-87 TECHNICIANS TM TEAM LEADER DC BAROMETRIC PRESSURE. IN. HG. (P SAR) 30.4 P.MP # _H-25 TANK فمر أحدر ( ( ) (ORIFICE 1.D.) (2) ( ) 1. 3 1 3 3 C TYPICAL LABELLING FOR TUBE A (2): 1-A-2 ROTAMETER READINGS CLOCK TIME 1) &- SAMPLES C. SAMPLES SAMPLES 0- SAMPLES HOURS 4-3 46 019 0 46 43 2 43 46  $\gamma$ 43 46 5 43 20 46 43 25 46 43 46 ゔ゙゙゙゙゙ 30 NET TIME, MINUTES (MIN) BYRON - MODEL 90 -0-1 -----·=-2_ -C-VOLUME TIME VOLUME TIME CALI-SECTIONS AME. SECOLOS MILS VOLUME BRATION (ta) SECI VCI 44 38 30 INITIAL 39 38 44 FINAL 39 34 AVERACE 44 100 60 ł VOLUME LITERS 1 1 dsl VOLUME STANDARD dsl dsl dsl (Vsc) Vsc = 17.64 * Par (-a + 460) * Va Va = MIN. * 60 * VC/SEC 1/00

5-1021

(

C

£

C

C

ŧ

C · _ - - - -ADSORBENT SAMPLING TRAIN FIELD DATA RUN CE-34 RESALACE CONSERVATION COMPANY NAME TIME START 03:15 ADDRESS GARDEN CITY, GA. SAMPLING LOCATION CONDENSOR EXHAUST ( TIME FIN. 03:K TEAM LEADER _BWAT DATE 2/27/87 TECHNICIANS BAROMETRIC PRESSURE. IN. HG. (P BAR) 30.4 PLMP \$ C (6) (a) (0) (ORIFICE 1.D.) SILICA 1 CHARCOM HARCOLL GEL 2 41 11 11 ĝ ( 3 ą 3 ( TYPICAL LABELLING FOR TUBE A (2): 1-A-2 ROTAMETER READINGS CLOCK TIME C. SAMPLES 0- SAMPLES HOURS SAMPLES 2 - SAMPLES -47 U 0315 ¥ 3 5 13 Ù 10 43 15 // 43 46 20 Ũ 46 25 7745 30 30 NET TIME, MINUTES (MIN) -0--·C-━ | VOLUME TIME CALI-TIME VOLUME TIME VOLUME MILS TIME SECONDS AMB. TEMP BRATION (VC) SEC ) (ta) 39 38 48 NA NA INITIAL 39 NH FINAL NA 7 38 39 (01) AVERAGE 49 lon VOLUME LITERS 1 1 1 VOLUME STANDARD dal dsl dsl dal (Vac)  $v_{sc} = 17.64 * \frac{p_{har}}{(t_a + 460)} * v_a$ Va = MIN. * 60 * VC/SEC 10/20

(

(

C

**FNTROPY** 

122

----ADSORBENT SAMPLING TRAIN FIELD DATA Consecration CE-3B esource COMPANY NAME RUN C ADDRESS Stardes TIME START 0420 SAMPLING LOCATION Cond Ethaus TIME FIN. 0450 187 BWH DATE _2 1271 TEAM LEADER . TECHNICIANS. BAROMETRIC PRESSURE. IN. HG. (P BAR) 30.4 PUMP 🖈 (b) (a)(0) (ORIFICE I.D.) Ag A SILICA 3 ÉE C 2 1 11 4 đ 2 = 116 C TYPICAL LABELLING FOR TUBE A (2): 1-A-2 ROTAMETER READINGS CLOCK TIME SAMPLES 2. SAMPLES C- SAMPLES D- SAMPLES HOURS 1 46 1490 0 46 43 Z 10 43 46 <u>¥</u> 3 15 43 20 46 43 25 46 J - 5 0450 <u> 2 D</u> 30 NET TIME, MINUTES (MIN) Z 4 -0-/ 🛥 ·C· MILS VOLUME TIME VOLUME TIME TIME TIME VOLUME CALI-ANS TEM BRATION (ta) (SEC) (vc) NIA 38 NA 39 50 INITIAL FINAL 34 38 1 50 39 38 50 100 1 AVERAGE  $\sim$ VOLLME LITERS 1 1 1 VOLUME STANDARD dal dsl lsi leb (Vsc)  $v_{sc} = 17.64 * \frac{P_{bar}}{(T_a + 460)} *$ Va = MIN. * 80 * Vc/SEC 1000

**ENTROPY** 

·. . .

•

10/00 F-1024

6-26

T

(

(

(

Ł

(

(

(

C

C ..... ----ADSORBENT SAMPLING TRAIN FIELD DATA Conservation RUN <u>CE-3C</u> Kesource COMPANY NAME TIME START 620 ADDRESS ľ Exh SAMPLING LOCATION Con TIME FIN. TEAM LEADER BWH セフ DATE Z TECHNICIANS BAROMETRIC PRESSURE, IN. HG. (PBAR) 30,4 PUMP # ( (ORIFICE 1.D.) (b) (a)(C) SELECA SILECA SILICA GEL GEL GEL 11 11 ā 2 ( 1 3 1111 **NU** TYPICAL LABELLING FOR TUBE A (2): 1-A-2 ROTAMETER READINGS CLOCK TIME 2 - SAMPLES C. SAMPLES D- SAMPLES HOURS 4- SAMPLES **(** Ŭ 520 D ¥ 5 ¥( Ų ¥ 10 Ī 15 10 ø 46 20 ¥ 3 46 25 ( 46 43 550 30 30 NET TIME, MINUTES (MIN) C Z ·C· -0-( •# æ WOLLME TIME SECONDS CALI-TIME SECOLOS WOLLINE TIME VOLUME VOLUME SECONOS AME . BRATION VCI ( SEC ) (ta) ( 31 59 50 INITIAL WA Δ 29 FINAL 50 38 ins 14 38 60 AVERAGE 50 İ GO VOLUME LITERS 1 1 1 VOLUME STANDARD del dsl dsl dsl (Vsc)  $v_{sc} = 17.64 * \frac{m_{bar}}{(r_a + 460)} * v_a$ Va = MIN. * 60 * VC/SEC 10/20 F-1024

FNTROPY

L

C -----ADSORBENT SAMPLING TRAIN FIELD DATA RESOURCES CONSERVATION CO. RUN CE-YA COMPANY NAME __ TIME START 11:15 ADDRESS GARDEN CITY GA. ( EXHAUST CONDENSER TIME FIN. 11:4. SAMPLING LOCATION Bwt 128/87 TEAM LEADER _____ DATE Z TECHNICIANS BAROMETRIC PRESSURE, IN. HG. (P SAR) ____ 30. PLMP 🖈 4 C (a) (6) (c) (ORIFICE 1.D.) ILLC CHARCONS CHARCAL 1 Z 1. 11 m ( La tau C ł Ł TYPICAL LABELLING FOR TUBE A (a): 1-A-a ROTAMETER READINGS GLOCK TIME Z& SAMPLES C- SAMPLES 0- SAMPLES SAMPLES HOURS 46 1/115 0 46 13 5 46 42 10 46 4 15 46 43 20 46 Ý 25 30 30 NET TIME, MINUTES (MIN) 20 -0-1 -·C· VOLUME VOLUME MILS CALI-TEM SECOLOS TIME VOLUME TIME SECONDS MILS TINE SECONOS BRATION (ta) (SEC) INITIAL 46 NA 39 NĄ 38 38 39 FINAL 46 NA NA. AVERAGE 46 60 えの 100 38 1 VOLUME LITERS (Va) 1 1 1 VOLUME STANDARD dsl leb dsl dsl (Vsc)  $v_{sc} = 17.64 * \frac{P_{bar}}{(L_a + 460)} * v_a$ Va = MIN. * 60 * Vc/SEC

FNTROPY

10/00

F-1021

(

(

(

ł

٢ است را س . ADSORBENT SAMPLING TRAIN FIELD DATA RUN CE-YB RESOURCES CONSERVATION COMPANY NAME ____ ADDRESS GARDEN CITY GA. TIME START 12:00 C SAMPLING LOCATION CONDENSER EXHAUX TIME FIN. 12:30 TEAM LEADER ______ 128/87 DATE . TECHNICIANS PUMP # . ( (6) (c) (a)(ORIFICE 1.2.) 3 D TYPICAL LABELLING FOR TUBE A (a): 1-A-a ROTAMETER READINGS CLOCK TIME 24- SAMPLES 0- SAMPLES C. SAMPLES HOURS SAMPLES . م σ 3 46 D 43 C 46 43 41. 10 46 43 15 46 43 20 46 43 25 30 30 NET TIME, MINUTES (MIN) - 8-·c. -0-... VOLUME MILS CALI-TEMP TIME TIME VOLUME TIME SECONDS MILS TIME SECONDS BRATION (VC) (ta) (SEC) INITIAL NA 39 NA 38 48 FINAL 48 39 38 60 39 30 49 60 1 AVERAGE VOLUME LITERS 1 1 1 VOLLIME STANDARD dsl 1 e b dsl leb (Vsc)  $v_{sc} = 17.64 * \frac{P_{ar}}{(L_a + 460)} * v_a$ V3 = MIN. * 10 * VC/SEC

0/80

F-1021

(

(

(

C

C

L

# ENITRUDY

FNTROPY

		1.	1.00		2.		٠с٠		-0-	
CALI- BRATION	TEMP.	TIME SECOLOS	VOLLIME MILS (VC)	TIME	VOLUME	SECONDS	VOLUME	TIME SECONOS	WILS	
INITIAL	46	NA	39	NA	38					
FINAL	46	n	39	1.	38					
AVERAGE	146	60	39	60	38					
VOLUME L	ITERS		1		1		1		]	
VOLUME S	TANDARD		dsl		dsl		dsl		dsl	

CLOCK TIME		ROTAMETER RE	ADINGS	•
HOUPES	/ R. SAMPLES	28- SAMPLES	C. SAMPLES	0- SAMPLES
1250/0	46	43		
5	1 46	1 43	1	
10	1 46	43		
15	46	43		
7-0	46	1 83		
, 25	46	43		
1020/ 30				
30	NET TIME. MI	NUTES	. •	

TYPICAL LABELLING FOR TUBE A (2): 1-A-2



ADSORBENT SAMPLING TRAIN FIELD DATA COMPANY NAME <u>RESUMPED</u> <u>CONSERVATION</u> ADDRESS <u>GARDEN (ITY GA</u> SAMPLING LOCATION <u>CONDENSER EXHAUT</u> DATE <u>2/28/27</u> TEAM LEADER <u>BWB</u> TECHNICIANS BAROMETRIC PRESSURE, IN. HG. (PBR) <u>3074</u> PLMP  $\ddagger$  _____

T

0/00

(MIN)

F-1021

C

(

(

(

(

(

(

C

C

APPENDIX B.2

C

(

(

(

~ (

 $\mathcal{C}$ 

C

(

C

C

£

L

B. FIELD DATA

2. Oil Polisher Outlet

# **ENTROPY**

OP-1 Calculations) VELOCITY TRAVERSE DATA AND CALCULATIONS

	Company name	Date	2/	27/8	2
(	Address		start	7	
	Measurement location	- Time	finish		
	Duct dimensions $3^{*}$ Duct area (A) $7.07$ in. ²	- Perso	onnel		
	Barometric pressure (p ) 30, 4 in Hg Static pres	sure (P	, i	ク i	n. H.O
(	Percent moisture (% H ₂ O) <u>98,</u> Pitot Tube Coeffic	ient (C _D	)	0,84	
	Point $\Delta p$ Temp. Point $\Delta p$ Temp. Point $\Delta p$	Temp.	Point	Δp	Temp.
	$\frac{11}{11} = \frac{11}{10} = 11$	F	#	in.H ₂ O	F
		·			
ł	11 5 ANDE 11 15 D D CE				
$\sim$	1110:20 0.11-3				
(					
	aug= 0.0786				
6					
			L		· · · · · · · · · · · · · · · · · · ·
	AVERAGE VELOCITY HEAD OF STACK GAS, in. H ₂ O AVERAGE S	TACK TEM	PERATUR	Æ,°F	
(	$\Delta P_{avg} = (\sqrt{\Delta p})^2 = 0.078\%$ $t_s = 2\%$	2			
_	ABSOLUTE STACK GAS PRESSURE, in. Hg DRY MOLE	5 FRACTION	OF STA	CK GAS	
_	$P_{-} = (30.4) + (0) / 13.6 = 30.4$ $M_{ca} = 1 -$	(98,1	/ 100)	= 0.0	9
(	bar g s	₹ H ₂ Ó		M	đ
	DRY MOLECULAR WEIGHT OF STACK GAS, lb/lb-mole	<b></b>			
	$M_{d} = 0.44 (0) + 0.32 (20.9) + 0.28 (79.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.7) + 0.28 (20.$	) = [28	.84 Ma		
	WET MOLECULAR WEIGHT OF STACK GAS, 1b/1b-mole		-		
(	$M_{s} = (2\%\%)(0.019) + 0.18 (9\%/) = 10.2/$				
	AVERAGE STACK GAS VELOCITY, ft/sec				
•	$v_{s} = 85.49 (0.84) \sqrt{(0.078\%)(2/2 + 460) / (30.4)(1)}$	1 <b>8.2</b> /) =	\$122	.18	
	p Favg s s DRY VOLUMETRIC STACK GAS FLOW RATE, scfm	``s	`s	_	
(	$Q_{sd} = 7.353 \ (DD19) (22.18) (707) (30.4) / (212 + M_{fd} v_s A P_s t_s)$	460) = [	),99/ ^Q sð	]	
	WET VOLUMETRIC STACK GAS FLOW RATE, acfm				
-	$Q_{aw} = (60 / 144) (22.18) (7.07) = 65.34$ v _s A $Q_{aw}$				

٢

(

(

C

C

AIR FLOW RATE FIELD DATA

OP-1

COMPANY NAME RESOURCES CONSERVATION
ADDRESS GARDEN CITY GA
SAMPLING LOCATION O. 1 POLISHER OUTLET PERSONNEL RWM
DATE $\frac{2/27/87}{1000000000000000000000000000000000000$
BAROMETRIC PRESSURE (Phar) 30.4 IN Ha STATIC PRESSURE (Ph) 0 IN. Ha
PITOT PROBE I.D PITOT TUBE COEFFICIENT (Cp)

# ASSUMED FLUE GAS MOLECULAR WT; MOISTURE CONTENT ASSUMED TO BE AT SATURATION LEVEL.

RUN	24 HR. CLOCK TIME	EL APSED TIME		TEMP.		RUN	24 HR. CLOCK TIME	el apsed Time	⇔ p 1N.H ₂ 0	TEMP. °F
0P-1	1114 1115 1116	/ m.w. / m.w.	0.05 8.055 0.105	212 212 212						
	1/16.5	. 5 M IN	0.115	212						
		Avg.	0.0785	8 212	-					
						'				



. }

ſ

ſ

(

(

(

 $\langle \mathbf{f} \rangle$ 

(

(

Ĺ

5



# EVACUATED TANK FIELD DATA

( o) why ale

1116.30

COMPANY NAME RESOURCES CONSERIATION	Run # $OP - 1$
Address Surden City Isa	Date 2/27/87
Sampling Location Oil Polisher Outlet	Start //14
Tank Number GT24 Tank Volume 7.071 liters	Finish ///6.3
SONIC ORIFICE 10 - 191 cc	Operator <u>RwM</u>

# TANK PARAMETERS

	Barometric Tani Pressure, Temp		nk Tank Pressure			Leak Check (cm Hg change)		
	in.Hg	mmHg	F	Ċ	Gauge	Absolute	Tank	System
retest	30.4	756	48	9	- 756	16,2		
Post Test	30.4	772.2	48	9	-670	102.		
Final ressure	उसम		#	9	+ 406		× / _ /	1
	29.12		66				Sampl	e = 0.8

Cleak Time	Gauge Pressure,	Flow Meter	TEMO
CIOCK TIME		Secting, cc/min	10111
114	0.05		
1115	,055		
1116	.105		
,	, 115		
	•		
1114	0.05		
11/5	0.055		
1116	0.105		
1116.34	0.115		
	-		

Ċ

* ...

(

Ę

(

Ć

(

C

C

C

(

# APPENDIX C

.

.....

C

Ċ

(

E

) (

(

C

C

C

5

L

ŧ,

ANALYTICAL DATA

# ENTROPY

Report Number: 5448 Date Samples Received: 03/02/86 Date Samples Analyzed: 03/20/86 Analyst: Bruce Hawks Report Date: 03/23/86

ſ

l

(

C

C

C

C

C

Subject: Analysis of a charcoal tubes for toluene, benzene, and xylenes.

<u>Analytical Methodology:</u> The entire contents of the charcoal tube was desorbed with 4.0 mL of carbon disulfide. Standards were prepared by spiking charcoal tubes with the analytes; the standard tubes were desorbed in the same manner as the sample tube thus inherently correcting for desorption efficiency. Analysis was performed on a Perkin-Elmer Model 8310 gas chromatograph with flame ionization detection. The chromatographic conditions were:

Analytical column	10% SP-1000 on 80/100 Supelcoport 20' x 1/8" S.S.
Column Temperature	100°C, hold 6 min, 20°C/min to 140°C, hold 4 min
Flow rate	40 mL/min. N ₂
Injector Temperature	250°C
Detector Temperature	300°c

RESULTS: All results reported in micrograms per sample

Run ID	Benzene	Toluene	Xylenes
CE-1A-1a	1,260	760	1,070
CE-1A-1b	< 0.03	< 0.03	< 0.03
CE-2A-1a	1,260	668	971
CE-2A-1b	< 0.03	< 0.03	< 0.03
CE-3A-1a	1,330	673	1,020
CE-3A-1b	< 0.03	< 0.03	< 0.03
CE-4A-1a	1,220	610	862
CE-4A-1b	< 0.03	< 0.03	< 0.03
OP-1	106	111	389
OP-1	< 0.03	< 0.03	< 0.03

Sure Hawks

Bruce Hawks

# ENTDODV

Oxford Labo	oratories, Inc.			Anal	ytical and	Consulting Chemists
٢	,	DATE RECE DATE REPO 87W61	IVED RTED 14	3-13- 3-24-	-87 -87	1316 South Fifth Street Wilmington, N.C. 28401 (919) 763-9793
		PAGE	1 01	F l		
ENTROPY E P.O. BOX RESEARCH	NVIROMENTALIST INC 12291 TRIANGLE PK. , N.C	27709-22	P 91	.0. #	5448A-3	
ATTENTION (	: Bruce Hawks					
SAMPLE DE	SCRIPTION: Bilayer	ed .5N HNC	3			
1 OP-1 2. OP-1	Reagent Upper Laye Reagent Lower Laye	r 1.5ml r 46.5ml				
(		RESULTS				
•			1	<u>2</u>	•	
Mercury, ug/m	1	X		<.01		
C riethylamine	, ug/ml	х		1500		
Xylene, ug/ml		1	0,000	x		
Toluene, ug/m	1	l	560	x		
( Benzene, ug/m	1	· <b>&lt;</b>	400	x		

C

L

C

í

-----

I.

-----

Bruce A. Babson, CHEMIST

r.,

Oxford Laboratories, Inc.		Analy	tical and	Consultin	ng Chemis
	DATE REPORTED 87W6113	) 3-13- ) 3-12-	87	Wilmingto (	on, N.C. 284 (919) 763-97
	PAGE 1	OF 2			
ENTROPY ENVIROMENTALIST IN P.O. BOX 12291	2	P.O. #	5448A-2		
RESEARCH TRIANGLE PK. , N.O	2. 27709-2291				
ATTENTION: Bruce Hawks					
SAMPLE DESCRIPTION: 8 Silic	a Gel Tubes				
· · · · · · · · · · · · · · · · · · ·					
1. CE-18-1a 2. CE-18-15					
3. CE-2B-1a					
4. CE-2B-1b					
5. CE-3B-la					
6. CE-3B-15					
	RESULTS				
	1	2	<u>3</u>	<u>4</u>	<u>5</u>

**(** )

ţ

(

(

. .

(

C

ζ

.

1

	Oxford Laboratories, Inc. Analytical and Consulting Chemists
{	DATE RECEIVED         3-13-87         1316 South Fifth Street           DATE REPORTED         3-12-87         Wilmington, N.C. 28401           87W611.3         (919) 763-9793
	PAGE 2 OF 2
(	ENTROPY ENVIROMENTALIST INC P.O. # 5448A-2 P.O. BOX 12291 RESEARCH TRIANGLE PK., N.C. 27709-2291
	ATTENTION: Bruce Hawks
(	SAMPLE DESCRIPTION: 8 Silica Gel Tubes
	7. CE-4B-la 8. CE-4B-lb
(	RESULTS
	<u>7 8</u>
	Triethylamine,mg/tube 152 <0.03
( -	

NOTE: See Discussion.

1

(

C

Ľ

Ĺ

ļ

Bruce A. Babson BRUCE A. BABSON, CHEMIST

Oxford Laboratories, Inc.		Analytic	cal and	Consultir	ng Chemis	sts
	DATE RECEIVED DATE REPORTED 87W6115	3-13-87 3-12-87	7	1316 Sout Wilmingto	h Fifth Stre on, N.C. 284 919) 763-97	et 01 93
	PAGE 1 O	F 2				
ENTROPY ENVIROMENTALIST INC P.O. BOX 12291 RESEARCH TRIANGLE PK. , N.C	с р с. 27709-2291	.0. # 54	48A-1			
ATTENTION: Bruce Hawks						
SAMPLE DESCRIPTION: 8 tube:	s for Mercury					
1. CE-1C-la						
3. LE-2L-1a						
5. $CE = 2C - 1a$ 4. $CE = 2C - 1b$ 5. $CE = 3C - 1a$						
4. CE-2C-1a 4. CE-2C-1b 5. CE-3C-1a 6. CE-3C-1b						
4. CE-2C-1b 5. CE-3C-1a 6. CE-3C-1b	RESULTS					
4. CE-2C-1a 4. CE-2C-1b 5. CE-3C-1a 6. CE-3C-1b	<u>results</u> <u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>

7-

.

1 ;

-------

.

۲

6

₹

(

(

¢

C

Ĺ

{

.

Oxford Laboratories, Inc. Analytical and Consulting Chemists 1316 South Fifth Street DATE RECEIVED 3-13-87 Wilmington, N.C. 28401 DATE REPORTED 3-12-87 Č 87W6115 (919) 763-9793 PAGE 2 OF 2 C ENTROPY ENVIROMENTALIST INC P.O. # 5448A-1 P.O. BOX 12291 RESEARCH TRIANGLE PK., N.C. 27709-2291 ATTENTION: Bruce Hawks C SAMPLE DESCRIPTION: 8 tubes for Mercury 7. CE-4C-la 8. CE-4C-1b

RESULTS

 $r_{i}$ 

Mercury as Hg, ug

(

٢

(

(

C

<u>7</u><u>8</u> <0.05 <0.05

Buce a. Bablo

BRUCE A. BABSON , CHEMIST

Oxford Laboratories, Inc.

C

C

(

C

C

(

C

(

٤.

Analytical and Consulting Chemists 1316 South Fifth Street Wilmington, N.C. 28401 (919) 763-9793

March 19, 1987

Entropy Environmentalists Inc. P.O. Box 12291 Research Triangle Park, N.C. 27709-2291

Attention: Bruce Hawks

Sample Description: 8 Silica Gel Tubes

### DISCUSSION

"A" tubes were desorbed with 15ml of 1.0 NH₂SO₄. Two desorption efficiency trials were performed using this ratio of solvent to adsorbent. The data for recovery was as follows:

Loading, mg	Recovery, 8
36.3	67.4
217.8	86.4

Since these loading rates bracketed the amounts found on the "A" tubes, an average % recovery (76.9) was calculated and data for the "A" was adjusted using this recovery.

Recovery from the "B" tubes was not as efficient, probably due to the fact that only 5ml of acid was used. Recovery at 2.9mg was 25.8%. Detection limits for the "B" tubes were adjusted accordingly.

 $T_{\frac{1}{2}}$ 

Bune a. Bahan

Bruce A. Babson, Chemist

BAB/lo



"OK "

<u>ٰر</u>

ł

(

٢

٢

(

POST OFFICE BOX 12291 RESEARCH TRIANGLE PARK NORTH CAROLINA 27709-2291 919-781-3550

ŧ

(

_____

### INTERLABORATORY SAMPLE TRANSFER CHAIN-OF-CUSTODY FORM

Please return this form along with the analytical results.

The samples referenced on EEI Purchase	Order Number:	5448A-2	were
shipped via Pony Extress	on 3/9/87	by Bit	
to Oxford Labs			

Samples received at Offord Low on 3-13-87 by Roger DH

. ج

Note any broken seals. leakage, spillage, and/or damage to the samples.



C

· (

C

C

 $\boldsymbol{c}$ 

5

C

C

C

POST OFFICE BOX 12291 RESEARCH TRIANGLE PARK NORTH CAROLINA 27709-2291 919-781-3550

INTERLABORATORY SAMPLE TRANSFER CHAIN-OF-CUSTODY FORM

Please return this form along with the analytical results.

The samples referenced on HEI Purchase	Order Number:	54484-7	were
shipped via Pony Express	on/87	by BH	
to Oxford Lab			

Hord Labs_ on 3-13-87 Samples received at Ъу (

. .

Note any broken seels, leakage, spillage, and/or damage to the samples.



C

(

(

(

ζ

(

(

٤

(

1

Ċ

POST OFFICE BOX 12291 RESEARCH TRIANGLE PARK NORTH CAROLINA 27709-2291 919-781-3550

INTERLABORATORY SAMPLE TRANSFER CHAIN-OF-CUSTODY FORM

Please return this form along with the analytical results.

The samples referenced or EEI Purchase	Order	Number:	5448	A-1	were
shipped via Pory Extres	on	3/9/87	by	BH	
to Oxford Lab					

ford Lebs on 3-13-87 Samples received at ру

Note any broken seals, leakage, spillage, and/or damage to the samples.

APPENDIX D

-

Ç

(

(

(

۲

Ċ

(

C

C

C

(

`--

CALIBRATION DATA

# ENTRODV

## ORIFICE CALIBRATIONS

Condenser Exhaust

By! BDR on 3-5-87

(

t

C

C

C

( C

(

(

Ċ

C

1

 Orifice
 # 1

 Box N-5
 Y = (1.0237 @ Dh <= 0.5) 

 MolWt, wet =
 28.68

Orifice	Meter	Volume	Time	Meter	Orif	Orif Flow	Bar P.	Coeffnt	
Delta P	Delta H	acf	min	Tmp-F	Tmp-F	acfm	In. Hg	Кm	
0.05	0.07	0.664	5	75	69	0.1344	30.05	0.763	
0.10	0.13	0.982	5	78	69	0.1977	30.05	Ŭ.791 _	
/0.15	0.18	1.19	5	80	70	0.2391	30.05	0.780	Λ
/ 0.20	0.25	1.359	5	82	70	0.2721	30.05	0.768	ł
0.25	0.32	1.518	5	84	70	0.3028	30.05	0.763	0.7663
\ 0.30	0.37	1.655	5	86	70	0.3290	30.05	0.755 _	/
0.40	0.48	1.894	5	79	69	0.3807	30.04	0.761	
0.50	0.6	2.124	5	80	69	0.4261	30.04	0.762	
0.60	0,72	2.324	ຽ	82	69	<b>0.4645</b>	30.04	<b>0.757</b>	

۲۰. ج Average 0.7666

۰.

Ę

٠.

.

Esourse Conservation

, (

(

(

(

(

£ ...

C

ζ

F- 1033

9-96

MASS FLOW METER CALIBRATION

BYRON Model 90

____

EAROMETRIC PRESSURE (MM HG) $\frac{758.0}{10}$ P ₃ AMBIENT TEMPERATURE (°C) $\frac{10}{10}$ (T _A )	METER IDENTIFICATION Leather Case CALIERATION DATE 2/26/87 CALIERATION TIME 1/09
RUN TIME (MINUTES) $0.96$ (8) MEASURED VOLUME. (LITERS) $0.10$ (V3)	FLOW RATE SETTING (MLPM) /00.0 METERED VOLUME. VST (DRY STD. LITERS) 0./0 VM
VOLUME STD $V_{SB} = (.386)(P_B/(T_A + 273))(V_B) = \frac{1034}{1034}$ FLOW RATE. STD = $(0.1034 V_{SB})/(0.96 - 3) = .10.77$	CALIBRATION FACTOR (Y) $\gamma = (\frac{10.34}{V_{SB}})/(\frac{0.10}{V_M}) = \frac{1.034}{10.34}$

EAROMETRIC PRESSURE (MM HG) $758.0 P_3$ AMBIENT TEMPERATURE (°C) 10 [T _A )	METER IDENTIFICATION Lotter Cone CALIBRATION DATE 2/26/87 CALIBRATION TIME 1/09
BUBBLE METER DATA	
RUN TIME (MINUTES) $0.95$ (0) MEASURED VOLUME. (LITERS) $0.10$ (V _B ).	FLOW RATE SETTING (MLFM) /00 METERED VOLUME.
	M (DRI SID: DITENS)
VOLUME STD., $V_{SB} = (.386)(P_{B}/(T_{A} + 273))N_{B}) = 0.034$ FLOW RATE. STD = 0.034 $V_{SB}/(0.95-0) = 0.1088$	CALIBRATION FACTOR (Y) $\gamma = (0.1034 v_{SB}) / (0.10 v_M) = 1.034$

BAROMETRIC PRESSURE (MM HG) $\frac{758.0}{10}$ PB AMBIENT TEMPERATURE (°C) 10 (TA)	METER IDENTIFICATION <u>LLaThy Case</u> CALIBRATION DATE <u>2/26/87</u> CALIBRATION TIME <u>109</u>
BUBBLE METER DATA RUN TIME (MINUTES) 0.45 (θ) MEASURED VOLUME. (LITERS) 0.10 (VB)	FLOW RATE SETTING (MLPM) /00 METERED VOLUME. V _M (DRY STD. LITERS) 0.10 V _M
VOLUME STD $V_{SB} = (.386)(P_{B}/(T_{A}+273))(V_{B}) = 0.1034$ FLOW RATE. $STD = (0.1034 V_{SB})/(0.95 0) = 0.1082$	calibration factor (Y) $y = (0.034 v_{SB})/(0.00 v_M) = 1.034$

ENTROPY

# APPENDIX E

(

(

(

(

(

(C

C

(

C

C

# SAMPLING AND ANALYTICAL PROCEDURES

**ENTROPY** 

## ALIPHATIC AMINES IN AIR

**Physical and Chemical Analysis Branch** 

Analyte: Aliphatic Amines	Method No.: P&CAM 221
Matrix: Air	Range: 1 to 2400 mg/m ³ in a 10-liter sample of air
Procedure: Adsorption on	
silica gel; elution with	<b>Precision</b> (CV _T ): 0.03 for
acid; GC analysis	methylamine at 300 mg/m ³
Date Issued: 1/29/76	Classification: E (Proposed)
Date Revised:	

#### 1. Principle of the Method

- 1.1 A known volume of air is drawn through a tube containing silicagel to trap the aliphatic amines. The silica gel is transferred to glass-stoppered tubes and treated with sulfuric acid. A portion of the resulting acid solution is made alkaline with an excess of sodium hydroxide and an aliquot of the alkaline solution is analyzed by gas chromatography with a flame ionization detector.
- 1.2 The method may be used to determine a single aliphatic amine or to determine two or more amines in a single sample. The method has been applied to the following individual compounds:
  - Methylamine Ethylamine Dimethylamine Isopropylamine Butylamine Diethylamine Diisopropylamine Triethylamine Cyclohexylamine

2. Range and Sensitivity

2.1 The limit of detection of the method is 0.01 mg of amine (0.02 mg of methylamine) per sample when the analyte is desorbed from 150 mg of silica gel with 2 mk of sulfuric acid and a  $3-\mu$  aliquot of the alkaline mixture is analyzed. This limit corresponds approximately to 1 mg/m³ (2 mg/m³ for methylamine) in a 10-liter sample of air.

369

E

C

(

(

£

(

(

C

٢.

۰. ,

4.6 A coefficient of variation of 0.03 has been determined for the analysis of 10 samples of 1.2 mg of methylamine collected from 4 liters of air (300 mg/m³) with a personal sampling pump. The recovery was 99%.

#### 5. Advantages and Disadvantages

(

ſ

(

C

C

C

- 5.1 The sampling method uses a small, portable device involving no liquids. The sorbent tube can be used for at least 8 hr to measure an average workday concentration, or for only 15 min to measure an excursion concentration. Desorption of the sample and preparation for analysis are simple. The analysis is accomplished by a rapid instrumental method.
- 5.2 Most analytical interferences can be eliminated by altering the GC conditions.
- 5.3 Several aliphatic amines can be collected and determined simultaneously. This is especially useful when the identity and composition of the amine vapors are not known.
- 5.4 The major disadvantage of the method is the necessity for measuring desorption efficiencies. When the desc.ption is less than complete, as for higher molecular weight amines, the effect of the amount of compound absorbed must also be determined.

#### 6. Apparatus

- 6.1 Air Sampling Equipment
  - Sorbent tubes. The sorbent tubes consist of Pyrex glass tubes 125 mm long 6.1.1 and 8 mm i.d., packed with three separate sections of 45/60-mesh activated silica gel. The weights of the three sections of silica gel are, in order, 600, 150, and 150 mg; these tubes are designed for sample flow in either direction. Plugs of 100-mesh stainless steel screen are used to contain the silica gel sections. These plugs of negligible pressure drop are prepared from 7-mm discs of screen held in place by Teflon rings. Pieces of Pyrex tubing 12 mm long and 7 mm in o.d. are located between the sorbent sections to inhibit migration of the amines. The ends of the tubes are flamesealed after packing to prevent contamination before use for sampling. The pressure drop across the tubes does not exceed 6 cm of water at a flow rate of 200 ml/min. The silica gel should be the equivalent of Silica Gel D-08, Chromatographic Grade, Activated and Fines Free, 45/60-mesh, as supplied by Applied Science Laboratories, Inc., State College, Pa. Polyethylene caps should be provided to seal the tubes after sampling has been completed.

#### 8.2 Collection and Shipping of Samples

1

C

{

(

٢

- 8.2.1 Immediately before beginning the collection of a sample, break each end of the sorbent tube so as to provide openings at least half the inside diameter of the tube.
- 8.2.2 Choose the direction desired for sample flow, mark the inlet end of the tube with a permanent marker, and attach the other end to the sampling pump. For low concentrations of amines, low humidity conditions, or short sampling periods, pump the sample air through the 150-mg sorbent section first; for high concentrations, high humidity, or long sampling periods, pump the sample air through the 600-mg sorbent section first. Sample air must not pass through any hose or tubing before entering the sorbent tube.
- 8.2.3 With the sorbent tube in a vertical position, sample the air at 200 ml/min for the desired period of time (0.25 to 8 hr). The flow rate and sampling time, or the volume, must be measured as accurately as possible. The temperature and pressure of the air being sampled should be measured and recorded.
- 8.2.4 Immediately after ampling is completed, cap the sorbent tubes with the polyethylene caps provided. Rubber caps must not be used.
- 8.2.5 One tube should be handled in the same manner as the sample tubes (break, seal, and ship) except that no air is pumped through it. Label this tube as a blank.
- 8.2.6 Pack the tubes tightly before shipping to minimize breakage in transit.
- 8.2.7 After the sample is collected the tubes should not be subjected to extremes of high temperature or low pressure. Refrigeration will reduce sample loss.
- 8.3 Analysis of Samples
  - 8.3.1 Preparation of Samples. Remove and discard the stainless steel plugs and glass spacers and transfer each section of silica gel to a separate glass-stoppered test tube or flask. Label the samples and analyze each section separately.
  - 8.3.2 Desorption. Desorb the amines from the silica gel by adding  $2 \text{ m}\ell$  of 1.0 N sulfuric acid to the 150-mg sections and  $8 \text{ m}\ell$  to the 600-mg section. Shake the sample mixtures occasionally over a period of 1 hr. Tests have indicated that desorption reaches a maximum in an hour.

Importance of Determination. Desorption efficiency for a particular compound can vary from one lot of silica gel to another, and also from one laboratory to another. Therefore, it is necessary to determine at least once the desorption efficiency for each amine with each lot of silica gel used. Among the aliphatic amines listed in Section 1.2 desorption efficiency decreases with increasing molecular weight. Desorption efficiency increases with increasing ratio of sulfuric acid to silica gel; however, an increase in this ratio results in a reduction in analytical sensitivity. A compromise ratio of 75 mg of silica gel per milliliter of sulfuric acid is recommended. Desorption efficiency may also vary with the amount of amine present on the silica gel. Measurements of efficiency should, therefore, be made for at least two amounts within the normal range of sample size.

8.4.2 Procedure for Determination of Desorption Efficiency. Place 150 mg of silica gel in a 2-ml glass-stoppered tube. The silica gel must be from the same lot as that used in collecting the sample; it can be obtained from unused sorbent tubes. With a microliter syringe, inject a known amount of the amine, either pure or in water solution, directly onto the silica gel. Close the tube with the glass stopper and allow it to stand at least overnight to insure complete adsorption of the amine. Prepare at least three tubes for each of at least two different amounts of amine. These tubes are referred to as samples. Prepare a blank in the same manner, omitting the amine. Analyze the samples and blank as described in Section 8.3. Also analyze three standards prepared by adding identical amounts of the amine to 2.0 ml of 0.1 Nsulfuric acid. Determine the concentrations of the amine in the blank, samples, and standards using calibration curves prepared as described in Section 9. The desorption efficiency is calculated by dividing the concentration of amine found in the sample by the concentration obtained for the corresponding standard.

- 9. Standards and Calibration
  - 9.1 For accuracy in the preparation of standards, it is recommended that an initial standard be prepared in a relatively large volume and at a high concentration. Aliquots of this standard can then be diluted to prepare other standards. Prepare the initial standard by pipetting an appropriate volume of amine into a 100-mf volumetric flask and adding distilled water to the mark. Check the concentration of this solution by titrating with standard sulfuric acid. Make the first dilution by adding an equal volume of 2.0 N sulfuric acid to an aliquot of the initial standard. Make additional dilutions with 1.0 N sulfuric acid so that the final concentration of sulfuric acid will be the same in standards and samples.

575

8.4.1

٢

1

(

C

10.3 The concentration may also be expressed in terms of parts per million (ppm) by volume:

ppm = mg/m³ x 
$$\frac{24.45}{M.W.}$$
 x  $\frac{760}{P}$  x  $\frac{T+273}{298}$ 

where:  $24.45 = \text{molar volume } (\ell/\text{mole}) \text{ at } 25^{\circ} \text{ C} \text{ and } 760 \text{ mmHg.}$ 

M.W. = molecular weight.

P = pressure (mmHg) of air sampled.

T = temperature (°C) of air sampled.

11. References

?

(

(

C

C

C

- 11.1 Campbell, Evan E., G.O. Wood, and R.G. Anderson, "Development of Air Sampling Techniques," Los Alamos Scientific Laboratory, Progress Reports LA-5634-PR (June 1974), LA-5973-PR (J 19 1975), and LA-6057-PR (September 1975).
- 11.2 Andre, C.E., and A.R. Mosier, "Precolumn Inlet System for the Gas Chromatographic Analysis of Trace Quantities of Short-Chain Aliphatic Amines," Anal. Chem., 45, 1971 (1973).
- 11.3 Wood, G. O., and R. G. Anderson, "Development of Air Monitoring Techniques Using Solid Sorbents," Los Alamos Scientific Laboratory, Progress Reports LA-6216-PR (February 1976) and LA-6513-PR (September 1976).

377

FORMULA: Table 1

### HYDROCARBONS, AROMATIC

M.W.: Table 1

Ć

(

(

(

Ç

METHOD: 1501 ISSUED: 2/15/84

OSHA, NIOSH, ACGIH: Table 2

ĺ

PROPERTIES: Table 1

COMPOUNDS:	benzene	cumeme	a-methylstyrene	styrene	vinyltoluene
(Synonyms	<u>p-tert</u> -butyltoluene	ethylbenzene	naphthalene	toluene	xylene
in Table 1)					-

SAMPLING	MEASUREMENT				
SAMPLER: SOLID SORBENT TUBE (coconut shell charcoal,	! !TECHNIQUE: GAS CHROMATOGRAPHY, FID !				
100 mg/50 mg)	ANALYTES: hydrocarbons listed above				
FLOW RATE, VOLUME: Table 3	: !DESORPTION: 1 mL CS ₂ ; stand 30 min !				
SHIPMENT: no special precautions	INJECTION VOLUME: 5 JL				
SAMPLE STABILITY: not determined	: !TEMPERATURE-INJECTION: 225 °C ! -DETECTOR: 225 °C				
BLANKS: 2 to 10 field blanks per set	!COLUMN: see step 11				
BULK SAMPLE: desirable, 1 to 10 mL; ship in separate containers from samples	! !CARRIER GAS: N ₂ or He, 25 mL/min !				
	100/120 mesh Chromosorh W-AW				
ACCURACY	! or equivalent				
RANGE STUDIED, BIAS and OVERALL PRECISION (s_): Table 3	! !CALIBRATION: analytes in CS ₂ !				
	RANGE AND PRECISION (sr): Table 4				
	: !ESTIMATED LOD: 0.001 to 0.01 mg per sample ! with capillary column [1] !				

APPLICABILITY: This method is for peak, ceiling and TWA determinations of aromatic hydrocarbons It may be used for simultaneous measurements, though there is the possibility that interactions <u>between analytes may reduce the breakthrough volumes and change desorption efficiencies</u>. INTERFERENCES: Use of the recommended column will prevent interference by alkanes ( $\leq C_{10}$ ). Under conditions of high humidity, the breakthrough volumes may be reduced by as much as 50%. Other volatile organic solvents, e.g., alcohols, ketones, ethers and halogenated hydrocarbons, are possible interferences. If interference is suspected, use a less polar column or change column temperature.

OTHER METHODS: This method is based on and supercedes Methods P&CAM 127, benzene, styrene, toluene and xylene [2]; S311, benzene [4]; S22, <u>p-tert</u>-butyltoluene [3]; S23, cumene [3]; S29, ethylbenzene [3]; S26,  $\alpha$ -methylstyrene [3]; S292, naphthalene [4]; S30, styrene [3]; S343, toluene [4]; S25, vinyltoluene [3]; S318, xylene [4].

#### METHOD: 1501

(

(

(

(

- 9. Determine desorption efficiency (DE) at least once for each batch of charcoal used for sampling in the calibration range (step 8). Prepare three tubes at each of five levels plus three media blanks.
  - a. Remove and discard back sorbent section of a media blank sampler.
  - b. Inject a known amount of analyte (calibration stock solution for naphthalene) directly onto front sorbent section with a microliter syringe.
  - c. Cap the tube. Allow to stand overnight.
  - d. Desorb (steps 5 through 7) and analyze together with working standards (steps 11, 12 and 13).
  - e. Prepare a graph of DE vs. mg analyte recovered.
- 10. Analyze three quality control blind spikes and three analyst spikes to insure that the calibration graph and DE graph are in control.

#### MEASUREMENT :

11. Set gas chromatograph according to manufacturer's recommendations and to conditions given on page 1501-1. Select appropriate column temperature:

	Approximate	Retention Time	(min), at Indicated	Column Temperature
<u>Substance</u> ^a	<u>50 °C</u>	<u>100 °C</u>	<u>150 °C</u>	Programmed
benzene	2.5		•	2.5
toluene	4.3	1.1		4.2
xylene ( <u>para</u> )	7.0	1.4		5.2
ethylbenzene	7.0	1.4		5.5
xylene ( <u>meta</u> )	1.2	1.5		5.6
cumene	8.3	1.6		6.0
xylene ( <u>ortho</u> )	10	1.9		6.5
styrene	16	2.6		7.6
a-methylstyrene		3.2	1.0	8.1
vinyltoluene (meta)		3.8	1.2	8.5
naphthalene		25	4.3	12

^aData not available for <u>p-tert</u>-butyltoluene and <u>p-vinyltoluene</u>.

^bTemperature program: 50 °C for 3 min, then 15 °C/min to 200 °C.

NOTE: Alternatively, column and temperature may be taken from Table 4.

- 12. Inject sample aliquot manually using solvent flush technique or with autosampler. NOTE: If peak area is above the linear range of the working standards, dilute with eluent, reanalyze and apply the appropriate dilution factor in calculations.
- 13. Measure peak area.

#### CALCULATIONS:

14. Determine the mass, mg (corrected for DE) of analyte found in the sample front  $(W_f)$  and back  $(W_b)$  sorbent sections, and in the average media blank front  $(B_f)$  and back  $(B_b)$  sorbent sections.

NOTE: If  $W_{\rm b} > W_{\rm f}/10$ , report breakthrough and possible sample loss.

# METHOD: 1501

Ċ

(

(

(

C

(

C

Ç

ſ

HYDROCARBONS, AROMATIC

Table 1. Synonyms, formula, molecular weight, properties [5].

			Molec-	Boiling	Vapor Pr	essure	Density
Name/Synonyms	Structure	Formula	ular Weight	(°C)	(mm Hg)	(kPa)	γe 20 °C (g/mL)
benzene CAS #71-43-2	$\bigcirc$	сене	78.11	80.1	95.2	12.7	0.879
p- <u>tert</u> -butyltoluene CAS #98-51-1 1- <u>tert</u> -butyl-4-methy		. ^C 11 ^H 16	148.25	192.8	0.7	0.09	0.861
cumene CAS #98-82-8 isopropylbenzene	$\bigcirc \prec$	C9H12	120.20	152.4	4.7	0.62	0.862
ethylbenzene CAS #100-41-4	$\bigcirc \neg$	с _{8н} 10	106.17	136.2	9.6	1.28	0.867
∝-methylstyrene CAS #98-83-9 isopropenylbenzene (l-methylethenyl)-be		01 ^H e ²	1 18. 18	165.4	2.5	0.33	0.911
naphthalene CAS #91-20-3	$\bigcirc \bigcirc$	^С 10 ^Н 8	128.18	80.2 ^a	0.2	0.03	1.025
styrene CAS #100-42-5 vinylbenzene	$\bigcirc \neg$	с <mark>8н8</mark>	104.15	145.2	6.1	0.81	0.906
toluene CAS #108-88-3 methylbenzene	$\bigcirc$	с ₇ н ₈	92.14	110.6	28.4	3.79	0.867
vinyltoluene ^b CAS #25013-15-4 methylstyrene ( methylvinylbenzene		^C 9 ^H 10 (me) (D2) ( <u>or</u>	118.18 <u>eta)</u> ira) <u>irbo</u> )	167.7 171.6 172.8 169.8	1.6 1.9 1.8 1.8	0.22 0.26 0.24 0.24	0.898 0.911 0.911 0.904
xylene ^C CAS #1330-20-7 dimethylbenzene	(p-xylene)	С ₈ н ₁₀ (от (та (ра	106.17 <u>etho</u> ) <u>eta</u> ) <u>ira</u> )	144.4 139.1 138.4	6.7 8.4 8.8	0.89 1.12 1.19	0.880 0.864 0.861

amelting point.

^bCommercial mixture of <u>meta</u> and <u>para</u> isomers.

CHixture of isomers.

s.,+-

.
**METHOD: 1501** 

<

(

(

(

C

(

C

¢

HYDROCARBONS, AROMATIC

	Desorption Volume	Measurement		Carrier	Column Parameters ^b		
		Range	Precision	Flow	t	Length	
Substance	(mL)	(mg)	(s _r )	(mL/min)	(°C)	(m)	PackingC
benzene	1.0	0.09- 0.35	i 0.036	50	115	0.9	٨
<u>p-tert</u> -butyltoluene	0.5	0.27- 1.09	0.021d	50	115	3.0	B
cumene	0.5	0.86- 3.46	6 0.010	50	99	3.0	8
ethylbenzene	0.5	2.17-8.67	0.010	50	85	3.0	В
a-methylstyrene	0.5	0.69- 3.57	0.011	50	115	3.0	B
naphthalene	1.0	4.96-19.7	0.019	30	125	3.0	С
styrene	0.5	2.17-8.49	0.013d	50	109	3.0	B
toluene	1.0	1.13- 4.51	0.011	50	155	0.9	D
vinyltoluene	0.5	2.41- 9.64	0.008	50	120	3.0	В
xylene	1.0	2.00-10.4	0.010	50	180	0.9	D

## Table 4. Measurement range, precision and conditions^a [3,4,12].

^aInjection volume, 5.0  $\mu$ L; nitrogen carrier gas.

^bAll columns stainless steel, 3.2 mm outside diameter.

CA, 50/80 mesh Porapak P; B, 10% FFAP on 80/100 mesh Chromosorb W AW-DMCS;

C, 10% OV-101 on 100/120 mesh Supelcoport; D, 50/80 mesh Porapak Q.

dCorrected value, calculated from data in [12].

2/15/84

FORMULA: Hg

## MERCURY

M.W.: 200.59

Ĉ

(

۲

(

(

(

METHOD: 6000 ISSUED: 2/15/84

OSHA: 0.1 mg/m³ NIOSH: 0.05 mg/m³ [1] ACGIH: 0.05 mg/m³

PROPERTIES:	liquid; d 13.55 g/mL @ 20	°C;
	BP 356 °C; MP -39 °C; VP 0.16 Pa (0.0012 mm Hg; @ 20 °C	13.2 mg/m³)

SYNONYMS: quicksilver; CAS# 7439-97-6.

SAMPLING	MEASUREMENT
SAMPLER: SOLID SORBENT TUBE (30 mg silvered Chromosorb P, with glass fiber prefilter)	! !TECHNIQUE: ATOMIC ABSORPTION, FLAMELESS ! !ANALYTE: elemental mercury
FLOW RATE: 0.01 to 0.2 L/min	! !DESORPTION: thermal (650 to 700 °C)
VOL-MIN: 0.5 L -MAX: 7 L @ 0.1 mg/m ³	! !CARRIER GAS: air, }.0 L/min ! !WAVELENGTH: 253.7 nm
SAMPLE STABILITY: at least 7 days @ 25 °C [2]	: CALIBRATION: aqueous Hg ²⁺ spikes onto ! sampler
BLANKS: 2 to 10 field blanks per set	! !RANGE: 0.01 to 1 μg per sample [2,4]
ACCURACY	: !ESTIMATED LOD: 0.001 ug per sample !
RANGE STUDIED: 0.0456 to 0.18 mg/m ³ [2,4] (3-L samples)	PRECISION (s _r ): 0.051 [2,3]
BIAS: not significant [2,4]	
OVERALL PRECISION (s _r ): 0.061 [2]	

APPLICABILITY: The working range is 0.003 to 0.3  $mg/m^3$  for a 3-L air sample. If a glass fiber (13-mm) filter is used to prevent potential interference from mercury compounds, this filter may be analyzed for particulate Hg species [4]. This method is not affected by high humidity environments (breakthrough determined at 85% R.H.) [2].

INTERFERENCES: Chlorine and other strong oxidizing gases which attack silver (the sampling substrate), reduce the efficiency of the sampling tube but do not interfere in the measurement. Methyl mercuric chloride is partially retained on the sampler and is, therefore, a potential interferent [5].

OTHER METHODS: This method combines and replaces P&CAM 175 [4] and S199 [3].

MEASUREMENT:

L

<

ſ

۲

(

(

(

- 8. Set up the measurement system as described in the APPENDIX.
- 9. Purge the system before analyzing samples and standards by heating the first desorption section 60 sec, allowing to cool 60 sec and heating second section 30 sec.
- 10. Allow system to cool 1 min before analyzing samples.
- 11. Measure samples and standards by inserting the tube, thermally desorbing first section 60 sec, waiting 60 sec and desorbing second section for 30 sec.
  - NOTE: Handle the tube only with lint-free gloves or tissues to prevent contamination.
- 12. Allow the system to cool at least 30 sec before removing tube and inserting the next sample. CAUTION: Tubes are hot when removed. Catch them in a dry beaker as they come out of the desorption unit.

CALCULATIONS:

- 13. Read the absorbance of the sample and calculate the mass of Hg on the samples, W ( $\mu$ g), and blanks from the calibration graph. Obtain an average value for the media blanks, B ( $\mu$ g).
- 14. Calculate the concentration, C ( $mg/m^3$ ), of mercury in air volume sampled, V (L):

$$C = \frac{W - B}{V}$$
, mg/m³.

### EVALUATION OF METHOD:

Method S199 [2] was issued on July 8, 1977, and validated over the range 0.046 to 0.18 mg/m³ at 760 mm Hg and 18.0 °C using a 3-L sample [6]. Overall precision,  $s_r$ , was 0.061 with average recovery of 100.7%. The mercury concentration was independently determined by theoretical calculations based on mercury vapor pressure data and flow rate. Breakthrough did not occur after sampling 3.5 hrs at 0.184 L/min (39 L) in a Hg concentration of 0.244 mg/m³ and 85% relative humidity. Six samples stored at room temperature for seven days gave results not significantly different from samples that were analyzed immediately after exposure.

### REFERENCES:

- [1] Criteria for a Recommended Standard...Occupational Exposure to Inorganic Mercury, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 73-11024 (1973).
- [2] Backup Data Report No. 5199, prepared under NIOSH Contract 210-76-0123, available as "Ten NIOSH Analytical Methods, Set 5," available as Order No. PB 287-499 from NTIS, Springfield, VA 22161 (1977).
- [3] NIOSH Manual of Analytical Methods, 2nd. ed., V. 4, \$199, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 78-175 (1978).
- [4] Ibid, V. 5, P&CAM 175, U.S. Department of Health, Education, and Welfare, Publ. (NIOSH) 79-141 (1979).
- [5] Trujillo, P. E. and E. E. Campbell. Development of a Multistage Air Sampler for Mercury, Anal. Chem., <u>47</u>, 1629-1634 (1975).
- [6] NIOSH Research Report-Development and Validation of Methods for Sampling and Analysis of Workplace Toxic Substances, U.S. Department of Health and Human Services, Publ. (NIOSH) 80-133 (1980).

METHOD REVISED BY: R. DeLon Hull, NIOSH/DPSE; S199 originally validated under NIOSH Contract CDC-99-76-123.

#### NETHOD: 6000

C. Carrier Air Supply. Room air is drawn by vacuum pump, attached to a ballast tank to prevent fluctuations in airflow.

Carrier air passes through, in order, the thermal desorption unit, the detection system, a second filter containing Mersorb charcoal which collects the mercury, a 0 to 5-L/min flowmeter, critical orifice, and into the ballast tank of the vacuum pump.

- D. Cooling air. Supplied by an air compressor at a flow rate of 20 L/min. The air enters the desorption unit near the second desorption section.

6000-5

METHOD: 6000

1

(

(

(

(

C

(

C

C

MERCURY



- 1. LOADING MECHANISM
- 2. QUARTZ GLASS PLUNGER TUBE
- 3. RUBBER "O" RINGS
- 4. SAMPLE DESORPTION SECTION
- 5. COOLING AIR VENT HOLES
- 6. SAMPLING TUBE
- 7. NICHROME WIRE COILS

- 8. QUARTZ GLASS WOOL PLUGS
- 9. CUPRIC OXIDE (CuO)
- 10. COOLING JACKET
- 11. SECOND DESORPTION SECTION
- 12. GOLD SECTION
- 13. COOLING AIR INTAKE
- 14. WIRE HOLES AND SOLDERLESS CONNECTORS
- 15. OUTLET

# Figure 6000-2 THERMAL DESORPTION UNIT