February 18, 2011

John Banks, Remedial Project Manager
USEPA Region III
1650 Arch Street
Philadelphia, PA 19103

RE: Exide-Owned Portions of Price Battery
Response to USEPA Comments Dated November 17, 2010
Combined Phase I and II Remedial Investigation Report

Dear John:

Presented herein are responses to the United States Environmental Protection Agency (USEPA) comment letter (dated November 17, 2010) regarding the Combined Phase I and II Remedial Investigation (RI) Report (dated June 30, 2010) for the Exide-Owned properties at the Price Battery Superfund Site. This response letter has been prepared by Advanced GeoServices Corp. (Advanced GeoServices) on behalf of Exide Technologies. Response to USEPA comments on the Revised Baseline Human Health Risk Assessment (BHHRA), presented in a separate USEPA letter dated November 5, 2010 are provided under separate cover along with the revised BHHRA Report.

To simplify your review, we have formatted this letter to first reiterate your comment (shown in bold) followed by our response.

EPA Hydrogeologist Comments

Comment: 1. It is not clear how much water the bedrock fractures yielded as there is little information in the logs or the narrative. Please provide more information in the logs and narrative. Turbidity problems may be due to well construction in BW-3. It is highly unlikely that turbidity problems noted in wells BW-5, BW-6 and BW-7 are due to the shale.

Response: Although quantitative yield testing was not a component of the USEPA-approved Work Plan, additional qualitative information has been added to Sections 3.2 and 4.4.3 talking about the groundwater conditions observed during installation of the shallow bedrock wells and to Section 4.4.4 regarding drawdown experienced during low flow sampling. The additional text references notations made in the boring logs of a “water producing” zone and a “water bearing zone” in shallow bedrock wells BW-5 and BW-6 respectively, as well as, the amount of drawdown observed during low-flow sampling. Relative to turbidity, while construction could lead to higher turbidity in a single well, based on higher turbidity readings
in BW-6 and BW-7 than in BW-3, we still maintain that formation characteristics may be a contributing factor to turbidity in an open bedrock well.

Comment: 2. Many of the wells noted in the PA well survey are not shown on well survey map. For example, Well 1244, the General Battery well is not shown on this map. It seems that this well is on Exide owned property. If the well exists, it should be sampled. Other wells not shown on the map: 60082; 423978; 125; and 1236.

Response: The Figure contained in the well search has been revised to add wells 1235 and 1236. The original site production well (PA Well ID 1244) was mislabeled as 1544, this has been fixed. Well 423978 is the same as Well #6, although we have replaced the Well #6 label with 423978. The text for Well 60082 was obscured by other labels, this has also been fixed. The exact location of the on-site well (1244) is unknown and, therefore, has not been subject to sampling.

BTAG (Biological Technical Assistance Group) Comments

Comment: 1. The BTAG finds that the concerns that BTAG previously raised have been sufficiently addressed. The BTAG also concurs with the conclusions drawn in the remedial investigation report and believe they are sound as they pertain to addressing ecological risk.

Response: No response necessary

Comment: 2. The BTAG does take exception to some of the statements made in the Screening Level Ecological Risk Assessment which is provided in Appendix B-2 (e.g., it is unlikely that resident populations of these animals [fish, invertebrates, reptiles, and amphibians] are present; based on...the absence of suitable gravel substrate, their [benthic invertebrates] presence would be expected to be limited). Additionally, the BTAG does not completely concur with all of the details and logic supporting the conclusions that were presented.

Response: The text has been modified to present the discussion in a comparative manner between those sections lined with gabion mattress and natural stream sections above and below the site.

Comment: 3. The BTAG does concur that: 1) the potential for direct and indirect sediment based ecological effects (i.e., risk) is present; and, 2) the limited habitat and likely future remediation of the contaminant sources by addressing sediments found in the open pipe preclude the
Mr. John Banks, Remedial Project Manager
2002-978-00
February 18, 2011
Page 3 of 14

need to further quantify ecological risk. It should be recognized that the contaminants present in site sediments do serve as an ongoing source of contamination for downstream sediments and should be addressed as recommended.

Response: As stated in BTAG's comment, Section 6.4.3 recommends that high concentrations of lead in sediment within the pipe discharging to the stream should be abated. Further discussions regarding remediation will be carried through the FS and remedy selection.

CDM Comments

General Comments:

Comment: 1. The report would benefit from an editorial review to find and correct minor editorial, grammatical errors occurring through the report.

Response: An editorial review has been performed.

Comment: 2. Throughout the Phase II discussions in the combined RI report, Exide used the n-hexane extractable material method when analyzing for TPH; however, this is not discussed in the report. This method should be discussed in the report and any variations in results obtained using the two methods during Phase 1 and 2 should be mentioned.

Response: We have modified report Table 9C to change the label for TPH from “n-hexane extractable material, silica gel treated” to “oil and grease”. The reference to "n-hexane extractable" is a function of the methodology of the extraction procedure. The analysis for TPH as “oil and grease” (Method 1664) performed during the Phase II RI provides a broader range of individual constituents versus TPH as “diesel” (Method 8015B) performed during the Phase I RI. Use of Method 1664 in the Phase II RI was selected because of the procedures ability to provide heavier range oils, especially #6 fuel oil, hydraulic oils and waste oils.

Comment: 3. Section 3. Was information and data obtained during the installation of monitoring wells in Phase II used to develop this section and update/confirm previous information regarding the sites' geological/hydrogeological setting? Four of the wells were installed within bedrock. Do bedrock fractures exist in the area? Is contaminant transport via fracture a concern?
Response: Sections 3.1 and 3.2 provide general geologic and hydrogeologic information and the conditions observed during the Phase II RI were consistent with Phase I. In response to this comment, additional text has been added to Section 3.1 regarding the bedrock conditions encountered. Sections 3.2 and 4.4.3 have been revised to include information regarding the amount of water the wells were yielding during installation, which is an indicator of fractures.

Comment: 4. Section 4. A discussion of background sampling and identification of specific background samples should be included in this section. The information can either be incorporated within each of the appropriate subsections or introduced as a new stand-alone subsection.

Response: No background soil sampling was proposed or completed as part of the RI. The term “background” soil arsenic concentration refers to the level of arsenic in soil established by USEPA for the general vicinity of the Price Battery Superfund Site. Regarding sediment in Kaercher Creek, the RI included the collection of samples from within the creek for the purpose of providing a general idea of lead, arsenic and antimony concentrations in sediment bed-load coming from upstream of the site. We have added additional language to Sections 4.3.1, 4.3.2 and 4.3.3 discussing “background” sediment samples. Similarly, additional language has been added to Section 4.4.3 explaining that MW-5 and BW-5 were installed in the extreme northeast corner of the Main Parcel with the intent of providing an upgradient monitoring location for groundwater.

Comment: 5. Section 5. This section should include a subsection that provides a brief QA summary for the field effort. Specifically, deviations from the approved field plans and their potential impact (if any) on investigation objectives should be listed. Also, while a data validation report is included in Appendix C, a brief summary of the data validation and evaluation effort and impact of those results on data usability would be useful and should be included here as well.

Response: Additional text has been provided at the beginning of Sections 5.2, 5.3, 5.4.1 and 5.4.2 regarding deviations from the RI/FS Work Plan, and statements regarding the usability of the validated sample results relative to the RI/FS Work Plan. Data qualifiers applied to the sampling results are provided on the data tables and were limited to “U” (not detected above the reporting limit), “J” (estimated result), and “UJ” (estimated reporting limit). None of the data qualifiers precludes the use of the data for the purpose intended by the RI/FS Work Plan. Tables presenting the method detection limits for the Phase I and Phase II sampling have been added as Tables 16A and 16B to the report.
Comment: 6. Section 5 and data tables. Consider calculating and adding/substituting a benzo(a)pyrene equivalent (BaP Eq) result to/for the total PAHs result.

Response: The Screening Level Ecological Risk Assessment (SLERA) was completed utilizing values obtained from the Interim Final Ecological Soil Screening Levels (Eco-SSLs). While we have calculated BaP Equivalents on other projects for direct human contact in soil and for ecological exposure to sediment, the Eco-SSLs do not provide a value for benzo(a)pyrene that would allow comparison of a calculated BaP equivalent for soil. In addition, the Peer Review comments on the Eco-SSL methodology for PAHs (OSWER Directive 9285.7-78) determined the additive approach is the most appropriate approach for addressing differences in their chemical properties.

Comment: 7. Section 5. Discussion of fill and soil results. The data tables and Plate 2 indicate elevated levels of lead, arsenic and antimony in fill at several sample locations. While Plate 2 illustrates the vertical extent of contaminant levels in the fill, additional figures are needed to illustrate the lateral extent of contaminant concentrations above site-specific or regional screening levels in fill material. These illustrations will be needed to consider and develop remedial alternatives to address high concentrations of antimony, arsenic, lead and select PAHs in site soils as recommended in section 6.4.1.

Response: Additional Plates (3A, 3B, 3C and 3D) have been developed that provide observed concentrations for antimony, arsenic and lead at nominal depths of 1-ft, 3-ft, 5-ft and 7-ft below ground surface. We also added total PAHs to the Plates, although the limited amount of results and the sporadic nature of exceedances resulted in minimal value.

Comment: 8. Section 5. Discussion of groundwater results. Groundwater results should be plotted, along with a plume depiction, when applicable, on figures. If data is available, trend tables that include multiple data points for selected wells should be included and discussed.

Response: Additional Figures (Figures 9A-9C, 10A-10C and 11A-11C) have been developed which present the filtered and unfiltered inorganic results and VOC detections for both groundwater sampling events. As shown, the absence of site wide groundwater impacts limits the ability to develop relevant iso-concentration contours of the results. Groundwater sampling data is limited to 1 to 2 rounds and, therefore, does not provide an opportunity to evaluate trends.
Comment: 9. Section 6. Fate and Transport Discussion. The discussion indicates that the existing pavement essentially serves as a cap and protects against wind and water erosion. Has groundwater transport been considered? Although, inorganic exceedances of MCLs appeared to be sporadic, the existence of contaminants in fill at concentrations substantially above groundwater SSLs coupled with a shallow water table suggest that the likely (or unlikely) potential of this transport mechanism at the site should at least be considered.

Response: A general conclusion of the RI is that the concentrations of COPCs above the USEPA RSLs are closely correlated to the zones of fill with zones of fill that pre-date battery manufacturing activities on the site typically exhibiting higher concentrations of PAHs versus inorganic compounds; while fills occurring subsequent to the start of battery manufacturing operations were more notable for their elevated concentrations of lead, arsenic and antimony. In either case, the fill materials have been in-place multiple decades without resulting in notable groundwater impacts. The depth to groundwater beneath the site occurs below the bottom of fill except within the former Schuylkill Canal Basin (Tetra Tech Test Pit TP-3) on the west end of the Warehouse Parcel and possibly in the vicinity of MP-8 and MP-31 on the Main Parcel. This means that groundwater interaction with contaminated fill is limited. Within the native soils arsenic routinely exceeds USEPA Protection of Groundwater Soil Screening Level, but as previously established by the USEPA this represents a regional background condition. Occasionally a native soil sampling result for lead or antimony will exceed their corresponding Protection of groundwater SSL (14 mg/kg and 0.66 mg/kg, respectively) but such exceedances are sporadic and random suggesting they are more an indication of geologic versus anthropogenic conditions. The only notable exception is VOCs observed in native soil in the vicinity of the former gasoline UST in the southeast corner of the Main Parcel. We have added text to Section 6 providing language similar to this response.

Comment: 10. All tables. Bolded text. Which RSLs are exceeded? All? Bold doesn't appear to apply to groundwater SSLs. What does the shaded text represent? Please add to table notes section so this is clear. Also please use most current version of RSLs and provide date in table notes.

Response: The Tables presenting the results of the Phase I and II sampling have been revised to update the USEPA RSLs based on the November 2010 standards. The results have been screened against all three standards. Exceedances of the Protection of Groundwater SSL are italicized. Values that exceed the Residential Soil RSL are...
shown in bold. Results that exceed the Industrial Soil RSL are shaded. The footnotes have been revised to cite the November 2010 values and the meaning.

Section Specific Comment:

Comment: 1. P. 4-4, 2nd paragraph, first sentence. According to the CDM field sampler, AGC used Terra Core® samplers during Phase II. Please revise.

Response: Although the Phase I sampling used Encore brand samplers, the Phase II VOC sampling was completed utilizing the Terra-Core brand samplers. This edit has been made.

Comment: 2. P. 4-13, 1st paragraph, 2nd sentence. The January 28, 2010 Work Plan states that all wells will have at least one well volume purged and stabilized parameters. Why does this text imply that only bedrock wells required one well volume to be purged?

Response: The text cited indicates that the overburden wells were purged of at least one volume prior to sampling. The Phase 2 Work Plan (approved by USEPA) does not specify removal of a minimum volume of water from new bedrock wells. As such, the bedrock wells were sampled in accordance with the USEPA Low Flow Groundwater Sampling Procedures (EPA\540\S-95\504 (April, 1996)).

Comment: 3. P. 5-3, 2nd paragraph, last sentence. No units are provided for the concentration of xylene (190,000) in MP 103 3-6 ft.

Response: The requested change has been made.

Comment: 4. P. 5-3, 1st paragraph. A comparison of VOC concentrations in fill to residential regional screening levels is described here but the PCB bullet on p. 5-4 (last sentence) references Region 3 RBCs. All references and concentrations should be updated to current EPA Regional Screening Levels.

Response: The edits have been made and reflect the November 2010 USEPA RSL Summary table.

Comment: 5. P. 5-8, 2nd paragraph. Please list the actual SVOC concentrations in sample SS-1 2-4 ft for benzo(a)pyrene and benzo(a)anthracene.

Response: The requested concentrations have been added to the text.
Comment: 6. P. 5-8, last bullet. 1st full sentence on p 5-9 as "No samples of the native material collected during the Phase II RI exceeded the Residential Soil Screening "however it is not clear what this sentence refers to as the sentences before and after this one describe exceedances.

Response: The sentence has been revised to state "No other samples of the Native Material collected during the Phase II RI exceeded the Residential Soil Screening Level for TAL metals".

Comment: 7. P. 5-10, SVOC bullet (next to last). Please include range of detection being discussed.

Response: The reporting limits vary by compound and sample; therefore a single value cannot be cited. We have revised the text to provide the range of SVOC Reporting Limits and added a table (Table 16) providing the detection limits.

Comment: 8. P. 5-11, 1st paragraph, 2nd sentence. This appears to be the first mention of an inorganic background level. Please indicate what the background concentration is. Also, were background levels established for the other inorganic analytes?

Response: The text is referencing the site specific values for lead and arsenic established by USEPA for the Price Battery Superfund Site. There has not been a background soil study performed as part of the Phase I or Phase II RI of the Exide owned properties. We have added language to Section 5.1 stating that the regional background arsenic level was established by the USEPA.

Comment: 9. P. 5-11, 2nd paragraph, 2nd sentence and Table. Lead ranges are different in text than noted in the table below. Low lead level 34.5 mg/kg in text versus 26.5 mg/kg in table and mean lead concentration 7,606 mg/kg in text versus 6,892 mg/kg in table. Please revise.

Response: The Table is the correct value. The text has been revised to reflect the Table.

Comment: 10. P. 5-15, Table and 1st paragraph, 1st sentence. Lead ranges are different in text than noted above in table. Mean lead concentration 524.8 mg/kg in table versus 487 mg/kg in paragraph below. Please revise.

Response: The Table is the correct value. The text has been revised to reflect the Table.
Comment: 11. P. 5-15, penultimate paragraph. This appears to be first mention of arsenic background concentration of 15 mg/kg, however a discussion of background results should be introduced earlier in the section.

Response: The referenced background level was established by the USEPA for the Price Battery Superfund Site. No background soil sampling was performed as part of Phase I or Phase II RI on the Exide owned properties. Additional language has been added to help clarify the text.

Comment: 12. P. 5-15, Part C – Native Soils. Last sentence indicates all of the native soil samples from the Broom Works Parcel were below RSLs for residential soil. Please also indicate what the inorganic soil concentrations were relative to background concentrations.

Response: The RI did not include completion of a background study. We have modified the referenced text to indicate that the observed arsenic and lead concentrations were below their corresponding screening levels.

Comment: 13. P. 5-16 last bullet – indicate the concentration ranges of PAHs detected above RSLs.

Response: The referenced text has been revised to include observed concentrations above the USEPA RSLs for Residential Soil.

Comment: 14. P. 5-17, 1st sentence. "protection" is misspelled.

Response: The Correction has been made.

Comment: 15. P. 5-17 "C" Include a comparison of native soil inorganic results to background concentrations.

Response: The RI did not included completion of a background study.

Comment: 16. P. 5-18, 3rd paragraph. Indicate whether the sediment concentrations are compared to a sediment background concentration or the soil background Level.

Response: The text has been revised to indicate the comparison is to the USEPA arsenic in soil background value.

Comment: 17. Section 5.5 Dust Sampling – Is a background concentration for lead in dust available?
Response: No background dust sampling has been performed.

Comment: 18. P. 6-2, Section 6.2, 2nd paragraph, 2nd sentence. Please indicate the background well concentrations for these constituents and constituents occurring above RSLs.

Response: The text provided in Section 6.2 has been expanded to include results for cobalt, iron and manganese.

Comment: 19. P. 6-3 Section 6.3.1.1 Main Parcel. Discussion indicates that the existing pavement essentially serves as a cap and protects against wind and water erosion. Has groundwater transport been considered? Please include a discussion of groundwater transport.

Response: Introductory text has been added to Section 6.3.1 which discusses the relationship between the groundwater table and site fills on the Main Parcel and Warehouse Parcel. We have also added language to Section 6.3.1.1 which states groundwater is not considered a contaminant transport concern.

Comment: 20. P. 6-3, Section 6.3.1.2. Same comment as above.

Response: See response above.

Comment: 21. Section 6.4.2 Groundwater. This section suggests that VOCs may be associated with an UST and suggests additional investigation and remediation under PADEP UST regulations. Not sure if it is appropriate to recommend this course of action at this stage.

Response: BTEX compounds are observed in the area of the site where a former gasoline UST is known to have existed and no other known potential sources have been identified.

Comment: 22. Table 1A – Incorrect unit designation under Total Pb (mg/km). Also, please check and confirm groundwater units as mg/L. For example, GP-1 would have a total Cr concentration of 3,140 ug/L, a Pb concentration of 245,000 ug/L and As concentration of 2,222 ug/L.

Response: The requested change has been made to Table 1A.

Comment: 23. Table 1B – concentration units are missing.

Response: The units have been added to Table 1B.
Comment: 24. Plate 2 – Cross Sections. Should show lead concentrations in native soil as well. For example, cross section F-F’ looks to have a data gap with 1,210 mg/kg for lead as the bottom result. The tables show that lead decreases to 13.7 mg/kg in native soil at PL-5. If these values were added to the cross section, it would be visually easier to understand.

Response: The requested edit has been made.

Comments on Appendix B-2 Screening Level Ecological Risk Assessment

General Comments:

Comment: 1. The conclusion that no baseline ecological risk assessment is needed is supported by the information presented.

Response: No response required.

Comment: 2. Based on discussions between EPA and Exide during the 17 June 2010 meeting in Hamburg, it was agreed that the SLERA would include a screening of both surface soil data and sediment data using EPA Region III ecological screening benchmarks. The current SLERA only includes sediment to benchmark comparisons (although a summary comparison of soil concentrations to Eco-SSLs is presented in Section 5.6.3 of the RI).

Response: Based on the February 15, 2011 conference call between USEPA and Exide, and follow-up email from USEPA, no response is required to this comment.

Comment: 3. While the SLERA has the required components, the format does occasionally deviate from the approach recommended in EPA's Ecological Risk Assessment Guidance for Superfund (EPA 1997).

Response: No response required.

Comment: 4. Screening comparisons in a SLERA should include all chemical data collected, not just chemicals that exceed benchmarks. This approach is necessary for the reviewer to evaluate whether adequate detection levels were achieved (i.e., high detection levels for chemicals with all non-detects does not automatically mean there is no potential ecological risks).
Response: Pursuant to discussions between representatives of Exide and USEPA, and as stated in Section 1.0 of Appendix B-2, the SLERA has been performed exclusively for sediment in Kaercher Creek. As presented in the RI Report and discussed in the text of the SLERA, sediment analysis was limited exclusively to antimony, arsenic and lead. Eight (8) sediment samples were collected in the Phase I RI, and the corresponding results are presented in Table 1-A of Appendix B-2. Five (5) stream sediment samples (including one (1) duplicate) and seven (7) pipe sediment samples were collected in the Phase II RI, and the corresponding results are presented on Table 1-B of Appendix B-2. No other results exist for Kaercher Creek sediment. We have added language to Section 4.6 of the RI text to call out this fact. Based on the February 15, 2011 conference call between USEPA and Exide, and follow-up e-mail from USEPA, no further response is required to this comment.

Section Specific Comments:

Comment: 1. Section 1.1, Background and Environmental Setting – This section would benefit by referencing one or more figures that identify all the locations discussed.

Response: References to Figures contained in the RI Report have been added.

Comment: 2. Section 1.2, Contaminants of Potential Ecological Concern – The COPEC selection process should include tables that show all the relevant chemical data collected and sample by sample comparisons to EPA Region III benchmarks (both sediment and surface soils results – see general comments 1 and 3). Comparison tables should include non-detect chemical and associated detection levels.

Response: Tables providing initial screening of all results have been prepared and added as Tables specific to Appendix B-2 Screening Level Ecological Risk Assessment.

Comment: 3. Section 1.3, Habitat Evaluation and Potential Receptors – Much of subsections 1.3.1, 1.3.2, and 1.3.3 (Soil, Water and Sediment) are discussions of contaminant fate and transport which are usually provided in a separate Fate and Transport Section (Section 1.4 of this SLERA).

Response: Sections 2.3 and 2.4 (formerly 1.3 and 1.4) are Habitat Evaluation and Potential Receptors and Contaminant Fate and Transport Pathways respectively. The opening paragraph of Section 2.4 references the information provided earlier in
the text and collectively the sections provide the information necessary for an understanding of fate and transport.

Comment: 4. Subsection 1.3.1, Soil – As noted in general comments 2 and 5, a screening assessment of surface soils data should be provided in the SLERA.

Response: Tables providing initial screening of inorganic and PAH soil results against the Eco-SSLs have been added to Appendix B-2.

Comment: 5. Subsection 1.3.2, Surface Water – The lack of surface water data (post-capping/remediation) appears to be a potential data gap; especially in light of the fact that the 2002 surface water sampling results showed exceedances of the AWQC for lead.

Response: The RI for the Exide owned property at the Price Battery Superfund Site limited sampling to soil, sediment and groundwater. Surface water within Kaercher Creek was excluded from the scope of the RI based on the limited length of creek present on the Exide owned property subject to this RI (470 ft) and the knowledge that surface water within Kaercher Creek originates from areas upstream of the site, passes through the site within a fully lined channel, and site groundwater does not discharge to surface water in the vicinity of the site. Consequently, surface water was also excluded from the SLERA specific to the Exide owned properties. It is expected that a regional SLERA will be completed by the USEPA as part of the overall Price Battery Superfund Site RI which will include the several miles of creek above the site and the 3/4 mile distance below the site before discharge to the Schuylkill River.

Comment: 6. Section 1.4, Contaminant Fate and Transport – Table 1A is the correct reference in paragraph two. Not clear why Table 1B is provided as part of the SLERA.

Response: The reference to Table 1 has been changed to Table 1A. We have inserted a reference to Table 1B in the Contaminant Fate and Transport Pathways Section where the text is discussing the results observed in the pipe sediment and upstream/background sediments.

Comment: 7. Section 1.5, Ecotoxicity and Relevant Receptors – The figure number on the CSM figure should be changed to match the text.

Response: The figure identification has been changed to “Figure 1”.
Comment: 8. Section 1.6, Risk Characterization and Conclusions –

a. The correct table reference at the end of paragraph one should be Table 1A.

b. While it is agreed that upper trophic level exposure is not a major concern, it is incorrect to say, "dietary exposure cannot be evaluated directly from sediment concentrations." Dietary exposure to sediments can be evaluated using sediment/soil ingestion rates available in numerous publications including EPA's Wildlife Exposure Factors Handbook Vol. 1 (EPA 1993).

c. Under "Summary of Findings" in Table 3 it is mentioned that water concentrations do not exceed benchmarks for antimony, arsenic and lead. Since no benchmark screening of surface water is provided, this statement should be removed.

Response: The referenced to the Table has been revised. In addition, the statement regarding dietary exposure and sediment concentrations has been removed. Water has been removed from the summary of findings column from Table 3.

Please feel free to contact me should you have any questions regarding these responses to USEPA comments.

Sincerely,

Paul G. Stratman, P.E., P.G.
Senior Project Consultant
PGS:vm

Enclosure

cc: A. Effiong (PADEP) – 2 copies
M. Love (Exide) – 2 copies
T. Bowers (Gradient) – 1 copy
L. Pype (CDM) – 1 copy
C. Graessle (Exide) – 1 copy