

SITE INSPECTION REASSESSMENT FINAL REPORT

Brooke County Glass Dump

Wellsburg, Brooke County, West Virginia CERCLIS (WV0002456275)

TRIAD Project 01-05-0210

Submitted to:

West Virginia Department of Environmental Protection Office of Environmental Remediation 601 57th Street Charleston, West Virginia 25304

Submitted by:

TRIAD ENGINEERING, INC. Morgantown, West Virginia 26505

May 29, 2007

P.O. Box 889, 219 Hartman Run Rd. Morgantown, WV 26505 Phone (304) 296-2562 Fax (304) 296-8739

May 29, 2007

Ms. Pamela Hayes -Office of Environmental Remediation West Virginia Department of Environmental Protection 601 57th Street, SE Charleston, West Virginia 25304

SUBJECT: SITE INSPECTION REASSESSMENT FINAL REPORT Brooke County Glass Dump CERCLIS Site TRIAD Project No. 01-05-0210

Dear Ms. Hayes,

TRIAD ENGINEERING, INC. is pleased to submit the *Final Report* for the *Site Inspection* Reassessment of the Brooke County Glass Dump CERCLIS Site, prepared under Task 4 of the approved Work Plan.

If you have any questions or desire additional information, please feel free to contact us.

Sincerely, TRIAD ENGINEERING, INC.

hall. Wax

Lvdia/M. Work, LRS Environmental Services Manager/Senior Chemist

Gary M. Hilgar, PG, LRS Senior Environmental Scientist

attachment

TABLE OF CONTENTS

.....

COVER
TRANSMITTAL LETTER
TABLE OF CONTENTS
ACRONYM GLOSSARY

1.0	IN	TRODUCTION	1
2.0	S	ITE DESCRIPTION AND HISTORY	3
2.1		Site Location	3
2.2)	Site Description	3
2.3	}	Standard Environmental Records	5
2.4	ŀ	Uses of Adjoining Properties	6
2.5	;	Historical Operational Activities	7
2.6	5	Historical Site Investigations	7
	2.6.1	1 September 1989 – Soil Sampling, WVDNR, DWM	8
2	2.6.2	2 May 1995 – Sampling of Cullet Pile, WVDNR, DWM	8
:	2.6.3	3 June 1996 – Sampling and Analysis Results, Brooke County Gl	ass
(Corr	npany	9
2	2.6.4	4 July 1998 – Preliminary Assessment, USEPA	9
:	2.6.5	5 March 2000 – Glass Cullet Sampling, WVDEP, OWM	. 10
2.7	,	Areas of Potential Environmental Concern	. 11
2.8	}	Potentially Responsible Parties	. 12
3.0	E	NVIRONMENTAL SETTING	.13
3.1		Topography	. 13
3.2		Climate	. 13
3.3	5	Demographics	. 14
3.4	•	Soil Exposure Pathway	. 14
3.5		Groundwater Migration Pathway	. 15

.....

TABLE OF CONTENTS, Continued

3.6	Surface Water Pathway	17
3.7	Air Pathway	
3.8	Sensitive Environments	
4.0	CURRENT SITE INVESTIGATIONS	20
4.1	Surface Soil Sampling	20
4.2	Surface Water Sediment Sampling	22
4.3	Surface Water Sampling	22
4.4	Groundwater Sampling	23
4.5	Quality Control Samples	24
5.0	ANALYTICAL RESULTS	25
5.1	Analytical Scope	25
5.2	Analytical Procedures	25
- 0		
5.3	Data Reported	
5.3 5.4	Data Reported Data Validation Process	
		25
5.4	Data Validation Process	25 27
5.4 6.0	Data Validation Process	25 . 27 28
5.4 6.0 6.1	Data Validation Process	25 27
5.4 6.0 6.1 6.2	Data Validation Process SELECTION OF CONTAMINANTS OF CONCERN Surface Soil Sample Results - Residential Surface Soil Sample Results - Non-Residential	25 27 28 30 32
5.4 6.0 6.1 6.2 6.3	Data Validation Process SELECTION OF CONTAMINANTS OF CONCERN Surface Soil Sample Results - Residential Surface Soil Sample Results - Non-Residential Surface Water Sediment Sample Results	25 27 28 30 32 33
5.4 6.0 6.1 6.2 6.3 6.4	Data Validation Process SELECTION OF CONTAMINANTS OF CONCERN Surface Soil Sample Results - Residential Surface Soil Sample Results - Non-Residential Surface Water Sediment Sample Results Surface Water Sample Results	25 27 28 30 32 33 33 34
5.4 6.0 6.1 6.2 6.3 6.4 6.5	Data Validation Process SELECTION OF CONTAMINANTS OF CONCERN Surface Soil Sample Results - Residential Surface Soil Sample Results - Non-Residential Surface Water Sediment Sample Results. Surface Water Sample Results. Groundwater Results.	25 27
5.4 6.0 6.1 6.2 6.3 6.4 6.5 6.6	Data Validation Process SELECTION OF CONTAMINANTS OF CONCERN Surface Soil Sample Results - Residential Surface Soil Sample Results - Non-Residential Surface Water Sediment Sample Results Surface Water Sample Results Groundwater Results Verification of the Conceptual Site Model	25 27
5.4 6.0 6.1 6.2 6.3 6.4 6.5 6.6 7.0	Data Validation Process SELECTION OF CONTAMINANTS OF CONCERN	25 27 28 30 30 32 33 34 35 36 36

TABLE OF CONTENTS, Continued

7.4 Pa	athway Scores	
7.4.1	Groundwater Migration Pathway	
7.4.2	Surface Water Migration Pathway	
7.4.3	Soil Exposure Pathway	
7.4.4	Air Exposure Pathway	
7.5 Hi	istorical HRS	
8.0 SUI	MMARY AND RECOMMENDATIONS	

FIGURES

Figure 1.	Site Location Map	
Figure 2.	Sample Location Map	attached
Figure 3.	General Site Features (2003 aerial, WVGIS)	5
Figure 4.	Site Topography, WVGIS	13
Figure 5.	Human Health Conceptual Site Model	attached
Figure 6.	Ecological Conceptual Site Model	attached

TABLES

- Table 1A.Occurrence, Distribution, and Selection of COCs, Surface Soil,Residential Exposure
- Table 1B.Occurrence, Distribution, and Selection of COCs, Surface Soil, Non-
Residential Exposure
- Table 1C. Occurrence, Distribution, and Selection of COCs, Surface Water Sediment
- Table 1D. Occurrence, Distribution, and Selection of COCs, Surface Water
- Table 1E. Occurrence, Distribution, and Selection of COCs, Groundwater

TABLE OF CONTENTS, Continued

- Table 2A.Occurrence, Distribution, and Selection of HRS Observed Releases,Surface Soil, Residential Exposure
- Table 2B.Occurrence, Distribution, and Selection of HRS Observed Releases,Surface Soil, Non-Residential Exposure
- Table 2C.Occurrence, Distribution, and Selection of HRS Observed Releases,Surface Water Sediment
- Table 2D.Occurrence, Distribution, and Selection of HRS Observed Releases,Surface Water
- Table 2E. Occurrence, Distribution, and Selection of HRS Observed Releases, Groundwater
- Table 3A.Occurrence, Distribution, and Selection of COCs based on XRF FieldScreening Data, Surface Soil, Residential Exposure
- Table 3B.Occurrence, Distribution, and Selection of COCs based on XRF FieldScreening Data, Surface Soil, Non-Residential Exposure
- Table 3C.Occurrence, Distribution, and Selection of COCs based on XRF FieldScreening Data, Surface Water Sediment
- Table 4A. Field Duplicate Summary, Surface Soil
- Table 4B. Field Duplicate Summary, Sediment
- Table 4C. Field Duplicate Summary, Surface Water

APPENDICES

- Appendix 1. Environmental Data Resources, Inc. Report
- Appendix 2. City of Wellsburg Annual Drinking Water Quality Report 2005
- Appendix 3. CLP Analytical Results
- Appendix 4. 2007 HRS Site Score Package

ACRONYM GLOSSARY

- -

Bgs	Below ground surface
CERCLA	Comprehensive Environmental Response, Compensation, and Liability
	Act of 1980
CERCLIS	Comprehensive Environmental Response, Compensation, and Liability
	Information System
CFS	cubic feet per second
CLP	Contract Laboratory Program
COC	Contaminant of Concern
COPC	Contaminant of Potential Concern
CRDL	contract required detection limit
DQO	Data Quality Objective
DWM	Division of Waste Management
EDR	Environmental Data Resources, Inc.
FSP	Field Sampling Plan
HASP	Health and Safety Plan
HRS	Hazard Ranking System
MS/DUP	Inorganic Matrix Spike/Matrix Duplicate
msl	mean seal level
NOV	Notice of Violation
OER	Office of Environmental Remediation
OWM	Office of Waste Management
PA	Preliminary Assessment
POLREP	Pollution Report
RBC	Risk-Based Concentration
PRP	Potentially responsible party
QAPP	Quality Assurance Project Plan
QC	Quality Control
RAS	Routine Analytical Services

6.*** ******

ACRONYM GLOSSARY

- RCRA Resource Conservation and Recovery Act
- SAP Sampling and Analysis Plan
- SARA Superfund Amendments and Reauthorization Act
- SATA Site Assessment Technical Assistance
- SDWIS Safe Drinking Water Information System
- SIR Site Inspection Reassessment
- SOW Statement of Work
- TAL Target Analyte List
- TCLP Toxicity Characteristics Leaching Procedure
- TDL Target distance limit
- TRIAD TRIAD ENGINEERING, INC.
- USEPA United States Environmental Protection Agency
- USGS United States Geological Survey
- WVDEP West Virginia Department of Environmental Protection
- WVDNR West Virginia Department of Natural Resources
- WVGIS West Virginia Geographic Information System

1.0 INTRODUCTION

TRIAD ENGINEERING, INC. (TRIAD) has prepared this *Site Inspection Reassessment Report* for the United States Environmental Protection Agency, Region III (USEPA) and the West Virginia Department of Environmental Protection (WVDEP), Office of Environmental Remediation (OER). This report has been prepared under authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) and the Superfund Amendments and Reauthorization Act of 1986 (SARA) under a Pre-Remedial Cooperative Agreement between the USEPA and the WVDEP.

The Brooke County Glass Dump CERCLIS Site (the Site) has Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) site designation WV0002456275. The Brooke County Glass Dump Site is also referred to as the Diserio (sometimes spelled Deserio) Landfill, Brooke Glass Cullet Pile, and the Washington Pike Glass Dump.

Environmental contamination at the Site is due to historical cullet (waste glass) disposal at the Site with potential impacts to soil, surface water, and groundwater. The USEPA and WVDEP, OER determined a Site Inspection Reassessment (SIR) was warranted to assess potential risk associated with the Site and determine if the Site should undergo further action under CERCLA. This *SIR Report* has been prepared under Tasks 3 of the approved Work Plan, WVDEP, OER Contract DEP12773.

Based on available WVDEP project files, there is currently no regulatory oversight at the property. The last inspection, performed by the WVDEP, Office of Waste Management (OWM), occurred in 2000.

Prior to preparing this *SIR Report*, TRIAD performed various work tasks relative to the Brooke County Glass Dump CERCLIS Site, including preparing the following deliverables for the USEPA and WVDEP, OER:

- Conflict of Interest disclosure as per the requirements of 40 CFR Part 35.6550 (Subpart O), submitted August 22, 2003 under contract number DEP12773.
- Sampling and Analysis Plan (SAP), which included a Field Sampling Plan (FSP), Quality Assurance Project Plan (QAPP), and Health and Safety Plan (HASP) submitted September 5, 2006 under contract number DEP12773.
- Field Sampling Report at the conclusion of the field investigations, submitted May 3, 2007 under contract number DEP12773.

In addition to these deliverables, OER requested that TRIAD perform a preliminary screening level risk assessment to assess potential risk associated with the Brooke County Glass Dump CERCLIS Site. This "preliminary" screening-level assessment includes the following work tasks:

- Identifying contaminants of potential concern (COPCs) and then selecting contaminants of concern (COCs).
- Identifying areas of potential environmental concern, contaminant migration pathways, exposure pathways, and potential human health and ecological receptors.
- Preparing this SIR Report which includes performing a preliminary Hazard Ranking System (HRS) evaluation using the USEPA QuickScore computer model, and providing recommendations.

2.0 SITE DESCRIPTION AND HISTORY

2.1 Site Location

The Brooke County Glass Dump CERCLIS Site is located in Brooke County, West Virginia approximately 1.5-miles east of the city of Wellsburg, West Virginia and is adjacent to mailing address 560-D Washington Pike (State Route 27). The Site location is depicted on the *Steubenville East-W. Va.* 7.5-minute United States Geological Survey (USGS) topographic quadrangle map, revised in 1981, and is presented below in **Figure 1**, *Site Location Map*. Coordinates for the Site are 40°16'5" north latitude and 80°35'18" west longitude.

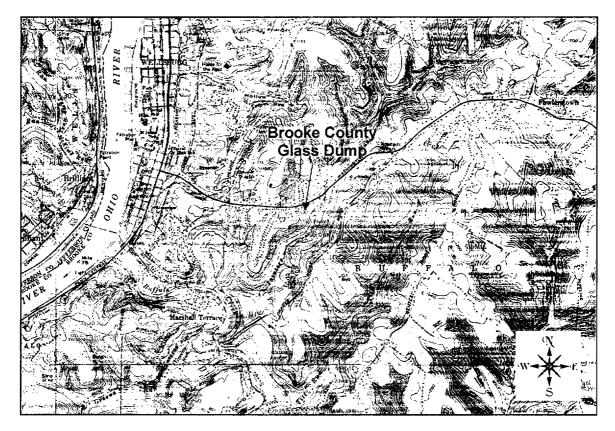


Figure 1. Site Location Map, USGS 1981

2.2 Site Description

The Site property is 5.42 acres and is currently owned by Mary Diserio Call and

Anna Diserio Dick. There are no improvements on the property. The Brooke County Glass Dump CERCLIS Site is accessed from State Route 27 (Washington Pike) using an unpaved access road. The unpaved access road travels approximately 300-feet from State Route 27 (Washington Pike) to the western edge of the Site.

The hillside from the top of the Site to the bottom is extremely steep with an approximate slope of 30 to 50 degrees to the south/southeast. Access of the hillside and bottom of the Site is very difficult due to the steep hillside gradient. Painter's Run, a tributary of Buffalo Creek and subsequently the Ohio River, flows along the base of the cullet pile from east to west. The areas to the east and west of the Site are also steeply sloping and moderately vegetated and wooded.

The Site is dominated by a glass cullet pile approximately 125 feet wide and 500 feet long. Access to the Site is unrestricted. A residence is located approximately 150 feet west of the Site. A family of four (two adults and two children) live in the residence. There was evidence of the children playing in the surface soil near the Site resulting in direct contact with COPCs.

During the 2007 SIR field sampling activities, glass cullet was observed along the slope, along the unpaved site access road, as well as in the residential yard of the adjoining residence. Glass cullet was not observed in Painter's Run or on the opposite side of the stream along the bank as reported in previous investigations. The glass cullet was most abundant down the slope toward Painter's Run; in some areas at depths greater than two feet. The color of the glass cullet was varied. Empty containers of varying sizes and types were observed on the slope. All containers were visually observed to be empty. Abandoned household appliances and household solid waste were also observed on the slope. No odors or soil staining was observed.

The general site features are depicted on the following page on Figure 3, General

TRIAD ENGINEERING, INC.

TRIAD PROJECT NO. 01-05-0210

Site Features.

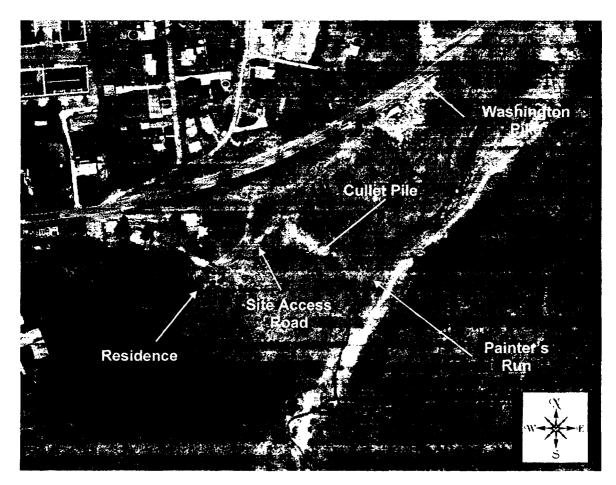


Figure 3. General Site Features (2003 aerial, WVGIS).

2.3 Standard Environmental Records

TRIAD contracted with Environmental Data Resources, Inc. (EDR) to provide both standard and additional environmental records from federal, state, and local databases to obtain information regarding potential recognized environmental conditions within a one mile search distance of the Site. The EDR database report is included in the attached **Appendix 1**, *Environmental Data Resources, Inc. Report*.

Eighteen sites were identified in the various databases. However, due to poor or

inadequate address information these "orphan sites" could not be mapped by EDR. Brooke County Glass Dump is listed as an orphan CERCLIS site. In addition there are six registered underground storage tank (UST) sites, two leaking UST (LUST) sites, one CERCLIS NFRAP site, three RCRA small quantity generators, two NPDES dischargers to surface water, and three Facility Index System (FINDS) sites. Based on the given address information and distance from the Site, these additional "orphan sites" do not appear to represent an environmental concern at the Site Property. Due to the rural location of the Site, Sanborn fire insurance mapping and city directories were unavailable for review.

2.4 Uses of Adjoining Properties

Properties that adjoin the Site are as follows:

Direction	Boundary Feature	Topographic Relation	Environmental Concerns
North	Unpaved access road, wooded area, and Washington Pike.	Up Gradient	No.
East	Wooded area.	Cross Gradient	No.
South	Painter's Run.	Down Gradient	No.
West	Residential property and wooded area.	Cross Gradient	No.

Adjoining Property Observations

Adjoining properties are not potential environmental concerns.

There are residential properties adjoining the Site. The closest residence to the Site is approximately 150-feet west of the Site.

2.5 Historical Operational Activities

Glass cullet was disposed at the Site by the Brooke County Glass Company from April 1988 through September 1991. The Brooke County Glass Company contended other local glass companies also used the Site for glass cullet disposal; however, no evidence of this could be substantiated in the WVDEP project file. The Brooke County Glass Company, located at 6th and Yankee Streets, Wellsburg, West Virginia, is no longer operational.

Prior to April 1988, the property was undeveloped woodlands. A review of historical aerial photographs of the area from June 1938 and April 1954 provided evidence that the Site was undeveloped woodlands. Review of an April 1989 aerial photograph clearly depicts a large disturbed area in the same location as the cullet pile.

According to the WVDEP project file, the owner of the property during the glass cullet disposal time frame, John Diserio, gave the Brooke County Glass Company permission to dispose glass cullet on his property. Mr. John Diserio is now deceased and bequeathed the property to his sisters Mary Diserio Call and Anna Diserio Dick. According to Mrs. Anna Diserio Dick, she and her sister were unaware of the disposal activities. They are both elderly (in their 90s) and living on a fixed income and cannot afford any removal activities (TRIAD telephone interview, January 2007).

2.6 Historical Site Investigations

The WVDEP, OER project files indicate environmental investigations were performed at the Site beginning in 1989 and continue through the present. Discussions of the investigatory and sampling activities performed during this time period are summarized in this section in chronological order.

2.6.1 September 1989 – Soil Sampling, WVDNR, DWM

In September 1989, the West Virginia Department of Natural Resources (WVDNR), Division of Waste Management (DWM) conducted a site reconnaissance and soil sampling investigation at the Brooke County Glass Dump. During the investigation, two surface soil samples were collected. Unfortunately, analytical results were not available in the project file for review.

2.6.2 May 1995 – Sampling of Cullet Pile, WVDNR, DWM

On May 15, 1995, the WVDNR, DWM, conducted a site reconnaissance and sampling investigation at the Brooke County Glass Dump. During the investigation, two composite samples of cullet were collected. One sample represented the top (north) of the cullet pile; the other sample represented the bottom (south) of the cullet pile. The samples were analyzed for Toxicity Characteristics Leaching Procedure (TCLP) arsenic, cadmium, selenium, and lead. The data are summarized in the table below:

COPC	Regulatory Limit (mg/L) as of June 2001	Top of Pile Result (mg/L)	Bottom of Pile Result (mg/L)
TCLP Arsenic	5.0	1.78	669
TCLP Cadmium	1.0	1.73	650
TCLP Selenium	1.0	0.08	4.52
TCLP Lead	5.0	1.42	1.62

Based on the TCLP results, it was determined the Brooke County Glass Company had disposed of hazardous waste at the Site without a permit. A Notice of Violation (NOV) was issued to the Brooke County Glass Company on May 15, 1995 requiring remedial action.

2.6.3 June 1996 – Sampling and Analysis Results, Brooke County Glass Company

In response to the NOV, the Brooke County Glass Company performed a preliminary characterization study on June 10, 1996. During the preliminary characterization, 28 soil samples (14 surface soil samples and 14 at a depth of 18 inches) and two surface water samples from Painter's Run were collected. The samples were analyzed for TCLP arsenic, cadmium, and selenium. The data are summarized in the table below:

COPC	Regulatory Limit (mg/L) as of June 2001	Surface Soil Maximum Conc. (mg/L)	Soil @ 18" bgs Maximum Conc. (mg/L)	Surface Water Painter's Run (mg/L)
TCLP Arsenic	5.0	5.75	0.99	ND
TCLP Cadmium	1.0	32.9	17.0	ND
TCLP Selenium	1.0	ND	ND	ND

ND = Not detected at a concentration above the laboratory reporting limit.

Hazardous waste was determined to be present throughout the cullet pile and not segregated to one area. The Brooke County Glass Company denied any legal responsibility for the remediation, contending that the Site was an open dump and disposal activities had occurred there by other responsible parties.

2.6.4 July 1998 – Preliminary Assessment, USEPA

As documented in Pollution Report #1, The USEPA Site Assessment Technical Assistance (SATA) performed a Preliminary Assessment (PA) at the Site on July 15, 1998. During the PA, radiation levels were monitored due to the presence of "Vaseline" glass, or glass produced with uranium oxide as a coloring agent. No radiation levels above background were measured. In addition, 18 surface soil samples, three sediment samples from within the bed of Painter's Run, and three surface water samples from Painter's Run were collected. The samples were analyzed for TCLP and total target analyte list (TAL) metals. Unfortunately, analytical results were not available in the project files for review; however, a *Preliminary Assessment Report* (USEPA, January 30, 2004) summarized the data as follows:

COPC Action Level, Soil RBC (mg/Kg) Surface Soil Maximum Conc. (mg/Kg)		Sediment Painter's Run	Surface Water Painter's Run	
Arsenic	13 *	1110	>3X Background, HRS Observed Release	Not reported
Cadmium	511	1930	>3X Background, HRS Observed Release	Not reported
Lead	400	1170	<3X Background	Not reported
Selenium 5110 534		>3X Background, HRS Observed Release	Not reported	

* Natural background concentration used in place of RBC. Published natural background concentration for arsenic in soil in West Virginia ranges from 5.9 to 13.0 mg/Kg.

2.6.5 March 2000 – Glass Cullet Sampling, WVDEP, OWM

The WVDEP, Office of Waste Management (OWM), conducted a glass cullet sampling investigation at the Brooke County Glass Dump on March 27, 2000. During the investigation, four composite samples of cullet were collected. One sample represented the top (north) end of the cullet pile; one the "middle upper" portion of the cullet pile, one the "middle lower" portion of the cullet pile, and the remaining sample represented the bottom (south) end of the cullet pile. The samples were analyzed for TCLP arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The data are summarized in the table below:

СОРС	Regulatory Limit (mg/L) as of June 2001	Top (mg/L)	Middle Upper (mg/L)	Middle Lower (mg/L)	Bottom (mg/L)
TCLP Arsenic	5.0	0.75	ND	0.67	ND
TCLP Barium	100.0	0.36	0.51	0.79	0.61
TCLP Cadmium	1.0	0.14	0.59	0.37	7.94
TCLP Chromium	5.0	ND	ND	ND	ND
TCLP Lead	5.0	1.27	ND	8.33	4.12
TCLP Mercury	0.2	ND	ND	ND	ND
TCLP Selenium	1.0	ND	ND	ND	ND
TCLP Silver	5.0	ND	ND	ND	ND

Based on the TCLP results, it was determined by the WVDEP, OWM that non-hazardous waste cullet could be segregated and removed from the Site without disturbing the identified hazardous waste located within the middle lower and bottom areas of the cullet pile.

2.7 Areas of Potential Environmental Concern

Based on the previous investigations performed at the Site and the site reconnaissance performed by the WVDEP and TRIAD on March 29, 2006, areas of potential environmental concern (AOPCs) included the following:

• Cullet pile,

- Adjacent residence,
- Painter's Run, and
- City of Wellsburg public drinking water supply (source: groundwater) located within a four mile radius of the Site.

2.8 Potentially Responsible Parties

The following have been identified as potentially responsible parties (PRPs) for the contamination at the Site.

- John Diserio, former owner, now deceased.
- Mary Diserio Call and Anna Diserio Dick, current owners who inherited property from decedent John Diserio.

<u>Mailing Address:</u> 965 Washington Pike Wellsburg, West Virginia 26070

Brooke County Glass Company, no longer operational

<u>Former Contact Information:</u> David W. Rithner, Vice President Sixth and Yankee Streets Post Office Box 109 Wellsburg, West Virginia 26070

3.0 ENVIRONMENTAL SETTING

3.1 Topography

The topography of the Site consists of a very steep grade to the south/southeast toward Painter's Run. The estimated slope is 30 to 50 degrees along the glass cullet portion of the Site. The change in elevation was measured to be approximately 175 feet from top to toe of slope. Elevation at the unpaved access road was measured to be 935 feet mean sea level (msl) and 760 feet msl at Painter's Run.

The following map, provided by WVGIS, depicts the site topography in shaded relief.

Figure 4. Site Topography, WVGIS

3.2 Climate

Climate information for Brooke County, West Virginia is available at the World

Climate web-site (www.worldclimate.com). Temperatures in the summer months range from 79.0 to 82.6 degrees Fahrenheit and range from 34.7 to 39.2 degrees Fahrenheit in the winter months. The average rainfall is 37-inches a year. The average monthly rainfall ranges from 2.2-inches to 3.9-inches per month.

3.3 Demographics

Population information was based on data obtained from the U.S. Census Bureau LandView® 5 version 1.0 Custom Census CD. The population information is based on the year 2000 census and is summarized as follows:

Radial Distance from Site	Estimated Population
4 miles	11,723
3 miles	7,262
2 miles	6,074
1 mile	576
0.75 mile	398
0.50 mile	146
0.25 mile	125
0.10 mile	4

3.4 Soil Exposure Pathway

According to the *Soil Survey of Brooke, Hancock, and Ohio Counties, West Virginia*, the Site soils are of the Westmoreland association. The Westmoreland are silt loam, deep, moderately well drained soils on 40-55 degree foot slopes. Due to the slope, erosion is severe. Depth to bedrock is shallow and rock outcroppings are visible at the Site near Painter's Run. Along the cullet pile, depth to soil (or depth of cullet) is estimated to be six to > 24 inches, depending on location.

The majority of the Site is covered by glass cullet. The outer perimeter of the Site is sporadically covered with glass. There is no cover on the glass cullet areas of the Site and there is minimal vegetative cover on the outer perimeter of the Site.

Individuals exposed to site soils within the cullet pile would be limited to the occasional visitor or trespasser. Access to the Site is unrestricted and there is evidence of routine trespassers at the Site. The closest nearby resident individual is approximately 150 feet west of the Site. Two adults and two children live in the residence adjacent to the Site and there is evidence the children play along the unpaved site access road. As discussed previously, there is visible evidence of cullet within the bed of the unpaved access road as well as in the resident's yard. Based on the family's proximity to the Site and the visible evidence of cullet on their property, they qualify as HRS resident individuals.

3.5 Groundwater Migration Pathway

٩.

The Brooke County Glass Dump is located in the Pennsylvanian system's geologic formation Conemaugh series (*White, I.C., 1906, Map of Brooke County Showing the Geologic Formations, West Virginia Geological Survey, West Virginia, 1906*). The strata of the Pennsylvanian system consist of interbedded sandstones, siltstones, clays, shales, thin marine limestones, thick fresh-water limestones, marly shales, and coals. These strata are generally grouped in cyclic units. The strata are subject to erosion and downcutting streams which usually develop where edges of more or less resistant strata are crossed. One such intermittent stream, whose origin is a groundwater seep, is present northeast of the Site. Two groundwater seeps were observed at the Site along rock outcroppings near Painter's Run.

The City of Wellsburg, located 1.5 miles west and down gradient of the Site, occupies what is known as the Wellsburg Bottom. The normal pool-stage elevation of the Ohio River at the Wellsburg Bottom is 633 feet msl. Buffalo Creek, the recipient of Painter's Run, flows into the Ohio River at the southern end of the

bottom. The base of the alluvium in the central part of the Wellsburg Bottom is approximately 576 feet msl. The fill in the alluvium consists largely of gravel and sand (*Carlston, Charles W., and Graeff, George D. Jr., 1955, Geology, Economic, and Ground-Water Resources of the Ohio River Valley in West Virginia, West Virginia Geological and Economic Survey, Morgantown, West Virginia, June 30, 1955*).

The City of Wellsburg is supplied with drinking water from four groundwater wells in the Wellsburg Bottom alluvium, which yield an average of 850,000 gallons per day. These wells were drilled in 1941 and are at a depth of 80 to 81 feet below ground surface (bgs). They are located approximately seven blocks north of the former Brooke Glass Company and are within the HRS groundwater target distance limit (TDL) of four-miles of the Site. The City of Wellsburg public drinking water wells are within a wellhead protection area that extends 18 blocks from 6th Street to 31st Street in the City of Wellsburg, and from the Ohio River to a distance approximately 0.75 miles east of the Ohio River, where the groundwater flow reportedly changes direction (*Preliminary Assessment Report, USEPA 2004*).

These wells serve a population of approximately 4,477 residents (USEPA Safe Drinking Water Information System [SDWIS]). There are no other groundwater users within the HRS groundwater TDL of the Brooke County Glass Dump Site.

Contact with the City of Wellsburg Water Department was made regarding the results of analytical testing as required by all public water suppliers. The City of Wellsburg reported that in 2005, the drinking water supply met all federal and state water standards. A copy of the report supplied by the City of Wellsburg Water Department is provided as **Appendix 2**, *City of Wellsburg Annual Drinking Water Quality Report 2005*.

The slope of the groundwater at the Site generally mimics the slope of the land surface. Due to the steep site topography and visible evidence of groundwater

seeps, Painter's Run acts as a hydrologic barrier to potential groundwater users down gradient of the Site. The complete pathway is groundwater to surface water via overland flow. Groundwater at the Site does not migrate off site, but migrates to Painter's Run. As a result, the City of Wellsburg public drinking water wells would not be impacted by contamination from the Site via the groundwater migration pathway.

3.6 Surface Water Pathway

As discussed previously, the Brooke County Glass Dump Site is located northwest and adjacent to Painter's Run, a tributary of Buffalo Creek. Painter's Run discharges to Buffalo Creek approximately 0.75 mile southwest of the Site. Buffalo Creek is a tributary of the Ohio River. It is approximately 1.5 stream miles from the Site to the Ohio River.

Painter's Run, Buffalo Creek, and the Ohio River are designated by the WVDEP as waters of the State for recreational use which includes fishing, boating, and swimming. The Ohio River downstream of the Site, within the HRS surface water TDL of 15 miles, is currently under a fish consumption advisory (*WV Department of Health and Human Resources, http://www.wvdhhr.org/fish/current.asp*).

Painter's Run, Buffalo Creek, and the Ohio River are also designated for use by aquatic life and the potential use as drinking water sources. There is one drinking water intake located on the Ohio River approximately 14 miles downstream of the Site. It is utilized by the City of Wheeling, West Virginia and serves 44,257 individuals (*SDW/S*). According to the USEPA SDWIS, there are four public water systems that purchase their drinking water from the City of Wheeling. These public water supply users are summarized in the table below:

Water System Name	Population Served	Location Relative to Site
City of Wheeling	31169	Aprox. 14 mile, downstream
Village of Bethlehem	2628	Purchased from Wheeling
Ohio County PSD	8537	Purchased from Wheeling
Triadelphia Water Dept.	1260	Purchased from Wheeling
Valley Grove Water Dept.	663	Purchased from Wheeling

Public Drinking Water Systems – Surface Water Source

However, due to the significant dilution that would occur to any COPCs by the Ohio River, it is unlikely that there is a measurable impact to the municipal water source intake along the Ohio River downstream of the Site. According to the USGS, the mean flow of the Ohio River at St. Marys, West Virginia, 55 miles southwest of Moundsville, is approximately 50,000 cubic feet per second (CFS). The estimated mean flow of Painter's Run is less than 10 CFS.

The Site is located in an area of minimal flooding and is considered outside a 500 year flood plain (Federal Emergency Management Agency, 1983, Flood Insurance Rate Maps, Brooke County, West Virginia, December 15, 1983, Panel No. 540011 0045 B).

3.7 **Air Pathway**

The majority of the Site is covered with glass cullet. There is thin vegetation covering the perimeter of the Site, with few trees. During the March 2007 SIR field sampling, dust was not observed on the Site during sample collection. This is primarily due to the large particle size of the cullet and the moisture content of the soil. However, the lack of any cover of the glass cullet on the Site presents a potential threat of release of contaminant particulate matter into the air.

Sensitive Environments 3.8

Based on information obtained from the U.S. Fish and Wildlife Service (USFWS), National Wetland Inventory (NWI) website, there are no known critical environments, wetlands, or endangered species within a one mile radius of the Site.

4.0 CURRENT SITE INVESTIGATIONS

Under Task 2 of the approved Work Plan, TRIAD performed field sampling activities at the Brooke County Glass Dump CERCLIS Site on March 26 through March 27, 2007. During the sampling event, 21 soil, four sediment, four surface water, and three groundwater samples were collected. The locations of these samples are depicted on **Figure 2**, *Sample Location Map*.

The objective of the site investigation activities was to generate data of sufficient quality and quantity so that the following could be achieved:

- Preliminary Hazard Ranking System (HRS) site score can be calculated for the Site;
- Determine if any human health and ecological exposure pathways are complete; and
- Provide recommendations to the WVDEP and USEPA as to whether further action is required at the Site.

4.1 Surface Soil Sampling

TRIAD collected 21 surface soil samples (0 - 6 inches bgs) from the following locations:

SAMPLE ID	CLP ID	LOCATION
SS1	MC2116	adjacent residence near front porch
SS2	MC2127	adjacent residence child's play area and picnic table
SS3	MC2130	adjacent residence east facing basement door
SS4	MC2131	access road to cullet pile
SS5	MC2132	access road to cullet pile
SS6	MC2133	access road to cullet pile

MC2134	collected within cullet pile
	· · · · ·
MC2135	collected within cullet pile
MC2136	collected within cullet pile
MC2117	collected within cullet pile
MC2118	collected within cullet pile
MC2119	collected within cullet pile
MC2120	collected within cullet pile
MC2121	collected within cullet pile
MC2122	collected within cullet pile
MC2123	collected within cullet pile
MC2124	collected within cullet pile
MC2125	collected within cullet pile
MC2126	collected within cullet pile
MC2128	Background Sample
MC2129	Field Duplicate of SS17
	MC2136 MC2117 MC2118 MC2119 MC2120 MC2120 MC2121 MC2122 MC2123 MC2124 MC2125 MC2126 MC2128

Glass cullet was observed in the surface soil at the residence, along the unpaved access road, and down the slope to Painter's Run. There was evidence of the children playing in the surface soil. The color of the glass cullet was varied.

The glass cullet was most abundant down the slope toward Painter's Run; in some areas at depths greater than two feet. In these locations, the glass cullet was excavated by the sampling personnel until surface soil was encountered prior to surface soil sample collection.

Glass cullet was not observed in the bed of Painter's Run or along its banks. Empty containers of varying sizes and types were observed on the slope. Abandoned household appliances and household solid waste were also observed on the slope. No odor or soil staining was observed. Vegetation was sparse.

TRIAD also utilized X-Ray Florescence (XRF) technology by INNOV-X Systems, Inc. to field screen metals concentrations in-situ at each of the surface soil locations. TRIAD complied with *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846*; Method 6200, *Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment*. Method 6200 is a field-screening method to be used with confirmatory analysis using USEPA approved laboratory methods.

4.2 Surface Water Sediment Sampling

TRIAD collected four surface water sediment samples (surficial 0-2 inches bgs) from the following locations:

SAMPLE ID	CLP ID	LOCATION
SED1	MC2108	Upstream (background) of Painter's Run
SED2	MC2109	Midstream of Painter's Run below cullet pile
SED3	MC2110	Downstream of Painter's Run
SED4	MC2111	Field Duplicate of SED2

Sediment sample locations were collected along the north bank closest to the cullet pile. No cullet was observed in Painter's Run or in the sediment samples collected.

TRIAD also utilized XRF technology to field screen metals concentrations in-situ at each of the sediment locations.

4.3 Surface Water Sampling

TRIAD collected four surface water samples from the following locations:

SAMPLE ID	CLP ID	LOCATION
SW1	MC2112	Upstream (background) of Painter's Run
SW2	MC2113	Midstream of Painter's Run below cullet pile
SW3	MC2114	Downstream of Painter's Run
SW4	MC2115	Field Duplicate of SW2

Painter's Run was observed to be in median flow condition with no visible turbidity. Painter's Run flows east to west toward the Buffalo Creek located approximately 0.75 miles downstream of the Site. No cullet was observed in Painter's Run. There was no visible evidence that Painter's Run is used for public drinking water purposes.

4.4 Groundwater Sampling

TRIAD collected three groundwater samples from the following locations:

SAMPLE ID	CLP ID	LOCATION
GW1	MC2101	Spring down gradient of cullet near Painter's Run
GW2	MC2102	Spring down gradient of cullet near Painter's Run
GW3	MC2103	Spring background sample, northeast of site

Groundwater seeps were observed at three locations. One seep was observed and collected at an area upgradient of the cullet pile, northeast of the Site. This sample, GW3, was collected as a background sample. Two seeps were observed down gradient of the cullet pile but upgradient of Painter's Run within rock outcroppings. They were collected as GW1 and GW2. Groundwater collected from the seeps was clear with very low turbidity.

Based on the observed seeps and site topography, it was determined the groundwater pathway was incomplete. Groundwater at the Site is directly connected to Painter's Run. Therefore, Painter's Run is an aquifer discontinuity to groundwater users down gradient of the Site.

4.5 Quality Control Samples

TRIAD also procured quality control (QC) samples during the investigation to assess sampling precision, effectiveness of decontamination procedures, sample temperature preservation, any evidence of sample cross-contamination, and matrix effect of each media as applicable. The following QC samples were obtained:

- Field duplicates
- Matrix spikes and matrix duplicates (MS/DUP)

Summaries of the field duplicates are provided in Table 4A, *Field Duplicate Summary of Soil*; Table 4B, *Field Duplicate Summary of Sediment*; and Table 4C, *Field Duplicate Summary of Surface Water*. The Field Duplicate samples met the data quality objectives (DQO's) of the site specific *Sampling and Analysis Plan* for sediment and surface water; however the DQO was not met for the field duplicate in soil.

It is the technical opinion of the data reviewer the unacceptable precision in surface soil concentrations are most likely due to sample non-homogeneity. This is further substantiated by the laboratory matrix duplicates also exceeding the DQO for precision.

AR100058

5.0 ANALYTICAL RESULTS

5.1 Analytical Scope

Data obtained during SIR activities may be used for a range of purposes by USEPA and the WVDEP. Therefore, based on available historical information and consultation with the WVDEP Project Manager and USEPA Region III Site Assessment Officer, data collected were analyzed for:

• Target Analyte List (TAL) Metals

5.2 Analytical Procedures

It was recommended and approved that the laboratory selection and analysis be managed by the USEPA Region 3 client services team. The metals fractions were analyzed and reported via the ILM05.3 USEPA Routine Analytical Services (RAS) Contract laboratory Program (CLP) current Statement of Work (SOW).

5.3 Data Reported

The USEPA Region 3 client services team provided the analytical results in both text and spreadsheet form. Data Summary Forms of the analytical data reported are presented in **Appendix 3**, *CLP* **Analytical Results**. The data are reported according to individual sample delivery groups (SDGs):

- SDG MC2101,
- SDG MC2108, and
- SDG MC2120.

5.4 Data Validation Process

As per the approved Work Plan and as authorized by the USEPA Region 3, Site Assessment Manager, the analytical results underwent data validation. The CLP data was validated by USEPA Region 3 according to the following data validation levels *Understanding Region III Data Validation* (February 25, 2000):

• Inorganic review procedures IM-1

The data validation reports are provided along with the laboratory analytical data in **Appendix 3**, *CLP Analytical Results*.

6.0 SELECTION OF CONTAMINANTS OF CONCERN

TRIAD has reviewed the laboratory analytical data for the 2007 SIR investigation in order to identify and select contaminants of concern (COCs) at the Site. A COPC is defined as any individual compound or analyte that was analyzed under the most recent site assessment activities. COCs were selected based on criteria in the USEPA *Risk Assessment Guidance for Superfund (RAGS), Volume 1, Human Health Evaluation Manual (Part A), Interim Final.* To be selected as a COC, a compound or analyte had to be:

- detected at least once at a concentration greater than the contract required detection limit (CRDL) and
- detected at a concentration greater than the applicable action level concentration to which it is compared.

In addition, soil inorganic results had to be detected at a concentration greater than their published maximum background concentration for soil in West Virginia, as published in the *West Virginia VRRDA Guidance Manual (version 2.1)*.

The SIR laboratory analytical data were compared by media to the following USEPA and WVDEP environmental criteria and standards to select COCs:

Surface Soil:

- USEPA Region III, Residential Soil Ingestion Risk Based Concentrations (RBCs), April 2007.
- USEPA Region III, Industrial Soil Ingestion RBCs, April 2007.
- USEPA OSW Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities (OSWER Directive #9355.4-12 August 1994).
- West Virginia Voluntary Remediation and Redevelopment Act Guidance Manual (Version 2.1) Table 2-3 Natural Background Levels of Inorganics in Soil in West Virginia and Surrounding Areas.

Sediment:

- USEPA ECO Update, Ecotox Thresholds, January 1996, supplement to USEPA Risk Assessment Guidance for Superfund (RAGS), Volume 1, Environmental Evaluation Manual.
- USEPA Region 3 Freshwater Sediment Screening Benchmarks, August 2006.

(http://www.epa.gov/reg3hwmd/risk/eco/btag/sbv/fwsed/screenbench.htm).

Surface Water:

- USEPA National Recommended Water Quality Criteria, freshwater CCC (chronic) concentrations or Human Health for the consumption of water + organisms, whichever is most stringent, November 2002.
- USEPA Region 3 Risk Assessment Freshwater Screening Benchmarks (http://www.epa.gov/reg3hwmd/risk/eco/btag/sbv/fw/screenbench.htm).

Groundwater:

- USEPA Region III, *Tap Water* RBCs, April 2006.
- USEPA National Primary Drinking Water Standards, Winter 2004.
- USEPA National Secondary Drinking Water Regulations, Winter 2004.

The occurrence and distribution of COPCs, selection of COCs, and the specific action level risk based concentration or criteria used for comparison purposes are summarized relative to environmental media and area of concern in **Tables 1A through 1E**. The comparison of these data to the applicable environmental action levels and criteria are presented in the following subsections.

6.1 Surface Soil Sample Results - Residential

Surface soil samples collected on the adjacent residential property (SS1, SS2, and SS3) as well as surface soil samples collected along the unpaved site access road

(SS4, SS5, and SS6) were compared to residential soil RBCs due to visual evidence of direct exposure to surface soils by the resident individuals adjacent to the Site.

Arsenic, cadmium, iron, and manganese were detected at concentrations greater than their respective action levels in surface soil. The occurrence, distribution and selection of COPCs, selection of COCs, and the specific action level risk based concentration or criteria used for comparison are summarized in Table 1A, *Occurrence, Distribution and Selection of COCs – Surface Soil (<2 feet bgs) Residential Exposure*. In addition, the following table summarizes the selected COCs in surface soil by area of concern and maximum concentration:

COCs in Surface Soil	Area of Concern		
(mg/Kg)	Residential	Unpaved	
(ing/itg)	Property	Access Road	
Arsenic	< AL	47.1	
Cadmium	< AL	54.1	
Iron	25700	26800	
Manganese	1720	4050	

<AL, detected at a concentration less than the action level.

Based on in-situ analytical data generated by the XRF field screening; arsenic, cadmium, iron, manganese, and mercury were detected at concentrations greater than their respective action levels in surface soil using the XRF. The occurrence, distribution and selection of COPCs, selection of COCs, and the specific action level risk based concentration or criteria used for comparison are summarized in Table 3A, Occurrence, Distribution and Selection of COCs – XRF Field Screening Data-Surface Soil (<2 feet bgs) Residential Exposure. Light elements and minerals such as aluminum, beryllium, calcium, magnesium, potassium, sodium, thallium, and vanadium are not measured by the XRF.

The following table summarizes the selected residential exposure COCs based on

TRIAD ENGINEERING, INC.

ι.,

the XRF field screening data:

COCs in Surface Soil	Area of Concern		
(mg/Kg) according to	Residential	Unpaved	
XRF Data	Property	Access Road	
Arsenic	196	42	
Cadmium	115	136	
Iron	31043	32307	
Manganese	< AL	4392	
Mercury	1025	< AL	

<AL, detected at a concentration less than the action level.

Deviations in XRF concentrations as compared to those generated by the laboratory could be due to sample interferences (one element wavelength interfering with another when concentrations are elevated) or sample non-homogeneity.

6.2 Surface Soil Sample Results – Non-Residential

Surface soil samples collected on the glass cullet pile (SS7 through SS19) were compared to industrial (non-residential) soil RBCs. There was no visual evidence of direct exposure to surface soils within the cullet pile by resident individuals. Due to the steep topography, it is unlikely the cullet pile is routinely trespassed.

Arsenic, cadmium, lead, and mercury were detected at concentrations greater than their respective action levels in surface soil. The occurrence, distribution and selection of COPCs, selection of COCs, and the specific action level risk based concentration or criteria used for comparison are summarized in **Table 1B**, *Occurrence, Distribution and Selection of COCs – Surface Soil (<2 feet bgs) Non-Residential Exposure*. In addition, the following table summarizes the selected COCs in surface soil by area of concern and concentration:

COCs in Surface	Area of Concern within the Cullet Pile				
Soil (mg/Kg)	Top (north)	Top (north) Upper-Middle Lower-Middle B			
Arsenic	330	1010	229	366	
Cadmium	1010	4640	1350	8310	
Lead	< AL	< AL	3710	763	
Mercury	0.71	< AL	< AL	0.79	

<AL, detected at a concentration less than the action level.

Based on in-situ analytical data generated by the XRF field screening; antimony, arsenic, cadmium, and lead were detected at concentrations greater than their respective action levels in surface soil using the XRF. The occurrence, distribution and selection of COPCs, selection of COCs, and the specific action level risk based concentration or criteria used for comparison are summarized in **Table 3B**, *Occurrence, Distribution and Selection of COCs – XRF Field Screening Data-Surface Soil (<2 feet bgs) Non-Residential Exposure*. Light elements and minerals such as aluminum, beryllium, calcium, magnesium, potassium, sodium, thallium, and vanadium are not measured by the XRF.

The following table summarizes the selected non-residential exposure COCs based on the XRF field screening data:

COCs in Surface	Area of Concern within the Cullet Pile			Pile
Soil (mg/Kg) according to XRF Data	Top (north)	Upper-Middle	Lower-Middle	Bottom (south)
Antimony	788	< AL	< AL	< AL
Arsenic	474	456	61	96
Cadmium	1716	< AL	< AL	1122
Lead	< AL	907	555	< AL

<AL, detected at a concentration less than the action level.

Deviations in XRF concentrations as compared to those generated by the laboratory

could be due to sample interferences or sample non-homogeneity.

6.3 Surface Water Sediment Sample Results

Copper, iron, manganese, nickel, selenium, silver, and zinc were detected at concentrations greater than their respective action levels in the surface water sediment of Painter's Run. The occurrence, distribution and selection of COPCs, selection of COCs, and the specific action level risk based concentration or criteria used for comparison are summarized in Table 1C, *Occurrence, Distribution and Selection of COCs – Surface Water Sediment.* In addition, the following table summarizes the selected COCs in surface water sediment by area of concern:

COCs in Sediment	Painte	er's Run
(mg/Kg)	Upstream	Downstream
Copper	< AL	40.4
Iron	31900	38300
Manganese	2380	6500
Nickel	44.7	73.8
Selenium	5.5	6.1
Silver	< AL	1.2
Zinc	125	141

<AL, detected at a concentration less than the action level.

Based on in-situ analytical data generated by the XRF field screening; antimony, cadmium, cobalt, copper, iron, manganese, and nickel were detected at concentrations greater than their respective action levels in surface soil using the XRF. The occurrence, distribution and selection of COPCs, selection of COCs, and the specific action level risk based concentration or criteria used for comparison are summarized in Table 3A, Occurrence, Distribution and Selection of COCs – XRF Field Screening Data-Sediment. Light elements and minerals such as aluminum, beryllium, calcium, magnesium, potassium, sodium, thallium, and vanadium are not

measured by the XRF.

The following table summarizes the selected COCs in sediment based on the XRF field screening data:

COCs in Sediment	Painter's Run		
(mg/Kg) according to XRF Data	Upstream	Downstream	
Antimony	< AL	253	
Cadmium	< AL	54	
Cobalt	395	447	
Copper	< AL	34	
Iron	27912	24561	
Manganese	2750	2915	
Nickel	< AL	74	

<AL, detected at a concentration less than the action level.

Deviations in XRF concentrations as compared to those generated by the laboratory could be due to sample interferences or sample non-homogeneity.

6.4 Surface Water Sample Results

Aluminum, barium, iron, manganese, and mercury were detected at concentrations greater than their respective action levels in the surface water of Painter's Run. The occurrence, distribution and selection of COPCs, selection of COCs, and the specific action level risk based concentration or criteria used for comparison are summarized in **Table 1D**, *Occurrence, Distribution and Selection of COCs – Surface Water*. In addition, the following table summarizes the selected COCs in surface water by area of concern:

<u>8</u>.

COCs in Surface	Painter's Run		
Water (ug/L)	Upstream	Downstream	
Aluminum	281	504	
Barium	34.3	34.6	
Iron	441	643	
Manganese	317	314	
Mercury	0.08	0.2	

<AL, detected at a concentration less than the action level.

6.5 Groundwater Results

Aluminum was detected at concentrations greater than their respective action levels in the groundwater seeps. The occurrence, distribution and selection of COPCs, selection of COCs, and the specific action level risk based concentration or criteria used for comparison are summarized in **Table 1E**, *Occurrence*, *Distribution and Selection of COCs – Groundwater*. In addition, the following table summarizes the selected COCs in groundwater by area of concern:

COCs in	Area of Concern	
Groundwater (ug/L)	Background On-Site	
Aluminum	198	130

<AL, detected at a concentration less than the action level.

Aluminum is an inorganic regulated according to USEPA National Secondary Drinking Water Regulations, which are "non-enforceable Federal guidelines regarding cosmetic effects (such as tooth or skin discoloration) or aesthetic effects (such as taste, odor, or color)." Therefore, even though aluminum exceeded the action level concentrations, it is non-enforceable and would not appear to pose an actual human health risk.

6.6 Verification of the Conceptual Site Model

Human health potentially complete exposure pathways were identified for incidental ingestion, dermal contact, and inhalations of particulates associated with COCs in soil by resident individuals, trespassers, and/or future construction workers. The human health groundwater and indoor air exposure pathways are incomplete due to the lack of COCs detected in the groundwater.

Based on the Site's proximity to surface water bodies, human health potentially complete exposure pathways may exist for incidental ingestion, dermal contact, and fish consumption with surface water contaminants by recreational visitors and/or anglers via a surface runoff and/or groundwater to surface water migration pathway.

A potentially complete ecological exposure pathway was identified for terrestrial and/or semi-aquatic life potentially exposed to site-related contaminants in soil as well as COCs migrating from surface runoff and groundwater to surface water pathways. A potentially complete ecological exposure pathway was identified for aquatic life potentially exposed to site-related contaminants in surface water.

A visual representation of each conceptual site model is presented as Figure 5, *Human Health Conceptual Site Model* and as Figure 6, *Ecological Conceptual Site Model*.

7.0 HAZARD RANKING SYSTEM SCORE

TRIAD developed a preliminary Hazard Ranking System (HRS) site score following USEPA guidance documents. The calculated preliminary HRS site score is **15.02**. The HRS model output is included in Appendix 4, 2007 HRS Site Score Package.

7.1 Observed Release

Substances that meet the criteria for an "observed release," according to its respective media and location were entered into the USEPA HRS QuickScore version 2.3 computer model.

An HRS observed release is established when a sample concentration is three times or greater than that of the background concentration. In cases of the background concentration being non-detect or not measured, the concentration of the substance must be greater than the contract required detection limit (CRDL) to qualify as an observed release. The COPCs which met the criteria for a HRS observed release are presented in **Tables 2A through 2E** as well as summarized in following HRS pathway sections.

It is important to note the QuickScore computer model does not account for the concentration of the substance, only whether or not it is observed. Therefore, substances detected at de minimis concentrations will carry the same calculated weight as if they were detected above applicable action level concentrations. This may result in an overestimation of actual risk.

7.2 Source of Contamination

The source of contamination assigned to the Brooke County Glass Dump CERCLIS HRS site score is a pile of solid hazardous waste from historical disposal activities of glass cullet.

7.3 Hazardous Waste Quantity (HWQ)

Hazardous waste quantities (HWQ) at the Site were estimated based on the volume of the glass cullet. The total volume was estimated to be 62,500 cubic feet based on an area of 125 feet wide by 500 feet long and an average depth of one foot. This calculates to be 2,315 cubic yards.

Based on this information, the HWQ for the migration pathways (groundwater, surface water overland flow, and surface water to groundwater) was determined to be 926. The soil pathway HWQ was determined to be 1,838, resulting in a total HWQ of 2,764.

7.4 Pathway Scores

The overall HRS site score is calculated using the USEPA QuickScore computer model which evaluates four individual potential contaminant migration pathways. The individual migration pathway scores at the Site are as follows:

Groundwater migration pathway score: (23.01) Surface water migration pathway score: (3.92) Soil exposure pathway score (uncapped): (19.21) Air migration pathway score: (not evaluated)

Based on these four pathway scores, the QuickScore computer model calculated an overall HRS site score of 15.02. TRIAD prepared the model to reflect current site conditions and the laboratory analytical data obtained during the 2007 SIR field sampling investigation. The QuickScore model indicates the groundwater migration and soil exposure pathway is the critical pathway of concern at the Site. Each pathway score is discussed in the following sections.

7.4.1 Groundwater Migration Pathway

The groundwater migration pathway evaluates threats resulting from releases

or potential releases of hazardous substances to aquifers. A groundwater migration score is calculated for each aquifer that underlies sources at the Site. The highest groundwater migration score then becomes the assigned score for the groundwater migration pathway. In the case of the Brooke County Glass Dump Site, only one aquifer was observed.

The groundwater migration pathway score for the Site is 23.01 and is based only on the potential of contamination to impact the 4,447 groundwater users within the TDL of the Site. A complete groundwater exposure pathway is unlikely as there were no observed releases to groundwater based on the March 2007 SIR field sampling activities and the aquifer discontinuity of Painter's Run.

The occurrence, distribution and selection of HRS observed releases are summarized in Table 2E, Occurrence, Distribution and Selection of HRS Observed Releases – Groundwater.

The groundwater exposure pathway can be summarized in the following table:

Exposure	HRS Observed	Targets?	Pathway
Pathway	Releases?		Complete?
Groundwater	No	Yes (City of Wellsburg public water supply wells)	No (aquifer discontinuity of Painter's Run and no COCs)

7.4.2 Surface Water Migration Pathway

The surface water migration pathway is a function of two individual migration components:

- Surface water overland/flood migration component
- Groundwater to surface water migration component

Both of these migration components are scored independently by the QuickScore computer model. The higher of either score then becomes the assigned score for the surface water migration pathway. These two migration components themselves are a function of three individual target threats:

- Drinking water target threat
- Human food chain target threat
- Environmental target threat

The target threats are also scored independently. The sum of the three individual target threat scores then becomes the score for the migration component. The surface water overland/flood migration component and target threat scores are summarized as follows:

Surface water overland/flood migration component: (1.98)

- Drinking water target threat: (1.01)
- Human food chain target threat: (0.09)
- Environmental target threat: (0.88)

The groundwater to surface water migration component and target threat scores are summarized as follows:

Groundwater to surface water migration component: (0.66)

- Drinking water target threat: (0.10)
- Human food chain target threat: (0.02)
- Environmental target threat: (0.54)

There were no observed releases to the surface water of Painter's Run based on the March 2007 SIR field sampling activities. In addition, there were no observed releases to the sediment of Painter's Run based on the March 2007 SIR field sampling activities. The occurrence, distribution and selection of HRS observed releases are summarized in **Table 2C**, *Occurrence*, *Distribution and Selection of HRS Observed Releases – Sediment* and **Table 2D**, *Occurrence*, *Distribution and Selection of HRS Observed Releases – Surface Water*.

The surface water exposure pathway can be summarized in the following table:

Exposure	HRS Observed	Targets?	Pathway
Pathway	Releases?		Complete?
Surface Water	No	Yes (City of Wheeling public drinking water intake)	No (no observed releases)

7.4.3 Soil Exposure Pathway

The soil exposure pathway is a function of two direct exposure threats:

- Resident population threat
- Nearby population threat

These two direct exposure components are based on three factor categories:

- Likelihood of Exposure
- Waste Characteristics
- Targets

The sum of the two direct exposure threat scores then become a factor in the score for the soil exposure pathway. The direct exposure threat scores are summarized as follows:

- Resident population threat: (1,584,000)
- Nearby population threat: (1,152)

The occurrence, distribution and selection of HRS observed releases are

summarized in Table 2A, Occurrence, Distribution and Selection of HRS Observed Releases – Surface Soil (<2 feet bgs) Residential Exposure and Table 2B, Occurrence, Distribution and Selection of HRS Observed Releases – Surface Soil (<2 feet bgs) Non-Residential Exposure. The following table summarizes the March 2007 HRS observed releases in surface soil by area of concern:

Observed Releases in Soil (mg/Kg)	Adjacent Residence	Unpaved Access Road	Cullet Pile
Antimony	< 3X BG	< 3X BG	87.6
Arsenic	< 3X BG	47.1	1010
Barium	< 3X BG	< 3X BG	1150
Beryllium	< 3X BG	3.3	< 3X BG
Cadmium	< 3X BG	54.1	8310
Chromium	< 3X BG	< 3X BG	130
Copper	237	95.5	289
Iron	25700	26800	192000
Lead	< 3X BG	< 3X BG	3710
Magnesium	< 3X BG	11700	< 3X BG
Mercury	< 3X BG	< 3X BG	0.79
Selenium	< 3X BG	42.3	569
Silver	< 3X BG	< 3X BG	3.2
Thallium	< 3X BG	< 3X BG	9.3
Zinc	< 3X BG	< 3X BG	9240

<3X BG, detected at a concentration less than 3 times the site specific background concentration.

Analytes and compounds that are not considered a risk to human health or the environment (no RBC or MDL) were not included in the above table. These included aluminum, calcium, cobalt, and sodium. Analytes and compounds that result in both COC and HRS observed releases in the soil exposure pathway are considered Level 1 concentrations for HRS scoring purposes. The following analytes are Level 1 concentrations in soil at the Site:

Level 1 Concentrations in Soil (mg/Kg)	Adjacent Residence	Unpaved Access Road	Cullet Pile
Arsenic	< AL	47.1	1010
Cadmium	< AL	54.1	8310
Iron	25700	26800	< AL
Lead	< AL	< AL	3710
Mercury	< AL	< AL	0.79

<AL, detected at a concentration less than the action level.

Those concentrations that are HRS observed releases but did not exceed the action level, and are therefore not COCs, are considered Level II concentrations for HRS scoring purposes.

Due to observed releases of Level I concentrations in the adjacent resident's surface soil as well as the unpaved access road with evidence of direct exposure to resident individuals, the resident population threat is driving the soil exposure site score.

As discussed previously, the soil exposure pathway score is 19.21. If the source of the waste (glass cullet pile), the unpaved access road, and the observed releases to the adjacent resident's property were to be removed or encapsulated, the HRS site score would be reduced to 3.15. If the resident individuals were removed from the observed releases of contaminants, the site score would also be reduced to 3.15. A fence restricting access to the

Site would not reduce the site score due to the direct exposure of the resident individuals and their close proximity (<200 feet) to the source of the contamination.

The soil exposure pathway can be summarized in the following table:

Exposure	HRS Observed	Targets?	Pathway
Pathway	Releases?		Complete?
Soil	Yes	Yes	Yes

7.4.4 Air Exposure Pathway

The air exposure pathway was not evaluated.

7.5 Historical HRS

Based on the review of the WVDEP project files, an historical HRS site score has not been calculated for the Brooke County Glass Dump Site.

8.0 SUMMARY AND RECOMMENDATIONS

The Brooke County Glass Dump CERCLIS Site is located in Brooke County, West Virginia approximately 1.5 miles east of Wellsburg, West Virginia. The Site property is 5.42 acres and was used by the Brooke County Glass Company for cullet (waste glass) disposal from 1988 to 1991. The estimated volume of glass cullet is 62,500 cubic feet. Access to the Site is unrestricted. A family of four, two adults and two children live in a residence approximately 150 feet west of the Site. There is evidence of the children playing in the surface soil near the Site. Cullet is also visible along the unpaved access road to the Site as well as in the surface soil of the residential yard. Historical site investigations have determined the cullet within the pile to be hazardous waste based on TCLP arsenic, cadmium, lead, and selenium concentrations. There is currently no regulatory oversight at the property. The USEPA and WVDEP, OER determined a SIR was warranted to assess potential risk associated with the Site.

SIR field sampling activities were conducted in March 2007. Surface soil, groundwater, surface water, and sediment were collected and analyzed for TAL metals according to an approved *Sampling and Analysis Plan*. Elevated concentrations of metals were detected in the surface soil at the residence, along the unpaved site access road and within the cullet pile. Groundwater, surface water, and sediment have not been impacted.

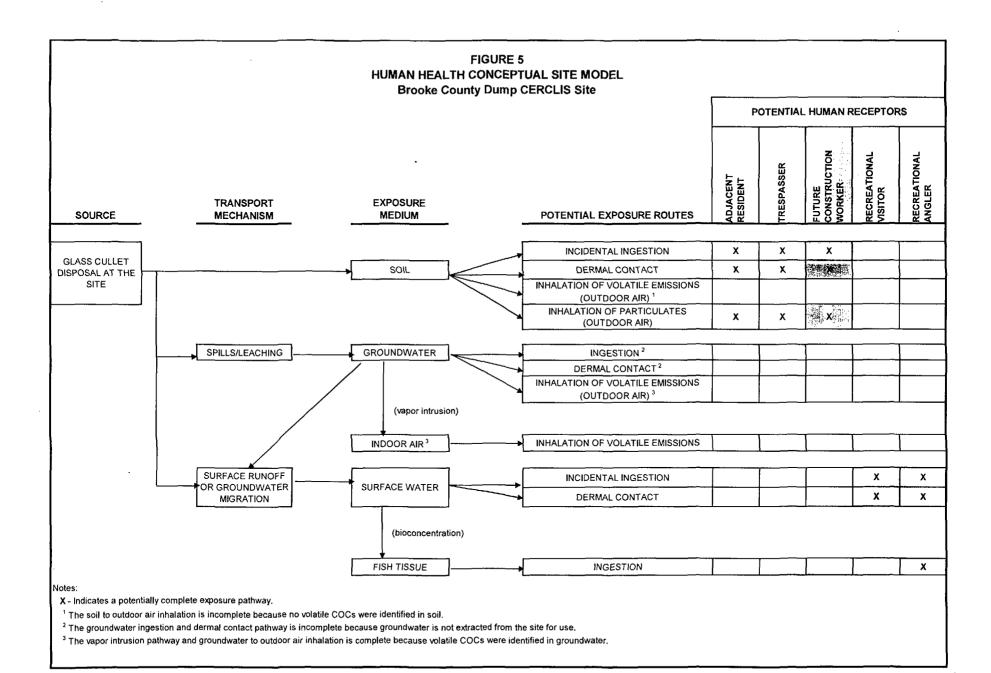
A preliminary HRS site score of 15.02 was calculated. Any HRS site score above 28.5 warrants further CERCLA action and potential recommendation to the Superfund National Priorities List (NPL). The HRS site score of 15.02 is due to the observed releases of Level I concentrations in the adjacent resident's surface soil as well as the unpaved access road. The resident population threat and potential impact to groundwater users is driving the HRS site score.

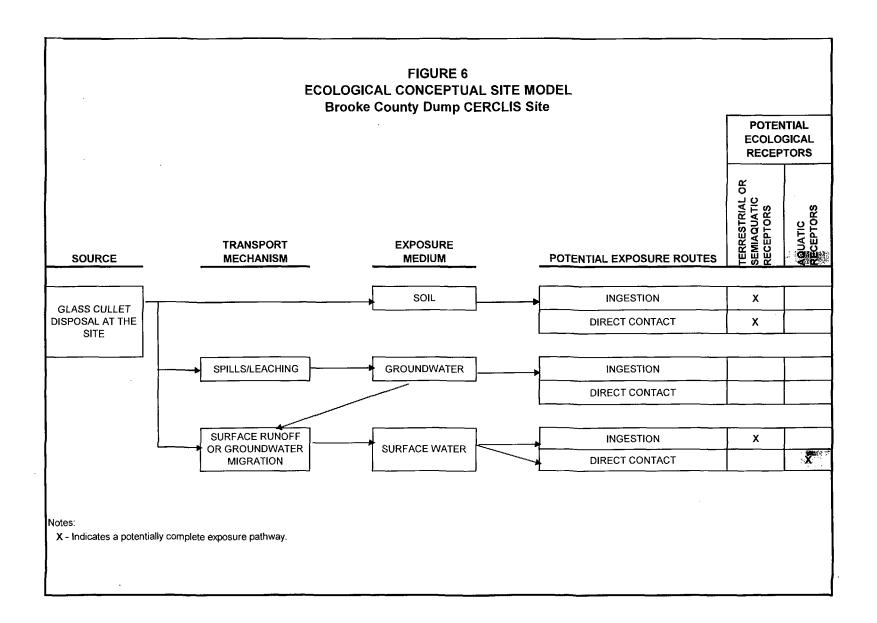
Based on these SIR activities, TRIAD concludes the following:

Contamination to site soils from historical disposal activities exists.

- The resident individuals are being exposed to Level 1 concentrations of arsenic, cadmium, and iron.
- Trespassers on the Site are being exposed to Level 1 concentrations of arsenic, cadmium, lead, and mercury.
- The cullet qualifies as hazardous waste based on historical analytical concentrations.
- Sample data demonstrate the cullet and associated soils are nonhomogeneous. There is little confidence in the precision of the analytical results based on limited grab sampling.
- Groundwater, surface water, and sediment are not impacted by the cullet.
- The Brooke County Glass Dump does not qualify for the NPL.

Based on these SIR activities, TRIAD recommends the following for consideration:


- A human health and ecological risk assessment be performed in order to determine what removal activities would be adequate at the Site.
- The Brooke County Glass Site be turned over to USEPA Region 3 Removal Program for regulatory oversight and remedial action.
- Extent of contamination sampling be performed according to protocol established in *Environmental Investigations Standard Operating Procedures* and Quality Assurance Manual - EISOPQAM (USEPA, 2001) using precision data generated during the 2007 SIR.
- Land use of the Site property be deed restricted to non-residential use.


,÷

FIGURES

γ**.**

TABLES

						Table	Surface S Brooke	arrence, Distr Sail (<2 feet b County Glas arg, Brooke	gs) Resider s Dump Cl	ntial Exposu ERCLIS Site	re					
				Conce	ntration (n	ig/Kg)			Freq	uency	Concen		Action Level		Background	HRS
COPC	CRÐI.	881	882	883	884	885	SS6	SS20 (BG)	Detects	Samples	Min (mg/kg)	Max (mg/kg)	Concentration (mg/Kg)	COC ?	Concentration (mg/Kg)	Observed Release?
								М	etals							
Aluminum	20	8060	6290	8050	27600	10800	20100	6950	7	7	6290	27600	NA	NO	6950	
Antimony	6	1.4	ND	ND	ND	ND	3.3	ND	2	7	ND	3.3	31	NO	ND	NO
Arsenic	1	9.7	5.5	7.8	7.7	7.7	47.1	8.7	7	7	5,5	47.1	13	YES	8.7	YES
Barium	20	104	110	90	278	112	257	103	7	7	90	278	5,500	NO	103	NO
Beryllium	0.5	1.1	L	0,9	3.3	1.2	2.2	1	7	7	0.9	3,3	160	NO	1	YES
Cadmium	0.5	2.3	1.1	1,3	14.2	7.6	54.1	1.4	7	7	1.1	54.1	39	YES	1.4	YES
Calcium	500	17400	50600	5780	90200	29200	82400	6890	7	7	5780	90200	NA ²	NO	6890	YES
Chromium	1	20.4	24.9	16,2	11.9	15.5	38	14.3	7	7	11.9	38	230	NO	14.3	NO
Cobalt	5	7.6	9.1	12.9	3.7	8.7	7.9	16.8	7	7	3.7	16.8	NA	NO	16.8	NO
Copper	2,5	27	237	33.9	17.1	95.5	71.5	29.9	. 7	7	17.1	237	3,100	NO	29.9	YES
Iron	10	19500	21800	25700	8640	20600	26800	23700	7	7	8640	26800	23,000	YES	23700	NO
Lead	1	58.6	30.5	43.7	39	59.6	48.1	42.5	7	7	30.5	59.6	400	NO	42.5	NO
Magnesium	500	3700	4510	2290	11700	3970	6350	1700	7	7	1700	11700	NA ²	NÔ	1700	19 BUSH
Manganese	1.5	949	1720	712	2420	1310	4050	1410	7	7	712	4050	1,600	YES	1410	NO
Mercury	0.1	ND	0.18	0.17	ND	0.12	0.16	0.13	5	7	ND	0.18	0.44	NO	0.13	NO
Nickel	4	16.3	15.9	23.5	6.8	19.4	18	20.8	7	7	6.8	23.5	1,600	NO	20.8	NO
Potassium	500	1260	1060	2310	2410	1450	2130	1710	7	7	1060	2410	NA ²	NO	1710	NO
Selenium	3.5	1.8	ND	1.6	2.8	3.4	42.3	1.7	6	7	ND	42.3	390	NO	1.7	YES
Silver	1	0.69	ND	0.69	ND	ND	ND	0.62	3	7	ND	0.69	390	NO	0.62	NO
Sodium	500	602	407	605	952	542	1320	417	7	7	407	1320	NA	² NO	417	YES
Thallium	2.5	3.6	1.2	2	ND	1.2	1.3	1.5	6	7	ND	3.6	5.5	NO	1.5	NO
Vanadium	5	19.3	19.8	17.1	14.5	20	38.2	15.3	7	7	14.5	38.2	78	NO	15.3	NO
Zinc	6	167	71.6	170	101	118	350	117	7	7	71.6	350	23,000	NO	117	NO

+

ND Not detected at a concentration greater than the Contract Required Detection Limit (CRDL).

NA Not Applicable or available.

CRDL Contract Required Detection Limit

1 USEPA Region III Industrial Soil Risk Based Concentration, April 2006.

2 Essential Nutrient. Eliminated from consideration as COC.

3 Memorandum: OSWER Directive: Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. United States Environmental Protection Agency, August 1994. Office of Solid 1

4 Published natural background concentration for arsenic in soil in West Virginia ranges from 5.9 to 13.0 mg/Kg.

5 Published natural background concentration for mercury in soil in West Virginia ranges from 0.02 to 0.44 mg/Kg

B Result estimated due to laboratory contamination.

R Result rejected according to data validation guidelines.

BG Background concentration from site specific location SS20.

Page 1 of 5

					,	<u></u>					urface Soil Brooke	(<2 feet bg: County Gla	ribution and () Non-Resid ss Dump Cl County, W	lential Exp RCLIS Sit	osure e									
								Conc	ntration (n	ig Kg)							Ercq	uency	Concen	tration	Action Level		Background	HRS.
COPC	CRDL	557	\$\$\$	\$59	\$\$10	5511	\$812	\$\$13	5514	5515	5516	SS17	8818	5819	8520 (BG)	8821 (FD of \$\$17)	Detects	Samples	Man	Max		COC 2	Concentration	Observed
													fctals			01/881 ()			(mg kg)	(mg kg)	(mg/Kg)		(mg/Kg)	Release?
Aluminum	20	1020	2380	20600	1810	2010	4410	3520	2700	2230	4090	7030	5610	1440	6950	11000	15	15	1020	20600		NO	6950	NO
Antimony		3.4	87.6	14.6	5.2	17.3	15.1	19.1	12.9	12.2	18	1.7	ND	5.6	ND	ND	13	15	1020 ND	20000	409 1	NO	ND	YDS TO
Arsenic	1	92.9	330	14.6	104	103	365	229	44.2	366	181	1.7	42	34.8	8.7	9	15	15	87	1010	13 4	YES	8.7	YES
Barium	20	24.2	611	96,3	359	102	60.7	190	1150	755	276	273	104	78.2	103	113	15	15	24 2	1150	204000 '	NO	103	YES
Beryllium	m 0.5 0.091 0.047 0.076 0.07 0.16 0.4 ND 1.6 ND ND 0.69 0.68 ND 1 1.2 11 15 ND 1.6 2040 NO 1 NO																							
Cadmium	0.5 19.2 1010 4G40 66.4 180 302 1350 37.7 8310 154 41 2.3 62.2 1.4 12.7 15 15 1.4 8310 511 YES 1.4 171 425 18																							
Calcium	500	2950	9910	4220	4270	12500	11200	14800	19400	17500	14200	17500	52700	3890	6890	27000	15	15	2950	52700	NA 2	NO	6890	VES 1
Chromium	1	12.7	59,7	iu.	43.1	18.5	40.6	45 7	130	26.7	58.9	18.6	11.6	7.4	14.3	14.8	15	15	7.4	130	1530000	NO	14.3	
Cobalt	5	1.1	9.7	2.8	4,4	3,6	5.9	7.1	12.4	48	51,2	11.9	95	2	16.8	10.6	15	15	1.1	51.2	NA I	NO	16.8	III S
Copper	2 5	12	289	142	53.4	68.9	160	152	105	72,9	97,7	51.5	23.9	25	29.9	32.5	15	15	12	289	40900	NO	29.9	HI NX
Iron	10	3190	192000	9350	35400	21900	25400	41500	109000	8780	27800	24300	19400	4700	23700	24700	15	15	3190	192000	307000 '	NO	23700	III NX
Lead	1	115	90	351	3710	138	361	343	3370	763	343	431	38.4	124	42.5	25.1	15	15	25.1	3710	400 3	YES	42.5	YES
Magnesium	500	609	782	480	524	1370	3200	2730	1640	2390	3090	2810	4460	709	1700	4130	15	15	480	4460	NA ²	NO	1700	NO
Manganese	1.5	305	693	106	298	425	311	595	1590	401	445	854	1040	176	1410	1250	15	15	106	1590	20400	NO	1410	NO
Mercury	0.1	0.71	0.16	0.23	0.4	ND	0.38	0,39	ND	ND	0,79	ND	0.18	0.17	0,13	0.1	11	15	ND	0.79	0 44 5	YES	0.13	YES
Nickel	4	3	27.7	5.6	14.8	13.5	31.8	31.7	28.2	20.8	46.4	24.5	169	38	20.8	23.5	15	15	3	46.4	20400	NO	20 8	NO
Potassium	500	194	109	4390	306	562	536	376	677	541	625	1620	1330	274	1710	1560	15	15	109	4390	. NA ²	NO	1710	NO
Sclenium	3.5	22	333	225	24.6	96.6	284	271	45.3	569	186	19.6	3.3	35.7	17	5.1	15	15	1.7	569	5110	NO	1.7	YES
Silver	1	ND	3.2	ND	15	09	1	1.5	2.5	0 84	1.1	0.78	0,48	ND	0.62	0 33	12	15	ND	3.2	\$110	NO	0 62	YES
Sođium	500	385	6910	28200	13600	1260	5520	7270	19000	2690	3640	1600	441	966	417	552	15	15	385	28200	NA ²	NO	417	YES
Thallium	2.5	ND	9.3	ND	14	4.9	1.7	3	5,3	6,5	5.9	36	ND	ND	15	1.4	11	15	ND	9.3	71.5	NO	1.5	· YES
Vanadium	5	5.3	2.3	12.5	46	54	9.4	7.5	7.8	5,7	7.9	16.9	13.1	29	15.3	21.8	15	15	2 3	21.8	1020	NO	153	NO
Zinc	6	122	3140	6000	6370	544	2700	3720	9240	1290	1760	723	134	446	117	128	15	15	117	9240	307000 1	NO	117	YES

ND Not detected at a concentration greater than the Contract Required Detection Limit (CRDL).

NA Not Applicable or available.

CRDL Contract Required Detection Limit

1 USEPA Region III Industrial Soil Risk Based Concentration, April 2006.

2 Essential Nutrient Eliminated from consideration as COC

3 Memorandum: OSWER Directive Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities United States Environmental Protection Agency, August 1994 Office of Solid Waste and Emergency Response Directive 9355.4-12

Published natural background concentration for arsenic in soil in West Virginia ranges from 5.9 to 13.0 mg/Kg.
 S Published natural background concentration for mercury in soil in West Virginia ranges from 0.02 to 0.44 mg/Kg.

B Result estimated due to laboratory contamination

R Result rejected according to data validation guidelines

BG Background concentration from site specific location SS20.

Page 2 of 5

				1		Sedime ce County (nt (Painter': Flass Dump		Site				
COPC	CRDL	SED1 (BG)	Concentrat SED2	ion (mg/Kg) SED3	SED4 (FD	Freq Detects	uency Samples	Concen Min	tration Max	Action Level Concentration	COC ?	Background Concentration	HRS Observed
					of SED2)			(mg/kg)	(mg/kg)	(mg/Kg)		(mg/Kg)	Release?
	20	7(10	0500	20.40	7050	4	Metals 4	70.40	0.500		NO	7(10	NO
Aluminum	20	7610	8500	7040	7950 ND	2	4	7040	8500	NA	NO NO	7610	NO
Antimony A reanie	6	1.5 10.9	ND 11.9	1.7 7.2	11.3	4	4	ND 7.2	1.7 11.9	<u></u>	NO	1.5	NO NO
Arsenic Barium	20	78.3	11.9	1.2	103	4	4	78.3	11.9	NA	NO	78.3	NO
Beryllium	0.5	18.5	1.4	190	1,1	4	4	70.5	190	NA	NO	1	NO
Cadmium	0.5	0.3	0.66	0.57	0.48	4	4	0.3	0.66	0.99 2	NO	0.3	NO
Calcium	500	7890	10400	3910	7860	4	4	3910	10400	NA	NO	7890	NO
Chromium	1	17.5	19.6	13	17.1	4	4	13	19.6	43.4 2	NO	17.5	NO
Cobalt	5	26.8	41.9	23.2	32.5	4	4	23.2	41.9	50 2	NO	26,8	NO
Copper	2.5	26.8	40.4	23,8	31	4	4	23.8	40.4	31.6 2	YES	26.8	NO
Iron	10	31900	30200	38300	30700	4	4	30200	38300	20000 2	YES	· 31900	NO
Lead	1	28.2	31.2	19.1	26.6	4	4	19.1	31.2	35.8 2	NO	28.2	NO
Magnesium	500	2990	2990	2510	2940	4	4	2510	2990	NA	NO	2990	NO
Manganese	1.5	2380	6500	3270	3560	4	4	2380	6500	460 2	YES	2380	NO
Mercury	0.1	ND	ND	ND	ND	0	4	ND	ND	0.44 4	NO	0.094	NO
Nickel	4	44.7	73.8	39,6	54.3	4	4	39.6	73.8	21 1	YES	44.7	NO
Potassium	500	1070	1140	993	1140	4	4	993	1140	NA	NO	. 1070	NO
Selenium	3.5	5.5	6.1	5.1	5.2	4	4	5.1	6.1	2 2	YES	5.5	NO
Silver	1	0.92	0.98	1.2	1	4	4	0.92	1.2	1 ²	YES	0.92	NO
Sodium	500	505	583	433	480	4	4	433	583	NA	NO	505	NO
Thallium	2.5	2.8	2	2.2	2.4	4	4	2	2.8	NA	NO	2.8	NO
Vanadium	5	18.2	19.1	17.6	17.9	4	4	17.6	19.1	NA	NO	18.2	NO
Zinc	6	125	141	87 2	115	4	4	87.2	141	121 ²	YES	125	NO

ND Not detected at a concentration greater than the Contract Required Detection Limit (CRDL).

NA Not Applicable or available.

CRDL Contract Required Detection Limit

1 USEPA ECO Update, Ecotox Thresholds, January 1996, supplement to USEPA Risk Assessment Guidance for Superfund (RAGS), Volume II, Environmental Evaluation Manual.

2 USEPA Region 3 Risk Assessment Freshwater Sediment Screening Benchmarks.

3 Published natural background concentration for arsenic in soil in West Virginia ranges from 5.9 to 13.0 mg/Kg.

4 Published natural background concentration for mercury in soil in West Virginia ranges from 0.02 to 0.44 mg/Kg.

B Result estimated due to laboratory contamination.

R Result rejected according to data validation guidelines.

BG Background concentration from site specific location SED1, upstream Painter's Run sample.

					Bro	Surface ooke Count	Water (Pai y Glass Dun	on and Select nter's Run) ap CERCLI ty, West Vir	S Site]'s			
СОРС	CRDL	SWI (BG)	Concentra SW2	tion (ug/L) SW3	SW4 (FD of SW2)	Freq Detects	uency Samples	Concen Min (ug/L)	tration Max (ug/L)	Action Level Concentration (ug/L)	COC ?	Background Concentration (ug/L)	HRS Observed Release?
_							Metals	(ug/1.)	(ug/1.)	(··· <u>·</u> ····		(02/17)	INCICASY.
Aluminum	200	281	504	264	269	4	4	264	504	87 2	YES	281	NO
Antimony	60	ND	ND	ND	ND	0	4	ND	ND	5.6 1	NO	ND	NO
Arsenic	10	ND	ND	ND	ND	0	4	ND	ND	0.018 2	NO	ND	NO
Barium	200	34.3	34.2	34.2	34.6	4	4	34.2	34.6	4 ²	YES	34.3	NO
Beryllium	5	ND	ND	ND	ND	0	4	ND	ND	0.66 2	NO	ND .	NO
Cadmium	5	ND	ND	ND	ND	0	4	ND	ND	0.25	NO	ND	NO
Calcium	5000	93200	90500	92600	92400	4	4	90500	93200	116000 ²	NO	93200	NO
Chromium	10	ND	ND	ND	ND	0	4	ND	ND	74 1	NO	ND	NO
Cobalt	50	ND	ND	ND	ND	0	4	ND	ND	23 2	NO	ND	NO
Copper	25	ND	ND	ND	ND	0	4	ND	ND	9 1	NO	ND	NO
Iron	100	441	643	390	385	4	4	385	643	300 2	YES	. 441	NO
Lead	10	ND	ND	ND	ND	0	4	ND	ND	2.5	NO	ND	NO
Magnesium	5000	. 34900	33900	34600	34700	4	4	33900	34900	82000 ²	NO	34900	NO
Manganese	15	317	312	314	310	4	4	310	317	50 1	YES	317	NO
Mercury	0.2	0.08	0.2	0.07	0.2	4	4	0.07	0.2	0.026 2	YES	0.08	NO
Nickel	40	ND	ND	ND	ND	0	4	ND	ND	52	NO	ND	NO
Potassium	5000	2800	2720	2670	2670	4	4	2670	2800	53000 ²	NO	2800	NO
Selenium	35	ND	ND	ND	ND	0	4	ND	ND	1 2	NO	ND	NO
Silver	10	ND	ND	ND	ND	0	4	ND	ND	3.2 2	NO	ND	NO
Sodium	5000	16200	15400	15600	15700	4	4	15400	16200	680000 ²	NO	16200	NO
Thallium	25	ND	ND	ND	ND	0	4	ND	ND	0.8 2	NO	ND	NO
Vanadium	50	ND	ND	ND	ND	0	4	ND	ND	20 2	NO	ND	NO
Zinc	60	6	5.4	4.3	4.6	. 4	4	4.3	6	120	NO	6	NO

ND Not detected at a concentration greater than the Contract Required Detection Limit (CRDL).

NA Not Applicable or available.

CRDL Contract Required Detection Limit

1 USEPA National Recommended Water Quality Criteria (NRWQC), freshwater CCC (chronic) concentrations or Human Health for the consumption of water + organisms, which November 2002.

2 USEPA Region 3 BTAG Risk Assessment Freshwater Screening Benchmarks, July 2006.

B Result estimated due to laboratory contamination.

R Result rejected according to data validation guidelines.

BG Background concentration from site specific location SW1, upstream Painter's Run sample.

				I adie	Brooke (Grou County Glas	ibution and ndwater s Dump CE County, We	RCLIS Site				
СОРС	CRDL	Conc GW1	GW2	ug/L) GW 3 (BG)	Ereq Detects	uency Samples	Concen Min (ug/L)	tration Max (ug/L)	Action Level Concentration (ug/L)	COC ?	Background Concentration (ug/L)	HRS Observed Release?
						·	etals					
Aluminum	200	130	128	198	3	3	128	198	50 3	YES	198	NO
Antimony	60	ND	ND	ND	0	3	ND	ND	14.6	NO	ND	NO
Arsenic	10	ND	ND	ND	0	3	ND	ND	0.045	NO	ND	NO
Barium	200	29.4	41.5	51.3	3	3	29.4	51.3	7300	NO	51.3	NO
Beryllium	5	ND	ND	ND	0	3	ND	ND	73 1	NO	ND	NO
Cadmium	5	ND	ND	ND	0	3	ND	ND		NO	ND	NO
Calcium	5000	74200	85900	89400	3	3	74200	89400	NA	NO	89400	NO
Chromium	10	ND	ND	1.3	1	3	ND	1.3	55000 1	NO	1.3	NO
Cobalt	50	ND	ND	ND	0	3	ND	ND	NA	NO	ND	NO
Copper	25	ND	ND	ND	0	3	ND	ND	1460 1	NO	ND	NO
Iron	100	59.1	47.8	142	3	3	47.8	142	<u> </u>	NO	142	NO
Lead	10	ND	ND	ND	0	3	ND	ND	15 2	NO	ND	NO
Magnesium	5000	16500	17400	28900	3	3	16500	28900	NA	NO	28900	NO
Manganese	15	3.8	4.2	3.5	3	3	3.5	4.2	730	NO	3.5	NO
Mercury	0.2	0.08	0.09	0.09	3	3	0.08	0.09	2 2	NO	0.09	NO
Nickel	40	ND	ND	ND	0	3	ND	<u>ND</u>	730	NO	ND	NO
Potassium	5000	1610	1510	5100	3	3	1510	5100	NA	NO	5100	NO
Selenium	35	22.4	15.6	35	3	3	15.6	35	182 1	NO	35	NO
Silver	10	ND	ND	ND	0	3	ND	ND	182 1	NO	ND	NO
Sodium	5000	18500	17300	112000	3	3	17300	112000	NA	NO	112000	NO
Thallium	25	ND	ND	ND	0	3	ND	ND	2.55 1	NO	ND	NO
Vanadium	50	ND	ND	1.7	1	3	ND	1.7	36.5	NO	1.7	NO
Zinc	60	ND	ND	לא	0	3	ND	ND	11000	NO	ND	NO

~

ND Not detected at a concentration greater than the Contract Required Detection Limit (CRDL).

NA Not Applicable or available.

CRDL Contract Required Detection Limit

1 USEPA Region III, Tap Water RBCs, April 2006.

2 USEPA National Primary Drinking Water Standards, Winter 2004.

3 USEPA National Secondary Drinking Water Regulations, Winter 2004.

B Result estimated due to laboratory contamination.

R Result rejected according to data validation guidelines.

					Та	ble 2A. Oc	Surface So Brooke (oil (<2 feet l County Gla	and Selectio ogs) Residen ss Dump CI County, W	ntial Expose ERCLIS Sit	e .	eases				
(19) (100) 55 (19)				Conta	ntration (n	íg/Kg)			Freq	deficy		ration	Action Level		Background	HRS
COPC	CRDE	SSI	SS2S.	SS3	SS4	SS5	SS6	SS20 (BG)	Detects	Samples	Min (me/ke)		Concentration (mg/Kg)	C001	Concentration (mg/Kg)	Cobserved Release?
			•	•				N	letals							
Aluminum	20	8060	6290	8050		10800	20100	6950	7	7	6290	27600	NA	^I NO	6950	
Antimony	6	1.4	ND	ND	ND	ND	3.3	ND	2	7	ND	3.3	31	¹ NO	ND	NO
Arsenic	1	9.7	5.5	7.8	7.7	7.7	機關的	8.7	7	7	5.5	47.1	13	4 YES	8.7	
Barium	20	104	110	90	278	112	257	103	7	7	90	278	5,500	' NO	103	NO
Beryllium																YES YES
Cadmium	Imium 0.5 2.3 1.1 1.3 14.2 2.2 1.4 7 7 1.1 54.1 39 1 YES 1.4 YE															YES
Calcium	500	17400		5780	90200	- 		6890	7	7	5780	90200	NA	² NO	6890	
Chromium	1	20.4	24.9	16.2	11.9	15.5	38	14.3	7	7	11.9	38	230	¹ NO	14.3	NO
Cobalt	5	7.6	9.1	12.9	3.7	8.7	7.9	16.8	7	7	3.7	16.8	NA	¹ NO	16.8	NO
Copper	2.5	27	237	33.9	17.1		71.5	29.9	7	7	17.1	237	3,100	¹ NO	29.9	
lron	10	19500	120800	225700	8640	20600	7.7.5.1.1 7.7.5.1.1	2.4.7(1)	7	7	8640	26800	23,000	YES	23700	NO
Lead	1	58.6	30.5	43.7	39	59.6	48.1	42.5	7	7	30.5	59.6	400	¹ NO	42.5	NO
Magnesium	500	3700	4510	2290	11700	3970	6350	1700	7	7	1700	11700	NA	² NO	1700	THYS P
Manganesc	1.5	949	1720	712	2420	1310	4050	1410	7	7	712	4050	1,600	YES	1410	NO
Mercury	0.1	ND	0.18	0.17	ND	0.12	0.16	0.13	5	7	ND	0.18	0.44	⁵ NO	0.13	NO
Nickel	4	16.3	15.9	23.5	6.8	19.4	18	20.8	7	7	6.8	23.5	1,600	' NO	20.8	NO
Potassium	500	1260	1060	2310	2410	1450	2130	1710	7	7	1060	2410	NA	² NO	1710	NO
Selenium	3.5	1.8	ND	1.6	2.8	3.4	2017 - 2017 2017 - 2017 1917 - 2017 - 2017 1917 - 2017 - 2017	1.7	6	7	ND	42.3	390	^I NO	1.7	to conser alla alla anno anno
Silver	. 1	0.69	ND	0.69	ND	ND	ND	0.62	3	7	ND	0.69	390	^I NO	0.62	NO
Sodium	500	602	407	605	952	542	1520	417	7	7	407	1320	NA	² NO	417	
Thallium	2.5	3.6	1.2	2	ND	1.2	1.3	1.5	6	7	ND	3.6	5.5	¹ NO	1.5	NO
Vanadium	5	19.3	19.8	17.1	14.5	20	38.2	15.3	7	7	14.5	38.2	78	¹ NO	15 3	NO
Zinc	6	167	71.6	170	101	118	350	117	7	7	71.6	350	23,000	' NO	117	NO

ND Not detected at a concentration greater than the Contract Required Detection Limit (CRDL).

NA Not Applicable or available.

CRDL Contract Required Detection Limit

1 USEPA Region III Industrial Soil Risk Based Concentration, April 2006.

2 Essential Nutrient. Eliminated from consideration as COC.

3 Memorandum: OSWER Directive: Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. United States Environmental Protection Agency, August 1994. Office of Solid 1

4 Published natural background concentration for arsenic in soil in West Virginia ranges from 5.9 to 13.0 mg/Kg.

5 Published natural background concentration for mercury in soil in West Virginia ranges from 0.02 to 0.44 mg/Kg.

B Result estimated due to laboratory contamination.

R Result rejected according to data validation guidelines.

BG Background concentration from site specific location SS20.

									Ta		urface Soil Brooke (istribution (<2 feet bgs County Glas arg, Brooke) Non-Resid is Dump CE	dential Expe ERCLIS Site	esure e	cleases								
101101											1999 (1997) V	(法法)(注) [1]					16 34 Alter		Cancen				Backgronial	
core	CRDL	SS7	.	889	SSIN	S\$11	SS12	SS13	ssig	58.15	\$\$16.7	184	\$\$18	SS19	SS20 (BG)	of SS17)	D-term		(dig/kg)	(mg/kg)	(mg/Kg)		(COTKO)	Release
		A VA / NO	S. A. S.			£	_						letals	•										
Aluminum	20	1020	2380	20600	1810	2010	4410	3520	2700	2230	4090	7030	5610	1440	6950	11000	15	15	1020	20600	NA 1	NO	6950	NÔ
Antimony	6		87.6		5.2		100 Not 100 Per		12.9	12.24		17	ND	56	ND	ND	12	15	ND	876	409	NO	ND	101 101 101
Arsenic	L.	929.3	23302				100		44.2	366		to,	行用42。数		8.7	9	15	15	8.7	1010	13	YES	8.7	YES
Barium	ium 0.5 0.991 0.047 0.076 0.07 0.076 0.07 0.16 0.4 ND 1.6 ND ND 0.69 0.68 ND 1 1.2 11 15 ND 1.6 2040 ¹ NO 1 NO																							
Beryllium	ium 0.5 0.091 0.047 0.076 0.07 0.16 0.4 ND 1.6 ND ND 0.69 0.68 ND 1 1.2 11 15 ND 1.6 2040 ⁴ NO 1 NO																							
Cadmium																								
Calcium	500	2950	9910	4220	4270	12500	11200	14800	19400	17500	14200	17500	52,700	3890	6890	27000	15	15	2950	527()0	NA 2	NO	6890	
Chromium	1	12 7		11.1		18.5	40.6	动 新统		26.7	58.9	18.6	11.6	7.4	14.3	14.8	15	15	7.4	130	1530000	NO	14.3	NES 18
Cobali	5	1.1	9.7	28	4.4	3.6	5.9	7.1	12.4	4.8	51.Z	11.9	9.5	2	16.8	10.6	15	15	1.1	51.2	NA	NO	16.8	NES III
Copper	2.5	12	200 S		53.4	68.9		2011	l	72 9		51.5	23.9	25	29.9	32.5	15	15	12	289	40900	NO	29.9	YES (
Iron	10	3190			35400	21900	25400	41500	Bet in the last	8780	27800	24300	19400	4700	23700	24700	15	15	3190	192000	307000	NO	23700	LES M
Lead	1	115	90					S. Consideration	1.376%			新新新 新	38.4	124	42.5	25.1	15	15	25.1	3710	400 '	VES	42.5	
Magnesium	500	609	782	480	524	1370	3200	2730	1640	2390	3090	2810	4460	709	1700	4130	15	15	480	4460	NA	NO	1700	NO
Manganese	1.5	305	693	106	298	425	311	595	1590	401	445	854	1040	176	1410	1250	15	15	106	1590	20400	NÖ	1410	NO
Morcury	0,1		0.16	0.23		ND	0,38	0,39	ND		Section 2	ND	0.18	0,17	0.13	0.1	11	15	ND	0.79	0.44	YES	0.13	47. J
Nickel	4	3	277	5.6	14.8	13.5	31.8	31.7	28.2	20.8	46.4	24.5	169	38	20.8	23 5	15	15	3	46.4	20400	NO	20.8	NO
Potassium	500	194	109	4390	306	562	536	376	677	541	625	1620	1330	274	1710	1560	15	15	109	4390	NA 2	NO	1710	NO
Selenium	3.5			<i></i>	624.6	255	3264	710		500		1973	3.3		1.7	5,1	15	15	1.7	.569	5110	NO	1.7	
Silver	1	ND	3.2	ND	15	09	L I	1.5	2.5	0,84	1.1	0.78	0.48	ND	0.62	0.33	12	15	ND		5110	NO	0.62	HA YES
Sodium	500	385	7 520					a in	19000			1000 F	441	966	417	552	15	15	385	28200	NA ¹	NO	417	iii yes
Thallium	2.5	ND		ND	1.4		1.7	3	- S.)	0 .5		3.6	ND	ND	1.5	1.4	11	15	ND	9.3	71.5	NO	15	<u> </u>
Vanadium	5	53	23	12.5	4.6	5.4	9.4	7.5	78	5.7	7.9	16.9	13.1	29	153	218	15	15	23	21.8	1020	NO	15.3	NO
Zinc	6	122	δ.s.	150000	6370		1200187		5.0°	<u>5</u>		723	134	E HAR	117	128	15	15	117	9240	307000	NO	117	

ND Not detected at a concentration greater than the Contract Required Detection Limit (CRDL).

NA Not Applicable or available

CRDL Contract Required Detection Limit

1 USEPA Region III Industrial Soil Risk Based Concentration, April 2006.

2 Essential Nutrient Eliminated from consideration as COC

3 Memorandum: OSWER Directive: Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities United States Environmental Protection Agency, August 1994. Office of Solid Waste and Emergency Response. Directive 9355.4-12.

4 Published natural background concentration for arsenic in soil in West Virginia ranges from 5.9 to 13.0 mg/Kg

5 Published natural background concentration for mercury in soil in West Virginia ranges from 0.02 to 0.44 mg/Kg

B Result estimated due to laboratory contamination

R Result rejected according to data validation guidelines.

BG Background concentration from site specific location SS20.

Page 2 of 5

Table 2C. Occurrence, Distribution and Selection of HRS Observed Releases Sediment (Painter's Run) Brooke County Glass Dump CERCLIS Site Wellsburg, Brooke County, West Virginia

		t i titt	Concentral	on (mg/Kg)		Freq	uency and	Concer	uration 📑	Action Level		Background	TINS
COPC	CRDI.	SEDI (BGa	SED22	SEDS	SED4 (ED		samples	Min	Max	Concentration		Concentration	
					of SED2)	Detects	副的法律法律	(mg/kg)	(mg/kg)	(mgKg)		(mg/Kg)	Release?
				·			Metals	···					,
Aluminum	20	7610	8500	7040	7950	4	4	7040			NO	7610	NO
Antimony	6	1.5	ND	1.7	ND	2	4	ND	1.7	2 4	NO	1.5	NO
Arsenic	1	10.9	11.9	7.2		4	4	7.2	11.9	13 3	NO	10.9	NO
Barium	20	78.3	137	190	103	4	4	78.3	190	NA	NO	78.3	NO
Beryllium	0.5	1	1.4	1.2	1.1	4	4	1	1.4	NA	NO	1	NO
Cadmium	0.5	0.3	0.66	0.57	0.48	4	4	0.3	0.66	0.99 2	NO	0.3	NO
Calcium	500	7890	10400	3910	7860	4	4	3910	10400	NA	NO	7890	NO
Chromium	1	17.5	19.6	13	17.1	4	4	13	19.6	43.4 ²	NO	17.5	NO
Cobalt	5	26.8	41.9	23.2	32.5	4	4	23.2	41.9	50 ²	NO	26.8	NO
Copper	2.5	26.8	40.4	23.8	31	4	4	23.8	40.4	31.6 ²	YES	26.8	NO
Iron	10	31900	30200	38300	30700	4.	4	30200	38300	20000 ²	YES	31900	NO
Lead	1	28.2	31.2	19.1	26.6	4	4	19.1	31.2	35.8 ²	NO	28.2	NO
Magnesium	500	2990	2990	2510	2940	4	4	2510	2990	NA	NO	2990	NO
Manganese	1.5	2380	6500	3270	3560	4	4	2380	6500	460 ²	YES	2380	NO
Mercury	0.1	ND	ND	ND	ND	0	4	ND	ND	0.44 4	NO	0.094	NO
Nickel	4	44.7	73.8	39.6	54.3	4	4	39.6	73.8	21 1	YES	44.7	NO
Potassium	500	1070	1140	993	1140	4	4	993	1140	NA	NO	1070	NO
Selenium	3.5	5.5	6.1	5.1	5.2	4	4	5.1	6.1	2 2	YES	5.5	NO
Silver	1	0.92	0.98	1.2	1	4	4	0.92	1.2	1 ²	YES	0.92	NO
Sodium	500	505	583	433	480	4	4	433	583	NA	NO	505	NO
Thallium	2.5	2.8	2	2.2	2.4	4	4	2	2.8	NA	NO	2.8	NO
Vanadium	5	18.2	19.1	17.6	17.9	4	4	17.6	19.1	NA	NO	18.2	NO
Zinc	6	125	141	87.2	115	4	4	87.2	141	121 2	YES	125	NO

NOTES:

.

:

ND Not detected at a concentration greater than the Contract Required Detection Limit (CRDL).

NA Not Applicable or available.

CRDL Contract Required Detection Limit

1 USEPA ECO Update, Ecotox Thresholds, January 1996, supplement to USEPA Risk Assessment Guidance for Superfund (RAGS), Volume 11, Environmental Evaluation Manual.

2 USEPA Region 3 Risk Assessment Freshwater Sediment Screening Benchmarks.

3 Published natural background concentration for arsenic in soil in West Virginia ranges from 5.9 to 13.0 mg/Kg.

4 Published natural background concentration for mercury in soil in West Virginia ranges from 0.02 to 0.44 mg/Kg.

B Result estimated due to laboratory contamination.

R Result rejected according to data validation guidelines.

BG Background concentration from site specific location SED1, upstream Painter's Run sample.

				Table 2I	Bro Wa	Surface ooke Count ellsburg, Br	ution and Se Water (Pair y Glass Dun rooke Count	nter's Run) 1p CERCLI 1y, West Vir	S Site	ed Releases			
COP6	GRD)	SW1(BG)	Concentra SW2	tion (ug/L) SW3	SW4 (FD ofSW2)		uency Samples	Min		Action Level Concentration (ug/L)	COG?	Concentration	Observed Release?
					ARC II CHARLES		Metals			E.S. 134 (214)		A 10 March 1	THE YELL COMPANY
Aluminum	200	281	504	264	269	4	4	264	504	87 2	YES	281	NO
Antimony	60	ND	ND	ND	ND	0	4	ND	ND	5.6 1	NO	ND	NO
Arsenic	10	ND	ND	ND	ND	0	4	ND	ND	0.018 2	NO	ND	NO
Barium	200	34.3	34.2	34.2	34.6	4	4	34.2	34.6	4 2	YES	34.3	NO
Beryllium	5	ND	ND	ND	ND	0	4	ND	ND	0.66 2	NO	ND	NO
Cadmium	5	ND	ND	ND	ND	0	4	ND	ND	0.25	NO	ND	NO
Calcium	5000	93200	90500	92600	92400	4	4	90500	93200	116000 2	NO	93200	NO
Chromium	10	ND	ND	ND	ND	0	4	ND	ND	74	NO	ND	NO
Cobalt	50	ND	ND	ND	ND	0	4	ND	ND	23 2	NO	ND	NO
Copper	25	ND	ND	ND	ND	0	4	ND	ND	9 1	NO	ND	NO
Iron	· 100	441	643	390	385	4	4	385	643	300 2	YES	441	NO
Lead	10	ND	ND	ND	ND	0	4	ND	ND	2.5	NO	ND	NO
Magnesium	5000	34900	33900	34600	34700	4	4	33900	34900	82000 ²	NO	34900	NO
Manganese	15	317	312	314	310	4	4	310	317	50 1	YES	317	NO
Мегсигу	0.2	0.08	0.2	0.07	0.2	4	4	0.07	0.2	0.026 2	_ YES	0.08	NO
Nickel	40	ND	ND	ND	ND	0	4	ND	ND	52 1	NO	<u></u>	NO
Potassium	5000	2800	2720	2670	2670	4	4	2670	2800	53000 ²	NO	2800	NO
Selenium	35	ND	ND	ND	ND	0	4	ND	ND	1 ²	NO	ND	NO
Silver	10	ND	ND	ND	ND	0	4	ND	ND	3.2 2	NO	ND	NO
Sodium	5000	16200	15400	15600	15700	4	4	15400	16200	680000 ²	NO	16200	NO
Thallium	25	ND	ND	ND	ND	0	4	ND	ND	0.8 2	NO	ND	NO
Vanadium	50	ND	ND	ND	ND	0	4	ND	ND	20 2	NO	ND	NO
Zinc	60	_6	5.4	4.3	4.6	4	4	4.3	6	120	NO	6	NO

ND Not detected at a concentration greater than the Contract Required Detection Limit (CRDL).

NA Not Applicable or available.

CRDL Contract Required Detection Limit

1 USEPA National Recommended Water Quality Criteria (NRWQC), freshwater CCC (chronic) concentrations or Human Health for the consumption of water + organisms, which November 2002.

2 USEPA Region 3 BTAG Risk Assessment Freshwater Screening Benchmarks, July 2006.

B Result estimated due to laboratory contamination.

R Result rejected according to data validation guidelines.

BG Background concentration from site specific location SW1, upstream Painter's Run sample.

					Brooke (Wellsbu	Grou County Glas rg, Brooke	indwater is Dump CE County, We	RCLIS Site st Virginia				
COPC	CRDI	CWL	entration (GW3	Detects	Samples	Min		Action Lever Concentration (ug/L)		Background Concentration	Observed
	AND ADDING TO AND A MARKED	and the second se	m1.465.4695118-91866.01		the day of the state	M	etals				To You all the second second second second	A REAL PROPERTY OF A REAL PROPERTY OF
Aluminum	200	130	128	198	3	3	128	198	50 3	YES	198	NO
Antimony	60	ND	ND	ND	0	3	ND	ND	14.6	NO	ND	NO
Arsenic	10	ND	ND	ND	0	3	ND	ND	0.045	NO	ND	NO
Barium	200	29.4	41.5	51.3	3	3	29.4	51.3	7300 '	NO	51.3	NO
Beryllium	5	ND	ND	ND	0	3	ND	ND	73 1	NO	ND	NO
Cadmium	5	ND	ND	ND	0	3	ND	ND	18 '	NO	ND	NO
Calcium	5000	74200	85900	89400	3	3	74200	89400	NA	NO	89400	NO
Chromium	10	ND	ND	1.3	1	3	ND	1.3	55000 1	NO	1.3	NO
Cobalt	50	ND	ND	ND	0	3	ND	ND	NA	NO	ND	NO
Copper	25	ND	ND	ND	0	3	ND	ND	1460	NO	ND	NO
Iron	100	59.1	47.8	142	3	3	47.8	142	11000 1	NO	142	NO
Lead	10	ND	ND	ND	0	3	ND	ND	15 ²	NO	ND	NO
Magnesium	5000	16500	17400	28900	3	3	16500	28900	NA	NO	28900	NO
Manganese	15	3.8	4.2	3.5	3	3	3.5	4.2	730 '	NO	3.5	NO
Mercury	0.2	0.08	0.09	0.09	3	3	0.08	0.09	2 2	NO	0.09	NO
Nickel	40	ND	ND	ND	0	3	ND	ND	730 1	NO	ND	NO
Potassium	5000	1610	1510	5100	3	3	1510	5100	NA	NO	5100	NO
Selenium	· 35	22.4	15.6	35	3	3	· 15 6	35	182	NO	35	NO
Silver	10	ND	ND	ND	0	3	ND	ND	182	NO	ND	NO
Sodium	5000	18500	17300	112000	3	3	17300	112000	NA	NO	112000	NO
Thallium	25	ND	ND	ND	0	3	ND	ND	2.55	NO	ND	NO
Vanadium	50	ND	ND	1.7	1	3	ND	1.7	36.5	NO	1.7	NO
Zinc	60	ND	ND	ND	0	3	ND	ND	11000	NO	ND	NO

ND Not detected at a concentration greater than the Contract Required Detection Limit (CRDL).

NA Not Applicable or available.

CRDL Contract Required Detection Limit

1 USEPA Region III, Tap Water RBCs, April 2006.

2 USEPA National Primary Drinking Water Standards, Winter 2004.

3 USEPA National Secondary Drinking Water Regulations, Winter 2004.

B Result estimated due to laboratory contamination.

R Result rejected according to data validation guidelines.

				Та	ble 3A. XR	Sur Bi	reening Data face Soil (<2 rooke County Vellsburg, Br	feet bgs) R / Glass Dui	lesidential E mp CERCL	xposure IS Site	lection of C	OC's			
СОРС	SS1	<u>88</u> 2	Conce SS3	ntration (n SS4	ss5	SS6	SS20 (BG)		uency Samples	Concen Min (mg/kg)	tration Max (mg/kg)	Action Level Concentration (mg/Kg)	COC ?	Background Concentration (mg/Kg)	HRS Observed Release?
								Metals							
Antimony	ND	ND	ND	ND	ND	ND	ND	0	7	ND	ND	31	¹ NO	ND	NO
Arsenic	ND	196	ND	ND	9	42	15	4	7	ND	196	13	4 YES	15	YES
Barium	ND	ND	ND	ND	ND	ND	ND	0	7	ND	ND	5,500	' NO	ND	NO
Cadmium	ND	ND	115	136	ND	71	ND	3	7	ND	136	39	YES	ND	NO
Chromium	ND	ND	ND	ND	ND	ND	ND	0	7	ND	ND	230	' NO	ND	NO
Cobalt	ND	608	ND	ND	ND	ND	388	2	7	ND	608	NA	' NO	388	NO
Copper	ND	351	ND	ND	ND	ND	ND	1	7	ND	351	3,100	NO	ND	NO
Iron	31043	26752	25332	18328	14858	13516	32307	7	7	13516	32307	23,000	¹ YES	32307	NO
Lead	70	261	ND	118	21	35	40	6	7	ND	261	400	³ NO	40	YES
Manganese	839	514	ND	1714	507	4392	841	6	7	ND	4392	1,600	1 YES	841	YES.
Mercury	ND	1025	ND	ND	ND	ND	ND	1	7	ND	1025	0.44	5 YES	ND	NO
Nickel	ND	344	ND	ND	ND	ND	ND	1	7	ND	344	1,600	1 NO	ND	NO
Selenium	ND	262	ND	ND	ND	50	ND	2	7	ND	262	390	' NO	ND	NO
Silver	ND	ND	ND	ND	ND	95	ND	1	7	ND	95	390	' NO	ND	NO
Zinc	143	375	92	259	115	439	117	7	7	92	439	23,000	NO	117	NES,

ND Not detected at a concentration greater than the XRF Method Detection Limit (MDL).

NA Not Applicable or available.

CRDL Contract Required Detection Limit

1 USEPA Region III Industrial Soil Risk Based Concentration, April 2006.

2 Essential Nutrient. Eliminated from consideration as COC.

3 Memorandum: OSWER Directive: Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. United States Environmental Protection Agency, August 1994. Offi

4 Published natural background concentration for arsenic in soil in West Virginia ranges from 5.9 to 13.0 mg/Kg.

5 Published natural background concentration for mercury in soil in West Virginia ranges from 0.02 to 0.44 mg/Kg.

B Result estimated due to laboratory contamination.

R Result rejected according to data validation guidelines.

BG Background concentration from site specific location SS20.

Page 1 of 3

								т	Table 3B. XI	Surfa Br	reening Dat ce Soil (<2 fo ooke Count Vellsburg, B	et bgs) Non y Glass Dur	1-Residentia np CERCL	l Exposure IS Site	election of C	0C's							
		Concentration (mg/Kg)															Frequency		Iration	Action Level		Background	HRS
COPC	SS 7	SS 8	\$\$9	SS10	SS11	SS12	SS13	\$\$14	S\$15	\$\$16	SS17	SS18	SS19	SS20 (BG)	SS21 (FD of SS17)	Detects	Samples	Min (mg/kg)	Max (mg/kg)	Concentration (mg/Kg)	COC ?	Concentration (mg/Kg)	Observed Release?
			·			·						Metals											
Antimony	ND	788	ND	ND	ND	ND	ND	ND	307	ND	ND	ND	158	ND	ND	3	15	ND	787,64	409 1	YES	ND	A YES
Arsenic	244	474	456	61	44	435	25	61	93	96	79	25	95	15	16	15	15	14 79	473.97	13 4	YES	87	YES
Barium	ND	ND	ND	ND	ND	ND	ND	_ND	ND	ND	ND	ND	ND	ND	ND	00	15	ND	ND	204000	NO	103	NO
Cadmium	ND	1716	169	ND	50	385	120	_ND	1122	53	ND	ND	54	ND	ND	8	15	ND	1715.72	511 1	YES	1.4	YES A
Chromium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	00	15	ND	ND	1530000	NO	14.3	NO
Cobalt	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	530	ND	ND	388	ND	2	15	ND	530.19	NA 1	NO	16.8	YES
Copper	ND	349	229	ND	ND	210	ND	ND	ND	46	ND	<u>ND</u>	52	ND	ND	5	15	ND	349.4	40900 1	NO	29.9	YES
fron ·	3973	209830	5858	25816	4143	51443	2813	7928	2424	7518	22698	12382	16511	32307	15279	15	15	2424 41	209829.84	307000	NO	23700	NOS
Lead	ND	ND	263	237	101	907	97	555	321	242	215	29	187	40	29	13	15	ND	907.07	400 3	YES	42 5	
Manganese	ND	_ND	ND	279	ND	ND	ND	472	ND	ND	420	365	233	841	608	77	15	ND ND	840.51		NO	1410	NO
Mercury	ND	_ND	ND	ND	ND	ND	ND	ND	ND	ND_	ND	ND	ND	ND	ND	0	15	ND	ND	0.44_5	NO	0.13	NO
Nickel	ND	· ND	ND	ND	ND	ND_	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	15	ND	ND	20400	NO	20.8	NO
Sclenium	809	954	208	ND	33	214	72	16	75	82	16	ND	56	ND	ND	11	15	DN D	953.96	5110 1	NO	1.7	YES
Silver	ND	ND	_ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	15	ND	ND	5110	NO	0.62	NO
Zinc	216	13293	3036	9068	513	4531	540	4527	565	1134	545	95	1194	117	265	15	15	94.94	13292.57	307000 1	NO	117	YES-

.

NOTES:

ND Not detected at a concentration greater than the XRF Method Detection Limit (MDL).

NA Not Applicable or available.

CRDL Contract Required Detection Limit

1 USEPA Region III Industrial Soil Risk Based Concentration. April 2006.

2 Essential Nutrient, Eliminated from consideration as COC.

3 Memorandum: OSWER Directive; Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. United States Environmental Protection Agency, August 1994. Office of Solid Waste and Emergency Response. Directive 9355.4-12

4 Published natural background concentration for arsenic in soil in West Virginia ranges from 5.9 to 13.0 mg/Kg.

5 Published natural background concentration for mercury in soil in West Virginia ranges from 0.02 to 0.44 mg/Kg.

B Result estimated due to laboratory contamination

R Result rejected according to data validation guidelines

BG Background concentration from site specific location SS20.

Page 2 of 3

			Table 3C.		So Brooke Co	Data - Occur ediment (Pa unty Glass I , Brooke Co	inter's Runj Dump CER() CLIS Site	d Selection of COC	C's		
		Concentrat	ion (mg/Kg)		Freq	uency	Concen	tration	Action Level		Background	HRS
COPC	SED1 (BG)	SED2	SED3	SED4 (FD of SED2)	Detects	Samples	Min (mg/kg)	Max (mg/kg)	Concentration (mg/Kg)	COC ?	Concentration (mg/Kg)	Observed Release?
	<u> </u>		·			Meta	als					
Antimony	ND	253	ND	ND	1	4	ND	253.34	2 2	YES	ND	NO
Arsenic	11	ND	ND	ND	1	4	ND	11.11	13 3	NO	11.11	NO
Barium	ND	ND	ND	ND	0	4	ND	ND	NA	NO	ND	NO
Cadmium	ND	ND	54	ND	1	4	ND	54.47	0.99 2	YES	ND	NO
Chromium	ND	ND	ND	ND	0	4	ND	ND	43.4 2	NO	ND	NO
Cobalt	395	ND	447	ND	2	4	ND	447.41	50 ²	YES	395.34	NO
Copper	ND	ND	34	ND	1	4	ND	34.12	31.6 ²	YES	ND	NO
Iron	27912	11102	24561	20928	4	4	11102.09	27911.76	20000 2	YES	27911.76	NO
Lead	21	ND	15	ND	2	4	ND	20.91	35.8 2	NO	20.91	NO
Manganese	2750	1486	1628	2915	4	4	1485.9	2915.22	460 2	YES	2749.84	NO
Mercury	ND	ND	ND	ND	0	4	ND	ND	0.44 4	NO	ND	NO
Nickel	ND	ND	74	ND	1	4	ND	73.87	21 1	YES	ND	NO
Selcnium	ND	ND	ND	ND	0	4	ND	ND	2 2	NO	ND	NO
Silver	ND	ND	ND	ND	0	4	ND	ND	1 ²	NO	ND	NO
Zinc	79	ND	78	82	3	4	ND	81.68	121 2	NO	79.29	NO

ND Not detected at a concentration greater than the XRF Method Detection Limit (MDL).

NA Not Applicable or available.

CRDL Contract Required Detection Limit

1 USEPA ECO Update, Ecotox Thresholds, January 1996, supplement to USEPA Risk Assessment Guidance for Superfund (RAGS), Volume II, Environmental Evaluati

2 USEPA Region 3 Risk Assessment Freshwater Sediment Screening Benchmarks.

3 Published natural background concentration for arsenic in soil in West Virginia ranges from 5.9 to 13.0 mg/Kg.

4 Published natural background concentration for mercury in soil in West Virginia ranges from 0.02 to 0.44 mg/Kg.

B Result estimated due to laboratory contamination.

R Result rejected according to data validation guidelines.

BG Background concentration from site specific location SED1, upstream Painter's Run sample.

2

.

	Brooke	Su County G urg, Brook	d Duplicate Su ırface Soil lass Dump CEI xe County, Wes	RCLIS Site at Virginia	
COPC	CRDL	Concentr SS17	ation (mg/Kg) SS21 (FD of SS17)	RPD Acceptance Limit(%)	RPD (%)
	L		Metals		- <u> </u>
Aluminum	200	7030	11000	40	44
Antimony	60	1.7	ND	40	NA
Arsenic	10	113	9	40	170
Barium	200	273	113	40	83
Beryllium	5	0.69	1.2	40	54
Cadmium	5	41	12.7	40	105
Calcium	5000	17500	27000	40	43
Chromium	10	18.6	14.8	40	23
Cobalt	50	11.9	10.6	40	12
Copper	25	51.5	32.5	40	45
Iron	100	24300	24700	40	2
Lead	10	431	25.1	40	178
Magnesium	5000	2810	4130	40	38
Manganese	15	854	1250	40	38
Mercury	0.2	0.15	0.1	40	40
Nickel	40	24.5	23.5	40	4
Potassium	5000	1620	1560	40	4
Selenium	35	19.6	5.1	40	117
Silver	10	0.78	0.33	40	81
Sodium	5000	1600	552	40	97
Thallium	25	3.6	1.4	40	88
Vanadium	50	16.9	21.8	40	25
Zinc	60	723	128	40	14(
				Mean RPD:	43

ND Not detected at a concentration greater than the Contract Required Detection Limit (CRDL).

NA Not applicable, duplicate not measured against non-detects.

Table 4B. Field Duplicate Summary Sediment Brooke County Glass Dump CERCLIS Site Wellsburg, Brooke County, West Virginia					
	Concentration (mg/Kg)		RPD		
COPC	CRDL	SED2	SED4 (FD of SED2)	Acceptance Limit(%)	RPD (%)
	4A		Metals		
Aluminum	200	8500	7950	40	7
Antimony	60	10.5	8.9	40	16
Arsenic	10	11.9	11.3	40	5
Barium	200	137	103	40	28
Beryllium	5	1.4	1.1	40	24
Cadmium	5	0.66	0.48	40	32
Calcium	5000	10400	7860	40	28
Chromium	10	19.6	17.1	40	14
Cobalt	50	41.9	32.5	40	25
Copper	25	40.4	31	40	26
Iron	100	30200	30700	40	2
Lead	10	31.2	26.6	40	16
Magnesium	5000	2990	2940	40	2
Manganese	15	6500	3560	40	58
Mercury	0.2	0.18	0.1	40	57
Nickel	40	73.8	54.3	40	30
Potassium	5000	1140	1140	40	0
Selenium	35	6.1	5.2	40	16
Silver	10	0.98	1	40	2
Sodium	5000	583	480	40	19
Thallium	25	2	2.4	40	18
Vanadium	50	19.1	17.9	40	6
Zinc	60	141	115	40	20
				Mean RPD:	12

NOTES:

ND Not detected at a concentration greater than the Contract Required Detection Limit (CRDL).

NA Not applicable, duplicate not measured against non-detects.

Table 4C. Field Duplicate Summary Surface Water Brooke County Glass Dump CERCLIS Site Wellsburg, Brooke County, West Virginia Concentration (ug/L)					
СОРС	CRDL	SW2	SW4 (FD of SW2)	RPD Acceptance Limit(%)	RPD (%)
			Metals		
Aluminum	200	504	269	40	61
Antimony	60	ND	ND	40	NA
Arsenic	10	ND	ND	40	NA
Barium	200	34.2	34.6	40	1
Beryllium	5	ND	ND	40	NA
Cadmium	5	ND	ND	40	NA
Calcium	5000	90500	92400	40	2
Chromium	10	ND	ND	40	NA
Cobalt	50	ND	ND	40	NA
Copper	25	ND	ND	40	NA
Iron	100	643	385	40	50
Lead	10	ND	ND	40	NA
Magnesium	5000	33900	34700	40	2
Manganese	15	312	310	40	1
Mercury	0.2	0.2	0.2	40	0
Nickel	40	ND	ND	40	NA
Potassium	5000	2720	2670	40	2
Selenium	35	ND	ND	40	NA
Silver	10	ND	ND	40	NA
Sodium	5000	15400	15700	40	2
Thallium	25	ND	ND	40	NA
Vanadium	50	ND	ND	40	NA
Zinc	60	5.4	4.6	40	16
				Mean RPD:	17

NOTES:

ND Not detected at a concentration greater than the Contract Required Detection Limit (CRDL).

NA Not applicable, duplicate not measured against non-detects.

Appendix 1

EDR Report

The EDR Radius Map with GeoCheck[®]

Brooke County Glass Dump Washington Pike Wellsburg, WV 26070

Inquiry Number: 1921435.1s

May 07, 2007

EDR[®] Environmental Data Resources Inc

.

The Standard in Environmental Risk Information

440 Wheelers Farms Road Milford, Connecticut 06461

Nationwide Customer Service

 Telephone:
 1-800-352-0050

 Fax:
 1-800-231-6802

 Internet:
 www.edrnet.com

TABLE OF CONTENTS

SECTION

PAGE

Executive Summary	ES1
Overview Map	2
Detail Map	3
Map Findings Summary	4
Map Findings	6
Orphan Summary	7
Government Records Searched/Data Currency Tracking	GR-1

GEOCHECK ADDENDUM

Physical Setting Source Addendum	A-1
Physical Setting Source Summary	A-2
Physical Setting Source Map	A-7
Physical Setting Source Map Findings	A-8
Physical Setting Source Records Searched	A-10

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2007 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

¥

EXECUTIVE SUMMARY

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-05) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

WASHINGTON PIKE WELLSBURG, WV 26070

COORDINATES

Latitude (North):	40.267200 - 40° 16' 1.9"
Longitude (West):	80.588400 - 80° 35' 18.2"
Universal Tranverse Mercator:	Zone 17
UTM X (Meters):	534997.7
UTM Y (Meters):	4457285.0
Elevation:	929 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map: Most Recent Revision: 40080-C5 STEUBENVILLE EAST, WV 1997

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

FEDERAL RECORDS

NPL.	. National Priority List
Proposed NPL	Proposed National Priority List Sites
Delisted NPL	National Priority List Deletions
NPL LIENS	Federal Superfund Liens
CERCLIS	Comprehensive Environmental Response, Compensation, and Liability Information
	System
CERC-NFRAP	CERCLIS No Further Remedial Action Planned
CORRACTS	. Corrective Action Report
RCRA-TSDF	Resource Conservation and Recovery Act Information
RCRA-LQG	Resource Conservation and Recovery Act Information

EXECUTIVE SUMMARY

RCRA-SOG	Resource Conservation and Recovery Act Information
	Emergency Response Notification System
	- Hazardous Materials Information Reporting System
US ENG CONTROLS	. Engineering Controls Sites List
	. Sites with Institutional Controls
	_ Department of Defense Sites
	Formerly Used Defense Sites
	- A Listing of Brownfields Sites
	_ Superfund (CERCLA) Consent Decrees
ROD	
UMTRA	
ODI.	
	Toxic Chemical Release Inventory System
	Toxic Substances Control Act
	. FIFRA/TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, &
	Rodenticide Act)/TSCA (Toxic Substances Control Act)
SSTS	Section 7 Tracking Systems
	Land Use Control Information System
DOT OPS	
	Integrated Compliance Information System
	FIFRA/TSCA Tracking System Administrative Case Listing
US CDL	
	Radiation Information Database
	PCB Activity Database System
	Material Licensing Tracking System
MINES.	
	. Facility Index System/Facility Registry System
RAATS	RCRA Administrative Action Tracking System
	5,

STATE AND LOCAL RECORDS

SHWS	. This state does not maintain a SHWS list. See the Federal CERCLIS list and
	Federal NPL list.
SWF/LF	List of M.S.W. Landfills/Transfer Station Listing
	Leaking Underground Storage Tanks
UST	Underground Storage Tank Database
SPILLS	
	Sites with Institutional Controls
VCP	Voluntary Remediation Sites
	Listing of Drycleaner Locations
BROWNFIELDS	
CDL	Drug Lab Site Locations
NPDES	. Wastewater Discharge Permits Listing
AIRS	Permitted Facility and Emissions Listing

TRIBAL RECORDS

INDIAN RESERV	Indian Reservations
INDIAN LUST	Leaking Underground Storage Tanks on Indian Land
	. Underground Storage Tanks on Indian Land

EDR PROPRIETARY RECORDS

Manufactured Gas Plants ... EDR Proprietary Manufactured Gas Plants

SURROUNDING SITES: SEARCH RESULTS

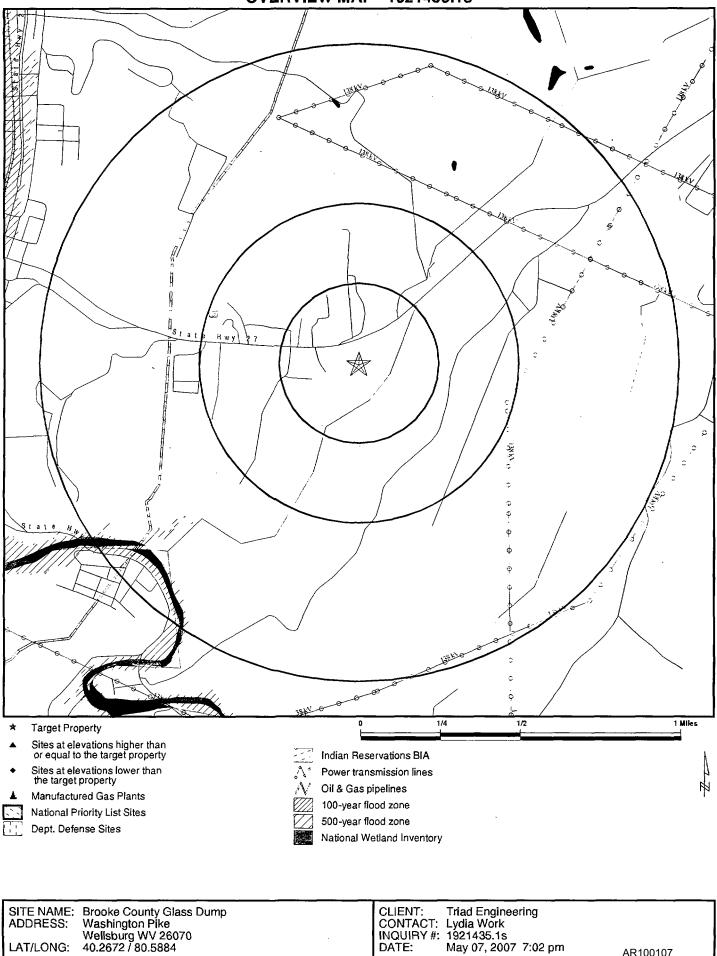
Surrounding sites were not identified.

Unmappable (orphan) sites are not considered in the foregoing analysis.

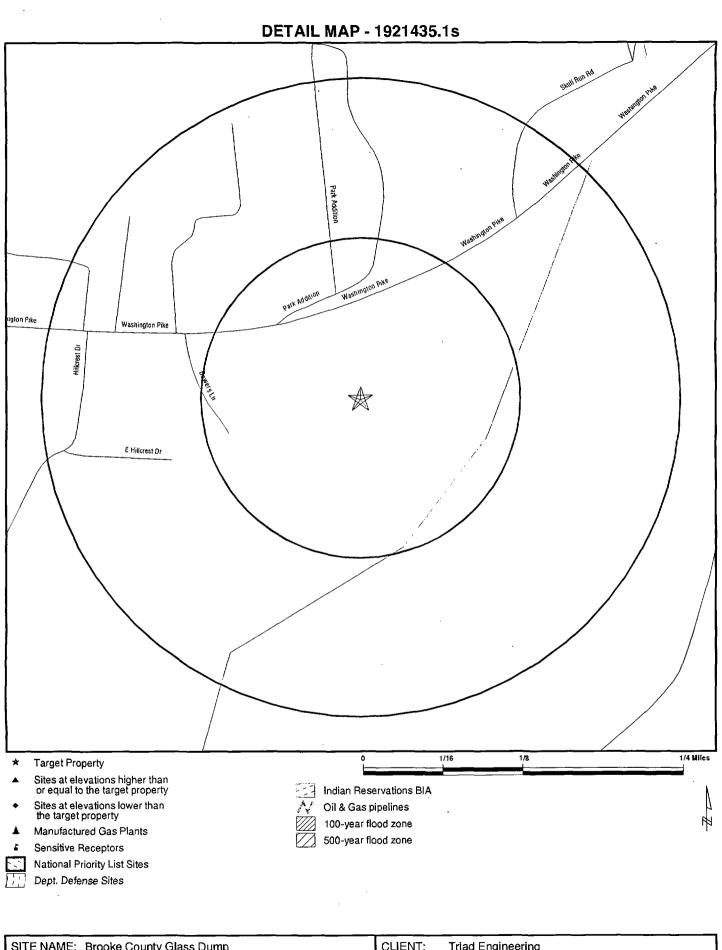
EXECUTIVE SUMMARY

Due to poor or inadequate address information, the following sites were not mapped:

Site	Name


.K

BROOKE HILLS PARK BROOKE MOBILE COURT BROOKE COUNTY GLASS DUMP BROOKE COUNTY WHARF BROOKE CO HQ 06051 AUTO MEDIC AMOCO BROOKE CO HQ 06051 SMITH OIL CO INC #204 VALLEY MARKET PROJECT NO BRF 002 054 CONSTRUCT BROOKE COUNTY HARBOR INC **CARVER SCHOOL & GARAGE** BROOKE CNTY SCHOOL BUS GARAGE WVDOH BROOKE COUNTY HEADQUARTERS **BROOKE MACHINING & FABRICATING** BROOKE COUNTY ALTERNATIVE **BROOKE HIGH SCHOOL BROOKE HILLS PARK**


Database(s) NPDES NPDES CERCLIS, FINDS **CERC-NFRAP** LUST LUST, UST UST UST UST UST UST UST RCRA-SQG, FINDS RCRA-SQG_FINDS RCRA-SQG, FINDS FINDS FINDS FINDS

TC1921435.1s EXECUTIVE SUMMARY 3

OVERVIEW MAP - 1921435.1s

	indu Engineering	
CONTACT:	Lydia Work	
INQUIRY #:	1921435.1s	
DATE:	May 07, 2007 7:02 pm	AR100107
Copyrigh	t @ 2007 EDR, Inc. @ 2007 Tele Atlas Rel. 07/2006.	

	Brooke County Glass Dump Washington Pike	CLIENT: CONTACT:	Triad Engineering Lydia Work	
	Wellsburg WV 26070	INQUIRY #:		
LAT/LONG:	40.2672 / 80.5884	DATE:	May 07, 2007 7:02 pm	AR10010

MAP FINDINGS SUMMARY

.....

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
FEDERAL RECORDS								
NPL Proposed NPL Delisted NPL NPL LIENS CERCLIS CERC-NFRAP CORRACTS RCRA TSD RCRA Lg. Quan. Gen. RCRA Sm. Quan. Gen. ERNS HMIRS US ENG CONTROLS US INST CONTROL DOD FUDS US BROWNFIELDS CONSENT ROD UMTRA ODI TRIS TSCA FTTS SSTS LUCIS DOT OPS ICIS HIST FTTS CDL RADINFO PADS MLTS MINES		1.000 1.000 1.000 TP 0.500 0.500 0.250 0.250 0.250 TP TP 0.500 0.500 1.000 0.500 1.000 0.500 1.000 0.500 1.000 0.500 TP TP TP TP TP TP TP TP TP TP	0 0 0 R 0 0 0 0 0 R R 0 0 0 0 0 0 0 0 0	000R00000RR000000000RRRR0RRRRRR	° ° ° R ° ° ° ° R R R R ° ° ° ° ° ° ° °	0 0 0 R R R O R R R R R R R R O 0 R O 0 R R R R	ŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŔŎŎŎŎŎŎŎŎŎŎŎŎ	
FINDS RAATS		TP TP	NR NR	NR NR	NR NR	NR NR	NR NR	0 0
STATE AND LOCAL RECORDS								
State Haz. Waste State Landfill LUST UST SPILLS INST CONTROL VCP DRYCLEANERS BROWNFIELDS		N/A 0.500 0.250 TP 0.500 0.500 0.250 0.500	N/A 0 0 NR 0 0 0 0	N/A 0 0 NR 0 0 0 0	N/A 0 NR NR 0 NR 0 NR 0	N/A NR NR NR NR NR NR NR	N/A NR NR NR NR NR NR NR	N/A 0 0 0 0 0 0 0

ټ

.

MAP FINDINGS SUMMARY

Database	Target Property	Search Distance (Miles)	< 1/8	1/8 - 1/4	1/4 - 1/2	1/2 - 1	> 1	Total Plotted
CDL NPDES AIRS		TP TP TP	NR NR NR	NR NR NR	NR NR NR	NR NR NR	NR NR NR	0 0 0
TRIBAL RECORDS								
INDIAN RESERV INDIAN LUST INDIAN UST		1.000 0.500 0.250	0 0 0	0 0 0	0 0 NR	0 NR NR	NR NR NR	0 0 0
EDR PROPRIETARY RECORDS								
Manufactured Gas Plants		1.000	0	0	0	0	NR	0

NOTES:

TP = Target Property

NR = Not Requested at this Search Distance

Sites may be listed in more than one database

N/A = This State does not maintain a SHWS list. See the Federal CERCLIS list.

TC1921435.1s Page 5

Map ID MAP FINDINGS Direction Distance Distance (ft.) Elevation Site EDR ID Number EPA ID Number

NO SITES FOUND

TC1921435.1s Page 6

ø

AR100111

ø

ORPHAN SUMMARY

.

City	EDR ID	Site Name	Site Address	Zip	Database(s)
WELLSBURG	U0037601	3 BROOKE CO HQ 06051	RD 2 BOX 615 STATE RT 2	26070	UST
WELLSBURG	S10481663	8 BROOKE CO HQ 06051	RD 2 BOX 615 STATE RT 2	26070	LUST
WELLSBURG	100480259	6 BROOKE CNTY SCHOOL BUS GARAGE	RT 2 & RT 67	- 26070	RCRA-SQG, FINDS
WELLSBURG	100058480	0 WVDOH BROOKE COUNTY HEADQUARTERS	RT 2	26070	RCRA-SQG, FINDS
WELLSBURG	U0034390	4 AUTO MEDIC AMOCO	RT 2 & 16TH ST	26070	LUST, UST
WELLSBURG	100825424	4 BROOKE COUNTY ALTERNATIVE	RR 3 BOX 610	26070	FINDS
WELLSBURG	U0037601	6 SMITH OIL CO INC #204	RT 3 BOX 16	26070	UST
WELLSBURG	U0037601	6 VALLEY MARKET	RT 3 BOX 568	26070	UST
WELLSBURG	• 100123047	6 BROOKE COUNTY GLASS DUMP	ADJACENT TO 560D	26070	CERCLIS, FINDS
WELLSBURG	100638644	5 BROOKE HIGH SCHOOL	BRUIN DRIVE	26070	FINDS
WELLSBURG	100480374	5 BROOKE MACHINING & FABRICATING	600 CROSS CREEK RD	26070	RCRA-SQG, FINDS
WELLSBURG	S1083491	8 BROOKE HILLS PARK	140 GIST DR	26070	NPDES
WELLSBURG	100552753	0 BROOKE HILLS PARK	140 GIST DRIVE	26070	FINDS
WELLSBURG	U0037601	9 PROJECT NO BRF 002 054 CONSTRUCT	INTERSECTION OF WV RT 2 & RT 67	26070	UST
WELLSBURG	100386706	3 BROOKE COUNTY WHARF	MAIN STREET	26070	CERC-NFRAP
WELLSBURG	S1083536	5 BROOKE MOBILE COURT	RD NO. 3, BOX 577	26070	NPDES
WELLSBURG	U0035467	32 BROOKE COUNTY HARBOR INC	STATE RT 2	26070	UST
WELLSBURG	U0035467	0 CARVER SCHOOL & GARAGE	STATE RT 2 SOUTH OF WELLSBURG	26070	UST

.

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Number of Days to Update: Provides confirmation that EDR is reporting records that have been updated within 90 days from the date the government agency made the information available to the public.

FEDERAL RECORDS

NPL: National Priority List

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 01/25/2007 Date Data Arrived at EDR: 01/31/2007 Date Made Active in Reports: 03/12/2007 Number of Days to Update: 40 Source: EPA Telephone: N/A Last EDR Contact: 05/03/2007 Next Scheduled EDR Contact: 07/30/2007 Data Release Frequency: Quarterly

NPL Site Boundaries

Sources:

EPA's Environmental Photographic Interpretation Center (EPIC) Telephone: 202-564-7333

EPA Region 1 Telephone 617-918-1143

EPA Region 3 Telephone 215-814-5418

EPA Region 4 Telephone 404-562-8033

EPA Region 5 Telephone 312-886-6686

EPA Region 10 Telephone 206-553-8665 EPA Region 6 Telephone: 214-655-6659 EPA Region 7

Telephone: 913-551-7247

EPA Region 8 Telephone: 303-312-6774

EPA Region 9 Telephone: 415-947-4246

Proposed NPL: Proposed National Priority List Sites

A site that has been proposed for listing on the National Priorities List through the issuance of a proposed rule in the Federal Register. EPA then accepts public comments on the site, responds to the comments, and places on the NPL those sites that continue to meet the requirements for listing.

Date of Government Version: 09/27/2006 Date Data Arrived at EDR: 11/01/2006 Date Made Active in Reports: 11/22/2006 Number of Days to Update: 21 Source: EPA Telephone: N/A Last EDR Contact: 05/03/2007 Next Scheduled EDR Contact: 07/30/2007 Data Release Frequency: Quarterly

DELISTED NPL: National Priority List Deletions

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate.

Date of Government Version: 12/28/2006 Date Data Arrived at EDR: 01/31/2007 Date Made Active in Reports: 03/12/2007 Number of Days to Update: 40 Source: EPA Telephone: N/A Last EDR Contact: 05/03/2007 Next Scheduled EDR Contact: 07/30/2007 Data Release Frequency: Quarterly

NPL LIENS: Federal Superfund Liens

Federal Superfund Liens. Under the authority granted the USEPA by CERCLA of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner received notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens.

Date of Government Version: 10/15/1991
Date Data Arrived at EDR: 02/02/1994
Date Made Active in Reports: 03/30/1994
Number of Days to Update: 56

Source: EPA Telephone: 202-564-4267 Last EDR Contact: 03/26/2007 Next Scheduled EDR Contact: 05/21/2007 Data Release Frequency: No Update Planned

CERCLIS: Comprehensive Environmental Response, Compensation, and Liability Information System

CERCLIS contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 02/27/2007 Date Data Arrived at EDR: 03/21/2007 Date Made Active in Reports: 04/27/2007 Number of Days to Update: 37 Source: EPA Telephone: 703-603-8960 Last EDR Contact: 03/21/2007 Next Scheduled EDR Contact: 06/18/2007 Data Release Frequency: Quarterly

CERCLIS-NFRAP: CERCLIS No Further Remedial Action Planned

Archived sites are sites that have been removed and archived from the inventory of CERCLIS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list this site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. This decision does not necessarily mean that there is no hazard associated with a given site; it only means that, based upon available information, the location is not judged to be a potential NPL site.

Date of Government Version: 12/20/2006 Date Data Arrived at EDR: 01/29/2007 Date Made Active in Reports: 02/27/2007 Number of Days to Update: 29 Source: EPA Telephone: 703-603-8960 Last EDR Contact: 03/19/2007 Next Scheduled EDR Contact: 06/18/2007 Data Release Frequency: Quarterly

CORRACTS: Corrective Action Report

CORRACTS identifies hazardous waste handlers with RCRA corrective action activity.

Date of Government Version: 03/14/2007 Date Data Arrived at EDR: 03/20/2007 Date Made Active in Reports: 04/27/2007 Number of Days to Update: 38 Source: EPA Telephone: 800-424-9346 Last EDR Contact: 03/05/2007 Next Scheduled EDR Contact: 06/04/2007 Data Release Frequency: Quarterly

RCRA: Resource Conservation and Recovery Act Information

RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. RCRAInfo replaces the data recording and reporting abilities of the Resource Conservation and Recovery Information System (RCRIS). The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Conditionally exempt small quantity generators (CESQGs) generate less than 100 kg of hazardous waste, or less than 1 kg of acutely hazardous waste per month. Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month. Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month. Transporters are individuals or entities that move hazardous waste from the generator off-site to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste.

Date of Government Version: 06/13/2006Source: EPADate Data Arrived at EDR: 06/28/2006Telephone: 8Date Made Active in Reports: 08/23/2006Last EDR CorNumber of Days to Update: 56Next Schedule

Source: EPA Telephone: 800-438-2474 Last EDR Contact: 05/04/2007 Next Scheduled EDR Contact: 07/16/2007 Data Release Frequency: Quarterly

ERNS: Emergency Response Notification System

. .

Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous substances.

Source: National Response Center, United States Coast Guard
Telephone: 202-267-2180
Last EDR Contact: 04/24/2007
Next Scheduled EDR Contact: 07/23/2007
Data Release Frequency: Annually

HMIRS: Hazardous Materials Information Reporting System

Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT.

Date of Government Version: 11/28/2006 Date Data Arrived at EDR: 01/17/2007 Date Made Active in Reports: 02/27/2007 Number of Days to Update: 41 Source: U.S. Department of Transportation Telephone: 202-366-4555 Last EDR Contact: 04/17/2007 Next Scheduled EDR Contact: 07/16/2007 Data Release Frequency: Annually

US ENG CONTROLS: Engineering Controls Sites List

A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health.

Date of Government Version: 01/24/2007 Date Data Arrived at EDR: 01/31/2007 Date Made Active in Reports: 04/04/2007 Number of Days to Update: 63 Source: Environmental Protection Agency Telephone: 703-603-8905 Last EDR Contact: 04/02/2007 Next Scheduled EDR Contact: 07/02/2007 Data Release Frequency: Varies

US INST CONTROL: Sites with Institutional Controls

A listing of sites with institutional controls in place. Institutional controls include administrative measures, such as groundwater use restrictions, construction restrictions, property use restrictions, and post remediation care requirements intended to prevent exposure to contaminants remaining on site. Deed restrictions are generally required as part of the institutional controls.

Date of Government Version: 01/24/2007 Date Data Arrived at EDR: 01/31/2007 Date Made Active in Reports: 02/27/2007 Number of Days to Update: 27 Source: Environmental Protection Agency Telephone: 703-603-8905 Last EDR Contact: 04/02/2007 Next Scheduled EDR Contact: 07/02/2007 Data Release Frequency: Varies

DOD: Department of Defense Sites

This data set consists of federally owned or administered lands, administered by the Department of Defense, that have any area equal to or greater than 640 acres of the United States, Puerto Rico, and the U.S. Virgin Islands.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 11/10/2006 Date Made Active in Reports: 01/11/2007 Number of Days to Update: 62 Source: USGS Telephone: 703-692-8801 Last EDR Contact: 02/08/2007 Next Scheduled EDR Contact: 05/07/2007 Data Release Frequency: Semi-Annually

FUDS: Formerly Used Defense Sites

The listing includes locations of Formerly Used Defense Sites properties where the US Army Corps of Engineers is actively working or will take necessary cleanup actions.

Date of Government Version: 12/31/2005	Source: U.S. Army Corns of Engineers
Date of Government version. 12/31/2003	Source: U.S. Army Corps of Engineers
Date Data Arrived at EDR: 09/20/2006	Telephone: 202-528-4285
Date Made Active in Reports: 11/22/2006	Last EDR Contact: 04/02/2007
Number of Days to Update: 63	Next Scheduled EDR Contact: 07/02/2007
	Data Release Frequency: Varies

US BROWNFIELDS: A Listing of Brownfields Sites

Included in the listing are brownfields properties addresses by Cooperative Agreement Recipients and brownfields properties addressed by Targeted Brownfields Assessments. Targeted Brownfields Assessments-EPA's Targeted Brownfields Assessments (TBA) program is designed to help states, tribes, and municipalities--especially those without EPA Brownfields Assessment Demonstration Pilots--minimize the uncertainties of contamination often associated with brownfields. Under the TBA program, EPA provides funding and/or technical assistance for environmental assessments at brownfields sites throughout the country. Targeted Brownfields Assessments supplement and work with other efforts under EPA's Brownfields Initiative to promote cleanup and redevelopment of brownfields. Cooperative Agreement Recipients-States, political subdivisions, territories, and Indian tribes become Brownfields Cleanup Revolving Loan Fund (BCRLF) cooperative agreement recipients when they enter into BCRLF cooperative agreements with the U.S. EPA. EPA selects BCRLF cooperative agreement recipients based on a proposal and application process. BCRLF cooperative agreement for specified brownfields-related cleanup activities.

Date of Government Version: 01/29/2007 Date Data Arrived at EDR: 01/31/2007 Date Made Active in Reports: 04/04/2007 Number of Days to Update: 63 Source: Environmental Protection Agency Telephone: 202-566-2777 Last EDR Contact: 03/12/2007 Next Scheduled EDR Contact: 06/11/2007 Data Release Frequency: Semi-Annually

CONSENT: Superfund (CERCLA) Consent Decrees

Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters.

Date of Government Version: 08/23/2006 Date Data Arrived at EDR: 03/06/2007 Date Made Active in Reports: 04/10/2007 Number of Days to Update: 35 Source: Department of Justice, Consent Decree Library Telephone: Varies Last EDR Contact: 04/23/2007 Next Scheduled EDR Contact: 07/23/2007 Data Release Frequency: Varies

ROD: Records Of Decision

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.

Date of Government Version: 03/27/2007	
Date Data Arrived at EDR: 03/27/2007	
Date Made Active in Reports: 04/27/2007	
Number of Days to Update: 31	

Source: EPA Telephone: 703-416-0223 Last EDR Contact: 03/27/2007 Next Scheduled EDR Contact: 07/02/2007 Data Release Frequency: Annually

UMTRA: Uranium Mill Tailings Sites

Uranium ore was mined by private companies for federal government use in national defense programs. When the mills shut down, large piles of the sand-like material (mill tailings) remain after uranium has been extracted from the ore. Levels of human exposure to radioactive materials from the piles are low; however, in some cases tailings were used as construction materials before the potential health hazards of the tailings were recognized.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 11/08/2006 Date Made Active in Reports: 01/29/2007 Number of Days to Update: 82 Source: Department of Energy Telephone: 505-845-0011 Last EDR Contact: 03/20/2007 Next Scheduled EDR Contact: 06/18/2007 Data Release Frequency: Varies

ODI: Open Dump Inventory

An open dump is defined as a disposal facility that does not comply with one or more of the Part 257 or Part 258 Subtitle D Criteria.

Date of Government Version: 06/30/1985 Date Data Arrived at EDR: 08/09/2004 Date Made Active in Reports: 09/17/2004 Number of Days to Update: 39 Source: Environmental Protection Agency Telephone: 800-424-9346 Last EDR Contact: 06/09/2004 Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

TRIS: Toxic Chemical Release Inventory System

Toxic Release Inventory System. TRIS identifies facilities which release toxic chemicals to the air, water and land in reportable guantities under SARA Title III Section 313.

Date of Government Version: 12/31/2004	Source: EPA
Date Data Arrived at EDR: 06/22/2006	Telephone: 202-566-0250
Date Made Active in Reports: 08/23/2006	Last EDR Contact: 04/27/2007
Number of Days to Update: 62	Next Scheduled EDR Contact: 06/18/2007
	Data Release Frequency: Annually

TSCA: Toxic Substances Control Act

Toxic Substances Control Act. TSCA identifies manufacturers and importers of chemical substances included on the TSCA Chemical Substance Inventory list. It includes data on the production volume of these substances by plant site.

Date of Government Version: 12/31/2002 Date Data Arrived at EDR: 04/14/2006 Date Made Active in Reports: 05/30/2006 Number of Days to Update: 46 Source: EPA Telephone: 202-260-5521 Last EDR Contact: 04/16/2007 Next Scheduled EDR Contact: 07/16/2007 Data Release Frequency: Every 4 Years

FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act). To maintain currency, EDR contacts the Agency on a quarterly basis.

 Date of Government Version: 02/26/2007
 Source: EPA/Office of Prevention, Pesticides and Toxic Substances

 Date Data Arrived at EDR: 03/01/2007
 Telephone: 202-566-1667

 Date Made Active in Reports: 04/10/2007
 Last EDR Contact: 03/19/2007

 Number of Days to Update: 40
 Next Scheduled EDR Contact: 06/18/2007

 Data Release Frequency: Quarterly
 Data Release Frequency: Quarterly

FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) A listing of FIFRA/TSCA Tracking System (FTTS) inspections and enforcements.

Date of Government Version: 02/26/2007SoDate Data Arrived at EDR: 03/01/2007TeDate Made Active in Reports: 04/10/2007LaNumber of Days to Update: 40Ne

Source: EPA Telephone: 202-566-1667 Last EDR Contact: 03/19/2007 Next Scheduled EDR Contact: 06/18/2007 Data Release Frequency: Quarterly

SSTS: Section 7 Tracking Systems

Section 7 of the Federal Insecticide, Fungicide and Rodenticide Act, as amended (92 Stat. 829) requires all registered pesticide-producing establishments to submit a report to the Environmental Protection Agency by March 1st each year. Each establishment must report the types and amounts of pesticides, active ingredients and devices being produced, and those having been produced and sold or distributed in the past year.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 03/13/2007 Date Made Active in Reports: 04/27/2007 Number of Days to Update: 45 Source: EPA Telephone: 202-564-4203 Last EDR Contact: 04/12/2007 Next Scheduled EDR Contact: 07/16/2007 Data Release Frequency: Annually

RADINFO: Radiation Information Database

The Radiation Information Database (RADINFO) contains information about facilities that are regulated by U.S. Environmental Protection Agency (EPA) regulations for radiation and radioactivity.

Date of Government Version: 01/30/2007 Date Data Arrived at EDR: 01/31/2007 Date Made Active in Reports: 02/27/2007 Number of Days to Update: 27 Source: Environmental Protection Agency Telephone: 202-343-9775 Last EDR Contact: 05/03/2007 Next Scheduled EDR Contact: 07/30/2007 Data Release Frequency: Quarterly

CDL: Clandestine Drug Labs

A listing of clandestine drug lab locations. The U.S. Department of Justice ("the Department") provides this web site as a public service. It contains addresses of some locations where law enforcement agencies reported they found chemicals or other items that indicated the presence of either clandestine drug laboratories or dumpsites. In most cases, the source of the entries is not the Department, and the Department has not verified the entry and does not guarantee its accuracy. Members of the public must verify the accuracy of all entries by, for example, contacting local law enforcement and local health departments.

Date of Government Version: 12/01/2006 Date Data Arrived at EDR: 01/08/2007 Date Made Active in Reports: 01/11/2007 Number of Days to Update: 3 Source: Drug Enforcement Administration Telephone: 202-307-1000 Last EDR Contact: 04/27/2007 Next Scheduled EDR Contact: 06/25/2007 Data Release Frequency: Quarterly

HIST FTTS: FIFRA/TSCA Tracking System Administrative Case Listing

A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

Date of Government Version: 10/19/2006 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/10/2007 Number of Days to Update: 40 Source: Environmental Protection Agency Telephone: 202-564-2501 Last EDR Contact: 03/19/2007 Next Scheduled EDR Contact: 06/18/2007 Data Release Frequency: No Update Planned

ICIS: Integrated Compliance Information System

The Integrated Compliance Information System (ICIS) supports the information needs of the national enforcement and compliance program as well as the unique needs of the National Pollutant Discharge Elimination System (NPDES) program.

Date of Government Version: 11/06/2006 Date Data Arrived at EDR: 02/02/2007 Date Made Active in Reports: 04/04/2007 Number of Days to Update: 61 Source: Environmental Protection Agency Telephone: 202-564-5088 Last EDR Contact: 04/16/2007 Next Scheduled EDR Contact: 07/16/2007 Data Release Frequency: Quarterly

LUCIS: Land Use Control Information System

LUCIS contains records of land use control information pertaining to the former Navy Base Realignment and Closure properties.

Date of Government Version: 12/09/2005 Date Data Arrived at EDR: 12/11/2006 Date Made Active in Reports: 01/11/2007 Number of Days to Update: 31 Source: Department of the Navy Telephone: 843-820-7326 Last EDR Contact: 03/26/2007 Next Scheduled EDR Contact: 06/11/2007 Data Release Frequency: Varies

DOT OPS: Incident and Accident Data

Department of Transporation, Office of Pipeline Safety Incident and Accident data.

Date of Government Version: 02/14/2007	Source: Department of Transporation, Office of Pipeline Safety
Date Data Arrived at EDR: 02/28/2007	Telephone: 202-366-4595
Date Made Active in Reports: 04/10/2007	Last EDR Contact: 02/28/2007
Number of Days to Update: 41	Next Scheduled EDR Contact: 05/28/2007
	Data Release Frequency: Varies

PADS: PCB Activity Database System

PCB Activity Database. PADS Identifies generators, transporters, commercial storers and/or brokers and disposers of PCB's who are required to notify the EPA of such activities.

Date of Government Version: 10/17/2006 Date Data Arrived at EDR: 11/29/2006 Date Made Active in Reports: 01/11/2007 Number of Days to Update: 43 Source: EPA Telephone: 202-566-0500 Last EDR Contact: 03/02/2007 Next Scheduled EDR Contact: 05/07/2007 Data Release Frequency: Annually

MLTS: Material Licensing Tracking System

MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis.

Date of Government Version: 01/11/2007 Date Data Arrived at EDR: 01/26/2007 Date Made Active in Reports: 02/27/2007 Number of Days to Update: 32 Source: Nuclear Regulatory Commission Telephone: 301-415-7169 Last EDR Contact: 04/02/2007 Next Scheduled EDR Contact: 07/02/2007 Data Release Frequency: Quarterly

MINES: Mines Master Index File

Contains all mine identification numbers issued for mines active or opened since 1971. The data also includes violation information.

Date of Government Version: 11/15/2006 Date Data Arrived at EDR: 12/28/2006 Date Made Active in Reports: 01/29/2007 Number of Days to Update: 32

Source: Department of Labor, Mine Safety and Health Administration Telephone: 303-231-5959 Last EDR Contact: 03/28/2007 Next Scheduled EDR Contact: 06/25/2007 Data Release Frequency: Semi-Annually

FINDS: Facility Index System/Facility Registry System

Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System).

Date of Government Version: 01/18/2007 Date Data Arrived at EDR: 01/23/2007 Date Made Active in Reports: 02/27/2007 Number of Days to Update: 35 Source: EPA Telephone: (215) 814-5000 Last EDR Contact: 04/02/2007 Next Scheduled EDR Contact: 07/02/2007 Data Release Frequency: Quarterly

> TC1921435.1s Page GR-7 AR100119

RAATS: RCRA Administrative Action Tracking System

RCRA Administration Action Tracking System. RAATS contains records based on enforcement actions issued under RCRA pertaining to major violators and includes administrative and civil actions brought by the EPA. For administration actions after September 30, 1995, data entry in the RAATS database was discontinued. EPA will retain a copy of the database for historical records. It was necessary to terminate RAATS because a decrease in agency resources made it impossible to continue to update the information contained in the database.

Date of Government Version: 04/17/1995 Date Data Arrived at EDR: 07/03/1995 Date Made Active in Reports: 08/07/1995 Number of Days to Update: 35 Source: EPA Telephone: 202-564-4104 Last EDR Contact: 03/05/2007 Next Scheduled EDR Contact: 06/04/2007 Data Release Frequency: No Update Planned

BRS: Biennial Reporting System

The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 03/06/2007 Date Made Active in Reports: 04/13/2007 Number of Days to Update: 38 Source: EPA/NTIS Telephone: 800-424-9346 Last EDR Contact: 03/06/2007 Next Scheduled EDR Contact: 06/11/2007 Data Release Frequency: Biennially

STATE AND LOCAL RECORDS

SHWS: This state does not maintain a SHWS list. See the Federal CERCLIS list and Federal NPL list.

State Hazardous Waste Sites. State hazardous waste site records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. Available information varies by state.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: Department of Environmental Protection Telephone: 304-926-0455 Last EDR Contact: 03/20/2007 Next Scheduled EDR Contact: 06/18/2007 Data Release Frequency: N/A

SWF/LF: List of M.S.W. Landfills/Transfer Station Listing

Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites.

Date of Government Version: 10/24/2006 Date Data Arrived at EDR: 10/25/2006 Date Made Active in Reports: 11/30/2006 Number of Days to Update: 36 Source: Division of Environmental Protection Telephone: 304-926-0499 Last EDR Contact: 04/25/2007 Next Scheduled EDR Contact: 07/23/2007 Data Release Frequency: Varies

LUST: Leaking Underground Storage Tanks

Leaking Underground Storage Tank Incident Reports. LUST records contain an inventory of reported leaking underground storage tank incidents. Not all states maintain these records, and the information stored varies by state.

Date of Government Version: 03/01/2007 Date Data Arrived at EDR: 03/28/2007 Date Made Active in Reports: 05/04/2007 Number of Days to Update: 37 Source: Division of Environmental Protection Telephone: 304-558-4253 Last EDR Contact: 03/28/2007 Next Scheduled EDR Contact: 06/25/2007 Data Release Frequency: Semi-Annually

UST: Underground Storage Tank Database Registered Underground Storage Tanks. UST's are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program.					
Date of Government Version: 12/28/2006 Date Data Arrived at EDR: 01/16/2007 Date Made Active in Reports: 02/07/2007 Number of Days to Update: 22	Source: Division of Environmental Protection Telephone: 304-759-0515 Last EDR Contact: 03/27/2007 Next Scheduled EDR Contact: 06/25/2007 Data Release Frequency: Annually				
SPILLS: Spills Listing A listing of spills and releases reported to the	Office of Emergency Services, they do not include any TRI information.				
Date of Government Version: 01/16/2007 Date Data Arrived at EDR: 02/20/2007 Date Made Active in Reports: 03/26/2007 Number of Days to Update: 34	Source: Office of Emergency Services Telephone: 304-558-5380 Last EDR Contact: 02/20/2007 Next Scheduled EDR Contact: 05/21/2007 Data Release Frequency: Varies				
INST CONTROL: Sites with Institutional Controls Sites that have institutional controls in place.					
Date of Government Version: 02/01/2007 Date Data Arrived at EDR: 04/10/2007 Date Made Active in Reports: 05/04/2007 Number of Days to Update: 24	Source: Department of Environmental Protection Telephone: 304-558-2508 Last EDR Contact: 03/21/2007 Next Scheduled EDR Contact: 06/18/2007 Data Release Frequency: Varies				
VCP: Voluntary Remediation Sites Sites involved in the Voluntary Remediation P	VCP: Voluntary Remediation Sites Sites involved in the Voluntary Remediation Program.				
Date of Government Version: 02/01/2007 Date Data Arrived at EDR: 04/10/2007 Date Made Active in Reports: 05/04/2007 Number of Days to Update: 24	Source: Department of Environmental Protection Telephone: 304-558-2745 Last EDR Contact: 03/21/2007 Next Scheduled EDR Contact: 06/18/2007 Data Release Frequency: Semi-Annually				
DRYCLEANERS: Listing of Drycleaner Locations A listing of drycleaners which use perchloroet	DRYCLEANERS: Listing of Drycleaner Locations A listing of drycleaners which use perchloroethylene.				
Date of Government Version: 12/18/2006 Date Data Arrived at EDR: 12/18/2006 Date Made Active in Reports: 12/29/2006 Number of Days to Update: 11	Source: Department of Environmental Protection Telephone: 304-926-0475 Last EDR Contact: 04/23/2007 Next Scheduled EDR Contact: 06/11/2007 Data Release Frequency: Varies				
is hindered by real or perceived contamination	d commercial or industrial properties, where the expansion or redevelopment n. Brownfields vary in size, location, age, and past use they probile assembly plant to a small, abandoned corner gas station.				
Date of Government Version: 03/22/2007 Date Data Arrived at EDR: 04/12/2007 Date Made Active in Reports: 05/04/2007 Number of Days to Update: 22	Source: Department of Environmental Protection Telephone: 304-926-0455 Last EDR Contact: 03/22/2007 Next Scheduled EDR Contact: 06/18/2007 Data Release Frequency: Varies				

Data Release Frequency: Varies

CDL: Drug Lab Site Locations

.

A listing of clandestine drug lab site locations.

Date of Government Version: 11/22/2006 Source: Department of Environmental Protection Date Data Arrived at EDR: 11/22/2006 Telephone: 304-926-0499 Last EDR Contact: 04/23/2007 Date Made Active in Reports: 12/29/2006 Number of Days to Update: 37 Next Scheduled EDR Contact: 06/11/2007 Data Release Frequency: Varies NPDES: Wastewater Discharge Permits Listing A listing of wastewater discharge permits. Date of Government Version: 02/06/2007 Source: Department of Environmental Protection Date Data Arrived at EDR: 02/06/2007 Telephone: 304-926-0495 Date Made Active in Reports: 03/26/2007 Last EDR Contact: 05/07/2007 Number of Days to Update: 48 Next Scheduled EDR Contact: 08/06/2007 Data Release Frequency: Varies AIRS: Permitted Facility and Emissions Listing Permitted facility and emissions information listing. Date of Government Version: 11/21/2006 Source: Department of Environmental Protection Date Data Arrived at EDR: 12/01/2006 Telephone: 304-926-0499 Date Made Active in Reports: 12/29/2006 Last EDR Contact: 03/20/2007 Number of Days to Update: 28 Next Scheduled EDR Contact: 05/21/2007 Data Release Frequency: Varies TRIBAL RECORDS INDIAN RESERV: Indian Reservations This map layer portrays Indian administered lands of the United States that have any area equal to or greater than 640 acres Date of Government Version: 12/31/2005 Source: USGS Date Data Arrived at EDR: 02/06/2006 Telephone: 202-208-3710 Date Made Active in Reports: 01/11/2007 Last EDR Contact: 02/08/2007 Number of Days to Update: 339 Next Scheduled EDR Contact: 05/07/2007 Data Release Frequency: Semi-Annually INDIAN LUST R8: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming. Date of Government Version: 02/19/2007 Source: EPA Region 8 Date Data Arrived at EDR: 02/27/2007 Telephone: 303-312-6271 Date Made Active in Reports: 04/04/2007 Last EDR Contact: 02/19/2007 Number of Days to Update: 36 Next Scheduled EDR Contact: 05/21/2007 Data Release Frequency: Quarterly INDIAN LUST R7: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Iowa, Kansas, and Nebraska Date of Government Version: 09/06/2006 Source: EPA Region 7 Date Data Arrived at EDR: 10/04/2006 Telephone: 913-551-7003 Date Made Active in Reports: 11/08/2006 Last EDR Contact: 02/19/2007 Next Scheduled EDR Contact: 05/21/2007 Number of Days to Update: 35 Data Release Frequency: Varies

INDIAN LUST R6: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in New Mexico and Oklahoma.

Date of Government Version: 01/04/2005 Date Data Arrived at EDR: 01/21/2005 Date Made Active in Reports: 02/28/2005 Number of Days to Update: 38 Source: EPA Region 6 Telephone: 214-665-6597 Last EDR Contact: 02/19/2007 Next Scheduled EDR Contact: 05/21/2007 Data Release Frequency: Varies

INDIAN LUST R4: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Florida, Minnesota, Mississippi and North Carolina.

Date of Government Version: 08/24/2006 Date Data Arrived at EDR: 09/11/2006 Date Made Active in Reports: 11/08/2006 Number of Days to Update: 58 Source: EPA Region 4 Telephone: 404-562-8677 Last EDR Contact: 02/19/2007 Next Scheduled EDR Contact: 05/21/2007 Data Release Frequency: Semi-Annually

INDIAN LUST R1: Leaking Underground Storage Tanks on Indian Land A listing of leaking underground storage tank locations on Indian Land.

Date of Government Version: 12/01/2006 Date Data Arrived at EDR: 12/01/2006 Date Made Active in Reports: 01/29/2007 Number of Days to Update: 59 Source: EPA Region 1 Telephone: 617-918-1313 Last EDR Contact: 02/19/2007 Next Scheduled EDR Contact: 05/21/2007 Data Release Frequency: Varies

INDIAN LUST R10: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Alaska, Idaho, Oregon and Washington.

Date of Government Version: 03/01/2007 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/04/2007 Number of Days to Update: 34 Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 02/19/2007 Next Scheduled EDR Contact: 02/21/2007 Data Release Frequency: Quarterly

INDIAN LUST R9: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in Arizona, California, New Mexico and Nevada

Date of Government Version: 03/30/2007 Date Data Arrived at EDR: 03/30/2007 Date Made Active in Reports: 04/27/2007 Number of Days to Update: 28 Source: Environmental Protection Agency Telephone: 415-972-3372 Last EDR Contact: 02/19/2007 Next Scheduled EDR Contact: 05/21/2007 Data Release Frequency: Quarterly

INDIAN UST R10: Underground Storage Tanks on Indian Land

Date of Government Version: 03/01/2007 Date Data Arrived at EDR: 03/01/2007 Date Made Active in Reports: 04/04/2007 Number of Days to Update: 34 Source: EPA Region 10 Telephone: 206-553-2857 Last EDR Contact: 02/19/2007 Next Scheduled EDR Contact: 05/21/2007 Data Release Frequency: Quarterly

05/21/2007

INDIAN UST R9: Underground Storage Tanks on Indian Land

Date of Government Version: 03/26/2007	Source: EPA Region 9
Date Data Arrived at EDR: 03/27/2007	Telephone: 415-972-3368
Date Made Active in Reports: 04/27/2007	Last EDR Contact: 02/19/2007
Number of Days to Update: 31	Next Scheduled EDR Contact: 05/21
	Data Release Frequency: Quarterly

INDIAN UST R4: Underground Storage Tanks on Indian Land

Date of Government Version: 08/24/2006	Source: EPA Region 4
Date Data Arrived at EDR: 09/11/2006	Telephone: 404-562-9424
Date Made Active in Reports: 11/08/2006	Last EDR Contact: 02/19/2007
Number of Days to Update: 58	Next Scheduled EDR Contact: 05/21/2007
	Data Release Frequency: Semi-Annually

INDIAN UST R6: Underground Storage Tanks on Indian Land

Date of Government Version: 01/11/2007	Source:
Date Data Arrived at EDR: 01/12/2007	Telepho
Date Made Active in Reports: 01/29/2007	Last EDI
Number of Days to Update: 17	Next Sch

Source: EPA Region 6 Telephone: 214-665-7591 Last EDR Contact: 02/19/2007 Next Scheduled EDR Contact: 05/21/2007 Data Release Frequency: Semi-Annually

INDIAN UST R1: Underground Storage Tanks on Indian Land A listing of underground storage tank locations on Indian Land.

Date of Government Version: 12/01/2006 Date Data Arrived at EDR: 12/01/2006 Date Made Active in Reports: 01/29/2007 Number of Days to Update: 59 Source: EPA, Region 1 Telephone: 617-918-1313 Last EDR Contact: 02/19/2007 Next Scheduled EDR Contact: 05/21/2007 Data Release Frequency: Varies

Next Scheduled EDR Contact: 05/21/2007 Data Release Frequency: Varies

Source: EPA Region 5 Telephone: 312-886-6136 Last EDR Contact: 02/19/2007

INDIAN UST R5: Underground Storage Tanks on Indian Land

Date of Government Version: 12/02/2004
Date Data Arrived at EDR: 12/29/2004
Date Made Active in Reports: 02/04/2005
Number of Days to Update: 37

INDIAN UST R8: Underground Storage Tanks on Indian Land

Date of Government Version: 02/19/2007	Source: EPA Region 8
Date Data Arrived at EDR: 02/27/2007	Telephone: 303-312-6137
Date Made Active in Reports: 04/04/2007	Last EDR Contact: 02/19/2007
Number of Days to Update: 36	Next Scheduled EDR Contact: 05/21/2007
	Data Release Frequency: Quarterly

INDIAN UST R7: Underground Storage Tanks on Indian Land

Date of Government Version: 09/06/2006	Source: EPA Region 7
Date Data Arrived at EDR: 10/04/2006	Telephone: 913-551-7003
Date Made Active in Reports: 11/08/2006	Last EDR Contact: 02/19/2007
Number of Days to Update: 35	Next Scheduled EDR Contact: 05/21/2007
	Data Release Frequency: Varies

EDR PROPRIETARY RECORDS

Manufactured Gas Plants: EDR Proprietary Manufactured Gas Plants

The EDR Proprietary Manufactured Gas Plant Database includes records of coal gas plants (manufactured gas plants) compiled by EDR's researchers. Manufactured gas sites were used in the United States from the 1800's to 1950's to produce a gas that could be distributed and used as fuel. These plants used whale oil, rosin, coal, or a mixture of coal, oil, and water that also produced a significant amount of waste. Many of the byproducts of the gas production, such as coal tar (oily waste containing volatile and non-volatile chemicals), sludges, oils and other compounds are potentially hazardous to human health and the environment. The byproduct from this process was frequently disposed of directly at the plant site and can remain or spread slowly, serving as a continuous source of soil and groundwater contamination.

Date of Government Version: N/A Date Data Arrived at EDR: N/A Date Made Active in Reports: N/A Number of Days to Update: N/A Source: EDR, Inc. Telephone: N/A Last EDR Contact: N/A Next Scheduled EDR Contact: N/A Data Release Frequency: No Update Planned

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

NJ MANIFEST: Manifest Information

Hazardous waste manifest information.

Date of Government Version: 01/01/2007 Date Data Arrived at EDR: 01/04/2007 Date Made Active in Reports: 02/13/2007 Number of Days to Update: 40 Source: Department of Environmental Protection Telephone: N/A Last EDR Contact: 04/05/2007 Next Scheduled EDR Contact: 07/02/2007 Data Release Frequency: Annually

NY MANIFEST: Facility and Manifest Data

Manifest is a document that lists and tracks hazardous waste from the generator through transporters to a TSD facility.

Date of Government Version: 10/26/2006 Date Data Arrived at EDR: 11/29/2006 Date Made Active in Reports: 01/05/2007 Number of Days to Update: 37 Source: Department of Environmental Conservation Telephone: 518-402-8651 Last EDR Contact: 03/02/2007 Next Scheduled EDR Contact: 05/28/2007 Data Release Frequency: Annually

PA MANIFEST: Manifest Information Hazardous waste manifest information.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 03/17/2006 Date Made Active in Reports: 06/06/2006 Number of Days to Update: 81 Source: Department of Environmental Protection Telephone: N/A Last EDR Contact: 04/16/2007 Next Scheduled EDR Contact: 06/11/2007 Data Release Frequency: Annually

Source: Department of Environmental Management

RI MANIFEST: Manifest information

Hazardous waste manifest information

Date of Government Version: 04/09/2007 Date Data Arrived at EDR: 04/12/2007 Date Made Active in Reports: 04/27/2007 Number of Days to Update: 15

WI MANIFEST: Manifest Information

Hazardous waste manifest information.

Date of Government Version: 12/31/2005 Date Data Arrived at EDR: 03/17/2006 Date Made Active in Reports: 05/02/2006 Number of Days to Update: 46 Source: Department of Natural Resources Telephone: N/A Last EDR Contact: 04/24/2007 Next Scheduled EDR Contact: 07/09/2007 Data Release Frequency: Annually

Next Scheduled EDR Contact: 06/18/2007 Data Release Frequency: Annually

Oil/Gas Pipelines: This data was obtained by EDR from the USGS in 1994. It is referred to by USGS as GeoData Digital Line Graphs from 1:100,000-Scale Maps. It was extracted from the transportation category including some oil, but primarily gas pipelines.

Telephone: 401-222-2797

Last EDR Contact: 03/19/2007

Electric Power Transmission Line Data

Source: PennWell Corporation

Telephone: (800) 823-6277

This map includes information copyrighted by PennWell Corporation. This information is provided on a best effort basis and PennWell Corporation does not guarantee its accuracy nor warrant its fitness for any particular purpose. Such information has been reprinted with the permission of PennWell.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

AHA Hospitals:

Source: American Hospital Association, Inc.

Telephone: 312-280-5991

The database includes a listing of hospitals based on the American Hospital Association's annual survey of hospitals. Medical Centers: Provider of Services Listing

Source: Centers for Medicare & Medicaid Services

Telephone: 410-786-3000

A listing of hospitals with Medicare provider number, produced by Centers of Medicare & Medicaid Services,

a federal agency within the U.S. Department of Health and Human Services.

Nursing Homes

Source: National Institutes of Health

Telephone: 301-594-6248

Information on Medicare and Medicaid certified nursing homes in the United States.

Public Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on elementary

and secondary public education in the United States. It is a comprehensive, annual, national statistical

database of all public elementary and secondary schools and school districts, which contains data that are comparable across all states.

Private Schools

Source: National Center for Education Statistics

Telephone: 202-502-7300

The National Center for Education Statistics' primary database on private school locations in the United States.

Daycare Centers: Day Care Center List

Source: Office of Social Services

Telephone: 304-558-7980

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 1999 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 and 2005 from the U.S. Fish and Wildlife Service.

STREET AND ADDRESS INFORMATION

© 2007 Tele Atlas North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

GEOCHECK®- PHYSICAL SETTING SOURCE ADDENDUM

TARGET PROPERTY ADDRESS

BROOKE COUNTY GLASS DUMP WASHINGTON PIKE WELLSBURG, WV 26070

TARGET PROPERTY COORDINATES

Latitude (North): Longitude (West): 40.26720 - 40° 16' 1.9" Universal Tranverse Mercator: UTM X (Meters): UTM Y (Meters): Elevation:

80.5884 ~ 80° 35' 18.2" Zone 17 534997.7 4457285.0 929 ft. above sea level

USGS TOPOGRAPHIC MAP

Target Property Map: Most Recent Revision: 40080-C5 STEUBENVILLE EAST, WV 1997

EDR's GeoCheck Physical Setting Source Addendum is provided to assist the environmental professional in forming an opinion about the impact of potential contaminant migration.

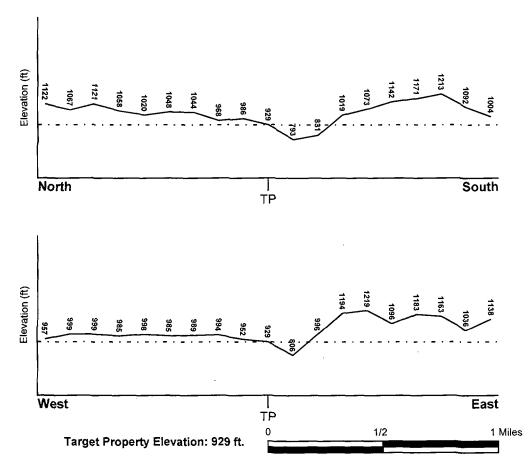
Assessment of the impact of contaminant migration generally has two principle investigative components:

- 1. Groundwater flow direction, and
- 2. Groundwater flow velocity.

Groundwater flow direction may be impacted by surface topography, hydrology, hydrogeology, characteristics of the soil, and nearby wells. Groundwater flow velocity is generally impacted by the nature of the geologic strata.

GEOCHECK® - PHYSICAL SETTING SOURCE SUMMARY

GROUNDWATER FLOW DIRECTION INFORMATION


Groundwater flow direction for a particular site is best determined by a qualified environmental professional using site-specific well data. If such data is not reasonably ascertainable, it may be necessary to rely on other sources of information, such as surface topographic information, hydrologic information, hydrogeologic data collected on nearby properties, and regional groundwater flow information (from deep aquifers).

TOPOGRAPHIC INFORMATION

Surface topography may be indicative of the direction of surficial groundwater flow. This information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

TARGET PROPERTY TOPOGRAPHY

General Topographic Gradient: General WSW

SURROUNDING TOPOGRAPHY: ELEVATION PROFILES

Source: Topography has been determined from the USGS 7.5' Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified.

HYDROLOGIC INFORMATION

Surface water can act as a hydrologic barrier to groundwater flow. Such hydrologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

Refer to the Physical Setting Source Map following this summary for hydrologic information (major waterways and bodies of water).

FEMA FLOOD ZONE

Target Property County BROOKE, WV	FEMA Flood <u>Electronic Data</u> YES - refer to the Overview Map and Detail Map
Flood Plain Panel at Target Property:	5400110045B
Additional Panels in search area:	5400110037B 5400110039B
NATIONAL WETLAND INVENTORY	· · · · · · · · · · · · · · · · · · ·
NWI Quad at Target Property STEUBENVILLE EAST	NWI Electronic <u>Data Coverage</u> YES - refer to the Overview Map and Detail Map

HYDROGEOLOGIC INFORMATION

Hydrogeologic information obtained by installation of wells on a specific site can often be an indicator of groundwater flow direction in the immediate area. Such hydrogeologic information can be used to assist the environmental professional in forming an opinion about the impact of nearby contaminated properties or, should contamination exist on the target property, what downgradient sites might be impacted.

AQUIFLOW®

Search Radius: 1.000 Mile.

EDR has developed the AQUIFLOW Information System to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted by environmental professionals to regulatory authorities at select sites and has extracted the date of the report, groundwater flow direction as determined hydrogeologically, and the depth to water table.

MAP ID Not Reported LOCATION FROM TP GENERAL DIRECTION

GROUNDWATER FLOW VELOCITY INFORMATION

Groundwater flow velocity information for a particular site is best determined by a qualified environmental professional using site specific geologic and soil strata data. If such data are not reasonably ascertainable, it may be necessary to rely on other sources of information, including geologic age identification, rock stratigraphic unit and soil characteristics data collected on nearby properties and regional soil information. In general, contaminant plumes move more quickly through sandy-gravelly types of soils than silty-clayey types of soils.

GEOLOGIC INFORMATION IN GENERAL AREA OF TARGET PROPERTY

Geologic information can be used by the environmental professional in forming an opinion about the relative speed at which contaminant migration may be occurring.

ROCK STRATIGRAPHIC UNIT

GEOLOGIC AGE IDENTIFICATION

Stratifed Sequence

Era:	Paleozoic	Category:
System:	Pennsylvanian	
Series:	Virgilian Series	
Code:	PP4 (decoded above as Era, System	& Series)

Geologic Age and Rock Stratigraphic Unit Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - a digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

DOMINANT SOIL COMPOSITION IN GENERAL AREA OF TARGET PROPERTY

The U.S. Department of Agriculture's (USDA) Soil Conservation Service (SCS) leads the National Cooperative Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps. The following information is based on Soil Conservation Service STATSGO data.

Soil Component Name:	WESTMORELAND	
Soil Surface Texture:	silt loam	
Hydrologic Group:	Class B - Moderate infiltration rates. Deep and moderately deep, moderately well and well drained soils with moderately coarse textures.	
Soil Drainage Class:	Well drained. Soils have intermediate water holding capacity. Depth to water table is more than 6 feet.	
Hydric Status: Soil does not meet the requirements for a hydric soil.		
Corrosion Potential - Uncoated Steel: LOW		
Depth to Bedrock Min:	> 40 inches	

Depth to Bedrock Max: > 40 inches

			Soil Layer	r Information				
	Bou	Indary		Classification				
Layer	Upper Lower		Soil Texture Class			Permeability Rate (in/hr)	Soil Reaction (pH)	
1	0 inches	7 inches	silt loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), silt.	Max: 2.00 Min: 0.60	Max: 6.00 Min: 4.50	
2	7 inches	36 inches	silty clay loam	Silt-Clay Materials (more than 35 pct. passing No. 200), Silty Soils.	FINE-GRAINED SOILS, Silts and Clays (liquid limit less than 50%), Lean Clay	Max: 2.00 Min: 0.60	Max: 6.00 Min: 4.50	
3	36 inches	49 inches	very channery - Ioam	Granular materials (35 pct. or less passing No. 200), Silty, or Clayey Gravel and Sand.	COARSE-GRAINED SOILS, Gravels, Gravels with fines, Silty Gravel	Max: 2.00 Min: 0.60	Max: 6.00 Min: 5.10	
4	49 inches	53 inches	weathered bedrock	Not reported	Not reported	Max: 2.00 Min: 0.06	Max: 0.00 Min: 0.00	

OTHER SOIL TYPES IN AREA

Based on Soil Conservation Service STATSGO data, the following additional subordinant soil types may appear within the general area of target property.

Soil Surface Textures:	very stony - silt loam silty clay
Surficial Soil Types:	very stony - silt loam silty clay
Shallow Soil Types:	channery - Ioam silty clay clay
Deeper Soil Types:	extremely channery - loam unweathered bedrock

LOCAL / REGIONAL WATER AGENCY RECORDS

EDR Local/Regional Water Agency records provide water well information to assist the environmental professional in assessing sources that may impact ground water flow direction, and in forming an opinion about the impact of contaminant migration on nearby drinking water wells.

WELL SEARCH DISTANCE INFORMATION

DATABASE	SEARCH D
Federal USGS	1.000
Federal FRDS PWS	Nearest PV

SEARCH DISTANCE (miles) 1.000 Nearest PWS within 1 mile 1.000

FEDERAL USGS WELL INFORMATION

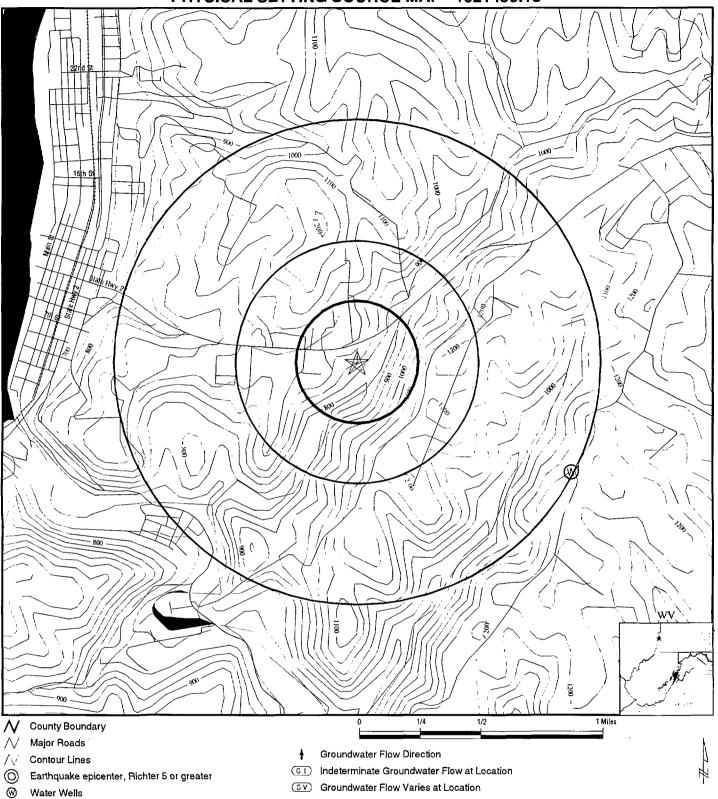
State Database

		LOCATION
MAP ID	WELL ID	FROM TP
1	USGS2266878	1/2 - 1 Mile ESE

FEDERAL FRDS PUBLIC WATER SUPPLY SYSTEM INFORMATION

.

MAP ID	WELL ID	LOCATION FROM TP
No PWS System Found		


Note: PWS System location is not always the same as well location.

STATE DATABASE WELL INFORMATION

		LOCATION
MAP ID	WELL ID	FROM TP
No Wells Found		

TC1921435.1s Page A-6

PHYSICAL SETTING SOURCE MAP - 1921435.1s

- Ø Public Water Supply Wells
- Cluster of Multiple Icons ۲

SITE NAME: Brooke County Glass Dump	CLIENT: Triad Engineering
ADDRESS: Washington Pike	CONTACT: Lydia Work
Wellsburg WV 26070	INQUIRY #: 1921435.1s
LAT/LONG: 40.2672 / 80.5884	DATE: May 07, 2007 7:02 pm
	Copyright (# 2007 EDR, Inc. # 2007 Tele Atlas Rel. 07/2006. AR 100 133

Copyright @ 2007 EDR, Inc. @ 2007 Tele Allas Rel. 07/2006.

;

GEOCHECK®- PHYSICAL SETTING SOURCE MAP FINDINGS

Map ID Direction Distance					
Elevation			Database	EDR ID Number	
1 ESE 1/2 - 1 Mile Higher			FED USGS	USGS2266878	
Agency cd: Site name: Latitude:	USGS Brk-0032 401538	Site no:	401538080341901		
Longitude: Dec lon: Coor accr:	0803419 -80.57173902 S	Dec lat: Coor meth: Latlong datum:	40.26062608 M NAD27		
Dec lationg datum: State:	NAD83 54	District: County:	54 009		
Country: Location map: Altitude:	US STEUBENVILLE EAST 1190.00	Land net: Map scale:	Not Reported 24000		
Altitude method: Altitude accuracy: Altitude datum:	Interpolated from topographic map 10				
Hydrologic: Topographic:	National Geodetic Vertical Datum Upper OhioWheeling. Ohio, Penr Hilltop		: 1490 sq.mi.		
Site type: Date inventoried: Local standard time flag:	Ground-water other than Spring Not Reported Y	Date construction: Mean greenwich time offset:	19590101 EST		
Type of ground water site: Aquifer Type: Aquifer:	Single well, other than collector of Not Reported MONONGAHELA FORMATION	or Ranney type			
Well depth: Source of depth data: Project number:	62.0 owner 445404500	Hole depth:	62.0		
Real time data flag: Daily flow data end date: Peak flow data begin date:	0 0000-00-00 0000-00-00	Daily flow data begin date: Daily flow data count: Peak flow data end date:	0000-00-00 0 0000-00-00		
Peak flow data count: Water quality data end date	0 :1982-07-29	Water quality data begin date: Water quality data count:	1982-07-29 1		
Ground water data begin da Ground water data count:		Ground water data end date:	0000-00-00		

Ground-water levels, Number of Measurements: 0

TC1921435.1s Page A-8

AREA RADON INFORMATION

EPA Region 3 Statistical Summary Readings for Zip Code: 26070

Number of sites tested: 82.

Maximum Radon Level: 50.8 pCi/L. Minimum Radon Level: 0.3 pCi/L.

pCi/L	pCi/L	pCi/L.	pCi/L	pCi/L	pCi/L
<4	4-10	_10-20	20-50	50-100	>100
45 (54.88%)	27 (32.93%)	6 (7.32%)	2 (2.44%)	2 (2.44%)	0 (0.00%)

TC1921435.1s Page A-9

TOPOGRAPHIC INFORMATION

USGS 7.5' Digital Elevation Model (DEM)

Source: United States Geologic Survey

EDR acquired the USGS 7.5⁻ Digital Elevation Model in 2002 and updated it in 2006. The 7.5 minute DEM corresponds to the USGS 1:24,000- and 1:25,000-scale topographic quadrangle maps. The DEM provides elevation data with consistent elevation units and projection.

HYDROLOGIC INFORMATION

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 1999 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 2002 and 2005 from the U.S. Fish and Wildlife Service.

HYDROGEOLOGIC INFORMATION

AQUIFLOW^R Information System

Source: EDR proprietary database of groundwater flow information

EDR has developed the AQUIFLOW Information System (AIS) to provide data on the general direction of groundwater flow at specific points. EDR has reviewed reports submitted to regulatory authorities at select sites and has extracted the date of the report, hydrogeologically determined groundwater flow direction and depth to water table information.

GEOLOGIC INFORMATION

Geologic Age and Rock Stratigraphic Unit

Source: P.G. Schruben, R.E. Arndt and W.J. Bawiec, Geology of the Conterminous U.S. at 1:2,500,000 Scale - A digital representation of the 1974 P.B. King and H.M. Beikman Map, USGS Digital Data Series DDS - 11 (1994).

STATSGO: State Soil Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Services

The U.S. Department of Agriculture's (USDA) Natural Resources Conservation Service (NRCS) leads the national Conservation Soil Survey (NCSS) and is responsible for collecting, storing, maintaining and distributing soil survey information for privately owned lands in the United States. A soil map in a soil survey is a representation of soil patterns in a landscape. Soil maps for STATSGO are compiled by generalizing more detailed (SSURGO) soil survey maps.

SSURGO: Soil Survey Geographic Database

Source: Department of Agriculture, Natural Resources Conservation Services (NRCS) Telephone: 800-672-5559

SSURGO is the most detailed level of mapping done by the Natural Resources Conservation Services, mapping scales generally range from 1:12,000 to 1:63,360. Field mapping methods using national standards are used to construct the soil maps in the Soil Survey Geographic (SSURGO) database. SSURGO digitizing duplicates the original soil survey maps. This level of mapping is designed for use by landowners, townships and county natural resource planning and management.

LOCAL / REGIONAL WATER AGENCY RECORDS

FEDERAL WATER WELLS

PWS: Public Water Systems

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Public Water System data from the Federal Reporting Data System. A PWS is any water system which provides water to at least 25 people for at least 60 days annually. PWSs provide water from wells, rivers and other sources.

PHYSICAL SETTING SOURCE RECORDS SEARCHED

PWS ENF: Public Water Systems Violation and Enforcement Data

Source: EPA/Office of Drinking Water

Telephone: 202-564-3750

Violation and Enforcement data for Public Water Systems from the Safe Drinking Water Information System (SDWIS) after August 1995. Prior to August 1995, the data came from the Federal Reporting Data System (FRDS).

USGS Water Wells: USGS National Water Inventory System (NWIS)

This database contains descriptive information on sites where the USGS collects or has collected data on surface water and/or groundwater. The groundwater data includes information on wells, springs, and other sources of groundwater.

STATE RECORDS

West Virginia Water Well Information

Source: Bureau of Public Health

Telephone: 304-558-6765

OTHER STATE DATABASE INFORMATION

RADON

Area Radon Information

Source: USGS Telephone: 703-356-4020

The National Radon Database has been developed by the U.S. Environmental Protection Agency (USEPA) and is a compilation of the EPA/State Residential Radon Survey and the National Residential Radon Survey. The study covers the years 1986 - 1992. Where necessary data has been supplemented by information collected at private sources such as universities and research institutions.

EPA Radon Zones

Source: EPA Telephone: 703-356-4020 Sections 307 & 309 of IRAA directed EPA to list and identify areas of U.S. with the potential for elevated indoor radon levels.

EPA Region 3 Statistical Summary Readings

Source: Region 3 EPA Telephone: 215-814-2082 Radon readings for Delaware, D.C., Maryland, Pennsylvania, Virginia and West Virginia.

OTHER

Airport Landing Facilities: Private and public use landing facilities Source: Federal Aviation Administration, 800-457-6656

Epicenters: World earthquake epicenters, Richter 5 or greater Source: Department of Commerce, National Oceanic and Atmospheric Administration

STREET AND ADDRESS INFORMATION

© 2007 Tele Atlas North America, Inc. All rights reserved. This material is proprietary and the subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas North America, Inc. The use of this material is subject to the terms of a license agreement. You will be held liable for any unauthorized copying or disclosure of this material.

Appendix 2

City of Wellsburg Annual Drinking Water Quality Report 2005

Annual Drinking Water Quality Report 2005 Wellsburg Water Dept. City Hall 70 7th Street Wellsburg, WV 26070 304-737-2104 WVPWSID# 3300517 April 6th, 2006

Why am I receiving this report?

In compliance with the Safe Drinking Water Act Amendments, the Wellsburg Water Dept. is providing its customers with this annual water quality report. This report explains where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. The information in this report shows the results of our monitoring for the period of January 1st to December 31st, 2005 or earlier if not on a yearly schedule.

If you have any questions concerning this report, you may contact Ernie Jack, Utilities Supervisor (a) 304-737-3002

If you have any further questions, comments or suggestions, please attend any of our regularly scheduled water board meetings held on the 4th Wednesday of every month at 5:00PM at City Hall, 70 7th Street in Wellsburg.

Where does my water come from?

Your water source is surface water from 4 deep wells along the Ohio River Basin.

Source Water Assessment

A Source Water Assessment was conducted in 2003 by the West Virginia Bureau for Public Health (WVBPH). The intake that supplies drinking water to the Wellsburg Water has a moderate susceptibility to contamination, due to the sensitive nature of surface water supplies and the potential contaminant sources identified within the area. This does not mean that this intake will become contaminated; only that conditions are such that the surface water could be impacted by a potential contaminant source. Future contamination may be avoided by implementing protective measures. The source water assessment report which contains more information is available for review or a copy will be provided to you at our office during business hours or from the WVBPH 304-558-2981.

Why must water be treated?

All drinking water contains various amounts and kinds of contaminants. Federal and state regulations establish limits, controls, and treatment practices to minimize these contaminants and to reduce any subsequent health effects.

Contaminants in Water

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits of contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

The source of drinking water (both tap and bottled water) includes rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of land or through the ground, it dissolves naturally-occurring minerals, and, in some cases radioactive material and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.

Inorganic contaminants, such as salts and metals, which can be naturally-occurring, or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, farming.

Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can, also, come from gas stations, urban storm water runoff, and septic systems.

Radioactive contaminants, which can be naturally-occurring or the result of oil and gas production and mining activities.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Water Quality Data Table

Definitions of terms and abbreviations used in the table or report-

- MCLG Maximum Contaminant Level Goal, or the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- MCL Maximum Contaminant Level, or the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technique.
- MRDLG Maximum Residual Disinfectant Level Goal, or the level of drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect benefits of use of disinfectants to control microbial contaminants.
- MRDL Maximum Residual Disinfectant Level, or the highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of disinfectant is necessary to control microbial contaminants.

Abbreviations that may be found in the table:

- ppm parts per million or milligrams per liter
- ppb parts per billion or micrograms per liter
- NE not established
- N/A not applicable

The Wellsburg Water Dept routinely monitors for contaminants in your drinking water according to federal and state laws. The tables below show the results of our monitoring for contaminants.

Inorganic Contaminants						
Copper	N	0.105	ppm.	1.3	AL=1.3	Corresion of household plumbing, crosion of natural deposits
Fluoride	N	1.04	ppm	4	4	Erosion of natural deposits; water additive that promotes wheng texth; discharge from aluminum and feralizer plant
Lead	N	0.18	ppb	0	AL=15	Corrosion of household plumbing, proviou of natural deposits
Nitrate	N	0.49	ppm	10	10	Runoff from fertilizer use; crosion of natural deposits
Volatile Organic Contaminants						
Chlorine	N	1,5	ppm	4 MRDLG	4 MKDL	Water additive used to contro microbes

Table of Test Results - Regulated Contaminants -

* Copper and lead samples were collected from (20) area residences on (8/25/2005). Only the 90th percentile is reported. None of the samples collected exceeded the MCL.

WE ARE PLEASED TO REPORT THAT THE WELLSBURG WATER DEPT. MET ALL FEDERAL AND STATE WATER STANDARDS FOR THE REPORTING YEAR 2005.

Additional Information

All other water test results for the reporting year 2005 were all non-detects.

Appendix 3

CLP Analytical Results

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III ENVIRONMENTAL SCIENCE CENTER 701 MAPES ROAD FORT MEADE, MARYLAND 20755-5350

DATE : April 19, 2007

SUBJECT: Region III Data QA Review

FROM : Khin-Cho Thaung KC1 Region III ESAT RPO (3EA20)

TO : James Hargett Regional Project Manager (3HS12)

Attached is the inorganic data validation report for the Brooke County Glass Dump site (Case # 36279; SDG #MC2101) completed by the Region III Environmental Services Assistance Team (ESAT) contractor under the direction of Region III EAID.

If you have any questions regarding this review, please call me at (410) 305-2743.

Attachment

cc: Pam Hayes/Lydia Work WVDEP/TRIAD

TO File #: 0007 TDF#: 0451

ANALYTICAL SERVICES AND QUALITY ASSURANCE BRANCH

LOCKHEED MARTI We never forget who we're working for"

Lockheed Martin Information Technology ESAT Region 3 US EPA Environmental Science Center 701 Mapes Road Ft. Meade, MD 20755-5350 Telephone 410-305-3037 Facsimile 410-305-3597

- **DATE:** April 17, 2007
- SUBJECT: Inorganic Data Validation (IM1 Level) Case: 36279 SDG: MC2101 Site: Brooke County Glass Dump
- FROM: Mirna Alpizar MH Inorganic Data Reviewer

Mahboobeh Mecanic "" Senior Oversight Chemist

TO: Khin-Cho Thaung ESAT Region 3 Project Officer

OVERVIEW

Case 36279, Sample Delivery Group (SDG) MC2101, consisted of seven (7) aqueous samples analyzed for total metals by Sentinel Inc. (SENTIN). The sample set contained one (1) field duplicate pair. Samples were analyzed in accordance with Contract Laboratory Program (CLP) Statement of Work (SOW) ILM05.4 through Routine Analytical Services (RAS) program.

SUMMARY

Data were validated according to EPA Region III Innovative Approaches (Level IM1) for Validation of Inorganic Data, June 1995, which includes review of all Forms but excludes the review of raw data. Areas of concern with respect to data usability are listed below.

Data in this case have been impacted by an outlier present in the sample preservation. Details of this outlier are discussed under "Minor Problem" and qualified analytical results for all samples are summarized on the Data Summary Forms (DSFs).

MINOR PROBLEM

Samples MC2102 and MC2103 had a pH > 2. As per Region instructions, the samples were preserved prior to digestion. Positive results for all analytes in these samples may be biased low and have been qualified "L" unless superseded by "J" on the DSFs. Quantitation limits for all analytes in these samples may be biased low and have been qualified "UL" on the DSFs.

NOTES

Reported results with values greater than the MDL but below CRQL were qualified "J" on the DSFs.

The cooler used to transport all samples for this SDG had an interior temperature of 18° C. This temperature is outside the control limit (4°C ± 2°C). Due to the thermo-stability of metals, no data were qualified based on the cooler temperature.

The laboratory reported that inadvertently the matrix spike was spiked at four times (4X) the contract required level; however, the laboratory had insufficient sample volume to re-digest the matrix spike. Therefore, the laboratory diluted the matrix spike (0.25 dilution factor) and proceeded with the analysis. Values reported on Form 5A-Matrix Spike Sample Recovery are corrected values from the raw data.

Reported results for field duplicate pair MC2113/MC2115 were within 20% RPD, ±CRQL for all analytes except aluminum (Al) and iron (Fe).

Data for Case 36279, SDG MC2101, were reviewed in accordance with EPA Region 3 Innovative Approaches (Level IM1) for Validation of Inorganic Data, June 1995.

ATTACHMENTS

INFORMATION REGARDING REPORT CONTENT

APPENDIX A	GLOSSARY OF DATA QUALIFIER CODES
APPENDIX B	DATA SUMMARY FORM(S)
APPENDIX C	CHAIN OF CUSTODY RECORD(S)
APPENDIX D	LABORATORY CASE NARRATIVE(S)

DCN: 36279 MC2101.IM1.doc

APPENDIX A

GLOSSARY OF DATA QUALIFIERS

GLOSSARY OF DATA QUALIFIER CODES (INORGANIC)

CODES RELATED TO IDENTIFICATION

(confidence concerning presence or absence of analytes):

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

(NO CODE) = Confirmed identification.

- B = Not detected substantially above the level reported in laboratory or field blanks.
- R = Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

CODES RELATED TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = Analyte Present. Reported value may not be accurate or precise.
- K = Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L = Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.
- UL = Not detected, quantitation limit is probably higher.

OTHER CODES

Q = No analytical result.

APPENDIX B

DATA SUMMARY FORMS (DSF)

DATA SUMMARY FORM: INORGANIC

Page _1_ of _2__

Case #: 36279 Site : Lab. :

SDG : MC2101 BROOKE COUNTY GLASS DUMP SENTIN

Number of Soil Samples : 0 Number of Water Samples: 7

Sample Number :		MC2101		MC2102		MC2103		MC2112		MC2113	
Sampling Location :		GW1		ĠW2		GW3		SW1		SW2	
Field QC:										F. Dup MC2	2115
Matrix :		Water		Water		Water		Water		Water	
Units :		ug/L		ug/L		ug/L		ug/L		ug/L	
Date Sampled :		3/27/2007		3/27/2007		3/27/2007		3/26/2007		3/26/2007	
Time Sampled :		11:05		11:15		12:30		11:20		11:10	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	200	130	J	128	J	198	J	281		504	
ANTIMONY	60				UL		UL				
ARSENIC	10				UL		UL	1	1		
BARIUM	500	29.4	J	41.5	j	51.3	J	34.3	J.,	342	J
BERYLLIÚM	5				UL		UL				
CADMIUM	5			and the second second	ų.		UL	· · ·	.		
CALCIUM	5000	74200		85900	L	89400	L	93200		90500	
CHROMIUM	10				UL	1.3	Ļ.				
COBALT	50			·	UL		UL				
COPPER	25	1 N 10 10			UL	0.00	UL.				ļ
IRON	100	59.1	J	47.8	J	142	L	441		643	
*LEAD	. 10				UL.		UL.		r		
MAGNESIUM	5000	16500		17400	L.	28900	L	34900		33900	
MANGANESE	16	3.8	J.	A2	- 7	3.5	J	317		312	
MERCURY	0.2	0.080	J	0.090	J	0.090	L	0.080	J		
NICKEL	40				UL		UL				
POTASSIUM	5000	1610	J	1510	J	5100	L	2800	J	2720	J
SELENIUM	35	22,A	ં ડ	× 15.6	1.		UL				123
SILVER	10		 >>>>>>		UL		UL				
SODIUM	5000	18500		.17300	ļ°ι.	112000	L-	16200	1	15400	ļ
THALLIUM	25				UL		UL				
VANADIUM	60				UL.	1.7	1				10.20
ZINC CRQL = Contract Required Quantitation I	60	l	<u> </u>		UL		UL	6.0	J	5.4	J

CRQL = Contract Required Quantitation Limit To calculate sample quantitation limits: (CRQL * Dilution Factor)

*Action Level Exists

Revised 09/99

DATA SUMMARY FORM: INORGANIC

Case #: 36279	SDG : MC2101
Site :	BROOKE COUNTY GLASS DUMP
Lab.:	SENTIN

Sample Number :		MC2114		MC2115							
Sampling Location :		SW3		SW4							
Field QC:				F. Dup MC2	113						
Matrix :		Water		Water							
Units :		ug/L		ug/L		•					
Date Sampled :		3/26/2007		3/26/2007					i		
Time Sampled :		10:50		11:10							
Dilution Factor :		1.0		1.0							
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	200	264		269		100 C		, i			
ANTIMONY	60										
ARSENIC	(Qf					1948 - AN		5 .			
BARIUM	200	34.2	J	34.6	٦					***	
BERYLLIUM	5 .	<u>.</u>		÷							
*CADMIUM	5										
GALCIUM	5000	92600		92400							
*CHROMIUM	10		[į.		
COBALT	50,				N.ad						
COPPER	25								an an ana a	ak commentation and an an an an	
IPON	100	390		385							
*LEAD	10										
MAGNEBIUM	5000	34600		34700						10.00	
MANGANESE	15	314		310							
MERCURY	0.2	0.070	L						J	É	
*NICKEL	40									ononana nooraana iro	
POTASSIUM	5000	2870	J	2670	3	1 () () () () () () () () () (
SELENIUM	35	COMPANY AND				and the second				an a	
SILVER	.10			1992 - Marine I.				2			
SODIUM	5000	15600		15700					K 1101 NG20000		
THALLIUM	25								ļ		
VANADIUM	50			1							
ZINC	60	43		4.6	4	<u> </u>					

CRQL = Contract Required Quantitation Limit

*Action Level Exists

____ .

SEE NARRATIVE FOR CODE DEFINITIONS Revised 09/99

To calculate sample quantitation limits: (CRQL * Dilution Factor)

APPENDIX C

CHAIN-OF-CUSTODY RECORDS

Region: Project Code:	3			Date Shipped:	3/30/2007		Chain of Custody	Record	Sempi Signat	
Account Code: CERCLIS (D:	CT3907 2007T03W WV000245	302DD2(783 6275	9601900	Carrier <u>Heme:</u> Airbilt: Shipped to:	FedEx 86057550706 Sentinel Inc.	3	Relinquished By	(Date 1) 3/35/07		ved By (Date / Time)
Spill ID: Sile Name/State: Project Leader: Action:	Brooke Co Lydia Wori Brownfields		Ŵ		118 Washingt NE Huntsville AL (256) 534-980	35801	3	10 (J)5-167 14		
Sampling Co:	Triad Engir						4			
INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONG/ TYPE	ANALYSIE TURNAROUND	TAG PREMERVATI		STATION LOCATION		COLLECT E/THE	ORGANIC SAMPLE NO	QC), Type
	ound Water/ ry Hilgar	M/G	TM (21)	31 (1)		GW1	S: 3/27/2007	11:05		
	ound Water/ ry Hilgar	M/G	TM (21)	32 (1)		GW2	S: 3/27/2007	11:15		• -
	ound Water/ ry Hilgar	M/G	TM (21)	33 (†)		GW3	S: 3/27/2007	12:30		-
	liment/ rol Phillips	M/G	TM (21)	310 (1)		SED1	S: 3/26/2007	11:20		-
	imeni/ ol Phillipa	M/G	TM (21)	311 (1)		\$ED2	\$: 3/26/2007	11:05		-
	liment/ lia Work	₩/G	TM (21)	312 (1)		SED3	S: 3/28/2007	10:55		-
	liment/ of Phillips	M/G	TM (21)	313 (1)		SED4	S: 3/26/2007	11:05		Field Duplicate
	face Wales/ of Phillips	M/G	TM (21)	314 (1)		SW 1	S: 3/26/2007	11:20		, t
	face Water/ of Phillips	M/G	TM (21)	317 (1)		SW2	\$: 3/26/2007	11:10		-
	lace Water/ ia Work	MG	TM (21).	318 (1)		SW3	8: 3/26/2007	10:50	•	-
	lace Water/ of Phillips	MĠ	TM (21)	319 (1)		SW4	S: 3/26/2007	11:10		Field Duplicate
present for Case replate? Y	Sampie(s) to be used fo	or laboratory QC:		Additional Sam	Her Signaturo(s):	()	,	Chuin o	Custody Seel Humber:
-	MC2103	, MC2111, M	C2112, MC2120		1 AM	a U.L	Car			

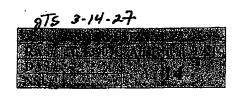
PR provides proliminary results. Requests for proliminary results will increase analytical costs. Send Copy to: Sample Management Office, Attn: Heather Bsuer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax

F2V6.1.047 PERR 100 153

84/13/2071

98:45

3042968739


TRIAD ENGINEERING

PAGE

82

١

U.S. EPA Region III Analytical Request Form

Date: 03/14/2007		Site Activity: Site Inspection Reassessment								
Site Name: Brooke	: Brooke County Glass Dump Street Address: Washington Pike									
City: Wellsburg	,	St	ate: V	WV	Latitude: 40°16'5"		·	Longitude: 80°35'18"		
Program: Superfur	ld	A	:ct. #: 2	2007 T 03N 302DD2C	B398 QB00		CERCLIS #: W	V0002456275		
Site ID:		Sp	ill ID:		Operable Unit: 0)		
Site Specific QA P	lan Submitted:]No 🛛Yes	Title:	Sampling and Analys	s Plan, Brooke Cou	nty G	lass Dump, Rev. 2	September 2006 Date Approved: October 2006		
EPA Project Leade	r: James Hargett	34512	Phor	ne#: 215-814-3305	Cell Phone #:			E-mail: Hargett.James@epa.gov		
Request Preparer:	Carol Phillips		Phor	ne#: 304-296-2562	Cell Phone #:			E-mail: cphillips@triadeng.com		
Site Leader: Pam	Hayes, WVDEP		Phon	ne#: 304-926-0499	Cell Phone #:			E-mail: pdhayes@wvdep.org		
Contractor: Triad	Engineering, Inc.			EPA CO/PO:						
#Samples 23	Matrix: soil	4	Parameter: TAL Metals			QĽ	8 present	Method: ILM05.3		
#Samples 6	Matrix: sedim		Parameter: TAL Metals			Method: ILM05.3				
#Samples 6	Matrix: water-	non potable		Parameter: TAL Me	etals		•	Method: ILM05.3		
#Samples 9	Matrix: water-	non potable	Τ,	Parameter: TAL Me	letals, Dissolved			Method: ILM05.3		
#Samples 7	Matrix: water-	drinking	$\overline{\mathcal{N}}$	Parameter: TAL Me	Metals			Method: ILM05.3		
#Samples	Matrix:			Parameter:				Method:		
#Samples	Matrix:			Parameter:				Method:		
#Samples	Matrix:			Parameter:				Method:		
#Samples	Matrix:			Parameter:				Method:		
Ship Date From: 3	/26/2007	Ship Date 7	To: 3/2	6/2007	Org. Validation Lev	vel N	I/A	Inorg. Validation Level IM1		
Unvalidated Data I	Requested: 🛛 No	Yes If	Yes, T	AT Needed: 24hrs	: 48hrs 272	hrs []7days] Other	(Specify)		
Validated Data Pac	kage Due: 🗌 14 d	lays 🛛 21 da	ys [30days 🗍 42 days	Other (Specify	y)	14/	<u></u> ቻ		
Electronic Data De	liverables Required	: 🗌 No 🕅	Yes	(EDDs will be provid	ed in Region 3 EDI) Forn	nat)			
Special Instructions:										

Target Analyte	CAS Number	Action Lim	H-	Project Required Quantitation Limit
Matais (00/L)		Action Lan		
ALUMINUM	7429905	200	2	200
ANTIMONY	7440360	6	1	2
ARSENIC	7440382	10	1	10
BARIUM	7440393	2,000	1	200
BERYLLIUM	7440417	4	1	1
CADMIUM	7440439	5	1	· 5
CALCIUM	7440702	NV NV		5,000
CHROMIUM	18540299	100	1	10
COBALT	7440484	730	3	50
COPPER	7440508	1,000	2	25
IRON	7439896	300	2	100
LEAD	7439921	15	1	× 10
MAGNESIUM	7439954	NV		5,000
MANGANESE	7439965	50	2	15
MERCURY	7439976	2	1	0.2
NICKEL	7440020	730	3	40
POTASSIUM	7440097	NV		5,000
SELENIUM	7782492	50	1	35
SILVER	7440224	1,000	2	10
SODIUM	7440235	NV		5,000
THALLIUM	7440280	2	1	1
VANADIUM	7440622	37	3	1
ZINC	7440666	5,000	2	60

TABLE 4. GROUNDWATER LABORATORY ANALYTICAL SUMMARY Brooke County Glass Dump CERCLIS Site (WV0002456275) Wellsburg, Brooke County, West Virginia

Notes

1 USEPA National Primary Drinking Water Standard MCL, Winter 2004.

2 USEPA National Secondary Drinking Water Standard MCL, Winter 2004.

3 USEPA Region III Tap Water Risk Based Concentration, April 2005.

NV - No Value Available for compound

Target Analyte	CAS Number	Action Lim	ît_	Project Required Quantitation Limit
Hotela (ug/C)	9			
ALUMINUM	7429905	750	3	200
ANTIMONY	7440360	640	1	60
ARSENIC	7440382	0.14	1	1
BARIUM	7440393	1,000	3	200
BERYLLIUM	7440417	0.0077	3	1
CADMIUM	7440439	10	3	5
CALCIUM	7440702	NV		5,000
CHROMIUM	18540299	50	3	10
COBALT	7440484	NV		50
COPPER	7440508	1,300	2	25
IRON	7439896	1.5	3	10
LEAD	7439921	50	3	10
MAGNESIUM	7439954	NV		5,000
MANGANESE	7439965	1,000	3	15
MERCURY	⁴ 7439976	0.14	3	0.1
NICKEL	7440020	4,600	1	40
POTASSIUM	7440097	NV		5,000
SELENIUM	7782492	4,200	1	35
SILVER	7440224	4	3	1
SODIUM	7440235	NV		5,000
THALLIUM	7440280	6.3	1	2.5
VANADIUM	7440622	NV		50
	7440666	26,000	1	60

TABLE 5. SURFACE WATER LABORATORY ANALYSIS SUMMARY Brooke County Glass Dump CERCLIS Site (WV0002456275) Wellsburg, Brooke County, West Virginia

Notes

1 USEPA National Recommended Water Quality Criteria, November 2002, Human Health for Consumption of Organisms.

2 USEPA National Recommended Water Quality Criteria, November 2002, Human Health for Consumption of Water and Organisms.

3 West Virginia 46CSR1 Requirements Governing Water Quality Standards.

* Benchmarks for metals calculated by assuming a hardness value of 100 mg/L.

NV - No Value Available for compound

.

١

Lindsey Cholewa

 From:
 "Berardino, Michelle" <mberardino@fedcsc.com>

 To:
 "Lindsey Cholewa" <lcholewa@sentinellab.com>

 Cc:
 "Carroll" <harris.carroll@epa.gov>; "Dan Slizys" <slizys.dan@epa.gov>; "John" <kwedar.john@epa.gov>;

 Sent:
 Thursday, April 05, 2007 3:36 PM

 Subject:
 Region 03 | Case 36279 | Lab SENTIN | Issue Multiple | FINAL

-Record of Communication Update-

This ROC has been updated to reflect the accurate sample ID in issue 5.

Summary Start

-Missing temperature blank-

Issue 1: There was no temperature blank in the cooler. The temperature of a sample was 18 C. Resolution 1: Per Region 3, the issue must be documented in the SDG/Case Narrative.

-Discrepancies with tags, jars, and/or TR/COC-

Issue 2: The TR/COC does not list HG as a required analysis, however, the Case is scheduled for it per the Scheduling Notification Form.

Resolution 2: In accordance with previous direction from Region 3, the laboratory will note the issue in the Case/SDG Narrative, perform the analyses as indicated on the Scheduling Notification Form, and proceed with the analysis of the samples.

Issue 3: The TR/COC lists the TAT as 21 days, however, per the Scheduling Notification Form this Case has a 14 day TAT. Resolution 3: In accordance with previous direction from Region 3, the laboratory will proceed with the turnaround time indicated on the Scheduling Notification Form, note the issue in the Case/SDG Narrative, and proceed with the analysis of the samples.

Issue 4: The Case was scheduled for both filtered and non-filtered water samples, however, the Case is complete and the TR/COC does not designate any samples as filtered.

Resolution 4: Per Region 3, filtered samples for this Case is no longer needed. Please note the issue in the Case/SDG Narrative.

-pH outside allowable limits-

Issue 5: Sample MC2102 has a pH of 6 and sample MC2103 has a pH of 5. Resolution 5: In accordance with previous direction from Region 3, the laboratory will note the issue in the Case/SDG Narrative, adjust the pH, and proceed with the analysis of the samples. ***Summary End***

Please let me know if you have any further questions or problems. Thanks,

Beth Rudolph for

Michelle Berardino Computer Sciences Corporation CLP Coordinator for Regions 1 & 3 mberardino@fedcsc.com 703.818.5264

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From: Lindsey Cholewa [mailto:lcholewa@sentinellab.com] Sent: Thursday, April 05, 2007 4:02 PM To: Berardino, Michelle Subject: Re: Region 03 | Case 36279 | Lab SENTIN | Issue Multiple | FINAL

AR10045/2007

FYI..

Michellefor issue 5 below, the correct sample ID should be MC2103 not MC1203.

Thanks,

LC

----- Original Message -----From: Berardino, Michelle To: bkilgore@sentinellab.com; Daphne; Lindsey; sample_receipt@sentinellab.com Cc: Carroll; Dan Slizys; John; Khin-Cho Sent: Thursday, April 05, 2007 6:52 AM Subject: Region 03 | Case 36279 | Lab SENTIN | Issue Multiple | FINAL

Lindsey,

-Missing temperature blank-Issue 1: There was no temperature blank in the cooler. The temperature of a sample was 18 C. Resolution 1: Per Region 3, the issue must be documented in the SDG/Case Narrative.

-Discrepancies with tags, jars, and/or TR/COC-

Issue 2: The TR/COC does not list HG as a required analysis, however, the Case is scheduled for it per the Scheduling Notification Form.

Resolution 2: In accordance with previous direction from Region 3, the laboratory will note the issue in the Case/SDG Narrative, perform the analyses as indicated on the Scheduling Notification Form, and proceed with the analysis of the samples.

Issue 3: The TR/COC lists the TAT as 21 days, however, per the Scheduling Notification Form this Case has a 14 day TAT. Resolution 3: In accordance with previous direction from Region 3, the laboratory will proceed with the turnaround time indicated on the Scheduling Notification Form, note the issue in the Case/SDG Narrative, and proceed with the analysis of the samples.

Issue 4: The Case was scheduled for both filtered and non-filtered water samples, however, the Case is complete and the TR/COC does not designate any samples as filtered.

Resolution 4: Per Region 3, filtered samples for this Case is no longer needed. Please note the issue in the Case/SDG Narrative.

-pH outside allowable limits-

Issue 5: Sample MC2102 has a pH of 6 and sample MC1203 has a pH of 5.

Resolution 5: In accordance with previous direction from Region 3, the laboratory will note the issue in the Case/SDG Narrative, adjust the pH, and proceed with the analysis of the samples.

Please let me know if you have any further questions or problems.

Thanks, Michelle Berardino Computer Sciences Corporation CLP Coordinator for Regions 1 & 3 mberardino@fedcsc.com 703.818.5264

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From: Lydia M. Work [mailto:lwork@triadeng.com] Sent: Wednesday, April 04, 2007 3:41 PM To: Slizys.Dan@epamail.epa.gov; Berardino, Michelle; Carroll Harris Cc: Carol Phillips; Pam Hayes; Heather A. Napier Subject: RE: RE: NEW ISSUE | Case 36279 | Lab SENTIN | Issue Multiple| Hi, All-

Thank you for addressing the issues listed. Please see my responses to the remaining items.

Item 1: Since the samples were metals only, we did not feel a temperature blank was technically warranted (i.e., metals don't volatilize). For clarification, should we provide a temperature blank every time, even if it is metals only?

Item 2: We were able to collect groundwater samples from clear flowing springs, as a result, filtering was not performed. All waters are for total metals only.

Another clarification; I thought "TM" on the Traffic Report/COC included Hg? I thought you specify only when Hg is not included. See

<u>http://www.epa.gov/superfund/programs/clp/download/trs/inlabins.pdf</u>. If we need to list Hg separately every time, please let us know. I would hate for the lab to miss an analytical request over a simple miscommunication.

Thanks, -Lydia

>>> <Slizys.Dan@epamail.epa.gov> 4/4/2007 2:38 PM >>>

Michelle, Carol and Pam,

Issue 1: the lab must document that no temperature blank was submitted and temperature of the sample cooler in the case narrative.

Issue 4: The field personnel must reply and provide the identificaction of the filtered samples.

Issues 2, 3, and 5 were acceptable responses to the lab.

(See attached file: CT3907.doc)

"Berardino, Michelle" <mberardino@fedc To sc.com> Dan Slizys/ESC/R3/USEPA/US@EPA cc 04/04/2007 01:51 PM Subject RE: NEW ISSUE | Case 36279 | Lab SENTIN | Issue Multiple |

Dan,

Have you had a chance to look into issues 1 and 4 below yet? The CT number is 3907. Thanks!

-Michelle

-----Original Message-----From: Berardino, Michelle Sent: Wednesday, April 04, 2007 8:15 AM

To: 'Slizys.Dan@epamail.epa.gov' Subject: RE: NEW ISSUE | Case 36279 | Lab SENTIN | Issue Multiple |

Dan,

It is CT3907. Please let me know if you need any more information. Thanks,

Michelle Berardino Computer Sciences Corporation

-----Original Message-----From: Slizys.Dan@epamail.epa.gov [mailto:Slizys.Dan@epamail.epa.gov] Sent: Wednesday, April 04, 2007 7:18 AM To: Berardino, Michelle Cc: harris.carroll@epa.gov; slizys.dan@epa.gov; kwedar.john@epa.gov Subject: Re: NEW ISSUE | Case 36279 | Lab SENTIN | Issue Multiple |

Michelle,

What is the "CT" number. I can not find 36279 in our database.

Michelle,

Please advise on issues 1 and 4. The remaining issues have been resolved using standard answers.

-Missing temperature blank-

Issue 1: There was no temperature blank in the cooler. The temperature of a sample was 18 C.

The issue must be documented in the case narrative.

-Discrepancies with tags, jars, and/or TR/COC- Issue 2: The TR/COC does not list HG as a required analysis, however, the Case is scheduled for it per the Scheduling Notification Form.

Resolution 2: In accordance with previous direction from Region 3, the laboratory will note the issue in the Case/SDG Narrative, perform the analyses as indicated on the Scheduling Notification Form, and proceed with the analysis of the samples.

The response is acceptable.

Issue 3: The TR/COC lists the TAT as 21 days, however, per the Scheduling Notification Form this Case has a 14 day TAT.

Resolution 3: In accordance with previous direction from Region 3, the laboratory will proceed with the turnaround time indicated on the Scheduling Notification Form, note the issue in the Case/SDG Narrative, and proceed with the analysis of the samples.

The response is acceptable.

Issue 4: The Case was scheduled for both filtered and non-filtered water samples, however, the Case is complete and the TR/COC does not designate any samples as filtered.

I will have to contact the field personnel for clarification.

-pH outside allowable limits-Issue 5: Sample MC2102 has a pH of 6 and sample MC1203 has a pH of 5. Resolution 5: In accordance with previous direction from Region 3, the laboratory will note the issue in the Case/SDG Narrative, adjust the pH, and proceed with the analysis of the samples. The response is acceptable. Please let me know if you have any questions. Thanks,

Michelle Berardino Computer Sciences Corporation CLP Coordinator for Regions 1 & 3 mberardino@fedcsc.com 703.818.5264

٠

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From: Lindsey Cholewa [mailto:lcholewa@sentinellab.com]

Sent: Monday, April 02, 2007 1:46 PM To: Berardino, Michelle Subject: case 36279

Michelle-

Today the lab received samples for case 36279.

1. There was no temp blank in the cooler. Using a non invasive laser thermometer, the temperature of a sample was 18.0C.

2. The TR/COC does not list Hg as a required analysis, however the case is scheduled for it. The lab assumes that this is an error on the TR/COC and will proceed with the scheduled analysis.

3. The TR/COC lists the TAT as 21 days, however the case is listed as a 14 day TAT. The lab assumes that this is an error on the TR/COC and will proceed with the scheduled TAT.

4. The case was scheduled for both filtered and nonfiltered water samples, however we only received samples listed for total metal analysis. Are we to expect the additional water samples?

5.Sample MC2102 has pH of 6 and sample MC1203 has pH of 5.

Thanks,

Lindsey Cholewa Sample Receipt Coordinator/Environmental Scientist Sentinel,Inc. 256-534-9800 Ex.22

APPENDIX D

LABORATORY CASE NARRATIVE

U.S. EPA - CLP

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Sentinel, I	Inc. SOW No.: I	LM05.4 Contra	act: EPW06059
Lab Code: SENTIN	Case No.: <u>3627</u>	NRAS NO.:	SDG NO. : MC210
If a blank is absent, Cooler temperature(s)	perature Blank: PRESENT , a non-invasive laser m , recorded via laser mea , ommunication (ROC) regar	leasurement is take surement were: 18	n using a sample.
Refer to ROC regardin	ng tag discrepancies for	samples:	· · · · · · · · · · · · · · · · · · ·
Refer to ROC regardin	ng sample preservation d	liscrepancies for s	amples:
Refer to ROC regardin • QNOLLISIS • • filtered samples	no longer needed for thi	nues on cor s case	1TE
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
QC Specified: Yes 🗸	No If no, chose	:	
ANALYSIS: The follow	ving analyte(s) were est	imated due to poss	ible matrix interferences:
			······································
			· · · · · · · · · · · · · · · · · · ·
DOCUMENT CONTROL: TH Initial Assessment: Full Assessment:	-	ects resulted due	to CCS program anomalies:
A waiver has been	requested for defects	AR212 + 1029	
	•••••••••••••••••••••••••••••••••••••••		<u></u>
anomalies. 2. Internal St	n Values in the raw data tandard calculations in %RI (decimal form-not a	the raw data are r	eported as the reciprocal
	SOW Exhibit D (ICP-MS)		
Signature: Name & Title:B	ruilque Conce	D	ate: 4/4/07
	SDG NARRATI	(VE - 1	· ILM05.4

AR100164

```
U.S. EPA - CLP
```

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Sentinel, Inc. SOW No.: ILM05.4 Contract: EPW06059
Lab Code: SENTIN Case No.: SDG No.: MC210
EQUATIONS:
HW1 Method: Concentration (μ g/L) = C x (V_f/V_i) x DF
WHERE, $C = Instrument value in \mu g/L$
$V_r =$ Final digestion volume (mL) $V_i =$ Initial digestion volume (mL)
DF = Dilution Factor
· · · · · · · · · · · · · · · · · · ·
HS1 Method: Concentration (dry wt.) $(mg/kg) = ((C \times V)/(W \times S)) \times DF$
WHERE, $C = Concentration (mg/L)$
V = Final sample volume in Liters (L)
W = Wet sample weight (kg) S = % Solids/100
DF = Dilution Factor
CW1 Method: Concentration (μ g/L) = C x (V_f/V_i) x DF
WHERE, C = Instrument value in μ g/L (The average of all replicate integrations).
$V_f = Final digestion volume (mL) V_i = Initial digestion volume (mL)$
$V_i = \text{Initial digestion volume (all)}$ DF = Dilution Factor
·
CS1 Method: Concentration $(mg/kg) = (A \times D \times F) / (B \times E)$
WHERE, $A = Concentration in \mu g/L$
B = Weight in g D = Dilution Factor
E = % Solids/100
F = Final Volume (0.100 L)
$\cap \mathcal{A}$
Signature: 4/6/07
Name & Title: BUNK: If we OMOR Date:
SDG NARRATIVE - 2 ILM05.4

.

.

U.S	EPA	÷	CLP

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Sentinel, Inc. SOW No.: ILM05.4 Contract: EPW06059
Lab Code: SENTIN Case No.: 36279 NRAS No.: SDG No.: $MC2[D]$
EQUATIONS:
DW2 Method: CN Concentration $(\mu g/L) = (A \times D \times F)/B$
<pre>WHERE, A = µg/L CN of sample from regression analysis B = volume of original sample for distillation (0.050 L) D = any dilution factor necessary to bracket sample values within standard values F = sample receiving solution volume (0.050 L)</pre>
DS2 Method: CN Concentration $(mg/kg) = (A \times D \times F) / (B \times E)$
<pre>WHERE, A = µg/L CN of sample from regression analysis B = wet weight of original sample (g) D = any dilution factor necessary to bracket sample values within standard values E = % solids/100 F = sample receiving solution volume (0.050 L)</pre>
HW2 Method: Concentration $(\mu g/L) = C \times (V_f/V_i) \times (V_f/20) \times DF$
WHERE, C = Instrument value in μ g/L (The average of all replicate integrations). V_f = Final digestion volume (50 mL) V_i = Initial digestion volume (100 mL) DF = Dilution Factor
HW3 Method: Concentration $(\mu g/L) = C \times (V_f/V_i) \times DF$
WHERE, C = Instrument value in μ g/L (The average of all replicate integrations). V_f = Final digestion volume (mL) V_i = Initial digestion volume (mL) DF = Dilution Factor
Signature:

AR100166

.

Page 1 of 1

Naiver Request

Randi Hicks

From:	"Randi Hicks" <rhicks@sentinellab.com></rhicks@sentinellab.com>
To:	<gurley.cindy@epa.gov></gurley.cindy@epa.gov>
Cc:	"Beverly Kilgore" <bkilgore@sentinellab.com></bkilgore@sentinellab.com>
Sent:	Friday, April 06, 2007 9:53 AM
Subject:	Waiver Request for SDG MC2101, Case 36279

To: Cindy Gurley, R4 Project Officer Date: 04/06/07 Contract #: EPW06059 Re: Request for Waiver for SDG MC2101, Case# 36279

Sentinel, Inc. request a waiver for the referenced SDG due to insufficient sample volume available to perform redigestion on the matrix spike sample. The matrix spike sample was inadvertently spiked at a four times greater level than required. Therefore a 0.25 dilution factor was used in reporting the data to obtain correct numerical values. This in turn resulted in defects AA21.2 and AQ29. Thank you for you consideration in this matter.

Randi D. Richey Inorganic Supervisor/ Environmental Scientist Sentinel Inc. (256) 534-9800 ext. 23

4/6/2007

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III ENVIRONMENTAL SCIENCE CENTER 701 MAPES ROAD FORT MEADE, MARYLAND 20755-5350

DATE : April 24, 2007

SUBJECT: Region III Data QA Review

FROM : Khin-Cho Thaung KCT Region III ESAT RPO (3EA20)

TO : James Hargett Regional Project Manager (3HS12)

Attached is the inorganic data validation report for the Brooke County Glass Dump site (Case # 36279; SDG #MC2108) completed by the Region III Environmental Services Assistance Team (ESAT) contractor under the direction of Region III EAID.

If you have any questions regarding this review, please call me at (410) 305-2743.

Attachment

cc: Pam Hayes/Lydia Work WVDEP/TRIAD

TO File #: 0007

TDF#: 0450

ANALYTICAL SERVICES AND QUALITY ASSURANCE BRANCH

Lockheed Martin Information Technology ESAT Region 3 US EPA Environmental Science Center 701 Mapes Road Ft. Meade, MD 20755-5350 Telephone 410-305-3037 Facsimile 410-305-3597

DATE: April 1'	7, 2007
-----------------------	---------

- SUBJECT: Level IM1 Inorganic Data Validation for Case 36279 SDG: MC2108 Site: Brooke County Glass Dump
- FROM: Shilpa Udani ζΛ Inorganic Data Reviewer
- Through:Mahboobeh MecanicSenior Data Review Chemist
- TO: Khin-Cho Thaung ESAT Region 3 Project Officer

OVERVIEW

Case 36279, Sample Delivery Group (SDG) MC2108, consisted of twelve (12) soil samples submitted to Sentinel, Inc. (SENTIN) for total metals analysis. The sample set included one (1) field duplicate pair. Samples were analyzed in accordance with Contract Laboratory Program (CLP) Statement of Work (SOW) ILM05.4 through Routine Analytical Services (RAS) program.

SUMMARY

Validation of data was performed according to EPA Region III Innovative Approaches for Validation of Inorganic Data, Level IM1, which includes review of all Forms but excludes review of raw data. Areas of concern with respect to data usability are listed below.

Data in this Case have been impacted by outliers present in laboratory blanks as well as ICP serial dilution and matrix spike analyses. Details for these outliers are discussed under "Major and Minor Problems". Qualified analytical results for all samples are summarized on Data Summary Forms (DSFs).

MAJOR PROBLEM

The matrix spike recovery was extremely low (< 30%) for antimony (Sb). The positive results reported for this analyte may be biased extremely low and have been qualified "L" on the DSFs unless superseded by "J". Quantitation limits for this analyte are unusable and have been qualified "R" on the DSFs.

MINOR PROBLEMS

The continuing calibration blank (CCB) had reported results greater than the Method Detection Limit (MDL) for beryllium (Be) and mercury (Hg). Positive results reported for these analytes in affected samples which are less than or equal to five times ($\leq 5X$) blank concentration may be biased high and have been qualified "B" on the DSFs.

Percent Differences (%Ds) for ICP serial dilution analysis were outside control limits (>10%) for aluminum (Al), barium (Ba), calcium (Ca), chromium (Cr), cobalt (Co), iron (Fe), magnesium (Mg), manganese (Mn), nickel (Ni), potassium (K), vanadium (V), and zinc (Zn). Reported positive results for these analytes are estimated and have been qualified "J" on the DSFs.

The matrix spike recoveries were low (<75% but >30%) for selenium (Se) and thallium (Tl). The low recovery may be attributed to matrix interferences or analyte lost during the digestion process. Reported results and quantitation limits for these analytes may be biased low and have been qualified "L" and "UL" on the DSFs unless superseded by "J".

The matrix spike recovery was high (>125%) for Zn. Positive results reported for this analyte in this SDG may be biased high. The "K" qualifier for this outlier has been superseded by "J" on the DSFs.

<u>NOTES</u>

Positive results which are less than the Contract Required Quantitation Limit (CRQL) but greater than MDL have been qualified "J" on the DSF unless superseded by "B".

The following samples were reanalyzed at dilutions in order to bring concentrations of analytes listed within the established calibration range. The results for these analytes in these samples are reported from the diluted analyses and annotated with a "+" on the DSFs.

<u>Sample</u>	Dilution factor	<u>Analyte</u>
MC2109	2 X	Mn
MC2122	2 X	cadmium (Cd)

The cooler chest used to transport samples in this case had an interior temperature of 18 °C, which exceeded the required cooler temperature of 4 °C to \pm 2 °C. Due to thermostability of metals, no data were qualified based on the sample cooler chest temperature.

Reported results for field duplicate pairs MC2109/MC2111 were within 35% RPD, ±2XCRQL for all analytes except Mn.

Data for Case 36279, SDG MC2108, were reviewed in accordance with EPA Region 3 Innovative Approaches (Level IM1) for Validation of Inorganic Data, June 1995.

ATTACHMENTS

INFORMATION REGARDING REPORT CONTENT

APPENDIX A GLOSSARY OF DATA QUALIFIER CODES APPENDIX B DATA SUMMARY FORM(S) APPENDIX C CHAIN OF CUSTODY RECORD(S) APPENDIX D LABORATORY CASE NARRATIVE(S)

DCN:36279_MC2108.IM1

Appendix A

Glossary of Data Qualifier Codes

GLOSSARY OF DATA QUALIFIER CODES

CODES RELATED TO IDENTIFICATION

(confidence concerning presence or absence of analytes):

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

(NO CODE) = Confirmed identification.

- B = Not detected substantially above the level reported in laboratory or field blanks.
- R = Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

CODES RELATED TO OUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = Analyte Present. Reported value may not be accurate or precise.
- K = Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L = Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- [] = Analyte present. As values approach the IDL the quantitation may not be accurate.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.
- UL = Not detected, quantitation limit is probably higher.

OTHER CODES

Q = No analytical result.

Appendix B

Data Summary Forms (DSFs)

Page _1_ of _3__

Case #: 36279 Site :

Lab.:

SDG : MC2108 BROOKE COUNTY GLASS DUMP SENTIN

Number of Water Samples: 0

					_						
Sample Number :		MC2108		MC2109		MC2110		MC2111		MC2118	
Sampling Location :	.SED1		SED2		SED3		SED4		SS1		
Field QC :	.			Dup. of MC	2111			Dup. of MC2109			
Matrix :		Soil		Soil		Soll		Soil		Soli	
Units :		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :		3/26/2007		3/26/2007		3/26/2007		3/26/2007		3/26/2007	
Time Sampled :		11:20		11:05		10:55		11:05		11:55	
%Solids:		63.7	1	57.3		68.2		67.3		69.7	
Dilution Factor :		1.0		1.0 / 2.0		1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	20	7610	J	8500	J	7040	J	7950	J	8060	J
ANTIMONY T RUSS	<u>्</u> रु 6 ,	1.5	J	臺灣加	E S	1993-19 1991-197	1		RL	國主義結	G _1
ARSENIC	1.	10.9		11.9		7.2		11.3		9.7	
BARIUM	- 20	1.478.3	J_6	. 197.		1904		*** 103	ل يد	104	J .
BERYLLIUM	0.5	1.0		1.4		1.2		1.1		1.1	
GADMILM	05	020		0.66	្ស	0.57	1	10 C	前海	-2,0	2
CALCIUM	500	7890	J	10400	J	3910	J	7860	.J	17400	J
CHROMIUM				19.6	_J	13.0	劑量			20.4	1.4
COBALT	5	26.8	Ŷ	41.9	J	23.2	J	32,5	J	7.6	J
COPPER	25	26,8	<u> </u>	18.8664				31.0		27.0 -	
IRON	10	31900	J	30200	Э	38300	J	30700	J	19500	J
	 1/3	28.2		2 () () () () () () () () () (長い に		26.6		58.6	
MAGNESIUM	500	2990	J	2990	J	2510	J	2940	J	3700	J
MANGANESE	1.5	2380	<u>a</u>	6500 +		3270	J			949	利害
MERCURY	0.1	0.094	B	0.18	В	0.11	в	0.10	в	0.14	в
NCKEL	1 44		1 - 2 B	73.8	្ស	39.6	.	54.3	el en	言 16.3	32
POTASSIUM	500	1070	3	1140	J	993	J	1140	J	1260	J
SEPENION STATES		化化合金	Ú.		UL		∵UL ;		拉定書		33
SILVER	1	0.92	J	0.98	J	1.2	J	1.0	J	0.69	J
Sobium - Harris	500	5054		583	J	433	<u>.</u>	480		602	
THALLIUM	2.5	2.8	J	2.0	J	2.2	J	2.4	J		UL
VANADIUM	5	18,2	J.				Ц.	17.9	J	19.3	Ji
ZINC	6	125	J	141	.)	87.2	1	115	1	167	J

CRQL = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100) "+" = Result is reported from diluted analysis.

Revised 09/99

Case #: 3	6279	
Site :		
Lab. :		

SDG : MC2108 BROOKE COUNTY GLASS DUMP SENTIN

Sample Number :		MC2117		MC2118		MC2119		MC2121		MC2122	
Sampling Location :	:	SS10		.SS11		SS12	:	SS14		SS15	
Field QC :											
Matrix :		Soil		Soil		Soil		Soil		Soli	
Units :		.mg/Kg	i	mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :		3/27/2007		3/27/2007		3/27/2007		3/27/2007		3/27/2007	
Time Sampled :	i	11:45		13:20		13:27		11:50		11:22	
%Solids :		61.5		50.8		75.9		32.2		38.5	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0/2.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
A AULINUM		1810	変	新生活的	E VA	4410.2	い	2700	J -	2230	J. (*
ANTIMONY	6.	5.2	J	17.3	L	15.1	L	12.9	J	12.2	J
ARSENIC	設加管	104 2				365		A 442-	249 A	- 366 -	
BARIUM	20	359	J	102	.J	60.7	J	1150	J	755	J
BERXELIUM	1057	0.068	、加盟	18-30 A		0.0				0.14	記述
CADMIUM	0.5	66.4		180		302		37.7		8310 +	
CALCIUM	500	42703	影響	12500	Jas	11200		19400	的話	17500	
CHROMIUM	1	43.1	. J	18.5	J	40.6	J	130	J	26.7	J
OPAT	6	4.4		101 1516			V B		Ð	F 48	勤
COPPER	2.5	53.4		68.9		160	İ	105		72.9	
TRON OF THE REAL	10.4	35400	ゴ澤	21000	可器	25400		109000	$J \sim \tilde{I}$	87805	10-
"LEAD	1	3710		138		361		3370		763	
MAGNESIUM	-50014	524		Spatile of		73200				22, 2390	影
MANGANESE	1.5	298	J	425	J	311	J	1590	J	401	J
MERCURY	0.1			025	B	0.38		0.56	8	0.40	B
NICKEL	4	14.8	J	13.5	J	31.8	J	28.2	J	20.8	J
BOTABSIUM	1.500	306		542	ુ	536	Ĵ	877		541	J
SELENIUM	3.5	24.6	L	96.6	L	284	L	45.3	L	569	L
SLVB		t.5		0.90	ाहतू जुहार	10	1	2.5	可道家	5 20.84	1
SODIUM	500	13600		1260		5520		19000		2690	<u> </u>
TFALLUM	25	14 "	有能		U.	s 🗧 1 č	<u>.</u>	5.34	5 T		UL
VANADIUM	5	4.6	4	5.4		9.4	5	7.8	5	5.7	5
ZNC		6370	15	4.1.4	4	22.2700	5	9240	記録	1290	15)

CRQL = Contract Required Quantitation Limit

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100) "+" = Result is reported from diluted analysis. SEE NARRATIVE POR CODE DEFINITIONS

Revised 09/99

Case #: 36279 Site : Lab. : SDG : MC2108 BROOKE COUNTY GLASS DUMP SENTIN

Sample Number :		MC2123		MC2124							
Sampling Location :		SS16		SS17		ļ					
Field QC :						1			:		
Matrix :		Soil		Soil							
Units :		mg/Kg		mg/Kg							
Date Sampled :		3/27/2007		3/27/2007							
Time Sampled :		11:18		11:15							
%Solids:		42.3		69.5							
Dilution Factor :		1.0		1.0							
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	20	4090	J	7030	J		_				
ANTIMONY	6	18.0	L		۲ ۲	and the second					
ARSENIC	1	181		113							
BARIUM	20	216	印刷	273	J. 3			Re-			
BERYLLIUM	0.5	0.25	в	0.69	J						
CADMIUM	1005			+ 41.0							100
CALCIUM	500	14200	J	17500	J	·					
CHROMIUM		58.9		18.6	•d <u></u> ⊒	的新闻				and the second second	olean) George
COBALT	5	51.2	J	11.9	J						
COPPER	25.	97.7		5160							
IRON	10	27800	J	24300	. J						
I EAD		¥ 343	****	45					i e		
MAGNESIUM	500	3090	J	2810	.J						
A PANGANESE A TELEVISION	1.5	445	讨罪				厚薪,	影相相相。			
MERCURY	0.1	0.79		0.15	в						
NICKEL	4	46.4	う響	1 24.5 计							
POTASSIUM	500	625	J.	1820	J						
SELENIUM	3.5	186	Û.	19.64	副影						经资源
SILVER	1	1.1	J	0.78	J						
SODIUM	15001	A 3640		1600							
THALLIUM	2.5		UL		UL						
VANADOM	5		in the second		J						
ZINC	6	1760	J	723	J						

CRQL = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

Revised 09/99

Appendix C

Chain-of-Custody Records

b

U.S. EPA Region III Analytical Request Form

975 3-14-27 255 9714-27

	3627	9							
Date: 03/14/2007			: Site In	spection Reassessme	ent				
Site Name: Brooke Co	unty Glass Dum	>			Street	Street Address: Washington Pike			
City: Wellsburg		s	State: V	vv	Latitude: 40°16'5"			Longitude: 80°35'18"	
Program: Superfund		A	Acct. #: 2	007 T 03N 302DD20	C B398 QB00 CERCLIS #: WV			70002456275	
Site ID:	ite ID: Spill ID:						Operable Unit: 0		
Site Specific QA Plan	Submitted:	No Yes	Title:	Sampling and Analys	sis Plar	, Brooke County G	lass Dump, Rev. 2	September 2006 Date Approved: October 2006	
EPA Project Leader: James Hargett 3H512 Phone#: 215-814-3305						ell Phone #:		E-mail: Hargett.James@epa.gov	
Request Preparer: Car				e#: 304-296-2562	C	cell Phone #:		E-mail: cphillips@triadeng.com	
Site Leader: Pam Hay	res, WVDEP		Phon	e#: 304-926-0499	C	cell Phone #:		E-mail: pdhayes@wvdep.org	
Contractor: Triad Eng	ineering, Inc.			EPA CO/PO:	_				
#Samples 23	Matrix: soil Setter. Parameter: TAL Me					QL'	8 preser	Method: ILM05.3	
#Samples 6	Matrix: sediment) Parameter: TAL						,	Method: ILM05.3	
#Samples 6	Matrix: water-non potable Parameter: TAL							Method: ILM05.3	
#Samples 9	Matrix: water-non potable Parameter: TAL				Aetals, I	Dissolved		Method: ILM05.3	
#Samples 7	Matrix: water-o	irinking	V	Parameter: TAL M	Aetals			Method: ILM05.3	
#Samples	Matrix:			Parameter:				Method:	
#Samples	Matrix:			Parameter:				Method:	
#Samples	Matrix:			Parameter:				Method:	
#Samples	Matrix:			Parameter:				Method:	
Ship Date From: 3/26	/2007	Ship Date	To: 3/2	6/2007	Org. V	Validation Level N	/A	Inorg. Validation Level IM1	
Unvalidated Data Req	uested: 🛛 No	Yes 1	lf Yes, T	AT Needed: 24h	urs 📋	48hrs [] 72hrs [J7days 🗍 Other	(Specity)	
Validated Data Packag	ge Due: 🔲 14 da	ays 🖾 21 d	lays [] 30days 🔲 42 days	rs 🔲 (Other (Specify)	14/	7	
Electronic Data Delive	erables Required:		Yes	(EDDs will be provid	ided in I	Region 3 EDD Form	nat)		
Special Instructions:									
	·			,					
				,					
}								· .	
								· •	

UCM			t Laborator ic Report &	Chain of Custor	iy Record		Case No: DAS No:	36279	F
Region:	3		اد برزار هم بر ²⁰ اف المن الدر ال	Date Shipped: 3/30/2	007	Chain of Custody	Record	Sempler Signature:	فالالي فجوي بالتغنيني
Project Code: Account Code CERCLIS ID: Spill ID:	CT3907	302DD2CB3 8275	98QB00	Shipped to: Senti	/5507063 Nel Inc. 1	Relinquished By JACK Q V K	(Date / These) 3/35/07 1200	Received By	(Date / Thru
She Name/Sta	te: Brooke Co	inty Glass/V	w	NE	fashington Street,	7			
Project Leader Action:	": Lydia Work Brownfields				ville AL 35801 534-9800	3			
Sampling Co:	Triad Engin					4			
INORGANIC SAMPLE No.	MATRX/ SAMPLER	CONC/ Type	ANALYSIN TURMARCUND	TAG No.1 PREBERVATIVE7 BOID	STATION LOCATION			GANIC PLE No.	QC Type
C2101	Ground Water/ Gary Hilgar	M/G	TM (21)	31 (1)	GWI	S: 3/27/2007	11:05		
C2102	Ground Water/ Gary Hilgar	M/G	TM (21)	32 (1) ′	GW2	\$: 3/27/2007	11:15		-
C2103	Ground Waler/ Gary Hilgar	M/G	TM (21)	33 (1)	GW3	\$: 3/27/200 7	12:30		-
C2108	Sediment/ Carol Phillips	M∕G	TM (2 1)	310 (1)	SED1	S; 3/28/2007	11:20 /		-
C2109	Sediment/ Carol Phillips	M/G	TM (21)	311 (1)	SED2	S: 3/26/2007	11:05 /		-
G2110	Sediment/ Lydia Work	M/G	TM (21)	312 (1)	SE03	S: 3/26/2007	10:55 /		-
C2111	Sediment/ Carol Phillips	M/G	TM (21)	313 (1)	SED4	S: 3/26/2007	11:05 🖌	Field D	Duplicate 2109
2112	Surface Wales/ Carol Phillips	₩G	TM (21)	314 (1)	S W 1	S: 3/26/2007	11:20		-
22113	Surface Water/ Carol Phillips	M/G	T M (2 1)	317 (1)	SW2	S: 3/26/2007	11:10		-
2114	Surface Water/ Lydia Work	₩G	T M (21)	318 (1)	SW3	8: 3/26/2007	10:50		m
2115	Surface Water/ Carol Phillips	₩G	TM (21)	319 (1)	SW4	S: 3/26/2007	11:10	Field C of MC	uplicate 2113
privent for Cana ngliste? Y			or laboratory QC: IC2112, MC2120	Additio	gui Campier Signatureța): HAA M. L	Day		Chain of Custody Seal I	humber:
niyala Kay:	Concentr	ition: L=	Low, M = Lowiniection	H = High Type	Designate: Composile = C.	Gnab = G		Shipment load?	
N = CLP TAL T		work La	Low, M = Loyntheorum	, H≡ Hugh inpata	Hendering Composite # C.	Gnab = G		Shipment load?	

04/13/2007 FRI 08:47 [TX/RX NO 6553] 2002

PR provides preliminary results. Requests for preliminary results will increase analytical costs. Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax

PAGE 82

FZV&1.047 PR0091004

TRIAD ENGINEERING

€EP/				t Laboratory ic Report & (ustody R	ecord		Case No DAS No:	- : 36279	R
Region: Project Code:	3	3907			Date Shipped: Carter Name:	3/30/2007 FedEx		Chain of Custody	Record	Sumpler Signature:	
Account Code CERCLIS ID: Sp(II ID:	: 200	000245627		980800	Airbill: Shipped to:	Sentinel Inc. 116 Washing		Rollinguistood By 1. Life 12. 115	(Date / Time	·	(Date / Time)
Site Name/Stat Project Leader Action:	: Lyd	ioke County ila Work wnfielde Sil		N		NE Huntsville Al (256) 534-90	L 36801	2 (
Sampling Co:		nd Engineer						4			
HORGANIC SAMPLE No.			CONC/ TYPE	AMALYERY TURNAROUND	TAG PRESERVAT	No./ IVE/ Bolties	STATION LOCATION		E COLLECT E/TIME	ORGANIC SAMPLE No.	QC Туре
C2116	Surface ((0"-12")/ Carol Phi		M/9	TM (21)	320 (1)	ال ا غامية من البراغ الله ال	S S1	S: 3/26/2007	11:55 /		***
C2117	Sunface 5 (0"-12")/	Soit I	W/G	TM (21)	321 (1)		SS1 0	8: 3/27/200 7	11:45		~
C2118	Carol Phi Surface 5 (0"-12")/ Carol Phi	Soli A	WG	TM (21)	322 (1)		SS11	S: 3/27/2007	13:20 🗸		~
C2119	Surface 5 (0"-12")/ Carol Phi	ioii A	N G	TM (21)	323 (1)		S\$12	S: 3/27/2007	13:27 /		-
C2120	Surface 8 (0"-12")/	i lio	AFG	TM (21)	324 (1)		S913	S: 3/27/2007	11:55		-
C2121	Carol Phil Surface S (0"-12")/	ioil h	NG .	TM (21)	325 (1)		8S 14	S: 3/27/2007	11:50 /		-
2122	Carol Phil Surface S (0"-12")/	ioil N	NG	TM (21)	328 (1)		85 15	S: 3/27/2007	11:22		-
C2123	Carol Phil Surface S (0"-12")/	ol N	NG	° 'TM (21)	327 (1)		S816	S: 3/27/2007	11:18 🖌		-
C2124	Carol Phil Surface S (0*-12*)/	ioli N	VG	TM (21)	328 (1)		\$ \$17	5: 3/27/2007	11:15 /		-
C2125	Carol Phil Surface S (0°-12°)/ Carol Phil	oli N	I/G	TM (21)	329 (1)		SS 18	S: 3/27/2007	11: 10		-
lipment for Case amplete? Y	18	ample(s) to	be used f	or Mooratory QC:		Additional Sal	mpler Signature(s):	0		Chain of Custody Se	al Humber:
arihangin s		ACZ103, MC	C2111, M	IC2112, MC2120		1 pop	naM.L	V-A		1	

TR Number: 3-043013577-033007-0001

Concentration:

PR provides proliminary results. Requests for proliminary results will increase emploied costs.

L = Low, N = Low/Medium, H = High

Send Copy to: Sample Management Office, Atin: Heather Bauer, CSC, 15000 Conference Center Dr., Chantility, VA 20151-3819; Phone 703/818-4200; Fax 703/418-4802

TypeDesignate:

Composite = C, Gmb = G

REGION COPY

Shipmant load?

F2V6.1.047 AR 900 2 of 4

04/13/2007 FRI 08:47 [TX/RX NO 6553] 2003

Analysis Key:

TM = CLP TAL TOIR! MODER

TABLE 2. SOIL LABORATORY ANALYSIS SUMMARY Brooke County Glass Dump CERCLIS Site (WV0002456275)

Weilsburg, Brooke County, West Virginia

Target Analyte	CAS Number	Screening Criteria	Project Quantitatio
ALUMINUM			Limit
ALUMI NUM ANTIM DNY ARSEN IC BARIUI // BERYL_JUM CADMILIM CALCIUM CALCIUM CHROMIUM COBAL1 COPPEH IRON LEAD MAGNES:IUM MANGANESE MERCUFY NICKEL POTASSI JM SELENIUM SILVER SODIUM THALLIUM	7429905 7440360 7440382 7440393 7440417 7440439 7440417 7440439 7440702 18540299 744028 743995 7439954 7439954 7439954 7439954 7439976 7439976 7440020 7440097 7782492 7440224 7440235	1,000,000 410 1.9 72,000 2,000 510 NV 3,100 20,000 41,000 310,000 1,000 NV 20,000 NV 20,000 NV 20,000 NV 5,100 5,100 NV	$\begin{array}{c} 20\\ 6\\ 1\\ 20\\ 0.5\\ 0.5\\ .\\ 500\\ 1\\ 5\\ 2.5\\ 10\\ 1\\ 5\\ 0.1\\ 4\\ 500\\ 1.5\\ 0.1\\ 4\\ 500\\ 3.5\\ 1\end{array}$
VANADIUM ZINC	7440280 7440622	72 1,000	500 2.5
lotes	7440666	310,000	5

Notes

Surface and a ubsurface soil samples will be compared to the EPA Region III RBC Table (04/07/2005) industrial

NV - No Value Available for compound

		Screening	Project Quantitation
Tar get Analyte	CAS Number	Criteria	Limit
Millale (mg/K j)			
ALUMINUM	7429905	78,000	20
ANTIMONY	7440360	31	6
ARSENIC	7440382	0.43	1
BARIUM	7440393	5,500	20
BERYLLIUM	7440417	160	0.5
CADMIUM	7440439	39	0.5
CALCIUM	7440702	NV	500
CHROMIUM	18540299	230	1
COBALT	7440484	1,600	5
COPPER	7440508	3,100	2.5
IRON	7439896	23,000	10
LEAD	7439921	400	1
MAGNESIUM	7439954	NV	500
MANGANESE	7439965	1,600	1.5
MERCURY	7439976	NV	0.1
NICKEL	7440020	1,600	4
POTASSIUM	7440097	NV	500
SELENIUM	7782492	390	3.5
SILVER	7440224	390	1
SODIUM	7440235	NV	500
THALLIUM	7440280	5.5	2.5
VANADIUM	7440622	78	5
ZINC	7440666	23,000	6

TABLE 3. SEDIMENT LABORATORY ANALYSIS SUMMARY Brooke County Glass Dump CERCLIS Site (WV0002456275) Wellsburg, Brooke County, West Virginia

Notes

Sediment samples will be compared to the EPA Region III RBC Table (04/07/2005) residential soil values. NV - No Value Available for compound

Appendix D

Laboratory Case Narrative

				USEPA -	CLP				
				COVER	PAGE				
Lab Name	: Sentinel,	Inc.			Contra	act: EP	W06059		
Lab Code	: SENTIN	Case	No.:	36279	NRAS	No.:		SDG No.: 1	MC2108
SOW No.:	ILM05.4								
	EPA 52 MC23 MC23 MC23 MC23 MC23 MC23 MC23 MC2	L09 L10 L11D L11D L11S L16 L17 L18 L19 L21 L22 L23				I. 	ab Samp 30207 30208 30209 30210 302108 30211 30212 30211 30212 30213 30214 30216 30217 30218 30219	52	
Were ICP If	intereleme background yes-were ra lication o	l correct: aw data ge	ions a enera	applied? ted befo	re			Yes/No Yes/No Yes/No	YES
Comments	:	. .							
condition other the in this on diske	y that this ns of the one hardcopy do tte has been s designed e: 14007	s data pac contract, ditions de ata packag en author:	both etail ge an ized	technic ed above d in the by the L by the f Na	ally an . Rela comput aborato ollowin	nd for ease of ter-rea ory Mar ng sigr	complet the da adable o ager o:	teness, fo ata contai data submi r the	ned

COVER PAGE

_ - -

ILM05.4

U.S. EPA - CLP

___.

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Sentinel, Inc. SOW No.: ILM05.4 Contract: E	PW06059
Lab Code: SENTIN Case No.: 36279 NRAS No.: SDG	No.: MC2108
SAMPLE RECEIPT: Temperature Blank: PRESENT ABSENT If a blank is absent, a non-invasive laser measurement is taken using Cooler temperature(s) recorded via laser measurement were: O°C_ Refer to Record of Communication (ROC) regarding EPA Sample # discrep	
Refer to ROC regarding tag discrepancies for samples:	
Refer to ROC regarding sample preservation discrepancies for samples:	
analysis + TAT discrepancies on coc/TR	· · · · · · · · · · · · · · · · · · ·
percent solids less than 50 percent	
QC Specified: Yes No If no, chose: ANALYSIS: The following analyte(s) were estimated due to possible ma A), Ba, Ca, Cr, Ca, Fe, Mg, Mn, Ni, K, Y, +Zn	atrix interferences:
DOCUMENT CONTROL: The following invalid defects resulted due to CCS Initial Assessment: Full Assessment:	program anomalies:
OTHER: 1. ICP-MS Mean Values in the raw data are incorrect due to TJA anomalies. 2. Internal Standard calculations in the raw data are reported values of the %RI (decimal form-not a percentage) with the con stated in the SOW Exhibit D (ICP-MS) Section 12.11.1.	l as the reciprocal
Signature:	4/ 6/07
SDG NARRATIVE - 1	11M05.4

____

U.S. EPA - CLP SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE Lab Name: Sentinel, Inc. SOW No.: ILM05.4 Contract: EPW06059 SDG NO .: MC2108 Case No.: 36279 Lab Code: SENTIN NRAS No.: EQUATIONS: HW1 Method: Concentration $(\mu g/L) = C \times (V_f/V_i) \times DF$ WHERE, $C = Instrument value in \mu g/L$ V_f = Final digestion volume (mL) V_i = Initial digestion volume (mL) DF = Dilution Factor HS1 Method: Concentration (dry wt.) $(mg/kg) = ((C \times V)/(W \times S)) \times DF$ WHERE, C = Concentration (mg/L)V = Final sample volume in Liters (L) W = Wet sample weight (kg) S = Solids/100 DF = Dilution Factor CW1 Method: Concentration $(\mu g/L) = C \times (V_f/V_i) \times DF$ WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). $V_f = Final digestion volume (mL)$ V_i = Initial digestion volume (mL) DF = Dilution Factor CS1 Method: Concentration $(mg/kg) = (A \times D \times F) / (B \times E)$ WHERE, A = Concentration in $\mu g/L$ B = Weight in gD = Dilution Factor E = Solids/100 F = Final Volume (0.100 L)Signature: 416107 KVAV Name & Title: Date: SDG NARRATIVE - 2 ILM05.4

U.S. EPA - CLP

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE

	DDG MARATIVE - INCREMIC MANIPED PATA TACANG	
Lab Name	: Sentinel, Inc. SOW No.: ILM05.4 Contract: EPW06059	
Lab Code	: SENTIN Case No.: 34279 NRAS NO.: SDG NO.: M	C2108
EQUATION:	S.	
DWZ Metho	od: CN Concentration $(\mu g/L) = (A \times D \times F)/B$	
WHERE,	A = $\mu g/L$ CN of sample from regression analysis	
	B = volume of original sample for distillation (0.050 L) D = any dilution factor necessary to bracket sample values within sta	ndard
	values	nuar u
	F = sample receiving solution volume (0.050 L)	
	· · · · ·	
DS2 Metho	od: CN Concentration $(mg/kg) = (A \times D \times F) / (B \times E)$	
WHERE,	A = $\mu g/L$ CN of sample from regression analysis	
	B = wet weight of original sample (g)	· · ·
	D = any dilution factor necessary to bracket sample values within sta values	ndard
	E = \$ solids/100	
	F = sample receiving solution volume (0.050 L)	
HW2 Meth	od: Concentration (μ g/L) = C x (V_f/V_i) x ($V_f/20$) x DF	
WHERE,	C = Instrument value in μ g/L (The average of all replicate integration	s).
•	$V_f = Final digestion volume (50 mL)$	
	V_i = Initial digestion volume (100 mL) DF = Dilution Factor	
-		
HW3 Meth	od: Concentration $(\mu g/L) = C \times (V_r/V_i) \times DF$	
	$C = Instrument$ value in $\mu g/L$ (The average of all replicate integration	s).
	V_f = Final digestion volume (mL) V_i = Initial digestion volume (mL)	
	DF = Dilution Factor	
•		
	$\cap \cap$	
Chi ana a huun	IN	
Signatur		+
Name & T	itle: BRUICWE CANTE Date:	•
	SDG NARRATIVE - 3	ILM05.4
		L
	•	1

.

.

,

.

Lab Name Sentinel, Inc.			DOG IN DIELE			Page 1 of 1
Received By (Print Nam	me) Lindsey Cholewa					Log-in Date 04/02/2007
Received By (Signature	e) Londen	Ja .				
Case Number 36279		Sample De	NRAS Number			
				Correspon	nding	
Remarks:		EPA Sample #	Aqueous Sample pH	Sample Tag #	Assigned Lab #	Remarks: Condition of Sample Shipment, etc.
 Custody Seal(s) 	Presend Absent*	MC2108	NA	310	30207	
2. Custody Seal Nos.		MC2109	1	311	30208	
		MC2110		312	30209	
3 Traffic Reports/Chain of	cresent Absent*	MC2111		313	30210	QC
Custody Records of Packing Lists	r	MC2116		320	30211	
4. Airbill	Airbil) Sticker Present Absent*	MC2117	[]	321	30212	
5. Airbill No.	860575507063	MC2118		322	30213	
		MC2119		323	30214	
 Sample Tags Sample Tag Numbers 	Presend/Absent*	MC2121		325	30216	
	Listed on Traffic	MC2122		326	30217	
	Report/Chain of Custody Record	MC2123		327	30218	
7. Sample Condition	IntacD/Broken*/ Leaking	MC2124		328	30219	
8. Cooler Temperatur Indicator Bottle	e Present Absent		{		·	
9. Cooler Temperatur			<u></u>			
10. Does information on Traffic	Yes No		\sum			
Reports/Chain of Custody Records and sample tags agree?						
agree? 11. Date Received at			1		1	
Lab	04/02/2007					
12. Time Received					$\underline{\mathbf{X}}$	
Sample T Fraction All	ransfer Fraction					
	Area	-				\mathbf{k}
	Ву					
* Contact SMO and ent Reviewed By	acprecord of resolu	100	1	Logbook No		
Date	t ~~~~ 41	6107		Logbook No. Logbook Page No.	<u> </u>	
<u> </u>	()	·····	RM DC-1			LM05.4 5

SAMPLE LOG-IN SHEET

Senti	nel, Inc.		N 601				Sample	Analysis
			% SOL	IDS BATCH	SHEET			
DATE:	04/04/07					ANALYST:	rr/sas	
SDG N	NO: MC2108	E	EPA Batch No.	: 4	E	PA Run No:	4	
	Lab ID No.	Sample Description	Pan Weight, g		Soil & Pan Final Wt., g	Result, %	Date Analyzed	Analyst Initials
1	30210	M C 2111	0.99	7.75	5.54	67.3	01/05/07	RR/SRS
2	30210D	MC2111D	1.02	8.06	5.64	65.6		
3	30207	MC2108	1.02	7.00	4.83	63.7		
4	30208	MC2109	1.00	6.99	4.43	57.3		
5	30209	MC2110	1.01	7.78	5.63	68.2		
6	30211	MC2116	1.03	7.26	5.37	69.7		
7	30212	MC2117	1.01	7.06	4.73	61.5		
8	30213	MC2118	0.99	7.05	4.07	50.8		
9	30214	MC2119	1.01	6.99	5.55	75.9		
10	30216	MC2121	1.01	7.87	3.22	32.2		
11	30217	M C 2122	1.02	6.99	3.32	38.5		
12	30218	M C 2123	1.02	7.71	3.85	42.3		
13	30219	MC2124	1.01	7.77	5.71	69.5		
14								
15								1
16						<u> </u>		
17								l
18	_		<u> </u>	\leq		<u>i</u>		
19				1			<u> </u>	ļ
20		T	 		L			
21	T	<u> </u>					<u> </u>	
D	ewed By: <u>Hocks</u> yst/Date	<u>04/05/0</u> 7 br S.Slade			Reviewed By:	\square	4570	\succ
Anal	ysubale f	or S. Slade			QA Officer/S	ipervisor/ya	ite	
						\smile		

.

1

206

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III ENVIRONMENTAL SCIENCE CENTER 701 MAPES ROAD FORT MEADE, MARYLAND 20755-5350

DATE : April 19, 2007

SUBJECT: Region III Data QA Review

- FROM : Khin-Cho Thaung Kじう Region III ESAT RPO (3EA20)
- TO : James Hargett Regional Project Manager (3HS12)

Attached is the inorganic data validation report for the Brooke County Glass Dump site (Case # 36279; SDG #MC2120) completed by the Region III Environmental Services Assistance Team (ESAT) contractor under the direction of Region III EAID.

If you have any questions regarding this review, please call me at (410) 305-2743.

Attachment

cc: Pam Hayes/Lydia Work WVDEP/TRIAD

TO File #: 0007 TDF#: 0452

ANALYTICAL SERVICES AND QUALITY ASSURANCE BRANCH

LOCKHEED MARTI We never forget who we're working for

Lockheed Martin Information Technology ESAT Region 3 US EPA Environmental Science Center 701 Mapes Road Ft. Meade, MD 20755-5350 Telephone 410-305-3037 Facsimile 410-305-3597

DATE: April 17, 2007

SUBJECT: Inorganic Data Validation (IM1 Level) Case: 36279 SDG: MC2120 Site: Brooke County Glass Dump

FROM: Donald M. Brown^{wr®} Inorganic Data Reviewer

Mahboobeh Mecanic

TO: Khin-Cho Thaung ESAT Region 3 Project Officer

OVERVIEW

Case 36279, Sample Delivery Group (SDG) MC2120, consisted of thirteen (13) soil samples analyzed for total metals by Sentinel, Inc. (SENTIN). The sample set contained one (1) field duplicate pair. Samples were analyzed in accordance with Contract Laboratory Program (CLP) Statement of Work (SOW) ILM05.4 through Routine Analytical Services (RAS) program.

SUMMARY

Data were validated according to EPA Region III Innovative Approaches (Level IM1) for Validation of Inorganic Data, June 1995, which includes review of all Forms but excludes review of raw data. Areas of concern with respect to data usability are listed below.

Data in this case have been impacted by outliers present in the laboratory blanks as well as the matrix spike, laboratory duplicate and ICP serial dilution analyses. Details of these outliers are discussed under "Minor Problems" and qualified analytical results for all samples are summarized on the Data Summary Forms (DSFs).

MINOR PROBLEMS

Continuing calibration (CCB) and/or preparation (PB) blanks had reported results greater than the Method Detection Limits (MDLs) for the analytes listed below. Positive results in affected samples which are less than or equal to five times ($\leq 5X$) the blank concentrations may be biased high and have been qualified "B" on the DSFs.

BlankAffected AnalytesCCBberyllium (Be)PBmercury (Hg)

The matrix spike recovery was low (<75% but >30%) for manganese (Mn). The low recovery may be attributed to matrix interferences or analyte lost during the digestion process. Positive results for this analyte in all samples may be biased low and have been qualified "L" on the DSFs.

The relative percent difference (RPD) in the laboratory duplicate analysis was outside control limits (35% RPD, ±2XCRQL) for cadmium (Cd). Positive results for this analyte in all samples are estimated and have been qualified "J" on the DSFs.

The percent difference (%D) in the ICP serial dilution analysis was outside control limits (>10%) for sodium (Na). Positive results for this analyte in all samples are estimated due to possible matrix interferences and have been qualified "J" on the DSFs.

<u>NOTES</u>

Reported results between MDLs and Contract Required Quantitation Limits (CRQLs) were qualified "J" on the DSFs unless superseded by "B".

Several samples in this SDG were reported with percent solids less than fifty percent (<50%). CRQLs are elevated in these samples due to low percent solids.

One (1) of the cooler chests used to transport samples in this SDG had an interior temperature of 18.0°C, which is outside the control limit (4°C \pm 2°C). Due to the thermostability of metals, no data were qualified based on this cooler temperature.

RPDs in the laboratory duplicate analysis were outside contractual control limits (20% RPD, \pm CRQL) for aluminum (Al), iron (Fe) and lead (Pb). However, RPDs for these analytes were within Region III established control limits (35% RPD, \pm 2XCRQL) for soil analysis. No data were qualified for these analytes based on laboratory duplicate imprecision.

Reported results for field duplicate pair MC2129/MC2132 were within 35% RPD, ±2XCRQL for all analytes except Cd, copper (Cu) and lead (Pb).

The following samples were reanalyzed at dilutions for the analytes listed below in order to bring concentrations of these analytes within the linear range of the instrument. Results for these analytes in these samples were reported from the diluted analyses and annotated with a "+" on the DSFs.

<u>Sample ID</u>	<u>Analyte</u>	Dilution Factor
MC2133	Mn	2X
MC2135	Fe	2X
MC2136	Cd	2X

Data for Case 36279, SDG MC2120, were reviewed in accordance with EPA Region 3 Innovative Approaches (Level IM1) for Validation of Inorganic Data, June 1995.

ATTACHMENTS

INFORMATION REGARDING REPORT CONTENT

APPENDIX A	GLOSSARY OF DATA QUALIFIER CODES
APPENDIX B	DATA SUMMARY FORM(S)
APPENDIX C	CHAIN OF CUSTODY RECORD(S)
APPENDIX D	LABORATORY CASE NARRATIVE(S)

DCN: 36279.MC2120IM1.doc

Appendix A

Glossary of Data Qualifier Codes

GLOSSARY OF DATA QUALIFIER CODES (INORGANIC)

CODES RELATED TO IDENTIFICATION

(confidence concerning presence or absence of analytes):

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

(NO CODE) = Confirmed identification.

- B = Not detected substantially above the level reported in laboratory or field blanks.
- R = Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

CODES RELATED TO OUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = Analyte Present. Reported value may not be accurate or precise.
- K = Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L = Analyte present. Reported value may be biased low. Actual value is expected to be higher.

٦.

- UJ = Not detected, quantitation limit may be inaccurate or imprecise.
- UL = Not detected, quantitation limit is probably higher.

OTHER CODES

Q = No analytical result.

Appendix B

Data Summary Forms

Case #: 36279
Site :
loh ·

. . . .

SDG : MC2120 BROOKE COUNTY GLASS DUMP SENTIN

					_						
Sample Number :		.MC2120		MC2125		MC2126		MC2127		MC2128	
Sampling Location :		SS13		SS18		SS19		SS2		SS20	
Matrix :		. Soli		Soll		. Soil		Scil		Soli	
Unita :		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :		3/27/2007		. 3/27/2007	· .	3/27/2007		3/26/2007		3/27/2007	
Time Sampled :		11:55		11:10		. 13:55		. 11:45		13:20	
%Solids :		42.6		65.6		85.8		74.1		69.2	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	20	3520		5610		1440		6290		6950	
AN INSTRUCT	6					5.8	The second		纲的		
ARSENIC	1	229		42.0		34.8		5.5		8,7	
BARIUM	- 20	190		104		78.2		110		103	- 漫
BERYLLIUM	0.5	0.24	В	0.68	J	0.12	В	1.0		1.0	
CADMILM		A 1350		2.3 -	资源				Junt	2 .	有些
	500	14800		52700		3890		50600		6890	
CHROMIUM		4572		116		180		24.9			
COBALT	5	7.1.	. J	9.5		2.0	J	9.1		16.8	
CONTINUES STREET, ST	2.5	152	1. Y	239.		25.0		237.:		29.9	
IRON	10	41500		19400		4700		21800		23700	
				38,4		124		30.5		42.5	10.N
MAGNESIUM	500	2730		4460		709		4510		1700	
MANGANESE		業 北三 新		1040		176		1720 6	12	1410	L
MERCURY	0.1	0.39		0.18		0.17		0,18		0.13	J
NICKEL	- 4	317		16.9		38		15.9		20.8	
POTASSIUM	500	376	J	1330		274	J	1060		1710	
Selenium?	3,5	2/1		3.3-	3.8	16-18-57-1				1 17	J :
SILVER	1	1.5	J	0.48	J					0.62	J
NSOG(IM) A STATE STATE	500	7270	J -76	441		086	和是	3 4 07	商臺	- X17-	
THALLIUM	2.5	3.0	J					1.2	J	1.5	J
YAMADKUM	17.5	. 2 × 25 T		26 13.1 1	99d	2.9	J	19.8			
ZINÇ	6	3720		134		446		71.6		117	

CRQL = Contract Required Quantitation Limit

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

SEE NARRATIVE FOR CODE DEFINITIONS

Revised 09/99

۰,

Case #: 36279	SDG : MC2120
Site :	BROOKE COUNTY GLASS DUMP
Lab.:	SENTIN

Sample Number :		MC2129		MC2130		MC2131		MC2132		MC2133	
Sampling Location :		SS21		SS3		SS4		SS5		SS6	
Field QC :		Dup of MC2	132					Dup of MC2	2129		
Matrix :		Soil		Soil		Solt		Soil		Soil	
Units :		ma/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :		3/27/2007		3/26/2007		3/27/2007		3/27/2007		3/27/2007	
Time Sampled :		13:10		11:50		13:02		13:06		13:15	
%Solids :		77.8		65.6		84.3		78.4		82.6	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0 / 2.0	
ANALYTE	CROL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	20	11000		8050		27600		10800		20100	
ANTIMONY	1								(1)。《集新 (1)(第1年)	3.3	
ARSENIC	1	9.0		7.8	20000000	7.7.		7.7		47.1	
BARIUM	- 20	413	17 99 G	0.064119		-278 -		112		257	
BERYLLIUM	0.5	1.2		0.90	·····	3.3		1.2	10 1 20 av	2.2	
CADMIUM	05	1273	6]		1	14.2	J.	7.6	<u>演会</u>	54.1	12
CALCIUM	500	27000		5780		90200		29200		82400	CT 110
STROMUM		14.8		116.2		11.9	-	15.5	±.; • العمر •	38.0	2 5
COBALT	5	10.6	1	12.9		3.7	J	8.7		7.9	1 77
	2.5	9257	主	33.9		1417 L.		95.5	- 1	7 5771.5	<u>-</u>
IRON	10	24700	State Name	25700		8640		20600	(Section)	26800	L
ar Adaro (k. 1997) a service (k. 1988)	5 1	925 I K	影陸	43.7		# NEX 3010	(Clark)	, e 59,6 1.		£48.1	
MAGNESIUM	500	4130	::-::::::::::::::::::::::::::::::::::	2290	1970 - 19 V	11700		3970	areas	6350	
MANGANESE	1.5	1. 1250 4		and the second se	和人	<u>0:</u> 3420 -	紅臺	1310-	<u>11 – E</u>	4050+	Ľ
MERCURY	0.1	0.10	J	0.17		0.083	B	0.12	J	0.16	27665120
		23.5		23.5		6.8		49,4		18.0 ³	
POTASSIUM	500	1560	12.2251533	2310	反应带入	2410		1450		2130	11. E. I.
SEC ENION OF A CONTRACT	<u>,</u> 3.5¥		後職	1.6	1.1.1.1	2.8	J		· J	42.3	<u>89</u> 2
SILVER	1	0.33	. J 12क क	0.69	। सन्दर्भः					an sold to sold a	10.60
SODIUM	500	552		605	1.2	952	الم	542	<u>)</u>	1320	
THALLIUM	2.5	1.4	J	2.0	J		11251-0-2	1.2	्र इन्द्रसार	1.3	J
WEXADTIM	5	21.8		州三17:1				20.0			
ZINC	6	128	L	170		101.	·	118		350	<u> </u>

CRQL = Contract Required Quantitation Limit

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

SEE NARRATIVE FOR CODE DEFINITIONS Revised 09/99

+ = Result reported from diluted analysis.

Case #: 36279	
Site :	
lah :	

SDG : MC2120 BROOKE COUNTY GLASS DUMP SENTIN

Sample Number :		MC2134		MC2135		MC2136					
Sampling Location :		SS 7		SS8		SS9					1
Matrix :		Soil		Soil		Soil					
Units:		mg/Kg		mg/Kg		mg/Kg					1
Date Sampled :		3/27/2007		3/27/2007		3/27/2007					
Time Sampled :		13:48		13:36		13:15					
%Solids :		92.9		93.4		85.0					
Dilution Factor :		1.0		1.0/2.0		1.0/2.0				_	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	20	1020		2380		20600					
ANDINGRY	6	3.4	7	87.6		14.6					
ARSENIC	1	92.9		330.		1010					
BARIUM	- 20	24.2		司治伊	至是	TE-96,3		8.44 			
BERYLLIUM	0.5	0.091	J	0.047	J	0.076	J				
CADMIUM	0.5	19.2	3.2	10103			t i				
CALCIUM	500	2950		9910		4220					
CEROMINAL PLANES		12.7	鱸						編集		
COBALT	5	1.1	J	9.7		2.8	J				
COPPER	2.5	· 12.0 =			经赛	42			5.44 (1)		
IRON	10	3190		192000+		9350					
		116.		<u>最</u> 這gooth		351.	2				
MAGNESIUM	500	609		782		480	J				
MANGANESE MENA		1.0 305		693	L	106	L				
MERCURY	0.1	0.71		0.16		0.23					
NCKE		3.0		27.7		5.6		《注意 》			
POTASSIUM	500	194	J ·	109	. J	4390					
JSELENIUM	3.5	22.0		333	an ta da an	225					
SILVER	1			3.2							
SCOUM	500	385	J	······································	The sec	28200	ат.Ч		-		
THALLIUM	2.5			9.3							
VANADIUM	5	5.3	J	238		12.8					*
ZINC	6	122		3140		6000					

CRQL = Contract Required Quantitation Limit

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

.

SEE NARRATIVE FOR CODE DEFINITIONS Revised 09/99

+ = Result reported from diluted analysis.

.

Appendix C

Chain-of-Custody Records

Intermediates Brocke County Glasse/WV NE 2 (Project Leader: Lytic Work Auton: Brownieds Ste 3 Bannishing Cr: Triad Engineering County Glasse/WV Auk/YEV County Glasse/WV MORGANIC MAYEV County Glasse/WV TAGNO/ State County Glasse/WV 4 MORGANIC MAYEV County Glasse/WV TAGNO/ State County Glasse/WV 4 MORGANIC MAYEV County Glasse/WV TAGNO/ State County Glasse/WV 6 MORGANIC MAYEV County Glasse/WV TAGNO/ State County Glasse/WV 6 MORGANIC MAYEV The County Glasse/WV TAGNO/ State County Glasse/WV 7 MC2116 Surface Sol M/G TM (21) 321 (1) SS10 S: 3/27/2007 11:45 - AC2118 Surface Sol M/G TM (21) 323 (1) SS12 S: 3/27/2007 13:20 - AC2119 Strates Sol M/G TM (21) 325 (1) SS13 S: 3/27/2	Region: Project Code: Account Code: CERCLIS ID: Spill ID:	3 CT36 2007	ganic Trafi	t Laboratory fic Report &		Custody R : 3/30/2007	63	Chain of Custody Record Chain of Custody Record Relinquisted By (Dets / TT 1 July 12 July 3/20/0		Samplar Signalum Received By	(Oyta / Time)
BASEPLE NO. BALER TYPE TURNARCURD PRESERVATING Bodes LOCATION DME/TIME SAMPLE No. Type WC2116 Surface Soit (0 ⁷⁻¹²⁷) M/G TM (21) 320 (1) SS1 S: 3/26/2007 11:85 - MC2117 Surface Soit (0 ⁷⁻¹²⁷) M/G TM (21) 321 (1) SS10 S: 3/27/2007 11:45 - MC2118 Surface Soit (0 ⁷⁻¹²⁷) M/G TM (21) 322 (1) SS11 S: 3/27/2007 13:20 - MC2118 Surface Soit (0 ⁷⁻¹²⁷) M/G TM (21) 323 (1) SS12 S: 3/27/2007 13:20 - MC2119 Surface Soit (0 ⁷⁻¹²⁷) M/G TM (21) 324 (1) SS13 S: 3/27/2007 13:27 - MC2120 Surface Soit (0 ⁷⁻¹²⁷) M/G TM (21) 324 (1) SS14 S: 3/27/2007 11:55 - MC2121 Surface Soit (0 ⁷⁻¹²⁷) M/G TM (21) 326 (1) SS16 S: 3/27/2007 11:50 - MC2122 <t< th=""><th>Project Leader: Action:</th><th>Elydie Brow</th><th>Work nfields Sile</th><th>Ŵ</th><th></th><th>NE Humisville Al</th><th>L 35601</th><th>3</th><th></th><th></th><th></th></t<>	Project Leader: Action:	Elydie Brow	Work n fields Sile	Ŵ		NE Humisville Al	L 35601	3			
(0*127)* Carol Phillips MC2117 Surface Soli M/G TM (21) 321 (1) SS10 S: 3/27/2007 11:45 - Carol Phillips M/G TM (21) 322 (1) SS11 S: 3/27/2007 15:20 - MC2118 Surface Soli M/G TM (21) 323 (1) SS12 S: 3/27/2007 13:20 - MC2119 Surface Soli M/G TM (21) 323 (1) SS12 S: 3/27/2007 13:27 - MC2120 Surface Soli M/G TM (21) 324 (1) SS13 S: 3/27/2007 11:56 - MC2121 Surface Soli M/G TM (21) 324 (1) SS13 S: 3/27/2007 11:56 - MC2121 Surface Soli M/G TM (21) 326 (1) SS14 S: 3/27/2007 11:50 - MC2122 Surface Soli M/G TM (21) 326 (1) SS16 S: 3/27/2007 11:22 - MC2122 Surface Soli M/G TM (21) 326 (1) SS16 S: 3/27/2007 11:18 -											
$ \begin{array}{c ccccc} MC2117 & Surface Soil & M/G & TM\left(21\right) & 321\left(1\right) & SS10 & S: \; 3/27/2007 & 11:46 & - & \\ (D^*12^7)' & Carol Philips & M/G & TM\left(21\right) & 322\left(1\right) & SS11 & S: \; 3/27/2007 & 13:20 & - & \\ (D^*12^7)' & Carol Philips & M/G & TM\left(21\right) & 323\left(1\right) & SS12 & S: \; 3/27/2007 & 13:27 & - & \\ (D^*12^7)' & Carol Philips & \\ MC2120 & Surface Soil & M/G & TM\left(21\right) & 324\left(1\right) & SS13 & S: \; 3/27/2007 & 13:55 & - & \\ (D^*12^7)' & Carol Philips & \\ MC2121 & Surface Soil & M/G & TM\left(21\right) & 325\left(1\right) & SS14 & S: \; 3/27/2007 & 11:55 & - & \\ (D^*12^7)' & Carol Philips & \\ MC2122 & Surface Soil & M/G & TM\left(21\right) & 326\left(1\right) & SS15 & S: \; 3/27/2007 & 11:22 & - & \\ Carol Philips & \\ MC2122 & Surface Soil & M/G & TM\left(21\right) & 326\left(1\right) & SS16 & S: \; 3/27/2007 & 11:22 & - & \\ Carol Philips & \\ MC2123 & Surface Soil & M/G & TM\left(21\right) & 327\left(1\right) & SS16 & S: \; 3/27/2007 & 11:18 & - & \\ (D^*12^7)' & Carol Philips & \\ MC2124 & Surface Soil & M/G & TM\left(21\right) & 327\left(1\right) & SS16 & S: \; 3/27/2007 & 11:18 & - & \\ Carol Philips & M/G & TM\left(21\right) & 328\left(1\right) & SS17 & S: \; 3/27/2007 & 11:18 & - & \\ (D^*12^7)' & Carol Philips & M/G & TM\left(21\right) & 328\left(1\right) & SS17 & S: \; 3/27/2007 & 11:10 & - & \\ Carol Philips & M/G & TM\left(21\right) & 328\left(1\right) & SS18 & S: \; 3/27/2007 & 11:10 & - & \\ Carol Philips & M/G & TM\left(21\right) & 329\left(1\right) & SS18 & S: \; 3/27/2007 & 11:10 & - & \\ Carol Philips & Carol Philips$	MC2116	(0"-12")/		TM (21)	320 (1)		S S1	S: 3/26/2007	11:55		-
MC2118 Surface Soil M/G TM (21) 322 (1) SS11 S: 3/27/2007 13:20 - MC2119 Surface Soil M/G TM (21) 323 (1) SS12 S: 3/27/2007 13:20 - MC2119 Surface Soil M/G TM (21) 323 (1) SS12 S: 3/27/2007 13:27 - MC2120 Surface Soil M/G TM (21) 324 (1) SS13 S: 3/27/2007 11:55 - MC2121 Surface Soil M/G TM (21) 325 (1) SS14 S: 3/27/2007 11:50 - MC2121 Surface Soil M/G TM (21) 326 (1) SS15 S: 3/27/2007 11:50 - MC2122 Surface Soil M/G TM (21) 326 (1) SS16 S: 3/27/2007 11:22 - MC2123 Surface Soil M/G TM (21) 327 (1) SS16 S: 3/27/2007 11:18 - MC2124 Surface Soil M/G TM (21) 328 (1) SS17 S: 3/27/2007 11:16 - MC2125 Surface Soil<	MC2117	Surface So (0"-12")/	N M G	TM (21)	321 (1)		SS1 0	S: 3/27/2007	11:45		9 4
MC2119 Surface Soft (V-12') M/G TM (21) 323 (1) SS12 S: 3/27/2007 13:27 - Card Philipps M/G TM (21) 324 (1) SS13 S: 3/27/2007 11:55 - - (V-12') Card Philipps M/G TM (21) 324 (1) SS13 S: 3/27/2007 11:55 - - (V-12') Card Philipps M/G TM (21) 325 (1) SS14 S: 3/27/2007 11:50 - (V-12') Card Philipps M/G TM (21) 326 (1) SS15 S: 3/27/2007 11:22 - (V-12') Card Philipps M/G TM (21) 326 (1) SS16 S: 3/27/2007 11:22 - (V-12') Card Philipps M/G TM (21) 327 (1) SS16 S: 3/27/2007 11:18 - (V-12') Card Philipps M/G TM (21) 328 (1) SS17 S: 3/27/2007 11:15 - (V-12') Card Philipps M/G TM (21) 328 (1) SS17 S: 3/27/2007 11:10 -	MC2118	Surface Sc (0"-12")/	e M/G	TM (21)	322 (1)	•	SS11	S: 3/27/2007	13:20		-
NNC2120 Surface Soil M/G TM (21) 324 (1) SS13 S: 3/27/2007 11:55 - MC2121 Surface Soil M/G TM (21) 325 (1) SS14 S: 3/27/2007 11:50 - MC2121 Surface Soil M/G TM (21) 325 (1) SS14 S: 3/27/2007 11:50 - MC2122 Surface Soil M/G TM (21) 326 (1) SS15 S: 3/27/2007 11:22 - MC2123 Surface Soil M/G TM (21) 327 (1) SS16 S: 3/27/2007 11:18 - MC2123 Surface Soil M/G TM (21) 327 (1) SS16 S: 3/27/2007 11:18 - MC2123 Surface Soil M/G TM (21) 328 (1) SS16 S: 3/27/2007 11:18 - MC2124 Surface Soil M/G TM (21) 328 (1) SS17 S: 3/27/2007 11:15 - MC2124 Surface Soil M/G TM (21) 328 (1) SS18 S: 3/27/2007 11:10 - MC2125 Surface Soil		Surface Sc (0"-12")/	₩ M/G	TM (21)	323 (1)		SS12	S: 3/27/2007	13:27		-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	Surface So (0"-12")/	ii M/G	TM (21)	324 (1)		SS13	S: 3/27/2007	11:55		-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MC2121	Surface So (0"-12")/	a M/G	TM (21)	325 (1)		SS14	S: 3/27/2007	11:50		-
MC2123 Surface Soli M/G TM (21) 327 (1) \$\$16 \$\$: 3/27/2007 11:18 - (0"-12")/ Garol Philips		Surface So (0"-12")/	i Mg	TM (21)	326 (1)		8515	s: 3/27/2007	11:22		-
MC2124 Surface Soll M/G TM (21) 328 (1) \$\$\$17 \$: 3/27/2007 11:15 (0"-12")/ Carol Phillips MC2125 Surface Soll M/G TM (21) 329 (1) \$\$\$18 \$: 3/27/2007 11:10 (0"-12")/ Carol Phillips	MC2123	Surface So (0"-12")/	i M/G	TM (2 1)	327 (1)		S816	s: 3/27/2007	11: 18		-
MC2125 Surface Soit N/G TM (21) 329 (1) 5818 S: 3/27/2007 11:10	WC2124	Surface So (0"-12")/	M/G	TM (21)	328 (1)		\$\$ 17	S: 3/27/2007	11:1 5		-
Shan and Fun Pana and a state of the state o	WC2125	Surface So (0"-12")/	i M/G	TM (21)	329 (1)		5518	s: 3/27/2007	11 :10		-
htpmerit for Case Sample(s) to be used for taboratory QC: MC2103, MC2111, MC2112, MC2120 MC2103, MC2111, MC2120 MC2103, MC2111, MC2120	hipment for Case Complete ? Y	5.0	ttple(s) to be used i	for laboratory QC:	يكثلا بيهياسا من جزيزات الميها	1 1 1	mpler Signature(s):	0		Chein of Castody S	el Number:

84/13/2871

Ø8:45

3042968739

TR Number: 3-043013577-033007-0001

Concentration:

PR provides preliminary retain. Requests for preliminary results will increase analytical costs.

L = Low, M = Low/Medium, H = High

Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax

Type/Designate:

Composite = C, Grab = G

F2V5.1.047 AND 3252

REGION COPY

Shipment loed?

Analysis Key:

TM = CLP TAL Total MODES

.

04/13/2007

Region:	3				Date Shipped:	3/30/2007		Chain of Custody	Record	Streptor	
Project Code: CT3907 Account Code: 2007T03W302DD2CB398 CERCLIS ID: WVV0002456275 Seel ID:			Carrier Name:	FedEx	•			Signature			
			9902800	Airbili: Shipped to:	86057550706 Sentinel Inc.	-	Relinquistred By	(Date / Time (3/30/07-12		(Osis / Time	
Site Name/Stat	e: Ero	nke Coun	ly Glass/V	a.		116 Washing NE	ton Street,	2			
Project Leader		la Work	y cosser		4	Huntsville AL			·····		
Action:	-	mileids S	ite 🛛			(256) 534-98	20	3			
Sampling Co:	Tria	d Engine	ering				· .	4	•		
MORGANIC SANPLE No.		irdxi IPLER	CONC/ TYPE	ANALYSIS TURNAROUND	tag Preservat	•	STATION		COLLECT	ORGANIC SAMPLE No.	QC Type
C2126	Surface S (0"-12")/ Carol Phil	•	M/G	TM (21)	330 (1)		SS19	S: 3/27/2007	13:55		
IC2127	Surface S (0"-12")/ Carol Phil	CĒ	Mg	TM (21)	331 (1)		\$\$2	S: 3/26/2007	11:45 /		-
C2128	Surface S (0"-12")/ Gary Hilgs	oli	M/G	TM (21)	332 (1)		S620	S: 3/27/2007	13:20		-
C2129	Surface S. (0"-12")/ Gary Hilgs	ili	M/G	TH (21)	333 (1)		S821	S: 3/27/2007	13:10 🗸		Field Duplicate of MC2132
C2130	Surface 8 (0"-12")/ Carol Phill	oji	M /G	TM (21)	334 (1)		S83	S: 3/26/2007	11:50 🗸		-
2131	Surface So (0"-12")/ Gary Hilgs	0il	WG	TM (21)	335 (1)		S \$4	S: 3/27/2007	13:02		-
22132	Surface St (0"-12")/ Gary Hilga	oii -	M/G	TM (21)	336 (1)		SS 5	S: 3/27/2007	13:06 /		
2133	Surface So (0"-12")/ Gary Hilga	D	M/G	TM (21)	337 (1)		S66	S: 3/27/2007	13:15 🗸		-
	Surface Se (0"-12")/ Carol Phil	bii	M/G	TM (21)	338 (1)		\$ \$7	S: 3/27/2007	13:45 🗸		-
C2135	Surface St (0"-12")/ Carol Philli	li -	M/ G	TM (21)	339 (1)		888	8: 3/27/2007	13:36 🖌		
privat for Case replate? Y	51	mple(¢) te	be used f	or laboratory QC:		Additional Sam	pler Signature(s):			Chain of Cust	ody Seel Number:
	м	IC2103, N	NC2111, N	IC2112, MC2120		All	AM.L	Sell			
elysis Key: I = CLP TAL T		oncentral	on: L≈	Low, M = Low/Medium	i, H = High	TypeDesigne	in: Composite = C	, Grab = G		Shipment ice	47

TRIAD ENGINEERING

PAGE

04

04/13/2071 08:45

3042968739

SEPA USEPA Contract Laboratory Program Inorganic Traffic Report & Chain of Custody Record								Case No: DAS No:	36279	R	
Region: Project Code:	3	3 CT3907 2007T03W302DD2CB399QB00 WV0002456275 Brooke County Glass/WV Lydia Work Brownfields Site Triad Engineering			Date Shipped: 3/30/2007 Carrier Name: FédEx Airbill: 880675507083 Shipped to: Sentinel Inc. 116 Washington Street, NE		Chain of Custody Record		Sumpior Signature:		
Account Code							Relinquished	Relinquished By		Received By	(Date / Time)
CERCLIS (D): Spill (D):	WV000						1/10/00/ 3/20107 1200 2/		130/07 120	7 记	
Site Name/Sta	nte: Brooke										
Project Leade	- Lyoid i				Huntaville AL 35801 (256) 534-9800			3			
Action: Sempling Co:							4				
INORGANIC SAMPLE No.			ANALYSTS/ TURNAROUND		3 No./ TIVE/ Botles	STATION LOCATION		SAMPLE COL DATEITH	-	ORGANIC AMPLE No.	QC Type
MC2135	Surface Soil (0"-12")/ Carol Phillips	M/G	TM (21)	340 (1)	· · · · · · · · · · · · · · · · · · ·	559	S: 3/2	7/2007 13	:15		

Shipment for Case Complete? Y	Sample(s) to be used for inboratory QC: MC2103, MC2111, MC2112, MC2120	Additional Remains Bigneture (a):	Ciselin of Custody Seel Number:
Analysie Koy: TM = CLP TAL Total N	Concentration: L=Low, M=Low/Medium, H=High	Type/Dielgnate: Composite = C, Grab = G	Shipment iced?
TR Number:	3-043013577-033007-0001	······································	REGION COPY

04/13/2007 FRI 08:47

[TX/RX NO

6553]

2005

PR provides preliminary results. Requests for preliminary results will increase analytical costs. Send Copy to: Sample Management Office, Altn: Heather Bauer, CSC, 15000 Conference Center Dr., Chanility, VA 20151-3818; Phone 703/818-4200; Fax 703/818-4607

TRIAD ENGINEERING

84/13/2071

08:45

3042968739

PAGE 85

#2V6.1.047 Rage@ofi4

U.S. EPA Region III Analytical Request Form

9TS 3-14-27

	36279									
Date: 03/14/2007		tivity:	Site I	nspection Reassessm	ent					
					Str	Street Address: Washington Pike				
City: Wellsburg		Sta	ate: V	WV	La	atitude: 40°16'5"		Longitude: 80°35'18"		
Program: Superfund		Ac	:ct. #: 2	2007 T 03N 302DD2	C B3	B398 QB00 CERCLIS #: WV		V0002456275		
Site ID:		Sp	ill ID:				Operable Unit: 0			
Site Specific QA Plan	Submitted: 🗌 No [Yes	Title:	Sampling and Analy	rsis F	Plan, Brooke County G	lass Dump, Rev.	2 September 2006 Date Approved: October 2006		
3/10/0				#: 215-814-3305 Cell Phone #:			E-mail: Hargett.James@cpa.gov			
Request Preparer: Carol Phillips				ne#: 304-296-2562		Cell Phone #:		E-mail: cphillips@triadeng.com		
Site Leader: Pam Hayes, WVDEP				ac#: 304-926-0499		Cell Phone #:		E-mail: pdhayes@wvdep.org		
Contractor: Triad Eng	ontractor: Triad Engineering, Inc. EPA CO/PO:									
#Samples 23	ples 23 Matrix: soil Section Parameter: TAL Metals QL's preserver Method: ILM05.3						Method: ILM05.3			
#Samples 6							Method: ILM05.3			
#Samples 6	Matrix: water-non potable Parameter: TAL Metals Method: ILM05.3						Method: ILM05.3			
#Samples 9 Matrix: water-non potable Parameter: TA					Metals, Dissolved			Method: ILM05.3		
#Samples 7 Matrix: water-drinking Parameter: TAL M					fetals			Method: ILM05.3		
#Samples Matrix: Parameter:								Method:		
#Samples Matrix: Paramete				Parameter:			Method:			
#Samples Matrix:				Parameter:			Method:			
#Samples Matrix:				Parameter:				Method:		
Ship Date From: 3/26/2007 Ship Date To: 3/26/2007 Org. Validation Level N/A Ingrg. Validation Level IM1								Inorg. Validation Level IM1		
Unvalidated Data Requested: No 🗌 Yes If Yes, TAT Needed: 🗌 24hrs 🗌 48hrs 🛄 72hrs 🗍 7days 🗋 Other (Specify)								r (Specify)		
Validated Data Packag	ge Due: 🔲 14 days 🛛	21 da	ys [] 30days [] 42 day	s [Other (Specify)	141	7		
Electronic Data Delive	erables Required: 🔲 N		Yes	(EDDs will be provi	ided	in Region 3 EDD Form	nat)			
Special Instructions:										
1							-			

FORM ARF- 03/05

		Screening	Project Quantitation	
Target Analyte	CAS Number	Criteria	Limit	
Motals (mg/Kg)				
ALUMINUM	7429905	1,000,000	20	
ANTIMONY	7440360	410	6	
ARSENIC	7440382	1.9	1	
BARIUM	7440393	72,000	20	
BERYLLIUM	7440417	2,000	0.5	
CADMIUM	7440439	510	0.5	
CALCIUM	7440702	NV	500	
CHROMIUM	18540299	3,100	1	
COBALT	7440484	20,000	5	
COPPER	7440508	41,000	2.5	
IRON	7439896	310,000	10	
LEAD	7439921	1,000	1	
MAGNESIUM	7439954	NV	500	
MANGANESE	7439965	20,000	1.5	
MERCURY	7439976	NV	0.1	
NICKEL	7440020	20,000	4	
POTASSIUM	7440097	NV	500	
SELENIUM	7782492	5,100	3.5	
SILVER	7440224	5,100	1	
SODIUM	7440235	NV	500	
THALLIUM	7440280	72	2.5	
VANADIUM	7440622	1,000	5	
ZINC	7440666	310,000	6	

TABLE 2. SOIL LABORATORY ANALYSIS SUMMARY Brooke County Glass Dump CERCLIS Site (WV0002456275) Wellsburg, Brooke County, West Virginia

Notes

Surface and subsurface soil samples will be compared to the EPA Region III RBC Table (04/07/2005) industrial soil values.

NV - No Value Available for compound

Appendix D

Laboratory Case Narrative

USEPA	-	CLP

COVER PAGE

Lab Code: SENTIN Case No.: 36279 SOW No.: ILM05.4	NRAS NO.: SDG NO.: MC2120 Lab Sample ID.		
SOW No.: ILM05.4	Lab Sample ID.		
	Lab Sample ID.		
EPA SAMPLE NO.	30240		
MC2120 MC2120D	30240		
MC2120D MC2120S	3024052 30240MS		
MC21203 MC2125	30240MS		
MC2125 MC2126	30241		
MC2127	30243		
MC2128	30244		
MC2129	30245		
MC2130	30246		
MC2131	30247		
. MC2132	30248		
MC2133	30249		
MC2134	30250		
MC2135	30251		
MC2136	30252		
	<u> </u>		
	· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·			
Were ICP interelement corrections applied	? Yes/No YES		
Were ICP background corrections applied? If yes-were raw data generated before	Yes/No YES		
application of background correction			
Comments:			

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

BURZ:19Wes Signature Name: 67 Date: Title:

COVER PAGE

ILM05.4

Ŭ.	, S	•	EPA	-	CΓЪ
----	-----	---	-----	---	-----

.

•

	SDG NARRA	FIVE - INORGANI	C ANALYSES	data packag	E	
Lab Name: Sentinel	, Inc.	SOW No.: II	LM05,4	Contract:	EPW06059	
Lab Code: SENTIN	Case	No.: 31279	NRAS NO	,: S	DG NO.: MC2/2	Q
SAMPLE RECEIPT: T If a blank is abse Cooler temperature Refer to Record of	nt, a non-inv (s) recorded	vasive laser me via laser meas	easurement i surement wer	s taken usi e: 18.07	4	ples
Refer to ROC regard	ding tag dis	crepancies for	samples:			
Refer to ROC regar	ding sample p	preservation d	iscrepancies	for sample	s:	
Refer to ROC regar						
•						
ANALYSIS: The fol		te(s) were est:		_	matrix interfere	nces
		······································				
DOCUMENT CONTROL: Initial Assessment Full Assessment:	:	ng invalid def			S program anomal	ies
	· · · · · · · · · · · · · · · · · · · ·					
		·····				
values of t	Standard ca he %RI (decin	lculations in	the raw data percentage)	are report with the c	JA software ed as the recipr ontrol limits as	
Signature:	BUAL: I Give	(Drof	·····	Date:	4/ 4/07	
Mame & IICIE;	())			Date:		
		SDG NARRATIV	VE - 1		IL	мо5. С

```
U.S. EPA - CLP
```

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE

	SDG NARRATIVE - INORGANIC ANALISES DATA PACKAGE
Lab Nam	me: Sentinel, Inc. SOW No.: ILM05.4 Contract: EPW06059
Lab Cod	de: SENTIN Case No.: SDG No.: MC2/2.0
EQUATIO	DNS:
HW1 Met	thod: Concentration $(\mu g/L) = C \times (V_f/V_i) \times DF$
WHERE,	C = Instrument value in μ g/L V _f = Final digestion volume (mL)
	$V_i = Initial digestion volume (mL)$
	DF = Dilution Factor
HS1 Met	thod: Concentration (dry wt.) $(mg/kg) = ((C \times V)/(W \times S)) \times DF$
WHERE,	C = Concentration (mg/L) V = Final sample volume in Liters (L)
	W = Wet sample weight (kg)
	S = % Solids/100 . DF = Dilution Factor
CW1 Met	thod: Concentration $(\mu g/L) = C \times (V_f/V_i) \times DF$
WHERE,	V_f = Final digestion volume (mL)
	V ₁ = Initial digestion volume (mL) DF = Dilution Factor
CS1 Met	thod: Concentration $(mg/kg) = (A \times D \times F) / (B \times E)$
WHERE,	$A = Concentration in \mu g/L$
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	B = Weight in g
	D = Dilution Factor E = % Solids/100
	F = Final Volume (0.100 L)
	nO
Signatu	
Name &	Title: BMGilGuie at the Date: 716107
	SDG NARRATIVE - 2 ILM05.4

3

U.S. EPA - CLP

....

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE
Lab Name: Sentinel, Inc. SOW No.: ILM05.4 Contract: EPW06059
Lab Code: SENTIN Case NO.: 36279 NRAS NO.: SDG NO.: $MC2/20$
EQUATIONS:
DW2 Method: CN Concentration $(\mu g/L) = (A \times D \times F) / B$
<pre>WHERE, A = μg/L CN of sample from regression analysis B = volume of original sample for distillation (0.050 L) D = any dilution factor necessary to bracket sample values within standard values F = sample receiving solution volume (0.050 L)</pre>
DS2 Method: CN Concentration $(mg/kg) = (A \times D \times F) / (B \times E)$
<pre>WHERE, A = µg/L CN of sample from regression analysis B = wet weight of original sample (g) D = any dilution factor necessary to bracket sample values within standard values E = % solids/100 F = sample receiving solution volume (0.050 L)</pre>
HW2 Method: Concentration (μ g/L) = C x (V_f/V_i) x ($V_f/20$) x DF
WHERE, C = Instrument value in μ g/L (The average of all replicate integrations). V_f = Final digestion volume (50 mL) V_i = Initial digestion volume (100 mL) DF = Dilution Factor
HW3 Method: Concentration (μ g/L) = C x (V_f/V_i) x DF
WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V_f = Final digestion volume (mL) V_i = Initial digestion volume (mL) DF = Dilution Factor
Signature: M Name & Title: BMC/GWE OHOR Date: 4(6/07 SDG NARRATIVE - 3 ILM05.4

÷

Lindsey Cholewa

From: To:	"Berardino; Michelle" <mberardino@fedcsc.com> <bkilgore@sentinellab.com>; "Daphne" <dwoods@sentinellab.com>; "Lindsey" <lcholewa@sentinellab.com>; <sample receipt@sentinellab.com=""></sample></lcholewa@sentinellab.com></dwoods@sentinellab.com></bkilgore@sentinellab.com></mberardino@fedcsc.com>
Cc:	"Carroll" <harris.carroll@epa.gov>; "Dan Slizys" <slizys.dan@epa.gov>; "John" <kwedar.john@epa.gov>; "Khin-Cho" <thaung.khin-cho@epa.gov></thaung.khin-cho@epa.gov></kwedar.john@epa.gov></slizys.dan@epa.gov></harris.carroll@epa.gov>
Sent: Subject:	Thursday, April 05, 2007 6:52 AM Region 03 Case 36279 Lab SENTIN Issue Multiple FINAL

Lindsey,

Summary Start

-Missing temperature blank-

Issue 1: There was no temperature blank in the cooler. The temperature of a sample was 18 C. Resolution 1: Per Region 3, the issue must be documented in the SDG/Case Narrative.

-Discrepancies with tags, jars, and/or TR/COC-

Issue 2: The TR/COC does not list HG as a required analysis, however, the Case is scheduled for it per the Scheduling Notification Form.

Resolution 2: In accordance with previous direction from Region 3, the laboratory will note the issue in the Case/SDG Narrative, perform the analyses as indicated on the Scheduling Notification Form, and proceed with the analysis of the samples.

Issue 3: The TR/COC lists the TAT as 21 days, however, per the Scheduling Notification Form this Case has a 14 day TAT. Resolution 3: In accordance with previous direction from Region 3, the laboratory will proceed with the turnaround time indicated on the Scheduling Notification Form, note the issue in the Case/SDG Narrative, and proceed with the analysis of the samples.

Issue 4: The Case was scheduled for both filtered and non-filtered water samples, however, the Case is complete and the TR/COC does not designate any samples as filtered.

Resolution 4: Per Region 3, filtered samples for this Case is no longer needed. Please note the issue in the Case/SDG Narrative.

-pH outside allowable limits-

Issue 5: Sample MC2102 has a pH of 6 and sample MC1203 has a pH of 5. Resolution 5: In accordance with previous direction from Region 3, the laboratory will note the issue in the Case/SDG Narrative, adjust the pH, and proceed with the analysis of the samples. ***Summary End***

Please let me know if you have any further questions or problems. Thanks, Michelle Berardino Computer Sciences Corporation CLP Coordinator for Regions 1 & 3 mberardino@fedcsc.com 703.818,5264

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From: Lydia M. Work [mailto:lwork@triadeng.com] Sent: Wednesday, April 04, 2007 3:41 PM To: Slizys.Dan@epamail.epa.gov; Berardino, Michelle; Carroll Harris Cc: Carol Phillips; Pam Hayes; Heather A. Napier Subject: RE: RE: NEW ISSUE | Case 36279 | Lab SENTIN | Issue Multiple| Hi, All-

Thank you for addressing the issues listed. Please see my responses to the remaining items.

Item 1: Since the samples were metals only, we did not feel a temperature blank was technically

4/5/2007 AR100212

235

APPENDIX D

LABORATORY CASE NARRATIVE

,

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Sentinel, Inc. SOW No.: ILM05.4 Contract: EPW06059
Lab Code: SENTIN Case No.: 36279 NRAS No.: SDG No.: MC2101
SAMPLE RECEIPT: Temperature Blank: PRESENTABSENT If a blank is absent, a non-invasive laser measurement is taken using a sample. Cooler temperature(s) recorded via laser measurement were: Refer to Record of Communication (ROC) regarding EPA Sample # discrepancies for samples:
Refer to ROC regarding tag discrepancies for samples:
Refer to ROC regarding sample preservation discrepancies for samples:
Refer to ROC regarding: · Q NALLYSIS + TAT discrepancies on COLITE · filtered samples no longer needed for this case
QC Specified: Yes / No If no, chose: ANALYSIS: The following analyte(s) were estimated due to possible matrix interferences:
DOCUMENT CONTROL: The following invalid defects resulted due to CCS program anomalies: Initial Assessment: Full Assessment:
A waiver has been requested for defects AR212 + RQ29
 OTHER: 1. ICP-MS Mean Values in the raw data are incorrect due to TJA software anomalies. 2. Internal Standard calculations in the raw data are reported as the reciprocal values of the %RI (decimal form-not a percentage) with the control limits as stated in the SOW Exhibit D (ICP-MS) Section 12.11.1.
Signature:
SDG NARRATIVE - 1 ILM05.4

1

1

_

____<u>·</u>___ · · ·

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Sentinel, Inc. SOW No.: ILM05.4 Contract: EPW06059
Lab Code: SENTIN Case No.: SDG No.: MC210
EQUATIONS:
HW1 Method: Concentration $(\mu g/L) = C \times (V_f/V_i) \times DF$
WHERE, C = Instrument value in µg/L V _f = Final digestion volume (mL) V _i = Initial digestion volume (mL) DF = Dilution Factor
HS1 Method: Concentration (dry wt.) $(mg/kg) = ((C \times V)/(W \times S)) \times DF$
<pre>WHERE, C = Concentration (mg/L) V = Final sample volume in Liters (L) W = Wet sample weight (kg) S = % Solids/100 DF = Dilution Factor</pre>
CW1 Method: Concentration $(\mu g/L) = C \times (V_f/V_i) \times DF$
WHERE, C = Instrument value in μ g/L (The average of all replicate integrations). V_t = Final digestion volume (mL) V_i = Initial digestion volume (mL) DF = Dilution Factor
CS1 Method: Concentration $(mg/kg) = (A \times D \times F) / (B \times E)$
<pre>WHERE, A = Concentration in µg/L B = Weight in g D = Dilution Factor E = % Solids/100 F = Final Volume (0.100 L)</pre>
Signature:
Signature: 4/6/07 Name & Title: 10142.19 We OMOR Date:
SDG NARRATIVE - 2 ILM05.4

.

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Sentinel, Inc. SOW NO.: ILMOS.4 Contract: RFW06059 Lab Code: SENTIN Case NO.: $\underline{\Delta}[02]$ NRAS NO.: SDG NO.: $\underline{\Delta}[02]$ EQUATIONS: EQUATIONS: DW2 Method: CN Concentration ($\mu g/L$) = (A x D x F)/ B WHERE, A = $\mu g/L$ CN of sample from regression analysis B = volume of original sample for distillation (0.050 L) D = any dilution factor necessary to bracket sample values within standard values B = weight of original sample (g) D = any dilution factor necessary to bracket sample values within standard values B = weight of original sample (g) D = any dilution factor necessary to bracket sample values within standard values B = weight of original sample (g) D = any dilution factor necessary to bracket sample values within standard values B = $\frac{1}{3} \operatorname{solid}/100$ F = sample receiving solution volume (0.050 L) HW2 Method: Concentration ($\mu g/L$) = C x (V_{2}/V_{1}) x ($V_{2}/20$) x DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V = Initial digestion volume (100 mL) DF = Dilution Factor WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V = Final digestion volume (nL) DF = Dilution Factor WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V = Final digestion volume (mL) DF = Dilution Factor Signature: Name & Title: MEMILIANC SEDE NARRATIVE - 3 ILM05.4		55					
EQUATIONS: DW2 Method: CN Concentration $(\mu g/L) = (A \times D \times F)/F$ WHERE, $A = \mu g/L CN of sample from regression analysis B = volume of original sample for distillation (0.050 L)D = any dilution factor necessary to bracket sample values within standard values F = sample receiving solution volume (0.050 L)DS2 Method: CN Concentration (mg/Kg) = (A \times D \times F)/(B \times E)WHERE, A = \mu g/L CN of sample from regression analysis B = wet weight of original sample (g)D = any dilution factor necessary to bracket sample values within standard values B = solids/100F = sample receiving solution volume (0.050 L)HW2 Method: Concentration (\mu g/L) = C \times (V_c/V_1) \times (V_t/20) \times DFWHERE, C = Instrument value in \mu g/L (The average of all replicate integrations). V_r = Final digestion volume (100 mL)DF = Dilution FactorHW3 Method: Concentration (\mu g/L) = C \times (V_t/V_1) \times DFWHERE, C = Instrument value in \mu g/L (The average of all replicate integrations). V_r = Final digestion volume (100 mL)DF = Dilution FactorHW3 Method: Concentration (\mu g/L) = C \times (V_t/V_1) \times DFWHERE, C = Instrument value in \mu g/L (The average of all replicate integrations). V_r = Final digestion volume (mL)DF = Dilution FactorHW3 Method: Concentration (\mu g/L) = C \times (V_t/V_1) \times DFWHERE, C = Instrument value in \mu g/L (The average of all replicate integrations). V_r = Final digestion volume (mL)DF = Dilution FactorHW3 Method: Concentration (\mu g/L) = C \times (V_t/V_1) \times DFWHERE, M = M = M = M = M = M = M = M = M = M $	Lab Name	: Sentinel, Inc	. SOW No.:	ILM05.4	Contract	EPW06059	
DW2 Method: CN Concentration $(\mu g/L) = (A \times D \times F) / B$ WHERE, A = $\mu g/L$ CN of sample from regression analysis B = volume of original sample for distillation (0.050 L) D = any dilution factor necessary to bracket sample values within standard values F = sample receiving solution volume (0.050 L) DS2 Method: CN Concentration (mg/kg) = (A × D × F) / (B × E) WHERE, A = $\mu g/L$ CN of sample from regression analysis B = wet weight of original sample (g) D = any dilution factor necessary to bracket sample values within standard values E = t solids/100 F = sample receiving solution volume (0.050 L) HW2 Method: Concentration ($\mu g/L$) = C × (V_{f}/V_{1}) × ($V_{f}/20$) × DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V = Final digestion volume (100 mL) DF = Dilution Factor HW3 Method: Concentration ($\mu g/L$) = C × (V_{f}/V_{1}) × DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V = Final digestion volume (100 mL) DF = Dilution Factor HW3 Method: Concentration ($\mu g/L$) = C × (V_{f}/V_{1}) × DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V = Final digestion volume (mL) DF = Dilution Factor HW3 Method: Concentration ($\mu g/L$) = C × (V_{f}/V_{1}) × DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V = Final digestion volume (mL) DF = Dilution Factor Signature: Name & Title: Name & Title: Name & Title: Name ΔT	Lab Code	: SENTIN	Case No.:30274	NRAS_NO	».:	SDG NO .: MCZIC	2
DW2 Method: CN Concentration $(\mu g/L) = (A \times D \times F) / B$ WHERE, A = $\mu g/L$ CN of sample from regression analysis B = volume of original sample for distillation (0.050 L) D = any dilution factor necessary to bracket sample values within standard values F = sample receiving solution volume (0.050 L) DS2 Method: CN Concentration (mg/kg) = (A × D × F) / (B × E) WHERE, A = $\mu g/L$ CN of sample from regression analysis B = wet weight of original sample (g) D = any dilution factor necessary to bracket sample values within standard values E = t solids/100 F = sample receiving solution volume (0.050 L) HW2 Method: Concentration ($\mu g/L$) = C × (V_{f}/V_{1}) × ($V_{f}/20$) × DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V = Final digestion volume (100 mL) DF = Dilution Factor HW3 Method: Concentration ($\mu g/L$) = C × (V_{f}/V_{1}) × DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V = Final digestion volume (100 mL) DF = Dilution Factor HW3 Method: Concentration ($\mu g/L$) = C × (V_{f}/V_{1}) × DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V = Final digestion volume (mL) DF = Dilution Factor HW3 Method: Concentration ($\mu g/L$) = C × (V_{f}/V_{1}) × DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V = Final digestion volume (mL) DF = Dilution Factor Signature: Name & Title: Name & Title: Name & Title: Name ΔT							
<pre>WHERE, A = $\mu g/L$ CN of sample from regression analysis B = volume of original sample for distillation (0.050 L) D = any dilution factor necessary to bracket sample values within standard values F = sample receiving solution volume (0.050 L) DS2 Method: CN Concentration (mg/kg) = (A x D x F)/ (B x E) WHERE, A = $\mu g/L$ CN of sample from regression analysis B = wet weight of original sample (g) D = any dilution factor necessary to bracket sample values within standard values E = t solida/100 F = sample receiving solution volume (0.050 L) HW2 Method: Concentration ($\mu g/L$) = C x (V_L/V_1) x ($V_L/20$) x DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V_t = Final digestion volume (100 mL) DF = Dilution Factor HW3 Method: Concentration ($\mu g/L$) = C x (V_L/V_1) x DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V_t = Final digestion volume (100 mL) DF = Dilution Factor HW3 Method: Concentration ($\mu g/L$) = C x (V_t/V_1) x DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V_t = Final digestion volume (mL) DF = Dilution Factor Signature: Name & Title: Name & Title: Date: Da</pre>	EQUATION	íS :				· .	
B = volume of original sample for distillation (0.050 L) D = any dilution factor necessary to bracket sample values within standard values F = sample receiving solution volume (0.050 L) D52 Method: CN Concentration (mg/kg) = (A x D x F)/ (B x E) WHERE, A = $\mu g/L$ CN of sample from regression analysis B = wet weight of original sample (g) D = any dilution factor necessary to bracket sample values within standard values E = $\frac{1}{3}$ solids/100 F = sample receiving solution volume (0.050 L) HW2 Method: Concentration ($\mu g/L$) = C x (V_t/V_t) x ($V_t/20$) x DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V _t = Final digestion volume (100 mL) DF = Dilution Factor HW3 Method: Concentration ($\mu g/L$) = C x (V_t/V_t) x DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V _t = Final digestion volume (100 mL) DF = Dilution Factor HW3 Method: Concentration ($\mu g/L$) = C x (V_t/V_t) x DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V _t = Final digestion volume (mL) DF = Dilution Factor HW3 Method: Concentration ($\mu g/L$) = C x (V_t/V_t) x DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V _t = Final digestion volume (mL) DF = Dilution Factor Signature: MH2 MARE ORACL Date: $\frac{4}{60}$	DW2 Meth	od: CN Concent	ration $(\mu g/L) = (A)$	x D x F) / B			
<pre>WHERE, A = µg/L CN of sample from regression analysis B = wet weight of original sample (g) D = any dilution factor necessary to bracket sample values within standard values E = % solids/100 F = sample receiving solution volume (0.050 L)</pre> HW2 Method: Concentration (µg/L) = C x (Vr/Vi) x (Vr/20) x DF WHERE, C = Instrument value in µg/L (The average of all replicate integrations). Vr = Final digestion volume (100 mL) DF = Dilution Factor HW3 Method: Concentration (µg/L) = C x (Vr/Vi) x DF WHERE, C = Instrument value in µg/L (The average of all replicate integrations). Vr = Final digestion volume (100 mL) DF = Dilution Factor HW3 Method: Concentration (µg/L) = C x (Vr/Vi) x DF WHERE, C = Instrument value in µg/L (The average of all replicate integrations). Vr = Final digestion volume (mL) DF = Dilution Factor Signature: MM2(MAC) DATA (MAC) Date: $\frac{4[b(0+1)]}{2}$	WHERE,	B = volume of D = any diluti values	original sample for on factor necessary	distillation to bracket sa		es within standard	
B = wet weight of original sample (g) D = any dilution factor necessary to bracket sample values within standard values E = $\frac{1}{2} \operatorname{solids/100}$ F = sample receiving solution volume (0.050 L) HW2 Method: Concentration (μ g/L) = C x (V_t/V_1) x ($V_t/20$) x DF WHERE, C = Instrument value in μ g/L (The average of all replicate integrations). V_t = Final digestion volume (100 mL) DF = Dilution Factor HW3 Method: Concentration (μ g/L) = C x (V_t/V_1) x DF WHERE, C = Instrument value in μ g/L (The average of all replicate integrations). V_t = Final digestion volume (nL) V_t = Final digestion volume (nL) V_t = Final digestion volume (nL) DF = Dilution Factor Signature: MAMIQUE ORACL Date: $\frac{4}{6}04$	DS2 Meth	od: CN Concent	ration (mg/kg) = (A	х D х F) / (В	X E)		
WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V_t = Final digestion volume (50 mL) V_i = Initial digestion volume (100 mL) DF = Dilution Factor HW3 Method: Concentration ($\mu g/L$) = C x (V_t/V_i) x DF WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). V_t = Final digestion volume (mL) V_i = Initial digestion volume (mL) DF = Dilution Factor Signature: Name & Title: MMUIGME DIACK Date: 4[6(D)]	WHERE,	<pre>B = wet weight D = any diluti values E = % solids/1</pre>	of original sample on factor necessary 00	(g) to bracket sa	imple value	es within standard	
$V_{r} = \text{Final digestion volume (50 mL)} \\ V_{i} = \text{Initial digestion volume (100 mL)} \\ DF = \text{Dilution Factor} \\ \\ \text{HW3 Method: Concentration (µg/L) = C x (V_{r}/V_{i}) x DF} \\ \\ \text{WHERE, C = Instrument value in µg/L (The average of all replicate integrations).} \\ V_{r} = \text{Final digestion volume (mL)} \\ V_{i} = \text{Initial digestion volume (mL)} \\ DF = \text{Dilution Factor} \\ \\ \\ \text{Signature:} \\ \hline \\ \text{Name & Title:} \\ \hline \\ \hline \\ \text{Mature:} \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{Mature:} \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{Mature:} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{Mature:} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{Mature:} \\ \hline \\ $	HW2 Meth	od: Concentrat	ion $(\mu g/L) = C \times (V$	$(V_i) \times (V_f/20)$	x DF		
WHERE, C = Instrument value in $\mu g/L$ (The average of all replicate integrations). $V_r = Final digestion volume (mL)$ $V_i = Initial digestion volume (mL)$ DF = Dilution Factor Signature: Name & Title: $H_i = 0$ $H_i = $		V _f = Final dige: V _i = Initial dig	stion volume (50 mL) gestion volume (100	}	. replicate	e integrations).	
$V_{r} = \text{Final digestion volume (mL)}$ $V_{i} = \text{Initial digestion volume (mL)}$ $DF = \text{Dilution Factor}$ Signature: Name & Title: $V_{i} = V_{i}	HW3 Meth	od: Concentrat	ion (μ g/L) = C x (V	_t /V _i) x DF			
Name & Title:		$V_f = Final diges$ $V_i = Initial diges$	stion volume (mL) gestion volume (mL)	average of all	replicate	e integrations).	
	- · .	B	June	DIAOR TIVE - 3	 Date:	·	105.4

Page 1 of 1

Naiver Request

Randi Hicks

From:	"Randi Hicks" <rhicks@sentinellab.com></rhicks@sentinellab.com>
To:	<gurley.cindy@epa.gov></gurley.cindy@epa.gov>
Cc:	"Beverly Kilgore" < bkilgore@sentinellab.com>
Sent:	Friday, April 06, 2007 9:53 AM
Subject:	Waiver Request for SDG MC2101, Case 36279

To: Cindy Gurley, R4 Project Officer Date: 04/06/07 Contract #: EPW06059 Re: Request for Waiver for SDG MC2101, Case# 36279

Sentinel, Inc. request a waiver for the referenced SDG due to insufficient sample volume available to perform redigestion on the matrix spike sample. The matrix spike sample was inadvertently spiked at a four times greater level than required. Therefore a 0.25 dilution factor was used in reporting the data to obtain correct numerical values. This in turn resulted in defects AA21.2 and AQ29. Thank you for you consideration in this matter.

Randi D. Richey Inorganic Supervisor/ Environmental Scientist Sentinel Inc. (256) 534-9800 ext. 23

4/6/2007 AR100217

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III ENVIRONMENTAL SCIENCE CENTER 701 MAPES ROAD FORT MEADE, MARYLAND 20755-5350

DATE : April 24, 2007

SUBJECT: Region III Data QA Review

- FROM : Khin-Cho Thaung KCT Region III ESAT RPO (3EA20)
- TO : James Hargett Regional Project Manager (3HS12)

Attached is the inorganic data validation report for the Brook**e** County Glass Dump site (Case # 36279; SDG #MC2108) completed by the Region III Environmental Services Assistance Team (ESAT) contractor under the direction of Region III EAID.

If you have any questions regarding this review, please call me at (410) 305-2743.

Attachment

cc: Pam Hayes/Lydia Work WVDEP/TRIAD

TO File #: 0007 TDF#: 0450

ANALYTICAL SERVICES AND QUALITY ASSURANCE BRANCH

Lockheed Martin Information Technology ESAT Region 3 US EPA Environmental Science Center 701 Mapes Road Ft. Meade, MD 20755-5350 Telephone 410-305-3037 Facsimile 410-305-3597

LOCKHEED MA We never forget who we're working for

DATE: April 17, 2007

- SUBJECT: Level IM1 Inorganic Data Validation for Case 36279 SDG: MC2108 Site: Brooke County Glass Dump
- FROM:Shilpa Udani ζΛInorganic Data Reviewer
- Through: Mahboobeh Mecanic⁴⁴ Senior Data Review Chemist
- TO: Khin-Cho Thaung ESAT Region 3 Project Officer

OVERVIEW

Case 36279, Sample Delivery Group (SDG) MC2108, consisted of twelve (12) soil samples submitted to Sentinel, Inc. (SENTIN) for total metals analysis. The sample set included one (1) field duplicate pair. Samples were analyzed in accordance with Contract Laboratory Program (CLP) Statement of Work (SOW) ILM05.4 through Routine Analytical Services (RAS) program.

SUMMARY

Validation of data was performed according to EPA Region III Innovative Approaches for Validation of Inorganic Data, Level IM1, which includes review of all Forms but excludes review of raw data. Areas of concern with respect to data usability are listed below.

Data in this Case have been impacted by outliers present in laboratory blanks as well as ICP serial dilution and matrix spike analyses. Details for these outliers are discussed under "Major and Minor Problems". Qualified analytical results for all samples are summarized on Data Summary Forms (DSFs).

MAJOR PROBLEM

The matrix spike recovery was extremely low (< 30%) for antimony (Sb). The positive results reported for this analyte may be biased extremely low and have been qualified "L" on the DSFs unless superseded by "J". Quantitation limits for this analyte are unusable and have been qualified "R" on the DSFs.

MINOR PROBLEMS

The continuing calibration blank (CCB) had reported results greater than the Method Detection Limit (MDL) for beryllium (Be) and mercury (Hg). Positive results reported for these analytes in affected samples which are less than or equal to five times ($\leq 5X$) blank concentration may be biased high and have been qualified "B" on the DSFs.

Percent Differences (%Ds) for ICP serial dilution analysis were outside control limits (>10%) for aluminum (Al), barium (Ba), calcium (Ca), chromium (Cr), cobalt (Co), iron (Fe), magnesium (Mg), manganese (Mn), nickel (Ni), potassium (K), vanadium (V), and zinc (Zn). Reported positive results for these analytes are estimated and have been qualified "J" on the DSFs.

The matrix spike recoveries were low (<75% but >30%) for selenium (Se) and thallium (Tl). The low recovery may be attributed to matrix interferences or analyte lost during the digestion process. Reported results and quantitation limits for these analytes may be biased low and have been qualified "L" and "UL" on the DSFs unless superseded by "J".

The matrix spike recovery was high (>125%) for Zn. Positive results reported for this analyte in this SDG may be biased high. The "K" qualifier for this outlier has been superseded by "J" on the DSFs.

NOTES

Positive results which are less than the Contract Required Quantitation Limit (CRQL) but greater than MDL have been qualified "J" on the DSF unless superseded by "B".

The following samples were reanalyzed at dilutions in order to bring concentrations of analytes listed within the established calibration range. The results for these analytes in these samples are reported from the diluted analyses and annotated with a "+" on the DSFs.

<u>Sample</u>	Dilution factor	<u>Analyte</u>
MC2109	2 X	Mn
MC2122	2 X	cadmium (Cd)

The cooler chest used to transport samples in this case had an interior temperature of 18 °C, which exceeded the required cooler temperature of 4 °C to \pm 2 °C. Due to thermostability of metals, no data were qualified based on the sample cooler chest temperature.

Reported results for field duplicate pairs MC2109/MC2111 were within 35% RPD, ±2XCRQL for all analytes except Mn.

Data for Case 36279, SDG MC2108, were reviewed in accordance with EPA Region 3 Innovative Approaches (Level IM1) for Validation of Inorganic Data, June 1995.

ATTACHMENTS

INFORMATION REGARDING REPORT CONTENT

APPENDIX A GLOSSARY OF DATA QUALIFIER CODES APPENDIX B DATA SUMMARY FORM(S) APPENDIX C CHAIN OF CUSTODY RECORD(S) APPENDIX D LABORATORY CASE NARRATIVE(S)

DCN:36279_MC2108.IM1

Appendix A

Glossary of Data Qualifier Codes

GLOSSARY OF DATA QUALIFIER CODES

CODES RELATED TO IDENTIFICATION

(confidence concerning presence or absence of analytes):

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

(NO CODE) = Confirmed identification.

- B = Not detected substantially above the level reported in laboratory or field blanks.
- R = Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

CODES RELATED TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = Analyte Present. Reported value may not be accurate or precise.
- K = Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L = Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- [] = Analyte present. As values approach the IDL the quantitation may not be accurate.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.
- UL = Not detected, quantitation limit is probably higher.

OTHER CODES

Q = No analytical result.

Appendix B

Data Summary Forms (DSFs)

DATA SUMMARY FORM: INORGANIC

Case #: 36279 Site : Lab. : SDG : MC2108 BROOKE COUNTY GLASS DUMP SENTIN

Sample Number :		MC2108		MC2109		MC2110		MC2111		MC2118		
Sampling Location :		SED1		SED2		SED3		SED4		SS1		
Field QC :				Dup, of MC	2111			Dup. of MC	2109			
Matrix :		Soil		Soll		Soli		Soil		Soll		
Units :	ļ	mg/Kg		ma/Kg		mg/Kg		mg/Kg		mg/Kg		
Date Sampled :		3/26/2007		3/28/2007		3/26/2007		3/28/2007		3/26/2007		
Time Sampled :		11:20		11:05		10:55		11:05		11:55		
%Solids :		63.7		57.3		68.2		67.3		69.7		
Dilution Factor :		. 1.0		1.0/2.0	:	1.0		1.0	SS1 MC2109 Soll mg/Kg 3/26/2007 11:55 69.7 1.0 8060 Soll 8060 Soll 9.7 Sold 9.7			
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	
ALUMINUM	20	7610	J	8500	J	7040	. J	7950			J	
ANTIMONTAL MILL	10 B		J.S		電腦	出来的 在						
ARSENIC	1	10.9		11.9		7.2	L	11.3				
BARIUM			1				5.1 5.	Sec. 103			1	
BERYLLIUM	0.5	1.0		1.4		1.2		1.1				
CADMIUM III	道的總			0.66	习警	0.57	行演		新 希			
CALCIUM	500	7890	. J	10400	J	3910	3	7860	. J	17400	J	
CHROMIUM				19.6-	1-2					204	2.20	
COBALT	5	26.8	J	41.9	J	23.2	J	32,5			J	
COPPER		26.8						310+		27.0		
IRON	10	31900	1	30200	J	38300	J	30700			J	
	<u></u> 12	7.1 28.2						26.6		1		
MAGNESIUM	500	2990	J	2990	J	2510	J	2940	-		J	
MANGANESE	1.5	2380		6500-+-	泡肥	3270						
MERCURY	0.1	0.094	В	0.18	B	0.11	B	0.10			B	
NICKEL				73.8		39.6		54.3				
POTASSIUM	500	1070	J	1140	J	993	J	1140	-		J	
SELECION					UL		机学		1000	200 C 10 C 10		
SILVER	1 ##########	0.92	J Strange	0.98	J	1.2	J	1.0			j come	
Sobilitienskink				583	Э.	433		Contraction of the state		<u>1002</u>	Tures a	
THALLIUM	2.5	2.8	J.	2.0	्र संरक्ष	2.2	J SV21065	2.4		-	UL	
YANADIUM	5	18.2							J	19.3	រុះ	
ZINC	6	125	J	141 .	J	B7.2	J	115	J	167	[]	

CRQL = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS

Revised 09/99

AR100226

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

"+" = Result is reported from diluted analysis.

DATA SUMMARY FORM: INORGANIC

Case #: 38279 Site : Lab. : SDG : MC2108 BROOKE COUNTY GLASS DUMP SENTIN

Sample Number :		MC2117		MC2118		MC2119		MC2121		MC2122	
Sampling Location :		SS10		. SS1 1		SS12		.SS14		SS15	
Field QC :										ĺ	
Matrix :	Soll		Soil		Soll	!	Soil		Soil		
Units :		mg/Kg		mg/Kg		mg/Kg		mg/Kg		mg/Kg	
Date Sampled :		3/27/2007		3/27/2007	1	3/27/2007 3/27/2007		3/27/2007			
Time Sampled :		11:45		13:20		13:27		11:50		11:22	
%Solids :		61.5		50.8		75.9		32.2		38.5	
Dilution Factor :		1.0		. 1.0		1.0		1.0		1.0 / 2.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM		1810-	N.			4406	2	2700	jJ=t	2230-	
ANTIMONY	8	5.2	. J	17.3	L	15.1	L	12.9	J	12.2	J
ARSENIC		104					and a second			5.64	
BARIUM	20	359	J	102	.J	60.7	J	1150	J	755	J
BERGLIUM		0.069	1	一些。此时	<i>(</i> 1)	三 前 归			靈行		
CADMIUM	0.5	66.4		180		302		37.7		8310 +	
CALCIUM	500			12500	司法	11200 A	對主	192001	新鮮	高能加	а÷-
CHROMIUM	1	43.1	J	18.5	J	40.6	J	130	J.	26.7	J
COPALITY		- 44					新 西西		Ť,		新¢.
COPPER	2.5	53.4		68.9		160		105		72.9	
RON AND AN AVAILABLE		35400	3.3	200			(Etc.)	10.00		87804	J.F
LEAD	1	3710		138		361		3370		763	
MAGNESIUMESSEE	50.52	524-		ap distant	変も	Contraction of the	Г. Б . Б				
MANGANESE	. 1.5	298	J ·	425	J	311	J	1590	J	401	J
MERCURY	••0 .1		使解	0.25	B	. 0.38	潮的	0.56	1 ₿-4	0.40	
NICKEL	4	14.8	.J	13.5	J	31.8	J	28.2	J	20.8	J
POTASSIUM						536	业性	8775		9 Yan 641-	1
SELENIUM	3.5	24.6	L	96.6	L	284	L	45.3	L	569	L
SILVER		15.4		in the solution		1.0 %	1-2	- 251		含於10 625	-J-1
SODIUM	500.	13600	•	1260		5520		19000		2690	
THALLIUM							T.	6.3			JL.
VANADIUM	5	4.6	1	5.4	5	9.4	5	7.8	5	5.7	5
	*	6370	2.130	14.612/2020	金融	212700		9240 3	ALC: NO DECK	290	1

CRQL = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS Revised 09/99

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

"+" = Result is reported from diluted analysis.

DATA SUMMARY FORM: INORGANIC

Page _3_ of _3_

Case #: 36279 Site : Lab. : SDG : MC2108 BROOKE COUNTY GLASS DUMP SENTIN

Sample Number :		MC2123	÷	MC2124							
Sampling Location :		SS16		SS17]					
Field QC :											
Matrix :		Soil		Soil ,		ļ					
Units :		mg/Kg		.mg/Kg							
Date Sampled :		3/27/2007		3/27/2007		1		ļ			
Time Sampled :		11:18		11:15							
%Solids :		42.3		69.5							
Dilution Factor :		1.0		1.0							
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	20	4090	J	7030	3						
ANTIMONY	6	<.≓≦18.0	北灣		動團						
ARSENIC	1	181		113							
BARIUM	20	2.276		6.4773	<u>المجر</u>			2000 - A			
BERYLLIUM	0.5	0.25	В	0.69	J						
CADMUM				41.0.	建定						
CALCIUM	500	14200	J	17500	J						
CFIROMUM	影運			18.6	的影	学生主体					
COBALT	5	51.2	J	11.9	J						
COPPER	254	97.7		6.6							
IRON	10	27800	J	24300	. J						
*LEAD		您还 34 3日			擁		10-1				
MAGNESIUM	500	3090	J	2810	.J						
MAINGAN SERVICE TO THE SERVICE	1.6	4454		854	N.						白虹
MERCURY	0.1	0.79		0.15	в						
NICKEL	4.	48.4	邐	124.5			法定				
POTASSIUM	500	625 .	J.	1820	J						
SELENIUM	354	186.4	鑩						調め		
SILVER	1	1.1	J	0.78	J			<u> २००१ स्थान्त्र</u>			
RSODIUM		0462-540		16003			뼯				税 信
THALLIUM	2.5		UL		UL						
VANADIUM	3 S.			-16.9	J						
	6	1760	J	723	J						

CRQL = Contract Required Quantitation Limit


SEE NARRATIVE FOR CODE DEFINITIONS Revised 09/99

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

Appendix C

Chain-of-Custody Records

U.S. EPA Region III Analytical Request Form

	36279						
Date: 03/14/2007	Site Activ	ity: Site I	inspection Reassessment				
Site Name: Brooke Co	ounty Glass Dump		St	Street Address: Washington Pike			
City: Wellsburg	City: Wellsburg State: WV			ntitude: 40°16'5"		Longitude: 80°35'18"	
Program: Superfund		Acct. #:	2007 T 03N 302DD2C B	398 QB00	CERCLIS #: W	V0002456275	
Site ID:	······································	Spill ID:	· · · · · · · · · · · · · · · · · · ·		Operable Unit: (0 .	
Site Specific QA Plan	Submitted: No XY	es Title	Sampling and Analysis	Plan, Brooke County G	lass Dump, Rev. 2	2 September 2006 Date Approved: October 2006	
EPA Project Leader:	James Hargett 3H51	2. Pho	ne#: 215-814-3305	Cell Phone #:	_	E-mail: Hargett.James@epa.gov	
Request Preparer: Car			ne#: 304-296-2562	Cell Phone #:		E-mail: cphillips@triadeng.com	
Site Leader: Pam Hay	res, WVDEP	Pho	ne#: 304-926-0499	Cell Phone #:		E-mail: pdhayes@wvdep.org	
Contractor: Triad Eng	incering, Inc.		EPA CO/PO:				
#Samples 23	Matrix: soil	Satur	Parameter: TAL Meta	us QL	opun	Method: ILM05.3	
#Samples 6	Matrix: sediment)	Parameter: TAL Meta	lls	Method: ILM05.3		
#Samples 6	Matrix: water-non potabl	e 🛛	Parameter: TAL Meta	ıls		Method: ILM05.3	
#Samples 9	Matrix: water-non potabl	e /	Parameter: TAL Meta	ds, Dissolved		Method: ILM05.3	
#Samples 7	Matrix: water-drinking		Parameter: TAL Meta	lls		Method: ILM05.3	
#Samples	Matrix:		Parameter:			Method:	
#Samples	Matrix:		Parameter:		Method:		
#Samples	Matrix:		Parameter:			Method:	
#Samples	Matrix:		Parameter:			Method:	
Ship Date From: 3/26	/2007 Ship Da	ate To: 3/	2 6/2007 Or	rg. Validation Level N	J/A.	Inorg. Validation Level IM1	
Unvalidated Data Req	uested: 🛛 No 📋 Yes	If Yes,	TAT Needed: 📋 24hrs	∐ 48hrs ∐ 72hrs [7days 🛄 Other	r (Specity)	
Validated Data Packag	ge Due: 🗌 14 days 🛛 🏼 2	1 days [30days 42 days	Other (Specify)	141	7	
Electronic Data Delive	erables Required: 🗌 No	🛛 Yes	(EDDs will be provided	l in Region 3 EDD For	mat)		
Special Instructions:							
	-		1				
1			,				
						· .	

FORM ARF- 03/05

Region: Project Code: Account Code CERCLIS ID: Spill ID: Shie Name/Sta Project Loade Action: Sampling Co:	2007703/ 2007703/ WV00024	oundy Glass/V rk ts Site		Date Shipped: Cernier Hame; Airbilt: Shipped to:	3/30/2007 FedEx 8605765070 Sentinel Inc. 116 Washing NE Huntsville Al (256) 534-98	nion Street, . 35801	Chain of Custody Relinquished By JUHHUUUU 7 3 4	(Dete / Time) 3/35/07 /201	Sampler Signature: Received By C	(Date / 71	
NORGANIC SAMPLE No.	HATROXI Sampler	CONC/ TYPE	ANULYSIE TURNAROUND		No <i>j</i> IVE/ Bollias	STATION LOCATION			RGANIC MPLE No.	QC Type	
IC2101	Ground Water/ Gary Hilgar	M/G	TNI (21)	31 (1)	النية ويهيون خلي التكفي	GW1	S: 3/27/2007	11:05			
AC2102	Ground Water/ Gary Hilgar	M/G	TM (21)	32 (1)		GW2	S: 3/27/2007	11:15		-	
AC2103	Ground Water/ Gary Hilgar	M/G	TM (21)	33 (t)		GW3	S: 3/27/2007	12:30		-	
KC2108	Sediment/ Carol Philips	M/G	TM (21)	310 (1)		SED1	S: 3/26/2007	11:20 /		-	
IC2109	Sediment/ Carol Phillips	M/G	TM (21)	311 (1)		SED2	S: 3/26/2007	11:05 /		-	
G2110	Sediment/ Lydia Work	M/G	TM (21)	312 (1)		SED3	S: 3/26/2007	10:55 /		-	
C2111	Sediment/ Carol Phillips	M/G	TM (21)	313 (1)		SED4	S: 3/26/2007	11:05 /		Xuplicate 2109	
C2112	Surface Water/ Carol Phillips	M/G	TM (21)	314 (1)		SW1	\$: 3/25/2007	11:20		~	
IC2113	Surface Water/ Carol Phillips	M/G	TM (2 1)	317 (1)		SW2	S: 3/26/2007	11:10			
C2114	Surface Water/ Lydia Work	M/G	TM (21)	318 (1)		SW3	S; 3/26/2007	10:50		-	
C2115	Surface Water/ Carol Phillips	M/G	The (21)	319 (1)	۰.	SW4	S; 3/26/2007	11:10	Field C	Duplicate	
pment for Case mplote? Y	Sample	(s) to be used (for laboratory QC:		1 1.	npler Signature(s):	(O, c)		Chuin of Custody See I	lumber:	
	MC210	3, MC2111, J	NC2112, MC2120		1th	ia U.L	(Jan)				
atysis Kay: A ≈ CLP TAL 1	Concern	tration: Lo	Low, M = LowMedium	,H = High	Type/Design	in: Composile = C	, Gnab = G		Shipment load?		

04/13/2007 FRI 08:47 [TX/RI NO 8553] 2002

PAGE 82

TRIAD ENGINEERING

84/13/2871 88:45

3042968739

AR100230

Region: Project Code:	3		د د <u>ين 1996 ماه</u> د دون غير اير .	Date Shipped:	3/30/2007		Chain of Custody	Record	Sumpler Signature:	
Account Code: CERCLIS ID: Spill ID:	CT3907 2007TD3W WV000246	302DD2C83 6275	98QB00	Carrier Name; Abbill: Shipped to:	FedEx 86057550706 Sentinei Inc. 116 Washingta		RefEnquistred By	(Date / Th	me) Received By	(Date / Time)
She Name/State: Project Loader: Action: Sampling Co:	Broake Co Lydia Worl Brownfield Triad Engli	s Sile	N		NE Huntsville AL (258) 534-960	15801	2 (
INORGANIC SAMPLE No.	MATRX/ SAMPLER	CONC/ TYPE	ANALYSS/ TURNAROUND	TAG PRESERVAT	No./ IVE: Bottles	STATION LOCATION	SAIPLE	COLLECT /TIME	ORGANIC SAMPLE No.	QC Type
(0	nface Soil "-12")/	M/G	TM (21)	320 (1)	يكفكف ويواك	SS1	S: 3/26/2007	11:55 /		
1C2117 Si (0	arol Phillips afface Soil -127/	M/G	TM (21)	321 (1)		SS1 0	S: 3/27/2007	11:45		-
1C2118 Si (0	uol Phillips uface Soli '-12")/ uol Phillips	M/G	TM (21)	322 (1)		SS 17	S: 3/27/2007	13:20 /		-
C2119 St (0	rface Soil -12")/ rol Phillips	M/G	TM (21)	323 (1)		SS12	S: 3/27/2007	13:27 /		-
IC2120 Si (0'	rface Soli -12")/ rol Phillips	M/G	TM (21)	324 (1)		S\$13	S: 3/27/2007	11:55		-
IC2121 Su (01	risce Soil -12")/ rol Phillips	M/G	TM (21)	325 (1)		SS 14	S: 3/27/2007	11:50 /		-
C2122 St	rface Soil -12")/ uol Phillips	MG	TM (21)	·326 (1)		8\$ 15	S: 3/27/2007	11:22, /		-
C2123 Su (0'	rface Soll -12")/ rol Phillips	W/G	TM (21)	327 (1)		S81 6	. S: 3/27/2007	11:18 🧹		-
iC2124 Su (0'	rface Soil -12")/ rol Phillips	MfG	TM (21)	328 (1)		\$ \$17	S: 3/27/2007	11:15 /		-
IC2125 Su	riace Soil -12")/ rol Phillips	M/G	TM (21)	329 (1)		SS18	S: 3/27/2007	11: 10		-
lipment for Cesa Impleje 7 Y			or laboratory QC: IC2112, MC2120		Additional Sam	der Signatureis:	Dorth		Chain of Guatoty	Seal Mumber:
whysis Key:	Concent	allon: (=	Low, M = LowNedium	H = Hinh	Type Designed	Composile = C,	Gmb = G		Shipment loed?	

04/13/2007 FRI 08:47 [TX/RX NO 6553] 2003

-

TRIAD ENGINEERING

04/13/2071 08:45

3042968739

PAGE

. 83

AR100231

TABLE 2. SOIL LABORATORY ANALYSIS SUMMARY Brooke County Glass Dump CERCLIS Site (WV0002456275) Wellsburg, Brooke County, West Virginia

		it is out the Brind	
Target Analyte Metalic (mg/Kg)	CAS Number	Screening Criteria	Project Quantitation
ALUMINUM	7400000		
ANTIMONY	7429905	1,000,000	20
ARSENIC	7440360	410	6
BARIUIA	7440382	1.9	1
BERYL JUM	7440393	72,000	20
CADMILIM	7440417	2,000	0.5
CALCIUM	7440439	510	
CHRONIUM	7440702	NV	0.5
COBALI	18540299	3,100	500
COPPER	7440484	20,000	
IRON	7440508	41,000	5
LEAD	7439896	310,000	2.5
MAGNEEIUM	7439921	1,000	10
MANGANESE	7439954	NV	1
MERCUFY	7439965	20,000	500
NICKEL	7439976	NV	1.5
POTASSI JM	7440020	20,000	0.1
SELENIUM	7440097	NV 1	4
SILVER	7782492	5,100	500
SODIUM	7440224	5,100	3.5
THALLIUN	7440235	NV	1
ANADIUM	7440280	72	500
ZINC	7440622		2.5
	7440666	1,000	5
Otes		310,000	6

Notes

Surface and aubourface soil samples will be compared to the EPA Region III RBC Table (04/07/2005) industrial NV - No Value Available for compound

		Screening	Project Quantitation
Tar jet Analyte	CAS Number	Criteria	Limit
Matala (mg/K j)			
ALUMINUM	7429905	78,000	20
ANTIMONY	7440360	31	6
ARSENIC	7440382	0.43	1
BARIUM	7440393	5,500	20
BERYLLIUM	7440417	160	0.5
CADMIUM	7440439	39	0.5
CALCIUM	7440702	NV	500
CHROMIUM	18540299	230	1
COBALT	7440484	1,600	5
COPPER	7440508	3,100	2.5
IRON	7439896	23,000	10
LEAD	7439921	400	1
MAGNESIUM	7439954	NV	500
MANGANESE	7439965	1,600	1.5
MERCURY	7439976	NV NV	0.1
NICKEL	7440020	1,600	4
POTASSIUM	7440097	[°] NV	500
SELENIUM	7782492	390	3.5
SILVER	7440224	390	1
SODIUM	7440235	NV	500
THALLIUM	7440280	5.5	2.5
VANADIUM	7440622	78	5
ZINC	7440666	23,000	6

TABLE 3. SEDIMENT LABORATORY ANALYSIS SUMMARY Brooke County Glass Dump CERCLIS Site (WV0002456275) Wellsburg, Brooke County, West Virginia

Notes

Sediment samples will be compared to the EPA Region III RBC Table (04/07/2005) residential soll values.

NV - No Value Available for compound

Appendix D

Laboratory Case Narrative

	USEPA	- CLP		
entinel, Inc.			PW06059	
•	ae No.: 36279			MC2108
LM05.4 EPA SAMPLE NG MC2108 MC2109 MC2110 MC2111 MC21115 MC2116 MC2117 MC2118 MC2119 MC2121 MC2122 MC2122 MC2123 MC2124). 		Lab Sample ID. 30207 30208 30209 30210 30210S2 30210MS 30211 30212 30213 30214 30216 30217 30218 30219	
ckground corre were raw data	ctions applie generated be	d? fore	Yes/No	YES
•				
of the contract the conditions dcopy data pack has been author	t, both techn detailed abo cage and in t prized by the rified by the	ically and for we. Release o he computer-real Laboratory Mai following sign Name: BML	completeness, fo f the data contai adable data submi nager or the nature.	ned
	EPA SAMPLE NG MC2108 MC2109 MC2110 MC2111 MC2111D MC21115 MC2116 MC2117 MC2118 MC2121 MC2122 MC2122 MC2123 MC2124 C2123 MC2124 C214 C21	COVE entinel, Inc. ENTIN Case No.: 36279 M05.4 EPA SAMPLE NO. MC2108 MC2109 MC2110 MC2111 MC21115 MC2116 MC2117 MC21218 MC2122 MC2122 MC2123 MC2124 C2123 MC2124 C2124 C2124 C2125 MC2124 C2124 C2124 C2124 C2124 C2125 MC2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 MC2124 C2124 MC2124 C2124 C2124 MC2124 MC2124 C2124 C2124 MC2124 C2124 C2124 MC2124 MC2124 MC2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 C2124 C2125 MC2124 C2125 C2126 C216 C21	ENTIN Case No.: 36279 NRAS No.: M05.4 EPA SAMPLE NO. MC2108 MC2109 MC2110 MC21110 MC21115 MC2116 MC2117 MC2118 MC2121 MC2122 MC2122 MC2123 MC2124 	COVER PAGE entinel, Inc. Contract: EPW06059 ENTIN Case No.: 36279 NRAS No.: SDG No.: 1 ENTIN Case No.: 36279 NRAS No.: 1 ENTIN Case Name:

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Sentinel, Inc. SOW No.: ILM05.4 Contract: EPW06059
Lab Code: SENTIN Case No.: 36279 NRAS No.: SDG-No.: MC2108
SAMPLE RECEIPT: Temperature Blank: PRESENT ABSENT
Refer to ROC regarding tag discrepancies for samples:
Refer to ROC regarding sample preservation discrepancies for samples:
analysis + TAT discrepancies on cocite
percent solids less than 50 percent
QC Specified: Yes V No If no, chose:
ANALYSIS: The following analyte(s) were estimated due to possible matrix interferences: <u>NJ, Ba, Ca, Cr, Ca, Fe, Mg, Ma, Ni, K, Y, +Zn</u>
DOCUMENT CONTROL: The following invalid defects resulted due to CCS program anomalies: Initial Assessment:
OTHER: 1. ICP-MS Mean Values in the raw data are incorrect due to TJA software anomalies. 2. Internal Standard calculations in the raw data are reported as the reciprocal values of the %RI (decimal form-not a percentage) with the control limits as stated in the SOW Exhibit D (ICP-MS) Section 12.11.1.
Signature:
SDG NARRATIVE - 1 ILM05.4

.....

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Sentinel,	Inc. SOW No.:	ILM05.4	Contract: EPW	06059
Lab Code: SENTIN	Case No.:3627	9 NRAS NO	.: SDG N	o.: <u>MC2108</u>
EQUATIONS:				
HW1 Method: Concent	cration $(\mu g/L) = C \times (V)$	f_f/V_i) x DF		·
	ligestion volume (mL) digestion volume (mL)			
HS1 Method: Concent	tration (dry wt.) (mg/k	g) = ((C x V)/	(W x S)) X DF	
W = Wet sam] S = % Solid	ample volume in Liters ole weight (kg) s/100	(L)		
DF = Dilutio	on Factor			
CW1 Method: Concen	tration ($\mu g/L$) = C x (V	V_f/V_i) x DF		
$V_f = Final$	ment value in µg/L (The digestion volume (mL) al digestion volume (mL ion Factor		l replicate int	egrations).
			_,	
	tration $(mg/kg) = (A x)$	DXF)/ (BX1	5)	
B = Weight D = Diluti E = % Soli	on Factor		·	
Signature:	Sunkigure Om	₩		6107-
Name & Title:	- migine (mil		Date:	
	SDG NARRA	ATIVE - 2		ILM05,4
				3

____. •

[

. -

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Sentinel, Inc. SOW No.: ILM05.4 Contract: EPW06059
Lab Code: SENTIN Case No.: 36279 NRAS No.: SDG No.: MC2108
EQUATIONS:
DW2 Method: CN Concentration $(\mu g/L) = (A \times D \times F)/B$
<pre>WHERE, A = µg/L CN of sample from regression analysis B = volume of original sample for distillation (0.050 L) D = any dilution factor necessary to bracket sample values within standard values F = sample receiving solution volume (0.050 L)</pre>
DS2 Method: CN Concentration $(mg/kg) = (A \times D \times F) / (B \times E)$
<pre>WHERE, A = µg/L CN of sample from regression analysis B = wet weight of original sample (g) D = any dilution factor necessary to bracket sample values within standard values E = % solids/100 F = sample receiving solution volume (0.050 L)</pre>
HW2 Method: Concentration (μ g/L) = C x (V_f/V_i) x ($V_f/20$) x DF
WHERE, C = Instrument value in μ g/L (The average of all replicate integrations). V _f = Final digestion volume (50 mL) V _i = Initial digestion volume (100 mL) DF = Dilution Factor
HW3 Method: Concentration ($\mu g/L$) = C x (V_r/V_i) x DF
WHERE, C = Instrument value in μ g/L (The average of all replicate integrations). V _f = Final digestion volume (mL) V _i = Initial digestion volume (mL) DF = Dilution Factor
Signature: <u>BM2/CWR</u> AMA Date: <u>4/6/07</u> Name & Title: <u>BM2/CWR</u> SDG NARRATIVE - 3 ILM05.4

- -

.

r

.

Lab Name Sentinel, Inc.			·····		Page] of]
Received By (Print Name) Lindsey Cholewa					Log-in Date 04/02/2007
Received By (Signature)	ura				
Case Number 36279		Sample Delivery Group No. MC2108			NRAS Number
			Corresponding		
Remarks:	EPA Sample #	Aqueous Sample pH	Sample Tag #	Assigned Lab #	Remarks: Condition of Sample Shipment, etc.
1. Custody Seal(s) PresenD Absent* Intact Broken	MC2108	NA	310	30207	
2. Custody Seal Nos.	MC2109	1	311	30208	
	MC2110		312	30209	
3 Traffic cresent Absent* Reports/Chain of	MC2111		313	30210	QC
Custody Records or Packing Lists	MC2116		320	30211	
4. Airbill Airbill Sticker Present Absent	MC2117		321	30212	[
5. Airbill No. 840575507010	3 MC2118		322	30213	
	MC2119		323	30214	
6. Sample Tags @resenD/Absent*	MC2121	<u> </u>	325	30216	
Sample Tag Numbers Histed Not Listed on Traffic	MC2122	<u> </u> +	326	30217	
Report/Chain of Custody Record	MC2123		327	30218	
7. Sample Condition Intach/Broken*/	MC2124		328	30219	
8. Cooler Temperature Present Absent				_	
9. Cooler Temperature 18.00					
10. Does information Yes Not on Traffic Reports/Chain of Custody Records and sample tags agree?					
11. Date Received at 04/02/2007		<u> </u>			+
12. Time Received 0911				J	
Sample Transfer		· · · ·		\wedge	
Fraction All Fraction	3		<u> </u>	+-	<u> </u>
Area # COOLer Area #					\frown
By U By		}	ļ		
on 64102107		L	l		
* Contact SMO and entace record of reso Reviewed By		1	Logbook No.		
Date 4	16/07-	<u> </u>	Logbook No. Logbook Page No.	1	
	••	RM DC-1	• • • • • • • • • • • • • • • • • • •	-+	M05.4 5

-

ANALYST: İ	001000					
	001000					
	KK12H2					
EPA Run No: 🧳	4					
Pan t., g Result, %	Date Analyzed	Analyst Initials				
	ØN105/07	RR/SAS				
4 65.6	1					
3 63.7						
3 57.3						
3 68.2						
7 69.7						
3 61.5						
7 50.8						
5 75.9						
2 32.2						
2 38.5						
5 42.3						
1 69.5	4					
		*				
j						
		4				
Reviewed By: Analyst/Date for S. Slade Reviewed By: Analyst/Date for S. Slade QA Officer/Supervisor/Date						
	hf	2 41 570				

.

%S

206

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III ENVIRONMENTAL SCIENCE CENTER 701 MAPES ROAD FORT MEADE, MARYLAND 20755-5350

DATE : April 19, 2007

SUBJECT: Region III Data QA Review

- FROM : Khin-Cho Thaung KCT Region III ESAT RPO (3EA20)
- TO : James Hargett Regional Project Manager (3HS12)

Attached is the inorganic data validation report for the Brooke County Glass Dump site (Case # 36279; SDG #MC2120) completed by the Region III Environmental Services Assistance Team (ESAT) contractor under the direction of Region III EAID.

If you have any questions regarding this review, please call me at (410) 305-2743.

Attachment

cc: Pam Hayes/Lydia Work WVDEP/TRIAD

TO File #: 0007 TDF#: 0452

ANALYTICAL SERVICES AND QUALITY ASSURANCE BRANCH

LOCKHEED MA We never forget who we're working for

Lockheed Martin Information Technology ESAT Region 3 US EPA Environmental Science Center 701 Mapes Road Ft. Meade, MD 20755-5350 Telephone 410-305-3037 Facsimile 410-305-3597

DATE: April 17, 2007

SUBJECT: Inorganic Data Validation (IM1 Level) Case: 36279 SDG: MC2120 Site: Brooke County Glass Dump

FROM: Donald M. Brown^{Orb} Inorganic Data Reviewer

Mahboobeh Mecanic

TO: Khin-Cho Thaung ESAT Region 3 Project Officer

OVERVIEW

Case 36279, Sample Delivery Group (SDG) MC2120, consisted of thirteen (13) soil samples analyzed for total metals by Sentinel, Inc. (SENTIN). The sample set contained one (1) field duplicate pair. Samples were analyzed in accordance with Contract Laboratory Program (CLP) Statement of Work (SOW) ILM05.4 through Routine Analytical Services (RAS) program.

SUMMARY

Data were validated according to EPA Region III Innovative Approaches (Level IM1) for Validation of Inorganic Data, June 1995, which includes review of all Forms but excludes review of raw data. Areas of concern with respect to data usability are listed below.

Data in this case have been impacted by outliers present in the laboratory blanks as well as the matrix spike, laboratory duplicate and ICP serial dilution analyses. Details of these outliers are discussed under "Minor Problems" and qualified analytical results for all samples are summarized on the Data Summary Forms (DSFs).

MINOR PROBLEMS

Continuing calibration (CCB) and/or preparation (PB) blanks had reported results greater than the Method Detection Limits (MDLs) for the analytes listed below. Positive results in affected samples which are less than or equal to five times ($\leq 5X$) the blank concentrations may be biased high and have been qualified "B" on the DSFs.

BlankAffected AnalytesCCBberyllium (Be)PBmercury (Hg)

The matrix spike recovery was low (<75% but >30%) for manganese (Mn). The low recovery may be attributed to matrix interferences or analyte lost during the digestion process. Positive results for this analyte in all samples may be biased low and have been qualified "L" on the DSFs.

The relative percent difference (RPD) in the laboratory duplicate analysis was outside control limits (35% RPD, ± 2 XCRQL) for cadmium (Cd). Positive results for this analyte in all samples are estimated and have been qualified "J" on the DSFs.

The percent difference (%D) in the ICP serial dilution analysis was outside control limits (>10%) for sodium (Na). Positive results for this analyte in all samples are estimated due to possible matrix interferences and have been qualified "J" on the DSFs.

NOTES

Reported results between MDLs and Contract Required Quantitation Limits (CRQLs) were qualified "J" on the DSFs unless superseded by "B".

Several samples in this SDG were reported with percent solids less than fifty percent (<50%). CRQLs are elevated in these samples due to low percent solids.

One (1) of the cooler chests used to transport samples in this SDG had an interior temperature of 18.0°C, which is outside the control limit (4°C \pm 2°C). Due to the thermostability of metals, no data were qualified based on this cooler temperature.

RPDs in the laboratory duplicate analysis were outside contractual control limits (20% RPD, \pm CRQL) for aluminum (Al), iron (Fe) and lead (Pb). However, RPDs for these analytes were within Region III established control limits (35% RPD, \pm 2XCRQL) for soil analysis. No data were qualified for these analytes based on laboratory duplicate imprecision.

Reported results for field duplicate pair MC2129/MC2132 were within 35% RPD, ±2XCRQL for all analytes except Cd, copper (Cu) and lead (Pb).

The following samples were reanalyzed at dilutions for the analytes listed below in order to bring concentrations of these analytes within the linear range of the instrument. Results for these analytes in these samples were reported from the diluted analyses and annotated with a "+" on the DSFs.

Sample ID	<u>Analyte</u>	Dilution Factor
MC2133	Mn	2X
MC2135	Fe	2X
MC2136	Cd	2X

Data for Case 36279, SDG MC2120, were reviewed in accordance with EPA Region 3 Innovative Approaches (Level IM1) for Validation of Inorganic Data, June 1995.

ATTACHMENTS

INFORMATION REGARDING REPORT CONTENT

GLOSSARY OF DATA QUALIFIER CODES
DATA SUMMARY FORM(S)
CHAIN OF CUSTODY RECORD(S)
LABORATORY CASE NARRATIVE(S)

DCN: 36279.MC2120IM1.doc

Appendix A

Glossary of Data Qualifier Codes

GLOSSARY OF DATA QUALIFIER CODES (INORGANIC)

CODES RELATED TO IDENTIFICATION

(confidence concerning presence or absence of analytes):

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

(NO CODE) = Confirmed identification.

- B = Not detected substantially above the level reported in laboratory or field blanks.
- R = Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

CODES RELATED TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = Analyte Present. Reported value may not be accurate or precise.
- K = Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L = Analyte present. Reported value may be biased low. Actual value is expected to be higher.

٦,

- UI = Not detected, quantitation limit may be inaccurate or imprecise.
- UL = Not detected, quantitation limit is probably higher.

OTHER CODES

Q = No analytical result.

Appendix B

Data Summary Forms

DATA SUMMARY FORM: INORGANIC

Case #: 36279 Site : Lab. :

SDG : MC2120 BROOKE COUNTY GLASS DUMP SENTIN

Sample Number :		.MC2120		MC2125		MC2128		MC2127		MC2128	
Sampling Location :	i	SS13		SS18		SS19		SS2		SS20	
Matrix :		. Soil		Soll		. Soli		Soil		Soli	
Units :		mg/Kg		mg/Kg		.mg/Kg		mg/Kg		mg/Kg	
Date Sampled :		3/27/2007		3/27/2007		3/27/2007		3/26/2007		3/27/2007	
Time Sampled :		11:55		11:10		. 13:55	·	11:45		13:20	
%Solids:		42.6		65.8		. 85.8		74.1		69.2	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0	
ANALYTE	CRQL			Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	20	3520		56 10		1440		6290		6950	
ANT MONTE CONTRACTOR OF A		5 110 I			探尋	5.6			いた		
ARSENIC	1	229		42.0		34.8		5.5		8.7	
BARIUM	20	i≩ ≠ 190 ÷		104		78.2		- L 110 -		一流 103-	含濃
BERYLLIUM	0.5	0.24	. B	0.68	J	0.12	В	1.0		1.0	Ĺ
CADMIUM	.053			· 23			刻空	# (%) [12]	355		
CALCIUM	500	14800		52700		3890		50600		6890	
CHROMIUM					1						
COBALT	5	7.1	. J	9.5		2.0	J .	9.1		16.8	
CONFERT STATES IN THE STATES	254	<i>ie ij</i> 182	1.0	239		25.0 #	建藏	<u> </u>		29.9	
IRON	10	41500		19400		4700		21800		23700	
n-AD				38.4		124.		vir 30.5 [™]	總達	42.6	1
MAGNESIUM	500	2730	# 17.54%	4480	7.1.89	709	4042216-2	4510	-	1700	
MANGANESE		際設置的		10401	1.2	170-		720.4	<u>)(</u>)()	Job 1410 -	Contraction of the local division of the loc
MERCURY	0.1	0.39	STREET, ST	0.18		0.17	-	0.18	SEADS	0.13	. J
NICKEL		3194		当18.9 5			投設	112-10-01-		17 20 <i>9</i>	<u> \$7.0</u>
POTASSIUM	500	376	J	1330	2010-0-0-0-0-27	274	J	1060	CHRONE	1710	1 <u>57-24-</u> 11
SELENDME	3.5	2/1		3.5 1	D.						<u></u>
SILVER	1	1.5	J	0.48	J		रङ्ख्याय		Kanaz	0.62	. J
	500	7270.		- 441				BULL STOLEN IN CO.		417	
THALLIUM	2.5	3.0	J		1718 (* 17			1.2	া কাল্য	1.5	J
VANADRUM	6		й.			2.9		19.8		15.3	
ZINC	6	3720	L	134		448		71.6		117	

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solide/ 100)

Revised 09/99

DATA SUMMARY FORM: INORGANIC

Case #: 36279 Site : Lab. : SDG : MC2120 BROOKE COUNTY GLASS DUMP SENTIN

Sample Number :		MC2129		MC2130		MC2131		MC2132		MC2133	
Sampling Location :		SS21		SS3		SS4		S S5		SS8	
Field QC :		Dup of MC2	132					Dup of MC2	2129		
Matrix :		Soll		Soil		Soil		Soil		Soll	
Units :		mg/Kg		ma/Ka		ma/Ka		mg/Kg		mg/Kg	
Date Sampled :		3/27/2007		3/26/2007		3/27/2007		3/27/2007		3/27/2007	
Time Sampled :	· ·			11:50		13:02		13:08		13:15	
%Solids :	77.8		65.6		84.3		78.4		82.6		
Dilution Factor :		1.0		1.0		1.0		1.0		1.0/2.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	20	11000		8050		27600		10800		20100	
ANTIMONY		建立					t de			3.3	浙湖
ARSENIC	1.	9.0		7.8		7.7.		7.7.		47.1	
BARIUM	120			11 90.0 H		. 1278		112 2	Alcie Alcie	257-	
BERYLLIUM	0.5	1.2		0.90		3.3		1.2.		2.2	
CADMIUM	30.63					+ 142		7.6 [刻護	641	
CALCIUM	500	27000	·	5780		90200		29200		82400	
CHROMIUM		14.8 -		616.2				**15.5		38.0	
COBALT	5	10.6		12.9		3.7	่า	8.7		7.9	
Contrains II 47 Million March 1997	26				编辑					1 115	e all
IRON	10	24700		25700		8640		20600		26800	
-LEAD CONTRACT OF THE SECOND	- -			43.7		新設設計		権調査法		6 48	
MAGNESIUM	500	4130		2290		11700		3970		6350	-
MANGANESE	1.5	1250		112		目的の方法	调意			1:4050+-1	(i 🔍
MERCURY	0.1	0.10	J	0.17		0.083	В	0,12	J	0.16	
NORE		23.5	a ta anna an an an an an an an an an an an	in 23.65	10 . .	6.8		22104		1803	
POTASSIUM	500	1560		2310 .		2410		1450	NA	2130	
SEPENDRE F. C. A. B. S. F. C. R.	73.5					28		3.4		42.3	
SILVER	1	0.33	. J	0.69	J					THURSDAY AND A	
SODIUM	500	552		64		067	18	- 1 542 1	ар. Т	* 1320 † -	
THALLIUM	2.5	1,4	J	2.0	J		No. 15 . 15	1.2	J	1.3	J
VANADIDM		21.8		17.16						38.2	
ZINC	6	128		170		101		118 .		350	

CRQL = Contract Required Quantitation Limit

SEE NARRATIVE FOR CODE DEFINITIONS Revised 09/99

To calculate sample quantitation limits: (CRQL * Dilution Factor) / (%Solids/ 100)

.

+ = Result reported from diluted analysis.

DATA SUMMARY FORM: INORGANIC

Case #: 36279	
Site :	
Lab.:	

SDG : MC2120 BROOKE COUNTY GLASS DUMP SENTIN

Sample Number :		MC2134		MC2135		MC2136			<u> </u>		
Sampling Location :		SS 7		S88		SS9					
Matrix :		Soil		Soil		Soll					
Units :		mg/Kg		mg/Kg		mg/Kg					
Date Sampled :		3/27/2007		3/27/2007		3/27/2007					
Time Sampled :		13:48		13:36		. 13:15	1				
%Solids :		92.9		93.4		85.0					
Dilution Factor:		1.0		1.0/2.0		1.0 / 2.0					
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	20	1020		2380		20600					
AND INCOME.	8	· · · · · · · · · · · · · · · · · · ·	約二	- 87.6		4.6.	7-58				
ARSENIC	1.	92.9		330		1010.					
BARIUM	- 20	24.2				100 B 100					
BERYLLIUM	0.5	0.091	J	0.047	J	0.076	J				
CADMUM	0.5	192	1.4	a seloica	劉靈	1. 10 a. 20		建立 合			
CALCIUM	500	2950		9910		4220					
LOH SO MUN	2 4		- a 2			建高的					記載
COBALT	5	1.1	J	9.7		2.8	J			_	
COBLEX. MS - CARLER COM	2.5	120								華家社会	1 4
IRON	10.	3190		192000+		9350					
		116				四日 133	朝田				
MAGNESIUM	500	609		782		480	J				
MANGANESE				693	\mathbb{T}^2	R (06-				臺紀道道	
MERCURY	0.1	0.71		0,16		0.23					
NICKEL		Series of		21.7		5.6					錢拔
POTASSIUM	500	194	J	109	J	4390					
RECENTION REPORT FOR A PARTY REPORT	3.6			2 333 -		225=					
SILVER	1			3.2							
SODIUM	600	385	敬辩	****Beflore		-2020.0M			装 花		
THALLIUM	2.5			9.3							
VANADIUM	10 B		<u> </u>		i (Ba			2000			
ZINC	6	122		3140		6000					

CRQL = Contract Required Quantitation Limit To calculate sample quantitation limits: (CRQL * Dikution Factor) / (%Solids/ 100) SEE NARRATIVE FOR CODE DEFINITIONS Revised 09/99

+ = Result reported from diluted analysis.

Appendix C

Chain-of-Custody Records

ger/			t Laboratory ic Report &			ecord		Case No Das No:	: 36279	R
Region: Project Code:	3			Data Shipped: Carrier Name:	3/30/2007		Chain of Custody	Record	Sampler SigneLunk	
Account Code: CERCLIS ID: Spill ID:		2007T03W302DD2CB396QB00 WV0002456275 Brooke County Glass/WV Lydia Work Brownfields Site			FedEx 8605755070 Sentinel Inc. 116 Weshing		Rolinquietved By	(Date / Time 2 × 3/20/07		(Date / Time)
Site Nume/Stat Project Leader: Action:	Lydia Work Brownfields				NE Huntsville Al (256) 534-96	. 35801	2 (
Sampling Co: MORGANIC SAMPLE No.	Triad Engin Matrix/ Sampler	CONC/ TYPE	ANALYSIE TURNAROUND		i Na <i>i</i> INE Bollies	STATION	4 SANPLE DATE		ORGANIC SAMPLE No.	QC Type
C2116	Surface Soll (0"-12")/ Carol Phillips	MKG	TM (21)	320 (1)		\$51	S: 3/26/2007	11:55		-
C2117	Carol Philips (0"-12")/ Carol Philips	M/G	TM (21)	321 (1)		SS1 0	\$: 3/27/200 7	11:45		-
IC2 118	Surface Scil (0"-12")/ Carol Phillips	MG	TM (21)	322 (1)	٠	SS1 1	S: 3/27/2007	13:20		-
IC2119	Surface Soil (0"-12")/ Carol Phillips	M/G	TM (21)	323 (1)		SS12	S: 3/27/2007	13:27		-
	Surface Soli (0"-12")/ Carol Phillips	M/G	TM (21)	324 (1)		SS13	S: 3/27/2007	11:55		
	Surface Soli (0°-12°)/ Carol Phillips	M/G	TM (21)	325 (1)		SS14	S: 3/27/2007	11:50		-
IC2122	Surface Soil (0"-12")/ Carol Phillips	MG	TM (21)	326 (1)		8 \$16	S: 3/27/2007	11:22		
	Surface Soli (07-12")/ Carol Phillips	M/G	T M (2 1)	327 (1)		S816	S: 3/27/2007	11:18		
	Surface Soli (0°-12")/ Carol Phillips	M/G	TM (21)	328 (1)	•	SS 17	S: 3/27/2907	11:15		~
	Surface Soli (0"-12")/ Carol Phillips	M /G	TM (21)	329 (1)		S518	S; 3/27/2007	11:10 -		~

TR Number: 3-043013577-033007-0001

PR provides proliminary results. Requests for preliminary results will increase analytical costs.

Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chanfilly, VA 20151-3819; Phone 703/818-4200; Fax

REGION COPY F2V61.047 Page 2 of 4

AR100252

PAGE

Region: Project Code: Account Code CERCLIS 4D: Spli ID: Site Nasse/Stat Project Loader Action: Sampling Co:	WV00 En: Brook Lydia Brown	03W302DD2CB3 02456275 e County Glass/		Date Shipped: Cartier Name: Airbili: Shipped to:	3/30/2007 FedEx 6605755070 Sentinel Inc. 716 Washing NE Humsville AL (256) 534-98	iton Street, . 35801	Chain of Custody Relinquished By 1/0/0/0/0/ 2/ 3 4	(Onte / Time) (3/30/07-120	Sampler Signature: Received By	(Ontie / Yhrw
NORGANIC SAMPLE No.	MATR Sampi		ANALYSIS TURNARQUND		3 No./ They Bollion	STATION			ORGANIC AMPLE No.	QC Type
C2126	Surface Sol (0'-12")/ Carol Phillip		TM (21)	330 (1)		SS19	S: 3/27/2007	13:55		-
C2127	Surface Sci (0"-12")/ Carol Philip		TM (21)	331 (1)		\$ \$ 2	S: 3/26/2007	11:45 /		-
C2128	Surface Soi (0"-12")/ Gary Hilgar		TM (21)	332 (1)		\$520	S: 3/27/2007	13:20		-
C2129	Surface Sol (0'-12')/ Gary Hilgar	M/G	TM (21)	333 (1)		SS21	S: 3/27/2007	13:10 🗸		Field Duplicate MC2132
2130	Surface Sol (0"-12")/ Carol Phillip		TM (21)	334 (1)		\$83	S: 3/26/2007	11:50 🗸		-
2131	Surface Soi (0"-12")/ Gary Hilger		TM (21)	335 (1)		S\$4	S: 3/27/2007	13:02 /		-
22132	Surface Sol (0"-12")/	M/G	TM (21)	336 (1)		SS5	S: 3/27/2007	13:06 /		-
02133	Gary Hilger Surface Sol (0"-12")/	M/G	TM (21)	337 (1)		566	S: 3/27/2007	13:15 🗸		
C2134	Gary Hilger Surface Soil (0"-12")/	. –	T M (2 1)	338 (1)		\$\$7	S: 3/27/2007	13:48 🖌		-
C2135	Carol Phillip Surface Soi (0'-12")/ Carol Phillip	M/G	TM (21)	339 (1)		S \$8	S: 3/27/2007	13:36 🖌		-
pment for Case replate? Y	San	hoeu ed of (a)sign	for laboratory QC:	·····	Additioned Ser	mpler Signature(a):			Chain of Custod	y Soal Number:
			MC2112, MC2120	••••••••••••••••••••••••••••••••••••••	Ma	KA M. C	A			
iyeta Key: = CLP TAL 1		iteritration: Li	= Low, M = Low/Medium	, H = High	TypeDealgo	eta: Composita = I	C, Grab = G		Shipment lood?	

04/13/2007 FRI 08:47

[TX/RX NO 6553] 2004

PAGE

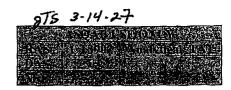
TRIAD ENGINEERING

84/13/2871 88:45

3042968739

84

AR100253


Project Code: CT3907 Account Code: 2007 T03W302DD2CB39BQB00 CERCLIS nD: WV0002466276 Split ND: Steleped to: Steleped to: Sertimel Inc. 116 Washington Street, 116 Washington Street, NE Huntaville AL 35801 Steleped to: Sertimel Inc. 116 Washington Street, 1 Vertice Relinquisted By (Date / 1 116 Washington Street, 1 Vertice Relinquisted By 1200 2/ 1 More Sampling Co: Triad Engineering NORGAINC MATROX CONC/ AMULYRSY TAG No/ Station AMPLE NO, SAMPLE NO, THE SAMPLE NO, SAMPLE NO, THESERVATIVE/ Boties LOCATION	Region:	3			Date Shipped:	3/30/2007		Chain of Cus	tody Reco	rd	Sampier	
NORREANNC MATTER CORC ANALYSIN TAG Hour PRESERVATIVE? Booties STATION BASPLE OLLEGT ORGANIC OC ANAMPLE No. SUMPLER TOPE TURNAROUND PRESERVATIVE? Booties LOCATION BASPLE OLLEGT ORGANIC OF TYPE TURNAROUND PRESERVATIVE? Booties LOCATION BASPLE No. Type Certrol Philippe Innext SyrCeso Section 201 MMG TEM (21) 340 (1) SSS S: 3/27/2007 13:15	Project Code: Account Code: CERGLIS (D: Spill ID: Site Name/State: Project Lauder: Action:	2007T03W3 WV0002466 Brooke Cou Lydia Work Brownfields	1275 Inty Glass/WV Sile		Cartier Name: Airbill:	FedEx 860575507063 Sentinel Inc. 116 Washingto NE Huntsville AL 3	n Street, 5801	Relinquicited By 1<		Date / Time)		(Date / Tim
D2136 Burnpel (a) to be used for informatory CC: Additional Barryler Biginsture(b): Minist SrCeso Barryler(a) to be used for informatory CC: Additional Barryler Biginsture(b): Minist SrCeso Barryler(a) to be used for informatory CC: Additional Barryler Biginsture(b): Minist SrCeso Barryler(a) to be used for informatory CC: Additional Barryler Biginsture(b): Micit SrCeso Barryler(a) to be used for informatory CC: Additional Barryler Biginsture(b): Micit SrCeso Barryler(a) to be used for informatory CC: Additional Barryler Biginsture(b): Micit SrCeso Barryler(a) to be used for informatory CC: Additional Barryler Biginsture(b): Micit SrCeso Barryler(a) to be used for informatory CC: Additional Barryler Biginsture(b): Micit SrCeso Bigin tory: Citical of Custority Beel Humber: Micit SrCeso Micit SrCeso Singer SrCeso	Sumpling Co: INORGANIC SÁMPLE No.	MATROU	CONCI	··· · •								
npielo 7 Y MC2103, MC2111, MC2112, MC2120 MC4 (Q, MC2 and M	(0	0"-12")/	M/G	TIM (21)	340 (1)		\$39	S: 3/27/2	007 13:1:	5 - 1/		
Apple Key: Concentration: L = Low, M = Lowfeedium, H = High Type Designate: Composite = C, Guide = G Shipment load?												
Apple Key: Concentration: L = Low; M = Lovefeedium; H = High Type Openigments: Composition = C, Guido = G Shipment load?												
pieto?? MC2103, MC2111, MC212, MC2120 AU AU A Ayele Key: Concentration: L=Low, M = Lowfledium, H = High Type/Designate: Composite = C, Getb = G Stepment load?												,
Apple Key: Concentration: L = Low; M = Lovefeedium; H = High Type Openigments: Composition = C, Guido = G Shipment load?												,
Apple 16 7 Y MC2103, MC2111, MC2112, MC2120 Mole Concentration: L = Low, M = Lowflexilian, H = High YyperDesignate: Composite = C, Guide = G Shipment load?							·					
											·	
				-		1 1		Dag			Chein of Contorty S	eel Muniber:

1

.

04/13/2007 FRI 08:47 [TX/RX NO 8553] 2005

U.S. EPA Region III Analytical Request Form

	36279						
Date: 03/14/2007	Site Activ	vity: Si	ite In	spection Reassessment	; 		
Site Name: Brooke (County Glass Dump			S	treet Address: Washingt	ton Pike	
City: Wellsburg		State:	: W	/V L	atitude: 40°16'5"		Longitude: 80°35'18"
Program: Superfund		Acct.	#: 2	007 T 03N 302DD2C I	B398 QB00	CERCLIS #: W	V0002456275
Site ID:		Spill	D:			Operable Unit: 0)
Site Specific QA Pla	n Submitted: 🗌 No 🖾 Y	es Ti	itle:	Sampling and Analysis	Plan, Brooke County G	lass Dump, Rev. 2	September 2006 Date Approved: October 2006
EPA Project Leader:	James Hargett 3H5	2 P	hon	e#: 215-814-3305	Cell Phone #:		E-mail: Hargett.James@epa.gov
Request Preparer: C	arol Phillips	P	hon	e#: 304-296-2562	Cell Phone #:		E-mail: cphillips@triadeng.com
Site Leader: Pam Ha	iyes, WVDEP	P	hon	e#: 304-926-0499	Cell Phone #:		E-mail: pdhayes@wvdep.org
Contractor: Triad En	ngineering, Inc.			EPA CO/PO:			
#Samples 23	Matrix: soil	Sid	-	Parameter: TAL Met	als QL	o preserv	Method: ILM05.3
#Samples 6	Matrix: sediment)		Parameter: TAL Met	als	7	Method: ILM05.3
#Samples 6	Matrix: water-non potabi	le		Parameter: TAL Met	als		Method: ILM05.3
#Samples 9	Matrix: water-non potab	le		Parameter: TAL Met	als, Dissolved		Method: ILM05.3
#Samples 7	Matrix: water-drinking	ľ		Parameter: TAL Met	als		Method: ILM05.3
#Samples	Matrix:			Parameter:			Method:
#Samples	Matrix:			Parameter:			Method:
#Samples	Matrix:			Parameter:			Method:
#Samples	Matrix:			Parameter:			Method:
Ship Date From: 3/2	6/2007 Ship D	ate To:	3/2	6/2007 C	org. Validation Level N	/A	Inorg. Validation Level IM1
Unvalidated Data Re	quested: 🛛 No 📋 Yes	If Ye	:s, T.	AT Needed: 24hrs	48hrs 72hrs]7days 🗌 Other	(Specify)
Validated Data Packs	age Due: 🗌 14 days 🛛 2	1 days		30days 🗌 42 days	Other (Specify)	14/	7
Electronic Data Deliv	verables Required: 🗌 No	Ye:	s	(EDDs will be provide	d in Region 3 EDD For	nat)	
Special Instructions:							
						_	
						•	

FORM ARF- 03/05

Target Analyte	CAS Number	Screening Criteria	Project Quantitation Limit
Mutals (mg/Kg)			
ALUMINUM	7429905	1,000,000	20
ANTIMONY	7440360	410	6
ARSENIC	7440382	1.9	1
BARIUM	7440393	72,000	20
BERYLLIUM	7440417	2,000	0.5
CADMIUM	7440439	510	0.5
CALCIUM	7440702	NV	500
CHROMIUM	18540299	3,100	1
COBALT	7440484	20,000	5
COPPER	7440508	41,000	2.5
IRON	7439896	310,000	10
LEAD	7439921	1,000	1
MAGNESIUM	7439954	NV	500
MANGANESE	7439965	20,000	1.5
MERCURY	7439976	NV NV	0.1
NICKEL	7440020	20,000	4
POTASSIUM	7440097	NV	500
SELENIUM	7782492	5,100	3.5
SILVER	7440224	5,100	1
SODIUM	7440235	NV	500
THALLIUM	7440280	72	2.5
VANADIUM	7440622	1,000	5
ZINC	7440666	310,000	6

TABLE 2. SOIL LABORATORY ANALYSIS SUMMARY Brooke County Glass Dump CERCLIS Site (WV0002456275) Weilsburg, Brooke County, West Virginia

Notes

Surface and subsurface soil samples will be compared to the EPA Region III RBC Table (04/07/2005) industrial soil values.

NV - No Value Available for compound

Appendix D

Laboratory Case Narrative

USEPA - CLP

COVER PAGE

Lab Name:	Sentinel, Ir	nc.		Contract:	EPW06059		
Lab Code:	SENTIN	Case No.:	36279	NRAS NO.	:	SDG No.: M	C2120
SOW No.:	ILM05.4						
	EPA SAMPI	LE NO.			Lab Sam	ple ID.	
	MC2120				30240		
	MC21201)			30240	52	
	MC21205	3			302401	MS	
	MC2125				30241		
	MC2126				30242		
	MC2127				30243		
	MC2128				30244		
	MC2129				30245		
	MC2130				30246		
	MC2131				30247		
	MC2132				30248		
	MC2133				30249		
	MC2134				30250		
	MC2135				30251		
	MC2136				30252		
	·						
	<u></u>						
					· ·		
Were ICP	interelement	correction	ns applie	d?		Yes/No	YES
	background co es-were raw o					Yes/No	YES
	ication of ba					Yes/No	NO
Comments:							
					·		
I certify	that this da	ata package	e is in c	ompliance	with the	terms and	

conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

VOUR ISWE Signature Name: 67 Date: Title:

COVER PAGE

ILM05.4

U.S. EPA - CLP

.

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Sentinel, Inc. SOW No.: ILM05.4 Contract: EPW06059
Lab Code: SENTIN Case No.: SDG No.: MC2/20
SAMPLE RECEIPT: Temperature Blank: PRESENTABSENT / If a blank is absent, a non-invasive laser measurement is taken using a sample. Cooler temperature(s) recorded via laser measurement were: Refer to Record of Communication (ROC) regarding EPA Sample # discrepancies for samples:
Refer to ROC regarding tag discrepancies for samples:
Refer to ROC regarding sample preservation discrepancies for samples:
Refer to ROC regarding: TAT, analysis discrepancies on cleative percent solids less than 50 percent
QC Specified: Yes V No If no, chose: ANALYSIS: The following analyte(s) were estimated due to possible matrix interferences: Na
DOCUMENT CONTROL: The following invalid defects resulted due to CCS program anomalies: Initial Assessment: Full Assessment:
 OTHER: 1. ICP-MS Mean Values in the raw data are incorrect due to TJA software anomalies. 2. Internal Standard calculations in the raw data are reported as the reciprocal values of the %RI (decimal form-not a percentage) with the control limits as stated in the SOW Exhibit D (ICP-MS) Section 12.11.1.
Signature: Name & Title: BUILIGUE (MOL Date: 4/4/07
SDG NARRATIVE - 1 ILM05.4

÷

U.S. EPA - CLP

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Sentinel, Inc. SOW No.: ILM05.4 Contract: EPW06059 Lab Code: SENTIN Case No.: 36279 NRAS No.: SDG No. : MC2120 EQUATIONS: HW1 Method: Concentration $(\mu g/L) = C \times (V_f/V_i) \times DF$ WHERE, C = Instrument value in $\mu g/L$ $V_f =$ Final digestion volume (mL) $V_1 =$ Initial digestion volume (mL) DF = Dilution Factor HS1 Method: Concentration (dry wt.) $(mg/kg) = ((C \times V)/(W \times S)) \times DF$ WHERE, C = Concentration (mg/L)V = Final sample volume in Liters (L) W = Wet sample weight (kg) S = Solids/100 DF = Dilution Factor CW1 Method: Concentration $(\mu g/L) = C \times (V_f/V_i) \times DF$ C = Instrument value in $\mu g/L$ (The average of all replicate integrations). WHERE, $V_f = Final digestion volume (mL)$ $V_i = Initial digestion volume (mL)$ DF = Dilution Factor CS1 Method: Concentration $(mg/kg) \approx (A \times D \times F) / (B \times E)$ WHERE, A = Concentration in $\mu g/L$ B = Weight in gD = Dilution Factor E = Solids/100 F = Final Volume (0.100 L)Signature: 4 6 107 าท ICW Name & Title: Date: ILM05.4 SDG NARRATIVE - 2 3

U.S. EPA - CLP

SDG NARRATIVE - INORGANIC ANALYSES DATA PACKAGE

SUG WARRAIIVE - INORGANIC ANALISES DAIA FACAAGE
Lab Name: Sentinel, Inc. SOW No.: ILM05.4 Contract: EPW06059
Lab Code: SENTIN Case No.: 36279 NRAS No.: SDG No.: MC220
EQUATIONS:
DW2 Method: CN Concentration $(\mu g/L) = (A \times D \times F)/B$
WHERE, $A = \mu g/L$ CN of sample from regression analysis
B = volume of original sample for distillation (0.050 L)
D = any dilution factor necessary to bracket sample values within standard values
F = sample receiving solution volume (0.050 L)
\cdot
DS2 Method: CN Concentration $(mg/kg) = (A \times D \times F) / (B \times E)$
WHERE, $A = \mu g/L$ CN of sample from regression analysis
B = wet weight of original sample (g) D = any dilution factor necessary to bracket sample values within standard
values
$E \approx $ % solids/100 F = sample receiving solution volume (0.050 L)
r - sample receiving solution volume (0.050 b)
HW2 Method: Concentration $(\mu g/L) = C \times (V_f/V_i) \times (V_f/20) \times DF$
WHERE, C = Instrument value in μ g/L (The average of all replicate integrations).
$V_f = Final digestion volume (50 mL)$
$V_i \approx Initial digestion volume (100 mL)$ DF = Dilution Factor
HW3 Method: Concentration $(\mu g/L) = C \times (V_f/V_i) \times DF$
WHERE, C = Instrument value in μ g/L (The average of all replicate integrations). V _f = Final digestion volume (mL)
$V_i = Initial digestion volume (mL)$
DF = Dilution Factor
$\bigcirc \land$
IN .
Signature:
Name & Title: BMG/GWE QUUL Date: 4/6/07
SDG NARRATIVE - 3 ILM05.4
чарана и страна и стр
l l

1

)

Lindsey Cholewa

From: "Berardino: Michelle" <mberardino@fedcsc.com>

 To: cholewa@sentinellab.com>; <sample receipt@sentinellab.com> "Carroll" <harris.carroll@epa.gov>; "Dan Slizys" <slizys.dan@epa.gov>; "John" <kwedar.john@epa.gov>; Cc: "Khin-Cho" <thaung.khin-cho@epa.gov> Sent: Thursday, April 05, 2007 6:52 AM Region 03 | Case 36279 | Lab SENTIN | Issue Multiple | FINAL Subject: Lindsey, ***Summary Start*** -Missing temperature blank-Issue 1: There was no temperature blank in the cooler. The temperature of a sample was 18 C. Resolution 1: Per Region 3, the issue must be documented in the SDG/Case Narrative. -Discrepancies with tags, jars, and/or TR/COC-Issue 2: The TR/COC does not list HG as a required analysis, however, the Case is scheduled for it per the Scheduling Notification Form. Resolution 2: In accordance with previous direction from Region 3, the laboratory will note the issue in the Case/SDG Narrative, perform the analyses as indicated on the Scheduling Notification Form, and proceed with the analysis of the samples. Issue 3: The TR/COC lists the TAT as 21 days, however, per the Scheduling Notification Form this Case has a 14 day TAT. Resolution 3: In accordance with previous direction from Region 3, the laboratory will proceed with the turnaround time indicated on the Scheduling Notification Form, note the issue in the Case/SDG Narrative, and proceed with the analysis of the samples. Issue 4: The Case was scheduled for both filtered and non-filtered water samples, however, the Case is complete and the TR/COC does not designate any samples as filtered. Resolution 4: Per Region 3, filtered samples for this Case is no longer needed. Please note the issue in the Case/SDG Narrative. -pH outside allowable limits-Issue 5: Sample MC2102 has a pH of 6 and sample MC1203 has a pH of 5. Resolution 5: In accordance with previous direction from Region 3, the laboratory will note the issue in the Case/SDG Narrative, adjust the pH, and proceed with the analysis of the samples. ***Summary End*** Please let me know if you have any further questions or problems. Thanks. Michelle Berardino **Computer Sciences Corporation** CLP Coordinator for Regions 1 & 3 mberardino@fedcsc.com 703.818.5264

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of contant, this e-mail shall not operate to bind CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From: Lydia M. Work [mailto:lwork@triadeng.com] Sent: Wednesday, April 04, 2007 3:41 PM To: Slizys.Dan@epamail.epa.gov; Berardino, Michelle; Carroll Harris Cc: Carol Phillips; Pam Hayes; Heather A. Napier Subject: RE: RE: NEW ISSUE | Case 36279 | Lab SENTIN | Issue Multiple] Hi, All-

Thank you for addressing the issues listed. Please see my responses to the remaining items.

Item 1: Since the samples were metals only, we did not feel a temperature blank was technically

4/5/2007 AR100262

warranted (i.e., metals don't volatilize). For clarification, should we provide a temperature blank every time, even if it is metals only?

Item 2: We were able to collect groundwater samples from clear flowing springs, as a result, filtering was not performed. All waters are for total metals only.

Another clarification; I thought "TM" on the Traffic Report/COC included Hg? I thought you specify only when Hg is not included. See <u>http://www.epa.gov/superfund/programs/clp/download/trs/inlabins.pdf</u>. If we need to list Hg separately every time, please let us know. I would hate for the lab to miss an analytical request over a simple miscommunication.

Thanks, -Lydia

>>> <Slizys.Dan@epamail.epa.gov> 4/4/2007 2:38 PM >>>

Michelle, Carol and Pam,

Issue 1: the lab must document that no temperature blank was submitted and temperature of the sample cooler in the case narrative.

Issue 4: The field personnel must reply and provide the identificaction of the filtered samples.

Issues 2, 3, and 5 were acceptable responses to the lab.

(See attached file: CT3907.doc)

"Berardino, Michelle" <mberardino@fedc To sc.com> Dan Slizys/ESC/R3/USEPA/US@EPA cc

04/04/2007 01:51 PM RE: NE

Subject RE: NEW ISSUE | Case 36279 | Lab SENTIN | Issue Multiple |

Dan,

Have you had a chance to look into issues 1 and 4 below yet? The CT number is 3907. Thanks!

-Michelle

-----Original Message-----From: Berardino, Michelle Sent: Wednesday, April 04, 2007 8:15 AM To: 'Slizys.Dan@epamail.epa.gov' Subject: RE: NEW ISSUE | Case 36279 | Lab SENTIN | Issue Multiple |

236

<

Dan,

It is CT3907. Please let me know if you need any more information. Thanks,

Michelle Berardino Computer Sciences Corporation

-----Original Message-----

From: Slizys.Dan@epamail.epa.gov [mailto:Slizys.Dan@epamail.epa.gov] Sent: Wednesday, April 04, 2007 7:18 AM To: Berardino, Michelle

Cc: harris.carroll@epa.gov; slizys.dan@epa.gov; kwedar.john@epa.gov Subject: Re: NEW ISSUE | Case 36279 | Lab SENTIN | Issue Multiple |

Michelle,

What is the "CT" number. I can not find 36279 in our database.

Michelle,

Please advise on issues 1 and 4. The remaining issues have been resolved using standard answers.

-Missing temperature blank-

Issue 1: There was no temperature blank in the cooler. The temperature of a sample was 18 C.

The issue must be documented in the case narrative.

-Discrepancies with tags, jars, and/or TR/COC- Issue 2: The TR/COC does not list HG as a required analysis, however, the Case is scheduled for it per the Scheduling Notification Form.

Resolution 2: In accordance with previous direction from Region 3, the laboratory will note the issue in the Case/SDG Narrative, perform the analyses as indicated on the Scheduling Notification Form, and proceed with the analysis of the samples.

The response is acceptable.

Issue 3: The TR/COC lists the TAT as 21 days, however, per the Scheduling Notification Form this Case has a 14 day TAT.

Resolution 3: In accordance with previous direction from Region 3, the laboratory will proceed with the turnaround time indicated on the Scheduling Notification Form, note the issue in the Case/SDG Narrative,

and proceed with the analysis of the samples.

The response is acceptable.

Issue 4: The Case was scheduled for both filtered and non-filtered water samples, however, the Case is complete and the TR/COC does not designate any samples as filtered.

I will have to contact the field personnel for clarification.

-pH outside allowable limits-

Issue 5: Sample MC2102 has a pH of 6 and sample MC1203 has a pH of 5. Resolution 5: In accordance with previous direction from Region 3, the

laboratory will note the issue in the Case/SDG Narrative, adjust the pH, and proceed with the analysis of the samples. The response is acceptable. Please let me know if you have any questions. Thanks.

Michelle Berardino Computer Sciences Corporation CLP Coordinator for Regions 1 & 3 mberardino@fedcsc.com 703.818.5264

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From: Lindsey Cholewa [<u>mailto:lcholewa@sentinellab.com</u>] Sent: Monday, April 02, 2007 1:46 PM To: Berardino, Michelle Subject: case 36279

Michelle-

Today the lab received samples for case 36279.

1. There was no temp blank in the cooler. Using a non invasive laser thermometer, the temperature of a sample was 18.0C.

2. The TR/COC does not list Hg as a required analysis, however the case is scheduled for it. The lab assumes that this is an error on the TR/COC and will proceed with the scheduled analysis.

3. The TR/COC lists the TAT as 21 days, however the case is listed as a 14 day TAT. The lab assumes that this is an error on the TR/COC and will proceed with the scheduled TAT.

4. The case was scheduled for both filtered and nonfiltered water samples, however we only received samples listed for total metal analysis. Are we to expect the additional water samples?

5.Sample MC2102 has pH of 6 and sample MC1203 has pH of 5.

Thanks,

Lindsey Cholewa

Sample Receipt Coordinator/Environmental Scientist Sentinel, Inc. 256-534-9800 Ex.22

239

4/5/2007

Daphne Woods

"Berardino, Michelle" <mberardino@fedcsc.com> From: "Daphne Woods" <dwoods@sentinellab.com> To: "Carroll" <harris.carroll@epa.gov>; "Dan Silzys" <slizys.dan@epa.gov>; "John" <kwedar.john@epa.gov>; "Khin-Cc: Cho" <thaung.khin-cho@epa.gov> Thursday, April 05, 2007 9:28 AM Sent: Region 03 | Case 36279 | Lab SENTIN | Issue Non-standard matrix | FINAL Subject: Daphne, ***Summary Start*** Issue: The following samples have percent solids less than 50 percent: SDG MC2108: MC2121 32.2% MC2122 38.5% MC2123 42.3% SDG MC2120: MC2120 42.6% MC2120D 40.7% Resolution: Per the ILM05.3 Statement of Work, Exhibit D (Introduction Section 1.6.7), the Laboratory will proceed with the analysis of the samples and note the issue in the SDG Narrative. In addition, the Laboratory will report the results on a dry weight basis using the percent solids determined by the Laboratory. ***Summary End*** Michelle Berardino **Computer Sciences Corporation** CLP Coordinator for Regions 1 & 3 mberardino@fedcsc.com 703.818.5264 This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose. From: Daphne Woods [mailto:dwoods@sentinellab.com]

Sent: Thursday, April 05, 2007 9:59 AM To: Berardino, Michelle Subject: Percent Solids for Case 36279 Hi. I just wanted to let you know that the following samples for Case 36279 have percent solids less than 50%:

SDG MC2108:

MC2121 32.2% MC2122 38.5% MC2123 42.3%

SDG MC2120:

MC2120 42.6%

MC2120D 40.7%

Per the SOW, the lab will proceed with analysis. Thanks!

Daphne Woods Document Control Officer/Chemical Engineer Sentinel, Inc. (256) 534-9800 ext. 18

241

4/5/2007

Appendix 4

2007 HRS Site Score Package

document not submitted

Con Fidential

AR100269