363931

21 May 1997 Reference: 30710.00.01 Environmental Resources Management

2666 Riva Road, Suite 200 Annapolis, MD 21401 (410) 266-0006 (410) 266-8912 (fax) http://www.erm.com

Mr. Patrick M. McManus U.S. Environmental Protection Agency 841 Chestnut Building Philadelphia, Pennsylvania 19107-4431

Re: Dublin TCE Site — Revised Responses to Outstanding RI-related Comments, Primarily Pertaining to Temporal Trend Analysis

Dear Pat:

On behalf of Sequa Corporation, Environmental Resources Management (ERM) is submitting revised responses (Attachment 1) to the outstanding RI-related comments identified in the latest update to the comment status summary (ref. 22 April 1997 correspondence). As indicated in the comment status summary, only minor revisions were necessary to the responses to several of the comments (wording changes discussed during our 16 April 1997 conference call).

However, significant changes were made to the four comments pertaining to the common issue of temporal trends in the ground water monitoring data — specifically, Comments 51, 56, 65, and 88. At EPA's request following our 16 April conference call, ERM researched appropriate statistical methods for further evaluating the Dublin ground water data. As indicated in our correspondence dated 22 April 1997 and supported by the absence of a specific recommendation from EPA, it was difficult to identify a statistical test ideally suited to performing a temporal trend analyses of the Dublin ground water monitoring data. Although the Mann-Kendall test was recommended by ERM and approved by EPA (letter dated 2 May 1997) as being acceptable for this application, the Mann-Kendall test is not applicable to each and every data point.

For example, where all results are less than 1.0 part per billion (ppb) (or non-detect), no trend (other than possibly steady state conditions) exists, although the Mann-Kendall test may indicate that a trend exists due to the manner in which the test handles non-detect values. The nuances and deficiencies of the Mann-Kendall test highlight the need for critical analysis of the test results and, more importantly, the need to evaluate the Mann-Kendall results in conjunction with results from other means of data evaluation.



Mr. Patrick M. McManus ERM 30710.00.01 21 May 1997 Page 2

ERM completed analysis of all available ground water data for the Dublin TCE Site (i.e., all available TCE data for both the ongoing supply well monitoring programs for the period 1988 to present, and data collected during the RI) using the Mann-Kendall test and the results of this additional analysis are presented in the revised response to Comment No. 51.

If the enclosed revised responses are acceptable, we will have reached agreement on all comments and issues related to the RI. As indicated in our latest project schedule update (ref. correspondence dated 3 April 1997), we expect to submit responses to all comments pertaining to the baseline risk assessment within two weeks of your approval of the outstanding RI-related comments. Therefore, if the enclosed responses are acceptable, please provide written notice of your approval of the RI. If, however, you still have additional comments, Sequa and its consultants would be agreeable to meet or participate in a conference call to discuss any of the information presented herein.

As always, if you have any questions regarding this correspondence or the project in general, please do not hesitate to call me at (410) 266-0006.

Sincerely,

Gary L. Walters Associate

GLW:pm

cc: M. Timcik, PADEP B. Murray, Sequa C. Boyle, Drinker, Biddle & Reath

### ATTACHMENT 1

DUBLIN NPL SITE ADMINISTRATIVE ORDER ON CONSENT DOCKET NO. III-91-70-DC

## REVISED RESPONSES TO REMAINING RI COMMENTS ON THE DRAFT REMEDIAL INVESTIGATION/FEASIBILITY STUDY REPORT FOR THE DUBLIN NPL SITE, DUBLIN BOROUGH, PENNSYLVANIA (GERAGHTY & MILLER, JUNE 1996)

### **INTRODUCTION**

This document presents revisions to a portion of the responses submitted to the U.S. Environmental Protection Agency (EPA) Region III on 14 March and 10 April 1997. Specifically, the responses presented below have been revised to address the comments provided by EPA and PADEP during the 16 April 1997 conference call between representatives of EPA, the Pennsylvania Department of Environmental Protection (PADEP), EPA's contractor (CH2M Hill), Sequa Corporation, Drinker Biddle and Reath, and Environmental Resources Management, Inc. (ERM). During the 16 April 1997 discussion, it was agreed that certain responses submitted on 14 March and 10 April 1997 would be revised and resubmitted for EPA/PADEP review and concurrence prior to issuing a final comprehensive response addressing all the RI comments presented in EPA's letter dated 27 November 1996. The RI-related comments included in previous submittals to EPA (i.e., 12 February 1997, 14 March and 10 April 1997) that are not listed below have been previously accepted by EPA and are not repeated below.

In the responses below, a single horizontal line is through text to be deleted, and new text to be inserted is <u>underlined</u>.

### **RI/FS REPORT**

ERM

21. Page 4-14 – The discussion of seasonal fluctuations does not appear accurate. It should be stated that the interpretation is for 1992 data. The ground water lows are stated to be in December. This is likely to be incorrect, but reported because there is no continuous data collected during October and November (except MW-4). Ground water lows in the area are generally in October or November. Ground water declines usually begin before July, not so much because of usage and rainfall as

evapotranspiration. Rainfall is usually highest in August, but in the form of spotty thunder storms. This text should be revised to indicate data gaps, and can use previously recorded or analyzed data to make an accurate discussion.

**Response:** It is agreed that data from published literature (Greenman, 1955) is useful to support a discussion of seasonal ground water level fluctuations. However, it is acknowledged that this reference is dated. Hydrographs of historic water levels in wells throughout Bucks County for the period from May 1953 through February 1955 (Greenman, 1955) show a similar pattern of seasonal water level fluctuations that was observed for the Site monitoring wells.

Data from published literature are useful for discussion of seasonal ground water level fluctuations. Recent data on water level fluctuations in regional bedrock aquifers, including the aquifer in the Lockatong Formation, have been collected by the U.S. Geological Survey (1994) for several wells located in northern Bucks County. The data for these wells show seasonal water level fluctuations similar to those observed in site monitoring wells. In general, the lowest water levels occur during the months of October through December, after which ground water levels rise to maximum levels in May and June. From July through late fall, water levels decline to the lowest annual levels. It is acknowledged that declining water levels during late summer are primarily the result of evapotranspiration.

The text on page 4-14 discusses the seasonal fluctuations observed based on the data collected by Geraghty & Miller for numerous monitoring wells during the period from either mid-December 1991 or January 1992 through November 1992. It is acknowledged that there are gaps (i.e., discontinuous measurements) in the water level monitoring records for several of the wells.

28. Page 4-20 – It would be helpful to include a table with monitoring well drawdown, distance and direction from pumping well, well depth. Also, the report should provide the data collected from MW-5 and 8 (and 10), even if it was not used in the analysis because of fluctuations. As the only significant downgradient data, it should be included in the report.

**Response:** Table 1 (submitted previously on 12 February 1997) summarizes information for the Fire Tower Well pumping test regarding monitoring well drawdown, distance and direction from the pumping well and well depth.

ERM has requested that Geraghty & Miller provide the data for wells MW-5, MW-8 and MW-10. ERM has not yet received these data however, ERM expects to forward these data to you prior to 26 February 1997. ERM has been informed that Geraghty and Miller has recently located manual water level measurement data for the Fire Tower Well pumping test.

which is being forwarded to ERM. ERM will provide these data with the next submittal of responses to comments.

**49. Page 8-20** – The statement that TCE concentrations drop off exponentially in horizontal directions from the FTW has not been validated for the deeper zones of the FTW. This is critical because the highest degree of contamination exists in these zones.

Based on the packer testing results, the report concludes that the "TCE transport mechanism is primarily horizontal." However, looking at Figure 8-4, it appears that in most wells the highest TCE concentrations are in the deeper intervals (see the FTW and wells MW-2, MW-8, MW-10, MW-11, MW-9D), particularly in the more downdip wells. This implies that contaminants are transported downdip parallel to bedding planes. It seems that the report is really splitting hairs in saying that flow and transport is primarily horizontal rather than along bedding planes; the bedding planes dip at only about 10 degrees, essentially horizontally. In fact, on page 4-15 the report states that "horizontal fractures are related to bedding plane partings."

**Response:** Whether the dissolved phase of the TCE plume migrates via horizontal bedding planes or <u>and</u> vertical fractures is irrelevant because advection in ground water is the principal transport mechanism responsible for migration of the TCE plume, as previously discussed in the response to Comment No. 47. Furthermore, the empirical ground water analytical data define the nature and extent of the plume, which provides the data needed to identify and address potential risks to human health and the environment.

A decrease in TCE concentrations laterally from the deeper zones of the Fire Tower Well is likely to be similar to the observed decrease in TCE concentrations in the shallower zones. The decrease in TCE concentrations in the shallow zones is documented by empirical data for ground water samples collected during packer sampling in wells BCM- 1, the Fire Tower Well, MW-1, MW-2, MW-4, MW-5, MW-8 and MW-11. As illustrated in the February 1997 revision of Figure 4-2 (attached), which was revised to address Comment No. 13 and to include results of packer sampling, several marker beds identified by the borehole geophysical survey indicate potential pathways between wells located downdip of the Fire Tower Well. Three additional cross sections (i.e., A-A', B-B' and C-C') prepared for this response and shown in Figures 3, 4 and 5 (attached), present analytical results for depth-discrete ground water samples collected during packer sampling. These cross sections illustrate a lateral and downdip decrease in TCE concentrations relative to the on-site wells.

For example, consider a cross section through BCM-1, the Fire Tower Well, MW-4 and MW-2 (i.e., cross section B-B' in Figure 4). TCE concentrations in the shallowest samples from BCM-1 (13,000  $\mu$ g/l) and

the Fire Tower Well (29,000  $\mu$ g/l) decrease by a factor of three to four in MW-4 (6,700-7,100  $\mu$ g/l), which is approximately 150 feet from BCM-1 and about 100 feet from the Fire Tower Well. TCE concentrations decrease by factors of at least another two to seven times between MW-4 and MW-2, which are approximately 300-350 feet apart. Based on packer sample results for ground water samples from discrete depths in other wells, TCE concentrations decrease by comparable or greater factors in cross sections along BCM-1, the Fire Tower Well, MW-8 and MW-1 (cross section A-A' in Figure 3), and along BCM-1, the Fire Tower Well, MW-5 and MW-10 (cross section C-C' in Figure 5). Also note that cross section A-A' (Figure 3) is nearly parallel to the direction of regional bedding dip.

Given the TCE trend based on empirical data collected from the shallow portion of the bedrock aquifer that is intercepted by downgradient monitoring wells, it is reasonable to expect a similar decrease in concentrations for the deeper zones (i.e., 370-500 feet) of the Fire Tower Well. It is acknowledged that a data gap exists at depths greater than 500 feet below the land surface downdip of the Fire Tower Well. However, at depths below 500 feet, it is likely that the occurrence and frequency of fractures and joints decreases (Greenman, 1995). The decrease in the occurrence and frequency of fractures is likely due to a combination of pressure from the overlying bedrock and decreasing effects of weathering with depth. Due to the decrease in the occurrence and frequency of fractures, a decrease in water yield would also be expected. And due to the likelihood of less water but greater cost for drilling, it is unlikely that there are supply wells at these depths and therefore few if any potential receptors. In addition, and based on the aforementioned rationale, it is ERM's understanding that the investigative scope of the RI, especially with regard to delineating the vertical extent of contamination, was agreed to by EPA and Sequa during the preparation/finalization of the document titled Work Plan for the Selection of a Monitoring Network, Dublin TCE Site, Dublin, Pennsylvania (Geraghty & Miller, Inc., April 1993).

້ 50.

**Page 8-21** – The presence of trihalomethanes in some homes along Quarry Road and Rickerts Road are explained to be indicative of leakage from public water lines or sewers. Neither sewers nor a waterline are currently located in this area. Also, Sequa's conclusion that the TCE in this area may have originated from sources other than the Site is merely conjecture.

**Response:** It is acknowledged that the conclusion that TCE or trihalomethanes in the area of Quarry Road and Rickerts Road may have originated from sources other than the Site is conjecture. There are at least two potential sources of TCE in the Quarry Road and Rickerts Road area, specifically TCE migrating from the site, and TCE associated with use of septic system cleaners. Based on ERM's prior experience and as documented in published literature for Bucks County (Sloto and Schreffler, 1994), septic systems, which are the means of sanitary



wastewater disposal/treatment along Quarry Road and Rickerts Road, are frequently could be a source of low level chlorinated organic compounds such as TCE due to their presence in solvents used to periodically clean out the septic systems. At the present time, there is insufficient evidence to determine the source of low levels of TCE detected along Quarry Road and Rickerts Road.

Page 8-22 – EPA believes that the discussion here is deficient. Eight years of data are available for analysis from numerous wells. The discussion must be expanded to include analysis of the trend in concentration. A statistic analysis should be included. A graphical presentation would also be helpful. Review of the complete data set showed no apparent declining trend.

**Response:** Four methods of data evaluation have been used to evaluate temporal trends in the TCE plume since 1986. Three of these approaches were graphical presentations of TCE data, specifically concentration versus time graphs for each well, graphs showing changes in average concentrations with time (i.e., comparing average concentrations for 1988-90 with average concentrations for 1994-96), and maps showing isoconcentration contours of average TCE concentrations. At EPA's request, additional statistical analyses of the TCE data were performed using the Mann-Kendall trend test to identify statistically significant temporal trends. The results for each of these data evaluation methods are presented below.

Graphical presentation of the ground water quality data is helpful. Four graphical presentations have been prepared to illustrate the TCE concentration trends in ground water since 1986, specifically concentration versus time graphs, graphs showing changes in average concentrations with time, and maps showing isoconcentration contours of average TCE concentrations. These data presentation formats and the associated findings are discussed below.

# Graphs of TCE Concentration Versus Time

TCE concentrations for 141 wells, including 5 on-site wells, 12 off-site monitoring wells, and 124 off-site residential, commercial and municipal supply wells were plotted to evaluate trends at each well location. A list of the wells and the individual graphs for each well are presented in Attachment 2.

The concentration versus time graph for each well summarizes the temporal trends at each location. Key findings from the analyses of these graphs are summarized below.

5

• Numerous well locations showed a sharp upward spike in TCE concentrations during a single sampling event in the late 1980s or early 1990s, followed by an equally sharp decrease in the TCE

concentration during the subsequent quarterly sampling events. For many of these wells, either constant or declining TCE concentrations were observed thereafter (e.g., see the graphs for 111 Elephant Rd. (page 4 of Attachment 2) and 115 N. Main St. (see page 17 of Attachment 2)).

r . ....

The exact reason(s) for the TCE spikes is not known, however, there are two possible explanations for the spikes observed during the early portion of the monitoring program. One possibility is that a "slug" of TCE at higher concentration migrated past those locations during a very brief period of time, after which the TCE concentration decreased to a concentration similar to that observed at those locations prior to the occurrence of the spike. In some cases, the lower concentration remained relatively stable after the spike, and in other cases the TCE concentration continued to decrease after the spike occurred. Another possibility is that the spike reflects anomalous analytical data since, for many of the wells, the substantially higher TCE concentration was detected during only one sampling event after which the concentration declined to the pre-spike concentration during the following sampling event. If a slug of TCE were moving past a monitoring point, it seems likely that gradually increasing and decreasing trends in TCE concentration would be observed during a quarterly monitoring program as the TCE slug migrated past the monitoring point.

- Some wells (e.g., 138 N. Main St. (page 21 of Attachment 2) and 146 N. Main St. (page 22 of Attachment 2)) have had relatively stable TCE concentrations, and no increasing or decreasing trend is evident.
- Some of the residential wells on Rickerts and Quarry Road have exhibited very low TCE levels below the MCL, and the concentrations in these wells do not appear to be increasing (since commencement of sampling in 1993). These data indicate that the northern plume boundary in this area is not continuing to migrate northward.
- None of the wells exhibited an increasing trend during the past several years. The stable or declining TCE concentrations evident in the time vs. concentration graphs for many of the well for the well increasing indicate the TCE plume is at worst stable and more likely attenuating to some extent. Decreasing TCE concentrations suggest that the mass of TCE in the plume is decreasing.
- Many locations, including some with a spike in the late 1980s or early 1990s and others with no substantial spike, show decreasing concentrations since monitoring began.

6

N.S.

• On-site wells BCM-1 and BCM-2 appear to have decreasing concentrations based on the few samples collected from these on-site wells. On-site wells PW-1 and PW-2 have had relatively constant levels of TCE since the peak concentration was observed in 1986-87.

## **Changes in Average Concentrations With Time**

The second graphical presentation of the TCE data is presented in Figures 6 and 7 (attached). Figure 6 is a comparison of the averaged TCE concentrations for 1988-90 versus 1994-96, including the TCE spike concentration observed in some of the wells in 1988-90. The straight line on the graph represents the plot of the TCE concentration if the concentration for each well location was the same for the 1988-90 and 1994-96 data. Points that plot above (i.e., to the left of) the line indicate well locations where TCE concentrations have increased relative to the time periods examined, and points that plot below (i.e., to the right of) the line indicate wells where the TCE concentration decreased between the two periods of interest. As evident in Figure 6, most of the points are located below the line, indicating a decrease in TCE concentrations over time as indicated by the individual graphs of TCE concentration versus time that are presented in Attachment 2.

Figure 7 is a similar graph, except that the TCE spikes were removed from the average for wells during the 1988-1990 period. As indicated by comparison of Figures 6 and 7, there is relatively little difference between the graphs, which indicates that this analysis is not significantly affected by the TCE spikes observed in some of the wells in the 1988-90 time frame.

## **Isoconcentration Contour Maps**

The final graphical presentation for evaluation of the historic TCE trend consists of several maps showing isoconcentration contours of average TCE concentrations for 1988-90 (Figure 8, attached), and for 1994-96 (Figure 9, attached). Comparison of Figures 8 and 9 clearly indicates the lateral extent of the dissolved phase TCE plume is very similar for these time periods. The similarity of the isoconcentration contours indicates that the plume is relatively stable. The TCE data for some wells (i.e., primarily the monitoring wells) averaged during the time periods evaluated may reflect only a limited number of sampling events relative to other wells (specifically residential and commercial wells that are part of ongoing quarterly water quality monitoring). However, ERM believes the isoconcentration contours as shown are reasonable and representative of the distribution of TCE within the plume. As to any portion of the plume migrating deeper into the aquifer (as discussed previously in the response to Comment No. 49), the TCE concentrations are likely to follow a trend similar to the trend observed within 500 feet of the surface.

To further evaluate the data with respect to the TCE spikes observed in some wells during the late 1980s, Isoconcentration contours were also plotted for the average TCE concentrations for 1988-90 excluding the TCE spikes as shown in Figure 10 (attached). Comparison of Figures 8 and 10 indicates the TCE spikes only affect the configuration of the isoconcentration contours in a relatively limited area east of the site along Elephant Road (i.e., in the vicinity of the area bounded by wells 49, 51, R94 and 37); however, this difference is not significant and does not change the conclusion that the lateral extent of the plume is stable.

### Mann-Kendall Trend Test Results

To further evaluate temporal trends in the ground water monitoring data, EPA requested that a statistical evaluation of TCE concentrations in ground water be performed. The purpose of the statistical analysis was to identify statistically significant upward or downward trends in the TCE concentrations. The Mann-Kendall test was identified as an appropriate statistical test for the trend analysis by ERM, and approved by EPA (ref. letter from Pat McManus (EPA) to Brent Murray (Segua) dated 7 May 1997). The data base for the trend analysis consisted of TCE concentrations in ground water for 143 wells, including all available TCE data for both the ongoing supply well monitoring programs for the period from 1988 to the present, and data collected during the RI. Note that the most recent data available for the Thompson monitoring program are for sampling conducted in March 1997, and the most recent data for the Segua monitoring program are for sampling conducted in December 1996 (as of this date, data validation has not been completed for ground water samples collected for the Sequa monitoring program for the First Quarter 1997).

Detailed results of the Mann-Kendall test for the TCE data for each well are presented in Table 1. In addition to columns containing the well ID, number of data points for each well (i.e., sample size), and the percentage of non-detect TCE results, the table presents several statistics associated with the Mann-Kendall test. These statistics are described below:

- S Value this is the Mann-Kendall statistic, which is the number of positive differences minus the number of negative differences. If S is a large positive number, measurements taken later in time tend to be larger than measurements obtained earlier in time (indicating an upward trend). Similarly, if S is a large negative number, the measurements obtained later in time tend to be smaller (indicating a downward trend).
- Alpha this value reflects the selected confidence level for trends that are identified (i.e., an alpha value of 0.10 indicates there is a 90% confidence level that a statistically significant trend exists).

8

- <u>P this value represents the probability that a statistically significant</u> trend exists at a given alpha value. For a sample population less than or equal to 40, if P is less than alpha, a statistically significant trend exists.
- <u>Z</u> this value also represents the probability that a statistically significant trend exists, but is used in lieu of P when the sample population is greater than 40.

Table 2 presents a summary of descriptive statistics for each well location, including arithmetic mean, standard deviation, variance, and the minimum and maximum TCE concentrations detected for each well. These statistics are provided to further characterize the nature of the data set.

The wells that define the lateral extent of the TCE plume can be subdivided into three broad groups as follows:

- wells in the immediate vicinity of the source of contamination at the Site that have relatively high TCE concentrations (e.g., PW-1, PW-2, Fire Tower Well, BCM-1, BCM-2, 104 Mill Street);
- wells closer to the downgradient edge of the plume with TCE concentrations less than concentrations in source area wells but substantially greater than the low parts per billion levels detected in wells further downgradient; and
- wells further downgradient that are non-detect or have low TCE concentrations on the order of a few parts per billion (e.g., along Rickerts Road, Ouarry Road, and several wells along the east side of Elephant Road just north of the intersection with N. Main Street);

Results of the Mann-Kendall trend test must be evaluated within the context of these three categories of wells due to factors unrelated to the temporal trends that may influence TCE concentrations. Of the three categories of wells described above, wells closer to the downgradient edge of the plume are most likely to have TCE concentrations that are consistent over time and representative of trends within the plume relative to wells located near either the source area or further downgradient where TCE concentrations may be subject to more variation due to factors unrelated to migration of the plume.

Substantial fluctuations in TCE concentrations may occur in wells in the immediate vicinity of the Site due to the proximity of these wells to the contaminant source. For example, the TCE concentrations in the Fire Tower Well have ranged from 1.400–34.000  $\mu$ g/l, and TCE concentrations in PW-2 have ranged from 10.1–3.900  $\mu$ g/l. TCE concentrations in wells

further downgradient, which have relatively low concentrations at low parts per billion levels and are near the lower limits of analytical detection, are subject to relatively substantial fluctuations from random variation as well as noise associated with sampling technique and analytical precision (for example, a two-fold increase in TCE concentration from  $1 \mu g/l$  to  $2 \mu g/l$  for consecutive sampling events could reflect random variation in the TCE concentration rather than an increase associated with migration of the TCE plume).

| Mann-Kendall<br>Test Result              | Frequency | Percentage of<br>Wells with<br>Sufficient Data<br>for Analysis | Percentage of<br>All Wells |
|------------------------------------------|-----------|----------------------------------------------------------------|----------------------------|
| Statistically significant upward trend   | 3         | 3%                                                             | 2%                         |
| Statistically significant downward trend | 35        | 34%                                                            | 24.5%                      |
| No trend                                 | 65        | 63%                                                            | 45.5%                      |
| Insufficient data for analysis           | 40        | Not applicable                                                 | 28%                        |
| Totals                                   | 143       | 100%                                                           | 100%                       |

The results of the Mann-Kendall test are summarized below:

As indicated above, 103 of the 143 wells that have been sampled had sufficient data to perform the Mann-Kendall trend analysis. The forty wells not included in the analysis did not have at least four data points, the number necessary to perform the Mann-Kendall test. A total of only three out of 103 wells (i.e., 134 Rickerts, Dublin Village Plaza Well No. 1 (DVPW-1), and PW-2 located on the 120 Mill Street property) show a statistically significant upward trend in TCE concentration. It is interesting to note that these results are consistent with the general distribution of data in Figures 6 and 7 (reference response to comments in correspondence from Gary Walters (ERM) to Pat McManus (EPA) dated 14 March 1997). A brief discussion of the results of the trend analysis is presented below.

<u>Upward Trends</u> – Although the results of the Mann-Kendall test indicate an upward trend for 134 Rickerts Road, this trend is based on only six data points, three of which were non-detect values (for non-detect values, a numeric value of one half the detection limit was used for the trend analysis), and the maximum concentration is  $0.25 \mu g/l$ , which is well

FRM

below the TCE MCL of 5 µg/l. Because of the relatively low TCE concentrations (i.e., less than one part per billion) and non-detect values for this location that were incorporated into the analysis, it is noted that the upward trend identified by the Mann-Kendall test is not likely associated with migration of the TCE plume.

The increasing trend for well PW-2, which is located near the contaminant source area on the 120 Mill Street property, may be due to use of this well for water supply. This well is likely pulling TCE toward the well from the contaminant source area, which would account for the upward trend.

It is uncertain why the Mann-Kendall test indicates an upward trend for the well at Dublin Village Plaza (DVPW-1); however, review of the other data evaluation methods indicates there to be no trend (i.e., relatively steady state conditions). Regardless, the results from this one well do not affect the conclusions drawn from the overall analysis.

Downward Trends - A total of 35 out of 103 wells show a statistically significant downward trend in TCE concentrations. These wells are distributed throughout the TCE plume.

No Trend – A total of 65 out of 103 wells do not show a statistically significant trend either upward or downward. TCE has not been detected in 15 of these 65 wells. The wells with no trend are distributed throughout the plume. The absence of a statistically significant trend in the majority of wells is interpreted to indicate that the TCE plume is in a steady state condition.

### Summary

The results of the Mann-Kendall test, in conjunction with the other methods of data evaluation previously described in this response, support the interpretation that: 1) as the worst case, the TCE plume is stable (i.e., is in a steady state condition): 2) a portion of the data suggests that TCE concentrations in the plume may be decreasing over time; and 3) the data do not indicate that TCE concentrations are increasing nor is the contaminant plume expanding. 1 37

**Page 8-25** – The statement that "The plume has reached its maximum" 56. extent and now natural attenuation processes are acting to reduce TCE concentrations over the majority of the plume" has not been established. As stated above, analysis of the chemical data available is necessary. Vertical expansion of the plume is unknown and not evaluated.

**Response:** As discussed in the response to Comment No. 51, TCE concentrations have been stable or gradually declining. Most wells have had either constant or decreasing concentrations of TCE. Where TCE is observed in wells beyond Rickerts Road, the concentrations are not increasing, which is what would be expected if the plume was increasing in size. The empirical data indicate the TCE plume has reached its

11

Ι,

Nº 200

it sould

to Hur

HINT -

41 + 1 ---

the section of the sec

h

A. 1.1

maximum horizontal extent, and at a minimum is stable. The decreasing TCE concentrations suggest that the mass of TCE in the plume is gradually decreasing.

# See the response to Comment No. 51 regarding evaluation of the TCE data for ground water.

As previously discussed in the response to Comment No. 52, it is acknowledged that the full vertical extent of the plume has not been completely defined. Delineation of the vertical extent of contamination was addressed by tasks incorporated into the scope of the approved RI work plan. Furthermore, based on the information obtained during the RI, this data gap will not be a factor in addressing potential risks to human health and the environment.

**General Comment** – The evaluation of alternatives and the selection of a 65. remedial action is based to a large extent on the assumption that the TCE plume has undergone significant natural attenuation under historic hydrodynamic conditions (with all of the private wells pumping), and will continue to significantly attenuate under future hydrodynamic conditions (with only the OU-1 well pumping). This idea is first presented in Section 8.7, but is referred to throughout the FS. However, it is our view that the water quality data from the RI do not clearly support the first part of this argument (historic attenuation). For example: The discussion in Section 8.7 argues that TCE concentrations have generally declined and the TCE plume area has shrunk by indicating that the TCE concentrations detected during the most recent round of ground water sampling in a given well are lower in almost every case than the maximum historic concentration from that well. However, a close examination of the data in Table 8-17 indicates that this comparison can be misleading. For example, the Whistlewood Apartments supply well (page 21 of Table 8-17) has been sampled more than 50 times between 1986 and 1996. The highest TCE concentration detected in this well was  $2,318 \,\mu g/1$  (collected in December 1986). All samples from this well prior to and since this date have generally ranged between 100 and 700  $\mu$ g/1, with no clear trend upward or downward. If the 2,318  $\mu$ g/1 result is ignored as a statistical outlier and all of the other Whistlewood well data points are average (result: 365  $\mu$ g/1), a comparison of the average TCE concentration with the most recent sampling data (503  $\mu$ g/1 and 373  $\mu$ g/1) indicates that the TCE concentration during the most recent sampling of the Whistlewood well is at or above the historical average. This same exercise can be applied to many of the other wells within the main part of the plume, with similar results. The only well that appears to have shown a significant decrease in TCE concentration over time is MW-8.

Section 8.7 also presents the argument that the portion of the plume exceeding 1,000  $\mu$ g/1 has shrunk from 1,100 feet from the 120 Mill St. property (the distance from 120 Mill to the Whistlewood well) to "a small

fraction of its historically maximum extent" (presumably 600 feet, the distance from the 120 Mill St. property to MW-2). However, if the 2,318  $\mu$ g/1 TCE result mentioned above is treated as the statistical outlier it appears to be, then no perceptible change in plume length would be observed.

In short, the data do not justify the assertion that the TCE plume is significantly decreasing in size or concentration under current conditions.

**Response:** As previously discussed in the response to Comment No. 51, the empirical ground water quality data indicate that TCE concentrations have remained steady or declined during the past ten years. The graph for the TCE concentration in the Whistlewood Well (see the graph for 146 N. Main St. on page 22 of Attachment 2) clearly shows a constant TCE concentration at or below 500  $\mu$ g/l since 1987. If the maximum TCE concentration of 2,318  $\mu$ g/l for Whistlewood is ignored as a statistical outlier, the TCE trend graph further supports the relatively constant TCE trend since 1986. The most recent TCE results for Whistlewood ((503  $\mu$ g/l and 373  $\mu$ g/l) indicate the recent TCE concentration is at or below the historic trend.

Review of the TCE concentration versus time graphs in Attachment-2 indicates numerous well locations with decreasing TCE concentrations (e.g., BCM-1, MW-03, 104 Mill St., 150 Elephant Rd., 105 N. Main St., 115 N. Main St., 119 N. Main St., 122 N. Main St., 123 N. Main St., 128 N. Main St., 130 N. Main St., 131 N. Main St. 153 N. Main St., 170 N. Main St., 3224 Rickerts Rd., 3232 Rickerts Rd., 3234 Rickerts Rd.).

See the response to Comment No. 51.

88. **Page 14-4** – EPA does not agree that there is evidence that the contaminated plume has shrunk in size. It is acknowledged that concentrations appear to have decreased somewhat, but even those decreases have not been significant, they have been less that an order of magnitude in most cases.

**Response:** As stated previously in the response to Comment No. 51, graphs of TCE trends over time (Attachment 2) and average TCE concentrations for 1988-90 and 1994-96 (Figures 6 and 7) indicate that, at a minimum, the plume is stable, and the decreasing TCE concentrations at numerous well locations suggest that the mass of the plume may be decreasing.

See Response to Comment No. 51.

### APPENDIX H - PHASE I AND PHASE II GROUND WATER FLOW MODELING AND ADVECTIVE TRANSPORT ANALYSIS REPORT (MEMORANDUM FROM STEVE FELDMAN, MAY 1, 1996)

124. First Page, Second paragraph – The monitoring wells referred to here for comparison with model results, wells MW-1 and MW-6, are not located in the areas of high hydraulic gradient near the leading edge of the contaminant plume. A more critical area of the model is the region around, and southwest of well DBMW-1. Here, the measured gradients for April 23, 1996 (Figure 4-6) are approximately 0.125 feet per foot. The modeled gradient for this area (Figure H-1) is approximately 0.025 feet per foot, or one fifth of the measured gradient. Comparisons with water levels for other dates are less extreme, but the flow model still appears to underestimate the actual gradients significantly. This means that the model's evaluation of the capture effectiveness of extraction wells in this area will be optimistic. Compared with the potentiometric surface shown in Figure 4-6, the model does not appear to reflect the measured gradients or water levels very accurately.

**Response:** Sequa and its consultants have evaluated all of the existing data regarding the steep hydraulic gradient between wells MW-1, MW-10, MW-11 and DBMW-1, and have determined that the ground water flow model needs to be recalibrated to reflect the steep gradient shown in Figure 4-6. It is expected that the results of this evaluation will be submitted to EPA by 2 April 1997. The exact reason(s) for the naturally occurring steep hydraulic gradient is unknown.

### REFERENCES

Sloto, R. A. and C. L. Schreffler, 1994. Hydrogeology and Ground-Water Quality of Northern Bucks County, Pennsylvania. U. S. Geological Survey Water-Resources Investigations Report 94-4109. 85 pp.

#### Table 1 Results of Mann-Kendall Test for TCE Concentrations in Ground Water Dublin NPL Site, Dublin, Pennsylvania

Non Detects = Detection Limit/2

Mean of Duplicates Used Significance Level (1 - alpha): 90%

| LOCATION    | SAMPLE<br>SIZE | NON - | S<br>VALUE | TEST<br>STATISTIC | TABULAR<br>VALUE  | STATISTICALLY<br><u>SIGNIFICANT TREND</u>                                                                       |
|-------------|----------------|-------|------------|-------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|
| 0100 MADIR  |                |       |            |                   |                   |                                                                                                                 |
| JIJU MAPLE  | 1              | 100   | * There mu | ist be at least   | 4 samples to run  | this test! *                                                                                                    |
| 0101 3 MAIN | 1              |       |            |                   |                   |                                                                                                                 |
|             | 2              | 50    | * There mu | ist be at least   | 4 samples to sun  | this Test! *                                                                                                    |
| JIG4 MAPLE  | 49             | 0     | -321       | Z = 2,7584        | Z = 1.2816        | Yes (Downward)                                                                                                  |
| 0104 MIDDLE | (DEEP)         |       |            |                   |                   |                                                                                                                 |
|             | •<br>•         | 100   | * There mu | ist be at least   | 4 samples to run  | this test! *                                                                                                    |
| 0104 MIDDLE | (SEALLOW)      | 100   | * There m  | ist he at least   | 4 samples to run  | shiq togti *                                                                                                    |
| 0104 MILL   | 1              | 100   | THELE INC  |                   | i manpion co rin  |                                                                                                                 |
|             | 4.0            | 3     | -82        | alpha - 10        | P = 0.1740        | No                                                                                                              |
| 0104 S MAIN |                | 100   | t (77)     |                   | A                 | ability based a                                                                                                 |
| NINE CHERRY | , 1            | 100   | * There mu | ist be at least   | 4 samples to run  | thus rest. "                                                                                                    |
| STOD CREAKI |                | 100   | * There mu | ist be at least   | 4 samples to run  | this test! *                                                                                                    |
| 0105 MIDDLE |                |       |            |                   |                   |                                                                                                                 |
|             | 6              | 8.3   | ~ 5        | alpha = .10       | P ≥ 0.2350        | No                                                                                                              |
| GIOS N MAIN | 4.0            | ۰.    | -174       | alpha = .10       | P = 0.0220        | Yes (Downward)                                                                                                  |
| 0106 N MAIN | 10             |       | 2 · 1      | arpita (1)        |                   |                                                                                                                 |
|             | 11             | 55    | ~ 5        | alpha = .10       | P - 0.3810        | No                                                                                                              |
| 0106 S MAIN | 1              | 100   | + -        |                   |                   | ubla uzaki +                                                                                                    |
| 0107 CHERRY |                | 100   | * There mu | ist be at least   | 4 samples to run  | unis test: ^                                                                                                    |
| SIDY CHERRY | 1              | 100   | * There mu | ist be at least   | 4 samples to run  | this test! *                                                                                                    |
| 0111 CHERRY |                |       |            |                   |                   |                                                                                                                 |
|             | 1              | 100   | * There mu | ist be at least   | 4 samples to run  | this test! *                                                                                                    |
| UTIT ELEPHA | 17             | 2.4   | -56        | alpha = .10       | P = 0.0110        | Yes (Downward)                                                                                                  |
| 0111 MAPLE  |                |       |            |                   |                   |                                                                                                                 |
|             | 1              | 100   | * There m  | ist be at least   | 4 samples to run  | this test! *                                                                                                    |
| 0112 MAPLE  | 36             | 0.0   | _100       | aloba - 10        | 5 - 0 0000        | Yee (Downward)                                                                                                  |
| 0112 N MAIN | 20             | 92    | - + O Z    | aipna = .10       | r = 0.0000        | TES (DOwnward)                                                                                                  |
| ····        | 25             | 32    | -131       | alpha = .1)       | P 0.0010          | Yes (Downward)                                                                                                  |
| 0113 ELEPHA | NT             |       |            |                   |                   |                                                                                                                 |
| NITE NEMATH | 24             | 54    | -80        | alpha = .10       | P = 0.0250        | Yes (Downward)                                                                                                  |
| WIAIN MAIN  | 21             | 0     | -20        | alpha = .10       | P - 0.2850        | No                                                                                                              |
| 2114 ELEPHA | NT<br>NT       | -     |            | •                 |                   |                                                                                                                 |
|             | 20             | 65    | -10        | alpha = .10       | P ≥ 0.3870        | No                                                                                                              |
| UL14 MAPLE  | 1              | 100   | * There m  | ist he at least   | 4 samples to the  | +hig tagel *                                                                                                    |
| 0115 CHERRY | £              | 100   | mere mo    | 130 NG AC 1683.   | E COMPLET LO LORI | a de la companya de l |
|             | 1              | 100   | * There mu | ist be at least   | 4 samples to run  | this test! *                                                                                                    |
| 0115 ELEPHA | NT             |       |            | -1-)              |                   | <b>k</b>                                                                                                        |
| .)          | 25             | 60    | 17         | alpha = .10       | 2 = 0.3555        | NO                                                                                                              |
| VIIS N MAIN | 21             | 0     | -31        | alpha - 10        | F = 0.1850        | No                                                                                                              |
| 0116 ELEPHA | NT             |       |            | -                 |                   |                                                                                                                 |
|             | 26             | 8     | -23        | alpha = .10       | P 0.3160          | No                                                                                                              |

| LOCATION      | SAMPLE<br>SIZE | % NON-<br>DETECT | S<br>VALUE | TEST<br><u>STATISTIC</u> | TABULAR<br>VALUE | STATISTICALLY<br>SIGNIFICANT_TREND? |   |
|---------------|----------------|------------------|------------|--------------------------|------------------|-------------------------------------|---|
|               |                |                  |            |                          |                  |                                     | _ |
| 0116 N MAIN   | 32             | 59               | -212       | alpha = .10              | P = 0.0000       | Yes (Downward)                      |   |
| 0117 N MAIN   | 24             | 8                | -138       | alpha = .10              | P = 0.0000       | Yes (Downward)                      |   |
| 0118 ELEPHAN  | r<br>7         | 0                | 3          | alpha = .10              | P = 0.3860       | No                                  |   |
| 0118 MAPLE    | 22             | 91               | -101       | alpha = .10              | P = 0.0020       | Yes (Downward)                      |   |
| 0119 CHERRY   | 1              | 0                | * There m  | ust be at least 4        | samples to run   | this test! *                        |   |
| 0119 ELEPHAN  | г<br>13        | 0                | -50        | alpha = 10               | P = 0.0010       | Yes (Downward)                      |   |
| 0119 MAPLE    | ±.9            | 100              | * There m  | wat he at least 4        |                  | his root f                          |   |
| 0119 N MAIN   | Ţ              | 100              | - There m  | ust be at least 4        | samples to run   | unis cest: -                        |   |
| 0120 CHERRY   | 24             | 0                | -122       | alpha = .10              | P = 0.0010       | Yes (Downward)                      |   |
| 0120 MAPLE    | 1              | 100              | * There m  | ust be at least 4        | samples to run   | this test! *                        |   |
| 0122 MAPLE    | 2              | 100 .            | * There m  | ust be at least 4        | samples to run   | this test! *                        |   |
| 0122 N MATN   | 1              | 100              | * There m  | ust be at least 4        | samples to run   | this test! *                        |   |
| 0122 N MAIN   | 54             | 0                | -194       | Z = 1.4402               | Z = 1.2816       | Yes (Downward)                      |   |
| 0123 N MAIN - | - #1<br>40     | 0                | -257       | alpha = .10              | P = 0.0010       | Yes (Downward)                      |   |
| 0123 N MAIN - | - #2<br>27     | 0                | -68        | alpha = .10              | P = 0.0820       | Yes (Downward)                      |   |
| 0124 N MAIN   | 38             | 5                | -82        | alpha = .10              | P ≈ 0.1550       | No                                  |   |
| 0126 MAPLE    | 1              | 100              | * There m  | ust be at least 4        | samples to run   | this test! *                        | _ |
| 0126 MIDDLE   | 5              | 100              | Approac    | h not applicable         | - TCE not detect | ed No                               |   |
| 0126 MIDDLE # | ‡A2<br>1       | 100              | * There m  | ust be at least 4        | samples to run   | this test! *                        |   |
| 0126 MIDDLE # | +D2            | 100              | * There m  | ust be at least 4        | samples to run   | thic test #                         |   |
| 0126 N MAIN   | 26             |                  |            | aleba - 10               |                  | Vog (Deservord)                     |   |
| 0128 N MAIN   | 20             | 0                | -01        | aipna = .iu              | P = 0.0940       | res (Downward)                      |   |
| 0130 N MAIN ( | 46<br>(A)      | 2                | 43         | Z = 0.3977               | Z = 1.2816       | No                                  |   |
| 0130 N MAIN ( | 11<br>B)       | 0                | -32        | alpha = .10              | P = 0.0065       | Yes (Downward)                      |   |
| 0130 N MAIN C | 25<br>DRCH     | 4                | -176       | alpha = .10              | P = 0.0000       | Yes (Downward)                      |   |
| 0.31 N MATN   | 1              | 0                | * There m  | ust be at least 4        | samples to run   | this test! *                        |   |
| 0122 DECURPOR | 25             | 4                | -67        | alpha = .10              | P = 0.0620       | Yes (Downward)                      |   |
| 0132 RICKERTS | 5              | 100              | Approac    | h not applicable         | - TCE not detect | ed Nø                               |   |
| 0133 N MAIN - | AUTO SUPPL     | Y<br>0           | -67        | alpha = .10              | P = 0.0620       | Yes (Downward)                      |   |
| 0133 N MAIN · | DINER<br>26    | 15               | -17        | alpha = .10              | P = 0.3630       | No                                  |   |
| 0134 MAPLE    | 1              | 100              | * There M  | ust be at least 4        | samples to run   | this test! *                        |   |
| 0134 RICKERTS | 6              | 50               | 13         | alpha = .10              | P = 0.0080       | Yes (Upward)                        | / |

Table 1 Results of Mann-Kendall Test for TCE Concentrations in Ground Water Dublin NPL Site, Dublin, Pennsylvania

| LOCATION       | SAMPLE<br>SIZE   | t NON-<br>DETECT | S<br>VALUE | TEST<br>STATISTIC   | TABULAR<br>VALUE | OTATISTICALLY<br><u>SIGNIFICANT_TREND</u> L |
|----------------|------------------|------------------|------------|---------------------|------------------|---------------------------------------------|
| _              |                  |                  |            |                     |                  |                                             |
| 4135 RICKERTS  | 12               | 17               | - 3.3      | alpha = .10         | P = 0.0130       | Yes (Downward)                              |
| 136 RICKERTS   | 4                | 50               | 3          | alpha = .10         | P = 0.2710       | NO                                          |
| 0137 S MAIN    | l                | 100              | * There m  | oust be at least 4  | samples to run   | this test! *                                |
| CI38 N MAIN    | 25               | 12               | -53        | alpha = .10         | P 0.1135         | NO                                          |
| 0138 RICKERTS  | 6                | 67               | 6          | alpha = .10         | P = 0.1855       | No                                          |
| 0139 ELEPHANT  | 16               | 0                | 24         | alpha = .10         | P = 0.1530       | NO                                          |
| ULAD ELGNEDTO  | 26               | 15               | -77        | alpha = .10         | P = 0.0470       | Yes (Downward)                              |
| DI40 NICKERIS  | Ļ                | 100              | * There #  | nust be at least 4  | samples to run   | "his test! *                                |
| ULAD RICKERTS  | 26               | 50               | 14         | alpha = .10         | P = 0.3885       | NO                                          |
| DIAL DICKERTS  | 5                | 100              | Approa     | ch not applicable - | - ICE not detect | ted No                                      |
| 0145 N MATN    | 10               | 100              | Approac    | ch not applicable   | - TCE not detec  | ted No                                      |
| 0145 RICKERTS  | 41               | 2                | -176       | Z = 1.9661          | Z = 1,2916       | Yes (Downward)                              |
| 0146 FIEDHANT  | 16               | 94               | 9          | alpha = .10         | P = 0.3615       | NO                                          |
| 0146 N MATN/WH | 22<br>(ISTLEWOO) | 0<br>D APTS      | - 2        | alpha = .10         | P = 0.4890       | NO                                          |
|                | 57               | 5                | -128       | Z = 0.8743          | 7 - 1,2816       | No                                          |
| CLAS N MATN    | *                | 100              | * There a  | nust be at least 4  | samples to run   | this test! *                                |
| 0143 N MAIN    | 17               | 6                | -11        | alpha = .10         | P = 0.3430       | No                                          |
| 0150 ELEPHANT  | 25               | 0                | -15        | alpha = .10         | P : 0.3730       | No                                          |
| 0152 ELEPHANI  | 21               | 95               | -111       | alpha = .10         | P = 0.0000       | Yes (Downward)                              |
| 0163 S MATN    | 22               | 0                | -98        | alpha = .10         | P = 0.0025       | Yes (Downward)                              |
| 0169 N MAIN    | 5                | 100              | Approac    | ch not applicable   | - TCE not detec  | ted No                                      |
| 0170 N MAIN    | 14               | 0                | -12        | alpha = .10         | P = 0.2770       | No                                          |
| 0173 N MAIN    | 21               | 10               | -115       | alpha = .10         | ₽ = 0.0000       | Yes (Downward)                              |
| )174 N MAIN    | 11               | 9                | 6          | alpha = .10         | P = 0.3525       | No                                          |
| 0179 N MAIN    | 21               | 5                | -90        | alpha = .10         | P = C.CO30       | Yes (Downward)                              |
| 0183 N MAIN    | 11               | 55               | -17        | alpha = .10         | P = 0.1090       | No                                          |
| 0194 N MAIN    | 15               | 13               | -28        | alpha = .10         | P = 0.0925       | Yes (Downward)                              |
| 0215 FRONTIER  | 25               | 56               | -85        | alpha = .10         | ₽ ≈ 0.0245       | Yes (Downward)                              |
| 0215 FRONTIER  | 12<br>- POOL H   | 100<br>OUSE      | Approad    | ch not applicable   | - TCE not detec  | ted No                                      |
|                | 1                | 100              | * There I  | must be at least 4  | samples to run   | this test: *                                |

### Table 1 Results of Mann-Kendall Test for TCE Concentrations in Ground Water Dublin NPL Site, Dublin, Pennsylvania

| Table 1 | Results of | Mann-Kendall | Test for TCE   | Concentrations | in Ground | Water |
|---------|------------|--------------|----------------|----------------|-----------|-------|
|         | Dublin NPL | Site, Dublin | , Pennsylvania | l I            |           |       |

| LOCATION      | SAMPLE<br>SIZE    | NON -<br>DETECT | S<br>VALUE       | TEST<br>STATISTIC | TABULAR<br>VALUE S | STATISTICALLY<br>IGNIFICANT TREND? |
|---------------|-------------------|-----------------|------------------|-------------------|--------------------|------------------------------------|
| 3215 FRONTIE  | R - WELL A        |                 |                  |                   |                    |                                    |
| UNIS EDONUTE  | 4<br>9            | 75              | - 3              | alpha = .10       | P = 0.2710         | No                                 |
| USES PUBLIND  | 5                 | 100             | Approach         | not applicable    | TCE not detected   | No                                 |
| JASS DUBLINP. | 4                 | 100             | Approach         | not applicable    | • TCE not detected | No                                 |
| 0445 BUCKS    | 1.0               | 100             | Approach         | not applicable    | - TCE not detected | No                                 |
| 0717 QUARRY   | 'n                | 17              | 7                | alpha = .10       | P - 0.1360         | No                                 |
| 0729 QUARRY   | 9                 | 33              | - 9              | alpha = .10       | P = 0.2085         | No                                 |
| 0805 QUARRY   | Э                 | . 33            | -26              | alpha = .10       | F = 0.0030         | Yes (Downward)                     |
| 0808B QUARRY  | 4                 | 50              | - 5              | alpha = .10       | P = 0.1045         | No                                 |
| 0813 QUARRY   | я                 | 25              | -7               | alpha = .10       | ₽ < 6.236S         | No                                 |
| 0821 QUARRY   | 5                 | 40              | - 4              | alpha = .10       | P 0.2420           | No                                 |
| 0829 QUARRY   | 6                 | 100             | Approach         | not applicable    | - TCE not detected | No                                 |
| 0900 QUARRY   | 1                 | • • •           | * There mu       | st be at least 4  | samples to rup th  | is test! *                         |
| 0901 QUARRY   | 10                |                 | 20               | alpha = 10        | 5 - 0 0050         | You (Downward)                     |
| 0913 QUARRY   | 10                |                 | - 2 3            | alpha10           |                    | ie keet t                          |
| 0914 QUARRY   | 5                 | 67              | - There mus      | st be at least 4  | samples to full    | is test:                           |
| 0919 QUARRY   | 9                 | 44              | -15              | aipha ± .10       | P = 0.0750         | Yes (Downward)                     |
| 1006 QUARRY   | 5                 | 0               | - 6              | alpha = .10       | P = 0.1170         | No                                 |
| 1014 QUARRY   | 10                | 60              | -20              | alpha = .10       | P = 0.0450         | Yes (Downward)                     |
| 3126 RICKERTS | 3                 | 100             | * There mu:      | st be at least 4  | samples to run th  | is test! *                         |
| 3132 RICKERTS | :1                | 100             | Approach         | not applicable    | - TCE not detected | No                                 |
| 1206 BICKERTS | 10                | 100             | <b>Appr</b> oach | not applicable    | - TCE not detected | No                                 |
| 3212 RICKERTS | 10                | 100             | Approach         | not applicable    | - TCE not detected | No                                 |
|               | 14                | 57              | 19               | alpha = .10       | P = 0.1650         | NO                                 |
| 2210 NICKENIC | 12                | 100             | Approach         | not applicable    | - TCE not detected | No                                 |
| 3224 RICKERTS | 13                | 85              | - 9              | alpha = .10       | P - 0.3165         | No                                 |
| 3232 RICKERTS | 13                | 85              | - 7              | alpha = .10       | P = 0.3605         | No                                 |
| 1234 RICKERTS | 13                | 69              | -21              | alpha = .10       | P = 0.1140         | No                                 |
| 3304 RICKERTS | 11                | 36              | -16              | alpha = .10       | P - 0.1250         | No                                 |
| AGWAY DUBLIN  | PIKE<br>10        | 1 C             | - 5              | alpha = .10       | P = 0.3640         | No                                 |
| BCM-01        | 4                 | 0               | - 6              | alpha = .10       | P = 0.0420         | Yes (Downward)                     |
| BCM-02        | 2                 | 0               | * There mu       | st be at least 4  | samples to run th  | is test! *                         |
| CHERRY - DUBI | IN VIL. APT.<br>1 | rs.<br>100      | * There mu       | st be at least 4  | samples to run th  | is test! *                         |

| Table | 1 | Resu   |
|-------|---|--------|
|       |   | D. 1 1 |

Results of Mann-Kendall Test for TCE Concentrations in Ground Water Dublin NPL Site, Dublin, Pennsylvania

| LOCATION       | SAMPLE<br>SIZE | & NON-<br>DETECT | S<br>VALUE | TEST<br>STATISTIC | TABULAR<br>VALUE | STATISTICALLY<br>SIGNIFICANT TREND? |
|----------------|----------------|------------------|------------|-------------------|------------------|-------------------------------------|
| DRMM - 1       |                |                  |            |                   |                  | -                                   |
| DDMW-1         | 13             | 85               | -13        | alpha = .10       | P = 0.2365       | No                                  |
| DUBLIN WELL-0  | 1 1            | 100              | * There r  | nust be at least  | 4 samples to run | this test! *                        |
| DVPW-1         | 24             | 17               | 84         | alpha = .10       | P = 0.0190       | Yes (Upward) 🗸                      |
| DVPW-2         | 2              | 50               | * There a  | nust be at least  | 4 samples to run | this test! *                        |
| FARM BUREAU W  | ELL<br>1       | 0                | * There 🕯  | nust be at least  | 4 samples to run | this test! *                        |
| FIRE TOWER WE  | LL<br>5        | 0                | 4          | alpha = .10       | P = 0.2420       | No                                  |
| LAMELZA WELL   | 1              | 100              | * There n  | nust be at least  | 4 samples to run | this test! *                        |
| <b>MW</b> -01  | 4              | D                | 0          | alpha = .10       | P = 0.6250       | No                                  |
| <b>MW -</b> 02 | 5              | 0                | 2          | alpha = .10       | P = 0.4080       | No                                  |
| <b>MW</b> - 03 | 4              | 0                | -4         | alpha = .10       | P = 0.1670       | No                                  |
| MW-04          | 5              | 0                | 2          | alpha = .10       | P = 0.4080       | No                                  |
| MW-05          | 4              | 0                | 2          | alpha = .10       | P = 0.3750       | No                                  |
| <b>MW-</b> 06  | 4              | 50               | 2          | alpha = .10       | P = 0.3750       | No                                  |
| MW-07          | 2              | 0                | * There A  | nust be at least  | 4 samples to run | this test! *                        |
| MW-08          | 5              | 0                | - 8        | alpha = .10       | P = 0.0420       | Yes (Downward)                      |
| MW-09D         | 4              | 25               | 2          | alpha = .10       | P = 0.3750       | No                                  |
| MW-09S         | 2              | 0                | * There m  | ust be at least   | 4 samples to run | this test! *                        |
| <b>MW</b> - 10 | 2              | 0                | * There m  | nust be at least  | 4 samples to run | this test! *                        |
| MW - 11        | 2              | 0                | * There m  | nust be at least  | 4 samples to run | this test! *                        |
| PW-01          | 9              | 0                | -2         | alpha = .10       | P = 0.4600       | No                                  |
| PW-02          | 39             | 0                | 193        | alpha = .10       | P = 0.0100       | Yes (Upward)                        |
| RICKERTS - WEI | LL #1          | ŭ                | 270        | prior / 20        |                  |                                     |
| RICKERTS - WEI | 5<br>#2        | 80               | - 4        | alpha = .10       | P = 0.2420       | No                                  |
| R# 313 & OUARE | 18             | 78               | 4          | alpha = .10       | P = 0.4555       | No                                  |
| RT 313 & RTORI | <br>13<br>7845 | 0                | -11        | alpha = .10       | P = 0.2750       | No                                  |
| CU TUREIC COUR | 13             | 46               | -46        | alpha = .10       | P = 0.0020       | Yes (Downward)                      |
| ST DONE 5 CHUI | 1              | 0                | * There m  | ust be at least   | 4 samples to run | this test! *                        |

~

### Table 2 Descriptive Statistics for TCE Concentrations in Ground Water Dublin NPL Site, Dublin, Pennsylvania

DATA GROUP: PARAMETER: Trichloroethene UNIT: ug/L Mean of Duplicates Used Non-Detects = Detection Limit/2

| LOCATION      | SAMPLE<br>SIZE | N-Ds | MEAN     | SAMPLE<br><u>MEDIAN</u> | STANDARD<br>DEVIATION | VARIANCE | MINIMUM       | MAXIMUM    |
|---------------|----------------|------|----------|-------------------------|-----------------------|----------|---------------|------------|
|               |                |      |          |                         |                       |          |               |            |
| 0190 MAPLE    | 1              | 100  | 0.025    | > 49% N D'S             | 0.000                 | 0.000    | Non-Derect.   | Non-Detect |
| 0101 S MAIN   |                |      |          |                         |                       |          |               |            |
| 0104 MAPLE    | 2              | 50   | 0.850    | > 49% N D'S             | 0.495                 | 0.245    | Non-Defect    | 1.200      |
|               | 49             | 0    | 435.298  | 314.000                 | 419.336               | > 99999  | 2.100         | 2320.000   |
| 0104 MIDDLE   | (DEEP)         | 100  | 0.250    | ∿ 499k N-D'S            | 0 000                 | 0.00     | Non Detect    | Non-Detect |
| 0104 MIDDLE   | (SHALLOW)      | 100  | ····     |                         | 0,000                 | 0.000    |               |            |
| 0104 MTTT     | 1              | 100  | 0.250    | > 49% N-D's             | 0.000                 | 0.000    | Non-Detect    | Non-Detect |
| UIU4 MILL     | 40             | 3    | 1825.365 | 1796.500                | 1240.131              | > 99999  | Non-Detect    | 4620.000   |
| 0104 S MAIN   |                | 100  | 0.000    |                         | 0.000                 | 2 606    |               |            |
| 0105 CHERRY   | į.             | 100  | 0.025    | > 49% N-D'S             | 0.000                 | 0.000    | Non-Det.ect   | Non-Detect |
|               | 1              | 100  | 1.000    | > 49% N-D's             | 0.000                 | 0.000    | Non-Detect    | Non-Detect |
| 0105 MIDDLE   | 6              | 83   | 0.683    | > 49% N-D'S             | 0.722                 | 0.522    | Non-Detect    | 2.100      |
| 0105 N MAIN   |                |      |          |                         |                       |          |               | 240.000    |
| 0106 N MAIN   | 40             | 3    | 92.275   | 42.500                  | 87.390                | /636.935 | Non Detect    | 348.000    |
|               | 11             | 55   | 5.740    | > 49% N-D'S             | 14.042                | 197.175  | Non-Detect    | 47.000     |
| 0106 S MAIN   | 1              | 100  | 0.025    | > 49% N-D's             | 0.000                 | 0.000    | Non-Detect    | Non-Detect |
| 0107 CHERRY   | -              |      |          |                         |                       |          |               |            |
| 0111 CHERRY   | 1              | 100  | 0.250    | > 49% N-D'S             | 0.000                 | 0.000    | Non-Detect    | Non-Detect |
| off chanter   | 1              | 100  | 0.000    | > 49% N-D's             | 0.000                 | 0.000    | Non Detect    | Non-Detect |
| 0111 ELEPHAN  | T<br>17        | 24   | 5 784    | 2 500                   | 11 105                | 103 410  | Non-Dotect    | 47 900     |
| 0111 MAPLE    | τ,             | 23   | 0.104    | 2.300                   | 11.105                | 120.012  | Note Delett : | 47.700     |
| 0110 MADE     | 1              | 100  | 0.025    | > 49% N-D's             | 0.000                 | 0.000    | Non-Detect    | Non-Detect |
| UTIZ MAPLE    | 26             | 92   | 1.202    | > 49% N-D's             | 3.076                 | 9.461    | Non-Detect    | 14.200     |
| 0112 N MAIN   | 25             | • •  | 1 700    | 1 100                   | 2 252                 | د د ع    | Non Doboat    | 11 000     |
| 0113 ELEPHAN  | 25<br>T        | 54   | 1.700    | 1.100                   | 2.352                 | 5.555    | NOT Decect    | 11.900     |
| 0110 NI MATSI | 24             | 54   | 9.387    | > 49% N-D'S             | 24.858                | 617.912  | Non Detect    | 117.000    |
| UII3 N MAIN   | 21             | 0    | 32.176   | 25,500                  | 21.839                | 476.953  | 8.700         | 78.300     |
| 0114 ELEPHAN  | Г<br>Эр        | (F   | 1 027    | 409 N DI-               | 1 200                 | 1 507    | No. Deboat    | 4 100      |
| 01:4 MAPLE    | 20             | 60   | 1.037    | > 498 N~D'S             | 1.260                 | 1.587    | NON-Detect    | 4.100      |
|               | 1              | 100  | 0.500    | > 49% N-D's             | 0.000                 | 0.000    | Non Detect    | Non-Detect |
| J.15 CHERRY   | 1              | 100  | 0.000    | > 49% N-D's             | 0.000                 | 0.000    | Non-Detect    | Non Detect |
| 0115 ELEPHAN  | Г              |      |          |                         |                       |          |               |            |
| 0115 N MAIN   | 25             | 60   | 1.722    | > 49% N-D'S             | 3.219                 | 10.362   | Non Detect    | 15.900     |
|               | 21             | 0    | 90.495   | 82.200                  | 63.966                | 4091.668 | 15.000        | 237.000    |
| 0116 ELEPHAN  | r<br>26        | R    | 14.283   | 4.200                   | 33.497                | 1122.032 | Non-Detect    | 168.000    |
| 0116 N MAIN   |                | ~    |          |                         |                       |          |               |            |
|               | 32             | 59   | 11.676   | > 49% N-D's             | 51.150                | 2616.301 | Non Detect    | 288.000    |

--,--

| LOCATION   | J :      | SAMPLE<br>SIZE | :           | MEAN     | SAMPLE<br>MEDIAN | STANDARD<br>DEVIATION | VARIANCE  | MINIMUM    | MAXIMUM    | _             |
|------------|----------|----------------|-------------|----------|------------------|-----------------------|-----------|------------|------------|---------------|
| 0117 N MA  | IN       |                |             |          |                  |                       |           |            |            |               |
| 0118 ELEP  | ידאאי    | 24             | 8           | 13.461   | 4.950            | 24.091                | 580.354   | Non-Detect | 113.000    |               |
| 0119 MAD   | F        | 7              | 0           | 28.786   | 18.200           | 27.017                | 729.945   | 2.400      | 72.900     |               |
| 0110 0000  |          | 22             | 91          | 0.941    | > 49% N-D's      | 2.586                 | 6.685     | Non-Detect | 12.500     |               |
| OIL9 CHER  | .KY      | 1              | 0           | 0.400    | 0.400            | 0.000                 | 0.000     | 0.400      | 0.400      |               |
| UII9 ELEP  | HANT     | 13             | 0           | 19.532   | 5.600            | 36.501                | 1332.289  | 1.500      | 130.000    |               |
| 0119 MAPL  | Ε        | 1              | 100         | 0.250    | > 49% N-D's      | 0.000                 | 0.000     | Non-Detect | Non-Detect |               |
| 0119 N MA  | IN       | 24             | 0           | 20.129   | 15.750           | 14.534                | 211.246   | 3.800      | 52.100     |               |
| 0120 CHER  | RY       | 1              | 100         | 0.250    | > 49% N-D's      | 0.000                 | 0.000     | Non-Detect | Non-Detect |               |
| 0120 MAPL  | E        | 2              | 100         | 0 500    | - 49% N-D'S      | 0 000                 | 0.000     | Non-Detect | Non-Detect |               |
| 0120 MILL  | #2       | 2              | 100         | 335 000  | 335 000          | 20 204                | 200,000   | 205 000    | 246 000    |               |
| 0122 MAPL  | E        | 4              | U           | 525.000  | 525.000          | 20.204                | 800.000   | 303.000    | 345.000    |               |
| 0122 N MA  | IN       | 1              | 100         | 0.500    | > 49% N-D'S      | 0.000                 | 0.000     | Non-Detect | Non-Detect |               |
| 0123 N MA  | IN - #1  | 54             | 0           | 289.889  | 265.000          | 106.505               | 11343.270 | 125.000    | 546.000    |               |
| 0123 N MA  | IN - #2  | 40             | 0           | 176.875  | 198.000          | 77.077                | 5940.910  | 15.400     | 360.000    |               |
| 0124 N MA  | IN       | 27             | 0           | 182.481  | 182.000          | 81.822                | 6694.875  | 67.000     | 500.000    |               |
| 0126 MAPL  | F        | 38             | 5           | 169.445  | 170.000          | 74.082                | 5488.094  | Non-Detect | 397.000    |               |
| 0126 MIDD  |          | 1              | 100         | 0.500    | > 49% N-D's      | 0.000                 | 0.000     | Non-Detect | Non-Detect | $\rightarrow$ |
| 0126 MIDD. |          | 5              | 100         | 0.400    | > 49% N-D's      | 0.224                 | 0.050     | Non-Detect | Non-Detect |               |
| UI26 MIDD  | LE #A2   | 1              | 100         | 0.250    | > 49% N-D's      | 0.000                 | 0.000     | Non-Detect | Non-Detect |               |
| 0126 MIDDI | LE #D2   | 1              | 100         | 0.250    | > 49% N-D'S      | 0.000                 | 0.000     | Non-Detect | Non-Detect |               |
| 0126 N MA  | IN       | 26             | 8           | 115.696  | 106,500          | 73.897                | 5460.769  | Non-Detect | 350.000    |               |
| 0128 N MA  | IN       | 46             | 2           | 383.317  | 361.500          | 258.768               | 66960.785 | Non-Detect | 1700.000   |               |
| 0130 N MA: | IN (A)   | 11             | 0           | 35 027   | 35 300           | 8 193                 | 67 130    | 21 800     | 45 700     |               |
| 0130 N MA: | IN (B)   | <br>>E         | 4           | 27 444   | 30.000           | 12 112                | 121 000   | New Determ | 40.700     |               |
| 0130 N MA: | IN ORCH  | 23             | 4           | 57.444   | 39.000           | 13.112                | 1/1.926   | NON-Decect | 60.300     |               |
| 0131 N MA  | IN       | T              | 0           | 1200.000 | 1200.000         | 0.000                 | 0.000     | 1200.000   | 1200.000   |               |
| 0132 RICKE | ERTS     | 25             | 4           | 45.122   | 19.000           | 58.479                | 3419.797  | Non-Detect | 245.000    |               |
| 0133 N MAI | IN - AU' | 5<br>TO SUI    | 100<br>PPLY | 0.305    | > 49% N-D'S      | 0.200                 | 0.040     | Non-Detect | Non-Detect |               |
| 0133 N MAI | זת – אז  | 25<br>NER      | 0           | 40.672   | 16.000           | 52.091                | 2713,450  | 7.000      | 174.000    |               |
| 0134 MADY  |          | 26             | 15          | 79.358   | 71.250           | 55.648                | 3096.732  | Non-Detect | 170.000    |               |
| OID4 MAPLE |          | 1              | 100         | 0.250    | > 49% N-D's      | 0.000                 | 0.000     | Non-Detect | Non-Detect |               |
| UI34 RICKE | LRTS     | 6              | 50          | 0.148    | > 49% N-D's      | 0.096                 | 0,009     | Non-Detect | 0.250      |               |
| 0135 RICKE | ERTS     | 12             | 17          | 1.090    | 1.135            | 0.728                 | 0.529     | Non-Detect | 2.300      |               |

Table 2 Descriptive Statistics for TCE Concentrations in Ground Water Dublin NPL Site, Dublin, Pennsylvania



---

| LOCA          | TION<br>D  | SAMPLI<br>SIZE | E %<br><u>N-Ds</u>   | MEAN    | SAMPLE<br>MEDIAN | STANDARD<br>DEVIATION | VARIANCE | MINIMUM      | MAXIMUM      |
|---------------|------------|----------------|----------------------|---------|------------------|-----------------------|----------|--------------|--------------|
| 0136          | RICKERTS   |                |                      |         |                  |                       |          |              |              |
| n1+7 .        | C MAIN     | 4              | 50                   | 0.050   | > 49% N-D'S      | 0.058                 | 0.003    | Non-Detect.  | 0.110        |
| 2148          | N MAIN     | ì              | 100                  | 0.500   | > 49% N-D'S      | 0.000                 | 0.000    | Non-Detrect. | Non-Detect   |
|               | DICKEDUC   | 25             | 12                   | 52.738  | 42.900           | 51.604                | 2662.971 | Non-Detect   | 258.000      |
|               | RICKERID   | б              | 67                   | 0.163   | > 49% N-D'S      | 0.104                 | 0,011    | Non-Det ect  | 0.250        |
| 0139          | ELEPHANT   | 16             | 0                    | 3.691   | 3.350            | 2.061                 | 4.246    | 1)           | 7,000        |
| 0139          | N MAIN     | 26             | 15                   | 5.397   | 3.550            | 5.070                 | 25.705   | Non Detect   | 18,700       |
| 0140          | RICKERTS   | 1              | 100                  | 0.025   | > 49% N-⊃'∋      | 0.000                 | 0,000    | Non Detect   | Non Detect   |
| 0142          | N MAIN     | 26             | 50                   | 3.780   | > 49% N D'S      | 12.466                | 155.393  | Nor-Detect   | 64.500       |
| 3142          | RICKERTS   | 5              | 100                  | 0.205   | - 409 N DIG      | 0 101                 | 2 010    | Non Datast   | Non-Dot oct  |
| 0144          | RICKERTS   |                | 100                  | 0.200   | 2 496 N-D 5      | 0.101                 | 0.010    | Non-Deces    | No. December |
| 0145 1        | N MAIN     | 10             | 100                  | 0.253   | > 49% N-D'S      | 0.112                 | 0.013    | Non-Deflect  | Non-Desect   |
| 0145 1        | RICKERTS   | 41             | 2                    | 267.341 | 270.000          | 73.166                | 5353.268 | Non-Detect   | 416,000      |
| 0146-3        | ELEPHANT   | 16             | 94                   | 0.334   | > 49% N-D'S      | 0.338                 | 0.114    | Non-Detect   | 1.600        |
| 0146          | M MATNI/MU | 22<br>Temt EW  | 0<br>מיידים ג' הריכר | 126.818 | 130.500          | 22.744                | 517.299  | 84,000       | 159,000      |
| 0140 1        | N MAIN/WH  | 151 LEW<br>57  | 5 5                  | 375.491 | 342.000          | 316,408               | > 99999  | Non-Detect   | 2318.000     |
| 0148 1        | MAPLE      | 1              | 100                  | 0.000   | > 49% N D's      | 0.000                 | 0.000    | Non-Detect   | Non-Detect   |
| 0149 I        | N MAIN     | 17             | 6                    | 94.006  | 96.000           | 31.741                | 1007,487 | Non Detect   | 131.000      |
| 0150 H        | ELEPHANT   | 25             | 0                    | 11.028  | 8.700            | 6.585                 | 43.358   | 2.000        | 24.500       |
| 0152 1        | ELEPHANT   | 21             | 95                   | 0 369   | 5 498 N-D'S      | 0 187                 | 0 035    | Non-Detect   | 1 063        |
| 0153 I        | MAIN       | ~ 1            | 22                   | 0.009   | > 498 M D 3      |                       | 222.454  | a            | 20 400       |
| 0163 \$       | S MAIN     | 22             | 0                    | 28.136  | 23.500           | 14.881                | 221.454  | 2.800        | 52.400       |
| 0169 1        | N MAIN     | 5              | 100                  | 0.500   | > 49% N-D'S      | 0.000                 | 0.000    | Non-Detect.  | Non Detect   |
| 0170 1        | N MAIN     | 14             | 0                    | 6.464   | 3.200            | 9.460                 | 89.493   | 2.100        | 37.000       |
| 0173 1        | MATN       | 21             | 10                   | 2.323   | 2.300            | 1.392                 | 1.936    | Non-Detect   | 4.800        |
| 0177.         |            | 11             | 9                    | 1.516   | 1.490            | 0.589                 | û.347    | Non-Detect   | 2.200        |
| 0174 1        | N MAIN     | 21             | 5                    | 4.008   | 2.010            | 7.581                 | 57.476   | Non-Detect   | 36.400       |
| 0179 1        | N MAIN     | 11             | 55                   | 1.286   | > 49% N-D's      | 2.159                 | 4.662    | Non-Detect   | 7.400        |
| 0183 <b>r</b> | N MAIN     | 15             | 13                   | 1.838   | 1.200            | 2.178                 | 4.742    | Non-Detect   | 9.000        |
| 0194 1        | N MAIN     | 25             | 56                   | 1 148   | > 49% N-D'S      | 1 803                 | 3.251    | Nor-Detect   | 8.600        |
| 0215 B        | FRONTIER   | 10             | 100                  | 0.000   | 409 N DIS        | 0 120                 | 0.017    | Non Dotoat   | Non Dotoct   |
| 0215 B        | FRONTIER   | 12<br>POOL     | HOUSE                | 0.229   | > 496 N-D'S      | 0.129                 | U.UI/    | MOIT-DELECT  | MON-Decect   |
| 0215 6        | FRONTIER   | 1<br>WELL      | 100<br>A             | 0.250   | > 49% N-D'S      | 0.000                 | 0.000    | Non-Detect   | Non-Detect   |
| 0215 H        | FRONTIER   | 4<br>WELL      | 75<br>B              | 0.625   | > 49% N-D'S      | 0.250                 | 0.063    | Non-Detect   | 1.000        |
|               |            | 5              | 100                  | 0.400   | > 49% N-D's      | 0.137                 | 0,019    | Non-Detect   | Non-Detect   |

### Table 2 Descriptive Statistics for TCE Concentrations in Ground Water Dublin NPL Site, Dublin, Pennsylvania



•

| Table 2 | Descriptive Stat | istics fo | r TCE Concentrations | in | Ground | Water |
|---------|------------------|-----------|----------------------|----|--------|-------|
|         | Dublin NPL Site, | Dublin,   | Pennsylvania         |    |        |       |

| LOCATION<br>ID  | SAMPLE<br>SIZE | °<br>N-Ds | MEAN      | SAMPLE<br>MEDIAN | STANDARD<br>DEVIATION | VARIANCE  | MINIMUM    | MAXIMUM    |   |
|-----------------|----------------|-----------|-----------|------------------|-----------------------|-----------|------------|------------|---|
| 0255 DUBLINPIK  | Е              |           |           |                  |                       |           |            |            |   |
| 0446 BUCKS      | 4              | 100       | 0.250     | > 49% N-D's      | 0.000                 | 0.000     | Non-Detect | Non-Detect |   |
| 0717 QUARRY     | 10             | 100       | 0.253     | > 49% N-D's      | 0.112                 | 0.013     | Non-Detect | Non-Detect |   |
| 0729 OUARRY     | 6              | 17        | 0.733     | 0.620            | 0.558                 | 0.312     | Non-Detect | 1.600      |   |
| 0805 OUARRY     | 9              | 33        | 0.453     | 0.540            | 0.237                 | 0.056     | Non-Detect | 0.770      |   |
|                 | 9              | 33        | 0.408     | 0.380            | 0.248                 | 0.062     | Non-Detect | 0.790      |   |
| COURD QUARKI    | 4              | 50        | 0.380     | > 49% N∸D's      | 0.164                 | 0.027     | Non-Detect | 0.590      |   |
| USIS QUARRY     | 8              | 25        | . 1.116   | 1.350            | 0.690                 | 0.476     | Non-Detect | 1.800      |   |
| 0821 QUARRY     | 5              | 40        | 0.700     | 0.650            | 0.631                 | 0.399     | Non-Detect | 1,600      |   |
| 0829 QUARRY     | 6              | 100       | 0.250     | > 49% N-D's      | 0.000                 | 0.000     | Non-Detect | Non-Detect |   |
| 0900 QUARRY     | 1              | 100       | 0.250     | > 49% N-D's      | 0.000                 | 0.000     | Non-Detect | Non-Detect |   |
| 0901 QUARRY     | 10             | 0         | 2.530     | 2.600            | 0.414                 | 0.171     | 1,700      | 3.100      |   |
| 0913 QUARRY     | 3              | 67        | 0.350     | > 49% N-D's      | 0.173                 | 0.030     | Non-Detect | 0.550      |   |
| 0914 QUARRY     | 9              | 44        | 0.300     | 0.310            | 0.143                 | 0.020     | Non-Detect | 0.500      |   |
| 0919 QUARRY     | 5              | 0         | 1 440     | 1 400            | 0 167                 | 0.028     | 1 200      | 1 600      |   |
| 1006 QUARRY     | 10             | 60        | 1.140     | 1.400            | 0.107                 | 0.025     | 1.200      | 1.000      |   |
| 1014 QUARRY     | 10             | 00        | 0.009     | > 496 N-D 5      | 0.090                 | 0.008     | Non-Decect | 0.500      |   |
| 3126 RICKERTS   | د              | 100       | 0.250     | > 49% N-D'S      | 0.000                 | 0.000     | Non-Detect | Non-Detect | - |
| 3132 RICKERTS   | 11             | 100       | 0.252     | > 49% N-D's      | 0.106                 | 0.011     | Non-Detect | Non-Detect |   |
| 3206 RICKERTS   | 10             | 100       | 0.253     | > 49% N-D'S      | 0.112                 | 0.013     | Non-Detect | Non-Detect |   |
| 3212 RICKERTS   | 10             | 100       | 0.230     | > 49% N-D's      | 0.133                 | 0.018     | Non-Detect | Non-Detect |   |
| 3218 RICKERTS   | 14             | 57        | 0.215     | > 49% N-D'S      | 0.079                 | 0.006     | Non-Detect | 0.300      |   |
| 3004 PICKEPTS   | 12             | 100       | 0.213     | > 49% N-D's      | 0.138                 | 0.019     | Non-Detect | Non-Detect |   |
| 2223 NICKENIS   | 13             | 85        | 0.781     | > 49% N-D's      | 1.355                 | 1.836     | Non-Detect | 4.200      |   |
| 3232 RICKERTS   | 13             | 85        | 0.355     | > 49% N-D's      | 0.340                 | • 0.115   | Non-Detect | 1.300      |   |
| 3234 RICKERTS   | 13             | 69        | 0.567     | > 49% N-D's      | 0.934                 | 0.873     | Non-Detect | 3.600      |   |
| 3304 RICKERTS   | 11             | 36        | 0.779     | 0.810            | 0.518                 | 0.268     | Non-Detect | 1.400      |   |
| AGWAY DUBLIN PI | KE<br>10       | 10        | 1.131     | 1.045            | 0.676                 | 0.457     | Non-Detect | 2.100      |   |
| BCM-01          | 4              | 0         | 12400.000 | 13500.000        | 5235.138              | > 99999   | 5100.000   | 17500.000  |   |
| BCM-02          | 2              | ٥         | 486 500   | 486 500          | 263 751               | 69564 500 | 300.000    | 673 000    |   |
| CHERRY - DUBLIN | VIL. A         | APTS.     | A 25A     |                  | 0 000                 | 000.20200 | Non-Dotoot | Non Dotoot |   |
| DBMW-1          | 1              | 100       | 0.200     | > 496 N-D'S      | 0.000                 | 0.000     | NON-Detect | Non-Detect |   |
| DUBLIN WELL-01  | 13             | 85        | 0.385     | > 49% N-D's      | 0.293                 | 0.086     | Non-Detect | 1.200      |   |
|                 | 1              | 100       | 0.250     | > 49% N-D's      | 0.000                 | 0.000     | Non-Detect | Non-Detect |   |

| LOCATION         | SAMPLE<br>SIZE | %<br>N-Ds | MEAN      | SAMPLE<br><u>MEDIAN</u> | STANDARD<br>DEVIATION | VARIANCE  | MINIMUM    | MAXIMUM    |
|------------------|----------------|-----------|-----------|-------------------------|-----------------------|-----------|------------|------------|
| DVPW-1           |                |           |           |                         |                       |           |            |            |
| DV5W-2           | 24             | 17        | 19.719    | 20.000                  | 13.569                | 184.105   | Non-Detect | 62.400     |
|                  | 2              | 50        | 0.485     | > 49% N-D'S             | 0.686                 | 0,470     | Non-Detect | U.970      |
| FARM BUREAU WEL  | .L<br>1        | 0         | 1400.000  | 1400.000                | 0.000                 | 0.000     | 1400.000   | 1400.000   |
| FIRE TOWER WELL  | 5              | 0         | 20120.000 | 24000.000               | > 9999                | > 39999   | 6200.000   | 34000.000  |
| LAMELZA WELL     | 1              | 100       | 0.250     | > 49% N-D's             | 0.000                 | 0.000     | Non-Detect | Non-Detect |
| MW-01            | ۵              | Û         | 163.725   | 1 <b>75</b> .000        | 121.793               | 14833 503 | 4 906      | 362 000    |
| MW 02            |                | 0         | 177 600   | 41.000                  |                       | 22500     | A          | 1.00.200   |
| MW - 0.3         | ر              | 0         | 477.890   | 41.000                  | 652.582               | > 33333   | 0,450      | 1400.000   |
| MW - 0.4         | 4              | 0         | 67.250    | 29.500                  | 81.965                | 6718.250  | 20,000     | 190.000    |
|                  | 5              | 0         | 5088.000  | 6700.000                | 3390.829              | > 99999   | 640,000    | 8600.000   |
| MW-05            | 4              | 0         | 62.425    | \$5.500                 | 51.940                | 2697.723  | 8.700      | 130.000    |
| MW-06            | 4              | 50        | 0.561     | > 49% N-D'S             | 0.898                 | 0.807     | Non-Detect | 1.900      |
| MW-07            | 2              | 0         | 54.000    | 54.000                  | 55.154                | 3042.000  | 15.000     | 93.000     |
| MW - 0.8         | 5              | D         | 495.000   | 370.000                 | 650.637               | > 999999  | 14 000     | 1600.000   |
| MW - 09D         |                | ۰<br>۲    | 0.000     | 0.105                   | 0                     | 0.250     |            | 10001000   |
| MW-095           | 4              | 25        | 0.393     | 0.135                   | 0.809                 | 0.370     | Non-Detect | 1.300      |
| MW - 1.0         | 2              | 0         | 0.165     | 0.165                   | 0.007                 | 0.000     | 0.160      | 0.170      |
|                  | 2              | 0         | 0.995     | 0.995                   | 0.148                 | 0.022     | 0.890      | 1,100      |
| MM - 1 T         | 2              | 0         | 3.120     | 3.120                   | 3.932                 | 15.457    | 0.340      | 5.900      |
| PW-01            | 9              | 0         | 5002.778  | 5000.000                | 2525.083              | > 99999   | 514.000    | 10000.000  |
| PW-02            | 39             | 0         | 424.423   | 330.000                 | 593.561               | > 99999   | 10.100     | 3900.000   |
| RICKERTS - WELL  | #1 5           | 90        | 1 040     | - 199 N-D10             | 1 207                 | 1 459     | Non-Dotact | 3 200      |
| RICKERTS - WELL  | #2             |           | 1.010     |                         | ÷ • 207               | 1.450     | Nom Detect | 5.200      |
| RT 313 & QUARRY  | 18             | 78        | 0.478     | > 4.9% N-D's            | 0.645                 | 0.416     | Non-Detect | 2.600      |
| Ren 313 ይ RICKER | 13<br>TS       | 0         | 2.966     | 3.000                   | 0.901                 | 0.812     | 0.260      | 3,800      |
| NI JIJ & NICKER  | 13             | 46        | 0.321     | 0.340                   | 0.071                 | 0.005     | Non•Detect | 0.430      |
| ST LUKE'S CHURC  | н<br>1         | 0         | 3.600     | 3.600                   | 0.000                 | 0.000     | 3,600      | 3.600      |

Table 2 Descriptive Statistics for TCE Concentrations in Ground Water Dublin NPL Site, Dublin, Pennsylvania

~~~~