Fourth Five-Year Review Report North Carolina State University (Lot 86 Farm Unit #1) Site Raleigh, Wake County, North Carolina US EPA ID: NCD980557656

Prepared for US Environmental Protection Agency Region 4

SEPTEMBER 2018

Prepared by North Carolina Department of Environmental Quality Raleigh, North Carolina

Franklin E. Hill Division Director, Superfund Division

<u>Alafis</u> Date

5

TABLE OF CONTENTS

Table of Contents	
LIST OF ABBREVIATIONS & ACRONYMS	iv
I. INTRODUCTION	
Site Background	
Five-Year Review Summary Form	3
II. RESPONSE ACTION SUMMARY	4
Basis for Taking Action	4
Response Actions	.4
Status of Implementation	. 7
Systems Operations/Operation & Maintenance	9
III. PROGRESS SINCE THE LAST REVIEW	. 10
IV. FIVE-YEAR REVIEW PROCESS	. 11
Community, Notification and Interviews	. 11
Data Review	
Site Inspection	.15
V. TECHNICAL ASSESSMENT	. 16
QUESTION A: Is the remedy functioning as intended by the decision documents?	.16
QUESTION B: Are the exposure assumptions, toxicity data, cleanup levels, and remedial actio	n
objectives (RAOs) used at the time of the remedy selection still valid?	. 16
QUESTION C: Has any other information come to light that could call into question the protectiveness of the remedy?	17
VI. ISSUES/RECOMMENDATIONS	
VI. ISSOES/RECOMMENDATIONS VII. PROTECTIVENESS STATEMENT	
VII. FROTECTIVENESS STATEMENT	
	. 17

<u>APPENDIX</u>

APPENDIX A	REFERENCE LIST
APPENDIX B	SITE CHRONOLOGY
APPENDIX C	SITE INSPECTION CHECKLIST
APPENDIX D	FIGURES
APPENDIX E	CURRENT SITE STATUS
APPENDIX F	ARAR REVIEW
APPENDIX G	PRESS RELEASE/INTERVIEWS
APPENDIX H	LAND USE RESTRICTIONS
APPENDIX I	SUMMARY TABLE FROM 2013 TO 2017
APPENDIX J	2018 REMEDIAL ACTION PROGRESS REPORT
APPENDIX K	DETAILED RISK REVIEW AND VAPOR INTRUSION SCREENING

ii

TABLES

TABLE 1 Groundwater Remediation Goals as Specified in the 1996	6
TABLE 2 IC Summary Form	9
TABLE 3 Protectiveness Determination/Statement from 2013 FYR	10
TABLE 4 Explanation and Discussion of Recommendations and Issues from 2013 FY	R 10
TABLE 5 Generalized Trends in Groundwater COC Concentration: 2002 to 2017	13
TABLE 6 Contaminants Not Designated in the ROD and the Highest Concentration	
Detected during August 2017 Sampling Event	14
TABLE 7 ARAR Comparison of Remediation Goals and Current Standards	17
TABLE 8 Issues and Recommendations.	

<u>FIGURES</u>

)-2
)-3
)-4

LIST OF ACRONYMS

BGS	Below Ground Surface
BRA	Baseline Risk Assessment
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulation
COC	Contaminant of Concern
DHHS	Department of Health and Human Services
1,2-DCP	1,2-Dichloropropane
DRW	Deep Recovery Well
1,2-EDB	1,2-Dibromoethane
EPA	Environmental Protection Agency
ESD	Explanation of Significant Difference
FS	Feasibility Study
FY	Fiscal Year
FYR	Five-Year Review
GWE	Groundwater Extraction
IC	Institutional Control
IUP	Industrial Use Permit
LLRW	Low Level Radioactive Waste
MCL	Maximum Contaminant Level
MW	Monitoring Well
NC 2L	North Carolina Groundwater Standard
NC DEQ	North Carolina Department of Environmental Quality
NCP	National Contingency Plan
NCSU	North Carolina State University
NPDES	National Pollutant Discharge Elimination System
NPL	National Priorities List
NS	Not Sampled
O&M	Operation and Maintenance
OU	Operable Unit
POTW	Publicly Owned Treatment Works
	-
PPB	Parts per billion (or µg/L)
PRP	Potentially Responsible Party
QAP	Quality Assurance Plan
RAO	Remedial Action Objective
RI	Remedial Investigation Record of Decision
ROD	
RPM	Remedial Project Manager
RW	Recovery Well
1,1,2-TCA	1,1,2-Trichloroethane Trichloroethene
TCE	
μg/L	Microgram per Liter (or ppb)
VOC	Volatile Organic Compound

iv

I. INTRODUCTION

The purpose of a Five-Year Review (FYR) is to evaluate the implementation and performance of a remedy in order to determine if the remedy is and will continue to be protective of human health and the environment. The methods, findings, and conclusions of reviews are documented in FYR reports such as this one. In addition, FYR reports identify issues found during the review, if any, and document recommendations to address them.

The North Carolina Department of Environmental Quality (NC DEQ) is preparing this FYR for the U.S. Environmental Protection Agency (EPA) pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 121, consistent with the National Contingency Plan (NCP) 40 Code of Federal Regulation (CFR) Section 300.430(f)(4)(ii), and considering EPA policy.

This is the fourth FYR for the North Carolina State University (NCSU), Lot 86 Farm Unit #1 Site (NCSU Site). The triggering action for this statutory review is the completion date of the previous FYR, September 20, 2013. The FYR has been prepared due to the fact that hazardous substances, pollutants, or contaminants remain at the Site above levels that allow for unlimited use and unrestricted exposure. The Site consists of one operable unit (OU), OU1, which encompasses both the soil and groundwater remedies.

The NCSU Site FYR was led by NC DEQ. Participants included David Mattison (NC DEQ), Stephanie Grubbs (NC DEQ), Michael Townsend (EPA, Remedial Project Manager [RPM]), and Angela Miller (EPA, Community Involvement Coordinator). The relevant entities such as the potentially responsible parties (PRPs) were notified of the initiation of the FYR. The review began on November 1, 2017.

Site Background

The NCSU Site is a 1.5-acre plot of grassy land located on the NCSU campus in western Raleigh, Wake County, North Carolina (See Appendix D, Figures D-1 and D-2). The Site is located on and surrounded by State-owned property; however, the Site remedial activities are maintained by NCSU. The impacted parcels are 0784366890 and 0785316741.

A six-foot gated chain-link fence topped with barbed-wire surrounds the entire Site. A metal building, housing the Site groundwater extraction system, is located inside the fenced enclosure. Since 2007, Carolina Solar Energy has leased this area from the State of North Carolina for a project in partnership with the Department of Energy who designated it a Solar "Brownfields to Brightfields" Technology Demonstration Project. The project consists of ground mounted photovoltaic panels arranged in 12 solar arrays located on top of the capped and stabilized mound for a renewable energy project. The electricity that is generated is sold back to Duke Energy. Carolina Solar Energy will own and operate the solar energy system until 2027 under a lease from the State of North Carolina.

NCSU selected Lot 86, Farm Unit No. 1 in 1969 as a burial site for hazardous chemical waste and low level radioactive waste (LLRW) generated in the University's education and research laboratories. Chemical wastes were placed in trenches located in the northwest portion of the Site. The trenches were approximately eight feet deep and varied from 50 feet to 150 feet in length. The University records show that 22 trenches, totaling approximately 2,000 linear feet, were used. The types of chemicals reported to have been buried at the Site include solvents, pesticides, inorganics, acids, and bases. Although some of

the liquid chemicals disposed during the initial Site operations were poured into the trenches, both liquid and solid chemicals were generally buried in metal, glass, or plastic containers.

Radiological wastes were buried in trenches in the eastern portion of the Site, similar to the other trenches in the northwest portion of the property, approximately six feet deep and 50 to 150 feet in length. Nine trenches were reportedly excavated and used for LLRW disposal. The NCSU Radiation Protection Office maintains records concerning waste disposal in this area. These records indicate that the wastes were properly disposed at the Site. Most of the LLRW is in solid form, primarily animal carcasses that were not containerized. Radionuclides present in the waste indicate tritium, carbon-14, iron-59, phosphorous-30, and phosphorous-32.

Land surrounding the Site is home to NCSU's football stadium, Carter-Finley Stadium, and NCSU's basketball and professional hockey facility, PNC Arena. A grass field used for parking during Carter Finley Stadium events is south of the Site, and to the east is the NCSU football training facility. Department of Health and Human Services facilities are located across the Wade Avenue Extension, a highway connecting to Interstate-40, which borders the Site to the north. The closest residents and water supply well is located approximately 2,000 feet southeast (and hydraulically upgradient) of the Site.

A Declaration of Perpetual Land Use Restrictions at the NCSU Site was recorded in June 2009 on parcel 0784366890 (Appendix H). It outlines land use restrictions for the Site, which prevent disturbance of the soil, use of the groundwater, and inappropriate use of the Site that could impact the remedy.

The groundwater plume, which extends under the adjacent highway (Wade Avenue Extension), does not require ICs as this land is within the State of NC highway right of way. At this time, the plume is contained and contaminated groundwater above the NC 2L groundwater standard does not extend beyond Wade Avenue to the adjacent parcel. Therefore, no ICs are required for parcel 0785316741.

FIVE-YEAR REVIEW SUMMARY FORM

SITE IDENTIFICATION					
Site Name: North Card	olina State	Universit	ty Lot 86 Site		
EPA ID: NCD980557	656				
Region: 4	a: 4 State: NC City/County: Raleigh, Wake County				
		SI	TE STATUS		
NPL Status: Final					
Multiple OUs? No		Has the Yes	site achieved construction completion?		
		REV	IEW STATUS		
Lead agency: US EPA			-		
Author name: Michael Townsend (EPA RPM), David Mattison (NC DEQ), and Stephanie Grubbs (NC DEQ)					
Author affiliation: US EPA and NCDEQ					
Review period: 1/1/2018 – 9/20/2018					
Date of site inspection: 3/6/2018					
Type of review: Statutory					
Review number: 4 (fourth)					
Triggering action date: 9/20/2013					
Due date (five years after triggering action date): 9/20/2018					

II. RESPONSE ACTION SUMMARY

Basis for Taking Action

Contaminants found on the Site that warranted remedial action included in the 1996 Record of Decision (ROD) include:

<u>Groundwater</u>: Acetone, Benzene, Bromodichloromethane, Carbon Tetrachloride, Chloroform, 1,2-Dichloropropane, Methylene Chloride, Tetrachloroethene, Trichloroethene (TCE), 1,1,2-Trichloroethane (1,1,2-TCA), Arsenic, and Manganese

Response Action

Summary of Pre-ROD Activities

The Site was proposed for listing on the National Priorities List (NPL) on October 15, 1984 and placed on the NPL on July 10, 1986. No removal or remediation occurred at the Site prior to the signing of the 1996 ROD, although environmental investigations had been ongoing at the Site since the early 1980s. After the initial phase of the work identified the presence of impacted groundwater beneath the Site, 33 monitoring wells were advanced near the Site for the purpose of evaluating potential groundwater impacts. A remedial investigation (RI) was completed in October 1994. A Baseline Risk Assessment (BRA) for the Site was completed in March 1995. The BRA considered the Site risks associated with the soils, groundwater, and the air pathways associated with soil and groundwater if no remediation were to occur. The current visitor, student, and recreational person at the Site were assumed to be potentially exposed to chemicals in the surface soil only. There were no current exposures to groundwater, therefore groundwater risks were not evaluated under a current use scenario. The future use scenario considered the possibility that future on-site or nearby residents were exposed to chemicals in the groundwater and surface soils. Consumption of the water from the contaminated plume would result in an unacceptable risk to human health and the environment.

After determining the nature and extent of contamination, a Feasibility Study (FS) and Revised FS were completed in February 1996. As part of the effort, a Limited Site Assessment, Source Characterization, additional soil samples, and soil vapor extraction test were conducted.

Remedial Action Objectives (RAOs)

Soil

Specific RAOs for soil were not developed at the time of the ROD.

Groundwater

The purpose of the remedial actions, as stated in the 1996 ROD, was to address contaminated media at the Site by eliminating, to the extent practicable, the volume and migration of contaminants present and to remediate all areas of contamination at the Site. As stated in the ROD, the RAOs for groundwater are:

- Prevent migrations of contaminants to surface water that would result in contamination to levels greater than the Ambient Water Quality Criteria.
- Control future releases of contaminants to ensure protection of human health and the environment.
- Permanently and significantly reduce mobility, toxicity, or volume of characteristic hazardous waste with treatment.

Remedy Components 1996 ROD

The remedies set forth in the September 30, 1996 ROD provide for remediation of contaminated soil and groundwater. The major components of the remedy include:

- In-situ mixing and encapsulation of the contaminated soils.
- Extraction of groundwater and treatment by air stripping and carbon adsorption.
- Discharge of treated groundwater to surface water or local publicly owned treatment works (POTW).

The ROD stated, "Groundwater remediation will consist of air stripping to remove volatile organics, and carbon adsorption to remove organics. The groundwater system will operate 24-hours per day. System controls will allow complete automated operation with minimal operator attention. Long-term monitoring for clean-up verification purposes and to track contaminant plume migration will be required. The system is expected to operate 30 years; samples will be collected from existing wells on a semi-annual basis for the first five years, and on an annual basis for the following 25 years. The groundwater treatment system will also require monitoring and maintenance. Monitoring of the influent and effluent from the treatment system and analysis in accordance with the permit requirements." Table 1 shows the Groundwater Remediation Goals as specified in the 1996 ROD.

Provisions for surface water sampling were not described in the ROD; however, groundwater monitoring continues to indicate that the groundwater plume is under hydraulic containment and is not projected to reach any surface water bodies.

Contaminant	Groundwater Remediation Goal (ug/L)	Basis for Remediation Goal	
Acetone	700	NC 2L ^a	
Benzene	1	NC 2L	
Bromodichloromethane	1	CRQL ^b	
Carbon Tetrachloride	<u> </u>	CRQL	
Chloroform	1	CRQL	
1,2-Dichloropropane	1	CRQL	
Methylene Chloride	5	NC 2L	
Tetrachloroethene	1	CRQL	
1,1,2-Trichloroethane	1	CRQL	
Trichloroethene	2.8	NC 2L	
Arsenic	10	CRQL	
Manganese	370	Background Concentration ^c	
^a NC 2L- North Carolina Groundwater Quality Standard (15NANC 02L) ^b CRQL- Contract Required Quantitation Limit ^c Value is based on the background concentration ug/L – parts per billion or micrograms per liter			

Table 1: Groundwater Remediation Goals as Specified in the 1996 ROD

1999 Explanation of Significant Difference (ESD)

On July 21, 1999, an ESD was signed to modify the soil remedy at the Site. During implementation of the soil RA, competent bedrock and other obstructions (debris and compressed gas cylinders) were encountered at depths as shallow as three feet below ground surface (bgs). These obstructions caused damage to the crane mounted auger-mixing unit and could potentially compromise the integrity of the solidified grout/soil mixture. The ESD was issued to change the implementation of the technology. The shallow depths of the bedrock outcroppings caused the use of the crane-mounted auger-mixing unit to be ineffective; therefore, a trackhoe was selected to replace the crane for mixing and stabilizing the material. To address this change, the mixing and air monitoring procedures were revised. The primary changes documented in the ESD were:

- Use of a trackhoe in lieu of the crane for mixing operations. The trackhoe mixing process allowed for visual inspection of the nature and extent of contamination as well as verification of thorough homogeneous mixing.
- Mixing procedure revisions included the spraying of grout in the mixing area to suppress potential vapor emissions and/or covering the emissions with surrounding soils.
- The soils were mixed in individual cells of four feet wide by twelve feet long by ten feet deep.
- Air monitoring procedure revisions included the collection of whole air samples on a daily basis from no more than 50 feet downwind of the mixing area.
- Real-time fence line monitors were used to identify potential exposure to off-site receptors.
- Passive dosimeter badges were placed at five locations around the Site to monitor acute and cumulative exposures over the duration of the project.

Status of Implementation

Soil

In January 1999, contractors began in-situ mixing and encapsulation to address the waste material buried in trenches, as well as soils surrounding the trenches, at the Site. Based on the Limited Site Assessment, the northwest corner of the Site was suspected of having numerous drums. Disposal records and practices suggested that drums were isolated and scattered throughout the Site. During the operation, eight drum carcasses were unearthed and were placed in five 95-gallon overpack drums. The overpack drums were removed and disposed off Site.

Soil mixing began on January 19, 1999 using a crane-mounted, eight-foot diameter mixing auger. As stated previously (in Section titled *1999 Explanation of Significant Difference*), the crane mounted mixing unit was abandoned and replaced by a trackhoe, which removed the top two feet of the soil from each trench and then the excavated space was filled with cement. The cement and the underlying soil in each trench was then mixed using a combination of digging and mixing motions to ensure that the soil and cement material were thoroughly mixed. During implementation of the trackhoe mixing and encapsulation process, releases of vapors to the atmosphere occurred in small vapor clouds, referred to as "puff" releases. From March to August 1999 results of air-dispersion modeling of the puff releases were submitted to and evaluated by the EPA. Based on the results of the modeling, which indicated no off-site impacts above health-based criteria, the EPA approved the continued use of the trackhoe mixing and encapsulation procedure. The change in the mixing methodology was addressed in the July 21, 1999 ESD. The operation recommenced on August 27, 1999 and continued until the final day of mixing, September 21, 1999.

During the remedial activities, a total of 113 samples of stabilized material were obtained to demonstrate conformance with the performance standards established for the Site. Approximately 2,240 tons of cement and approximately 743,000 gallons of water were used to stabilize almost 11,000 cubic yards of waste material and impacted soil. To prevent extensive erosion, the Site was re-graded with no slope exceeding a 4:1 ratio. The soil cover was crowned to deter infiltration and to direct runoff away from the monolith. The Site was covered with one foot of clean soil and all disturbed areas were reseeded. Since the source is immobilized and the encapsulation of the waste resulted in a relatively impervious concrete cap over the Site, no further action is required to address this media.

Groundwater

The groundwater system remedial design began January 25, 1999 and was completed January 3, 2006. Groundwater extraction (GWE) system wells and components installed near the right-of-way of Wade Avenue Extension also required an encroachment permit before installation occurred. GWE system installation occurred from April to September 2006. The GWE system installation is summarized as follows:

- April-June 2006: shallow GWE recovery wells (RWs) RW-1 through RW-13 and deep GWE wells (DRW) DWR-1 through DRW-4 were installed by air rotary drilling.
- July-August 2006: foundation and building construction completed.
- August-September 2006: groundwater treatment system equipment installed in building. Submersible pumps, electrical supply lines and groundwater effluent lines installed.

• Commercial operations of the GWE system began after the system inspection on September 30, 2006.

Appendix D, Figure D-3 is a Generalized Groundwater Extraction System Layout map.

From September 2006 through December 2006, the effluent was discharged to the City of Raleigh sanitary sewer system to ensure that the effluent met the National Pollutant Discharge Elimination System (NPDES) permit requirements. After December 2006, the treated water began discharging into the surface water under the NPDES permit.

Between 2009 and 2011, results of chronic toxicity testing failed to comply with the Site's NPDES discharge permit and resulted in the GWE system shutting down in 2012 from January 25 to May 31. Instead a 21,000-gallon tank received recovered groundwater from the treatment system through a temporary discharge line. The City of Raleigh issued a City of Raleigh Industrial User Pretreatment (IUP) permit in May 2012 allowing the discharge of treated groundwater from the temporary holding tank to the City's sanitary sewer system. On June 1, 2012, the GWE system resumed operation and treated groundwater was collected in a temporary holding tank for weekly discharge into the City of Raleigh's sanitary sewer via a nearby manhole, as directed by the IUP permit.

On May 28, 2013 NCSU received Permit NC0029033 from the City of Raleigh for the continuous discharge of treated groundwater into the City's sanitary sewer system. The permit, which expired May 28, 2018, was renewed through May 27, 2023.

Institutional Controls (ICs)

A Declaration of Perpetual Land Use Restrictions at the NCSU Site was recorded in June 2009 on parcel 0784366890 (Appendix H). It outlines land use restrictions for the Site, which prevent disturbance of the soil, use of the groundwater, and inappropriate use of the Site that could impact the remedy.

The groundwater plume, which extends under the adjacent highway (Wade Avenue Extension), does not require ICs as this land is within the State of NC highway right of way. At this time, the plume is contained and contaminated groundwater above the NC 2L groundwater standard does not extend beyond Wade Avenue to the adjacent parcel. Therefore, no ICs are required for the parcel 0785316741.

Table 2 summarizes the impacted parcels and instrument in place. Appendix D, Figure D-4 is the Site IC Overlay Map.

	Table 2: IC Summary Table						
OU	Media	ICs Needed	ICs Called for in the Decision Documents	Impacted Parcel(s)	IC Objective	Instrument in Place	
	Soil	Yes	Yes	0784366890	Restrict land use	Yes 06/01/2009	
OUI	Ground- water	Yes	Yes	0784366890	Restrict consumption of contaminated groundwater	Yes 06/01/2009 2009 Declaration of Perpetual Land Use Restrictions in place on fenced area (0784366890)	

Table 2: IC Summary Table

System Operation/Operation and Maintenance (O&M)

Information below was provided by NCSU. Their contractor, Piedmont Geologic, oversees all O&M activities at the Site. NCSU's annual O&M cost are, by fiscal year (FY):

FY14	\$135,426.12
FY15	\$102,762.23
FY16	\$108,047.17
FY17	\$131,878.58
FY18 .	\$117,067.64

Piedmont Geologic has been tasked with the following responsibilities in accordance with the *Operation* and *Maintenance Plan: Groundwater Extraction System*, dated August 21, 2014, prepared by Piedmont Geologic. Routine O&M activities includes the following:

- Weekly system visits by the Operator in Responsible Charge or backup Operator in Responsible Charge, to meet City of Raleigh IUP permit requirements and maintain the Groundwater Treatment System Log.
- Monthly sampling and analysis of GWE system effluent water (i.e., treated water) in accordance with City of Raleigh Permit NC0029033.
- Monthly sampling and analysis of GWE system influent water (i.e., untreated water) for evaluation of recovery system efficacy.
- Remote monitoring of the system operation and on-site response to system upset conditions.
- Routine maintenance such as replacement of system bag filters.

- Quarterly collection and evaluation of groundwater potentiometric surface data from Site monitoring wells.
- Quarterly sampling and analysis of shallow GWE wells for gross beta activity and tritium.

III. Progress Since Last Five-Year Review

OU	Protectiveness Determination	Protectiveness Statement
OU1	Flotective	The remedy at the Site currently protects human health and the environment because contaminated soils were remediated through stabilization/solidification, groundwater contamination has been contained through extraction, treatment and discharge to the City sewer, and institutional controls are in place restricting access to contaminated groundwater and soils. However, in order for the remedy to be protective in the long-term, the following actions need to be taken to ensure protectiveness: document the requirement for institutional controls and the change to the remediation goals in a decision document.

Table 3: Protectiveness Determination/Statements from the 2013 FYR

The following table, Table 4, summarizes the issues and recommendations stated during the previous FYR report and the implementation status and/or completion of these recommendations.

Table 4: Explanation	and Discussion of	f Recommendations and	l Issues from 2013 FYR

Issue	Recommendations	Current Status	Current Implementation Status Description	Completion Date (if applicable)
Institutional controls are in place on the fenced area of the Site, but were not called for in a decision document.	Document the requirement for institutional controls in a decision document.	Completed	2014 ESD	September 17, 2014

Issue	Recommendations	Current Status	Current Implementation Status Description	Completion Date (if applicable)
The State and Federal ARARs for acetone, and chloroform, are less stringent than the 1996 remediation goal.	Document the change to the remediation goals in a decision document.	Ongoing	NA	NA

The September 2014 ESD was implemented to document a final decision to include previously instituted ICs in the form of a Declaration of Perpetual Land Use Restrictions for a Federal Superfund Site as recorded on June 1, 2009 as part of the remedy for the Site. The land use restrictions for the Site prevent disturbance of the soil, use of the groundwater, and inappropriate use of the Site that could impact the remedy.

IV. FIVE-YEAR REVIEW PROCESS

Community, Notification and Interviews

The NC DEQ Superfund Section performed the FYR process for the NCSU Lot 86 Site. David Mattison (Environmental Engineer, NC Remedial Project Manager [RPM]) and Stephanie Grubbs (Hydrogeologist) from NC DEQ were responsible for gathering and reviewing data for this review and compiling all the information into the FYR Report for the EPA. Telephone and/or email discussions/interviews with Michael Townsend, EPA RPM, David Mattison, NC DEQ, Karen Trimberger, NCSU, and Pete Dressel, Piedmont Geologic, contractor, were conducted.

The EPA is responsible for contacting and interviewing the community surrounding the Site for concerns, comments, and/or questions regarding the remediation at the Site for the FYR. The community was notified via a press release to local media outlets on August 27, 2018 regarding the FYR process at the Site. In addition, a copy of the press release was posted on the EPA website (https://www.epa.gov/newsreleases/epa-conducting-fourth-five-year-review-superfund-site-raleigh-north-carolina). A copy of the press release is included in Appendix G. No community interviews were conducted for this review.

After this FYR has been approved and signed by the EPA, copies will be placed for the public to view at: the EPA Record Center, 11th Floor, 61 Forsyth Street, SW, Atlanta, GA 30303; the information repository for the Site located at the Cameron Village Regional Public Library located at 1930 Clark Avenue, Raleigh, NC 27605; and, on the EPA website <u>https://www.epa.gov/superfund/search-superfund-five-year-reviews</u>.

The following persons were interviewed by NC DEQ as part of this FYR regarding the activities and implementation of the remedial actions at the NCSU Site. Only a portion of the interviews are stated below. For the complete interview statements see Appendix G.

David Mattison, NC DEQ RPM:

What is your overall impression of the project? (general sentiment)

The groundwater extraction and treatment system is effective at containing the contaminant plume and treating the contaminated groundwater to meet City of Raleigh POTW discharge requirements. The groundwater extraction and treatment system is functioning as designed. Improvements in operation and maintenance made over the last 5 years have increased performance and efficiency of groundwater extraction, increasing the hydraulic containment of the contaminant plume.

Do you have any comments, suggestions, or recommendations regarding the project (i.e., design, construction documents, constructability, management, regulatory agencies, etc.)? *Additional investigative activities are anticipated to confirm the current Site Conceptual Model and hydraulic containment of contaminant plume.*

Karen Trimberger, NCSU Project Manager

What is your overall impression of the project? (general sentiment) *Remedial activities are proceeding as designed.*

What does the monitoring data show? Are there any trends that show contaminant levels are decreasing? Groundwater concentrations of Contaminants of Concern (COC) are generally decreasing in the following wells: MW-2, MW-3, MW-6, MW-11, MW-11I, MW-12, MW-16, MW-16D, MW-17, MW-35D, MW-36S, and MW-36D. Groundwater concentrations of COCs have increased in the following wells: MW-37, MW12I, MW-17I, and MW-27. There has not been an obvious overall trend in the concentration of COCs in groundwater in the following wells: MW-18, MW-16I, MW-17D, MW-35S, MW-40, MW-41D, MW-21I, MW-43S, MW-43D, MW-45/45R, and MW-47.

Data Review

The GWE system, for remediation of dissolved-phase groundwater chemicals of concern (COCs), was started at the Site in September 2006. Since the startup of the system on September 26, 2006, the system has been operation for 70,987 hours (approximately 72%). The total volume of groundwater recovered since system startup is 17,792,929 gallons and the estimated mass of dissolved-phase volatile organic compounds (VOCs) extracted since system startup is approximately 2,500 pounds.

		Estimated Mass of Dissolved Phase
	Groundwater Volume Recovered	VOCs Extracted (pounds)
2013	1,048,607	126
2014	2,166,110	355
2015	2,126,735	248
2016	3,237,614	450 ·
2017	2,769,302	291

Effluent/Influent

Monthly sampling and laboratory analysis of groundwater treatment system effluent groundwater was conducted in accordance with the requirements of the City of Raleigh IUP. The GWE system effluent groundwater analysis results were in compliance with requirements of the IUP as stated in the Remedial Action Progress Report. The predominant groundwater COCs at the Site in terms of frequency of detections and magnitude of concentrations are benzene, carbon tetrachloride, chloroform, 1,2-dibromoethane (EDB), 1,2-dichloropropane (1,2-DCP), 1,4-dioxane, and methylene chloride.

Groundwater Sampling

The annual Site groundwater sampling program includes the following 35 monitoring wells (MW) as specified in the August 2014 Site *Groundwater Sampling Quality Assurance Plan* (QAP):

MW-2, MW-3, MW-6, MW-8, MW-11S, MW-11I, MW-12S, MW-12I, MW-12D, MW-13D, MW-15, MW-16S, MW-16I, MW-16D, MW-17S, MW-17I, MW-17D, MW-27, MW-34DR, MW-35S, MW-35D, MW-36S, MW-36D, MW-37, MW-38, MW-41S, MW-41I, MW-41D, MW-42, MW-42I, MW-43S, MW-43D, MW-45R, MW-46, and MW-47.

As stated in the 2018 Remedial Action Progress Report (Appendix J), based on the graphs of groundwater COC concentrations over time, a qualitative evaluation of overall trends in groundwater COC concentrations since 2002 is summarized in the following table, Table 5.

Generally Decreasing	Flat or Slightly Increasing	Generally Increasing	Fluctuating (no dominant overall trend)		
MW-2 .	MW-37	MW-12I	MW-8		
MW-3		MW-17I	MW-16I (1)		
MW-6		MW-27	MW-17D		
MW-11			MW-35S (2)		
MW-111			MW-41D		
MW-12			MW-42I		
MW-16			MW-43S		
MW-16D			MW-43D (2)		
MW-17	•		MW-45/45R (2)		
MW-35D			MW-47		
MW-36S					
MW-36D	ر		· ·		
(1) Decreasing trends have been observed for some groundwater COCs, and increasing trends for others.					
(2) Groundwater COC concentrations have generally remained below, or slightly					
above, laboratory det	above, laboratory detection limits.				

 Table 5: Generalized Trends in Groundwater COC Concentrations: 2002 to 2017

The above categorization of trends is highly generalized, and variations exist within the overall general trends that are opposite the trends, and, in some cases, transitions from generally increasing to generally decreasing COC concentrations occur over the history of well sampling/analysis.

Several ROD specified COCs currently have North Carolina Groundwater Quality Standard (15NANC 02L) (NC 2L) groundwater standards more stringent than the ROD specified remediation goal. These compounds are bromodichloromethane, carbon tetrachloride, 1,2-dischloropropane, tetrachloroethane, and manganese. See Table 6 ARAR Comparison of Remediation Goals and Current Standards. In addition to the ROD specified COCs, eight organic and three inorganic non-ROD specified compounds were detected in 2017 above the NC 2L groundwater standard. Table 6 lists the contaminants not designated as COCs in the ROD, the well and concentration in which the compound was detected at the highest concentration, and the NC 2L groundwater standard.

Contaminants not designated as COCs in the ROD	NC 2L Groundwater Standard	MW in which the compound was detected at the highest concentration	Highest Concentration the compound was detected in 2017	
	V	OCs (µg/L)		
Chlorobenzene	50	MW12S	87.1 μg/L	
1,2-Dichlorobenzene	20	MW37 '	538 μg/L	
1,2-Dibromo-3-	0.04	MW12S	6,960 μg/L	
chloropropane				
1,2-Dibromoethane	0.02	MW12S	6,910 μg/L	
1,2-Dichloroethane	0.4	MS37	494 μg/L	
1,1,2,2-tetrachloroethane	0.2	MW3	53.1 μg/L	
1,2,3-Trichloropropane	400	MW12S	1,130 μg/L	
1,4-Dioxane	3	MW12I	11,700 μg/L	
	Inor	ganics (µg/L)	•	
Cadmium	2	MS12S	7.6 μg/L	
Chromium	10	MW42S	57.4 μg/L	
Mercury	1	MW16S	1.1 μg/L	
μg/L - micrograms per liter				

 Table 6: Contaminants Not Designated in the ROD and the Highest Concentration

 Detected during August 2017 Sampling Event

Based on the recommendations in the 2018 Remedial Action Progress Report, additional MWs are needed to address spatial coverage of the MWs for the intermediate and deep aquifers. Two additional intermediate monitoring wells will be installed at the Site; one intermediate monitoring well (MW-13I) will be coupled with existing shallow and deep monitoring wells MW-13S and MW-13D in the western portion of the Site, and the second intermediate monitoring well (MW-47I) will be coupled with existing deep monitoring well (MW-47D in the southern portion of the Site. One deep monitoring well (MW-

45D) will be coupled with existing shallow monitoring well MW-45R in the northern portion of the Site. A Work Plan for the above well installation activities has been approved by the EPA and NCDEQ and will be implemented in 2018.

Appendix I contains the summary data tables for each of the ROD designated COC and the wells with detectable concentrations above the NC2L and/or the remediation goal for the previous five years. Monitoring-wells MW-2, MW-6, MW-11S, and MW-15 are occasionally dry during the August groundwater sampling events; this is noted in the tables as Not Sampled (NS).

Site Inspection

The Site inspection was conducted on March 6, 2018. In attendance were Michael Townsend (US EPA), David Mattison (NC DEQ), Karen Trimberger (NCSU), Ken Kretchman (NCSU), Bruce Stewart (NCSU), and Pete Dressel (Piedmont Geologic). Appendix C contains the Site Inspection Checklist and Site photographs.

The purpose of the inspection was to assess the protectiveness of the remedy. It was noted at the Site Inspection that all O&M documents, permits, and discharge compliance records were readily available and up to date. The Site fencing was inspected, undamaged, and in good condition. The landfill cover was inspected and no signs of settlement, cracking, erosion, holes, slope instability, or water damage were observed and the vegetative cover was properly established and showed no signs of stress.

Groundwater extraction pumps, and electrical were operating properly and in good condition. The treatment train (air stripper, bag filters, and additives [iron-reducing biocide]) were functioning and in good condition, functioning. Monitoring wells (MWs) were located, properly secured/locked, in relatively good condition and routinely sampled. Although most monitoring wells are functional and in good condition, several monitoring wells need new padlocks, new well caps, well pad repairs, etc. Piedmont Geologic will conduct an inventory of monitoring well repairs during the next monitoring event and schedule the appropriate maintenance and repairs. Monitoring data is routinely submitted on time and of acceptable quality. The groundwater plume is effectively contained and the concentrations are declining.

As stated in the Overall Observation section of the Site Inspection Checklist:

The groundwater extraction and treatment system is effective at containing the contaminant plume and treating the contaminated groundwater to meet City of Raleigh POTW discharge requirements. The groundwater extraction and treatment system is functioning as designed.

Improvements in operation and maintenance made over the last 5 years have increased performance and efficiency of groundwater extraction, increasing the hydraulic containment of the contaminant plume and maintain current and long-term protectiveness offered by the groundwater extraction and treatment remedy.

Additional investigative activities are anticipated to confirm the current Site Conceptual Model and hydraulic containment of contaminant plume.

V. Technical Assessment

Question A: Is the remedy functioning as intended by the decision documents?

The EPA and NCDEQ have determined that all the remedial action construction activities were performed according to specifications and the remedial action continues to function as intended by the decision documents. Currently, no human exposure pathways exist to contaminated soil or groundwater. Contaminated soils were remediated through stabilization/solidification and groundwater contamination is actively being remediated through extraction, treatment, and discharge to the City sewer.

Based on the recommendations in the 2018 Remedial Action Progress Report, additional MWs are needed to address spatial coverage of the MWs for the intermediate and deep aquifers. Additional monitoring wells will be installed at the Site in 2018: one intermediate monitoring well in the western portion of the Site; the second intermediate monitoring well in the southern portion of the Site; and one deep monitoring well in the northern portion of the Site.

A Declaration of Perpetual Land Use Restrictions at the NCSU Site was recorded in June 2009 on parcel 0784366890 (Appendix H). It outlines land use restrictions for the Site, which prevent disturbance of the soil, use of the groundwater, and inappropriate use of the Site that could impact the remedy.

The groundwater plume, which extends under the adjacent highway (Wade Avenue Extension), does not require ICs as this land is within the State of NC highway right of way. At this time, the plume is contained and contaminated groundwater above the NC 2L groundwater standard does not extend beyond Wade Avenue to the adjacent parcel. Therefore, no ICs are required for parcel 0785316741.

Question B: Are the exposure assumptions, toxicity data, clean-up levels and remedial action objectives (RAOs) used at the time of the remedy still valid?

The exposure assumptions, toxicity data, clean-up levels and remedial action objectives (RAOs) used at the time of the remedy are still valid for everything except arsenic and 1,1,2-trichloroethane. See Table 7 (further documentation in Appendix K). The analysis in Appendix K indicates that the groundwater remediation goal for arsenic results in a cancer risk greater than 1×10^{-4} . The groundwater remediation goals for arsenic and 1,1,2-trichloroethane both exceed an HQ of 1. None of the remaining remediation goals resulted in a cancer risk greater than 1×10^{-4} for carcinogens or a noncancer HQ of greater than 1, and therefore remain protective of human health.

Direct exposure to groundwater is not an issue due to ICs being implemented on the fenced portion of Parcel 0784366890, which prohibits the use of groundwater for potable and irrigational uses. Further, indirect exposure to groundwater as a result of vapor intrusion into occupiable buildings is also not a concern due to ICs in place to prevent the construction of buildings on the Site. The only building that is within the plume boundary is the groundwater treatment building, which is not occupied except during O&M operations. The current land use at the Site remains unchanged. There have been no changes in the physical conditions on the NCSU Lot 86 Site.

The NC Classifications and Water Quality Standards Applicable to the Groundwater of North Carolina, NCAC Title 15A Subchapter 2L, on which some of the remedial goals are based were last amended on April 1, 2013. CERCLA requires that the remedy comply with any standard, requirement, criteria, or limitation under any Federal environmental law (such as Federal maximum contaminant limits (MCLs) here), as well as any promulgated State standard that is more stringent than any federal standard (Appendix F).

COC	1996 ROD Remediation Levels & Rationale (μg/L)	Current NC 2L ^a (As of April 1, 2013) (µg/L)	Current Federal MCL*/CRQL (µg/L)	Change in ARAR Yes/No
Acetone	700 NC 2L	6,000	NA	Yes***
Benzene	1 NC 2L	1	5*/1	No
Bromodichloromethane	1 CRQL	0.6	80**/1	Yes
Carbon tetrachloride	1 CRQL	0.3	5*/1	Yes
Chloroform	1 CRQL	70	80**/1	No
Dichloropropane, 1,2-	1 CRQL	0.6	5*/1	Yes
Methylene chloride	5 NC 2L	5	5*	No
Tetrachloroethene	1 CRQL	0.7	5*/1	Yes
Trichloroethane, 1,1,2-	1 CRQL	NA	5*/1	No
Trichloroethene	2.8 NC 2L	3	5*	Yes***
Metals				
Arsenic	10 CRQL	10	10*/10	No
Manganese	370 Background	50	NA	Yes

Table 7: ARAR Comparison of Remediation Goals and Current Standards

Notes:

NA - Not Available

^a NC 2L of North Carolina Administrative Code, Title 15A, Subchapter 2L, Classifications and Water Quality Standards Applicable to the Groundwater of North Carolina

* MCL for compound

** MCL for total trihalomethanes.

*** ARAR has changed but ROD remediation goal is more stringent than the current new standard. BOLD and <u>underlined</u> indicates current NC 2L standard is more stringent than previous remediation goal.

µg/L - micrograms per liter

Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

No additional information has come to light that could call into question the protectiveness of the remedy.

VI. Issues/Recommendations

Table 8: Issues and Recommendations Identified in the Five-Year Review:

OU(s) without Issues/Recommendations Identified in the Five-Year Review:

OUI

Additional Findings:

These additional finding do not rise to the level of an issue; however, these findings need to be evaluated and /or addressed.

- The NC 2L groundwater standards, on which several of the remediation goals are based, were amended on June 1, 2013. Several ROD designated COCs currently have NC 2L standards more stringent than the ROD remediation goals. Direct exposure to groundwater is not an issue due to implemented ICs, which prohibits the use of groundwater for potable and irrigational uses. At this time, the plume is contained and contaminated groundwater above the NC 2L groundwater standards does not extend beyond Wade Avenue to the adjacent parcel. However, a review of these remediation goals will need to be undertaken before the Site can be closed out with the State of North Carolina's concurrence.
- In addition to the ROD specified COCs, eight organic and three inorganic non-ROD specified compounds were detected in 2017 above the NC 2L groundwater standards. These 11 compounds not designated in the ROD should continue to be analyzed and reported annually and if needed, add these compounds as COCs with a decision document.

VII. Protectiveness Statements

	Protectiveness Statement	
Operable Unit:	Protectiveness Determination:	Addendum Due Date
OUI	Protective Short-Term	NA
Protectiveness States	nont	· · ·

OU1 remains protective in the short-term. The completed OU1 remedy at the Site currently protects human health and the environment because contaminated soils were remediated through stabilization/solidification, groundwater contamination has been contained through extraction, treatment and discharge to the City sewer, and institutional controls are in place restricting access to contaminated groundwater and soils. Direct exposure to groundwater is not an issue due to these implemented institutional controls, which prohibits the use of groundwater for potable and irrigational uses. At this time, the plume is contained and contaminated groundwater above the NC 2L groundwater standards does not extend beyond Wade Avenue to the adjacent parcel. However, a review of the remediation goals and COCs will need to be undertaken before the Site can be closed out with the State of North Carolina's concurrence.

Sitewide Protectiveness Statement

<u>Protectiveness Determination</u>: Protective Short-Term <u>Addendum Due:</u>

Protectiveness Statement:

The remedy at the Site currently protects human health and the environment because contaminated soils were remediated through stabilization/solidification, groundwater contamination has been contained through extraction, treatment and discharge to the City sewer, and institutional controls are in place restricting access to contaminated groundwater and soils. At this time, the plume is contained and contaminated groundwater above the NC 2L groundwater standards does not extend beyond Wade Avenue to the adjacent parcel. However, a review of the remediation goals and COCs will need to be undertaken before the Site can be closed out with the State of North Carolina's concurrence.

VIII. Next Review

The next FYR for the Site is required five years from completion date of this review.

APPENDIX A Reference List

U. S. Environmental Protection Agency, Region IV. September 30, 1996. Record of Decision, NCSU Lot 86 Superfund Site, Raleigh, North Carolina.

North Carolina Department of Environment and Natural Resources. September 25, 2008. Second Five-Year Review Report. NCSU Lot 86 Superfund Site, Raleigh, North Carolina.

Piedmont Geologic, P.C. September 24, 2007. Remedial Action Report. NCSU Lot 86 Superfund Site, Raleigh, North Carolina.

Skeo Solutions. September 20, 2013. Third Five-Year Review Report. NCSU Lot 86 Superfund Site, Raleigh, North Carolina.

U. S. Environmental Protection Agency, Region IV. September 17, 2014. Explanation of Significant Difference, NCSU Lot 86 Superfund Site, Raleigh, North Carolina.

Piedmont Geologic, P.C. February 17, 2014. Remedial Action Progress Report January through December 2013. NCSU Lot 86 Superfund Site, Raleigh, North Carolina.

Piedmont Geologic, P.C. February 17, 2014. Remedial Action Progress Report January through December 2013. NCSU Lot 86 Superfund Site, Raleigh, North Carolina.

Piedmont Geologic, P.C. March 23, 2015. Remedial Action Progress Report January through December 2014. NCSU Lot 86 Superfund Site, Raleigh, North Carolina.

Piedmont Geologic, P.C. March 2, 2016. Remedial Action Progress Report January through December 2015. NCSU Lot 86 Superfund Site, Raleigh, North Carolina.

Piedmont Geologic, P.C. February 22, 2017. Remedial Action Progress Report January through December 2016. NCSU Lot 86 Superfund Site, Raleigh, North Carolina.

Piedmont Geologic, P.C. January 29, 2018. Remedial Action Progress Report January through December 2017. NCSU Lot 86 Superfund Site, Raleigh, North Carolina.

APPENDIX B

Site Chronology

Event	Date
NCSU uses Lot 86 as a burial site for hazardous chemical and low level radioactive waste generated by the University's laboratories.	1969 to November 1980
NCSU reports on the CERCLA Section 103© Hazardous Waste Notification form of waste disposal.	June 8, 1981
Final listing on National Priorities List (NPL)	June 10, 1986
Remedial Investigation (RI) Report completed	October 1994
Revised Feasibility Study (FS) completed	February 1996
ROD selecting the remedy is signed	September 30, 1996
Start of on-site mobilization for initiation of soil mixing activities	November 9, 1998
Consent Decree finalizing settlement for responsible party performance of remedy entered by Federal Court	November 13, 1998
Final Remedial Action Work Plan approved by EPA	December 30, 1998
Start of Remedial Action	January 19, 1999
Explanation of Significant Difference (ESD) issued by the US EPA to address the use of a trackhoe in lieu of a crane for mixing operations and air monitoring.	July 21, 1999
Remedial action for soil is completed	September 21, 1999
Evaluation of Monitored Natural Attenuation Report completed by GEI Consultants	March 2001
First Five-Year Review is completed.	September 25, 2003
Fractured Rock Assessment completed by East Coast Environmental	April 2004
Draft Remedial Action Work Plan for Groundwater completed	November 2005
Final Design Criteria Report for the Groundwater Remediation Phase is completed by Marshall Miller & Associates	March 2006
Shallow Groundwater Extraction (GWE) wells and deep GWE wells installed by air rotary drilling.	April through November 2006
Groundwater treatment system equipment installed in building and submersible pumps, electrical supply lines, and groundwater effluent lines installed.	August through September 2006
Groundwater Extraction system start-up.	September 26, 2006
Monthly NPDES monitoring begins on Site.	August 2007

Fourth Five-Year Review Bypass 601 Groundwater Contamination Site Concord, Cabarrus County, NC

PRP completed remedial action	September 20, 2007
Second Five Year Review Completed	September 26, 2008
Land Use Restriction filed with Wake County	June 1,2009
Discovery of Tritium and sampling results submitted	February 27, 2013
City of Raleigh Industrial User Pretreatment Permit issued	May 28, 2013
Installation of replacement well MW-45R	February 2014
Groundwater Sampling Quality Assurance Plan and Sampling	June 3, 2014
and Analysis Plans submitted	
Explanation of Significant Differences	September 2, 2014
2014 Annual Compliance Statement - Declaration of Perpetual	September 17, 2014
Land Use Restrictions	
US EPA Approval - Revised Work Plan for Monitoring Well	January 24, 2018
Installations, Repairs, and Abandonments	

APPENDIX C Site Inspection Checklist/Photographs

SITE INSPECTION CHECKLIST

FIVE-YEAR REVIEW SITE INSPECTION CHECKLIST				
I. SITE INFORMATION				
Site Name: NC State University (Lot 86, Farm Unit #1)	Date of Inspection: March 6, 2018			
Location and Region: Raleigh NC, Region 4 EPA ID: NCD980557656				
Agency, Office or Company Leading the Five-Year Review: NC DEQ on behalf of US EPA Region 4	Weather/Temperature: Overcast, Periods of Rain, 45°F			
Remedy Includes: (Check all that apply) Image: Landfill cover/containment Access controls Institutional controls Ground water pump and treatment Surface water collection and treatment Other:	 Monitored natural attenuation Ground water containment Vertical barrier walls 			
Attachments: Inspection team roster attached	Site map attached			
II. INTERVIEWS				
1. O&M Site Manager Karen Trimberger Name Interviewed ⊠ at site □ at office □ by phone : _ Problems, suggestions □ Report attached:	Env Affairs Director, NCSU March 6, 2018 Title Date			
2. O&M Staff Pete Dressel Name Interviewed ⊠ at site □ at office Problems/suggestions □ Report attached:	Piedmont Geologic March 6, 2018 Title Date			
recorder of deeds, or other city and county office	lic health or environmental health, zoning office.			
Agency Contact Name Titl Problems/suggestions [] Report attached:				
Agency ContactName Titl Problems/suggestions	e Date Phone No.			
Agency Contact Name Title Problems/suggestions [] Report attached:				
Agency Contact Name Title Problems/suggestions [] Report attached:	e Date Phone No.			

	Agency				
	Contact				
	Name Problems/suggestions 🗌 Repor	Title t attached:	Date	Phone No.	
4.	Other Interviews (optional)				
Michae	Townsend, Remedial Project Ma	anager, US EPA		· · ·	
Ken Kr	etchman & Bruce Stewart, NCSU				
	III. ON-SITE DOCUME		RDS VERIFIED (chec	k all that apply)	<u>_</u>
1.	O&M Documents				
	🛛 O&M manual	Readily available	Up to date	N 🗌	/A
	🛛 As-built drawings 🛛 🖂	Readily available	Up to date	N 🗋 N	/A
	🛛 Maintenance logs	Readily available	🔀 Up to date	א 🗋	/A
	Remarks: NCSU retains O&M	documents off-site	at NCSU & Piedmont G	eologic offices	
2.	Site-Specific Health and Safe	ty Plan	Readily available	Up to date	□ N/A
	Contingency plan/emergence	y response plan	Readily available	Up to date	🗌 N/A
	Remarks:			*	
3.	O&M and OSHA Training R	lecords	🛛 Readily available	Up to date	□ N/A
	Remarks: NCSU retains O&M offices	& OSHA training	records off-site at NCSU	& Piedmont Geo	logic
4.	Permits and Service Agreem	ents			
	Air discharge permit		🗌 Readily available	Up to date	🛛 N/A
	Effluent discharge		Readily available	Up to date	🛛 N/A
•	🔀 Waste disposal, POTW		🔀 Readily available	🛛 Up to date	□ N/A
	Other permits:		🗌 Readily available	Up to date	🛛 N/A
	Remarks: NCSU retains the PC	TW permit off-site	e at NCSU & Piedmont C	Jeologic offices	
5.	Gas Generation Records		Readily available	Up to date	N/A
	Remarks:				
6.	Settlement Monument Recor	ds	Readily available	Up to date	N/A
	Remarks:				
7.	Ground Water Monitoring R	lecords	Readily available	Up to date	□ N/A
	Remarks: NCSU retains ground offices	lwater monitoring	records off-site at NCSU	& Piedmont Geo	logic
8.	Leachate Extraction Records	; ;	Readily available	Up to date	N/A
	Remarks:				
9.	Discharge Compliance Recor	·ds		· · · · · · · · · · · · · · · · · · ·	
	Air	Readily available	Up to date	N 🛛	/A
	🛛 Water (effluent)	Readily available	Up to date	N 🗌 א	/A
	Remarks: NCSU retains POTW	/ discharge compli	ance records off-site at N	CSU & Piedmon	t Geologic
		C-2			

	offices					
10.	Daily Access/Security Logs	🗌 Readily available 🛛 Up to date 🛛 N/A				
	Remarks:					
	IV. 0	D&M COSTS				
1.	O&M Organization					
	State in-house	Contractor for state				
	PRP in-house	Contractor for PRP				
	Federal facility in-house	Contractor for Federal facility				
2.	O&M Cost Records					
i	🔀 Readily available	Up to date				
	Sunding mechanism/agreement in place					
	Original O&M cost estimate: 🔲 Br	eakdown attached				
	Total annual cost by	y year for review period if available				
	From: To:	Breakdown attached				
	Date Date	Total cost				
	From: To:	Breakdown attached				
	Date Date	Total cost				
	From: To:	Breakdown attached				
	Date Date	Total cost				
	From: To:	Breakdown attached				
	Date Date	Total cost				
	From: To:	Breakdown attached				
	Date Date	Total cost				
3.	Unanticipated or Unusually High O&M C	-				
	Describe costs and reasons: 2013 costs were Review	e unusually high due to cost of conducting third Five-Year				
	V. ACCESS AND INSTITUTION	AL CONTROLS Applicable N/A				
A. Fen	A. Fencing					
1.	Fencing Damaged 🛛 🔀 Location show	vn on site map 🛛 Gates secured 🗌 N/A				
	Remarks: Fencing is in good condition and undamaged.					
B. Oth	er Access Restrictions					
1.	Signs and Other Security Measures	Location shown on site map N/A				
	Remarks: All signs are in place and in good condition.					
C. Inst	C. Institutional Controls (ICs)					

_				
1.1	Implementation and Enfo	prcement*		
	Site conditions imply ICs n	ot properly implemented	🗌 Yes 🛛 No 🗌 N/A	
•	Site conditions imply ICs n	ot being fully enforced	🗌 Yes 🛛 No 🗌 N/A	
	Type of monitoring (e.g., so system O&M	Type of monitoring (e.g., self-reporting, drive by): Drive by in conjunction with groundwater extractions system O&M		
	Frequency: Weekly			
	Responsible party/agency:	Piedmont Geologic		
	Contact <u>Pete Dressel</u>	<u>Geologist</u>	March 6, 2018 919-854- 9700	
	Name	Title	Date Phone no.	
	Reporting is up to date		Yes No N/A	
	Reports are verified by the	lead agency	🛛 Yes 🗌 No 🗌 N/A	
	Specific requirements in de	ed or decision documents have been met	Yes No N/A	
	Violations have been report	ted	🗌 Yes 🛛 No 🗌 N/A	
	Other problems or suggesti	ons: 🔲 Report attached		
2.	Adequacy 🗌 ICs a	are adequate 🛛 ICs are ina	adequate N/A	
	<i>,</i> ,	lemented on the fenced portion of Parcel 0 es not have ICs implemented.)784366890, the second parcel of	
D.	General			
1.	Vandalism/Trespassing Remarks:	Location shown on site map	No vandalism evident	
2.	Land Use Changes On Sit	te 🗌 N/A		
	Remarks: No land use chan			
3.	Land Use Changes Off Si	te 🗍 N/A	·······	
	Remarks: No land use chan	. •	۰ ۲	
	······································	VI. GENERAL SITE CONDITIONS	5	
А.	Roads Applicable	🕅 N/A	· · · ·	
1.	Roads Damaged Remarks:	Location shown on site map	Roads adequate 🗌 N/A	
В.	Other Site Conditions		· .	
	Remarks:			
		NDFILL COVERS Applicab	le \Box N/A	
A .	Landfill Surface			
1.	······	Location shown on site map	Settlement not evident	
	Arial extent:		— .	
			Depth:	
	Remarks:			
2.		Location shown on site map	Cracking not evident	
	Lengths:	Widths:	Depths:	

	Remarks:	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·
3.	Erosion	Location shown on site map	Erosion not evident
	Arial extent:		Depth:
	Remarks:		
4.	Holes	Location shown on site map	Holes not evident
	Arial extent:		Depth:
	Remarks:		
5.	Vegetative Cover	🖾 Grass	Cover properly established
	🔀 No signs of stress	Trees/shrubs (indicate size and lo	cations on a diagram)
	Remarks:		·
6.	Alternative Cover (e.g.,	armored rock, concrete)	N/A
	Remarks:		· · · · · · · · · · · · · · · · · · ·
7.	Bulges	Location shown on site map	Bulges not evident
	Arial extent:		Height:
	Remarks:		
8.	Wet Areas/Water Dama	ge 🛛 Wet areas/water damage not e	vident
	Wet areas	Location shown on site map	Arial extent:
•	Ponding	Location shown on site map	Arial extent:
	Seeps	Location shown on site map	Arial extent:
,	🔲 Soft subgrade	Location shown on site map	Arial extent:
	Remarks:		
9.	Slope Instability	□ Slides	Location shown on site map
	🔀 No evidence of slope in	nstability	
	Arial extent:		·
	Remarks:		
B. Ber	nches Appli	cable 🖾 N/A	······································
		ounds of earth placed across a steep land ity of surface runoff and intercept and c	
1.	Flows Bypass Bench	Location shown on site map	N/A or okay
	Remarks:		
2.	Bench Breached	Location shown on site map	N/A or okay
	Remarks:		
3.	Bench Overtopped	Location shown on site map	N/A or okay
	Remarks:	-	
Ç. Let	tdown Channels	Applicable 🛛 N/A	
	(Channel lined with erosion	control mats, riprap, grout bags or gabio	ns that descend down the steep side

<u> </u>	slope of the cover and will al		collected by the be	nches to	move off of the landfill
	cover without creating erosio	- <u>-</u>			· · · · · · · · · · · · · · · · · · ·
1.	Settlement (Low spots)	Location shown	n on site map	. No	evidence of settlement
	Arial extent:			Depth:	·
<u> </u>	Remarks:		·		· · ·
2.	Material Degradation	Location shown	n on site map	🗌 No	evidence of degradation
ĺ	Material type:			Arial e	xtent:
	Remarks:	·			
3.	Erosion	Location shown	n on site map	🗌 No	evidence of erosion
	Arial extent:			Depth:	·
	Remarks:				· · · · · · · · · · · · · · · · · · ·
4.	Undercutting	Location shown	n on site map	🗌 No	evidence of undercutting
	Arial extent:			Depth:	· · ·
	Remarks:				
5.	Obstructions	Туре:		🗌 No	obstructions
	Location shown on site	map A	rial extent:		· .
	Size:	•			
	Remarks:		<u></u>		·
6.	Excessive Vegetative Gro	wth T	уре:		
	No evidence of excessi	ve growth			.
	Vegetation in channels	does not obstruct flow	N		
	Location shown on site	map A	rial extent:		
	Remarks:				
D. Co	over Penetrations	Applicable 🛛 🕅	N/A	•	· .
1.	Gas Vents	Active		Pass	ive
	Properly secured/locke	f 🗌 Functioning	Routinely sa	mpled	Good condition
	Evidence of leakage at	penetration	Needs main	tenance	N/A
	Remarks:	· · ·			· .
2.	Gas Monitoring Probes				· · · ·
	Properly secured/locke	d 🗌 Functioning	Routinely sa	mpled	Good condition
· ·	Evidence of leakage at	penetration	Needs main	tenance	□ N/A
L	Remarks:	·			
3.	Monitoring Wells (within	surface area of landfil	1)		
	Properly secured/locke	d 🗌 Functioning	Routinely sa	ampled	Good condition
	Evidence of leakage at	penetration	Needs main	tenance	□ N/A
	Remarks:				

·					
4.	Extraction Wells Leachate				
	Properly secured/locked	Functioning	Routinely sampled	Good condition	
	Evidence of leakage at pe	enetration	Needs maintenance	🗌 N/A	
	Remarks:				
5.	Settlement Monuments	Located	Routinely surveyed	□ N/A	
	Remarks:	·			
E. G	as Collection and Treatment		N/A		
1.	Gas Treatment Facilities				
	Flaring	🗌 Thermal destru	ction	Collection for reuse	
	Good condition	🗌 Needs mainten	ance		
	Remarks:				
2.	Gas Collection Wells, Manif				
	Good condition	🔲 Needs mainten	ance	•	
	Remarks:				
3.	Gas Monitoring Facilities (e			ngs)	
	Good condition	Needs mainten	ance 🗌 N/A		
	Remarks:				
F. Co	over Drainage Layer		⊠ N/A		
1.	Outlet Pipes Inspected	Functioning		<u> </u>	
	Remarks:				
2.	Outlet Rock Inspected	Functioning	N/A		
	Remarks:		•		
G. De	etention/Sedimentation Ponds		⊠ N/A		
1.	Siltation Area exte	ent: I	Depth:	□ N/A	
	Siltation not evident				
	Remarks:			•	
2.	Erosion Area exte	ent: I	 Depth:		
	Erosion not evident		-		
	Remarks:				
3.	Outlet Works Funct] N/A	
	Remarks:				
4.	Dam 🗍 Funct		[N/A	
	Remarks:	· .			
H. Re		Applicable 🛛 N	/A		
1.	Deformations [Location shown o		mation not evident	
	Horizontal displacement:		•		

	Rotational displacement:
	Remarks:
2.	Degradation Location shown on site map Degradation not evident
	Remarks:
I. Per	imeter Ditches/Off-Site Discharge
1.	Siltation Location shown on site map Siltation not evident
	Area extent: Depth:
	Remarks:
2.	Vegetative Growth Isocation shown on site map N/A
	Uegetation does not impede flow
	Area extent: Type:
	Remarks:
3.	Erosion Location shown on site map Erosion not evident
	Area extent: Depth:
	Remarks:
4.	Discharge Structure Functioning N/A
	Remarks:
VIII.	VERTICAL BARRIER WALLS
1.	Settlement
	Area extent: Depth:
	Remarks:
2.	Performance Monitoring Type of monitoring:
	Performance not monitored
	Frequency: Evidence of breaching
	Head differential:
	Remarks:
IX. C	ROUND WATER/SURFACE WATER REMEDIES 🖂 Applicable 🗌 N/A
A. G	round Water Extraction Wells, Pumps and Pipelines 🛛 🖾 Applicable 🗌 N/A
1.	Pumps, Wellhead Plumbing and Electrical
	\boxtimes Good condition \boxtimes All required wells properly operating \square Needs maintenance \square N/A
	Remarks:
2.	Extraction System Pipelines, Valves, Valve Boxes and Other Appurtenances
	Good condition Needs maintenance
	Remarks:
3.	Spare Parts and Equipment
	Readily available Good condition Requires upgrade Needs to be provided

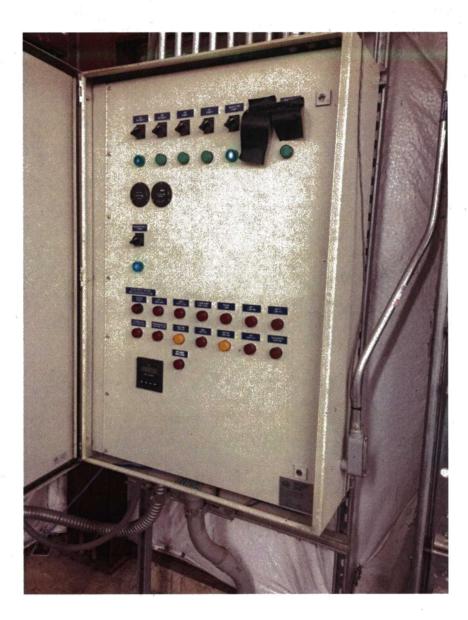
C-8

	Remarks:	
	B. Surface Water Collection Structures, Pumps and Pipelines Applicable N/A	
F	1. Collection Structures, Pumps and Electrical	
	Good condition Needs maintenance	
	Remarks:	
F	2. Surface Water Collection System Pipelines, Valves, Valve Boxes and Other Appurtenances	
	Good condition Needs maintenance	
	Remarks:	
ſ	3. Spare Parts and Equipment	
ł	Readily available Good condition Requires upgrade Needs to be provided	ł
	Remarks	
. -	Remarks: C Treatment System	1
-	C. Treatment System Applicable N/A	1
	1. Treatment Train (check components that apply)	
	Metals removal Oil/water separation Bioremediation*	
	Air stripping Carbon adsorbers In-situ chemical oxidation*	
	Filters: <u>2 bag filters</u> I Monitored natural attenuation*	
	Additive (e.g., chelation agent, flocculent): <u>Iron-reducing biocide</u>	
	Others:	
	Good condition	
	Sampling ports properly marked and functional	
	Sampling/maintenance log displayed and up to date	
·	Equipment properly identified	
	Quantity of ground water treated annually: <u>7.5 gpm, 24 hours per day, 365 days/year</u>	
ľ	Quantity of surface water treated annually:	
┝	Remarks:	•
	2. Electrical Enclosures and Panels (properly rated and functional)	
	N/A Good condition Needs maintenance	
	Remarks:	
F	3. Tanks, Vaults, Storage Vessels	1
	□ N/A	
	Remarks:	
1	4. Discharge Structure and Appurtenances	1 .
-		ł
-	\square N/A \square Good condition \square Needs maintenance	1

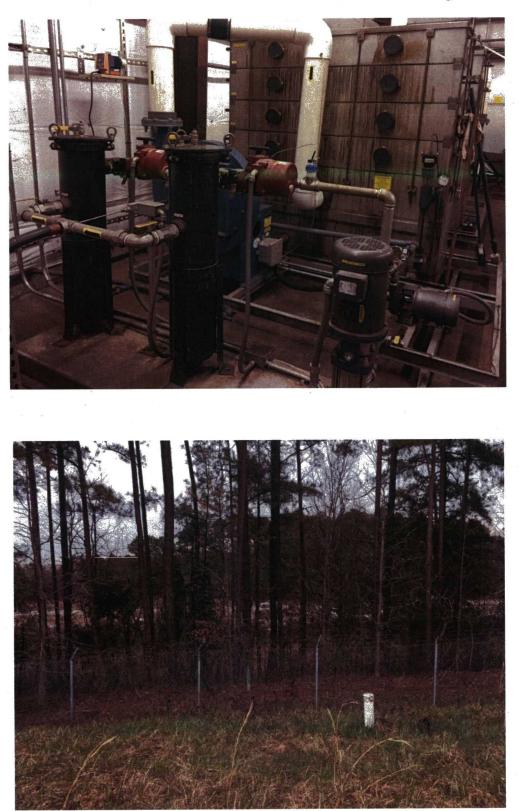
[Remarks:				
5.	Treatment Building(s)				
	\square N/A \boxtimes Good condition (esp. roof and doorways) \square Needs repair				
	Chemicals and equipment properly stored				
	Remarks:				
6.	Monitoring Wells (pump and treatment remedy)				
	Properly secured/locked Sunctioning Routinely sampled Scood condition				
	All required wells located Needs maintenance N/A				
	Remarks: Although most monitoring wells are functional and in good condition, several monitoring				
	wells need new padlocks, new well caps, well pad repairs, etc. Piedmont Geologic will conduct				
	inventory of monitoring well repairs during next monitoring event and schedule the appropriate				
· ·	maintenance and repairs.				
D. Mo	onitoring Data				
1.	Monitoring Data				
	\boxtimes Is routinely submitted on time \boxtimes Is of acceptable quality				
2.	Monitoring Data Suggests:				
	Ground water plume is effectively contained I Contaminant concentrations are declining				
	Solution water prune is effectively contained Solution and concentrations are deciming				
E. Mo	onitored Natural Attenuation*				
1.	Monitoring Wells (natural attenuation remedy)				
	Properly secured/locked Functioning Routinely sampled Good condition				
	All required wells located Needs maintenance N/A				
	Remarks:				
	X. OTHER REMEDIES				
If ther	e are remedies applied at the site and not covered above, attach an inspection sheet describing the physical				
	and condition of any facility associated with the remedy. An example would be soil vapor extraction.				
L	XI. OVERALL OBSERVATIONS				
<u>A.</u>	Implementation of the Remedy				
	Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is designed to accomplish (e.g., to contain contaminant				
	plume, minimize infiltration and gas emissions).				
	The groundwater extraction and treatment system is effective at containing the contaminant plume and				
treating the contaminated groundwater to meet City of Raleigh POTW discharge requirements					
	groundwater extraction and treatment system is functioning as designed. Improvements in operatio				
	maintenance made over the last 5 years have increased performance and efficiency of groundwater				
<u> </u>	extraction, increasing the hydraulic containment of the contaminant plume.				
B .	Adequacy of O&M				
	Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.				
1	Improvements in operation and maintenance made over the last 5 years have increased performance and				
	efficiency of groundwater extraction, increasing the hydraulic containment of the contaminant plume and				
	maintain current and long-term protectiveness offered by the groundwater extraction and treatment				
	remedy.				

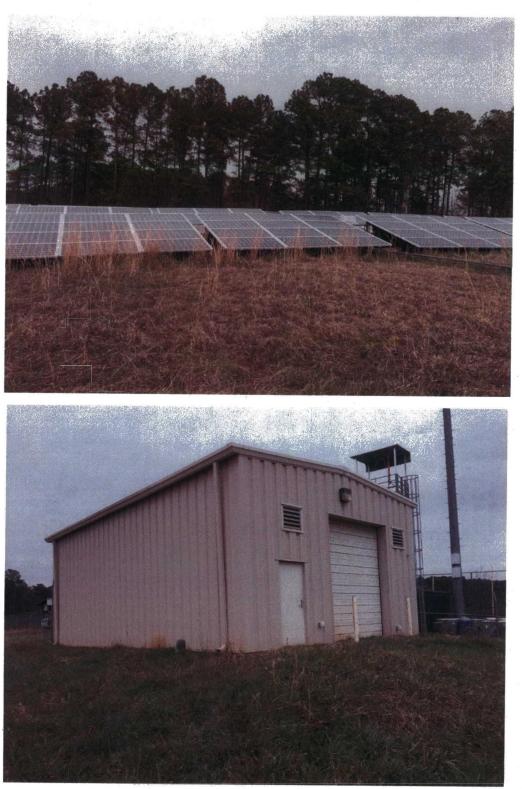
Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs that suggest that the protectiveness of the remedy may be compromised in the future.

There have been no unanticipated issues.

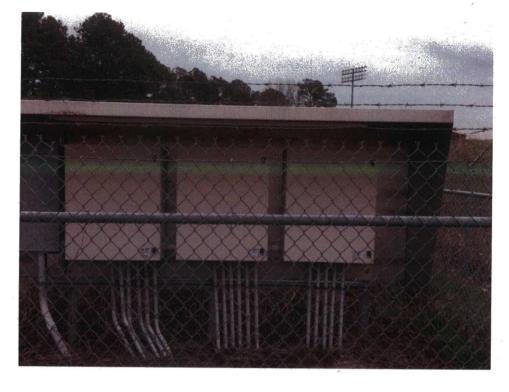

D. Opportunities for Optimization

Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy. Additional investigative activities are anticipated to confirm the current site conceptual model and hydraulic containment of contaminant plume.


Site Inspection Participants


David Mattison, NC DEQ Michael Townsend, US EPA Karen Trimberger, NCSU Ken Kretchman, NCSU Bruce Stewart, NCSU Pete, Dressel, Piedmont Geologic

Photographs NCSU Lot 86



C-16

APPENDIX D Figures

,

۳ ۲

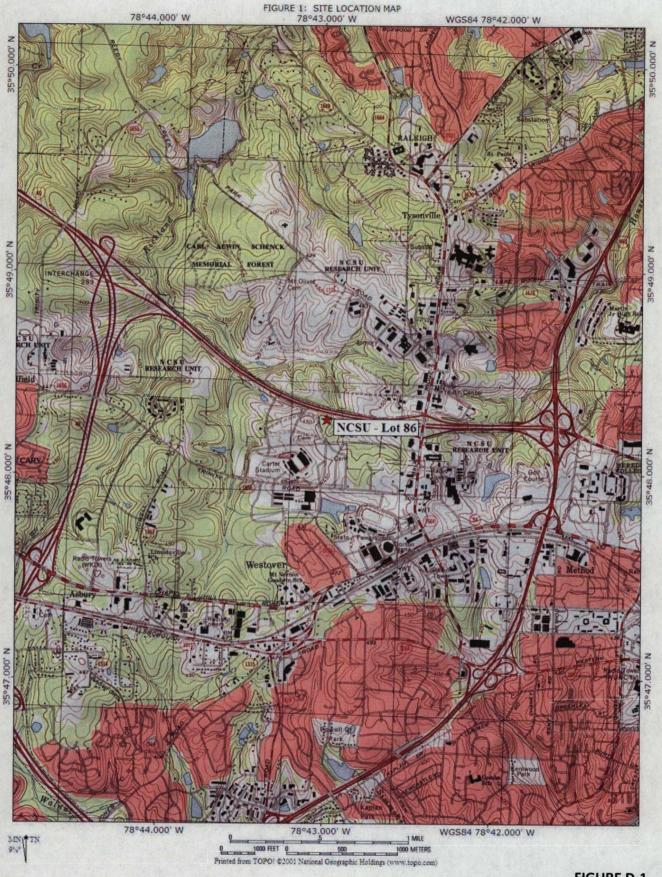
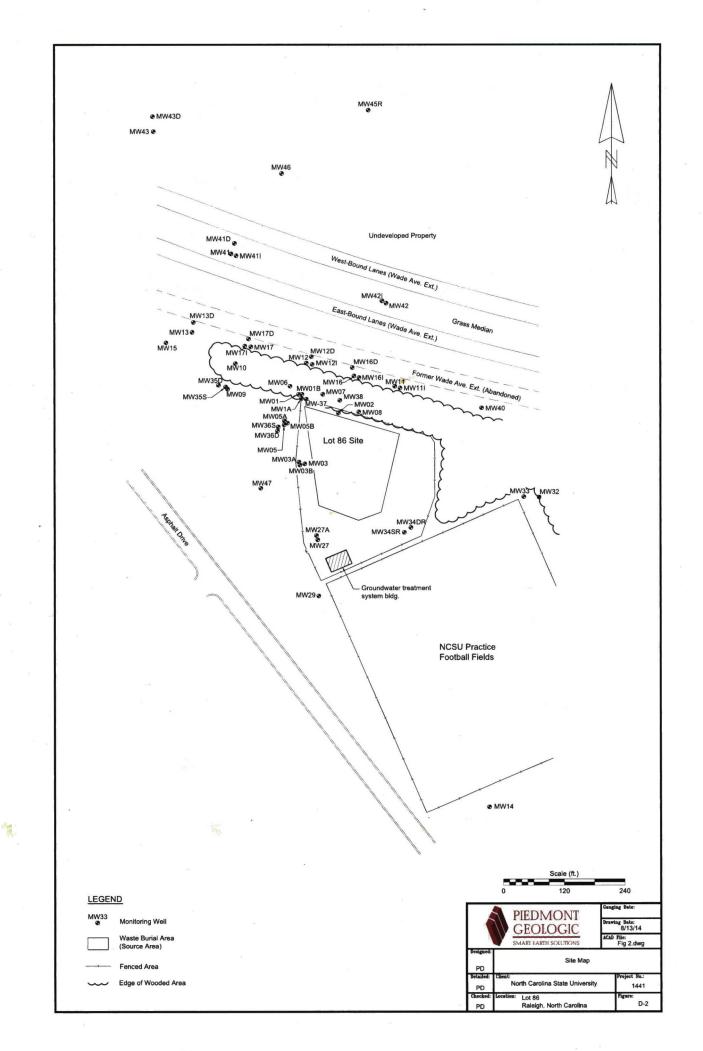
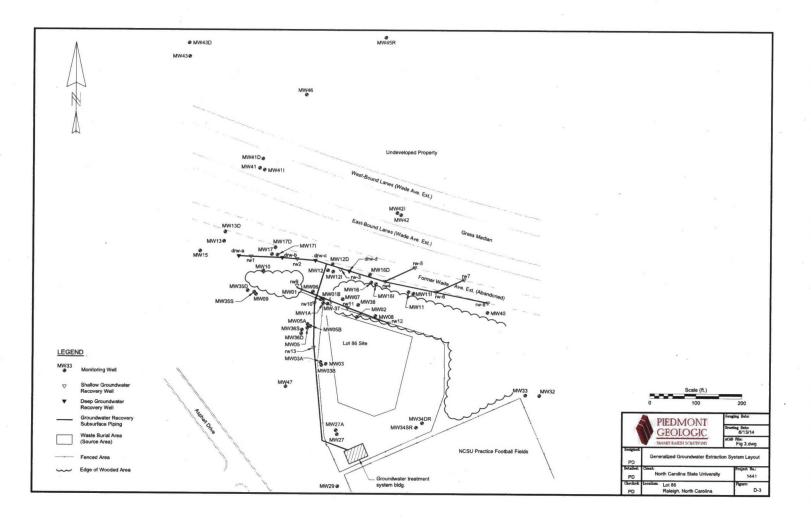
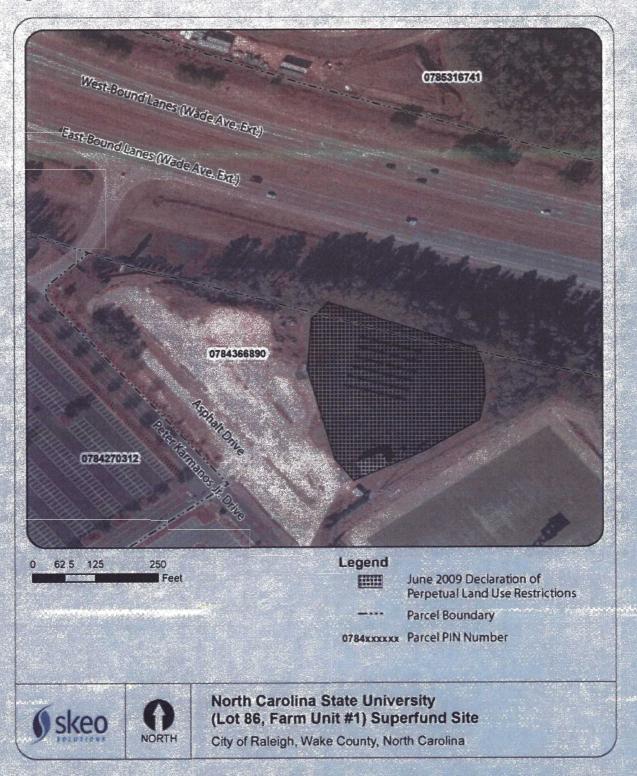





FIGURE D-1 SITE LOCATION MAP NCSU – Lot 86 Raleigh, North Carolina

Disclaimer This map and any boundary lines within the map are approximate and subject to change. The map is not a survey. The map is for informational purposes only regarding the EPA's response actions at the Site.

APPENDIX E Current Site Status

Environmental Indicators

- Current human exposures at the Site are under control.

- Contaminated soils were remediated through stabilization/solidification and groundwater contamination is actively being remediated through extraction, treatment, and discharge to the City sewer.

Are Necessary Institutional Controls in Place?

All Some None

Direct exposure to groundwater is not an issue due to ICs being implemented on parcel (0784366890), which prohibits the use of groundwater for potable and irrigational uses. ICs are not in place for use of groundwater outside of the fenced area (parcel 0785316741); however, the majority of the off-site plume is under a highway.

Has EPA Designated the Site as Sitewide Ready for Anticipated Use?

Yes 🗌 No

Has the Site Been Put into Reuse?

Yes 🗌 No

Appendix F ARAR Review

Section 121 (d)(2)(A) of CERCLA specifies that Superfund remedial actions must meet any federal standards, requirements, criteria, or limitations that are determined to be legally ARARs. Applicable or Relevant and Appropriate Requirements are those standards, criteria, or limitations promulgated under federal or state law that specifically address a hazardous substance, pollutant, contaminant, action, location, or other circumstance at a CERCLA site. To-Be-Considered criteria (TBCs) are non-promulgated advisories and guidance that are not legally binding, but should be considered in determining the necessary level of cleanup for protection of human health or the environment. While TBCs do not have the status of ARARs, EPA's approach to determining if a remedial action is protective of human health and the environment involves consideration of TBCs along with ARARs. Chemical-specific ARARs are specific numerical quantity restrictions on individually listed contaminants in specific media. Examples of chemical-specific ARARs include the MCLs specified under the Safe Drinking Water Act (SDWA) as well as the ambient water quality criteria that are enumerated under the Clean Water Act. Because there are usually numerous contaminants of potential concern for any site, various numerical quantity requirements can be ARARs.

In performing the Five-Year Review for compliance with ARARs, only those ARARs that address the protectiveness of the remedy are reviewed. Because the remedy at the Site currently addresses only groundwater contamination, this Five-Year Review will discuss compliance with chemical-specific groundwater ARARs only.

Soil ARARs

The OU1 ROD did not specify ARARs for soil.

Current Potentially-Applicable ARARs

It is the EPA's policy that ARARs are generally "frozen" at the time of the ROD signature unless a "new or modified requirement calls into question the protectiveness of the selected remedy", 55 Fed. Reg. 8757 (March 8, 1990). The NC Classifications and Water Quality Standards Applicable to the Groundwater of North Carolina, NCAC Title 15A Subchapter 2L, (NC 2L) on which several of the remedial goals are based were last amended on April 2013. Title 15A of the North Carolina Administrative Code, Subchapter 2L (NCAC 2L) is a Chemical-Specific State ARAR for this Site.

COC	1996 ROD Remediation Levels & Rationale (µg/l)	Current NC 2L ^a (As of April 1, 2013) (µg/l)	Current Federal MCL*/CRQL (µg/l)	Change in ARAR Yes/No
Acetone	700 NC 2L	6,000	NA/5	Yes***
Benzene	1 NC 2L	1	5*/0.5	No
Bromodichloromethane	1 CRQL	0.6	80**/0.5	Yes
Carbon tetrachloride	1 CRQL	0.3	5*/0.5	Yes
Chloroform	1 CRQL	70	80**/0.5	No
Dichloropropane, 1,2-	1 CRQL	0.6	5*/0.5	Yes
Methylene chloride	5 NC 2L	5	5*	No
Tetrachloroethene	1 CRQL	0.7	5*/0.5	Yes
Trichloroethane, 1,1,2-	1 CRQL	NA	5*/0.5	No
Trichloroethene	2.8 NC 2L	3	5*	Yes***
	N	Aetals		
Arsenic	10 CRQL	10	10*/10	No
Manganese	370 Background	50	NA	Yes

ARAR Comparison of Remediation Goals and Current Standards

Notes:

NA - Not Available

^a NC 2L of North Carolina Administrative Code, Title 15A, Subchapter 2L, Classifications and Water Quality Standards Applicable to the Groundwater of North Carolina

* MCL for compound

** MCL for total trihalomethanes

BOLD and <u>underlined</u> indicates current NC 2L standard is more stringent than previous remediation goal.

 $\mu g/l = micrograms per liter$

Appendix G Press Release and Interviews

EPA Conducting Fourth Five-Year Review for Superfund Site in Raleigh, North Carolina

GOVINEWSBOOM

Media Contact: Dawn Harris-Young, (404) 562-8421 (Direct), (404) 562-8400 (Main), harris-young.dawn@epa.gov

ATLANTA (August 27, 2018) - The U.S. Environmental Protection Agency (EPA) is currently conducting the Five-Year Review (FYR) of the selected cleanup action at the North Carolina State University (Lot 86, Farm Unit #1) Superfund site in Raleigh, North Carolina. The purpose of the FYR is to ensure the selected cleanup actions are working as intended and continue to protect public health and the environment.

The 1.5-acre site is located north of Carter-Finley Stadium on the University campus in Raleigh. Located on state-owned property, the site includes a metal building housing the site's ground water extraction system and an array of solar panels surrounded by secure fencing. Investigations in the early 1980s found that site activities resulted in the contamination of soil and ground water with heavy metals, polycyclic aromatic hydrocarbons, polychlorinated biphenyls (PCBs), pesticides, volatile organic compounds (VOCs) and radioactive wastes, including include tritium, carbon-14, iron-59 and phosphorus-32. The EPA placed the site on the National Priorities List in October 1984.

In the September 1996 Record of Decision, EPA selected a remedy to address soil and ground water contamination. The remedy included treatment and encapsulation of contaminated soil and the extraction and treatment of contaminated groundwater. Cleanup activities began in 1998 after the University, the site's potentially responsible party, signed a Consent Decree with the EPA to perform the cleanup. The cleanup was conducted with EPA oversight. The University completed soil remediation in October 1999 and construction of the groundwater remedy in September 2006. Groundwater treatment is ongoing. It includes air stripping and carbon adsorption to remove contaminants and treated water is discharged to the local sewer system. Long-term groundwater monitoring tracks contaminant plume migration and verifies the effectiveness of the ground water treatment system.

The FYR will be completed by September 2018. A final copy of the report will be placed in the site's local document repository. located at Cameron Village Regional Public Library, 1930 Clark Avenue in Raleigh and online at: http://www.epa.gov/region4/superfund/sites/npl/northcarolina/ncstatnc.html.

As part of the FYR process, EPA staff is available to answer any questions about the site. Community members who have questions about the site or the review process are asked to contact: Michael Townsend, EPA Remedial Project Manager, at (404) 562-8813 or via email townsend.michael@epa.gov; or Angela Miller, EPA Community Involvement Coordinator, at (678) 575-8132 or via email miller.angela@epa.gov

For more information about the North Carolina State University (Lot 86, Farm Unit #1) Superfund site, please visit: http://www.epa.gov/region4/superfund/sites/npl/northcarolina/ncstatnc.html.

####

U.S.EPA **** SUPERFUND TASK FORCE

In May 2017, EPA established a task force to restore the Superfund program to its rightful place at the center of the Agency's core mission to protect health and the environment. epa.gov/superfund/superfund-task-force

NCSU Lot 86 Site Raleigh, Wake County, NC EPA ID: NCD980557656 Fourth Superfund Five-Year Review Report Page 1 of 2

Interview Questionnaire

Completed by David B. Mattison, Environmental Engineer, NC DEQ DWM Superfund Section

- 1. What is your overall impression of the project? (general sentiment) The groundwater extraction and treatment system is effective at containing the contaminant plume and treating the contaminated groundwater to meet City of Raleigh POTW discharge requirements. The groundwater extraction and treatment system is functioning as designed. Improvements in operation and maintenance made over the last 5 years have increased performance and efficiency of groundwater extraction, increasing the hydraulic containment of the contaminant plume.
- 2. What effects have site operations had on the surrounding community? *None.*
- 3. Are you aware of any community concerns regarding the site or its operation and administration? If so, please give details. *No.*
- 4. Have there been any complaints, violations, or other incidents related to the site requiring a response by your office? *No.*
- 5. Do you feel well informed about the site's activities and progress? *Yes.*
- Do you have any comments, suggestions, or recommendations regarding the site's management or operation? ICs are only implemented on the fenced portion of Parcel 0784366890, the second parcel of property (0785316741) does not have ICs implemented.
- 7. What is the current status of construction (e.g., budget and schedule)? Remedial construction is complete. Site is in Operation & Maintenance (O&M).
- 8. Have any problems been encountered which required, or will require, changes to this remedial design or this ROD? *No.*
- 9. Have any problems or difficulties been encountered which have impacted construction progress or implementability? *No.*

NCSU Lot 86 Site Raleigh, Wake County, NC EPA 1D: NCD980557656 Fourth Superfund Five-Year Review Report Page 2 of 2

- 10. Do you have any comments, suggestions, or recommendations regarding the project (i.e., design, construction documents, constructability, management, regulatory agencies, etc.)?. Additional investigative activities are anticipated to confirm the current site conceptual model and hydraulic containment of contaminant plume.
- 11. Is the remedy functioning as expected? How well is the remedy performing? *Yes, the remedy is functioning as designed.*

12. What does the monitoring data show? Are there any trends that show contaminant levels are decreasing? Improvements in operation and maintenance made over the last 5 years have increased performance and efficiency of groundwater extraction, increasing the hydraulic containment of the contaminant plume and maintain current and long-term protectiveness offered by the groundwater extraction and treatment remedy. Additional investigative activities are anticipated to confirm the current site conceptual model and hydraulic containment of contaminant plume.

13. Is there a continuous on-site O&M presence? If so, please describe staff and activities. If there is not a continuous on-site presence, describe staff and frequency of site inspections and activities.

O&M presence is continuous in that system alarms are automatically routed to the Operator in Charge. Weekly site visits by the Operator in Charge are conducted for maintenance activities to ensure continued operation of the groundwater extraction and treatment system.

NCSU Lot 86 Site Raleigh, Wake County, NC EPA ID: NCD980557656 Fourth Superfund Five-Year Review Report Page 1 of 2

Interview Questionnaire

Completed by Karen A. Trimberger, Environmental Affairs Manager

1. What is your overall impression of the project?

Remedial activities are proceeding as designed.

2. What effects have site operations had on the surrounding community?

None that I am aware of. Site is surrounded by State owned land.

3. Are you aware of any community concerns regarding the site or its operation and administration? If so, please give details.

None that I am aware of.

4. Have there been any complaints, violations, or other incidents related to the site requiring a response by your office?

None

5. Do you feel well informed about the site's activities and progress?

Yes

6. Do you have any comments, suggestions, or recommendations regarding the site's management or operation?

No, site O&M is occurring as required.

7. What is the current status of construction (*e.g.*, budget and schedule?

We are in the Operation and Maintenance phase of the project.

Summary of budget for the last 5 years

FY14	\$135,426.12
FY15	\$102,762.23
FY16	\$108,047.17
FY17	\$131,878.58
FY18	\$117,067.64

NCSU Lot 86 Site Raleigh, Wake County, NC EPA ID: NCD980557656 Fourth Superfund Five-Year Review Report Page 2 of 2

8. Have any problems been encountered which required, or will require, changes to this remedial design or this ROD?

No

9. Have any problems or difficulties been encountered which have impacted construction progress or implementability?

No

10. Do you have any comments, suggestions, or recommendations regarding the project (i.e., design, construction documents, constructability, management, regulatory agencies, etc.)?

No

11. Is the remedy functioning as expected? How well is the remedy performing?

Yes. The remedy is functioning as designed

12. What does the monitoring data show? Are there any trends that show contaminant levels are decreasing?

Groundwater concentrations of Contaminants of Concern (COC) are generally decreasing in the following wells: MW-2, MW-3, MW-6, MW-11, MW-111, MW-12, MW-16, MW-16D, MW-17, MW-35D, MW-36S, and MW-36D.

Groundwater concentrations of COCs have increased in the following wells: MW-37, MW121, MW-171, and MW-27.

There has not been an obvious overall trend in the concentration of COCs in groundwater in the following wells: MW-18, MW-16I, MW-17D, MW-35S, MW-40, MW-41D, MW-21I, MW-43S, MW-43D, MW-45/45R, and MW-47.

13. Is there a continuous on-site O&M presence? If so, please describe staff and activities. If there is not a continuous on-site presence, describe staff and frequency of site inspections and activities.

No. Site is visited once a week by O&M contractor along with remote monitoring of the site. If site goes into alarm Monday through Friday, O&M Contractor visits site to trouble shoot and determine cause for alarm. If fixable at the moment, system is reset. If fix requires additional/new equipment, equipment ordered and system reset upon installation. If system goes into alarm on Saturday/Sunday, system is checked Monday and reset.

APPENDIX H Land Use Restrictions

WAKE COUNTY, NC 500 LAURA M RIDDICK REGISTER OF DEEDS PRESENTED & RECORDED ON 06/01/2009 AT 15:09:48

BOOK:013561 PAGE:00813 - 00825

Return to: Teresa L. White, Associate General Counsel, NC State University, Campus Box 7008, Raleigh, NC 27695-7008

DECLARATION OF PERPETUAL LAND USE RESTRICTIONS FOR A FEDERAL SUPERFUND SITE

For Property Owned By: STATE OF NORTH CAROLINA

North Carolina State University Lot 86 Superfund Site, Wake County, North Carolina

The real property which is the subject of this Declaration of Perpetual Land Use Restrictions ("Declaration") is contaminated with hazardous substances, pollutants, or contaminants and is a Superfund Site (hereinafter referred to as the "Site") as defined under the Comprehensive Environmental Response, Compensation and Liability Act, as amended ("CERCLA/SARA"), 42 U.S.C. § 9601 *et seq.*, and as set forth in the Consent Decree filed in civil action no. 5:98-CV-893-1302 in the United States District Court for the Eastern District of North Carolina, entitled "United States of America, Plaintiff, v. North Carolina State University at Raleigh, Defendant." This Declaration is part of a Remedial Action Plan for the Site that is identified in the Federal Record of Decision and any amendments thereto ("ROD") for the Site and that has been approved by the Secretary of the North Carolina Department of Environment and Natural Resources (or its successor in function), or his/her delegate, as authorized by N.C.G.S. Section 143B-279.9. The North Carolina Department of Environment and Natural Resources shall hereinafter be referred to as "DENR."

The State of North Carolina, c/o State Property Office, Raleigh, NC, is the owner in fee simple of the Site, which is located in the County of Wake, City of Raleigh, State of North Carolina, and is described in Exhibit A. The Site is a portion of the real property legally described in Deed Book 833 Page 357 in the Office of the Register of Deeds for Wake County. The Site is also shown on a Notice of Contaminated Site, incorporated by reference into this Declaration, constituting a survey plat, which is concurrently being recorded with this Declaration in the Office of the Register of Deeds for Wake County at Map Book 2009 Page 620. An unrecorded copy of said survey plat is attached hereto as Exhibit B.

For the purpose of protecting public health and the environment, the State of North Carolina hereby declares that all of the Site shall be held, sold and conveyed subject to the following perpetual land use restrictions, which shall run with the land; shall be binding on all parties having any right,

title or interest in the Site or any part thereof, their heirs, successors and assigns; and shall, as provided in N.C.G.S. Section 143B-279.9 be enforceable without regard to lack of privity of estate or contract, lack of benefit to particular land, or lack of any property interest in particular land. These restrictions shall continue in perpetuity and cannot be amended or canceled unless and until the Wake County Register of Deeds receives and records the written concurrence of the Secretary of DENR (or its successor in function), or his/her delegate. If any provision of this Declaration is found to be unenforceable in any respect, the validity, legality, and enforceability of the remaining provisions shall not in any way be affected or impaired.

It is the intention of the State of North Carolina and DENR that, to the extent allowed by law, the United States Environmental Protection Agency, Region 4 (USEPA), is a third party beneficiary of the Declaration, and, as such, has the authority to enforce these restrictions, to the extent such enforcement is allowed by law. It is expressly agreed that USEPA is not the recipient of a real property interest under this Declaration.

PERPETUAL LAND USE RESTRICTIONS

- 1. The Site shall be maintained in a grassed condition. Site maintenance shall be such as to preclude the growth of woody plant species (i.e., trees or bushes).
- 2. Activities necessary to maintain the Site security and structural integrity of the landfill at the Site are permitted.
- 3. Except as approved in writing by DENR or its successor in function, all other uses of the Site are prohibited, specifically including, but not limited to, the following:
 - a. The Site may NOT be used or developed for child care centers, schools, parks or recreational activities, including athletic activities, agricultural or grazing purposes or for timber production, kennels, animal pens, or for riding clubs.
 - b. NO alteration, disturbance or removal of the existing soil, landscape and contours shall occur other than erosion control measures without written approval of DENR or its successor in function.
 - c. NO surface or underground water shall be used for any purpose. The installation of groundwater wells or other devices for access to groundwater for any purpose other than monitoring groundwater quality is prohibited without prior approval by DENR, or its successor in function.
 - d. NO groundwater beneath the Site shall be used as a source of potable or irrigation water. The installation of groundwater wells or other devices for access to groundwater for any purpose other than monitoring groundwater quality is prohibited without prior approval by DENR, or its successor in function.

- e. The Site shall NOT be used for mining, extraction of coal, oil, gas or any other minerals or non-mineral substances.
- f. NO surface or subsurface native or fill earthen materials may be removed from the Site without the written permission of DENR or its successor in function.
- 4. Site security shall be maintained to effectively protect the Site from public access. Site access shall be controlled by the owner or owner's representative. All routine and special access to the Site shall be through the owner or the owner's representative. Site access for other than Site maintenance activities, shall be approved in advance by DENR, or its successor in function.
- 5. The owner of any portion of the Site shall submit a letter report, containing the notarized signature of the owner, in January of each year on or before January 31st, to DENR and USEPA, or their successors in function, confirming that this Declaration is still recorded in the Office of the Wake County Register of Deeds and that activities and conditions at the Site remain in compliance with the land use restrictions herein.
- 6. No person conducting environmental assessment or remediation at the Site, or involved in determining compliance with applicable land use restrictions, at the direction of, or pursuant to a permit or order issued by, the USEPA, DENR or its successor in function may be denied access to the Site for the purpose of conducting such activities.
- 7. The owner of any portion of the Site shall cause any lease, grant, or other transfer of any interest in the property to include a provision expressly requiring the lessee, grantee, or transferee to comply with this Declaration. The failure to include such provision shall not affect the validity or applicability of any land use restriction in this Declaration.

REPRESENTATIONS AND WARRANTIES

The owner of the Site hereby represents and warrants to the other signatories hereto:

that the owner of the Site has the power and authority to enter into this Declaration, to grant the rights and interests herein provided and to carry out all obligations hereunder;

that the owner of the Site is the sole owner of the Site;

that the owner holds fee simple to the Site subject to the Successor Addendum, attached hereto as Exhibit C, and the interests or encumbrances identified in Exhibit D, attached hereto; has provided to DENR the names of all persons that own an interest in or hold an encumbrance on the Site; and has notified such persons of the owner's intention to enter into this Declaration; and

that this Declaration will not materially violate or contravene or constitute a material default under

any other agreement, document or instrument to which the owner is a party or by which the owner may be bound or affected.

ENFORCEMENT

The above land use restrictions are an integral part of the remedy for the contamination at the Site. Adherence to the restrictions is necessary to protect public health and the environment. These land use restrictions shall be enforced by any owner, operator, or other party legally responsible for any part of the Site. The above land use restrictions may also be enforced by DENR through the remedies provided by any provision of law that is implemented or enforced by DENR or by means of a civil action, and may also be enforced by any unit of local government having jurisdiction over any part of the Site, and by USEPA to the extent allowed by law. Any attempt to cancel this Declaration without the approval of DENR or its successor in function shall constitute noncompliance with the USEPA's Federal Record of Decision for the Site, which has been approved by DENR, and shall be subject to enforcement by DENR and/or, to the full extent allowed by law, by USEPA. Failure by any party required or authorized to enforce any of the above restrictions shall in no event be deemed a waiver of the right to do so thereafter as to the same violation or as to one occurring prior or subsequent thereto.

FUTURE SALES, LEASES, CONVEYANCES AND TRANSFERS

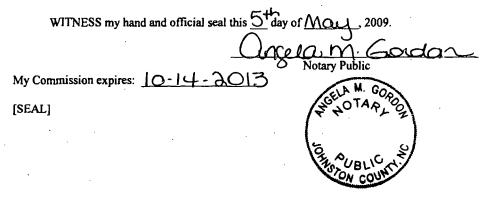
When any portion of the Site is sold, leased, conveyed or transferred, pursuant to N.C.G.S. Section 143B-279.10(e) the deed or other instrument of transfer shall contain in the description section, in no smaller type than that used in the body of the deed or instrument, a statement that the real property being sold, leased, conveyed, or transferred is a Contaminated Site and a reference by book and page to the recordation of the Notice of Contaminated Site referenced in the second paragraph of this Declaration.

SIGNATURES FOLLOW ON NEXT PAGE

the day

OWNER SIGNATURE

😎 day of <u>Har</u> , 2009.	e State of North Carolina has executed this Declaration on this
Signature:	Tur, W. Michard


Signatory's title typed or printed:

Diles Internet State Property Office for the State of North Carolina

STATE OF NORTH CAROLINA

COUNTY OF Wake

I, <u>Annela M. Gordon</u>, a Notary Public, do hereby certify that <u>June W. M. Chouk</u> personally appeared before me this day and Declared that he/she is the <u>Director</u> of the State Property Office for the State of North Carolina and that by authority duly given, and as the act of the State of North Carolina, he/she has signed this Declaration.

5

APPROVAL AND CERTIFICATION OF THE NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES

The foregoing Declaration of Perpetual Land Use Restrictions is hereby approved and certified.

By:

Jack Butler, Chief Superfund Section Division of Waste Management North Carolina Department of Environment and Natural Resources

NORTH CAROLINA WAKE COUNTY

I, Holly A. Murray, a Notary Public of said County and State, do hereby certify that Jack Butler did-personally appear and sign before me this the <u>13th</u> day of May, 2009.

Notary Publ

SEAL

My Commission expires: Jau 19 2014

HOLLY A. MURRAY Notary Public Wake County, N My Commission Expires 11

6

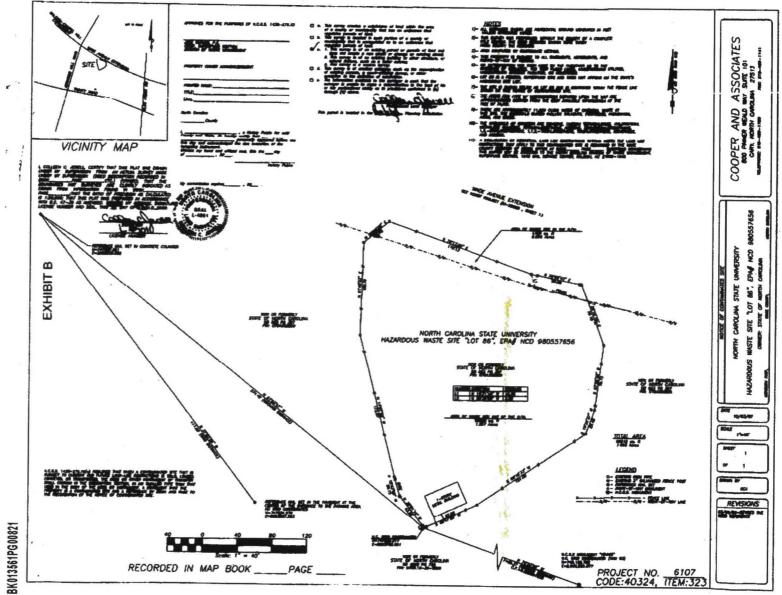
REGISTER OF DEEDS CERTIFICATION

The foregoing Declaration of Perpetual Land Use Restrictions is certified to be duly recorded at the date and time, and the Book and Page, shown on the first page hereof.

Register of Deeds for Wake County

By:

(signature)


(type or print name and title)

6/8/06

NORTH CAROLINA STATE UNIVERSITY HAZARDOUS WASTE SITE "LOT 86", EPA# NCD 980557656 OWNER: STATE OF NORTH CAROLINA

EXHIBIT A

COMMENCING AT AN N.C.G.S MONUMENT "TENNIS" LOCATED IN RALEIGH. NORTH CAROLINA HAVING N.C. GRID COORDINATES (NAD 83) IN FEET OF N=745,199.792 AND E=2,090,535.077. THENCE NORTH 70 DEGREES 23 MINUTES 06 SECONDS WEST FOR A DISTANCE OF 7168.37 FEET TO A POINT; SAID POINT BEING THE SOUTHERN MOST CORNER OF THE ABOVE REFERENCED PROPERTY AND THE POINT AND PLACE OF BEGINNING. THENCE NORTH 25 DEGREES 33 MINUTES 08 SECONDS WEST FOR A DISTANCE OF 3.22 FEET TO A POINT. THENCE NORTH 38 DEGREES 01 MINUTES 16 SECONDS WEST FOR A DISTANCE OF 43.59 FEET TO A POINT. THENCE NORTH 15 DEGREES 43 MINUTES 09 SECONDS WEST FOR A DISTANCE OF 20.15 FEET TO A POINT. THENCE NORTH 14 DEGREES 07 MINUTES 06 SECONDS WEST FOR A DISTANCE OF 173.07 FEET TO A POINT. THENCE NORTH 01 DEGREES 40 MINUTES 03 SECONDS EAST FOR A DISTANCE OF 108.78 FEET TO A POINT. THENCE NORTH 50 DEGREES 02 MINUTES 08 SECONDS EAST FOR A DISTANCE OF 38.45 FEET TO A POINT. THENCE SOUTH 70 DEGREES 17 MINUTES 40 SECONDS EAST FOR A DISTANCE OF 176.13 FEET TO A POINT; SAID POINT BEING NORTH 16 DEGREES 31 MINUTES 10 SECONDS WEST A DISTANCE OF 16.38 FROM AN EXISTING RIGHT-OF-WAY MONUMENT. THENCE SOUTH 78 DEGREES 05 MINUTES 43 SECONDS EAST FOR A DISTANCE OF 60.05 FEET TO A POINT. THENCE SOUTH 20 DEGREES 15 MINUTES 18 SECONDS EAST FOR A DISTANCE OF 75.10 FEET TO A POINT. THENCE SOUTH 07 DEGREES 25 MINUTES 22 SECONDS WEST FOR A DISTANCE OF 76.73 FEET TO A POINT. THENCE SOUTH 19 DEGREES 34 MINUTES 37 SECONDS WEST FOR A DISTANCE OF 29.48 FEET TO A POINT. THENCE SOUTH 56 DEGREES 16 MINUTES 33 SECONDS WEST FOR A DISTANCE OF 151.05 FEET TO A POINT. THENCE SOUTH 65 DEGREES 41 MINUTES 25 SECONDS WEST FOR A DISTANCE OF 67.89 FEET TO THE POINT AND PLACE OF BEGINNING. THIS AREA CONTAINS 65,628 SQUARE FEET (1.507 ACRES).

EXHIBIT C

STATE OF NORTH CAROLINA

SUCCESSOR ADDENDUM

COUNTY OF WAKE

2.

The undersigned, Carolina Solar Carolina Solar Energy, LLC, hereinafter ("Grantee"), Grantee of the State of North Carolina, hereinafter ("State"), on behalf of North Carolina State University, hereinafter ("NC State") for all or a portion of property allocated to NC State, known as Lot 86, for good and valuable consideration, does hereby agree as follows:

- 1. Grantee agrees to provide the United States, including the United States Environmental Protection Agency, hereinafter ("EPA"), NC State, and the State, and their agencies, authorized officers, employees and representatives, and all other persons performing response actions under EPA oversight, an irrevocable right of access at all reasonable times, cr at any time in the event of an emergency as determined by EPA, to Lot 86 for the purposes of performing and overseeing any response actions for the NC State Lot 86, hereinafter (the "Site"), including, but not limited to:
 - a. Implementing, monitoring, overseeing response actions or operation and maintenance actions on the Site;
 - b. Obtaining samples in connection with the Site;
 - c. Verifying any data or information submitted to the United States or the State in connection with the Site;
 - d. Conducting investigations relating to contamination or the release or threat of release of hazardous substances at or near the Site;
 - e. Assessing the need for, planning, or implementing additional response actions at or near the Site;
 - f. Determining NC State's compliance with the provisions of the Consent Decree between NC State and the United States concerning the Site; and,
 - g. Determining whether Lot 86 is being used in accordance or inconsistent with the terms of this Successor Addendum.
 - Grantee recognizes that the implementation of response actions at the Site and at Lot 86 may interfere with Grantee's use of Lot 86. Grantee agrees to cooperate fully with EPA in the implementation of response actions at the Site and Lot 86, and to refrain from using Lot 86 in any manner that would interfere with or adversely affect the integrity or protectiveness of the response actions being and to be implemented on Lot 86 and the Site.
- 3. Grantee agrees that if it fails to comply with this Successor Addendum, the United States and NC State may take legal action to obtain access or to enforce, specifically and otherwise, the terms of this Successor Addendum and may recover costs incurred in taking such legal action from the Grantee.

 Grantee agrees that this Successor Addendum shall be binding upon its heirs, executors, administrators, successors, legal representatives and assignees.

5. <u>Definitions:</u>

"CERCLA" means the Comprehensive Environmental Response, Compensation and Liability Act of 1980, as amended, 42 U.S.C. §9601, shall have the meaning set forth in that Section.

"EPA" means the United States Environmental Protection Agency and any successor departments, agencies or instrumentalities of the United States.

"Site" means NC State Lot 86 Superfund Site, located in Raleigh, North Carolina, and as further defined in the Record of Decision issued for the Site by EPA on September 30, 1986.

"United States" means the United States of America, including its departments, agencies and instrumentalities.

"NC State" means North Carolina State University at Raleigh.

This the 3 day of NIVEMBER, 2008.

CAROLINA SOLAR ENERGY, LLC, a North Carolina limited liability company

Bv:

Richard Harkrader Manager

EXHIBIT D

ENCUMBRANCES

1. North Carolina Department of Transportation ("NCDOT") right of way for Wade Avenue Extension. The right of way easement is recorded in Deed Book 6639, Page 0020 of the Wake County Registry.

2. Lease to Carolina Solar Energy, LLC. The lease is recorded in Deed Book 13010, Page 205 of the Wake County Registry.

BOOK:013561 PAGE:00813 - 00825

Yellow probate sheet is a vital part of your recorded document. Please retain with original document and submit for rerecording.

Wake County Register of Deeds Laura M. Riddick Register of Deeds

This Customer Group This Document # of Time Stamps Needed # of Pages # of Pages # 22.004-1/201/6

APPENDIX I Summary Data Tables from 2013-2017

VOCs

5	al al	Ben	zene Conce (μg/L)		1 8	Li L
ж	2017	2016	2015	2014	2013	RG Basis for RG Current NC2L
MW3	63.4	58.4	14.1	30.5	35.2	
MW8		-	-	49.6	-	
MW12S	293	264	169	318	-	
MW12I	43.1	-	74.3	87.4	79.1	
MW16S	-	-	2.38	-	-	1
MW16I	1.1	1.89	1.11	7.7	(0.92)	NC2L
MW17I	14,300	13,300	5,710	2,150	1,510	
MW17D	48.1	-	-	19.9	-	
MW36S	-	-	-	5.3	19.6	
MW37	4,060	4,020	8,200	9,470	18,100/ 11,400	
MW42I	-	-	-	-	3.1	
- Indicates of Bold indicate Shaded indic NS- well not	ates a conce				ng limit	

s _	Bi	omodochl	oromethane	Concentra	ations	
	1990 	a ²	(µg/L)		* 2	
	2017	2016	2015	2014	2013	RG Basis for RG Current NC2L
MW3	9	-	43.5	35.6	26.6	
MW6		1.53	NS	NS	18.0	2
MW8	DINA		1.96	-	-	
MW12S	Did Not	-	22.1	_	-	1
MW17I	Analyze	-	69.2	37.6	33.7	CRQL
MW35S	for this	-	-	a 😐	0.55	NC2L 0.6
MW36S	compound	1.04		-	8 -1	** <u>"</u>
MW37		-	242	а с		
MW41S	1	-	-	-	0.7	a.
- Indicates co	oncentration N	Non-Detect	or below the	reporting	limit	
Bold indicate	es above RG					
Bold indicate						

NS- well not sampled

P		Carbon Te	trachloride (μg/L)	Concentra	tions	· · ·
	2017	2016	2015	2014	2013	RG Basis for RG Current NC2L
MW2	NS	22	NS	NS	-	
MW3	184	162	275	264	132	
MW6	NS	1.61	NS	NS	94.9	1
MW8	163	151	236	110	115	
MW12S	270	21	239	221	168	
MW12I/	67.0/	-	86.8/	46.1/	48.7/	
duplicate	68.3		88.2	59.8	41.6	
MW16S	8.5	16	6.37	-	-	
MW16I	0.94	-	-	1.5	-	
MS17S	-	-	0.548	-	0.52	CRQL
MW17I	117	-	180	78.2	97.5	0.3
MW17D	209	187	309	190	296	9 9
MW27	13.8	5.79	16.2	9.4	8.9	
MW35D	0.86	-	1.95	2.1	4.9	
MW36S	14.4	15.7	35.0	31.0	44.1	
MW36D	4.0	4.22	5.62	5.5	7.9	
MW37	-	-	3.19		ne erne ertiction can a final de la Canada	- ·
MW41D	5.6	3.02	7.15	7.4	10.6	
- Indicates co Bold indicates Shaded indica NS- well not s	s above RG ites a concer					

т ж 4		Chlor	oform Con (µg/L)	centrations		
	2017	2016	2015	2014	2013	RG Basis for RG Current NC2L
MW2	NS	4,730	NS	NS	5,740	
MW3	2,200	2,510	6,870	5,970	3,740	
MW6	NS	162	NS	NS	3,400	
MW8	7,520	7,930	10,800	5,800	2,960	
MS11S	NS	477	NS	NS	NS	2
MW12S	12,800	10,300	12,000	12,500	7,700	
MW12I/	4,350/	4,290/	7,060/	4,850/	5,340/	
duplicate	4,430	4,190	6,980	5,370	5,130	
MS13D	4.9	-	4.01	0.99	1.7	
MW16S	328	901	111	1,930	5,690	
MW16I	27.5	40.5	18.6	106	23.6	
MS17S	3.7	-	13.7	NS	15.2	- ·
MW17I	3,420	3,340	6,350	3,060	3,120	1
MW17D	1,560	2,010	3,040	1,840	3,060	CRQL
MW27	35	32.4	33.8	22.4	21	70
MW35D	6.7	8.93	17.0	18.3	41.0	
MW36S	272	356	706	928	1,510	
MW36D	148	242	315	337	516	
MW37	47,400	44,200	10,000	102,000	168,000	
MW41S	1.4	NS	0.511	NS	4.0	
MW41I	1.1	NS	1.52	NS	1.6	1
MW41D	19.7	20.8	37.5	35.3	50.9	
MW42S	1.7	-	1.75	-	2.5	1
MW42I	0.56	-	3.3	2.3	4.4	1
MW43S	6.4	-	21.2	17.7	22.3	1
MW43D	3.5	-	4.73	3.9	5.2	1
MW47	9.6	11.0	22.0	20.0	24.5	1
- Indicates co Bold indicate Shaded indic NS- well not	oncentration es above RG cates a conce	Non-Detec		he reporting	the second se	<i>d</i> .

			(µg/I	_)		
o a	2017	2016	2015	2014	2013	RG Basis for RG Current NC2L
MW2	NS	7,390	NS	NS	7,870	
MW3	5,350	5,380	5,700	6,610	2,420	
MW6	NS	86.4	NS	NS	565	
MW8	780	853	823	854	160	
MS11S	-	4.91				2 2
MW12S	19,300	19,300	20,300	18,400	16,500	£
MW12I/	154/	152/	208/	174/	169/	
duplicate	157	146	205	185	151	
MS13D	3.5	3.02	2.1	17	0.86	
MW16S	82.6	140	198	239	611	
MW16I	41.4	46.2	45.2	66.5	83	
MS17S	-	NS	0.96	NS	1.4	
MW17I	824	894	880	410	291	CRQL
MW17D	159	188	197	217	98.8	0.6
MW27	12.6	28.5	19.4	17.1	15.5	
MW35D					0.64	
MW36S	86.0	129	204	392	539	
MW36D	5.5	106	11.1	13.7	16.8	
MW37	2,350	2,620	3,320	3,180	3,640	
MW41S	-					а А
MW41I	-			4		
MW41D	1.5	2.25	2.12	2.6	4.8	
MW42S						
MW42I	3.6	3.79	5.92	9.2	11.2	
- Indicates co Bold indicates Shaded indica NS- well not s	s above RG ites a concer				limit	р р.

·····		Methylen	e Chloride (μg/L)	Concentrati	ons	*
× .	2017	2016	2015	2014	2013	RG Basis for RG Current NC2L
MW2	NS	-	NS	NS	2,530	
MW3	-	-	310		489	
MW6	NS	-	NS	NS	68.9	
MW8	95.5	-	23.7	47.8	-	· ·
MW12S	1,060	· -	873	1050	1690	5
MW12I/	_	-	112/	119/	443/	NC2L
duplicate			113	108	445	5
MW17I		-	248	133	144	
MW36S	-1	-	6.5	23	-	6
MW37	6,210	5,760	11,500	14,800	32,400	
MW42I	2,190	7	-	-	1 2 4 M	18
- Indicates co	ncentration 1	Non-Detec	t or below the	ne reporting	limit	
Bold indicate	s above RG					
Shaded indica	ites a concen	tration abo	ove the NC2	L		
NS- well not a	sampled				N 84	8 1997 - 17

2		Tetrachl	oroethene ((μg/L)	Concentratio	ons	
	2017	2016	2015	2014	2013	RG Basis for RG Current NC2L
MW2	NS	291	NS	NS	-	
MW3	30.8	-	84.6	52.7	35.2	
MW6	NS	4.21	NS	NS	64.2	5
MW8	• 135	-	146	104	72.4	
MS11S	-	10.9	-	-	-	
MW12S	164		123	126	-	
MW12I/	137/	130/	159/	93.2/	119/	
duplicate	128	96.6	163	106	108	·~
MW16S	96.9	42.6	153	177	333	
MW16I	7.7	22	12.6	17.4	1.6	CRQL
MW17I	-	-	12.7	-	-	0.7
MW17D	55.1	74.3	90.2	52.6	52.5	
MW27	2.9	-	2.09	1.3	1.0	
MW36S	4.7	7.98	10.1	8.7	14.9	н
MW36D	0.62	1.06	0.936	1.5	-	
MW37	295	302	353	_	-	4
MW41D	0.65	-	0.775	0.9	1.3	n ¹²
MW42I				1.1		
- Indicates co	oncentration	Non-Detec	t or below t	he reporting	limit	
Bold indicate						
Shaded indica	ates a concer	ntration abo	ve the NC2	L		
NS- well not						

-		1,1,2-1 ric	∣ loroethane (µg/L)		ions	
	2017	2016	2015	2014	2013	RG Basis for RG Current NC2L
MW3	-	-	12.2	20		
MW8	· -	-	0.503	12		
MW12S	1170	1180	2250	1930	2070	-
MW12I/	66.6/	-/	89.1/	72.6/	70.7/	
duplicate	68.1	65.9	90.6	73.5	63.7	1
MW16S	7.8	20.7	49.1	199	471	
MW16I	0.87	1.48	0.917	3.3	0.57	(NA)
MW17I	-	-	30.6	17.4	16	
MW17D	32.8	35.4	40.4	51	30.4	
MW37	-	-	9.13	-	-	
MW41D	-	-	-	0.51	0.58	

Bold indicates above RG Shaded indicates a concentration above the NC2L

NS- well not sampled

	1	Trichl	oroethene ((µg/l	C oncentrati L)	ons	1
	2017	2016	2015	2014	2013	RG Basis for RG Current NC2L
MW2	NS	239	NS	NS	-	1
MW3	503	539	854	944	472	
MW6	NS	4.65	-	_	80.6	
MW8	90.6	-	90	63.5	32.9	2.8
MS11S	-	6.28		-	-	NC2L
MW12S	320	275	375	310	299	2.8
MW12I/	111/	-/	137/	94.4/	93.4/	
duplicate	118	86.3	138	106	87.6	
MW16S	42.4	40.3	126	161	412	
MW16I	6.3	14.7	8.82	15.6	1.3	a
MW17I	260	245	243	134	127	
MW17D	107	134	162	107	101	
MW27	10.6	10.4	9.95	7.8	6.9	
MW36S	16.6	23	44.3	68.3	95.3	
MW36D	1.5	2.3	2.85	3.8	4.9	1
MW37	744	600	942	1100	1580	
- Indicates co	oncentration	Non-Detect	t or below th	and the second s	a strange of the second s	i
Bold indicate Shaded indica NS- well not	es above RG ates a concer					

Inorganic Compounds

		Aı	rsenic Conc (μg/Ι			
6	2017	2016	2015	2014	2013	RG/ Basis for RG/ Current NC2L
MW16S			2	68	E	10
MW36S	28.8	51.5		-	_	CRQL
MW36D	-	-	31.2	35.9	36.3	10
- Indicates co	ncentration	Non-Deter	ct or below	the reporting	limit	
Bold indicates	s above RC	ì		~ ~		ж.
Shaded indica	ites a conce	entration ab	ove the NC	2L		
NS- well not s	sampled					
(data) – paren	theses indi	cates the co	oncentration	detected belo	ow the NC2	L

Manganese Concentrations (µg/L)									
	2017	2016	2015	2014	2013	RG Basis for RG Current NC2L			
MW2	NS	29,100	NS	NS ·	47000				
MW3	3,300	3,210	2,360	6,440	4,360				
MW6	NS	1,770	NS	NS	2,280				
MW8	56.5	30.2	35.9	27.7	11.8				
MS11S	e _	1,620	-	-	-	×			
MW11I	161	171	209	176	213				
MW12S	35,800	27,000	31,000	37,800	22,500				
MW12D	90	65.3	115	124	-				
MW12I/	93.5/	36/	98.2/	84.2/	114/				
duplicate	94.1	31.3	103	81.8	121				
MS13S	1,060	966	· ·	-	-	*			
MS13D	59.9	53.6	56.2	56.5	25.2	2			
MW16S	13,400	7,730	9,630	23,600	15,800	370			
MW16I	176	205	190	98.6	94.1	Background			
MS17S	220	135	149	126	116	50			
MW17I	124	135	149	126	116	50			
MW27	48.9	54.2	54	239	120				
MW35D	-	180	-	-					
MW36S	2,600	2,970	3,220	3,480	4,720				
MW37	32,500	37,800	47,300	48,300	49,200	*			
MW38	66.2	55.4	64.6	-	91.8				
MW41S	147	321	115	214	72	4. 8			
MW41I	6	77.2	-	-	13.1				
MW41D	365	156	224	50.8	62	•			
MW42S	146	289	61.7	78.8	149				
MW42I	352	321	352	329	277				
MW43S	102	731	36.4	9.1	34				
MW46	61.2	68.7	121	103	84				
- Indicates c Bold indicat Shaded indic					limit				

NS- well not sampled

8	2017	2016	2015	2014	2013	RG
MW2	NS	44.3	NS	NS	80	Current NC2
MW3	126	44.5	486	620	610	8
MW6	NS	18.8	480 NS	NS NS	410	
MW8	2.3	4.14	3.86	7.2	410	
MS11S	NS	858	3.00	NS	4.4 NS	2
MW11I	119	82.9	110	84	440	
MW12S	111	102	58.8	150	30	
MW12D	-	102	50.0	7.3	4.6	
MW12L/	11,700/	22,100/	18,300/	10,000/	19,000/	
duplicate	11,200	11,700	15,400	13,000	16,000	No RG
MS13S	11,200	5.12	-	15,000	10,000	established.
MS13D	-	2.12		7.5		established.
MW16S	23.4	14.4	32.6	100	180	NC2L is 3
MW16I	2380	3620	3500	1400	550	
MS16D	120	155	387	550	130	
MW17I	232	449	468	250	260	
MS17D	13.7	20.1	14.4	19	32	
MW27	18.2		-	140	-	
MW36D	2.1	5.38	-	3.4	4.6	
MW36S	-	-	5.67	25	34	
MW37	4,310	8,820	10,300	10,000	18,000	۵.
MW38	-	-	-	4.2	-	4
MW42S	10.2	-	-	-	-	2
MW42I	3.140	2,660	3,520	760	1,400	
MW47	-	-	19.6	-	-	
- Indicates co	ncentration	Non-Detect		ne reporting	limit	I

Compound Not Identified in the ROD but with exceedances above NC 2L in multiple wells

NS- well not sampled

APPENDIX J 2018 Remedial Action Progress Report

6003-145 Chapel Hill Rd. Raleigh, NC 27607 P: 919-854-9700 F: 919-854-9532 www.piedmontgeologic.com

REMEDIAL ACTION PROGRESS REPORT: JANUARY THROUGH DECEMBER 2017

Lot 86 Farm Unit No. 1 Site North Carolina State University Raleigh, North Carolina

Prepared For:

North Carolina State University Environmental Health and Safety Center Raleigh, North Carolina 27695

Prepared By:

Piedmont Geologic, P.C. 6003 Chapel Hill Road, Suite 145 Raleigh, North Carolina 27607

January 29, 2018

Piedmont Geologic is a professional corporation licensed to practice Geology (C-216) in North Carolina. Remedial Action Progress Report: January - December 2017 NCSU – Lot 86 January 29, 2018

PROFESSIONAL CERTIFICATION

The Remedial Action Progress Report: January through December 2017 for the North Carolina State University – Lot 86 Farm Unit No. 1 site has been prepared under the responsible charge of the following Professional Geologist registered in the State of North Carolina.

Jonathan D. Murphrey Printed Name

Signature

January 29, 2018 Date

PIEDMONT GEOLOGIC, P.C.

ii

Remedial Action Progress Report: January - December 2017 NCSU - Lot 86 January 29, 2018

TABLE OF CONTENTS

		Page No.
PRO	FESSIONAL CERTIFICATION	11
1.0	INTRODUCTION AND EXECUTIVE SUMMARY	5
2.0	SITE BACKGROUND INFORMATION	7
3.0	SUMMARY OF GROUNDWATER REMEDIATION OBJECTIVES	8
4.0	GROUNDWATER EXTRACTION SYSTEM DESCRIPTION	9
5.0	GROUNDWATER EXTRACTION SYSTEM MONITORING AND MAINTENANC	
5.1	OVERVIEW	12
5.2	WEEKLY SYSTEM VISITS BY OPERATOR IN RESPONSIBLE CHARGE	12
5.3	REMOTE MONITORING OF SYSTEM OPERATION AND RESPONSE TO SYSTEM UPSET CONDITIO	NS12
5.4	OPERATION AND MAINTENANCE ACTIVITIES	13
5.5	MONTHLY GWE SYSTEM EFFLUENT AND INFLUENT WATER SAMPLING/ANALYSIS	14
5.6	QUARTERLY GROUNDWATER POTENTIOMETRIC SURFACE DATA EVALUATION	15
5.7	QUARTERLY GWE-SYSTEM RECOVERY WELL SAMPLING AND ANALYSIS	15
5.8	GWE SYSTEM ISSUES AND CORRECTIVE ACTIONS	16
6.0	GROUNDWATER EXTRACTION SYSTEM OPERATION	17
6.1	OPERATION SUMMARY	
6.2	GWE SYSTEM INFLUENT MONITORING RESULTS AND MASS REMOVAL CALCULATIONS	18
6.3	GWE SYSTEM EFFLUENT MONITORING	
7.0	GROUNDWATER MONITORING	22
8.0	PERFORMANCE AND EFFICACY OF SITE REMEDIAL ACTIONS	
8.1	COMPARISON OF GROUNDWATER POTENTIOMETRIC-SURFACE CONTOUR MAPS AND COC	
	ISOCONCENTRATION CONTOUR MAPS	
8.2	TREND ANALYSIS OF SITE GROUNDWATER COC CONCENTRATIONS	26
9.0	RECOMMENDATIONS	29

Figures

1 Site location map

- 2 Site map
- 3 Generalized groundwater extraction system layout

Tables

- 1 Groundwater monitoring well construction details
- 2 Monitoring-well gauging data: February 1, 2017
- 3 Monitoring-well gauging data: May 22, 2017
- 4 Monitoring-well gauging data: August 7, 2017
- 5 Monitoring-well gauging data: November 20, 2017
- 6 Summarized results of laboratory analysis: groundwater samples collected from GWE system recovery wells: February 2017
- 7 Summarized results of laboratory analysis: groundwater samples collected from GWE system recovery wells: May 2017
- 8 Summarized results of laboratory analysis: groundwater samples collected from GWE system recovery wells: August 2017
- 9 Summarized results of laboratory analysis: groundwater samples collected from GWE system recovery wells: November 2017
- 10 Summarized results of laboratory analysis: GWE system influent groundwater samples

iii

TABLE OF CONTENTS (CONTINUED)

Tables (continued)

- 11 Summarized results of laboratory analysis: volatile organic compounds: groundwater samples collected August 2017
- 12 Summarized results of laboratory and field analysis: metals and field parameters: groundwater samples collected August 2017
- 13 Summarized results of laboratory analysis: gross beta and tritium: groundwater samples collected August 2017

Appendices

- A GWE system equipment schematics
- B Groundwater modeling output
 - *B-1:* Groundwater potentiometric-surface and flow models *B-2:* Groundwater CQC distribution models
- C Graphs
- D Laboratory reports

PIEDMONT GEOLOGIC, P.C.

1.0 INTRODUCTION AND EXECUTIVE SUMMARY

This document presents a Remedial Action Progress Report (RAPR) for the North Carolina State University (NCSU) – Lot 86 Farm Unit No. 1 (Lot 86) site in Raleigh, North Carolina covering the period from January through December 2017. A groundwater extraction (GWE) system, for remediation of dissolved-phase groundwater chemicals of concern (COCs), was started at the site in September 2006 in accordance with the September 1996 Record of Decision (ROD) between NCSU and the U.S. Environmental Protection Agency (EPA).

This document presents site groundwater remediation objectives, GWE system specifications, GWE system monitoring and maintenance procedures, GWE operation statistics for the reporting period, groundwater monitoring procedures and results, and an evaluation of GWE system performance. Additional site background information is provided in the *Remedial Action Progress Report: September 2006 through December 2008*, prepared by Piedmont Geologic (January 2009). Summaries of GWE system operation and performance from startup in September 2006 through December 2017 are presented as follows.

Summary of GWE System Operation

GWE system startup date	September 26, 2006
Reporting period	Jan. 1 – Dec. 31, 2017
GWE system ON-time during reporting period	7,588 hours
GWE system OFF-time during reporting period	1,172 hours
GWE system ON-percentage during reporting period	87%
Total GWE system ON-time since startup	70,987 hours
Total GWE system ON-percentage since startup	72%
Volume of groundwater recovered/treated during reporting period	2,769,302 gallons
Mean groundwater recovery/treatment rate during reporting period	6.1 gpm
Total volume of groundwater recovered since GWE-system startup	17,792,929 gallons
Estimated mass of dissolved-phase VOCs extracted during reporting period	291.4 lbs
Estimated mass of dissolved-phase VOCs extracted since system startup	2,504.7 lbs

VOC = volatile organic compounds

Site groundwater potentiometric-surface contour maps generated for 2017 indicate substantial groundwater drawdown and capture zones for the shallow and intermediate aquifer zones. Comparison of 2005 and 2017 groundwater chloroform isoconcentration contour maps indicates substantial apparent shrinkage of the groundwater chloroform distribution in the shallow aquifer zone, particularly in the northern and southern site areas, over the duration of GWE-system operation thus far. Comparisons of 2005 and 2017 groundwater chloroform isoconcentration contour maps for the intermediate aquifer zone (and to some extent, the deep aquifer zone) indicate possible expansion of the groundwater chloroform distributions, although a precise determination of chloroform-distribution changes over time is limited by the lesser spatial coverage of monitoring wells for these aquifer zones relative to the shallow aquifer zone.

PIEDMONT GEOLOGIC, P.C.

Remedial Action Progress Report: January - December 2017 NCSU – Lot 86 January 29, 2018

Graphs of groundwater COC concentrations versus time indicate generally decreasing or fluctuating trends in groundwater COC concentrations for most site monitoring wells with continued GWE system operation. Most site monitoring wells for which slightly increasing or generally increasing trends have been observed over time are screened within the shallow and intermediate aquifer zones.

In order to address concerns regarding spatial coverage of monitoring wells for the intermediate and deep aquifer zones, additional monitoring wells will be installed at the site during 2018. No other modifications to the site groundwater remediation/monitoring approaches are recommended.

PIEDMONT GEOLOGIC, P.C.

2.0 SITE BACKGROUND INFORMATION

The site location and layout are presented in Figures 1 through 3. Site groundwater monitoring well construction details are listed in Table 1. A complete description of site background information, including site descriptions, historical waste disposal and management practices, regulatory history, site geological/hydrogeological characteristics, and findings of environmental site investigations are provided in the *Remedial Action Progress Report: September 2006 through December 2008*, prepared by Piedmont Geologic (January 2009).

PIEDMONT GEOLOGIC, P.C.

3.0 SUMMARY OF GROUNDWATER REMEDIATION OBJECTIVES

Site groundwater remediation activities were implemented in 2006 in accordance with the 1996 Record of Decision (ROD) issued by the EPA. Groundwater remediation objectives established in the ROD are:

- Prevent COC migration to surface water to keep surface water COC levels from exceeding Ambient Water Quality Criteria (AWQC).
- Control future releases of COCs to ensure protection of human health and the environment (Superfund Amendments and Reauthorization Act (SARA) Section 121[d]).
- Permanently and significantly reduce mobility, toxicity, or volume of characteristic hazardous waste with treatment (SARA Section 121[d]).

COC	Remediation Level (µg/L)	Basis
Benzene	1 .	NC groundwater standard (1)
Carbon tetrachloride	1	Contract Quantitation Limit (CRQL)
Chloroform	70	NC groundwater standard (1)
Methylene chloride (DCM)	5	NC groundwater standard (1)
Tetrachloroethene (PCE)	1	Contract Quantitation Limit (CRQL)
Acetone	700	NC groundwater standard (1)
Bromodichloromethane	1	Contract Quantitation Limit (CRQL)
1,2-Dichloropropane	1	Contract Quantitation Limit (CRQL)
1,1,2-Trichloroethane	1	Contract Quantitation Limit (CRQL)
Trichloroethene (TCE)	2.8	NC groundwater standard (1)
Manganese	370	Background concentration
Arsenic	10	Contract Quantitation Limit (CRQL)

Remedial Action Objectives for Groundwater

(1) 15A NCAC 2L .0202 in 2006.

Cleanup goals for the site are the North Carolina groundwater quality standards defined in Title 15A NCAC 2L .0202 (2L Standards). For COCs with groundwater standards less than the laboratory practical quantitation limits (PQL), the PQL constitutes the groundwater cleanup goal. The site background groundwater concentration for manganese is the groundwater cleanup level for that compound.

See.

4.0 GROUNDWATER EXTRACTION SYSTEM DESCRIPTION

The generalized layouts of the GWE wells and groundwater treatment system are shown in Figure 3 and Appendix A. A summary of the GWE system process and design is provided as follows.

- A conservative GWE system recovery and treatment design flow rate of 20 gallons per minute was selected based on the results of the pre-design pump test and groundwater flow modeling.
- The GWE system incorporates thirteen shallow GWE wells and four deep GWE wells. The shallow GWE wells are constructed of 4-inch inside diameter (I.D.), stainless-steel, well screen/casing and are installed to depths ranging from approximately 50 to 80 feet below grade (approximately 378 to 345 feet NGVD). The deep GWE wells are constructed of 4 inch I.D., stainless-steel, well screen/casing and are installed to depths ranging from approximately 118 to 152 feet below grade (approximately 310 to 265 feet NGVD), with outer 6-inch Schedule 40 PVC casings grouted into the top of bedrock. Each GWE wellhead is enclosed within a concrete vault that houses electrical and plumbing connections.
- Pumping depths of 380 feet NGVD for shallow GWE wells and 370 feet NGVD for deep GWE wells were selected to maximize groundwater flow from deeper to shallower aquifer zones.
 Contaminated groundwater is pumped from the GWE wells using dedicated, stainless-steel, variable-frequency drive, electric submersible pumps (Grundfos Redi-Flo3). Pump controls are located within a control panel located outside the groundwater treatment building. The pump speed (which controls groundwater recovery rate) is set manually for each well at the pump control panel. Each pump contains intrinsic protections that prevent the pump from running dry.
 Individual pump recovery lines manifold into a 2-inch 1.D., high-density polyethylene (HDPE) header line that conveys recovered groundwater to the treatment building.
- Upon entering the treatment building, the GWE well header discharges to a 500-gallon stainless steel process water tank. The process water tank incorporates ultrasonic level controls to provide for shut down of the system during high-level and low-level conditions. The effluent tank is controlled by a variable speed drive so that transfer-pump rates may be programmed to match influent groundwater recovery rates.
- Recovered groundwater is pumped from the process water tank through two bag filters plumbed in series (skid #1) to remove particulate matter from the raw groundwater influent.
- After passing through the skid #1 bag filters, influent groundwater is discharged to two, 10 gpm, four-tray, low-profile air strippers plumbed in parallel for dissolved volatile organic compound (VOC) removal. The air stripper sumps incorporate high-level and low-level controls that turn-on and turn-off, respectively, the air stripper sump transfer pumps.

 Treated groundwater effluent from the air stripper sumps is pumped to the City of Raleigh sanitary sewer system through a 6-inch I.D. PVC pipe in accordance with a City Industrial User Pretreatment Permit (IUP).

The original GWE system design and operation from September 2006 through January 2012 included the following additional groundwater treatment processes after passing through the skid #2 bag filters. As explained below, these were taken off line permanently starting in June 2012.

- Treated groundwater effluent from the air stripper sumps was pumped to a 300-gallon intermediate tank. The intermediate tank incorporated high-level and low-level controls that turned on and turn off, respectively, the skid #2 transfer pump.
- Treated groundwater effluent was pumped from the intermediate tank through two bag filters plumbed in series (skid #2) to remove particulate matter generated from the air stripper treatment
- After passing through the skid #2 bag filters, treated groundwater effluent from the air strippers passed through two, 500-gallon, granular activated carbon (GAC) filter canisters plumbed in series for removal of organic compounds remaining following air stripping.
- After passing through the GAC filters, the treated groundwater effluent passed through two, 500gallon, ion selective resin (i.e., ion exchange) (ISR) filter canisters plumbed in series for removal of mercury and other inorganics.
- After passing through the ISR filters, the final treated groundwater effluent discharged to a 350gallon effluent tank. The effluent tank incorporates high-level and low-level controls that turn on and turn off, respectively, the effluent tank transfer pump.
- Final treated groundwater effluent was pumped from the effluent tank to the surface water discharge point through a 2-inch I.D. HDPE discharge pipe in accordance with a site National Pollution Discharge Elimination System (NPDES) permit.

The former 2,000-gallon capacity carbon-steel process water tank was replaced with a 500-gallon capacity stainless-steel tank in October-November 2016 (discussed further in Section 5.4).

As explained in the January-December 2012 RAPR (dated March 1, 2013), the site GWE system was shut down from January 25 through May 31, 2012 in response to recurring non-compliant results of chronic toxicity testing for GWE-system effluent groundwater samples collected as required under a former site NPDES discharge permit. A City of Raleigh IUP was issued in May 2012 to allow for the discharge of treated groundwater from the GWE system to the City sanitary sewer system. Following the restart of the GWE system on June 1, 2012, treated groundwater was stored in a 21,000-gallon capacity on-site holding tank, which was offloaded on a weekly basis and discharged to a City of Raleigh sanitary sewer manhole

PIEDMONT GEOLOGIC, P.C.

located near the site, in accordance with the IUP. This process continued through April 2013, at which time the GWE system was shut down again. A second City of Raleigh IUP was issued in May 2013 to allow for continuous discharge of treated groundwater from the GWE system directly into the City sanitary sewer system via an underground discharge pipe. The GWE system was restarted on May 15, 2013 and has since been operating in accordance with the new discharge scenario.

From system startup in September 2006 to June 2008, all seventeen GWE wells were in service. Upon receipt of results of laboratory analysis of May 2008 groundwater samples in early June 2008, it was realized that increased dissolved COC concentrations had been detected in groundwater samples collected from intermediate and deep monitoring wells compared to the previous (May 2005) groundwater samples, collected prior to startup of the GWE system. As a result, concerns arose that groundwater pumping from the deep GWE wells could result in unwanted migration of dissolved COCs from the shallow saprolite aquifer to the deeper saprolite aquifer and the bedrock aquifer. In response, deep GWE wells DRW-A, B, C, and D were taken out of operation on June 10, 2008 and have remained off since that time.

5.0 GROUNDWATER EXTRACTION SYSTEM MONITORING AND MAINTENANCE

5.1 Overview

System operation and maintenance was conducted during the reporting period in accordance with the *Operation and Maintenance Plan: Groundwater Extraction System*, dated August 21, 2014, prepared by Piedmont Geologic. Routine O&M activities included the following.

- Weekly system visits by the Operator in Responsible Charge (ORC), or backup ORC, to meet City of Raleigh IUP permit requirements and maintain the Groundwater Treatment System Log.
- Monthly sampling and analysis of GWE system effluent water (i.e., treated water) in accordance with the system NPDES and City of Raleigh permits.
- Monthly sampling and analysis of GWE system influent water (i.e., untreated water) for evaluation of recovery system efficacy.
- Remote monitoring of the system operation and onsite response to system upset conditions.
- Routine maintenance such as replacement of system bag filters.
- Quarterly collection and evaluation of groundwater potentiometric surface data from site monitoring wells.
- Quarterly sampling and analysis of shallow GWE wells for gross beta activity and tritium.

5.2 Weekly System Visits by Operator in Responsible Charge

In accordance with the system NPDES permit, weekly system visits were conducted during the reporting period by the ORC, or backup ORC, to inspect the GWE system treatment components and discharge point. The site visits also included visual inspection of all system equipment; recording of gauge and meter readings for pumps; air strippers, bag filters, and other components; checks for air and water leaks from system components; and inspection of the GWE system effluent water for floating solids, foam, or sheens.

5.3 Remote Monitoring of System Operation and Response to System Upset Conditions

The system telemetry unit (EOS ProControl model B2) was retrofitted in May 2014 to allow for remote communication with the unit via the internet, rather than a telephone landline. Prior to the upgrade, the telemetry unit was programmed to transmit reports via facsimile, while the retrofitted unit is programmed to transmit email reports to Piedmont Geologic personnel, as follows, using a standardized transmittal form.

- Daily (routine) reports: the telemetry system is programmed to automatically send a report email each morning (7 days per week) that shows a "snapshot" of system operating conditions and the current system effluent totalizer reading (i.e., total gallons of groundwater effluent discharged by system).
- Alarm (system upset) reports: alarm report emails are sent in response to system alarms or upsets, such as high-level conditions in sumps/tanks, low pressure or high pressure conditions in the air stripper, high-pressure conditions in filter vessels, and/or other system shutdown conditions.

Email reports were reviewed on a daily basis during the reporting period to determine the general operating condition of the system. The 24-hour average groundwater recovery and discharge rate was calculated each day using the daily system effluent totalizer reading. Logged operational data in the telemetry system was downloaded and reviewed for issues. When system issues were observed, NCSU was promptly notified and response measures were conducted.

Emails were reviewed upon receipt to determine the nature of the alarm and to develop an appropriate response action. The NCSU project manager was informed of alarm conditions within one business day of the alarm, and appropriate system maintenance and/or repairs were conducted.

5.4 Operation and Maintenance Activities

Routine O&M activities were conducted during the reporting period to optimize system on-time and performance, including the following.

- Weekly, or as-needed, changing of 50-micron bag filters in each of the two bag filter canisters.
- As-needed cleaning of air-stripper sump sight tubes and skid #1 and #2 flow meters.
- Floor-sump pump cleaning and adjustments.
- Equipment lubricating.
- Bi-annual cleaning of the process water tank (PWT) interior.
- Annual replacement of effluent flow meter/totalizer (factory calibrated).
- Bio-dispersant injection system inspection/cleaning (see Section 5.8).

5.5 Monthly GWE System Effluent and Influent Water Sampling/Analysis

Monthly sampling and laboratory analysis of groundwater treatment system effluent groundwater was conducted in accordance with the requirements of the site City of Raleigh IUP during the reporting period. Sampling activities were documented using the system log described above, and samples were analyzed by North Carolina certified laboratories. GWE system effluent monitoring and performance requirements for the City of Raleigh IUP are listed as follows.

	Discharg	ge Limits	Monitoring Requirements		
Parameter	Monthly Average		Frequency	Sample Type	
Flow		12,000 gpd	continuous	recording	
рН			each discharge event	grab	
Mercury			1/month	grab	
Arsenic			1/2months	grab	
Copper			1/2months	grab	
Iron			1/2months	grab	
Lead			1/2months	grab	
Zinc			1/2months	grab	
Manganese			1/2months	grab	
Molybdenum			1/6months	grab	
Selenium			1/6months	grab	
Silver	*		1/6months	grab	
Cadmium			1/6months	grab	
Chromium			1/6months	grab	
Nickel			1/6months	grab	
Benzene			1/month	grab	
Carbon Tetrachloroethene			1/month	grab	
Toluene			1/month	grab	
1,1,2,2-Tetrachloroethane			1/month	grab	
Trichloroethene			1/month	grab	
Chloroform			1/month	grab	
1,2-Dibromoethane	×		1/month	grab	
1,2-Dichloropropane			1/month	grab	
Tetrachloroethene			1/month	grab	
1,4-Dioxane		2	1/month	grab	
Tritium			1/3months*	grab	
Gross beta activity			1/3months*	grab	

GWE System Effluent-Groundwater Analyses and Discharge Limitations
(City of Raleigh Industrial User Pretreatment Permit)

*Tritium and gross beta activity sampling/analysis is being conducted on a monthly basis, rather than quarterly.

Effluent pH analysis was conducted by Piedmont Geologic (NC Certification #5560). Gross beta activity and tritium analyses were conducted by Test America Laboratories, Inc. (Test America) of Earth City, Missouri (NELAP Certification #E87689), ESC Lab Sciences (ESC) of Mt. Juliet, Tennessee (NC Certification #375), or Pace Analytical Services, LLC (Pace) of Huntersville, North Carolina (NC Certification #5342). The remaining analyses were conducted by ESC or Pace.

GWE system influent-groundwater (i.e., untreated water) samples were collected on a monthly basis in conjunction with the effluent groundwater sampling discussed above. The influent-groundwater samples were collected from a sample port on the influent water pipe prior to discharge into the process water tank. The samples were submitted to Test America, ESC, or Pace and analyzed for VOCs by EPA Method 8260 (ESC/Pace), gross beta activity by EPA Method 900.0 (Test America/ESC/Pace), and tritium by EPA Method 906.0 (Test America/ESC/Pace).

Duplicate GWE system influent- and effluent-groundwater samples were also collected on a monthly basis and provided to NCSU for in-house laboratory analysis of gross beta activity and tritium.

5.6 Quarterly Groundwater Potentiometric Surface Data Evaluation

Quarterly monitoring-well gauging events for measurement of groundwater levels were conducted during the reporting period in February, May, August, and November 2017. Groundwater level data are provided in Tables 2 through 5, respectively. Groundwater potentiometric surface contour maps for the shallow, intermediate, and deep aquifer zones were developed from the groundwater-level data. The maps were reviewed to evaluate performance of the GWE system in terms of containment and capture of the site groundwater COC plume.

5.7 Quarterly GWE-System Recovery Well Sampling and Analysis

Groundwater samples were collected from GWE-system shallow recovery wells on a quarterly basis during the reporting period, concurrent with monitoring-well gauging events in February, May, August, and November 2017. The groundwater samples were collected from sample ports located along discharge piping at the GWE wellheads while the submersible GWE recovery pumps were in operation. No samples were collected from GWE recovery wells RW-12 and RW-13 during the August 2017 GWE-well sampling event due to the recovery pumps being offline, pending replacement. The groundwater samples were submitted under chain of custody to Test America (February 2017 samples) or Pace (May, August, and November 2017 samples) and analyzed for gross beta activity by EPA Method 900.0 and tritium by EPA Method 906.0. Duplicate samples were also provided to NCSU for in-house laboratory analysis of gross beta activity and tritium. Summarized results of laboratory analysis (analyzed by Test America or Pace) for

PIEDMONT GEOLOGIC, P.C.

-15

groundwater samples collected from GWE wells in February, May, August, and November 2017 are provided in Tables 6 through 9, respectively.

5.8 GWE System Issues and Corrective Actions

The GWE system was shut down for an approximately 1-month period from August to September 2017 due to a pinhole leak that was discovered in the sump component of air stripper #2. A relatively low pumping rate for the air stripper #1 transfer pump prevented the continued operation of the GWE system utilizing only air stripper #1 (while air stripper #2 was down for repairs). Air stripper #2 was disassembled in late September 2017, and the sump component was removed and taken offsite for repairs (i.e., rewelding). In conjunction with this action, the transfer pump for air stripper #2 was moved to air stripper #1, replacing the damaged/defunct pump. At that time, operation of the GWE system resumed. The repaired sump for air stripper #2, along with a new transfer pump were installed in early October 2017.

Short-term (i.e., generally three days or fewer) GWE-system down time occurred periodically during the reporting period due to miscellaneous typical operational and maintenance issues, such as high-pressure conditions in bag filter canisters, power failures, and other miscellaneous conditions, all of which were addressed within relatively short time periods.

Recurring high-pressure conditions at the skid #1 bag filter canisters, which was a result of excessive biofouling of the bag filters, were observed in early 2017. In response, pilot testing of a bio-dispersant injection system, which consists of a chemical dosing pump and bio-dispersant solution (Analytix AN-975E), was conducted in March 2017. Following a successful 2-week pilot testing period, the biodispersant injection system was implemented as part of routine system operations. The dosing pump is plumed to discharge piping between the PWT and the PWT transfer pump, and the bio-dispersant is injected at a relatively low dosage (i.e., less than 30 parts per million) whenever the PWT transfer pump turns on.

Periods of downtime for submersible pumps in GWE wells RW-12 and RW-13 occurred from August to October 2017 and August to November 2017, respectively. The pumps were offline due to damaged and seized impellors, and the issues were addressed by installing new pumps in those wells. These issues did not cause any downtime for the GWE system as a whole.

6.0 GROUNDWATER EXTRACTION SYSTEM OPERATION

6.1 Operation Summary

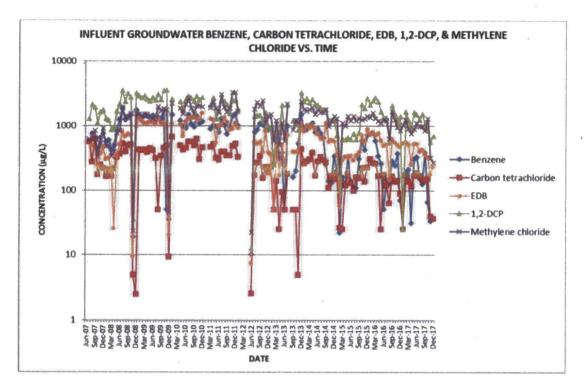
The GWE well pumps were on for a total of approximately 7,588 hours and were off for a total of approximately 1,172 hours during the January through December 2017 reporting period, for a total on-time percentage of approximately 87%. The largest portion of GWE system downtime during the reporting period occurred during late August through late September 2017, and was due to the air stripper issues described above in Section 5.8.

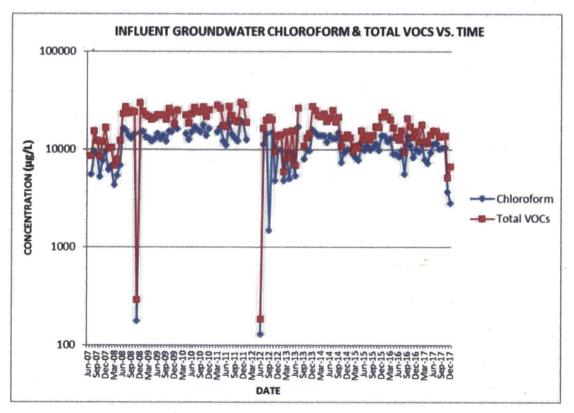
A total of approximately 2,769,302 gallons of groundwater was recovered, treated, and discharged from January through December 2017, at an average groundwater recovery rate of approximately 6.1 gallons per minute (gpm). A total of approximately 17,792,929 gallons of groundwater has been recovered, treated, and discharged by the GWE system from system start up in September 2006 through December 2017. The average groundwater recovery rate during 2017 (6.1 gpm) was slightly lower than the average recovery rate for 2016 (6.6 gpm), but higher than the average recovery rate for 2015 (4.7 gpm).

17

PIEDMONT GEOLOGIC, P.C.

6.2 **GWE System Influent Monitoring Results and Mass Removal Calculations**


Results of laboratory analysis of monthly GWE system influent groundwater samples are tabulated in Table 10. The predominant groundwater COCs at the site in terms of frequency of detections and magnitude of concentrations are benzene, carbon tetrachloride, chloroform, 1,2-dibromoethane (EDB), 1,2dichloropropane (1,2-DCP), 1,4-dioxane, and methylene chloride. A summary of laboratory analysis results for these COCs in monthly GWE system influent groundwater samples for 2017 is provided as follows.


Sample Date	1/17	2/17	3/17	4/17	5/17	6/17
Analyte (µg/L)						
Benzene	98.3	187	212	30.8	307	330
Carbon tetrachloride	<50.0	168	137	115	170	186
Chloroform	9,550	11,700	7,900	7,280	9,360	11,500
EDB	531	559	514	246	523	529
1,2-DCP	<50.0	1,670	1,210	883	1,650	1,500
1,4-Dioxane	<5,000	1,300	<10,000	1,630	<2,500	<15,000
Methylene chloride	1,030	1,240 J	895	760	878	1,100
Total VOCs*	12,047	17,903 -	12,169	11,695	14,066	15,470
Sample Date	7/17	8/17	9/17	10/17	11/17	12/17
Analyte (µg/L)	-		· .			•
Benzene	154	125	381	65.6 J	33.5	35.9
Carbon tetrachloride	168	148	141	151	39.7	35.9
Chloroform	. 11,600	10,200	10,400	10,500	3,700	2,870
EDB	403	425	361	328	176	229
1,2-DCP	1,250	1,540	1,060	876	557	702
1,4-Dioxane	<15,000	<15,000	<15,000	<15,000	<3,750	2,260 J
Methylene chloride	983	973	846	1,290	320	268
Total VOCs*	15,278	13,613	13,797	13,731	5,151	6,737
* Total detected concentration of volatile organic compounds, including those analytes listed in Table 10 but not included in the above summary.						

Summarized Results of Laboratory Analysis of GWE System Influent Samples

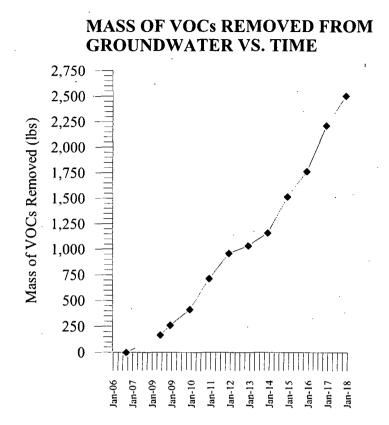
J Estimated concentration; above the method detection limit, but below the reporting limit.

Following are graphs of the GWE system effluent groundwater COCs listed above, plus total VOC concentrations, versus time. COCs not detected during any monthly analysis events are graphed at a value of one-half of the laboratory reporting limit. 1,4-dioxane is excluded from the graphs based on its inconsistent history of detections due to the relatively high laboratory detection limits for various samples. Remedial Action Progress Report: January - December 2017 NCSU – Lot 86 January 29, 2018

PIEDMONT GEOLOGIC, P.C.

The increase in influent groundwater VOC concentrations following June 2008 corresponds with the cessation of pumping of the deep GWE wells in June 2008. Influent groundwater VOC concentrations were, on average, generally lower in 2017 as compared to all previous reporting periods following June 2008.

The estimated mass of total dissolved-phase VOCs removed from site groundwater through GWE during the reporting period is calculated as follows, along with VOC mass-removal calculations for previous reporting periods. The calculations incorporate the mean detected total VOC concentrations in GWE system influent samples collected during the reporting period.


	A	B	С	D	E	F
Period	Mean Total Influent VOCs (mg/L)	Ground- water Volume (gal)	Conversion Factor (L/gal)	Conversion Factor (g/mg)	Conversion Factor (lbs/g)	Mass Removed (lbs)
09/26/06 - 06/09/08	10.981	1,825,593	3.785	0.001	0.0022	166.9
06/10/08 - 12/31/08	25.529	446,717	3.785	0.001	0.0022	95.0
01/01/09 - 12/31/09	22.084	819,632	3.785	0.001	0.0022	150.7
01/01/10 - 12/31/10	23.964	1,511,460	3.785	0.001	0.0022	301.6
01/01/11 - 12/31/11	23.799	1,229,770	3.785	0.001	0.0022	243.7
01/01/12 - 12/31/12	15.027	611,262	3.785	0.001	0.0022	76.5
01/01/13 - 12/31/13	14.416	1,048,607	3.785	0.001	0.0022	125.9
01/01/14 - 12/31/14	19.664	2,166,110	3.785	0.001	0.0022	354.7
01/01/15 - 12/31/15	14.032	2,126,735	3.785	0.001	0.0022	248.5
01/01/16 - 12/31/16	16.685	3,237,614	3.785	0.001	0.0022	449.8
01/01/17 - 12/31/17	12.638	2,769,302	3.785	0.001	0.0022	291.4
·				-	TOTAL	2,504.7

Estimated Masses of VOCs Removed by the GWE System

 $F = A \times B \times C \times D \times E$

A graph of cumulative mass of dissolved-phase VOCs removed from groundwater since startup of the site GWE system in September 2006 is provided as follows.

PIEDMONT GEOLOGIC, P.C.

Although the mean total groundwater VOC concentrations has decreased significantly since 2011, the total mass of groundwater VOCs recovered and the rate of groundwater VOC mass removed on an annual basis since 2014 has generally surpassed most prior annual periods due to substantial increases in the groundwater recovery rate since 2014.

6.3 GWE System Effluent Monitoring

Results of laboratory analysis of the monthly GWE system effluent (i.e., treated) groundwater samples during the reporting period were submitted to the City of Raleigh in monthly Discharge Monitoring Reports (DMRs), prepared in compliance with the site City of Raleigh IUP. GWE system effluent groundwater analysis results were in compliance with requirements of the IUP.

PIEDMONT GEOLOGIC, P.C.

7.0 **GROUNDWATER MONITORING**

Performance of site remedial actions is based on results of site groundwater monitoring following startup of the GWE system in September 2006. Annual site groundwater sampling/analysis was initiated in 2008 in accordance with the following controlling documents.

- Groundwater Sampling and Analysis Plan, April 1, 2008, prepared by Piedmont Geologic;
- Groundwater Sampling Quality Assurance Plan, April 1, 2008, prepared by Piedmont Geologic.
- Letter from Piedmont Geologic to the North Carolina Department of Environment and Natural Resources (NCDENR), Superfund Branch, Waste Management Division, dated March 25, 2005, RE: Request for Revisions to Laboratory QA/QC Requirements.

The annual site groundwater sampling program includes the following 35 monitoring wells as specified in the August 2014 site *Groundwater Sampling Quality Assurance Plan* (QAP):

MW-2	MW-16I	MW-38
MW-3	MW-16D	MW-41S
MW-6	MW-17S	MW-411
MW-8	MW-17I	MW-41D
MW-11S	MW-17D	MW-42
MW-111	MW-27	MW-421
MW-12S	MW-34DR	MW-43S
. MW-12I	MW-35S	MW-43D
MW-12D	MW-35D	MW-45R
MW-13D	MW-36S	MW-46
MW-15	MW-36D	MW-47
MW-16S	MW-37	• • •

Annual site groundwater sampling during the reporting period was conducted from August 7-15, 2017. Prior to groundwater sample collection, groundwater levels were measured in all site monitoring wells on August 7, 2017 using an optical interface probe, which distinguishes between non-aqueous phase liquid (NAPL) and water. August 2017 groundwater-level data are provided in Table 4. NAPL was not detected in any of the monitoring wells. Monitoring-wells MW-2, MW-6, MW-11S, and MW-15 were dry during the August 2017 groundwater sampling event. In accordance with the site QAP, monitoring-wells MW-8, RW-10, RW-6, and MW-13S, respectively, were substituted for those wells.

Groundwater samples were collected from the monitoring wells using either low-flow pumping or traditional purge-and-sample techniques in accordance with the site groundwater sampling and analysis plan. Groundwater quality indicators including pH, temperature, specific conductance, dissolved oxygen,

Remedial Action Progress Report: January - December 2017 NCSU - Lot 86 January 29, 2018

and turbidity were analyzed during monitoring-well purging using pre-calibrated, direct-read field meters equipped with a flow-through cell. All non-dedicated sampling equipment was cleaned prior to each use and in between well samplings in accordance with the procedures described in the site groundwater sampling/analysis work plan. Purge water and equipment cleaning wastewater was transferred to the site GWE system for treatment and discharge. The groundwater and QA/QC samples were submitted under chain of custody to Pace and analyzed for the following.

• VOCs by EPA Method 6200B;

RCRA metals by EPA Method 6020 and 7470A;

1,4-Dioxane by EPA Method 8260B-SIM;

• Gross beta activity by EPA Method 900.0; and

• Tritium by EPA Method 906.0.

Duplicate groundwater samples were collected and provided to NCSU for in-house laboratory analysis of gross beta activity and tritium. Monitoring-well MW-16S contained an insufficient volume of groundwater for gross beta activity and tritium analyses by either Pace or NCSU.

Results of field and laboratory analysis of August 2017 groundwater samples are summarized in Tables 11 through 13. Trends in groundwater COC concentrations and distributions are discussed in Section 8.0.

PIEDMONT GEOLOGIC, P.C.

8.0 PERFORMANCE AND EFFICACY OF SITE REMEDIAL ACTIONS

Performance and efficacy of site remedial actions are evaluated through examinations of the containment and capture of the site groundwater COC plume and reductions of site groundwater COC concentrations. Evaluation of plume containment and reduction is based on: 1) comparison of groundwater potentiometricsurface contour maps and COC isoconcentration contour maps prepared for data collected prior to startup of the GWE system to maps prepared for data collected following startup of the GWE system; and, 2) trend analysis of groundwater COC concentrations versus time for individual site monitoring wells.

8.1 Comparison of Groundwater Potentiometric-Surface Contour Maps and COC **Isoconcentration Contour Maps**

Groundwater drawdown/capture zones and COC concentration distributions are evaluated through site groundwater modeling completed using Surfer 8[®] contouring software (Golden Software, Inc.) The following data sets were incorporated into the groundwater models:

- May 2005 groundwater potentiometric-surface data for the shallow, intermediate, and deep aquifer zones.
- 2. May 2005 groundwater chloroform-concentration data for the shallow, intermediate, and deep aquifer zones.
- 3.

1.

February 2017, May 2017, August 2017, and November 2017 groundwater potentiometric-surface data for the shallow, intermediate, and deep aquifer zones.

4. August 2017 groundwater chloroform-concentration data for the shallow, intermediate, and deep aquifer zones.

Data sets 1 and 2 represent conditions prior to startup of the site GWE system in September 2006. Data sets 3 and 4 represent conditions during the 2017 reporting period, with the monitoring-well potentiometric-surface data being collected with the GWE system in operation (i.e., under pumping conditions). Groundwater modeling output is provided in Appendix B.

May 2005 groundwater potentiometric-surface contour maps (Appendix B-1) indicate that groundwater flow under non-pumping conditions is towards the west-northwest over relatively shallow potentiometricsurface gradients of around 0.03 ft/ft. Comparison of the May 2005 potentiometric-surface contour maps with the corresponding 2017 maps (Appendix B-1) indicates groundwater drawdown in the shallow and intermediate aquifer zones in response to pumping, generally in the areas of GWE wells RW-1, RW-2,

RW-3, RW-4, RW-9, RW-10, RW-11, and RW-12 for the shallow and intermediate aquifer zones. Comparison of the May 2005 and 2017 potentiometric-surface contour maps for the deep aquifer indicate similar potentiometric-surface contour patterns. However, some apparent groundwater drawdown, possibly attributable to GWE system operation, was observed in the areas of monitoring-wells MW-13D (May 2017), MW-16D (May and August 2017), MW-17D (February, May, August, and November 2017), MW-35D (February 2017), MW-36D (February 2017), and MW-38 (May and November 2017). The drawdown and capture zones observed in 2017 are relatively similar to those observed in 2014-2016, and are much more pronounced as compared to years prior to 2014. This is attributed to the increased flow rates of the GWE system and an increase in GWE-system time-on percentages, both the result of a more continual operation following tie-in of the GWE-system effluent line to the City of Raleigh sanitary sewer system in May 2013.

Comparison of May 2005 and August 2017 groundwater chloroform isoconcentration contour maps (Appendix B-2) indicates substantial apparent lateral shrinkage of the groundwater chloroform distribution over time in the shallow aquifer zone, particularly in the northern and southern site areas. Comparison of May 2005 and August 2017 chloroform isoconcentration contour maps for the intermediate aquifer zone indicates possible lateral expansion of the groundwater chloroform distribution over time in the western site area, based on increased groundwater chloroform concentrations in monitoring-well MW-171. Comparison of May 2005 and August 2017 maps for the deep aquifer zone indicates a similar groundwater chloroform distribution, with a possible slight lateral expansion towards the southeast.

Previous RAPRs have discussed possible lateral expansions of the groundwater chloroform distribution in the deep aquifer zone over time, towards the southeast and northeast or northwest directions. These observations have generally been based on increased groundwater chloroform concentrations observed in monitoring-wells MW-36D, MW-41D and MW-47. However, substantial decreases in groundwater chloroform concentrations have been observed in MW-36D following 2009, coinciding with taking deep GWE wells DRW-A, B, C, and D out of operation in June 2008. In addition, an apparent decreasing trend in groundwater chloroform concentrations has been observed for MW-41D and MW-47 following 2013, and groundwater chloroform concentrations in these wells have remained below the North Carolina groundwater standard. A more precise determination of groundwater chloroform distributions over time for the intermediate and deep aquifer zones is limited by the lesser spatial monitoring-well coverage for these aquifer zones relative to the shallow aquifer zone.

8.2 Trend Analysis of Site Groundwater COC Concentrations

Graphs of groundwater COC concentrations versus time for site monitoring wells are provided in Appendix C. The graphs include site monitoring wells that are part of the current groundwater monitoring program and from which groundwater samples since 2002 have had multiple detected COC concentrations on more than one occasion. Following are a summary of detected groundwater chloroform concentrations between May 2005 and August 2017. Chloroform has been the most prevalent groundwater COC generally detected at the highest concentrations in site groundwater samples. All monitoring wells that are part of the site groundwater monitoring program are included in the evaluation.

Well I.D. Aquifer Zone May 2005 May 2008 May 2009 May 2010 May May 2010 MW-2 Shallow 25,000 12,600 13,200 8,600 NA MW-2 Shallow 41,000 7,650 7,720 6,400 3,170 MW-3 Shallow 9,500 10,100 8,710 4,600 NA MW-6 Shallow 9,500 10,100 8,710 4,600 NA MW-8 Shallow 8,200 3,270 5,410 2,800 2,630 MW-11S Shallow 1,500 2,960 NA 1,300 NA MW-111 Interm. ND 15.1 ND ND ND MW-12S Shallow 45,000 35,300 12,900 11,000 21,900 MW-12D Deep 180 NA 1.8 ND ND MW-13D Deep ND ND ND ND ND MW-14 Shallow	5,910 ND	Aug. 2013 5,740 3,740 3,400 2,960 NA ND 7,700	Aug. 2014 NA 5,970 NA 5,800 NA ND	Aug. 2015 NA 6,870 NA 10,800 NA	Aug. 2016 4,730 2,510 162 7,930	Aug. 2017 NA 2,220 NA 7,520
MW-3 Shallow 41,000 7,650 7,720 6,400 3,170 MW-6 Shallow 9,500 10,100 8,710 4,600 NA MW-8 Shallow 8,200 3,270 5,410 2,800 2,630 MW-11S Shallow 1,500 2,960 NA 1,300 NA MW-11S Shallow 1,500 2,960 NA 1,300 NA MW-11I Interm. ND 15.1 ND ND ND MW-12S Shallow 45,000 35,300 12,900 11,000 21,900 MW-12D Deep 180 NA 1.8 ND ND MW-13D Deep ND ND NA NA NA MW-13D Deep ND NA NA NA NA MW-14 Shallow NA NA NA NA NA MW-15 Shallow NA NA NA <	5,130 NA 3,240 NA ND 30,400 5,910 ND	3,740 3,400 2,960 NA ND 7,700	5,970 NA 5,800 NA ND	6,870 NA 10,800 NA	2,510 162 7,930	2,220 NA
MW-6 Shallow 9,500 10,100 8,710 4,600 NA MW-8 Shallow 8,200 3,270 5,410 2,800 2,630 MW-11 Shallow 1,500 2,960 NA 1,300 NA MW-111 Shallow 1,500 2,960 NA 1,300 NA MW-111 Interm. ND 15.1 ND ND ND MW-12S Shallow 45,000 35,300 12,900 11,000 21,900 MW-12I Interm. 4,200 7,590 8,360 5,400 6,270 MW-12D Deep 180 NA 1.8 ND ND MW-13D Deep ND ND NA NA NA MW-13D Deep ND NA NA NA NA MW-14 Shallow NA NA NA NA NA MW-15 Shallow 2,000 13,600 15,000 <td>NA 3,240 NA ND 30,400 5,910 ND</td> <td>3,400 2,960 NA ND 7,700</td> <td>NA 5,800 NA ND</td> <td>NA 10,800 NA</td> <td>162 7,930</td> <td>NA</td>	NA 3,240 NA ND 30,400 5,910 ND	3,400 2,960 NA ND 7,700	NA 5,800 NA ND	NA 10,800 NA	162 7,930	NA
MW-8 Shallow 8,200 3,270 5,410 2,800 2,630 MW-11S Shallow 1,500 2,960 NA 1,300 NA MW-11S Shallow 1,500 2,960 NA 1,300 NA MW-11I Interm. ND 15.1 ND ND ND MW-12S Shallow 45,000 35,300 12,900 11,000 21,900 MW-12I Interm. 4,200 7,590 8,360 5,400 6,270 MW-12D Deep 180 NA 1.8 ND ND MW-13D Deep ND ND NA NA MW-13D Deep ND NA ND ND ND MW-13D Deep ND NA NA NA NA MW-13D Deep NA NA NA NA NA MW-16S Shallow NA NA NA NA NA	3,240 NA ND 30,400 5,910 ND	2,960 NA ND 7,700	5,800 NA ND	10,800 NA	7,930	
MW-11S Shallow 1,500 2,960 NA 1,300 NA MW-111 Interm. ND 15.1 ND ND ND MW-121 Interm. ND 15.1 ND ND 21,900 MW-121 Interm. 4,200 7,590 8,360 5,400 6,270 MW-12D Deep 180 NA 1.8 ND ND MW-120 Deep 180 NA 1.8 ND ND MW-130 Deep ND NA NA NA NA MW-131 Deep ND NA ND ND ND MW-130 Deep ND NA NA NA NA MW-132 Shallow NA NA ND ND ND MW-131 Deep NA NA NA NA NA MW-135 Shallow NA NA NA NA NA	NA ND 30,400 5,910 ND	NA ND 7,700	NA ND	NA		7,520
MW-111 Interm. ND 15.1 ND ND ND MW-12S Shallow 45,000 35,300 12,900 11,000 21,900 MW-12I Interm. 4,200 7,590 8,360 5,400 6,270 MW-12D Deep 180 NA 1.8 ND ND MW-13D Deep ND ND ND NA NA MW-13D Deep ND NA ND ND 0.65 MW-13D Deep ND NA ND ND ND MW-13D Deep NA NA NA NA NA MW-14 Shallow NA ND ND ND ND MW-15 Shallow NA NA NA NA NA MW-16S Shallow 22,000 13,600 15,000 5,700 9,440 MW-161 Interm. 390 7,710 202 91 <td< td=""><td>ND 30,400 5,910 ND</td><td>ND 7,700</td><td>ND</td><td></td><td>477</td><td></td></td<>	ND 30,400 5,910 ND	ND 7,700	ND		477	
MW-12S Shallow 45,000 35,300 12,900 11,000 21,900 MW-12I Interm. 4,200 7,590 8,360 5,400 6,270 MW-12D Deep 180 NA 1.8 ND ND MW-13S Shallow ND ND ND NA NA MW-13D Deep ND NA ND ND 0.65 MW-13D Deep ND NA ND ND 0.65 MW-14 Shallow NA NA NA NA NA MW-15 Shallow NA NA NA NA NA MW-16 Shallow 22,000 13,600 15,000 5,700 9,440 MW-161 Interm. 390 7,710 202 91 720 MW-16D Deep 4.7 NA ND ND ND MW-17S Shallow 850 422 209 24	30,400 5,910 ND	7,700		NID	477	NA
MW-12I Interm. 4,200 7,590 8,360 5,400 6,270 MW-12D Deep 180 NA 1.8 ND ND MW-13S Shallow ND ND ND NA 1.8 ND MW-13S Shallow ND ND ND NA NA MW-13D Deep ND NA ND ND 0.65 MW-14 Shallow NA ND ND ND ND MW-15 Shallow NA NA NA NA NA MW-16 Shallow 22,000 13,600 15,000 5,700 9,440 MW-161 Interm. 390 7,710 202 91 720 MW-16D Deep 4.7 NA ND ND ND MW-17S Shallow 850 422 209 24 NA	5,910 ND			ND	ND	ND
MW-12D Deep 180 NA 1.8 ND ND MW-13S Shallow ND ND ND ND NA NA MW-13S Shallow ND ND ND ND NA NA MW-13D Deep ND NA ND ND 0.65 MW-14 Shallow NA ND ND ND ND MW-15 Shallow NA NA NA NA NA MW-16S Shallow 22,000 13,600 15,000 5,700 9,440 MW-16I Interm. 390 7,710 202 91 720 MW-16D Deep 4.7 NA ND ND ND MW-17S Shallow 850 422 209 24 NA	ND		12,500	12,000	10,300	12,800
MW-13S Shallow ND ND ND NA NA MW-13D Deep ND NA ND ND 0.65 MW-14 Shallow NA ND ND ND 0.65 MW-14 Shallow NA ND ND ND ND MW-15 Shallow NA NA NA NA NA MW-16 Shallow 22,000 13,600 15,000 5,700 9,440 MW-161 Interm 390 7,710 202 91 720 MW-16D Deep 4.7 NA ND ND ND MW-17S Shallow 850 422 209 24 NA		5,340	5,370	7,060	4,290	4,430
MW-13D Deep ND NA ND ND 0.65 MW-14 Shallow NA ND ND ND ND ND MW-14 Shallow NA ND ND ND ND ND MW-15 Shallow NA NA NA NA NA NA MW-16S Shallow 22,000 13,600 15,000 5,700 9,440 MW-16I Interm. 390 7,710 202 91 720 MW-16D Deep 4.7 NA ND ND ND MW-17S Shallow 850 422 209 24 NA		ND	0.63	ND	ND	ND
MW-14 Shallow NA ND ND ND ND MW-15 Shallow NA NA NA NA NA NA MW-15 Shallow NA NA NA NA NA NA MW-16S Shallow 22,000 13,600 15,000 5,700 9,440 MW-16I Interm. 390 7,710 202 91 720 MW-16D Deep 4.7 NA ND ND ND MW-17S Shallow 850 422 209 24 NA	NA	NA	NA	NA	ND	ND
MW-15 Shallow NA NA NA NA NA MW-16S Shallow 22,000 13,600 15,000 5,700 9,440 MW-16I Interm. 390 7,710 202 91 720 MW-16D Deep 4.7 NA ND ND ND MW-17S Shallow 850 422 209 24 NA	0.53	<u>1.7</u>	0.99	4.01	ND	4.9
MW-16S Shallow 22,000 13,600 15,000 5,700 9,440 MW-16I Interm. 390 7,710 202 91 720 MW-16D Deep 4.7 NA ND ND ND MW-17S Shallow 850 422 209 24 NA	NA	NA	NA	NA	NA	NA
MW-16I Interm. 390 7,710 202 91 720 MW-16D Deep 4.7 NA ND ND ND MW-17S Shallow 850 422 209 24 NA	NA	NA	NA	NA	NA	NA
MW-16D Deep 4.7 NA ND ND ND MW-17S Shallow 850 422 209 24 NA	5,090	5,690	1,930	111	901	328
MW-17S Shallow 850 422 209 24 NA	351	23.6	106	18.6	40.5	27.5
	ND	ND	0.60	ND	ND	ND
MW-171 Interm. 680 1,080 2,560 1,200 1,910	22.5	15.2	NA	13.7	ND	3.7
	2,430	3,120	3,060	6,350	3,340	3,420
MW-17D Deep 1,200 NA 3,710 2,500 1,780	2,440	3,060	1,840	3,040	2,010	1,560
MW-27 Shallow 17 14.5 9.7 13 10.0	12.1	21.0	22.4	33.8	32.4	35.0
MW-34DR Deep 1.0 NA ND ND ND	ND	ND	ND	ND	ND	ND
MW-35S Shallow ND ND 0.97 ND ND	ND	6.8	ND	ND	ND	ND
MW-35D Deep 4.0 41.1 51.1 43 27.9	31.6	41.0	18.3	17.0	8.93	6.7
MW-36S Shallow 19,000 23,800 20,800 1,500 7,470	2,610	1,510	928	706	356	272
MW-36D Deep 26 2,000 2,280 1,200 915	712	516	337	315	263	152
MW-37 Shallow 68,000 75,500 113,000 46,000 161,000	168,000	168,000	102,000	100,000	44,200	47,400
MW-38 Deep ND ND ND ND ND	ND	ND	ND	ND	ND	ND
MW-40 Shallow 110 5.2 566 20 3.8	NA	NA	NA	NA	NA	NA
MW-41S Shallow ND ND ND ND ND	1.6	4.0	ND	0.511	ND	1.4
MW-411 Interm. ND ND 1.5 ND 1.2	2.2	1.6	ND	1.52	ND	1.1
MW-41D Deep 4.2 11.5 20.3 18 26.3		50.9	35.3	37.5	20.8	19.7
MW-42S Shallow ND ND ND ND 0.66	35.2	2.5	ND	1.75	ND	· 1.7
MW-42I Interm. ND 67.9 ND 16 26.4						0.56

Groundwater Chloroform Concentrations: 2005-2017 (1)

(continued)

PIEDMONT GEOLOGIC, P.C.

Well I.D.	Aquifer Zone	May 2005	May 2008	May 2009	May 2010	Apr./ May 2011	Aug. 2012	Aug. 2013	Aug. 2014	Aug. 2015	Aug. 2016	Aug. 2017
MW-43S	Shallow	11	9.0	9.4	5.4	11.5	14.1	22.3	17.7	21.2	ND	6.4
MW-43D	Deep	2.1	ND	5.6	ND	5.3	5.0	5.2	3.9	4.73	ND	3.5
MW-45/45R	Shallow	ND	8.4	33.4	10	NA	NA	NA	ND	1.07	ND	ND
MW-46	Shallow	ND	ND	ND	ND	ND	ND	ND	ND	0.695	ND	ND
MW-47	Deep	1.1	NA	8.3	10	15.8	19.4	24.5	20.0	22.0	11.0	9.6

Groundwater Chloroform Concentrations: 2005-2017 (1)

(1) Concentrations are listed in μ g/L. For cases in which duplicate samples were collected, the higher of the two concentration are listed.

ND = Not detected.

NA = No data available - well dry or not sampled.

Detected groundwater chloroform concentrations increased in five site monitoring wells (MW-12I, MW-17I, MW-27, MW-37, and MW-43S) between August 2016 and August 2017. However, the observed increases in groundwater chloroform concentrations were less than 10% for all five monitoring wells. In addition, groundwater chloroform concentrations in MW-27 and MW-43S remain below the North Carolina groundwater standard (70 μ g/L).

A qualitative evaluation of overall trends in groundwater COC concentrations since 2002, based on the graphs of groundwater COC concentrations over time in Appendix C, is summarized as follows.

	<u></u>		ation3. 2002 to 2017
Generally	Flat or Slightly	Generally	Fluctuating (no
Decreasing	Increasing	Increasing	dominant
			overall trend)
MW-2	MW-37	MW-12I	MW-8
MW-3		MW-17I	MW-16I(1)
MW-6		MW-27	MW-17D
MW-11			MW-35S (2)
MW-111			MW-40 (3)
MW-12			MW-41D
MW-16			MW-42I
MW-16D			MW-43S
MW-17	·		MW-43D (2)
MW-35D			MW-45/45R (2)
MW-36S			MW-47
MW-36D			

Generalized Trends in Groundwater COC Concentrations: 2002 to 2017

(1) Decreasing trends have been observed for some groundwater COCs, and increasing trends for others.

(2) Groundwater COC concentrations have generally remained below, or slightly above, laboratory detection limits.

(3) Well was excluded from the annual groundwater sampling/analysis events following 2011.

Of the three wells listed above as showing generally increasing trends in groundwater COC concentrations, detected groundwater COC concentrations in MW-27 have generally been less than North Carolina groundwater standards.

27

The above categorization of trends is highly generalized, and variations exist within the overall general trends that are opposite the trends, and, in some cases, transitions from generally increasing to generally decreasing COC concentrations occur over the history of well sampling/analysis.

PIEDMONT GEOLOGIC, P.C.

28

Ł

9.0 **RECOMMENDATIONS**

In order to address concerns regarding spatial coverage of monitoring wells for the intermediate and deep aquifer zones, additional monitoring wells will be installed at the site during 2018 as described in a Work Plan for Monitoring-Well Installations, Repairs, and Abandonments, dated December 6, 2017, which was submitted to the EPA and North Carolina Department of Environmental Quality (NCDEQ), Division of Waste Management (DWM), Superfund Section, Federal Remediation Branch. Two additional intermediate monitoring wells will be installed at the site; one intermediate monitoring well (MW-13I) will be coupled with existing shallow and deep monitoring wells MW-13S and MW-13D in the western portion of the site, and the second intermediate monitoring well (MW-47I) will be coupled with existing deep monitoring well MW-47D in the southern portion of the site. One deep monitoring well (MW-45D) will be coupled with existing shallow monitoring well MW-45R in the northern portion of the site. In conjunction with the additional monitoring well installations, various repairs and abandonment/replacement of existing site monitoring wells will be completed as follows.

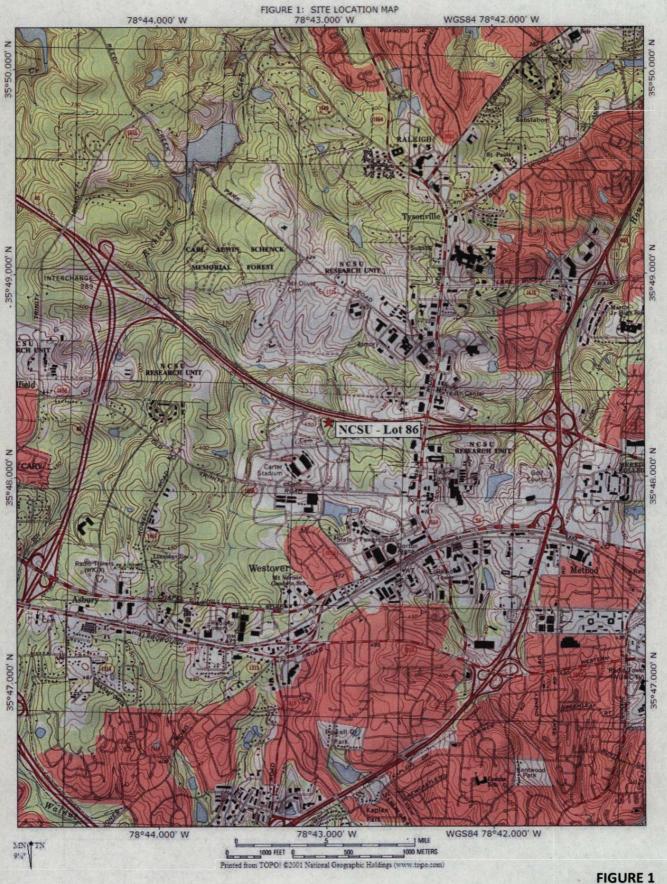
- MW-13S: Due to the well cap being seized and unable to be removed during the August and November 2017 well gauging events, the well cap will be sawed off and replaced with an expansion plug.
- MW-13D: The well casing is bent at a depth of approximately 8-feet below grade (likely from landscaping equipment colliding with the well casing), preventing the insertion of standard well sampling equipment (i.e., a submersible sampling pump). In response, the well will be abandoned, through plugging and grouting, in accordance with North Carolina regulations (15A NCAC 2C), and a replacement well will be installed to a depth of approximately 100-feet below grade to match the existing well depth. The replacement well will be constructed utilizing 2-inch inside diameter (I.D.) Schedule 40 PVC screen/casing, with a screen interval from 90-100 feet below grade.
- MW-16S: An object, believed to be an approximately 3-feet long sampling bailer, is lodged in the bottom of the well. Multiple attempts have previously been made to remove the obstruction with no success. As a result, the well will be abandoned, through plugging and grouting, and replaced. Due to issues with the current monitoring well, which is installed to a depth of approximately 35-feet below grade, being periodically dry, the replacement well will be installed to a depth of approximately 40-feet below grade. The replacement well will be constructed of 2-inch I.D. Schedule PVC screen/casing with the well screen set from approximately 30-40 feet below grade.
 MW-43S: The well casing is bent at a depth of approximately 1-foot below grade. The wellhead

29

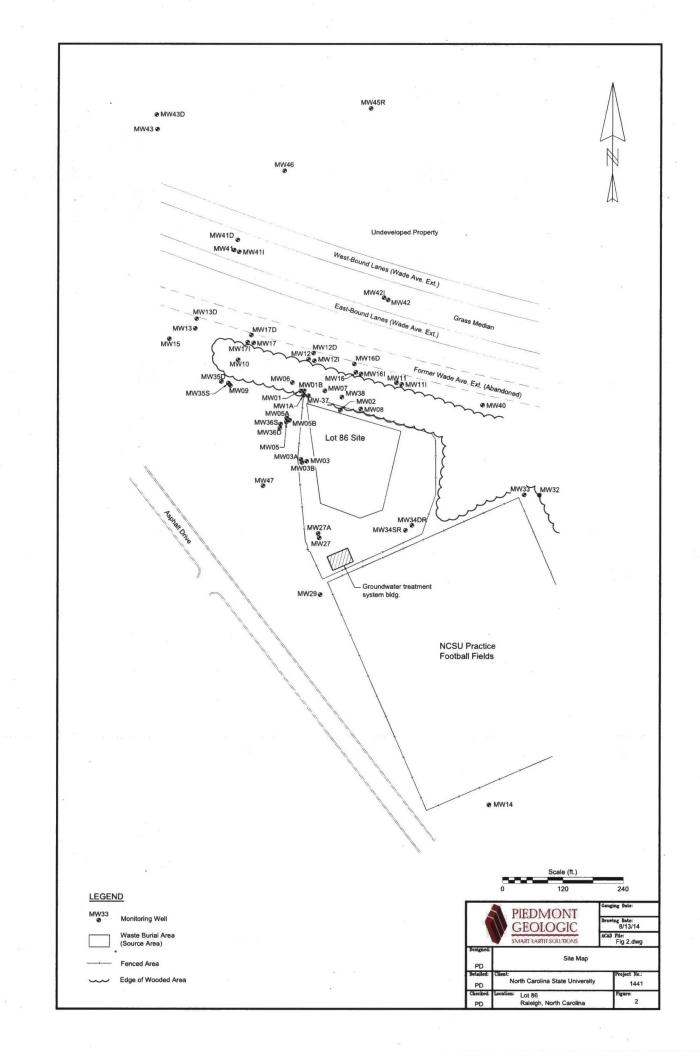
will be removed and soil around the well casing will be excavated. The bent section of well

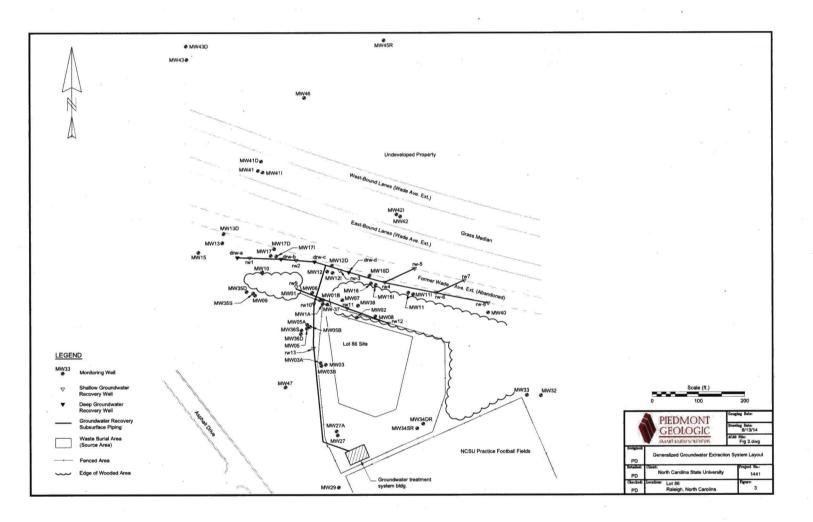
Remedial Action Progress Report: January - December 2017 NCSU – Lot 86 January 29, 2018

casing will be sawed off and removed, and a new length of casing will be installed to grade using a slip coupling. A new wellhead set within a concrete pad will be constructed.


PIEDMONT GEOLOGIC, P.C.

30


Remedial Action Progress Report: January - December 2017 NCSU – Lot 86 January 29, 2018


FIGURES

PIEDMONT **G**EOLOGIC, P.C.

SITE LOCATION MAP NCSU – Lot 86 Raleigh, North Carolina

Remedial Action Progress Report: January - December 2017 NCSU – Lot 86 January 29, 2018

TABLES

Piedmont **G**eologic, p.c.

				TABLE 1	<u>.</u>				
	GR	OUNDWATE	R MONITO	RING WELL O	CONSTRU	CTION DI	ETAILS		
			North Ca	rolina State Ui	niversity				
· ·				Lot 86 Site	v				
			Ralei	gh, North Caro	olina				
Well I.D.	Northing	Easting		Top of Casing	Ground	Screen El	evation (2)	Screen	Depth (3)
	5	, e	(1)	Elevation (2)	Elev. (2)	Top	Bottom	Тор	Bottom
MW-1	747,972.81	2,083,713.47	S	439.30	437.73	400.5	395.5	37.2	42.2
MW-1A	747,968.37	2,083,717.18	S	438.92	438.05	397.4	392.4	40.7	45.7
MW-1B	747,972.08	2,083,718.51	S	438.25	43,7.93	387.4	382.4	50.5	55.5
MW-2	747,934.50	2,083,791.44	S	448.74	446.00	401.2	396.2	44.8	49.8
MW-3	747,831.30	2,083,724.81	S	445.39	443.58	411.2	406.2	32.4	37.4
MW-3A	747,833.58	2,083,714.96	S-I	443.15	441.89	381.9	379.9	60.0	62.0
MW-3B	747,829.10	2,083,716.16	S-I	443.66	442.02	371.0	369.0	71.0	73.0
MW-4	747,738.38	2,083,847.26	S	454.32	452.54	405.5	400.5	47.0	52.0
MW-5	747,911.73	2,083,684.29	S	441.26	439.53	400.5	395.5	39.0	44.0
MW-5A	747,917.11	2,083,685.48	S	439.81	439.38	393.4	388.4	46.0	51.0
MW-5B	747,913.31	2,083,688.75	S-I	440.13	439.72	383.7	378.7	56.0	61.0
MW-6	747,987.81	2,083,695.81	S	438.61	436.36	402.9	397.9	33.5	38.5
MW-7	747,972.40	2,083,759.49	S	441.94	440.09	401.3	396.3	38.8	43.8
MW-8	747,936.68	2,083,831.30	S	447.85	445.91	397.9	392.9	48.0	53.0
MW-9	747,984.18	2,083,569.82	S	442.52	ND	ND	ND	ND	ND
MW-10	748,035.32	2,083,584.16	S	438.09	ND	ND	ND	ND	ND
MW-11	747,987.24	2,083,904.54	S	430.01	429.56	405.6	400.6	24.0	29.0
MW-111	747,982.67	2,083,914.92	I	434.29	431.20	373.6	363.6	57.6	67.6
MW-12	748,035.37	2,083,726.83	<u>S</u> .	427.24	426.18	397.2	392.2	29.0	34.0
MW-12I	748,031.08	2,083,738.92	<u> </u>	430.70	427.45	359.8	354.8	67.7	72.7
MW-12D	748,048.21	2,083,735.45	D	427.45	427.95	331.0	321.0	97.0	107.0
MW-13	748,099.25	2,083,498.80	<u>S</u>	423.82	423.73	394.7	389.7	29.0	34.0
MW-13D	748,122.47	2,083,503.49	D	423.43	423.93	333.9	323.9	90.0	100.0
MW-14	747,148.54	2,084,091.12	S	451.87	450.38	413.4	408.4	37.0	42.0
MW-15	748,078.43	2,083,447.10	S	432.38	431.67	397.7	392.7	34.0	39.0
MW-16	748,009.06	2,083,822.21	<u> </u>	427.94	427.61	399.6	394.6	28.0	33.0
MW-161	748,004.62	2,083,832.41	I	432.14	429.23	374.7	364.7	54.5	64.5
MW-16D	748,024.15	2,083,819.82	D	428.98	429.48	349.5	339.5	80.0	90.0
MW-17	748,068.64	2,083,615.41	S	425.09	424.02	398.0	393.0	26.0	31.0
MW-17I	748,062.71	2,083,626.56		427.74	424.96	371.8	361.8	53.2	63.2
MW-17D	748,087.86	2,083,612.19	D.	425.44	425.94	330.9	320.9	95.0	105.0
MW-27	747,678.44	2,083,751.29	S S	448.26	447.22	407.2	402.2	40.0	45.0
MW-27A	747,687.36	2,083,749.28	S	448.55	447.40	392.9	388.9	54.5	58.5
MW-29.	747,565.34	2,083,753.75	S	447.67	446.01	395.5	390.5	50.5	<u>55.5</u> 49.0
MW-30	747,579.80	2,084,072.68	S S	440.86	438.17	399.2	389.2	39.0	
MW-31	747,564.14	2,084,073.85		440.72	438.15	396.2	<u>386.2</u> 401.4	42.0	52.0 34.8
MW-32	747,760.44	2,084,186.72	S	438.15	436.21	411.4		24.8	34.8
MW-33	747,760.99	2,084,157.91	<u> </u>	441.38	438.42	378.4	368.4	60.0	70.0 48.0
MW-34SR	747,694.98	2,083,926.43	S .	454.82	452.32	424.3	404.3	28.0 91.0	
MW-34DR	747,702.24	2,083,936.61	D	454.71	452.21	361.2	351.2		101.0
MW-35S	747,989.14	2,083,565.01	S	443.12	441.57	401.6	391.6	40.0	50.0
MW-35D	747,991.91	2,083,552.20	D	444.69	441.99	305.0	295.0	137.0	147.0

PIEDMONT GEOLOGIC, P.C.

	GROUNDWATER MONITORING WELL CONSTRUCTION DETAILS												
	North Carolina State University												
	Lot 86 Site												
Raleigh, North Carolina													
Well I.D. Northing Easting Well Class Top of Casing Ground Screen Elevation (2) Screen Depth (3)													
			(1)	Elevation (2)	Elev. (2)	Тор	Bottom	Тор	Bottom				
MW-36S	747,905.86	2,083,672.19	S	442.71	439.64	399.6	389.6	40.0	50.0				
MW-36D	747,898.07	2,083,671.54	D	442.87	439.75	335.5	325.5	104.3	114.3				
MW-37	747,964.33	2,083,718.54	S	440.88	438.70	398.7	388.7	40.0	50.0				
MW-38	747,959.35	2,083,794.05	D	445.38	442.47	345.4	335.4	97.1	107.1				
MW-40	747,908.53	2,084,062.93	S	435.47	432.87	405.1	395.1	27.8	37.8				
MW-41	748,239.12	2,083,608.18	S	421.17	421.30	396.9	386.9	24.4	34.4				
MW-411	748,235.91	2,083,619.56	I	421.57	421.47	371.0	361.0	50.5	60.5				
MW-41D	748,278.60	2,083,583.47	D	420.67	421.17	341.2	331.2	80.0	90.0				
MW-42	748,149.51	2,083,907.73	S	427.25	427.18	402.0	392.0	25.2	35.2				
MW-421	748,155.61	2,083,896.58	Ι	426.68	426.76	376.8	366.8	50.0	60.0				
MW-43	748,526.66	2,083,396.75	S	437.03	438.74	385.4	375.4	53.3	63.3				
MW-43D	748,532.52	2,083,416.56	D	438.01	435.50	339.5	329.5	96.0	106.0				
MW-45R	748,539.15	2,083,844.73	S	426.15	426.45	396.5	381.5	30.0	45.0				
MW-46	748,444.92	2,083,683.30	S	451.35	449.42	396.2	386.2	53.2	63.2				
MW-47	747,787.80	2,083,636.72	D	441.11	441.61	336.6	321.6	105.0	120.0				

 TABLE 1 (continued)

 GROUNDWATER MONITORING WELL CONSTRUCTION DETAILS

(1) S = shallow wells with screen intervals in the elevation range from 382-413 ft;

I = intermediate-depth wells with screen intervals in the elevation range from 355-377 ft;

D = deep wells with screen intervals in the elevation range from 295-360 ft in bedrock.

(2) Measured in feet relative to National Vertical Datum (NGVD) of 1929.

(3) Measured in feet below ground surface.

ND = No data currently available.

PIEDMONT GEOLOGIC, P.C.

Page 2 of 2

	TABLE 2 MONITORING-WELL GAUGING DATA: FEBRUARY 1, 2017											
				State University		1						
				36 Site								
	Raleigh, North Carolina											
Well I.D.	Northing	Easting	Well Class	Top of Casing	Depth to Ground-	Groundwater						
				Elevation (ft)(1)	water (ft)(2)	Elevation (ft)(1)						
MW-1	747,972.81	2,083,713.47	shallow	439.30	43.74	395.56						
MW-1A	747,968.37	2,083,717.18	shallow	438.92	42.90	396.02						
MW-1B	747,972.08	2,083,718.51	shallow	438.25	42.44	395.81						
MW-2	747,934.50	2,083,791.44	shallow	448.74	50.71	398.03						
MW-3	747,831.30	2,083,724.81	shallow	445.39 [.]	46.58	398.81						
MW-3A	747,833.58	2,083,714.96	shallow	443.15	44.69	398.46						
MW-3B	747,829.10	2,083,716.16	the second s	443.66	42.86	400.80						
MW-5	747,911.73	2,083,684.29	shallow	441.26	44.70	396.56						
MW-5A	747,917.11	2,083,685.48	shallow	439.81	43.37	396.44						
MW-5B	747,913.31	2,083,688.75		440.13	43.77	396.36						
MW-6	747,987.81	2,083,695.81	shallow	438.61	DRY	NA						
MW-7	747,972.40	2,083,759.49	shallow	441.94	45.11	396.83						
MW-8	747,936.68	2,083,831.30	shallow	447.85	49.13	398.72						
MW-9	747,984.18	2,083,569.82	shallow	442.52	DRY	NA						
MW-10	748,035.32	2,083,584.16	shallow	438.09	42.73	395.36						
MW-11	747,987.24	2,083,904.54	shallow	430.01	DRY	NA						
MW-111	747,982.67	2,083,914.92	intermediate	434.29	34.38	399.91						
MW-12	748,035.37	2,083,726.83	shallow	427.24	32.06	395.18						
MW-12I	748,031.08	2,083,738.92	intermediate	430.70	34.49	396.21						
MW-12D	748,048.21	2,083,735.45	deep	427.45	28.60	398.85						
MW-13	748,099.25	2,083,498.80	shallow	423.82	29.16	394.66						
MW-13D	748,122.47	2,083,503.49	deep	423.43	29.03	394.40						
MW-14	747,148.54	2,084,091.12	shallow	451.87	34.70	417.17 NA						
MW-15	748,078.43	2,083,447.10	shallow	432.38	DRY	397.74						
MW-16	748,009.06	2,083,822.21	shallow	427.94	30.20	397.74						
MW-16I	748,004.62	2,083,832.41	intermediate	432.14	35.96 30.26	398.72						
MW-16D	748,024.15	2,083,819.82	deep	428.98								
MW-17	748,068.64	2,083,615.41	shallow intermediate	425.09 427.74	29.80 32.55	395.29 395.19						
MW-17I	748,062.71	2,083,626.56			30.46	393.19						
MW-17D	748,087.86	2,083,612.19	deep	425.44	42.93	405.33						
MW-27	747,678.44	2,083,751.29	shallow shallow	448.26 448.55	43.32	405.23						
MW-27A	747,687.36	2,083,749.28	shallow	448.55	43.15	403.23						
MW-29	747,565.34	2,083,753.75	shallow	438.15	31.62	404.52						
MW-32	747,760.44	2,084,186.72	intermediate	438.13	34.40	406.98						
MW-33 MW-34SR	747,760.99	2,084,157.91 2,083,926.43	shallow	454.82	43.26	411.56						
MW-345R MW-34DR	and the second se	2,083,926.43	deep	454.82	43.20	412.37						
MW-35S	747,702.24	2,083,565.01	shallow	443.12	47.49	395.63						
MW-35D	747,989.14	2,083,552.20	deep	444.69	48.87	395.82						
IVI W-33D	/4/,991.91	2,005,552.20		tinuad)	40.07	575.02						

(continued)

TABLE 2 (CONTINUED)MONITORING-WELL GAUGING DATA: FEBRUARY 1, 2017

North Carolina State University

Lot 86 Site

Raleigh, North Carolina

Well I.D.	Northing	Easting	Well Class	Top of Casing	Depth to Ground-	Groundwater
				Elevation (ft)(1)	water (ft)(2)	Elevation (ft)(1)
MW-36S	747,905.86	2,083,672.19	shallow	442.71	45.96	396.75
MW-36D	747,898.07	2,083,671.54	deep	442.87	46.39	396.48
MW-37	747,964.33	2,083,718.54	shallow	440.88	44.93	395.95
MW-38	747,959.35	2,083,794.05	deep	445.38	46.89	398.49
MW-40	747,908.53	2,084,062.93	shallow	435.47	29.08	406.39
MW-41	748,239.12	2,083,608.18	shallow	421.17	26.23	394.94
MW-411	748,235.91	2,083,619.56	intermediate	421.57	26.45	395.12
MW-41D	748,278.60	2,083,583.47	deep	420.67	25.79	394.88
MW-42	748,149.51	2,083,907.73	shallow	427.25	28.42	398.83
MW-421	748,155.61	2,083,896.58	intermediate	426.68	.27.58	399.10
MW-43	748,526.66	2,083,396.75	shallow	437.03	46.68	390.35
MW-43D	748,532.52	2,083,416.56	deep	438.01	47.75	390.26
MW-45R	748,539.15	2,083,844.73	shallow	426.15	32.66	393.49
MW-46	748,444.92	2,083,683.30	shallow	451.35	56.17	395.18
MW-47	747,787.80	2,083,636.72	deep	441.11	43.25	397.86

(1) Measured in feet relative to site datum.

(2) Measured relative to top-of-casing reference point.

NA = Not Applicable

	TABLE 3 MONITORING-WELL GAUGING DATA: MAY 22, 2017										
	North Carolina State University Lot 86 Site										
			Raleigh, No	rth Carolina							
Well I.D.	Northing	Easting	Well Class		Depth to Ground-						
				Elevation (ft)(1)		Elevation (ft)(1)					
MW-1	747,972.81	2,083,713.47	shallow	439.30	DRY	NA					
MW-1A	747,968.37	2,083,717.18	shallow	438.92	43.19	. 395.73					
MW-1B	747,972.08	2,083,718.51	shallow	438.25	42.60	395.65					
MW-2	747,934.50	2,083,791.44	shallow	448.74	DRY	NA					
MW-3	747,831.30	2,083,724.81	shallow	445.39	45.99	399.40					
MW-3A	747,833.58	2,083,714.96	shallow	443.15	43.95	399.20					
MW-3B	747,829.10	2,083,716.16	intermediate	443.66	43.12	400.54					
MW-5	747,911.73	2,083,684.29	shallow	441.26	44.19	397.07					
MW-5A	747,917.11	2,083,685.48	shallow	439.81	42.87	396.94					
MW-5B	747,913.31	2,083,688.75		440.13	43.11	397.02					
MW-6	747,987.81	2,083,695.81	shallow	438.61	DRY	NA					
MW-7	747,972.40	2,083,759.49	shallow	441.94	DRY	NA					
MW-8	747,936.68	2,083,831.30	shallow	447.85	49.63	398.22					
MW-9	747,984.18	2,083,569.82	shallow	442.52	DRY	NA					
MW-10	748,035.32	2,083,584.16	shallow	438.09	DRY	NA					
MW-11	747,987.24	2,083,904.54	shallow	430.01	29.52	400.49					
MW-111	747,982.67	2,083,914.92	intermediate	434.29	35.42	398.87					
MW-12	748,035.37	2,083,726.83	shallow	427.24	32.81	394.43					
MW-12I	748,031.08	2,083,738.92	intermediate	430.70	34.75	395.95					
MW-12D	748,048.21	2,083,735.45	deep	427.45	29.69	397.76					
MW-13	748,099.25	2,083,498.80	shallow	423.82	29.31	394.51					
MW-13D	748,122.47	2,083,503.49	deep	423.43	29.48	393.95					
MW-14	747,148.54	2,084,091.12	shallow	451.87	35.12	416.75					
• MW-15	748,078.43	2,083,447.10	shallow	432.38	DRY	NA					
MW-16	748,009.06	2,083,822.21	shallow	427.94	DRY	NA					
MW-16I	748,004.62	2,083,832.41	intermediate	432.14	36.41	395.73					
MW-16D	748,024.15	2,083,819.82	deep	428.98	31.10	397.88					
MW-17	748,068.64	2,083,615.41	shallow	425.09	30.02	395.07					
MW-17I	748,062.71	2,083,626.56	intermediate	427.74	32.81	394.93					
MW-17D	748,087.86	2,083,612.19	deep	425.44	30.92	394.52					
MW-27	747,678.44	2,083,751.29	shallow	448.26	43.70	404.56					
MW-27A	747,687.36	2,083,749.28	shallow	448.55	44.11	404.44					
MW-29	747,565.34	2,083,753.75	shallow	447.67	43.91	403:76					
MW-32	747,760.44	2,084,186.72	shallow	438.15	31.85	406.30					
MW-33	747,760.99	2,084,157.91	intermediate	441.38	34.74	406.64					
MW-34SR	747,694.98	2,083,926.43	shallow	454.82	44.51	410.31					
MW-34DR		2,083,936.61	deep	454.71	43.60	411.11					
MW-35S	747,989.14	2,083,565.01	. shallow	443.12	47.81	395.31					
MW-35D	747,991.91	2,083,552.20	deep	444.69	49.43	395.26					

(continued)

TABLE 3 (CONTINUED)MONITORING-WELL GAUGING DATA: MAY 22, 2017

North Carolina State University

Lot 86 Site

Raleigh, North Carolina

Well I.D.	Northing	Easting	Well Class		Depth to Ground-	Groundwater
				Elevation (ft)(1)	water (ft)(2)	Elevation (ft)(1)
MW-36S	747,905.86	2,083,672.19	shallow	442.71	45.52	397.19
MW-36D	747,898.07	2,083,671.54	deep	442.87	45.88	396.99
MW-37	.747,964.33	2,083,718.54	shallow	440.88	45.11	395.77
MW-38	747,959.35	2,083,794.05	deep	445.38	47.29	398.09
MW-40	747,908.53	2,084,062.93	shallow	435.47	29.85	405.62
MW-41	748,239.12	2,083,608.18	shallow	421.17	26.30	394.87
MW-411	748,235.91	2,083,619.56	intermediate	421.57	26.62	394.95
MW-41D	748,278.60	2,083,583.47	deep	420.67	26.09	394.58
MW-42	748,149.51	2,083,907.73	shallow	427.25	28.63	398.62
MW-42I	748,155.61	2,083,896.58	intermediate	426.68	28.08	398.60
MW-43	748,526.66	2,083,396.75	shallow	437.03	46.98	390.05
MW-43D	748,532.52	2,083,416.56	deep	438.01	48.14	389.87
MW-45R	748,539.15	2,083,844.73	shallow	426.15	33.03	393.12
MW-46	748,444.92	2,083,683.30	shallow	451.35	56.56	394.79
MW-47	747,787.80	2,083,636.72	deep	441.11	43.10	398.01

(1) Measured in feet relative to site datum.

(2) Measured relative to top-of-casing reference point.

NA = Not Applicable

	TABLE 4 MONITORING-WELL GAUGING DATA: AUGUST 7, 2017										
				State University							
				36 Site		× .					
			Raleigh, No	orth Carolina							
Well I.D.	Northing	Easting	Well Class	• •	Depth to Ground-	Groundwater					
				Elevation (ft)(1)		Elevation (ft)(1)					
MW-1	747,972.81	2,083,713.47	shallow	439.30	43.47	395.83					
MW-1A	747,968.37	2,083,717.18	shallow	438.92	42.79	396.13					
MW-1B	747,972.08	2,083,718.51	shallow	438.25	42.18	396.07					
MW-2	747,934.50	2,083,791.44	shallow	448.74	50.80	397.94					
MW-3	747,831.30	2,083,724.81	shallow	445.39	45.67	399.72					
MW-3A	747,833.58	2,083,714.96	shallow	443.15	43.63	399.52					
MW-3B MW-5	747,829.10	2,083,716.16 2,083,684.29	shallow	443.66	43.85	400.95					
MW-5 MW-5A	747,911.73	2,083,684.29	shallow	439.81	43.85	397.41					
MW-5A MW-5B	747,917.11	2,083,688.75	intermediate	440.13	42.34	397.32					
MW-6	747,987.81	2,083,695.81	shallow	438.61	DRY	NA					
MW-0	747,972.40	2,083,759.49	shallow	441.94	45.02	396.92					
MW-8	747,936.68	2,083,831.30	shallow	447.85	49.26	398.59					
MW-9	747,984.18	2,083,569.82	shallow	442.52	DRY	NA					
MW-10	748,035.32	2,083,584.16	shallow	438.09	42.82	395.27					
MW-11	747,987.24	2,083,904.54	shallow	430.01	29.36	400.65					
MW-111	747,982.67	2,083,914.92	intermediate	434.29	34.78	399.51					
MW-12	748,035.37	2,083,726.83	shallow	427.24	32.10	395.14					
MW-12I	748,031.08	2,083,738.92	intermediate	430.70	34.53	396.17					
MW-12D	748,048.21	2,083,735.45	deep	427.45	29.62	397.83					
MW-13	748,099.25	2,083,498.80	shallow	423.82	NG	NA					
MW-13D	748,122.47	2,083,503.49	deep	423.43	29.60	393.83					
MW-14	747,148.54	2,084,091.12	shallow	451.87	34.62	417.25					
MW-15	748,078.43	2,083,447.10	shallow	432.38	DRY	NA					
MW-16	748,009.06	2,083,822.21	shallow	427.94	31.00	396.94					
MW-16I	748,004.62	2,083,832.41	intermediate	432.14	36.08	396.06					
MW-16D	748,024.15	2,083,819.82	deep	428.98	31.14	397.84					
MW-17	748,068.64	2,083,615.41	shallow	425.09	29.85	395.24					
MW-17I	748,062.71	2,083,626.56	intermediate	427.74	32.51	395.23					
MW-17D	748,087.86	2,083,612.19	deep	425.44	30.51	394.93					
MW-27	747,678.44	2,083,751.29	shallow	448.26	43.07	405.19					
MW-27A	747,687.36	2,083,749.28	shallow	448.55	43.49	405.06					
MW-29	747,565.34	2,083,753.75	shallow	447.67	43.38	404.29					
MW-32	747,760.44	2,084,186.72	shallow	438.15	32.38	405.77					
MW-33	747,760.99	2,084,157.91	intermediate	441.38	34.95	406.43					
MW-34SR	747,694.98	2,083,926.43	shallow	454.82	43.59	411.23					
MW-34DR	747,702.24	2,083,936.61	deep	454.71	42.81	411.90					
MW-35S	747,989.14	2,083,565.01	shallow	443.12	47.74	395.38					
MW-35D	747,991.91	2,083,552.20	deep	444.69	49.18	395.51					

(continued)

TABLE 4 (CONTINUED)MONITORING-WELL GAUGING DATA: AUGUST 7, 2017

North Carolina State University

Lot 86 Site

Raleigh, North Carolina

Well I.D.	Northing	Easting	Well Class	Top of Casing	Depth to Ground-	Groundwater
				Elevation (ft)(1)	water (ft)(2)	Elevation (ft)(1)
MW-36S	747,905.86	2,083,672.19	shallow	442.71	45.20	397.51
MW-36D	747,898.07	2,083,671.54	deep	442.87	45.56	397.31
MW-37	747,964.33	2,083,718.54	shallow	440.88	44.70	396.18
MW-38	747,959.35	2,083,794.05	deep	445.38	47.13	398.25
MW-40	747,908.53	2,084,062.93	shallow	435.47	29.57	405.90
MW-41	748,239.12	2,083,608.18	shallow	421.17	26.66	394.51
MW-411	748,235.91	2,083,619.56	intermediate	421.57	26.85	394.72
MW-41D	748,278.60	2,083,583.47	deep	420.67	26.17	394.50
MW-42	748,149.51	2,083,907.73	shallow	427.25	28.78	398.47
MW-42I	748,155.61	2,083,896.58	intermediate	426.68	28.05	398.63
MW-43	748,526.66	2,083,396.75	shallow	437.03	47.17	389.86
MW-43D	748,532.52	2,083,416.56	deep	438.01	48.30	389.71
MW-45R	748,539.15	2,083,844.73	shallow	426.15	33.18	392.97
MW-46	748,444.92	2,083,683.30	shallow	451.35	56.67	394.68
MW-47	747,787.80	2,083,636.72	deep	441.11	42.79	398.32

(1) Measured in feet relative to site datum.

(2) Measured relative to top-of-casing reference point.

NA = Not Applicable

NG = Not Gauged (due to seized well cap)

	MON	ITORING-W	ELL GAUGIN	NG DATA: NOV	EMBER 20, 2017						
		N	orth Carolina	State University	7						
			Lot 8	6 Site		2					
	Raleigh, North Carolina										
Well I.D.	Northing	Easting	Well Class	Top of Casing	Depth to Ground-	Groundwater					
wen I.D.	Northing	Lasting	Wen Class	Elevation (ft)(1)		Elevation (ft)(1)					
MW-1	747,972.81	2,083,713.47	shallow	439.30	43.20	396.10					
MW-1A	747,968.37	2,083,717.18	shallow	438.92	42.49	396.43					
MW-1R MW-1B	747,972.08	2,083,718.51	shallow	438.25	41.99	396.26					
MW-2	747,934.50	2,083,791.44	shallow	448.74	51.80	396.94					
MW-3	747,831.30	2,083,724.81	shallow	445.39	46.05	399.34					
MW-3A	747,833.58	2,083,714.96	shallow	443.15	43.99	399.16					
MW-3B	747,829.10	2,083,716.16		443.66	43.30	400.36					
MW-5	747,911.73	2,083,684.29	shallow	441.26	43.70	397.56					
MW-5A	747,917.11	2,083,685.48	shallow	439.81	42.42	397.39					
MW-5B	747,913.31	2,083,688.75		440.13	42.74	397.39					
MW-6	747,987.81	2,083,695.81	shallow	438.61	42.66	395.95					
MW-7	747,972.40	2,083,759.49	shallow	441.94	DRY	NA					
MW-8	747,936.68	2,083,831.30	shallow 🧹	447.85	50.61	397.24					
MW-9	747,984.18	2,083,569.82	shallow	442.52	DRY	NA					
MW-10	748,035.32	2,083,584.16	shallow	438.09	43.42	394.67					
MW-11	747,987.24	2,083,904.54	shallow	430.01	29.31	400.70					
MW-11I	747,982.67	2,083,914.92	intermediate	434.29	36.51	397.78					
MW-12	748,035.37	2,083,726.83	shallow	427.24	32.01	395.23					
MW-12I	748,031.08	2,083,738.92	intermediate	430.70	34.96	395.74					
MW-12D	748,048.21	2,083,735.45	deep	427.45	30.25	397.20					
MW-13	748,099.25	2,083,498.80	shallow	423.82	NG	NA					
MW-13D	748,122.47	2,083,503.49	deep	423.43	29.63	393.80					
MW-14	747,148.54	2,084,091.12	shallow	451.87	35.22	416.65					
MW-15	748,078.43	2,083,447.10	shallow	432.38	DRY	NA					
MW-16	748,009.06	2,083,822.21	shallow	427.94	32.05	395.89					
MW-16I	748,004.62	2,083,832.41	intermediate	432.14	37.16	394.98					
MW-16D	748,024.15	2,083,819.82	deep	428.98	30.99	397.99					
MW-17	748,068.64	2,083,615.41	shallow	425.09	32.68	392.41					
MW-17I	748,062.71	2,083,626.56		427.74	30.10	397.64					
MW-17D	748,087.86	2,083,612.19	deep	425.44	30.52	394.92					
MW-27	747,678.44	2,083,751.29	shallow	448.26	44.02	404.24					
MW-27A	747,687.36	2,083,749.28	shallow	448.55	44.36	404.19					
MW-29	747,565.34	2,083,753.75	shallow	447.67	35.73	411.94					
MW-32	747,760.44	2,084,186.72	shallow	438.15	32.88	405.27					
MW-33	747,760.99	2,084,157.91	intermediate	441.38	35.66	405.72					
MW-34SR		2,083,926.43	shallow	454.82	44.46	410.36					
MW-34DR		2,083,936.61	deep	454.71	45.83	408.88					
MW-35S	747,989.14	2,083,565.01	shallow	443.12	48.02	395.10					
MW-35D	747,991.91	2,083,552.20	deep	444.69	49.09	395.60					
		A start of the second s			LUANDEL PLOT						

TABLE 5

(continued)

TABLE 6 SUMMARIZED RESULTS OF LABORATORY ANALYSIS GROUNDWATER SAMPLES COLLECTED FROM GWE SYSTEM RECOVERY WELLS FEBRUARY 2017

North Carolina State University Lot 86 Site **Raleigh**, North Carolina Sample I.D.: **RW-1 RW-2** RW-3 RW-4 RW-5 RW-6 **RW-7** Sample Date: 2/1/17 2/1/17 2/1/17 2/1/17 2/1/17 2/1/17 2/1/17 Method 900.0 (pCi/L) **Gross Beta** 0.767 1.77 3.13 1.54 2.01 1.94 1.69 Count uncertainty $(2\sigma + / -)$ 0.324 0.398 0.518 0.368 0.397 0.414 0.387 Total uncertainty $(2\sigma + / -)$ 0.333 0.435 0.605 0.399 0.445 0.457 0.422 Method 906.0 (pCi/L) Tritium 31.5 U 81.1 U 1,440 8,460 2,590 -36.0 U 90.1 U Count uncertainty $(2\sigma + / -)$ 214 228 328 628 378 211 231 Total uncertainty $(2\sigma + / -)$ 214 228 352 974 442 211 231 Sample I.D.: **RW-8 RW-9 RW-10 RW-11 RW-12 RW-13** Sample Date: 2/1/17 2/1/17 2/1/17 2/1/17 2/1/17 2/1/17 Method 900.0 (pCi/L) **Gross Beta** 1.77 1.19 6.27 1.57 2.70 1.81 0.386 Count uncertainty $(2\sigma + / -)$ 0.401 0.666 0.422 0.461 0.414 Total uncertainty $(2\sigma + / -)$ 0.438 0.404 0.915 0.450 0.534 0.452 Method 906.0 (pCi/L) Tritium -273 U -144 U -144 U 1,990 2,410 -54.1 U Count uncertainty $(2\sigma + / -)$ 188 204 198 342 371 204 Total uncertainty $(2\sigma + / -)$ 189 204 199 384 427 204

GROUNDWAT	FER SAMPLES		ED FROM G AY 2017	WE SYSTE	M RECOVE	RY WELLS	8
2 ⁴			ina State Uni	versity			
			ot 86 Site				
6.00			North Carol				
Sample I.D.:	RW-1	RW-2	RW-3	RW-4	RW-5	RW-6	RW-7
Sample Date:	5/22/17	5/22/17	5/22/17	5/22/17	5/22/17	5/22/17	5/22/17
Method 900.0 (pCi/L)							
Gross Beta	0.999	8.68	3.00	1.90	1.30	2.48	2.32
Uncertainty	0.476	2.15	0.681	0.510	0.439	0.630	0.590
Method 906.0 (pCi/L)							
Tritium	-98.3 U	120 U	2,229	7,380	2,752	207 U	242 U
Uncertainty	135	151	379	1,032	443	156	156
Sample I.D.:	RW-8	RW-9	RW-10	RW-11	RW-12	RW-13	5-16-16-16-16-16-16-16-16-16-16-16-16-16-
Sample Date:	5/22/17	5/22/17	5/22/17	5/22/17	5/22/17	5/22/17	
Method 900.0 (pCi/L)							an a
Gross Beta	1.39	0.811	4.70	1.26	3.21	1.45	
Uncertainty	0.462	0.895	1.01	0.527	0.810	0.976	
Method 906.0 (pCi/L)			10.00.0			15. 15.	
Tritium	-50.3 U	23.4 U	38.3 U	1,965	4,018	1,792	
Uncertainty	137	140	142	347	603	324	

 TABLE 7

 SUMMARIZED RESULTS OF LABORATORY ANALYSIS

(1) Laboratory analysis conducted by Pace Analytical Services.

TABLE 7 SUMMARIZED RESULTS OF LABORATORY ANALYSIS GROUNDWATER SAMPLES COLLECTED FROM GWE SYSTEM RECOVERY WELLS MAY 2017

North Carolina State University Lot 86 Site

		Raleigh,	North Carol	lina			
Sample I.D.:	RW-1	RW-2	RW-3	RW-4	RW-5	RW-6	RW-7
Sample Date:	5/22/17	5/22/17·	5/22/17	5/22/17	5/22/17	5/22/17	5/22/17
Method 900.0 (pCi/L)							
Gross Beta	0.999	8.68	3.00	1.90	1.30	2.48	2.32
Uncertainty	0.476	2.15	0.681	0.510	0.439	0.630	0.590
Method 906.0 (pCi/L)		-					
Tritium	-98.3 U	120 U	2,229	7,380	2,752	207 U	242 U
Uncertainty	135	151	379	1,032	443	156	156
Sample I.D.:	RW-8	RW-9	RW-10	RW-11	RW-12	RW-13	
Sample Date:	5/22/17	5/22/17	5/22/17	5/22/17	5/22/17	5/22/17	
Method 900.0 (pCi/L)							
Gross Beta	1.39	0.811	4.70	1.26	3.21	1.45	
Uncertainty	0.462	0.895	1.01	0.527	0.810	0.976	
Method 906.0 (pCi/L)							
Tritium	-50.3 U	23.4 U	38.3 U	1,965	4,018	1,792	
Uncertainty	137	140	142	347	603	324	

(1) Laboratory analysis conducted by Pace Analytical Services.

TABLE 8
SUMMARIZED RESULTS OF LABORATORY ANALYSIS
GROUNDWATER SAMPLES COLLECTED FROM GWE SYSTEM RECOVERY WELLS
AUGUST 2017

		North Caroli	ina State Uni	iversity		2	
		L	ot 86 Site			×.	
		Raleigh,	North Carol	ina			8
Sample I.D.:	RW-1	RW-2	RW-3	RW-4	RW-5	RW-6	RW-7
Sample Date:	8/7/17	8/7/17	8/7/17	8/7/17	8/7/17	8/7/17	8/7/17
Method 900.0 (pCi/L)						н 2	
Gross Beta	2.70 U	2.31	4.28	1.54 U	1.75 U	1.35 U	0.818 U
Uncertainty	2.41	1.14	1.44	0.970	1.00	0.896	0.839
Method 906.0 (pCi/L)							
Tritium	-81.6 U	-88.2 U	2,037	6,957	2,967	-2.94 U	0.000 U
Uncertainty	144	145	360	978	474	150	141
Sample I.D.:	RW-8	RW-9	RW-10	RW-11	RW-12	RW-13	
Sample Date:	8/7/17	8/7/17	8/7/17	8/7/17	NS	NS	
Method 900.0 (pCi/L)	2						
Gross Beta	2.14 U	2.50	5.25	1.18 U	,		
Uncertainty	1.23	1.17	2.09	0.916			
Method 906.0 (pCi/L)							
Tritium	8.71 U	-82.4 U	-207 U	1,403	-		
Uncertainty	140	145	138	284			and the second of

(1) Laboratory analysis conducted by Pace Analytical Services.

U = Analyte was not detected.

NS = No sample collected due to well pump not operating.

TABLE 9 SUMMARIZED RESULTS OF LABORATORY ANALYSIS GROUNDWATER SAMPLES COLLECTED FROM GWE SYSTEM RECOVERY WELLS NOVEMBER 2017

North Carolina State University Lot 86 Site

	5	Raleigh,	North Carol	lina		27	
Sample I.D.:	RW-1	RW-2	RW-3	RW-4	RW-5	RW-6	RW-7
Sample Date:	11/20/17	11/20/17	11/20/17	11/20/17	11/20/17	11/20/17	11/20/17
Method 900.0 (pCi/L)							
Gross Beta	1.26 U	1.95	2.64	1.76	2.55	1.54 U	3.53
Uncertainty	0.934	1.00	1.16	0.997	1.16	1.01	1.36
Method 906.0 (pCi/L)							
Tritium	-38.1 U	5.85 U	1,762	7,260	2.321	85.0 U	88.2 U
Uncertainty	143	146	324	1,018	392	151	152
Sample I.D.:	RW-8	RW-9	RW-10	RW-11	RW-12	RW-13	
Sample Date:	11/20/17	11/20/17	11/20/17	11/20/17	11/20/17	11/21/17	
Method 900.0 (pCi/L)							
Gross Beta	1.37 U	1.62	4.31	3.12	3.14	11.1	the second second
Uncertainty	0.835	0.912	1.39	1.17	1.17	2.35	
Method 906.0 (pCi/L)							
Tritium	-17.7 U	-43.9	-106 U	1,245	5,106	-100.0 U	
Uncertainty	145	143	140	265	742	270	

(1) Laboratory analysis conducted by Pace Analytical Services.

a	andrift Br				TABLE 10 ULTS OF LAB					मेला में प्रतित		к
				North (Carolina State U Lot 86 Site	niversity						
				Ral	eigh, North Ca	alina						
Sample Date:	1/3/17	2/1/17	3/1/17	4/6/17	5/5/17	6/1/17	7/6/17	8/7/17	9/26/17	10/5/17	11/1/17	12/1/17
EPA Method 8260 (µg/L)(1)	LIJILI		JANK	4/0/11	or of a r							
Acetone	<2,500	76.2	<5.000	<50.0	<50.0	<2,500	<2,500	<2,500	<2.500	<2,500	<625	<625
Acetonitrile	<2,500	<50.0	<5,000	<50.0	20.2 J	NA	NA	NA	NA	NA	NA	NA
Benzene	98.3	187	212	30.8	307	330	154	125	381	65.6 J	33.5	35.9
Bromodichloromethane	61.3	70.7	67.5 J	45.4	72.1	<100	<100	<100	55.7 J	53.3 J	<25.0	7.6 J
Bromoform	<50.0	2.07	<100	0.668 J	0,778 J	<100	<100	<100	<100	<100	<25.0	<25.0
Carbon disulfide	<50.0	2.92	<100 `	0.726 J	1.20	NA	NA	NA	NA	NA	NA	NA
Carbon tetrachloride	<50.0	168	137	115	170	186	168	148	141	151	39.7	35.9
Chlorobenzene	18.7 J	23.1	<100	9.90	24.2	<100	<100	<100	25.6 J	<100	<25.0	<25.0
Chlorodibromomethane	<50.0	0.410 J	<100	<1.00	<1.00	<100	<100	<100	<100	<100	<25.0	<25.0
Chloroform	9,550	11,700	7,900	7,280	9,360	11,500	11,600	10,200	10,400	10,500	3,700	2,870
1,2-Dibromoethane (EDB)	531	559	511	246	523	529	403	425	361	328	176	229
1,2-Dibromo-3-chloropropane	178 J	<1.250	184 J	178	188	<200	454	<200	<200	<200	92.6	108
Dibromomethane	<50.0	0.437 J	<100	<1.00	0.435 J	<100	<100	<100	<100	<100	<25.0	<25.0
1.2-Dichlorobenzene	<50.0	18.9	<100	11.0	15.7	<100	<100	<100	<100	<100	<25.0	<25.0
1.3-Dichlorobenzene	<50.0	1.20	<100	0.861 J	0.910 J	<100	<100	<100	<100	<100	<25.0	<25.0
1.4-Dichlorobenzene	<50.0	2.70	<100	1.96	2.38	<100	<100	<100	<100	<100	1 <25.0	<25.0
Dichlorodifluoromethane	<250	1.68 J	<500	1.18 J	1.65 J	<100	<100	<100	<100	<100	<25.0	<25.0
1,1-Dichloroethane	<50.0	3.98	<100	2.21	4.60	<100	<100	<100	<100	<100	<25.0	<25.0
1,2-Dichloroethane	69.0	78.3	84.8 J	57.3	87.8	<100	<100	<100	86.5 J	85.3 J	22.9 J	21.6 J
1,1-Dichloroethene	<50.0	6.29	<100	3.58	6.33	<100	<100	<100	<100	<100	<25.0	<25.0
cis-1.2-Dichloroethene	<50.0	1.04	<100	0.585 J	0.935 J	<100	<100	<100	<100	<100	<25.0	<25.0
1,2-Dichloropropane	<50.0	1,670	1,210	883	1,650	1,500	1,250	1,540	1,060	876	557	702
Ethylbenzene	<50.0	14.6	41.0 J	3.37	14.7	<100	<100	<100	<100	<100	<25.0	<25.0
Iodomethane	<500	<10.0	<1,000	3.25 J	<10.0	NA	NA	NA	NA	NA	NA	NA
Methylene chloride	1,030	1,240 J	895	760	878	1,100	983	973	846	1,290	320	268
4-Methyl-2-pentanone (MIBK)	<500	34.3	<1,000	5.74 J	70.3	<500	<500	<500	<500	<500	<125	<125
Naphthalene	NA	NA	NA	NA	NA	<100	<100	<100	<100	<100	24.7 J	<25.0
1,1,2,2-Tetrachloroethane	8.84 J	11.2	<100	6.01	11.8	<100	<100	<100	<100	<100	<25.0	<25.0
Tetrachloroethene	85.9	94.0	74.8 J	88.7	70.2	<100	<100	<100	61.0 J	69.2 J	47.0	43.4
Toluene	41.3 J	71.9	295	17.8	98.0	104	<100	<100	92.9 J	49.1 J	9.6 J	15.0 J
1,1,1-Trichloroethane	<50.0	0.777 J	<100	<1.00	0.456 J	<100	<100	<100	<100	<100	<25.0	<25.0
1,1,2-Trichloroethane	74.0	111	56.2 J	64.0	121	<100	<100	<100	91.2 J	55.3 J	30.4	28.9
Trichloroethene	252	315	243	196	224	221	266	202	195	208	70.5	81.9
Trichlorofluoromethane	<250	2.18 J	<500	2.13 J	2.50 J	<100	<100	<100	<100	<100	<25.0	<25.0
1,2,3-Trichloropropane	49.1 J	64.6	<250	31.1	66.2	<100	<100	<100	<100	<100	27.5	30.2
Vinyl chloride	<50.0	0.634 J	<100	0.429 J	0.867 J	<100	· <100	<100	<100	<100	<25.0	<25.0
Xylenes	<150	68.6	258 J	18.8	71.0	<100	<100	<100	<100	<100	<25.0	<25.0
1,4-Dioxane	<5,000	1,300	<10,000	1,630	<2,500	<15,000	<15,000	<15,000	<15,000	<15,000	<3,750	2.260 J

(1) Method analytes detected in one or more samples are listed. J = Estimated concentration; above the method detection limit, but below the reporting limit. NA = Not Analyzed

PIEDMONT GEOLOGIC. P.C.

Page I of I

		TABLE 1	 1									
SUMMARIZE				IRV ANA								
	LATILE O											
GROUNDWA					T 2017							
	North Car											
		Lot 86 Sit		• 5								
	Raleig	h, North (
Sample I.D.: MW-3 MW-8 MW-111 MW-12S MW-121 MW-121 MW-12D												
-						(2)						
Sample Date:	8/15/17	8/15/17	8/10/17	8/15/17	8/14/17	8/14/17	8/9/17					
EPA Method 6200B (µg/L)(1)	<u> </u>											
Benzene	63.4	<20.0	< 0.50	293	43.1	46.9	<0.50					
Carbon tetrachloride	184	163	< 0.50	270	67.0	68.3	< 0.50					
Chlorobenzene	<25.0	<20.0	< 0.50	87.1	<12.5	<20.0	< 0.50					
Chloroform	2,220	7,520	< 0.50	12,800	4,350	4,430	< 0.50					
1,2-Dibromo-3-chloropropane	<50.0	<40.0	<1.0	6,960	<25.0	<40.0	<1.0					
1,2-Dibromoethane (EDB)	6,740	840	<0.50	6,910	14.4	<20.0	<0.50					
1,2-Dichlorobenzene	<25.0	<20.0	< 0.50	<62.5	<12.5	<20.0	<0.50					
1,2-Dichloroethane	49.3	21.7	< 0.50	130	<12.5	<20.0	< 0.50					
1,2-Dichloropropane	5,350	780	< 0.50	19,300	154	157	< 0.50					
1,3-Dichloropropane	33.6	<20.0	< 0.50	171	<12.5	<20.0	<0.50					
Di-isopropyl ether	<25.0	<20.0	< 0.50	<62.5	<12.5	<20.0	<0.50					
Ethylbenzene	<25.0	<20.0	<0.50	<62.5	<12.5	<20.0	<0.50					
Methylene chloride	<100	95.5	<2.0	1,060	<50.0	<80.0	<2.0					
1,1,2,2-Tetrachloroethane	53.1	<20.0	<0.50	<62.5	<12.5	<20.0	<0.50					
Tetrachloroethene	30.8	135	<0.50	164	137	128	<0.50					
Toluene	<25.0	<20.0	<0.50	225	<12.5	<20.0	<0.50					
1,1,2-Trichloroethane	<25.0	<20.0	<0.50	1,170	66.6	68.1	<0.50					
Trichloroethene	503	90.6	<0.50	320	111	118	<0.50					
1,2,3-Trichloropropane	266	<20.0	<0.50	1,130	<12.5	<20.0	<0.50					
o-Xylenes	<25.0	<20.0	<0.50	67.0	<12.5	<20.0	<0.50					
EPA Method 8260B SIM (µg/L)												
1,4-Dioxane	126	2.3	119	111	11,700	- 11,200	<2.0					
Sample I.D.:	MW-13S		MW-16S									
Sample Date:	8/15/17	8/9/17	8/14/17	8/14/17	8/11/17	8/10/17	8/14/17					
EPA Method 6200B (µg/L)(1)		0.211				0,10,11	0,11,11					
Benzene	< 0.50	<0.50	<1.0	1.1	<0.50	<0.50	14,300					
Carbon tetrachloride	<0.50	<0.50	8.5	0.94	<0.50	<0.50	117					
Chlorobenzene	<0.50	<0.50	<1.0	< 0.50	<0.50	<0.50	<50.0					
Chloroform	<0.50	4.9	328	27.5	<0.50	3.7	3,420					
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<100					
1,2-Dibromoethane (EDB)	<0.50	<0.50	<1.0	0.89	<0.50	<0.50	<50.0					
1,2-Dichlorobenzene	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<50.0					
1,2-Dichloroethane	<0.50	<0.50	<1.0	0.71	<0.50	<0.50	<50.0					
1,2-Dichloropropane	<0.50	3.5	82.6	41.4	<0.50	<0.50	824					
1,3-Dichloropropane	<0.50	<0.50	<1.0	<0.50	< 0.50	<0.50	<50.0					
Di-isopropyl ether	<0.50	<0.50	<1.0	0.50	<0.50	<0.50	<50.0					
Ethylbenzene	<0.50	<0.50	1.0	<0.50	<0.50	< 0.50	<50.0					
Methylene chloride	<2.0	<2.0	<4.0	<0.30	<0.30	<0.30	<200					
1,1,2,2-Tetrachloroethane	<0.50	<0.50	<4.0	<0.50	<0.50	<0.50	<50.0					
Tetrachloroethene	<0.50	<0.50	<u>\$1.0</u> 96.9	<0.30 7.7	< 0.50	< 0.50	<50.0					
Toluene	<0.50	<0.50	1.1	<0.50	< 0.50	<0.50	<50.0					
1,1,2-Trichloroethane	< 0.50	<0.50	7.8	0.87	< 0.50	<0.50	<50.0					
Trichloroethene	<0.50	<0.50	42.4	6.3	<0.50	<0.50	260					
1,2,3-Trichloropropane	<0.50	<0.50	<1.0	0.50	<0.50 <0.50	< 0.50	<50.0					
o-Xylenes	<0.50	<0.50	1.9	<0.50	~0.30	<0.50	<50.0					
EPA Method 8260B SIM (μg/L) 1,4-Dioxane	<2.0	<2.0	23.4	2,380	120	<2.0	232					

	TABL	.E 11 (con	tinued)				
SUMMARIZE				DRY ANA	LYSIS		
	ATILE O						
GROUNDWA	FER SAM	PLES CO	LLECTEI	D AUGUS	T 2017		
	North Car			ty			
		Lot 86 Sit	-				
	Raleig	h, North C	Carolina 🗸				
Sample I.D.:	MW-17D	MW-27	MW-34DR	MW-35S	MW-35D	MW-36S	MW-36D
Sample Date:	8/11/17	. 8/11/17	8/8/17	8/10/17	8/10/17	8/11/17	8/11/17
EPA Method 6200B (µg/L)(1)	40. 4	.0.50	.0.50	.0.50	10.50		.0.50
Benzene	48.4	< 0.50	< 0.50	<0.50	<0.50	<1.0	< 0.50
Carbon tetrachloride	209	13.8	<0.50	<0.50	0.86	14.4	4.0
Chlorobenzene Chloroform	<6.2 1,560	<0.50 35.0	<0.50 <0.50	<0.50	<0.50 6.7	<1.0 272	<0.50
			<0.50	<0.50			148
1,2-Dibromo-3-chloropropane	<12.5	<1.0	<0.50	<1.0	<1.0	<2.0 1.8	<1.0
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	<6.2	<0.50	<0.50	<0.50	< <u>0.50</u> <0.50		< 0.50
I,2-Dichloroethane	<6.2	<0.50 <0.50	<0.50	<0.50	<0.50	<1.0 3.3	<0.50 0.63
1,2-Dichloropropane	<6.2 159	<0.50 12.6	<0.50	<0.50 <0.50	<0.50	86.0	5.5
1,3-Dichloropropane	<6.2	<0.50	<0.50	<0.50	<0.50	86.0 <1.0	<u> </u>
Di-isopropyl ether	< 6.2	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50
Ethylbenzene	< 6.2	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50
Methylene chloride	<25.0	<2.0	<2.0	<2.0	<2.0	<4.0	<2.0
1,1,2,2-Tetrachloroethane	<6.2	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50
Tetrachloroethene	55.1	2.9	<0.50	<0.50	<0.50	4.7	0.62
Toluene	<6.2	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50
1,1,2-Trichloroethane	32.8	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50
Trichloroethene	107	10.6	<0.50	<0.50	<0.50	16.6	1.5
1,2,3-Trichloropropane	<6.2	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50
o-Xylenes	<6.2	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50
EPA Method 8260B SIM (µg/L)							
1,4-Dioxane		-18.2	<2.0	<2.0	<2.0	<2.0	2.1
Sample I.D.:	MW-36D	MW-37	MW-38	MW-41S	MW-411	MW-41D	MW-42 S
•	(3)						
Sample Date:	8/11/17	8/15/17	8/10/17	8/9/17	8/9/17	8/11/17	8/10/17
EPA Method 6200B (µg/L)(1)							
Benzene	< 0.50	4,060	< 0.50	<0.50	< 0.50	<0.50	<0.50
Carbon tetrachloride	4.0	<125	< 0.50	< 0.50	< 0.50	5.6	< 0.50
Chlorobenzene	< 0.50	<125	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Chloroform	152	47,400	< 0.50	1.4	1.1	19.7	1.7
1,2-Dibromo-3-chloropropane	<1.0	<250	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane (EDB)	< 0.50	<125	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
1,2-Dichlorobenzene	< 0.50	538	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
1,2-Dichloroethane	0.70	494	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
1,2-Dichloropropane	5.5	2,350	< 0.50	<0.50	< 0.50	1.5	< 0.50
1,3-Dichloropropane	< 0.50	<125	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
Di-isopropyl ether	<0.50	<125	< 0.50	< 0.50	< 0.50	<0.50	< 0.50
Ethylbenzene	< 0.50	<125	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
Methylene chloride	<2.0	6,210	<2.0	<2.0	<2.0	<2.0	<2.0
1,1,2,2-Tetrachloroethane	< 0.50	<125	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Tetrachloroethene	0.64	295	< 0.50	< 0.50	< 0.50	0.65	< 0.50
Toluene	< 0.50	283	< 0.50	< 0.50	< 0.50	<0.50	< 0.50
1,1,2-Trichloroethane	< 0.50	<125	<0.50	< 0.50	< 0.50	< 0.50	< 0.50
Trichloroethene	1.6	744	<0.50	< 0.50	< 0.50	1.3	< 0.50
1,2,3-Trichloropropane	< 0.50	<125	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
o-Xylenes	< 0.50	210	< 0.50	<0.50	<0.50	< 0.50	< 0.50
EPA Method 8260B SIM (µg/L)							
1,4-Dioxane	2.3	4,310	<2.0	<2.0	<2.0	<2.0	10.2

SUMMARIZ		LE 11 (con TS OF LA		ORY ANA	LYSIS							
	DLATILE C				51515							
					T 2017							
GROUNDWATER SAMPLES COLLECTED AUGUST 2017 North Carolina State University												
Lot 86 Site												
Raleigh, North Carolina												
Sample I.D.: MW-421 MW-43S MW-43D MW-45R MW-46 MW-47 RW-6												
Sample Date:	8/11/17	8/9/17	8/8/17	8/9/17	8/9/17	8/9/17	8/15/1					
EPA Method 6200B (µg/L)(1)												
Benzene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
Carbon tetrachloride	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
Chlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
Chloroform	0.56	6.4	3.5	< 0.50	< 0.50	9.6	12.5					
1,2-Dibromo-3-chloropropane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0					
1,2-Dibromoethane (EDB)	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
1,2-Dichlorobenzene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
1,2-Dichloroethane	0.74	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
1,2-Dichloropropane	3.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
1,3-Dichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
Di-isopropyl ether	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
Ethylbenzene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
Methylene chloride	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0					
1,1,2,2-Tetrachloroethane	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
Tetrachloroethene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
Toluene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
1,1,2-Trichloroethane	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
Trichloroethene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
1,2,3-Trichloropropane	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
o-Xylenes	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50					
EPA Method 8260B SIM (µg/L)												
1,4-Dioxane	3,140	<2.0	<2.0	<2.0	<2.0	<2.0	154					
Sample I.D.:	RW-10	FB-1	FB-2	Trip		NC 2L						
		(4)	(5)	Blank	5	Std. (µg/L)						
Sample Date:	8/15/17	8/11/17	8/15/17	8/10/17								
EPA Method 6200B (µg/L)(1)					1.1							
Benzene	1,020	< 0.50	< 0.50	< 0.50		1						
Carbon tetrachloride	<62.5	< 0.50	< 0.50	< 0.50		0.3	100					
Chlorobenzene	73.0	< 0.50	< 0.50	< 0.50		50						
Chloroform	20,300	< 0.50	< 0.50	< 0.50		70	1.00					
1,2-Dibromo-3-chloropropane	136	<1.0	<1.0	<1.0	5.10M	0.04						
1,2-Dibromoethane (EDB)	<62.5	< 0.50	< 0.50	< 0.50		0.02	8					
1,2-Dichlorobenzene	189	< 0.50	< 0.50	< 0.50		20						
1,2-Dichloroethane	309	< 0.50	< 0.50	< 0.50		0.4						
1,2-Dichloropropane	1,100	< 0.50	< 0.50	< 0.50		0.6	141					
1,3-Dichloropropane	<62.5	< 0.50	< 0.50	< 0.50		NS	đ.:					
Di-isopropyl ether	<62.5	< 0.50	< 0.50	< 0.50		70						
Ethylbenzene	<62.5	< 0.50	< 0.50	< 0.50	1	600						
Methylene chloride	2,190	<2.0	<2.0	<2.0		5						
1,1,2,2-Tetrachloroethane	<62.5	< 0.50	< 0.50	< 0.50		0.2						
Tetrachloroethene	105	< 0.50	<0.50	< 0.50		0.7						
Toluene	<62.5	< 0.50	<0.50	< 0.50		600						
1,1,2-Trichloroethane	<62.5	< 0.50	< 0.50	< 0.50		NS						
Trichloroethene	417	< 0.50	< 0.50	< 0.50		3						
1,2,3-Trichloropropane	<62.5	< 0.50	< 0.50	< 0.50		0.005						
o-Xylenes	83.8	< 0.50	< 0.50	< 0.50		500						
CPA Method 8260B SIM (µg/L)	T			T								
1,4-Dioxane	2,200	<2.0	<2.0	<2.0								

TABLE 11 (continued) SUMMARIZED RESULTS OF LABORATORY ANALYSIS **VOLATILE ORGANIC COMPOUNDS GROUNDWATER SAMPLES COLLECTED AUGUST 2017** North Carolina State University

Lot 86 Site

Raleigh, North Carolina

(1) Method compounds detected in one or more samples are listed.

(1) Method compounds detected mone of more samples are insted.
 (2) Duplicate sample; labeled "MW-62" in chain of custody and laboratory report.
 (3) Duplicate sample; labeled "MW-61" in chain of custody and laboratory report.
 (4) Field rinseate blank; labeled "MW-63" in chain of custody and laboratory report.
 (5) Field rinseate blank; labeled "MW-64" in chain of custody and laboratory report.

Bold type denotes detected compound.

Shaded type denotes concentration above North Carolina 2L standard.

	and the second sec			and the second second				
SUMM	ARIZED RES		TABLE 12 LABORAT	ORY AND	FIELD AN	ALYSES		
		ETALS ANI	D FIELD PA	ARAMETE	RS			
	GROUNDWA				UGUST 20	1/		
e			olina State	University				
			Lot 86 Site					
Comple LD :			h, North Ca				T a lasta a second	
Sample I.D.:	MW-3	MW-8	MW-11I	MW-12S	MW-12I	MW-12I (1)	MW-12D	MW-13S
Sample Date:	8/15/17	8/15/17	8/10/17	8/15/17	8/14/17	8/14/17	8/9/17	8/15/17
		LABORA	TORY AN	ALYSES				174 - 120
EPA Method 6020 (µg/L)	8							
Arsenic	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Barium	206	20.5	26.9	658	25.4	25.8	15.6	359
Cadmium	<1.0	<1.0	<1.0	7.6	<1.0	<1.0	<1.0	<1.0
Chromium	<5.0	<5.0	<5.0	<5.0	7.9	8.1	<5.0	<5.0
Lead	<5.0	5.3	<5.0	8.4	<5.0	<5.0	<5.0	<5.0
Manganese	3,300	56.5	161	35,800	93.5	94.1	90.0	1,060
Selenium	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
EPA Method 7470A (µg/L)								
Mercury	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
		FIEI	D ANALY	SES		-		
pH	5.8	6.0	9.6	5.0	6.0	6.0	6.9	6.7
Temperature (°C)	21.2	20.4	19.6	19.6	19.9	19.9	20.4	19.9
Specific Cond. (umhos/cm)	93	42	96	193	62	62	137	85
Turbidity (NTU)	11.0	28.1	10.9	5.62	46.6	46.6	0.00	19.3
Sample I.D.:	MW-13D	MW-16S	MW-16I	MW-16D	MW-17S	MW-17I	MW-17D	MW-27
Sample Date:	8/9/17	8/14/17	8/14/17	8/11/17	8/10/17	8/14/17	8/11/17	8/11/17
			TORY ANA				0,11,11	0/11/1/
EPA Method 6020 (µg/L)								
Arsenic	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Barium	11.9	170	20.9	21.5	57.5	12.6	<5.0	16.9
Cadmium	<1.0	1.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	5.4	6.7	15.9	<5.0	<5.0	<5.0	<5.0	<5.0
Lead	<5.0	12.3	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Manganese	59.9	13,400	176	<5.0	220	124	<5.0	48.9
Selenium	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
EPA Method 7470A (µg/L)						10		
Mercury	<0.20	1.1	< 0.20	< 0.20	<0.20	<0.20	< 0.20	< 0.20
		FIEL	D ANALYS	SES				
pH	6.5	6.6	6.6	8.5	5.4	5.8	6.2	6.5
Temperature (°C)	19.7	22.0	20.7	19.5	18.9	21.7	19.3	19.6
Specific Cond. (umhos/cm) Turbidity (NTU)	72	212	108	130	56	47	60	41

			· · · · ·					
			E 12 (conti					
SUMMA	RIZED RES					ALYSES		
) FIELD PA				,	
G	ROUNDWA	TER SAMI	PLES COLI	LECTED A	UGUST 20	17		
		North Care	olina State I	University				
			Lot 86 Site					
			1, North Ca	rolina				
Sample I.D.:	MW-34DR		MW-35D	MW-36S	MW-36D	MW-36D	MW-37	MW-38
-						(2)		
Sample Date:	8/8/17	8/10/17	8/10/17	8/11/17	8/11/17	8/11/17	8/15/17	8/10/17
		LABORA	TORY AN	ALYSES				
EPA Method 6020 (µg/L)								
Arsenic	<10.0	<10.0	<10.0	<10.0	28.8	25.7	<10.0	<10.0
Barium	33.9	31.9	<5.0	89.5	<5.0	<5.0	927	26.2
Cadmium	<1.0	<1.0	<1.0	<1.0	1.2	<1.0	<1.0	<1.0
Chromium	6.7	11.5	9.6	20.8	33.0	34.8	< 5.0	<5.0
Lead	<5.0	<5.0	<5.0	. <5.0	<5.0	<5.0	11.5	<5.0
Manganese	24.9	34.1	8.5	2,600	13.3	14.9	32,500	66.2
Selenium	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
EPA Method 7470A (µg/L)		,						
Mercury	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.38	<0.20
			D ANALY				· ·	
pH	6.0	6.0	6.7	5.4	7.1	7.1	6.1	• 7.4
Temperature (°C)	20.7	18.0	19.4	22.5	20.7	20.7	18.8	21.2
Specific Cond. (umhos/cm) Turbidity (NTU)	<u>64</u> 23.64	38	83	58 25.8	<u>99</u> 7.00	<u>99</u> 7.00	184 41.7	132
	23.04	24.1	2.57	23.8] 7.00	/.00	<u> </u>	50.2
Sample I.D.:	MW-41S	MW-411	MW-41D	MW-42S	MW-42I	MW-43S	MW-43D	MW-45R
Sample Date:	8/9/17	8/9/17	8/11/17	8/10/17	8/11/17	8/9/17	8/8/17	8/9/17
		LABORA	TORY AN	ALYSES	<u> </u>	·		
EPA Method 6020 (µg/L)								
Arsenic	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Barium	77.4	36.4	50.8	18.4	23.5	34.6	11.8	16.0
Cadmium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	50.7	10.3	24.4	57.4	<5.0	16.2	<5.0	<5.0
Lead	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Manganese	147	6.0	365	146	. 352	102	11.7	77.2
Selenium	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
EPA Method 7470A (µg/L)								
Mercury	<0.20	<0.20	<0.20	< 0.20	< 0.20	<0.20	< 0.20	<0.20
		FIEL	D ANALY	SES		•		
рН	6.0	6.3	7.0	8.5	6.7	6.0	7.9	5.2
Temperature (°C)	25.1	21.8	21.6	20.6	19.9	18.4	19.1	19.4
Specific Cond. (umhos/cm)	154	85	58	84	1.15	72	89	41
Turbidity (NTU)	13.12	0.00	42.1	23.2	5.57	18.50	2.13	0.00

PIEDMONT GEOLOGIC, P.C.

i

Page 2 of 3

	ARIZED RES ME GROUNDWA	SULTS OF D TALS AND TER SAMI	FIELD PAPLES COL	ORY AND ARAMETE LECTED A	RS		
14 15		North Care		University			
			Lot 86 Site				
		Raleigh	i, North Ca	rolina			
Sample I.D.:	MW-46	MW-47	RW-6	RW-10	FB-1	FB-2	NC 2L
					(3)	(4)	Std. (µg/L)
Sample Date:	8/9/17	8/9/17	8/15/17	8/15/17	8/11/17	8/15/17	
		LABORA	TORY AN	ALYSES			
EPA Method 6020 (µg/L)							
Arsenic	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	10
Barium	19.6	13.6	25.9	834	<5.0	<5.0	700
Cadmium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2
Chromium	<5.0	7.0	<5.0	<5.0	<5.0	<5.0	10
Lead	<5.0	<5.0	<5.0	8.4	<5.0	<5.0	15
Manganese	61.2	<5.0	1,120	19,100	<5.0	<5.0	50
Selenium	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	20
EPA Method 7470A (µg/L)							
Mercury	<0.20	< 0.20	< 0.20	<0.20	< 0.20	< 0.20	1
		FIEL	D ANALY	SES			
pH	5.3	6.0	6.5	6.2	NA	NA	NS
Temperature (°C)	18.1	19.1	24.1	29.8	NA	NA	NS
Specific Cond. (umhos/cm)	42	61	111	168	NA	NA	NS
Turbidity (NTU)	0.00	0.00	6.82	2.32	NA	NA	NS

TABLE 12 (continued)

(1) Duplicate sample; labeled "MW-62" in chain of custody and laboratory report.

(2) Duplicate sample; labeled "MW-61" in chain of custody and laboratory report.

(3) Field rinseate blank; labeled "MW-63" in chain of custody and laboratory report.

(4) Field rinseate blank; labeled "MW-64" in chain of custody and laboratory report. NS = No North Carolina 2L standard exists.

NA = Not analyzed.

Bold type denotes detected compound.

Shaded type denotes concentration above North Carolina 2L standard.

TABLE 13 SUMMARIZED RESULTS OF LABORATORY ANALYSIS GROSS BETA AND TRITIUM GROUNDWATER SAMPLES COLLECTED AUGUST 2017

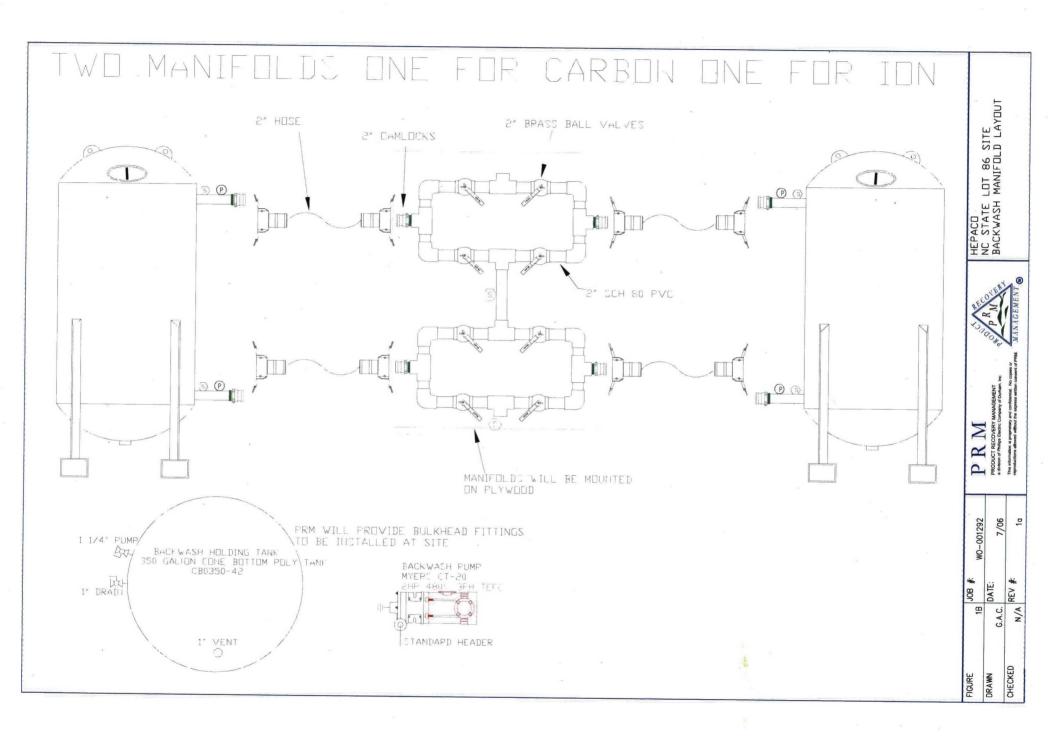
North Carolina State University Lot 86 Site

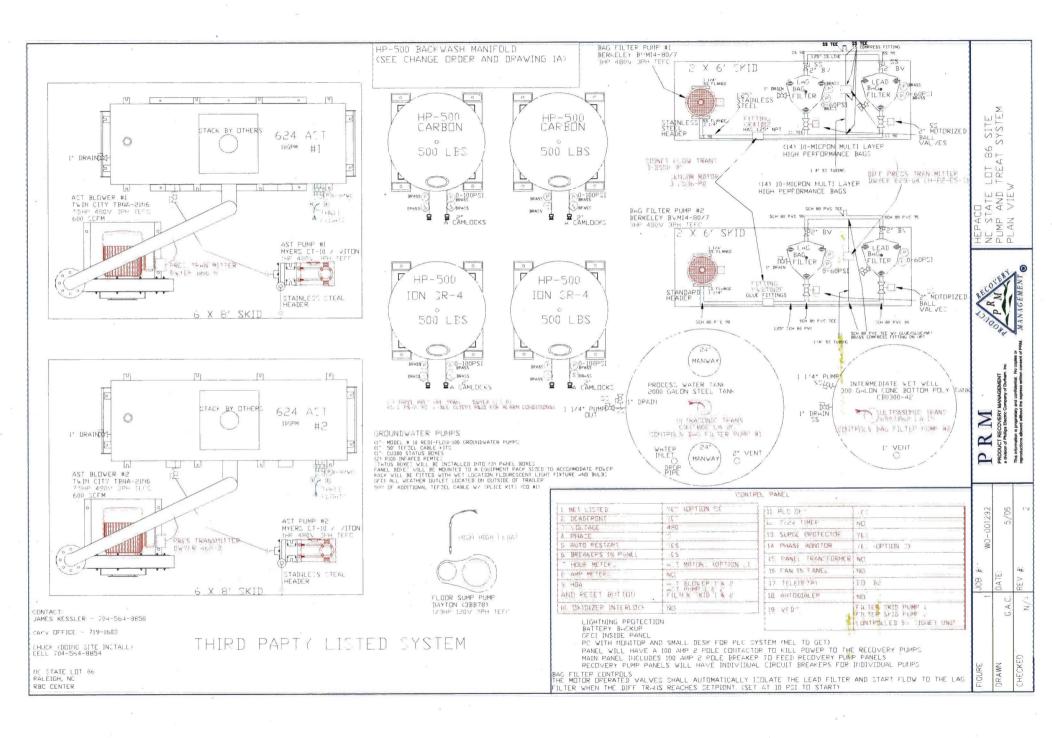
		Raleig	h, North Ca	rolina				
Sample I.D.:	MW-3	MW-8	MW-11I	MW-12S	MW-12I	MW-12I (1)	MW-12D	MW-13S
Sample Date:	8/15/17	8/15/17	8/10/17	8/15/17	8/14/17	8/14/17	8/9/17	8/15/17
EPA Method 900.0 (pCi/L)	10.0	160	2.12	(7.0	10.0	10	1.76 11	107
Gross Beta	10.0	16.9	2.12	67.9	10.8	4.62	1.76 U	107
Total uncertainty (2 σ +/-)	1.92	3.18	0.860	14.0	2.09	0.977	1.41	25.5
EPA Method 906.0 (pCi/L)	126.11	100 11	=(0	70 2 U	4.215	2.010	59(1)	1441
Tritium	-136 U	-108 U	769	-79.3 U	4,317	3,819	5.86 U	-14.4 U
Total uncertainty (20+/-)	131	134	216	136	641	577	141	137
Sample I.D.:	MW-13D	MW-16I	MW-16D	MW-175	MW-17I	MW-17D	MW-27	MW-34DR
Sample Date:	8/9/17	8/14/17	8/11/17	8/10/17	8/14/17	8/11/17	8/11/17	8/8/17
EPA Method 900.0 (pCi/L)								
Gross Beta	1.93	7.11	3.28	101	0.837 U	1.17	33.5	4.67
Total uncertainty $(2\sigma + / -)$	1.02	1.41	0.778	27.2	0.589	0.452	6.25	2.33
EPA Method 906.0 (pCi/L)								
Tritium	-14.8 U	9,217	200 U	-91.6 U	23.4 U	14.6 U	-23.6 U	-64.3 U
Total uncertainty (2 σ +/-)	141	1,267	156	145	142	142	140	136
Sample I.D.:	MW-35S	MW-35D	MW-36S	MW-36D	MW-36D (2)	MW-37	MW-38	MW-41S
Sample Date:	8/10/17	8/10/17	8/11/17	8/11/17	8/11/17	8/15/17	8/10/17	8/9/17
EPA Method 900.0 (pCi/L)				e.				
Gross Beta	33.7	1.36	1.99	5.70	5.38	26.3	3.77	3.67
Total uncertainty (20+/-)	8.30	0.548	0.579	1.17	1.11	4.96	0.859	1.24
EPA Method 906.0 (pCi/L)								
Tritium	-156 U	-111 U	206 U	-37.9 U	-35.4 U	108 U	-76.6 U	38.1 U
Total uncertainty (20+/-)	141	142	157	137	139	148	146	143
Sample I.D.:	MW-41I	MW-41D	MW-42S	MW-42I	MW-43S	MW-43D	MW-45R	MW-46
Sample Date:	8/9/17	8/11/17	8/10/17	8/11/17	8/9/17	8/8/17	8/9/17	8/9/17
EPA Method 900.0 (pCi/L)								
Gross Beta	0.802 U	17.5	13.4	3.63	5.91	2.87 U	2.70	0.591 U
Total uncertainty (20+/-)	0.824	3.57	2.56	0.815	2.37	1.97	1.60	1.16
EPA Method 906.0 (pCi/L)								
Tritium	5.87 U	-118 U	-96.3 U	234 U	38.0 U	-93.7 U	-66.5 U	155 U
Total uncertainty $(2\sigma + / -)$	141	135	134	158	143	135	135	152

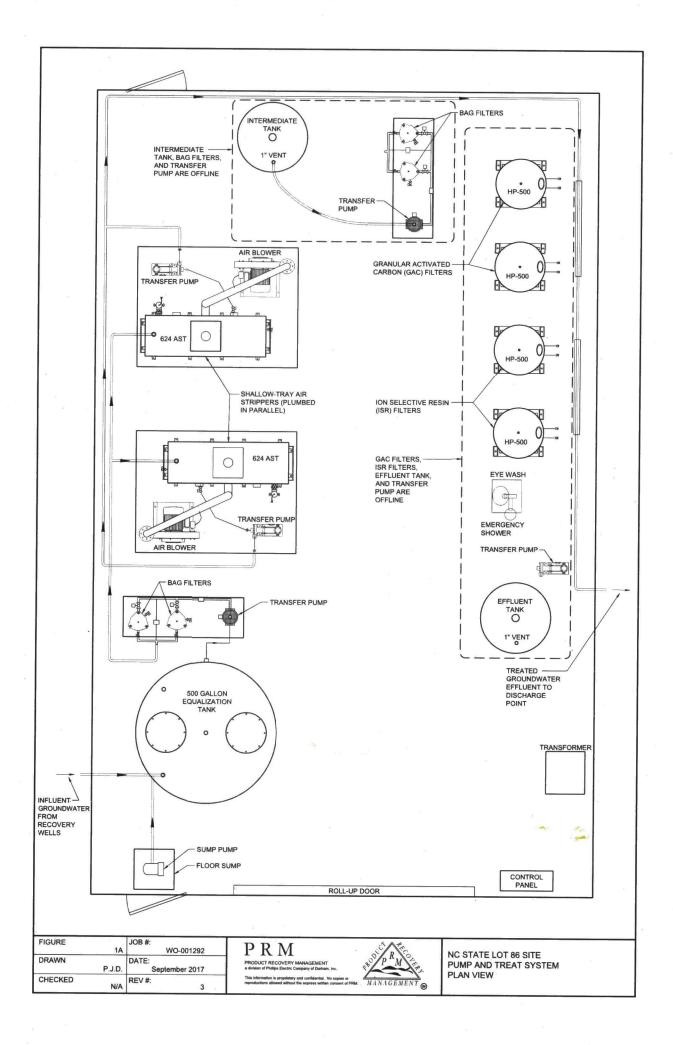
	•		LE 13 (conti	,				
	SUMMARIZ				Y ANALYS	IS		
		GROSS B	ETA AND	TRITIUM				
	GROUNDWA	ATER SAM	PLES COL	LECTED A	UGUST 20	17		
8		North Ca	rolina State	University				
			Lot 86 Site					
6		Raleig	h, North Ca	arolina				
Sample I.D.:	MW-47	RW-1	RW-2	RW-3	RW-4	RW-5	RW-6	RW-7
Sample Date:	8/9/17	8/7/17	8/7/17	8/7/17	8/7/17	8/7/17	8/7/17	8/7/17
EPA Method 900.0 (pCi/L)			0///2/	or man		Griff	Grinti	0///11
Gross Beta	1.97 U	2.70 U	2.31	4.28	1.54 U	1.75 U	1.35 U	0.818 U
Total uncertainty (20+/-)	1.60	2.41	1.14	1.44	0.970	1.00	0.896	0.839
EPA Method 906.0 (pCi/L)								x.
Tritium	151 U	-81.6 U	-88.2 U	2,037	6,957	2,967	-2.94 U	0.000 U
Total uncertainty (2\u00f3+/-)	151	144	145	360	978	474	150	141
Sample I.D.:	RW-8	RW-9	RW-10	RW-11				
Sample Date:	8/7/17	8/7/17	8/7/17	8/7/17				
EPA Method 900.0 (pCi/L)								3
Gross Beta	2.14 U	2.50	5.25	1.18 U				
Total uncertainty $(2\sigma + / -)$	1.23	1.17	2.09	0.916				
EPA Method 906.0 (pCi/L)		1						
Tritium	8.71 U	-82.4 U	-207 U	1,403				
Total uncertainty (2 σ +/-)	140	145	138	284				

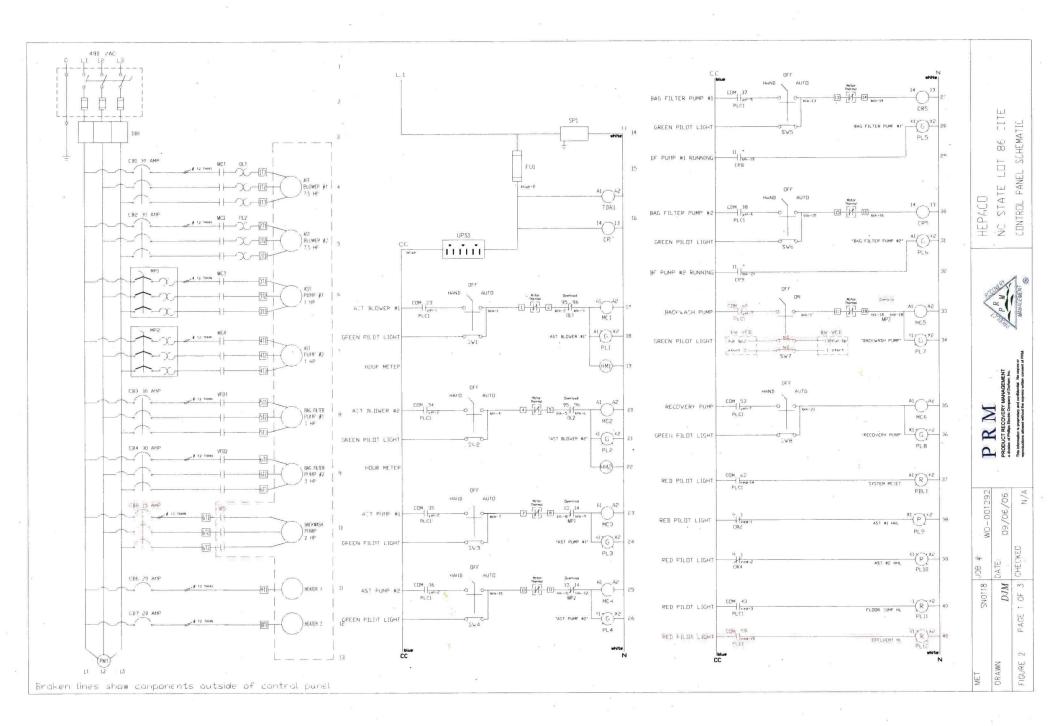
(1) Duplicate sample; labeled "MW-62" in chain of custody and laboratory report.

(2) Duplicate sample; labeled "MW-61" in chain of custody and laboratory report.

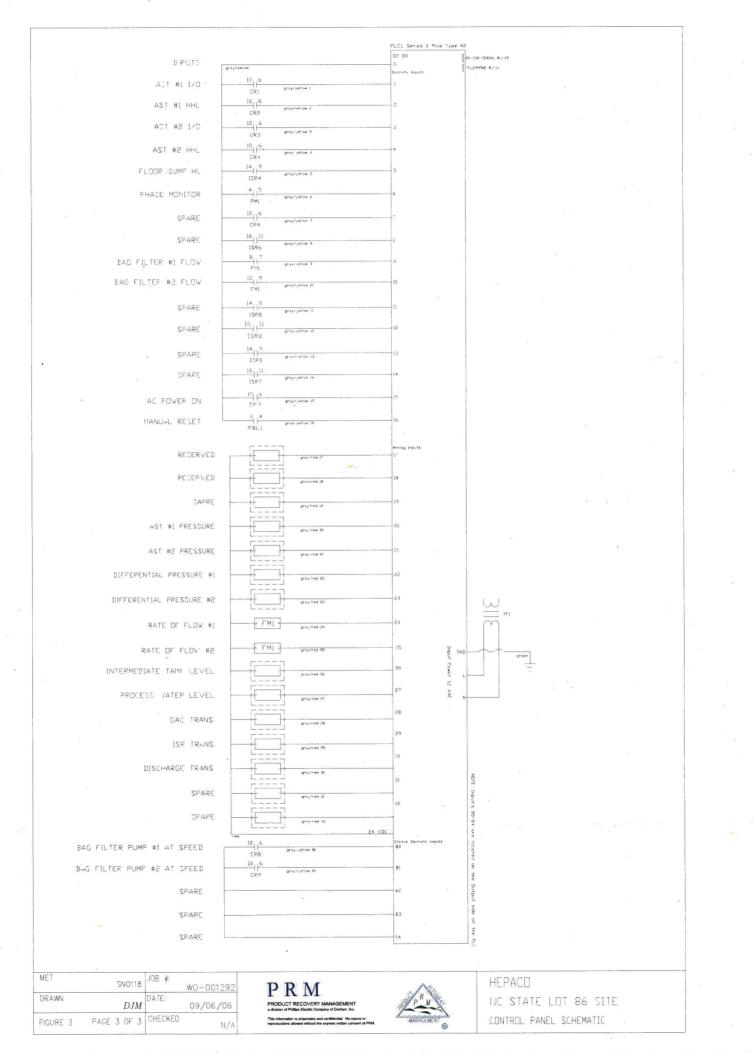

U = The analyte was analyzed for but not detected.

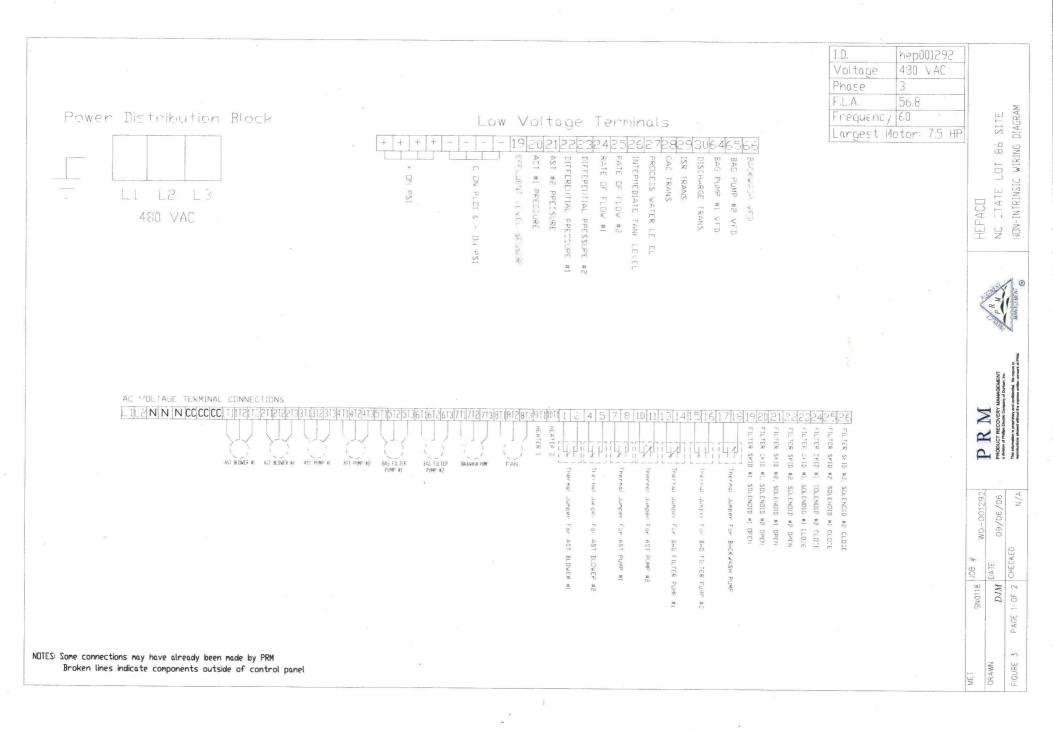

Remedial Action Progress Report: January - December 2017 NCSU – Lot 86 January 29, 2018

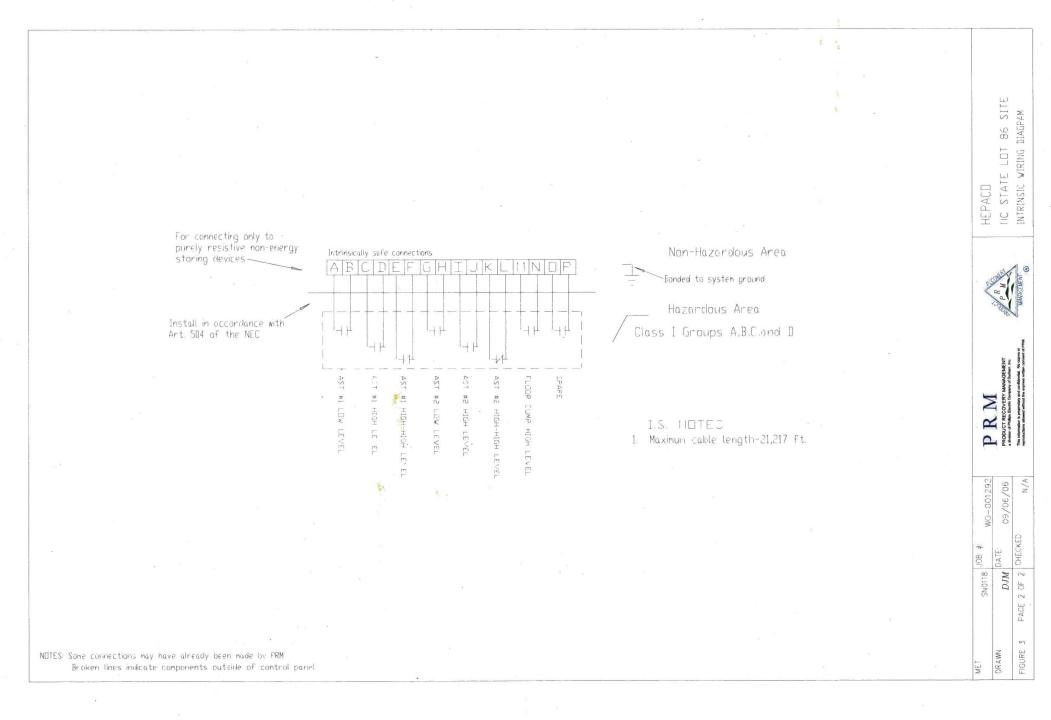

APPENDIX A


GWE SYSTEM EQUIPMENT SCHEMATICS

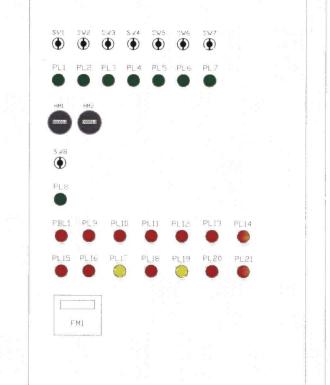

PIEDMONT GEOLOGIC, P.C.

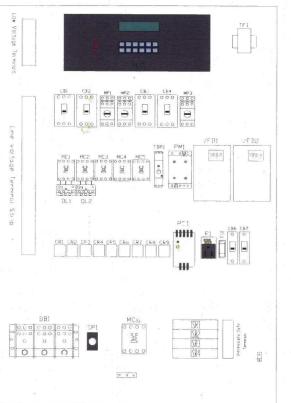






~


HEPACO FIC STATE LOT 86 SITE CONTROL FANEL LAYDUT



1		
W0-001292	09/00/00	N/A
JOB #:	DATE:	CHECKED
SN0118	DJM	PAGE 1 OF 1
	WN	RE 4

MET DRAMN

-		Enclosures		
1		28260	Rittai Enclosure	
1		28845	Backplate	
1	-	25311	Deadfront	
			De exercición de la companya de la compa	
-		Components		
5	CB1-CB2	CQD330	Siemens Circuit Breaker	
2	CB3-CB4	000315	Siemens Circuit Breaker	
9	CR1-CR9	700-HC24A1	Allen-Brodley Control Relay	
9		DPS-02-14P	Muonics Relay Buse	
1	DB1	16021-3	Buss Distribution Block	
	F MI	1.11 -P-2	Signet Flow Meter	
	FUI	KTH-R-2	Closs CC fuse	
		BM6031P0	Buss Fuse Holden	
	HM1-HM2	150B2	ENM Hour Meter	
4	15F1-15R4	GHG122 3121 D1003	Crouse Hinds 120 VAC ISR	
2	MC1-HC2	100-C12-D10	Allen-Bradley Motor Controller	
3	MC3-MC5	100-009-010	Allen-Bradies Motor Controller	
1	MC6	K85	Benedikt & Jager Motor Controller	
	MP1-MF2	140M-C2E-B25-KY	Allen-Bradley Manual Motor Protector	
-	NP3	140M-C2E-B40-KY	Allen-Bradley Manual Motor Protector	
2	011-015	193-EA2FB	Allen-Bradley Manual Motor Protector	
1	PBI 1	800EP-LE4	Allen-Bradley Reset Button	
1	IT DC I	800E-3X10	Allen-Bradley N.D. Contact Black	
8	PL1-PL8	800EP-P3	Allen-Bradley Green Lens	
B	reli-rea	800-3NL5G		
2	PL9-PL16 PL18 PL26-PL		Allen-Brookey 120VAC Green LED Module	
3	nummuler uer uer n	800E - 3NL 5R	Allen-Bradley Red Lens Allen-Bradley 120VAC Red LED Module	
	PL17, PL19	800EP-P5		
2	PL17, PL12	800-3NL5A	Allen-Bradley Amber Lens	
c	PLC1		Allen-Bradley 120VAC Amber LED Module	
1	PHI	HZ 460-14	EDS Procontrol PLC	
	PM1 PC1	450-14 1606-XLP	SynCon Phase Monitor	
			Allen-Bradley 24VIC Power Supply	
	R1	991548	Weldmuller Receptacle 125V 15A	
	SP1	DTK-120HW	Ditek Surge Protector	
1	SW1-SW7	800EP-SL 32	Allen-Bradley Spring from Left Switch	
	5W8	800EP-3M32	Allen-Bradley Spring All-Maintained Switc	
3		800E-3LX20	Allen-Bradley N.D. Contact Block	
5	These	800E-11BE128F	Allen-Bradley HDA Legend Plates	
	TDR1	FEA3T	Allen-Bradley Time Delay Relay	
-	TEL	CLC-40-12	EDS Transformer	
-		58718	4 Conductor Grounding Bar Kit	
		1DE 375	9 Conductor Grounding Bar Kit	
		3L1144	I Conductor Grounding Lug	
17	-	1492-CAM1	Allen-Bradley Terminal Blocks	
39		1492-HMI	Allen-Bradley Terminal Blocks	
		CONT3511DINMT	35 mm Din Rail	
		5B371	22 mm Ilin Rail	
		CONTWDSG6080	60 x 80 Techomatic Wire Duct	
-			1446	
			COLOR NO.	

Description

Qty. Drawing 1.D. Fort No.

Broken lines show components outside of control panel

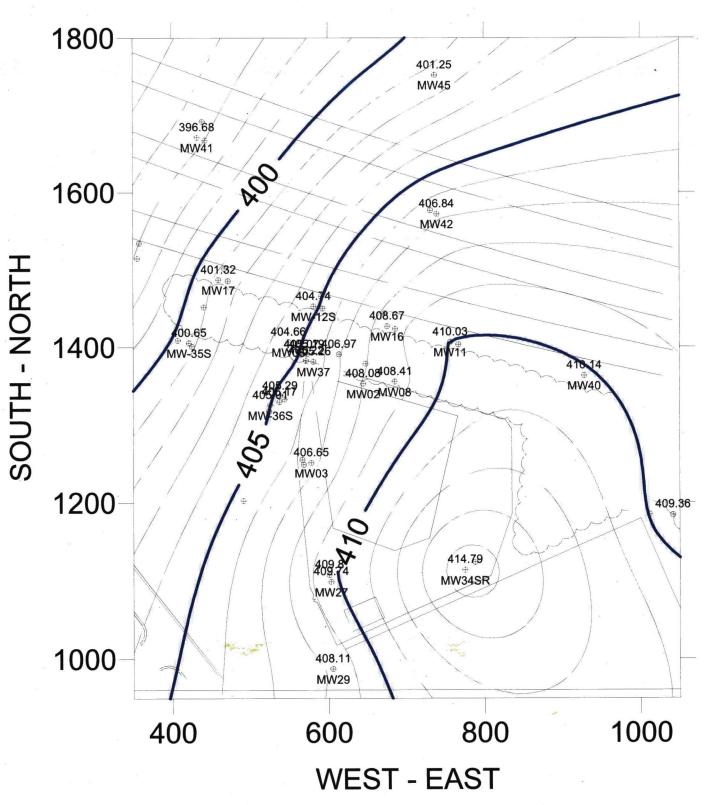
a k s

Remedial Action Progress Report: January - December 2017 NCSU – Lot 86 January 29, 2018

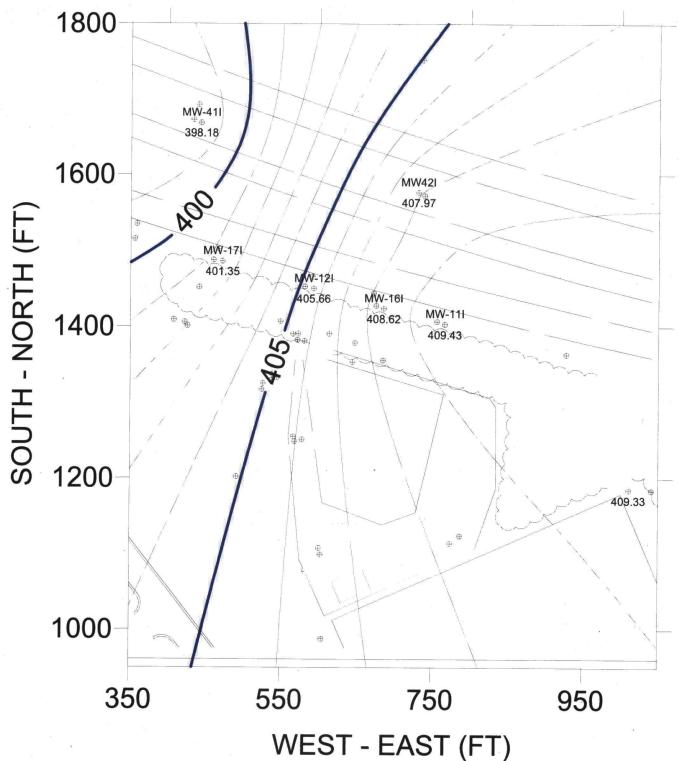
APPENDIX^B

GROUNDWATER MODELING OUTPUT

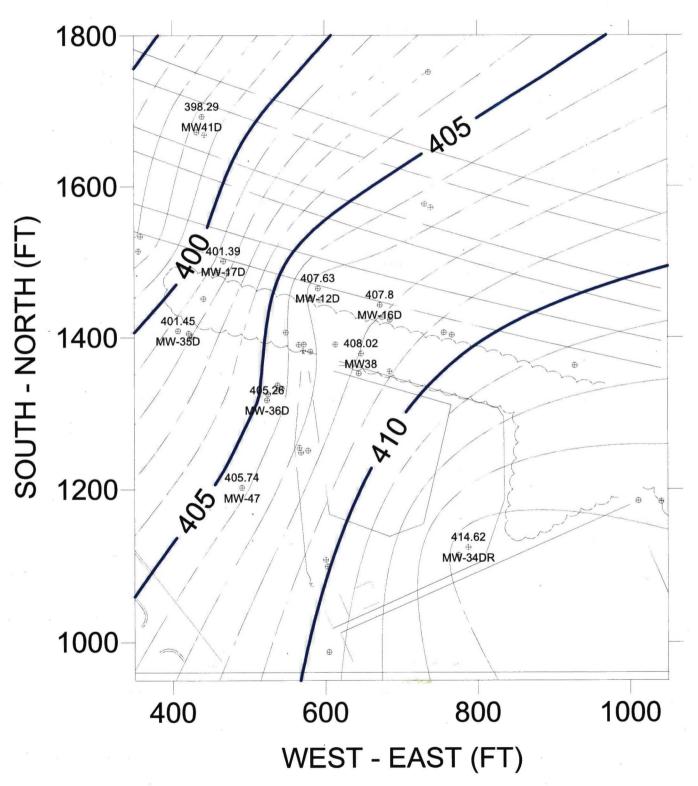
PIEDMONT GEOLOGIC, P.C.

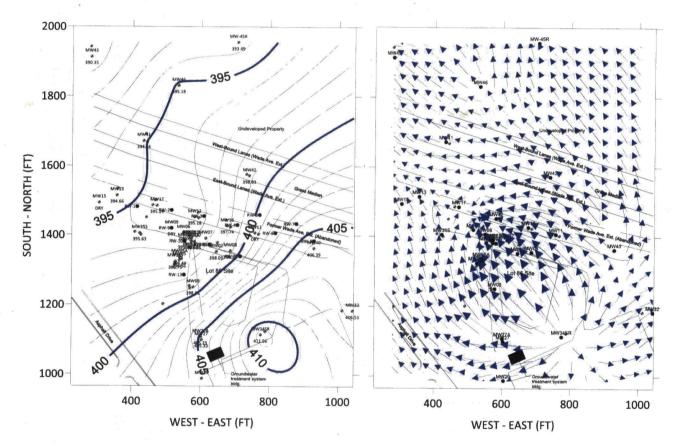

Remedial Action Progress Report: January - December 2017 NCSU – Lot 86 January 29, 2018

APPENDIX B-1

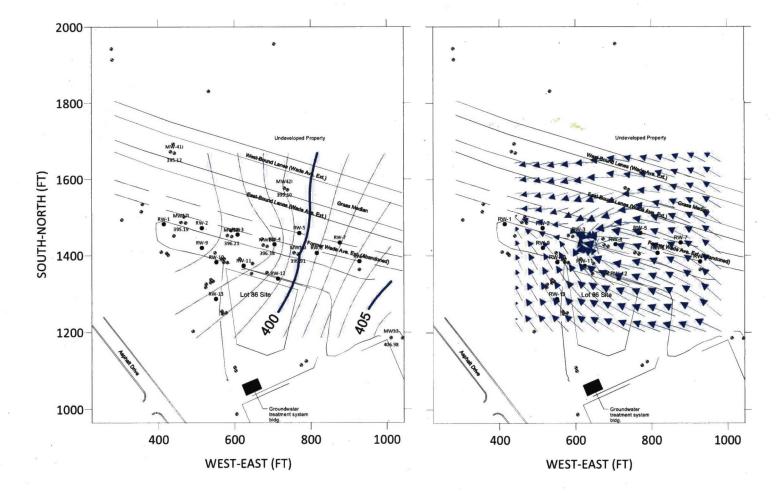

GROUNDWATER POTENTIOMETRIC-SURFACE AND FLOW MODELS

PIEDMONT GEOLOGIC, P.C.

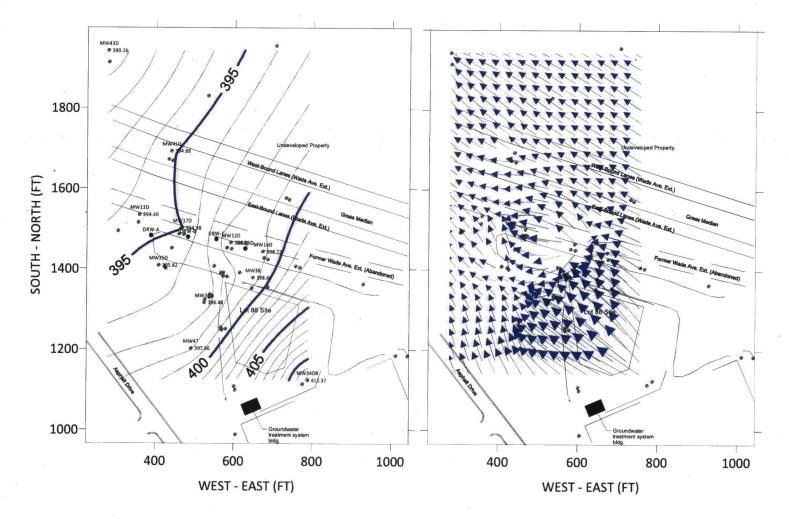

SHALLOW GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR MAP: MAY 2005 - NON-PUMPING CONDITIONS NCSU - LOT 86 SITE

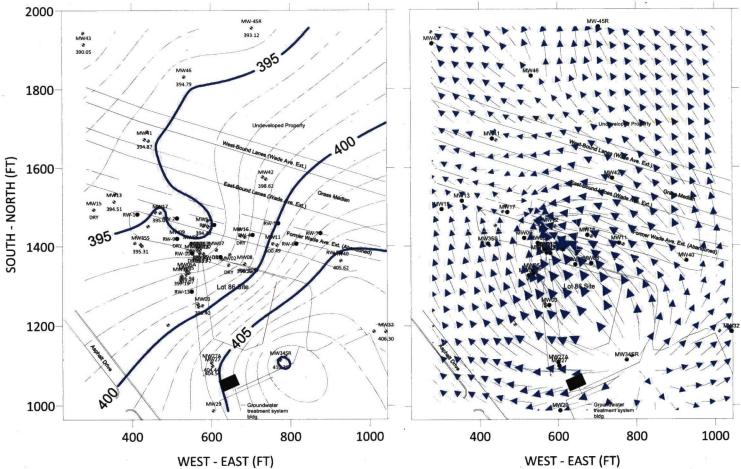


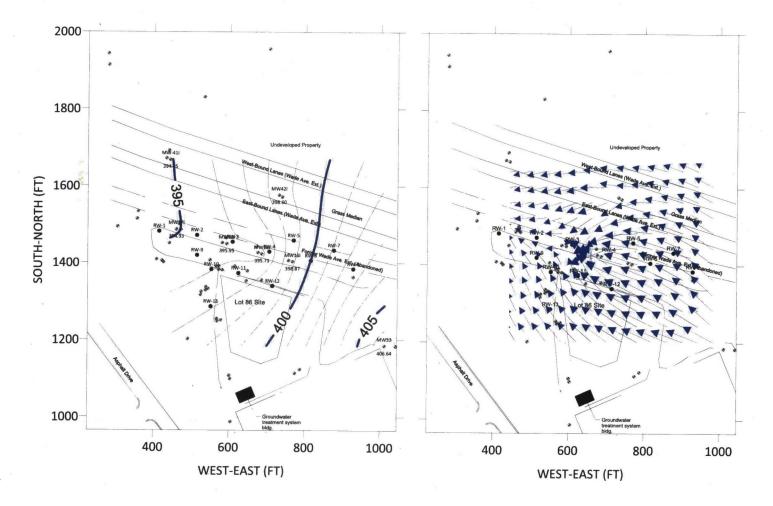
INTERMEDIATE GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR MAP: MAY 2005 - NON-PUMPING CONDITIONS NCSU - LOT 86 SITE

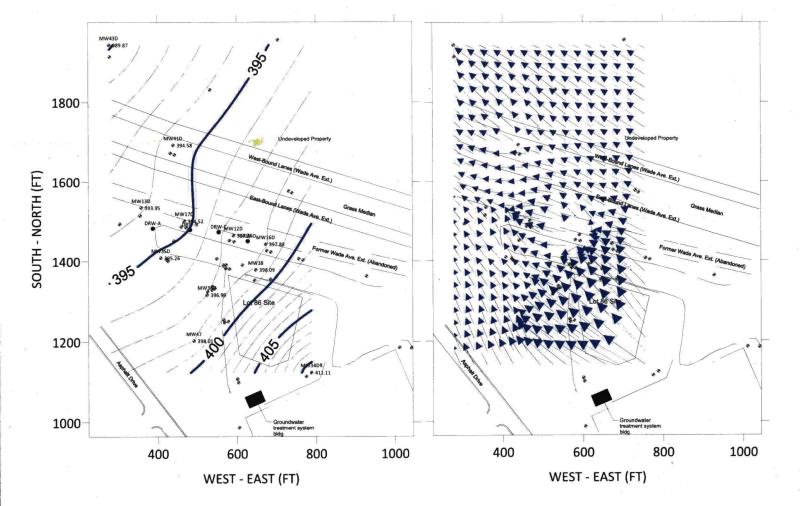


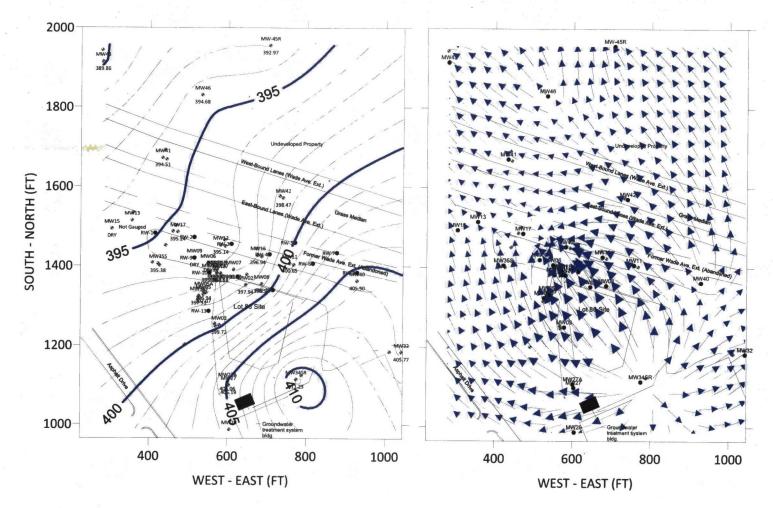
DEEP GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR MAP: MAY 2005 - NON-PUMPING CONDITIONS NCSU - LOT 86 SITE

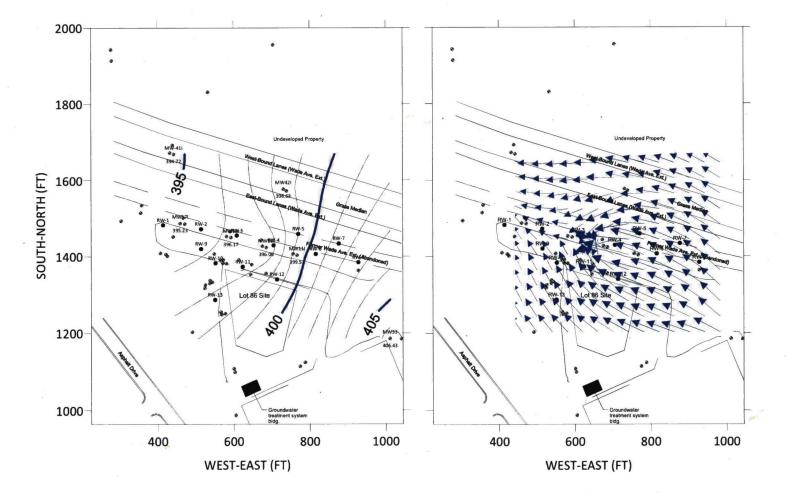


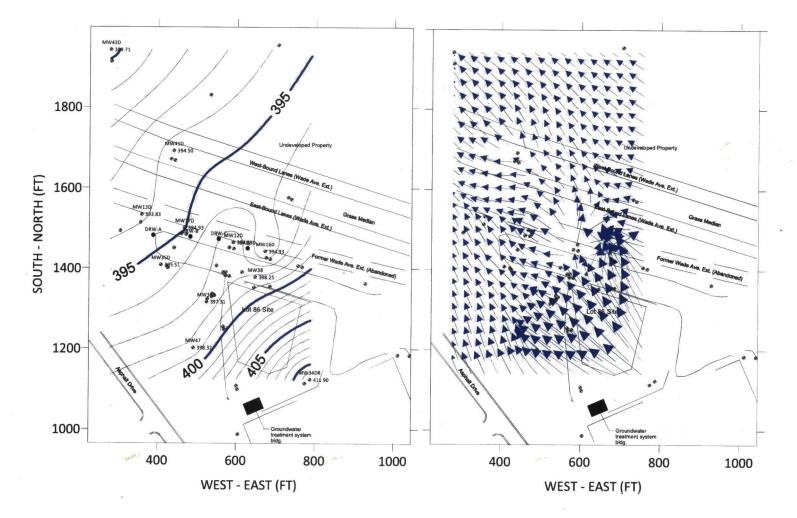

SHALLOW GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR AND FLOW VECTOR MAPS: FEBRUARY 1, 2017 NCSU - LOT 86 SITE

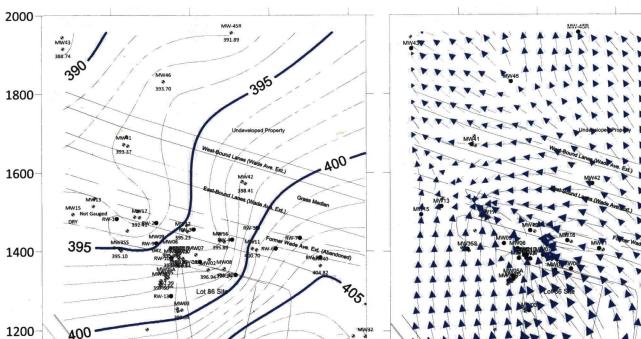

INTERMEDIATE GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR AND FLOW VECTOR MAPS: FEBRUARY 1, 2017 NCSU - LOT 86 SITE


DEEP (BEDROCK) GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR AND FLOW VECTOR MAPS: FEBRUARY 1, 2017 NCSU - LOT 86 SITE

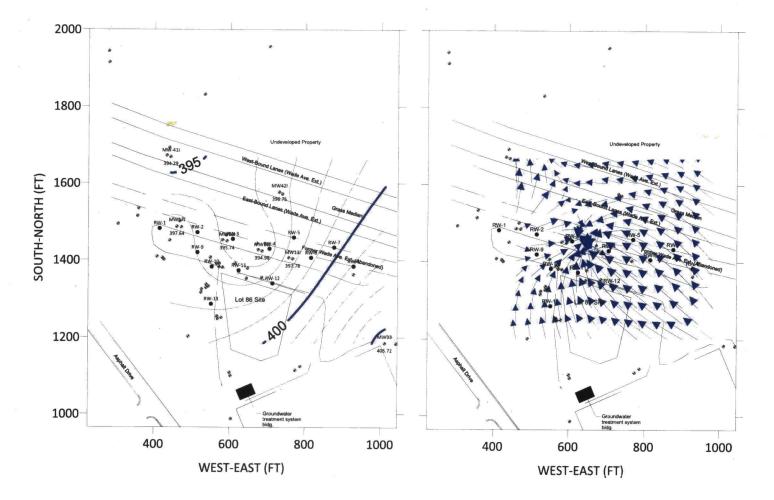

SHALLOW GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR AND FLOW VECTOR MAPS: MAY 22, 2017 NCSU - LOT 86 SITE


INTERMEDIATE GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR AND FLOW VECTOR MAPS: MAY 22, 2017 NCSU - LOT 86 SITE

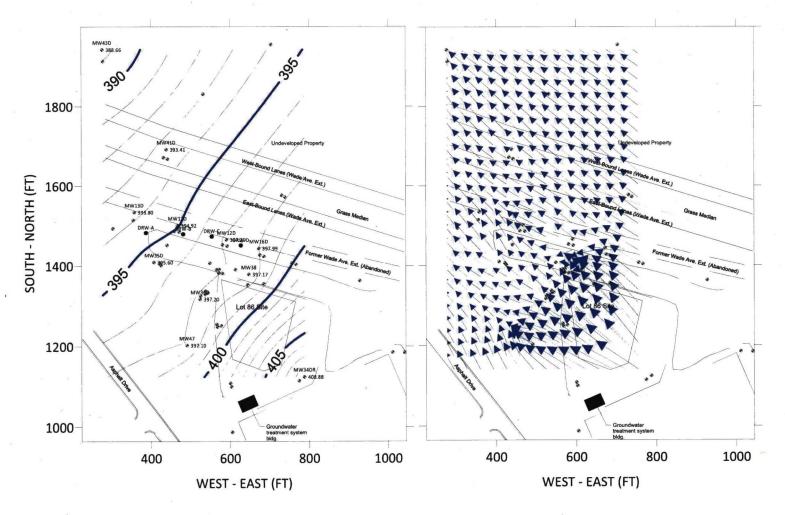

DEEP (BEDROCK) GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR AND FLOW VECTOR MAPS: MAY 22, 2017 NCSU - LOT 86 SITE


SHALLOW GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR AND FLOW VECTOR MAPS: AUGUST 7, 2017 NCSU - LOT 86 SITE

INTERMEDIATE GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR AND FLOW VECTOR MAPS: AUGUST 7, 2017 NCSU - LOT 86 SITE

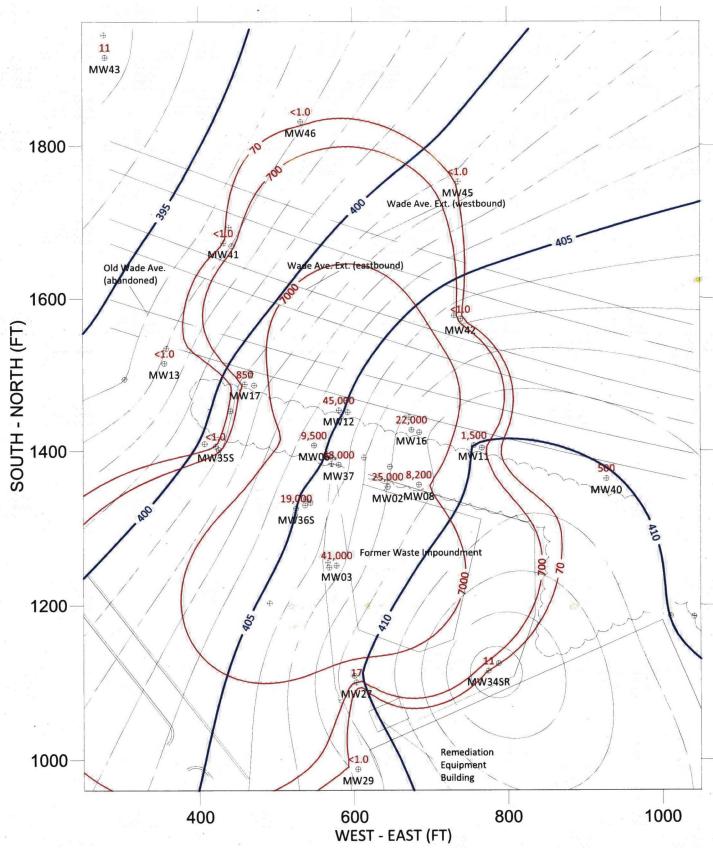

DEEP (BEDROCK) GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR AND FLOW VECTOR MAPS: AUGUST 7, 2017 NCSU - LOT 86 SITE

SHALLOW GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR AND FLOW VECTOR MAPS: NOVEMBER 20, 2017 NCSU - LOT 86 SITE


SOUTH - NORTH (FT) AW. WEST - EAST (FT)

WEST - EAST (FT)

INTERMEDIATE GROUNDWATER POTENTIOMETRIC SURFACE CONTOUR AND FLOW VECTOR MAPS: NOVEMBER 20, 2017 NCSU - LOT 86 SITE

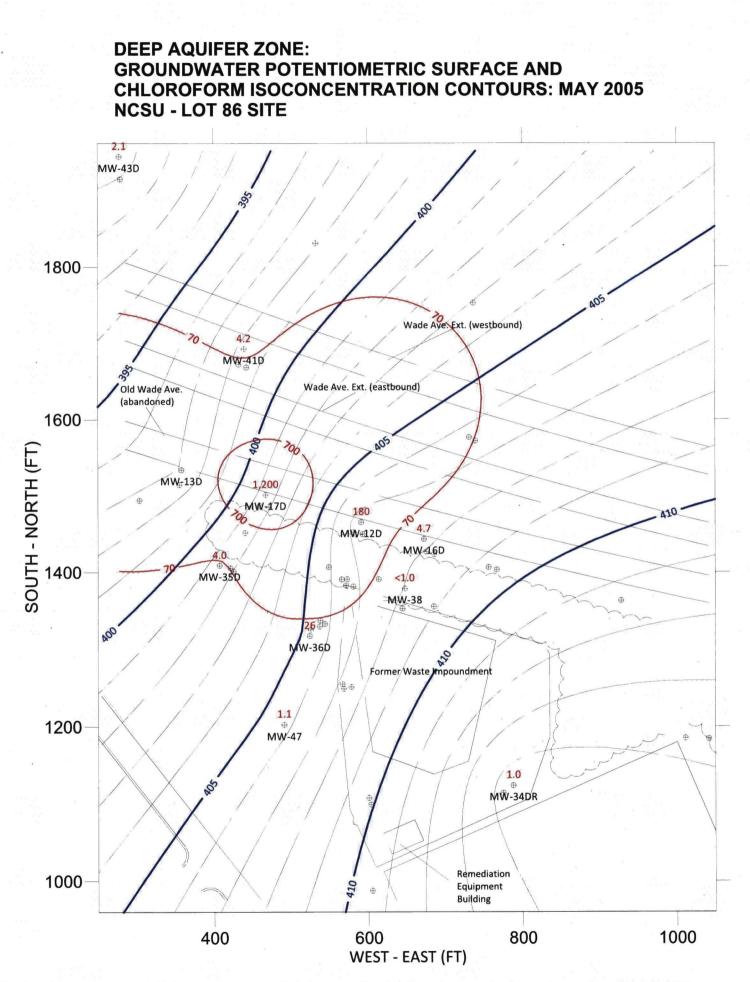

Remedial Action Progress Report: January - December 2017 NCSU – Lot 86 January 29, 2018

APPENDIX B-2

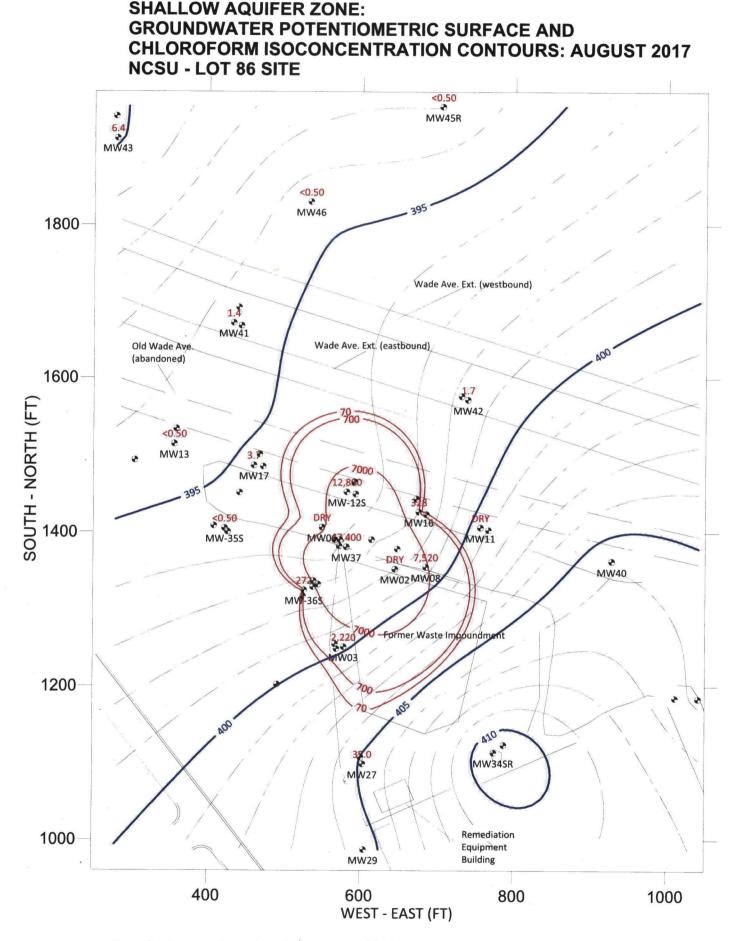
GROUNDWATER COC DISTRIBUTION MODELS

PIEDMONT GEOLOGIC, P.C.

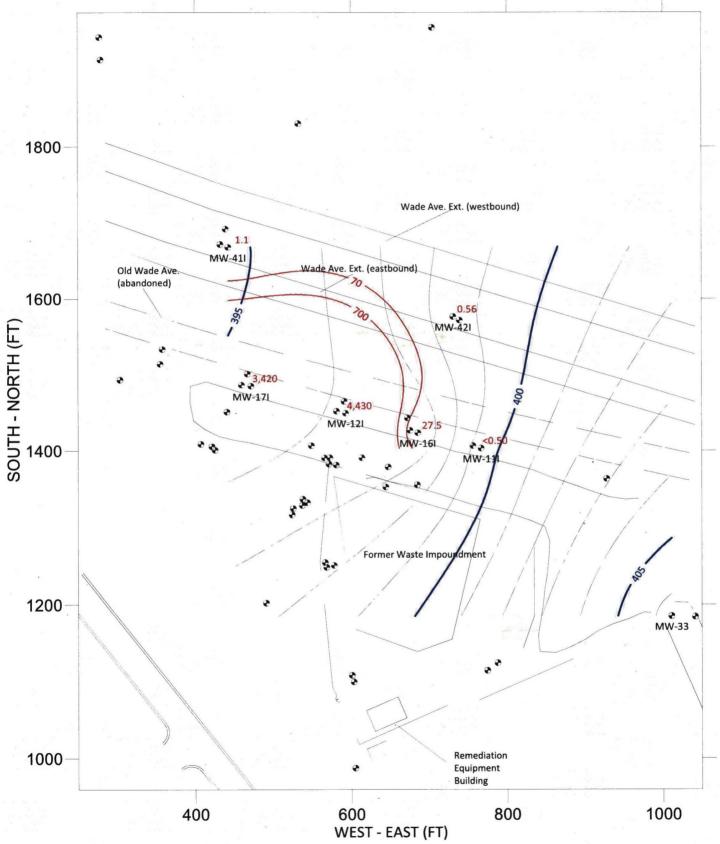
SHALLOW AQUIFER ZONE: GROUNDWATER POTENTIOMETRIC SURFACE AND CHLOROFORM ISOCONCENTRATION CONTOURS: MAY 2005 NCSU - LOT 86 SITE



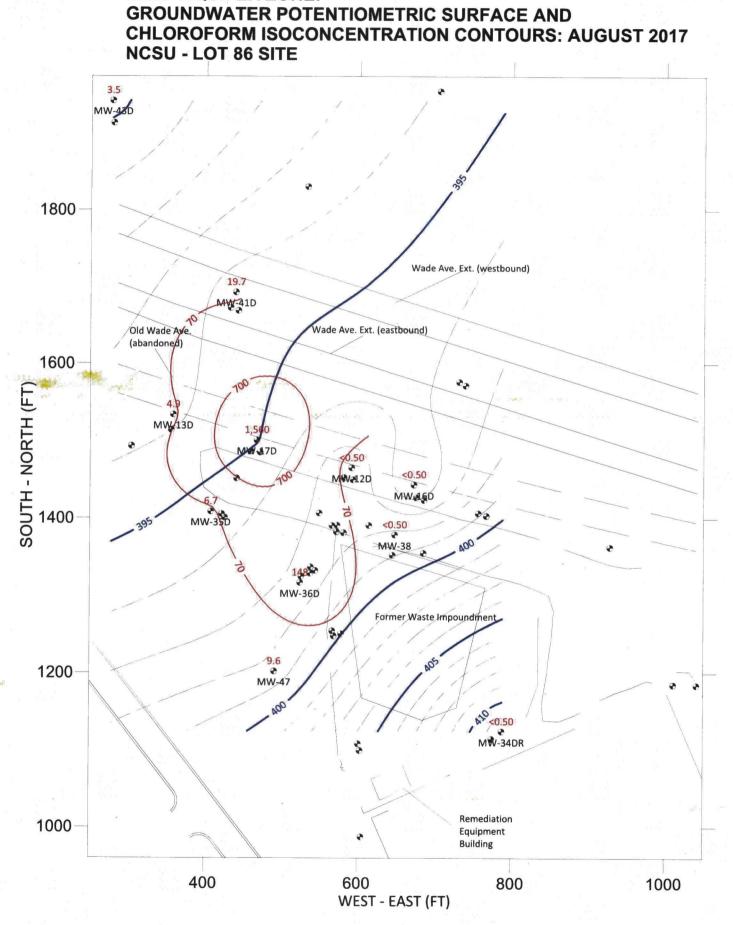
Groundwater potentiometric surface elevations (blue) in feet relative to site datum. Data collected May 3, 2005. Groundwater chloroform concentrations (red) in ug/L. Groundwater samples collected May 5-13, 2005.


INTERMEDIATE AQUIFER ZONE: GROUNDWATER POTENTIOMETRIC SURFACE AND CHLOROFORM ISOCONCENTRATION CONTOURS: MAY 2005 NCSU - LOT 86 SITE

Groundwater potentiometric surface elevations (blue) in feet relative to site datum. Data collected May 5, 2005. Groundwater chloroform concentrations (red) in ug/L. Groundwater samples collected May 5-13, 2005.



Groundwater potentiometric surface elevations (blue) in feet relative to site datum. Data collected May 3, 2005. Groundwater chloroform concentrations (red) in ug/L. Groundwater samples collected May 5-13, 2005.



Groundwater potentiometric surface elevations (blue) in feet relative to site datum. Data collected Aug 7, 2017. Groundwater chloroform concentrations (red) in ug/L. Groundwater samples collected Aug 8-15, 2017.

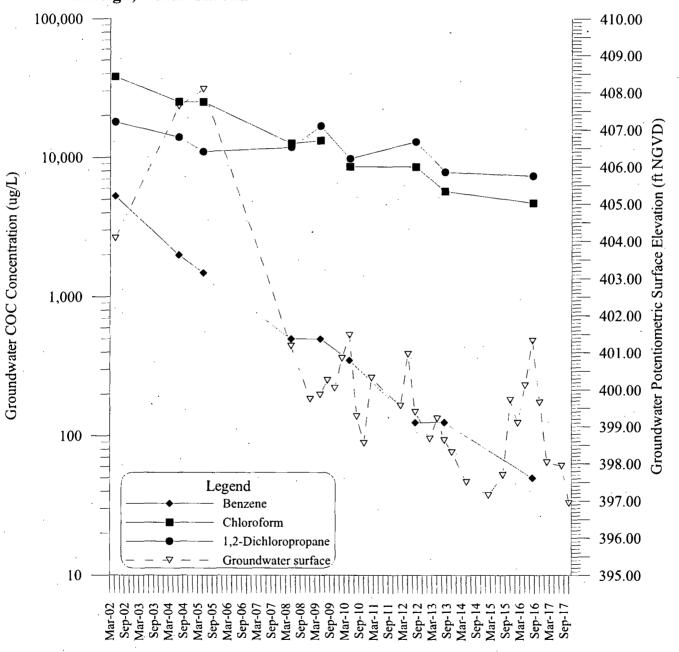
INTERMEDIATE AQUIFER ZONE: GROUNDWATER POTENTIOMETRIC SURFACE AND CHLOROFORM ISOCONCENTRATION CONTOURS: AUGUST 2017 NCSU - LOT 86 SITE

Groundwater potentiometric surface elevations (blue) in feet relative to site datum. Data collected Aug 7, 2017. Groundwater chloroform concentrations (red) in ug/L. Groundwater samples collected Aug 8-15, 2017.

DEEP AQUIFER ZONE:

Groundwater potentiometric surface elevations (blue) in feet relative to site datum. Data collected Aug 7, 2017. Groundwater chloroform concentrations (red) in ug/L. Groundwater samples collected Aug 8-15, 2017.

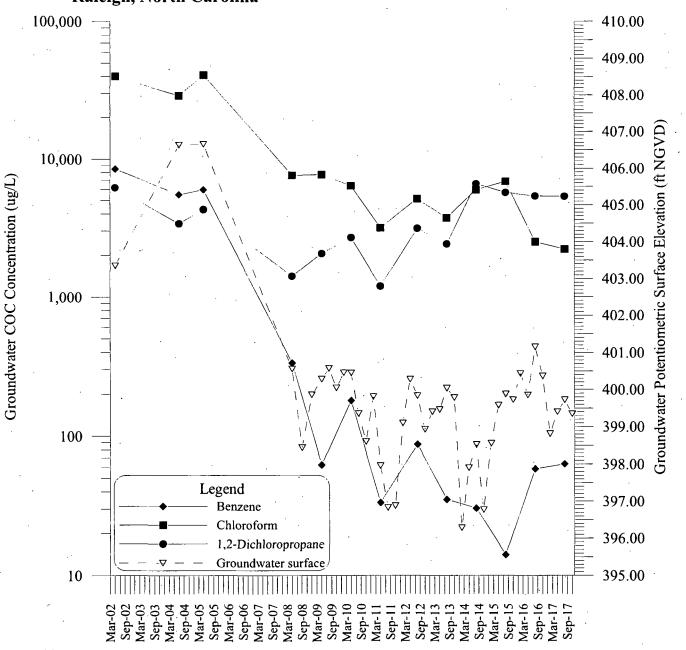
Remedial Action Progress Report: January - December 2017 NCSU – Lot 86 January 29, 2018


APPENDIX C

GRAPHS

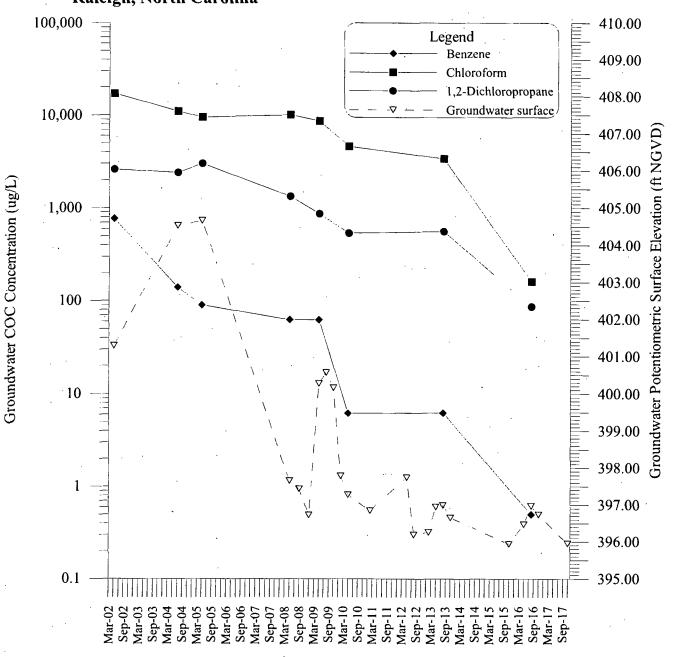
PIEDMONT GEOLOGIC, P.C.

SHALLOW MONITORING WELL MW-2: Groundwater Chemical of Concern Concentrations vs. Time


North Carolina State University Lot 86 Site Raleigh, North Carolina

Date

SHALLOW MONITORING WELL MW-3: Groundwater Chemical of Concern Concentrations vs. Time


North Carolina State University Lot 86 Site Raleigh, North Carolina

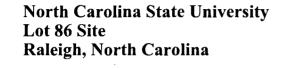
Date

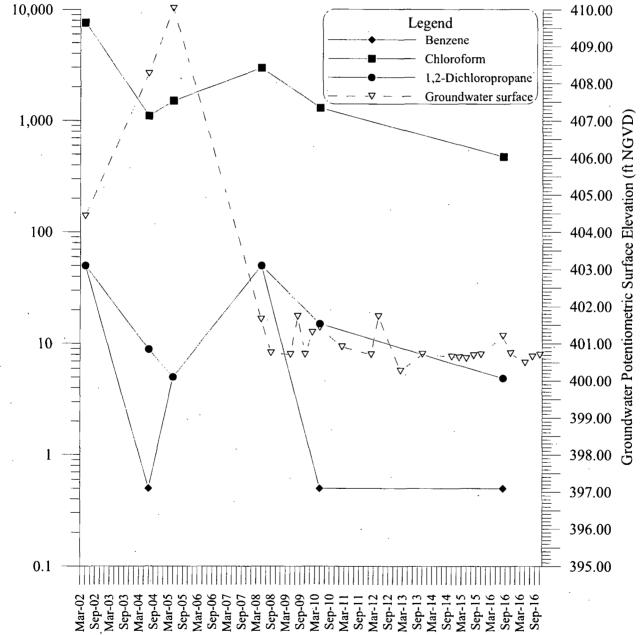
SHALLOW MONITORING WELL MW-6: Groundwater Chemical of Concern Concentrations vs. Time

North Carolina State University Lot 86 Site Raleigh, North Carolina

Date

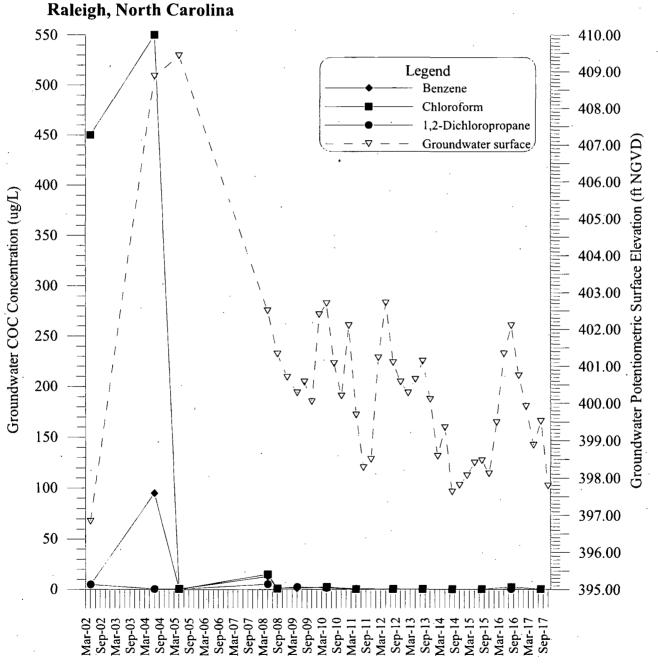
SHALLOW MONITORING WELL MW-8: Groundwater Chemical of Concern Concentrations vs. Time


North Carolina State University Lot 86 Site Raleigh, North Carolina

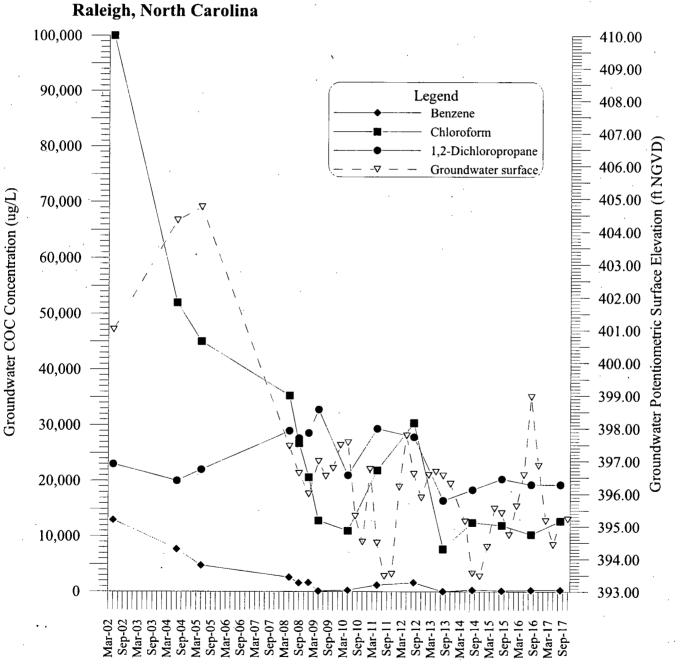

Date

Groundwater COC Concentration (ug/L)

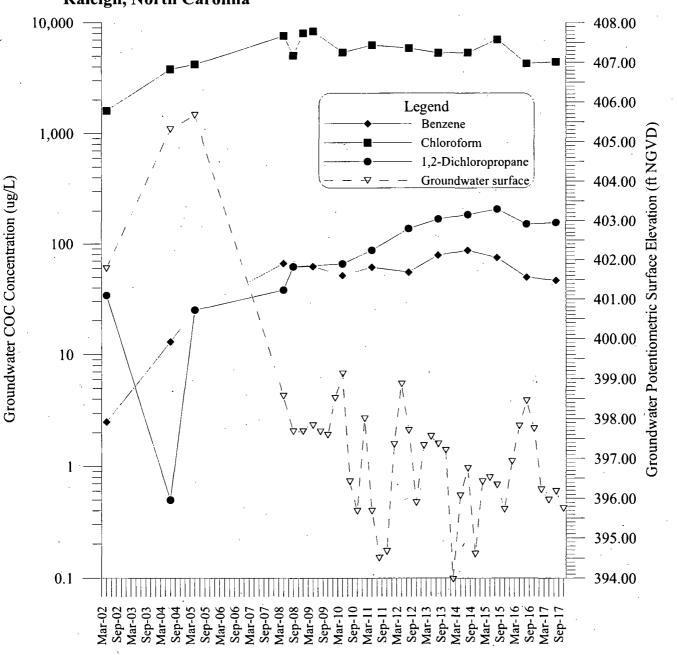
SHALLOW MONITORING WELL MW-11: Groundwater Chemical of Concern Concentrations vs. Time



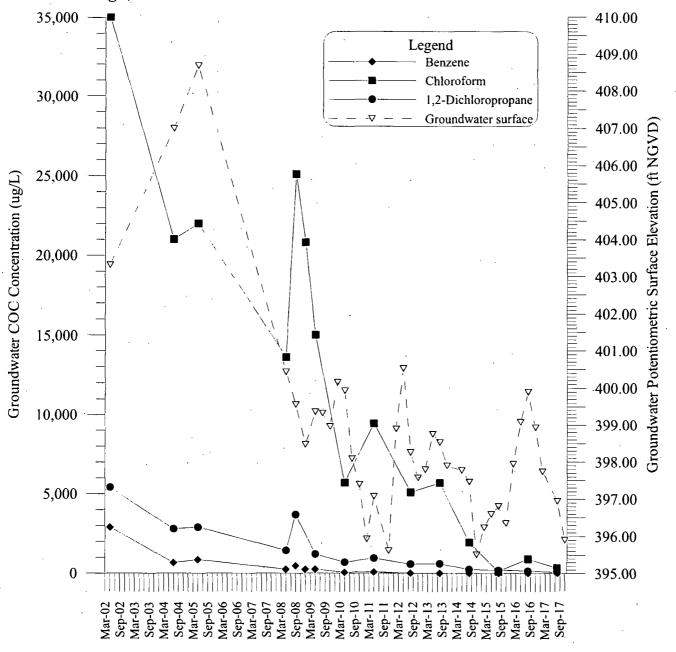
Groundwater COC Concentration (ug/L)


INTERMEDIATE MONITORING WELL MW-111: Groundwater Chemical of Concern Concentrations vs. Time

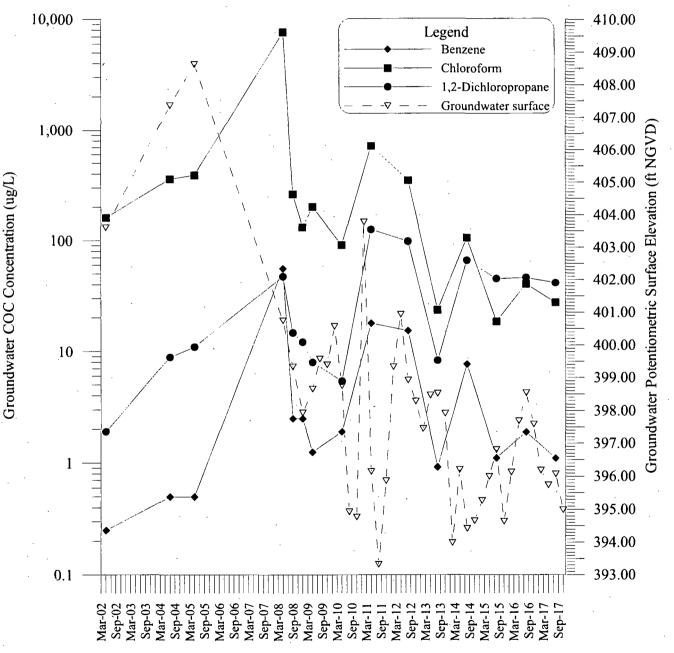
North Carolina State University Lot 86 Site


SHALLOW MONITORING WELL MW-12: Groundwater Chemical of Concern Concentrations vs. Time

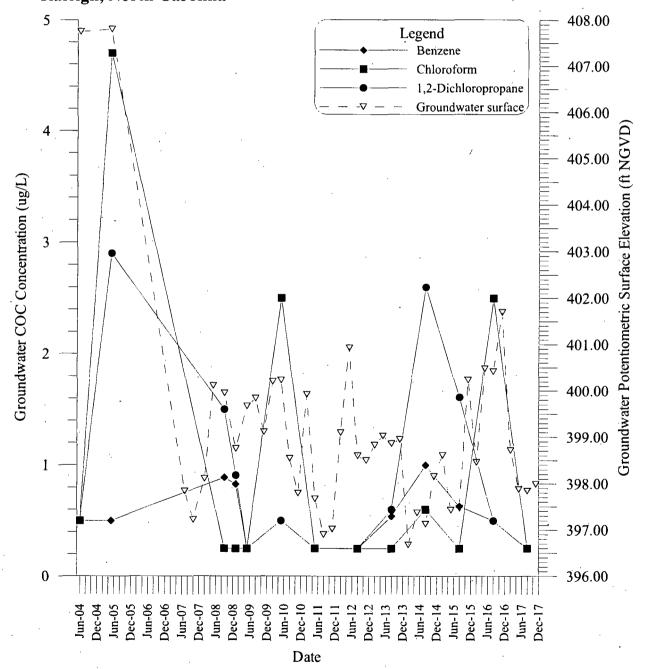
North Carolina State University Lot 86 Site


INTERMEDIATE MONITORING WELL MW-12I: Groundwater Chemical of Concern Concentrations vs. Time

North Carolina State University Lot 86 Site Raleigh, North Carolina


SHALLOW MONITORING WELL MW-16: Groundwater Chemical of Concern Concentrations vs. Time

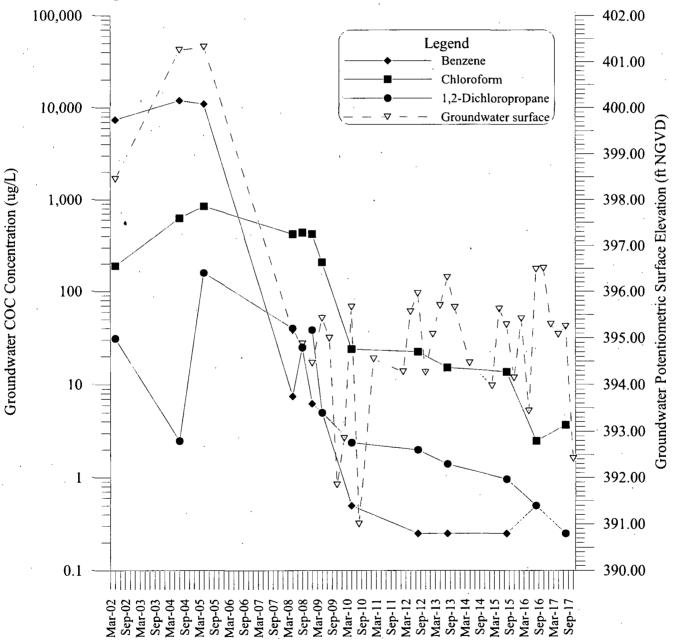
North Carolina State University Lot 86 Site Raleigh, North Carolina


INTERMEDIATE MONITORING WELL MW-161: Groundwater Chemical of Concern Concentrations vs. Time

North Carolina State University Lot 86 Site Raleigh, North Carolina

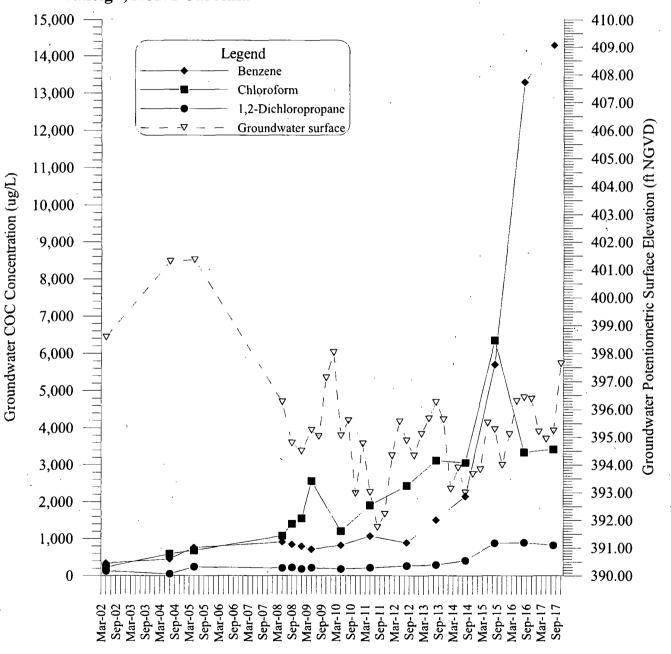
DEEP MONITORING WELL MW-16D: Groundwater Chemical of Concern Concentrations vs. Time

North Carolina State University Lot 86 Site Raleigh, North Carolina

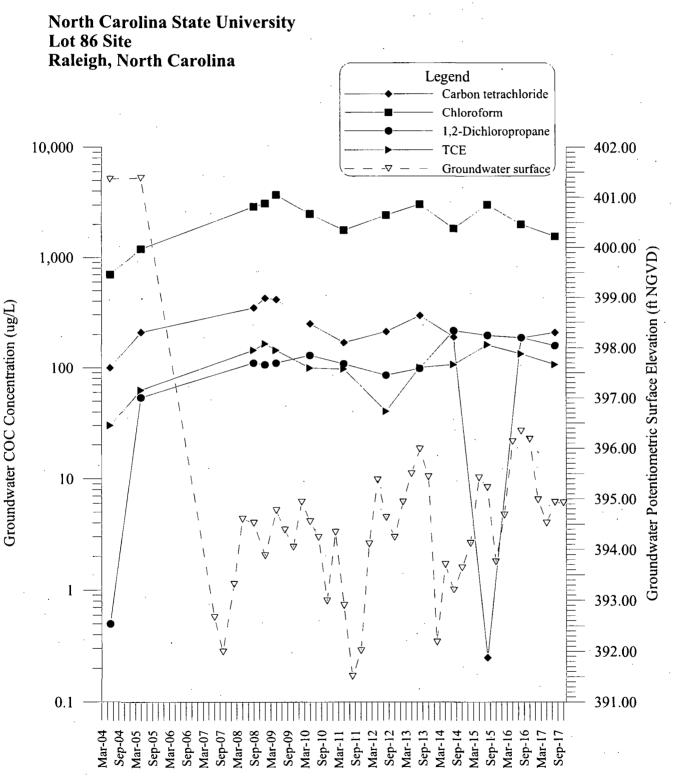


Non-detected concentrations are plotted at one-half the detection limit.

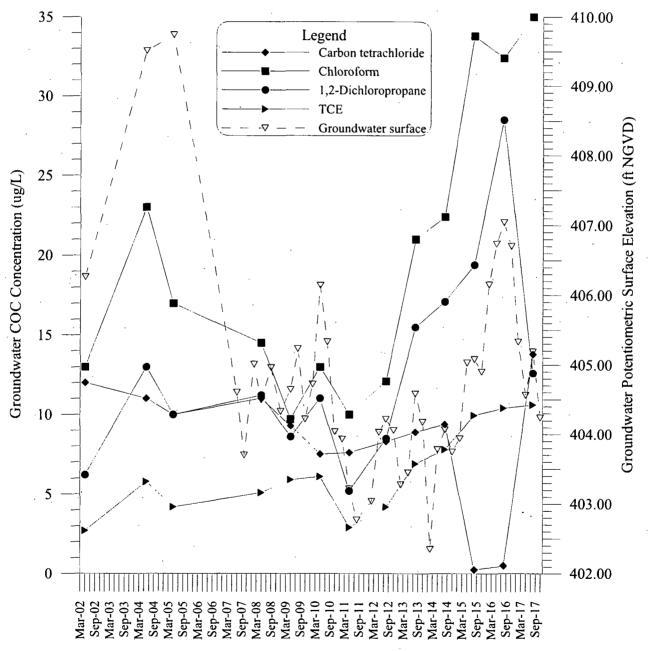
SHALLOW MONITORING WELL MW-17: Groundwater Chemical of Concern Concentrations vs. Time


North Carolina State University Lot 86 Site

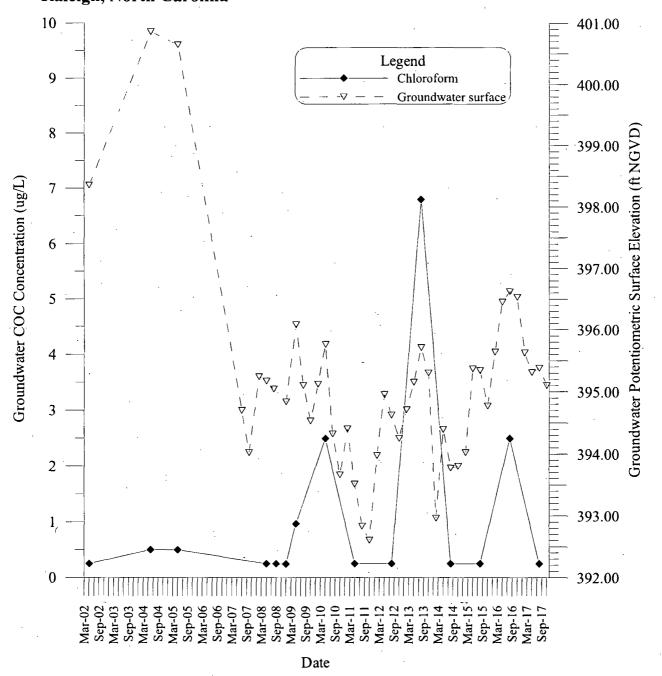
Raleigh, North Carolina


INTERMEDIATE MONITORING WELL MW-17I: Groundwater Chemical of Concern Concentrations vs. Time

North Carolina State University Lot 86 Site Raleigh, North Carolina

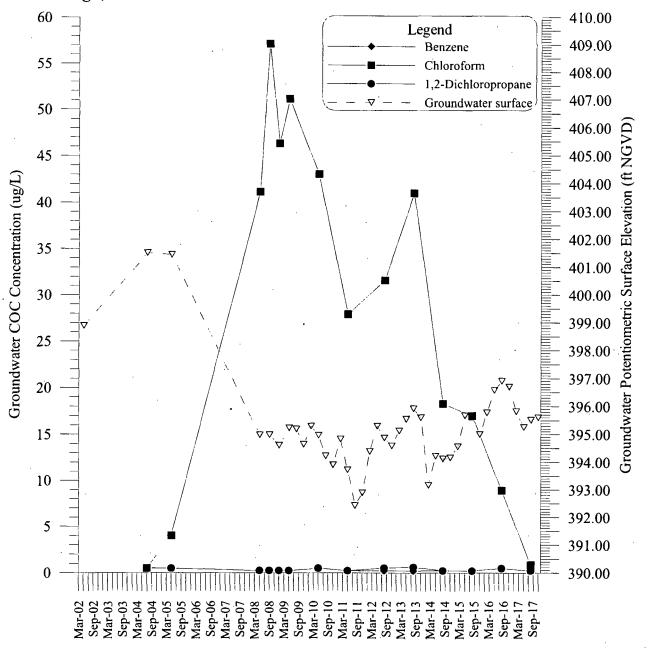

DEEP MONITORING WELL

MW-17D: Groundwater Chemical of Concern Concentrations vs. Time


SHALLOW MONITORING WELL MW-27: Groundwater Chemical of Concern Concentrations vs. Time

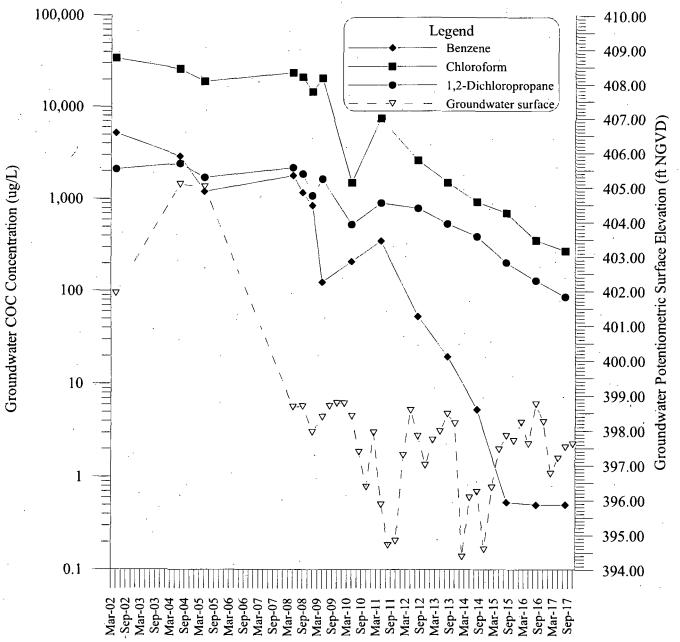
North Carolina State University Lot 86 Site Raleigh, North Carolina

SHALLOW MONITORING WELL MW-35S: Groundwater Chemical of Concern Concentrations vs. Time


North Carolina State University Lot 86 Site Raleigh, North Carolina

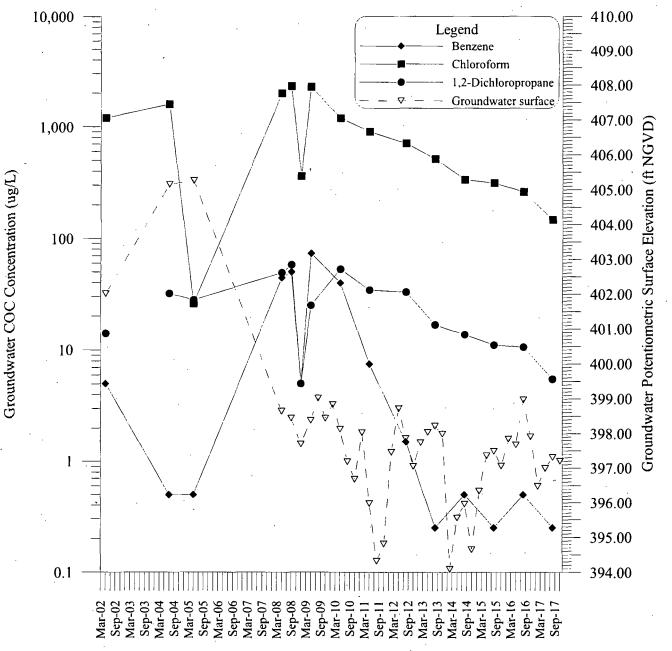
Note: Non-detected concentrations are plotted at one-half of the detection limit.

DEEP MONITORING WELL MW-35D: Groundwater Chemical of Concern Concentrations vs. Time


North Carolina State University Lot 86 Site Raleigh, North Carolina

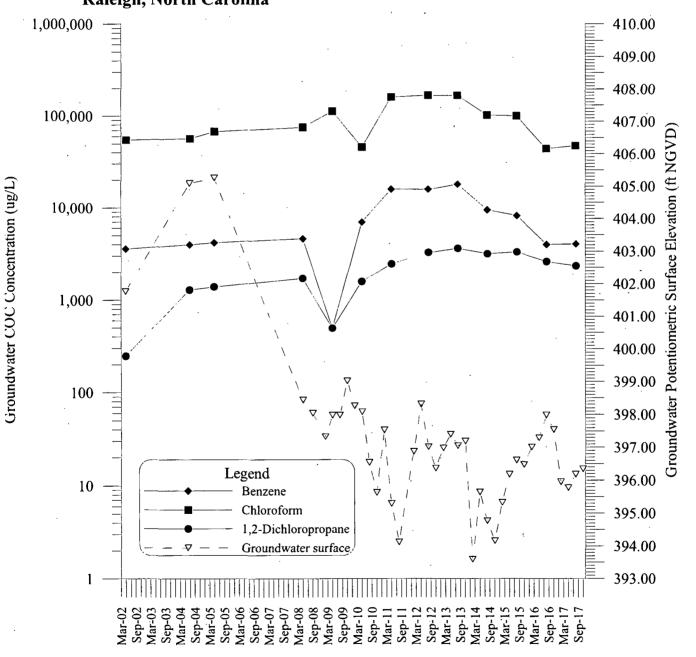
SHALLOW MONITORING WELL MW-36S: Groundwater Chemical of Concern Concentrations vs. Time

North Carolina State University Lot 86 Site

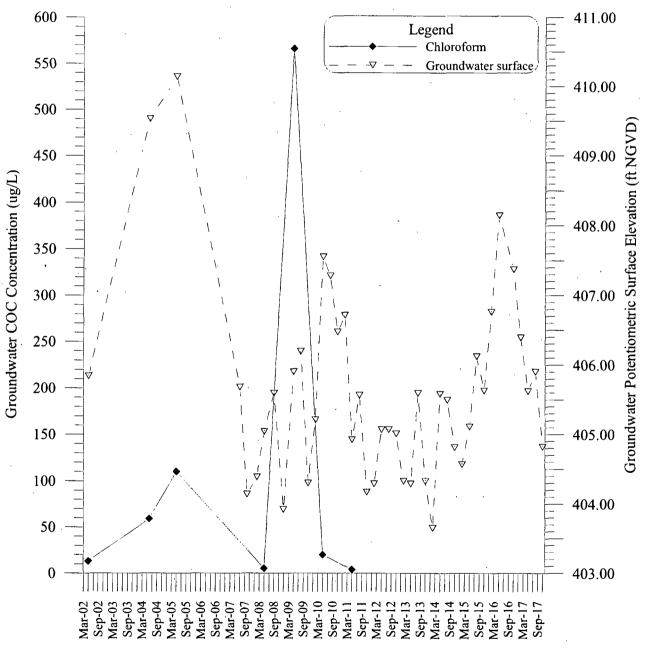

Raleigh, North Carolina

DEEP MONITORING WELL

MW-36D: Groundwater Chemical of Concern Concentrations vs. Time

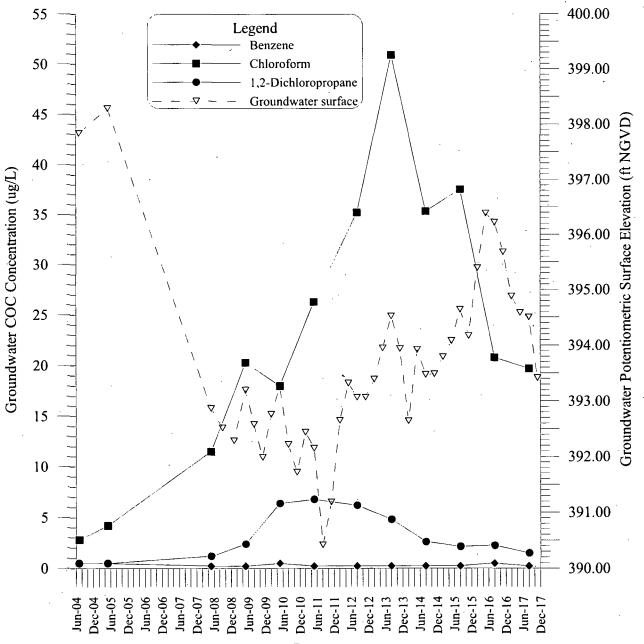

North Carolina State University Lot 86 Site Raleigh, North Carolina

SHALLOW MONITORING WELL

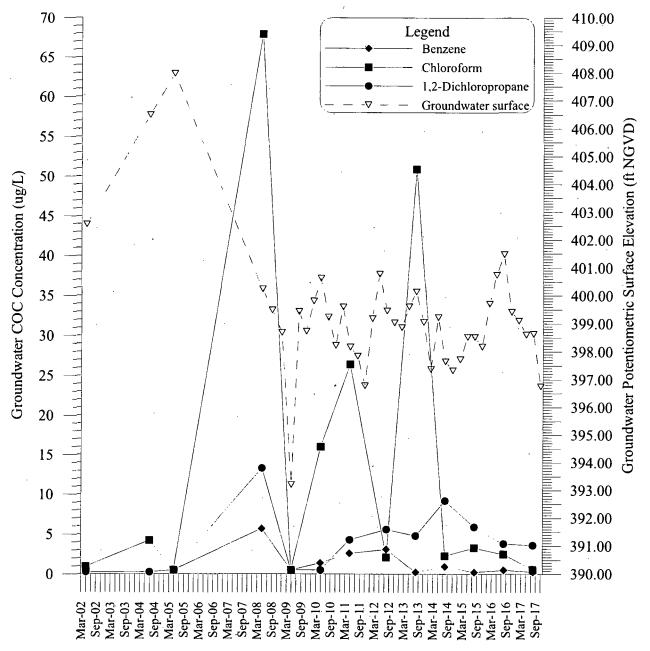

MW-37: Groundwater Chemical of Concern Concentrations vs. Time

North Carolina State University Lot 86 Site Raleigh, North Carolina

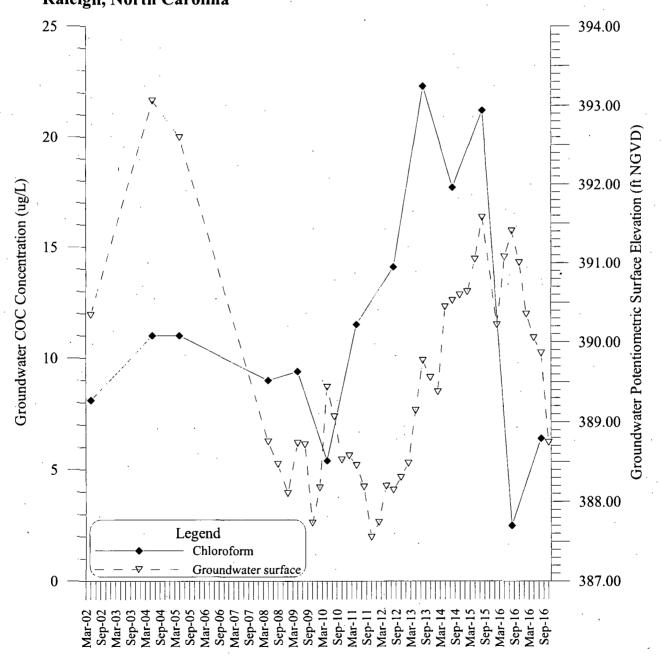
SHALLOW MONITORING WELL MW-40: Groundwater Chemical of Concern Concentrations vs. Time


North Carolina State University Lot 86 Site Raleigh, North Carolina

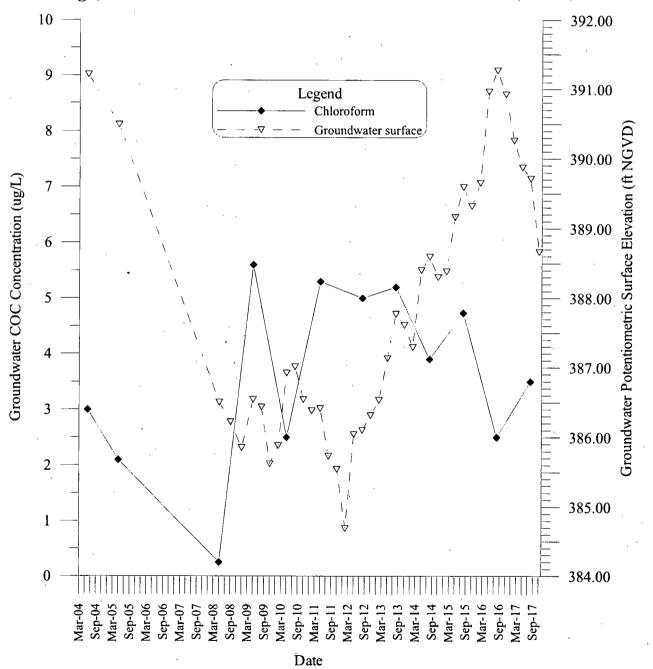
DEEP MONITORING WELL


MW-41D: Groundwater Chemical of Concern Concentrations vs. Time

North Carolina State University Lot 86 Site Raleigh, North Carolina

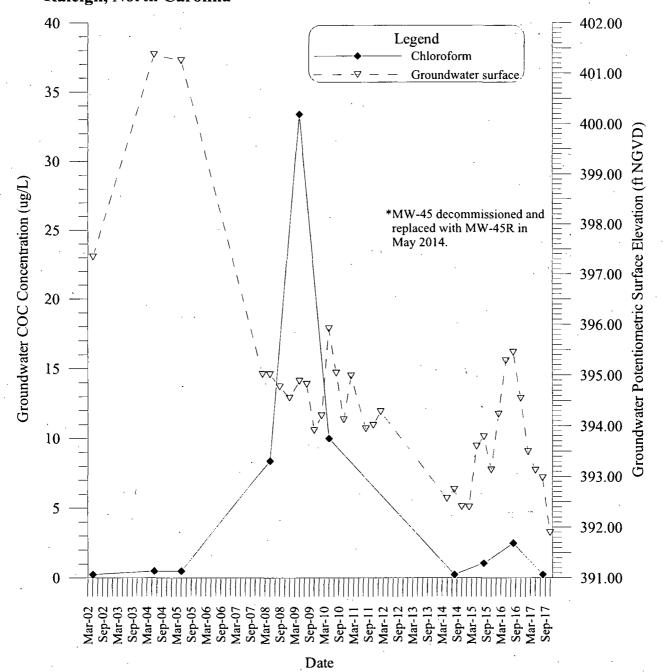

INTERMEDIATE MONITORING WELL MW-42I: Groundwater Chemical of Concern Concentrations vs. Time

North Carolina State University Lot 86 Site Raleigh, North Carolina


SHALLOW MONITORING WELL MW-43S: Groundwater Chemical of Concern Concentrations vs. Time

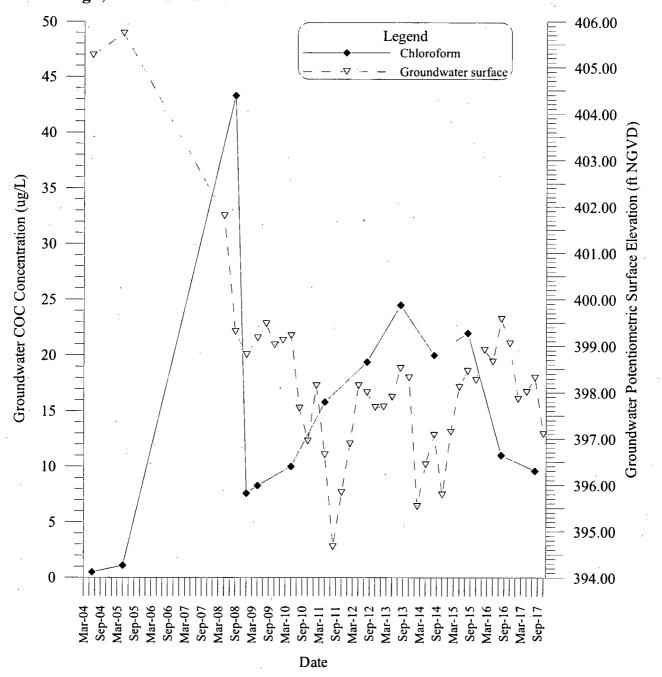
North Carolina State University Lot 86 Site Raleigh, North Carolina

DEEP MONITORING WELL MW-43D: Groundwater Chemical of Concern Concentrations vs. Time


North Carolina State University Lot 86 Site Raleigh, North Carolina

Note: Non-detected concentrations are plotted at one-half of the detection limit.

SHALLOW MONITORING WELL MW-45/MW-45R: Groundwater Chemical of Concern Concentrations vs. Time


North Carolina State University Lot 86 Site Raleigh, North Carolina

Note: non-detected concentrations are plotted at one-half of the detection limit.

<u>DEEP MONITORING WELL</u> MW-47: Groundwater Chemical of Concern Concentrations vs. Time

North Carolina State University Lot 86 Site Raleigh, North Carolina

Note: Non-detected concentrations are plotted at one-half of the detection limit.

Fourth Five-Year Review NCSU Lot 86 Site Raleigh, Wake County, NC

COC	Groundwater Remedial Goal (µg/l)	Tapwater RSL ^a 10 ⁻⁶ Risk (µg/l)	Tapwater RSL ^a HQ = 1 (µg/l)	Risk ^b	HQ¢
Acetone	700	NA	1.4E+04	NA	5.0E-02
Benzene	1	4.6E-01	3.3E+01	2.2E-06	3.0E-02
Bromodichloromethane	1	1.3E-01	3.8E+02	7.7E-06	2.6E-03
Carbon tetrachloride	1	4.6E-01	4.9E+01	2.2E-06	2.0E-02
Chloroform	1	NA	9.7E+01	NA	1.0E-02
Dichloropropane, 1,2-	1	8.5E-01	8.2E+00	1.2E-06	1.2E-01
Methylene chloride	5	1.1E+01	1.1E+02	4.5E-07	4.5E-02
Tetrachloroethene	1	1.1E+01	4.1E+01	9.1E-08	2.4E-02
Trichloroethane, 1,1,2-	1	2.8E-01	4.1E-01	3.6E-06	2.4E+00
Trichloroethene	2.8	4.9E-01	2.8E+00	5.7E-06	1.0E+00
		Metals			
Arsenic	10	5.2E-02	6.0E+00	1.9E-04	1.7E+00
Manganese	370	NA	4.3E+02	NA	8.6E-01

APPENDIX K Detailed Risk Assessment and Vapor Intrusion Screening

Notes:

NA = Not Available

a) Current EPA RSLs, dated November 2017, are available at

https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017

b) Cancer risk = (cleanup goal / cancer-based RSL) x 10^{-6} .

c) HQ = (cleanup goal / noncancer RSL).

Bold = risk exceeds EPA's risk management range of 10^{-6} to 10^{-4} or HQ exceeds 1.

 $\mu g/l = micrograms per liter$

The analysis in Appendix K indicates that the groundwater remediation goal for arsenic results in a cancer risk greater than 1 x 10-4. The groundwater remediation goals for arsenic and 1,1,2-trichloroethane both exceed an HQ of 1.

None of the remaining cleanup goals resulted in a cancer risk greater than $1 \ge 10-4$ for carcinogens or a noncancer HQ of greater than 1, and therefore, remain protective of human health.

Indoor air concentrations were calculated from groundwater remediation levels for the ten volatile chemicals of concern. The cancer risk posed by these air concentrations are all less than $1 \times 10-4$, and the noncancer HQ for each is less than 1.

10	Table K-2: (Groundwater AR	AR Review	
COC	1996 ROD Cleanup Levels & Rationale (µg/l)	Current NC 2L ^a (As of April 1, 2013) (µg/l)	Current Federal MCL*/CRQL (µg/l)	Change in ARAR Yes/No
Acetone	700 NC 2L	6,000	NA/5	Yes***
Benzene	1 NC 2L	1	5*/0.5	No
Bromodichloromethane	1 CRQL	0.6	80**/0.5	Yes
Carbon tetrachloride	1 CRQL	0.3	5*/0.5	Yes
Chloroform	1 CRQL	70	80**/0.5	No
Dichloropropane, 1,2-	1 CRQL	0.6	5*/0.5	Yes
Methylene chloride	5 NC 2L	5	5*/0.5	No
Tetrachloroethene	1 CRQL	0.7	5*/0.5	Yes
Trichloroethane, 1,1,2-	1 CRQL	NA	5*/0.5	No
Trichloroethene	2.8 NC 2L	3	5*/0.5	Yes***
		Metals		
Arsenic	10 CRQL	10	10*/10	No
ê	370	20		3
Manganese	Background	50	NA	Yes

Notes:

NA - Not Available

^a NC 2L of North Carolina Administrative Code, Title 15A, Subchapter 2L, Classifications and Water Quality Standards Applicable to the Groundwater of North Carolina

* MCL for compound

** MCL for total trihalomethanes.

*** ARAR has changed but ROD remediation goal is more stringent than the current new standard. **BOLD** and <u>underlined</u> indicates current NC 2L standard is more stringent than previous remediation goal.

 $\mu g/l = micrograms per liter$

Are the exposure assumptions, toxicity data, clean-up levels and remedial actions (RAOs) used at the time of the remedy still valid?

Yes, for or everything except arsenic and 1,1,2-trichloroethane. See write-up below Table K-1.

K-2

meter		Symbol	Value	Instructions							and the second second		
sure Scena	ario	Scenario	Residential	Select residenti	al or commercial so	enario from pu	Il down list					N	
	Carcinogens	TCR	1.00E-06	Enter target risk	k for carcinogens (fe	or comparison	to the calculated \	/I carcinoge	enic risk in columr	n F)		4 A	
	Quotient for Non-Carcinogens	THQ	1	Enter target ha	zard quotient for no	in-carcinogens	(for comparison to	the calcul	ated VI hazard in	column G)			
	dwater Temperature (°C)	Tgw	25	Enter average	of the stabilized gro	undwater temp	erature to correct	Henry's La	w Constant for gr	oundwater	target concent	rations	
		Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard		Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic Indicator		
		. Cgw	Cia	A STREET AND A STREET AND			IUR	Source*	RfC	Source*	CONTRACTOR OF		
CAS	Chemical Name	(ug/L)	(ug/m ³)	CR	HQ		(ug/m ³) ⁻¹		(mg/m ³)	10-21-02	1000		
4-1	Acetone	7.0E+02	1.00E+00	No IUR	3.1E-05		(agint)	1.1	3.10E+01	A	and the second second		
3-2	Benzene	1.0E+00	2.27E-01	6.3E-07	7.3E-03		7.80E-06	1.2	3.00E-02	1			
7-5	Bromochloromethane	1.0E+00	5.97E-02	No IUR	1.4E-03				4.00E-02	X	18 10 10 10 10 10 10 10 10 10 10 10 10 10		
3-5	Carbon Tetrachloride	1.0E+00	1.13E+00	2.4E-06	1.1E-02		6.00E-06	1	1.00E-01	- 1 -			
		1.0E+00	1.50E-01	1.2E-06	1.5E-03		2.30E-05		9.80E-02	A			
6-3	Chloroform	1.0E+00	1.15E-01	1.5E-07	2.8E-02		3.70E-06	P	4.00E-02	î			
7-5	Dichloropropane, 1,2-						1.00E-08	F	4.00E-03		Mut		
9-2	Methylene Chloride	5.0E+00	6.64E-01	6.6E-09	1.1E-03					+ +	Mut		
18-4	Tetrachloroethylene	1.0E+00	7.24E-01	6.7E-08	1.7E-02		2.60E-07		4.00E-02				
0-5	Trichloroethane, 1,1,2-	1.0E+00	3.37E-02	1.9E-07	1.6E-01		1.60E-05		2.00E-04	X			
1-6	Trichloroethylene	2.8E+00	1.13E+00	2.4E-06	5.4E-01		see note		2.00E-03	1	TCE		
Notes:							4 Repts of						
(1)	Inhalation Pathway Exposure Parameters (RME):		Units		Reside	ential	Commercial				Selected (based on scenario)		
	Exposure Scenario				Symbol	Value	Symbol	Value			Symbol	Value	
	Averaging time for carcinogens		(yrs)		ATC R GW	70	ATC C GW	70	The second second		ATC GW	70	
	Averaging time for non-carcinogens		(yrs)		ATnc R GW	26	ATRC C GW	25			Atnc GW	26	
	Exposure duration		(yrs)		ED R GW	26	ED C GW	25			ED GW	26	
	Exposure frequency		(days/yr)		EF_R_GW	350	EF C GW	250			EF_GW	350	
					ETRGW	24	ET C GW	8			ET GW	24	
	Exposure time		(hr/day)		EI_R_GW	24	EI_C_GW	0,			EI_GW	24	
(2)	Generic Attenuation Factors:			1.1	Reside	ential	Comme	cial			Selected (b scena		
(-)	Sector -				Symbol	Value	Symbol	Value			Symbol	Value	
	Source Medium of Vapors				AFgw R GW	0.001	AFgw C GW	0.001	india Sia dia dia dia dia dia dia	And Advantage	AFgw GW	0.001	
	Groundwater	- 5 N 2 12	(-)		AFss R GW	0.03	AFss C GW	0.03			AFss GW	0.03	
	Sub-Slab and Exterior Soil Gas	î. V	(-)		Arss R GVV	0.05	Arss C GVV	0.05		A DE SI HALAN	Arss_Gw	0.03	
10.00 M	And the second									1			
(3)	Formulas												
	Cia, target = MIN(Cia,c; Cia,nc)												
	Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/	day) / (ED x EF x E	IXIUR)	F									
	Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hr	s/day) x RfC x (100	0 ug/mg) / (ED x E	FXEI)									
(4)	Special Case Chemicals				Residential Comme		Comme	mercial			Selected (b scena		
• •					Symbol	Value	Symbol	Value			Symbol	Value	
	Trichloroethylene			2.2	NURTCE R GW	1.00E-06	IURTCE C GW		A DECK DATE		URTCE GW		
						3.10E-06	IURTCE C GW				URTCE_GW		
					IURTCE R GW	3.102-00	IUNTUE C GW	4.10E-00		1000	IGHTICE_GVV	0. TUE-00	
	1669			pendent adjustme	ent ractors for muta	genic-mode-of-	acuon are listed if	wie table i	Delow:				
	Mutagenic Chemicals	The exposure dur	auons and ago dos	-									
			Age Cohort	Exposure	Age-dependen								
	Note: This section applies to trichloroeth	ylene and other	Age Cohort	Duration	fact	or	21						
		ylene and other	Age Cohort 0 - 2 years	Duration 2	fact 10	or							
	Note: This section applies to trichloroeth	ylene and other	Age Cohort 0 - 2 years 2 - 6 years	Duration 2 4	fact 10 3	or							
	Note: This section applies to trichloroeth	ylene and other	Age Cohort 0 - 2 years	Duration 2	fact 10	or							
	Note: This section applies to trichloroeth	ylene and other	Age Cohort 0 - 2 years 2 - 6 years	Duration 2 4	fact 10 3	or							
	Note: This section applies to trichloroeth	ylene and other	Age Cohort 0 - 2 years 2 - 6 years 6 - 16 years	Duration 2 4 . 10	fact 10 3	or							

e 6,

http://www.epa.gov/iris/subst/index.html

Notation: I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at

ISL Calculator Version 3.5, June 2017 RSL

K-3

VISL Version 3.5 Updated October 2017 ly Values from June 2017 RSL Update

Current 1

OSWER VAPOR INTRUSION ASSESSMENT Groundwater Concentration to Indoor Air Concentration (GWC-JAC) Calculator Version 3.5, June 2017 RSLs

	Symbol	Value	Instructions								
Exposure Scenario	Scenario	Residential	Select residentia	I or commercial scenari	io from pull down list						-
arget Risk for Carcinogens	TCR	1.00E-06	Enter target risk for carcinogens (for comparison to the calculated VI carcinogenic risk in column F)								
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target haza	ard quotient for non-car	rcinogens (for comparison t	o the calcul	lated VI hazard in	column G			
Average Groundwater Temperature (°C)	Tgw	25			vater temperature to correct					tions	
	Site Groundwater Concentration	Calculated Indoor Air Concentration	VI Carcinogenic Risk	VI Hazard	Inhalation Unit Risk	IUR	Reference Concentration	RFC	Mutagenic		
	Cgw	Cia	CR	НО	IUR	Source*	RfC	Source*			
CAS Chemical Name	(ua/L)	(ug/m ²)	un	nu	(ug/m ³).r	and the loss	(mg/m ³)		Subscription and Subscription		
A = California Environmental Protection Agency/Office of Envir	ronmental Health Hazard As	sessment assessn	nents. Available o	nline at:		v.oehha.ca	.gov/risk/Chemica	DB/index	asp		
A = California Environmental Protection Agency/Office of Envir I = HEAST. EPA Superfund Health Effects Assessment Summ = See RSL User Guide, Section 5	ronmental Health Hazard As	sessment assessn	nents. Available o	nline at:		v.oehha.ca		DB/index	asp		
A = California Environmental Protection Agency/Office of Envir I = HEAST. EPA Superfund Health Effects Assessment Summ := See RSL User Guide, Section 5 := PPRTV Appendix	ronmental Health Hazard As nary Tables (HEAST) databa	sessment assessn se. Available onlin	nents. Available o e at:	nline at:	http://www	v.oehha.ca		IDB/index	asp		
A = California Environmental Protection Agency/Office of Envir I = HEAST. EPA Superfund Health Effects Assessment Summ ;= See RSL User Guide, Section 5 := PPRTV Appendix Mut = Chemical acts according to the mutagenic-mode-of-action	ronmental Health Hazard As hary Tables (HEAST) databa n, special exposure parameter	sessment assessm se. Available onlin ers apply (see footr	nents. Available o e at:	nline at:	http://www	v.oehha.ca		IDB/index	<u>850</u>		
A = California Environmental Protection Agency/Office of Envir I = HEAST. EPA Superfund Health Effects Assessment Summ : See RSL User Guide, Section 5 : = PRTV Appendix Mut = Chemical acts according to the mutagenic-mode-of-action C = Special exposure equation for vinyl chloride applies (see N	ronmental Health Hazard As arry Tables (HEAST) databa n, special exposure paramete Vavigation Guide for equation	sessment assessn se. Available onlin ers apply (see footr n).	nents. Available o e at:	nline at:	http://www	v.oehha.ca		IDB/index	asp		
A = California Environmental Protection Agency/Office of Envir = HEAST. EPA Superfurd Health Effects Assessment Summ = See RSL User Guide, Section 5 = PPRTV Appendix Iut = Chemical acts according to the mutagenic-mode-of-action C = Special exposure equation for viny chloride applies (see N CE = Special mutagenic: and non-mutagenic UIRs for trichlored	ronmental Health Hazard As hary Tables (HEAST) databa n, special exposure paramete Navigation Guide for equation ethylene apply (see footnote	sessment assessn se. Available onlin ers apply (see footr n).	nents. Available o e at:	nline at:	http://www	v.oehha.ca		DB/Index.	asp		
A = California Environmental Protection Agency/Office of Envir = HEAST. EPA Superfund Health Effects Assessment Summ = See RSL User Guide, Section 5 = PPRTV Appendix Uti = Chemical acts according to the mutagenic-mode-of-action C = Special exposure equation for vinyl chloride applies (see N CE = Special mutagenic and non-mutagenic IURs for trichioroe ellow highlighting indicates site specific parameters that may b	ronmental Health Hazard As ary Tables (HEAST) databa n, special exposure parametr Vavigation Guide for equation ethylene apply (see footnote e edited by the user.	sessment assessn se. Available onlin ers apply (see footr n). (4) above).	nents. Available o e at: note (4) above).	nline at: <u>http://ep</u>	<u>http://www</u> a-heast.orni.gov/heast.shtr	v.oehha.ca ni		IDB/index	<u>850</u>		
A = California Environmental Protection Agency/Office of Envir I = HEAST. EPA Superfurd Health Effects Assessment Summ := See RSL User Guide, Section 5 := PPRTV Appendix MrI = Chemical acts according to the mutagenic-mode-of-action C = Special exposure equation for viny chloride applies (see N CE = Special mutagenic and non-mutagenic UIRs for trichlored CE = Special indicates sub-specific parameters that may bit with highlighting indicates sub-specific parameters from that are based on R	ronmental Health Hazard As ary Tables (HEAST) databa n, special exposure parametr Navigation Guide for equation ethylene apply (see footnote e edited by the user. tisk Assessment Guidance fr	sessment assessn se. Available onlin ars apply (see footr n). (4) above). or Superfund (RAG	nents. Available o e at: note (4) above).	nline at: http://epu	http://www e-heast.orni.gov/heast.shtr	koehha.ca		IDB/index	<u>aso</u>		
a + Agency for Toxic Substances and Disease Registry (ATSDF A2 = California Environmental Protection Agency/Office of Envir 1 = HEAST. EPA Superfund Health Effects Assessment Summ = See RSL User Guide, Section 5 (= PPRTV Appendix Mut = Chemical acts according to the mutagenic-mode-of-action (C = Special exposure equation for viny choinde applies (see N ICE = Special mutagenic and non-mutagenic IURs for trichloror ellow highlighting indicates sub-specific parameters that may bit with highlighting indicates Vicarcinogenic risk greater than the t vink highlighting indicates Sub-specific parameters.	ronmental Health Hazard As ary Tables (HEAST) databa n, special exposure parametr Navigation Guide for equation ethylene apply (see footnote e edited by the user. tisk Assessment Guidance fr	sessment assessn se. Available onlin ars apply (see footr n). (4) above). or Superfund (RAG	nents. Available o e at: note (4) above).	nline at: http://epu	http://www e-heast.orni.gov/heast.shtr	koehha.ca		IDB/Index	<u>850</u>		

K-4

Page 2 of 2

VISL Calculator Version 3.5, June 2017 RSLs