

REPORT ON

FINAL (100%) DESIGN FOR PERMEABLE REACTIVE SUBSURFACE BARRIER (PRB) AND SURFACE IMPERMEABLE CAP SYSTEM FORMER ARROWHEAD PLATING FACILITY MONTROSS, VIRGINIA

VOLUME I of II

PREPARED FOR:

SALTIRE INDUSTRIAL, INC.

PREPARED BY:

GOLDER SIERRA LLC 3730 CHAMBLEE TUCKER ROAD ATLANTA, GEORGIA 30341

DISTRIBUTION:

5 Copies - USEPA Region III 2 Copies - USEPA NRML 1 Copy - USF & WS 1 Copy - Black & Veatch 1 Copy - VADEQ 1 Copy - Saltire Industrial, Inc. 3 Copies - Golder Sierra LLC

April 2001

Golder Sierra LLC 3730 Chamblee Tucker Road Atlanta. Georgia 30341 770-496-1893 770-934-9476 Fax

April 25, 2001

996-1100

Saltire Industrial, Inc. 12030 Sunrise Valley Dr. Reston, VA 20191

Attn: Mr. Nicholas Bauer Project Coordinator

RE: FINAL (100%) DESIGN FOR SUBSURFACE PERMEABLE REACTIVE BARRIER (PRB) AND SURFACE IMPERMEABLE CAP SYSTEM FORMER ARROWHEAD PLATING FACILITY MONTROSS, VIRGINIA

Dear Mr. Bauer:

Golder Sierra LLC (Golder) is pleased to submit this Final (100%) Design for a Subsurface Permeable Reactive Barrier (PRB) and Surface Impermeable Cap System to be installed at the Former Arrowhead Plating Facility in Montross, Virginia as part of the Remedial Action of Operable Unit 2 (OU-2). This Final (100%) Design submittal addresses comments provided by USEPA and VDEQ on the Pre-Final (90%) Design submittal for the PRB and Cap System.

Golder appreciates the opportunity of assisting Saltire Industrial, Inc. on this project. If you have any questions, please do not hesitate and contact Grant Hocking at (770) 496-1893 in our Atlanta office.

Very truly yours,

GOLDER SIERRA LLC

Grant Hocking, Ph.D. President

GH/mat

H:\GSL\SALTIRE\COVLET10.DOC

TABLE OF CONTENTS

.

Table	of Contents	i
Exect	utive Summary	ES1
1.0	INTRODUCTION	1
2.0	BRIEF DESCRIPTION OF SITE	5
2.1 2.2	SITE BACKGROUND SURFACE SITE CHARACTERIZATION	5
2.5 3.0	SUMMARY OF SELECTED REMEDY	
3.1	IRON REACTIVE PERMEABLE BARRIERS	9
3.1	1 Background	9
3.1	2 Zero Valent Iron	10
3.1.	3 Emplacement Methods	
3.2	APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS (ARARS)	11
3.2.	2 Real Estate. Easement and Permit Requirements	
3.2.	3 Design Requirements and Criteria	14
4.0	PRE-DESIGN FIELD INVESTIGATION	16
4.1	MONITORING WELL INSTALLATION	
4.2	DEEP BORINGS	
4.3	SHALLOW BORINGS	18
4.4	GROUNDWATER SAMPLING	18
4.4.	1 Monitoring Well Sampling	18
4.4.	2 Direct Push Sampling	19
4.5 4.6	INVESTIGATION DERIVED WASTE MANAGEMENT	19 20
5.0		
5 1		
51	IKON REACTIVITT COLUMIN TEST	
5.1.	2 Laboratory Method	
5.1.	3 Results	24
5.2	DEGRADATION MODEL FOR VOCS	24
5.3	PRECIPITATION/ABSORPTION OF METALS AND OTHER COMPOUNDS	25
6.0	GEOTECHNICAL AND SPECIALIZED PRB LABORATORY TESTS	27
6.1	GENERAL	27
6.2	SITE SOIL AND GROUNDWATER COLLECTION	27
6.3	SOIL GEOTECHNICAL AND HYDRAULIC CONDUCTIVITY DATA	28
6.4	SOIL AND FRACTURING FLUID ELECTRICAL RESISTIVITY	29
6.4.	1 Ueneral	29 20
0.4. 6.4	2 Laboratory McCillog	30
6.5	LEAK OFF TESTING OF SOILS	
6.5.	I General.	30
6.5.	2 Laboratory Method	31
	ARSOII	17

a de la compañía de la

.+

.

TABLE OF CONTENTS CONTINUED

6.5.	3 Results	32
0.0	MICKO-HEAD AND HIDKAOLIC CONDUCTIVITI TESTING OF IKON REACTIVE	27
6.6	MIATORE	
6.6	2 Laboratory Method	32
6.6	3 Results	33
67	VISCOSITY OF FRACTURING FLUID	34
6.7.	General	
6.7.	2 Laboratory Method	
6.7.	3 Results	34
7.0	DESIGN OF CAP SYSTEM	35
71	GENERAL	35
7.2	CAP SYSTEM DESIGN REQUIREMENTS AND CRITERIA	
7.3	INFILTRATION RATES EVALUATION	
7.3.	1 Methodology	36
7.3.	2 Weather Conditions	
7.3.	3 Subsurface Soil Conditions	39
7.3.4	4 Existing Infiltration Rates Evaluation	40
7.3.:	5 Cap System Infiltration Rates Evaluation	41
7.4	GROUNDWATER MODELING	42
7.4.	I General	42
7.4.3	2 Methodology	43
7.4.	3 Model Set-up	44
7.4.	4 Model Input Parameters	44
7.4.:	5 Model Calibration	45
7.4.	5 Predictive Simulation	46
7.4.	7 Impact of Cap System on PRB Design	46
7.5	CAP SYSTEM DESIGN	47
7.5.	I General	47
7.5.	2 Cap System Configuration	48
7.5.3	3 Surface Water Management	49
8.0	DESIGN OF IRON PRB SYSTEM	51
8.1	FULL SCALE IRON PRB GEOMETRY	51
8.2	PRB GROUNDWATER RESIDENCE TIME	51
8.3	DESIGN APPROACH	52
8.4	PREDICTION OF IRON PRB PERFORMANCE	54
8.4.	PRB Design Cases Analyzed	54
8.4.2	2 PRB Design Performance Forecast	56
8.5	PROPOSED IRON MANUFACTURER TYPE AND GRADATION	56
8.6	GROUNDWATER WELL SAND PACK SCREEN ANALYSIS	57
9.0	PROPOSED PRB INSTALLATION METHOD	59
9.1	BACKGROUND	59
9.2	ZERO VALENT IRON	59
9.3	EMPLACEMENT METHODS	60
9.3.	Slurry (Biodegradable-BioPolymer) Wall	61
9.3.2	2 Continuous Trenching	62
9.3.	3 Hydrofracturing Technology	63
9.4	SELECTED EMPLACEMENT METHOD TECHNOLOGY	64
9.5	HYDROFRAC PRB DESIGN	64

9.5.1	Overview of the Installation Method	64
9.5.2	HydroFrac PRB Design Issues	67
9.5.3	Crosslinked Gel Rheology and Iron Settling Analysis	67
9.5.4	In Situ Stress State Profile with Depth	69
9.5.5	In Situ Soil Modulus with Depth	70
9.5.6	Hydraulic Fracture Design Analysis	71
10.0 C	AP SYSTEM CONSTRUCTION	73
10.1	CAP SYSTEM	73
10.2	CONSTRUCTION SEQUENCE	75
10.3	CAP SYSTEM TECHNICAL SPECIFICATIONS	75
10.4	CONSTRUCTION QUALITY ASSURANCE MONITORING	75
10.5	CONSTRUCTION QUANTITIES AND COST	76
10.6	CAP SYSTEM FINAL DESIGN AND CONSTRUCTION SCHEDULES	77
10.7	PERFORMANCE MONITORING AND ACTION PLAN	77
10.7.1	Cap System Construction Quality Assurance Plan (CQAP)	
11.0 19	ON REACTIVE PERMEABLE BARRIER SYSTEM CONSTRUCTION	79
11.1	REACTIVE BARRIER SYSTEM	
11.1 11.2	REACTIVE BARRIER SYSTEM	
11.1 11.2 11.2.1	REACTIVE BARRIER SYSTEM CONSTRUCTION SEQUENCE Site Preparation	
11.1 11.2 11.2.1 11.2.2	REACTIVE BARRIER SYSTEM CONSTRUCTION SEQUENCE	
11.1 11.2 11.2.1 11.2.2 11.2.3	REACTIVE BARRIER SYSTEM CONSTRUCTION SEQUENCE Site Preparation Performance Monitoring System Installation Construction Quality Assurance Monitoring	
11.1 11.2 11.2.1 11.2.2 11.2.3 11.3	REACTIVE BARRIER SYSTEM CONSTRUCTION SEQUENCE Site Preparation Performance Monitoring System Installation Construction Quality Assurance Monitoring CONSTRUCTION QUANTITIES AND COST	
11.1 11.2 11.2.1 11.2.2 11.2.3 11.3 11.4	REACTIVE BARRIER SYSTEM CONSTRUCTION SEQUENCE Site Preparation Performance Monitoring System Installation Construction Quality Assurance Monitoring CONSTRUCTION QUANTITIES AND COST. PRB FINAL DESIGN AND CONSTRUCTION SCHEDULES	
11.1 11.2 11.2.1 11.2.2 11.2.3 11.3 11.4 11.5	REACTIVE BARRIER SYSTEM CONSTRUCTION SEQUENCE Site Preparation Performance Monitoring System Installation Construction Quality Assurance Monitoring CONSTRUCTION QUANTITIES AND COST PRB FINAL DESIGN AND CONSTRUCTION SCHEDULES PERFORMANCE MONITORING AND ACTION PLAN	
11.1 11.2 11.2.1 11.2.2 11.2.3 11.3 11.4 11.5 11.5.1	REACTIVE BARRIER SYSTEM CONSTRUCTION SEQUENCE Site Preparation Performance Monitoring System Installation Construction Quality Assurance Monitoring CONSTRUCTION QUANTITIES AND COST PRB FINAL DESIGN AND CONSTRUCTION SCHEDULES PERFORMANCE MONITORING AND ACTION PLAN PRB Construction Quality Assurance Plan (CQAP)	
11.1 11.2 11.2.1 11.2.2 11.2.3 11.3 11.4 11.5 11.5.1 11.5.1 11.5.2	REACTIVE BARRIER SYSTEM CONSTRUCTION SEQUENCE Site Preparation Performance Monitoring System Installation Construction Quality Assurance Monitoring CONSTRUCTION QUANTITIES AND COST PRB FINAL DESIGN AND CONSTRUCTION SCHEDULES PERFORMANCE MONITORING AND ACTION PLAN PRB Construction Quality Assurance Plan (CQAP) Performance Standard Verification Plan (PSVP)	
11.1 11.2 11.2.1 11.2.2 11.2.3 11.3 11.4 11.5 11.5.1 11.5.2 11.5.3	REACTIVE BARRIER SYSTEM CONSTRUCTION SEQUENCE Site Preparation Performance Monitoring System Installation Construction Quality Assurance Monitoring CONSTRUCTION QUANTITIES AND COST PRB FINAL DESIGN AND CONSTRUCTION SCHEDULES PERFORMANCE MONITORING AND ACTION PLAN PRB Construction Quality Assurance Plan (CQAP) Performance Standard Verification Plan (PSVP) Groundwater Monitoring Plan (GWMP)	
11.1 11.2 11.2.1 11.2.2 11.2.3 11.3 11.4 11.5 11.5.1 11.5.2 11.5.3 11.5.4	REACTIVE BARRIER SYSTEM CONSTRUCTION SEQUENCE Site Preparation Performance Monitoring System Installation Construction Quality Assurance Monitoring CONSTRUCTION QUANTITIES AND COST PRB FINAL DESIGN AND CONSTRUCTION SCHEDULES PERFORMANCE MONITORING AND ACTION PLAN PRB Construction Quality Assurance Plan (CQAP) Performance Standard Verification Plan (PSVP) Groundwater Monitoring Plan (GWMP) Health and Safety Plan (HSP)	
11.1 11.2 11.2.1 11.2.2 11.2.3 11.3 11.4 11.5 11.5.1 11.5.2 11.5.3 11.5.4 11.5.5	REACTIVE BARRIER SYSTEM CONSTRUCTION SEQUENCE Site Preparation Performance Monitoring System Installation Construction Quality Assurance Monitoring CONSTRUCTION QUANTITIES AND COST PRB FINAL DESIGN AND CONSTRUCTION SCHEDULES PERFORMANCE MONITORING AND ACTION PLAN PRB Construction Quality Assurance Plan (CQAP) Performance Standard Verification Plan (PSVP) Groundwater Monitoring Plan (GWMP) Health and Safety Plan (HSP) Operation and Maintenance Plan (O&M).	79 80 81 81 82 82 82 83 83 84 84 84 84 84 84 85 86 86
11.1 11.2 11.2.1 11.2.2 11.2.3 11.3 11.4 11.5 11.5.1 11.5.2 11.5.3 11.5.4 11.5.5 11.5.6	REACTIVE BARRIER SYSTEM CONSTRUCTION SEQUENCE Site Preparation Performance Monitoring System Installation Construction Quality Assurance Monitoring CONSTRUCTION QUANTITIES AND COST PRB FINAL DESIGN AND CONSTRUCTION SCHEDULES PERFORMANCE MONITORING AND ACTION PLAN PRB Construction Quality Assurance Plan (CQAP) Performance Standard Verification Plan (PSVP) Groundwater Monitoring Plan (GWMP) Health and Safety Plan (HSP) Operation and Maintenance Plan (O&M) Waste Management Plan (WMP)	79 80 81 81 82 82 82 82 83 83 84 84 84 84 84 85 85 86 86 86 86
11.1 11.2 11.2.1 11.2.2 11.2.3 11.3 11.4 11.5 11.5.1 11.5.2 11.5.3 11.5.4 11.5.5 11.5.6 12.0 St	REACTIVE BARRIER SYSTEM CONSTRUCTION SEQUENCE Site Preparation Performance Monitoring System Installation Construction Quality Assurance Monitoring CONSTRUCTION QUANTITIES AND COST PRB FINAL DESIGN AND CONSTRUCTION SCHEDULES PERFORMANCE MONITORING AND ACTION PLAN PRB Construction Quality Assurance Plan (CQAP) Performance Standard Verification Plan (PSVP) Groundwater Monitoring Plan (GWMP) Health and Safety Plan (HSP) Operation and Maintenance Plan (O&M) Waste Management Plan (WMP)	79 80 81 81 82 82 82 83 83 84 84 84 84 84 84 85 86 86 86 86 86 87

In Order Following Page 92

TABLES

TABLE 1	Installed Iron Permeable Reactive Barriers
TABLE 2	Volatile Organics Summary - Deep Borings May 2000 Sampling Event
TABLE 3	Metals and Cyanide Summary - Deep Borings May 2000 Sampling Event
	E LID C M 2000 D Live Event

- TABLE 4
 Field Parameters Summary May 2000 Sampling Event
- TABLE 5Volatile Organics Summary May 2000 Sampling EventTABLE 6Metals and Cyanide Summary May 2000 Sampling Event
- TABLE 0Interast and Cyanide Summary May 2000 Sampling EventTABLE 7General Chemistry Summary May 2000 Sampling Event
- TABLE 7
 Scheral Chemistry Summary May 2000 Sampling Determinanty

 TABLE 8
 Volatile Organics Summary Direct Push Sampling Event
 - AR301119

- TABLE 9
 Surface Water Field Parameters Summary May 2000 Sampling Event
- TABLE 10
 Metals and Cyanide Summary Surface Water May 2000 Sampling Event
- TABLE 11
 Summary of Soil Grain Size and Resistivity Data
- TABLE 12
 Summary of Soil Hydraulic Conductivity Data
- TABLE 13
 Summary of Cap System Alternatives Infiltration Evaluation and Estimated Construction Costs
- TABLE 14 PRB and Cap System Estimated Construction Costs
- TABLE 15
 PRB and Cap System Final Design and Construction Schedule

FIGURES

- FIGURE 1 Site Location Map
- FIGURE 2 Existing Site Plan
- FIGURE 3 Cross Section A20-E20
- FIGURE 4 Cross Section A4-E4
- FIGURE 5 Cross Section C22-C1
- FIGURE 6 Groundwater Flow Patterns and Shallow Aquifer Extent
- FIGURE 7 Reductive Dehalogenation Pathways PCE, TCE and Daughter Products
- FIGURE 8 Reductive Dehalogenation Pathways 1,1,1-TCA and Daughter Products
- FIGURE 9 Iron Permeable Reactive Barrier Design Methodology
- FIGURE 10 Boring, Direct Push and Monitoring Well Location Map
- FIGURE 11 Surface Water Sampling Locations
- FIGURE 12 Groundwater Monitoring Well Sample Location Map
- FIGURE 13 Groundwater Level Potentiometric Contour Map (May 2000)
- FIGURE 14 TCE Concentration Contour Map (May 2000)
- FIGURE 15 PCE Concentration Contour Map (May 2000)
- FIGURE 16 1,1-DCE Concentration Contour Map (May 200)
- FIGURE 17 Cross Section A-A' Geology and Chemistry
- FIGURE 18 EnviroMetal Process Column Test Apparatus
- FIGURE 19 TCE, PCE and 1,1-DCE Degradation Profiles in Column Test at Steady State Conditions
- FIGURE 20 First Order Reduction by Zero Valent Iron
- FIGURE 21 Iron Reductive Processes for Chloroethenes and Chloroethanes and Daughter Product Generation
- FIGURE 22 PRB Alignment, Impermeable Cap and Monitoring Wells Location Plan
- FIGURE 23 Mean Monthly Precipitation and Temperature Data
- FIGURE 24 Upper Aquifer Groundwater Modeling Region
- FIGURE 25 Infiltration vs. Surface Slope for Different Unsaturated Thickness (Existing Conditions)
- FIGURE 26 Cover System Alternatives A, B, C & D
- FIGURE 27 Regional Groundwater Modeling Grid Hydrogeological Data
- FIGURE 28 Regional Model Groundwater Potentiometric Contours Existing Conditions
- FIGURE 29 Regional Model Groundwater Potentiometric Contours with Cap System
- FIGURE 30 Impact of Cap System on PRB Design Groundwater Flow Gradients
- FIGURE 31 Cap System Final Grades
- FIGURE 32 Cap System Internal Drainage Grades
- FIGURE 33 Cap System Cross Section B-B' and Details

- FIGURE 34 Cap System Details
- FIGURE 35 Existing Surface Water Management
- FIGURE 36 Cap System Surface Water Management Plan
- FIGURE 37 PRB Plan View Location
- FIGURE 38 Permeable Reactive Barrier Cross Section C-C' Geology and Chemistry
- FIGURE 39 Design Methodology for PRB System and Natural Attenuation
- FIGURE 40 Assumptions Design Cases I and II
- FIGURE 41 Assumptions Design Cases III and IV
- FIGURE 42 PRB Case I Design Output Data
- FIGURE 43 PRB Case II Design Output Data
- FIGURE 44 PRB Case III Design Output Data
- FIGURE 45 PRB Case IV Design Output Data
- FIGURE 46 PRB Downgradient TCE Remnant Plume Degradation Profiles
- FIGURE 47 Vertically Orientated Hydraulic Fracture Placed Iron Permeable Reactive Barrier
- FIGURE 48 Flow Diagram HydroFrac Instrumentation Layout Plan and Details
- FIGURE 49 Hydraulic Fracture Mapping by Electrical Active Resistivity
- FIGURE 50 Typical Hydraulic Pulse Interference Test Data for Site Characterization
- FIGURE 51 In-Situ Effective Stresses and Young's Modulus vs Depth Profile along PRB Alignment
- FIGURE 52 Hydraulic Fracture Fluid and Proppant Transport
- FIGURE 53 Permeable Reactive Barrier (PRB) Location Plan
- FIGURE 54 Hydrofracturing Well Plan and Installation Detail
- FIGURE 55 Performance Monitoring and Action Plan for the PRB Groundwater Remedy

APPENDICES

- APPENDIX A Iron Permeable Reactive Barrier Laboratory Tests
 - A-1 Soil Grain Size, Atterberg Limits, Specific Gravity, Permeability, Compaction and Resistivity Tests
 - A-2 Iron Filings Grain Size, Specific Gravity and Permeameter Tests
 - A-3 Leak Off Tests
 - A-4 Micro-Head Permeameter and TOC Tests
 - A-5 Fracture Fluid Resistivity Tests
 - A-6 Fracture Fluid Viscosity Tests
 - A-7 Iron Filings Grain Size Specification and Mineralogical Analysis
 - A-8 Iron Filings pH Activity Tests
 - •

APPENDIX B – Boring and Well Installation Logs

- B-1 Boring Logs
- B-2 Well Installation Log
- B-3 Monitoring Well Water Level and Sampling Data
- B-4 Soil Boring and CPT Soil Interpretation Correlation Data
- B-5 Investigation Derived Waste Characterization Laboratory Data
- APPENDIX C Groundwater VOC Degradation in Iron Reactivity Column Test

APPENDIX D – Infiltration Analysis HELP Modeling Simulations

ŕ

- D-1 Existing Conditions
- D-2 Cap System Alternatives A, B, C & D
- APPENDIX E Internal Drain and Surface Water Management Ditch and Culvert Design Calculations and TR-55 Simulations
- APPENDIX F PRB Design Input and Probabilistic and Natural Attenuation Model Data
 - F-1 PRB Input Probabilistic Distribution Design Cases I through III
 - F-2 1D Fate and Transport Transient Analysis of Remnant Plume
- APPENDIX G Cap System Construction Quality Assurance Plan (CQAP) and Construction Drawings
 - G-1 Cap System Construction Quality Assurance Plan (CQAP)
 - G-2 Cap System Construction Drawings
- APPENDIX H PRB Construction Quality Assurance Plan (CQAP) and Construction Drawings
 - H-1 PRB Construction Quality Assurance Plan (CQAP)
 - H-2 PRB Construction Drawings
- APPENDIX I Performance Standard Verification Plan (PSVP)
- APPENDIX J Groundwater Monitoring Plan (GWMP)
- APPENDIX K Contingency Plan (CP)
- APPENDIX L Health and Safety Plan (HSP)
- APPENDIX M Operation and Maintenance Plan (O&M)

APPENDIX N – Quality Assurance Project Plan (QAPP)

APPENDIX O – Waste Management Plan (WMP)

¥

+

EXECUTIVE SUMMARY

The design, performance monitoring and remedial action work plan activities are detailed in this report for the construction of an iron Permeable Reactive Barrier (PRB) and an impermeable surface Cap System at the Former Arrowhead Plating Facility Superfund Site. The objective of the PRB and Cap System is to degrade VOC contaminants in the Site groundwater to non-toxic end products.

The PRB is proposed to be constructed by the azimuth controlled vertical hydrofracturing technology, be approximately 1200' in length, orientated approximately perpendicular to the groundwater flow regime, 3" to 4-1/2" in average iron-effective-thickness and extend from a depth of 15' down to a total depth of 42' to the underlying aquitard. The PRB is considered to have sufficient longevity and effectiveness at the Site for at least a minimum of ten (10) to fifteen (15) years. The Cap System is proposed to cover four and one half (4-1/2) acres and limit infiltration of rainfall into the subsurface and enhance the PRB performance by reducing the flux of groundwater VOC contaminants entering the PRB system. The iron PRB and Cap System is considered to be the most cost-effective remedy for the groundwater (OU-2).

The PRB and Cap System design methodology involved detailing functional design requirements and design criteria for the reactive barrier and impermeable surface cap. The Cap System design utilized a Site-wide groundwater model of the upper aquifer to predict Cap performance and in particular the reduction in groundwater hydraulic gradients across the proposed PRB alignment. The PRB design utilized a multi-specie VOC probabilistic model to quantify the overall reactive barrier system performance and the impact of system parameters on the barrier performance based on their expected variability. The system parameters consist of Site hydraulic conductivity, hydraulic gradients, barrier thickness and porosity, VOC compound degradation half lives. VOC daughter product generation and influent VOC concentrations. The probabilistic analyses quantified the sensitivity of the overall system performance to each system input parameter.

This design report details the Construction Drawings and Technical Specifications for the construction of the iron PRB and impermeable Cap System. The report also details the installation, instrumentation and monitoring requirements to ensure the reactive barrier and Cap System are constructed as planned and function as expected. Quality assurance functions and procedures are presented in the report for the installation and performance monitoring of the PRB and Cap System.

The design and remedial action work plan activities involved the development of various plans and procedures as outlined in the following plans included in this report.

- **Construction** Quality Assurance Plan;
- Performance Standard Verification Plan:
- Groundwater Monitoring Plan;
- **Contingency** Plan;
- Health and Safety Plan;
- Operation and Maintenance Plan;
- Quality Assurance Project Plan; and
- □ Waste Management Plan.

1.0 INTRODUCTION

Golder Sierra LLC (Golder) was retained by Saltire Industrial, Inc. (Saltire) to design an in-situ iron permeable reactive barrier system (PRB) and surface impermeable Cap System to be constructed at the former Arrowhead Plating facility (the Site), located in Montross, Virginia, as shown on Figure 1. The design of the PRB is being performed in accordance with the April 11, 2000 PRB Remedial Design Work Plan (RDWP). The proposed full scale PRB is 1,165ft in length, installed from a depth of 15 ft below ground surface (bgs) to a total depth of 40-ft bgs and the proposed Cap System covers an area of approximately four and one half (4-1/2) acres. The proposed location of the PRB is along a portion of the property boundary of the Site and the Cap System covers the northeastern portion of the Site, as shown on Figure 2.

The objective of the final design is to develop a permeable reactive barrier and Cap System that will significantly reduce the levels of volatile organic compounds (VOCs) and metals encountered in the groundwater. In general, the design of the PRB and Cap System involved the following:

- Review of geotechnical, hydrogeological and groundwater chemistry data for the Site collected during previous investigation and the additional data collected during the PRB Pre-Design Field Investigation Program;
- □ Iron reactivity column testing for quantifying VOC degradation rates in the Site groundwater and also to address any precipitation or clogging issues of the iron filings proposed for the PRB;
- Geotechnical and specialized PRB testing of the Site soils and the proposed iron filings;
- Detailed site survey for topography and surface water drainage patterns;
- **Identifying existing site features and structures;**
- **C** Review of climate data (precipitation, temperature, etc);
- Design of the Cap System utilizing the infiltration (HELP) model and a site wide regional groundwater model;
- Design of the PRB utilizing a probabilistic model for predicting effluent concentrations of VOCs in the groundwater emanating from the PRB;
- Evaluation of PRB construction methods suitable for the Site;

- Preparation of construction drawings and specifications for installation and construction of the PRB and Cap System; and
- Preparation of construction schedule and cost estimates for construction of the PRB and Cap System.

The following subcontractors were retained by Golder to provide services during PRB pre-design field investigation program, installation of the new monitoring well, shallow and deep soil borings, direct push groundwater sampling, site wide surface and groundwater sampling and investigation derived waste management activities:

- Drilling and groundwater monitoring well installation services were provided by Chesapeake Geosystems, Inc. of Baltimore, Maryland;
- Surveying services were provided by Baldwin and Gregg, Ltd. of Norfolk, Virginia;
- Groundwater and investigation derived waste (IDW) characterization analytical laboratory services were provided by Accutest Laboratories of Dayton. New Jersey;
- Groundwater analytical data validation services were provided by TechLaw, Inc. of Lakewood, Colorado;
- □ Investigation derived waste temporary storage services (roll-off containers) transportation and disposal were provided by Clean Harbors Environmental Services, Inc. of Colonial Heights, Virginia under agreement with Saltire Industrial, Inc.; and
- □ Iron column bench scale testing services were provided by EnviroMetal Technologies Inc. (ETI) of Waterloo, Ontario, Canada.

This report is divided into the following sections:

- Section 1 provides an introduction to the report, objectives and background information:
- Section 2 provides a brief description of the Site;
- Section 3 provides a summary of the selected remedy including a background of the iron PRB systems technology, reactivity of zero valent iron, iron emplacement methods, and the design requirements and criteria for the system;
- Section 4 discusses the PRB pre-design field investigation including groundwater and surface water sampling, deep boring investigation, and direct push sampling;
- Section 5 presents the results of the iron column bench scale treatability study conducted to quantify VOC degradation in the Site groundwater in the presence of iron;

- Section 6 presents the geotechnical and specialized PRB laboratory tests conducted on the Site soils and various grades of iron filings and gels. This section provides the methodology used for the laboratory testing and interpretation of the test results;
- Section 7 presents the Cap System design. This section describes the design components, the design approach, and the expected Cap System performance and impact on the PRB Design;
- Section 8 presents the iron PRB design. This section describes the design components, the design approach, and the expected PRB performance;
- Section 9 describes the proposed PRB installation method;
- Section 10 details the construction of the Cap System including site preparation, construction drawings, technical specifications, construction quality assurance, construction sequence schedule, construction quantities and cost and surface water management, Cap System maintenance and cost;
- Section 11 details the construction of the PRB including site preparation, construction drawings and technical specifications, performance monitoring system installation, construction quality assurance and monitoring, construction sequence schedule, construction quantities and cost; and
- Section 12 presents the summary and conclusions of the final PRB and Cap System design.

These sections are supported by tables and figures, which summarize laboratory data from analytical and geotechnical tests, illustrate geologic and hydrogeologic interpretations from earlier field investigations, and depict the PRB and Cap System design. Supporting geotechnical, contaminant degradation and analytical information is included in the appendices and the following plans and construction details are included in the following appendices.

Description	<u>Appendix</u>
CQAP(Construction Quality Assurance Plan) Cap System, Including Technical Specifications	G-1
Cap System Construction Drawings	G-2
CQAP ~ PRB System, Including Technical Specifications	н-1
PRB Construction Drawings	H-2
PSVP (Performance Standard Verification Plan)	I
GWMP (Groundwater Monitoring Plan)	J
CP (Contingency Plan)	К

April 2001	- 4 -	99
Description	<u>Appendix</u>	
HSP (Health and Safety Plan)	L	
O & M (Operation & Maintenance Plan)	М	
QAPP (Quality Assurance Project Plan)	N	
WMP (Waste Management Plan)	0	

•

.

1

2.0 BRIEF DESCRIPTION OF SITE

2.1 Site Background

The Site is located on a 30-acre parcel in a rural area, two miles southeast of Montross, Westmoreland County, Virginia, as shown on Figure 1 and the Site plan is presented on Figure 2. Industrial activities at the Site have been carried out since 1966. These activities included electroplating cosmetic cases, filling cases with cosmetics, and fabrication of automobile wire harnesses. Electroplating wastes were treated at the Site in a settling pond system and discharged to Scates Branch in accordance with a National Pollutant Discharge Elimination System (NPDES) permit. In general, the topography at the Site is relatively flat. The Site is located on a topographic high with a maximum elevation of 150 feet mean sea level (msł).

Studies conducted at the Site indicated groundwater contaminated with volatile organic constituents (VOCs) and limited soil contamination with VOCs, metals, and cyanide. Remedial actions were initiated in 1986 and included several phases of drum, soil, and sludge removal and backfilling, grading, and revegetation of the former ponds.

In 1989, the United States Environmental Protection Agency (USEPA) entered into an Administrative Order on Consent that required Saltire (formerly Scovill, Inc.) to conduct Remedial Investigation (RI) and Feasibility Studies (FS) at the Site. Following the completion of the RI/FS by ICF Kaiser, a Record of Decision (ROD) was issued by the USEPA on September 30, 1991. The ROD required the implementation of an in-situ vacuum extraction of VOC contaminated soils, and implementation of a groundwater pump-and-treat system. Based on additional work conducted at the Site, Saltire demonstrated that the pump-and-treat system could be replaced by a PRB with an equal or better effectiveness in treating contaminated groundwater. In September 1998, the USEPA issued an Explanation of Significant Differences (ESD) approving the PRB as the select remedy for the Operable Unit 2 (OU2) – Groundwater. Based on the ESD, a RDWP for the PRB was submitted to the USEPA by ICF Kaiser on December 18, 1998. The December 18, 1998 RDWP for the PRB was revised by Golder and submitted final to USEPA and VDEQ on April 11, 2000.

ŕ

AR301129

2.2 Surface Site Characterization

The Site is located within the northern neck of the Coastal Plain Physiographic Province of Virginia. The surface topography of the Coastal Plain is characterized by gently rolling to relatively flat relief. Natural surface drainage is conducted through radial and trellis drainage networks, which in turn discharge to the southeast flowing tidal rivers of the Chesapeake Bay.

In general, the topography over much of the Site is relatively flat but steepens considerably near surface water drainage features. The Site is located on a topographic high with a maximum elevation of 150 feet mean sea level (msl). The surface water drainage pattern is radial from the Site area, however, the main drainage occurs to the northeast to Scates Branch, which, in turn, discharges into Weavers Millpond. Groundwater flow directions generally parallel that of surface water, with recharge generated in the higher elevations, and discharge along streams at lower elevations. In turn, drainage divides often coincide with groundwater divides.

2.3 Subsurface Site Characterization

Groundwater flow directions generally parallel that of surface water, with recharge generated in the higher elevations, and discharge along streams at lower elevations. In turn, drainage divides often coincide with groundwater divides. Public and private wells within the area tap groundwater for potable and industrial use.

Regionally, the subsurface geology is comprised of gently eastward-dipping interbedded sands, silts and clays. These sediments form a seaward dipping wedge that was deposited on more competent basement rocks. The sands, silts and clays were deposited in a gradually retreating shallow marine to open marine environment. These sediments have been classified into three main stratigraphic regional groups (in increasing depth and age): Chesapeake, Pamunkey and Potomac. Within each group, interbedded sand, silt and clay formations have been recognized and have been regionally correlated. These sediments comprise regional aquifers and confining units, and have been further subdivided into hydrostratigraphic units.

The sediments of the Chesapeake Group directly underlie the Site, and the uppermost unconfined aquifer is contained within these sediments. The interbedded upper sands, silts and clays that

comprise the Yorktown/Eastover unconfined aquifer unit reach a maximum thickness of 40 feet beneath the Site. Underlying the upper aquifer, clays and silts that comprise the St. Mary's confining unit have an approximate thickness of at least 70 feet. This confining unit is regional in extent and separates the upper aquifer from the underlying confined aquifers contained within the lower (and much deeper) Pamunkey and Potomac Groups. Regional hydrogeologic studies have shown that a downward vertical gradient exists between the upper aquifer and the next lower confined aquifer (Chickahominy-Piney Point aquifer of the Pamunkey Group). The silt and clay of the St. Mary's create a relatively impermeable hydrogeologic barrier, preventing the downward vertical flow of groundwater.

The Site lies just to the northeast of a local topographic high, running northwest-southeast, which acts as a surface water divide, as well as an upper aquifer groundwater divide. Locally, both groundwater and surface water flow to the northeast and southwest of this divide. Horizontal groundwater flow within the upper aquifer immediately beneath the Site is generally to the northeast, where it discharges to tributaries of the northeast-flowing Scates Branch. This stream discharges into Weavers Millpond, which discharges to the east-flowing Pierce Creek, which discharges into Nomini Bay, a tidal estuary of the southeast-flowing Potomac River.

Geologic cross sections have been constructed to illustrate the general geology of the Site. Figure 2 presents the lines of geologic sections and Figures 3, 4 and 5 provide geological cross sections of the Site. Local drainage channels define the lateral extent of the water table aquifer. A rough approximation of the extent of this unit can be drawn on a topographic map where the 100-ft msl contour represents the approximation of the extent of the shallow aquifer. Figure 6 illustrates this relationship between elevation and water table aquifer extent. This figure also depicts the highest areas (above 150 ft msl) of the Site and also illustrates the implied radial groundwater flow from these higher areas toward surface water drainage channels.

The saturated interbedded sands and silts of the upper aquifer have measured hydraulic conductivities, ranging from approximately 1.0×10^{-3} centimeters per second (cm/sec) to 1.0×10^{-5} cm/sec. This variability in hydraulic conductivity is due to the heterogeneous nature of the thin interbedded fine sands, silts and clays comprising the upper aquifer. The measured vertical hydraulic conductivity of the confining unit beneath the upper aquifer was less than 1.0×10^{-5} cm/sec, as measured in laboratory permeameter tests conducted on Shelby tube samples. The vertical hydraulic conductivity of the confining unit as measured from these two (2) laboratory

tests was $1.7 \ge 10^{-6}$ cm/sec and $0.9 \ge 10^{-6}$ cm/sec, ICF Kaiser (1997). Horizontal hydraulic gradients within the upper aquifer are variable ranging from approximately 0.05 feet/foot to 0.003 feet/foot and are primarily controlled by surface topography.

The prime compounds of concern at the Site include VOCs, metals and cyanide.¹ The primary VOCs include: benzene, tetrachloroethene (PCE), trichloroethene (TCE), toluene and total xylenes. Other VOCs of concern include: 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethene, 1,2-dichloroethene (total), 1,1-dichloroethane, acetone, 2-butanone, methylene chloride, carbon disulfide, chloroform (TCM), chloroethane, 1,2-dichloroethane, 1,1,2-trichloroethane, ethylbenzene, vinyl chloride (VC) and 4-methyl-2-pentanone. Groundwater concentration maps indicate that the main VOC migration pathway is to the northeast from the on-site potential source area towards the headwaters of Scates Branch and the Middle Fork of Scates Branch.

4

f

۶

¹Cyanide and metals are also present at similar concentrations in background samples.

3.0 SUMMARY OF SELECTED REMEDY

Saltire and the USEPA have agreed to implement an alternative remedy for groundwater at the Arrowhead Plating Site. The major components of the newly selected groundwater remedy are described in the ESD and consist of:

- □ A PRB to transform dissolved VOCs into non-toxic products before groundwater discharges into the tributaries of Scates Branch;
- A surface impermeable Cap System to limit the surface water infiltration into the subsurface immediately up gradient of the PRB;
- Implementation of an environmental monitoring plan to evaluate the effectiveness of the RA and to ensure the protection of environmental receptors in Scates Branch; and
- □ Implementation of appropriate institutional control measures, if needed, prohibiting the use of contaminated surficial groundwater to ensure protection of human health and the environment.

This section summarizes the selected remedy, process description of the zero valent iron technology and the design requirements and criteria for the system.

3.1 Iron Reactive Permeable Barriers

3.1.1 Background

In situ passive iron reactive permeable barriers have been placed at a number of sites, dating back to the first constructed at CFB Borden in 1991 by the University of Waterloo. The early iron reactive barriers had been designed on the funnel and gate concept, Starr and Cherry (1994). Recently continuous permeable barriers have been installed by backhoe, continuous trenchers and azimuth controlled vertical hydrofracturing. The continuous permeable barriers do not modify the natural groundwater flow; whereas funnel and gate systems do impact the natural groundwater flow.

Iron reactive permeable barriers have significant advantages over conventional technologies for remediation of chlorinated solvent contaminated groundwater, with the prime advantage being that the system is passive. It is a simple process that has been proven both in the laboratory and the field. Site characterization and laboratory bench scale studies are sufficient to design and construct an iron reactive barrier. The number of iron reactive permeable barriers installed to

date is detailed in Table 1. The first reactive barrier was constructed in 1991 as a field trial, followed by two in early '95, and during the past five years a significant number of full scale and pilot systems have been installed. The rapid increase in the number of reactive barriers installed reflects the increasing maturity and acceptance of the zero valent iron technology.

3.1.2 Zero Valent Iron

Zero valent metals have been known to abiotic degrade certain compounds; such as, pesticides as described by Sweeny and Fisher (1972), and halogenated compounds such as TCE, tetrachloroethene (PCE), vinyl chloride (VC) and isomers of dichloroethene (DCE) as detailed in Gillham and O'Hannesin (1994). In the case of zero valent iron, a first order reduction process can approximate the abiotic degradation of halogenated aliphatics. The compounds are progressively degraded and eventually broken down into ethanes and ethenes, as described by Orth and Gillham (1996) and shown as reductive dehalogenation pathways on Figures 7 and 8. In the presence of iron, the chlorinated compound, TCE, is predominantly degraded through the chloroacetylene pathway with only a minor generation of daughter product c-DCE. Therefore the reductive process in the presence of iron generates significantly less daughter products than those generated due to natural degradation. In column experiments, the mol fraction of TCE degraded into chlorinated daughter products such as c-DCE and VC is typically less than 5 -10%, Gillham and O'Hannesin (1994). Five (5) year performance data of the Borden iron reactive barrier has indicated no decline in degradation performance over time, minimal precipitation, and expectations that the reactive barrier will continue performing satisfactory for at least another five years, Gillham and O'Hannesin (1998).

3.1.3 Emplacement Methods

The placement of iron filings in the subsurface for passive in situ treatment of contaminated groundwater was first discussed by Gillham (1993). The mode of placing the iron filings has been by conventional technologies such as shoring and excavation, trenching and during the past five (5) years by azimuth controlled vertical hydrofracturing. Seven alternate emplacement techniques were considered for the construction of the PRB at the Site including a) slurry wall, b) trenching, c) braced excavation, d) jet grouting, e) hydrofracturing technology. f) driven/vibrated beam and g) soil mixing.

AR301133

.

The selection of the most appropriate emplacement technology at the Site is to be based on the following: 1) minimal impact to the natural groundwater flow regimes, 2) proven technology (maturity of the technology and previous installation of iron reactive systems), 3) minimal impact on the lower confining layers, 4) minimal excavation and disturbance (aerial extent of the impact, noise, volumes of excavated materials, etc.), and finally 5) cost.

3.2 Applicable or Relevant and Appropriate Requirements (ARARs)

This section lists the ARARs that are required during implementation of the Remedial Action. The system must be designed to ensure compliance with these and all other applicable ARARs.

3.2.1 Compliance with ARARs

The PRB and Cap System must comply with all pertinent chemical and action-specific ARARs. The chemical and action-specific ARARs applicable to the PRB and Cap System include the following rules and regulations:

- OSHA All field activities will be performed in accordance with health and safety regulations governing construction and other activities and activities at hazardous waste sites;
- RCRA The remedial activities will be performed in compliance with all applicable provisions of RCRA, which include RCRA Generator Standards and Transportation Standards for transportation and off-site disposal of hazardous wastes; RCRA Treatment Standards for on-site disposal of hazardous wastes, including treatment to meet land disposal restrictions; and RCRA landfill Standards for design and construction of landfills;
- □ Clean Air Act The remedial activities will be performed in compliance with all applicable provisions of the Clean Air Act, and its amendments;
- □ Virginia Environmental Quality Act The Virginia Environmental Quality Act empowers the VADEQ to establish regulations and programs similar to the federal Resource Conservation and Recovery Act and Clean Air Act. The remedial activities will be performed in compliance with all applicable provisions of the Virginia Environmental Quality Act; and
- □ City of Montross Ordinances The fencing and any temporary buildings will comply with applicable building and fire codes.

The PRB and Cap System will comply with the following specific ARARs:

- Comprehensive Environmental Response, Compensation and Liability Act (CERCLA);
- Hazardous Waste Regulations, 9 VAC 20-60-12 to 1505;
- Regulations Governing the Transportation of Hazardous Materials, 9 VAC 20-110-10 to 130;
- Virginia Waste Management Regulations, Va. Code Ann. §§ 10.1-1400 to 1457 (1998);
- □ Solid Waste Management Regulations, 9 VAC 20-80-10 to 790;
- Ambient Air Quality Standards, 9 VAC 5-30-10 to 80;
- Standards of Performance for Visible Emissions and Fugitive Dust/Emissions [Rule 5-1]
 9 VAC 5-50-60 to 120;
- □ Standards of Performance for Toxic Pollutants [Rule 5-3], 9 VAC 5-50-160 to 230;
- Environmental Protection Agency National Emission Standards for Hazardous Air Pollutants (Rule 6-1), 9 VAC 5-60-60 to 80;
- Erosion and Sediment Control Law, Va. Code Ann. §§ 10.1-560 to 571 (1998); and
- Erosion and Sediment Control Regulations, 4 VAC 50-30-10 to 110.

The PRB and Cap System will also comply with the following location specific ARARs:

- Chesapeake Bay Preservation Act, Va. Code Ann. §§ 10.1-2100 to 2116;
- Chesapeake Bay Preservation Area Designation and Management Regulations, 9 VAC 10-20-10 to 280;
- □ Virginia Natural Areas Preserves Act, Va. Code Ann. §§ 10.1-209 to 217 (1998);
- □ Endangered Species, Va. Code Ann. §§ 29.1-563 to 570 (1998);
- Department of Game and Inland Fisheries. Definitions and Miscellaneous in General, 4 VAC 15-20-130 to 140;
- □ Endangered Plant and Insect Species Act, Va. Code Ann. §§ 3.1-1020 to 1030 (1998);
- Rules and Regulations for the Enforcement of the Endangered Plant and Insect Species Act, 2 VAC 5-320-10;
- □ Virginia Wetlands Act, Code of Virginia-62.1-13.1 et seq.;
- □ Virginia Wetlands Regulations VR 450-01-0051;

- Clean Water Act-404;
- □ State Water Control Law, Code of Virginia-621-44.2 et seq.; 33 CFR 323.2(c) and 323.2(e):
- □ Water Quality Standard, 9 VAC 25-260-5 to 550;
- □ Virginia Water Protection Permit Regulation, 9 VAC 25-210-10 to 260;
- General Provisions Relating to Marine Resources Commission, Va. Code Ann. §§ 28.2-1300 to 1320 (1998);
- U Wetlands Mitigation compensation Policy, VAC 20-390-10 to 50;
- Execution Order 11988. Protection of Floodplains 40 C.F.R. 6, Appendix A;
- Executive Order 11990, Protection of Wetlands, C.F.R. 5, Appendix A; and
- Procedures for Implementing the Requirements of the Council on Environmental Quality on the National Environmental Policy Act, 40 C.F.R. 6, Appendix A.

3.2.2 Real Estate, Easement and Permit Requirements

Two other important aspects of the remedial design process will involve obtaining the appropriate permits for the system (if needed) and access agreements with current property owners. As provided in Section V, Subpart D of the Consent Decree issued for the Arrowhead property and in Section 121(e) of CERCLA, 42 U.S.C.S 9621(e), and 40 C.F.R.S 300.430(e), no permits will be required for any portion of work described in the RDWP for the PRB and Cap System that will be constructed on-site. However, as stated in the Consent Decree, the work conducted on-site "...shall meet the substantive requirements of any applicable or relevant and appropriate requirement subject to the EPA's right of review and approval." Federal, state, or local permits or approvals must be obtained for off-site work when required. A portion of the PRB will be installed on neighboring properties and will require access and permit approvals as detailed in Appendix D of the RDWP (Golder 2000a). Access agreements, permitting, and compliance requirements pertinent to the implementation of the remedial activities are identified in this Appendix of the Remedial Design Work Plan (RDWP). These agreements and authorizations are needed to install and operate a remediation system on the Arrowhead and neighboring property. The Cap System will involve restrictions on land use not covered in the earlier reference appendix. Restrictive land use agreement with the current property owner and tenants will be required.

.

3.2.3 Design Requirements and Criteria

The PRB must be designed to significantly reduce the levels of VOCs in the groundwater. The overall design methodology for the PRB is illustrated as a flow diagram on Figure 9. The design methodology considers all Site-specific data, defines functional design requirements and design criteria for the system and determines the most appropriate system design by use of a probabilistic forecast model of barrier performance. The PRB must be designed to meet the following functional design requirements and criteria:

- □ The PRB design must consider geotechnical, hydrogeologic, and groundwater chemistry data collected during previous investigations of the Site;
- The PRB design must consider the use of commercially available zero valent iron filings and the selected emplacement technique;
- □ The PRB design must accommodate the variability of the Site data, iron reactivity column test data, and installed PRB thickness;
- □ The PRB must be designed for target VOC parent and daughter product VOC compounds to have effluent concentrations below their MCLs;
- The PRB must be designed to ensure any downgradient remnant plume VOC compounds are lowered over time to below their MCLs;
- □ The PRB must be designed so that construction quality assurance and quality control procedures can be implemented during construction; and
- □ The PRB must be designed with a proper monitoring system to evaluate its performance based on the ability of the system to reduce VOC groundwater concentrations.

The Cap System is an integral part of the overall PRB design and a Cap System properly designed will significantly enhance the performance of the PRB. The Cap System must be designed to minimize infiltration of precipitation into the subsurface and to the groundwater. Minimizing the precipitation infiltration rates within the Site will modify the groundwater flow regime/flow gradients within the Site and thus reduce the groundwater flux passing through the PRB. The lower groundwater flow gradients through the PRB will enable a greater reduction of VOC's in the PRB for a lesser amount of zero valent iron filings (effective thickness) required for PRB construction. The Cap System must be designed to meet the following design requirements and criteria:

- □ The design must consider geotechnical and hydrogeologic data collected during previous investigations of the Site;
- □ The design must consider weather data (precipitation, temperature, etc) applicable to the Site for Cap System design;
- □ The design must consider existing Site ground surface topography and structures and surface water drainage patterns;
- **I** The design must consider the impact of Cap System on future land use;
- □ The design must consider Cap System maintenance (vegetation and drainage) and contingencies plan;
- The design must consider construction schedule including coordination with the property owners for the abandonment of the existing sewer lagoons and associated monitoring wells;
- □ The design must consider at least three (3) Cap System configurations suitable for the Site;
- □ The selected Cap System should be designed to have a significant reduction (1/5 to 1/10 of the average annual infiltration rates);
- □ The Cap System must be designed so that construction quality assurance and quality control procedures can be implemented during construction;
- □ The Cap System must be designed with proper surface water management, maintenance (vegetation & drainage) and contingency plans; and
- ☐ The vegetative cover of the Cap System must stabilize the cover soils, provide a low maintenance, long-term plant community, provide a structurally diverse grassland habitat for birds and other wildlife and use native plant species whose seeds are available commercially.

AR301138

ŧ,

4.0 **PRE-DESIGN FIELD INVESTIGATION**

A pre-design field investigation was conducted during April 28 and May 23, 2000 in accordance with the April 11, 2000 PRB Remedial Design Work Plan (Golder 2000a). The following activities were performed:

- Collected groundwater from monitoring well MW33 for iron column bench-scale and soil resistivity testing;
- □ Installed monitoring well MW37 located near CPT D22 to provide monitoring of groundwater across Route 3 located on the groundwater divide;
- □ Collected groundwater samples from 25 existing wells and the new well MW37 for VOCs, metals, and general chemistry analysis;
- □ Collected soil samples and characterized the soil from four (4) geotechnical borings near CPT locations C10, D10, E10 and F12 for correlation with CPT data, and evaluation of site soils geotechnical properties for design of the PRB;
- □ Collected groundwater samples from four (4) depths at each of four (4) direct push locations, located near CPT points C10, D10, E10 and F12, for characterization of the groundwater contamination;
- □ Collected soil samples from two deep environmental soil borings, one near SBD1 and the other near CPT C6 to evaluate potential groundwater contamination;
- Collected an additional round of surface water samples at 11 pre-determined locations and one additional location identified at the time of sampling for inorganic analysis;
- Connected the Site with the Virginia State Plane Coordinate System for Survey Control; and
- Conducted a detailed topographical survey on the northeastern portion of the Site and surface water drainage patterns. Site data on storm water drainage were also collected from the current leasee of the property.

The pre-design boring investigation, direct push and monitoring wells installation locations are shown on Figure 10. Surface water sampling locations are shown on Figure 11. Groundwater monitoring wells sampling locations are shown on Figure 12. Golder personnel provided sampling services and oversight during the investigation. Drilling services were provided by Chesapeake Geosystems, Inc. of Baltimore, Maryland. Baldwin and Gregg, Ltd. of Norfolk, Virginia, provided surveying services. Accutest Laboratories of Dayton, New Jersey provided analytical testing services. TechLaw, Inc. of Lakewood, Colorado provided third-party validation of the analytical results. Data validation reports are contained in the May 2000 Sampling Event Data Validation Report (Golder 2000b). Geotechnical and PRB specialized laboratory testing was performed in Golder's laboratory in Atlanta, Georgia. Geotechnical and specialized PRB laboratory results are detailed in Appendix A. Boring and well installation logs are contained in Appendix B.

4.1 Monitoring Well Installation

Monitoring well MW37, shown on Figures 10 and 12, was installed near CPT D22 to provide additional piezometric data and allow long-term monitoring of groundwater VOCs across Route 3 located on the groundwater divide. The boring and installation logs are contained in Appendix B. Monitoring well MW37 was developed until pH, conductivity, and temperature reading stabilized to within ± 0.1 standard units, $\pm 10\%$ and ± 0.5 °C, respectively, and the turbidity was less than 10 NTU.

Monitoring well MW37 was surveyed to establish coordinates and elevations using the Virginia State Coordinate System. The survey data are shown on the boring and well installation logs are contained in Appendix B.

4.2 Deep Borings

Two deep borings SBD2 and SBD3 were drilled near SBD1 and CPT C6, respectively to confirm the absence of groundwater contamination within the lower aquitard. In order to minimize the potential of cross contamination between the upper aquifer and the lower aquitard, the upper 55 ft of the deep borings were cased with 8-inch steel welded casing grouted in place with 95% Portland cement/5% bentonite grout. The upper 55 ft of the deep borings were advanced using 12" roller bit mud rotary drilling techniques. The lower part of the deep borings were drilled using 3 ¼" hollow-stem augers through the steel casing from 55 ft to 111 ft bgs.

Continuous split-spoon sampling was conducted from 55 ft to 111 ft bgs for both borings. Soil samples were monitored using an organic vapor survey instrument with a photo ionization detector (PID). The PID readings were recorded on the boring logs found in Appendix B. The soils were classified according to the United Soils Classification System (USCS).

No water bearing zones (i.e. soils with a permeability greater than $1 \ge 10^{-3}$ cm/sec) were encountered at either boring location. Samples were collected at 8-foot intervals between 55 ft and 111 ft bgs. After each split-spoon was opened, eight (8) to twelve (12) grams of soil was

collected using a disposable syringe provided by the laboratory and immediately transferred into a methanol preserved 60-ml vial. The samples were cooled to 4 °C.

Three (3) samples from each boring were selected for analytical laboratory analysis based on sample location and PID readings. The samples were tested for VOCs, metals, and cyanide. The summary of analytical results is shown on Tables 2 and 3. The analytical test results confirmed the absence of groundwater contamination within the aquitard. The only compound detected (methylene chloride) in one of the samples from SBD-3 may have been associated with laboratory contamination (see data validation report in the May 2000 Sampling Event Data Validation Report, Golder 2000b). Two samples from each boring were selected for grain size analysis and the results are presented in Appendix A. The samples had at least 25% passing the #200 sieve. Laboratory flexible wall permeameter tests were performed on two remolded samples collected from the aquitard and hydraulic conductivities quantified from these tests were 1.7×10^{-7} cm/sec and 7.5 x 10^{-8} cm/sec for samples SBD2 (59.0-61.0'bgs) and SBD3 (105.7-107.0'bgs) as detailed in Appendix A.

4.3 Shallow Borings

Four (4) shallow borings, SBS13, SBS10, SBS11 and SBS12, were drilled near CPT locations C10, D10, E10, and F12, respectively to confirm lithologic interpretation of the CPT data from previous investigations performed by ICF Kaiser (1997). The boring logs are presented in Appendix B as well as comparison of CPT and visual soil classification soil descriptions. Geotechnical laboratory testing was conducted to confirm field visual soil classification, and the results from these tests are contained in Appendix A.

4.4 Groundwater Sampling

Groundwater samples were collected from twenty six (26) monitoring wells and four (4) direct push locations to quantify the contaminant plume at the Site in accordance with the PRB RDWP.

4.4.1 Monitoring Well Sampling

Twenty-six (26) monitoring wells including the new monitoring well MW37 were sampled for VOCs, metals, and general chemistry analysis. Water level measurements obtained during the

- 19 -

AR301142

sampling event are summarized in Table B-1 in Appendix B, and the data are shown as potentiometric groundwater contours on Figure 13. Field parameters (pH, conductivity, turbidity, temperature, and Eh) are summarized in Table 4. The well sampling data (i.e. flow rates, etc.) are included in Table B-2 in Appendix B. Analytical laboratory test results for VOCs, metals and general chemistry are summarized in Tables 5, 6 and 7 respectively. Data validation reports are included in the May 2000 Sampling Event Data Validation Report (Golder 2000b).

4.4.2 Direct Push Sampling

Sixteen (16) groundwater direct push samples were collected, with four (4) groundwater samples collected from each of the four (4) direct push locations (C10A-D, D10A-D, E10-D and F12A-D) for VOC analysis. The existing data and conditions observed from the shallow borings (SBS13, SBS10, SBS11 and SBS12) were used to determine the depth for collection of each of the groundwater direct push samples. At least one sample from each location was collected immediately above the underlying aquitard. The summary of the analytical results can be found in Table 8. Concentration contour maps for TCE, PCE and 1,1-DCE have been prepared for the Site and are shown on Figures 14, 15 and 16, respectively. A geologic cross section showing concentrations with depth of TCE and PCE measured in the direct push samples at various depths is shown on Figure 17.

4.5 Surface Water Sampling

Surface water sampling was conducted concurrently with the groundwater sampling. Twelve (12) surface water points along Scates Branch and Reeds Swamp were sampled, at the locations shown on Figure 11. The surface water locations included surface water location SB3, a spring discovered along Scates Branch emanating from an off-site source. Field parameters (pH, conductivity, temperature, turbidity, and dissolved oxygen) of the surface water samples were measured prior to sampling, and the results are presented in Table 9. Samples were collected for metals and cyanide analysis. The summary of analytical results can be found in Table 10. Groundwater samples collected from monitoring wells MW1, MW3, MW22, MW34 and MW37 were analyzed for a full list of metals in accordance with the PRB RDWP for the surface water metals background evaluation. The analytical results of metals for these wells are also summarized in Table 10. A data validation report for the surface water samples is included in the May 2000 Sampling Event Data Validation Report (Golder 2000b).

4.6 Investigation Derived Waste Management

Drilling mud/soil waste and wastewater were generated during the PRB RDWP Pre-Design field activities at the Site. Golder field personnel supervised waste management activities. The drilling mud/soil waste and wastewater were temporarily stored at the Site in a lined roll-off container for waste characterization and proper disposal. The roll-off container was located just north of the former Drum Storage Area. The waste generated at each boring/well location was first contained in 55-gal drums located at each boring/well location and later transferred into the roll-off containers at the completion of each well installation activity. The 55-gal drums were properly sealed during transportation to the roll-off containers.

Drilling and sampling equipment decontamination activities were conducted on an existing decontamination pad (concrete) located on the north side of the manufacturing building. All waste generated from the steam cleaning was contained in the lined roll-off. Golder personnel collected samples of the wastewater and drilling mud/soil for waste characterization laboratory testing. Accutest Laboratories provided analytical laboratory services for waste characterization. Based on the laboratory analytical results, the wastewater and the drilling mud/soil were characterized as non-hazardous and the analytical laboratory results are summarized in Appendix B-5.

Field activities for the removal of the wastewater and drilling mud/soil were conducted on July 14, 2000 under Golder personnel supervision. The wastewater (1,775 gals) and the drilling mud/soils (2,875 gals) were transported directly from the Site to Clean Harbors Environmental Services Facility in Baltimore, Maryland. Clean Harbors Environmental Services also provided waste removal and transportation services.

Subsequent to the removal of the IDW from the Site, additional wastewater and drift cuttings were generated during an additional soil boring and direct push investigation. The waste (wastewater and drill cuttings) was contained in 55 gal drums properly labeled. Wastewater and drill cuttings samples were collected and sent to the laboratory for waste characterization. Results of the laboratory analysis are summarized in Appendix B-5. All waste generated during the PRB pre-design field investigation program was characterized as non-hazardous.

5.0 TREATABILITY STUDY

5.1 Iron Reactivity Column Test

5.1.1 General

In order to determine the reactivity of the granular iron considered for construction of an iron PRB at the Site, a reactive bench scale column test was conducted on a sample of medium-fine Connelly granular iron filings grade CC-1022 (-14 + 84 Mesh). EnviroMetal Technologies, Inc. (ETI) working in association with the Institute for Groundwater Research, University of Waterloo, Waterloo, Ontario, Canada conducted the bench scale iron reactivity column test. The column test was flushed with contaminated Site groundwater. A schematic of the EnviroMetal Process Column Test Apparatus is shown on Figure 18.

The objectives of the iron reactivity column test are to quantify degradation rates for the VOCs in the Site groundwater, the generation and degradation of any VOC daughter products, and the potential for precipitation and clogging of the iron due to changes in the groundwater chemistry within the PRB. The concentration of VOCs in the groundwater in the column are measured until steady state (unchanging) conditions are achieved, and at such time the groundwater VOC concentrations can be related to the residence time of the groundwater in the presence of the iron, see Figure 19. From such data degradation half-lives of the VOCs see Figure 20, and daughter product generation rates and their respective degradation half-lives can be calculated, see Figure 21.

5.1.2 Laboratory Method

The laboratory bench scale column test was conducted using the EnviroMetal Process (Gillham, 1996; Gillham and O'Hannesin, 1992 & 1994) to determine the rates of degradation of the chlorinated organic compounds that are present in the groundwater at the Site. A groundwater sample from monitoring well MW33 was collected by Golder field personnel and sent to the University of Waterloo for the iron reactivity column test.

The iron reactivity column consists of a PlexiglassTM cylinder with a length of 1.6 ft and an internal diameter of 1.5 in. Seven sampling ports are positioned along the length of the column as shown on Figure 18. The column was carefully loaded with iron, initially flushed with carbon

dioxide, then distilled water, before the Site groundwater was introduced. The Site groundwater was fed into the column at a constant rate of 0.94 ft/day (PRB groundwater flow velocity <0.5 ft/day) from a collapsible Teflon® bag. Based on ETI's laboratory experience, a flow velocity of about 2 ft/day is the maximum that can be used for the type of iron tested to minimize piping/channeling conditions in the sample. Samples for organic analyses, Eh and pH were collected periodically from the sample ports along the column. Samples for both organic and inorganic tests, Eh and pH were also collected from the influent and effluent.

The concentration of a particular species was quantified along the column length at a particular time; i.e. after the column was swept by a certain number of pore volumes of the Site groundwater. Concentrations of VOCs were monitored along the column until the values at each point in the column reached a relatively "steady-state" condition. "Steady state" condition is reached when the column test shows a constant (i.e. unchanging) concentration profile along its length. The flow rate used in the test was used to calculate the residence time of groundwater relative to the influent end of the column at each sample point. The residence time was used to determine concentration versus time plots for each of the VOCs. A first-order multi-species kinetic model closely matched the degradation rates of the VOCs in the presence of zero valent iron for each VOC compound.

The degradation of VOC's in the presence of iron can be approximated by a first order degradation model. First order rate constants are quantified that best fit the degradation and daughter product pathway data, see Figures 20 and 21. The first order kinetic degradation model for a single specie is given in equation (1), the first order rate constant in equation (2), and the half life in equation (3).

$$C = C_0 e^{-\lambda_t t} \tag{1}$$

where C is the organic concentration in solution at time t, C₀ is the organic concentration in solution at the initial or influent condition, i.e. at t=0, λ_i is the first order rate constant for the species and t is the residence time in the column.

 $\lambda_{i} = -\frac{\ln\left(\frac{c}{c_{0}}\right)}{t} \tag{2}$

The half life, $t_{0.5}$, is the time for the organic concentration to be reduced to one half of it's initial or influent concentration, i.e. rearranging equation (1) gives:

$$t_{0.5} = \frac{0.693}{\lambda_i}$$
 (3)

The Connelly granular iron used in the column test was obtained from Connelly-GPM, Inc., Chicago, Illinois. Geotechnical laboratory testing was conducted on the Connelly granular iron to determine its physical properties. The medium to fine Connelly CC-1022 iron filings tested had a grain size ranging from 0.07 to 2 mm (ASTM D 421), and a specific gravity of 6.93 (particle density of 6.93 g/cm³) (ASTM D 854). Grain size distribution and specific gravity test results are included in Appendix A-2.

Prior to column testing, a sample of the medium to fine Connelly iron was mixed with Golder's standard cross linked gel to be used for emplacement of the granular iron in the hydrofracturing process. The column sample was prepared and the column filled with 100% iron. Once the iron column was ready for testing, groundwater collected from monitoring well MW33 was flushed through the column. The column experiment was conducted at room temperature $(23^{\circ}C)^{2}$. The iron column sample had a pore volume of 316 ml, a porosity of 0.56 and a density of 165 lb/ft³ (2.6 g/cm³).

A representative sample (dry) of the medium to fine Connelly granular iron filings CC-1022 used for column testing was sent to Golder soils laboratory in Atlanta, Georgia for soil classification (grain size distribution and specific gravity) and permeability testing. Other Connelly iron grades and mixtures were also tested (grain size and permeability) during the selection process to determine the most appropriate type of iron that would be compatible with the site soils and various PRB installation methods. Data from these tests are contained in Appendix A-2.

Ť

² The column test data are extrapolated to field conditions using other iron reactivity data collected from column tests conducted over a range of temperature conditions. Generally the column test is conducted at Site groundwater temperature; however in this case the Site groundwater being 17-18°C was considered sufficiently close to laboratory temperature that extrapolation to Site conditions could be made without conducting a temperature controlled test. The degradation VOC half lives at field temperature conditions of 17-18°C were determined to be 1.75 times their respective VOC laboratory determined half life at 23°C.

5.1.3 Results

Groundwater from monitoring well MW33 as received in the laboratory contained 7,000 μ g/L of tetrachloroethene (PCE), 44,000 μ g/L of trichloroethene (TCE), 5,000 μ g/L of 1,1-dichloroethene (11DCE), 120 μ g/L of cis-1,2-dichloroethene (cDCE), 1,000 μ g/L 1,1,1-trichloroethane (111TCA), 40 μ g/L of 1,1,2-trichloroethane (112TCA) and 450 μ g/L of tretrachloromethane (CT). Trace amounts (about 5 μ g/L) of trans-1,2-dichloroethene (tDCE) were also detected in the collected groundwater. The residence time vs. concentration for the species TCE, PCE, and 1,1-DCE along the column are given on Figure 19 for steady state conditions, and similar plots for other VOCs and inorganic data are contained in Appendix C. Organic concentration data, MDLs and influent and effluent inorganic data for the column test are detailed in Appendix C.

Redox potential (Eh) profiles were measured, indicating reducing conditions generated in the column as expected. Eh decrease from an initial value of 345 mV to a value of -483 mV within the column. The pH was observed to increase from an initial value of 7.3 to 9.5 in the column. Eh and pH profiles along the iron column are included in Appendix C.

The potential for precipitation and possible clogging of the iron PRB was addressed by analysis of the inorganic analytical test data from the iron reactivity column test. For the groundwater flux estimated to pass through the full scale PRB, the potential for precipitation resulting in significant loss of porosity is considered low. The inorganic data from the column test confirmed that the Site groundwater acted similar to other laboratory studies on low carbonate groundwater. The column test confirmed that precipitation and/or clogging is not an issue for an iron PRB at this Site. The longevity of the iron PRB can not be determined from the column test; however, from field data of iron PRBs, the proposed system should function satisfactory for at least 10 to 15 years, Gillham and O'Hannesin (1998).

5.2 Degradation Model for VOCs

A VOC degradation model was developed for the Site based on the iron column test results and typical degradation rates of VOCs for similar groundwater chemistry and VOC concentrations in

databases assembled by ETI (2000) and Golder (2000d). Reductive dehalogenation pathways for PCE, TCE, 1,1,1-TCA and their daughter products were presented on Figures 7 and 8. The multi-species VOC degradation model developed for the Site groundwater with associated percentage conversions from parent to daughter products is shown on Figure 21. Based on this VOC degradation model, degradation half-lives were determined for the VOCs encountered in the Site groundwater and their VOC respective daughter products generated in the presence of the iron filings.

Half lives for TCE and PCE were determined to be 3.5 and 4 hours, respectively. The flow velocity of the column test was reduced from 0.94 ft/day to 0.39 ft/day after 40 pore volumes when the column had reached "steady state" conditions in order to further evaluate degradation rates for cDCE and VC. Estimated half lives for cDCE, tDCE and VC including generation of these VOCs from their respective parent compounds, see Figure 21 for generation rates assumed, were calculated to be 6, 4 and 7 hours respectively. Significant generation of these daughter products was not measured in the column test; however, such generation rates of daughter product VOCs have been measured in earlier column tests and it was considered conservative to assume that a proportion of these daughter products could be generated as detailed on Figure 21. Other daughter products generated in the column test were 1,1-DCA and 1,2-DCA with a calculated half-life of 15 hours for 1,1-DCA. The iron technology does not treat 1,2-DCA, which had a peak concentration of approximately 20 μ g/L in the column test.

5.3 Precipitation/Absorption of Metals and Other Compounds

Certain metals, such as hexavalent chromium, are reduced and thus precipitate in the presence of iron, whereas other metals are directly precipitated or absorbed by the iron and thus rendered immobile. Metals that can be removed from the groundwater flow regime in the presence of iron, include Al, Sb, As Cd, Cu, Cr(VI), Pb, Mg, Hg, Ni, Se, Tc-99, U, V and Zn. A number of workers have constructed iron reactive barriers for the removal of metals, e.g. Gu et. al. (1998), Morrison (1998), Naftz (1998), Puls (1998), Su and Puls (1998), and in some cases a combination of metals and VOCs, Schlicker et. al. (1998) and Puls (1998). Cyanide is immobilized and removed from the groundwater flow regime as it enters the iron PRB due to the formation of complexes of iron and cyanide, which are stable and remain immobile within the PRB.

1

In some cases the iron PRB can release metals either from the PRB or from the native soils due to changes in pH and Eh. Normally the metals that potentially can be released are Fe and Mn. The inorganic data from the column test show that these metals, Fe and Mn, are reduced in concentrations as the Site groundwater passes through the column, and therefore these metals are not expected to be released by the PRB in situ.

6.0 GEOTECHNICAL AND SPECIALIZED PRB LABORATORY TESTS

6.1 General

Relevant design issues and perceived data gaps were identified in the PRB RDWP. The data gaps relate to soil grain size data for selecting iron filings size gradation and specialized tests relating to the azimuth controlled vertical hydraulic fracturing technology. All of these tests were performed using soils and groundwater collected from the Site in order to provide a close approximation of the existing field chemistry and geotechnical properties of the formation materials. Golder field personnel collected all the samples during the PRB pre-design field investigation program.

Soil and iron filings classification tests, soil resistivity and perm-leak-off column testing were conducted by Golder's Laboratory in Atlanta, Georgia. The laboratory testing program included the following:

- □ Soil classification tests (grain size distribution, Atterberg limits, and specific gravity tests) conducted on Site soil samples and different grades and mixtures of Connelly iron filings for selection of the iron to be used for the iron reactivity bench scale column test;
- □ Iron hydraulic conductivity tests on different grades and mixtures of Connelly iron filings;
- Perm-leak-off column testing (1) using reconstituted soils with similar grain size distribution of representative Site soils and Golder's fracturing iron-gel mixture used in hydrofracturing technology; and
- □ Soil resistivity tests (saturated condition) using Site soil samples and Site groundwater; and
- Soil permeability tests conducted on remolded soils collected from the lower aquitard.

6.2 Site Soil and Groundwater Collection

Site groundwater for the iron reactivity column test and the soil resistivity tests were collected from monitoring well MW33 by Golder field personnel during the May 2000 PRB pre-design field program. Approximately 12 gallons of Site groundwater were collected for the iron reactivity bench-scale column test, and two (2) gallons of groundwater were collected for soil resistivity testing and other reactivity tests to be performed at Golder's Laboratory in Atlanta,
Georgia. The groundwater was shipped to the UW/ETI for the column test and to Golder in Atlanta for the other specialized PRB tests.

Site soil samples were collected from continuously sampled SPT (ASTM D1586) borings SBS13, SBS10, SBS11 and SBS12 drilled adjacent to C10, D10, E10 and F12, respectively. The samples were collected using a 24-inch long split-spoon sampler. Blow counts required to drive the sampler each 6-inch increment were recorded, the recovery of the sample measured, and the soil classified in the field in accordance with the Unified Soil Classification System (USCS). Boring logs were prepared for the borings and are contained in Appendix A. The soil samples (the complete spoon) were placed in zip-lock plastic bags and then shipped to Golder's Laboratory in Atlanta, Georgia. Golder field personnel conducted all field sampling and classification activities.

6.3 Soil Geotechnical and Hydraulic Conductivity Data

Site soils collected from borings SBS13, SBS10, SBS11 and SBS12 were analyzed for grain size, Atterberg limits, specific gravity and electrical resistivity, with data from these tests summarized in Appendix A and detailed for each sample in Appendix A-1. A summary of the soil grain size and resistivity data is given in Table 11. Soil hydraulic conductivity data are summarized in Table 12 as quantified from well slug and pumping tests conducted in existing monitoring wells and CPT hydraulic conductivity tests (ICF Kaiser, 1991, 1997) and as estimated from grain size data using the Hazen Method (D_{10}). The highest soil hydraulic conductivity values quantified or estimated for the site were obtained from grain size data (SBS-11 and SBS-12) using the Hazen Method (D_{10}) with a value of 4.9 x 10⁻³ cm/sec. The highest estimate from pumping tests was in well OMW4 with a value of 2.3 x 10⁻³ cm/sec (constant-rate pumping test - Theis Recovery Method), and of 3.6 x 10⁻³ cm/sec from a slug test (falling head) conducted in well MW6. From CPT hydraulic tests, the highest hydraulic conductivity value determined was from CPT E20 at 35.5' BGS with a value of 4 x 10⁻³ cm/sec.

6.4 Soil and Fracturing Fluid Electrical Resistivity

6.4.1 General

Active resistivity is used to monitor the injected geometry of iron permeable reactive barriers during installation by the azimuth controlled vertical hydraulic fracturing technology. The fracture fluid is made conductive and is electrically energized by a 100Hz signal so the receivers in boreholes adjacent to the barrier can detect the fracture location. Induced 100 Hz voltages are monitored and recorded during fracture growth. From these induced voltages, the PRB geometry is calculated using incremental inversion algorithms to provide a high-resolution image of the reactive barrier. This imaging provides a real time feed back of the fracture geometry during injection and thus enables quantification of the continuity of the reactive barrier system.

For the active resistivity technique to be efficient there must be a significant contrast between the resistivity of the formation (soil and groundwater) and the fracturing fluid. Laboratory testing was performed using Site soil samples collected from the soil borings SBS13, SBS10, SBS11 and SBS12 saturated with Site groundwater collected from groundwater monitoring well MW33. The conductivity of the iron-gel fracturing fluid is adjusted by the addition of sodium or potassium chloride to the fracturing fluid. The Golder standard fracturing fluid design resistivity range depends on site conditions, and the possible range of gel resistivity as detailed in Appendix A-5. For the PRB hydrofracturing installation method, the final gel design must consider the Site soil resistivity in the area where the permeable barrier is to be installed.

6.4.2 Laboratory Method

The soil electrical resistance was estimated in the laboratory following the Standard Method for Field Measurement of Soil Resistivity Using the Wenner Four Electrode Method (ASTM G 57). Samples were placed in a soil/box with two plate electrodes and two pin electrodes. The soil sample was saturated with groundwater collected from groundwater monitoring well MW33. Using a Nillson Model 400 four-pin soil resistance meter, a voltage potential was applied to the plate electrodes in the soil tray causing a current flow through the sample. The voltage drop and current were measured between the two pin electrodes using the same meter. The geometry of the box is such that a correction factor of 1 is used for the Wenner array and hence electrical resistance measurements are in effect direct.

신 문제 문제

Electrical resistivity testing of soils required the soil box to be filled with the sample. The source and detector electrodes in the soil box were connected to the meter. A known current was passed between the two source electrodes and a voltage drop measured between the two detector electrodes providing an estimate of resistance. Resistivity values are normalized (ASTM G 57) at 15.5 °C using the following expression:

Resistivity @ 15.5 °C =
$$[(24.5 + \text{Temperature})/40] \times \text{Resistivity}$$
 (4)

6.4.3 Results

The resistivity results for the soil samples are summarized in Table 11 and details are contained in Appendix A-1. Based on the laboratory soil resistivity tests, the iron-gel mix should have a maximum resistivity of 300 ohms-cm for contrast purposes with the existing soils during hydrofracturing active resistivity monitoring.

6.5 Leak Off Testing of Soils

6.5.1 General

During the injection of a fracturing fluid into the formation (hydrofracturing), fluid is lost (leaked off) from the fracturing gel mix to the formation. This leak off characteristic is dependent on both fracture fluid constituents and formation characteristics. The volume of fluid lost during fracturing determines the fracturing fluid efficiency or the ratio of fracture volume to volume of fluid pumped. It is important to know this efficiency to prevent early fracture termination caused by premature deposition of the granular component of the fracturing fluid.

The rate of leak off to the formation is governed by the fracturing fluid leak off coefficient, C, which is a combination of three types of linear flow mechanisms (Gidley et. al., 1989). The three types of flow mechanisms are: fracturing fluid viscosity and relative permeability effects Cv, reservoir-fluid viscosity/compressibility effects Cc, and wall building effects Cw. Cv and Cc can be estimated theoretically from aquifer data and fracture fluid viscosity data while Cw must be investigated experimentally.

6.5.2 Laboratory Method

Golder developed a laboratory leak off test procedure for soils for the estimation of the leak off coefficient *Cw*. The test method is an adaptation of leak off testing on core used in the petroleum industry detailed in API RP-39. Essentially the method utilizes a pressure cell containing a piston as shown on Figure 1 in Appendix A-3. The apparatus has an inlet at the top of the cell (above the piston) and an outlet at the base of the cell. A site soil sample is placed in the cell with enough water to saturate the sample. The sample is consolidated at a normal pressure equivalent to the estimated in-situ effective vertical stress at the approximate depth where the hydrofracture will be initiated (typically within the lower 10 feet of the barrier) by applying pressure above the piston to compact the soil. During consolidation, the excess water is allowed to exit through the outlet at the base of the pressure cell. The dry unit weight and porosity of the sample are calculated and recorded. Fracturing fluid is placed between the soil sample and the piston. The fracturing fluid is then pressurized against the soil sample by the piston, using a pressure in the vicinity of the expected down hole fracturing fluid pressure. The volume of fluid expelled from the base of the cell is monitored and is equivalent to the volume of fracturing fluid that leaked off to the sample.

Leak off test data are plotted as filtrate volume vs. the square root of time as shown in the laboratory test results detailed in Appendix A-1. The test shows two phases of the leak off phenomenon. The first stage is the wall building stage of leak off where the fracturing fluid penetrates the formation causing a filter cake to build up on the formation - fluid interface. The volume of fluid lost in the wall building stage of fracturing is called spurt loss. The first stage of leak off can be recognized on Figure A-1 as the early time curvature of filtrate volume versus time. During the second stage, after the filter cake has built up, viscosity and compressibility effects resist the rate of fluid loss only. The later time straight line of the test results represents this stage. The slope of this line is used in the following equation to determine Cw:

$$Cw = (m/2Ac) \tag{5}$$

where Cw is the wall building coefficient (cm/min^{1/2}), m is the slope of the best-fit straight line (cm³/min^{1/2}), and Ac is the cross sectional area of the soil sample in the test cell (cm²).

¥

1

The volume loss determined as the ordinate intercept of the straight line used to determine the Cw coefficient at time zero is used to determine the Spurt value for the leak off test. The Spurt is obtained using the following expression:

Spurt value = (Fluid loss/2Ac)
$$(6)$$

6.5.3 Results

The test was carried out at 49 psi pressure on a reconstituted sand sample representative of the soils collected from borings SBS13, SBS10, SBS11 and SBS12. Prior to placement of the cross-linked gel iron mix over the soil, the soil was consolidated at an effective stress of 30 psi. The confining stress was applied at increments of 5 psi to minimize excessive pore water pressure during the consolidation process. The remolded dry unit weight and porosity of the soil were 95.1 pounds per cubic foot (PCF) and 0.43. The test results are included in Appendix A-3.

6.6 Micro-Head and Hydraulic Conductivity Testing of Iron Reactive Mixture

6.6.1 General

Hydraulic conductivity testing was conducted on several iron samples to ensure that the iron filings selected for the PRB were compatible with the soils at the Site. For the PRB hydrofracturing installation method, the hydraulic conductivity of the fracture emplaced iron was tested to verify that breaking of the cross-linked fracturing fluid would take place and that the remaining iron filings would have a similar or greater hydraulic conductivity than the host formation. An emplaced PRB with a hydraulic conductivity significantly less than the formation would impact the groundwater flow regime and the contaminated groundwater may be diverted around the PRB and thus not be remediated.

6.6.2 Laboratory Method

Iron Hydraulic Conductivity Tests

Hydraulic conductivity testing was conducted on different grades of Connelly iron filings using the constant head permeability method (ASTM D 2434). Grain size distribution analysis (ASTM D 422) was conducted on all samples prior to testing as detailed in Appendix A-2. Air dry

samples were placed in the cells in uniform lifts until the sample height was reached. Minimum compacting effort was applied to the samples. Porosity determinations were made at the completion of each test.

Micro-Head Iron-Gel Hydraulic Conductivity Test

Hydraulic conductivity testing was conducted on an iron-gel sample following the leak-off test after the enzyme breaker present in the mix broke the cross-link of the iron-gel mix. The iron-gel mix consisted of gel cross-linked with medium fine Connelly iron filings CC-1022. The test was conducted using the constant head permeability method (ASTM D 2434) using a 3-inch diameter cell and the soil leak-off micro-head permeameter as shown on Figure A-1 in Appendix A-3.

The leak-off test was first conducted on the sample as described in Section 6.5 above with results detailed in Appendix A-3. Following the leak-off test the pressure was reduced to a closing pressure of 19 psi as expected after construction of the PRB using the hydrofracturing technology. The closing pressure was maintained and tap water was used to permeate the irongel sample during the test. The test was continued for a minimum of 10 pore volumes or until hydraulic conductivity values reached an approximately steady state condition. Concurrent with the hydraulic conductivity test, effluent samples were monitored for changes in total organic carbon (TOC). At the completion of the tests the final porosity of the iron filings layer above the soil sample was determined.

6.6.3 Results

Iron Hydraulic Conductivity Tests

The results of the iron hydraulic conductivity tests are summarized in Appendix A-2. The hydraulic conductivity of the Connelly CC-1022 sample selected for the PRB and used in the iron column test was 1.2×10^{-1} cm/sec. A porosity of 0.6 was determined for the sample at the end of the test. The hydraulic conductivity test data are included in Appendix A-2.

Micro-Head Iron-Gel Hydraulic Conductivity Test

Hydraulic conductivity values increased with the number of pore volume flushes and the levels of TOC in the effluent decreased. The reduction of TOC in the effluent water was associated with the reduction of gel compounds in the iron sample. The hydraulic conductivity and effluent analytical (TOC) data are included in Appendix A-4. The hydraulic conductivity of the iron-gel soil sample after 15 pore volume flushes approached 1 x 10^{-2} cm/sec, which is comparable to the soil hydraulic conductivity within laboratory measurement accuracy.

6.7 Viscosity of Fracturing Fluid

6.7.1 General

The viscosity of the gel and cross-linked fracturing fluid was measured in order to quantify the selected gel fluid for use as a fracturing fluid in the PRB hydrofracturing technology installation method. Viscosity data are also used for quality control of the gel during construction and for hydraulic fracturing design analyses.

6.7.2 Laboratory Method

The viscosity of 48 lb. gel (cross-linked) per 1000 gallons of water fracturing fluid, and uncrosslinked samples (guar fluid) was measured in the laboratory using an EG&G Chandler Model 35 coaxial cylinder viscometer. The viscosity was measured for a range of shear rates between 1 and 100 sec⁻¹ at temperatures ranging from 6° to 36° C.

6.7.3 Results

The test results are included in Appendix A-6. The gel fluid displayed a pseudo-plastic (or shear rate thinning) behavior from 1 to approximately 50 sec⁻¹ with viscosity values ranging from 1,800 to 145 cp (centipoise). From 50 to 100 sec⁻¹ shear rate the sample displayed approximately a constant viscosity of 145 cp displaying the characteristics of a Newtonian fluid.

7.0 DESIGN OF CAP SYSTEM

7.1 General

Saltire and the USEPA have agreed to implement an alternative remedy for groundwater at the Arrowhead Plating Site. The major components of the newly selected remedy action (RA) described in the ESD are:

- □ A PRB to transform dissolved VOCs into non-toxic products before groundwater discharges into the tributaries of Scates Branch;
- □ Implementation of an environmental monitoring plan to evaluate the effectiveness of the RA and to ensure the protection of environmental receptors in Scates Branch; and
- □ Implementation of appropriate institutional control measures, if needed, prohibiting the use of contaminated surficial groundwater to ensure protection of public health and the environment.

Discussions on the selected PRB Remedy, process description of the zero valent iron technology and the design requirements and criteria for the PRB system were presented in the Preliminary (30%) PRB Design Report (Golder 2000a). Following the submittal of the Preliminary (30%) PRB Design Report, additional evaluations were completed and it was determined that the addition of a Cap System as part of the PRB Remedy would improve and make more costeffective the PRB Remedy for OU-2. The Cap System was proposed to EPA and VDEQ during the October 24, 2000 meeting and further discussed during the October 30, 2000 conference call. The proposed layout of the PRB and Cap System at the Site is shown on Figure 22.

The design of the Cap System for the Site required the evaluation of the existing Site conditions in terms of ground surface drainage patterns, precipitation infiltration rates, Site geotechnical and hydrogeologic characteristics, and quantification of the impact of the Cap System on the groundwater flow gradients (lower flow gradients) across the PRB and the amount of groundwater flux passing through the PRB System. This Section provides the Cap System design methodology, Cap System design requirements and criteria (as earlier detailed in Section 3.2.3), the evaluation of infiltration rates before and after placing the Cap System, the impact of the Cap System on the PRB Design based on site wide (regional) groundwater flow modeling, and finally the Cap System design.

7.2 Cap System Design Requirements and Criteria

The Cap System must be designed to significantly reduce the infiltration of precipitation into the subsurface and to have a significant impact on the groundwater recharge conditions within the Site, and therefore to reduce both groundwater flow gradients across the PRB and the amount of groundwater flux passing through the PRB System.

The overall design methodology for the Cap System consisted of modeling existing site wide (regional) precipitation infiltration and groundwater flow conditions, modeling the effect of different Cap Systems on infiltration rates, and modeling the impact of the selected Cap System on the groundwater flow gradients across the PRB.

The Cap System must be designed to meet the design requirements and criteria as detailed in Section 3.2.3. The Cap System is an integral part of the PRB since its intent is to limit the infiltration of surface water into the subsurface and thus reduce the groundwater flow gradients across the PRB. Therefore the objective of the Cap System is to enhance the PRB performance by reducing the mass flux of contaminants that the PRB must degrade.

7.3 Infiltration Rates Evaluation

7.3.1 Methodology

The Hydrologic Evaluation of Landfill Performance, or HELP, model developed by the U.S. Environmental Protection Agency Risk Reduction Engineering Laboratory, Cincinnati, Ohio (Schroeder et. al. 1994) was used to determine the impact of a Cap System on the precipitation infiltration rates and the Site groundwater flow conditions. Precipitation infiltration rates for the Site were determined without (i.e. existing conditions) and with a Cap System.

The HELP model is a quasi-two-dimensional hydrologic model for conducting water balance analyses. The model accepts weather, soil and design data, and utilizes solution techniques that account for the effects of surface storage, snowmelt, runoff, infiltration, evapotranspiration, vegetative growth, soil moisture storage, lateral subsurface drainage, unsaturated vertical drainage, and leakage through soil, geomembrane or composite liners. The program uses weather (climatic), soil and design data to generate daily estimates of water movement across, into. through and out of landfills. To accomplish this objective and compute a water balance, daily precipitation is partitioned into surface storage (snow), snowmelt, interception, runoff, infiltration, surface evaporation, evapotranspiration from soil, subsurface moisture storage, liner leakage (percolation) and subsurface lateral drainage to collection, removal and recirculation systems.

The hydrologic processes modeled by the program are divided into two categories: surface processes and subsurface processes. The surface processes modeled are snowmelt, interception of rainfall by vegetation, surface runoff, and surface evaporation. The subsurface processes modeled are evaporation from soil profile, plant transpiration, unsaturated vertical drainage, containment soil liner percolation, geomembrane leakage and saturated lateral drainage.

Daily infiltration into the subsurface is determined indirectly from a surface water balance. Infiltration is assumed to equal the sum of rainfall, surface storage and snowmelt, minus the sum of runoff, additional storage in snow pack and evaporation of surface water. No liquid water is assumed to be held in surface storage from one day to the next except in the snow pack or when the topsoil is saturated and runoff is not permitted. Each day, the free available water for infiltration, runoff, or evaporation from water on the surface is determined from the surface storage, discharge from the snow pack, and rainfall. Snowfall is added to the surface snow storage, which is depleted by either evaporation or melting.

Snowmelt is added to the free available water and is treated as rainfall except that it is not intercepted by vegetation. The free available water is used to compute the runoff by the Soil Conservation Service (SCS) rainfall-runoff relationship. The interception is the measure of water available to evaporate from the surface. Interception in excess of the potential evaporation is added to infiltration. Surface evaporation is then computed. Potential evaporation from the surface is first applied to the interception; any excess is applied to the snowmelt, then to the snow pack and finally to the ground melt. Potential evaporation in excess of the evaporation from the surface is applied to the soil column and plant transpiration. The snowmelt and rainfall that does not run off or evaporate is assumed to infiltrate into the subsurface along with any ground melt that does not evaporate.

The first subsurface processes considered are soil evaporation and plant transpiration from the evaporative zone of the upper sub profile. A vegetative growth model accounts for the daily

AR301161

growth and decay of the surface vegetation. The other subsurface processes are modeled one sub profile at a time, from top to bottom, using a design-dependent time step ranging from 30 minutes to 6 hours. A storage-routing procedure is used to redistribute the soil water among the modeling segments that comprise the sub profile. This procedure accounts for infiltration or percolation into the sub profile and evapotranspiration from the evaporative zone. Then, if the sub profile contains a liner, the program computes the head on the liner. The head on the containment layer is then used to compute the leakage/percolation through the layer and, if lateral drainage is permitted above the top of the containment layer, the head on the liner is determined from lateral drainage to the collection and removal system.

Containment systems modeled include various combinations of vegetation, cover soils, lateral drain layers, low permeability barrier soils, and synthetic geomembrane liners. The model facilitates rapid estimation of the amounts of runoff, evapotranspiration, drainage, leachate collection (in the case of landfills) and liner leakage that may be expected to result from wide variety of containment system configurations. The primary purpose of the model is to assist in the comparison of design alternatives.

7.3.2 Weather Conditions

The weather data required in the HELP model are classified into four groups: evapotranspiration, precipitation, temperature and solar radiation data. Weather data may be entered using several options depending on the type of weather data being considered.

The HELP model does not have weather data for Montross, VA. It was, thus necessary to synthetically generate the required data based on precipitation and temperature data obtained from Colonial Beach, VA (located 20 miles north of Montross) and weather patterns from Norfolk and/or Richmond, VA (see Figure 1 for location of cities/towns). Norfolk weather patterns input was the preferred model because Norfolk is located close to the ocean, like Montross, and thus, the weather patterns are expected to be similar and influenced by ocean currents and winds. However, Norfolk was not always available as a model city and in that case, Richmond was used. The different weather input parameters used in the HELP model include:

- Evapotranspiration;
- Evaporation Zone Depth;

- Maximum Leaf area Index;
- Growing Season;
- Precipitation Data;
- Temperature Data; and
- **Golar Radiation Data**.

The weather data input used for the evaluation of infiltration rates at the Site is provided in Appendix D in the HELP output runs. The synthetically generated mean precipitation and temperature data for the Site is presented for each month as plots on Figure 23.

7.3.3 Subsurface Soil Conditions

Soil data used in the HELP model can be either the HELP model default soil/material textures data or specifically defined soil texture data. For the determination of infiltration rates without and with a Cap System, default soil data (from a data base of 42 default soil/material textures) for similar soils encountered at the Site and Cap System design components were used in the evaluations. For the evaluation of the existing conditions the following soil input parameters were used for the subsurface soils above the water table (unsaturated zone):

- □ Soil Type (Unified Soil Classification System);
- □ Soil Porosity;
- Soil Wilting Point (lowest soil water storage/volumetric content that can be achieved);
- Soil Initial Water Content; and
- Soil Effective Saturated Hydraulic Conductivity (above and below the evaporative/root zone)

When a default soil type in the HELP model is used to describe the topsoil layer, the program adjusts the saturated hydraulic conductivities of the soils in the top half of the evaporative zone for the effects of root channels. The saturated hydraulic conductivity value is multiplied by an empirical factor that is computed as a function of the maximum leaf area index (LAI). Example values of this factor are 1.0 for a maximum LAI of 0 (bare ground), 1.8 for a maximum LAI of 1 (poor stand of grass), 3.0 for a maximum LAI of 2 (fair stand of grass), 4.2 for a maximum LAI of 3.3 (good stand of grass) and 5.0 for a maximum LAI of 5 (excellent stand of grass).

The soil data input used for the evaluation of infiltration rates at the Site is provided in Appendix D (HELP output runs).

7.3.4 Existing Infiltration Rates Evaluation

The first part of this evaluation included estimating the amount of infiltration through the exiting in-situ soils down into the groundwater. Due to the variability of surface slopes and subsurface unsaturated thickness, a sensitivity analysis was completed to determine infiltration rates for the expected range of surface slopes and unsaturated soil thickness conditions at the Site. The area considered for the evaluation is shown on Figure 24, which shows the location of the Cap System with respect to the PRB System and the Upper Aquifer groundwater-modeling region. For this purpose, the model was run for 12 different conditions for unsaturated zones (depth to groundwater table) of 10, 15 and 20 ft thick and surface grades of 0.5%, 2.5%, 10% and 25% for each case analyzed.

For runoff calculations, Runoff Curve Numbers were computed by the HELP model based on surface slope, slope length, soil texture and quantity of vegetation cover for each option evaluated.

In general, the precipitation infiltration rates at the Site for the range of conditions evaluated ranged from 6.7 inches per year (in/year) (20 ft unsaturated soil thickness and 25% slope grade) to 7.2 in/year (10 ft unsaturated soil thickness and 0.5% slope grade). The infiltration evaluation results for the existing conditions are shown as plots on Figure 25. The average precipitation per year was estimated to be 41 in/year. Of this, about 9% goes into runoff, 74% into evapotranspiration and 17% into infiltration/groundwater recharge. Input data and output results of the HELP modeling runs are included in Appendix D-1.

1

.

ý

7.3.5 Cap System Infiltration Rates Evaluation

The second part of the evaluation consisted in estimating the infiltration of rainwater through the Cap System down to the groundwater also using the HELP model. In order to select the most cost-effective Cap System, four (4) cover system configurations were evaluated in terms of technical effectiveness and cost. The different cover systems considered are shown on Figure 26 and the components of the cover systems are described below from the top down for each alternative evaluated:

- □ Alternative A: 24 inches of vegetative cover, a geotextile/geonet/geotextile composite (geocomposite) drainage layer and a low permeability geosynthetic clay liner (GCL);
- □ Alternative B: 24 inches of vegetative cover, 12 inches of sand drainage layer and a low permeability geosynthetic clay liner (GCL);
- Alternative C: 24 inches of vegetative cover, 12 inches of sand drainage layer and a low permeability high-density polyethylene (HDPE) geomembrane liner; and
- Alternative D: 24 inches of vegetative cover, a geocomposite drainage layer and a low permeability high-density polyethylene (HDPE) geomembrane liner.

The Cap System is modeled in the HELP model as a layered system with different material properties to incorporate the vegetative cover (vertical percolation layer), the lateral drainage layer, the barrier soil layer (in this case the GCL) and/or the geomembrane liner if used in conjunction with a barrier soil. For determining the amount of infiltration down to the groundwater table, an unsaturated soil layer 17 ft thick below the Cap System was used for modeling. In addition to the evaluations completed for the above alternatives. an evaluation was completed without a Cap System for the existing conditions to determine the effectiveness of the Cap System.

The input data used for the evaluation of each of the Cap System alternatives is shown in the HELP model computer run outputs included in Appendix D-2. Based on the Cap System modeling results. Alternatives A and D would reduce the infiltration rates from 7 in/yr (existing

conditions) to about 0.9 in/yr and 0.2 in/yr, respectively. A summary of the infiltration evaluation results with the associated estimated installation costs per acre for each Cap System alternative are presented on Table 13. Alternative A, 24-in vegetative cover, a geocomposite and a GCL is considered the most appropriate Cap System for the Site in terms of effectiveness on reducing infiltration rates, ease of installation, less QA/QC and oversight required and an installed cost per acre similar to Alternative D (with a geomembrane liner instead of a GCL as the low vertical hydraulic conductivity barrier). The lower infiltration rate of 0.2 in/yr for Alternative D would not have any greater reduction on groundwater flow gradients across the PRB compared with Alternative A Cap System with an infiltration of 0.9 in/yr.

7.4 Groundwater Modeling

7.4.1 General

The occurrence and movement of groundwater in the Upper Aquifer at the Site is controlled by the aquifer parameters (e.g. thickness, transmissivity, leakage, etc.) and by the boundary conditions and external stresses (e.g. recharge areas, no-flow boundaries, pumping wells, etc.). These characteristics are manifested in the potentiometric data presented on Figure 13 for water levels collected in May 2000.

As indicated in Section 2, regional groundwater flow conditions at the Site are controlled by existing surface water drainage features and the amount of rainfall infiltration into the subsurface to the groundwater. The area is predominantly a groundwater recharge area with a documented groundwater flow divide (Golder 2000b) at or about U.S. Route 3.

An average of 6.7 to 7.2 inches per year depending on ground surface slope and depth to the groundwater table (unsaturated thickness) was estimated to infiltrate through the subsurface into the groundwater within the area of study as shown on Figure 24. This infiltration corresponds to about 17% of the average precipitation per year of 41 in/year as determined from the HELP modeling (see Section 7.3.4).

The objective of this modeling analysis was to predict the effect of the Cap System on the groundwater flow conditions at the Site in terms of groundwater flow gradients and flow direction changes. It should be noted that no model could provide an exact representation of the

hydrogeologic system being studied. While this model was based on the best available data and conservative assumptions were used where appropriate, the simulations presented herein are, as with any model, only an approximation of the way the system will behave when a Cap System is constructed at the Site.

7.4.2 Methodology

The numerical modeling investigation was conducted using the computer model MODFLOW (USGS, 1988) to simulate the aquifer system. A brief description of the model code and the general approach to the modeling investigation are presented below.

MODFLOW was developed by the United States Geological Survey (USGS, 1988) for threedimensional analysis of groundwater flow systems. The model uses a finite-difference approach to approximate the analytical solution of the partial-differential groundwater flow equation. MODFLOW has been used for similar aquifer studies in numerous areas nationwide and is generally considered to be the most widely used and accepted three-dimensional model available.

MODFLOW is based on approximations of flow through a three dimensional array of cells. Various aquifer input parameters are assigned to each individual cell within the model, which allows for spatial variations in aquifer parameters throughout the modeled system. This approach limits the number of inherent simplifying assumptions required by the model. The only major assumption is that Darcy's Law of flow is applicable.

The general approach to the groundwater flow modeling investigation is as follows:

- □ Develop a conceptual model of the aquifer system to define the hydrogeologic parameters and boundary conditions which control groundwater flow within the Upper Aquifer in the study area;
- Create a realistic numerical model using appropriate parameters and boundary conditions as input data;
- Calibrate the model by adjusting the parameter values until hydraulic heads conform, as close as practical, to known data; and
- Perform predictive simulations after a Cap System has been constructed at the Site.

the state of the

7.4.3 Model Set-up

Model set-up included the creation of a suitable model grid to represent the Upper Aquifer within the area of interest. For the Cap System Design, a grid system of 67 rows and 113 columns resulting in 7,571 blocks (or cells) with a uniform cell size of 50 ft by 50 ft was used to model local groundwater flow regime, covering a representative area of approximately 435 acres.

The system was modeled using a single layer with an impermeable base at 105 ft. msl. The lateral model boundaries were primarily simulated as drains with specified heads based on elevations representing the streams and drainages that surround the Site. No-flow boundaries were specified in areas where streams are not present. The model grid is shown on Figure 27 and the surface water drainage features were modeled as drains deplicted as small circles on this figure.

The modeling grid includes the modeled area above 105 ft. msl, which represents the limits of the Upper Aquifer. Therefore, the minimum elevation of the drains was set at 105 ft. msl to simulate the effects of seepage faces occurring near the base of the aquifer (above 105 ft. msl) at the point of discharge.

7.4.4 Model Input Parameters

Model input parameters used in MODFLOW (those representing the hydraulic characteristics of the system) consist of the following:

- □ Lateral hydraulic conductivity (K);
- **Q** Recharge from infiltration due to precipitation (I); and
- **D** Bottom of Aquifer.

Site-specific hydrogeologic data was used as input parameters as follows:

- □ Hydraulic Conductivity ranging between 4.0 x 10⁻⁴ cm/sec to 1.5 x 10⁻³ cm/sec (i.e. 1.1 ft/day to 4.3 ft/day)
- $\square Recharge = 7 in./yr (0.0016 ft/day)$
- \Box Bottom of Aquifer = 105 ft. msl

AR301167

1912 E. B. S. S. S. S.

The aquifer was assumed to be heterogeneous (varying lateral hydraulic conductivity) within the range of values obtained from previous hydrogeologic tests performed at the Site (Table 13). Uniform recharge was applied across the Site except in those areas covered by buildings and paved parking lots, which were assumed to have zero recharge (see Figure 27) with adequate surface water drainage and management. Current and proposed surface water drainage and management are detailed later in the Cap System design, Section 7.5.3, which will ensure infiltration is zero in these paved areas. All simulations were run under steady state conditions. The output of the model is generated in the form of potentiometric head contours across the modeled area.

7.4.5 Model Calibration

The numerical flow model was calibrated by varying selected input parameters and comparing calculated heads to known heads until a reasonable match was obtained. The calibration strategy was to initially vary the best know parameters as little as possible, and vary the lesser-known values the most. Hydraulic heads were calibrated to the May 2000 potentiometric groundwater level data (see Figure 13).

The model was primarily calibrated by varying hydraulic conductivity and comparing calculated heads to known heads until a reasonable match was obtained. Hydraulic heads were calibrated to potentiometric levels measured in May 2000. Hydraulic conductivity was varied between 4.0 x 10^{-4} cm/sec and 1.5 x 10^{-3} cm/sec (i.e. 1.1 ft/day to 4.3 ft/day), representative of pump test data (see Table 12). The hydraulic conductivity data selected for calibration of the model are shown on Figure 27, with three distinct areas of differing hydraulic conductivities based on pump test data. Drain elevations were also varied slightly in selected areas to simulate changes in elevation. Recharge and aquifer thickness were not varied during the calibration process.

Calibrated potentiometric heads are shown on Figure 28. In general, calculated heads were within 0.5 feet of the observed heads in the May 2000 sampling event. The groundwater flow model prepared for the Cap System Design is considered appropriate for determining the impact of the Cap System on the PRB Design.

7.4.6 **Predictive Simulation**

Using the calibrated groundwater model, the Cap System was incorporated into the model to evaluate the impact the Cap System would have on the groundwater flow and ultimately the design of the PRB System. The model was modified by adding the Cap System area and reducing the average infiltration rate of 7 in/yr for the existing conditions to the predicted 0.9 in/yr within the area covered by the Cap System (Alternative A). The new potentiometric contours depicting changes in groundwater flow based on this reduction in infiltration are shown on Figure 29.

The new flow gradients perpendicular to the PRB alignment are shown on Figure 30. In general, the Cap System reduced groundwater flow gradients perpendicular to the PRB by 19 to 31% along the PRB alignment for Design Case I, by 27 to 70% along the PRB alignment for Design Case II, by 30 to 51% along the PRB alignment for Design Case III and by 22 to 30% along the PRB alignment for Design Case IV.

7.4.7 Impact of Cap System on PRB Design

The VOC degradation performance of a PRB is dependent on the residence time of the contaminated groundwater in the presence with the iron fillings. The velocity of groundwater in a highly permeable reactive barrier can be quantified from the natural hydraulic gradient of the Site, hydraulic conductivity of the soils, and the porosity of the PRB as described in the PRB design, Section 8.2.

The actual contact time of the contaminated groundwater with the iron filings is calculated from the groundwater velocity in the PRB, the PRB thickness and the volume percent of iron filings comprising the reactive barrier material. The required residence time, and hence PRB thickness and required iron filings depend on the extent of contaminant degradation required. This residence time depends on the influent contaminant concentration, degradation half life and pathway, daughter product generation and degradation and the design effluent contaminant concentration. The addition of the Cap System as part of the PRB Remedy will have a significant impact on the groundwater flow gradients perpendicular to the PRB alignment as shown on Figure 30. This reduction in horizontal flow gradients across the PRB will result in lower flow velocities and an increased residence time in the PRB and therefore reduce the required PRB effective thickness for the same reduction in VOCs. The impact of the Cap system on the PRB system was first evaluated following completion of the groundwater modeling for the PRB section designated as Design Case III (see Section 8.0). For PRB Design Case III without a Cap System, the PRB would need to be at least eight (8) inches thick; whilst, with the Cap System the PRB could be reduced to 4.5 inches in thickness to achieve effluent VOCs concentration levels below their respective MCLs. The impact of the Cap System on the PRB effective thickness makes azimuth controlled vertical hydrofracturing technology (see Section 9.0) more competitive, and thus reduces issues associated with surface water management during construction as well as potential waste management and waste disposal costs. The final groundwater modeling analysis of the Cap System was used directly as input data into the PRB design, as described in the PRB design in Section 8.0.

7.5 Cap System Design

7.5.1 General

The functional requirement of the Cap System is to significantly reduce infiltration rates of rainfall into the subsurface and ultimately reduce the groundwater hydraulic flow gradients across the PRB System. The addition of the Cap System as predicted by the groundwater modeling had a significant impact on the groundwater recharge conditions within the Site, and therefore reduced both groundwater flow gradients across the PRB and the amount of groundwater flux passing through the PRB System.

In general, the evaluation and design of the Cap System considered the following:

- Geotechnical and hydrogeologic data collected for the Site during previous investigations and the additional data collected during the PRB Pre-Design Field Investigation Program;
- **D** Topography and Surface Water drainage Patterns;
- **D** Existing Site Features and Structures:

- □ Climate Data (precipitation, temperature, etc);
- Cap System Composition and Thickness;
- □ Cap System Configuration, Construction and Vegetation;
- Cap System Surface Water and Internal Drainage;
- Cap System Long Term Maintenance and Contingencies Plan;
- Impact of Cap System on Future Land Use; and
- Impact of Vegetative Cover on Natural Wildlife Habitat.

7.5.2 Cap System Configuration

The design of the Cap System considered existing topography, climatic data (rainfall, frost penetration, temperature, etc), availability of on-site borrow soils for the vegetative cover, cover surface and internal drainage management and long term maintenance. A topographic map was developed for the area where the Cap System is proposed detailing existing surface water management features.

The proposed location of the Cap System is shown in plan on Figure 31 and covers an area of approximately four and one half (4-1/2) acres. The cover system is designed with a 1 % minimum surface slope and a maximum slope of 3H:1V. Surface water drains from the cover system to two (2) main ditches for proper surface water management as shown on Figure 31.

The HELP model (Schroeder, et. al. 1994) was used to evaluate different cover system configurations (Alternatives A through D) as discussed in Section 7.3.5 and shown on Figure 26. The selected cover system for the Site (Alternative A) consists from top to bottom of 24 inches of vegetative cover, a geotextile/geonet/geotextile (geocomposite) drainage layer and a geosynthetic clay liner (GCL). The cover system internal geocomposite drainage layer will drain on a minimum slope of 1% towards two (2) infiltration collection drains draining at a minimum slope of 1% as shown on plan on Figure 32. A cross section of the Cap System showing surface and internal drainage grades and as well as typical details are shown on Figures 33 and 34.

7.5.3 Surface Water Management

The existing surface water management of the Site includes a network of underground storm drainage pipes collecting rainfall water from the existing building and parking lot, and surface water ditches collecting surface water within the proposed footprint of the Cap System as shown on Figure 35. The design of the surface water management control structures for the proposed Cap System has considered existing drainage patterns and modification to drainage patterns caused by the final Cap System grades. In general, the drainage patterns after the construction of the cover system will be similar to those of the existing conditions. The proposed Cap System Surface Water Management Plan is shown on Figure 36.

The computer program TR-55 (Soil Conservation Service 1986) was used to determine peak flows based on proposed cover final grades and rainfall as detailed in the TR-55 reference manual for the 2 yr (3.4 inches) and 25 yr (6.3 inches) 24-hr storm events. Drainage catchment delineation and time of concentration data were determined based on the cover configuration. Ground cover and soil type were conservatively assumed to be short grass and low-permeability soil, respectively. Soil Type C was used in the analysis and the drainage catchment areas were assumed to be grassed in fair condition with 50% to 75% cover. A maximum peak flow of 16 cfs (Drainage Area A) was produced from the cover system catchment areas. The TR-55 model uses sheet flow for lengths of less than 300 feet and shallow concentrated flow for drainage lengths greater than 300 feet. The drainage catchment areas and the ditch design calculations are detailed in Appendix E. The ditches are labeled on Figure 36 and are denoted as Ditch A, Ditch B-1, etc.

Flow velocities in the two (2) channels (Ditches A and B) were determined using Manning's equation for open channel flow. Ditch A flows at a slope of 2.2% while Ditch B flows at slopes of 1%, 7.5% (Section B-1) and 4.8% (Section B-2 including Culvert B). Flow velocities in Ditch A and in the 1% slope section of Ditch B will be less than 5 ft/sec and therefore grass is \neq sufficient for surface erosion control. However, the portion of the ditch with slopes of 7.5% (Section B-1) and 4.8% (Section B-2 including Culvert B) will require either rip-rap or a reinforced erosion control mat for surface erosion control as flow velocities will be 6.2 and 5.3 ft/sec, respectively. Flow quantities from melting snowfall were estimated and compared to the design flows for the ditches. The ditches were designed with a trapezoidal cross section with

م مراجع المحكوم في المحكوم في الم

3H:1V side slopes, 1.5 feet deep and 2 feet wide at the bottom draining at a minimum slope of 1%. A typical detail of the drainage ditches is shown on Figure 33.

Proper vegetation of cover systems is essential for proper cover performance, erosion control and long-term maintenance. The objective of the vegetative cover for the Site is as follows:

- To stabilize the Soils;
- To provide a low maintenance, long-term plant community;
- **D** To provide a structurally diverse grassland habitat for birds and other wildlife; and
- □ To use native plant species whose seeds are available commercially.

The vegetative cover will be planted with a mix of native warm and cool season grasses. The following seeding rates per acre will be used:

Big Bluestem (andropogon gerardi)	4lbs/acre
Little Bluestem (schizacrium scorparium)	6 lbs/acre
Switchgrass (panicum virgatum)	2 lbs/acre
Indiangrass (sorghastrum nutans)	6 lbs/acre
Canada Wild Rye (elymus candensis)	10 lbs/acre
Partridge Pea (cassia fasciculata)	2 lbs/acre
Annual Rye Grass (lolium multiflorum)	25 lbs/acre.

The above seeding rates are acceptable for planting in the early spring, late summer or fall.

ŕ

Ť

8.0 DESIGN OF IRON PRB SYSTEM

8.1 Full Scale Iron PRB Geometry

The proposed location of the PRB is shown in plan on Figure 37 and in profile on Figure 38. The PRB is proposed to extend for a length of 1,165 ft in plan from a depth of approximately 15 ft down to 42 ft below ground surface and keyed into the underlying aquitard covering an area of approximately 24,000 ft². The PRB is orientated approximately perpendicular to the groundwater flow direction, as indicated from the groundwater potentiometric levels shown on Figure 13. The groundwater VOC concentrations for TCE and PCE along the PRB cross section are detailed on Figure 38. VOC concentration contour maps for TCE, PCE, and 1,1-DCE are shown on Figures 14, 15 and 16, respectively.

8.2 PRB Groundwater Residence Time

4°

The VOC degradation performance of a PRB is dependent on the residence time of the contaminated groundwater within the iron fillings. The PRB is designed to be more permeable that the site soils, to ensure the permeable barrier does not impede the groundwater flow, and also to have a high PRB porosity to maximize the groundwater residence time within the iron. In order to select the final iron size gradation suitable for the Site, it is essential to have Site specific soil gradation data to design the PRB. Modified filter pack design criteria are used to confirm that the selected iron filings material and native soils do not commingle due to the groundwater flow velocity.

The velocity of groundwater in a highly permeable reactive barrier can be quantified from the natural hydraulic gradient of the Site, hydraulic conductivity of the soils, and the porosity of the PRB as shown in the following equation:

$$V_{PRB} = \frac{K_{soil} \cdot i}{n_{PRB}}$$
(5)

where V_{PRB} is the groundwater flow velocity through the PRB, K_{soit} is the hydraulic conductivity of the soils, *i* is the natural horizontal hydraulic gradient of the Site and n_{PRB} is the porosity of the PRB.

AR301174

19111111111111

The actual residence time of the contaminated groundwater with the iron filings is calculated from the groundwater velocity in the PRB, the PRB thickness and the volume percent of iron filings comprising the reactive barrier material as shown in the following equation:

$$t_{iron} = \frac{T_{PRB} \cdot I_{v}}{V_{PRB}}$$
(6)

where t_{iron} is the residence time of the groundwater in contact with the iron filings, T_{PRB} the thickness of the PRB, and I_v is the volume percent of iron filings in the PRB.

The required residence time, and hence PRB thickness and required iron filings depend on the extent of contaminant degradation required. This residence time depends on the influent contaminant concentration, degradation half life and pathway, daughter product generation and degradation and the design effluent contaminant concentration.

8.3 Design Approach

The iron filings size gradation used for construction of the PRB needs to be selected to ensure the native soils do not enter the reactive barrier material and likewise the iron filings are not flushed out of the PRB into the native soil. Modified filter pack design criteria are used to confirm that the selected iron filings material and native soils do not commingle due to the groundwater flow velocity.

The design of the iron reactive material requires optimizing the hydraulic conductivity of the iron filings to be greater than the native soils, and also ensure a high PRB porosity without violating the filter pack design criteria. Thus by optimizing the iron reactive mixture, the greatest residence time can be achieved resulting in the use of less iron which lowers the cost of the PRB.

The input parameters, site soil hydraulic conductivity, iron porosity and site hydraulic gradients determine the groundwater flow velocity within the barrier. The iron column test quantifies the degradation half lives of the contaminants in the presence of the iron, and addresses potential impact of any precipitation or clogging of the iron. The influent contaminant concentration and the target effluent contaminant concentration (the design criteria), enable quantification of the

AR301175

•

April 2001

minimum residence time and hence barrier thickness to achieve the required target effluent concentrations.

Deterministic design procedures, whilst adequate for feasibility evaluation design, are not sufficient for final iron permeable reactive barrier design because factors of safety from past practices are not available for such systems. Probabilistic methods, on the other hand, can accommodate variability in parameter data and are ideally suited for system design such as an iron permeable reactive barrier. The probabilistic method enables quantification of the degree of confidence that contaminant effluent concentrations are not exceeded. Probabilistic analyses quantify the impact of parameter variability on overall system performance and thus rank the parameter by sensitivity.

PRBs are designed for effluent concentrations that in combination with natural attenuation (NA) (biodegradation, dispersion, absorption, etc.) would meet target concentrations at a determined Site Compliance Point (SCP). This proposed design methodology (Hocking et. al., 2001a) is shown on Figure 39 and has been utilized at a number of sites, including Superfund sites, for PRB design. At this Site the PRB and Cap System is deemed sufficient as the means to reduce VOCs to below MCLs immediately downgradient of the PRB. An overview of the probabilistic design methodology was given on Figure 9. Probabilistic distributions are assigned to all of the system's parameters based on their expected variability. Not only are site data; such as hydraulic conductivity and hydraulic gradient, system parameters, but so are installed barrier thickness and porosity. The probabilistic analysis quantifies the impact of each respective system parameter on system performance; that is, a sensitivity analysis, which ranks the parameter from the most to the least sensitive.

A multi-species first order VOC degradation model coupled with the probabilistic model was used to determine effluent concentrations emanating from the PRB. A one dimensional (1D) fate and transport deterministic model was used for determining degradation rates of the remnant plume of TCE (worst case) downgradient from the PRB as treated effluent groundwater with VOCs concentration levels less than MCLs emanates from the PRB and flushes the downgradient formation soils.

8.4 Prediction of Iron PRB Performance

8.4.1 PRB Design Cases Analyzed

The iron reactive barrier system performance was evaluated based on the ability of the system to reduce VOC groundwater concentrations to less than their MCL levels. Four (4) critical design cases were evaluated in the PRB design for four sections of the PRB alignment as shown on Figures 40 and 41. The four design cases arise due to the differences in estimated groundwater flow hydraulic gradients and the concentration levels of VOC contamination (mainly TCE, PCE, and 1,1-DCE) present. Probabilistic distributions for prime design input parameters (formation hydraulic conductivity, groundwater flow gradient, and TCE, PCE and 1,1-DCE concentrations) are shown on Figures 40 and 41 for the four design cases analyzed. Probabilistic distributions for other design input parameters (VOCs degradation half lives, other VOC concentrations, PRB iron porosity and iron PRB effective thickness) are included in Appendix F for the Design Cases I, II, III and IV. An additional analysis was completed for Design Case III without the Cap System (utilizing groundwater flow gradients for the existing conditions, see Section 7.4.5 and Figure 30). The sections below describe in more detail each design case and expected PRB performance.

Design Case I: This design case is for the segment of the PRB (high groundwater flow gradient and medium to low VOC concentrations) located immediately upgradient from the head waters of Scates Branch for a length of 200 ft along the PRB alignment, where the PRB is located close to where the groundwater discharges into the Scates Branch. This design case requires a 4.5-in average iron-effective-thickness PRB installed in soils with a hydraulic conductivity (K) ranging from 3 x 10^{-4} to 3 x 10^{-3} cm/sec with a geometric mean of 1 x 10^{-3} cm/sec, a groundwater flow gradient (i) ranging from 0.011 to 0.025 ft/ft with a mean of 0.016 ft/ft, influent VOC concentrations for PCE ranging from 1,145 to 1,840 µg/l with a mean of 1,530 µg/l, for TCE ranging from 100 to 2,875 µg/l with a mean of 1,055 µg/l, for 1,1,1-TCA ranging from 35 to 350 µg/l with a mean of 200 µg/l and for 1,1-DCE ranging from 35 to 1,035 µg/l with a mean of 355 µg/l. The PRB VOC effluent concentrations along this section of the PRB are predicted to be less than their respective MCLs.

Design Case II: This design case is for the segment of the PRB (low groundwater flow gradients and medium to high VOC concentrations) located downgradient from the existing sewage lagoons along the property line extending for a length of 350 ft along the PRB alignment. This

design case requires a 3-in average iron-effective-thickness PRB installed in soils with a hydraulic conductivity (K) ranging from 3 x 10^{-4} to 3 x 10^{-3} cm/sec with a geometric mean of 1 x 10^{-3} cm/sec, a groundwater flow gradient (i) ranging from 0.0017 to 0.016 ft/ft with a mean of 0.0062 ft/ft, influent concentrations for PCE ranging from 1,275 to 5,030 µg/l with a mean of 3,120 µg/l, for TCE ranging from 2,125 to 41,975 µg/l with a mean of 22,110 µg/l, for 1,1,1-TCA ranging from 400 to 1,600 µg/l with a mean of 1,000 µg/l and for 1,1-DCE ranging from 765 to 4,945 µg/l with a mean of 3,325 µg/l. The PRB VOC effluent concentrations along this section of the PRB are predicted to be less than their respective MCLs.

Design Case III: This design case is for the segment of the PRB (medium groundwater flow gradients and high VOC concentrations) located downgradient from the large existing sewage lagoon along the property line extending for a length of 300 ft along the PRB alignment. This design case requires a 4.5-in average iron-effective-thickness PRB installed in soils with a hydraulic conductivity (K) ranging from 3 x 10^{-4} to 3 x 10^{-3} cm/sec with a geometric mean of 1 x 10^{-3} cm/sec, a groundwater flow gradient (i) ranging from 0.0051 to 0.015 ft/ft with a mean of 0.011 ft/ft, influent concentrations for PCE ranging from 1,485 to 5,465 µg/l with a mean of 4,270 µg/l, for TCE ranging from 10,625 to 46,575 µg/l with a mean of 35,000 µg/l, for 1,1,1-TCA ranging from 400 to 1,600 µg/l with a mean of 1,000 µg/l and for 1,1-DCE ranging from 700 to 4,140 µg/l with a mean of 2,780 µg/l. The PRB VOC effluent concentrations along this section of the PRB are predicted to be less than their respective MCLs.

Design Case IV: This design case is for the segment of the PRB (medium groundwater flow gradient and medium to low VOC concentrations) located upgradient from the head waters of South Fork Scates Branch for a length of 315 ft along the PRB alignment. This design case requires a 3.5-in average iron-effective-thickness PRB installed in soils with a hydraulic conductivity (K) ranging from 3×10^{-4} to 3×10^{-3} cm/sec with a geometric mean of 1×10^{-3} cm/sec, a groundwater flow gradient (i) ranging from 0.0043 to 0.015 ft/ft with a mean of 0.0093 ft/ft, influent VOC concentrations for PCE ranging from 425 to $2.015 \mu g/l$ with a mean of $1.300 \mu g/l$, for TCE ranging from 975 to $14.375 \mu g/l$ with a mean of $6.145 \mu g/l$, for 1.1.1-TCA ranging from 50 to 200 $\mu g/l$ with a mean of $125 \mu g/l$ and for 1.1-DCE ranging from 380 to 950 $\mu g/l$ with a mean of 640 $\mu g/l$. The PRB VOC effluent concentrations along this section of the PRB are predicted to be less than their respective MCLs.

8.4.2 PRB Design Performance Forecast

Forecasts of groundwater effluent VOC concentrations for Design Cases I, II, III and IV are presented on Figures 42, 43, 44 and 45 respectively. The probabilistic design output data are presented as frequency charts for select VOCs (PCE, TCE, cDCE, 1,1-DCE and VC) and as 85 percentiles for all VOCs encountered in the groundwater or VOC daughter products generated by the PRB. The results of the probabilistic analysis performed for Design Cases I, II, III and IV indicate that a 3 to 4.5-in average iron-effective-thickness PRB (depending on design case) is required to bring VOCs encountered in the Site groundwater to less than their respective MCLs.

For determining degradation rates of the remnant plume of TCE (worst case) downgradient from the PRB, a one dimensional (1D) fate and transport transient model was used for the analysis. The model was calibrated to TCE concentrations in monitoring wells MW33 and MW26 as shown on Figure 46. Plume degradation profiles for TCE were calculated at 0.5, 1, 2 and 5 years after the PRB and the Cap System are installed. The results, shown on Figure 46 and in Appendix F-2, indicate that concentrations of TCE and other VOCs encountered in the groundwater will be quickly reduced immediately downgradient of the PRB, and the remnant plume downgradient of the PRB will slowly recede depending on groundwater flow velocities and soil desorption rates.

8.5 Proposed Iron Manufacturer Type and Gradation

The proposed iron filings to be used in the construction of the PRB are Connelly type CC-1022, which has typical mineralogy, grain size distribution, specific gravity and permeability as given in Appendix A. This iron grade is typically classified as a -18/+84 mesh size. CC-1022 has a hydraulic conductivity of approximately 1 x 10^{-1} cm/sec as detailed from permeability tests contained in Appendix A-2. The mineralogy of the iron is typically as detailed in Appendix A-7. Golder has been using this iron type successfully in azimuth controlled vertical hydraulic fracture installed PRBs over the past two (2) years and this iron type could also be used for a PRB constructed by either the slurry wall or continuous trencher installation methods.

An iron soil filter analysis is conducted to ensure the iron and soil particles do not commingle, i.e. either the soil particles do not invade the iron and thus reduce the iron PRB porosity and permeability or the iron particles do not migrate into the Site soils. The iron soil filter analysis involves comparing the grain size gradation coefficients (D_{15} and D_{85}) with the following criteria

April 2001

(7)

(8)

as detailed in equation (7) for particle commingling and in equation (8) for permeability contrast, Cedergren (1985).

$$D_{15}(\text{iron}) < 5D_{85}(\text{soil})$$

D15(soil)<5D85(iron)

If the following criteria is satisfied as detailed in equation (8), then from grain size data the iron PRB will have greater permeability than the neighboring formation soils.

$$D_{15}(iron) > 5D_{15}(soil)$$

The Connelly CC-1022 iron filings satisfied the above criteria, and the Site soils satisfied the first criterion for particle commingling. Therefore the Connelly CC-1022 iron filing was considered suitable for the construction of the iron PRB as regards iron soil filter requirements.

8.6 Groundwater Well Sand Pack Screen Analysis

The sand pack to be used in the construction of the PRB groundwater monitoring/pulse test wells needs to satisfy both the sand pack Site soil filter analysis to avoid Site soil migrating into and clogging the sand pack but also the sand pack gradation needs to be compatible with the well screen to avoid clogging of the screen and migration of fines into the wellbore. The sand pack filter analysis involves satisfying both of the following criteria, equation (9) for the Site soils filter criteria and equation (10) for the slotted well screen, Cedergren (1985).

The sand pack filter criteria for the Site soils are:

$$D_{15}(sand) < 5 D_{85}(soil)$$

$$D_{15}(sand) > 5 D_{15}(soil)$$

and the sand pack gradation criterion for the slotted well screen is:

AR301180

and the set

(9)

1

÷

 $D_{85}(sand) > 1.2$ Slot Width

(10)

A typical 20/40 gradation sand pack will satisfy the above criteria, however the size gradation tolerances of the sand pack must be detailed in the specifications to ensure all above criteria are met.

9.0 PROPOSED PRB INSTALLATION METHOD

9.1 Background

In situ passive iron reactive permeable barriers have been placed at a number of sites, dating back to the first constructed at CFB Borden in 1991 by the University of Waterloo. The early iron reactive barriers had been designed on the funnel and gate concept, Starr and Cherry (1994). Recently continuous permeable barriers have been installed by continuous trenching and azimuth controlled vertical hydrofracturing. The continuous permeable barriers do not modify the natural groundwater flow whereas funnel and gate systems impact the natural groundwater flow.

Iron reactive barriers have significant advantages over conventional technologies for remediation of chlorinated solvent contaminated groundwater, with the prime advantage being that the system is passive. It is a simple process that has been proven both in the laboratory and the field. Site characterization and laboratory bench scale studies are sufficient to design and construct an iron reactive barrier. The number of iron reactive barriers installed to date is detailed in Table 1. The first reactive barrier was constructed in 1991 as a field trial, followed by two in early '95, and during the past five years a number of full scale and pilot systems have been installed. The rapid increase in the number of iron PRBs installed reflects the increasing maturity and acceptance of the zero valent iron technology.

9.2 Zero Valent Iron

Zero valent metals have been known to abiotic degrade certain compounds; such as, pesticides as described by Sweeny and Fisher (1972), and halogenated compounds such as TCE, tetrachloroethene (PCE), vinyl chloride (VC) and isomers of dichloroethene (DCE) as detailed in Gillham and O'Hannesin (1994). In the case of zero valent iron, a first order reduction process can approximate the abiotic degradation of halogenated aliphatics. The compounds are progressively degraded and evéntually broken down into ethanes and ethenes, as described by Orth and Gillham (1996) and shown as reactive dehalogenation pathways on Figure 7. In the presence of iron, the chlorinated compound, TCE, is predominantly degraded through the chloroacetylene pathway with only a minor generates significantly less daughter products than those generated due to natural degradation. In column experiments, the mol fraction of TCE degraded into chlorinated daughter products such as c-DCE and VC is typically less than 5 -

10%, Gillham and O'Hannesin (1994). Five (5) year performance data of the Borden iron reactive barrier indicated no decline in degradation performance over time, minimal precipitation, and expectations that the reactive barrier will continue performing satisfactory for at least another five years, Gillham and O'Hannesin (1998).

9.3 Emplacement Methods

The placement of iron filings in the subsurface for passive in situ treatment of contaminated groundwater was first discussed by Gillham (1993). The mode of placing the iron filings has been by conventional technologies such as shoring and excavation, and trenching and recently during the past five (5) years by azimuth controlled vertical hydrofracturing. Seven alternate emplacement techniques were considered for the construction of the reactive barrier at the Site including a) slurry wall, b) continuous trenching, c) braced excavation, d) jet grouting, e) hydrofracturing technology, f) driven/vibrated beam and g) deep soil mixing.

The criteria utilized in selection of the most appropriate emplacement technology at the Site are: 1) minimal change to the natural groundwater flow regimes, 2) proven technology (maturity of the technology and previous installation of iron reactive systems), 3) minimal impact on the iron reactivity and permeability, 4) minimal excavation and disturbance (aerial extent of the impact, noise, volumes of excavated materials, etc.), and finally 5) cost.

A funnel and gate system involves the installation of an impermeable funnel by sheet piling, or slurry wall techniques and a permeable gate constructed by braced excavation. The funnels are generally keyed into impermeable strata to avoid contaminated groundwater flowing beneath the system. Such a reactive wall significantly impacts the natural groundwater flow regime and requires excavation to full depth of the system; therefore, this system was not considered a viable option.

A continuous permeable reactive barrier was selected as an optimum system since such a system has minimal impact on the natural groundwater flow regime. Hubble, Gillham and Cherry (1997) have completed an extensive review of emplacement technologies for permeable reactive barrier systems at similar depths to those encountered at the Site. This review assessed the maturity and applicability of the emplacement methods to construct a permeable reactive wall and finally determined cost comparisons for construction by each method. Of the seven

2 19 1 Sta

April 2001

emplacement methods considered; jet grouting, driven/vibration beams and deep soil mixing were removed from further consideration because all of these installation methods are not mature methods for the construction of an iron PRB. The braced excavation method was also not considered further due to its significant cost and site wide excavation and dewatering impacts.

The emplacement methods left for consideration are vertical biopolymer slurry wall, continuous trenching and azimuth controlled vertical hydrofracturing technology installation methods.

9.3.1 Slurry (Biodegradable-BioPolymer) Wall

Installation of a treatment zone of iron using biodegradable slurry is similar to constructing a conventional impermeable slurry wall. The biodegradable slurry used is typically guar based. As the trench is excavated, biodegradable slurry provides stability to the trench walls. Granular iron can then be placed into the trench through the slurry. After some time, the biodegradable slurry breaks down (i.e. become less viscous) allowing groundwater to flow through the iron treatment zone. The PRB is constructed in segments (alternate panel construction) to prevent iron filings placed in the neighboring segment from flowing into the current excavated segment.

Two full-scale and one pilot-scale systems application have been constructed in 1999 and in 2000, there have been three full-scale installations. These systems have included two continuous iron reactive barriers, one in New Hampshire and the other in Missouri. The continuous iron PRB installed in New Hampshire was more than 800 ft in length.

Some construction issues associated with this installation method include:

- □ Large quantities of potentially contaminated waste must be transported and disposed of and would be in a slurry consistency (even if waste is characterized as nonhazardous it may require stabilization before disposal);
- □ The clean soil above the water table is cross contaminated with the soils below the water table;
- □ Large quantities of hydrated gel need to be disposed of properly and could be contaminated;
- □ With over 20' of hydraulic head of bio-slurry gel on the soils below the water table, horizontal migration of gel with no enzyme can occur;

- \Box The width of the trench ~2.5' will require blending of sand with the iron aggregate;
- □ The width of the trench along with the depth to the sand-iron mixture, approximately 20', will dictate a higher level of safety for personnel performing job related tasks (i.e. placement of iron, placement of enzyme recirculation wells, sounding the height of the sand-iron mix);
- The production rate of PRB installation is relatively slow, estimated at 33 feet per day based on contractors experience installing PRBs using alternate panel construction technologies;
- □ With all slurry wall excavations, the repeated entry into the slurry to continue the excavation depth with a backhoe bucket or clam shell progressively blends fines; i.e. siltys and clay, into the slurry which combined with the hydraulic head of the slurry may deposit a low permeability filter cake on the walls of the excavation. The long term effect of this may decrease the permeability of the installed PRB and could cause local damming; and
- The continuous trucking of waste hauling, excavator movement and iron placement activities requires a high level of health and safety oversight in order to maintain a safe working environment.

9.3.2 Continuous Trenching

Continuous trenching machines have been used for several years to install horizontal groundwater collection drains and impermeable barriers. These machines allow simultaneous excavation and backfilling without an open trench. Excavation is performed by a cutting chain immediately in front of a trench-box (boot), which extends the width and depth of the finished treatment zone. Both the cutting chain and boot are attached to the trenching machine. As the trencher moves forward, iron is added to the boot creating a continuous treatment zone. Trenchers are available to install treatment zones from 1 to 2 ft in width to depths of 25 ft. Excavating a bench on which to operate the trencher may extend the total depth.

Continuous trenching was first used to install a PRB in 1996 at a site in Elizabeth City, North Carolina. About 450 tons of iron was placed in a trench 150 ft long and 24 ft deep. Since then, trenchers have been used for PRBs at sites in South Carolina, Oregon, Vermont, New York and Louisiana.

Some construction issues regarding this installation method:

- □ Wider bench bottom should be considered because two parallel excavations may be required for the following scenarios: 1) the required loading may be lower than the design due to soil rebound, 2) feed problems or 3) restart of trenching operations after prolonged shutdown of excavation process;
- □ The presence of running or loose sands and silts below the water table can result in low iron feed to these horizons making the PRB deficient in thickness in these loose sediments;
- □ For a high water table condition, benching may not be sufficient to allow for the continuous trencher to install the PRB down to its full depth (i.e. down to the aquitard unit);
- □ If iron density is higher than design take in excavation, then sand would have to be blended requiring equipment and graded sand to be on site during construction; and
- □ The production rate of a continuous trencher from cost estimates is from 140 to 210 a linear ft/day. If any supply or delivery problems occur standby time for the trencher contractor would occur. Contingencies such as extra blending equipment, trucks, crane, etc. must be considered against the stand-by costs.

9.3.3 Hydrofracturing Technology

Hydrofracturing technology has been used for other applications primarily in petroleum recovery for installing sand and sintered bauxite proppants into the subsurface and in environmental applications for enhancing permeability for soil vapor extraction systems. Azimuth controlled vertical hydrofracturing has been used to construct full-scale PRBs from moderate (~50') to significant depth (>120'), Hocking et. al. (1998 a & b and 2001b). Using the hydrofracturing technology, the PRB is constructed from a series of conventionally drilled boreholes along the PRB alignment with a specialized frac casing grouted into the boreholes. The PRB is constructed by injection of the iron filings into these frac casings with real time quality assurance monitoring of the injections to quantify the PRB geometry and iron loading densities. The hydrofracturing technology can place PRBs up to 8 inches thick (Hocking et al, 2000). For thicker PRBs, multiple parallel PRBs are required to be installed.

Some construction issues regarding this installation method:

- Proven technology with demonstrated effectiveness of placement of iron PRBs in similar geology and depth;
- Generally, not cost effective for shallow PRBs, i.e. < 30' depth;
- High standard of quality assurance and verification testes for assurance on constructed barrier geometry, continuity, iron loading and minimal impact on natural groundwater flow regimes;
- □ Minimal excavation and site disturbance; and
- Low personnel and property risk exposure.

9.4 Selected Emplacement Method Technology

The method considered most suitable, considering the PRB depth, PRB thickness and cost to install is the azimuth controlled vertical hydraulic fracturing technology. This technology has installed iron PRBs in similar geology and depths.

A detailed cost analysis on the preferred installation method for the iron PRB at the Site is summarized in Table 14. The method is capable of installing an iron PRB from 3" to 8" thick. Estimated costs for this method for construction of the PRB at this Site are significantly less than that of a continuous trencher or biopolymer trench. The selected method has no excavated waste, no excavation and of all the methods has the least disturbance and least impact to the Site groundwater flow regimes and the overall Site in general.

9.5 HydroFrac PRB Design

9.5.1 Overview of the Installation Method

The azimuth controlled vertical hydraulic fracturing placed iron PRB is constructed from conventionally drilled wells installed along the barrier alignment as shown diagrammatically on Figure 47. A controlled vertical fracture is initiated at the required azimuth orientation and depth in each well inside of a specialized frac casing utilizing downhole frac initiation tools. The iron filings are blended and injected in the form of a highly viscous degradable food grade quality gel, hydroxypropylguar (HPG). Multiple well heads are injected with the iron-gel mixture to form a continuous PRB. The gel biodegrades into water and sugars by the use of a suitable enzyme, and leaves in situ a permeable iron reactive treatment zone. The hydraulic fracturing technology is capable of installing iron permeable barriers from 3" to 9" in thickness.

Azimuth controlled vertical hydrofracturing technology, (Hocking, 1996, Hocking and Wells, 1997 and Hocking et. al. 1998a and b), consists of an injection delivery system comprising three prime components; 1) the fracture initiation device, 2) the controlled pumping equipment and 3) the real time monitoring and inverse algorithms for determining fracture geometry. The fracture initiation device is used to control the fracture orientation and is comprised of a suite of tools and fracture well casings. The selection of the initiation device is dependent on the geological formation, depth and the fracturing fluid required for the particular application. The hydraulic fracturing injection system consists of a mixing/blending and pumping system, which is specially designed to achieve a precise control of fracture fluid pressures and flow rates. The real time monitoring system provides feed back response to ensure the fractures are propagating and constructed as planned.

Field experiments have demonstrated that a) the vertical fractures can be placed at the required azimuth or bearing, b) continuous coalesced fractures are formed by the simultaneous injection of multiple fracture well heads, and c) fracture thickness can be controlled by a process of tip screen out or multiple fracture initiations. The technology, see Figure 47, involves installing injection wells along the PRB alignment, initiating the fracture at the correct orientation at depth and creating a continuous barrier by controlled injection of multiple well heads. To date the technique has been demonstrated to work in a range of soil and stress conditions, from loose cohesionless sands, to partly cemented dense sands, gravel, clay and silts.

The iron filings are transported to the site in either 55 gallon sealed numbered drums or 3,000 lb sealed numbered bags. Pre-shipment quality assurance tests on the iron are required to be completed and must be within specification prior to shipment. In the case of the iron filings in 55 gallon drums, the iron is discharged into the mixing and blending tank by a remote drum handler attached to an all terrain forklift. In the case of the iron filings being in 3,000 lb bags, the iron filings are pre-loaded into 3,000 lb capacity hoppers for discharge into the mixing and blending equipment.

The HPG is pre-mixed in a 3,000 gallon mixing tank utilizing a venturi blender and fed along with the iron filings into a 500 gallon mixing/blending tank. The iron and HPG are mechanically agitated to ensure the iron filings remain suspended and the mixture is then fed to the hydrofracturing pump and cross-linked in line on the pressure side of the pump. The pumping

u bhaile dhe shi t

system is specially designed to achieve a precise control of fracture fluid pressures and flow rates.

The PRB installation is monitored in real time to ensure mixture consistency, determine volume and weights of iron injected, and to determine the geometrical extent of the barrier thus ensuring it is constructed as designed. A general layout of the monitoring system used during construction of a PRB is shown on Figure 48. The real time monitoring of the PRB geometry involves active resistivity instrumentation equipment and specialized software, as shown on Figure 49. During injection, the iron-gel mixture is electrically energized with a low voltage 100 Hz signal. Downhole and/or surface resistivity receivers are monitoring the fracture fluid induced voltages and utilizing an incremental inverse integral model, the fracture fluid geometry can be quantified and displayed during the installation process.

High precision hydraulic pulse interference tests are utilized to demonstrate the minimal impact of the PRB on the site hydrogeology. Hydraulic pulse interference tests, Johnson et. al. (1966) and Kamal (1983), involve a cyclic injection of fluid into the source well, and by high precision measurement of the pressure pulse in a neighboring well, detailed hydraulic characterization between wells can be made, see Figure 50. The pulse interference test is highly sensitive to hydrogeological properties between the wells, and relatively insensitive to conditions outside of the wells. The hydraulic pulse interference tests are relatively short duration tests of approximately two (2) minutes maximum and involves the injection typically of less than ten (10) gallons of potable water. The test is a truly hydraulic transient test and can determine site hydrogeological properties, such as transmissivity and storativity, from generated "type-curves". Pulse interference tests are proposed to be conducted from new and existing pulse test/groundwater monitoring wells prior to PRB installation and after PRB installation. Comparison of before and after pulse interference data will confirm the minimal impact the PRB has on the site hydrogeology and thus the minimal impact on groundwater flow regimes.

Golder implements strict quality control procedures during construction of the PRB to provide the necessary assurance that the reactive barrier system's design performance requirements are achieved. Golder's construction quality control procedures and acceptance criteria concentrate on the following:

- □ In-line and batch consistency tests of the iron reactive mixture;
- □ Thickness and injected quantities of reactive iron;
- Geometry of the iron PRB monitored (active resistivity) during injection; and
- Quantification of hydraulic impact of the PRB from hydraulic pulse tests.

9.5.2 HydroFrac PRB Design Issues

The design of the iron PRB involves analyses to ensure the system can be constructed as planned and to detail those system requirements and material parameters necessary for PRB construction by the azimuth controlled vertical hydraulic fracturing technology. The analyses presented in this section are as follows:

- Crosslinked gel rheological and iron settling analysis to determine settling rate of the iron proppant in the crosslinked gel;
- Determination of in situ stress state with depth at the Site;
- Determination of the Site formation soil moduli with depth;
- Crosslinked gel leak off analysis simulating propagation of the hydraulic fractures in the Site soils;
- □ Iron proppant transport analysis to determine iron transport distances in the hydraulic fracture; and,
- Hydraulic fracture design analysis to simulate and to determine hydraulic fracture geometrical propagation, fracture thickness, and fracture propagation injection pressures and flow rates.

The above analyses and simulations are described in detail in the following sections. These analyses utilized data described earlier in the previous Section 6.0 and contained in Appendix A.

9.5.3 Crosslinked Gel Rheology and Iron Settling Analysis

The crosslinked HPG gel rheological properties were determined by a rotating cylinder viscometer as shown in Appendix A-6 (see Figure 1 and associated test results in Appendix A-6). The viscosity of the crosslinked gel is significantly greater than that for the uncrosslinked gel,

,

and exhibits a non-Newtonian behavior which can be represented by a non-linear power law model as given by equation (11), Gidley et al (1989).

$$\mu = K \dot{\gamma}^{n-1} \tag{11}$$

where μ is the viscosity, K and n are power law constants and $\dot{\gamma}$ is the shear rate. The best fit power law constants for the crosslinked gel are detailed on Figure 1 in Appendix A-6. The crosslinked gel viscosity model is utilized to determined iron transport properties within the hydraulic fracture and fracture propagation injection pressures.

The hydrofracturing installation method can place the iron filings in situ without mixing with the native soils. However, the iron filings size gradation needs to be selected to ensure the native soils do not enter the reactive barrier material and likewise the iron filings are not flushed out of the PRB into the native soil. Modified filter pack design criteria are used to confirm that the selected iron filings material and native soils do not commingle due to the groundwater flow velocity.

The design of the iron reactive material requires optimizing the permeability of the iron filings to be greater than the native soils, whenever possible, and also ensuring a high PRB porosity without violating the iron soil filter design criteria. Thus by optimizing the iron reactive mixture, the greatest residence time can be achieved resulting in the use of less iron which lowers the cost of the PRB.

The Site formation soil grain size and hydraulic conductivity data were presented in Section 6.3 and summarized in Tables 11 and 12, respectively. Iron filings grain size, specific gravity and hydraulic conductivity data are detailed in Appendix A-2. An iron soil filter analysis was conducted as detailed in Section 8.5 to ensure the iron and soil particles do not commingle, i.e. either the soil particles do not invade the iron and thus reduce the iron PRB porosity and permeability or the iron particles do not migrate into the Site soils.

The Connelly CC-1022 iron filings satisfied the criteria detailed in equations (7) and (8), and the Site soils satisfied the criterion, as given in equation (7), to avoid particle commingling of soil particles entering the PRB. The Connelly CC-1022 iron filings was therefore considered suitable for the construction of the iron PRB as regards iron soil filter requirements.

The grain size and specific gravity data for the iron filings, CC-1022, selected for construction of the PRB, are contained in Appendix A-2. The iron settling rate in the crosslinked gel is given by Stoke's Law for simple settling in a non-Newtonian fluid as given by equation (12), Gidley et al (1989).

$$v_{s} = \left[\frac{g \, d_{p}^{n+1} (\rho_{p} - \rho_{f})}{18 \, K \, (3)^{n-1}}\right]^{\frac{1}{n}}$$
(12)

where v_s is the settling velocity, g is the acceleration due to gravity, d_p is the particle diameter for a spherical particle, ρ_p and ρ_f are the proppant and gel fluid densities respectively and K and n are the non linear power law viscosity constants. The calculated settling velocity of the iron particles in the crosslinked HPG gel is less than 10⁻⁴ feet/sec and highlights that the iron filings will remain completely suspended in the crosslinked gel prior to breaking of the gel.

9.5.4 In Situ Stress State Profile with Depth

The in situ stress state in the Site soils need to be estimated in order hydraulic fracture design analyses can be conducted to determine optimal injection propagating pressures and flow rates. The estimate of both vertical and horizontal stress state with depth was developed from SPT blow count N values and from CPT data. First, the unit weight of the soils at various depths are estimated from the SPT N values and CPT data. From the soil unit weights the profile of vertical stress with depth can be easily determined. Pore water pressures were determined from CPT data and monitoring wells screened in the upper and lower aquifers.

Estimation of the horizontal and vertical stress state requires a series of correlations and corrections, as detailed in the following steps:

- □ The CPT data are referenced to SPT N values by the correlation detailed in Robertson and Campanella (1983);
- □ The SPT and CPT data, both referenced to SPT N values are corrected for overburden effects, as detailed by Skempton (1986) for fine sands;

GUIDER STESPA

- The relative density of the Site soils were determined from the corrected N values as detailed by Kulhawy and Mayne (1990);
- □ The vertical overburden stress profile was calculated from the relative densities of the Site formation soils;
- □ The friction angle of the soils was calculated from the correlation with relative density as described by Peck, Hanson and Thornburn (1974); and,
- □ The Ko (Coefficient of horizontal stress at rest) was determined from the friction angle of the formation soils, and the horizontal effective stress determined from Ko and the vertical effective stress.

The estimated in situ stress state profile at the Site is shown on Figure 51 for the horizontal and vertical effective stresses as determined from the available SPT and CPT data for borings and direct push measurements in the vicinity of the PRB alignment. The horizontal effective stress at 40 ft depth is approximately 10 to 12 psi.

9.5.5 In Situ Soil Modulus with Depth

The in situ soil modulus is estimated from correlations between pressuremeter tests, which provide a direct measurement of the horizontal modulus of cohensionless soils and corrected SPT N values. The soil modulus measured directly by the pressuremeter is approximately equivalent to the soil Young's Modulus (E_d). The estimation of soil Young's modulus from corrected SPT N values were determined from equation (13) as detailed in Ohya, Imai and Matsubara (1982).

$$E_{d} = 9.08 N_{c}^{0.66} P_{a}$$
(13)

Where N_c is the corrected SPT N values and P_a is atmospheric pressure in pounds per square foot (psf).

The estimated in situ soil Young's modulus with depth are shown on Figure 51 as determined from available SPT and CPT data collected in the vicinity of the PRB alignment. In general, the Site soils are of medium relative density and stiffness.

AR301193

COLDER STERNA

AR301194

9.5.6 Hydraulic Fracture Design Analysis

Hydraulic fracture design analyses have evolved from relatively simple models such as PKN (Perkins-Kern-Nordgren) and GdK (Geertsma-de-Klerk), as detailed in Gidley et al (1989), to three dimensional simulators incorporating poroelasticity continuum idealizations to discrete element discontinuum models modeling individual discrete particles. The objectives of conducting analyses by these models is to determine leak off of the fracturing fluid into the formation, transport of the iron proppant in the fracture, determination of fracture geometrical propagation for various fracture propagation injection pressures and flow rates. The simple elastic continuum models based on PKN assumptions are not suitable for analysis of hydraulic fracturing of unconsolidated sediments since the poroelastic effects and material behavior of the formation soils is not adequately represented.

Hydraulic fracture simulations were conducted using a proprietary model for the determination of fracture geometrical propagation, injection pressures and flow rates. Fracturing fluid leak off and iron proppant transport are also quantified in the model. The impact of pore pressure changes and dilatancy of the host formation soils during the fracturing process are essential parameters to be represented to achieve a realistic simulation. Input into the hydraulic fracturing model include:

- Leak off test coefficients Cw and Spurt for the crosslinked HPG gel;
- In-situ total and effective vertical and horizontal stress states with depth in the vicinity of the PRB alignment;
- □ Stiffness of the host formation being fractured;
- □ Viscosity of the crosslinked gel defined as a power law model;
- **G** Specific gravity of the iron filings and grain size distribution; and,
- Specific gravity of the crosslinked gel without iron filings.

The horizontal effective stresses for the Site formation soils were estimated from SPT and CPT data as described in Section 9.5.4 and shown as a depth profile on Figure 51. The viscosity of the crosslinked gel was determined from tests conducted by a rotating cylinder viscometer as described in Section 6.7 and detailed in Appendix A-6 (see Figure 1 and associated test results in Appendix A-6). The rheological behavior of the crosslinked gel was idealized as a power law

model as given by equation (11) and shown on Figure 1 in Appendix A-6. The leak off coefficient of the crosslinked gel was determined at stress levels representative of in situ stress conditions in a laboratory leak off apparatus, as described in Section 6.5 and illustrated along with test results in Appendix A-3 (see Figure 1 and associated test results in Appendix A-3). The stiffness of the Site formation soils were estimated from SPT and CPT data as detailed in Section 9.5.5 and shown on Figure 51.

The hydraulic fractures are initiated and propagated at the desired azimuth orientation as shown on Figure 52. The frac casing initiates the fracture and by controlling injection pressures and flow rates fracture azimuth is maintained. The fracturing fluid is water soluble in the uncrosslinked state and requires mechanical agitation to maintain suspension of the iron filings. In the crosslinked state the gel is insoluble in water and has sufficient viscosity to maintain suspension of the iron filings throughout fracture propagation and closure, see Figure 52. The iron filings are transported by the crosslinked gel to the extremities of the fracture as indicated on Figure 52. The various phenomena, such as leak off, non-linear viscosity and iron transport are computed throughout the simulations.

For the desired fracture propagation lengths and heights, the fracture injection pressures will be typically less than 15 psi above the in situ total horizontal ground stress at the fracture propagating tip. The injection pressures and flow rates for such fracture propagation will result in minimal leak off in even the most permeable of the formation soil horizons, i.e. generally unmeasurable in the field. Iron proppant will be transported to the full extents of the fracture geometry, and in the crosslinked gel the iron filings can be transported significantly greater distances, at least an order of magnitude greater, than the fracture propagated dimensions considered for construction of the PRB. The crosslinked fracturing fluid has sufficient viscosity and transport efficiency to create fully efficient fracture propagation dimensions contemplated in the construction of the PRB. In order to achieve the required density of iron loading, multiple fracturing initiations may be required at particular formation horizons; however, field data from earlier field hydraulic fractures will provide more accurate assessment of the required fracture injection pressures, flow rates and propagation dimensions.

10.0 CAP SYSTEM CONSTRUCTION

10.1 Cap System

Prior to the start of the Cap System construction activities, the existing sewage lagoons on the northeast of the property (see Figures 2 and 31) will need to be closed. The property owner, Mattatuck Electronics Technology, Inc. (Mattatuck) is responsible for closure of the lagoons. A lagoon closure plan dated April 19, 2000 was prepared and submitted by Mattatuck to the Virginia Department of Health, Water Division for review and approval. The proposed closure plan was approved by VDEQ in a letter dated May 26, 2000.

The proposed Cap System Design has incorporated the proposed lagoon closure plan submitted by Mattatuck and approved by VDEQ. Potential generation of gas from decomposition of the sludge in the lagoon will be vented out through the Cap System. A gas collection sand layer 12in thick, 10 ft wide will be placed immediately underneath the Geosynthetic Clay Liner (GCL) along the crest (high point) of the Cap System. Two vent pipes installed through the Cap System and connected to a 3" diameter perforated gas collection pipe placed within the sand layer will vent any gas entrapped underneath the Cap System.

A 7-foot high soil surcharge will be placed over the large lagoon area after the lagoon has been backfilled with compacted fill (Mattatuck's Plan) and left in place for three (3) months. Two temporary settlement plates will be installed over the top of the backfill material and underneath the surcharge fill to monitor settlement and settlement rates for three (3) months. The settlement and settlement rate data will be reviewed to verify expected long-term settlement is within the expected limits. The surcharge will then be removed and the Cap System constructed. The proposed surcharge program and revised change in Cap System grades (1 to 3%) will allow for expected remaining settlement to occur after removal of the surcharge and still result in final Cap System grades (vegetative cover and internal drainage system) greater than 1%.

There are six (6) existing monitoring wells, AR1, AR2 and AR3 associated with the monitoring of the two existing sewage lagoons and site monitoring wells MW10, MW11 and MW21, that lie in the proposed surface impermeable cap area. All of these existing wells will remain and the Cap System will be constructed around them. These existing wells will be monitored solely for potentiometric levels during each groundwater sampling event after Cap System construction.

The Cap System is designed so that soil borrow materials for the vegetative covers are excavated within the footprint of the Cap System area and, if necessary, from a borrow area adjacent to the Cap System within the Site. The surface slope of the Cap System will be graded with a minimum initial slope of 3% and a maximum of 3H:1V. The Cap System will consist from the top down of 24-in of vegetative cover, a geocomposite drainage layer and a geosynthetic clay liner (GCL) low permeability layer. Reinforced GCL will be used on the Cap System slopes (not including the 3H:1V surface water ditches side slopes) steeper than 10H:1V (10%) for cap stability.

Two main drainage ditches will be constructed to collect surface water runoff from the Cap System for surface water management as shown on Figure 36. The ditches and the vegetative cover will be grassed (seeded) using a mix as described in Section 7.5.3 and in the Technical Specifications. The vegetative cover will be planted with a mix of native warm and cool season grasses. The vegetative cover will stabilize the soils, provide a low maintenance, long-term plant community, provide a structurally diverse grassland habitat for birds and other wildlife, and will use native plant species whose seeds are available commercially.

Rip-Rap will be used for surface erosion protection at the outfalls of the two (2) new culverts discharging into the existing site drainage features, and erosion control matting will be placed along Ditch B-2 as required from ditch design calculations. The areas where rip-rap and erosion control matting are required are shown on Figure 36 and on the Construction Drawings.

Corrugated metal pipe (CMP) will be used for the two (2) new culverts that will be installed as part of the Cap System surface water management control structures. One culvert (Culvert A) will consist of two (2) 18" diameter CMPs and the other culvert (Culvert B) will consist of one (1) 24" diameter CMP to allow for design peak flows of 16 and 12 cfs, respectively. The locations of the two new culverts are shown on Figure 36 and on the Construction Drawings.

Typical details and cross sections for the construction the Cap System and surface water management controls (ditches, culverts, etc) are shown on Figures 33 and 34. A number of monitoring wells exist within the footprint of the Cap System and the new PRB construction and monitoring wells will also be constructed within the Cap System footprint. The Cap System geosynthetics (GCL and geocomposite) will be properly installed around the wells to minimize rainfall infiltration through the Cap System.

10.2 Construction Sequence

The construction of the Cap System will require a specific construction sequence to be followed. The construction sequence of the main activities for the Cap System construction is detailed below:

- 1. Site Preparation
- 2. Site Layout/Surveying
- 3. Implementation of Erosion and Sediment Control Measures
- 4. Construction of temporary surface water management control structures (i.e. ditches, etc)
- 5. Excavation of Soil Borrow Materials and Stockpiling
- 6. Cap System Internal Drainage Grading
- 7. Deployment of Geosynthetic Clay Liner (GCL)
- 8. Deployment of Geocomposite Drainage Layer
- 9. Placement of Vegetative Cover
- 10. Construction of Final Surface Water Management Ditches and Culverts
- 11. Grassing of Cap System Area, Ditches and Other Disturbed Areas (i.e. borrow areas)
- 12. Site Restoration
- 13. Construction Final Inspection, and
- 14. Demobilization

10.3 Cap System Technical Specifications

Technical specifications were developed for the different construction elements of the Cap System. The Technical Specifications have been prepared to ensure the Cap System is constructed in accordance with the intent of the design and the Construction Drawings. The Technical Specifications for the Cap System are included with the Cap System Construction Quality Assurance Plan in Appendix G-1.

10.4 Construction Quality Assurance Monitoring

Construction Quality Assurance (QA) procedures were developed for the construction of the Cover System. The QA procedures were developed to ensure that the Cap System is installed in

accordance with the Construction Drawings and Technical Specifications. The QA procedures address as a minimum the following:

- Geosynthetic Clay Liner (GCL) meets materials specifications and is installed in accordance with the Construction Drawings and Technical Specifications.
- Geocomposite Drainage Layer meets materials specifications and is installed in accordance with the Construction Drawings and Technical Specifications.
- □ Vegetative Cover Layer meets material requirements and is placed to the grades in accordance with the Construction Drawings and Technical Specifications.
- Protective vegetation and erosion control for Cap System, ditches and disturbed ground meet material requirements and are placed in accordance with the Construction Drawings and Technical Specifications.
- □ Aggregate Materials for the Cap System Internal Drainage Collection Ditch meet material requirements and are placed in accordance with the Construction Drawings and Technical Specifications.

The QA procedures are included in the Cap System Construction Quality Assurance Plan (CQAP) included in Appendix G-1.

10.5 Construction Quantities and Cost

The Cap System will cover an area of approximately four and one half (4-1/2) acres. The construction of the Cap System will require clearing and striping of approximately 5 acres, the excavation and stockpiling of approximately 25,000 yd³ of soils within the Cap System footprint and if necessary from a borrow area within the Site adjacent to the Cap System, deployment of approximately 200,000 ft² of GCL and 200,000 ft² of geocomposite drainage layer, placement of approximately 400 tons of No. 57 drainage stone along the Cap System internal drain ditches, placement of approximately 20,000 yd³ soils for the vegetative cover, installation of two (2) 18" diameter CMP culvert approximately 30 ft (60 ft total) long and one (1) 24" diameter CMP culvert approximately 40 ft long, placement of approximately ten (10) tons of 6" to 12" size riprap and 15,000 ft² of erosion control matting for ditch surface erosion control, approximately 2,000 linear feet of ditches for the Cap System internal drain and surface water management, seeding and mulching of approximately 5 acres, and installation of approximately 1,000 ft of 6' high chain link fence around the footprint of the Cap System Easement/Property Line.

April 2001

The estimated cost for the 4-1/2-acre Cap System is \$0.52M. Of this, \$0.20M is for earthwork, \$0.26M is for geosynthetics, \$0.03M is for drainage ditches and culverts, \$0.01M is for seeding and mulching, rip-rap and erosion control matting and \$0.05M is for construction QA/QC and Project Management. A summary breakdown of the different costs by labor, unit pricing and expenses is provided in Table 14 for the Cap System and PRB.

10.6 Cap System Final Design and Construction Schedules

A schedule for the Final Cap System, PRB and Cap System Design Submittals and PRB construction is outlined in Table 15. Provided Final (100%) Design EPA and VDEQ review comments are received by May 9, 2001, the PRB and Cap System contractor selection and contracting is scheduled to start by mid May 2001. The construction of the Cap System is dependent on the completion of the lagoon closure as detailed in the Mattatuck plan, see Task 25 in the schedule contained in Table 15. Cap construction activities, Task 26 and higher, can not be initiated until the lagoon closure is completed. Construction of the PRB and Cap System will the complete to be completed by the end of November 2001, provided Mattatuck complete lagoon closure by the end of June 2001. The construction of the Cap System will take approximately three (3) months and the construction of the PRB will take approximately four (4) months. Construction of the Cap System will be delayed if lagoon closure to be undertaken by Mattatuck is not completed by the end of June 2001. Some of the activities of the Cap System and PRB installation will be completed concurrently.

10.7 Performance Monitoring and Action Plan

A Performance Monitoring and Action Plan was developed for the construction of the Cap System and PRB. The Performance Monitoring and Action Plan is composed of seven (7) major components: a Construction Quality Assurance Plan (CQAP), a Performance Standard Verification Plan (PSVP), a Contingency Plan (CP), a Waste Management Plan (WMP), a Groundwater Monitoring Plan (GWMP), a Health and Safety Plan (HSP) and an Operations & Maintenance Plan (O&M). Separate CQAPs were prepared for the Cap System and the PRB. The Cap System CQAP is included in Appendix G-1 including the Technical Specifications. The other Plans are discussed under Section 11.5.

10.7.1 Cap System Construction Quality Assurance Plan (CQAP)

The CQAP describes the procedures, which are to be used during construction of the Cap System to ensure that the materials used meet or exceed specifications, and the Cap System is constructed in accordance with the Construction Drawings and Technical Specifications. The plan also details the records needed so that an appropriate "as-built" construction record can be prepared at the end of each phase of construction. The CQAP is supported by material technical specifications, which provide the criteria to be used to evaluate the suitability and/or acceptability of all of the materials required for construction. Technical specifications for the materials and installation requirements are included in the CQAP.

11.0 IRON REACTIVE PERMEABLE BARRIER SYSTEM CONSTRUCTION

11.1 Reactive Barrier System

The iron reactive permeable barrier system consists of installing a reactive barrier perpendicular to the natural groundwater flow direction as shown on Figure 37. The reactive barrier will be installed using the azimuth controlled vertical hydrofracturing installation method. The reactive barrier is 1,165 feet long in plan, and ranges in depth from approximately 15 feet down to a depth of 42 feet, as shown on Figure 38. The reactive barrier thickness will range between 3 and 4.5 inches in effective thickness depending on the design case, Design Cases I through IV, for the four (4) sections along the PRB alignment as detailed in Section 8.4 and shown in plan on Figures 40 and 41.

The PRB design will require the installation of a cross-sectional area of approximately 24,000 ft² of iron PRB. The PRB will be constructed from eighty two (82) hydraulic fracturing wells (denoted as F1 through F82) along the PRB alignment as shown on Figure 53 in plan and in section on Figure 54. The iron PRB will be 1,165 ft in length, orientated approximately perpendicular to the groundwater flow regime, be approximately 3" to 4.5" in average iron-effective-thickness for a total of 650 tons of iron filings injected into the subsurface, and extend from a depth of 15' down to a total depth of 42'. A total of thirty nine (39) subsurface active resistivity receiver strings (denoted as RR1 through RR39) will be installed offset from the PRB alignment as shown on Figure 53 to monitor the geometry of the PRB during construction.

The hydraulic effectiveness (impact of PRB installation method) of the PRB will be quantified from hydraulic pulse interference tests conducted from upgradient and downgradient wells installed along the alignment of the PRB. These wells will be installed to serve as PRB performance groundwater monitoring wells and construction monitoring hydraulic pulse test wells. The location of the proposed PRB construction and performance monitoring wells are shown on Figure 37. The hydraulic pulse interference source well will be pulsed and the hydraulic pressure response recorded on the other side of the barrier in the downgradient groundwater monitoring wells. From the response of these monitored pressure pulses the extent of the hydraulic effectiveness of the barrier can be quantified. The upgradient and downgradient wells will be screened at similar depth intervals. The installed thickness of the PRB will be verified by inclined direct push electrical resistivity (Beck et. al., 2000) and magnetometer (Hocking et. al., 2001a) profiles. Eight (8) inclined (approximately 30° to the vertical) profiles will be completed along the PRB alignment to verify installed PRB thickness.

Existing monitoring wells AR1, MW12 and MW33 and sixteen (16) new monitoring wells will be used for PRB groundwater performance monitoring and construction hydraulic pulse testing. Six (6) new monitoring wells will be installed upgradient of the PRB and ten (10) new monitoring wells will be installed downgradient of the PRB. These sixteen (16) new wells will be used for both PRB construction hydraulic pulse testing and PRB performance groundwater sampling events. Pulse tests will be conducted prior to PRB installation and after the PRB is completed to ensure groundwater flow is restored through the PRB.

The dehalogenation effectiveness of the iron reactive barrier will be quantified by measurement of volatile organic contamination in the groundwater sampled from both upgradient and downgradient groundwater wells.

11.2 Construction Sequence

The construction of the iron reactive permeable barrier system for the Site will require a specific construction sequence to be followed. The construction sequence of the main activities for the PRB construction is detailed below:

- 15. Site Preparation
- 16. Install and Develop Pulse Test/Groundwater Monitoring Wells
- 17. Conduct Pre-Wall Groundwater Sampling
- 18. Conduct Pre-Wall Pulse Tests
- 19. Install Active Resistivity Strings 🖌
- 20. Install Hydrofracturing Well Heads
- 21. Install Reactive Barrier
- 22. Conduct Real Time PRB Installation Monitoring and PRB Thickness Verification
- 23. Conduct Pulse Tests After Barrier Installation
- 24. Begin Post Wall Groundwater Monitoring
- 25. Clean Site and Demobilize

11.2.1 Site Preparation

As in any other construction project, the Site will need to be prepared to accommodate the different activities associated with the construction of the reactive barrier system. In general, the following activities will be required to be completed before barrier construction commences:

- 1. Grade Site and Install Decontamination Pad
- 2. Place Geotextile Fabric and Gravel / Access Roads
- 3. Set up Waste Handling/Storage System
- 4. Install Utilities, Fences and Signs

11.2.2 Performance Monitoring System Installation

The performance monitoring of the reactive barrier system is based on groundwater samples collected from downgradient of the barrier and tested for VOCs, metals and general analytical chemistry parameters as detailed in the GWMP. The groundwater monitoring wells will be installed immediately upon completion of Site preparation activities. Sixteen (16) new groundwater monitoring wells will be installed in addition to the three (3) existing wells (AR1, MW12 and MW33) as shown on Figure 37 for a total of nineteen (19) PRB groundwater monitoring wells. The wells will be screened (10ft) in the lower portion of the aquifer as detailed in the Construction Drawings.

The groundwater monitoring wells will be constructed with a 2-inch diameter polyvinyl chloride (PVC) casing (with a 2 foot long riser section extending above the ground surface) and extended to the top of the aquitard and grouted in place. The wells will be flush threaded 2-inch interior diameter (ID) Schedule 40 polyvinyl chloride PVC well casing with 0.010-inch slotted schedule 40 PVC screens installed inside the PVC. \neq

The wells will be completed with a 20/40 grade quartz-sand filter pack, in the screen horizon and 2 feet above top of screen, 5 feet of bentonite slurry above the sand pack, followed by the 5% bentonite powder/95% Portland[®] cement grout all in accordance with the Groundwater Monitoring Plan (GWMP). The wells will be capped with a concrete pad and locking steel or annodized aluminum protective cover.

AR301204

Salar S. Oak

Following installation, all of the wells will be developed with a bailer or submersible pump in accordance with the site specific GWMP.

11.2.3 Construction Quality Assurance Monitoring

Construction Quality Assurance (QA) procedures were developed to ensure that the PRB is installed in accordance with the Construction Drawings and Technical Specifications. QA procedures will address as a minimum the following:

- □ Iron filings grain size distribution and mineralogy;
- □ Iron/gel mix design including mix density, resistivity and viscosity (gel only);
- Hydrofracturing injection pressures;
- □ Iron filings placement rate per square foot of PRB by determining the PRB geometry by active resistivity mapping and the weight of iron injected in each hydrofracturing well; and
- Verification of PRB thickness by inclined profiling by electrical resistivity and magnetometer probes.

11.3 Construction Quantities and Cost

The PRB construction will require the installation of a cross-sectional area of approximately $24,000 \text{ ft}^2$ of iron PRB. The PRB will be constructed to have an average iron-effective-thickness, in the groundwater flow direction, of 3 to 4.5 inches depending on the PRB Design Case. Approximately 650 tons of iron filings will be required to construct the PRB. A total of sixteen (16) hydraulic pulse test/groundwater monitoring wells will be installed, as well as thirty nine (39) active resistivity strings and eighty two (82) hydrofracturing wells.

The estimated cost of the PRB and Cap System groundwater remedy is \$3.12M as detailed in Table 14. Of this cost, \$0.05M is for mobilization, procurement and demobilization, \$0.19M is for site preparation and site restoration, \$2.09 PRB construction and groundwater monitoring well installation, \$0.52 is for construction of the Cap System, \$0.16M is for the ETI license for the placement of zero valent iron into the subsurface for VOC degradation, and \$0.09M is for

waste disposal. A summary breakdown of the different costs by labor, unit pricing and expenses is provided in Table 14 for the construction of the Cap System and PRB.

11.4 PRB Final Design and Construction Schedules

A schedule for the Final Cap System, PRB and Cap System Design Submittals and PRB construction is outlined in Table 15. Provided Final (100%) Design EPA and VDEQ review comments are received by May 9, the PRB and Cap System contractor selection and contracting is scheduled to start by mid May 2001. Site preparation is expected to start in late May 2001 along with the installation of groundwater monitoring wells and hydrofrac wells, installation of the PRB System to start in late June 2001 and the Cap System construction to begin in early July 2001, depending upon the lagoon closure by Mattatuck as discussed in Section 10.6. Construction of the PRB and Cap System Remedy is expected to be completed by the end of November 2001. The construction of the Cap System will take approximately three (3) months and the construction of the PRB will take approximately four (4) months. Some of the activities of the Cap System and PRB will be delayed if lagoon closure by Mattatuck is not completed by the end of June 2001.

AR301206

1

11.5 Performance Monitoring and Action Plan

A performance monitoring and remedial action work plan was developed for the PRB and Cap System and consists of eight (8) major components, a Construction Quality Assurance Plan (CQAP), a Performance Standard Verification Plan (PSVP), a Groundwater Monitoring Plan (GWMP), a Contingency Plan (CP), a Health and Safety Plan (HSP), a Operations & Maintenance Plan (O&M), Quality Assurance Project Plan (QAPP) and a Waste Management Plan (WMP). Separate CQAPs were developed for the Cap System and the PRB as detailed in Appendices G-1 and H-1 respectively. The PSVP, GWMP, CP, HSP, O&M, QAPP and WMP are contained in Appendices I through O respectively. The performance monitoring and remedial action work plan activities for the PRB Groundwater Remedy are summarized on Figure 55 and those activities are detailed in the CQAP, PSVP and GWMP for the PRB. The performance monitoring and remedial action work plan activities for the Cap System are contained in the CQAP and O&M for the Cap System. Construction project organization charts for the Cap System and the PRB System are contained in their respective CQAPs contained in Appendices G-1 and H-1, respectively.

11.5.1 PRB Construction Quality Assurance Plan (CQAP)

The CQAP describes the procedures that are to be used during construction of the iron reactive permeable barrier system to ensure that the materials used meet or exceed specifications and the PRB is constructed in accordance with the Construction Drawings. The plan also details the records needed so that an appropriate "as-built" construction record can be prepared at the end of each phase of construction. The CQAP is supported by material technical specifications, which provide the criteria to be used to evaluate the suitability and/or acceptability of all of the materials required for construction. Technical specifications for the materials and installation requirements are included in the CQAP.

11.5.2 Performance Standard Verification Plan (PSVP)

A groundwater and surface water monitoring plan was prepared for the project to monitor the performance of the PRB and Cap System remedy on the dehalogenation of the chlorinated

solvent contamination encountered at the Site to non-toxic end products. Groundwater wells will be installed upgradient and downgradient of the PRB to monitor the reduction VOCs across the PRB system. Monitoring well installation, groundwater and surface water sampling and analytical analyses will be conducted in accordance to the GWMP and the QAPP. The PSVP outlines the frequency of groundwater well and surface water sampling and the list of analyte parameters for analysis. The plan details performance expectations and details actions to be performed if performance expectations are not meet, including a change of frequency of sampling, the list of analytes measured and in certain cases contingency actions to rectify deficiencies in the PRB and Cap System remedial performance.

11.5.3 Groundwater Monitoring Plan (GWMP)

A groundwater monitoring plan was prepared for the project to monitor the performance of the PRB and Cap System remedy on the dehalogenation of the chlorinated solvent contamination encountered at the Site to non-toxic end products. The groundwater at the Site is contaminated with predominantly PCE, TCE, 1, 1-DCE and 1,1,1-TCA. Groundwater wells will be installed upgradient and downgradient of the PRB to monitor the reduction VOCs across the reactive barrier system. Monitoring well installation and groundwater and surface water sampling will be conducted in accordance to the GWMP, the QAPP and the HSP. The frequency of groundwater well and surface water sampling and the list of analyte parameters for analysis are detailed in the PSVP. In general, the following activities will be performed:

- Installation and development of upgradient and downgradient monitoring wells;
- □ Field parameter measurements including water levels, temperature, pH, Eh, dissolved oxygen, specific conductance, and turbidity of the groundwater samples;
- Groundwater and surface water sampling at designated frequency and particular analyte parameter list as detailed in the PSVP. Sampling and analysis of groundwater samples will be conducted in accordance with the GWMP; and

Decontamination of drilling and sampling equipment.

11.5.4 Health and Safety Plan (HSP)

A health and safety plan was prepared for the project for protection of the construction project team and other persons that may be exposed to hazards associated with the installation of the PRB and the Cap System. The HSP addresses all the potential Cap System and PRB construction specific hazards, physical hazards, and chemical hazards with associated action levels. Proper personal protection equipment will be used to minimize personal exposure to chemical and physical hazards expected at the Site. Emergency response procedures are clearly defined in the event of an emergency.

11.5.5 Operation and Maintenance Plan (O&M)

An Operations & Maintenance (O&M) Plan for the PRB is not appropriate, since this remedy does not constitute an operations and maintenance component. The Performance Standard Verification Plan (PSVP) provided in Appendix I discusses a Contingency Plan for the PRB in the event the PRB is not performing as designed. O&M activities will be required for the proper performance of the vegetative cover of the Cap System. An O&M Plan for the Cap System is detailed in Appendix M.

11.5.6 Waste Management Plan (WMP)

Handling, transportation and disposal/treatment of construction derived waste will be conducted in accordance with all Municipal, State and Federal requirements and as outlined in the Waste Management Plan contained in Appendix O. The WMP outlines the procedures for handling, transporting and disposal of all waste, either hazardous or non-hazardous, generated during equipment decontamination, well installation and PRB and Cap System construction. All wastes generated from decontamination activities will be handled, transported and disposed of as detailed in the WMP. All decontamination activities will be performed in accordance to the Health and Safety Plan (HSP) and the Waste Management Plan (WMP).

12.0 SUMMARY AND CONCLUSIONS

Golder Sierra LLC (Golder) was retained by Saltire Holdings, Inc. to design an iron permeable reactive barrier (PRB) and impermeable surface Cap System to be constructed at the former Arrowhead Plating Facility Site (Site), located in Montross, VA. The work will be conducted as part of the Former Arrowhead Plating Superfund Site Remedial Action.

Zero valent iron can effectively reduce the groundwater contaminants present at the Site. The geology, groundwater conditions and depth of the PRB are suitable for construction of the PRB by the azimuth controlled vertical hydrofracturing installation method. This PRB installation method has previously installed three (3) full-scale iron PRB systems and one full depth pilot scale system. An impermeable Cap System has been incorporated into the PRB groundwater remedy to enhance the PRB performance by reducing infiltration into the subsurface and thus lowering the hydraulic gradients across the PRB. The proposed PRB and Cap System Remedy is the most cost-effective groundwater remedy for OU-2. Infiltration and groundwater modeling indicate that the addition of a Cap System to the PRB Remedy will reduce groundwater flow gradients perpendicular to the PRB alignment by a minimum of 20% and up to a maximum of 70%.

The Cap System has been designed to enhance the effectiveness of the PRB by reducing the influent contaminant fluxes of VOCs flowing into the PRB. The PRB has been designed to achieve effluent VOCs concentrations below their respective MCL levels. The PRB design methodology described in this report utilized a multi-species VOC probabilistic model to quantify the overall reactive barrier system performance based on the expected variability of design input parameters, such as Site parameters including hydrogeologic data and VOC influent concentrations, and PRB System parameters including VOC degradation half lives and pathways, PRB porosity and PRB iron-effective-thickness.

The proposed PRB will be 1,165 ft in length, orientated approximately perpendicular to the groundwater flow regime, be approximately $3^{"}$ to $4.5^{"}$ in average iron-effective-thickness for a total of 650 tons of iron filings injected into the subsurface, and extend from a depth of 15' down to a total depth of 42' covering an area of 24,000 ft². The Cap System will cover an area of approximately 4-1/2 acres and consist from top to bottom of 24-in vegetative cover, a geocomposite drainage layer and a geosynthetic clay liner (GCL).

A Construction Quality Assurance Plan (CQAP), a Performance Standard Verification Plan (PSVP), a Groundwater Monitoring Plan (GWMP), a Contingency Plan (CP), a Health and Safety Plan (HSP), an Operation and Maintenance Plan (O&M) and a Quality Assurance Project Plan (QAPP) were prepared as part of the performance monitoring and remedial action workplan activities required for the construction and performance evaluation of the PRB and Cap System.

The estimated construction costs of the PRB and Cap System remedy including site preparation and waste disposal is \$3.1M, of which approximately \$2.1M is for construction of the PRB, 0.5M is for construction of the Cap System and 0.5M for site preparation, waste disposal and license fee. These costs include construction derived waste storage, waste characterization and disposal costs. The construction of the PRB and Cap System is expected to take six and a half (6-1/2) months. The construction activities are expected to start in mid May 2001 and be completed by the end of November 2001. Construction of the Cap System will be delayed if lagoon closure to be undertaken by Mattatuck is not completed by the end of June 2001.

> ۰. م

GOLDER SIERRA LLC

Rafael I. Ospina, P.E. Senior Project Manager

Grant Hocking, Ph.D. President

GAGSLAALTIRENIS % PRB & CAP DESIGN REPORT/100% REPORT.DOC

REFERENCES

- Beck, P. B. Jr., P. J. Clark and R. W. Puls (2000). Location and Characterization of Subsurface Anomalies Using a Soil Conductivity Probe, *Ground Water Monitoring Review*, Spring, pp 55-59.
- Burris, D. R., and C. A. Delcomyn (1997a). Reactivity of Metallic Iron and Bimetallic Ni/Fe to Trichloroethylene after Exposure to Crosslinked Guar Gum Slurry. Interim Progress Report #1, AFCEE, Tyndali AFB, FL, June 30.
- Burris, D. R., and C. A. Delcomyn (1997b). Reactivity of Metallic Iron and Bimetallic Ni/Fe to Trichloroethylene after Exposure to Crosslinked Guar Gum Slurry. Interim Progress Report #2, AFCEE, Tyndall AFB, FL, November 10.
- Burris, D. R., and C. A. Delcomyn (1998). Reactivity of Metallic Iron and Bimetallic Ni/Fe to Trichloroethylene after Exposure to Crosslinked Guar Gum Slurry. Interim Progress Report #3, AFCEE, Tyndall AFB, FL, March 24.
- Cedergren, H.R. (1977). Seepage, Drainage and Flow Nets, 2nd Ed., John Wiley & Sons, New York.
- Conway Data Inc. (1990). The Weather Handbook.
- Environmetal Technologies, Inc. (2000). Degradation Half Life Database of VOCs in the Presence of Zero Valent Iron at Various Temperatures, memorandum to Golder Sierra LLC, September.
- Gidley, J. L., S. A. Holditch, D. E. Nierode and R. W. Veatch Jr. (1989). Recent Advances in Hydraulic Fracturing. SPE Monograph Series, Richardson, TX.
- Gillham, R. W. (1993). Cleaning Halogenated Contaminants from Groundwater. U.S. Patent No. 5,266,213.
- Gillham, R. W. (1996). In Situ Treatment of Groundwater: Metal-Enhanced Degradation of Chlorinated Organic Contaminants. Advances in Groundwater Pollution Control and Remediation, M. M. Aral (ed.), Kluwer Academic Publishers, Netherlands, pp. 249-274
- Gillham, R. W. and S. F. O'Hannesin (1992). Metal-Catalysed Abiotic Degradation of Halogenated Organic Compounds. IAH Conference "Modern Trends in Hydrogeology", Hamilton, Ontario, May 10-13, pp. 94-103.
- Gillham, R. W. and S. F. O'Hannesin (1994). Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron, *Ground Water*, Vol. 32, No. 6, pp 958-967.
- Gillham, R. W. and S. F. O'Hannesin (1998). Long-Term Performance of an In Situ "Iron Wall" for Remediation of VOCs, *Ground Water*, Vol. 36, No. 1, pp 164-170.

- Golder Sierra LLC (2000a). Remedial Design Work Plan, Permeable Reactive Subsurface Barrier (PRSB) For Former Arrowhead Plating Facility, Montross, Virginia, Golder Job No. 996-1100, April 11.
- Golder Sierra LLC (2000b). Analytical Testing Validation Report, May 2000 Sampling Event, Former Arrowhead Plating Facility, Montross, Virginia, Golder Job No. 996-1100, August 10.
- Golder Sierra LLC (2000c). Groundwater Flow Divide and Surface Water Quality Evaluation Report, Former Arrowhead Plating Facility, Montross, Virginia, Golder Job No. 996-1100, September 15.
- Golder Sierra LLC (2000d). Laboratory and Large Scale Column Test Degradation Half Life Database of VOCs in the Presence of Zero Valent Iron at Various Temperatures, Confidential Internal Report, April.
- Gu, B.D. Watson, W. Golberg, M. A. Bogle and D. Allred. (1998). "Reactive Barriers for the Retention and Removal of Uranium, Technetium, and Nitrate in Groundwater", RTDF Meeting, Beaverton, OR, April 15-16.
- Hocking, G. (1996). Azimuth Control of Hydraulic Fractures in Weakly Cemented Sediments. 2nd North American Rock Mechanics Symp, Montreal, A.A. Balkema, Rotterdam, pp 1043-1048.
- Hocking, G. and S. L. Wells (1997). Oriented Vertical Hydraulic Fracture Iron Reactive Walls. ASCE Environmental Group Meeting, Atlanta, GA, March.
- Hocking, G., S. L. Weils, and R. I. Ospina (1998a). Field Performance of Vertical Hydraulic Fracture Placed Iron Reactive Permeable Barriers. Emerging Remediation Technologies for Soil and Groundwater Cleanup, Florida Remediation Conf., Orlando, FL, November 10-11.
- Hocking, G., S. L. Wells, and R. I. Ospina (1998b). Performance of the Iron Reactive Permeable Barrier at Caldwell Superfund Site. RTDF Meeting, Oak Ridge, TN, November 17-18.
- Hocking, G., S. L. Wells, and R. I. Ospina (2000). Deep Reactive Barriers for Remediation of VOCs and Heavy Metals, 2nd Int. Conf. On Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, May 22-25.
- Hocking, G., S. L. Wells, and R. I. Ospina (2001a). Probabilistic Design of Permeable Reactive Barriers, submitted to the 2001 Int. Containment & Remediation Conf, Orlando, FL, June 10-13.
- Hocking, G., S. L. Wells, and R. I. Ospina (2001b). Performance of a Deep Iron Permeable Reactive Barrier for Groundwater Remediation of VOCs, submitted to the 2001 Int. Containment & Remediation Conf, Orlando, FL, June 10-13.
- Hubble, D. W., E. R. W. Gillham and J. A. Cherry (1997). Emplacement of Zero-Valent Metal for Remediation of Deep Contaminant Plumes. International Containment Technology Conf. & Exhibition, St. Petersburg, FL.

- ICF Kaiser (1997). Pre-Remedial Design Summary Report, Former Arrowhead Plating Facility, Montross, VA, prepared for Saltire Industrial, Inc., submitted to USEPA Region III, August 12.
- Johnson, C. R., R. A. Greenhorn and E.G. Woods (1966). Pulse-testing: A New Method for Describing Reservoir Flow Properties Between Wells. JPT, Vol. 237, pp 1599-1604, Trans., AIME.
- Kamal, M. M. (1983). Interference and Pulse Testing A Review. JPT, pp 2257-2270.
- McDonald, M. G. and A. W. Harbaugh (1988). Techniques of Water-Resources Investigations of the United States Geological Survey; MODFLOW – A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model; Book 6.
- Morrison, S. J. (1998). "Status of a Permeable Reactive Barrier Project for Uranium Containment at Monticello, Utah", RTDF Meeting, Beaverton, OR, April 15-16.
- Naftz, D. (1998). "Status and Preliminary Results of the Fry Canyon Reactive Chemical Wall Project", RTDF Meeting, Beaverton, OR, April 15-16.
- Ohya, S., T. Imai and M. Matsubara (1982). Relationships between N Value by SPT and LLT Pressuremeter Results, Proc. 2nd European Symp. On Penertration Testing, Vol 1, pp125-130.
- Orth, S. and R. W. Gillham (1996). Dehalogenation of Trichlorethene in the Presence of Zero-Valent Iron. Environ. Sci. Technol., Vol. 30, pp 66-71.
- Peck, R. B., W. E. Hanson and T. H. Thomburn (1974). Foundation Engineering, 2^{od} Ed., John Wiley & Sons, New York.
- Pennelly, J. P. and A. L. Roberts (1998). Reaction of 1,1,1-Trichloroethane with Zero-Valent Metals and Bimetallic Reductants. Environ. Sci. Technol., Vol32, pp1980-1988.
- Puls, R. W. (1998). "Elizabeth City, North Carolina Permeable Reactive Barrier Site Update", RTDF Meeting, Oak Ridge, TN, November 17-19.
- Roberts, A. L., L. A. Totten, W. A. Arnold, D. R. Burris and T. J. Campbell (1996) Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Iron, Env. Sci. & Technol., Vol 30, No 8, pp2654-2659.
- Robertson, P. K., R. G. Campanella and A. Wightman (1983). SPT-CPT Correlations, Journal of Geotechnical Engineering, ASCE, Vol 112, No 3, pp373-377.
- Schlicker, O., M. Ebert, R. Kober, W. Wust and A. Dahmke (1998). "The Effect of Competing Chromate and Nitrate Reduction on the Degradation of TCE with Granular Iron", RTDF Meeting, Oak Ridge, TN, November 17-19
- Schroeder, P. R., Aziz, N. M., Lloyd, C. M. and P. A. Zappi (1994). "The Hydrologic Evaluation of Landfill Performance (HELP) Model: User's Guide for Version 3," EPA/600/9-94/xxx, U.S. Environmental Protection Agency Risk Reduction Engineering Laboratory, Cincinnati, OH.

- Sivavec, T. M. and D. P. Horney (1995). "Reactive Dechlorination of Chlorinated Ethenes by Iron Metal", Proc. 209th. American Chemical Society National Meeting, Vol. 35, No. 1, pp 695-698
- Sivavec, T. M., P. D. Mackenzie, D. P. Horney and S. S. Bagel (1997). "Redox-Active Media Selection for Permeable Reactive Barriers", Int. Containment Conf., St Petersburg, FL, February 10-12.
- Skempton, A. W. (1986). Standard Penertration Test Procedures and the Effects in Sands of Overburden Pressure, relative Density, Particle Size, Aging, and Overconsolidation, Geotechnique, Vol 36, No 3, pp425-447.
- Soil Conservation Service (1986). Urban Hydrology for Small Watersheds, Technical Release 55 (TE-55).
- Starr, R. C. and J. A. Cherry (1994). In Situ Remediation of Contaminated Groundwater: The Funnel-and-Gate System. *Ground Water*, Vol. 32, No. 4, pp 465-476.
- Su, C. and R. W. Puls (1998). Retention of Arsenic by Elemental Iron and Iron Oxides. RTDF Meeting, Oak Ridge, TN, November 17-19.
- Su, C. and R. W. Puls (1998). Temperature Effect on Reductive Dechlorination of Trichloroethene by Zero-Valent Metals, 1st Int. Conf. On Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, May 18-21

Surface Data for Colonial Beach, Virginia, 1963 to 2000. NOAA.

Sweeny, K. H. and J. R. Fisher (1972). Reductive Degradation of Halogenated Pesticides. U.S. Patent No. 3,640,821.

Virginia Erosion and Sediment Control Handbook, Third Edition, 1992.

.

.

TABLE 1

INSTALLED IRON PERMEABLE REACTIVE BARRIERS FORMER ARROWHEAD PLATING FACILITY MONTROSS, VA

Iron Reactive Barriers	Location	installation Method	Date
Full Scale Remediation Projects			
Industrial Eacility	California	continuous wall	Dec-94
fodustrial Facility	California	continuous wall	Sec.95
Industrial Facility	Northern Ireland	in-situ reactive vessel and slurpy wall	0ep-95
Industrial Facility	Kansas	aste and clumy wall	100.95
USCG Easility	North Carolina	gale and sidiny wall	Jun 06
Government Escility	Colorado	theat pile tuppel(s) and multiple exter (4)	0 crt 96
forward facility	South Carolina	continuous iron/sand reactive well	Oct-50
Industrial Facility	Colorado	continuous indivisanti reactive wait	Nov 97
Research Facility	Tennessee	gate and signly turner	Nov-97
Industrial Eacility	New York	continuous well	Nov-97
Industrial Facility		astos (2) and slumy funcel	Ech.09
Fundational Facility	New lorger	gates (2) and surry turner	F00-30
	Miccouri	continuous wall - hydronacturing	Mai-90
DOE Facility	Desmark		Apr-50
	Colorado	in-situ reactive vessel and collection system	Jul-90
DOE Facility, RFE 13	New Jorsey	applique vesser and conection system	Aug 09
Industrial Facility	Vomost	Continuous wans (2)	Aug-90
Industrial Facility	Germany		Aug-96
	Now York		Oct-96
	South Carolina	continuous viole (4)	Next 09
Snaw AFB	Desmark	continuous wais (4)	Nov-96
Industrial Facility	Louisiana	continuous wails and recirculation system	NOV-90 Nov. 09
	Louisiana Now York	continuous wait	Don 09
DOD Facility	New York	conundous waii	Dec-96
	Colorado		Aug-99
	Now Hempshim		Aug-99
DOD Facility			Aug-99
Industrial Facility	Deemat		Aug-99
	Colorado		Aug-55 Son 00
DOE Facility	Kappag		0et 69
Industrial Facility	Manhington		Oct-99
Industrial Facility	Obio		Oct-99
Industrial Facility		- opptinuous wall - bydrofracturing	Oct 99
Superiorial Sae	Colifornia	continuous wair - nycionactum y	Nov 99
Industrial Facility	California	continuous wall - hydrofracturing	100-01
andustrial Facility	Camornia	contingous wait - nycrotracturing	Jan-Or
In-Situ Pilot Demonstrations			
Research Facility	Borden		Jun-91
Industrial Facility	New York	funnel and gate	May-95
Lowry AFB	Colorado	funnel and gate	Dec-95
Moffet Field Air Station	California	funnel and gate	Apr-96
Industrial Facility	Georgia		Apr-96
Superfund Site	New Hampshire	funne) and gate	Nov-96
Alameda Air Station	California	funnel and sequence gate	Dec-96
Savannah River Site	South Carolina	GeoSiphon	Jul-97
Cape Canaveral	Florida	Mandrel & Vibrated Beam (Iron & Guar)	Nov-97
Argonne National Laboratory	Illinois	Iron/Soil Mixing	Nov-97
Dover AFB	Delaware	funnel and caisson gates	Nov-97
NASA Demonstration	Florida	Soil Mixing	Feb-98
Otis ANGB	Massachusetts	hydrofracturing	Jul-98
Maxwell AFB	Alabama	hydrofracturing	Jul-98
Industrial Facility	Germany		Jul-98
Industrial Facility	Germany		Jul-98
Industrial Facility	Australia		Feb-99

VOLATILE OFFICANCS SLAMMARY - DEEP BORINGS MAY 2000 SAMPLING EVENT FORMER ARROWNED PLATING FACULITY MONTROSS, VA

eulfide	hane	isuifide thene torm izene Chioride	ieulide hane korm izene Chioride sethene
1.2-Dichloros (cia) 2-Butanoi 4-Methyl-2-per Acetone Benzene Carbon Disc	1.2-Dichloros (cis) 2-Butanoi 4 Methyl-2-per Acetone Benzene Carbon Disc Chiorosthe Chiorosthe	1.2-Dichioros (cia) 2-Butanoi 4-Methyl-2-per Acetons Benzeni Carbon Dis Chiorosthe Chiorosthe Chiorosthe Chiorosthe	1.2-Dichloros (cis) 2-Butanoi 4 Methyl-2-per Acetons Benzeni Carbon Dist Chlorosthe Chlo
Acetone Benzene Carbon Disulfide	Acetone Benzene Carbon Disulfde Chiorosthane Chiorostrane	Acetone Benzene Carbon Disulfide Chiorosthane Chiorotorm Ethylbanzene Methylene Chioric	Acetone Benzene Carbon Disulfide Chiorosthane Chiorosthane Chiorosthane Ethylbenzene Methylene Chioric Tetrachiorosthen Toluene
	Chiorosthane	Chlorosthane Chloroform Ethylbanzene Methylene Chlorid	Chloraethane Chloraethane Ethytbanzane Methytene Chlorid Tetrachioroethani Toluane
Ethylenzene Methylene Chiorida Tetrachloroethene Trichloroethene	Tetrachioroethene Toluene Trichloroethene	Trichloroethene	

B = Not detected substantially above the level reported in the blanks. (Indicates rasult qualified by blank contamination.) J = Analyte is present. Reported value may not be accurate or precise. (The associated numerical value is an estimated quality.) U = The analyte was analyzed for, but was not detected.

·

,

•

GOLDEN SKENNA

17

AR301217

.

METALS AND CYANIDE SUMMARY - DEEP BORINGS

FORMER ARROWHEAD PLATING FACILITY MAY 2000 SAMPLING EVENT MONTROSS, VA

Nive No. UEPTIH (R.BGS) Uate Till 77 - 79 May-00 0.06 U CG 99 - 101 May-00 0.24 B CG 109 - 111 May-00 1.2 B 109 - 111 May-00 1.3 B 109 - 111 May-00 1.2 B May-00 1.3 B 1.3 B 109 - 111 May-00 0.13 B May-00 0.13 B 1.3 B 109 - 111 May-00 0.13 B May-00 0.13 B 1.3 B 109 - 111 May-00 0.12 B May-00 0.13 B 1.3 B	57 66 25 25 26 26 26 27 28 26 Copper 8 8 3	1100 10300 10300 10300 10300	muisengaM 23 43 70 Magnesium	212 212 212 212 212 212 200 200 200 200	Міскен 12.5 7.0 7.9 8.0 8.0 8.0	muissato 3340 2150 J 2860 J 2860 J	Sodium 87.0 B 110 B 44.8 U 69.6 B 141 B 122 B	Ninc 58.38 57.78 31.68 33.48 31.78 54.38 54.38	0.73 UL 0.65 UL 0.74 U 0.74 U
101 - 103 May-00 0.40 B	460 18.0	26000	3480	218	20.6	2820 J	100 B	65.1 B	0.70 U

NOTES:

B = Not detected substantially above the level reported in the blanks. (Indicates result qualified by blank contamination.)

J = Analyte is present. Reported value may not be accurate or precise. (The associated numerical value is an estimated quantity.) U = The analyte was analyzed for, but was not detected.

UL = Not detected. Reported value may be biased low. The actual quantitation limit is probably higher.

·

FIELD PARAMETERS SUMMARY MAY 2000 SAMPLING EVENT FORMER ARROWHEAD PLATING FACILITY MONTROSS, VA

				FIELD PAR	AMETERS'		
WELL No.	Date	Hq	Conductivity (umhos/cm)	(UTV) ₍ vibiđnuT	(l\gm) OG	(O°) ^c enutsreqmeT	(\mu) HB
1WM	May-00	4.1	418	4	6.5	18.0*	322
MW2	May-00	5.1	37	4	8.4	18.2	178
MW3	May-00	5.1	81	8	8.6	18.1*	186
MW4	May-00	6.4	229	10	3.4	16.6	112
MW5	May-00	6.4	265	38	6.4	17.2"	134
MW6	May-00	5.1	127	7	7.7	17.2	238
MW7	May-00	6.7	1000	7	0.0	17.2	69
MW8	May-00	4.6	364	6	0.5	19.9	233
6MM	May-00	5.8	157	10	8.5	16.6	197
MW10	May-00	4.5	2470	8	0.0	18.8	257
MW11	May-00	5.2	641	5	0.0	15.9	160
MW12	May-00	4.8	840	10	0.0	16.0*	237
MW13	May-00	6.0	446	6	0.8	14.3	158

•

FORMER ARROWHEAD PLATING FACILITY FIELD PARAMETERS SUMMARY MAY 2000 SAMPLING EVENT MONTROSS, VA

TABLE 4

- 1
ى س
7
7
9

NOTES:

AR301220

(1) Field parameters were measured using HORIBA U-22 Water Checker meter.

- Electrodes/probes were submerged in a flow-through-cell. (2) Asterisk (*) indicates the first temperature measurement taken. Due to low flow rates
 - through the flow-through-cell, ambient temperature may have affected subsequent temperature measurements.

996-1100

April 2001

I	-
7	0
¢	ç
C	כ
-	-
3	د
P	د
-	-

Xysun de HW VOCE

GOLDEN SIENNA

														_				_	_			
Date .	May-00	May-00	May-00	May-00	May-00	May-00	May-00	Mary-00	May-00	May-00	Mary-00	May-00	May-00	May-00	Mary-00	May-00	Mary-00	May-00	May-00	Mary-00	Mary-00	May-00
1,1,1-Trichloroethane	101	10 U	10 U	10 U	101	10 U	10 U	200 U	78	8	242	100 U	6 /21	opri-	7 J	7 06K	576	24 J	r 040	7 08C	130	ī
1,1,2-Trichioroethane	101	10 U	10 U	10 U	101	10 U	10 U	200 U	100 U	500 U	200 U	100 U	100 U	250 U	20 U	500 U	250 U	25 U	500 U	500 U	20 U	250 U
1,1-Dichloroethane	10 U	10 U	10 U	10 U	10 U	101	10 U	77	100 U	98 L	272	28.	ie L	47 J	20 U	500 U	250 U	7.1	0 00 5	500 U	5	1 1 2
1,1-Dichloroethene	ta U	10 U	10 U	10 U	10F	10 U	2	ž	i L	Ĩ	10 L	ž	ă	2000	:	1200	r 002	4	8	880	9	ă
1,2-Dichlorosthane	101	101	iou	10 U	10 U	10 U	101	200 U	100 U	500 U	200 U	100 U	100 U	250 U	7 0C	500 U	250 U	25 U	0 002	500 U	20 U	250 U
1,2-Dichloroethene (trane)	101	10 U	100	101	10 U	10 U	10 0	200 U	100 U	500 U	200 U	100 U	100 U	250 U	200	500 U	250 U	25 U	500 U	500 U	20 U	2800
1,2-Dichloroethene (cis)	101	101	10 U		10 U	10 U	74	ß	100 U	r 082	120 J	ŧ	â	3	20 U	500 U	250 U	270	0 00 U	500 U	8	250 U
2-Butanone	101	10 LU	10 W	10 W	10 U	10 L	t	200 U	100 U	500 U	200 U	190 U	100 U	250 U	20 U	500 U	250 U	25 U	500 U	500 U	20 U	250 U
4-Methyl-2-pentancne	101	10 U	10 U	10 U	101	10 U	ē	200 U	100 U	500 U	200 U	100 1	100 U	250 U	280	500 U	250 U	250	500 U	500 U	20 U	250 U
Acetone	10V	10 W	10 W	ло Ш	10 U	10 U	to Li	200 U	100 U	500 U	200 C	100 U	100 U	10 62	20 C	500 U	250 U	25 C	500 U	500 U	20 U	250 U
Benzene	101	10 U	10 U	10 U	10 U	10 U	10 U	200 U	100 U	500 U	200 U	100 U	100 U	250 U	20 U	500 U	250 U	25 U	500 U	500 U	20 U	250 U
Carbon Disulfide	U D L	10 U	100	10 U	10 U	101	10 U	200 U	100 U	500 U	200 U	100 U	100 U	250 U	20 C	500 U	250 U	250	500 U	500 U	2 J	250 U
Chloroethane	101	10 U	10 U	10 U	100	10 U	10 U	200 U	100 U	500 U	200 U		100 U	250 U	200	500 U	250 U	25 U	500 U	500 U	102	250 U
Chloroform	100	10 U	10 U	10 U	10 U	10 U	101	200 U	:	500 U	200 U	100 U	100 U	250 U	77	500 U	250 U	25 U	500 U	500 U	20 U	250 U
Ethyloenzene	10 U	10 U	i di c	10 U	10 U	io c	10 U	200 U	100 U	500 U	200 U	19 2	100 U	250 U	20 U	500 U	250 U	25 U	500 U	500 U	20 U	250 U
Methylene Chloride	10 U	10 U	10 U	100	101	10 U	10 4	200 U	100 U	500 U	200 U	18 2	100 U	250 U	20 U	500 U	250 U	28	500 U	500 U	20 U	250 U
Tetrachloroethene	101	10 U	10 U	ie C	100	5	:	8	118	500	ž	ž	1	ž	¥	Ĩ	250	ซี	ŝ	ŝ	×	12
Toluene	10 U	101	10 L	100	104	10 U	100	200 U	100 U	500 U	200 U	į	100 U	250 U	20 0	500 U	250 U	25 U	500 C	000 U	20 U	7950 1
Trichloroethene	10 U	F 2	tou	10 U	101	10 U	:	747	100 U	3700	1	:	1200	3100	:	8	2000	3		10000 *	ž	8
Vinyi Chloride	10	tou	Ĩ	10 U	100	10 U	ē	8	Ĩ	50	20	10	100	250	8	500	250	8	8	500	28	128

10 10 0

Xylenes (total)

10 U

200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U 200 U

VOLATILE ORDANICS SUMMARY MAY 2000 SAMPLING EVENT FORMER ARROWHEAD PLATING FACILITY MONTROSS, VA

VOLATILE ORGANICS (up)

TABLE 5

-44

7

MW26 (duplicate)

MW25 MW24 E2MM

MW26

MW21

MW13 MW12 MWV11 MW10 GMM

MW22

N.

EMM3 MW2 IMM

MM8 MW5

RMN

WELL No.

MW32 MW31

996-1100

MW-37	SEMM	SEMM	MW		MW33 (duplicate)	EEMIN		WELL No.	
May-00	Mary-00	May-00	wey-vu		May-00	May-00		Date	
•	10 U	10 U	ā		870	810	1,	1,1-Trichloroethane	
10 U	101	ĩ		5	400 U	400 U	1.	,1,2-Trichloroethane	
10 U	10 U	10 U		101	8	L CÞ		1,1-Dichloroethane	
2	10 U	10 U		2	9000			1,1-Dichloroethene	
10 U	10 U	100			400 U	400 U		1,2-Dichloroethane	
10 U	10 U	100		10 C	400 U	400 U		1,2-Dichioroethene (trane)	
10 U	10 U	100		100	r oot	7 OCE	I	1,2-Dichloroethene (cis)	
10 U	100	100		r 2	400 U	400 U	ļ	2-Butanone	
10 U	10 0	100		101	400 U	400 U	ŀ	l-Methyl-2-pentanone	
10 U	100	ā		28	400 U	400 U		Aostone	
10 U	100			io U	400 U	400 U		Benzene	-
100				1	400 C	400 U		Cerbon Disulfide	
100	100		5	10 U	400 U	400 0		Chiorosthane	
100	ē		5	10 U	400 U	100 0		Chloroform	
		5		10 U	400 U			Ethylbenzene	
100			i i	100	400 U	1000		Mathylene Chloride	
ā		10		10 U	4800	5076		Tetrachioroethene	
100	5		10 U	10 U	400 0	800		Toluene	
		ē	100	10 U	13000			Trichioroethene	
2.5			10 U	10 U	400 0			Vinyi Chloride	
14		ē	10 U	10 0	1000			Xylenes (total)	

NOTES: B = Not detected substantially above the level reported in the blanks, (indicates result qualified by blank contemination.) J = Analyte is present. Reported value may not be accurate or precise. (The associated numerical value is an estimated quantity.) U = The analyte was analyzed for, but was not detected. UJ = Not detected. The reported quantitation limit may be insocurate or imprecise. (The associated reporting limit is an estimated quantity.) ' = Result reported from a division.

.

,

Page 2 of 2

1

AR301222

-

Xysem its 14W VOCa

.

GOLDEN SHEMMA
April 2001

TABLE 6

METALS AND CYANIDE SUMMARY MAY 2000 SAMPLING EVENT FORMER ARROWHEAD PLATING FACILITY MONTROSS, VA

						Σ	ETALS (ug	6					
WELL No.	Date	muimbaO	muiolaO	Copper	ונסח	muisengsM	esenspnsM	Mercury	Иіске	muiassio9	mulboS	ouiZ	(l/gu) əbins()
MW1	May-00	0.52 B	0277	1.1 B	69.6	4050	40.0	0.10 U	21.6 K	1700 B	33100	48.5 B	10.0 U
MW2	May-00	0.20 U	525	9.5	264	1410	6.9	0.10 U	3.3 B	1640 B	4190	14.4 B	10.0 U
MW3	May-00	0.42 B	942	3.8 B	1450	2660	18.1	0.10 U	3.5 B	1140 B	7140	9.2 B	10.0 U
MW4	May-00	0.20 U	625	5.4 B	4520	568	123	0.10 U	4.2 B	1100 B	41800	14.0 B	10.0 U
MW5	May-00	0.20 U	644	3.4 B	2230	1200	6.2	0.10 U	3.6 B	1770 B	34300	22.9 B	10.0 U
MW5 (fiitered)	May-00	0.20 U	553	1.0 U	269	1130	1.0 U	0.10 U	2.2 B	1790 B	37100	12.2 B	10.0 U
MWG	May-00	0.28 B	1250	2.0 B	922	1360	19.8	0.10 U	2.6.B	1160 B	12500	10.7 B	10.0 U
MW7	May-00	0.70 B	1040	6.7 B	184	136 B	2.2	0.10 U	6.1 B	1270 B	159000	13.8 B	10.0 U
MW8	May-00	4.4	3620	6.0 B	613	7420	2060	0.10 U	28.3	1980 B	34900	125	10.0 U
6MM	May-00	0.27 B	168 B	4.4 B	295	193 B	4.0	0.10 U	2.0 B	371 B	24800	4.0 B	10.0 U
MW10	May-00	3.2	25200	3280	1630	16300	7450	0.25	168	1120 B	49700	1410	10.0 U
MW11	May-00	1.8 B	36800	1.0 U	4000	27100	4380	0.10 U	216	4680	22400	1180	10.0 U
MW12	May-00	0.75 B	12300	1.0 U	7940	4200	1010	0.10 U	10.4 B	5420	78300	28.8 B	10.0 U
MW13	May-00	0.27 B	1600	1.4 B	295	1430	211	0.12	6.0 B	1840 B	70000	4.3 B	19.2

METALS AND CYANIDE SUMMARY MAY 2000 SAMPLING EVENT FORMER ARROWHEAD PLATING FACILITY MONTROSS, VA

						W	EIALS (UQ	1		i			
WELL NO.	Date	muimbaO	muioleO	Copper	Iron	muisengaM	อ รอกธฏก ธ M	Мессиу	ИіскеІ	muisseio9	muiboS	əuiZ	(l∕gu) ebinsv⊃
MW21	May-00	4.1	27800	7040	4210	16100	6700	0.10 U	- 250	1400 B	30900	1770	10.0 U
MW22	May-00	0.39 B	455	1.5 B	155	1610	9.4	0.10 U	3.6 B	1580 B	8940	45.1 B	10.0 U
MW23	May-00	0.57 B	40000	1.9 B	6820	17600	3100	0.10 U	27.2	5430	346000	88.2 B	10.0 U
MW24	May-00	0.70 B	37300	2.2 B	1520	14800	1830	0.10 U	17.2 B	4880	201000	43.5 B	10.0 U
MW24 (filtered)	May-00	0.78 B	38700	1.0 U	917	14400	1890	0.10 U	17.7 K	4510	191000	51.6 B	AN
MW25	May-00	0.48 B	473	1.0 U	102	2150	4.2	0.10 U	4.7 B	1030 B	19300	13.5 B	10.0 U
MW26	May-00	0.30 B	1940	2.2 B	169	3970	16.4	0.10 U	4.0 B	2650	24500	28.2 B	10.0 U
MW26 (duplicate)	May-00	0.25 B	1940	1.5 B	223	4080	16.8	0.10 U	3.2 B	2650	24500	18.8 B	10.0 U
1 MM31	May-00	0.20 U	5910	1.7B	3750	1540	645	0.10 U	4.4 B	3610	0606	25.8 B	10.0 U
MW32	May-00	0.82 B	26900	187	42400	9320	5380	0.10 U	211	2560	17900	817	10.0 U
MW33	May-00	0.20 U	10300	7.6 B	6270	3990	1230	0.10 U	6.3 B	2590	155000	32.9 B	10.0 U
MW33 (duplicate)	May-00	0.20 U	11900	6.7 B	7410	4520	1440	0.10 U	8.0 B	2810	158000	55.6 B	10.0 U
MW34	May-00	0.70 B	16800	5.4 B	16700	5560	4320	0.10 U	16.3 B	4290	22500	49.6 B	10.0 U
MW-34 (filtered)	May-00	0.42 B	17400	1.0 U	7230	5450	4570	0.10 U	13.0 B	4310	24300	65.7 B	NA

٠

•

FORMER ARROWHEAD PLATING FACILITY METALS AND CYANIDE SUMMARY MAY 2000 SAMPLING EVENT MONTROSS, VA

-		i	r	
	(l\pu) əbins\C	10.0 U	10.0 U	10.0 U
	əuiZ	17.8 B	25.9 B	22.9 B
	muibo2	1480	1500	13200
	muissatoq	3320	2130	4820
	Иіскеі	7.2 B	4.7 B	7.8 B
(1)	Мессигу	0.10 U	0.10 U	0.10 U
	esensgnsM	42.0	43.6	502
2	muisengsM	10500	6220	3330
	ורסח	52.2 U	52.2 U	3010
	Copper	1.3 B	1.4 B	1.9 B
	Calcium	1280	721	17200
	muimbsO	0.32 B	0.50 B	0.52 B
	Date	May-00	May-00	May-00
	, WELL No.	MW35	MW36	MW-37

NOTES:

B = Not detected substantially above the level reported in the blanks. (Indicates result qualified by blank contamination.) K = Analyte is present. Reported value may be biased high. Actual value is expected to be lower.

NA = Not Analyzed. U = The analyte was analyzed for, but was not detected above the instrument detection limit (IDL).

,

TABLE 7

GENERAL CHEMISTRY SUMMARY MAY 2000 SAMPLING EVENT FORMER ARROWHEAD PLATING FACILITY MONTROSS, VA

				GENERA	- CHEMIST	RY (mg/l) I				-
vjinilsylA sinommA		ebholdO	Redness	Nitrate	etintiN	etsriqzoriqorinO	eteilu2	bevlossiD listoT (SOT) sbiioS	Total Organic nochaO	Total Suspended Solids (TSS)
5.0 U 0.10 U		86.6	53.8	2.9	0.010.U	0.10 U	20 UL	132	1.0 U	9.6
5.0 U 0.10 U		20 U	279	0.76	0.010 U	0.10 U	20 U	38.0	1.0 U	4.0 U
5.0 U 0.10 U	I	20 U	4.0 U	1.6	0.010 U	0.10 U	20 U	69.0	1.0 U	27.0
89.7 0.10 U	'	20 U	243	0.35	0.010 U	0.10 U	20 U	172	1.0 U	12.0
47.9 0.10 UJ		20 U	-4.0 U	0.68	0.010 U	0.10 U	35.2	150	1.0	4.0 U
5.0 U 0.10 W		20 U	40.1	3.0	0.010 U	0.10 U	20.4	68.0	1.0 U	54.0
216 0.51		20 U	281	0.43	0.010 U	0.33	170	537	5.7	4.0 U
5.0 U 0.10 U		20 U	202	23.5	0.010 U	0.10 U	31.0	10 U	1.1	13.0
39.7 0.10 UJ		20 U	4.0 U	0.33	0.010 U	0.10 U	20.5	86.0	1.0 U	9.0
5.0 U 3.3	I	40.7	553	3.9	0.010 U	0.30	1580	1760	7.9	101
5.0 0.41	'	20 U	212	2.5	0.010 U	0.10 U	249	325	1.0 U	12.0
5.0 U 0.86		35.8	34.6	1.5	0.010 U	0.10 U	207	321	1.4	8.0
57.0 0.98		20.0	11.5	1.2	0.010 U	0.10 U	92.2 L	146	2.6	4.0 U
5.0 U 1.3	· · ·	29.6	385	2.9	0.010 U	0.17	1660	1960	4.7	7.0
5.0 U 0.10 UJ	-	20 U	4.0 U	1.1	0.010 U	0.10 U	20 U	37.0	1.0 U	4.0 U

.

AR301226

GENERAL CHEMISTRY SUMMARY MAY 2000 SAMPLING EVENT FORMER ARROWHEAD PLATING FACILITY MONTROSS, VA

GENERAL CHEMISTRY (mg/)

bebneqsuS lstoT (SST) sbitoS	12.0	6.0	6.0	4.0	4.0 U	8.0	9.0	4.0	4.0 U	75.0	4.0 U	4.0 U	24.0
Total Organic Carbon	2.6	1.2	1.3	1.0 U	1.0 U	2.0	6 .7	7.2	2.1	1.1	1.0.1	1.0 U	15.3
Devlossid IstoT Soilds (TDS)	1120	0//	73.0	129	128	29.0	1130	486	543	0.79	86.0	26.0	97.0
etstlu2	753	410 F	20 U	1.44	42.6	20 UL	20 UL	300 L	341 F	28.0 L	20 U	20 U	22.4 L
ethophosphate	0.10 U	0.10 U	0.10 U	0.10 U	0.21 B	0.10 U	0.10 U	0.10 U	0.18 B				
Nitrite	0.010 U	0.010 U	0.010 U	0.016	0.029	0.010 U	0.010 U	0.010 U	0.010 U				
Nitrate	1.6	4.8	2.9	3.1	3.1	0.10 U	0.10 U	2.7	2.6	0.10 U	10.6	4.0	0.10 U
ssenbisH	122	78.3	4.0 U	21.0	22.9	28.8	720	23.0	28.8	82.6	38.2	21.0	61.4
epholdO	86.5	71.6	20 U	20 U	20 U	20 U	20 U	37.2	35.5	90.7	20 U	20 U	26.6
BinommA	0.18 J	0.10 UJ	0.10 UJ	0.10 UJ	0.10 UU	0.10 U	1.6	0.15	0.16	0.10 U	0.10 UJ	0.10 UJ	0.10 U
v finil s ¥l A	15.2	1.7	6.5	6.0.	5.0 U	12.7	5.0 U	15.8	5.0 R	5.0 U	5.0 U	5.0 U	37.5
Date	May-00	May-00	May-00	May-00	May-00	May-00	May-00	May-00	May-00	May-00	May-00	May-00	May-00
WELL No.	MW23	MW24	MW25	MW26	MW26 (duplicate)	MW31	MW32	MW33	MW33 (duplicate)	MW34	MW35	MW36	MW-37

•

NOTES:

AR301227

L = Analyte is present. Reported value may be biased low. Actual value is expected to be higher. U = The analyte was analyzed for, but was not detected above the instrument detection limit (IDL). UJ ≈ Not detected. The reported quantitation limit may be inaccurate or imprecise. (The associated reporting limit is an estimated quantity.)

.

GOLDER SIERRA

.

NOTES B - Not detected substantially above the level reported in the blanks. (Indicates result qualified by blank contentination.) J - Analyte is present. Reported value may not be accurate or precise. (The associated numerical value is an estimated quantity.) X - Analyte is present. Reported value may be blassed high. Actual value is expected to be lower. U - The analyte was analyzed for, but was not detected. - Result reported from a dilution.

		E 13				E10				0.0					C10			NRECT PUSH No
35	32	27	25	35	31 (duplicate)	31	218	24	æ	29	26	ង	35 (duplicate)	35	31	8	22	DEPTH (# BGS)
May-00	May-00	May-00	May-00	May-00	May-00	May-00	Mary-00	May-00	May-00	Mary-00	May-00	May-00	20-IN	00-IN	00-Inf	00-IN	00-INF	Dale
250 U	500 U	f 6	11 J	500 U	L 068	r 008	470 J	54	250 U	1300 J	300 J	11	270	000	400	36	10 U	1,1,1-Trichloroethane
250 U	500 U	25 U	25 U	500 U	2500 U	2000 U	500 U	50 U	250 U	2000 U	500 U	10 U	250 U	200 U	12 J	10 U	10 U	1,1,2-Trichloroethane
250 U	500 U	25 U	25 U	500 U	2500 U	2000 U	500 U	50 U	250 U	2000 U	500 U	10 U	r 16	r 56	r pe	10 U	10 U	1,1-Dichloroethane
L 021	170 J	41	*	520	3400	0000	970	35	1 SE	4800	940	30	1100	1300	940	24	10 U	t,1-Dichloroethene
. 250 U	500 U	25 U	25 U	500 U	2500 U	2000 U	500 U	50 U	250 U	2000 U	500 U	10 U	250 U	200 U	100 U	10 U	10 U	1,2-Dichloroethane
250 U	500 U	25 U	25 U	500 U	2500 U	2000 U	500 U	50 U	250 U	2000 U	500 U	10 U	250 U	200 U	100 U	10 U	10 U	1,2-Dichloroethene (trans)
250 U	500 U	25 U	25 U	500 U	2500 U	2000 U	500 U	28 J	250 U	2000 U	500 U	11	27 J	31 J	108	5-	10 U	1,2-Dichloroethene (cia)
250 U	500 U	25 U	25 U	500 U	2500 U	2000 U	500 U	50 U	250 U	2000 U	500 U	10 U	250 U	200 U	100 U	101	10 U	2-Butanone
250 U	500 U	25 U	25 U	500 U	2500 U	2000 U	500 U	50 U	250 U	2000 U	500 U	10 U	250 U	200 U	100 U	10 U	10 U	4-Methyl-2-pentanone
250 U	500 U	25 U	25 U	500 U	0 0052	2000 U	500 U	50 U	250 U	2000 U	500 U	7 B	250 U	200 U	100 U	38	38	Acetone
250 U	500 U	25 U	25 U	500 U	2500 U	2000 U	500 U	50 U	250 U	2000 U	500 U	10 U	250 U	200 U	100 U	10 U	10 U	Benzene
250 U	500 U	0 55 U	,25 U	500 U	2500 U	1 000Z	500 U	50 U	250 U	2000 U	500 U	10 U	250 U	200 U	100 U	10 U	10 U	Carbon Disulfide
250 U	500 U	25 U	25 U	500 U	1 0052	2000 U	500 U	50 U	250 U	2000 U	500 U	10 U	250 U	200 U	100 U	10 U	10 U	Chloroethane
250 U	500 U	25 U	25 U	500 U	2500 U	2000 U	500 U	50 U	250 U	2000 U	500 U	10 U	250 U	21 J	100 U	10 U	10 U	Chieroform
250 U	500 U	25 U	25 U	500 U	2500 U	2000 U	500 U	50 U	250 U	2000 U	500 U	10 U	250 U	200 U	100 U	10 U	10 U	Ethylbenzene
250 U	500 U	N 52	25 U	500 U	2500 U	2000 U	500 U	50 U	250 U	2000 U	500 U	10 U	250 U	200 U	100 U	10 U	10 U	Methylene Chloride
1 052	500 U		17.1	500 U	ğ	ä	73	2	250 U	200	1200	x	3	20	ŝ	R	10 U	Tetrachloroethene
250 U	500 U	25 U	25 C	500 U	2500 U	2000 U	500 U	50 0	250 U	2000 U	500 U	10 U	250 U	200 U	100 U	10 U	10 U	Toluene
48 00 -	8000	-36	8	7400	3700	37000	100	8	Ne se	22000	7300	ā	7200 -	6700	200	9	10 U	Trichioroethene
250 U	500 U	25 U	25 U	500 U	2500 U	2000 U	500 U	50 C	250 U	2000 U	500 U	10 U	250 U	200 U	100 U	10 U	10 U	Vinyl Chloride
250 U	500 U	25 U	25 U	500 U	2500 U	2000 U	500 U	50 U	250 U	2000 U	500 U	10 U	250 U	200 U	100 C	10 U	10 U	Xylenes (total)

,

TARLE 0

VOLATILE ORGANICS SUMMARY - DIRECT PUSH MAY 2000 SAMPLING EVENT FORMER ARROWNE AD PLATING FACULTY MONTROSS, VA

ለውጣ 2001

.

SURFACE WATER FIELD PARAMETERS SUMMARY MAY 2000 SAMPLING EVENT FORMER ARROWHEAD PLATING FACILITY MONTROSS, VA

				FIELD	PARAME	TERS ¹	
LOCATION	STATION No.	Date	Hd	Conductivity (umhos/cm)	Turbidity (NTU)	DO (mg/l)	Temperature (°C)
	RS1	May-00	6.2	139	12.3	6.8	18.5
Boods Swamp	RS2	May-00	6.5	123	2.1	8.7	17.5
needs Swamp	RS3	May-00	6.5	117	2.6	9.3	17.1
	RS4	May-00	6.4	111	9.8	8.8	16.9
	SB1	May-00	5.9	153	2.6	8.8	16
	SB2	May-00	6.0	134	6.8	5.0	16.6
Scates Branch	SB3	May-00	4.0	96	2.4	2.9	15.8
	ST1	May-00	6.7	744	10.2	9.8	14.8
	ST2	May-00	6.3	368	5.8	9.0	16.3
South Fork	SF2	May-00	6.3	108	2.3	8.0	18.9
Godit / OIK	SF6	May-00	6.5	113	0	8.4	18.8
Mid Fork	MF1	May-00	6.2	312	0	7.5	16.1

NOTES:

(1) Field parameters were measured using HORIBA U-22 Water Checker meter.

GOLDER SIERRA

AR301229

AR301230------

...

DOLDEN MENNA

* * *				_					_		_					_		-	_	
VOTES: 3 = No! detected st (= Analyte is pres				Monitoring Walls					Depris Swamp				Scates Branch				South Fork		Mid Fork	LOCATION
ent Reported value	MW37	MW34 (filtered)	MW34	MW22	EMM	MW 1	AS4	RS	RS2	ISH	ST2	ST1	583	582	SB1	SF6 (duplicate)	97C	SF2	I III	STATION No.
	May-00	May-00	H 90	May-00	Mary-00	Mary-00	May-00	May-00	Mary-00	May-00	May-00	May-00	May-00	00-Valv	May-00	DO-Amp	1	00- 1mm	00-Vent	O
context in the	*	97.8 U	Ĩ	17	ŝ	2130	302 B	167 B	429 B	8 862	503 B	128 B	444 8	8 96C	3418	218 8	243 8	192 B	1300	Aluminum
Charles (2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	250	2.5 U	Antimony
	2.3 U	2.3 U	5.28	2.3 U	2.3 U	2.3 U	2.3 U	2.30	2.3 U	2.3 U	2.98	2.3 U	2.5 B	2.3 U	2.3 U	2.3 U	D 6'Z	2.3 U	2.3 U	Antennia
	37.1	72.5	812	ī	¥.	đ	30.4	38.7	2	342	48.3	2	22.7	¢۴	a'nt	45.6	61	38.7	X	Berlum
d by blank we	0.64 B	0.1 U	0.10	010	0.1 U	0.27 B	0.12 B	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.16 B	0.10 U	0.10 U	0.10 U	0.10 U	0.10 B	Beryllium
contembrat	0.52 B	0.42 B	0.708	0.39 B	0.42 8	0.52 B	0.30 B	0.2 U	0.31 8	0.36 B	0.20 8	0.36 B	0.20 U	0.20 U	0.20 U	0.20 B	8 62 0	0.48 8	0.20 U	Cadmium
ι Γ	17240	17488	Í		z	đ	Ĭ	4138	i	4876	Í		2910	8	824	4188	N.H.	3738		Caloium
	4.0 8	0.80 V	2.0	0.80 C	0.80 U	0.80 U	0.80 U	0 08.0	0.00	0.80 U	0.80 U	0.80 U	0.00.0	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	1.2	Chromium
	5	ŧ	2	2.18	1.0 8	N.	3.3 8	328	-	4.6 B	6.0 B	22.0	123	4.28	2.78	1.4 B	1.88	228	3.4 8	Cobelt
	1.98	1.0 U	540	1.58	3.8 8	118	1.4 B	1.0	2.0 B	1.38	3.0 B	Ē	1.98	4.68	4,4 B	1.0 U	138	1.38	1.78	Copper
	H B	72.00	Ĩ	ž	ŝ	2	2978	ł	ž	34(38)	4210	2	ž	1	2010	Ĩ	1284	ii H		kon
	2.1 UL	5.7 L	Ā	214	2.1 UL	2.1 UL	2.1 UL	2.1 UL	2.1 0	2.1 UL	2.1 UL	2.1 UL	2.1 UL	2.1 UL	2.1 UL	2.1 UL	2.1 UL	2.1 0	2.1 UL	Leed
	3030	5-454		191	Ĭ	1	ij	Ĭ	ä	3840	8178	18	Ī	ž	4290	4200	4130	4120	4180	Magneekum
	5	83	ŧ	2	1	ŧ	X	ł	¥	<u>*</u>	ŝ	1270	24	ŝ	347	121	114	112	136	Manganese
	0.10 U	0.10 U	0,10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.12 B	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0, 10 U	0.10 U	0.10 U	Mercury
	7.88	13.0 B	16.3 B	368	3.5 B	21.6 K	5.6 9	7.0 8	0.6 B	5.8 B	7,1 8	14.6 B	10.4 B	6.3 B	6.4 B	4.8 8	5.28	5.08	7.98	Niciual
	3	4310	9	1500 8	1140 19	1700 8	1840 B	1810 8	1960 B	2020 B	1	¥	1230 8	1900 B	2878	2790	7730	2	2190	Politesium
	414	41 UL -	1 I I I	ŝ	A MA	Â,	4.1 UL	41.0	ŝ	Li U	4.100	4 Jul	43 14	Î.	1.14	4.3 UL	4.1 UL	4110	4.1 UL	Selenium
	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	U 08:0	Silver
	11/2000	240		:	718		1	7	Ĩ	3	ł	71388	1	ž	ž	1	:	Ĭ	Ĭ	Sodium
	4.6 UL	4.6 UL	4.6 U	400	4.0 U	4.6 U	4.6 U	4.0 U	400	5.1 B	4.6 U	10.	4.8 C	ê	4.6U	4.6 U	4.0 U	4.80	4.6 U	Thelium
	1.3 B	0.7 UL	2.8 B	1.18	1.88	3.58	4.7 B	3. 6 B	3.0 B	3.88	4.7 B	4.0 8	2.78	5.3 B	0.80 B	3.9 B	4.4 8	3.7 8	6.3 B	Vanedium
	22.9 B	65.7 B	49.8 B	45,1 B	9.2 B	48.5 B	11LB K	Nex.	Ĩ	16.7 K	£7.1	ž	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32.2 K	21.3 K	127 K	17.3 K	2	Zins
	10.0 U	NA	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	n'eret	10.0 U	U 0'01	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	Cyanide (ug/i)

L = Analyla is prove NA = Not Analyzad

Ĩ he blanks, (indicates next) qualified by h. Actual value is expected to be forer. Actual value is expected to be higher ŝ

ant. Reported value may be bit ant. Reported value may be bit Hed right

U = The analyte was analyzed for, but was not detected above the instrument detection limit (DL), $U_{\rm L}$ = Not detected. Reported value may be biased low. The echast quantitation limit is probably highly.

April 2001

TABLE 10

METALS AND CYANDE SUMMARY - SUPFACE WATER MAY 2000 SAMPLING EVENT FORMER ANYOWICE DEATING FACILITY MONROSS, VA

996-1100

SUMMARY OF SOIL GRAIN SIZE AND RESISTIVITY DATA FORMER ARROWHEAD PLATING FACILITY MONTROSS, VA

.

				Grain	Size		Desistivity
Sample ID	nscs	Soil Description	D10	D16	Dso	D _{a6}	@ 15.5 °C
(Depth)				ш)	(ш		(ohms-cm)
SBS-10 (22.0-24.0')	(SP-SM)	MEDIUM TO FINE SAND, little clayey sitt, trace fine gravel	0.06	0.11	0.25	0.51	8,010
SBS-11 (26.0-28.0')	(SP-SM)	MEDIUM TO FINE SAND, little clayey siit, trace fine gravel	0.07	0.093	0.22	0.57	8,121
SBS-11 (32.0-34.0')	(SP-SM)	MEDIUM TO FINE SAND, little clayey siit, trace fine gravel	0.065	0.11	0.23	0.40	3,449
SBS-12 (30.0-32.0')	(SP-SM)	MEDIUM TO FINE SAND, little clayey sift, trace fine gravel	0.065	0.11	0.24	0.40	11,125
SBS-12 (34.0-36.0')	(SP-SM)	MEDIUM TO FINE SAND, little clayey sitt	0.07	0.11	0.22	06.0	1,115
SBS-13 (24.0-26.0')	(WS)	MEDIUM TO FINE SAND, some clayey silt	NA	NA	0.22	0.62	5,655
SBS-13 (28.0-30.0')	(WS)	MEDIUM TO FINE SAND, some clayey silt	NA	AN	0.21	0.43	3,763
SBS-13 (32.0-34.0')	(W)	MEDIUM TO FINE SAND, and clayey silt	NA	AN	0.21	0:00	2,936

NOTE:

Soil resistvity values were measured on soil samples saturated with site soil groundwater collected from monitoring well MW33.

GOLDER SIERRA

. 1. .

AR301231

.

.

.

.

TABLE 12

SUMMARY OF SOIL HYDRAULIC CONDUCTIVITY DATA FORMER ARROWHEAD PLATING FACILITY MONTROSS, VA

Sample	Soli Description	Sample Depth (ft)	D ₁₀ (mm)	Hydraulic Conductivity (cm/sec)
Hazen Method ¹				
SBS-10 (22.0-24.0')	(SP-SM)	22-24	0.06	3.6E-03
SBS-11 (26.0-28.0')	(SP-SM)	26-28	0.07	4.9E-03
SBS-11 (32.0-34.0')	(SP-SM)	32-34	0.065	4.2E-03
SBS-12 (30.0-32.0')	(SP-SM)	30-32	0.065	4.2E-03
SBS-12 (34.0-36.0')	(SP-SM)	34-36	0.07	4.9E-03
CPT Investigation ²				
A4	FINE SAND	34	•	1.0E-04
A12	SILTY FINE SAND	32	•	1.6E-04
A16	FINE SAND W/ CLAY	56	•	3.2E-06
A20	SILTY FINE SAND	35	-	7.7E-04
A22	FINE SAND W/ CLAY	32	-	3.8E-03
82	CLAYEY FINE SAND	31	-	2.6E-05
88	FINE SAND	30	<u>-</u>	1.5E-03
B18	FINE SAND W/ CLAY	39	-	1.5E-04
B22	SILTY FINE SAND	33	-	1.1E-03
C1	CLAYEY FINE SAND	30.5	•	3.0E-04
C6	SILTY FINE SAND	31	-	1.7E-03
C8	FINE SAND W/ CLAY	33	-	5.6E-04
C10	CLAYEY FINE SAND	33	-	1.3E-03
C16	SILTY FINE SAND	32	-	1.5E-03
C22	FINE SAND	34	-	1.2E-03
D2	SILTY FINE SAND	31	-	2.2E-03
D4	SILTY FINE SAND	31	-	1.4E-04
D8	FINE SAND W/ CLAY	32.5	•	9.0E-05
D10	FINE SAND W/ CLAY	34.5	•	7.1E-05
D10A	FINE SAND W/ CLAY	53	•	5.8E-04
D14	CLAY	36		1.3E-04
D15	FINE SAND W/ CLAY	33	•	3.5E-04
D16	SILTY FINE SAND	33	•	3.7E-03
D16	FINE SAND	32	•	1.4E-03
D20	FINE SAND W/ CLAY	37	•	1.8E-04
D22	SILTY FINE SAND	33	•	7.1E-04
E4	FINE SAND W/ CLAY	31	•	5.1E-04
E6	FINE SAND W/ CLAY	30	-	6.9E-04
E10	SILTY FINE SAND	35	-	1.3E-04
E12	FINE SAND W/ CLAY	36	-	2.2E-04
E20	FINE SAND W/ CLAY	35.5	•	4.0E-03
E22	SILTY FINE SAND	33		1.1E-03
F12	FINE SAND W/ CLAY	35	-	2.6E-04
F14	FINE SAND W/ CLAY	35	•	2.8E-04
F18	FINE SAND W/ CLAY	34	-	4.6E-03
G14	CLAVEY FINE SAND	36	•	8.6E-04
G18	FIE SAND	36	•	1.4E-03
H16	FILE SAND	33	-	8.7E-04

.

.

TABLE 12

SUMMARY OF SOIL HYDRAULIC CONDUCTIVITY DATA FORMER ARROWHEAD PLATING FACILITY MONTROSS, VA

Sample	Soil Description	Sample Depth (ft)	D ₁₀ (mm)	Hydraulic Conductivity (cm/sec)
Constant-Rate Pumping Tests - Co	oper-Jacob Method ²			
MW31		33.5-43.5	-	8.1E-05
мwзз	-	28-38	•	3.1E-04
МЖЗЗА	•	28-38	-	2.9E-04
OMW1	· ·	33.5-43.5	-	3.4E-04
OMW2	· ·	33.5-43.5	-	8.9E-04
OMW3	-	30-40	•	4.2E-04
ОМЖЗА		30-40	•	3.8E-04
OMW4	-	30-40	-	8.0E-04
OMW4A		30-40	-	8.5E-04
SMW3		41-43	-	3.6E-04
Constant-Rate Pumping Tests - Qu	lick Neuman Method ²			
MW31		33.5-43.5	-	6.0E-05
MW33	•	28-38	-	1.4E-04
МW33A	-	28-38	•	8.8E-05
OMW1	- <u> </u>	33.5-43.5	•	2.2E-04
OMW2	-	33.5-43.5	-	6.1E-04
OMW3	-	30-40	-	2.0E-04
OMW3A	-	30-40	•	2.1E-04
OMW4	-	30-40	-	4.1E-04
OMW4A	-	30-40	•	5.5E-04
SMW3		41-43	-	2.4E-04
Constant-Rate Pumping Tests - Th	els Recovery Method ²			
MW33	-	28-38	•	1.1E-03
OMW3	-	30-40	-	1.3E-03
OMW4	-	30-40	÷	2.3E-03
Step-Rate Pumping Tests - Cooper	Jacob Method *			
MW6		25-35	-	1.5E-03
MW21	•	25-35	-	1.5E-04
MW32	-	34-44	-	1.9E-03
OMW1A	•	33.5-43.5	•	8.1E-05
OMW2A	•	33.5-43.5	•	1.4E-04
Step Rate Pumping Tests - Quick N	leuman Method ²			
MW6	-	25-35	-	1.0E-03
MW21	-	25-35	•	5.3E-05
MW32	-	34-44	•	1.7E-03
OMW1A		33.5-43.5	-	2.5E-05
OMW2A	•	33.5-43.5	-	4.6E-05

.

SUMMARY OF SOIL HYDRAULIC CONDUCTIVITY DATA FORMER ARROWHEAD PLATING FACILITY MONTROSS, VA

Sample	Soil Description	Sample Depth (ft)	D ₁₀ (mm)	Hydraulic Conductivity (cm/sec)
Failing Head Slug Tests - Bou	wer-Rice Method ³			
MW1		23-33		6.5E-04
MW2	-	20-30	-	1.1E-03
MW3	-	25-35	-	1.0E-03
MW4		20-30	-	2.7E-03
MW5	-	25-35	•	1.2E-03
MW6	-	20-30		3.6E-03
MW7	-	20-30	-	2.7E-03
MW9	-	20-30	-	1.6E-03
MW10	-	20-30		1.3E-03
MW11	•	15-25	-	8.5E-04
MW12	-	10-20	-	8.6E-04
MW13	-	4-14	-	7.4E-04
Rising Heed Slug Tests - Bou	wer-Rice Method ³			
MW1	-	23-33		2.3E-03
MW2	-	20-30	•	2.3E-03
MW3	•	25-35	•	4.6E-04
MW4	-	20-30	-	1.3E-03
MW5	-	25-35	•	8.6E-04
MW6	-	20-30	-	2.5E-03
MW7	-	20-30	-	8.4E-04
MW9	-	20-30	-	1.7E-03
MW10		20-30	-	6.3E-04
MW11	-	15-25	.	1.0E-03
MW12	-	10-20	•	9.1E-04
MW13	-	4-14	•	7.5E-04

NOTES:

.

(1) The hydraulic conductivity values are calculated using the Hazen method based on D_{10} grain size data.

(2) Tests conducted by ICF Kaiser Engineers, Inc., Pre-Remedial Design Summary Report, Former Arrowhead Plating Facility, (a) Tests conducted by ICF Kaiser Engineers, Inc., Remedial Investigation Report, Arrowhead Plating Site,
(3) Tests conducted by ICF Kaiser Engineers, Inc., Remedial Investigation Report, Arrowhead Plating Site,

Montross, Virginia, August 1991.

April 2001

996-1100

TABLE 13

SUMMARY OF CAP SYSTEM ALTERNATIVES INFILTRATION EVALUATION AND ESTIMATED CONSTRUCTION COSTS FORMER ARROWHEAD PLATING FACILITY

			Estimated	Cost per Acre	
Alternatives	Description	Infiltration (inches per year)	Construction	QA/QC & Project Management	Total Estimated Cost per Acre
No Cover	NA	0'2	AN	NA	AN
A	GCL - Geocomposite - 24" Soil	6.0	\$82,000	\$11,500	\$93,500
B	GCL - 12" Sand - 24" Soil	3.0	\$88,500	\$12,500	\$101,000
С	HDPE - 12" Sand - 24" Soil	0.7	\$78,000	\$21,000	000'66\$
a	HDPE - Geocomposite - 24" Soil	0.2	\$71,000	\$19,500	\$90,500

Notes:

(1) Infiltration rates have been calculated based on an average precipitation of 41 inches per year.

Table 14

PRB and Cap System Estimated Construction Costs Former Arrowhead Plating Facility, Montross, VA

TASK DESCRIPTION	LABOR COST	UNIT PRICE ITEMS	EXPENSES	TOTAL
PRB & Cap System Construction, QA and Verification Testing		-	1	
Task 001 - Mobilization, Procurement & Demobilization	\$6,770	\$27,520	\$11,060	\$45,350
Task 002 - Site Preparation & Site Restoration	\$23,110	\$47,100	\$116,060	\$186,270
Task 003 - Drilling & Frac Inject Well Heads Install	\$69,620	\$158,420	\$205,030	\$433,070
Task 004 - Frac Inject PRB Installation	\$0	\$1,218,434	\$112,925	\$1,331,359
Task 005 - PRB Verification and Quality Assurance Tests	\$44,530	\$144,815	\$138,450	\$327,795
Task 006 - Cap System Construction	\$28,680	\$420,300	\$55,638	\$504,618
Task 007 - Cap System Verification and Quality Assurance Tests	\$8,060	\$0	\$11,244	\$19,304
Task 008 - PRB and Cap System Construction Report	\$19,040	\$0	\$3,920	\$22,960
Task 009 - Waste Storage, Characterization and Disposal	\$27,660	\$0	\$63,000	\$90,660
TOTAL ESTIMATED PRB & CAP SYSTEM COST	\$227,470	\$2,016,589	\$717,327	\$2,961,386

MOBILIZATION, PROCUREMENT & DEMOB	\$45,350
SITE PREPARATION & RESTORATION	\$186,270
PRB SYSTEM CONSTRUCTION	\$2,092,224
CAP SYSTEM CONSTRUCTION	\$523,922
CONSTRUCTION REPORT	\$22,960
WASTE DISPOSAL	\$90,660
ETI LICENSE FEE	\$160,000
TOTAL REMEDY COST	<u>\$3,121,386</u>

1) Labor and expense distributions are estimated; actual distributions may vary.

- 2) Costs include on-site waste handling and storage.
- 3) Site preparation includes earthworks, culverts, GCL and erosion control for northern section of Cap & along PRB alignment.
- 4) Assumed PRB length of 1160'; PRB will extend on average from 20' to 40' bgs, with an average iron loading of 54 lb/sft.
- 5) The final estimated costs for Transport/Disposal depend on Hazardous Waste Type Designation.
- 6) Total Waste Quantities: 100 cyds soil/drill cuttings & mud, 20,000 gals of cleaning & decant water.
- 7) EnviroMetal Technologies, Inc. Site License assumed to be 12% of Task 004 (\$1,330,000) for a License Fee of \$160,000 over the total project cost (total with License Fee of \$3,121,500)

1005 Ind

TABLE 15 PRB and Cap System Final Design and Construction Schedule Former Arrowheed Plating Facility. Montrose Virvinia

52		-	3	1	\$	â	•	8		3	1					ļ	3		2	1	•	2	2	2	8 0	*		2	2	8	2	8	i		-	:		12	-		; =	ī	•		-	7	•	5		- 	,		 ;;	5
Extential (non Project: Learn) Salety August Fishmal (non Project: Learn) Outlify Assumption August	Internal Protect Learn Safety and Outany Assurance Meetings	and Audits	(6) Quality Assurance and Health & Safety Meeth	EPA Final Construction Report Approval	EPA Final Construction Completion Report Review	Final Construction Completion Report	EPA Draft Construction Completion Report Review	Draft Construction Completion Report		(5) PRD & Lap system Construction Report		Can System Construction Franciscus / Demokalization	Can Overlain Construction Final Instruction	Description of Surface Mission Management & Conference and Excels	Const Control Variation Commission Commission		Geocomposite Lephoyment and memorial Uraen Construction	Capity and the first from the second	Enclavation of a construction of the state	Dumbhooks & ucustation and an analysis and analysis		Sile Proparamin's emporary Erosion & Sedment Controls/One	Survey semement or Lappon				(a) the state of a sta	(A) Can Sweltern Constituction	Site Restoration and Demobilization	Ventication and Quality Assurance Tests	Permeable Reactive Barrier Installation	Pre-Barrier Active Resistivity and Hedraulic Pulse Testing		Berndruck Generation Strings Installation	PER Reserve Commission Sampling	According to the state of the second construction of the second s	Descent Section & Empire Control (discher section)	She Proper and Woodcast Cammony Lengtonary Underlage Sinux		(3) PHO SYSTEM CONSTRUCTION	Dame composition internation internation	PHE Construction Construct Award	Bidding and Contractor Selection	Preparation of Bid Documents		(2) PRB and Cap System Contractor Selection	EPA Final (100%) PRB & Cap Design Approval	EPA Final (100%) PNB & Cap Davign Review	Final (100%) PR8 & Cap Design	EPA Pre-Final (90%) PRB & Cap Design Review	Pre-Email (90%) PRB & Can System Submitted out in EPA	tilesen mostie den e duu (1)	(1) DDB & Can Sustan Dealer	Task Name
71 0440	136 day	_	136 dej	1	2 1403	2 443	Elyn y	3 114									2.443		3 445	3		3 145	12 14	2 440		 - 	1		21	15 440	14 14	- -	5					Ser 1 Ser		011		, day	A with	1		56 Deg	1 day	2 445	a day	ō.				
4 Mon 9/25/01	A MON SZOOT		Tel Non SZBO	Mon 1/14/02	Mon 12/31/0	Non 12/17/0	Mon 11/1900	Man 10/2940				1000					U-2201 non		DULDS UDW	OVLOR HOM		MON SY 100	5 HON //100	106// nom				The system	Mon 10/15/0	Mon 7/201	Mon 7/2/01	Mon 6/25/01	Line Rident	Min R Mil	Linn & I Mit						More and	ULZS UDW	Mon 5/21/01	Mon 5/14/01		ra Non 5/140	Wed 5/9/01	Thu 4/26/01	Mon 4/16/01	* Non 2/5/01	Fri 2/2/01		Frt 2/2/01	Silari
Man 10/14	Mon 12/34		- Mon 123	Fri 1/18/0	FH WIND	Fn 12280	Fri 12/140	Fri 1V160					1 1100				Fn 11/20		NSLAT 4-1	10/10/		0/02/05 0 4	PA 1050	DELV N4				11270	Fri Javeor	Fn 10/120	FA 10/50	Fri 6/2000		Friend	E4 8/300		En 2000	110220		11111120		VLZ/G LICOM	Fri 6/15/0	FriSting		1 Mon V18	Med Svigk	Med S/B/	Wed 4/25/	Fri 4/1300	FH 2/2/0			
<u> </u>							-			تا			đ		,		1					-							1	_								•		-				<u>i</u>		31				2				April 2001
u.	-		1		• •			AT THE SITE WEEKLY DUR	PROJECT PROGRESS MEE									• •						-																							40 W					•		1 (11 (11 (10) (10) (10) (10) (10) (10)
· · · · · · · · · · · · · · · · · · ·								ING PPB & CAP CONSTRUCTION	TINGS WILL BE CONDUCTED	*					· · ·		•			-	•••						-						5									••							r (*					
• • •					• •																	ļ										•												•										2 2001 2001 200 200 200 2001 2001 2001
	-							¥ (1																			ļ	,																								
	-	-				-	4																	••••							-				•																			100 125 125 125 12 12 12 12 12 12 12 12 12 12 12 12 12
																	~																																					221 021 511 51 91 91 1

GOLDER SIERRA

AR301237

PRBLCapConst MPP

-

1 1 1

-.

.

996-1100

ARJUIZ46

ARJUTZ4

•

.

PLOT 1 100

7. .

.

 $\overline{\gamma}$,

,

8R301280

•

•

,

APPENDIX A

Iron Permeable Reactive Barrier Laboratory Tests

APPENDIX A-1	Soil Grain Size, Atterberg Limits, Specific Gravity and Resistivity Tests
APPENDIX A-2	Iron Filings Grain Size, Specific Gravity and Permeater Tests
APPENDIX A-3	Leak Off Tests
APPENDIX A-4	Micro-Head Permeameter and TOC Tests
APPENDIX A-5	Fracture Fluid Resistivity Tests
APPENDIX A-6	Fracture Fluid Viscosity Tests
APPENDIX A-7	Iron Filinga Grain Size Specification and Mineralogical Analysis
APPENDIX A-8	Iron Filings pH Activity Tests

AR301294

- Sillerande Jane
| - | - |
|-----------|--------------|
| 5 | _ |
| ς. | ÷ |
| C 🗅 | - |
| ÷. | <u> </u> |
| <u></u> | |
| Ξ. | 2 |
| | ~ |
| < | ÷. |
| Ľ | 0 |
| Ξ. | <u> </u> |
| - | - C |
| \square | 5 |
| - | 2 |
| 2 | 0 |
| - | ×. |
| E. | <u> </u> |
| 5 | < |
| > | Ľ |
| | |
| Ξ. | F |
| Ξų. | 0 |
| ~ | - |
| - | ~ |
| 2 | - - - |
| <u>_</u> | |
| ~ | - |
| | Ξ. |
| - | = |
| | ≂. |
| - | |
| < | = |
| 20 | |

AR301295

PLASTICITY INDEX (PI) LIQUIDITY INDEX (LI) SPECIFIC GRAVITY (Gs) MOISTURE (Mc)

ABBREVIATIONS: LIQUID LIMIT (LL) PLASTIC LIMIT (PL)

NOTES: pH = pH ACTIVITY TEST PL = PERM-LEAK-OFF TEST R = RESISTIVITY TEST - SPECS DEVELOPMENT SA = SIEVE ANALYSIS - SPECS DEVELOPMENT TOC = TOTAL ORGANIC CARBON V = VISCOCITY TEST - SPECS DEVELOPMENT

APPENDIX A-1

Soil Grain Size, Atterberg Limits, Specific Gravity and Resistivity Tests

٠

. ...

	ASTM GRAIN SIZE ANALYSIS ASTM C117, C136, D421, D422, D1140 and D2217									
PROFECT TITLE	SALTIDE /0	96.1100 IDON P	FACTIVE			SAMPLE ID		SBS 10		
PROJECT NO	IC	3-3872	EACTIVE	ALLIVA	3	SAMPLE TVP	νF			
i koleo i ko			1			SAMPLE DEP	тн	16.0 -	18.0'	
·	<u></u>			т —	· ·					
AS RECEIVED) WATER C	ONTENT		Hygrose	opic Moisture	Wet Soil & Tare (g	m)	25.62		
Tare No.			<u> </u>	For Siev	e Sample	Dry Soil & Tare (gr	π)	24.69		
Wt Wet Soil & Tare (g	pm)	(W1)	328.78	-		Tare Weight (gm)		3.25		
Wt. Dry Soil & Tare (g	m)	(W2)	255.06	T-4-1 W-	1-14-6 0	Moisture Content (%) 	<u>4.34</u>	anis Maista	
Weight of Tare (gm)		(W3)	73.72	1 10121 We	Ignt of Sample Used	ror Sieve Analys	Sinue (am)	204 11	obic moisin	re
Weight of Water (gm)		(W4 - W(-W2))	203.16	1	weight + 1 are, perme of		• Weight (gm)	114 48		
Moisture Content (%)	1)	(W4/W5)*100	36.29	1		Tota	Weight (gm)	172.16	(W6)	
Plus #4 Materia	al Sieve	(1111)/100		(Wt+Tare)	(((Wt-Tare)/W6)*100)	*PASSING	, segue (gitt)		(
TARE WEIGHT	0.00	7	12.0"	<u> </u>			12.0"	cobbles		
		2	3.0"	<u> </u>		· · · · · · · · · · · · · · · · · · ·	3.0"	coarse gravel		
			2.5"	├ ────			2.5"	coarse gravel		
			2.0"				2.0"	coarse gravel		
1			1.5"				1.5"	coarse gravel		
			1.0"				1.0"	coarse gravel		
ļ			0.75"				0.75"	fine gravel		
			0.50"				0.50"	fine gravel		
			0.375"				0.375"	fine gravel		
ļ			#4	0.00	0.0	100.0	#4	coarse sand		
HYDROMETER ANALYSIS Weight of Sample Used For Hydrometer Test										
Specific Gravity	(tested)	2.754			Weight of Sample Wet o	r Dry (gm)	48.00]		
Amount Dispersing Age	ent (ml)	125.00			Calculated Dry Wt. used	in test (gm)	46.00]		
Type Dispersion Device		Mechanical			Hydrometer Bulb Number	er	624378			
Length of Dispersion Pe	riod	1 Minute	l		% Pass #4 Sieve For Wh	ole Sample	100.00	L		
TARE WEIGHT	0.00	HYDROME	TER BAC	KSIEVE (P	ercent Passing #10) - #200 Sieves)				
				(NA+Tere)	Cumul wt.	04 DASSINC	1			
			#10		0.37	99.2	#10	medium sand		
			#20	0.94	0.94	98.0	#20	medium sand		
}			#40	1.87	1.87	95.9	#40	fine sand		
			#60	2.52	2.52	94.5	#60	fine sand		
			#100	2.87	2.87	93,8	#100	fine sand	•	
			#200	3.24	3.24	93,0	#200	fines		
		HYDROME'	TER CALC	ULATION	S					
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
5/31/00	10:56	(min)	<u> </u>	Т	<u>K</u>	Cc	С	LENGTH	Α	
5/31/00	10:58	2.00	49.0	21.50	0.013	6.00	43.00	9.2	0.98	
5/31/00	11:01	5.00	48.0	21.50	0.013	6.00	42.00	9.4	0.98	
5/31/00	11:11	15.00	45.0	21.50	0.013	6.00	39.00	9,9	0.98	
5/31/00	11:26	30.00	43.0	21.50	0.013	6.00	37.00	10.2	0.98	
5/31/00	11:56	60.00	41.0	21.50	0.013	6.00	35.00	10.6	0.98	
5/31/00	15:06	250.00	38.0	21.50	0.013	6.00	32.00		0.98	
6/1/00	10:56	1440.00	35.0		0.013	6.00	29.00	11.5	0.98	
Particle Disconte	% DA CETNIC	GRAIN SIZ	E FERCE	0.00	Description	Vallouvish Dear	and Centre	II TY CLAY	little 7	
	01.6	M COARE CRAIM	T	0.00	these through	coarse to fee	n anu uray, 3 nd	alli CLAI,	nuic	
0.0281	80 ¢	A CUARSE URAVE	۲	0.00	IISCO	CU CU	<u></u>		ł	
0.0100	82.1	COADSE CAND		0.80	0003		J			
0.0100	79.9	MEDILIM SAND		3.26		80	ևւ			
0.0075	74.6	& FINE SAND		2 98		20	PT.			
0.0028	68.7	% FINES		92.96		51	PI		тесы	TJ
0.0012	61.8	TOTAL SAMPLE		100.00			1		DATE	5/31/00
		1			I				CHECK	1 the
									REVIEW	in
	······································	<u> </u>		GOL	DER SIERRA			ARG	012	39

SPECIFIC GRAVITY OF SOILS											
			ASTM	I D-854							
		P	YCNOMET	ER METHO	D						
PROJECT TITLE	SALTI	RE/996-1100 IRO	N REACTIVE W	ALL/VA	<u>=</u>			<u></u>			
PROJECT NUMBER		1C3-	3822			SAMPLE ID	SBS - 10	-			
				<u></u>	I SAN	MPLE TYPE	Ba	g			
TESTED FOR		G	s		SAMI	PLE DEPTH	16.0 - 1	18.0'			
HYGROSCOPIC MO	ISTURE OF	MATERIAL P	ASSING THE	E #4 SIEVE	<u>, , , , , , , , , , , , , , , , , , , </u>						
Weight Soil and Tare Ini	tal (am)		(W1)	172.12							
Weight Soil and Tare Fir	nal (gm)		(W2)	171.45	}		METHOD				
Weight Of Tare (am)	im (Bill)		(W3)	51.92	ł	1	VACIIIM	:			
Weight Of Moisture (gm)	\		(WA=WI-W2)	0.67		I	meeeim				
Weight Of Dry Soil (gm))		$(W_{4} - W_{2}, W_{2})$	119.53							
Weight Of Dry Soli (gin)	/ /0/)	/ID /	(WJ=WZ=WJ)	0.696							
	(70)	(HM-	=(w4/w5)=100)	0.076	 			·····			
Trial				1	2.	3					
Pycnometer Number				1							
Weight Pycnometer Empt	ty (gm)		(Mf)	189.07							
Weight of Soil & Pycnom	neter (gm)			289.08		· · · ·					
Weight of Soil, Water & I	Pycnometer (gп	1)	(Mb)	750.64							
Observed Temperature (T	b), for (Mb) In	Degrees C		23.0	<u></u>						
Observed Temperature (T	a), for (Ma) In l	Degrees C		22.00							
Weight of Pycnometer &	Water (gm)		(Ma @ Ta)	687.39							
Relative Density of Water	r@ (Ta)			0.99780							
Relative Density of Water	r@(lx)	T		0.99757							
Correction Factor due to 1	i emperature @	IX	(K)	0.9993							
Weight of Soli (gm)				100.01							
Weight of Dry Son (gm)	Water (am)		(Mo)								
weight of Fychometer &		<u></u>				[
SPECIFIC GRAVITY			,		<u></u>	·····	C (Ss Average			
G(a) 20 degrees $C = [N]$	10/(Mo+(Ma	- MD))]*(K)	l	2.754		<u> </u>		2.754			
	Temp (C)	Rel Density	Corr (K)	Temp (C)	Rel Density	Corr (K)					
	16.00	0.99897	1.0007	23.50	<u>0 99745</u>	0 9992					
	16.50	0.99889	1.0007	24.00	0.99732	0.9991					
	17.00	0.99880	1.0006	24.50	0.99720	0.9990					
Correction Values	17.50	0.99871	1.0005	25.00	0.99707	0.9988					
Due To Temperature	18.00	0.99862	1.0004	25.50	0.99694	0.9987					
	18.50	0.99853	1.0003	26.00	0.99681	0.9986					
ļ	19.00	0.99843	1.0002	26.50	0.99668	0.9984					
	19.50	0.99833	1.0001	27.00	0.99654	0.9983					
	20.00 20.50	0.99823	0.0000	27.50	0.99640	0.9982					
ļ	20.50	0.22012	0.0008	28.00	0.99020	0.9900					
Í	21.50	0.99791	0.9997	29.00	0.99597	0 9977					
ļ	22.00	0.99780	0.9996	29.50	0,99582	0.9976	l				
	22.50	0.99768	0.9995	30.00	0.99567	0.9974					
	23.00	0.99757	0.9993				TECH	RJ			
L	·····						DATE	5/31/00			
							CHECK	(nu			
							REVIEW	Cille			

		AST	RESISTIVITY O M G-57 AND U.S.	F SOIL DOT FP-85	5	
PROJECT TITLE PROJECT NO. REMARKS	LE SALTIRE/996-1100 IRON REACTIVE WALL/VA IC3-3822		SAMPLE ID SI SAMPLE TYPE SAMPLE DEPT		5 - 10 Bag 16.0 - 18.0'	-
SAMPLE PREPAR TEST APPARATU	ATION S	Sieved through the # Miller Soilbox and I	#8 Sieve Nilsson 400 Soil Resista	No nce Meter.]	
dentification:	<u> </u>			<u></u>	Resisivity of the Site H ₁ O	· · · · · · · · · · · · · · · · · · ·
DECIMEN (Point)			2	3	<u> </u>	
ESISTIVITY (oh)	ns-cm)	4.200		<u> </u>	1.400	
EMP DEGREES	(C)	20.0			22.0	
ESISTIVITY @ 1	5.5 C (ohms-cm)	4,673			1,628	
10ISTURE CONT	ENT		_			
VET WEIGHT &	TARE	121.99				
A DE WEIGHT & TARE 82.90		82.90		<u></u> .	· · · · · · · · · · · · · · · · · · ·	
ARE WEIGHT	STIRE (am)	39.09				
VEIGHT OF DRV	SOIL (gm)	31.74				
OISTURE CONT	ENT (%)	123.16				
RESISTIVITY (ohms-cm) (Thousands)		25 50	75 MOISTURE CONTEN	100 T (%)	■ 4.7 125	Series]
L	Description	Yellowish Brown and fine sand.	Gray, SILTY CLAY, li	ttle coarse to]	
	USCS	СН				TECH PWM DATE 5/30/00 CHECK (74 REVIEW Course

,

ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136

					1				
PROJECT TITLE	SALTIRE	C/996-1100 IRO	N REACTIV	E WALL/VA	S.	AMPLE ID	SBS - 10	-	_
PROJECT NO.		IC3-3822		4	SAM	PLE TYPE	B	ag	-
REMARKS	l <u> </u>				SAMP	LE DEPTH	22.0	- 24.0'	
				Hygroscopic	Moisture For S	ieve Sample	F ()		7
WATER CONTENT	(Delivered M	loisture)		4		Wet Soil &	lare (gm)		-
Wt Wet Soil & Tare (gi	m)	(wl)		-		Dry Soil & 1	are (gm)		-
Wt Dry Soil & Fare (gr	n)	(w2)		-		Tare weight	(gm)		-
Weight of lare (gm)		(W3)		The INV. (also	060	Moisture Co	ntent (%)		_L
Weight of Water (gm)		(w4=w1-w2)		1 Iotal weight	Of Sample Use	Waight Of S	orrected For rive		٦
Mainture Content (8()	1)	$(w_3 = w_2 - w_3)$		4		Tare Weight	ample (gm)	193.02	-
Moisture Content (%)		(w4/w3)*100		-	(WA)	Total Dry W	eight (gm)	150.71	-
					(40)	Total Dry W	cigin (giii)	1.00.71	_
SIEVE ANALYSIS				Cumulative					
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
0.00		+Tare	({(wt.ret/w6)*100	(100-%ret)				
	12.0"			1		12.0"	cobbles		
	3.0"			1	······ ·	3.0"	coarse gravel		
	2.5"			Ť.		2.5"	coarse gravel		
	2.0"					2.0"	coarse gravel		
	1.5"		<u></u>			1.5"	coarse gravel		
	1.0"					1.0"	coarse gravel		
	0.75"					0.75"	fine gravel		
	0.50"					0.50"	fine gravel		
	0.375"	0.00	0.00	0.00	100.00	0.375"	fine gravel		
	#4	0.03	0.03	0.02	99.98	#4	coarse sand		
	#10	2.06	2.06	1.37	98.63	#10	medium sand		
	#20	8.48	8.48	5.63	94.37	#20	medium sand		
	#40	28.29	28.29	18.77	81.23	#40	fine sand		
	#60	82.14	82.14	54.50	45.50	#60	fine sand		
	#100	125.90	125.90	83.54	16.46	#100	fine sand		
	#200	133.12	133.12	88.33	11.67	#200 DAN	fines		
N CODDI PO	PAN	T				PAN	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
% COBBLES	0.00		•i	× 1007	- atlu an (-)				
	0.00	Jescrip	O to 594	> 10% m	osuy coarse (c)	(m)	гт		٦
%C SAND	1.35	littla	5 to 12%	< 10% fu	osuy meanin (111)	PL		-
% M SAND	17.40	some	12 to 30%	< 10% co	arse (m-f)		PI		1
% F SAND	69.56	and	30 to 50%	< 10% co	arse and fine ()	m)		2.676	1
% FINES	11.67		50 00 5070	< 10% co	arse and medi	um (f)			
% TOTAL	100.00	1		> 10% eq	ual amounts es	(•) uch (c-f)			
L		_J .							
DES	CRIPTION	Reddish Brow	n, MEDIUM 1	TO FINE SAND	, little				
		clayey silt, tra	e fine gravel.						
			-						
	USCS	(SP-SM)	· · · ·			•	TECH	PWM/RJ	
							DATE	5/30/00	
							CHECK	C.p.	
		<u>~</u>				<u></u>	REVIEW	in.	<u> </u>

SPECIFIC GRAVITY OF SOILS ASTM D-854 PYCNOMETER METHOD

-

SAMPLE TITLE SAMPLE ID SSAMPLE ID SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE SAMPLE DEPTH Visit Solid and Ture, intuik (gm) (W10) Weight Of Solid Area (gm) (W10) Weight Of Solid Area (gm) (W11 YACUUM Weight Of Solid Area (gm) (M0) (W10) (W11 YACUUM Weight Of Solid Area (gm) (M0) (M0) (M1 YACUUM Weight Of Solid Area (gm) (M0) Orter (gm) (M0) Corter (gm) <th c<="" th=""><th></th><th></th><th>P</th><th>YCNOMET</th><th>ER METHO</th><th>)D</th><th></th><th></th><th></th></th>	<th></th> <th></th> <th>P</th> <th>YCNOMET</th> <th>ER METHO</th> <th>)D</th> <th></th> <th></th> <th></th>			P	YCNOMET	ER METHO)D			
PROJECT NUMBER ic3.3822 SAMPLE TPE SBS-10 Bat TESTED FOR CS SAMPLE TPE SAMPLE DEPTH 220-340" HYGROSCOPIC MOISTURE OF MATERIAL PASSING THE #4 SIEVE MREMOVAL Weight Soil and Ture, final (gn) (W1) 203.85 AIR REMOVAL Weight Soil and Ture, final (gn) (W3) 51.72 MSTHOD VACUUM Weight Of Moisture (gn) (W4=WI-W2) 0.33 VACUUM VACUUM Weight Of Moisture (n) (W4=WI-W2) 0.33 VACUUM VACUUM Weight Of Moisture (n) (MM-W4W91+100) 6.27% VACUUM VACUUM Trial 1 2 3 VACUUM VACUUM Weight Of Soil & Pyconneter (gn) (Mh) 178.11 VACUUM VACUUM Weight Of Soil & Pyconneter (gn) (Mh) 178.10 VACUUM VACUUM Veight of Soil & Pyconneter (gn) (Mh) 178.10 VACUUM VACUUM Weight Of Soil (ware & Pyconneter (gn) (Ma) (D 197571 Correcton Values 059770 Correcton Values 059771 Correcton Values 056.63 VArerage Dae To Temperature & Wa	PROJECT TITLE	SALTI	RE/996-1100 IRO	N REACTIVE W	ALL/VA]			<u> </u>	
TESTED FOR GS SAMPLE TYPE Bug 220. 240" Wright Soit and Tare, Initial (gn) (W1) 203.85 AIR REMOVAL Wright Soit and Tare, Initial (gn) (W2) 203.50 METHOD Wright Soit and Tare, Initial (gn) (W2) 203.50 METHOD Wright Of Tare (gn) (W4 = W1 + W2) 0.33 WITHOD Wright Of Das Soil (gn) (W4 = W1 + W2) 0.33 WITHOD Proconster Mumber (W3) (HM = W4W3)*100 0.27% WITHOD Trial Proconster Kumber 1 2 3 Proconster Kumber Wright Of Soil (Water (gn) (MM) 11 - - - - Observel Temperature (Tb), for (Mb) in Degrees C 22.00 - - - - Wright Of Soil (gn) (Ma) 757.13 - <td>PROJECT NUMBER</td> <td>······</td> <td>IC3-</td> <td>-3822</td> <td></td> <td>1</td> <td>SAMPLE ID</td> <td>SBS - 10</td> <td>-</td>	PROJECT NUMBER	······	IC3-	-3822		1	SAMPLE ID	SBS - 10	-	
TESTED FOR GS SAMPLE DEPTH 22.0 - 7.40* HYGROSCOPIC MOISTURE OF MATERIAL PASSING THE #4 SIEVE weight soil and Tare, final (gn) (w1) 203.85 AIR REMOVAL Weight Soil and Tare, final (gn) (w1) 203.85 MRTHOD Wath Soil and Tare, final (gn) (w3) Weight Of Moistare (gn) (w4-wi.w2) 0.33 Wath Soil and Tare, final (gn) (w3) VACUUM Weight Of Moistare (gn) (W4-wi.w2) 0.33 Wath Soil and Tare, final (gn) VACUUM Weight Of Soil (gn) (MM) 1 2 3 Hygroscopic Moisture In (%) (BM-(W4W9)*100) 0.2% Trial 1 2 3 Weight Of Soil & Pronometer (gn) (Mh) 1 1 3 Observed Temperature (Tb), for (Ma) In Degrees C 2280 309786 Relative Density of Water @ (Ts) 6 676.73 309787 Relative Density of Water @ (Ts) 0 6766.63		L				SAN	APLE TYPE	Bag	<u></u>	
HYGROSCOPIC MOISTURE OF MATERIAL PASSING THE #4 SIEVE Weight Sol and Tare, finial (gm) (W1) 203.85 AIR REMOVAL Weight Sol and Tare, finial (gm) (W2) 203.50 WEITHOD Weight OT Moistne (gm) (W4 W1.W2) 0.35 VACUUM Weight OT Dry Soil (gm) (W4 W1.W2) 0.35 VACUUM Weight OT Dry Soil (gm) (W4 W1.W2) 0.274 VACUUM Trial 1 2 3 Pyronometer Minber (M4 W4.W3.W3) 100 0.274 Weight OT Soil & Pyronometer (gm) (M0) 178.11 — Weight OT Soil & Pyronometer (gm) (Md) 793.13 — Observel Temperature (Tb), for (Mb) in Degrees C 22.00 — — Observel Temperature (Ta), for (Mb) in Degrees C 22.00 — — Weight OT Soil (gm) (Md) 95.975 — — Relatav Density Of Water (gm) (Md) 95.975 — — Weight OT Soil (gm) (Md) 95.975 — — — Weight OT Soil (gm) (Md) 95.975 — —	TESTED FOR		G	s		SAM	PLE DEPTH	22.0 - 2	4.0'	
Weight Soil and Tare, Inital (gm) (W1) 203.85 AIR REMOVAL Weight Soil and Tare, Final (gm) (W3) 51.72 METHOD Weight Of Chrosoft (gm) (W4+W1-W2) 0.35 VACUUM Weight Of Dry Soil (gm) (W4+W1-W2) 0.35 VACUUM Trial 1 2 3 Pyconneter Number 1 2 3 Weight Of Soil, Water & Pyconneter (gm) (M4) 11 1 Weight Of Soil, Water & Pyconneter (gm) (Mb) 738.11 1 Weight Of Soil, Water & Pyconneter (gm) (Mb) 739.13 1 1 Observed Tempenture (Ta), for (Mb) In Degrees C 22.800 1 0.39786 1 Weight of Soil (gm) (Ma) 0.39786 1 0.39786 1 <t< td=""><td>HYGROSCOPIC MO</td><td>ISTURE OF</td><td>MATERIAL P</td><td>ASSING THI</td><td>E #4 SIEVE</td><td>• • • • • • • • • • • • • • • • • • •</td><td></td><td></td><td></td></t<>	HYGROSCOPIC MO	ISTURE OF	MATERIAL P	ASSING THI	E #4 SIEVE	• • • • • • • • • • • • • • • • • • •				
Weight OT are (gm) (W2) 203.50 ME THOD Weight OT are (gm) (W4) (W3) 51.72 (W4) Weight OT Dry Soll (gm) (W4-W4) 0.35 (W4-W4) 0.35 Weight OT Dry Soll (gm) (W4-W4) 0.37 0.274 0.274 Trial 1 2 3 0.274 0.274 Weight Of Soll (gm) (W4-W4)*100 0.274 0.274 0.274 Weight Of Soll (gm) (M0) 178.11 0.0274 0.0274 Weight Of Soll & Pycnometer (gm) (M0) 178.10 0.0000 0.0000 Weight Of Soll & Pycnometer (gm) (M4) 739.13 0.00000 0.00000 Observed Temperature (Ta), for (Ma) In Degrees C 22.00 0.00000000000000000000000000000000000	Weight Soil and Tare. Ini	tal (gm)		(W1)	203.85]	АП	R REMOVA	AL	
Weight Of Yater (gm) (W3) 51.72 VACUUM Weight Of Moisture (m) (W4=W1-W2) 0.35 VACUUM Weight Of Dry Soil (gm) (W4=W1-W2) 0.35 VACUUM Hyproscept Moisture In (%) (HM=(W4-W3)*100) 0.254 VACUUM Trial 1 2 3 Pynometer Mumber 11 1 1 Weight Of Soil & Pynometer (gm) (M0) 178.11 1 Observed Temperature (Tb), for (Mb) In Degrees C 23.0 1 1 Observed Temperature (Tb), for (Mb) In Degrees C 23.0 1 1 Relative Density of Water @ (Ta) 0.39787 1 1 1 Relative Density of Water @ (Ta) 0.39787 1 1 1 1 Weight of Dy Soil (gm) (Ma) 99.76 1	Weight Soil and Tare Fit	nal (gm)		(W2)	203.50	1		METHOD		
Notigit Of Div (gin) (W4+W1-W2) 0.33 Weight Of Dry Solt (gm) (W5+W2-W3) 151.78 Hygroscopic Moisture In (%) (HM-(W4W3)*100) 0.254 Trial 1 2 3 Pyconneter Number 1 2 3 Weight Of Solt (gm) (Mh) 178.11 1 1 Weight Of Solt Water & Pycnometer (gm) (Mh) 178.11 1 1 Weight Of Solt Water & Pycnometer (gm) (Mh) 178.11 1 1 1 Observed Temperature (Tb), for (Mb) In Degrees C 23.0 1 0.59780 1 0 Relative Density of Water @ (Ta) (Ma @ Ta) 6.767.4 1 0 0.99737 1 0 Relative Density of Water @ (Ta) (Ma @ Ta) 6.767.4 1 0	Weight Of Tare (am)	(B.I.)		(W3)	51.72		ſ	VACIUM		
Noting of Monute (gin) (HV + VL + V) 0.22 Hygroscopic Moisture In (%) (HV + VL + VS) 0.25% Trial 1 2 3 Pyconneter Mumber 1 1 1 1 Weight Of Soil & Pyconneter (gm) (Mh) 178.11 1 1 Weight of Soil & Pyconneter (gm) (Mh) 779.13 1 1 Observed Temperature (Tb), for (Mb) In Degrees C 22.00 1 1 1 0.97760 Relative Density of Water @ (Ta) (Ma @ Ta) 6.97760 1 0.97760 1 0.97760 Weight of Soil (gm) (Ma) 97.75 1 1 0.97760 1 0.97760 Weight of Soil (gm) (Ma) 676.63 1 1 2.676 <td< td=""><td>Weight Of Moisture (am)</td><td></td><td></td><td>(W4=W1-W2)</td><td>0.35</td><td>•</td><td>L</td><td></td><td></td></td<>	Weight Of Moisture (am)			(W4=W1-W2)	0.35	•	L			
Weight of D by solt (gin) (HM-(WAWS)*100) 0.2% Trial 1 2 3 Pycnometer Number (IM) 11 1 Weight Optimeter Emply (gin) (MI) 178.11 1 Weight of Soil & Pycnometer (gin) (Mb) 739.13 1 Observed Temperature (Tb), for (Mo) In Degrees C 23.0 1 1 Observed Temperature (Ta), for (Ma) In Degrees C 23.0 1 1 1 Relative Density of Water @ (Ta) (Ma @ Ta) 676.74 1 <td< td=""><td>Weight Of Moisture (gm)</td><td>,)</td><td></td><td>(W5-W2 W2)</td><td>151 79</td><td></td><td></td><td></td><td></td></td<>	Weight Of Moisture (gm)	,)		(W5-W2 W2)	151 79					
Trigit rygroscopic Modature in (vs) Ind (W4/W3)*100 U.2.7e Trial 1 2 3 Pyenometer Number II III III Weight Of Soil, Water & Pyenometer (gm) (Mb) 179:13 III Observed Temperature (Ta), for (Ma) In Degrees C 23.0 IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	weight Of Dry Solt (gin)) (8()	(71) ((W 3=W 2-W 3)	131.70					
Trial 1 2 3 Pycnometer Empty (gm) (Mf) 11	Hygroscopic Moisture In	(%)	(HM)	≠(₩4/₩5)*100)	0.270	 				
Pycnometer Lempty (gm) (II) II Weight of Soil & Pycnometer (gm) (Mb) 739.13 III Observed Temperature (Tb), for (Mb) In Degrees C 23.0 IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Trial				1	2	3			
Weight of Soil & Pycnometer (gm) (M0) 178.11	Pycnometer Number				11					
Weight of Soil & Pycnometer (gm) (Mb) 739.13	Weight Pycnometer Emp	ty (gm)		(Mf)	178.11					
Weight of Soll, Water & Pycnometer (gm) (Mb) 739, 13	Weight of Soil & Pycnon	neter (gm)			278.10					
Observed Temperature (Ta), for (Ma) In Degrees C 23.0 Observed Temperature (Ta), for (Ma) In Degrees C 22.00 Weight of Pycnometer & Water (gm) (Ma @ Ta) Relative Density of Water @ (Ta) 0.997870 Relative Density of Water @ (Ta) 0.99797 Correction Factor due to Temperature @Tx (Kb) Weight of Soil (gm) (Mo) Weight of Pycnometer & Water (gm) (Ma) SPECIFIC GRAVITY Gs Average G @ 20 degrees C = [Mo/(Mo+(Ma - Mb))]*(K) 2.676 SPECIFIC GRAVITY Gs Average Correction Values 17.00 0.99877 0.99972 17.00 0.99880 1.0007 24.00 0.99712 0.9992 17.00 0.99881 1.0006 24.50 0.99971 0.99981 19.00 0.99861 1.0002 25.50 0.9964 0.9987 19.00 0.99833 1.0000 27.50 0.9981 0.9971 19.50 0.99813 1.0000 27.50 0.9964 0.9987 20.00 0.99813 1.0000 27.50 0.9964 0.9981 19.	Weight of Soil, Water & I	Pycnometer (gn	1)	(Mb)	739.13					
Observed Temperature (Ta), for (Ma) In Degrees C 22.60 Weight of Pycnometer & Water (gm) (Ma @ Ta) Relative Density of Water @ (Ta) 0.99780 Relative Density of Water @ (Tx) 0.99793 Correction Factor due to Temperature @Tx (K) Weight of Sycol (gm) (Ma) Weight of Pycnometer & Water (gm) (Ma) SPECIFIC GRAVITY Gs Average G @ 20 degrees C = [Mo/(Mo+(Ma - Mb))]*(K) 2.676 SPECIFIC GRAVITY Correction Values Due To Temperature 17.50 0.99861 1.0007 17.00 0.99881 1.0006 24.50 0.99712 0.9991 17.00 0.99881 1.0002 25.50 0.9964 0.9987 18.00 0.99862 1.0004 25.50 0.9964 0.9981 19.00 0.99813 1.0000 27.50 0.9964 0.9982 20.00 0.99813 1.0000 27.50 0.9964 0.9987 18.00 0.99861 0.99961 0.99977 0.9977 20.00 0.99813 1.0000 27.50 0.99640 0.9981	Observed Temperature (T	b), for (Mb) In	Degrees C		23.0					
Weight of Pycnometer & Water (gm) (Ma @ Ta) 676.74	Observed Temperature (T	a), for (Ma) In	Degrees C		22.00					
Relative Density of Water @ (Ta) 0.99780 Relative Density of Water @ (Tx) 0.99787 Correction Factor due to Temperature @Tx (K) Weight of Soil (gm) 99.99 Weight of Soil (gm) (Mo) Weight of Dry Soil (gm) (Mo) SPECIFIC GRAVITY 676.63 G @ 20 degrees C = [Mo/(Mo+(Ma - Mb))]*(K) 2.676 Correction Values Due To Temperature 16.00 17.00 0.99880 1.0007 17.00 0.99881 1.0007 18.00 0.99851 1.0004 19.50 0.99883 1.0001 19.50 0.99883 1.0001 19.50 0.99883 1.0002 26.50 0.99664 0.9987 19.50 0.99881 0.0001 21.50 0.999812 0.9997 22.00 0.99788 0.9997 21.50 0.99781 0.9997 21.50 0.99781 0.9997 22.00 0.99882 0.9997 0.9997 21.00 0.99881 0.0001 27.50	Weight of Pycnometer &	Water (gm)		(Ma @ Ta)	676.74					
Relative Density of Water @ (Tx) 0.99757 0.99757 0.99757 Weight of Soil (gm) (Mo) Weight of Py Soil (gm) (Mo) G @ 20 degrees C = [Mo/(Mo+(Ma - Mb))]*(K) Correction Values Temp. (C) Rel Density Correction Values Temp. (C) Rel Density Correction Values Due To Temperature 18.00 0.99853 1.0007 24.50 0.99970 0.99901 17.00 0.99880 1.0006 24.50 0.99970 0.99981 18.00 0.99853 1.0001 27.50 0.99864 0.99861 19.00 0.99843 1.0002 26.50 0.99864 0.99861 19.00 0.99823 1.0001 27.00 0.99802 0.99971 20.00 0.99802 0.9997 29.00 0.99972 0.9976 20.00 0.99823 1.0000 27.50 0.99864 0.9986 19.50 0.998710 0.99	Relative Density of Water	:@ (Ta)			0.99780					
Correction Factor due to Temperature @Tx (K) 0.9993	Relative Density of Water	:@ (Tx)			0.99757					
Weight of Soil (gm) 99.99 976 Weight of Dry Soil (gm) (Mo) 99.76 99.76 Weight of Pycnometer & Water (gm) (Ma) 676.63 676.63 SPECIFIC GRAVITY G @ 20 degrees C = [Mo/(Mo+(Ma - Mb))]*(K) C s Average Zord Zor	Correction Factor due to 7	[emperature @]	Гx	(K)	0.9993					
Weight of Dry Soil (gm) Weight of Pycnometer & Water (gm) (Mo) 99.76 Image: Constraint of Cons	Weight of Soil (gm)				99. 9 9	·				
Weight of Pycnometer & Water (gm) (Ma) 676.63 G @ 20 degrees C = [Mo/(Mo+(Ma - Mb))]*(K) G s Average SPECIFIC GRAVITY G & 20 degrees C = [Mo/(Mo+(Ma - Mb))]*(K) Corr. (k) Temp. (C) Rel Density Corr. (k) Zerr Corr. (k) Zerr Corr. (k) Temp. (C) Rel Density Corr. (k) Zerr Zerr Corr (k) Temp. (C) Rel Density Corr. (k) Temp. (C) Rel Density Corr. (k) 10007 16.50 0.99897 1.0007 24.00 0.99772 0.9991 17.00 0.99880 1.0005 25.00 0.9977 0.9988 18.00 0.99862 1.0004 25.50 0.99654 0.9981 19.00 0.99812 0.9997 29.00 0.99577 0.9977 20.50 0.99780 0.9999 28.00 0.99626 0.9980 21.00 <td< td=""><td>Weight of Dry Soil (gm)</td><td></td><td></td><td>(Mo)</td><td>99.76</td><td></td><td></td><td></td><td></td></td<>	Weight of Dry Soil (gm)			(Mo)	99. 76					
SPECIFIC GRAVITY Gs Average G@ 20 degrees C = [Mo/(Mo+(Ma - Mb))]*(K) 2.676 2.676 Image: Construction Values Image: Construction Values 10007 23.50 0.99745 0.9992 16.50 0.99889 1.0007 24.00 0.99732 0.9991 1000 17.00 0.99880 1.0006 24.50 0.99707 0.9988 0.9987 17.00 0.99862 1.0004 25.50 0.99707 0.9988 0.9987 18.50 0.99853 1.0002 26.50 0.99668 0.9982 19.00 0.99823 1.0000 27.50 0.99664 0.9982 20.00 0.99823 1.0000 27.50 0.99664 0.9982 20.50 0.99812 0.9997 29.00 0.9982 0.9977 21.00 0.99802 0.9995 30.00 0.9957 0.9977 22.00 0.99788 0.9995 30.00 0.9957 0.9977 22.00 0.99768 0.9995 30.00	Weight of Pycnometer &	Water (gm)		(Ma)	676.63	- <u></u>				
G @ 20 degrees C = [Mo/(Mo+(Ma - Mb))]*(K) 2.676 2.676 Temp. (C) Rel Density Corr. (K) Temp. (C) Rel Density Corr. (K) 16.00 0.99897 1.0007 23.50 0.99745 0.9992 16.50 0.99889 1.0007 24.00 0.99732 0.9991 17.00 0.99880 1.0006 24.50 0.99707 0.99890 17.00 0.99880 1.0006 25.50 0.99707 0.99880 17.50 0.99871 1.0002 26.50 0.9964 0.9987 18.50 0.99843 1.0002 26.50 0.99644 0.9983 19.50 0.99812 0.9999 28.00 0.99640 0.9982 20.00 0.99802 0.9999 28.00 0.99626 0.9980 21.00 0.99710 0.9997 29.00 0.9977 0.9977 22.00 0.99768 0.9995 30.00 0.99567 0.9976 22.50 0.99757 0.9993 30.00 0.99567 <td>SPECIFIC GRAVITY</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G</td> <td>s Average</td>	SPECIFIC GRAVITY							G	s Average	
Temp. (C) Rel Density Corr. (K) Temp. (C) Rel Density Corr. (K) 16.00 0.99897 1.0007 23.50 0.99745 0.9992 16.50 0.99889 1.0007 24.00 0.99732 0.9991 17.00 0.99880 1.0006 24.50 0.99720 0.9990 17.50 0.99871 1.0005 25.00 0.99707 0.9988 18.00 0.99853 1.0003 26.00 0.99681 0.9986 19.00 0.99843 1.0002 26.50 0.99668 0.9983 20.00 0.99823 1.0000 27.50 0.99626 0.9982 21.50 0.99712 0.9999 28.00 0.99626 0.9980 21.50 0.99780 0.9999 29.50 0.99577 0.9977 22.00 0.99757 0.9995 30.00 0.99567 0.9974 23.00 0.99757 0.9993 2 0.9976 0.9976 23.00 0.99757 0.	G @ 20 degrees C = [N	10/(Mo+(Ma	- Mb))]*(K)	[2.676			[2.676	
Correction Values 16:00 0.99897 1.0007 23:50 0.99745 0.99992 16:50 0.99889 1.0007 24:00 0.99732 0.9991 17:00 0.99880 1.0006 24:50 0.99707 0.9990 17:00 0.99880 1.0005 25:00 0.99707 0.9988 Due To Temperature 18:00 0.99862 1.0004 25:50 0.99684 0.9986 19:00 0.99833 1.0002 26:50 0.99668 0.9983 20:00 0.99823 1.0000 27:50 0.99664 0.9982 20:50 0.99979 28:00 0.99626 0.9980 21:00 0.99880 20:00 0.99883 1.0000 27:50 0.99612 0.99979 28:00 0.99626 0.9980 21:00 0.99780 0.99977 2.9977 2.9976 2.9976 2.9976 2.9976 2.9976 2.9976 2.50 0.99757 0.9973 2.9976 2.300 0.99757 0.9993 3.0.00 0.99557 0.9974			Del Density	<u> </u>	T (D)					
Correction Values 10.00 0.99889 1.0007 24.00 0.99732 0.9991 I6.50 0.99889 1.0006 24.50 0.99720 0.9990 I7.00 0.99880 1.0005 25.00 0.99707 0.9988 Due To Temperature 18.00 0.99862 1.0004 25.50 0.99644 0.9986 19.00 0.99843 1.0002 26.50 0.99668 0.9983 19.00 0.99823 1.0000 27.50 0.99640 0.9982 20.00 0.99812 0.9999 28.00 0.99626 0.9980 21.00 0.99802 0.9997 29.00 0.99577 0.9977 21.00 0.99780 0.9997 29.00 0.99577 0.9977 22.00 0.99768 0.9995 30.00 0.99567 0.9974 23.00 0.99757 0.9993 30.00 0.99567 0.9974 23.00 0.99757 0.9993 30.00 0.99567 0.9974 24.00 0.99757 0.9993 30.00 0.99567 0.9974 </td <td></td> <td>$\frac{1600}{1600}$</td> <td>n uugu7</td> <td>L 0007</td> <td>73.50</td> <td></td> <td></td> <td></td> <td></td>		$\frac{1600}{1600}$	n uugu7	L 0007	73.50					
Correction Values 17.00 0.99880 1.0006 24.50 0.99720 0.99980 Due To Temperature 17.50 0.99880 1.0005 25.00 0.99707 0.9988 18.00 0.99862 1.0004 25.50 0.99694 0.9986 19.00 0.99843 1.0002 26.50 0.99668 0.9983 20.00 0.99823 1.0000 27.50 0.99640 0.9982 20.00 0.99812 0.9999 28.00 0.99626 0.9980 21.00 0.99802 0.9997 29.00 0.99577 0.9977 22.00 0.99710 0.9997 29.00 0.99597 0.9977 22.00 0.99757 0.9993 30.00 0.99567 0.9974 23.00 0.99757 0.9993 30.00 0.99567 0.9974 23.00 0.99757 0.9993 30.00 0.99567 0.9974 24.50 0.99757 0.9993 30.00 0.99567 0.9974 25.50 0.99757 0.9993 30.00 0.99567 0.9974 <		16.50	0.99889	1.0007	23.50	0.99745	0.9992			
Correction Values Due To Temperature 17.50 0.99871 1.0005 25.00 0.99707 0.9988 18.00 0.99862 1.0004 25.50 0.99694 0.9987 18.50 0.99853 1.0002 26.50 0.99668 0.9984 19.00 0.99833 1.0002 26.50 0.99654 0.9983 20.00 0.99823 1.0000 27.50 0.99640 0.9982 20.00 0.99812 0.9999 28.00 0.99626 0.9980 21.00 0.99802 0.9997 29.900 0.9977 0.9977 21.00 0.99780 0.9995 30.00 0.99582 0.9976 22.00 0.997780 0.9995 30.00 0.99567 0.9974 23.00 0.99757 0.9993 TECH KJ 5/31/00 21.00		17.00	0.99880	1,0006	24.50	0.99720	0.9990			
Due To Temperature 18.00 0.99862 1.0004 25.50 0.99694 0.9987 18.50 0.99853 1.0003 26.00 0.99681 0.9986 19.00 0.99843 1.0002 26.50 0.99668 0.9983 19.50 0.99833 1.0001 27.00 0.99654 0.9983 20.00 0.99823 1.0000 27.50 0.99640 0.9982 20.50 0.99812 0.9999 28.00 0.99626 0.9980 21.00 0.99802 0.9997 29.00 0.99597 0.9977 22.00 0.99780 0.9996 29.50 0.99582 0.9976 22.50 0.99768 0.9995 30.00 0.99567 0.9974 23.00 0.99757 0.9993 Image: CHECK KJ 5/31/00 4 - - - - - CHECK 4 - - - - - - 22.50 0.99757 <t< td=""><td>Correction Values</td><td>17.50</td><td>0.99871</td><td>1.0005</td><td>25.00</td><td>0.99707</td><td>0.9988</td><td>•</td><td></td></t<>	Correction Values	17.50	0.99871	1.0005	25.00	0.99707	0.9988	•		
18.50 0.99853 1.0003 26.00 0.99681 0.9986 19.00 0.99843 1.0002 26.50 0.99668 0.9984 19.50 0.99833 1.0001 27.00 0.99654 0.9983 20.00 0.99823 1.0000 27.50 0.99640 0.9982 20.50 0.99812 0.9999 28.00 0.99626 0.9980 21.00 0.99802 0.9997 29.00 0.99597 0.9977 22.00 0.99780 0.9996 29.50 0.99582 0.9976 22.50 0.99768 0.9993 30.00 0.99567 0.9974 23.00 0.99757 0.9993 5/31/00 ' ' ' 5/31/00 ' '	Due To Temperature	18.00	0.99862	1.0004	25.50	0.99694	0.9987			
19.00 0.99843 1.0002 26.50 0.99668 0.9984 19.50 0.99833 1.0001 27.00 0.99654 0.9983 20.00 0.99823 1.0000 27.50 0.99640 0.9982 20.50 0.99812 0.9999 28.00 0.99626 0.9980 21.00 0.99802 0.9997 29.00 0.99597 0.9977 21.50 0.99780 0.9996 29.50 0.99582 0.9976 22.50 0.99768 0.9995 30.00 0.99567 0.9974 23.00 0.99757 0.9993 - - TECH RJ 5/31/00 - - - - - - ' - - - - - - - ' -	•	18.50	0.99853	1.0003	26.00	0.99681	0.9986			
19.50 0.99833 1.0001 27.00 0.99654 0.9983 20.00 0.99823 1.0000 27.50 0.99640 0.9982 20.50 0.99812 0.9999 28.00 0.99626 0.9980 21.00 0.99802 0.9998 28.50 0.99612 0.9979 21.50 0.99791 0.9997 29.00 0.99597 0.9977 22.00 0.99780 0.9996 29.50 0.99582 0.9976 23.00 0.99757 0.9993 TECH RJ 5/31/00 1 5/31/00 CHECK Gm		19.00	0.99843	1.0002	26.50	0.99668	0.9984			
20.00 0.99823 1.0000 27.50 0.99640 0.9982 20.50 0.99812 0.9999 28.00 0.99626 0.9980 21.00 0.99802 0.9998 28.50 0.99612 0.9979 21.50 0.99791 0.9997 29.00 0.99597 0.9977 22.00 0.99780 0.9996 29.50 0.99582 0.9976 22.50 0.99768 0.9995 30.00 0.99567 0.9974 23.00 0.99757 0.9993 TECH KJ 5/31/00 CHECK Cm 		19.50	0.99833	1.0001	27.00	0.99654	0.9983			
20.50 0.99812 0.9999 28.00 0.99626 0.9980 21.00 0.99802 0.9998 28.50 0.99612 0.9979 21.50 0.99791 0.9997 29.00 0.99597 0.9977 22.00 0.99780 0.9996 29.50 0.99582 0.9976 22.50 0.99768 0.9993 30.00 0.99567 0.9974 23.00 0.99757 0.9993 TECH KJ DATE 5/31/00 CHECK Cjm. 		20.00	0.99823	1.0000	27.50	0.99640	0.9982			
21.00 0.99802 0.9998 28.50 0.99612 0.9979 21.50 0.99791 0.9997 29.00 0.99597 0.9977 22.00 0.99780 0.9996 29.50 0.99582 0.9976 22.50 0.99768 0.9993 30.00 0.99567 0.9974 23.00 0.99757 0.9993 TECH RJ CHECK ' ' '		20.50	0.99812	0.9999	28.00	0.99626	0.9980			
21.50 0.99791 0.9997 29.00 0.99597 0.9977 22.00 0.99780 0.9996 29.50 0.99582 0.9976 22.50 0.99768 0.9995 30.00 0.99567 0.9974 23.00 0.99757 0.9993 0.99567 0.9974 TECH RJ 5/31/00 CHECK CHECK CHECK Check Check Check		21.00	0.99802	0.9998	28.50	0.99612	0.9979			
22.00 0.99780 0.9996 29.50 0.99582 0.9976 22.50 0.99768 0.9995 30.00 0.99567 0.9974 23.00 0.99757 0.9993 TECH RJ 5/31/00 CHECK Gm V Gm CHECK Gm		21.50	0.99791	0.9997	29.00	0.99597	0.9977			
22.50 0.99768 0.9995 30.00 0.99567 0.9974 23.00 0.99757 0.9993 Image: Character of the second sec		22.00	0.99780	0.9996	29.50	0.99582	0.9976			
23.00 0.99757 0.9993 DATE 5/31/00 CHECK REVIEW (Am		22.50	0.99768	0.9995	30.00	0.99567	0.9974			
DATE 5/31/00 CHECK Cru REVIEW Cru		23.00	0.99757	0.9993				TECH	RJ	
CHECK Gm REVIEW Gm								DATE	5/31/00	
REVIEW		ı				,		CHECK	Cim	
								REVIEW	CAL	

		AST	RESISTIVITY M G-57 AND U.	OF SOIL S. DOT FI	P-85	
PROJECT TITLE PROJECT NO. REMARKS	SALTIRE/996-1100 I	RON REACTIVE WALL/VA	SAMPLE ID SAMPLE TYPE SAMPLE DEPT		SBS - 10 Bag 22.0 - 24.0'	
SAMPLE PREPARATI TEST APPARATUS	ION	Sieved through the Miller Soilbox and i	#8 Sieve [Nilsson 400 Soil Resis	No stance Meter.		
Identification:					Resisivity of the Site H ₂ O	
SPECIMEN (Point)	1	1	2	3	4	
RESISTIVITY (ohms-c	m)	7,200			1,400	
TEMP DEGREES (C)	,	20.0			22.0	
RESISTIVITY @ 15.5	C (ohms-cm)	8,010			1,628	
MOISTURE CONTEN	г				· · · · · ·	
	- 1					
WET WEIGHT & TAR	E	247.07				
DRY WEIGHT & TAR	E j	193.62				
WEIGHT OF MOISTU	PF (am)	42.51 53.45			····	
WEIGHT OF DRY SO	L (gm)	150.71				
MOISTURE CONTEN	С (%)	35.47				
10 8 8 (upuns-cm) 4 (Iponsauds) 2 0	0			30 ENT (%)	€ 8.0	Series]
	Description USCS	Reddish Brown, MEI clayey silt, trace fine (SP-SM)	DIUM TO FINE SAN gravel.	D, little		TECH PWM DATE 5/30/00
						CHECK Chu
			i		18301305	REVIEW CHL

HUDDID

		ASTI	RESISTIVITY M G-57 AND U	OF SOIL	P-85		
PROJECT TITLE PROJECT NO. REMARKS	ECT TITLE SALTIRE/996-1100 IRON REACTIVE WALL/VA ECT NO. IC3-3822 IRKS		SAMPLE ID SAMPLE TYPE SAMPLE DEPT	·	SBS - 10 B 22.0 -	ag	
SAMPLE PREPARAT TEST APPARATUS	ΓΙΟΝ	Sieved through the Miller Soilbox and l	#8 Sieve Nilsson 400 Soil Res	No istance Meter.			
Identification:		· . · · · · · · ·	_	<u>, , , , , , , , , , , , , , , , , , , </u>	Resisivit Site	y of the H _s O	
SPECIMEN (Point)		1	2	3	·····	1	
RESISTIVITY (ohms-	cm)	4.200	7.200		1.4	<u>, 100</u>	
TEMP DEGREES (C)	,	20.0	20.0		22	.0	
RESISTIVITY @ 15.5	C (ohms-cm)	4,673	8,010		1,6	28	
MOISTURE CONTEN	T						
WET WEICHT & TAI	DF	171.90	247.07			<u> </u>	
DRY WEIGHT & TAI	RE.	82.90	193.62	· · · · · · · · · · · · · · · · · · ·			
TARE WEIGHT		51.16	42.91				•
WEIGHT OF MOIST	EIGHT OF MOISTURE (gm) 39.09		53.45				
WEIGHT OF DRY SO)IL (gm)	31.74	150.71				
MOISTURE CONTEN	IT (%)	123.16	35.47				
10 8 6 4 2 0	0	25 50	75	100	• 4.7	150	-SBS-10 16-18' -SBS-10 22-24'
	Description	Reddish Brown, MEI clayey silt, trace fine	DIUM TO FINE SAN gravel.	ND, little			
	USCS	(SP-SM)					TECH PWM DATE 5/30/00 CHECK Calar
							REVIEW

A	STM GRAIN	SIZE ANAL	YSIS
ASTM D	421, D 2217, D) 1140, C 117	, D 422, C 136

l

ASTIVID 421, D 2217, D 1140, C 117, D 422, C 130										
					I			,	7	
PROJECT TITLE	SALT	IRE/996-1100 IR	ON REACT W	ALL/VA	S.	AMPLE ID	SBS-11	·	4	
PROJECT NO.		IC3-3822		_	SAM	PLE TYPE	В	ulk	4	
REMARKS			····		SAMP	LE DEPTH	0.0	-15.0'		
 				Hygroscopic	Moisture For S	Sieve Sample	- / \		7	
WATER CONTENT (Delivered M	loisture)		4		Wet Soil &	l are (gm)	·	-	
Wt Wet Soil & Tare (gn	n)	(wl)	713.68	4		Dry Soil &	l'are (gm)		-	
Wt Dry Soil & Tare (gr	າ)	(w2)	623.41	-	Tare Weight (gm)					
Weight of Tare (gm) (w3) 86.32					Moisture Content (%)					
Weight of Water (gm) (w4=w1-w2) 90.27				Total Weight	Of Sample Us	ed For Sieve C	Corrected For Hy	groscopic Mois	st T	
Weight of Dry Soil (gm))	(w5=w2-w3)	537.09	4		Weight Of S	ample (gm)	20044.13	-	
Moisture Content (%) (w4/w5)*100			16.81	4	Tare Weight (gm)			0.00	-	
				<u> </u>	(W6)	Total Dry W	eight (gm)	20044.13		
SIEVE ANALYSIS				Cumulative	AK D 4 9 9	areve				
Tare Weight		Wt Ret	(Wt-lare)	(%Retained)	% PASS	SIEVE				
0.00		+Tare		{(wt ret/w6)*100	(100-%ret)	1.0.0				
	12.0"					12.0"	cobbles			
	3.0"					3.0"	coarse gravel			
	2.5"			<u> </u>		2.5"	coarse gravel			
	2.0"					2.0"	coarse gravel			
	1.5"				100.00	1.5"	coarse gravel			
	1.0"	0.00	0.00	0.00	100.00	1.0"	coarse gravei			
	0.75"	18.40	18.40	0.09	99.91	0.75"	tine gravel			
	0.50"	27.40	27.40	0.14	99.86	0.50"	tine gravel			
	0.375"	36.70	36.70	0.18	99.82	0.375"	tine gravel			
	#4	47.80	47.80	0.24	99.76	#4	coarse sand			
SPLITTING INFORM		5		1	20044.12	1				
v v	veight in pai	n, from coarse s	ieve stack		20044.13					
	veignt spiit i	for time sieve sta	ICK		509.64					
<u> </u>	rercent of on	iginal weight in	pan	0.07	2.54%	<u>م</u> ب				
	#8	0.15	0.15	0.03	99.73	#8	coarse sand			
	#10	1.79	<u> </u>	0.33	99.41	#10	medium sand			
	#30	31.27	225.02	10.00	55.54	#30	fine cond			
	#30	223.92	202.41	\$0.52	40.37	#30	fine sand			
	#100	303.41	216.24	59.53	40.37	#100	fine sand			
	#200 DAN	515.24	313.44	01.60	38.03	#200 DAN	Thes			
	0.00					<u>r An</u>				
% C GRAVEI	0.00	Decorio	tive Terms	> 10%	ostly coarse (c))				
% F GRAVEI	0.07	trace	0 to 5%	> 1070 III	ostly madium (/ (m)	TT		٦	
% C SAND	0.15	little	5 to 12%	< 10% fit		(111)	DI		-	
	26.04	inde	12 to 2004	< 10% m	ie (c-iii)		FL DI		-	
% F SANTO	31 66	and	30 +0 5004	< 10% CO	area and fine (m)		2 676	-	
% FINES	39.00		30 10 30%	< 10% 00	arse and medu	(11) 	60	2.070	1	
	100.00	-		> 10% co	arse and meun	uni (1)				
% IOTAL	100.00	1		> 10% eq	uar amounts ea	ach (c-1)				
DECC	ערידעוסי	Raddish D-			and					
DESC		alougy ails to		IO FINE SAINI	7, and					
		i ciayey siit, tat	e coarse to Ill	ie gravel.						
	IICOO		· · ·							
	0505	(SM)					TECH			
•							DATE	6/1/00		
							CHECK	- An-		
		····-						<u>i yn</u>		

GOLDER SIERRA

AK301308

MOISTURE DENSITY CURVES ASTM D 698 & 1557									
PROJECT TITLE PROJECT NUMBER	SALTIRE/996-	100 IRON REACT	WALLVA] 	TEST TYPE ROCEDURE	D 698 METHOD A	·····		
SAMPLE IDENTITY	SBS-11	-	0.0 - 15.0]				-	
SAMPLE TYPE	Bulk								
l .	·····	, TYH	PE COMPAC	TOR P	REPARATIO	DN	METHOD A:	20% OR LESS	RETAINED ON #4
MOLD NUMBER	4	4	Mechanical	J	Wet Method	<u>]</u> .			
MOLD WEIGHT (gm)	2027.00	4	-		~ •		METHOD B:	> 20% RETAI	NED ON #4 AND
MOLD DIAMETER (in)	4 001	4	T	YPE PROCT	DR ·			20% OR LESS	RETAINED ON 3/8"
MOLD HEIGHT (in)	4 569	4		STANDARD	J				
	0.0332] s	5.5 -lbf. RAMI	MER WITH	2 INCH DRO)P	METHOD C:	> 20% RETAI < 30% RETAI	NED ON 3/4" NED ON 3/4"
WATER CONTENT	<u> </u>	COARSE FRACTION	TOTAL SAMPLE	TOTAL V	VEIGHT BEI	FORE PROC	ESSING AND	PERCENT R	ETAINED
Wt Tare & Soil	(W1)		713.68	т	OTAL WEIGH	IT, WET (CO.	ARSE & FINE)	23413.00	
Wt Tare & Soil	(W2)		623.41	Т	OTAL WEIGH	IT, DRY (CO.	ARSE & FINE)	20044.13	
Wt Tare	(W3)		86.32	v V	VEIGHT RETA	INED ON #4	SIEVE (WET)	47.80	
Wt Moisture	(W4=Wt-W2)	0.00	90 27	, w	EIGHT RETA	INED ON 3/8	' SLEVE (WET)	36.70	
Wt Dry Soil	(W5=W2-W3)	0.00	537.09	V V	EIGHT RETA	INED ON 3/4	' SIEVE (WET)	18.40	
Water Content (dec)	(wc=W4/W5)		0.1681	PI	ERCENT RETA	AINED ON #4	SIEVE (DRY)	0.24%	
Water Content (%)	(W4/W5)*100		16.81%	PI	RCENT RETA	INED ON 3/8	" SIEVE (DRY)	0.18%	
				PI	RCENT RETA	AINED ON 3/4	" SIEVE (DRY)	0.09%	
POINT RESULTS (FINE)		1	2	3	4	5	6	7	
Wt. Soii & Mold	(W1)	3688.00	3872.00	4041.00	4017.00	3956.00			
Weight of Mold	(W2)	2027.00	2027.00	2027.00	2027.00	2027.00			
Wt. Of Wet Soil	(W3=W1-W2)	1661.00	1845.00	2014.00	1990.00	1929.00			
Wet Density, wd (pcf)	(W3/453.6*Vm)	110.15	122.35	133.56	131.97	127.92			
WATER CONTENTS						·····			
Wt Tare & Soil	(W4)	283.19	317.96	250.89	337.04	266.73	L		
Wt Tare & Soil	(W5)	268.07	295.61	229.15	299.93	234.30	<u> </u>		
Wt Tare	(W6)	50.99	52.03	43.15	43.28	42.73	<u> </u>		
Wt Moisture	(W7=W4-W5)	15.12	22.35	21.74	37.11	32.43			
Wt Dry Soil	(₩ 8= ₩5-₩6)	217 08	243.58	186.00	256 65	191.57			
Watan Canton (9/)	di anno la	(079)	0.100/	11 (00/		16 0394	<u> </u>	·	· · ·
Water Content (%)	(W#W8)=[00	0.91%	9.18%	11.09%	14.46%	10.93%	<u> </u>	<u> </u>	
Dry Density (pci)	(wa/(1+wc))	103.0	112.1	119.0	115.5	109.4	L		
				······································					
MAXIMUM DRY DENSIT	Y (pcf)	1	120.0	DE	SCRIPTION	Reddish Bro	wn, MEDIUM	TO FINE SAN	ID,
OPTIMUM MOISTURE C	ONTENT (%)		12.5			and clayey si	lt, trace coarse	to fine gravel.	
Corrected Maximum Dry	Density (pcf)							U	
Corrected Optimum Moist	ure (%)				USCS	(SM)			
Specific Gravity And Absol	rption of Coarse	Aggregate - A	ASTM C 127-	88					
Weight of Oven Dry Sampl	e (gm)	A]	LL		
Weight of Saturated-Surfac	e-Dry (gm)	В				1	PL	-	
Weight of Saturated Sample	e in Water (gm) C	-		·····	1	PI	· · ·	
Absorption of Oversize Par	ticles (%)	((B-A)/A]*100				1	MC	16.81%	
Bulk Specific Gravity		A/(B-C)]			
									TECH SS
AVERAGE ABSORPTION	I								DATE 5/31/00
AVERAGE BULK SPECIF	TIC GRAVITY							C	HECK A
								R	EVIEW Que

-

.

GOLDER SIERRA

	SPECIFIC GRAVITY OF SOILS ASTM D-854 PYCNOMETER METHOD											
PROJECT TITLE PROJECT NUMBER	SALTI	RE/996-1100 IRC IC3	ON REACTIVE W	ALL/VA]	SAMPLE ID	SBS - 11	<u> </u>				
TESTED FOR	<u> </u>		GS] SAM	PLE DEPTH	0 - 15	5.0'				
HYGROSCOPIC MOI	STURE OF	MATERIAL	PASSING THI	E #4 SIEVE								
Weight Soil and Tare Init	al (gm)		(WD)	40.36	}	AL	R REMOV	AL				
Weight Soil and Tare, Fin	al (gm)		(W2)	40.23	-		METHOD					
Weight Of Tare (gm)			(W3)	3.25	VACUUM							
Weight Of Moisture (gm)			(W4=W1-W2)	0.13	1							
Weight Of Dry Soil (gm)			(W5=W2-W3)	36.98								
Hygroscopic Moisture In ((%)	(HM	I=(W4/W5)*100)	0.4%								
Trial	<u> </u>			1	2	3						
Pycnometer Number				15								
Weight Pycnometer Empty	y (gm)		(Mf)	218.43								
Weight of Soil & Pycnom	eter (gm)			320.18								
Weight of Soil, Water & P	'ycnometer (grr	ı)	· (Mb)	780.19								
Observed Temperature (T	o), for (Mb) In	Degrees C	_	24.0								
Observed Temperature (Ta	a), for (Ma) In I	Degrees C		21.50								
Weight of Pycnometer & V	Water (gm)		(Ma @ Ta)	716.94								
Relative Density of Water	@ (Ta)			0.99791				-				
Relative Density of Water	@ (Tx)			0.99732								
Correction Factor due to T	emperature @?	Гx	(K)	0.9991								
Weight of Soil (gm)				101.75				:				
Weight of Dry Soil (gm)			(Mo)	101.39								
Weight of Pycnometer & V	Water (gm)		(Ma)	716.65								
SPECIFIC GRAVITY							C C	Ss Average				
G @ 20 degrees C = [M	lo/(Mo+(Ma	- Mb))]*(K)		2.676				2.676				
ſ	Temp. (C)	Rel. Density	Corr. (K)	Temp. (C)	Rel. Density	Corr. (K)						
	16.00	0.99897	1.0007	23.50	0.99745	0.9992						
	16.50	0.99889	1.0007	24.00	0.99732	0,9991						
Correction Values	17.00	0.99880	1.0006	24.50	0.99720	0.9988						
Due To Temperature	18.00	0.99862	1.0004	25.50	0.99694	0.9987						
r	18.50	0.99853	1.0003	26.00	0.99681	0.9986						
	19.00	0.99843	1.0002	26.50	0.99668	0.9984						
	19.50	0.99833	1.0001	27.00	0.99654	0.9983						
	20.00	0.99823	1.0000	27.50	0.99640	0.9982						
	20.50	0.99812	0.9999	28.00	0.99626	0.9980						
	21.00 21.50	0.99802	0.9998	28.30 29.00	0.99012	0.9979						
	22.00	0.99780	0.9996	29.50	0.99582	0.9976						
	22.50	0.99768	0.9995	30.00	0.99567	0.9974						
	23.00	0.99757	0.9993				TECH	DH				
L							DATE	6/2/00				
							CHECK	Cpu				
•							REVIEW	Cam				

.

GOLDER SIERRA

ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136

<u></u>									
PROJECT TITLE	SALTIRE		REACTIV	E WALL/VA] s/	AMPLE ID	SBS - 11	<u> </u>	- 7
PROJECT NO.		IC3-3822		1	SAM	PLE TYPE	B	lag	
REMARKS	<u> </u>			1	SAMPI	LE DEPTH	26.0	- 28.0'	
	L			Hygroscopic	Moisture For S	ieve Sample			
WATER CONTENT	(Delivered M	loisture)		Wet Soil & Tare (gm					7
Wt Wet Soil & Tare (g	m)	(w1)		Dry Soil & Tare (gm)					
Wt Dry Soil & Tare (g	m)	(w2)		Tare Weight (gm)					
Weight of Tare (gm)		(w3)				Moisture Co	ntent (%)		
Weight of Water (gm)		(w4=w1-w2)		Total Weight	Of Sample Use	d For Sieve C	orrected For Hyg	groscopic Moi	is
Weight of Dry Soil (gr	n)	(w5=w2-w3)				Weight Of S	ample (gm)	207.85	
Moisture Content (%)		(w4/w5)*100		_		Tare Weigh	t (gm)	51.58	
		·			(W6)	Total Dry W	eight (gm)	156.27	
SIEVE ANALYSIS				Cumulative					
Tare Weight	1	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
0.00]	+Tare		{(wt ret/w6)*100	(100-%ret)	12.08			
	12.0"					12.0"	cobbles		
	3.0"					3.0"	coarse gravel		
	2.5"	····		<u> </u>		2.5"	coarse gravel		
	2.0"	<u> </u>				2.0"	coarse gravel		
	1.5"					1.5"	coarse gravel		
	1.0"			<u> </u>		0.75	coarse gravel		
	U. 75" 0.50"					0.75"	fine gravei		
	0.30	0.00	0.00	0.00	100.00	0.30	fine gravel		
	0.575 #4	1.60	1.60	0.00	100.00	0.373 44	nne graver		
	#4 #10	5.00	5.00	2.79	96.98	#4 #10	medium sand		
	#10 #20	15.00	15.00	9.78	90.22	#10	medium sand		
	#20	10.09	20.22	19.70	90.34	#20	fine cand		
	# 4 0 #60	72.99	72 00	46.71	53.29	#40 #60	fine sand		
	#100	120.35	120.35	77.01	27.99	#00 #100	fine sand		
	#200	138.95	138.95	88.97	11.08	#200	fines		
	PAN	150.75	130.75	00.72	11.00	PAN	11105		
% COBBLES	0.00	1							
% C GRAVEL	0.00	Descript	tive Terms	> 10% m	ostly coarse (c)				
% F GRAVEL	1.02	trace	0 to 5%	> 10% m	ostly medium (;	m)	LL	_	
% C SAND	2.75	little	5 to 12%	< 10% fu	ne (c-m)	, ,	PL		-
% M SAND	14.93	some	12 to 30%	< 10% co	arse (m-f)		PI	-	-1
% F SAND	70.21	and	30 to 50%	< 10% co	arse and fine (r	n)	Gs	2.665	
% FINES	11.08			< 10% co	arse and mediu	m (f)		····	
% TOTAL	100.00			> 10% eq	ual amounts ea	ch (c-f)			
DES	SCRIPTION	Reddish Brown	n, MEDIUM	TO FINE SAND), little				
		clayey silt, trac	e fine gravel.						
	USCS	(SP-SM)					TECH	PWM/F	<u>ى</u>
							DATE	5/30/00	<u>ე</u>
							CHECK	Con	
		· · · · · ·					REVIEW	1 ann	
								1	

	SPECIFIC GRAVITY OF SOILS ASTM D-854 PYCNOMETER METHOD										
			N DEACTRY								
PROJECT NUMBER	SALTI	KE/996-1100 IRO	N REACTIVE W	ALL/VA		SAMPLE ID	SBS _ 11	——————————————————————————————————————			
I KOJEC I NUMBER					SAN	IPLE TYPE	Bas				
TESTED FOR			S	·	SAMP	LE DEPTH	26.0 - 2	8.0'			
HYGROSCOPIC MOI	STURE OF	MATERIAL P	ASSING THE	2 #4 SIEVE	#4 SIEVE						
Weight Soil and Tare, Init	tal (gm)		(W1)	200.65		AI	R REMOVA	L			
Weight Soil and Tare, Fin	al (gm)		(W2)	200.32	METHOD						
Weight Of Tare (gm)			(W3)	42.96			VACUUM				
Weight Of Moisture (gm)			(W4=W1-W2)	0.33							
Weight Of Dry Soil (gm)			(W5=W2-W3)	157.36							
Hygroscopic Moisture In	(%)	(HM	=(W4/W5)*100)	0.2%							
Trial	Trial 1 2 3										
Pycnometer Number			l	17							
Weight Pycnometer Empt	y (gm)		(Mf)	190.67							
Weight of Soil & Pycnom	eter (gm)			290.70							
Weight of Soil, Water & F	ycnometer (gn	1)	(Mb)	751.51							
Observed Temperature (T	b), for (Mb) In	Degrees C		23.0							
Observed Temperature (Ta	a), for (Ma) In I	Degrees C	[22.00							
Weight of Pycnometer &	Water (gm)		(Ma @ Ta)	689.24							
Relative Density of Water	@ (Ta)			0.99780							
Relative Density of Water	@ (Tx)			0.99757				1			
Correction Factor due to T	emperature @	Γx	(K)	0.9993							
Weight of Soil (gm)				100.03							
Weight of Dry Soil (gm)			(Mo)	99.82							
Weight of Pychometer &	Water (gm)		(Ma)	689.13	j		· <u> </u>				
SPECIFIC GRAVITY			_				G	s Average			
G @ 20 degrees C = [N	10/(M0+(Ma	- Mb))]*(K)		2.665				2.665			
	Temp (C)	Rel Density	Corr (K)	Temp (C)	Pol Donsity	Corr (K)					
-	<u>16.00</u>	0.99897	1.0007	23.50	0.99745	0.9992					
	16.50	0.99889	1.0007	24.00	0.99732	0.9991					
	17.00	0.99880	1.0006	24.50	0.99720	0.9990					
Correction Values	17.50	0.99871	1.0005	25.00	0.99707	0.9988					
Due To Temperature	18.00	0.99862	1.0004	25.50	0.99694	0.9987					
	18.50	0.99853	1.0003	26.00	0.99681	0.9986					
	19.00	0.99843	1.00 02	26.50	0.99668	0.9984					
	19.50	0.99833	1.0001	27.00	0.99654	0.9983					
	20.00	0.99823	0.0000	27.50	0.99640	0.9982					
	20.00	0.77814	0.7777	20.00	0.99020	0.9960					
	21.00	0.99701	0.9997	29.00	0.99012	0.9977					
	22.00	0.99780	0.9996	29.50	0.99582	0,9976					
	22.50	0.99768	0.9995	30.00	0.99567	0.9974					
	23.00	0.99757	0.9993				TECH [RJ RJ			
L		<u> </u>					DATE	5/31/00			
	1			ŀ			CHECK	Con			
							REVIEW	an			
								¥			

.

AR301314

· · decar

		AST	RESISTIVITY M G-57 AND U	OF SOIL .S. DOT FP	-85	
PROJECT TITLE S PROJECT NO. REMARKS	ALTIRE/995-1100 [C	RON REACTIVE WALLWA	SAMPLE ID SAMPLE TYPE SAMPLE DEPT		SBS - 11 Bag 26.0 - 28.0'	
SAMPLE PREPARATI TEST APPARATUS	ON	Sieved through the # Miller Soilbox and f	#8 Sieve [Nilsson 400 Soil Resi	No stance Meter.		
Identification:		, <u>, , , , , , , , , , , , , , , , , , </u>			Resisivity of the Site H ₂ O	
SDECIMEN (Daint)		·····			<u> </u>	
SFECTIVIEN (FOIDI) RESISTIVITY (ahme-ov	n)	7 300	4	<u> </u>	1 400	
TEMP DECREES (C)	n <i>)</i>	20.0			22.0	
RESISTIVITY @ 15.5 C	C (ohms-cm)	8,121			1,628	
MOISTURE CONTENT	Г. ⁻	└┉╌───┴━┉────┴	•			
	-		<u> </u>			
WET WEIGHT & TAR		260.77				
UKI WEIGHI & IAKI TARF WEICHT	5	<u> </u>				
WEIGHT OF MOISTIN	RE (om)	52.92				
WEIGHT OF DRY SOI	L (gm)	156.27				
MOISTURE CONTENT	(%)	33.86				
10 8 4 (opurs-cm) 4 4 2 4 2 4 0 0 0 0)	10	20	30	40	Series1
			MOISTURE CONT	ENT (%)		·
	USCS	(SP-SM)	gravel.			TECH PWM DATE 5/30/00
						CHECK Gu
			·			KEVIEW AW

		A ASTM D 4	STM GR. 121, D 221	AIN SIZE A 7, D 1140, (NALYSIS C 117, D 42	5 22, C 136			
PROJECT TITLE		2/996-1100 IRON	N REACTIVE	E WALL/VA	S.	AMPLE ID	SBS - 11	-	
PROJECT NO.		IC3-3822		4	SAM	PLE TYPE	<u>B</u>	ag	-
KEMARKS	·			Hugroscopia	SAIVIP	LE DEPTH	32.0	- 34.0'	<u> </u>
WATER CONTENT	(Delivered M	loisture)		nygroscopic	MOISLUIE FOI 5	Ture (gm)	<u> </u>	F	
Wi Wet Soil & Tare ((Delivered M	(w1)		Dry Soil & Tare (gm)					-
Wt Dry Soil & Tare (g	,, m)	(w2)	<u> </u>	Tare Weight (gm)					
Weight of Tare (gm)	,	(w3)		1		Moisture Co	ontent (%)		1
Weight of Water (gm)		(w4=w1-w2)		Total Weight	Of Sample Use	d For Sieve C	Corrected For Hyp	roscopic Mois	
Weight of Dry Soil (gr	n)	(w5=w2-w3)		1 -	•	Weight Of S	Sample (gm)	209.92	٦
Moisture Content (%)		(w4/w5)*100		1		Tare Weigh	ht (gm)	51.90	1
				1	(W6)	Total Dry V	Veight (gm)	158.02	7
				Cumulatina					
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE	1		
0.00]	+Tare		{(wt ret/w6)*100	(100-%ret)				
	12.0"					12.0"	cobbles		
	3.0"					3.0"	coarse gravel		
	2.5"					2.5"	coarse gravel		
	2.0"					2.0"	coarse gravel		
	1.5"					1.5"	coarse gravel		
	1.0"	J			<u> </u>	1.0"	coarse gravel		
	0.75"					0.75"	fine gravel		
	0.50"			0.00	100.00	0.50"	fine gravel		
	0.375"	0.00	0.00	0.00	100.00	U.375" #4	line gravel		
	#4	0.24	0.24	0.15	99.85	#4	coarse sand		
	#10	11 77	<u> </u>	7.15	02.55	#20	medium sand		
	#20 #40	20.54	20.54	13.00	87.00	#20	fine sand		
	#60	74 37	74 37	47.06	52.94	#60	fine sand		
	#100	132.59	132.59	83.91	16.09	#100	fine sand		
	#200	140.26	140.26	88.76	11.24	#200	fines		
	PAN					PAN			
% COBBLES	0.00				<u> </u>				
% C GRAVEL	0.00	Descrip	tive Terms	> 10% m	ostly coarse (c)	I			_
% F GRAVEL	0.15	trace	0 to 5%	> 10% m	ostly medium (m)	LL	-	
% C SAND	<u>1.95</u>	little	5 to 12%	< 10% fir	ie (c-m)		PL		
% M SAND	10.90	some	12 to 30%	< 10 % co	arse (m-f)		PI	<u> </u>	4
% F SAND	75.76	and	30 to 50%	< 10 % co	arse and fine ()	n)	Gs	2.731	
% FINES	11.24	4		< 10% co	arse and mediu	um (f)			
% TOTAL	100.00			> 10% eq	ual amounts ea	ch (c-f)			
DES	SCRIPTION	Reddish Brown	1, MEDIUM 1	O FINE SAND	, little				
	-	clayey silt, trac	e fine gravel.						
	LIECE						теси	DUDAD	
	0505	(Sr-SM)					I EUM DATE	5/20/00	<u> </u>
							CUECV	<u></u>	
		•			•		CREUK Prvtru/	1 TALL	
				<u></u>				1 12	

		SPE	CIFIC GRA	VITY OF S	OILS					
		P	YCNOMET	ER METHO)D					
PROJECT TITLE	SALTI	RE/996-1100 IRO	N REACTIVE W	ALL/VA	}					
PROJECT NUMBER		IC3-	3822			SAMPLE ID	SBS - 11	-		
TESTED FOR	r		28	<u> </u>	SAN 1 SAMI	NPLE TYPE	Ba	g		
HYCROSCORIC MOL	ISTURE OF	MATERIAL	ASSING TH	E #4 SIEVE			52.0 *.			
Weight Seil and Terr Init					1	АT	D DEMOV	A T		
Weight Soil and Tare, In	ual (gm)		(W1)	203.08		METHOD				
Weight Soll and Tate, Fill	rat (BIII)		(W2)	51 30						
Weight Of Tare (gm)			(w3)	51.50			VACOUM			
weight Of Moisture (gm)	1		(W4=W1-W2)	0.37	4					
weight Of Dry Soil (gm)			(W5=W2-W3)	151.21	4					
Hygroscopic Moisture In	(%)	(HM	=(W4/W5)*100)	U.4%]					
Trial				1	2	3				
Pycnometer Number				8						
Weight Pycnometer Empt	y (gm)		(Mf)	183.60						
Weight of Soil & Pycnom	eter (gm)			283.60						
Weight of Soil, Water & H Observed Temperature (T	Pycnometer (gn b) for (Mb) In	1) Degrees C	· (Mb)	745.01						
Observed Temperature (T	(0), for (Ma) In	Degrees C		22.0	[<u> </u>				
Weight of Pycnometer &	Water (gm)	Degrees C	(Ma @ Ta)	681.96						
Relative Density of Water	maici (giii)		(1912 (19, 12)	0.99780						
Relative Density of Water	·@(Tx)			0.99757	 					
Correction Factor due to]	Gemnerature @	Tx	(K)	0.9993						
Weight of Soil (gm)	omparane a	17	(11)	100.00						
Weight of Dry Soil (gm)			(Mo)	99.62						
Weight of Pycnometer &	Water (gm)		(Ma)	681.85	· · · · · · · · · · · · · · · · · · ·					
SPECIFIC GRAVITY		<u> </u>					(Fs Average		
G @ 20 degrees C = [N	10/(M0+(Ma	- Mb))]*(K)	[2.731				2.731		
	A (C)		0 70							
	1 emp. (C)	Rel Density	Corr. (K)	1emp. (C)	Rel. Density	Corr. (K)				
	16.50	0.99889	1.0007	23.30	0.99743	0.9992				
	17.00	0.99880	1.0006	24.50	0.99720	0.9990				
Correction Values 🖌	17.50	0.99871	1.0005	25.00	0.99707	0.9988				
Due To Temperature	18.00	0.99862	1.0004	25.50	0.99694	0.9987				
	18.50	0.99853	1.0003	26.00	0.99681	0.9986				
	19.00	0.99843	1.0002	26.50	0.99668	0.9984				
	19.50	0.99833	1.0001	27.00	0.99654	0.9983				
	20.00	0.99823	1.0000	27.50	0.99640	0.9982				
	20.50	0.99812	0.9999	28.00	0.99626	0.9980				
	21.00	0.99802	0.9998	28.50	0.99612	0.9979				
	21.50	0.99791	0.9997	29.00	0.99597	0.9977				
	22.00	0.99780 0.00769	0.9996	29.00	0.99582	0.9976				
	22.30	0.99708 0.99757	0.9993	50.00	0.99307	0.9974	теси	<u> </u>		
L		0.77721	0.9993				I EUR DATE	5/21/00		
							CHECV			
							QEVIEW.	- an		
1	· · · · ·							L_(An		

PROJECT TITLE INTERPRETATION ICLOSES SAMPLE TYPE SBS-11 REAL REFORMED AND PRACTICE WALLOW SAMPLE TYPE Beg 32.0 - 34.07 SAMPLE PREPARATUS SAMPLE TYPE Beg 32.0 - 34.07 SAMPLE PREPARATUS SAMPLE DEPT 22.0 - 34.07 SAMPLE PREPARATUS Served through the #8 Siere No. TEST APPARATUS MULTER Solitos and Nitson 400 Soil Resistance Meter. SECOND NUMBER SOLITON SOLI		<u> </u>		ASTI	RESISTIVITY M G-57 AND U	OF SOIL .S. DOT FP	-85		
SAMPLE PREPARATUS Seved through the #F Sieve Miller Sollbox and Nilsson 400 Soil Resistance Meter. Identification: SPECIMEN (Poins) RESISTIVITY (white-tm) RESISTIVITY (white-tm) RESISTIVITY (@ 15.5 C (whma-tm) 1.00 2.0 3.449 1.623 MOISTURE CONTENT WET WEIGHT & TARE TARE WEIGHT WET WEIGHT OF MOISTURE (gm) WEIGHT OF MOISTURE (gm) WEIGHT OF MOISTURE (gm) MOISTURE CONTENT WET WEIGHT OF MOISTURE (gm) RESISTIVIT(%) Description Reddah Brown, MEDIUM TO FINE SAND, little clayey alt, trace fire graved. USCS (SP-SM())	PROJECT TITL PROJECT NO. REMARKS	Æ	SALTIRE/996-1100 [(IRON REACTIVE WALL/VA C3-3822	SAMPLE ID SAMPLE TYPE SAMPLE DEPT		SBS - 11 Bag 32.0 - 34.0'	-	<u> </u>
Identification: Residentity of the Star H_0 SPECIMEN (Point) RESISTIVITY (ohm-cm) RESISTIVITY (0hm-cm) RESISTIVITY (0 15.5 C (ohm-cm) 1 2 3 4 MOISTURE CONTENT 1.00 1.49 1.628 1.628 MOISTURE CONTENT 20.92 1.628 1.628 MOISTURE CONTENT 268.90 1.628 1.628 MOISTURE CONTENT 268.90 1.628 1.628 WEICHT OF MOISTURE (gm) 51.98 1.58.92 1.59.92 MOISTURE CONTENT (%) 51.99 1.628 1.628 MOISTURE CONTENT (%) 0.00 0.00 3.0 4.0 5.0 MOISTURE CONTENT (%) 0.00 0.00 3.0 4.0 5.0 Description Reddath Brown, MEDIUM TO FINE SAND, little clayey sit, trace fine gravel. 1.628 1.627.020 1.627.020 MOISTURE CON	SAMPLE PREP. TEST APPARA	ARA' TUS	rion	Sieved through the Miller Soilbox and I	#8 Sieve [Nilsson 400 Soil Resi	No stance Meter.			
SPECIMEN (Point) RESISTIVITY (ohm-cm) RESISTIVITY (ohm-cm) 1 2 3 4 MOISTURE CONTENT 3.100 1.400 1.628 MOISTURE CONTENT 268.90 1.628 WEI WEIGHT & TARE DRY WEIGHT OF MOISTURE (gm) WEIGHT OF MOISTURE (gm) WEIGHT OF MOISTURE (gm) WEIGHT OF MOISTURE (gm) 268.90 1.628 0 1.90 1.628 0 1.90 1.628 0 1.90 1.628 0 1.90 1.628 0 1.90 1.628 0 1.90 1.628 0 1.90 1.628 0 1.90 1.628 0 1.90 1.628 0 1.90 1.628 0 1.90 1.628 0 1.92 1.628 0 1.90 1.628 0 1.92 1.628 0 1.628 1.628 0 1.628 1.628 0 1.628 1.628 0 1.628 1.628 0 1.0 20 3.4 <td>Identification:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Resisivity of the Site H₁O</td> <td></td> <td>·</td>	Identification:						Resisivity of the Site H ₁ O		·
RESISTIVITY (ohm-cm) 3.100 1.400 TEMP DECREES (C) 20.0 22.0 RESISTIVITY (a) 15.5 ((ohm-cm) 3.449 1.628 MOISTURE CONTENT WE WEICHT & TARE 268.90 MOISTURE CONTENT 20.0 1.628 WE WEICHT & TARE WEICHT & TARE 209.92 1.628 MOISTURE CONTENT 3.100 1.628 WEICHT OF DRY SOIL (gm) 51.90 158.02 WEICHT OF DRY SOIL (gm) 53.98 1.628 MOISTURE CONTENT (%) 37.32	SPECIMEN (Poi	nt)		1	2	3	- 4		
TEMP DECREES (C) 20.0 22.0 RESISTIVITY (2) 15.5 C (ohms-cm) 3.449 1.628 MOISTURE CONTENT WET WEIGHT & TARE DORY WEIGHT & TARE EXECUTION MOISTURE (gm) 268.30 WEIGHT OF MOISTURE (gm) 59.92 1 WEIGHT OF MOISTURE (gm) 59.92 1 MOISTURE CONTENT (%) 59.98 1	RESISTIVITY (ohms-	-cm)	3.100			1,400		
RESISTIVITY @ 15.5 C (ohms-cm) 3,449 1,628 MOISTURE CONTENT WEI WEIGHT & TARE DRY WEIGHT & TARE DRY WEIGHT & TARE DRY WEIGHT OF MOISTURE (gm) WEIGHT OF DRY SOIL (gm) WEIGHT OF DRY SOIL (gm) MOISTURE CONTENT (%) 37.32	TEMP DEGREE	S (C))	20.0			22.0		
MOISTURE CONTENT WET WEIGHT & TARE DATE WEIGHT OF MOISTURE (gm) WEIGHT OF MOISTURE (gm) WEIGHT OF MOISTURE (gm) MOISTURE CONTENT (%)	RESISTIVITY) 1 5 .5	o C (ohms-cm)	3,449			1,628		
WET WEIGHT & TARE DRY WEIGHT & TARE DRY WEIGHT & TARE USC NO FMOSTURE (gm) WEICHT OF DRY SOLL (gm) WOISTURE CONTENT (%)	MOISTURE CO	NTE	NT						
VIEL PROVINCE (2010) TARE WEIGHT & TARE TARE WEIGHT OF MOISTURE (2010) WEIGHT OF MOISTURE (2010) MOISTURE CONTENT (%)	WET WEICHT	& Тл	DF	268.00			· · · ·		
AT ARE WEIGHT OF MOISTURE (gm) 13.90 WEIGHT OF MOISTURE (gm) 13.90 WOISTURE CONTENT (%) 13.802 37.32 1 Image: Series of the series o	DRV WEIGHT	6 TA	RF	208.70					
WEICHT OF MOISTURE (gm) 38.38 WEICHT OF DRY SOLL (gm) 158.02 MOISTURE CONTENT (%) 37.32 Image: Solution of the state of the st	TARE WEIGHT			51.90					
WEIGHT OF DRY SOIL (gn) MOISTURE CONTENT (%) 158.02 37.32 MOISTURE CONTENT (%) Series	WEIGHT OF M	oist	URE (gm)	58.98					
MOISTURE CONTENT (%) 37.32 37	WEIGHT OF DF	RY SC	DIL (gm)	158.02					
Image: second	MOISTURE CO	NTER	NT (%)	37.32		· · · ·	_		
(up-up) (up-up						<u></u>			
(up-up) (up		10)						
Image: state									
Image: second									
Image: state of the state o		8	;					4	
Image: Construction of the second	Ê				•				
Image: series of the series	5-0								
Description Reddish Brown, MEDIUM TO FINE SAND, little clayey silt, trace fine gravel. TECH PWM DATE USCS (SP-SM) TECH PWM CHECK	H H	6 G	;					-	
Image: Series i Image: Series i	V (i	San							
Description Reddish Brown, MEDIUM TO FINE SAND, little USCS (SP-SM)	11		ſ						
Image: Signed and Signed an	L E	E 4						4	
Image: Second state Image: Second st	SIS		1				■ 3.4		
2 0 10 20 30 40 50 0 10 20 30 40 50 Description Reddish Brown, MEDIUM TO FINE SAND, little clayey silt, trace fine gravel. USCS (SP-SM) TECH PWM DATE 5/30/00 CHECK @W Review	RE		1						
Description Reddish Brown, MEDIUM TO FINE SAND, little clayey silt, trace fine gravel. USCS (SP-SM) Description Reddish Brown, MEDIUM TO FINE SAND, little clayey silt, trace fine gravel. USCS (SP-SM) DATE 5/30/00 CHECK (AW- REVIEW (W-		2	:					-	
0 0 10 20 30 40 50 MOISTURE CONTENT (%) Description Reddish Brown, MEDIUM TO FINE SAND, little clayey silt, trace fine gravel. USCS (SP-SM) TECH PWM DATE 5/30/00 CHECK (AW REVIEW (AV-									
0 10 20 30 40 50 MOISTURE CONTENT (%) Description Reddish Brown, MEDIUM TO FINE SAND, little clayey silt, trace fine gravel. USCS (SP-SM) TECH PWM DATE 5/30/00 CHECK CAW REVIEW (AW									
0 10 20 30 40 50 MOISTURE CONTENT (%) Description Reddish Brown, MEDIUM TO FINE SAND, little clayey silt, trace fine gravel. USCS (SP-SM) TECH PWM DATE 5/30/00 CHECK Que REVIEW Que		0	ļ					4	
Description Reddish Brown, MEDIUM TO FINE SAND, little clayey silt, trace fine gravel. USCS (SP-SM) DATE 5/30/00 CHECK (AW- REVIEW (AW- REVIEW (AW-			0	10 .	20 MOISTURE CONT	30 ENT (%)	40	50	
Description Reddish Brown, MEDIUM TO FINE SAND, little clayey silt, trace fine gravel. USCS (SP-SM) DATE 5/30/00 CHECK (AW REVIEW (AW		<u> </u>							
USCS (SP-SM) DATE 5/30/00 CHECK (Au REVIEW (Au REVIEW (Au			Description	Reddish Brown, MEI clayey silt, trace fine	DIUM TO FINE SAN gravel.	D, little			
			Here	(SP-SM)				тесці	PWM
			0303	(10-10)				IEUN) DATE	5/30/00
								CHECK	(AU
								REVIEW	an
				· · · · · · · · · · · · · · · · · · ·		004		201210	¥.ÿ

AUSOLO

		<u></u>	A	STM GRA	IN SIZE ANALY	/SIS	<u></u>		<u> </u>	
[ASTM CI	17, C136, I	D421, D422, D114	10 and D2217				
PROJECT TITLE	SALTIRE/9	96-1100 IRON F	EACTIVE V	VALL/VA]	SAMPLE ID		SBS-11	-	
PROJECT NO.	IC	3-3822				SAMPLE TYP	Έ	В	ag	
						SAMPLE DEP	TH	42.0	44.0'	
AS RECEIVED) WATER C	ONTENT	r	Hygrosc	opic Moisture	Wet Soil & Tare (g	m)	25.13		
Tare No.			-	For Siev	e Sample	Dry Soil & Tare (gi	m)	24.68		
Wt. Wet Soil & Tare (g	m)	(W1)	258.70	-		Tare Weight (gm)		3.19		
Wt. Dry Soil & Tare (gi	m)	(W2)	181.43			Moisture Content (%)	2.09		
Weight of Tare (gm)		(W3)	52.44	Total We	ight of Sample Used	For Sieve Analy:	sis Corrected	For Hygrose	opic Moistu	re
Weight of Water (gm)		(W4=W1-W2)	77.27	4	Weight + Tare, Before S	eparating On The #4	Sieve (gm)	339.03		
Weight of Dry Soil (gm	ı)	(W5=W2-W3)	128.99	1		Tar	e Weight (gm)	0.00		
Moisture Content (%)		(W4/W5)*100	59.90	l		Tota	l Weight (gm)	332.08	(W6)	
Plus #4 Materia	al Sieve	5		(Wt+Tare)	(((Wt-Tare)/W6)*100)	%PASSING	-			
TARE WEIGHT	0.00]	12.0"				12.0"	cobbles		
		_	3.0"				3.0"	coarse gravel		
			2.5"				2.5"	coarse gravel		
			2.0"				2.0"	coarse gravel		
			1.5"				1.5"	coarse gravel		
			1.0"				1.0"	coarse gravel		
			0.75"				0.75"	fine gravel		
			0.50"				0.50"	fine gravel		
			0.375"				0.375"	fine gravel		
			#4	0.00	0.0	100.0] #4 ·	coarse sand		
HYDROME IE Specific Gravity Specific Gravity Amount Dispersing Age Type Dispersion Device	(assumed) (tested) ent (ml)	2.734 125.00 Mechanical			Weight of Sample Weight of Sample Wet of Calculated Dry Wt. used Hydrometer Bulb Numb	e Used For Hyd or Dry (gm) i in test (gm) er	50.47 49.43 624378	st 		
Langth of Dispersion Period	, mind	1 Minute			11 Date #4 Sinte For Wh	ale Samale	100.00	1		
TARE WEIGHT	0.00	HYDROM	TER BACI	KSIEVE (P	ercent Passing #10) - #200 Sieves)	<u> </u>	······································		
				(Wt+Tare)	Retained	% PASSING]			
			#10	0.12	0.12	99.8	#10	medium sand		
			#20	0.19	0.19	99.6	#20	medium sand		
			#40	0.93	0.93	98.1	1 #40	fine sand		
			#60	1.48	1.48	97.0	#60	fine sand		
			#100	3.39	3.39	93.1	#100	fine sand		
			#200	7.19	7.19	85.5	#200	fines		
·		HYDROME	TER CALC	ULATION	S					
DATE	TIME	ET	READING	ТЕМР	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
5/31/00	10:54	(min)	R	T I	K	Cc	С	LENGTH	Α	
5/31/00	10:56	2.00	43.0	21.50	0.013	6.00	37.00	10.2	0.99	
5/31/00	10:59	5.00	41.0	21.50	0.013	6.00	35,00	10.6	0,99	
5/31/00	11:09	15.00	40.0	21.50	0.013	6.00	34.00	10.7	0.99	
5/31/00	11:24	30.00	35.0	21.50	0.013	6.00	29.00	11.5	0.99	
5/31/00	11:54	60.00	32.0	21.50	0.013	6.00	26.00	12.0	0.9 9	
5/31/00	15:04	250.00	26.0	21.50	0.013	6.00	20.00	13.0	0.99	
6/1/00	10:54	1440.00	20.0	22.00	0.013	6.00	14.00	14.0	0.99	
		GRAIN SIZ	l <mark>e perce</mark> n	TAGES						
Particle Diameter	% PASSING	% COBBLES		0.00	Description	Gray, SILTY CL	AY, some me	edium to fine	sand.	
0.0296	74.1	% COARSE GRAVE	L	0.00	TIAAA					
0.0191	70.1	% FINE GRAVEL		0.00	USCS	СН	J			
0 0111	68.1	% COARSE SAND		0.24		·	7			
0.0081	58.1	MEDIUM SAND		1.64		56	LL			
0.0059	52.1	S FINE SAND		12.66		25	PL			
0.0030	40.1	* FINES		85.46		31	PI		TECH	TJ
0.0013	28.0	% TOTAL SAMPLE		100.00					DATE	5/30/00
									CHECK	(m
									REVIEW	1 mu

.

~

		SPE	CIFIC GRA	VITY OF S 1 D-854	OILS			
		Р	YCNOMET	ER METHO	DD			
PROJECT TITLE	SALTI	RE/996-1100 IRO	N REACTIVE W	ALL/VA]			
PROJECT NUMBER		IC3-	3822]	SAMPLE ID	SBS - 11	-
TESTED FOR	l <u></u>				SAN 1 SAMI	IPLE TYPE	12.0 d	4.01
HYCROSCORIC MO	L	MATERIAL P	ASSING TH	F #4 SIEVE	5/1/1		42.0 - 4	
Weight Sail and Tara Ini	tal (am)			91 30	1 .	A TI	P PFMOVA	Т
Weight Soil and Tare, fin	al (gni)		(W1) (W2)	81.30	4		METHOD	
Weight Of Tare (gm)	ier (Biii)		(W3)	52.54	-	1	VACUUM	
Weight Of Moisture (am))		(W4=W1-W2)	0.05	4	1		•
Weight Of Dry Soil (gm))		$(W_{5}=W_{2}-W_{3})$	28.71	4			
Hygroscopic Moisture In	, (%)	(HM=	=(W4/W5)*100)	0.2%				
Tria)		. <u></u>		1	2			
Pycnometer Number				25				
Weight Pycnometer Emp	ty (gm)		(Mf)	177.66				
Weight of Soil & Pycnon	eter (gm)		()	277.67		· · · ·		
Weight of Soil, Water & I	Pycnometer (gn	1)	(Mb)	739.39				
Observed Temperature (T	b), for (Mb) In	Degrees C		23.0		•		
Observed Temperature (T	a), for (Ma) In I	Degrees C		21.50	<u> </u>			
Weight of Pycnometer &	Water (gm)		(Ma @ Ta)	676.22				
Relative Density of Water	r@(Ta)			0.99791				
Relative Density of Water	(Tx)	_		0.99757				
Correction Factor due to 1	l'emperature @	Гх	(K)	0.9993				
Weight of Soil (gm)				100.01				
Weight of Dry Soil (gm)	Water (am)		(1×10) (Ma)	99.84 676.06				
SPECIFIC CRAVITY	water (gm)		(1012)	070.05	<u> </u>			
G @ 20 degrees C = [N]	/lo/(Mo+(Ma	- Mb))]*(K)	ļ	2.734				2.734
<u> </u>		· · ·	I				Ľ	
	Temp. (C)	Rel. Density	Corr. (K)	Temp. (C)	Rel. Density	Corr. (K)		
	16.00	0.99889	1.0007	25.50	0.99732	0.9992		
	17.00	0.99880	1.0006	24.50	0.99720	0.9990		
Correction Values	17.50	0.99871	1.0005	25.00	0.99707	0.9988		
Due To Temperature	18.00	0.99862	1.0004	25.50	0.99694	0.9987		
	18.50	0.99853	1.0003	26.00	0.99681	0.9986		
	19.00	0.99843	1.0002	26.30	0.99668	0.9984		
	20.00	0.99893	1.0001	27.00	0.99034 () 9964()	0.9982		
	20.50	0.99812	0.9999	28.00	0.99626	0.9980		
	21.00	0.99802	0.9998	28.50	0.99612	0.9979		
	21.50	0.99791	0.9997	29.00	0.99597	0.9977		
	22.00	0.99780	0.9996	29.50	0.99582	0.9976		
Í	22.50	0.99768	0.9995	30.00	0.99567	0.9974		
	23.00	0.99757	0.9993	<u> </u>	<u> </u>	<u> </u>	TECH	RJ
							DATE	5/31/00
							REVIEW	- Au
	~ <u>_</u>		<u> </u>					

PROJECT TITLE ALTIONTICS REACTIVE WALLOW SAMPLE D SAMPLE D SAMPLE D SAMPLE TYPE SAMPLE PERFERENCE MEET NO. REMARKS SAMPLE PROPERTY OF SAMPLE PERFERENCE MEET SAMPLE PERFERENCE MEET SAMPLE PERFERENCE MEET SAMPLE PERFERENCE MEET MÜBER SOURCE SAMPLE DEPT SAMPLE PERFERENCE MEET.			AST	RESISTIVITY (M G-57 AND U.S	OF SOIL 5. DOT FP-85				
SAMPLE PREPARATION Sieved through the #8 Sieve Miller Sollbox and Nilsson 400 Soil Resistance Meter. Identification: SPECIMEN (Point) SESSISTIVITY (ohms-cm) SPECIMEN (Point) SESSISTIVITY (ohms-cm) SPECIMEN (Point) SESSISTIVITY (ohms-cm) SPECIMEN (Point) SESSISTIVITY (ohms-cm) SPECIMEN (Point) SESSISTIVITY (ohms-cm) SOUTH CONTENT WE WEIGHT & TARE SARE WEIGHT & TARE SOUTH OF DRY SOIL (gm) VEICHT OF MOISTURE (gm) VEICHT OF MOISTURE (gm) VEICHT OF MOISTURE (gm) VEICHT OF MOISTURE (gm) SO 03 6.200 SO 0 SO 0	PROJECT TITLE SA PROJECT NO. REMARKS	LTIRE/996-1100 IF	RON REACTIVE WALLVA 3-3822	SAMPLE ID SAMPLE TYPE SAMPLE DEPT	SBS - 11				
dentification: Step ELOMEN (Point) EXSISTIVITY (phan-cm) EXSISTIVITY (phan-cm) EXSISTIV	SAMPLE PREPARATIC	N	Sieved through the # Miller Soilbox and I	#8 Sieve	No ance Meter.				
PECIMEN (Point) EESISTIVITY (ohm-cm) EESISTIVITY (ohm-cm) EESISTIVITY (ohm-cm) EESISTIVITY (ohm-cm) EESISTIVITY (a) 15.5 C (ohm-cm) EESISTIVITY (b) 20.0 EESISTIVITY (b) 20.0 EESISTIVITY (c) 15.5 C (ohm-cm) EESISTIVITY (c)	dentification:				· · · · · · · · · · · · · · · · · · ·	Resisivity of the Site H ₄ O	······		
ESISTIVITY (ohmi-cm) EMP DECREES (C) EMP DECREES (C) 22.0 1.400 22.0 1.400 22.0 1.400 22.0 1.400 22.0 1.400 22.0 1.400 22.0 1.400 22.0 1.400 1.400 22.0 1.400 1.400 22.0 1.400 22.0 1.400 1.400 22.0 1.428 100STURE CONTENT VET WEIGHT & TARE MARE WEIGHT 2.0 1.02	PECIMEN (Paint)	ſ	1	2	3	4			
EMP DEGREES (C) ESISTIVITY (2) 15.5 C (ohms-cm) 22.0 605 1.628 1.64	ESISTIVITY (ohms-cm	,, F	520			1,400			
ESISTIVITY @ 15.5 C (ohm-cm) 605 1.628 INOISTURE CONTENT TET WEIGHT & TARE ARE WEIGHT EIGHT OF MOISTURE (gm) EIGHT OF MOISTURE (gm) EIGHT OF MOISTURE (gm) 0 STURE CONTENT (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EMP DEGREES (C)	í Ì	22.0			22.0			
OISTURE CONTENT ET WEIGHT & TARE RY WEIGHT & TARE RRE WEIGHT EIGHT OF MOISTURE (gm) OISTURE CONTENT (%)	ESISTIVITY @ 15.5 C	(ohms-cm)	605			1,628			
VET WEIGHT & TARE RY WEIGHT & TARE ARE WEIGHT (EIGHT OF MOISTURE (gm)) OISTURE CONTENT (%)	OISTURE CONTENT	-							
LA FUNCTION & TARGE REWEIGHT & TARGE REWEIGHT EIGHT OF MOISTURE (gm) EIGHT	тт Wricht & тарг	. r	124 32	<u> </u>					
All weight EIGHT OF MOISTURE (gm) EIGHT OF DRY SOIL (gm) OISTURE CONTENT (%)	EL VELGEL & LAKE	' ŀ	93.30						
EIGHT OF MOISTURE (gm) EIGHT OF DRY SOIL (gm) OISTURE CONTENT (%)	ARE WEIGHT	F	43.27						
EIGHT OF DRY SOIL (gm) OISTURE CONTENT (%)	EIGHT OF MOISTUR	E (gm)	31.02						
OISTURE CONTENT (%) 62.00 (1) (1) (1) (1) (1) (1) (1) (1)	EIGHT OF DRY SOIL	. (gm)	50.03						
Image: series line Image: series line Image: series	OISTURE CONTENT	(%)	62.00						
Description Gray, SILTY CLAY, some medium to fine sand. USCS CH TECH DATE 5	RESISTIVITY (ohms-cm) (Thounsands) 8 0 0 0 0 0 0 0 0 0 0 0 0 0			20 10		• 0.6	Series1		
USCS CH TECH			M	IOISTURE CONTEN	T (%)				
USCS CH TECH DATE 5	Ľ	vescription	iray, SILTY CLAY,	some medium to fine s	and.				
CHECK		USCS	СН				TECH PW DATE 5/30, CHECK (A		

· ____

GOLDER SIERRA

.

HUJOIJ24

		AST	RESISTIVITY M G-57 AND U	OF SOIL .S. DOT FP-8	5	
PROJECT TITLE PROJECT NO. REMARKS	SALTIRE/996-1100 I	RON REACTIVE WALLVA	SAMPLE ID SAMPLE TYPE SAMPLE DEPT		SBS - 11 Bag	
SAMPLE PREPAR TEST APPARATUS	ATION S	Sieved through the Miller Soilbox and J	#8 Sieve [Nilsson 400 Soil Resi	No stance Meter.]	
Identification:				······································	Resistvity of the Site H ₄ O	
SAMPLE DEPTH		32.0 - 34.0'	32.0 - 34.0'	42.0 - 44.0'	<u></u>	
SPECIMEN (Point)		<u>i</u>	2	3	4	
RESISTIVITY (ohn	15-cm)	7,300	3,100	520	1,400	
TEMP DEGREES (C)	20.0	20.0	22.0	22.0	
RESISTIVITY @ 1	5.5 C (ohms-cm)	8,121	3,449	605	1,628	
MOISTURE CONT	ENT	260.77	268.00	124 32	······	
NOV WEIGHT & T	ADT	200.77	208.90	93.30		
TARE WEIGHT	ARE	<u> </u>	51.00	43.27	<u>+</u>	
WEIGHT OF MOIS	TURE (gm)	57.97	58.98	31.02		
WEIGHT OF DRV	SOIL (am)	156.27	159.02	50.03		
MOISTURE CONT	SOIL (gill)	33.96	37 32	62.00		
RESISTIVITY (ohms-cm) (Thousands)	10 8 6 4 2 0		• 3,4		• 0.6	► SBS-11 32-34 ► SBS-11 32-34' ► SBS-11 42-44'
	Description	MOI Reddish Brown, MEI	STURE CONTENT	(%) D, little		<u>.</u>
	USCS	clayey silt, trace fine (SP-SM)	gravel			TECH PWM DATE 5/30/00 CHECK Own BEVIEW AND

AR301326

ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136

PROJECT ITTLE SALTIREPSI-1100 IRCV RACTIVE WALLDA. SAMPLE DB SBS-12 - PROJECT NO. IC3382 SAMPLE DEPTH 30.0-3.2.0* WATER CONTENT (Delivered Moisture) Hygroscopic Moisture For Sieve Sample 30.0-3.2.0* WATER CONTENT (Delivered Moisture) Weight of Samel (gm) Dry Soil & Tare (gm) Image: Sample Wit Dry Soil & Tare (gm) (w4) Dry Soil & Tare (gm) Image: Sample Weight of Tare (gm) (w4) Total Weight Of Sample Used For Sieve Corrected For Hygroscopic Moisture Content (%) Image: Sample Samp									1	
PROJECT NO. IC3-3622 SAMPLE TYPE 364 REMARKS SAMPLE DEPTH 300-32.0° WATER CONTENT (Delivered Maisture) Well Soil & Tare (gm) Well Soi Soil & Tare (gm)	PROJECT TITLE	SALTIKE	/996-1100 IKU	NREACTIVI	E WALL/VA	j S.	AMPLE ID	<u>SBS - 12</u>	<u>+</u>	
REPRANKS SAMPLE DEPTH 300-320* WATER CONTENT (Delivered Moisture) Hygroscopic Moisture FG Size: Sample Wet Soil & Tare (gm) UM Moisture Content (%) Weight of Sample Used For Sizee Corrected For Hygroscopic Moist Weight of Sample (gm) 198.48 Moisture Content (%) (wd+w3.9*100 Cumulative Weight of Mark (gm) 146.70 SIEVE ANALVSIS Cumulative (Wi Ture) (%Retained) % PASS SIEVE 0.00 12.0* Cumulative 12.0* cobiles 3.0* 2.5* Correct for Grass gravel 2.5* correct for Grass gravel 2.0* 1.0* Correct grass gravel 0.50* fine gravel 0.50* 3.0* 2.0* Correct grass gravel 0.50* fine gravel 0.50* fine gravel 3.0* 0.00 0.00 0.00 <td< td=""><td>PRUJECI NU.</td><td></td><td>103-3822</td><td></td><td>-</td><td>SAIVL</td><td>PLE LIPE</td><td>B</td><td>ag</td><td>_</td></td<>	PRUJECI NU.		103-3822		-	SAIVL	PLE LIPE	B	ag	_
Ingression modulate in grossing modulate in grossing modulate in the sample with solid & Tare (gm) With WE solid & Tare (gm) With Dry Solid & Tare (gm) (with) Weight of Tare (gm) (with) Weight of Tare (gm) (with) Weight of Water (gm) (with with with with of Water (gm) 198.48. Weight of Water (gm) (with with with with with with with of Sample (gm) 198.48. Moisture Content (%) (with with with with with with with with	KEMARKS	i		<u></u>	Hugrospania	SAUVURI Maigtura For S	iova Somela		- 32.0'	_ <u>_</u>
Will ext Solid & Ture (gm) (w1) Dr. Solid & Ture (gm) (w2) Will ext Solid & Ture (gm) (w2) Dr. Solid & Ture (gm) Image: Solid & Ture (gm) Will ext Solid & Ture (gm) (w2) Total Weight Of Sample Used For Sieve Corrected For Hygroscopic Mois Weight of Dry Solid (gm) (w4=w4-w2) Total Weight Of Sample Used For Sieve Corrected For Hygroscopic Mois Weight of Dry Solid (gm) (w4=w4)=w2) Total Weight Of Sample Used For Sieve Corrected For Hygroscopic Mois Weight of Dry Solid (gm) (w4=w4)=w1 (w1=w4=w4)=w1 Weight of Sample Used For Sieve Corrected For Hygroscopic Mois SIE VE ANALYSIS Cumulative Weight of New Solid (gm) 146.70 SiE VE ANALYSIS Cumulative SIE VE 12.0° +Ture (w4=w5=w1000 (100-Mext) 3.0° coarse gravel 2.5° 2.0° 2.5° 2.6° 2.0° 2.5° 0.00 0.00 0.00 0.00 0.75° 0.00 0.00 0.375° 0.00 0.00 0.375° 0.00 0.00 0.375° 10.6 10.90 0.375° 10.76	WATER CONTENT	Dalivered M	oisture)		riygioscopic	Hygroscopic Moisture For Sieve Sample				
Mit Day Soli & Tare (gm) (w2) Total Weight of Tare (gm) Moisture Content (%) Weight of Tare (gm) (w3) Total Weight of Sample Used For Size Corrected For Hygroscopic Moiss Weight of Water (gm) (w4=w1-w2) Total Weight of Sample Used For Size Corrected For Hygroscopic Moiss Weight of Water (gm) (w4=w1-w2) Total Weight of Sample Used For Size Corrected For Hygroscopic Moiss Weight Ory Soil (gm) (w4=w1-w2) Total Weight (gm) 198.48 Moisture Content (%) (w4-w5)*100 Cumulative Tare Weight (gm) 146.70 SIEVE ANALYSIS Cumulative SIEVE (gn) 12.0° cobies 3.0° correst for Hygroscopic Moiss SIEVE 2.0° cobies 3.0° correst for Hygroscopic Moiss SIEVE 2.0° cobies 3.0° correst for Hygroscopic Moiss SIEVE 2.0° correst for Hygroscopic Moiss 0.00 12.0° SIEVE ANALYSIS Cumulative 2.0° coarse gravel 1.0° correst for Hygroscopic Moiss SIEVE 2.0° coarse gravel 1.0° correst for Hygroscopic Moiss SIEVE 2.0° coarse gravel	Wt Wet Soil & Tare (g)				-	Dry Soil & Tare (gm)				
Nichy On & Hell (gam) (w3) Hell (W3) Weight of Water (gm) (w4-w1-w2) Total Weight of Sample Used For Sieve Corrected For Hyaroscopie Mois Weight of Dry Soil (gm) (w5-w2-w3) Weight of Sample (gm) 13.4 Moisture Content (%) (w4-w1-w2) Total Weight of Sample (gm) 13.4 Moisture Content (%) (w4-w1-w2) (w4/w5)*100 146.70 SIEVE ANALYSIS Cumulative Wit Ret (W1-Tare) (wit rewsynton) 100-%arcs 0.00 12.0"	Wt Dry Soil & Tare (gr	n)	(w2)		4		Tare Weight	(gm)		
Weight of Mater (gm) (w4=w1-w2) Total Weight Of Sample Used For Sieve Conserted For Hyproscopic Mois Weight of Dry Soil (gm) (w5=w2-w3) Weight of CS sample (gm) 198.48 Moisture Content (%) (w4w5)*100 (w6) Tare Weight (gm) 112.46.70 SIEVE ANALYSIS Cumulative (w6) Total Dry Weight (gm) 146.70 3.0° coarse gravel 2.0° 3.0° coarse gravel 3.0° coarse gravel 2.5° coarse gravel 1.5° 1.0° 2.0° 0.00 10.0° 0.50° fine gravel 0.50° fine gravel 0.75° 0.00 0.00 0.00 100.00 0.375° fine gravel 0.50° fine gravel 0.50° 0.75° 5.72 5.72 3.90.96.10 #20 medium sand #40 0.70° 0.48 99.52 #4 coarse gravel 0.50° fine gravel #41 0.76 7.687 5.87 5.44 410 medium sand #20 5.72 5.72 3.90.96.10 #20 medium sand #20 15.76 15.96 10.88 89.12	Weight of Tare (gr	,	(w2) (w3)		4		Moisture Co	ntent (%)	·	
Weight of Dry Soil (gm) (w5=w2=w3) Weight of Sample (gm) 128.48 Moisture Content (%) (w4/w5)*100 Tare Weight (gm) 13.78 SIEVE ANALYSIS Cumulative (We) Total Dry Weight (gm) 146.70 SIEVE ANALYSIS Cumulative 12.0° cobles 0.00 +Tare (Wt-Tare) (%Retained) % PASS SIEVE 1.0° - - - - - - - 2.0° -	Weight of Water (gm)		(w4=w]-w2)	_	Total Weight	Of Sample Us	ed For Sieve Co	orrected For Hyg	roscopic Mois	
Moisture Content (%) (w4/w5)*100 Tare Weight (gm) 51.78 SIEVE ANALYSIS Cumulative Vi Ret (W6 Total Dry Weight (gm) 146.70 SIEVE ANALYSIS Cumulative SIEVE 12.0° colored total Dry Weight (gm) 146.70 0.00 +Tare (W6 Retained) % PASS SIEVE 12.0° colored total Dry Weight (gm) 12.0° 1.0° 2.0°	Weight of Dry Soil (gm	1)	(w5=w2-w3)	·	1	• •	Weight Of Sa	ample (gm)	198.48	٦
(W6) Total Dry Weight (gm) 146.70 SIEVE ANALVSIS Cumulative SIEVE 0.00 +Tare (%reetws/p100 (100-%reet) 0.00 +Tare (%reetws/p100 (100-%reet) 2.0°	Moisture Content (%)	,	(w4/w5)*100		1		Tare Weight	(gm)	51.78	
SIEVE ANALYSIS Cumulative Tare Weight Wi Ret (Wi-Tare) %PASS SIEVE 0.00 12.0°					1	(W6)	Total Dry W	eight (gm)	146.70	
SIEVE ANALYSIS Cumulative Tare Weight Wi Ret (Wt Tare) % PASS SIEVE 0.00 +Tare ((Wt Tare) (%Retained) % PASS SIEVE 0.00 +Tare ((Wt Tare) (100-%ret) 12.0° cobles 3.0° 0.00 0.00 0.00 2.5° coarse gravel 2.5° 0.00 2.5° coarse gravel 1.5° 0.75° 0.00 0.00 0.75° fine gravel 0.50° 0.75° 0.00 0.00 0.75° fine gravel 0.375° 0.00 0.00 0.00 0.375° fine gravel 0.375° 0.00 0.00 0.00 0.375° fine gravel 0.375° 0.00 0.00 0.000 0.375° fine gravel 0.375° 0.00 0.00 0.00 0.375° fine gravel 0.375° 0.00 0.00 0.00 0.375° fine gravel 10.10 12.33 <			- <u>·····</u> ·	·			<u> </u>			
Tare Weight Wi Ret (Wt-Tare) (%Retained) % PASS SEVE 0.00 +Tare ((wtretweyrio) (100-%aret) 3.0° coarse gravel 2.5° 2.6° 2.6° 2.0° 3.0° coarse gravel 2.5° 2.0° 2.0° 2.0° 2.0° coarse gravel 1.5° 1.0° 1.0° 2.0° coarse gravel 0.75° 1.0° 0.00 0.75° fine gravel 0.375° 0.00 0.00 0.00 0.375° fine gravel 440 1596 15.96 10.88 89.12 #40 fine sand #100 123.39 123.39 84.11 15.89 #100 fine sand #200 130.16 130.16 88.73 11.27 #200 fines % COBBLES 0.00 <td>SIEVE ANALYSIS</td> <td></td> <td></td> <td></td> <td>Cumulative</td> <td></td> <td></td> <td></td> <td></td> <td></td>	SIEVE ANALYSIS				Cumulative					
0.00 +Tare ((wt retwork)=100 (12.0° cobles 3.0° 2.5° 12.0° 12.0° cobles 3.0° 2.5° 12.0° coarse gravel 2.5° coarse gravel 2.0° 1.5° 1.5° 2.0° coarse gravel 1.5° coarse gravel 1.0° 1.0° 1.0° 1.0° coarse gravel 1.0° coarse gravel 0.75° 1.0° 1.0° 1.0° coarse gravel 0.75° fine gravel 0.375° 0.00 0.00 0.00 0.000 0.00° 0.00° 0.00° 0.375° 0.00 0.00 0.00 0.00°	Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE			
12.0° 12.0° 12.0° coarse gravel 3.0° 2.5° coarse gravel 2.5° coarse gravel 2.0° 2.0° 2.0° 2.0° coarse gravel 1.5° 1.0° 2.0° 1.5° coarse gravel 0.75° 1.0° 1.0° coarse gravel 0.75° 0.75° 0.00 0.00 100.00 0.375° fine gravel 0.375° 0.00 0.00 100.00 0.375° fine gravel 0.375° 0.00 0.00 0.00 0.375° fine gravel 440 5.96 15.96 10.88 89.12 #4 coarse sand #20 5.72 5.72 3.90 96.10 #20 medium sand #40 15.96 10.88 89.12 #40 fine sand #200 <	0.00		+Tare		{(wt ret/w6)*100	(100-%ret)				
3.0" 3.0" coarse gravel 2.5" 2.0" 2.5" coarse gravel 2.0" 2.0" 2.0" coarse gravel 1.5" 2.0" 1.5" coarse gravel 1.0" 1.0" 1.5" coarse gravel 0.75" 1.0" 0.75" fine gravel 0.50" 0.75" 0.00 0.00 100.00 0.375" 0.00 0.00 100.00 0.375" fine gravel 0.375" 0.00 0.00 100.00 0.375" fine gravel #4 0.70 0.70 0.48 99.52 #4 coarse gravel #40 15.96 10.88 89.12 #40 medium sand #20 5.72 5.72 3.90 96.10 #20 medium sand #200 130.16 130.16 88.73 11.27 #200 fine sand #400 130.16 130.16 88.73 11.27 #200 fines sand #200 130.16 130.16 88.73 11.27 #200 fines <		12.0"					12.0"	cobbles		
2.5" 2.0" 2.0" 2.0" coarse gravel 1.5" 10" 1.5" 2.0" coarse gravel 1.5" 1.0" 1.5" coarse gravel 0.75" 1.0" 1.0" 0.75" 0.375" 0.00 0.00 100.00 0.375" 0.375" 0.00 0.00 0.00 0.375" #4 0.70 0.70 0.48 99.52 #4 0.70 0.70 0.48 99.52 #4 0.70 0.70 0.48 99.52 #4 10 2.24 2.24 1.53 98.47 #10 2.24 2.24 1.54 98.47 #10 medium sand #20 5.72 5.72 3.90 96.10 #20 medium sand #40 15.96 10.88 89.12 #40 fine sand #200 123.39 123.39 84.11 15.89 #100 fine sand #200 130.16 130.16 88.73 11.27 #200 fines %		3.0"					3.0"	coarse gravel		
2.0" 2.0" 2.0" coarse gravel 1.5" 0.0" 1.5" coarse gravel 1.0" 0.00 0.00 100.00 0.75" 0.50" 0.00 0.00 100.00 0.375" 0.375" 0.00 0.00 0.00 100.00 0.375" 0.00 0.00 0.00 0.375" #44 0.70 0.70 0.48 99.52 #4 #20 5.72 5.72 3.90 96.10 #20 medium sand #20 5.72 5.72 3.90 96.10 #20 fine sand #40 15.96 15.96 10.88 89.12 #40 fine sand #100 123.39 123.39 84.11 15.89 #100 fine sand #200 130.16 130.16 88.73 11.27 #200 fines % COBBLES 0.00 0.05% > 10% mostly coarse (c) % % % % % % 10% Gs 2.728 % F GRAVEL 0.48 trace		2.5"			·		2.5"	coarse gravel		
1.5" 1.0" 1.0" coarse gravel 0.75" 0.75" 0.75" in 0" coarse gravel 0.50" 0.75" 0.00 0.00 100.00 0.375" 0.375" 0.00 0.00 100.00 0.375" fine gravel 0.375" 0.00 0.00 0.00 0.375" fine gravel 0.375" 0.00 0.00 0.00 0.375" fine gravel 0.375" 0.00 0.70 0.48 99.52 #4 coarse sand #10 2.24 2.24 1.53 98.47 #10 medium sand #20 5.72 3.90 96.10 #20 medium sand #40 15.96 10.88 89.12 #40 fine sand #40 15.96 10.88 89.12 #40 fine sand #100 123.39 123.39 84.11 15.89 #100 fine sand #200 130.16 130.16 88.73 11.27 #200 fines PAN PAN PAN PAN <td< td=""><td></td><td>2.0"</td><td></td><td> </td><td>_</td><td></td><td>2.0"</td><td>coarse gravel</td><td></td><td></td></td<>		2.0"		 	_		2.0"	coarse gravel		
1.0° Coarse gravel 0.75°		1.5"			_		1.5"	coarse gravel		
0.75* 0.75 0.75 0.75 0.75 0.75 fine gravel 0.375" 0.00 0.00 100.00 0.375" fine gravel 0.375" 0.00 0.00 0.00 100.00 0.375" fine gravel #4 0.70 0.70 0.48 99.52 #4 coarse sand #10 2.24 2.24 1.53 98.47 #10 medium sand #20 5.72 5.72 3.90 96.10 #20 medium sand #40 15.96 15.96 10.88 89.12 #40 fine sand #100 123.39 123.39 84.11 15.89 #100 fine sand #200 130.16 130.16 88.73 11.27 #200 fines % COBBLES 0.00 Descriptive Terms > 10% mostly coarse (c) PAN PAN % C GRAVEL 0.48 trace 0 to 5% > 10% mostly medium (m) LL		1.0"					1.0"	coarse gravel		
0.30 0.00 0.00 100.00 0.375" fine gravel 0.375" 0.00 0.00 0.00 100.00 0.375" fine gravel #4 0.70 0.70 0.48 99.52 #4 coarse sand #10 2.24 2.24 1.53 98.47 #10 medium sand #20 5.72 5.72 3.90 96.10 #20 medium sand #40 15.96 10.88 89.12 #40 fine sand #40 15.96 10.88 89.12 #40 fine sand #100 123.39 123.39 84.11 15.89 #100 fine sand #200 130.16 130.16 88.73 11.27 #200 fines % COBBLES 0.00 Descriptive Terms > 10% mostly coarse (c) % % % F GRAVEL 0.48 trace 0 to 5% > 10% mostly medium (m) LL		0.75"			<u> </u>		0.75"	fine gravel		
0.373 0.00 0.00 0.00 100.00 0.373 Integrater #4 0.70 0.70 0.48 99.52 #4 coarse sand #10 2.24 2.24 1.53 98.47 #10 medium sand #20 5.72 5.72 3.90 96.10 #20 medium sand #40 15.96 15.96 10.88 89.12 #40 fine sand #60 76.87 76.87 52.40 47.60 #60 fine sand #100 123.39 123.39 84.11 15.89 #100 fine sand #200 130.16 130.16 88.73 11.27 #200 fines PAN PAN PAN PAN PAN PAN PAN % COBBLES 0.00 Descriptive Terms > 10% mostly coarse (c) #10 1.1 - % C SAND 1.05 little 5 to 12% < 10% mostly coarse (c)		0.50"	0.00	0.00	0.00	100.00	0.30	fine gravel		
#14 0.70 0.78 92.32 #1 order strain #10 2.24 2.24 1.53 98.47 #10 medium sand #20 5.72 5.72 3.90 96.10 #20 medium sand #40 15.96 15.96 10.88 89.12 #40 fine sand #60 76.87 76.87 52.40 47.60 #60 fine sand #100 123.39 123.39 84.11 15.89 #100 fine sand #200 130.16 130.16 88.73 11.27 #200 fines PAN PAN PAN PAN PAN PAN PAN % COBBLES 0.00 Descriptive Terms > 10% mostly coarse (c) #10 fines % C SAND 1.05 little 5 to 12% < 10% coarse (n-f)		0.575 #A	0.00	0.00	0.00	00.52	0.373 #A	coarse sand		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		#10	2.24	2.24	1.53	98.47	#10	medium sand		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		#20	5 72	5 72	3.90	96.10	#20	medium sand		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		#40	15.96	15.96	10.88	89.12	#40	fine sand		
#100 123.39 123.39 84.11 15.89 #100 fine sand #200 130.16 130.16 88.73 11.27 #200 fines PAN PAN PAN PAN PAN % COBBLES 0.00 Descriptive Terms > 10% mostly coarse (c) % C GRAVEL 0.48 trace 0 to 5% > 10% mostly medium (m) LL		#60	76.87	76.87	52.40	47.60	#60	fine sand		
#200 130.16 130.16 88.73 11.27 #200 fines PAN PAN PAN PAN % COBBLES 0.00 Descriptive Terms > 10% mostly coarse (c) % C GRA VEL 0.48 trace 0 to 5% > 10% mostly medium (m) LL - % C SAND 1.05 little 5 to 12% < 10% fine (c-m) PL - % M SAND 9.35 some 12 to 30% < 10% coarse (m-f) PI - % F SAND 77.85 and 30 to 50% < 10% coarse and fine (m) Gs 2.728 % FINES 11.27 < 10% coarse and medium (f) > 10% equal amounts each (c-f) DESCRIPTION Reddish Brown, MEDIUM TO FINE SAND, little clayey sit, trace fine gravel. Reddish Brown, MEDIUM TO FINE SAND, little		#100	123.39	123.39	84.11	15.89	#100	fine sand		
PAN PAN % COBBLES 0.00 % C GRA VEL 0.00 % F GRAVEL 0.48 trace 0 to 5% 10% mostly medium (m) % C SAND 1.05 little 5 to 12% 10% fine (c-m) % M SAND 9.35 some 12 to 30% 10% coarse (m-f) % F SAND 77.85 and 30 to 50% 10% coarse and fine (m) % FINES 11.27 % TOTAL 100.00		#200	130.16	130.16	88.73	11.27	#200	fines		
% COBBLES 0.00 Descriptive Terms > 10% mostly coarse (c) % C GRA VEL 0.48 trace 0 to 5% > 10% mostly medium (m) LL - % C SAND 1.05 little 5 to 12% < 10% fine (c-m)		PAN					PAN			
% C GRA VEL 0.00 Descriptive Terms > 10% mostly coarse (c) % F GRA VEL 0.48 trace 0 to 5% > 10% mostly medium (m) LL - % C SAND 1.05 little 5 to 12% < 10% fine (c-m)	% COBBLES	0.00						_		
% F GRAVEL 0.48 trace 0 to 5% > 10% mostly medium (m) LL - % C SAND 1.05 little 5 to 12% < 10% fine (c-m)	% C GRAVEL	0.00	Descrip	tive Terms	> 10% m	ostly coarse (c))			_
% C SAND 1.05 little 5 to 12% < 10% fine (c-m) PL - % M SAND 9.35 some 12 to 30% < 10% coarse (m-f)	% F GRAVEL	0.48	trace	0 to 5%	> 10% m	ostly medium ((m)	LL		
% M SAND 9.35 some 12 to 30% < 10% coarse (m-f) PI - % F SAND 77.85 and 30 to 50% < 10% coarse and fine (m)	% C SAND	1.05	little	5 to 12%	< 10% fu	ne (c-m)		PL		_
% F SAND 77.85 and 30 to 50% < 10% coarse and fine (m)	% M SAND	9.35	some	12 to 30%	< 10% co	arse (m-f)		PI		_
% FINES 11.27 < 10% coarse and medium (f)	% F SAND	77.85	and	30 to 50%	< 10% co	arse and fine (i	m)	Gs	2.728	
% TOTAL 100.00 > 10% equal amounts each (c-f) DESCRIPTION Reddish Brown, MEDIUM TO FINE SAND, little clayey silt, trace fine gravel.	% FINES	11.27	4		< 10% co	arse and mediu	um (f)			
DESCRIPTION Reddish Brown, MEDIUM TO FINE SAND, little clayey silt, trace fine gravel.	% TOTAL	100.00			> 10% eq	ual amounts ea	ach (c-f)			
	DES	CRIPTION	Reddish Brown clayey silt, trac	n, MEDIUM 7 e fine gravel.	FO FINE SAND), little				
USCS (SP-SM) TECH PWM/RJ		USCS	(SP-SM)					TECH	PWM/R.	J
DATE 5/30/00								DATE	5/30/00	
CHECK								CHECK	Car	
REVIEW						·		REVIEW	an	

		SPE	CIFIC GRA ASTM	VITY OF S D-854	DILS	<u> </u>			
		F	YCNOMET	ER METHO)D				
PROJECT TITLE	SALTI	RE/996-1100 IRO	N REACTIVE W	ALL/VA					
PROJECT NUMBER IC3-3822			-3822	_	SAMPLE ID SBS - 12 -			-	
	•				SAN	IPLE TYPE	Ba	;	
TESTED FOR		(GS		SAM	32.0'			
HYGROSCOPIC MO	ISTURE OF	MATERIAL F	PASSING THE	#4 SIEVE					
Weight Soil and Tare, Ini	tal (gm)		(W1)	164.34		AΓ	R REMOVA	AL.	
Weight Soil and Tare, Fin	al (gm)		(W2)	163.75	метнор				
Weight Of Tare (gm)			(W3)	42.10			VACUUM		
Weight Of Moisture (gm)	0.59		1						
Weight Of Dry Soil (gm)	ł		(W5=W2-W3)	121.65					
Hygroscopic Moisture In	(%)	(HM	=(W4/W5)*100)	0.5%					
				1					
Pycnometer Number			г	16					
Weight Pycnometer Empt	v (am)		MD	17151					
Weight of Soil & Pycnom	eter (gm)			271 52					
Weight of Soil Water & F	vcnometer (gr	n)	· (Mb)	732.22					
Observed Temperature (T	b), for (Mb) In	Degrees C	()	23.0					
Observed Temperature (T	a), for (Ma) In	Degrees C	 [22.50		 [
Weight of Pycnometer &	Water (gm)	-	(Ma @ Ta)	669.20					
Relative Density of Water	@ (Ta)			0.99768					
Relative Density of Water	@ (Tx)			0.99757					
Correction Factor due to 7	emperature @	Тх	(K)	0.9993					
Weight of Soil (gm)				100.01					
Weight of Dry Soil (gm)			(Mo)	99.53					
Weight of Pycnometer &	Water (gm)		(Ma)	669.15					
SPECIFIC GRAVITY	·						G	s Average	
G @ 20 degrees C = [N	lo/(Mo+(Ma	- Mb))]*(K)	· [2.728				2.728	
·							<u></u>		
	Temp. (C)	Rel. Density	Corr. (K)	Temp. (C)	Rel. Density	Corr. (K)			
	16.00	0.99897	1.0007	23.50	0.99745	0.9992			
	10.50	0.99889	1.0007	24.00	0.99732	0.9991			
Correction Values	17.00	0.99871	1.0000	24.30	0.99720	0.9990			
Due To Temperature	18.00	0.99862	1.0005	25.50	0.99694	0.9987			
2401010	18.50	0.99853	1.0003	26.00	0.99681	0.9986			
	19.00	0.99843	1.0002	26.50	0.99668	0.9984			
	19.50	0.99833	1.0001	27.00	0.99654	0.9983			
	20,00	0,99823	1.0000	27.50	0.99640	0.9982			
	20.50	0.99812	0.9999	28.00	0.99626	0.9980			
	21.00	0.99802	0.9998	28.50	0.99612	0.9979			
	21.50	0.99791	0.9997	29.00	0.99597	0.9977			
	22,00	0.99780	0.999 6	29.50	0.99582	0.9976			
	22.50	0.99768	0.9995	30.00	0.99567	0.9974			
	23.00	0.99757	0.999 3	·			TECH	RJ	
•							DATE	5/31/00	
							СНЕСК	onu	
•		<u></u>				<u></u>	REVIEW	On	

			AST	RESISTIVITY M G-57 AND U.	OF SOIL S. DOT FF	-85	
PROJECT TI PROJECT NO REMARKS	IECT TITLE SALTIRE/996-1100 IRON REACTIVE WALL/VA IECT NO. IC3-3822 ARKS		SAMPLE ID SAMPLE TYPE SAMPLE DEPT		SBS - 12 - Bag 30.0 - 32.0'		
SAMPLE PRE TEST APPAR	PAR/	ATION	Sieved through the Miller Soilbox and I	#8 Sieve [Nilsson 400 Soil Resis	No tance Meter.		
Identification:			.		<u> </u>	Resisivity of the Site H ₁ O	
SPECIMEN (P	oint)		1	2	3	4	1
RESISTIVITY	(ohm	15-cm)	10,000			1,400	1
TEMP DEGRE	EES (O	C)	20.0		· · · · · · · · · · · · · · · · · · ·	22.0	1
RESISTIVITY	a) 15	.5 C (ohms-cm)	11,125			1,628]
MOISTURE C	ONT	ENT					
WET WEIGHT	г <i>&</i> т	ARE	258.77				1
ORY WEIGHT	Г&Т.	ARE	196.48				1
TARE WEIGH	IT		51.78		<u> </u>		1
VEIGHT OF N	MOIS	TURE (gm)	62.29]
VEIGHT OF I	DRY S	SOIL (gm)	144.70				
MOISTURE CONTENT (%) 43.05				<u> </u>	j		
RESISTIVITY (ohms-cm)	(Thousands)	12 10 8 6 4 2 0 0	10	20	30	■ 11.1 	Series 1
Ĺ			D-11:4 D MOT	MOISTURE CONT	ENT (%)		
		Description	clayey silt, trace fine	gravel.	J, IIIIe		
		USCS	(SP-SM)]	TECH
		- L	`				DATE 5/30/
							CHECK AU

AK201262

GOLDER SIERRA
Α	STM GRAIN	SIZE ANALY	YSIS
ASTM D 4	421, D 2217, D	1140, C 117,	D 422, C 136

	<u> </u>	ASTM D 4	21, D 221	7, D 1140, C	C 117, D 42	2, C 136		
PROFFCT TITLE	SALTIRE	/996-1100 IRON	REACTIV		s.	MPLE ID	SBS - 12	<u></u>
PROJECT MILL	ORD THE	IC3-3822			SAM	PLE TYPE	B B B B B B B B B B B B B B B B B B B	1 lag
REMARKS		100 0022		1	SAMPI	E DEPTH	34.0	- 36.0'
		· · · · · · · · · · · · · · · · · · ·		Hygroscopic	Moisture For S	ieve Sample		
WATER CONTENT (Delivered M	oisture)				Wet Soil &	Tare (gm)	
Wt Wet Soil & Tare (gr	n)	(w1)		1		Dry Soil &	Tare (gm)	
Wt Dry Soil & Tare (gr	n)	(w2)		1		Tare Weigh	t (gm)	
Weight of Tare (gm)		(w3)		1		Moisture Co	ontent (%)	
Weight of Water (gm)		(w4=w1-w2)		Total Weight	Of Sample Use	d For Sieve C	Corrected For Hyg	roscopic Mois
Weight of Dry Soil (gm	i)	(w5=w2-w3)				Weight Of S	Sample (gm)	229.90
Moisture Content (%)		(w4/w5)*100				Tare Weigh	it (gm)	51.66
<u></u>			···	<u>]</u>	(W6)	Total Dry W	/eight (gm)	178.24
SIEVE ANALYSIS				Cumulative				
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE		
0.00		+Tare	()	{(wt ret/w6)*100	(100-%ret)			
	12.0"		<u> </u>		<u></u>	12.0"	cobbles	
	3.0"	[·	<u> </u>	· · · · · · · · · · · · · · · · · · ·	3.0"	coarse gravel	
	2.5"			1		2.5"	coarse gravel	
	2.0"		· ·			2.0"	coarse gravel	
	1.5"					1.5"	coarse gravel	
	1.0"					1.0"	coarse gravel	
	0.75"					0.75"	fine gravel	
	0.50"					0.50"	fine gravel	
	0.375"					0.375"	fine gravel	
	#4	0.00	0.00	0.00	100.00	#4	coarse sand	
	#10	9.21	9.21	5.17	94.83	#10	medium sand	
	#20	27.70	27.70	15.54	84.46	#20	medium sand	
	#40	39.87	39.87	22.37	77.63	# 40	fine sand	
	#60	81.63	81.63	45.80	54.20	#60	fine sand	
	#100	148.35	148.35	83.23	16.77	#100	fine sand	
	#2 00	159.45	159.45	89.46	10.54	#200	fines	
·····	PAN		. <u> </u>	<u></u>		<u>PAN</u>	,	
% COBBLES	0.00			. 100/				
%C GRAVEL	0.00	Descript	tive l'erms	> 10% m	ostly coarse (c)			<u>г</u> _
% F GRAVEL	0.00	trace	0 to 5%	> 10% m	ostly medium (m)		
% C SAND	3.17	little	5 to 12%	< 10% III	ie (c-m)		PL DI	
% M SAND	(7.00	some	12 10 30%	< 10% co	arse (m-I)	\	PI C	
10 C JAIND	10.54		30 10 30%	< 10% 00	arse and madin	ມ <i>ງ</i> ຫາ (ຄື)	GS	4.073
M TOTAI	10.34	4		> 10% CO	aise and mediu	an (1) ch (c. Đ		
	100.00]		≥ 10% eq	uai antounts ea	cii (c-1)		
DES	CRIPTION	Reddish Brown	, MEDIUM 1	TO FINE SAND	, little			
		clayey silt.						
	USCS	(SP-SM)			···		тесн	PWM/R I
	0000						DATE	5/30/00
							CHECK	(All
							REVIEW	- Adu
		· · · · · · · · · · · · · · · · · · ·	·					

PROJECT TITLE JATTERNING BECTIVE WILLY) SAMPLE DEPT ROJECT NO. EMARKS SIEVE ICLUSS SAMPLE DEPT SAMPLE PREPARATUS SAMPLE PREPARATUS Sieved through the #8 Sieve No Miler Solibot and Nilson 400 Soil Resistance Meter. Resistivity of the Sieve No REST APPARATUS Miler Solibot and Nilson 400 Soil Resistance Meter. Resistivity of the Sieve No REST APPARATUS Resistivity of the Sieve No REST APPARATUS REST VIEVE (ohms-cm) REST VIEVE (ohms-cm)			AS	RESISTIVITY TM G-57 AND U.	OF SOIL 5. DOT F	P-85		
ROJECT NO. IC3-3822 SAMPLE TYPE DD DE Bag SAMPLE PREPARATION Sieved through the #8 Sieve No StamPLE PREPARATUS Miller Sollbox and Nilson #00 Soil Resistance Meter. dentification: Resistive of the Site PLO 10 PPECIMEN (Point) 10 2 3 4 ESISTIVITY (chronican) 10 2 3 4 DESISTIVITY (chronican) 10 2 3 4 DESISTIVITY (chronican) 10 2 3 4 VEX WEIGHT & TARE 115 1.623 1.623 ANDISTURE (CONTENT 15.66 10 178.24 10 VEX WEIGHT & TARE 178.24 10 178.24 10 13 10 VEX MULTION 10 20 30 40 50 50 VEX MULTION 10 20 30 40 50 50 VEX MULTION 10 20 30 40 50 50 50 VEX MULTION 10 20 30 40 50 50						SBS - 12		
SAMPLE PREPARATION Sieved through the #8 Sieve No FEST APPARATUS Sieved through the #8 Sieve No FEST APPARATUS Sieved through the #8 Sieve No Hiller Sollbox and Nilsson 400 Soil Resistance Meter. Adventification: PRECIMEN (Point) PRESISTIVITY (white-cm) PRESISTIVITY (white-cm) PRESISTIV	PROJECT NO.	<u> </u>	C3-3822	SAMPLE TYPE		Bag 34.0 - 36.0'		
AMPLE PREPARATUS Seved through the #9 Sive								
dentification:	SAMPLE PREPARATIC FEST APPARATUS	N	Sieved through th Miller Soilbox an	te #8 Sieve d Nilsson 400 Soil Resis	No tance Meter.			
PPECIMEN (Point) EESISTIVITY (ohm-cm) EESISTIVITY (ohm-cm) 1 2 3 4 980 1 1.400 12.40 RESISTIVITY (ohm-cm) 1.115 1.628 ADDISTURE CONTENT VEI WEIGHT & TARE PRY WEIGHT OF MOISTURE (gm) SIGE OF MOISTURE (gm) VEI WEIGHT OF MOISTURE (gm) VEIGHT OF DRY SOIL (gm) VEIGHT OF DRY SOIL (gm) OF MOISTURE (gm) VEIGHT OF DRY SOIL (gm) OF MOISTURE (gm)	dentification:				<u></u>	Resisivity of the Site H ₂ O		
EESISTIVITY (ohm-cm) 980 1,400 EEMISTIVITY (ohm-cm) 1,115 1,628 AOISTURE CONTENT 1,115 1,628 AOISTURE CONTENT 1,115 1,628 VET WEIGHT & TARE SYR WEIGHT & TARE VEIGHT OF MOISTURE (gm) VEIGHT OF MOISTUR	SPECIMEN (Point)		1	2	3	4		
EMP DEGRÉÉS (C) EESISTIVITY (g 15.5 C (ohmm) L,115 ADISTURE CONTENT VET WEICHT & TARE RRY WEICHT OF MOISTURE (gm) VEICHT OF MOISTURE (gm) VEICHT OF MOISTURE (gm) VEICHT OF MOISTURE (gm) VEICHT OF MOISTURE (gm) A4.43 MOISTURE CONTENT (%) MOISTURE CONT	RESISTIVITY (ohms-cm	ı)	980	+	<u>_</u>	1,400		
EESISTIVITY @ 15.5 C (ohm-cm) 1.115 1.628 ADISTURE CONTENT VET WEIGHT & TARE RRY WEIGHT & TARE RRY WEIGHT OF DRY SOLL (gm) VEIGHT OF DRY SOLL (gm) VEIGHT OF DRY SOLL (gm) VEIGHT OF DRY SOLL (gm) ADISTURE CONTENT (%) 291.27 229.90 51.66 1 OPECTIVE (gm) VEIGHT OF DRY SOLL (gm) ADISTURE CONTENT (%) OPECTIVE (gm) OPECTIVE (gm) OP	TEMP DEGREES (C)		21.0			22.0		
AUSTURE CONTENT VEIGHT & TARE RY WEIGHT & TARE RY WEIGHT OF DRY SOLL (gm) VEIGHT OF DRY SOLL (gm) VEIGHT OF DRY SOLL (gm) VEIGHT OF DRY SOLL (gm) (0) (0) (0) (0) (0) (0) (0) (0	RESISTIVITY @ 15.5 C	(ohms-cm)	1,115			1,628		
VET WEIGHT & TARE RY WEIGHT & TARE RY WEIGHT OF MOISTURE (gn) VEIGHT OF MOISTURE (gn) VEIGHT OF DRY SOLL (gn) VEIGHT	MOISTURE CONTENT							
RY WEIGHT & TARE 229.90	WET WEIGHT & TARE	;	291.27					
ARC WIGHT VEIGHT OF MOISTURE (gm) VEIGHT OF DRY SOIL (gm) AUXIE CONTENT (%) 178.24 34.43 178.24 17	DRY WEIGHT & TARE		229.90					
AND TO FORY SOL (gm) ADDITION (gm)	TARE WEIGHT VEICHT OF MOISTUR	F (am)	51.66	- <u> </u>	·····			
ROISTURE CONTENT (%) 34.43 34.43 10 10 10 10 10 10 10 10 10 10	VEIGHT OF MOISTON		178.24					
Image: second	MOISTURE CONTENT	(%)	34.43					
Description Reddish Brown, MEDIUM TO FINE SAND, little clayey silt. USCS (SP-SM) DATE 5/3 CHECK	10 8 8 (Lthousands) 2 0 0 0		10		30 ENT (%)	11.1	Series1	
Clayey silt. USCS (SP-SM) DATE 5/3 CHECK	E	Description	Reddish Brown, M	EDIUM TO FINE SAND), little			
USCS (SP-SM) TECH P DATE 5/3 CHECK			clayey silt.					
DATE 5/3 CHECK		USCS	(SP-SM)	1	·······	J	TECH	P\
CHECK (A			<u>(</u>				DATE	5/3
1-7							CHECK	C/

·-----

AR301332

		A ASTM D 4	STM GR/ 21, D 221'	AIN SIZE A 7, D 1140, (NALYSIS C 117, D 4	5 22, C 136	5	
		2006 1100 IDO	N DEACTERN	E WATT OVA			585 13	
PROJECT III LE	SALTIRE	1C3-3822	N REACTIVI	C WALL/VA	SAME	anifle id Di e tvde	303-13	
PROJECT NO.		103-3644		-	SAMP	E DEPTH	24.0	- 26.0
NEMAKIN <u>S</u>	<u> </u>			Hygroscopic	Moisture For ⁴	Sieve Sample	1 24.0	- 20.0
WATER CONTENT	' (Delivered N	(aisture)		ingeroscopie		Wet Soil &	Tare (gm)	
Wt Wet Soil & Tare	(em)	(w1)		1		Dry Soil &	Tare (gm)	
Wt Dry Soil & Tare 1	(em)	(w2)		1		Tare Weig	ht (gm.)	
Weight of Tare (gm)	<i>ai</i>	(w3)	· · · · · · · · · · · · · · · · · · ·	1		Moisture C	Content (%)	
Weight of Water (gm)	(w4 = w1 - w2)		Total Weight	Of Sample Us	ed For Sieve	Corrected For H	ygroscopic Moistu
Weight of Dry Soil ((m)	(w5 = w2 - w3)		1 1	•	Weight Of	Sample (gm)	182.13
Moisture Content (%)	(w4/w5)*100		1		Tare Weig	t (gm)	43.13
	, 			1	(W6)	Total Dry	Weight (gm)	139.00
SIEVE ANALYSIS				Cumulative				
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEV	E	
0.00	7	+Tare	({(wt ret/w6)*100	(100-%ret)			
	 12.0"				·····	12.0"	cobbles	
	3.0"			<u> </u>	 ,	3.0"	coarse gravel	
	2.5"			1	<u> </u>	2.5"	coarse gravel	
	2.0"					2.0"	coarse gravel	
	1.5"					1.5"	coarse gravel	
	1.0"					1.0"	coarse gravel	
	0.75"					0.75"	fine gravel	
	0.50"				_	0.50"	fine gravel	
	0.375"					0.375"	fine gravel	
	#4	0.00	0.00	0.00	100.00	#4	coarse sand	
	#8	0.50	0.50	0.36	99.64	#8	coarse sand	
	#16	6.07	6.07	4.37	<u>95.63</u>	#16	medium sand	
	#30	20.84	20.84	14.99	85.01	#30	medium sand	
	#50	53.57	53.57	38.54	61.46	#50	fine sand	
	#100	100.17	100.17	72.06	27.94	#100	fine sand	
	#200	106.42	106.42	76.56	23.44	#200	fines	
	PAN					PAN	<u> </u>	
% COBBLES	0.00	4						
% C GRAVEL	0.00	Descri	ptive Terms	> 10%	mostly coarse	(c)		
% F GRAVEL	0.00	trace	0 to 5%	> 10%	mostly medium	n (m)	LL	
& C SAND	1.32	little	5 to 12%	< 10%	fine (c-m)		PL	
% M SAND	25.39	some	12 to 30%	< 10%	coarse (m-f)		PI	
% F SAND	49.85	and	30 to 50%	< 10%	coarse and fin	e (m)	Gs	2.670
% FINES	23.44	- ·		< 10%	coarse and me	dium (f)		
6 TOTAL	100.00			> 10%	equal amounts	each (c-f)		
DE	SCRIPTION	Yellow Brown clayey silt.	n, MEDIUM	TO FINE SAN	D, some			
	1000					ł		
	USCS	(SM)					TECH	RJ
							DATE	7/27/00
							CHECK	
							KEVIEW	

		SPI	ECIFIC GRA	VITY OF S	OILS	<u> </u>		
]	PYCNOMET	ER METHO	D			
PROJECT TITLE	SALTI	E/996-1100 IRC	N REACTIVE W	ALL/VA	1			
PROJECT NUMBER		IC3	-3822		1 5	SAMPLE ID	SA - 13	
	<u></u>				SAN	IPLE TYPE	Ba	
TESTED FOR			GS		SAMI	PLE DEPTH	24.0 - 2	26.0'
HYGROSCOPIC MOI	STURE OF	MATERIAL	PASSING TH	E #4 SIEVE				
Weight Soil and Tare, In	ital (gm)		(W1)	79.79]	AI	R REMOV	AL
Weight Soil and Tare, Fi	nal (gm)		(W2)	79.78			METHOD	
Weight Of Tare (gm)			(W 3)	51.82			VACUUM	
Weight Of Moisture (gm))		(W4=W1-W2)	0.01				
Weight Of Dry Soil (gm))		(W5 = W2-W3)	27.96				
Hygroscopic Moisture In	(%)	(HIM	{ = (W4/W5)*100)	0.0%]			
Trial				1	2	3		
Pycnometer Number				19				
Weight Pycnometer Emp	ty (gm)		(Mf)	177.09				
Weight of Soil & Pycnon	neter (gm)			277.09		•		
Weight of Soil, Water &	Pycnometer (g	m)	(Mb)	738.18				
Observed Temperature (1	rb), for (Mb) I	n Degrees C		22.0	<u> </u>			·····
Observed Temperature (1	Га), for (Ma) Ir	n Degr ees C		21.50				
Weight of Pycnometer &	Water (gm)		(Ma @ Ta)	675.69				
Relative Density of Water	r@(Ta)			0.99791				
Relative Density of Wate	r@(Tx) 	_		0.99780				
Correction Factor due to	Temperature @	Ϋ́́́x	(K)	0.9996				
Weight of Soil (gm)				100.00				
Weight of Dry Soli (gm)	Water (am)		(Mo)	<u> </u>				
SPECIFIC CPAVITY	water (gitt)			0/3.04	<u> </u>			<u></u>
G @ 20 degrees $C = [$	Mo/(Mo+(M	[a - Mb))]*(K) .	2.670			, (2.670
			· · · · · · · · · · · · · · · · · · ·					
	Temp. (C)	Rel. Density	Corr. (K)	Temp. (C)	Rel. Density	Corr. (K)		
	16.00	0.99897	1.0007	23.50	0.99745	0.9992		
	16.50	0.99889	1.0007	24.00	0.99732	0.9991		
Correction Values	17.50	0.99871	1.0005	25.00	0.99707	0.9988		
Due To Temperature	18.00	0.99862	1.0004	25.50	0.99694	0.9987		
-	18.50	0.99853	1.0003	26.00	0.99681	0.9986		
	19.00	0.99843	1.0002	26.50	0.99668	0.9984		
	19.50	0.99833	1.0001	27.00	0.99654	0.9983		
	20.00	0.99823	1.0000	27.50	0.99640	0.9982		
	20.50	0.99812	0.9999	28.00 29.50	0.99626	0.9980		
	21.00	0.99002	0.9998	29.00	0.99012	0.77/7		
	22.00	0.99780	0.9996	29.50	0.99582	0.9976		
	22.50	0.99768	0.9995	30.00	0.99567	0.9974		
	23.00	0.99757	0.9993				ТЕСН	RJ
•							DATE	7/26/00
							CHECK	Gru
		·					REVIEW	an

					AST	RESI	STIVITY	(OF U.S. 1	SOIL DOT F	P-85					
PROJECT TITL PROJECT NO. REMARKS	LE	SAL	.TIRE/996-1199 I IC	RON REACTI 23-3822	VE WALL/N	/A SAM SAM SAM	PLE ID PLE TYPE PLE DEPT				SBS- Bag 24.0 - 2	13 ; ;6.0'			
SAMPLE PREP TEST APPARA'	ARA TUS	TIC)N	Sieved th Miller So	rough th ilbox an	ie #8 Siev d Nilsson	ve 400 Soil Re	sistanc	No e Meter						
dentification:				Lowest	esistivity										
SPECIMEN (Poi	int)				L	T	2		3		4				
RESISTIVITY (ohm	s-cu	a)	5,2	200										
EMP DEGREE	ES (C)		19	0.0			_							
LESISTIVITY	Ø 15.	.5 C	(ohms-cm)	5,0	55			1	<u> </u>						
MOISTURE CO	NTE	NT													
NET WEIGHT	& Т.	ARF	6	258	.06										
DRY WEIGHT & TARE				182	.13										
TARE WEIGHT			43	.13											
VEIGHT OF M	OIST	FUR	lE (gm)	75	.93		-								
VEIGHT OF DI	RY S	OII NT	ر (gm) (gm)	139	<u>00</u>										
	1	°						•							
ıs-cm)		٩Ţ													
ohn ,	(sp	6 +									-				
ž	U 8ST														
	UP0														ĺ
	C	4 †									1				
ESI											1				
×		2 +													
•		υ+ •		+		20	40				70	*			
		U	10	20	I)	MOISTURE	CON	60 FENT (9	6)	/0	o U	90	100	
]	Description	Yellow Bi clayey silt	rown, M	1EDIUM	TO FINE S	SAND,	some						
			USCS	' (S	M)									TEO	Сн
														DA	
														UNE DEVIE	
														NL VIE	2 77

,

		AS ASTM D 42	STM GRA 21, D 2217	AIN SIZE A 7, d 1140, (NALYSIS C 117, D 4	5 22, C 136	5	
PROJECT TITLE	SALTIRE	/996-1100 IRON	REACTIVE	E WALL/VA	S	AMPLE ID	SBS-13	<u> </u>
PROJECT NO.	·	IC3-3822		· ·	SAM	PLE TYPE	B	<u>ag</u>
<u>REMARKS</u>					SAMP	LE DEPTH	1 28.0	- 30.0'
WATER CONFERIT	mall-and M	[a]a(a)		Hygroscopic	Moisture For	Sieve Sample	Tere (am)	<u>_</u>
WATER CONTENT				-		Dry Soil &	Tare (gm)	
Wt Wet Soil & Tare ()	sm)	(w1) (w2)		1		Tare Weigl	ht (gm)	
Weight of Tare (gm)	5)	(w2) (w3)				Moisture C	ontent (%)	
Weight of Water (gm)		(w4 = w1 - w2)		Total Weight	Of Sample Us	ed For Sieve	Corrected For H	vgroscopic Moisture
Weight of Dry Soil (g	m)	(w5 = w2 - w3)		1	•	Weight Of	Sample (gm)	188.04
Moisture Content (%)		(w4/w5)*100		1		Tare Weig	ht (gm)	42.28
, .		· · · •			(W6)	Total Dry	Weight (gm)	145.76
SIEVE ANALYSIS		W4 Dat	(MA Trees)	("Retained)	Ø DACC	CIEV	E	
	1	wi kei	(wt-lare)	(%Retained)	70 PASS (100 % cet)	31E V	E	
0.00	J 12.0"				(100-76100)	12.0"	cobbles	
	3.0"			1		3.0"	coarse gravel	
	2.5"		• · ·			2.5"	coarse gravel	
	2.0"					2.0"	coarse gravel	
	1.5"					1.5"	coarse gravel	
	1.0"					1.0"	coarse gravel	
	0.75"					0.75"	fine gravel	
	0.50"					0.50"	fine gravel	
	0.375"					0.375"	fine gravel	
	#4	0.00	0.00	0.00	100.00	#4	coarse sand	
	#8	0.25	0.25	0.17	99.83	#8	coarse sand	
	#16	2.23	2.23	1.53	98.47	#16	medium sand	
	#30	7.03	7.03	4.82	95.18	#30	medium sand	
	#50	43.29	43.29	29.70	70.30	#50	fine sand	
	#100	108.73	108.73	74.60	25.40	#100	tine sand	
	#200 DAN	113.09	113.09	//.59	22.41] #200 DAN	lines	
& COBBLES		1				PAIN		······································
% C GRAVFI	0.00	Descrir	tive Terme	> 10%	mostly coarse	(c)		
% F GRAVEL	0.00	trace	0 to 5%	> 10%	mostly mediur	(-) n (m)	LI.	-
% C SAND	0.50	little	5 to 12%	< 10%	fine (c-m)	(/	PL	
% M SAND	16.70	some	12 to 30%	< 10%	coarse (m-f)		PI	
% F SAND	60.39	and	30 to 50%	< 10%	coarse and fin	c (m)	Gs	2.678
% FINES	22.41	1		< 10%	coarse and me	dium (f)		
% TOTAL	100.00]		> 10%	equal amounts	each (c-f)		
						1		
DES	SCRIPTION	Yellow Brown	, MEDIUM '	TO FINE SAN	D, some			
		ciayey sut.				ŀ		
	USCS	(SM)		••••••••••••••••••••••••••••••••••••••			TECH	RJ
		_					DATE	7/27/00
							CHECK	- Cam
							REVIEW	1 chu

•

		SPI	ECIFIC GRA ASTM	VITY OF S [D-854	OILS			
]	PYCNOMET	ER METHO	D			
PROJECT TITLE	SALTIR	E/996-1100 IRC	N REACTIVE W	ALL/VA				
PROJECT NUMBER		IC3	-3822		5	SAMPLE ID	SA - 15	-
	• ····		<u></u>		SAN	IPLE TYPE	Ba	<u> </u>
TESTED FOR		(GS		SAMI	LE DEPTH	28.0 - 3	10.0'
HYGROSCOPIC MOI	STURE OF	MATERIAL	PASSING TH	E #4 SIEVE				·
Weight Soil and Tare Ini	ital (am)		(WI)	76.80		AT	RREMOV	AT.
Weight Soil and Tare, Fi	nal (gm)		(W2)	76.71			METHOD	
Weight Of Tare (gm)	Her (Bill)		(W3)	43.14		ſ	VACUUM	•
Weight Of Moisture (am)			(W4=W1-W2)	0.09		Ĺ	meeom	
Weight Of Dry Soil (gm)	Ì		$(W_1 = W_2 - W_3)$	33.57				
Hygroscopic Moisture In	, (%)	. (HIM	(=(W4/W5)*100)	0.3%				
		、						
Trial				1	2	3		
Pycnometer Number	. , 、			17				
Weight Pycnometer Empl	ty (gm)		(MI)	190.71		· · ·		Ì
Weight of Soil & Pychom	heler (gm))		290.72				
Observed Temperature (7	Pycnometer (gr Th) for (Mh) I	11) 1 Degrees C	. (MD)	22.0				
Observed Temperature (1	$(\mathbf{M}_{\alpha}) = (\mathbf{M}_{\alpha}) \mathbf{I}_{\alpha}$	Degrees C		22.0				
Weight of Ducamates &	la), for (Ma) in Water (cm)	Degrees C		680.24				
Pelative Depaity of Water	water (gin)		(1412 (20/12)	0 99724				
Relative Density of Water	(12) (Tx)			0.99780				
Correction Factor due to	Temperature @	ЭТх	(K)	0.9996				
Weight of Soil (gm)			()	100.01				
Weight of Dry Soil (gm)			(Mo)	99.74				
Weight of Pycnometer &	Water (gm)		(Ma)	689.24				
SPECIFIC GRAVITY				<u></u>			6	s Average
G @ 20 degrees $C = []$	Mo/(Mo+(M	a - Mb))]*(K)	2,678			Ĩ	2.678
			· · · · ·					
]	Temp. (C)	Rel. Density	Corr. (K)	Temp. (C)	Rel. Density	Corr. (K)		
	16.00	0.99897	1.0007	23.50	0.99745	0.9992		
	16.50	0.99889	1.0007	24.00	0.99732	0.9991		
~ · · · · ·	17.00	0.99880	1.0006	24.50	0.99720	0.9990		
Correction Values	17.50	0.99871	1.0005	25.00	0.99707	0.9988		
Due To Temperature	18.00	0.99862	1.0004	25.50	0.99694	0.9987		
	10.00	0.99633	1.0003	26.00	0.99061	0.9980		
	19.00	0.99845	1.0002	20.00	0.99008	0.9983		
	20.00	0.99823	1.0000	27.50	0.99640	0.9982		
	20.50	0.99812	0.9999	28.00	0.99626	0.9980		
	21.00	0.99802	0.9998	28.50	0.99612	0.9979		
	21.50	0.99791	0.9997	29.00	0.99597	0.9977		
	22.00	0.99780	0.9996	29.50	0.99582	0.9976		
	22.50	0.99768	0.9995	30.00	0.99567	0.9974		
	23.00	0.99757	0.9993				TECH	RJ
							DATE	7/26/00
							CHECK	(m
							REVIEW	an

			AS	RESISTIVITY O TM G-57 AND U.S	F SOIL . DOT FP-	85		
ROJECT TITL ROJECT NO. EMARKS	.E	SALTIRE/996-110	N IRON REACTIVE WALL/ IC3-3822	va SAMPLE ID SAMPLE TYPE SAMPLE DEPT		SBS-13 Bag 28.0 - 30.0'		
AMPLE PREP EST APPARA	ARA TUS	ATION	Sieved through Miller Soilbox a	the #8 Sieve	No ance Meter.			
entification:			Lowest resistivit	y				
PECIMEN (Poi	int)		1	2	3	4	7	
ESISTIVITY (ohm	s-cm)	3,500]	
EMP DEGREE	ES (C	C)	18.5					
ESISTIVITY (d 15	.5 C (ohms-ci	m <u>3,763</u>					
OISTURE CO	NTE	ENT						
ET WEIGHT	& Т	ARE	257.07	<u> </u>			٦	
RY WEIGHT	& T/	ARE	188.04				-	
ARE WEIGHT			42.28		· · · · ·			
EIGHT OF M	ois	TURE (gm)	69.03]	
EIGHT OF DI	RY S	SOIL (gm)	145.76		·			
OISTURE CO	NTE	ENT (%)	47.36			<u> </u>		
,	·							
	T	• <u>-</u>						
		8						
Ę							İ	
Ś	_							
(oh		6						
IV	RSU							
	2	4						
LIS	-	• T						
ESI		•						ł
*		2						
								1
	4	0 +	<u> </u>					
		0 1	0 20	30 40 50	60	70 80	90	100
				MOISTURE CO	NTENT (%)			
·		Descriptio	n Yellow Brown. !	MEDIUM TO FINE SAN	D, some			
			clayey silt.					
		USC	S <u>(SM)</u>					TECH
								DATE
								CHECK
								D D 1/1-1-4

		AS ASTM D 42	STM GRA	AIN SIZE A 7, D 1140, (NALYSIS C 117, D 4	22, C 136		
		/00/ 1100 ID/01					SPE 12	
PROJECT INLE	SALTIKE	102 2012	KEAUTIVE	WALL/VA	SAMO		505-15	· · · · · · · · · · · · · · · · · · ·
PROJECT NO.	· · · · · · · · · · · · · · · · · · ·	103-3822		4	SAMDI SAMDI	E DEPTH	32.0	14 0'
	<u>l</u>			Hygroscopic	Moisture For S	Nieve Sample		
WATED CONTENT	(Delivered M	(oisture)		riygroscopic	violature ror v	Tare (gm)		
WATER CONTENT	(Denvereu in m)	(w1)		1	Tare (gm)			
Wt Dry Soil & Tare (g	m)	(w2)		4	4	Tare Weigh	t (em)	
Weight of Tare (gm)	,,	(w3)		-		Moisture Co	ontent (%)	——— <u>—</u> ——
Weight of Water (gm)		(w4 = w1 - w2)		Total Weight	Of Sample Us	ed For Sieve	Corrected For H	vgroscopic Moisture
Weight of Dry Soil (gr	n)	(w5 = w2 - w3)		1 1		Weight Of S	Sample (gm)	180.20
Moisture Content (%)	,	(w4/w5)*100				Tare Weigl	nt (gm)	50.69
				1	(W6)	Total Dry V	Veight (gm)	129.51
SIEVE ANALYSIS		.		Cumulative	· · · · · · · · · · · · · · · · · · ·		_	
Tare Weight	,	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVI	1	
0.00]	+Tare		{(wt ret/w6)*100	(100-%ret)	40.00		
	12.0"					12.0"	cobbles	
	3.0"			╊ ╶╺╺╺ ╼╼╾╴┧		3.0	coarse gravel	
	2.5	F	····, ····	{{		2.5	coarse gravel	
	2.U 1.5"					2.0	coarse gravel	
	1.0"	+		<u></u>		1.5	coarse gravel	
	1.V 0.75"	<u>}</u> }	· · · · ·			0.75"	fine gravel	
	0.75	├	<u> </u>			0.75	fine gravel	
	0.30		0.00	0.00	100.00	0.50	fine gravel	
	4.575 #A	0.72	0.00	0.00	09.44	υ.575 #Δ	coarse sand	
	#8	4.92	4.92	3.80	96.20	#8	coarse sand	
	#16	15.96	15.96	12 32	87.68	#16	medium sand	
	#30	25.56	25.56	19.74	80.26	#30	medium sand	
	#50	46.44	46.44	35,86	64.14	#50	fine sand	
	#100	83.57	83.57	64,53	35.47	#100	fine sand	
	#200	86.80	86.80	67.02	32.98	#200	fines	
	PAN	· · · · · · · · · · · · · · · · · · ·				PAN		
% COBBLES	0.00]						··· <u>····</u> ·· <u>·····</u>
% C GRAVEL	0.00	Descrip	otive Terms	> 10%	mostly coarse	(c)		
% F GRAVEL	0.56	trace	0 to 5%	> 10% :	mostly medium	n (m)	LL	
% C SAND	5.28	little	5 to 12%	< 10%	fine (c-m)		PL	- <u>-</u> -
% M SAND	21.92	some	12 to 30%	< 10%	coarse (m-f)		PI	·
% F SAND	39.27	and	30 to 50%	< 10% (coarse and find	= (m)	Gs	2.680
% FINES	32.98	4		< 10%	coarse and me	dium (f)		
% TOTAL	_100.00]		> 10%	equal amounts	each (c-f)		
DE					<u> </u>			
DES	CKITION	renow brown	, MEDIUM '	IU FINE SAN	D, 200			
		ciayey sut.						
	USCS	(SM)				۱ ۱	TECH	RJ
		<u> </u>					DATE	7/27/00
							CHECK	an
· · · · · · · · · · · · · · · · · · ·		<u></u>					REVIEW	1 cru

		CDF	CIEC CPA	VITY OF S				
ll l		5rt		TT 954				!
		-	ASTM	LD-854				
ļ		ł	YCNOMET	EK METHC	ע <i>ו</i>			
PROJECT TITLE	SALTIE	RE/996-1100 IRO	N REACTIVE W	ALL/VA		-		
PROJECT NUMBER		IC3-	3822] 5	SAMPLE ID	SA - 17	-
					SAM	IPLE TYPE	Ba	
TESTED FOR		G	S		SAMI	PLE DEPTH	32.0 - 3	4.0'
HYGROSCOPIC MOI	STURE OF	MATERIAL F	ASSING TH	E #4 SIEVE	-	_		
Which out and The T			41/1	04.04	1	A T	D DEMON	AT
weight Soil and Tare, In	nai (gm)		(W1)	04.90		AL	METHOD	
Weight Of Tare ()	nat (gm)		(W2)	51 22		1	VACUUM	
weight Of Tare (gm)	N N		(W)	<u> </u>	ł		VACOUM	
weight Of Moisture (gm))		(w4=w1-w2)	V.U0 43.45	1			
weight Of Dry Soil (gm) . (6 7.)	and	$(w_3 = w_2 - w_3)$	43.03				
nygroscopic Moisture In	(70) 	(HM)	=(w4/w3)*100)	0.2%	.			
Trial				1	2	3		
Pycnometer Number				29				
Weight Pycnometer Emp	ty (gm)		(Mf)	187.75				
Weight of Soil & Pycnon	neter (gm)			287.75				
Weight of Soil, Water &	Pycnometer (g	m)	(Mb)	748.78				
Observed Temperature (Ib), for (Mb) I	n Degrees C		22.0	L	L		
Observed Temperature (1	Га), for (Ma) Ir	a Degrees C		22.00				
Weight of Pycnometer &	Water (gm)		(Ma 🝘 Ta)	686.19				
Relative Density of Wate	r 🥥 (Ta)			0.99780				
Relative Density of Wate	r @ (Tx)			0.99780				
Correction Factor due to	Temperature @	рТх	(K)	0.9996				
Weight of Soil (gm)			AI	100.00		·		
Weight of Dry Soil (gm)	Water (am)		(MO)	59.8 4		<u> </u>		
weight of Pychometer &	water (gm)		(Ma)	060,19	<u> </u>			
SPECIFIC GRAVITY						······		is Average
G @ 20 degrees C = [Mo/(Mo+(M	(a - Mb))]*(K)		2.680				2.680
	Temp. (C)	Rel. Density	Corr. (K)	Temp. (C)	Rel. Density	Corr. (K)		
	16.00	0.99897	1.0007	23.50	0.99745	0.9992		
	10.30	0.99889	1.0007	24.00	0.99732	0.999		
Correction Values	17.50	0.99871	1.0005	24.50	0.99707	0.9998	,	
Due To Temperature	18.00	0.99862	1.0004	25.50	0.99694	0.9987		
	18.50	0.99853	1.0003	26.00	0.99681	0.9986		
	19.00	0.99843	1.0002	26.50	0.99668	0.9984		
	19.50	0.99833	1.0001	27.00	0.99654	0.9983		
	20.00	0.99823	1.0000	27.50	0.99640	0.9982		
	20.50	0.99812	0.9999	28.00	0.99626	0.9980		
	21.50	0.99791	0.9997	29.00	0.99597	0.9977		
	22.00	0.99780	0.9996	29.50	0.99582	0,9976		
	22.50	0.99768	0.9995	30.00	0.99567	0.9974		
	23.00	0.99757	0.9993				TECH	RJ
-							DATE	7/26/00
	٩			`			CHECK	Con
							REVIEW	On

.

GOLDER SIERRA

			AST	RESISTIVITY FM G-57 AND U	OF SOIL .S. DOT FP	-85			
PROJECT TITLE PROJECT NO. REMARKS	SALTIRE 79%-1100 IRON REACTIVE WALL/VA SAMPLE ID SBS-13								
SAMPLE PREPAR FEST APPARATU	ATION S	ſ	Sieved through the Miller Soilbox an	ne #8 Sieve d Nilsson 400 Soil Re	No sistance Meter.				
dentification:			Lowest resistivity]	· · · · · · · · ·				
SPECIMEN (Point))		1	2	3		4]	
RESISTIVITY (ob	ms-cm)		2,700	· · · · · · · · · · · · · · · · · · ·		_		4	
LEMP DEGREES (RESISTIVITY @ 1	(U) .5.5 C (a	hms-cm	2.936					1	
				······································	<u> </u>	,		-	
MOISTURE CONT	ENT								
VET WEIGHT &	TARE		241.46					ר	
DRY WEIGHT &	TARE		180.20					1	
ARE WEIGHT	omme	()	50.69			<u></u>		-	
VEIGHT OF MOI	SOIL ((gm) em)	129.51					{	·
IOISTURE CONT	ENT (%	6)	47.30		·······]	
RESISTIVITY (ohms-cm) (Thousands)		10	20	30 40 MOISTURE	50 60 CONTENT (%)	70	80	90	100
	Des	cription	Yellow Brown, M clayey silt.	EDIUM TO FINE SA	AND, and				
		ÚSCS	(SM)	1]			TECH DATE 7/2 CHECK (X REVIEW (2)

,

	<u> </u>		A ASTM CI	.STM GRA	AIN SIZE ANAL D421, D422, D11	40 and D2217				-
	CAL TIDE	404 1140 IDON	DEACTIVE	WATE (3/)				Sen 2		
PROJECT TILLE	SALTIKE	3 3833	REAC HVE	WALL/VA]	SAMPLE ID	с.	<u>560-4</u>	- <u>-</u>	
PROJECT NO.	L	J-J844	1			SAMPLE DEP	с Тн	57.0	- <u>59.0'</u>	
			<u> </u>							J
AS RECEIVED	WATER C	ONTENT		Hygrosc	opic Moisture	Wet Soil & Tare (gr	π)	57.92		
Tare No			•	For Siev	e Sample	Dry Soil & Tare (gr	n)	57.21		
Wt. Wet Soil & Tare (g	m)	(W1)	199.94			l'are Weight (gm)	()	1.22		
Wt. Dry Soil & Lare (gr	m)	(W2)	42.93	Total Wei	aht of Sample Used I	Far Sieve Analysi	(*) S Corrected i	I I.32 For Hygrosed	nic Moistur	
Weight of Water (gm)		(W4*W1-W2)	43.31		Weight + Tare, Before S	Separating On The #4	Sieve (gm)	837.16	pre intension	•
Weight of Dry Soil (gm)	(W5-W2-W3)	113.70		•	Tar	e Weight (gm)	242.44		
Moisture Content (%)		(W4/W5)*100	38.09			Tota	l Weight (gm)	587.00	(W6)	
Plus #4 Materia	l Sieve	=		(Wt+Tare)	(((Wt-Tare)/W6)*100)	% PASSING	•			
TARE WEIGHT	0.00		12.0"				12.0"	cobbles		
			3.0"	L			3.0"	coarse gravel		
			2.5"				2.5"	coarse gravel		
}			1.5"			<u>├</u> ────	1.5"	coarse gravel		
			1.0"	<u> </u>			1.0"	coarse gravel		
			0.75"		· _ · _	<u> </u>	0.75"	fine gravel		
			0.50"				0.50*	fine gravel		
ļ			0.375"				0.375*	fine gravel		
ļ.			#4	0.00	0.0	100.0	#4	coarse sand		
Specific Gravity Specific Gravity Amount Dispersing Age Type Dispersion Device Length of Dispersion Pe	(assumed) (tested) nt (ml) riod	2.650 125.00 Mechanics1			Weight of Sample Weight of Sample Wet o Calculated Dry Wt. used Hydrometer Bulb Numb	: Used For Hyd: r Dry (gm) lin test (gm) er ole Semple	57.56 56.81 624378			
TARE WEIGHT	0.00] HYDROME	TER BACI	KSIEVE (P	ercent Passing #10 Cumul Wt.	- #200 Sieves)				
				(Wt+Tare)	Retained	% PASSING				
			#10	0.07	0.07	99.9	#10	medium sand		
			#20	0.18	0.18	99.7	#20	medium sand		
			#40	19 11	19.51	98.8	#40	fine sand		
			#100	20.80	20.80	63.4	#100	fine sand		
			#200	42.92	42.92	24.5	#200	fines		
		HYDROME	TER CALC	ULATION	S	••••••••••••••••••••••••••••••••••••••				
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
6/9/00	9:16	(min)	R	<u> </u>	K	Cc	C C	LENGTH	A	
6/9/00	9:18	2,00	15.0	21.50	0.014	6.00	9.00	14,8	1.00	
6/9/00	9:21	5.00	14.0	21.50	0.014	6.00	8.00	15.0	1.00	
6/9/00	9:31	30.00	11.0	21.50	0.014	0.00 6.00	0.VU 4.00	15.5	1.00	
6/9/00	10-16	60.00	100	21.30	0.014	600	4.00	25.5	1.00	
6/9/00	13:26	250.00	9.0	21.50	0.014	6.00	3.00	15.8	1.00	
6/10/00	9:16	1440.00	8.5	21.00	0.014	6.00	2.50	16.0	1.00	
· · · · · · · · · · · · · · · · · · ·	- · <u> </u>	GRAIN SIZ	ZE PERCE	NTAGES		•••••			- <u> </u>	
Particle Diameter	% PASSING	% COBBLES		0.00	Description	Gray, FINE SAN	D, some clay	ey silt.		
0.0367	15.8	% COARSE GRAVE	L	0.00	-					
0.0234	14.1	% FINE GRAVEL		0.00	USCS	SM				-
0.0136	10.6	% COARSE SAND		0.12		·	1			
0.0097	8.8	MEDIUM SAND				NP	LL			
0.0069	7.0	% FINE SAND		74.31		NP	PL			n //
0.0034	5.3	* FINES		24.43		L <u>NP</u>	ri		TECH	KJ/SW
0.0014	4,4	17 TOTAL SAMPLE		1 100.00	l				UAIE	
									REVIEW	1 The

GOLDER SIERRA

ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136

PROJECT TITLE SALTRE595-100 RON REACTIVE WALL/VA SAMPLE ID SBJ REMARKS IC-3522 SAMPLE DP TI 59.0-61# WATER CONTENT (Delivered Moistur) (v1) 400.20 Wet Soil & Tare (gm) Image: Solution of the solu										
PROJECT NO. IC3-3822 SAMPLE DEPTE Beg (SAMPLE DEPTE) WATER CONTENT (Delivered Moisture) Hyproscopic Moisture For Sive Sample Hyproscopic Moisture For Sive Sample WATER CONTENT (Delivered Moisture) (wil) 400.20 Dr. Soil & Tare (gm) (wil) Wite Soil & Tare (gm) (wil) 2294.20 Tare Weight (Gm) 123.08 Weight of Wate (gm) (wil-wil-wil) 100.00 Total Weight Of Sample Used For Sive Corrected For Hyproscopic Mois Weight of Two Soil (gm) (wil-wil-wil) 206.03 Total Weight (Gm) 12.30.88 Moisture Content (%) (wil-wil-wil) 206.03 Total Weight (Gm) 212.08 SIEVE ANALYSIS Cumulative 12.0° colles 3.0° 12.0° 1.0° 2.5° 1.0° 1.0° 2.5° 1.0° 1.0° 1.5° coarse gravel 1.5° 1.5° 1.5° 0.30° coarse gravel 0.30° 0.30° 0.30° 0.30° 0.30° 0.30° 0.30° 1.5° 1.5° 0.5° fine gravel 1.5° 1.5° 0.30° 0.30° coarse gravel 1.5° 1.5° 0.30° 0.30° coarse gravel 1.5° 1.5° 1.5° <td>PROJECT TITLE</td> <td>SALTIRE</td> <td>L/996-1100 IRON</td> <td>REACTIV</td> <td>E WALL/VA</td> <td>S.</td> <td>AMPLE ID</td> <td>SBD-2</td> <td></td> <td></td>	PROJECT TITLE	SALTIRE	L/996-1100 IRON	REACTIV	E WALL/VA	S.	AMPLE ID	SBD-2		
REMARKS SAMPLE DEPTID 9.96.9* WATER CONTENT (Delivered Moisture) Hygroscopic Moisture For Siver Sample Wet Soil & Tare (gm) Wet Soil & Tare Wet Wet Soil & Tare Wet Soil & Tare Wet Wet Soil & Tare Soil & Tare Soil & Tare Wet Soil & Tare Soil &	PROJECT NO.		IC3-3822		_	SAM	PLE TYPE	В	ag	
Hygroscopic Moisture For Sirver Sample WATER CONTENT (Delivered Moisture) (w1) 400.20 Dry Soil & Tare (gn) (w1) Wit Wet Soil & Tare (gm) (w2) 294.20 Tare Weight (gm) Moisture Content (%) Moi	REMARKS		•••			SAMPI	LE DEPTH	59.0	- 61.0'	L
WATER CONTEXT (Delivered Moisture) Wet Soil & Tare (gm) (w1) 400,20 Wite Soil & Tare (gm) (w2) 294,20 There Weight (gm) (w1) Weight of Tare (gm) (w3) 0.00 Total Weight of Sample Used For Save Corrected For Hygroscopic Mois Weight of Dry, Soil (gm) (w4=v1-v2) 294,20 Weight of Chample Used For Save Corrected For Hygroscopic Mois Weight of Dry, Soil (gm) (w4=v1-v2) 294,20 Weight of Dry Soil (gm) 123,08 Moisture Content (%) (w4=v1-v2) 294,20 Weight of Dry Soil (gm) 71,73 SIEVE ANALYSIS Cumulative Tare Weight Wt Rt (W1-Tere) (%Retauced) %PASS SIEVE S1.35 12.0°					Hygroscopic	Moisture For S	ieve Sample			-
W1 We Soli & Tare (gm) (w1) 204.20 Dry Soli & Tare (gm) (w1) W1 Dy Soli & Tare (gm) (w3) 0.00 Moisture Content (%) (w4=w1-w2) 106.00 Total Weight Of Sample Used For Sizee Content (%) 123.08 Weight of Water (gm) (w4=w1-w2) 106.00 Total Weight Of Sample Used For Sizee Content (%) 51.35 Meisture Content (%) (w4=w5)*100 36.03 Weight of Dry Weight (gm) 71.73 SIEVE ANALYSIS Cumulative Cumulative Tare Weight (gm) 71.73 SIEVE ANALYSIS Cumulative (%Retuned) % PASS SIEVE 51.35 12.0° 12.0° 0.0° coarse gravel 2.5° 2.0° 2.0° 0.0° coarse gravel 1.0° 1.0° 0.75° 0.75° 0.75° 0.375° 0.375° 0.375° 0.375° 0.375° #4 40 410 #40 #40 #40 #20 102.54 51.19 71.36 28.64 #200 fine gravel 0.375° 100 102.54 51.19 71.36 28.64 #20 <td< td=""><td>WATER CONTENT (</td><td>(Delivered M</td><td>loisture)</td><td></td><td>4</td><td></td><td>Wet Soil & 1</td><td>lare (gm)</td><td></td><td>4</td></td<>	WATER CONTENT ((Delivered M	loisture)		4		Wet Soil & 1	lare (gm)		4
Wt Dry Soil & Tare (gm) (w2) 294.20 Tare Weight (gm)	Wt Wet Soil & Tare (gr	n)	(wl)	400.20	4		Dry Soil & T	fare (gm)		
Worght of Tare (gm) (w4) 0.00 Moisture Content (%) Moisture Content (%) Weight of Dry Soil (gm) (w4=w1-w2) 294 20 Weight of Sample (gm) 123.08 Moisture Content (%) (w4=w1-w2) 294 20 Weight of Sample (gm) 123.08 Moisture Content (%) (w4=w1-w2) 294 20 Weight of Sample (gm) 71.73 SIE VE ANALYSIS Cumulative Tare Weight 12.0° 71.73 SIE VE ANALYSIS Cumulative 12.0° 71.73 3.0° 2.5° 2.5° 2.5° 2.5° 2.5° 2.0° 12.0° coarse gravel 1.5° 2.5° 2.0° 0.75° fine gravel 0.75° 2.5° 0.75° fine gravel 0.75° 0.50° 1.5° 0.75° 1.0° coarse gravel 0.50° 0.75° 0.75° fine gravel 0.75° 0.50° 10° 420 modium sand 420 #10° 2.5° 10° 10° 10° <tr< td=""><td>Wt Dry Soil & Tare (gr</td><td>n)</td><td>(w2)</td><td>294.20</td><td>4</td><td></td><td>Tare Weight</td><td>(gm)</td><td><u> </u></td><td>4</td></tr<>	Wt Dry Soil & Tare (gr	n)	(w2)	294.20	4		Tare Weight	(gm)	<u> </u>	4
Weight of Water (gm) (w4=w1-w2) 106.00 Total Weight Of Sample (gm) 120.308 Moisture Content (%) (w4-w5)*100 294.20 36.03 Weight Of Sample (gm) 120.308 SIEVE ANALYSIS Cumulative Cumulative Cumulative 12.0° 51.35 SiEVE ANALYSIS Cumulative Cumulative 12.0° cobles 3.0° cobles 3.13 12.0° 12.0° cobles 3.0° cobles 3.0° cobles 3.0° 2.0° 1.0° 2.0° coarse gravel 2.5° coarse gravel 2.0° 2.0° 1.5° coarse gravel 3.0° coarse gravel 0.75° 10° 0.375° fine gravel 0.375° fine gravel 0.375° 10° 10° coarse gravel 2.6° coarse gravel 410 10° 13° coarse gravel 2.6° coarse gravel 1.0° 10° 10° medium sand 40° 60° 10° 10° 10° fine gravel 60° 60° 10° 60°	Weight of Tare (gm)		(w3)	0.00			Moisture Co	ntent (%)		
Weight of Dry Sol (gm) (w3=w2-w3) 294.20 Weight (gm) 123.08 Moisture Content (%) (w4/w5)*100 36.03 Tare Weight (gm) 51.35 SIEVE ANALYSIS Cumulative Tare Weight (gm) 71.73 SIEVE ANALYSIS Cumulative SIEVE (gm) 71.73 SIEVE ANALYSIS Cumulative SIEVE (gm) 71.73 SIEVE ANALYSIS Cumulative Cumulative 12.0° coarse gravel 3.0° 2.0° 3.0° coarse gravel 2.0° coarse gravel 2.0° 2.0° 2.0° coarse gravel 1.0° coarse gravel 1.0° 0.75° 0.75° 0.75° fine gravel 0.375° fine gravel 0.50° 0.50° 0.375° fine gravel 440 440 coarse gravel 410 10° 10° 10° fine gravel 70.75° fine gravel 0.50° 0.375° 10° 1.5° fine gravel 71.73 fine gravel 0.50° 10° 10° 10° fine gravel 71.75° fine gravel fine gravel<	Weight of Water (gm)		(w4=w1-w2)	106.00	Total Weight	Of Sample Use	ed For Sieve C	orrected For Hyg	roscopic Mois	7
Moisture Content (%) (w4/w5)*100 36.03 Tare Weight (gm) 51.35 SIEVE ANALYSIS Cumulative 71.73 71.73 SIEVE ANALYSIS Cumulative 12.0° 71.73 SIEVE ANALYSIS Understand % PASS SIEVE 51.35 12.0° 12.0° 0.00% 600% 3.0° 2.5° 2.0° 2.0° 0.00% 600% 1.5° 1.0° 1.0° 2.0° coarse gravel 0.75° 0.75° 1.0° 0.75° 0.50° 0.50° 0.50° 0.50° 0.75° 1.0° 0.75° 0.50° 0.50° 0.50° 0.50° 0.50° 0.75° 1.0° 1.0° 0.75° fine gravel 0.75° fine gravel 440 1.0° 1.0° 0.60° fine sand #40° fine sand #200 102.54 51.19 71.36 28.64 #200° fine sand % COBBLES PAN PAN PAN PAN PAN % CORAVEL Sone 12 to 30% < 10% coarse and medium (n)	Weight of Dry Soil (gr	ι)	(w5=w2-w3)	294.20	4		Weight Of S	ample (gm)	123.08	4
(we) Total Dry Weight (gm) 71.73 SIEVE ANALYSIS Cumulative Tare Weight Wt Ret (Wt-Tare) (%Retained) % PASS SIEVE 51.35 12.0° 3.0° 12.0° 3.0° corbies 2.5° 1 1.0° coarse gravel 2.5° coarse gravel 1.5° 1.5° 1.5° 1.5° coarse gravel 2.0° coarse gravel 1.5° 1.5° 1.5° 1.5° coarse gravel 2.0° coarse gravel 0.50° 1.5° 1.5° 1.5° coarse gravel 0.57° 0.57° 1.5° 1.5° coarse gravel 0.375° fine gravel 0.375° 1.1° 0.375° fine gravel 0.375° fine gravel 44 1.0° 1.0° coarse gravel 0.375° fine gravel 400 1.0° 1.0° fine gravel 0.375° fine gravel 4100 1.0° 1.0° fine gravel fine sand #10	Moisture Content (%)		(w4/w5)*100	36.03	4		Tare Weigh	t (gm)	51.35	4
SIEVE ANALYSIS Cumulative Tare Weight Wt Ret (Wt-Tare) (%Retained) % PASS SIEVE \$1.35 12.0° coarse						(W6)	Total Dry W	eight (gm)	71.73	L
Site Ve ANALYSIS Cumulative Tare Weight Wt Ret (Wt-Tare) (%Retauned) % PASS SIEVE 51.35 12.0° 3.0° coarse gravel 3.0° cobbes 3.0° 2.5° 2.5° 2.5° coarse gravel 2.5° coarse gravel 1.5° 2.0° 1.5° coarse gravel 2.5° coarse gravel 0.75° 2.0° 1.5° coarse gravel 0.50° fine gravel 0.75° 2.0° 0.50° fine gravel 0.50° fine gravel 0.375° 2.0° 0.375° 0.3375° fine gravel 0.375° 2.0° 2.0° 0.375° fine gravel 0.375° 2.0° 2.0° 0.375° fine gravel 0.375° 2.0° 44 44 44 coarse and #40 40 44 44 420 medium sand #200 102.54 51.19 71.36 28.64 %200 fine sand % C GBAVEL 2.0° 50% coarse (n-f) PI - - - <td></td>										
Lare Weight Witket (Wr Lafe) (Dr Lafe) (Wr Lafe) <th< td=""><td>SIEVE ANALYSIS</td><td></td><td>We Date</td><td></td><td>Cumulative</td><td>A/ D + 00</td><td></td><td></td><td></td><td></td></th<>	SIEVE ANALYSIS		We Date		Cumulative	A/ D + 00				
51.35 +1are ((arrevers)*100 (100-%aref) 3.0° 3.0° 3.0° coarse gravel 3.0° 2.5° 2.5° coarse gravel 2.0° 1.5° 1.5° 0.50° 1.5° 1.0° 0.75° 1.5° 0.75° 1.0° 0.75° 0.50° 0.50° 1.0° 0.75° 1.6° 0.375° 0.375° 1.6° 0.50° 0.375° 1.0° 0.375° 1.6° 0.375° 1.0° 0.375° 1.6° coarse gravel 0.375° 1.0° 0.375° 1.0° coarse stand #40 44 44 coarse stand #40 #200 102 10° 10° medium sand #200 102 11° 10° fine sand #40 440 440 10° 10° fine sand #200 102 51.19 71.36 28.64 #200 fine sand % COBBLES 28 64 20% 10% coarse (n-f) PL . <	l are Weight		wt Ret	(wt-fare)	(%Retained)	% PASS	SIEVE			
12.0° Coarse gravel 3.0° 2.5° 2.5° 2.5° 2.0° 2.5° 1.5° 2.0° 1.5° 2.0° 0.75° 1.0° 0.75° 0.75° 0.375° 0.50° 0.375° 0.50° 0.375° 0.50° 0.375° 0.50° 0.44 44 44 44 44 44 40 44 410 44 420 44 44 44 40 440 410 440 420 440 440 440 420 440 440 440 450 440 460 440 4100 440 4200 102.54 51.19 71.36 28.64 70.36 460 108 4700 108 48 G GAAVEL 51.19 40 G Stave	51.35	12.05	+1 are		{(wt ret/w6)*100	(100-%ret)	12.0"	ashblac		
3.0° 2.0° 2.0° 2.0° 2.0° 2.0° coarse gravel 1.5° 2.0° 2.0° 2.0° coarse gravel 2.0° coarse gravel 1.5° 2.0° 1.5° coarse gravel 2.0° coarse gravel 1.0° 1.5° 0.75° 0.75° fine gravel 0.75° fine gravel 0.30° 0.37° 0.37° 0.375° fine gravel 0.375° fine gravel #4 #4 #4 coarse sand #4 coarse sand #4 #4 coarse sand #10 #10 #4 #4 fine gravel fine sand #4 #4 fine sand #20 200 102.54 51.19 71.36 28.64 #200 fines % COBBLES 9 0.05% 10% mostly coarse (c) 100 fines 100 % CORAVEL Descriptive Terms > 10% mostly coarse (n-1) PL - - % C GRAVEL Descriptive Terms > 10% mostly coarse (n-1) PL - - % F SAND and 30 to 50% <td></td> <td>12.0"</td> <td> </td> <td></td> <td></td> <td></td> <td>12.0"</td> <td>cobbles</td> <td></td> <td></td>		12.0"					12.0"	cobbles		
2.0° 2.0° 2.0° coarse gravel 1.5° 2.0° coarse gravel 1.0° 1.0° coarse gravel 0.75° 0.50° 0.75° 0.375° 0.375° 0.375° #4 44 44 #10 #10 #20 medium sand #20 medium sand #20 102.54 51.19 71.36 28.64 200 % COBBLES > 10% mostly medium (m) % C GRAVEL Descriptive Terms % C GRAVEL Sone % F GRAVEL Sone % F GRAVEL Sone % Total 30% of 0% coarse and fine (m) % Total		3.U" 3.5"					3.0"	coarse graver		
2.0 2.0 Coarse gravel 1.5" 1.0" 1.0" coarse gravel 0.75" 0.75" 1.0" coarse gravel 0.50" 0.375" 0.375" fine gravel 0.375" 0.375" 0.375" fine gravel #4 44 44 60.50" 0.375" #4 44 44 60.50" 0.375" #4 44 44 60.50" 0.375" #40 44 44 60.50" 0.375" #40 44 44 60.50" 0.50" #40 44 44 60.50" 0.50" #40 44 44 60.50" 0.50" #40 44 44 60.50" 10.5" #40 44 44 60.50" 10.5" #40 10.2.54 51.19 71.36 28.64 #200 102.54 51.19 71.36 28.64 #200 102.54 51.19 71.36 28.64 #200 102.54 51.19 71.36 28.64 #200 102.54 51.19 10% coarse (c) 10. % COBBLES 50% 10% coarse and medium (m)		2.5 م م					2.3 2 0"	coarse gravel		
1.0° coarse gravel 0.75° 0.75° 0.375° 0.50° 0.375° 0.375° #4 0.375° #4 #4 #10 #4 #20 #20 #40 #40 #40 #40 #40 #40 #40 #40 #20 #20 #40 #40 #40 #40 #40 #40 #20 #20 #40 #40 #40 #40 #20 medium sand #40 #40 #200 Ince sand #100 fine sand #100 fine sand #200 102.54 51.19 71.36 28.64 #200 Inces % COBBLES \$ \$ 10% mostly coarse (c) \$ \$ \$ % C GRAVEL Descriptive Terms > 10% mostly medium (m) LL \$ \$ % C SAND some 12 to 30% < 10% coarse and medium (f)		1.5"					2.0	coarse gravel		
1.0 Coase gavel 0.75" 0.50" 0.375" 0.50" 0.375" 0.50" #4		1.5			+		1.5	coarse gravel		
0.50° 0.50° 0.50° 0.50° fine gravel 0.375° 0.375° 0.375° 0.375° fine gravel #4		0.75"					0.75"	fine gravel		
0.375* 0.375* fine gravel 0.375* fine gravel #4		0.75			ł		0.50"	fine gravel		
#4 #4		0.50					0.375"	fine gravel		
#10 medium sand #20 #10 #40 #20 #40 #20 #40 #20 #40 #40 #40		4 <u>4</u>			+		#4	coarse sand		
#20 #20 medium sand #40 #40 #20 medium sand #40 #40 fine sand #60 102.54 51.19 71.36 28.64 #100 102.54 51.19 71.36 28.64 #200 % COBBLES PAN PAN PAN PAN % COBBLES Uscs 102.54 51.19 71.36 28.64 #200 fines % COBBLES Descriptive Terms > 10% mostly coarse (c) PAN PAN PAN % C GRAVEL Descriptive Terms > 10% mostly mostly mostly mostly coarse (c) Fines PAN % C SAND little 5 to 12% < 10% fore (c-m)		#10			1		#10	medium sand		
#40 #40 fine sand #40 fine sand #60 #100 #100 #100 #200 102.54 51.19 71.36 28.64 #200 fine sand #100 fine sand #100 fine sand #200 102.54 51.19 71.36 28.64 #200 % C GRAVEL Descriptive Terms > 10% mostly coarse (c) % F GRAVEL trace 0 to 5% > 10% mostly medium (m) LL % C SAND little 5 to 12% 10% fore (c-m) PL % M SAND some 12 to 30% 10% coarse (m-f) PI % F SAND and 30 to 50% 10% coarse and fine (m) Gs - % F FINES 28.64 < 10% coarse and medium (f)		#20			1		#20	medium sand		
#60 #60 fine sand #100 #100 #100 #200 102.54 51.19 71.36 28.64 PAN PAN PAN Fine sand % COBBLES		#40			1		#40	fine sand		
#100 #100 fine s and fines #200 102.54 51.19 71.36 28.64 #200 PAN PAN PAN PAN PAN % COBBLES		#60		•	1		#60	fine sand		
#200 102.54 51.19 71.36 28.64 #200 fines % COBBLES 9% C GRAVEL Descriptive Terms > 10% mostly coarse (c) 10% for and 10% mostly nedium (m) 11 -		#100			1		#100	tine sand		
PAN PAN % COBBLES		#200	102.54	51.19	71.36	28.64	#200	fines		
% COBBLES // C GRAVEL Descriptive Terms > 10% mostly coarse (c) % F GRAVEL trace 0 to 5% > 10% mostly medium (m) LL % C SAND little 5 to 12% < 10% fine (c-m)		PAN				20101	PAN			
% C GRAVEL Descriptive Terms > 10% mostly coarse (c) % F GRAVEL trace 0 to 5% > 10% mostly medium (m) LL % C SAND little 5 to 12% < 10% fine (c-m)	% COBBLES		j							
% F GRAVEL trace 0 to 5% > 10% mostly medium (m) LL - % C SAND little 5 to 12% < 10% fine (c-m)	% C GRAVEL		Descrip	tive Terms	> 10% m	ostly coarse (c))			
% C SAND little 5 to 12% < 10% fine (c-m)	% F GRAVEL	<u></u>	trace	0 to 5%	> 10% m	ostly medium (m)	LL	-	7
% M SAND some 12 to 30% < 10% coarse (m-f)	% C SAND		little	5 to 12%	< 10% fir	ie (c-m)		PL	-	1
% F SAND and 30 to 50% < 10% coarse and fine (m)	% M SAND		some	12 to 30%	< 10% co	arse (m-f)		PI	-	7
% FINES 28.64 < 10% coarse and medium (f)	% F SAND	•	and	30 to 50%	< 10% co	arse and fine (1	m)	Gs	-	1
% TOTAL > 10% equal amounts each (c-f) DESCRIPTION Gray, FINE SAND, some clayey silt. USCS (SM) TECH JS/TJ DATE 10/18/00 CHECK (1) (1) (1) (1) (1) (1) (1) (1) (1)	% FINES	28.64			< 10% co	arse and mediu	ım (f)			-
DESCRIPTION Gray, FINE SAND, some clayey silt. USCS (SM) TECH JS/TJ DATE 10/18/00 CHECK (11- REVIEW (13/1-	% TOTAL		-		> 10% eq	ual amounts ea	ich (c-f)	-		
DESCRIPTION Gray, FINE SAND, some clayey silt. USCS (SM) TECH JS/TJ DATE 10/18/00 CHECK GU- REVIEW (JW-	•		_		-					
USCS (SM) TECH JS/TJ DATE 10/18/00 CHECK (11- REVIEW (17)-	DES	CRIPTION	Gray, FINE SA	ND, some cla	ayey silt.					
USCS (SM) TECH JS/TJ DATE 10/18/00 CHECK (11- REVIEW (13/1)-					-					
USCS (SM) TECH JS/TJ DATE 10/18/00 CHECK (1- REVIEW (1-)			ľ							
DATE 10/18/00 CHECK (11- REVIEW (17)		USCS	(SM)	<u> </u>				тесн	JS/TJ	
CHECK (11- REVIEW Chin-								DATE	10/18/00	
REVIEW								CHECK	61-	
								REVIEW	in	

FLOW PUMP #2A DF FLOW	OMMENTS sample was remolded at in-situ moisture using standard effort sample was compacted until soil was pumping under compaction efforts in mold.	Trimmings Trimmings Sample WATER CONTENTS Initial Sample Wt Soil & Tare, i E 400.20 Wt Soil & Tare, i E 345.85 Wt Soil & Tare, i E 294.20 Wt Are E 0.00 92.38 Wt Moisture Loat E 294.20 294.09 Wt Ibry Soil E 294.20 294.09 Wt Bry Soil E 294.20 294.09 Water Content % 36.03% 31.41%	Reading Head Gradient Permeability (pei) (cm) (cm/sec) (cm/sec) (pei) (cm) (cm/sec) (cm/sec) 1.26 88.63 16.54 7.5E-08 PERMEABILITY REPORTED AS * 1.5E-08 * DATE 126 88.63 16.54 7.5E-08
/ALL PERMEABI STM D 5084 NSTANT RATE O	CO Street	(M) (M) (M) (M) (M) (M) (M) (M)	df df df df, i.ucc lee 0 loo 300 loo 90 loo 1200 loo 1200 loo 1200 loo 1200 loo 1200
FLEXIBLE W As Method d, co:	BOARD # CELL # ow Pump Speed	e Data, Final , inches ter, inches er, tinches er, cna e, cna e, cna e, cna e, cna 20 20 20 20 20 20 20 20 20 20	It acc It acc<
		Sample Height Diamer, e A rea, c Volum Moistu Dry De Volum Volum Satura Satura	Entropy Control Contro
	E/VA 59.0 - 61	1.00 100.0 80.0 88.63 88.63 88.63 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.54 16.55 16	E FUNCTIONS MIN T 45 50 55 55 55 5 10 10 15 AL DATA SHE
	3822 SALTIR	B-Value, f Cell Pres. Bot. Pres. Top Pres. Tot. B.P. Head, man. Max. Grad. Min. Grad.	TIM HOUR 16 16 17 17 17 17 17 17 17 0M ORIGIN
	GSL/IC3- IC3-3822 SBD-2 Bag	2.190 2.799 39.44 219.40 400.20 36.03 36.03 36.03 36.03 109.63 109.63 109.63 109.63 109.63 109.63 109.44 100 83.67%	DAY 36818 36818 36818 36818 36818 36818 36818 36818 36818 36818
	PROJECT TITLE PROJECT NUMBER SAMPLE ID SAMPLE TYPE	Sample Data, Initial Helght, iaches Diameter, inches Area, cm ³ Volume, cm ³ Mass, g Moisture Content, % Dry Denalty, pcf Spec. Gravity(ausumed) Volume Voids, cm ³ Volume Voids, cm ³ Volume Voids, cm ³ Saturation, %	DATE DATE 10/19/00 10/19/00 10/19/00 10/19/00 10/19/00

.

			A ASTM CI	STM GRA	LIN SIZE ANALY D421, D422, D11	YSIS 40 and D2217				
PROJECT TITLE PROJECT NO.	SALTIRE IC	996-1100 IRON 3-3822	REACTIVE	WALL/VA]	SAMPLE ID SAMPLE TYP SAMPLE DEP	Е ТН	SBD-2 Bi 83.0	- 	
AS RECEIVED	WATER C	ONTENT		Hygrosc	opic Moisture	Wet Soil & Tare (gr	m)	56.39		
Tare No.			-	For Siev	e Sample	Dry Soil & Tare (gr	n)	54.08		
Wt. Wet Soil & Tare (gi	m)	(W1)	199.94			Tare Weight (gm)		3.16		
Wt. Dry Soil & Tare (gr	n)	(W2)	162.30	<u> </u>		Moisture Content (*	/•)	4,54		
Weight of Tare (gm)		(W3)	51.81	Total Wei	ght of Sample Used H	for Sieve Analysi	s Corrected l	for Hygrosco	pic Moisture	
Weight of Water (gm)		(W4=W1-W2)		[Weight + Tare, Before S	Separating On The #4	Sieve (gm)	953.51		
Weight of Dry Soil (gm))	(W5=W2-W3)	110.49	{		Таг	e Weight (gm)	235.21	0110	
Moisture Content (%)	1 Siana	(W4/W5)*100	34.07	(11/1 . T	((01/4 T) 01/(0.#100)	10te	il Weight (gm)	087.13	(W6)	
TADE WEIGHT		า	17.0"	(wt+lare)	(((wt-late)/w6)*100)	70 FA33LIG	1 12 0*	cobbles		
TAKE WEIGHT		ĩ	3.0"				3.0"	course gravel		
			2.0			·	2.5"	coarse gravel		
			2.3 2.0"				2.0"	coarse gravel		
1			1.5"		······		1.5"	coarse gravel		
			1.0"				1.0"	coarse gravel		
			0.75"	 		<u> </u>	0.75"	fine gravel		
			0.50"	<u> </u>		· · · · ·	0.50"	tine gravel		
			0.375"	<u> </u>			0.375"	fine gravel		
			#4	0.00	0.0	100.0	#4	coarse sand		
HYDROMETE Specific Gravity	(assumed)	S	 1	<u> </u>	Weight of Sample	Used For Hyd	rometer Tes	it .	 ,	
Specific Gravity	(tested)		•		Weight of Sample Wet of	r Drv (same)	57.67	1		
Amount Dispersing Age	nt (ml)	125.00			Calculated Dry Wt. used	in test (gm)	55.17			
Type Dispersion Device		Mechanical			Hydrometer Bulb Numbe	ম	624378	1		
Length of Dispersion Per	riod	1 Minute			% Pass #4 Sieve For Wh	ole Sample	100.00		_	
TARE WEIGHT	0.00	HYDROME	ETER BACI	KSIEVE (P	ercent Passing #10 Cumul Wt.	- #200 Sieves)				
				(Wt+Tare)	Retained	% PASSING]			
1			#10	0.00	0.00	100.0	#10	medium sand		
			#20	0.06	0.06	99.9	#20	medium sand		
			#40	0.22	0.22	99.6	#40	fine sand		
			#60	0.48	0.48	99.1	#60	fine sand		
}			#100	1.58	1.58	97.1	#190	fine sand		
			#200	31.21	31.21	43.4	#200	fines		
	r	HYDROME	TER CALC	ULATION	IS					
DATE	TIME	ET	READING	ТЕМР	TEMP.COR.	HYD.COR.	READING	EFFECTIVE		
6/9/00	9:14	(min)	R		<u> </u>	<u> </u>		LENGTH	<u>A</u>	
6/9/00	9:16	2.00	25.0	21.50	0.014	6.00	19.00	13.2	1.00	
6/9/00 C/0/00	9:19	5.00	24.0	21.50	0.014	6.00	18.00	13.3	1.00	
6/9/00	9:29	15.00	23.0	21.50	0.014	6.00	17.00	13.3	1.00	
6/9/00	9:44	30.00	22.0	21.50	0.014	6.00	10.00	13.7	1.00	
6/0/00	10:14	260.00	21.3	21.50	0.014	6.00	12.20	13.8	1.00	
0/9/00 6/10/00	0.1.4	200.00	20.3 19.4	21.50	0.014	0.00 K 00	14.30	14.0	1.00	
	<u>7.14</u>	CPAIN CT		NTACES	0.014	0.00	112.30	1. 19.3	1.00	
Particle Deam	% PASSING	COBBI ES	DE LEKCE	0.00	Description	Gray FINE SAN	D and eilter o	lav		
0 (1247	14.4	A CDARSE GRAVE	1	0.00	Description	GIAY, FINE SAN	αυ, and sinty c	ay.		
0.0347	37.6	FINE ODAVEL	њ	0.00	HECE	<u>sc</u>	<u>г</u>			
0.0220	20.9	S COADER CAND		0.00	0000	<u> </u>	3			
0.0149	20.0	A MEDILIN SAND		0.00		17	ו ד ד			
0.0051	22.0	SAND		\$6.17		19	DL PI			
0.0032	26.1	% FINES		43.43		18	PI		TECH	R I/SW
0.0013	20.5	TOTAL SAMPLE		100.00		L	1		DATE	6/8/00
	<u> </u>			100.00	l				CHECK	CANL
								• ·	REVIEW	(Nu.
	· · · ·						ARS	0 35	3	

			A ASTM C1	STM GRA 17, C136,	NIN SIZE ANAL D421, D422, D11	YSIS 40 and D2217				
PROJECT TITLE		996-1100 IRON	REACTIVE	WALL/VA]	SAMPLEID		SBD-3		<u>~_</u>
PROJECT NO		3-3822		HADLITA	1	SAMPLE TYP	ΥĒ.	B	89	
	<u> </u>		د			SAMPLE DEP	TH	71.0	- 73.0'	
ASRECEIVEL	WATER C	ONTENT	<u> </u>	Hygrose	onic Moisture	Wet Soil & Tare (9		59.83		
Tate No	, WATER C	Of The state		For Siev	e Sample	Dry Soil & Tare (g	m)	57.68		
Wt. Wet Soil & Tare (g	m)	(W1)	168.43	1	-	Tare Weight (gm)	,	3.23		
Wt Dry Soil & Tare (gi	m)	(W2)	130.63	1		Moisture Content (%)	3.95		
Weight of Tare (gm)		(W3)	\$2.05	Total We	ight of Sample Used	For Sieve Analys	sis Corrected	For Hygros	copic Moistu	ire
Weight of Water (gm)		(W4≃W1-W2)	37.80]	Weight + Tare, Before S	Separating On The #4	Sieve (gm)	684.75		
Weight of Dry Soil (gm	n)	(W5=W2-W3)	78.58	1		Tar	e Weight (gm)	218.95		
Moisture Content (%)		(W4/W5)*100	48.10	<u>i</u>	<u></u>	Tota	il Weight (gm)	448.11	(W6)	
Plus #4 Materia	al Sieve	-		(Wt+Tare)	(((Wt-Tare)/W6)*100)	**PASSING				
TARE WEIGHT	0.00	l	12.0"	ļ	ļ	<u> </u>	12.0"	cobbles		
			3.0"				3.0"	coarse gravel		
ļ			2.5"	ļ		↓	2.5"	coarse gravel		
			2.0"	ļ		<u> </u>	2.0"	coarse gravel		
			1.5"		<u> </u>		1.5"	coarse gravel		
			1.0"	<u> </u>		┼────	0.76"	coarse gravel		
			0.75			<u> </u>	0.75 0.50"	fine gravel		
			0.30			f	0.375"	fine gravel		
			#4	0.00	0.0	100.0	#4	coarse sand		
Specific Gravity Specific Gravity Amount Dispersing Age Type Dispersion Device Length of Dispersion Pe	(assumed) (tested) ent (ml) eniod	2.650 125.00 Mechanical I Minute			Weight of Sample Wet Calculated Dry Wt. used Hydrometer Bulb Numb % Pass #4 Sieve For Wi	e Used For Hyd or Dry (gm) d in test (gm) wer nole Sample	57.46 55.28 624378 100.00	st		
TARE WEIGHT	0.00] HYDROMI	ETER BAC	KSIEVE (P	Percent Passing #10 Cumul Wt.	0 - #200 Sieves)				
				(Wt+Tare)	Retained	% PASSING]			
			#10	0.14	0.14	99.7	#10	medium sand		
			#20	0.19	0.19	99.7	#20	medium sand		
			#40	0.25	0.25	99.5	#40	fine sand		
			#60	0.48	0.48	99.1	#60	fine sand		
			#100	0.96	0.96	98.3	#100	fine sand		
		UVDBOME	#200		10.19	/0./	#200	tines		
DATE	TIME		READING	TEMP	TEMP COP	HYDCOP	PEADING	FFFCOM		
6/9/00	9.10	(min)	R	T	K	Cc	C	I ENGTH		
6/9/00	9.12	2.00	40.5	21.50	0.014	6.00	34.50	10.7	1.00	
6/9/00	9:15	5.00.	37.5	21.50	0.014	6.00	31.50	11.2	1.00	
6/9/00	9:25	15.00	35.5	21.50	0.014	6.00	29.50	11.5	1.00	
6/9/00	9:40	30.00	33.5	21.50	0.014	6.00	27.50	11.9	1.00	
6/9/00	10:10	60.00	32.0	21.50	0.014	6.00	26.00	12.0	1.00	
6/9/00	13:20	250.00	29.5	21.50	0.014	6.00	23.50	12,5	1,00	
6/10/00	9:10	1440.00	26.5	21.00	0.014	6.00	20.50	13.0	1.00	
		GRAIN SIZ	LE PERCEI	NTAGES		•	·		·····	
Particle Diameter	% PASSING	% COBBLES		0.00	Description	Gray, SILTY CL	AY, some fin	e sand.		
0.0312	62.4	% COARSE GRAVE	ĽL	0.00	_	•				
0 0202	57.0	% FINE GRAVEL		0.00	USCS	СН				•
0.0118	53.4	% COARSE SAND		0.25			-			
0.0085	49 7	% MEDIUM SAND		0.20		53]LL			
0 0060	47.0	% FINE SAND		28.84		18]PL			
0 0030	42.5	% FINES		70.71		35]91		TECH	RJ/SW
0.0013	37.1	% TOTAL SAMPLE		100.00	l				ÐATE	6/8/00
						ΔR	13012	156	CHECK	Ligur

•

		A ASTM D 4	STM GR. 121, D 221	AIN SIZE A 7, D 1140, (NALYSIS C 117, D 42	5 22, C 136		<u> </u>	3
PROJECT TITLE	SALTIR	E/996-1100 IRON	N REACTIVI	E WALL/VA	S	AMPLE ID	SBD-3	-]
PROJECT NO.	<u> </u>	IC3-3822		4	SAM	PLE TYPE	B	ag	4
REMARKS	L				SAMP	LE DEPTH	105.7	- 107.0'	
	() P	A		Hygroscopic	Moisture For S	Neve Sample	T (am)	<u>_</u>	٦
WATER CONTENT	(Delivered M	vioisture)	400.11	4		Der Call &	lare (gm)		-
Wt Wet Soil & Tare (gi	m) 	(w1)	200.49	4		Dry Son &	tare (gm)	├───-	-{
Wt Dry Soil & Tare (gr	m)	(w2)	309.48	-{		Tare weign	u (gm)		-
Weight of Tare (gm)		(W3)	0.00	Total Waish	Of Samuela Ha	Moisture C	Content (%)		1
Weight of Water (gm)		(w4=w1-w2)	90.03		Of Sample Us	Weight Of	Corrected For Hyg	roscopic Mois	- 1
Weight of Dry Soil (gr	n)	(W5=W2-W3)	309.48	4		Teen Weight	Sample (gm)	131.04	-
Moisture Content (%)		(w4/w5)*100	29.28	4	(110)	Tatel Dry V	nt (gm) Voight (gm)	42.92	-
			<u> </u>		(40)	Total Diy +	veigin (gin)	00.12	<u> </u>
STEVE ANALVSIS				Cumulativa		÷			
JEVEANALISIS		W/t Det	(W/t Tara)	(%D atomsd)	% DASS	SIEVE	7		
	1	Tare	(***-1218)	(/orcetained)	/4 FA33 (100 %+nt)	SICVE	<i>.</i>		
42.92	12.04			{(wiferwo)~100	(100-70100)	ייט כנ [cabblec		
	3.0"			+		3.0"	coorse gravel		
	.0 2.5™					5.0	coarse gravel		
	2,2			<u> </u>	<u> </u>	2.2.	coarse gravel		
	2.0			+		1.5"	coarse gravel		
	1.5					1.5	coarse gravel		
	0.75"	├ ────┤				0.75"	fine gravel		
	0.75					0.50"	fine gravel		
	0.30					0.375"	fine gravel		
	0.575 #∆					₩ <u>4</u>	coarse sand		
	#10					#10	medium sand		
	#20					#20	medium sand		
	#20					#40	fine sand		
	#60		··	}		#60	fine sand		
	#100					#100	fine sand		
	#200	72.20	29.28	33.23	66.77	#200	fines		
	PAN					PAN			
% COBBLES									
% C GRAVEL	<u></u>	Descript	tive Terms	> 10% m	ostly coarse (c))			
% F GRAVEL		trace	0 to 5%	> 10% m	ostly medium ((m)	LL	-	٦
% C SAND		little	5 to 12%	< 10% fu	e (c-m)		PL	-	1
% M SAND		some	12 to 30%	< 10% co	arse (m-f)		PI	-	1
% F SAND		and	30 to 50%	< 10% co	arse and fine (i	m)	Gs		1
% FINES	66.77	7		< 10% co	arse and media	ım (f)			_
% TOTAL	· · · · · · · · · · · · · · · · · · ·	7		> 10% eq	ual amounts ea	ich (c-f)			
1						. ,			
DES	CRIPTION	Gray, SILTY C	LAY, and fin	e sand.]			
	• .	<i>,,</i>	,			l			
						, .			
	USCS	(CL-ML)	<u>.</u>		·····		ТЕСН	JS/TJ	
							DATE	10/18/00	
							CHECK	7.1-	
							REVIEW	1.m	
								▲╌━┸═╧┋╧╌╌╼╼══	

IMP #1			000/61/J
FLOW PI		ample 13.60 1.14 1.87 1.46 1.14 1.87 1.60 1.14 1.46 1.14 1.87	DATE DATE VIEW
	oil was		
ş	ted until s ld.		héiliky 165) 107 107 107 107
	moisture as compac orts in mo		Permes (cm/s 1.76 1.76 1.76 1.76 1.76 1.76 1.76
	at in-situ sample wi uction eff	Trimmin 1 111111 309.40 309.43 309.48	RTED AS
	remolded ard effart nder comp	d fine sand	Gradien 20.75 20.75 20.75 20.75 20.75 20.75 20.75 77 REPO
	unpie was sing stand umping u	NTENTS are, i are, f are, f are, f cut CLAY, an	Head (cm) 108.32 108.32 108.32 108.32 108.32 108.32 108.32 108.32 108.32 108.32 108.32
TY	MENTS	ATER CO t Soil & Ta t Soil & Ta t Soil & Ta t Tare t Moisture t Dry Soil ater Conte ater Conte ater Conte ater Conte	Reading (pul) 1.54 1.54 1.54 1.54 1.54 1.54 1.54 PER
MEABILF 4 LATE OF	СОМ	333333 A <u>b</u>	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ALL PER TM D 508 VSTANT F		555 566 666 72 3% 126 666 09 3% 5.48 5.48 666 72 3%	± 2 = 8 8 8 8 8
KIBLE W. AS D D, CON	L # T		
FLE	BOAR CEL Pump Sp	bata, Fina nches , inches , inches , cui ³ solida, cui io m, % n, %	dt,ac (min 30 30 30
	Flow	Sample L Height, iu Diametes Area, cm Volume, Mass, g Moisture Dry Dem Volume ' Volume ' Saturatio	NDS (anim) w w w w w o (anim)
	107.0	3,3ec	NS, SECO TEMP (°C) 21.8 21.8 21.8 21.8 21.8 21.8 21.8 11.8 1
	/A 105.7-	1.00 100.8 80.0 80.0 80.0 20.75 20.75 20.75 20.75	UNCTIO MIN 20 35 35 36 46 45 50 50 DATA SI
	ALTIRE		TIME F DUR 16 16 16 16 16 16 16 16 16 16 16 16 16
	3822 5	ump Rate Min. 1994	
	GSL/IC IC3-38 SBD-3 Bag	2.11 2.11 39.4 39.4 91.1 96.5 96.5 93.9 93.9 93.9	DA) DA) DA) DA) DA) DA) DA) DA) DA) DA)
	ITLE UMBER PE	Initial hes hes pcf (assumed , cm ³ , cm ³	DATE DATE 10/19/04 10/19/04 10/19/04 10/19/04 10/19/04
	JJECT TI JJECT NI APLE ID APLE TV	uple Data, ght, inche: meter, inc a, cm ³ a, g ume, cm ³ a, g ane Con ination, % ination, %	
	PR(PR(SAA SAA	San Hei Diad Mai Mai Mai Na Vok Vok Vok Sat	

*****---

GOLDER SIERRA

,

			A ASTM CI	STM GRA 17, C136,	MN SIZE ANALY D421, D422, D114	YSIS 40 and D2217				
PROJECT TITLE	SALTIRE/	996-1100 JRON	REACTIVE	WALL/VA]	SAMPLEID		SBD-3		
PROJECT NO.	IC	3-3822			1	SAMPLE TYP	Έ	B	ag l	
						SAMPLE DEP	Ϋ́́ΤΉ	107.0 -	109.0'	
ASRECEIVED	WATER C	ONTENT		Hygrosc	opic Moisture	Wet Soil & Tare (g	m)	54.31		· · · · · · · · · · · · · · · · · · ·
Tare No			-	For Siev	e Sample	Dry Soil & Tare (gi	m)	52.09		
Wt. Wet Soil & Tare (g	m)	(W1)	245.46			Tare Weight (gm)		3.21		
Wt. Dry Soil & Tare (gi	m)	(W2)	200.78	70 - 4 - 1 XV	- 1 A - 6 G 1 - 1 - 1 - 1 - 1	Moisture Content (%)	<u>4.54</u>		
Weight of Tare (gm)		(W3)	42.50	lotal we	Ignt of Sample Used . Waight + Tare Before S.	FOR Sieve Analys	Sinte (m)	987 53	copic wioistui	re
Weight of Dry Soil (gm)	ì	(W\$=W2-W3)	158.28	1	Weight + Tate, Delote 5	Tar	e Weight (gm)	236.16		
Moisture Content (%)	,	(W4/W5)*100	28.23	1		Tota	l Weight (gm)	718.73	(W6)	
Plus #4 Materia	l Sieve		<u></u>	(Wt+Tare)	(((Wt-Tare)/W6)*100)	*PASSING			<u> </u>	
TARE WEIGHT	0.00]	12.0"] 12.0"	cobbles		
		-	3.0"			[3.0"	coarse gravel		
			2.5"				2.5"	coarse gravel		
			2.0"				2.0"	coarse gravel		
			1.5"	<u> </u>			1.5"	coarse gravel		
			1.0"	┝────		· · · ·	0.75"	coarse gravei		
			0.73	<u> </u>		··	0.50"	fine gravel		
			0.375"	<u> </u>		<u></u>	0.375"	fine gravel		
			#4	0.00	0.0	100.0	#4	coarse sand		
HYDROMETE Specific Gravity Specific Gravity Amount Dispersing Age Type Dispersion Device	(assumed) (tested) nt (ml)	2.650 125.00 Mechanical			Weight of Sample Weight of Sample Wet o Calculated Dry Wt. used Hydrometer Bulb Numb	e Used For Hyd or Dry (gm) l in test (gm) e r	56.57 54.11 624378	st		
Length of Dispersion Pe	nod	1 Minute			% Pass #4 Sieve For Wh	iole Sample	100.00			
TARE WEIGHT	0.00] HYDROME	TER BACI	KSIEVE (P	ercent Passing #10 Cumul Wt.) - #200 Sieves)				
				(Wt+Tare)	Retained	% PASSING]			
			#10	0.03	0.03	99.9	#10	medium sand		
			#20	0.14	0.14	99.7	#2.0	medium sand		
]			#40	0.97	0.97	98.2	#40	fine sand		
			#60	9.35	9.35	82.7	#60	fine sand		
			#200 #100	28.09	28.09	48.1	1 #100 1 #200	fine sand		
		HYDROME	TER CALC		55.02			10103		
DATE	TIME	ET	READING	TEMP	TEMP.COR.	HYD.COR.	READING	EFFECTIVE	···-·-	
6/9/00	9:12	(min)	R	Т	К	Cc	C	LENGTH	A	
6/9/00	9:14	2.00	20.0	21.50	0.014	6.00	14.00	14.0	1.00	
6/9/00	9:17	5.00	17.5	21.50	0.014	6.00	11.50	14.5	1.00	
6/9/00	9:27	15.00	16.0	21.50	0.014	6.00	10.00	14.7	1.00	
6/9/00	9:42	30.00	14.5	21.50	0.014	6.00	8.50	15.0	1.00	
6/9/00	10:12	60.00	14.0	21.50	0.014	6.00	8.00	15.0	1.00	
6/9/00	13:22	250.00	13.0	21.50	0.014	6.00	7.00	15.2	1.00	
6/10/00	9:12	1440.00			0.014	6.00	6.50	1 15.3	1.00	
Post de Discreter	44 DA COINC	GRAIN SIZ	LE PERCEI	1AGES	Description	Gent EINE SAN	ID and silts.		<u> </u>	
0.0357	76 FASSING 25 0	% COBBLES		0.00	Description	Gray, FINE SAP	iD, and sity of	lay.		
0.0230	213	% FINE GRAVE	. L	0.00	lises	SC-SM	 _		. <u></u>	
0.0134	18.5	COARSE SAND		0.06	0000		J			
0.0095	15.7	% MEDIUM SAND		1.74		25	lll			
0 0068	14.8	% FINE SAND	1	62.92		21	PL			
0 0033	12.9	* FINES		35.28		4	PI		TECH	RJ/SW
0 0014	120	TOTAL SAMPLE		100.00		· · · · · · · · · · · · · · · · · · ·	-		DATE	6/8/00
	······································			•=	•	Л	0001	.	СНЕСК	Uni
						н	⊓JU[,	361	REVIEW	MW

		A ASTM D 4	STM GR. 21, D 221	AIN SIZE A 7, D 1140, 0	NALYSIS C 117, D 42	5 22, C 136		<u> </u>
PROJECT TITLE	SALTIRE	/996-1100 IRON 976-1060	REACTIVI	E WALL/VA	SAM	AMPLE ID	ATL-80	20/30
REMARKS				4	SAMPI	LE DEPTH		-
		·····		Hygroscopic	Moisture For S	ieve Sample	<u>_</u>	
WATER CONTENT (Delivered M	oisture)				Wet Soil &	Tare (gm)	
Wt Wet Soil & Tare (gr	n)	(w1)		1		Dry Soil &	Tare (gm)	
Wt Dry Soil & Tare (gn	n)	(w2)]		Tare Weigh	nt (gm)	
Weight of Tare (gm)		(w3)				Moisture C	ontent (%)	
Weight of Water (gm)		(w4=w1-w2)		Total Weight	Of Sample Us	ed For Sieve (Corrected For Hy	groscopic Mois
Weight of Dry Soil (gm	l)	(w5=w2-w3)]		Weight Of	Sample (gm)	1191.47
Moisture Content (%)		(w4/w5)*100				Tare Weig	ht (gm)	0.00
					(W6)	Total Dry V	Veight (gm)	1191.47
SIEVE ANALYSIS Tare Weight 0.00	3.0" 2.5" 2.0" 1.5" 1.0" 0.75" 0.50" 0.375" #4 #10 #20 #40 #50 #60 #100 #200	Wt Ret +Tare	(Wt-Tare) 0.00 131.49 275.94 285.28 475.05 1087.49 1185.49	Cumulative (%Retained) {(wtret/w6)*100 0.00 11.04 23.16 23.94 39.87 91.27 99.50	% PASS (100-%ret) 	SIEVE 3.0" 2.5" 2.0" 1.5" 1.0" 0.75" 0.50" 0.375" #4 #10 #20 #40 #50 #60 #100 #200	coarse gravel coarse gravel coarse gravel coarse gravel coarse gravel fine gravel fine gravel fine gravel coarse sand medium sand fine sand fine sand fine sand fine sand fine sand fine sand fine sand	
% COBBLES % C GRAVEL % F GRAVEL % C SAND % M SAND % F SAND % FINES % TOTAL DES	PAN 0.00 0.00 0.00 23.16 76.34 0.50 100.00 CRIPTION USCS	1191.01 Descript trace little some and White, MEDIU	1191.01 ive Terms 0 to 5% 5 to 12% 12 to 30% 30 to 50%	> 10% m > 10% m < 10% fu < 10% co < 10% co < 10% co > 10% eq SAND, trace sil	ostly coarse (c) ostly medium (ne (c-m) arse (m-f) arse and fine (n arse and media ual amounts ea	PAN m) m(f) ach (c-f)	LL PL PI Gs TECH DATE CHECK	

GOLDER SIERRA

.

ASTM D-854 PYCNOMETER METHOD PROJECT TITLE SALTIRE/996-1100 IRON REACTIVE WALL/VA PROJECT NUMBER SAMPLE ID ATL80 20/30 TESTED FOR GS TESTED FOR GS Weight Soil and Tare, Inital (gm) (W1) 67.17 METHOD Weight Of Tare (gm) (W2) 67.15 Weight Of Moisture (gm) (W4=W1-W2) 0.02 Weight Of Dry Soil (gm) (W5=W2-W3) 63.92 Hyeroscopic Moisture In (%) (HM=(W4/W5)*100) 0.0%
PYCNOMETER METHOD PROJECT TITLE SALTIRE/996-1100 IRON REACTIVE WALL/VA PROJECT NUMBER SAMPLE ID ATL80 20/30 SAMPLE ID ATL80 20/30 SAMPLE ID ATL80 20/30 TESTED FOR GS SAMPLE DEPTH TESTED FOR GS SAMPLE DEPTH HYGROSCOPIC MOISTURE OF MATERIAL PASSING THE #4 SIEVE Weight Soil and Tare, Inital (gm) (W1) 67.17 MERMOVAL Weight Of Tare (gm) (W2) 67.15 Weight Of Moisture (gm) (W4=W1-W2) 0.02 Weight Of Dry Soil (gm) (W4=(W4/W5)*100) 0.0%
PROJECT TITLE SALTIRE/996-1100 IRON REACTIVE WALL/VA PROJECT NUMBER IC3-3822 SAMPLE ID ATL80 20/30 SAMPLE ID SAMPLE ID ATL80 20/30 SAMPLE ID ATL80 20/30 SAMPLE ID ATL80 20/30 SAMPLE ID Bag SAMPLE DEPTH HYGROSCOPIC MOISTURE OF MATERIAL PASSING THE #4 SIEVE Weight Soil and Tare, Inital (gm) (W1) 67.17 Weight Of Tare (gm) (W2) Weight Of Moisture (gm) (W4=W1-W2) Weight Of Dry Soil (gm) (W5=W2-W3) Hvgroscopic Moisture In (%) (HM=(W4/W5)*100)
PROJECT NUMBER IC3-3822 SAMPLE ID ATL80 20/30 TESTED FOR GS SAMPLE TYPE Bag TESTED FOR GS SAMPLE DEPTH - HYGROSCOPIC MOISTURE OF MATERIAL PASSING THE #4 SIEVE Weight Soil and Tare, Inital (gm) (W1) 67.17 AIR REMOVAL Weight Soil and Tare, Final (gm) (W2) 67.15 METHOD Weight Of Tare (gm) (W4=W1-W2) 0.02 VACUUM Weight Of Dry Soil (gm) (W5=W2-W3) 63.92 HM=(W4/W5)*100) 0.0%
SAMPLE TYPE Bag TESTED FOR GS SAMPLE DEPTH HYGROSCOPIC MOISTURE OF MATERIAL PASSING THE #4 SIEVE Weight Soil and Tare, Inital (gm) (W1) 67.17 AIR REMOVAL Weight Soil and Tare, Final (gm) (W2) 67.15 METHOD Weight Of Tare (gm) (W3) 3.23 VACUUM Weight Of Moisture (gm) (W4=W1-W2) 0.02 Weight Of Dry Soil (gm) (W5=W2-W3) 63.92 Hvgroscopic Moisture In (%) (HM=(W4/W5)*100) 0.0%
TESTED FORGSSAMPLE DEPTHHYGROSCOPIC MOISTURE OF MATERIAL PASSING THE #4 SIEVEWeight Soil and Tare, Inital (gm)(W1)67.17Weight Soil and Tare, Final (gm)(W2)67.15Weight Of Tare (gm)(W3)3.23Weight Of Moisture (gm)(W4=W1-W2)0.02Weight Of Dry Soil (gm)(W5=W2-W3)63.92Hygroscopic Moisture In (%)(HM=(W4/W5)*100)9.0%
HYGROSCOPIC MOISTURE OF MATERIAL PASSING THE #4 SIEVE Weight Soil and Tare, Inital (gm) (W1) 67.17 AIR REMOVAL Weight Soil and Tare, Final (gm) (W2) 67.15 METHOD Weight Of Tare (gm) (W3) Weight Of Moisture (gm) (W4=W1-W2) Weight Of Dry Soil (gm) (W5=W2-W3) 63.92 HM=(W4/W5)*100)
Weight Soil and Tare, Inital (gm)(W1) 67.17 AIR REMOVALWeight Soil and Tare, Final (gm)(W2) 67.15 METHODWeight Of Tare (gm)(W3) 3.23 VACUUMWeight Of Moisture (gm)(W4=W1-W2) 0.02 Weight Of Dry Soil (gm)(W5=W2-W3) 63.92 Hvgroscopic Moisture In (%)(HM=(W4/W5)*100) 0.0%
Weight Soil and Tare, Inital (gm)(W1) 67.17 AIR REMOVALWeight Soil and Tare, Final (gm)(W2) 67.15 METHODWeight Of Tare (gm)(W3) 3.23 VACUUMWeight Of Moisture (gm)(W4=W1-W2) 0.02 Weight Of Dry Soil (gm)(W5=W2-W3) 63.92 Hygroscopic Moisture In (%)(HM=(W4/W5)*100) 0.0%
Weight Soli and Fare, Final (gm)(W2) 07.13 WILL HODWeight Of Tare (gm)(W3) 3.23 VACUUMWeight Of Moisture (gm)(W4=W1-W2) 0.02 Weight Of Dry Soil (gm)(W5=W2-W3) 63.92 Hygroscopic Moisture In (%)(HM=(W4/W5)*100) 0.0%
Weight Of Tare (gm)(W3) 3.25 VACOUMWeight Of Moisture (gm)(W4=W1-W2) 0.02 Weight Of Dry Soil (gm)(W5=W2-W3) 63.92 Hygroscopic Moisture In (%)(HM=(W4/W5)*100) 0.0%
Weight Of Moisture (gm) $(W4 = w1 - w2)$ 0.02 Weight Of Dry Soil (gm) $(W5 = w2 - w3)$ 63.92 Hygroscopic Moisture In (%) $(HM = (W4/W5) + 100)$ 0.0%
Weight Of Dry Soil (gm) (WS = W2-W3) $0.3.92$ Hygroscopic Moisture In (%) (HM = (W4/W5)*100) 0.0%
$[HVgroscopic Moisture In (%)]$ $(HM = (W4/W3)^{+} 1(0))$ $[HVgroscopic Moisture In (%)]$
Trial 1 2 3
Pycnometer Number 25
Weight Pycnometer Empty (gm) (Mf) 177.74
Weight of Soil & Pycnometer (gm) 278.52
Weight of Soil, Water & Pycnometer (gm) (Mb) 738.80
Observed Temperature (Tb), for (Mb) In Degrees C 23.0
Observed Temperature (Ta), for (Ma) In Degrees C 21.50
Weight of Pycnometer & Water (gm) (Ma @ Ta) 676.22
Relative Density of Water @ (Ta) 0.99791
Relative Density of Water @ (Tx) 0.99757
Correction Factor due to Temperature @Tx (K) 0.9993
Weight of Soil (gm) 100.78
Weight of Dry Soil (gm) (Mo) 100.75
Weight of Pycnometer & Water (gm) (Ma) 676.05
SPECIFIC GRAVITY Gs Avera
G @ 20 degrees C = $[Mo/(Mo+(Ma - Mb))]*(K)$ 2.650 2.650
Temp. (C) Rel. Density Corr. (K) Temp. (C) Rel. Density Corr. (K)
10.00 0.9989 1.0007 23.50 0.99745 0.9992 16.50 0.99889 1.0007 24.00 0.99733 0.9991
Correction Values 17,50 0.99871 1.0005 25.00 0.99707 0.9988
Due To Temperature 18.00 0.99862 1.0004 25.50 0.99694 0.9987
18.50 0.99853 1.0003 26.00 0.99681 0.9986
19.00 0.99843 1.0002 26.50 0.99668 0.9984
19.50 0.99833 1.0001 27.00 0.99654 0.9983
20.00 0.99823 1.0000 27.50 0.99640 0.9982
20.50 0.99812 0.99999 28.00 0.99626 0.9980 21.00 0.99802 0.9998 28.50 0.99210 0.9970
21.00 0.99802 0.9988 28.30 0.9012 0.9979 21.50 0.99791 0.99977 29.00 0.99597 0.9977
22.00 0.99780 0.9996 29.50 0.99582 0.9976
22.50 0.99768 0.9995 30.00 0.99567 0.9974
23.00 0.99757 0.9993 TECH SV
DATE 7/6/
CHECK
REVIEW (X

.

CONSTANT HEAD PERMEABILITY TEST ASTM D 2434

SAMPLE ID ATL 80-20/30 PROJECT TITLE SALTIRE/996-1100 IRON REACTIVE WALL/VA PROJECT NUMBER IC3-3822 SAMPLE TYPE Bag SAMPLE DEPTH REMARKS TIME VOLUME TEMP. Q (sec) (ml) (°C) (ml/sec) 23.0 0.20 1. 120 24 23.0 120 0.20 2. 24 23.0 120 0.20 * 3. 24 4. 120 24 23.0 0.20 * 5. 120 24 23.0 0.20 UNIT WEIGHT DETERMINATION MOISTURE CONTENT APPARATUS & WET SAMPLE (g): 2332.8 WET SAMPLE & TARE (g): 143.78 APPARATUS WEIGHT (g): 1349.8 DRY SAMPLE & TARE (g): 143.65 WET SAMPLE WEIGHT (g): 982.9 WEIGHT OF WATER (g): 0.13 SAMPLE HEIGHT (in): 5.35 WEIGHT OF TARE (g): 52.09 SAMPLE DIAMETER (in): 3.00 DRY SAMPLE WEIGHT (g): 91.56 SAMPLE AREA (in²): 7.07 MOISTURE CONTENT (%): 0.14 45.60 SAMPLE AREA (cm²): SAMPLE VOLUME (in³): 37.82 SPECIFIC GRAVITY: 2.65 SAMPLE VOLUME (cm³): VOLUME OF SOLIDS (cm³): 370.40 619.71 VOLUME OF VOIDS (cm³): WET DENSITY (pcf): 99.0 249.31 98.9 DRY DENSITY (pcf): DISTANCE B/W MANOMETERS (cm): 7.62 AVERAGE Q VALUE: 0.20 23.0 AVERAGE TEMP: **TEMPERATURE CORRECTION:** 0.93 HEAD OF WATER (cm): 2.70 HYDRAULIC GRADIENT (i): 0.354 1.2E-02 cm/sec K VALUE CORRECTED FOR 20 °C TECH JS DATE 7/6/00 CHECK NU REVIEW

APPENDIX A-2

.

Iron Filings Grain Size, Specific Gravity and Permeater Tests

-,

AR301367

ASTM GRAIN SIZE ANALYSIS ASTM D 421, D 2217, D 1140, C 117, D 422, C 136								
PROJECT TITLE		/996.1100 IPON	DEACTIVE				CC-1115	
PROJECT MILE	SALTIRE	1C3-3822	KEAC IIVI		SAM	PLE TYPE	R	<u>ل</u>
PEMARKS	<u> </u>	105-5622	·····	1	SAMP	LE DEPTH		-
	L			Hygrosconic I	Moisture For	Sieve Sample		L
WATER CONTENT	(Delivered M	loisture)		ny grossespie :		Wet Soil &	Tare (gm)	[]
Wt Wet Soil & Tare (s	((w1)	55.00	1		Dry Soil &	Tare (gm)	
Wt Dry Soil & Tare (2m)	(w2)	55.00	1		Tare Weig	nt (gm)	
Weight of Tare (gm)	, 7	(w3)	3.24	1		Moisture C	ontent (%)	· · · · · · · · · · · · · · · · · · ·
Weight of Water (gm)		(w4 = w1 - w2)	0.00	Total Weight O	f Sample Used	For Sieve Corr	ected For Hygrosco	pic Moisture
Weight of Dry Soil (g	n)	(w5 = w2 - w3)	51.76		-	Weight Of	Sample (gm)	256.77
Moisture Content (%)		(w4/w5)*100	0.00	1		Tare Weig	tht (gm)	51.91
					(W6)	Total Dry	Weight (gm)	204.86
SIEVE ANALYSIS				Cumulative				
Tare Weight		Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEV	Е	
192.40		+Tare		{(wt ret/w6)*100	(100-%ret)			
	12.0"					12.0"	cobbles	
	3.0"	ļ		l		3.0"	coarse gravel	
	2.5"			ļ		2.5"	coarse gravel	
	2.0*			I	· · · · · · · · ·	2.0"	coarse gravel	
	1.5"	 	<u>.</u>	├ ──── →		1.5"	coarse gravel	
	1.0"	}+		┟─────┤		1.0"	coarse gravel	
	0.75"	├ 				0.75"	fine gravel	
	0.50"			<u>}</u> }		0.50"	tine gravel	
	0.375"			<u> </u>		0.375"	fine gravel	
	#4			┟┄╌╌╸┫		#4	coarse sand	
	#16		0.00	0.00	100.00	#8	coarse sand	
	#20	192.40	1.42	0.00	00.21	#20	medium sand	
	#50	351 20	1.42	77 52	27.48	#50	fine sand	
	#100	395 78	203.38	99.28	0.72	#100	fine sand	
	#200	396.88	203.30	99.81	0.12	#200	fines	
	PAN				0.17	PAN	Шюз	
% COBBLES	0.00		-				······································	
% C GRAVEL	0.00	Descrip	tive Terms	> 10% r	nostly coarse	(c)		
% F GRAVEL	0.00	trace	0 to 5%	> 10% r	nostly mediur	n (m)	LL	- T
% C SAND	0.00	little	5 to 12%	< 10% f	ine (c-m)	()	PL	•
% M SAND	38.91	some	12 to 30%	< 10% a	coarse (m-f)		PI	•
% F SAND	60.90	and	30 to 50%	< 10% a	oarse and fin	c (m)	Gs	
% FINES	0.19	1		< 10% a	coarse and me	dium (f)		
% TOTAL	100.00	1		> 10% e	qual amounts	each (c-f)		
					-			
DES	CRIPTION	Black, MEDIU	M TO FINE	IRON FILINGS	S. –			
						ļ		
	USCS	SP					TECH	GM
							DATE	Jun-00
		•					CHECK	Con
			<u></u>			·	REVIEW	1 in

-

AR301368

GOLDER SIERRA

,

GOLDER SIERRA

	<u></u>	AS	STM GRA	IN SIZE A	NALYSIS))		
		ASTM D 42	21, D 2217	, D 1140, (C 117, D 4	22, C 136	<u>~</u>	
PROJECT TITLE	SALTIRE	996-1100 IRON	REACTIVE	WALL/VA	S	AMPLE ID	CC-1021	-
PROJECT NO.		IC3-3822		1	SAM	PLE TYPE	В	ag
REMARKS				1	SAMP	LE DEPTH		-
				Hygroscopic	Moisture For 3	Sieve Sample		
WATER CONTENT	(Delivered M	oisture)				Wet Soil &	Tare (gm)	44.65
Wt Wet Soil & Tare (g	gm)	(w1)	44.65			Dry Soil &	Tare (gm)	44.53
Wt Dry Soil & Tare (§	gm)	(w 2)	44.53			Tare Weigh	t (gm)	3.20
Weight of Tare (gm)		(w3)	3.20			Moisture Co	ontent (%)	0.29
Weight of Water (gm)		(w4=w1-w2)	0.12	Total Weight O	f Sample Used	For Sieve Corre	cted For Hygrosco	pic Moisture
Weight of Dry Soil (g	m)	(w5 = w2 - w3)	41.33			Weight Of S	Sample (gm)	297.96
Moisture Content (%)		(w4/w5)*100	0.29			Tare Weigi	ht (gm)	51.60
				1	(W6)	Total Dry V	Veight (gm)	245.65
SIEVE ANALYSIS				Cumulative				
Tare Weight	7	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVI	3	
192.41	J	+Tare		{(wt ret/w6)*100	(100-%ret)	,		
	12.0"	L				12.0"	cobbles	
•	3.0"					3.0"	coarse gravel	
	2.5"					2.5"	coarse gravel	
	2.0"					2.0"	coarse gravel	
	1.5"					1.5"	coarse gravel	
	1.0"	ļ				1.0"	coarse gravel	
	0.75"					0.75"	fine gravel	
	0.50"					0.50"	fine gravel	
	0.375"					0.375*	fine gravel	
	#4	L				#4	coarse sand	
	#8	192.41	0.00	0.00	100.00	#8	coarse sand	
	#16	192.61	0.20	0.08	99.92	#16	medium sand	
	#30	194.01	1.60	0.65	99.35	#30	medium sand	
	#50	216.53	24.12	9.82	90.18	#50	fine sand	
	#100	284.95	92.54	37.67	62.33	#100	fine sand	
	#200	339.41	147.00	59.84	40.16	#200	fines	
	PAN	, _	12 114 C			PAN		
% COBBLES	0.00	4		_				
% C GRAVEL	0.00	Descrip	tive Terms	> 10%	mostly coarse	(c)		·
% F GRAVEL	0.00	trace	0 to 5%	> 10%	mostly medium	n (m)	LL	·
% C SAND	0.02	little	5 to 12%	< 10%	fine (c-m)		PL	<u> </u>
% M SAND	5.19	some	12 to 30%	< 10%	coarse (m-f)		PI	
% F SAND	54.63	and	30 to 50%	< 10%	coarse and fin	e (m)	Gs	5.687
% FINES	40.16	4		< 10%	coarse and me	dium (f)		
% TOTAL	100.00	J		> 10%	equal amounts	each (c-f)		
	• • • • • • • • • • • • • • • • • • •	1				1		
DES	SCRIPTION	Black, FINE IR	ION FILING	S .				
				·······		l		
	USCS	SM					TECH	GM
							DATE	Jun-00
							CHECK	
							REVIEW	I

......

.

SPECIFIC GRAVITY OF SOILS ASTM D-854									
			YCNOMET	ER METHC	<u>, , , , , , , , , , , , , , , , , , , </u>				
PROJECT TITLE	SALTIRE	/996-1100 IRON	N REACTIVE	WALL/VA					
PROJECT NUMBER	<u> </u>	IC3-,	3822		5	SAMPLE ID	CC-1021	· .	
	r			,	SAN	APLE TYPE	Ba	E	
TESTED FOR	TESTED FOR SPECIFIC GRAVITY				SAMU	LE DEPTH	-		
HYGROSCOPIC MOISTURE OF MATERIAL PASSING THE #4 SIEVE									
Weight Soil and Tare, Inital (gm) (WI)				44.65		AI	R REMOV	AL	
Weight Soil and Tare, Fi	nal (gm)		(W2)	44.53			METHOD		
Weight Of Tare (gm)			(W3)	3.20			VACUUM		
Weight Of Moisture (gm))		$(W4 = W1 \cdot W2)$	0.12	1			1	
Weight Of Day Soil (gm)) \		$(w_{1} - w_{2} - w_{2})$	41 33					
Weight Of Dry Soli (gin) /ar\	4D4	(WJ = WZ - WJ)	0.3%					
Hygroscopic Moisture in	(70)	(HM	=(w4/w3)+100)	0.3%		<u></u>			
Trial			_	1	2	3	_		
Pycnometer Number				5	4				
Weight Pycnometer Emp	ty (gm)		(Mf)	185.13	211.93				
Weight of Soil & Pycnom	neter (gm)			282.19	285.54				
Weight of Soil, Water &	Pycnometer (gn	n)	(Mb)	763.00	770.65				
Observed Temperature (Tb), for (Mb) In	Degrees C	· · ·	22.5	22.5	······································			
Observed Temperature (Γa), for (Ma) In	Degrees C		22.00	19.50]		
Weight of Pycnometer &	Water (gm)	-	(Ma @ Ta)	683.30	710.47				
Relative Density of Wate	г@ (Та)			0.99780	0.99833		1		
Relative Density of Wate	r@ (Tx)			0.99768	0.99768				
Correction Factor due to	Temperature @	Tx	(K)	0.9995	0.9995				
Weight of Soil (gm)	•			97.06	73.61				
Weight of Dry Soil (gm)			(Mo)	96.78	73.40				
Weight of Pycnometer &	Water (gm)		(Ma)	683.24	710.15	· · · · · · · · · · · · · · · · · · ·			
SPECIFIC GRAVITY				-				Gs Average	
G @ 20 degrees $C = [$	$M_0/(M_0 + (M_1))$	a - Mh))]*(K)]	5,684	5.690		1	5.687	
						· · · · · · · · · · · · · · · · · · ·	·······		
	Temp. (C)	Rel. Density	Corr. (K)	Temp. (C)	Rel. Density	Corr. (K)	1		
	16.00	0.99897	1.0007	23.50	0.99745	0.9992	1		
	16.50	0.99889	1.0007	24.00	0.99732	0.9991			
	17.00	0.99880	1.0006	24.50	0.99720	0.9990	1		
Correction Values	17.50	0.99871	1.0005	25.00	0.99707	0.9988	1		
Due To Temperature	18.00	0.99862	1.0004	25.50	0.99694	0.9987			
	18.50	0.99853	1.0003	26.00	0.99681	0.9986			
	19.00	0.99843	1.0002	26.50	0.99668	0.9984			
	19.50	0.99833	1.0001	27.00	0.99654	0.9983			
	20.00	0.99823	1.0000	27.50	0.99040	0.9982	ł		
	20.30	0.99812 0.00802	0.0009	28.00	0.99020 0.90610	0.9980			
	21.00	0.99002	0 0007	20.00	0.99012	0.0077	1		
	22.00	0.99780	0.9996	29.50	0.99582	0.9976	1		
	22.50	0.99768	0.9995	30.00	0.99567	0.9974			
	23.00	0.99757	0.9993				ТЕСН	GM	
							DATE	Jun-00	
							CHECK		
							REVIEW	ch-	

AR301371

GOLDER SIERRA

۱

PROJECT TITLE	SALTIRE/996-1100 IRON REACTIVE WALL/VA	SAMPLE ID	CC-1021 -
PROJECT NUMBER	IC3-3822	SAMPLE TYPE	Bag
REMARKS		SAMPLE DEPTH	-

	TIME	VOLUME	TEMP.	Q	
	(sec)	<u>(ml)</u>	(°C)	(ml/sec)	_
1.	120	7.1	20.5	0.06	*
2.	120	7.2	20.0	0.06	*
3.	120	7.1	20.5	0.06	*

UNIT WEIGHT DETERMINATION

APPARATUS & WET SAMPLE (g): APPARATUS WEIGHT (g): WET SAMPLE WEIGHT (g): SAMPLE HEIGHT (in): SAMPLE DIAMETER (in): SAMPLE AREA (in²): SAMPLE AREA (cm²): SAMPLE VOLUME (in³): SAMPLE VOLUME (cm³): WET DENSITY (pcf): DRY DENSITY (pcf):

3468.8	
1826.5	
1642.3	
5.25	
3.00	
7.07	
45.60	
37.11	
608.12	
168.6	
168.1	

MOISTURE CONTENT

WET SAMPLE & TARE (g):
DRY SAMPLE & TARE (g):
WEIGHT OF WATER (g):
WEIGHT OF TARE (g):
DRY SAMPLE WEIGHT (g):
MOISTURE CONTENT (%):

:	44.65
:	44.53
ĺ	0.12
	3.20
:	41.33
: ;	0.29

SPECIFIC GRAVITY:	5.687
VOLUME OF SOLIDS (cm ³):	287.95
VOLUME OF VOIDS (cm ³):	320.18

7.62
0.06
20.3
0.99
25.50
3.346

K VALUE CORRECTED FOR 20 °C =

AVERAGE Q VALUE: AVERAGE TEMP:

DISTANCE B/W MANOMETERS (cm):

TEMPERATURE CORRECTION: HEAD OF WATER (cm): HYDRAULIC GRADIENT (i):

3.9E-04 cm/sec

AR301372

TECH

DATE

CHECK

REVIEW

GM

Jun-00

6. Sim

じん

GOLDER SIERRA

ASTM GRAIN SIZE ANALYSIS									
ASTWID 421, D 2217, D 1140, C 117, D 422, C 130									
PROJECT TITLE	SALTIR	E/996-1100 IRON	N REACTIVE	WALL/VA	S	AMPLE ID	CC-1022	-	7
PROJECT NO.		IC3-3822		<u> </u>	SAM	PLE TYPE	В	ag	1
REMARKS		······		1	SAMPI	<u>LE DEPTH</u>			7
				Hygroscopic	Moisture For S	ieve Sample			
WATER CONTENT	(Delivered M	Aoisture)				Wet Soil &	Tare (gm)]
Wt Wet Soil & Tare (g	m)	(wl)	37.17]		Dry Soil &	Tare (gm)		
Wt Dry Soil & Tare (g	m)	(w2)	37.17			Tare Weigh	nt (gm)		
Weight of Tare (gm)		(w3)	3.22		·······	Moisture C	ontent (%)		
Weight of Water (gm)		(w4=w1-w2)	0.00	Total Weight	Of Sample Use	d For Sieve (Corrected For Hyg	roscopic Mois	_
Weight of Dry Soil (gr	n)	(w5=w2-w3)	33.95	4		Weight Of	Sample (gm)	320.25	J ·
Moisture Content (%)		(w4/w5)*100	0.00			Tare Weig	ht (gm)	51.92	
					(W6)	Total Dry V	Veight (gm)	268.33	
·		•							
SIEVE ANALYSIS				Cumulative					
Tare Weight	7	Wt Ret	(Wt-Tare)	(%Retained)	% PASS	SIEVE	Ξ		
192.39	J	+Tare		{(wt ret/w6)*100	(100-%ret)	1			
	12.0"			ļ		12.0"	cobbles		
	3.0"					3.0"	coarse gravel		
	2.5"			ļ		2.5"	coarse gravel		
	2.0"					2.0"	coarse gravel		
	1.5"					1.5"	coarse gravel		
	1.0"			ļ		1.0"	coarse gravel		
	0.75"					0.75"	fine gravel		
	0.50"					0.50"	fine gravel		
	0.375"		<u>.</u>			0.375"	fine gravel		
	#4					#4	coarse sand		
	#8	192.39	0.00	0.00	100.00	#8	coarse sand		
	#16	192.46	0.07	0.03	99.97	#16	medium sand		
	#30	295.98	103.59	38.61	61.39	#30	medium sand		
	#50	405.70	213.31	79.50	20.50	#50	fine sand		
	#100	457.80	265.41	98.91	1.09	#100	tine sand		
	#200	460.55	268.16	99.94	0.06	#200	tines		•
A CODDI DO	PAN	- -				PAN			
% COBBLES	0.00	-	с	- 100/					
% C GRAVEL	0.00		uve lerms	> 10% m/	osuy coarse (c)		۰. سابق	ſ <u></u>	٦.
	0.00		U 10 3%	> 10% m	osuy medium (m)		<u> </u>	-
70 C BAND 04 M SANTA	0.01	- intie	J 10 12%	< 10% III	ie (c-m)		PL	-	-
70 WI SAINU 04 E SAND	26.94	some	12 10 30%	< 10% 00	arse (m-i)	>	P1		-
70 F SAIND	40.99	- and	JU 10 JU%	< 10% CO	arse and tine (i	n) (6)	Gs	6.927	
70 FUNES 94 TOTAI	0.00	-1		< 10% CO	arse and mediu	m (I)			
70 IUTAL	100.00	_ 		> 10% eq	uai amounts ea	cn (c-I)			
DES	DESCRIPTION Black, MEDIUM TO FINE IRON FILINGS.								
	USCS	SP T					тесн	GM	
	0000						DATP		
							CHECK		
							REVIEW		

.

AR301374

SPECIFIC GRAVITY OF SOILS ASTM D-854 PVCNOMETER METHOD								
PROJECT TITLE	SALTIRI	E/996-1100 IROI	NREACTIVE	VALL/VA	1	<u> </u>		
PROJECT NUMBER	IC3-3822					SAMPLE ID	CC-1022	
	L				SAN	IPLE TYPE	Ba	
TESTED FOR		SPECIFIC	GRAVITY		SAME		*	
HYGROSCOPIC MOISTURE OF MATERIAL PASSING THE #4 SIEVE								
Weight Soil and Tare. Init	Weight Soil and Tare. Inital (gm) (WI					AI	R REMOV	AL
Weight Soil and Tare, Fin	al (gm)		(W2)	37.17	1		METHOD	
Weight Of Tare (gm)	- (8)		(W3)	3.22	1		VACUUM	
Weight Of Moisture (gm)			(W4=W1-W2)	0.00				L.
Weight Of Dry Soil (gm)			$(W_{5}=W_{2}W_{3})$	33.95	ſ			
Hygroscopic Moisture In	(%)	(HM	=(W4/W5)*100)					
					<u> </u>			
				1	2		ľ	
Pycnometer Number	()		0.0	45	212.02	,,		
Weight Pycnometer Empt	y (gm)		(1011)	1//.00	213.02	<u> </u>		
Weight of Soil & Pychom	eter (gm)		an	231.36	292.40			
Observed Temperature (T	ycnometer (gm h) for (Mh) In ³	l) Degrees C	(1010)	22.5	21.5			
Observed Temperature (T	$\sum_{n=1}^{\infty} f_{n-1}(\mathbf{M}_n) = \mathbf{I}_n$	Degrees C			21.5		<u> </u>	
Ubserved Temperature (1)	a), for (Ma) in i	Jegrees C		21.50	21.50			
Relative Demaity of Water	water (gm)			0/0.44	/11.50			
Relative Density of Water	(a) (Ta)			0.99791	0.99791			
Correction Easter due to 7	@ (1x) `~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	F wr	(V)	0.99708	0.77791			
Weight of Soil (am)	emperature @1		(下)	73.00	70.39			
Weight of Dry Soil (gm)				73.90	79.38			
Weight of Pycnometer &	Water (gm)		(Ma)	676.11	711.50	·		
SPECIFIC GRAVITY			- <u></u>				 (a Average
G @ 20 degrees C = [N	lo/(Mo+(Ma	- Mb))]*(K)	[6.861	6.992	· · · · · · · · · · · · · · · · · · ·		6.927
							<u> </u>	
	Temp. (C)	Rel. Density	Corr. (K)	Temp. (C)	Rel. Density	Corr. (K)		
	16.00	0.99897	1.0007	23.50	0.99745	0.9992		
	10.50	0.33883	1.0007	24.00	0.99732	0.9991		
Correction Values	17.50	0.99871	1.0005	24.50	0.99707	0.9988		
Due To Temperature	18.00	0.99862	1.0004	25.50	0.99694	0.9987		
	18.50	0.99853	1.0003	26.00	0.99681	0.9986		
	19.00	0.99843	1.0002	26.50	0.99668	0.9984		
	19.50	0.99833	1.0001	27 .00	0.99654	0.9983		
ł	20.00	0.99823	1.0000	27.50	0.99640	0.9982		
	20.50	0.99812	0.9999	28.00	0.99626	0.9980		
	21.00	0.99802	0.9998	28.50	0.99612	0.9979		
1	21.50	0.99791	0.9997	29.00	0.99597	0.9977		
	22.00	0.99780	0.9996	29.50	0.99582	0.9976		
	22.50	0.99768	0.9995	30.00	0.99567	0.9974	TROFT	010
l	23.00	0.99757	0.9993				TECH	UM L CO
							DATE	Jun-00
							CHECK	(An-
							KEVIEW	L tim

AR301375

GOLDER SIERRA

•

PROJECT TITLE PROJECT NUMBER REMARKS

SALTIRE/996-1100 IRON REACTIVE WALL/VA		
IC3-3822		

	TIME (sec)	VOLUME (mi)	TEMP. (°C)	Q (ml/sec)	
ł.	30	67	17.0	2.23	
2.	30	67	17.0	2.23	*
3.	30	67	17.0	2.23	*

UNIT WEIGHT DETERMINATION

- APPARATUS & WET SAMPLE (g): APPARATUS WEIGHT (g): WET SAMPLE WEIGHT (g): SAMPLE HEIGHT (in): SAMPLE DIAMETER (in): SAMPLE AREA (in SAMPLE AREA (cm): SAMPLE VOLUME (in³): SAMPLE VOLUME (cm³): WET DENSITY (pcf): DRY DENSITY (pcf):
- 3066.6 1356.3 1710.3 5.36 3.00 7,07 45.60 37.89 620.86 172.0

172,0

HEAD OF WATER (cm): HYDRAULIC GRADIENT (i):

MOISTURE CONTENT

WET SAMPLE & TARE (g): DRY SAMPLE & TARE (g): WEIGHT OF WATER (g): WEIGHT OF TARE (g): DRY SAMPLE WEIGHT (g): MOISTURE CONTENT (%):

	37.17	
	37.17	
	0.00	
	0.00	
	37.17	
Γ	0.00	

6.927

246.90

373.96

SPECIFIC GRAVITY: VOLUME OF SOLIDS (cm³): VOLUME OF VOIDS (cm³):

DISTANCE B/W MANOMETERS (cm):	7.62
AVERAGE Q VALUE:	2.23
AVERAGE TEMP:	17.0
TEMPERATURE CORRECTION:	1.08
HEAD OF WATER (cm):	3.40
HYDRAULIC GRADIENT (i):	0.446

K VALUE CORRECTED FOR 20 °C =

1.2E-01 cm/sec

TECH GM DATE **Jun-00** CHECK REVIEW AR301376

PROJECT TITLE	SALTIRE/996-1100 IRON REACTIVE WALL/VA	SAMPLE ID	CC-1022	-
PROJECT NUMBER	IC3-3822	SAMPLE TYPE	В	ag
REMARKS	-	SAMPLE DEPTH		•

	TIME (sec)	VOLUME (ml)	TEMP. _(°C)	Q (ml/sec)	
1.	15	96	15.5	6.40	•
2.	15	96	15.5	6.40	
3.	15	96	15.5	6.40	٠

UNIT WEIGHT DETERMINATION

APPARATUS & WET SAMPLE (g): APPARATUS WEIGHT (g): WET SAMPLE WEIGHT (g): SAMPLE HEIGHT (in): SAMPLE DIAMETER (in): SAMPLE AREA (in): SAMPLE AREA (cm): SAMPLE VOLUME (in³): SAMPLE VOLUME (cm³): WET DENSITY (pcf):

3066.6	
1356.3	
1710.3	
5.36	
3.00	
7.07	
45.60	
37.89	
620.86	
172.0	
172.0	

MOISTURE CONTENT

WET SAMPLE & TARE (g): DRY SAMPLE & TARE (g): WEIGHT OF WATER (g): WEIGHT OF TARE (g): DRY SAMPLE WEIGHT (g): MOISTURE CONTENT (%):

SPECIFIC GRAVITY: VOLUME OF SOLIDS (cm³): VOLUME OF VOIDS (cm³):

6.927
246.90
373.96

37.17

37.17

0.00

0.00

37.17

0.00

DISTANCE B/W MANOMETERS (cm): AVERAGE Q VALUE: AVERAGE TEMP: TEMPERATURE CORRECTION: HEAD OF WATER (cm): HYDRAULIC GRADIENT (i):

Ľ	7.62	
Γ	6,40	
	15.5	
	1.12	
	10.00	
Γ	1.312	

K VALUE CORRECTED FOR 20 °C =

1.2E-01 cm/sec

TECH

GM

GOLDER SIERRA

 PROJECT TITLE
 SALTIRE/996-1100 IRON REACTIVE WALL/VA
 SAMPLE ID
 CC-1115/1021 (2:1)

 PROJECT NUMBER
 IC3-3822
 SAMPLE TYPE
 Bag

 REMARKS
 SAMPLE DEPTH

	TIME	VOLUME	TEMP.	Q	
	(sec)	(ml)	(°C)	(ml/sec)	
1.	60	25.0	17.0	0.42	*
2.	60	25.0	17.0	0.42	*
3.	60	25.0	17.0	0.42	*

UNIT WEIGHT DETERMINATION

APPARATUS & WET SAMPLE (g): APPARATUS WEIGHT (g): WET SAMPLE WEIGHT (g): SAMPLE HEIGHT (in): SAMPLE DIAMETER (in): SAMPLE AREA (in²): SAMPLE AREA (cm³): SAMPLE VOLUME (in³): SAMPLE VOLUME (cm³): WET DENSITY (pcf): DRY DENSITY (pcf):

3563.2
1827.2
1736.0
5.25
3.00
7.07
45.60
37.11
608.12
178.2
178.2

MOISTURE CONTENT

WET SAMPLE & TARE (g):
DRY SAMPLE & TARE (g):
WEIGHT OF WATER (g):
WEIGHT OF TARE (g):
DRY SAMPLE WEIGHT (g):
MOISTURE CONTENT (%):

SPECIFIC GRAVITY (assumed): VOLUME OF SOLIDS (cm³): VOLUME OF VOIDS (cm³):

):	5.8
:	299.31
	308.81

50.00

50.00

0.00

3.24

46.76

0.00

	7.62	
Γ	0.42	
	17.0	
	1.08	
	3.40	
	0.446	

K VALUE CORRECTED FOR 20 °C = 2.2E-02 cm/sec

DISTANCE B/W MANOMETERS (cm):

TEMPERATURE CORRECTION:

AVERAGE Q VALUE: AVERAGE TEMP:

HEAD OF WATER (cm): HYDRAULIC GRADIENT (i):

_	
TECH	GM
DATE	Jun-00
CHECK	an
REVIEW	Pau

		on an DD ID	
PROJECT NUMBER	IC3-3822	SAMPLE TYPE	Bag
REMARKS		SAMPLE DEPTH	-

	TIME	VOLUME	TEMP.	Q	
_	(sec)	(ml)	(°C)	(ml/sec)	_
1.	30	37.0	17.5	1.23	*
2.	30	37.0	17.5	1.23	*
3.	30	37.0	17.5	1.23	*

UNIT WEIGHT DETERMINATION

APPARATUS & WET SAMPLE (g): APPARATUS WEIGHT (g): WET SAMPLE WEIGHT (g): SAMPLE HEIGHT (in): SAMPLE DIAMETER (in): SAMPLE AREA (in²): SAMPLE AREA (cm²): SAMPLE VOLUME (in³): SAMPLE VOLUME (cm³): WET DENSITY (pcf):

3563.2	
1827.2	
1736.0	
5.25	
3.00	
7.07	
45.60	
37.11	
608.12	
178.2	
178.2	

DISTANCE B/W MANOMETERS (cm):

TEMPERATURE CORRECTION:

AVERAGE Q VALUE:

HEAD OF WATER (cm):

HYDRAULIC GRADIENT (i):

AVERAGE TEMP:

MOISTURE CONTENT

WET SAMPLE & TARE (g): DRY SAMPLE & TARE (g): WEIGHT OF WATER (g): WEIGHT OF TARE (g): DRY SAMPLE WEIGHT (g): MOISTURE CONTENT (%):

SPECIFIC GRAVITY (assumed): VOLUME OF SOLIDS (cm³): VOLUME OF VOIDS (cm³):

	0.00
:	5.8
:	299.31
	308.81

50.00

50.00

0.00

46.76

7.62 1.23 17.5 1.06 8.80 1.155

K VALUE CORRECTED FOR 20 °C =

2.5E-02 cm/sec

ТЕСН	GM
DATE	Jun-00
CHECK	Can
REVIEW	Con

AR301379

		<u></u>	ASTM	D 2434				
PROJECT TITLE PROJECT NUMBER REMARKS	SALTIRE/996-110	00 DRON REAC IC3-3822	TIVE WALL/VA	SA SAM	SAMPLE ID MPLE TYPE IPLE DEPTH	CC-1115/1 Ba	021 (1:1) g	·····
	-	TIME (sec)	VOLUME (ml)	ТЕМР. ([°] С)	Q (ml/sec)			
	1. 2. 3.	120 120 120	2.8 2.9 2.8	21.0 21.0 21.0	0.02 * 0.02 * 0.02 *	8 K		
UNIT WEIGHT DETERMINA APPARATUS & WET SAMPLE APPARATUS WEIGHT (g): WET SAMPLE WEIGHT (g): SAMPLE HEIGHT (in): SAMPLE DIAMETER (in): SAMPLE AREA (in ²): SAMPLE AREA (cm ²): SAMPLE VOLUME (in ³): SAMPLE VOLUME (cm ³): WET DENSITY (pcf): DRY DENSITY (pcf):	TION (g):	3694.8 1827.3 1867.5 5.25 3.00 7.07 45.60 37.11 608.12 191.7 191.7		MOISTURE C WET SAMPLE DRY SAMPLE WEIGHT OF V WEIGHT OF V DRY SAMPLE MOISTURE CO SPECIFIC GRA VOLUME OF VOLUME OF	ONTENT ; & TARE (g): ; & TARE (g): VATER (g): ; WEIGHT (g): ONTENT (%): VITY (assumed): SOLIDS (cm ³): VOIDS (cm ³):	50.00 50.00 0.00 3.24 46.76 0.00 5.8 321.98 286.14		
	I 2 7 F F	DISTANCE BANGE Q N VERAGE Q N VERAGE TE TEMPERATUR IEAD OF WA IYDRAULIC	W MANOMETE /ALUE: MP: RE CORRECTIO TER (cm): GRADIENT (i):	RS (cm): N:		7.62 0.02 21.0 0.98 3.40 0.446	·	
	K VALUE CO	RRECTED F	OR 20 °C =	1.1E-03	cm/sec			
•							TECH DATE CHECK REVIEW	GM Jun-00

GOLDER SIERRA

.

PROJECT TITLE	SALTIRE/996-1100 IRON REACTIVE WALL/VA	SAMPLE ID	CC-1115/1021 (1:1)
PROJECT NUMBER	1C3-3822	SAMPLE TYPE	bag
REMARKS		SAMPLE DEPTH	

	TIME	VOLUME	TEMP.	Q	
	(sec)	(ml)	<u>(°C)</u>	(ml/sec)	
ł.	120	13.5	21.0	0.11	*
2.	120	14.0	21.0	0.12	*
3.	120	13.5	21.0	0.11	*

UNIT WEIGHT DETERMINATION

APPARATUS & WET SAMPLE (g): APPARATUS WEIGHT (g): WET SAMPLE WEIGHT (g): SAMPLE HEIGHT (in): SAMPLE DIAMETER (in): SAMPLE AREA (in²): SAMPLE AREA (cm²): SAMPLE VOLUME (in³): SAMPLE VOLUME (cm³): WET DENSITY (pcf): DRY DENSITY (pcf):

3694.8	
1827.3	
1867.5	
5.25	
3.00	
7.07	
45.60	
37.11	
608.12	
191.7	
191.7	

MOISTURE CONTENT

WET SAMPLE & TARE (g): DRY SAMPLE & TARE (g): WEIGHT OF WATER (g): WEIGHT OF TARE (g): DRY SAMPLE WEIGHT (g): MOISTURE CONTENT (%):

SPECIFIC GRAVITY (assumed): VOLUME OF SOLIDS (cm³): VOLUME OF VOIDS (cm³):

5.8
321.98
286.14

50.00

50.00 0.00

3.24

46.76

0.00

7.62
0.11
21.0
0.98
9.80
1.286

K VALUE CORRECTED FOR 20 °C = 1.9E

AVERAGE Q VALUE: AVERAGE TEMP:

HEAD OF WATER (cm): HYDRAULIC GRADIENT (i):

DISTANCE B/W MANOMETERS (cm):

TEMPERATURE CORRECTION:

1.9E-03 cm/sec

ТЕСН	GM
DATE	Jun-00
CHECK	An
REVIEW	On

GOLDER SIERRA

APPENDIX A-3

Leak Off Tests

AR301382

-

JANUARY 2001

IRON-GEL-SAND LEAK-OFF TEST RESULTS

PROJECT NAME: PROJECT NUMBER: SAMPLE ID:

SALTIRE/ARROWHEAD PLATING/VA

996-1100

CC-1022/ATL SAND 80-20/30

TESTING CONDITIONS

7/14/00 11:26 AM	Time (min):	0
7/14/00 11:33 AM	Time (min):	7
7/14/00 12:33 PM	Time (min):	67
60		
49		
19		
1368	7	
1634		
	7/14/00 11:26 AM 7/14/00 11:33 AM 7/14/00 12:33 PM 60 49 19 1368 1634	7/14/00 11:26 AM Time (min): 7/14/00 11:33 AM Time (min): 7/14/00 12:33 PM Time (min): 7/14/00 12:33 PM Time (min): 60 49 19 1368 1634 1634

IRON/IRON-GEL-SAND/LEAK-OFF PERM. TEST

SOIL DESCRIPTION: White, MEDIUM TO FINE SAND, trace silt. (ATL SAND 80-20/30)

USCS: SP

IRON DESCRIPTION: Black, MEDIUM TO FINE CONNELLY CC-1022 IRON FILINGS. USCS: SP

FLUID DESCRIPTION: 48 lb/1000 gal cross linked gel

SOIL SAMPLE **PREPARATION**

Height, cm	30.48
Diameter, cm	10.16
Area, cm	81.07
Volume, cm3	2471.11
Dry Sand Weight, g	3764.00
Saturated Sand Weight, g	4798.00
Weight of Water, g	1034.00
Dry Density, pcf	95.05
Spec. Gravity	2.65
Volume Solids, cm3	1420.38
Volume Voids, cm3	1050.73
Saturation, %	98.4%
Void Ratio %	74.0%
Porosity, %	42.5%

				•	
TIME (mia)	TIME ROOT (min)	VOLUME OF WATER DISPLACED FROM SAMPLE (ml)	TEST PRESSURE (psi)	FIL Tł	TER CAKE IICKNESS (cm)
0.0	0.00	0.0	49		
0.1	0.29	19.0	49	1 6	0.5
3.8	1.96	37.0	49	1 -	
7.5	2.74	47.0	49	1	
13.2	3.63	60.0	49]	
20.2	4.50	73.0	49]	
27.8	5.28	85.0	49]	
35.8	5.98	96.0	49	}	
44.2	6.65	107.5	49		
50.4	7.10	117.0	49]	
55.8	7.47	125.0	49]	
60.0	7.75	132.5	49]	
121.0	11.00	224.5	19]	
197.0	14.04	504.5	19		
251.0	15.84	699.5	19		
302.0	17.38	849.5	19]	
4202.0	64.82	1089.5	19]	
				1	
	<u> </u>		<u> </u>		
			<u></u>	4	
	<u>+</u> +		<u></u>		
	+		<u>}</u>	ł'	
	+		<u> </u>	1	
	1		t	1	
	1			1	
				1	
_]	
]	
				TE [C111
				- RECH	<u></u>
				DATE	/////00

CHECK

REVIEW

GM

RIO

APPENDIX A-4

Micro-Head Permeameter and TOC Tests

.

.

....

JANUARY 2001

IRON-GEL-SAND PERMEABILITY ASTM D2434 - MODIFIED

PROJECT NAME: SALTIRE/ARROWHEAD PLATING/VA

PROJECT NUMBER: 996-1100

SAMPLE ID: IRON-GEL-SAND IRON/SAND TYPE: CC-1022/ATL SAND 80-20/30

•

Iron-Gel-Sand Column Preparation	7/14/00 11:26 AM	0
Iron-Gel-Sand Permeability Test Start	7/17/00 2:05 PM	3.1
Iron-Gel-Sand Permeability Test End	7/28/00 2:00 PM	14.1

	Sand Sample	Data	
Height, cm	30.48	Dry Density, pcf	95.05
Diameter, cm	10.16	Spec. Gravity (*)	2.65
Area, cm ²	81.07	Volume Solids, cm ³	1420.38
Volume, cm3	2471.11	Volume Voids, cm ³	1050.73
Dry Sand Weight (Dry), g	3764.00	Saturation, %	98.4%
Saturated Sand Weight, g	4798.00	Void Ratio %	74.0%
Weight of Water, g	1034.00	Porosity, %	42.5%
Moisture Content, %	27.5%		·

Iron Sample Data - Final							
Height, cm	7.47	Dry Density, pcf	168.41				
Diameter, cm	10.16	Spec. Gravity (*)	6.93	TECH			
Ares, cm ²	81.07	Volume Solids, cm ³	235.89	DATE			
Volume, cm ³	605.42	Volume Voids, cm ³	369.53	Снеск			
Dry Iron Weight, g	1634.00	Porasity, %	61.0%	REVIEW			
fron-Sand Column	Pore Volume, ml	1420		-			

(*) Assumed Value

Pore Volume	Mano	meter	Head	Flow	Time	Gradient	Тетр	Iron/Sand Permeability	Time Since Cross Link	TOC (composite)	0.R.P.	Dissolved	pН
	H _{I (Top)}	H _{2(Bottom)}	(cm)	Q, cm ³	l Sec.	(i)	<u>°C</u>	@ 20°C (cm/sec)	(day)	(ppm)	mV(eh)	O ₂ (ppm)	
INTIAL RUN OFF					ŀ				3.1*				
0.03	54.8	50.9	3.9	41	8580	0.103	25 0	5.10E-04	3.2				
0.26	54.8	51.2	3.6	325	66120	0.095	25.0	5.68E-04	4.0	3260			-
0.33	54.7	51.0	3.7	100	9300	0.098	25,0	1.21E-03	4.1	1			
0.42	54.7	51.3	3.4	125	10140	0.090	25,0	1.51E-03	4.2	ţ			
0.98	54,5	51.3	3.2	805	56880	0.084	25.0	I 84E-03	4.9	1080			
1.27	54,4	51.2	3.2	410	24660	0.084	25.0	2.16E-03	5.1	1			
2.47	54.2	51.1	3.1	1700	65340	0.082	25.0	3.49E-03	5.9				
2.68	54.3	50.8	3.5	295	13740	0.092	25,0	2.55E-03	6.1	156			••
2.85	54.3	50.5	3.8	245	4560	0.100	25.0	5.88E-03	6.1	ł			÷
3.68	54.3	50.5	3.8	1180	67740	0.100	25.0	1.91E-03	6.9				
3.93	54.2	50,5	3.7	350	14520	0.098	25.0	2.71E-03	7.1	t,			••
3.93	53.1	50.5	2.6		720	0.069	25.0	0.00E+00	7.1	1			•-
4.55	51.9	43.6	8.3	890	8400	0.219	25.0	5.31E-03	7.2	1			
4.75	52.3	42.2	10.1	275	4500	0.266	25.0	2.52E-03	7.2	39			
7.63	51.4	42.5	8.9	4100	61980	0.235	25.0	3.09E-03	7.9				
7.82	51.4	42.2	9.2	270	232	0.242	25.0	5.27E-02	8.0	15			
11.55	50.4	42.2	8.2	5300	7335	0.216	25.0	3.67E-02	9.1				
11.74	49.4	39.5	9.9	270	297	0.261	25.0	3.82E-02	9,1	9 [`]			••
12.50	54.8	39.5	15.3	1075	4780	0.403	25.0	6.12E-03	9.8				
12.80	47.9	15.1	32.8	420	561	0.864	25.0	9.50E-03	9.9				
13.15	46.2	15.1	31.1	500	199	0.820	25.0	3.36E-02	9.9		••		
14.33	49.5	14.8	34.7	1675	1581	0.914	25.0	1.27E-02	10 2				
14.54	47.6	15.4	32.2	300	176	0 849	25.0	2.20E-02	10.2	7			
18.62	50.5	15.3	35.2	5800	4159	0.928	25.0	1.65E-02	10.8	7			

996-1100

SW 7/28/00 GM RIO

ADVANCED CHEMISTRY LABS, INC.

Phone: (770) 409-1444 Fax: (770) 409-1844 Outside GA: (800) 277-0520 e-mail: acl@mindspring.com 3039 Amwiler Road • Suite 100 • Atlanta, GA 30360 P.O. Box 88610 • Atlanta, GA 30356 www.advancedchemistrylabs.com

Client: Golder Sierra LLC 3730 Chamblee Tucker Road Atlanta, GA 30341 Client Project No: 4-202/Saltire ACL Project No: 32978 Date Received: 07-25-00 Date Reported: 07-28-00

.

Contact: Mr. Rafael Ospina

тос								
(EPA	415.	1)	(mg/liter)				

Sample ID	ACL #	Matrix	<u>Result</u>	<u>Det. Limit</u>	Date Analyzed
1	157643	Water	3260	1.0	07-28-00
2	157644	Water	1080	1.0	07-28-00
3	157645	Water	156	1.0	07-28-00
4	157646	Water	38.9	1.0	07-28-00
5	157647	Water	14.6	1.0	07-28-00
6	157648	Water	8.8	1.0	07-28-00
7	157649	Water	6.8	1.0	07-28-00
8	157650	Water	7.4	1.0	07-28-00

.

John Andros, Lab Manager

BDL = Below Detection Limit

ŧ

APPENDIX A-5

•

.

-

Fracture Fluid Resistivity Tests

.

.

.

•

AR301390

.

.

GEL RESISTIVITY TESTING

Project:	SALTIRE/ARROWHEAD PLATING/VA	Date:	Jun-00
Job No.:	996-1100	Tested By:	RIO
Meter Type:	Nilsson 400 Soil Resistance Meter.	Checked By:	RIO
_	Miller Soilbox		

NaCl Concentration		Resistivity @ 15.5 °C (ohm-cm)	
(ib/1000 gai)	mean	min	max
0	4438	4398	4478
2.5	911	871	951
5	640	600	680
10	460	420	500
15	330	290	370
20	251	211	291
40	138	98	178
80	72	32	112

APPENDIX A-6

Fracture Fluid Viscosity Tests

GEL VISCOSITY TESTING

Project: SALTIRE/ARROWHEAD PLATING/VA Job No.: 996-1100 Meter Type EG&G Chandler Model 35 Bob-B1, Rotor-R-1,Spring-F0.2

Date:	Jun-00	
Tested By:	RIÓ	
Checked By:	RIO	

		Viscosity (cP)							
Temperature		@ 1 sec-1			@ 10 sec-1			@ 100 sec-1	
(C)	теал	min	max	mean	min	max	теап	min	max
5	1783	1370	2195	627	527	726	146	132	161
10	1335	1026	1645	527	443	611	132	119	145
15	1128	867	1389	476	400	552	125	112	137
20	1000	769	1232	443	373	513	120	108	131
25	911	700	1123	419	352	485	116	104	127
30	845	649	1040	400	337	464	113	101	124
35	792	609	976	385	324	446	110	99	121
40	749	576	923	372	313	432	108	97	119

August	2000
--------	------

CROSSLINKED HPG GEL VISCOSITY TEST RESULTS

996-1100

EG&G Chandler Model 35

Bob-B1, Rotor-R-1, Spring-F0.2

Project: Job No.: Meter Typ

Date: Aug-00 SALTIRE/ARROWHEAD PLATING/VA Tested By: RIO RIO Checked By:

Shear Rate	Viscosity (cP)	Fluid Description: G1 - Frac Fluid - 48	B Ib HPG Get / 1000 gal water
0.17	14,100		
0.34	7,950	Power Law Viscos	ity Model
0.51	6,100	°b	
1.02	4,400	μ= a γ	μ is viscosity (cP)
1.7	4,500	a ≈ 5518.2	γ is shear rate (1/sec)
3.4	3,720	b = -0.39	
5.11	3,240	$R^2 = 0.9$	

AR301395 GOLDER SIERRA

APPENDIX A-7

Iron Filings Grain Size Specification and Mineralogical Analysis

AR301396

IRON FILINGS SPECIFICATION DEVELOPMENT GRAIN SIZE ANALYSIS ASTM GRAIN SIZE ANALYSIS ASTM D421, D2217, D1140, C117, D422, C136

Project: _ Job No.: _ Iron Type:

SALTIRE/ARROWHEAD PLATING/VA 996-1100 Connelly CC-1022 Date: Jun-00 Tested By: GM Checked By: RIO

Sample Load	Load Weight		<u></u>	% Passin	g Sieve (AS	TM D422)		<u></u>
No.	(ton)	#4	#8	#16	#30	#50	#100	#200
1	22	100.0	100.0	100.0	68.8	15.0	1.0	0.0
2	22	100.0	100.0	100.0	73.1	19.8	1.8	0.1
3	22	100.0	100.0	100.0	70.6	19.3	2.1	0.3
4	22	100.0	100.0	100.0	65.0	20.6	1.3	0.0
5	22	100.0	100.0	100.0	74.3	22.1	2.3	0.2
6	22	100.0	100.0	100.0	64.9	15.4	1.0	0.0
7	22	100.0	100.0	100.0	68.5	18.5	1.6	0.1
Avera	ige	100.0	100.0	100.0	69.3	18.7	1.6	0.1
Project Spe	cification	100	100	95 - 100	55 - 95	15 - 45	0 - 15	< 5

CONNELLY - GPM, INC.

ESTABLISHED 1675 3154 SOUTH CALIFORNIA AVENUE * CHICAGO: ILLINOIS 60608-5176 PHONE: (773) 247-7231 FAX: (773) 247-7239

SCREEN SPECIFICATION <u>CC-1022</u> PROPRIETARY BLEND FOR GOLDER SIERRA (-14+84 Mesh)

U.S. SCREEN NUMBER

8	100% PASSING
16	95 - 100% PASSING
30	60 - 90
50	15 - 40
100	0 - 10
200	0 - 3

MATERIAL WEIGHS APPROXIMATELY 170 - 190 POUNDS PER CUBIC FOOT

TYPICAL ANALYSIS OF IRON AGGREGATE

Metallic Iron	89.82
Total Carbon	2.85
Manganese	0.60
Sulphur	0.107
Phosphorous 1	0.132
Silicon	1.85
Nickel	0.05 - 0.21
Chromium	0.03 - 0.17
Vanadium	Nil
Molybdenum	0.15
Titanium	0.004
Copper	0.15 - 0.20
Aluminum	Trace
Cobalt	0.003

CURTIS A. REVELL Technical Director

D:\WORD\CI-CUSTO\1022SPECGOLDER.DOC

APPENDIX A-8

Iron Filings pH Activity Tests

IRON pH ACTIVITY TEST RESULTS ASTM D1293, D4972 MODIFIED

Project:	SALTIRE/ARROWHEAD PLATING/VA	Date:	Jun-00	
Job No.:	996-1100	Tested By:	RIO	
Iron Type:	Connelly	Checked By:	RIO	
-				

SAMPLE ID	Time			
Day		pri		
1	10:50	6.58		
1	10:59	6.31		
1	11:04	6.20		
1	11:09	6.32		
1	11:16	6.06		
1	11:18	6.33		
1	stirred	sample		
1	11:22	6.95		
1	11:27	6.63		
1	11:32	6.62		
1	11:37	6.71		
1	11:42	6.63		
1	11:47	6.60		
1	11:52	6.53		
1	11:57	6.37		
1	12:02	6.42		
11	stirred sample			
1	12:07	6.97		
<u>1</u> 1	12:22	6.72		
11	12:37	6.40		
1	12:52	6.44		
1	13:07	6.38		
11	13:22	6.23		
1	13:37	6.28		
1	13:52	6.39		
11	14:07	6.50		
11	14:22	5.92		
11	14:37	6.55		
11	14:52	6.31		
1	stirred	sample		
1	15:00	7.44		
11	15:07	6.51		
1	15:22	6.47		
1	poured samples from	n cups to jars w/ lids		
1	15:34	7.57		
2	06:37	7.21		

Sample Preparation: 143.4 grams of iron per 100 mL distilled deionized water

GOLDER SIERRA AR301400

APPENDIX B

Boring and Well Installation Logs and Monitoring Well Sampling Data

APPENDIX B-1	Boring Logs
APPENDIX B-2	Well Installation Log
APPENDIX B-3	Monitoring Well Water Level and Sampling Data
APPENDIX B-4	Soil Boring and CPT Soil Interpretation Data Correlation
APPENDIX B-5	Investigation Derived Waste Characterization Laboratory Data

AR301401

APPENDIX B-1

Boring Logs

.

.

AR301402

÷ ----
PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

CLIENT: SALTIRE INDUSTRIAL, INC.

COORDINATES: N 6719608.83, E 11975554.76

SITE LOCATION: ARROWHEAD FACILITY

GSL INSPECTOR: SLW

BORING LOCATION: -

1		SUBSURFACE PROFILE	E		SAMPLE						
Depth (FT)	Symbol	Description	nscs	Depth/Elev. (FT)	Number	Type	Blows/ft "N"	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
0		Ground Surface	f	0							
111111		0-6' Loose to compact, reddish brown, MEDIUM to FINE SAND, some silty clay.		140.84	1	DO	5	12/24	N/A	•	
3 3 4			(SC-SM)		2	DO	5	19/24	N/A	•	
5 5				6	3	DO	11	17/24	0.3	•	
6		6-14' Compact, reddish brown, MEDIUM to FINE		134.84			17	20/24			
9 10 10		SAIND, Some clayey slit.	(SM)		4	DO	29	20/24	0.2 N/A	•	
11					6	DO	27	17/24	0.1	•	@ 12 ¹
13				14	7	DO	21	19/24	N/A	•	Iron sand lense.
14 + + + 15 -	H		(CH)	126.84			·			•	
DRILLING COMPANY: CHESAPEAKE GEOSYSTEMS INC. DRILL METHOD: HSA DRILL RIG: MOBILE B-80 DRILLER: BRIAN VAN DURAN DRILL DATE: 5/8/00										LOGGED: SLW CHECKED: RIO DATE: 7/10/00 SHEET: 1 of 3	

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA COORDINATES: N 6719608.83, E 11975554.76

CLIENT: SALTIRE INDUSTRIAL, INC.

SITE LOCATION: ARROWHEAD FACILITY

GSL INSPECTOR: SLW

BORING LOCATION: -

	SUBSURFACE PROFILE			SAMPLE						
Depth (FT) Symbol	Description	nscs	Depth/Elev. (FT)	Number	Type	Blows/ft *N"	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
H	14-18' Firm to stiff, mottled gray and yellowish brown,			8	DO	13	23/24	N/A		
16	SILTY CLAY, little coarse to fine sand.	(CH)	18	9	DO	14	20/24	N/A	•	16-18' Performed sieve analysis and Atterberg limits.
19	18-24' Compact, reddish brown, MEDIUM to FINE SAND, little clayey silt.	Ł	122.84	10	DO	23	19/24	N/A	•	0303. (01)
20 - 21 -		(SP-SM)		11	DO	25	19/24	N/A	•	
22			24	12	DO	12	19/24	N/A	•	22-24' Performed sieve analysis. USCS: (SP-SM)
25	24-28' Compact, mottled yellowish brown and reddish yellow, MEDIUM to FINE SAND, little clayey silt.	(SP-SM)	116.84	13	DO	14	18/24	N/A	•	@ 25 [;] 3" clay len se .
27-			28	14	DO	11	15/24	N/A	•	@ 27 [,] 4" clay len se .
29 – 30 –	28-31' Compact, mottled yellowish gray, brown and red, MEDIUM to FINE SAND, little clayey silt.	(SP-SM)	112.84	15	DO	18	18/24	N/A	•	@ 30' Iron sand lense.
DRILLIN DRILL M DRILL RI DRILLER	G COMPANY: CHESAPEAKE C ETHOD: HSA G: MOBILE B-80 R: BRIAN VAN DURAN	BEOSYSTE	MS INC.				· <u>·</u>		LOGGED: SLW CHECKED: RIO DATE: 7/10/00 SHEET: 2 of 3	
									SHEET, EVIN	

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

COORDINATES: N 6719608.83, E 11975554.76

SITE LOCATION: ARROWHEAD FACILITY

CLIENT: SALTIRE INDUSTRIAL, INC.

GSL INSPECTOR: SLW

BORING LOCATION: -

SAMPLE SUBSURFACE PROFILE PID Reading (ppm) Ē Recovery (IN/IN) Standard Remarks Pentration Test Depth/Elev. Blows/ft "N" Description Depth (FT) Number Symbol USCS blows/ft Type 20 40 60 80 (SP-SM) 31 20/24 DO N/A 31 16 12 . 109.84 31-34' Loose , gray, MEDIUM to FINE SAND, some silty clay. 32 (SC) 23/24 N/A 33 DO 4 17 34 34 106.84 34-44' Soft, dark gray, SILTY CLAY, some medium to fine sand. 35 DO 5 24/24 N/A 18 36 37 19 DO 7 24/24 N/A 38 (CH) 39 24/24 N/A 20 DO 8 . 40 41 21 DO 6 24/24 N/A 42 42 98.84 **Borehole Terminated** @ 42' BGS. 43 44 45 LOGGED: SLW DRILLING COMPANY: CHESAPEAKE GEOSYSTEMS INC. DRILL METHOD: HSA CHECKED: RIO DRILL RIG: MOBILE B-80 DATE: 7/10/00 **DRILLER: BRIAN VAN DURAN DRILL DATE: 5/8/00** SHEET: 3 of 3

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA COORDINATES: N 6719456.82, E 11975684.52

SITE LOCATION: ARROWHEAD FACILITY

· · · · · · ·

CLIENT: SALTIRE INDUSTRIAL, INC.

GSL INSPECTOR: SLW

BORING LOCATION: -

		SUBSURFACE PROFILI	E				SAMF	PLE			
Depth (FT)	Symbol	Description	nscs	Depth/Elev. (FT)	Number	Type	Blows/ft "N"	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
-		Ground Surface	1	0	·						
0 1 1 1		0-2' Loose, brown, MEDIUM to FINE SAND, some clayey silt.	(SM)	142.41	1	DO	9	12/24	N/A		
3	7	2-6' Loose, reddish brown, MEDIUM to FINE SAND and SILTY CLAY.		140.41	2	DO	4	17/24	N/A	•	
4	/		(SC-SM)	6	3	DO	7	12/24	0.4	•	
7		6-14' Loose to dense, reddish brown, MEDIUM to FINE SAND, some clayey silt.		136.41	4	DO	7	16/24	N/A	•	
9					5	DO	20	18/24	0.1	•	
11			(SM)		6	DO	52	19/24	N/A	•	@ 11.5'
13 -		·			7	DO	15	16/24	N/A	•	iron sano iense.
15										•	
DRI DRI DRI DRI DRI	ILLING ILL ME ILL RIG ILLER: ILL DA	COMPANY: CHESAPEAKE (THOD: HSA :: MOBILE B-80 BRIAN VAN DURAN FE: 5/5/00	GEOSYSTE	EMS INC.						LOGGED: SLW CHECKED: RIO DATE: 7/10/00 SHEET: 1 of 3	
DRILL RIG: MOBILE B-80 DATE: 7/10/00 DRILLER: BRIAN VAN DURAN DRILL DATE: 5/5/00 DRILL DATE: 5/5/00 SHEET: 1 of 3											

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

CLIENT: SALTIRE INDUSTRIAL, INC.

SITE LOCATION: ARROWHEAD FACILITY

COORDINATES: N 6719456.82, E 11975684.52

GSL INSPECTOR: SLW

BORING LOCATION: -

		SUBSURFACE PROFIL		SAMPLE							
Depth (FT)	Symbol	Description	USCS	Depth/Elev. (FT)	Number	Type	Blows/ft "N"	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
16-		6-14' Loose to dense, reddish brown, MEDIUM to FINE SAND, some clayey			8	DO	14	14/24	N/A		
17		SHL.	(SM)		9	DO	18	16/24	N/A	•	
18-	· · · · · · · · · · · · · · · · · · ·	18-22' Compact reddish	 	18							
19- 19-		brown, MEDIUM to FINE SAND, little clayey silt.		124.41	10	DO	20	20/24	N/A	•	
20-			(SP-SM)					ļ		-	
21-			Z		11	DO	26	20/24	N/A	•	
22 -		22-28' Compact mottled		22	 						
23		yellowish brown and reddish yellow, MEDIUM to FINE SAND, little clayey silt		120.41	12	DO	13	15/24	N/A	•	
24 -						 		{{			
25			(SP-SM)		13	DO	12	21/24	0.0	•	
26 -		•									2 6-28 '
27 -					14	DO	12	18/24	N/A	•	Performed sieve analysis. USCS: (SP-SM)
28-		09.05 Compate method		28	ļ	•				•	
29 -		yellowish brown, red and black, MEDIUM to FINE SAND, little clavey silt	(SP-SM)	5 44.44	15	DO	14	17/24	N/A	•	
30 -	· · · · · · · · · · · ·										
DR DR DR DR DR	DRILLING COMPANY: CHESAPEAKE GEOSYSTEMS INC.LOGGED: SLWDRILL METHOD: HSACHECKED: RIODRILL RIG: MOBILE B-80DATE: 7/10/00DRILLER: BRIAN VAN DURANSHEET: 2 of 3										

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA COORDINATES: N 6719456.82, E 11975684.52

SITE LOCATION: ARROWHEAD FACILITY

CLIENT: SALTIRE INDUSTRIAL, INC.

GSL INSPECTOR: SLW

BORING LOCATION: -

		SUBSURFACE PROFILE				SAMF	PLE				
Depth (FT)	Symbol	Description	nscs	Depth/Elev. (FT)	Number	Type	Blows/ft "N"	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
31		28-35' Compact, mottled yellowish brown, red and black, MEDIUM to FINE SAND, little clayey silt.			16	DO	20	15/24	N/A	•	
32			(SP-SM)		17	DO	14	18/24	0.0	•	32-34' Performed sieve analysis. USCS: (SP-SM)
34		35-36' Loose, dark gray, MEDIUM to FINE SAND,	(SC)	35 107.41 36	18	DO	6	22/24	N/A	•	
36 37	H	some silty clay. 36-44' Firm, dark gray, SILTY CLAY, some medium to fine sand.		106.41	19	DO	5	23/24	N/A	•	
38	H				20	DO	5	24/24	0.0	•	
40	H	•	(CH)		21	DO	7	24/24	N/A	•	
42 לידי ראין 43 לידי אין איז אין איז אין איז אין איז אין	H				22	DO	8	24/24	N/A	•	Performed sieve analysis and Atterberg limits. USCS: (CH)
44 45		Boring Terminated @ 44' BGS.		44 98.41							
DRILLING COMPANY: CHESAPEAKE GEOSYSTEMS INC. DRILL METHOD: HSA DRILL RIG: MOBILE B-80 DRILLER: BRIAN VAN DURAN DRILL DATE: 5/5/00										LOGGED: SLW CHECKED: RIO DATE: 7/10/00 SHEET: 3 of 3	

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

RE INDUSTRIAL. INC.

COORDINATES: N 6719183.85 E 11975657.99

SITE LOCATION: ARROWHEAD FACILITY

CLIENT: SALTIRE INDUSTRIAL, INC.

GSL INSPECTOR: SLW

BORING LOCATION: -

		SUBSURFACE PROFILE			SAMPLE						
Depth (FT)	Symbol	Description	nscs	Depth/Elev. (FT)	Number	Type	Blows/ft "N"	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
0_		Ground Surface		0							
		0-2' Compact, brown, MEDIUM to FINE SAND, some clayey silt.	(SM)	142.03	1	DO	11	6/24	3. 8	•	
2-		2-10' Loose to compact,		140.03		i				•	
3-11		reddish brown, MEDIUM to FINE SAND, some silty clay.			2	DO	8	12/24	0.9	•	
4-						<u> </u> i				1	
5-					3	DO	8	12/24	0.8	•	
6-]			(SC-SM)					<u> </u>		-	
7-					4	DO	14	18/24	0.5	•	
9				10	5	DO	10	12/24	0.2		
10-		10-11' Firm, reddish brown,	(01)	132.03		-				† .	Į
		SILTY CLAY and FINE		11	c	00	4.4	10/04	0 7		
		JAIND.	(90)	131.03	o		11	10/24	0.3	t	@ 13.13.2
12	<u></u>	brown, FINE SAND, some	(30)	12							fron cand lonce
15 - 1 - 1		silty clay.		130.03							13.3-13.6
13		12-16.5' Compact, reddish brown, MEDIUM to FINE SAND, some clayey silt.			7	DO	23	19/24	0.4	•	Light gray silty clay (CH) lense.
14-			(SM)							4	14.2-14.3'
1											Light gray silty
15-			1							•	clay (CH) lense.
DRI DRI DRI DRI DRI	ILLING ILL ME ILL RIG ILLER: ILL DA	COMPANY: CHESAPEAKE G THOD: HSA 3: MOBILE B-80 BRIAN VAN DURAN TE: 5/8/00	BEOSYSTE	EMS INC.					<u> </u>	LOGGED: SLW CHECKED: RIO DATE: 7/10/00 SHEET: 1 of 3	
					_						

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

COORDINATES: N 6719183.85 E 11975657.99 SITE LOCATION: ARROWHEAD FACILITY

CLIENT: SALTIRE INDUSTRIAL, INC.

GSL INSPECTOR: SLW

BORING LOCATION: -

		SUBSURFACE PROFILE	E				SAMF	LE .			
Depth (FT)	Symbol	Description	nscs	Depth/Elev. (FT)	Number	Type	Blows/ft *N*	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
16 -		12-16.5' Compact, reddish brown, MEDIUM to FINE SAND, some clayey silt.	(SM)	16.5	8	DO	12	18/24	0.9		
17 - 	H	16.5-18.3' Soft, light gray, SILTY CLAY, trace fine sand.	(CH)	125.53	9	DO	7	18/24	0.9	•	
18 -	H	_		18.3							
19 		18.3-28' Compact to loose, white and yellowish mottled, MEDIUM to FINE SAND, little clayey silt.		123.73	10	DO	14	18/24	0.2	•	
20 -											
21 -					11	DO	22	24/24	0.3	•	
22 -											
23			(SP-SM)		12	DO	16	14/24	0.2	•	
24 -]			<u>v</u>					-	<u> </u>	-	
25			1		13	ОО	14	18/24	0.3	•	
26 -											
27 -					14	DO	6	24/24	0.2		27-27.2'
28				28							Light gray silty
		28-34.5' Compact, mottled		114.03							28.5-28.8
29		MEDIUM to FINE SAND, little clayey silt, trace iron	(SP-SM)		15	DO	14	18/24	0.3	•	Light gray silty
30-		fragments.									ыay (Сп) lense.
DR DR DR DR	ILLING ILL ME ILL RIG ILLER:	COMPANY: CHESAPEAKE O THOD: HSA à: MOBILE B-80 BRIAN VAN DURAN	BEOSYSTE	EMS INC.						LOGGED: SLW CHECKED: RIO DATE: 7/10/00	
DR	ILL DA	TE: 5/8/00								SHEET: 2 of 3	

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

CLIENT: SALTIRE INDUSTRIAL, INC.

GSL INSPECTOR: SLW

COORDINATES: N 6719183.85 E 11975657.99

SITE LOCATION: ARROWHEAD FACILITY

BORING LOCATION: -

_							SAMP	PLE			
Depth (FT)	Symbol	Description	nscs	Depth/Elev. (FT)	Number	Type	Blows/ft "N"	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
31 -		28-34.5' Compact, mottled gray, brown and red, MEDIUM to FINE SAND, little clayey silt, trace iron fragments.	(SP-SM)		16	DO	11	18/24	0.1	•	30-32' Performed sieve analysis. USCS: (SP-SM)
33 -					17	DO	17	24/24	0.2	•	
34 -				24.5							34-36
35 -		34.5-36.3' Loose, dark gray, MEDIUM to FINE SAND, little clayey silt.	(SP-SM)	107.53	18	DO	9	24/24	0.5	•	Performed sieve analysis. USCS: (SP-SM)
36-		OC 2 401 Firm to aliff deale	ļ	36.3							
37 -	H	gray, SILTY CLAY, some medium to fine sand.		105.73	19	DO	4	24/24	0.0	•	
38-	7		}								
39	H		(CH)		20	DO	4	24/24	0.1		
40 -	H										
41	H				21	DO	3	24/24	N/A	•	
42				42			- <u></u>		·		
43	1	Boring Terminated @ 42' BGS.									
44	1										
45 -											
DF DF DF DF DF	ILLING ILL ME ILL RIC ILLER: IILL DA	COMPANY: CHESAPEAKE G THOD: HSA 3: MOBILE B-80 BRIAN VAN DURAN TE: 5/8/00	BEOSYSTE	EMS INC.						LOGGED: SLW CHECKED: RIO DATE: 7/10/00 SHEET: 3 of 3	

PROJECT NO: 996-1100

GSL INSPECTOR: GM

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA COORDINATES: (APPROX.) N 6719758, E 11975425

CLIENT: SALTIRE INDUSTRIAL, INC.

SITE LOCATION: ARROWHEAD FACILITY

BORING LOCATION: -

-

......

······

		SUBSURFACE PROFILI	E				SAMP	٩LE			
Depth (FT)	Symbol	Description	nscs	Depth/Elev. (FT)	Number	Type	Blows/ft "N"	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
		Ground Surface	1	0				1			
		0-2' Brown, MEDIUM to FINE SAND, some clayey silt.	(SM)	141 2	1	DO	N A	N/A	0.0		
3-		2-12' Loose to dense, reddish brown, MEDIUM to FINE SAND, trace silt.		139	2	DO	5	18/24	N/A	•	
4					3	DO	15	13/24	N/A	•	
6			(SP)		4	DO	17	20/24	0.7	•	
9-					5	DO	26	15/24	N/A	•	
11				12	6	DO	34	16/24	0.0	•	
13		12-18.2' Compact to loose, reddish brown, MEDIUM to FINE SAND, little clayey silt.	(SP-SM)	129	7	DO	24	8/24	N/A	•	
15			5								
DRI DRI DRI DRI DRI	ILLING ILL ME ILL RIG ILLER: ILL DA	COMPANY: CHESAPEAKE (THOD: 4-1/4" HSA MOBILE DRILL AARON EICHELBERGER FE: 7/19/00	GEOSYSTE	EMS INC.				<u></u>		LOGGED: GM CHECKED: RIO DATE: 7/26/00 SHEET: 1 of 3	

PROJECT NO: 996-1100

GSL INSPECTOR: GM

DATUM: MSL

BORING LOCATION: -

COORDINATES: (APPROX.) N 6719758, E 11975425

SITE LOCATION: ARROWHEAD FACILITY

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

CLIENT: SALTIRE INDUSTRIAL, INC.

SUBSURFACE PROFILE SAMPLE PID Reading (ppm) Ē Recovery (IN/IN) Standard Remarks Pentration Test Depth/Elev. Description Blows/ft "N" Depth (FT) Number Symbol uscs blows/ft Type 20 40 60 80 12-18.2' Compact to loose, reddish brown, MEDIUM to 16 FINE SAND, little clayey silt. (SP-SM) 17 18 18.2 18.2-22.4' Firm to soft, 122.8 mottled gray and yellowish 8 DO 6 20/24 N/A 19 brown, SILTY CLAY, some <u>v</u> fine sand. 20 (CH) 23/24 0.3 21 9 DO 6 22 22.4 118.6 22.4-27' Dense to loose, 12 DO 34 24/24 N/A 23 mottled gray and yellowish brown, MEDIUM to FINE SAND, little clayey silt. 24-26 24 (SP-SM) Performed sieve 25 13 DO 8 24/24 0.0 analysis. USCS: (SM) 26 27 DO 27 14 16 24/24 N/A 27-30.7' Compact to loose 114 brown, MEDIUM TO FINE SAND, some clayey silt. 28 28-30 (SM) Performed sieve 29 DO 12/24 N/A analysis. 15 5 USCS: (SM) 30 LOGGED: GM DRILLING COMPANY: CHESAPEAKE GEOSYSTEMS INC. DRILL METHOD: 4-1/4" HSA. CHECKED: RIO DRILL RIG: MOBILE DRILL DATE: 7/26/00 DRILLER: AARON EICHELBERGER **DRILL DATE: 7/19/00** SHEET: 2 of 3

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA COORDINATES: (APPROX.) N 6719758, E 11975425

SITE LOCATION: ARROWHEAD FACILITY

CLIENT: SALTIRE INDUSTRIAL, INC.

GSL INSPECTOR: GM

BORING LOCATION: -

		SUBSURFACE PROFILE			SAMPLE						
Depth (FT)	Symbol	Description	nscs	Depth/Elev. (FT)	Number	Type	Blows/ft "N"	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
-			(SM)	30.7							
31 - 32 -		30.7-32.9' Compact to loose, mottled red, gray and brown, MEDIUM to FINE SAND, little clayey silt,	(SP-SM)	110.3	16	DO	28	24/24	0.0	•	32-34'
-		trace fine gravel (iron fragments)		32. 9							Performed sieve
33		32.9-34.5' Loose to compact, gray, MEDIUM to FINE SAND, little clayey	(SP-SM)	108.1	17	DO	5	12/24	N/A	•	analysis. USCS: (S M)
		silt. 34.5-38' Firm to stiff gray.		34.5 106.5							
35		SILTY CLAY, some medium to fine sand.			18	DO	18	18/24	0.1	•	
36 –	H		(CH)			•					
37 ⊣ + -	H			20	19	DO	7	24/24	N/A	•	
38-				103							
39-		Boring Terminated @ 38' BGS.									
40	ľ										
41											
42											
43											
44	ĺ										
45 -	ļ										
DRI DRI DRI DRI DRI	ILLING ILL ME ILL RIG ILLER: ILL DA	COMPANY: CHESAPEAKE G THOD: 4-1/4" HSA MOBILE DRILL AARON EICHELBERGER TE: 7/19/00	EOSYSTE	MS INC.						LOGGED: GM CHECKED: RIO DATE: 7/26/00 SHEET: 3 of 3	L

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

COORDINATES: N 6719635.32, E 11974652.29

CLIENT: SALTIRE INDUSTRIAL, INC.

GSL INSPECTOR: SLW

SITE LOCATION: ARROWHEAD FACILITY

BORING LOCATION: -

		SUBSURFACE PROFILE		SAMPL					_	1	
Depth (FT)	Symbol	Description	USCS	Depth/Elev. (FT)	Number	Type	Blows/ft -N-	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
51		No samples taken above 55' BGS.									0-55' Installed (grouted) 8" Dia.
52-											steel casing.
53											
54-											
55		55-63' Loose to compact,		92.23					- <u> </u>	-	
56 –		dark gray, FINE SAND, some clayey silt.			1	DO	14	24/24	0.0	•	
57											5 7-59 '
58				•	2	DO	13	24/24	0.0	•	Performed sieve analysis and Atterberg limits
59			(SM)	1							USCS: (SM)
60					3.	DO	12	24/24	0.0	•	
61				1							
62 -					4	DO	9	24/24	0.0	•	
63	11	63-75' Loose to compact		63 84.23				+			\$
64		dark gray, FINE SAND and SILTY CLAY.			5	DO	7	24/24	0.0	•	
65										-	
DRIL DRIL DRIL DRIL	LING L ME L RIG LER:	COMPANY: CHESAPEAKE G THOD: 12" MUD ROTARY/ 3-1 3: MOBILE B-80 BRIAN VAN DURAN	EOSYST 1/4" HSA	GOLO	NER NER			<u></u>		LOGGED: SLW CHECKED: RIO DATE: 7/10/00	
DRIL	L DA	TE: 5/17/00			<i>S1</i>	ESI	<u>7</u> 4			SHEET: 1 of 5	
		•								AR	301415

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

COORDINATES: N 6719635.32, E 11974652.29

AR30 4 6

SITE LOCATION: ARROWHEAD FACILITY

CLIENT: SALTIRE INDUSTRIAL, INC.

GSL INSPECTOR: SLW

BORING LOCATION: -

SUBSURFACE PROFILE SAMPLE PID Reading (ppm) Recovery (IN/IN) Depth/Elev. (FT) Standard Remarks Pentration Test ż Description Depth (FT) Blows/ft Number Symbol uscs Type blows/ft 20 40 60 80 63-75' Loose to compact, dark gray, FINE SAND and SILTY CLAY. DO 12 24/24 0.0 66 6 67 7 DO 6 24/24 0.0 68 (SC) 69 70 8 DO 7 24/24 0.0 . 71 72 9 DO 12 24/24 0.0 73 10 DO 24/24 0.0 74 11 75 75 72.23 75-83' Firm to stiff, dark gray, SILTY CLAY, some 76 fine sand. 11 DQ 12 24/24 0.0 77 78 12 DO 11 24/24 0.0 (CH) 79 80 DRILLING COMPANY: CHESAPEAKE GEOSYST LOGGED: SLW DRILL METHOD: 12" MUD ROTARY/ 3-1/4" HSA CHECKED: RIO DRILL RIG: MOBILE B-80 DATE: 7/10/00 GOLDÉR DRILLER: BRIAN VAN DURAN SIERRA **DRILL DATE: 5/17/00** SHEET: 2 of 5

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

COORDINATES: N 6719635.32, E 11974652.29

SITE LOCATION: ARROWHEAD FACILITY

CLIENT: SALTIRE INDUSTRIAL, INC.

GSL INSPECTOR: SLW

BORING LOCATION: -

SUBSURFACE PROFILE SAMPLE (mqq) Recovery (IN/IN) Depth/Elev. (F.T) Standard Reading Remarks Pentration Test ż Description Depth (FT) Blows/ft Number Symbol USCS Type blows/ft DI 20 40 60 80 75-83' Firm to stiff, dark 13 DO 24/24 12 0.0 gray, SILTY CLAY, some fine sand. 81 14 DO 24/24 0.0 11 82 ٠ 83 83-85 83 64.23 83-93' Loose to compact, Performed sieve dark gray, FINE SAND and SILTY CLAY. 15 DO 24/24 0.0 13 analysis and 84 Atterberg limits. USCS: (SC) 85 16 DO 24/24 0.0 86 11 . (SC) 87 17 24/24 88 DO 11 0.0 • 89 24/24 0.0 90 18 DO 8 ۲ 91 92 19 DO 10 24/24 0.0 . 93 93 54.23 93-105' Stiff to very stiff, dark gray, SILTY CLAY, some fine sand. 94 20 DO 9 24/24 0.0 0 95 DRILLING COMPANY: CHESAPEAKE GEOSYST LOGGED: SLW DRILL METHOD: 12" MUD ROTARY/ 3-1/4" HSA CHECKED: RIO DRILL RIG: MOBILE B-80 DATE: 7/10/00 GOLDER DRILLER: BRIAN VAN DURAN **DRILL DATE: 5/17/00** SIERRA SHEET: 3 of 5

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

COORDINATES: N 6719635.32, E 11974652.29

CLIENT: SALTIRE INDUSTRIAL, INC:

GSL INSPECTOR: SLW

SITE LOCATION: ARROWHEAD FACILITY

BORING LOCATION: -

		SUBSURFACE PROFILE	<u>i</u>		SAMPLE						
Depth (FT)	Symbol	Description	nscs	Depth/Elev. (FT)	Number	Type	Biows/ft "N"	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
96	H	93-105' Stiff to very stiff, dark gray, SILTY CLAY, some fine sand.			21	DO	13	24/24	0.0	•	
97 – 	H				22	DO	13	24/24	0.0	•	
99 100			(CH)		23	DO	9	24/24	1.1	•	
101	H				24	DO	13	24/24	0.0	•	
103 104	H				25	DO	11	24/24	0.2	•	
105		105-111' Compact, dark gray [®] FINE SAND and SILTY CLAY.		105 42.23	26	DO	12	24/24	0.0	•	
107-	1		(SC)		27	00		24/24	0.2		
109			(30)								
110-										•	
DR DR DR DR	ILLING ILL ME ILL RIG ILLER:	COMPANY: CHESAPEAKE G THOD: 12" MUD ROTARY/ 3-1 i: MOBILE 8-80 BRIAN VAN DURAN	EOSYST 1/4" HSA	GOLD	ER					LOGGED: SLW CHECKED: RIO DATE: 7/10/00	
DR	ILL DA	TE: 5/17/00			SI	ERF	7A			SHEET: 4 of 5	
										AR30) 4 8

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

COORDINATES: N 6719635.32, E 11974652.29

SITE LOCATION: ARROWHEAD FACILITY

CLIENT: SALTIRE INDUSTRIAL, INC.

GSL INSPECTOR: SLW

BORING LOCATION: -

SUBSURFACE PROFILE SAMPLE PID Reading (ppm) Recovery (IN/IN) Depth/Elev. (FT) Standard Remarks Pentration Test Description Blows/ft "N" Depth (FT) Number Symbol USCS blows/ft Type 20 40 60 80 28 DO 26 24/24 0.3 111 111 36.23 **Boring Terminated** @ 111' BGS. 112-113-114-115-116-117-118-119-120-121 122 123 124 125 LOGGED: SLW DRILLING COMPANY: CHESAPEAKE GEOSYST 111 DRILL METHOD: 12" MUD ROTARY/ 3-1/4" HSA CHECKED: RIO DRILL RIG: MOBILE B-80 DATE: 7/10/00 GOLDÉR DRILLER: BRIAN VAN DURAN SIERRA SHEET: 5 of 5 DRILL DATE: 5/17/00 AR301419

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

CLIENT: SALTIRE INDUSTRIAL, INC.

SITE LOCATION: ARROWHEAD FACILITY

BORING LOCATION: -

COORDINATES: N 6720020.57, E 11975728.45

GSL INSPECTOR: SLW

DRILL RIG: MOBILE B-80

DRILL DATE: 5/19/00

DRILLER: BRIAN VAN DURAN

SAMPLE SUBSURFACE PROFILE PID Reading (ppm) Recovery (IN/IN) Depth/Elev. (FT) Standard Remarks Pentration Test Description Blows/ft 'N' Depth (FT) Number Symbol uscs blows/ft Type 20 40 60 80 No samples taken above 0-55' 55' BGS. 51 Installed (grouted) 8" Dia. 52 steel casing. 53 54 55 55 84.33 Loose, dark gray, FINE SAND and SILTY CLAY. 56 1 DO 7 24/24 0.8 57 2 DO 7 24/24 0.9 58 (SC-SM) 59 60 З DO 7 24/24 0.3 61 DO 8 24/24 1.2 62 4 63 64 5 DO 6 24/24 0.0 65 DRILLING COMPANY: CHESAPEAKE GEOSYST LOGGED: SLW 3 DRILL METHOD: 12" MUD ROTARY/ 3-1/4" HSA CHECKED: RIO

GOLDÉR

SIEFRA

DATE: 7/10/00

SHEET: 1 of 5

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

CLIENT: SALTIRE INDUSTRIAL, INC.

GSL INSPECTOR: SLW

COORDINATES: N 6720020.57, E 11975728.45

SITE LOCATION: ARROWHEAD FACILITY

BORING LOCATION: -

		SUBSURFACE PROFILE					SAMF				
Depth (FT)	Symbol	Description	nscs	Depth/Elev. (FT)	Number	Type	Blows/ft "N"	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
66 -	7	Loose, dark gray, FINE SAND and SILTY CLAY.		67	6	DO	8	24/24	0.0	•	
67	H	67-76' Firm to stiff, dark gray, SILTY CLAY, some fine sand.		72.33	7	DO	10	24/24	0.0	•	
69 70	H				8	DO	12	24/24	0.0	•	
71 72	H		(CH)		9	DO	13	24/24	0.0	•	71-73' Performed sieve analysis and Atterberg limits
73					10	DO	10	24/24	0.0	•	USCS: (CH)
75 - 76 -	H	76-86' Loose to compact.	•	76 63.33	11	DO	7	24/24	0.0	•	
77	/	dark gray, FINE SAND and SILTY CLAY			12	DO		24/24	0.0	•	
79	/										
	ILLING IILL ME IILL RIG IILLER: IILL DA	COMPANY: CHESAPEAKE G THOD: 12" MUD ROTARY/ 3- : MOBILE B-80 BRIAN VAN DURAN TE: 5/19/00	EOSYST 1/4" HSA	GOLD	ER SI	ERI		<u> </u>		LOGGED: SLW CHECKED: RIO DATE: 7/10/00 SHEET: 2 of 5	[

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

CLIENT: SALTIRE INDUSTRIAL, INC.

SITE LOCATION: ARROWHEAD FACILITY

COORDINATES: N 6720020.57, E 11975728.45

GSL INSPECTOR: SLW

BORING LOCATION: -

Line Description Signalard Signal Signalard Signal Signalard Signal Signalard Signalard Signal Sign			SUBSURFACE PROFILE					SAMF	LE			
76 B1 Oracle Dompach, dark gray, FINE SAND and SILTY CLAY. 13 DO 5 24/24 0.0 82 83 14 DO 8 24/24 0.0 14 84 86 100 SILTY CLAY. 15 DO 10 24/24 0.0 85 86 15 DO 10 24/24 0.0 10 86 100 SILTY CLAY. 53.33 16 DO 7 24/24 0.0 87 some fine sand. (CH) 17 DO 10 24/24 0.0 90 19 DO 10 24/24 0.0 10 91 19 DO 10 24/24 0.0 10 92 19 DO 12 24/24 0.0 11 93 19 DO 12 24/24 0.0 11 94 19 DO 12 24/24 0.0 11 94 19 DO 12 24/24 0.0 11 <t< td=""><td>Depth (FT)</td><td>Symbol</td><td>Description</td><td>uscs</td><td>Depth/Elev. (FT)</td><td>Number</td><td>Type</td><td>Blows/ft "N"</td><td>Recovery (IN/IN)</td><td>PID Reading (ppm)</td><td>Standard Pentration Test blows/ft 20 40 60 80</td><td>Remarks</td></t<>	Depth (FT)	Symbol	Description	uscs	Depth/Elev. (FT)	Number	Type	Blows/ft "N"	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
82 14 D0 8 24/24 0.0 • 83 64 15 D0 10 24/24 0.0 • 86 86 16 D0 7 24/24 0.0 • 86 96 16 D0 7 24/24 0.0 • 87 some line sand. 53.33 16 D0 7 24/24 0.0 • 88 (CH) 17 D0 10 24/24 0.0 • 91 18 D0 10 24/24 0.0 • 91 19 D0 12 24/24 0.0 • 92 19 D0 12 24/24 0.0 • 93 19 D0 12 24/24 0.0 • 94 19 D0 12 24/24 0.0 • 95 11 24/24 0.0 • • • 96 12 D0 11 24/24 0.9 •	81 -		76-86' Loose to compact, dark gray, FINE SAND and SILTY CLAY.	(SC)		13	DO	5	24/24	0.0		
83 15 DO 10 24/24 0.0 86 86-103' Stiff to very stiff, dark gray, SILTY CLAY, some fine sand. 53.33 16 DO 7 24/24 0.0 87 some fine sand. (CH) 17 DO 10 24/24 0.0 88 (CH) 17 DO 10 24/24 0.0 0 90 18 DO 10 24/24 0.0 0 91 18 DO 10 24/24 0.0 0 92 19 DO 12 24/24 0.0 0 93 20 DO 11 24/24 0.0 0 93 20 DO 11 24/24 0.0 0 94 20 DO 11 24/24 0.9 0 95 20 DO 11 24/24 0.9 0 95 20 DO 11 24/24 0.9 0 95 20 DO 11 24/24 0.9 0 <td>82 -</td> <td></td> <td></td> <td>1</td> <td></td> <td>14</td> <td>DO</td> <td>8</td> <td>24/24</td> <td>0.0</td> <td>•</td> <td></td>	82 -			1		14	DO	8	24/24	0.0	•	
85 86 86 86 98 16 D0 7 24/24 0.0 87 some time sand. 67 10 24/24 0.0 0 88 (CH) 17 D0 10 24/24 0.0 0 90 18 D0 10 24/24 0.0 0 0 91 18 D0 10 24/24 0.0 0 0 91 19 D0 12 24/24 0.0 0 0 92 19 D0 12 24/24 0.0 0 0 93 19 D0 12 24/24 0.0 0 0 94 20 D0 11 24/24 0.9 0 0 95 20 D0 11 24/24 0.9 0 0 0 94 20 D0 11 24/24 0.9 0 0 0 0 0 95 20 D0 11 24/24 0.9	83					15	DO	10	24/24	0.0	•	
87 some fine sand. 88 (CH) 90 10 24/24 0.0 91 18 DO 10 24/24 0.0 91 18 DO 10 24/24 0.0 91 19 DO 10 24/24 0.0 92 19 DO 12 24/24 0.0 93 19 DO 12 24/24 0.0 94 20 DO 11 24/24 0.9 95 20 DO 11 24/24 0.9 95 EDEDITION EDEDITION EDEDITION EDEDITION DRILLING COMPANY: CHESAPEAKE GEOSYST EDEDITION EDEDITION EDEDITION DRILL RIG: MOBILE B-80 EDEDITION EDEDITION EDEDITION EDEDITION DRILL DATE: 5/19/00 EDEDITION EDEDITION SHEET: 3 of 5	85 86		86-103' Stiff to very stiff, dark gray, SILTY CLAY,		86 53.33	16	DO	7	24/24	0.0	•	
89 18 DO 10 24/24 0.0 91 18 DO 10 24/24 0.0 92 19 DO 12 24/24 0.0 93 19 DO 12 24/24 0.0 93 20 DO 11 24/24 0.9 94 20 DO 11 24/24 0.9 95 20 DO 11 24/24 0.9 96 20 DO 11 24/24 0.9 97 EXAMPLE EXAMPLE EXAMPLE EXAMPLE DRILL METHOD: 12' MUD ROTARY/ 3-1/4' HSA EXAMPLE EXAMPLE EXAMPLE DRILL METHOD: 12' MUD ROTARY/ 3-1/4' HSA EXAMPLE EXAMPLE DATE: 7/10/00 DRILL BATE: S/19/00 EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE DRILL DATE: S/19/00 EXAMPLE EXAMPLE EXAMPLE EXAMPLE EXAMPLE	87 - 88 -	H	some fine sand.	(CH)		17	DO	10	24/24	0.0	•	
91 19 DO 12 24/24 0.0 93 19 DO 12 24/24 0.0 • 93 20 DO 11 24/24 0.9 • 94 20 DO 11 24/24 0.9 • 95 20 DO 11 24/24 0.9 • DRILLING COMPANY: CHESAPEAKE GEOSYST DRILL METHOD: 12'' MUD ROTARY/ 3-1/4" HSA DRILL METHOD: 12'' MUD ROTARY/ 3-1/4" HSA DRILL RIG: MOBILE B:80 DRILL RIG: MOBILE B:80 DRIL DATE: 5/10/00 DATE: 7/10/00 DRILL DATE: 5/19/00 SIEEBRA SHEET: 3 of 5 5	89 T					18	DO	10	24/24	0.0	•	
93 94 20 DO 11 24/24 0.9 94 95 20 DO 11 24/24 0.9 • 95 95 DRILLING COMPANY: CHESAPEAKE GEOSYST DRILL METHOD: 12" MUD ROTARY/ 3-1/4" HSA DRILL METHOD: 12" MUD ROTARY/ 3-1/4" HSA DRILL RIG: MOBILE B-80 DO DATE: 7/10/00 DRILLER: BRIAN VAN DURAN DRILL DATE: 5/19/00 SIEBBA SHEET: 3 of 5	91 - 					19	DO	12	24/24	0.0	•	
95 DRILLING COMPANY: CHESAPEAKE GEOSYST LOGGED: SLW DRILL METHOD: 12" MUD ROTARY/ 3-1/4" HSA Image: Checked: Rio Che	93 94					20	DO	11	24/24	0.9	•	
DRILLING COMPANY: CHESAPEAKE GEOSYST DRILL METHOD: 12" MUD ROTARY/ 3-1/4" HSA DRILL RIG: MOBILE 8-80 DRILLER: BRIAN VAN DURAN DRILL DATE: 5/19/00 SIERRA SHEET: 3 of 5	92{											
JEAN	DR DR DR DR	AILLING AILL ME AILL RIG AILLER: AILL DA	COMPANY: CHESAPEAKE G THOD: 12" MUD ROTARY/ 3-1 :: MOBILE 8-80 BRIAN VAN DURAN TE: 5/19/00	EOSYST /4" HSA	GDLD	ER SI	ERI	7.4			LOGGED: SLW CHECKED: RIO DATE: 7/10/00 SHEET: 3 of 5	

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

CLIENT: SALTIRE INDUSTRIAL, INC.

SITE LOCATION: ARROWHEAD FACILITY

COORDINATES: N 6720020.57, E 11975728.45

GSL INSPECTOR: SLW

BORING LOCATION: -

		SUBSURFACE PROFILE	Ξ		İ		SAMF	'LΕ			
Depth (FT)	Symbol	Description	USCS	Depth/Elev (FT)	Number	Type	Blows/ft "N"	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
96 -	HHH	86-103' Stiff to very stiff, dark gray, SILTY CLAY, some fine sand.	(CH)		21	DO	9	24/24	0.6	•	
97-	H				22	DO	10	24/24	0.0	•	
99	H		· · · · · · · · · · · · · · · · · · ·		23	DO	15	24/24	0.0	•	
101	H H				24	DO	26	24/24	0.3	•	
103 - 104 - 104 -		103-111' Loose to compact, dark gray, FINE SAND and SILTY CLAY.	(SC-SM)	103 36.33	25	DO	10	24/24	0.2	•	
105 106 106	/				26	DO	14	24/24	0.0		
107-1 108-1 108-1	/				27	DO	9	24/24	0.0	•	107-109' Performed sieve analysis and
109 110 110	/ /									•	Atterberg limits. USCS: (SC-SM)
DR DP DP DP	NILLING NILL ME NILL RIC NILLER:	COMPANY: CHESAPEAKE C THOD: 12" MUD ROTARY/ 3- a: MOBILE B-80 BRIAN VAN DURAN TE: 5/19/00	GEOSYST 1/4" HSA	GOLD	ER ST					LOGGED: SLW CHECKED: RIO DATE: 7/10/00 SHEET: 4 of 5	
					31	C733	1/4				

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

COORDINATES: N 6720020.57, E 11975728.45

CLIENT: SALTIRE INDUSTRIAL, INC.

GSL INSPECTOR: SLW

SITE LOCATION: ARROWHEAD FACILITY

BORING LOCATION: -

SAMPLE SUBSURFACE PROFILE PID Reading (ppm) Recovery (IN/IN) Depth/Elev. (FT) Standard Remarks Pentration Test Description Blows/ft "N" Depth (FT) Number Symbol USCS blows/ft Type 20 40 60 80 28 DO 24/24 0.0 12 111 111 28.33 Boring Terminated 112-@ 111 BGS. 113 114 115-116-117-118 119-120 121 122-123-124 125 LOGGED: SLW DRILLING COMPANY: CHESAPEAKE GEOSYST DRILL METHOD: 12" MUD ROTARY/ 3-1/4" HSA CHECKED: RIO DRILL RIG: MOBILE B-80 DATE: 7/10/00 GOLDÉR **DRILLER: BRIAN VAN DURAN** DRILL DATE: 5/19/00 SIERRA SHEET: 5 of 5 AR301424

SOIL LOG OF BOREHOLE MW-37

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

COORDINATES: N 6719573.00, E 11975408.86

CLIENT: SALTIRE INDUSTRIAL, INC.

SITE LOCATION: ARROWHEAD FACILITY

GSL INSPECTOR: SLW

BORING LOCATION: ROUT 3 ROW

		SUBSURFACE PROFILE	Ξ				SAMF	PLE			
Depth (FT)	Symbol	Description	USCS	Depth/Elev. (FT)	Number	Type	Blows/ft "N"	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 50 80	Remarks
0		Ground Surface		0							
1		0-2' Compact, brown, MEDIUM to FINE SAND, some clayey silt.	(SM)	148 2	1	DO	15	16/24	1.5		
3	7	2-10' Firm, red and yellowish brown, SILTY CLAY and MEDIUM to FINE SAND.		146	2	DO	6	20/24	0.3	•	
4 5 5 6			(CL-ML)		3	DO	14	21/24	0.8	•	
7 7 8 7	7	·			4	DO	11	21/24	0.9	•	
9	<i></i>			10	5	DO	9	15/24	0.9	•	
		10-20' Compact to dense, reddish brown, MEDIUM to FINE SAND, little clayey silt.		138	6	DO	17	20/24	0.3	•	
12 13			(SP-SM)		7	DO	20	22/24	0.9	• •	
14 - 15 -											
DR DR DR DR DR	ILLING ILL ME ILL RIG ILLER: ILL DA	COMPANY: CHESAPEAKE (THOD: 4-1/4" HSA 3: MOBILE B-80 BRIAN VAN DURAN TE: 5/11/00	GEOSYST	GOLD	ER SI	EAN	₹ <i>A</i>			LOGGED: SLW CHECKED: RIO DATE: 7/10/00 SHEET: 1 of 3	<u></u>

SOIL LOG OF BOREHOLE MW-37

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

COORDINATES: N 6719573.00, E 11975408.86

CLIENT: SALTIRE INDUSTRIAL, INC.

SITE LOCATION: ARROWHEAD FACILITY

GSL INSPECTOR: SLW

BORING LOCATION: ROUT 3 ROW

		SUBSURFACE PROFILI	E				SAMP	PLE			
Depth (FT)	Symbol	Description	USCS	Depth/Elev. (FT)	Number	Type	Blows/ft "N"	Recovery (IN/IN)	PID Reading (ppm)	Standard Pentration Test blows/ft 20 40 60 80	Remarks
16		10-20' Compact to dense, reddish brown, MEDIUM to FINE SAND, little clayey sit			8	DO	3 8	21/24	0.3	• • • •	
17		Sit.	(SP-SM)		9	DO	28	20/24	0.0	•	
18				20	10	DO	16	18/24	0.0	•	18.1-18.3' Iron sand lense.
20		20-28' Compact to loose, yellowish brown, MEDIUM to FINE SAND, little clayey silt, trace fine gravel.		128	11	DO	14	18/24	1.3	•	
22					12	DO	3	22/24	0.0	•	
24			(37-5M)		13,	DO	6	20/24	0.0	•	25.1-25.3' Iron sand l en se.
26				28	14	DO	8	17/24	0.2	•	27.5-27.7'
28		28-34' Loose to compact, mottled yellowish, brown and gray, MEDIUM to FINE SAND, little clayey silt.	(SP-SM)	120	15	DO	9	23/24	0.0	•	Clay lense.
30	ILLING ILL ME ILL RIC ILLER: ILL DA	COMPANY: CHESAPEAKE (THOD: 4-1/4" HSA 6: MOBILE B-80 BRIAN VAN DURAN TE: 5/11/00	GEOSYST	GOLD	DER SI	ERJ	3.4			LOGGED: SLW CHECKED: RIO DATE: 7/10/00 SHEET: 2 of 3	2011.25
		•								АК	301460

SOIL LOG OF BOREHOLE MW-37

PROJECT NO: 996-1100

DATUM: MSL

PROJECT: SALTIRE/ ARROWHEAD PLATING/ VA

COORDINATES: N 6719573.00, E 11975408.86

CLIENT: SALTIRE INDUSTRIAL, INC.

GSL INSPECTOR: SLW

SITE LOCATION: ARROWHEAD FACILITY BORING LOCATION: ROUT 3 ROW

SAMPLE SUBSURFACE PROFILE PID Reading (ppm) Ē Recovery (IN/IN) Standard Remarks **Pentration Test** Depth/Elev. Description Blows/ft N Depth (FT) Symbol Number USCS blows/ft Type 20 40 60 80 28-34' Loose to compact, mottled yellowish, brown and gray, MEDIUM to FINE 31 16 DO 12 16/24 0.1 SAND, little clayey silt. (SP-SM) 32 26 1.2 DO 19/24 33 17 34 34 34-35' Soft to firm, dark 114 (CH) gray, SILTY CLAY, some 35 medium to fine sand. 18 DO 35 20/24 0.0 11 113 35-40' Compact, dark gray, MEDIUM to FINE SAND, 36 some silty clay. 0.0 37 100 18/24 19 12 (SC) 38 39 DO 9 24/24 0.0 20 0 40 40 40-44' Soft to firm, dark 108 grav, SILTY CLAY, some medium to fine sand. 21 DO 9 24/24 0.0 41 ٠ (CH) 42 43 22 DO 10 24/24 0.0 44 44 104 **Boring Terminated** 45 @ 44' BGS. LOGGED: SLW DRILLING COMPANY: CHESAPEAKE GEOSYST DRILL METHOD: 4-1/4" HSA CHECKED: RIO DRILL RIG: MOBILE B-80 DATE: 7/10/00 GOLDER DRILLER: BRIAN VAN DURAN SHEET: 3 of 3 DRILL DATE: 5/11/00 SIERRA

APPENDIX B-2

Well Installation Log

MONITORING WELL INSTALLATION LOG

	96-1100 PRO ECT	SALTIRE / ARROWHEAD PLATING / VA	MW-37 SHEET 1 of 1
JOB NO	SW CREATE ALL AND ALL	4-1/4" JD HOU OW STEM AUGERS	148.00 www.ma.acaty 129.22
GA INSP	DRILLING METHOD	CHECADEAKE CEOSYSTEMS INC	150.06 WATER DEPTH 123.22
WEATHER PA	RILY CLOUD TORILLING COMPANY	CHESAPEARE GEOSTSTEMS INC TOP PVC ELEV	150.00 TIME/DATE MAI 2000
TEMP	90 S F DRILL RIG MOL	ALL B-80 ORILLER BRIAN VAN DUREN STARTED	TIME / DATE COMPLETED
LOCATION /	COORDINATES	11974637.02 E	
		MATERIALS INVENTORY	
WELL CASING		I.f. WELL SCREEN2 in. dia10' I.f. BEN	TONITE SEAL
CASING TYPE	SCH. 40 PVC	SCREEN TYPESCH 40 PVCINST	ALLATION METHOD
JOINT TYPE	FLUSH_THREADED	SLOT SIZEO.010" MACHINE SLOTTEDFILT	ER PACK OTY
GROUT QUAN	TITY74 GALLONS	CENTRALIZERS NONE USED FILT	ER PACK TYPESILICA_20-40
GROUT TYPE	95% CEMENT/5% BENTON	ITEDRILLING MUD TYPENAINST	ALLATION METHODWASHED
			T
ELEV. /DEPTH	DESCRIPTION	WELL SKETCH	INSTALLATION NOTES
E			
F	l l		•
	CROUND SURFACE		
- 148.00 - 0.0	GROUND SURPACE		-
	SEE BORING LOG MW-37 FOR		
Ē			
F			.] ,
- 10.0	· · ·	BORE HOLE	
Ē			
É.			
Ē			
200			
20.0			· · · · · · · · · · · · · · · · · · ·
F			WELL DEVELOPMENT NOTES
Ē			
		29'	
- 30.0		31.5' BERTONITE	1 5/12/00 GSL PURGED 60
		34'	GALLONS OF GROUNDWATER.
F		2" DIA	
-		SCH 40 PVC	5/15/00 GSL PURGED 3
40.0		WELL SCREEN	GALLONS OF GROUNDWATER
-	,	SAND PACK	W/FIELD MEASUREMENTS
-		44	(SAMPLED SIMULIANEOUSLI)
-			
50.0			
_		END CAP	
-) · <u> </u>		LEGEND
-		• •	P7
- 60.0			CEMENT/BENTONITE GROUT
	F F		BBB 3/8" BENTONITE CHIPS
		j E	
	l i i i i i i i i i i i i i i i i i i i		20-40 SAND PACK
70.0		1	
			DRILLER: BRIAN VAN DOREN
			LIC. DRILLER: DRIAN VAN DOREN
80.0		í E	GSL APPROVAL: RIO
		[DATE: 7/31/00
	<u></u> <u>_</u>	۸ <u>ــــــــــــــــــــــــــــــــــــ</u>	<u></u>

APPENDIX B-3

Monitoring Well Water Level and Sampling Data

ı,

AR301430

. _ _

WATER LEVEL DATA SUMMARY MAY 2000 BASELINE SAMPLING EVENT ARROWHEAD PLATING FACILITY MONTROSS, VA

.

.

	COORDIN	IATES (It)				WATER LE	VEL DATA			
WELL No.	EASTING	NORTHING	Top of Casing Elevation ((t-MSL)	Ground Surface Elevation (ft-MSL)	Top of Screen Top of Screen	Bottom of Screen Depth (ft-BTOC)	qmu9 gniiqms2 (OOT8-#) digeO	Date Water Level Measured	Water Level (ft-BTOC)	Water Level (ft-MSL)
MW1	11974959.02	6718745.40	149.99	147.81	35.18	25.18	30.2	May-00	21.58	128.41
	See N	lote 1	149.85	147.88	34.97	24.97	30.0			•
MW2	11975237.52	6719067.34	146.74	144.83	31.91	21.91	26.9	May-00	19.47	127.27
MW3	11974409.18	6719493.68	151.30	149.38	36.92	26.92	31.9	May-00	20.54	130.76
MW4	11974891.39	6719862.21	141.45	139.46	21.99	11.99	17.0	May-00	11.21	130.24
MWS	11974897.78	6719622.67	143.49	143.72	29.77	19.77	24.8	May-00	13.59	129.90
MW6	11974791.02	6719514.24	148.76	147.06	36.70	26.70	31.7	May-00	19.29	129.47
MW7	11975036.79	6719558.47	142.30	142.60	29.70	19.70	24.7	May-00	14.43	127.87
MWB	11975086.22	6719430.72	142.62	142.92	29.70	19.70	24.7	May-00	15.03	127.59
6MM	11974603.64	6719354.70	148.46	146.70	31.76	21.76	26.8	May-00	18.28	130.18
MW10	11975334.30	6719537.10	139.92	138.12	31.80	21.80	26.8	May-00	15.89	124.03
MW11	11975282.07	6719630.42	134.87	132.46	27.41	17.41	22.4	May-00	11.95	122.92
MW12	11975258.18	6719739.94	128.12	126.29	21.83	11.83	16.8	May-00	7.52	120.60
MW13	11975226.15	6719865.09	119.93	118.14	15.79	5.79	12.4	May-00	9.10	110.83

.

WATER LEVEL DATA SUMMARY MAY 2000 BASELINE SAMPLING EVENT ARROWHEAD PLATING FACILITY MONTROSS, VA

	COORDIA	LATES (ft)				WATER LE	VEL DATA			
WELL NO.	EASTING	NORTHING	Top of Casing Elevation (It-MSL)	Ground Surtace Elevation (ft-MSL)	Top of Screen Depth (ft-BTOC)	Bottom of Screen Depth (ft-BTOC)	gmu9 gnilgms2 (DOT8-ft) ftgeD	leve1 retsW stsD berusseM	Water Level (ft-BTOC)	אפנפג רפּאפן אפנפג רפּאפן (יו-MSL)
MW21	11975255.28	6719384.19	144.19	142.12	37.07	27.07	32.1	May-00	17.61	126.58
MW22	11974513.30	6719251.11	148.70	146.69	27.01	17.01	22.3	May-00	17.67	131.03
MW23	11975425.54	6719854.47	141.14	139.32	34.82	24.82	29.8	May-00	20.79	120.35
MW24	11975707.91	6719739.94	137.79	136.38	33.41	23.41	28.4	May-00	17.49	120.30
MW25	11975817.14	6719554.06	140.99	138.73	36.76	26.76	31.8	May-00	22.52	118.47
MW26	11975785.70	6719318.84	143.25	141.25	38.50	28.50	33.5	May-00	23.67	119.58
MW31	11974655.37	6719299.59	147.28	147.78	43.00	33.00	38.0	May-00	17.44	129.84
MW32	11974933.55	6719285.19	147.39	147.89	43.50	33.50	38.5	May-00	18.85	128.54
MW33	11975613.44	6719480.19	143.74	141.74	40.00	30.00	35.0	May-00	21.23	122.51
MW34	11974416.23	6719068.92	149.34	147.34	42.00	32.00	37.0	May-00	19.02	130.32
MW35	11975607.24	6720432.51	143.98	141.98	36.00	26.00	31.6	May-00	27.28	116.70
MW36	11976177.18	6720125.21	138.90	136.90	32.00	22.00	27.0	May-00	21.99	116.91
MW37	11974637.02	6718821.57	150.06	148.00	46.06	36.06	41.1	May-00	20.84	129.22

٠.

NOTES:

(1) Monitoring well MW-1 was resurveyed after the completion of the May 2000 sampling event.

WELL SAMPLING DATA MAY 2000 BASELINE SAMPLING EVENT ARROWHEAD PLATING FACILITY MONTROSS, VA

				WELL	SAMPLING	DATA		
WELL No.	Date	Water Level Before Purging (ft-BTOC)	Ригділд Fłow Rate (пітіп)	Total Purging Time (hrs)	Volume Purged (gal)	Water Level Before COT8-119 (ft-BTOC)	Water Level After CoT8-11) gnilgms2	ateR wol∃ porilqmsS (nim\im)
1 MM	May-00	21.63	180	0.83	2.0	21.78	21.78	180
MW2	May-00	19.40	250-150	0.83	4.0	19.57	19.57	250
MW3	May-00	20.44	150-125	0.83	1.5	20.64	20.63	125
MW4	May-00	11.22	400	0.92	3.5	11.38	11.40	400
MW5	May-00	13.26	72-60	2.17	2.0	14.28	14.36	66
MWG	May-00	19.14	275-250	0.58	3.3	19.25	19.25	250
MW7	May-00	14.25	150-125	0.83	2.0	14.35	14.40	125
MW8	May-00	14.90	250-200	1.50	5.0	15.30	15.35	220
6MM	May-00	18.15	400-350	0.83	5.3	18.30	18.30	375
MW10	May-00	15.58	150-100	1.00	2.0	15.70	15.69	100
MW11	May-00	11.60	500	0.58	5.0	11.90	12.00	500
MW12	May-00	8.21	100-50	0.83	1.0	8.35	8.35	75
MW13	May-00	9.11	1000	1.08	14.0	9.34	9.35	500

.

GOLDER SIERRA

WELL SAMPLING DATA MAY 2000 BASELINE SAMPLING EVENT ARROWHEAD PLATING FACILITY MONTROSS, VA

٠

,

	/(18133 7 111)				Ī									Γ
	etsA wol7 gnilqms2	20	4 V	25	2	15(15	150	20 20	N.	8	350	100	
	Water Level After Sampling (ft-BTOC)	17.92	17.82	21.50	17.30	22.46	23.82	17.75	19.04	21.50	19.45	27.18	21.93	2 8
DATA	Water Level Before Sampling (ft-BTOC)	17,94	17,80	21,31	17,30	22.46	23,78	17.75	19.06	21.50	19,45	27.18	21,94	21.00
SAMPLING	Vokume Purged (gal)	4.0	4.5	2.0	1.5	1.0	1.5	2.0	4.3	2.0	1.3	4.0	3.5	3.0
WELL	Totel Purging Time (hrs)	6.83	0.67	1.08	2.00	0.75	0.67	0.83	1.42	C8 .0	2.17	85.0	1.17	1.08
	Purging Flow Rate (nim\m)	500-450	400-375	50-25	64	150	200-150	175-100	200-150	200	30	350-250	180	120-50
	Water Level Before Purging (ft-BTOC)	17.58	17.72	20.57	17.16	22.35	23.47	17.52	18.91	21.36	18.95	26.97	21.85	19.98
	Date	May-00	May-00	May-00	May-00	May-00	May-00	May-00	May-00	May-00	May-00	May-00	May-00	May-00
	WELL NO.	MW21	MW22	MW23	MW24	MW25	MW26	MW31	MW32	MW33	MW34	8 MW35	MW36	MW-37

.

.

......

APPENDIX B-4

Soil Boring and CPT Soil Interpretation Data Correlation

·

.

SOIL BORING AND CPT SOIL DATA CORRELATION MAY 2000 BASELINE SAMPLING EVENT ARROWHEAD PLATING FACILITY MONTROSS, VA

Depth (ft)	Standard CPT Soil Type (CPT D10)	Boring Soil Classification (SBS-10)
1.0	SANDY SILT TO CLAYEY SILT (ML-MH)	M-F SAND, Some Silty Clay (SC-SM)
2.0	SANDY SILT TO CLAYEY SILT (ML-MH)	M-F SAND, Some Silty Clay (SC-SM)
2.9	SILTY CLAY TO CLAY (CL)	M-F SAND, Some Silty Clay (SC-SM)
3.1		M-F SAND, Some Silty Clay (SC-SM)
3.9		M-F SAND, Some Silly Clay (SC-SM)
4.9		M-E SAND, Some Silty Clay (SC-SM)
51		M-F SAND, Some Silty Clay (SC-SM)
6.0	ORGANIC MATERIAL	M-F SAND, Some Silty Clay (SC-SM)
6.1	ORGANIC MATERIAL	M-F SAND, Some Clayey Silt (SM)
7.0	CLAYEY SILT TO SILTY CLAY (MH-CL)	M-F SAND, Some Clayey Silt (SM)
7.9	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Some Clayey Silt (SM)
8,1	SAND TO SILTY SAND (SP-SM)	M-F SAND, Some Clayey Silt (SM)
8.9	SAND (SP)	M-F SAND, Some Clayey Silt (SM)
9.1	SAND (SP)	M-F SAND, Some Clayey Silt (SM)
10.0	SAND TO SILTY SAND (SP-SM)	M-F SAND, Some Clayey Sift (SM)
12.1	SANUY SILL TO CLAYEY SILT (ML-MH)	M-F SAND, Some Clayey Silt (SM)
13.0	CLAYEV SHIT TO SHITY CLAY (MH-CL)	M-F SAND, Some Clayey Silt (SM)
14 1	SILTY SAND TO SANDY SILT (SM)	SILTY CLAY Little C-E Sand (CH)
14.9	SANDY SILT TO CLAYEY SILT (ML-MH)	SILTY CLAY, Little C-F Sand (CH)
15.1	SANDY SILT TO CLAYEY SILT (ML-MH)	SILTY CLAY, Little C-F Sand (CH)
16.0	SILTY CLAY TO CLAY (CL)	SILTY CLAY, Little C-F Sand (CH)
17.0	SILTY CLAY TO CLAY (CL)	SILTY CLAY, Little C-F Sand (CH)
17.9	SILTY CLAY TO CLAY (CL)	SILTY CLAY, Little C-F Sand (CH)
18.1	SILTY CLAY TO CLAY (CL)	M-F SAND, Little Clayey Silt (SP-SM)
18.9	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Little Clayey Silt (SP-SM)
19.1	SANDY SILT TO CLAYEY SILT (ML-MH)	M-F SAND, Little Clayey Silt (SP-SM)
19.9	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Clayey Sift (SP-SM)
20.1	SAND TO SILLY SAND (SP-SM)	M-F SAND, Little Clayey Sift (SP-SM)
20.5	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Clayey Sitt (SP-SM)
22.0	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Clayey Silt (SP-SM)
23.0	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Clavey Sift (SP-SM)
24.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Little Clayey Silt (SP-SM)
25.0	SANDY SILT TO CLAYEY SILT (ML-MH)	M-F SAND, Little Clayey Sift (SP-SM)
25.9	SANDY SILT TO CLAYEY SILT (ML-MH)	M-F SAND, Little Clayey Silt (SP-SM)
26.1	SANDY SILT TO CLAYEY SILT (ML-MH)	M-F SAND, Little Clayey Sitt (SP-SM)
26.9	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Little Clayey Silt (SP-SM)
27.1	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Clayey Sitt (SP-SM)
28.0		M-F SAND, Little Clayey Silt (SP-SM)
29.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Little Clayey Silt (SP-SM)
30.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Little Clayey Sitt (SP-SM)
31.1	SILTY SAND TO SANDY SILT (SM)	M-E SAND, Some Sitty Clay (SC)
32.0	SILTY SAND TO SANDY SILT (SM)	M-E SAND, Some Silty Clay (SC)
33.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Some Silty Clay (SC)
34.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Some Silty Clay (SC)
35.0	SAND TO SILTY SAND (SP-SM)	SILTY CLAY, Some M-F Sand (CH)
35.9	CLAYEY SILT TO SILTY CLAY (MH-CL)	SILTY CLAY, Some M-F Sand (CH)
36.9	SAND TO SILTY SAND (SP-SM)	SILTY CLAY, Some M-F Sand (CH)
37.1	SAND TO SILTY SAND (SP-SM)	SILTY CLAY, Some M-F Sand (CH)
38.0	SAND TO SILTY SAND (SP-SM)	SILTY CLAY, Some M-F Sand (CH)
	SAND TO SILLY SAND (SP-SM)	SILTY CLAY, Some M-F Sand (CH)
40.0	SAND TO SILLT SAND (SP-SM)	SILTY CLAY, Some M-F Sand (CH)
41.0	SAND TO SILLY SAND (SP-SM)	SILTY CLAY, Some M-F Sand (CH)
42.0	UNIT OF THE OF T	SILLI ULAT, SOME MAR SAND (UH)

GOLDER SIERRA

SOIL BORING AND CPT SOIL DATA CORRELATION MAY 2000 BASELINE SAMPLING EVENT ARROWHEAD PLATING FACILITY MONTROSS, VA

Depth (ft)	Standard CPT Soil Type (CPT C10)	Boring Soil Classification (SBS-13)
1.0		M-F SAND, Some Clayey Silt (SC-SM)
2.0	SILTY CLAY TO CLAY (CL)	M+F SAND, Trace Silt (SP)
3.0		M-F SAND, Trace Silt (SP)
4.0	SILTY CLAY TO CLAY (CL)	M-F SAND, Trace Silt (SP)
5.0		M-F SAND, Trace Sill (SP)
6.0	SANDY SILT TO CLAYEY SILT (ML-MH)	M-F SAND, Trace Silt (SP)
7.0	SANDY SILT TO CLATET SILT (ML-MH)	M-F SAND, Trace Silt (SP)
9.1	SANDY SILT TO CLAYEY SILT (ML-MH)	M-F SAND, Trace Silt (SP)
0.1	SANDY SILT TO CLAYEY SILT (ML-MH)	ME SAND Trace Silt (SP)
10.1	SAND TO SH TY SAND (SP.SM)	M-F SAND, Trace Silt (SP)
11.0	SAND TO SIL TY SAND (SP-SM)	M-F SAND, Hace Silt (SP)
12.0	SAND (SP)	M-E SAND 1 (the Silt (SP-SM)
13.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND Little Silt (SP-SM)
13.9	SAND (SP)	M-F SAND, Little Silt (SP-SM)
14.1	SAND (SP)	M-F SAND Little Silt (SP-SM)
14.9	SANDY SILT TO CLAYEY SILT (MI -MH)	M-F SAND Little Silt (SP-SM)
15.1	SILTY CLAY TO CLAY (CL)	M-F SAND Little Silt (SP-SM)
16.0	CLAY (CH)	M-F SAND, Little Silt (SP-SM)
17.0	SILTY CLAY TO CLAY (CL)	M-F SAND, Little Silt (SP-SM)
17.9	SILTY CLAY TO CLAY (CL)	M-F SAND, Little Silt (SP-SM)
18.1	SILTY CLAY TO CLAY (CL)	SILTY CLAY, Some Fine Sand (CH)
18,9	SILTY CLAY TO CLAY (CL)	SILTY CLAY, Some Fine Sand (CH)
19.1	CLAY (CH)	SILTY CLAY, Some Fine Sand (CH)
19.9	CLAY (CH)	SILTY CLAY, Some Fine Sand (CH)
20.1	CLAY (CH)	SILTY CLAY, Some Fine Sand (CH)
20.9	CLAY (CH)	SILTY CLAY, Some Fine Sand (CH)
21.1	CLAY (CH)	SILTY CLAY, Some Fine Sand (CH)
21.9	SANDY SILT TO CLAYEY SILT (ML-MH)	SILTY CLAY, Some Fine Sand (CH)
22.1	SILTY SAND TO SANDY SILT (SM)	SILTY CLAY, Some Fine Sand (CH)
22.9	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Clayey Silt (SP-SM)
23.1	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Clayey Silt (SP-SM)
23.9	SANDY SILT TO CLAYEY SILT (ML-MH)	M-F SAND, Little Clayey Silt (SP-SM)
24.1	SANDY SILT TO CLAYEY SILT (ML-MH)	M-F SAND, Little Clayey Silt (SP-SM)
24.9	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Clayey Silt (SP-SM)
25.1	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Little Clayey Silt (SP-SM)
25.9	SILTY CLAY TO CLAY (CL)	M-F SAND, Little Clayey Silt (SP-SM)
26.1		M-F SAND, Little Clayey Silt (SP-SM)
20.9	SILT SAND TO SANDY SILT (SM)	M-F SAND, Little Clayey Silt (SP-SM)
27.1	SILLY SAND TO SANDY SILL (SM)	M-F SAND, Some Clayey Silt (SM)
27.9	SAND TO SILLY SAND (SP-SM)	M-F SAND, Some Clayey Silt (SM)
20.1	SANDY SHIT TO CLAYEV SHIT (MI MU)	M-F SAND, Some Clayey Silt (SM)
29.0	SANDT SILT TO CLATET SILT (ML-MIT)	M-F SAND, Some Clayey Silt (SM)
31.0	SILTI SAND TO SANUT SILT (SM)	ME SAND Little Clevey Silt Trace E Gravel (SD State
32.0	SILTY SAND TO SANDY CILT (CM	M-F SAND Life Claver Silt Trace F Gravel (SP-SM)
33.0		M-F SAND Little Claver Silt (SP-SM)
34.0		M-F SAND Litte Clayey Silt (SP-SM)
35.0	SILTY CLAY TO CLAY (CL)	SILTY CLAY, Some M-F Sand (CH)
36.0	CLAYEY SILT TO SILTY CLAY (MH-CL)	SILTY CLAY, Some M-F Sand (CH)
37.0	CLAY (CH)	SILTY CLAY, Some M-F Sand (CH)
38.0	SILTY CLAY TO CLAY (CL)	SILTY CLAY, Some M-F Sand (CH)

.

AR301437

1

,

•

.

.

TABLE B-5

SOIL BORING AND CPT SOIL DATA CORRELATION MAY 2000 BASELINE SAMPLING EVENT ARROWHEAD PLATING FACILITY MONTROSS, VA

Depth (ft)	Standard CPT Soil Type (CPT F12)	Boring Soil Classification (SBS-12)
1.0	SANDY SILT TO CLAYEY SILT (ML-MH)	FINE SAND, Some Silty Clay, Some Organics (SC)
2.0	CLAYEY SILT TO SILTY CLAY (MH-ML)	FINE SAND, Some Silty Clay, Some Organics (SC)
2.9	CLAY (CH)	M-F SAND and SILTY CLAY (SC)
3.1	SILTY CLAY TO CLAYEY SILT (CL)	M-F SAND and SILTY CLAY (SC)
4.0	SANDY SILT TO CLAYEY SILT (ML-MH)	M-F SAND and SILTY CLAY (SC)
5.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND and SILTY CLAY (SC)
6.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND and SILTY CLAY (SC)
7.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND and SILTY CLAY (SC)
8.0	VERY STIFF FINE GRAINED	M-F SAND and SILTY CLAY (SC)
9.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND and SILTY CLAY (SC)
10.0	SANDY SILT TO CLAYEY SILT (ML-MH)	M-F SAND and SILTY CLAY (SC)
11.0	CLAY (CH)	SILTY CLAY and FINE SAND (CL)
12.1	SAND (SP)	FINE SAND, Some Sitty Clay (SC)
13.0	SAND (SP)	FINE SAND, Trace Clayey Silt (SP)
13.9	SILTY CLAY TO CLAY (CL)	SILTY CLAY, Trace Fine Sand (CH)
14.1	CLAY (CH)	SILTY CLAY, Trace Fine Sand (CH)
14.9	GRAVELLY SAND TO SAND (SP)	FINE SAND, Trace Clayey Silt, Trace Fine Gravel (SP)
15.1	GRAVELLY SAND TO SAND (SP)	SILTY CLAY, Trace Fine Sand (CH)
16.0	SAND (SP)	FINE SAND, Trace Clayey Sitt, Trace Fine Gravel (SP)
17.0	SILTY SAND TO SANDY SILT (SM)	SILTY CLAY, Trace Fine Sand (CH)
17.9		SILTY CLAY, Trace Fine Sand (OH)
18.1	SANDY SILT TO CLAYEY SILT (ML-MH)	SILTY CLAY, Trace Fine Sand (CH)
19.1	SAND TO SHITY SAND (SP SM)	FINE SAND, Trace Clayey Silt (SP)
19.3	SAND (U SILTY SAND (SP-SM)	FINE SAND, Trace Clayey Silt (SP)
19.9	SAND (SP)	FINE SAND, Trace Clayer Silt (SP)
20.1	SAND (SP)	FINE SAND, Trace Clayey Sill (SP)
20.9	SAND (SP)	EINE SAND, Trace Clayer Silt (SP)
22.0	SAND (SP)	EINE SAND, Trace Clayer Silt (SP)
22.0	SAND (SP)	EINE SAND, Trace Clayer Silt (SP)
23.9	SAND (SP)	FINE SAND, Trace Clavey Silt (SP)
24.1	SAND TO SILTY SAND (SP-SM)	FINE SAND, Trace Clayey Silt (SP)
24.9	SAND (SP)	EINE SAND Trace Clavey Silt (SP)
25.1	SAND (SP)	FINE SAND Trace Clavey Silt (SP)
25.9	SH TY SAND TO SANDY SILT (SM)	FINE SAND Trace Clavey Silt (SP)
26.1	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Trace Clavey Silt (SP)
26.9	SAND TO SILTY SAND (SP-SM)	M-F SAND, Trace Clavey Silt (SP)
27.1	SAND (SP)	M-F SAND, Trace Clayey Silt (SP)
28.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Trace Clayey Silt (SP)
29.0	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Silty Clay (SP-SC)
30.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Little Silty Clay (SP-SC)
30.9	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Silty Clay (SP-SC)
31.0	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Silty Clay (SP-SC)
32.0	SAND (SP)	M-F SAND, Little Silty Clay (SP-SC)
33.0	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Silty Clay (SP-SC)
34.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Little Silty Clay (SP-SC)
35.0	SILTY SAND TO SANDY SILT (SM)	FINE SAND, Trace Clayey Silt (SP)
36.0	SILTY SAND TO SANDY SILT (SM)	FINE SAND, Trace Clayey Silt (SP)
37.0	SANDY SILT TO CLAYEY SILT (ML-MH)	SILTY CLAY, Some Fine Sand, Trace Fine Gravel (CH)
38.0	CLAY (CH)	SILTY CLAY, Trace Fine Sand, Trace Fine Gravel (CH)
39.0	SANDY SILT TO CLAYEY SILT (ML-MH)	SILTY CLAY, Trace Fine Sand, Trace Fine Gravel (CH)
40.0	SANDY SILT TO CLAYEY SILT (ML-MH)	SILTY CLAY, Trace Fine Sand, Trace Fine Gravel (CH)
40.9	SANDY SILT TO CLAYEY SILT (ML-MH)	SILTY CLAY, Trace Fine Sand (CH)
41.1	SANDY SILT TO CLAYEY SILT (ML-MH)	SILTY CLAY, Trace Fine Sand (CH)
42.0	SANDY SILT TO CLAYEY SILT (ML-MH)	SILTY CLAY, Trace Fine Sand (CH)
SOIL BORING AND CPT SOIL DATA CORRELATION MAY 2000 BASELINE SAMPLING EVENT ARROWHEAD PLATING FACILITY MONTROSS, VA

Depth (ft)	Standard CPT Soil Type (CPT F10)	Boring Soil Classification (SBS-11)
55F (11)		
1.0	SAND TO SILTY SAND (SP-SM)	M-F SAND, Some Clayey Silt (SM)
2.0	CLAYEY SILT TO SILTY CLAY (MH-CL)	M-F SAND, Some Clayey Silt (SM)
3.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND and SILTY CLAY (SC-SM)
4.0	SANDY SILT TO CLAYEY SILT (ML-MH)	M-F SAND and SILTY CLAY (SC-SM)
4.8	SANDY SHIT TO CLAYEY SHIT (MI MH)	M-F SAND and SILTY CLAY (SC-SM)
5.1	SANDY SILT TO CLAYEY SILT (ML-MH)	M-F SAND and SILTY CLAY (SC-SM)
7.0	SILTY SAND TO SANDY SILT (SM)	M-E SAND, Some Clavey Silt (SM)
8.0	SAND TO SILTY SAND (SP-SM)	M-F SAND, Some Clayey Silt (SM)
9.0	SAND (SP)	M-F SAND, Some Clayey Silt (SM)
10.0	SAND TO SILTY SAND (SP-SM)	M-F SAND, Some Clayey Silt (SM)
10.8	SAND (SP)	M-F SAND, Some Clayey Silt (SM)
11.1	GRAVELLY SAND TO SAND (SP)	M-F SAND, Some Clayey Silt (SM)
12.0	SAND TO SILTY SAND (SP-SM)	M-F SAND, Some Clayey Silt (SM)
13.0	SAND TO SILTY SAND (SP-SM)	M-F SAND, Some Clayey Silt (SM)
14.0	SAND TO SIL TY SAND (SP-SM)	M-F SAND, Some Clayey Silt (SM)
15.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Some Clayey Silt (SM)
15.9	SAND TO SULTY SAND (SM)	MLE SAND, Some Clavey Silt (SM)
17.0	GRAVELLY SAND TO SAND (SP)	M-F SAND, Some Clavey Silt (SM)
180	SAND (SP)	M-F SAND, Some Clayer Silt (SM)
19.0	SAND (SP)	M-F SAND, Little Clayev Silt (SP-SM)
20,0	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Clayey Silt (SP-SM)
21,0	SAND (SP)	M-F SAND, Little Clayey Silt (SP-SM)
22.0	SAND (SP)	M-F SAND, Little Clayey Silt (SP-SM)
22.8	SAND (SP)	M-F SAND, Little Clayey Silt (SP-SM)
23.1	SAND (SP)	M-F SAND, Little Clayey Silt (SP-SM)
23.9	GRAVELLY SAND TO SAND (SP)	M-F SAND, Little Clayey Silt (SP-SM)
24.1	GRAVELLY SAND TO SAND (SP)	M-F SAND, Little Clayey Silt (SP-SM)
24.9	SAND (SP)	M-F SAND, Little Clayey Sift (SP-SM)
25.1	SAND (SP)	M-F SAND, Little Clayey Silt (SP-SM)
27.0	SAND (SP)	M-F SAND Little Clavey Silt (SP-SM)
28.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Little Clavey Silt (SP-SM)
29.0	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Clayey Silt (SP-SM)
29,9	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Clayey Silt (SP-SM)
30.1	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Clayey Silt (SP-SM)
30.9	SAND (SP)	M-F SAND, Little Clayey Silt (SP-SM)
31.1	SAND (SP)	M-F SAND, Little Clayey Silt (SP-SM)
32.0	SAND TO SILTY SAND (SP-SM)	M-F SAND, Little Clayey Silt (SP-SM)
33.0	SILLY SAND TO SANDY SILL (SM)	M E SAND Little Clayey Silt (SP-SM)
34 1	SILTT SAIND TO SAINDT SILT (SM)	M.F. SAND Little Clayey Silt (SP-SM)
34.9	SILTY SAND TO SANDY SILT (SM)	M-F SAND Little Claver Silt (SP-SM)
35 1	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Little Clavey Silt (SP-SM)
36.0	SILTY SAND TO SANDY SILT (SM)	M-F SAND, Some Silty Clay (SC)
37.0	SANDY SILT TO CLAYEY SILT (ML-MH)	SILTY CLAY, Some M-F Sand (CH)
38.0	SANDY SILT TO CLAYEY SILT (ML-MH)	SILTY CLAY, Some M-F Sand (CH)
39.0	SANDY SILT TO CLAYEY SILT (ML-MH)	SILTY CLAY, Some M-F Sand (CH)
40.0	SANDY SILT TO CLAYEY SILT (ML-MH)	SILTY CLAY, Some M-F Sand (CH)
40.9	CLAY (CH)	SILTY CLAY, Some M-F Sand (CH)
41.2	CLAYEY SILT TO SILTY CLAY (MH-CL)	SILTY CLAY, Some M-F Sand (CH)
42.0		SIL IY CLAY, Some M-F Sand (CH)
43.0	SILT CLAT TO CLAY (CL)	SILTY GLAY, Some M-F Sand (CH)
43.8	SANDY SILT TO CLAYEY SILT (MILMH)	SILTE CLAT, SUME M-F Sand (CH)

•

APPENDIX B-5

Investigation Derived Waste Characterization Laboratory Data

•••

•

AR301440

- ----

TABLE B-7

INVESTIGATION DERIVED WASTE CHARACTERIZATION LABORATORY DATA ARROWHEAD PLATING FACILITY MONTROSS, VIRGINIA

		SAMPLE ID						
COMPOUND	TEST METUOD	Slu	dge	Waste	ewater			
COMPOUND		S-1	SS-2	WW-1	WW-2			
	·	5/19/00	7/19/00	5/19/00	7/19/00			
Select VOCs, Total		ug/kg	ug/kg	ug/l	ug/i			
1,1,1-Trichloroethane	8270/8260B	ND	ND	ND	1.2 J			
1,1,2-Trichloroethane	8270/8260B	ND	ND	ND	ND			
1,1-Dichloroethane	8270/8260B	ND	ND	ND	NÐ			
1,1-Dichloroethene	8270/8260B	ND	27.3	3.5	2.8			
1,2-Dichloroethane	8270/8260B	ND	ND	ND	ND			
1,2-Dichloroethene (trans)	8270/8260B	ND	ND	ND	ND			
1,2-Dichloroethene (cis)	8270/8260B	ND	ND	ND	ND			
2-Butanone	8270/8260B	ND	ND	ND	ND			
4-Methyl-2-pentanone	8270/8260B	ND	ND	3.0 J	ND			
Acetone	8270/8260B	ND	7.5	82.8	ND			
Benzene	8270/8260B	ND	ND	ND	ND			
Carbon Disulfide	8270/8260B	6.6 J	ND	ND	ND			
Chloroethane	8270/8260B	ND	ND	ND	ND			
Chloroform	8270/8260B	ND	ND	ND	ND			
Ethylbenzene	8270/8260B	ND	ND	ND	ND			
Methylene Chloride	8270/8260B	ND	ND	ND	ND			
Tetrachloroethene	8270/8260B	66.6	84.3	11.5	8.7			
Toluene	8270/8260B	ND	ND	ND	ND			
Trichloroethene	8270/8260B	7.7 J	121	11.4	14,7			
Vinyl Chloride	8270/8260B	ND	ND	ND	ND			
Xylenes (total)	8270/8260B	ND	ND	ND	ND			

.....

TABLE B-7

INVESTIGATION DERIVED WASTE CHARACTERIZATION LABORATORY DATA ARROWHEAD PLATING FACILITY MONTROSS, VIRGINIA

		SAMPLE ID						
COMPOUND		Slu	idge	Waste	ewater			
COMPOUND	1231 METHOD	S-1	SS-2	WW-1	WW-2			
		5/19/00	7/19/00	5/19/00	7/19/00			
Select VOCs, TCLP Leachate								
1,1,1-Trichloroethane	1311/8270/8260B	NT	ND	NA	NA			
1,1,2-Trichloroethane	1311/8270/8260B	NT	ND	NA	NA			
1,1-Dichloroethane	1311/8270/8260B	NT	ND	NA	NA			
1,1-Dichloroethene	1311/8270/8260B	NT	ND	NA	NA			
1,2-Dichloroethane	1311/8270/8260B	NT	ND	NA	NA			
1,2-Dichloroethene (trans)	1311/8270/8260B	NT	ND	NA	NA			
1,2-Dichloroethene (cis)	1311/8270/8260B	NT	ND	NA	NA			
2-Butanone	1311/8270/8260B	NT	ND	NA	NA			
4-Methyl-2-pentanone	1311/8270/8260B	NT	ND	NA	NA			
Acetone	1311/8270/8260B	NT	ND	NA	NA			
Benzene	1311/8270/8260B	NT	ND	NA	NA			
Carbon Disulfide	1311/8270/8260B	NT	ND	NA	NA			
Chloroethane	1311/8270/8260B	NT	ND	NA	NA			
Chloroform	1311/8270/8260B	NT	ND	NA	NA			
Ethylbenzene	1311/8270/8260B	NT	ND	NA	NA			
Methylene Chloride	1311/8270/8260B	NT	ND	NA	NA			
Tetrachloroethene	1311/8270/8260B	NT	ND	NA	NA			
Toluene	1311/8270/8260B	NT	ND	NA.	NA			
Trichloroethene	1311/8270/8260B	NT	ND	NA	NA			
Vinyl Chloride	1311/8270/8260B	NT	ND	NA	NA			
Xylenes (total)	1311/8270/8260B	NT	ND	NA	NA			

.

TABLE B-7

INVESTIGATION DERIVED WASTE CHARACTERIZATION LABORATORY DATA ARROWHEAD PLATING FACILITY MONTROSS, VIRGINIA

		SAMPLE ID						
	TEST METHOD	Slu	dge	Waste	ewater			
COMPOUND		S-1	SS-2	WW-1	WW-2			
		5/19/00	7/19/00	5/19/00	7/19/00			
Select Metals, Total		mg/kg	mg/kg	ug/l	ug/l			
Arsenic	6000/7000/6010B	5.2	5.6	137	166			
Barium	6000/7000/6010B	27.2	< 26	1080	563			
Cadmium	6000/7000/6010B	< 0.41	< 0.66	< 8.0	6.0			
Calcium	6000/7000/6010B	9630	< 660	771000	33500			
Chromium	6000/7000/6010B	11.8	12.4	331	510			
Copper	6000/7000/6010B	4.8	< 3.3	182	171			
Iron	6000/7000/6010B	16500	18400	410000	514000			
Lead	6000/7000/6010B	< 8.1	< 13	168	208			
Magnesium	6000/7000/6010B	1660	860	62100	36400			
Manganese	6000/7000/6010B	191	65.3	6440	1850			
Mercury	7471	< 0.071	< 0.039	0.84	PENDING			
Nickel	6000/7000/6010B	7.1	< 5.3	242	86.6			
Potassium	6000/7000/6010B	1580	1880	58000	65200			
Selenium	6000/7000/6010B	< 8.1	< 13	< 10	14.1			
Silver	6000/7000/6010B	< 0.81	< 1.3	< 20	< 10			
Sodium	6000/7000/6010B	< 410	< 660	125000	84800			
Zinc	6000/7000/6010B	25.7	10.1	819	809			

TABLE B-7

......

INVESTIGATION DERIVED WASTE CHARACTERIZATION LABORATORY DATA ARROWHEAD PLATING FACILITY MONTROSS, VIRGINIA

		SAMPLE ID						
COMPOUND		Slu	dge	Waste	water			
COMPOUND		S-1	SS-2	WW-1	WW-2			
		5/19/00	7/19/00	5/19/00	7/19/00			
Select Metals, TCLP Leachate		mg/i	mg/l					
Arsenic	1311/6000/7000/6010B	< 0.50	< 0.50	NA	NA			
Barium	1311/6000/7000/6010B	< 1.0	< 1.0	NA	NA			
Cadmium	1311/6000/7000/6010B	< 0.0050	< 0.0050	NA	NA			
Calcium	1311/6000/7000/6010B	93.5	< 0.50	NA	NA			
Chromium	1311/6000/7000/6010B	< 0.010	< 0.025	NA	NA			
Copper	1311/6000/7000/6010B	< 0.025	< 0.025	NA	NA			
Iron	1311/6000/7000/6010B	2.1	< 0.10	NA	NA			
Lead	1311/6000/7000/6010B	< 0.50	< 0.50	NA	NA			
Magnesium	1311/6000/7000/6010B	< 5.0	< 5.0	NA	NA			
Manganese	1311/6000/7000/6010B	0.46	0.75	NA	NA			
Mercury	1311/7471	< 0.00020	< 0.00020	NA	NA			
Nickel	1311/6000/7000/6010B	< 0.040	< 0.040	NA	NA			
Potassium	1311/6000/7000/6010B	< 5.0	< 5.0	NA	NA			
Selenium	1311/6000/7000/6010B	< 0.50	< 0.50	NA	NA			
Silver	1311/6000/7000/6010B	< 0.010	< 0.010	NA	NA			
Sodium	1311/6000/7000/6010B	NA	NA	NA	NA			
Zinc	1311/6000/7000/6010B	0.035	0.048	NA	NA			

NOTES:

J = Indicates an estimated value

NA = Not applicable

٠

ND = Not detected

NT = Not tested

PENDING = Results will be submitted with the Pre-Final (90%) Design Report

APPENDIX C

Groundwater VOC Degradation in Iron Reactivity Test

FIGURE C-1 TCE CONCENTRATION PROFILE VS. RESIDENCE TIME AT 40PV Arrowhead Plating Facility, Montross, Virginia

FIGURE C-2 PCE AND 11DCE CONCENTRATION PROFILES VS. RESIDENCE TIME AT 40PV Arrowhead Plating Favility, Montross, Virginia

GOLDER SIERRA A R 30 L 44 Siuma xis: TCE, PCE, 11DCE

AR30 | 4 holder SIERRA

FIGURE C-5 Eh AND pH PROFILES VS. RESIDENCE TIME AT 37PV Arrowhead Plating Facility, Montross, Virginia

Note: PV refers to number of pore volume flushes of the iron column by Site groundwater.

Column and Iron Properties

Iron:

Source Grain Size Surface Area Hydraulic Conductivity Connelly-GPM., Chicago, IL 1.4 to 0.20 mm (-14 to +84 mesh)

Column:

Flow Velocity29 cm/day (0.94 ft/day)Residence Time42 hrPore Volume316 mLPorosity0.56Bulk Density2.65 g/cm³ (165 lb/ft³)Iron to Volume of Solution Ratio4.8 g : 1 mLSurface Area to Volume of Solution Ratio4.8 g : 1 mL

Method Detection Limits (MDL) and Detection Limits (DL)

Organic Compounds:	MDL (µg/L)
Tetrachloroethene	0.8
Trichloroethene	0.9
Trichloromethane	1.1
1,1,2-Trichloroethane	0.5
cis 1,2-Dichloroethene	2.5
trans 1,2-Dichloroethene	3.3
1,1-Dichloroethene	4.0
Vinyl Chloride	2.0
Inorganic Compounds	DL (mg/L)
Calcium	0.05
Iron, Total	0.01
Magnesium	0.05
Manganese	0.005
Potassium	1.0
Silica, Reactive	0.05
Sodium	1.0
Ammonia	0.03
Nitrate	0.2
Chloride	50
Sulphate	5.0
Alkalinity (as CaCO3)	1.0
Total Dissolved Solids (Calculated)	-
Dissolved Organic Carbon (DOC)	0.2

	Concentra	ation (mg/L)
	Influent	Effluent
Cations:		
Calcium	6.4	11
	6.3	10
Iron. Total	0.02	0.01
	0.01	<0.01
Magnesium	2.7	2.2
	2.8	2.3
Manganese	0.68	0.02
······································	0.69	0.02
Potassium	2	2
	1 1	- 2
Silica Reactive	4.4	0.17
	4.5	0.26
C- diama	168	176
Sodium	175	175
C. 16.	103	95
Sulfur	105	94
A	<0.03	1.1
Ammonia	<0.03	1.7
Anions:		
Chlorida	36	77
Chioride	36	74
	294	264
Sulphate	296	266
Alkalinity	10	21
(as mg CaCO ₃ /L)	11	26
Nitroto	2.9	<0.2
Iniliaic	2.9	0.6
Discolved Organia Carbon	46	7.8
	45	26
Total Dissolved Solids	612	656
Totar Diszolacd Solids	.625	657

Column Influent and Effluent Inorganic Concentrations at Steady State, Arrowhead Plating Site, Montross, Virginia

AR301451

Laboratory Organic Analyses for Bench-Scale Testing Involving the EnviroMetal Process

-

<u>۽</u>

Treatability Test Arrowhead			Column Identification: Column Composition; Pore Volume Porosity: Column Length: Column Diameter: Flow Velocity;					363 100 % Connelly Golders-Sierra cc-1022 Iron (316 mL 0.56 1.6 ft (50 cm) 1.5 in (3.8 cm) 0.94 ft/day (28.6 cm/day)					
Column Distance (ft)		ce (ft)	0.0	0.08	0.16	0.33	0.50	0.66	1.0	1.3	1.6		
Residence Time (hr)		e (hr)	0.0	2.0	4.1	8.4	12.8	16.9	25.5	33.4	41.9		
	PV	RN	Influent			Organic	Concentr	ation (με	g/L)	Ε	Effluent		
PCE													
	3.5	а	7655	2485	nd	nd	nd	nd	nd	nd	nd		
	7.7	а	6235	3636	1849	6.1	nd	nd	nd	nd	nd		
	10.0	а	5788	3422	2616	103	nd	nd	nd	nd	nd		
	13.2	а	5436	3362	3326	642	nd	nd	nd	nđ	nđ		
	19.3	а	6945	6298	4809	2653	793	18	nd	nd	nd	•	
	23.8	а	6710	5714	5352	3451	1615	172	nd	nd	nd		
	27.7	а	4379	3634	3357	2556	1415	334	nd	nd	nd		
	32.3	а	7712	5129	4568	.3312	2439	1021	nd	nd	. nd		
	35.2	а	6610	4664	4653	3768	2576	1315	nd oo	nd	nd		
	39.5	а	6718	5493	4642	3842	2917	1648	29	nd	nd		
TCE													
	3.5	а	45664	23473	19000	8974	909	3.3	nđ	nd	nd		
	7.7	a	40074	25822	15152	8012	3356	229	2.5	nd	nd		
	10.0	а	38548	23182	20038	11588	5204	508	nd	nd	nd		
	13.2	а	34049	22860	23210	8401	4944	703	nd	nd	nd		
	19.3	а	43997	43193	34276	27856	19180	9372	1936	22	2.3		
	23.8	э	43758	38523	36518	26873	21484	13120	2000	32	7.2		
	27.7	a	41268	20409	26923	19025	12875	8671	1145	22	3.5		
	32.3	а	39109	29106	22127	20507	14213	8120	1901	37	nd		
	35.2	а	33419	26069	26374	22790	17113	10803	2058	28	3.1		
	39.5	а	34519	29124	23886	28935	15934	9702	2452	55	nd		
111TC	A												
	3.5	а	1029	nd	nd	nđ	nd	nd	nd	nd	nd		
	7.7	а	903	nd	nd	nd	nd	nd	nd	nd	nd		
	10.0	а	895	1.2	nd	nd	nd	nd	nd	nd	nd		
	13.2	а	1 001	5.2	nd	nd	nd	nd	nd	nd	nd		
	19 3	а	875	25	1.0	nd	nd	nd	nd	nd	nd		
	23.8	а	900	46	nd	nđ	nd	nd	nd	nd	nd		
	27.7	а	987	23	nd	nd	nd	nd	nd	nd	nd		
	32.3	а	860	42	nd	nd	nd	nd	nd	nd	nd		
	35.2	а	853	29	nđ	nđ	nd	nd	nd	nd	. n d		
	39.5	а	841	48	2	nd	nd	nd	nd	nd	nd		

nd = not detected

RN = reservoir number

BOLD = peak concentration

University of Waterloo		
•		

Treatability Test Arrowhead			363 100 % Connelly Golders-Sierra cc-1022 Iron (UW# 316 mL 0.56									
				Column I	enoth			16 # /50	cm)			
				Column E	iameter:			1.0 h (3.9	uny Lemi			
			Elow Velocity:					0.04.#/da	v /28.6 m	m/day)		
			Flow velocity: 0						y (20.0 Cr	nuay)		
Colur	nn Distand	ce (ft)	0.0	0.08	0.16	0.33	0.50	0.66	1.0	1.3	1.6	
Resid	ence Time	e (hr)	0.0	2.0	4.1	8.4	12.8	16.9	25.5	33.4	41.9	
	PV	RN	Influent		(Organic C	Concentra	ation (µg	/L)		Effluent	
					-							
112TC	2A 2 E	_	40	E 4			- 4		-	لمع		
	3.5 7 7	a	40	J.I 27	na	nu	nu nd	no nd	na	na	ng	
	10.0	а э	37	3.7 7 1	20	nd	nu nd	nd	nu	nd	nu	
	13.2	a 2	30	97	2.0 nd	nd	nd	nd	nd	nd	nd	
	19.3	a	49	25	16	55	nd	nd	nd	nd	nd	
	23.8	2	50	29	17	65	nd	nd	nd	nd	nd	
	27.7	a	63	38	27	16	nd	nd	nd	nd	nd	
	32.3	a	38	20	 17	6.2	2.5	nd	nd	nd	nd	
	35.2	a	48	30	21	7.9	2.6	nd	nd	nd	nd	
	39.5	а	52	15	26	9.1	4.8	nd	nđ	nd	nd	
11DCA	\											
	3.5	а	nd	185	137	115	97	89	76	nd	nd	
	7.7	а	nd	395	387	322	301	259	238	53	nd	
	10.0	а	nd	373	351	271	183	223	313	114	nd	
	13.2	а	nd	487	421	375	299	280	473	228	79	
	19.3	а	nd	417	523	403	328	285	282	322	351	
	23.8	а	nđ	188	580	401	269	272	211	395	482	
	27.7	а	nd	580	562	509	333	29 9	356	434	578	
	32.3	а	nd	228	<u>388</u>	- 351	312	260	233	156	160	
	35.2	а	nd	236	481	347	415	363	332	<u>455</u>	322	
	39.5	а	nd	229	486	411	426	387	310	425	553	
12 DC/	٩											
	3.5	а	na	18	10	10	10	155	95	72	nd	
	7.7	а	na	16	17	14	16	20	137	76	13	
	10.0	a	na	14	16	15	11	18	17	19	19	
	13.2	а	na	16	15	16	16	18	16	16	16	
	19.8	а	na	na	16	15	16	10	20	18	18	
	23.8	а	na	na	17	15	11	11	11	12	11	
	<u>27.7</u>	а	na	20	14	14	11	10	18	44	101	
	32.3	а	na	na	12	13	13	14	16	11	13	
	35.2	а	na	na	14	9.7	15	15	19	61	15	
	39.5	а	na	na	16	16	17	18	18	36	18	

....

nd = not detected

na = not applicable

RN = reservoir number

<u>BOLD</u> = peak concentration

•

Treatability Test				Column	Identificat	tion:	363						
Arrow	nead			Column	Composit	ion;		100 % C	onnelly G	olders-Si	erra cc-1022	Iron	
				Pore Vol	ume								
				Column	:			U.35 1 6 # (E0					
				Colume !	Lenyu: Diameter			1.0 JI (00 1.5 in 72	A cm				
				Flow Vel	ulaineten locity:			1.5 m (3. 0 ga #/a/	ວ GII] ນ (29 ຄື ~	n/day \			
				1000 001	oury.			0.94 moay (20.6 cm/0ay)					
Colurr	n Distand	ce (ft)	0.0	0.08	0.16	0.33	0.50	0.66	1.0	1.3	1.6		
Reside	ence Tim	e (hr)	0.0	2.0	4.1	8.4	12.8	16.9	25.5	33.4	41.9		
	PV	RN	Influent Organic Concentration (µ						9/L)		Effluent		
cDCE													
	4.0	a	147	738	887	1328	1466	862	50	nđ	nd		
	6.6	а	137	576	720	932	1036	716	223	9.0	nd		
	10.5	а	111	336	539	689	547	114	385	9.8	nd		
	14.0	а	149	320	491	714	597	512	120	10	nd		
	20.6	a	121	257	425	712	817	1088	861	386	200		
	24.3	а	104	227	276	665	808	825	739	303	210		
	28.8	а	143	239	357	798	737	817	656	310	225		
	32.8	а	140	239	342	569	602	700	848	215	164		
	36.4	а	103	126	268	480	535	545	<u>575</u>	350	321		
	40.1	а	98	149	212	449	483	<u>835</u>	774	541	404		
tDCE													
	4.0	а	4.9	14	12	12	6.7	nd	nd	nd	nd		
	6.6	а	5	10	13	14	11	1.9	nd	nd	nd		
	10.5	а	3.1	6.5	8.6	10	5.4	nd	nd	nd	nd		
	14.0	а	3.9	6.1	8.7	12	5.8	nd	nd	nd	nd		
	20.6	а	2.3	5.7	8.6	12	15	26	30	15	7		
	24.3	а	2.7	4.3	4.5	12	15	18	27	20	nd		
	28.8	а	4.7	6.2	9.9	13	1.5	16	13	nd	na		
	32.8	а	3.4	8.6	10	14	17	15	nď	nď	nd		
	36.4	а	12	nd	14	10	13	16	10	nd	nd		
	40.1	а	11	4	11	14	14	23	15	nđ	nď		
11DCE													
	4.0	а	4032	1984	2067	1768	1417	847	30	nd	nd		
	6.6	а	3541	2357	1918	1640	1130	476	104	nd	nd		
v	10.5	а	3779	2496	2208	1200	507	410	28 8	nd	nd		
	14.0	а	2482	2864	2476	146 8	594	415	41	nd	nd		
	20.6	а	5829	4576	6456	5020	2724	2772	1389	394	206		
	24.3	а	3232	5140	4928	3461	3340	2278	1048	372	192		
	28.8	а	5710	5143	4099	3189	2659	2012	808	201	101		
	32.8	а	4496	3663	2684	2929	1872	1414	914	91	52		
	36.4	а	3296	2948	2415	2416	2422	158 8	755	308	172		
	40.1	а	2866	1886	2503	2209	2028	1548	856	571	248		

nd = not detected

RN = reservoir number

BOLD = peak concentration

Treatability Test			:	363								
Arrowi	nead		f	Column C	Compositi	on:		100 % Co	nnelly G	olders-Sie	erra cc-1022	Iron (UW#20
			I	Pore Volu	ime		:	316 mL				
			i	Porosity:			1	0.56				
			•	Column L	ength:			1.6 ft (50	cm)			
				Column E)iameter:			1.5 in (3.8	3 cm)			
			I	Flow Velo	city:		(0.94 ft/day (28.6 cm/day)				
Column Distance (ft)		æ (ft)	0.0	0.08	0.16	0.33	0.50	0.66	1.0	1.3	1.6	
Reside	ince Time	e (hr)	0.0	2.0	4.1	8.4	12.8	16.9	25.5	33.4	41.9	
	PV RN		influent		(Organic C	Concentra	ition (μg	/L)	ł	Effluent	
vc												
	4.0	а	nd	35	36	36	42	44	15	nd	nđ	
	6.6	а	nd	32	34	32	34	28	27	nd	nd	
	10.5	а	nd	22	29	29	17	10	17	nd	nd	
	14.0	а	nd	25	28	35	16	26	9.2	nđ	nd	
	20.6	а	nd	26	34	41	37	42	38	29	24	
	24.3	a	nd	23	26	40	37	31	35	25	21	
	28.8	а	nd	12	15	22	nd	23	18	10	8.9	
	32.8	а	nd	8.1	15	23	23	24	15	nd	nd	
	36.4	а	nd	nd	12	16	21	17	8.7	10	11	
	40.1	а	nd	nd	9.8	19	6.7	18	15	12	12	
			pH Along C	Column								
pН												
	3.1	а	6.2	7.8	9,4	9.5	9.3	9.4	9.2	9.2	8.8	
	8.0	а	6. 6	8.1	8.4	9.3	9.4	9.5	9.5	9.4	9.0	
	10.9	а	6. 8	7.3	8.1	8.8	9.2	9.5	9.5	9.4	9.4	
	15.1	а	7.1	8.4	8.8	8.7	9.0	9.3	9.3	9.4	9.5	
	21.2	а	7.3	8.8	8.8	8.5	8.3	8.8	9.3	9.4	9.6	
	25.4	а	7.3	8.6	8.8	8.6	8.3	8.3	9.3	9.2	9.3	
	27.1	а	6.9	8.8	8.8	8.5	8.2	8.0	9.2	9.1	9.3	
	33.3	а	7.2	7.6	8.6	8.5	8.0	7.9	9.0	9.5	9.5	
	36.9	а	7.3	8.8	8.8	8.7	8.3	8.1	9.0	9.5	9.5	
			Redox Pote	ential Alor	ng Colum	ın (mV)						
Eh												
	3.1	а	324	-330	-408	-191	-451	-461	-484	-492	-365	
	8.0	а	374	-210	-305	-225	-309	-378	-260	-376	-142	
	10.9	а	294	-126	-71	-119	-195	-190	-243	-267	-113	
	15.1	а	357	-44	-124	-196	-175	-210	-180	-201	-166	
	21.2	а	373	-55	-101	-106	-123	-167	-227	-226	-118	
	25.4	а	402	-101	-136	-144	-174	-270	-317	-238	-198	
	27.1	а	384	-56	-86	-121	-137	-165	-179	-190	-2	
	33.3	а	390	-36	-347	-430	-356	-331	-487	-546	-128	
	36.9	а	345	-299	-269	-432	-395	-355	-440	-387	-483	
nd = no	t detected	4					•					

nd = not detected

RN = reservoir number

BOLD = peak concentration

•

÷

ı

Laboratory Inorganic Analyses for Bench-Scale Testing Involving the EnviroMetal Process

	VICES
IJ	SER
	HILP

80

Department of Rarth Sciences UNIVERSITY OF WATERLOO No Waterloo, NZL 3G1

1-020 6 01/02 10P-083

PAGE

Received: 19-Jul-2000 12:19 ÷ oa Attn: Wayne Noble Project:

2056175) samples
Job:		

\$258058505

GROUNDWATER LAB

A mail and samples		-	kater Sam	les				
Allow hard a second and a second a se	βġ	A1	As	Â	E	Ðe	Bi	с С
	IGUP	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP	ICAP
Sample Id				Bq/L	<u></u>	T/Pa	BG/C	mq/L
						•		
1 UN-363 inthent, alses sx.1 pv	<0.093	<0.03	<u>6</u> 0.1	0.56	E10.0	<0.0005	<0.1	6.43
DN-364 ett/weit	<00.0>	<0.03	<0.1	0 .6 9	0.045	<0.0005	<0.1	L0.6
DN-365 , APLICEN, 10[363, 40.1 PV.	<0.03	<0.03	<0.1	0.62	0.013	<0.0005	<0.1	6.33
LUN-366ert/with	<0.03	<0.03	4.02	0.70	0.043	<0.0005	<0.1	10.2
an-ses other pare	<0.03	<0.03	<0.1	0.15	0.012	<0.0005	<0.1	.97L
Sample+Spike '(found)	1	1 []	1.1	1	1.06	1.11		7.39
Sample+Spike (expected)	1	+	1.0	1	1.01	1.00	4 6 7	7.43
Blank	<0.03	E0"0>	<0.1	<0.01	<0.005	<0.0005	1.0.	<0.05
QC Standard (found)	0.027	9.80	1.0	0.19	0.957	0,998	1.0	50.0
OC Standard (expected)	0.030	10.0	2.0	0.20	2.00	1.00	1.0	51.0
Repeat UM-363	<0.003	<0.D3	<0.1	0, 60	0.013	<0.0005	<0.L	6.41

PAGE 03

~ ~

ц О

ч

Page: Copy:

2-Aug-2000

Pinal

Status:

From: PHILIP ANALYTICAL SERVICES CORPORATION

6281-9#2-619

Ð

ARGO-FUESS of a contract of the reservent of the reservent of the contract of

16:50 00-60-90V 98/03/5000 08:42

	/ICES
U	SER
N	PHILIP

	·	Received: 19-Jul-2000 12:19
		20 # :
PHILIP SERVICES	UNIVERSITY OF WATERLOO Department of Earth Sciences Waterloo, ON N2L 3G1	Attn: Wayne Noble Project:

Job: 2056175							<u>Status:</u>	<u> Final</u>
and have			Vater Sam	ples				
Alle Id	cd ICAP	Co ICAR	CCAP CCAP	ICAP ICAP	re ICAP	ICAP	MG	MG ICAP
101 25 27 104 10 10 10 10 10 10 10 10 10 10 10 10 10	<0.055	0			0 03			
DW-364 ettinent	<0.005	<0.005	<0,005	<0.05	10.0	4 (4	2.22	0.016
UN-365 influent, al ses tou pu	<0.005	0.018	<0.005	<0.05	0.01	1	2.79	0.693
(DN-366 245	<0.005	<0.005	<0.005	<0.03	10.0>		2.31	0.021
104-367 4 To Para	0-00£	<0.005	< D. 805	<0.003	10.01	1	64.5	<0.05
Sample+Spike (found)	1.00	1.03	1.00	1,05	1.02	1	[1.70
Sample+Spike (expected)	1.00	1.01	1.00	1.00	1.02	5 L P	1	1.68
B.1 amk	<0.005	<0,005	<0.005	<0.003	<0.01	41	<0.05	<0.05
QC Standard (found)	0.928	0.923	0.916	0.927	16.0	10	10.6	0.925
OC Standard (expected)	1.00	1.00	1.00	1.00	1.00	1.0	11.0	1,00
Repeat UW-363	<0.05	0.015	<0.005	<0.003	0. 0 2	ч	2.83	0.695

0 0

41 0

н

Page: Copy:

2-Aug-2000

15:00	80~80-30¥
57:80	0002/20/80

1-650 P 02/03 100-083 PAGE 84

9298088508 **BAJ AJTAWONUO99**

From: PHILIP ANALYTICAL SERVICES CORPORATION

6781-972-619

	VICE
IJ	SER
	ынны

	0 ciences
	N C
	WATERI Barth
ļ	٥ ^۲ ۲
	/ERSIT artmen erloo, 3G1
	Depa Nate N2L

Received: 19-Jul-2000 22:19

Attn: Wayne Noble Project:		FO #:	Receiv	red: 19-J	al-2000 2:	2:19		
Jab: 2056175							Status:	Final
bout way		-	Water Sam	les				
	Mo	Na	ίN	A	Чd	ť	ť	đ Ľ
	ICAP	ICAP	ICAP	ICAP	ICAP	lon	ICAP	ICAP
Sample Id	ng/L	1/5a		1/5	<u>ч/ра</u>	nq/L	mg/L	7/64
[DN-363 , A Flund, (of 3 63, 28, 10).	<0.02	168.	<0.02	<0.1	<0.05	.EQ1	[.0×	<0.1
1 the transfer as a second A	<0.02	176.	<0.02	<0.1	<0,05	95,3	<0.1	<0.1
04-365 12 Part when \$63, 40, pu	<0.02	275.	<0.02	<0.1	<0.05	105.	<0.1	<0.1
LUN-366 ereat	<0.02	175.	<0.02	<0.1	<8.05	94.1	1.0>	<0.1
UN-367 Q-20 D-20	<0.02	142.	<0,03	<0.1	<0.05	168.	40.1	<0.1
Sample+Spike '(found)	96.0	t 1 1	1,04	1	0.99	1 1 1	1.0	1.0
Sample+Spike (expected)	1.04	 	1.00	1	1.00	1 4 6	1.0	1.0
Blank	<0.02	<0,1	<0.02	<0.1	<0.05	<0.1	1.0 ×	€0.1
QC Standard (found)	1.02	1.84	0.92	2.0	6.93	9.6	0.9	0.9
QC Btandard (expected)	1.10	50.0	1.00	2.0	1.00	10.0	1.0	1.0
Repeat UW-363	< 0.02	. 179.	<0.02	<0.1	<0.05	107.	<0.1	<0.1

1-620 b 03\08 100-083 50 <u>3</u>9∀∃

I

2 - Aug - 2 30 0

m N

Ч О Ч

Ч

Page: Copy:

Θ

	VICES
IJ	SER
	HIUH

90

E80-905 50/00 d

BAGE

Earth Sciences UNIVERSITY OF WATERLOO Department of NO Waterloo, NZL 3G1

099-1

f Ä Copy : Page:

2-Åug-2000

Received: 19-Jul-2000 12:19 .. # 0 G Atta: Wayne Noble Project:

SM 4500F SM 4110B 1/년 ปี <0.1 <0.1 <0.1 <0.1 Status J/Dat -1 64 0.011 0.009 0.013 ICLU L'Ea 8 <0.005 <0.005 <0.005 <0.005 <0.005 ICAP 170m Þ <0.005 <0.005 <0.005 1/5言 ICAP F Mater Samples 0.037 0,039 0.050 <u>i</u><u></u>CPB 17/150 S <0.05 <0.05 <0.05 ICAP **11/15** Sn 0.26 6.28 1.17 4,46 4.40 si ICAP 7/60 UN-364 ett (with al 363 40.1 pu. UN-363 (236 /0 / min / 1/1 / 263, 38.1 / Sample Id 2056175 DW-366 efflowt Nig Job:

From: PHILIP ANALYTICAL SERVICES CORPORATION **BAJ ATTAWONUDAD**

5258068506

6791-746-1829

26:60 ¥NC-03-00 57:80 0002/20/80

Final

60.0 36.7

4.5 6.1 5.1

1.00

<0.005

<0.005

1.00

0.903 1.00 0.039

1.00

2.94

(expected)

Repeat UM-363

QC Standard

OC Standard (found)

Black

<0, D5

1.00

<0.5 64.8

<0.1

<0.005 0.918

<0.005

<0.005

<0.001

<0.05 0.98

<0.05

Sample+Spike (expected)

1.00

t

1.01

1

1 1

1 1

(found)

Sample+Spike

0.912

1.00

1.01

<0.005 <0.005

0.914

<0.05

<0.05

0.049

0.922

36.0

77.0

35.9

70.4

<0.1

<0.005

1.02

U	VICES
IJ	SER
	ННН

WATERLOO Karth Sciences	
UNIVERSITT OF Department of Waterloo, DN N2L 3G1	

Received: 19-Jul-2000 12:19

₽0 #:

Attn: Nayne Noble Project:

Status:		A1X 8.3
		BC
		s04=
	mp I es	N- CON
	Water Sa	- 28
		PO4-3
		N- 20N
2056175	in hard in	
Job:	AC	

						BG	A1k 8.3	
Sample Id	CULTE DE	STILLUS	54 5110B	SM 41108	SM 41103	SK 4500B	SM 2320B	
					-		1/101 Car(1)/1	
/ DN-363 influent, (0/363 38.1	0V. <0.2	1 2	<0.5	2.9	294	6 . 67	7	
DN-364 REFLICIT	/ <0.2	1	<0.5	<0.2	264	6.48	75	
1 UN-365 influent, col363 40	1 pv <0.2	4	<0.5	2.9	296.	6.52	7	
	<0.2	<u>ц</u>	<0.5	0.6	266	6.93	; . .	
DW-367 other press	<0.2	4	<0.5	<0.2	482.	7.83	7	
(pund), attds+elders	1 1 1	1 1 1	4		1 7 8			•
Sample+Spike (expected)		1	1 6 1	1	1	1	1 	
B1 ank	<0.2	41	<0.5	<0.2	<0.5 .0×	1	t 4 8	
QC Standard (found)	9.6	9	10.0	30.0	62.8	7.03	12	
QC Standard (expected)	10.0	46	10.0	30-0	60.0	7.00	.	
Repeat UM-363	<0.2	41	<0.5	2.9	298.		ů	

70 32A9

5 0

ц О

e

Page: Copy:

2-Aug-2000

Final

⊛

VAC-03-00 08:42

6281-902-619

20 796E

E80-901 80/90 d 090-1

5258068506 From: PHILIP ANALYTICAL SERVICES CORPORATION SROUNDWATER LAB

	000	ю ı	N				ļ																
	- A ug - 2	۲ ۲	r or			ក្រុំក្នុ ក្រុំក្នុ																	
	Ň	Page:	: Adon				- - 1 2	CAB	Calc.	-2.34	-2.29	-3.88	-1.85	ובה הבה	uen.	20.6	27.5	4.57	• • •				
				6	n.	St		sgd	calc. pă Unite	68.68	9.14	9.64	9.06		CIELU		6E.7	uer /					
				1.51 0016	1171 NAP2			Th. TD5	Calc. Dg/L	612	656	625	1450				185 185						
				ין וידיים ו אין איזיין י			91 Ci	rh. cond.	Calc. umhos/cm	940.9	1008.	962.0	1010.		nan	upu	5"E58	nàn					
				Reneive			ter Sampl	200	SM 5310C	46.4	7.8	192. O	1 9 7 9 7 9 7) : . (1 1 1	<0.2	10.0	46.5					
					20 #1		Wa	N-CHN	EU025 MS	£0.03	1.10		50°0		•	<0.05	1.51	E0.0>					
								Alk 4.2	E CaCO3/1	٥٢. 1 0	51	11 25			•	4	250	10					
PHILIP SERVICES	UNIVERSITY OF WATERLOO Department of Earth Scie	Waterloo, ON	N2L 3G1	Attn: Wayne Noble	Project:	Job: 2056175	hadland		Sample Id	W-363 intrust w/ 363, 38.1 p		LOT 202 The The Part of Sec. The	UN-367 aller of LO	Sample+Spike (found)	Sample+Spike (expected)	Blank Comercial Comercial	VC Standard (Iound) OC Standard (exnected)	Repeat UN-363					
680-9°F	80/30	đ	1-650			:	9298068:	06	\sim	NOILY	9 09	208	533	IANE	IS 1	וכאו	171A	WV d]] d:20	14	ZE:60	00-60	יחנ-יו

PAGE 08

BAJ RETAWONUOSE

 \odot

and and the court

Control of the Control of Section 2014, Dark of Link (New

97:80 000Z/E0/80

679-746-1829

	VICES
J	SER
	PHILIP

<u>Noble</u>	
Mayne	it.
Atta:	Projec

Received: 19-Jul-2000 12:19

PO #:

<u>Job; 2056175</u>							status:	Final
		Wa	ter Sampl	Č B				
A noutroot	Hard(Calc)	CO3 =	HCO3 -	L, L.	A .I.	R. S. T.	ມແຕ່ເດັ	t T
Sample Id	5M 2340B	Calc.	Calc.	Calc.	calc.	Calc.	SM 2120B	SN 2130B
		7757		BEOM	Note	None	P 24	NTU
15 UN-363 intrent 10/ 263 38	1pV. 27.2	Ч	10	-3.1	90.06	12.7	7	6 0
	35.6	Ч	23	-2.7	9.35	11.8	97	
104-365 (Allow the 1365 A	0.1 pV 27.3	-	F	-3.1	9.00	12.8	14	
	, 35.2	-	29	- 2. 1	9.89	11.2	14	4.5
m-Jer atral prov	711.8	-	465	1.1	13.27	5,6	2	4.0
	ueu .	nen			nan	תבם	1 1 1	8 1 4
sample+splife (expected		UFU		UNC	nan	usu	1	L L J
	E. 0					מפט	1 2	0.1
OC Standard (round)	166.8		300	4 .0-	11.65	7 .7	50	1.8
UC STADGATO (expected)	172.6	H	302	9 - 0 -	11.64	7.8	50	1.8
Kepear UN-Joj	27.7	nau	UBC	nan	UB U	nan	ς,	0.1

VIC-03-5000 08:42

2-Aug-2006

50

Page: Copy:

С Г н

1

Θ

	2-Aug-2000 Page: 8 Copy: 1 of 2		Status: Final	R301465
		Po #: Received: 19-Jul-2000 12:19	Water Samples	Alline Near Constants - Vieners Alline Statements - Section (Section 1997) - Allis (Section 400) - Georgeo All
PHILIP SERVICES	UNIVERSITY OF WATERLOO Department of Earth Sciences Waterloo, ON N2L 3G1	Attm: Wayne Noble Project; Job: 2056175	Annumber Id Sample Id UW-363 influent al 345 3P. Cond. SM 2510B Sample Id UW-363 influent al 345 3P. Pou UW-364 affilient al 345 3P. Pou UW-364 affilient al 345 3P. Pou UW-365 influent col 343 40.1 pu B43 UW-365 influent col 343, 40.1 pu B43 UW-365 influent col 343, 40.1 pu B45 UW-365 influent CM-365 influent B46 CM-365 influent B140 CC Standard (found) CC St	1. 195 Ме.Албий Коол Миски, Краилов (2004). 1

Θ

PAGE 10

GROUNDWATER LAB

9158068506

AUG-03-00 09:33 From: PHILIP ANALYTICAL SERVICES CORPORATION

08/03/5000 08:42 218-142-1853

	2-Åug-2000 Page: 9 Copy: 1 of 2				LR301466 &
PHILIP SERVICES	UNIVERSITY OF WATERLOO Department of Earth Sciences Waterloo, ON N2L 3G1	Attm: Wayne Noble Project: Job: 2056175	All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies and QA/QC procedures. Philip Analytical is limited in liability to the actual cost of the pertinent analyses done unless otherwise agreed upon by contractual arrangement. Your samples will be rotained by PASC for a period of 30 days following reporting or as per specific contractual arrangement.	Job approved by: Signed: Froject Manager	Material And Mercanig (Ontro Condit 1/2 1/2) and site Streams

-

PAGE 11

680-9°/ 60/50 d 059~1

5028508812

6791-946-1829 **BALI SETAWONUOSE**

AUG-03-00 03:33 Prom: PHILIP ANALYTICAL SERVICES CORPORATION 94:80 000Z/E0/80

APPENDIX D

Infiltration Analysis HELP Modeling Simulations

APPENDIX D-1 Existing Conditions

APPENDIX D-2 Cap System Alternatives A, B, C & D

APPENDIX D-1

Existing Conditions

.

•

•

.

****	* * * * * * * * * * * * * * * * * * * *	* *
* * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	**
* *		* *
**		**
* *	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	* *
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	* *
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	* *
# *	USAE WATERWAYS EXPERIMENT STATION	* *
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	* *
* *		* *
* *		* *
****	******************	**
******	***********	* *

PRECIPITATION DATA FILE:	C:\HELP3\montross.D4
TEMPERATURE DATA FILE:	C:\HELP3\montross.D7
SOLAR RADIATION DATA FILE:	C:\HELP3\montross.D13
EVAPOTRANSPIRATION DATA:	C:\HELP3\montross.D11
SOIL AND DESIGN DATA FILE:	C:\HELP3\20MON05.D10
OUTPUT DATA FILE:	C:\HELP3\20mon05.OUT

TIME: 10: 4 DATE: 1/19/2001

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10

THICKNESS	=	240.00	INCHES	
POROSITY	=	0.3980	VOL/VOL	
FIELD CAPACITY	*	0.2440	VOL/VOL	
WILTING POINT	=	0.1360	VOL/VOL	
INITIAL SOIL WATER CONTENT	Ŧ	0.2637	VOL/VOL	
EFFECTIVE SAT. HYD. COND.	Ŧ	0.119999997	000E-03 C	M/SEC
NOTE: SATURATED HYDRAULIC CON	NDUC	TIVITY IS M	ULTIPLIED) BY 3.00
FOR ROOT CHANNELS IN	TOP	HALF OF EV	APORATIVE	ZONE.

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 0.% AND A SLOPE LENGTH OF 500. FEET.

SCS RUNOFF CURVE NUMBER	=	89.40	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	22.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	5.293	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	8.756	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	2.992	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	63.280	INCHES
TOTAL INITIAL WATER	=	63.280	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

STATION LATITUDE	-	38.08	DEGREES
MAXIMUM LEAF AREA INDEX		2.00	
START OF GROWING SEASON (JULIAN DATE)	=	91	
END OF GROWING SEASON (JULIAN DATE)	=	306	
EVAPORATIVE ZONE DEPTH	=	22.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	7.60	мрн
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	-	68.00	£.
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	· =	68.00	8
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	Ħ	77.00	ક
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	73.00	8

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
3.06	2.74	3.85	3.11	4.07	3.40
4.48	3.50	3.46	3.08	2.89	3.30

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
	 -				
37.30	40.60	50.10	60.80	70.20	78.50
82.00	81.60	72.50	62.30	51.40	41.80

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	2.76 4.97	2.53 4.38	4.29 3.75	2.67 2.45	3.54 2.72	3.50 3.58
STD. DEVIATIONS	1.57 2.21	1.06 1.80	1.55 2.09	1.25 1.34	1.55 1.51	1.84 1.67
RUNOFF						
TOTALS	0.139 0.472	0.116 0.388	0.372 0.529	0.103 0.179	0.268 0.199	0.201 0.321
STD. DEVIATIONS	0.233 0.651	0.211 0.382	0.605 0.561	0.190 0.233	0.365 0.309	0.243 0.319
EVAPOTRANSPIRATION						
TOTALS	1.235 3.829	1.582 3.806	3.047 2.695	3.171 1.483	3.883 1.249	3.568 1.017
STD. DEVIATIONS	0.209 1.339	0.293 1.213	0.263 1.040	0.880 0.463	0.889 0.294	1.750 0.200
PERCOLATION/LEAKAGE	THROUGH LAY	ER 1				
TOTALS	0.2871	0.4809	0.7178	0.8410	1.0453	0.8560

•

	0.7403	0.5949	0.4970	0.4122	0.3795	0.3085
STD. DEVIATIONS	0.4460	0.4625	0.5869	0.6612	0.4796	0.3663
	0.2085	0.1941	0.1454	0.1318	0.1684	0.1705

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30 _____ _____ INCHES CU. FEET PERCENT ~----_____ 41.12 (5.848) 149272.9 100.00 PRECIPITATION RUNOFF 3.285 (1.3854) 11926.34 7.990 EVAPOTRANSPIRATION 30.565 (3.4052) 110952.00 74.328 PERCOLATION/LEAKAGE THROUGH / 7.16045)(2.98112) 25992.437 17.41270 LAYER 1 CHANGE IN WATER STORAGE 0.111 (3.2516) 402.09 0.269

PEAK DAILY VALUES FOR YEARS 1 THROUGH 30 (INCHES) (CU. FT.) ------------4.08 14810.399 PRECIPITATION • 2.124 7710.7397 RUNOFF PERCOLATION/LEAKAGE THROUGH LAYER 1 0.134781 489.25519 SNOW WATER 3.00 10891.1436 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.3049

MINIMUM VEG. SOIL WATER (VOL/VOL) 0.1360

LAYER (INCHES) (VOL/VOL) 1 66.6032 0.2775 SNOW WATER 0.000	FINAL WATE	R STORAGE AT	END OF YEAR 30	
1 66.6032 0.2775 SNOW WATER 0.000	LAYER	(INCHES)	(VOL/VOL)	
SNOW WATER 0.000	1	66.6032	0.2775	
	SNOW WATER	0.000		
*****	****	****	* * * * * * * * * * * * * * * * * * *	*****

.

•

•

i

.

AR301473

.

* * * * * * * * * * * * * * *	******	* * * *
******	******	* * * *
* *	``	**
* *		**
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	**
**	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	**
**	DEVELOPED BY ENVIRONMENTAL LABORATORY	**
**	USAE WATERWAYS EXPERIMENT STATION	* *
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	**
**		**
* *		**
* * * * * * * * * * * * * * *	******************	* * * *
******	* * * * * * * * * * * * * * * * * * * *	****

C:\HELP3\montross.D4
C:\HELP3\montross.D7
C:\HELP3\montross.D13
C:\HELP3\montross.D11
C:\HELP3\20MON02.D10
C:\HELP3\20mon02.OUT

TIME: 10: 5 DATE: 1/19/2001

.

TITLE: Existing Conditions - 20 feet @ 2.5% Surface Slope

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE

COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10 THICKNESS 240.00 INCHES æ 0.3980 VOL/VOL POROSITY = FIELD CAPACITY 0.2440 VOL/VOL = 0.1360 VOL/VOL WILTING POINT = INITIAL SOIL WATER CONTENT = 0.2630 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.119999997000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.
NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 2.% AND A SLOPE LENGTH OF 500. FEET.

SCS RUNOFF CURVE NUMBER	=	89.80	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	22.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	-	5.293	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE		8.756	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	2.992	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	63.128	INCHES
TOTAL INITIAL WATER	=	63.128	INCHES
TOTAL SUBSURFACE INFLOW	-	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

~-----

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

STATION LATITUDE	=	38.08	DEGREES
MAXIMUM LEAF AREA INDEX	Ŧ	2.00	
START OF GROWING SEASON (JULIAN DATE)	=	91	
END OF GROWING SEASON (JULIAN DATE)	=	306	
EVAPORATIVE ZONE DEPTH	=	22.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	7.60	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	Ŧ	68.00	₹
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	-	68.00	8
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	=	77.00	8
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	*	73.00	8

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
3.06	2.74	3.85	3.11	4.07	3.40
4.48	3.50	3.46	3.08	2.89	3.30

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

.

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
37.30	40.60	50.10	60.80	70.20	78,50
82.00	81.60	72.50	62.30	51.40	41.80

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

.

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	2.76 4.97	2.53 4.38	4.29 3.75	2.67 2.45	3.54 2.72	3.50 3.58
STD. DEVIATIONS	1.57 2.21	1.06 1.80	1.55 2.09	1.25 1.34	1.55 1.51	1.84 1.67
RUNOFF						
TOTALS	0.153 0.505	0.126 0.417	0.397 0.560	0.113	0.288 0.215	0.220 0.345
STD. DEVIATIONS	0.251 0.678	0.216 0.399	0.616 0.584	0.202 0.246	0.384 0.327	0.257 0.336
EVAPOTRANSPIRATION						
TOTALS	1.234 3.808	1.582 3.791	3.043 2.680	3.169 1.481	3.892 1.246	3.551 1.013
STD. DEVIATIONS	0.210 1.331	0.294 1.208	0.261 1.037	0.879 0.463	0.888 0.293	1.737 0.200
PERCOLATION/LEAKAGE TH	ROUGH LAYE	ER 1				
TOTALS	0.2712	0.4518	0.6999	0.8060	1.0227	0.8475

AR301476

.

	0.7242	0.5892	0.4925	0.4134	0.3704	0.3004
STD. DEVIATIONS	0.4016 0.1995	0,4448 0,1864	0.5777 0.1429	0.6504 0.1265	0.4785 0.1549	0.3647 0.1662
* * * * * * * * * * * * * * * * * * * *	****	*****	*****	* * * * * * * * *	* * * * * * * * * *	* * * * * * * * *

AVERAGE ANNUAL TOTALS &	(STD, DEVIAT	TIONS) FOR	YEARS 1 THROU	GH 30
	INC	IES	CU. FEET	PERCENT
PRECIPITATION	41.12	(5.848)	149272.9	100.00
RUNOFF	3.532	(1.4433)	12820.05	8.588
EVAPOTRANSPIRATION	30.488	(3.3762)	110672.23	74.141
PERCOLATION/LEAKAGE THROUGH LAYER 1	6.98911	(2.91216	25370.467	16.99603
CHANGE IN WATER STORAGE	0.113	(3.1888)	410.13	0.275
* * * * * * * * * * * * * * * * * * * *	****	*****	*****	* * * * * * * * * * *

PEAK DAILY VALUES FOR YEARS	1 THROUGH	30
	(INCHES)	(CU. FT.)
PRECIPITATION	4.08	14810.399
RUNOFF	2.176	7899.0508
PERCOLATION/LEAKAGE THROUGH LAYER 1	0.136666	496.09586
SNOW WATER	3.00	10891.1436
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.3	3049
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.2	1360

E 1 C	AL WALER STORAGE	AI END OF IEAR	30
L	AYER (INCHE	S) (VOL/VOI	,)
	1 66.51	79 0.2772	2
SNOV	WATER 0.00	0	
****	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * *	*****
******	*****	*****	* * * * * * * * * * * * * * * * * * * *

•

.

.

.

FINAL WATER STORAGE AT END OF YEAR 30

-

,

,

*****	***********	* * *
* * * * * * * * * * * * *	***********	* * *
* *		* *
**		**
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	* *
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	**
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	* *
* *	USAE WATERWAYS EXPERIMENT STATION	* *
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	**
* *		* *
* *		* *
*****	******************	***
*******	******	* * *

PRECIPITATION DATA FILE:	C:\HELP3\montross.D4
TEMPERATURE DATA FILE:	C:\HELP3\montross.D7
SOLAR RADIATION DATA FILE:	C:\HELP3\montross.D13
EVAPOTRANSPIRATION DATA:	C:\HELP3\montross.D11
SOIL AND DESIGN DATA FILE:	C:\HELP3\20MON10.D10
OUTPUT DATA FILE:	C:\HELP3\20mon10.OUT

TIME: 10: 7 DATE: 1/19/2001

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10

THICKNESS	=	240.00	INCHES		
POROSITY	=	0.3980	VOL/VOL		
FIELD CAPACITY	=	0.2440	VOL/VOL		
WILTING POINT	=	0.1360	VOL/VOL		
INITIAL SOIL WATER CONTENT	-	0.2626	VOL/VOL		
EFFECTIVE SAT. HYD. COND.	=	0.119999997	000E-03	CM/SEC	
NOTE: SATURATED HYDRAULIC CON	NDUC	TIVITY IS N	ULTIPLIE	D BY 3	.00
FOR ROOT CHANNELS IN	TOF	HALF OF EV	APORATIV	'E ZONE.	

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 10.% AND A SLOPE LENGTH OF 500. FEET.

SCS RUNOFF CURVE NUMBER	=	90.10	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	22.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	5.294	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	8.756	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	2.992	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	63.023	INCHES
TOTAL INITIAL WATER	=	63.023	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

STATION	LAT 1	ITUDE			=	38.08	DEGREES
MAXIMUM	LEAB	F AREA IN	IDEX		=	2.00	
START OF	GRC	WING SEA	ASON (JUL)	IAN DATE)	=	91	
END OF G	ROWI	NG SEASC	ON (JULIAN	N DATE)	=	306	
EVAPORAT	IVE	ZONE DEE	PTH		=	22.0	INCHES
AVERAGE	ANNU	JAL WIND	SPEED		=	7.60	MPH
AVERAGE	ÍST	QUARTER	RELATIVE	HUMIDITY	=	68,00	8
AVERAGE	2ND	QUARTER	RELATIVE	HUMIDITY	=	68.00	g
AVERAGE	3RD	QUARTER	RELATIVE	HUMIDITY	=	77.00	£
AVERAGE	4TH	QUARTER	RELATIVE	HUMIDITY	=	73.00	8

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
3.06	2.74	3.85	3.11	4.07	3.40
4.48	3.50	3.46	3.08	2.89	3.30

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
37.30	40.60	50.10	60.80	70.20	78.50
82.00	81.60	72.50	62.30	51.40	41.80

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

AVERAGE MONTHLY	VALUES I	N INCHES	FOR YEARS	1 THR	OUGH 30	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	2.76 4.97	2.53 4.38	4.29 3.75	2.67 2.45	3.54 2.72	3.50 3.58
STD. DEVIATIONS	1.57 2.21	1.06 1.80	1.55 2.09	1.25 1.34	1.55 1.51	1.84 1.67
RUNOFF						
TOTALS	0.163 0.533	0.133 0.439	0.418 0.584	0.121 0.207	0.303 0.227	0.235 0.364
STD. DEVIATIONS	0.264 0.699	0.219 0.414	0.624 0.600	0.212 0.256	0.396 0.339	0.268 0.351
EVAPOTRANSPIRATION						
TOTALS	1.234 3.800	1.582 3.775	3.041 2.672	3.160 1.480	3.894 1.244	3.530 1.012
STD. DEVIATIONS	0.210 1.328	0.294 1.201	0.261 1.036	0.877	0.877 0.292	1.717 0.198
PERCOLATION/LEAKAGE THE	ROUGH LAYE	ER 1				
TOTALS	0.2548	0.4335	0.6852	0.7768	1.0052	0.8375

			0.4000	A.4114	0.0007	0.29/4
STD. DEVIATIONS	0.3667	0.4318	0.5902	0.6257	0.4730	0.3631
	0.2034	0.1874	0.1357	0.1214	0.1477	0.1661

AVERAGE ANNUAL TOTALS &	(STD. DEVIA:	TIONS) FOR	YEARS 1 THROUG	H 30
	INC	HES	CU. FEET	PERCENT
PRECIPITATION	41.12	(5.848)	149272.9	100.00
RUNOFF	3.726	(1.4802)	13525.49	9.061
EVAPOTRANSPIRATION	30.424	(3.3795)	110438.61	73.984
PERCOLATION/LEAKAGE THROUGH LAYER 1	6.85785	(2.85528) 24893.984	16.67 68 3
CHANGE IN WATER STORAGE	0.114	(3.1501)	414.78	0.278
****	*****	*****	****	****

PEAK DAILY VALUES FOR YEARS	1 THROUGH	30
	(INCHES)	(CU. FT.)
PRECIPITATION	4.08	14810.399
RUNOFF	2.214	8036.1309
PERCOLATION/LEAKAGE THROUGH LAYER 1	0.135781	492,88455
SNOW WATER	3.00	10891.1436
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.3	3057
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.1	.360
******	*****	*****

	FINAL WALLE	STORAGE AT ENL	J OF ILAR 30	
	LAYER	(INCHES)	(VOL/VOL)	
	1	66.4511	0.2769	
	SNOW WATER	0.000		
******	***********	***********	**********	************
* * * * * * * * * * * * * * * * * * *	*****	****	*****	****

.

Ň

.

•

,

FINAL WATER STORAGE AT END OF YEAR 30

*

****	**************	* *
* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* *
* *		**
* *		**
* *	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	**
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	**
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	* *
* *	USAE WATERWAYS EXPERIMENT STATION	* *
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	* *
**		**
**		* *
*****	*****************	**
*****	* * * * * * * * * * * * * * * * * * * *	**

-

PRECIPITATION DATA FILE:	C:\HELP3\montross.D4
TEMPERATURE DATA FILE:	C:\HELP3\montross.D7
SOLAR RADIATION DATA FILE:	C:\HELP3\montross.D13
EVAPOTRANSPIRATION DATA:	C:\HELP3\montross.Dl1
SOIL AND DESIGN DATA FILE:	C:\HELP3\20MON25.D10
OUTPUT DATA FILE:	C:\HELP3\20mon25.OUT

TIME: 10: 8 DATE: 1/19/2001

TITLE: Existing Conditions - 20 feet @ 25 % Surface Slope

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10 THICKNESS 240.00 INCHES -----0.3980 VOL/VOL POROSITY = FIELD CAPACITY 0.2440 VOL/VOL = WILTING POINT Ξ 0.1360 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2620 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.119999997000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 500. FEET.

.

SCS RUNOFF CURVE NUMBER = 90.40	
FRACTION OF AREA ALLOWING RUNOFF = 100.0 PERC	ENT
AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES	5
EVAPORATIVE ZONE DEPTH = 22.0 INCH	ES
INITIAL WATER IN EVAPORATIVE ZONE = 5.294 INCH	ES
UPPER LIMIT OF EVAPORATIVE STORAGE = 8.756 INCH	ES
LOWER LIMIT OF EVAPORATIVE STORAGE = 2.992 INCH	ES
INITIAL SNOW WATER = 0.000 INCH	ES
INITIAL WATER IN LAYER MATERIALS = 62.880 INCH	ES
TOTAL INITIAL WATER = 62.880 INCH	ES
TOTAL SUBSURFACE INFLOW = 0.00 INCH	ES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

=	38.08	DEGREES
=	2.00	
	91	
=	306	
=	22.0	INCHES
=	7.60	MPH
=	68.00	8
=	68.00	8
=	77.00	8
=	73.00	8
		= 38.08 $= 2.00$ $= 91$ $= 306$ $= 22.0$ $= 7.60$ $= 68.00$ $= 68.00$ $= 77.00$ $= 73.00$

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
3.06	2.74	3.85	3.11	4.07	3.40
4.48	3.50	3.46	3.08	2.89	3.30

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
37.30	40.60	50.10	60.80	70.20	78.50
82.00	81.60	72.50	62.30	51.40	41.80

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION					 - - -	
TOTALS	2.76	2.53	4.29	2.67	3.54	3.50
	4.97	4.38	3.75	2.45	2.72	3.58
STD. DEVIATIONS	1.57	1.06	1.55	1.25	1.55	1.84
	2.21	1.80	2.09	1. 34	1.51	1.67
RUNOFF						
TOTALS	0.173	0.142	0.441	0.130	0.320	0.251
	0.559	0.465	0.610	0.220	0.240	0.385
STD. DEVIATIONS	0.275	0.223	0.634	0.22 4	0.411	0.281
	0.719	0.429	0.619	0.266	0.352	0.368
EVAPOTRANSPIRATION						
TOTALS	1.233	1.582	3.042	3.159	3.891	3.50 5
	3.784	3.758	2.661	1.481	1.242	1.011
STD. DEVIATIONS	0.209	0.294	0.261	0.878	0.875	1.708
	1.323	1.194	1.035	0.465	0.292	0.197
PERCOLATION/LEAKAGE TH	IROUGH LAYI	ER 1	×			
TOTALS	0.2473	0.4062	0.6558	0.7493	0.9902	0.830 0

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

	0.7103	0.5809	0.4828	0.4089	0.3621	0.2975
STD. DEVIATIONS	0.3351 0.2002	0.4066 0.1849	0.5599 0.1310	0.6229 0.1207	0.4681 0.1454	0.3635 0.1633
* * * * * * * * * * * * * * * * * * * *	*****	* * * * * * * * *	*****	****	* * * * * * * * *	*****

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30

	INC	HES		CU, FEET	PERCENT
PRECIPITATION	41.12	(5.848)	149272.9	100.00
RUNOFF	3.938	(1.5243)	14294.89	9.576
EVAPOTRANSPIRATION	30.348	(3.3742)	110164.27	73.801
PERCOLATION/LEAKAGE THROUGH LAYER 1	6.72135	(2.77678)	24398.504	16.34490
CHANGE IN WATER STORAGE	0.114	(3.0992)	415.19	0.278
*****	******	* * *	*****	****	******

PEAK DAILY VALUES FOR YEARS	1 THROUGH	30
	(INCHES)	(CU. FT.)
PRECIPITATION	4.08	14810.399
RUNOFF	2.245	8148.4463
PERCOLATION/LEAKAGE THROUGH LAYER 1	0.136198	494.40042
SNOW WATER	3.00	10891.1436
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.	3070
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.1	1360
* * * * * * * * * * * * * * * * * * * *		

.

.

			B OF TEAK 50	
	LAYER	(INCHES)	(VOL/VOL)	
	1	66.3117	0.2763	
	SNOW WATER	0.000		
* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	****	* * * * * * * * * * * * * * * * * * * *	*****
* * * * * * * * * * * * * * * *	*******	*****	* * * * * * * * * * * * * * * * * * * *	*****

.

FINAL WATER STORAGE AT END OF YEAR 30

.

•

****	* * * * * * * * * * * * * * * * * * * *	**
****	**********************	* *
* *		* *
**		* *
* *	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE	* *
* *	HELP MODEL VERSION 3.07 (1 NOVEMBER 1997)	* *
* *	DEVELOPED BY ENVIRONMENTAL LABORATORY	* *
* *	USAE WATERWAYS EXPERIMENT STATION	* *
* *	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY	* *
* *		* *
* *		* *
* * * * * * * * * * * * * * * *	***************************************	* *
****	********************	* *

PRECIPITATION DATA FILE:	C:\HELP3\montross.D4
TEMPERATURE DATA FILE:	C:\HELP3\montross.D7
SOLAR RADIATION DATA FILE:	C:\HELP3\montross.D13
EVAPOTRANSPIRATION DATA:	C:\HELP3\montross.D11
SOIL AND DESIGN DATA FILE:	C:\HELP3\15mon05.D10
OUTPUT DATA FILE:	C:\HELP3\15mon05.OUT

TIME: 10:10 DATE: 1/19/2001

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10 THICKNESS 180.00 INCHES Ŧ POROSITY 0.3980 VOL/VOL = FIELD CAPACITY 0.2440 VOL/VOL \Rightarrow WILTING POINT 0.1360 VOL/VOL Ŧ INITIAL SOIL WATER CONTENT = 0.2689 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.119999997000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

. ----

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 0.% AND A SLOPE LENGTH OF 500. FEET.

-

.

.

SCS RUNOFF CURVE NUMBER	a	89.40	
FRACTION OF AREA ALLOWING RUNOFF	-	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	-	1.000	ACRES
EVAPORATIVE ZONE DEPTH	-	22.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	5.293	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	8.756	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	#	2.992	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	48.410	INCHES
TOTAL INITIAL WATER	=	48.410	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

STATION LATITUDE	=	38.08	DEGREES
MAXIMUM LEAF AREA INDEX	=	2.00	
START OF GROWING SEASON (JULIAN DATE)	=	91	
END OF GROWING SEASON (JULIAN DATE)	=	306	
EVAPORATIVE ZONE DEPTH	=	22.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	7.60	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	68.00	ę
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	68.00	*
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	Ξ	77.00	8
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	73.00	8

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING * COEFFICIENTS FOR NORFOLK VIRGINIA

·· NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
3.06	2.74	3.85	3.11	4.07	3.40
4.48	3.50	3.46	3.08	2.89	3.30

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
37.30	40.60	50.10	60.80	70.20	78.50
82.00	81.60	72.50	62.30	51.40	41.80

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
PRECIPITATION						
TOTALS	2.76 4.97	2.53 4.38	4.29 3.75	2.67 2.45	3.54 2.72	3.50 3.58
STD. DEVIATIONS	1.57 2.21	1.06 1.80	1.55 2.09	1.25 1.34	1.55	1.84 1.67
RUNOFF						
TOTALS	0.139 0.472	0.116 0.388	0.372 0.529	0.103 0.179	0.268 0.199	0.201 0.321
STD. DEVIATIONS	0.233 0.651	0.211 0.382	0.605 0.561	0.190 0.233	0.365 0.309	0.243 0.319
EVAPOTRANSPIRATION						
TOTALS	1.235 3.829	1.582 3.806	3.047 2.695	3.171 1.483	3.883 1.249	3.568 1.017
STD. DEVIATIONS	0.209 1.339	0.293 1.213	0.263 1.040	0.880 0.463	0.889 0.294	1.750 0.200
PERCOLATION/LEAKAGE	HROUGH LAYI	ER 1				
TOTALS	0.3751	0.7212	0.8321	0.9804	1.0322	0.773

•

	0.6396	0.4930	0.4097	0.3297	0.3161	0.3019
STD. DEVIATIONS	0.6032	0.7130	0.6480	0.6814	0.4283	0.3190
	0.1612	0.1571	0.1082	0.1090	0.1406	0.2484
* * * * * * * * * * * * * * * * * * * *	*****	*****	* * * * * * * * *	******	*****	* * * * * * * *

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30

	INCHES			CU. FEET	PERCENT	
PRECIPITATION	41.12	(5.848)	149272.9	100.00	
RUNOFF	3.285	(1.3854)	11926.34	7.990	
EVAPOTRANSPIRATION	30.565	(3.4052)	110952.00	74.328	
PERCOLATION/LEAKAGE THROUGH LAYER 1	7.20458	(2.99345)	26152.607	17.52000	
CHANGE IN WATER STORAGE	0.067	(3.1882)	241.92	0.162	

PEAK DAILY VALUES FOR YEARS	1 THROUGH	30
	(INCHES)	(CU. FT.)
PRECIPITATION	4.08	14810.399
RUNOFF	2.124	7710.7397
PERCOLATION/LEAKAGE THROUGH LAYER 1	0.181104	657.40918
SNOW WATER	3.00	10891.1436
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.1	3049
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.2	1360
*****	*****	******

	FINAL WATER	STORAGE AT	END OF YEAR	30
	LAYER	(INCHES)	(VOL/VOI	L)
	l	50.4096	0.2801	I
	SNOW WATER	0.000		
* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *	******	****	*****
** * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	******	*****	* * * * * * * * * * * * * * * * * * * *

•

.

. ·

•

.

* * * * * * * * * * HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE * * * * HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) * * * * DEVELOPED BY ENVIRONMENTAL LABORATORY ** * * USAE WATERWAYS EXPERIMENT STATION * * * * FOR USEPA RISK REDUCTION ENGINEERING LABORATORY * * * * * * * * ** **********

PRECIPITATION DATA FILE:C:\HELP3\montross.D4TEMPERATURE DATA FILE:C:\HELP3\montross.D7SOLAR RADIATION DATA FILE:C:\HELP3\montross.D13EVAPOTRANSPIRATION DATA:C:\HELP3\montross.D11SOIL AND DESIGN DATA FILE:C:\HELP3\l5mon02.D10OUTPUT DATA FILE:C:\HELP3\l5mon02.OUT

TIME: 10:11 DATE: 1/19/2001

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

•

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10 THICKNESS = 180.00 INCHES POROSITY 0.3980 VOL/VOL 0.2440 VOL/VOL FIELD CAPACITY ***** WILTING POINT = 0.1360 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2682 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.119999997000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 2.% AND A SLOPE LENGTH OF 500. FEET.

| SCS RUNOFF CURVE NUMBER | = | 89.80 | |
|------------------------------------|---|--------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF | = | 100.0 | PERCENT |
| AREA PROJECTED ON HORIZONTAL PLANE | | 1.000 | ACRES |
| EVAPORATIVE ZONE DEPTH | = | 22.0 | INCHES |
| INITIAL WATER IN EVAPORATIVE ZONE | - | 5.293 | INCHES |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 8.756 | INCHES |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 2.992 | INCHES |
| INITIAL SNOW WATER | = | 0.000 | INCHES |
| INITIAL WATER IN LAYER MATERIALS | = | 48.269 | INCHES |
| TOTAL INITIAL WATER | - | 48.269 | INCHES |
| TOTAL SUBSURFACE INFLOW | = | 0.00 | INCHES/YEAR |
| | | | |

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

| | STATION LATITUDE | = | 38.08 | DEGREES |
|---|---------------------------------------|-----|-------|---------|
| | MAXIMUM LEAF AREA INDEX | = | 2.00 | |
| | START OF GROWING SEASON (JULIAN DATE) | = | 91 | |
| | END OF GROWING SEASON (JULIAN DATE) | = | 306 | |
| | EVAPORATIVE ZONE DEPTH | = | 22.0 | INCHES |
| | AVERAGE ANNUAL WIND SPEED | - | 7.60 | MPH |
| | AVERAGE 1ST QUARTER RELATIVE HUMIDITY | _ | 68.00 | ક |
| | AVERAGE 2ND QUARTER RELATIVE HUMIDITY | · _ | 68.00 | 8 |
| • | AVERAGE 3RD QUARTER RELATIVE HUMIDITY | = | 77.00 | 8 |
| | AVERAGE 4TH QUARTER RELATIVE HUMIDITY | = | 73.00 | 8 |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

| | NORMAL | MEAN | MONTHLY | PRECIPITATION | (INCHES) |
|--|--------|------|---------|---------------|----------|
|--|--------|------|---------|---------------|----------|

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 3.06 | 2.74 | 3.85 | 3.11 | 4.07 | 3.40 |
| 4.48 | 3.50 | 3.46 | 3.08 | 2.89 | 3.30 |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

.

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 37.30 | 40.60 | 50.10 | 60.80 | 70.20 | 78.50 |
| 82.00 | 81.60 | 72.50 | 62.30 | 51.40 | 41.80 |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

| | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|------------------------|-----------|---------|---------|---------|---------|---------|
| PRECIPITATION | | | | | | |
| TOTALS | 2.76 | 2.53 | 4.29 | 2.67 | 3.54 | 3.50 |
| | 4.97 | 4.38 | 3.75 | 2.45 | 2.72 | 3.58 |
| STD. DEVIATIONS | 1.57 | 1.06 | 1.55 | 1.25 | 1.55 | 1.84 |
| | 2.21 | 1.80 | 2.09 | 1.34 | 1.51 | 1.67 |
| RUNOFF | | | | · | | |
| TOTALS | 0.153 | 0.126 | 0.397 | 0.113 | 0.288 | 0.220 |
| | 0.505 | 0.417 | 0.560 | 0.194 | 0.215 | 0.345 |
| STD. DEVIATIONS | 0.251 | 0.216 | 0.616 | 0.202 | 0.384 | 0.257 |
| | 0.678 | 0.399 | 0.584 | 0.246 | 0.327 | 0.336 |
| EVAPOTRANSPIRATION | | | | | | |
| TOTALS | 1.234 | 1.582 | 3.043 | 3.169 | 3.892 | 3.551 |
| | 3.808 | 3.791 | 2.680 | 1.481 | 1.246 | 1.013 |
| STD. DEVIATIONS | 0.210 | 0.294 | 0.261 | 0.879 | 0.888 | 1.737 |
| | 1.331 | 1.208 | 1.037 | 0.463 | 0.293 | 0.200 |
| PERCOLATION/LEAKAGE TH | ROUGH LAY | ER 1 | | | | |
| TOTALS | 0.3586 | 0.6885 | 0.8136 | 0.9465 | 1.0136 | 0.7688 |

.

| | 0.6264 | 0.489 | 96 | 0.4058 | 0.3319 | 0.3063 | 0.2836 |
|---------------------------------------|------------------|----------------|----------|------------------|--------------------------|---------------------------|------------------|
| STD. DEVIATIONS | 0.6005
0.1488 | 0.688
0.149 | 39
38 | 0.6439
0.1058 | 0. 6692
0.1027 | 0. 43 20
0.1257 | 0.3202
0.1799 |
| ************ | ****** | * * * * * * * | * * * 1 | ****** | ****** | ****** | ****** |
| ****** | ****** | ***** | • * * 1 | ******** | **** | ***** | **,****** |
| AVERAGE ANNUAL TOTALS | & (STD. | DEVIAT | ION | IS) FOR YE | ARS 1 2 | CHROUGH | 30 |
| | | INCH | IES | | CU. FEE | r
 | PERCENT |
| PRECIPITATION | 41 | . 12 | (| 5.848) | 149272 | .9 1 | .00.00 |
| RUNOFF | 3 | . 532 | (| 1.4433) | 12820. | .05 | 8.588 |
| EVAPOTRANSPIRATION | 30 | .488 | (| 3.3762) | 110672. | 23 | 74.141 |
| PERCOLATION/LEAKAGE THROUG
LAYER 1 | н 7 | . 03329 | (| 2.97074) | 25530. | 857 | 17.10348 |
| CHANGE IN WATER STORAGE | 0. | .069 | (| 3.1672) | 249. | 74 | 0.167 |

| PEAK DAILY VALUES FOR YEARS | 1 THROUGH | 30 |
|-------------------------------------|-----------|------------|
| · | (INCHES) | (CU. FT.) |
| PRECIPITATION | 4.08 | 14810.399 |
| RUNOFF | 2.176 | 7899.0508 |
| PERCOLATION/LEAKAGE THROUGH LAYER 1 | 0.149334 | 542.08405 |
| SNOW WATER | 3.00 | 10891.1436 |
| MAXIMUM VEG. SOIL WATER (VOL/VOL) | 0. | 3049 |
| MINIMUM VEG. SOIL WATER (VOL/VOL) | 0. | 1360 |

.

| FINAL WATER | STORAGE AT | END OF YEAR 30 | |
|----------------------------------|------------|-----------------|---|
| LAYER | (INCHES) | (VOL/VOL) | |
| 1 | 50.3331 | 0.2796 | |
| SNOW WATER | 0.000 | | |
| ******************************** | ********* | *************** | * |

.

• •

| ***** | * | ****** |
|-------------|---|---------|
| ***** | ************* | ****** |
| * * | • | * * |
| * * | · | * * |
| * + | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE | * * |
| * * | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) | ** |
| * * | DEVELOPED BY ENVIRONMENTAL LABORATORY | ** |
| * * | USAE WATERWAYS EXPERIMENT STATION | ** |
| * * | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | * * |
| * * | | * * |
| ** | | ** |
| ****** | ********** | ******* |
| *********** | * | ****** |

| PRECIPITATION DATA FILE: | C:\HELP3\montross.D4 |
|----------------------------|-----------------------|
| TEMPERATURE DATA FILE: | C:\HELP3\montross.D7 |
| SOLAR RADIATION DATA FILE: | C:\HELP3\montross.D13 |
| EVAPOTRANSPIRATION DATA: | C:\HELP3\montross.D11 |
| SOIL AND DESIGN DATA FILE: | C:\HELP3\15mon10.D10 |
| OUTPUT DATA FILE: | C:\HELP3\15mon10.OUT |

TIME: 10:13 DATE: 1/19/2001

.

•

TITLE: Existing Conditions - 15 feet @ 10 % Surface Slope

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10 THICKNESS = 180.00 INCHES . 0.3980 VOL/VOL POROSITY = FIELD CAPACITY 0.2440 VOL/VOL = WILTING POINT 0.1360 VOL/VOL = INITIAL SOIL WATER CONTENT -0.2676 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.119999997000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 10.% AND A SLOPE LENGTH OF 500. FEET.

| SCS RUNOFF CURVE NUMBER | = | 90.10 | |
|------------------------------------|---|--------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF | | 100.0 | PERCENT |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000 | ACRES |
| EVAPORATIVE ZONE DEPTH | = | 22.0 | INCHES |
| INITIAL WATER IN EVAPORATIVE ZONE | = | 5.294 | INCHES |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 8.756 | INCHES |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 2.992 | INCHES |
| INITIAL SNOW WATER | - | 0.000 | INCHES |
| INITIAL WATER IN LAYER MATERIALS | = | 48.169 | INCHES |
| TOTAL INITIAL WATER | - | 48.169 | INCHES |
| TOTAL SUBSURFACE INFLOW | = | 0.00 | INCHES/YEAR |
| | | | |

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

| STATION LATITUDE ' | - | 38.08 | DEGREES |
|---------------------------------------|---|-------|---------|
| MAXIMUM LEAF AREA INDEX | Ŧ | 2.00 | |
| START OF GROWING SEASON (JULIAN DATE) | = | 91 | |
| END OF GROWING SEASON (JULIAN DATE) | = | 306 | |
| EVAPORATIVE ZONE DEPTH | = | 22.0 | INCHES |
| AVERAGE ANNUAL WIND SPEED | = | 7.60 | MPH |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | # | 68.00 | 8 |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | 3 | 68.00 | 8 |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | = | 77.00 | 8 |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | = | 73.00 | 8 |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | ** | | | | |
| 3.06 | 2.74 | 3.85 | 3.11 | 4.07 | 3.40 |
| 4.48 | 3.50 | 3.46 | 3.08 | 2.89 | 3.30 |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

.

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 37.30 | 40.60 | 50.10 | 60.80 | 70.20 | 78.50 |
| 82.00 | 81.60 | 72.50 | 62.30 | 51.40 | 41.80 |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

| | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|-----------------------|------------|---------|---------|---------|---------|---------|
| PRECIPITATION | | | | | | |
| TOTALS | 2.76 | 2.53 | 4.29 | 2.67 | 3.54 | 3.50 |
| | 4.97 | 4.38 | 3.75 | 2.45 | 2.72 | 3.58 |
| STD. DEVIATIONS | 1.57 | 1.06 | 1.55 | 1.25 | 1.55 | 1.84 |
| | 2.21 | 1.80 | 2.09 | 1.34 | 1.51 | 1.67 |
| RUNOFF | | | | | | |
| TOTALS | 0.163 | 0.133 | 0.418 | 0.121 | 0.303 | 0.235 |
| | 0.533 | 0.439 | 0.584 | 0.207 | 0.227 | 0.364 |
| STD. DEVIATIONS | 0.264 | 0.219 | 0.624 | 0.212 | 0.396 | 0.268 |
| | 0.699 | 0.414 | 0.600 | 0.256 | 0.339 | 0.351 |
| EVAPOTRANSPIRATION | | | | | | |
| TOTALS | 1.234 | 1.582 | 3.041 | 3.160 | 3.894 | 3.530 |
| | 3.800 | 3.775 | 2.672 | 1.480 | 1.244 | 1.012 |
| STD. DEVIATIONS | 0.210 | 0.294 | 0.261 | 0.877 | 0.877 | 1.717 |
| | 1.328 | 1.201 | 1.036 | 0.464 | 0.292 | 0.198 |
| PERCOLATION/LEAKAGE T | HROUGH LAY | ER 1 | | | | |
| TOTALS | 0.3383 | 0.6696 | 0.7993 | 0.9146 | 1.0008 | 0.7617 |

| | 0.6232 | 0.4892 | 0.4005 | 0.3307 | 0.2999 | 0.2745 |
|-----------------|-----------------------|------------------|------------------|------------------|------------------|-------------------|
| STD. DEVIATIONS | 0.5784
0.1527 | 0.6776
0.1480 | 0.6540
0.0997 | 0.6481
C.0979 | 0.4293
0.1179 | 0.3197
0.1624 |
| ***** | * * * * * * * * * * * | ****** | ****** | ***** | ****** | * * * * * * * * * |
| | | | | | | |

| AVERAGE ANNUAL TOTALS & | (STD. DEVIA) | FIONS) FOR | YEARS 1 THROU | GH 30 |
|--|-------------------------|------------|---------------|----------|
| | INCH | HES | CU. FEET | PERCENT |
| PRECIPITATION | 41.12 | (5.848) | 149272.9 | 100.00 |
| RUNOFF | 3.726 | (1.4802) | 13525.49 | 9.061 |
| EVAPOTRANSPIRATION | 30.424 | (3.3795) | 110438.61 | 73.984 |
| PERCOLATION/LEAKAGE THROUGH
LAYER 1 | 6.90214 | (2.93984 |) 25054.785 | 16.78455 |
| CHANGE IN WATER STORAGE | 0.070 | (3.1532) | 253.98 | 0.170 |
| ***** | * * * * * * * * * * * * | ****** | **** | **** |

| . 1 1111000011 | 30 |
|----------------|---|
| (INCHES) | (CU. FT.) |
| 4.08 | 14810.399 |
| 2.214 | 8036.1309 |
| 0.148590 | 539.38184 |
| 3.00 | 10891.1436 |
| 0.3 | 3057 |
| 0.1 | 1360 |
| | (INCHES)
4.08
2.214
0.148590
3.00
0.1
0.1 |

| | LAYER | (INCHES) | (VOL/VOL) | |
|---|-------------------------------------|--------------|---|-------|
| | 1 | 50.2684 | 0.2793 | |
| | SNOW WATER | 0.000 | | |
| * | * * * * * * * * * * * * * * * * * * | ************ | * | ***** |
| | | | | |

.

FINAL WATER STORAGE AT END OF YEAR 30

| * * * * * * * * * * * * * | ****************** | ***** |
|---------------------------|---|---------------------|
| * * * * * * * * * * * * * | *********** | * * * * * * * * * * |
| * * | | * * |
| * * | | * * |
| ** | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE | ** |
| * * | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) | * * |
| * * | DEVELOPED BY ENVIRONMENTAL LABORATORY | * * |
| * * | USAE WATERWAYS EXPERIMENT STATION | * * |
| * * | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | ** |
| * * | | * * |
| * * | | * * |
| ***** | ************ | ****** |
| ***** | ********* | ******* |

| PRECIPITATION DATA FILE: | C:\HELP3\montross.D4 |
|----------------------------|-----------------------|
| TEMPERATURE DATA FILE: | C:\HELP3\montross.D7 |
| SOLAR RADIATION DATA FILE: | C:\HELP3\montross.D13 |
| EVAPOTRANSPIRATION DATA: | C:\HELP3\montross.D11 |
| SOIL AND DESIGN DATA FILE: | C:\HELP3\15mon25.D10 |
| OUTPUT DATA FILE: | C:\HELP3\15mon25.OUT |

TIME: 10:14 DATE: 1/19/2001

.

.

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10

| THICKNESS | ¥ | 180.00 | INCHES | |
|------------------------------|-------|--------------|------------|-----------|
| POROSITY | = | 0.3980 | VOL/VOL | |
| FIELD CAPACITY | Ŧ | 0.2440 | VOL/VOL | |
| WILTING POINT | Ŧ | 0.1360 | VOL/VOL | |
| INITIAL SOIL WATER CONTENT | = | 0.2668 | VOL/VOL | |
| EFFECTIVE SAT. HYD. COND. | = | 0.119999997 | 000E-03 (| CM/SEC |
| NOTE: SATURATED HYDRAULIC CO | NDUC | TIVITY IS M | ULTIPLIE |) BY 3.00 |
| FOR ROOT CHANNELS IN | I TOF | > HALF OF EV | /APORATIVE | E ZONE. |

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 500. FEET.

| SCS RUNOFF CURVE NUMBER | = | 90.40 | |
|------------------------------------|---|--------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF | = | 100.0 | PERCENT |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000 | ACRES * |
| EVAPORATIVE ZONE DEPTH | = | 22.0 | INCHES |
| INITIAL WATER IN EVAPORATIVE ZONE | ÷ | 5.294 | INCHES |
| UPPER LIMIT OF EVAPORATIVE STORAGE | - | 8.756 | INCHES |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 2.992 | INCHES |
| INITIAL SNOW WATER | = | 0.000 | INCHES |
| INITIAL WATER IN LAYER MATERIALS | = | 48.030 | INCHES |
| TOTAL INITIAL WATER | = | 48.030 | INCHES |
| TOTAL SUBSURFACE INFLOW | = | 0.00 | INCHES/YEAR |

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

| STATION LATITUDE | = | 38.08 | DEGREES | | | | | | |
|--|-------------|-------|---------|--|--|--|--|--|--|
| MAXIMUM LEAF AREA INDEX = 2.00 | | | | | | | | | |
| START OF GROWING SEASON (JULIAN DATE) = 91 | | | | | | | | | |
| END OF GROWING SEASON (JULIAN DATE) = 306 | | | | | | | | | |
| EVAPORATIVE ZONE DEPTH | = | 22.0 | INCHES | | | | | | |
| AVERAGE ANNUAL WIND SPEED | # | 7.60 | MPH | | | | | | |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | = | 68.00 | 8 | | | | | | |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | # | 68.00 | £ | | | | | | |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | \$ 7 | 77.00 | 8 | | | | | | |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | = | 73.00 | ¥ | | | | | | |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

•

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 3.06 | 2.74 | 3.85 | 3.11 | 4.07 | 3.40 |
| 4.48 | 3.50 | 3.46 | 3.08 | 2.89 | 3.30 |

AR301505

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 37.30 | 40.60 | 50.10 | 60.80 | 70.20 | 78.50 |
| 82.00 | 81.60 | 72.50 | 62.30 | 51.40 | 41.80 |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

| | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|-----------------------|-------------|---------|---------|---------|---------|---------|
| PRECIPITATION | | | | | | |
| TOTALS | 2.76 | 2.53 | 4.29 | 2.67 | 3.54 | 3.50 |
| | 4.97 | 4.38 | 3.75 | 2.45 | 2.72 | 3.58 |
| STD. DEVIATIONS | 1.57 | 1.06 | 1.55 | 1.25 | 1.55 | 1.84 |
| | 2.21 | 1.80 | 2.09 | 1.34 | 1.51 | 1.67 |
| RUNOFF | | | | | | |
| TOTALS | 0.173 | 0.142 | 0.441 | 0.130 | 0.320 | 0.251 |
| | 0.559 | 0.465 | 0.610 | 0.220 | 0.240 | 0.385 |
| STD. DEVIATIONS | 0.275 | 0.223 | 0.634 | 0.224 | 0.411 | 0.281 |
| | 0.719 | 0.429 | 0.619 | 0.266 | 0.352 | 0.368 |
| EVAPOTRANSPIRATION | | | | | | |
| TOTALS | 1.233 | 1.582 | 3.042 | 3.159 | 3.891 | 3.505 |
| | 3.784 | 3.758 | 2.661 | 1.481 | 1.242 | 1.011 |
| STD. DEVIATIONS | 0.209 | 0.294 | 0.261 | 0.878 | 0.875 | 1.708 |
| | 1.323 | 1.194 | 1.035 | 0.465 | 0.292 | 0.197 |
| PERCOLATION/LEAKAGE T | HROUGH LAYI | ER 1 | | | | |
| TOTALS | 0.3267 | 0.6381 | 0.7659 | 0.8912 | 0.9931 | 0.7573 |

•

| | 0.6169 | 0.4844 | 0.3979 | 0.3284 | 0.2975 | 0.2677 |
|-----------------|------------------|------------------|------------------|-------------------|--------------------------|------------------|
| STD. DEVIATIONS | 0.5620
0.1500 | 0.6545
0.1462 | 0.6248
0.0959 | 0.6527
0.0971 | 0.428 4
0.1142 | 0.3215
0.1410 |
| ***** | ****** | ******* | ****** | * * * * * * * * * | * * * * * * * * * | **** |

| AVERAGE ANNUAL TOTALS & | (STD. DEVIAT | TIONS) FOR | YEARS 1 THROU | GH 30 |
|--|--------------|------------|---------------------------------------|----------|
| | INCH | IES | CU. FEET | PERCENT |
| PRECIPITATION | 41.12 | (5.848) | 149272.9 | 100.00 |
| RUNOFF | 3.938 | (1.5243) | 14294.89 | 9.576 |
| EVAPOTRANSPIRATION | 30.348 | (3.3742) | 110164.27 | 73.801 |
| PERCOLATION/LEAKAGE THROUGH
LAYER 1 | 6.76501 | (2.89261 |) 24556.977 | 16.45107 |
| CHANGE IN WATER STORAGE | 0.071 | (3.1280) | 256.72 | 0.172 |
| ***** | ***** | ***** | * * * * * * * * * * * * * * * * * * * | **** |

| | (INCHES) | (CU. FT.) |
|-------------------------------------|----------|------------|
| PRECIPITATION | 4.08 | 14810.399 |
| RUNOFF | 2,245 | 8148.4463 |
| PERCOLATION/LEAKAGE THROUGH LAYER 1 | 0.135905 | 493.33417 |
| SNOW WATER | 3.00 | 10891.1436 |
| MAXIMUM VEG. SOIL WATER (VOL/VOL) | 0. | 3070 |
| MINIMUM VEG. SOIL WATER (VOL/VOL) | 0.1 | 1360 |

| FINAL WATER | STORAGE AT | END OF YEAR 30 | |
|--------------------------|---------------------------|----------------|-------------------|
| LAYER | (INCHES) | (VOL/VOL) | |
| 1 | 50.1519 | 0.2786 | |
| SNOW WATER | 0.000 | | |
| ************************ | * * * * * * * * * * * * * | ****** | ***************** |

•

.

•

.

•

| **** | ********** | * * |
|---------|---|-----|
| ******* | * | ** |
| ** | | ** |
| * * | | ** |
| * * | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE | * * |
| * * | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) | ** |
| ** | DEVELOPED BY ENVIRONMENTAL LABORATORY | * * |
| * * | USAE WATERWAYS EXPERIMENT STATION | ** |
| ** | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | * * |
| ** | | ** |
| ** | | * * |
| **** | ********************* | * * |
| **** | * | * * |

| PRECIPITATION DATA FILE: | C:\HELP3\montross.D4 |
|----------------------------|-----------------------|
| TEMPERATURE DATA FILE: | C:\HELP3\montross.D7 |
| SOLAR RADIATION DATA FILE: | C:\HELP3\montross.D13 |
| EVAPOTRANSPIRATION DATA: | C:\HELP3\montross.D11 |
| SOIL AND DESIGN DATA FILE: | C:\HELP3\10MON05.D10 |
| OUTPUT DATA FILE: | C:\HELP3\10MON05.OUT |

TIME: 11:33 DATE: 1/19/2001

TITLE: Existing Conditions - 10 feet @ 0.5% Surface Slope

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10

| THIC | KNESS | | = | 120 | .00 | INCHES | | |
|-------|------------|-----------|---------|---------|--------|----------|---------|------|
| POROS | SITY | | = | 0 | .3980 | VOL/VOL | | |
| FIEL | CAPACITY | | = | 0 | .2440 | VOL/VOL | | |
| WILT | ING POINT | | = | 0 | .1360 | VOL/VOL | | |
| INIT | IAL SOIL W | ATER CON | TENT = | 0 | .2781 | VOL/VOL | | |
| EFFEG | CTIVE SAT. | HYD. COL | ND. = | 0.119 | 999991 | 7000E-03 | CM/SEC | |
| NOTE: | SATURATED | HYDRAUL | IC COND | UCTIVIT | YISN | MULTIPLI | ED BY | 3.00 |
| | FOR ROO' | T CHANNE! | LS IN T | OP HALF | OF EV | /APORATI | VE ZONE | |

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 0.% AND A SLOPE LENGTH OF 500. FEET.

| 5 | 89.40 | |
|---------|---|---|
| = | 100.0 | PERCENT |
| Ħ | 1.000 | ACRES |
| <u></u> | 22.0 | INCHES |
| = | 5.293 | INCHES |
| = | 8.756 | INCHES |
| = | 2.992 | INCHES |
| = | 0.000 | INCHES |
| = | 33.373 | INCHES |
| - | 33.373 | INCHES |
| = | 0.00 | INCHES/YEAR |
| | 8 8 5 F 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | = 89.40 $= 100.0$ $= 22.0$ $= 5.293$ $= 8.756$ $= 2.992$ $= 0.000$ $= 33.373$ $= 33.373$ $= 0.00$ |

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

| STATION LATITUDE | = | 38.08 | DEGREES |
|---------------------------------------|---|-------|---------|
| MAXIMUM LEAF AREA INDEX | = | 2.00 | |
| START OF GROWING SEASON (JULIAN DATE) | æ | 91 | |
| END OF GROWING SEASON (JULIAN DATE) | * | 306 | |
| EVAPORATIVE ZONE DEPTH | # | 22.0 | INCHES |
| AVERAGE ANNUAL WIND SPEED | ÷ | 7.60 | мрн |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | = | 68.00 | £ |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | # | 68.00 | 8 |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | 3 | 77.00 | 8 |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | = | 73.00 | 8 |

| NOTE: | PRECIPITATION | DATA | WAS | SYNTHETICALLY | GENERATED | USING |
|-------|---------------|-------|-----|---------------|-----------|-------|
| | COEFFICIENTS | S FOR | t | NORFOLK | VIRG. | INIA |

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 3.06 | 2.74 | 3.85 | 3.11 | 4.07 | 3.40 |
| 4.48 | 3.50 | 3.46 | 3.08 | 2.89 | 3.30 |

AR301510

.____
NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|-------------------------------|---|---|---|
| | | | | |
| 40.60 | 50.10 | 60.80 | 70.20 | 78.50 |
| 81.60 | 72.50 | 62.30 | 51.40 | 41.80 |
| | FEB/AUG

40.60
81.60 | FEB/AUG MAR/SEP 40.60 50.10 81.60 72.50 | FEB/AUG MAR/SEP APR/OCT 40.60 50.10 60.80 81.60 72.50 62.30 | FEB/AUG MAR/SEP APR/OCT MAY/NOV 40.60 50.10 60.80 70.20 81.60 72.50 62.30 51.40 |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

.

| | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|----------------------|------------|---------|---------|---------|---------|---------|
| RECIPITATION | | | | | | |
| TOTALS | 2.76 | 2.53 | 4.29 | 2.67 | 3.54 | 3.50 |
| | 4.97 | 4.38 | 3.75 | 2.45 | 2.72 | 3.58 |
| | 1 57 | 1 06 | 1 5 5 | 1 25 | 1 55 | 1 94 |
| SID. DEVIATIONS | 2.21 | 1.80 | 2.09 | 1.34 | 1.51 | 1.64 |
| UNOFF | | | | | | |
| TOTALS | 0.139 | 0.116 | 0.372 | 0.103 | 0.268 | 0.201 |
| • | 0.472 | 0.388 | 0.529 | 0.179 | 0.199 | 0.321 |
| STD. DEVIATIONS | 0.233 | 0.211 | 0.605 | 0.190 | 0.365 | 0.243 |
| | 0.651 | 0.382 | 0.561 | 0.233 | 0.309 | 0.319 |
| VAPOTRANSPIRATION | | | | | | |
| TOTALS | 1.235 | 1.582 | 3.047 | 3.171 | 3.883 | 3.568 |
| | 3.829 | 3.806 | 2.695 | 1.483 | 1.249 | 1.017 |
| STD. DEVIATIONS | 0.209 | 0.293 | 0.263 | 0.880 | 0.889 | 1.750 |
| | 1.339 | 1.213 | 1.040 | 0.463 | 0.294 | 0.200 |
| ERCOLATION/LEAKAGE T | HROUGH LAY | ER 1 | | | | |
|
TOTALS | 0.7912 | 0.9785 | 1.0121 | 1.0669 | 0.9061 | 0.601 |

| | 0.4695 | 0.3441 | 0.2833 | 0.2308 | 0.2236 | 0.3268 |
|-----------------|------------------|---------------------|------------------|------------------|------------------|------------------|
| STD. DEVIATIONS | 0.8898
0.1192 | 0.8922
0.1172 | 0.6239
0.0779 | 0.6562
0.0845 | 0.3232
0.1523 | 0.2462
0.7143 |
| **** | **** | * * * * * * * * * * | ****** | ****** | ****** | ***** |

| AVERAGE ANNUAL TOTALS & | (STD. DEVIA | r10 | NS) FOR Y | YEARS 1 THROUG | SH 30 |
|--|-------------|-----|-----------|----------------|---------|
| | INC | HES | | CU. FEET | PERCENT |
| PRECIPITATION | 41.12 | (| 5.848) | 149272.9 | 100.00 |
| RUNOFF | 3.285 | (| 1.3854) | 11926.34 | 7,990 |
| EVAPOTRANSPIRATION | 30.565 | (| 3.4052) | 110952.00 | 74.328 |
| PERCOLATION/LEAKAGE THROUGH
LAYER 1 | 7,23411 | (| 2.77400) | 26259.832 | 17.5918 |
| CHANGE IN WATER STORAGE | 0.037 | (| 2.8452) | 134.68 | 0.090 |

.

| PEAK DAILY VALUES FOR YEARS | 1 THROUGH | 30 |
|---------------------------------------|-----------|------------|
| · · · · · · · · · · · · · · · · · · · | (INCHES) | (CU. FT.) |
| PRECIPITATION | 4.08 | 14810.399 |
| RUNOFF | 2.124 | 7710.7397 |
| PERCOLATION/LEAKAGE THROUGH LAYER 1 | 0.385996 | 1401.16675 |
| SNOW WATER | 3.00 | 10891.1436 |
| MAXIMUM VEG. SOIL WATER (VOL/VOL) | 0.3 | 3049. |
| MINIMUM VEG. SỌIL WATER (VOL/VOL) | 0.1 | 1360 |
| | | |

•

AR301512

| | FINAL WATER S. | TORAGE AT END OF | E YEAR 30 | |
|-------|-------------------------------------|------------------|-------------------------------------|--------|
| | LAYER | (INCHES) | (VOL/VOL) | |
| | 1 | 34.4861 | 0.2874 | |
| : | SNOW WATER | 0.000 | | |
| **** | * * * * * * * * * * * * * * * * * * | ****** | ****** | **** |
| ***** | * * * * * * * * * * * * * * * | ***** | * * * * * * * * * * * * * * * * * * | ****** |

.

ι,

FINAL WATER STORAGE AT END OF YEAR 30

•

****** *********** * * * * ** * * * * HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE * * ** HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) * * * * DEVELOPED BY ENVIRONMENTAL LABORATORY ** * * USAE WATERWAYS EXPERIMENT STATION * * * * FOR USEPA RISK REDUCTION ENGINEERING LABORATORY * * ** ** ** * *

PRECIPITATION DATA FILE:C:\HELP3\montross.D4TEMPERATURE DATA FILE:C:\HELP3\montross.D7SOLAR RADIATION DATA FILE:C:\HELP3\montross.D13EVAPOTRANSPIRATION DATA:C:\HELP3\montross.D11SOIL AND DESIGN DATA FILE:C:\HELP3\l0mon02.D10OUTPUT DATA FILE:C:\HELP3\l0mon02.OUT

TIME: 10:28 DATE: 1/19/2001

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10 THICKNESS 120.00 INCHES = 0.3980 VOL/VOL POROSITY = FIELD CAPACITY = 0.2440 VOL/VOL 0.1360 VOL/VOL WILTING POINT = 0.2772 VOL/VOL INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. COND. = 0.119999997000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

AR301514

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 2.% AND A SLOPE LENGTH OF 500. FEET.

| SCS RUNOFF CURVE NUMBER | = | 89.80 | |
|------------------------------------|---|--------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF | = | 100.0 | PERCENT |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000 | ACRES |
| EVAPORATIVE ZONE DEPTH | = | 22.0 | INCHES |
| INITIAL WATER IN EVAPORATIVE ZONE | = | 5.293 | INCHES |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 8.756 | INCHES |
| LOWER LIMIT OF EVAPORATIVE STORAGE | # | 2.992 | INCHES |
| INITIAL SNOW WATER | = | 0.000 | INCHES |
| INITIAL WATER IN LAYER MATERIALS | = | 33.261 | INCHES |
| TOTAL INITIAL WATER | - | 33.261 | INCHES |
| TOTAL SUBSURFACE INFLOW | = | 0.00 | INCHES/YEAR |
| | | | |

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

| STATION LATITUDE | Ξ | 38.08 | DEGREES |
|---------------------------------------|-----|-------|---------|
| MAXIMUM LEAF AREA INDEX . | = | 2.00 | |
| START OF GROWING SEASON (JULIAN DATE) | = | 91 | |
| END OF GROWING SEASON (JULIAN DATE) | × | 306 | |
| EVAPORATIVE ZONE DEPTH | = | 22.0 | INCHES |
| AVERAGE ANNUAL WIND SPEED | Ξ | 7.60 | MPH |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | = | 68.00 | ક |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | . = | 68.00 | 8 |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | = | 77.00 | 8 |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | = | 73.00 | e e |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 3.06 | 2.74 | 3.85 | 3.11 | 4.07 | 3.40 |
| 4.48 | 3.50 | 3.46 | 3.08 | 2.89 | 3.30 |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 37.30 | 40.60 | 50.10 | 60.80 | 70.20 | 78.50 |
| 82.00 | 81.60 | 72.50 | 62.30 | 51.40 | 41.80 |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

| | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| PRECIPITATION | <i>~~~~</i> ~~ | | * | | | |
| TOTALS | 2.76 | 2.53 | 4.29 | 2.67 | 3.54 | 3.50 |
| STD. DEVIATIONS | 1.57 | 1.06 | 1.55 | 1.25 | 1.55 | 1.84 |
| RUNOFF | 2.21 | 1.85 | 2.09 | 1.34 | 1.01 | 1.07 |
| TOTALS | 0.153
0.505 | 0.126
0.417 | 0.397
0.560 | 0.113
0.194 | 0.288
0.215 | 0.220
0.345 |
| STD. DEVIATIONS | 0.251
0.678 | 0.216
0.399 | 0.616
0.584 | 0.202 | 0.384
0.327 | 0.257
0.336 |
| EVAPOTRANSPIRATION | | | | | | |
| TOTALS | 1.234
3.808 | 1.582
3.791 | 3.043
2.680 | 3.169
1.481 | 3.892
1.246 | 3.551
1.013 |
| STD. DEVIATIONS | 0.210
1.331 | 0.294 | 0.261
1.037 | 0.879
0.463 | 0.888
0.293 | 1.737
0.200 |
| PERCOLATION/LEAKAGE | THROUGH LAY | ER 1 | | | | |
| TOTALS | 0.7486 | 0.9646 | 0.9968 | 1.0430 | 0.8924 | 0.5998 |

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

AR301516

......

| | 0.4589 | 0.3423 | 0.2811 | 0.2286 | 0.2059 | 0.3016 |
|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
| STD. DEVIATIONS | 0.8850
0.0980 | 0.9032
0.1117 | 0.6205
0.0753 | 0.6337
0.0796 | 0.3187
0.1412 | 0.2520
0.6401 |
| | | | | ******* | | ***** |

| AVERAGE ANNUAL TOTALS & | (STD. DEVIA | rio | NS) FOR Y | EARS 1 THROUG | H 30 |
|--|-------------------------|-----|-----------|---------------|----------|
| | INC | HES | | CU. FEET | PERCENT |
| PRECIPITATION | 41.12 | (| 5.848) | 1,49272.9 | 100.00 |
| RUNOFF | 3.532 | (| 1.4433) | 12820.05 | 8.588 |
| EVAPOTRANSPIRATION | 30.488 | (| 3.3762) | 110672.23 | 74.141 |
| PERCOLATION/LEAKAGE THROUGH
LAYER 1 | 7.06350 | (| 2.75174) | 25640.490 | 17.17693 |
| CHANGE IN WATER STORAGE | 0.039 | (| 2.8451) | 140.11 | 0.094 |
| ******* | * * * * * * * * * * * * | *** | ***** | ***** | ***** |

| PEAK DAILY VALUES FOR YEARS | 1 THROUGH | 30 |
|-------------------------------------|-----------------------------|------------|
| | (INCHES) | (CU. FT.) |
| PRECIPITATION | 4.08 | 14810.399 |
| RUNOFF | 2.176 | 7899.0508 |
| PERCOLATION/LEAKAGE THROUGH LAYER 1 | 0.277167 | 1006.11572 |
| SNOW WATER | 3.00 | 10891.1436 |
| MAXIMUM VEG. SOIL WATER (VOL/VOL) | 0.3 | |
| MINIMUM VEG. SOIL WATER (VOL/VOL) | 0.1 | 360 |
| ******** | * * * * * * * * * * * * * * | ***** |

•

| FINAL WATER | STORAGE AT E | END OF YEAR 30 | |
|---|--------------|----------------|-------|
| LAYER | (INCHES) | (VOL/VOL) | |
| 1 | 34.4185 | 0.2868 | |
| SNOW WATER | 0.000 | | |
| ******* | ****** | ***** | **** |
| * | ***** | ******* | ***** |

•

| ***** | ****************** | ****** |
|-------|---|-----------------|
| **** | *********** | ****** |
| ** | | * * |
| * * | | ** |
| ** | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE | ** |
| * * | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) | * * |
| * * | DEVELOPED BY ENVIRONMENTAL LABORATORY | * * |
| * * | USAE WATERWAYS EXPERIMENT STATION | * * |
| ** | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | * * |
| ** | | * * |
| ** | | * * |
| ***** | * | * * * * * * * * |
| ***** | * | * * * * * * * * |

| C:\HELP3\montross.D4 |
|-----------------------|
| C:\HELP3\montross.D7 |
| C:\HELP3\montross.D13 |
| C:\HELP3\montross.D11 |
| C:\HELP3\10mon10.D10 |
| C:\HELP3\10mon10.OUT |
| |

TIME: 10:30 DATE: 1/19/2001

TITLE: Existing Conditions - 10 feet @ 10.0% Surface Slope

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10

THICKNESS 120.00 INCHES 0.3980 VOL/VOL POROSITY = FIELD CAPACITY 0.2440 VOL/VOL = WILTING POINT 0.1360 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.2765 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.119999997000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 10.% AND A SLOPE LENGTH OF 500. FEET.

| SCS RUNOFF CURVE NUMBER | = | 90.10 | |
|------------------------------------|---|---------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF | = | 100.0 | PERCENT |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000 | ACRES |
| EVAPORATIVE ZONE DEPTH | = | 22.0 | INCHES |
| INITIAL WATER IN EVAPORATIVE ZONE | - | 5.294 | INCHES |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 8.756 | INCHES |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 2.992 | INCHES |
| INITIAL SNOW WATER | = | 0.000 | INCHES |
| INITIAL WATER IN LAYER MATERIALS | æ | 33, 180 | INCHES |
| TOTAL INITIAL WATER | đ | 33.180 | INCHES |
| TOTAL SUBSURFACE INFLOW | = | 0.00 | INCHES/YEAR |
| | | | |

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

| STATION LAT | ITUDE | | | = | 38.08 | DÉGREES |
|--------------|-----------|------------|-----------|---|-------|---------|
| MAXIMUM LEAP | F AREA IN | NDEX | | = | 2.00 | |
| START OF GRO | DWING SEA | ASON (JUL: | IAN DATE) | = | 91 | |
| END OF GROWI | ING SEASC | ON (JULIAN | N DATE) | = | 306 | |
| EVAPORATIVE | ZONE DEP | PTH | | = | 22.0 | INCHES |
| AVERAGE ANNU | JAL WIND | SPEED | | = | 7.60 | MPH |
| AVERAGE 1ST | QUARTER | RELATIVE | HUMIDITY | = | 68,00 | 8 |
| AVERAGE 2ND | QUARTER | RELATIVE | HUMIDİTY | = | 68.00 | 8 |
| AVERAGE 3RD | QUARTER | RELATIVE | HUMIDITY | = | 77.00 | 8 |
| AVERAGE 4TH | QUARTER | RELATIVE | HUMIDITY | = | 73.00 | 8 |
| | | | | | | |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 3.06 | 2.74 | 3.85 | 3.11 | 4.07 | 3.40 |
| 4.48 | 3.50 | 3.46 | 3.08 | 2.89 | 3.30 |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 37.30 | 40.60 | 50.10 | 60.80 | 70.20 | 78.50 |
| 82.00 | 81.60 | 72.50 | 62.30 | 51.40 | 41.80 |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

| | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| PRECIPITATION | | | | | | |
| TOTALS | 2.76
4.97 | 2.53
4.38 | 4.29
3.75 | 2.67
2.45 | 3.54
2.72 | 3.50
3.58 |
| STD. DEVIATIONS | 1.57
2.21 | 1.06
1.80 | 1.55
2.09 | 1.25
1.34 | 1.55
1.51 | 1.84
1.67 |
| RUNOFF | | | | | | |
| TOTALS | 0.163
0.533 | 0.133
0.439 | 0.418
0.584 | 0.121
0.207 | 0.303
0.227 | 0.235
0.364 |
| STD. DEVIATIONS | 0.264
0.699 | 0.219
0.414 | 0.624
0.600 | 0.212
0.256 | 0.396
0.339 | 0.268
0.351 |
| EVAPOTRANSPIRATION | | | | | | |
| TOTALS | 1.234
3.800 | 1.582
3.775 | 3.041
2.672 | 3.160
1.480 | 3.894
1.244 | 3.530
1.012 |
| STD. DEVIATIONS | 0.210
1.328 | 0.294
1.201 | 0.261
1.036 | 0.877 | 0.877
0.292 | 1.717
0.198 |
| PERCOLATION/LEAKAGE T | HROUGH LAY | ER 1 | | | | |
| TOTALS | 0.7141 | 0.9444 | 0.9945 | 1.0136 | 0.8869 | 0.5948 |

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

| | 0.4578 | 0.3415 | 0.2786 | 0.2227 | 0.2053 | 0.2785 |
|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
| STD. DEVIATIONS | 0.8656
0.0983 | 0.9072
0.1078 | 0.6346
0.0682 | 0.6118
0.0788 | 0.3174
0.1311 | 0.2506
0.6092 |
| **** | ******* | ***** | ***** | ****** | ****** | ****** |

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30

.

| | INC | HES | | CU. FEET | PERCENT | |
|--|---------|-----|----------|-----------|---------|--|
| PRECIPITATION | 41.12 | (| 5.848) | 149272.9 | 100.00 | |
| RUNOFF | 3.726 | (| 1.4802) | 13525.49 | 9.061 | |
| EVAPOTRANSPIRATION | 30.424 | (| 3.3795) | 110438.61 | 73,984 | |
| PERCOLATION/LEAKAGE THROUGH
LAYER 1 | 6.93273 | (| 2.71508) | 25165.824 | 16.8589 | |
| CHANGE IN WATER STORAGE | 0.039 | (| 2.8461) | 142.94 | 0.096 | |

| PEAK DAILY VALUES FOR YEARS | 1 THROUGH | 30 . |
|-------------------------------------|-----------|-------------------|
| | (INCHES) | (CU. FT.) |
| PRECIPITATION | 4.08 | 14810.399 |
| RUNOFF | 2.214 | 8036.1309 |
| PERCOLATION/LEAKAGE THROUGH LAYER 1 | 0.271786 | 986.583 92 |
| SNOW WATER | 3.00 | 10891.1436 |
| MAXIMUM VEG. SOIL WATER (VOL/VOL) | 0.1 | 3057 - |
| MINIMUM VEG. SOIL WATER (VOL/VOL) | 0.3 | 1360 |
| ***** | ***** | ***** |

.

| | LAYER | (INCHES) | (VOL/VOL) | |
|-------------------------------|------------|----------|-----------|-----------------------------|
| | 1 | 34.3612 | 0.2863 | |
| | SNOW WATER | 0.000 | | |
| * * * * * * * * * * * * * * * | **** | **** | **** | * * * * * * * * * * * * * * |
| ***** | ***** | **** | ***** | ***** |

.

.

.

۰.

,

**

FINAL WATER STORAGE AT END OF YEAR 30

| ***** | ***************** | ***** |
|------------|---|-------|
| ****** | ********** | ***** |
| * * | | ** |
| * * | | * * |
| * * | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE | ** |
| ** | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) | ** |
| * * | DEVELOPED BY ENVIRONMENTAL LABORATORY | * * |
| * * | USAE WATERWAYS EXPERIMENT STATION | ** |
| * * | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | ** |
| ** | | * * |
| ** | | ** |
| ***** | *************************************** | ***** |
| ********** | **** | ***** |

| PRECIPITATION DATA FILE: | C:\HELP3\montross.D4 |
|----------------------------|-----------------------|
| TEMPERATURE DATA FILE: | C:\HELP3\montross.D7 |
| SOLAR RADIATION DATA FILE: | C:\HELP3\montross.D13 |
| EVAPOTRANSPIRATION DATA: | C:\HELP3\montross.D11 |
| SOIL AND DESIGN DATA FILE: | C:\HELP3\10mon25.D10 |
| OUTPUT DATA FILE: | C:\HELP3\10mon25.OUT |

TIME: 10:31 DATE: 1/19/2001

TITLE: Existing Conditions - 10 feet @ 25.0% Surface Slope

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10 THICKNESS 120.00 INCHES = POROSITY 0.3980 VOL/VOL = FIELD CAPACITY 0.2440 VOL/VOL = WILTING POINT = 0.1360 VOL/VOL INITIAL SOIL WATER CONTENT = 0.2755 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.119999997000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 500. FEET.

| FRACTION OF AREA ALLOWING RUNOFF = 100.0 PERCENT | |
|---|-----|
| AREA PROJECTED ON HORIZONTAL PLANE = 1.000 ACRES | |
| EVAPORATIVE ZONE DEPTH = 22:0 INCHES | |
| INITIAL WATER IN EVAPORATIVE ZONE = 5.294 INCHES | |
| UPPER LIMIT OF EVAPORATIVE STORAGE = 8.756 INCHES | |
| LOWER LIMIT OF EVAPORATIVE STORAGE = 2.992 INCHES | |
| INITIAL SNOW WATER = 0.000 INCHES | |
| INITIAL WATER IN LAYER MATERIALS = 33.060 INCHES | |
| TOTAL INITIAL WATER = 33.060 INCHES | |
| TOTAL SUBSURFACE INFLOW = 0.00 INCHES/YH | EAR |

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

| STATION LATITUDE | = | 38.08 | DEGREES |
|---------------------------------------|---|-------|---------|
| MAXIMUM LEAF AREA INDEX | Ħ | 2.00 | |
| START OF GROWING SEASON (JULIAN DATE) | = | 91 | |
| END OF GROWING SEASON (JULIAN DATE) | = | 306 | |
| EVAPORATIVE ZONE DEPTH | = | 22.0 | INCHES |
| AVERAGE ANNUAL WIND SPEED | - | 7.60 | MPH |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | = | 68.00 | 8. |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | = | 68.00 | 8 |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | = | 77.00 | 8 |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | - | 73.00 | 8 |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | ÷ |
| 3.06 | 2.74 | 3.85 | 3.11 | 4.07 | 3.40 |
| 4.48 | 3.50 | 3.46 | 3.08 | 2.89 | 3.30 |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 37.30 | 40.60 | 50.10 | 60.80 | 70.20 | 78,50 |
| 82.00 | 81.60 | 72.50 | 62.30 | 51.40 | 41.80 |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

| AVERAGE MONTHLY | VALUES I | N INCHES | FOR YEARS | 1 THR | OUGH 30 | |
|-------------------------|----------|----------|-----------|---------|---------|---------|
| | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
| PRECIPITATION | | | | | | |
| | | | | | | |
| TOTALS | 2.76 | 2.53 | 4.29 | 2.67 | 3,54 | 3.50 |
| | 4.97 | 4.38 | 3.75 | 2.45 | 2.72 | 3.58 |
| STD. DEVIATIONS | 1.57 | 1.06 | 1.55 | 1.25 | 1.55 | 1.84 |
| | 2.21 | 1.80 | 2.09 | 1.34 | 1.51 | 1.67 |
| RUNOFF | | | | | | |
| TOTALS | 0.173 | 0.142 | 0.441 | 0.130 | 0.320 | 0.251 |
| • | 0.559 | 0.465 | 0.610 | 0.220 | 0.240 | 0.385 |
| STD. DEVIATIONS | 0.275 | 0.223 | 0.634 | 0.224 | 0.411 | 0.281 |
| | 0.719 | 0.429 | 0.619 | 0.266 | 0.352 | 0.368 |
| EVAPOTRANSPIRATION | | | | | | |
| TOTALS | 1.233 | 1.582 | 3.042 | 3,159 | 3.891 | 3.505 |
| | 3.784 | 3.758 | 2.661 | 1.481 | 1.242 | 1.011 |
| STD. DEVIATIONS | 0.209 | 0.294 | 0.261 | 0.878 | 0.875 | 1 708 |
| | 1.323 | 1.194 | 1.035 | 0.465 | 0.292 | 0.197 |
| PERCOLATION/LEAKAGE THR | OUGH LAY | ER 1 | | | | |

TOTALS

AR301526

0.6897 0.9156 0.9565 1.0042 0.8888 0.5930

| | 0.4536 | 0.3381 | 0.2758 | 0.2177 | 0.1948 | 0.2662 |
|-----------------|---------------------------|--------|--------|--------|-------------------|-------------------|
| STD. DEVIATIONS | 0.8484 | 0.8882 | 0.5927 | 0.6257 | 0.3245 | 0.2503 |
| | 0.0936 | 0.1056 | 0:0647 | 0.0800 | 0.1267 | 0.5817 |
| ***** | * * * * * * * * * * * * * | ****** | ****** | ***** | * * * * * * * * * | * * * * * * * * * |

| AVERAGE ANNUAL TOTALS & (| STD. DEVIA | | ONS) FOR 16 | ARS I THROUG | ын 30
 |
|--|------------|-----|-------------|--------------|-----------|
| | INC | HES | | CU. FEET | PERC |
| PRECIPITATION | 41.12 | (| 5.848) | 149272.9 | 100.0 |
| RUNOFF | 3.938 | (| 1.5243) | 14294.89 | 9.5 |
| EVAPOTRANSPIRATION | 30.348 | (| 3.3742) | 110164:27 | 73.8 |
| PERCOLATION/LEAKAGE THROUGH
LAYER 1 | 6.79395 | (| 2.68785) | 24662.051 | 16.5 |
| CHANGE IN WATER STORAGE | 0.042 | (| 2.8465) | 151.64 | 0.1 |

| INCHES)
4.08
2.245 | (CU. FT.)
14810.399
8148.4463 |
|--------------------------|-------------------------------------|
| 4.08 | 14810.399
8148.4463 |
| 2.245 | 8148.4463 |
| | |
| J.260716 | 946.39819 |
| 3.00 | 10891.1436 |
| | |
| 0.307 | 0 . |
| 0.136 | 50 |
| 3 | .00
0.307
0.136 |

•

| LA | YER (INCHE | S) (VOL/VC |)
)
) |
|-----------------------|---|---|--------------------------|
| | 1 34.31 | .35 0.285 | 9 |
| SNOW | WATER 0.00 | 0 | |
| ********************* | * | * | ************************ |

•

•

•

FINAL WATER STORAGE AT END OF YEAR 30

-

AR301528

1

APPENDIX D-2

Cap System Alternatives A, B, C & D

.

٠

•.,

.

******* * * * * * * * * * * HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE * * * * HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) * * * * DEVELOPED BY ENVIRONMENTAL LABORATORY * * * * USAE WATERWAYS EXPERIMENT STATION * * * * ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY * * ** * * * *

PRECIPITATION DATA FILE:C:\HELP3\montross.D4TEMPERATURE DATA FILE:C:\HELP3\montross.D7SOLAR RADIATION DATA FILE:C:\HELP3\montross.D13EVAPOTRANSPIRATION DATA:C:\HELP3\montross.D11SOIL AND DESIGN DATA FILE:C:\HELP3\gclnet.D10OUTPUT DATA FILE:C:\HELP3\gclnet.OUT

TIME: 10:33 DATE: 1/19/2001

TITLE: Alternative A - GCL/Drainage Net/24 inches of soil

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10 THICKNESS 24.00 INCHES = POROSITY 0.3980 VOL/VOL = FIELD CAPACITY = 0.2440 VOL/VOL WILTING POINT = 0.1360 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3549 VOL/VOL = 0.119999997000E-03 CM/SEC EFFECTIVE SAT. HYD. COND. NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0 0.20 INCHES THICKNESS 35 POROSITY 0.8500 VOL/VOL = FIELD CAPACITY 0.0100 VOL/VOL 3 WILTING POINT 1 0.0050 VOL/VOL 0.8500 VOL/VOL INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. COND. = 1.0000000000 CM/SEC SLOPE ----1.00 PERCENT DRAINAGE LENGTH 500.0 FEET =

LAYER 3

TYPE 3 - BARRIER SOIL LINER

| MATÉRIAL TI | EXTURE | NUMBER 17 | | |
|---------------------------|--------|------------|----------|--------|
| THICKNESS | - | 0.25 | INCHES | |
| POROSITY | - | 0.7500 | VOL/VOL | |
| FIELD CAPACITY | ≉ | 0.7470 | VOL/VOL | |
| WILTING POINT | = | 0.4000 | VOL/VOL | |
| INITIAL SOIL WATER CONTEN | = TN | 0.7500 | VOL/VOL | |
| EFFECTIVE SAT. HYD. COND. | . = | 0.30000003 | 3000E-08 | CM/SEC |

LAYER 4

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10

| THICKNESS | = | 204.00 INCHES |
|----------------------------|---|---------------------------|
| POROSITY | a | 0.3980 VOL/VOL |
| FIELD CAPACITY | # | 0.2440 VOL/VOL |
| WILTING POINT | 2 | 0.1360 VOL/VOL |
| INITIAL SOIL WATER CONTENT | * | 0.2446 VOL/VOL |
| EFFECTIVE SAT. HYD. COND. | = | 0.119999997000E-03 CM/SEC |

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A

.

.

AR301531

.

.

FAIR STAND OF GRASS, A SURFACE SLOPE OF 1.% AND A SLOPE LENGTH OF 500. FEET.

| SCS RUNOFF CURVE NUMBER | = | 85.00 | |
|------------------------------------|---|--------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF | = | 100.0 | PERCENT |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000 | ACRES |
| EVAPORATIVE ZONE DEPTH | = | 22.0 | INCHES |
| INITIAL WATER IN EVAPORATIVE ZONE | = | 7.722 | INCHES |
| UPPER LIMIT OF EVAPORATIVE STORAGE | - | 8.756 | INCHES |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 2.992 | INCHES |
| INITIAL SNOW WATER | = | 0.000 | INCHES |
| INITIAL WATER IN LAYER MATERIALS | = | 58.764 | INCHES |
| TOTAL INITIAL WATER | = | 58.764 | INCHES |
| TOTAL SUBSURFACE INFLOW | = | 0.00 | INCHES/YEAR |
| | | | |

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

| STATION LATITUDE | | Ŧ | 38.08 | DEGREES |
|-------------------------|----------------|---|-------|---------|
| MAXIMUM LEAF AREA INDEX | | = | 2.00 | |
| START OF GROWING SEASON | (JULIAN DATE) | = | 91 | |
| END OF GROWING SEASON (| JULIAN DATE) | = | 306 | |
| EVAPORATIVE ZONE DEPTH | | = | 22.0 | INCHES |
| AVERAGE ANNUAL WIND SPE | ED | = | 7.60 | MPH |
| AVERAGE 1ST QUARTER REL | ATIVE HUMIDITY | = | 68.00 | 8 |
| AVERAGE 2ND QUARTER REL | ATIVE HUMIDITY | = | 68.00 | £ |
| AVERAGE 3RD QUARTER REL | ATIVE HUMIDITY | = | 77.00 | 8 |
| AVERAGE 4TH QUARTER REL | ATIVE HUMIDITY | = | 73.00 | 8 |
| | | | | |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 3.06 | 2.74 | 3.85 | 3.11 | 4.07 | 3.40 |
| 4.48 | 3.50 | 3.46 | 3.08 | 2.89 | 3.30 |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCŢ | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 37.30 | 40.60 | 50.10 | 60.80 | 70.20 | 78.50 |

| 82.00 | 81.60 | 72.50 | 62.30 | 51.40 | 41.80 |
|-------|-------|-------|-------|-------|-------|
| | | | | | 41.80 |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

.

•

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

| | | | | | | ~~~~~~~~ |
|---------------------------|------------------|------------------|---------------------|------------------|------------------|------------------|
| PRECIPITATION | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
| | | | | | | |
| TOTALS | 2.76
4.97 | 2.53
4.38 | 4.29
3.75 | 2.67
2.45 | 3.54 | 3.50 |
| STD. DEVIATIONS | 1.57
2.21 | 1.06
1.80 | 1.55
2.09 | 1.25
1.34 | 1.55
1.51 | 1.84 |
| | | | | | | |
| TOTALS
STD. DEVIATIONS | 0.512
0.230 | 0.188
0.171 | 0.647
0.287 | 0.086
0.073 | 0.173
0.154 | 0.084
0.539 |
| EVAPOTRANSPIRATION | 1.004
0.419 | 0.355
0.227 | 1.109
0.377 | 0.219
0.129 | 0.405
0.345 | 0.141
0.961 |
| | | | | | | |
| TOTALS . | 1.246
4.048 | 1.591
3.986 | 3.060
2.746 | 3.169
1.476 | 3.995
1.253 | 4.070
1.032 |
| UNERDA | 0.200
1.428 | 0.295
1.303 | 0.271
1.034 | 0.869
0.446 | 0.879
0.285 | 1.756 |
| LAIERAL DRAINAGE COLLE | CTED FROM I | AYER 2 | | | | |
| TOTALS | 0.6555
0.1224 | 0.6397 | 0.7040
0.1386 | 0.6789
0.2863 | 0.6402
0.3902 | 0.4243
0.5563 |
| PERCOLATION (LEASE of | 0.1923
0.1785 | 0.0559
0.2086 | 0.0825
0.2315 | 0.0328
0.2947 | 0.1521
0.2851 | 0.2392
0.2233 |
| TERCOLATION/LEAKAGE THE | OUGH LAYER | 3 | | | | |
| TOTALS | 0.1689
0.0077 | 0.1526
0.0046 | 0.1808
0.0152 | 0.1263
0.0258 | 0.0711
0.0520 | 0.0241
0.1039 |

| STD. DEVIATIONS | 0.1012
0.0155 | 0.07
0.00 | 50
84 | 0.0735
0.0343 | 0.0609
0.0399 | 0.0481
0.063 | 3 0.0352
7 0.0911 |
|--|-------------------|--------------|----------|-------------------|-------------------|------------------|----------------------|
| PERCOLATION/LEAKAGE THR | DUGH LAYE | R 4 | | | | | |
| TOTALS | 0.0629
0.1039 | 0.04 | 41
61 | 0.0488
0.1263 | 0.0490
0.1045 | 0.0478
0.0818 | 0.0507
0.0737 |
| STD. DEVIATIONS | 0.0571
0.0809 | 0.04
0.09 | 10
41 | 0.0329
0.0993 | 0.0280
0.0891 | 0.0304
0.0755 | 0.0438
0.0616 |
| AVERAGES O | F MONTHLY | AVERA | GED | DAILY HEA | ADS (INCHE | ES) | |
| DAILY AVERAGE HEAD ON TO | OP OF LAY | ER 3 | | | | | |
| AVERAGES | 13.1057
0.4213 | 13.00 | 93
31 | 14.0358
1.1298 | 10.0669
1.8916 | 5,3656
4.0613 | 1.7226
7.9797 |
| STD. DEVIATIONS | 7.9836
1.2003 | 6.53
0.60 | 88
14 | 5.8099
2.7517 | 4.9.702
3.0956 | 3.8164
5.1544 | 2.8754
7.1879 |
| AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 30 | | | | | | | |
| | | INC | HES | | CU. FEE | ст
ст | PERCENT |
| PRECIPITATION | 41 | .12 | (| 5.848) | 149272 | . 9 | 100.00 |
| RUNOFF | 3 | .144 | (| 2.3198) | 11411 | .60 | 7.645 |
| EVAPOTRANSPIRATION | 31 | .672 | (| 3.6188) | 114969 | .97 | 77.020 |
| LATERAL DRAINAGE COLLECTE
FROM LAYER 2 | D 5 | .34939 | (| 0.86343) | 19418 | .281 | 13.00858 |
| PERCOLATION/LEAKAGE THROU
LAYER 3 | IGH 0 | .93297 | (| 0.32989) | 3386 | 691 | 2.26879 |
| AVERAGE HEAD ON TOP
OF LAYER 3 | 6 | .088 (| | 2.222) | | | |
| PERCOLATION/LEAKAGE THROU
LAYER 4 | GH 0 | 92983 | (| 0.36230) | 3375 | .283 | 2.26115 |
| CHANGE IN WATER STORAGE | 0. | .027 | (| 2.0813) | ` | .74 | 0.065 |

| PEAK DAILY VALUES FOR YEARS | 1 THROUGH | 30 |
|--|------------|------------|
| | (INCHES) | (CU. FT.) |
| PRECIPITATION | 4.08 | 14810.399 |
| RUNOFF | 2.018 | 7324.7417 |
| DRAINAGE COLLECTED FROM LAYER 2 | 0.02499 | 90.70293 |
| PERCOLATION/LEAKAGE THROUGH LAYER 3 | 0.009980 | 36.22732 |
| AVERAGE HEAD ON TOP OF LAYER 3 | 24.200 | |
| MAXIMUM HEAD ON TOP OF LAYER 3 | 29.439 | |
| LOCATION OF MAXIMUM HEAD IN LAYER 2
(DISTANCE FROM DRAIN) | 216.4 FEET | |
| PERCOLATION/LEAKAGE THROUGH LAYER 4 | 0.011611 | 42.14651 |
| SNOW WATER | 3.00 | 10891.1436 |
| MAXIMUM VEG. SOIL WATER (VOL/VOL) | 0. | 3980 |
| MINIMUM VEG. SOIL WATER (VOL/VOL) | 0.1 | 1360 |

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

| * * * * * * * * * * * * * * * * * * | ******** | ******* | ***** | ***** |
|-------------------------------------|-------------|------------|----------------|-------|
| | FINAL WATER | STORAGE AT | END OF YEAR 30 | |
| | LAYER | (INCHES) | (VOL/VOL) | |
| | 1 | 9.2314 | 0.3846 | |
| | 2 | 0.1700 | 0.8500 | |

| | 3 | 0.1875 | | 0.7500 | |
|---|------------|---------|---|--------|--|
| | 4 | 49.9830 | • | 0.2450 | |
| : | SNOW WATER | 0.000 | | | |

٠

.

.

.

| * * * * * * | * * * * * | **** | * * * * | * * * | * * * | ** | * * * | ** | *** | * * * | * * * * | * * * | **1 | * * * | *** | * * * | * * | * * | * * * | * * | * * | * * * | r * * | *** | * * | * * | ** | * * |
|-------------|-----------|------|---------|-------|-------|-------|-------|----|-----|-------|---------|-------|-----|-------|-----|-------|-----|-----|-------|-----|-----|-------|-------|-------|-----|-----|----|-----|
| ****** | **** | **** | * * * * | * * * | * * * | * * • | * * * | ** | *** | * * * | *** | * * * | *** | * * * | *** | *** | * * | ** | * * * | * * | * | * * * | ** | * * * | ** | ** | ** | * * |

AR301536

,

| ***** | *********** | ***** |
|---------------------------|---|-------|
| * * * * * * * * * * * * * | ****** | ***** |
| * * | | * * |
| ** | | ** |
| ** | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE | * * |
| * * | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) | ** |
| ** | DEVELOPED BY ENVIRONMENTAL LABORATORY | * * |
| * * | USAE WATERWAYS EXPERIMENT STATION | ** |
| * * | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | * * |
| * * | | ** |
| * * | | ** |
| ***** | ***************** | ***** |
| **** | ****** | ***** |

| PRECIPITATION DATA FILE: | C:\HELP3\montross.D4 |
|----------------------------|-----------------------|
| TEMPERATURE DATA FILE: | .C:\HELP3\montross.D7 |
| SOLAR RADIATION DATA FILE: | C:\HELP3\montross.D13 |
| EVAPOTRANSPIRATION DATA: | C:\HELP3\montross.D11 |
| SOIL AND DESIGN DATA FILE: | C:\HELP3\gclsoil.D10 |
| OUTPUT DATA FILE: | C:\HELP3\gclsoil.OUT |

TIME: 10:37 DATE: 1/19/2001

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10 THICKNESS = 24.00 INCHES POROSITY 0.3980 VOL/VOL ≓ FIELD CAPACITY = 0.2440 VOL/VOL WILTING POINT 0.1360 VOL/VOL ÷ INITIAL SOIL WATER CONTENT = 0.3265 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.119999997000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 4THICKNESS=12.00INCHESPOROSITY=0.4370VOL/VOLFIELD CAPACITY=0.1050VOL/VOLWILTING POINT=0.0470VOL/VOLINITIAL SOIL WATER CONTENT=0.4370VOL/VOL

EFFECTIVE SAT. HYD. COND. = 0,170000002000E-02 CM/SEC

Ξ

≈

1.00 PERCENT

.

FEET

.

•

500.0

SLOPE

DRAINAGE LENGTH

LAYER 3

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 17 . 0.25 INCHES THICKNESS **\$** 0.7500 VOL/VOL * POROSITY FIELD CAPACITY 0.7470 VOL/VOL = WILTING POINT 0.4000 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.7500 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.30000003000E-08 CM/SEC

LAYER 4

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10

| THICKNESS | | a | 204.00 | INCHES | |
|----------------|------------|--------|-------------|----------|--------|
| POROSITY | | = | 0.3980 | VOL/VOL | |
| FIELD CAPACITY | (| æ | 0.2440 | VOL/VOL | |
| WILTING POINT | | 52 | 0,1360 | VOL/VOL | |
| INITIAL SOIL W | NATER CONT | 'ENT = | C.2449 | VOL/VOL | |
| EFFECTIVE SAT. | HYD. CON | 1D. = | 0.119999997 | 7000E-03 | CM/SEC |

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 1.% AND A SLOPE LENGTH OF 500. FEET.

| SCS RUNOFF CURVE NUMBER | = | 85.00 | |
|------------------------------------|---|--------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF | = | 100.0 | PERCENT |
| AREA PROJECTED ON HORIZONTAL PLANE | - | 1.000 | ACRES |
| EVAPORATIVE ZONE DEPTH | = | 22.0 | INCHES |
| INITIAL WATER IN EVAPORATIVE ZONE | = | 7.040 | INCHES |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 8.756 | INCHES |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 2.992 | INCHES |
| INITIAL SNOW WATER | = | 0.000 | INCHES |
| INITIAL WATER IN LAYER MATERIALS | = | 63.224 | INCHES |
| TOTAL INITIAL WATER | = | 63.224 | INCHES |
| TOTAL SUBSURFACE INFLOW | = | 0.00 | INCHES/YEAR |
| | | | |

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

.

| STATION LATITUDE
MAXIMUM LÉAF AREA INDEX | 7
2 | 38.08
2.00 | DEGREES |
|---|--------|---------------|---------|
| START OF GROWING SEASON (JULIAN DATE) | = | 91 | |
| END OF GROWING SEASON (JULIAN DATE) | ¥ | 306 | |
| EVAPORATIVE ZONE DEPTH | | 22.0 | INCHES |
| AVERAGE ANNUAL WIND SPEED | = | 7.60 | MPH |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | | 68.00 | 8 |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | = | 68.00 | 8 |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | = | 77.00 | 8 |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | = | 73.00 | 8 |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 3.06 | 2.74 | 3.85 | 3.11 | 4.07 | 3.40 |
| 4.48 | 3.50 | 3.46 | 3.08 | 2.89 | 3.30 |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| . 37.30 | 40.60 | 50.10 | 60.80 | 70.20 | 78.50 |

| 82.00 81.60 72.50 62.30 51.40 41 | .80 |
|--|-----|
|--|-----|

-

•

-

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30 _____ ------

|
 |
 |
 |
|------|------|------|
| | | |

| | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|----------------------|-----------------------------|------------------|------------------|------------------|------------------|------------------|
| PRECIPITATION | | <i>~~~~~~</i> | ~~~~~~~ | | | |
| TOTALS | 2.76
4.97 | 2.53
4.38 | 4.29
3.75 | 2.67
2.45 | 3.54
2.72 | 3.50
3.58 |
| STD. DEVIATIONS | 1.57
2.21 | 1.06
1.80 | 1.55
2.09 | 1.25
1.34 | 1.55
1.51 | 1.84
1.67 |
| RUNOFF | | | | | | |
| TOTALS | 0.784
0.244 | 0.336
0.173 | 1.029
0.288 | 0.139
0.075 | 0.226
0.196 | 0.100
0.770 |
| STD. DEVIATIONS | 1.297
0.480 | 0.427
0.232 | 1.387
0.376 | 0.323
0.131 | 0.535 | 0.169
1.195 |
| EVAPOTRANSPIRATION | • | | | | | |
| TOTALS | 1.241
4.228 | 1.589
4.027 | 3.052
2.728 | 3.164
1.429 | 4.015
1.237 | 4.977
1.024 |
| STD. DEVIATIONS | 0.193 [.]
1.476 | 0.295
1.326 | 0.265
1.012 | 0.867
0.414 | 0.850
0.256 | 1.418
0.185 |
| LATERAL DRAINAGE COL | LECTED FROM | LAYER 2 | | | | |
| TOTALS | 0.0917
0.0727 | 0.0847
0.0705 | 0.0949
0.0671 | 0.0843
0.0697 | 0.0815
0.0715 | 0.0734
0.0824 |
| STD. DEVIATIONS | 0.0145
0.0027 | 0.0097
0.0024 | 0.0083
0.0048 | 0.0053
0.0068 | 0.0032
0.0102 | 0.0037
0.0135 |
| PERCOLATION/LEAKAGE | THROUGH LAYE | ER 3 | | | | |
| TOTALS | 0.3498
0.1740 | 0.3285 | 0.3800
0.1608 | 0.3249
0.1784 | 0.2925
0.2110 | 0.2147
0.2791 |

AR301540

| STD. DEVIATIONS | 0.1038
0.0316 | 0.0734
0.0252 | 0.0542
0.0419 | 0.0381
0.0561 | 0.0282
0.0793 | 0.039.
0.100 |
|---|--|---|---|---|--|---|
| PERCOLATION/LEAKAGE THR | OUGH LAYE | ER 4 | | | | |
| TOTALS | 0.2195
0.3087 | 0.1365
0.3488 | 0.1414
0.3356 | 0.1361
0.3254 | 0.1955
0.2934 | 0.244
0.266 |
| STD. DEVIATIONS | 0.0977
0.0934 | 0.0695
0.0772 | 0.0657
0.0619 | 0.0608
0.0551 | 0.0839
0.0548 | 0.091
0.061 |
| AVERAGES O | F MONTHLY | AVERAGE | D DAILY HE | EADS (INCH | HES) | |
| DAILY AVERAGE HEAD ON TO | OP OF LAY | 'ER 3 | | | · | |
| AVERAGES | 27.3945
13.4982 | 28.2566 | 29.7841
12.8843 | 26.2816
13.8472 | 22.8681
16.9786 | 17.28 4
21.805 |
| STD DEVIATIONS | 8.2012 | 6.3715 | 4.2799 | 3.1108
4.4348 | 2.2325
6.4766 | 3.205
7.965 |
| **** | 2 . 4 9 4 4
* * * * * * * * * * *
* * * * * * * | 1.991/
******** | **** | ****** | ***** | * * * * * * * * |
| AVERAGE ANNUAL TOTALS | 2.4944

S & (STD. | 1.9917

DEVIATIO | | 2EARS 1 | . THROUGH | *********

30 |
| AVERAGE ANNUAL TOTALS | 2.4944 | 1.9917

DEVIATIO | •••••••••••••••••••••••••••••••••••••• | CU. FE | THROUGH | ************************************** |
| AVERAGE ANNUAL TOTALS
PRECIPITATION | 2.4944

5 & (STD.

41
4 | 1.9917

DEVIATIO
INCHES
.12 (
.360 (| 5.848)
2.9329 | CU. FE | THROUGH | *********
30
PERCENT
100.00
10.604 |
| AVERAGE ANNUAL TOTALS
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION | 2.4944
********************************** | 1.9917

DEVIATIO
INCHES
.12 (
.360 (
.711 (| <pre>************************************</pre> | CU. FE
14927
11874 | THROUGH
ET
2.9
8.32
2.56 | *********
30
PERCENT
100.00
10.604
79.547 |
| AVERAGE ANNUAL TOTALS
AVERAGE ANNUAL TOTALS
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
LATERAL DRAINAGE COLLECTE
FROM LAYER 2 | 2.4944

5 & (STD.

41
4
32
CD 0 | 1.9917

DEVIATIO
INCHE:
.12 (
.360 (
.711 (
.94458 (| 5.848)
2.9329)
3.5433)
0.04487) | EARS 1
CU. FE
14927
1582
11874
342 | THROUGH
CET
2.9
28.32
2.56
28.835 | *********
30
PERCENT
100.00
10.604
79.547
2.29703 |
| AVERAGE ANNUAL TOTALS
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
LATERAL DRAINAGE COLLECTE
FROM LAYER 2
PERCOLATION/LEAKAGE THROU
LAYER 3 | 2.4944

5 & (STD.

41
41
4
32
CD 0
WGH 3 | 1.9917

DEVIATIO
INCHES
.12 (
.360 (
.711 (
.94458 (
.05507 (| 5.848)
2.9329)
3.5433)
0.04487)
0.34720) | CU. FE
CU. FE
14927
1582
11874
342
1108 | THROUGH
THROUGH
2.9
2.9
2.56
2.56
2.8.835
9.890 | *********
30
PERCENT
100.00
10.604
79.547
2.29703
7.4292 |
| AVERAGE ANNUAL TOTALS
AVERAGE ANNUAL TOTALS
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
LATERAL DRAINAGE COLLECTE
FROM LAYER 2
PERCOLATION/LEAKAGE THROU
LAYER 3
AVERAGE HEAD ON TOP
OF LAYER 3 | 2.4944
 | 1.9917

DEVIATIO
INCHE
12 (
.360 (
.711 (
.94458 (
.05507 (
.282 (| <pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre> | CU. FE
CU. FE
14927
1582
11874
342
1108 | THROUGH
THROUGH
2.9
2.9
2.56
2.8.835
9.890 | *********
30
PERCENT
100.00
10.604
79.547
2.29703
7.4292 |
| AVERAGE ANNUAL TOTALS
AVERAGE ANNUAL TOTALS
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
LATERAL DRAINAGE COLLECTE
FROM LAYER 2
PERCOLATION/LEAKAGE THROU
LAYER 3
PERCOLATION/LEAKAGE THROU
LAYER 3
PERCOLATION/LEAKAGE THROU | 2.4944
 | 1.9917

DEVIATIO
INCHE:
.12 (
.360 (
.711 (
.94458 (
.05507 (
.282 (
.95223 (| <pre>CNS) FOR Y CNS) FOR Y CNS) FOR Y CNS) FOR Y CNS) CNS) FOR Y CNS) CNS) CNS) CNS) CNS CNS CNS CNS CNS CNS CNS CNS CNS CNS</pre> | EARS 1
CU. FE
14927
1582
11874
342
1108 | THROUGH
ET
2.9
2.56
28.835
9.890
6.582 | *********
30
PERCENT
100.00
10.604
79.547
2.29703
7.4292
7.1791 |

,

| PEAK DAILY VALUES FOR YEARS | 1 THROUGH | 30 |
|--|------------|------------|
| | (INCHES) | (CU. FT.) |
| PRECIPITATION | 4.08 | 14810.399 |
| RUNOFF | 2.143 | 7778.7461 |
| DRAINAGE COLLECTED FROM LAYER 2 | 0.00351 | 12.74444 |
| PERCOLATION/LEAKAGE THROUGH LAYER 3 | 0.014797 | 53.71141 |
| AVERAGE HEAD ON TOP OF LAYER 3 | 36.000 | |
| MAXIMUM HEAD ON TOP OF LAYER 3 | 42.553 | |
| LOCATION OF MAXIMUM HEAD IN LAYER 2
(DISTANCE FROM DRAIN) | 252.7 FEET | |
| PERCOLATION/LEAKAGE THROUGH LAYER 4 | 0.015881 | 57.64806 |
| SNOW WATER | 3.00 | 10891.1436 |
| MAXIMUM VEG. SOIL WATER (VOL/VOL) | 0.3 | 3980 |
| MINIMUM VEG. SOIL WATER (VOL/VOL) | 0. | 1360 |

**

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

| ***** | ********* | ********* | * | ****** |
|-------|-------------|------------|---|--------|
| | FINAL WATER | STORAGE AT | END OF YEAR 30 | |
| | LAYER | (INCHES) | (VOL/VOL) | |
| | 1 | 9.3505 | 0.3896 | |
| ÷ | 2 | 5.2440 | 0.4370 | |

AR301542

| | 3 | 0.1875 | 0.7500 | |
|---------------------------------------|---------------------------|---------|---|-------|
| | 4 | 53.0419 | 0.2600 | |
| | SNOW WATER | 0.000 | | |
| * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * | ***** | ***** | ***** |
| ***** | ***** | ****** | * | ***** |

.

AR301543

.

.

| * * * * * * * * * * * * * | * | * * * * |
|-----------------------------|---|---------|
| * * * * * * * * * * * * * * | * | * * * * |
| * * | | * * |
| ** | · | * * |
| * * | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE | ** |
| * * | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) | * * |
| * * | DEVELOPED BY ENVIRONMENTAL LABORATORY | * * |
| ** | USAE WATERWAYS EXPERIMENT STATION | * * |
| ** | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | * * |
| ** . | | * * |
| * * | | * * |
| **** | * | * * * * |
| ***** | * | * * * * |

| PRECIPITATION DATA FILE: | C:\HELP3\montross.D4 |
|----------------------------|-----------------------|
| TEMPERATURE DATA FILE: | C:\HELP3\montross.D7 |
| SOLAR RADIATION DATA FILE: | C:\HELP3\montross.D13 |
| EVAPOTRANSPIRATION DATA: | C:\HELP3\montross.D11 |
| SOIL AND DESIGN DATA FILE: | C:\HELP3\hdpesoil.D10 |
| OUTPUT DATA FILE: | C:\HELP3\hdpesoil.OUT |

TIME: 10:48 DATE: 1/19/2001

. •

TITLE: Alternative C - HDPE/12"of sand/24" soil

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10 THICKNESS 24.00 INCHES = POROSITY 0.3980 VOL/VOL æ FIELD CAPACITY = 0.2440 VOL/VOL WILTING POINT 0.1360 VOL/VOL = 0.3505 VOL/VOL INITIAL SOIL WATER CONTENT = EFFECTIVE SAT. HYD. COND. = 0.119999997000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 4 THICKNESS 12.00 INCHES = 0.4370 VOL/VOL POROSITY ≠ FIELD CAPACITY ₹ 0.1050 VOL/VOL WILTING POINT Ħ 0.0470 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4370 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.170000002000E-02 CM/SEC 1.00 PERCENT SLOPE = DRAINAGE LENGTH 500.0 = FEET

LAYER 3

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

| = | 0.06 INCHES |
|---|---------------------------|
| - | 0.0000 VOL/VOL |
| - | 0.0000 VOL/VOL |
| = | 0.0000 VOL/VOL |
| = | 0.0000 VOL/VOL |
| = | 0.199999996000E-12 CM/SEC |
| - | 1.00 HOLES/ACRE |
| æ | 1.00 HOLES/ACRE |
| Ħ | 3 - GOOD |
| | |

LAYER 4

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10

| THICKNESS | = | 204.00 INCHES |
|----------------------------|---|---------------------------|
| POROSITY | * | 0.3980 VOL/VOL |
| FIELD CAPACITY | = | 0.2440 VOL/VOL |
| WILTING POINT | = | 0.1360 VOL/VOL |
| INITIAL SOIL WATER CONTENT | = | 0.2440 VOL/VOL |
| EFFECTIVE SAT. HYD. COND. | = | 0.119999997000E-03 CM/SEC |

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

.

.

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 1.% AND A SLOPE LENGTH OF 500. FEET.

| SCS RUNOFF CURVE NUMBER | Ŧ | 85.00 | |
|------------------------------------|----------|--------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF | = | 100.0 | PERCENT |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000 | ACRES |
| EVAPORATIVE ZONE DEPTH | # | 22.0 | INCHES |
| INITIAL WATER IN EVAPORATIVE ZONE | = | 7.615 | INCHES |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 8.756 | INCHES |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 2.992 | INCHES |
| INITIAL SNOW WATER | = | 0.000 | INCHES |
| INITIAL WATER IN LAYER MATERIALS | = | 63.430 | INCHES |
| TOTAL INITIAL WATER | = | 63.430 | INCHES |
| TOTAL SUBSURFACE INFLOW | ÷ | 0.00 | INCHES/YEAR |

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

| STATION LATITUDE | = | 38.08 | DEGRÉES |
|--------------------------------------|-----|-------|---------|
| MAXIMUM LEAF AREA INDEX | = | 2.00 | |
| START OF GROWING SEASON (JULIAN DATE |) = | 91 | |
| END OF GROWING SEASON (JULIAN DATE) | = | 306 | |
| EVAPORATIVE ZONE DEPTH | = | 22.0 | INCHES |
| AVERAGE ANNUAL WIND SPEED | = | 7.60 | MPH |
| AVERAGE 1ST QUARTER RELATIVE HUMIDIT | Y = | 68.00 | * |
| AVERAGE 2ND QUARTER RELATIVE HUMIDIT | Y = | 68.00 | 8 |
| AVERAGE 3RD QUARTER RELATIVE HUMIDIT | Y = | 77.00 | 8 |
| AVERAGE 4TH QUARTER RELATIVE HUMIDIT | Y = | 73.00 | 8 |
| | | | |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 3.06 | 2.74 | 3.85 | 3.11 | 4.07 | 3,40 |
| 4.48 | 3.50 | 3.46 | 3.08 | 2.89 | 3.30 |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)
| FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------------------------|---|---|---|
| | | | | |
| 40.60 | 50.10 | 60.80 | 70.20 | 78.50 |
| 81.60 | 72.50 | 62.30 | 51.40 | 41.80 |
| | FEB/AUG
40.60
81.60 | FEB/AUG MAR/SEP
40.60 50.10
81.60 72.50 | FEB/AUG MAR/SEP APR/OCT 40.60 50.10 60.80 81.60 72.50 62.30 | FEB/AUG MAR/SEP APR/OCT MAY/NOV 40.60 50.10 60.80 70.20 81.60 72.50 62.30 51.40 |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

| | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|-----------------------|-------------|---------|---------|----------------|---------|---------|
| PRECIPITATION | , | | | | | |
| TOTALS | 2.76 | 2.53 | 4.29 | 2.67 | 3.54 | 3.50 |
| | 4.97 | 4.38 | 3.75 | 2.45 | 2.72 | 3.58 |
| STD. DEVIATIONS | 1.57 | 1.06 | 1.55 | 1.25 | 1.55 | 1.84 |
| | 2.21 | 1.80 | 2.09 | 1.34 | 1.51 | 1.67 |
| RUNOFF | | | | | | |
| TOTALS | 1.125 | 0.607 | 1.306 | 0.209 | 0.304 | 0.122 |
| | 0.272 | 0.174 | 0.290 | 0.086 | 0.314 | 1.129 |
| STD. DEVIATIONS | 1.458 | 0.666 | 1.500 | 0.440 | 0.638 | 0.209 |
| | 0.603 | 0.234 | 0.375 | 0.148 | 0.725 | 1.432 |
| EVAPOTRANSPIRATION | | | | | | |
| TOTALS | 1.237 | 1.586 | 3.049 | 3.146 | 3.989 | 5.544 |
| | 4.434 | 4.077 | 2.722 | 1.407 | 1.222 | 1.015 |
| STD. DEVIATIONS | 0.193 | 0.295 | 0.265 | 0.848 | 0.879 | 1.112 |
| | 1.512 | 1.360 | 0.990 | 0.364 | 0.245 | 0.186 |
| LATERAL DRAINAGE COLI | LECTED FROM | LAYER 2 | | | | |
| TOTALS | 0.0967 | 0.0888 | 0.0993 | 0.0884 | 0.0860 | 0.0759 |
| | 0.0736 | 0.0728 | 0.0712 | 0.0751 | 0.0778 | 0.0886 |
| STD. DEVIATIONS | 0.0123 | 0.0083 | 0.0052 | 0.0 040 | 0.0029 | 0.0041 |
| | 0.0032 | 0.0017 | 0.0038 | 0.0060 | 0.0101 | 0.0120 |
| PERCOLATION/LEAKAGE 7 | HROUGH LAYS | ER 3 | | | | |

.

| TOTALS 0
0 |).0805
).0420 | 0.07
0.03 | 48
96 | 0.0851
0.0398 | 0.0742
0.0457 | 0.07
0.05 | 02
40 | 0.0530
0.0691 |
|--|--|------------------------------------|---|---|---|---|--|--|
| STD. DEVIATIONS 0
0 |).0171
).0069 | 0.01
0.00 | 12
50 | 0.0060
0.0090 | 0.0046
0.0126 | 0.00
0.01 | 36
75 | 0.0079
0.0180 |
| PERCOLATION/LEAKAGE THROUG | H LAYE | R 4 | | | | | | |
| TOTALS 0
0 | 0.0793
0.0418 | 0.07 | 46
98 | 0.0854
0.0397 | 0.0754
0.0456 | 0.07 | 07
42 | 0.0531
0.0684 |
| STD. DEVIATIONS 0
0 | 0.0161 | 0.01
0.00 | 11
48 | 0.0057
0.0090 | 0.0056
0.0127 | 0.00
0.01 | 40
75 | 0.0076
0.0171 |
| AVERAGES OF M | ONTHLY | AVERA |
GED | DAILY HE | ADS (INCH | ES) | | |
| | | | | | | | | |
| DAILY AVERAGE HEAD ON TOP | OF LAY. | ER 3 | | | | | | |
| AVERAGES 30 | .0918
.6626 | 30.77
13.71 | 53
36 | 31.9499
14.3361 | 28.6094
16.1621 | 26.03
20.24 | 16 1
40 2 | L9.8472
25.5537 |
| 14 | 0220 | 4.89 | 19 | 2.3923 | 1.8676 | 1.419 | 57 | 3.2857 |
| 14
STD. DEVIATIONS 6
2 | . 7950
***** | 2.00 | 74
*** | 3.7441 | 5.0836 | 7.23 | 56
**** | 7.1776 |
| 14
STD. DEVIATIONS 6
2
*********************************** | .7950

******* | 2.00"

DEVIA | 74

TIO | 3.7441 | 5.0836

EARS 1 | 7.235 | 56

GH | 7.1776

30 |
| 14
STD. DEVIATIONS 6
2
*********************************** | .7950

(STD. | 2.00

DEVIA
INC | 74

TIOI
HES | 3.7441 | 5.0836

EARS 1
CU. FE | 7.235 | 56

GH
PE | 7.1776 |
| 14
STD. DEVIATIONS 6
2
*********************************** | .7950

(STD.
 | 2.00

DEVIA
INCI | 74

TIOI
HES | 3.7441
*********************************** | 5.0836

EARS 1
CU. FE
14927 | 7.23

THROUC
ET
2.9 | 56

GH

100 | 7.1776 |
| 14
STD. DEVIATIONS 6
2
*********************************** | .7950

(STD.

41.
5. | 2.00
2.00
 | 74

IIOI
HES
(| 3.7441
*********************************** | 5.0836

EARS 1
CU. FE
14927
2155 | 7.23

THROUC
ET
2.9
4.61 | 56

5H

100
14 | 7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776 |
| 14
STD. DEVIATIONS 6
2
*********************************** | .7950

(STD.

41.
5.
333 | 2.00
2.00
 | 74

FIOI
HES
(
(| 3.7441
*********************************** | 5.0836

EARS 1
CU. FE
14927
2155
12134 | 7.23

THROUC
ET
2.9
4.61
5.21 | 56

GH

10C
14
81 | 7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776 |
| 14
STD. DEVIATIONS 6
2
AVERAGE ANNUAL TOTALS 6
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
LATERAL DRAINAGE COLLECTED
FROM LAYER 2 | .7950

(STD.

41.
5.
33.
0. | 2.00
2.00
 | 74

TIOI
HES
(
(
(| 3.7441
*********************************** | 5.0836

EARS 1
CU. FE
14927
2155
12134
360 | 7.23

THROUG
ET
2.9
4.61
5.21
9.306 | 56
57
57
57
57
57
57
57
57
57
57 | 7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776 |
| 14
STD. DEVIATIONS 6
2
*********************************** | .7950
.7950

(STD.

41.
5.
33.
0. | 2.00
2.00
 | 74

FIOI
HES
(
(
(
(| 3.7441
*********************************** | 5.0836

EARS 1
CU. FE
14927
2155
12134
360
264 | 7.23

THROUC
ET
2.9
4.61
5.21
9.306
2.942 | 56
 | 7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776 |
| 14
STD. DEVIATIONS 6
2
AVERAGE ANNUAL TOTALS 6
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
LATERAL DRAINAGE COLLECTED
FROM LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
AVERAGE HEAD ON TOP
OF LAYER 3 | . 3225
. 7950

(STD.

41.
5.
33.
0.
0.
222. | 2.00
2.00
 | 74

fion
 | 3.7441
*********************************** | 5.0836

EARS 1
CU. FE
14927
2155
12134
360
264 | 7.23

THROUC
ET
2.9
4.61
5.21
9.306
2.942 | 56

GH
PE
100
14
81
2. | 7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776 |
| 14
STD. DEVIATIONS 6
2
AVERAGE ANNUAL TOTALS 6
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
LATERAL DRAINAGE COLLECTED
FROM LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
PERCOLATION/LEAKAGE THROUGH
LAYER 4 | . 7950
. 7950

(STD.

41.
5.
333.
0.
0.
222.
0. | 2.00
2.00
 | 74

fion
HES
(
(
(
(| 3.7441
*********************************** | 5.0836

EARS 1
CU. FE
14927
2155
12134
360
264 | 7.23

THROUC
ET
2.9
4.61
5.21
9.306
2.942
2.592 | 56
57
57
57
57
57
57
57
57
57
57 | 7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776
7.1776 |

| PEAK DAILY VALUES FOR YEARS | 1 THROUGH | 30 |
|--|--|---|
| | (INCHES) | (CU. FT.) |
| PRECIPITATION | 4.08 | 14810.399 |
| RUNOFF | 2.193 | 7960.6152 |
| DRAINAGE COLLECTED FROM LAYER 2 | 0.00351 | 12.7444 |
| PERCOLATION/LEAKAGE THROUGH LAYER 3 | 0.003078 | 11.1738 |
| AVERAGE HEAD ON TOP OF LAYER 3 | 36.000 | |
| MAXIMUM HEAD ON TOP OF LAYER 3 | 42.553 | |
| LOCATION OF MAXIMUM HEAD IN LAYER 2
(DISTANCE FROM DRAIN) | 252.7 FEET | |
| PERCOLATION/LEAKAGE THROUGH LAYER 4 | 0.003809 | 13.8277 |
| SNOW WATER | 3.00 | 10891.1436 |
| MAXIMUM VEG. SOIL WATER (VOL/VOL) | 0 | . 3980 |
| MINIMUM VEG. SOIL WATER (VOL/VOL) | 0 | .1360 |
| *** Maximum heads are computed using | McEnroe's equa | ations. *** |
| Reference: Maximum Saturated Dep
by Bruce M. McEnroe,
ASCE Journal of Envir
Vol. 119, No. 2, Marc | oth over Landfi
University of
conmental Engir
ch 1993, pp. 26 | ill Liner
Kansas
heering
52-270. |
| . * * * * * * * * * * * * * * * * * * | ****** | ***** |
| | | , |
| | | |
| | | |

·

| 1 | 9 | .4093 | 0.3921 | |
|---|---------|-------------------------------|---|-----------|
| 2 | 5 | .2440 | 0.4370 | |
| 3 | 0 | .0000 | 0.0000 | |
| 4 | 49 | .7776 (| 0.2440 | |
| SNOW | WATER 0 | .000 | | |
| **** | ***** | **** | * | * * * * * |
| * | ***** | * * * * * * * * * * * * * * * | * | * * * * * |

.

I.

•

| ***** | ****** | ** |
|--------|---|-----|
| ***** | * | * * |
| * * | | * * |
| * * | | * * |
| ** | HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE | * * |
| * * | HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) | * * |
| * * | DEVELOPED BY ENVIRONMENTAL LABORATORY | * * |
| * * | USAE WATERWAYS EXPERIMENT STATION | * * |
| * * | FOR USEPA RISK REDUCTION ENGINEERING LABORATORY | * * |
| * * | | ** |
| * * | | * * |
| ***** | * | * * |
| ****** | ********* | * * |

| PRECIPITATION DATA FILE: | C:\HELP3\montross.D4 |
|----------------------------|-----------------------|
| TEMPERATURE DATA FILE: | C:\HELP3\montross.D7 |
| SOLAR RADIATION DATA FILE: | C:\HELP3\montross.D13 |
| EVAPOTRANSPIRATION DATA: | C:\HELP3\montross.D11 |
| SOIL AND DESIGN DATA FILE: | C:\HELP3\hdpenet.D10 |
| OUTPUT DATA FILE: | C:\HELP3\hdpenet.OUT |

TIME: 10:49 DATE: 1/19/2001

TITLE: Alternative D - HDPE/Drainage Net/24" soil

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10 THICKNESS 24.00 INCHES = POROSITY 0.3980 VOL/VOL = 0.2440 VOL/VOL FIELD CAPACITY Ŧ WILTING POINT 0.1360 VOL/VOL -INITIAL SOIL WATER CONTENT = 0.3626 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.119999997000E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 3.00 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

٠

,

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 0 0.20 INCHES THICKNESS 0.8500 VOL/VOL POROSITY \approx FIELD CAPACITY = 0.0100 VOL/VOL WILTING POINT 0.0050 VOL/VOL =INITIAL SOIL WATER CONTENT = 0.8500 VOL/VOL EFFECTIVE SAT. HYD. COND. 1.0000000000 CM/SEC = PERCENT SLOPE -1.00 DRAINAGE LENGTH 500.0 = FEET

LAYER 3

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

| | - | |
|----------------------------|----|---------------------------|
| THICKNESS | ₽ | 0.06 INCHES |
| POROSITY | ÷= | 0.0000 VOL/VOL |
| FIELD CAPACITY | = | 0.0000 VOL/VOL |
| WILTING POINT | = | 0.0000 VOL/VOL |
| INITIAL SOIL WATER CONTENT | = | 0.0000 VOL/VOL |
| EFFECTIVE SAT. HYD. COND. | = | 0.199999996000E-12 CM/SEC |
| FML PINHOLE DENSITY | = | 1.00 HOLES/ACRE |
| FML INSTALLATION DEFECTS | = | 1.00 HOLES/ACRE |
| FML PLACEMENT QUALITY | ± | 3 - GOOD |
| | | |

LAYER 4

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 10

| THICKNESS | æ | 204.00 INCHES |
|----------------------------|------------|---------------------------|
| POROSITY | * | 0.3980 VOL/VOL |
| FIELD CAPACITY | z ≓ | 0.2440 VOL/VOL |
| WILTING POINT | = | 0.1360 VOL/VOL |
| INITIAL SOIL WATER CONTENT | = | 0.2440 VOL/VOL |
| EFFECTIVE SAT. HYD. COND. | ⇒ | 0.119999997000E-03 CM/SEC |

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #10 WITH A FAIR STAND OF GRASS, A SURFACE SLOPE OF 1.% AND A SLOPE LENGTH OF 500. FEET.

| SCS RUNOFF CURVE NUMBER | = | 85.00 | |
|------------------------------------|---|--------|-------------|
| FRACTION OF AREA ALLOWING RUNOFF | = | 100.0 | PERCENT |
| AREA PROJECTED ON HORIZONTAL PLANE | = | 1.000 | ACRES |
| EVAPORATIVE ZONE DEPTH | = | 22.0 | INCHES |
| INITIAL WATER IN EVAPORATIVE ZONE | = | 7.907 | INCHES |
| UPPER LIMIT OF EVAPORATIVE STORAGE | = | 8.756 | INCHES |
| LOWER LIMIT OF EVAPORATIVE STORAGE | = | 2.992 | INCHES |
| INITIAL SNOW WATER | = | 0.000 | INCHES |
| INITIAL WATER IN LAYER MATERIALS | = | 58.648 | INCHES |
| TOTAL INITIAL WATER | = | 58.648 | INCHES |
| TOTAL SUBSURFACE INFLOW | = | 0.00 | INCHES/YEAR |

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM RICHMOND VIRGINIA

| STATION LATITUDE | = | 38.08 | DEGREES |
|---------------------------------------|----|-------|---------|
| MAXIMUM LEAF AREA INDEX | *5 | 2.00 | |
| START OF GROWING SEASON (JULIAN DATE) | = | 91 | |
| END OF GROWING SEASON (JULIAN DATE) | = | 306 | |
| EVAPORATIVE ZONE DEPTH | = | 22.0 | INCHES |
| AVERAGE ANNUAL WIND SPEED | = | 7.60 | MPH |
| AVERAGE 1ST QUARTER RELATIVE HUMIDITY | = | 68.00 | ક |
| AVERAGE 2ND QUARTER RELATIVE HUMIDITY | = | 68.00 | 8 |
| AVERAGE 3RD QUARTER RELATIVE HUMIDITY | = | 77.00 | 8 |
| AVERAGE 4TH QUARTER RELATIVE HUMIDITY | = | 73.00 | 8 |

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 3.06 | 2.74 | 3.85 | 3.11 | 4.07 | 3.40 |
| 4.48 | 3.50 | 3.46 | 3.08 | 2.89 | 3.30 |
| | | | | | |

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA

•

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

| JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|---------|---------|---------|---------|---------|---------|
| | | | | | |
| 37.30 | 40.60 | 50.10 | 60.80 | 70.20 | 78.50 |
| 82.00 | 81.60 | 72.50 | 62.30 | 51.40 | 41.80 |

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR NORFOLK VIRGINIA AND STATION LATITUDE = 38.08 DEGREES

AVERAGE MONTHLY VALUES IN INCHES FOR YEARS 1 THROUGH 30

| | JAN/JUL | FEB/AUG | MAR/SEP | APR/OCT | MAY/NOV | JUN/DEC |
|-----------------------|----------------|----------------|----------------|---------|-------------------------|----------------|
| PRECIPITATION | | | | | | |
| TOTALS | 2.76 | 2.53 | 4.29 | 2.67 | 3.54 | 3.50 |
| | 4.97 | 4.38 | 3.75 | 2.45 | 2.72 | 3.58 |
| STD. DEVIATIONS | 1.57 | 1.06 | 1.55 | 1.25 | 1.55 | 1.84 |
| | 2.21 | 1.80 | 2.09 | 1.34 | 1.51 | 1.67 |
| RUNOFF | | | | | | |
| TOTALS | 0.588 | 0.217 | 0.764 | 0.102 | 0.187 | 0.087 |
| | 0.231 | 0.171 | 0.287 | 0.074 | 0.162 | 0.608 |
| STD. DEVIATIONS | 1.093
0.423 | 0.382
0.227 | 1.232
0.377 | 0.249 | 0.4 4 9
0.379 | 0.147
1.046 |
| EVAPOTRANSPIRATION | | | | | | |
| TOTALS | 1.245 | 1.590 | 3.059 | 3.168 | 3.982 | 4 .231 |
| | 4.084 | 3.990 | 2.742 | 1.465 | 1.248 | 1.030 |
| STD. DEVIATIONS | 0.198 | 0.295 | 0.270 | 0.868 | 0.880 | 1.717 |
| | 1.432 | 1.309 | 1.034 | 0.440 | 0.282 | 0.191 |
| LATERAL DRAINAGE COLI | LECTED FROM | LAYER 2 | | | | |
| TOTALS | 0.6613 | 0.6441 | 0.7112 | 0.6880 | 0.6715 | 0.5048 |
| | 0.1592 | 0.1187 | 0.1423 | 0.2900 | 0.4015 | 0.5644 |
| STD. DEVIATIONS | 0.1921 | 0.0555 | 0.0758 | 0.0170 | 0.1130 | 0.2135 |
| | 0.1982 | 0.2142 | 0.2323 | 0.2951 | 0.2838 | 0.2221 |
| PERCOLATION/LEAKAGE | THROUGH LAYS | ER 3 | | | | |

.

.

| TOTALS C | 0.0388
0.0018 | 0.036
0.001 | 3 (
.2 (|).0434
).0036 | 0.03
0.00 | 25
67 | 0.02
0.01 | 12
30 | 0.0081
0.0248 |
|---|---|---|--|---|---|---|---|----------------------|---|
| STD. DEVIATIONS C |).0214
).0045 | 0.015
0.002 | 7 C |).0148
).0082 | 0.01
0.01 | 22
01 | 0.01
0.01 | 06
48 | 0.0090
0.0202 |
| PERCOLATION/LEAKAGE THROUG | GH LAYER | . 4 | | | | | | | |
| TOTALS C |).0386
).0019 | 0.036 | 2 0
3 0 |).0433
).0033 | 0.03
0.00 | 25
67 | 0.02
0.01 | 15
30 | 0.0088
0.0242 |
| STD. DEVIATIONS 0
0 |).0217
).0045 | 0.015
0.002 | 9 0
8 0 |).0149
).0074 | 0.01
0.01 | 23
00 | 0.01
0.01 | 02
45 | 0.0092
0.0205 |
| AVERAGES OF M | IONTHLY | AVERAG | ED DA | LILY HE | ADS (I | NCHE |
S) | | |
| | . <u></u> | | | | | | | | |
| DAILY AVERAGE HEAD ON TOP | OF LAYE | R 3 | | | | | | | |
| AVERAGES 13 | .7456 | 14.033
0.295 | 3 15
3 1 | .3679 | 11.42
2.04 | 63
35 | 6.70
4.38 | 40
07 | 2.4098
8.5166 |
| 0 | 0985 | 6.623 | 95 | .7312 | 4.82 | 87 | 3.82 | 40 | 3.2009 |
| STD. DEVIATIONS 8 | .4269 | 0.680 | 92
**** | ****** | 3.31 | 78 | 5.38 | ∠b
***, | / - 4 / 2 0 |
| STD. DEVIATIONS 8
1 | .4269

{STD. [| 0.680 | 9 2

IONS) | *******

FOR Y | 3.31

EARS | 78

1 : | 5.38

THROU | 26

GH
 | 30 |
| STD. DEVIATIONS 8 1 AVERAGE ANNUAL TOTALS 6 PRECIPITATION | .4269

(STD. [| 0.680 | 9 2

ions)

ES
 | *******

FOR Y | 3.31

EARS
 | 78 **** 1 | 5.38

THROU | 26

GH
 | 30
PERCENT |
| STD. DEVIATIONS 8
1
*********************************** | .4269

(STD. [

41.1
3.4 | 0.680 | 9 2

IONS)

(5
(2. | ******

FOR Y

.848)
5640) | 3.31

EARS
 | 78

1
FEE
9272 | 5.38

THROU

F

.9
.74 | 26

GH
 | 30
PERCENT
00.00
8.462 |
| STD. DEVIATIONS 8
1

AVERAGE ANNUAL TOTALS 6
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION | .4269
.4269
 | 0.680

DEVIAT
INCH
12
480
334 | 9 2

ions)

(5
(2.
(3. | <pre>*.8361 ****** FOR Y848) 5640) 6415)</pre> | 3.31

EARS
 | 78 **** 1 FEE 9272 2630 5557 | 5.38

THROU

.9
.74
.98 | 26

GH
 | <pre>>.4726 ************************************</pre> |
| STD. DEVIATIONS 8
1
AVERAGE ANNUAL TOTALS 6
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
LATERAL DRAINAGE COLLECTED
FROM LAYER 2 | .4269
.4269
 | 0.680

DEVIAT
INCH
12
480
334
55705 | 9 2

IONS)

(5
(2.
(3.
(0. | <pre>******* ******* FOR Y848) 5640) 6415) 84126)</pre> | 3.31

EARS
CU.
14
11
11
20 | 78

1
FEE
9272
2630
5557 | 5.38

THROU
.9
.74
.98
.076 | 26

GH
 | <pre>>.4726 ************************************</pre> |
| STD. DEVIATIONS 8
1
AVERAGE ANNUAL TOTALS 6
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
LATERAL DRAINAGE COLLECTED
FROM LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3 | .4269
.4269
 | 0.680

DEVIAT
INCH
12
480
334
55705
23136 | 9 2

ions)

(5
(2.
(3.
(0.
(0. | <pre>******* ******* FOR Y848) 5640) 6415) 84126) 07277)</pre> | 3.31

EARS

14
11
11
20 | 78

1
FEE
9272
2630
5557
0172 | 5.38

THROU

.9
.74
.98
.076
.825 | 26

GH
 | <pre>>.4726 ************************************</pre> |
| STD. DEVIATIONS 8
1
AVERAGE ANNUAL TOTALS 6
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
LATERAL DRAINAGE COLLECTED
FROM LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
AVERAGE HEAD ON TOP
OF LAYER 3 | .4269
.4269
 | 0.680

DEVIAT
INCH
12
480
334
55705
23136
716 (| 9 2

ions)
ES
(2.
(3.
(0.
(0.
2. | <pre>******* ******* FOR Y848) 5640) 6415) 84126) 07277) 296)</pre> | 3.31

EARS
CU.
14
11
11
20 | 78

1
FEE
9272
2630
5557
0172
839 | 5.38

THROU
.9
.74
.98
.076
.825 | 26

GH
 | <pre>>.4726 ************************************</pre> |
| STD. DEVIATIONS 8
1
AVERAGE ANNUAL TOTALS 4
PRECIPITATION
RUNOFF
EVAPOTRANSPIRATION
LATERAL DRAINAGE COLLECTED
FROM LAYER 2
PERCOLATION/LEAKAGE THROUGH
LAYER 3
AVERAGE HEAD ON TOP
OF LAYER 3
PERCOLATION/LEAKAGE THROUGH
LAYER 4 | .4269
.4269
 | 0.680

DEVIAT
INCH
12
480
334
55705
23136
716 (
23137 | 9 2

IONS)
ES
(2.
(3.
(0.
(0.
(0.
(0. | <pre>******* ******* FOR Y FOR Y ****** 5640) 6415) 84126) 07277) 296) 07283)</pre> | 3.31

EARS
 | 78

1
5557
0172
839 | 5.38

THROU

.9
.74
.98
.076
.825
.825 | 26

GH
 | <pre>>.4726 ************************************</pre> |

•

| PEAK DAILY VALUES FOR YE | TARS 1 THRO | JGH 30 | | |
|--|--|--|-----|--|
| | (INCH | ES) (CU. FT.) | | |
| PRECIPITATION | 4.08 | 14810.399 | | |
| RUNOFF | 2.05 | 7473.320 | 3 | |
| DRAINAGE COLLECTED FROM LAYER 2 | 0.02 | 199 90.702 | 97 | |
| PERCOLATION/LEAKAGE THROUGH LAYER | 3 0.00 | 2116 7.679 | 88 | |
| AVERAGE HEAD ON TOP OF LAYER 3 | 24.200 | } | | |
| MAXIMUM HEAD ON TOP OF LAYER 3 | 29.43 | } | | |
| LOCATION OF MAXIMUM HEAD IN LAYER
(DISTANCE FROM DRAIN) | 2
216.4 I | FEET | | |
| PERCOLATION/LEAKAGE THROUGH LAYER | 4 0.003 | 3624 13.154 | 62 | |
| SNOW WATER | 3.00 | 10891.143 | 6 | |
| MAXIMUM VEG. SOIL WATER (VOL/VOL) | | 0.3980 | | |
| MINIMUM VEG. SOIL WATER (VOL/VOL) 0.1360 | | | | |
| *** Maximum heads are computed u | sing McEnroe's | equations. *** | | |
| Reference: Maximum Saturate
by Bruce M. McEn
ASCE Journal of
Vol. 119, No. 2, | d Depth over I
roe, Universit
Environmental
March 1993, p | andfill Liner
y of Kansas
Engineering
p. 262-270. | | |
| * | * * * * * * * * * * * * * | ***** | **: | |
| | | | | |

LAYER (INCHES) (VOL/VOL)

AR301556

| * | **** | * | **** |
|---|---------|---|------|
| SNOW WATER | 0.000 | | |
| 4 | 49.7745 | 0.2440 | |
| · 3 | 0.0000 | 0.0000 | |
| 2 | 0.1700 | 0.8500 | |
| 1 | 9.2996 | 0.3875 | |

•

AR301557

.