Second Five-Year Review Report FCX, Inc. - Washington Plant Site Washington, Beaufort County, North Carolina US EPA ID: NCD 981475932



Prepared for United States Environmental Protection Agency Region 4 Atlanta, Georgia September 2015

Prepared by the State of North Carolina Department of Environment & Natural Resources

Approved by: Franklin E. Hill, Director Superfund Division

Date:



## TABLE OF CONTENTS

-.

| <u>Sect</u> | <u>FION</u>                                                                           | <u>Page No.</u> |
|-------------|---------------------------------------------------------------------------------------|-----------------|
| List o      | of Acronyms                                                                           | iv              |
| Exec        | utive Summary                                                                         | vi              |
| Five-       | Year Review Summary Form                                                              | viii            |
| 1.0         | Introduction                                                                          | 1               |
| 2.0 \$      | Site Chronology                                                                       | 2               |
| 3.0         | Background                                                                            | 2               |
| •           | 3.1 Site Description                                                                  | 2               |
|             | 3.2 Site Topography, Geology, and Hydrogeology                                        | 3               |
|             | 3.3 Land and Resource Use                                                             | 4               |
|             | 3.4 History of Contamination                                                          | 4               |
|             | 3.5 Initial Response                                                                  | 5               |
|             | 3.6 Basis for Taking Action                                                           | 6               |
| 4.0         | Remedial Actions.                                                                     | 6               |
| 4           | 4.1 Remedy Selection                                                                  | 7               |
|             | 4.1.1 1993 Record of Decision                                                         | 7               |
|             | 4.1.2 1996 Record of Decision                                                         | 9               |
|             | 4.1.3 2005 ROD Amendment                                                              | 9               |
|             | 4.2 Remedy Implementation                                                             | 9               |
|             | 4.3 System Operation/Operation & Maintenance                                          | 10              |
| 5.0         | Progress Since Last Five-Year Review                                                  | 10              |
| 6.0         | Five-Year Review Process                                                              | 13              |
|             | 6.1 Administrative Components                                                         |                 |
|             | 6.2 Community Involvement                                                             | 13              |
|             | 6.3 Document Review                                                                   | 13              |
|             | 64 ARAR Review                                                                        |                 |
|             | 641 Current Applicable ARARs                                                          |                 |
| (           | 6.5 Data Review                                                                       | 16              |
| (           | 6.6 Site Inspection                                                                   |                 |
|             | 6.7 Interviews                                                                        | 18              |
| 7.0         | Technical Assessment                                                                  |                 |
| ,           | 7.1 Question A: Is the remedy functioning as intended by the decision documents?      | 19              |
|             | 7.2 Question B: Are the exposure assumptions toxicity data clean-up levels            |                 |
|             | and remedial action objectives (RAOs) used at the time of the remedy still valid?     | 19              |
| ,           | 7.3 Question C: Has any other information come to light that could call into question |                 |
|             | the protectiveness of the remedy?                                                     | 20              |
| ,           | 7 4 Technical Assessment Summary                                                      | 20              |
| 80          | Issues Recommendations and Follow-Un Actions                                          | 20              |
| 0.0<br>0 A  | Protectiveness Statement                                                              | 21              |
| 10.0        | Next Review                                                                           |                 |

ii

## **TABLES**

## PAGE NO.

| Table 1 | Site Chronology                                                       | 2  |
|---------|-----------------------------------------------------------------------|----|
| Table 2 | Groundwater Remediation Goals as Specified in the 1993 ROD            | 8  |
| Table 3 | Progress on Recommendations from 2010 Third FYR                       | 11 |
| Table 4 | Comparison of 1993 ROD Groundwater Remediation Goals to Current ARARs | 15 |
| Table 5 | Institutional Controls Evaluation Summary                             | 19 |
| Table 6 | Issues and Recommendation                                             | 20 |

## **FIGURES**

| Figure 1 | Site Location Map                                                  |
|----------|--------------------------------------------------------------------|
| Figure 2 | Site Detail Map                                                    |
| Figure 3 | Site Parcel Map                                                    |
| Figure 4 | Monitoring Well Location and Results Compared to Remediation Goals |
| •        | March 2012- April 2014                                             |

## **Appendices**

- Appendix A List of Documents Reviewed
- Appendix B Site Inspection Checklist
- Appendix C Public Notice
- Appendix D Final Report April 2014 FCX Groundwater Sampling Events Sampling Investigation Report
- Appendix E Interviews

# LIST OF ACRONYMS

| ARAR    | Applicable or Relevant and Appropriate Requirement                        |
|---------|---------------------------------------------------------------------------|
| BFPP    | Bona Fide Prospective Purchaser                                           |
| BRA     | Baseline Risk Assessment                                                  |
| CERCLA  | Comprehensive Environmental Response, Compensation, and Liability Act     |
| CFR     | Code of Federal Regulations                                               |
| COC     | Contaminant of Concern                                                    |
| CRQL    | Contract Required Quantitation Limit                                      |
| FS      | Feasibility Study                                                         |
| FWS     | US Fish and Wildlife Service                                              |
| FYR     | Five-Year Review                                                          |
| н       | Hazard Index                                                              |
| IC      | Institutional Control                                                     |
| MCL     | Maximum Contaminant Level                                                 |
| MRL     | Minimum Reporting Limit                                                   |
| MNA     | Monitored Natural Attenuation                                             |
| mg/kg   | Milligram per kilogram                                                    |
| MW      | Monitoring Well                                                           |
| NC 2L   | North Carolina Classifications and Water Quality Standards, Subchapter 2L |
| NCAC    | North Carolina Administrative Code                                        |
| NC DENR | North Carolina Department of Environment and Natural Resources            |
| NC DHR  | North Carolina Department of Human Recourses                              |
| NC DOT  | North Carolina Department of Transportation                               |
| NCP     | National Contingency Plan                                                 |
| NOAA    | National Oceanic and Atmospheric Association                              |
| NPL     | National Priorities List                                                  |

iv

O&M Operation and Maintenance Operable Unit OU Preliminary Close-Out Report PCOR RAO **Remedial Action Objective** RD Remedial Design **Remediation Goal** RG **Remedial Investigation** RI ROD **Record** of Decision **Remedial Project Manager** RPM Science and Ecosystem Support Division SESD SVOC Semi-Volatile Organic Compound To Be Considered TBC Microgram per Liter or ppb μg/L

EPA United States Environmental Protection Agency

v

VOC Volatile Organic Compound

#### **EXECUTIVE SUMMARY**

Beginning in 1945, FCX operated at the FCX Washington Plant site (Site) as a farm supply distribution center that repackaged and sold pesticides, herbicides and tobacco-treating chemicals. The Site is located in the northwest portion of Washington, North Carolina, in west central Beaufort County.

FCX operated between 1945 and 1985, during which time their pesticide and insecticide handling and disposal practices resulted in soil and groundwater contamination. An onsite landfill located in Source Area 5 was also used at the Site from 1960 to 1981. During this time, an unknown amount of chemical waste contained in plastic containers and paper bags was disposed of in the onsite landfill. In the early 1970s, pesticide trenches, which measured approximately 12 feet by 20 feet and 10 to 12 feet deep, were used at the Site and filled with waste pesticides and other agricultural chemicals.

On August 26, 1986, the State of North Carolina inspected the Site and sampling revealed the presence of aldrin, dieldrin, chlordane, 4,4-DDT, 4,4-DDE, 4,4-DDD, hexachlorobenzene, carbon disulfide, naphthalene, phenanthrene, acenaphthylene, fluorene, dibenzofuran, 2-methylnaphthalene and mercury at measurable concentrations. Soil samples collected in the vicinity of the main chemical burial trench detected the presence of toxaphene at a concentration of 2,400 milligrams/kilogram (mg/kg) and copper at a concentration of 480 mg/kg, along with other contaminants. In August 1988, the United States Environmental Protection Agency (EPA) conducted a sampling investigation to identify the boundaries of the chemical burial trenches. Soil samples collected during the sampling investigation identified the presence of elevated concentrations of 4,4-DDD, 4,4-DDE, 4.4-DDT, alpha-chlordane, gamma-chlordane, dieldrin, phenol, heptachlor and methoxychlor near the main chemical burial trench.

From 1990 to 1996, the EPA conducted a time-critical removal action to address remaining source contamination. In May 1996, the removal action was completed. Over the four stages of soil excavation, approximately 16,000 cubic yards of the excavated soil was treated via thermal desorption and disposed of offsite.

The remedies at the Site are addressed as two operable units (OUs). The 1993 Record of Decision (ROD), which selected the remedy to address groundwater contamination at OU1, was signed on September 12, 1993. This remedy included extraction of groundwater, onsite treatment via air stripping, carbon adsorption, precipitation and ion exchange and discharge treated water to surface water. The 1996 ROD, which selected the remedy to address soil contamination at OU2, was signed on December 18, 1996. The 1996 ROD selected "no further action" as the remedy for OU2. This status was given due to the previous removal actions at the Site and a risk assessment, which indicated that the risk associated with exposure at the Site, was within the accepted risk range determined to be protective of human health and the environment under a commercial/industrial land use scenario. The 1996 ROD also required an ecological assessment as part of the Five-Year Review (FYR) for OU2. In 2005, a ROD Amendment was issued. This amendment changed the remedial action to Monitored Natural Attenuation (MNA) and replace the statutory requirement for the Site to a policy FYR. The amendment also eliminated the requirement for a FYR for OU2. This is the second Five-Year Review for the FXC Washington Plant Site. The triggering action for this review is the signing date of the previous FYR report, September 15, 2010.

The remedy at the FCX Washington Plant Site currently protects human health and the environment in the short-term because there are no known current exposure routes to contaminated soil or groundwater. Furthermore, the contaminated soil has been mitigated through source removal and groundwater is not used as a potable source of water. In order for the remedy to be protective in the long-term, the following actions are required: evaluate groundwater conditions to determine the impact of the highway bypass on groundwater flow and the MNA remedy; reevaluate the groundwater remediation goals to determine if modifications are needed; implement institutional controls until remedial goals are attained; and modify the decision document to include institutional controls for soils.

# FIVE-YEAR REVIEW SUMMARY FORM

| SITE IDENTIFICATION                                               |                                                                              |                                                           |  |  |  |  |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|
| Site Name: FCX, Inc – Washington Plant Site                       |                                                                              |                                                           |  |  |  |  |  |
| <b>EPA ID:</b> NCD 98147                                          | 5932                                                                         |                                                           |  |  |  |  |  |
| Region: 4                                                         | Region: 4         State: NC         City/County: Washington, Beaufort County |                                                           |  |  |  |  |  |
|                                                                   | 51                                                                           | TESTATUS                                                  |  |  |  |  |  |
| NPL Status: Final                                                 |                                                                              |                                                           |  |  |  |  |  |
| <b>Multiple OUs?</b><br>Yes                                       | Has th<br>09 / 22                                                            | <b>e site achieved construction completion?</b><br>/ 2005 |  |  |  |  |  |
|                                                                   | REV                                                                          | TEW STATUS                                                |  |  |  |  |  |
| Lead agency: EPA                                                  |                                                                              |                                                           |  |  |  |  |  |
| Author name (Federa                                               | l or State Project                                                           | Manager): Nile Testerman / Stephanie Grubbs               |  |  |  |  |  |
| Author affiliation: N                                             | C DENR                                                                       |                                                           |  |  |  |  |  |
| <b>Review period:</b> 12/1                                        | / 2014 - 9 / 15 / 20                                                         | 015                                                       |  |  |  |  |  |
| Date of site inspection                                           | : 09 / 23 / 2014                                                             |                                                           |  |  |  |  |  |
| Type of review: Policy                                            |                                                                              |                                                           |  |  |  |  |  |
| Review number: 2 (Second)                                         |                                                                              |                                                           |  |  |  |  |  |
| Triggering action date                                            | e: 9/15/2010                                                                 |                                                           |  |  |  |  |  |
| Due date (five years after triggering action date): 9 / 15 / 2015 |                                                                              |                                                           |  |  |  |  |  |

| Issues/Recommendations                                                   |                                                                                                                                                                                                                |                                                   |                                      |                                      |  |  |  |  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|
| OU(s) without Issues/Recommendations Identified in the Five-Year Review: |                                                                                                                                                                                                                |                                                   |                                      |                                      |  |  |  |  |
| None                                                                     |                                                                                                                                                                                                                |                                                   |                                      |                                      |  |  |  |  |
| Issues and Recommendations Identified in the Five-Year Review:           |                                                                                                                                                                                                                |                                                   |                                      |                                      |  |  |  |  |
| OU(s):                                                                   | Issue Category: N                                                                                                                                                                                              | Monitoring                                        |                                      |                                      |  |  |  |  |
| 001                                                                      | <b>Issue:</b> The wells removed/destroyed during the construction of the highway bypass may need to be reinstalled and sampled to determine the impact of the bypass on groundwater flow and the MNA remedy.   |                                                   |                                      |                                      |  |  |  |  |
|                                                                          | Recommendation impact of the high                                                                                                                                                                              | : Evaluate groundwa<br>way bypass on ground       | ter conditions to<br>dwater flow and | o determine the<br>I the MNA remedy. |  |  |  |  |
| Affect Current<br>Protectiveness                                         | Affect FutureImplementingOversightMilestone DateProtectivenessPartyParty                                                                                                                                       |                                                   |                                      |                                      |  |  |  |  |
| No                                                                       | Yes                                                                                                                                                                                                            | EPA/State/Property EPA 09/15/2017<br>Owners/NCDOT |                                      |                                      |  |  |  |  |
| OU(s):                                                                   | Issue Category: F                                                                                                                                                                                              | Remedy Performance                                |                                      |                                      |  |  |  |  |
| OU1                                                                      | <b>Issue:</b> In 2013, the North Carolina Groundwater Standards were amended.<br>Subsequently, the current North Carolina Groundwater Standards for<br>several compounds are more stringent than the 1993 ROD. |                                                   |                                      |                                      |  |  |  |  |
|                                                                          | Recommendation<br>determine if modifi                                                                                                                                                                          | Reevaluate the grout fications are needed.        | ndwater remedi                       | ation goals to                       |  |  |  |  |
| Affect Current<br>Protectiveness                                         | Affect Future<br>Protectiveness                                                                                                                                                                                | Implementing<br>Party                             | Oversight<br>Party                   | Milestone Date                       |  |  |  |  |
| No                                                                       | Yes                                                                                                                                                                                                            | EPA/State                                         | EPA                                  | 09/15/2017                           |  |  |  |  |
| OU(s):                                                                   | Issue Category: I                                                                                                                                                                                              | nstitutional Controls                             |                                      |                                      |  |  |  |  |
| OU1<br>OU2                                                               | Issue: Institutional Controls have not been implemented.                                                                                                                                                       |                                                   |                                      |                                      |  |  |  |  |
| 002                                                                      | Recommendation<br>institutional control                                                                                                                                                                        | e restrictions or                                 | other appropriate                    |                                      |  |  |  |  |
| Affect Current<br>Protectiveness                                         | Affect Future<br>Protectiveness                                                                                                                                                                                | Implementing<br>Party                             | Oversight<br>Party                   | Milestone Date                       |  |  |  |  |
| No                                                                       | Yes                                                                                                                                                                                                            | EPA                                               | EPA/State                            | 09/15/2017                           |  |  |  |  |
|                                                                          |                                                                                                                                                                                                                |                                                   |                                      |                                      |  |  |  |  |

| OU(s):                           | Issue Category: Institutional Controls                                               |                       |                    |                |  |  |
|----------------------------------|--------------------------------------------------------------------------------------|-----------------------|--------------------|----------------|--|--|
| OU1                              | Issue: The OU2 remedy does not require institutional controls for soil.              |                       |                    |                |  |  |
|                                  | <b>Recommendation:</b> Modify the remedy to include institutional controls for soil. |                       |                    |                |  |  |
| Affect Current<br>Protectiveness | Affect Future<br>Protectiveness                                                      | Implementing<br>Party | Oversight<br>Party | Milestone Date |  |  |
| No                               | Yes                                                                                  | EPA                   | EPA/State          | 09/15/2017     |  |  |

## Sitewide Protectiveness Storement

Protectiveness Determination: Short-Term Protective Addendum Due Date: Not Applicable

Protectiveness Statement:

The remedy at the FCX Washington Plant Site currently protects human health and the environment in the short-term because there are no known current exposure routes to contaminated soil or groundwater. Furthermore, the contaminated soil has been mitigated through source removal and groundwater is not used as a potable source of water. In order for the remedy to be protective in the long-term, the following actions are required: evaluate groundwater conditions to determine the impact of the highway bypass on groundwater flow and the MNA remedy; reevaluate the groundwater remediation goals to determine if modifications are needed; implement institutional controls until remedial goals are attained; and modify the decision document to include institutional controls for soils.

## Environmental Indicators

- Current human exposures at the Site are under control.

#### Are Necessary Institutional Controls in Place?

□All □Some ⊠None

Has EPA Designated the Site as Sitewide Ready for Anticipated Use?

□Yes ⊠No

#### Has the Site Been Put into Reuse?

⊠Yes □No

## 1.0 Introduction

The purpose of conducting a FYR is to determine whether the remedy implemented at a site is protective of human health and the environment. The methods, findings, and conclusions of this review are documented in the FYR report. In addition, FYR reports identify issues found during the review, if any, and identify recommendations to address them.

The EPA prepares FYRs pursuant to the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Section 121 and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). CERCLA Section 121 states:

If the President selects a remedial action that results in any hazardous substances, pollutants, or contaminants remaining at the site, the President shall review such remedial action no less often than each five years after the initiation of such remedial action to assure that human health and the environment are being protected by the remedial action being implemented. In addition, if upon such review it is the judgment of the President that action is appropriate at such site in accordance with section [104] or [106], the President shall take or require such action. The President shall report to the Congress a list of facilities for which such review is required, the results of all such reviews, and any actions taken as a result of such reviews.

The EPA interpreted this requirement further in the National Oil and Hazardous Substances Pollution Contingency Plan (NCP); Title 40 Code of Federal Regulations (CFR) §300.430(f)(4)(ii) states:

If a remedial action is selected that results in hazardous substances, pollutants, or contaminants remaining at the site above levels that allow for unlimited use and unrestricted exposure, the lead agency shall review such action no less often than every five years after the initiation of the selected remedial action.

The North Carolina Department of Environment and Natural Resources (NC DENR), Division of Waste Management, Superfund Section, on behalf of the EPA, has conducted a FYR of the fund-financed cleanup implemented at the FCX, Inc. – Washington Plant Site (FCX or Site) (EPA ID# NCD 981475932). The review was conducted from December 2014 through September 2015, and the methods, findings, conclusions, and significant issues found during the review are documented in this FYR report. This FYR was performed in a manner consistent with the latest EPA Comprehensive FYR Guidance (US EPA, 2001).

The Site consists of two OUs. The remedial action provides remediation of OU1, contaminated groundwater through MNA and remediation of OU2, contaminated soil through no further action. This FYR Report addresses the entire Site. The triggering action for this policy review is the signing date of the first FYR Report, September 15, 2010. The next FYR for the FCX Site will be due within five years of the signature/approval date of this FYR.

# 2.0 Site Chronology

## Table 1: Site Chronology

| Event                                                                                  | Date               |
|----------------------------------------------------------------------------------------|--------------------|
| Event                                                                                  | Date               |
| Initial discovery of the Site                                                          | June 11, 1986      |
| Preliminary assessment completed                                                       | September 17, 1986 |
| Site inspection completed                                                              | June 17, 1987      |
| EPA proposed the Site for inclusion on the National Priorities List (NPL)              | June 24, 1988      |
| Site finalized on the NPL                                                              | March 31, 1989     |
| Time-critical removal action, first phase completed                                    | January 1990       |
| Consent decree signed                                                                  | October 19, 1990   |
| Time-critical removal action, second phase completed                                   | January 1992       |
| Consent decree with Fred Webb, Inc.                                                    | March 30, 1992     |
| Time-critical removal action, third phase completed                                    | September 1992     |
| Removal assessment                                                                     | December 31, 1992  |
| Ecological Risk Assessment and Risk/Health assessment                                  | April 15, 1993     |
| Remedial Investigation and Feasibility Study (RI/FS) completed for OU1                 | September 15, 1993 |
| Record of Decision (ROD) signed for OU1                                                | September 15, 1993 |
| Remedial Design begins                                                                 | February 23, 1994  |
| Time-critical removal action, fourth phase completed                                   | May 1996           |
| Combined RI/FS completed for OU2                                                       | December 18, 1996  |
| ROD signed for OU2                                                                     | December 18, 1996  |
| Remedial Design completed                                                              | September 8, 2005  |
| ROD Amendment signed for OU1 and OU2                                                   | September 8, 2005  |
| OU1 remedial action begins                                                             | September 8, 2005  |
| Remedial Action construction complete                                                  | September 22, 2005 |
| Superfund Preliminary Close-Out Report (PCOR) complete                                 | September 22, 2005 |
| Interim Remedial Action report completed                                               | February 23, 2009  |
| First FYR completed                                                                    | September 15, 2010 |
| Ecological Risk Assessment completed.                                                  | April 24, 2012     |
| Park Boats request for the Site status and has interest in purchasing a portion of the | May 20, 2013       |
| property.                                                                              |                    |
| EPA completes a Soil Review of FCX Soil Samples.                                       | September 11, 2013 |
| EPA SESD Sampling Investigation Report completed.                                      | August 18, 2014    |

## 3.0 Background

## 3.1 Site Description

Beginning in 1945, FCX operated at the Site as a farm supply distribution center that repackaged and sold pesticides, herbicides and tobacco-treating chemicals. The Site is located in the northwest portion of Washington, North Carolina, in west central Beaufort County. The Site covers approximately 12 acres and is bounded on the northeast by the intersection of Grimes Road and Whispering Pines Road (Figure

1). Wetlands leading to Kennedy Creek and Tar River are located to the south and southwest of the Site and agricultural land is located to the west and northwest of the Site.

In the 1993 ROD, the Site was divided into five source areas (Source Areas 1 through 5). Source Area 1 included parcels 15018945, 15019372 and 15021598, which housed several small office/storage buildings and silos/tanks associated with prior operations of a fertilizer and hardware company. A manmade drainage ditch bordered Source Area 1 to the northeast. Parcel 15021595, which is included in a portion of Source Area 2, had on its premises a large warehouse building and a gravel parking lot associated with a neighboring restaurant (the former FCX blending building). Source Area 3 included parcels1 5016903, 01028589 and a small portion of parcel 01031971. Figure 3 is a parcel map of the Site. A large warehouse building depression and drainage ditches used to divert surface water runoff towards a drainage ditch located parallel to Grimes Road were located on Source Area 3. Source Area 3 also contained a former loading dock (concrete ramp) and several concrete grain silo support pads located south of and adjacent to the large warehouse building.

The former FCX warehouse is located on Source Area 4, which includes the majority of parcel 01031971. Source Area 5 is comprised of the remainder of parcel 01031971 and the southern portion of parcel 02011241. Source Area 5 was a major chemical burial trench at FCX that was excavated and backfilled, and fenced contaminated pesticide waste stockpiles were stored in this area. On the southwest corner of the fenced stockpile area, a small concrete block retaining wall and gravel pad are present where aboveground storage tanks once existed. Because the former FCX warehouse is being reused, the EPA completed a vapor intrusion evaluation in February 2010. The vapor intrusion evaluation found no risk of vapor intrusion because no site-related volatile organic compounds (VOCs) were found in the Site's shallow aquifer.

In March 2010, the North Carolina Department of Transportation (NCDOT) completed the construction of U.S. 17 Washington Bypass that extends from the southwest boundary to the northeast boundary of the Site (Figure 2). The 15.5-mile improvement of the US-17 corridor included four parcels of land on the FCX-Washington Site. Construction of the highway bypass destroyed wells MW03A, MW03B, MW13B, and MW14B.

In 2013, parcel 01031971 was transferred to Park Boat Company to be used as a storage area for boats and trailers. A loading ramp was constructed at the large bay door on the southwest side of the building to allow boats to be stored in the warehouse. Soil was removed near the bay door for the construction of the ramp and piled at the edge of the gravel parking area closest to well MW11A.

#### 3.2 Site Topography, Geology, and Hydrogeology

A portion of the Site is currently in commercial reuse, and the northern and western portions of the Site are being reused for public use as a highway bypass. The remainder of the Site is not currently in reuse. The Site is located in an area that includes industrial, commercial, residential, and agricultural land uses. The former FCX warehouse is currently being used by Park Boat Company to store boats. Additionally, areas nearby the Site include agricultural fields to the southeast, as well as fields north and east of the

Site, which are separated by major highways. A 275-acre freshwater wetland area is located further to the south and southwest of the Site. The new highway bypass, completed in 2010, also extends through this area. Following the completion of the bypass, there have been no further anticipated changes in land use at the Site, or in the areas surrounding the Site.

The Site overlies seven aquifers, including a surficial aquifer and six deeper semi-confined or confined aquifers. The aquifer system is as follows, in order of increasing depth: surficial aquifer, Yorktown aquifer, Castle Hayne aquifer, Beaufort aquifer, Peedee aquifer, Black Creek aquifer and Cape Fear aquifer.

## 3.3 Land and Resource Use

Mostly commercial and industrial land uses interspersed with residential neighborhoods are within a three-mile radius of the Site; the Site's immediate surroundings are a mix of commercial and agricultural land uses. Beaufort County parcel identification numbers for Site properties are 01031971, 02011241, 15016903, 01028589, 15021595, 15021598, 15019372, and 15018945. FCX, Inc. previously owned buildings on parcels 15021595, 15016903, 01028589 and 01031971 (Figure 3). NCDOT owns parcel 15021595 along with a portion of the middle section of parcel 02011241, which is the location of the 2010 bypass.

The Castle Hayne aquifer, which is located about 30 feet below the land surface at the Site, is the major source of drinking water in the area. The local population near the Site originally relied on public supply wells or private wells for potable water. Industrial production wells were also used in the vicinity of the Site. The City of Washington continues to treat groundwater from the Castle Hayne aquifer prior to providing water to the community of Washington. Groundwater flow at the Site is southwest. No untreated groundwater is currently being used as a drinking water source onsite or offsite.

## 3.4 History of Contamination

The Site operated between 1945 and 1985. In 1985, FCX filed for bankruptcy and ceased operations. FCX's pesticide and insecticide handling and disposal practices resulted in soil and groundwater contamination. An onsite landfill located in Source Area 5 was also used at the Site from 1960 to 1981. During this time, an unknown amount of chemical waste contained in plastic containers and paper bags was disposed of in the onsite landfill. In the early 1970s, a pesticide trench that measured approximately 12 feet by 20 feet and 10 to 12 feet deep was used at the Site. The pesticide trench was filled with waste pesticides and other agricultural chemicals.

Beginning in mid-1986, federal, state and local agencies conducted several Site investigations. In July 1986, a preliminary assessment of the Site was prepared by the North Carolina Department of Human Resources (NCDHR, now North Carolina Department of Environment and Natural Resources, NCDENR) that indicated that buried onsite pesticides, in the form of toxic powder and liquid wastes, could potentially contaminate area groundwater. As a result, NCDHR inspected the Site on August 26, 1986. Chemical analyses revealed the presence of aldrin, dieldrin, chlordane, 4,4-DDT, 4,4-DDE, 4,4-

DDD, hexachlorobenzene, carbon disulfide, naphthalene, phenanthrene, acenaphthylene, fluorene, dibenzofuran, 2-methylnaphthalene and mercury at measurable concentrations. No VOCs, semi-volatile organic compounds (SVOCs), pesticide or metal contamination was detected in any of the five groundwater samples collected. Ambient air monitoring during the Site inspection did not detect VOCs above background levels.

In May 1987, FCX initiated an investigation of onsite contamination and cleared the chemical warehouse located in Source Area 4. Soil samples collected in the vicinity of the main chemical burial trench detected the presence of toxaphene at a concentration of 2,400 mg/kg and copper at a concentration of 480 mg/kg, along with other contaminants.

In August 1988, the EPA conducted a sampling investigation to identify the boundaries of the chemical burial trenches located in Source Area 5. Soil samples collected during the sampling investigation identified the presence of elevated concentrations of 4,4-DDD, 4,4-DDE, 4.4-DDT, alpha-chlordane, gamma-chlordane, dieldrin, phenol, heptachlor and methoxychlor near the main chemical burial trench.

## 3.5 Initial Response

Service and a service of the service

In October and November 1988, the EPA and the State of North Carolina joined in legal action to secure the remaining assets of FCX, which had filed for bankruptcy, prior to their disbursement to the company's investors. A July 14, 1992, trust agreement provided that FCX could not abandon the property at the Site and that a portion of the company's remaining assets would be divided between the Site and the FCX- Statesville Site. Additionally, in March 1992, the EPA entered into a consent decree with Fred Webb, Inc., the Site owner, to recover costs associated with past, present, and future responses to address the release of hazardous substances at the Site.

In September 1990, the EPA initiated the Site's remedial investigation/feasibility study (RI/FS) to address all potential source areas and associated contamination. The EPA excavated contaminated soil from the source areas at the Site between 1989 and 1990. Approximately 3,000 cubic yards of contaminated soil from the main chemical burial trench in Source Area 5, and 49 cubic yards from the area surrounding the former FCX blending building at Source Area 2 were excavated, consolidated and stockpiled by the EPA. In July 1990, in response to a report that the cover on the stockpiled soil was torn; the EPA constructed a temporary containment berm around the stockpiled soil and repaired the torn liner. During this response, additional buried soil and material two feet below ground surface (with a total pesticides concentration of 103 mg/kg) was identified at the northern corner of the stockpile. Following the initial soil excavations, the EPA conducted groundwater analyses and found elevated concentrations of pesticides, VOCs, SVOCs and metals primarily in Source Areas 4 and 5. A groundwater sampling investigation in the vicinity of the former warehouse and chemical burial trench detected elevated concentrations of endrin and 4,4-DDD.

The EPA conducted a time-critical removal action to address remaining source contamination. Three stages of the removal action were completed between 1990 and 1992. In January 1990, approximately 2,200 cubic yards of pesticide contaminated soil and debris were excavated and stockpiled. In January

5

1992, an additional 2,000 cubic yards of pesticide contaminated soil and debris were excavated and added to the existing stockpile. The third stage of the removal action was completed in September 1992, when approximately 3,000 cubic yards of the existing stockpile was bagged and placed in the onsite warehouse for storage, and an additional 11,600 cubic yards was excavated and stockpiled onsite. The fourth stage of the time-critical removal action took approximately one and a half years and was completed in May 1996 when approximately 15,000 cubic yards of the excavated soil was treated via thermal desorption and disposed of offsite.

## 3.6 Basis for Taking Action

A 1993 baseline risk assessment (BRA) used sampling data collected during the RI to identify contaminants of concern (COCs), complete a toxicity assessment, a human exposure assessment, a risk characterization and an environmental assessment. The BRA for groundwater determined that current and future exposure pathways at the Site were through ingestion of contaminated groundwater and inhalation of VOCs evolved from groundwater during household use.

The 1996 BRA for soil determined that current and future exposure scenarios to soil were through ingestion and dermal contact with contaminated soil, sediments, and inhalation of fugitive dust. The BRA determined that the carcinogenic risks associated with exposure to soil contamination during future land use scenarios were within the EPA's acceptable risk range of  $1 \times 10^{-4}$  to  $1 \times 10^{-6}$ . The non-carcinogenic risks associated with exposure to soil contamination during future land use scenarios were also within the EPA's acceptable risk range of  $1 \times 10^{-4}$  to  $1 \times 10^{-6}$ . The non-carcinogenic risks associated with exposure to soil contamination during future land use scenarios were also within the EPA's acceptable risk, which is a hazard index (HI) equal to or less than 1. No COCs were established for soil because source contamination was excavated from the Site during the removal actions.

## 4.0 Remedial Actions

In accordance with CERCLA and the NCP, the overriding goals for any remedial action are protection of human health and the environment and compliance with applicable or relevant and appropriate requirements (ARARs). A number of remedial alternatives were considered for the Site, and final selection was made based on an evaluation of each alternative against nine evaluation criteria that are specified in Section 300.430(e)(9)(iii) of the NCP. The nine criteria are:

- 1. Overall Protection of Human Health and the Environment
- 2. Compliance with ARARs
- 3. Long-Term Effectiveness and Permanence
- 4. Reduction of Toxicity, Mobility or Volume through Treatment
- 5. Short-Term Effectiveness
- 6. Implementability
- 7. Cost
- 8. State Acceptance
- 9. Community Acceptance

## 4.1 Remedy Selection

The remedies at the Site are addressed as two OUs. The 1993 ROD, which selected the remedy to address groundwater contamination at OU1 was signed on September 15, 1993. The 1996 ROD, which selected the remedy to address soil contamination at OU2 was signed on December 18, 1996. In 2005, a ROD Amendment was issued to change the original remedies.

#### 4.1.1 1993 ROD

The ROD issued September 15, 1993, provided for remediation of contaminated groundwater and contaminated soil. The remedy selected in the Site's 1993 ROD addressed the principle threat of contaminated groundwater emanating beneath the Site. The major components of the selected remedy for OU1 included:

- Extraction of groundwater contaminated above Maximum Contaminant Level (MCLs) or the North Carolina Groundwater Standards (NC 2L), whichever is more protective.
- Onsite treatment of extracted groundwater via air striping, carbon adsorption, precipitation and ion exchange.
- Discharge of treated groundwater to surface water.

The Remedial Action Objectives (RAOs) as stated in the 1993 ROD include:

- -
  - Prevent migration of contaminants to surface water that would result in contamination to levels greater than the Ambient Water Quality Criteria.
  - Control future releases of contaminants to ensure protection of human health and the environment.
  - Permanently and significantly reduce mobility, toxicity or volume of characteristic hazardous waste with treatment.

Table 2 lists the groundwater remediation goals as specified in the 1993 ROD.

| Contaminant                | Remediation Goal    |  |  |  |  |
|----------------------------|---------------------|--|--|--|--|
| Pesticides                 |                     |  |  |  |  |
| Aldrin                     | 0.01 <sup>a,b</sup> |  |  |  |  |
| Heptachlor                 | 0.076°              |  |  |  |  |
| Heptaclor epoxide          | 0.038 °             |  |  |  |  |
| Alpha-BHC                  | 0.014 <sup>d</sup>  |  |  |  |  |
| Beta-BHC                   | 0.047 <sup>d</sup>  |  |  |  |  |
| Gamma-BHC (lindane)        | 0.0265 °            |  |  |  |  |
| Dieldren                   | 0.02 <sup>a</sup>   |  |  |  |  |
| 4,4-DDT                    | 0.02 <sup>a</sup>   |  |  |  |  |
| 4,4-DDE                    | 0.02 <sup>a</sup>   |  |  |  |  |
| 4,4-DDD                    | 0.02 <sup>a</sup>   |  |  |  |  |
| Endrin                     | 0.20 <sup>a</sup>   |  |  |  |  |
| Toxaphene                  | 1.0 <sup>a,c</sup>  |  |  |  |  |
| Chlordane                  | 0.027 °             |  |  |  |  |
|                            | VOCs                |  |  |  |  |
| Chlorform                  | 0.19°               |  |  |  |  |
| 1,2-Dichloroethane         | 0.38 °              |  |  |  |  |
| 1,2-Dichloropropane        | 0.56 °              |  |  |  |  |
| Benzene                    | 1°                  |  |  |  |  |
| Toluene                    | 1,000 <sup>f</sup>  |  |  |  |  |
| Chlorobenzene              | 100 <sup>f</sup>    |  |  |  |  |
| Total Xylenes              | 400 °               |  |  |  |  |
|                            | SVOCs               |  |  |  |  |
| Bis(2-ehtylhexyl)phthalate | 4 <sup>f</sup>      |  |  |  |  |
| Pentachlorophenol          | 1 <sup>c</sup>      |  |  |  |  |
| Carazole                   | 4.3 <sup>d</sup>    |  |  |  |  |
|                            | Inorganics          |  |  |  |  |
| Beryllium                  | 1 <sup>f</sup>      |  |  |  |  |
| Chromium                   | 50°                 |  |  |  |  |
| Nickel                     | 100 <sup>f</sup>    |  |  |  |  |
| Lead                       | 15 <sup>g</sup>     |  |  |  |  |
| Mercury                    | 1.10 <sup>c</sup>   |  |  |  |  |
| Manganese                  | 697 <sup>h</sup>    |  |  |  |  |

#### Table 2: Groundwater Remediation Goals as Specified in the 1993 ROD

a) The 1993 ARAR was based on the contract required quantitation limit (CRQL).

b) According to the Site's 1993 ROD, the CRQL exceeded the risk-based concentration for aldrin.

c) The 1993 ARAR was based on the NC Groundwater Quality Standard (15 North Carolina Administrative Code (NCAC) 021 or NC 2L).

d) The 1993 ARAR was based on the cancer slope factor value applied to a residential land use scenario at the Site.

e) According to the Site's 1993 ROD. The CRQL exceeded the NC 2L

f) The 1993 ARAR was based on the federal MCL.

g) The 1993 ARAR for lead was based on the treatment technique action level.

h) The 1993 ARAR was based on the average background concentration at the Site, which was greater than the NC 2L of 50.

 $\mu g/L = microgram per liter.$ 

## 4.1.2 1996 ROD

Due to the soil removal actions, the human health risk assessment results indicated the risk associated with exposure to soil at the Site was within the accepted risk range determined to be protective of human health under a commercial/industrial land use scenario. At that time, the ecological assessment concluded the chemicals present in soils, sediments, and surface waters have the potential to negatively impact terrestrial and aquatic organisms, but both benthic communities appeared to be healthy in terms of diversity. Therefore, the 1996 ROD selected "No further Action" for the onsite soils. However, the 1996 ROD required an ecological risk assessment as part of the five-year review.

#### 4.1.3 2005 ROD Amendment

In 2005, a ROD Amendment changed the selected remedies for OU1 and OU2. The major changes to the remedial components for OU1 included:

- Replacing active extraction and treatment with MNA as the remedy for the Site's groundwater.
- Replacing the reference to the statutory requirement for the Site's FYR to a requirement for a policy FYR.

The major change to the remedial component for OU2 was:

-• Modifying the 1996 OU2 ROD to eliminate the requirement for a FYR.

#### 4.2 Remedy Implementation

#### <u>OU1</u>

The remedial design (RD) for OU1 was initiated in 1997. By 1998, review of the pre-design groundwater sampling data resulted in the EPA's evaluation of MNA as an alternate approach to address the Site's groundwater contamination (instead of the extraction and treatment system selected in the Site's 1993 ROD). Prior removal actions had removed enough of the source contamination that MNA was a feasible option for addressing the remaining groundwater contamination. By August 2003, a work plan for MNA was completed which included natural attenuation parameters and pesticide daughter products that would be monitored to evaluate the trend in reduction of pesticides and VOCs in groundwater. The work plan also required defining the pesticide and VOC groundwater plumes, and the impact of the plume on downgradient receptors, by installing new monitoring wells and collecting surface water, sediment and push-point samples from the wetlands downgradient from the Site.

The EPA used two lines of evidence to evaluate the occurrence of MNA at the Site: a trend of decreasing concentrations, and process-specific data. A field investigation, including surface water, sediment, subsurface soil, and groundwater samples, was completed in October 2004. Groundwater analysis of samples collected in October 2004 included constituents considered to be daughter products of pesticide COCs at the Site. A comparison of the 2004 results with groundwater sampling efforts in

9

1993, 1998, and 2002, showed a decreasing trend in COC concentrations in most of the existing wells. COCs were not detected in newly installed deep aquifer monitoring wells. In 2005, the EPA selected MNA as the remedy to address remaining groundwater contamination at OU1.

Since 2005, groundwater sampling was conducted at the Site in January/August 2007 and January 2008. Construction of the NCDOT highway bypass began in 2007, which disrupted the groundwater monitoring sampling schedule. Monitoring wells MW3A, MW38, MW13B, and MW14B, from the MNA monitoring network, have been decommissioned as a result of the bypass construction. NCDOT completed the construction of the highway bypass in March 2010. Sampling resumed at the Site in March 2012, and has been sampled quarterly (with the exception of the second quarter in 2012) until the most recent sampling event in April 2014.

## <u>OU2</u>

The remedy selected for OU2 required no further action to treat the soil because all of the soil and source contamination were removed during a time-critical removal action that was completed in a three-stage process between 1990 and 1992. In 1996, the contaminated soil excavated during the time-critical removal action was treated using thermal desorption, which completed the removal response.

#### 4.3 System Operation/Operation and Maintenance

#### **Operation and Maintenance (O&M)**

The total cost for the remedy described in the Site's 2005 ROD Amendment was estimated at \$225,000. No capital cost is associated with conducting this work, and the cost for O&M of the MNA remedy is estimated to comprise the entire cost for the remedy. The cost estimate was based on the expectation of sampling fifteen wells on an annual basis for thirty years; however, no current O&M cost information is available.

#### 5.0 Progress Since Last Five-Year Review

This is the Second FYR. The Protectiveness Statements for the First FYR in 2010 indicated the Site was protective of human health and the environment. The protectiveness statement in the 2010 report stated:

The Site's OU1 remedy currently protects human health and the environment in the short-term because groundwater is not being used as a groundwater source onsite or offsite; removal actions were completed to excavate source contamination; and additional contaminated soil is being contained beneath a one-foot soil cover located on the northwest portion of the 2.07-acre portion of Tract 2 as recorded on the Beaufort County map record, Plat Cabinet D, Slide 94, of FCX, Inc. In order for the OU 1 remedy to be protective in the long-term, the following actions need to be taken: evaluate the effectiveness of MNA for groundwater contamination, given that physical site conditions have changed; regularly sample groundwater to determine if MNA is occurring; ensure NCDOT replaces groundwater monitoring wells abandoned during the construction of the highway bypass; and implement institutional controls to restrict groundwater use.

The Site's OU2 remedy currently protects human health and the environment in the short-term because most of the contaminated soil has been excavated, and there is no exposure pathway for the contaminated soil that remains at the Site. In order for the remedy to be protective in the long-term, the following actions need to be taken: conduct the ecological evaluation as required by the 1996 OU2 ROD and recommended in the May 2005 memorandum from EPA Region 4's Technical Services Section; reinstate the requirement for FYRs for OU2; update decision documents to require land use restrictions for the property located at the end of Grimes Road; and require appropriate measures be taken to address any soil contamination that may remain under the foundation of the former FCX warehouse, in the event that the warehouse is removed from the Site.

Because the remedial actions at both OUs are protective in the short-term, the Site's remedy is protective of human health and the environment. In order for the Site's remedy to be protective in the long-term, the following actions need to be taken: address issues with MNA program; implement institutional controls to prevent groundwater use; update decision documents to require land use restrictions for the property located at the end of Grimes Road; reevaluate the remediation goals for COCs that have become more stringent to ensure the remediation goals set in the 1993 ROD still fall within EPA's acceptable risk range for the Site; conduct the ecological evaluation that was required by the 1996 ROD and recommended in the May 2005 memorandum from EPA Region 4's Technical Services Section; and reinstate the requirement for FYRs for OU2. EPA should also determine whether land use restrictions are needed to mitigate any risks that may occur. Land use restrictions may be necessary if future uses at the Site include the removal of existing structures that would create an exposure pathway to contaminated soil that may be present under the former FCX warehouse on the Site.

Table 3 includes a summary of progress on recommendations from the First FYR in 2010.

| Recommendation                                                                                                                                                                   | Party<br>Responsible | Milestone<br>Date | Action Taken and Outcome                                                                                                                                                                                                | Date of<br>Action (if<br>applicable) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Reinstitute groundwater<br>sampling to document<br>whether MNA is<br>performing as expected at<br>the Site.                                                                      | EPA                  | 9/30/2011         | Groundwater sampling started.                                                                                                                                                                                           | 3/28/2012                            |
| Evaluate the need for<br>temporary monitoring<br>wells near the new bypass<br>to monitor MNA at the<br>Site until replacement-<br>monitoring wells can be<br>installed by NCDOT. | NCDOT                | 9/30/2011         | In 2011, the NCDOT, the State, and<br>the EPA discussed the need for more<br>wells. Currently, the permanent well<br>locations need to be discussed/re-<br>evaluated and, if needed, the wells<br>need to be installed. | -                                    |
| Evaluate whether the MNA program should be                                                                                                                                       | EPA                  | 9/30/2011         | Not completed                                                                                                                                                                                                           | -                                    |

Table 3: Progress on Recommendations from 2010 First FYR

| Recommendation                                                                                                                                                                                        | Party<br>Responsible | Milestone<br>Date | Action Taken and Outcome                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date of<br>Action (if<br>applicable) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| updated based on new<br>physical conditions at the<br>Site.                                                                                                                                           |                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |
| Implement institutional<br>controls (ICs) to prevent<br>groundwater use at the<br>Site.                                                                                                               | EPA                  | 9/30/2015         | Not completed                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    |
| Reevaluate remediation<br>goals that have become<br>more stringent to ensure<br>that they still fall within<br>EPA's acceptable risk<br>range for the Site.                                           | EPA                  | 6/30/2011         | Not completed for groundwater.<br>Completed for soil - The soil<br>residential and industrial levels are<br>below or within the EPA risks targets.                                                                                                                                                                                                                                                                                                               | Groundwater:<br>Soil:<br>9/11/2013   |
| Evaluate whether<br>institutional controls are<br>needed if the warehouse is<br>removed and<br>contaminated soil is<br>exposed. Implement<br>institutional controls, if<br>needed.                    | EPA                  | 9/30/2015         | In 2013, the EPA, the State, and the<br>property owner discussed ICs. ICs will<br>be required as groundwater<br>contamination exists on the Site<br>regardless of soil contamination that<br>may exist under the warehouse.<br>ICs not implemented to date.                                                                                                                                                                                                      | 9/11/13                              |
| Update decision<br>documents to require land<br>use restrictions for the<br>property located at the end<br>of Grimes Road.<br>Implement institutional<br>controls, if needed.                         | EPA                  | 12/31/2015        | Not completed<br>NCDOT, the State, and the EPA<br>discussed if ICs are needed.                                                                                                                                                                                                                                                                                                                                                                                   | Ongoing                              |
| Perform the ecological<br>risk assessment that was<br>required by the 1996<br>ROD for OU2, and<br>recommended by the 2005<br>memorandum from EPA<br>Region 4's Technical<br>Services Section.         | EPA                  | 6/30/2011         | Completed.<br>In 2012 the draft ecological risk<br>assessment report was sent to National<br>Oceanic and Atmospheric<br>Administration (NOAA), US Fish and<br>Wildlife Service (FWS), and the<br>NCDENR. At this time, NOAA has<br>been unable to complete the review;<br>the FWS and NCDENR both reviewed<br>the document and had no comments.<br>Therefore, the report fulfills the<br>obligation of conducting an ecological<br>risk assessment for the Site. | 4/24/2012                            |
| Re-evaluate the human<br>health risk assessment to<br>determine if soil at the<br>Site poses an<br>unacceptable risk for a<br>residential land use<br>scenario. Conduct FYRs<br>for OU2 if necessary. | EPA                  | 4/1/2015          | Completed.<br>The soil residential and industrial<br>levels are below or within the EPA<br>risks targets.                                                                                                                                                                                                                                                                                                                                                        | 9/11/2013                            |

In 2013, Park Boat Company contacted the EPA to inquire about purchasing a portion of the Site, identified as Source Areas 4 and 5 (located at the intersection of Grimes and Whispering Pines Road). Park Boat Company intends to use the warehouse for boat storage and sublet a portion of the property for other storage purposes. As a Bona Fide Prospective Purchaser (BFPP), Park Boats is required to: provide access to the EPA for sampling/inspection activities; limit the use of the property to commercial or industrial; prohibit installation of new or private groundwater wells; maintain the integrity of the existing concrete foundation slab in the warehouse building; implement all required ICs in the form of land use restrictions; notify the EPA prior to digging/disturbing or modifying structures/parking lots in the areas containing groundwater wells or contaminated soil; and call the EPA Emergency Response report any discoveries or release of hazardous substances. The EPA is planning to issue an Explanation of Significant Differences to include ICs as part of the remedy for soils. ICs for soils are necessary to prevent future disturbance of the ground cover at the end of Grimes Road, and possibly elsewhere at the Site. The EPA is currently having its contractor retrieve deeds.

#### 6.0 Five-Year Review Process

#### 6.1 Administrative Components

The NC DENR Superfund Section conducted the FYR for the FCX Site on behalf of the EPA. Nile Testerman (Environmental Engineer, NC DENR) and Stephanie Grubbs (Hydrogeologist, NC DENR Contractor) were responsible for gathering and reviewing data for this review and compiling all the information into the FYR Report for the EPA. Telephone and/or email discussions/interviews with Bill Joyner (EPA Remedial Project Manager), Nestor Young (EPA Section Chief) were conducted. Other activities conducted for this review included document review (see Appendix A); completion of a Site Inspection Checklist (see Appendix B); community interview documentation and public notice submitted to the local newspaper (see Appendix C) by the community involvement coordinator, Kerisa Coleman; and the FYR Report preparation.

## 6.2 Community Involvement

The EPA conducts all community involvement activities regarding the remedial action for the Site. On October 31, 2014, the EPA published a public notice in the *Washington Daily News* announcing the commencement of the FYR process for the Site. A copy of the public notice is included in Appendix C.

The EPA will make the final FYR Report available to the public. Upon completion of the FYR, the EPA will place copies of the document in the designated site repository: George H. and Laura E. Brown Library, 122 Van Norden St., Washington, NC 27889.

#### 6.3 Document Review

This Five-Year Review consisted of a review of relevant documents including but not limited to the RODs (1993 and 1996); ROD Amendment (2005); First Five-Year Review Report (2010); recent monitoring data, Memorandum of Review of Soil Samples (2013), applicable groundwater cleanup

ſ

standards and other ARARs, as listed in the ROD, were also reviewed and checked for updates. See Appendix A for a complete list of documents reviewed.

#### 6.4 ARAR Review

CERCLA Section 121(d)(2)(A) requires that Superfund remedial actions attain "a degree of cleanup of hazardous substance, pollutants, and contaminants released into the environment and of control of further release at a minimum which assures protection of human health and the environment." CERCLA § 121(d)(1), 42 U.S.C § 9621(d)(1). The remedial action must achieve a level of cleanup that at least attains those requirements that are legally applicable or relevant and appropriate. CERCLA § 121(d)(2)(A), 42 U.S.C § 9621(d)(2)(A).

Applicable requirements are those cleanup standards, standards of control, and other substantive requirements, criteria, or limitations promulgated under federal environmental, or state environmental, or facility siting laws, that specifically address a hazardous substance, remedial action, location, or other circumstance found at a CERCLA site. 40 C.F.R. § 300.5.

Relevant and appropriate requirements are those standards that, while not "applicable," address problems or situations sufficiently similar to those encountered at the CERCLA site that their use is well suited to the particular site. 40 C.F.R. § 300.5. Only those state standards that are more stringent than federal requirements may be applicable or relevant and appropriate.

To-Be-Considered (TBC) criteria are non-promulgated advisories and guidance that are not legally binding, but should be considered in determining the necessary remedial action. For example, TBCs may be particularly useful in determining health-based levels where no ARARs exist, or in developing the appropriate method for conducting a remedial action.

Chemical-specific ARARs are health, or risk-based numerical values or methodologies which, when applied to site-specific conditions, result in the establishment of numeric values. These values establish an acceptable amount of concentration of a chemical that may remain in, or be discharged to, the ambient environment. Examples of chemical-specific ARARs include maximum contaminant levels under the Federal Safe Drinking Water Act and ambient water quality criteria enumerated under the Federal Clean Water Act.

Action-specific ARARs are technology, or activity-based requirements or limits on actions taken with respect to a particular hazardous substance. These requirements are triggered by a particular remedial activity, such as discharge of contaminated groundwater or in-situ remediation.

Location-specific ARARs are restrictions on hazardous substances, or the conduct of the response activities solely based on their location in a special geographic area. Examples include restrictions on activities in wetlands, sensitive habitats, and historic places.

Remedial actions are required to comply with the chemical-specific ARARs identified in the ROD. In performing the FYR for compliance with ARARs, only those ARARs that address the protectiveness of the remedy are reviewed. Because the remedy at the Site currently addresses groundwater contamination, this FYR will discuss compliance with chemical-specific groundwater ARARs only.

#### 6.4.1 Current Applicable ARARs

It is the EPA's policy that ARARs are generally "frozen" at the time of the ROD signature unless a "new or modified requirement calls into question the protectiveness of the selected remedy." 55 Fed. Reg. 8757 (March 8, 1990). The NC Classifications and Water Quality Standards Applicable to the Groundwater of North Carolina, North Carolina Administrative Code (NCAC) Title 15A Subchapter 2L (NC 2L Standards), on which several of the remedial goals are based, were last amended on April 1, 2013. Twenty-two of the chemical-specific ARARs have changed for the COCs since the remediation goals (RGs) assigned in the ROD. Five compounds, in which the RGs were based on the NC 2L groundwater standards, heptachlor, heptachlor epoxide, toxaphene, pentachlorophenol, and chromium, have current NC 2L groundwater standards more stringent than the RGs set by the 1993 ROD. Aldrin and dieldren (RGs of 0.01µg/L and 0.02 µg/L, respectively) also have amended NC 2L groundwater standards (0.002 µg/L for both compounds); however, the 1993 ROD set the RGs for aldrin and dieldren at the CRQLs. Toluene, chlorobenzene, and bis(2-ethylhexyl)phthalate all have RGs based on MCLs. Toluene and chlorobenzene were based on federal MCLs of 1,000 µg/L and 100 µg/L, but the amended NC 2Ls are 600 µg/L and 50 µg/L, respectively. Bis(2-ethylhexyl)phthalate has an RG of 4 µg/L and a current MCL of 6 µg/L, although the current NC 2L is 3 µg/L. Table 4 is a summary of previous and current ARARs for the groundwater COCs. The new standards do not indicate that the present standards are not protective.

| COC                 | 1993 ROD<br>Groundwater<br>Remediation<br>Goal | Current NC 2L<br>(As of April 1,<br>2013) | Current<br>Federal<br>CRQL | Current<br>Federal<br>MCLs                                                                                      | ARAR<br>change? |
|---------------------|------------------------------------------------|-------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|
|                     | P                                              | esticides- μg/L                           |                            |                                                                                                                 |                 |
| Aldrin              | 0.01 <sup>a,b</sup>                            | 0.002                                     | 0.05                       | -                                                                                                               | Yes             |
| Heptachlor          | 0.076°                                         | 0.008                                     | 0.05                       | -                                                                                                               | Yes             |
| Heptaclor epoxide   | 0.038°                                         | 0.004                                     | 0.05                       | - 64                                                                                                            | Yes             |
| Alpha-BHC           | 0.014 <sup>d</sup>                             | 0.2                                       | 0.05                       | -                                                                                                               | Yes             |
| Beta-BHC            | 0.047 <sup>d</sup>                             | 0.2                                       | 0.05                       |                                                                                                                 | Yes             |
| Gamma-BHC (lindane) | 0.0265 °                                       | 0.03                                      | 0.05                       | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - | Yes             |
| Dieldren            | 0.02 ª                                         | 0.002                                     | 0.1                        | -                                                                                                               | Yes             |
| 4,4-DDT             | 0.02 ª                                         | 0.1                                       | 0.1                        | -                                                                                                               | Yes             |
| 4,4-DDE             | 0.02 ª                                         | -                                         | 0.1                        | -                                                                                                               | No              |
| 4,4-DDD             | 0.02 ª                                         | 0.1                                       | 0.1                        |                                                                                                                 | Yes             |
| Endrin              | 0.20 ª                                         | 2                                         | 0.1                        | -                                                                                                               | Yes             |
| Toxaphene           | 1.0 a,c                                        | 0.3                                       | 5                          | -                                                                                                               | Yes             |

| <b>Fable 4:</b> | Comparison | of 1993 ROD | Groundwater | Remediation | Goals to G | <b>Current ARARs</b> |
|-----------------|------------|-------------|-------------|-------------|------------|----------------------|
|-----------------|------------|-------------|-------------|-------------|------------|----------------------|

| COC                            | 1993 ROD<br>Groundwater<br>Remediation<br>Goal | Current NC 2L<br>(As of April 1,<br>2013) | Current<br>Federal<br>CRQL | Current<br>Federal<br>MCLs | ARAR<br>change? |
|--------------------------------|------------------------------------------------|-------------------------------------------|----------------------------|----------------------------|-----------------|
| Chlordane                      | 0.027 °                                        | 0.1                                       | 0.05                       | -                          | Yes             |
|                                |                                                | VOCs- µg/L                                |                            |                            |                 |
| Chlorform                      | 0.19°                                          | 70                                        | 0.5                        | -                          | Yes             |
| 1,2-Dichloroethane             | 0.38°                                          | 0.4                                       | 0.5                        | 5                          | Yes             |
| 1,2-Dichloropropane            | 0.56°                                          | 0.6                                       | 0.5                        | 5                          | Yes             |
| Benzene                        | 1°                                             | 1                                         | 0.5                        | 5                          | No              |
| Toluene                        | 1,000 f                                        | 600                                       | 0.5                        | 1,000                      | Yes             |
| Chlorobenzene                  | 100 <sup>f</sup>                               | 50                                        | 0.5                        | 100                        | Yes             |
| Total Xylenes                  | 400 °                                          | 500                                       | 0.5                        | 10,000                     | Yes             |
|                                |                                                | SVOCs- µg/L                               |                            |                            |                 |
| Bis(2-<br>ehtylhexyl)phthalate | 4 <sup>f</sup>                                 | 3                                         | -                          | -                          | Yes             |
| Pentachlorophenol              | 1°                                             | 0.3                                       | 5                          |                            | Yes             |
| Carazole                       | 4.3 <sup>d</sup>                               | -                                         | 5                          | -<br>-                     | No              |
|                                | I                                              | norganics- µg/L                           |                            | and the second states      |                 |
| Beryllium                      | 1 <sup>f</sup>                                 | -                                         | 5                          | 4                          | No              |
| Chromium                       | 50°                                            | 10                                        | 10                         | 100                        | Yes             |
| Nickel                         | 100 <sup>f</sup>                               | 100                                       | 40                         | -                          | No              |
| Lead                           | 15 g                                           | 15                                        | 10                         | 15                         | No              |
| Mercury                        | 1.10°                                          | 1                                         |                            | 2                          | Yes             |
| Manganese                      | 697 <sup>h</sup>                               | 50                                        | 15                         | -                          | Yes             |

a) The 1993 ARAR was based on the contract required quantitation limit (CRQL).

b) According to the Site's 1993 ROD, the CRQL exceeded the risk-based concentration for aldrin.

c) The 1993 ARAR was based on the North Carolina Groundwater Quality Standard (15NCAC 021).

d) The 1993 ARAR was based on the cancer slope factor value applied to a residential land use scenario at the Site. e) According to the Site's 1993 ROD. The CRQL exceeded the NC 2L

f) The 1993 ARAR was based on the federal Maximum Contaminant Level (MCL).

g) The 1993 ARAR for lead was based on the treatment technique action level.

h) The 1993 ARAR was based on the average background concentration at the Site, which was greater than the NC 2L of 50

BOLD indicates the compound currently has a more stringent standard than proposed in the 1993 ROD.

- No State (NC 2L) or Federal MCL and/or CRQL) standard exists for this compound

 $\mu g/L = microgram per liter.$ 

#### 6.5 Data Review

<u>OU1</u>

The data review was completed by the EPA Region 4 Science and Ecosystem Support Division (SESD) and included in the 2014 Sampling Investigation Report. This report can be found in Appendix D of this FYR.

The 2014 Sampling Investigation Report covers the sampling event conducted at the Site during the week of April 14, 2014, and compares the data to the seven previous sampling events starting in March

2012. Representatives of the SESD conducted the groundwater sampling and field chemistry analyses. SESD conducted previous sampling investigations in January and August 2007; March 2008; March, September, and December 2012; and March, June, September and December 2013. During all of the 2012, 2013, and 2014 investigations, SESD personnel collected samples from the same 14 permanent monitor wells and analyzed them for the following analytes: VOCs, VOCs-natural attenuation (methane, ethane, and ethene), pesticides, toxaphene congeners, sulfate, chloride, nitrate/nitrite nitrogen, total organic carbon, ferrous iron (Fe<sup>2+</sup>), sulfide, alkalinity and carbon dioxide. The following is a summary of the analytical issues and conclusion from the 2014 Sampling Investigation Report.

#### 2014 SESD Sampling Investigation Report

Wells MW09A, MW10A, MW11A, MW12A, and MW15B consistently had detections of the same VOC and pesticide compounds at nearly the same concentration for each sampling event. A few compounds were detected at one event and not in another. For example, dieldrin was detected in MW11A after five quarters of non-detects and hexachloro-butadiene was detected in well MW11A in September 2013 and April 2014, but not in December 2013. The analytical results indicate no compounds were detected at or above any concentration listed in the four standards for the following wells: MW01A, MW01B, MW05A, MW05B, MW07A, MW07B, MW08B, MW09B, and MW16B from the March 2012 to April 2014 sampling events.

Figure 4 shows the location of the 14 wells associated with the quarterly sampling events at the Site. Pesticide and VOC results are listed only for those wells with detections of compounds at one time or another that have exceeded the RGs listed in Table 2 of this FYR report.

The analytical results for all eight events indicate that the laboratory minimum reporting limit (MRL) was not low enough to reach the RG for six compounds; aldrin, 4,4-DDT, 4,4,-DDD, chloroform, 1,2-Dichloroethane, and toxaphene. For 4,4-DDE and dieldrin, the MRLs were equal to or greater than the RGs. In some instances the MRL for several compounds was not low enough to reach one or more of the other comparison standards. In those cases, the MRL is listed. See Appendix D for the Sampling Investigation Report (Tables 4 and 5 within that report).

According to the Sampling Investigation Report and a SESD personnel discussion with the Remedial Project Manager (RPM) in 2012, it was decided to keep the results as reported since the RGs from the 1993 ROD are being reviewed to ensure that they still fall within EPA's acceptable risk range. In conclusion, four wells consistently show detections of pesticides above the RGs: MW09A, MW10A, MW11A, and MW12A. The volatile compound, 1,2-dichloroethane, is consistently detected above the RG in well MW15B. Figure 4 shows the results from the March 2012 to April 2014 sampling events and highlights the relatively small variability in the results. These same five wells also exceed one or more of the RGs.

## 6.6 Site Inspection

The Site inspection of the FCX Site was conducted on September 23, 2014. Attending the Site inspection were William Joyner (Remedial Project Manager, EPA), Nile Testerman (Environmental Engineer, NC DENR), Cyrus Parker (NC DOT), Chad Eichelberger (NC DOT), Woody Jarvis (NC DOT), Gordon Box (NC DOT) and Austin Smithwick (Park Boat Company). It was noted during the Site Inspection that all the monitoring wells were properly secured, locked, functioning and in good condition, and all wells were easily located and routinely sampled. It was also noted in the Site Inspection Checklist that contamination concentrations are declining in some wells; however, institutional controls are not in place. See Appendix B for the completed Site Inspection Checklist document.

## 6.7 Interviews

The EPA is responsible for contacting and interviewing the community surrounding the Site for concerns, comments, and/or questions regarding the remediation at the Site for the FYR. The following people were interviewed for this FYR. Summaries of their responses are below and the full interviews can be found in Appendix E.

#### William Joyner, EPA RPM

The OU1 and OU2 remedies are protective in the short term. ICs will need to be implemented for the Site. The Site's OU1 remedy currently protects human health and the environment in the short term because groundwater is not being used as a groundwater source on Site or off Site. The Site's OU2 remedy currently protects human health and the environment in the short term because most of the contaminated soil(s) have been excavated, and there is no exposure pathway for the contaminated soil that remains at the Site.

#### Park Boat Company, Owner

My overall impression is that everything is moving in the right direction. The NC Department of Transportation took part of the Site to make a bypass of the highway; but they have since completed that project. I purchased the remainder. My plan was to purchase it for the warehouse that is on Site for boat storage. We are a retail boat dealership. I needed a place to store boats and it is currently being used for that. At some point in the near future I may sub-lease a portion of it for some others for different businesses but cannot foresee what that may be at this present time. However, if we do, we would be in contact with the EPA to make sure that we are all on the same page.

#### Cyrus Parker, NC DOT

The remedy seems to be working well for the Site and community.

#### 7.0 Technical Assessment

## 7.1 Question A: Is the remedy functioning as intended by the decision documents?

Yes. The remedy currently protects human health and the environment in the short-term because there are no known current exposure routes to contaminated soil or groundwater. However, the wells removed by the NCDOT during the construction of the highway bypass may need to be installed and sampled to determine the impact of the bypass on groundwater flow and the impact on the MNA remedy. Therefore, the effectiveness of the remedy needs to be evaluated before the next FYR. In order to be protective of human health and to preserve the effectiveness of the remedy, institutional controls must be implemented and maintained until remedial goals are met. These ICs may include, but not be limited to, deed restrictions or covenants.

| Media       | ICs<br>Needed | ICs Called<br>for in the<br>Decision<br>Documents | IC<br>Objective                                                                                                                   | Instrument<br>in Place | Notes                                                                                                           |
|-------------|---------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------|
| Groundwater | Yes           | Yes                                               | ICs may include,<br>but not be limited<br>to, deed restrictions<br>or covenants.                                                  | None                   | Impacted Parcels:<br>01031971, 02011241,<br>15016903, 01028589,<br>15021595, 15021598,<br>15019372 and 15018945 |
| Soil        | Yes           | No                                                | Restrict land use to<br>prevent the creation<br>of an exposure<br>pathway to<br>contaminated soil<br>at the end of<br>Grimes road | None                   | Impacted Parcels:<br>01031971, 02011241,<br>15016903, 01028589,<br>15021595, 15021598,<br>15019372 and 15018945 |

## Table 5: Institutional Controls (ICs) Evaluation Summary

# 7.2 Question B: Are the exposure assumptions, toxicity data, clean-up levels and remedial action objectives (RAOs) used at the time of the remedy still valid?

No. The NC Classifications and Water Quality Standards Applicable to the Groundwater of North Carolina, NCAC Title 15A Subchapter 2L (NC 2Ls), on which several of the remedial goals are based, were last amended on April 2013. Twenty-three of the chemical-specific ARARs have been amended for the COCs since the remediation goals assigned in the ROD and twelve of these amended NC 2Ls are currently more stringent than the RGs assigned in the ROD. Table 4 is a summary of the current NC 2L Groundwater Standards, MCLs and CRQLs for all the compounds. As stated previously, new standards do not indicate that the present standards are not protective.

There have been no changes in the physical conditions of the Site that would affect the protectiveness of the remedy.

# 7.3 Question C: Has any other information come to light that could call into question the protectiveness of the remedy?

No additional information has come to light that could call into question the protectiveness of the remedy.

## 7.4 Technical Assessment Summary

According to documents, the site inspection, and discussions with the EPA, the exposure pathway to contaminated soil and groundwater has been mitigated. There are no known current exposure routes to contaminated soil or groundwater. Furthermore, the contaminated soil has been mitigated through source removal and groundwater is not used as a potable source of water. In order for the remedy to be protective in the long-term, the following actions are required: evaluate groundwater conditions to determine the impact of the highway bypass on groundwater flow and the MNA remedy; reevaluate the groundwater remediation goals to determine if modifications are needed; implement institutional controls until remedial goals are attained; and modify the decision document to include institutional controls for soils.

## 8.0 Issues, Recommendations and Follow-up Actions

| OU(s):                           | Issue Category: Monitoring                                                                                                                                                                                     |                                    |                    |                |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------|----------------|--|
| OU1                              | <b>Issue:</b> The wells removed/destroyed during the construction of the bypass may need to be reinstalled and sampled to determine the impact of the highway bypass on groundwater flow and the MNA remedy.   |                                    |                    |                |  |
| 2<br>9                           | <b>Recommendation:</b> Evaluate groundwater conditions to determine the impact of the highway bypass on groundwater flow and the MNA remedy.                                                                   |                                    |                    |                |  |
| Affect Current<br>Protectiveness | Affect Future<br>Protectiveness                                                                                                                                                                                | Implementing<br>Party              | Oversight<br>Party | Milestone Date |  |
| No .                             | Yes                                                                                                                                                                                                            | EPA/State/Property<br>Owners/NCDOT | EPA                | 09/15/2017     |  |
| OU(s):                           | Issue Category: Remedy Performance                                                                                                                                                                             |                                    |                    |                |  |
| OU1                              | <b>Issue:</b> In 2013, the North Carolina Groundwater Standards were amended.<br>Subsequently, the current North Carolina Groundwater Standards for<br>several compounds are more stringent than the 1993 ROD. |                                    |                    |                |  |

## Table 6: Issues, Recommendations and Follow-up Actions

|                                                         | <b>Recommendation</b> Reevaluate the groundwater remediation goals to determine if modifications are needed.                                   |                                                                                                                               |                                                                                                                    |                                                                                 |  |  |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
| Affect Current<br>Protectiveness                        | Affect Future<br>Protectiveness                                                                                                                | Implementing<br>Party                                                                                                         | Oversight<br>Party                                                                                                 | Milestone Date                                                                  |  |  |
| No                                                      | Yes                                                                                                                                            | EPA/State                                                                                                                     | EPA                                                                                                                | 09/15/2017                                                                      |  |  |
|                                                         |                                                                                                                                                |                                                                                                                               |                                                                                                                    |                                                                                 |  |  |
| OU(s):                                                  | Issue Category: Institutional Controls                                                                                                         |                                                                                                                               |                                                                                                                    |                                                                                 |  |  |
| OU1<br>OU2                                              | Issue: Institutional Controls have not been implemented.                                                                                       |                                                                                                                               |                                                                                                                    |                                                                                 |  |  |
| 002                                                     | <b>Recommendation:</b> Implement land use restrictions or other appropriate institutional controls at the Site.                                |                                                                                                                               |                                                                                                                    |                                                                                 |  |  |
|                                                         | L                                                                                                                                              |                                                                                                                               | · · · ·                                                                                                            |                                                                                 |  |  |
| Affect Current<br>Protectiveness                        | Affect Future<br>Protectiveness                                                                                                                | Implementing<br>Party                                                                                                         | Oversight<br>Party                                                                                                 | Milestone Date                                                                  |  |  |
| Affect Current<br>Protectiveness<br>No                  | Affect Future<br>Protectiveness<br>Yes                                                                                                         | Implementing<br>Party<br>EPA                                                                                                  | Oversight<br>Party<br>EPA/State                                                                                    | Milestone Date           09/15/2017                                             |  |  |
| Affect Current<br>Protectiveness<br>No<br>OU(s):        | Affect Future<br>Protectiveness<br>Yes<br>Issue Category: I                                                                                    | Implementing<br>Party<br>EPA<br>nstitutional Control                                                                          | Oversight<br>Party<br>EPA/State                                                                                    | Milestone Date           09/15/2017                                             |  |  |
| Affect Current<br>Protectiveness<br>No<br>OU(s):<br>OU1 | Affect Future<br>Protectiveness<br>Yes<br>Issue Category: H<br>Issue: The OU2 re                                                               | Implementing<br>Party<br>EPA<br>nstitutional Control<br>emedy does not requ                                                   | Oversight<br>Party<br>EPA/State<br>s<br>uired institutional c                                                      | Milestone Date<br>09/15/2017                                                    |  |  |
| Affect Current<br>Protectiveness<br>No<br>OU(s):<br>OU1 | Affect Future<br>Protectiveness<br>Yes<br>Issue Category: I<br>Issue: The OU2 re<br>Recommendation<br>soil.                                    | Implementing<br>Party<br>EPA<br>Institutional Controls<br>emedy does not requ<br>a: Modify the remed                          | Oversight<br>Party<br>EPA/State<br>s<br>ured institutional c<br>by to include institu                              | Milestone Date<br>09/15/2017<br>controls for soil.<br>ational controls for      |  |  |
| Affect Current<br>Protectiveness<br>No<br>OU(s):<br>OU1 | Affect Future<br>Protectiveness<br>Yes<br>Issue Category: H<br>Issue: The OU2 re<br>Recommendation<br>soil.<br>Affect Future<br>Protectiveness | Implementing<br>Party<br>EPA<br>Institutional Controls<br>emedy does not requ<br>a: Modify the remed<br>Implementing<br>Party | Oversight<br>Party<br>EPA/State<br>s<br>hired institutional c<br>by to include institutional<br>Oversight<br>Party | Milestone Date 09/15/2017 controls for soil. tional controls for Milestone Date |  |  |

## 9.0 Protectiveness Statement

The remedy at the FCX Washington Plant Site currently protects human health and the environment in the short-term because there are no known current exposure routes to contaminated soil or groundwater. Furthermore, the contaminated soil has been mitigated through source removal and groundwater is not used as a potable source of water. In order for the remedy to be protective in the long-term, the following actions are required: evaluate groundwater conditions to determine the impact of the highway bypass on groundwater flow and the MNA remedy; reevaluate the groundwater remediation goals to determine if modifications are needed; implement institutional controls until remedial goals are attained; and modify the decision document to include institutional controls for soils.

## 10.0 Next Review

The next FYR will be due within five years of the signature/approval date of this FYR.

# **FIGURES**

Ţ

#### Figure 1: Site Location Map



Disclaimer: This map and any boundary lines within the map are approximate and subject to change. The map is not a survey. The map is for informational purposes only regarding EPA's response actions at the site, and is not intended for any other purpose.

#### Figure 2: Site Detail Map



Disclaimer: This map and any boundary lines within the map are approximate and subject to change. The map is not a survey. The map is for informational purposes only regarding EPA's response actions at the site, and is not intended for any other purpose.

#### Figure 3: Site Parcel Map



Disclaimer: This map and any boundary lines within the map are approximate and subject to change. The map is not a survey. The map is for informational purposes only regarding EPA's response actions at the site, and is not intended for any other purpose.


# APPENDIX A List of Documents Reviewed

i

### List of Documents Reviewed FCX, Inc. – Washington Plant Site Second Five-Year Review Report

US EPA Record of Decision: FCX, Inc. (Washington Plant) NCD981475932. OU01, Washington, NC. September 15, 1993.

US EPA Record of Decision: FCX, Inc. (Washington Plant) NCD981475932. OU02. Washington, NC. December 18, 1996.

US EPA Record of Decision Amendment: FCX, Inc. (Washington Plant) NCD981475932. OU01, OU02. Washington, NC. September 8, 2005.

E2, Inc. First Five-Year Review Report: FCX, Inc. (Washington Plant) NCD981475932. Washington, NC. August 24, 2010.

North Carolina Administrative Code, Title 15A, Subchapter 2L, Section .0100, .0200, .0300, Classifications and Water Quality Standards Applicable to the Groundwater of North Carolina, April 1, 2013.

US EPA, Letter: Park Boat Company: FCX, Inc. (Washington Plant) NCD981475932. Washington, NC. May 20, 2013.

US EPA, Memorandum: Review of FCX Soils Samples: FCX, Inc. (Washington Plant) NCD981475932. Washington, NC. September 11, 2013.

US EPA, Final Sampling Investigation Report: FCX, Inc. (Washington Plant) NCD981475932. Washington, NC. August 18, 2014.

# **APPENDIX B** Site Inspection Checklist

### Site Inspection Checklist

| I. SITE INF                                                                                                                                                                                                                                                   | ORMATION                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site name: Davis Park Road TCE                                                                                                                                                                                                                                | Date of inspection: 3-24-15                                                                                                                          |
| Location and Region: GASTONIA , GASTON COUNTY, NC                                                                                                                                                                                                             | EPA ID: NCD 986 175 444                                                                                                                              |
| Agency, office, or company leading the five-year review: NL DENR                                                                                                                                                                                              | Weather/temperature:<br>Sunny 70's                                                                                                                   |
| G Landfill cover/containment<br>G Access controls<br>G Institutional controls<br>G Groundwater pump and treatment<br>G Surface water collection and treatment<br>Cotter <u>5 Houses</u> eriginally supplied<br>Attachments: G Inspection team roster attached | Anitored natural attenuation<br>iroundwater containment<br>Vertical barrier walls<br>mith Carbon Failters, Istiil Operational<br>G Site map attached |
| II. INTERVIEWS                                                                                                                                                                                                                                                | (Check all that apply)                                                                                                                               |
|                                                                                                                                                                                                                                                               |                                                                                                                                                      |
| 1. O&M site manager HRAAY Z.UV<br>Name<br>Interviewed G at site G at office G by phone Phone<br>Problems, suggestions; G Report attached                                                                                                                      | EANTRO. ÉANT                                                                                                                                         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Agency NC DENR - Superfund                                                                               | -                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contact HARANY 2:NW                                                                                      | - Ervis Engr                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 919-707-8310                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Name<br>Problems: suggestions: C Papert attached                                                         | Title                                                                | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phone no.                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Toolems, suggestions, G Report attached                                                                  | No Problems                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Agency fragment ( 4 11. 14                                                                               | 0 +                                                                  | The second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contact Days The a cash                                                                                  | Envine Her 144                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Name                                                                                                     | Title                                                                | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 104 255 52<br>Dhome no                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Problems; suggestions; G Report attached                                                                 | No Problems                                                          | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fhone no.                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |                                                                      | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Agency                                                                                                   |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contact                                                                                                  |                                                                      | A state of the sta |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Name                                                                                                     | Title                                                                | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phone no.                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Problems; suggestions; G Report attached                                                                 |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Amanay                                                                                                   |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contact                                                                                                  |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nama                                                                                                     |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Problems: suggestions: G Report attached                                                                 | 1 itie                                                               | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phone no.                                                    |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Other interviews (antique)) C.B.                                                                         | rehed                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VUICI HILEI VIEWS LODHOTIZH I G REDOTT 2112                                                              |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other interviews (optional) G Report atta                                                                | kiled.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| Contraction of the local of the | Очиет инегунему (орнода)) G кероп апа                                                                    | kiled.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| North States in the second sec | Ошет плет чему (орнолал) G керон апа                                                                     | kuled.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| A NOT DE RECTOR DE LA DE | Очнет плет чему (орнолал) G керогт ана                                                                   | kiled.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| A STATE OF A REAL PARTY OF A STATE OF A STAT | Онет тиет чему (орнолал) G керон ана                                                                     | kuleu.                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
| A REAL PROPERTY OF A REAL PROPER | Ощет плет чему (орнолал) G керон ана                                                                     |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ощет плет чему (орнолал) G керогт апа                                                                    |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ощет плет чему (орнолал) G керон ана                                                                     |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | III. ON-SITE DOCUMENTS & R                                                                               | ECORDS VERIFIED (C                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mbr)                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | III. ON-SITE DOCUMENTS & R<br>O&M Documents                                                              | RECORDS VERIFIED (CI                                                 | neck all that ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pply)                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | III. ON-SITE DOCUMENTS & R<br>O&M Documents<br>G O&M manual G Read                                       | ECORDS VERIFIED (Cl                                                  | neck all that ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pply)                                                        |
| A REAL PROPERTY OF THE REAL PR | III. ON-SITE DOCUMENTS & R<br>O&M Documents<br>G O&M manual G Read<br>G As-built drawings                | RECORDS VERIFIED (Cl<br>ily available G Up to<br>G Readily available | neck all that ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2011<br>2011<br>2011<br>2011<br>2011<br>2011<br>2011<br>2011 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | III. ON-SITE DOCUMENTS & R<br>O&M Documents<br>G O&M manual<br>G As-built drawings<br>G Maintenance loos | ECORDS VERIFIED (Cl<br>ily available G Up to<br>G Readily available  | heck all that an<br>date G N/<br>G Up to date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pply)<br>(A<br>G N/A                                         |

|   | Site-Specific Health and Safety<br>G Contingency plan/emergency re<br>Remarks | Plan<br>sponse plan        | G Readily a<br>G Readily z   | vailable<br>vailable | G Up t<br>G Up t | o date<br>o date | 6 N/A<br>9 N/A |
|---|-------------------------------------------------------------------------------|----------------------------|------------------------------|----------------------|------------------|------------------|----------------|
|   | O&M and OSHA Training Rec<br>Remarks                                          | ords G                     | Readily availa               | ble                  | 🛢 Up t           | o date           | G N/A          |
| - | Permits and Service Agreement                                                 |                            |                              |                      |                  |                  |                |
|   | G Air discharge permit                                                        | G                          | Readily availa               | ble                  | GUDU             | o date           | & N/A          |
|   | G Effluent discharge                                                          | G                          | Readily availa               | ble                  | GUDI             | o date           | ¥ N/A          |
|   | G Waste disposal, POTW                                                        | G Readily a                | vailable                     | GUbi                 | o date           | VN/A             |                |
|   | G Other permits<br>Remarks                                                    | G1                         | Readily availa               | ble                  | GUpt             | o date           | ∳ N/A          |
| • | Gas Generation Records<br>Remarks                                             | G Readily a                | wailable                     | G Up t               | o date           | ₩N/A             | - <u></u> -    |
|   | Settlement Monument Records<br>Remarks                                        | G 1                        | Readily availa               | ble                  | G Up to          | o date           | ₿ N/A          |
|   | Groundwater Monitoring Recor<br>Remarks                                       | nds Gl                     | Readily availa               | ble                  | )≢Upt            | o date           | G N/A          |
|   | Leachate Extraction Records<br>Remarks                                        | GI                         | Readily availa               | ble                  | GUpt             | o date           | )# N/A         |
|   | Discharge Compliance Records                                                  |                            | <u> </u>                     |                      |                  |                  |                |
|   | G Air                                                                         | G J                        | Readily availab              | bło                  | GÜrsta           | date             | EN/A           |
|   | G Water (effluent)<br>Remarks                                                 | GI                         | Readily availa               | bie                  | GUpt             | date             | XG N/A         |
|   | Daily Access/Security Logs<br>Remarks                                         | GI                         | Readily availab              | ble                  | GUpta            | o date           | )B N/A         |
|   |                                                                               |                            |                              |                      |                  |                  | ·              |
| _ |                                                                               | IV. 044                    | I COSTS                      |                      |                  |                  |                |
|   | O&M Organization                                                              | • • • • •                  |                              |                      | •                |                  |                |
|   | Q State m-house                                                               | G Contracto                | r for State                  |                      |                  |                  |                |
|   | G FRF in-house<br>G Federal Facility in-house                                 | G Contracto<br>G Contracto | r for PRP<br>r for Federal H | ecility              |                  |                  |                |



| 1.                              | Site conditions involv IC                                                                                                                                                                        | forcement<br>s not properly implemented                                                                                                                                | G Yes     | G No    | 5 N/A        |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--------------|
|                                 | Site conditions imply IC                                                                                                                                                                         | s not being fully enforced                                                                                                                                             | G Yes     | G No    | N/A          |
|                                 | Type of monitoring (e.g.                                                                                                                                                                         | , self-reporting, drive by)                                                                                                                                            |           |         |              |
|                                 | Frequency                                                                                                                                                                                        |                                                                                                                                                                        |           |         |              |
|                                 | Comparts                                                                                                                                                                                         | y                                                                                                                                                                      |           |         |              |
|                                 | Name                                                                                                                                                                                             | Title                                                                                                                                                                  | Da        | te      | Phone no.    |
|                                 | Reporting is up-to-date                                                                                                                                                                          |                                                                                                                                                                        | G Yes     | G No    | §N/A         |
|                                 | Reports are verified by the                                                                                                                                                                      | ne lead agency                                                                                                                                                         | G Yes     | G No    | φN/A         |
|                                 | Specific requirements in                                                                                                                                                                         | deed or decision documents have been met                                                                                                                               | G Yes     | G No    | STN/A        |
|                                 | Violations have been rep                                                                                                                                                                         | orted                                                                                                                                                                  | G Yes     | G No    | ÿN/A         |
|                                 | Other problems or sugge                                                                                                                                                                          | stions: G Report attached                                                                                                                                              |           |         | •            |
|                                 |                                                                                                                                                                                                  |                                                                                                                                                                        |           |         |              |
|                                 |                                                                                                                                                                                                  |                                                                                                                                                                        |           |         |              |
| 2.                              | Adequaces                                                                                                                                                                                        |                                                                                                                                                                        |           |         |              |
|                                 | Remarks                                                                                                                                                                                          | G ICs are adequate G ICs are inside                                                                                                                                    |           |         | ₩ N/A        |
|                                 | Remarks                                                                                                                                                                                          | G ICs are adequate G ICs are made                                                                                                                                      |           |         | )# N/A       |
| D. G                            | Remarks                                                                                                                                                                                          | G ICs are adequate G ICs are made                                                                                                                                      |           |         | \$ N/A       |
| <b>D. G</b><br>1.               | Ancquary<br>Remarks<br>eneral<br>Vandalism/trespassing<br>Remarks                                                                                                                                | G ICs are adequate G ICs are made                                                                                                                                      | randalism | evident | <b>S</b> N/A |
| <b>D. G</b><br>1.               | Antequaty<br>Remarks<br>eneral<br>Vandalism/trespassing<br>Remarks<br>Land use changes on sin<br>Remarks                                                                                         | G ICs are adequate G ICs are made<br>G Location shown on site map \$ No v                                                                                              | randalism | evident | \$ N/A       |
| <b>D. G</b><br>1.<br>2.<br>3.   | Ancquary<br>Remarks<br>enersi<br>Vandalism/trespassing<br>Remarks<br>Land use changes on sin<br>Remarks<br>Land use changes off si<br>Remarks                                                    | G ICs are adequate G ICs are inade<br>G Location shown on site map \$ No v<br>is \$ N/A                                                                                | randalism | evideni | 35 N/A       |
| <b>D. G</b><br>1.<br>2.<br>3.   | Antequaty<br>Remarks<br>eneral<br>Vandalism/trespassing<br>Remarks<br>Land use changes on si<br>Remarks<br>Land use changes off si<br>Remarks                                                    | G Location shown on site map \$ No v                                                                                                                                   | randalism | evident |              |
| <b>D. G</b><br>1.<br>2.<br>3.   | Ancquary<br>Remarks<br>Remarks<br>Vandalism/trespassing<br>Remarks<br>Land use changes on sin<br>Remarks<br>Land use changes off sh<br>Remarks                                                   | G ICs are adequate G ICs are made<br>G Location shown on site map \$ No v<br>te \$ N/A<br>VI. GENERAL SITE CONDITIONS                                                  | randalism | evident |              |
| <b>D. G</b><br>1.<br>2.<br>3.   | Ancquary<br>Remarks<br>Remarks<br>Vandalism/trespassing<br>Remarks<br>Land use changes on sit<br>Remarks<br>Land use changes off si<br>Remarks<br>G Applicable                                   | G ICs are adequate G ICs are made<br>G Location shown on site map \$ No v<br>te \$ N/A<br>VI. GENERAL SITE CONDITIONS<br>\$ N/A                                        | randalism | evident |              |
| D. G<br>1.<br>2.<br>3.<br>A. R. | Antequaty<br>Remarks<br>eneral<br>Vandalism/trespassing<br>Remarks<br>Land use changes on sin<br>Remarks<br>Land use changes off sin<br>Remarks<br>Gads G Applicable<br>Roads damaged<br>Remarks | G ICs are adequate G ICs are made<br>G Location shown on site map \$ No v<br>te \$ N/A<br>VI. GENERAL SITE CONDITIONS<br>\$ N/A<br>G Location shown on site map G Road | randalism | evident |              |

|                 |                                                                                                                                                                  |                                                                                                                                                                                                                                              | ······································                                         |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                 |                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                |
|                 |                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                |
|                 |                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                |
|                 | <u></u>                                                                                                                                                          |                                                                                                                                                                                                                                              |                                                                                |
|                 | VII. LAN                                                                                                                                                         | DFILL COVERS G Applicable                                                                                                                                                                                                                    | • N/A                                                                          |
| <b>L</b> I      | andfill Surface                                                                                                                                                  |                                                                                                                                                                                                                                              | ······                                                                         |
| 1.              | Settlement (Low spots)                                                                                                                                           | G Location shown on site map                                                                                                                                                                                                                 | G Settlement not evident                                                       |
|                 | Areal extent                                                                                                                                                     | Depth                                                                                                                                                                                                                                        |                                                                                |
|                 | Remarks                                                                                                                                                          |                                                                                                                                                                                                                                              |                                                                                |
|                 |                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                |
| 2.              | Cracks                                                                                                                                                           | G Location shown on site map                                                                                                                                                                                                                 | G Cracking not evident                                                         |
|                 | Lengths Widt                                                                                                                                                     | hs Depths                                                                                                                                                                                                                                    |                                                                                |
|                 | Kemarka                                                                                                                                                          |                                                                                                                                                                                                                                              |                                                                                |
| 3.              | Erosion                                                                                                                                                          | G Location shown on site map                                                                                                                                                                                                                 | G Erosion not evident                                                          |
|                 | Areal extent                                                                                                                                                     | Depth                                                                                                                                                                                                                                        |                                                                                |
|                 | Remarks                                                                                                                                                          | ·                                                                                                                                                                                                                                            | <u> </u>                                                                       |
| 4.              | Holes                                                                                                                                                            | G Location shown on site map                                                                                                                                                                                                                 | G Holes not evident                                                            |
|                 | Areal extent                                                                                                                                                     | Depth                                                                                                                                                                                                                                        |                                                                                |
|                 | Remarks                                                                                                                                                          | ·                                                                                                                                                                                                                                            |                                                                                |
| 5.              | Vegetative Cover G Gr<br>G Trees/Shrubs (indicate size an<br>Remarks                                                                                             | ass G Cover properly establi<br>d locations on a diagram)                                                                                                                                                                                    | shed G No signs of stress                                                      |
|                 |                                                                                                                                                                  |                                                                                                                                                                                                                                              |                                                                                |
| 6.              | Alternative Cover (armored r<br>Remarks                                                                                                                          | ock, concrete, etc.) G N/A                                                                                                                                                                                                                   |                                                                                |
| 6.              | Alternative Cover (armored r<br>Remarks                                                                                                                          | ock, concrete, etc.) G N/A                                                                                                                                                                                                                   |                                                                                |
| 6.<br>7.        | Alternative Cover (armored r<br>Remarks<br>Bulges                                                                                                                | G Location shown on site map                                                                                                                                                                                                                 | G Bulges not evident                                                           |
| 6.<br>7.        | Alternative Cover (armored r<br>Remarks<br>Bulges<br>Areal extent<br>Remarks                                                                                     | ock, concrete, etc.) G N/A<br>G Location shown on site map<br>Height                                                                                                                                                                         | G Bulges not evident                                                           |
| <b>6.</b><br>7. | Alternative Cover (armored r<br>Remarks<br>Bulges<br>Areal extent<br>Remarks                                                                                     | G Location shown on site map<br>Height                                                                                                                                                                                                       | G Bulges not evident                                                           |
| 6.<br>7.<br>8.  | Alternative Cover (armored r<br>Remarks                                                                                                                          | G Location shown on site map<br>Height<br>G Wet areas/water damage not ev                                                                                                                                                                    | G Bulges not evident                                                           |
| 6.<br>7.<br>8.  | Alternative Cover (armored r<br>Remarks<br>Bulges<br>Areal extent<br>Remarks<br>Wet Areas/Water Damage<br>G Wet areas                                            | G Location shown on site map<br>Height<br>G Wet areas/water damage not ev<br>G Location shown on site map                                                                                                                                    | G Bulges not evident<br>ident<br>Areal extent                                  |
| 6.<br>7.<br>8.  | Alternative Cover (armored r<br>Remarks<br>Bulges<br>Areal extent<br>Remarks<br>Wet Areas/Water Damage<br>G Wet areas<br>G Ponding                               | G Location shown on site map<br>Height<br>G Wet areas/water damage not ev<br>G Location shown on site map<br>G Location shown on site map                                                                                                    | G Bulges not evident<br>ident<br>Areal extent<br>Areal extent                  |
| 6.<br>7.<br>8.  | Alternative Cover (armored r<br>Remarks<br>Bulges<br>Areal extent<br>Remarks<br>Wet Areas/Water Damage<br>G Wet areas<br>G Ponding<br>G Sceps                    | G Location shown on site map<br>Height<br>G Wet areas/water damage not ev<br>G Location shown on site map<br>G Location shown on site map<br>G Location shown on site map                                                                    | G Bulges not evident ident Areal extent Areal extent Areal extent              |
| 6.<br>7.<br>8.  | Alternative Cover (armored r<br>Remarks<br>Bulges<br>Areal extent<br>Remarks<br>Wet Areas/Water Damage<br>G Wet areas<br>G Ponding<br>G Scops<br>G Soft subgrade | G Wet sreas/water damage not ev<br>G Location shown on site map<br>Height<br>G Wet sreas/water damage not ev<br>G Location shown on site map<br>G Location shown on site map<br>G Location shown on site map<br>G Location shown on site map | G Bulges not evident ident Areal extent Areal extent Areal extent Areal extent |

|                | Slope Instability G<br>Areal extent<br>Remarks                                                                                            | Slides G Location shown on s                                                                                                                                            | ite map                              | G No evidence of slope instability                                                              |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------|
| B. B.          | enches G App<br>(Horizontally constructed<br>in order to slow down the<br>channel.)                                                       | icable 26 N/A<br>d mounds of earth placed across a<br>e velocity of surface runoff and int                                                                              | steep lan<br>tercept an              | fill side slope to interrupt the slop<br>d convey the runoff to a lined                         |
| 1.             | Flows Bypass Bench<br>Remarks                                                                                                             | G Location shown on s                                                                                                                                                   | ite map                              | G N/A or okay                                                                                   |
| 2.             | Bench Breached<br>Remarks                                                                                                                 | G Location shown on si                                                                                                                                                  | ite map                              | G N/A or okay                                                                                   |
| 3.             | Beach Overtopped<br>Remarks                                                                                                               | G Location shown on s                                                                                                                                                   | ite map                              | G N/A or okay                                                                                   |
|                | slope of the cover and with cover without creating er                                                                                     | ill allow the runoff water collected<br>osion gullies.)                                                                                                                 | by the b                             | anches to move off of the landfill                                                              |
| 1.             | Settlement<br>Areal extent<br>Remarks                                                                                                     | G Location shown on site map<br>Depth                                                                                                                                   | G No                                 | evidence of settlement                                                                          |
| 2.             | Settlement Areal extent Remarks Material Degradation Material type Remarks                                                                | G Location shown on site map<br>Depth<br>G Location shown on site map<br>Areal extent                                                                                   | G No<br>G No                         | evidence of settlement                                                                          |
| 2.             | Settlement<br>Areal extent<br>Remarks<br>Material Degradation<br>Material type<br>Remarks<br>Erosion<br>Areal extent<br>Remarks           | G Location shown on site map<br>Depth<br>G Location shown on site map<br>Areal extent<br>G Location shown on site map<br>Depth                                          | G No<br>G No<br>G No                 | evidence of settlement<br>evidence of degradation<br>evidence of erosics                        |
| 2.<br>3.<br>4. | Settlement Areal extent Remarks Material Degradation Material type Remarks Erosion Areal extent Remarks Undercutting Areal extent Remarks | G Location shown on site map<br>Depth<br>G Location shown on site map<br>Areal extent<br>G Location shown on site map<br>Depth<br>G Location shown on site map<br>Depth | G No<br>G No<br>G No<br>G No<br>G No | evidence of settlement<br>evidence of degradation<br>evidence of erosion<br>evidence of erosion |

| 6.   | Excessive Vegetative Growth Type<br>G No evidence of excessive growth                                                                                                                                           |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | G Vegetation in channels does not obstruct flow.<br>G Location shown on site map Areal extent<br>Remarks                                                                                                        |
| D. ( | Cover Penetrations G Applicable 🞽 N/A                                                                                                                                                                           |
| 1.   | Gas Vents G Active G Passive<br>G Properly secured/locked G Functioning G Routinely sampled G Good condition<br>G Evidence of leakage at penetration G Needs Maintenance<br>G N/A<br>Remarks                    |
| 2.   | Gas Monitoring Probes<br>G Properly secured/locked G Functioning G Routinely sampled G Good condition<br>G Evidence of leakage at penetration G Nords Maintenance G N/A<br>Remarks                              |
| 3.   | Monitoring Wells (within surface area of landfill)<br>G Properly secured/locked G Functioning G Routinely sampled G Good condition<br>G Evidence of leakage at penetration G Noeds Maintenance G N/A<br>Remarks |
| 4.   | Leachate Extraction Wells<br>G Properly secured/locked G Functioning G Routinely sampled G Good condition<br>G Evidence of leakage at penetration G Needs Maintenance G N/A<br>Remarks                          |
| 5.   | Settlement Monuments G Located G Routinely surveyed G N/A<br>Remarks                                                                                                                                            |
| E. G | as Collection and Treatment G Applicable 🕽 N/A                                                                                                                                                                  |
| 1.   | Gas Treatment Facilities<br>G Flaring G Thermal destruction G Collection for reuse<br>G Good condition G Needs Maintenance<br>Remarks                                                                           |
| 2.   | Gas Collection Wells, Manifolds and Piping<br>G Good condition G Needs Maintenance<br>Remarks                                                                                                                   |
| 3.   | Gas Monitoring Facilities (e.g., gas monitoring of adjacent homes or buildings)<br>G Good condition G Needs Maintenance G N/A<br>Remarks                                                                        |

| F. C  | over Drainage Layer                                                             | G Applicable                                 | ¢ N/A                                           |
|-------|---------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|
| 1.    | Outlet Pipes Inspected<br>Remarks                                               | G Functioning                                | G N/A                                           |
| 2.    | Outlet Rock Inspected<br>Remarks                                                | G Functioning                                | G N/A                                           |
| G. D  | etention/Sedimentation Por                                                      | ids G Applicable                             | ≱N/A                                            |
| 1.    | Siltation Areal extent<br>G Siltation not evident<br>Remarks                    | Depth_                                       | G N/A                                           |
| 2.    | Erosion Areal ex<br>G Erosion not evident<br>Remarks                            | ktentD                                       | pth                                             |
| 3.    | Outlet Works<br>Remarks                                                         | G Functioning G N/A                          |                                                 |
| 4.    | Dam<br>Remarks                                                                  | G Functioning G N/A                          |                                                 |
| H. R  | etaining Walls                                                                  | G Applicable N/A                             |                                                 |
| 1.    | Deformations<br>Horizontal displacement_<br>Rotational displacement_<br>Remarks | G Location shown on site Vertice             | map G Deformation not evident<br>I displacement |
| 2.    | Degradation<br>Remarks                                                          | G Location shown on site                     | map G Degradation not evident                   |
| I. Pe | rimeter Ditches/Off-Site Di                                                     | <b>charge</b> G Appl                         | icable 👌 N/A                                    |
| 1.    | Silitation G Locat<br>Areal extent<br>Remarks                                   | ion shown on site map G a Depth              | Siltation not evident                           |
| 2.    | Vegetative Growth<br>G Vegetation does not imp<br>Areal extent<br>Remarks       | G Location shown on site<br>and flow<br>Type | map GN/A                                        |

|                                | Erotion<br>Areal extent<br>Remarks                                                                                                                                | G Location shown on site map<br>Depth                                                                               | G Erosion not evident                             |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 4.                             | Discharge Structure<br>Remarks                                                                                                                                    | G Functioning G N/A                                                                                                 | · · · · · · · · · · · · · · · · · · ·             |
|                                | VIII. VI                                                                                                                                                          | IRTICAL BARRIER WALLS                                                                                               | G Applicable ) N/A                                |
| 1.                             | Settlement<br>Areal extent<br>Remarks                                                                                                                             | G Location shown on site map<br>Depth                                                                               | G Settlement not evident                          |
| <b>2</b> .                     | Performance Monitori<br>G Performance not mom<br>Frequency<br>Head differential<br>Remarks                                                                        | ng Type of monitoring<br>itoredG Evidenc                                                                            | e of breaching                                    |
|                                | IX. GROUNDWA                                                                                                                                                      | TER/SURFACE WATER REME                                                                                              | DIES G Applicable N/A                             |
| 1.                             | Pumps, Wellhead Plan<br>G Good conditionG All<br>Remarks                                                                                                          | sbing, and Electrical<br>required wells properly operating G                                                        | Needs Maintenance G N/A                           |
|                                | Extraction System Pipe<br>G Good condition G Nee                                                                                                                  | elines, Valves, Valve Boxes, and O                                                                                  | ther Appurtenances                                |
| <b>6</b> .                     | Remarks                                                                                                                                                           |                                                                                                                     |                                                   |
| 3.                             | Remarks<br>Spare Parts and Equip<br>G Readily available<br>Remarks                                                                                                | ment<br>G Good conditionG Requires upg                                                                              | rade G Needs to be provided                       |
| 2.<br>3.<br>B. Su              | Remarks<br>Spare Parts and Equip<br>G Readily available<br>Remarks<br>rface Water Collection St                                                                   | ment<br>G Good conditionG Requires upg<br>ructures, Pumps, and Pipelines                                            | rade G Needs to be provided<br>G Applicable T N/A |
| 2.<br>3.<br><b>B. Su</b><br>1. | Remarks<br>Spare Parts and Equip<br>G Readily available<br>Remarks<br>urface Water Collection St<br>Collection Structures, I<br>G Good condition G Nee<br>Remarks | ment<br>G Good conditionG Requires upg<br>ructures, Pumps, and Pipelines<br>Pumps, and Electrical<br>is Maintenance | rade G Needs to be provided<br>G Applicable & N/A |

**B-10** 

| 3.        | Spare Parts and Equipme:<br>G Readily available (<br>Remarks                                                                                     | nt<br>I Good conditi                                                    | onG Requires upgrade                                                 | G Needs to be provided                |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|
| С. Т      | Freatment System C                                                                                                                               | Applicable                                                              | g N/A                                                                | ·                                     |
| 1.        | Treatment Train (Check c<br>G Metals removal<br>G Air stripping<br>B Filters <u>1</u> Cardon Filter<br>G Additive (e.g., chelation a<br>G Others | omponents tha<br>Oil/water sep<br>G Cart<br>Systa بر<br>gent, flocculer | apply)<br>aration G Bioreme<br>son adsorbers<br>good shape. At<br>n) | diation<br>star webs to Ken Al-line   |
|           | G Sampling ports properly n<br>G Sampling/maintenance ko<br>G Equipment properly ident                                                           | narked and fun<br>g displayed and<br>fied                               | d up to date                                                         |                                       |
|           | G Quantity of groundwater t<br>G Quantity of surface water<br>Remarks                                                                            | reated annually                                                         | y<br>ly                                                              | · · · · · · · · · · · · · · · · · · · |
| 2.        | Electrical Enclosures and<br>\$10/A G Good co<br>Remarks                                                                                         | Panels (proper<br>andition G Nee                                        | ty rated and functional ds Maintenance                               | ))                                    |
| 3.        | Tanks, Vanits, Storage Ve<br>M N/A G Good of<br>Remarks                                                                                          | sels<br>nditionG Prop                                                   | er secondary contains                                                | nent G Needs Maintenance              |
| 4.        | Discharge Structure and A<br>9. N/A G Good co<br>Remarks                                                                                         | ppurtenances<br>ndition G Nee                                           | s<br>ds Maintenance                                                  |                                       |
| <b>5.</b> | Treatment Building(s)<br>% N/A G Good or<br>G Chemicals and equipment<br>Remarks                                                                 | ndition (esp. r<br>properly store                                       | oof and doorways)<br>d                                               | G Needs repair                        |
| 6.        | Monitoring Wells (pump an<br>G Properly secured/locked G<br>G All required wells located<br>Remarks                                              | d treatment re<br>Functioning<br>G Need                                 | medy)<br>G Routinely sample<br>Is Maintenance                        | d G Good condition<br>So N/A          |
| D. M      | onitoring Date                                                                                                                                   |                                                                         |                                                                      | <del></del>                           |
| 1.        | Monitoring Data<br>5 Is routinely submitted on t                                                                                                 | ime                                                                     | ¥ Is of acceptal                                                     | le quality                            |
| <b>2</b>  | Monitoring data suggests:                                                                                                                        | ctively contai                                                          | ned ¥ Contaminant                                                    | concentrations are declining          |

1

| 1.        | Monitoring Wells (natural attenuation remedy)         Properly secured/locked       Functioning         All required wells located       G Needs Maintenance         G N/A                                                                 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | X. OTHER REMEDIES                                                                                                                                                                                                                          |
|           | If there are remedies applied at the site which are not covered above, attach an inspection sheet describin<br>the physical nature and condition of any facility associated with the remedy. An example would be soil<br>vapor extraction. |
| 192       | XI. OVERALL OBSERVATIONS                                                                                                                                                                                                                   |
| A.        | Implementation of the Remedy                                                                                                                                                                                                               |
|           | Mantered Natural Attenuation will vector until all ground water is below<br>NC-Ground water standards, Long tern within superpluing indicates                                                                                              |
|           | the pixme is attendating toward state standards                                                                                                                                                                                            |
| B.        | Adequacy of O&M                                                                                                                                                                                                                            |
| <u>B.</u> | Adequacy of O&M Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.                           |

|            | <u>NA</u>                                                                                          |
|------------|----------------------------------------------------------------------------------------------------|
|            |                                                                                                    |
|            |                                                                                                    |
| -          |                                                                                                    |
| _          |                                                                                                    |
| _          |                                                                                                    |
| O          | portunities for Optimization                                                                       |
| <b>n</b> - | scribe possible opportunities for optimization in monitoring tasks or the operation of the remedy. |
|            |                                                                                                    |
| _          |                                                                                                    |
| -          |                                                                                                    |
|            |                                                                                                    |

· · · · · ·

**B-13** 

## APPENDIX C Public Notice

ł



U. S. Environmental Protection Agency, Region 4 Announces a Five-Year Review for the FCX, Inc. (Washington Plant) Superfund Site, Washington, Beaufort County, North Carolina

Purpose/Objective: The U.S. Environmental Protection Agency (EPA) is conducting a Five-Year Review of the remedy for the FCX, Inc. (Washington Plant) site (Site) in Washington, North Carolina. The purpose of the Five-Year Review is to ensure that the selected cleanup actions effectively protect human health and the environment.

Site Background: The FCX, Inc (Washington Plant) site is located within the city limits of Washington, North Carolina. The former Farmer's Cooperative Exchange (FCX) Inc. facility operated there as a farm supply distribution center, which repackaged and sold pesticides, herbicides, and tobacco treating chemicals between 1945 and 1985. From 1960 to 1981, an unknown amount of chemical waste generated by FCX was placed in plastic containers and paper bags and buried in an on-site landfill southwest of the former FCX warehouse. Sampling studies conducted at the Site by local, state, and federal agencies found soil and ground water to be contaminated in five source areas. The Site was finalized on EPA's National Priorities List in 1989. The primary contamination risk at the Site is the presence of pesticides, volatile organic compounds (VOCs), semi-VOCs, and metals in ground water.

Cleanup Actions: Removal actions were initiated at the Site between 1989 and 1990 to excavate contaminated soil in source areas at the Site. The Site is comprised of two operable units (OUs). The Record of Decision (ROD) for operable unit 1 (OU1) was signed on September 15, 1993 to address ground water contamination. The remedy selected for OU1 consisted of a ground water extraction system and on-site treatment of ground water using air stripping, carbon adsorption, precipitation, and ion exchange. The ROD for OU2 was signed on December 18, 1996 to address soil contamination. The remedy selected for OU2 required no further action to treat the soil because all of the soil and source contamination were removed during a time-critical removal action that was completed in a three stage process between 1990 and 1992. In 1996, the contaminated soil excavated during the time-critical removal action was treated using thermal desorption, which completed the removal response. On September 8, 2005, a ROD Amendment (AROD) was signed to update the selected remedy for OU1. The AROD changed the selected remedy for ground water from the use of an extraction and treatment system to monitored natural attenuation (MNA) and added a requirement for institutional controls to prevent ground water use until cleanup goals are met. MNA is ongoing at the Site.

Five-Year Review Schedule: The National Contingency Plan requires that remedial actions that result in any hazardous substances, pollutants, or contaminants remaining at the Site above levels that allow for unlimited use and unrestricted exposure be reviewed every five years to ensure protection of human health and the environment. The second of these Five-Year Reviews for this Site will be completed by September 30, 2015.

EPA invites community participation in the Five-Year Review process: EPA is conducting this Five-Year Review to evaluate the effectiveness of the remedy and to ensure that the remedy remains protective of human health and the environment. As part of the Five-Year Review process, EPA is available to answer any questions about the Site. Community members who have questions about the Site, the Five-Year Review process, or who would like to participate in a community interview, are asked to contact the following:

William Joyner, Remedial Project Manager 404-562-8795 joyner.william@epa.gov

Mailing Address: EPA Region 4 61 Forsyth St. S.W. Atlanta, GA 30303-8960 Kerisa Coleman, Community Involvement Coordinator 404-562-8831 coleman.kerisa@epa.gov

Additional site information is also available at the Site's document repository, located at George H. and Laura E. Brown Library, 122 Van Norden Street, Washington, North Carolina, 27889 and online: http://cfpub.epa.gov/supercpad/cursites/csitinfo.cfm?id=0404280

# **APPENDIX D**

# Final Report April 2014 FCX Groundwater Sampling Events Sampling Investigation Report



### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

**REGION 4** Science and Ecosystem Support Division **Enforcement and Investigations Branch** 980 College Station Road Athens, Georgia 30605-2720

August 20, 2013

**4SESD-EIB** 

### **MEMORANDUM**

- Groundwater Sampling Investigation Report for FCX Washington **SUBJECT:** Washington, North Carolina SESD Project #13-0365 & 13-0416
- Kevin Simmons, Life Scientist FROM: Superfund and Air Section
- Poura ade Laura Ackerman, Chief **THRU:** Superfund and Air Section
- TO: Bill Joyner, RPM Superfund Division

Attached is the report for the FCX Washington site groundwater and soil sampling investigations conducted the week of June 03, 2013 in Washington, North Carolina. Please send questions or comments to Kevin Simmons at simmons.kevin@epa.gov or call 706.355.8730.

Attachment

United States Environmental Protection Agency Region 4

> Science and Ecosystem Support Division 980 College Station Road Athens, Georgia 30605-2720



# **Sampling Investigation Report**

# **FCX Washington**

Washington, North Carolina Conducted June 03-06, 2013

**Report Issued August 21, 2013** 

SESD Project Identification Numbers: 13-0365 & 13-0416 (Dioxin)

Requestor: William Joyner, RPM Superfund Division 61 Forsyth St. SW Atlanta, Georgia 30303-8960 SESD Project Leader: Kevin Simmons Superfund & Air Section 980 College Station Road Athens, Georgia 30605-2720

SESD Project# 13-0365 FCX Washington Page 1 of 287

### **Title and Approval Sheet**

Title: Sampling Investigation Report for FCX Washington Final Report

Approving Official:

Daura Ackerman, Chief Superfund & Air Section Enforcement & Investigations Branch

08

**SESD** Project Leader:

Kevin Simmons, Life Scientist Superfund & Air Section Enforcement & Investigations Branch

Ł SO) 3

Date

Page 2 of 287

# **Table of Contents**

| INTRODUCTION                                                  | 4       |
|---------------------------------------------------------------|---------|
| BACKGROUND                                                    | 4       |
| SUMMARY                                                       | 5       |
| DISCUSSION                                                    | 6       |
| METHODOLOGY                                                   | 8       |
| FIELD OUALITY CONTROL                                         | 9       |
| CONCLUSION                                                    | 9       |
| REFERENCES                                                    | 9       |
| Tables                                                        |         |
| Table 1 FCX Well and Analytical Method Information            | 11      |
| Table 2 FCX Remediation Goals                                 | 12      |
| Table 3 Field Parameter and Field Chemistry Results           | 13      |
| Table 4 Pesticide Results                                     | 15      |
| Table 5 Volatile Organic Compound Natural Attenuation Results | 19      |
| Table 6 Volatile Organic Compound Results                     | 21      |
| Table 7 Classical Nutrients Results                           | 23      |
| Table 8 Soil Pesticide Results                                | 25      |
| Table 9 Soil SVOC Results                                     | 26      |
| Table 10 Soil Metals Results                                  | 28      |
| Table 11 Soil Dioxin Results                                  | 29      |
| Figures                                                       |         |
| Figure 1 Groundwater Well Location and Results Map            | 30      |
| Figure 2 Soil Sample Location Map                             | 31      |
| Figure 4 Institutional Control Base Map of FCN                | 32      |
| Appendices                                                    |         |
| Appendix A Field Logbooks                                     | 33      |
| Appendix B Analytical Data Sheets                             | 69      |
| Chloride. Sulfate. Nitrate Nitrite. Total Organic Carbon      | 70-94   |
| Pesticides Toxaphene Congeners                                | 95-146  |
| VOC8                                                          | 147-212 |
| VOCs Monitored Natural Attenuation                            | 213-235 |
| SVOCs- Soil                                                   | 236-260 |
| Dioxin – Soil                                                 | 261-269 |
| Metals – Soil                                                 | 270-287 |

### Sampling Investigation Report for FCX Washington SESD Project ID Numbers: 13-0365 Conducted June 03-06, 2013

### INTRODUCTION

This report covers the fifth sampling event at the FCX site since March 2012. During the week of June 03. 2013, representatives of the US EPA Region 4 Science and Ecosystem Support Division (SESD) conducted groundwater sampling at the FCX site in Washington, North Carolina. The investigation was requested by William Joyner. Remedial Project Manager (RPM), Region 4 Superfund Division. Personnel from the Environmental Services Assistance Team (ESAT). Integrated Laboratory Systems (ILS) also assisted with the event. The following personnel participated in the investigation:

| <u>NAME</u>    | ORGANIZATION | <u>DUTIES</u>                    |
|----------------|--------------|----------------------------------|
| Kevin Simmons  | US EPA SESD  | Project Leader                   |
| Jairo Castillo | US EPA SESD  | Sampler                          |
| Cornell Gayle  | US EPA SESD  | Safety Officer Sampler Geologist |
| Brian Herndon  | ESAT-ILS     | Sampler Instrument Calibration   |
| Louis Pounds   | ESAT-ILS     | Field Chemist                    |
| Jeff Wilmoth   | ESAT-ILS     | Field Chemist                    |

The data tables include the analytical results from March. September. December 2012 plus March and June 2013 for comparison. Only analytical data sheets for June 2013 are included in this report since prior data sheets are in previous reports.

#### BACKGROUND

The Farmers Cooperative Exchange (FCN) operated a farm supply distribution center on the 12-acre FCN-Washington site at the corner of Grimes Rd and Whispering Pines Rd located in Washington. Beaufort County. North Carolina, from 1945 to 1985. The distribution center repackaged and sold pesticides, herbicides, and tobacco-treating chemicals. In the early 1970s, a large trench was filled with pesticide wastes and other agricultural chemicals. The company filed for bankruptcy and began liquidating its assets in 1985. Chemicals of concern are pesticides, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs) and metals.

Additionally, the North Carolina Department of Transportation has constructed a 15.5 mile improvement of the US 17 corridor, which included four parcels of land on the FCN-Washington site. Construction of the highway bypass destroyed wells MW03A, MW03B, MW13B and MW14B.

SESD conducted previous sampling investigations in January 2007, August 2007, March 2008, March 2012, September 2012, and December 2012 and March 2013. During all of

the 2012 and 2013 investigations, SESD personnel collected samples from 14 permanent monitor wells.

A local businessman has expressed interest in purchasing the site, thus dictating the need for additional soil data. A prior risk assessment indicated the site soils were within EPA's acceptable risk range for the industrial/commercial land use scenario. The risk assessment did not evaluate the residential land use scenario for most of the source areas. Therefore, it was unknown if the site falls into the unlimited use and unrestricted exposure category.

To determine if the site soils meet the residential land use criteria, the Region 4 TSS recommended that three 5-point composite surface soil samples be collected from  $0^{"} - 6^{"}$  below ground surface in source areas 3, 4, and 5 of the FCX site. See Figure 4 from  $E^2$  Inc., page 13. In areas with a layer of gravel over the soil, the gravel was removed and the sample interval began below the gravel. All soil samples were analyzed for pesticides, semi-volatile organic compounds (SVOCs), and metals. The soil samples from areas 4 and 5 were analyzed for dioxin TEQ. Soil sample Station IDs and Sample IDs were determined in the field. GPS coordinates for each composite sample were collected from a single, central point with a Trimble Geo XH.

At this time, one more sampling event is scheduled for September of 2013.

#### SUMMARY

During each sampling event fourteen groundwater samples were collected and analyzed for the following analytes: volatile organic compounds (VOCs), VOCs-natural attenuation, pesticides, toxaphene congeners, sulfate, chloride, nitrate/nitrite nitrogen, total organic carbon, ferrous iron (Fe2+), sulfate, alkalinity and carbon dioxide.

The Sample IDs in the tables have remained consistent through March 2013. For the June 2013 event, a prefix of "MW" was inadvertently added to the ID which is shown on the chain of custody. To maintain consistency, the sample IDs in the tables for June 2013 have the "MW" removed.

 Table 1 lists the wells sampled during the March 2012 through June 2013 events including GPS coordinates, water levels at the time of sampling, and the analytical methods used.

 Table 2 lists the Remedial Action Goals for the FCX site.

Prior to sample collection, wells were monitored for turbidity, pH, dissolved oxygen (DO), conductivity, oxidation reduction potential (ORP), and temperature. Water quality parameter measurements of pH, conductivity, and turbidity were recorded until the following conditions were met for three successive readings; conductivity within 5%, pH within 0.1 standard units and turbidity less than 10 NTU or as close as reasonably achievable. DO and ORP were not used to indicate the stability of groundwater. Groundwater field parameter measurements and field chemistry analytical results are listed in Table 3.

Table 4 contains the pesticide analytical results from the five sampling events from March 2012 to June 2013. Since the results have been consistent from event to event, only the wells with detections are listed. The results are compared to the North Carolina Groundwater Quality Standards (NC GWQS). Residential Screening Levels for Tapwater (RSL Tapwater), the Drinking Water Maximum Contaminant Levels (MCL), and the FCN Remediation Goals (FCN RGs), if applicable.

 Table 5 summarizes the VOC natural attenuation results for the last five events from

 March 2012 through June 2013.

 Table 6 summarizes the VOC results for the five events from March 2012 through June

 2013 with comparisons to the standards listed in Table 4. Only the wells with detections are listed.

**Table 7** summarizes the chloride, sulfate, nitrate nitrite and total organic carbon (TOC) results for the five events from March 2012 through March 2013.

The three five-point composite soil samples were analyzed for pesticides. SVOCs, and metals. Two of the samples were also analyzed for dioxin TEQ.

**Tables 8, 9, and 10** summarize the pesticide. SVOC. and metals results, respectively for the three soil samples. FCN03. FCN04, and FCN05. **Table 11** contains the dioxin results for FCN04 and FCN05.

**Figure 1** shows the location of the 14 wells associated with the quarterly sampling events at FCX. Data are shown only for those wells at or above the RG. The analytical results indicate no compounds were detected at or above the RG for the following wells: MW01A. MW01B. MW05A. MW05B. MW07A. MW07B. MW08B. MW09B. and MW16B for the period from March 2012 to June 2013.

Figure 2 shows the location of the soil samples.

**Appendix A** contains copies of the field logbooks and **Appendix B** contains the laboratory analytical data sheets. The field chemistry logbooks for sulfide, alkalinity, ferrous iron and carbon dioxide are in the project file at SESD.

#### DISCUSSION

#### Well Condition

Most wells were in good condition since vegetation and dirt had been removed from some wells during previous visits to the site.

#### Sampling

All groundwater sampling was done in accordance with the SESD Groundwater Sampling Procedure SESDPROC-301-R3. Purging and sampling of each well was accomplished via peristaltic pump.

All soil sampling was done in accordance with the SESD Soil Sample Procedure SESDPROC-300-R2. Sample FCN03 was a five point composite sample collected from the yard around the house at the southeast corner of Grimes Rd and Whispering Pines Rd which corresponds to Area 3 on Figure 4. The GPS coordinate is from the center of the yard. Sample FCN04 was a five point composite sample collected from the southeast and southwest sides of the old FCX warehouse which corresponds to Area 4 on Figure 4. The top 2" - 4" of gravel was removed to obtain the soil beneath it. The GPS coordinate is the southernmost corner of the warehouse. FCX05 was a five point composite sample collected from the southwestern side of the site which corresponds to Area 5 on Figure 4. The GPS coordinate is from the center point of the sample line.

### Investigation Derived Waste (IDW)

Purge water from the monitoring wells was discharged onto the ground based on previous analytical results. Excess soil was place back in the holes.

#### Analytical Results - Groundwater

Well MW09A consistently exceeded the RG for dieldrin (0.02µg l) with results of 0.072. 0.070 (split), 0.080, 0.086, 0.067, and 0.064µg l, respectively, for the five events.

MW10A exceeded the RGs for aldrin and dieldrin during all five events. Alpha-BHC was detected at or above the RG during the first two events and below the RG for the last three events. Beta-BHC was detected above the RG in three out of the five events. Gamma-BHC was detected above the RG during the first two events and below the RG during the last four of five events.

Well MW11A exceeded the RG for 4.4<sup>•</sup>-DDD (0.02µg l) for all five events with results of 0.42, 0.54, 0.72, 0.49, 0.46, and 0.56 (split) µg l respectively. The RG for aldrin (0.01µg l) was also exceeded with results of 1.8, 2.0, 2.2, 2.0, 2.0, and 2.3 (split) µg l respectively. Dieldrin was only detected at the RG in March 2012 with a result of 0.20µg l.

MW12A exceeded the RG for dieldrin (0.02µg l) with results of 0.037. 0.047. 0.049. 0.055, and 0.54µg l, respectively, for the five events.

Well MW15B consistently exceeded the RG ( $0.38\mu g$  l) and MRL ( $0.50\mu g$  l) for 1.2-Dichloroethane for all five events with results of 5.1, 5.1, 5.1, 5.0, 5.8, and 5.7 $\mu g$  l. Results are listed in Table 6.

In **Table 4**, some analytical results are qualified as non-detect (U), but the minimum reporting limit (MRL) may still be greater than a listed standard.

The analytical results for all five sampling events indicate that the laboratory minimum reporting limit (MRL) was not low enough to reach the RG for six compounds: aldrin. 4.4-DDT. 4.4-DDD. chloroform. 1.2-Dichloroethane and toxaphene. For consistency with the March 2012 report, the results will be used as reported. The remediation goals from the 1993 Record of Decision (ROD) are still under review to ensure that they still fall within EPA's acceptable risk range.

#### Analytical Results – Soil

The pesticides DDD. DDE. DDT, and gamma-chlordane were detected in all three samples. Dieldrin, endrin, and alpha-chlordane were also detected in sample FCX04. Only DDT, in sample FCX05, exceeded the RG of 1.7mg kg with a result of 17000µg kg (17mg kg). See Table 8.

The SVOC results indicated no detections at or above the reporting limit, however where the minimum reporting limit (MRL) exceeded the RSL value, the MRL is shown. The compounds 3.3 -Dichlorobenzidine and 4-Chloroaniline in sample FCN03 were qualified as Rejected due to a matrix spike recovery of less than 10%. These compounds are not listed as contaminants of concern for the ACW site. See Table 9.

Only the RSL for arsenic (0.39mg kg) was exceeded for all three samples. See Table 10. Dioxin TEQ is summarized in Table 11.

The pesticides MRLs for FCN05 are elevated due to the high concentrations of DDD. DDE and DDT and the subsequent dilutions needed for analysis.

2.3.7.8-tetrachlorodibenzodioxin is the only dioxin furan congener with a RSL. 0.0000045mg kg or 4.5 ng kg. This congener was not detected in either soil sample at or above the reporting limit. Several other dioxin compounds were detected and are listed in Table 11.

#### METHODOLOGY

Field activities were conducted in accordance with SESD's Field Branches Management and Quality System Procedures and the following SESD field measurement and sampling operating procedures:

SESDPROC-100-R3. Field pH Measurement
SESDPROC-101-R5. Field Specific Conductance Measurement
SESDPROC-102-R3. Field Temperature Measurement
SESDPROC-103-R3. Field Turbidity Measurement
SESDPROC-105-R2. Groundwater Level and Well Depth Measurement
SESDPROC-106-R2. Field Dissolved Oxygen Measurement
SESDPROC-106-R2. Field Dissolved Oxygen Measurement
SESDPROC-113-R1. Field Oxidation-Reduction Potential (ORP) Measurement
SESDPROC-202-R2. Investigation Derived Waste
SESDPROC-203-R2. Pump Operation
SESDPROC-205-R2. Field Equipment Cleaning and Decontamination
SESDPROC-209-R2. Packaging. Marking. Labeling and Shipping of Environmental and Waste Samples
SESDPROC-300-R2. Soil Sampling
SESDPROC-301-R3. Groundwater Sampling

All field measurement and sampling procedures were performed by the SESD Enforcement and Investigations Branch and ILS personnel. Chain of custody documents were prepared and signed by Kevin Simmons. Samples were transported to the SESD laboratory by EPA personnel and the dioxin samples were shipped to Analytical Resources, Inc.

Samples were analyzed at the SESD laboratory in accordance with the Analytical Support Branch (ASB) <u>Laboratory Operations and Quality Assurance Manual</u> (LOQAM), February 2013. The ASB laboratory is accredited by ISO 17025. Samples analyzed in the field were in accordance with the methods listed in **Table 1** and the ASB LOQAM when applicable. The dioxin samples were analyzed according to Statement of Work DLM02.2.

#### FIELD QUALITY CONTROL

No preservative blanks were collected because individual vials of sulfuric acid were used which had already undergone QA/QC verification.

Trip blanks were prepared by the SESD laboratory, taken to the field and transported to the laboratory along with the groundwater samples. The samples were analyzed for VOC MNA compounds (methane, ethane and ethene) and VOCs. No analytes were detected at or above the reporting limit in any trip blank sample.

Well MW11A was designated as a duplicate location. The duplicates were designated MW11A0613 and MW11AD0613. The analytical results for the samples and their respective duplicates showed excellent correlation indicating proper sample collection and handling procedures.

#### CONCLUSION

Particular pesticide results for wells MW09A, MW10A, MW11A, and MW12A are consistently above the RGs. In well MW15B, 1,2-dichloroethane is consistently detected above the RG. Figure 1 shows the results from the March 2012 to June 2013 sampling events and highlights the rather small variability in the results.

These groundwater and soil results will be used by the RPM and the Technical Services Section to further evaluate the groundwater conditions at the FCX Washington site and may also be used in discussions regarding updating or modifying the FCX Washington Record of Decision (ROD).

#### REFERENCES

USEPA SESD, "Field Branches Quality System and Technical Procedures". Most recent versions: http://www.epa.gov/region4/sesd/fbqstp

Page 9 of 287

USEPA SESD, Quality Assurance Project Plan, FCX Washington. March 2012

USEPA SESD, Sampling Investigation Final Report for FCX Washington. June 2012

USEPA SESD, Quality Assurance Project Plan, FCX Washington. August 2012

USEPA SESD, Groundwater Sampling Investigation Report for FCX Washington. November 2012

USEPA SESD, Quality Assurance Project Plan, FCX Washington. December 2012

USEPA SESD, Quality Assurance Project Plan, FCX Washington. February 2013

USEPA SESD, Groundwater Sampling Investigation Report for FCX Washington. May 2013

USEPA SESD, Quality Assurance Project Plan, FCX Washington. May 2013

USEPA SESD, <u>Analytical Support Branch Laboratory Operations and Quality Assurance</u> <u>Manual</u>, February 2013

USEPA FCX Record of Decision, Remediation Goals. 1993

Regional Screening Levels (RSLs) for Chemical Contaminants at Superfund Sites, RSL Maximum Contaminant Level. November 2012 RSL Tap Water. November 2012

North Carolina Groundwater Quality Standards (NC GWQS). January 2010

Figure 4, Institutional Control (IC) Base Map. Source: First Five Year Review Report for FCX Inc.  $E^2$  Inc. August 2010, p 36

|               |            | Date       | March 2012 | September 2012 | December 2012 | March 2013 | June 2013 | (Chloride/Sulfate)<br>Classical/Nutrient Analyses:EPA 300.0 | (Nitrate and/or Nitrite)<br>Classical/Nutrient Analyses:EPA 353.2 | (Total Organic Carbon)<br>Classical/Nutrient Analyses:SM 5310B | (Organochlorine Pesticides)<br>Organochlorine Pesticides:EPA 8081 | (Toxaphene Congeners) Organochlorine<br>Pesticides:EPA 8276 | (Natural Attenuation Compounds)<br>Volatile Organics:ASB V100 | (Volatile Organic Compounds)<br>Volatile Organics:EPA 8260C | Ferrous Iron (Fe2+)<br>Hach Method 8146 | Sulfide<br>Hach Method 8131 | Alkalinity<br>Hach Method 8203 | Carbon Dioxide<br>Hach Method 8205 | (SemiVolatile Organic Compounds)<br>SemiVolatile Organics:EPA 8270D | (Total Metals) Metals:EPA<br>200.8 & 6010 | (Dioxins/Furans)<br>Dioxin:Statement of Work DLM02.2 |
|---------------|------------|------------|------------|----------------|---------------|------------|-----------|-------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|-----------------------------|--------------------------------|------------------------------------|---------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|
| Station<br>ID | Longitude  | Latitude   | Wat        | er Depth I     | Below Top     | of Casing  |           |                                                             |                                                                   |                                                                |                                                                   | An                                                          | alytica                                                       | l Meth                                                      | ods                                     |                             |                                |                                    |                                                                     |                                           |                                                      |
| MW01A         | -77.072985 | 35.559818  | 4.34       | 3.55           | 4.86          | 3.89       | 4.31      | x                                                           | x                                                                 | x                                                              | x                                                                 | x                                                           | x                                                             | x                                                           | x                                       | x                           | x                              | x                                  | -                                                                   | -                                         | -                                                    |
| MW01B         | -77.072965 | 35.559851  | 4.25       | 3.44           | 4.85          | 3.78       | 4.32      | x                                                           | x                                                                 | x                                                              | x                                                                 | x                                                           | x                                                             | x                                                           | x                                       | x                           | x                              | x                                  | -                                                                   | -                                         | -                                                    |
| MW05A         | -77.074302 | 35.559966  | 7.62       | 6.6            | 8.18          | 7.07       | 7.69      | x                                                           | x                                                                 | x                                                              | x                                                                 | x                                                           | x                                                             | x                                                           | x                                       | x                           | x                              | x                                  | -                                                                   | -                                         | -                                                    |
| MW05B         | -77.074333 | 35.559937  | 7.75       | 6.83           | 8.24          | 7.19       | 7.76      | x                                                           | x                                                                 | x                                                              | x                                                                 | x                                                           | x                                                             | x                                                           | x                                       | x                           | x                              | x                                  | -                                                                   | -                                         | -                                                    |
| MW07A         | -77.074384 | 35.558147  | 5.0        | 4.35           | 5.28          | 4.7        | 5.11      | x                                                           | x                                                                 | x                                                              | x                                                                 | x                                                           | x                                                             | x                                                           | x                                       | x                           | ×                              | x                                  | -                                                                   | -                                         | -                                                    |
| MW07B         | -77.074351 | 35.558168  | 4.96       | 4.31           | 5.33          | 4.62       | 5.06      | x                                                           | x                                                                 | x                                                              | x                                                                 | x                                                           | x                                                             | x                                                           | x                                       | x                           | x                              | x                                  | -                                                                   |                                           | -                                                    |
| MW08B         | -77.075461 | 35.558827  | 10.22      | 9.49           | 10.57         | 9.82       | 10.29     | x                                                           | x                                                                 | x                                                              | x                                                                 | x                                                           | x                                                             | x                                                           | x                                       | x                           | x                              | x                                  | -                                                                   | -                                         | -                                                    |
| MW09A         | -77.074751 | 35.558054  | 8.15       | 7.55           | 8.35          | 7.82       | 8.22      | x                                                           | x                                                                 | x                                                              | x                                                                 | x                                                           | x                                                             | x                                                           | x                                       | x                           | x                              | x                                  | -                                                                   | -                                         | -                                                    |
| MW09B         | -77.074795 | 35.558085  | 8.18       | 7.62           | 8.42          | 7.84       | 8.26      | x                                                           | x                                                                 | x                                                              | x                                                                 | x                                                           | x                                                             | x                                                           | x                                       | x                           | x                              | x                                  | -                                                                   | -                                         | -                                                    |
| MW10A         | -77.075453 | 35.558873  | 7.46       | 6.72           | 7.79          | 6.98       | 7.53      | x                                                           | x                                                                 | x                                                              | x                                                                 | x                                                           | x                                                             | x                                                           | x                                       | x                           | x                              | x                                  | -                                                                   | -                                         | -                                                    |
| MW11A         | -77.075125 | 35.558394  | 7.57       | 6.85           | 7.83          | 7.18       | 7.71      | x                                                           | x                                                                 | x                                                              | x                                                                 | x                                                           | x                                                             | x                                                           | x                                       | x                           | x                              | x                                  | -                                                                   | -                                         | -                                                    |
| MW12A         | -77.074777 | 35.558661  | 6.36       | 5.69           | 6.64          | 5.88       | 6.42      | x                                                           | x                                                                 | x                                                              | x                                                                 | x                                                           | x                                                             | x                                                           | x                                       | x                           | x                              | x                                  | -                                                                   | -                                         | -                                                    |
| MW15B         | -77.075553 | 35.558528  | 9.97       | 9.47           | 9.92          | 10.06      | 10.61     | x                                                           | x                                                                 | x                                                              | x                                                                 | x                                                           | x                                                             | x                                                           | x                                       | x                           | x                              | x                                  | -                                                                   | -                                         | -                                                    |
| MW16B         | -77.074928 | 35.557554  | 4.59       | 4.19           | 4.84          | 4.38       | 4.71      | x                                                           | x                                                                 | x                                                              | x                                                                 | x                                                           | x                                                             | x                                                           | x                                       | x                           | x                              | x                                  | -                                                                   | -                                         | -                                                    |
| FCX03         | -77.073307 | 35.5594356 | -          | -              | -             | -          | -         | -                                                           | -                                                                 | -                                                              | x                                                                 | -                                                           | · -                                                           | -                                                           | -                                       | -                           | -                              | -                                  | x                                                                   | x                                         | -                                                    |
| FCX04         | -77.074302 | 35.5588149 | -          | -              | -             | -          | -         | -                                                           | -                                                                 | -                                                              | x                                                                 | -                                                           | -                                                             | -                                                           | -                                       | -                           | -                              | -                                  | x                                                                   | x                                         | x                                                    |
| FCX05         | -77.075157 | 35.5585368 | -          | -              | -             | -          | -         | -                                                           | -                                                                 | -                                                              | x                                                                 | -                                                           | -                                                             | -                                                           | -                                       | -                           | -                              | -                                  | ×                                                                   | Y                                         | v                                                    |

Table 1FCX Well and Analysis Information

| Contaminant                  | Remediation Level (µg/L) |
|------------------------------|--------------------------|
| Aldrin                       | 0.01                     |
| Heptachlor                   | 0.076                    |
| Heptachlor Epoxide           | 0.038                    |
| Alpha-BHC                    | 0.014                    |
| Beta-BHC                     | 0.047                    |
| Gamma-BHC                    | 0.0265                   |
| Dieldrin                     | 0.02                     |
| 4,4-DDT                      | 0.02                     |
| 4,4-DDE                      | 0.02                     |
| 4,4-DDD                      | 0.02                     |
| Endrin                       | 0.20                     |
| Toxaphene                    | 1.0                      |
| Chlordane                    | 0.027                    |
| Chloroform                   | 0.19                     |
| 1,2-Dichloroethane           | 0.38                     |
| 1,2-Dichloropropane          | 0.58                     |
| Benzene                      | 1.0                      |
| Toluene                      | 1,000                    |
| Chlorobenzene                | 100                      |
| Total Xylenes                | 400                      |
| Bis (2-ethylhexyl) phthalate | 4                        |
| Pentachlorophenol            | 1                        |
| Carbazole                    | 4.3                      |
| Beryllium                    | 1                        |
| Chromium                     | 50                       |
| Nickel                       | 100                      |
| Lead                         | 15                       |
| Mercury                      | 1.10                     |
| Manganese                    | 697                      |

Table 2 Remedial Action Goals for FCX Washington

# Table 3 FCX Field Chemistry and Paramter Results March 2012 to June 2013

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contraction of the second | a second and a second as | - Local - Color |            | Station Lines | and the second se | and the second second | and the second second |            | and in contraction office | Section and the |           |           |            |          |          |                                                                                                                     |               |            |          |            |           |           |            |          |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------|-----------------|------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|------------|---------------------------|-----------------|-----------|-----------|------------|----------|----------|---------------------------------------------------------------------------------------------------------------------|---------------|------------|----------|------------|-----------|-----------|------------|----------|-----------|
| Statistics of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Station ID                | MW01A                    | MW01A           | MW01A      | MW01A         | MW01A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MW01B                 | MW01B                 | MW01B      | MW01B                     | MW01B           | MW05A     | MW05A     | MW05A      | MW05A    | MW05A    | MW05B                                                                                                               | MW05B         | MW05B      | MW05B    | MW05B      | MW07A     | MW07A     | MW07A      | MW07A    | MW07A     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample ID                 | 01A0312                  | 01A0912         | 01A1212    | 01A0313       | 01A0613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01B0312               | 0180912               | 01B1212    | 0180313                   | 01B0613         | 05A0312   | 05A0912   | 05A1212    | 05A0313  | 05A0613  | 05B0312                                                                                                             | 05B0912       | 0581212    | 05B0313  | 05B0613    | 07A0312   | 07A0912   | 07A1212    | 07A0313  | 07A061    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample Date               | 3/28/2012                | 9/11/2012       | 12/11/2012 | 3/5/2013      | 6/4/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/28/2012             | 9/11/2012             | 12/11/2012 | 3/5/2013                  | 6/4/2013        | 3/28/2012 | 9/11/2012 | 12/11/2012 | 3/5/2013 | 6/4/2013 | 3/28/2012                                                                                                           | 9/11/2012     | 12/11/2012 | 3/5/2013 | 6/4/2013   | 3/27/2012 | 9/11/2012 | 12/12/2012 | 3/5/2013 | 6/4/2013  |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Units                     | 12.80 Y -                | 2.3             |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                       |            |                           |                 |           |           |            |          |          |                                                                                                                     |               |            |          |            | 26-14     | 1         | STR.       |          |           |
| Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/l                      | 126                      | 138             | 94         | 257           | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 148                   | 145                   | 161        | 184                       | 156             | 144       | 51        | 150        | 65       | 172      | 119                                                                                                                 | 117           | 124        | 144      | 123        | 154       | 133       | 137        | 156      | 15        |
| Carbon Dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/l                      | 201                      | 109.8           | 186        | 210.2         | 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40                    | 33.2                  | 62         | 67.5                      | 50              | 79.2      | 59        | 98         | 78.2     | 126      | 26.8                                                                                                                | 22.6          | 72         | 51.7     | 46         | 47        | 31        | 92         | 78       | 8         |
| Ferrous Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/l                      | 7.4                      | 5.36            | 8.6        | 6.72          | 5.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                   | 0.15                  | 0.19       | 0.19                      | 0.22            | 0         | 0.05      | 0.06       | 0        | 0.06     | 0.09                                                                                                                | 0.08          | 0.12       | 0.07     | 0.11       | 0.06      | 0.05      | 0.03       | 0        | 0.0       |
| Sulfide (S2/H2S/H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IS) ug/i                  | 6U                       | 6U              | 6U         | 8             | 6U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60                    | 10                    | 6U         | 60                        | 61              | 60        | 60        | 6U         | 7        | 6U       | 60                                                                                                                  | 60            | 8          | 60       | 6U         | 6U        | 6U        | 6U         | 9        | 6         |
| pН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pH Units                  | 6.06                     | 6.14            | 6.09       | 6.57          | 6.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.61                  | 7.57                  | 7.68       | 7.49                      | 7.45            | 6.45      | 6.07      | 6.48       | 6.28     | 6.41     | 7.67                                                                                                                | 7.71          | 7.7        | 7.61     | 7.54       | 6.96      | 6.93      | 6.73       | 6.85     | 6.8       |
| Specific Conductiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ity us/cm                 | 444                      | 836             | 400        | 542           | 488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 445                   | 445                   | 460        | 385                       | 441             | 423       | 147.1     | 370        | 146.3    | 456      | 342                                                                                                                 | 376           | 355        | 309      | 367        | 465       | 461       | 459        | 405      | 45        |
| Dissolved Oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/l                      | 0.04                     | 0.09            | 0.15       | 0.05          | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                   | 0.19                  | 0.1        | 0.21                      | 0.05            | 2.36      | 0.26      | 2.41       | 4.13     | 2.26     | 0.05                                                                                                                | 0.07          | 0.56       | 0.08     | 0.04       | 0.4       | 0.51      | 0.45       | 1        | 0.5       |
| ORP (Ag/AgCl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mV                        | 18.5                     | 0               | 68.1       | -38           | -289.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -165                  | -130                  | -102.7     | -64.3                     | -331.2          | 153.6     | 89        | 138.6      | 227.6    | -130.5   | -92.3                                                                                                               | -66.7         | -29.5      | -54.7    | -250.6     | 161.1     | 110       | 169.8      | 272.3    | -189      |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NTU                       | 4.4                      | 1.18            | 2.49       | 0.82          | 1.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4                   | 0.59                  | 1.01       | 0.21                      | 0.49            | 0.21      | 0.16      | 0.18       | 0.33     | 0.16     | 0.2                                                                                                                 | 1.26          | 0.48       | 0.48     | 0.17       | 0.94      | 0.67      | 0.11       | 0.09     | 0         |
| Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Deg C                     | 15.9                     | 23.3            | 17.1       | 14.5          | 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.2                  | 20.2                  | 17.9       | 16                        | 18.8            | 15.5      | 22.6      | 17.8       | 13       | 17.9     | 18.2                                                                                                                | 19.6          | 18.2       | 17.2     | 18.1       | 14.8      | 20.3      | 15.7       | 14 5     | 16        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | State of the              |                          | N. P. See       | Acres 1    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. 1. 1. 1. 1. 1.     |                       | 1. D. S. C |                           |                 | 1         |           |            | a stand  |          |                                                                                                                     |               |            |          |            |           |           |            | 1 110    | 1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                          |                 | -          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 1                     |            |                           | 199             | 346 63    | 1.0       | 3          | 100 100  |          | Stares .                                                                                                            |               | areal mark | 142      | HAR PARTIE |           |           |            | and the  | all ca    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Station ID                | MW07B                    | MW07B           | MW07B      | MW07B         | MW07B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MW08B                 | MW08B                 | MW08B      | MW08B                     | MW08B           | MW09A     | MW09A     | MW09A      | MW09A    | MW09A    | MW09B                                                                                                               | MW09B         | MW098      | MW09B    | MW09B      | MW10A     | MW10A     | MW10A      | MW10A    | MW10A     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample ID                 | 07B0312                  | 0780912         | 07B1212    | 0760313       | 0780613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 08B0312               | 08B0912               | 08B1212    | 08B0313                   | 08B0613         | 09A0312   | 09A0912   | 09A1212    | 09A0313  | 09A0613  | 0980312                                                                                                             | 0980912       | 0981212    | 09B0313  | 09B0613    | 10A0312   | 10A0912   | 10A1212    | 10A0313  | 10A061    |
| Carlos at a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample Date               | 3/28/2012                | 9/11/2012       | 12/11/2012 | 3/5/2013      | 6/4/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/27/2012             | 9/11/2012             | 12/12/2012 | 3/6/2013                  | 6/5/2013        | 3/27/2012 | 9/12/2012 | 12/12/2012 | 3/5/2013 | 6/4/2013 | 3/28/2012                                                                                                           | 9/12/2012     | 12/12/2012 | 3/6/2013 | 6/4/2013   | 3/27/2012 | 9/12/2012 | 12/13/2012 | 3/6/2013 | 6/5/2013  |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Units                     |                          |                 |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                       |            | -                         |                 |           |           |            |          |          |                                                                                                                     |               |            | 1.20     |            |           |           | 42 4       |          |           |
| Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/l                      | 171                      | 130             | 168        | 184           | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 123                   | 107                   | 118        | 141                       | 137             | 150       | 138       | 153        | 166      | 150      | 121                                                                                                                 | 125           | 129        | 161      | 136        | 150.4     | 135       | 147        | 181      | 15        |
| Carbon Dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/l                      | 44.2                     | 25.8            | 58         | 126           | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.1                  | 21.4                  | 52         | 39.8                      | 66              | 25.3      | 30.8      | 56         | 80.8     | 52       | 28.2                                                                                                                | 20.4          | 42         | 26       | 43.6       | 56.7      | 52.6      | 78         | 48.9     | 8         |
| Ferrous Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/l                      | 0.08                     | 0.26            | 0.13       | 0.18          | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.27                  | 1.67                  | 1.78       | 1.7                       | 1.34            | 0.63      | 0.42      | 0.32       | 0.34     | 0.32     | 0.19                                                                                                                | 0.22          | 0.32       | 0.2      | 0.11       | 0.06      | 0.09      | 0.05       | 0.04     | 0.0       |
| Sulfide (S2/H2S/H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S) ug/l                   | 6U                       | 6U              | 60         | 7             | 6U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6U                    | 6U                    | 6U         | 7                         | 6U              | 47        | 51        | 59         | 40       | 25       | 6U                                                                                                                  | 60            | 6U         | 8        | 6U         | 60        | 6U        | 6U         | 6U       | 6         |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pH Units                  | 7.58                     | 7.49            | 7.6        | 7.47          | 7.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.52                  | 7.67                  | 7.58       | 7.54                      | 7,49            | 7.5       | 7.52      | 7.46       | 7.51     | 7.45     | 7.63                                                                                                                | 7.67          | 7.61       | 7.63     | 7.52       | 6.81      | 6.68      | 6.69       | 6.8      | 6.7       |
| Specific Conductiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ity us/cm                 | 465                      | 465             | 492        | 410           | 463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 404                   | 412                   | 395        | 408                       | 402             | 432       | 422       | 425        | 363      | 420      | 381                                                                                                                 | 374           | 366        | 370      | 368        | 451       | 390       | 445        | 424      | 39        |
| <b>Dissolved Oxygen</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/l                      | 0.14                     | 0.58            | 0.05       | 0.09          | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.42                  | 0.11                  | 0.2        | 0.05                      | 0.03            | 1.57      | 0.07      | 0.17       | 0.08     | 0.06     | 0.06                                                                                                                | 0.06          | 0.08       | 0.42     | 0.07       | 0.23      | 0.78      | 0.15       | 0.7      | 0.1       |
| ORP (Ag/AgCl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mV                        | -86.5                    | -70             | -49.6      | -75.2         | -252.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -157                  | -174.9                | -161.9     | -167.8                    | -340.5          | -149.2    | -187.7    | -123.4     | -200.4   | -362.1   | -108.4                                                                                                              | -102.9        | -83.2      | -87.8    | -336.8     | 175.4     | 10        | 4.4        | 184.6    | -316.     |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NTU                       | 0.7                      | 2.33            | 0.4        | 0.31          | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                    | 2.92                  | 0.48       | 0.27                      | 2.76            | 0.77      | 2.39      | 0.44       | 0.68     | 0.32     | 0.09                                                                                                                | 1.57          | 1.17       | 0.17     | 0.41       | 0.84      | 0.35      | 0.2        | 0.2      | 0.        |
| Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Deg C                     | 18.2                     | 18.9            | 17.1       | 16.6          | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                    | 20.9                  | 18.1       | 16.7                      | 18.9            | 16.9      | 19.3      | 17.3       | 16.7     | 17.6     | 17.7                                                                                                                | 18.7          | 17.3       | 16.7     | 18.2       | 16        | 24        | 17.8       | 13.8     | 18.       |
| a de la compañía de la |                           |                          |                 |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                       | 2012       |                           |                 |           |           | Anger all  |          |          | -<br>The second s |               | -          |          | 121-315    | 1.19      |           |            |          | Logitt. A |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Station ID                | MWIIA                    | MWIIA           | MWITA      | MWIIA         | MINITA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MWIDA                 | MMIDA                 | MMIDA      | MWIDA                     |                 | MINITED   | MALISED   | MMATCH     | MALLED   | MMAED    | Marco                                                                                                               | MUSCO         | Marco      | MMACD    | haven      | i do le   |           |            |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample ID                 | 1100312                  | 1140912         | 1101212    | 1100313       | 1140613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1240312               | 1240012               | 1201212    | 1240212                   | 1740617         | 1500212   | 1500013   | 1501010    | 1500313  | 1EPOC12  | 1CR0212                                                                                                             | MWIDD 1CR0012 | MWIGB      | MWIDB    | MWIGB      |           |           |            |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample Date               | 2/27/2012                | 0/12/2012       | 11/12/2013 | 2/5/2012      | 11A0013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1240312               | 1240912               | 12A1212    | 1240313                   | 1240013         | 1500312   | 1200912   | 1501212    | 1560313  | 1580613  | 1680312                                                                                                             | 1680912       | 1681212    | 1680313  | 1680313    |           |           |            |          |           |
| Anahda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Linite                    | 5/2//2012                | 5/12/2012       | 12/15/2012 | 3/3/2013      | 0/3/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/2//2012             | 9/13/2012             | 12/11/2012 | 3/0/2013                  | 6/5/2013        | 3/28/2012 | 9/12/2012 | 12/13/2012 | 3/6/2013 | 6/5/2013 | 3/2//2012                                                                                                           | 9/13/2012     | 12/11/2012 | 3/5/2013 | 6/5/2013   |           |           |            |          |           |
| Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mall                      | 154                      | 147             | 140        | 161           | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140                   | 162                   | 145        | 100                       | 174             | 140       | 122       | 147        | 100      |          | 100                                                                                                                 |               | 100        | 400      | 170        |           |           |            |          |           |
| Carbon Diovide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mail                      | 80                       | 107             | 122        | 136           | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72                    | 105                   | 107        | 04.2                      | 171             | 140       | 100       | 20         | 102      | 140      | 100                                                                                                                 | 1/5           | 183        | 199      | 1/3        |           |           |            |          |           |
| Ferrous Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/i                      | 1 62                     | E 60            | 0          | E 16          | 4 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73                    | 0.07                  | 102        | C.F0                      | 120             | 43.2      | 39.3      | 38         | 2.10     | /9       | 18.0                                                                                                                | 52            | 44         | 90.1     | 96         |           |           |            |          |           |
| Sulfide (S2/H2C/H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | 236                      | 3,00            | 0          | 3.10          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.04                  | 0.07                  | 0.04       | 0                         | 0.02            | 0.22      | 0.54      | 0.59       | 0.55     | 0.42     | 0.2                                                                                                                 | 0.25          | 0.21       | 0.2      | 0.12       |           |           |            |          |           |
| pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | 520                      | 6.40            | 290        | 220           | 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60                    | 60                    | 60         | 1                         | 60              | 60        | 60        | 60         | 8        | 60       | 60                                                                                                                  | 60            | 60         | 8        | 8          |           |           |            |          |           |
| Spacific Conduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pri units                 | 0.40                     | 0.48            | 0.36       | 0.48          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.65                  | 6.59                  | 6.43       | 6.62                      | 6.51            | 7.57      | 7.55      | 7.51       | 7.51     | 7.44     | 7.54                                                                                                                | 7.5           | 7.5        | 7.45     | 7.39       |           |           |            |          |           |
| Dissolved Ora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ity us/cm                 | 966                      | 963             | 488        | 381           | 948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 469                   | 496                   | 457        | 491                       | 480             | 495       | 497       | 494        | 499      | 495      | 459                                                                                                                 | 462           | 459        | 399      | 457        |           |           |            |          |           |
| OBD (An (An C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/i                      | 0.18                     | 0.13            | 0.13       | 0.22          | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.48                  | 0.07                  | 0.69       | 0.24                      | 0.21            | 0.18      | 0.1       | 0.18       | 0.64     | 0.11     | 0.21                                                                                                                | 0.21          | 0.14       | 0.12     | 0.05       |           |           |            |          |           |
| OKP (Ag/AgCI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W                         | -117.4                   | -200            | -144.4     | -212.3        | -398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 114.8                 | 52.2                  | 125.3      | 148.6                     | -281.9          | -150.8    | -130      | -113.7     | -104.4   | -252.5   | -85.8                                                                                                               | -84.6         | -100.6     | -92.6    | -354.4     |           |           |            |          |           |
| Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NTU                       | 0.8                      | 3.38            | 4.45       | 1.24          | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                   | 0.57                  | 0.13       | 0.21                      | 0.3             | 0.15      | 4.97      | 0.17       | 0,13     | 0.46     | 0.32                                                                                                                | 0.3           | 0.32       | 0.54     | . 0.34     |           |           |            |          |           |
| Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Deg C                     | 16.9                     | 23.5            | 18.9       | 17.8          | 18.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.1                  | 24.6                  | 19.1       | 14.5                      | 19.5            | 19.9      | 19.5      | 17         | 16.6     | 19.5     | 16.9                                                                                                                | 18.4          | 17.2       | 16.1     | 17.7       |           |           |            |          |           |

Data Qualifiers

The analyte was not detected at or above the reporting limit.

SESD Project ID# 13-0365 FCX Washington

U

· · ·

.

.

SESD Project ID# 13-0365 FCN Washington

### This Page Intentionally Blank

. .

.

Page 14 of 287

.....

#### Table 4 FCX Pesticide Results March 2012 to June 2013

| A State State State  |        | Station ID                                                                                                                                                                                                                                                           | MW05A               | MW05A               | MW05A               | MW05A               | MW05A               | MW05B               | MW05B               | MW05B               | MW058               | MW05B               | A60MW               | MW09A                | AROWM               | MW09A               | MW09A               | MW09A               |
|----------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|---------------------|---------------------|---------------------|---------------------|
|                      |        | Sample ID<br>Sample Date                                                                                                                                                                                                                                             | 05A0312<br>03/28/12 | 05A0912<br>09/11/12 | 05A1212<br>12/11/12 | 05A0313<br>03/05/13 | 05A0613<br>06/04/13 | 0580312<br>03/28/12 | 0580912<br>09/11/12 | 0581212<br>12/11/12 | 0580313<br>03/05/13 | 0580613<br>06/04/13 | 09A0312<br>03/27/12 | 09A0312D<br>03/27/12 | 09A0912<br>09/12/12 | 09A1212<br>12/12/12 | 09A0313<br>03/05/13 | 09A0613<br>06/04/13 |
| Analyte              | Units  | Comparison Standard                                                                                                                                                                                                                                                  | 1. 3.6              |                     |                     | Superior Contra     | A STREET STREET     | a and a second      | 10000               |                     | STREET STOR         |                     | a state and         | The second           |                     |                     | St Balling          | A DUCK              |
| 4,4'-DDD (p,p'-DDD)  | ug/L   | <fcx (1993):="" 0.02="" l="" ug="" washington=""> <rsl (november="" 0.027="" 2012):="" l="" tapwater="" ug=""> <nc (january="" 0.1="" 2010):="" gwqs="" l="" ug=""></nc></rsl></fcx>                                                                                 | 0.041 U 🔺           | 0.042 U ٨           | 0.041 U A           | 0.041 U 🐴           | 0.040.U ^           | 0.040 U 👗           | 0.040 U 🐴           | 0.041 U ٨           | 0.041 U ٨           | 0.041 U 🔨           | 0.041 U ^           | 0.040 U 🔨            | 0.040 U 🔨           | 0.040 U ^           | 0.042 U 🔨           | 0.039 U 🔨           |
| 4,4'-DDE (p,p'-DDE)  | ug/L   | <pre><fcx (1993):="" 0.02="" l="" ug="" washington=""> <rsl (november="" 0.2="" 2012):="" l="" tapwater="" ug=""></rsl></fcx></pre>                                                                                                                                  | 0.020 U Å           | 0.021 U ٨           | 0.021 U 🔨           | 0.021 U 🐴           | 0.020 U 🔨           | 0.020 U 🐴           | 0.020 U 🔨           | 0.021 U A           | 0.020 U 🔨           | 0.020 U ٨           | 0.020 U 🔨           | 0.020 U 🔨            | 0.020 U A           | 0.020 U 🔨           | 0.021 U 🔨           | 0.020 U \Lambda     |
| 4,4'-DDT (p,p'-DDT)  | ug/L   | <fcx (1993):="" 0.02="" l="" ug="" washington=""><rsl (november="" 0.2="" 2012):="" l="" tapwater="" ug=""><nc (january="" 0.1="" 2010):="" gwqs="" l="" ug=""></nc></rsl></fcx>                                                                                     | 0.051 U Å           | 0.052 U 🔨           | 0.051 U 🔨           | 0.052 U 🐴           | 0.051 U 🐴           | 0.051 U ^           | 0.050 U 🔨           | 0.051 U 🔨           | 0.051 U Å           | 0.051 U 🔨           | 0.051 U 🔨           | 0.051 U Å            | 0.050 U 🐴           | 0.050 U A           | 0.052 U 🔨           | 0.049 U 🔨           |
| Aldrin               | ug/L   | <pre><fcx (1993):="" 0.01="" l="" ug="" washington=""> <rsl (november="" 0.004="" 2012):="" l="" tapwater="" ug=""> </rsl></fcx></pre>                                                                                                                               | 0.020 U 👗           | 0.021 U ٨           | 0.021 U ٨           | 0.021 U             | 0.020 U 🔨           | 0.020 U 🔨           | 0.020 U 🔨           | 0.021 U \Lambda     | 0.020 U ٨           | 0.020 U 🔨           | 0.020 U 🔨           | 0.020 U 🔨            | 0.020 U 🔨           | 0.020 U 🔨           | 0.021 U A           | 0.020 U 🔨           |
| Dieldrin             | ug/L   | <rsl (november="" 0.0015="" 2012):="" l="" tapwater="" ug=""><br/><nc (january="" 0.002="" 2010):="" gwqs="" l="" ug=""><br/><fcx (1993):="" 0.02="" l="" ug="" washington=""></fcx></nc></rsl>                                                                      | 0.020 U 🐴           | 0.021 U ٨           | 0.021 U 🔨           | 0.021 U 🐧           | 0.020 U ^           | 0.020 U A           | 0.020 U 🔨           | 0.021 U ٨           | 0.020 U 🐴           | 0.020 U 🔺           | 0.072 ^             | 0.070 ^              | 0.080 ^             | 0.086 ^             | 0.067 ^             | 0.064 ),0 🔨         |
| Endosulfan I (alpha) | ug/L   |                                                                                                                                                                                                                                                                      | 0.020 U             | 0.021 U             | 0.021 U             | 0.021 U             | 0.020 U             | 0.020 U             | 0.020 U             | 0.021 U             | 0.020 U             | 0.020 U             | 0.020 U             | 0.020 U              | 0.020 U             | 0.020 U             | 0.021 U             | 0.020 U             |
| Endosulfan II (beta) | ug/L   | The second s                                                                                                                                                       | 0.041 U             | 0.042 U             | 0.041 U             | 0.041 U             | 0.0400              | 0.040 U             | 0.040 U             | 0.041 U             | 0.041 U             | 0.041 U             | 0.041 U             | 0.040 U              | 0.040 U             | 0.040 U             | 0.042 U             | 0.039 U             |
| Endosulfan Sulfate   | ug/L   |                                                                                                                                                                                                                                                                      | 0.051 U             | 0.052 U             | 0.051 U             | 0.052 U             | 0.051 U             | 0.051 U             | 0.050 U             | 0.051 U              | 0.050 U             | 0.050 U             | 0.052 U             | 0.049 U             |
| Endrin               | ug/L   | <rsl (november="" 2="" 2012):="" l="" mcl="" ug=""><br/><rsl (november="" 1.7="" 2012):="" l="" tapwater="" ug=""><br/><fcx (1993):="" 0.20="" l="" ug="" washington=""><br/><nc (january="" 2="" 2010):="" gwqs="" l="" ug=""></nc></fcx></rsl></rsl>               | 0.041 U             | 0.042 U             | 0.041 U             | 0.041 U             | 0.040U              | 0.040 U             | 0.040 V             | 0.041 U             | 0.041 U             | 0.041 U             | 0.041 U             | 0.040 U              | 0.040 U             | 0.040 U             | 0.042 U             | 0.039 U             |
| Endrin aldehyde      | ug/L   |                                                                                                                                                                                                                                                                      | 0.051 U             | 0.052 U             | 0.051 U             | 0.052 U             | 0.051 U             | 0.051 U             | 0.050 U             | 0.051 U             | 0.051 U             | 0.061 U,O           | 0.051 U             | 0.051 U              | 0.050 U             | 0.050 U             | 0.052 U             | 0.049 U             |
| Endrin ketone        | ug/L   | And the set of the second s                                                                                                                                                      | 0.051 U             | 0.052 U             | 0.051 U             | 0.052 U             | 0.051 U             | 0.051 U             | 0.050 U             | 0.051 U              | 0.050 U             | 0.050 U             | 0.052 U             | 0.049 U             |
| Heptachlor           | ug/L   | <fcx (1993):="" 0.076="" ug="" washington=""></fcx><br><nc (january="" 0.008="" 2010):="" gwds="" ug=""></nc><br><rsl (november="" 0.4="" 2012):="" mcl="" ug=""></rsl><br><rsl (november="" 0.0018="" 2012):="" tapwater="" ug=""></rsl>                            | 0.015 U             | 0.016 U             | 0.015 U              | 0.015 U             | 0.015 U             | 0.016 U             | 0.015 U             |
| Heptachlor epoxide   | ug/L   | <rsl (november="" 0.2="" 2012):="" l="" mcl="" ug=""><br/><nc (january="" 0.004="" 2010):="" gw05="" l="" ug=""><br/><fcx (1993):="" 0.038="" l="" ug="" washington=""><br/><rsl (november="" 0.0033="" 2012):="" l="" tapwater="" ug=""></rsl></fcx></nc></rsl>     | 0.020 U             | 0,021 U             | 0.021 U             | 0.021 U             | 0.020 U             | 0.020 U             | 0.020 U             | 0.021 U             | 0.020 U             | 0.020 U             | 0.020 U             | 0.020 U              | 0.020 U             | 0.020 U             | 0.021 U             | 0.020 U             |
| Hp-Sed               | ug/L   |                                                                                                                                                                                                                                                                      | 0.00033 J,O         | 0.0011 U            | 0.00099 U           | 0.00099U,1,0        | 0.00016 J,O         | 0.00032 1,0         | 0.00034 J,O         | 0.00020 1,0         | 0.000241,0          | 0.00024 J.O         | 0.0011              | 0.001                | 0.00080 1.0         | 0.000951.0          | 0.000801.0          | 0.001               |
| Hx-Sed               | ug/L   |                                                                                                                                                                                                                                                                      | 0.0010 U            | 0.0011 U            | 0.00099 U           | 0.00099 U           | 0.00098 U           | 0.000271,0          | 0.00027 1,0         | 0.0010 U            | 0.0010 U            | 0.00099 U           | 0.001               | 0.000981,0           | 0.00067 1,0         | 0.00082 J,O         | 0.000491,0          | 0.00057.1,0         |
| Methoxychlor         | ug/L   | <nc (january="" 2010):="" 40="" gwqs="" l="" ug=""><br/><rsl (november="" 2012):="" 40="" l="" mcl="" ug=""><br/><rsl (november="" 2012):="" 27="" l="" tapwater="" ug=""></rsl></rsl></nc>                                                                          | 0.10 U               | 0.099 U             | 0.10 U              | 0.10 U              | 0.098 U             |
| Toxaphene            | ug/L   | <rsl (november="" 2012):="" 3="" mcl="" ug=""><br/><rsl (november="" 0.013="" 2012):="" tapwater="" ug=""><br/><nc (january="" 0.03="" 2010):="" gwqs="" ug=""><br/><fcx (1993):="" 1.0="" ug="" washington=""></fcx></nc></rsl></rsl>                               | 2.0 U               | 2.1 U               | 2.1 U               | 2.10                | 2.0 U               | 2.0 U               | 2.0 U               | 2.10                | 2.0 U               | 2.0 U               | 2.0 U               | 2.0 U                | 200                 | 2.0 U               | 2.10                | 2.0 U               |
| Toxaphene, Parlar 26 | ug/L   |                                                                                                                                                                                                                                                                      | 0.0010 U            | 0.0011 U            | 0.00099 U           | 0.000990,1,0        | 0.00098 U           | 0.0010 U            | 0.0010 U            | 0.0010 U            | 0.0010U,J,O         | 0.00099U            | 0.0010 U            | 0.0010 U             | 0.00099 U           | 0.0010 U            | 0.0010 U,J,O        | 0.00098 U           |
| Toxaphene, Parlar 32 | ug/L   |                                                                                                                                                                                                                                                                      | 0.0010 U            | 0.0011 U            | 0.00099 U           | 0.000990,J,O        | 0.00098 U           | 0.00091.1,0         | 0.0011              | 0.0010 U            | 0.00100,),0         | 0.000990            | 0.0019              | 0.002                | 0.0017              | 0.0017              | 0.0014 J,O          | 0.002               |
| Toxaphene, Parlar 39 | ug/L   |                                                                                                                                                                                                                                                                      | 0.0010 U            | 0.0011 U            | 0.00099 U           | 0,1,000990,1,0      | 0.00098 U           | 0.0010 U            | 0.0010 U            | 0.0010 U            | 0.0010U,J,O         | 0.00099U            | 0.0010 U            | 0.0010 U             | 0.00099 U           | 0.0010 U            | 0.0010U,J,O         | 0.00098 U           |
| Toxaphene, Parlar 40 | ug/L   |                                                                                                                                                                                                                                                                      | 0.0010 U            | 0.0011U             | 0.00099 U           | 0.00099 U           | 0.00098 U           | 0.0010 U            | 0.0010 U            | 0.0010 U            | 0.0010 U            | 0.00099U            | 0.0010 U            | 0.0010 U             | 0.00099 U           | 0.0010 U            | 0.0010 U            | 0.00098 U           |
| Toxaphene, Parlar 41 | ug/L   |                                                                                                                                                                                                                                                                      | 0.0010 U            | 0.00110             | 0.00099 U           | 0.00099 U           | 0.00098 U           | 0.0010 U            | 0.0010 U            | 0.0010 U            | 0.0010 U            | 0.00099U            | 0.0010 U            | 0.0010 U             | 0.00099 U           | 0.0010 U            | 0.0010 U            | 0.00098 U           |
| Toxophene, Parlar 44 | ug/L   |                                                                                                                                                                                                                                                                      | 0.00100             | 0.00110             | 0.000991            | 0.000990            | 0.00098.0           | 0.00100             | 0.0010 0            | 0.0010 0            | 0.0010 0            | 0.000990            | 0.0010 0            | 0.0010 0             | 0.00099.0           | 0.0010 U            | 0.0010 U            | 0.00098 U           |
| Toxaphene, Parlar 50 | ug/L   |                                                                                                                                                                                                                                                                      | 0.005111            | 0.00110             | 0.000990            | 0.000990            | 0.00491             | 0.00100,3,0         | 0.0052.0            | 0.00100             | 0.0050.0            | 0.005011            | 0.0051 11           | 0.00100,1,0          | 0.00099.0           | 0.0010 0            | 0.0010 0            | 0.00098 0           |
| alpha-BHC            | ug/L   | <fcx (1993):="" 0.014="" l="" ug="" washington=""></fcx>                                                                                                                                                                                                             | 0.0101              | 0.01011             | 0.01011             | 0.01011             | 0.01011             | 0.00020             | 0.0002.0            | 0.0002.0            | 0.01011             | 0.01011             | 0.00310             | 0.005010             | 0.009011            | 0.00310             | 0.0030 0            | 0.0049.0            |
| alpha Chlordana      | wore . | <rsl (november="" 0.0062="" 2012):="" l="" tapwater="" ug=""></rsl>                                                                                                                                                                                                  | 0.0100              | 0.0100              | 0.0100              | 0.0100              | 0.0100              | 0.0100              | 0.0100              | 0.0100              | 0.010 0             | 0.010 0             | 0.0100              | 0.010 0              | 0.00550             | 0.0100              | 0.0100              | 0.00900             |
| aipna-Chiordane      | ug/L   | CCY WASHINGTON (1002): 0.047 mg/                                                                                                                                                                                                                                     | 0.020 0             | 0.0210              | 0.0210              | 0.0210              | 0.020 0             | 0.020 0             | 0.020 0             | 0.021 0             | 0.020 0             | 0.020 0             | 0.020 0             | 0.020 0              | 0.020 U             | 0.020 U             | 0.021 0             | 0.020 U             |
| beta-BHC             | ug/L   | <r5l (november="" 0.022="" 2012):="" l="" tapwater="" ug=""></r5l>                                                                                                                                                                                                   | 0.020 U             | 0.021 U             | 0.021 U             | 0.021 U             | 0.020 U             | 0.020 U             | 0.020 U             | 0.021 U             | 0.020 U             | 0.020 U             | 0.020 U             | 0.020 U              | 0.020 U             | 0.020 U             | 0.021 U             | 0.020 U             |
| delta-BHC            | ug/L   |                                                                                                                                                                                                                                                                      | 0.020 U             | 0.021 U             | 0.021 U             | 0.021 U             | 0.020 U             | 0.020 U             | 0.020 U             | 0.021 U             | 0.020 U             | 0.020 U             | 0.020 U             | 0.020 U              | 0.020 U             | 0.020 U             | 0.021 U             | 0.020 U             |
| gamma-BHC (Lindane)  | ug/L   | <rsl (november="" 0.2="" 2012):="" mcl="" t="" ug=""><br/><nc (january="" 0.03="" 2010):="" gwqs="" ts<br="" ug=""><fcx (1993):="" 0.0265="" ts<br="" ug="" washington=""><rsl (november="" 0.036="" 2012):="" p="" tapwater="" ts<="" ug=""></rsl></fcx></nc></rsl> | 0.010 U              | 0.0099 U            | 0.010 U             | 0.010 U             | 0.0098 U            |
| gamma-Chlordane      | 100/1  | the second s                                                                                                                                                       | 0.02011             | 0.02111             | 0.02111             | 0.021.0             | 0.02011             | 0.02011             | 0.02011             | 0.021.0             | 0.020.01            | 0.02011             | 0.02011             | 0.020.11             | 0.02011             | 0.030.0             | 0.02111             | 0.02011             |

| Legend                                      |         |               |            |   |
|---------------------------------------------|---------|---------------|------------|---|
| Detection, Result Shown                     | 5.0     |               | U          | T |
| Non-detect, MRL shown                       | 5.0 U   | 100 100       | 1          | T |
| Result exceeds standard, Result shown       | 5.0 ^   |               | 0          | 0 |
| Non-detect, MRL exceeds standard, MRL shown | 5.0 U 4 | The second    | 1. 33 56 5 |   |
|                                             | P       | age 15 of 287 |            |   |

Data Qualifiers The analyte was not detected at or above the reporting limit. The identification of the analyte is acceptable; the reported value is an estimate. Other qualifier, see analytical data sheet.

SESD Project ID# 13-0365 FCX Washington

### This Page Intentionally Blank

.

Page 16 of 28" SESD Project 1D= 13-0365 FCX Washington
# Table 4 FCX Pesticide Results March 2012 to June 2013

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second | Station ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ADIWING I             | 1 BADALIOA    | I ANHINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T BANKIDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L MANTON              |                        | L MANUTIA          | 1               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I BRILLING         | 1                                        | I muine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                        | I PRIMA        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Station ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1040313               | 1040013       | 1044242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MINION .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAATON                | MINITA                 | MWIIA              | MWIIA           | MWIIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MWIIA              | MWIIA                                    | MWIZA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MWIZA                                    | MWIZA          | MWIZA                 | MWIZA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW12A              |
| Starting & Starting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1040512               | 1040912       | 1041212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1040313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10A0613               | 1140312                | 1140912            | 1141212         | 11A0313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11A0613            | 11AD0613                                 | 12A0312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12A0912                                  | 12A0912D       | 12A1212               | 12A0313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12A0613            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | Sample Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03/2//12              | 09/12/12      | 12/13/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03/06/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 06/05/13              | 03/2//12               | 09/12/12           | 12/13/12        | 03/05/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 06/05/13           | 06/05/13                                 | 03/27/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 09/13/12                                 | 09/13/12       | 12/11/12              | 03/06/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 06/05/13           |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Units          | Comparison Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | -             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acres 1               | and the second         | -                  | -               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                          | and the second se |                                          |                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contraction of the |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | unt            | <fcx (1993):="" 0.02="" l="" ug="" washington=""></fcx>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |               | and the second s | and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 1                      | 1                  |                 | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                        | 1              |                       | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
| 14,4 -000 (p,p-000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/L           | <rsl (november="" 0.027="" 2012);="" l="" tapwater="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.040 U               | 0.040 U       | 0.042 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.041 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.039 U ^             | 0.42 **                | 0.54               | 0.72            | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.46 ^             | 0.56                                     | 0.040 U ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.040 U ^                                | 0.040 U ^      | 0.041 U ^             | 0.040 U ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.041 U A          |
| Contraction of the other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and water      | <nc (january="" 0.1="" 1="" 2010):="" gwqs="" ug=""></nc>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | and the second         | B. C. Banco P. P.  | a second second | and a strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | Constant and                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | -              | Company of the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A State of the     |
| 4,4'-DDE (p,p'-DDE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/L           | <pcx (1993):="" 0.02="" 1="" ug="" washington=""></pcx>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.020 U A             | 0.020 U A     | 0.021 U A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.021 U ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.020 U A             | 0.020 U A              | 0.10 U A           | 0.10.0 1        | 0.020 U A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.100 A            | 0.100                                    | 0.020 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.020 11 A                               | 0.02011        | 0.020 11 1            | 0.02011 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A 11 000           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the second     | <rsl (november="" 0.2="" 1="" 2012):="" tapwater="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                        |                    |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                          | 0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SIGEO G                                  | 0.0200         | 0.020 0               | 0.02010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0200             |
| A A' ODT In a' ODT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | und            | <plx (1993):="" 0.02="" 1="" ug="" washington=""></plx>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                     |                        | 1000               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 100             | 1                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                        | A. C. Start    | 1. 24.                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| 4,4 -001 (p,p -001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/L           | <rsl (november="" 0.2="" 1="" 2012):="" tapwater="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.050 U               | 0.050 0       | 0.053 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.051 0 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.049 U               | 0.050 U                | 0.25 U             | 0.26 U          | 0.050 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25 U             | 0.26 U ^                                 | 0.050 U ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.050 U 🏠                                | 0.051 U        | 0.051 U A             | 0.050 U ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.051 U ^          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | <nc (january="" 0.1="" 2010):="" gwcs="" l="" ug=""></nc>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second second |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | And the second second | and Provide a contract | Contraction of the | and and and     | And and the states                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mary Survey and    | A State State                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | -              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Aldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/L           | CRSI TADWATER (November 2012): 0.004 w/l >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.040 ^               | 0.020         | 0.039 ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.032 ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.031                 | 1.8 ^                  | 2.0 ^              | 2.2 ^           | 2.0 ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2^                 | 2.3 ^                                    | 0.020 U A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.020 U A                                | 0.020 U A      | 0.020 U A             | 0.020 U ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.020 U A          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | CPSI TADWATER (November 2012). 0.0015 ug/l >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                        | and the second     |                 | and the second se | Contraction of the | and the second                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A Status State                           |                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ug/1           | <nc (january="" 0.002="" 2010):="" gwos="" ug=""></nc>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.60 1                | 0.51 A        | 0.62 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.57A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DALLO A               | n man A                | Auora              | A non           | Amon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | a nou A                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -9-            | <fcx (1993):="" 0.07="" la<="" td="" ug="" washington=""><td>0.00</td><td>0.31</td><td>0.02</td><td>0.57</td><td>0.413,0</td><td>0.020 0</td><td>0.100</td><td>0.100</td><td>0.020 0</td><td>0.100</td><td>0.10 0</td><td>0.037</td><td>0.047 3,0 **</td><td>0.047 1,0 **</td><td>0.049</td><td>0.055</td><td>0.054 1,0</td></fcx>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                  | 0.31          | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.413,0               | 0.020 0                | 0.100              | 0.100           | 0.020 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.100              | 0.10 0                                   | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.047 3,0 **                             | 0.047 1,0 **   | 0.049                 | 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.054 1,0          |
| Endosulfan I (alpha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/L           | n on this interior (1995), out office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.020 U               | 0.02011       | 0.02111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02011               | 0.02011                | 0.10.11            | 0.10.11         | 0.02011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 1011             | 0.10.11                                  | 0.020.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.030.11                                 | 0.020.01       | 0.020.01              | 0.030.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.020.11           |
| Endosulfan II (beta)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/L           | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.040 U               | 0.050 U.O     | 0.047.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.041 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03911               | 0.0200                 | 0.100              | 0.100           | 0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.100              | 0.100                                    | 0.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0200                                   | 0.020 0        | 0.020 0               | 0.070 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.020 0            |
| Endosulfan Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/L           | The second state of the second state of the second state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.050 U               | 0.050 U       | 0.053 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.051 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.049U                | 0.050 U                | 0.25 U             | 0.26 11         | 0.050 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25 11            | 0.26 U                                   | 0.05011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.040 0                                  | 0.040 0        | 0.0410                | 0.05011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05111            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | <rsl (november="" 2="" 2012):="" l="" mcl="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | for an approx | Contractory of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 0.0000                 | 012.5 0            | 0.200           | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.230              | 0.200                                    | 0.050 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0300                                   | 0.0510         | 0.0310                | 0.0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0510             |
| Cardela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | int            | <rsl (november="" 1.7="" 2012):="" l="" tapwater="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                        |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Note that                                |                | 1-34 30               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Churm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ug/L           | <fcx (1993):="" 0.20="" l="" ug="" washington=""></fcx>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.069                 | 0.066         | 0.0473,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.058                 | 0.040 U                | 0.20 U             | 0.20 U          | 0.040 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.20 U             | 0.20 U                                   | 0.046 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.061 U                                  | 0.066 U        | 0.058 U,O             | 0.062 J,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.086              |
| a la constante de la constante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | <nc (january="" 2="" 2010):="" gwq5="" l="" ug=""></nc>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | L'ORT TANK    | 195392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                        | T. T. C. V         |                 | 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1.42                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The second                               | 1.5            | ALE LEEP              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Endrin aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/L           | the subject to the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.050 U               | 0.050 U       | 0.053 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.051 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.071 U               | 0.050 U                | 0.25 U             | 0.26 U          | 0.050 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25 U             | 0.26 U                                   | 0.050 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.050 U                                  | 0.051 U        | 0.051 U               | 0.05011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.051 U            |
| Endrin ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ug/L           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.051                 | 0.096         | 0.053 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.051 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.049 U               | 0.050 U                | 0.25 U             | 0.26 U          | 0.050 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25 U             | 0.26 U                                   | 0.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.050 U                                  | 0.051          | 0.087                 | 0.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.11               |
| The second of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100            | <fcx (1993):="" 0.076="" l="" ug="" washington=""></fcx>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.11                  |               | -zaularia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                        | 1. 1. 1.           | -               | 6.05.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                      | No.            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Hentachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ugh            | <nc (january="" 0.008="" 2010):="" gwqs="" l="" ug=""></nc>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OOTEIL                | 0.01511       | 0.01611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.015.01              | 0.045.11               | 0.075.11           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | 1                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                |                       | and south                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
| inc proteiner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.5           | <rsl (november="" 0.4="" 2012):="" i="" mcl="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0150                | 0.015 0       | 0.010.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.015 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0150                | 0.015 0                | 0.0750             | 0.077 U         | 0.0150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.076 0            | 0.077 U **                               | 0.015 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,015 0                                  | 0.015 0        | 0.015 0               | 0.015 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.015 U            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | <rsl (november="" 0.0018="" 2012):="" l="" tapwater="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | " Barris              | La starte     | and have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Adda and a la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                        | State and          | La Stalling     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lingunat.          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the second                               |                | A State Terry         | Warra M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |
| A CARLES AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | <rsl (november="" 0.2="" 2012):="" l="" mcl="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | and the second         |                    | 1000 Lans 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A State            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | TO CARSO       |                       | 1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
| Heptachlor enoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110/1          | <nc (january="" 0.004="" 2010):="" gwqs="" l="" ug=""></nc>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02011               | a orr A       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 0.000                  |                    |                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a main             |
| incharged chosen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - OL-          | <fcx (1993):="" 0.038="" l="" ug="" washington=""></fcx>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0200                | 0.066 ::      | 0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.041                 | 0.0200                 | 0.100              | 0.100           | 0.020 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.100              | 0.100                                    | 0.020 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.020 0                                  | 0.020 0        | 0.020 0               | 0.020 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.020 0            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | <rsl (november="" 0.0033="" 2012):="" l="" tapwater="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ser Contraction       | 1 martin      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COLUMN STORY          | R D C R S C R          |                    | E.S. F. GA      | 1. 200 3.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                          | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AR Change                                | C C WELL       | Part Part             | and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
| Hp-Sed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/L           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0068                | 0.0051        | 0.0052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0051 J,O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0076                | 0.083                  | 0.028              | 0.023           | 0.014 J,O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.025              | 0.022                                    | 0.0058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0054                                   | 0.0049         | 0.0059                | 0.0056 J,O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0067             |
| Hx-Sed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/L           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0032                | 0.0022        | 0.0021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0026                | 0.0029                 | 0.0019             | 0.0019          | 0.0017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0024             | 0.0023                                   | 0.0049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0058                                   | 0.0053         | 0.0056                | 0.0056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.006              |
| and an and a second sec |                | <nc (january="" 2010):="" 40="" gwqs="" l="" ug=""></nc>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F. 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | Esta -                 | 1 3 3 3            |                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALC: NOTE:         | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | 4. 2           | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section Pro-       |
| Methoxychior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ug/L           | <rsl (november="" 2012):="" 40="" l="" mcl="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.099 U               | 0.10 U        | 0.11 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.098 U               | 0.10 U                 | 0.50 U             | 0.51 U          | 0.10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.51 U             | 0.51 U                                   | 0.10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.099 U                                  | 0.10 U         | 0.10 U                | 0.10 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10 U             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -              | <rsl (november="" 2012):="" 27="" l="" tapwater="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                        | -                  | 1               | Con Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Land and and and and and and and and and | S. Martin      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| Sector Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | <rsl (november="" 2012):="" 3="" i="" mll="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | ALL TROVA     | Jul 2 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - The second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tor tends ??          |                        | and the set        | Kill Hand       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 131-2 1900         |                                          | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | 1-24           |                       | a black                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ALL & Ball         |
| Toxaphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/L           | <rsl (november="" 0.013="" 1="" 2012):="" tapwater="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0 U                 | 2.00          | 2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.00                  | 2.00                   | 2.00               | 2.00            | 2.0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.00               | 2.00                                     | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.00                                     | 2.0 U          | 3400 4                | 2.0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33110 1            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | CAC GWCIS (January 2010): 0.03 ug/l S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | A Destroyed   | 1. N. N. J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Concerning of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and the second        |                        | The start of the   | The second      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                  | Span Follow                              | 104 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.5 2                                   |                |                       | and the second s | 5.50,0             |
| Toxanhene, Parlar 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ugh            | אראס אראסיוואניזעא אטינטאוואנאיז אטינא אראסינג                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0025                | 0.0027        | 0.0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0000                | 0.0010.11              | 0.00000011         | 0.0010.11       | 0.0010111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0010.01          | 0.00101                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Notice and                               |                | Service Service       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DE INCOMENTE O     |
| Toxaphene, Parlar 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/l           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.023                 | 1021          | 0.0025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0201,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0029                | 0.0010 0               | 0.00099.0          | 0.00100         | 0,00100,1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00100            | 0.00100                                  | 0.00103,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000961,0                               | 0.00084 1.0    | 0.0012                | 0.00111,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.001              |
| Toxaphene, Parlar 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/L           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0029                | 0.0032        | 0.0027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.002510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.004                 | 0.00101                | 0.0009911          | 0.0010 1        | 0.00100100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00101            | 0.00101                                  | 0.001011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0011                                   | 0.001011       | 0.00000 11            | 0,0111,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000              |
| Toxaphene, Parlar 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/L           | THE R. LEWIS CO. LANSING MICH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0049                | 0.0046        | 0.0043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0055                | 0.0010 1               | 0.0009911          | 0.001011        | 0.001011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00101            | 0.00101                                  | 0.00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0009810                                | 0.00100        | 0.00098 0             | 0,00100,1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000990           |
| Toxaphene, Parlar 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/L           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0028                | 0.002         | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0022                | 0.0010 1               | 0.0009911          | 0.001011        | 0.001011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.001011           | 0.00101                                  | 0.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0011                                   | 0.001          | 0.0010                | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001              |
| Toxaphene, Parlar 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/L           | Constant Constant of Constant Street, St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0014                | 0.0014        | 0.0014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0027                | 0.0010 U               | 0.041 U.O          | 0.044 U.O       | 0.035 U.O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06911.0          | 0.06611.0                                | 0.0010.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0009811                                | 0.001011       | 0.0009811             | 0.001011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000210           |
| Toxaphene, Parlar 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/L           | and the second state of th | 0.00391.0             | 0.0034        | 0.0033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.004                 | 0.00100,1.0            | 0.0009911          | 0.0010 U        | 0.001011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.001011           | 0.0010 U                                 | 0.000951.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000881.0                               | 0.00080 10     | 0 00090 1 0           | 0.0007310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0008710          |
| Toxaphene, Parlar 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/L           | 2 Sector and the sector and the sector and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0054                | 0.0064        | 0.0079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0094                | 0.0050 U               | 0.0050 U           | 0.0051 U        | 0.0051 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0051 U           | 0.0050 U                                 | 0.0051 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.004911                                 | 0.005211       | 0.004911              | 0.0051 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.004914           |
| aloha BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | wat            | <fcx (1993):="" 0.014="" l="" ug="" washington=""></fcx>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | -             | 0.014.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000011              | 0.000                  |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | -                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| sipila one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ugr            | <rsl (november="" 0.0062="" 2012):="" l="" tapwater="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0170 **             | 0.014 3,0     | 0.0111.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.013 (.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0098.0              | 0.010.0                | 0.050 U            | 0.051 U         | 0.010.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.051 U            | 0.051 U A                                | 0.010 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0099 0                                 | 0.010 0        | 0.010 U               | 0.010 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.010 U            |
| alpha-Chlordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/L           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                   | 0.09          | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.089                 | 0.020 U                | 0.10 U             | 0.10 U          | 0.020 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.10 U             | 0.10 U                                   | 0.020 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.020 U                                  | 0.020 U        | 0.020 U               | 0.020 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.020 U            |
| beta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vali           | <fcx (1993):="" 0.047="" l="" ug="" washington=""></fcx>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.022                 | 0.11          | 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00CA                | 0.02011                | 0.10.10            | 0.000           | 0.02011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000              | 0.00.0                                   | 0.00011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00011                                  | 0.000011       | 0.07011               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01011            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0             | <rsl (november="" 0.022="" 2012):="" l="" tapwater="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.075                 | 0.11          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.020                 | 0.020 0                | 0.100              | 0.100           | 0.020 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.100              | 0.100                                    | 0.020 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.020 0                                  | 0.020 0        | 0.020 0               | 0.020 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.020 0            |
| delta-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ug/L           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.028                 | 0.029         | 0.021 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.021 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.020 U               | 0.020 U                | 0.10 U             | 0.10 U          | 0.020 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.10 U             | 0.10 U                                   | 0.020 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.020 U                                  | 0.020 U        | 0.020 U               | 0.020 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.020 U            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | <rsl (november="" 0.2="" 2012):="" l="" mcl="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                        |                    |                 | ER 1921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                          | a professioners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the sea                              | North State    | and a local           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shire S            |
| gamma-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/L           | <nc (january="" 0.03="" 2010):="" gwqs="" l="" ug=""></nc>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.059 1               | 0.027 ^       | 0.031 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.026 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.022 A               | 0.010 11               | 0.050 U            | 0.051 U         | 0.0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0511             | 0.051 U                                  | 0.01011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 000 0                                 | 0.01011        | 0.01012               | 0.0101/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01011            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | <pcx (1993):="" 0.0265="" l="" ug="" washington=""></pcx>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a                 |                        |                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          | 0.0100         | 0.0100                | 0.0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0100             |
| to an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | <rsl (november="" 0.036="" 2012):="" l="" tapwater="" ug=""></rsl>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | -             | and the same wide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contraction of the local division of the loc | and the second second | -                      | - Hole Barrier     | - Harrison      | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A la harres        |                                          | a starting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | and the second |                       | 2.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| gamma-Chiordane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ug/L           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.16                  | 0.16          | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.15                  | 0.020 U                | 0.10 U             | 0.10 U          | 0.020 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.10 U             | 0.10 U                                   | 0.020 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.020 U                                  | 0.020 U        | 0.020 U               | 0.020 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.020 U            |

| Legend                                      |       |
|---------------------------------------------|-------|
| Detection, Result Shown                     | 5.0   |
| Non-detect, MRL shown                       | 5.01  |
| Result exceeds standard, Result shown       | 5.0 4 |
| Non-detect, MRI exceeds standard, MRI shown | 501   |

Data Qualifiers

The analyte was not detected at or above the reporting limit. The identification of the analyte is acceptable; the reported value is an estimate Other qualifier, see analytical data sheet. U

0

SESD Project ID# 13-0365 FCX Washington

Page 17 of 287

٨

# This Page Intentionally Blank

SESD Project ID= 13-0365 FCX Washington

Page 18 of 28"

#### Table 5 FCX VOC MNA Results March 2012 to June 2013

|          | Station ID<br>Sample ID | MW01A<br>01A0312 | MW01A<br>01A0912 | MW01A<br>01A1212 | MW01A<br>01A0313 | MW01A<br>01A0613 | MW01B<br>01B0312 | MW01B<br>0180912 | MW018<br>0181212 | MW01B<br>0180313 | MW01B<br>0180613 | MW05A<br>05A0312 | MW05A<br>05A0912 | MW05A<br>05A1212 | MW05A<br>05A0313 | MW05A<br>05A0613 | MW058<br>0580312 | MW058<br>0580912 | MW05B<br>05B1212 | MW05B<br>0580313 | MW05B<br>05B0613 |
|----------|-------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| The last | Sample Date             | 03/28/12         | 09/11/12         | 12/11/12         | 03/05/13         | 06/04/13         | 03/28/12         | 09/11/12         | 12/11/12         | 03/05/13         | 06/04/13         | 03/28/12         | 09/11/12         | 12/11/12         | 03/05/13         | 06/04/13         | 03/28/12         | 09/11/12         | 12/11/12         | 03/05/13         | 06/04/13         |
| Analyte  | Units                   |                  |                  |                  | the set          |                  |                  |                  |                  |                  |                  |                  |                  | 100              |                  |                  |                  |                  |                  |                  |                  |
| Ethane   | ug/L                    | 2.6 U            | 2.6U             | 2.6 U            | 2.60             | 2.6 U            | 2.60             |
| Ethene   | ug/L                    | 2.6 U            |
| Methane  | ug/L                    | 54               | 56               | 80               | 20               | 26               | 140              | 1.4 U            | 1.4 U            | 1.4 U            | 1.40             | 1.4 U            | 2.9              | 1.4 U            | 1.4 U            | 1.4 U            | 1.4 U            | -1.4 U           | 1.4U             | 1.4 U            | 1.40             |

| The second | Station ID  | MW07A    | MW07A    | MW07A    | MW07A    | MW07A    | MW07B    | MW07B    | MW07B    | MW07B                                   | MW07B    | MW08B    | MW088    | MW08B    | MW08B    | MW088     | AROWM    | MW09A       | MW09A    | MW09A    | MW09A    | MW09A     |
|------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|-----------------------------------------|----------|----------|----------|----------|----------|-----------|----------|-------------|----------|----------|----------|-----------|
| 2.300      | Sample ID   | 07A0312  | 07A0912  | 07A1212  | 07A0313  | 07A0613  | 0780312  | 0780912  | 0781212  | 0780313                                 | 0780613  | 0880312  | 08B0912  | 0881212  | 0880313  | MW08B0613 | 09A0312  | 09A0312D    | 09A0912  | 09A1212  | 09A0313  | MW09A0613 |
| 1.485      | Sample Date | 03/27/12 | 09/11/12 | 12/12/12 | 03/05/13 | 06/04/13 | 03/28/12 | 09/11/12 | 12/11/12 | 03/05/13                                | 06/04/13 | 03/27/12 | 09/11/12 | 12/12/12 | 03/06/13 | 06/05/13  | 03/27/12 | 03/27/12    | 09/12/12 | 12/12/12 | 03/05/13 | 06/04/13  |
| Analyte    | Units       |          |          |          |          |          |          |          |          | 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - |          |          |          |          |          |           |          | 11-2-5 × 16 |          |          |          |           |
| Ethane     | ug/L        | 2.6 U    | 2.6.U                                   | 2.6 U     | 2.6 U    | 2.6 U       | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U     |
| Ethene     | ug/L        | 2.6 U                                   | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U     | 2.6 U    | 2.6 U       | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U     |
| Methane    | ug/L        | 1.4 U    | 1.4 U    | 1.4 Ų    | 1.4 U    | 1.40     | 1.4 U    | 1.4 U    | 1.4 U    | 1.4 U                                   | 1.4 U    | 1.4 U    | 1.4 U    | 1.4 U    | 1.4 U    | 1.40      | 11       | 10          | 10       | 9        | 5.8      | 5.7       |

| Ser. S     | Station ID  | MW098        | MW09B    | MW09B    | MW09B    | MW09B    | MW10A    | MW10A    | MW10A    | MW10A    | MW10A    | MW11A    | MW11A    | MW11A    | MW11A    | MW11A    | MW12A    | MW12A    | MW12A    | MW12A    | MW12A    | MW12A    |
|------------|-------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| - Alter    | Sample ID   | 09B0312      | 0980912  | 0981212  | 0980313  | 0980613  | 10A0312  | 10A0313  | 10A0912  | 10A1212  | 10A0613  | 11A0312  | 11A0912  | 11A1212  | 11A0313  | 11AD0613 | 12A0312  | 12A0912  | 12A0912D | 12A1212  | 12A0313  | 12A0613  |
| A CONTRACT | Sample Date | 03/28/12     | 09/12/12 | 12/12/12 | 03/06/13 | 06/04/13 | 03/27/12 | 03/06/13 | 09/12/12 | 12/13/12 | 06/05/13 | 03/27/12 | 09/12/12 | 12/13/12 | 03/05/13 | 06/05/13 | 03/27/12 | 09/13/12 | 09/13/12 | 12/11/12 | 03/06/13 | 06/05/13 |
| Analyte    | Units       | 6.46. (4.10) |          | a de la  |          |          |          |          |          |          |          |          |          | A STREET |          | ALC ALSO |          |          |          |          |          |          |
| Ethane     | ug/L        | 2.6 U        | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6U     | 2.6U     | 2.6 U    |
| Ethene     | ug/L        | 2.6 U        | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    | 2.6 U    |
| Methane    | ug/L        | 1.4 U        | 1.4 U    | 1.4 U    | 1.4 U    | 1.4 U    | 1.4 U    | 1.5      | 1.4 U    | 2.11,0   | 1.4 U    | 1.4 U    | 1.4 U    | 1.4 U    | . 1.4 U  | 1.4 U    | 1.4 U    | 6.3      | 4.7      | 1.4 U    | 3.4      | 1.4 U    |

|         | Station ID<br>Sample ID | MW158<br>1580312      | MW158<br>1580912 | MW158<br>1581212 | MW158<br>158D1212 | MW15B<br>1580313 | MW158<br>1580613                                                                                                | MW16B<br>1680312 | MW16B<br>1680912 | MW168<br>1681212 | MW16B<br>1680313 | MW168<br>168D0313 | MW168<br>1680613       |
|---------|-------------------------|-----------------------|------------------|------------------|-------------------|------------------|-----------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|-------------------|------------------------|
| Analita | Sample Date             | 03/20/12              | 09/12/12         | 12/13/12         | 12/13/12          | 03/00/13         | 00/03/13                                                                                                        | 03/2//12         | 09/13/12         | 14/11/12         | 03/03/13         | 03/05/13          | 00/03/13               |
| Analyte | Units                   | and the second second |                  |                  | -                 |                  | provide the second s |                  |                  |                  |                  |                   | a second second second |
| Ethane  | ug/L                    | 2.6 U                 | 2.6 U            | 2.6 U            | 2.6 U             | 2.6 U            | 2.6 U                                                                                                           | 2.6 U            | 2.6 U            | 2.6 U            | 2.6 U            | 2.6 U             | 2.6 U                  |
| Ethene  | ug/L                    | 2.6 U                 | 3.6              | 3.1 ),0          | 3.0 1,0           | 2.8              | 2.6 U                                                                                                           | 2.6 U            | 2.6 U            | 2.6 U            | 2.6 U            | 2.6 U             | 2.6 U                  |
| Methane | ug/t                    | 3                     | 35               | 3110             | 3210              | 33               | 24 1                                                                                                            | 57               | 29               | 51               | 55               | 6.6               |                        |

į.

Data Qualifiers

| U    | The analyte was not detected at or above the reporting limit.                       |
|------|-------------------------------------------------------------------------------------|
| 1    | The identification of the analyte is acceptable; the reported value is an estimate. |
| 0    | Other qualifier, see analytical data sheet.                                         |
| en a | Detect, result shown                                                                |

# This Page Intentionally Blank

•

Page 20 of 28"

SESD Project ID= 13-0365 FCX Washington

#### Table 6 FCX VOC Results March 2012 to June 2013

|                                              | A STREET | Station ID                                                                                                                                                                                                                                                | MW01A    | MW01A    | MW01A    | MW01A    | MW01A    | MW07A    | MW07A    | MW07A      | MW07A    | MW07A    | MWIIA       | MW11A        | MW11A        | MW11A    | MW11A     | MW11A    |
|----------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|-------------|--------------|--------------|----------|-----------|----------|
| - The second second                          |          | Sample ID                                                                                                                                                                                                                                                 | 01A0312  | 01A0912  | 01A1212  | 01A0313  | 01A0613  | 07A0312  | 07A0912  | 07A1212    | 07A0313  | 07A0613  | 11A0312     | 11A0912      | 11A1212      | 11A0313  | 11A0613   | 11AD0613 |
|                                              |          | Sample Date                                                                                                                                                                                                                                               | 03/28/12 | 09/11/12 | 12/11/12 | 03/05/13 | 06/04/13 | 03/27/12 | 09/11/12 | 12/12/12   | 03/05/13 | 06/04/13 | 03/27/12    | 09/12/12     | 12/13/12     | 03/05/13 | 06/05/13  | 06/05/13 |
| Analyte                                      | Units    | Comparison Standard                                                                                                                                                                                                                                       |          |          |          |          |          | 100000   |          | 5 - 16 - S |          |          | Content and | 1240 2 3 3 1 | States and a | 1        |           | 10000    |
| 1,1-Dichloroethane                           | ug/L     | <nc (january="" 2010):="" 6="" gwqs="" l="" ug=""><br/><rsl (november="" 2.4="" 2012):="" l="" tapwater="" ug=""></rsl></nc>                                                                                                                              | 0.50 U   | 0.50 U   | 0.50 U   | 0.13 J,O | < 0.50 U | 0.16 ),0 | 0.16 1,0 | 0.50 U     | 0.20 1,0 | 0.16 J,O | 0.50 U      | 0.50 U       | 0.50 U       | 0.50 U   | < 0.50 U  | < 0.50 U |
| 1,1-Dichloroethene<br>(1,1-Dichloroethylene) | ug/L     | <rsl (november="" 2012):="" 260="" l="" tapwater="" ug=""><br/><rsl (november="" 2012):="" 7="" l="" mcl="" ug=""><br/><nc (january="" 2010):="" 7="" gwqs="" l="" ug=""></nc></rsl></rsl>                                                                | 0.50 U   | 0.50 U   | 0.50 U   | 0.34 1,0 | < 0.50 U | 0.50 U   | 0.50 U   | 0.50 U     | 0.50 U   | < 0.50 U | 0.50 U      | 0.50 U       | 0.50 U       | 0.50 U   | < 0.50 U  | < 0.50 U |
| 1,2-Dichloroethane                           | ug/L     | <fcx (1993):="" 0.38="" l="" ug="" washington=""><br/><rsl (november="" 0.15="" 2012):="" l="" tapwater="" ug=""><br/><rsl (november="" 2012):="" 5="" l="" mcl="" ug=""><br/><nc (january="" 0.4="" 2010):="" gwqs="" l="" ug=""></nc></rsl></rsl></fcx> | 0.50 U A | 0.50 U A | 0.50 U A | 0.50 U A | < 0.50 U | 0.50 U A | 0.50 U * | 0.50 U A   | 0,50 U 🔦 | < 0.50 U | 0.50 U *    | 0.50 U A     | 0.50 U *     | 0.50 U A | <0.50 U . | < 0.50 U |
| 1,2-Dichloropropane                          | ug/l.    | <rsl (november="" 2012):="" 5="" l="" mcl="" ug=""><br/><rsl (november="" 0.38="" 2012):="" l="" tapwater="" ug=""><br/><nc (january="" 0.6="" 2010):="" gwqs="" l="" ug=""><br/><fcx (1993):="" 0.56="" l="" ug="" washington=""></fcx></nc></rsl></rsl> | 0.50 U   | 0.50 U   | 0.50 U   | 0.50 U   | < 0.50 U | 0.50 U   | 0.50 U   | 0.50 U     | 0.50 U   | < 0.50 U | 0.50 U      | 0.50 U       | 0.50 U       | 0.50 U   | <0.50 U   | < 0.50 U |
| Benzene                                      | ug/L     | <fcx (1993):="" 1="" l="" ug="" washington=""> <nc (january="" 1="" 2010):="" gwqs="" l="" ug=""> <rsl (november="" 2012):="" 5="" l="" mcl="" ug=""> <rsl (november="" 0.39="" 2012):="" l="" tapwater="" ug=""></rsl></rsl></nc></fcx>                  | 0.50 U   | 0.50 U   | 0.50 U   | 0.50 U   | < 0.50 U | 0.50 U   | 0.50 U   | 0.50 U     | 0.50 U   | < 0.50 U | 0.50 U      | 0.50 U       | 0.50 U       | 0.50 U   | < 0.50 U  | < 0.50 U |
| Chlorobenzene                                | ug/L     | <pre><nc (january="" 2010):="" 50="" gwq5="" l="" ug=""> <rsl (november="" 100="" 2012):="" l="" mcl="" ug=""> <fcx (1993):="" 100="" l="" ug="" washington=""> <rsl (november="" 2012):="" 72="" l="" tapwater="" ug=""> </rsl></fcx></rsl></nc></pre>   | 0.50 U   | 0.50 U   | 0.50 U   | 0.50 U   | < 0.50 U | 0.50 U   | 0.50 U   | 0.50 U     | 0.50 U   | < 0.50 U | 0,185.0     | 0.5          | 0.443,0      | 0.34 ),0 | 0.391,0   | 0.34.1,0 |
| Methyl T-Butyl Ether<br>(MTBE)               | ug/L     | <rsl (november="" 12="" 2012):="" l="" tapwater="" ug=""><br/><nc (january="" 20="" 2010):="" gwqs="" l="" ug=""></nc></rsl>                                                                                                                              | 0.50 U   | 0.50 U   | 0.50 U   | 0.50 U   | < 0.50 U | 0.50 U   | 0.50 U   | 0.50 U     | 0.50 U   | < 0.50 U | 0.50 U      | 0.50 U       | 0.50 U       | 0.50 U   | < 0.50 U  | < 0.50 U |

| ALC: NOT ALC: NOT                            |       | Station ID                                                                                                                                                                                                                                              | MW15B    | MW15B    | MW158    | MW15B    | MW15B    | MW15B    | MW16B    | MW16B                                    | MW16B    | MW16B    | MW16B    | MW168    |
|----------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|------------------------------------------|----------|----------|----------|----------|
| the second                                   |       | Sample ID                                                                                                                                                                                                                                               | 1580312  | 1580912  | 1581212  | 15BD1212 | 1580313  | 1580613  | 1680312  | 16B0313                                  | 1680912  | 1681212  | 168D0313 | 16B0613  |
|                                              | 10.3  | Sample Date                                                                                                                                                                                                                                             | 03/28/12 | 09/12/12 | 12/13/12 | 12/13/12 | 03/06/13 | 06/05/13 | 03/27/12 | 03/05/13                                 | 09/13/12 | 12/11/12 | 03/05/13 | 06/05/13 |
| Analyte                                      | Units | Comparison Standard                                                                                                                                                                                                                                     |          |          |          |          |          |          |          | 10-10-10-10-10-10-10-10-10-10-10-10-10-1 |          |          |          |          |
| 1,1-Dichloroethane                           | ug/L  | <pre><nc (january="" 2010):="" 6="" gwqs="" l="" ug=""> <rsl (november="" 2.4="" 2012):="" l="" tapwater="" ug=""></rsl></nc></pre>                                                                                                                     | 0.50 U   | < 0.50 U | 0.50 U   | 0.50 U                                   | 0.50 U   | 0.50 U   | 0.50 U   | < 0.50 U |
| 1,1-Dichloroethene<br>(1,1-Dichloroethylene) | ug/L  | <rsl (november="" 2012):="" 260="" l="" tapwater="" ug=""><br/><rsl (november="" 2012):="" 7="" l="" mcl="" ug=""><br/><nc (january="" 2010):="" 7="" gwqs="" l="" ug=""></nc></rsl></rsl>                                                              | 0.50 U   | < 0.50 U | 0.50 U   | 0.50 U                                   | 0.50 U   | 0.50 U   | 0.50 U   | < 0.50 U |
| 1,2-Dichloroethane                           | ug/L  | <fcx (1993):="" 0.38="" i="" ug="" washington=""> <rsl (november="" 0.15="" 2012):="" i="" tapwater="" ug=""> <rsl (november="" 2012):="" 5="" i="" mcl="" ug=""> <nc (january="" 0.4="" 2010):="" gwqs="" i="" ug=""></nc></rsl></rsl></fcx>           | 5.1 ^    | 5.1 *    | 5.1.4    | 5.0 ^    | 5.8 ^    | 5.7.¢    | 0.50 U A | 0.50 U A                                 | 0.50 U A | 0.50 U A | 0.50 U 🐴 | < 0.50 U |
| 1,2-Dichloropropane                          | ug/L  | <rsl (november="" 2012):="" 5="" l="" mcl="" ug=""><rsl (november="" 0.38="" 2012):="" l="" tapwater="" ug=""><nc (january="" 0.6="" 2010):="" gwqs="" l="" ug=""><fcx (1993):="" 0.56="" l="" ug="" washington=""></fcx></nc></rsl></rsl>              | 0.22.1,0 | 0.77 1,0 | 0.22 ),0 | 0.22 1,0 | 0.22 1,0 | 0.74 J,O | 0.50 U   | 0.50 U                                   | 0.50 U   | 0.50 U   | 0,50 U   | < 0.50 U |
| Benzene                                      | ug/L  | <fcx (1993):="" 1="" l="" ug="" washington=""><br/><nc (january="" 1="" 2010):="" gwqs="" l="" ug=""><br/><rsl (november="" 2012):="" 5="" l="" mcl="" ug=""><br/><rsl (november="" 0.39="" 2012):="" l="" tapwater="" ug=""></rsl></rsl></nc></fcx>    | 0.17.1,0 | 0.161,0  | 0.181,0  | 0.17 1,0 | 0.191,0  | 0,191,0  | 0.50 U   | 0.50 U                                   | 0.50 U   | 0.50 U   | 0.50 U   | <0.50 U  |
| Chlorobenzene                                | ug/L  | <nc (january="" 2010):="" 50="" gwq5="" l="" ug=""><br/><rsl (november="" 100="" 2012):="" l="" mcl="" ug=""><br/><fcx (1993):="" 100="" l="" ug="" washington=""><br/><rsl (november="" 2012):="" 72="" l="" tapwater="" ug=""></rsl></fcx></rsl></nc> | 0.50 U   | < 0.50 U | 0.50 U   | 0.50 U                                   | 0.50 U   | 0.50 U   | 0.50 U   | <0,50 U  |
| Methyl T-Butyl Ether<br>(MTBE)               | ug/L  | <rsl (november="" 12="" 2012):="" l="" tapwater="" ug=""><br/><nc (january="" 20="" 2010):="" gwqs="" l="" ug=""></nc></rsl>                                                                                                                            | 0.50 U   | < 0.50 U | 0,141,0  | 0.14,0                                   | 0.13 J,O | 0.12 J.O | 0.15 ),0 | 0.15 1,0 |

| 122 | Data Qualifiers                                                                     |
|-----|-------------------------------------------------------------------------------------|
| U   | The analyte was not detected at or above the reporting limit.                       |
| J   | The identification of the analyte is acceptable; the reported value is an estimate. |
| 0   | Other qualifier, see analytical data sheet.                                         |

| Legend                                      |         |
|---------------------------------------------|---------|
| Detection, Result Shown                     | 5.0     |
| Non-detect, MRL shown                       | 5.0 U   |
| Result exceeds standard, Result shown       | 5.0 ^   |
| Non-detect, MRL exceeds standard, MRL shown | 5.0 U A |

SESD Project ID# 13-0365 FCX Washington Page 21 of 287

# This Page Intentionally Blank

2

SESD Basing IDa (1-1)(6) Page 22 of 28"

SESD Project ID= 13-0365 Page 22 of 28" FCX Washington

#### Table 7 FCX CNA Results March 2012 to June 2013

| Sta                  | tion ID | MW01A    | MW01A    | MW01A    | MW01A    | MW01A     | MW018    | MW018    | MW01B    | MW018    | MW01B     | MW05A    | MW05A    | MW05A    | MW05A    | MW05A    | MW05B    | MW058    | MW05B    | MW05B    | MW05B    | MW07A    | MW07A    | MW07A    | MW07A    | MW07A    |
|----------------------|---------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Sar                  | nple ID | 01A0312  | 01A0912  | 01A1212  | 01A0313  | 01A0613   | 0180312  | 0180912  | 01B1212  | 0180313  | 0180613   | 05A0312  | 05A0912  | 05A1212  | 05A0313  | 05A0613  | 0580312  | 0580912  | 0581212  | 05B0313  | 0580613  | 07A0312  | 07A0313  | 07A0912  | 07A1212  | 07A0613  |
| Samp                 | le Date | 03/28/12 | 09/11/12 | 12/11/12 | 03/05/13 | 06/04/13  | 03/28/12 | 09/11/12 | 12/11/12 | 03/05/13 | 06/04/13  | 03/28/12 | 09/11/12 | 12/11/12 | 03/05/13 | 06/04/13 | 03/28/12 | 09/11/12 | 12/11/12 | 03/05/13 | 06/04/13 | 03/27/12 | 03/05/13 | 09/11/12 | 12/12/12 | 06/04/13 |
| Analyte              | Units   |          |          |          |          |           |          |          |          |          |           |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Chloride             | mg/L    | 38       | 36       | 34       | 37       | 33        | 12       | 11       | 12       | 12       | 12        | 9,4      | 1.6      | 3.2      | 2.3      | 6.6      | 17       | 17       | 17       | 17       | 17       | 24       | 25       | 23       | 24       | 21       |
| Nitrate/Nitrite as N | mg/L    | 0.050 U  | 0.050 U  | 0.050 U  | 0.050 U  | < 0.050 U | 0.050 U  | 0.050 U  | 0.050 U  | 0.050 U  | < 0.050 Ü | 0.23     | 0.050 U  | 0.19     | 0.19     | 0.13     | 0,18     | 0.41     | 0.19     | 0.23     | 0.15     | 0.51     | 2.9      | 1.6      | 0.28     | 1.5      |
| Sulfate as 504       | mg/L    | 41       | 36       | 34       | 41       | 40        | 51       | 47       | 47       | 49       | 49        | 57       | 11       | 29       | 18       | 49       | 29       | 29       | 28       | 30       | 34       | 43       | 43       | 37       | 39       | 45       |
| Carbon               | mg/L    | 15       | 12       | 11       | 9.5      | 6,6       | 6.5      | 4.5      | 4.5      | 3.2      | 2.8       | 9.1      | 3.9      | 7.4      | 2.2      | 5.9      | 4.4      | 3.6      | 3.7      | 3        | 2.4      | 7.1      | 4.2      | 5        | 5        | 3.1      |

| Sta                     | tion ID | MW07B    | MW07B    | MW07B    | MW07B    | MW07B     | MW08B    | MWOSB    | MW08B    | MW08B    | MW08B     | A60MW    | MW09A    | MW09A    | MW09A    | MW09A    | A60MW     | MW09B    | MW09B    | MW098    | MW09B    | MW09B     | MW10A    | MW10A    | MW10A    | MW10A    | MW10A    |
|-------------------------|---------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|-----------|----------|----------|----------|----------|----------|
| San                     | nple ID | 078012   | 0780312  | 0780313  | 0781212  | 0780613   | 08B0312  | 0880313  | 08B0912  | 08B1212  | 0880613   | 09A0312  | 09A0312D | 09A0313  | 09A0912  | 09A1212  | 09A0613   | 0980312  | 0980313  | 0980912  | 0981212  | 09B0613   | 10A0312  | 10A0313  | 10A0912  | 10A1212  | 10A0613  |
| Samp                    | e Date  | 09/11/12 | 03/28/12 | 03/05/13 | 12/11/12 | 06/04/13  | 03/27/12 | 03/06/13 | 09/11/12 | 12/12/12 | 06/05/13  | 03/27/12 | 03/27/12 | 03/05/13 | 09/12/12 | 12/12/12 | 06/04/13  | 03/28/12 | 03/06/13 | 09/12/12 | 12/12/12 | 06/04/13  | 03/27/12 | 03/06/13 | 09/12/12 | 12/13/12 | 06/05/13 |
| Analyte                 | Units   |          |          |          |          | •         |          |          |          |          |           |          |          |          |          |          |           |          |          |          | -        |           |          |          |          |          |          |
| Chloride                | mg/L    | 19       | 21       | 19       | 18       | 19        | 26       | 24       | 24       | 23       | 23        | 19       | 19       | 19       | 18       | 18       | 19        | 16       | 16       | 15       | 15       | 16        | 11       | 6.9      | 7.7      | 10       | 9.1 1,0  |
| Nitrate/Nitrite as N    | mg/L    | 0.050 U  | 0.050 U  | 0.050 U  | 0.050 U  | < 0.050 U | 0.050 U  | 0.050 U  | 0.050 U  | 0.050 U  | < 0.050 U | 0.050 U  | 0.050 U  | 0.050 U  | 0.050 U  | 0.050 U  | < 0.050 U | 0.050 1) | 0.050 IJ | 0.050 U  | 0.050 U  | < 0.050 U | 1.7      | 1.2      | 1.6      | 0.64     | 1.0 0    |
| Sulfate as SO4          | mg/L    | 44       | 48       | 46       | 45       | 47        | 43       | 41       | 40       | 39       | 42        | 38       | -38      | 37       | 35       | 35       | 40        | 34       | 28       | 29       | 27       | 29        | 43       | 32       | 30       | 34       | 341,0    |
| Total Organic<br>Carbon | mg/L    | 4.1      | 6.2      | 3.4      | 4.4      | 3.2       | 4.5      | 3.3      | 3.6      | 3.8      | 3         | 5.2      | 5.8      | 3        | 3.9      | 4.1      | 3.6       | 4.6      | 2.6      | 3.4      | 4.5      | 3.1       | 7.2      | 4.9      | 6.2      | 5.5      | 4.0 0    |

|                         |         |          |          |          |          |          |           | STOCKED BOUNDARY | International Address | Rent Rent Rent Rent Rent Rent Rent Rent | ALLOW DO NOT THE OWNER. | And the second s | and the second second | -        |          | -        | -        | -        |           | Contractor of the local division of the loca | Contraction of the local division of the | Conversion and the second |          | Contraction of the local division of the loc |           |
|-------------------------|---------|----------|----------|----------|----------|----------|-----------|------------------|-----------------------|-----------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|----------|----------|----------|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Sta                     | tion ID | MW11A    | MW11A    | MW11A    | MW11A    | MW11A    | MW11A     | MW12A            | MW12A                 | MW12A                                   | MW12A                   | MW12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW12A                 | MW15B    | MW158    | MW15B    | MW15B    | MW15B    | MW15B     | MW168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW16B                                    | MW168                     | MW168    | MW168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MW16B     |
| San                     | ple ID  | 11A0312  | 11A0313  | 11A0912  | 11A1212  | 11A0613  | 11AD0613  | 12A0312          | 12A0313               | 12A0912                                 | 12A0912D                | 12A1212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12A0613               | 1580312  | 1580313  | 1580912  | 1581212  | 158D1212 | 1580613   | 1680312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16B1212                                  | 1680313                   | 168D0313 | 1680912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1680613   |
| Sampl                   | e Date  | 03/27/12 | 03/05/13 | 09/12/12 | 12/13/12 | 06/05/13 | 06/05/13  | 03/27/12         | 03/06/13              | 09/13/12                                | 09/13/12                | 12/11/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 06/05/13              | 03/28/12 | 03/06/13 | 09/12/12 | 12/13/12 | 12/13/12 | 06/05/13  | 03/27/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12/11/12                                 | 03/05/13                  | 03/05/13 | 09/13/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 06/05/13  |
| Analyte                 | Units   |          |          |          |          |          |           |                  |                       |                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |          |          |          |          |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Chloride                | mg/L    | 17       | 16       | 15       | 17       | 15       | 15        | 16               | 14                    | 15                                      | 15                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                    | 7.5      | 7.4      | 7.2      | 7.2      | 7.2      | 7.2       | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                                       | 21                        | 21       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21        |
| Nitrate/Nitrite as N    | mg/L    | 0.050 U  | 0.069    | 0.058    | 0.051    | 0.068    | < 0.050 U | 3.1              | 3.7                   | 3.3                                     | 3.4                     | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.9                   | 0.050 U  | < 0.050 U | 0.050 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.050 U                                  | 0.050 U                   | 0.050 U  | 0.050 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.050 U |
| Sulfate as SO4          | mg/L    | 57       | 59       | 56       | 53       | 67       | 66        | 46               | 48                    | 46                                      | 46                      | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55                    | 110      | 99       | 97       | 95       | 95       | 100       | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                                       | 29                        | 29       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30        |
| Total Organic<br>Carbon | mg/L    | 10       | 5.2      | 7.2      | 6.8      | 6.2      | 6         | 7.7              | 5.2                   | 7.3                                     | 6.7                     | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.6                   | 7        | 3.7      | 4.8      | 4.7      | 5        | 4.2       | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                        | 3.6                       | 4        | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7       |

Data Qualifiers

U The analyte was not detected at or above the reporting limit.

0 Other qualifiers have been assigned providing additional information. These explanatory qualifiers are included in the printable pdf report and in other columns in the export files.

# This Page Intentionally Blank

SESD Project# 13-0365 FCX Washington

Page 24 of 28"

# Table 8 FCX Soil Pesticide Results June 2013

|                      |           | Station ID                                                             | FCX03          | FCX04          | FCX05          |
|----------------------|-----------|------------------------------------------------------------------------|----------------|----------------|----------------|
|                      |           | Sample ID                                                              | FCX030613      | FCX040613      | FCX050613      |
| San Street 1         |           | Sample Date                                                            | 6/5/2013 17:22 | 6/5/2013 16:30 | 6/5/2013 15:52 |
| Analyte              | Units     | Comparison Standard                                                    |                |                |                |
| 4,4'-DDD (p,p'-DDD)  | ug/kg dry | <rsl (november="" 2="" 2012):="" kg="" mg="" res="" soil=""></rsl>     | 5.1            | 18             | 340            |
| 4,4'-DDE (p,p'-DDE)  | ug/kg dry | <rsl (november="" 1.4="" 2012):="" kg="" mg="" res="" soil=""></rsl>   | 4.6            | 55             | 850            |
| 4,4'-DDT (p,p'-DDT)  | ug/kg dry | <rsl (november="" 1.7="" 2012):="" kg="" mg="" res="" soil=""></rsl>   | 28             | 19             | 17000          |
| Aldrin               | ug/kg dry | <rsl (november="" 0.029="" 2012):="" kg="" mg="" res="" soil=""></rsl> | 0.93 U         | 4.5 U          | 87 U ^         |
| Dieldrin             | ug/kg dry | <rsl (november="" 0.03="" 2012):="" kg="" mg="" res="" soil=""></rsl>  | 0.93 U         | 12             | 87 U 🔨         |
| Endosulfan I (alpha) | ug/kg dry |                                                                        | 0.93 U         | 4.5 U          | 87 U           |
| Endosulfan II (beta) | ug/kg dry |                                                                        | 1.9 U          | 8.9 U          | 170 U          |
| Endosulfan Sulfate   | ug/kg dry |                                                                        | 2.3 U          | 11 U           | 220 U          |
| Endrin               | ug/kg dry | <rsl (november="" 18="" 2012):="" kg="" mg="" res="" soil=""></rsl>    | 1.9 U          | 11             | 170 U          |
| Endrin aldehyde      | ug/kg dry |                                                                        | 2.3 U          | 11 U           | 220 U          |
| Endrin ketone        | ug/kg dry |                                                                        | 2.3 U          | 11 U           | 220 U          |
| Heptachlor           | ug/kg dry | <rsl (november="" 0.11="" 2012):="" kg="" mg="" res="" soil=""></rsl>  | 0.70 U         | 3.3 U          | 65 U           |
| Heptachlor epoxide   | ug/kg dry | <rsl (november="" 0.053="" 2012):="" kg="" mg="" res="" soil=""></rsl> | 0.93 U         | 4.5 U          | 87 U ^         |
| Methoxychlor         | ug/kg dry | <rsl (november="" 2012):="" 310="" kg="" mg="" res="" soil=""></rsl>   | 4.6 U          | 22 U           | 430 U          |
| Toxaphene            | ug/kg dry | <rsl (november="" 0.44="" 2012):="" kg="" mg="" res="" soil=""></rsl>  | 93 U           | 450 U ^        | 8700 U 🔨       |
| alpha-BHC            | ug/kg dry | <rsl (november="" 0.077="" 2012):="" kg="" mg="" res="" soil=""></rsl> | 0.46 U         | 2.2 U          | 43 U           |
| alpha-Chlordane      | ug/kg dry |                                                                        | 1.4 U,O        | 6.8 J,O        | 87 U           |
| beta-BHC             | ug/kg dry | <rsl (november="" 0.27="" 2012):="" kg="" mg="" res="" soil=""></rsl>  | 0.93 U         | 4.5 U          | 87 U           |
| delta-BHC            | ug/kg dry |                                                                        | 0.93 U         | 5.8 U,O        | 87 U           |
| gamma-BHC (Lindane)  | ug/kg dry | <rsl (november="" 0.52="" 2012):="" kg="" mg="" res="" soil=""></rsl>  | 0.71 U,O       | 2.2 U          | 43 U           |
| gamma-Chlordane      | ug/kg dry |                                                                        | 1.9            | 5.3 J,0        | 130 J,O        |

#### ANALYTICAL DATA QUALIFIERS

| U | The analyte was not detected at or above the reporting limit.                                                                                                                            |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J | The identification of the analyte is acceptable; the reported value is an estimate.                                                                                                      |
| O | Other qualifiers have been assigned providing additional information. These explanatory qualifiers are included in the<br>printable pdf report and in other columns in the export files. |

#### Legend

| Detection, Result Shown                     | 5.0     |
|---------------------------------------------|---------|
| Non-detect, MRL shown                       | 5.0 U   |
| Result exceeds standard, Result shown       | 5.0 ^   |
| Non-detect, MRL exceeds standard, MRL shown | 5.0 U A |

# Table 9FCX Soil SVOC ResultsJune 2013

| ······                       |                     | Station ID                                                                     | FCX03          | FCX04          | FCX05          |
|------------------------------|---------------------|--------------------------------------------------------------------------------|----------------|----------------|----------------|
|                              |                     | Sample ID                                                                      | FCX030613      | FCX040613      | FCX050613      |
|                              |                     | Sample Date                                                                    | 6/5/2013 17:22 | 6/5/2013 16:30 | 6/5/2013 15:52 |
| Ánalyte                      | Units               | Comparison Standard                                                            |                |                |                |
| (3-and/or 4-)Methylphenol    | ,u <u>g</u> ∕kg đrγ | <rsl (november="" 2012):="" 6100="" kg="" mg="" res="" soil=""></rsl>          | 380 U          | 370 U          | 360 U          |
| 1,1-Biphenyl                 | ug/kg dry           | <rsl (november="" 2012):="" 51="" kg="" mg="" res="" soil=""></rsl>            | .38 U          | 37 U           | 36 U           |
| 1-Methylnaphthalene          | ug/kg dry           | <rsl (november="" 16="" 2012):="" kg="" mg="" res="" soil=""></rsl>            | 38 U           | 37 U           | 36 U           |
| 2,3,4,6-Tetrachiorophenol    | ug/kg dry           | <rsl (november="" 1800="" 2012):="" kg="" mg="" res="" soil=""></rsl>          | 380 U          | 370 U          | 360 U          |
| 2,4,5-Trichlorophenol        | ug/kg dry           | <rsl (november="" 2012):="" 6100="" kg="" mg="" re5="" soil=""></rsl>          | 380 U          | 370 U          | 360 U          |
| 2,4,6-Trichlorophenol        | ug/kg dry           | <pre><rsl (november="" 2012):="" 44="" kg="" mg="" res="" soil=""></rsl></pre> | 380 U          | 370 U          | 360 U          |
| 2,4-Dichlorophenol           | ug/kg dry           | <rsl (november="" 180="" 2012):="" kg="" mg="" res="" soil=""></rsl>           | 380 U          | 370 U          | 360 U          |
| 2,4-Dimethylphenol           | ug/lug dry          | <rsl (november="" 1200="" 2012):="" kg="" mg="" res="" soil=""></rsl>          | 380 U          | 370 U          | 360 U          |
| 2,4-Dinitrophenol            | ug/kg dry           | <rsl (november="" 120="" 2012):="" kg="" mg="" res="" soil=""></rsl>           | 380 U          | 370 U          | 360 U ·        |
| 2,4-Dinitrotoluene           | ug/kg dry           | <rsl (november="" 1.6="" 2012):="" kg="" mg="" res="" soil=""></rsl>           | 380 U          | 370 U          | 360 U          |
| 2,6-Dinitrotoluene           | ug/kg dry           | <rsl (november="" 2012):="" 61="" kg="" mg="" res="" soil=""></rsl>            | 380 U          | 370 U          | 360 U          |
| 2-Chloronaphthalene          | ug/kg dry           | <rsl (november="" 2012):="" 6300="" kg="" mg="" res="" soil=""></rsl>          | 380 U          | 370 U          | 360 U          |
| 2-Chlorophenol               | ug/kg dry           | <rsl (november="" 2012):="" 390="" kg="" mg="" res="" soil=""></rsl>           | 380 U          | 370 U          | 36Ò,Ù          |
| 2-Methyl-4,6-dinitrophenol   | ug/kg dry           | <rsl (november="" 2012):="" 4.9="" kg="" mg="" res="" soil=""></rsl>           | 380 U          | 370 U          | 360 U          |
| 2-Methyinaphthalene          | ug/kg dry           | <rsl (november="" 2012):="" 230="" kg="" mg="" res="" söil=""></rsl>           | 38 U           | 37 U           | 36 U           |
| 2-Methylphenol               | ug/kg dry           | <rsl (november="" 2012):="" 3100="" kg="" mg="" res="" soil=""></rsl>          | 380 U          | 370 U          | 360 U          |
| 2-Nitroaniline               | ug/kg dry           | <rsl (november="" 2012):="" 610="" kg="" mg="" res="" soil=""></rsl>           | 380 U          | 370 U          | 360 U          |
| 2-Nitrophenol                | ug/kg dry           | · · · · · · · · · · · · · · · · · · ·                                          | 380 U          | 370 U          | 360 U          |
| 3,3'-Dichlorobenzidine       | ug/kg dry           | <rsl (november="" 1.1="" 2012):="" kg="" mg="" res="" soil=""></rsl>           | 380 U,R,O      | 370 U          | 360 U          |
| 3-Nitroaniline               | ug/kg dry           | ······································                                         | 380 U          | 370 U          | 360 U          |
| 4-Bromophenyl phenyl ether   | ug/kg dry           |                                                                                | 380 U          | 370 U          | 360 U          |
| 4-Chloro-3-methylphenol      | ug/kg dry           | <rsl (november="" 2012):="" 6100="" kg="" mg="" res="" soil=""></rsl>          | 380 U          | 370 U          | 360 U          |
| 4-Chloroaniline              | ug/kg dry           | <rsl (november="" 2.4="" 2012):="" kg="" mg="" res="" soil=""></rsl>           | 380 U,R,O      | 370 U          | 360 Ų          |
| 4-Chlorophenyl phenyl ether  | ug/kg dry           |                                                                                | 380 U          | 370 U          | 360 U          |
| 4-Nitroaniline               | ug/kgˈdrÿ           | <rsl (november="" 2012):="" 24="" kg="" mg="" res="" soil=""></rsl>            | 380 U          | 370 U          | 360 U          |
| 4-Nitrophenol                | ug/kg dry           | · · · · ·                                                                      | 380 U          | .370 U         | 360 U          |
| Acenaphthene                 | ug/kg đry           | <rsl (november="" 2012):="" 3400="" kg="" mg="" res="" soil=""></rsl>          | 38 U           | 37 U           | 36 U           |
| Acenaphthylene               | ug/kg dry           |                                                                                | 38 U           | 37 U           | 36 U           |
| Acetophenone .               | ug/kg dry           | <rsl (november="" 2012):="" 7800="" kg="" mg="" res="" soil=""></rsl>          | 380.U          | 370 U          | 360 U          |
| Anthracene                   | ug/kg dry           | <rsl (november="" 17000="" 2012):="" kg="" mg="" res="" soil=""></rsl>         | 38 U           | 37 U           | 36 U           |
| Atraziñe                     | ug/kg đry           | <rsl (november="" 2.1="" 2012):="" kg="" mg="" res="" soil=""></rsl>           | 380 U          | 370 U          | 360 U          |
| Benzaldehyde                 | ug/kg dry           | <rsl (november="" 2012):="" 7800="" kg="" mg="" res="" soil=""></rsl>          | 380 U,J,O      | 370 U          | 360 U          |
| Benzo(a)anthracene           | ug/kg dry           | <rsl (november="" 0.15="" 2012):="" kg="" mg="" res="" soil=""></rsl>          | 38 U           | 37 U           | 36 Ú           |
| Benzo(a)pyrene               | ug/kg dry           | <rsl (november="" 0.015="" 2012):="" kg="" mg="" res="" soil=""></rsl>         | 38 U A         | 37 U A         | 36 U 🔨         |
| Benzo(b)fluoranthene         | ug/kg dry           | <rsl (november="" 0.15="" 2012):="" kg="" mg="" res="" soil=""></rsl>          | 38 Ú           | 37 U           | 36 U           |
| Benzo(g,h,i)perviene         | ug/kg dry           |                                                                                | 38 U           | 37 U           | 36 U           |
| Benzo(k)fluoranthene         | ug/kg dry           | <rsl (november="" 1.5="" 2012):="" kg="" mg="" res="" soil=""></rsl>           | 3,8 U          | 37 U           | 36 U           |
| Benzyi butyi phthalate       | ug/kg dry           | <rsl (november="" 2012):="" 260="" kg="" mg="" res="" soil=""></rsl>           | 380 U          | 370 U          | 360 U          |
| Bis(2-chloroethoxy)methane   | ug/kg dry           | <rsl (november="" 180="" 2012):="" kg="" mg="" res="" soil=""></rsl>           | 380 V          | 370 U          | 360 U          |
| Bis(2-chloroisopropyl) ether | ug/kg dry           |                                                                                | .380 U         | 370 U          | 360 U          |

SESD Project ID# 13-0365 FCX Washington Page 26 of 287

# Table 9FCX Soil SVOC ResultsJune 2013

|                                        |            | Station ID                                                                       | FCX03          | FCX04          | FCX05          |
|----------------------------------------|------------|----------------------------------------------------------------------------------|----------------|----------------|----------------|
|                                        |            | Sample ID                                                                        | FCX030613      | FCX040613      | FCX050613      |
|                                        |            | Sample Date                                                                      | 6/5/2013 17:22 | 6/5/2013 16:30 | 6/5/2013 15:52 |
| Analyte                                | Units      | Comparison Standard                                                              |                |                |                |
| Bis(2-ethylhexyl) phthalate            | ug/kg dry  | <rsl (november="" 2012):="" 35="" kg="" mg="" res="" soil=""></rsl>              | 380 U          | 370 U          | 360 U          |
| Caprolactam                            | ug/kg dry  | <rsl (november="" 2012):="" 31000="" kg="" mg="" res="" soil=""></rsl>           | 380 U          | 370 U          | 360 U          |
| Carbazole                              | ug/kg dry  |                                                                                  | 38 U           | 37 U           | 36 U           |
| Chrysene                               | ug/kg dry  | <rsl (november="" 15="" 2012):="" kg="" mg="" res="" soil=""></rsl>              | 38 U           | 37 U           | 36 U           |
| Di-n-butylphthalate                    | ug/kg dry  | <rsl (november="" 2012):="" 6100="" kg="" mg="" res="" soil=""></rsl>            | 380 U          | 370 U          | 360 U          |
| Di-n-octylphthalate                    | ug/kg dry  | <rsl (november="" 2012):="" 730="" kg="" mg="" res="" soil=""></rsl>             | 380 U          | 370 U          | 360 U          |
| Dibenz(a,h)anthracene                  | ug/kg dry  | <rsl (november="" 0.015="" 2012):="" kg="" mg="" res="" soil=""></rsl>           | 38 U ^         | 37 U ^         | 36 U A         |
| Dibenzofuran                           | ug/kg dry  | <rsl (november="" 2012):="" 78="" kg="" mg="" res="" soil=""></rsl>              | 38 U           | 37 U           | 36 U           |
| Diethyl phthalate                      | ug/kg dry  | <rsl (november="" 2012):="" 49000="" kg="" mg="" res="" soil=""></rsl>           | 380 U          | 370 U          | 360 U          |
| Dimethyl phthalate                     | ug/kg dry  |                                                                                  | 380 U          | 370 U          | 360 U          |
| Fluoranthene                           | ug/kg đry  | <rsi, (november="" 2012):="" 2300="" kg="" mg="" res="" soil=""></rsi,>          | 38 U           | 37 U           | 346 U          |
| Fluorene                               | ug/kg dry  | <rsl (november="" 2012):="" 2300="" kg="" mg="" res="" soil=""></rsl>            | 38 U           | 37 U           | 36 U           |
| Hexachlorobenzene (HCB)                | ug/kg dry  | <rsl (november="" 0.3="" 2012):="" kg="" mg="" res="" soil=""></rsl>             | 38 U           | 37 U           | 36 U           |
| Hexachlorocyclopentadiene (HCCP)       | ug/kg dry  | <rsl (november="" 2012):="" 370="" kg="" mg="" res="" soil=""></rsl>             | 380 U          | 370 U          | 360 U          |
| Hexachloroethane                       | ug/kg dry  | <rsl (november="" 12="" 2012):="" kg="" mg="" res="" soil=""></rsl>              | 380 U          | 370 U          | 360 U          |
| Indeno (1,2,3-od) pyrene               | ug/kg dry  | <rsl (november="" 0.15="" 2012):="" kg="" mg="" res="" soil=""></rsl>            | 38 U           | 37 U           | 36 U           |
| Isophorone                             | ug/kg dry  | <rsl (november="" 2012):="" 510="" kg="" mg="" res="" soil=""></rsl>             | 380 U          | 370 U          | 360 U          |
| Naphthalene                            | ug/kg dry  | <rsl (november="" 2012):="" 3.6="" kg="" mg="" res="" soil=""></rsl>             | 38 U           | 37 U           | 36 U           |
| Nitrobenzene                           | ug/kg dry  | <rsl (november="" 2012):="" 4.8="" kg="" mg="" res="" soil=""></rsl>             | .380 U         | 370.U          | 360 U          |
| Pentachlorophenol                      | ug/kg dry  | <pre><rsl (november="" 0.89="" 2012):="" kg="" mg="" res="" soil=""></rsl></pre> | 380 U          | 370 U          | 360 U          |
| Phenanthrene                           | ug/kg dry  |                                                                                  | .38 U          | 37 Ü           | .36 U          |
| Phenol                                 | ug/kg dry  | <rsl (november="" 18000="" 2012):="" kg="" mg="" res="" soil=""></rsl>           | 380 U          | '370 U         | 360 U          |
| Pyrene                                 | ug/kg.dry  | RSL RES SOIL (November 2012): 1700 mg/kg >                                       | 38 U           | 37 U           | 36 U           |
| bis(2-Chloroethyl) Ether               | ug/kg dry_ | <pre><rsl (november="" 0.21="" 2012):="" kg="" mg="" res="" soil=""></rsl></pre> | . 380 U ^      | 370 U ^        | 360 U ^        |
| n-Nitroso di-n-Propylamine             | ug/log dry | <rsl (november="" 0.069="" 2012):="" kg="" mg="" res="" soil=""></rsl>           | 380 U ^        | 370 U ^        | 360 U 🔨        |
| Nitrosodiphenylamine/Diphenylamin<br>e | ug/kg dry  | <rsl (november="" 1500="" 2012):="" kg="" mg="" res="" soil=""></rsl>            | 380-U          | 370 U          | 360 U          |

#### ANALYTICAL DATA QUALIFIERS

| U | The analyte was not detected at or above the reporting limit.                                                          |
|---|------------------------------------------------------------------------------------------------------------------------|
| i | The Identification of the analyte is acceptable; the reported value is an estimate.                                    |
|   | Other qualifiers have been assigned providing additional information. These explanatory qualifiers are included in the |
| 0 | printable pdf report and in other columns in the export files.                                                         |
|   | The presence or absence of the analyte can not be determined from the data due to severe quality control problems. The |
| R | data are rejected and considered unusable.                                                                             |

| Legend                                      |           |  |  |  |  |  |  |  |  |  |
|---------------------------------------------|-----------|--|--|--|--|--|--|--|--|--|
| Non-detect, MRL shown                       | 5.0 U     |  |  |  |  |  |  |  |  |  |
| Non-detect, MRL exceeds standard, MRL shown | 5.0 U ^   |  |  |  |  |  |  |  |  |  |
| Rejected, unusable data                     | 380 U,R,O |  |  |  |  |  |  |  |  |  |

,

SESD Project ID# 13-0365 FCX Washington

,

#### Page 27 of 287

.

# Table 10 FCX Soil Metals Results June 2013

|            |           | Station ID                                                             | FCX03          | FCX04          | FCX05          |
|------------|-----------|------------------------------------------------------------------------|----------------|----------------|----------------|
| Sec. State |           | Sample ID                                                              | FCX030613      | FCX040613      | FCX050613      |
|            |           | Sample Date                                                            | 6/5/2013 17:22 | 6/5/2013 16:30 | 6/5/2013 15:52 |
| Analyte    | Units     | Comparison Standard                                                    | and Shadan     |                |                |
| Aluminum   | mg/kg dry | <rsl (november="" 2012):="" 77000="" kg="" mg="" res="" soil=""></rsl> | 3400 J,O       | 4800           | 2900           |
| Antimony   | mg/kg dry | <rsl (november="" 2012):="" 31="" kg="" mg="" res="" soil=""></rsl>    | 0.20 U,J,O     | 0.20 U         | 0.20 U         |
| Arsenic    | mg/kg dry | <rsl (november="" 0.39="" 2012):="" kg="" mg="" res="" soil=""></rsl>  | 1.2 ^          | 0.46 J,O ^     | 0.88 J,O ^     |
| Barium     | mg/kg dry | <rsl (november="" 15000="" 2012):="" kg="" mg="" res="" soil=""></rsl> | 22             | 13             | 9.3            |
| Beryllium  | mg/kg dry | <rsl (november="" 160="" 2012):="" kg="" mg="" res="" soil=""></rsl>   | 0.30 U         | 0.30 U         | 0.30 U         |
| Cadmium    | mg/kg dry | <rsl (november="" 2012):="" 70="" kg="" mg="" res="" soil=""></rsl>    | 0.12           | 0.41           | 0.10 U         |
| Calcium    | mg/kg dry |                                                                        | 2300 J,O       | 31000          | 39000          |
| Chromium   | mg/kg dry |                                                                        | 4.3            | 7.8            | 4.2            |
| Cobalt     | mg/kg dry | <rsl (november="" 2012):="" 23="" kg="" mg="" res="" soil=""></rsl>    | 0.6            | 0.50 U         | 0.50 U         |
| Copper     | mg/kg dry | <rsl (november="" 2012):="" 3100="" kg="" mg="" res="" soil=""></rsl>  | 3.7            | 2.2            | 12             |
| Iron       | mg/kg dry | <rsl (november="" 2012):="" 55000="" kg="" mg="" res="" soil=""></rsl> | 2500 J,O       | 7400           | 3300           |
| Lead       | mg/kg dry | <rsl (november="" 2012):="" 400="" kg="" mg="" res="" soil=""></rsl>   | 14             | 4.9            | 3.3            |
| Magnesium  | mg/kg dry |                                                                        | 300            | 660            | 410            |
| Manganese  | mg/kg dry | <rsl (november="" 1800="" 2012):="" kg="" mg="" res="" soil=""></rsl>  | 44             | 17             | 18             |
| Molybdenum | mg/kg dry | <rsl (november="" 2012):="" 390="" kg="" mg="" res="" soil=""></rsl>   | 0.99 U         | 1.0 U          | 1.0 U          |
| Nickel     | mg/kg dry | <rsl (november="" 1500="" 2012):="" kg="" mg="" res="" soil=""></rsl>  | 1.5            | 1.0 U          | 1.2            |
| Potassium  | mg/kg dry |                                                                        | 170            | 280            | 180            |
| Selenium   | mg/kg dry | <rsl (november="" 2012):="" 390="" kg="" mg="" res="" soil=""></rsl>   | 0.58           | 0.40 U         | 0.46           |
| Silver     | mg/kg dry | <rsl (november="" 2012):="" 390="" kg="" mg="" res="" soil=""></rsl>   | 0.50 U         | 0.50 U         | 0.50 U         |
| Sodium     | mg/kg dry |                                                                        | 99 U           | 100 U          | 100 U          |
| Strontium  | mg/kg dry | <rsl (november="" 2012):="" 47000="" kg="" mg="" res="" soil=""></rsl> | 11             | 110            | 210 J,O        |
| Thallium   | mg/kg dry | <rsl (november="" 0.78="" 2012):="" kg="" mg="" res="" soil=""></rsl>  | 0.20 U         | 0.20 U         | 0.20 U         |
| Tin        | mg/kg dry | <rsl (november="" 2012):="" 47000="" kg="" mg="" res="" soil=""></rsl> | 1.5 U          | 1.5 U          | 1.5 U          |
| Titanium   | mg/kg dry |                                                                        | 37             | 78             | 26             |
| Vanadium   | mg/kg dry | <rsl (november="" 2012):="" 390="" kg="" mg="" res="" soil=""></rsl>   | 7.5            | 18             | 5.8            |
| Yttrium    | mg/kg dry |                                                                        | 2.1            | 1.2            | 1.6            |
| Zinc       | mg/kg dry | <rsl (november="" 2012):="" 23000="" kg="" mg="" res="" soil=""></rsl> | -26            | 8.9            | 8.3            |

#### Analytical Data Qualifiers

| U | The analyte was not detected at or above the reporting limit.                                                          |
|---|------------------------------------------------------------------------------------------------------------------------|
| J | The identification of the analyte is acceptable; the reported value is an estimate.                                    |
|   | Other qualifiers have been assigned providing additional information. These explanatory qualifiers are included in the |
| 0 | printable pdf report and in other columns in the export files.                                                         |

# Legend Detection, Result Shown S.0 Non-detect, MRL shown S.0 U Result exceeds standard, Result shown S.0 ^

# Table 11 FCX Soil Dioxin Results June 2013

|                                                   | Server Mars | Station ID                                                                                   | FCX04          | FCX05          |
|---------------------------------------------------|-------------|----------------------------------------------------------------------------------------------|----------------|----------------|
|                                                   |             | Sample ID                                                                                    | FCX040613      | FCX050613      |
|                                                   |             | Sample Date                                                                                  | 6/5/2013 16:30 | 6/5/2013 15:52 |
| Analyte                                           | Units       | Comparison Standard                                                                          |                | States and     |
| % Moisture                                        | %           |                                                                                              | 6.6            | 5.4            |
| 1,2,3,4,6,7,8-Heptachlorodibenzodioxin            | ng/kg dry   | のないないのでのです。                                                                                  | 120            | 310            |
| 1,2,3,4,6,7,8-Heptachlorodibenzofuran             | ng/kg dry   |                                                                                              | 5.2            | 10             |
| 1,2,3,4,7,8,9-Heptachlorodibenzofuran             | ng/kg dry   |                                                                                              | 0.60 J,O       | 1.1 U,0        |
| 1,2,3,4,7,8-Hexachlorodibenzodioxin               | ng/kg dry   | Level a School Planation                                                                     | 1.3            | 6.5            |
| 1,2,3,4,7,8-Hexachlorodibenzofuran                | ng/kg dry   |                                                                                              | 0.44 J,O       | 2.3            |
| 1,2,3,6,7,8-Hexachlorodibenzodioxin               | ng/kg dry   | State of the second second                                                                   | 2.2            | 9.1            |
| 1,2,3,6,7,8-Hexachlorodibenzofuran                | ng/kg dry   |                                                                                              | 0.41 J,O       | 1.2            |
| 1,2,3,7,8,9-Hexachlorodibenzodioxin               | ng/kg dry   | NO. SOM COMESCIE                                                                             | 2.6            | 8.1            |
| 1,2,3,7,8,9-Hexachlorodibenzofuran                | ng/kg dry   | The second second second                                                                     | 0.25 J,O       | 0.64 J,O       |
| 1,2,3,7,8-Pentachlorodibenzodioxin                | ng/kg dry   | Compart Hearts of the                                                                        | 0.76 J,O       | 3.2            |
| 1,2,3,7,8-Pentachlorodibenzofuran                 | ng/kg dry   |                                                                                              | 0.30 ),0       | 0.97 U,O       |
| 2,3,4,6,7,8-Hexachlorodibenzofuran                | ng/kg dry   | States and states                                                                            | 0.46 U,O       | 1.4            |
| 2,3,4,7,8-Pentachlorodibenzofuran                 | ng/kg dry   |                                                                                              | 0.28 U,O       | 1.4            |
| 2,3,7,8-Tetrachlorodibenzodioxin                  | ng/kg dry   | <pre><rsl (may="" 2013):<br="" res="" soil="">0.0000045 mg/kg or (4.5 ng/kg)&gt;</rsl></pre> | 0.26 U,O       | 0.63 U,O       |
| 2,3,7,8-Tetrachlorodibenzofuran                   | ng/kg dry   | R. C.                                                    | 0.14 J,O       | 1.1            |
| Heptachlorodibenzodioxin (Total)                  | ng/kg dry   |                                                                                              | 270 J,O        | 740 J,O        |
| Heptachlorodibenzofuran (Total)                   | ng/kg dry   |                                                                                              | 13 J,O         | 27 J,O         |
| Hexachlorodibenzodioxin (Total)                   | ng/kg dry   |                                                                                              | 29 J,O         | 130 J,O        |
| Hexachlorodibenzofuran (Total)                    | ng/kg dry   |                                                                                              | 6.0 1,0        | 21 1,0         |
| Octachlorodibenzodioxin                           | ng/kg dry   |                                                                                              | 8700 J,O       | 3600           |
| Octachlorodibenzofuran                            | ng/kg dry   |                                                                                              | 7,3            | 13             |
| Pentachlorodibenzodioxin (Total)                  | ng/kg dry   |                                                                                              | 4.8 J,O        | 36 J,O         |
| Pentachlorodibenzofuran (Total)                   | ng/kg dry   |                                                                                              | 3.2 J,O        | 31 J,O         |
| TEQ (Avian Toxic. Equiv. Value, WHO TEQ-98)       | ng/kg dry   |                                                                                              | 3.0 J,O        | 8.9            |
| TEQ (Fish Toxic. Equiv. Value, WHO TEQ-98)        | ng/kg dry   | and the second second second                                                                 | 3.1J,O         | 9.4            |
| TEQ (Mammalian Toxic. Equiv. Value, WHO TEQ-2005) | ng/kg dry   |                                                                                              | 5.7 J,O        | 12             |
| Tetrachlorodibenzodioxin (Total)                  | ng/kg dry   |                                                                                              | 1.5 J,0        | 15 J,O         |
| Tetrachlorodibenzofuran (Total)                   | ng/kg dry   |                                                                                              | 1.5 J,O        | 38 J,O         |

#### ANALYTICAL DATA QUALIFIERS

U The analyte was not detected at or above the reporting limit.

J The identification of the analyte is acceptable; the reported value is an estimate.

O Other qualifiers have been assigned providing additional information. These explanatory qualifiers are included in the printable pdf report and in other columns in the export files.

| Legend                  |       |
|-------------------------|-------|
| Detection, Result Shown | 5.0   |
| Non-detect, MRL shown   | 5.0 U |



Page 30 of 287







Second Five-Year Review FCX, Inc. – Washington Plant Washington, Beaufort County, NC

Not included from the Sampling Investigation Report: Appendix A - Field Logbooks Appendix B - Analytical Data Sheets

Second Five-Year Review FCX, Inc. – Washington Plant Washington, Beaufort County, NC

# Appendix E Interviews

# **Interview Record**

Site Name: FCX

# **EPA ID No: NCD981475932**

Interviewer's Name: Kerisa Coleman, EPA Region 4 CIC

Interviewee's Name/Title: Arthur Smitwick, Park Boat Company (Current Site Owner)

Contact Information: (252) 946-3248

Date: January 21, 2015

Type of Interview (Circle one): In person

Phone E-Mail

**E-1** .

### FCX

#### Five-Year Review Questionnaire

### **Community Involvement**

#### **Interview Category: Site Owner**

1.) What is your overall impression of the project?

My overall impression is that everything is moving in the right direction.

2.) How well do you believe the remedy currently in place is performing?

Based on the information that has been shared with me, I feel that all actions that have been taken place here at the site have performed well.

3.) Are you aware of any complaints or inquiries regarding environmental issues or the remedial action from residents in the last five years?

There are no residents in close proximity to the Site, but I have not received nor am I ware of any complaints or inquiries regarding the Site.

4.) Are you aware of any community concerns regarding the Site or its operation and administration? If so, please give details.

No.

5.) Are you aware of any changes in projected land use at the Site?

The Department of Transportation took part of the Site to make a bypass of the highway; but they have since completed that project. I purchased the remainder. My plan was to purchase it for the warehouse that's on Site for boat storage. We are a retail boat dealership. I needed a place to store boats and it is currently being used for that. At some point in the near future I may sub-lease a portion of it for some others for different businesses but cannot foresee what that may be at the present time. However, if we do, we would be in contact with you guys to make sure that we are all on the same page.

6.) Is there a continuous on-site O & M presence? If so, please describe staff and activities. If there is not a continuous on-site presence, describe staff and frequency of site inspections and activities.

Up until last year, there were some individuals coming out every three to six months, but I have not seen them as regularly since that time. 7.) Do you have any other comments, suggestions or recommendations regarding the Site's management or operation?

My only question is and there seems to be discussions amongst different entities; but, it seems like it is kind of hard to close it out and be done. I am not sure if it is the nature of this Site or if it is the way that it is done with all Sites. It may be a lot of stuff going on that I do not understand. I am not really clear about where it is going. When I purchased the property, I was aware and remain aware of the challenges that it had. From a general taxpayer's perspective, it is a lot of time and money being invested in conducting the SYR.

8.) Do you feel well informed about the Site's activities and progress? If not, what other methods of conveying information should EPA use?

E-3

Yes, EPA has been very responsive and provides appropriate education. I receive updates from EPA, since it is the lead agency. EPA has always been good about informing us of activities. EPA generally keep us informed about what they are doing, and if we are not doing anything that you are not happy with, please let us know because we want to be a good neighbor.

# Interview Record

E-4

Site Name: FCX

EPA ID No: NCD981475932

Interviewer's Name: Kerisa Coleman, EPA Region 4 CIC

Interviewee's Name/Title: William Joyner, EPA Remedial Project Manager

Contact Information: jovner.william@epa.gov (404) 562-8795

Date: January 20, 2015

Type of Interview (Circle one): In person

Рһопе

E-Mail

## FCX

# **Five-Year Review Questionnaire**

## **Community Involvement**

#### Interview Category: U.S. EPA (Region 4)

1.) What is your overall impression of the project?

The OU1 and OU2 remedies are protective in the short term. Institutional controls will need to be implemented for the Site.

2.) How well do you believe the remedy currently in place is performing?

The Site's OU1 remedy currently protects human health and the environment in the short – term because ground water is not being used as a ground water source on site or off site.

The Site's OU2 remedy is currently protects human health and the environment in the short – term because most of the contaminated soil(s) have been excavated, and there is no exposure pathway for the contaminated soil that remains at the Site.

3.) Are you aware of any complaints or inquiries regarding environmental issues or the remedial action from residents in the last five years?

To the best of my knowledge there have been no complaints regarding environmental issues or the remedial action from residents. Past renters of the FCX warehouse and the current property owner have made inquiries about environmental issues and remedial actions taken at the site.

4.) Are you aware of any community concerns regarding the Site or its operation and administration? If so, please give details.

No

5.) Are you aware of any changes in projected land use at the Site?

Other than the use of the on- Site warehouse and parking area to store pleasure boats by the current owner, I am not aware of any changes in projected land use.

6.) Are you comfortable with the status of the institutional controls at the Site? If no, what do you see as the outstanding issues?

Institutional controls will need to be developed for the Site.

7.) Do you have any comments, suggestions or recommendations regarding the Site's management or operation?

Institutional controls will need to be developed for the Site.

, **E-6** 

# Interview Record

Site Name: FCX

# EPA ID No: NCD981475932

Interviewer's Name: Kerisa Coleman, EPA Region 4 CIC

Interviewee's Name/Title: Nile Testerman, Environmental Engineer, NCDENR

Contact Information: <u>nile.testerman@ncdenr.gov</u> (910) 707-8339

Date: January 20, 2015

Type of Interview (Circle one): In person

Phone

E-Mail

# Interview Record

Site Name: FCX

# EPA ID No: NCD981475932

Interviewer's Name: Kerisa Coleman, EPA Region 4 CIC

Interviewee's Name/Title: Cyrus Parker, North Carolina DOT GeoEnvironmental Supervisor

Contact Information: cfparker@ncdot.gov; (919) 707-6868

Date: February 2, 2015

Type of Interview (Circle one): In person

Phone

E-Mail

# FCX

# Five-Year Review Questionnaire

## **Community Involvement**

# Interview Category: NC Department of Transportation

1.) What is your overall impression of the project?

The remedy seems to be working well for the site and community

2.) How well do you believe the remedy currently in place is performing?

Very well

3.) Are you aware of any complaints or inquiries regarding environmental issues or the remedial action from residents in the last five years?

No

4.) Are you aware of any community concerns regarding the Site or its operation and administration? If so, please give details.

No

5.) Are you aware of any changes in projected land use at the Site?

No

6.) Are you comfortable with the status of the institutional controls at the Site? If no, what do you see as the outstanding issues?

Yes

7.) Do you have any other comments, suggestions or recommendations regarding the Site's management or operation?

No