THIRD FIVE-YEAR REVIEW REPORT FOR TOWER CHEMICAL COMPANY SUPERFUND SITE LAKE COUNTY, FLORIDA

AUGUST 2018

Prepared by

U.S. Environmental Protection Agency Region 4 Atlanta, Georgia

Franklin E. Hill, Director Superfund Division

9/5/18 Date

Table of Contents

LIST OF ABBREVIATIONS AND ACRONYMS	iv
I. INTRODUCTION	1
Site Background	
FIVE-YEAR REVIEW SUMMARY FORM	2
II. RESPONSE ACTION SUMMARY	
Basis for Taking Action	
Response Actions	
Status of Implementation	
Systems Operations/Operation and Maintenance (O&M)	
III. PROGRESS SINCE THE PREVIOUS REVIEW	11
IV. FIVE-YEAR REVIEW PROCESS	12
Community Notification, Community Involvement and Site Interviews	12
Data Review	13
Site Inspection	
V. TECHNICAL ASSESSMENT	
QUESTION A: Is the remedy functioning as intended by the decision documents?	16
QUESTION B: Are the exposure assumptions, toxicity data, cleanup levels and RAOs used	
time of the remedy selection still valid?	17
QUESTION C: Has any other information come to light that could call into question the	
protectiveness of the remedy?	
VI. ISSUES/RECOMMENDATIONS	
OTHER FINDINGS	
VII. PROTECTIVENESS STATEMENTS	
VIII. NEXT REVIEW	
APPENDIX A – REFERENCE LIST	
APPENDIX B – CURRENT SITE STATUS	
APPENDIX C – SITE CHRONOLOGY	
APPENDIX D – ADDITIONAL SITE BACKGROUND	
APPENDIX E – PRESS NOTICE	
APPENDIX F – INTERVIEW FORMS	
APPENDIX G – SITE INSPECTION CHECKLIST	
APPENDIX H – SITE INSPECTION PHOTOS	
APPENDIX I – DATA FIGURES & TABLES	
APPENDIX J – DETAILED ARARS REVIEW TABLES	
APPENDIX K – DETAILED TOXICITY REVIEW	
APPENDIX L – ADDITIONAL SITE MAPS	L-1

Tables

r

Table 1: Site COC Cleanup Goals by Media	6
Table 2: Summary of Planned and Implemented Institutional Controls (ICs)	9
Table 3: Protectiveness Determinations/Statements from the 2013 FYR	11
Table 4: Status of Recommendations from the 2013 FYR	12
Table 5: Summary of DCBP Concentrations at DPT Location DPT011/019	14

.

Table C-1: Site Chronology	C-1
Table I-1: DPT Groundwater Analytical Results	
Table I-2: DPT Soil Analytical Results	
Table K-1: Screening-Level Vapor Intrusion Risk Evaluation Using Surficial Groundwater	
Table K-2: Health Evaluation of Surface Soil Cleanup Levels	K-2
Table K-3: Health Evaluation of Subsurface Soil Cleanup Levels	

Figures

Figure 1: Site Vicinity Map	
Figure 2: Institutional Control Map	
Figure 3: Detailed Site Map	
Figure I-1: Groundwater Sampling Results (2013-2017)	
Figure I-2: Soil Sampling Results (2012-2017)	
Figure L-1: Current DCBP Plume Boundary and Private Well Locations	

LIST OF ABBREVIATIONS AND ACRONYMS

alpha-BHC	alpha-hexachlorocyclohexane
ARAR	Applicable or Relevant and Appropriate Requirement
bls	Below Land Surface
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
COC	Contaminant of Concern
DCBP	4,4'-dichlorobenzophenone
DDD	4,4'-dichlorodiphenyldichloroethane
DDE	4,4'-dichlorodiphenyldichloroethylene
DDT	4,4'-dichlorodiphenyltrichloroethane
DPT	Direct Push Technology
EPA	United States Environmental Protection Agency
FAC	Florida Administrative Code
FDEP	Florida Department of Environmental Protection
FDER	Florida Department of Environmental Regulation
FYR	Five-Year Review
GCTL	Groundwater Cleanup Target Level
HQ	Hazard Quotient
IC	Institutional Control
IROD	Interim Record of Decision
ISCO	In-Situ Chemical Oxidation
ISS	In-Situ Solidification/Stabilization
MCL	Maximum Contaminant Level
μg/L	Micrograms per Liter
mg/kg	Milligrams per Kilogram
MNA	Monitored Natural Attenuation
MOA	Memorandum of Agreement
MW	Monitoring Well
NCP	National Contingency Plan
NPL	National Priorities List
NAI	No ARAR Identified
O&M	Operation and Maintenance
OU	Operable Unit
PW	Private Well
RAO	Remedial Action Objective
RCRA	Resource Conservation and Recovery Act
RI/FS	Remedial Investigation and Feasibility Study
ROD	Record of Decision
RPM	Remedial Project Manager
RSL	Regional Screening Level
RV ·	Recreational Vehicle
SJRWMD	St. Johns River Water Management District
SQG	Sediment Quality Guideline
SVOC	Semi-Volatile Organic Compound
SCTL	Soil Cleanup Target Level
1,1,1-TCA	1,1-trichloroethane
	-

iv

TCC	Tower Chemical Company
UU/UE	Unlimited Use and Unrestricted Exposure
VISL	Vapor Intrusion Screening Level
VOC	Volatile Organic Compound

. *

.

v ·

.

.

.

I. INTRODUCTION

The purpose of a Five-Year Review (FYR) is to evaluate the implementation and performance of a remedy to determine if the remedy is and will continue to be protective of human health and the environment. The methods, findings and conclusions of reviews are documented in FYR reports such as this one. In addition, FYR reports identify issues found during the review, if any, and document recommendations to address them.

The U.S. Environmental Protection Agency is preparing this FYR pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 121, consistent with the National Contingency Plan (NCP) (40 Code of Federal Regulations (CFR) Section 300.430(f)(4)(ii)), and considering EPA policy.

This is the third FYR for the Tower Chemical Co. Superfund site (the Site). The triggering action for this policy review is the completion date of the previous FYR. The FYR has been prepared because hazardous substances, pollutants or contaminants remain at the Site above levels that allow for unlimited use and unrestricted exposure (UU/UE).

The Site consists of three operable units (OUs). This FYR addresses all three OUs. OU1 addressed contamination in the soil, surficial aquifer, surface water and sediment. OU2 addressed potable well contamination near the Site. OU3 addresses site-wide soil, tributary sediment and groundwater contamination; OU3 supersedes OU1 and OU2.

EPA Remedial Project Manager (RPM) Karl Wilson led the FYR. Participants included community involvement coordinator L'Tonya Spencer, Florida Department of Environmental Protection (FDEP) representative Kevin McCranie, and EPA contractor support from Amanda Goyne and Brice Robertson of Skeo. The review began on 8/9/2017.

Site Background

The 16-acre Site is located in Clermont, Lake County, Florida (Figure 1). From 1957 until 1980, Tower Chemical Company (TCC) made and stored pesticides onsite. During operation, TCC discharged wastewater into a 0.5-acre, unlined percolation/evaporation pond, which was located over a relict sinkhole. TCC also burned and buried solid wastes in a 1.5-acre burn/burial area and disposed of acidic wastewater on a spray irrigation field southwest of the wastewater pond (Figure 1). These actions contaminated site soils, groundwater, surface water and sediments.

The site property is used for commercial purposes. A storage facility for recreational vehicles (RVs), boats, trailers and other commercial vehicles operates onsite. A small auto body shop operates on the eastern side of the site. Other site features include an abandoned office building, paved areas, a gated fence and monitoring wells. The EPA expects future site use to remain commercial/industrial. Land uses in the site area include agricultural, residential and commercial/industrial. Refer to Appendix A for additional resources, Appendix B for site status information and Appendix C for a chronology of site events.

The Site is generally flat with only about 5 feet of relief. The Site drains into swampy areas, which drain into the unnamed tributary north of the Site, which drains into the Gourd Neck of Lake Apopka located


1

northeast of the Site. A dominant hydrogeological feature at the Site is a relict sinkhole under the former wastewater pond area, where sands provide a hydraulic connection between the Floridan aquifer and the surficial aquifer. The Hawthorn Clay, a dense clay bed, acts as a confining unit between the Floridan and surficial aquifers across the rest of the Site. Deep groundwater at the Site is found in the Ocala Limestone, which is the uppermost unit of the Floridan aquifer system and functions as a water-yielding hydraulic unit. The predominant horizontal direction of groundwater flow for both the surficial aquifer, site groundwater level measurements indicate a slight gradient to the south, which suggest a groundwater divide or mound through the central portion of the Site.

FIVE-YEAR REVIEW SUMMARY FORM

SITE IDENTIFICATION					
Site Name: Tower Chemical Co.					
EPA ID: FLD004065546	5				
Region: 4	State: Florida City/County: Clermont/Lake				
	SITE STATUS				
NPL Status: Final					
Multiple OUs? Yes					
REVIEW STATUS					
Lead agency: EPA					
Author name: Karl Wils	on (EPA), Amanda	Goyne (Skeo) and Brice Robertson (Skeo)			
Author affiliation: EPA and Skeo					
Review period: 8/9/2017 - 4/18/2018					
Date of site inspection: 9/27/2017					
Type of review: Policy					
Review number: 3					
Triggering action date: 4/18/2013					
Due date (five years after triggering action date): 4/18/2018					

Figure 1: Site Vicinity Map

Disclaimer: This map and any boundary lines within the map are approximate and subject to change. The map is not a survey. The map is for informational purposes only regarding the EPA's response actions at the Site.

II. RESPONSE ACTION SUMMARY

Basis for Taking Action

In May 1980, the wastewater pond contents overflowed into an adjacent swamp and entered the unnamed stream west of the Site. The Florida Department of Environmental Regulation (FDER), predecessor to FDEP, found that acidic wastewater reached the Gourd Neck of Lake Apopka, where it affected aquatic vegetation. FDER ordered TCC to stop all discharges from the Site; in December 1980, all production operations stopped at TCC.

The EPA finalized the Site on the National Priorities List (NPL) in September 1983. The EPA completed the OU1 Remedial Investigation and Feasibility Study (RI/FS) in July 1987. The EPA completed the OU2 RI/FS in June 1999 and an OU2 supplemental RI in August 2001. For more information on these OUs, refer to Appendix D. The EPA completed the OU3 RI/FS in September 2006, which addressed residual site-wide soil and groundwater contamination following early EPA removal actions. The OU3 RI/FS found that surface soils were contaminated with pesticides, arsenic and copper, with elevated concentrations in the burn/burial area. Subsurface soils in the wastewater pond and burn/burial areas were contaminated with 4,4-dichlorobenzophenone (DCBP) and chlorobenzilate. The OU3 RI/FS also determined that site groundwater was contaminated with DCBP, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides and heavy metals. The OU3 RI/FS used the same human health and ecological risk assessment as the OU2 RI/FS. The OU2 human health risk assessment concluded that the Site posed unacceptable risks for current and future receptors in surficial groundwater and for future child residents in the surficial and Floridan aquifers. The ecological risk assessment concluded that the Site poses negligible ecological risk.

Response Actions

In June and July 1983, the EPA conducted an emergency removal action. Removal activities included excavating and shipping about 130 cubic yards of pond sediments, 2,370 cubic yards of contaminated soils from the burn/burial area, and 150 empty drums off site for disposal. The EPA backfilled the excavated wastewater pond and burn/burial area with clean fill and capped them with an 8- to 12-inch-thick clay layer to stop downward migration of residual contaminants into the groundwater. The two areas were contoured to control surface water runoff and enclosed within a chain-link fence to prevent public access. From February 1988 to July 1990, the EPA completed a second removal action to address contaminated storage tanks, concrete pads and underlying contaminated soils. These excavated materials were contained onsite and have been addressed through the Site's final soil and sediment remedy.

OU1 and OU2

The EPA issued the OU1 Record of Decision (ROD) on July 9, 1987. The EPA issued the OU2 Interim Record of Decision (IROD) on August 23, 2000. For more information on OU1 and OU2 response actions, refer to Appendix D.

<u>OU3</u>

The EPA issued the OU3 ROD on September 14, 2006, to address remaining site-wide soil, tributary sediments and groundwater contamination. The OU3 ROD superseded the previous OU1 and OU2 RODs. The remedial action objectives (RAOs) established in the 2006 ROD were:

- Prevent ingestion of, inhalation of and direct contact with surface soil that contains contaminant concentrations in excess of the remediation goals.
- Control migration and leaching of contaminants in surface and subsurface soil to groundwater that could result in groundwater contamination in excess of maximum contaminant levels (MCLs) or remediation goals.
- Prevent ingestion or inhalation of soil particulates in air, for soil that contains contaminant concentrations in excess of the remediation goals.
- Permanently and/or significantly reduce the mobility, toxicity or volume of characteristic hazardous waste with treatment.
- Control future releases of contaminants to ensure protection of human health and the environment.

Groundwater

- Prevent ingestion of groundwater having contaminant concentrations in excess of remediation goals.
- Restore the groundwater aquifer system by cleanup to the remediation goals, and prevent the migration of the pollutants beyond the existing limits of the known contaminant plume or established point of compliance.
- Prevent discharge of groundwater contaminants to surface water bodies that would cause surface water quality standards to be exceeded.
- Control future releases of contaminants of concern (COCs) to groundwater to ensure protection of human health and the environment.

Sediment

• Protect sediment biota and wetland environment based on State of Florida sediment quality guidelines (SQGs) threshold effects concentrations.

The major remedy components included in the OU3 ROD were:

- Excavation of contaminated surface soils exceeding soil remediation goals in the vadose zone (anticipated to be the top 2 to 4 feet of soil) and selected subsurface soils in the saturated zone (down to 12 feet below land surface (bls)), consolidation and off-site disposal.
- Wetland delineation and delineation of sediment contamination in the off-site wetland and surface water discharge areas west of County Road 455 that exceed the SQGs based on threshold effect concentrations for site-related contaminants including copper.
- Excavation of contaminated sediments exceeding the SQGs based on threshold effect concentrations.
- Treatment of remaining contaminated subsurface soils via an in-situ biodegradation and bioventing treatment train with possible physical/chemical treatment enhancements.
- Treatment of contaminated groundwater at the Site exceeding groundwater remediation goals via in-situ bioaugmentation.
- Replacement of temporary carbon filter systems on nearby residential drinking water wells with permanent connections to the public water supply.

Soil

- Implementation of monitored natural attenuation (MNA) to reach inorganic groundwater remediation goals and to reach remaining organic groundwater remediation goals not attained once the maximum effect of bioaugmentation on the organic contaminants is realized.
- Installation of additional downgradient monitoring wells to further delineate the extent of contamination exceeding remediation goals in the surficial and Floridan aquifers and provide confirmation monitoring that the remedy is effectively mitigating the potential for plume migration.
- Installation of point of compliance monitoring well(s) in the surficial aquifer immediately upgradient of the unnamed creek to confirm the remedy is effective in preventing discharge to surface water exceeding surface water quality standards including toxicity criteria.
- Implementation of temporary institutional controls, under the State of Florida's restrictive covenants process, to restrict onsite groundwater use and residential land use until remediation goals are met.
- Re-evaluation of available toxicological data pertaining to tentatively identified compounds and the continued protectiveness of the remedy during FYRs.

Table 1 summarizes the cleanup goals for surface soils, subsurface soils and groundwater. The 2006 ROD did not include specific remediation goals for sediment. However, the goals were generally defined to meet the Florida SQGs threshold effect concentrations.

coċ	Surface Soil ROD Cleanup Goal (mg/kg) ^a	Subsurface Soil ROD Cleanup Goal (mg/kg) ^a	Surficial Groundwater ROD Cleanup Goal (µg/L) ^a	Deep Groundwater ROD Cleanup Goal (µg/L) ^a
Acetone	NA	NA	6,300	NA
Aluminum	NA	1,900	7,000	7,000
alpha-Hexachlorocyclohexane (alpha-BHC)	0.1	0.0003	0.006	NA
Arsenic	2.1	NA	10	10
Benzene	NA	0.007	1	1
Bromodichloromethane	NA	NA	0.6	<u>NA</u>
Cadmium	NA	2.2	5	NA
Chromium	NA	38	100	100
Chlordane	2.8	9.6	NA	<u>NA</u>
Chlorobenzene	NA	NA	100	NA
Chlorobenzilate	NA	0.1	0.1	0.1
Chlorobenzoic acid	<u>NA</u>	NA	NA	1,400
Chloroform	NA	NA	70	70
Copper	NA	NA	<u> </u>	1,300
DCBP	NA	0.34	21	21
1,4-Dichlorobenzene	NA	NA .	75	75

Table 1: Site COC Cleanup Goals by Media

6

сос	Surface Soil ROD Cleanup Goal (mg/kg) ^a Subsurface Soil ROD Cleanup Goal (mg/kg) ^a		Surficial Groundwater ROD Cleanup Goal (µg/L) ^a	Deep Groundwater ROD Cleanup Goal (µg/L) ⁴	
4,4'- dichlorodiphenyldichloroethane (DDD)	4.2	5.8	NA	NA	
4,4'- dichlorodiphenyldichloroethylene (DDE)	2.9	18 .	NA	NA	
4,4'- dichlorodiphenyltrichloroethane (DDT)	2.9	11	NA	NA	
Dicofol	NA	0.01	0.08	0.08	
Dieldrin	0.06	0.002	NA	NA	
Diphenyl methanone	NA	NA	180	NA	
Iron	NA	5,600	4,700	4,700	
Lead	400	220	15	15	
Manganese	NA	81	300	300	
Methylene chloride	NA	0.02	5	NA	
2-Methylnaphthalene	NA	<u>NA</u>	NA	28	
3-Methylphenol	NA	NA	35	NA	
4-Methylphenol	NA	<u>NA</u>	3.5	NA	
Naphthalene	NA	NA	NA	14	
Nickel	NA	130	100	100	
Toxaphene	0.9	31	NA	NA	
Trimethylbenzene	NA	0.3	NA	NA	
1,2,3-Trimethylbenzene	NA	NA	NA	10	
1,2,4-Trimethylbenzene	NA	NA	NA	10	
1,3,5-Trimethylbenzene	<u>NA</u>	NA	NA	10	
Vanadium Notes: ^a Cleanup goals based off Table 7-1 mg/kg = milligrams per kilogram µg/L = micrograms per liter NA = Not Applicable	NA 7 in the 2006 ROD.	NA	NA	49	

<u>NA = Not Applicable</u>

Status of Implementation

`\

OU1 and OU2 Refer to Appendix D for detailed information about the status of implementation for OU1 and OU2.

<u>OU3</u>

The 2006 OU3 ROD is currently being implemented. The EPA began the remedial design on September 27, 2006, and completed the contaminated surface soil, selected subsurface soils and sediment component of the remedial design on June 9, 2009. Remedial activities commenced on March 1, 2010. In May 2010, the EPA connected the residences with carbon filter systems to the public water supply, except for two households whose residents chose to continue using their shared well. The EPA performed surface soil and sediment excavation in two phases. Phase I included excavation of contaminated surface soils, selected subsurface soils and sediments from the northern and central portions of the Site, as well as from the eastern and western wetlands. About 49,000 cubic yards of contaminated soils and sediment were excavated and transported to an off-site Resource Conservation and Recovery Act (RCRA) Subtitle D disposal facility. Following excavation, the EPA backfilled excavated areas with clean soil and restored wetland areas. The EPA completed Phase I surface soil and sediment remedial activities in November 2010. Following completion of Phase I activities, the EPA performed three years of wetland restoration planting and monitoring (quarterly for one year and annually thereafter). The final 2013 Annual Wetland Restoration Monitoring Report concluded that planted tree species had been restored; the goal of 80 percent survivorship of planted tree species was met after the first year of planting.

Phase II consisted of excavation of contaminated soils and waste materials unaccounted for in the OU3 remedial design, as well as soils not excavated during Phase I. Phase II surface soil and waste material remedial activities began in March 2011 and were completed in February 2012. About 3,000 cubic yards of contaminated soils were excavated and transported to an off-site RCRA Subtitle D disposal facility. The EPA backfilled excavated areas with clean soil. Phase I and II excavated contaminated surface soils as well as selected subsurface soils and sediments to 12 feet bls.

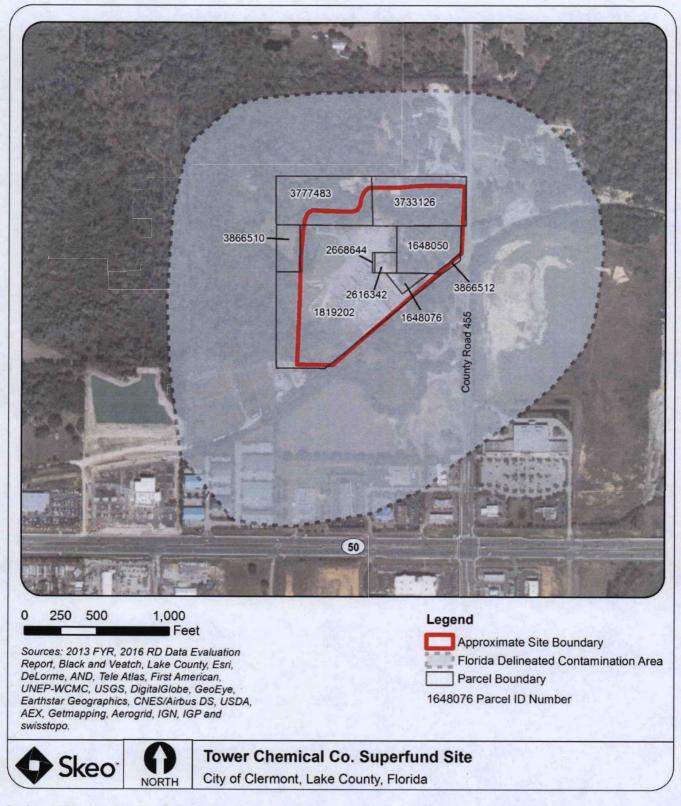
Limited dewatering/groundwater treatment operations were also conducted during Phase I and Phase II. Phase I dewatering/groundwater treatment operations were conducted from July to August 2010. Approximately 1,743,400 gallons of groundwater were extracted. Phase II dewatering/groundwater treatment operations were conducted from April to May 2011. The EPA released treated water into the western wetlands.

According to the ROD, remaining contaminated subsurface soils and groundwater are to be treated via in-situ biodegradation and treatment with possible physical/chemical treatment enhancements. In 2011, the EPA initiated the remedial design for this component of the ROD. In 2013, the EPA evaluated bench scale results and scale-up costs and concluded that in-situ chemical oxidation (ISCO) with activated persulfate was the most promising technology. However, subsequent studies and pilot tests determined that ISCO was not feasible for the Site. Based on subsequent studies and cost evaluations, the EPA is evaluating in-situ solidification/stabilization (ISS) combined with MNA as a possible method to treat remaining contaminated subsurface soils and groundwater. The EPA is evaluating options to implement ISS with MNA at the Site, but has not finalized selection of this method.

Institutional Control (IC) Review

Table 4 lists the institutional controls associated with areas of interest at the Site. Figure 2 shows the Florida Delineated Contamination Area around the Site. The Florida Delineated Contamination Area restricts well installations. The 2013 FYR recommended that the EPA and the St. Johns River Water Management District (SJRWMD) implement a Memorandum of Agreement (MOA) to further prevent access to contaminated groundwater until it is fully remediated. The EPA and the SJRWMD are

8


currently engaged in negotiating an MOA establishing cooperative efforts to minimize the potential effects of groundwater contamination in areas within the SFWMD's jurisdiction that are impacted or potentially impacted by Superfund sites. These negotiations include establishing procedures for information sharing and assisting in the implementation of certain institutional controls through the application of regulatory practices within the SFWMD's jurisdiction. Ultimately, the goal is to prevent potential human exposure to contaminated groundwater in areas impacted or potentially impacted by Superfund sites. The intent of the MOA is for the EPA to give the SJRWMD adequate information on contaminant concentrations and extent of contamination, or within close enough proximity to cause the migration of contaminants. In the interim, SJRWMD is aware of the site groundwater contamination and the Florida Delineated Contamination Area has been applying special criteria for the installation of new groundwater wells in the immediate area around the Site.

Subsurface soil DCBP contamination above cleanup goals remains 12 feet and more bls. If the selected remedy for subsurface soil leaves this contamination at depth, institutional controls will be needed to restrict excavation where subsurface soil contamination remains. The 2006 ROD called for institutional controls to restrict residential land use. However, contaminated soils above residential standards have been removed to 12 feet bls. Therefore, institutional controls restricting residential land use may not be needed, pending evaluation of the 4,4'-dichlorodiphenyldichloroethane (DDD) cleanup goal (see Question B) and implementation of institutional controls restricting subsurface excavation.

					1
Groundwater	Yes	Yes	1819202, 2616342, 2668644, 1648076, 3866510, 3866512, 1648050, 3777483, 3733126	Restrict installation of groundwater wells and groundwater use with an MOA.	The Site lies within a Florida Delineated Contamination Area, which restricts well placement. ¹ An MOA is needed to restrict contaminated groundwater use.
Soil	Yes	Yes	1819202, 2616342, 2668644, 1648076, 3866510, 3866512, 1648050, 3777483, 3733126	Restrict excavation of remaining contaminated subsurface soils.	Not yet implemented; might be needed pending final subsurface soil remedy selection.

Table 2: Summary of Planned and Implemented Institutional Controls (ICs
--

Figure 2: Institutional Control Map

Disclaimer: This map and any boundary lines within the map are approximate and subject to change. The map is not a survey. The map is for informational purposes only regarding the EPA's response actions at the Site.

Systems Operations/Operation and Maintenance (O&M)

Formal O&M activities for the Site will begin after completion of the site-wide OU3 remedial action. The 2000 IROD required several maintenance activities for the carbon filters, but these activities are no longer required because the homes now have access to the public water supply. Two residences using one well (upgradient of the site groundwater contamination) chose not to hook up to the public water supply and are responsible for maintenance of the carbon filters if they choose to continue their use.

III. PROGRESS SINCE THE PREVIOUS REVIEW

This section includes the protectiveness determinations and statements from the previous FYR as well as the recommendations from the previous FYR and the status of those recommendations.

OU #	Protectiveness Determination	Protectiveness Statement
1	Protective	The OUI remedy was never implemented and has been replaced by the site-wide OU3 remedy.
2	Protective	The OU2 interim remedy at the Site currently protects human health and the environment because potentially affected residents were provided with well-head protection through the installation of carbon filtration units for six potable water wells serving ten residences located in the immediate vicinity of the Site. In May 2010, under OU3, eight of the ten residences using groundwater from five of the six private wells were connected to the public water supply system. Owners of the remaining private well declined connection to the public water supply system. All six of the private wells continue to be included in monitoring for off-site contaminated groundwater migration. The six private wells have not shown Site contaminant impacts in monitoring results implemented as part of the carbon filtration system installation. The latest private well sampling occurred in June 2011. The current cleanup goal for DCBP is 21 µg/L. Private well (PW) 101, PW 102, PW 104, PW 105, PW 106 and PW 107 each had a DCBP concentration of less than 0.08 µg/L during the June 2011 sampling event. Additionally, all six of the private wells are located beyond the current DCBP contaminant plume and therefore are not impacted (see Appendix L for a map detailing the plume and private well locations). PW 102 is the private well closest to the DCBP plume. The 2017 site inspection confirmed that owners at this location only use the private well water for washing trucks and do not use it for any other use. These owners are connected to the municipal water supply for potable water supply system is upgradient of the Site. The owners declined to be connected to the public water supply system. The owners are aware and responsible for maintaining the filters on the well. The EPA will conduct the next sampling event for all private wells by 2021.
3/Site-wide	Will be Protective	The OU3 remedy is expected to be protective of human health and the environment upon completion. In the interim, remedial activities completed to date have adequately addressed all current exposure pathways that could result in unacceptable

Table 3: Protectiveness Determinations/Statements from the 2013 FYR

risks. Institutional controls to restrict groundwater use should be augmented with an MOA between EPA and SJRWMD to prevent access to contaminated groundwater until it is fully remediated. All monitoring wells should be secured. Additional sediment sampling is needed in the eastern wetland to verify if cleanup goals are exceeded. Data results will be
used to evaluate if additional response action, including
 institutional controls, is necessary.

Table 4: Status of Recommendations from the 2013 FYR

OU #	Issue	Recommendations	Current Status	Current Implementation Status Description	Completion Date (if applicable)
3	Adequate temporary groundwater use restrictions, as called for in the 2006 ROD, have not been implemented.	Implement an MOA between EPA and SJRWMD to prevent access to contaminated groundwater until it is fully remediated.	Ongoing	An MOA has not been implemented between the EPA and SJRWMD to prevent access to contaminated groundwater.	NA
3	Contamination above cleanup goals remains in wetlands.	Verify wetland sediment exceedances and determine if additional response action, including institutional controls, is necessary.	Under Discussion	Additional wetland sampling has not been completed.	NA
3	During the site inspection, unlocked monitoring wells were observed to be in good condition.	Lock all monitoring wells.	Ongoing	During the site inspection for the 2018 FYR, monitoring wells MWS-17, MWS-21 and MW-11 R and F were not locked.	NA

IV. FIVE-YEAR REVIEW PROCESS

Community Notification, Community Involvement and Site Interviews

A public notice was made available by a newspaper posting in the Orlando Sentinel in October 2017 (Appendix E). It stated that the FYR was underway and invited the public to submit any comments to the EPA. The results of the review and the report will be made available at the Site's information repository, the Cooper Memorial Library, located at 2525 Oakley Seaver Drive, Clermont, Florida 34711.

During the FYR process, interviews were conducted to document any perceived problems or successes with the remedy that has been implemented to date. Interviews were completed with one nearby resident and two nearby businesses. The interviews are summarized below. Complete interviews are included in Appendix F.

Overall, the interviewees believe that the remedy is effective and is protective of human health and the environment. The resident and one of the businesses interviewed commented that the EPA could keep surrounding neighbors informed through phone calls.

A representative from the Orlando Sentinel contacted the RPM and inquired about the FYR and the status on cleanup at the Site. The Orlando Sentinel ran the following article on October 23, 2017: "Commentary: EPA still working to clean up Tower Chemical Superfund Site." The online article can be found at the following link below:

http://www.orlandosentinel.com/news/lake/os-lk-lauren-ritchie-epa-tower-chemical-cleanup-20171020story.html

Data Review

Data reviewed for this FYR included three sampling events for dicofol and DCBP (a degradation product of dicofol), conducted to support a remedial design for organochlorine pesticide contamination in groundwater and soil. A summary of these data is presented below. Appendix I contains figures and tables related to this data review.

Groundwater

The EPA sampled groundwater for DCBP and dicofol in site monitoring wells and in 20 locations using direct push technology (DPT) in December 2016 and January 2017 (see Figure 3, some historical data from 2013 and 2015 are also included in this figure). The ROD groundwater cleanup goals for DCBP and dicofol are 21 micrograms per liter (μ g/L) and 0.08 μ g/L, respectively. DCBP had a higher frequency of cleanup goal exceedances than dicofol. Because DCBP is the primary COC for remaining remedial decisions and is of most concern, this data review focuses on DCBP.

Monitoring Well Results

The purpose of January 2017 groundwater sampling was to monitor DCBP concentrations at the edge of the plume. DCBP concentrations in four of five perimeter shallow monitoring wells (MWS12, MWS14, MWS17 and MW102S) were lower than April 2015 concentrations. The concentration in MWS19 was slightly higher in 2017. Concentrations in 2017 ranged from below detection to 210 μ g/L (MWS14). As stated in the March 2017 remedial design report, when reviewing concentration changes over multiple sampling events for multiple perimeter wells, there is no clear increasing or decreasing trend.

Historical data between 2011 and 2015 indicate several exceedances in the shallow zone. The maximum concentration of 5,900 μ g/L occurred in 2015 at MW109S, which is in the relict sinkhole area and former wastewater pond area. The highest DCBP detection during 2015 in the Floridan aquifer monitoring wells occurred in MWF15 (36 μ g/L). The DCBP concentration in this well during 2011 was 50 μ g/L.

DPT Results

The purpose of the DPT groundwater sampling was to help define the 1,000 μ g/L contour for DCBP concentrations in groundwater; to help define DCBP concentrations in groundwater throughout the plume; and to help evaluate the depth of DCBP groundwater impacts in and around the sinkhole. DPT sampling occurred at several depth intervals, starting at 16 to 20 feet bls. DPT sampling occurred as deep as 76 to 80 feet at locations DPT011/DPT019, which were at the sinkhole area where groundwater is deeper.

13

DCBP concentrations exceeded the ROD cleanup goal at 18 of 20 DPT locations (see Table I-1). Only two DPT locations had DCBP concentrations above 1,000 μ g/L. At DPT011/DPT019, DCBP was above 1,000 μ g/L at multiple depth intervals, with the maximum concentration of 17,000 μ g/L at 46 to 50 feet bls (see Table 5 below). Samples from DPT020, also near the sinkhole area, had DCBP above 1,000 μ g/L in one depth interval, with a concentration of 3,000 μ g/L at 56 to 60 feet bls (see Table I-1). These two locations are also near the former wastewater pond.

Other locations exceeded the DCBP cleanup goal in nearly all depth intervals ranging from 16 to 20 feet bls to 56 to 60 feet bls, but concentrations were below 1,000 μ g/L (see Table I-1).

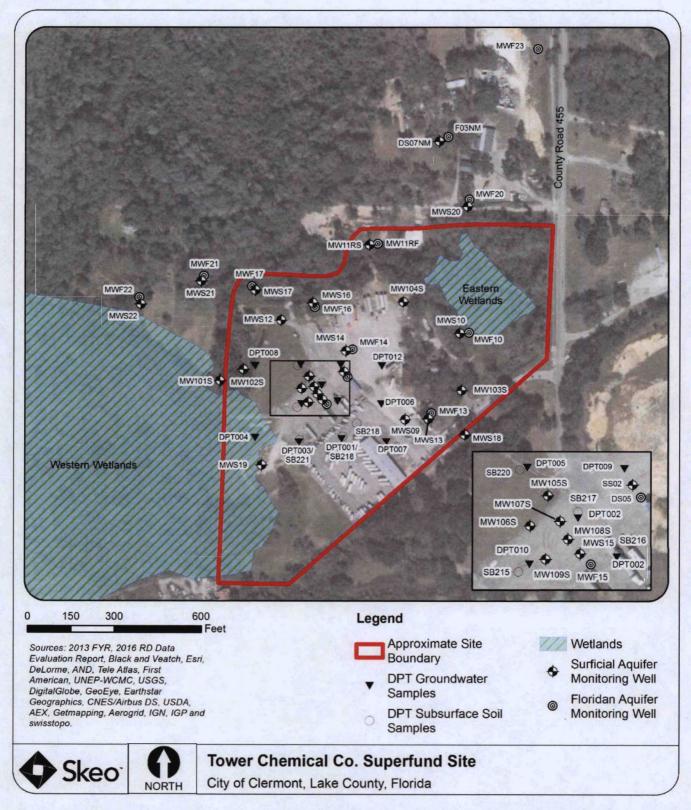

Depth Interval (feet bls)	Maximum Concentration (µg/L)
16-20	1,600
31-35	8,500
45-50	17,000
56-60	15,000
>60	3,200

Table 5: Summary of DCBP Concentrations at DPT Location DPT011/019

<u>Soil</u>

The EPA sampled for DCBP subsurface soil contamination using DPT at 14 locations in December 2016 and January 2017 (see Figure 3 and Table I-2, some historical data from 2012, 2013, and 2014 are also included in the figure). The purpose of the DPT soil sampling was to help define the extent and depths of DCBP impacts in soil and help locate impacted soil for collection of samples for ISS treatability testing. DPT samples were collected at three depths at each location: 17 to 18 feet, 32 to 33 feet and 47 to 48 feet. The ROD cleanup goal for DCBP subsurface soil contamination (340 μ g/kg) was exceeded at nine of the 14 locations. The concentrations exceeding the cleanup goal occurred at all three depth intervals and ranged from 490 μ g/kg to 20,000 μ g/kg. The highest DCBP soil concentrations were near the former wastewater pond.

Figure 3: Detailed Site Map

Disclaimer: This map and any boundary lines within the map are approximate and subject to change. The map is not a survey. The map is for informational purposes only regarding the EPA's response actions at the Site.

Site Inspection

The site inspection took place on 9/27/2017. In attendance were Karl Wilson of the EPA, Kevin McCranie of the FDEP, and Amanda Goyne and Brice Robertson of Skeo. The purpose of the inspection was to assess the protectiveness of the remedy.

Participants began the inspection by discussing some changes that have happened in the last five years. Charlie's Auto Care began operating onsite and is renting a formerly unused building from the site owners, a commercial and RV storage business, which still operates onsite. Mr. Wilson mentioned that he had spoken with the commercial and RV storage business and that they were in good shape following Hurricane Irma in September 2016. The storage business only had to replace the fence's electronic locking system following the hurricane. Participants entered the Site through the entrance to the commercial and RV storage business. The fencing was locked through an electronic system and there was signage reading "No Trespassing."

Participants toured the Site, including the former pesticide packaging building, the former burn/burial area, the former wastewater pond area, the unnamed tributary to Lake Apopka and stormwater features and monitoring wells. The former main building area where pesticide packaging occurred is now an approximately 4-foot-high raised platform with a roof for vehicle storage. Outside the platform is pavement where boats and RVs are stored within a secured fenced area. Participants noted that several monitoring wells were unlocked. Monitoring wells MWS18 had its casing unlocked but the interior was locked. Monitoring wells MWS17 and MWS21 had both their casing and interiors unlocked. Monitoring wells MW11 R and F were not locked or labeled. Mr. Wilson noted that the wetland area to the north of the Site is generally dry, but it had water during the site inspection because of Hurricane Irma. Participants also viewed the eastern wetland and observed that it was well-vegetated and appeared healthy.

Following the site inspection, participants interviewed several nearby residents and business operators. Skeo staff visited the site repository at the Cooper Memorial Library, located at 2525 Oakley Seaver Drive, Clermont, Florida 34711. Site-related documents as recent as 2013 were found at the repository. Refer to Appendix G for a detailed site inspection checklist and Appendix H for site photos.

V. TECHNICAL ASSESSMENT

QUESTION A: Is the remedy functioning as intended by the decision documents?

The site inspection and review of documents, applicable or relevant and appropriate requirements (ARARs) and risk assumptions indicate that the Site's remedy has been mostly implemented and is mostly functioning as intended by site decision documents.

<u>OU1</u>

The OU1 remedy was never implemented and was replaced by the site-wide OU3 remedy.

<u>OU2</u>

Remedial actions performed under the OU2 remedy included carbon filter installation at affected residences. Installation of carbon filters was completed in January 2003 and affected residences have since connected to the public water supply.

<u>OU3</u>

Remedial actions performed under the OU3 remedy to date have included removal and disposal of contaminated surface soils, selected subsurface soils and sediments; backfilling of excavated areas; wetland restoration; and limited dewatering/groundwater treatment operations. Treatment of remaining DCBP contamination in subsurface soil and groundwater is in the remedial design phase. The EPA originally selected ISCO in combination with MNA to treat remaining subsurface soil and groundwater contamination, but determined that this remedy is no longer appropriate. The EPA is now evaluating ISS in combination with MNA as a possible method to treat remaining site contamination, but the EPA has not yet formally selected a method. Groundwater and soil sampling during the FYR period confirmed that the highest concentrations of DCBP contamination are in the former wastewater pond area. It is unclear whether contamination above cleanup goals is present and bioavailable in the eastern wetland, as no additional sampling activities have been performed since the 2013 FYR. The EPA is considering options for addressing this issue, including possibly evaluating bioavailability of contaminants in wetland sediment porewater. The EPA will take appropriate actions based on the outcome and results of these evaluations.

Formal O&M activities, if needed, will begin after completion of the site-wide OU3 remedial action. Some institutional controls are in place at the Site. The Site lies within a Florida Delineated Contamination Area, which restricts well placement. The EPA plans to implement an MOA with SJRWMD to further restrict site groundwater use until it is fully remediated. The 2006 ROD called for institutional controls to restrict residential land use until remediation goals are met. Residential land use restrictions may not be needed, pending evaluation of the DDD cleanup goal (see Question B), because contaminated surface soils, selected subsurface soils and sediments have been removed up to 12 feet bls. However, if the selected remedy for remaining subsurface soil contamination below 12 feet bls leaves this contamination at depth, institutional controls will be needed to restrict excavation in areas of the Site where subsurface soil contamination remains.

QUESTION B: Are the exposure assumptions, toxicity data, cleanup levels and RAOs used at the time of the remedy selection still valid?

Yes. The exposure assumptions, toxicity data, cleanup levels and RAOs used at the time of remedy selection are mostly still valid. The RAOs identified in the 2006 ROD are still valid and there are no new site conditions that could impact their validity. The 2006 ROD cleanup goals are based on the EPA MCLs and groundwater cleanup target levels (GCTLs) and soil cleanup target levels (SCTLs) as established by the State of Florida. Groundwater cleanup goals are still valid and soil cleanup goals are mostly still valid based on current toxicity and standards. As part of this FYR, the EPA completed a residential regional screening level (RSL) evaluation for current surface and subsurface soil cleanup goals. The evaluation found that except for DDD, the cleanup goals for surface and subsurface soils are within or below the EPA's risk management range of 1×10^{-6} to 1×10^{-4} and below the noncancer hazard quotient (HQ) of 1.0 for residential uses. The EPA should evaluate whether the cleanup goals for DDD in surface and subsurface soils need to be updated based on a residential use scenario, or if residential land use restrictions may be needed. The Site is currently used for commercial/industrial purposes and the cleanup goals for DDD in surface and subsurface soils are within or below the EPA's risk management range of 1 x 10^{-6} to 1 x 10^{-4} and below the noncancer HQ of 1.0 for commercial/industrial uses. Appendix K contains a detailed toxicity review and Appendix J contains a detailed ARARs review. Exposure assumptions identified in the 2006 ROD have not changed as there is no access to contaminated site groundwater. However, to be protective in the long term, the EPA should evaluate if additional layers of institutional controls are needed to prevent site groundwater use.

Due to the presence of VOCs in surficial groundwater and an auto body shop operating on the Site, a screening-level vapor intrusion evaluation was conducted (Appendix K). The evaluation used the most current maximum concentrations of VOCs onsite. The analysis demonstrates that the vapor intrusion pathway for industrial/commercial land uses is not an exposure pathway of concern based on current concentrations detected at the Site. If the concentrations increase near this building, then this exposure pathway should be re-evaluated.

While 1,1,1-trichlorethane (1,1,1-TCA) was not an identified COC at the Site, the OU1 1986 RI/FS identified past manufacturing actions that included dipping the tails of plastic worms in a powdered dye and 1,1,1-TCA solution. Historically, 1,4-dioxane was used as a stabilizer for 1,1,1-TCA. Because early site investigations did not sample for 1,4-dioxane, EPA should sample for 1,4-dioxane to make sure it is not present in site media and take additional action if necessary.

QUESTION C: Has any other information come to light that could call into question the protectiveness of the remedy?

Hurricane Irma hit the Clermont/Orlando area in September 2017. The owners of the commercial and RV storage business replaced the electronic gate unlocking system as a result, but reported no other damage.

VI. ISSUES/RECOMMENDATIONS

Issues/Recommendations

OUs without Issues/Recommendations Identified in the FYR:

OU1, OU2

Issues and Recommendations Identified in the FYR:

OU: OU3 Issue Category: Institutional Controls				
• •	Issue: The Site lies within a Florida Delineated Contamination Area, which restricts well placement; however, institutional controls may be needed to restrict use of contaminated site groundwater.			
	Recommendation: Evaluate whether to implement an MOA between the EPA and SJRWMD to prevent access to contaminated groundwater until it is fully remediated.			
Affect Current Protectiveness	Affect Future Protectiveness	Party Responsible	Oversight Party	Milestone Date
No	Yes	ЕРА	EPA	11/30/2019

OU: OU3	Issue Category: Re	Issue Category: Remedy Performance		
Issue: The ROD selected ISCO in combination with MNA for resubsurface soil and groundwater contamination, but the EPA has method is no longer an appropriate remedy for remaining subsurfacentamination.				has determined this
· _ ·	and groundwater co	ntamination. Determ	nt a remedy for remain ine if institutional cor ate decision document	ntrols are necessary.
Affect Current Protectiveness	Affect FuturePartyOversight PartyMilestone DateProtectivenessResponsible			
No	Yes EPA EPA 10/30/2019			

OU: OU3	Issue Category: R	Issue Category: Remedy Performance			
	Issue: Contamination above cleanup goals may still be present and bioavailable in wetland sediments.				
, .	Recommendation: Evaluate bioavailability of wetland sediment exceedances and determine if additional response actions, including institutional controls, are needed.				
Affect Current Protectiveness	Affect Future Party Oversight Party Milestone Da Protectiveness Responsible				
No	Yes EPA EPA 11/30/2021				

OU: OU3	Issue Category: Re	Issue Category: Remedy Performance			
	Issue: An RSL evaluation found that the surface and subsurface cleanup goals fo DDD are above the EPA's noncancer HQ of 1.0.				
	Recommendation: Evaluate whether the cleanup goals for DDD in surface and subsurface soils should be updated or if institutional controls are needed to restrict residential use of the Site.				
Affect Current Protectiveness	Affect FuturePartyOversight PartyMilestone DateProtectivenessResponsible			Milestone Date	
No	Yes EPA EPA 11/30/2021				

OU: OU3	Issue Category: Remedy Performance				
	Issue: As stated in the 1986 RI/FS, 1,1,1-TCA was used in a solution during past manufacturing activities at the Site.				
Recommendation: Sample for 1,4-dioxane, determine if it is present i media and take additional action if necessary.			present in site		
Affect Current Protectiveness	Affect FuturePartyOversight PartyMilestoneProtectivenessResponsible			Milestone Date	
No	Yes EPA EPA 11/30/2021				

OTHER FINDINGS

One additional recommendation was identified during the FYR. This recommendation does not affect current and/or future protectiveness.

• Lock and secure all unlocked monitoring wells.

VII. PROTECTIVENESS STATEMENTS

	Protectiveness Statement
<i>Operable Unit:</i> OU1	Protectiveness Determination: Protective
Protectiveness Statem wide OU3 remedy.	ent: The OU1 remedy was never implemented and has been replaced by the site-

	Protectiveness Statement
<i>Operable Unit:</i> OU2	Protectiveness Determination: Protective
Protectiveness Statem	ent: The OU2 interim remedy for the Site's potable groundwater currently

Protectiveness Statement: The OU2 interim remedy for the Site's potable groundwater currently protects human health and the environment because potentially affected residences were connected to the public water supply system and all private wells are outside the current DCBP plume boundary.

Protectiveness Statement

Operable Unit: OU3

Protectiveness Determination: Will be Protective

Protectiveness Statement: The OU3 remedy is expected to be protective of human health and the environment upon completion. In the interim, remedial activities completed to date have adequately addressed all current exposure pathways that could result in unacceptable risks, as contaminated surface soils and selected subsurface soils have been removed to 12 feet and most affected residences have been connected to the public water supply. The two residences that share a well that is not connected to the public water supply. The two residences that share a well that is not connected to the public water supply system are upgradient the Site and are aware and responsible for maintaining the filters on the well. DCBP concentrations at all private wells are several orders of magnitude below the

groundwater cleanup goal. The owners of the private well nearest the DCBP plume are connected to the public water supply. The Site lies within a Florida Delineated Contamination Area, which restricts well placement, but institutional controls to restrict groundwater use may be needed. The EPA should evaluate the need for an MOA between the EPA and SJRWMD to prevent access to contaminated groundwater until it is fully remediated. The EPA should select and implement a remedy for remaining subsurface soil and groundwater contamination and determine if institutional controls are necessary. The EPA should modify this remedy through an appropriate decision document. Bioavailability of wetland sediment exceedances should be evaluated to determine if additional response actions, including institutional controls, are needed. The EPA should evaluate whether the cleanup goals for DDD in surface and subsurface soils should be updated or if institutional controls are needed to restrict residential use. The EPA should sample for 1,4-dioxane, determine if it is present in site media and take additional action if necessary.

VIII. NEXT REVIEW

The next FYR Report for the Tower Chemical Co. Superfund site is required five years from the completion date of this review.

APPENDIX A – REFERENCE LIST

Annual Wetland Restoration Monitoring Report, Tower Chemical Company Superfund Site, Clermont, Florida. Prepared by Black & Veatch for EPA Region 4. November 2013.

Five-Year Review Report, Tower Chemical Company Superfund Site, Clermont, Florida. EPA Region 4. April 18, 2013.

In Situ Solidification/Stabilization Treatability Study Report, Tower Chemical Company Superfund Site, Clermont, Florida. Prepared by Geosyntec Consultants for EPA Region 4. June 2017.

Interim Action Record of Decision, OU2, Tower Chemical Company Superfund Site, Clermont, Florida. EPA Region 4. August 23, 2000.-

Record of Decision, OU1, Tower Chemical Company Superfund Site, Clermont, Florida. EPA Region 4. July 9, 1987.

Record of Decision, OU3, Tower Chemical Company Superfund Site, Clermont, Florida. EPA Region 4. September 14, 2006.

Remedial Action Report, OU3, Tower Chemical Company Superfund Site, Clermont, Florida. Prepared by Black & Veatch for EPA Region 4. November 2013.

Remedial Design Data Evaluation Report, Tower Chemical Company Superfund Site, Clermont, Florida. Prepared by Black &Veatch for EPA Region 4. September 2015.

Remedial Design Investigation Report, Tower Chemical Company Superfund Site, Clermont, Florida. Prepared by Geosyntec Consultants for EPA Region 4. March 2017.

Remedial Investigation/Feasibility Study, OU1, Tower Chemical Company Superfund Site, Clermont, Florida. EPA Region 4. December 1986.

Revised Final Supplemental Remedial Investigation/Feasibility Study, Tower Chemical Company Superfund Site, Clermont, Florida. EPA Region 4. April 17, 2006.

Technical Memorandum – Remedial Design Optimization Study, Tower Chemical Company Superfund Site, Clermont, Florida. Prepared by Black & Veatch for EPA Region 4. November 20, 2015.

APPENDIX B – CURRENT SITE STATUS

Environmental Indicators

- Current human exposures at the Site are under control.

- Current groundwater migration is not under control.

Are Necessary Institutional Controls in Place?

🗌 All 🔀 Some 🗌 None

Has EPA Designated the Site as Site-wide Ready for Anticipated Use?

🗌 Yes 🖾 No

		Has the Site Been Put into Reuse?
Yes 🗌 No	·	

APPENDIX C – SITE CHRONOLOGY

Table C-1: Site Chronology

Event	Date
TCC manufactured, produced and stored pesticides onsite	1957-1980
FDER discovered that acidic wastewater had reached Lake Apopka as a	May 1980
result of site activities	
The EPA conducted preliminary site assessment	May 1, 1980
The EPA proposed the Site for listing on the NPL	December 30, 1982
The EPA and TCC signed Unilateral Administrative Order for first	June 9, 1983
emergency removal action	
The EPA began first emergency removal action	June 27, 1983
The EPA completed first emergency removal action	July 16, 1983
The EPA finalized the Site on the NPL	September 8, 1983
The EPA began the RI/FS for OUI	March 30, 1984
The EPA conducted site inspection	June 1, 1984
The EPA completed the RI/FS for OU1 and signed the ROD for OU1	July 9, 1987
The EPA and TCC signed Consent Decree to begin remedial design for	October 26, 1987
OUI	
The EPA began remedial design for OU1	November 20, 1987
The EPA began second emergency removal action	February 8, 1988
The EPA completed second emergency removal action	July 13, 1990
The EPA completed second energency removal detail	August 17, 1990
The EPA performed post-remedial design for 001	August 17, 1990 August 1991
deferred OU1 remedy	August 1991
The EPA began RI/FS for OU2	March 22, 1994
The EPA completed RI/FS for OU2	June 22, 1994
The EPA signed IROD for OU2	August 23, 2000
The EPA released Final Supplemental RI Report for OU2	
	August 23, 2001
The EPA began the remedial design for OU2	August 1, 2002
The EPA completed the remedial design and began the remedial action for OU2	September 27, 2002
	August 21, 2002
The EPA completed the remedial action for OU2	August 21, 2003
The EPA began the RI/FS for OU3	October 2, 2003
The EPA completed the RI/FS and signed the ROD for OU3	September 14, 2006
The EPA began the first remedial design component for OU3 (surface	September 27, 2006
soils, selected subsurface soils and sediment contamination)	
The EPA signed Administrative Consent Agreement for OU3	April 4, 2007
The EPA issued first FYR	March 11, 2008
The EPA began first remedial action component for OU3 (surface soils,	October 28, 2009
selected subsurface soils and sediment contamination)	
The EPA completed first remedial design component for OU3	February 2010
The EPA completed part of remedial action for OU3 (residences adjacent	May 2010
to the Site, previously on carbon systems, were connected to city of	
Clermont public water)	
The EPA began remedial design for second component of OU3	2011
(remaining contaminated subsurface soils and groundwater)	
The EPA completed first remedial action component for OU3	February 2012
The EPA issued the second FYR	April 18, 2013
The EPA issued Remedial Design Investigation Report for second	March 2017
component of OU3	
The EPA completed Treatability Study report for second component of	June 2017
OU3	

APPENDIX D – ADDITIONAL SITE BACKGROUND

Basis for Taking Action

The EPA completed the OU1 RI/FS in July 1987. Post-remedial design sampling found that there were significantly lower concentrations of soil contaminants than originally found in the RI/FS and cancelled the remedy implementation under OU1. The EPA completed the OU2 RI/FS in June 1999 and an OU2 supplemental RI in August 2001. The EPA decided to address immediate risk posed by offsite migration of site-related groundwater contaminants through an interim remedy (known as OU2). The EPA completed the OU2 RI/FS in June 1999 and an OU2 supplemental RI in August 2001. Subsurface soil data from the OU2 RI/FS in June 1999 and an OU2 supplemental RI in August 2001. Subsurface soil data from the OU2 RI indicated considerably more soil contaminated with VOCs, SVOCs, and pesticides and their degradation products than identified in the OU1 RI/FS. The OU2 supplemental RI determined that the surficial and Floridan aquifers were contaminated with VOCs, SVOCs and 4,4'- DCBP. Most of the compounds were in surficial aquifer monitoring wells near the former wastewater pond. The OU2 human health risk assessment concluded that the Site poses negligible ecological risk.

Response Actions

<u>OU1</u>

The EPA issued the OU1 Record of Decision (ROD) on July 9, 1987. It addressed contamination in soils, the surficial aquifer, surface water and sediment. In August 1991, post-remedial design samples indicated considerably lower concentrations of dicofol, the most toxic soil contaminant. The degradation product DCBP was found to have replaced dicofol as the soil contaminant of greatest concern. Based on these results, the EPA halted plans to remediate the Site pending further evaluation of data.

<u>OU2</u>

The EPA issued the OU2 IROD on August 23, 2000. Onsite and offsite groundwater sampling indicated that site-related contaminants including DCBP had migrated into the Floridan aquifer, which serves as the local water supply. The RAO established in the 2000 IROD was to minimize the risk posed by offsite migration of site-related groundwater contaminants through either the extension of a line from an alternate water supply or by implementing wellhead treatment of the potable water wells located in the immediate vicinity of the Site and drawing water from the Floridan aquifer.

The selected interim remedy included the following remedial activities:

- Potable well survey to identify well owners in the immediate vicinity of the Site who would like their wells to be outfitted with carbon absorption units.
- Installation of carbon units on six potable water wells located in the immediate vicinity of the Site.
- Groundwater monitoring to ensure that the carbon units are effectively removing organic compounds to below the cleanup goals and to confirm that the Floridan aquifer groundwater plume has not migrated beyond its current boundaries.

Response Actions

OU1

The EPA completed the remedial design for OU1 in August 1990. The EPA replaced one residential well in August 1991. Later that month, the EPA halted OU1 remedy implementation due to significantly lower concentrations of soil contaminants found during pre-excavation confirmation sampling.

OU2

The EPA began the remedial design for OU2 on August 1, 2002, and completed it on September 27, 2002. The remedial action included carbon filter installation with continued maintenance and groundwater monitoring. In January 2003, the EPA installed in-line carbon filtration systems on potable wells at six residences near the Site. Sampling of these wells in 2005 found no site-related contaminants. The wells were again monitored in October 2007, April 2009, and June 2011. One well slightly exceeded the cleanup goals for arsenic and cadmium in October 2007. In June 2011, one well exceeded the cleanup goal for lead and arsenic. However, the well had to be accessed through the wellhead fittings, which may have impacted the sample, as historical samples were below the cleanup goal.

APPENDIX E – PRESS NOTICE

The U.S. Environmental Protection Agency, Region 4 Announces the Third Five-Year Review for The Tower Chemical Co. Superfund Site, Clermont, Lake County, Florida

Purpose/Objective: EPA is conducting a Five-Year Review of the remedy for the Tower Chemical Co. Superfund site (the Site) in Clermont, Florida. The purpose of the Five-Year Review is to make sure the selected cleanup actions effectively protect human health and the environment.

Site Background: The 17-acre Site is located on County Road 455 in Clermont, Florida. From 1957 until 1980, the Tower Chemical Company (TCC) operated a pesticide manufacturing facility at the site. Wastewater from site operations was discharged to an onsite, unlined wastewater pond. Acidic wastewater was also disposed of on a spray irrigation field offsite, southwest of the wastewater pond. TCC also used a 1.5-acre burn area to dispose of solid chemical wastes through burning and burial of these wastes. In May 1980, the wastewater pond overflowed into an adjacent swamp and entered the unnamed stream west of the Site. The Florida Department of Environmental Protection (FDEP) discovered that acidic wastewater had reached Lake Apopka and reported that TCC discharges had caused defoliation at the spray irrigation field area. These incidents led FDEP to investigate the Site. As a result of these investigations, EPA listed the Site on the National Priorities List (NPL) in September 1983. Major contaminants at the Site included dichloro-diphenyl-trichloroethane (DDT), xylene, ethylbenzene, metals and semi-volatile organic compounds (SVOCs) in groundwater, DDT and its breakdown products in surface water, and volatile organic compounds (VOCs), SVOCs and pesticides in site soils and sediments.

Cleanup Actions: EPA designated three operable units (OUs) to address the Site's soil, sediment, groundwater and surface water contamination. EPA selected the remedy to treat soil, sediment, groundwater and surface water contamination in the Site's 1986 Record of Decision (ROD). During pre-cleanup sampling, EPA found considerably less contamination than anticipated and therefore decided not to carry out the cleanup plan. EPA selected an interim remedy to treat off-site groundwater contamination in the 2000 Interim Record of Decision (IROD). It included installation of carbon well filters, well filter maintenance and groundwater monitoring. EPA selected the final, site-wide remedy in the 2006 ROD, which replaced the OU1 cleanup plan. It included excavation of contaminated soils and sediments, in-situ treatment of remaining soil contamination, treatment of groundwater via bioaugmentation, connecting residents to the public water supply, implementation of temporary institutional controls, and groundwater monitoring.

Five-Year Review Schedule: The National Contingency Plan requires review of remedial actions that result in any hazardous substances, pollutants or contaminants remaining at the Site above levels that allow for unlimited use and unrestricted exposure every five years to ensure the protection of human health and the environment. The Third of the Five-Year Reviews for the Site will be completed by April 2018.

EPA Invites Community Participation in the Five-Year Review Process: EPA is conducting this Five-Year Review to evaluate the effectiveness of the Site's remedy and to ensure that the remedy remains protective of human health and the environment. As part of the Five-Year Review process, EPA staff is available to answer any questions about the Site. Community members who have questions about the Site or the Five-Year Review process, or who would like to participate in a community interview, are asked to contact:

Karl Wilson, EPA Remedial Project Manager Phone: (404) 562-9295 Email: <u>wilison.karl@epa.gov</u> L'Tonya Spencer, EPA Community Involvement Coordinator Phone: (404) 562-8463 | (800) 241-1754 (toll-free) Email: <u>spencer.latonya@epa.gov</u>

Mailing Address: U.S. EPA Region 4, 61 Forsyth Street, S.W., 11th Floor, Atlanta, GA 30303-8960

Additional information is available at the Site's local document repository, located at Cooper Memorial Library, 2525 Oakley Seaver Drive Clermont, FL 34711 and online at: <u>https://cumulis.epa.gov/supercpad/cursites/csitinfo.cfm?id=0400521</u>.

APPENDIX F – INTERVIEW FORMS

Tower Chemical Co. Superfund Site		Five-Year Review Interview Form	
Site Name: <u>Tower</u>	Chemical Co.	EPA ID No.:	FLD004065546
Interviewer Name:	Karl Wilson	Affiliation:	EPA
Subject Name:	Resident 1		N/A
Subject Contact		•	
Information:	<u>N/A</u>		
Time: <u>11:00 am</u>		Date: 09/27/2	<u>017</u>
Interview	<u>Resident's front door</u>		
Location:			
Interview Format (circle one): (In Person)		Phone Mai	il Other:

Interview Category: Residents

1. Are you aware of the former environmental issues at the Site and the cleanup activities that have taken place to date?

Yes.

2. What is your overall impression of the project, including cleanup, maintenance and reuse activities (as appropriate)?

It's been fine. They've done well testing and put us on city water.

3. What have been the effects of this Site on the surrounding community, if any?

None.

4. Have there been any problems with unusual or unexpected activities at the Site, such as emergency response, vandalism or trespassing?

No.

5. Has EPA kept involved parties and surrounding neighbors informed of activities at the Site? How can EPA best provide site-related information in the future?

No, they haven't. A phone call would be fine.

6. Do you own a private well in addition to or instead of accessing city/municipal water supplies? If so, for what purpose(s) is your private well used?

No, we're on city water.

7. Do you have any comments, suggestions or recommendations regarding any aspects of the project? *No.*

Tower Chemical Co. Superfund Site		Five-Year Review Interview Form	
Site Name: <u>Tower</u>	· Chemical Co.	EPA ID No.: <u>FLD004065546</u>	
Interviewer Name:	Karl Wilson	Affiliation: <u>EPA</u>	
Subject Name:	<u>Nearby Business 1</u>	Affiliation: <u>N/A</u>	
Subject Contact			
Information:	<u>N/A</u>	·	
Time: <u>10:30 am</u>		Date: 09/27/2017	
Interview	Business location		
Location:			
Interview Format (c	ircle one): (In Person)	Phone Mail Other:	
Interview Category:	Residents		

1. Are you aware of the former environmental issues at the Site and the cleanup activities that have taken place to date?

Yes.

2. What is your overall impression of the project, including cleanup, maintenance and reuse activities (as appropriate)?

It's a great thing.

3. What have been the effects of this Site on the surrounding community, if any?

No effects.

4. Have there been any problems with unusual or unexpected activities at the Site, such as emergency response, vandalism or trespassing?

No.

5. Has EPA kept involved parties and surrounding neighbors informed of activities at the Site? How can EPA best provide site-related information in the future?

Yes. I don't know honestly.

6. Do you own a private well in addition to or instead of accessing city/municipal water supplies? If so, for what purpose(s) is your private well used?

We're on city water. Most people around here are.

7. Do you have any comments, suggestions or recommendations regarding any aspects of the project?

No.

Tower Chemical Co. Superfund Site		Five-Year Review Interview Form	
Site Name: <u>Tower</u>	Chemical Co.	EPA ID No.:	FLD004065546
Interviewer Name:	<u>Karl Wilson</u>	Affiliation:	<u>EPA</u>
Subject Name:	Nearby Business 2	Affiliation:	N/A
Subject Contact			
Information:	<u>N/A</u>		
Time: <u>10:45 am</u>		Date: 09/27/	/2017
Interview	Business front yard		
Location:			
Interview Format (c	ircle one): (In Person)	Phone M	ail Other:
Interview Category:	Residents		

1. Are you aware of the former environmental issues at the Site and the cleanup activities that have taken place to date?

Yes, I am.

2. What is your overall impression of the project, including cleanup, maintenance and reuse activities (as appropriate)?

They did a good job. No problems.

3. What have been the effects of this Site on the surrounding community, if any?

We don't drink water – we use city water.

4. Have there been any problems with unusual or unexpected activities at the Site, such as emergency response, vandalism or trespassing?

No.

- 5. Has EPA kept involved parties and surrounding neighbors informed of activities at the Site? How can EPA best provide site-related information in the future?
 - They test all the wells often, so we see them, but don't usually talk. They can call us.
- 6. Do you own a private well in addition to or instead of accessing city/municipal water supplies? If so, for what purpose(s) is your private well used?

Yes, we do. We don't use it normally, but we will use it when there's a hurricane or to wash cars.

7. Do you have any comments, suggestions or recommendations regarding any aspects of the project?

No, everything's good.

APPENDIX G – SITE INSPECTION CHECKLIST

FIVE-YEAR REVIEW SITE INSPECTION CHECKLIST

I. SITE INFORMATION					
Site Name: Tower Chemical Co.	Date of Inspection: 9/27/2017				
Location and Region: Clermont, Florida 4	EPA ID: FLD004065546				
Agency, Office or Company Leading the Five-Year Review: <u>EPA</u>	Weather/Temperature: <u>Sunny/80s</u>				
Remedy Includes: (Check all that apply) Landfill cover/containment Monitored natural attenuation Access controls Groundwater containment Institutional controls Vertical barrier walls Groundwater pump and treatment Surface water collection and treatment Other: Surface soil and sediment excavation with offsite disposal and in-situ biodegredation and treatment with possible physical/chemical treatment enhancements.					
	Site map attached				
	(check all that apply)				
1. O&M Site Manager Name Interviewed at site at office by phone P Problems, suggestions Report attached:	Title Date Phone:				
 2. O&M Staff Name Title Date Interviewed at site at office by phone Phone:					
Name Pro	emedial oject Date Phone No. anager tle				
Name Sp	<u>vvironmental</u> <u>becialist 111</u> Date Phone No. tle				
Agency Contact Name Tit Problems/suggestions [] Report attached:	tle Date Phone No.				
Agency Contact Name Tit	tle Date Phone No.				

	Problems/suggestions Report attached:			<u> </u>	·
	Agency Contact Name Problems/suggestions [] Rep		Date	Phone No.	
4	Other Interviews (optional)	Report attached:			
			·	<u> </u>	
 1.	O&M Documents	MENTS AND RECO	ORDS VERIFIED (chec	k all that apply)	
1 '.		Readily available	Up to date	ו 🛛	J/A
	— .	Readily available	Up to date	יובט זו⊠	
		Readily available		י ב ז 🛛	
	Remarks:				
2.	Site-Specific Health and Sa	afety Plan	Readily available	Up to date	⊠ N/A
	Contingency plan/emerge	ency response plan	Readily available	Up to date	🖾 N/A
<u> </u>	Remarks:				
3.	O&M and OSHA Training	g Records	Readily available	Up to date	🛛 N/A
	Remarks:		·		
4.	Permits and Service Agree	ements			
	Air discharge permit		Readily available	Up to date	\square N/A
	Effluent discharge		Readily available	Up to date	\boxtimes N/A
ļ	Waste disposal, POTW		Readily available	Up to date	\square N/A
	Other permits:		Readily available	Up to date	🖾 N/A
5.	Gas Generation Records		Readily available	Up to date	 N/A
J.	Remarks:				
6.	Settlement Monument Rec	ords	Readily available	Up to date	
0.	Remarks:				
7.	Groundwater Monitoring		Readily available	Up to date	
	Remarks:		•		
8.	Leachate Extraction Reco	· · · ·	Readily available	Up to date	🛛 N/A
	Remarks:		-	-	
9.	Discharge Compliance Rec		<u> </u>		
ļ	🗋 Air	🗌 Readily available	Up to date	ז 🛛	N/A
	Water (effluent)	Readily available	Up to date	ז 🛛	√A

	Remarks:			
10.	Daily Access/Sec	urity Logs	Readily available	Up to date 🛛 N/A
	Remarks:			· ·
		IV. O	&M COSTS	
1.	O&M Organizat	lion		
	State in-house		Contractor for state	
1	PRP in-house		Contractor for PRP	
	Federal facility	y in-house	Contractor for Federa	ll facility
	No formal O&	M at Site yet.		
2.	O&M Cost Reco	rds		
	🗌 Readily availa	ble	Up to date	
	Funding mech	anism/agreement in place	🔲 Unavailable	
	Original O&M co	st estimate: 🔲 Bre	akdown attached	
		Total annual cost by	year for review period if ava	ilable
	From:	То:		Breakdown attached
	Date	Date	Total cost	
	From:	То:		Breakdown attached
	Date	Date	Total cost	
	From:	То:		Breakdown attached
	Date	Date	Total cost	
	From:	То:		Breakdown attached
	Date	Date	Total cost	•
	From:	To:		Breakdown attached
<u> </u>	Date	Date	Total cost	
3.	-		osts during Review Period	
	Describe costs and			
			AL CONTROLS 🛛 Applic	
A. Fe		57 J		
Í.	Fencing Damaged Remarks: <u>No dama</u>	— .	n on site map 🛛 🖾 Gates se	cured 🗌 N/A
B. Ot	ther Access Restriction	<u> </u>		
1.	Signs and Other S	ecurity Measures	Location shown	on site map N/A
	Remarks: Signs po	sted along fenceline indica	ting no trespassing allowed.	
C. In	stitutional Controls (ICs)		

1.	Implementation and Enforcement		
	Site conditions imply ICs not properly implemented	🗌 Yes	🛛 No 🗌 N/A
	Site conditions imply ICs not being fully enforced	Yes	No ⊠ N/A
	Type of monitoring (e.g., self-reporting, drive by):		
	Frequency:		
	Responsible party/agency:		
	Contact		
	Name Title	Date	Phone no.
	Reporting is up to date	🗌 Yes	□ No
	Reports are verified by the lead agency	🗌 Yes	□ No
	Specific requirements in deed or decision documents have been met	🗌 Yes	🛛 No 🗌 N/A
	Violations have been reported	🗌 Yes	🗌 No 🛛 N/A
	Other problems or suggestions: Report attached		
2.	Adequacy ICs are adequate ICs are inac	lequate	 N/A
	Remarks: Site is currently within a Florida Groundwater Delineated A		
	institutional controls might be needed to restrict excavation of contam on what is selected as the final remedy for remaining contamination. T		
	currently engaged in the process of forming a MOU to restrict access		
D.	General		
1.	Vandalism/Trespassing 🔲 Location shown on site map 🛛 🕅	o vandalism	n evident
	Remarks:		
2.	Land Use Changes On Site		
	Remarks: Charlie's Auto Care has begun to operate onsite.		
3.	Land Use Changes Off Site		· ·
	Remarks:		
	VI. GENERAL SITE CONDITIONS		
A .	Roads Applicable N/A		
1.	Roads Damaged Location shown on site map Ro	ads adequa	te 🗌 N/A
	Remarks:	-	_
B .	Other Site Conditions		
<u> </u>	Remarks:		
	VII. LANDFILL COVERS Applicable	⊠ N/A	
A.	Landfill Surface		
<u>├</u> ─	Benches Applicable N/A		
	(Horizontally constructed mounds of earth placed across a steep landfi	Il side slone	e to interrupt the slope in
	order to slow down the velocity of surface runoff and intercept and co		
C.	Letdown Channels Applicable N/A		
	(Channel lined with erosion control mats, riprap, grout bags or gabion slope of the cover and will allow the runoff water collected by the ben		

cover without creating erosion gullies.)
D. Cover Penetrations
E. Gas Collection and Treatment Applicable N/A
F. Cover Drainage Layer Applicable N/A
G. Detention/Sedimentation Ponds
H. Retaining Walls
I. Perimeter Ditches/Off-Site Discharge
VIII. VERTICAL BARRIER WALLS Applicable N/A
IX. GROUNDWATER/SURFACE WATER REMEDIES 🛛 Applicable 🗌 N/A
A. Groundwater Extraction Wells, Pumps and Pipelines Applicable N/A
B. Surface Water Collection Structures, Pumps and Pipelines 🛛 Applicable 🗌 N/A
1. Collection Structures, Pumps and Electrical
Good condition Deeds maintenance
Remarks: Swales and drainages in good condition downgradient of former wastewater flow area.
2. Surface Water Collection System Pipelines, Valves, Valve Boxes and Other Appurtenances
Good condition Needs maintenance
Remarks:
3. Spare Parts and Equipment
Readily available Good condition Requires upgrade Needs to be provided
Remarks:
C. Treatment System Applicable X N/A
D. Monitoring Data
1. Monitoring Data
Is of acceptable quality
2. Monitoring Data Suggests:
Groundwater plume is effectively contained Contaminant concentrations are declining
E. Monitored Natural Attenuation 1. Monitoring Wells (natural attenuation remedy)
Properly secured/locked Functioning Routinely sampled Good condition
All required wells located INeeds maintenance IN/A
Remarks:
X. OTHER REMEDIES
If there are remedies applied at the site and not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.
XI. OVERALL OBSERVATIONS
A. Implementation of the Remedy
Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is designed to accomplish (e.g., to contain contaminant
plume, minimize infiltration and gas emissions). The purpose of the remedy is to protect human health and the environment from exposure to contaminated
The purpose of the remedy is to protect number health and the environment from exposule to containinated

	surface and subsurface soils, sediment and groundwater through direct exposure. The EPA has completed
	parts of the remedy, including installation of carbon well filters and subsequent water line extensions on
	affected residences and excavation of contaminated surface soils, selected subsurface soils and sediments.
ĺ	The EPA is currently evaluating options for treating remaining contaminated subsurface soils and
	groundwater. While the remedy is effectively fulfilling this purpose in the short term, institutional controls
	may be needed to restrict excavation activities and site groundwater use. There also may still be
	bioavailable contamination present in site wetland sediments.
B.	Adequacy of O&M
	Describe issues and observations related to the implementation and scope of O&M procedures. In
	particular, discuss their relationship to the current and long-term protectiveness of the remedy.
	There is no formal O&M at the Site. The EPA conducts monitoring activities as appropriate and has
	performed several pilot studies using bioaugmentation to treat contaminted subsurface soils and
_	groundwater. Several monitoring wells were noted to be unlocked and need to be locked in the future.
С.	Early Indicators of Potential Remedy Problems
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high
	frequency of unscheduled repairs that suggest that the protectiveness of the remedy may be compromised
	in the future.
	None identified.
D .	Opportunities for Optimization
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.
	None identified.

Site Inspection Team:

Karl Wilson, EPA Kevin McCranie, FDEP Amanda Goyne, Skeo Brice Robertson, Skeo


APPENDIX H – SITE INSPECTION PHOTOS

Gate entrance to commercial and RV storage area

Auto body shop onsite


Looking east across former burn/burial area

Looking south to commercial and RV storage area

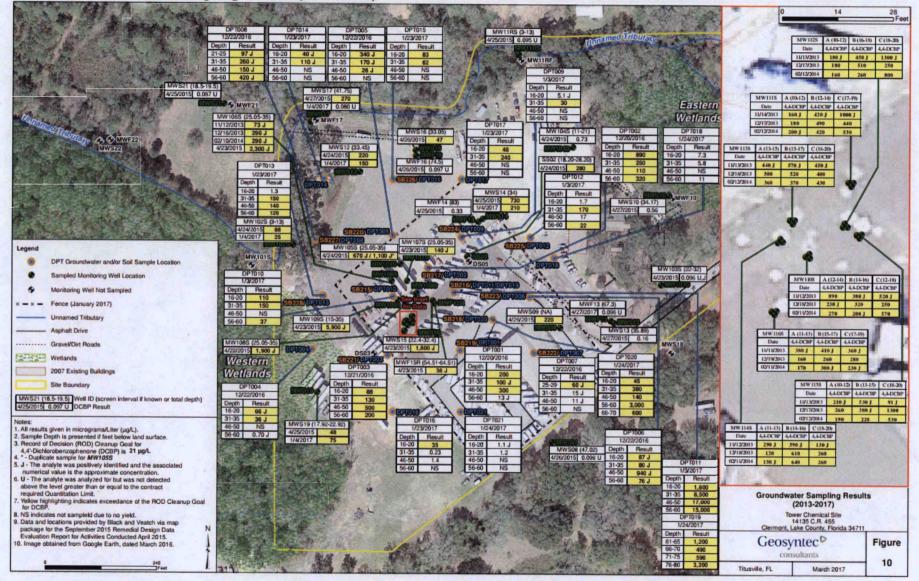
Looking southwest from relict sinkhole area with flush-mounted monitoring wells visible

Commercial and RV storage business onsite

Unlocked monitoring well MWS-21

Inactive carbon filtration system on private well (now used for non-potable purposes)

Non-potable water sign on residential tap north of the Site


Entrance signs to businesses onsite

Eastern wetland area

APPENDIX I – DATA FIGURES & TABLES

Figure I-1: Groundwater Sampling Results (2013-2017)

Table I-1: DPT Groundwater Analytical Results

	Depth		Concentration (µg/L)		
Location	(ft BLS)	Date	4,4'-dichlorobenzophenone (DCBP)	Dicofol	
Gro	undwater R	OD Goals	21	0.08	
	16-20	TOTAL PROPERTY.	200	0.080 U	
DETAGL	31-35	Innonous	100 J	0.080 U	
DPT001	46-50	12/20/2016	300	0.080 U	
	56-60	ALCONTANT AND	13 J	0.080 U J	
1 1 1 1	16-20		890	0.079 U	
DPT002	31-35	12000016	250	0.08 U	
DF 1002	46-50	12/20/2016	110	0.08 U	
	56-60		320	0.080 U	
1. 194	16-20	a second second	88	0.079 U	
DPT003	31-35	12/21/2016	130	0.080 U	
011003	46-50	12/21/2016	500	0.080 U	
and and	56-60	Marsh Land	200	0.080 U	
CARLEN IN	16-20		66 J	0.080 U J	
DPT004	31-35	12/22/2016	36 J	0.079 U J	
	56-60		0.70 J	0.080 U J	
	16-20		340 J	0.080 U J	
DPT005	31-35	12/22/2016	170 J	0.080 U J	
121-14	56-60		26 J	0.079 U J	
Contraction of	16-20	12/22/2016	87 J	0.080 U J	
DPT006	31-35		80 J	0.080 U J	
011000	46-50		940 J	0.080 U J	
Sec. 12	56-60	N 4 F 4 32	76 J	0.080 U J	
	25-29	12/22/2016	60 J	0.080 U J	
DPT007	31-35		15 J	0.080 U J	
. M. E. M	46-50		11 J	0.080 U J	
	21-25		97 J	0.080 U J	
DPT008	31-35	12/22/2016	260 J	0.080 U J	
51 1005	46-50	12/22/2010	150 J	0.080 U J	
STALL N	56-60		420 J	0.080 U J	
DPT009	16-20	01/03/2017	5.1 J	0.080 U J	
	31-35	orrest Lorr	30	0.080 U	
	16-20	ST.	110	0.080 U	
OPT010	31-35	01/03/2017	150	0.080 U	
A THE L	56-60	AND THE R.	37	0.08	
19 19 A	16-20		1,600	1.1 J	
	31-35	01/03/2017	8,500	3.8	
115,125	46-50	01103/2017	17,000	3.0	
OPT011/	56-60	Ess. Statist	15,000	5.5	
OPT019	61-65		1,200	80 U	
125 6 12	66-70	01/24/2017	490	16 U	
	71-75		590	20 U	
	76-80		3,200	160 U	
196 1977	16-20		1.7	0.52	
DPT012	31-35	01/03/2017	170	0.080 U	
	46-50	01/05/2017	17	0.080 U	
S. A.S.	56-60		22	0.72	

12.00	Douth		Concentration (µg/L)		
Location	Depth (ft BLS)	Date	4,4'-dichlorobenzophenone (DCBP)	Dicofol	
Gro	undwater F	ROD Goals	21	0.08	
5.44 M	16-20		1.3	0.080 U	
DPT013	31-35	01/23/2017	150	4.0 U	
DETOIS	46-50	01/25/2017	140	4.0 U	
235-125	56-60		120	4.0 U	
DPT014	16-20	01/23/2017	40 J	1.6 U	
DF 1014	31-35	01/23/2017	110 J	4.0 U	
DPT015	16-20	01/23/2017	83	3.2 U	
Di tois	31-35	01123/2017	62	1.6 U	
	16-20	01/23/2017	35	0.80 U	
DPT016	31-35		0.23	0.080 U	
10-14	46-50		1.4	0.080 U	
DPT017	16-20	01/23/2017	48	1.6 U	
DITOIT	31-35		240	8.0 U	
	16-20	Carry Strate	7.3	0.32 U	
DPT018	31-35	01/24/2017	5.8	0.32 U	
N. Stall	56-60		11	0.32 U	
DPT019	1000	12.2%2 32.19	See DPT011/DPT019	A STALL COME	
	16-20		45	1.6 U	
	31-35		380	16 U	
DPT020	46-50	01/24/2017	140	4.0 U	
	56-60		3,000	80 U	
121-110	66-70		600	16 U	
DPT021	16-20	01/24/2017	1.1 J	0.080 U	
DITUZI	31-35	1.2	0.080 U		

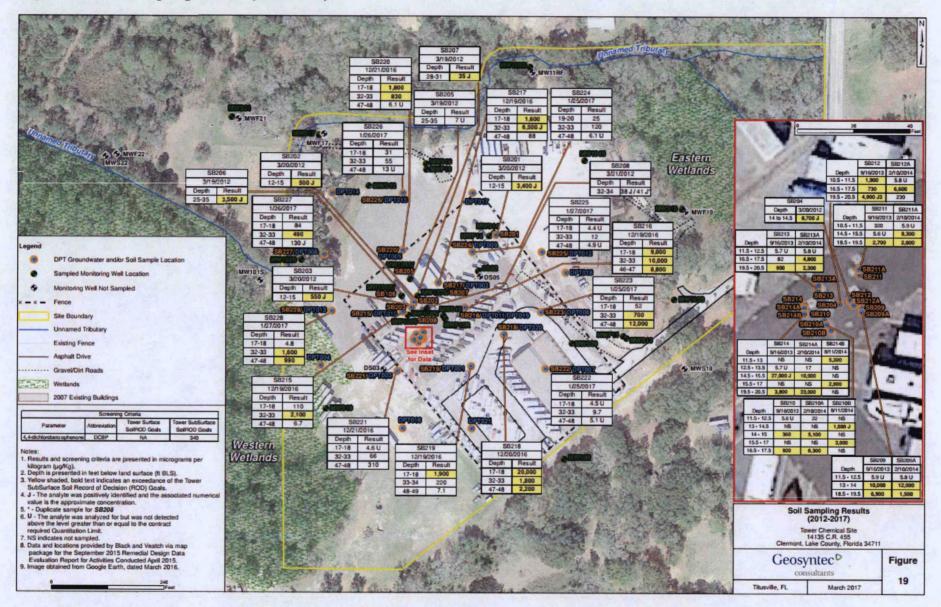
1. ft BLS - feet below land surface.

2. µg/L - micrograms per liter.

3. Indicates Exceedance of Record of Decision (ROD) Groundwater Goal.

 Indicates that the analyte was analyzed for but was not detected; however, the detection limit was above the ROD Goal.


5. Bold Type - Indicates exceedance of a ROD Goal.


6. U - The analyte was analyzed for, but was not detected above the level greater than or equal to

the Contract Required Quantitation Limit (CRQL).

7. J - estimated value; value may not be accurate.

 DPT011 and DPT019 are the same location; DPT011 samples from shallow depths, DPT019 samples from deeper depths

Table I-2: DPT Soil Analytical Results

	Depth		Concentration (µg/kg)	
Location	(ft BLS)	Date	4,4-dichlorobenzophenone (DCBP)	Dicofol
Sul	bsurface Soi	I ROD Goals		10
States and the	17-18	1.1.1.1.2.2.2	110	4.9 U J3
SB215	32-33	12/19/2016	2,100	4.8 U J3
	47-48	Same and	6.7	6.0 U J3
	17-18	1-2 - 3-24	9,000	10 U J3
SB216	32-33	12/19/2016	10,000	4.7 U J3
12 - 20 - E	46-47		8,800	4.8 U J3
1	17-18	12. 13. 19	1,600	9.3 U J3
SB217	32-33	12/19/2016	6,500 J3	4.6 U J3
Section P.	47-48		88	4.6 U J3
all and	17-18		20,000	18 U J 3
SB218	32-33	12/20/2016	1,800	9.4 U J3
201-1	47-48		2,200	19 U J 3
Star Part	17-18	2.18	1,900	19 U J 3
SB219	33-34	12/20/2016	220	5.6 U J3
D.M.S.	48-49	All and a second	7.1	6.2 U J3
and the second	17-18	1000	1,800	4.8 U J3
SB220	32-33	12/21/2016	830	22 U J 3
	47-48		6.1 U	6.1 U J3
	17-18	12/21/2016	4.6 U	4.6 U J3
SB221	32-33		66	5.0 U J3
N 312 3	47-48		310	17 U J3
the second	17-18		4.5 U	4.5 U J3
SB222	32-33	01/25/2017	9.7	4.9 U J3
1.2.2.2.2	47-48	1. 7/ 2. 12	5.1 U	5.1 U J3
	17-18	Sa Charles	52	5.0 U J3
SB223	32-33	01/25/2017	700	4.8 U J 3
	47-48		12.000	4.9 U J 3
	19-20	1	25	4.5 U J3
SB224	32-33	01/25/2017	120	5.2 U J3
Sec. 1	47-48	a second	6.1 U	6.1 U J3
enane	17-18	01/26/2017	4.4 U	4.4 U J3
SB225	32-33	01/27/2017	12	4.7 U J3
2012-012-0	47-48		4.9 U	4.9 U J3
enanc	17-18	0100000	31	4.9 U J3
SB226	32-33	01/26/2017	55	4.9 U J3
	47-48	100	13 U	13 U J 3
00000	17-18		84	4.3 U J3
SB227	32-33	01/26/2017	490	4.6 U J3
A CONTRACTOR	47-48		130 J3	4.3 U J3
enana	17-18		4.8	4.7 U J3
SB228	32-33	01/27/2017	1,600	4.5 U J 3
28. 14. 24	47-48	A Start Law	990	47 U

Notes:

1. ft BLS - feet below land surrface.

2. µg/kg - micrograms per kilogram.

- 3.
- Indicates Exceedance of Record of Decision (ROD) Subsurface Soil Goal.
 Indicates that the analyte was analyzed for but was not detected; however, the detection 4. limit was above the ROD Goal.
- 5. Bold Type Indicates exceedance of a ROD Goal.
- 6. U The analyte was analyzed for, but was not detected above the level greater than or equal to the Contract Required Quantitation Limit (CRQL).
- 7. J3 estimated value; valve may not be accurate, Spike recovery of relative percent difference outside of criteria.

APPENDIX J – DETAILED ARARS REVIEW TABLES

Groundwater ARARs

According to the 2006 ROD, cleanup goals for groundwater COCs were based on the lower of the National Primary Drinking Water Standards (40 CFR Part 141) and health-based GCTLs established by the FDEP under Florida Administrative Code (FAC) Chapter 62-777 (Table J-1). In the absence of a federal MCL or a health-based GCTL, the EPA calculated health-based cleanup goals for seven COCs: aluminum, copper, iron, manganese, chlorobenzoic acid, DCBP, and diphenyl methanone. This FYR compared current ARARs to ARARs specified in the 2006 ROD. As shown in Table J-1, the ARARs have not changed for any of the groundwater COCs nor have any new ARARs been established for the No ARAR Identified (NAI) COCs except for DCBP and copper. The current DCBP GCTL is 210 μ g/L, but site-specific considerations have established a more protective ROD cleanup goal of 21 μ g/L. The current MCL for copper is 1,300 μ g/L, which is the same as the current ROD cleanup goal.

Groundwater COC	2006 ROD ARAR (µg/L) ^a	Current ARAR (µg/L)	ARAR Change	
Acetone	6,300	6,300	No Change	
Benzene	1	5	Less Stringent	
alpha-BHC	0.006	0.006	No Change	
Bromodichloromethane	0.6	0.6	No Change	
Chlorobenzene	100	100	No Change	
Chlorobenzilate	0.1	0.1	No Change	
Chlorobenzoic acid	NAI ^b	NAI	No Change	
Chloroform	70	70	No Change	
l,4-Dichlorobenzene (para- Dichlorobenzene)	75	75	No Change	
DCBP	NAI	210	See Note c	
Dicofol	0.08	0.08	No Change	
Diphenyl methanone	NAI ^b	NAI	No Change	
Methylene chloride (dichloromethane)	5	5	No Change	
2-Methylnaphthalene	28	28	No Change	
3-Methylphenol	35	35	No Change	
4-Methylphenol	3.5	3.5	No Change	
Naphthalene	14	14	No Change	
1,2,3-Trimethylbenzene	10	10	No Change	
1,2,4-Trimethylbenzene	10	10	No Change	
1,3,5-Trimethylbenzene	10	10	No Change	
Aluminum	NAId	· NAI	No Change	
Arsenic	10	10	No Change	
Cadmium	5	5	No Change	

Table J-1: Previous and Current ARARs for Groundwater COCs

J-1

Groundwater COC	2006 ROD ARAR (µg/L) ^a	Current ARAR (µg/L)	ARAR Change
Chromium	100	100	No Change
Copper	NAI ^e	1,300	See Note e
Iron	NAI ^f	NAI	No Change
Lead	15.	15	No Change
Manganese	NAI ^g	NAI	No Change
Nickel	100	100	No Change
Vanadium	49	49	No Change

^a According to the ROD, the chemical-specific ARARs are the lower of National Primary Drinking Water Standards (40 CFR Part 141) available at <u>https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#seven</u> or Florida health-based Contaminant Cleanup Target Levels (FAC Chap 62-777).

^b The ROD did not identify a numerical ARAR for this COC. A health-based value of 1,400 µg/L was calculated in the absence of an established GCTL following 2005 Florida GCTL guidance.

^c The ROD did not identify a numerical ARAR for this COC. EPA calculated a health-based value of 21 μ g/L as the cleanup goal, which is more protective than the current Florida GCTL of 210 μ g/L.

^d The ROD did not select the GCTL for aluminum because the GCTL is a secondary MCL. The final cleanup goal was a health-based value of 7,000 µg/L calculated following 2005 Florida GCTL guidance.

^e The ROD did not select the GCTL for copper because the GCTL is a secondary MCL. The final cleanup goal was 1,300 μ g/L based on an EPA Office of Water MCL goal.

^f The ROD did not select the GCTL for iron because the GCTL is a secondary MCL. EPA developed a residential health-based level of 4,700 μ g/L based on a HQ of 1.

^g The ROD did not select the GCTL for manganese because the GCTL is a secondary MCL. EPA selected an EPA Office of Water lifetime drinking water health advisory of 300 µg/L as the cleanup goal.

Soil ARARs

The 2006 ROD identified the SCTLs in FAC Chapter 62-777, published April 17, 2005, as the ARARs for soil (Table J-2). The current cadmium SCTL for the protection of groundwater is 7.5 milligrams per kilogram (mg/kg). However, based on the site-specific leachability models, a more stringent level of 2.2 mg/kg was calculated to be the cleanup goal instead of the SCTL. The current DCBP SCTL for leachability is 25 mg/kg but site-specific considerations have established a more protective ROD cleanup goal of 0.34 mg/kg. As shown in Table J-2 below, the ARARs have not changed for any of the soil COCs since the 2006 ROD.

Table J-2: Previous and Current ARARs for Soil COCs

Soil COC	2006 ROD ARAR (mg/kg)	Current ARAR (mg/kg)	ARAR Change
Surface Soils (residential di	rect contact) (0 feet to groundwater) ^a		
alpha-BHC	0.1	0.1	No Change
Chlordane	2.8	2.8	No Change
4,4'-DDD	4.2	4.2	No Change
4,4'-DDE	2.9	2.9	No Change
4,4'-DDT	2.9	2.9	No Change
Dieldrin	0.06	0.06	No Change
Toxaphene	0.9	0.9	No Change
Arsenic	2.1	2.1	No Change
Lead	400	400	No Change

Soil COC	2006 ROD ARAR (mg/kg)	Current ARAR (mg/kg)	ARAR Change
All Soils (groundwater prote	ection) 0 feet to 12 feet ^b		
Benzene	0.007	0.007	No Change
Chlorobenzilate	0.1	0.1	No Change
Dicofol	0.01	0.01	No Change
Methylene chloride	0.02	0.02	No Change
Trimethylbenzene	0.3	0.3	No Change
DCBP	NAI°	25	See Note c
alpha-BHC	0.0003	0.0003	No Change
Chlordane	9.6	9.6	No Change
4,4'-DDD	5.8	5.8	No Change
4,4'-DDE	18	18	No Change
4,4'-DDT	11	11	No Change
Dieldrin	0.002	0.002	No Change
Toxaphene	31	31	No Change
Aluminum	NAI ^d	NAI	No Change
Cadmium	NAI	7.5	See Note e
Chromium	38	38	No Change
Iron	NAI ^d	NAI	No Change
Lead	NAI ^d	NAI	No Change
Manganese	NAI ^d	NAI	No Change
Nickel	130	130	No Change

* Residential SCTLs established under FAC 62-77, finalized April 17, 2005.

^b Leachability-based SCTLs established under FAC 62-77, finalized April 17, 2005.

^c Leachability-based value of 0.34 mg/kg developed by EPA and FDEP (EPA, 2003) as cited in the 2006 ROD, which is more protective than the current Florida SCTL of 21 mg/kg.

^d Site-specific leachability-based levels for aluminum, iron, lead and manganese of 1,900 mg/kg, 5,600 mg/kg, 220 mg/kg, and 81 mg/kg, respectively in the absence of a leachability-based SCTL.

^e Site-specific leachability-based level of 2.2 mg/kg was used instead of the SCTL, because the site-specific level is more stringent than the SCTL available in 2006.

APPENDIX K – DETAILED TOXICITY REVIEW

A screening-level vapor intrusion evaluation was conducted to assess the protectiveness of the remedy for this pathway due to the presence of volatile organic compounds (VOCs) in the subsurface. The only currently occupied enclosed structure onsite is an auto body shop. The vapor evaluation was conducted using EPA's vapor intrusion screening levels (VISLs) by identifying the maximum concentration of VOCs detected in the most recent surficial groundwater sampling event. The surficial zone groundwater is most appropriate to use since this zone is closest to the foundation of the building. The maximum concentrations were identified in wells that are over 350 feet west of this building. Typically, vapor intrusion is evaluated when a plume is within 100 feet of an enclosed structure. However, to be conservative the maximum concentrations of VOCs were used in the VISL. As shown in Table K-1 below, the results of the screening-level industrial risk evaluation indicate that the cancer risks are within or below the EPA's risk management range of 1 x 10⁻⁶ to 1 x 10⁻⁴ and equal or below the noncancer HQ of 1, respectively. These results are conservative and are expected to be lower as monitoring wells closer to the building such as MW104S or MW09S were below detection or much lower than the maximum values detected. Further, ventilation in the auto body business is expected to be much higher than for an enclosed office building as the business has large doors that remain open during the business operations. The results of the screening-level evaluation indicate that vapor intrusion from the subsurface is not an exposure pathway of concern for current land use conditions.

		VISL Calculator ^c		
COCs ^a	Maximum Concentration ^b (µg/L)	Industrial Risk	Industrial Noncancer HQ	
	Surficial	Zone		
Benzene	0.97J (MWS14)	1 x 10 ⁻⁷	0.002	
Bromodichloromethane	4U (MW107S)	1 x 10 ⁻⁶	Contraction of the second second	
Chlorobenzene	44 (MW107S)	Sales- and	0.03	
1,4-Dichlorobenzene	210 (MW107S)	2 x 10 ⁻⁵	0.006	
Methylene chloride	40U (MW107S)	4 x 10 ⁻⁹	0.002	
Naphthalene	2.7 (MW109S)	1 x 10 ⁻⁷	0.004	
1,2,4-Trimethylbenzene	130 (MW107S)	1 x 10 ⁻⁷	1. 1. 1.	
1,3,5-Trimethylbenzene	35 (MW107S)			
Xylenes	280 (MW107S)	- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	0.2	

Table K-1: Screening-Level Vapor Intrusion Risk Evaluation Using Surficial Groundwater

Notes:

a. Chemicals that are considered to be volatile as denoted in the VISL calculator.

b. Based on maximum 2015 concentration detected in shallow wells monitored at the Site. Values obtained from Table 3-3 from the September 2015 Remedial Design Evaluation Report.

c. Risk and HQ calculated using the EPA's VISL Calculator version 3.5.1 for groundwater using a default average temperature for shallow groundwater of 25 degrees Celsius: <u>http://www.epa.gov/vaporintrusion</u> (accessed 12/7/2017).

- The EPA has not yet established an inhalation toxicity value for this pathway.

To determine if the cleanup goals for soil remain protective for residential use, the cleanup goals were compared to EPA's 2017 RSLs for residential use, since the RSLs incorporate current toxicity values and standard default exposure factors.

The evaluation of surface soil cleanup goals (Table K-2) shows that except for DDD, the cleanup goals represent concentrations that are within or below the EPA's risk management range of 1×10^{-6} to 1×10^{-4} and below the noncancer HQ of 1.0 for residential use. Similarly, for subsurface soils (Table K-3), except for DDD, the subsurface cleanup goals represent concentrations that are within or below the EPA's risk management range of 1×10^{-6} to 1×10^{-6} to 1×10^{-4} and below the noncancer HQ of 1.0 for residential use. The EPA should evaluate whether the cleanup goals for DDD in surface and subsurface soils should be updated or if other additional action needs to be taken. However, it should be noted that the Site is currently used for commercial/industrial purposes and the current cleanup goals for DDD in surface and subsurface and subsurface and subsurface soils are within or below the EPA's risk management range of 1×10^{-6} to 1×10^{-6} and below the noncancer HQ of 1.0 for commercial/industrial purposes and the current cleanup goals for DDD in surface and subsurface soils are within or below the EPA's risk management range of 1×10^{-6} to 1×10^{-4} and below the noncancer HQ of 1.0 for commercial/industrial purposes.

сос	2006 ROD Cleanup Level	Residential RSL ^a I (mg/kg)		Cancer Risk ^b	Noncancer HQ ^c
	(mg/kg)	1 x 10 ⁻⁶ Risk	HQ=1.0		
		Pesticides/Her	bicides	Service and the service of the servi	and a start of the
alpha-BHC	0.12	0.086	510	1 x 10 ⁻⁶	0.0002
Arsenic	2.1	0.68	35	3 x 10 ⁻⁶	0.06
Chlordane	2.8	1.7	35	2 x 10 ⁻⁶	0.08
DDD	4.2	2.3	1.9	2 x 10 ⁻⁶	2
DDE	2.9	2.0	23	1 x 10 ⁻⁶	0.13
DDT	2.9	1.9	37	1 x 10 ⁻⁶	0.08
Dieldrin	0.06	0.034	3.2	2 x 10 ⁻⁶	0.02
Lead	400	400		NA ^d	
Toxaphene	0.9	0.49	NA	2 x 10 ⁻⁶	- A A

Notes:

a. Current EPA RSLs, dated November 2017, are available at <u>http://www2.epa.gov/risk/risk-based-screening-table-generic-tables</u> (accessed 12/7/2017).

b. The cancer risks were calculated using the following equation, based on the fact that RSLs are derived based on 1 x 10⁻⁶ risk:

Cancer risk = (Cleanup level \div cancer-based RSL) $\times 10^{-6}$

c. The noncancer HQ was calculated using the following equation: HO = Cleanup level ÷ noncancer-based RSL

d. The EPA established the RSL for lead based on a blood lead model and not cancer or noncancer risk. The cleanup goal is equivalent to the EPA's screening level for residential land use. NA = toxicity values not established by the EPA

- = cancer risk or noncancer HQ could not be calculated; toxicity values not established.

Bold = noncancer HQ exceeds 1.0 or cancer risk exceeds 1×10^{-4} .

Table K-3: Health Evaluation of Subsurface Soil Cleanup Levels

сос	2006 ROD Cleanup Level	Residential RSL ^a (mg/kg)		Cancer Risk ^b	Noncancer HQ ^c
	(mg/kg)	1 x 10 ⁻⁶ Risk	HQ=1.0		
		Organic	cs	TAR STREET, SA	
Benzene	0.007	1.2	82	6 x 10 ⁻⁹	0.00008
Methylene chloride	0.02	57	350	4 x 10 ⁻¹⁰	0.00006
Trimethylbenzene	0.3		270	4 x 10 ⁻⁹	0.001
		Pesticides/Her	rbicides		
alpha-BHC	0.0003	0.086	510	4 x 10 ⁻⁹	0.0000006
Chlordane	9.6	1.7	35	6 x 10 ⁻⁶	0.3
Chlorobenzilate	0.1	4.9	1,300	2 x 10 ⁻⁸	0.00008
DDD	5.8	2.3	1.9	3 x 10 ⁻⁶	3

COC	2006 ROD Cleanup Level	Residential RSL ^a (mg/kg)		Cancer Risk ^b	Noncancer HQ ^c
	(mg/kg)	1 x 10-6 Risk	HQ=1.0		
DDE	18	2.0	23	9 x 10 ⁻⁶	0.8
DDT	11	1.9	37	6 x 10 ⁻⁶	0.3
DCBP	0.34		570	-	0.0006
Dicofol	0.01		14 Mar 2014	1.30 Jack - 1 7.64 S	- 10 A
Dieldrin	0.002	0.034	3.2	6 x 10 ⁻⁸	0.0006
Toxaphene	31	0.49	NA	6 x 10 ⁻⁵	
		Inorganic Con	pounds		
Aluminum	1,900		77,000		0.03
Cadmium	2.2	0.68	35	3 x 10 ⁻⁶	0.06
Chromium	38	0.3	230	1 x 10 ⁻⁴	0.2
Iron	5,600	-	55,000		0.1
Lead	220	400		NA ^d	
Manganese	81	-	1,800		0.04
Nickel	130	15000	1,500	9 x 10 ⁻⁹	0.09

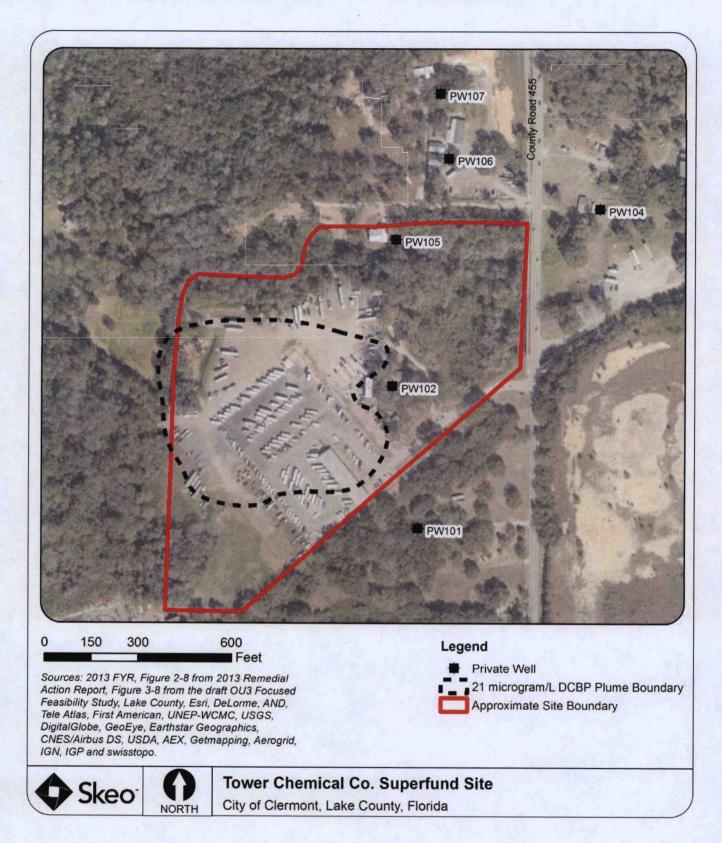
a. Current EPA RSLs, dated November 2017, are available at <u>http://www2.epa.gov/risk/risk-based-screening-table-generic-tables</u> (accessed 12/7/2017).

b. The cancer risks were calculated using the following equation, based on the fact that RSLs are derived based on 1 x 10⁻⁶ risk:

Cancer risk = (Cleanup level \div cancer-based RSL) $\times 10^{-6}$

c. The noncancer HQ was calculated using the following equation:

 $HQ = Cleanup level \div noncancer-based RSL$


d. The EPA established the RSL for lead based on a blood lead model and not cancer or noncancer risk. The cleanup goal is equivalent to the EPA's screening level for residential land use.
 NA = toxicity values not established by the EPA

-- = cancer risk or noncancer HQ could not be calculated; toxicity values not established.

Bold = noncancer HQ exceeds 1.0 or cancer risk exceeds 1×10^{-4} .

APPENDIX L – ADDITIONAL SITE MAPS

Figure L-1: Current DCBP Plume Boundary and Private Well Locations

