FINAL RECORD OF DECISION

SITE 84, OPERABLE UNIT NO. 19 MARINE CORPS BASE CAMP LEJEUNE, NORTH CAROLINA

Prepared for Department of the Navy Naval Facilities Engineering Command Mid-Atlantic Division

Contract No. N40085-07-D-1905

January 21, 2009

Prepared by Rhēa Engineers & Consultants, Inc.

TABLE OF CONTENTS

PAGE

LIST OF TABLES iv LIST OF FIGURES v ABBREVIATIONS AND ACRONYMN LIST vi			
1.0	DECLARATION	1	
1.1	SITE NAME AND LOCATION	1	
1.2	STATEMENT OF BASIS AND PURPOSE	1	
1.3	ASSESSMENT OF THE SITE	1	
1.4	DESCRIPTION OF THE SELECTED REMEDY	2	
1.5	STATUTORY DETERMINATIONS	3	
1.6	ROD DATA CERTIFICATION CHECKLIST	4	
1.7	AUTHORIZING SIGNATURES	5	
• •			
2.0	DECISION SUMMARY		
2.1	SITE NAME, LOCATION, AND BACKGROUND		
2.2	SITE HISTORY AND ENFORCEMENT ACTIVITIES	7	
2.	2.1 Relative Risk Ranking System Data Collection Investigation (1995) and	-	
•	Pre-Remedial Investigation (RI) Screening Study (1998)		
	2.2 Abandoned Portions of Building 45 Removed (1999)		
	2.3 Final Remedial Investigation OU 19 Site 84 (2002)		
2.	2.4 Final Feasibility Study (2002) and Proposed Remedial Action Plan (2002)		
	2.2.4.1 Phase I NTCRA (2002)		
	2.2.4.2 Phase II NTCRA (2004)		
	2.2.4.3 Supplemental Investigations (2003)		
	2.2.4.5 Conclusion of NTCRAs		
	2.2.4.6 Baseline Risk Assessment		
	2.2.4.7 Ecological Risk Assessment		
2	2.5 Final Feasibility Study Amendment (2008)		
	2.6 Enforcement Activities		
2.3	COMMUNITY PARTICIPATION		
2.4	SCOPE AND ROLE OF RESPONSE ACTION 1		
2.5	Site Characteristics		
	5.1 Conceptual Site Model 1		
	5.2 Sampling Strategy		

2.5.3 Nature of Contamination 17	
2.5.4 Potential Future Surface and Subsurface Routes of Exposure and Receptors.	18
2.6 CURRENT AND POTENTIAL FUTURE SITE AND RESOURCE USES	19
2.7 SUMMARY OF SITE RISKS	19
2.7.1 Human Health Risk Summary	19
2.7.1.1 Contaminants of Concern	20
2.7.1.2 Exposure Assessment	21
2.7.1.3 Toxicity Assessment	21
2.7.1.4 Risk Characterization	21
2.7.2 Ecological Risk Summary	24
2.8 REMEDIAL ACTION OBJECTIVE AND REMEDIATION GOAL	24
2.9 DESCRIPTION OF ALTERNATIVES	25
2.9.1 Alternative RAA 1 – No Action	25
2.9.2 Alternative RAA 2 – Excavation to 1 ppm PCBs	25
2.9.3 Alternative RAA 3 – 1 ppm PCB Soil Cover with LUCs	26
2.9.4 Alternative RAA 4 – PCB Removal Actions with LUCs	
2.9.5 Common Elements and Distinguishing Features	28
2.10 COMPARATIVE ANALYSIS OF ALTERNATIVES	28
2.10.1 Threshold Criteria	29
2.10.1.1 Protection of Human Health and the Environment	29
2.10.1.2 Compliance with ARARs	30
2.10.2 Primary Balancing Criteria	
2.10.2.1 Long-Term Effectiveness and Permanence	
2.10.2.2 Reduction in Toxicity, Mobility, or Volume	
2.10.2.3 Short Term Effectiveness	
2.10.2.4 Implementability	
2.10.2.5 Cost	
2.10.3 Modifying Criteria	31
2.10.3.1 State Acceptance	
2.10.3.2 Community Acceptance.	
2.11 PRINCIPAL THREAT WASTES	
2.12 SELECTED REMEDY	32
2.12.1 Summary of Rationale for the Selected Remedy	
2.12.2 Description of the Selected Remedy	
2.12.3 Summary of the Estimated Remedy Costs	
2.12.4 Expected Outcomes of the Selected Remedy	
2.13 STATUTORY DETERMINATIONS	
2.13.1 Protection of Human Health and the Environment.	
2.13.2 Compliance with ARARs and To Be Considered (TBC) Criteria	
2.13.3 Cost Effectiveness	

	13.4 Utilization of Permanent Solutions and Alternative Treatment Technologies or Resource Recovery Technologies to the Maximum Extent Practicab13.5 Preference for Treatment as a Principal Element or Explanation of White	le 39
	Satisfied.	
2.	13.6 Five-Year Review Requirements	39
2.14	DOCUMENTATION OF SIGNIFICANT CHANGES	40
3.0	RESPONSIVENESS SUMMARY	40

REFERENCES

TABLES FIGURES

APPENDIX A	NCDENR CONCURRENCE LETTER
APPENDIX B	STATISTICAL SUMMARIES
APPENDIX C	PRAP PUBLIC MEETING MINUTES

LIST OF TABLES

- TABLE 2-1
 SOIL SAMPLE SUMMARY
- TABLE 2-2
 GROUNDWATER SAMPLE SUMMARY
- TABLE 2-3
 SURFACE WATER SAMPLE SUMMARY
- TABLE 2-4
 SEDIMENT SAMPLE SUMMARY
- TABLE 2-5
 QUALITY Assurance QUALITY CONTROL SAMPLE SUMMARY
- TABLE 2-6
 SOIL AND SEDIMENT PCB SAMPLING RESULTS OCTOBER 2005
- TABLE 2-7
 SOIL PCB SAMPLING RESULTS DECEMBER 2005
- TABLE 2-8
 SUMMARY OF SAMPLES PHASE III NTCRA
- TABLE 2-9
 SURFACE SOIL DATA COMPARED TO SCREENING CRITERIA
- TABLE 2-10
 SUBSURFACE SOIL DATA COMPARED TO SCREENING CRITERIA
- TABLE 2-11
 GROUNDWATER DATA COMPARED TO SCREENING CRITERIA
- TABLE 2-12
 SW DATA COMPARED TO SCREENING CRITERIA LAGOON
- TABLE 2-13
 SEDIMENT DATA COMPARED TO SCREENING CRITERIA LAGOON
- TABLE 2-14
 HUMAN HEALTH RISK ASSESSMENT TOXICITY FACTORS
- TABLE 2-15
 Description of Remedial Alternatives for Site 84 OU 19
- TABLE 2-16
 RELATIVE RANKING OF REMEDIAL ALTERNATIVES
- TABLE 2-17
 CHEMICAL SPECIFIC TBC
- TABLE 2-18
 ACTION SPECIFIC ARARS AND TBC
- TABLE 2-19
 COST ESTIMATE: RAA 4 PCB REMOVAL ACTIONS WITH LUCS

LIST OF FIGURES

- FIGURE 1-1 LAND USE CONTROLS
- FIGURE 2-1 SITE LOCATION MAP
- FIGURE 2-2 SITE 84 PLAN
- FIGURE 2-3 CONCEPTUAL SITE MODEL
- FIGURE 2-4 PCB CONFIRMATION SAMPLES SITE 84 PHASE II NTCRA
- FIGURE 2-5 NORTHWESTERN BACKFILL AREAS 2005
- FIGURE 2-6 SOUTHEASTERN BACKFILL & EXCAVATION AREAS 2005
- FIGURE 2-7 PCB CONFIRMATION PHASE III NTCRA NW BACKFILL AREAS
- FIGURE 2-8 PCB CONFIRMATION PHASE III NTCRA SE BACKFILL & EXCAVATION AREAS
- FIGURE 2-9 RAA 4 PCB REMOVAL ACTIONS W/LUCS

ABBREVIATIONS AND ACRONYMN LIST

AOC	Area of Concern
ARAR	Applicable or Relevant and Appropriate Requirement
AST	Aboveground Storage Tank
CDI	Chronic Daily Intake
CERCLA	Comprehensive Environmental Response, Compensation and
	Liability Act
COC	Contaminant of Concern
COPC	Contaminant of Potential Concern
CFR	Code of Federal Regulations
CSF	Carcinogenic Slope Factors
CSM	Conceptual Site Model
DoD	Department of Defense
ERA	Ecological Risk Assessment
FFA	Federal Facilities Agreement
FS	Feasibility Study
HEARST	Health Effects Assessment Summary Tables
HHRA	Human Health Risk Assessment
HI	Hazard Index
HQ	Hazard Quotient
ILCR	Incremental Lifetime Cancer Risk
IRIS	Integrated Risk Information System
IRP	Installation Restoration Program
LUCs	Land Use Controls
МСВ	Marine Corps Base
mg/kg-day	milligrams per kilogram per day
msl	Mean Sea Level

Navy NCDENR NCEA NCGS NCP NPL NTCRA	United States Department of the Navy North Carolina Department of Environment and Natural Resources National Center for Environmental Assessment North Carolina General Statutes National Contingency Plan National Priorities List Non Time Critical Removal Action
O&M	Operation and Maintenance
OU	Operable Unit
РАН	Polycyclic aromatic hydrocarbon
PCB	Polychlorinated Biphenyl
PPE	Personal protective equipment
ppm	Parts per million
PRAP	Proposed Remedial Action Plan
PRG	Preliminary Remediation Goal
RA	Risk Assessment
RAA	Remedial Action Alternative
RAB	Restoration Advisory Board
RAO	Remedial Action Objective
RD	Remedial Design
RfD	Reference Dose
Rhēa	Rhēa Engineers & Consultants, Inc.
RI	Remedial Investigation
RME	Reasonable Maximum Exposure
ROD	Record of Decision
SARA	Superfund Amendments and Reauthorization Act
SMP	Site Management Plan
TBCs	To Be Considered
TPH	Total Petroleum Hydrocarbons
TSCA	Toxic Substances Control Act
UCL	Upper Confidence Limit
USEPA	United States Environmental Protection Agency
UST	Underground Storage Tank

1.0 DECLARATION

1.1 SITE NAME AND LOCATION

Site 84, Operable Unit (OU) 19 Marine Corps Base (MCB) Camp Lejeune Jacksonville, North Carolina EPA ID#: NC6170022580

Site 84 is located just south of Highway 24, one mile west of the MCB Camp Lejeune main gate entrance. The site extends to the south and east to encompass a small former man-made lagoon and the former Building 45 area.

1.2 STATEMENT OF BASIS AND PURPOSE

This decision document presents the Selected Remedy for Site 84, OU 19, at MCB Camp Lejeune in Jacksonville, North Carolina, which was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act (SARA), and to the extent practicable, the National Contingency Plan (NCP). This document was prepared in accordance with United Stated Environmental Protection Agency (USEPA) guidance for decision documents. This decision is based on the Administrative Record file for this site, which is located at the Onslow County Public Library, 58 Doris Avenue East, Jacksonville, North Carolina 28540.

The United States Department of the Navy (Navy) is the lead agency and is responsible for site cleanups at MCB Camp Lejeune. The remedy set forth in this Record of Decision (ROD) has been selected by the Navy and MCB Camp Lejeune, jointly with the USEPA, and with the concurrence of the North Carolina Department of Environment and Natural Resources (NCDENR). A copy of the NCDENR concurrence letter dated September 2, 2008 is included as **Appendix A**. NCDENR has also indicated concurrence by signature in Section 1.7, Authorizing Signatures.

1.3 ASSESSMENT OF THE SITE

Following three Non-Time-Critical Removal Actions (NTCRAs), Polychlorinated Biphenyls (PCBs) in surface and subsurface soils are at concentrations that pose a potential threat to human health. The response action selected in this ROD is necessary to protect public health or welfare from actual or threatened releases of pollutants or contaminants from this site which may present an imminent and substantial endangerment to public health or welfare.

1.4 DESCRIPTION OF THE SELECTED REMEDY

Site 84 is the sole site in OU 19 and is one of several Installation Restoration Program (IRP) sites that are part of the comprehensive environmental investigation and cleanup currently being performed at MCB Camp Lejeune under the CERCLA program pursuant to the Federal Facilities Agreement (FFA) for MCB Camp Lejeune dated March 1, 1991. This ROD addresses soil contamination at OU 19 Site 84. The status of all of the IRP sites at MCB Camp Lejeune can be found in the current version of the Site Management Plan (SMP), which is located in the Administrative Record file.

The Selected Remedy for Site 84 includes accepting the previous PCB Removal Actions and Land Use Controls (LUCs) that will limit exposure to PCB contaminated soils. The three previous NTCRAs removed approximately 1,199 tons of PCB waste soil, 16,460 tons of PCB contaminated soil and included the installation of a soil cover over PCB contaminated soil that remained in place. The Selected Remedy was determined based on the evaluation of site conditions, site related risks, applicable or relevant and appropriate requirements (ARARs), and Remedial Action Objectives (RAOs). Because this remedy will result in contaminated soil remaining on site, LUCs will be instituted to prevent unacceptable land uses and prevent intrusive activities to effectively eliminate the exposure pathways, and reduce risk to acceptable levels.

The LUCs will be implemented and maintained until the concentration of hazardous substances (i.e., PCBs) in the soil are at levels that allow for unrestricted use and unlimited exposure. The Navy and MCB Camp Lejeune are responsible for implementing, maintaining, reporting on, and enforcing the LUCs. Although the Navy may later transfer these procedural responsibilities to another party by contract, property agreement, or through other means, the Navy and MCB Camp Lejeune shall retain ultimate responsibility for the remedy integrity. The performance objectives of the LUCs at Site 84 are to:

- Prohibit the development and use of the site for residential housing, elementary and secondary schools, child care facilities, and recreational areas within the LUC boundaries of the site;
- Prohibit intrusive activities within the areas with PCB contamination greater than 10 ppm in subsurface soils, i.e., greater than two-foot depth; and
- Maintain the integrity of the 24-inch vegetative soil cover to limit exposure to subsurface soils with PCB contamination greater than 10 ppm.

The areas of Site 84 to be affected by LUCs (i.e., LUC boundaries) are identified in **Figure 1-1**. The following generally describes the LUCs which will be implemented at Site 84 in order to achieve the LUC performance objectives detailed above:

- 1. Incorporating land use prohibitions into the MCB Camp Lejeune Base Master Plan;
- Recording a Notice of Contaminated Site filed in Onslow County real property records per North Carolina General Statues (NCGS) 143B-279.9 and 143B-279.10;
- 3. Monitoring and maintenance of the Site 84 soil cover and fence; and
- 4. Deed and/or lease restrictions in the event of transfer for any portion of Site 84.

The Navy shall prepare, in accordance with USEPA guidance, and submit to the USEPA and NCDENR, a Remedial Design (RD) containing LUC implementation and maintenance actions, including periodic inspections, within 90 days of the ROD signature, for review and approval. The Navy shall also submit the document memorializing remedial action completion within 120 days following completion of the remedial action for Site 84. The Navy will be and MCB Camp Lejeune are responsible for implementing, maintaining, inspecting, reporting on, and enforcing the LUCs described in this ROD in accordance with the ROD and the approved RD.

1.5 STATUTORY DETERMINATIONS

The Selected Remedy is protective of human health and the environment, complies with federal and state requirements that are applicable or relevant and appropriate (i.e., ARARs) to the remedial action, is cost effective, and uses permanent solutions and alternative treatment technologies to the maximum extent practicable. A major component of the Selected Remedy for Site 84 is the three NTCRAs implemented prior to finalization of this ROD. The regulatory requirements for the work conducted as removal actions are identified herein as ARARs. Consequently, most of the Action-specific ARARs have been complied with by the Navy while implementing the removal actions.

The remedy in this OU does not satisfy the statutory preference for treatment as a principal element of the remedy. However, the NTCRAs conducted to date have mitigated the ecological risk at the site, and the risk remaining for human receptors has been reduced to surface soil risk for future adult and child residents and subsurface soil risk for future construction workers. With the LUCs in place, human receptors will be prevented from accessing Site 84 for unwarranted use and intrusive activities will be prevented in locations where soil PCB concentrations exceed 10 ppm.

This remedy will result in hazardous substances, pollutants, or contaminants remaining on site above levels that allow for unlimited use and unrestricted exposure; therefore, in accordance with CERCLA Section 121(c) and the NCP at 40CFR 300.430(f)(4)(ii), a statutory review will be conducted within five years after initiation of remedial action to ensure that the remedy is, or will be, protective of human health and the environment. If the remedy is determined not to be protective of human health and the environment because LUCs have failed, additional remedial actions would be evaluated by the FFA parties, and the Navy may be required to undertake additional remedial action.

1.6 ROD DATA CERTIFICATION CHECKLIST

The following information is included in the Decision Summary section of this ROD. Additional information can be found in the Administrative Record on file for MCB Camp Lejeune Site 84.

- Contaminant of concern (COC) and their respective concentrations (Section 2.5.3);
- Baseline risk represented by the COCs (Section 2.7.1.4);
- Cleanup levels established for COCs and the basis for these levels (Section 2.8);
- How source materials constituting principal threats are addressed (Section 2.11);
- Current and reasonably anticipated future land use assumptions used in the baseline risk assessment and ROD (Section 2.6);
- Potential land use that will be available at the site as a result of the Selected Remedy (Section 2.12.2);
- Estimated capital, annual operation and maintenance (O&M), and total present worth costs, discount rate, and the number of years over which the remedy cost estimates are projected (Section 2.12.3); and
- Key factors that led to selecting the remedy, i.e., a description of how the Selected Remedy provides the best balance of tradeoffs with respect to the balancing and modifying criteria, highlighting criteria key to the decision (Section 2.12.1).

1.7 AUTHORIZING SIGNATURES

R. P. Flatau, Jr. Colonel, U.S. Marine Corps Commanding Officer Marine Corps Base, Camp Lejeune

Franklin E. Hill, Director

18 Bu 08

Date

Superfund Division U.S. Environmental Protection Agency Region 4

With concurrence from:

Date

Dexter R. Matthews, Director Division of Waste Management North Carolina Department of Environment and Natural Resources

2.0 DECISION SUMMARY

This ROD describes the Navy and USEPA's selected remedial action for Site 84 OU 19 at MCB Camp Lejeune in Jacksonville, North Carolina (EPA ID#: NC6170022580). The Navy is the lead agency and is responsible for site cleanups conducted pursuant to the FFA. Site 84 is the sole site in OU 19, which is one of 22 OUs at MCB Camp Lejeune.

The Public Meeting for Site 84 was held on April 29, 2008. The Preferred Alternative, as detailed in the Proposed Remedial Action Plan (PRAP), was presented at the meeting. This Decision Summary provides an overview of Site 84 characteristics and describes the process by which the Selected Remedy was chosen and the rationale for its selection. Community acceptance of the alternatives is discussed in Section 3.0 of this ROD. NCDENR concurs with the Selected Remedy. A copy of the NCDENR concurrence letter dated September 2, 2008 is included as **Appendix A**. NCDENR has also indicated concurrence with the Selected Remedy by signing this ROD.

2.1 SITE NAME, LOCATION, AND BACKGROUND

MCB Camp Lejeune is located on 236 square miles of land in Onslow County, North Carolina, adjacent to the southern side of the City of Jacksonville. Jacksonville is the largest city near MCB Camp Lejeune, and it contains approximately half of the county's total population. The areas adjacent to MCB Camp Lejeune are generally rural. MCB Camp Lejeune is bisected by the New River, which flows into the Atlantic Ocean in a southeasterly direction. MCB Camp Lejeune is bordered by the Atlantic Ocean to the east, U.S. Route 17 to the west and State Route 24 to the north.

Site 84, Operable Unit 19, is located within the northeast portion of MCB Camp Lejeune, one mile west of the main gate entrance, and is accessed from NC Route 24 (See **Figure 2-1**). The site is fenced to prevent vehicular and trespasser access. Vehicular access to the site is gained from the Base on the south side of the site or through the chain link fence along the highway. The northeast edge of the study area runs along a newlyconstructed pedestrian/bicycle trail, and the northwest edge is bordered by Northeast Creek. Toward the creek, the site is mostly wooded or covered by thick vegetation or grass. Wetland areas are present adjacent to the creek. An access road runs through the site and terminates at Northeast Creek. A map showing the various site features is presented as **Figure 2-2**. Currently, the site is not used, and vehicular access is restricted.

2.2 SITE HISTORY AND ENFORCEMENT ACTIVITIES

Site 84 extends to the south and east to encompass a small, former man-made lagoon and the former Building 45 area. Site 84's former Building 45, constructed by the U.S. Navy soon after purchasing the property in 1941, was leased to Tidewater Electric, who operated the building through 1965. Former employees recalled that site activities included PCB transformer maintenance, recycling, and on-site disposal of spent transformer casings. In approximately 1965, Camp Lejeune converted Building 45 to a maintenance facility for large machinery, and it was used for that purpose until the early 1990s.

A 12-inch diameter steel reinforced concrete pipe from Building 45 discharged into the southeastern end of the lagoon. Reportedly the pipe was connected to the former oil/water separator located outside of Building 45. However, it is believed that prior to the installation of the oil/water separator, the pipe was connected directly to the building floor drains.

Investigations at Site 84 have been conducted since 1992, and initially focused on underground storage tanks (USTs) associated with Building 45. These investigations focused on total petroleum hydrocarbon (TPH) contamination. Note that TPH contamination at Site 84 is being addressed by the underground storage tank (UST) Remedial Program.

Later investigations expanded to address other contaminants. Site documentation is available to the public in the Administrative Record for MCB Camp Lejeune. The following subsections provide summaries of the investigations and removal actions conducted at Site 84 from 1995 through 2008, outside of the UST Remedial Program.

2.2.1 Relative Risk Ranking System Data Collection Investigation (1995) and Pre-Remedial Investigation (RI) Screening Study (1998)

The Relative Risk Ranking and Pre-RI Screening Studies were conducted after the discovery of transformers in the lagoon. Surface soil analyses indicated PCB contamination in the area of the lagoon and toward Building 45. The highest concentrations of PCBs (i.e., Aroclor 1260) in the surface soil were detected approximately midway between the lagoon and Building 45. Groundwater samples were collected from specific existing wells at Site 84. Analyses for PCBs indicated no PCBs above detection limits. Surface water samples collected from the lagoon where transformers were discovered and removed were not contaminated with PCBs. Sediment samples collected from the lagoon were contaminated with PCBs.

2.2.2 Abandoned Portions of Building 45 Removed (1999)

In 1999, the aboveground portion of Building 45 was removed.

2.2.3 Final Remedial Investigation OU 19 Site 84 (2002)

A Remedial Investigation (RI) was concluded in 2002 (Baker, 2002). During the RI investigation, borings were drilled and surface and subsurface soil samples were taken and analyzed. In addition, monitoring wells installed across the site were sampled and analyzed. Conclusions of the RI, with the exception of petroleum-related issues, which are now being addressed by the UST Remedial Program, included the following:

- Soils at Site 84 have been impacted by PCBs due to past site operations. PCB contamination is widespread at low concentrations (1 ppm to 10 ppm); however, there are three "hot spots" of PCB contamination, including the lagoon area, the midfield area [near the former aboveground storage tank (AST) see Figure 1-2 from the Final Feasibility Study (FS) (Baker and CH2MHill, 2002)], and the Building 45 area;
- Soils at Site 84 also have been impacted due to past site operations by pesticides and polycyclic aromatic hydrocarbons (PAHs). These contaminants are primarily distributed around Building 45;
- A NTCRA involving the demolition of the foundation of former Building 45 and excavation of soils in the immediate area of the foundation is planned. The removal action addresses one of the three "hot spots" for soil at Site 84 and should significantly reduce site risks. Further, the removal action work plan contains provisions for PCB confirmatory sampling to ensure that soil remediation goals for high occupancy residential land use, i.e., 1 part per million (ppm), are met in the area of the NTCRA. Although the removal action is focused on removing the remaining portions of Building 45 and impacted soil in that area, all other areas of the site must be addressed;
- Groundwater sampling completed as part of the RI identified pesticides heptachlor epoxide and gamma-chlordane as exceeding screening criteria in a limited number of samples;

- Northeast Creek does not appear to be impacted by past site operations. Contaminants were not detected in surface water or sediment samples from the creek; and
- Lagoon sediments have been impacted due to past site operations by PCBs. The presence of these contaminants is most likely related to the drainpipe that runs from the former Building 45 to the lagoon, which was apparently used to discharge waste material from the building. In addition, the presence of PCBs may be related to the reported disposal of transformers in the lagoon. The lagoon surface water was not contaminated with PCBs.

2.2.4 Final Feasibility Study (2002) and Proposed Remedial Action Plan (2002)

A Feasibility Study (FS) (Baker and CH2MHill, 2002) was conducted that evaluated different alternatives for remediation of the site. The FS Preferred Alternative for soil and lagoon sediment, recommended in the 2002 PRAP, was Remedial Action Alternative (RAA) 4: Excavation and Landfill Disposal (Low Occupancy Land Use) with LUCs. The 2002 PRAP was presented to the public for review and comment. RAA 4 included excavation of soils and lagoon sediments that contain contaminant concentrations in excess of remediation goals for low-occupancy land use, including a soil remediation goal of 10 ppm for PCBs based on USEPA Superfund guidance for industrial land use at the more protective end of the 10 to 25 parts per million (ppm) range suggested in the USEPA guidance and USEPA Region 9 Residential Preliminary Remediation Goals (PRGs) for other contaminants.

As part of the action, samples would be analyzed for PCBs, PAHs, and pesticides. Excavated soils would be separated into Toxic Substances Control Act (TSCA)-regulated and non-TSCA-regulated soils. TSCA-regulated soils (PCBs greater than 50 ppm) would be handled separately and would be transported to a TSCA-permitted chemical waste landfill meeting the requirements of 40 CFR 761.75 for proper off-site disposal. The remaining non-TSCA-regulated excavated soils would be transported to a proper landfill for disposal.

Following completion of these 2002 documents, and after soliciting public comment, the Navy decided not to implement the Preferred Alternative from the PRAP due to a dispute between the Department of Defense (DoD) and the USEPA over post ROD authority and LUCs documentation.

Consequently, an Action Memorandum was developed (MCB Camp Lejeune, 2002) that proposed removal actions at Site 84. The Navy implemented three NTCRAs between 2002 and 2006 which focused on addressing PCB contaminated sediment and soil which essentially was the preferred alternative except for the LUC component of the remedy. A summary of the removal actions are listed below.

2.2.4.1 Phase I NTCRA (2002)

The Phase I NTCRA, as discussed above, which removed the Building 45 foundation and adjacent contaminated soils – PCB, PAH, and pesticide contaminated - was completed in October 2002. These excavation areas were backfilled with clean soil. In addition, approximately 20 transformers containing PCB transformer oil were removed from the lagoon.

2.2.4.2 Phase II NTCRA (2004)

Removal of the lagoon sediments and other contaminated soil, backfilling of the lagoon and other excavation areas with clean fill, and partial removal of the pipe from former Building 45 were completed in 2004 as part of a Phase II NTCRA. During the Phase II NTCRA, additional PCB contamination concerns were raised in the northwest wooded area. These concerns were investigated, past sampling and analysis results were reviewed, and it was concluded that the concerns are unsupported.

A railroad right-of-way borders Site 84 to the north, parallel to NC Highway 24. As the railroad is no longer used, the Base has transferred a portion of the railroad right-of-way to the City of Jacksonville for a pedestrian/bicycle trail. Fencing is necessary to prevent recreational trespassers from accessing the site. Partial fencing was completed in 2004 during the Phase II NTCRA.

Confirmation testing performed during the Phase II NTCRA identified several site areas with soil PCB concentrations greater than or equal to the site cleanup level for low occupancy industrial land use of 10 ppm. Also, during the Phase II removal action, a steel pipe was found in the northwestern area of the site, but pipe sediment testing was performed. Additional investigations and a Phase III NTCRA were required.

2.2.4.3 Supplemental Investigations (2005)

Two underground pipes originating from the general area of former Building 45 were located by geophysical methods and exposed during the supplemental investigations. The southernmost pipeline corresponded to the location of the concrete-encased steel pipe that was partially excavated during the Phase II NTCRA, i.e., a pipe that discharged to the former lagoon from former Building 45. PCB concentrations in sediment samples taken from the pipe were less than 10 ppm, and the pipe could remain in place. PCB concentrations in sediment samples taken from the northernmost pipe were also less than 10 ppm, and this pipe could remain in place also.

The continuing COC in the site groundwater was pesticides. The 2002 Final FS suggested a monitoring program to verify that pesticides are still present in the groundwater prior to any remedial action. Based on the results of groundwater sampling and analysis conducted in 2005, no pesticide compounds exceeded the most recent North Carolina 2L Standards (NCDENR, 2000), and no action is required for groundwater. Note that no PCBs had been detected in previous groundwater sampling/analysis events.

As a result of the test pit program, PCB contamination greater than 10 ppm was identified in surface (i.e., 0 to 2 feet in depth) and subsurface (i.e., > 2 feet in depth) soil south and west of the Phase I and Phase II NTCRAs. It was determined that the areas of highest surface soil contamination would be excavated, where possible, and disposed of off site, and the areas would be backfilled with a minimum of two feet of clean soil cover and revegetated.

During the utility location task, numerous buried, active electric, and communication lines were identified along the area of the gravel access road south and west of the Phase I and Phase II NTCRAs. Some samples taken in this area contained PCB concentrations greater than 50 ppm; however, because of the large number of critical communication lines and electric lines, it would not be feasible to excavate this area. Instead, two feet minimum of clean soil would have to be placed over the area.

2.2.4.4 Phase III NTCRA (2006)

The Phase III NTCRA was conducted south and west of the Phase I and Phase II NTCRA areas. Where possible, surface soils impacted with PCBs at concentrations greater than or equal to 50 ppm were excavated and disposed of off site. In areas where mass excavation was not feasible due to numerous buried, active utility and communication lines or PCB concentrations were less than 50 ppm at the surface, a minimum of two feet of clean soil cover was placed above the existing surface. In addition, as part of this removal action, the existing four-foot high fence along the northeastern border of the site was extended to Northeast Creek, and the entire site was revegetated.

2.2.4.5 Conclusion of NTCRAs

At the conclusion of the three NTCRAs, PCB surface soil contamination had been removed to a depth of one foot or more and backfilled or covered with clean fill. The

PCB contaminated sediment from the lagoon had been removed and the lagoon backfilled with clean fill. All PCB contaminated soil was disposed of off site in approved landfills. PAH and pesticide contamination had been found around the Building 45 foundation during the RI. Both PAH and pesticide contamination were removed and disposed of during the Phase I NTCRA. In addition, disposal soil samples from the Phase II NTCRA were analyzed for PAHs and pesticides, and all results were reported as non-detect. TPH contamination at the site is being addressed by the underground storage tank (UST) Remedial Program. And, as discussed above, groundwater pesticide contamination was determined to no longer be a concern.

2.2.4.6 Baseline Risk Assessment

A Baseline Human Health Risk Assessment (HHRA) was conducted as part of the RI for both the pre-NTCRA Phase I scenario and the post-NTCRA Phase I scenario. With the three NTCRAs being completed and contamination remaining only in site soils, the Baseline HHRA is summarized for the applicable contaminants for the post-NTCRA Phase I scenario as follows:

Total site Incremental Lifetime Cancer Risk (ILCR) values • calculated in the Baseline HHRA indicate potentially unacceptable carcinogenic risk for future adult and child residents and the future industrial/commercial site worker and construction worker. The Baseline HHRA concluded that ingestion of and dermal contact with PCB Aroclor-1260 in the surface soil, i.e., zero to two feet in depth, was the primary contributor to unacceptable carcinogenic risks. Soil evaluated after the NTCRA Phase I event did not contribute significantly to unacceptable noncarcinogenic adverse health effects for the receptors. With the completion of the three NTCRAs, the risk to the industrial/commercial workers at the site has been eliminated in the surface soil. However, risk still remains in some subsurface soils on site for the construction workers and in surface soils for future adult and child residents. Therefore, LUCs that prevent intrusive activities and unacceptable land uses must be applied at the site to prevent unacceptable exposure.

2.2.4.7 Ecological Risk Assessment

An Ecological Risk Assessment (ERA) was conducted as part of the RI. The ecological risk characterization was based on the post-NTCRA Phase I scenario for surface soils, i.e., defined as the top 12 inches of soil. Note that subsurface soils are not considered a

complete exposure pathway for terrestrial receptors because the mass of most root systems is within the surface soil, most soil heterotropic activity is within the surface organic layer, and soil invertebrates occur on the surface or within the oxidized root zone. With the NTCRAs being completed and contamination remaining only in site soils, the baseline ERA is summarized for the applicable contaminants for the post-NTCRA Phase I scenario as follows:

• For the ERA, the surface soil exposure pathway was evaluated by comparing contaminant concentrations in the surface soil to the USEPA Region 4 Recommended Soil Screening Values. Following the NTCRA Phase I event, PCB Aroclor-1260 was the greatest risk driver in surface soils [i.e., those with refined Hazard Quotients (HQs) exceeding 10.0]. However, following the three NTCRAs, the HQ would not exceed 1.0 because the PCB contamination in the top 12 inches of soil is in all cases significantly less than the USEPA Region 4 Recommended Surface Screening Value of 20 ppm for all PCBs. Therefore, the ecological risk has been mitigated.

2.2.5 Final Feasibility Study Amendment (2008)

A Final FS Amendment for Site 84 (Rhēa, 2008) presents remedial alternatives for a final remedial action for Site 84 that takes into account the earlier removal actions and is based upon present site conditions and PCB concentrations. From this study, the new Preferred Alternative chosen for Site 84 and discussed in the April 2008 PRAP is RAA-4 – PCB Removal Actions with LUCs.

2.2.6 Enforcement Activities

MCB Camp Lejeune was placed on USEPA's National Priorities List (NPL) effective November 4, 1989 (54 Federal Register 41015, October 4, 1989). As a result of the NPL listing and pursuant to CERCLA, the USEPA Region 4, NCDENR, the Navy, and the Marine Corps entered into a FFA for MCB Camp Lejeune in 1991. The primary purpose of the FFA is to ensure that the environmental impacts associated with past and present activities at the Base are thoroughly investigated and remediated. The Navy is responsible for ensuring that appropriate CERCLA response alternatives are developed and implemented as necessary to protect public health, welfare, and the environment. No enforcement activities have been recorded at Site 84.

2.3 COMMUNITY PARTICIPATION

The Navy, MCB Camp Lejeune, USEPA, and the NCDENR provide information regarding the cleanup of MCB Camp Lejeune to the public through the community relations program which includes a Restoration Advisory Board (RAB), public meetings, the Administrative Record file for the site, and announcements published in local newspapers. RAB meetings continue to be held to provide an information exchange among community members, the Navy, MCB Camp Lejeune, USEPA, and NCDENR. These meetings are open to the public and are held quarterly.

In accordance with Sections 113 and 117 of CERCLA, the Navy provided a public comment period from April 29 through May 27, 2008, for the PRAP (April 2008) for Site 84. A public meeting to present the PRAP was held on April 29, 2008, at the Coastal Carolina Community College in Jacksonville, North Carolina. Public notice of the meeting and availability of documents was placed in *The Jacksonville Daily News* newspaper on April 21, 2008.

The Administrative Record file, Community Relations Plan, Installation Restoration Program fact sheets, and final technical reports concerning Site 84 can be accessed by the public at home through the Internet at <u>http://www.bakerenv.com/camplejeune_irp</u> or at the following location where the Internet is available:

Onslow County Public Library 58 Doris Avenue East Jacksonville, North Carolina 28540 (910) 455-7350

2.4 SCOPE AND ROLE OF RESPONSE ACTION

MCB Camp Lejeune was placed on USEPA's NPL in November 1989. OU 19 Site 84 is one of several IRP sites addressed under CERCLA at MCB Camp Lejeune. The response action for Site 84 does not include or affect any other sites at the facility. Information on the status of all the IRP sites at MCB Camp Lejeune can be found in the current version of the SMP, which is located in the Administrative Record file.

The overall strategy for cleanup of Site 84 soil is to eliminate current exposure pathways that may pose unacceptable human health risks. These pathways have mostly been eliminated by excavation and off-site disposal of PCB contaminated soil or by placing clean surface soil cover and, in some cases, separation liners over areas of contamination. The three removal actions that have been completed at Site 84 are entirely consistent with

the agency's overall strategy for site cleanup.

Along with the removal actions, LUCs will be implemented to prevent intrusive activities and unacceptable land uses, to effectively eliminate the exposure pathways, and reduce risk to an acceptable level. LUCs will be implemented and maintained within the boundaries of Site 84 until the concentrations have been reduced to levels that allow for unlimited exposure and unrestricted use.

This ROD is the final action for OU 19 Site 84. The remedy documented in this ROD will achieve the RAO (described later in Section 2.8) and allow low occupancy industrial uses of the site.

2.5 SITE CHARACTERISTICS

Site 84, Operable Unit 19, approximately 4.5 acres in area, is located within the northeast portion of MCB Camp Lejeune, one mile west of the main gate entrance, and is accessed from NC Route 24. Site 84 extends to the south and east to encompass a small, former man-made lagoon and the former Building 45 area. The site is fenced to prevent vehicular and trespasser access. Vehicular access to the site is gained from the Base on the south side of the site or through the chain link fence along the highway. The northeast edge of the study area runs along a newly-constructed pedestrian/bicycle trail, and the northwest edge is bordered by Northeast Creek. Toward the creek, the site is mostly wooded or covered by thick vegetation or grass. Wetland areas are present adjacent to the creek. An access road runs through the site and terminates at Northeast Creek.

The ground surface of Site 84 is initially gently sloping from west (i.e., Northeast Creek) to east. The ground surface is relatively steeper east of the gravel access road. Elevations at the site range from approximately less than 5 feet to 25 feet above mean sea level (msl). With the exception of the gravel access road, the majority of the surface is grass covered or wooded.

2.5.1 Conceptual Site Model

The source of PCB soil contamination at Site 84 was likely due to spills or leaks from transformers containing PCBs, leaking from the transport pipe connecting former Building 45 to the former lagoon, and/or use of PCB-contaminated oil for dust control during site operations. The conceptual site model (CSM) for human health exposure pathways (**Figure 2-3**) shows sources, primary release mechanisms, secondary sources, secondary release mechanisms, exposure routes, and potential human receptors for Site

84 following the three NTCRAs, i.e., the present site conditions. For human health, potential receptors, including future residents and future construction workers, may contact residual levels of PCB contamination in surface or subsurface soil through inhalation, ingestion, or dermal absorption. For the present site conditions, no CSM is required for ecological exposure pathways because the ecological risk at the site has been mitigated as a result of the NTCRAs completed, as discussed above.

2.5.2 Sampling Strategy

Surface and subsurface soil, sediment, surface water, and groundwater samples were collected and analyzed to characterize the nature and extent of contamination and potential risk to human health and the environment as part of the RI for Site 84. Summaries of samples collected for the RI are provided in **Tables 2-1**, **2-2**, **2-3**, **2-4**, and **2-5** for soil, groundwater, surface water, sediment, and quality control/quality assurance, respectively. These samples were collected from April 1998 through August 2001.

During the Phase I NTCRA, PCB contaminated soil was removed to 1 ppm, and therefore, no residual contamination was left in that area of the site. The goal for PCB contaminated soil cleanup for the Phase II NTCRA was 10 ppm. That action was not completely successful. **Figure 2-4** illustrates the confirmation sampling conducted following the Phase II NTCRA. As can be seen from this Figure, contamination above 10 ppm was left in the northwestern and southeastern areas of the site. Note that interior sidewall samples taken as the excavation progressed are not considered in the analysis of remaining PCB soil contamination.

Prior to the Phase III NTCRA, additional investigation was conducted to further characterize PCB contaminated soil at the site. Figure 2-5 identifies surface soil samples taken in future backfill areas in the northwestern area of the site in 2005. Figure 2-6 includes 2005 surface sample locations in future backfill areas in the southeastern area of the site. The 2005 sample analysis results for the future backfill areas are included on Tables 2-6 and 2-7.

Immediately following the third and final NTCRA, confirmatory soil samples were collected to document the PCB contaminant levels left in place in both excavation and backfill areas at Site 84. Summaries of samples collected following the Phase III NTCRA are provided in **Table 2-8**. The confirmatory sample locations and analysis results are included on **Figures 2-7** and **2-8**.

2.5.3 Nature of Contamination

PCBs are the contaminant of concern at Site 84. A significant quantity of PCB contaminated soil and lagoon sediment has been removed from the site; yet, residual contamination remains in both the surface and subsurface soils. No PCB contamination has been detected in surface water or groundwater.

In 2002, the Phase I NTCRA was conducted in which the foundation of Building 45 and surrounding PCB contaminated soil were removed. During this NTCRA, 4,860 tons of PCB-contaminated soil (i.e., <50 ppm) was excavated and disposed of at the Sampson County Landfill, a local permitted facility in Rosewood, North Carolina. In addition, 143 tons of TSCA PCB waste soil (Toxic Substances Control Act – TSCA) soil (i.e., >50 ppm) was excavated and disposed of at the Wayne Disposal, Inc. facility, a TSCA landfill in Belleville, Michigan. PCB contaminated soil was removed to a concentration of 1 ppm. The minimum depth of excavation in the Phase I NTCRA area was four feet. After excavation was completed, the area was backfilled with off-site clean soil.

In 2004, a Phase II NTCRA was completed that attempted to address the remaining contamination on site. The excavation volume included 11,600 tons of PCB-contaminated soil and sediment and 360 tons of TSCA PCB waste soil. The PCB-contaminated soil and sediment was disposed of at the Sampson County Landfill, and the TSCA PCB waste soil was disposed of at the Clean Harbors Lone Mountain Landfill, a TSCA landfill in Waynoka, Oklahoma. Confirmation testing performed after excavation verified that the soil in the base of the excavation from zero to two feet was below the remediation goal of 10 ppm for industrial low-occupancy land use. However, confirmation sampling also identified several Phase II NTCRA excavation sidewall areas with soil PCB concentrations greater than or equal to 10 ppm. The sample results appeared to indicate a significant southwestern extension of PCB contamination. Following excavation, the area was backfilled with off-site clean soil.

From June through August 2006, a Phase III NTCRA was conducted at Site 84, south and west of the Phase I and Phase II NTCRA areas. Where possible, surface soils impacted with PCBs at concentrations greater than or equal to 50 ppm were excavated and disposed of off site at the Wayne Disposal, Inc. facility, a TSCA landfill in Belleville, Michigan. The area of soil removal was 5,800 square feet, and 696 tons of TSCA PCB waste soil was disposed of at the Belleville, Michigan facility. The excavated areas were backfilled with a minimum of two feet of clean soil cover supplied by the MCB Camp Lejeune French Creek borrow area. In areas where mass excavation was not feasible due to numerous buried, active utility and communication lines or PCB concentrations were less than 50 ppm at the surface, a minimum of two feet of clean soil cover was placed

above the existing surface. Soil cover in the Phase III NTCRA area is 18,300 square feet. Prior to backfilling, the existing in-place soil was sampled and analyzed for PCBs.

After the three NTCRAs were completed, some PCB contamination greater than 10 ppm was left in place below a depth of two feet in the northwestern area of the Phase II NTCRA and in the Phase III NTCRA area, i.e., beneath the vegetated soil cover, and some PCB contamination greater than 1 ppm but less than 10 ppm was left in place from zero to two feet in depth across the site.

Dividing the Phase II NTCRA site area into approximate 0.5 acre increments reveals that over approximately 4 acres of the site, the average PCB concentration remaining in the soil ranges from 0.8 ppm to 4 ppm. Only six of 33 confirmation samples were above 10 ppm PCB in the far western area of Phase II, and none of the post excavation samples exceeded 50 ppm in this area.

In the Phase III NTCRA area, however, the average PCB concentration beneath a two foot depth over 0.5 acre is 55 ppm. Contamination exceeds 50 ppm in the local area of the utility corridor because excavation could not be performed due to the impracticality of digging into an area lined with numerous power lines, gas lines, and fiber optic lines. However, with the geotextile liner under the roadway base material acting as a separation fabric, PCB concentrations under the road from 0.1 ppm to 1700 ppm can be removed from the calculation because they are essentially capped. Under this scenario, the average PCB concentration in the Phase III NTCRA area falls to 37 ppm.

2.5.4 Potential Future Surface and Subsurface Routes of Exposure and Receptors

PCB contaminated soil at a concentration greater than 1 ppm in surface soils could potentially affect future adult and child residents. The LUCs for Site 84 will prohibit the development and use of the site for residential housing, elementary and secondary schools, child care facilities, and recreational areas within the LUC boundaries of the site (see Figure 1-1).

PCB contaminated soil at a concentration greater than 10 ppm in subsurface soils (i.e., greater than two-foot depth) could affect future construction workers at the site. The exposure routes include inhalation, ingestion, and dermal contact. Therefore, intrusive activities will be prohibited in the areas identified on **Figure 1-1**, unless specifically approved by both NCDENR and USEPA. If future work is required in these prohibited areas, the workers will need to be properly trained, briefed regarding the site risks, and shall don appropriate personnel protective equipment (PPE) prior to working in these areas. In addition, the excavated soil may not be placed back into the excavation area but must be disposed of at a TSCA Landfill if the concentrations exceed 50 ppm or in a lined

landfill if the concentrations are above 1 ppm. Until removal actions reduce concentrations to levels that allow for unlimited exposure to construction workers (i.e., less than 10 ppm PCBs), LUCs will prevent unacceptable human exposure to PCBs.

2.6 CURRENT AND POTENTIAL FUTURE SITE AND RESOURCE USES

Currently, Site 84 is vacant, and no structures are present on the site. N.C. Highway 24 and a residential development are located northeast of the site, and a TPH treatment building and system is located southeast of the site. The MCB Camp Lejeune main gate is also located southeast of the site, and electric substations are located south of the site. The planned future site use is as a low occupancy industrial area.

A low occupancy land use area is defined in the TSCA regulations as a land use where an unprotected individual would not be present for more than an average of 6.7 hours/week, or 335 hours/year. Examples of low occupancy land areas include unoccupied areas outside of a building or storage area in a warehouse at an industrial facility (40 Code of Federal Regulations [CFR] 761.3).

2.7 SUMMARY OF SITE RISKS

A Baseline HHRA and ERA were conducted to evaluate the potential human health and/or environmental risks associated with the presence of potentially site-related constituents in various media at Site 84. These RAs were performed for the pre-NTCRA scenario and the post-NTCRA scenario. They provide the basis for taking action and identify the contaminants and exposure pathways that need to be addressed. A detailed discussion of potential risks is provided in the RI. After the completion of the three NTCRAs, PCBs in surface and subsurface soils pose the only potential unacceptable risk to human health. The ecological risks for the site have been mitigated. The response action selected in this ROD is necessary to protect public health or welfare from actual or threatened releases of pollutants or contaminants from this site which may present an imminent and substantial endangerment to public health or welfare.

2.7.1 Human Health Risk Summary

The Baseline HHRA was performed for the pre-NTCRA scenario and the post-NTCRA scenario. The secondary source of potential human health risk for the post-NTCRA is surface or subsurface soil contamination attributed to the presence of PCBs. A detailed discussion of risks identified at Site 84 can be found in the RI Report.

2.7.1.1 Contaminants of Concern

Based on the results of the RI, the three NTCRAs, and the Baseline HHRA, PCBs are the COC for Site 84. The baseline RA indicates that PCB contaminated surface soil remaining after the NTCRA Phase I does contribute to potentially unacceptable carcinogenic risk for future adult and child residents, and PCB contaminated subsurface soil remaining after the NTCRA Phase I does contribute to potentially unacceptable carcinogenic risk for future adult and child residents.

Detailed information for the selection of Contaminants of Potential Concern (COPCs) for all media at Site 84 is provided in Section 6.2 of the RI. The range of detected concentrations (minimum and maximum) and the frequency of detection for each COPC in each medium investigated are provided on **Tables 2-9**, **2-10**, **2-11**, **2-12**, and **2-13**.

Exposure point concentrations were determined based on USEPA guidance. An individual moving randomly across Site 84 is assumed to have an equal probability of potential exposure to environmental media such as soil and sediment. Therefore, for these media, the exposure point concentration for a constituent in the intake equation can be reasonably estimated as the arithmetic average concentration of site sampling data. However, uncertainty is inherent in the estimation of the true average constituent concentration at the site.

USEPA Region 4 risk assessment guidance makes an exception to the use of the Upper Confidence Limit (UCL) as the exposure point concentration for groundwater. Groundwater exposure point concentrations should be the arithmetic average of the wells in the highly concentrated area of the plume. However, individual contaminant distribution is scattered at Site 84, with no apparent plume. Therefore, to maintain a conservative approach in this Baseline HHRA, the maximum detected concentrations of the COPCs retained in shallow groundwater were used as the exposure concentrations.

Maximum detected concentrations of the COPCs retained in the surface water were used as the exposure concentrations because of the mobile nature of the medium and the low number of samples in the data set.

Statistical data summary tables for COPCs in each medium sampled (i.e. surface soil, subsurface soil, groundwater, surface water, and sediment) are found in the Statistical Summaries presented in **Appendix B**. These tables provide the arithmetic mean, the standard deviation, and the upper 95 percent confidence limit value for both normally and lognormally distributed data (as determined by Shapiro-Wilkes and d'Agostino distribution tests).

2.7.1.2 Exposure Assessment

The exposure assessment estimates the magnitude of actual and/or potential human exposure, the frequency and duration of those exposures, and the pathways (i.e., inhalation, ingestion, and dermal contact) by which people are potentially exposed. The elements of the exposure assessment for Site 84 following the three NTCRAs are identified in the CSM (Figure 2-3). To determine whether human exposure could occur at Site 84, an exposure assessment, which identifies potential exposure pathways and receptors, was conducted. The following four elements were considered to determine whether a complete exposure pathway was present:

- A source and potential mechanism of chemical release;
- An environmental retention or transport medium;
- A point of potential human contact with the contaminated medium; and
- A human exposure route (e.g., ingestion) at the contact point

An estimate of risk was developed for Site 84, evaluating exposure to surface soil for future adult and child residents and subsurface soil for future construction workers. Additional exposure scenarios/pathways were considered but were not significant for Site 84 following the NTCRAs. A detailed discussion of the exposure assessment for all scenarios considered is provided in Section 6.3 of the RI.

2.7.1.3 Toxicity Assessment

The toxicity assessment provides a numerical estimate of the relationship between the extent of exposure and possible severity of adverse effects, and consists of two steps: hazard identification and dose-response assessment. Toxicity data used in the Baseline HHRA are USEPA published toxicity values (non-carcinogenic reference doses [RfDs] and carcinogenic slope factors [CSFs]) in the Integrated Risk Information System (IRIS) and Health Effects Assessment Summary Tables (HEARST) databases. If data were not available from either of these sources, USEPA's National Center for Environmental Assessment (NCEA) data were used. Toxicity data used in risk evaluations for all of the COPCs for the site are provided in **Table 2-14**. A detailed discussion of the toxicity assessment is provided in Section 6.4 of the RI.

2.7.1.4 Risk Characterization

The risk characterization combines the selected COPCs, the exposure assessment, and the toxicity assessment to produce a quantitative estimate of current and future potential

human health risks associated with Site 84. A detailed presentation of Site 84 risk characterization for all of the COPCs is provided in Section 6.5 of the RI. For carcinogens, risks are generally expressed as the incremental probability of an individual's developing cancer over a lifetime as a result of exposure to the carcinogen. Excess lifetime cancer risk is calculated using the following equation:

 $Risk = CDI \times CSF$

where:

Risk = a unitless probability (e.g., $2 \ge 10-5$) of an individual's developing cancer CDI = chronic daily intake averaged over 70 years, expressed in milligrams per kilogram per day (mg/kg-day) CSE = carcinogenic slope factor, expressed in (mg/kg-day)-1

CSF = carcinogenic slope factor, expressed in (mg/kg-day)-1

These risks are probabilities that usually are expressed in scientific notation (e.g., 1x10-6). An excess lifetime cancer risk of 1x10-6 indicates that an individual experiencing the reasonable maximum exposure (RME) estimate has a 1 in 1,000,000 chance of developing cancer as a result of site-related exposure. This is referred to as an "excess lifetime cancer risk" because it would be in addition to the risks of cancer individuals face from other causes such as smoking or exposure to too much sun. The chance of an individual's developing cancer from all other causes has been estimated to be as high as one in three. USEPA's generally acceptable risk range for site-related exposures is 10-4 to 10-6.

The potential for non-carcinogenic effects is evaluated by comparing an exposure level over a specified time period (i.e., lifetime) with a RfD derived for a similar exposure period. An RfD represents a level that an individual may be exposed to that is not expected to cause any deleterious effect. The ratio of exposure to toxicity is called a HQ. An HQ less than 1 indicates that a receptor's dose of a single contaminant is less than the RfD, and that toxic non-carcinogenic effects from that chemical are unlikely. The hazard index (HI) is generated by adding the HQs for all COPCs that affect the same target organ (e.g., liver) or that act through the same mechanism of action within a medium or across all media to which a given individual may reasonably be exposed. An HI less than 1 indicates that, based on the sum of all HQs from different contaminants and exposure routes, toxic noncarcinogenic effects from all contaminants are unlikely. An HI greater than 1 indicates that site-related exposures may present a risk to human health. The HQ is calculated as follows:

Non-cancer HQ = CDI/RfD

where:

CDI = Chronic daily intake RfD = Reference dose

CDI and RfD are expressed in the same units and represent the same exposure period (i.e., chronic, sub-chronic, or short-term).

Focusing on the post-NTCRA risk characterization for future adult and child residents and the future construction worker, following are risk estimates for exposure to the two secondary sources, i.e., surface soils and subsurface soils, determined to be significant.

Surface Soils

Potentially unacceptable total site risk estimates included an ILCR value of $6.2 \times 10-4$ and a HI value of 16 derived for future adult residents, and an ILCR value of $6.4 \times 10-4$ and a HI value of 36 derived for future child residents.

Ingestion of the PCB Aroclor-1260 in the surface soil was the main contributor (greater than 80 percent) to the elevated surface soil ILCR of $1.8 \times 10-4$ for the adult resident and $3.7 \times 10-4$ for the child resident.

Therefore, based on the exposure scenario including soil after the NTCRAs, potentially unacceptable risks for future adult and child residents may be associated with surface soil investigated at Site 84.

Subsurface Soils

For the future construction worker, potentially unacceptable total site risk estimates for Site 84 included an ILCR value of 7.0 x 10-4 and a HI value of 12. Potential exposure to subsurface soil comprised these elevated risk and hazard values. Ingestion of and dermal contact with Aroclor-1260 in the subsurface soil contributed primarily to the ILCR 8.0 x 10-4. Therefore, based on the exposure scenario including soil after the NTCRA, potentially unacceptable risks for future construction workers may be associated with subsurface soil investigated at Site 84.

Uncertainty

The risk measures used in risk assessments are not fully probabilistic estimates of risk but are conditional estimates given that a set of assumptions about exposure and toxicity are developed. Thus, it is important to specify the assumptions and uncertainties inherent in the risk assessment to place the risk estimates in proper perspective. A detailed discussion of the uncertainties associated with the risk assessment is included in the RI.

2.7.2 Ecological Risk Summary

For the present site conditions following the three NTCRAs, complete ecological exposure pathways no longer exist. Therefore, there is no longer an ecological risk at Site 84.

2.8 REMEDIAL ACTION OBJECTIVE AND REMEDIATION GOAL

Remedial action objectives are medium-specific or site-specific goals established for protecting human health and the environment. At Site 84, the environmental media to be addressed is PCB contaminated soil. Future land use for the site has been determined to be low occupancy industrial, such as warehouse or equipment storage. The RAO for Site 84 is:

• Remove contaminated surface and subsurface soils that contain PCBs in excess of the selected remediation goal (i.e., cleanup level) and prevent exposure to remaining PCB contaminated soil consistent with the requirements for a low occupancy industrial area.

A low occupancy land use area is defined as a land use where an unprotected individual would not be present for more than an average of 6.7 hours/week, or 335 hours/year. Examples of low occupancy land areas include unoccupied areas outside of a building or storage area in a warehouse at an industrial facility (40 CFR 761.3).

PCBs in soil are the only COC at Site 84. The remediation goal for Site 84 is:

• PCBs 10 ppm

The selected soil remediation goal for PCBs is based on USEPA Superfund guidance for industrial land use (USEPA, 1990). The 10 ppm PCB cleanup goal is at the more protective end of the 10 to 25 ppm range suggested in the USEPA guidance for sites with industrial use (i.e., low occupancy area) exposure scenarios.

2.9 DESCRIPTION OF ALTERNATIVES

Remedial alternatives to address PCB contamination in soil at Site 84 were developed and are detailed in the Feasibility Study (FS) Amendment. The alternatives evaluated are:

- Alternative RAA 1 No Action;
- Alternative RAA 2 Excavation to 1 ppm PCBs;
- Alternative RAA 3 1 ppm PCB Soil Cover with LUCs; and
- Alternative RAA 4 PCB Removal Actions with LUCs.

A description of remedy components is provided in **Table 2-15** and includes a bulleted list of the components of each alternative and the cost of these components. Costs for land use control monitoring and maintenance are also included in **Table 2-15**. Note that the cost of the three completed NTCRAs - approximately \$3.5 million - should be added to the cost provided in **Table 2-15** for each of the four alternatives.

2.9.1 Alternative RAA 1 – No Action

Alternative RAA 1 is required by CERCLA to be evaluated as a baseline to compare against all other alternatives. Under the No Action RAA, no physical remedial actions will be performed to reduce the toxicity, mobility, or volume of contaminants identified in soil at Site 84 at the present time. In addition, low occupancy land use would be permitted, but no LUCs will be implemented at the site to mitigate the risk to the industrial users. Vehicular access and trespasser access is currently restricted by existing fencing along the highway. Although this RAA does not involve physical remediation, some degree of remediation of the soil contamination is expected to occur over time via natural attenuation processes such as biodegradation. However, the soil contaminants at Site 84, i.e., PCBs, are known for their environmental persistence; therefore, possible natural attenuation processes would require an indefinite period of time. Under the No Action RAA, however, no means are provided to monitor or confirm the natural remediation process. Because hazardous substances will remain at Site 84 under this RAA, the NCP [40 CFR 300.430(f)(4)] requires the lead agency to review the effectiveness of this alternative at least once every five years.

2.9.2 Alternative RAA 2 – Excavation to 1 ppm PCBs

RAA 2 is recommended for high occupancy future land uses such as housing or schools. Note that high occupancy land use is defined as a land use where an unprotected individual may be present for more than an average of 6.7 hours/week or 335 hours/year. This RAA includes excavation of soils that contain contaminant concentrations in excess of remediation goals for high occupancy land use, i.e., 1 ppm, based on USEPA and TSCA cleanup goals for PCBs for high occupancy areas without additional controls.

With no LUCs, all soil exceeding cleanup criteria would be excavated and disposed of off site. The total volume for contaminated soil excavation is approximately 20,000 tons of PCB contaminated soil with disposal in a solid waste landfill and approximately 5,500 tons of TSCA PCB waste soil disposed of in a TSCA approved landfill. Prior to excavation, the existing communication lines and electric lines through the planned excavation area would be rerouted.

Confirmatory sampling will take place to ensure that all contaminants exceeding PCB remediation goals have been excavated. Excavated soils would be separated into TSCA-regulated and non-TSCA-regulated soils. TSCA-regulated soils (PCBs greater than 50 ppm) will be handled separately and would be transported to a TSCA-permitted chemical waste landfill meeting the requirements of 40 CFR 761 for proper off-site disposal. The remaining (non-TSCA-regulated) excavated soils will be transported to a solid waste landfill for proper disposal.

Following the excavation operation, the site would be restored by placing clean backfill (assumed to be approximately one foot of existing clean cover over NTCRA areas and from the on-Base borrow area) to bring the site back to original grade. All disturbed areas would be revegetated with native grasses and plant species to control erosion. Access roads or other infrastructure that are disturbed or destroyed in the excavation process would be restored to pre-excavation conditions. No LUCs would be necessary.

2.9.3 Alternative RAA 3 – 1 ppm PCB Soil Cover with LUCs

RAA 3 is recommended for high occupancy future land uses such as housing or schools. This RAA will include installation of a soil cover over PCB contaminated soils that exceed remediation goals for high occupancy land use. A two-foot thick clean backfill soil cover (assumed from the on-Base borrow area) will be placed. Approximately 4.5 acres would receive soil cover. All disturbed areas would be revegetated with native grasses and plant species to control erosion. Access roads or other infrastructure that are disturbed or destroyed in the backfilling process would be restored to pre-backfilling conditions.

A soil cover will control erosion and migration of contaminated soil. The cover will be contoured so as to control erosion and sedimentation, and will be compacted and vegetated with native grasses and plant species. It is assumed that clean backfill can be obtained from an on-Base borrow source. The soil cover and site fencing will be inspected on an annual basis and after major storm events to ensure that integrity is maintained. Cover restoration and fence repairs will be performed, as needed, based upon inspection results. For costing purposes, it is assumed that inspections will be conducted annually.

Because contaminated soil that poses a potential human health risk will remain at the site, LUCs will be required for this alternative to mitigate the risk for residential users. LUCs will include restrictions on intrusive activities at the site deeper than two feet (e.g., excavation, installation of wells, or construction) other than for monitoring or future remediation purposes [where PCB concentrations at a depth of two feet exceed 1 ppm.] recording a Notice per North Carolina General Statutes (NCGS) 143B-279.9 and .10, and deed and/or lease restrictions in the event that the property is transferred. Also, because hazardous substances will remain at Site 84 under this RAA, the NCP [40 CFR 300.430(f)(4)] requires the lead agency to review the effectiveness of this alternative at least once every five years.

2.9.4 Alternative RAA 4 – PCB Removal Actions with LUCs

RAA 4 is an option for low occupancy industrial land uses such as a warehouse or equipment storage facility. This RAA is Site 84 in its present condition following the three NTCRAs, where both excavation and backfilling to grade, along with soil cover placement, have been performed across the site. Total cost for the three NTCRAs was approximately \$3.5 million. No further soil excavation or soil cover placement would be conducted as part of this alternative.

The installed soil cover on the Phase I and Phase II NTCRA areas varies from one foot to four feet in thickness. This soil cover will control erosion and migration of contaminated soil. The cover is contoured so as to control erosion and sedimentation, and was compacted and vegetated with native grasses and plant species. For this alternative, the existing soil cover and site fencing will be inspected on an annual basis and after major storm events to ensure that integrity is maintained. Cover restoration and fence repairs will be performed, as needed, based upon inspection results. For costing purposes, it is assumed that inspections will be conducted annually.

Because contaminated soil that poses a potential human health risk will remain at the site, LUCs will be required for this alternative to mitigate the potential risk for industrial users. See Figure 2-9. LUCs will include restrictions on intrusive activities on the site that are documented in the Base Master Plan, maintenance of perimeter fence, recording a Notice per NCGS 143B-279.9 and .10, and deed and/or lease restrictions in the event that the property is transferred. Also, because hazardous substances will remain at Site

84 under this RAA, the NCP [40 CFR 300.430(f)(4)] requires the lead agency to review the effectiveness of this alternative at least once every five years.

2.9.5 Common Elements and Distinguishing Features

The No Action alternative does not protect human health and the environment but is presented as a baseline for comparison purposes. With the exception of the no action alternative, the common elements of the remedial alternatives include compliance with ARARs and implementability. RAA 2 is distinguished from RAA 3 and RAA 4 in its expected timeframe to reach cleanup of the site. All contamination remaining at the site above 1 ppm PCBs will be removed and disposed of as part of RAA 2 so the timeframe is relatively short in comparison to RAA 3 and RAA 4. Because of the significant effort required to achieve RAA 2, the cost of this alternative is close to double the \$3.5 million cost already spent in performing the three NTCRAs.

2.10 COMPARATIVE ANALYSIS OF ALTERNATIVES

Each remedial alternative for Site 84 was evaluated against the nine criteria listed below. Alternative RAA 1 (No Action) does not achieve the RAO and is not considered further in this ROD. A comparison of alternatives is presented in **Table 2-16**. The Site 84 FS Amendment provides a more detailed comparative analysis of alternatives.

- <u>Protection of Human Health and the Environment</u>—Addresses whether each alternative provides adequate protection of human health and the environment and describes how risks posed through each exposure pathway are eliminated, reduced, or controlled, through treatment, engineering controls, and/or institutional controls.
- <u>Compliance with ARARs</u>—Section 121(d) of CERCLA and NCP §300.430(f)(1)(ii)(B) require that remedial actions at CERCLA sites at least attain legally applicable or relevant and appropriate federal and state requirements, standards, criteria, and limitations which are collectively referred to as ARARs, unless such ARARs are waived under CERCLA §121(d)(4).
- <u>Long-Term Effectiveness and Permanence</u>—Refers to expected residual risk and the ability of a remedy to maintain reliable protection of human health and the environment over time, once clean-up levels have been met. This criterion includes the consideration of residual risk that will remain on

site following remediation and the adequacy and reliability of controls.

- <u>Reduction of Toxicity, Mobility, or Volume Through</u> <u>Treatment</u>—Refers to the anticipated performance of the treatment technologies that may be included as part of a remedy.
- <u>Short-Term Effectiveness</u>—Addresses the period of time needed to implement the remedy and any adverse impacts to workers, the community and the environment during construction and operation of the remedy until cleanup levels are achieved.
- <u>Implementability</u>—Addresses the technical and administrative feasibility of a remedy from design through construction and operation. Factors such as availability of services and materials, administrative feasibility, and coordination with other governmental entities are also considered.
- <u>Cost</u>—Refers to the estimated capital and annual operations and maintenance costs, as well as present worth cost. Present worth cost is the total cost of an alternative over time in terms of today's dollar value. Cost estimates are expected to be accurate within a range of -30 to +50 percent.
- <u>State Acceptance</u>—Considers whether the state or commonwealth agrees with the analyses and recommendations.
- <u>Community Acceptance</u>—Considers whether the local community agrees with the analyses and preferred alternative.

2.10.1 Threshold Criteria

2.10.1.1 Protection of Human Health and the Environment

Each alternative will protect human health and the environment for the desired future land use. RAA 2 is most protective of human health and the environment because soil exceeding the chemical-specific TBC cleanup goals is removed from the site. For RAA 3 and RAA 4, protection of human health and the environment will be achieved with implementation and proper maintenance of LUCs.

2.10.1.2 Compliance with ARARs

All of the RAAs meet the applicable chemical-specific TBC requirements and actionspecific ARARs along with remediation goals for the desired future land use. See **Table 2-17** and **Table 2-18** for details of the chemical-specific TBC requirements and action-specific ARARs for Site 84, respectively.

2.10.2 Primary Balancing Criteria

2.10.2.1 Long-Term Effectiveness and Permanence

RAA 2 is most effective of the remaining alternatives because contaminated soil above 1 ppm PCBs will be completely removed from the site. Both RAA 3 and RAA 4 will be effective in the long term if the soil cover is properly maintained into the future.

2.10.2.2 Reduction in Toxicity, Mobility, or Volume

None of the three remaining alternatives will reduce toxicity, mobility, or volume of contaminants through treatment. RAA 2 includes disposal of PCB contaminated soil in approved landfills. RAA 3 and RAA 4 that include future and existing soil covers, respectively, will reduce contact with contaminated soil by human receptors, so the potential for toxicity will be reduced.

2.10.2.3 Short Term Effectiveness

For RAA 2 and RAA 3 to be effective in the short term, worker and environmental protection plans will need to be in place. Because of the significant amount of excavation required for RAA 2, there is a possibility of increased risk for workers and community members. RAA 3 will be physically effective in protecting human health and the environment in a shorter time frame than RAA 2. There are no short-term risks associated with RAA 4 that may impact human health or the environment. It is estimated that the alternative construction/remediation efforts can be implemented in one year or less.

2.10.2.4 Implementability

All of the remaining alternatives have an easy level of difficulty to implement, and similar work to RAA 2, RAA 3, and RAA 4 has been completed successfully at Site 84 or at other CERCLA sites on Camp Lejeune.

2.10.2.5 Cost

At \$6,400,000, RAA 2 has a low cost efficiency because it permits high occupancy land use but at a cost that is nearly double the cost of NTCRAs completed to date at Site 84. RAA 4 is the most cost-efficient alternative because, at a very reasonable cost, it permits low occupancy land use of Site 84, the MCB Camp Lejeune planned land use. RAA 3 is moderately cost efficient because it permits high occupancy land use, with restrictions on intrusive activities, at a moderate cost.

2.10.3 Modifying Criteria

2.10.3.1 State Acceptance

State acceptance as a criterion is a statutory requirement that requires state involvement. For all MCB Camp Lejeune projects, including this project, state involvement is achieved by including state officials in a Partnering Team that meets routinely throughout the entire remedial process. Comments from state officials are invited and addressed throughout the development of the RI, FS, the PRAP, and the ROD, as appropriate. NCDENR, as the designated state support agency in North Carolina, has reviewed this ROD and has given concurrence on the Selected Remedy.

2.10.3.2 Community Acceptance

The public meeting was held on April 29, 2008 to present the PRAP and answer community questions regarding the proposed plan at Site 84. There were no concerns raised at the meeting, and the questions were general inquiries for information purposes only. No significant comments were received from the public. Detailed information on the public meeting is provided in the Responsiveness Summary of this ROD.

2.11 PRINCIPAL THREAT WASTES

The NCP establishes an expectation that USEPA will use treatment to address the principal threats posed by a site whenever practicable. The "principal threat" concept is applied to the characterization of "source material" at a Superfund site. Principal threat wastes are those source materials considered to be highly toxic or highly mobile that generally cannot be reliably contained or would present a significant risk to human health or the environment should exposure occur.

The three NTCRAs used landfill disposal to address the principal threats posed by the PCB contamination at Site 84. Following the three NTCRAs, PCB contaminated soil and PCB waste soil, i.e., soil contaminated with greater than 50 ppm PCBs, remain at the site

under a minimum two-foot thick soil cover. Note that PCBs are not very mobile, and have never been detected in the site groundwater. Treatment is not a practical alternative for relatively large volumes of PCB contaminated soil and PCB waste soil, because of the significant cost of incineration. In addition, a possible byproduct of the incineration process could be dioxin, which is a highly toxic carcinogen.

Three of the four RAAs – RAA 1, RAA 3, and RAA 4 - would leave the existing PCB contaminated soil and PCB waste in place under a soil cover, and one RAA – RAA 2 - would excavate and dispose of the PCB contaminated soil and PCB waste soil in approved landfills. To quantify the concentrations of PCB remaining on site, the Phase II NTCRA site area has been divided into approximate 0.5 acre increments. Over approximately four acres of the site, the average PCB concentration remaining in the soil ranges from 0.8 ppm to 4 ppm. Only six of 33 confirmation samples were above 10 ppm PCB in the far western area of Phase II, and none of the post excavation samples exceeded 50 ppm in this area.

In the Phase III NTCRA area, however, the average PCB concentration beneath a twofoot soil cover over 0.5 acre is 55 ppm. Contamination exceeds 50 ppm in the local area of the utility corridor because excavation could not be performed due to the impracticality of digging into an area lined with numerous power lines, gas lines, and fiber optic lines. However, with the geotextile liner under the roadway base material acting as a separation fabric, PCB concentrations under the road from 0.1 ppm to 1700 ppm can be removed from the calculation because they are essentially capped. Under this scenario, the average PCB concentration in the Phase III NTCRA area falls to 37 ppm.

With PCBs at Site 84 being highly immobile, the average PCB concentrations falling below the highly toxic level of 50 ppm, and with the LUCs being required for all viable alternatives where PCB contaminated soil and PCB waste soil are to remain in place, the PCB-contaminated soil source remaining at Site 84 after the NTCRAs should not constitute a principal threat.

2.12 SELECTED REMEDY

Alternative RAA 4, PCB Removal Actions with LUCs, is the Selected Remedy to address PCB soil contamination at Site 84.

2.12.1 Summary of Rationale for the Selected Remedy

For Alternative RAA 4, protection of human health and the environment will be achieved with implementation and proper maintenance of LUCs. And RAA 4 meets the applicable chemical-specific TBC and action-specific ARARs along with remediation goals for the anticipated future industrial land use. If the soil cover is properly maintained into the future, RAA 4 will be effective in the long term. RAA 4 that includes an existing soil cover and a separation fabric under the roadway above high PCB contamination that could not be excavated, will reduce contact with contaminated soil by human receptors, so the potential for toxicity will be reduced.

There are no short-term risks associated with RAA 4 that may impact human health or the environment. Implementability of RAA 4 would be easy going forward because the actions (i.e., three NTCRAs) have already been implemented. And, RAA 4 is the most cost-efficient alternative because, at a very reasonable cost, it permits the planned low occupancy industrial land use of Site 84.

The Selected Remedy is the best choice among the alternatives because:

- The three earlier NTCRAs removed a large volume of PCB contaminated soil and PCB waste soil and covered the remaining PCB contaminated soil and PCB waste soil with a soil cover,
- LUCs will be instituted to prevent unacceptable land uses and intrusive activities to effectively eliminate the exposure pathways and reduce risk to an acceptable level;
- MCB Camp Lejeune's plan for low occupancy industrial land use is met with the Selected Remedy; and
- The Selected Remedy is cost effective, will meet the RAO, as well as comply with ARARs and TBC.

Based on information currently available, the Navy, MCB Camp Lejeune, and the USEPA, in conjunction with NCDENR, believe the Selected Remedy provides the best balance of tradeoffs for the site and is protective of human health and complies with all ARARs.

2.12.2 Description of the Selected Remedy

The Selected Remedy for Site 84, PCB Removal Actions with LUCs, includes the application of LUCs to Site 84 following the PCB removal actions conducted in three phases of NTCRAs in 2002, 2004, and 2006 (Rhēa, 2007). The three earlier NTCRAs removed PCB contaminated soil and PCB waste soil and implemented a soil cover over PCB contaminated soil remaining in place. Removal actions at Site 84, OU 19, included the following:

- 1999 Abandoned Portions of Building 45 Removed;
- 2002 Phase I NTCRA Removal of Building 45 Foundation and Surrounding Contaminated Soil;
- 2004 Phase II NTCRA Removal of PCB Contaminated and Commingled PCB/Total Petroleum Hydrocarbons (TPH) Contaminated Soil and Sediment; Removal of Concrete-Encased Steel Pipe that originated in the former Building 45 and discharged into the former Lagoon; and removal and backfilling of the Lagoon; and
- 2006 Phase III NTCRA Removal of PCB Contaminated Soil and PCB Waste Soil to a depth of two feet and Soil Cover of PCB Contaminated Soil and PCB Waste Soil remaining in place at a depth greater than two feet beneath the final surface at a concentration greater than 10 ppm.

In 1999, the aboveground portion of Building 45 was removed. In 2002, the Phase I NTCRA was conducted in which the foundation of Building 45 and surrounding PCB contaminated soil were removed. During this NTCRA, 4,860 tons of PCB-contaminated soil (i.e., <50 ppm) was excavated and disposed of at the Sampson County Landfill, a local permitted facility in Rosewood, North Carolina. In addition, 143 tons of TSCA PCB waste soil (Toxic Substances Control Act – TSCA) (i.e., >50 ppm) was excavated and disposed of at the Wayne Disposal, Inc. facility, a TSCA landfill in Belleville, Michigan. PCB contaminated soil was removed to a concentration of 1 ppm. The minimum depth of excavation in the Phase I NTCRA area was four feet. After excavation was completed, the area was backfilled with off-site clean soil.

In 2004, a Phase II NTCRA was completed that attempted to address the remaining contamination on site. The excavation volume included 11,600 tons of PCB- contaminated soil and sediment and 360 tons of TSCA PCB waste soil. The PCB- contaminated soil and sediment was disposed of at the Sampson County Landfill, and the

TSCA PCB waste soil was disposed of at the Clean Harbors Lone Mountain Landfill, a TSCA landfill in Waynoka, Oklahoma. Confirmation testing performed after excavation verified that the soil in the base of the excavation from zero to two feet was below the remediation goal of 10 ppm for industrial low-occupancy land use. However, confirmation sampling also identified several Phase II NTCRA excavation sidewall areas with soil PCB concentrations greater than or equal to 10 ppm. The sample results appeared to indicate a significant southwestern extension of PCB contamination. Following excavation, the area was backfilled with off-site clean soil.

From June through August 2006, a Phase III NTCRA was conducted at Site 84, south and west of the Phase I and Phase II NTCRA areas. Where possible, surface soils impacted with PCBs at concentrations greater than or equal to 50 ppm were excavated and disposed of off site at the Wayne Disposal, Inc. facility, a TSCA landfill in Belleville, Michigan. The area of soil removal was 5,800 square feet, and 696 tons of TSCA PCB waste soil was disposed of at the Belleville, Michigan facility. The excavated areas were backfilled with a minimum of two feet of clean soil cover supplied by the MCB Camp Lejeune French Creek borrow area. In areas where mass excavation was not feasible due to numerous buried, active utility and communication lines or PCB concentrations were less than 50 ppm at the surface, a minimum of two feet of clean soil cover was placed above the existing surface. The area of soil cover in the Phase III NTCRA area is 18,300 square feet. Prior to backfilling, the existing in-place soil was sampled and analyzed for PCBs. In addition, as part of this removal action, the existing four-foot high fence along the northeastern border of the site was extended to Northeast Creek, and the entire site was revegetated. The three NTCRA phases were completed at a cost of approximately 3.5 million dollars.

Following the completion of three NTCRAs, all known surface soil PCB contamination concentrations do not exceed 10 ppm PCBs. The site is cleared for industrial land use, but not residential land use, because of surface soil (i.e., less than two feet in depth) concentrations in excess of 1 ppm PCBs. RAA 4 proposes the use of LUCs to permit industrial or low occupancy land use at Site 84 and to prevent unacceptable land uses and intrusive activities in areas with subsurface soil (i.e., greater than two foot depth) concentrations are still greater than 10 ppm PCBs.

The LUCs will be implemented and maintained until the concentration of hazardous substances (i.e., PCBs) in the soil are at such levels that allow for unrestricted use and unlimited exposure. The Navy and MCB Camp Lejeune are responsible for implementing, maintaining, reporting on, and enforcing the LUCs. Although the Navy may later transfer these procedural responsibilities to another party by contract, property agreement, or through other means, the Navy and MCB Camp Lejeune shall retain ultimate responsibility for the remedy integrity. The Navy and MCB Camp Lejeune or any subsequent owners shall not modify, delete, or terminate any LUC without USEPA and NCDENR concurrence.

The performance objectives of the LUCs at Site 84 are to:

- Prohibit the development and use of the site for residential housing, elementary and secondary schools, child care facilities, and recreational areas within the LUC boundaries of the site;
- Prohibit intrusive activities within the areas with PCB contamination greater than 10 ppm in subsurface soils, i.e., greater than two-foot depth; and
- Maintain the integrity of the 24 inch vegetative soil cover to limit exposure to subsurface soils with PCB contamination greater than 10 ppm.

The area of Site 84 to be covered by LUCs (i.e., LUC boundaries) are identified in **Figure 1-1.** The following generally describes the LUCs which will be implemented at Site 84 in order to achieve the LUC performance objectives detailed above:

- 1. Incorporating land use prohibitions into the MCB Camp Lejeune Base Master Plan;
- 2. Recording a Notice of Contaminated Site filed in Onslow County real property records per North Carolina General Statues (NCGS) 143B 279.9 and 143B-279.10;
- 3. Monitoring and maintenance of the Site 84 soil cover and fence; and
- 4. Deed and/or lease restrictions in the event of transfer for any portion of Site 84.

The Navy shall prepare, in accordance with USEPA guidance, and submit to the USEPA and NCDENR, a Remedial Design (RD) containing LUC implementation and maintenance actions, including periodic inspections, within 90 days of the ROD signature, for review and approval. The Navy shall also submit the document memorializing remedial action completion within 120 days following completion of the remedial action for Site 84. The Navy will be and MCB Camp Lejeune are responsible for implementing, maintaining, inspecting, reporting on, and enforcing the LUCs described in this ROD in accordance with the ROD and the approved RD.

PCB contaminated soil at a concentration greater than 10 ppm in subsurface soils (i.e., greater than two-foot depth) could affect future construction workers at the site. The exposure routes include inhalation, ingestion, and dermal contact. Therefore, intrusive activities will be prohibited in the areas identified on **Figure 1-1**, unless specifically

approved by both NCDENR and USEPA. If future work is required in these prohibited areas, the workers will need to be properly trained, briefed regarding the site risks, and shall don appropriate PPE prior to working in these areas. In addition, the excavated soil may not be placed back into the excavation area but must be disposed of at a TSCA Landfill if the concentrations exceed 50 ppm or in a lined landfill if the concentrations are above 1 ppm.

2.12.3 Summary of the Estimated Remedy Costs

The estimated costs for Alternative RAA 4, PCB Removal Actions with LUCs, are summarized in **Table 2-15** and detailed in **Table 2-19**. The information in this cost estimate is based on the best available information regarding the anticipated scope of the Selected Remedy. Changes in the cost estimate may occur as a result of new information. Major changes will be documented in the form of a memorandum in the Administrative Record file. This is an order-of-magnitude engineering cost estimate that is expected to be within +50 percent to -30 percent of the actual costs. A complete cost summary for each remedial alternative is provided in the Final FS Amendment (Rhēa, 2008).

2.12.4 Expected Outcomes of the Selected Remedy

Future land use plans by MCB Camp Lejeune for Site 84 are low occupancy industrial such as unoccupied areas outside of a building or storage area in a warehouse at an industrial facility. When Alternative RAA 4 is implemented, exposure for construction workers will be controlled through LUCs until PCB concentrations are reduced to acceptable levels for unlimited exposure and unrestricted use. Once the utility corridor lease agreements are scheduled for renewal, the utility companies (i.e., ones with utilities within the PCB Area of Concern [AOC]) will be notified of the contaminated area and given the option to either properly excavate and dispose of PCB contaminated soil and PCB waste soil (see Section 2.12.2) or relocate their utilities outside of the PCB AOC.

2.13 STATUTORY DETERMINATIONS

Remedial actions undertaken at NPL sites must meet the statutory requirements of Section 121 of CERCLA and thereby achieve adequate protection of human health and the environment, comply with ARARs of both federal and state laws and regulations, be cost-effective, and use, to the maximum extent practicable, permanent solutions and alternative treatment or resource recovery technologies. In addition, CERCLA includes a preference for remedies that employ treatment that permanently and significantly reduces the volume, toxicity, and/or mobility of hazardous waste as the principal element. The following discussion summarizes the statutory requirements that are met by the Selected Remedy.

2.13.1 Protection of Human Health and the Environment

For the Selected Remedy RAA 4, low occupancy industrial land use would be permitted at Site 84. The contamination levels now present at Site 84 are acceptable for industrial use but not residential use. Therefore, by establishing the LUCs proposed in RAA 4, human health risks associated with unwarranted residential use and the potential for exposing industrial users to PCB concentrations greater than 10 ppm PCBs through intrusive activities are mitigated. The goal of reducing potential human health risks is appropriately achieved for those granted access to Site 84.

2.13.2 Compliance with ARARs and To Be Considered (TBC) Criteria

CERCLA Section 121(d), specifies in part, that remedial actions for cleanup of hazardous substances must comply with requirements and standards under federal or more stringent state environmental laws and regulations that are applicable or relevant and appropriate (i.e., ARARs) to the hazardous substances or particular circumstances at a site or obtain a waiver [see also 40 Code of Federal Regulations (CFR) 300.430(f)(1)(ii)(B)]. ARARs include only federal and state environmental or facility siting laws/regulations and do not include occupational safety or worker protection requirements. In addition, per 40 CFR 300.405(g)(3), other advisories, criteria, or guidance may be considered in determining remedies (so-called To-Be-Considered [TBC] guidance category.

In accordance with 40 CFR 300.400(g), the Navy, NCDENR, and USEPA have identified the specific ARARs and TBCs for the selected remedy. The selected remedy complies with all ARARs related to implementing the selected action. **Tables 2-17** and **2-18** list the Chemical-specific and Action-specific ARARs, as well as the TBCs which were considered in the implementation of the selected remedy. As noted above, a major component of the selected remedy for Site 84 (three NTCRAs) were implemented prior to finalization of this ROD. The regulatory requirements for the work conducted as removal actions are identified herein as ARARs. Consequently, most of the Action-specific ARARs have been complied with by the Navy while implementing the removal actions.

2.13.3 Cost Effectiveness

The Selected Remedy, Alternative RAA 4, is cost-effective and represents a reasonable value for the money to be spent. In making this determination, the following definition was used, "A remedy shall be cost-effective if its costs are proportional to its overall

effectiveness (NCP §300.430(f)(1)(ii)(D)" This analysis was accomplished by evaluating the overall effectiveness of those alternatives that satisfied the threshold criteria. Overall effectiveness was compared to costs to determine cost-effectiveness. The relationship of the overall effectiveness of this remedial alternative was determined to represent a reasonable value for the money to be spent, taking into account the MCB Camp Lejeune plan for reuse of the site.

The estimated net present worth cost for RAA 4 is \$50,804. RAA 4 is cost-effective because it permits low occupancy land use for Site 84, as planned, at a low cost.

2.13.4 Utilization of Permanent Solutions and Alternative Treatment Technologies or Resource Recovery Technologies to the Maximum Extent Practicable

The Navy, MCB Camp Lejeune, USEPA, and the State of North Carolina determined that the Selected Remedy, Alternative RAA 4, represents the maximum extent to which permanent solutions can be used in a practicable manner at Site 84. Over \$3.5 million was spent in removing and disposed of PCB contaminated soil and PCB waste soil from Site 84. Because of the remaining site risks, LUCs will be implemented to prevent residential development on the site and to control intrusive activities for future construction workers.

2.13.5 Preference for Treatment as a Principal Element or Explanation of Why Not Satisfied

As discussed above in Section 2.11, the Selected Remedy RAA 4, does not include treatment as a principal element. Treatment is not a practical alternative for relatively large volumes of PCB contaminated soil and PCB waste soil because of the significant cost of incineration. In addition, a possible byproduct of the incineration process could be dioxin, which is a highly toxic carcinogen. The three NTCRAs used landfill disposal to address the principal threats posed by the PCB contamination at Site 84. Following the three NTCRAs, PCB contaminated soil and PCB waste soil, i.e., soil contaminated with greater than 50 ppm PCBs, remain at the site under a minimum two-foot thick soil cover and LUCs will be implemented to control remaining site risks.

2.13.6 Five-Year Review Requirements

This remedy will result in hazardous substances, pollutants, or contaminants remaining on site above levels that allow for unlimited use and unrestricted exposure; therefore in accordance with CERCLA Section 121(c) and the NCP at 40 CFR300.430(f)(4)(ii) a statutory review will be conducted by the Navy within five years after initiation of remedial action to ensure that the remedy is, or will be, protective of human health and the environment. If the remedy is determined not to be protective of human health and the environment because LUCs have failed, additional remedial actions would be evaluated by the FFA parties and the Navy may be required to undertake additional remedial action.

2.14 DOCUMENTATION OF SIGNIFICANT CHANGES

The PRAP for Site 84 was released for public comment on April 29, 2008. The PRAP identified Alternative RAA 4, PCB Removal Actions with LUCs, as the Preferred Alternative for soil remediation. The Navy reviewed the comments made during the public comment period. It was determined that no significant changes to the remedy, as originally identified in the PRAP, were necessary or appropriate.

3.0 RESPONSIVENESS SUMMARY

In accordance with Section 113 and 117 of CERCLA, the Navy provided a public comment period April 29 through May 27, 2008, for the proposed remedial action described in the FS and PRAP for Site 84. A public meeting to present the PRAP was held at the Coastal Carolina Community College, located in Jacksonville, North Carolina, on April 29, 2008. Public notice of the meeting and availability of documents was placed in *The Jacksonville Daily News* newspaper on April 21, 2008.

The participants in the Public Meeting held on April 29, 2008, included representatives of the Navy, MCB Camp Lejeune, USEPA, and NCDENR. Five community members attended the meeting. Questions received during the public meeting were general inquiries and are described in the PRAP Public Meeting minutes included as **Appendix C**. There were no significant comments received at the public meeting requiring amendment to the PRAP, and no additional written comments, concerns, or questions were received from community members during the public comment period.

REFERENCES

Baker, 2002. "Final Remedial Investigation, Site 84, Operable Unit 19, MCB Camp Lejeune, North Carolina," May 2002.

Baker and CH2M Hill, 2002. "Final Feasibility Study Operable Unit No.19 Site 84/Building 45 Area", Baker Environmental Inc. May 2002.

MCB Camp Lejeune, 2002. "Action Memorandum, Operable Unit No. 19 (Site 84/Building 45 Area)," June 2002.

NCDENR, 2000. "Groundwater Section Guidelines for the Investigation and Remediation of Soil and Groundwater", Division of Water Quality, Groundwater Section. July 2000.

Rhēa, 2006. "Final Recommendations Report, Review, Recommendations, and Removal Action, Site 84, Operable Unit 19, MCB Camp Lejeune, North Carolina," September 2006.

Rhēa, 2007. "Final Project Closeout Report: Review, Recommendations, and Removal Action, Site 84, Operable Unit 19, MCB Camp Lejeune, North Carolina", Rhēa Engineers and Consultants, Inc. November 2007.

Rhēa, 2008. "Final Feasibility Study Amendment, Site 84, Operable Unit No. 19, MCB Camp Lejeune, North Carolina," Rhēa Engineers and Consultants, Inc., May, 2008.

TMS and Baker, 2005. "Final Site 84, Operable Unit 19, Phase II Interim Removal Action, Closeout Report, Marine Corp Base, Camp Lejeune, North Carolina," March 2005.

USEPA, 1990. "A Guide on Remedial Actions at Superfund Sites With PCB Contamination," Office of Solid Waste and Emergency Response (OSWER), 9355.4-01 FS, August 1990.

USEPA, 1999. "A Guide to Preparing Superfund Proposed Plans, Records of Decision, and Other Remedy Selection Decision Documents," USEPA 540-R-98-031, OSWER 9200.1-23P,PB98-963241, July 1999.

TABLES

		,			Field Analysis	····	Laborato	ry Analysis	·····
Sample ID	Date	Depth (bgs)	Time (hours)	Laboratory Sample ID	Ensys [™] PCB (ppm)	PCBs	Grain size, Total Organic Carbon	TCL VOC, SVOC, Pesticides, PCBs, GRO, DRO, TAL Metals, Cyanide	TCL VOCs, SVOCs, Pesticides, Herbicides, PCBs, VPH, EPH, TAL Metals
DIRECT PUSH SAM	PLES								
IR84-DP01-00	7/17/01	0-1'			< 1.0				
IR84-DP01-02	7/17/01	3-5'							
IR84-DP02-00	7/17/01	0-1'			< 1.0				
JR84-DP02-03	7/17/01	5-7'							·····
IR84-DP03-00	7/17/01	0-1'			1.0 - 10.0				
IR84-DP03-02	7/17/01	3-5'				•	<u> </u>		
IR84-DP04-00	7/17/01	0-1'			< 1.0	· ·			
IR84-DP04-04	7/17/01	7-9'				···			
IR84-DP04-05	7/17/01	9-11'				•			
IR84-DP05-00	7/17/01	0-1'			< 1.0				
IR84-DP05-04	7/17/01	7-9'	·······						
IR84-DP05-05	7/17/01	9-11				••			
IR84-DP06-00	7/17/01	0-1'	1611	IR84-DP06-00	< 1.0	X			
IR84-DP07-00	7/17/01	0-1'			< 1.0				
IR84-DP08-00	7/17/01	0-1'		- · ·					
IR84-DP08-05	7/17/01	9-11'							······································
JR84-DP09-00	7/18/01	0-1'			1.0 - 10.0				
IR84-DP09-03	7/18/01	5-7'							
IR84-DP09-04	7/18/01	7-9'					- [
IR84-DP10-00	7/18/01	0-1'			1.0 - 10.0			· · ·	
IR84-DP10-02	7/18/01	3-5'							
IR84-DP10-05	7/18/01	9-11'				····			
JR84-DP11-00	7/18/01	0-11			< 1.0				
IR84-DP11-02	7/18/01	3-5'			· · · · · · · · · · · · · · · · · · ·				
IR84-DP12-00	7/18/01	0-1'			10.0 - 50.0				
IR84-DP12-02	7/18/01	3-5'			1			<u> </u>	
IR84-DP13-00	7/18/01	0-1'			1.0 - 10.0				
IR84-DP13-03	7/18/01	5-7'			1				
IR84-DP14-00	7/18/01	0-1'	· · · · ·		< 1.0				
IR84-DP14-02	7/18/01	3-5'		· · · · · · · · · · · · · · · · · · ·					
IR84-DP14-03	7/18/01	5-7'			· · · · · · · · · · · · · · · · · · ·				
IR84-DP15-00	7/18/01	0-1'			< 1.0				
IR84-DP15-02	7/18/01	3-5'							
IR84-DP15-03a	7/18/01	5-7	1429	(R84-DP15-03				X	

.

-

.

					Field Analysis		Laborate	ory Analysis	
Sample 1D	Date	Depth (bgs)	Time (hours)	Laboratory Sample ID	Ensys [*] PCB (ppm)	PCBs	Grain size, Total Organic Carbon	TCL VOC, SVOC, Pesticides, PCBs, GRO, DRO, TAL Metals, Cyanide	TCL VOCs, SVOCs Pesticides, Herbicide PCBs, VPH, EPH, TAL Metals
IR84-DP15-03b	7/18/01	5-7'							
IR84-DP16-00	7/18/01	0-1'			< 1.0				
IR84-DP16-04	7/18/01	7-9'							
DIRECT PUSH SAM	PLES (cont.)								
IR84-DP17-00	7/19/01	0-1'			< 1.0				
IR84-DP17-02	7/19/01	3-5'							
IR84-DP18-00	7/19/01	0-1'	0752	IR84-DP18-00	10.0 - 50.0	х			
IR84-DP18-02	7/19/01	3-5'	0756	IR84-DP18-02	> 50.0	X			
IR84-DP19-00	7/19/01	0-1'			1.0 - 10.0				
IR84-DP19-01	7/19/01	1-3'			1				
JR84-DP20-00	7/19/01	0-1'	0831	IR84-DP20-00	< 1.0	x			ļ
IR84-DP20-02	7/19/01	3-5'							
IR84-DP21-00	7/19/01	0-1'			1.0 + 10.0				
IR84-DP21-04	7/19/01	7-9'			· · · · · · · · · · · · · · · · · · ·				1
				IR84-DP22-00 IR84	-				
IR84-DP22-00	7/19/01	0-1'	1036	DP22-00-D	< 1.0	x			
IR84-DP23-00	7/19/01	0-1'			1.0 - 10.0				
IR84-DP24-00	7/19/01	0-1'			< 1.0				
IR84-DP25-00	7/19/01	0-1'			10.0 - 50.0				
IR84-DP26-00	7/19/01	0-1'			1.0 - 10.0				
IR84-DP26-01	7/19/01	1-3'		· · · · ·					
IR84-DP26-02	7/19/01	3-5'							
IR84-DP27-00	7/19/01	0-1'	1254	IR84-DP27-00	1.0 - 10.0	x			
IR84-DP28-00	7/19/01	0-1'			10.0 - 50.0				
IR84-DP28-01	7/19/01	1-3'			< 1.0				
IR84-DP29-00	7/19/01	0-1'	1315	iR84-DP29-00	1.0 - 10.0	x			
IR84-DP29-01	7/19/01	1-3'							
IR84-DP30-00	7/19/01	0-1'			< 1.0		· · ·	· · · · · · · · · · · · · · · · · · ·	
IR84-DP30-03	7/19/01	5-7'							
IR84-DP31-00	7/19/01	0-1'			1.0 - 10.0				
IR84-DP32-00	7/20/01	0-1'			> 50.0			·····	
IR84-DP33-00	7/20/01	0-1'	1000	IR84-DP33-00	1.0 - 10.0	X			
IR84-DP33-01	7/20/01	1-3'	1000			<u></u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•
IR84-DP34-00	7/20/01	0-1'			< 1.0			<u> </u>	
IR84-DP34-01	7/20/01	1-3'		· · · · · · · · · · · · · · · · · · ·				<u> </u>	1

					Field Analysis		Laborate	ory Analysis	· · · ·
Sample ID	Date	Depth (bgs)	Time (hours)	Laboratory Sample ID	Ensys™PCB (ppm)	PCBs	Grain size, Total Organic Carbon	TCL VOC, SVOC, Pesticides, PCBs, GRO, DRO, TAL Metals, Cyanide	TCL VOCs, SVOCs, Pesticides, Herbicides, PCBs, VPH, EPH, TAL Metals
IR84-DP35-00	7/20/01	0-1*			1.0 - 10.0				
IR84-DP35-03	7/20/01	5-7'							
IR84-DP36-00	7/20/01	0-1'	1112	IR84-DP36-00	1.0 - 10.0	х	X		
IR84-DP36-03	7/20/01	5-7*							
IR84-DP37-00	7/20/01	0-1'	1335	IR84-DP37-00	< 1.0	X			
IR84-DP37-04	7/20/01	7-9'				· · · · · · · · · · · · · · · · · · ·			
DIRECT PUSH SAM	PLES (cont.)							-	
IR84-DP37-06	7/20/01	11-13'							
IR84-DP38-00	7/20/01	0-1'			< 1.0				
IR84-DP39-00	7/20/01	0-1'			< 1.0				
IR84-DP40-00	7/20/01	0-1*			< 1.0				
IR84-DP41-00	7/20/01	0-1'	1545	IR84-DP41-00	10.0 - 50.0	Х			
IR84-DP42-00	7/20/01	0-1'	1610	IR84-DP42-00 IR84- DP42-00D	1.0 - 10.0	x			
IR84-DP43-00	7/20/01	0-1*			1.0 - 10.0				i
IR84-DP44-00	7/20/01	0-1'		····	1.0 - 10.0				
IR84-DP45-00	7/21/01	0-1'	0845	IR84-DP45-00				X	
IR84-DP45-03	7/21/01	5-7'	0850	IR84-DP45-03				X	
IR84-DP46-00	7/21/01	0-1'	0915	IR84-DP46-00				x	
IR84-DP46-02	7/21/01	3-5'	0930	IR84-DP46-02				x	
IR84-DP47-00	7/21/01	0-1'	0935	IR84-DP47-00				x	
IR84-DP47-01	7/21/01	1-3'	0940	IR84-DP47-01				x	
IR84-DP48-00	7/21/01	0-1'	0955	IR84-DP48-00				X	
IR84-DP49-00	7/21/01	0-1'	1010	IR84-DP49-00				X	
IR84-DP49-01	7/21/01	1-3'	1012	IR84-DP49-01	·			X	
IR84-DP50-00	7/21/01	0-1'	1028	IR84-DP50-00	·			X	
IR84-DP50-01	7/21/01	1-3'	1030	IR84-DP50-01	1			x	
IR84-DP51-00	7/21/01	0-1'	1043	IR84-DP51-00				x	
IR84-DP51-01	7/21/01	1-3'	1045	IR84-DP51-01			1	x	
IR84-DP52-00	7/21/01	0-1'	1055	IR84-DP52-00				X	
IR84-DP52-01	7/21/01	1-3'	1100	IR84-DP52-01				X	
IR84-DP53-00	7/21/01	0-1'	1130	IR84-DP53-00	1 1		<u> </u>	X	
IR84-DP54-00	7/21/01	0-1'	1140	IR84-DP54-00	1			X	
IR84-DP55-00	7/21/01	0-1'	1150	IR84-DP55-00		• •		X	
IR84-DP56-00	7/21/01	0-1'			1.0 - 10.0				

					Field Analysis		Laborate	ory Analysis	
Sample ID	Date	Depth (bgs)	Time (hours)	Laboratory Sample ID	Ensys™CB (ppm)	PCBs	Grain size, Total Organic Carbon	TCL VOC, SVOC, Pesticides, PCBs, GRO, DRO, TAL Metals, Cyanide	TCL VOCs, SVOCs, Pesticides, Herbicides, PCBs, VPH, EPH, TAL Metals
IR84-DP56-01	7/21/01	1-3'							
IR84-DP57-00	7/21/01	0-1'			< 1.0				
IR84-DP58-00	7/22/01	0-1'			1.0 - 10.0				
IR84-DP58-01	7/22/01	1-3'		• • • •					
IR84-DP59-00	7/22/01	0-1'							
IR84-DP59-01	7/22/01	1-3'							
IR84-DP60-00	7/22/01	0-1'			1.0 - 10.0				
IR84-DP60-01	7/22/01	1-3'							
IR84-DP61-00	7/22/01	0-1'			1.0 - 10.0				
DIRECT PUSH SAM	PLES (cont.)	•							
IR84-DP61-01	7/22/01	1-3'							
1R84-DP62-00	7/22/01	0-1*			1.0 - 10.0				
IR84-DP62-01	7/22/01	1-3'			1				
IR84-DP63-00	7/22/01	0-1'	1200	IR84-DP63-00	10.0 - 50.0	X		-	
IR84-DP63-01	7/22/01	1.3'	1205	IR84-DP63-01	1.0 - 10.0	X			
IR84-DP64-00	7/22/01	0-1'		1	> 50.0				
IR84-DP64-01	7/22/01	1-3'			1.0 - 10.0				
IR84-DP65-00	7/22/01	0-1'	1224	IR84-DP65-00	10.0 - 50.0	X			
IR84-DP65-02	7/22/01	3-5'	1228	IR84-DP65-02	1.0 - 10.0	Х			
IR84-DP66-00	7/22/01	0-1'			< 1.0				
IR84-DP66-02	7/22/01	3-5'					1		
IR84-DP67-00	7/22/01	0-1'			10.0 - 50.0				
IR84-DP68-00	7/22/01	0-1'			< 1.0				1
IR84-DP69-00	7/22/01	0-1'	1505	IR84-DP69-00 IR84- DP69-00D	< 1.0	х			
IR84-DP70-00	7/22/01	0-1'			< 1.0		1		
1R84-DP71-00	7/22/01	0-1'	1525	IR84-DP71-00	1.0 - 10.0	X			
IR84-DP72-00	7/23/01	0-1'			< 1.0				
IR84-DP73-00	7/23/01	0-1'			< 1.0			1	
IR84-DP74-00	8/2/01	0-1'	1030	IR84-DP74-00				1	X
IR84-DP74-04	8/2/01	7-9	1050	IR84-DP74-04			1	1	Х
IR84-DP75-00	8/2/01	0-1'	1105	IR84-DP75-00			1	1	X
IR84-DP75-05	8/2/01	9-11'	1140	IR84-DP75-05					x
IR84-DP76-00	8/2/01	0-1'	1155	IR84-DP76-00					X
1R84-DP76-04	8/2/01	7-9'	1205	IR84-DP76-04			<u> </u>		X

10.5 M

				•	Field Analysis		Laboratory Analysis			
Sample ID	Date	Depth (bgs)	Time (hours)	Laboratory Sample ID	Ensys [™] ≁CB (ppm)	PCBs	Grain size, Total Organic Carbon	TCL VOC, SVOC, Pesticides, PCBs, GRO, DRO, TAL Metals, Cyanide	TCL VOCs, SVOCs, Pesticides, Herbicides, PCBs, VPH, EPH, TAL Metals	
IR84-DP77-00	8/5/01	0-1'	1750	IR84-DP77-00					Х	
IR84-DP77-03	8/5/01	5-7'	1755	IR84-DP77-03		•			х	
IR84-DP78-00	8/5/01	0-1'	1720	IR84-DP78-00					X	
IR84-DP78-03	8/5/01	5-7'	1735	IR84-DP78-03					X	
IR84-DP79-00	8/5/01	0-1'	1650	IR84-DP79-00					Х	
IR84-DP79-02	8/5/01	3-5'	1705	IR84-DP79-02 IR84- DP79-02D		<u></u>			x	

ÌĄ.

3

					Field Analysis		Laborate	ry Analysis	
						•			
								TCL VOC, SVOC,	TCL VOCs, SVOCs,
								Pesticides, PCBs,	Pesticides, Herbicides,
			Time				Grain size, Total	GRO, DRO, TAL	PCBs, VPH, EPH,
Sample ID	Date	Depth (bgs)	(hours)	Laboratory Sample ID	Ensys ^T PCB (ppm)	PCBs	Organic Carbon	Metals, Cyanide	TAL Metals
DIRECT PUSH SAMP	LES (cont.)								
IR84-DP80-00	8/5/01	0-1'	1630	IR84-DP80-00					X
IR84-DP80-02	8/5/01	3-5'	1640	IR84-DP80-02					X
IR84-DP81-00	8/5/01	0-1	1455	IR84-DP81-00					Х
IR84-DP81-04	8/5/01	7-9'	1515	IR84-DP81-04					X
IR84-DP82-00	8/5/01	0-1'	1530	IR84-DP82-00					X
IR84-DP82-04	8/5/01	7-9'	1545	IR84-DP82-04					X
IR84-DP83-00	8/5/01	0-1*	1600	IR84-DP83-00					X
IR84-SP83-03	8/5/01	5-7'	1610	IR84-DP83-03					X
IR84-DP84-00	8/3/01	0-1'	1015	IR84-DP84-00					X
TEST PIT SAMPLES			•••						
IR84-TP01A	7/23/01		1145	IR84-TP01A		x			
IR84-TP01B	7/23/01		1145	IR84-TP01B					
IR84-TP02A	7/23/01		1145	IR84-TP02A		̈́Χ			
IR84-TP02B	7/23/01		1145	IR84-TP02B		x			
IR84-TP03A	7/23/01		1200	IR84-TP03A		X			
IR84-TP03B	7/23/01		1200	IR84-TP03B		X			
MONITORING WELI	BORINGS			••••••	•			-	
IR84-MW15-00	7/31/01	0-1'	0730	IR84-MW15-00					X
JR84-MW15-04	7/31/01	7-9'	0810	IR84-MW15-04					X
IR84-MW16-00	7/31/01	0-1'	0930	IR84-MW16-00		X			
IR84-MW16-07	7/31/01	13-15'	1000	IR84-MW16-07		x			
IR84-MW17-00	7/31/01	0-1'	1325	IR84-MW17-00					X
IR84-MW17-07	7/31/01	13-15'	1435	IR84-MW17-07					X
IR84-MW18-00	8/1/01	0-11	0710	IR84-MW18-00		X			
IR84-MW18-04	8/1/01	7-9'	0736	IR84-MW18-04		X			
IR84-MW19-00	8/1/01	0-11	0938	IR84-MW19-00		Х			
IR84-MW19-06	8/1/01	11-13'	1010	IR84-MW19-06		Х			
		ŀ		IR84-MW20-00 IR84					
IR84-MW20-00	8/1/01	0-1'	1300	MW20-00D					X
IR84-MW21-04	8/2/01	7-9'	0815	IR84-MW21-04					X
IR84-MW22-02	8/3/01	3-5'	1200	IR84-MW22-02					X
IR84-MW23-01	8/3/01	1-3'	0925	IR84-MW23-01					X

	·····				Field Analysis		Laborato	ory Analysis	
Sample ID	Date	Depth (bgs)	Time (hours)	Laboratory Sample ID	Ensys [†] ₱CB (ppm)	PCBs	Grain size, Total Organic Carbon	TCL VOC, SVOC, Pesticides, PCBs, GRO, DRO, TAL Metals, Cyanide	TCL VOCs, SVOCs, Pesticides, Herbicides, PCBs, VPH, EPH, TAL Metals
SOIL BORINGS				•					
IR84-SB01-02	8/2/01	3-5'	1450	IR84-SB01-02					X
IR84-SB02-02	8/2/01	3-5'	1435	IR84-SB02-02					x
IR84-SB03-02	8/2/01	3-5'	1230	IR84-SB03-02			<u> </u>		X
IR84-SB04-02	8/2/01	3-5'	1500	IR84-SB04-02			1		x
IR84-SB05-01	8/3/01	1-3'	1240	IR84-SB05-01			1	· · · · · · · · · · · · · · · · · · ·	x
				IR84-SB06-01 IR84-	1	······································			· · · · · · · · · · · · · · · · · · ·
IR84-SB06-01	8/2/01	1-3'	1525	SB06-01D					x
IR84-SB07-01	8/2/01	1-3'	1545	IR84-SB07-01			·		x
IR84-SB08-01	8/2/01	1-3'	1555	IR84-SB08-01		· .			x
1998 SOIL BORINGS			_	••••			••••••		•••·····
IR84-SB02-00	4/16/98	0-6"		IR84-SB02-00		Х	[
IR84-SB02-01	4/16/98	6-12"	-	IR84-SB02-01		Х	···· -		
IR84-SB04-00	4/16/98	0-6"		IR84-SB04-00		Х			
IR84-SB04-01	4/16/98	6-12"		IR84-SB04-01		X			
IR84-SB08-00	4/16/98	0-6"		IR84-SB08-00		X			
IR84-SB08-01	4/16/98	6-12"		IR84-SB08-01	· · · · · ·	X		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
IR84-SB10-00	4/16/98	0-6"		IR84-SB10-00		X			
IR84-SB10-01	4/16/98	6-12"		IR84-SB10-01		X			
IR84-SB15-00	4/16/98	0-6"		IR84-SB15-00		x			
IR84-SB15-01	4/16/98	6-12"		IR84-SB15-01		X			
IR84-SB21-00	4/16/98	0-6"		IR84-SB21-00		X			
IR84-SB21-01	4/16/98	6-12"		IR84-SB21-01		X			
IR84-SB23-00	4/16/98	0-6"		IR84-SB23-00		x			
IR84-SB23-01	4/16/98	6-12"		IR84-SB23-01		X	· · · · · · · · · · · · · · · · · · ·		
IR84-SB25-00	4/16/98	0-6"		IR84-SB25-00		X			····
1R84-SB25-01	4/16/98	6-12"		IR84-SB25-01		x			
IR84-SB26-00	4/23/98	0-6"		IR84-SB26-00		X			
IR84-SB26-01	4/23/98	6-12"		IR84-SB26-01		X			
1R84-SB27-00	4/23/98	0-6"		IR84-SB27-00		X			
IR84-SB27-01	4/23/98	6-12"		IR84-SB27-01		X			
IR84-SB28-00	4/23/98	0-6"		IR84-SB28-00		X			
IR84-SB28-01	4/23/98	6-12"		IR84-SB28-01		Х			
1R84-SB29-00	4/23/98	0-6"		IR84-SB29-00		X			
IR84-SB29-01	4/23/98	6-12"		IR84-SB29-01		X			

					Field Analysis	Laboratory Analysis			
								TCL VOC, SVOC,	TCL VOCs, SVOCs,
			Time				Grain size, Total	Pesticides, PCBs, GRO, DRO, TAL	Pesticides, Herbicides, PCBs, VPH, EPH,
Sample ID	Date	Depth (bgs)	(hours)	Laboratory Sample ID	Ensys ^T PCB (ppm)	PCBs	Organic Carbon	Metals, Cyanide	TAL Metals
IR84-SB30-00	4/23/98	0-6"		IR84-SB30-00		х			
IR84-SB30-01	4/23/98	6-12"		IR84-SB30-01		X			
IR84-\$B31-00	4/23/98	0-6"		IR84-SB31-00		X			5
1995 SOIL BORINGS									
IR84-SB31-01	4/23/98	6-12"		IR84-SB31-01		х			
84-SB01A	10/26/95	0-6"		84-SB01A		X			
84-SB01B	10/26/95	6-12"		84-SB01B		Х			
84-SB02A	10/26/95	0-6"		84-SB02A		Х			
84-SB02B	10/26/95	6-12*		84-SB02B		Х			
84-\$B03A	10/26/95	0-6*		84-SB03A		X			
84-SB03B	10/26/95	6-12"		84-SB03B		Х			
84-SB04A	10/26/95	0-6"		84-SB04A		Х			
84-SB04B	10/26/95	6-12"		84-SB04B		Х			
84-SB05A	10/26/95	0-6"		84-SB05A		X			
84-SB05B	10/26/95	6-12"		84-SB05B		X			
84-SB06A	10/26/95	0-6"		84-SB06A		Х			
84-SB06B	10/26/95	6-12"		84-SB06B		X			
84-SB07A	10/26/95	0-6"		84-SB07A		Х			
84-SB07B	10/26/95	6-12"		84-SB07B		X			
84-SB08A	10/26/95	0-6"		84-SB08A		x			
84-SB08B	10/26/95	6-12"		84-SB08B		X			
84-SB09A	10/26/95	0-6"		84-\$B09A		Х			
84-SB09B	10/26/95	6-12"		84-SB09B		X			
84-SB10A	10/26/95	0-6"		84-SB10A		X			
84-SB10B	10/26/95	6-12"		84-SB10B		X			

NOTES:

 $ID \approx Identification$

TAL = Target Analyte List

TCL = Target Compound List

VOC = Volatile Organic Compound

SVOC = Semivolatile Organic Compound

PCB = Polychlorinated biphenyl

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

					Field Analysis		Laboratory Analysis		
		Ì							
								TCL VOC, SVOC,	TCL VOCs, SVOCs,
								Pesticides, PCBs,	Pesticides, Herbicides,
			Time				Grain size, Total	GRO, DRO, TAL	PCBs, VPH, EPH,
Sample ID	Date	Depth (bgs)	(hours)	Laboratory Sample ID	Ensys ^{TAP} CB (ppm)	PCBs	Organic Carbon	Metals, Cyanide	TAL Metals

VPH = Volatile Petroleum Hydrocarbon

EPH = Extractable Petroleum Hydrocarbon

1

			Г		Laboratory Analysis	
Sample ID	Date	Time (hours)	Laboratory Sample ID	PCBs	TCL VOCs	TCL VOC, SVOC, Pesticides, PCBs, Herbicides, TAL Metal, VPH, EPH
2001 GROUNDWATER SA	MPLES					
IR84-MW07-01C	8/6/01	1200	IR84-MW07-01C			x
IR84-MW08-01C	8/6/01	1140	IR84-MW08-01C			x
IR94-MW09-01C	8/5/01	1145	IR94-MW09-01C			X
IR84-MW10-01C	8/5/01	1135	IR84-MW10-01C			x
IR84-MW16-01C	8/4/01	0935	IR84-MW16-01C			X
IR84-MW17-01C	8/6/01	0925	IR84-MW17-01C			X
IR84-MW18-01C	8/4/01	1115	IR84-MW18-01C			X
IR84-MW19-01C	8/4/01	1310	IR84-MW19-01C			X
			IR84-MW20-01C			
IR84-MW20-01C	8/5/01	1915	IR84-MW20-01CD			x
IR84-MW21-01C	8/5/01	1000	IR84-MW21-01C			X
IR84-MW22-01C	8/5/01	1410	IR84-MW22-01C			X
IR84-MW23-01C	8/6/01	1445	IR84-MW23-01C			x
1998 GROUNDWATER SA	MPLES		· · · · · · · · · · · · · · · · · · ·			
AST781-GW03-98B	4/23/98		AST781-GW03-98B		X	
AST781-GW04-98B	4/23/98		AST781-GW04-98B		Х	
ASI781-GW07-98B	4/22/98		A\$1781-GW07-98B		X	
AST781-GW08-98B	4/22/98		AST781-GW08-98B		X	•
AST781-GW11-98B	4/23/98		AST781-GW11-98B		X	
AST781-GW12-98B	4/23/98		AST781-GW12-98B		X	
1995 GROUNDWATER SA	MPLES		//* · · ·			
84-GW01-01	11/7/95		84-GW01-01	Х		
84-GW07-01	11/7/95		84-GW07-01	X		
84-GW13-01	11/26/95		84-GW13-01	Х		

NOTES:

ID = Identification

TAL = Target Analyte List

TCL = Target Compound List

VOC = Volatile Organic Compound

SVOC = Semivolatile Organic Compound

PCB = Polychlorinated biphenyl

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

VPH = Volatile Petroleum Hydrocarbon

EPH = Extractable Petroleum Hydrocarbon

TABLE 2-3

SURFACE WATER SAMPLE SUMMARY OPERABLE UNIT NO. 19, SITE 84/BUILDING 45 AREA REMEDIAL INVESTIGATION, CTO-0219 MCB CAMP LEJEUNE, NORTH CAROLINA

				Labor	ratory Analysis
Sample ID	Date	Time (hours)	Laboratory Sample ID	PCBs	TCL VOCs, SVOCs
1998 SURFACE V	WATER SAM	MPLES		DATE SALS	
IR84-SW01-98B	4/19/98	1	IR84-SW01-98B	x	
IR84-SW02-98B	4/19/98		IR84-SW02-98B	Х	
IR84-SW03-98B	4/19/98		IR84-SW03-98B	Х	
IR84-SW04-98B	4/19/98		IR84-SW04-98B	X	
IR84-SW05-98B	4/19/98		IR84-SW05-98B	Х	
IR84-SW06-98B	4/19/98		IR84-SW06-98B	Х	
IR84-SW07-98B	4/23/98		IR84-SW07-98B		X
1995 SURFACE V	WATER SAN	MPLES			
84-SW01-01	10/26/95		84-SW01-01	X	
84-SW02-01	10/26/95		84-SW02-01	х	
84-SW03-01		397 - P	inaccessible		
84-SW04-01	10/26/95		84-SW04-01	Х	
84-SW05-01	10/26/95		84-SW05-01	х	
84-SW06-01	10/26/95		84-SW06-01	X	
84-SW07-01	10/26/95		84-SW07-01	X	
84-SW08-01	10/26/95		84-SW08-01	Х	

NOTES:

ID = Identification

TCL = Target Compound List

VOC = Volatile Organic Compound

SVOC = Semivolatile Organic Compound

PCB = Polychlorinated biphenyl

					Laboratory Analysis	
Sample ID	Date	Depth	Laboratory Sample ID	Diesel Range Organics, pH, percent moisture	TCL VOC, SVOC, pH, percent moisture	PCBs
1998 SEDIMENT	SAMPLES					
IR84-SD01-98B	4/19/98	0-6" bgs	IR84-SD01-98B IR84-SD01-98BD	x		x
IR84-SD05-98B	4/19/98	0-6"	IR84-SD05-98B	X	1	х
IR84-SD06-98B	4/19/98	0-6"	IR84-SC06-98B	Х		х
IR84-SD07-98B	4/23/98	0-6"	IR84-SD07-98B		x	
1995 SEDIMENT	SAMPLES					
84-SD01-01	10/26/95	0-6"	84-SD01-01			x
84-SD02-01	10/26/95	0-6"	84-SD02-01			x
84-SD03-01			inaccessible			
84-SD04-01	10/26/95	0-6"	84-SD04-01			X
84-SD05-01	10/26/95	0-6"	84-SD05-01			Х
84-SD06-01	10/26/95	0-6"	84-SD06-01			Х
84-SD07-01	10/26/95	0-6"	84-SD07-01			Х
84-SD08-01	10/26/95	0-6"	84-SD08-01			x

NOTES:

ID = Identification TCL = Target Compound List VOC = Volatile Organic Compound SVOC = Semivolatile Organic Compound PCB = Polychlorinated biphenyl

TABLE 2-5 QUALITY ASSURANCE QUALITY CONTROL SAMPLE SUMMARY OPERABLE UNIT NO. 19, SITE 84/BUILDING 45 AREA REMEDIAL INVESTIGATION, CTO-0219 MCB CAMP LEJEUNE, NORTH CAROLINA

						Laboratory Analysis		·····	
Sample ID	Date	Time (hours)	Laboratory Sample ID	PCBs	TCL VOC	TCL VOC, SVOC, PCBs, pesticides, herbicides, metals	TCL VOC, SVOC, PCBs, pesticides, GRO, DRO, CN, metals	TCL VOCs, SVOCs, pesticides, herbicides, PCBs, VPH, EPH, TAL metals	Comments
MATRIX SPIKE/ MATRIX	SPIKE DUPLIC	CATE SAM	PLES		di contra di				
IR84-DP41-00	7/20/01	1545	IR84-DP41-00MS IR84-DP41-00MSD	x					
IR84-DP71-00	7/22/01	1525	IR84-DP71-00MS IR84-DP71-00MSD	x					
IR84-SB05-01	8/3/01	1240	IR84-SB05-01MS IR84-SB05-01MSD					x	
IR84-MW07-01C	8/6/01	1200	IR84-MW01-01CMS IR84-MW07-01CMSD					x	
FIELD BLANKS	-							r	
IR84-FB01	7/17/01	0830	IR84-FB01	extract and hold					DI water
IR84-FB02	7/17/01	0843	IR84-FB02	extract and hold					Drillers' water
IR84-FB03	7/21/01	0745	IR84-FB03			X			DI water
IR84-FB04	7/21/01	0730	IR84-FB04			X			Drillers' water
IR84-FB05	8/1/01	1400	IR84-FB05					X	
IR84-FB06	8/3/01	1500	IR84-FB06					X	
EQUIPMENT RINSATES									
IR84-ER01	7/17/01	0836	IR84-ER01	extract and hold					split spoon rinsate
IR84-ER02	7/18/01	0720	IR84-ER02	<u>X</u>					acetate sleeve rinsate
IR84-ER03	7/19/01	0705	IR84-ER03	X					metal spoon rinsate
IR84-ER04	7/20/01	0910	IR84-ER04	extract and hold					split spoon rinsate
IR84-ER05	7/21/01	0730	IR84-ER05			X			split spoon rinsate
IR84-ER06	7/22/01	1000	IR84-ER06	<u>x</u>					
IR84-ER07	7/23/01	0715	IR84-ER07	X					
IR84-ER08	7/31/01	1655	IR84-ER08					X	
IR84-ER09	8/1/01	1530	IR84-ER09					X	
IR84-ER10	8/2/01	1630	IR84-ER10					X	
IR84-ER11	8/3/01	1430	IR84-ER11					Х	
IR84-ER12	8/6/01	1630	IR84-ER12					X	
IR84-ER13	8/7/01	1630	IR84-ER13					X	

TABLE 2-5 QUALITY ASSURANCE QUALITY CONTROL SAMPLE SUMMARY OPERABLE UNIT NO. 19, SITE 84/BUILDING 45 AREA REMEDIAL INVESTIGATION, CTO-0219 MCB CAMP LEJEUNE, NORTH CAROLINA

•

Sample 1D	Date	Time (hours)	Laboratory Sample ID	PCBs	TCL VOC	TCL VOC, SVOC, PCBs, pesticides, herbicides, metals	PCBs, pesticides, GRO, DRO, CN,	TCL VOCs, SVOCs, pesticides, herbicides, PCBs, VPH, EPH, TAL metals	Comments
TRIP BLANKS						• • • • • •			
IR84-TB01	7/21/01		TRIP BLANK		x			ļ	"Trip Blanks" on CoC
IR84-TB02	7/17/01	0800	IR84-TB02		X				CoC said 7/16/01 (error)
IR84-TB03	7/31/01	1700	IR84-TB03		X				
IR84-TB04	8/1/01	••	IR84-TB04		X				
IR84-TB05	8/2/01		IR84-TB05		x				
1R84-TB06	8/3/01		iR84-TB06		X	· · · · - · · ·			·······
IR84-TB07	8/6/01		IR84-TB07		x				
IR84-TB08	8/7/01		IT84-TB08		X				
TBIR84-TB03	7/31/01		TBJR84-TB03		X				

2

.

.

NOTES:

ID = Identification

TAL = Target Analyte List

TCL = Target Compound List

VOC = Volatile Organic Compound

SVOC = Semivolatile Organic Compound

PCB = Polychlorinated biphonyl

GRO = Gasoline Range Organics

DRO = Diesel Range Organics

VPH = Volatile Petroleum Hydrocarbon

EPH = Extractable Petroleum Hydrocarbon

TABLE 2-6 Soil and Sediment PCB Sampling Results - October 2005 Site 84 Operable Unit 19 MCB Camp Lejeune, North Carolina

Sample	PCB (mg/kg)	Sample	PCB (mg/kg)
SD-CONC-PIPE1	3.3	TP-08-1.0	0.66
SD-CONC-PIPE1-DUP	4.2	TP-08-2.0	3.6
SD-STEEL-PIPE1	0.082	TP-08-3.3	0.20
TP-01-1.0	0.035 U	TP-09-1.0	9.8
TP-01-1.0-DUP	0.036 U	TP-09-2.0	6.2
TP-02-1.0	0.53	TP-09-3.15	2.0
TP-03-1.0	0.037	TP-10-1.0	260
TP-03-4.0	48	TP-10-1.0-DUP	280
TP-03-SW-3.5	0.10	TP-10-2.0	5.6
TP-04-1.0	0.035 U	TP-10-7.0	4.3
TP-04-2.0	0.036 U	TP-10-SW-1.5	78
TP-04-3.7	0.041 U	TP-11-1.0	80
TP-05-1.0	0.036 U	TP-11-2.0	110
TP-05-2.0	0.036 U	TP-11-7.0	13
TP-05-3.3	0.040 U	TP-12-1.0	58
TP-06-1.0	0.63	TP-12-2.0	310
TP-06-2.0	0.16	TP-12-4.7	0.18
TP-06-3.5	0.041 U		
TP-07-1.0	0.26		
TP-07-2.0	0.067		
TP-07-4.0	0.23		

PCBs were analyzed by a qualified commercial laboratory using USEPA SW 846 Method 8082

TABLE 2-7 Soil PCB Sampling Results - December 2005 Site 84 Operable Unit 19 MCB Camp Lejeune, North Carolina

Sample	PCB (mg/kg)	Sample	PCB (mg/kg)
TP-13-2.0	0.51	TP-23-2.0	11
TP-13-SW-R	8.1	TP-23-2.0-DUP	8.3
TP-14-2.0	1700	TP-23-SW-R	6.6
TP-14-SW-R	51	TP-24-2.0	15
TP-15-2.0	0.93	TP-24-SW-R	2.6
TP-15-SW-R	87	TP-25-2.0	0.035 U
TP-16-2.0	24	TP-25-SW-R	6.4
TP-16-SW-R	38	TP-26-2.0	8.7
TP-16-SW-R-DUP	30	TP-26-SW-R	9.1
TP-17-2.0	0.04	TP-27-2.0	22
TP-17-2.0-DUP	0.05	TP-27-SW-R	18
TP-17-SW-R	5.9	TP-28-2.0	0.10
TP-18-2.0	0.58	TP-28-SW-R	3.0
TP-18-SW-R	4.8	TP-29-2.0	0.71
TP-18-SW-R-DUP	4.7	TP-29-SW-R	1.3
TP-19-2.0	0.16	TP-30-2.0	0.08
TP-19-SW-R	1.6	TP-30-SW-R	0.13
TP-20-2.0	0.06	TP-31-2.0	0.22
TP-20-SW-R	4.0	TP-31-SW-R	0.73
TP-21-2.0	0.71	TP-32-2.0	0.07
TP-21-SW-R	1.2	TP-32-SW-R	0.29
TP-22-2.0	0.07	TP-33-2.0	0.09
TP-22-SW-R	2.7	TP-33-SW-R	0.16

Red = PCB detected >= 10 mg/kg

U = Not detected at detection limit

PCBs were analyzed by a qualified commercial laboratory using USEPA SW 846 Method 8082

TABLE 2-8Summary of Samples - Phase III NTCRARemoval ActionSite 84 Operable Unit 19MCB Camp Lejeune, North Carolina

Sampling Event	Designation	Sample Type	Number of Samples	(10% of field	MS/MSD (2 x 5% of field samples)	Equipment Blank (one per day)	Field Blank (one per sampling event)	Total per Sample Type
Pre-Removal	DT - Disposal Testing	РСВ	1	1	2	1	1	6
Removal IP - In Place Action Sampling		РСВ	21	3'	4	4		30
	IP - In Place	DRO	7	1	2	0	0	10
	Sampling	GRO	7	1	2	0	0	10
		Oil and Grease	7	1	2	0	0	10
Removal	SW - Sidewall Confirmation	PCB - Dexsil 2000	12	0 ²	0	0	0	0
Action		РСВ	6	0	0	0	0	6
Removal Action	DS - Disposal Sampling	PCB - Dexsil 2000	25	0	0	0	0	25

Notes:

¹ All QA/QC samples related to PCB contaminated soil sampling for the Removal Action are included in this table under In Place Sampling; Equipment Blanks and Field Blank for the Removal Action sampling event are also included under In Place Sampling.

² PCB screening with the Dexsil 2000 Soil Test System does not require laboratory QA/QC sampling and analysis.

	Region IX PRG Residential soil (units as indicated)	North Carolina Soil-to-Groundwater Concentration (units as indicated)	SS Background Mean + 2 Standard Deviations (mg/kg)		Minimum Detected	Maximum Detected	Frequency of Detection
VOLATILES (ug/kg)	(ug/kg)	(ug/kg)					
2-Butanone	7,300,000	692	NE	U	4.8 J	9 J	2/26
Acetone	1,600,000	2810	NE	U	40 J	40 J	1/26
Ethylbenzene	230,000	241	NE	U	330 J	330 J	1/26
Xylenes (total)	210,000	4960	NE	U	8.7 J	120 J	2/26
SEMIVOLATILES (ug/kg)	(ug/kg)	(ug/kg)					
2-Methylnaphthalene	1,600,000 (1)	NE	NE	U	120 J	92000	3/26
Acenaphthene	3,700,000	8160	NE	U	1 40 J	20000 J	8/26
Anthracene	22,000,000	995000	NE	U	210 J	56000	8/26
Benzo(a)anthracene	620	358	NE	U	520	190000	8/26
Benzo(a)pyrene	62	91.1	NE	U	470	150000	7/26
Benzo(b)fluoranthene	620	NE	NE	υ	540	170000	7/26
Benzo(ghi)perylene	NE	6720000	NE	U	74 J	55000	9/26
Benzo(k)fluoranthene	6,200	NE	NE	U	340 J	120000	7/26
Carbazole	24,000	NE	NE	υ	130 J	38000 J	7/26
Chrysene	62,000	39800	NE	U	560	180000	8/26
Dibenz(a,h)anthracene	62	168	NE	U	70 J	17000 J	7/26
Dibenzofuran	290,000	NE	NE	υ	84 J	8900 J	7/26
Dibenzothiophene	NE	NE	NE		89 NJ	760 NJ	2/2
Fluoranthene	2,300,000	276000	NE	U	1200	300000	8/26
Fluorene	2,600,000	44300	NE	U	130 J	19000 J	9/26
Hexachlorocyclopentadiene	420,000	200000	NE	U	410 J	410 J	1/26
Indeno(1,2,3-ed)pyrene	620	3260	NE	U	250 J	59000	7/26
Naphthalene	56,000	585	NE	U	140 J	7500 J	5/26
Phenanthrene	NE	59600	NE	U	910 J	180000	9/26
Pyrene	2,300,000	28600	NE	U	760	250000	8/26
bis(2-Ethylhexyl) phthalate	35,000	6670	NE	U	140 J	620	2/26

	Region IX PRG Residential soil (units as indicated)	North Carolina Soil-to-Groundwater Concentration (units as Indicated)	SS Background Mean + 2 Standard Deviations (mg/k <u>u</u>)		Minimum Detected	Maximum Detected	Frequency of Detection
PESTICIDES/PCBs (ug/kg)	(ug/kg)	(ug/kg)					
4,4'•DDD	2,400	129	NE	U	3.2 J	3000 J	7/24
4,4'-DDE	1,700	NE	NE	U	3.1	58	7/24
4,4'-DDT	1,700	1360	NE	U	1.9	190	7/24
Dieldrin	30	E.13	NE	U	3.5 J	320	8/24
Endosulfan sulfate	NE	NE	NE	U	2.1 J	54 J	6/25
Endrin	18,000 (2)	440	NE	U	6.9 J	6.9 J	1/24
Endrin aldehyde	18,000 (2)	NE	NE	υ	4.5 J	74 J	8/25
Endrin ketone	18,000 (2)	NE	NE	Ų	1.7 J	26 J	5/25
Heptachlor	110	2.4	NE	U	1.5 J	22000	8/24
Heptachlor epoxide	53	6.67	NE	U	4.2 J	4500 J	6/24
Methoxychlor	310,000	56100	NE	U	1.9 J	98 J	7/25
PCB-1248	220	NB	NE	U	56	160000	4/95
PCB-1254	220	NE	NE	Ð	51000	51000	1/95
PCB-1260	220	NE	NE	υ	18 J	200000	68/95
aipha-BHC	90	NE	NE	υ	21	21	1/24
alpha-Chlordane	1,600 (3)	NE	NE	υ	2 J	48000 J	10/24
gamma-Chlordane	1,600 (3)	NE	NE	U	3.9	58000	10/24
METALS (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)				
Aluminum	76,000	NE	6,070		1270	8940	26/26
Antimony	31	5420	0.556	UJ	0.66 J	3.3 J	13/26
Arsenic	0.39	26200	0.671	U	0.33 J	9.1	24/26
Barium	5,400	848000	16.8	U	31	65.7	23/26
Beryllium	150	3380	0.0974	U	0.06 J	0.075 J	5/26
Cadmium	37	2720	0.0549	U	0.067 J	0.57	14/26
Calcium	NE	NE	37,271		109 J	100000 J	26/26
Chromium	30 (assumes Cr +6)	27200	7.02		1.7	20.2	26/26
Cobalt	4,700	NE	0.317	υ	0.18 J	0.76 J	23/26
Copper	2,900	704000	15.8		0.35 J	146	26/26
hoa	23,000	151000	3,162		684	5000	26/26
Lead	420	270000	20.2		1.8	97.3	26/26
Magnesium	NE	NE	622		47.3 J	1480	26/26

	Region IX PRG Residential soil (units 28 indicated)	North Carolina Soil-to-Groundwater Concentration (units as indicated)	SS Background Mcan + 2 Standarð Deviations (mg/kg)		Minimum Detected	Maximum Delected	Frequency of Detection
METALS (mg/kg) (Cont.)	(mg/kg)	(mg/kg)	(mg/kg)				
Manganese	1,800	65200	17.4		2.7	32.8	26/26
Mercury	23	15.4	0.0844	U	0.01 J	0.2	18/26
Nickel	1,600	56400	1.54		0.46 J	2.9 J	26/26
Potassium	NB	NE	157	U	70.2 J	258 J	17/26
Selenium	390	12200	0.463	υ	0.53 J	0.61	2/26
Sodium	NE	NE	132	ប	165 J	235 J	3/26
Thallium	5.2	512	0.203	U	0.6 J	0.6 J	1/26
Vanadium	550	NE	9.17		2.3 J	11.2	26/26
Zinc	23,000	1100000	30.0		1.3 J	154 J	26/26
TOTAL PETROLEUM HYDROCARBONS							
TPH (as Diesel) (mg/kg)	NE	NE	NE		7 J	470	11/11
TPH (as Gasoline) (ug/kg)	NE	NE	NE	U	880	880	1/11
CONVENTIONAL							
Percent Solids (%)	NE	NE	NB		30.3	96	47/47
Total Organic Carbon (mg/kg)	NE	NE	NE		3 BG	13 BG	2/2

ъ.

NOTES:

(1) No Region IX PRG is available, value is Region 3 Residential Risk Based Concentration (RBC) based on ingestion.

(2) Total endrin consisting of endrin, endrin aldehyde, and endrin ketone.

(3) Value for chlordane

Region IX PRG = Region IX Preliminary Remediation Goal (www.epa.gov/region09/wastc/sfund/prg_updated 11/01/00)

SS Background - Surface Soil background concentrations (Background Study Report, Baker 2001)

	Location of MaxImum Defect	Region IX PRG Residential soit Exceedance Count	North Carolina Soil-to-Groundwater Concentration Exceedance Count	SS Background Mean + 2 Standard Deviations Exceedance Count
VOLATILES (ug/kg)				
2-Butanone	IR84-MW20-00	0	0	NA
Acetone	84-MW15-00	0	0	NA
Ethylbenzene	IR84-DP82-00	Û	1	NA
Xylenes (total)	IR84-DP82-00	0	0	NA
SEMIVOLATILES (ug/kg)				
2-Methyinaphthalene	IR84-DP84-00	0	0	NA
Accnaphthene	IR84-DP46-00	0	1	NA
Anthracene	IR84-DP46-00	0	0	NA
Benzo(a)anthracene	IR84-DP46-00	7	8	NA
Benzo(a)pyrene	IR84-DP46-00	7	7	NA
Benzo(b)fluoranthene	IR84-DP46-00	6	0	NA
Benzu(ghi)perylene	IR84-DP46-00	NA	0	NA
Benzo(k)fluoranthene	IR84-DP46-00	1	0	NA
Carbazole	IR84-DP46-00	1	0	NA
Chrysenc	IR84-DP46-00	1	1	NA
Dibenz(a,h)anthracene	IR84-DP46-00	7	6	NA
Dibenzofuran	IR84-DP46-00	0	0	NA
Dibenzothiophene	IR84-DP49-00	NA		NA
Fluoranthene	IR84-DP46-00	O	1	NA
Fluorene	IR84-DP46-00	0	0	NA
Hexachlorocyclopentadiene	IR84-DP47-00	0	0	NA
Indeno(1.2,3-cd)pyrene	IR84-DP46-00	6	1	NA
Naphthalene	IR84-DP46-00	0	2	NA
Phenanthrene	IR84-DP46-00	NA	1	NA.
Pyrene	1R84-DP46-00	0	I	NA
bis(2-Ethylhexyl) pluthalate	IR\$4-MW20-00D	0	0	NA

	Location of Maximum Detect	Region IX PRG Residential soli Exceedance Count	North Carolina Soil-to-Groundwater Concentration Exceedance Count	SS Background Mean + 2 Standard Deviations Exceedance Count
PESTICIDES/PCBs (ug/kg)				
4,4'-DDD	IR84-DP47-00	1	1	NA
4,4'-DDE	IR84-DP49-00	0	Û	NA
4.4'-DDT	IR84-DP49-00	0	Q	NA
Dieldrin	IR84-DP49-00	3	8	NA
Endosulfan sulfate	IR84-MW20-00	NA	0	NA
Endrin	IR84-MW20-00	Û	0	NA
Endrin aldehyde	IR84-MW20-00	Q	0	NA
Endrin ketone	IR84-DP81-00	0	0	NA
Heptachlor	IR84-DP47-00	6	б	NA
Heptachlor epoxide	IR84-DP47-00	4	. 4	NA
Methoxychlor	IR84-MW20-00	0	0	NA
PCB-1248	IR84-DP47-00	2	0	NA
PCB-1254	IR84-DP53-00	1	0	NA
PCB-1260	IR84-SB27-01	55	0	NA
alpha-BHC	1R84-DP82-00	0	0	NA
alpha-Chlordane	IR84-DP47-00	4	0	NA
gamma-Chlordane	[R84-DP47-0 0	4	0	NA
METALS (mg/kg)				
Aluminum	IR84-MW20-00	0	0	1
Antimony	iR84-DP49-00	0	0	13
Arsenic	IR84-DP49-00	21	0	21
Barium	IR84-DP49-00	0	0	23
Beryllium	1R84-DP46-00	0	0	0
Cadmium	IR84-DP53-00	· 0	Q	14
Calcium	IR84-DP50-00	NA	0	11
Chromium	IR84-DP49-00	.0	0	6
Cobalt	IR84-DP49-00	0	0	12
Соррет	IR84-DP49-00	0	0	11
lron	IR84-MW20-00	0	0	1
Lead	IR84-DP49-00	0	0	13
Magnesium	[R84-DP49-00	NA	0	9

.

	Location of Maximum Detect	Region IX PRG Residential soil Exceedance Count	North Carolina Soil-to-Groundwater Concentration Exceedancc Count	SS Background Mean + 2 Standard Deviations Exceedance Count
METALS (mg/kg) (Cont.)				
Manganese	IR84-DP49-00	0	0	9
Mercury	IR84-DP74-00	0	Q	18
Nickel	IR84-DP49-00	0	0	12
Potassium	IR84-DP76-00	NA	0	5
Seleníum	IR84-DP74-00	0	0	1
Sodium	IR84-DP50-00	NA	0	3
Thallium	IR84-DP45-00	0	0	1
Vanadium	1R84-MW20-00	0	0	2
Zinc	IR84-DP49-00	0	0	13
TOTAL PETROLEUM HYDROCARBONS				
TPH (as Diesel) (mg/kg)	IR84-DP46-00	NA	NA	NA
TPH (as Gasoline) (ug/kg)	IR84-DP46-00	NA	NA	NA
CONVENTIONAL				
Percent Solids (%)	IR84-DP36-00	NA	NA	NA
Total Organic Carbon (mg/kg)	IR84-DP27-00	NA	NA	NA

NOTES:

(1) No Region IX PRG is available, value is Region 3 ReNE = not established

(2) Total endrin consisting of endrin, endrin aldehyde, an NA = Not applicable

(3) Value for chlordane U = Not detected at method detection limit

Region IX PRG = Region IX Preliminary Romediaiton GJ = Value is estimated

SS Background - Surface Soil background concentrations BG = sample was diluted due to matrix interference and blank contamination.

	Region IX PRG Residential soil (units as indicated)	North Carolina Soil-to-Groundwater Concentration (units as indicated)	Background Mean + 2 Standard Deviations (mg/kg)	Minimum Detected	Maximum Detected	Frequency of Detection	Location of Maximum Detect
VOLATILES (ug/kg)	(ug/kg)	(ug/kg)					
1,2-Dichloroethene (total)	63000	380	NB	91 J	91 J	1/24	IR84-DP82-04
2-Butanone	7300000	692	NE	3.8 J	3.8 J	1/24	IR84-MW21-04
Acetone	1600000	2810	NE	14 J	18 J	2/24	IR84-MW21-04
Benzene	670	5.62	NE	120 J	160 J	2/24	84-MW15-04
Chloroform	240	1.01	NE	0.98 J	2.3 J	3/24	IR84-SB05-01
Ethylbenzene	230000	241	NE	0.89 J	1300	5/24	IR84-DP75-05
Methylene chloride	8900	22	NE	1.3 J	1.3 J	1/24	IR84-DP78-03
Styrene	1700000	2240	NE	2.1 J	2.1 J	1/24	IR84-MW23-01
Toluene	520000	7170	NE	75 1	75]	1/24	IR84-DP75-05
Xylenes (total)	210000	4960	NE	4.1 J	3100	4/24	IR84-DP75-05
SEMIVOLATILES (ug/kg)	(ug/kg)	(ug/kg)					
2-Methylnaphthalene	1600000	NE	NE	1000	27000	3/33	84-MW[5-04
Acenaphthene	3700000	8160	NB	61 J	950 J	4/33	IR84-DP15-03
Anthracene	22000000	995000	NE	190 J	830 J	3/33	IR84-DP46-02
Benzo(a)anthracene	620	358	NE	640	3000	3/33	IR84-DP46-02
Benzo(a)pyrenc	62	91.1	NE	590	2600	3/33	IR84-DP46-02
Benzo(b)fluoranthene	620	NE	NE	68 J	2800	5/33	IR84-DP46-02
Benzo(ghi)perylene	NE	6720000	NE	65 J	1200	5/33	1R84-DP46-02
Benzo(k)fluoranthene	6200	NE	NE	280 J	1700	3/33	IR84-DP46-02
Carbazole	24000	NE	NE	110 1	480 J	3/33	IR84-DP46-02
Chrysene	62000	39800	NE	57 J	3100	5/33	1R84-DP46-02
Dibenz(a,h)anthracene	62	168	NE	98 J	430 J	3/33	IR84-DP46-02
Dibenzofuran	290000	NE	NE	160 J	1300 J	3/33	IR84-DP15-03
Fluoranthene	2300000	276000	NE	74 J	4800	5/33	IR84-DP46-02
Fluorene	2600000	44300	NE	6ł J	1500 J	5/33	IR84-DP15-03
Hexachlorocyclopentadiene	420000	200000	NE	94 J	94 J	1/33	JR84-DP47-01
Indeno(1,2,3+cd)pyrene	620	3260	NB	340 J	1200	3/33	IR84-DP46-02
Naphthalene	56000	585	NE	55 J	8500	4/33	84-MW15-04
Phenanthrene	NE	59600	NE	150 J	3400 J	6/33	84-MW15-04,[R84-DP15-03
Phthalic anhydride	NE	NE	NE	120 NJ	170 NJ	2/2	IR84-SB04-02
Pyrene	2300000	286000	NE	69 J	4100	5/33	JR84-DP46-02
bis(2-Chloroethoxy)methane	NE	NE	NE	54	54	1/33	IR84-DP81-04
bis(2-Ethylhexyl) phthalate	35000	6670	NE	91 J	1800	7/33	IR84-MW22-02

	Region IX PRG Residential soll (units as indicated)	North Carolina Soil-to-Groundwater Concentration (units as indicated)	Background Mean + 2 Standard Deviations (mg/kg)	Minimum Detected	Maximum Detected	Frequency of Detection	Location of Muximum Detect
PESTICIDES/PCBs (ug/kg)	(ug/kg)	(ug/kg)					
4,4'-DDD	2400	129	NE	1.7 J	46 J	7/33	1R84-DP45-03
4,4'-DDE	1700	NE	NE	2 J	16	5/33	IR84-DP52-01
4,4'-DDT	1700	1360	NE	2.5	120 J	5/33	IR84-DP52-01
Dieldrin	30	1.13	NE	1.8	2.4	3/33	IR84-SB01-02
Endrin aldehyde	18,000 (2)	NE	NE	10 J	10 J	1/33	IR84-DP15-03
leptachlor	110	2.4	NE	1.6 J	6900	7/33	IR84-DP47-01
PESTICIDES/PCBs (ug/kg)							
Heptachlor epoxide	\$3	6.67	NE	63 J	200 J	2/33	IR84-DP46-02
Methoxychlor	310000	56100	NE	2.9 J	24 J	3/33	IR84-DP15-03
PCB-1248	220	NE	NE	47000	47000	1/39	IR84-DP47-01
PCB-1254	220	NE	NE	5000	5000	1/39	IR84-DP46-02
PCB-1260	220	NE	NE	13 J	45000	11/39	IR84-DP18-02
alpha-Chlordane	1,600 (3)	NE	NE	3.3 J	14000 J	8/33	IR84-DP47-01
beta-BHC	90	NE	NE	1.7 J	1.7 J	1/33	84-MW17-07
gamma-Chlordane	1,600 (3)	NE	NE	3,3 J	18000	8/33	IR84-DP47-01
METALS (mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)				
Aluminum	76000	NE	14,538	589	7210	33/33	IR84-DP77-03
Antimony	31	5420	0.597	0.6 J	1.3 B	8/33	ĭR84-DP15-03
Arseniç	0.39	26200	1.62	0.33 1	2	29/33	R84-DP15-03,IR84-DP79-02
Barium	5400	848000	23.9	0.92 J	24.3	21/33	1R84-DP49-01
Beryllium	150	3380	0.140	0.051 J	0.13 B	5/33	1R84-DP15-03
Cadmium	37	2720	0.0136	0.05 J	0.18 J	7/33	IR84-DP49-01
Calcium	NE	NE	426	71.4 J	66800 J	33/33	IR84-SB03-02
Chromium	30	27200	17.1	1.2	9.9	33/33	IR84-DP45-03
Cobalt	4700	NE	1.26	0.16 J	0.69 J	27/33	IR84-DP52-01
Copper	2900	704000	4.31	0.34 J	25.5	29/33	IR84-DP50-01
Iron	23000	151000	5,881	155	6140	33/33	IR84-DP15-03
Lead	400	270000	8.16	0.87	52.7	33/33	IR84-DP49-01

	Region IX PRG Residential soil (units as indicated)	North Carolina Soil-to-Groundwater Concentration (units as indicated)	Background Mean + 2 Standard Devlations (mg/kg)	Minimum Detectod	Maximum Detected	Frequency of Detection	Location of Maximum Detect
METALS (mg/kg) (Cont.)	(mg/kg)	(mg/kg)	(mg/kg)				
Magnesium	NE	NE	361	16.4 J	943	33/33	IR84-SB03-02
Manganese	1800	65200	8.90	0.48 J	50.5	33/33	IR84-SB03-02
Mercury	23	15,4	0.0937	0.00 92 J	0.055 J	23/33	IR84-DP46-02
Nickel	1600	NE	4,29	0.42 J	3.5 J	32/33	IR84-DP50-01
Potassium	NE	NE	373	21.3 J	195 J	27/33	IR84-DP77-03
Selenium	390	12200	0.687	0.39 J	0.73	8/33	IR84-SB03-02
Sodium	NE	NÉ	83.3	89.7 J	89.7 J	1/33	IR84-SB03-02
Thallium	5.5	512	0.225	0.64 J	0.9 1	5/33	IR84-SB03-02
Vanadium	550	NE	19.7	1.1 J	11.4	33/33	IR84-DP79-02D
Zine	23000	1100000	8.83	1.4 J	42.6 J	29/33	IR84-DP49-01
TOTAL PETROLEUM HYDROCARBO	INS						
TPH (as Diesel) (mg/kg)	NE	NB	NE	15	\$\$00	8/8	IR84-DP15-03
TPH (as Gasoline) (ug/kg) CONVENTIONAL	NE	NE	NE	220	580000	2/8	IR84-DP15-03
Percent Solids (%)	NE	NE	NE	66.3	96	39/39	IR84-DP82-04

NOTES:

(1) No Region IX PRG is available, value is Region 3 Residential Risk Based Concentration (RBC) based on ingestion.

(2) Total endrin consisting of endrin, endrin aldehyde, and endrin ketone.

(3) Value for chlordane

Region IX PRG = Region 9 Preliminary Remediaiton Goal (www.epa.gov/region09/waste/sfund/prg_updated 11/01/00) B (inorganics) = value is less than contract required detection limit but greater than instrument detection limit NE = not ostablished NA = Not applicable U = Not detected at method d J = Value is estimated N = sample recovery not with

	Region IX PRG Residential soil Exceedance Count	North Carolina Soil-to-Groundwater Concentration Exceedance Count	Background Mean + 2 Standard Deviations Exceedance Count
VOLATILES (ug/kg)			
1,2-Dichloroethene (total)	0	0	NA
2-Butanone	0	0	NA
Acetone	0	0	NA
Benzene	0	2	NA
Chloroform	0	2	NA
Ethylbenzene	0	3	NA
Methylene chloride	0	0.	NA
Styrene	0	0	NA
Toluene	0	0	NA
Xylenes (total)	0	0	NA
SEMIVOLATILES (ug/kg)			
2-Mothyinaphthalens	0	0	NA
Acceaphthene	0	0	NA
Anthracene	0	0	NA
Benzo(a)anthracene	3	3	NA
Benzo(a)pyrene	3	3	NA
Benzo(b)fluoranthene	3	0	NA
Benzo(ghi)perylene	0	0	NA
Benzo(k)fluoranthene	0	0	NA
Carbazole	0	0	NA
Chrysene	0	0	NA
Dibenz(a,h)anthracene	3	1	NA
Dibenzofuran	0	0	NA
Fluoranthene	0	0	NA
Fluorene	0	0	NA
Hexachlorocyclopentadiene	0	0	NA
Indeno(1,2,3-cd)pyrene	t	0	NA
Naphthalene	0	2	NA
Phenanthrene	0	0	NA
Philialic anhydride	0	0	NA
Pyrene	0	Û	NA
bis(2-Chloroethoxy)methane	0	0	NA
bis(2-Ethylhexyl) phthalate	0	Û	

	Region IX PRG Residential soil Exceedance Count	North Carolina Soil-to-Groundwater Coucentration Exceedance Count	Background Mean + 2 Standard Deviations Exceedance Count
PESTICIDES/PCBs (ug/kg)			
4,4'-DDD	0	0	NA
4,4'-DDE	0	0	NA
4,4'-DDT	0	0	NA
Dieldrin	0	3	NA
Endrin aldehyde	0	0	NA
Heptachlor	3	4	NA
PESTICIDES/PCBs (ug/kg)			
Heptachlor epoxide	2	2	NA
Methoxychior	Ó	0	NA
PCB-1248	1	Û	NA
PCB-1254	1	0	NA
PCB-1260	5	0	NA
alpha-Chlordane	2	0	NA
beta-BHC	0	0	NA
gamma-Chlord ane	2	0	NA
METALS (mg/kg)			
Aluminum	0	0	0
Antimony	0	0	8
Arsenic	25	0	2
Barium	0	0	3
Beryllium	0	0	0
Cadmium	0	0	7
Calcium	Û	0	23
Chromium	0	Û	0
Cebalt	0	0	0
Copper	0	0	9
Iron	0	0	. 1
Lead	0	0	9

	Region IX PRG Residential soil Exceedance Count	North Carolina Soil-to-Groundwater Concentration Exceedance Count	Background Mean + 2 Standard Deviations Exceedance Count
METALS (mg/kg) (Cont.)			
Magnesium	0	0	3
Manganese	0	Û	10
Mercury	0	Û	0
Nickel	0	0	2
Potassium	0	Û	0
Selenium	0	Û	2
Sodium	O	0	1
Thallium	0	0	5
Vanadium	0	0	0
Zinç	0	0	11
TOTAL PETROLEUM HYDROCARBO			
TPH (as Diesel) (mg/kg)	NA	NA	NA
TPH (as Gasoline) (ug/kg) CONVENTIONAL	NA	NA	NA
Percent Solids (%)	NA	NA	NA

X.

4

.

NOTES:

 No Region IX PRG is available, value i
 Total endrin consisting of endrin, endrir.
 Value for chlordane etection limit Region IX PRG = Region 9 Preliminary Re
 B (inorganics) = value is less than contract in control limits

	NCWQS (2L) (units as noted)	US Primary MCL (units as noted)	Minimum Detected	Maximum Detected	Frequency of Detection	Location of Maximum Detect
VOLATILES (ug/L)	(ug/L)	(ug/L)				
2-Butanone	170	1,900(1)	0.53 J	0.69 J	2/20	IR84-MW22-01C
Benzene	1	5	1.5 J	3.4 J	2/20	AST781-GW03-98B
Carbon disulfide	700 (1)	1,000 (1)	0.49 J	0.49 J	1/20	1R84-MW18-01C
Chloroform	0.19	100	16	16	2/20	AST781-GW11-98B,AST781-GW12-98B
Chloromethane	NE	NE	0.17 J	0.62 J	2/20	IR84-MW18-01C
Ethylbenzene	29	700	0.6 3	6.7 J	4/20	AST781-GW04-98B
Methyl tert-butyl ether	200	NE	0.52 3	0.52 J	1/20	IR84-MW16-01C
Methylene chloride	5	5	0.37 J	0.7 J	3/20	IR84-MW22-01C
Trichloroethene	2.8	5	0.19 J	0.19 J	1/20	(R84-MW17-01C
Xylenes (total)	530	10,000	1.8	1.8	1/20	IR84-MW17-01C
SEMIVOLATILES (ug/L)	(ug/L)	(u g/L)				
2-Methylnaphthalene	28 (I)	NE	11	1.1 J	2/14	IR84-MW20-01CD
Naphilulene	21	6.2 (1)	2.2 J	2.2 J	1/14	IR84-MW22-01C
PCBs (ug/L)	(ug/L)	(ug/L)				
No Exceedances						
PESTICIDES (ug/L)						
4,4'-DDD	0.14 (I)	0.28 (1)	0.028 J	0.044 J	4/]4	IR84-MW18-01C
4,4'-DDE	NE	0.2 (1)	0.024 J	0.026 J	2/14	IR84-MW20-01CD
4,4'-DDT	0.1(1)	0.2 (J)	0.029 J	0.047 J	4/14	IR84-MW20-01CD
Endosulfan I	NE	220 (1)	0.023 J	0.023 J	1/14	IR84-MW18-01C
Heptachlor epoxide	0.004	0.2	0.03 3	0.03 J	1/14	IR84-MW20-01C
beta-BHC	NE	0.037 (1)	0.021 J	0.029 J	4/14	IR84-MW21-01C
gamma-Chlordane	0.027 (2)	2 (2)	0.04 J	0.04 J	1/14	IR84-MW18-01C
HERBICIDES (ug/L)	(ug/L)	(ug/L)				
Dinoseb	NE	7	0.015 J	1.5 J	4/14	IR84-MW17-01C
мсра	NE	NE	44 J	44 J	1/14	IR84-MW18-01C
METALS (mg/L)	(mg/L)	(mg/L)				
Aluminum	NB	0.20 (s)	0.44	0.73	9/14	IR84-MW17-01C
Antimony	NE	0.006	0.0022 J	0.011 J	3/14	IR84-MW17-01C
Arsenic	0.05	0.01	0.0071 J	0.03	4/14	IR84-MW08-01C
Barium	2	2	0.0036 J	0.12 J	14/14	IR84-MW18-01C
Beryllium	NE	0.004	0.00057 J	0.0011 J	14/14	IR84-MW10-01C,IR84-MW10-01C
Cadimium	0.005	0.005	0.00056 J	0.00061 J	2/14	IR84-MW23-01C
Calcium	NE	NE	1.4 J	106	14/14	IR84-MW07-01C
Chromium	0.05 (total Cr)	0.1 (total Cr)	0.0015 J	0.0022 J	3/14	IR84-MW19-01C
Cobalt	NE	2.2 (1)	0,0022 J	0.0057 J	3/14	IR84-MW18-01C

	NCWQS (2L)	US Primary MCL	Minimum Detected	Maximum Detected	Frequency of Detection	Location of Maximum Detect
	(units as noted)	(units as noted)				
METALS (mg/L) (Cont.)	(mg/L)	(mg/L)				
Iron	0.3	0.3	0.18	67.7	12/14	IR84-MW08-01C
Magnesium	NE	NE	0.34 J	11.3	14/14	IR84-MW18-01C
Manganese	0.05	0.05	0.004 J	0.45	14/14	IR84-MW07-01C
Mercury	0.0011	0.002	0.000072 J	0.000072 J	1/14	IR84-MW17-01C
Nickol	0.1	0.730(1)	0.0027 J	0.011 J	2/14	IR84-MW18-01C
Potassium	NE	NE	0.86 J	11	11/14	IR84-MW21-01C
Sodium	NE	NE	2.1 J	22	14/14	IR84-MW19-01C
Thallium	NE	0.002	0.0054 J	0.0057 J	2/14	IR84-MW08-01C
Vanadium	NE	0.260(1)	0.00084 J	0.0037 J	10/14	IR84-MW21-01C
Zinc	2.1	5 (s)	0.013 J	0.31	3/14	IR84-MW18-01C

NOTES:

NCWQS ** North Carolina Water Quality Standard for groundwater protection (2L) MCL = Maximum Containinant Level (1) No MCL available, value is Region 9 Tapwater standard (2) Value is for chlordane (1) Interim standard (s) Secondary drinking water standard NE = Not established NA = Not applicable ug/L = micrograms per liter mg/L = micrograms per liter

.

NCWQS	US Primary MCL
(2L)	
Exceedance Count	Exceedance Count

VOLATILES (ug/L)		
2-Butanone	0	0
Benzene	- 2	0
Carbon disulfide	0	0
Chloroform	2	0
Chloromethane	NA	NA
Ethylbenzene	0	0
Methyl tert-butyl ether	0	NA
Methylene chloride	0	0
Trichloroethene	0	0
Xylenes (total)	0	0
SEMIVOLATILES (ug/L)		
2-Methylnaphthalene	0	NA
Naphthalene	0	0
PCBs (ug/L)		
No Exceedances		
PESTICIDES (ug/L)		
4,4'-DDD	0	0
4,4'-DDE	NA	0
4,4'-DDT	0	0
Endosulfan l	NA	0
Heptachior epoxide	1	0
beta-BHC	NA	0
gamma-Chlordane	1	0
HERBICIDES (ug/L)		
Dinoseb	NA	0
MCPA	NA	NA
METALS (mg/L)		
Aluminum	NA	9
Antimony	NA	1
Arsenic	0	2
Barium	0	0
Beryllium	NA	0
Cadmium	0	0
Calcium	NA	NA
Chromium	0	0
Cobali	NA	0

	NCWQS (2L)	US Primary MCL
	Exceedance Count	Excoedance Count
METALS (mg/L) (Cont.)		
Iron	51	11
Magnesium	NA	NA
Manganese	7	7
Mercury	0	0
Nickel	Û	0
Potassium	NA	NA
Sodium	NA	NA
Thallium	NA	2
Vanadium	NA	0
Zino	0	0

NOTES:

NCWQS - North Carolina Water Quality 5 MCL = Maximum Contaminant Level (1) No MCL available, value is Region 9 T (2) Value is for chlordane (1) Interim standard (s) Secondary drinking water standard NE = Not established NA = Not applicable ug/L = micrograms per liter mg/L = micrograms per liter

	North Carolina Water Quality Standarc or Fresh Surface Wate ((ug/L)	USEPA Region 4 Fresh Surface Water Chronic Screening Values (ug/L)	Minimum Detected	Maximum Detected	Frequency of Detection	Location of Maximum Detect	North Carolina Water Quality Standards for Fresh Surface Water Exceedance Count	USEPA Region 4 Fresh Surface Water Chronic Screening Values Exceedance Count
VOLATILES (ug/L)							
Acetone	NE	NE	5.6 J	5.6 J	1/1	1R84-SW07-98B	NA	NA
Benzene	71.4	53	1.2 J	1.2 J	1/1	1R84-SW07-98B	0	0
Toluene	11*	175	2.7 J	2.7 J	1/1	IR84-SW07-98B	0	0
Xylenes (total) SEMIVOLATILES		NE	3.5)	3.5 J	1/1	IR84-SW07-98B	NA	NA
PCBs (no detection:	s)							

-

NOTES:

J = value is estimated

NE = Not established

NA = Not applicable

* North Carolina Water Quality Standards for Freshwater Classifications are human health standards; where human halth standards are not available, standards for aquatic life are used and are denoted by an aster USEPA Region 4 standards are surface water chronic screening values protective of freshwater aquatic life (USEPA, 2000).

TABLE 2-13 SEDIMENT DATA COMPARED TO SCREENING CRITERIA - LAGOON REMEDIAL INVESTIGATION, CTO-0219 OPERABLE UNIT NO. 19, SITE 84/BUILDING 45 AREA MCB CAMP LEJEUNE, NORTH CAROLINA

	NOAA Sediment Screening Value (units as indicated)	Region 4 Sediment Screening Value (units as indicated)	Minimum Detected	Maximum Detected	Frequency of Detection	Location of Maximum Detect	NOAA Sediment Sereening Value Exceedance Count	Region 4 Sediment Screening Value Exceedance Count
VOLATILES (ug/kg)								
Xylenes (total)	NE	NE	910 J	910 J	1/1	IR84-SD07-98B	NA	MA
SEMIVOLATILĖŠ (ug/kg)	(ug/kg)	(ug/kg)						
2-Mothylnaphthalene	70	20.2	10000	10000	1/1	IR84-SD07-98B	1	1
Naphthalene	160	34.6	2000	2000	1/1	IR84-SD07-98B	1	1
Phenanthrene	240	86.7	2500	2500	1/1	IR84-SD07-98B	1	1
bis(2-Ethylhexyl) phthalate	NE	182	2400 J	2400 J	171	IR84-SD07-98B	NA	1
PCBs (ug/kg)								
AROCLOR-1248	21.6 (total PCBs)	20 (total PCBs)	2800	2800	1/7	84-SD05-01	1	1
AROCLOR-1260	21.6 (total PCBs)	20 (total PCBs)	3700	40000	7/7	IR84-SD01-98B	1	1
DIESEL RANGE ORGANICS (mg/kg)	NE	NE	3500	14000	4/4	1R84-SD01-98BD	NA	NA
CONVENTIONAL								
pH (solid)	NE	NE	6.3	6.9	5/5	IR84-SD05-98B	NA	NA
Percent moisture (%)	NE	NE	19.6	59.2	5/5	IR84-SD01-98B	NA	NA

NOTES:

J = value is estimated

U = not detected at detection limit

NOAA Sediment - National Oceanic and Atmospheric Administration; Effects Range Low (ER-L) (Jones, Suter, and Hull, 1997)

Region 4 Sediment - US Environmental Protection Agency, Region 4. Memorandum: Amended Guidance on Ecological Risk Assessment at Military Bases:

Attachment 3: Ecological Screening Levels for Fresh Water (June 2000)

NE = Not established

NA = Not applicable

mg/kg = milligram per kilogram

ug/kg = microgram per kilogram

TABLE 2-14

HUMAN HEALTH RISK ASSESSMENT TOXICITY FACTORS SITE 84 (BUILDING 45 AREA) MCB CAMP LEJEUNE JACKSONVILLE, NORTH CAROLINA

Constituents	Oral CSF (mg/kg/day) ⁻¹	Inhalation CSF (mg/kg/day) ⁻¹	Oral RfD (mg/kg/day) ⁻¹	Inhalation RfD (mg/kg/day) ⁻¹	Oral Absorption Factors ⁽¹⁾	WOE	Target Organ (Systemic Toxicity)	Critical Effect (Systemic Toxicity)
Volatiles Acetone	NA	NA	0.1	0.1	0.01	D	(a) Line (Videou	(a) Increased lines and hidrau unights and perhapsionity
Benzene	0.055	0.027	0.003	0.1 0.00171	0.01		(o) Liver / Kidney CVS	(o) Increased liver and kidney weights and nephrotoxicity Hematotoxicity and immunotoxicity
Chloroform	0.0053	0.027	0.003	0.000086	0.01	A B2	(o) Liver	(o) Moderate/marked fatty cyst formation in the liver and elevated
Toluene	NA	NA	0.2	0.11	0.01	D	.iver / Kidney, (i) CNS /	SGPT (o) Changes in liver and kidney weights, (i) Neurological effects; Degeneration of nasal epithelium
Xylenes, total	NA	NA	2	NA	0.01	D	(o) Whole body	(o) Hyperactivity, decreased body weight and increased mortality
2-Methylnaphthalene	NA	NA	NA	NA	0.01	D	(o) Lookup	(o) Lookup
Semivolatiles Bis(2-chloroethoxy)methane	NA	NA	NA	NA	0.1	D	NA	NA
Benzo(a)anthracene	0.73	0.31	NA	NA	0.13	(o) B2, (i) D		NA
Benzo(a)pyrene	7.3	3.1	NA	NA	0.13	B2	NA	NA
Benzo(b)fluoranthene	0.73	0.31	NA	NA	0.13	B2	NA	NA
Benzo(k)fluoranthene	0.073	0.031	NA	NA	0.13	B2	NA	NA
Carbazole	0.02	0.02	NA	NA	0.13	(o) B2, (i) D	NA	NA
Chrysene	0.0073	0.0031	NA	NA	0.13	B2	NA	NA
Dibenz(a,h)anthracene	7.3	3.1	NA	NA	0.13	(o) B2, (i) D	NA	NA
Fluoranthene	NA	NA	0.04	0.04	0.01	D	(o) Liver / CVS	 (o) Nephropathy, increased liver weights, hematological alterations, and clinical effects
Indeno(1,2,3-cd)pyrene	0.73	0.31	NA	NA	0.13	B2	NA	NA
Naphthalene	NA	NA	0.02	0.000857	0.01	(o) D, (i) C	(o) Whole Body, (i) RsS	 (o) Decreased mean terminal body weight in males, (i) Nasal effects: Hyperplasia and metaplasia in respiratory and olfactory epithelium, respectively
Pyrene	NA	NA	0.03	0.03	0.01	D	(o) Kidney	(o) Kidney effects (renal tubular pathology, decreased kidney weights)
4,4'-DDD	0.24	0.24	NA	NA	0.01	B2	NA	NA
Pesticides		1						
Chlordane, alpha-	0.35	0.35	0.0005	0.0002	0.04	B2	Liver	(o) Hepatic Necrosis, (i) Hepatic Effects
Chlordane, gamma-	0.35	0.35	0.0005	0.0002	0.04	B2	Liver	(o) Hepatic Necrosis, (i) Hepatic Effects
Dieldrin	16	16.1	0.00005	0.00005	0.01	B2	(o) Liver	(o) Liver lesions
Heptachlor	4.5	4.55	0.0005	0.0005	0.01	B2	(o) Liver	(o) Increase in liver weight of males
Heptachlor Epoxide	9.1	9.1	0.000013	0.000013	0.01	B2	(o) Liver	(o) Increased liver-to-body weight ratio
Aroclor-1248	2	2	NA	NA	0.14	B2	NA	NA

TABLE 2-15 DESCRIPTION OF REMEDIAL ALTERNATIVES FOR SITE 84 OU 19 MCB CAMP LEJEUNE, NORTH CAROLINA

Alternative	Components/Details	Cost (1)	
RAA 1 - No Action	Not Applicable	Capital Cost Annual O&M	\$0 \$0
		Present Worth O&M Time Frame	\$0 >20 years
RAA 2 - Excavation			
to 1 ppm PCBs	Mobilization/Demobilization	Capital Cost	\$6,400,370
	E&S Controls, Utility Location	Annual O&M	\$0
	Site Road	Present Worth O&M	\$0
	Utility Shutoff and Replacement Dozer and Operator	Time Frame	1 year
	Excavation Laborer		
	Excavator and Operator		
	Transportation and Disposal <50 ppm		
	Transportation and Disposal >50 ppm		
	Confirmation Sampling & Field Analysis		
	Lab Analysis		
	Backfill Hauling		
	Backfill Spreading and Compaction		
	Seeding and Mulch		
	Site Supervision, Equipment and Expenses		
RAA 3 - 1 ppm PCB	Project Manager and Expenses		
Soil Cover with			
LUCs	Mobilization/Demobilization	Capital Cost	\$559,221
	E&S Controls, Utility Location	Annual O&M	\$2,592
	Site Road	Present Worth O&M	\$50,804
	Dozer and Operator	Time Frame	>20 years
	Lab Analysis		2
	Poly Sheeting		
	Soil Cover Material Hauling		
	2' Soil Cover Spreading with Compaction		
	Seeding and Mulch		
	Site Supervision, Equipment and Expenses		
	Project Manager and Expenses		
	LUCs - Yrly Grounds/Fence Maintenance		

TABLE 2-15 DESCRIPTION OF REMEDIAL ALTERNATIVES FOR SITE 84 OU 19 MCB CAMP LEJEUNE, NORTH CAROLINA

Alternative	Components/Details	Cost (1)	
RAA 4 - PCB Removal Actions with LUCs	LUCs - Yrly Grounds/Fence Maintenance	Capital Cost Annual O&M Present Worth O&M Time Frame	\$0 \$2,592 \$50.804 >20 years

(1) The NTCRAs approximate cost of \$3.5 million should be added to each alternative.

TABLE 2-16 RELATIVE RANKING OF REMEDIAL ALTERNATIVES SITE 84 OU 19 MCB CAMP LEJEUNE, NORTH CAROLINA

Evaluation Criteria	Alternative RAA 1	Alternative RAA 2	Alternative RAA 3	Alternative RAA 4
Overall Protection of Human Health & Environment	0	O	•	•
Compliance with ARARs	0	O	0	0
Long-Term Effectiveness & Permanence	0	O	•	•
Reduction of Toxicity, Mobility, or Volume Through Treatment	0	0	0	0
Short-Term Effectiveness	0	•	0	0
Implementability	0	O	O	O
Cost	0	0	•	0
Ranking: High Moderate Low		·		

Rankings are provided as qualitative descriptions of the relative compliance of each alternative with the criteria.

Note:

Alternative RAA 1 – No Action Alternative RAA 2 – Excavation to 1 ppm PCBs Alternative RAA 3 – 1 ppm PCBs Soil Cover with LUCs Alternative RAA 4 – PCB Removal Actions with LUCs

TABLE 2-17 CHEMICAL-SPECIFIC TBC Site 84 OU 19 MCAS Camp Lejeune, North Carolina

Action	Requirements	Prerequisite	Citation
	Cleam		
Cleanup Levels for PCBs at Superfund Sites	Recommends PCB cleanup levels within range of 10-25 ppm for industrial sites.	CERCLA site with PCB contamination in soils greater than 1 ppm — To Be Considered (TBC)	USEPA Guidance on Remedial Actions for Superfund Sites with PCB Contamination, OSWER 9355.4-01 FS (1990)

Action	Requirements	Prerequisite	Citation		
	Waste Generati	Waste Generation/Management			
Storage and Disposal of PCB waste	PCB remediation waste, including PCB sewage sludge, is regulated for cleanup and disposal in accordance with CFR 761.61.	Generation and disposal of waste containing PCBs at concentrations ≥ 50 ppm — applicable	40 CFR 761.50(a)		
Management of PCB waste	Any person cleaning up and disposing PCBs shall do based on the concentration at which the PCBs are found.	Generation of PCB remediation waste as defined in 40 CFR 761.3— applicable	40 CFR 761.61		
	Sto	rage			
Storage of PCB remediation waste	Waste must be placed in a pile that: •is designed and operated to control dispersal by wind, where necessary, by means other than wetting	Temporary storage of PCB remediation waste or PCB bulk product waste at cleanup site or site of generation for up to 180 days — applicable	40 CFR 761.65(c)(9)(i)		
	• Does not generate leachate through decomposition or other reactions		40 CFR 761.65(c)(9)(ii)		
	• is at a storage site with a liner designed, constructed, and installed to prevent any migration of wastes off or through the liner into adjacent subsurface soil, groundwater or surface water.		40 CFR 761.65(c)(9)(iii)(A)		

Action	Requirements	Prerequisite	Citation
	Treatment/D		
Disposal of decontamination PCB waste and residues	Decontamination waste and residues shall be disposed of at their existing PCB concentration unless otherwise specified.	Generation of PCB waste residues that requires disposal — applicable	40 CFR 761.79(g)
	Shall be disposed of in accordance with provisions for wastes from cleanup of PCB remediation waste at 40 CFR 761.61(a)(5)(v).	Non-liquid cleaning materials and PPE resulting from decontamination — applicable	40 CFR 761.79(g)(6)
Disposal of PCB remediation waste (self-implementing option)	May be sent off site for decontamination or disposal provided the waste is either dewatered on site or transported off site in containers meeting the requirements of DOT HMR at 49 CFR parts 171-180.	Generation of bulk PCB remediation waste (as defined in 40 CFR 761.3) for disposal — applicable	40 CFR 761.61(a)(5)(i)(B)
	Shall be disposed of in accordance with the provisions at 40 CFR 761.61(a)(5)(v)(A).	Bulk PCB remediation waste which has been de-watered and PCB concentration < 50 ppm — applicable	40 CFR 761.61(a)(5)(i)(B)(2)(ii)
	Shall be disposed of: •in a hazardous waste landfill permitted by EPA under §3004 of RCRA; or	Bulk PCB remediation waste which has been de-watered and with a PCB concentration ≥ 50 ppm — applicable	40 CFR 761.61(a)(5)(i)(B)(2)(iii)
	• in a hazardous waste landfill permitted by a State authorized under §3006 of RCRA; or		
	• in a PCB disposal facility approved under 40 CFR 761.60		

Action	Requirements	Prerequisite	Citation
	Treatment	/Disposal	
Disposal of PCB cleanup wastes (e.g., PPE, rags, non-liquid cleaning materials) (self- implementing option)	Shall be disposed of either: •in a facility permitted, licensed or registered by a State to manage municipal solid waste under 40 CFR 258 or non-municipal, non-hazardous waste subject to 40 CFR 257.5 thru 257.30; or	Generation of non-liquid PCBs at any concentration during and from the cleanup of PCB remediation waste — applicable	40 CFR 761.61(a)(5)(v)(A)
	• in a RCRA Subtitle C landfill permitted by a State to accept PCB waste; or		
	 in an approved PCB disposal facility; or 		
	• through decontamination under 40 CFR 761.79(b) or (c).		
Disposal of PCB waste in North Carolina Hazardous Waste Disposal Facility	PCBs of 50 ppm or greater concentration shall not be disposed of in a hazardous waste disposal facility.	Generation of PCB remediation waste ≥ 50 ppm — relevant and appropriate	NCGS 130A-294(h)(6)
Disposal of PCB waste in North Carolina Municipal Solid Waste Landfill (MSWLF)	PCB waste as defined in 40 CFR 761 is prohibited from disposal at a MSWLF unit.	Generation of PCB wastes as defined in 40 CFR 761 — applicable	15A NCAC 13B.1626(1)(b)(ii)
Disposal of PCB waste in North Carolina Construction and Demolition Landfill (CDLF)	PCB waste as defined in 40 CFR 761 is prohibited from disposal at a CDLF unit.	Generation of PCB wastes as defined in 40 CFR 761 — applicable	15A NCAC 13B.0542(e)(8)
	Decontaminat	ion/Cleanup	
Decontamination of movable equipment contaminated by PCBs (self-implementing option)	May decontaminate by: •swabbing surfaces that have contacted PCBs with a solvent; •a double wash/rinse as defined in 40 CFR 761.360-378; or	Movable equipment contaminated by PCBs, tools and sampling equipment — relevant and appropriate	40 CFR 761.79(c)(2)

Action	Requirements	Prerequisite	Citation
	Decontamina	tion/Cleanup	
	• another applicable decontamination procedure under 40 CFR 761.79.		
Cleanup verification for self- implementing option(s)	Must collect and analyze samples to verify the cleanup and on-site disposal of bulk PCB remediation waste and porous surfaces in accordance with 40 CFR 761.280-298 (Subpart O).	Collection and analysis of samples to verify cleanup of bulk PCB remediation waste - relevant and appropriate	40 CFR 761.61(a)(6)(i)
	Self-implementing cleanup of PCB remediation waste is complete.	Sample analysis results in measurement of PCBs less than or equal to levels specified in 40 CFR 761.61(a) — relevant and appropriate	40 CFR 761.61(a)(6)(ii)(A)
	Cleanup is not complete and must either dispose of the sampled PCB remediation waste, or reclean the waste represented by the sample and reinitiate sampling and analysis in accordance with 40 CFR 761.61(a)(6)(i).	Sample analysis results in measurement of PCBs greater than or equal to levels specified in 40 CFR 761.61(a) — relevant and appropriate	40 CFR 761.61(a)(6)(ii)(B)
Cleanup levels for bulk PCB remediation waste left in place (self- implementing option)	May remain on site without further conditions.	Bulk PCB remediation waste remaining in a <i>high occupancy area</i> (as defined in 40 CFR 761.3) at concentrations ≤1 ppm — relevant and appropriate	40 CFR 761.61(a)(4)(i)(A)
	Shall be covered with a cap meeting the requirements of 40 CFR 761.61(a)(7) and 40 CFR 761.61(a)(8) [<i>See below</i>].	Bulk PCB remediation waste remaining in a <i>high occupancy area</i> (as defined in 40 CFR 761.3) at concentrations > 1 ppm and \leq 10 ppm — relevant and appropriate	40 CFR 761.61(a)(4)(i)(A)

Action	Requirements	Prerequisite	Citation	
	Decontamination/Cl	leanup		
	May remain on site without further conditions.	Bulk PCB remediation waste remaining in a <i>low occupancy</i> <i>area</i> (as defined in 40 CFR 761.3) at concentrations ≤ 25 ppm— relevant and appropriate	40 CFR 761.61(a)(4)(i)(B)(1)	
	May remain on site if the site is secured by a fence and marked with a sign including the ML mark.	Bulk PCB remediation waste remaining in a <i>low occupancy</i> <i>area</i> (as defined in 40 CFR 761.3) at concentrations > 25 ppm and \leq 50 ppm — relevant and appropriate	40 CFR 761.61(a)(4)(i)(B)(2)	
	Shall be covered with a cap meeting the requirements of 40 CFR 761.61(a)(7) and 40 CFR 761.61(a)(8) [<i>See below</i>].	Bulk PCB remediation waste remaining in a <i>low occupancy</i> <i>area</i> (as defined in 40 CFR 761.3) at concentrations > 50 ppm and \leq 100 ppm — relevant and appropriate	40 CFR 761.61(a)(4)(i)(B)(3)	
Cap requirements for Bulk PCB remediation waste left in place (self- implementing option)	Must do so in accordance with 40 CFR 264.310(a) and ensure it complies with the permeability, sieve, liquid limit and plasticity index parameters in 40 CFR 761.75(b)(1)(ii) thru (b)(1)(v).	Designing and constructing a cap for on-site disposal of PCB remediation waste — relevant and appropriate	40 CFR 761.61(a)(7)	
	Must be of sufficient strength to maintain its effectiveness and integrity.			

Action	Requirements	Prerequisite	Citation
	Decontaminatio	m/Cleanup	
	May not be contaminated at a level ≥ 1 ppm PCBs.		
	A cap of compacted soil shall have a minimum thickness of 15 cm (10 inches).		
	Institutional	Controls	
Deed restrictions for caps, fences, and low occupancy areas	Must maintain the fence or cap, in perpetuity.	Use of a cap or fence at PCB remediation waste cleanup site — relevant and appropriate	40 CFR 761.61(a)(B)
	Within 60 days of completion of cleanup activity shall record, in accordance with State law, a notation on the deed to the property, or on some other instrument which is normally examined during a title search, that will in perpetuity notify any potential purchaser of the property:	Use of a cap or fence at low occupancy PCB remediation waste cleanup site —relevant and appropriate	40 CFR 761.61(a)(8)(i)(A)
	• that land has been used for PCB remediation waste disposal and is restricted to use as a low occupancy area as defined in 40 CFR 761.3.		40 CFR 761.61(a)(8)(i)(A)(1)
	• of existence of the fence or cap and the requirements to maintain the fence or cap.		40 CFR 761.61(a)(8)(i)(A)(2)

Action	Requirements	Prerequisite	Citation			
	Institutional Controls					
	• the applicable cleanup levels left at the site, inside the fence, and/or under the cap.		40 CFR 761.61(a)(8)(i)(A)(3)			
	May remove a fence or cap after conducting additional cleanup activities and achieving levels specified in 40 CFR 761.61(a)(4) which do not require a cap or fence and remove the notice on the deed no earlier than 30 days after achieving these levels.		40 CFR 761.61(a)(8)(ii)			
Notice of Contaminated Site	Prepare and certify by professional land surveyor a survey plat, which identifies contaminated areas and entitled "NOTICE OF CONTAMINATED SITE" and includes a legal description of the site that would be sufficient as a description in an instrument of conveyance and meet the requirements of NCGS 47-30 for maps and plans.	Contaminated site subject to current or future use restrictions included in a remedial action plan as provided in G.S. 143B-279.9(a) — TBC	NCGS 143B-279.10(a)			
	 The Survey plat shall identify: the location and dimensions of any disposal areas and areas of potential environmental concern with respect to permanently surveyed benchmarks; the type location, and quantity of contamination known to exist on the site; and any use restriction on the current or future use of the site. 		NCGS 143B-279.10(a)(1)-(3)			

Action	Requirements	Prerequisite	Citation		
	Institutio	nal			
	Notice (survey plat) shall be filed in the register of deeds office in the county which the site is located in the grantor index under the name of the owner.		NCGS 143B-279.10(b) and (c)		
	The deed or other instrument of transfer shall contain in the description section, in no smaller type than used in the body of the deed or instrument, a statement that the property is a contaminated site and reference by book and page to the recordation of the Notice.	Contaminated site subject to current or future use restrictions as provided in G.S. 143B-279.9(a) that is to be sold, leased, conveyed or transferred — TBC	NCGS 143B-279.10(e)		
	Transport	ation			
Transportation of PCB waste off site	Must comply with the manifesting provisions at 40 CFR 761.207 through 218.	Relinquishment of control over PCB waste by transporting, or offering for transport — applicable	40 CFR 761.207(a)		
Transportation of hazardous materials	Shall be subject to and must comply with all applicable provisions of the HMTA and DOT HMR at 49 CFR 171-180.	Any person who, under contract with a department or agency of the federal government, transports "in commerce," or causes to be transported or shipped, a hazardous material — applicable	49 CFR 171.1(c)		

Action	Requirements	Citation				
	Sediment and Ero	Sediment and Erosion Control				
Managing storm water, surface water, and sedimentation	Persons conducting land-disturbing activity shall take all reasonable measures to protect all public and private property from damage caused by such activities. Must comply with the provisions of 04B.0106, .0107, .0108, .0113, and .0116 for an erosion and sedimentation control plan.	—relevant and appropriate				
	Air Quality (
Managing fugitive dust emissions	Implement plan outlining actions (e.g. wetting dry soils) to control dust emissions that could travel beyond the site boundary.	Conducting activities that will generate fugitive dust emissions — relevant and appropriate	15A NCAC 02D.0540(c) through (f)			

ARAR = applicable or relevant and appropriate requirement

- CDLF = Construction and Demolition Landfill
- CFR = Code of Federal Regulations

DOT = U.S. Department of Transportation

>greater than

- \geq greater than or equal to
- \leq less than or equal to

HMR = Hazardous Materials Regulations

HMTA = Hazardous Materials Transportation Act

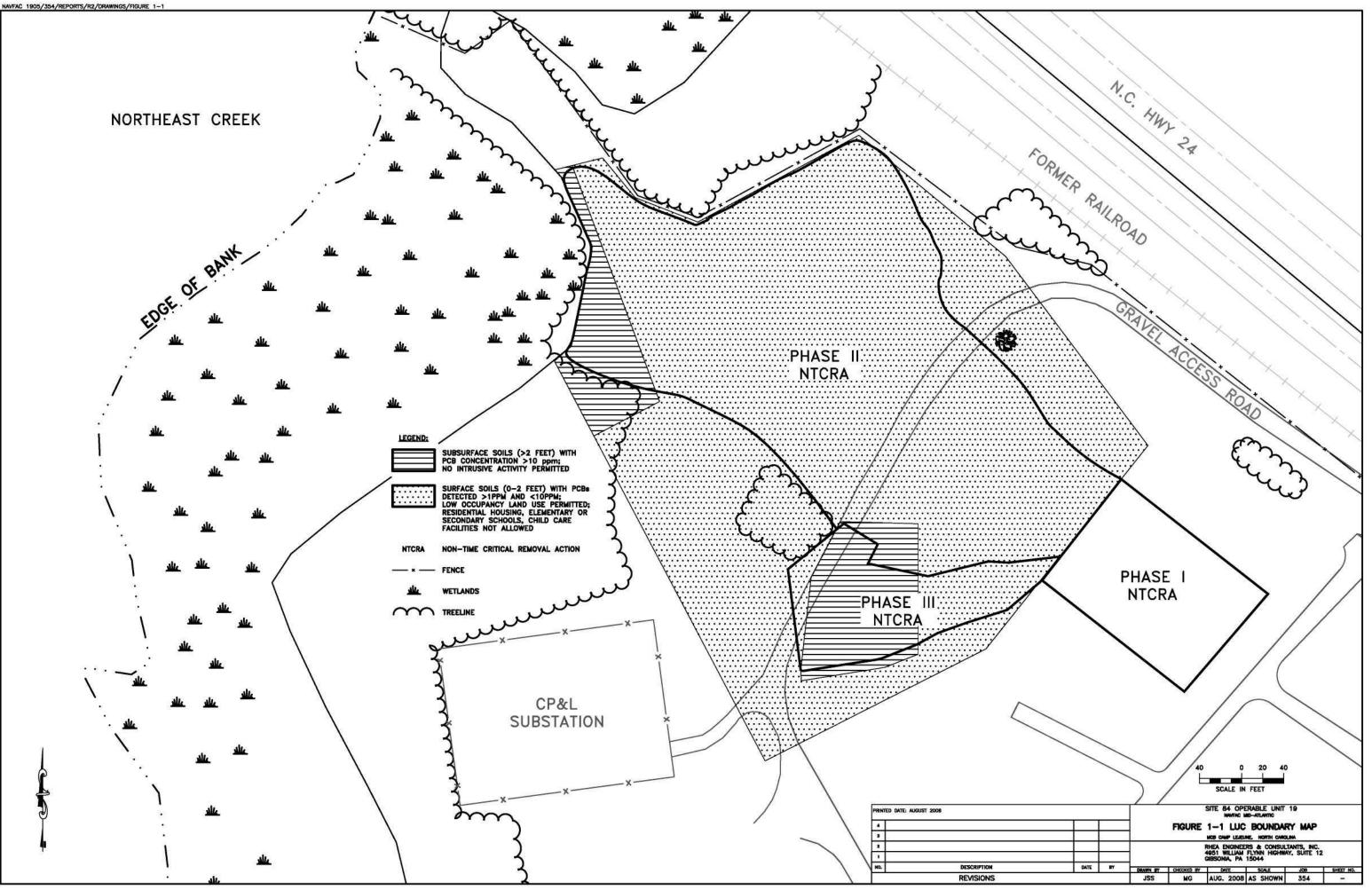
ML = Large Mark

MSWLF = Municipal Solid Waste Landfill

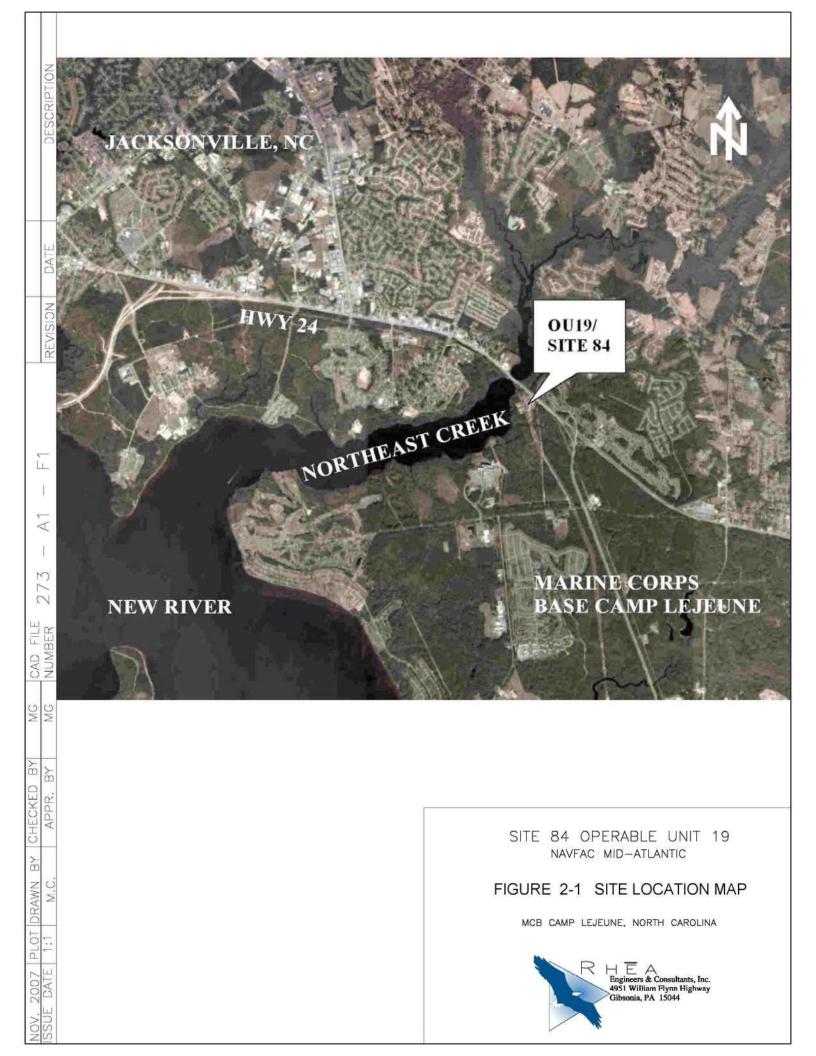
NCAC = North Carolina Administrative Code

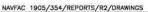
NCGS = North Carolina General Statutes

PCB = polychlorinated biphenyl

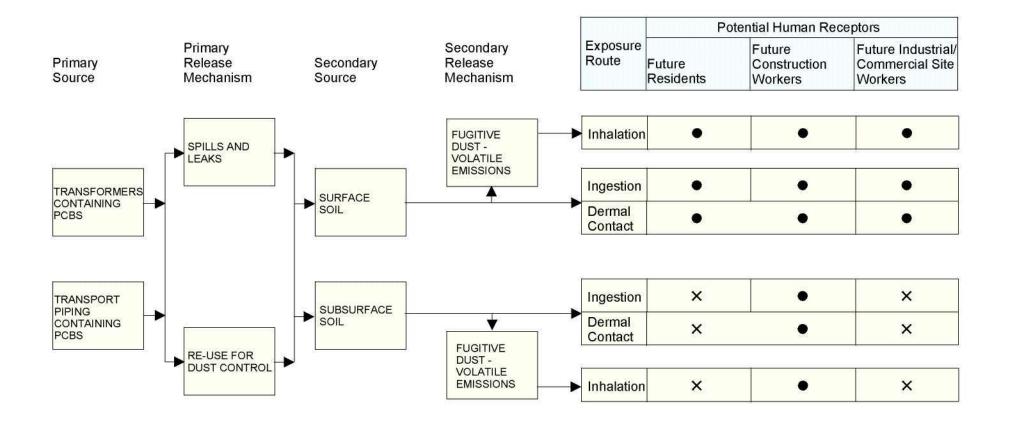

PPE = personal protective equipment RCRA = Resource Conservation and Recovery Act of 1976

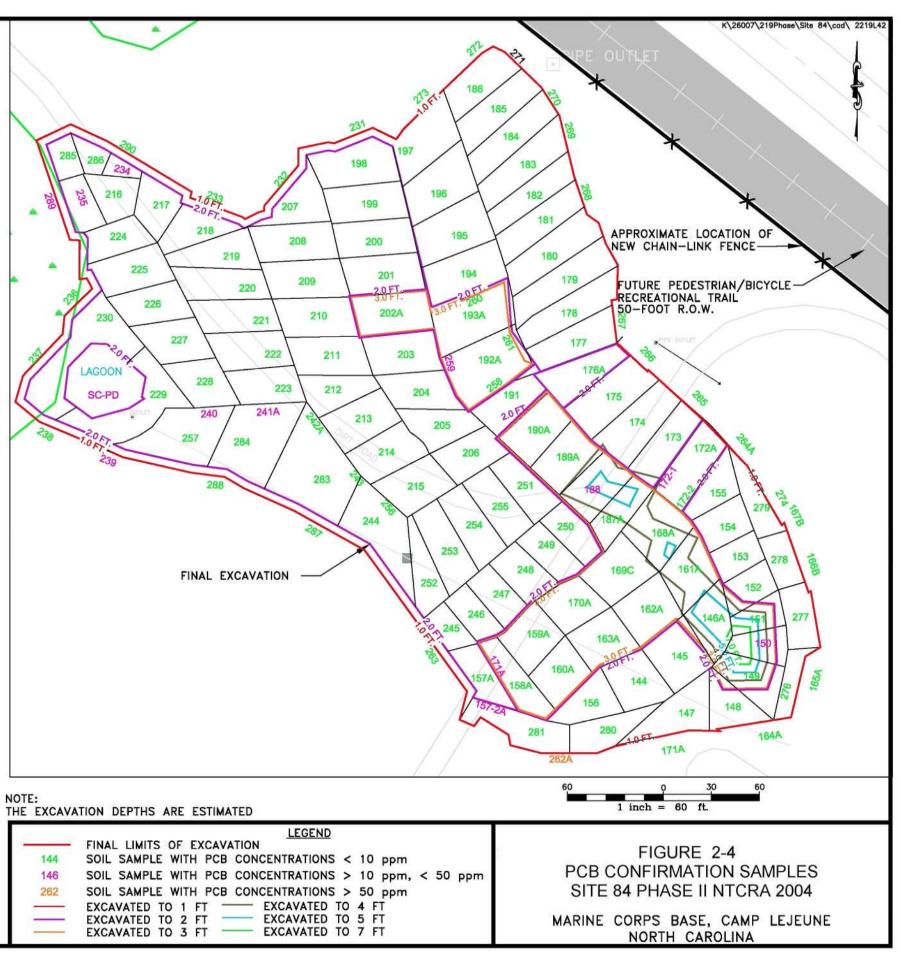
USEPA = United States Environmental Protection Agency

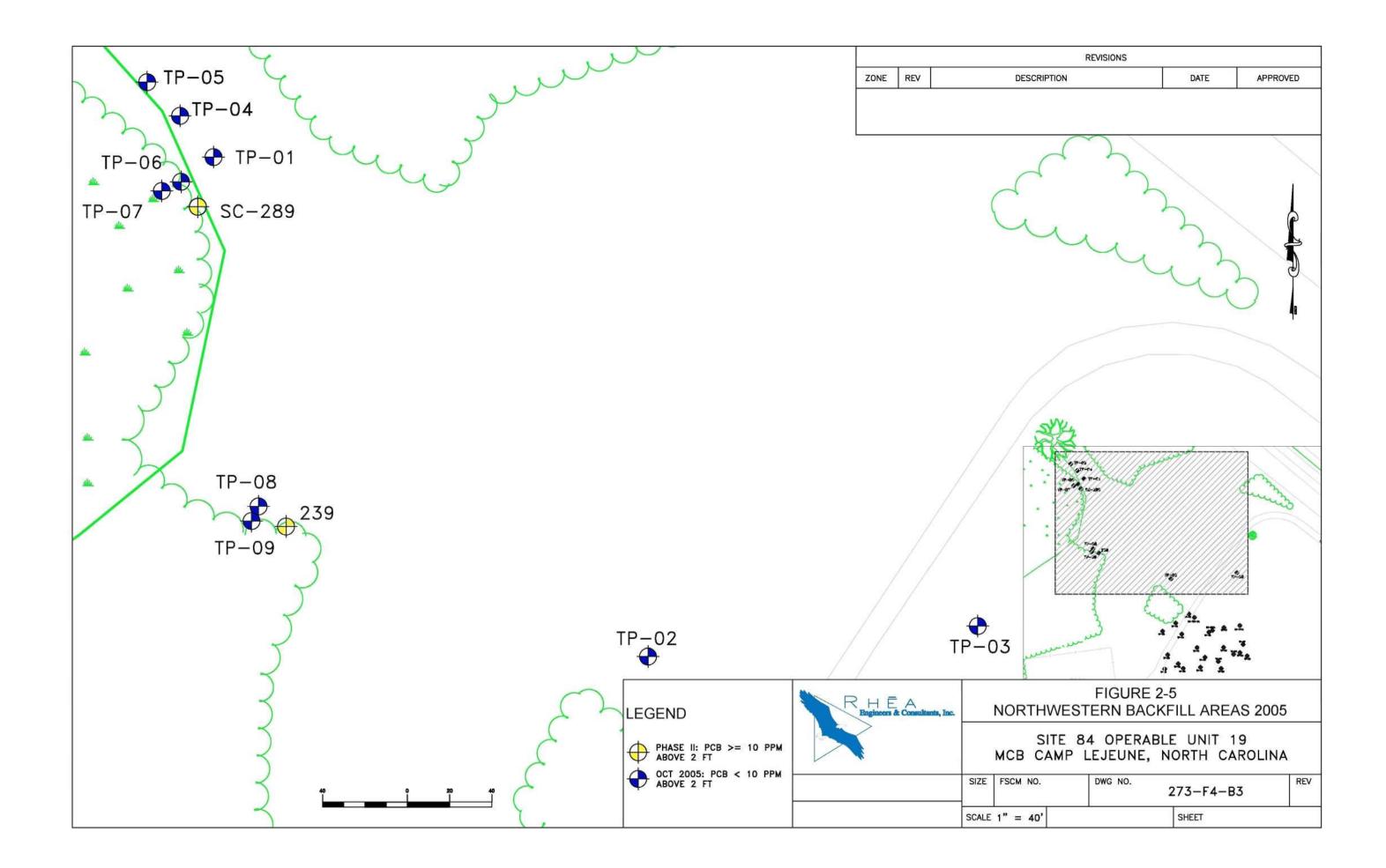

TABLE 2-19 COST ESTIMATE: RAA 4 - PCB REMOVAL ACTIONS WITH LUCs SITE 84 OPERABLE UNIT 19 MCB CAMP LEJEUNE, NORTH CAROLINA

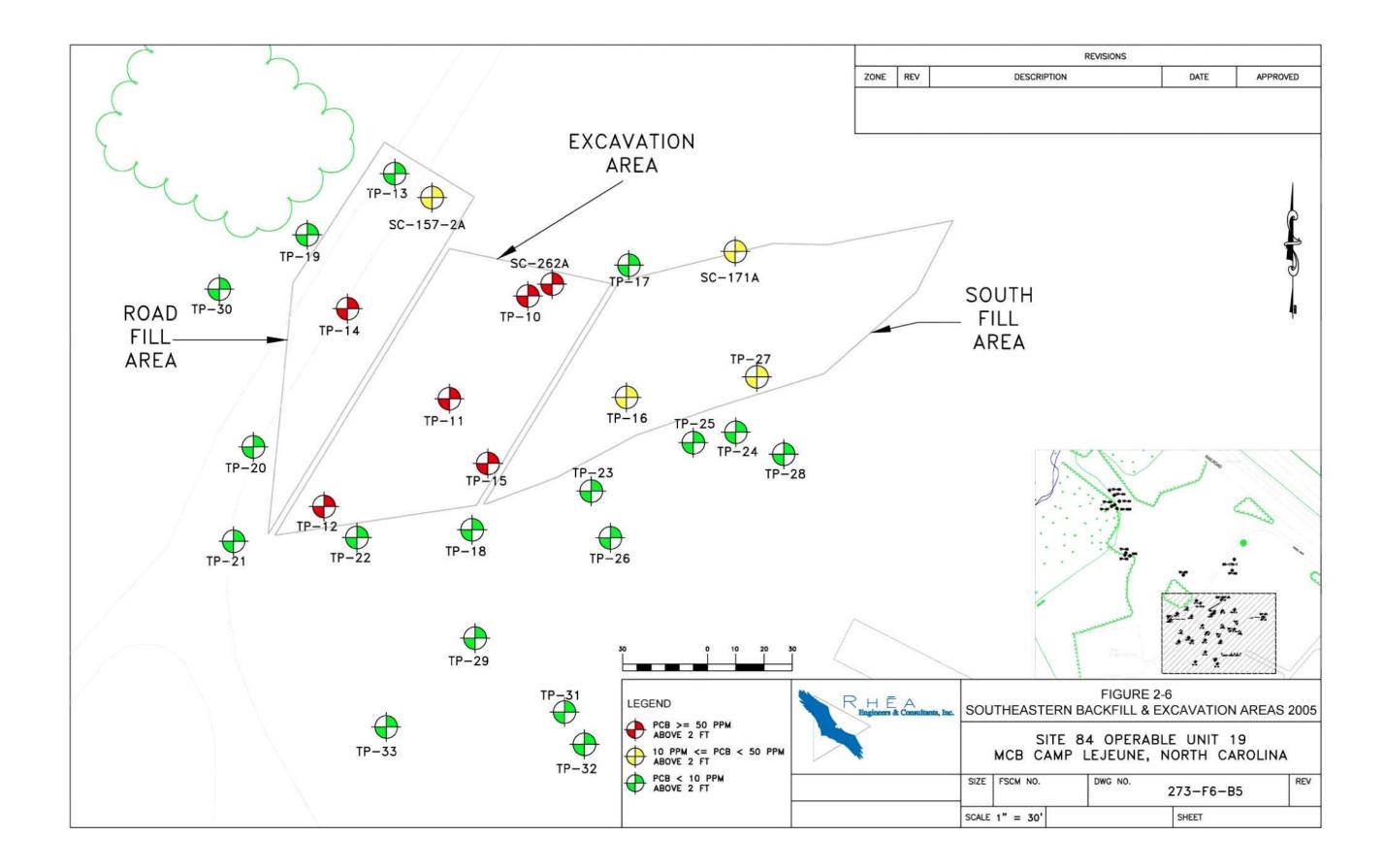

Cost Item	Unit	Qty	Unit Cost	Total Cost	Comments
DIRECT CAPITAL COSTS					
Capital Costs			- E	\$0	
PROFESSIONAL SERVICES					
Professional Services	-			\$0	
ANNUAL OPERATION & MAINTENANCE					
Annual Grounds Maintenance	LS	2	\$860	\$1,720	Vendor quote
Est. \$200/acre/event x 4.3 acres = \$860.00					
Area: 4.3 acres; Events per year: 2					
Annual Fence Maintenance	LS	1	\$200	\$200	Engineer's Experience
Annual O&M Subtotal Cost				\$1,920	
Present Cost of Annual O&M for 30 years				\$37,633	·
Effective Interest Rate of 3%					
Present Worth Factor: 19.6005	-				
SUBTOTAL PROJECT COST			-	\$37,633	
Contingency 35%				\$13,172	Total 35% Contingency (20% Scope and 15% Bid)
TOTAL PROJECT COST				\$50,804	

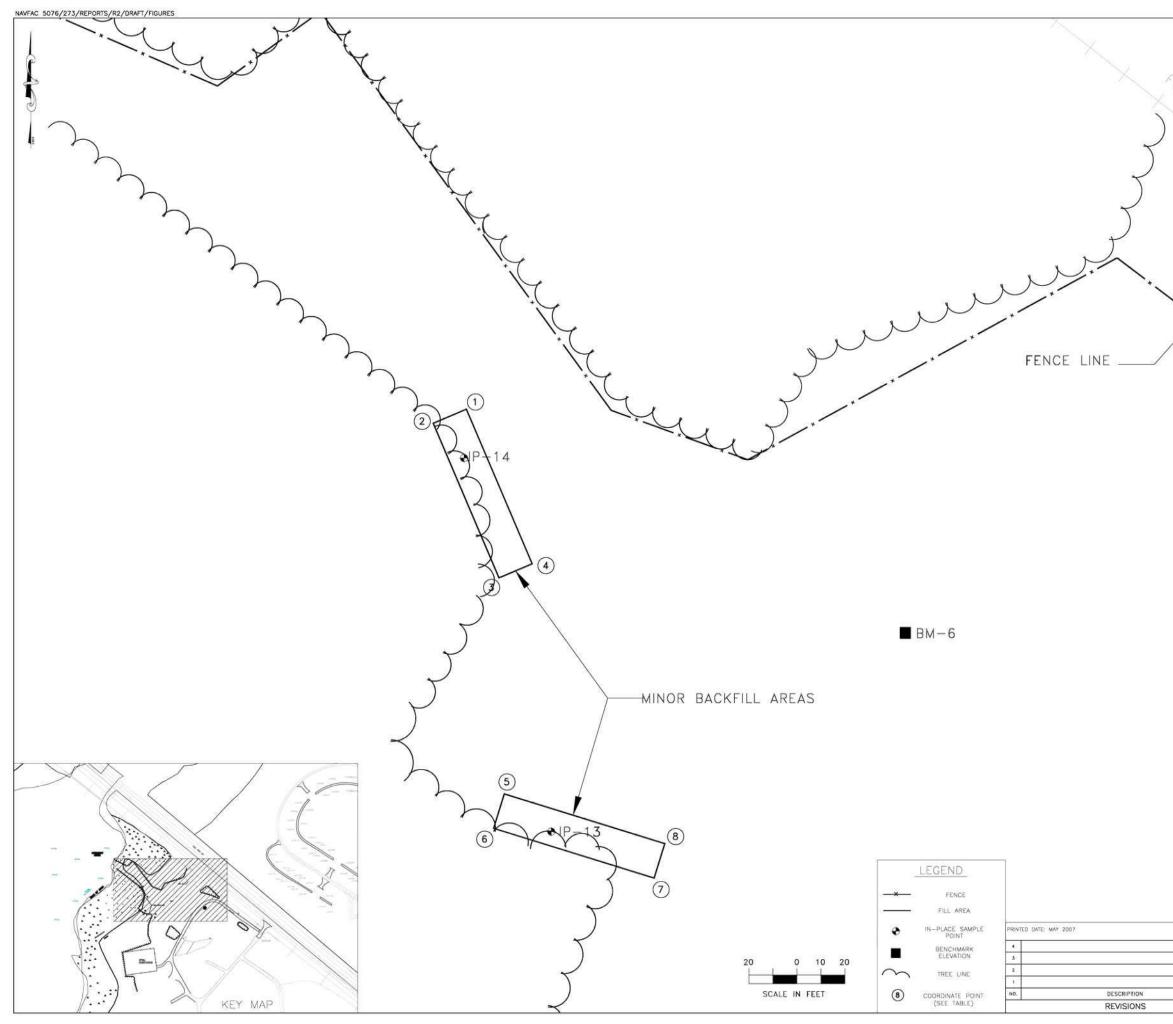
FIGURES


Г

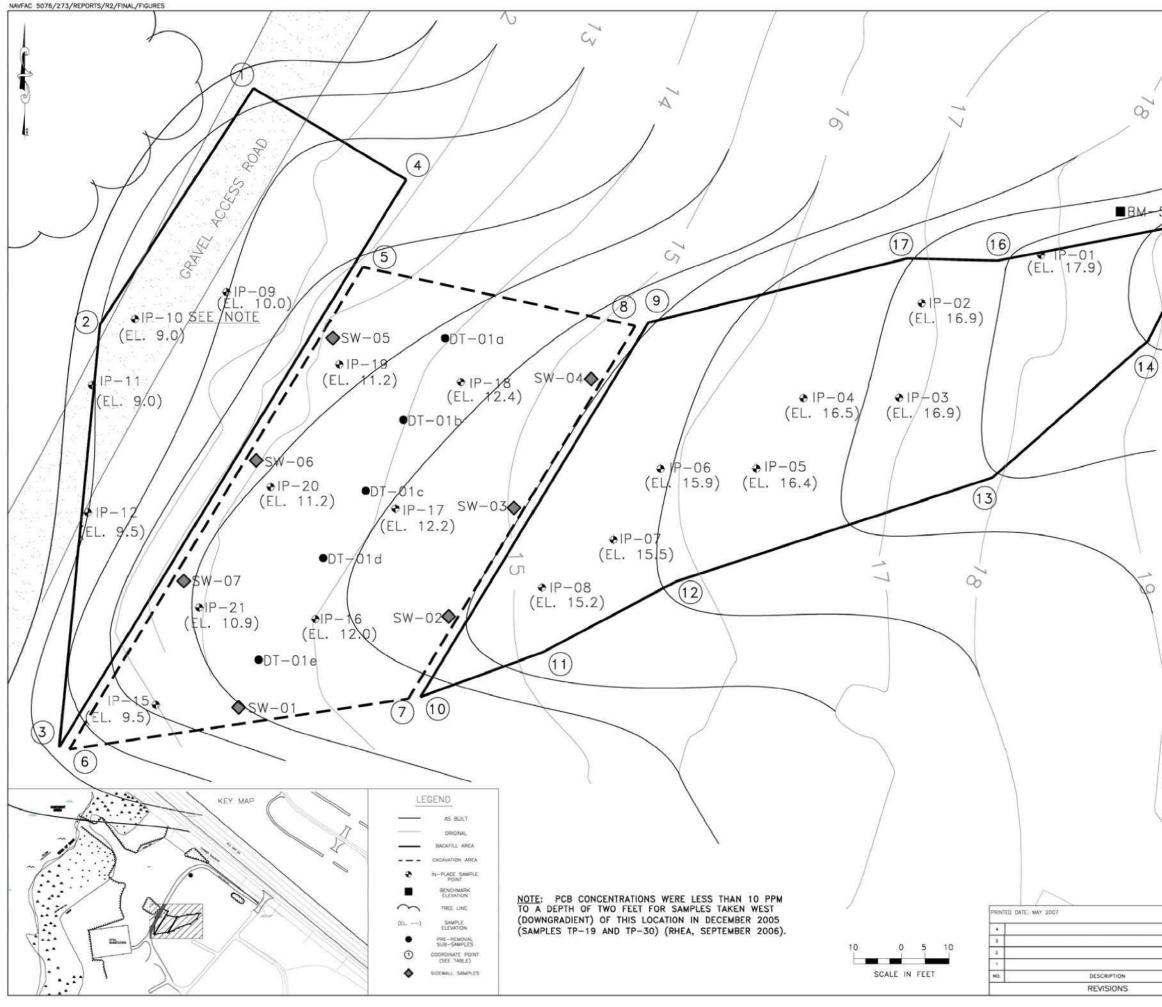

FIGURE 2-3 CONCEPTUAL SITE MODEL SITE 84/BUILDING 45 AREA MCB CAMP LEJEUNE, NORTH CAROLINA




LEGEND


- Complete exposure pathway. Will be quantitatively evaluated.
- × Incomplete exposure pathway. Will not be quantitatively evaluated

SAMPLE ID	PCB Ensys Result	PCB Lab Result	SAMPLE ID	PCB Ensys Result	PCB Lab Result
SC-144	< 10.0	5.7	SC-214	< 10.0	ND
SC-145	NA	6.9	SC-215	< 10.0	ND
SC-146A	< 10.0	2.2	SC-216	< 10.0	ND
SC-147	< 10.0	0.23	SC-217	< 10.0	0.27
SC-148	< 10.0	0.19	SC-218	< 10.0	0.28
SC-149	< 10.0	1.3	SC-219	< 10.0	0.067
SC-150	< 10.0	23	SC-220	< 10.0	0.092
SC-151	< 10.0	0.3	SC-221	< 10.0	0.043
SC-152	< 10.0	0.12	SC-222	< 10.0	0.056
SC-152 SC-153	< 10.0	1.3	SC-223	< 10.0	3.4
SC-153			SC-224		
	< 10.0	0.35	 A second sec second second sec	< 10.0	ND
SC-155	< 10.0	6.1	SC-225	< 10.0	0.097
SC-156	< 10.0	3	SC-226	< 10.0	ND
SC-157A	< 10.0	0.14	SC-227	> 10.0	6.7
SC-157-1A	> 10.0	2.9	SC-228	< 10.0	0.064
SC-157-2A	> 10.0	20	SC-558	> 10.0	7.5
SC-158A	NE	ND	SC-230	< 10.0	0.16
SC-159A	NE	0.29	SC-231	NA	1.8
SC-160A	< 10.0	8.3	SC-232	NA	7.2
SC-161A	< 10.0	7.8	SC-233	NA	0.32
SC-162A	NE	0.72	SC-234	NA	11
SC-163	> 50.0	NA	SC-235	NA	12
SC-164	< 10.0	0.062	SC-236	NA	3.1
SC-164A	NA	1.2	SC-237	NA	2.3
SC-165	< 10.0	0.062	SC-238	NA	0.94
SC-165A	NA	1.9	SC-238	NA	12
	23. 2020	5.4	SC-240		
SC-166A SC-166B	NA			NA	33
	NA	0.15	SC-241A	NA	15
SC-167B	NA	1.2	SC-242A	NA	0.5
SC-168A	< 10.0	6.7	SC-243	NA	1.8
SC-169C	NA	5.3	SC-244	< 10.0	1.3
SC-170A	< 10.0	1.6	SC-245	NA	0.74
SC-171A	NA	17	SC-246	NA	8.2
SC-172-1	NA	37	SC-247	NA	10
SC-172-2	NA	3	SC-248	NA	1.8
SC-172A	NA	0.54	SC-249	NA	0.78
SC-173	NA	2.9	SC-250	NA	5.2
SC-174	< 10.0	6	SC-251	NA	0.56
SC-175	NA	3	SC-252	NA	ND
SC-176A	NA	0.59	SC-253	NA	0.66
SC-177	< 10.0	6.7	SC-254	NA	0.39
SC-178	< 10.0	5.5	SC-255	NA	9
SC-179	< 10.0	3.7	SC-256	NA	0.14
SC-180	NA	0.72	SC-257	NA	0.79
SC-180	< 10.0	0.57	SC-258	NA	1.8
SC-181 SC-182	< 10.0	9,2	SC-259	NA	1.0
SC-182	< 10.0	0.31	SC-260	NA	2.9
			the second se		
SC-184	NA	0.15	SC-261	NA	0.87
SC-185	NA	0.57	SC-262A	NA	730
SC-186	NA	0.86	SC-263	NA	0.79
SC-187A	NA	0.01	SC-264A	NA	0.068
SC-188	NA	12	SC-265	NA	1.6
SC-189A	NA	0.69	SC-266	NA	3
SC-190A	NA	0.91	SC-267	NA	3.4
SC-191	NA	5	SC-268	NA	1.4
SC-192A	NA	1.7	SC-269	NA	0.3
SC-193A	NA	2.1	SC-270	NA	2.9
SC-194	NA	5	SC-271	NA	too wet
SC-195	< 10.0	1.1	SC-272	NA	0.85
SC-196	< 10.0	1.9	SC-273	NA	1.5
SC-197	NA	0.17	SC-274	NA	0.38
SC-198	< 10.0	1.9	SC-275	NA	0.46
SC-199	NA	0.078	SC-276	NA	0.66
SC-200	< 10.0	0.12	SC-277	NA	0.96
SC-200	< 10.0	0.95	SC-278	NA	0.98
SC-201	NA NA	2.7	SC-279	NA	0.18
	2				
SC-203	NA	3.4	SC-280	NA	0.16
SC-204	< 10.0	0.26	SC-281	NA	7.7
SC-205	NA	3	SC-583	NA	3.5
SC-506	NA	3.2	SC-284	NA	2
SC-207	< 10.0	0.84	SC-582	NA	0.25
SC-208	NA	0.79	SC-586	NA	0.6
SC-209	< 10.0	0.1	SC-287	NA	0.76
SC-210	< 10.0	0.026	SC-588	NA	2.8
SC-211	NA	ND	SC-289	NA	17
	< 10.0	0.18	SC-290	NA	0.47
SC-212	1010				
SC-212 SC-213	< 10.0	0.068	SC-PD	NA	20



DRMER RA					
PAIN					
PA					
XM	11 m				
	MO2	1~			
X		Ø			
		\times			
			\times		
N					
۲ کړ ا					
	+	< <			\times
		1			
		~		\bigcap	\sim
		1			5
					L
			*	(.)
			X	\$ 20	1
			('	1	
			\sim	1.1	
				X	ζ ,
				\sim	\leq
		Point	PCB (ppm)	Original	Final
				Elevation (ft)	Elevation (ft)
		IP-13	0.27	4.25	
		IP-13	0.27	4.25	6.26
		IP-13 IP-14	0.27	4.25	6.26
		IP-13 IP-14	0.27	4.25	6.26
		IP-13 IP-14 Note: PCB ar	0.27 0.045 nalysis by EPA	4.25 5.46 Method 8082	6.26 7.50
		IP-13 IP-14 Note: PCB ar	0.27 0.045 alysis by EPA Easting	4.25 5.46 Method 8082 Northing	6.26 7.50 Elevation
		IP-13 IP-14 Note: PCB ar Benchmark BM-5	0.27 0.045 nalysis by EPA Easting 2495308.77	4.25 5.46 Method 8082 Northing 361373.14	6.26 7.50 Elevation 18.88
		IP-13 IP-14 Note: PCB ar Benchmark BM-5 BM-6	0.27 0.045 nalysis by EPA Easting 2495308.77 2495055.32	4.25 5.46 Method 8082 Northing 361373.14 361618.18	6.26 7.50 Elevation 18.88 6.76
		IP-13 IP-14 Note: PCB ar Benchmark BM-5 BM-6 Note: Northin	0.27 0.045 alysis by EPA Easting 2495308.77 2495055.32 g and Easting s	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C	6.26 7.50 Elevation 18.88 6.76
		IP-13 IP-14 Note: PCB ar Benchmark BM-5 BM-6 Note: Northin	0.27 0.045 nalysis by EPA Easting 2495308.77 2495055.32	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C	6.26 7.50 Elevation 18.88 6.76
		IP-13 IP-14 Note: PCB ar Benchmark BM-5 BM-6 Note: Northin	0.27 0.045 nalysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3.	6.26 7.50 Elevation 18.88 6.76 arolina
		IP-13 IP-14 Note: PCB ar Benchmark BM-5 BM-6 Note: Northin	0.27 0.045 nalysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show Coordi	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3.	6.26 7.50 Elevation 18.88 6.76 arolina Till Areas
		IP-13 IP-14 Note: PCB ar Benchmark BM-5 BM-6 Note: Northin	0.27 0.045 alysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show Coordi Location	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3. nates for Backf Easting	6.26 7.50 Elevation 18.88 6.76 arolina ill Areas Northing
		IP-13 IP-14 Note: PCB ar Benchmark BM-5 BM-6 Note: Northin	0.27 0.045 alysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show Coordi Location 1	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3. nates for Backt Easting 2494870.56	6.26 7.50 Elevation 18.88 6.76 arolina ill Areas Northing 361711.52
		IP-13 IP-14 Note: PCB ar Benchmark BM-5 BM-6 Note: Northin	0.27 0.045 alysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show Coordi Location 1 2	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3. nates for Backf Easting 2494870.56 2494856.76	6.26 7.50 Elevation 18.88 6.76 arolina ill Areas Northing 361711.52 361705.65
		IP-13 IP-14 Note: PCB ar Benchmark BM-5 BM-6 Note: Northin	0.27 0.045 alysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show Coordi Location 1 2 3	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3. nates for Backf Easting 2494870.56 2494856.76 2494884.16	6.26 7.50 Elevation 18.88 6.76 arolina ill Areas Northing 361711.52 361705.65 361641.24
	/	IP-13 IP-14 Note: PCB ar Benchmark BM-5 BM-6 Note: Northin	0.27 0.045 nalysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show Coordi Location 1 2 3 4	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3. nates for Backt Easting 2494870.56 2494856.76 2494884.16 2494897.96	6.26 7.50 Elevation 18.88 6.76 arolina ill Areas Northing 361711.52 361705.65 361641.24 361647.11
	/	IP-13 IP-14 Note: PCB ar Benchmark BM-5 BM-6 Note: Northin	0.27 0.045 alysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show Coordi Location 1 2 3 4 5	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3. nates for Backf Easting 2494870.56 2494856.76 2494884.16 2494897.96 2494886.35	6.26 7.50 Elevation 18.88 6.76 arolina ill Areas Northing 361711.52 361705.65 361641.24 361647.11 361551.22
		IP-13 IP-14 Note: PCB ar Benchmark BM-5 BM-6 Note: Northin	0.27 0.045 alysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show Coordi Location 1 2 3 4 5 6	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3. nates for Backf Easting 2494870.56 2494856.76 2494884.16 2494897.96 2494886.35 2494881.91	6.26 7.50 Elevation 18.88 6.76 arolina ill Areas Northing 361711.52 361705.65 361641.24 361647.11 361551.22 361536.90
		IP-13 IP-14 Note: PCB ar Benchmark BM-5 BM-6 Note: Northin	0.27 0.045 alysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show Coordi Location 1 2 3 4 5 6 7	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3. mates for Backf Easting 2494870.56 2494856.76 2494884.16 2494886.35 2494886.35 2494881.91 2494948.77	6.26 7.50 Elevation 18.88 6.76 arolina ill Areas Northing 361711.52 361705.65 361641.24 361647.11 361551.22 361536.90 361516.18
		IP-13 IP-14 Note: PCB ar Benchmark BM-5 BM-6 Note: Northin	0.27 0.045 alysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show Coordi Location 1 2 3 4 5 6 7 8	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3. Easting 2494870.56 2494856.76 2494884.16 2494884.16 2494886.35 2494886.35 2494881.91 2494948.77 2494953.21	6.26 7.50 Elevation 18.88 6.76 arolina ill Areas Northing 361711.52 361705.65 361641.24 361647.11 361551.22 361536.90 361516.18 361530.50
		IP-13 IP-14 Note: PCB ar BM-5 BM-6 Note: Northin State Plane fe	0.27 0.045 nalysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show Coordi Location 1 2 3 4 5 6 7 8 8	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3. nates for Backt Easting 2494870.56 2494886.76 2494886.76 2494886.76 2494886.35 2494886.35 2494881.91 2494948.77 2494953.21	6.26 7.50 Elevation 18.88 6.76 arolina ill Areas Northing 361711.52 361705.65 361641.24 361647.11 361551.22 361536.90 361516.18 361530.50
		IP-13 IP-14 Note: PCB ar BM-5 BM-6 Note: Northin State Plane fe	0.27 0.045 alysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show Coordi Location 1 2 3 4 5 6 7 8 SITE	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3. nates for Backf Easting 2494870.56 2494856.76 2494884.16 2494886.35 2494886.35 2494886.35 2494881.91 2494948.77 2494953.21 84 OPERABLE UNIT DNFIRMATION PHASE	6.26 7.50 Elevation 18.88 6.76 arolina ill Areas Northing 361711.52 361705.65 361641.24 361647.11 361551.22 361536.90 361516.18 361530.50
		IP-13 IP-14 Note: PCB ar BM-5 BM-6 Note: Northin State Plane fe	0.27 0.045 alysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show Coordi Location 1 2 3 4 5 6 7 8 SITE	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3. nates for Backt Easting 2494870.56 2494856.76 2494884.16 2494886.35 2494886.35 2494886.35 2494881.91 2494948.77 2494953.21 84 OPERABLE UNIT NMFRICHMATION PHASE ESTERN BACKFILL A MAR LEUNK, NORTH CAROL	6.26 7.50 Elevation 18.88 6.76 arolina ill Areas Northing 361711.52 361705.65 361641.24 361647.11 361551.22 361536.90 361516.18 361530.50
		IP-13 IP-14 Note: PCB ar BM-5 BM-6 Note: Northin State Plane fe	0.27 0.045 alysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show Coordi Location 1 2 3 4 5 6 7 8 SITE	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3. nates for Backt Easting 2494870.56 2494856.76 2494884.16 2494886.35 2494886.35 2494886.35 2494881.91 2494948.77 2494953.21 84 OPERABLE UNIT NMFRICHMATION PHASE ESTERN BACKFILL A MAR LEUNK, NORTH CAROL	6.26 7.50 Elevation 18.88 6.76 arolina ill Areas Northing 361711.52 361705.65 361641.24 361647.11 361551.22 361536.90 361516.18 361530.50
	DATE	IP-13 IP-14 Note: PCB ar BM-5 BM-6 Note: Northin State Plane fe	0.27 0.045 alysis by EPA Easting 2495308.77 2495055.32 g and Easting s et; BM-5 show Coordi Location 1 2 3 4 5 6 7 8 SITE FIGURE 2-7 PCB CC NORTHW Wag of Refailed PS1 SITE	4.25 5.46 Method 8082 Northing 361373.14 361618.18 hown in North C n on Figure 3. nates for Backf Easting 2494870.56 2494856.76 2494884.16 2494897.96 2494886.35 2494886.35 2494881.91 2494948.77 2494953.21 84 OPERABLE UNIT NATION PHASE ESTERN BACKFILL A	6.26 7.50 Elevation 18.88 6.76 arolina ill Areas Northing 361711.52 361705.65 361641.24 361647.11 361551.22 361536.90 361516.18 361530.50

			/		/
			/	Sample ID	PCB (ppm)
		/		SW-01	8.2
		/		SW-02	20
			1	SW-03	11.0
		/		SW-04	36
	/	22		SW-05	79
/	//			SW-06	960
/	/	/		SW-07	30
_	San	nple ID	PCB (ppm)	Sample ID	PCB (ppm)
-	IP-0)1	0.056	IP-10-DUP	67
5	IP-0)2	0.44	IP-11	2.4
	IP-0)3	2.0	IP-12	4.2
	IP-0	03-DUP	1.9	IP-15	0.26
	IP-0)4	0.085	IP-16	0.84
	IP-0)5	0.44	IP-16-DUP	0.4
	IP-0)6	0.48	IP-17	200
	IP-0)7	0.8	IP-18	42
	IP-0		2.9	IP-19	360
	IP-0)9	2.0	IP-20	51
	IP-1	0	78	IP-21	3.5
		thod:		and the second sec	
			by EPA Meth	xd 8082	
	1.1.1.1	ded:	of Lannaa		
			vd > 10 mm		
			ed > 10 ppm		
	PCI	Bs detecte		Northing	Elevation
	PCI Ber	Bs detecte Ichmark	Easting	Northing 361373.14	Elevation
	PCI Ber BM	Bs detecte Ichmark - 5	Easting 2495308.77	361373.14	18.88
	PCF Ber BM BM	Bs detecte ichmark - 5 - 6	Easting 2495308.77 2495055.32	361373.14 361618.18	18.88 6.76
/	PCF Ber BM BM Not	Bs detecte chmark -5 -6 e: Northir	Easting 2495308.77 2495055.32 rg and Easting s	361373.14 361618.18 shown in North	18.88 6.76
	PCH Ben BM BM Not Plan	Bs detecte chmark -5 -6 e: Northir the feet; BM	Easting 2495308.77 2495055.32 and Easting s M-6 shown on	361373.14 361618.18 shown in North Figure 4.	18.88 6.76 Carolina State
	PCI Ber BM BM Not Plan Co	3s detecte chmark -5 -6 e: Northir be feet; BN ordinate	Easting 2495308.77 2495055.32 g and Easting s M-6 shown on es for Backf	361373.14 361618.18 shown in North Figure 4. ill and Exca	18.88 6.76 Carolina State
	PCI Ber BM BM Not Plan Co	Bs detecte chmark -5 -6 e: Northir the feet; BM	Easting 2495308.77 2495055.32 and Easting s M-6 shown on	361373.14 361618.18 shown in North Figure 4. ill and Exca	18.88 6.76 Carolina State vation Areas Northing
	PCI Ber BM BM Not Plan Co	3s detecte chmark -5 -6 e: Northir e feet; BN ordinate ocation	Easting 2495308.77 2495055.32 ag and Easting s M-6 shown on es for Backf Eastin	361373.14 361618.18 shown in North Figure 4. ill and Exca <u>og</u> 5.22 3	18.88 6.76 Carolina State
	PCI Ber BM BM Not Plan Co	3s detecte chmark -5 -6 e: Northir be feet; BN ordinate ordinate 1	Easting 2495308.77 2495055.32 og and Easting s M-6 shown on es for Backf Eastin 2495126	361373.14 361618.18 shown in North Figure 4. ill and Exca ig 5.22 3 3.90 3	18.88 6.76 Carolina State vation Areas Northing 661399.08
	PCI Ber BM BM Not Plan Co	as detecte chmark -5 -6 e: Northir e feet; BN ordinate ordinate 2 3 4	Easting 2495308.77 2495055.32 og and Easting s M-6 shown on es for Backf Eastin 2495126 2495093	361373.14 361618.18 shown in North Figure 4. ill and Exca ig 5.22 3 3.90 3 5.32 3	18.88 6.76 Carolina State 1000000000000000000000000000000000000
	PCI Ber BM BM Not Plan Co	achmark -5 -6 e: Northir e feet; BN ordinate ocation 1 2 3 4 5	Easting 2495308.77 2495055.32 g and Easting s A-6 shown on es for Back f Eastin 2495126 2495093 2495085 2495158 2495149	361373.14 361618.18 shown in North Figure 4. ill and Exca og 5.22 3 3.90 3 3.33 3 9.24 3	18.88 6.76 Carolina State vation Areas Northing 61399.08 61349.31 61260.39 61379.85 61361.44
	PCI Ber BM BM Not Plan Co	as detected achmark -5 -6 e: Northir e feet; BN ordinate ordinate 0 2 3 4 5 6	Easting 2495308.77 2495055.32 g and Easting s A-6 shown on es for Back f Eastin 2495126 2495093 2495085 2495158 2495149 2495087	361373.14 361618.18 shown in North Figure 4. ill and Exca ing 5.22 3 36.90 3 3.33 3 9.24 3 7.42 3	18.88 6.76 Carolina State 1000000000000000000000000000000000000
	PCI Ber BM BM Not Plan Co	As detected achmark -5 -6 e: Northin be feet; BM ordinate ocation 1 2 3 4 5 6 7	Easting 2495308.77 2495055.32 g and Easting s M-6 shown on es for Back f Eastin 2495126 2495093 2495085 2495158 2495149 2495087 2495158	361373.14 361618.18 shown in North Figure 4. ill and Exca ig 5.22 3 5.32 3 3.33 3 9.24 3 7.42 3 3.78 3	18.88 6.76 Carolina State vation Areas Northing 61399.08 61349.31 61260.39 61379.85 61361.44 61259.92 61270.56
	PCI Ber BM BM Not Plan Co	As detected achmark -5 -6 e: Northin be feet; BN ordinate ordinate 0 2 3 4 5 6 7 8	Easting 2495308.77 2495055.32 g and Easting s M-6 shown on es for Backf Eastin 2495126 2495093 2495085 2495158 2495149 2495188 2495188 2495188 2495206	361373.14 361618.18 shown in North Figure 4. ill and Exca ig 5.22 3 36.32 3 3.33 3 9.24 3 7.42 3 3.78 3 5.58 3	18.88 6.76 Carolina State vation Areas Northing 61399.08 61349.31 61260.39 61379.85 61361.44 61259.92 61270.56 61349.05
	PCI Ber BM BM Not Plan Co	as detected chmark -5 -6 e: Northin e feet; BN ordinate ordinate 0 2 3 4 5 6 7 8 9	Easting 2495308.77 2495055.32 g and Easting s M-6 shown on es for Back f 2495126 2495093 2495093 2495085 2495158 2495158 2495206 2495209	361373.14 361618.18 shown in North Figure 4. iil and Exca ig 5.22 3 3.30 3 3.33 3 3.24 3 3.78 3 3.58 3 3.34 3	18.88 6.76 Carolina State vation Areas Northing 61399.08 61349.31 61260.39 61379.85 61361.44 61259.92 61349.05 61349.73
	PCI Ber BM BM Not Plan Co	As detected achmark -5 -6 e: Northin be feet; BN ordinate ordinate 0 2 3 4 5 6 7 8	Easting 2495308.77 2495055.32 g and Easting s M-6 shown on es for Backf Eastin 2495126 2495093 2495085 2495158 2495149 2495188 2495188 2495188 2495206	361373.14 361618.18 361618.18 shown in North Figure 4. ill and Exca ig 5.22 3.30 3.32 3.33 3.24 3.778 3.78 3.34 3.36	18.88 6.76 Carolina State vation Areas Northing 61399.08 61349.31 61260.39 61379.85 61361.44 61259.92 61270.56 61349.05
	PCI Ber BM BM Not Plan Co	As detected achmark -5 -6 e: Northin the feet; BN ordinate ordinate 0 0 1 2 3 4 5 6 7 8 9 10	Easting 2495308.77 2495055.32 g and Easting s A-6 shown on es for Backf 2495093 2495085 2495085 2495085 2495126 2495085 249518 2495158 2495158 2495158 2495126 2495161	361373.14 361618.18 361618.18 shown in North Figure 4. ill and Exca ag 5.22 3.30 3.32 3.33 3.33 3.24 3.78 3.78 3.34 3.36 3.34 3.33	18.88 6.76 Carolina State vation Areas Northing 61399.08 61349.31 61260.39 61379.85 61361.44 61259.92 61349.05 61349.73 61270.94
	PCI Ber BM BM Not Plan Co	As detected achmark -5 -6 e: Northin the feet; BN ordinate ordinate ordinate ordinate 5 6 7 8 9 10 11	Easting 2495308.77 2495055.32 g and Easting s A-6 shown on es for Back f Eastin 2495126 2495093 2495085 2495158 2495158 2495158 2495209 2495209 2495161 2495187	361373.14 361618.18 361618.18 shown in North Figure 4. ill and Exca ing 5.22 38.90 33.33 33.33 39.24 37.78 37.78 37.78 37.78 37.78 37.78 37.78 37.78 37.78 37.78 37.78 37.73 37.6 37.14 37.23 37.16	18.88 6.76 Carolina State vation Areas Northing 61399.08 61349.31 61260.39 61379.85 61361.44 61259.92 61349.05 61349.73 61270.94 61280.41
	PCI Ber BM BM Not Plan Co	3s detecte chmark -5 -6 e: Northir e feet; BN ordinato ocation 1 2 3 4 5 6 7 8 9 10 11 12	Easting 2495308.77 2495055.32 g and Easting s M-6 shown on es for Back f Eastin 2495126 2495093 2495085 2495085 2495158 2495158 2495158 2495206 2495206 2495206 2495209 2495161 2495215	361373.14 361618.18 361618.18 shown in North Figure 4. ill and Exca ig 5.22 3.33 3.33 3.33 3.78 3.78 3.78 3.34 3.36 3.34 3.36 3.36 3.36 3.36 3.36 3.36	18.88 6.76 Carolina State vation Areas Northing 61399.08 61349.31 61260.39 61379.85 61361.44 61259.92 61349.05 61349.73 61270.94 61280.41 61295.25
	PCI Ber BM BM Not Plan Co	3s detecte chmark -5 -6 e: Northir e feet; BN ordinate ordinate ordinate ordinate 0 1 2 3 4 5 6 7 8 9 10 11 12 13	Easting 2495308.77 2495055.32 g and Easting s M-6 shown on es for Backf Eastin 2495126 2495093 2495085 2495158 2495149 2495087 2495158 2495206 2495206 2495209 2495161 2495215 2495281 2495314 2495327	361373.14 361618.18 361618.18 shown in North Figure 4. iil and Exca ig 5.22 38.90 33.33 33.33 37.8 37.6 37.7 37.6 37.23 37.47 37.47	18.88 6.76 Carolina State vation Areas Northing 61399.08 61349.31 61260.39 61379.85 61361.44 61259.92 61349.05 61349.73 61270.56 61349.73 61270.94 61280.41 61295.25 61317.13 61345.96 61371.37
	PCI Ber BM BM Not Plan Co	Base detected achmark -5 -6 e: Northin be feet; BN ordinate ocation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Easting 2495308.77 2495055.32 g and Easting s M-6 shown on es for Backf Eastin 2495126 2495093 2495085 2495158 2495168 2495206 2495206 2495209 2495161 2495281 2495281 2495281	361373.14 361618.18 361618.18 shown in North Figure 4. iil and Exca ig 5.22 38.90 33.3 33.3 33.3 3.32 3.33 3.34 3.36 3.36 3.36 3.378 3.36 3.36 3.36 3.36 3.36 3.4 3.36 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.16 3.2 3.2 3.3	18.88 6.76 Carolina State vation Areas Northing 61399.08 61349.31 61260.39 61379.85 61361.44 61259.92 61349.05 61349.73 61270.56 61349.73 61270.94 61295.25 61317.13 61345.96 61371.37 61362.81
	PCI Ber BM BM Not Plan Co	3s detecte chmark -5 -6 e: Northin e feet; BN ordinate ocation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Easting 2495308.77 2495055.32 g and Easting s M-6 shown on es for Backf Eastin 2495126 2495093 2495085 2495158 2495149 2495087 2495158 2495206 2495206 2495209 2495161 2495215 2495281 2495314 2495327	361373.14 361618.18 361618.18 shown in North Figure 4. iil and Exca ig 5.22 38.90 33.3 33.3 33.3 3.32 3.33 3.34 3.36 3.36 3.36 3.378 3.36 3.36 3.36 3.36 3.36 3.4 3.36 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.16 3.2 3.2 3.3	18.88 6.76 Carolina State vation Areas Northing 61399.08 61399.08 61349.31 61260.39 61379.85 61361.44 61259.92 61349.05 61349.73 61270.56 61349.73 61270.94 61280.41 61295.25 61317.13 61345.96 61371.37
	PCI Ber BM BM Not Plan Co	Base detected achmark -5 -6 e: Northin be feet; BN ordinate ocation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Easting 2495308.77 2495055.32 g and Easting s A-6 shown on es for Back f 249503 249503 249503 2495085 2495085 2495085 2495085 2495087 2495158 2495206 2495206 2495209 2495161 2495215 2495215 2495281 2495281 2495282 2495263	361373.14 361618.18 361618.18 shown in North Figure 4. ill and Exca ag 5.22 3.30 3.32 3.33 3.33 3.24 3.78 3.77 3.78 3.77 3.76 3.77 3.76 3.77 3.76 3.77 3.76 3.77 3.76 3.77 3.76 3.76	18.88 6.76 Carolina State vation Areas Northing 61399.08 61349.31 61260.39 61379.85 61361.44 61259.92 61349.05 61349.73 61270.56 61349.73 61270.94 61280.41 61295.25 61317.13 61345.96 61371.37 61362.81 61363.26
	PCI Ber BM BM Not Plan Co	3s detecte chmark -5 -6 e: Northir e feet; BN ordinate ocation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Easting 2495308.77 2495055.32 g and Easting s M-6 shown on es for Back f Easting 2495126 2495085 2495168 2495085 2495158 2495168 2495206 2495206 2495206 2495215 2495215 2495281 2495281 2495282 2495283 2495282 2495283 2495288 2495283 2495285 249555 249555 249555 249555 249555 249555 249555 249555 249555 249555 249555 249555 249555 249555 2	361373.14 361618.18 361618.18 shown in North Figure 4. ill and Exca ag 5.22 3 3.90 3 3.32 3 3.33 3 3.24 3 3.78 3 3.78 3 3.66 3 3.78 3 3.616 3 3.16 3 3.81 3 3.81 3 3.81 3	18.88 6.76 Carolina State vation Areas Northing 61399.08 61399.08 61349.31 61260.39 61379.85 61361.44 61259.92 61349.05 61349.05 61349.73 61270.94 61280.41 61295.25 61317.13 61345.96 61371.37 61362.81 61363.26 61363.26
	PCI Ber BM BM Not Plan Co	3s detecte chmark -5 -6 e: Northir e feet; BN ordinate ocation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Easting 2495308.77 2495055.32 g and Easting s M-6 shown on es for Back f Eastin 2495126 2495126 2495085 2495149 2495087 2495188 2495188 2495206 2495206 2495209 2495161 2495187 2495215 2495281 2495281 2495281 2495282 2495283 2495282 2495283 2495283 2495285 2495585 2495585 2495585 2495585 2495585 2495585 2495585 2495585 2495585 2495585 2495585 249558	361373.14 361618.18 361618.18 shown in North Figure 4. ill and Exca ag 5.22 3 3.90 3 3.32 3 3.33 3 3.24 3 3.78 3 3.78 3 3.66 3 3.78 3 3.616 3 3.16 3 3.81 3 3.81 3 3.81 3	18.88 6.76 Carolina State vation Areas Northing 61399.08 61399.08 61349.31 61260.39 61379.85 61361.44 61259.92 61349.05 61349.73 61270.56 61349.73 61270.94 61280.41 61295.25 61317.13 61362.81 61363.26 19 E III NTCRA 2006 AREAS
	PCI Ber BM BM Not Plan Co	3s detecte chmark -5 -6 e: Northir e feet; BN ordinate ocation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Easting 2495308.77 2495055.32 g and Easting s A-6 shown on es for Back f Easting 2495126 2495085 2495168 2495085 2495158 2495168 2495206 2495206 2495206 2495206 2495206 2495215 2495281 2495281 2495282 2495283 2495283 2495284 2495285 2495285 2495284 2495285 249555 249555 2495585 2495585 2495585 2495585 2495585 2495585 2495585	361373.14 361618.18 361618.18 shown in North Figure 4. ill and Exca ig 5.22 3.90 3.33 3.32 3.33 3.24 3.78 3.78 3.36 3.36 3.36 3.36 3.36 3.36 3.36 3.36 3.36 3.36 3.38 3.36 3.36 3.36 3.36 3.36 3.36 3.36 3.36 3.316 3.81 3.81 3.81 3.81	18.88 6.76 Carolina State vation Areas Northing 61399.08 61349.31 61260.39 61379.85 61361.44 61259.92 61349.05 61349.73 61270.56 61349.73 61280.41 61295.25 61317.13 61362.81 61363.26 19 EllINTCRA 2006 LAREAS

APPENDIX A

NCDENR CONCURRENCE LETTER

North Carolina Department of Environment and Natural Resources

Division of Waste Management

Michael F. Easley, Governor William G. Ross Jr., Secretary Dexter R. Matthews, Director

September 2, 2008

Attn: Gary Tysor NAVFAC Midlant Environmental RPM, Camp Lejeune Marine Corps North Carolina IPT 6506 Hampton Blvd Norfolk, VA 23508-1273

RE: Concurrence with the August 2008 revised Draft Final Record of Decisions for OU# 19, Site 84 at MCB Camp Lejeune, NC, Soil and Groundwater Camp Lejeune, NC6170022580 Jacksonville, Onslow County, North Carolina

Dear Mr. Tysor:

The NC Superfund Section has received and reviewed the revised Draft Final Record of Decision (ROD) for Ou#19, Site 84 at MCB, Camp Lejeune dated August 2008 and concurs that the selected remedy is protective of human health and the environment. The contamination levels now present at Site 84 are acceptable for industrial use and Land Use Controls will restrict the use of the property to industrial use.

The State's concurrence is based solely on the information contained in the Revised Draft Final ROD dated August 2008 for OU#19, Site 84. Should we receive additional information that significantly affects the conclusions of the ROD, we may modify or withdraw this concurrence with written notice to the Naval Facilities Engineering Command for Camp Lejeune and the EPA Region IV. If you have any questions or comments, please contact me, at (919) 508 8464 or email <u>David.Lown@ncmail.net</u>

Sincerely,

David J. Lown, LG, PE Head, Federal Remediation Branch Superfund Section

Cc: Randy McElveen, NC Superfund Section Bob Lowder, EMD/IR Gena Townsend, USEPA

> 1646 Mail Service Center, Raleigh, North Carolina 27699-1646 Phone: 919-508 8400 \ FAX: 919-715-4061 \ Internet: www.enr.state.nc.us

AN EQUAL OPPORTUNITY \ AFFIRMATIVE ACTION EMPLOYER - 50% RECYCLED / 10% POST CONSUMER PAPER

APPENDIX B

STATISTICAL SUMMARIES

STATISTICAL SUMMARY SURFACE SOIL ORGANICS (BEFORE NON-TCRA) SITE 84 - BUILDING 45 AREA MCB CAMP LEJEUNE JACKSONVILLE, NORTH CAROLINA

	Arithmatic Mean Half Non-Detects	Standard Deviation	Upper 95% Confidence Level	Log Arithmatic Mean Half Non-Delects	Log Standard Deviation	Log Upper 95% Confidence Level		Normally Distributed
VOLATILES (ug/kg)				•				
2-Butanone (MEK)	4.756	11.5086	8.694	0.6954	0.9391	5.026	NO	NÔ
Acetone	32.986	139.4356	80.6976	0.7825	1.6322	27.302	NO	NO
Ethylbenzene	13.524	65.9326	36.0846	-0.8298	1.392	2.8487	NO	NO
Xylenes, total	6.098	23.779	14.2346	0.3068	1.0268	4.1666	NO	NO
SEMIVOLATILES (ug/kg)								
2-Methylnaphthalene	3872.64	18371.7849	10159.0324	4.1927	1.9145	1957.7469	NÖ	NO
Acenaphthene	1173.67	3988.8041	2538.5449	4.6483	1.9799	3698.151	NÔ	NO
Anthracene	2765.16	11142.1485	6577.741	4.7655	2.2261	12398.0323	NO	NO
Benzo(a)anthracene	8480.65	37850.3955	21432.1645	5.0833	2.5139	69003.872	NO	NO
Benzo(a)pyrene	6795.62	29872.1431	17017-1643	5.0853	2.4018	30451.0555	NO	NO
Benzo(b)fluoranthene	7751.34	33853.2607	19335.129	5.1069	2.4814	40857.7396	NO	NO
Benzo(g,h,i)perylene	2668.01	10932.6136	6408.8931	4.8849	2.1419	10702.8685	NO	NO
Benzo(k)fluoranthene	5342.37	23907.2441	13522.8662	4.8932	2.3125	18652.7751	NO	NO
Bis(2-ethylhexyl)phthalate	249.76	757.1721	508.8465	4.149	1.2865	335.4814	NO	NO
Carbazole	1781.41	7560.2762	4368.3586	4.6035	1.939	3157.2101	NO	NO
Chrysene	\$1\$1.1	35840.1916	20444.77	4.9955	2.6262	96011.8922	NO	NO
Dibenz(a,h)anthracene	866.87	3374.0754	2021.3992	4.4527	1.7466	1413.752	NO	NO
Dibenzofuran	565.06	1780.6617	1174.3605	4.4221	1.6969	1213.8138	NO	NO
Dibenzothiophene	424.5	474.4687	2542.7629	5.561	1.5165	53170.6124	NO	NO
Fluoranthene	13872.39	59734.8088	34312.2356	5.302	2.7876	243222.2476	NO	NO
Fluorene	1386.4	4099.7877	2789.2509	4.6603	2.0983	7468.8312	NO	NO
Hexachlorocyclopentadiene	274.92	837.8442	561.6106	4.2215	1.2911	363.9421	NO	NO
Indeno(1,2,3-cd)pyrene	2808.47	11732.6127	6823.0939	4.9923	2.0429	8790.9605	NO	NO
Naphthalene	414.22	1487.8391	923.3235	4.1675	1.4969	525.3675	NO	NO
Phenanthrene	9728.61	35918.5115	22019.0792	5.3335	2.8627	338404.524	NO	NO
Pyrene	12012.07	49745.8757	29033.9378	5.2512	2.8377	281986.6034	NO	NO
PESTICIDES / PCBs (ug/kg)								
4,4'-DDD	188.7217	629.5887	414.1455	1.3849	2.7326	4806.2789	NO	NO
4,4'-DDE	57.6834	116.1411	99.2676	1.2707	2.5696	2277.8123	NO	NO
4,4'-DDT	139.1054	272.1248	236.5395	2.1059	2.6495	7135.9174	NO	NO
BHC, alpha-	43.953	94.4888	77.7847	0.3889	2.6074	1089.5109	NO	NO
Chlordane, alpha-	4440.6149	11330.7056	8497.5663	2.009	4.0683	44122769.18	NO	NO
Chlordane, gamma-	5354.5368	13680.7316	10252.9134	2.0989	4.1437	75346385.18	NÔ	NO
Dieldrin	161.4489	312.5785	273.3674	2.2288	2.63	7482.7026	NO	NO
Endosulfan Sulfate	29.4785	55.5895	48.9261	0.503	2.7462	1949.9272	NO	NO NO
Endrin	57.5977	126.1254	102.7568	0.6611	2.5407	1109.8717	NO	NO
Endrin Aldehyde	144.0729	305.946	251.1057	2.017	2.5585	4298.5396	NO	NO
Endrin Ketone	25.551	51.5384	43.5813	0.3944	2.6089	1026.8434	NO	NO
Heptachlor	1905.7238	5110.5467	3735.5515	1.4979	3.7196	1785114.862	NO NO	NO
Heptachlor Epoxide	418.4958	1066.6831	800.421	1.1572	3.1905	47553.3347		
Methoxychlor	81.1649	163.8893	138.5003	1.6218	2.587	3224.133	NO NA	NO NO
Arocior-1248	2225.8288	16865.5781	5164.1635	3.8998	2.2265	1507.0811	NA	NO
Aroclor-1254	952.7253	5418.892	1896.809	4.446	1.8817	975.2076	NA	NO
Aroclor-1260	5200.1973	21242.6787	8901.114	6.1559	2.6293	54561.7753	INA	NO
TOTAL PETROLEUM HYDROCARBONS	00 2103	242 8212	321 9076	2 6286	1 2771	207 0752	NO	NO
Gasoline Range Organics (ug/kg)	88.3182	262.5713 159.3614	231.8076 275.4511	2.6286 4.6127	1.3771 1.4423	207.0752 1794.0789	YES	YES
Diesel Range Organics (mg/kg)	188.3636	137.3014	413.4311	4.0127	1,776.)	1734.0109	+ 143	•

~

STATISTICAL SUMMARY SURFACE SOIL ORGANICS (AFTER NON-TCRA) SITE 84 - BUILDING 45 AREA MCB CAMP LEJEUNE JACKSONVILLE, NORTH CAROLINA

	Arithmatic Mean Half Non-Detects	Standard Deviation	Upper 95% Confidence Level	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	Log Upper 95% Confidence Level		
VOLATILES (ug/kg)	Hall Non-Detects	Deviation	Connectice Level	Hall NOIPDRECIS	Deviation	Competice Lever	Distributed	Distributed
2-Butanone	7.8231	15.6097	15.5392	1.0053	1.2437	19.3652	NO	NO
Acetone	62.3923	192.1795	157.39	1.393	2.1181	1370.4539	NO	NO
Ethylbenzene	25.7162	91.426	70.9097	-0.5316	1.9169	52.6968	NO	NO
Xylenes (total)	10.7885	32.8821	27.0427	0.5751	1.3949	21.5783	NO	NO
SEMIVOLATILES (ug/kg)	10.7665	32.0021	27.0427	0.5751	1.3949	21.3763	NO	INC
2-Methylnaphthalene	7145.3846	25495.8663	19748.435	4.2821	2.336	57887.4821	NO	NO
Acenaphthene	436.7115	23495.8003 946.2948	904.4815	4.2122	1.7354	2607.5134	NO	NO
Anthracene	626.9615			4.2122		5680.1834	NO	NO
Benzo(a)anthracene	639.9038	1415.2644 1654.1682	1326.5513 1457.5879	4.2371	1.89 1.8124	4762.1187	NO	NO
							-	NO
Benzo(a)pyrene	563.5769	1590.6887	1349.882	4.3275	1.6788	2476.9142	NO	
Benzo(b)fluoranthene	658.1538	1948.1056	1621.1363	4.3113	1.7268	2806.5731	NO	NO
Benzo(ghi)perylene	409.1346	931.9507	869.8141	4.2511	1.6651	2205.0483	NO	NO
Benzo(k)fluoranthene	395.9808	1043.4598	911.7811	4.1802	1.6154	1780.3472	NO	NO
Carbazole	260.5577	585.6401	550.0498	4.1134	1.4921	950.0093	NO	NO
Chrysene	770.7308	1938.3063	1728.8693	4.2067	1.967	7112.7112	NO	NÔ
Dibenz(a,h)anthracene	190.5577	359.7391	368.383	4.0555	1.3918	695.3267	NO	NO
Dibenzofuran	235.4615	508.11	486.6291	4.0668	1.4743	866.1231	NO	NO
Fiuoranthene	1409.9038	4407.949	3588.8297	4.3983	2.009	18367.1219	NO	NO
Fluorene	957.3077	2519.751	2202.8645	4.3149	2.0521	19839.2658	NO	NO
Indeno(1,2,3-cd)pyrene	379.7115	887.0876	818.2143	4.4192	1.5175	1718.185	NO	NO
Naphthalene	145.4231	243.3119	265.6964	3.9704	1.2971	507.0031	NO	NO
Phenanthrene	3092.0962	7514.1123	6806.4527	4.6219	2.5102	364569.603	NO	NO
Pyrene	2044.4038	5014.6483	4523.2317	4.4593	2.3076	61662.1556	NO	NO
bis(2-Ethylhexyl) phthalate	143.0769	217.6981	250.6889	4.1369	1.2224	423.4872	NO	NO
PESTICIDES/PCBs (ug/kg)								
4,4'-DDD	4.7923	9.4489	9.9559	0.294	1.5525	42.5673	NO	NO
4,4'-DDE	0.9634	1.1283	1.58	-0.539	0.9672	2.3296	NO	NO
4,4'-DDT	2.3295	2.8733	3.8997	0.2974	1.0034	6.7623	NO	NO
Dieldrin	8.9886	16.3255	17.9101	0.8188	1.6179	87.744	NO	NO
Endosulfan sulfate	9.0733	14.3462	16.5108	0.1032	2.4117	1674.0436	NO	NO
Endrin	1.078	1.2983	1.7875	-0.4562	0.9941	2.6655	NO	NO
Endrin aldehyde	15.0083	22.6857	26.7692	1.2748	1.8278	292.8899	NO	NO
Endrin ketone	4.6454	8.4225	9.0119	-0.2703	2.0262	241.993	NO	NO
Methoxychlor	13.7394	25.1664	26.7863	0.7878	2.0377	728.8098	NO	NO
PCB-1248	274.7146	1041.3204	472.3172	3.7408	1.9609	619.4323	NA	NO
PCB-1260	5980.374	23024.5561	10349.5489	6.2315	2.7379	95624.6868	NA	NO
alpha-BHC	2.2723	6.2191	5.6709	-0.7161	1.3487	6.7765	NO	NO
alpha-Chlordane	4.4302	11.8434	10.9024	-0.2306	1.5623	25.9446	NO	NO
gamma-Chlordane	4.777	12.7355	11.7367	-0.2243	1.6224	31.3477	NO	NO
×								

STATISTICAL SUMMARY SURFACE SOIL INORGANICS (BEFORE NON-TCRA) SITE 84 - BUILDING 45 AREA MCB CAMP LEJEUNE JACKSONVILLE, NORTH CAROLINA

	Arithmatic Mean	Standard	Upper 95%	Log Arithmatic Mean	Log Standard	V	Lognormally	-
	Half Non-Detects	Deviation	Confidence Level	Half Non-Detects	Deviation	Confidence Level	Distributed	Distributed
METALS (mg/kg)								
Aluminum	2634.8	1113.4972	3015.8125	7.8014	0.3879	3058.165	YES	NO
Antimony	0.8184	0.7405	1.0718	-0.5386	0.8243	1.2215	NO	NO
Arsenic	1.9264	2.426	2.7565	0.1091	1.0399	3.4921	YES	NO
Barium	13.024	12.8689	17.4274	2.2534	0.7877	18.6569	YES	NO
Beryllium	0.0405	0.0179	0.0466	-3.2946	0.4177	0.0478	NO	NO
Cadmium	0.1385	0.1669	0.1956	-2.6611	1.1918	0.283	NO	NO
Calcium	15241.44	27791.2265	24750.9436	8.1506	1.943	110808.1108	YES	NO
Chromium VI	4.906	3.8827	6.2346	1.4028	0.578	6.1195	YES	NO
Cobalt	0.2852	0.1408	0.3334	-1.3747	0.526	0.3619	NO	NO
Copper	11.2564	28.8671	21.134	1.1828	1.4851	25.8965	YES	NO
Iron	[934.24	653.1912	2157.7467	7.5044	0.3807	2259.8164	YES	YES
Lead	22.418	24.0664	30.653	2.5401	1.1587	48.4601	YES	NO
Magnesium	318.48	401.0414	455.7069	5.2644	0.9583	498.5091	YES	NO
Manganese	12.7	7.849	15.3857	2.3457	0.6679	17.487	YES	YES
Mercury	0.0345	0.0489	0.0512	-4.0278	1.1323	0.065	NO	NO
Nickel	1.3036	0.6648	1.5311	0.1418	0.512	1.6273	YES	YES
Potassium	9 0.66	66.2879	113.3422	4.2472	0.7593	132.287	YES	NO
Selenium	0.2004	0.0965	0.2334	-1.6685	0.308	0.2225	NO	NO
Sodium	47.932	56.6574	67.3188	3.5557	0.6491	57.4455	NO	NO
Thallium	0.2898	0.0672	0.3128	-1.2552	0.1668	0.3068	NO	NO
Vanadium	4.804	1.7319	5.3966	1.5109	0.3507	5.5127	YES	NO
Zinc	25.698	34.2045	37.402	2.4608	1.3582	71.4459	YES	NO

STATISTICAL SUMMARY SURFACE SOIL INORGANICS(AFTER NON-TCRA) SITE 84 - BUILDING 45 AREA MCB CAMP LEJEUNE JACKSONVILLE, NORTH CAROLINA

	Arithmatic Mean	Standard	Upper 95%	Log Arithmatic Mean	Log Standard	Log Upper 95%	Lognormally	Normally
	Half Non-Detects	Deviation	Confidence Level	Half Non-Detects	Deviation	Confidence Level	Distributed	Distributed
METALS (mg/kg)								
Aluminum	2770.7692	1302.5965	3414.6653	7.842	0.4129	3565.2193	YES	NO
Antimony	0.6712	0.6039	0.9697	-0.7261	0.8046	1.2459	NO	NO
Arsenic	1.6838	1.7726	2.56	0.044	1.0817	5.2567	YES	NO
Barium	8.6346	6.0601	(1.6302	1.9736	0.6061	13.0936	YES	NO
Cadmium	0.066	0.0706	0.1009	-3.1666	0.9207	0.1373	NO	NO
Calcium	4368.2308	5763.7217	7217.3387	7.3914	1.6208	44854.7932	YES	NO
Chromium	3.6731	1.6285	4.4781	1.2151	0.4305	4.8078	YES	YES
Cobalt	0.2527	0.104	0.3041	-1.4798	0.5178	0.3636	YES	YES
Copper	4.6085	7.6318	8,381	0.6342	1.3619	21.0996	YES	NO
Iron	1921.5385	652.4038	2244,0331	7.509	0.3375	2347.4881	YES	YES
Lead	20.4962	24.281	32.4987	2.2467	1.3522	103.3368	YES	NO
Magnesium	159.4154	97.6897	207.7051	4.8695	0.6919	265.7173	YES	YES
Manganese	8.8615	3.9329	10.8056	2.0731	0.5146	12.6483	YES	YES
Mercury	0.0391	0.0659	0.0717	-4.2392	1.362	0.1614	NO	NO
Nickel	1.1523	0.709	1.5028	-0.0149	0.5696	1.6733	YES	NO
Potassium	71.2654	64.0807	102.9416	3.9667	0.7948	129.1197	YES	NO
Selenium	0.2227	0.1284	0.2862	-1.5949	0.3951	0.2757	NO	NO
Vanadium	4.9154	2.1023	5.9546	1.5228	0.3747	6.1084	YES	NO
Zinc	12.5115	13.689	19.2782	1.9059	1.221	45.3531	YES	NO

STATISTICAL SUMMARY SUBSURFACE SOIL ORGANICS (BEFORE NON-TCRA) SITE 84 - BUILDING 45 AREA MCB CAMP LEJEUNE JACKSONVILLE, NORTH CAROLINA

VOLATILES (op/se) Interaction Interaction <thinteraction< th=""></thinteraction<>		Arithmatic Mean Half Non-Detects	Standard Deviation	Upper 95% Confidence Level	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	Log Upper 95% Confidence Level		Normally Distributed
2-Branoser (MEK)	VOLATILES (ug/kg)								
Acetoo 33.6978 99.046 0.612 1.2321 1.9214 1.21.6278 NO NO Denzene 14.3874 40.5219 2.8962 40.0503 2.064 57.3155 NO NO Chioroform 2.061 3.6518 3.3665 4.1651 1.461 3.4105 NO NO Methylpenzere 11.7556 3.35025 2.33104 0.5016 1.7347 30.3719 NO NO Styrate 3.1375 6.0532 5.6403 1.0224 2.461 923.2373 NO NO Vylenet, total 2.9513 8.941781 5.644609 1.2274 2.461 923.2373 NO NO Sketnylonphute 87.1028 163.882 17.0727 3.6459 1.657 572.731 NO NO Acterylonphute 87.1028 163.882 17.0718 3.6469 1.657 572.731 NO NO Methylonphute 87.1028 1.0518 3.6461 1.0529 1.0518 <t< td=""><td></td><td>8.862</td><td>20.8566</td><td>16.3297</td><td>0.5267</td><td>1.5765</td><td>19.962</td><td>NO</td><td>NQ</td></t<>		8.862	20.8566	16.3297	0.5267	1.5765	19.962	NO	NQ
Acetooic 33.6978 99.046 96.1612 1.2321 1.214.2778 NO NO Beazene 14.3374 44.5219 28.962 40.503 2.061 3.5155 NO NO Chloroform 2.061 3.5635 40.1655 1.1651 3.4106 NO NO Methylene: Chloride 1.1356 6.5352 5.5408 40.4051 1.1358 8.653 NO NO Styrene: 1.13663 3.50249 2.3909 40.018 1.9399 25.9569 NO NO Veriene: 1.13663 3.50249 2.3909 40.018 1.9399 25.9569 NO NO Skettorylanghtene 17.018 13.1375 6.3523 5.64603 1.2224 2.461 92.1244 NO NO Skettorylanghtene 71.048 181.3099 172.3717 NO <								NO	NO
Bearce 14.3374 40.5219 28.98/2 -0.0053 2.0014 57.3155 NO NO Chloroform 2.061 3.5185 3.34055 2.37.1464 6.3005 2.1543 3.005 2.37.1464 6.3006 2.4844 2.586.6016 NO NO BityDescence 3.1375 6.3352 5.4058 -0.4051 1.6183 3.6353 NO NO Syresce 3.1375 6.3352 5.4068 -0.4018 1.5939 2.59.969 NO NO Syresce 3.1375 6.3352 5.4060 1.2224 2.4631 923.2373 NO NO SKMIVOLATURS (uplg) 2.22.935 5054.6003 2763.7672 3.8669 1.667 72.7731 NO NO Accamphone 197.2911 162.3724 3.0743 0.9134 1.0934 NO NO Beaco/shylocardance 197.27731 1.0942 1.1374 3.0714 NO NO NO Beaco/shylocardance 197.2974 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Chonordram 2.061 3.6518 5.3685 4.1651 1.4651 3.4106 NO NO Behylphener 11.7556 33.40055 23.3144 0.5006 2.444 258.6016 NO NO Medylphee Chloride 12.3424 30.6326 23.3144 0.5016 1.7347 30.3719 NO NO Stynne 23.9431 88.91781 557.4606 1.2224 2.461 932.3273 NO NO Stylener, total 23.9413 88.91781 557.4606 1.2224 2.461 932.3273 NO NO Stylener, total 70.7181 0.81382 2763.7672 3.6469 1.687 77.2731 NO NO Actemphylene 87.1028 61.3882 17.0318 3.7472 0.9569 102.244 NO NO Bemosolyprene 191.7381 532.4533 3.600724 3.9605 1.2374 198.89 NO NO Bemosolyprene 191.2931 23.8482 4.0278 1.11428	Benzene								-
Bity/Bearene 117,556 334,0055 237,1464 0.506 2.4848 2288,6016 NO NO Styrene 31,1375 6.3352 5.4038 -0.4015 1.1638 8.663 NO NO Styrene 11.3663 35.0249 5.30969 -0.3018 1.9399 25.3969 NO NO Systems 224 24.031 923,2873 NO NO Aversphylnaphtnahene 122.9355 8054,6003 2763,7672 3.669 1.687 572,7731 NO NO Aversphylnaphtnahene 197.355 478,9863 325,9482 4.0781 1.1314 193,644 NO NO Benacolphynephtnahene 197.351 324,882 325,0472 4.6654 1.1962 167,176 NO NO Benacolphynephtnahene 112.9516 228,0369 126,4517 3.9444 1.0962 141,2347 NO NO Benacolphynephtnahene 112.9516 228,0369 126,4517 3.9444 1.0962 3.1476 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Medyner Chloride 12,424 20,0326 23,104 0.5016 1.7347 30,3719 NO NO Tokace 11,3663 53,0249 23,9069 -0.0405 1.6183 8,663 NO NO Tokace 11,3663 53,0249 23,9069 -0.0181 1.9999 25,3969 NO NO SEMITVOLATUES (optro) 222,912 24,631 923,2873 NO NO Adenyisaphtene 87,1048 181,3099 142,3729 3,4433 0.9133 96,0993 NO NO Adversynaphtene 197,7581 552,1533 300,0754 3,5045 1.2074 198,894 NO NO Benzodylprore 197,7581 528,1333 350,0727 4,0643 1.1962 216,7176 NO NO Benzodylproyne 162,25726 309,534 216,9131 3,3542 1.0944 137,4558 NO NO Benzodylproyne 160,644 570,1072 0.6442 1.1942 137,456 NO NO </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Styreine 31.375 6.3352 5.4038 -0.405 1.6183 3.683 NO NO Tokane 11.3663 3.30249 3.30059 -0.3018 1.9399 25.39369 NO NO Styrenes, total 23.31178 567.4600 1.224 2.4631 932.2873 NO NO Avecapyblene 122.9355 5054.6603 2763.7672 3.689 1.687 572.7731 NO NO Avecapyblene 87.1048 181.3039 2763.7672 3.693 1.687 572.7731 NO NO Avecapyblene 87.1048 181.3039 260.0754 3.0441 1.0948 NO NO BeaxolyDipyrone 177.355 475.9663 325.0472 4.0654 1.1942 167.176 NO NO BeaxolyDipyrone 112.9516 228.0309 182.4671 3.0414 1.0962 141.334 NO NO Bit2C-bitIncryphytiphtalse 46.717 67.4899 164.4921 3.17456 NO NO									-
Tokace 11.3663 35.0249 23.9066 -0.018 19.999 22.8309 NO NO SEMIVOLATUES (ng/ng) 23.431 849.1731 567.4000 1.2224 2.461 973.873 NO NO SMMUNDLATUES (ng/ng) 1222.935. 5054.6003 2763.767 3.8689 1.687 772.7731 NO NO Accensphetnet 87.0725 6054.603 2763.7672 3.8689 1.687 727.7711 NO NO Actersphetnet 87.0725 6163.882 137.0318 3.7472 0.9569 102.344 NO NO Benzodo/phytoren 117.9515 472.963 32.9482 4.0278 1.1514 1093.641 NO NO Benzodo/phytoren 112.9516 228.6307 3.9414 1.0062 141.2347 NO NO Bis2-chirocatymetsime 46.717 7.4309 67.2843 3.5049 0.6212 51.2258 NO NO Bis2-chirocatymetsime 190.1694 570.182 3.513 <									
Vycens, total 284,913 849,1781 567,4606 1,2224 2,4631 923,2873 NO NO PMethylanghthalene 122,29355 954,46093 276,37672 3,6689 1,687 972,7731 NO NO Avenuphthane 871,048 181,309 142,372 3,7443 0,9133 960,951 NO NO Avenuphthane 191,7581 552,1533 300,075 3,8689 1,2074 198,89 NO NO Benaxolphynch 197,7581 552,1533 360,077 4,0554 1,1962 216,7176 NO NO Benaxolphynchonether 172,9516 228,0369 124,4073 3,8588 1,0441 117,4988 NO NO Benaxolphynchonether 122,5776 309,5334 3,0497 3,2483 1,04021 11,24347 NO NO Big2-actiphynchonether 122,5776 309,534 216,313 3,8588 1,0441 117,498 NO NO Big2-actiphynchynhublate 112,9516 323,									
SEMITVOLATUES (upplg) Description 2-Medyinghindnakene 1222-9355 5054.6003 2763.7672 3.8689 1.637 572.7731 NO NO Acathracene 197.0726 163.8822 137.018 3.7443 0.9133 96.0993 NO NO Banzo(s)prome 197.9515 475.8663 123.642 4.0275 1.1514 198.6441 NO NO Banzo(s)prome 199.2223 532.1853 300.0754 3.90454 1.1062 141.2347 NO NO Banzo(s)prome 112.2576 399.5584 216.9131 3.8066 1.0441 1.0452 141.2347 NO NO Bit2-4-bitProtenzation 46.7117 67.4809 67.2834 3.0494 0.6212 31.2256 NO NO Bit2-4-bitProtenzation 190.1694 570.0182 36.932 3.812 1.6552 209.3716 NO NO Carbacole 71.394 108.2899 10.4421 3.7476 0.8226 444973 NO NO									
2-Mediyinghthabene 1222.9355 5054-6003 2763.7672 38689 1.687 572.7731 NO NO Avenaphthene 87.1048 181.3091 142.3729 3.7443 0.9133 56.0993 NO NO Andracene 87.0726 163.8882 137.0318 3.7472 0.9569 102.344 NO NO Beaxod/alpyrene 197.581 552.1533 360.0754 3.9065 1.2374 198.39 NO NO Beaxod/alpyrene 197.581 552.1533 360.0754 3.9045 1.1514 193.6411 NO NO Beaxod/alpurenthere 195.224 324.333 350.0727 4.0654 1.1962 216.716 NO NO Beaxod/alpurenthere 182.4572 309.3384 216.913 3.8584 1.0441 137.4088 NO NO Bit2-2-chlynchoxylpithalate 112.9572 309.3384 216.323 3.8312 1.5552 209.3716 NO NO Chaycare 199.1694 570.0182.263		205.415	047-1/01	307.4000	1.2224	2.4031	743.4013	no	NO
AccentryInterime 87,048 181,3039 142,3729 3,7443 0.9133 96,0993 NO NO Andracene 191,7581 552,1553 360,0754 3.9495 1.1514 195,644 NO NO Benzo(a)proprene 179,9555 478,9663 323,9482 4.0075 1.1514 195,6441 NO NO Benzo(a)proprene 122,5726 309,5184 216,9113 3.9614 1.0052 141,23217 NO NO Benzo(a)proprivate 46,7177 61,409 67,2884 3.5049 0.6121 51,255 NO NO Benzo(a)proprivate 46,7177 61,409 67,2884 3.5049 0.6212 51,255 NO NO Bit2-exhiphexiphathalize 141,9516 325,6975 241,2332 4.0675 1.0946 183,7455 NO NO Chrysene 190,1694 570,0182 3.6312 3.8312 1.5352 203,3716 NO NO Dibenzo/alphrotine 190,1506 96,40466		1000 0044	5054 6003	2762 7672	2 9/00	1 497	\$70 7771	NO	NO
Andmicrone 87.0726 163.8882 137.0318 37.472 0.9569 102.344 NO NO Benazo(a)phyrenc 197.9351 552.1553 360.0754 3.9642 1.1514 193.6441 NO NO Benazo(b)fhoranthene 196.223.524.1823 354.0727 4.0654 1.1962 216.7176 NO NO Benazo(k)fhoranthene 122.576 309.3384 216.9713 3.9414 1.0062 141.2347 NO NO Benazo(k)fhoranthene 46.7177 67.4809 67.2844 3.5049 0.612 51.2283 NO NO Bit2C-bitoretoxy:intehuate 44.19516 325.6975 241.2332 4.0675 1.0946 183.7455 NO NO Chrysene 190.1694 570.0182 363.932 3.8512 1.2525 209.3716 NO NO Dibenzo(k).handwacene 65.75 100.1506 96.4964 3.703 0.766 75.3844 NO NO Dibenzo(k).handwacene 65.75 100.1506									
Benzo(a)parkhacene 191.7581 \$521.1533 360.0754 9.9605 1.2074 198.89 NO NO Benzo(a)pyrene 177.9585 478.9661 323.9482 4.0654 1.1962 216.7176 NO NO Benzo(b)fluoranthere 196.2233 524.1832 356.0727 4.0654 1.1962 216.7176 NO NO Benzo(b)fluoranthere 122.5762 399.3384 216.9113 3.8658 1.0441 137.4988 NO NO Bit2-chlorothoxyinethane 46.7177 07.4809 67.2884 3.5049 0.6212 51.2258 NO NO Bit2-chlorothoxyinethane 46.7177 07.4809 67.2884 3.5049 0.6312 51.3258 84.4873 NO NO Chrysene 190.1504 570.01302 3.6132 1.5325 209.716 NO NO Dibenzo/kinorachene 63.579 108.154 3.703 0.7866 75.3384 NO NO Dibenzo/kinorachene 192.49516 950.649.4314									
Beazolbipyrene 177.9355 478.9863 323.9482 4.0278 1.1514 193.6411 NO NO Beazolbipyrchen 112.9516 228.0369 183.4657 3.0414 1.0962 141.2347 NO NO Beazolbipyrchen 112.9516 228.0369 183.4657 3.0414 1.0962 141.2347 NO NO Bia/2-chloroethoxylmethane 46.7177 67.4809 67.2884 3.5049 0.6212 51.2258 NO NO Dis/2-edylinexyliphthalate 1141.9516 325.0875 241.2332 4.0675 1.0946 183.7456 NO NO Carbazole 71.2984 108.889 104.4921 3.7476 0.8256 8.44873 NO NO Chrysene 05.879 100.1656 66.0466 3.703 0.7866 75.8384 NO NO Diberazolhandmeene 292.9516 900.4216 509.4334 4.0881 1.346 314.2268 NO NO Diberazolhandmeene 0.23.818 233.5187 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Beazo(b)Bocrathene 196.2823 524.1832 356.0727 4.0654 1.1962 216.7176 NO NO Beazo(b)Bocrathene 112.5716 228.0809 182.4677 3.9414 1.0622 14.12347 NO NO Beazo(b)Bocrathene 122.5726 309.5354 216.9313 3.8568 1.0441 137.4988 NO NO Big2-chipterstance 44.7177 67.4809 67.2824 3.5049 0.6212 51.2258 NO NO Big2-chipterstylpinhalare 141.9516 325.6875 241.2332 4.0675 1.0946 183.7456 NO NO Carbazole 71.2884 108.8899 104.4921 3.7476 0.8256 84.4873 NO NO Dibenzofunna 85.75 231.1149 15.9812 3.703 0.7866 75.8384 NO NO Dibenzofunna 85.75 231.149 15.9812 3.7031 0.7975 103.2926 NO NO Dibenzofunna 83.199 3.7314									
Benzo(z)Li)perylene 112.9516 228.0360 182.4617 3.0414 1.0621 141.2347 NO NO Benzo(L)Durandhene 122.5726 309.334 216.9113 3.8568 1.0441 137.4988 NO NO Bit22-chiprotechoxymethane 46.7177 67.4809 67.2834 3.049 0.6212 31.2258 NO NO Bit22-chiprotechoxymethane 141.9516 325.6875 241.2332 4.0675 1.0446 183.7456 NO NO Carbazole 71.2984 108.8899 104.4921 3.7476 0.8256 84.4873 NO NO Dibenzofuran 88.75 233.1149 159.812 3.6793 0.8918 85.89 NO NO Phoramthene 102.3871 270.3996 184.8149 3.7311 0.9765 103.5296 NO NO Internet 102.3871 270.3996 184.8149 3.7311 0.9765 135.256 NO NO Internet 12.3251 986.6988 1									
Benzolfthörsnihtene 122.5726 309.5384 216.911 3.8568 1.041 137.4988 NO NO Big/2-chilprotehoxy)methane 46.7177 67.4809 67.2834 3.5049 0.6212 51.2258 NO NO Big/2-chilprotehoxy)methane 14.9516 325.6875 241.2332 4.6675 1.0946 133.7456 NO NO Carbazole 71.2984 108.8899 104.4921 3.7476 6.8256 84.4873 NO NO Diberzo/Invance 65.879 100.1506 96.4046 3.703 0.7866 75.8384 NO NO Diberzo/Invance 294.9516 900.4216 569.4334 4.0881 1.346 314.2268 NO NO Phoranthene 294.9516 900.4216 569.4334 4.0881 1.346 314.2268 NO NO Hexachlorocyclopentadiene 60.5806 8.61112 8.69219 3.7616 0.6318 66.49303 NO NO Naphtalene 379.3468 1548.849									
Bit/2-chlorochtoxy/methane 46.7177 67.4809 67.284 3.5049 0.6212 51.2258 NO NO Bit/2-chlythexylphthalate 141.9516 325.6875 241.2332 4.0675 1.0946 183.7455 NO NO Carbazole 71.2384 108.8899 104.4921 3.7476 0.8256 84.4973 NO NO Chrysene 190.1694 570.0182 363.932 3.8112 1.2552 209.3716 NO NO Dibenzafuran 88.75 233.1149 159.812 3.6793 0.8918 85.89 NO NO Fluoranthene 294.9516 900.4216 569.4334 4.0881 1.346 314.2268 NO NO Hexachtorcyclopentudiene 60.3806 86.4112 86.9219 3.7616 0.6318 66.9303 NO NO Indeno(1,3-cd)pyrene 123.5081 233.5187 1746.51 4.128 5.556 604.2903 NO NO Phenanthrene 413.2823 999.6698									
BisC2-edtylhexyliphthalate 141.9516 325.6875 2.41.2332 4.0675 1.0946 183.7456 NO NO Carbazole 71.2984 108.8899 104.4921 3.7476 0.8256 84.4873 NO NO Dibenz/ahianbracene 65.879 1001.1506 96.4086 3.703 0.7866 75.8384 NO NO Dibenz/ama 88.75 233.1149 159.812 3.6793 0.8918 85.89 NO NO Fluorene 102.3871 270.3996 184.8149 3.7311 0.9765 103.5296 NO NO Indenot/L3-3-c0pyrene 123.5081 233.5187 194.6932 4.1042 0.952 145.2556 NO NO Phandhrene 413.2823 996.8698 717.1651 4.1285 1.5562 2604.2903 NO NO Phalaic anhydride 145 35.3553 302.4353 4.9616 0.2463 298.191 NA NA Pyrene 245.048 757.2355 34754.359									
Carbazole 71.284 108.8899 104.4921 3.7476 0.8256 84.4873 NO NO Chrysner 190.1694 570.0182 363.932 3.8512 1.2552 209.3716 NO NO Dibenzafuran 88.75 233.1149 159.812 3.6793 0.8918 85.89 NO NO Pluoranthene 294.9516 906.4216 56.94.934 4.0881 1.346 314.2268 NO NO Fluorene 102.3871 270.3996 184.8149 3.7311 0.9765 103.5296 NO NO Indem0(1.3.2-500)yrene 102.3871 270.3996 184.8149 3.7311 0.9765 103.5296 NO NO Nephthalene 402.3871 270.3996 184.8149 3.7311 0.9765 103.5296 NO NO Nephthalene 132.5081 235.518 53.553 302.8435 4.9616 0.463 289.8191 NA NO Pyrene PSTCIDES / PCBs (ug/kg) 4.45									
Chrysne 190.1694 570.0182 363.932 3.8512 1.2552 209.3716 NO NO Dibenzohran 65.879 100.1506 96.4086 3.703 0.7866 75.8384 NO NO Dibenzohran 88.75 233.1149 159.812 3.6793 0.8918 85.89 NO NO Fluorence 102.3871 270.3996 184.8149 3.7311 0.9765 103.5296 NO NO Heashborocyclopentadienc 60.5806 86.4112 86.9219 3.7616 0.6318 66.9303 NO NO Naphtalace 179.3468 153.5353 194.6932 4.1042 0.952 145.2556 NO NO Phenanthree 143 35.3533 302.845 831.5254 3.7667 1.3256 225.8801 NO NO Phuâlic anhydrid 145 35.3553 302.8452 4.92616 0.2463 289.8191 NA NA Pycrene 245.6048 757.2355 476.4382									
Dibenz(a,h)anduracene 65.879 100.1506 96.4086 3.703 0.7866 75.8384 NO NO Dibenzofaran 88.75 233.1149 15.912 3.6793 0.8918 85.89 NO NO Pitoaranthene 294.9516 900.4216 569.4334 4.0881 1.346 314.2268 NO NO Fitoaranthene 102.3371 270.3996 184.8149 3.7311 0.9765 103.5296 NO NO Herachlorocyclopentadiene 60.5806 86.4112 86.9219 3.7616 0.6318 66.9303 NO NO Nephtalace 779.3468 1548.9545 851.5254 3.7967 1.3256 225.8801 NO NO Phenantherene 413.2823 996.6098 717.1651 4.1255 1.5962 604.2903 NO NO Pytralic anhydride 145 35.3553 302.8435 4.9616 0.2463 289.8191 NA NA Pytralic anhydride 14.30237 79.042 42.									
Dibenzofuran 88.75 233.1149 159.812 3.6793 0.8918 85.89 NO NO Fluoranthene 294.9516 900.4216 569.4334 4.0881 1.346 314.2208 NO NO Fluoranthene 102.3871 270.3996 184.8149 3.7311 0.9705 103.5296 NO NO Hexachlorocyclopentadiene 60.5806 86.4112 86.9219 3.7616 0.6318 66.9303 NO NO Indeno(1,2,3-cd)pyrene 123.5081 233.5187 194.6922 4.1042 0.952 145.2556 NO NO Naghthalene 737.3468 1548.9545 851.5254 3.7967 1.3256 604.2903 NO NO Phonalic anhydride 145 35.553 302.8435 4.9616 0.2463 289.8191 NA NA Pyrene 245.6048 757.2355 476.4382 3.969 1.306 265.1072 NO NO 4.4*DDE 12.776 56.4435 29.9821									
Fluoranthene 294.9516 900.4216 569.4334 4.0881 1.346 314.2268 NO NO Fluorene 102.3871 270.3996 184.8149 3.7311 0.9765 103.5296 NO NO Indeno(1,2,3-cd)pyrene 123.5081 233.5187 194.6932 4.1042 0.952 145.2556 NO NO Nephtalene 379.3468 1548.9545 851.5254 3.7967 1.3256 225.8801 NO NO Phenanthrene 113.2823 996.8698 717.1651 4.1285 1.5962 604.2903 NO NO Pbthalic anhydride 145 35.3553 302.8435 4.9616 0.2463 289.8191 NA NA Pyrene 245.6048 757.2355 476.4382 3.9869 1.3096 265.1072 NO NO 4.4*DDT 18.3023 79.042 42.3972 0.1318 1.7331 15.977 NO NO 4.4*DDT 13.1315 126.5078 69.8823 0.7225 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Fluorene 102.3871 270.3996 184.8149 3.7311 0.9765 103.5296 NO NO Hexachlorocyclopentadiene 60.5806 86.4112 86.9219 3.7616 0.6318 66.9303 NO NO Indenot[1,2,3-cylpyrene 123.5081 233.5187 194.6932 4.1042 0.952 145.2556 NO NO Naphthalene 379.3468 1548.9545 851.5254 3.7967 1.3256 225.8801 NO NO Phenaburene 413.2823 996.6608 717.1651 4.1285 1.5962 664.2903 NO NO Pyrene 245.6048 757.2355 476.4382 3.9869 1.3096 265.1072 NO NO PSTICIDES / PCBs (ug/kg) 44-DDT 18.3023 79.042 42.3972 0.1818 1.7331 15.977 NO NO 4.4-DDT 13.185 126.5078 69.8828 0.7225 1.8004 36.4612 NO NO Chlordane, apamma- 94.9596 45.77	Dibenzofuran	88.75	233.1149	159.812	3.6793	0.8918	85.89	NO	NO
Hexachlorocyclopentadiene 60.5806 86.4112 86.9219 3.7616 0.6318 66.9303 NO NO Indeno(1,2,3-cd)pyrene 123.5081 233.5187 194.6932 4.1042 0.952 145.2556 NO NO Naphthalene 379.3468 154.89545 851.5254 3.7967 1.3256 225.8801 NO NO Phenanthrene 413.2823 996.8698 717.1651 4.1285 1.5962 604.2903 NO NO Pyrene 245.6048 757.2355 476.4382 3.9869 1.3096 265.1072 NO NO PSETICIDES / PCBs (ug/kg) 4.4-DDD 18.3023 79.042 42.3972 0.1818 1.7331 15.977 NO NO 4.4-DDT 13.3185 126.5078 69.8823 0.7225 1.8004 36.4612 NO NO BHC, beta- 9.5956 45.773 23.5489 -0.6275 1.5599 4.7037 NO NO Chlordane, ajpha- 544.7381 2529.9		294.9516		569.4334	4.0881				
Indeno(1,2,3-cd)pyrene 123.5081 233.5187 194.6932 4.1042 0.952 145.2556 NO NO Naphthalene 379.3468 1548.9545 851.5254 3.7967 1.3256 225.8801 NO NO Phenanthrene 413.2823 996.8698 717.1651 4.1285 1.5962 604.2903 NO NO Phubalic anhydride 145 35.3553 302.8435 4.9616 0.2463 289.8191 NA NA Pyrene 245.6048 757.2355 476.4382 3.9869 1.3096 265.1072 NO NO 4.4-DDD 18.3023 79.042 42.3972 0.1818 1.7331 15.977 NO NO 4.4-DDT 31.3185 126.5078 69.8828 0.7225 1.8004 36.4612 NO NO BHC, beta- 9.5956 45.773 23.5489 -0.6275 1.5509 47.037 NO NO Chlordane, ajna- 690.4664 3248.1548 1680.624 0.3784	Fluorene	102.3871	270.3996	184.8149	3.7311	0.9765	103.5296	NO	
Naphthale.ne 379.3468 1548.9545 851.5254 3.7967 1.3256 225.8801 NO NO Phenanthrene 413.2823 996.8698 717.1651 4.1285 1.5962 604.2903 NO NO Phubalic anhydride 145 35.3553 302.8435 4.9616 0.2463 289.8191 NA NA Pyrene 245.6048 757.2335 476.4382 3.9869 1.3096 265.1072 NO NO PBSTICIDES / PCBs (ug/kg) 18.3023 79.042 42.3972 0.1818 1.7331 15.977 NO NO 4,4'-DDE 12.776 56.4435 29.9821 -0.1219 1.7236 11.5314 NO NO 4,4'-DDT 31.3185 126.5078 69.8828 0.7225 1.8004 36.4612 NO NO Chlordane, alpha- 690.4664 3248.1548 1680.624 0.3784 2.8926 1648.2116 NO NO Chlordane, gamma- 690.4664 3248.1548 1680.624	Hexachlorocyclopentadiene	60.5806	86.4112	86.9219	3.7616	0.6318	66.9303	NO	NO
Phenanthrene 413.2823 996.8698 717.1651 4.1285 1.5962 604.2903 NO NO Phohalic anhydride 145 35.3553 302.8435 4.9616 0.2463 289.8191 NA NA Pyrene 245.6048 757.2335 476.4382 3.9869 1.3096 265.1072 NO NO PBSTICIDES / PCBs (ug/kg) 18.3023 79.042 42.3972 0.1818 1.7331 15.977 NO NO 4,4*DDE 12.776 56.4435 29.9821 -0.1219 1.7236 11.5144 NO NO 4,4*DDE 12.776 56.4435 29.9821 -0.1219 1.7236 11.5144 NO NO HC, beta- 9.5956 45.773 23.5489 -0.6275 1.5509 4.7037 NO NO Chlordane, gamma- 690.4664 3248.1548 1680.624 0.3784 2.8926 1648.2116 NO NO Dieldrin 31.9097 152.5898 78.4247 0.5771	Indeno(1,2,3-cd)pyrene	123.5081	233.5187	194.6932	4,1042	0.952	145.2556	NO	NQ
Phthalic anhydride 145 35.3553 302.8435 4.9616 0.2463 289.8191 NA NA Pyrene 245.6048 757.2355 476.4382 3.9869 1.3096 265.1072 NO NO PBSTICIDES / PCBs (ug/kg) 1 18.3023 79.042 42.3972 0.1818 1.7331 15.977 NO NO 4.4'DDD 12.776 56.4435 29.9821 -0.1219 1.7236 11.5314 NO NO 4.4'DDT 31.3185 126.5078 69.8828 0.7225 1.8004 36.4612 NO NO BHC, beta- 9.5956 45.773 23.5489 -0.6275 1.5509 NO NO Chlordane, alpha- 544.7381 2529.997 1315.9747 0.3732 2.8145 1215.069 NO NO Diekdrin 31.9097 152.5898 78.4247 0.57711 1.5301 14.997 NO NO Bedrin Aldehyde 13.9766 152.5898 78.4247 0.5721	Naphthalene	379.3468	1548.9545	851.5254	3.7967	1.3256	225.8801	NO	NO
Pyrene 245.6048 757.2355 476.4382 3.9869 1.3096 265.1072 NO NO PESTICIDES / PCBs (ug/kg) 18.3023 79.042 42.3972 0.1818 1.7331 15.977 NO NO 4,4-DDD 12.776 56.4435 29.9821 -0.1219 1.7236 11.5314 NO NO 4,4-DDT 31.3185 126.5078 69.8828 0.7225 1.8004 36.4612 NO NO BHC, beta 9.5956 45.773 23.5489 -0.6275 1.5509 4.7037 NO NO Chlordane, alpha- 544.7381 2529.997 1315.9747 0.3732 2.8145 1215.069 NO NO Dieldrin 31.9097 152.5898 78.4247 0.5771 1.5301 14.997 NO NO Endrin Aldehyde 31.9766 152.5828 78.4247 0.5771 1.5301 NO NO Heptachlor 255.1644 1241.7159 633.6853 0.0891 2.4197	Phenanthrene	413.2823	996.8698	717.1651	4.1285	1.5962	604,2903	NÖ	NO
Pyrene 245.6048 757.2355 476.4382 3.9869 1.3096 265.1072 NO NO PESTICIDES / PCBs (ug/kg)	Phinalic anhydride	145	35.3553	302.8435	4.9616	0.2463	289.8191	NA	NA
PESTICIDES / PCBs (ug/kg) 4.4-DDD 18.3023 79.042 42.3972 0.1818 1.7331 15.977 NO NO 4.4-DDE 12.776 56.4435 29.9821 -0.1219 1.7236 11.5314 NO NO 4.4-DDT 31.3185 126.5078 69.8828 0.7225 1.8004 36.4612 NO NO 4.4-DDT 31.3185 126.5078 69.8828 0.7225 1.8004 36.4612 NO NO BHC, beta- 9.5956 45.773 23.5489 -0.6275 1.5509 4.7037 NO NO Chlordane, ajpha- 544.7381 2529.997 1315.9747 0.3732 2.8145 1215.069 NO NO Chlordane, gamma- 690.4664 3248.1548 1680.624 0.3784 2.8926 1648.2116 NO NO Dicktria 31.9077 152.5898 78.4247 0.5771 1.5301 14.997 NO NO Endrin Aldehyde 31.9766 152.5828 78.4247		245.6048		476.4382			265.1072	NO	NO
4.4*-DDD 18.3023 79.042 42.3972 0.1818 1.7331 15.977 NO NO 4.4*-DDE 12.776 56.4435 29.9821 -0.1219 1.7236 11.5314 NO NO 4.4*-DDT 31.3185 126.5078 69.8828 0.7225 1.8004 36.4612 NO NO BHC, beta- 9.5956 45.773 23.5489 -0.6275 1.5509 4.7037 NO NO Chlordane, alpha- 544.3381 2529.997 1315.9747 0.3732 2.8145 1215.069 NO NO Chlordane, gamma- 690.4664 3248.1548 1680.624 0.3784 2.8926 1648.2116 NO NO Dieldrin 31.9097 152.5898 78.4247 0.5771 1.5301 14.997 NO NO Dieldrin 31.9097 152.5828 78.4247 0.5771 1.5682 15.4527 NO NO Heptachlor 255.1644 1241.7159 633.6853 0.0891 2.4197 155.0018 NO NO Methoxychlor 18.1898									
4.4'-DDE 12.776 56.4435 29.9821 -0.1219 1.7236 11.5314 NO NO 4.4'-DDT 31.3185 126.5078 69.8828 0.7225 1.8004 36.4612 NO NO BHC, beta- 9.5956 45.773 23.5489 -0.6275 1.5509 4.7037 NO NO Chlordane, alpha- 544.7381 2529.997 1315.9747 0.3732 2.8145 1215.069 NO NO Chlordane, gamma- 690.4664 3248.1548 1680.624 0.3784 2.8926 168.2116 NO NO Dieldrin 31.9766 152.5898 78.4247 0.5771 1.5301 14.997 NO NO Endrin Aldehyde 31.9766 152.5828 78.4895 0.5241 1.5682 15.4527 NO NO Heptachlor 255.1644 1241.7159 633.6853 0.0891 2.4197 155.0018 NO NO Heptachlor 18.1898 81.59 43.0614 0.0798 1.709 13.6338 NO NO Arcolor-1248 1302.5453		18.3023	79.042	42.3972	0.1818	1.7331	15.977	NÖ	NÔ
4,4'-DDT 31.3185 126.5078 69.8828 0.7225 1.8004 36.4612 NO NO BHC, beta- 9.5956 45.773 23.5489 -0.6275 1.5509 4.7037 NO NO Chlordane, alpha- 544.7381 2529.997 1315.9747 0.3732 2.8145 1215.069 NO NO Chlordane, gamma- 690.4664 3248.1548 1680.624 0.3784 2.8926 1648.2116 NO NO Dieldrin 31.9097 152.5898 78.4247 0.5771 1.5301 14.997 NO NO Dieldrin 31.9097 152.5898 78.4247 0.5771 1.5682 15.4527 NO NO Endrin Aldehyde 31.9766 152.5828 78.4295 0.5241 1.5682 15.4527 NO NO Heptachlor 255.1644 1241.7159 633.6853 0.0891 2.4197 155.0018 NO NO Methoxychlor 18.1898 81.59 43.0614 0.0798 1.709 13.6338 NO NO Arcolor-1254 275.5									
BHC, beta- 9.5956 45.773 23.5489 -0.6275 1.5509 4.7037 NO NO Chlordane, alpha- 544.7381 2529.997 1315.9747 0.3732 2.8145 1215.069 NO NO Chlordane, alpha- 690.4664 3248.1548 1680.624 0.3784 2.8926 1648.2116 NO NO Dieldrin 31.9097 152.5898 78.4247 0.5771 1.5301 14.997 NO NO Endrin Aldehyde 31.9097 152.5828 78.4895 0.5241 1.5682 15.4527 NO NO Heptachlor 255.1664 1241.7159 633.6853 0.0891 2.4197 155.0018 NO NO Heptachlor 20.7496 73.9054 43.2787 -0.1972 1.8404 16.074 NO NO Methoxychlor 18.1898 81.59 43.0614 0.0798 1.709 13.6338 NO NO Aroclor-1254 275.5608 870.8505 517.2652 3.30									
Chlordane, alpha- 544.7381 2529.997 1315.9747 0.3732 2.8145 1215.069 NO NO Chlordane, gamma- 690.4664 3248.1548 1680.624 0.3784 2.8926 1648.2116 NO NO Dieldrin 31.9097 152.5898 78.4247 0.5771 1.5301 14.997 NO NO Endrin Aldehyde 31.9766 152.5898 78.4247 0.5771 1.5301 14.997 NO NO Endrin Aldehyde 31.9766 152.5828 78.4895 0.5241 1.5682 152.507 NO NO Heptachlor 255.1644 1241.7159 633.6853 0.0891 2.4197 155.0018 NO NO Heptachlor Epoxide 20.7496 73.9054 43.2787 -0.1972 1.8404 16.074 NO NO Methoxychlor 18.1898 81.59 43.0614 0.0798 1.709 13.6338 NO NO Arcolor-1248 1302.5453 7721.714 3445.7407	-								
Chlordane, gamma- 690.4664 3248.1548 1680.624 0.3784 2.8926 1648.2116 NO NO Dieldrin 31.9097 152.5898 78.4247 0.5771 1.5301 14.997 NO NO Endrin Aldehyde 31.9766 152.5828 78.4895 0.5241 1.5682 15.4527 NO NO Heptachlor 255.1644 1241.7159 633.6853 0.0891 2.4197 155.0018 NO NO Heptachlor 20.7496 73.9054 43.2787 -0.1972 1.8404 16.074 NO NO Methoxychlor 18.1898 81.59 43.0614 0.0798 1.709 13.6338 NO NO Arcolor-1248 1302.5453 7721.714 3445.7407 1.9335 2.121 317.5042 NO NO Arcolor-1254 275.5608 870.8505 517.2692 3.3054 1.7466 332.735 NO NO TOTAL PETROLEUM HYDROCARBONS 1631.1831 7482.2533 3707.9152<									
Dieldrin 31.9097 152.5898 78.4247 0.5771 1.5301 14.997 NO NO Endrin Aldehyde 31.9766 152.5828 78.4247 0.5771 1.5301 14.997 NO NO Heptachlor 255.1644 1241.7159 633.6853 0.0891 2.4197 155.0018 NO NO Heptachlor 20.7496 73.9054 43.2787 -0.1972 1.8464 16.074 NO NO Methoxychlor 18.1898 81.59 43.0614 0.0798 1.709 13.6338 NO NO Aroctor-1248 1302.5453 7721.714 3445.7407 1.9335 2.121 317.5042 NO NO Aroctor-1254 275.5608 870.8505 517.2692 3.3054 1.7466 332.735 NO NO TOTAL PETROLEUM HYDROCARBONS 1631.1831 7482.2533 3707.9152 3.0858 2.5705 5607.5431 NO NO Gasoline Range Organics (ug/kg) 72534.5 205047.0397									
Endrin Aldehyde 31.9766 152.5828 78.4895 0.5241 1.5682 15.4527 NO NO Heptachlor 255.1644 1241.7159 633.6853 0.0891 2.4197 155.0018 NO NO Heptachlor 20.7496 73.9054 43.2787 -0.1972 1.8404 16.074 NO NO Methoxychlor 18.1898 81.59 43.0614 0.0798 1.709 13.6338 NO NO Aroctor-1248 1302.5453 7721.714 3445.7407 1.9335 2.121 317.5042 NO NO Aroctor-1254 275.5608 870.8505 517.2692 3.3054 1.7466 332.735 NO NO Aroctor-1260 1631.1831 7482.2533 3707.9152 3.0858 2.5705 5607.5431 NO NO TOTAL PETROLEUM HYDROCARBONS 72534.5 205047.0397 209882.0407 4.008 3.9028 4.83717E+12 YES NO									
Heptachlor 255.1644 1241.7159 633.6853 0.0891 2.4197 155.0018 NO NO Heptachlor Epoxide 20.7496 73.9054 43.2787 -0.1972 1.8404 16.074 NO NO Methoxychlor 18.1898 81.59 43.0614 0.0798 1.709 13.6338 NO NO Arcotor-1248 1302.5453 7721.714 3445.7407 1.9335 2.121 317.5042 NO NO Arcotor-1254 275.5608 870.8505 517.2692 3.3054 1.7466 332.735 NO NO Aroclor-1260 1631.1831 7482.2533 3707.9152 3.0858 2.5705 5607.5431 NO NO TOTAL PETROLEUM HYDROCARBONS 72534.5 205047.0397 209882.0407 4.008 3.9028 4.83717E+12 YES NO									
Heptachlor Epoxide 20.7496 73.9054 43.2787 -0.1972 1.8404 16.074 NO NO Methoxychlor 18.1898 81.59 43.0614 0.0798 1.709 13.6338 NO NO Aroclor-1248 1302.5453 7721.714 3445.7407 1.9335 2.121 317.5042 NO NO Aroclor-1254 275.5608 870.8505 517.2652 3.3054 1.7466 332.735 NO NO Aroclor-1260 1631.1831 7482.2533 3707.9152 3.0858 2.5705 5607.5431 NO NO Gasoline Range Organics (ug/kg) 72534.5 205047.0397 209882.0407 4.008 3.9028 4.83717E+12 YES NO	,								
Methoxychlor 18.1898 81.59 43.0614 0.0798 1.709 13.6338 NO NO Aroctor-1248 1302.5453 7721.714 3445.7407 1.9335 2.121 317.5042 NO NO Aroctor-1254 275.5608 870.8505 517.2692 3.3054 1.7466 332.735 NO NO Aroctor-1260 1631.1831 7482.2533 3707.9152 3.0858 2.5705 5607.5431 NO NO TOTAL PETROLEUM HYDROCARBONS 72534.5 205047.0397 209882.0407 4.008 3.9028 4.83717E+12 YES NO									
Aroclor-1248 1302.5453 7721.714 3445.7407 1.9335 2.121 317.5042 NO NO Aroclor-1254 275.5608 870.8505 517.2692 3.3054 1.7466 332.735 NO NO Aroclor-1260 1631.1831 7482.2533 3707.9152 3.0858 2.5705 5607.5431 NO NO TOTAL PETROLEUM HYDROCARBONS Gasoline Range Organics (ug/kg) 72534.5 205047.0397 209882.0407 4.008 3.9028 4.83717E+12 YES NO	• •								
Arccior-1254 275.5608 870.8505 517.2692 3.3054 1.7466 332.735 NO NO Arccior-1260 1631.1831 7482.2533 3707.9152 3.0858 2.5705 5607.5431 NO NO TOTAL PETROLEUM HYDROCARBONS									
Aroclor-1260 1631.1831 7482.2533 3707.9152 3.0858 2.5705 5607.5431 NO NO TOTAL PETROLEUM HYDROCARBONS 633.1831 7482.2533 3707.9152 3.0858 2.5705 5607.5431 NO NO Gasoline Range Organics (ug/kg) 72534.5 205047.0397 209882.0407 4.008 3.9028 4.83717E+12 YES NO									
TOTAL PETROLEUM HYDROCARBONS Gasoline Range Organics (ug/kg) 72534.5 205047.0397 209882.0407 4.008 3.9028 4.83717E+12 YES NO									
Gasoline Range Organics (ug/kg) 72534.5 205047.0397 209882.0407 4.008 3.9028 4.83717E+12 YES NO		1631.1831	7482.2533	3707.9152	3.0858	2.5705	5607.5431	NO	NO
Diesel Kange Organics (mg/kg) 727 1928.805 2018.9798 4.2222 1.8927 32931.0808 YES NO									
	Diesel Range Organics (mg/kg)	727	1928.805	2018.9798	4.2222	1.8927	32931.0808	YES	NO

. . .

į.

STATISTICAL SUMMARY SUBSURFACE SOIL ORGANICS (AFTER NON-TCRA) SITE 84 - BUILDING 45 AREA MCB CAMP LEJEUNE JACKSONVILLE, NORTH CAROLINA

VOLATILES (ug/kg)								
1,2-Dichloroethene (total)	12.8089	25.9177	25.0758	0.8223	1.8056	120.7301	NO	NO
2-Butanone	19.9518	36.4185	37.1887	1.5111	1.7077	140.7664	NO	NO
Acetone	51.3214	124.8996	110.4366	1.7822	2.1536	1816.4123	NO	NO
Benzene	14.8646	42.4184	34.9413	0.175	2.079	276.3447	NO	NO
Ethylbenzene	100.0891	269.1737	227.4894	0.6379	2.947	36015.3507	NO	NO
Methylene chloride	18.0268	38.1478	36.0822	0.9047	1.9657	218.2056	NO	NO
Styrene	4.2513	7.5729	7.8356	-0.0804	1.7945	47.2988	NO	NO
Xylenes (total)	210.7357	745.6757	563.6651	1.4207	2.4009	3284.9305	NO	NO
SEMIVOLATILES (ug/kg)								
2-Methylnaphthalene	2030.5556	6587.0012	4731.4182	4.036	2.0561	6379.5254	NO	NO
Acenaphthene	97.1667	223.5298	188.8204	3.7194	0.9652	121.8449	NÖ	NO
Benzo(b)fluoranthene	72.7083	106.6905	116.4545	3.8265	0.7762	96.7765	NO	NO
Chrysene	57.8611	84.8375	92.6469	3.5948	0.7814	77.303	NO	NO
Dibenzofuran	115.5278	302.9021	239.7265	3.7175	1.0284	148.3853	NO	NO
Fluoranthene	71,1528	103.9667	113.7822	3.7972	0.7897	95.7181	NO	NO
Fluorene	125	349.075	268.1309	3.6858	1.0664	153.8158	NO	NO
Naphthalene	608.9028	2023.2417	1438.4909	3.9075	1.628	862.2707	NO	NO
Phenanthrene	404.8889	1089.6349	851.671	3.9382	1.5277	690.8626	NO	NO
Phthalic anhydride	145	35.3553	302.8435	4.9616	0.2463	289.8191	N/A	N/A
Pyrene	65.6944	94.5657	104.4691	3.717	0.7981	89.3614	NO	NO
bis(2-Chloroethoxy)methanc	59.0556	87.0066	94.7308	3.6159	0.7774	78.5255	NO	NO
bis(2-Ethylhexyl) phthalate	102.4306	122.7209	152.7497	4.0926	0.9824	181.9448	NO	NO
PESTICIDES/PCBs (ug/kg)								
4,4'-DDD	1.339	2.2782	2.2731	-0.3578	0.9426	1.9928	NO	NO
4,4'-DDE	0.7888	1.0529	1.2205	-0.6789	0.8175	1.162	NO	NO
4,4'-DDT	1.5903	1.9897	2.4061	0.1027	0.7342	2.2096	NO	NO
Dieldrin	1.3	1.0104	1.7143	0.1004	0.5104	1.6382	NO	NO
Endrin aldehyde	1.5028	2.1563	2.3869	0.0835	0.6225	1.8499	NO	NO
Methoxychlor	1.9835	5.5266	4.2496	-0.3434	1.0087	2.4705	NO	NO
PCB-1260	2406.4292	9261.1843	5646.3828	3.0357	2.7706	27035.0174	NO	NO
alpha-Chlordane	0.7868	1.3337	1.3337	-0.7355	0.7894	1.0287	NO	NO
beta-BHC	0.45	0.4285	0.6257	-1.0391	0.6117	0.5945	NO	NO
gamma-Chlordane	0.7893	1.4228	1.3727	-0.7679	0.8039	1.0428	NO	NO
TOTAL PETROLEUM HYDROCARBONS								
Gasoline Range Organics (ug/kg)	580000	ND	ND	13.2708	ND	ND	NO	NO
Diesel Range Organics (mg/kg)	5500	ND	ND	8.6125	ND	ND	NO	NO

.

STATISTICAL SUMMARY SUBSURFACE SOIL INORGANICS (BEFORE NON-TCRA) SITE 84 - BUILDING 45 AREA MCB CAMP LEJEUNE JACKSONVILLE, NORTH CAROLINA

	Arithmatic Mean	Standard	Upper 95%	Log Arithmatic Mean	-	Log Upper 95%	Lognormally	
	Half Non-Detects	Deviation	Confidence Level	Half Non-Detects	Deviation	Confidence Level	Distributed	Distributed
METALS (mg/kg)								
Aluminum	3176.7419	1651.9388	3680.3139	7.9219	0.5793	4033.0668	NO	NO
Antimony	0.428	0.2996	0.5193	-1.0005	0.4992	0.4965	NO	NO
Arsenic	0.8035	0.4842	0.9511	-0.4279	0.705	1.1096	YES	YES
Barium	8.7942	7.4464	11.0641	1.7891	0.9483	14.2712	YES	NO
Beryllium	0.04	0.024	0.0473	-3.3353	0.4442	0.0459	NO	NO
Cadmium	0.043	0.0405	0.0553	-3.3907	0.6134	0.0514	NO	NO
Calcium	5670.1742	12968.941	9623.5867	7.1456	1.6774	14839.034	YES	NO
Chromium VI	4.3161	2.3794	5.0414	1.3236	0.5391	5.2949	YES	NO
Cobalt	0.2935	0.1595	0.3421	-1.3882	0.6156	0.3819	NO	YES
Copper	3.0055	5.7251	4.7507	0.2128	1.2944	5.9163	YES	NO
Iron	1951.0645	1369.9225	2368.6675	7.3432	0.7455	2753.9658	YES	NO
Lead	7.8361	10.9199	11.1649	1.6158	0.85	10.335	YES	NO
Magnesium	172,1065	186.7738	229.0421	4.8012	0.8235	241.6727	YES	NO
Manganese	10.2816	11.5622	13.8062	1.8592	1.0189	17.9471	YES	NO
Mercury	0.0164	0.0116	0.0199	-4.3537	0.7342	0.0226	NO	YES
Nickel	1.1058	0.6593	1.3068	-0.0571	0.5919	1.3983	YES	NO
Potassium	90.3113	47.3814	104.7549	4.3377	0.6389	119.9395	NO	YES
Selenium	0.2674	0.1582	0.3156	-1.4439	0.4707	0.3112	NO	NO
Sodium	30.9274	11.1467	34.3253	3.3999	0.2168	32.9296	NO	NO
Thallium	0.363	0.1773	0.417	-1.0912	0.3622	0.4054	NÔ	NO
Vanadium	4.8677	2.5132	5.6338	1.4392	0.5772	6.157	YES	YES
Zinc	8.8968	10.8371	12.2003	1.5371	1.1774	16.7532	YES	NO

STATISTICAL SUMMARY SUBSURFACE SOIL INORGANICS (AFTER NON-TCRA) SITE 84 - BUILDING 45 AREA MCB CAMP LEJEUNE JACKSONVILLE, NORTH CAROLINA

METALS (mg/kg)								
Aluminum	3521.0556	2089.9316	4377.9885	7.9479	0.7521	5776.6666	YES	YES
Antimony	0.3449	0.2397	0.4432	-1.1623	0.3652	0.3967	NO	NO
Arsenic	0.8564	0.5575	1.085	-0.4171	0.813	1.5001	YES	YES
Barium	7.8289	7.6953	10.9842	1.5988	1.0153	17.4289	YES	NO
Beryllium	0.0445	0.0287	0.0563	-3.2476	0.4931	0.0559	NO	NO
Cadmium	0.0344	0.0273	0.0456	-3.5231	0.4802	0.0419	NO	NO
Calcium	6887.2167	16562.4916	13678.3214	6.8957	1.8579	38774.362	NO	NO
Chromium	4.6111	2.6144	5.6831	1.3579	0.6303	6.677	YES	YES
Cobalt	0.2956	0.1608	0.3615	-1.3933	0.6568	0.4399	NO	YES
Copper	1.2489	1.3722	1.8115	-0.3148	1.1111	3.0544	YES	NO
Iron	1958.2222	1506.6367	2575.9872	7.3332	0.723	3007.1525	YES	NO
Lead	4.4817	2.9667	5.6981	1.2964	0.6756	6.6282	YES	NO
Magnesium	195.4889	240.5106	294.1053	4.7657	1.0195	416.7047	YES	NO
Manganese	9.2989	12.8654	14.5741	1.6179	1.1267	21.7184	YES	NO
Mercury	0.0129	0.0094	0.0168	-4.6016	0.7393	0.0201	NO	YES
Nickel	1.0067	0.5833	1.2459	-0.1705	0.6547	1.4906	YES	YES
Potassium	91.8444	58.9235	116.0048	4.272	0.7878	153.4877	YES	YES
Selenium	0.2814	0.1605	0.3472	-1.3913	0.4842	0.3546	NO	NO
Sodium	32.7903	[4.4441	38.7128	3.4408	0.2767	36.7242	NO	NO
Thallium	0.4011	0.2114	0.4878	-1.0112	0.4205	0.4884	NO	NO
Vanadium	5.2028	3.1874	6.5097	1.428	0.7355	8.3297	YES	YES
Zinc	5.6472	8.3804	9.0834	1.0951	1.0616	11.4322	YES	NO

STATISTICAL SUMMARY GROUNDWATER ORGANICS SITE 84 - BUILDING 45 AREA MCB CAMP LEJEUNE JACKSONVILLE, NORTH CAROLINA

	Arithmatic Mean Haif Non-Detects	Standard Deviation	Upper 95% Confidence Level	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	Log Upper 95% Confidence Level		Normally Distributed
VOLATILES (ug/L)								
2-Butanone (MEK)	1.7618	2.2637	2.6623	-0.4622	1.4842	6.1994	NO	NO
Benzene	1.3653	2.088	2.196	-1.3036	1.8659	10.0419	NO	NO
Carbon Disulfide	1.6679	2.3274	2.5938	-0.9836	1.8453	13.0384	NO	NO
Chloroform	3.2253	4.9712	5.2029	-0.5619	2.2102	96.0667	NO	NO
Chloromethane	1.6582	2.3359	2.5875	-1.1927	2.0285	27.8956	NO	NO
Ethylbenzene	1.8505	2.4284	2.8166	-1.0819	2.1389	44.8534	NO	NO
Methyl Tert-Butyl Ether (MTBE)	1.6474	2.3423	2.5792	-1.2525	2.0523	28.3928	NO	NO
Methylene Chloride	1.7808	2.2521	2.6767	-0.4326	1.4947	6.5409	NO	NO
Trichloroethene (TCE)	1.6332	2.3502	2.5682	-1.2587	2.0146	24.9653	ŇŎ	NO
Xylenes, total	1.7779	2.2792	2.6846	-0,5988	1.6335	9.0526	NO	NO
SEMIVOLATILES (ug/L)								
2-Methylnaphthalene	0.3762	0.2025	0.4763	-1.048	0.3296	0.4479	NO	NO
Naphthalene	0.5154	0.5062	0.7656	-0.8447	0.4907	0.6537	NO	NÔ
PESTICIDES / PCBs (ug/L)								
4,4'-DDD	0.0156	0.0208	0.0259	-4.957	1.2421	0.0497	NO	YES
4,4'-DDE	0.0108	0.0202	0.0208	-5.221	0.9506	0.0185	ŇŎ	YES
4,4'-DDT	0.0171	0.0227	0.0283	-4.8487	1.2282	0.0537	NO	YES
BHC, beta-	0.0135	0.017	0.0219	-4.9494	1.1312	0.0395	NO	YES
Chlordane, gamma-	0.0108	0.0192	0.0203	-5.3056	1.0386	0.0229	NO	YES
Endosulfan I	0.0101	0.0188	0.0194	-5.2919	0.949	0.0172	NO	YES
Heptachlor Epoxide	0.0095	0.0185	0.0186	-5.3289	0.9148	0.0156	NO	YES
HERBICIDES (ug/L)								
Dinoseb	0.1427	0.4102	0.3455	-3.9092	1.6971	0.6918	NO	NO
MCPA	10.4615	14.0986	17.4307	1.8545	0.8738	18.394	NO	NO

i.

STATISTICAL SUMMARY GROUNDWATER INORGANICS SITE 84 - BUILDING 45 AREA MCB CAMP LEJEUNE JACKSONVILLE, NORTH CAROLINA

	Arithmatic Mean Half Non-Detects	Standard Deviation	Upper 95% Confidence Level	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	Log Upper 95% Confidence Level	Lognormally Distributed	Normally Distributed
METALS (mg/L)								
Aluminum	0.4075	0.2382	0.5252	-1.2177	0.9897	1.0895	NO	YES
Antimony	0.002	0.0027	0.0033	-6,522	0.6642	0.0029	NO	YES
Arsenic	0.0054	0.0081	0.0094	-5.7811	0.918	0.01	NO	YES
Barium	0.0403	0.0364	0.0583	-3.6153	1.0067	0.1165	YES	YES
Beryllium	0.0007	0.0002	0.0008	-7.2487	0.2252	0.0008	YES	YES
Cadmium	0.0002	0.0002	0.0003	-8.654	0.5369	0.0003	NO	YES
Calcium	45.8308	30.7564	61.0342	3.4369	1.1748	189.8292	YES	YES
Chromium VI	0.0009	0.0005	0.0011	-7.0829	0.3729	0.0011	NO	YES
Cobalt	0.0013	0.0014	0.002	-6.9839	0.7102	0.002	NO	YES
Iron	13.2868	22.6709	24.4934	0.2043	2.5747	5897.0693	YES	NO
Magnesium	4.9215	3.6964	6.7487	1.2272	1.0226	15.2444	YES	YES
Manganese	0.0997	0.1297	0.1638	-3.1963	1.5297	0.8757	YES	YES
Mercury	0	0	0	-10.218	0.204	0	NO	YES
Nickel	0.002	0.0027	0.0033	-6.5663	0.6658	0.0028	NO	YES
Potassium	2.7992	3.4931	4.5259	0.3287	1.2926	13.1454	YES	NO
Sodium	8.4731	6.1412	11.5088	1.8849	0.7613	15.31	YES	YES
Thallium	0.003	0.0011	0.0035	-5.8688	0.2996	0.0035	NO	YES
Vanadium	0.0015	0.0011	0.002	-6.7927	0.8018	0.0029	YES	YES
Zinc	0.0315	0.0839	0.073	-4.6374	1.1344	0.0543	NO	YES

STATISTICAL SUMMARY LAGOON SURFACE WATER ORGANICS SITE 84 - BUILDING 45 AREA MCB CAMP LEJEUNE JACKSONVILLE, NORTH CAROLINA

j

	Arithmatic Mean Half Non-Detects	Standard Deviation	Upper 95% Confidence Level	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	Log Upper 95% Confidence Level		Normally Distributed
VOLATILES (ug/L)								
Acetone	5.6	ND	ND	1.7228	ND	ND	NA	NA
Benzene	1.2	ND	ND	0.1823	ND	ND	NA	NA
Toluene	2.7	ND	ND	0.9933	ND	ND	NA	NA
Xylenes, total	3.5	ND	ND	1.2528	ND	ND	NA	NA

STATISTICAL SUMMARY LAGOON SEDIMENT ORGANICS SITE 84 - BUILDING 45 AREA MCB CAMP LEJEUNE JACKSONVILLE, NORTH CAROLINA

	Arithmatic Mean Half Non-Detects	Standard Deviation	Upper 95% Confidence Level	Log Arithmatic Mean Half Non-Detects	Log Standard Deviation	Log Upper 95% Confidence Level	Lognormally Distributed	
VOLATILES (ug/kg)								
Xylenes, total	910	ND	ND	6.8134	ND	ND	NA	NA
SEMIVOLATILES (ug/kg)								
2-Methylnaphthalene	10000	ND	ND	9.2103	ND	ND	NA	NA
Bis(2-ethylhexyl)phthalate	2400	ND	ND	7.7832	ND	ND	NA	NA
Naphthalene	2000	ND	ND	7.6009	ND	ND	NA	NA
Phenanthrene	2500	ND	ND	7.824	ND	ND	NA	NA
PCBs (ug/kg)								
Aroclor-1248	1085.7143	1159.2182	1937.106	6.2014	1.5148	61973.3667	YES	YES
Aroclor-1260	14142.8571	13047.7146	23725.7948	9.2151	0.8857	51223.5513	YES	YES
TOTAL PETROLEUM HYDROCARBONS								
Diesel Range Organics (mg/kg)	6466.6667	4463.5561	13991.5771	8.6285	0.6407	427411.8192	YEŞ	YES

APPENDIX C

PRAP PUBLIC MEETING MINUTES

÷	
-	
a set a man	
	PUBLIC MEETING
·	
	IR SITE 84 PROPOSED REMEDIAL ACTION PLAN (PRAP) CAMP LEJEUNE
	APRIL 29, 2008 COASTAL CAROLINA COMMUNITY COLLEGE
	444 WESTERN BOULEVARD JACKSONVILLE, NORTH CAROLINA 28546
i ma	
$(\tau_{1}, \ldots, \tau_{n})$	* * * * * * * * * * * * * * * * * * * *
. •	MEETING MODERATOR - MR. ROBERT LOWDER
	IR PROGRAM MANAGER MCB CAMP LEJEUNE EMD/EQB
	BUILDING 12, POST LANE (ROOM 236)
	CAMP LEJEUNE, NORTH CAROLINA 28542-0004
	PRESENTER - MS. MARCELLA J. GALLICK, P.E. RHEA ENGINEERS & CONSULTANTS, INC.
	4951 WILLIAM FLYNN HIGHWAY, SUITE 12 GIBSONIA, PENNSYLVANIA 15044
	COURT REPORTER - BOBBIE G. NEWMAN
· · · · · · · · · · · · · · · · · · ·	CAROLINA COURT REPORTERS, INC. 105 Oakmont Professional Plaza
	Greenville, North Carolina 27858 TEL: (252) 355-4700 (800) 849-8448
	FAX: (252) 355-4707

LIST OF ATTACHMENTS

ATTACHMENT [1] Public Meeting Agenda, April 29, 2008

	SITE 84, PUBLIC MEETING
1	COURT REPORTER NOTE: The public meeting portion
2	of the Restoration Advisory Board (RAB) meeting convened at
3	6:00 p.m., in Room 103 of the Business Technology Building,
4	Coastal Carolina Community College.
5	MR. ROBERT LOWDER: All right, folks, welcome.
6	Again, I think we don't have any new folks in here. Mr.
7	McAdams, you're back. Did they put you all back together?
8	MR. McADAMS: Yeah.
9	MR. LOWDER: Now, what was it, a rotator cuff? MR.
10	MCADAMS: I had a frozen shoulder. I've got a bone spur.
11	MR. LOWDER: Oh, okay.
12	MS. MCADAMS: But they can't operate on me because my
13	heart's so bad.
14	MR. LOWDER: Oh, yeah.
15	MR. McADAMS: So what they did was they call a
16	they put you to sleep and they yank out of the socket, and
17	they twirl it around a little bit, and stuff it back in.
18	MR. LOWDER: Oh, my God.
19	MR. McADAMS: It worked. I got 80 per cent of my arm
20	back.
21	MR. LOWDER: Geez. They got the spur out?
22	MR. McADAMS: No, that's still in.
23	ATTENDEE: You can't argue with success.
24	MR. McADAMS: Yeah. I mean, it had a they thought
25	they were just going to drill that out and fix it, but the
	3
	Carolina Court Reporters, Inc. Greenville, North Carolina

	SITE 84, PUBLIC MEETING
1	heart doctor said no way 'cause he was afraid of where the
2	debris would go. I've got stents in.
3	MR. LOWDER: How long were you held up?
4	MR. McADAMS: Well, it was frozen about three months,
5	but the operation took 20 minutes.
6	MR. LOWDER: Is that right?
7	MR. MCADAMS: He told me he just lowered the table,
8	put his knee against it, kicked it, it went far right, and he
9	got behind me and yanked it out of the socket. I said, Don't
10	tell me anymore. It feels better. Just let me out of here.
11	MR. LOWDER: All right. Well, welcome back; welcome
12	back. All right. Well, if you're looking at the agenda
13	here, what we'll start with is the Site 84 PRAP, Proposed
14	Remedial Action, up there at Site 84, and Marcella Gallick
15	will be from Rhea Engineers will be heading this
16	discussion up. And without further ado, Marci.
17	MS. MARCELLA J. GALLICK: And I'm new to a RAB
18	meeting. Okay. I'm not going to tell you oh.
19	ATTENDEE 1: This gentleman didn't sign in yet.
20	ATTENDEE 2: I didn't, either.
21	MS. GALLICK: I'm going to talk about Site 84. I've
22	been working with the Navy and Camp Lejeune for the last
23	couple of years trying to get the site to a closure
24	situation. And, I'm going to kind of go through the history
25	with you of what's been done in the past and where we want to

Carolina Court Reporters, Inc. Greenville, North Carolina

4

go from here. So, if you have any questions during my talk,
 you know, you can ask or at the end, whatever. So let's move
 on.

Here's an aerial shot of where Site 84 Okay. 4 5 (Indicating the first of slide series.) You can see -is. 6 you can see Camp Lejeune right here. This is right at the --7 outside the entrance to the main gate. North, you cross 8 Northeast Creek and you're coming into the main gate on 24, 9 and if you look off to your right you can see Site 84. There's a fence there, and the fence -- and it's also where 10 the bike trail is now, the City of Jacksonville bike trail. 11 And that's where our site is. 12

Just a little bit of the details about 13 Okav. 14 the site. It's one mile west of the main gate. On the site, or not -- no longer, but what used to be on the site was a 15 building called Building 45, used for numerous things, but at 16 one point used for maintenance of transformers. 17 Tidewater 18 Electric, I believe, leased the building off of the Navy. That -- that was stopped in 1965, and the Navy took it back 19 over and they did vehicle maintenance, heavy equipment 20 vehicle maintenance in that building. And that went on 21 through the early 1990s. Also on this site was a man-made 22 23 lagoon, and I'll show you a -- a sketch of what this kind of looks like, or where -- where it used to be, and I'll show 24 you where that is. But from the lagoon to -- from the 25

> Carolina Court Reporters, Inc. Greenville, North Carolina

5

building to the lagoon was a pipe that originally -- it supposedly came right from the drains of the building to the lagoon. Later I think they had a oil/water separator in it. So that's just kind of like an overall picture of the site.

5 Also, I'll show you on this sketch or on this 6 drawing, next, there's an area that we've called the Utility 7 Corridor, but the major communications lines from the base out, you know, out and away from the base come through this 8 9 site, and it's a spider web of all kinds of communications 10 lines and utility lines, and that plays in -- plays into what 11 we ended up doing at the site so far. So just remember that and I'll be talking about that later. 12

So here is what the site looks like 13 Okay. today, but let me show you that if anyone has a history here 14 15 -- okay -- you can see (indicating locations) that the 16 Northeast Creek over there and these are existing wetlands, 17 so that, we didn't touch. And then here is where you come in from 24. And Building 45 was about in this area. And then 18 the pipe crossed here, and this is where -- about where the 19 man-made lagoon was. So there -- we've done steps out at the 20 21 site since the original investigation was done, and these structures have been removed, and I'll talk a little bit 22 23 about that. But that's just to kind of give you a background of the site and what it used to look like. 24

25

1

2

3

4

Okay, so in this presentation, I'm going to try

6

to summarize the Proposed Remedial Action Plan that we've 1 come up with for Site 84 and talk about the public comment 2 3 period. And let me just say that I have -- I don't know if any of you have, you know -- we had a public notice if you 4 5 went on the Admin Record and found the -- the proposed plan, but I have copies over here if you want to take one so I 6 7 don't have to take it home with me, but I have a ton of them Okay, and then -- and then any questions you might 8 here. 9 have.

SITE 84, PUBLIC MEETING

10 The first thing that was done at the Okay. 11 site, there were some other things, but the first major thing was the Remedial Investigation, and that was completed in 12 2002. And they -- they drilled borings, they took ground 13 14 wells, they took ground water samples, they took soil samples, they took samples in Northeast Creek, they took 15 samples in the lagoon. So it was a pretty comprehensive 16 sampling program over the entire site. Following the 17 Remedial Investigation, they did -- prepared what was called 18 19 a Feasibility Study. So once you understand where your -what your contamination is, where your contamination is, then 20 21 you look at different alternatives to clean up the site. And you look at alternatives that vary from doing nothing to 22 doing the maximum you could possibly do just so you get a 23 sense of what, you know, what the level of effort is to do 24 25 these things and how they're protective of the environment,

> Carolina Court Reporters, Inc. Greenville, North Carolina

7

and many, many, many other issues that I'll mention later. 1 Then they prepared what's called a Proposed Plan. Now, don't 2 3 get confused because this is another proposed plan, but in 2002, they prepared a Proposed Plan. And the alternative 4 5 they selected was excavation and off-site disposal at a 6 landfill. And the excavation was based on that site being used for industrial uses, which I'll also talk about later, 7 but -- as opposed to residential. You know, they weren't 8 9 planning to build homes there; they were planning to use it 10 for storage, warehouses, or something like that. Okay. 11 However, the Proposed Plan was not implemented because there were -- there were administrative issues much higher up than 12 Camp Lejeune between DOD and USEPA, administrative issues. 13 And so, rather than do nothing because these issues were not 14 getting resolved, the Navy decided that they would take some 15 16 action and do some non-time critical removals because they knew they had contaminated soil, PCB-contaminated soil. 17 And so instead they developed an Action Memorandum to do removal 18 actions on the site. 19

There were actually three removal actions done. The first one, the first non-time-critical one, was done in 2002 after that memorandum was done. And the Building 45 that I talked about before -- actually in 1999, they took the building down to the ground -- but in 2002 they removed the foundation and they removed the contaminated soil around the

8

foundation. And at that point, they cleaned it up to one ppm 1 2 of PCBs, which is basically at residential clean-up level, but there was -- at that point, they weren't positive of what 3 they wanted to use the site for. But -- but that's -- that 4 area, Phase I, was cleaned up to one part -- part per 5 б million. As part of that clean up, they removed 5,000 tons 7 of less than 50 ppm of PCB-contaminated soil and 150 tons of PCB waste. And that, if you're -- any of you are familiar 8 9 with TSCA, that's the regulation. Once it's over 50, it's, you know, goes to a much higher level, much more protective 10 where it gets disposed of, so -- and also as part of that 11 Phase I, they -- it had been reported that transformers that 12 had been maintained, or cleaned out, or recycled in that 13 14 building, that the casings had been thrown into this man-made lagoon, and they recovered 20 old transformers from the 15 lagoon, as part of this Phase I. 16

SITE 84, PUBLIC MEETING

Then we moved into Phase II, and this was in 17 18 2004. You know, the Phase I had just removed the soil around 19 the building, and they knew there was more contaminated soil than that. They had done confirmation samples at the outside 20 21 of their excavation and knew they had to go further. So Phase II just continued that excavation, as well as they 22 removed the sediment from the lagoon that was contaminated. 23 But let me step back -- that, none of the Northeast Creek --24 25 wasn't contaminated, so there was no issue with that. They

> Carolina Court Reporters, Inc. Greenville, North Carolina

9

removed the steel pipe that -- that I had mentioned before 1 2 went from Building 45 to the lagoon. They backfilled all 3 this area with clean backfill. And at this point, the cleanup goal went to 10 ppm, which is the industrial. Like I 4 5 said, if -- that they -- that the Navy or their, you know, 6 MCB -- that Camp Lejeune would then build a storage building or warehouse on it. And at this -- part of this phase, they 7 8 excavated and disposed of 12,000 tons of less than 50, and 9 400 tons of PCB waste, which is the -- greater than the 50 However, at the end of this removal on the Southeast 10 ppm. side of the site, the contamination was still much greater 11 than 50. But it was stopped just to kind of regroup and to, 12 13 you know, do a little bit more evaluation of where this waste 14 might go, and to, you know, bound the problem a little bit better than it had been because this one became a lot bigger 15 than was -- was expected originally. 16

So we move to Phase 3, Non-time-Critical Removal 17 Action. And this -- for this removal, we went down two feet. 18 We excavated at least two feet because that's the definition 19 of surface/surface soil. And this whole clean up is based on 20 21 risk, meaning that there's certain risks if the contamination is in the top two feet or greater than two feet. And there's 22 23 risk for residential type individuals or industrial type So -- so we dug that up and we -- then we also had workers. 24 some areas that's -- if you remember, I mentioned that 25

10

utility corridor, which was just like a spider web or is a spider web of all kinds of communication lines. We weren't able to dig up there, and actually some of the waste results we got back were greater than 100 ppm's, so in that area we covered it with four feet of soil and we put a fabric liner on it to be a separation from anyone who might excavate into this -- into this area.

1

2

3

4

5

6

7

8 So here's a kind of an overview of what Okay. 9 these areas are. Phase I, that's what I said was cleaned up 10 Phase II, a much, much larger area was cleaned up to 1 ppm. 11 to 10. And then Phase -- and 10 -- until they got up to 10. So in some cases, they only went a foot down versus two feet 12 13 And then Phase III was cleaned up to 10 also. down. But 14 along this corridor, we weren't able to dig so we had to 15 backfill, and -- and some other places we had to backfill. 16 So the ultimate goal was 10, but because we could not get the 17 10 across the whole site, part of our clean up or part of our plans for the future would have to be land use controls, and 18 that will be things I'll talk about later but it's to -- just 19 20 to give you a taste of what it is, you -- you limit who can 21 excavate into the soil. If -- you can't dig into the soil unless you're doing it to remediate it, so that's one thing. 22 23 And then you can also have deed restrictions so that, you know, you protect the site in the future to make sure nobody 24 25 digs.

11

1	Okay. So let me just summarize the three removal
2	actions that we had. Basically it cost \$3.5 million to do
3	those three removal actions. We cleaned up to 10 ppm for
4	industrial use to the extent possible; some places we weren't
5	able to do that. And then the Preferred Alternative from the
6	2002 Proposed Plan that I mentioned earlier, basically we met
7	that except now we'll have to have land use controls if that
8	alternative is selected to go into the future because we
9	weren't able to get the clean up all the way to 10.
10	Okay. I'm going to back up a little bit and
11	just go through the history of the contamination. Because so
12	far I've just been saying PCBs, but we started out with more
13	than PCBs, and so let me just give you a little bit of
14	history. When we first did the RI, our impacts were PCBs,
15	PAHs, which are heavy, semi-volatile compounds, pesticides,
16	and total petroleum hydrocarbons. Okay. We also found the
17	groundwater was contaminated with both pesticides and total
18	petroleum hydrocarbons. Now the PAHs and the pesticides,
19	they were mostly around Building 45, and probably because
20	that's where maintenance was done, and also where they would
21	spray because there was that's where workers were for the
22	pesticides. So all of that was removed during the Phase I.
23	So those two compounds drop out in as we go further into
24	Phase II. The TPH contamination that's both in the soil
25	and the groundwater, that's being addressed by the UST

12

Program. So the UST Program's responsible for all the petroleum-type contaminants at Camp Lejeune, and so they're taking care of that. They have a treatment plant on site right now, and they're thinking, you know, they're determining now what else they want to do to clean up the TPH contamination.

In 2005, we still had pesticides that were
showing up, prior to 2005, in the groundwater. But we did a
sampling program in 2005, and we didn't detect any
pesticides. So they -- so the groundwater issues dropped
out.

So what we were left with at the end of the -in 2006 when we were done with the three removal actions, was that we had PCB contamination in both the surface and the subsurface soil. Surface, like I said, zero to two feet; subsurface, greater than two feet.

Also with the removal actions, talking a 17 Okay. little bit about the risks because this is a risk-driven ---18 19 this has been viewed as a risk-driven site. The risk to the industrial workers of the surface soils was eliminated by 20 doing these removal actions. There was also ecological risk 21 assessment done and it was determined that the top foot of 22 soil was a problem, but over the whole site, the top foot was 23 24 totally removed. So that was all removed and replaced with clean soil. So basically the ecological risk drops out as a 25

13

result of these three removal actions. 1 2 And, like I said before, the -- what was remaining was PCB in the surface and the subsurface soil. 3 And the risks that remained -- one is, in the surface soil, 4 in zero to two feet, we still have a risk for future adult 5 and child residents. And in the subsurface soil, we still 6 7 have a risk for industrial workers. So our focus going forward is on those risks and -- and to mitigate those risks. 8 9 Okav. So -- so we had to develop goals for And what we did 10 protecting human health in the environment. 11 was basically we're looking at the surface and subsurface soils in excess of the clean up goal. The clean up goal is 12 for industrial use; it's 10 ppm. If we can't clean it up to 13 14 10 for whatever reason, like I said, because of the utility corridor and not being able to access that soil, then we have 15 to make sure that the industrial worker will not be exposed 16 17 to that contamination. We do that with deed restrictions, we do that with separation fabrics, we do that just by, you 18 19 know, on a -- the plat map or whatever. And so then what -whoever looks at the documents related to that site will know 20 21 that they can't just go out there and dig. Utility workers 22 just can't go out there and dig to fix the lines or anything 23 if they don't have the proper training and haven't developed the proper plans to do that work. 24 25

Okay. And, like I said, our goal is -- is -- a

USEPA Risk Based Guidance document is what we used. 1 Their --2 actually -- the -- the goal for an industrial use, land use, for EPA is 10 to 25, but we picked the more conservative, 10. 3 And, like I said, it's for storage areas or warehouse. 4 Now, just to get a perspective of what this means, this -- the --5 the definition in TSCA for low occupancy land use is that a 6 7 person that is unprotected can't be present on the site for 8 more than 6.7 hours a week or 335 hours in a year, which 9 obviously isn't very much time. So it wouldn't be a worker 10 that was there five days a week. It would be someone who's just coming in and out to a warehouse, based on how our clean 11 12 up levels are designed.

So -- so where are we today? You know, we were 13 here with -- still have some contamination on the site and we 14 want to get the site closed. So -- so when I told you about 15 what happened back in 2002 where they did the investigation, 16 17 they did a feasibility study to look at the alternatives, we basically had to do the same thing. We created what I call 18 up there a Feasibility Study Amendment. 19 So we did an amendment to the original Feasibility Study, and we came up 20 with four action alternatives to address what's left of the 21 22 PCB contamination at Site 84. And when you do one of these 23 Feasibility Studies, you want to kind of bound your problem, 24 so our first alternative is no action; that's basically where we are today. Do nothing else. Don't put any land use 25

15

controls in. Don't do anything, like walk away. Our number 1 2 2 is the most we can do. That means take the site and dig it up to that 1 ppm so that any family can live there, any house 3 4 can be built. There would be no land use controls required. The third alternative there is to, like I said before, we 5 have some greater than 1 ppm in the top two feet of surface 6 7 soil, so it's to go over the whole site and put two more feet of clean soil on it. You could have residents living there, 8 but they can never dig down -- dig into the ground; okay? 9 10 Now how realistic is that, but it is one of our alternatives. Okay. And then four is where we are today, but adding land 11 12 use controls to it. So that's kind of how we bounded the 13 problem of -- at the site.

So this is kind of just a little summary 14 Okay. 15 of what these alternatives involve. To totally dig up, down 16 to 1 ppm, would require excavating and disposing of 20,000 17 tons of less than 50 PCB soil and 6,000 tons of greater than 18 50. The RAA 3 with two additional feet of cover over the 19 site is 18,000 cubic yards, and these are pretty large numbers. And that would also require annual maintenance for, 20 you know, as many years as that contamination was in the 21 22 ground. And RAA 4 would be, like I said before, as it is 23 today, but we would do annual maintenance and we would also like to have land use controls for both three [RAA 3] and 24 25 four [RAA 4].

Okay. In the -- when you do a Feasibility Study 1 2 or a Feasibility Study Amendment like this, as you can see here, there are seven evaluation factors -- actually nine 3 4 evaluation factors, but you're comparing -- you compare the alternatives against seven of those. One being you -- you 5 look at the -- how they protect human health and the 6 7 environment. And secondly, there're certain regulations out there, there's certain quidance out there. You make sure 8 that your alternatives can meet that. And these first two 9 10 are called the threshold criteria. So an alternative that 11 you pick has to meet those two as a minimum. Then you have 12 long-term effectiveness and permanence, so what you do out there, how long is it going to last, and is it going -- is it 13 going to be permanent, is it going to be effective. 14 15 Something that has land use controls isn't going to be as effective and permanent. I mean, it can be, but there's a 16 17 chance it might not be, compared to something that totally cleans up the site. So this whole analysis is -- is 18 relative. You're looking relatively at your four 19 alternatives and how they compare to each other. 20 Continuing on with the evaluation factors, one 21

of them -- the goal is to reduce toxicity, mobility, and volume through treatment. Now that's a push at EPA, but truly none of ours involve treatment because PCBs, to treat them would be to incinerate them, which is an extremely

17

1

costly and difficult process to do.

2 Short term effectiveness. Now this is an 3 interesting evaluation factor because something that cleans 4 up the entire site and has lots of trucks and taking lots of 5 contamination to another state, in the short term, has more 6 risks than something that, say, covers up that waste, and no 7 one is exposed to it. I mean, you have workers exposed to it; you have trucks carrying it. So you have to think in 8 terms of in the short term is it effective. But also we have 9 10 long term effectiveness, so, you know, these balance out.

Implementability of -- is it imple- -- can you 11 12 implement this. Now for instance, the no action alternative, it's pretty easy to do the no action; right? 13 However, it doesn't meet the threshold criteria because you have no land 14 15 use controls, and you're not really going to be -- be protecting the -- either industrial workers or residents or -16 17 - or kids that somehow, you know, find their way on this 18 site, climb the fence or something. So, you know, you just have to be careful about that. 19

20 Then cost is the final one that you compare it And then keep in mind that all of our alternatives 21 aqainst. 22 that are left, already we've spent \$3.5 million, so you would tack \$3.5 million onto all the prices that we already -- that 23 we got for the going-forward alternatives. 24

25

So here is just like a visual, and you might not

be able to read that, but the -- the squares right here 1 2 (indicating) is like the best when you're doing a relative evaluation and the open circles are the worst. So obviously 3 Alternative 1, where you do no action, it -- it's really not 4 5 feasible to do that. Alternative 2, that's where you're digging up all the soil down to 1 ppm. You know, it's --6 it's good for some things; however, the cost is -- is over \$6 7 8 million. It's -- it's almost double what the cost has been 9 So -- and the other thing is that Camp Lejeune to date. 10 wants to use the site for industrial use, so to take it down 11 to residential is not really the goal. Likewise, 3, it's -it -- generally about \$600,000, so this is \$6 million, this 12 13 is \$600,000. It's not too different from 4, but 4, if you 14 look at it, has the highest range, so it's \$60,000 because all you're doing there is doing maintenance based, you know, 15 plus, of course, the \$3.5 million already spent to date. 16

17 Okay. So based on our -- our conclusion from doing -- going through that whole analysis, is that RAA 4 is 18 the Preferred Alternative. It involves the removal actions 19 20 we've already done, it involves the land use controls, and it's, you know, it's pretty much what the original 21 22 alternative was, Preferred Alternative back in 2002 except with the land use controls. The land use controls will 23 24 include restrictions on intrusive activity except to monitor, if someone wanted to put in wells and monitor, or future 25

19

remediation -- if down the road utility lines would get 1 2 transferred and then we would remediate the utility corridor. Also because -- whenever you leave contamination on the site 3 above the goal, then the Navy will institute five-year 4 reviews. So they're -- every five years they look to make 5 sure that it's still protected, and, you know, all the things 6 7 that you've said in the -- in the feasibility stage is 8 still -- are still, and it's still, you know, good to go or 9 then they would re-evaluate it at that point if it wasn't.

10 So here's, I think, a visual of -- of what that 11 alternative is. This area -- these areas are the ones 12 that -- where intrusive activities are not permitted because the contamination is greater than 10. This one is hardly any 13 greater than 10, but this one, you know, can be over 100 or 14 higher, you know. But it's at a depth of at least two feet 15 and in some cases four feet. So it's industrial -- they 16 17 can't dig into this. I mean, they can still work in this area and this is fine for industrial work. 18 They could -there's no problem with intrusive activities because it's all 19 20 less than 10. Greater than 1 -- residential, it wouldn't work, but industrial would be okay. 21

Okay. So I'm going to talk a little bit about the public comment period. It -- it pretty much starts today and it goes until May 27. Whatever questions you ask today, they will be part of the -- the questions, but you could also

20

submit written questions. And if you go on the -- you can either see on there or you can go in the Administrative Record and see the process of who you submit it to and how you submit it. Yes, that's what I've said there (indicating a new slide) so you just want to -- you can look at that Administrative Record to find out, you know, how -- what the next step's to make comments.

8 Okay. Then following the acceptance of a 9 proposed plan, you know, we'll look at your comments. The 10 Navy will respond to your comments. And -- and if the proposed plan's approved or it might be revised -- it depends 11 -- the -- once it is approved, though, the Record of Decision 12 13 will be written. And the Record of Decision will include 14 what's called a Responsiveness Summary and that will be --15 like all of your comments and responses to them along with a 16 whole summary of all the things that are in the FS and the RI 17 and -- and the whole Administrative Record related to Site 18 84.

Following approval of the ROD, then it will be signed by the Navy, Camp Lejeune, USEPA, with concurrence from North Carolina. And the Preferred Alternative will be implemented. Now if RAA 4 is selected where -- where we're leaving contamination in place, or RAA 3, for that matter, we'll have to do maintenance going forward. That will include the soil cover and the vegetation on the soil cover

21

because you don't want the cover and its soil to, you know,
 go into the creek and you lose the cover, so you maintain the
 vegetation and soil cover, maintain the fence, and, like I
 said before, five-year reviews.

And that's all I have, so any questions? 5 MR. TOM MATTISON: I have one thing I would like to 6 ask you about. We have the LSM-45 at Mile Hammock Bay. It's 7 8 a Landing Ship Medium that was used in the Battle of Okinawa in World War II and the last one in existence. 9 And the 10 Marine Corps Museum of the Carolinas has been working on -with it, but my -- my thoughts on the thing is that would be 11 a excellent place for something like that. 12

MR. LOWDER: Yeah.

13

MR. MATTISON: Make a parking lot out of it, and it would be in a visible type thing and it would be something that, you know, we could use when the Second Marine Division comes to -- to town for a parking lot so they could go visit the base and this kind of stuff.

19 MR. LOWDER: Right. And -- and I agree. And that 20 was one of -- one of the ideas that was presented to us 21 probably about a year, year and a half ago. So to go ahead, 22 you know, we could tow that ship or boat right there at the canal right where the -- the overpass is in that area, and 23 then put a Marine Corps museum right there, and just --24 25 MR. MATTISON: I don't think a museum --

22

SITE 84, PUBLIC MEETING MR. LOWDER: -- and --1 2 MR. MATTISON: -- needs to be there --3 MR. LOWDER: Well --MR. MATTISON: -- but just the ship itself and a 4 5 parking lot. MR. LOWDER: And that -- and that might still be 6 viable to do. And that might be something we just propose to 7 8 them, but as -- as a part of the Marine Corps museum, that was one of the options; go ahead and tow that boat over there 9 10 using that as part of the museum. Go through --MR. MATTISON: 11 Yeah. MR. LOWDER: -- maybe a structure or a building and 12 13 then through the back of the building go to that. I saw some plans on it, but we just couldn't get the closure on this 14 site or the Record of Decision on this site done in time to 15 be sure that people were safe when we went into that area or 16 when people --17 18 MR. MATTISON: Yeah. 19 MR. LOWDER: -- were walking in that area. But I'm 20 with you on that. Something like that where we could put 21 maybe a structure -- out, you know, where people aren't all 22 the time, like at an administrative building. A museum would have been great, just passing people through there all the 23 time, and maybe a parking lot to cap, you know, most of the 24 25 area out there.

> Carolina Court Reporters, Inc. Greenville, North Carolina

23

MR. MATTISON: Yeah.

1

-	
2	MR. LOWDER: A lot of the area there is a lot of
3	utilities going through here. As you know, the gas or CP&L
4	goes goes through there or Progress Energy, or whoever
5	they are right now, and fiber optics and things like that, so
6	we've got to be careful where we put things. But something
7	like that is really what the Base is looking at. Something
8	that can almost provide a cap out there, but still provide
9	some type of use because it is a nice piece of property right
10	there, right next to that water.
11	MR. MATTISON: It would be
12	MR. LOWDER: You know.
13	MR. MATTISON: it would be a really, in my
14	opinion, something to save that LSM-45.
1 5	MR. LOWDER: Right. Right. And on another part of
1 6	that, we need to refurbish that
17	MR. MATTISON: Yeah.
18	MR. LOWDER: that boat, too, before we get it out
19	there. But that that is something that the Base is
20	looking at.
21	MR. RICHARD D. MULLINS: When
22	MR. LOWDER: Yes, sir.
23	MR. MULLINS: just a question. When when you
24	were looking at that, was there any thought given to maybe
25	just doing more work on that one the smaller area that had
	24
	Carolina Court Perporters Inc.

SITE 84, PUBLIC MEETING the larger concentrations? 1 2 MS. GALLICK: You mean the utility area? The one that was kind of at the MR. MULLINS: Yeah. 3 bottom of your -- of your visuals. The larger was --4 5 MR. LOWDER: Right. -- less than 10 -б MR. MULLINS: 7 MS. GALLICK: Right. 8 MR. MULLINS: -- and then the bottom one, was there 9 any thought to maybe to --10 MR. LOWDER: And -- and that's what I was talking 11 about --12 MR. MULLINS: -- doing --MR. LOWDER: -- as far as the utilities corridors go. 13 14 MR. MULLINS: That's all --15 MR. LOWDER: That --MR. MULLINS: -- in there. 16 17 MR. LOWDER: Right. The fiber optics --MR. MULLINS: Right. 18 MR. LOWDER: -- and stuff, we'd have -- it would be 19 20 actually more detrimental to the folks with shovels in there, 21 starting to shovel this out while we're doing it. It costs a 22 lot of money to -- to keep --23 MR. MULLINS: Okay. MR. LOWDER: -- it out of those areas. 24 Now 25 that's -- when they have to go main -- do maintenance on 25

	SITE 84, PUBLIC MEETING
1	those lines and things like that, we're going to have to
2	either remediate those areas while they're in there or
3	if if the folks who we provide leases to for their utility
4	corridor, if they don't want to be in those areas anymore,
5	they can on their own accord, we can lease them some more
6	property and go around those areas, and that would be great
7	for us. We could get rid of those utilities in that area and
8	go ahead and clean that up. But as it stands right now,
9	that's that's not an option for us right now. Well, it is
10	an option, but it's
11	MR. MULLINS: At least
12	MR. LOWDER: an expensive option.
13	MR. MULLINS: as lease holder, can't you make
14	them?
15	MR. LOWDER: What's that? Oh, yeah.
16	MR. MULLINS: If you make them move.
17	MR. LOWDER: Well, yes, we can make them move, but it
18	costs us a whole lot of money. That's, you know, that's part
19	of the cost associated with this. They would make us pay for
20	digging up those fiber optics and reconnecting fiber optics
2 1	in a different area. So that's something we have to take
22	into account also, the cost factor that so in the future,
23	if they do want to maintain or replace those lines, we would
24	just make them replace them in another area, as feasible as
25	possible.

Carolina Court Reporters, Inc. Greenville, North Carolina

26

 \bigcirc

SITE 84, PUBLIC MEETING MR. MULLINS: That's a good question. 1 2 MR. LOWDER: Yeah, it is. Yes, sir? 3 MR. RANDY MCELVEEN: How about when them lines were put down there -- didn't people go -- did workers go down in 4 5 that contaminated area when the lines were put down or were 6 they aware of it and took precautions? 7 MR. LOWDER: Well, when the lines were put down, I --I don't know when those lines were put down, to tell you the 8 truth. Absolutely it could have -- it could have been 9 10 contaminated at the time. I just don't know -- we just don't know when the contamination began. We just know when we had 11 12 to clean it up, so --13 MR. MCELVEEN: Thanks. MR. MARVIN POWERS: You know, my gut feeling is that 14 it -- the reason it's there is because of the utilities, from 15 the trucks. 16 17 MR. LOWDER: Because of the utility --The trucks. 18 MR. POWERS: MR. LOWDER: You think it's --19 20 MR. POWERS: It's sort of the --MR. LOWDER: -- that was a migration pathway? 21 MR. POWERS: 22 Yes. Percolation pathway. It could have 23 MR. LOWDER: 24 been. 25 MR. POWERS: Personally -- but like you said we don't

27

	SITE 84, PUBLIC MEETING
1	know.
2	MR. LOWDER: Absolutely.
3	MR. POWERS: Yes.
4	MR. LOWDER: And for future use, like we said, we'll
5	put land use controls in those areas to protect other folks
6	where we left over 50 in those and other areas also.
7	MS. GALLICK: Any other questions?
8	MR. LOWDER: Well, thanks, folks. What we're going
9	to do is we'll end this at this time the public meeting at
10	this time and we'll take a little break to let this young
11	lady wrap up and go out of here. We don't need to we
12	don't need you in here to wrap up, but you are welcome to
13	stay for the RAP. But we'll go ahead and take a go we'll
14	go ahead and take a 10 minute break right now.
15	
16	
17	**** THE PUBLIC MEETING CONCLUDED AT 6:30 P.M. ****
18	
19	
20	
21	
22	
23	
24	
25	
	28
	Carolina Court Reporters, Inc.
	Greenville, North Carolina

STATE OF NORTH CAROLINA

) C-E-R-T-I-F-I-C-A-T-I-O-N COUNTY OF PITT)

)

I, BOBBIE G. NEWMAN, A COURT REPORTER AND NOTARY PUBLIC IN AND FOR THE AFORESAID COUNTY AND STATE, DO HEREBY CERTIFY THAT THE FOREGOING PAGES ARE AN ACCURATE TRANSCRIPT OF THE PUBLIC MEETING ON THE IR SITE 84 PROPOSED REMEDIAL ACTION PLAN (PRAP), CAMP LEJEUNE, WHICH WAS TAKEN BY ME BY STENOMASK, AND TRANSCRIBED UNDER MY DIRECT SUPERVISION.

I FURTHER CERTIFY THAT I AM NOT FINANCIALLY INTERESTED IN THE OUTCOME OF THIS ACTION, A RELATIVE, EMPLOYEE, ATTORNEY OR COUNSEL OF ANY OF THE PARTIES, NOR A RELATIVE OR EMPLOYEE OF SUCH ATTORNEY OR COUNSEL.

> THIS THE 12TH DAY OF MAY, 2008. NOTARY PUBLIC NUMBER 200616600172.

BOÉBIE G. NÉWMAN COURT REPORTER AND NOTARY PUBLIC CAROLINA COURT REPORTERS, INC. 105 OAKMONT PROFESSIONAL PLAZA GREENVILLE, NC 27858