Technical Environmental Management

P.O. Box 162545 Austin, Texas 78716-2545

29 December 2004

Ms. Barbara Smith, Project Manager RCRA Operations Branch United States Environmental Protection Agency, Region III 1650 Arch Street Philadelphia, PA 19103-2029 RSA Project No. 2017-18

(512) 707-1777

Fax: (512) 707-0501

Re:

Submission of In-Situ Remediation Pilot Study Report, GE Railcar Repair facility, Elkton,

MD; MDD 078 288 354

Dear Ms. Smith,

On behalf of GE Railcar Repair Services, enclosed is one original and one copy of the In-Situ Remediation Pilot Study Report 'Report for the GE Railcar facility in Elkton, Maryland. The results indicate the site is conducive to in-situ groundwater remediation.

It is important to stress that by presenting comparisons of concentrations detected to various federal and state constituent concentrations, GERRS does not intend to imply that any of these various federal or state levels would be an appropriate level upon which to base a remedial action. At the appropriate time in the future, as remedial actions need to be assessed, GERRS intends to pursue discussions with EPA and MDE regarding cleanup goals based on site-specific risk factors and future property usage.

In addition, counsel to GERRS has asked me to state that, consistent with the position that GERRS has always taken since these investigative efforts began, GERRS is pursuing all of this work entirely as a voluntary matter. GERRS continues to believe there is no RCRA corrective action jurisdiction over the site.

If you have any questions or comments, or would like additional information, please contact me at your convenience.

Sincerely

Vice President/Senior Hydrogeologist

cc:

Mike Svac, GE Rail Services Dick Stoll, Foley & Lardner

John Cherry, MDE Voluntary Clean-UP Program

enclosures

Technical Environmental Management

P.O. Box 162545 Austin, Texas 78716-2545 GE Railcar, Elkton, MD RSA Project No. 2017-18 (512) 707-1777 Fax: (512) 707-0501 Pilot Study Evaluation Report December 29, 2004

IN-SITU REMEDIATION PILOT STUDY EVALUATION REPORT GENERAL ELECTRIC RAILCAR REPAIR SERVICES FACILITY TRIUMPH INDUSTRIAL PARK ELKTON, CECIL COUNTY, MARYLAND

prepared for: GE Railcar Services Corporation 161 North Clark Street Chicago, Illinois 60601

prepared by:
Rosengarten, Smith & Associates, Inc.
P.O. Box 162545
Austin, Texas 78716

December 2004

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

TABLE OF CONTENTS

1.0	INTR	<u>CODUCTION</u>	Page 1
2.0	BAC	KGROUND INFORMATION	Page 2
	2.1	MW-2 PILOT STUDY AREA	Page 2
		2.1.1 Anaerobic Reductive Dechlorination Background	Page 3
	2.2	MW-42 PILOT STUDY AREA	Page 4
		2.2.1 In-situ Chemical Oxidation Background	Page 4
3.0	FIEL	D ACTIVITIES	Page 6
	3.1	OBSERVATION WELLS	
		3.1.1 Installation, Construction, and Development	Page 6
•		3.1.2 Groundwater Sampling Methods, Frequency and Depth Int	tervals
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Page 7
		3.1.3 Groundwater Testing	Page 9
	3.2	IN-SITU TREATMENT SOLUTIONS	•
		3.2.1 MW-2 Pilot Study Area	
		3.2.1 MW-42 Pilot Study Area	Page 10
4.0	RES	ULTS OF ANALYSES AND MEASUREMENTS	Page 12
	4.1	MW-2 PILOT STUDY AREA	
		4.1.1 Volatile Organic Compounds	Page 12
		4.1.2 <u>Degradation Indicator Parameters</u>	Page 13
		4.1.3 Field Water Quality Parameters	Page 15
	4.2	MW-42 PILOT STUDY AREA	Page 17
		4.2.1 Volatile Organic Compounds	Page 17
		4.2.2 <u>Degradation Indicator Parameters</u>	Page 18
		4.2.3 Field Water Quality Parameters	Page 18
5.0	CON	CLUSIONS AND RECOMMENDATIONS	Page 20
	5.1	CONCLUSIONS	Page 20
		5.1.1 MW-2 Pilot Study Area Conclusions	Page 20
		5.1.2 MW-42 Pilot Study Area Conclusions	Page 21
	5.2	RECOMMENDATIONS	Page 22
6.0	RFF	ERENCES	Page 25

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

TABLE OF CONTENTS (CONTINUED)

FIGURES

Figure 1 Figure 2 Figure 3	In-Situ Pilot Study Monitor Well Location Map In-Situ Pilot Study Typical Degradation Compounds In-Situ Pilot Study Order of Common Inorganic Electron Acceptors
TABLES	
Table 1 Table 2	Summary of VOCS in Groundwater MW-2 & MW-43 Pilot Study Area Summary of Degradation Parameters in Groundwater MW-2 & MW-43 Pilot Study Area
Table 3	Summary of Field Parameters in Groundwater MW-2 & MW-43 Pilot Study Area
Table 4	Pilot Study Trends MW-2 & MW-43 Pilot Study Area
Table 5	Summary of VOCS in Groundwater MW-42 & MW-44 Pilot Study Area
Table 6	Summary of Degradation Parameters in Groundwater MW-42 & MW-44 Pilot Study Area
Table 7	Summary of Field Parameters in Groundwater MW-42 & MW-44 Pilot Study Area
Table 8	Pilot Study Trends MW-42 & MW-44 Pilot Study Area

APPENDICES

Appendix 1 -	Soil Boring Logs and Well Construction Diagrams
Appendix 2 -	Analytical Laboratory Data Sheets, Chain-of-Custody Forms, and
• • •	Purging/Sampling Information Forms
Appendix 3 -	Charts of Volatile Organic Compounds and Degradation Indicator
	Parameters

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

1.0 **INTRODUCTION**

This document presents the results of an in-situ groundwater remediation pilot study (PS) conducted at the General Electric Railcar Repair Services (GE Railcar) facility located in Elkton, Cecil County, Maryland (Figure 1). The PS work plan titled: "In-Situ Remediation Pilot Study Work Plan, General Electric Railcar Repair Services Facility, Triumph Industrial Park, Elkton, Cecil County, Maryland" was submitted to the U.S. EPA, Region III, on March 31, 2003 and approved on April 9, 2003 .

As stated in the PS work plan "the purpose of the PS is to collect data that will aid in determining the viability of utilizing innovative in-situ remediation (e.g., biological and chemical) technologies versus historically utilized remediation alternatives (e.g., pump/treat, vapor extraction, excavation) at the subject property." Furthermore, the PS, by design, was completed to determine if the selected technologies could be used immediately to reduce the concentrations of contaminants migrating off-site in the shallow, water-bearing unit.

The PS was completed by using two different types of in-situ groundwater remediation technologies (i.e., enhanced bioremediation and chemical oxidation) as presented in the March 31, 2003 work plan. The remediation mechanisms and the methodologies employed at the GE Railcar facility were described in the work plan and are discussed in this report. These technologies were selected based upon industry (academic, regulatory, and private) published information about similar contaminants of concern, hydrogeologic conditions, and long-term, remediation system operation & maintenance concerns.

The work plan objectives stated that the data collected during the PS would aid in providing information to determine the effectiveness the technologies employed:

- to disperse the treatment solution laterally in the pilot study areas (PSAs)
- · to develop an environment conducive for in-situ remediation, and
- to reduce contaminant concentrations in groundwater.

The data from the PS and the evaluation presented herein will be used to aid in development of a cost efficient, effective remedial technology, with minimal time & implementation constraints.

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

2.0 BACKGROUND INFORMATION

Based upon the results of the Site Investigation conducted in 2001 (2001 SI), monitor wells MW-2 and MW-42 were selected for the PS, for the following reasons:

- Analytical test results indicated dissolved volatile organic compound (VOC) concentrations in the PS wells were elevated compared to concentrations in other facility monitor wells,
- VOCs identified in these PS wells were representative of the compounds identified in other wells during the 2001 SI,
- Sedimentology and hydrogeologic conditions identified at each PS well were representative of the subsurface conditions within the contaminant plumes identified during the 2001 SI activities, and
- Selected PS wells were located near the facility property boundaries; thus, in-situ PS will aid in evaluating the effectiveness of minimizing, possibly preventing, future off-site migration of dissolved VOCs.

Two different in-situ remediation technologies were utilized in the pilot studies to aid in selecting the optimum remediation method for the facility. In-situ bioremediation technology was used to enhance the anaerobic reduction dehalogenation process¹ of compounds in the MW-2 pilot study area (PSA). In-situ chemical oxidation technology was selected for the MW-42 PSA.

When, favorable in-situ conditions occur (i.e, water quality, contaminant concentrations, stratigraphy, hydraulics, etc.), the selected technologies have been proven within industry to aggressively attack the chlorinated (and non-chlorinated) VOCs present in the PSAs. The in-situ remediation mechanisms break down the compounds present in the groundwater without mechanically bringing contaminated groundwater to the surface. Figure 2 illustrates the chain of compounds resulting from the progressive degradation process with the innocuous end-product molecules of ethane, ethene, water, carbon dioxide, and chloride. The technologies selected utilize two different mechanisms to achieve the same end result (i.e., groundwater remediation).

2.1 MW-2 PILOT STUDY AREA

The objective of the in-situ remediation technology implemented in the MW-2 PSA was to enhance the ability of naturally occurring bacteria to reduce the existing VOCs. Naturally occurring bacteria in the subsurface will degrade VOCs in anaerobic (i.e., oxygen-poor)

¹ Reductive dehalogenation is the process where a halogenated compound (i.e., chlorinated solvent) is converted to another compound or chemical by replacing the chlorine atom(s) with hydrogen atoms.

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

environments by the process commonly referred to as anaerobic reductive dehalogenation, or dechlorination (ARD). Data collected during the 2001 SI indicated that groundwater in the vicinity of MW-2 exhibited anaerobic conditions. Thus, to further enhance the ARD mechanism, a common food-grade preservative, sodium lactate², was used to act as a catalyst to enhance the ability of the bacteria naturally occurring in the subsurface to attack the VOCs occurring in the MW-2 PSA. The proprietary blend of compounds was mixed with water and metered into MW-2.

An observation well (MW-43) was installed as part of the PS to gather groundwater data. The effectiveness of the sodium lactate in-situ remediation option within the MW-2 PSA was monitored during the course of the PS by collecting groundwater samples from MW-2 and MW-43. A more detailed discussion of the field activities and analytical test results is presented in Sections 3.0 and 4.0, respectively.

2.1.1 Anaerobic Reductive Dechlorination Background

The biochemical reactions between the sodium lactate, bacteria, and VOCs induce and expedite the ARD process. Once introduced into the subsurface, the sodium lactate forms acetate and propionate (i.e., organic acids) which become critical components of the dechlorination process. Acetate and propionate will provide electrons (i.e., food source) to the naturally occurring bacteria which in turn begin grow into a larger community, or biomass. The biomass, as it is dispersed and transported by natural groundwater hydraulic gradients, will utilize the chlorinated VOCs as a food source. Eventually, the ARD mechanism will generate carbon dioxide water molecules and chloride ions as "waste products" much like mammals produce carbon dioxide as a byproduct of respiration.

By evaluating the distribution and time-series behavior of ARD parameters (also known as reduction-oxidation or redox), an understanding of the redox conditions at a site can be derived. The important parameters are evident from a consideration of the biologically mediated redox reactions shown in Figure 2. The free energy yielded by redox reactions varies substantially depending upon the electron acceptor. During respiration, microorganisms will preferentially utilize the electron acceptors yielding the greatest free energy. Figure 3 shows that the order of preference for the most common inorganic electron acceptors is oxygen, nitrate, manganese (IV), iron (III), sulfate, and carbon dioxide. Therefore, the dominant microbial community in a groundwater system is largely dependent upon the distribution of electron acceptors. Where oxygen is plentiful, aerobic bacteria will predominate; where oxygen is depleted, but nitrate is plentiful, nitrate-reducing

² Sodium lactate for bioremediation applications was supplied as the commercial product Wilclear™ that was provided by JRW Technologies, Inc. Information, literature, case studies data evaluation parameters provided at the web site www.jrwtechnologies.com and by North Wind, Inc.

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

bacteria will predominate; and so on. The importance of electron acceptor utilization patterns to biological communities in groundwater has led to the convention of discussing redox conditions in terms of the dominant "terminal electron acceptor process," or TEAP. The predominant TEAP is often inferred based on electron acceptor and reduced product concentrations, and provides a useful indicator of the overall redox conditions. In general, it can be said that the greater the excess of electron donors (oxidizable organics) relative to electron acceptors, the more reducing the conditions. For oxygen, nitrate, and sulfate, decreased concentrations relative to ambient concentrations indicate they are being utilized as electron acceptors. Reduced products are particularly important in the case of iron reduction because Fe(III) is only sparingly soluble, while Fe(II) has much higher solubility. Thus, elevated concentrations of the metals indicate they are being used as electron acceptors. For reductive dechlorination to occur, sufficient electron donors must be present to drive the system at least to manganese reduction. For optimal dechlorination the system should be sulfate reducing if not methanogenic.

2.2 MW-42 PILOT STUDY AREA

The in-situ remediation technology implemented in the MW-42 PSA utilized an in-situ chemical oxidation (ISCO) process. A proprietary mixture of peroxygen compound containing solution was injected into the subsurface around MW-42. The peroxygen solution selected for this PS is marketed under the name Biox® and has been used in various hydrogeologic frameworks to successfully remediate chlorinated/halogenated and petroleum-based VOCs at numerous sites throughout the country.

An observation well (MW-44) was installed as part of the PS to gather groundwater data. The effectiveness of the peroxygen solution in-situ remediation option within the MW-42 PSA was monitored during the course of the PS by collecting groundwater samples from MW-42 and MW-44. A more detailed discussion of the field activities and analytical test results is presented in Sections 3.0 and 4.0, respectively.

2.2.1 <u>In-situ Chemical Oxidation Background</u>

The peroxygen compound solution process oxidizes the VOCs to form oxygenated organic compounds and carbon-based compounds (e.g., alcohols and other hydroxyl radicals). The byproducts of these organic compounds are readily degraded to carbon dioxide, water molecules and chloride ions by bacteria naturally occurring in the subsurface. After the initial contact with VOCs, the chemical oxidation reaction will continue in the groundwater and naturally degrade the VOCs to water and oxygen until all of the peroxygen solution has been expended.

GE Railcar, Elkton, MD RSA Project No. 2017-18 Pilot Study Evaluation Report December 29, 2004

The ISCO solution components include stabilized hydrogen peroxide and an iron catalyst that, when introduced into the subsurface concurrently, aggressively attack carbon-based compounds that come into contact with the solution³. This ISCO remediation technology is similar to the commonly used Fenton-based process (i.e., hydrogen peroxide, ferric iron catalyst, and pH <4 to prolong reaction time) in water/wastewater treatment industry. However, the proprietary solution used in the MW-42 PSA does not require an acidic environment (i.e., pH <4) as needed in Fenton-based because of the proprietary iron catalyst used in the process.

³The success of ISCO-type remediation mechanisms depends upon direct contact with carbon-based compounds; whereas, ARD remediation is successful when enhancing existing in-situ microbial community to grow and "remediate" the compounds of concern.

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

3.0 FIELD ACTIVITIES

Field work was conducted in accordance with the Standard Operating Procedures (SOPs) included in the "Quality Assurance Project Plan" (QAPP), Version 2.0, dated March 31, 2003 and in the PS Work Plan dated March 31, 2003. The SOPs include methods for soil and groundwater sampling, logging, and decontamination. Specific groundwater sampling methods are presented in the "Groundwater Sampling and Analysis Plan" (GWSAAP) prepared for this site and dated August 9, 2001.

3.1 **OBSERVATION WELLS**

3.1.1 Installation, Construction, and Development

Observation wells (MW-43 and MW-44) were installed near each existing facility monitoring well (MW-2 and MW-42) in the designated PSAs. The observations wells were completed to the same well-construction specifications as the existing monitor wells. Soil boring Logs and Well Construction Diagrams are presented in Appendix 1.

The observation-well pilothole soil samples were collected using a truck-mounted, hollow-stem auger-rig with a split barrel (or split-spoon). The pilotholes were sampled intermittently to verify sedimentology and compare to the sediments encountered in the associated existing PSA monitor well. The pilotholes were terminated after encountering the weathered Saprolite.

Upon recovering the sampler from the boring, a portion of the sample was placed immediately into a clean, resealable, plastic bag. A clean, stainless-steel implement was used to place the soil in the bag. After approximately of ten minutes, the headspace in the bag was measured with an organic vapor analyzer (i.e., photo-ionization or flame-ionization detectors) and the concentration recorded on the boring log. The remainder of the soil sample was divided with the clean implement to inspect for sedimentological content and evidence of contamination. This information was recorded on a field boring log by the supervising geologist (Appendix 1).

The total depths of observation wells MW-43 and MW-44 are 31.3 and 38 feet below ground surface, respectively. As in MW-2, 10 feet of screen was installed in MW-43. Observation well MW-44 was completed with 20 feet of screen (similar to MW-42). The observation wells were constructed of 2-inch ID, PVC, Schedule 40, threaded, flush-jointed casing and 0.01-inch slotted screens. The sand pack was installed around the entire screened interval to a level above the top of the screen. The sand pack was sounded regularly with a weighted measuring tape to ensure accurate placement. A bentonite-chip seal was installed immediately above the completed sand pack. A bentonite-Portland

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

cement slurry was tremmied into the boring. Monitor wells were completed with abovegrade covers and anchored in concrete pads with locking well caps.

Observation well development activities were conducted in accordance with the SOPS in the QAPP and the PS Work Plan. The wells were developed using an air compressor and diaphragm pump. The pump was used to remove water and sediment from the well casing. Field parameters of pH, temperature, specific conductance (conductivity) and turbidity were monitored during this process. Wells were developed until conductivity and turbidity measurements stabilized and groundwater appeared clear.

After installing and developing the observation wells, both wells in each PSA (i.e. monitor and pilot study wells) were sampled prior to beginning the in-situ remediation injection activity portion of the PS.

Cuttings and spoils generated during the pilot study well (MW-43 and MW-44) drilling and sampling activities were placed in clean, 55-gallon steel drums. Each drum was labeled as to content and staged near the utility building for off-site disposal.

3.1.2 Groundwater Sampling Methods, Frequency and Depth Intervals

Groundwater samples were collected from each well in each PSA (i.e., MW-2/MW-43 and MW-42/MW-44) pursuant to the PS Work Plan. The GWSAAP describes the groundwater sampling protocol that was followed. Sampling personnel wore clean, disposable gloves during each phase of sampling. Samples collected during the sampling events were obtained by using micro-purging, or low-flow, sampling techniques as presented in the GWSAAP and the PS Work Plan.

General field parameters consisting of temperature, conductivity, pH, turbidity, dissolved oxygen (DO), and oxidation/reduction potential (ORP) were recorded during purging and sampling activities to aid in ensuring the effectiveness of purging, and for comparison with later sampling events. The meters were calibrated during each sampling day to ensure accurate measurement results.

To aid in evaluating the effectiveness of the in-situ remediation PS methods within each PSA, multiple groundwater sampling events were conducted. Information provided by the WilClear™ (i.e., sodium lactate) and Biox® (i.e., peroxygen) manufacturers and data collected during similar remediation projects were used to develop the PS groundwater sampling frequency. The sampling frequency is presented below:

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

MW-2 PSA

- prior to initial emplacement of WilClear™ in MW-2; and
- every 30 days thereafter until 60 days after completing the third metering event.

The total number of groundwater sampling events during the PS of the MW-2 PSA was seven events from May 2003 to November 2003.

MW-42 PSA

- prior to injecting the Biox® solution near MW-42; and
- every 30 days after Biox® injection event, coincident to the MW-2PSA sampling events

The total number of groundwater sampling events during the PS of the MW-42 PSA was seven events from May 2003 to November 2003.

The majority of the VOCs identified during the 2001 SI exhibit the characteristic of density greater than water. This characteristic influences the denser than water compounds to exhibit a pronounced vertical migration component in addition to migrating laterally from the source area. Thus, to aid in evaluating the vertical distribution and concentration gradients of the VOCs identified during the 2001 SI activities, groundwater samples obtained prior to the initial injection/metering events were collected from two depths within the screened interval of each PSA well.

Two groundwater samples from MW-2 and MW-43 (screened interval of 10 feet) were collected (i.e., four samples during the pretreatment event). The samples were obtained from depths of one foot and six feet above the bottom of the each well. Two groundwater samples from MW-42 and MW-44 (screened interval of 20 feet) were also collected. The samples were obtained from depths of one foot and eleven feet above the bottom of each well (i.e., four samples during the pretreatment event).

Based on the analytical test results of the first sampling event, groundwater samples collected during the subsequent sampling events were from the one-foot above the bottom of well interval. This interval exhibited the highest VOC concentrations. Four groundwater samples (i.e., one sample from each well) were collected during the each of the six remaining sampling events.

After the groundwater samples were collected, containerized, and labeled, they were stored in a chilled, ice chest. The sample labels included time and date of collection and sample location. This information was transferred onto a chain-of-custody and request-for-analysis form. The coolers were transported to the selected analytical laboratory by private vehicle.

GE Railcar, Elkton, MD RSA Project No. 2017-18 Pilot Study Evaluation Report December 29, 2004

3.1.3 Groundwater Testing

To aid in evaluating the effectiveness of each of the selected in-situ remediation processes water quality parameters were measured in the field as well as analyzed by a fixed-based analytical chemistry laboratory. The field water quality parameters measured and recorded included: pH, temperature, conductivity, DO, and ORP. The groundwater samples submitted to the selected fixed-based laboratory for testing were analyzed by using approved test methods as outlined in the U.S. EPA, Office of Solid Waste and Emergency Response document titled "SW-846, Test Methods for Evaluating Solid Wastes." In addition to analyzing for VOCs, groundwater samples were analyzed for the following redox parameters: total organic carbon (TOC), chemical oxygen demand (COD), sulfates (SO₄), nitrate (NO₃), nitrite (NO₂), iron (ferric and ferrous), chloride, alkalinity, methane, ethane, and ethene. Groundwater samples collected during the first sampling event were also analyzed for perchlorate as part of a different on-site project.

As part of each sampling event for QA/QC purposes, a trip blank and a field blank were analyzed for VOCs. The trip blank(s) were prepared by the laboratory with lab-grade deionized water. The field blank(s) were prepared by sampling team with deionized lab-grade during each sampling event.

Copies of the analytical data report sheets, chains-of-custody and purging/sampling information forms are provided in Appendix 2.

3.2 IN-SITU TREATMENT SOLUTIONS

3.2.1 MW-2 Pilot Study Area

WilClear[™] sodium lactate was metered into MW-2 by gravity to create a zone of reducing conditions and stimulate reductive dechlorination of chlorinated VOCs. Injections occurred three times at two month intervals (May, July, and September, 2003). After each injection groundwater was monitored in MW-2 and in MW-43 (13 ft downgradient of MW-2). Groundwater monitoring occurred prior to the first metering event, one month, and two months following each of the subsequent metering events.

The expected communication between MW-2 and MW-43 is important to consider when interpreting the data provided and is estimated here using a simple calculation requiring several assumptions. Calculation of this area of influence using these assumptions will likely estimate an area of influence that is larger than the actual area, because the effect of vertical distribution of the injection solution is underestimated. The following are assumptions for information used to calculate the area of influence:

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

- The MW-2 PS wells are 13 feet apart.
- ► The solution volume during each metering event was 550 gallons of water plus a 55 gallon drum of WilClear[™] for a total volume of 605 gallons (80.9 ft³).
- The screened length of MW-2 and MW-43 is 10 feet.
- The water-bearing unit has a porosity of 25% (silty sand).
- The volume of influence is a cylinder shaped region
- The vertical distribution of the metered solution was assumed to be limited to a two foot height.
- Advective transport of the WilClear[™] during injections is the only transport mechanism.

Given these assumptions the following equation was used to calculate the radius of the influenced area.

 $r = ((Volume x porosity^{-1})/(\pi x Height))^{1/2}$

Where:

Volume = 80.9 cubic feet (ft³) Height = 2 ft Porosity = 0.25

The radius calculated is 7.2 feet, therefore the metered solution must travel an additional 5.8 feet to reach MW-43. Although this may be a gross estimate of the metered solution influence, the results demonstrate that injections of this size into MW-2 would not be expected to influence groundwater at MW-43 immediately after the metering event. However, following the metering event, the sodium lactate would be transported due to ambient groundwater flow in the down-hydraulic gradient direction. Based on previous calculations (2001 SI Report) of groundwater flow velocity in the vicinity (57 to 80 feet per year in MW-23), the lactate was expected to influence MW-43 about two months after each metering event.

3.2.1 MW-42 Pilot Study Area

The ISCO PS activities were based upon the analytical tests results (VOCs) and subsurface hydrogeologic conditions (soil type and saturated thickness) from the 2001 SI. Based on the data evaluation, the ISCO peroxygen reagent solution (BIOX®) was injected into twelve injection points during a one-time event, by using direct-push technology (DPT) equipment. The following list summarizes the pertinent information regarding the MW-42 PS.

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

- The MW-42 PS wells are 15 feet apart.
- 95 gallons of BIOX® were injected into each of 12 injection points for a total volume of ISCO solution of 1,140 gallons.
- Injection points were completed in a grid pattern in lateral spacings of 5 feet.
- ► BIOX® injected into saturated zone (35 feet below grade to 15 feet below grade) of 20 feet.
- The lateral distribution of the injected solution was limited to a surface area of about 400 square feet.
- Positive pressure provided by BIOX® injection system provided initial dispersion mechanism.
- ► The transport mechanism post injection event is advection.

The DPT probe point was raised intermittently after injecting between four to five gallons of the peroxygen reagent solution. Treatment interval was from the base of the saturated unit to the approximate depth to top of water measured.

Based upon the grid pattern and saturated zone volume, approximately 290 cubic yards (yd³) of saturated zone media were exposed to the reagent solution.

Several of the injection points influenced MW-42 and MW-43 indicating lateral and vertical transmission of the peroxygen reagent solution occurred. The communication pathways were evidenced by the rise of water column (i.e., decreased depth to top of water) in both wells. Also, evidence was visible at the ground surface at various injection points where the reagent was seen to be effervescing (i.e., foaming/bubbling solution). Near the end of the BIOX® injection event, effervescing foam was noted in the MW-42 well casing. These observations suggest that the peroxygen reagent solution was dispersed throughout the injection point grid.

GE Railcar, Elkton, MD RSA Project No. 2017-18 Pilot Study Evaluation Report December 29, 2004

4.0 RESULTS OF ANALYSES AND MEASUREMENTS

This section discusses the analytical test results of groundwater samples collected during the PS and the field measured parameters. Tables 1 and 5 present the VOCs test results for the MW-2/MW-43 and MW-42/MW-44 PSAs, respectively. Tables 2 and 6 summarize the degradation indicator parameter (also know as attenuation parameters) test results for the MW-2/MW-43 and MW-42/MW-44 PSAs, respectively. Tables 3 and 7 present the results of the water quality parameters measured during groundwater sampling activities for the MW-2/MW-43 and MW-42/MW-44 PSAs, respectively. Tables 4 and 8 present a summary of the expected and observed trends and conclusions regarding the observations for the MW-2/MW-43 and MW-42/MW-44 PSAs, respectively. Analytical laboratory data sheets are located in Appendix 2. Charts depicting the concentration trends of VOCs and degradation indicator parameters are provided in Appendix 3. The charts are listed in the same order as presented in the analytical results summary tables.

4.1 MW-2 PILOT STUDY AREA

4.1.1 Volatile Organic Compounds

The initial sampling event of the MW-2 PS wells identified the presence of 9 VOCs in MW-2 (Table 1). Of these, only acetone (a known laboratory artifact), benzene, chlorobenzene, and 1,1,2,2 tetrachloroethane exceeded the Maryland Department of Environment (MDE) Groundwater Clean-Up Standards for industrial facilities (0.061 milligrams per liter (mg/L), 0.005 mg/L, 0.011 mg/L, and 0.001 mg/L, respectively).

Chlorobenzene was the only compound that exceeded the clean-up standard by an order-of-magnitude. The benzene and chlorobenzene concentrations exceeded the US EPA maximum concentration limits (MCLs) established by the Safe Drinking Water Act (0.005 mg/L and 0.100 mg/L, respectively). MCLs for acetone and 1,1,2,2 tetrachloroethane have not been published. The initial results of MW-43 indicated the presence of only 5 VOCs, with only benzene and chlorobenzene exceeding the MDE clean-up standards and EPA MCLs.

Since most of the concentrations of VOCs identified during the PS sampling events are either at or near the analytical detection limits or are well below the MDE clean-up standards, only chlorobenzene is discussed in detail herein.

A review of Table 1 and the accompanying chart in Appendix 3 indicates an initial decrease in chlorobenzene concentration in MW-2 from 1.48 to 0.55 mg/L following the first metering event. The concentration rebounds to 0.827 mg/L by the third sampling event (immediately before the 2nd metering event). After the 2nd metering event, the concentration of chlorobenzene declines to 0.495 mg/L in the 4th sampling event and then appears to

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

rebound again by the 5th sampling event to 0.808 mg/L. After the 3rd metering event the concentration drops to 0.433 mg/L in the 6th sampling event and then rebounds to 0.671 mg/L by the 7th and last, PS sampling event. Two possible reasons for this pattern are suggested: 1) degradation of chlorobenzene occurred or, 2) displacement/dilution of the native groundwater by the addition of the aqueous electron donor solution occurred, followed by an influx of chlorobenzene into the area from the hydraulically up-gradient source.

An initial decline from the 1st to the 2nd sampling event in chlorobenzene concentration in MW-43 is also evident in Table 1 and in the chlorobenzene chart in Appendix 3. This decline and the subsequent rebound is similar to MW-2, however, chlorobenzene in MW-43 continues to increase through the 5th event and then decreases during the 6th sampling event (approximately one-month after the last metering event). This decrease is also coincident to observations of electron donor breakthrough as discussed in Section 4.1.2.

Further inspection of the VOC charts in Appendix 3 show similar patterns of slight fluctuations of constituent concentrations. These fluctuations range in the parts per billion (or micrograms per liter, $\mu g/L$) to parts per trillion values. For instance, benzene varies from 17 $\mu g/L$ in MW-43 before the first metering event and does not decrease below 7.5 $\mu g/L$; showing a trend of initial decrease but slowly increasing throughout the PS. Other VOCs (i.e., *cis* and *trans* 1,2-dichloroethene, and 1,1,2,2-tetrachloroethane) show the similar decrease-increase pattern in concentrations before and after the initial and subsequent metering events (Appendix 3 - Charts and Table 1).

As expected, injection of WilClear™ (an electron donor) did not have marked effect on most non-chlorinated VOCs, which are potential electron donors themselves. These other contaminants include: acetone (possibly a laboratory artifact), benzene, 2-butanone, and ethylbenzene. Degradation of these compounds is not enhanced by the addition of an electron donor because utilization of these compounds as electron acceptors is generally not thermodynamically favorable.

4.1.2 Degradation Indicator Parameters

TOC, COD, Alkalinity, and TPH (Electron Donors)

Observation of TOC, COD, and alkalinity trends show a consistent spike in all three parameters in MW-43 in September 2003 (TOC=681 mg/L, COD = 1920 mg/L, and alkalinity = 568 mg/L) (see Table 2). All other measurements are comparatively low. The data suggest a breakthrough in electron donor solution in MW-43 just before the third metering event. The data indicate that transport of electron donors did not reach MW-43 in measurable quantities until after the second metering event (refer to TOC, COD and Alkalinity Charts in Appendix 3).

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

Alkalinity, COD, and TOC trends in MW-2 appear to support the expected conclusion that biological activity was stimulated during sodium lactate injections. Increasing alkalinity is an indicator of biological growth. As carbon dioxide is produced by biological activity at relatively neutral pH (pH >6 to 7), much of it forms bicarbonate, which contributes to alkalinity. The alkalinity in MW-2 increases following the first metering event and appears to plateau later. This trend indicates biological growth. A general increase of COD is evident following the metering events in MW-2 groundwater; as well as in MW-43 groundwater about two months after the initial metering event and throughout the PS. This indicates degradation of the introduced electron donor, as expected, and is consistent with the increase in alkalinity. TOC reduction is also evident following all metering events which also indicates degradation of the introduced electron donor. TPH results indicate a minimal increase. However, the low concentrations and the slight fluctuation are too minimal to assess treatment effectiveness (Table 2 and Appendix 3 - Charts).

Oxidation-Reduction (Redox) Parameters

The following are observations of redox sensitive parameters. They are discussed in order of preferential utilization during microbial respiration, from the most thermodynamically favorable to the least (see Figure 3).

Nitrate

Nitrate concentrations in both wells were all less than 1 mg/L and most are lower than the detection limit of 0.06 mg/L. This low ambient concentration suggests that nitrate reduction plays an insignificant role in the biological redox reactions occurring in this system. Nitrite was not detected above detection limits.

Iron

Ferrous iron (Fe⁺²) concentrations in MW-2 become significantly higher than initial concentrations indicating significant iron reduction is occurring due to the sodium lactate injections (refer to charts in Appendix 3). These high concentrations indicate a significant source of bioavailable iron. Ferrous iron concentrations in MW-2 are higher than those observed in MW-43, which is expected when considering the distribution of sodium lactate.

Sulfate

Concentrations of sulfate prior to the initial metering event were much higher than post metering event concentrations (Table 2 and Appendix 3 Sulfate chart). The marked decrease in sulfate concentrations indicate that sulfate reduction occurred in both PS wells. Furthermore, since the sulfate concentration remained below 1 mg/L in MW-2 for more than 2 months, strongly reduced conditions appeared to have existed.

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

Dissolved Gasses

Inspection of the test results for the dissolved gasses methane, ethane, and ethene, identifies methane as the only compound above detection limits. However, due to the initially very low concentrations of chlorinated VOCs, the results are inconclusive.

4.1.3 Field Water Quality Parameters

To aid in determining thoroughness of purging for each well sampled during the PS, conductivity, dissolved oxygen, oxidation/reduction potential (ORP or Redox), temperature, turbidity, and pH were monitored. Measurements were recorded on the Purging/Sampling Information Forms (Appendix 2) and summarized in Table 3. Once the various water quality parameters had stabilized, the designated well was sampled. As the readings stabilize, studies have shown that water representative of the surrounding formation rather than water from within a well's sand filter (i.e., sand packed around the well screen) is present in the well casing for sampling and analysis.

Conductivity (Specific conductance)

Conductivity in water is a measurement related to the concentration of ions capable of carrying electrical current and is directly related to the total dissolved ions in the water. Conductivity is reported in micromhos per centimeter (umhos/cm) which has been recently renamed as uS/cm (microSiemans per centimeter). Fresh water, or water with low concentrations of total dissolved ions (solids, salts, etc.) will exhibit a low reading (usually below 1.0 uS/cm). As concentration of dissolved ions increase, water becomes more saline, thus more conductive (i.e. higher readings). All of the conductivity readings measured during the MW-2 PS were below 1.0 uS/cm. A slight increase is noted after the initial WilClear™ metering event in MW-2 (0.398 in May 2003 to 0.604 in June 2003) and MW-43 (0.345 in May 2003 to 0.405 in June 2003); however, the readings remained consistent for the duration of the PS.

Dissolved Oxygen (DO)

Dissolved Oxygen, or DO, is the concentration of free (not chemically combined) molecular oxygen (a gas) dissolved in water, usually expressed in mg/L. DO measurements of <1 mg/L indicate an oxygen-poor condition may exist that may be suitable for reductive dechlorination process with DO concentrations of <0.5 mg/L providing the optimum environment. Inspection of the recorded measurements presented in Table 3 shows a noticeable increase in DO after the introduction of sodium lactate solution after the first sampling event (May 2003). The sodium lactate solution appears to have released the oxygen molecules from the compound (sodium lactate = CH₃ - CHOH -COONa), thus showing a false positive high DO concentration or possibly causing meter interference. This is particularly evident in the fourth and seventh sampling events (i.e., August and November). Also, probe malfunction during these particular events cannot be discounted

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

even though the probe was calibrated to the manufacturer's specifications. Nonetheless, the ARD components previously discussed as well as redox (discussed below) point to significant biological activity and development of favorable ARD conditions.

Redox (Oxidation-Reduction Potential)

The redox reading is a measurement of the intensity of oxidizing or reducing conditions within a system. This measurement of electron activity is an indicator of the likelihood of the groundwater containing volatile organic compounds to accept or transfer electrons. Like evaluations of DO concentrations, recognizing redox trends can provide information about possible natural degradation of volatile organic compounds (i.e., aerobic versus anaerobic environments)⁴. Generally, the redox of groundwater ranges from -400 to 800 millivolts (mV) with lower readings down to negative readings indicating a reducing environment and higher values inferring an oxidative environment (Figure 2). When redox values of -200 to -300 mV coincident with DO readings of <1.0 mg/L exist, the in-situ environment is conducive for ARD processes to occur. Basically, redox measurements provide insight to the likelihood of reactions occurring where electrons are gained or lost and new compounds are formed (i.e, ARD).

The redox reading in MW-2 prior to the WilClear[™] metering events was -21 mV, which indicates an environment favorable for reductive dechlorination. As the PS progressed, the redox readings continued to decrease (down to -189 mV). Similarly, redox measurements for MW-43 were in the reducing environment range. Further inspection shows a rebound effect in the last sampling event (November 2003) which was two months after the third metering event. The fluctuation when compared to the metering events shows the MW-2/MW-43 PSA was readily influenced by the ARD inducing WilClear[™] solution.

Temperature, Turbidity, and pH

Temperature, turbidity, and pH were measured and recorded during the well purging activities. Inspection of the temperature and turbidity readings does not identify any trends in relation to ARD or WilClear™ metering. Prior to collecting samples during the PS, these parameters were monitored until they stabilized. Inspection of the pH readings recorded during the PS show a noticeable trend. The August 2003 sampling (one month after the second metering event) shows an increasing pH toward a more neutral reading in MW-2 and MW-43. The readings show a decreasing trend in the November 2003 sampling event (two months after the third and final metering event). This trend is another indicator tracking the progress, or migration, of the WilClear™ metered into MW-2 as well as a time line of increased microbial activity based on the solution's concentration and metering frequency.

⁴ Wiedemeier et all (1997) states "Redox reaction in groundwater containing organic compounds are usually biologically mediated; therefore, the redox of a groundwater systems depends on and influences rates of biodegradation."

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

4.2 MW-42 PILOT STUDY AREA

4.2.1 Volatile Organic Compounds

Inspection of the VOC summary table (Table 5) and the VOC charts in Appendix 3 for the MW-42 PS indicates that one non-chlorinated VOC, benzene, and 11 chlorinated VOCs were identified above the detection limits in MW-42 prior to the BIOX® injection event. Of these 12 VOCs, only chlorobenzene, 1,1,2,2 tetrachloroethane (1,1,2,2 PCA), and trichloroethene (TCE) exceeded the MDE Clean-Up Standards (0.011 mg/L, 0.001 mg/L and 0.005 mg/L, respectively). The pre-injection concentrations of chlorobenzene and TCE exceeded the EPA MCLs (0.100 mg/L and 0,005 mg/L, respectively).

The 1,1,2,2,-PCA concentrations in MW-42 decreased after the BIOX® injection event, but plateau above the MDE cleanup standard over the remaining PS sampling events. This may indicate that the BIOX® solution was expended. This decrease and plateau was also recognized in MW-44.

Chlorobenzene concentrations in MW-42 also decreased after the injection event, but rebounded slightly to approximately the clean-up standard of 0.011 mg/L. Chlorobenzene concentrations remained below the clean-up standard in MW-44 for the duration of the PS. Chlorobenzene concentrations remained below the EPA MCL of 0.100 mg/L.

TCE concentrations in both wells increased after the injection event, with the highest concentration in MW-42 during the September 2003 sampling event. This event also corresponded to the lowest measured water levels during the PS in both MW-42 and MW-44. This increasing concentration trend as the water level dropped suggests that drainage of the capillary fringe at the top of the water-table occurred, increasing the concentration of TCE in the groundwater. It is also possible that the effervescent action of the solution when injected enabled additional TCE to be transported downward from the overlying source area.

The *cis* and *trans* 1,2-DCE charts (Appendix 3) and Table 5 show an overall increase in concentrations in MW-42 with no significant fluctuations noted in MW-44 results. This increase may indicate breakdown of chlorinated VOCs with 3 or 4 chloride molecules (i.e TCE/TCA or PCE/PCA) or, possibly, a flux of contaminated water entering the PSA from the overlying source area.

Table 5 and the corresponding charts (Appendix 3) for the chlorinated compounds 1,1,2-TCA, and vinyl chloride show a slight increase in concentrations after the initial injection event which can be attributed to similar mechanisms discussed above.

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

4.2.2 <u>Degradation Indicator Parameters</u>

Alkalinity, COD, and TOC trends in MW-42 appear to support the expected conclusion that the saturated unit would be affected by the peroxygen reagent solution injection. The increases suggest that once the BIOX® injection volume oxidized carbon-based compounds, an environment of biological growth began to develop. The increased alkalinity concentrations (in both wells) are good indicators of biological growth. As carbon dioxide is produced by biological activity at relatively neutral pH (pH >6 or 7 S.U.), much of it forms bicarbonate, which contributes to alkalinity. The alkalinity in MW-42 and MW-44 increases following the BIOX® injection event and appears to plateau later. This trend indicates biological growth. The increased COD and TOC concentrations after the BIOX® injection event indicates that considerable conversion of carbon/hydrogen-based compounds to hydroxylated compounds has occurred. These compounds can be biologically reduced by naturally occurring microbial communities once optimum growth and distribution has occurred. A review of the TPH results indicates minimal fluctuations in concentrations during the PS. However, the low concentrations and the slight fluctuations are too low to assess treatment effectiveness (Table 6 and Appendix 3 -Charts).

Inspection of the concentrations and trends of the remaining parameters (Iron, Sulfate, Nitrate, and Nitrite) are too low to assess treatment effectiveness or potential (Table 6 and Appendix 3 - Charts).

4.2.3 Field Water Quality Parameters

To aid in determining thoroughness of purging for each well sampled during the PS, conductivity, dissolved oxygen, oxidation/reduction potential (ORP or Redox), temperature, turbidity, and pH were monitored. Measurements were recorded on the Purging/Sampling Information Forms (Appendix 2) and summarized in Table 7. Once the various water quality parameters had stabilized, the designated well was sampled. As the readings stabilize, studies have shown that water representative of the surrounding formation rather than water from within a well's sand filter (i.e., sand packed around the well screen) is present in the well casing for sampling and analysis.

Conductivity (Specific conductance)

All of the conductivity readings measured during the PS were below 1.0 uS/cm. Conductivity readings decreased slightly in the MW-42 after the BIOX® injection event (0.418 in May 2003 down to 0.183 in November 2003) while readings in MW-44 remained relatively consistent throughout the PS (0.321 in May 2003 to 0.442 in November 2003). These readings suggest that the peroxygen reagent solution did not alter the conductivity.

GE Railcar, Elkton, MD RSA Project No. 2017-18 Pilot Study Evaluation Report December 29, 2004

Dissolved Oxygen (DO)

Inspection of the recorded measurements presented in Table 7 shows an expected large increase in DO readings after the injecting the peroxygen reagent solution in May 2003. The peroxygen reagent solution appears to have released the oxygen molecules from the compound (hydrogen peroxide - HOOH), thus showing a false positive high DO concentration or possibly causing meter interference (see Table 7). Also, probe malfunction during these particular events may have occurred even though the probe was calibrated to the manufacturer's standards.

Redox (Oxidation-Reduction Potential)

The redox readings in MW-42 and MW-44 prior to the BIOX® injection event were 396 and 263 mV, respectively. These readings indicated an aerobic (or oxygen-rich) environment favorable for oxidation by aerobic microbes (breakdown to end products of carbon dioxide and water). As the PS progressed, the redox readings decreased more (down to -38 mV) in MW-42 samples indicating that the chemical-oxidation solution had likely been expended and the groundwater environment was being converted to an anaerobic environment. This is a typical progression for aerobic biodegradation environments to become oxygen-poor environments once mineralization of the chlorinated or non-chlorinated compounds has begun. Redox measurements for MW-44 remained in the aerobic range throughout the PS.

Temperature, Turbidity, and pH

Temperature, turbidity, and pH were measured and recorded during the well purging activities. Prior to collecting samples during the PS, these parameters were monitored until they stabilized. Inspection of the temperature and turbidity readings does not identify any trends in relation to the BIOX® injection event. Inspection of the pH readings recorded during the PS show a noticeable trend in MW-42 (center of Biox® injection event). The August 2003 sampling shows an increasing pH from below neutral (i.e., slightly acidic, 5 S.U.) toward a more basic reading (10.09 S.U.) in MW-2. Additionally, the readings from MW-44 show a very little fluctuation (5.38 in May 2003 to 4.41 in October 2003 to 5.0 in November 2003) The trend in MW-42 indicates that the injected peroxygen reagent solution effected the groundwater as it degraded during the PS.

Dissolved Gases

Inspection of the test results for the dissolved gasses methane, ethane, and ethene, identifies methane as the only compound above detection limits. These results suggest (in combination with above observations) that due to the initially very low concentrations of non-chlorinated and chlorinated VOCs, the results are inconclusive.

GE Railcar, Elkton, MD RSA Project No. 2017-18 Pilot Study Evaluation Report December 29, 2004

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 **CONCLUSIONS**

5.1.1 MW-2 Pilot Study Area Conclusions

Interpretations of the data collected for each of the MW-2 PS parameters are presented in Table 4. This table indicates that most of the expected trends were wholly or partially observed during the PS. Furthermore, when taken as whole, these results indicate that the ARD mechanism can be enhanced by the addition of electron donor reagent solutions (e.g., sodium lactate in the form of WilClearTM).

Conclusions based on interpretation of the overall data are:

- Injections in MW-2 do not immediately affect MW-43; however the combined parameters of groundwater velocity, volume of electron donor solution, and frequency of metering events show MW-43 is affected within two months of the first metering event (as approximated by calculations presented in this report).
- ► The data indicate chlorobenzene concentration reduction in the groundwater in the vicinity of MW-2 following WilClearTM metering events. This reduction is followed by a rebound in concentration within two months, suggesting that the system did not become self-sustaining during the PS. Also, the initial decreases in chlorobenzene concentrations may be attributed to dilution and/or dispersal by the "slugs" of sodium lactate introduced to the pilot study area.
- Biological activity is occurring to a significant extent.
- Reduction of iron and sulfate is occurring indicating conditions conducive to anaerobic reductive dechlorination. However, methanogenic redox conditions were not measured or did not occur.
- The presence of significant bioavailable iron might be preventing methanogenesis, which may, in turn, limit chlorinated VOC degradation.
- Overall, the electron donor solution (i.e., WilClear[™]) metering events stimulated significant biological activity. The data suggest that to achieve methanogenic conditions at the site, optimal for dechlorination, more frequent and larger volumes of electron donor solution will be necessary to effectively construct an environment conducive to dehalogenation.

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

Finally, the PS conducted in the MW-2/MW-43 area provided important information to aid in developing an effective groundwater remediation scenario for this portion of the facility. The PS confirmed that the groundwater can be effectively enhanced, or manipulated, for biological treatment. Treatment solutions, if used, will disperse throughout the affected area within a reasonable amount of time (i.e. weeks/months versus years). Degradation of COCs in this area of the facility could be more successful using mechanisms to enhance aerobic degradation conditions rather than anaerobic. Based upon the data gathered during the PS, other available in-situ technologies may be more efficient (implementation and remediation time and amount of treatment product) and cost effective which will address the more immediate matter of reducing/eliminating COC off-site migration. Section 5.2 discusses remediation recommendations.

5.1.2 MW-42 Pilot Study Area Conclusions

Interpretations of the data collected for each of the MW-42 PS parameters are presented in Table 8. This table indicates that most of the expected trends were partially observed during the PS. The conclusions of the data interpretation include:

- Based upon physical and visible evidence noted during the injection event, lateral and vertical distribution of the peroxygen reagent solution occurred within the saturated, water-bearing zone.
- Chlorinated VOC concentrations decreased following the injection event and then either remained about the same or increased. Some of the small increases may be attributed to dechlorination of the larger chlorinated molecules, e.g., 1,1,2,2-PCA or TCE, caused by the injected solution, while the increase in TCE is interpreted as a function of the dynamics of the source area itself.
- ▶ Based on the TOC and COD data, oxidation of carbon matter did occur. However, because some biological indicator parameters (i.e., nitrate and ferrous ion) did not appear to be affected, it is likely that most of the carbon matter attacked by the peroxygen solution was naturally occurring rather than hydrocarbon based (i.e., chlorobenzene, 1,1,2,2-PCA, etc.).
- The peroxygen solution used for this PS appeared to dissipate quickly, thus long-term in-situ effects were not achieved; suggesting that the groundwater environment win this portion of the site may be more amenable to slow release type in-situ solutions.

Finally, the PS conducted in the MW-42/MW-44 area provided important information to aid in developing an effective groundwater remediation scenario for this portion of the facility.

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

Treatment solutions, if used, will disperse throughout the affected area within a reasonable amount of time (i.e. weeks/months versus years). Depending upon the technology used, degradation of COCs in this area of the facility could be successfully achieved by using aerobic based mechanisms. Based upon the data gathered during the PS, other available in-situ technologies may be more efficient (implementation and remediation time and amount of treatment product) and cost effective which will address the more immediate matter of reducing/eliminating COC off-site migration. Section 5.2 discusses remediation recommendations.

5.2 **RECOMMENDATIONS**

Based on the PS results in the MW-2/MW-43 area, alternative remediation approaches to address the COC plumes should be used. These alternatives would entail using mechanical/automated means. These methods would "flood" the contaminant plumes with treatment solutions or utilize aqueous based solutions that are "slow release" type to ensure ample contact time via small-diameter wells or piezometers. These approaches are typically more cost effective when compared to the typical "one-pass" approach because the combination of slower groundwater velocity and the large lateral extent of the contaminant plumes requires numerous injection points and very large volumes of treatment solution to ensure effective and thorough treatment

The PS MW-42/MW-44 area, as well as the remaining southern portion of the facility, exhibits a higher groundwater velocity and thicker groundwater bearing unit compared to the northeastern/east-central portions. Similarly, the contaminant plumes are laterally extensive. Even though the peroxygen solution used in this PSA was somewhat effective, numerous injection points and very large volumes of the treatment solution would be necessary to effectively treat the contaminant plumes. Therefore, as with the MW-2/MW-43 PSA, alternative remediation methods would introduce treatment solutions by mechanical means to attack the contaminant plumes, or through constructing permeable reactive barriers to treat the groundwater plumes as they migrate through the treatment structure.

An effective and industry-proven remediation (US EPA accepted and designated as an Environmental Technology Verification Program (ET) approach) method to treat the various contaminants and the range of concentration levels, would be to bubble or sparge streams of oxygen, ozone, or peroxide or a combination into the contaminant plumes in the MW-2/MW-43 portion of the facility through wells and thereby aerobically degrading the COCs. As has been stated previously, based on information gathered during the PS, the COCs in this portion of the site (benzene, chlorobenzene and TCE) will be more effectively treated via this mechanism. This method will eventually develop a treatment wall or zone that will remediate groundwater within the zone of influence of the treatment wells and groundwater at it migrates into the treatment zone from the hydraulically up-gradient areas.

GE Railcar, Elkton, MD RSA Project No. 2017-18 Pilot Study Evaluation Report December 29, 2004

The treated groundwater as it migrates down gradient will dilute and disperse contaminants that are downgradient of the treatment zone.

The bubble/sparge well approach would effectively and cost efficiently (compared to numerous injection points) address the laterally and vertically extensive groundwater plumes in the southern portion of the site. By bubbling or sparging streams of oxygen, ozone, or peroxide, or a combination, almost all of the COCs would be addressed. To effectively remediate the PCE identified along the western portion of the facility, the bubble/sparge well system would either first or simultaneously introduce an electron donor solution (e.g. propane) to effectively dechlorinate by anaerobic mechanisms. This is easily performed by alternating the bubbling or sparging streams with propane. The propane stream will affect the PCE while the oxygen or ozone or peroxide or a combination stream will attack the remaining COCs (i.e., PCE daughter products, chlorobenzene, 1,1,2,2-PCA, etc.).

An additional industry-proven remediation and cost effective method for the southern portion of the facility would be using a permeable reactive barrier (PRB). The barrier, or trench, would be filled with Zero Valent Iron (or iron filings). The iron is mixed with sand and placed in a trench either by direct pour or by using a bioslurry method (typically used when site condition do not allow trenches to remain open). Contaminated groundwater is treated as it migrates though the iron-filled trench. This technology (developed and trademarked by Waterloo University in Canada and EnviroMetal Technologies Inc.) will effectively treat the various contaminants in the southern portion with the exception of chlorobenzene. The chlorobenzene, if future sampling events show concentrations remain above clean-up standards, can be addressed with other remedial technologies.

Similar to the iron-filled PRB approach, slow release compounds, such as ChitoRem™ or food-grade emulsified edible oil substrate (EOS®), can be used to effectively and cost efficiently treat the various compounds in the southern portion of the facility. These food grade biopolymers slowly degrade and provide electron donors to enhance bioremediation of chlorinated VOCs. An industry-proven method that would work at the facility would include installing rows of injection points (i.e., direct-push technology) filled with the slow release treatment solution or installing well points, whereby the treatment solution would be periodically pumped under low pressure or gravity fed into the points; eventually creating an interlocking wall of slow release treatment solution. Typically, the rows are installed across the width of the contaminant plume, perpendicular to groundwater gradient direction. The rows are spaced throughout the plume area, thus, allowing contaminated groundwater to migrate through the treatment field plume and become progressively treated through each subsequent treatment row. This method is usually is more cost effective compared to canvassing particularly large contaminant plumes (as present on this facility) with a grid pattern type injection plan. The time required to treat the contaminant plume is extended some because existing site characteristics are used to aid in the

GE Railcar, Elkton, MD RSA Project No. 2017-18

Pilot Study Evaluation Report December 29, 2004

treatment method (i.e., aquifer hydraulic gradient, dispersion and advection). Like an ironfiling PRB, these slow release solutions would not dechlorinate chlorobenzene timeefficiently. The chlorobenzene, if future sampling events show concentrations remain above clean-up standards, can be addressed with other remedial technologies.

Along the same lines of the treatment rows using the slow release solutions presented above, a slow release oxidizing solution that can successfully treat the chlorinated compounds identified at the facility is sodium persulfate (with and iron catalyst) solution. The activated sodium persulfate would be pumped (under low pressure) into the treatment row wells. This approach would allow for utilizing one technology rather than combining several methods to treat the suite of chlorinated and non-chlorinated (i.e., benzene) compounds present in the shallow water-bearing unit underlying the facility.

These approaches can also be constructed and operated downgradient of the facility if necessary. Alternatively, contaminant plume areas located off-site could be addressed with these treatment solutions using the one-pass direct-push technology approach should off-site access be limited by time and available operating space.

Using the data gathered during the course of completing the pilot studies and previous site investigations, experienced contractors will be contacted to assist in developing and implementing an efficient and cost effective approach to remediate the contaminated groundwater at the facility.

As it has been almost three years since the last facility-wide sampling event, the facility monitor wells (on-site and off-site) should be sampled and analyzed for COCs previously detected. Also, groundwater from perimeter wells (on-site and off-site) and select wells within the contaminant plumes should be analyzed for degradation (attenuation) parameters.

GE Railcar, Elkton, MD RSA Project No. 2017-18 Pilot Study Evaluation Report December 29, 2004

6.0 **REFERENCES**

BioManagement Services, Inc. Product, Services, Effectiveness Information and Data Evaluation Parameters.

Bouwer, E.J. 1994. "Bioremediation of Chlorinated Solvents Using Alternate Electron Acceptors." In: Handbook of Bioremediation, pp. 149-175. Lewis Publishers, Boca Raton, Fl.

Hem, John D. 1985. Study and Interpretation of Chemical Characteristics of Natural Water. U.S. Geological Survey. Water-Supply Paper 2254.

Interstate Technology and Regulatory Cooperation Work Group. September 1999. Natural Attenuation of Chlorinated Solvents in Groundwater: Principles and Practices.

Interstate Technology and Regulatory Cooperation Work Group. June 2000. Dense Non-Aqueous Liquids (DNAPLs): Review of Emerging Characterization and Remediation Technologies.

JRW Bioremediation LLC and North Wind, Inc. Product, Services, Effectiveness Information and Data Evaluation Parameters.

National Groundwater Association - Short Course. December 1999. Natural Attenuation for Remediation of Contaminated Sites - Wiedemeier, Todd and Barden, Michael.

Suarez, Monica P., and Rafai, Hanadi S. 1999. Biodegradation Rates for Fuel Hydrocarbons and Chlorinated Solvents in Groundwater. Bioremediation Journal 3(4):337-362.

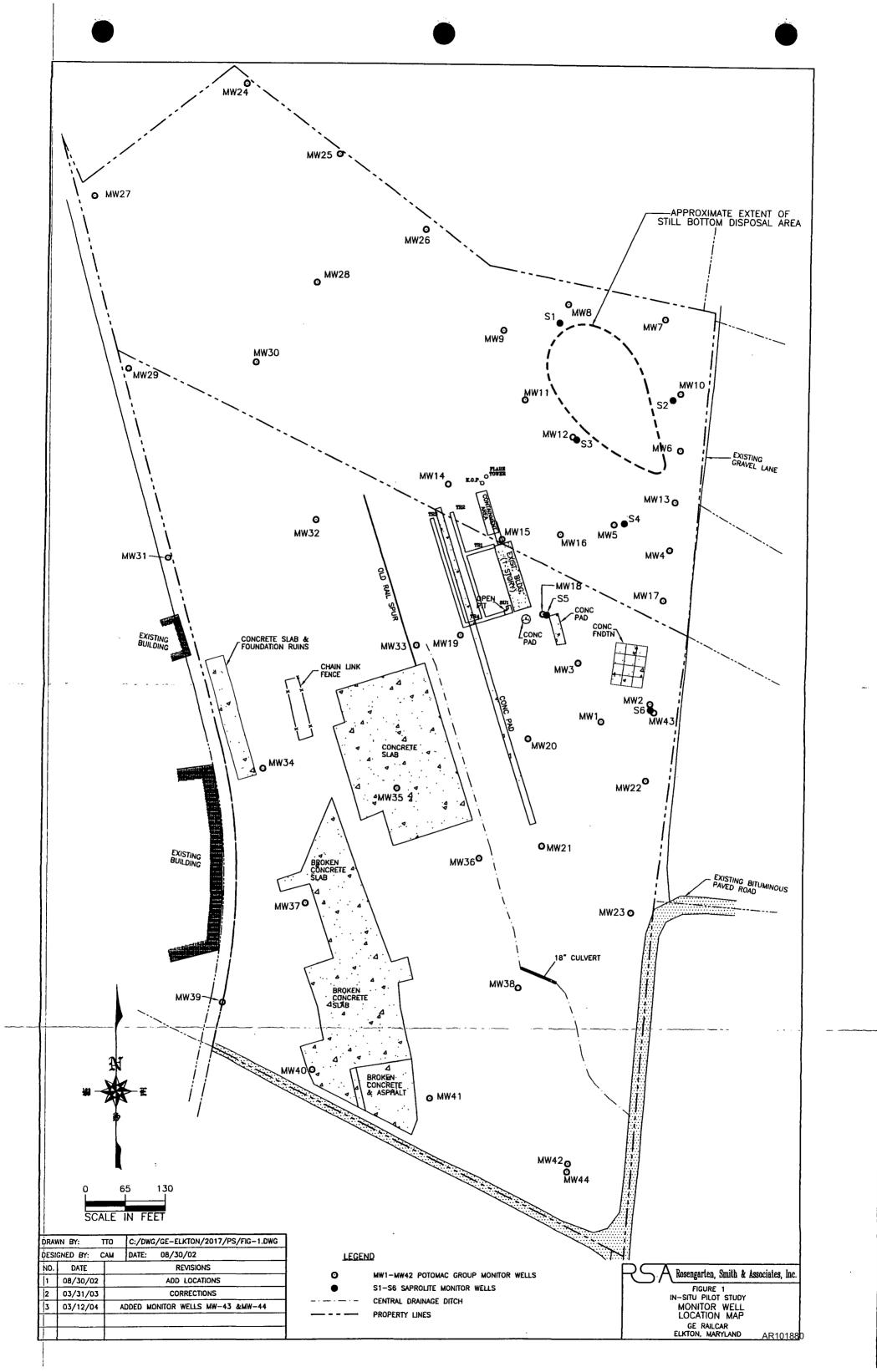
Suthersan, Suthan S., 1997. Remediation Engineering Design Concepts. CRC Lewis Publishers.

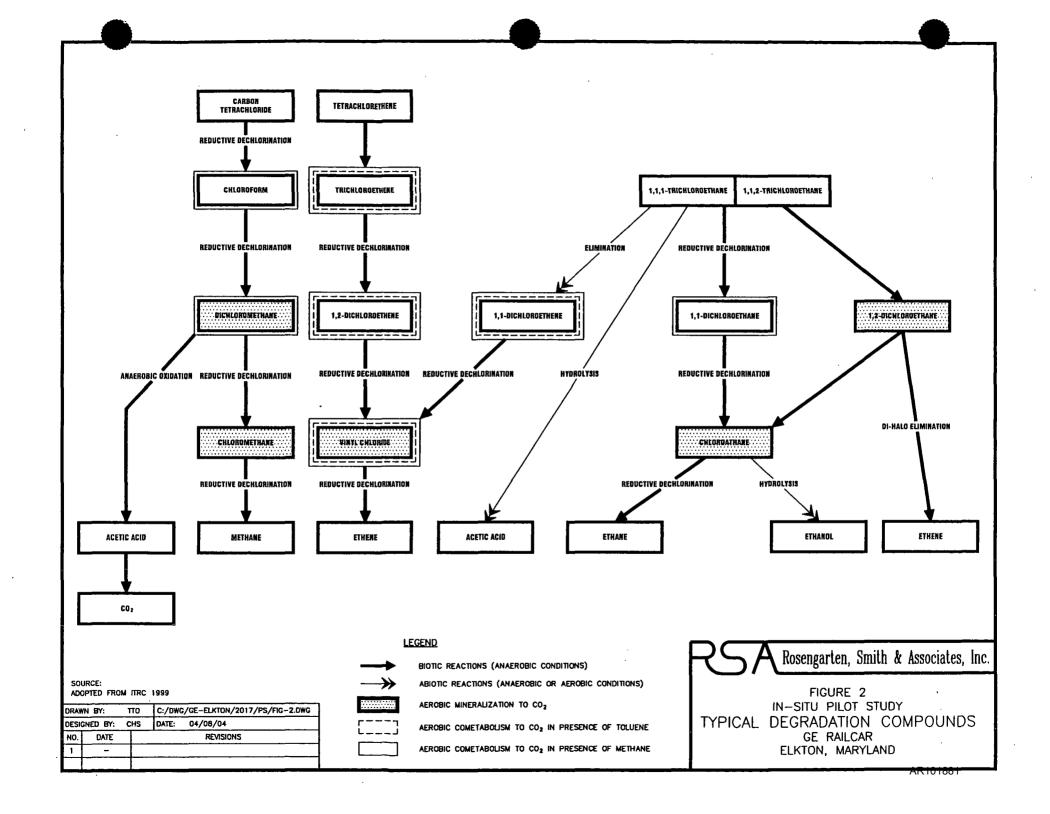
USEPA. August 1996. Natural Attenuation Decision Support System - User's Manual - Bioscreen. EPA/600/R-96/087.

 September 1998. Technical Protocol for Evaluating Natural Attenuation o Solvents in Ground Water. EPA/600/R-98/128.
May 1999. Monitored Natural Attenuation of Chlorinated Solvents - U.S. EPA

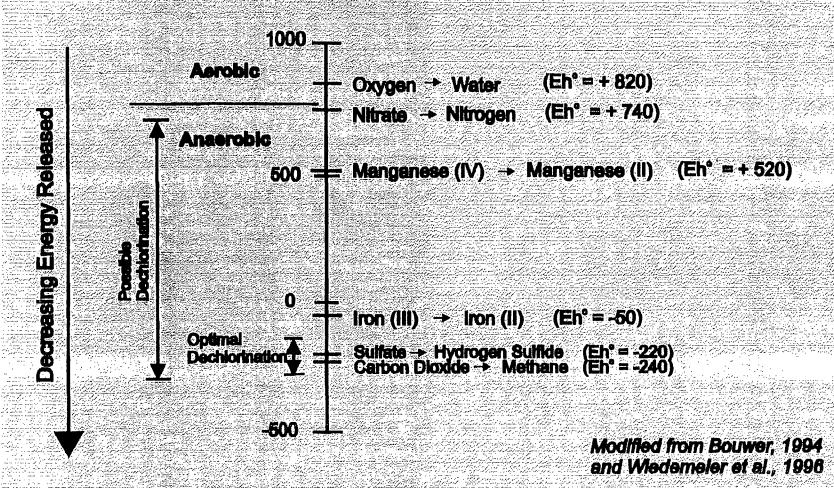
Remedial Technology Fact Sheet. EPA/600/F-98/022.

GE Railcar, Elkton, MD RSA Project No. 2017-18


Pilot Study Evaluation Report December 29, 2004


_____. May 1999. Commonly Asked Questions Regarding the Use of Natural Attenuation for Chlorinated Solvent spills at Federal Facilities. http://www.epa.gov/sweffrr/documents/chlorine.htm.

Wiedemeier, Todd H., Swanson, Matthew A., Moutoux, David E., Wilson, John T., Kampbell, Donald H., Hansen, Jerry E., and Hass, Patrick. May 1997. Overview of the technical Protocol for Natural Attenuation of Chlorinated Aliphatic Hydrocarbons in Ground Water Under Development for the U.S. Air Force Center for Environmental Excellence *in* Proceedings of the Symposium on Natural Attenuation of Chlorinated Organics in Ground Water. Office of Research and Development, Washington D.C. U.S. EPA. EPA/540/R-97/504.


RSA Project No. 2017 GE Railcar, Elkton, MD In-situ Remediation Pilot Study

FIGURES

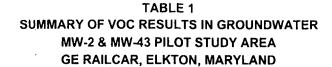

DRAWN BY: TTO			C:/DWG/GE-ELKTON/2017/PS/FIG-2.DWG					
DESIG	NED BY:	CHS	DATE:	04/08/04				
NO.	DATE			REVISIONS				
1	_							
بحصا	-							

FIGURE 3
IN-SITU PILOT STUDY
ORDER OF COMMON
INORGANIC ELECTRON ACCEPTORS
GE RAILCAR
ELKTON, MARYLAND

AR101882

RSA Project No. 2017 GE Railcar, Elkton, MD In-situ Remediation Pilot Study

TABLES

Volatile Organic Compounds	MDE Groundwater	MW-2*	MW-2	MW-2*	MW-2	MW-2*	MW-2	MW-2	MW-43*	MW-43	MW-43*	MW-43	MW-43*	MW-43	MW-43
milligrams/liters	Clean Up Standards	05/18/03	06/24/03	07/22/03	08/26/03	09/23/03	10/21/03	11/21/03	05/18/03	06/24/03	07/22/03	08/26/03	09/23/03	10/21/03	11/21/03
Acetone	0.061	0.064	0.039	0.025	0.022	0.344	0.074	0.032	0.0076	<0.0038	0.014	0.0048	0.005	0.084	0.0052
Benzene	0.005	0.022	0.009	0.015	0.0089	0.01	0.0072	0.0098	0.017	0.0075	0.015	0.012	0.021	0.011	0.014
2-Butanone (MEK)	0.19	<0.0025	0.038	0.094	0.206	0.275	0.289	0.179	<0.0025	<0.0025	<0.0025	0.018	0.0025	0.378	<0.0025
Chlorobenzene	0.011	1.48	0.547	0.827	0.495	0.808	0.433	0.749	0.796	0.484	0.623	0.729	0.789	0.539	0.671
Chloroethane	0.0036	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082
Chloroform	0.08	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	<0.00052	< 0.00052	<0.00052	<0.00052	<0.00052	<0.00052
Chloromethane	0.021	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
1,1-Dichloroethane	0.08	0.001	0.0007	0.0008	0.0011	0.00088	0.0007	<0.00065	0.0012	0.00078	0.0014	0.001	0.0012	0.0009	0.0009
1,2-Dichloroethane	0.005	<0.00055	<0.00055	<0.00055	<0.00055	<0.00052	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055
1,1-Dichloroethene	0.007	< 0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057
1,2-Dichloroethene, total		0.0018	<0.0011	<0.0011	0.0019	0.002	0.0018	0.0019	<0.0011	<0.0011	<0.0011	0.00058 J	0.00065 J	0.0006 J	0.0008
cis-1,2-Dichloroethene	0.07	0.00058	<0.00055	<0.00055	0.00089	0.001	0.0009	0.0007	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	0.0008
trans-1,2-Dichloroethene	0.10	0.0012	<0.00059	0.0007	0.001	0.001	0.0009	0.0012	<0.00059	<0.00059	<0.00059	0.00058 J	0.00065	0.0006	<0.00059
Ethylbenzene	0.70	0.0032	<0.00058	0.0013	<0.00058	<0.00058	<0.00058	<0.00058	0.00069	<0.00058	<0.00058	0.00066	0.00051 J	<0.00058	<0.00058
1,1,2,2-Tetrachloroethane	0.001	0.0015	0.0017	<0.00044	0.0025	0.002	0.0028	0.0007	<0.00044	0.0013	<0.00044	<0.00044	<0.00044	0.0009	<0.00044
Tetrachloroethene	0.005	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067
1,1,1-Trichloroethane	0.20	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057
1,1,2-Trichloroethane	0.005	<0.00059	<0.00059	<0.00059	0.0024	0.00054 J	0.0011	<0.00059	<0.00059	<0.00059	<0.00059	<0.00059	<0.00059	<0.00059	<0.00059
Trichloroethene	0.005	<0.00065	<0.00065	<0.00065	<0.00065	<0.00065	<0.00065	<0.00065	<0.00065	<0.00065	<0.00065	<0.00065	<0.00065	<0.00065	0.0007
m,p-Xylene	10	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012	<0.0012
o-Xylene	10	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011
Vinyl Chloride	0.002	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	0.0008	<0.00055	<0.00055	<0.00055	<0.00055

Notes:

Numbers in Bold exceed the MDE Groundwater Clean Up Standards.

All samples collected 1ft above the bottom of the well

QA/QC by:	CAM 4/20/04
-	CAM 10/15/04

^{* =} Injection dates 05/23/03, 07/23/03 and 09/23/03

TABLE 2 SUMMARY OF DEGRADATION PARAMETERS IN GROUNDWATER MW-2 & MW-43 PILOT STUDY AREA GE RAILCAR, ELKTON, MARYLAND

Attenuation Parameters	MW-2*	MW-2	MW-2*	MW-2	MW-2*	MW-2	MW-2	MW-43*	MW-43	MW-43*	MW-43	MW-43*	MW-43	MW-43
milligrams/liters	05/18/03	06/24/03	07/22/03	08/26/03	09/23/03	10/21/03	11/21/03	05/18/03	06/24/03	07/22/03	08/26/03	9/23/03	10/21/03	11/21/03
TPH, Diesel Range Organics	0.10	0.21	0.57	0.20	1.7	0.61	13	<0.10	0.19	0.25	<0.10	<0.10	<0.10	0.15
TPH, Gasoline Range Organics	0.13	0.06	0.29	0.13	0.23	0.30	0.21	0.08	<0.05	0.30	0.12	0.41	0.24	0.23
Total Organic Carbon, Aqueous	3.4	3100	1689	2756	2049	3880	2867	1.9	7.7	7.9	46	681	9.9	12
Chemical Oxygen Demand	<10	7510	4730	7480	6700	6980	8510	11	20	33	134	1920	41	36
Total Alkalinity-Titration	74	1810	3337	3440	2123	2982	2900	84	74	206	135	568	93	76.4
Ferric Iron	59.9	148	159	116	177	139	47.9	26.6	45.7	26.6	60	130	63	63
Ferrous Iron	8.0	50	120	100	3.0	90	5.0	8.0	4.0	30	0.60	10	0.30	0.10
iron (Totai)	67.9	198	279	216	180	229	52.9	34.6	49.7	56.6	60.6	140	63.3	63.1
Sulfate	5.48	5.12	2.09	<0.38	0.779	12.4	8.73	14.8	15	7.01	0.595	2.57	2.09	0.612
Nitrate	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	0.129	0.09	<0.06	<0.06	<0.06	<0.06	<0.06
Nitrite	<0.02	<0.02	<0.02	<0.02	<0.20	<0.20	<0.50	<0.02	<0.02	<0.02	<0.02	<0.20	<0.02	<0.20
Methane	41	0.018	0.059	0.011	0.018	0.034	0.058	120	0.064	0.056	0.056	0.17	0.10	0.10
Ethane	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Ethene	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003

Notes:

QA/QC by:	CAM 4/20/04
	CAM 10/15/04

^{* =} Injection dates 05/23/03, 07/23/03 and 09/23/03

TABLE 3 SUMMARY OF FIELD PARAMETERS IN GROUNDWATER MW-2 & MW-43 PILOT STUDY AREA GE RAILCAR, ELKTON, MARYLAND

	MW-2	MW-43												
	05/18/03	06/24/03	07/22/03	08/26/03	09/23/03	10/21/03	11/20/03	05/18/03	06/24/03	07/22/03	08/26/03	09/23/03	10/21/03	11/21/03
Specific Conductance (ms/cm)	0.398	0.604	0.57	0.77	0.524	0.691	6.91	0.345	0.405	0.42	0.61	0.485	0.199	0.449
Dissolved Oxygen (mg/L)	0.81	12.63	11.4	>19.9	9.83	8.12	>19.99	1.37	8.45	11.3	>19.9	6.49	7.49	>19.99
Redox (mV)	-21	-165	-189	-183	-61	-36	-7	-32	-78	-104	-129	-87	-45	-32
Temperature (°C)	11.82	13.49	14.6	14.1	14.52	14.44	13.76	12.28	13.32	14.8	14.2	14.42	14.08	13.67
Turbidity (NTU)	67.1	152	370	74	349	168	27.4	86.8	3.1	37	54	80.4	87.7	85.4
pH (SU)	5.95	5.96	5.52	7.24	7.26	7.47	6.17	5.79	5.83	5.44	6.32	7.27	7.4	5.35

Notes:

ms/cm = micro siemans per centimeter

mg/L = milligram per liter

mV = millivolts

°C = degree Centigrade

NTU = Nephelometric Units

SU = Standard Unit

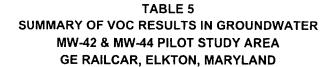
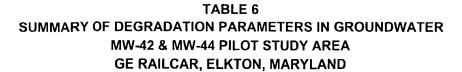

QA/QC by:	CAM 4/20/04
	CAM 10/15/04
ļ	

TABLE 4 GE RAILCAR, ELKTON MARYLAND MW-2 & MW-43 PILOT STUDY AREA

	Expected Pilot Study	Observed Pilot Study	
Parameter	Trend	Trend	Conclusion of Pilot Study
- drainotor	110110	Tiona	this suggest that a higher concentration or more
			frequent metering events would likely continue the
		•	chlorobenzene and other chlorinated VOCs
VOCs ¹	decrease	slight to no decrease	reducing trend
gasses ³	increase	decreased or not present	inconclusive
5			increase suggests that biological activity may be
TPH⁴	increase	slight increase	occurring and conducive to ARD ⁵
<u></u>			increase suggests that biological activity may be
Alkalinity	increase	increase .	occurring and conducive to ARD
			decrease suggests that biological activity may be
COD ⁶	decrease	decrease	occurring and conducive to ARD
			increase suggests that biological activity may be
TOC ⁷	increase	increase	occurring and conducive to ARD
.		1.	suggests that nitrate is not a significant componen
Nitrate	decrease	decrease or not present	of reductive dechlorination in the PSA
			suggests that nitrification is not a significant
Nitrite	increase	not present	mechanism for reductive dechlorination in the PSA
		The product	decrease suggests that biological activity may be
Ferric Iron ⁺³	decrease	decrease	occurring and possibly conducive to ARD
			increase suggests that biological activity may be
Ferric Iron ⁺²	increase	increase	occurring and possibly conducive to ARD
			decrease suggests that biological activity may be
			occurring and strongly reducing conditions likely
Sulfate	decrease	decrease	exist (i.e. ARD can occur)
Dissolved			
Oxygen	decrease	increase	inconclusive
Redox	decrease	decrease	decrease suggests that anaerobic conditions exist

NOTES:

- 1 VOCs volatile organic compounds, 2 PSA Pilot Study Area, 3 gasses methane, ethane and ethene,
- 4 TPH total petroleum hydrocarbons, 5 ARD anaerobic reductive dechlorination, 6 COD chemical oxygen demand,
- 7 TOC total organic carbon



Volatile Organic Compounds	MDE Groundwater	MW-42	MW-42	MW-42	MW-42	MW-42	MW-42	MW-42	MW-44						
milligrams/liters	Clean Up Standards	05/18/03	06/24/03	07/22/03	08/26/03	09/23/03	10/21/03	11/21/03	05/18/03	06/24/03	07/22/03	08/26/03	09/23/03	10/21/03	11/21/03
Acetone	0.061	<0.0038	0.021	0.023	0.015	0.017	0.013	0.012	<0.0038	0.0048	<0.0038	<0.0038	0.0032 J	0.011	0.0041
Benzene	0.005	0.00091	<0.00063	<0.00063	<0.00063	0.001	0.0005 J	0.0009	0.00067	<0.00063	<0.00063	<0.00063	<0.00063	<0.00063	< 0.00063
2-Butanone (MEK)	0.19	<0.0025	0.0025	<0.0025	<0.0025	0.002	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
Chlorobenzene	0.011	0.014	0.0063	0.008	0.0074	0.011	0.0081	0.013	0.0068	0.0053	0.0025	0.0016	0.0018	0.0009	0.001
Chloroethane	0.0036	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082	<0.00082
Chloroform	0.08	0.0013	0.0011	0.001	0.00088	0.001	0.0009	0.0011	0.0015	0.0012	0.001	0.0011	0.001	0.0011	0.001
Chloromethane	0.021	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
1,1-Dichloroethane	0.08	<0.00065	<0.00065	0.0008	<0.00065	0.0019	<0.00065	0.0015	<0.00065	<0.00065	<0.00065	<0.00065	<0.00065	<0.00065	<0.00065
1,2-Dichloroethane	0.005	0.0012	0.001	0.0013	0.001	<0.00052	<0.00052	0.0019	0.0013	0.0012	0.001	0.0011	<0.00052	<0.00052	0.0009
1,1-Dichloroethene	0.007	<0.00057	0.0015	0.0022	0.0012	0.0036	0.0008	0.0036	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057
1,2-Dichloroethene, total		0.056	<0.0011	<0.0011	0.088	0.738	0.094	0.406	0.0074	<0.0011	<0.0011	0.0079	0.0057	0.0034	0.0029
cis-1,2-Dichloroethene	0.07	0.037	0.052	0.121	0.065	0.527	0.07	0.282	0.0054	0.0041	0.0032	0.0056	0.004	0.0026	0.0022
trans-1,2-Dichloroethene	0.10	0.019	0.03	0.049	0.023	0.211	0.024	0.124	0.002	0.0015	0.001	0.0023	0.0017	0.0008	0.0007
Ethylbenzene	0.70	<0.00058	0.0015	0.0013	0.00059	0.00088	<0.00058	<0.00058	<0.00058	<0.00058	<0.00058	<0.00058	<0.00058	<0.00058	<0.00058
1,1,2,2-Tetrachloroethane	0.001	0.054	0.0012	<0.00044	0.0018	0.0062	0.0038	0.0005	0.027	0.018	0.018	0.015	0.016	0.016	0.016
Tetrachloroethene	0.005	0.00073	<0.00067	0.0008	<0.00067	0.0008	<0.00067	0.001	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067	<0.00067
Toluene	1.0	<0.00064	0.0007	0.0012	<0.00064	0.0012	<0.00064	0.0006	<0.00064	<0.00064	<0.00064	<0.00064	<0.00064	<0.00064	<0.00064
1,1,1-Trichloroethane	0.20	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	<0.00057	< 0.00057
1,1,2-Trichloroethane	0.005	0.0022	0.00065	0.0019	0.00087	0.0056	0.0016	0.0061	0.00088	0.0007	0.0006	<0.00059	0.00075	<0.00059	0.0007
Trichloroethene	0.005	0.0093	0.061	0.096	0.05	0.333	0.057	0.246	0.0033	0.0064	0.0058	0.0088	0.0077	0.0053	0.0053
m,p-Xylene	10	<0.0012	0.0044	0.0032	0.0014	0.0019	0.0008	0.0013	<0.0012	<0.0012	<0.0012	<0.0012	0.0008 J	<0.0012	<0.0012
o-Xylene	10	<0.0011	0.0013	0.0012	0.00054 J	0.00094 J	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011	<0.0011
Vinyl Chloride	0.002	0.0013	0.0035	0.0028	0.0013	0.0062	0.0012	0.0056	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055	<0.00055

Notes:

Numbers in bold exceed the MDE Groundwater Clean Up Standards.

QA/QC by:	CAM 4/20/04
	CAM 10/15/04

Attenuation Parameters	MW-42	MW-44												
milligrams/liters	05/18/03	06/24/03	07/22/03	08/26/03	09/23/03	10/21/03	11/21/03	05/18/03	06/24/03	07/22/03	08/26/03	09/23/03	10/21/03	11/21/03
TPH, Diesel Range Organics	<0.10	0.20	0.14	0.13	<0.10	<0.10	<0.10	<0.10	0.13	<0.10	<0.10	<0.10	<0.10	<0.10
TPH, Gasoline Range Organics	0.10	0.14	0.34	0.15	0.80	0.12	0.34	<0.10	0.21	<0.10	<0.10	<0.10	<0.10	<0.10
Total Organic Carbon, Aqueous	1.1	103	270	170	148	102	118	<1.0	208	61	30	105	28	17
Chemical Oxygen Demand	<10	333	661	409	331	279	265	<10	461	108	53	155	44	35
Total Alkalinity-Titration	2.9	378	1743	260	238	226	240	4.2	139	69	59	67	63	64.7
Ferric Iron	<0.10	0.345	16.8	3.6	0.18	1.22	0.047	0.184	2.32	1.07	0.899	2.71	1.46	0.662
Ferrous Iron	<0.10	0.10	<0.10	0.40	<0.10	<0.10	<0.10	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Iron (Total)	0.073	0.445	16.8	4.0	0.181	1.22	0.047	0.284	2.32	1.07	0.899	2.71	1.46	0.662
Sulfate	2.89	31.4	25.8	14.5	18.1	13.6	15.8	3.53	9.33	10.1	6.29	8.53	6.51	5.99
Nitrate	1.92	2.46	2.48	19.2	1.99	2.01	1.86	2.06	2.31	2.12	5.15	1.87	1.87	1.89
Nitrite	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Methane	40	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	18	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Ethane	<0.004	<0:.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Ethene	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003

Note:

QA/QC by:	CAM 4/20/04
	CAM 10/15/04

TABLE 7 SUMMARY OF FIELD PARAMETERS RESULTS IN GROUNDWATER MW-42 & MW-44 PILOT STUDY AREA GE RAILCAR, ELKTON, MARYLAND

	MW-42	MW-44												
	05/18/03	06/24/03	07/22/03	08/26/03	09/23/03	10/21/03	11/21/03	05/18/03	06/24/03	07/22/03	08/26/03	09/23/03	10/21/03	11/21/03
Specific Conductance (ms/cm)	0.418	0.238	0.29	0.18	0.216	0.163	0.183	0.321	0.66	0.57	0.49	0.479	0.438	0.442
Dissolved Oxygen (mg/L)	0.2	>19.99	16.7	>19.9	>19.99	12.51	>19.99	0	>19.99	12.6	>19.9	13.04	9.83	>19.99
Redox (mV)	396	-4	-42	-38	-3	3	-8	263	182	239	237	328	287	292
Temperature (°C)	12.66	14.01	15.2	15.2	14.47	14.47	14.31	12.93	14.1	15	14.6	13.84	13.76	13.95
Turbidity (NTU)	8.1	171	990	820	667	565	574	20.2	44	71	150	408	660	27.3
pH (SU)	5.08	6.34	7.81	7.7	8.95	8.75	10.09	5.38	5.39	5.41	4.86	4.81	4.41	5

Notes:

ms/cm = micro siemans per centimeter

mg/L = milligram per liter

mV = millivolts

°C = degree Centigrade

NTU = Nephelometric Units

SU = Standard Unit

QA/QC by:	CAM 4/20/04
	CAM 10/15/04

TABLE 8 GE RAILCAR, ELKTON MARYLAND MW-42 & MW-44 PILOT STUDY AREA

	Expected Pilot Study	Observed Pilot Study	
Parameter	Trend	Trend	Conclusion of Pilot Study
			intial decrease, slight rebound and then
			"plateauing" suggests that relatively higher
			concentration of chemical oxidation solution or
		ļ	more frequent and more closely spaced injection
		İ	events would likely continue the VOC reduction
VOCs ¹	decrease	slight to no decrease	trend
			probably due to initial low VOC concentration (i.e.
			insufficient amount of "feedstock" to provide
gasses ³ .	increase	decreased or not present	compounds for generation of gasses)
		slight increase to not	minimal increase does not provide substantial data
TPH⁴	increase	present	to determine effectiveness
			shows residual distribution of oxidation solution
		initial increase with	and possibly a subsequent environment for
Alkalinity	increase	decreasing trend	biological activity
			shows residual distribution of oxidation solution
		initial increase with	and possibly a subsequent environment for
COD ⁵	increase	decreasing trend	biological activity
			increase suggests that naturally occurring carbon
			compounds may have been released due to initial
		initial increase with	contact to oxidation solution and then decrease as
TOC ⁶	increase	decreasing trend	the solution was spent
Nitrate	decrease	no change or not present	inconclusive
Nitrite	increase	not present	inconclusive
		initial increase with	shows residual distribution of oxidation solution as
Ferric Iron ⁺³	decrease	decreasing trend	the oxidation solution contains iron catalyst
Ferric Iron ⁺²	increase	no change or not present	inconclusive
		initial increase with	
Sulfate	decrease	decreasing trend	inconclusive
Dissolved			measurements show a strongly aerobic
Oxygen	increase	increase	environment occurring in the PSA
			increase suggests that groundwater was trending
Redox	increase	decrease	towards an aerobic environment

NOTES:

- 1 VOCs volatile organic compounds, 2 PSA Pilot Study Area, 3 gasses methane, ethane and ethene,
- 4 TPH total petroleum hydrocarbons, 5 COD chemical oxygen demand, 6 TOC total organic carbon

RSA Project No. 2017 GE Railcar, Elkton, MD In-situ Remediation Pilot Study

APPENDICES

RSA Project No. 2017 GE Railcar, Elkton, MD In-situ Remediation Pilot Study

APPENDIX 1

Soil Boring Logs and Well Construction Diagrams

Rosengarten, Smith & Associates, Inc. Technical Environmental Management AUSTIN. TEXAS (512) 707-1777

BORING NUMBER: B-42-A (MW-44)

LOCATION: SE of MW-42

DATE DRILLED:

DRILLED BY:

DRILLING METHOD:

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT:

GE Railcar

05/15/03

SITE LOCATION:

Elkton, MD

JOB NO.:

2017

Hollow-stem auger Chesapeake Geosystems

LOGGED BY:

Charles A. Montero

EXISTING GRADE ELEVATION (FT. AMSL) 48.48

DACE.

1 05 0

SAMPLE COLLECTION METHOD: Split barrel

PAG		, ,	1 of 2	!		I	SOIL SA	MDLE	 _
EPTH	USCS	SOIL SYMBOLS	LITHOLOGIC DESCRIPTION	N	SOIL COLORS	PID_ ppm	DEPTH	REC.	REMARKS OR FIELD OBSERVATION
		l				L			·
-	ML		top soil roots soft brown loam clayey silt fissile, dry/slightly moist yellowish brow laminations (dk gray) rootlets, clay decreases w/c granules/pebbles scattered, black nodules, qtz pr low plasticity	in depth, ebbles,	10yr 5/4	14.3	2-4	1.0	Background noises from 1.5-3.2 Analysis samples 0.5-1 1528, 4.5-5 1540, 9.5-10 1555, 14.5-15 1625
_						13.4/	4-6	1.3	14.3 13 1023
	CL		clavey silt/silty clay It. olive gray, stiff, slightly moi	st	5y 4/1	290-	4-0		
			clayey silt/silty clay It. olive gray, stiff, slightly mol w/laminations of It. olive gray clay			335		1.35	
1	СН		clay, olive gray w/yellow brown seams soft, v. mo plasticity increases w/depth, dk olive gray/gray so	nist, eams @	5y 4/2	325-	6-8	1.9	Headspace sample bags 4-6, 6-8, 8-10, emitted faint organic
	ı		8ft bgs			373		"."	odors
	CH		cilly clayly silty clay soft y majet it vallowish a	lastic	10yr 6/4		8-10		
			silty clay/v. silty clay soft, v. moist, lt. yellowish, pl stiffness increases w/depth, lt. gray mottling	laduc,	• "	99.3-		2.0	
_							10-12		
1						85.9- 93.4		1.25	no odor
-	SW		gravely sand w/coarse pebble moist/v. moist, bro brown, w/reddish yellow seams, subrounded, qtz	wn/strong	7.5yr 5/6		12-14		į.
-			opaques granules/pebbles frequency increase w/moisture increases w/depth, poorly sorted-well gr	depth aded		14.6-		1.6	no odor
-						[21.3	14-16		
; <u> </u>	GW/SW					12.3-		1.2	no odor
_						18.9			
abla						67.5-	16-18		gravels 16'-17' poor recovery
_	SP		sand vfg saturated, subrounded, mica/qtz particle to v. pale brown	es, It. gray	10yr 7/2	89.3		0.5	no odor
•			It, gray/brownish gray bands/seams				18-20		
-					10yr 7/1	54.9-		1.9	no odor
					6/17	67.5			

Rosengarten, Smith & Associates, Inc. Technical Environmental Management AUSTIN, TEXAS (512) 707-1777

BORING NUMBER: B-42-A (MW-44)

DRILLING INFORMATION

LOCATION: SE of MW-42

PROJECT INFORMATION

DATE DRILLED:

DRILLED BY:

DRILLING METHOD:

05/15/03

SITE LOCATION:

Elkton, MD

Hollow-stem auger

JOB NO.:

2017

GE Railcar

Chesapeake Geosystems

LOGGED BY:

PROJECT:

Charles A. Montero

EXISTING GRADE ELEVATION (FT. AMSL) 48,48

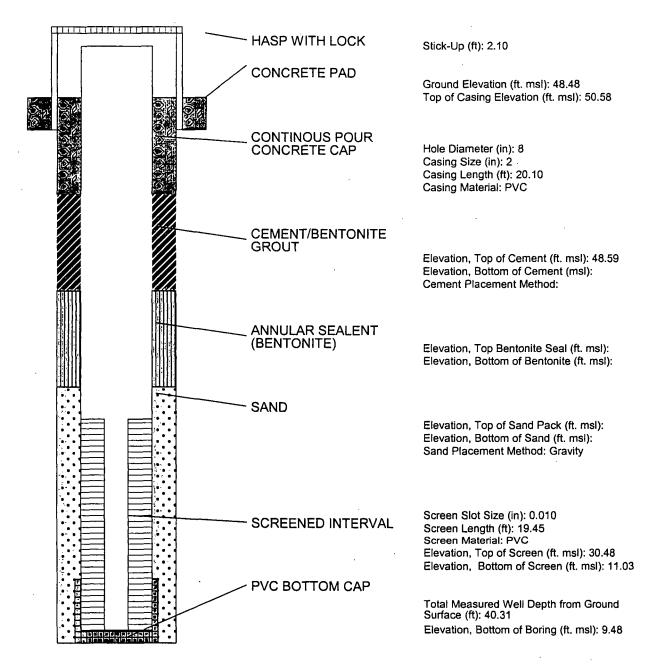
PAGE:

2 of 2

SAMPLE COLLECTION METHOD: Split barrel

PAGE:		2 of 2		SAMPLE COLLECTION			ON METHOD: Split barrel			
DEPTH USCS		SOIL		SOIL		PID SOIL SAI		REMARKS OR		
USCS	SYMBOLS	LITHOLOGIC DESCRIPTION	<u> </u>	COLORS	ppm	DEPTH	REC.	FIELD OBSERVATIONS		
SP	******* !	sand, poorly graded/well sorted, vfg, subrounded,		10yr 7/1-	1 1	20-22		1		
		saturated, mica, quartz, lt. gray/white w/yellow bro seams	wn	8/1	85.1-		1.9			
		same as above (It gray vfg sand)			99.7					
					6, ,	22.5-24.5				
CL	7///	yellow brown sand, interbedded w/dk gray wet, sa	indy		75.7		2			
SP		gray/gray brown sandy clay alternating w/ lt. gray/y brown seams, vfg to fg sand	ellow			25-27				
		vfg/fg sand subrounded/subangular, saturated.	•		82.3-		2			
		micalopaque It. yellow brown alternating w/pale gr w/lt. gray	nwo			27.5-29.5				
					9.9-		2			
SP				10yr 8/3 7/2 6/4	12.4					
				}		30-32				
CL		 sandy clay, stiff, wet, low plasticity, dusky red laminations alternating It. gray and pale brown sea mica and opaques 	ıms,		35.3		2			
SW/GW		gravelly sand yellow/yellow red saturated, subangular/angular		10yr 8/8		32.5-34.5				
					12.9-		1.2			
					15.1	35-37				
CL		 v. stiff/dense sandy clay/clayey sand w/dusk, red r wet, yellowish red 	nottling,		7.1-		0.75			
					10.4	37-39				
CH		gray/greenish gray clay v. stiff, w/red mottling			4.2-		1.5	ream to 38,		
					6.8			sample to 38.5		
			ł					AR101895		
	SP CL SW/GW	SP SP CL SP CL SW/GW	SP sand, poorly graded/well sorted, vfg, subrounded, saturated, mica, quartz, it. gray/white w/yellow bro seams same as above (it gray vfg sand) SP cl. yellow brown sand, interbedded w/dk gray wet, sciay gray/gray brown seams, vfg to fg sand vfg/fg sand subrounded/subangular, saturated, mica/opaque it. yellow brown alternating w/pale gr w/it. gray SP cl. v. sandy clay, stiff, wet, low plasticity, dusky red laminations alternating it. gray and pale brown seamica and opaques SW/GW gravely sand yellow/yellow red saturated, subangular/angular v. stiff/dense sandy clay/clayey sand w/dusk, red r wet, yellowish red	SP sand, poorly graded/well sorted, vfg, subrounded, saturated, mica, quartz, lt. gray/white w/yellow brown seams SP yellow brown sand, interbedded w/dk gray wet, sandy clay gray/gray brown seandy clay alternating w/ lt. gray/yellow brown seams. vfg to fg sand vfg/fg sand subrounded/subangular, saturated, mica/paque lt. yellow brown alternating w/pale grown w/ft. gray SP CL v. sandy clay, stiff, wet, low plasticity, dusky red laminations alternating lt. gray and pale brown seams, mica and opaques SW/GW gravelly sand yellow/yellow red saturated, subangular/angular CL v. stiff/dense sandy clay/clayey sand w/dusk, red mottling, wet, yellowish red	SP Sand, poorly graded/well sorted, vfg, subrounded, saturated, inica, quartz, it. gray/white w/yellow brown seams same as above (it gray vfg sand) SP CL yellow brown sand, interbedded w/dk gray wet, sandy day gray/gray brown sandy clay alternating w/ it. gray/yellow brown seams. Vfg to fg sand vfg/fg sand subrounded/subangular, saturated, mica/opaque it. yellow brown alternating w/pale grown w/it. gray SP CL v. sandy clay, stiff, wet, low plasticity, dusky red laminations alternating it. gray and pale brown seams, mica/opaque it. yellow brown seams, mica/opaque gray sand yellow/yellow red saturated, subangular/angular SW/GW gravelly sand yellow/yellow red saturated, v. stiff/dense sandy clay/clayey sand w/dusk. red mottling, wet, yellow/sh red v. stiff/dense sandy clay/clayey sand w/dusk. red mottling, wet, yellow/sh red	SP Sand, poorly graded/well sorted, vfg, subrounded, saturated, mica, quartz, ll. gray/white wyellow brown same as above (lt gray vfg sand) SP SP Sellow brown sand, interbedded w/dk gray wet, sandy clay gray/gray brown sandy clay alternating w/ lt. gray/yellow brown seams, vfg to fg sand Vfg/fg sand subrounded/subangular, saturated, mica/opaque lt. yellow brown alternating w/pale grown w/ft. gray SP SP 10yr 8/3 CL V. sandy clay, stiff, wet, low plasticity, dusky red laminations atternating lt. gray and pale brown seams, mica and opaques SW/GW grayelly sand yellow/yellow red saturated, U. sandy clay, stiff, wet, low plasticity, dusky red laminations atternating lt. gray and pale brown seams, mica and opaques SW/GW grayelly sand yellow/yellow red saturated, U. stiff/dense sandy clay/clayey sand w/dusk, red mottling, wet, yellowish red GRAY Graylgreenish gray clay v. stiff, w/red mottling GRAY/gray gray/greenish gray clay v. stiff, w/red mottling	SP Sand, poorly graded/well sorted, vfg, subrounded, saturated, mica, quartz, lt. gray/white w/yellow brown sams 10yx 7/1- 8/1 20-22 95.1- 22.5-24.5	SYMBOLS		

WELL COMPLETION RECORD


WELL NO. MW-44 (B42-A)

CLIENT: GE Railcar

DRILLER: Chesapeake Geosystems

GEOLOGIST: Charles A. Montero

DATE COMPLETED: 05/15/03

Rosengarten, Smith & Associates, Inc.

Technical Environmental Management AUSTIN, TEXAS (512) 707-1777 BORING NUMBER: MW-43

LOCATION:

DATE DRILLED:

DRILLED BY:

DRILLING METHOD:

15 ft. SE MW-2 7' ESE 5-6

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT:

GE Railcar

SITE LOCATION:

Elkton, MD

05/15/03

SHE LOCATION

Hollow Stem Auger

JOB NO.:

2017

Criesa

LOGGED BY:

Charley A. Montero

Chesapeake Geosystems

PAGE:

1 of 2

SAMPLE COLLECTION METHOD: Split barrel

EXISTING GRADE ELEVATION (FT. AMSL) 56.76

CL CL standard control of the contro	PAG	, ⊏.		1 01 2		OCLECT			Opiit	barrer
CL CL Sop 200 routlets sity tem sandy all/stity clay to st. n moist brownish yW. low plas. CL CL Sop 200 routlets sity tem sandy all/stity clay to st. n moist brownish yW. low plas. Solve and solve and solve plasticity brownish yellow plast convenience of the solve plasticity brownish yellow which solve and solve plasticity brownish yellow which solve and solve plasticity brownish yellow which solve plasticity increase widepth, moisture increase widepth moisture increase widepth moisture CL CL CL CL CH Solve and with minor clay vig subrounded subengular loose moist poorly graded with sorted CL/CH It gays sandy claystightly sa. clay stiff, moist moderate plastic whywish rad, mod gray faministions, sand & silt Solve and solve plasticity, pale brown, yellow Solve and with minor clay stiff high plasticity, pale brown, yellow Solve and with minor clay stiff high plasticity, pale brown, yellow Solve and with minor clay stiff high plasticity, pale brown, yellow Solve and with minor clay stand loose slightly moist (reddish yellow (7.5y-6/6) seem jaminations) sub rounded vig, well Solve and with minor clay stand loose slightly moist (reddish yellow (7.5y-6/6) seem jaminations) sub rounded vig, well Solve and with minor clay stand loose slightly moist (reddish yellow (7.5y-6/6) seem jaminations) sub rounded vig, well Solve and with minor clay stand loose slightly moist wiften pebble rociture increase depth widusky red laminations Solve and solve a	2557		SOIL	LITUOLOGIC DESCRIPTION		SOIL		SOIL SA	MPLE	REMARKS OR
CL CL Silly clayful sills yell yell yellow plas. CL SC/SP SIII gray sandy clayful plinty read in moist brownish yellow whole brown (ic3) seams silly increase widepth, moisture morease widepth in moist poorly graded well sorted. CL/CH SC/SP SC/SP Sand with minor clay vfig subvounded subangular loose moist poorly graded well sorted. CL/CH It gray sandy clayfulpithy sa, clay silf, moist moderate plastic withwhich red, mod gray laminations, sand & silt decrease depth. CL/CH It gray sandy clayfulpithy sa, clay silf, moist moderate plastic withwhich red, mod gray laminations, sand & silt decrease depth. CL/CH It gray sandy clayfulpithy sa, clay silf, moist moderate plastic withwhich red, mod gray laminations, sand & silt decrease depth. Syr 6/1 Ill, sy 3,6/ 33,3 3,6/ 33,3 3,6/ 33,3 3,6/ 33,3 3,6/ 33,3 3,6/ 33,3 3,6/ 33,3 3,6/ 33,3 3,6/ 31,0 3,6/ 31,1 Syr 7/1 to Syr 7/1	DEPTH	USCS	SYMBOLS	LITHOLOGIC DESCRIPTION	•	COLORS	ppm	DEPTH	REC.	FIELD OBSERVATIONS
CL CL Silly clayful sills yell yell yellow plas. CL SC/SP SIII gray sandy clayful plinty read in moist brownish yellow whole brown (ic3) seams silly increase widepth, moisture morease widepth in moist poorly graded well sorted. CL/CH SC/SP SC/SP Sand with minor clay vfig subvounded subangular loose moist poorly graded well sorted. CL/CH It gray sandy clayfulpithy sa, clay silf, moist moderate plastic withwhich red, mod gray laminations, sand & silt decrease depth. CL/CH It gray sandy clayfulpithy sa, clay silf, moist moderate plastic withwhich red, mod gray laminations, sand & silt decrease depth. CL/CH It gray sandy clayfulpithy sa, clay silf, moist moderate plastic withwhich red, mod gray laminations, sand & silt decrease depth. Syr 6/1 Ill, sy 3,6/ 33,3 3,6/ 33,3 3,6/ 33,3 3,6/ 33,3 3,6/ 33,3 3,6/ 33,3 3,6/ 33,3 3,6/ 33,3 3,6/ 31,0 3,6/ 31,1 Syr 7/1 to Syr 7/1	•									
SC/SP sand with minor clay vfg subrounded subangular loose moist poorly graded/well sorted corease depth subrounded subangular loose moist poorly graded/well sorted subangular loose subject to the plastic with with red, mod gray laminations, sand & silt decrease depth decrease depth substituting substitutions substituting substituting substituting substituting substitu	0 -	ľ		sandy silt/silty clay dry to sl. n moist brownish y/w, plas.	, low	yr 6/6	2.5-4			0.2-0.7 ppm stabilized to 0.0 ppm during drilling activities w/peaks to 2ppm
SC/SP sand with minor clay vfg subrounded subangular loose moist poorly graded/well sorted CL/CH lt gray sandy clay/slightly sa. clay stift, moist moderate plastic wylwish red, mod gray laminations, sand & silt decrease depth CH light gray, moist clay stiff high plasticity, pale brown, yellow brown laminations/mottling CH light gray, moist clay stiff high plasticity, pale brown, yellow brown laminations/mottling SP (7.5yr.6/6 11.1.5/10.5 7,5-9.5 1.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	· .	CL		silty clay/v. silty clay, moist low plasticity, brownish wipale brown (6/3) seams silty increase widepth, i increase widepth	1 1	yr 6/6 .	· •	2.5-4.5	1.3	drilling rig
CL/CH CL/CH CL/CH CL/CH CL/CH CL/CH CH CL/CH CH CH CH CH CH CH CH CH CH	•	SC/SP		sand with minor clay vfg subrounded subangular le moist poorly graded/well sorted	00se 7.5	5yr/6/6	11.5/	5-7	1.4	5.5 very moist
CH light gray, moist clay stiff high plasticity, pale brown, yellow brown laminations/mottling SP Iight gray, moist clay stiff high plasticity, pale brown, yellow brown laminations/mottling SP I2.5-14.5 1.7 SP Sand w/minor clay/sand loose slighty moist (reddish yellow (7.5y-6/6) seam laminations) sub rounded vfg, well sorted/poorly graded SW Sand fine-med, grained, loose slightly moist w/fine pebble size subangular to gravelly sand dz, mica, opaques, moisture increase depth w/dusky red laminations SW/GW Gravely sand/sandy gravel wet coarse sand/granule sub gravel 10.37 SW Gravely sand/sandy gravel wet coarse sand/granule sub gravel 10.97 8/0 Gravely sand/sandy gravel wet coarse sand/granule sub gravel 17.5-19.5 1.2 Driller noted gravel layers between 19-20'	-	CL/CH		It gray sandy clay/slightly sa. clay stift, moist mode plastic wy/wish red, mod gray laminations, sand &	erate 5y:	r 6/1	11.5/	7.5-9.5	1.25	
SP Swand innermed, grained, loose slightly moist wiffine pebble size subangular to gravelly sand year, moisture increase depth widusky red laminations SW gravely sand/sandy gravel wet coarse sand/granule sub gravel SW/GW (begins btw 19.5/20' bgs) gray sand vig/ig poorly sorted.	-	,,		decrease depth						
SP Sand w/minor clay/sand loose slighty moist (reddish yellow 77.5yr-6/6) seam laminations) sub rounded vfg, well 5/6.1 SW Sand fine-med. grained, loose slightly moist w/fine pebble size subangular to gravelly sand ofz. mica, opaques, moisture increase depth w/dusky red laminations SW/GW gravel 10.3/11.6 SW/GW 10.3/20 Size subangular to gravel wet coarse sand/granule sub gravel (6.9) SW/GW 10.3/20 Size subangular to gravel wet coarse sand/granule sub gravel (6.9) SW/GW 10.3/20 Size subangular to gravel wet coarse sand/granule sub gravel (6.9)	10 –	СН		light gray, moist clay stiff high plasticity, pale brow brown laminations/mottling				10-12	1.0	
SW sand fine-med. grained, loose slightly moist w/fine pebble size subangular to gravelly sand qtz, mica, opaques, moisture increase depth w/dusky red laminations SW/GW gravel sand/sandy gravel wet coarse sand/granule sub gravel (begins btw 19.5/20' bgs) gray sand vfg/fg poorly sorted, (begins btw 19.5/20' bgs) gray sand vfg/fg poorly sorted,							4.7/5	12.5-14.5	1.7	
SW Sand fine-med. grained, loose slightly moist w/fine pebble size subangular to gravelly sand qtz, mica, opaques, moisture increase depth w/dusky red laminations 10.3/11.6 11.6 17.5-19.5 1.2	-	SP		sand w/minor clay/sand loose slighty moist (reddis (7.5yr-6/6) seam laminations) sub rounded vfg, we sorted/poorly graded	sh yellow eli		1 1			
SW/GW Sw	15 -	<u>.</u> 						15-17	1.3	
SW/GW SW/GW Gravely sand/sandy gravel wet coarse sand/granule sub gravel (begins btw 19.5/20' bgs) gray sand vfg/fg poorly sorted, (begins btw 19.5/20' bgs) gray sand vfg/fg poorly sorted,		sw		size subangular to gravelly sand qtz, mica, opaqui	es, ₁₀ ,	yr 7/4	1 1			
SW/GW SW/GW SW/GW SW/GW SW/GW Sorted, SW/GW SW/GW Sorted, SW/GW GW SW/GW SW/GW SW/GW SW/GW SW/GW SW/GW/GW/GW SW/GW/GW/GW	•) -			lle sub N6	10yr 8/0		17.5-19.5	1.2	
20 ¬ :::::::1	<u>-</u>	SW/GW			- Corted					
	20 -	4 .		(bogins biw 18.6/20 bgs) gray saild viging poolity s	Jorden,	ļ		1	1 1	AB46465

Rosengarten, Smith & Associates, Inc.

Technical Environmental Management AUSTIN, TEXAS (512) 707-1777

BORING NUMBER: MW-43

LOCATION:

DATE DRILLED:

DRILLED BY:

DRILLING METHOD:

15 ft. SE MW-2 7' ESE 5-6

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT:

GE Railcar

05/15/03

SITE LOCATION:

Elkton, MD

JOB NO.:

2017

Hollow Stem Auger

LOGGED BY:

Chesapeake Geosystems

Charley A. Montero

EXISTING GRADE ELEVATION (FT. AMSL) 56.76

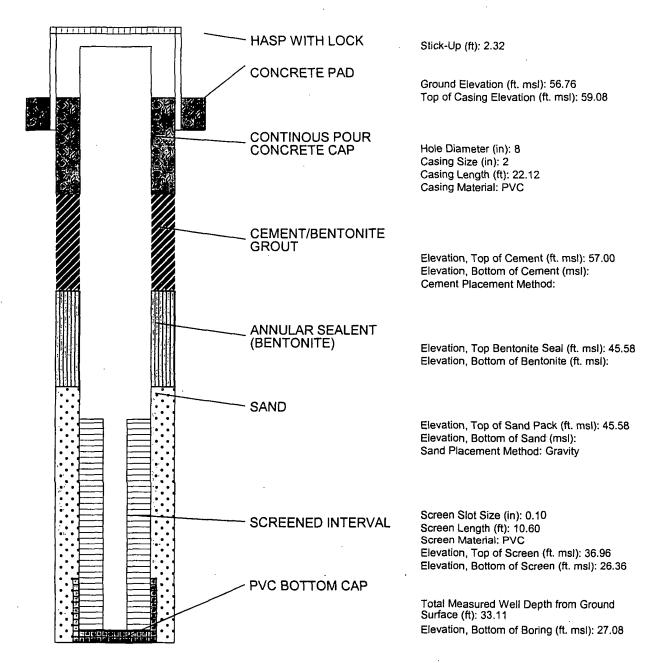
PAGE:

2 of 2

SAMPLE COLLECTION METHOD: Split barrel

		SOIL			SOIL	PID	SOIL SAI	MPLE	REMARKS OR
DEPTH	USCS	SYMBOLS	LITHOLOGIC DESCRIPTION		COLORS	ppm	DEPTH	REC.	FIELD OBSERVATIONS
!		Dayara a la . 4				15/5 0			
•	SW		loose, subangular to subrounded, saturated y/w bi bands color grades to med/dk gray	m	N8	5/5.8	20-22	0.8	
							22.5-24.5	1.5	slight odor
					N3	21.3			organic?
25	SW	same litehology, saturated sand w/gravel pebble to granule size subangular clayey sand seams (1"thi intermittent btw 26-27' bgs lt. gray	o ck)	N7		25-27	1.5		
					14.8/				
	SP/CL		sand fg saturated lt. gray w/yellow brown bands sa clay seams, subrounded	andy	N6/10yr8/0		27.5-29.5	1.3	
30 -						13.7/ 14.9			flowing sands @ 29.5 - 30'
	СН		v.stiff clay/saprolite moderate reddish brown, It gragray olive-gray/green mottled/lamination	ray-med		14.6/	30-32	1.3	
						19.3			

WELL COMPLETION RECORD


WELL NO. MW-43

CLIENT: GE Railcar

DRILLER: Chesapeake Geosystems

GEOLOGIST: Charles A. Montero

DATE COMPLETED: 05/15/03

RSA Project No. 2017 GE Railcar, Elkton, MD In-situ Remediation Pilot Study

APPENDIX 2

Analytical Laboratory Data Sheets, Chain-of-Custody Forms

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX) WWW.ATLANTICCOASTLABS.COM

REPORT OF ANALYSIS

Rosengarten, Smith & Assoc. 2222 Western Trails Blvd.

Suite 300

Austin, TX 78745

Attn: Mr. Charle's Montero Invoice Number: 101947 Order #: 03-05-770 Date: 06/12/03 09:05

Work ID: GE Railcar monitoring wells

Date Received: 05/19/03 Date Completed: 06/11/03

Client Code: RSA

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	Number	Description
01	MW-2-1	05	MW-43-6
02	MW-43-1	06	field blank
03	MW-2-6	07	MW-42-1
04	trip blank	08	trip blank

This cover page is an integral part of the analytical report.

Laboratory Certifications:

DE DE00011

PA 68-335

MD 138

NJ DE568

Certified By

Warren Van Arsdall

ACL Order Number 0305770

Overview:

A set of 8 samples was received from Rosengarten, Smith and Associates and is identified as 0305770. 0305770 consisted of five (5) samples two (2) trip blanks and one (1) field blank.

Matrix Spike/Matrix Spike Duplicates were analyzed at a frequency of 1 per twenty samples as requested by the Rosengarten, Smith and Associates project manager.

Samples were received preserved, cooled to 4° C. The hold time for the samples was fourteen days for aromatic compounds and fourteen days for halogenated compounds. Ice was present in the cooler at time of receipt.

Samples were analyzed by Method 8260B and Method 8000B from SW-846, Test Methods for Evaluating Solid Waste. A 5 mL volume was used for analysis.

Summary:

All samples were analyzed within the prescribed hold time.

The following is a summary of contaminants found in the method blank(s) analyzed with this set of samples.

<u>Date</u>	Comments
5/23/03 15:55	None
5/24/03 12:18	None
5/25/03 16:50	None
5/27/03 07:55	None .
5/28/03 00:33	Chlorobenzene at 0.6ug/L.
5/29/03 15:20	None

The instrument performance was acceptable as indicated by the tune report for 4-Bromofluorobenzene.

The average RRF for all compounds was less than 15% for the initial calibration performed on 5/23/03 except for chloromethane, acetone, 2-hexanone and 1,2-dibromo-3-chloropropane. A linear regression curve fit (not forced through 0) was used for these compounds.

The average RRF for all compounds was less than 15% for the initial calibration performed on 5/25/03 except for acetone and 1,2-dibromo-3-chloropropane. A linear regression curve fit (not forced through 0) was used for these compounds.

The average RRF for all compounds was less than 15% for the initial calibration performed on 5/29/03.

ACL Order Number 0305770 (Continued)

The acceptance criteria for the System Performance Check Compounds and Continuing Calibration Compounds was met for continuing calibration check standards except for the continuing calibration check analyzed on 5/27/03 19:16. This check failed the minimum response factor for bromoform and 1,1,2,2-tetrachloroethane. Bromomethane failed this check for %RSD>25. The samples associated with this continuing calibration check were re-analyzed except for 0305770-02RA. This sample was being re-analyzed for SMC3 failure. The re-analysis also failed SMC3. 0305770-02DL5X was analyzed on 5/29/03, all SMC's passed.

The surrogate recoveries were within the acceptable limits in all samples analyzed with the following exceptions: 0305770-02 analyzed on 05/25/03 SMC3, sample was re-analyzed on 05/28/03 SMC3 failed, 05/25/03 data was used for reporting. 0305770-05 failed SMC3. Sample was not re-analyzed due to high chlorobenzene content..

The results of the MS/MSD were within the acceptance limits with the following exceptions. 0305770-07MS and MSD failed low for chlorobenzene. Chlorobenzene ambient level in sample is greater than spike level.

The internal standard areas were all within the acceptance criteria.

The percent recoveries for the analytes in the Laboratory Control Sample were within acceptable limits.

Major Issues:

None

Minor Issues:

0305770-01:

Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 05/29/03.

0305770-02:

Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 05/29/03.

ACL Order Number 0305770 (Continued)

0305770-07:

1,1,2,2-Tetrachloroethane exceeded the calibration range. Sample was diluted and reanalyzed on 05/29/03.

0305770-03:

Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 05/29/03.

0305770-05:

Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 05/29/03.

GLOSSARY OF DATA QUALIFIER CODES (ORGANIC)

В	=	Not detected substantially above the level reported in laboratory or field blanks
J	=	Analyte present. Reported Value may not be accurate or precise
E	=	Analyte present, exceeds calibration range
U .	=	Analyte analyzed for, undetected.
N .	= .	Tentative Identification. Consider present. Special methods may be needed to

confirm its presence or absence in future sampling efforts.

CHAIN OF CUSTODY RECORD PROJECT NAME GERAIL CAR - RSA INC #2017 630 Churchmans Road ATLANTIC COAST Laboratories, Incorporated COMPANY Busingarten Smith Assor Newark, Delaware 19702 ADDRESS 2227 Wasterin Trails #1300 AUSTINIA 7874 302-266-9121 • 454-8720 (FAX) PHONE (SIZ 707 -0501 FUX SAMPLED BY ANALYSES SAMPLE COLLECTION FEE: 1. Manters QUOTED PRICE: V= Varibus SAMPLE NO. SAMPLE LOCATION DATE TIME **PRESERVATIVE** COMMENTS 3/18/13/453 MW-43-6 5/18/03/1655 KELBBLANK-5/18/13 H20 H12504 5/18/03/1356 MW-412-5/18/03 1750 MS /MSD (MW12-1 160 HCL 5/17/03/630 TRIP BLANK (47-6/42-1)40/6 1120 HCL Relinquished by: Date / Time Date / Time Received by: Rećeivéd by: Relinquished by: 05/9/03/0742 Date / Time Date / Time Received for Laboratory by: Relinguished by:

10

Method of Shipment

Samples Iced
Samples Preserved

YES NO

0305770 CHAIN OF CUSTODY RECORD RSA INC PROJECT NAME GERALLAR ELLIPON MA 630 Churchmans Road ATLANTIC COAST COMPANY Company to a Smith of Assuce &Newark, Delaware 19702 Laboratories, Incorporated 302-266-9121 • 454-8720 (FAX) ADDRESS 1/2/ West SVIN TVAILS SLITE 300 ANTW TV PHONE_(\SIZ 1707-1777 78345 EA 2011 FX CAMMA en SAMPLED BY ANALYSES La Pronecteur SAMPLE COLLECTION FEE: SIGNATURE 10 FA ZADECK QUOTED PRICE: CONTAINER SAMPLE DATE SAMPLE LOCATION **PRESERVATIVE** COMMENTS HUL HAUS 160 5/16/03/14/1 MW-2-1 5/18/03/124 MW-43-1 11 11,0 5/18/03/1338 MN-12 - 6 11.0 BLANK/MWZ IN ICE Chest For four sound sets Received by: Relinquished by: Date / Time Received by: Relinquished by: Date / Time Relinquished by: Received by: Method of Shipment Samples Iced Samples Preserved AR101907

AR10190

REPORT

630 Churchmans Road Newark, Delaware 19702 : 302-266-9121 • 454-8720 (FAX) WWW.ATLANTICCOASTLABS.COM

REPORT OF ANALYSIS

Rosengarten, Smith & Assoc. 2222 Western Trails Blvd.

Suite 300

Austin, TX 78745

Attn: Mr. Charles Montero Invoice Number: 101948 Order #: 03-05-771 Date: 06/12/03 09:05

Work ID: GE Railcar monitoring wells

Date Received: 05/19/03
Date Completed: 06/11/03

Client Code: RSA

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	Number	Description
01	MW-44-1	03	MW-42-11
02	trip blank	04	MW-44-11

This cover page is an integral part of the analytical report.

Laboratory Certifications:

DE DE00011

PA 68-335 NJ DE568

MD 138

Certified By

Warren Van Arsdall

ACL Order Number 0305771

Overview:

A set of 4 samples was received from Rosengarten, Smith and Associates and is identified as 0305771. 0305771 consisted of three (3) samples and one (1) trip blank.

Matrix Spike/Matrix Spike Duplicates were analyzed at a frequency of 1 per twenty samples as requested by the Rosengarten, Smith and Associates project manager. MS/MSD sample for this sample set is 0305770-07.

Samples were received preserved, cooled to 4° C. The hold time for the samples was fourteen days for aromatic compounds and fourteen days for halogenated compounds. Ice was present in the cooler at time of receipt.

Samples were analyzed by Method 8260B and Method 8000B from SW-846, Test Methods for Evaluating Solid Waste. A 5 mL volume was used for analysis.

Summary:

All samples were analyzed within the prescribed hold time.

The following is a summary of contaminants found in the method blank(s) analyzed with this set of samples.

<u>Date</u>	Comments		
5/23/03 15:55	None		
5/24/03 12:18	None		
5/25/03 16:50	None		
5/27/03 07:55	None		

The instrument performance was acceptable as indicated by the tune report for 4-Bromofluorobenzene.

The average RRF for all compounds was less than 15% for the initial calibration performed on 5/23/03 except for chloromethane, acetone, 2-hexanone and 1,2-dibromo-3-chloropropane. A linear regression curve fit (not forced through 0) was used for these compounds.

The average RRF for all compounds was less than 15% for the initial calibration performed on 5/25/03 except for acetone and 1,2-dibromo-3-chloropropane. A linear regression curve fit (not forced through 0) was used for these compounds.

ACL Order Number 0305771 (Continued)

The acceptance criteria for the System Performance Check Compounds and Continuing Calibration Compounds was met for continuing calibration check standards.

The surrogate recoveries were within the acceptable limits in all samples analyzed with the following exceptions: 0305771-03 analyzed on 05/24/03 failed SMC1, sample was reanalyzed on 05/27/03 passed SMC1, 05/27/03 data was used for reporting.

The results of the MS/MSD were within the acceptance limits with the following exceptions. 0305770-07MS and MSD failed low for chlorobenzene. Chlorobenzene ambient level in sample is greater than spiked amount.

The internal standard areas were all within the acceptance criteria.

The percent recoveries for the analytes in the Laboratory Control Sample were within acceptable limits.

None	
Minor Issues:	

None

Major Issues:

GLOSSARY OF DATA QUALIFIER CODES (ORGANIC)

В	=	Not detected substantially above the level reported in laboratory or field blanks
J	=	Analyte present. Reported Value may not be accurate or precise
E	=	Analyte present, exceeds calibration range
U	=	Analyte analyzed for, undetected.
N	=	Tentative Identification. Consider present. Special methods may be needed to confirm its presence or absence in future sampling efforts.

PHONE (5/7) 70	LAILCAR - RCA		ATLANT Laboratories	IC COAST , Incorporated	630 Churchmans Road Newark, Delaware 19702
SAMPLED BY.		0.000 5.000 5.000 5.00		MARKATAN TAISES	ANALYSES
SAMPLED BY SIGNATURE PRINT NAME	Janeckey V= Various	SAMPLE COLLECTION FE	:E:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ANALISES A JULY
SAMPLE DATE	TIME SAMPLE LOCA	CONTAINER 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	SAMPLE PRESERVATIVE MATRIX		COMMENTS
1/2/12	12+ NW-44-1	111/11 V (a) V (a)	1 HZO HICK HINDS	1/	
5/14/03	550) TRIPBlank	42-11/44-1)40 6	3 1/20 HCL		
5/13/03, 2	024 MW-42-1	Vat	11 tho do.	1-1-1-	+++
5/14/03	2112MW-44-	11 VGJ	11 1/20 do	17 1101	
	/				
-\ X		$\overline{}$	——————————————————————————————————————		
	\		- / · · · ·		
		/ 			
	+				
	X		X		
Relinquished by:	Date / Time	Received by: ,	Relinquished by:	Date / Time	Received by:
Allowters	5/19/03/0707	Ca Barecky	& Barcak	el 05/19/03 C	
Relinquished by:	Date / Time	Received by://	Relinquished by:	Date / Time	Received for Laboratory by:
· · · · · · · · · · · · · · · · · · ·					
Method of Shipment	livery	Pemarks			Samples Iced YES NO Samples Preserved
7.7	1 annual		,		— ·

Sample Description: MW-2-1

Dibromofluoromethane

Lab No: 01A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 05/18/03 10:18

Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	64	3.8	
Benzene	22	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	1480	0.62	 _
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	1.0	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	0.58	0.55	
trans-1,2-Dichloroethene	1.2	0.59	
1,2-Dichloroethene, total	1.8	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	3.2	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	1.5	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ÆRY	LIMITS	

88

Ethene

Order # 03-05-770				Pa	age 8	
06/12/03 08:46	TEST_RES	BULTS BY SAMPLE				
Sample Description:	MW-2-1	Lab No	: 01A			
Test Description:	GC/MS Volatiles, SW84	16 8260 Method	: SW 846	8260 Test	Code:	V RSAA
	05/18/03 10:18	Category				_
Tolue	ne-d8 <u>97</u>	88 -	110			
4-Bromofluorober	nzene99	86 -	115			
	Notes and Defini	tions for this	Report:			
	DATE RUN 05/25/	03 18:21:00				
	ANALYST RJM					
	CONC FACTOR	1				
	UNITS	uq/L				
			•			
Sample Description:		Lab No				
_	methane, ethane, ether			Test	Code:	S_GAS
Collected:	05/18/03 10:18	Category	: GW			
PARAMETER	RES	ULT	LIMIT	UNITS	WEIGH	ĬΤ
Methane		41	2.0			
Ethane		ND	4.0			

Notes and Definitions for this Report:

ND

DATE RUN 05/30/03 05:50:00 ANALYST STL CONC FACTOR __ UNITS ____ uq/L

Sample Description: MW-43-1 Lab No: 02A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V RSAA

Collected: 05/18/03 12:24 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	7.6	3.8	
Benzene	17	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	796	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	1.2	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	ND ND	0.55	
trans-1,2-Dichloroethene			
	ND	0.59	
1,2-Dichloroethene, total Dichloromethane (MeCl2)	ND	1.1	
· · ·	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	0.69	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	<u>ND</u>	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	
	03	86 -	118
	_		

/12/03 08:46	TEST	' RESULTS	BY SAMPL	E

Sample Description: MW-43-1 Lab No: 02A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 05/18/03 12:24 Category: GW

Toluene-d8 95 88 - 110
4-Bromofluorobenzene 80 0 86 - 115

Notes and Definitions for this Report:

DATE RUN 05/25/03 19:05:00

ANALYST RJM
CONC FACTOR __

UNITS _____uq/L

Sample Description: MW-43-1

Lab No: 02F

Test Description: methane, ethane, ethene

Method:

Test Code: S GAS

Collected: 05/18/03 12:24

Category: GW

Notes and Definitions for this Report:

DATE RUN 05/30/03 05:54:00

ANALYST <u>STL</u>

CONC FACTOR 1 UNITS ug/L Sample Description: MW-2-6 Lab No: 03A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 05/18/03 13:38 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	20	3.8	
Benzene	10	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	632	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND ND		
1,1-Dichloroethane		0.55	
1,1-Dichloroethene	0.72	0.65	
cis-1,2-Dichloroethene	ND	0.57	
trans-1,2-Dichloroethene	ND ND	0.55	
,	ND	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	0.62	0.58	
2-Hexanone	ND	1.3	. —
Isopropylbenzene	<u>ND</u>	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	2.8	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	
	17		118

AR101917352

Order # 03-05-770 06/12/03 08:46	TEST RESUL	TS BY SAMPLE	<u></u>	Pag	e 12	
	MW-2-6 GC/MS Volatiles,SW846 05/18/03 13:38	Lab No: 0 8260 Method: S Category: G	W 846 8260	Test C	ode: '	V_RSA
Toluer 4-Bromofluorober			110 115			
	Notes and Definiti	ons for this Re	port:			
	DATE RUN 05/27/03 ANALYST IM CONC FACTOR UNITS	10:04:00 1 ug/L				
	×					
-	MW-2-6 methane,ethane,ethene 05/18/03 13:38	Lab No: 0 Method: Category: G		Test C	ode: :	s_gas

PARAMETER	RESULT	LIMIT	UNITS	WEIGHT
Methane	47	2.0		
Ethane	ND	4.0		
Ethene	ND	3.0		

Notes and Definitions for this Report:

DATE RUN 05/30/03 06:00:00

ANALYST STL

CONC FACTOR 1

UNITS uq/L

Sample Description: trip blank Lab No: 04A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V RSAA

Collected: 05/14/03 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	·
Chlorobenzene	ND	0.62	
Chloroethane	ND	0.82	
Chloroform	ND		
Chloromethane		0.52	
Dibromochloromethane	ND	0.75	—
	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	<u>ND</u>	0.57	
cis-1,2-Dichloroethene	ND	0.55	
trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloroethene, total	<u>ND</u>	<u> </u>	
Dichloromethane (MeCl2)	<u>ND</u>	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	<u>ND</u>	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
			
Surr Cmpd - % Rec - Limits			
SURROGATE %RECO	VERY	LIMITS	
	118	_86	118

Order	#	03-05-770
06/12	/n2	09.46

Page 14

TEST RESULTS BY SAMPLE

Sample Description: trip blank

Lab No: 04A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: **05/14/03**

Category: GW

Toluene-d8

102

<u>88</u> - <u>110</u>

4-Bromofluorobenzene

92

86 - 115

Notes and Definitions for this Report:

DATE RUN 05/24/03 13:46:00

ANALYST <u>IM</u>

CONC FACTOR

UNITS uq/L

Sample Description: MW-43-6 Lab No: 05A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 05/18/03 14:53 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	13	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	684	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	1.0	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	ND	0.55	
trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	·
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	<u>. ND</u>	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	0.74	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	<u>ND</u>	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits	·		
SURROGATE %RECO	VERY	LIMITS ·	
	<u> </u>	<u>86</u>	118

Order # 03-05-770					Pa	age 16
06/12/03 08:46	TEST	RESULTS BY	SAMPLE			
Sample Description: Test Description: Collected:			Lab No: Method: Category:	SW 846 8	260 Test	Code: V_RSAA
Toluer 4-Bromofluorober			<u>88</u> ~. 86 ~	<u>110</u> 115		
4 DIOMOIIGOIODCI		× _				
	Notes and De	finitions f	or this	Report:		
				•		
	DATE RUN <u>05</u>	<u>/27/03 10:4</u>	6:00			
	ANALYST <u>IM</u>					
	CONC FACTOR	1				
	UNITS	uq/L				
•	•					
Sample Description:	MW-43-6		Lab No:	05F		
Test Description:	methane, ethane, e	thene	Method:		Test	Code: S_GAS
Collected:	05/18/03 14:53		Category:	GW		
PARAMETER		RESULT		LIMIT	UNITS	WEIGHT
Methane			92	2.0		
Ethane			ND	4.0		<u> </u>

Notes and Definitions for this Report:

uq/L

DATE RUN 05/30/03 06:05:00

ANALYST STL CONC FACTOR

UNITS

ND

Ethene

Sample Description: field blank Lab No: 06A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 05/18/03 16:55 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	ND	0.62	
Chloroethane	ND	0.82	
Chloroform	N D	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	<u>ND</u>	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	<u>ND</u>	0.55	
trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	<u>ND</u>	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	<u>ND</u>	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	<u>ND</u>	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	<u>ND</u>	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND ND		
Vinyl Chloride	ND	0.55	
o-Xylene	ND ND	1.1	
<pre>m,p-Xylene Methyl-tert-butyl ether</pre>	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECO	VERY	LIMITS	
	01	_	118

Order # 03-05-770 06/12/03 08:46

Page 18

TEST RESULTS BY SAMPLE

Sample Description: field blank

Lab No: 06A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 05/18/03 16:55 Category: GW

Toluene-d8 4-Bromofluorobenzene 101 93 88 - 110

<u> 86</u> -

Notes and Definitions for this Report:

DATE RUN 05/27/03 08:38:00

ANALYST <u>IM</u>

CONC FACTOR __

UNITS ____

ug/L

Sample Description: MW-42-1 Lab No: 07A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V RSAA

Collected: 05/18/03 17:56 Category: GW

PARAMETER	RESULT	LIMIT	, WEIGHT
Acetone	ND	3.8	
Benzene	0.91	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	14	0.62	
Chloroethane	ND	0.82	
Chloroform .	1.3	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	1.2	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	37	0.55	
trans-1,2-Dichloroethene	19	0.59	
1,2-Dichloroethene, total	56	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	54	0.44	
Tetrachloroethene	0.73	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	2.2	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	9.3	0.65	
Vinyl Chloride	1.3	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	<u>ND</u>	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 10	04	86 -	118

AR101925 360

Order # 03-05-770 06/12/03 08:46

Page 20

TEST RESULTS BY SAMPLE

Sample Description: MW-42-1

Lab No: 07A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 05/18/03 17:56

Category: GW

Toluene-d8

4-Bromofluorobenzene

91

115

Notes and Definitions for this Report:

DATE RUN 05/25/03 19:49:00

ANALYST RJM

CONC FACTOR

ug/L. UNITS

Sample Description: MW-42-1 MS

Lab No: 07B

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 05/18/03 17:56 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	61	3.8	
Benzene	11	0.63	
Bromodichloromethane	9.4	0.55	
Bromoform	9.2	0.53	
Bromomethane	8.1	2.3	
2-Butanone (MEK)	51	2.5	
Carbon Disulfide	10	0.61	
Carbon Tetrachloride	9.9	0.66	
Chlorobenzene	21	0.62	
Chloroethane	11	0.82	
Chloroform	12	0.52	
Chloromethane	12	0.75	
Dibromochloromethane	9.8	0.51	
1,2-Dibromoethane	9.3	0.52	
1,2-Dibromo-3-Chloropropane	9.0	0.60	
1,2-Dichloroethane	12	0.55	
1,1-Dichloroethane	11	0.65	
1,1-Dichloroethene	<u> </u>	0.57	
cis-1,2-Dichloroethene	47	0.55	
trans-1,2-Dichloroethene	30	0.59	
1,2-Dichloroethene, total	67	1.1	
Dichloromethane (MeCl2)	10	0.55	
1,2-Dichloropropane	9.9	0.62	
cis-1,3-Dichloropropene	9.3	0.56	
trans-1,3-Dichloropropene	9.9	0.49	
Ethylbenzene	9.9	0.58	
2-Hexanone	19	1.3	
Isopropylbenzene	10	0.52	
4-Methyl-2-Pentanone (MIBK)	22	1.5	
Styrene	9.3	1.1	
1,1,2,2-Tetrachloroethane	69	0.44	
Tetrachloroethene	10	0.67	
Toluene	9.2	0.64	
1,1,2-Trichloroethane	12	0.59	
1,1,1-Trichloroethane	10	0.57	
Trichloroethene	19	0.65	
Vinyl Chloride	12	0.55	· ·
o-Xylene	10	1.1	
m,p-Xylene	20	1.2	
Methyl-tert-butyl ether	11		
Surr Cmpd - % Rec - Limits			
SURROGATE %RECO	VERY	LIMITS	

SURROGATE %RECOVERY LIMITS Dibromofluoromethane 106 86 - 118

Order # 03-05-770 06/12/03 08:46

TEST RESULTS BY SAMPLE

Page 22

Lab No: 07B

Sample Description: MW-42-1 MS

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 05/18/03 17:56 Category: GW

Toluene-d8 ${\tt 4-Bromofluorobenzene}$ 115

Notes and Definitions for this Report:

DATE RUN 05/25/03 20:34:00

ANALYST RJM

CONC FACTOR

UNITS ____

Sample Description: MW-42-1 MSD Lab No: 07C

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 05/18/03 17:56 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	64	3.8	
Benzene	11	0.63	
Bromodichloromethane	9.3	0.55	
Bromoform	10	0.53	
Bromomethane	8.6	2.3	
2-Butanone (MEK)	55	2.5	
Carbon Disulfide	9.7	0.61	
Carbon Tetrachloride	9.6	0.66	
Chlorobenzene	20	0.62	
Chloroethane	9.8	0.82	
Chloroform	11	0.52	
Chloromethane	10	0.75	
Dibromochloromethane	10	0.51	
1,2-Dibromoethane	9.9	0.52	
1,2-Dibromo-3-Chloropropane	11	0.60	
1,2-Dichloroethane	12	0.55	
1,1-Dichloroethane	10	0.65	
1,1-Dichloroethene	10	0.57	
cis-1,2-Dichloroethene	45	0.55	
trans-1,2-Dichloroethene	28	0.59	
1,2-Dichloroethene, total	73	1.1	
Dichloromethane (MeCl2)	10	0.55	
1,2-Dichloropropane	10	0.62	
cis-1,3-Dichloropropene	9.7	0.56	
trans-1,3-Dichloropropene	11	0.49	
Ethylbenzene	9.3	0.58	
2-Hexanone	24	1.3	
Isopropylbenzene	9.7	0.52	
4-Methyl-2-Pentanone (MIBK)	24	1.5	
Styrene	8.9	1.1	
1,1,2,2-Tetrachloroethane	75	0.44	
Tetrachloroethene	10	0.67	
Toluene	9.1	0.64	
1,1,2-Trichloroethane	12	0.59	
1,1,1-Trichloroethane	9.8	0.57	
Trichloroethene	18	0.65	
Vinyl Chloride	11	0.55	
o-Xylene	9.8	1.1	
m,p-Xylene	19	1.2	
Methyl-tert-butyl ether	12	0.48	
•			
Surr Cmpd - % Rec - Limits			<u> </u>
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 10	<u></u>	86 -	118

Order # 03-05-770			. Page 24
06/12/03 08:46	TEST RESULT	S BY SAMPLE	-
	MW-42-1 MSD . GC/MS Volatiles,SW846 8 05/18/03 17:56	Lab No: 07C 3260 Method: SW 846 Category: GW	8260 Test Code: V_RSA
Tolue 4-Bromofluorobe		88 - 110 86 - 115	
	Notes and Definition	ons for this Report:	
·	DATE RUN 05/25/03 ANALYST RUM CONC FACTOR UNITS	21:21:00 _1 ug/L	
-	MW-42-1 methane,ethane,ethene 05/18/03 17:56	Lab No: 07L Method: Category: GW	Test Code: S_GAS
PARAMETER	RESULT	LIMIT	UNITS WEIGHT
Methane	-	40 2.0	
Ethane		ND 4.0	
Ethene		ND 3.()

Notes and Definitions for this Report:

DATE RUN 05/30/03 06:09:00 ANALYST STL CONC FACTOR 1 UNITS ug/L

Sample Description: trip blank Lab No: 08A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: **05/14/03** Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	ND	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	ND	0.55	
trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
			 ·
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 9	<u>8</u>	<u>86</u>	118

Order # 03-05-770 06/12/03 08:46

Page 26

IDDI KOOODIO DI SHILDO	TEST	RESULTS	BY	SAMPLE	•
------------------------	------	---------	----	--------	---

Sample Description: trip blank

Lab No: 08A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 05/14/03

Category: GW

Toluene-d8 4-Bromofluorobenzene 101

<u>88</u> -

95

<u>86</u> -

Notes and Definitions for this Report:

DATE RUN 05/27/03 09:21:00

ANALYST IM

CONC FACTOR ____1

UNITS ug/L

Digestion

Method 200.2

Iron (Fe) - ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA (1983) Method 200.7

RCRA TCLP & groundwater SW 846 Method 6010

Solids

SW 846 Method 6010

ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA Method 200.7

RCRA TCLP & groundwater SW 846 Method 6010

Solids

SW 846 Method 6010

Chemical Oxygen Demand

EPA Method 410.4 (manual colorimetric)

Total Organic Carbon, Aqueous

EPA Method 415.1

SW-846 Method 9060

Total Petroluem Hydrocarbons, Diesel Range Organics

SW-846, Method 8015, GC/FID (modified)

Total Petroleum Hydrocarbons-Gasoline Range Organics (TPH/GRO) SW-846 Method 8015 (modified)

Volatile Organics by GC/MS (aqueous)

SW846 Method 8260B (purge & trap, capillary column GC/MS)

Total Alkalinity

SM 2320B (titrimetric)

Nitrite, Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes

SW-846 Method 9056

Nitrate, Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes

SW-846 Method 9056

Sulfate, Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes

SW-846 Method 9056

Sample Description: MW-44-1

Lab No: 01A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 05/18/03 19:27 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3,8	
Benzene	0.67	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	6.8	0.62	
Chloroethane	ND	0.82	
Chloroform	1.5	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	1.3	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	5.4	0.55	
trans-1,2-Dichloroethene	2.0	0.59	
1,2-Dichloroethene, total	7.4	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	<u>ND</u>	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	27	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	0.88	0.59	
1,1,1-Trichloroethane	<u>ND</u>	0.57	
Trichloroethene	3.3	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	<u>ND</u>	<u> 1.1</u>	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECO	VERY	LIMITS	
	11	86	118

6/12/03 08:50	ਹਾ ਦਾ ਦਾ ਦਾ	RESULTS B	T.	CAMDIE	
3/12/03 00:30	TEST	resonie e		SAMPLE	

Sample Description: MW-44-1

Lab No: 01A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 05/18/03 19:27 Category: GW

Toluene-d8

102

88 - 110

4-Bromofluorobenzene

92

<u>86</u> - <u>115</u>

Notes and Definitions for this Report:

DATE RUN 05/24/03 14:31:00

ANALYST <u>IM</u>

CONC FACTOR ____

UNITS uq/L

Sample Description: MW-44-1

Lab No: 01F

Test Description: methane, ethane, ethene

Method:

Test Code: S_GAS

Collected: 05/18/03 19:27

Category: GW

PARAMETER

RESULT

LIMIT

UNITS WEIGHT

Methane Ethane Ethene

ND ND

4.0

2.0

Notes and Definitions for this Report:

DATE RUN 05/30/03 06:15:00

ANALYST STL

CONC FACTOR ___

UNITS ____ug/L

Sample Description: trip blank

Lab No: 02A

Category: GW

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: **05/14/0**3

NE	PARAMETER	RESULT	LIMIT	WEIGHT
Benzene	Acetone	ND	3.8	
Bromodichloromethane	Benzene			
Bromoform ND 0.53	Bromodichloromethane	ND		
Stromomethane	Bromoform			
2-Butanone (MEK)				
Carbon Disulfide ND 0.61 Carbon Tetrachloride ND 0.66 Chlorobenzene ND 0.62 Chloroethane ND 0.52 Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromo-3-Chloropropane ND 0.52 1,2-Dibromo-3-Chloropropane ND 0.60 1,2-Dichloroethane ND 0.55 1,1-Dichloroethane ND 0.55 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene ND 0.59 1,2-Dichloroethene, total ND 0.59 1,2-Dichloroethene, total ND 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.55 1,2-Dichloropropane ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.59 1,2-Dichloropropane ND 0.58				
Carbon Tetrachloride	· · · · · · · · · · · · · · · · ·			
Chlorobenzene ND 0.62 Chloroform ND 0.82 Chloroform ND 0.52 Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromoethane ND 0.52 1,2-Dibromo-3-Chloropropane ND 0.60 1,2-Dichloroethane ND 0.55 1,1-Dichloroethane ND 0.55 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene ND 0.55 trans-1,2-Dichloroethene, total ND 0.59 1,2-Dichloroptopane ND 0.55 1,2-Dichloropropane ND 0.55 1,2-Dichloropropane ND 0.56 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.52 2-Hexanone ND 0.52 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.67	•			
Chloroform ND 0.82 Chloroform ND 0.52 Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromoethane ND 0.52 1,2-Dibromo-3-Chloropropane ND 0.60 1,2-Dichloroethane ND 0.55 1,1-Dichloroethane ND 0.55 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene ND 0.55 trans-1,2-Dichloroethene ND 0.59 1,2-Dichloroethene, total ND 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.55 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.52				
Chloroform ND 0.52 Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromochlane ND 0.60 1,2-Dibromochlane ND 0.65 1,2-Dichloroethane ND 0.55 1,1-Dichloroethane ND 0.55 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene ND 0.55 trans-1,2-Dichloroethene, total ND 0.59 1,2-Dichloroethene, total ND 1.1 Dichloromethane (MeCl2) ND 0.59 1,2-Dichloropropane ND 0.55 trans-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.52 1,1,2-Trichloroethane ND 0.67				
Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromoethane ND 0.52 1,2-Dibromo-3-Chloropropane ND 0.60 1,2-Dichloroethane ND 0.55 1,1-Dichloroethane ND 0.57 cis-1,2-Dichloroethene ND 0.57 cis-1,2-Dichloroethene ND 0.59 1,2-Dichloroethene, total ND 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.55 1,2-Dichloropropane ND 0.56 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.44 Tetrachloroethene ND 0.67				
Dibromochloromethane		·		
1,2-Dibromoethane ND 0.52 1,2-Dibromo-3-Chloropropane ND 0.60 1,2-Dichloroethane ND 0.55 1,1-Dichloroethane ND 0.55 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene ND 0.55 trans-1,2-Dichloroethene, total ND 0.59 1,2-Dichloroethene, total ND 0.55 1,2-Dichloropropane ND 0.55 1,2-Dichloropropane ND 0.55 1,2-Dichloropropane ND 0.56 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2-Tetrachloroethane ND 0.67 Toluene ND 0.67 Toluene ND 0.59 1,1,1-Trichloroethane ND 0.55 Vinyl Ch				
1,2-Dibromo-3-Chloropropane ND 0.60 1,2-Dichloroethane ND 0.55 1,1-Dichloroethane ND 0.65 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene ND 0.55 trans-1,2-Dichloroethene, total ND 0.59 1,2-Dichloroethene, total ND 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.49 2-Hexanone ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.67 Toluene ND 0.67 1,1,2-Trichloroethane ND 0.57				
1,2-Dichloroethane	·			
1,1-Dichloroethane				
1,1-Dichloroethene	· ·			
cis-1,2-Dichloroethene ND 0.55 trans-1,2-Dichloroethene ND 0.59 1,2-Dichloroethene, total ND 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane ND 0.67 Toluene ND 0.67 Toluene ND 0.59 1,1,1-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.55 O-Xylene ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 0.48 Surr Cmpd - % Rec - Limits	•			
trans-1,2-Dichloroethene ND 0.59 1,2-Dichloroethene, total ND 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane ND 0.67 Toluene ND 0.67 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.55 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 0.48 Surr Cmpd - % Rec - Limits LIMITS	•			
1,2-Dichloroethene, total ND 1.1	•			
Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane ND 0.67 Toluene ND 0.67 Toluene ND 0.59 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.57 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 0.48 Surr Cmpd - % Rec - Limits	· · · · · · · · · · · · · · · · · · ·			
1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane ND 0.67 Toluene ND 0.67 Toluene ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.57 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - % Rec - Limits	•			
cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane ND 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.59 1,1,1-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.55 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 0.48 Surr Cmpd - % Rec - Limits ND 0.48				
trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2-Tetrachloroethane ND 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.59 1,1,2-Trichloroethane ND 0.57 Trichloroethene ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - % Rec - Limits				
Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2-Tetrachloroethane ND 0.67 Toluene ND 0.67 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - % Rec - Limits				
1.3 1.3 1.5				
Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane ND 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - % Rec - Limits	•			
4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane ND 0.44 Tetrachloroethane ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits LIMITS				
Styrene ND 1.1 1,1,2,2-Tetrachloroethane ND 0.44 Tetrachloroethane ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - WRECOVERY LIMITS				
1,1,2,2-Tetrachloroethane ND 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE %RECOVERY LIMITS				
Tetrachloroethene ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits LIMITS	-			
Toluene ND 0.64 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits LIMITS	• 7			
1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE %RECOVERY LIMITS		ND		
1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE %RECOVERY LIMITS		ND	0.64	
Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE %RECOVERY LIMITS	1,1,2-Trichloroethane	ND	0.59	
Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE % RECOVERY LIMITS	1,1,1-Trichloroethane	ND		
o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE % RECOVERY LIMITS	Trichloroethene	ND	0.65	
m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits LIMITS	Vinyl Chloride	ND		
Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE % RECOVERY LIMITS	o-Xylene	ND	1.1	
Surr Cmpd - % Rec - Limits	m,p-Xylene	ND	1.2	
SURROGATE %RECOVERY LIMITS	Methyl-tert-butyl ether	ND	0.48	
SURROGATE %RECOVERY LIMITS				
	Surr Cmpd - % Rec - Limits			
	SURROGATE %RECO	OVERY	LIMITS	
				118

Page 7

Order # 03-05-771 06/12/03 08:50 TEST RESULTS BY SAMPLE Sample Description: trip blank Lab No: 02A Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA Collected: 05/14/03 Category: GW Toluene-d8 86 -4-Bromofluorobenzene 94

Notes and Definitions for this Report:

DATE RUN 05/24/03 13:02:00 ANALYST IM CONC FACTOR _ uq/L UNITS

Sample Description: MW-42-11

Lab No: 03A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Category: GW

Collected: 05/18/03 20:20

PARAMETER	RESULT.	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	0.85	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	· _ ND	0.53	 _
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	14	0.62	
Chloroethane	ND	0.82	
Chloroform	1.3	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	1.2	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND ND	0.53	
cis-1,2-Dichloroethene	29	0.55	
trans-1,2-Dichloroethene	16	0.59	
1,2-Dichloroethene, total	45	1.1	
Dichloromethane (MeCl2)	NID	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene (MIBR)	ND	1.1	
1,1,2,2-Tetrachloroethane	40	0.44	
Tetrachloroethene	0.72	0.67	
Toluene			
1,1,2-Trichloroethane		0.64	
	1.7	0.59	
1,1,1-Trichloroethane	ND		
Trichloroethene		0.65	
Vinyl Chloride	1.5		
o-Xylene	ND		
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
			
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 10	02	<u>86</u>	118

Order # 03-05-771 06/12/03 08:50	TEST_RESU	LTS BY SAMPLE		Pa	ge 9
-	MW-42-11 GC/MS Volatiles,SW846 05/18/03 20:20	Lab No: 8260 Method: Category:	SW 846 82	260 Test	Code: V_RSAA
Toluer 4-Bromofluorober		<u>88</u> - <u>86</u> -	110 115		
	Notes and Definit	ions for this	Report:		
	DATE RUN <u>05/27/0</u> ANALYST <u>IM</u>	3 11:29:00			
	CONC FACTOR	1 _ug/L			
Sample Description:	MW-42-11	Lab No:	03F		
-	methane, ethane, ethene			Test	Code: S_GAS
Collected:	05/18/03 20:20	Category:	GW		
PARAMETER	RESU	ĽТ	LIMIT	UNITS	WEIGHT

Notes and Definitions for this Report:

ND

ND

DATE RUN 05/30/03 06:19:00

ANALYST STL

CONC FACTOR 1

UNITS uq/L

Methane Ethane

Ethene

Sample Description: MW-44-11

Lab No: 04A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 05/18/03 21:12

Category: **GW**

NE	PARAMETER	RESULT	LIMIT	WEIGHT
Benzene 0.70 0.63	Acetone	ND	3.8	
Bromodichloromethane	Benzene			
Bromoform ND 0.53	Bromodichloromethane			
ND 2.3 2-Butanone (MEK) ND 2.5 Carbon Disulfide ND 0.61 Carbon Tetrachloride ND 0.66 Chlorobenzene 6.6 0.62 Chlorobenzene 6.6 0.62 Chlorothane ND 0.82 Chloromethane ND 0.75 Chloromethane ND 0.75 Chloromethane ND 0.51 1.2-Dibromochloromethane ND 0.51 1.2-Dibromochlorothane ND 0.52 1.2-Dibromochlorothane ND 0.60 1.2-Dichlorothane ND 0.65 1.1-Dichlorothane ND 0.65 1.1-Dichlorothane ND 0.65 1.1-Dichlorothane ND 0.57 Cis-1,2-Dichlorothene 4.8 0.55 trans-1,2-Dichlorothene 1.6 0.59 1.2-Dichlorothene, total 6.4 1.1 Dichloromethane (MeCl2) ND 0.55 1.2-Dichlorothoropopane ND 0.62 Cis-1,3-Dichloropropane ND 0.62 Cis-1,3-Dichloropropane ND 0.56 trans-1,3-Dichloropropane ND 0.56 trans-1,3-Dichloropropane ND 0.58 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.67 Toluene ND 0.67 Toluene ND 0.67 Toluene ND 0.67 Trichloroethane ND 0.55 0.57 Trichloroethane ND 0.55 0.57 Trichlorothane ND 0.48 Surr Cmpd - % Rec - Limits S	Bromoform	ND		
ND 2.5 Carbon Disulfide	Bromomethane			
Carbon Tetrachloride ND 0.66 Chlorobenzene 6.6 0.62 Chloroethane ND 0.82 Chloroform 1.6 0.52 Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromo-3-Chloropropane ND 0.60 1,2-Dichloroethane ND 0.65 1,1-Dichloroethane ND 0.65 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene 4.8 0.55 trans-1,2-Dichloroethene 1.6 0.59 1,2-Dichloroethene to.4 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.59 4-Methyl-2-Pentanone (MIBK) ND 1.5 </td <td>2-Butanone (MEK)</td> <td>ND</td> <td></td> <td></td>	2-Butanone (MEK)	ND		
Carbon Tetrachloride ND 0.66 Chlorobenzene 6.6 0.62 Chloroethane ND 0.82 Chloroform 1.6 0.52 Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromo-3-Chloropropane ND 0.60 1,2-Dichloroethane ND 0.65 1,1-Dichloroethane ND 0.65 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene 4.8 0.55 trans-1,2-Dichloroethene 1.6 0.59 1,2-Dichloroethene to.4 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.59 4-Methyl-2-Pentanone (MIBK) ND 1.5 </td <td>Carbon Disulfide</td> <td>ND</td> <td>0.61</td> <td></td>	Carbon Disulfide	ND	0.61	
Chlorobenzene 6.6 0.62 Chloroform 1.6 0.52 Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromoethane ND 0.52 1,2-Dibromo-3-Chloropropane ND 0.60 1,2-Dichloroethane 1.3 0.55 1,1-Dichloroethane ND 0.67 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene 1.6 0.59 1,2-Dichloroethene, total 6.4 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 0.67<	Carbon Tetrachloride	ND		
Chloroform ND 0.82 Chloroform 1.6 0.52 Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromo-3-Chloropropane ND 0.52 1,2-Dichloroethane ND 0.60 1,2-Dichloroethane 1.3 0.55 1,1-Dichloroethane ND 0.65 1,1-Dichloroethene MD 0.57 cis-1,2-Dichloroethene 1.6 0.59 1,2-Dichloroethene, total 6.4 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 0.64	Chlorobenzene	6.6		
Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromoethane ND 0.52 1,2-Dibromo-3-Chloropropane ND 0.60 1,2-Dichloroethane 1.3 0.55 1,1-Dichloroethane MD 0.65 1,1-Dichloroethene MD 0.57 cis-1,2-Dichloroethene 1.6 0.59 1,2-Dichloroethene, total 6.4 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene MD 0.52 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.67 Toluene ND 0.67	Chloroethane	ND		·
Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromochlane ND 0.52 1,2-Dibromochlane ND 0.60 1,2-Dichloroethane 1.3 0.55 1,1-Dichloroethane ND 0.65 1,1-Dichloroethene MD 0.57 cis-1,2-Dichloroethene 1.6 0.59 1,2-Dichloroethene, total 6.4 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 cirans-1,3-Dichloropropene ND 0.56 ctrans-1,3-Dichloropropene ND 0.59 2-Hexanone ND 0.58 2-Hexanone ND 0.59 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane 27 0.44 Tetrachloroethene ND 0.67	Chloroform	1.6		
Dibromochloromethane	Chloromethane	ND		
1,2-Dibromoethane 1,2-Dibromo-3-Chloropropane 1,2-Dichloroethane 1,3 0.55 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropene 1,	Dibromochloromethane	ND		
1,2-Dibromo-3-Chloropropane 1,2-Dichloroethane 1,3 0.55 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroptene 1,2-Dichloroptopane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropene 1,1-Dichloropropene 1,1-Di	1,2-Dibromoethane	ND		
1,2-Dichloroethane	1,2-Dibromo-3-Chloropropane	ND		
1,1-Dichloroethane		1.3		
1,1-Dichloroethene	1,1-Dichloroethane	ND		
cis-1,2-Dichloroethene 4.8 0.55 trans-1,2-Dichloroethene 1.6 0.59 1,2-Dichloroethene, total 6.4 1.1 Dichloromethane (MeCl2) MD 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene MD 0.56 trans-1,3-Dichloropropene MD 0.49 Ethylbenzene MD 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane 27 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.67 1,1,2-Trichloroethane 0.91 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.55 O-Xylene ND 0.55 o-Xylene ND 0.48 Surr Cmpd - % Rec - Limits ND 0.48	1,1-Dichloroethene	ND		
trans-1,2-Dichloroethene 1.6 0.59 1,2-Dichloroethene, total 6.4 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane 27 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.67 1,1,2-Trichloroethane 0.91 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene 3.3 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 0.48 Surr Cmpd - % Rec - Limits LIMITS	cis-1,2-Dichloroethene	4.8		
1,2-Dichloroethene, total 6.4 1.1	trans-1,2-Dichloroethene	1.6		
Dichloromethane (MeC12) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane 27 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane 0.91 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene 3.3 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - % Rec - Limits	1,2-Dichloroethene, total	6.4		
1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane 27 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane 0.91 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene 3.3 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - % Rec - Limits	Dichloromethane (MeCl2)	ND		
cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane 27 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane 0.91 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene 3.3 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - % Rec - Limits	1,2-Dichloropropane	ND		
trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane 27 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane 0.91 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene 3.3 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SurrCmpd - % Rec - Limits	- -	ND		
Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane 27 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane 0.91 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene 3.3 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 0.48 Surr Cmpd - % Rec - Limits ND 0.48	_ _	ND	_	
Surr Cmpd - % Rec - Limits ND 1.3 1.3 1.3 1.3 1.5 1.1		ND		
4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane 27 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene 3.3 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - % Rec - Limits	2-Hexanone	ND		
Styrene ND 1.1 1,1,2,2-Tetrachloroethane 27 0.44 Tetrachloroethane ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene 3.3 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - WRECOVERY LIMITS	Isopropylbenzene	ND	0.52	
1,1,2,2-Tetrachloroethane 27 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane 0.91 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene 3.3 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE %RECOVERY LIMITS	4-Methyl-2-Pentanone (MIBK)	<u>ND</u>	1.5	
Tetrachloroethene ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane 0.91 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene 3.3 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - WRECOVERY LIMITS	Styrene	ND	1.1	
Toluene ND 0.64 1,1,2-Trichloroethane 0.91 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene 3.3 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - WRECOVERY LIMITS	1,1,2,2-Tetrachloroethane	27	0.44	
1,1,2-Trichloroethane 0.91 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene 3.3 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE %RECOVERY LIMITS	Tetrachloroethene	ND	0.67	<u> </u>
1,1,1-Trichloroethane ND 0.57 Trichloroethene 3.3 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE %RECOVERY LIMITS	Toluene	ND	0.64	
Trichloroethene 3.3 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - WRECOVERY LIMITS	1,1,2-Trichloroethane	0.91	0.59	
Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE % RECOVERY LIMITS	1,1,1-Trichloroethane	ND	0.57	
o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE %RECOVERY LIMITS	Trichloroethene	3.3	0.65	
m,p-Xylene Methyl-tert-butyl ether Surr Cmpd - % Rec - Limits SURROGATE % RECOVERY LIMITS	Vinyl Chloride	ND	0.55	
Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE % RECOVERY LIMITS	o-Xylene	ND	1.1	
Surr Cmpd - % Rec - Limits SURROGATE % RECOVERY LIMITS	m,p-Xylene	ND	1.2	
SURROGATE %RECOVERY LIMITS	Methyl-tert-butyl ether	ND	0.48	
SURROGATE %RECOVERY LIMITS	·			
	Surr Cmpd - % Rec - Limits			<u> </u>
	SURROGATE %RECOV	VERY	LIMITS	
				118

06/12/03 08:50

Digestion

Method 200.2

Iron (Fe) - ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA (1983) Method 200.7

RCRA TCLP & groundwater SW 846 Method 6010

Solids

SW 846 Method 6010

ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA Method 200.7 RCRA TCLP & groundwater SW 846 Method 6010

Solids

SW 846 Method 6010

Chemical Oxygen Demand

EPA Method 410.4 (manual colorimetric)

Total Organic Carbon, Aqueous

EPA Method 415.1 SW-846 Method 9060

Total Petroluem Hydrocarbons, Diesel Range Organics SW-846, Method 8015, GC/FID (modified)

Total Petroleum Hydrocarbons-Gasoline Range Organics (TPH/GRO) SW-846 Method 8015 (modified)

Volatile Organics by GC/MS (aqueous) SW846 Method 8260B (purge & trap, capillary column GC/MS)

Total Alkalinity

SM 2320B (titrimetric)

Nitrite, Ion Chromatography

Drinking water, wastewater Groundwater, RCRA wastes

Method 300.0

SW-846 Method 9056

Nitrate, Ion Chromatography

Drinking water, wastewater Groundwater, RCRA wastes

Method 300.0

SW-846 Method 9056

Sulfate, Ion Chromatography

Drinking water, wastewater

Method 300.0

SW-846 Method 9056 Groundwater, RCRA wastes

Sample: 01A MW-2-1 Collected: 05/18/03 10:18			Category: GW
Test Description TPH, Gasoline Range Org.	Result 0.13	Det Limit 0.05	Units By Analyzed Dt/Tm mg/L RJM 05/25/03 18:21
Sample: 01B MW-2-1 Collected: 05/18/03 10:18			Category: GW
Test Description Perchlorate	Result ND	Det Limit 4.0	Units By Analyzed Dt/Tm ug/L DFW 05/29/03 11:28
Sample: 01C MW-2-1 Collected: 05/18/03 10:18			Category: GW
Test Description TPH, Diesel Range Organics	Result 0.10	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 05/20/03 23:30
Sample: 01D MW-2-1 Collected: 05/18/03 10:18			Category: GW
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	Result ND 3.4	Det Limit 10 1.0	<u>Units By Analyzed Dt/Tm</u> mg/L YT 06/10/03 08:00 mg/L WV 06/09/03 15:10
Sample: 01E MW-2-1 Collected: 05/18/03 10:18			Category: GW
	Result 59.9 8.0 05/19/03 ND ND 5.48	Det Limit	Category: GW Units By Analyzed Dt/Tm mg/L DED 06/10/03 10:45 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 13:15 mg/L as N WV 05/19/03 13:15 mg/L as CaCO3 TLC 05/31/03 09:50
Collected: 05/18/03 10:18 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom	59.9 8.0 05/19/03 ND ND 5.48	0.1 0.1 0.06 0.02 0.38	Units By Analyzed Dt/Tm mg/L DED 06/10/03 10:45 mg/L GS 05/27/03 15:00 date complete wv mg/L as N WV 05/19/03 13:15 mg/L as N WV 05/19/03 13:15 mg/L WV 05/19/03 13:15
Collected: 05/18/03 10:18 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 01G MW-2-1 Collected: 05/18/03 10:18 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES	59.9 8.0 05/19/03 ND ND 5.48	0.1 0.06 0.02 0.38 1.0	Units By Analyzed Dt/Tm mg/L DED 06/10/03 10:45 mg/L GS 05/27/03 15:00 date complete wv mg/L as N WV 05/19/03 13:15 mg/L as N WV 05/19/03 13:15 mg/L WV 05/19/03 13:15 mg/L WV 05/19/03 09:50 Category: GW Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:25 date analyzed
Collected: 05/18/03 10:18 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 01G MW-2-1 Collected: 05/18/03 10:18 Test Description Digestion, Aqueous, 200.2 Iron, ICP	59.9 8.0 05/19/03 ND ND 5.48 74 Result 05/23/03 67.9	0.1 0.06 0.02 0.38 1.0	Units By Analyzed Dt/Tm mg/L DED 06/10/03 10:45 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 13:15 mg/L as N WV 05/19/03 13:15 mg/L WV 05/19/03 13:15 mg/L as CaCO3 TLC 05/31/03 09:50 Category: GW Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:25

Sample: 02B MW-43-1 Collected: 05/18/03 12:24			Category: GW
Test Description Perchlorate	<u>Result</u> ND	Det Limit 4.0	Units By Analyzed Dt/Tm ug/L DFW 05/29/03 11:47
Sample: 02C MW-43-1 Collected: 05/18/03 12:24			Category: GW
Test Description TPH, Diesel Range Organics	Result ND	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 05/21/03 00:18
Sample: 02D MW-43-1 Collected: 05/18/03 12:24			Category: GW
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	<u>Result</u> 11 1.9	Det Limit 10 1.0	Units By Analyzed Dt/Tm mg/L YT 06/10/03 08:00 mg/L WV 06/09/03 15:10
Sample: 02E MW-43-1 Collected: 05/18/03 12:24			Category: GW
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	Result 26.6 8.0 05/19/03 0.129 ND 14.8 84	Det Limit	Units By Analyzed Dt/Tm mg/L DED 06/10/03 10:45 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 14:00 mg/L as N WV 05/19/03 14:00 mg/L WV 05/19/03 14:00 mg/L as CaCO3 TLC 05/31/03 09:50
Sample: 02G MW-43-1 Collected: 05/18/03 12:24			Category: GW
Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES	Result 05/23/03 34.6 05/24/03	Det Limit 0.009	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:13 date analyzed
Sample: 03A MW-2-6 Collected: 05/18/03 13:38			Category: GW
Test Description TPH, Gasoline Range Org.	Result 0.32	Det Limit 0.05	Units By Analyzed Dt/Tm mg/L RJM 05/27/03 10:04
Sample: 03B MW-2-6 Collected: 05/18/03 13:38			Category: GW
Test Description Perchlorate	Result ND	Det Limit	Units By Analyzed Dt/Tm ug/L DFW 05/29/03 12:06

Sample: 03C MW-2-6			Category: GW
Collected: 05/18/03 13:38			5
Test Description	<u>Result</u>	<u>Det Limit</u>	Units By Analyzed Dt/Tm
TPH, Diesel Range Organics	0.10	0.10	mg/L JSH 05/21/03 11:24
Sample: 03D MW-2-6			Category: GW
Collected: 05/18/03 13:38			
Test Description	<u>Result</u>	<u>Det Limit</u>	<u>Units</u> By <u>Analyzed Dt/Tm</u>
Chemical Oxygen Demand	14	10	mg/L YT 06/10/03 08:00
Total Organic Carbon, Aq	1.9	1.0	mg/L WV 06/09/03 15:10
		1	
Sample: 03E MW-2-6			Category: GW
Collected: 05/18/03 13:38			
Test Description	Result	Dot Limit	Units By Analyzed Dt/Tm
Ferric Iron - AWWA B407-93	30.7	Det Limit 0.4	mg/L DED 06/10/03 10:45
	12.0	0.4	mg/L GS 05/27/03 15:00
Ferrous Iron	05/19/03	0.1	date complete WV
Ion chromatography	0.648	0.06	
Nitrate, Ion Chrom		0.06	mg/L as N WV 05/19/03 14:15 mg/L as N WV 05/19/03 14:15
Nitrite, Ion Chrom	ND		
Sulfate, Ion Chrom	17.1	0.38	mg/L WV 05/19/03 14:15
Total Alkalinity-Titration	59	1.0	mg/L as CaCO3 TLC 06/02/03 09:55
Sample: 03G MW-2-6			Category: GW
Sample: 03G MW-2-6			Category: GW
Sample: 03G MW-2-6 Collected: 05/18/03 13:38			Category: GW
Collected: 05/18/03 13:38	Result	Det Limit	
Collected: 05/18/03 13:38 Test Description	<u>Result</u> 05/23/03	Det Limit	Units By Analyzed Dt/Tm
Collected: 05/18/03 13:38	·	Det Limit	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00
Collected: 05/18/03 13:38 Test Description Digestion, Aqueous, 200.2	05/23/03		Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00
Collected: 05/18/03 13:38 Test Description Digestion, Aqueous, 200.2 Iron, ICP	05/23/03 42.7		Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:38
Collected: 05/18/03 13:38 Test Description Digestion, Aqueous, 200.2 Iron, ICP	05/23/03 42.7		Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:38
Collected: 05/18/03 13:38 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES	05/23/03 42.7		Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:38 date analyzed
Collected: 05/18/03 13:38 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 04A trip blank	05/23/03 42.7		Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:38 date analyzed Category: GW
Collected: 05/18/03 13:38 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 04A trip blank	05/23/03 42.7		Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:38 date analyzed Category: GW Units By Analyzed Dt/Tm
Collected: 05/18/03 13:38 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 04A trip blank Collected: 05/14/03	05/23/03 42.7 05/24/03	0.009	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:38 date analyzed Category: GW
Collected: 05/18/03 13:38 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 04A trip blank Collected: 05/14/03 Test Description TPH, Gasoline Range Org.	05/23/03 42.7 05/24/03 Result	0.009	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00
Collected: 05/18/03 13:38 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 04A trip blank Collected: 05/14/03 Test Description TPH, Gasoline Range Org. Sample: 05A MW-43-6	05/23/03 42.7 05/24/03 Result	0.009	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:38 date analyzed Category: GW Units By Analyzed Dt/Tm
Collected: 05/18/03 13:38 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 04A trip blank Collected: 05/14/03 Test Description TPH, Gasoline Range Org.	05/23/03 42.7 05/24/03 Result	0.009	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00
Collected: 05/18/03 13:38 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 04A trip blank Collected: 05/14/03 Test Description TPH, Gasoline Range Org. Sample: 05A MW-43-6 Collected: 05/18/03 14:53	05/23/03 42.7 05/24/03 Result ND	0.009 Det Limit 0.05	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:38 date analyzed Category: GW Units By Analyzed Dt/Tm mg/L IM 05/24/03 13:46 Category: GW
Collected: 05/18/03 13:38 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 04A trip blank Collected: 05/14/03 Test Description TPH, Gasoline Range Org. Sample: 05A MW-43-6 Collected: 05/18/03 14:53 Test Description	05/23/03 42.7 05/24/03 <u>Result</u> ND	0.009 Det Limit 0.05	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:38 date analyzed Category: GW Units By Analyzed Dt/Tm mg/L IM 05/24/03 13:46 Category: GW
Collected: 05/18/03 13:38 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 04A trip blank Collected: 05/14/03 Test Description TPH, Gasoline Range Org. Sample: 05A MW-43-6 Collected: 05/18/03 14:53	05/23/03 42.7 05/24/03 Result ND	0.009 Det Limit 0.05	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:38 date analyzed Category: GW Units By Analyzed Dt/Tm mg/L IM 05/24/03 13:46 Category: GW
Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 04A trip blank Collected: 05/14/03 Test Description TPH, Gasoline Range Org. Sample: 05A MW-43-6 Collected: 05/18/03 14:53 Test Description TPH, Gasoline Range Org.	05/23/03 42.7 05/24/03 <u>Result</u> ND	0.009 Det Limit 0.05	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:38 date analyzed Category: GW Units By Analyzed Dt/Tm mg/L IM 05/24/03 13:46 Category: GW Units By Analyzed Dt/Tm mg/L IM 05/24/03 13:46
Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 04A trip blank Collected: 05/14/03 Test Description TPH, Gasoline Range Org. Sample: 05A MW-43-6 Collected: 05/18/03 14:53 Test Description TPH, Gasoline Range Org. Sample: 05B MW-43-6	05/23/03 42.7 05/24/03 <u>Result</u> ND	0.009 Det Limit 0.05	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:38 date analyzed Category: GW Units By Analyzed Dt/Tm mg/L IM 05/24/03 13:46 Category: GW
Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 04A trip blank Collected: 05/14/03 Test Description TPH, Gasoline Range Org. Sample: 05A MW-43-6 Collected: 05/18/03 14:53 Test Description TPH, Gasoline Range Org.	05/23/03 42.7 05/24/03 <u>Result</u> ND	0.009 Det Limit 0.05	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:38 date analyzed Category: GW Units By Analyzed Dt/Tm mg/L IM 05/24/03 13:46 Category: GW Units By Analyzed Dt/Tm mg/L IM 05/24/03 13:46
Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 04A trip blank Collected: 05/14/03 Test Description TPH, Gasoline Range Org. Sample: 05A MW-43-6 Collected: 05/18/03 14:53 Test Description TPH, Gasoline Range Org. Sample: 05B MW-43-6 Collected: 05/18/03 14:53	05/23/03 42.7 05/24/03 <u>Result</u> ND	0.009 Det Limit 0.05 Det Limit 0.05	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:38 date analyzed Category: GW Units By Analyzed Dt/Tm mg/L IM 05/24/03 13:46 Category: GW Units By Analyzed Dt/Tm 05/24/03 13:46 Category: GW Category: GW Category: GW Category: GW
Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 04A trip blank Collected: 05/14/03 Test Description TPH, Gasoline Range Org. Sample: 05A MW-43-6 Collected: 05/18/03 14:53 Test Description TPH, Gasoline Range Org. Sample: 05B MW-43-6	05/23/03 42.7 05/24/03 <u>Result</u> ND	0.009 Det Limit 0.05	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:38 date analyzed Category: GW Units By Analyzed Dt/Tm mg/L IM 05/24/03 13:46 Category: GW Units By Analyzed Dt/Tm mg/L IM 05/24/03 13:46

Sample: 05C MW-43-6 Collected: 05/18/03 14:53			Category: GW
Test Description TPH, Diesel Range Organics	Result 0.11	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 05/21/03 01:53
Sample: 05D MW-43-6 Collected: 05/18/03 14:53			Category: GW
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	Result ND 1.6	<u>Det Limit</u> 10 1.0	Units By Analyzed Dt/Tm mg/L YT 06/10/03 08:00 mg/L WV 06/09/03 15:10
Sample: 05E MW-43-6 Collected: 05/18/03 14:53			Category: GW
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	Result 18.5 10.0 05/19/03 0.199 ND 21.5	Det Limit	Milts By Analyzed Dt/Tm mg/L DED 06/10/03 10:45 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 14:30 mg/L as N WV 05/19/03 14:30 mg/L as CaCO3 TLC 06/02/03 09:55
Sample: 05G MW-43-6 Collected: 05/18/03 14:53			Category: GW
-	Result 05/23/03 28.5 05/24/03	Det Limit	Category: GW Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:40 date analyzed
Collected: 05/18/03 14:53 Test Description Digestion, Aqueous, 200.2 Iron, ICP	05/23/03 28.5		Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:40
Collected: 05/18/03 14:53 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 06A field blank	05/23/03 28.5		Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:40 date analyzed
Collected: 05/18/03 14:53 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 06A field blank Collected: 05/18/03 16:55 Test Description	05/23/03 28.5 05/24/03	0.009	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00 mg/L EL 05/24/03 15:40 date analyzed Category: GW Units By Analyzed Dt/Tm
Collected: 05/18/03 14:53 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 06A field blank Collected: 05/18/03 16:55 Test Description TPH, Gasoline Range Org. Sample: 07A MW-42-1	05/23/03 28.5 05/24/03	0.009 Det Limit 0.05	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00
Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 06A field blank Collected: 05/18/03 16:55 Test Description TPH, Gasoline Range Org. Sample: 07A MW-42-1 Collected: 05/18/03 17:56 Test Description	05/23/03 28.5 05/24/03 Result ND	0.009 Det Limit 0.05	Units By Analyzed Dt/Tm date digested AM 05/23/03 11:00

·			
Sample: 07E MW-42-1 MS Collected: 05/18/03 17:56	٠		Category: GW
Test Description	<u>Result</u>	<u>Det Limit</u>	<u>Units</u> <u>By</u> <u>Analyzed Dt/Tm</u>
Perchlorate	33.1	4.0	ug/L DFW 05/29/03 14:03
Sample: 07F MW-42-1 MSD			Category: GW
Collected: 05/18/03 17:56			
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
Perchlorate	33.5	4	ug/L DFW 05/29/03 14:22
Sample: 07G MW-42-1			Category: GW
Collected: 05/18/03 17:56			
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
TPH, Diesel Range Organics	ND	0.10	mg/L JSH 05/21/03 02:41
Sample: 07H MW-42-1 MS		•	Category: GW
Collected: 05/18/03 17:56			3 1
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
TPH, Diesel Range Organics	0.35	0.10	mg/L JSH 05/21/03 03:28
Sample: 07I MW-42-1 MSD			Category: GW
Sample: 07I MW-42-1 MSD Collected: 05/18/03 17:56			Category: GW
_	<u>Result</u>	Det Limit	Category: GW Units By Analyzed Dt/Tm
Collected: 05/18/03 17:56	Result 0.35	Det Limit 0.10	
Collected: 05/18/03 17:56 Test Description			<u>Units By Analyzed Dt/Tm</u>
Collected: 05/18/03 17:56 Test Description TPH, Diesel Range Organics			Units By Analyzed Dt/Tm mg/L JSH 05/21/03 04:16
Collected: 05/18/03 17:56 Test Description TPH, Diesel Range Organics Sample: 07J MW-42-1		0.10	Units By Analyzed Dt/Tm mg/L JSH 05/21/03 04:16
Collected: 05/18/03 17:56 Test Description TPH, Diesel Range Organics Sample: 07J MW-42-1 Collected: 05/18/03 17:56	0.35	0.10	Units By Analyzed Dt/Tmmg/L JSH 05/21/03 04:16 Category: GW
Collected: 05/18/03 17:56 Test Description TPH, Diesel Range Organics Sample: 07J MW-42-1 Collected: 05/18/03 17:56 Test Description	0.35	0.10	Units By Analyzed Dt/Tm mg/L JSH 05/21/03 04:16 Category: GW Units By Analyzed Dt/Tm
Collected: 05/18/03 17:56 Test Description TPH, Diesel Range Organics Sample: 07J MW-42-1 Collected: 05/18/03 17:56 Test Description Chemical Oxygen Demand	0.35 Result ND	0.10 Det Limit 10	Units By Analyzed Dt/Tm mg/L JSH 05/21/03 04:16 Category: GW Units By Analyzed Dt/Tm mg/L YT 06/10/03 08:00
Collected: 05/18/03 17:56 Test Description TPH, Diesel Range Organics Sample: 07J MW-42-1 Collected: 05/18/03 17:56 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	0.35 Result ND	0.10 Det Limit 10	Units By Analyzed Dt/Tm mg/L JSH 05/21/03 04:16 Category: GW Units By Analyzed Dt/Tm mg/L YT 06/10/03 08:00 mg/L WV 06/09/03 15:10
Collected: 05/18/03 17:56 Test Description TPH, Diesel Range Organics Sample: 07J MW-42-1 Collected: 05/18/03 17:56 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 07K MW-42-1	0.35 Result ND	0.10 Det Limit 10	Units By Analyzed Dt/Tm mg/L JSH 05/21/03 04:16 Category: GW Units By Analyzed Dt/Tm mg/L YT 06/10/03 08:00 mg/L WV 06/09/03 15:10
Collected: 05/18/03 17:56 Test Description TPH, Diesel Range Organics Sample: 07J MW-42-1 Collected: 05/18/03 17:56 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 07K MW-42-1 Collected: 05/18/03 17:56	Result ND 1.1	0.10 Det Limit 10 1.0	Units By Analyzed Dt/Tm mg/L JSH 05/21/03 04:16 Category: GW Units By Analyzed Dt/Tm mg/L YT 06/10/03 08:00 mg/L WV 06/09/03 15:10 Category: GW Units By Analyzed Dt/Tm mg/L DED 06/10/03 10:45
Collected: 05/18/03 17:56 Test Description TPH, Diesel Range Organics Sample: 07J MW-42-1 Collected: 05/18/03 17:56 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 07K MW-42-1 Collected: 05/18/03 17:56 Test Description	Result ND 1.1 Result ND	Det Limit 10 1.0	Units By Analyzed Dt/Tm mg/L JSH 05/21/03 04:16 Category: GW Units By Analyzed Dt/Tm mg/L YT 06/10/03 08:00 mg/L WV 06/09/03 15:10 Category: GW Units By Analyzed Dt/Tm mg/L DED 06/10/03 10:45 mg/L GS 05/27/03 15:00
Test Description TPH, Diesel Range Organics Sample: 07J MW-42-1 Collected: 05/18/03 17:56 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 07K MW-42-1 Collected: 05/18/03 17:56 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography	Result ND 1.1 Result ND ND ND ND 05/19/03	0.10 Det Limit 10 1.0 Det Limit 0.1 0.1	Units By Analyzed Dt/Tm mg/L JSH 05/21/03 04:16 Category: GW Units By Analyzed Dt/Tm mg/L YT 06/10/03 08:00 mg/L WV 06/09/03 15:10 Category: GW Units By Analyzed Dt/Tm mg/L DED 06/10/03 10:45 mg/L GS 05/27/03 15:00 date complete WV
Test Description TPH, Diesel Range Organics Sample: 07J MW-42-1 Collected: 05/18/03 17:56 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 07K MW-42-1 Collected: 05/18/03 17:56 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom	Result ND 1.1 Result ND ND 05/19/03 1.92	0.10 Det Limit 10 1.0 Det Limit 0.1 0.1 0.1	Units By Analyzed Dt/Tm mg/L JSH 05/21/03 04:16 Category: GW Units By Analyzed Dt/Tm mg/L YT 06/10/03 08:00 mg/L WV 06/09/03 15:10 Category: GW Units By Analyzed Dt/Tm mg/L WV 06/09/03 15:10 Category: GW
Test Description TPH, Diesel Range Organics Sample: 07J MW-42-1 Collected: 05/18/03 17:56 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 07K MW-42-1 Collected: 05/18/03 17:56 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom	Result ND 1.1 Result ND ND 05/19/03 1.92 ND	0.10 Det Limit 10 1.0 Det Limit 0.1 0.1	Units By Analyzed Dt/Tm mg/L JSH 05/21/03 04:16 Category: GW Units By Analyzed Dt/Tm mg/L YT 06/10/03 08:00 mg/L WV 06/09/03 15:10 Category: GW Units By Analyzed Dt/Tm mg/L WV 06/09/03 15:10 Category: GW Units By Analyzed Dt/Tm mg/L DED 06/10/03 10:45 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 14:45 mg/L as N WV 05/19/03 14:45
Test Description TPH, Diesel Range Organics Sample: 07J MW-42-1 Collected: 05/18/03 17:56 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 07K MW-42-1 Collected: 05/18/03 17:56 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom	Result ND 1.1 Result ND ND 05/19/03 1.92	0.10 Det Limit 10 1.0 Det Limit 0.1 0.1 0.1	Units By Analyzed Dt/Tm mg/L JSH 05/21/03 04:16 Category: GW Units By Analyzed Dt/Tm mg/L YT 06/10/03 08:00 mg/L WV 06/09/03 15:10 Category: GW Units By Analyzed Dt/Tm mg/L WV 06/09/03 15:10 Category: GW

Order # 03-05-770 06/12/03 08:46 Page 6

TEST RESULTS BY SAMPLE

Sample: 07M MW-42-1

Collected: 05/18/03 17:56

Category: GW

Iron, ICP 0.073 0.009 mg/L EL 05/24/03 15:43

Metals, ICP/OES 05/24/03 date analyzed

Sample: 08A trip blank Category: GW

Collected: 05/14/03

Sample: 01A MW-44-1			Category: GW
Collected: 05/18/03 19:27			
	-		,
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
TPH, Gasoline Range Org.	ND	0.05	mg/L IM 05/24/03 14:31
Sample: 01B MW-44-1			Category: GW
Collected: 05/18/03 19:27			3233517. 6
Test Description	<u>Result</u>	Det Limit	Units By Analyzed Dt/Tm
Perchlorate	· ND	4.0	ug/L DFW 05/29/03 13:02
Sample: 01C MW-44-1			Category: GW
Collected: 05/18/03 19:27			
Tost Description	Dogul t	Dot Timit	Units By Analyzed Dt/Tm
Test Description TPH, Diesel Range Organics	<u>Result</u> ND	Det Limit 0.10	mg/L JSH 05/21/03 05:03
irm, breser kange organics	ND	0.10	iiig/ ii bah 03/21/03 03.03
Sample: 01D MW-44-1			Category: GW
Collected: 05/18/03 19:27			
Test Description	Result	<u>Det Limit</u>	<u>Units</u> By Analyzed Dt/Tm
Chemical Oxygen Demand	ND	10	mg/L YT 06/10/03 08:00
Total Organic Carbon, Aq	ND	1.0	mg/L WV 06/09/03 15:10
Cample: 012 MW-44-1			Category, CW
Sample: 01E MW-44-1 Collected: 05/18/03 19:27			Category: GW
Sample: 01E MW-44-1 Collected: 05/18/03 19:27			Category: GW
-	<u>Result</u>	Det Limit	Category: GW Units By Analyzed Dt/Tm
Collected: 05/18/03 19:27	Result 0.184	Det Limit 0.1	
Collected: 05/18/03 19:27 Test Description			<u> Units By Analyzed Dt/Tm</u>
Collected: 05/18/03 19:27 Test Description Ferric Iron - AWWA B407-93	0.184	0.1	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15
Collected: 05/18/03 19:27 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron	0.184 0.1	0.1	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00
Collected: 05/18/03 19:27 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography	0.184 0.1 05/19/03	0.1	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00 mg/L as N WV 05/19/03 15:00
Collected: 05/18/03 19:27 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom	0.184 0.1 05/19/03 2.06	0.1 0.1 0.06	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00 mg/L as N WV 05/19/03 15:00 mg/L WV 05/19/03 15:00
Collected: 05/18/03 19:27 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom	0.184 0.1 05/19/03 2.06 ND	0.1 0.1 0.06 0.02	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00 mg/L as N WV 05/19/03 15:00
Collected: 05/18/03 19:27 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	0.184 0.1 05/19/03 2.06 ND 3.53	0.1 0.1 0.06 0.02 0.38	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00 mg/L as N WV 05/19/03 15:00 mg/L WV 05/19/03 15:00 mg/L as Caco3 TLC 06/02/03 09:55
Collected: 05/18/03 19:27 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 01G MW-44-1	0.184 0.1 05/19/03 2.06 ND 3.53	0.1 0.1 0.06 0.02 0.38	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00 mg/L as N WV 05/19/03 15:00 mg/L WV 05/19/03 15:00
Collected: 05/18/03 19:27 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	0.184 0.1 05/19/03 2.06 ND 3.53	0.1 0.1 0.06 0.02 0.38	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00 mg/L as N WV 05/19/03 15:00 mg/L WV 05/19/03 15:00 mg/L as Caco3 TLC 06/02/03 09:55
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 01G MW-44-1 Collected: 05/18/03 19:27	0.184 0.1 05/19/03 2.06 ND 3.53 4.2	0.1 0.06 0.02 0.38 1.0	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00 mg/L as N WV 05/19/03 15:00 mg/L WV 05/19/03 15:00 mg/L WV 05/19/03 09:55 Category: GW
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 01G MW-44-1 Collected: 05/18/03 19:27 Test Description	0.184 0.1 05/19/03 2.06 ND 3.53 4.2	0.1 0.1 0.06 0.02 0.38	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00 mg/L as N WV 05/19/03 15:00 mg/L WV 05/19/03 15:00 mg/L WV 05/19/03 09:55 Category: GW
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 01G MW-44-1 Collected: 05/18/03 19:27	0.184 0.1 05/19/03 2.06 ND 3.53 4.2	0.1 0.06 0.02 0.38 1.0	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00 mg/L as N WV 05/19/03 15:00 mg/L WV 05/19/03 15:00 mg/L WV 05/19/03 09:55 Category: GW
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 01G MW-44-1 Collected: 05/18/03 19:27 Test Description Digestion, Aqueous, 200.2	0.184 0.1 05/19/03 2.06 ND 3.53 4.2	0.1 0.1 0.06 0.02 0.38 1.0	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00 mg/L as N WV 05/19/03 15:00 mg/L WV 05/19/03 15:00 mg/L WV 05/19/03 09:55 Category: GW Units By Analyzed Dt/Tm date digested AM 05/27/03 15:40
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 01G MW-44-1 Collected: 05/18/03 19:27 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES	0.184 0.1 05/19/03 2.06 ND 3.53 4.2 Result 05/27/03 0.284	0.1 0.1 0.06 0.02 0.38 1.0	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00 mg/L as N WV 05/19/03 15:00 mg/L WV 05/19/03 15:00 mg/L WV 05/19/03 09:55 Category: GW Units By Analyzed Dt/Tm date digested AM 05/27/03 15:40 mg/L LC 06/02/03 13:47 date analyzed
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 01G MW-44-1 Collected: 05/18/03 19:27 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 02A trip blank	0.184 0.1 05/19/03 2.06 ND 3.53 4.2 Result 05/27/03 0.284	0.1 0.1 0.06 0.02 0.38 1.0	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00 mg/L as N WV 05/19/03 15:00 mg/L WV 05/19/03 15:00 mg/L as CaCO3 TLC 06/02/03 09:55 Category: GW date digested AM 05/27/03 15:40 mg/L LC 06/02/03 13:47
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 01G MW-44-1 Collected: 05/18/03 19:27 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES	0.184 0.1 05/19/03 2.06 ND 3.53 4.2 Result 05/27/03 0.284	0.1 0.1 0.06 0.02 0.38 1.0	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00 mg/L as N WV 05/19/03 15:00 mg/L WV 05/19/03 15:00 mg/L WV 05/19/03 09:55 Category: GW Units By Analyzed Dt/Tm date digested AM 05/27/03 15:40 mg/L LC 06/02/03 13:47 date analyzed
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 01G MW-44-1 Collected: 05/18/03 19:27 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 02A trip blank Collected: 05/14/03	0.184 0.1 05/19/03 2.06 ND 3.53 4.2 Result 05/27/03 0.284 06/02/03	0.1 0.06 0.02 0.38 1.0	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00 mg/L wV 05/19/03 15:00 mg/L WV 05/19/03 15:00 mg/L as CaCO3 TLC 06/02/03 09:55 Category: GW Units By Analyzed Dt/Tm date digested AM 05/27/03 15:40 mg/L LC 06/02/03 13:47 date analyzed Category: GW
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 01G MW-44-1 Collected: 05/18/03 19:27 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES Sample: 02A trip blank	0.184 0.1 05/19/03 2.06 ND 3.53 4.2 Result 05/27/03 0.284	0.1 0.1 0.06 0.02 0.38 1.0	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:00 mg/L as N WV 05/19/03 15:00 mg/L WV 05/19/03 15:00 mg/L WV 05/19/03 09:55 Category: GW Units By Analyzed Dt/Tm date digested AM 05/27/03 15:40 mg/L LC 06/02/03 13:47 date analyzed

Sample: 03A MW-42-11 Collected: 05/18/03 20:20			Category: GW
Test Description TPH, Gasoline Range Org.	Result 0.08	Det Limit 0.05	Units By Analyzed Dt/Tm mg/L IM 05/24/03 15:15
Sample: 03B MW-42-11 Collected: 05/18/03 20:20			Category: GW
Test Description Perchlorate	Result ND	Det Limit 4.0	Units By Analyzed Dt/Tm ug/L DFW 05/29/03 13:20
Sample: 03C MW-42-11 Collected: 05/18/03 20:20			Category: GW
Test Description TPH, Diesel Range Organics	<u>Result</u> ND	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 05/21/03 06:38
Sample: 03D MW-42-11 Collected: 05/18/03 20:20			Category: GW
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	Result ND ND	Det Limit 10 1.0	Units By Analyzed Dt/Tm mg/L YT 06/10/03 08:00 mg/L WV 06/09/03 15:10
·			
Sample: 03E MW-42-11 Collected: 05/18/03 20:20			Category: GW
Collected: 05/18/03 20:20 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom	Result ND ND 05/19/03 1.94 ND 3.13	Det Limit	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:15 mg/L as N WV 05/19/03 15:15 mg/L WV 05/19/03 15:15
Collected: 05/18/03 20:20 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom	ND ND 05/19/03 1.94 ND	0.1 0.1 0.06 0.02	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:15 mg/L as N WV 05/19/03 15:15
Collected: 05/18/03 20:20 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 03G MW-42-11 Collected: 05/18/03 20:20 Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES	ND ND 05/19/03 1.94 ND 3.13	0.1 0.06 0.02 0.38 1.0	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:15 mg/L as N WV 05/19/03 15:15 mg/L WV 05/19/03 15:15 mg/L WV 05/19/03 09:55 Category: GW Units By Analyzed Dt/Tm date digested AM 05/27/03 15:40 mg/L LC 06/02/03 14:00 date analyzed
Collected: 05/18/03 20:20 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 03G MW-42-11 Collected: 05/18/03 20:20 Test Description Digestion, Aqueous, 200.2 Iron, ICP	ND ND 05/19/03 1.94 ND 3.13 3.1 Result 05/27/03 0.087	0.1 0.06 0.02 0.38 1.0	Units By Analyzed Dt/Tm mg/L DED 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:15 mg/L as N WV 05/19/03 15:15 mg/L WV 05/19/03 15:15 mg/L as CaCO3 TLC 06/02/03 09:55 Category: GW Units By Analyzed Dt/Tm date digested AM 05/27/03 15:40 mg/L LC 06/02/03 14:00

Sample: 04B MW-44-11 Collected: 05/18/03 21:12			Category: GW
Test Description Perchlorate	Result ND	Det Limit 4.0	Units By Analyzed Dt/Tm ug/L DFW 05/29/03 13:39
Sample: 04C MW-44-11 Collected: 05/18/03 21:12			Category: GW
Test Description TPH, Diesel Range Organics	Result ND	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 05/21/03 07:26
Sample: 04D MW-44-11 Collected: 05/18/03 21:12			Category: GW
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	Result ND ND	Det Limit 10 1.0	<u>Units By</u> <u>Analyzed Dt/Tm</u> mg/L YT 06/10/03 08:00 mg/L WV 06/09/03 15:10
Sample: 04E MW-44-11 Collected: 05/18/03 21:12			Category: GW
-	Result 0.138 ND 05/19/03 2.11 ND 3.63 4.1	Det Limit	Category: GW Units By Analyzed Dt/Tm mg/L JSH 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:30 mg/L as N WV 05/19/03 15:30 mg/L WV 05/19/03 15:30 mg/L WV 05/19/03 09:55
Collected: 05/18/03 21:12 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom	0.138 ND 05/19/03 2.11 ND 3.63	0.1 0.1 0.06 0.02 0.38	Units By Analyzed Dt/Tm mg/L JSH 06/11/03 15:15 mg/L GS 05/27/03 15:00 date complete WV mg/L as N WV 05/19/03 15:30 mg/L as N WV 05/19/03 15:30 mg/L WV 05/19/03 15:30

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX) WWW.ATLANTICCOASTLABS.COM

REPORT OF ANALYSIS

Rosengarten, Smith & Assoc. 2222 Western Trails Blvd.

Suite 300

Austin, TX 78745

Attn: Mr. Charles Montero Invoice Number: 102438

Order #: 03-06-A59 Date: 07/11/03 14:43

Work ID: GE Railcar (2017) Date Received: 06/25/03 Date Completed: 07/11/03

Client Code: RSA

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
<u>Number</u>	Description	Number	Description
01	trip blank	04	field blank
02	MW-43-1	05	MW-44-1
03	MW-2-1	06	MW-42-1

This cover page is an integral part of the analytical report. Laboratory Certifications: DE DE00011

PA 68-335

MD 138 NJ DE568

Certified By

Warren Van Arsdall

Case Narrative

ACL Order Number 0306A59

Overview:

A set of 6 samples was received from Rosengarten, Smith and Associates and is identified as 0306A59. 0306A59 consisted of four (4) samples, one (1) trip blank and one (1) field blank.

Matrix Spike/Matrix Spike Duplicates were analyzed at a frequency of 1 per ten samples. MS/MSD samples for this sample set are 0306A59-06DL 5x, 0306A59-02DL 25x and 0306A59-03DL 25x.

Samples were received preserved, cooled to 4° C. The hold time for the samples was fourteen days for aromatic compounds and fourteen days for halogenated compounds. Ice was present in the cooler at time of receipt.

Samples were analyzed by Method 8260B and Method 8000B from SW-846, Test Methods for Evaluating Solid Waste. A 5 mL volume was used for analysis.

Summary:

All samples were analyzed within the prescribed hold time.

The following is a summary of contaminants found in the method blank(s) analyzed with this set of samples.

<u>Date</u>	Comments	
06/27/03 03:45	None	
06/27/03 08:24	None	
06/30/03 23:12	None	
07/01/03 07:14	None	

The instrument performance was acceptable as indicated by the tune report for 4-Bromofluorobenzene.

The average RRF for all compounds was less than 15% for the initial calibration performed on 6/26/03 except for bromoform and 1,2-dibromo-3-chloropropane. A linear regression curve fit (not forced through 0) was used for these compounds.

The average RRF for all compounds was less than 15% for the initial calibration performed on 06/30/03 except for chloromethane and methylene chloride. A linear regression curve fit (not forced through 0) was used for these compounds.

Case Narrative

ACL Order Number 0306A59 (Continued)

The acceptance criteria for the System Performance Check Compounds and Continuing Calibration Compounds was met for continuing calibration check standards.

The surrogate recoveries were within the acceptable limits in all samples analyzed with the following exceptions: 0306A59-02 analyzed on 06/27/03 failed SMC3, sample was reanalyzed at a 5x dilution and all SMC's passed. 0306A59-03 analyzed on 06/27/03 failed SMC3, sample was re-analyzed at a 5x dilution and all SMC's passed.

The results of the MS/MSD were all within the acceptance limits.

The internal standard areas were all within the acceptance criteria.

The percent recoveries for the analytes in the Laboratory Control Sample were within acceptable limits.

Major Issues:

None

Minor Issues:

0306A59-05:

Sample was re-analyzed on 6/30/03 due to possible carryover from prior sample in initial analysis on 6/27/03.

0306A59-02:

Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 07/01/03.

0306A59-03:

Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 07/01/03.

Case Narrative

ACL Order Number 0306A59 (Continued)

0306A59-06:

Cis-1,2-dichloroethene and trichloroethene exceeded the calibration range. Sample was diluted and re-analyzed on 07/01/03.

0306A59-02DL 5x:

Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 07/01/03.

0306A59-03DL 5x:

Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 07/01/03.

GLOSSARY OF DATA QUALIFIER CODES (ORGANIC)

В	=	Not detected substantially above the level reported in laboratory or field blanks

J = Analyte present. Reported Value may not be accurate or precise

E = Analyte present, exceeds calibration range

U = Analyte analyzed for, undetected.

N = Tentative Identification. Consider present. Special methods may be needed to confirm its presence or absence in future sampling efforts.

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX) WWW.ATLANTICCOASTLABS.COM

REPORT OF ANALYSIS

Rosengarten, Smith & Assoc. 2222 Western Trails Blvd.

Suite 300

Austin, TX 78745

Attn: Mr. Charles Montero Invoice Number: 102438 Order #: 03-06-A59 Date: 07/21/03 12:49

Work ID: GE Railcar (2017)
Date Received: 06/25/03
Date Completed: 07/11/03

Client Code: RSA

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	Number	Description
01	trip blank	04	field blank
02	MW-43-1	05	MW-44-1
03	MW-2-1	06	MW-42-1

This cover page is an integral part of the analytical report. Laboratory Certifications: DE DE00011 PA 68-335

MD 138

NJ DE568

Certified By

Warren Van Arsdall

Warren Van Gerstell Det

ACL Order Number 0306A59

Overview:

A set of 6 samples was received from Rosengarten, Smith and Associates and is identified as 0306A59 consisting of 4 samples, 1 trip blank and 1 field blank.

Samples were received preserved, cooled to 4° C. Ice was present in the cooler at time of receipt. The temperature at time of receipt was 1° C.

Summary:

Gasoline Range Organics

All samples were analyzed within the prescribed hold time.

Analysis was performed by modified EPA 8015 using P/T GC-MS.

Method Blank was non-detected with an MDL of 0.050 mg/L.

Laboratory Control Sample recovery was acceptable.

All surrogate recoveries were acceptable.

Diesel Range Organics

All samples were analyzed within the prescribed hold time.

Analysis was performed by modified EPA 8015 (modified).

Method Blank was non-detected with an MDL of 0.100 mg/L.

Laboratory Control Sample recovery was acceptable.

All surrogate recoveries were acceptable.

Internal standard responses were acceptable.

MS/MSD recovery and precision were acceptable.

The method blank was reanalyzed on 07/02/03 and 07/03/03 due to chromatography and carryover from a previous standard.

Sample 0306A59-06 was reanalyzed on 07/02/03 and 07/03/03 due to chromatography.

ACL Order Number 0306A59 (Continued)

Methane, Ethane, Ethene - Subcontracted

Subcontractor data package enclosed.

Ion Chromatography

Samples were initially analyzed on 06/25/03 using a 10x dilution. Samples were reanalyzed on 06/30/03 using a 1x dilution.

Continuing calibration verifications were all acceptable.

Laboratory Control Sample was acceptable

Matrix Spike/Matrix Spike Duplicate was acceptable.

Metals Analysis (Total Iron) – EPA6010

Quality Control Sample (QC 19) was acceptable.

Interference A and Interference AB was acceptable.

Initial Laboratory Performance Check was acceptable.

Laboratory Fortified Blank was acceptable.

Matrix Spike/Matrix Spike Duplicate was not valid due to the ambient level of iron being much greater than the spike level.

Alkalinity, Total - Standard Methods 2320B. 19th Edition

Laboratory Blanks were acceptable.

Laboratory Fortified Blanks were acceptable.

Laboratory duplicates were acceptable.

Total Organic Carbon – EPA 9060

Laboratory Blanks were acceptable.

Laboratory Fortified Blanks were acceptable.

Laboratory duplicates were acceptable.

Laboratory Fortified Blanks were acceptable.

Case Narrative

ACL Order Number 0306A59 (Continued)

Matrix spikes were acceptable.

Chemical Oxygen Demand - EPA 410.4

Method Blank was acceptable.

Laboratory Fortified Blanks were acceptable.

Sample duplicates were acceptable.

Matrix spikes were acceptable.

PROJECT COMMENTS

1. The high levels of chlorobenzene in samples 0306A59-02 and -03 produced an interference with chlorobenzene-d5, an internal standard. This resulted in the low recovery for the surrogate standard 4-bromofluorobenzene. The recovery for 4-bromofluorobenzene in the diluted samples was within the acceptance criteria.

Digestion

Method 200.2

Iron (Fe) - ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA (1983) Method 200.7

RCRA TCLP & groundwater

SW 846 Method 6010

Solids

SW 846 Method 6010

ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA Method 200.7

RCRA TCLP & groundwater SW 846 Method 6010

Solids

SW 846 Method 6010

Chemical Oxygen Demand

EPA Method 410.4 (manual colorimetric)

Total Organic Carbon, Aqueous

EPA Method 415.1

SW-846 Method 9060

Total Petroluem Hydrocarbons, Diesel Range Organics

SW-846, Method 8015, GC/FID (modified)

Total Petroleum Hydrocarbons-Gasoline Range Organics (TPH/GRO)

SW-846 Method 8015 (modified)

Volatile Organics by GC/MS (aqueous)

SW846 Method 8260B (purge & trap, capillary column GC/MS)

Total Alkalinity

SM 2320B (titrimetric)

Nitrate/Nitrite (combined), Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes

SW-846 Method 9056

Sulfate, Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes

SW-846 Method 9056

CHAIN O	F CUS	STO	DY REC	COR	D																		
PROJECT NAM												ATLANT	T C	CO	AC	T			630	Chur	chm	ans Road	
COMPANY	i <u>Tanasan ya </u>	- · · · · · ·	المراجع الم	1 h 4.	ASSOC	iate	42.	Inc				Laboratorie										ware 19702	
ADDRESS 2	222 7	<u>ا ج. ا</u> (ا	Fry Trai	15 81	ud #				4			Laboratorie	3, 111	согр	Orac	, u			302	-266-	9121	• 454-8720 (FAX	X)
PHONE (51	2)7	07	-1777		•																,		_ _
SAMPLED BY	J Z	266	cley																			0306A5	9
SAMPLED BY			7		. [SAMPI	LE COL	LECTIO	ON FEE:				192	Just	7					AN	ALYSE		
SIGNATURE	7 11 -7 15	<u>06.15</u>	<u> </u>		-	QUOTE	ED PRI	CE:							٠. /	-	/ /	Love/	<i>Y</i> /	. a/	7	////	
PRINT NAME	ard t	<u> </u>	- C KI)												/ /	/ /	/&			7 3 3)	/ / / "	-
						CO	NTAINER			RS	•					//	/ > /	79					
SAMPLE NO.	DATE	TIME	SAME	PLE LOCAT	TION	617	C 0/D	GRAB	OM NO. OF	RINE	SAMPLE MATRIX	PRESERVATIVE		[3]	39		<i>/</i> (\times)	/ /	/ /		
NU.						512	E G/P	5	COMF NO.	CONI	VIAINIA		/-	SJ 1	1	13.7	19.	vi)X				COMMENTS	
	06/29/03	NΑ	Trip Blan	de CL	er care	(i)	G		3		later	HC1,ICB	X									米V=Variou	<u></u>
	31/24/03	1217	MW-43	-1		V	94	X	11			HILL HINDS	X	X	X	XX	2 X	ΊX					
			MW- 2-			Ī	GH	V	11		Vater	Hosoy Tee His HNOS Hosoy Ice	V	V	X		75						
	06 34 03		Field B			V	G		3		Vater	1 11/2 (7 2 4	V	1			1	1	_			· · · · · · · · · · · · · · · · · · ·	
	06/24/03					Ň	G+p		11		Vater Vater	ILL HWW.		V		XV	75	15					
	26/24/03					-\ \ \	G+P		- -11	14	ACT F	HC1, HNO3		Q		V ($\exists \subseteq$	大	1				
	126/103	1744	11701 - 4	<u>]</u>	~ A1	~ —	0	1-5-3				RD -	= / >				7						
					EN	-/ -	10	+	——————————————————————————————————————	4	\overline{c}	NV -						-	-				
	ļ						+	+-		+			+	-		-				-			
j-6	<u> </u>						+		+					-		 -		-					
							-	 -				<u> </u>			 					1			
	<u> </u>						 	-					-	 				<u> </u>	+				
	<u> </u>						 -							1		_	.		<u> </u>	ļ			
							ļ	1-1	_	_			. '						<u> </u>				
												12		ļ				1					
								J			_											pm	
Relinquished by:		Date	/ Time		Received by	:	· · · · · ·			Re	elinquisi	hed by:			Date	/ Time				Re	ceive	d by:	
Edward 17	arroche	31 JE	125/08 07	10													1)	
Relinquished by:	,	Date	/ Time		Received by	:				Re	elinquis	hed by:			Date	/ Time	•		•	Re	ceive	d for Laboratory by:	
									•						6	196	3 6	クフィ	l D		(D)	inteller	1
Method of Shipment			1		Remarks:	nde de		10 10 10 10 10 10 10 10 10 10 10 10 10 1	(%) (%)			Charles Control	75, 11, 14 E				V 6.15		Sam	niae	م معاد		NO

AR101962

Samples Iced Samples Preserved Sample Description: trip blank Lab No: 01A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 06/24/03 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	ND	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane			
1,1-Dichloroethane	ND	0.55	
1,1-Dichloroethene	ND	0.65	
•	ND	0.57	
cis-1,2-Dichloroethene	ND	0.55	
trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	—
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	—
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECO	VERY	LIMITS	
	02		118

Order # 03-06-A59 07/11/03 14:34 Page 5

TEST RESULTS BY SAMPLE

Sample Description: trip blank

Lab No: 01A

mark Description. City blank GMAC 0000 Makes a

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 06/24/03

Category: GW

Toluene-d8

101

___88__-

4-Bromofluorobenzene

86 - 115

Notes and Definitions for this Report:

DATE RUN 06/27/03 09:09:00

ANALYST _IM

CONC FACTOR

UNITS _____uq/

Sample Description: MW-43-1 Lab No: 02A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 06/24/03 12:17 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	7.5	0.63	
Bromodichloromethane	_ ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	484	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	0.78	0.65	
1,1-Dichloroethene	ND	0.57	<u></u> -
cis-1,2-Dichloroethene	ND	0.55	
trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	1.3	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
			_
SURROGATE %RECO	OVERY	LIMITS	
Dibromofluoromethane	92	<u>86</u>	118

Sample Description: MW-43-

Lab No: 02A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 06/24/03 12:17

Category: **GW**

Toluene-d8 4-Bromofluorobenzene

88 86

Notes and Definitions for this Report:

DATE RUN 06/27/03 10:41:00

ANALYST IM

CONC FACTOR 1 UNITS ug/L

Sample Description: MW-43-1

Lab No: 02C

Test Description: methane, ethane, ethene

Method:

Test Code: S_GAS

Collected: 06/24/03 12:17

Category: GW

PARAMETER RESULT LIMIT UNITS WEIGHT Methane 64 2.0 uq/L Ethane ND 4.0 Ethene ND

Notes and Definitions for this Report:

DATE RUN _ 07/08/03 ANALYST stl CONC FACTOR ____ UNITS ____

Sample Description: MW-2-1

Lab No: 03A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 06/24/03 14:09 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	39	3.8	
Benzene	9.0	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	38	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	547	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	0.70	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	ND	0.55	
trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	.0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	1.7	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECC	VERY	LIMITS	
Dibromofluoromethane	94	<u>86</u>	118

03	14:34	T1	EST 1	RESULTS	ΒY	SAMPLE

Sample Description:	MW-2-1	Lab No:	03A
---------------------	--------	---------	-----

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 06/24/03 14:09 Category: GW

Toluene-d8 96 88 - 110
4-Bromofluorobenzene 69 Q 86 - 115

Notes and Definitions for this Report:

DATE RUN 06/27/03 11:27:00 ANALYST IM

CONC FACTOR 1
UNITS uq/L

Sample Description: MW-2-1 Lab No: 03C

Test Description: methane, ethane, ethene Method: Test Code: S_GAS

Collected: 06/24/03 14:09 Category: GW

PARAMETER	RESULT	LIMIT	UNITS	WEIGHT
Methane		18 2.0	ug/L	-
Ethane		ND 4.0	uq/L	
Ethene	1	<u>NTD</u> 3.0	uq/L	

Notes and Definitions for this Report:

DATE RUN 07/08/03
ANALYST stl
CONC FACTOR UNITS

Sample Description: field blank Lab No: 04A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 06/24/03 15:36 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	·
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	ND	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	ND	0.55	
trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	·		
Vinyl Chloride	ND	0.65	
-	ND ND	0.55	
o-Xylene	ND ND	1.1	
m,p-Xylene	ND ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits	. ———		
SURROGATE %RECOV	VERY	LIMITS	
	01		118

Order # 03-06-A59

Page 11

07/11/03 14:34 _____TEST RESULTS BY SAMPLE

Sample Description: field blank

Lab No: 04A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 06/24/03 15:36

Category: **GW**

Toluene-d8 4-Bromofluorobenzene

101

<u>88</u> - <u>110</u>

Notes and Definitions for this Report:

DATE RUN 06/27/03 09:54:00

ANALYST _IM

CONC FACTOR _____1

UNITS _____uq/1

Sample Description: MW-44-1 Lab No: 05A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 06/24/03 16:20 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	4.8	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	5.3	0.62	
Chloroethane	ND	0.82	
Chloroform	1.2	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	1.2	0.55	
1,1-Dichloroethane	ND		
1,1-Dichloroethene	ND	0.65	
cis-1,2-Dichloroethene		0.57	
	4.1	0.55	
trans-1,2-Dichloroethene 1,2-Dichloroethene, total	1.5	0.59	
· · · · · · · · · · · · · · · · · · ·	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	<u>ND</u>	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	18	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	0.70	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	6.4	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
CIMPOCATE & PROCE	renv	I TMTTO	
SURROGATE %RECO	VERY 04	LIMITS 86 -	<u>118</u>
			

Sample Description:	MW-44-1	Lab No: 0)5A
---------------------	---------	-----------	-----

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 06/24/03 16:20

Toluene-d8

4-Bromofluorobenzene

Notes and Definitions for this Report:

DATE RUN 06/30/03 23:53:00

ANALYST RJM

CONC FACTOR 1
UNITS ug/L

Sample Description: MW-44-1

Lab No: 05C

Test Description: methane, ethane, ethene

Method:

Category: GW

Test Code: S GAS

Collected: 06/24/03 16:20

Category: **GW**

PARAMETER	RESULT	LIMIT	UNITS	WEIGHT
Methane	ND	2.0	ug/L	
Ethane	ND	4.0	ug/L	
Ethene	ND	3.0	uq/L	

Notes and Definitions for this Report:

DATE RUN 07/08/03

ANALYST <u>stl</u>

CONC FACTOR

UNITS _____

Sample Description: MW-42-1 Lab No: 06A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 06/24/03 17:42 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	21	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	2.5	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	6.3	0.62	
Chloroethane	ND	0.82	
Chloroform	1.1	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	1.0	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene			
cis-1,2-Dichloroethene	1.5	0.57	
trans-1,2-Dichloroethene	52	0.55	
•	30	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	1.5	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	1.2	0.44	
Tetrachloroethene	ND	0.67	
Toluene	0.70	0.64	
1,1,2-Trichloroethane	0.65	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	61	0.65	
Vinyl Chloride	<u> 3.5</u>	0.55	
o-Xylene	1.3	1.1	
m,p-Xylene	4.4	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 10	<u> </u>	86	118

7/11/03 14:34	TEST RESULTS BY SAMPLE

Sample Description: MW-42-1 Lab No: 06A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 06/24/03 17:42 Category: GW

Toluene-d8 94 88 - 110 4-Bromofluorobenzene 96 86 - 115

Notes and Definitions for this Report:

DATE RUN 06/27/03 12:58:00 ANALYST IM

CONC FACTOR 1 UNITS uq/L

Sample Description: MW-42-1

Lab No: 06C

Test Description: methane, ethane, ethene

Method:

Test Code: S_GAS

Collected: 06/24/03 17:42

Category: GW

PARAMETER RESULT LIMIT UNITS WEIGHT Methane ND 2.0 ug/L Ethane ND 4.0 ug/L Ethene 3.0 ND ug/L

Notes and Definitions for this Report:

DATE RUN 07/08/03
ANALYST stl
CONC FACTOR UNITS

Sample: 02A MW-43-1 Collected: 06/24/03 12:17			Category: GW
Test Description TPH, Gasoline Range Org.	<u>Result</u> ND	Det Limit 0.05	Units By Analyzed Dt/Tm mg/L IM 06/27/03 10:41
Sample: 02B MW-43-1 Collected: 06/24/03 12:17			Category: GW
Test Description TPH, Diesel Range Organics	Result 0.19	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 06/30/03 17:26
Sample: 02D MW-43-1 Collected: 06/24/03 12:17			Category: GW
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	Result 20 7.7	Det Limit 10 1.0	Units By Analyzed Dt/Tm mg/L YT 07/01/03 08:00 mg/L EL 06/26/03 15:18
Sample: 02E MW-43-1 Collected: 06/24/03 12:17			Category: GW
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	Result 45.7 4.0 06/25/03 0.090 15.0 74	Det Limit	Units By Analyzed Dt/Tm mg/L DED 07/10/03 13:30 mg/L GS 07/07/03 14:30 date complete AM mg/L as N AM 06/30/03 23:44 mg/L AM 06/30/03 20:02 mg/L as CaCO3 TLC 06/30/03 08:39
Sample: 02F MW-43-1 Collected: 06/24/03 12:17			Category: GW
Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES	Result 06/26/03 49.7 06/28/03	Det Limit 0.009	Units By Analyzed Dt/Tm date digested EL 06/26/03 20:30 mg/L EL 06/28/03 18:11 date analyzed
Sample: 03A MW-2-1 Collected: 06/24/03 14:09			Category: GW
Test Description TPH, Gasoline Range Org.	Result 0.06	Det Limit 0.05	Units By Analyzed Dt/Tm mg/L IM 06/27/03 11:27
Sample: 03B MW-2-1 Collected: 06/24/03 14:09			Category: GW
Test Description TPH, Diesel Range Organics	Result 0.21	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 06/30/03 18:14

Sample: 03D MW-2-1 Collected: 06/24/03 14:09			Category: GW
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
Chemical Oxygen Demand	7510	10	mg/L YT 07/01/03 09:00
Total Organic Carbon, Aq	3100	1.0	mg/L EL 07/08/03 19:44
,			
Sample: 03E MW-2-1			Category: GW
Collected: 06/24/03 14:09			
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
Ferric Iron - AWWA B407-93	148	0.1	mg/L DED 07/10/03 13:30
Ferrous Iron	50	0.1	mg/L GS 07/07/03 14:30
Ion chromatography	06/25/03		date complete AM
Nitrate/Nitrite-Ion Chrom	ND	0.08	mg/L as N AM 06/30/03 23:59
Sulfate, Ion Chrom	5.12	0.38	mg/L AM 06/30/03 23:59
Total Alkalinity-Titration	1810	1.0	mg/L as CaCO3 TLC 06/30/03 08:39
Total Alkalinity-littlation	1010	1.0	mg/H as cacos The 06/30/03 08:39
Sample: 03F MW-2-1			Category: GW
Collected: 06/24/03 14:09			
Test Description	Result	<u>Det Limit</u>	<u>Units By Analyzed Dt/Tm</u>
Digestion, Aqueous, 200.2	06/26/03		date digested EL 06/26/03 20:30
Iron, ICP	198	0.009	mg/L EL 06/26/03 20:30
Metals, ICP/OES	06/28/03		date analyzed
Sample: 05A MW-44-1			Category: GW
Sample: 05A MW-44-1 Collected: 06/24/03 16:20			Category: GW
Collected: 06/24/03 16:20			
Collected: 06/24/03 16:20 Test Description	<u>Result</u>	Det Limit	Units By Analyzed Dt/Tm
Collected: 06/24/03 16:20	Result 0.21	Det Limit 0.05	
Collected: 06/24/03 16:20 Test Description			Units By Analyzed Dt/Tm
Collected: 06/24/03 16:20 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1	0.21	0.05	Units By Analyzed Dt/Tmmg/L IM 06/27/03 12:13 Category: GW
Collected: 06/24/03 16:20 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 06/24/03 16:20 Test Description	0.21	0.05	Units By Analyzed Dt/Tm mg/L IM 06/27/03 12:13 Category: GW Units By Analyzed Dt/Tm
Collected: 06/24/03 16:20 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 06/24/03 16:20	0.21	0.05	Units By Analyzed Dt/Tmmg/L IM 06/27/03 12:13 Category: GW
Collected: 06/24/03 16:20 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 06/24/03 16:20 Test Description	0.21	0.05	Units By Analyzed Dt/Tm mg/L IM 06/27/03 12:13 Category: GW Units By Analyzed Dt/Tm
Collected: 06/24/03 16:20 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 06/24/03 16:20 Test Description TPH, Diesel Range Organics	0.21	0.05	Units By Analyzed Dt/Tm mg/L IM 06/27/03 12:13 Category: GW Units By Analyzed Dt/Tm mg/L JSH 06/30/03 19:02
Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 06/24/03 16:20 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 06/24/03 16:20	0.21 <u>Result</u> 0.13	0.05 Det Limit 0.10	Units By Analyzed Dt/Tm mg/L IM 06/27/03 12:13 Category: GW Units By Analyzed Dt/Tm mg/L JSH 06/30/03 19:02 Category: GW
Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 06/24/03 16:20 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 06/24/03 16:20 Test Description	Result 0.13	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L IM 06/27/03 12:13 Category: GW Units By Analyzed Dt/Tm mg/L JSH 06/30/03 19:02 Category: GW Units By Analyzed Dt/Tm
Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 06/24/03 16:20 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 06/24/03 16:20 Test Description Test Description The Collected: 06/24/03 16:20	Result 0.13	Det Limit 0.10 Det Limit 10	Units By Analyzed Dt/Tm mg/L IM 06/27/03 12:13 Category: GW Units By Analyzed Dt/Tm mg/L JSH 06/30/03 19:02 Category: GW Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00
Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 06/24/03 16:20 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 06/24/03 16:20 Test Description	Result 0.13	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L IM 06/27/03 12:13 Category: GW Units By Analyzed Dt/Tm mg/L JSH 06/30/03 19:02 Category: GW Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00
Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 06/24/03 16:20 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 06/24/03 16:20 Test Description Test Description The Collected: 06/24/03 16:20	Result 0.13	Det Limit 0.10 Det Limit 10	Units By Analyzed Dt/Tm mg/L IM 06/27/03 12:13 Category: GW Units By Analyzed Dt/Tm mg/L JSH 06/30/03 19:02 Category: GW Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00
Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 06/24/03 16:20 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 06/24/03 16:20 Test Description Test Description Total Organic Carbon, Aq Sample: 05E MW-44-1 Collected: 06/24/03 16:20	0.21 Result 0.13 Result 461 208	Det Limit 0.10 Det Limit 10 1.0	Units By Analyzed Dt/Tm mg/L IM 06/27/03 12:13 Category: GW Units By Analyzed Dt/Tm mg/L JSH 06/30/03 19:02 Category: GW Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW
Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 06/24/03 16:20 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 06/24/03 16:20 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 05E MW-44-1 Collected: 06/24/03 16:20 Test Description	Result 0.13 Result 461 208	Det Limit 0.10 Det Limit 10 1.0	Units By Analyzed Dt/Tm mg/L IM 06/27/03 12:13 Category: GW Units By Analyzed Dt/Tm mg/L JSH 06/30/03 19:02 Category: GW Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW Units By Analyzed Dt/Tm
Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 06/24/03 16:20 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 06/24/03 16:20 Test Description Test Description Total Organic Carbon, Aq Sample: 05E MW-44-1 Collected: 06/24/03 16:20	0.21 Result 0.13 Result 461 208	Det Limit 0.10 Det Limit 10 1.0	Units By Analyzed Dt/Tm mg/L IM 06/27/03 12:13 Category: GW Units By Analyzed Dt/Tm mg/L JSH 06/30/03 19:02 Category: GW Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW

Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
Ion chromatography	06/25/03		date complete AM
Nitrate/Nitrite-Ion Chrom	2.31	0.08	mg/L as N AM 07/01/03 00:14
Sulfate, Ion Chrom	9.33	0.38	mg/L AM 07/01/03 00:14
Total Alkalinity-Titration	139	1.0	mg/L as CaCO3 TLC 06/30/03 08:39
Sample: 05F MW-44-1			Category: GW
Collected: 06/24/03 16:20			
Test Description	Result	Det Limit	<u>Units By Analyzed Dt/Tm</u>
Digestion, Aqueous, 200.2	06/26/03		date digested EL 06/26/03 20:30
Iron, ICP	2.32	0.009	mg/L EL 06/26/03 20:30
Metals, ICP/OES	06/28/03		date analyzed
Comple OCA MI 42 1			Citarian (TV
Sample: 06A MW-42-1 Collected: 06/24/03 17:42			Category: GW
001100000. 00,21,03 17.12			
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
TPH, Gasoline Range Org.	0.14	0.05	mg/L IM 06/27/03 12:58
Sample: 06B MW-42-1			Category: GW
Collected: 06/24/03 17:42			
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
TPH, Diesel Range Organics	0.20	0.10	mg/L JSH 07/03/03 20:17
Complete OCD Mile 42 1			Cohomoso CV
Sample: 06D MW-42-1			Category: GW
Sample: 06D MW-42-1 Collected: 06/24/03 17:42			Category: GW
-	<u>Result</u>	Det Limit	Category: GW Units By Analyzed Dt/Tm
Collected: 06/24/03 17:42	Result 333	Det Limit	
Collected: 06/24/03 17:42 Test Description			<u> Units By Analyzed Dt/Tm</u>
Collected: 06/24/03 17:42 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	333	10	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44
Collected: 06/24/03 17:42 Test Description Chemical Oxygen Demand	333	10	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00
Collected: 06/24/03 17:42 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1	333	10	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44
Collected: 06/24/03 17:42 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 06/24/03 17:42 Test Description	333 103 <u>Result</u>	10 1.0 Det Limit	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW Units By Analyzed Dt/Tm
Collected: 06/24/03 17:42 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 06/24/03 17:42 Test Description Ferric Iron - AWWA B407-93	333 103 Result 0.345	10 1.0 Det Limit 0.1	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW Units By Analyzed Dt/Tm mg/L DED 07/10/03 13:30
Collected: 06/24/03 17:42 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 06/24/03 17:42 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron	333 103 Result 0.345 0.1	10 1.0 Det Limit	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW Units By Analyzed Dt/Tm mg/L DED 07/10/03 13:30 mg/L GS 07/07/03 14:30
Collected: 06/24/03 17:42 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 06/24/03 17:42 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography	333 103 Result 0.345 0.1 06/25/03	10 1.0 Det Limit 0.1 0.1	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW Units By Analyzed Dt/Tm mg/L DED 07/10/03 13:30 mg/L GS 07/07/03 14:30 date complete AM
Collected: 06/24/03 17:42 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 06/24/03 17:42 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom	Result 0.345 0.1 06/25/03 2.46	10 1.0 Det Limit 0.1 0.1	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW Units By Analyzed Dt/Tm mg/L DED 07/10/03 13:30 mg/L GS 07/07/03 14:30 date complete AM mg/L as N AM 07/01/03 00:29
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06B MW-42-1 Collected: 06/24/03 17:42 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom	Result 0.345 0.1 06/25/03 2.46 31.4	10 1.0 Det Limit 0.1 0.1 0.08 0.38	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW Units By Analyzed Dt/Tm mg/L DED 07/10/03 13:30 mg/L GS 07/07/03 14:30 date complete AM mg/L as N AM 07/01/03 00:29 mg/L AM 07/01/03 00:29
Collected: 06/24/03 17:42 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 06/24/03 17:42 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom	Result 0.345 0.1 06/25/03 2.46	10 1.0 Det Limit 0.1 0.1	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW Units By Analyzed Dt/Tm mg/L DED 07/10/03 13:30 mg/L GS 07/07/03 14:30 date complete AM mg/L as N AM 07/01/03 00:29
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 06/24/03 17:42 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	Result 0.345 0.1 06/25/03 2.46 31.4	10 1.0 Det Limit 0.1 0.1 0.08 0.38	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW Units By Analyzed Dt/Tm mg/L DED 07/10/03 13:30 mg/L GS 07/07/03 14:30 date complete AM mg/L as N AM 07/01/03 00:29 mg/L AM 07/01/03 00:29
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 06/24/03 17:42 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	Result 0.345 0.1 06/25/03 2.46 31.4	10 1.0 Det Limit 0.1 0.1 0.08 0.38	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW Units By Analyzed Dt/Tm mg/L DED 07/10/03 13:30 mg/L GS 07/07/03 14:30 date complete AM mg/L as N AM 07/01/03 00:29 mg/L AM 07/01/03 00:29 mg/L as CaCO3 TLC 06/30/03 08:39
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 06/24/03 17:42 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 06F MW-42-1 Collected: 06/24/03 17:42	Result 0.345 0.1 06/25/03 2.46 31.4	10 1.0 Det Limit 0.1 0.1 0.08 0.38	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW Units By Analyzed Dt/Tm mg/L DED 07/10/03 13:30 mg/L GS 07/07/03 14:30 date complete AM mg/L as N AM 07/01/03 00:29 mg/L AM 07/01/03 00:29 mg/L as CaCO3 TLC 06/30/03 08:39
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 06/24/03 17:42 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 06F MW-42-1 Collected: 06/24/03 17:42 Test Description	Result 0.345 0.1 06/25/03 2.46 31.4 378	10 1.0 Det Limit 0.1 0.1 0.08 0.38	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW Units By Analyzed Dt/Tm mg/L DED 07/10/03 13:30 mg/L GS 07/07/03 14:30 date complete AM mg/L as N AM 07/01/03 00:29 mg/L AM 07/01/03 00:29 mg/L AM 07/01/03 00:29 mg/L as CaCO3 TLC 06/30/03 08:39 Category: GW
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 06/24/03 17:42 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 06F MW-42-1 Collected: 06/24/03 17:42 Test Description Digestion, Aqueous, 200.2	Result 0.345 0.1 06/25/03 2.46 31.4 378	10 1.0 Det Limit 0.1 0.08 0.38 1.0	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW Units By Analyzed Dt/Tm mg/L DED 07/10/03 13:30 mg/L GS 07/07/03 14:30 date complete AM mg/L as N AM 07/01/03 00:29 mg/L AM 07/01/03 00:29 mg/L as CaCO3 TLC 06/30/03 08:39 Category: GW Units By Analyzed Dt/Tm date digested EL 06/26/03 20:30
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 06/24/03 17:42 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 06F MW-42-1 Collected: 06/24/03 17:42 Test Description	Result 0.345 0.1 06/25/03 2.46 31.4 378	10 1.0 Det Limit 0.1 0.1 0.08 0.38 1.0	Units By Analyzed Dt/Tm mg/L YT 07/01/03 09:00 mg/L EL 07/08/03 19:44 Category: GW Units By Analyzed Dt/Tm mg/L DED 07/10/03 13:30 mg/L GS 07/07/03 14:30 date complete AM mg/L as N AM 07/01/03 00:29 mg/L AM 07/01/03 00:29 mg/L AM 07/01/03 00:29 mg/L as CaCO3 TLC 06/30/03 08:39 Category: GW

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX) WWW.ATLANTICCOASTLABS.COM

REPORT OF ANALYSIS

Rosengarten, Smith & Assoc. 2222 Western Trails Blvd.

Suite 300

Austin, TX 78745

Attn: Mr. Charles Montero

Invoice Number:

Order #: 03-07-986 Date: 08/18/03 10:13

Work ID: GE Railcar monthly Date Received: 07/22/03 Date Completed: 08/18/03

Client Code: RSA

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	Number	Description
01	trip blank	04	equipment blank
02	MW-43-1	05	MW-44-1
03	MW-2-1	06	MW-42-1

This cover page is an integral part of the analytical report.

Laboratory Certifications:

DE DE00011

PA 68-335

MD 138

NJ DE568

Certified By

Warren Van Arsdall

Warren Van Cardole Des

ACL Order Number 0307986

Overview:

A set of 6 samples was received from Rosengarten, Smith and Associates and is identified as 0307986. 0307986 consisted of four (4) samples, one (1) trip blank and one (1) equipment blank.

Matrix Spike/Matrix Spike Duplicates were analyzed at a frequency of 1 per ten samples. MS/MSD samples for this sample set are 0307987-02, 0307986-06DL 5x and 0307986-02DL 50x.

Samples were received preserved, cooled to 4° C. The hold time for the samples was fourteen days for aromatic compounds and fourteen days for halogenated compounds. Ice was present in the cooler at time of receipt.

Samples were analyzed by Method 8260B and Method 8000B from SW-846, Test Methods for Evaluating Solid Waste. A 25 mL volume was used for analysis.

Summary:

All samples were analyzed within the prescribed hold time.

The following is a summary of contaminants found in the method blank(s) analyzed with this set of samples.

<u>Date</u>	Comments
07/23/03 13:45	None
07/25/03 07:47	None
07/25/03 22:35	None
07/27/03 12:04	None
07/28/03 08:08	None

The instrument performance was acceptable as indicated by the tune report for 4-bromofluorobenzene.

The average RRF for all compounds was less than 15% for the initial calibration performed on 7/23/03 except for 1,2-dibromo-3-chloropropane. A linear regression curve fit (not forced through 0) was used for these compounds.

The average RRF for all compounds was less than 15% for the initial calibration performed on 07/27/03 except for 4-methyl-2-pentanone and 1,2-dibromo-3-chloropropane. A linear regression curve fit (not forced through 0) was used for these compounds.

ACL Order Number 0307986 (Continued)

The acceptance criteria for the System Performance Check Compounds and Continuing Calibration Compounds was met for continuing calibration check standards.

The surrogate recoveries were within the acceptable limits in all samples analyzed with the following exceptions: 0307986-06 analyzed on 07/26/03 failed SMC3, sample was reanalyzed on 07/28/03 and all SMC's passed. 0307986-03 analyzed on 07/26/03 failed SMC3, sample was re-analyzed on 07/28/03 and all SMC's passed.

The results of the MS/MSD were all within the acceptance limits.

The internal standard areas were all within the acceptance criteria.

The percent recoveries for the analytes in the Laboratory Control Sample were within acceptable limits.

Major Issues:

None

Minor Issues:

0307986-02:

Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 07/28/03.

0307986-03:

2-Butanone (MEK) and Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 07/28/03.

0307986-05:

Sample was re-analyzed on 07/28/03 due to possible carryover from previous sample, re-analysis was reported.

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX) WWW.ATLANTICCOASTLABS.COM

REPORT OF ANALYSIS

Rosengarten, Smith & Assoc. 2222 Western Trails Blvd.

Suite 300

Austin, TX 78745

Attn: Mr. Charles Montero

Invoice Number:

Order #: 03-07-986 Date: 08/18/03 10:13

Work ID: GE Railcar monthly Date Received: 07/22/03 Date Completed: 08/18/03

Client Code: RSA

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	Number	Description
01	trip blank	04	equipment blank
02	MW - 43 - 1	05	MW - 44 - 1
03	MW-2-1	06	MW-42-1

This cover page is an integral part of the analytical report.

Laboratory Certifications:

DE

DE00011 PA 68-335

138

NJ DE568

Certified By

Warren Van Arsdall

Warren Van Gerstelle Des

ACL Order Number 0307986

Overview:

A set of 6 samples was received from Rosengarten, Smith and Associates and is identified as 0307986. 0307986 consisted of four (4) samples, one (1) trip blank and one (1) equipment blank.

Matrix Spike/Matrix Spike Duplicates were analyzed at a frequency of 1 per ten samples. MS/MSD samples for this sample set are 0307987-02, 0307986-06DL 5x and 0307986-02DL 50x.

Samples were received preserved, cooled to 4° C. The hold time for the samples was fourteen days for aromatic compounds and fourteen days for halogenated compounds. Ice was present in the cooler at time of receipt.

Samples were analyzed by Method 8260B and Method 8000B from SW-846, Test Methods for Evaluating Solid Waste. A 25 mL volume was used for analysis.

Summary:

All samples were analyzed within the prescribed hold time.

The following is a summary of contaminants found in the method blank(s) analyzed with this set of samples.

<u>Date</u>	Comments
07/23/03 13:45	None
07/25/03 07:47	None
07/25/03 22:35	None
07/27/03 12:04	None
07/28/03 08:08	None

The instrument performance was acceptable as indicated by the tune report for 4-bromofluorobenzene.

The average RRF for all compounds was less than 15% for the initial calibration performed on 7/23/03 except for 1,2-dibromo-3-chloropropane. A linear regression curve fit (not forced through 0) was used for these compounds.

The average RRF for all compounds was less than 15% for the initial calibration performed on 07/27/03 except for 4-methyl-2-pentanone and 1,2-dibromo-3-chloropropane. A linear regression curve fit (not forced through 0) was used for these compounds.

ACL Order Number 0307986 (Continued)

The acceptance criteria for the System Performance Check Compounds and Continuing Calibration Compounds was met for continuing calibration check standards.

The surrogate recoveries were within the acceptable limits in all samples analyzed with the following exceptions: 0307986-06 analyzed on 07/26/03 failed SMC3, sample was reanalyzed on 07/28/03 and all SMC's passed. 0307986-03 analyzed on 07/26/03 failed SMC3, sample was re-analyzed on 07/28/03 and all SMC's passed.

The results of the MS/MSD were all within the acceptance limits.

The internal standard areas were all within the acceptance criteria.

The percent recoveries for the analytes in the Laboratory Control Sample were within acceptable limits.

Major Issues:

None

Minor Issues:

0307986-02:

Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 07/28/03.

0307986-03:

2-Butanone (MEK) and Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 07/28/03.

0307986-05:

Sample was re-analyzed on 07/28/03 due to possible carryover from previous sample, re-analysis was reported.

ACL Order Number 0307986 (Continued)

0307986-06:

Cis-1,2-dichloroethene and trichloroethene exceeded the calibration range. Sample was diluted and re-analyzed on 07/28/03.

0307986-03DL 20x:

Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 07/28/03.

GLOSSARY OF DATA QUALIFIER CODES (ORGANIC)

В	-	Not detected substantially above the level reported in laboratory or field blanks
J	=	Analyte present. Reported Value may not be accurate or precise
E	=	Analyte present, exceeds calibration range
U	=	Analyte analyzed for, undetected.
N	=	Tentative Identification. Consider present. Special methods may be needed to

confirm its presence or absence in future sampling efforts.

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX) WWW.ATLANTICCOASTLABS.COM

REPORT OF ANALYSIS

Rosengarten, Smith & Assoc. 2222 Western Trails Blvd.

Suite 300

Austin, TX 78745

Attn: Mr. Charles Montero

Invoice Number:

Order #: 03-07-986 Date: 08/18/03 10:13

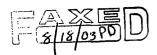
Work ID: GE Railcar monthly Date Received: 07/22/03 Date Completed: 08/18/03

Client Code: RSA

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	Number	Description
01	trip blank	04	equipment blank
02	MW-43-1	05	MW - 44 - 1
03	MW-2-1	06 ·	MW-42-1

This cover page is an integral part of the analytical report.


Laboratory Certifications: DE DE00011

PA 68-335

MD 138 NJ DE568

Certified By

Warren Van Arsdall

Warren Van Charlell 24

ACL Order Number 0307986

Overview:

A set of 6 samples was received from Rosengarten, Smith and Associates and is identified as 0307986 consisting of 4 samples, 1 trip blank and 1 equipment blank.

Samples were received preserved, cooled to 4° C. Ice was present in the cooler at time of receipt. The temperature at time of receipt was 1° C.

Summary:

Gasoline Range Organics

All samples were analyzed within the prescribed hold time.

Analysis was performed by modified EPA 8015 using P/T GC-MS.

Method Blank was non-detected with an MDL of 0.10 mg/L.

Laboratory Control Sample recovery was acceptable.

All surrogate recoveries were acceptable.

Diesel Range Organics

All samples were analyzed within the prescribed hold time.

Analysis was performed by modified EPA 8015 (modified).

Method Blank was non-detected with an MDL of 0.10 mg/L.

Laboratory Control Sample recovery was acceptable.

All surrogate recoveries were acceptable.

Internal standard responses were acceptable.

Insufficient sample for MS/MSD.

ACL Order Number 0307986 (Continued)

Methane, Ethane, Ethene - Subcontracted

Subcontractor data package enclosed.

Ion Chromatography

Samples were initially analyzed on 06/25/03 using a 10x dilution. Samples were reanalyzed on 06/30/03 using a 1x dilution.

Continuing calibration verifications were all acceptable.

Laboratory Control Sample was acceptable

Duplicate/Matrix Spike was acceptable except for nitrite failing low at 40% for the spiked sample. This may be due to the preservation of the sample. Sulfate was not valid in spiked sample due to the ambient level of sulfate being much greater than the spike level

0307986-03 was re-analyzed on 7/29/03 due to chromatography. Sample was filtered through a cartridge and re-analyzed.

Metals Analysis (Total Iron) - EPA6010

Quality Control Sample (QC 19) was acceptable.

Interference A and Interference AB was acceptable.

Initial Laboratory Performance Check was acceptable.

Laboratory Fortified Blank was acceptable.

Matrix Spike/Matrix Spike Duplicate was acceptable.

Alkalinity, Total - Standard Methods 2320B, 19th Edition

Laboratory Blank on 7/29/03 had a total alkalinity of 1.41 mg/L.

Laboratory Fortified Blanks were acceptable.

Laboratory duplicates were acceptable.

ACL Order Number 0307986 (Continued)

Total Organic Carbon - EPA 9060

Laboratory Blanks were acceptable except for 08/07/03 CCB that had a TOC result of 1.0 mg/L. The ending CCB for this batch was ND. 08/14/03 CCB had a TOC result of 1.3 mg/L. The ending CCB for this batch was ND.

Laboratory Fortified Blanks were acceptable.

Laboratory duplicates were acceptable.

Laboratory Fortified Blanks were acceptable.

Matrix spikes were acceptable.

Chemical Oxygen Demand – EPA 410.4

Method Blank was acceptable.

Laboratory Fortified Blanks were acceptable.

Sample duplicates were acceptable.

Matrix spikes were acceptable.

Digestion

Method 200.2

Iron (Fe) - ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA (1983) Method 200.7

RCRA TCLP & groundwater

SW 846 Method 6010

Solids

SW 846 Method 6010

ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA Method 200.7

RCRA TCLP & groundwater

SW 846 Method 6010

Solids

SW 846 Method 6010

Chemical Oxygen Demand

EPA Method 410.4 (manual colorimetric)

Total Organic Carbon, Aqueous

EPA Method 415.1

SW-846 Method 9060

Total Petroluem Hydrocarbons, Diesel Range Organics

SW-846, Method 8015, GC/FID (modified)

Total Petroleum Hydrocarbons-Gasoline Range Organics (TPH/GRO)

SW-846 Method 8015 (modified)

Volatile Organics by GC/MS (aqueous)

SW846 Method 8260B (purge & trap, capillary column GC/MS)

Total Alkalinity

SM 2320B (titrimetric)

Nitrate/Nitrite (combined), Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes

SW-846 Method 9056

Sulfate, Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes

SW-846 Method 9056

CHAIN OF CUSTODY RECORD

PROJECT NAME _ ALCA	2 - RSA
COMPANY The regulation Span	the + Assix or Trac
DDRESS TO TARRELEN TO	ISRIVIO Sto 300 AUSTIN
PHONE (512)707-17+7 (V)	x) /x 78745

ATLANTIC COAST Laboratories, Incorporated

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX)

ADDRESS 1/2/2018 ADDRESS	Klvin, Sto 300, AUSTI	W W	• .	302-266-9121 • 454-8/20 (FAX)
PHONE (517)707-1717 (VX)	Prand # 7× 7	8745-1601	÷	(1/2)
(A Mountero Porol (Ex)	170/e/1 H 2017-	- 18		030.7986
SAMPLED BY	SAMPLE COLL	ECTION FEE:		ANALYSES
	QUOTED PRIC	<u>E:</u>		
PRINT NAME JASON K AGAN	CONTAINER	ω		ANALYSES
SAMPLE DATE TIME S	AMPLE LOCATION SIZE G/P	COMPANAL SAMPLE PRESERVAT	IVE STATE OF THE S	COMMENTS
- 7/10/00/0850/1/W/-	7-1 VIGE	1-1-0 Hickory	te VVV	- i * Various
- 1/22/03/1045 MW-	43-1	1 6 11-0 He 6/4	103	
7/22/03/215 MW-	37	6 HO HISUY	ICE V	
1/77/03/4W W-		V (0 H2) 14CC : 61A	03 / / / / /	
7/21/13 >C TRIP	BLANK YUMG	V 2 H20 HCL,1	ce v Ana CAMI	
1/22/22/14NOEQUIPN	IENT BLANK 6	2 1/20 HCL, 1	Ct	
	\longrightarrow $A + 1$			
	-			
Relinquished by: Date Time	Received by:	Relinquished by:	Date / Time	Received by:
	530		7 22 (13 Date / Time	15:30 9/1
Relinquished by: Date / Time	Received by:	Relinquished by:	Daté / Time	Received for Laboratory by:
				·
Method of Shipment	Hemarks:			Samples Iced YES NO Samples Preserved

Sample Description: trip blank Lab No: 01A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 07/21/03 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT			
Acetone	ND	3.8				
Benzene	ND	0.63				
Bromodichloromethane	ND	0.55				
Bromoform	ND	0.53				
Bromomethane	ND	2.3				
2-Butanone (MEK)	ND	2.5				
Carbon Disulfide	ND	0.61				
Carbon Tetrachloride	ND	0.66				
Chlorobenzene	ND	0.62				
Chloroethane	ND	0.82				
Chloroform	ND	0.52				
Chloromethane	ND	0.75				
Dibromochloromethane	ND	0.51				
1,2-Dibromoethane	ND	0.52				
1,2-Dibromo-3-Chloropropane	ND	0.60				
1,2-Dichloroethane	ND	0.55				
1,1-Dichloroethane	ND	0.65				
1,1-Dichloroethene	ND	0.57				
cis-1,2-Dichloroethene	ND	0.55				
trans-1,2-Dichloroethene	ND	0.59				
1,2-Dichloroethene, total	ND	1.1				
Dichloromethane (MeCl2)	ND	0.55				
1,2-Dichloropropane	ND	0.62				
cis-1,3-Dichloropropene	ND	0.56				
trans-1,3-Dichloropropene	ND	0.49				
Ethylbenzene	ND	0.58				
2-Hexanone	ND	1.3				
Isopropylbenzene	ND	0.52				
4-Methyl-2-Pentanone (MIBK)	ND	1.5				
Styrene (HIZE)	ND	1.1				
1,1,2,2-Tetrachloroethane	ND	0.44				
Tetrachloroethene	ND	0.67				
Toluene	ND	0.64				
1,1,2-Trichloroethane	ND	0.59				
1,1,1-Trichloroethane	ND	0.57				
Trichloroethene	ND	0.65				
Vinyl Chloride	ND	0.55				
o-Xylene	ND	1.1				
m,p-Xylene	ND	1.2				
Methyl-tert-butyl ether	ND	0.48				
neengi tele baegi tener						
Surr Cmpd - % Rec - Limits						
SURROGATE %RECOVERY LIMITS						
D: L	Δ	0.0	110			

109

<u>86</u> - <u>118</u>

Dibromofluoromethane

Order	#	03	-0	7-	986
08/18	/03	1	0 :	13	

Page 6

3/10/02 TA:T2	 I KESULIS	BI	SAMPLE	

Sample Description: trip blank Lab No: 01A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 07/21/03 Category: GW

Toluene-d8 93 88 - 110 4-Bromofluorobenzene 90 86 - 115

Notes and Definitions for this Report:

DATE RUN 07/25/03 08:30:00
ANALYST IM

CONC FACTOR _____1
UNITS _____uq/L

Sample Description: MW-43-1 Lab No: 02A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 07/22/03 10:45 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	14	3.8	
Benzene	15	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	623	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	1.4	0.65	
1,1-Dichloroethene	ND		
cis-1,2-Dichloroethene		0.57	
trans-1,2-Dichloroethene	ND	0.55	
1,2-Dichloroethene, total	ND	0.59	
Dichloromethane (MeCl2)	ND	1.1	
· · ·	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	0.8	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Guara Grand & Dan Tababa			
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 10	<u> </u>	86	118

					·
Order # 03-07-986				Pa	age 8
08/18/03 10:13	TEST	RESULTS BY SAM	IPLE	_	-
Sample Description:	MW-43-1	Lab	No: 02A		
Test Description:		5W846 8260 Met	hod: SW 846	8260 Test	Code: V RSAA
	07/22/03 10:45		ory: GW		_
Tolue	ne-d8 _94	<u>88</u>	- 110		
4-Bromofluorobe			- 115		
		finitions for t /25/03 23:58:001ug/L	_		
Sample Description:	MW-43-1	Lab	No: 02C		
Test Description:			hod:	Test	Code: S GAS
-	07/22/03 10:45		ory: GW		<u> </u>
PARAMETER		RESULT	LIMIT	UNITS	WEIGHT
Methane			56 2.0	0 ug/L	
Ethane			ND 4.0	0 uq/L	
Ethene			ND 3.0	0 <u>uq/L</u>	

Notes and Definitions for this Report:

DATE RUN ______08/04/03

CONC FACTOR _____Ug/L

ANALYST STL

Sample Description: MW-2-1 Lab No: 03A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 07/22/03 08:56 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	25	3.8	
Benzene	15	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	94	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	827	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	0.8	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	ND	0.55	
trans-1,2-Dichloroethene	0.7	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	1.3	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 9	<u> </u>	86	118

Order # 03-07-986 Page 10 08/18/03 10:13 TEST RESULTS BY SAMPLE Sample Description: MW-2-1 Lab No: 03A Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V RSAA Collected: 07/22/03 08:56 Category: GW Toluene-d8 99 88 - 110 4-Bromofluorobenzene 89 <u>86</u> - <u>115</u> Notes and Definitions for this Report: DATE RUN 07/28/03 10:56:00 ANALYST _IM CONC FACTOR 1 UNITS uq/L Sample Description: MW-2-1 Lab No: 03C Metnod. Category: **GW** Test Description: methane, ethane, ethene Test Code: S GAS Collected: 07/22/03 08:56 RESULT LIMIT UNITS WEIGHT PARAMETER Methane 59 2.0 ug/L 4.0 Ethane ND ug/L Ethene 3.0 ug/L Notes and Definitions for this Report: DATE RUN 08/04/03 ANALYST STL

CONC FACTOR ___

UNITS ug/L

Sample Description: equipment blank Lab No: 04A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 07/22/03 14:10 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	0.9	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	ND	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	ND	0.55	
trans-1,2-Dichloroethene	ND ND	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND ND		
1,2-Dichloropropane		0.55	
cis-1,3-Dichloropropene	ND	0.62	
	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene 2-Hexanone	ND	<u>0.58</u> 1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
-	ND	1.1	
Styrene 1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene			
Toluene	ND ND	0.67	
	ND ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECO	VERV	LIMITS	
	04		118
DIDIOMOLI GOLOMOCHIANE	<u> </u>		<u> </u>

Order # 03-07-986 08/18/03 10:13 Page 12

TEST RESULTS BY SAMPLE

Sample Description: equipment blank

Lab No: 04A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 07/22/03 14:10

Category: GW

Toluene-d8 4-Bromofluorobenzene

93

<u>88</u> - <u>110</u> <u>86</u> - <u>115</u>

Notes and Definitions for this Report:

DATE RUN 07/25/03 09:12:00

ANALYST <u>IM</u>

CONC FACTOR _____1

UNITS ____uq/L

Sample Description: MW-44-1 Lab No: 05A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 07/22/03 14:10 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	2.5	0.62	
Chloroethane	<u>ND</u>	0.82	
Chloroform	1.0	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	1.0	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	3.2	0.55	
trans-1,2-Dichloroethene	1.0	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	·
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	18	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	0.6	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	5.8	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
			
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ÆRY	LIMITS	
Dibromofluoromethane 10		86	118
	-		<u></u>

Order # 03-07-986				Pa	age 14
08/18/03 10:13	TEST_RE	SULTS BY SAMPLE			
Sample Description:	MW-44-1	Lab No	: 05A		
Test Description:	GC/MS Volatiles, SW8	46 8260 Method	: SW 846 8	260 Test	Code: V RSAA
Collected:	07/22/03 14:10	Category	: GW		
Tolue	ne-d8 100	88	110		
4-Bromofluorobe		<u>86</u> -	115		
	Notes and Defin	itions for this	Report:		
	DATE RUN <u>07/28</u>	/03 08:50:00			
	ANALYST IM				
	CONC FACTOR	1			•
	UNITS	ug/L	-		
Sample Description:	MW-44-1	Lab No	: 05C		
Test Description:	methane, ethane, ethe	ne Method	:	Test	Code: S GAS
-	07/22/03 14:10	Category	: GW		_
PARAMETER	RE	SULT	LIMIT	UNITS	WEIGHT
Methane		ND	2.0	uq/L	
Ethane		ND	4.0	uq/L	
Ethene		ND	3.0	uq/L	

Sample Description: MW-42-1 Lab No: 06A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 07/22/03 12:15 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	23	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	8.0	0.62	
Chloroethane	ND	0.82	
Chloroform	1.0	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	1.3	0.55	
1,1-Dichloroethane	0.8	0.65	
1,1-Dichloroethene	2.2	0.57	
cis-1,2-Dichloroethene	121	0.55	
trans-1,2-Dichloroethene	49	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	1.3	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	0.8	0.67	
Toluene	1.2	0.64	
1,1,2-Trichloroethane	1.9	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	96	0.65	
Vinyl Chloride	2.8	0.55	
o-Xylene	1.2	1.1	
m,p-Xylene	3.2	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %REC	OVERY	LIMITS	
Dibromofluoromethane	97		118
			

Order # 03-07-986 08/18/03 10:13	TEST	RESULTS 1	BY SAMPLE		Pa	nge 16	
Sample Description: Test Description: Collected:			Lab No 0 Method Category	: SW 846 8	260 Test	Code: V_RSA	A
Toluer 4-Bromofluorober		<u> </u>	88 - 86 -	110 115			
	DATE RUN <u>07</u> ANALYST <u>IM</u> CONC FACTOR UNITS	/28/03 09 1 1					
Sample Description: Test Description: Collected:			Lab No Method Category	:	Test	Code: S_GAS	
PARAMETER		RESULT		LIMIT	UNITS	WEIGHT	
Methane			ND	2.0	uq/L	_	
Ethane			ND	4.0	ug/L		
Ethene			ND	3.0	ug/L		
	Notes and De	finitions	for this	Report:			
	ראַדיב פווא	n s	/04/03				

ANALYST STL CONC FACTOR _ UNITS ____ ug/L

•			
Sample: 02A MW-43-1			Category: GW
Collected: 07/22/03 10:45			category. di
07,22,00			
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
TPH, Gasoline Range Org.	0.30	0.10	mg/L RJM 07/25/03 23:58
,		3123	3, 2 1.011 0 7, 23, 03 20 100
Sample: 02B MW-43-1			Category: GW
Collected: 07/22/03 10:45			3 1
, , , , , , , , , , , , , , , , , , , ,			
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
TPH, Diesel Range Organics	0.25	0.10	mg/L JSH 07/29/03 19:36
			,,,
Sample: 02D MW-43-1			Category: GW
Collected: 07/22/03 10:45			5 5,
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
Chemical Oxygen Demand	33	10	mg/L YT 07/25/03 09:30
Total Organic Carbon, Aq	. 7.9	1.0	mg/L EL 08/07/03 13:09
, <u>, , , , , , , , , , , , , , , , , , </u>	_		, = ==,,
Sample: 02E MW-43-1			Category: GW
Collected: 07/22/03 10:45			
• •			
Test Description	Result	Det Limit	<u>Units By Analyzed Dt/Tm</u>
Ferric Iron - AWWA B407-93	26.6	0.1	mg/L DED 08/14/03 15:00
Ferrous Iron	30	0.1	mg/L GS 07/23/03 16:00
Ion chromatography	07/23/03		date complete AM
Nitrate/Nitrite-Ion Chrom	ND	0.08	mg/L as N AM 07/23/03 14:59
Sulfate, Ion Chrom	7.01	0.38	mg/L AM 07/23/03 14:59
Total Alkalinity-Titration	206	1.0	mg/L as CaCO3 TLC 07/29/03 12:33
			•
Sample: 02F MW-43-1			Category: GW
Collected: 07/22/03 10:45		•	
Test Description	<u>Result</u>	<u>Det Limit</u>	<u>Units</u> By <u>Analyzed Dt/Tm</u>
Digestion, Aqueous, 200.2	07/26/03		date digested EL 07/26/03 18:20
Iron, ICP	56.6	0.009	mg/L LC 07/29/03 09:31
Metals, ICP/OES	07/29/03		date analyzed
Sample: 03A MW-2-1			Category: GW
Collected: 07/22/03 08:56			
Test Description		<u>Det Limit</u>	<u>Units By Analyzed Dt/Tm</u>
TPH, Gasoline Range Org.	0.29	0.10	mg/L RJM 07/26/03 00:40
Sample: 03B MW-2-1			Category: GW
Collected: 07/22/03 08:56			
Test Description	Result		Units By Analyzed Dt/Tm
TPH, Diesel Range Organics	0.57	0.10	mg/L JSH 07/29/03 20:23

Sample: 03D MW-2-1 Collected: 07/22/03 08:56			Category: GW
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
Chemical Oxygen Demand	4730	10	mg/L YT 07/25/03 10:00
Total Organic Carbon, Aq	1689	1.0	mg/L EL 08/07/03 13:09
			<i>J.</i> , ,
Sample: 03E MW-2-1			Category: GW
Collected: 07/22/03 08:56			
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
Ferric Iron - AWWA B407-93	159	0.1	mg/L DED 08/14/03 15:00
Ferrous Iron	120	0.1	mg/L GS 07/23/03 16:00
Ion chromatography	07/29/03		date complete AM
Nitrate/Nitrite-Ion Chrom	ND	0.08	mg/L as N AM 07/29/03 16:49
Sulfate, Ion Chrom	2.09	0.38	mg/L AM 07/29/03 16:49
Total Alkalinity-Titration	3337	1.0	mg/L as CaCO3 TLC 07/29/03 12:33
· -			
Sample: 03F MW-2-1			Category: GW
Collected: 07/22/03 08:56			
Test Description	Result	Det Limit	<u>Units By Analyzed Dt/Tm</u>
Digestion, Aqueous, 200.2	07/26/03	200 1110	date digested EL 07/26/03 18:20
Iron, ICP	279	0.090	mg/L LC 07/30/03 09:56
Metals, ICP/OES	07/30/03	0.050	date analyzed
,			
Sample: 05A MW-44-1			Category: GW
Sample: 05A MW-44-1 Collected: 07/22/03 14:10			Category: GW
-			Category: GW
-	<u>Result</u>	Det Limit	Category: GW Units By Analyzed Dt/Tm
Collected: 07/22/03 14:10	<u>Result</u> ND	Det Limit	
Collected: 07/22/03 14:10 Test Description TPH, Gasoline Range Org.			Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21
Collected: 07/22/03 14:10 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1			Units By Analyzed Dt/Tm
Collected: 07/22/03 14:10 Test Description TPH, Gasoline Range Org.			Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21
Collected: 07/22/03 14:10 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10	ND	0.10	Units By Analyzed Dt/Tmmg/L RJM 07/26/03 01:21 Category: GW
Collected: 07/22/03 14:10 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10 Test Description	ND Result	0.10	Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21 Category: GW Units By Analyzed Dt/Tm
Collected: 07/22/03 14:10 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10	ND	0.10	Units By Analyzed Dt/Tmmg/L RJM 07/26/03 01:21 Category: GW
Collected: 07/22/03 14:10 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10 Test Description TPH, Diesel Range Organics	ND Result	0.10	Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21 Category: GW Units By Analyzed Dt/Tm mg/L JSH 07/29/03 21:11
Collected: 07/22/03 14:10 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1	ND Result	0.10	Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21 Category: GW Units By Analyzed Dt/Tm
Collected: 07/22/03 14:10 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10 Test Description TPH, Diesel Range Organics	ND Result	0.10	Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21 Category: GW Units By Analyzed Dt/Tm mg/L JSH 07/29/03 21:11
Collected: 07/22/03 14:10 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 07/22/03 14:10	Result ND	0.10 Det Limit 0.10	Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21 Category: GW Units By Analyzed Dt/Tm mg/L JSH 07/29/03 21:11 Category: GW
Collected: 07/22/03 14:10 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 07/22/03 14:10 Test Description	ND Result	0.10	Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21 Category: GW Units By Analyzed Dt/Tm mg/L JSH 07/29/03 21:11 Category: GW Units By Analyzed Dt/Tm
Collected: 07/22/03 14:10 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 07/22/03 14:10 Test Description Chemical Oxygen Demand	Result ND	Det Limit 0.10 Det Limit	Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21 Category: GW Units By Analyzed Dt/Tm mg/L JSH 07/29/03 21:11 Category: GW Units By Analyzed Dt/Tm mg/L YT 07/25/03 09:30
Collected: 07/22/03 14:10 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 07/22/03 14:10 Test Description	Result ND Result 108	Det Limit 0.10 Det Limit 10	Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21 Category: GW Units By Analyzed Dt/Tm mg/L JSH 07/29/03 21:11 Category: GW Units By Analyzed Dt/Tm
Collected: 07/22/03 14:10 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 07/22/03 14:10 Test Description Chemical Oxygen Demand	Result ND Result 108	Det Limit 0.10 Det Limit 10	Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21 Category: GW Units By Analyzed Dt/Tm mg/L JSH 07/29/03 21:11 Category: GW Units By Analyzed Dt/Tm mg/L YT 07/25/03 09:30
Collected: 07/22/03 14:10 Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 07/22/03 14:10 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	Result ND Result 108	Det Limit 0.10 Det Limit 10	Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21 Category: GW Units By Analyzed Dt/Tm mg/L JSH 07/29/03 21:11 Category: GW Units By Analyzed Dt/Tm mg/L YT 07/25/03 09:30 mg/L EL 08/14/03 14:58
Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 07/22/03 14:10 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 05E MW-44-1 Collected: 07/22/03 14:10	Result ND Result 108	0.10 Det Limit	Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21 Category: GW Units By Analyzed Dt/Tm mg/L JSH 07/29/03 21:11 Category: GW Units By Analyzed Dt/Tm mg/L YT 07/25/03 09:30 mg/L EL 08/14/03 14:58
Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 07/22/03 14:10 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 05E MW-44-1 Collected: 07/22/03 14:10 Test Description	Result ND Result 108	Det Limit 0.10 Det Limit 10	Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21 Category: GW Units By Analyzed Dt/Tm mg/L JSH 07/29/03 21:11 Category: GW Units By Analyzed Dt/Tm mg/L YT 07/25/03 09:30 mg/L EL 08/14/03 14:58
Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 07/22/03 14:10 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 05E MW-44-1 Collected: 07/22/03 14:10	Result ND Result 108	0.10 Det Limit	Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21 Category: GW Units By Analyzed Dt/Tm mg/L JSH 07/29/03 21:11 Category: GW Units By Analyzed Dt/Tm mg/L YT 07/25/03 09:30 mg/L EL 08/14/03 14:58 Category: GW
Test Description TPH, Gasoline Range Org. Sample: 05B MW-44-1 Collected: 07/22/03 14:10 Test Description TPH, Diesel Range Organics Sample: 05D MW-44-1 Collected: 07/22/03 14:10 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 05E MW-44-1 Collected: 07/22/03 14:10 Test Description	Result 108 61	Det Limit 0.10 Det Limit 10 5.0	Units By Analyzed Dt/Tm mg/L RJM 07/26/03 01:21 Category: GW Units By Analyzed Dt/Tm mg/L JSH 07/29/03 21:11 Category: GW Units By Analyzed Dt/Tm mg/L YT 07/25/03 09:30 mg/L EL 08/14/03 14:58 Category: GW Units By Analyzed Dt/Tm

Test Description	<u>Result</u>	<u>Det Limit</u>	<u>Units</u> By <u>Analyzed Dt/Tm</u>
Ion chromatography	07/23/03		date complete AM
Nitrate/Nitrite-Ion Chrom	2.12	0.08	mg/L as N AM 07/23/03 18:15
Sulfate, Ion Chrom	10.1	0.38	mg/L AM 07/23/03 18:15
Total Alkalinity-Titration	69	1.0	mg/L as CaCO3 TLC 07/29/03 12:33
Sample: 05F MW-44-1			Category: GW
Collected: 07/22/03 14:10			category: Gm
COTTECTED. 07/22/03 14:10			
Test Description	Result	Det Limit	<u>Units</u> By Analyzed Dt/Tm
Digestion, Aqueous, 200.2	07/26/03	Dec Braze	date digested EL 07/26/03 18:20
Iron, ICP	1.07	0.009	mg/L LC 07/29/03 09:39
Metals, ICP/OES	07/29/03	0.005	date analyzed
Metals, ici, ons	07/25/03		date analyzed
Sample: 06A MW-42-1			Category: GW
Collected: 07/22/03 12:15			category. on
0011000000 0.,12,05 12.15			
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
TPH, Gasoline Range Org.	0.34	0.10	mg/L RJM 07/26/03 02:02
,		0.20	
Sample: 06B MW-42-1			Category: GW
Collected: 07/22/03 12:15			
Test Description	Result	Det Limit	<u>Units</u> By Analyzed Dt/Tm
TPH, Diesel Range Organics	0.14	0.10	mg/L JSH 07/29/03 21:58
iin, biobei nange eiganies	- :		
Sample: 06D MW-42-1	-:		
			Category: GW
Sample: 06D MW-42-1	-:		
Sample: 06D MW-42-1	<u>Result</u>		Category: GW
Sample: 06D MW-42-1 Collected: 07/22/03 12:15	·		Category: GW Units By Analyzed Dt/Tm
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description	<u>Result</u>	Det Limit	Category: GW Units By Analyzed Dt/Tm
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand	<u>Result</u> 661	Det Limit	Category: GW Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1	<u>Result</u> 661	Det Limit	Category: GW Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	<u>Result</u> 661	Det Limit	Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 07/22/03 12:15	<u>Result</u> 661	Det Limit	Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1	<u>Result</u> 661	Det Limit	Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 07/22/03 12:15	<u>Result</u> 661 270	<u>Det Limit</u> 10 1.0	Category: GW Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09 Category: GW
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 07/22/03 12:15 Test Description	Result 270 Result 16.8 ND	Det Limit 10 1.0	Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09 Category: GW Units By Analyzed Dt/Tm
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 07/22/03 12:15 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography	Result 270 Result 16.8	Det Limit 10 1.0 Det Limit 0.1	Category: GW Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09 Category: GW Units By Analyzed Dt/Tm mg/L DED 08/14/03 15:00 mg/L GS 07/23/03 16:00 date complete AM
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 07/22/03 12:15 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom	Result 661 270 Result 16.8 ND 07/23/03 2.48	Det Limit 10 1.0 Det Limit 0.1	Category: GW Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09 Category: GW Units By Analyzed Dt/Tm mg/L DED 08/14/03 15:00 mg/L GS 07/23/03 16:00 date complete AM mg/L as N AM 07/23/03 18:30
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 07/22/03 12:15 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom	Result 270 Result 16.8 ND 07/23/03	Det Limit	Category: GW Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09 Category: GW Units By Analyzed Dt/Tm mg/L DED 08/14/03 15:00 mg/L GS 07/23/03 16:00 date complete AM
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 07/22/03 12:15 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom	Result 661 270 Result 16.8 ND 07/23/03 2.48	Det Limit	Category: GW Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09 Category: GW Units By Analyzed Dt/Tm mg/L DED 08/14/03 15:00 mg/L GS 07/23/03 16:00 date complete AM mg/L as N AM 07/23/03 18:30
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 07/22/03 12:15 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	Result 661 270 Result 16.8 ND 07/23/03 2.48 25.8	Det Limit	Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09 Category: GW Units By Analyzed Dt/Tm mg/L DED 08/14/03 15:00 mg/L GS 07/23/03 16:00 date complete AM mg/L as N AM 07/23/03 18:30 mg/L AM 07/23/03 18:30 mg/L as CaCO3 TLC 07/29/03 12:33
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 07/22/03 12:15 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 06F MW-42-1	Result 661 270 Result 16.8 ND 07/23/03 2.48 25.8	Det Limit	Category: GW Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09 Category: GW Units By Analyzed Dt/Tm mg/L DED 08/14/03 15:00 mg/L GS 07/23/03 16:00 date complete AM mg/L as N AM 07/23/03 18:30 mg/L AM 07/23/03 18:30
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 07/22/03 12:15 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	Result 661 270 Result 16.8 ND 07/23/03 2.48 25.8	Det Limit	Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09 Category: GW Units By Analyzed Dt/Tm mg/L DED 08/14/03 15:00 mg/L GS 07/23/03 16:00 date complete AM mg/L as N AM 07/23/03 18:30 mg/L AM 07/23/03 18:30 mg/L as CaCO3 TLC 07/29/03 12:33
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 07/22/03 12:15 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 06F MW-42-1 Collected: 07/22/03 12:15	Result 661 270 Result 16.8 ND 07/23/03 2.48 25.8 1743	Det Limit	Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09 Category: GW Units By Analyzed Dt/Tm mg/L DED 08/14/03 15:00 mg/L GS 07/23/03 16:00 date complete AM mg/L as N AM 07/23/03 18:30 mg/L AM 07/23/03 18:30 mg/L AM 07/29/03 12:33 Category: GW
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 07/22/03 12:15 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 06F MW-42-1 Collected: 07/22/03 12:15 Test Description	Result 661 270 Result 16.8 ND 07/23/03 2.48 25.8 1743	Det Limit	Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09 Category: GW Units By Analyzed Dt/Tm mg/L DED 08/14/03 15:00 mg/L GS 07/23/03 16:00 date complete AM mg/L as N AM 07/23/03 18:30 mg/L AM 07/23/03 18:30 mg/L as CaCO3 TLC 07/29/03 12:33 Category: GW Units By Analyzed Dt/Tm
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 07/22/03 12:15 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 06F MW-42-1 Collected: 07/22/03 12:15 Test Description Digestion, Aqueous, 200.2	Result 661 270 Result 16.8 ND 07/23/03 2.48 25.8 1743	Det Limit	Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09 Category: GW Units By Analyzed Dt/Tm mg/L DED 08/14/03 15:00 mg/L GS 07/23/03 16:00 date complete AM mg/L as N AM 07/23/03 18:30 mg/L AM 07/23/03 18:30 mg/L AM 07/23/03 12:33 Category: GW Units By Analyzed Dt/Tm O7/26/03 18:20
Sample: 06D MW-42-1 Collected: 07/22/03 12:15 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 07/22/03 12:15 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate/Nitrite-Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 06F MW-42-1 Collected: 07/22/03 12:15 Test Description	Result 661 270 Result 16.8 ND 07/23/03 2.48 25.8 1743	Det Limit	Units By Analyzed Dt/Tm mg/L YT 07/25/03 10:00 mg/L EL 08/07/03 13:09 Category: GW Units By Analyzed Dt/Tm mg/L DED 08/14/03 15:00 mg/L GS 07/23/03 16:00 date complete AM mg/L as N AM 07/23/03 18:30 mg/L AM 07/23/03 18:30 mg/L as CaCO3 TLC 07/29/03 12:33 Category: GW Units By Analyzed Dt/Tm

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX) WWW.ATLANTICCOASTLABS.COM

REPORT OF ANALYSIS

Rosengarten, Smith & Assoc. 2222 Western Trails Blvd.

Suite 300

Austin, TX 78745

Attn: Mr. Charles Montero Invoice Number: 103519

Order #: 03-08-B26

Date: 09/30/03 14:49

Work ID: GE Railcar Elkton Date Received: 08/27/03 Date Completed: 09/30/03

Client Code: RSA

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	<u>Number</u>	Description
01	trip blank	04	equipment blank
02	MW-43-1	05	MW - 44 - 1
03	MW-2-1	06	MW-42-1

This cover page is an integral part of the analytical report. Laboratory Certifications: DE DE00011 PA 68-335

> MD 138

NJ DE568

Certified By

Warren Van Arsdall

Warren Van and Street

ACL Order Number 0308B26

Overview:

A set of 6 samples was received from Rosengarten, Smith and Associates and is identified as 0308B26. 0308B26 consisted of four (4) samples, one (1) trip blank and one (1) equipment blank.

Matrix Spike/Matrix Spike Duplicates were analyzed at a frequency of 1 per ten samples. MS/MSD sample for this sample set is 0308B26-03DL 25x.

Samples were received preserved, cooled to 4° C. The hold time for the samples was fourteen days for aromatic compounds and fourteen days for halogenated compounds. Ice was present in the cooler at time of receipt.

Samples were analyzed by Method 8260B and Method 8000B from SW-846, Test Methods for Evaluating Solid Waste. A 25 mL volume was used for analysis.

Summary:

All samples were analyzed within the prescribed hold time.

The following is a summary of contaminants found in the method blank(s) analyzed with this set of samples.

Comments
None
None

The instrument performance was acceptable as indicated by the tune report for 4-bromofluorobenzene.

The average RRF for all compounds was less than 15% for the initial calibration performed on 9/02/03 except for chloroethane, 2-hexanone and 1,2-dibromo-3-chloropropane. A linear regression curve fit (not forced through 0) was used for these compounds.

The acceptance criteria for the System Performance Check Compounds and Continuing Calibration Compounds was met for continuing calibration check standards.

The surrogate recoveries were within the acceptable limits in all samples analyzed with the following exceptions: None

AR102008

ACL Order Number 0308B26 (Continued)

The results of the MS/MSD were all within the acceptance limits.

The internal standard areas were all within the acceptance criteria.

The percent recoveries for the analytes in the Laboratory Control Sample were within acceptable limits.

Major Issues:

None

Minor Issues:

0308B26-06:

Cis-1,2-dichloroethene and trichloroethene exceeded the calibration range. Sample was diluted and re-analyzed on 09/03/03.

0308B26-02:

Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 09/03/03.

0308B26-03:

2-Butanone and chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 09/03/03.

GLOSSARY OF DATA QUALIFIER CODES (ORGANIC)

В	=	Not detected substantially above the level reported in laboratory or field blanks
J	=	Analyte present. Reported Value may not be accurate or precise
E	=	Analyte present, exceeds calibration range
U	=	Analyte analyzed for, undetected.
N	=	Tentative Identification. Consider present. Special methods may be needed to confirm its presence or absence in future sampling efforts.

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX) WWW.ATLANTICCOASTLABS.COM

REPORT OF ANALYSIS

Rosengarten, Smith & Assoc. 2222 Western Trails Blvd.

Suite 300

Austin, TX 78745

Attn: Mr. Charles Montero Invoice Number: 103519

Order #: 03-08-B26 Date: 10/02/03 12:58

Work ID: GE Railcar Elkton Date Received: 08/27/03 Date Completed: 09/30/03

Client Code: RSA

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	<u>Number</u>	Description
01	trip blank	04	equipment blank
02	MW - 43 - 1	05	MW-44-1
03	MW-2-1	06	MW-42-1

This cover page is an integral part of the analytical report. Laboratory Certifications: DE00011 PA 68-335 DE

MD

138

NJ DE568

Certified By

Warren Van Arsdall

Warren Van andledel

ACL Order Number 0308B26

Overview:

A set of 6 samples was received from Rosengarten, Smith and Associates and is identified as 0308B26 consisting of 4 samples, 1 trip blank and 1 equipment blank.

Samples were received preserved, cooled to 4° C. Ice was present in the cooler at time of receipt. The temperature at time of receipt was 1° C.

Summary:

Gasoline Range Organics

All samples were analyzed within the prescribed hold time.

Analysis was performed by modified EPA 8015 using P/T GC-MS.

Method Blank was non-detected with an MDL of 0.10 mg/L.

Laboratory Control Sample recovery was acceptable.

All surrogate recoveries were acceptable.

Diesel Range Organics

All samples were analyzed within the prescribed hold time.

Analysis was performed by modified EPA 8015 (modified).

Method Blank was non-detected with an MDL of 0.10 mg/L.

Laboratory Control Sample recovery was acceptable.

All surrogate recoveries were acceptable.

Internal standard responses were acceptable.

Insufficient sample for MS/MSD.

ACL Order Number 0308B26 (Continued)

Methane, Ethane, Ethene - Subcontracted

Subcontractor data package enclosed.

Ion Chromatography

Samples were initially analyzed on 08/27/03 using a 10x dilution. Samples 0308B26-02 and 0308B26-05 were reanalyzed on 09/22/03 using a 1x dilution. Sample 0308B26-03 was not re-analyzed at a 1x dilution due to chromatography.

Continuing calibration verifications were all acceptable.

Laboratory Control Sample was acceptable

Duplicate/Matrix Spike (0308B07) was acceptable except for sulfate failing low at 71.5% for the spiked sample. Sulfate was not valid in spiked sample due to the ambient level of sulfate being much greater than the spike level.

Duplicate/Matrix Spike (0309838) was acceptable except for nitrite failing low at 43.5% for the spiked sample. This is believed to be matrix related due to acceptable LCS results for nitrite.

Metals Analysis (Total Iron) – EPA6010

Quality Control Sample (QC 19) was acceptable.

Interference A and Interference AB was acceptable.

Initial Laboratory Performance Check was acceptable.

Laboratory Fortified Blank was acceptable.

Matrix Spike/Matrix Spike Duplicate was acceptable.

Alkalinity, Total - Standard Methods 2320B, 19th Edition

Laboratory Blank on 09/02/03 had a total alkalinity of 1.13 mg/L.

Laboratory Fortified Blanks were acceptable.

Laboratory duplicates were acceptable.

ACL Order Number 0307986 (Continued)

Total Organic Carbon - EPA 9060

Laboratory Blanks were acceptable.

Laboratory Fortified Blanks were acceptable.

Laboratory duplicates were acceptable.

Matrix spikes were acceptable.

Chemical Oxygen Demand – EPA 410.4

Method Blank was acceptable.

Laboratory Fortified Blanks were acceptable.

Sample duplicates were acceptable.

Matrix spikes were acceptable.

Digestion

Method 200.2

Iron (Fe) - ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA (1983) Method 200.7

RCRA TCLP & groundwater

SW 846 Method 6010

Solids

SW 846 Method 6010

ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA Method 200.7

RCRA TCLP & groundwater

SW 846 Method 6010

Solids

SW 846 Method 6010

Chemical Oxygen Demand

EPA Method 410.4 (manual colorimetric)

Total Organic Carbon, Aqueous

EPA Method 415.1

SW-846 Method 9060

Total Petroluem Hydrocarbons, Diesel Range Organics

SW-846, Method 8015, GC/FID (modified)

Total Petroleum Hydrocarbons-Gasoline Range Organics (TPH/GRO)

SW-846 Method 8015 (modified)

Volatile Organics by GC/MS (aqueous)

SW846 Method 8260B (purge & trap, capillary column GC/MS)

Total Alkalinity

SM 2320B (titrimetric)

Nitrite, Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes SW-846 Method 9056

Nitrate, Ion Chromatography

Drinking water, wastewater Method 300.0

Groundwater, RCRA wastes SW-846 Method 9056

Sulfate, Ion Chromatography

Drinking water, wastewater Method 300.0

Groundwater, RCRA wastes SW-846 Method 9056

CHAIN OF CUSTODY RECORD

PROJECT NAME GERAILCAR - EIKTON COMPANY RUSSINGATION SMITH + ASSOC

COMPANY Rosongarlow Smith + Assoc, TMC ADDRESS 222? Masterin Trails Blud #300, AustinTX

PHONE (5/2) 707-177)

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX)

														•								O2	10832L	
SIGNATURE (Larles 4 Montero PRINT NAME V= VARIOUS			SAN	IPLE CO	LECTION	ON F	EE:								ANALYSES									
SIGNATURE C La	a vlas A	Mo	14000			QUO	TED PR	ICE:							/	$\overline{}$	$\overline{}$	no Xo	1 4/		wî*	$\overline{\mathcal{S}}$		
PRINT NAME	36. 1 3 3			*V=1	1ARIWS		4						;		"	/ /	/ /	XY.	/0\/	M	, *}	.y	/ / /: .	and the second
SAMPLE NO.	DATE	TIME		SAMPLE LO			CONTAINE		COMP	OF CONTAINERS	SAMPLE MATRIX	PRESERVATIVE	/\	/) 3/3			χ_{γ}			July S		СОММЕР	ітѕ
	12/2/05	955	MW-	2-1			V 511	1 - 1		9	Water		V	, V	V	7	1	٠ ا	ن					
	8/2/13						V (3+1		(7_	Water		1	、レ	V	5	7	\ \	\					
	2/2/18						/ G+1	_1		9	Water		V	V	/	\	7	\	7					
	8/2/03	1545	MW.	44-1			N 641	0	-	9	Water		V	1	V	\		٧	V	·	_			
	3/21/05				ζ	4,	Jul G	/	'	2	Water		V											
	epclos_	1215	EWI	PMENT	BLANK	١,)W/ G	/		2	Wafer		V									٠,		
							<u> </u>		\bot			·									[
																	·						74.77	•
																							1	
								[.]						,										
	_																							
					_	1						<u> </u>												
							à,																	_
Relinquished by:		Date	/ Time		Received	by:					Relinquish	ed by:			Dat	e / Tin	ne				Re	ceive	d by:	
harlArlow	10			305 pm																				
Relinquished by:		Date	/Time		Received	l by:					Relinquish	ed by:			Dat	e / Tin	ne				Re	ceive	d for Laboratory	by:
			<u> </u>						·			<u> </u>											DROG	Pers .
Method of Shipmen	1				Remarks		Te	мр	9	ζ.					ereco. Period Period			*	4	amp amp			d served	YES NO

Dibromofluoromethane

Sample Description: trip blank Lab No: 01A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 08/26/03 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	ND	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND		
1,2-Dibromo-3-Chloropropane		0.52	
1,2-Dichloroethane	ND	0.60	
1,1-Dichloroethane	ND	0.55	
1,1-Dichloroethene	ND	0.65	
'	ND	0.57	
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ND	0.55	
·	ND	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	ND	0.67	
Toluene	<u>ND</u>	0.64	
1,1,2-Trichloroethane	<u>ND</u>	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
			_
SURROGATE %RECOV	ERY -	LIMITS	

111

<u>86</u> - <u>118</u>

Order # 03-08-B26 09/30/03 14:49 Page 7

TEST RESULTS BY SAMPLE

Sample Description: trip blank Lab No: 01A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 08/26/03 Category: GW

Notes and Definitions for this Report:

DATE RUN 09/03/03 09:05:00

ANALYST IM

CONC FACTOR _____1

UNITS uq/L

Sample Description: MW-43-1 Lab No: 02A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 08/26/03 11:40 Category: GW

3.8 0.63 0.55 0.53	
0.55	
· ·	
) 0.52	
·	
2.3	
2.5	
0.61	
0.66	
0.62	
0.82	
0.52	
0.75	
0.51	
0.52	
0.60	
0.55	
0.65	
0.57	
0.55	
0.59	
1.1	
0.55	
0.62	
0.56	
0.49	
0.58	
1.3	
0.52	
1.5	
1.1	
0.44	
0.67	
0.64	
0.59	
0.48	
	0 0.57 0 0.65 0 0.55 0 1.1 0 1.2 0 0.48

99

<u>86</u> - <u>118</u>

Dibromofluoromethane

Order # 03-08-B26					P	age 9
09/30/03 14:49	TEST	RESULTS B	Y SAMPLE			
		•				
Sample Description:			Lab No:			
Test Description:		SW846 8260	Method:	SW 846 8	260 Test	Code: V_RSAA
Collected:	08/26/03 11:40	(Category:	GW		
Tolue	ne-d894	<u> </u>	88 -	110		
4-Bromofluorobe	nzene <u>8</u>	7	86 -	115		
	Notes and De	finitions :	for this	Report:		
	DATE RUN 09/	/03/03 12::	39:00			
	ANALYST IM					
	CONC FACTOR	1				
	UNITS	ug/L				
Sample Description:	MW-43-1		Lab No:	02C		
Test Description:		thene	Method:		Test	Code: S GAS
Collected:	08/26/03 11:40	(Category:	GW		-
PARAMETER		RESULT		LIMIT	UNITS	WEIGHT
Methane			56		uq/L	
Ethane			ND	4.0	ug/L	
Ethene			ND	3.0	uq/L	
	Notes and Def	initions i	for this	Report:		
	DAME DIDI	00/	ng/ng			
	DATE RIM	0970)K/[] <			

ANALYST <u>stl</u> CONC FACTOR _

UNITS ____uq/L

Sample Description: MW-2-1 Lab No: 03A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 08/26/03 09:55 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	22	3.8	
Benzene	8.9	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	206	2.5	
Carbon Disulfide	0.63	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	495	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1.2-Dichloroethane	ND ND	0.55	
1,1-Dichloroethane	1.1	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	0.89	0.55	
trans-1,2-Dichloroethene		0.59	
1,2-Dichloroethene, total	1.0	1.1	
Dichloromethane (MeCl2)	ND	0.55	
· · · · ·			
1,2-Dichloropropane	ND ND	0.62	
cis-1,3-Dichloropropene	ND ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND ND	<u>0.52</u> 1.5	
4-Methyl-2-Pentanone (MIBK)	ND		
Styrene 1,1,2,2-Tetrachloroethane	ND 2.5	0.44	
Tetrachloroethene		0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND		
• *	2.4 ND	0.59 0.57	
1,1,1-Trichloroethane			
Trichloroethene	ND ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	/ERY	LIMITS	

___106

<u>86</u> - <u>118</u>

Dibromofluoromethane

Order # 03-08-B26					Pā	ige 11
09/30/03 14:49	TEST	RESULTS BY	SAMPLE			
Sample Description: Test Description:	GC/MS Volatiles,			: SW 846 8	260 Test	Code: V_RSAA
Collected:	08/26/03 09:55	C	ategory	: GW		
Tolue	ne-d8 <u>101</u>	<u> </u>	88 -	110		
4-Bromofluorobe	nzene93	<u> </u>	<u>86</u> -	115		
	Notes and Def	Finitions f	or this	Report:		
	DATE RUN <u>09/</u> ANALYST <u>IM</u> CONC FACTOR UNITS	/03/03 14:0 1 uq/L	6:00			
Sample Description: Test Description: Collected:			Lab No: Method: ategory:	:	Test	Code: S_GAS
PARAMETER		RESULT		LIMIT	UNITS	WEIGHT
Methane			11		ug/L	
Ethane			ND	4.0	ug/L	
Ethene			ND.	3.0	ug/L	
	Notes and Def	finitions f	or this	Report:		

DATE RUN 09/08/03

ANALYST stl

CONC FACTOR _____
UNITS ______Uq/L

Dibromofluoromethane

TEST RESULTS BY SAMPLE

Sample	Description:	equipment	blank	Lab No:	04A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 08/26/03 12:15 Category: GW

PARAMETER	RESULT LIMIT		WEIGHT
Acetone	ND	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	3.7	0.62	
Chloroethane	ND	0.82	
Chloroform			
Chloromethane	ND	0.52	
Dibromochloromethane	ND	0.75	
	ND	0.51	
1,2-Dibromoethane	ND	0.52	. ——
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	ND	0.55	
trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	 ·
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	<u> </u>	
o-Xylene	ND	<u> </u>	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	<u>ND</u>	0.48	
Surr Cmpd - % Rec - Limits			_
SURROGATE %RECOV	ERY	LIMITS	

117

86 - 118

Order # 03-08-B26

Page 13

09/30/03 14:49 TEST RESULTS BY SAMPLE

Sample Description: equipment blank Lab No: 04A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 08/26/03 12:15 Category: GW

 Toluene-d8
 88
 88
 110

 4-Bromofluorobenzene
 91
 86
 115

Notes and Definitions for this Report:

DATE RUN 09/03/03 09:48:00

ANALYST IM

CONC FACTOR 1

UNITS uq/L

Sample Description: MW-44-1 Lab No: 05A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 08/26/03 15:45 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT	
Acetone	ND	3.8		
Benzene	ND	0.63		
Bromodichloromethane	· ND	0.55		
Bromoform	ND	0.53		
Bromomethane	ND	2.3		
2-Butanone (MEK)	ND	2.5		
Carbon Disulfide	ND	0.61		
Carbon Tetrachloride	ND	0.66		
Chlorobenzene	1.6	0.62		
Chloroethane	ND	0.82		
Chloroform	1.1	0.52		
Chloromethane	ND	0.75		
Dibromochloromethane	ND	0.51		
1,2-Dibromoethane	ND	0.52		
1,2-Dibromo-3-Chloropropane	ND	0.60		
1,2-Dichloroethane	1.1	0.55		
1,1-Dichloroethane	ND	0.65		
1,1-Dichloroethene	ND	0.57		
cis-1,2-Dichloroethene	5.6	0.55		
trans-1,2-Dichloroethene	2.3	0.59		
1,2-Dichloroethene, total	7.9	1.1		
Dichloromethane (MeCl2)	ND	0.55		
1,2-Dichloropropane	ND	0.62		
cis-1,3-Dichloropropene	ND	0.56		
trans-1,3-Dichloropropene	ND	0.49		
Ethylbenzene	ND	0.58		
2-Hexanone	ND	1.3		
Isopropylbenzene	ND	0.52		
4-Methyl-2-Pentanone (MIBK)	ND	1.5		
Styrene (MISK)	ND	1.1		
1,1,2,2-Tetrachloroethane	15	0.44		
Tetrachloroethene	ND	0.67		
Toluene				
1,1,2-Trichloroethane	ND	<u>0.64</u> 0.59		
1.1.1-Trichloroethane	ND	0.59		
,	ND O			
Trichloroethene	8.8	0.65		
Vinyl Chloride	ND	0.55		
o-Xylene	<u>ND</u>	1.1		
m,p-Xylene	ND	1.2		
Methyl-tert-butyl ether	ND	0.48		
Surr Cmpd - % Rec - Limits			_	
SURROGATE %RECOV	/ERY	LIMITS		
Dibromofluoromethane11			118	

Order # 03-08-B26					Pa	age 15
09/30/03 14:49	TEST					
Sample Description: Test Description: Collected:			Lab No: Method:	SW 846	8260 Test	Code: V_RSAA
Toluer	ne-d8 <u> </u>	2	88 -	110		
4-Bromofluorobe	nzene96	_	<u>86</u> -	115		
	Notes and Def	initions f	or this	Report:		
	DATE RUN 09/	03/03 10:3	1:00			
	ANALYST <u>IM</u>					
	CONC FACTOR					
	UNITS	ug/L				
Sample Description: Test Description: Collected:			Lab No: Method: ategory:	-	Test	Code: S_GAS
, DADAMERED		DEGLET OF		T TWITT	INITEG	. HTT CHE
PARAMETER		RESULT		LIMIT	UNITS	WEIGHT
Methane			ND	2.0	ug/L	<u> </u>
Ethane			ND	4.0	uq/L	
Ethene			<u>ND</u>	3.0	ug/L	
	Notes and Def	initions f	or this	Report:		
	DATE RUN	09/0	<u>8/03</u>			

ANALYST stl CONC FACTOR UNITS ____

Sample Description: MW-42-1 Lab No: 06A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 08/26/03 14:45 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	15	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	7.4	0.62	
Chloroethane	ND	0.82	
Chloroform	0.88	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	1.0	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	1.2	0.57	
cis-1,2-Dichloroethene	65	0.55	
trans-1,2-Dichloroethene	23	0.59	
1,2-Dichloroethene, total	88	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	0.59	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	1.8	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	0.87	· · · · · · · · · · · · · · · · · · ·	
1,1,1-Trichloroethane	ND	0.59 0.57	
Trichloroethene			
	50	0.65	
Vinyl Chloride	1.3	0.55	
o-Xylene	0.54 J	1.1	
m,p-Xylene	1.4	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 10	1	86	118

Methane

Ethane

	RESULTS	BY	SAMPLE	

09/30/03 14:49	TEST RESULTS	BY SAMPLE		-		
-	-42-1 /MS Volatiles,SW846 82 /26/03 14:45	Lab No: 260 Method: Category:	SW 846	8260 7	[est Code	: V_RSAA
Toluene-		88 -	110			
4-Bromofluorobenze	ne <u>93</u>	<u>86</u> -	115			
	Notes and Definition	s for this	Report:			
	DATE RUN 09/03/03 1	1:14:00				
·	ANALYST <u>IM</u>	_				
	CONC FACTOR	<u>l</u> /L				
		·				
Sample Description: MW	-42-1	Lab No:	06C			
Test Description: me	thane, ethane, ethene	Method:		ר	Cest Code	: S_GAS
Collected: 08	/26/03 14:45	Category:	GW			
PARAMETER	RESULT		LIMIT	UNITS	S WEIG	GHT

2.0

4.0

uq/L

uq/L

ug/L

ND

ND

Ethene 3.0 ND Notes and Definitions for this Report:

> DATE RUN 09/08/03

ANALYST stl CONC FACTOR UNITS ____ uq/L

Sample: 02A MW-43-1 Collected: 08/26/03 11:40			Category: GW
Test Description TPH, Gasoline Range Org.	Result 0.12	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L IM 09/03/03 12:39
Sample: 02B MW-43-1 Collected: 08/26/03 11:40			Category: GW
Test Description TPH, Diesel Range Organics	<u>Result</u> ND	Det Limit 0.10	
Sample: 02D MW-43-1 Collected: 08/26/03 11:40			Category: GW
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	Result 134 46	Det Limit 10 1.0	Units By Analyzed Dt/Tm mg/L YT 08/29/03 08:30 mg/L EL 09/04/03 13:36
Sample: 02E MW-43-1 Collected: 08/26/03 11:40			Category: GW
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography	Result 60.0 0.6 09/22/03	Det Limit 0.1 0.1	Units By Analyzed Dt/Tm mg/L DED 09/22/03 09:00 mg/L GS 09/02/03 14:45 date complete AM
Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	ND ND 0.595 135	0.06 0.02 0.38 1.0	mg/L as N AM 09/22/03 18:13 mg/L as N AM 09/22/03 18:13 mg/L AM 09/22/03 18:13 mg/L as CaCO3 TLC 09/02/03 09:48
Sample: 02F MW-43-1 Collected: 08/26/03 11:40			Category: GW
Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES	Result 09/03/03 60.6 09/05/03	Det Limit 0.009	Units By Analyzed Dt/Tm date digested LC 09/03/03 08:00 mg/L LC 09/05/03 14:05 date analyzed
Sample: 03A MW-2-1 Collected: 08/26/03 09:55			Category: GW
Test Description TPH, Gasoline Range Org.	Result 0.13	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L IM 09/03/03 14:06
Sample: 03B MW-2-1 Collected: 08/26/03 09:55			Category: GW
Test Description TPH, Diesel Range Organics	Result 0.20	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 09/02/03 20:27

Sample: 03D MW-2-1 Collected: 08/26/03 09:55			Category: GW
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	<u>Result</u> 7480 2756	<u>Det Limit</u> 100 1.0	Units By Analyzed Dt/Tm mg/L YT 08/29/03 09:30 mg/L EL 09/04/03 13:36
Sample: 03E MW-2-1 Collected: 08/26/03 09:55			Category: GW
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	Result 116 100 08/27/03 ND ND ND ND	Det Limit	Model of the mag of th
Sample: 03F MW-2-1 Collected: 08/26/03 09:55			Category: GW
Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES	Result 09/03/03 216 09/05/03	Det Limit	Units By Analyzed Dt/Tm date digested LC 09/03/03 08:00 mg/L LC 09/05/03 14:08 date analyzed
Sample: 05A MW-44-1 Collected: 08/26/03 15:45			Category: GW
Test Description TPH, Gasoline Range Org.	Result ND	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L IM 09/03/03 10:31
Sample: 05B MW-44-1 Collected: 08/26/03 15:45			Category: GW
Test Description TPH, Diesel Range Organics	Result ND	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 09/02/03 21:15
Sample: 05D MW-44-1 Collected: 08/26/03 15:45			Category: GW
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	<u>Result</u> 53 30	<u>Det Limit</u> 10 1.0	Units By Analyzed Dt/Tm mg/L YT 08/29/03 08:30 mg/L EL 08/28/03 18:42
Sample: 05E MW-44-1 Collected: 08/26/03 15:45			Category: GW
Test Description Ferric Iron - AWWA B407-93	Result 0.899	Det Limit 0.1	Units By Analyzed Dt/Tm mg/L DED 09/22/03 09:00

			·
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
Ferrous Iron	ND	0.1	mg/L GS 09/02/03 14:45
Ion chromatography	09/22/03		date complete AM
Nitrate, Ion Chrom	5.15	0.06	mg/L as N AM 09/22/03 18:29
Nitrite, Ion Chrom	ND	0.02	mg/L as N AM 09/22/03 18:29
Sulfate, Ion Chrom	6.29	0.38	mg/L AM 09/22/03 18:29
Total Alkalinity-Titration	59	1.0	mg/L as CaCO3 TLC 09/02/03 09:48
iotal minarimity intraction	3,7	1.0	mg/1 ub caecs The 05/02/03 05:10
Sample: 05F MW-44-1			Category: GW
Collected: 08/26/03 15:45			caccgory. an
001100000. 00/20/03 13.13			
Test Description	Result	Det Limit	<u>Units By Analyzed Dt/Tm</u>
Digestion, Aqueous, 200.2	09/03/03		date digested LC 09/03/03 08:00
Iron, ICP	0.899		mg/L LC 09/05/03 14:19
	0.899	0.009	
Metals, ICP/OES	09/05/03		date analyzed
Sample: 06A MW-42-1			Catogory, CW
Collected: 08/26/03 14:45			Category: GW
Collected: 08/26/03 14:45			
Test Description	Pegult	Dot Limit	Units By Analyzed Dt/Tm
TPH, Gasoline Range Org.	Result 0.15	Det Limit 0.10	mg/L IM 09/03/03 11:14
IFH, Gasoline Range Olg.	0.15	0.10	шул тм 09/03/03 11:14
Sample: 06B MW-42-1			Category: GW
Collected: 08/26/03 14:45		•	category: Gm
COTTECTED: 08/20/03 14:43			
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
TPH, Diesel Range Organics	0.13	0.10	mg/L JSH 09/02/03 22:03
irm, blesel kange organics	0.13	0.10	шу/ц озн оэ/ог/оз 22:03
Sample: 06D MW-42-1			Catagores (III
Collected: 08/26/03 14:45			Category: GW
COTTected: 08/28/03 14:45			
Test Description	<u>Result</u>	Dot Timit	Imita By Analyzad Dt/Tm
Chemical Oxygen Demand	409	<u>Det Limit</u> 10	<u>Units</u> <u>By</u> <u>Analyzed Dt/Tm</u> mg/L YT 08/29/03 09:30
Total Organic Carbon, Aq	170	1.0	mg/L EL 08/28/03 18:42
iotal organic carbon, Aq	170	1.0	шу/ц ыц 08/28/03 18:42
Sample: 06E MW-42-1			Category: GW
Collected: 08/26/03 14:45			category: Gm
corrected: 00/20/03 14.43			
Test Description	Result	Det Limit	<u>Units</u> By Analyzed Dt/Tm
Ferric Iron - AWWA B407-93	3.60	0.1	mg/L DED 09/22/03 09:00
Ferrous Iron	0.4	0.1	
		0.1	mg/L GS 09/02/03 14:45
Ion chromatography Nitrate, Ion Chrom	08/27/03 19.2	0.00	date complete AM
		0.06	mg/L as N AM 08/27/03 20:52
Nitrite, Ion Chrom	ND	0.02	mg/L as N AM 08/27/03 20:52
Sulfate, Ion Chrom	14.5	0.38	mg/L AM 08/27/03 20:52
Total Alkalinity-Titration	260	1.0	mg/L as CaCO3 TLC 09/02/03 09:48
Complex OCE MEL 42 1			Gabarra 77
Sample: 06F MW-42-1			Category: GW
Collected: 08/26/03 14:45			
Test Description	Result	<u>Det Limit</u>	Units By Analyzed Dt/Tm
Digestion, Aqueous, 200.2	09/03/03		date digested LC 09/03/03 08:00

Order	#	03	-0	8	-B2	6
09/30	/n2	1	Λ.	1	Q.	

Page 5

Test Description Iron, ICP Metals, ICP/OES

09/05/03

 Result
 Det Limit
 Units
 By
 Analyzed
 Dt/Tm

 4.00
 0.009
 mg/L
 LC
 09/05/03
 14:11

date analyzed

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX) WWW.ATLANTICCOASTLABS.COM

REPORT OF ANALYSIS

Rosengarten, Smith & Assoc. 2222 Western Trails Blvd.

Suite 300

Austin, TX 78745

Attn: Mr. Charles Montero Invoice Number: 103843

Order #: 03-09-A15 Date: 10/14/03 16:39

Work ID: GE Railcar

Date Received: 09/24/03 Date Completed: 10/14/03

Client Code: RSA

SAMPLE IDENTIFICATION

Sample	s . Sample	s	ample	Sample
Number	<u>Description</u>	<u>N</u>	umber	Description
01	trip blank	0	4	equipment blank
02	MW-43-1	0	5	MW-44-1
03	MW-2-1	. 0	6	MW-42-1

This cover page is an integral part of the analytical report. Laboratory Certifications: DE DE00011

MD

PA 68-335

138

NJ DE568

Warren Van andelle Del Certified By

Warren Van Arsdall

Case Narrative

ACL Order Number 0309A15 (Continued)

Methane, Ethane, Ethene - Subcontracted

Subcontractor data package enclosed.

Ion Chromatography

Sample0309A15-03 was initially analyzed on 9/24/03 without a dilution. Due to chromatography, the sample was re-analyzed on 9/30/03 at a 10x and 25x dilution, the 10x dilution was reported.

Continuing calibration verifications were all acceptable.

Laboratory Control Sample was acceptable

0309A15-02 Duplicate/Matrix Spike was acceptable

0309C22-02 Duplicate/Matrix Spike was acceptable.

Metals Analysis (Total Iron) – EPA6010

Quality Control Sample (QC 19) was acceptable.

Interference A and Interference AB was acceptable.

Initial Laboratory Performance Check was acceptable.

Laboratory Fortified Blank was acceptable.

Matrix Spike/Matrix Spike Duplicate was acceptable.

Alkalinity, Total - Standard Methods 2320B, 19th Edition

Laboratory Blank was acceptable.

Laboratory Fortified Blanks were acceptable.

Laboratory duplicates were acceptable.

Case Narrative

ACL Order Number 0309A15 (Continued)

Total Organic Carbon - EPA 9060

Laboratory Blanks were acceptable.

Laboratory Fortified Blanks were acceptable.

Laboratory duplicates were acceptable.

Matrix spikes were acceptable.

Chemical Oxygen Demand - EPA 410.4

Method Blank was acceptable.

Laboratory Fortified Blanks were acceptable.

Sample duplicates were acceptable.

Matrix spikes were acceptable.

Gasoline Range Organics

Surrogate Recovery Summary

	SMC1	SMC2	SMC3
Sample ID	<u>%Rec.</u>	%Rec.	<u>%Rec.</u>
0309A15-01	99	104	117
0309A15-02	97	103	119
0309A15-03	89	104	123
0309A15-04	102	100	113
0309A15-05	103	103	112
0309A15-06	98	101	119

F:\DATA\SEP30\SEP3003.D

Data File Name

SEP3003.D

Data File Path

F:\DATA\SEP30\

Operator

IM

Acq. Method File

BEN

Sample Name

VLCS01 10ug/L

RSA GRO LCS Percent Recovery Report

		Spike	Percent
Name	Amount	Amount	Recovery
Benzene	15.14	10	151
Toluene	12.21	10	122
Ethylbenzene	9.84	10	98
m,p-Xylene	19.41	20	97
o-Xylene	10.83	10	108
1,2,4-Trimethylbenzene	10.87	10	109

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX) WWW.ATLANTICCOASTLABS.COM

REPORT OF ANALYSIS

Rosengarten, Smith & Assoc. 2222 Western Trails Blvd.

Suite 300

Austin, TX 78745

Attn: Mr. Charles Montero Invoice Number: 103843

Order #: 03-09-A15 Date: 10/14/03 16:39 Work ID: GE Railcar

Date Received: 09/24/03 Date Completed: 10/14/03

Client Code: RSA

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	<u>Number</u>	Description
01	trip blank	04	equipment blank
02	MW-43-1	05	MW-44-1
03	MW-2-1	06	MW-42-1

This cover page is an integral part of the analytical report. Laboratory Certifications: DE DE00011 PA 68-335

MD 138

NJ DE568

Warren Van Chardell
Certified By

Warren Van Arsdall

Case Narrative

ACL Order Number 0309A15

Overview:

A set of 6 samples was received from Rosengarten, Smith and Associates and is identified as 0309A15. 0309A15 consisted of four (4) samples, one (1) trip blank and one (1) equipment blank.

Matrix Spike/Matrix Spike Duplicates were analyzed at a frequency of 1 per ten samples. MS/MSD samples for this sample set includes 0309A15-03, 0309399-43 and 0309399-30.

Samples were received preserved, cooled to 4° C. The hold time for the samples was fourteen days for aromatic compounds and fourteen days for halogenated compounds. Ice was present in the cooler at time of receipt.

Samples were analyzed by Method 8260B and Method 8000B from SW-846, Test Methods for Evaluating Solid Waste. A 25 mL volume was used for analysis.

Summary:

All samples were analyzed within the prescribed hold time.

The following is a summary of contaminants found in the method blank(s) analyzed with this set of samples.

<u>Date</u>	Comments
09/29/03 12:03	None
09/30/03 08:52	None
10/02/03 13:36	None
10/02/03 21:09	None
10/03/03 13:07	None
10/03/03 21:22	None

The instrument performance was acceptable as indicated by the tune report for 4-bromofluorobenzene.

The average RRF for all compounds was less than 15% for the initial calibration performed on 9/29/03 except for acetone and 1,2-dibromo-3-chloropropane. A linear regression curve fit (not forced through 0) was used for these compounds.

Case Narrative ACL Order Number 0309A15 (Continued)

The average RRF for all compounds was less than 15% for the initial calibration performed on 10/02/03 except for chloromethane, bromomethane, acetone, methylene chloride, 1,1-dichloroethane, cis-1,2-dichloroethane, chloroform, 1,2-dichloroethane, 2-butanone, benzene, 1,2-dichloropropane, 2-hexanone, styrene, 1,1,2,2-tetrachloroethane, and 1,2-dibromo-3-chloropropane. A linear regression curve fit (not forced through 0) was used for these compounds.

The average RRF for all compounds was less than 15% for the initial calibration performed on 10/03/03.

The acceptance criteria for the System Performance Check Compounds and Continuing Calibration Compounds was met for continuing calibration check standards.

The surrogate recoveries were within the acceptable limits in all samples analyzed with the following exceptions: None

The results of the MS/MSD were all within the acceptance limits with the exception of 0309A15-03MS which failed chlorobenzene recoveries due to ambient level of chlorobenzene in sample. 0309399-43MS benzene recovery was outside QC limits at 134%. LCS and 0309399-43MSD were within acceptable limits for benzene.

The internal standard areas were all within the acceptance criteria with the exception of VLCS01 and BLK01 on 10/02/03. Both of these samples failed the IS4 areas. No samples were analyzed from this batch. A new tune std., calibration std, lcs, blank and additional samples were analyzed after with acceptable area recoveries.

The percent recoveries for the analytes in the Laboratory Control Sample were within acceptable limits.

Major Issues:

None

Minor Issues:

0309A15-06:

Trans-1,2-dichloroethene, cis-1,2-dichloroethene and trichloroethene exceeded the calibration range. Sample was diluted and re-analyzed on 10/03/03.

Case Narrative ACL Order Number 0309A15 (Continued)

0309A15-02:

Sample was re-analyzed on 10/02/03 due to the possibility of carryover from previous sample.

Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 09/30/03.

0309A15-03:

Acetone, 2-Butanone and chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 10/02/03.

0309A15-02RA:

Chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 09/30/03.

GLOSSARY OF DATA QUALIFIER CODES (ORGANIC)

В	=	Not detected substantially above the level reported in laboratory or field blanks
J	=	Analyte present. Reported Value may not be accurate or precise
E	=	Analyte present, exceeds calibration range
U	=	Analyte analyzed for, undetected.
N	=	Tentative Identification. Consider present. Special methods may be needed to

Digestion

Method 200.2

Iron (Fe) - ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA (1983) Method 200.7

SW 846 Method 6010

RCRA TCLP & groundwater

Solids

SW 846 Method 6010

ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA Method 200.7

RCRA TCLP & groundwater

SW 846 Method 6010

Solids

SW 846 Method 6010

Chemical Oxygen Demand

EPA Method 410.4 (manual colorimetric)

Total Organic Carbon, Aqueous

EPA Method 415.1

SW-846 Method 9060

Total Petroluem Hydrocarbons, Diesel Range Organics SW-846, Method 8015, GC/FID (modified)

Total Petroleum Hydrocarbons-Gasoline Range Organics (TPH/GRO) SW-846 Method 8015 (modified)

Volatile Organics by GC/MS (aqueous)

SW846 Method 8260B (purge & trap, capillary column GC/MS)

Total Alkalinity

SM 2320B (titrimetric)

Nitrite, Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes

SW-846 Method 9056

Nitrate, Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes

SW-846 Method 9056

Sulfate, Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes

SW-846 Method 9056

CHAIN OF CUSTODY RECORD COMPANY ROSENGAR TEN SMITH & ASSOC.,
ADDRESS : 2222 Western Track # 300 RSA INC 630 Churchmans Road ATLANTIC COAST Newark, Delaware 19702 Laboratories, Incorporated AUSTIN TY 302-266-9121 • 454-8720 (FAX) 78745 PHONE (512) 707-1717 0309A15 Montero SAMPLED BY ANALYSES SAMPLE COLLECTION FEE: QUOTED PRICE: PRINT NAME SAMPLE DATE TIME SAMPLE LOCATION **PRESERVATIVE** COMMENTS V* 64P V 9/23/03/1112/MW-Z-1 HCC, HN03 9 [22/03 1215 MW-4]-1 (MW) MW-43-1 V 61P 9/23/03 305 PMW-42-HCC 14 NO3 VGTP 125/03 355 PMW- 44-1 A CHI Water EQUIPMENT BLANK Water Date / Time Relinguished by: Received by: Date / Time Relinquished by: Received by: 8:10 Received by: Received for Laboratory by: Relinquished by: Relinquished by: Method of Shipment YES NO

T = Various Sizes

AR102044

Samples Iced
Samples Preserved

Sample Description: trip blank Lab No: 01A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 09/22/03 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	ND	0.63	· _
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	ND	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	ND	0.55	
trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	<u> </u>
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	<u> </u>	
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			 '
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 9	98	86	118

Order # 03-09-A15 10/14/03 16:27 Page 6

14	/03	16:27	TEST	RESULTS	BY	SAMPLE
	,	10.27		1/11/11/11/11	2	OLZ IL TIL

Sample Description: trip blank

Lab No: 01A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 09/22/03

Category: GW

Toluene-d8 4-Bromofluorobenzene

102 110 88

86 - <u>11</u>

Notes and Definitions for this Report:

DATE RUN 09/30/03 09:40:00

ANALYST IM

CONC FACTOR ____

UNITS ____ug/

Sample Description: MW-43-1 Lab No: 02A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 09/23/03 12:15 Category: GW

PARAMETER .	RESULT	LIMIT	WEIGHT	
Acetone	5.0	3.8		
Benzene	21	0.63		
Bromodichloromethane	ND	0.55		
Bromoform	ND	0.53		
Bromomethane	ND	2.3		
2-Butanone (MEK)	2.5	2.5		
Carbon Disulfide	ND	0.61		
Carbon Tetrachloride	ND	0.66		
Chlorobenzene	789	0.62		
Chloroethane	ND	0.82		
Chloroform	ND	0.52		
Chloromethane	ND	0.75		
Dibromochloromethane	ND	0.51		
1,2-Dibromoethane	ND	0.52		
1,2-Dibromo-3-Chloropropane	ND	0.60		
1,2-Dichloroethane	ND	0.55		
1,1-Dichloroethane	1.2	0.65		
1,1-Dichloroethene	ND	0.57		
cis-1,2-Dichloroethene	ND	0.55		
trans-1,2-Dichloroethene	0.65	0.59		
1,2-Dichloroethene, total	0.65 J	1.1		
Dichloromethane (MeCl2)	ND	0.55		
1,2-Dichloropropane	ND	0.62		
cis-1,3-Dichloropropene	ND	0.56		
trans-1,3-Dichloropropene	ND	0.49		
Ethylbenzene	0.51 J	0.58		
2-Hexanone	ND	1.3		
Isopropylbenzene	ND	0.52		
4-Methyl-2-Pentanone (MIBK)	ND	1.5		
Styrene	ND	1.1		
1,1,2,2-Tetrachloroethane	ND	0.44		
Tetrachloroethene	ND	0.67		
Toluene	ND	0.64		
1,1,2-Trichloroethane	ND	0.59		
1,1,1-Trichloroethane	ND	0.57		
Trichloroethene	ND	0.65		
Vinyl Chloride	ND	0.55		
o-Xylene	ND	1.1		
m,p-Xylene	ND	1.2		
Methyl-tert-butyl ether	<u>ND</u>	0.48		
Surr Cmpd - % Rec - Limits			_	
SURROGATE %RECOV	ERY	LIMITS		
Dibromofluoromethane9	<u> </u>	86	118	

ساتاتات	ספיוו שכ	กซ	CAMOTE
1001	RESULTS	- n I	SAMPLE

Sample Description: MW-43-	Sample	Description:	MW-43-1
----------------------------	--------	--------------	---------

Lab No: 02A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 09/23/03 12:15

Category: GW

Toluene-d8

88

4-Bromofluorobenzene

Notes and Definitions for this Report:

DATE RUN 10/02/03 21:54:00

ANALYST RJM

CONC FACTOR

uq/L UNITS ____

Sample Description: MW-43-1

Lab No: 02C

Test Description: methane, ethane, ethene

Method:

Test Code: S GAS

Collected: 09/23/03 12:15

Category: GW

PARAMETER	RESULT	LIMIT	UNITS	WEIGHT
Methane	100	2.0	ug/L	
Ethane	ND	4.0	uq/l	
Ethene	ND	3.0	ua/I.	

Notes and Definitions for this Report:

DATE RUN 09/30/03

ANALYST STL

CONC FACTOR UNITS ____ uq/L Sample Description: MW-2-1

Lab No: 03A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 09/23/03 11:10

Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	344	3.8	
Benzene	10	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	275	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	808	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	0.88	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	1.0	0.55	
trans-1,2-Dichloroethene	1.0	0.59	
1,2-Dichloroethene, total	2.0	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane			
cis-1,3-Dichloropropene	ND	0.62	
	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene 2-Hexanone	<u>ND</u>	0.58	
Isopropylbenzene	ND	1:3	
	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	 .
1,1,2,2-Tetrachloroethane Tetrachloroethene	2.0	0.44	
_	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	<u>0.54 J</u>	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	 .
o-Xylene	ND	<u> </u>	
m,p-Xylene	<u> </u>	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
CIDDOGATE & DECOM	EDV	t TMTTO	
SURROGATE %RECOV	_	LIMITS	110
Dibromofluoromethane 8	<u> </u>	<u>.86</u>	<u>118</u>

1/03	16:27	TEST	RESULTS	BY	SAMPLE

Sample	Description:	MW-2-1	Lab No:	03A
	B	00/40 37-1-431 00046 0060		

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 09/23/03 11:10 Category: GW

Toluene-d8 102 4-Bromofluorobenzene 115 86

Notes and Definitions for this Report:

DATE RUN 09/30/03 15:32:00 ANALYST IM CONC FACTOR ____ UNITS ____

Sample Description: MW-2-1

Lab No: 03C

Test Description: methane, ethane, ethene

Method:

Test Code: S_GAS

Collected: 09/23/03 11:10

Category: GW

PARAMETER	RESULT	LIMIT	UNITS	WEIGHT
Methane	18	2.0	uq/L	
Ethane	ND	4.0	uq/L	
Ethene	ND	3.0	uq/L	

Notes and Definitions for this Report:

DATE RUN 09/30/03 ANALYST STL CONC FACTOR 1.0 UNITS ____ uq/L

Sample Description: equipment blank Lab No: 04A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 09/23/03 11:10 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	1.6 J	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	ND	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	ND ND	0.55	
trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloroethene, total	ND	1.1	-
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	- 1. "
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene (MIDK)	ND	1.1	
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Methyl telt-butyl ethel		0.40	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 10			118

Order # 03-09-A15

Page 12

10/14/03 16:27

TEST RESULTS BY SAMPLE

Sample Description: equipment blank Lab No: 04A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 09/23/03 11:10 Category: GW

Notes and Definitions for this Report:

DATE RUN 09/30/03 10:24:00

ANALYST <u>IM</u>

CONC FACTOR ____1

UNITS ug/I

TEST RESULTS BY SAMPLE

Sample Description: MW-44-1 Lab No: 05A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 09/23/03 15:55 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	3.2 Ј	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	1.8	0.62	
Chloroethane	ND	0.82	
Chloroform	1.0	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	0.93	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	4.0	0.55	
trans-1,2-Dichloroethene	1.7	0.59	
1,2-Dichloroethene, total	5.7	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	16	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	0.75	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	7.7	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	0.8 J	1.2	
Methyl-tert-butyl ether	ND	0.48	
•			 .
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 10			118

Ethene

Order # 03-03-MT2					ŀ	age 14	
10/14/03 16:27	TEST	RESULTS BY	SAMPLE				
Sample Description: Test Description: Collected:			Lab No: Method: Category:	SW 846	8260 Test	Code: V _	RSAA
Tolue:			<u>88</u> - 86 -	<u>110</u> 115			
	Notes and De						
	DATE RUN 09, ANALYST IM CONC FACTOR UNITS	_	99:00				
Sample Description: Test Description: Collected:			Lab No: Method: ategory:		Test	: Code: S_	gas
PARAMETER		RESULT	:	LIMIT	UNITS	WEIGHT	
Methane			ND .	2.0	uq/I	<u>. </u>	
Ethane			ND	4.0	uq/I	<u> </u>	

Notes and Definitions for this Report:

DATE RUN 09/30/03 ANALYST STL CONC FACTOR 1.0 UNITS ____

Sample Description: MW-42-1 Lab No: 06A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 09/23/03 15:05 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	17	3.8	
Benzene	1.0	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	2.0 J	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	11	0.62	
Chloroethane	ND	0.82	
Chloroform	1.0	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	2.4	0.55	
1,1-Dichloroethane	1.9	0.65	
1,1-Dichloroethene	3.6	0.57	
cis-1,2-Dichloroethene	527	0.55	
trans-1,2-Dichloroethene	211	0.59	
1,2-Dichloroethene, total	738	1.1	
Dichloromethane (MeCl2)	0.68	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	0.88	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	6.2	0.44	
Tetrachloroethene	0.8	0.67	
Toluene	1.2	0.64	
1,1,2-Trichloroethane	5.6	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	333	0.65	
Vinyl Chloride	6.2	0.55	
o-Xylene	0.94 J	1.1	
m,p-Xylene	1.9	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	

97

118

Dibromofluoromethane

10/14/03 16:27	TEST	RESULTS	BY	SAMPLE

Dampie Describeron. In 42-1	Sample	Description:	MW-42-1
-----------------------------	--------	--------------	---------

Lab No: 06A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 09/23/03 15:05

Category: GW

Toluene-d8 4-Bromofluorobenzene

Notes and Definitions for this Report:

DATE RUN 09/30/03 11:54:00

ANALYST _IM

CONC FACTOR

UNITS ____

Sample Description: MW-42-1

Lab No: 06C

Test Description: methane, ethane, ethene

Method:

Test Code: S_GAS

Collected: 09/23/03 15:05

Category: GW

PARAMETER	RESULT	LIMIT	UNITS	WEIGHT
Methane	ND	2.0	uq/L	
Ethane	ND	4.0	ug/L	
Ethene	ND	3.0	ug/L	

Notes and Definitions for this Report:

DATE RUN 09/30/03

ANALYST STL

CONC FACTOR UNITS

Sample: 02A MW-43-1 Collected: 09/23/03 12:15			Category: GW
Test Description TPH, Gasoline Range Org.	Result 0.24	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L IM 09/30/03 12:38
Sample: 02B MW-43-1 Collected: 09/23/03 12:15			Category: GW
Test Description TPH, Diesel Range Organics	<u>Result</u> ND	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 09/29/03 13:41
Sample: 02D MW-43-1 Collected: 09/23/03 12:15			Category: GW
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	<u>Result</u> 41 9.9	Det Limit 10 1.0	Units By Analyzed Dt/Tm mg/L YT 09/26/03 09:30 mg/L EL 09/30/03 18:21
Sample: 02E MW-43-1 Collected: 09/23/03 12:15			Category: GW
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography	Result 63 0.3 09/24/03	Det Limit 0.1 0.1	Units By Analyzed Dt/Tm mg/L DED 10/14/03 12:00 mg/L GS 10/03/03 14:00 date complete AM
Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	ND ND 2.09 93	0.06 0.02 0.38 1.0	mg/L as N AM 09/24/03 22:42 mg/L as N AM 09/24/03 22:42 mg/L AM 09/24/03 22:42 mg/L as CaCO3 TLC 10/01/03 11:51
Sample: 02F MW-43-1 Collected: 09/23/03 12:15			Category: GW
Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES	Result 10/01/03 63.3 10/03/03	Det Limit 0.009	Units By Analyzed Dt/Tm date digested EL 10/01/03 15:30 mg/L LC 10/03/03 21:40 date analyzed
Sample: 03A MW-2-1 Collected: 09/23/03 11:10			Category: GW
Test Description TPH, Gasoline Range Org.	Result 0.23	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L IM 09/30/03 15:32
Sample: 03B MW-2-1 Collected: 09/23/03 11:10			Category: GW
Test Description TPH, Diesel Range Organics	Result 1.7	Det Limit 0.50	Units By Analyzed Dt/Tm mg/L JSH 09/29/03 16:51

Sample: 03D MW-2-1 Collected: 09/23/03 11:10	·		Category: GW
Test Description	Result	Det Limit	<u>Units</u> By Analyzed Dt/Tm
Chemical Oxygen Demand	6700	10	mg/L YT 09/26/03 10:30
Total Organic Carbon, Aq	2049	1.0	mg/L EL 10/08/03 11:47
Sample: 03E MW-2-1			Category: GW
Collected: 09/23/03 11:10			
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
Ferric Iron - AWWA B407-93	177	0.1	mg/L DED 10/14/03 12:00
Ferrous Iron	3.0	0.1	mg/L GS 10/03/03 14:00
Ion chromatography	09/30/03		date complete AM
Nitrate, Ion Chrom	ND	0.06	mg/L as N AM 09/24/03 23:25
Nitrite, Ion Chrom	ND	0.20	mg/L as N AM 09/30/03 20:47
Sulfate, Ion Chrom	0.779	0.38	mg/L AM 09/24/03 23:25
Total Alkalinity-Titration	2123	1.0	mg/L as CaCO3 TLC 10/01/03 11:51
Sample: 03F MW-2-1			Category: GW
Collected: 09/23/03 11:10	-		
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
Digestion, Aqueous, 200.2	10/01/03		date digested EL 10/01/03 15:30
Iron, ICP	180	0.090	mg/L LC 10/06/03 11:58
Metals, ICP/OES	10/06/03		date analyzed
Sample: 05A MW-44-1 Collected: 09/23/03 15:55			Category: GW
Test Description TPH, Gasoline Range Org.	Result ND	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L IM 09/30/03 11:09
Sample: 05B MW-44-1 Collected: 09/23/03 15:55			Category: GW
Test Description TPH, Diesel Range Organics	Result ND	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 09/29/03 15:16
Sample: 05D MW-44-1 Collected: 09/23/03 15:55			Category: GW
Test Description	<u>Result</u>	Det Limit	Units By Analyzed Dt/Tm
Chemical Oxygen Demand	155	10	mg/L YT 09/26/03 09:30
Total Organic Carbon, Aq	105	1.0	mg/L EL 09/30/03 18:21
Sample: 05E MW-44-1 Collected: 09/23/03 15:55			Category: GW
•			•
Test Description	<u>Result</u>	Det Limit	<u>Units By Analyzed Dt/Tm</u>

Test Description	<u>Result</u>	Det Limit	<u>Units</u> By <u>Analyzed Dt/Tm</u>
Ferrous Iron	ND	0.1	mg/L GS 10/03/03 14:00
Ion chromatography	09/24/03		date complete AM
Nitrate, Ion Chrom	1.87	0.06	mg/L as N AM 09/24/03 23:39
Nitrite, Ion Chrom	ND	0.02	mg/L as N AM 09/24/03 23:39
Sulfate, Ion Chrom	8.53	0.38	mg/L AM 09/24/03 23:39
Total Alkalinity-Titration	67	1.0	mg/L as CaCO3 TLC 10/01/03 11:51
Sample: 05F MW-44-1			Category: GW
Collected: 09/23/03 15:55			02003017. 0
•			
Test Description	<u>Result</u>	<u>Det Limit</u>	<u>Units</u> By <u>Analyzed Dt/Tm</u>
Digestion, Aqueous, 200.2	10/01/03		date digested EL 10/01/03 15:30
Iron, ICP	2.71	0.009	mg/L LC 10/03/03 21:55
Metals, ICP/OES	10/03/03		date analyzed
Sample: 06A MW-42-1			Category: GW
Collected: 09/23/03 15:05			
Test Description	<u>Result</u>	<u>Det Limit</u>	<u>Units</u> <u>By</u> <u>Analyzed Dt/Tm</u>
TPH, Gasoline Range Org.	0.80	0.10	mg/L RJM 10/02/03 14:20
Sample: 06B MW-42-1			Category: GW
Collected: 09/23/03 15:05			cacegory. cm
mana manada katan	D 1 +	B-6 - 8 2 - 2 6	1
Test Description	<u>Result</u>	Det Limit	<u>Units</u> By Analyzed Dt/Tm
Test Description TPH, Diesel Range Organics	<u>Result</u> ND	<u>Det Limit</u> 0.10	Units By Analyzed Dt/Tm mg/L JSH 09/29/03 16:04
TPH, Diesel Range Organics			mg/L JSH 09/29/03 16:04
· · · · · · · · · · · · · · · · · · ·			
TPH, Diesel Range Organics Sample: 06D MW-42-1			mg/L JSH 09/29/03 16:04
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description			mg/L JSH 09/29/03 16:04 Category: GW Units By Analyzed Dt/Tm
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand	ND	0.10	mg/L JSH 09/29/03 16:04 Category: GW
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description	ND <u>Result</u>	0.10	mg/L JSH 09/29/03 16:04 Category: GW Units By Analyzed Dt/Tm
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand	Result 331	0.10 Det Limit 10	mg/L JSH 09/29/03 16:04 Category: GW Units By Analyzed Dt/Tm mg/L YT 09/26/03 10:30 mg/L EL 09/30/03 18:21
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	Result 331	0.10 Det Limit 10	mg/L JSH 09/29/03 16:04 Category: GW Units By Analyzed Dt/Tm mg/L YT 09/26/03 10:30
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 09/23/03 15:05	Result 331 148	0.10 Det Limit 10 1.0	mg/L JSH 09/29/03 16:04 Category: GW Units By Analyzed Dt/Tm mg/L YT 09/26/03 10:30 mg/L EL 09/30/03 18:21 Category: GW
Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 09/23/03 15:05 Test Description	Result 331 148 Result	Det Limit 10 1.0	Mg/L JSH 09/29/03 16:04 Category: GW Units By Analyzed Dt/Tm mg/L YT 09/26/03 10:30 mg/L EL 09/30/03 18:21 Category: GW Units By Analyzed Dt/Tm
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 09/23/03 15:05 Test Description Ferric Iron - AWWA B407-93	Result 331 148 Result 0.18	Det Limit 10 1.0 Det Limit 0.1	Mg/L JSH 09/29/03 16:04 Category: GW Units By Analyzed Dt/Tm mg/L YT 09/26/03 10:30 mg/L EL 09/30/03 18:21 Category: GW Units By Analyzed Dt/Tm mg/L DED 10/14/03 12:00
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 09/23/03 15:05 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron	Result 331 148 Result 0.18 ND	Det Limit 10 1.0	Mg/L JSH 09/29/03 16:04 Category: GW Units By Analyzed Dt/Tm mg/L YT 09/26/03 10:30 mg/L EL 09/30/03 18:21 Category: GW Units By Analyzed Dt/Tm mg/L DED 10/14/03 12:00 mg/L GS 10/03/03 14:00
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 09/23/03 15:05 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography	Result 331 148 Result 0.18 ND 09/24/03	0.10 Det Limit 10 1.0 Det Limit 0.1 0.1	### Market Market
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 09/23/03 15:05 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom	Result 331 148 Result 0.18 ND 09/24/03 1.99	Det Limit	mg/L JSH 09/29/03 16:04 Category: GW Units By Analyzed Dt/Tm mg/L YT 09/26/03 10:30 mg/L EL 09/30/03 18:21 Category: GW Units By Analyzed Dt/Tm mg/L DED 10/14/03 12:00 mg/L GS 10/03/03 14:00 date complete AM mg/L as N AM 09/24/03 23:53
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 09/23/03 15:05 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom	Result 331 148 Result 0.18 ND 09/24/03 1.99 ND	Det Limit	### March ### ### ############################
Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 09/23/03 15:05 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom	Result 331 148 Result 0.18 ND 09/24/03 1.99 ND 18.1	Det Limit	Table 19
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 09/23/03 15:05 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom	Result 331 148 Result 0.18 ND 09/24/03 1.99 ND	Det Limit	### March ### ### ############################
Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 09/23/03 15:05 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom	Result 331 148 Result 0.18 ND 09/24/03 1.99 ND 18.1	Det Limit	Table 19
Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 09/23/03 15:05 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	Result 331 148 Result 0.18 ND 09/24/03 1.99 ND 18.1	Det Limit	### Category: GW Units By
Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 09/23/03 15:05 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 06F MW-42-1 Collected: 09/23/03 15:05	Result 331 148 Result 0.18 ND 09/24/03 1.99 ND 18.1 238	Det Limit	Tategory: GW Units By Analyzed Dt/Tm mg/L YT 09/26/03 10:30 mg/L EL 09/30/03 18:21 Category: GW Units By Analyzed Dt/Tm mg/L EL 09/30/03 18:21 Category: GW Units By Analyzed Dt/Tm mg/L DED 10/14/03 12:00 mg/L GS 10/03/03 14:00 date complete AM mg/L as N AM 09/24/03 23:53 mg/L AM 09/24/03 23:53 mg/L AM 09/24/03 23:53 mg/L AM 09/24/03 11:51 Category: GW
Sample: 06D MW-42-1 Collected: 09/23/03 15:05 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 09/23/03 15:05 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 06F MW-42-1	Result 331 148 Result 0.18 ND 09/24/03 1.99 ND 18.1	Det Limit	### Category: GW Units By

Test Description
Iron, ICP
Metals, ICP/OES

Result 0.181 0.009
10/03/03

<u>Units By</u> <u>Analyzed Dt/Tm</u> mg/L LC 10/03/03 21:59

date analyzed

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX) WWW.ATLANTICCOASTLABS.COM

REPORT OF ANALYSIS

Rosengarten, Smith & Assoc. 2222 Western Trails Blvd.

Suite 300

Austin, TX 78745

Attn: Mr. Charles Montero Invoice Number: 104368

Order #: 03-10-992 Date: 12/11/03 12:04

Work ID: GE Elkton Railcar Date Received: 10/22/03 Date Completed: 11/17/03

Client Code: RSA

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	Number	Description
01	trip blank	04	equipment blank
02	MW-43-1	05	MW - 44 - 1
03	MW-2-1	06	MW-42-1

This cover page is an integral part of the analytical report.

Laboratory Certifications:

DE DE00011 PA 68-335

MD 138 NJ DE568

Certified By

Warren Van Arsdall

Warren Van Carloll Def

GLOSSARY OF DATA QUALIFIER CODES (ORGANIC)

В	=	Not detected substantially above the level reported in laboratory or field blanks
J	=	Analyte present. Reported Value may not be accurate or precise
E	=	Analyte present, exceeds calibration range
U ·	. =	Analyte analyzed for, undetected.
N	=	Tentative Identification. Consider present. Special methods may be needed to confirm its presence or absence in future sampling efforts.

Case Narrative

ACL Order Number 0310992

Overview:

A set of 6 samples was received from Rosengarten, Smith and Associates and is identified as 0310992. 0310992 consisted of four (4) samples, one (1) trip blank and one (1) equipment blank.

Matrix Spike/Matrix Spike Duplicates were analyzed at a frequency of 1 per ten samples. MS/MSD samples for this sample set includes 0310992-06 and 0310992-02DL 10x.

Samples were received preserved, cooled to 4° C. The hold time for the samples was fourteen days for aromatic compounds and fourteen days for halogenated compounds. Ice was present in the cooler at time of receipt.

Samples were analyzed by Method 8260B and Method 8000B from SW-846, Test Methods for Evaluating Solid Waste. A 25 mL volume was used for analysis.

Summary:

All samples were analyzed within the prescribed hold time.

The following is a summary of contaminants found in the method blank(s) analyzed with this set of samples.

<u>Date</u>	Comments
10/23/03 01:11	None
10/25/03 09:09	None
10/27/03 23:41	None

The instrument performance was acceptable as indicated by the tune report for 4-bromofluorobenzene.

The average RRF for all compounds was less than 15% for the initial calibration performed on 10/22/03 except for 2-hexanone. A linear regression curve fit (not forced through 0) was used for this compound.

Case Narrative ACL Order Number 0310992 (Continued)

The average RRF for all compounds was less than 15% for the initial calibration performed on 10/27/03 except for 4-methyl-2-pentanone, 2-hexanone, bromoform and 1,2-dibromo-3-chloropropane. A linear regression curve fit (not forced through 0) was used for these compounds.

The acceptance criteria for the System Performance Check Compounds and Continuing Calibration Compounds was met for continuing calibration check standards.

The surrogate recoveries were within the acceptable limits in all samples analyzed with the following exceptions: 0310992-02 analyzed on 10/25/03 failed SMC2 and was re-analyzed on 10/27/03 with all SMC's acceptable.

The results of the MS/MSD were all within the acceptance limits with the exception of 0310992-06MSD that failed trichloroethene recovery due to ambient level of trichloroethene in sample. 0310992-02DLMS 10x and 0310992-02DLMSD 10x failed chlorobenzene recovery due to ambient level of chlorobenzene in sample.

The internal standard areas were all within the acceptance criteria.

The percent recoveries for the analytes in the Laboratory Control Sample were within acceptable limits.

Major Issues:

None

Minor Issues:

0310992-02:

2-butanone and chlorobenzene exceeded the calibration range. Sample was diluted at 10x and re-analyzed on 10/27/03. This sample dilution was insufficient to get chlorobenzene inside the calibration range. This result was reported due to no sample vials left for an additional dilution analysis.

Case Narrative ACL Order Number 0310992 (Continued)

0310992-03:

2-Butanone and chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 10/27/03.

0310992-05:

Sample was re-analyzed on 10/27/03 due to possible carryover from previous sample.

0310992-06:

Trichloroethene and cis-1,2-dichloroethene exceeded the calibration range. Sample was diluted and re-analyzed on 10/27/03.

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX) WWW.ATLANTICCOASTLABS.COM

REPORT OF ANALYSIS

Rosengarten, Smith & Assoc. 2222 Western Trails Blvd.

Suite 300

Austin, TX 78745

Attn: Mr. Charles Montero Invoice Number: 104368

Order #: 03-10-992 Date: 11/18/03 12:50

Work ID: GE Elkton Railcar Date Received: 10/22/03 Date Completed: 11/17/03

Client Code: RSA

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	<u>Number</u>	<u>Description</u>
01	trip blank	04	equipment blank
02	MW-43-1	05	MW-44-1
03	MW-2-1	06	MW-42-1

This cover page is an integral part of the analytical report. Laboratory Certifications: DE DE00011

PA 68-335

MD 138 NJ DE568

Certified By

Warren Van Arsdall

Warren Van Durchell Wil

ACL Order Number 0310992

Overview:

A set of 6 samples was received from Rosengarten, Smith and Associates and is identified as 0310992 consisting of 4 samples, 1 trip blank and 1 equipment blank.

Samples were received preserved, cooled to 4° C. Ice was present in the cooler at time of receipt. The temperature at time of receipt was 1° C.

Summary:

Gasoline Range Organics

All samples were analyzed within the prescribed hold time.

Analysis was performed by modified EPA 8015 using P/T GC-MS.

Method Blank was non-detected with an MDL of 0.10 mg/L.

Laboratory Control Sample recovery was acceptable.

All surrogate recoveries were acceptable.

Diesel Range Organics

All samples were analyzed within the prescribed hold time.

Analysis was performed by modified EPA 8015 (modified).

Method Blank was non-detected with an MDL of 0.10 mg/L.

Laboratory Control Sample recovery was acceptable.

All surrogate recoveries were acceptable.

Internal standard responses were acceptable.

Insufficient sample for MS/MSD.

ACL Order Number 0310992 (Continued)

Methane, Ethane, Ethene - Subcontracted

Subcontractor data package enclosed.

Ion Chromatography

Sample 0310992-02 was initially analyzed on 10/22/03 without a dilution. Due to chromatography, the sample was re-analyzed on 10/27/03 at a 10x and for nitrite. Sample 0310992-03 was initially analyzed on 10/22/03 without a dilution. Due to chromatography, the sample was re-analyzed on 10/27/03 at a 10x and for nitrite.

Continuing calibration verifications were all acceptable.

Laboratory Control Sample was acceptable

0310925-02A Duplicate/Matrix Spike was acceptable for all analytes with the exception of nitrate and sulfate. Laboratory fortified blank was acceptable for all analytes.

0310947-08 Duplicate/Matrix Spike was acceptable.

Metals Analysis (Total Iron) – EPA6010

Quality Control Sample (QC 19) was acceptable.

Interference A and Interference AB was acceptable.

Initial Laboratory Performance Check was acceptable.

Laboratory Fortified Blank was acceptable.

Matrix Spike/Matrix Spike Duplicate was acceptable.

Alkalinity, Total - Standard Methods 2320B, 19th Edition

Laboratory Blank was acceptable.

Laboratory Fortified Blanks were acceptable.

Laboratory duplicates were acceptable.

ACL Order Number 0310992 (Continued)

Total Organic Carbon - EPA 9060

Laboratory Blanks were acceptable.

Laboratory Fortified Blanks were acceptable.

Laboratory duplicates were acceptable.

Matrix spikes were acceptable.

Chemical Oxygen Demand - EPA 410.4

Method Blank was acceptable.

Laboratory Fortified Blanks were acceptable.

Sample duplicates were acceptable.

Matrix spikes were acceptable.

Digestion

Method 200.2

Iron (Fe) - ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA (1983) Method 200.7

RCRA TCLP & groundwater

SW 846 Method 6010

Solids

SW 846 Method 6010

ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA Method 200.7

RCRA TCLP & groundwater

SW 846 Method 6010

Solids

SW 846 Method 6010

Chemical Oxygen Demand

EPA Method 410.4 (manual colorimetric)

Total Organic Carbon, Aqueous

EPA Method 415.1

SW-846 Method 9060

Total Petroluem Hydrocarbons, Diesel Range Organics

SW-846, Method 8015, GC/FID (modified)

Total Petroleum Hydrocarbons-Gasoline Range Organics (TPH/GRO) SW-846 Method 8015 (modified)

Volatile Organics by GC/MS (aqueous)

SW846 Method 8260B (purge & trap, capillary column GC/MS)

Total Alkalinity

SM 2320B (titrimetric)

Nitrite, Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes

SW-846 Method 9056

Nitrate, Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes SW-846 Method 9056

Sulfate, Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes SW-846 Method 9056

PA6E 1 0F1 CHAIN OF CUSTODY RECORD PROJECT NAME GERALL CAR - Elkton 630 Churchmans Road ATLANTIC COAST COMPANY IZSA INC Newark, Delaware 19702 Laboratories, Incorporated ADDRESS 2222 Western Frank Blue Ste 300 302-266-9121 • 454-8720 (FAX) PHONE (517) 707- 1777 13/0492 **ANALYSES** SAMPLE COLLECTION FEE: QUOTED PRICE: CA Montero PRINT NAME SAMPLE DATE TIME SAMPLE LOCATION **PRESERVATIVE** COMMENTS VYGAP 10/2, 105/1040 MW-2-1 XV = Various Sizes VX GAP 10/21/03/1140/MW-43-1 VA GIP 10/21/03/1400 MW-42-1 HCL HWU3 10/2/10/1545 MW-44-1 10/71/02 1110 EQUIPMENT BLANK 10/71/03 W/A TRIP BLANK Water Aca 6 40Al 6 Water HLL Relinguished by: Date / Time Received by: Relinquished by: Date / Time Received by: 10/22/050900 4:00 Relinquished by Received by: Relinquished by: Received for Laboratory by: Method of Shipment YES NO Samples Iced Samples Preserved

Sample Description: trip blank Lab No: 01A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 10/21/03 Category: **GW**

ND 3.8	PARAMETER	RESULT	LIMIT	WEIGHT
Benzene	Acetone	ND	3.8	
Bromodichloromethane	Benzene	ND		
Bromomethane	Bromodichloromethane	ND		
Carbon Disulfide	Bromoform	ND	0.53	
Carbon Disulfide ND 0.61 Carbon Tetrachloride ND 0.66 Chlorobenzene ND 0.62 Chloroethane ND 0.52 Chloromethane ND 0.75 Chloromethane ND 0.51 1,2-Dibromochloromethane ND 0.52 1,2-Dibromochloropropane ND 0.60 1,2-Dichloroethane ND 0.65 1,1-Dichloroethane ND 0.55 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene ND 0.55 trans-1,2-Dichloroethene ND 0.59 1,2-Dichloroethene, total ND 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.55 1,2-Dichloropropane ND 0.56 trans-1,3-Dichloropropene ND 0.52 4-Methyl-benzene ND 0.58 2-Hexanone ND 1.3	Bromomethane	ND	2.3	
Carbon Tetrachloride ND 0.66 Chlorobenzene ND 0.62 Chloroform ND 0.82 Chloroform ND 0.52 Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromo-3-Chloropropane ND 0.52 1,2-Dibromo-3-Chloropropane ND 0.55 1,2-Dichloroethane ND 0.55 1,1-Dichloroethane ND 0.55 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene ND 0.55 trans-1,2-Dichloroethene, total ND 0.55 1,2-Dichloroethene, total ND 0.55 1,2-Dichloropropane ND 0.55 1,2-Dichloropropane ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.58 2-Hexanone ND 0.58 1-Syrene ND 0.52	2-Butanone (MEK)	ND	2.5	
Chlorobenzene ND 0.62 Chloroform ND 0.82 Chloroform ND 0.52 Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromoethane ND 0.52 1,2-Dibromo-3-Chloropropane ND 0.60 1,2-Dichloroethane ND 0.55 1,1-Dichloroethane ND 0.55 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene ND 0.55 trans-1,2-Dichloroethene, total ND 0.55 1,2-Dichloroethene, total ND 0.55 1,2-Dichloropropane ND 0.55 1,2-Dichloropropane ND 0.55 1,2-Dichloropropane ND 0.56 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.56 2-Hexanone ND 0.58 2-Hexanone ND 1.3 Isopopylbenzene ND 1.5 <	Carbon Disulfide	ND	0.61	
Chloroethane ND 0.82 Chloroform ND 0.52 Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromochane ND 0.52 1,2-Dibromo-3-Chloropropane ND 0.60 1,2-Dichloroethane ND 0.55 1,1-Dichloroethane ND 0.55 1,1-Dichloroethene ND 0.55 cis-1,2-Dichloroethene ND 0.55 trans-1,2-Dichloroethene, total ND 0.59 1,2-Dichloroethene, total ND 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.55 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 0.52 1-examone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.52	Carbon Tetrachloride	ND	0.66	
Chloroform ND 0.52 Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromochloropropane ND 0.62 1,2-Dibromochloroethane ND 0.65 1,1-Dichloroethane ND 0.55 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene ND 0.55 trans-1,2-Dichloroethene ND 0.59 1,2-Dichloroethene, total ND 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.55 1,2-Dichloropropane ND 0.56 trans-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.11 1,1,2-Trichloroethane ND 0.67	Chlorobenzene	ND	0.62	
Chloromethane ND 0.75 Dibromochloromethane ND 0.51 1,2-Dibromoethane ND 0.52 1,2-Dibromo-3-Chloropropane ND 0.60 1,2-Dichloroethane ND 0.55 1,1-Dichloroethane ND 0.55 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene ND 0.59 1,2-Dichloroethene, total ND 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.59 1,1,2-Trichloroethane ND 0.59	Chloroethane	ND	0.82	
Dibromochloromethane	Chloroform	<u>ND</u>	0.52	
1,2-Dibromoethane ND 0.52 1,2-Dibromo-3-Chloropropane ND 0.60 1,2-Dichloroethane ND 0.55 1,1-Dichloroethane ND 0.65 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene ND 0.55 trans-1,2-Dichloroethene ND 0.59 1,2-Dichloroethene, total ND 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.1 1,1,2,2-Tetrachloroethane ND 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.67 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.55	Chloromethane	ND	0.75	
1,2-Dibromo-3-Chloropropane	Dibromochloromethane	ND	0.51	
1,2-Dichloroethane ND 0.55 1,1-Dichloroethane ND 0.65 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene ND 0.55 trans-1,2-Dichloroethene, total ND 0.59 1,2-Dichloroethene, total ND 0.55 1,2-Dichloropropane ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.67 Toluene ND 0.67 Toluene ND 0.67 Trichloroethane ND 0.57 Trichloroethene ND 0.55 Vinyl Chloride ND 0.55 o-Xylene ND	1,2-Dibromoethane	ND	0.52	
1,1-Dichloroethane ND 0.65 1,1-Dichloroethene ND 0.57 cis-1,2-Dichloroethene ND 0.55 trans-1,2-Dichloroethene ND 0.59 1,2-Dichloroethene, total ND 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.58 2-Hexanone ND 0.58 2-Hexanone ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.5 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.67 Toluene ND 0.59 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.55 O-Xylene ND 0.55 o-Xylene ND 0.48 Surr Cmpd - % Rec - Limits <	1,2-Dibromo-3-Chloropropane	ND	0.60	
1,1-Dichloroethene	1,2-Dichloroethane	ND	0.55	
cis-1,2-Dichloroethene ND 0.55 trans-1,2-Dichloroethene ND 0.59 1,2-Dichloroethene, total ND 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane ND 0.67 Toluene ND 0.67 Toluene ND 0.59 1,1,1-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.55 O-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48	1,1-Dichloroethane	ND	0.65	
trans-1,2-Dichloroethene ND 0.59 1,2-Dichloroethene, total ND 1.1 Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane ND 0.67 Toluene ND 0.67 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.55 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 0.48 Surr Cmpd - % Rec - Limits	1,1-Dichloroethene	ND	0.57	
1,2-Dichloroethene, total	cis-1,2-Dichloroethene	ND	0.55	
Dichloromethane (MeCl2) ND 0.55 1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane ND 0.67 Toluene ND 0.67 Toluene ND 0.59 1,1,2-Trichloroethane ND 0.57 Trichloroethene ND 0.57 Trichloroethene ND 0.55 vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - % Rec - Limits	trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloropropane ND 0.62 cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2-Tetrachloroethane ND 0.67 Toluene ND 0.67 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.55 vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - % Rec - Limits	1,2-Dichloroethene, total	ND	1.1	
cis-1,3-Dichloropropene ND 0.56 trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane ND 0.67 Toluene ND 0.67 Toluene ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - % Rec - Limits	Dichloromethane (MeCl2)	ND	0.55	
trans-1,3-Dichloropropene ND 0.49 Ethylbenzene ND 0.58 2-Hexanone ND 1.3 Isopropylbenzene ND 0.52 4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane ND 0.67 Toluene ND 0.67 Toluene ND 0.59 1,1,2-Trichloroethane ND 0.57 Trichloroethene ND 0.57 Trichloroethene ND 0.55 vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits	1,2-Dichloropropane	ND	0.62	
### Ethylbenzene	cis-1,3-Dichloropropene	<u>ND</u>	0.56	
Surr Cmpd - % Rec - Limits ND	trans-1,3-Dichloropropene	ND	0.49	
Isopropylbenzene	Ethylbenzene	<u>ND</u>	0.58	
4-Methyl-2-Pentanone (MIBK) ND 1.5 Styrene ND 1.1 1,1,2,2-Tetrachloroethane ND 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - WRECOVERY LIMITS	2-Hexanone	ND	1.3	
Styrene ND 1.1 1,1,2,2-Tetrachloroethane ND 0.44 Tetrachloroethane ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - WRECOVERY LIMITS		ND	0.52	
1,1,2,2-Tetrachloroethane ND 0.44 Tetrachloroethene ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - WRECOVERY LIMITS	4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Tetrachloroethene ND 0.67 Toluene ND 0.64 1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - Limits	-	ND		
Toluene		ND		
1,1,2-Trichloroethane ND 0.59 1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE %RECOVERY LIMITS		ND		
1,1,1-Trichloroethane ND 0.57 Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE %RECOVERY LIMITS		ND		
Trichloroethene ND 0.65 Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits Surr Cmpd - WRECOVERY LIMITS	• •			
Vinyl Chloride ND 0.55 o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits				
o-Xylene ND 1.1 m,p-Xylene ND 1.2 Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE %RECOVERY LIMITS				
m,p-Xylene Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE %RECOVERY LIMITS	_			
Methyl-tert-butyl ether ND 0.48 Surr Cmpd - % Rec - Limits SURROGATE % RECOVERY LIMITS	_			
Surr Cmpd - % Rec - Limits SURROGATE % RECOVERY LIMITS				
SURROGATE %RECOVERY LIMITS	Methyl-tert-butyl ether	ND	0.48	
	Surr Cmpd - % Rec - Limits			
	SURROGATE %RECOV	ERY	LIMITS	
				118

Order # 03-10-992 12/11/03 12:04 Page 7

/11/03 12:04	TEST	RESULTS	BY	SAMPLE	•

Sample Description: trip blank Lab No: 01A

Test Description: GC/MS Volatiles; SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 10/21/03 Category: GW

Notes and Definitions for this Report:

DATE RUN 10/25/03 09:53:00

ANALYST IM

CONC FACTOR ____1

UNITS uq/L

Sample Description: MW-43-1 Lab No: 02A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V RSAA

Collected: 10/21/03 11:40 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	84	3.8	
Benzene	11	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	378	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	539	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	 .
Dibromochloromethane	<u>ND</u>	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	0.9	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	ND	0.55	
trans-1,2-Dichloroethene	0.6	0.59	
1,2-Dichloroethene, total	0.6 J	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	0.9	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 11	4	86	118

Sample	Description:	MW-43-1	Lab	2
--------	--------------	---------	-----	---

No: 02A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 10/21/03 11:40 Category: GW

Toluene-d8 100 88 4-Bromofluorobenzene 101 86

Notes and Definitions for this Report:

DATE RUN 10/28/03 02:41:00 ANALYST RJM CONC FACTOR _ uq/L UNITS ____

Sample Description: MW-43-1

Lab No: 02C

Test Description: methane, ethane, ethene

Method:

Test Code: S_GAS

Collected: 10/21/03 11:40

Category: GW

PARAMETER	RESULT	LIMIT	UNITS	WEIGHT
Methane	170	2.0		
Ethane	ND	4.0		
Ethene	ND	3.0		

Notes and Definitions for this Report:

DATE RUN 10/31/03 ANALYST STL CONC FACTOR _ UNITS ____ uq/L

Sample Description: MW-2-1 Lab No: 03A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V RSAA

Collected: 10/21/03 10:40 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	. 74	3.8	
Benzene	7.2	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	289	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	433	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	0.7	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	0.9	0.55	
trans-1,2-Dichloroethene	0.9	0.59	
1,2-Dichloroethene, total	1.8	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	<u>ND</u>	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	2.8	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	1.1	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			_
SURROGATE %RECOV	ERY	LIMITS	
	9	_	118

Order # 03-10-992 12/11/03 12:04	TEST RESU	LTS BY SAMPLE			Page 11
-	MW-2-1 GC/MS Volatiles,SW846 10/21/03 10:40	Lab No: 8260 Method: Category:	SW 846	8260 Test	t Code: V_RSAA
Toluer 4-Bromofluorober		<u>88</u> - <u>86</u> -	110 115		
	Notes and Definit DATE RUN 10/25/0 ANALYST IM CONC FACTOR		Report:		
	UNITS	ug/L			
-	MW-2-1 methane,ethane,ethene 10/21/03 10:40	Lab No: Method: Category:		Tesi	t Code: S_GAS
PARAMETER	RESU	LT	LIMIT	UNITS	WEIGHT
Methane Ethane Ethene	· <u>-</u>	34 ND ND	2.0 4.0 3.0		<u> </u>

Notes and Definitions for this Report:

uq/L

10/31/03

DATE RUN

ANALYST STL CONC FACTOR __

Sample Description: equipment blank Lab No: 04A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 10/21/03 11:10 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	ND		
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	ND	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	<u>ND</u>	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	ND	0.55	
trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	<u>ND</u>	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	<u>ND</u>	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	*
Trichloroethene	ND	0.65	
Vinyl Chloride	<u>ND</u>	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECO	VERY	LIMITS	
	.03		118

Order # 03-10-992 12/11/03 12:04 Page 13

.

Sample Description: equipment blank Lab No: 04A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

TEST RESULTS BY SAMPLE

Collected: 10/21/03 11:10 Category: GW

Toluene-d8 88 88 - 110 4-Bromofluorobenzene 86 86 - 115

Notes and Definitions for this Report:

DATE RUN 10/25/03 10:38:00

ANALYST IM

CONC FACTOR _____1

UNITS ____uq/L

Sample Description: MW-44-1 Lab No: 05A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 10/21/03 15:45 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	11	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	0.9	0.62	
Chloroethane	ND	0.82	
Chloroform	1.1	0.52	
Chloromethane	ND	0.75	·
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	1.0	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	2.6	0.55	
trans-1,2-Dichloroethene	0.8	0.59	
1,2-Dichloroethene, total	3.4	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	·
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	<u> </u>	·
1,1,2,2-Tetrachloroethane	16	0.44	
Tetrachloroethene	<u>ND</u>	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	5.3	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	<u> </u>	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECO	VERY	LIMITS	
	<u> </u>		118

OLUCE # 03-10-332				F	age 15	
12/11/03 12:04	TEST H	RESULTS BY SAMPL	<u>E</u>			
	MW-44-1 GC/MS Volatiles,SW 10/21/03 15:45			2 60 Test	Code: V_RS	AΑ
Tolue		88	110			
4-Bromofluorober	nzene97	<u>86</u> -	<u>115</u>			
	Notes and Defi	initions for this	s Report:			
	DATE RUN <u>10/2</u> ANALYST <u>RJM</u> CONC FACTOR _ UNITS	28/03 00:26:00 1 uq/L				
=	MW-44-1 methane,ethane,eth 10/21/03 15:45			Test	Code: S_GA	s
PARAMETER	·	RESULT	LIMIT	UNITS	WEIGHT	
Methane	_	ND.	2.0			
Ethane	_	ND				
Ethene	-	ND	3.0			
	Notes and Defi	nitions for this	s Report:			

DATE RUN _____ ANALYST STL CONC FACTOR ____ UNITS uq/L Sample Description: MW-42-1 Lab No: 06A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 10/21/03 14:50 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	13	3.8	
Benzene	0.5 J	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	8.1	0.62	
Chloroethane	ND	0.82	
Chloroform	0.9	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	1.2	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	0.8	0.57	
cis-1,2-Dichloroethene	70	0.55	
trans-1,2-Dichloroethene	24	0.59	
1,2-Dichloroethene, total	94	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	3.8	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	1.6	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	57	0.65	
Vinyl Chloride	1.2	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	0.8 J	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 10	<u> </u>	86	118

Order	#	03-10-992
10/11	/02	10 04

Page 17

2/11/03 12:04	TEST RESULTS BY SAMPLE

Sample Descripti	ion: MW-42-1	Lab No: 06A
Sample Descript	IOII: MW-42-1	Pap NO: 001

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 10/21/03 14:50 Category: GW

Toluene-d8 89 88 4-Bromofluorobenzene 88 86 115

Notes and Definitions for this Report:

DATE RUN 10/25/03 13:41:00 ANALYST _IM CONC FACTOR _ uq/L UNITS ____

Sample Description: MW-42-1

Lab No: 06C

Test Description: methane, ethane, ethene

Method:

Test Code: S_GAS

Collected: 10/21/03 14:50

Category: GW

PARAMETER	RESULT	LIMIT	UNITS	WEIGHT
Methane	ND	2.0		
Ethane	ND	4.0		
Ethene	ND	3.0		

Notes and Definitions for this Report:

10/31/03 DATE RUN ANALYST STL CONC FACTOR ____1 UNITS ____ ug/L

Sample: 02A MW-43-1 Collected: 10/21/03 11:40			Category: GW
Test Description TPH, Gasoline Range Org.	Result 0.41	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L IM 10/25/03 11:25
Sample: 02B MW-43-1 Collected: 10/21/03 11:40			Category: GW
Test Description TPH, Diesel Range Organics	Result ND	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 10/24/03 20:30
Sample: 02D MW-43-1 Collected: 10/21/03 11:40			Category: GW
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	<u>Result</u> 1920 681	<u>Det Limit</u> 10 20	Units By Analyzed Dt/Tm mg/L YT 10/24/03 09:45 mg/L EL 11/07/03 15:13
Sample: 02E MW-43-1 Collected: 10/21/03 11:40			Category: GW
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	Result 130 10 10/28/03 ND ND 2.57 568	Det Limit	Units By Analyzed Dt/Tm mg/L WV 11/12/03 14:00 date complete WV mg/L as N WW 10/22/03 22:28 mg/L as N WV 10/22/03 22:28 mg/L as CaCO3 TLC 10/28/03 13:28
Sample: 02F MW-43-1 Collected: 10/21/03 11:40			Category: GW
Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES	Result 10/28/03 140 11/05/03	Det Limit 0.009	Units By Analyzed Dt/Tm date digested MKB 10/28/03 10:30 mg/L LC 11/05/03 10:11 date analyzed
Sample: 03A MW-2-1 Collected: 10/21/03 10:40			Category: GW
Test Description TPH, Gasoline Range Org.	Result 0.30	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L IM 10/25/03 12:11
Sample: 03B MW-2-1 Collected: 10/21/03 10:40			Category: GW
Test Description TPH, Diesel Range Organics	Result 0.61	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 10/24/03 21:17

			•
Sample: 03D MW-2-1 Collected: 10/21/03 10:40			Category: GW
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
Chemical Oxygen Demand	6980	10	mg/L YT 10/24/03 09:45
			5
Total Organic Carbon, Aq	3880	100	mg/L EL 10/27/03 14:41
Sample: 03E MW-2-1			Category: GW
Collected: 10/21/03 10:40			
Test Description	<u>Result</u>	Det Limit	Units By Analyzed Dt/Tm
Ferric Iron - AWWA B407-93	139	0.1	mg/L WV 11/12/03
Ferrous Iron	. 90	0.1	mg/L GS 10/31/03 14:00
Ion chromatography	10/28/03	***	date complete WV
Nitrate, Ion Chrom	10/20/03 ND	0.06	_
			_
Nitrite, Ion Chrom	ND	0.20	mg/L as N WV 10/28/03 02:02
Sulfate, Ion Chrom	12.4	0.38	mg/L WV 10/28/03 02:02
Total Alkalinity-Titration	2982	1.0	mg/L as CaCO3 TLC 10/28/03 13:28
Sample: 03F MW-2-1			Category: GW
Collected: 10/21/03 10:40			
Test Description	Result	Det Limit	<u>Units By Analyzed Dt/Tm</u>
Digestion, Aqueous, 200.2	10/28/03		date digested MKB 10/28/03 10:30
Iron, ICP	229	0.090	mg/L LC 11/05/03 10:15
Metals, ICP/OES	11/05/03	0.050	date analyzed
			•
Sample: 05A MW-44-1			Category: GW
Collected: 10/21/03 15:45			
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
TPH, Gasoline Range Org.	ND	0.10	mg/L IM 10/25/03 12:58
			5,
Sample: 05B MW-44-1			Category: GW
Collected: 10/21/03 15:45			
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
TPH, Diesel Range Organics	ND	0.10	mg/L JSH 10/24/03 22:08
Sample: 05D MW-44-1			Category: GW
Collected: 10/21/03 15:45			category: GW
5011666641 10,21,05 15.15			
Test Description	Result	<u>Det Limit</u>	Units By Analyzed Dt/Tm
Chemical Oxygen Demand	44	10	mg/L YT 10/24/03 08:05
Total Organic Carbon, Aq	28	1.0	mg/L EL 10/27/03 14:41
Sample: 05E MW-44-1			Category: GW
Collected: 10/21/03 14:55			cacegory. On
Test Description	Result	<u>Det Limit</u>	<u>Units</u> By <u>Analyzed Dt/Tm</u>
Ferric Iron - AWWA B407-93	1.46	0.1	mg/L WV 11/12/03

Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
Ferrous Iron	ND	0.1	mg/L GS 10/31/03 14:00
Ion chromatography	10/22/03		date complete AM
Nitrate, Ion Chrom	1.87	0.06	mg/L as N AM 10/22/03 22:56
Nitrite, Ion Chrom	ND	0.02	mg/L as N AM 10/22/03 22:56
Sulfate, Ion Chrom	6.51	0.38	mg/L AM 10/22/03 22:56
Total Alkalinity-Titration	63	1.0	mg/L as CaCO3 TLC 10/28/03 13:28
Sample: 05F MW-44-1			Category: GW
Collected: 10/21/03 14:55			
Test Description	Result	<u>Det Limit</u>	Units By Analyzed Dt/Tm
Digestion, Aqueous, 200.2	10/28/03		date digested MKB 10/28/03 10:30
Iron, ICP	1.46	0.009	mg/L LC 11/04/03 19:29
Metals, ICP/OES	11/04/03		date analyzed
Sample: 06A MW-42-1			Category: GW
Collected: 10/21/03 14:50			
Test Description	Result	Det Limit	<u>Units By Analyzed Dt/Tm</u>
TPH, Gasoline Range Org.	0.12	0.10	mg/L IM 10/25/03 13:41
,	0.12	0.10	
Sample: 06B MW-42-1			Category: GW
Collected: 10/21/03 14:50			
Tost Description	Dooul+		IInita D. Analysad Dt/IIm
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
Test Description TPH, Diesel Range Organics	<u>Result</u> ND	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 10/24/03 22:52
			mg/L JSH 10/24/03 22:52
TPH, Diesel Range Organics			
TPH, Diesel Range Organics Sample: 06D MW-42-1			mg/L JSH 10/24/03 22:52
TPH, Diesel Range Organics Sample: 06D MW-42-1			mg/L JSH 10/24/03 22:52
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50	ND	0.10	mg/L JSH 10/24/03 22:52 Category: GW
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description	ND Result	0.10	mg/L JSH 10/24/03 22:52 Category: GW Units By Analyzed Dt/Tm
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	Result 279	0.10 Det Limit 10	mg/L JSH 10/24/03 22:52 Category: GW Units By Analyzed Dt/Tm mg/L YT 10/24/03 09:45 mg/L EL 10/27/03 14:41
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1	Result 279	0.10 Det Limit 10	mg/L JSH 10/24/03 22:52 Category: GW Units By Analyzed Dt/Tm mg/L YT 10/24/03 09:45
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	Result 279	0.10 Det Limit 10	mg/L JSH 10/24/03 22:52 Category: GW Units By Analyzed Dt/Tm mg/L YT 10/24/03 09:45 mg/L EL 10/27/03 14:41
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 10/21/03 14:50	Result 279 102	0.10 Det Limit 10 1.0	mg/L JSH 10/24/03 22:52 Category: GW Units By Analyzed Dt/Tm mg/L YT 10/24/03 09:45 mg/L EL 10/27/03 14:41 Category: GW
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1	Result 279 102 Result	Det Limit 10 1.0	mg/L JSH 10/24/03 22:52 Category: GW Units By Analyzed Dt/Tm mg/L YT 10/24/03 09:45 mg/L EL 10/27/03 14:41 Category: GW Units By Analyzed Dt/Tm
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 10/21/03 14:50 Test Description Ferric Iron - AWWA B407-93	Result 279 102 Result 1.22	Det Limit 10 1.0 Det Limit 0.1	mg/L JSH 10/24/03 22:52 Category: GW Units By Analyzed Dt/Tm mg/L YT 10/24/03 09:45 mg/L EL 10/27/03 14:41 Category: GW Units By Analyzed Dt/Tm mg/L WV 11/12/03
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 10/21/03 14:50 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron	Result 279 102 Result 1.22 ND	Det Limit 10 1.0	mg/L JSH 10/24/03 22:52 Category: GW Units By Analyzed Dt/Tm mg/L YT 10/24/03 09:45 mg/L EL 10/27/03 14:41 Category: GW Units By Analyzed Dt/Tm mg/L WV 11/12/03 mg/L GS 10/31/03 14:00
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 10/21/03 14:50 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography	Result 279 102 Result 1.22	0.10 Det Limit	mg/L JSH 10/24/03 22:52 Category: GW Units By Analyzed Dt/Tm mg/L YT 10/24/03 09:45 mg/L EL 10/27/03 14:41 Category: GW Units By Analyzed Dt/Tm mg/L WV 11/12/03 mg/L GS 10/31/03 14:00 date complete AM
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 10/21/03 14:50 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom	Result 279 102 Result 1.22 ND 10/22/03 2.01	Det Limit	mg/L JSH 10/24/03 22:52 Category: GW Units By Analyzed Dt/Tm mg/L YT 10/24/03 09:45 mg/L EL 10/27/03 14:41 Category: GW Units By Analyzed Dt/Tm mg/L WV 11/12/03 mg/L GS 10/31/03 14:00 date complete AM mg/L as N AM 10/22/03 23:10
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 10/21/03 14:50 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom	Result 279 102 Result 1.22 ND 10/22/03 2.01	Det Limit	mg/L JSH 10/24/03 22:52 Category: GW Units By Analyzed Dt/Tm mg/L YT 10/24/03 09:45 mg/L EL 10/27/03 14:41 Category: GW Units By Analyzed Dt/Tm mg/L WV 11/12/03 mg/L GS 10/31/03 14:00 date complete AM mg/L as N AM 10/22/03 23:10 mg/L as N AM 10/22/03 23:10
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 10/21/03 14:50 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom	Result 279 102 Result 1.22 ND 10/22/03 2.01	Det Limit	mg/L JSH 10/24/03 22:52 Category: GW Units By Analyzed Dt/Tm mg/L YT 10/24/03 09:45 mg/L EL 10/27/03 14:41 Category: GW Units By Analyzed Dt/Tm mg/L WV 11/12/03 mg/L GS 10/31/03 14:00 date complete AM mg/L as N AM 10/22/03 23:10
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 10/21/03 14:50 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	Result 279 102 Result 1.22 ND 10/22/03 2.01 ND 13.6	Det Limit	mg/L JSH 10/24/03 22:52 Category: GW Units By Analyzed Dt/Tm mg/L YT 10/24/03 09:45 mg/L EL 10/27/03 14:41 Category: GW Units By Analyzed Dt/Tm mg/L WV 11/12/03 mg/L GS 10/31/03 14:00 date complete AM mg/L as N AM 10/22/03 23:10 mg/L AM 10/22/03 23:10 mg/L as CaCO3 TLC 10/28/03 13:28
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 10/21/03 14:50 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom	Result 279 102 Result 1.22 ND 10/22/03 2.01 ND 13.6	Det Limit	### March ### ### ### ########################
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 10/21/03 14:50 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 06F MW-42-1 Collected: 10/21/03 14:50	Result 279 102 Result 1.22 ND 10/22/03 2.01 ND 13.6 226	Det Limit	### Market Market ### Market ### Category: GW Units By
TPH, Diesel Range Organics Sample: 06D MW-42-1 Collected: 10/21/03 14:50 Test Description Chemical Oxygen Demand Total Organic Carbon, Aq Sample: 06E MW-42-1 Collected: 10/21/03 14:50 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 06F MW-42-1	Result 279 102 Result 1.22 ND 10/22/03 2.01 ND 13.6	Det Limit	mg/L JSH 10/24/03 22:52 Category: GW Units By Analyzed Dt/Tm mg/L YT 10/24/03 09:45 mg/L EL 10/27/03 14:41 Category: GW Units By Analyzed Dt/Tm mg/L WV 11/12/03 mg/L GS 10/31/03 14:00 date complete AM mg/L as N AM 10/22/03 23:10 mg/L AM 10/22/03 23:10 mg/L as CaCO3 TLC 10/28/03 13:28

Order # 03-10-992 12/11/03 12:04

Page 5

TEST RESULTS BY SAMPLE

Test Description Iron, ICP Metals, ICP/OES

11/04/03

 Result
 Det Limit
 Units
 By
 Analyzed Dt/Tm

 1.22
 0.009
 mg/L LC
 11/04/03
 19:32

date analyzed

PROJECT NOTES

1. 0310992-02e and 0310992-03e had to be reanalyzed with dilutions due to interferences in the analysis for nitrite-N. 0310992-03e was reanalyzed with a matrix spike to determine retention times since the original analysis had potential retention time problems.

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX) WWW.ATLANTICCOASTLABS.COM

REPORT OF ANALYSIS

Rosengarten, Smith & Assoc. 2222 Western Trails Blvd.

Suite 300

Austin, TX 78745

Attn: Mr. Charles Montero
Invoice Number: 104908

Order #: 03-11-939 Date: 12/26/03 12:08

Work ID: GE Railcar monthly groundwtr

Date Received: 11/21/03
Date Completed: 12/24/03

Client Code: RSA

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	<u>Number</u>	<u>Description</u>
01	trip blank	04	equipment blank
02	MW-43-1	05	MW-44-1
03	MW-2-1	06	MW-42-1

This cover page is an integral part of the analytical report.

Laboratory Certifications:

DE DE00011

PA 68-335

MD 138

NJ DE568

Certified By

Warren Van Arsdall

GLOSSARY OF DATA QUALIFIER CODES (ORGANIC)

В	=	Not detected substantially above the level reported in laboratory or field blanks
J	=	Analyte present. Reported Value may not be accurate or precise
E	=	Analyte present, exceeds calibration range
U	=	Analyte analyzed for, undetected.
N	=	Tentative Identification. Consider present. Special methods may be needed to confirm its presence or absence in future sampling efforts.

ACL Order Number 0311939

Overview:

A set of 6 samples was received from Rosengarten, Smith and Associates and is identified as 0311939. 0311939 consisted of four (4) samples, one (1) trip blank and one (1) equipment blank.

Matrix Spike/Matrix Spike Duplicates were analyzed at a frequency of 1 per ten samples. MS/MSD samples for this sample set includes 0311939-03, 0311939-06DL 10x and 0311939-03DL 20x.

Samples were received preserved, cooled to 4° C. The hold time for the samples was fourteen days for aromatic compounds and fourteen days for halogenated compounds. Ice was present in the cooler at time of receipt.

Samples were analyzed by Method 8260B and Method 8000B from SW-846, Test Methods for Evaluating Solid Waste. A 25 mL volume was used for analysis.

Summary:

All samples were analyzed within the prescribed hold time.

The following is a summary of contaminants found in the method blank(s) analyzed with this set of samples.

<u>Date</u>	Comments
11/28/03 08:25	None
12/04/03 11:33	None
12/09/03 01:02	None

The instrument performance was acceptable as indicated by the tune report for 4-bromofluorobenzene.

The average RRF for all compounds was less than 15% for the initial calibration performed on 11/26/03 except for 2-hexanone. A linear regression curve fit (not forced through 0) was used for this compound.

Case Narrative ACL Order Number 0311939 (Continued)

The average RRF for all compounds was less than 15% for the initial calibration performed on 12/04/03.

The average RRF for all compounds was less than 15% for the initial calibration performed on 12/08/03 except for 2-hexanone and chlorobenzene. A linear regression curve fit (not forced through 0) was used for these compounds.

The acceptance criteria for the System Performance Check Compounds and Continuing Calibration Compounds was met for continuing calibration check standards.

The surrogate recoveries were within the acceptable limits in all samples analyzed with the following exceptions: 03111939-04 analyzed on 11/28/03 failed SMC3 and was re-analyzed on 12/04/03 with all SMC's acceptable.

The results of the MS/MSD were all within the acceptance limits with the exception of 0311393-03DLMS 25x and 0311393-03DLMSD 25x that failed chlorobenzene recovery due to high level of chlorobenzene in sample. 0311393-03DLMS 25x and 0311393-03DLMSD 20x failed chlorobenzene recovery due to high level of chlorobenzene in sample.

The internal standard areas were all within the acceptance criteria.

The percent recoveries for the analytes in the Laboratory Control Sample were within acceptable limits.

Major Issues:

None

Minor Issues:

0311939-06:

trans-1,2-dichlorethene, cis-1,2-dichlorethene and trichloroethene exceeded the calibration range. Sample was diluted at 10x and re-analyzed on 12/04/03.

Case Narrative ACL Order Number 0311939 (Continued)

0311939-06DL 5x:

cis-1,2-dichlorethene and trichloroethene exceeded the calibration range. Sample was diluted at 10x and re-analyzed on 12/04/03.

0311939-02:

Sample was re-analyzed on 12/04/03 due to possible carryover from previous sample.

0311939-02DL 20x:

Sample was re-analyzed on 12/04/03 due to possible carryover from previous sample.

0311939-03:

chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 12/04/03.

0311939-03DL 25x:

Sample was re-analyzed on 12/04/03 due to possible carryover from previous sample.

0311939-02DL 10x:

chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 12/08/03.

0311939-03DL 10x:

chlorobenzene exceeded the calibration range. Sample was diluted and re-analyzed on 12/08/03.

Digestion

Method 200.2

Iron (Fe) - ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA (1983) Method 200.7

RCRA TCLP & groundwater

SW 846 Method 6010

Solids

SW 846 Method 6010

ICP (Inductively Coupled Argon Plasma Emission Spectroscopy)

Wastewater & drinking water EPA Method 200.7

RCRA TCLP & groundwater

SW 846 Method 6010

Solids

SW 846 Method 6010

Chemical Oxygen Demand

EPA Method 410.4 (manual colorimetric)

Total Organic Carbon, Aqueous

EPA Method 415.1

SW-846 Method 9060

Total Petroluem Hydrocarbons, Diesel Range Organics

SW-846, Method 8015, GC/FID (modified)

Total Petroleum Hydrocarbons-Gasoline Range Organics (TPH/GRO)

SW-846 Method 8015 (modified)

Volatile Organics by GC/MS (aqueous)

SW846 Method 8260B (purge & trap, capillary column GC/MS)

Total Alkalinity

SM 2320B (titrimetric)

Nitrite, Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes

SW-846 Method 9056

Nitrate, Ion Chromatography

Drinking water, wastewater Groundwater, RCRA wastes

Method 300.0

SW-846 Method 9056

Sulfate, Ion Chromatography

Drinking water, wastewater

Method 300.0

Groundwater, RCRA wastes

SW-846 Method 9056

630 Churchmans Road Newark, Delaware 19702 302-266-9121 • 454-8720 (FAX) WWW.ATLANTICCOASTLABS.COM

REPORT OF ANALYSIS

Rosengarten, Smith & Assoc. 2222 Western Trails Blvd.

Suite 300

Austin, TX 78745

Attn: Mr. Charles Montero Invoice Number: 104908 Order #: 03-11-939 Dat :: 01/16/04 09:42

Work ID: GE Railcar monthly groundwtr

Date Received: 11/21/03
Date Completed: 12/24/03

Client Code: RSA

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	Number	Description
01	trip blank	04	equipment blank
02	MW-43-1	05	MW - 44 - 1
03	MW - 2 - 1	06	MW-42-1

This cover page is an integral part of the analytical report.

Laboratory Certifications: DE DE0001t PA 68-335

MD 138

NJ DE568

Certified By

Warren Van Arsdall

Warren San Carolelo Del

ACL Order Number 0311939

Overview:

A set of 6 samples was received from Rosengarten, Smith and Associates and is identified as 0311939 consisting of 4 samples, 1 trip blank and 1 equipment blank.

Samples were received preserved, cooled to 4° C. Ice was present in the cooler at time of receipt. The temperature at time of receipt was 1° C.

Summary:

Gasoline Range Organics

All samples were analyzed within the prescribed hold time.

Analysis was performed by modified EPA 8015 using P/T GC-MS.

Method Blank was non-detected with an MDL of 0.10 mg/L.

Laboratory Control Sample recovery was acceptable.

All surrogate recoveries were acceptable.

Diesel Range Organics

All samples were analyzed within the prescribed hold time.

Analysis was performed by modified EPA 8015 (modified).

Method Blank was non-detected with an MDL of $0.10\ mg/L$.

Laboratory Control Sample recovery was acceptable.

All surrogate recoveries were acceptable.

Internal standard responses were acceptable.

Insufficient sample for MS/MSD.

Methane, Ethane, Ethene - Subcontracted

Subcontractor data package enclosed.

ACL Order Number 0311939 (Continued)

Ion Chromatography

Sample 0311939-02 and 0311939-05was initially analyzed on 11/22/03 without a dilution. Due to chromatography, the sample was re-analyzed on 11/29/03 at a 10x dilution for nitrite. Sample 0311939-03 was initially analyzed on 11/22/03 without a dilution. Due to chromatography, the sample was re-analyzed on 11/29/03 at a 10x and dilution for sulfate and nitrite. Due to chromatography nitrite needed to be re-analyzed at a 25x on 12/02/03.

Continuing calibration verifications were all acceptable.

Laboratory Control Sample was acceptable

0310174-01 Duplicate/Matrix Spike was acceptable.

0311306-01 Duplicate/Matrix Spike was acceptable for all analytes with the exception of nitrate. Laboratory fortified blank was acceptable for all analytes.

0312067-01 Duplicate/Matrix Spike was acceptable for all analytes with the exception of nitrate. Laboratory fortified blank was acceptable for all analytes.

Metals Analysis (Total Iron) - EPA6010

Quality Control Sample (QC 19) was acceptable.

Interference A and Interference AB was acceptable.

Initial Laboratory Performance Check was acceptable.

Laboratory Fortified Blank was acceptable.

Matrix Spike/Matrix Spike Duplicate was acceptable.

Alkalinity, Total - Standard Methods 2320B, 19th Edition

Laboratory Blank was acceptable.

Laboratory Fortified Blanks were acceptable.

Laboratory duplicates were acceptable.

ACL Order Number 0311939 (Continued)

Total Organic Carbon - EPA 9060

Laboratory Blanks were acceptable.

Laboratory Fortified Blanks were acceptable.

Laboratory duplicates were acceptable.

Matrix spikes were acceptable.

Chemical Oxygen Demand – EPA 410.4

Method Blank was acceptable.

Laboratory Fortified Blanks were acceptable.

Sample duplicates were acceptable.

Matrix spikes were acceptable.

PAGE 1912 CHAIN OF CUSTODY RECORD PROJECT NAME GF PAIL CAR - CIKION 630 Churchmans Road ATLANTIC COAST COMPANY_RSA Newark, Delaware 19702 Laboratories, Incorporated 302-266-9121 • 454-8720 (FAX) ADDRESS 2727 PHONE __(11311939 78742 SAMPLED BY SAMPLE COLLECTION FEE: SIGNATURE QUOTED PRICE: Montero PRINT NAME SAMPLE DATE TIME SAMPLE LOCATION **PRESERVATIVE** SIZE G/P COMMENTS HCK, MM2 Ny (24 € 11/20/03/1556 MW-2-Water HCLI HNO3 11/21/03085MW-43-1 67 P 11111 03/055 MW 42-1 GA 1135 MW-44-1 VOID 2 Water III 21/03/230/ Rq UIDMENT blank 9 HCL HCL water ٠., V0/1045 51285 Date / Time Received by: Relinguished by: Date / Time Received by: Relinquished by: Received by: Relinquished by: Received for Laboratory by: Method of Shipment

Samples Iced Samples Preserved YES NO

Sample Description: trip blank

Lab No: 01A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 11/20/03

Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	•
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	ND	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	ND	0.55	
trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 9	<u>6</u>	86	118

Order # 03-11-939 12/26/03 11:59 Page 6

2/	26/	03	11:59		TEST	RESULTS	ΒY	SAMPLE	
-	-								

Sample Description: trip blank Lab No: 01A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 11/20/03 Category: GW

Toluene-d8 94 88 - 110 4-Bromofluorobenzene 94 86 - 115

Notes and Definitions for this Report:

DATE RUN 11/28/03 09:09:00

ANALYST IM

CONC FACTOR 1

UNITS uq/L

Sample Description: MW-43-1 Lab No: 02A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 11/21/03 08:50 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	5.2	3.8	
Benzene	14	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	671	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	0.9	0.65	***************************************
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	0.8	0.55	
trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloroethene, total	0.8	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	0.7	0.65	
Vinyl Chloride	ND	0.55	· · · · · · · · · · · · · · · · · · ·
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
•			
Surr Cmpd - % Rec - Limits			
SURROGATE %RECO	VERY	LIMITS	
Dibromofluoromethane 9	93	86	118

Order # 03-11-939					I	Page 8	
12/26/03 11:59	TEST	RESULTS BY	SAMPLE		-		
Sample Description: Test Description: Collected:			Lab No: Method: ategory:	SW 846	8260 Test	: Code: \	v_RSA
Toluer			88 -	110			
4-Bromofluorober	10	<u> </u>	<u>86</u> -	115			
•	Notes and De	finitions f	or this	Report:			
	DATE RUN <u>11</u> ANALYST <u>IM</u> CONC FACTOR UNITS		8:00				
Sample Description: Test Description: Collected:			Lab No: Method: ategory:		Test	: Code: \$	S_GAS
PARAMETER		RESULT		LIMIT	UNITS	WEIGH	Г
Methane			100	2.0	uq/I		
Ethane			ND	4.0			
Ethene			ND	3.0			
	Notes and De	finitions f	or this	Report:			
	DATE RUN	12/0	4/03				

1.0

uq/L

ANALYST stl
CONC FACTOR

UNITS _____

Sample Description: MW-2-1 Lab No: 03A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 11/20/03 15:56 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	32	3.8	
Benzene	9.8	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	179	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	749	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	0.7	0.55	
trans-1,2-Dichloroethene	1.2	0.59	
1,2-Dichloroethene, total	1.9	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	0.7	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	ND	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Surr Cmpd - % Rec - Limits			
SURROGATE %RECO	VERY	LIMITS	
Dibromofluoromethane	94	86	118

Sample	Description:	MW-2-1	Lab No:	03A
Test	Description:	GC/MS Volatiles, SW846 8260	Method:	SW 84

6 8260 Test Code: V_RSAA

Collected: 11/20/03 15:56 Category: GW

Toluene-d8 88 4-Bromofluorobenzene

Notes and Definitions for this Report:

DATE RUN 11/28/03 14:15:00 ANALYST _IM CONC FACTOR ___ UNITS ____

Sample Description: MW-2-1

Lab No: 03C

Test Description: methane, ethane, ethene

Method:

Test Code: S_GAS

Collected: 11/20/03 15:56

Category: GW

PARAMETER	RESULT	LIMIT	UNITS	WEIGHT
Methane	58	2.0	uq/L	
Ethane	ND	4.0	uq/L	
Ethene	ND	3.0	uq/L	

Notes and Definitions for this Report:

DATE RUN ANALYST <u>stl</u> CONC FACTOR UNITS ____ ug/L

Sample Description: equipment blank Lab No: 04A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 11/21/03 12:30 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	ND	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	ND	0.62	
Chloroethane	ND	0.82	
Chloroform	ND	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	ND	0.55	
1,1-Dichloroethane	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	ND	0.55	
trans-1,2-Dichloroethene	ND	0.59	
1,2-Dichloroethene, total	ND	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	<u> </u>	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	ND	0.44	
Tetrachloroethene	ND	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	<u>ND</u>	0.59	
1,1,1-Trichloroethane	· ND	0.57	·
Trichloroethene	ND	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	
Curr Connd - & Bog - Limits			
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 10	<u></u>	86 -	118

Order # 03-11-939 12/26/03 11:59 Page 12

TEST RESULTS BY SAMPLE

Sample Description: equipment blank

Lab No: 04A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 11/21/03 12:30

Category: **GW**

Toluene-d8 4-Bromofluorobenzene

<u>103</u>

<u>88</u> -

86 - <u>110</u>

Notes and Definitions for this Report:

DATE RUN 12/04/03 12:17:00

ANALYST IM

CONC FACTOR ____1

UNITS ____uq/1

Sample Description: MW-44-1

Lab No: 05A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 11/21/03 11:35 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	4.1	3.8	
Benzene	ND	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	1.0	0.62	
Chloroethane	ND	0.82	
Chloroform	1.0	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane		0.60	
1,1-Dichloroethane	0.9		
•	ND	0.65	
1,1-Dichloroethene	ND	0.57	
cis-1,2-Dichloroethene	2.2	0.55	 ·
trans-1,2-Dichloroethene	0.7	0.59	
1,2-Dichloroethene, total	2.9	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	<u>ND</u>	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	—
Styrene	ND	<u> 1.1</u>	
1,1,2,2-Tetrachloroethane	16	0.44	
Tetrachloroethene	<u>ND</u>	0.67	
Toluene	ND	0.64	
1,1,2-Trichloroethane	0.7	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	<u> 5.3</u>	0.65	
Vinyl Chloride	ND	0.55	
o-Xylene	ND	<u> 1.1</u>	
m,p-Xylene	ND	1.2	
Methyl-tert-butyl ether	ND	0.48	<u> </u>
Surr Cmpd - % Rec - Limits			
			•
SURROGATE %RECOV	ERY	LIMITS	
Dibromofluoromethane 9	<u>8</u>	<u>86</u>	118

2/26/03 11:59	TEST	RESULTS	BY	SAMPLE	

Sample Description: MW-44-1

Lab No: 05A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 11/21/03 11:35 Category: GW

Toluene-d8 4-Bromofluorobenzene 96 92 88 -86 115

Notes and Definitions for this Report:

DATE RUN 11/28/03 10:37:00

ANALYST IM

CONC FACTOR

UNITS uq/L

Sample Description: MW-44-1

Lab No: 05C

Test Description: methane, ethane, ethene

Method:

Test Code: S GAS

Collected: 11/21/03 11:35

Category: GW

PARAMETER

RESULT

LIMIT UNITS

WEIGHT

Methane

Ethane Ethene ND

2.0

ug/L

ND 4.0 ug/L ND ug/L

Notes and Definitions for this Report:

DATE RUN

12/04/03

ANALYST stl

CONC FACTOR ____1.0

UNITS ____

Dibromofluoromethane

Sample Description: MW-42-1 Lab No: 06A

Test Description: GC/MS Volatiles, SW846 8260 Method: SW 846 8260 Test Code: V_RSAA

Collected: 11/21/03 10:55 Category: GW

PARAMETER	RESULT	LIMIT	WEIGHT
Acetone	12	3.8	
Benzene	0.9	0.63	
Bromodichloromethane	ND	0.55	
Bromoform	ND	0.53	
Bromomethane	ND	2.3	
2-Butanone (MEK)	ND	2.5	
Carbon Disulfide	ND	0.61	
Carbon Tetrachloride	ND	0.66	
Chlorobenzene	13	0.62	
Chloroethane	ND	0.82	
Chloroform	1.1	0.52	
Chloromethane	ND	0.75	
Dibromochloromethane	ND	0.51	
1,2-Dibromoethane	ND	0.52	
1,2-Dibromo-3-Chloropropane	ND	0.60	
1,2-Dichloroethane	1.9	0.55	
1,1-Dichloroethane	1.5	0.65	
1,1-Dichloroethene	3.6	0.57	
cis-1,2-Dichloroethene	282	0.55	
trans-1,2-Dichloroethene	124	0.59	
1,2-Dichloroethene, total	406	1.1	
Dichloromethane (MeCl2)	ND	0.55	
1,2-Dichloropropane	ND	0.62	
cis-1,3-Dichloropropene	ND	0.56	
trans-1,3-Dichloropropene	ND	0.49	
Ethylbenzene	ND	0.58	
2-Hexanone	ND	1.3	
Isopropylbenzene	ND	0.52	
4-Methyl-2-Pentanone (MIBK)	ND	1.5	
Styrene	ND	1.1	
1,1,2,2-Tetrachloroethane	0.5	0.44	
Tetrachloroethene	1.0	0.67	
Toluene	0.6	0.64	
1,1,2-Trichloroethane	6.1	0.59	
1,1,1-Trichloroethane	ND	0.57	
Trichloroethene	246	0.65	
Vinyl Chloride	5.6	0.55	
o-Xylene	ND	1.1	
m,p-Xylene	1.3	1.2	
Methyl-tert-butyl ether	ND	0.48	
-			
Surr Cmpd - % Rec - Limits			
SURROGATE %RECOV	ERY	LIMITS	7.7.0

89

<u>86</u> - <u>118</u>

"						
12/26/03 11:59	TEST	RESULTS BY	SAMPLE			
Sample Description: Test Description:	GC/MS Volatiles,			SW 846 8	260 Test	Code: V_RSAA
Collected:	11/21/03 10:55	C	ategory:	: GW		
Toluer	ne-d8 9	<u> </u>	<u>88</u> -	110		
4-Bromofluorober	nzene <u>9</u>	<u> </u>	<u>86</u> -	<u>115</u>		
	Notes and De	finitions f	or this	Report:		
	DATE RUN 11		0:00			
	ANALYST IM					
	CONC FACTOR UNITS					
	UN110					
Sample Description:	MW-42-1		Lab No:	: 06C		
Test Description:		thene	Method:		Test	Code: S GAS
	11/21/03 10:55		ategory:	: GW		
PARAMETER		RESULT		LIMIT	UNITS	WEIGHT
Methane			ND	2.0	ug/L	
Ethane			ND	4.0	uq/L	
Ethene			ND	3.0	uq/L	
	Notes and De	finitions f	or this	Report:		
	DATE RUN	12/0	4/03			
			-,			

DATE RUN ________ 12/04/03

ANALYST <u>stl</u>

CONC FACTOR ______ 1.0

UNITS _______ ug/L

Sample: 02A MW-43-1 Collected: 11/21/03 08:50			Category: GW
Test Description TPH, Gasoline Range Org.	Result 0.23	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L IM 11/28/03 12:48
Sample: 02B MW-43-1 Collected: 11/21/03 08:50			Category: GW
Test Description TPH, Diesel Range Organics	Result 0.15	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 11/26/03 19:27
Sample: 02D MW-43-1 Collected: 11/21/03 08:50			Category: GW
Test Description Chemical Oxygen Demand Total Organic Carbon, Aq	Result 36 12	Det Limit 10 1.0	Units By Analyzed Dt/Tm mg/L YT 12/05/03 09:45 mg/L EL 12/07/03 17:15
Sample: 02E MW-43-1 Collected: 11/21/03 08:50			Category: GW
Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	Result 63.0 0.1 11/28/03 ND ND 0.612 76.4	Det Limit	Units By Analyzed Dt/Tm mg/L WV 12/24/03 14:25 mg/L GS 12/02/03 15:00 date complete AM mg/L as N AM 11/22/03 06:22 mg/L as N AM 11/29/03 00:00 mg/L AM 11/22/03 06:22
Sample: 02F MW-43-1 Collected: 11/21/03 08:50	70.4	1.0	mg/L as CaCO3 MKB 12/01/03 13:29 Category: GW
Test Description Digestion, Aqueous, 200.2 Iron, ICP Metals, ICP/OES	Result 12/09/03 63.1 12/12/03	Det Limit 0.009	Units By Analyzed Dt/Tm date digested LC 12/09/03 10:55 mg/L LC 12/12/03 09:17 date analyzed
Sample: 03A MW-2-1 Collected: 11/20/03 15:56			Category: GW
Test Description TPH, Gasoline Range Org.	Result 0.21	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L IM 11/28/03 14:15
Sample: 03B MW-2-1 Collected: 11/20/03 15:56	·		Category: GW
Test Description TPH, Diesel Range Organics	Result 13	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 12/09/03 13:27

Sample: 03D MW-2-1 Collected: 11/20/03 15:56			Category: GW
Test Description	Result	Det Limit	<u>Units</u> By Analyzed Dt/Tm
Chemical Oxygen Demand	8510	10	mg/L YT 12/05/03 09:45
Total Organic Carbon, Aq	2867	100	mg/L EL 12/07/03 17:15
Sample: 03E MW-2-1			Category: GW
Collected: 11/20/03 11:56			
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
Ferric Iron - AWWA B407-93	47.9	0.1	mg/L WV 12/24/03 14:25
Ferrous Iron	5	0.1	mg/L GS 12/02/03 15:00
Ion chromatography	12/02/03		date complete AM
Nitrate, Ion Chrom	ND	0.06	mg/L as N AM 11/29/03 00:14
Nitrite, Ion Chrom	ND	0.50	mg/L as N AM 12/28/03 18:38
Sulfate, Ion Chrom	8.73	0.38	mg/L AM 11/29/03 00:14
Total Alkalinity-Titration	2900	1.0	mg/L as CaCO3 MKB 12/01/03 13:29
Sample: 03F MW-2-1 Collected: 11/20/03 15:56			Category: GW
22-22-22-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2			
Test Description	Result	Det Limit	Units By Analyzed Dt/Tm
Digestion, Aqueous, 200.2	12/09/03		date digested LC 12/09/03 10:55
Iron, ICP	52.9	0.090	mg/L LC 12/12/03 09:20
Metals, ICP/OES	12/12/03		
Sample: 05A MW-44-1 Collected: 11/21/03 11:35			Category: GW
Test Description	<u>Result</u>	<u>Det Limit</u>	<u>Units</u> By <u>Analyzed Dt/Tm</u>
TPH, Gasoline Range Org.	ND	0.10	mg/L IM 11/28/03 10:37
Sample: 05B MW-44-1 Collected: 11/21/03 11:35			Category: GW
Test Description	<u>Result</u>	Det Limit	<u>Units</u> By Analyzed Dt/Tm
TPH, Diesel Range Organics	ND	0.10	mg/L JSH 11/26/03 21:02
Sample: 05D MW-44-1			Category: GW
Collected: 11/21/03 11:35			- ·
Test_Description	Result	Det Limit	<u>Units By Analyzed Dt/Tm</u>
Chemical Oxygen Demand	35	10	mg/L YT 12/05/03 09:45
Total Organic Carbon, Aq	17	5.0	mg/L EL 12/07/03 17:15
Sample: 05E MW-44-1 Collected: 11/21/03 11:35			Category: GW
Tost Description	Pegul+	Dot Limit	Unite Dr. Analysed Dt/m-
Test Description Ferric Iron - AWWA B407-93	<u>Result</u> 0.662	Det Limit 0.1	Units By Analyzed Dt/Tm mg/L WV 12/24/03 14:25

			· ·
Test Description	Result	<u>Det Limit</u>	Units By Analyzed Dt/Tm
Ferrous Iron	ND	0.1	mg/L GS 12/02/03 15:00
Ion chromatography	11/29/03		date complete AM
Nitrate, Ion Chrom	1.89	0.06	mg/L as N AM 11/22/03 06:50
Nitrite, Ion Chrom	ND	0.02	mg/L as N AM 11/29/03 00:28
Sulfate, Ion Chrom	5.99	0.38	mg/L AM 11/22/03 06:50
Total Alkalinity-Titration	64.7	1.0	mg/L as CaCO3 MKB 12/01/03 13:29
Sample: 05F MW-44-1			Category: GW
Collected: 11/21/03 11:35			-
Test Description	Result	Det Limit	<u>Units</u> By <u>Analyzed Dt/Tm</u>
Digestion, Aqueous, 200.2	12/09/03		date digested LC 12/09/03 10:55
Iron, ICP	0.662	0.009	mg/L LC 12/12/03 09:23
Metals, ICP/OES	12/12/03		date analyzed
Sample: 06A MW-42-1			Category: GW
Collected: 11/21/03 10:55			
Test Description	Result	Det Limit	<u>Units By Analyzed Dt/Tm</u>
TPH, Gasoline Range Org.	0.34	0.10	mg/L IM 11/28/03 11:20
Sample: 06B MW-42-1			Category: GW
Collected: 11/21/03 10:55			00005017. 0.0
Mark Description	D1+	Data Tilain	The bar Day Avel and Differen
Test Description TPH, Diesel Range Organics	<u>Result</u> ND	Det Limit 0.10	Units By Analyzed Dt/Tm mg/L JSH 11/26/03 21:49
			-
Sample: 06D MW-42-1 Collected: 11/21/03 10:55			Category: GW
Collected: 11/21/03 10:55			
Test Description	Result	Det Limit	<u>Units By Analyzed Dt/Tm</u>
Chemical Oxygen Demand			
	265	10	mg/L YT 12/05/03 09:45
Total Organic Carbon, Aq	265 118	10 5.0	mg/L YT 12/05/03 09:45 mg/L EL 12/07/03 17:15
Total Organic Carbon, Aq Sample: 06E MW-42-1			mg/L EL 12/07/03 17:15
Sample: 06E MW-42-1 Collected: 11/21/03 10:55	118	5.0	mg/L EL 12/07/03 17:15 Category: GW
Sample: 06E MW-42-1 Collected: 11/21/03 10:55 Test Description	118 <u>Result</u>	5.0 Det Limit	mg/L EL 12/07/03 17:15 Category: GW Units By Analyzed Dt/Tm
Sample: 06E MW-42-1 Collected: 11/21/03 10:55 Test Description Ferric Iron - AWWA B407-93	118 <u>Result</u> 0.047	5.0 Det Limit 0.1	mg/L EL 12/07/03 17:15 Category: GW Units By Analyzed Dt/Tm mg/L WV 12/24/03 14:25
Sample: 06E MW-42-1 Collected: 11/21/03 10:55 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron	Result 0.047 ND	5.0 Det Limit	mg/L EL 12/07/03 17:15 Category: GW Units By Analyzed Dt/Tm mg/L WV 12/24/03 14:25 mg/L GS 12/02/03 15:00
Sample: 06E MW-42-1 Collected: 11/21/03 10:55 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography	Result 0.047 ND 11/22/03	5.0 Det Limit 0.1 0.1	mg/L EL 12/07/03 17:15 Category: GW Units By Analyzed Dt/Tm mg/L WV 12/24/03 14:25 mg/L GS 12/02/03 15:00 date complete AM
Sample: 06E MW-42-1 Collected: 11/21/03 10:55 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom	Result 0.047 ND 11/22/03 1.86	Det Limit 0.1 0.1	mg/L EL 12/07/03 17:15 Category: GW Units By Analyzed Dt/Tm mg/L WV 12/24/03 14:25 mg/L GS 12/02/03 15:00 date complete AM mg/L as N AM 11/22/03 07:04
Sample: 06E MW-42-1 Collected: 11/21/03 10:55 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom	Result 0.047 ND 11/22/03 1.86 ND	Det Limit 0.1 0.1 0.06 0.02	mg/L EL 12/07/03 17:15 Category: GW Units By Analyzed Dt/Tm mg/L WV 12/24/03 14:25 mg/L GS 12/02/03 15:00 date complete AM mg/L as N AM 11/22/03 07:04 mg/L as N AM 11/22/03 07:04
Sample: 06E MW-42-1 Collected: 11/21/03 10:55 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom	Result 0.047 ND 11/22/03 1.86	Det Limit 0.1 0.1	mg/L EL 12/07/03 17:15 Category: GW Units By Analyzed Dt/Tm mg/L WV 12/24/03 14:25 mg/L GS 12/02/03 15:00 date complete AM mg/L as N AM 11/22/03 07:04
Sample: 06E MW-42-1 Collected: 11/21/03 10:55 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration	Result 0.047 ND 11/22/03 1.86 ND 15.8	Det Limit	Mg/L EL 12/07/03 17:15 Category: GW Units By Analyzed Dt/Tm mg/L WV 12/24/03 14:25 mg/L GS 12/02/03 15:00 date complete AM mg/L as N AM 11/22/03 07:04 mg/L AM 11/22/03 07:04 mg/L AM 11/22/03 07:04 mg/L as CaCO3 MKB 12/01/03 13:29
Sample: 06E MW-42-1 Collected: 11/21/03 10:55 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom	Result 0.047 ND 11/22/03 1.86 ND 15.8	Det Limit	mg/L EL 12/07/03 17:15 Category: GW Units By Analyzed Dt/Tm mg/L WV 12/24/03 14:25 mg/L GS 12/02/03 15:00 date complete AM mg/L as N AM 11/22/03 07:04 mg/L as N AM 11/22/03 07:04 mg/L AM 11/22/03 07:04
Sample: 06E MW-42-1 Collected: 11/21/03 10:55 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 06F MW-42-1 Collected: 11/21/03 10:55	Result 0.047 ND 11/22/03 1.86 ND 15.8 240	Det Limit 0.1 0.1 0.06 0.02 0.38 1.0	Mg/L EL 12/07/03 17:15 Category: GW Units By Analyzed Dt/Tm mg/L WV 12/24/03 14:25 mg/L GS 12/02/03 15:00 date complete AM mg/L as N AM 11/22/03 07:04 mg/L as N AM 11/22/03 07:04 mg/L AM 11/22/03 07:04 mg/L AM 11/22/03 13:29 Category: GW
Sample: 06E MW-42-1 Collected: 11/21/03 10:55 Test Description Ferric Iron - AWWA B407-93 Ferrous Iron Ion chromatography Nitrate, Ion Chrom Nitrite, Ion Chrom Sulfate, Ion Chrom Total Alkalinity-Titration Sample: 06F MW-42-1	Result 0.047 ND 11/22/03 1.86 ND 15.8	Det Limit	Mg/L EL 12/07/03 17:15 Category: GW Units By Analyzed Dt/Tm mg/L WV 12/24/03 14:25 mg/L GS 12/02/03 15:00 date complete AM mg/L as N AM 11/22/03 07:04 mg/L AM 11/22/03 07:04 mg/L AM 11/22/03 07:04 mg/L as CaCO3 MKB 12/01/03 13:29

Order # 03-11-939 12/26/03 11:59

Page 4

Test Description Iron, ICP Metals, ICP/OES

12/12/03

 Result
 Det Limit
 Units
 By
 Analyzed Dt/Tm

 0.047
 0.009
 mg/L LC
 12/12/03 09:26

date analyzed

Order	#	03-	1	1	-9	39
12/26	/03	11	:	5	9	

Page 18

REPORT COMMENTS

PROJECT NOTES

1. 0311939-02e and 0311939-03e had to be reanalyzed with dilutions due to interferences in the analysis for nitrite-N. 0311939-03e was reanalyzed with a matrix spike to determine retention times since the original analysis had potential retention time problems. 0311939-05E was also reanalyzed due to the interfrence.

RSA Project No. 2017 GE Railcar, Elkton, MD In-situ Remediation Pilot Study

APPENDIX 3

Purging/Sampling Information Forms

* Pump & 1 ft above to

PURGING/SAMPLING INFORMATION FORM

GENERAL INFORMATION 2017 Sile Elkton, mp Project No. Weather Cool + Over eget General Wellhead Condition Norma Top of Casing Elev. (msl / re) FLUID LEVEL/WELL DEPTH MEASUREMENTS Previous TD (ft bloc) 29.66 Static Water Level (ft btoc) TD (ft btoc) Static Water Level Elev. (msl / re) Sediment Thickness Sediment Description Sediment Removal Method Top of Screen (ft bloc) Screen Length (ft.) x 0.10 maximum drawdown during micropurging Measured By Well Headspace Reading (ppm or %) **PURGE DATA** Macro Volume Calculations - Static Water Level NA = Water Column NA __ ft. x 0.17 (2 in.) or 0.66 (4 in.) NA x3 **N**A gallons or NA Micro Volume Calculation Well TD 29.75 - Static Water Level 19.63 Water Column 10.12 ft. x 0.00118 = 0.0119 gallons x 3.785 0.815 liters to remove prior to first parameter measurement Volume Temperature Turbidity /pH/Color/ Odor Stop Date Time Time (Gallons liters) Purge Volume 1 05/18/03 0951 - 0954 MECIZUTEWER removed 7017g 0.395 Purge Volume 2 0957 1000 50 1.398 Purge Volume 3 1003 5.95 Clear M. Cd Purge Volume 4 1006 Purge Volume 5 1009 Purge Volume 6 1012 8.00 Cilear/m.c Purge Volume 7 11.82 clear/m.od Purge Volume 8 Purge Volume 9 5=51 ight Total Volume m = mild Sampled @ 1018 St= Strong Preservative Hassy Filtered: yes no m 5/cm FIELD PARAMETERS (After Sample Collection) pH 6.10 (std units) Temperature Specific Conductance _ Turbickty 53.4 ORP -23 D10. 0.67 Rosengarten, Smith & Associates, Inc. AR102118 vised 7/01

NAPL MEASUREMENTS

Interface Measurements From	ft bloc	Elevation	n (msl / re) ft.	Comments	
a) Air-light liquid				<u></u>	
b) Light liquid water				,	
c) Dense liquid	·				
d) TD					
e) Thickness of light liquid (b - a)		ft.			
f) Thickness of dense liquid (d - c)		ft.		•	
		COMMENTS			
				· 	

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
рН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown ·	±10% of Screen Length

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to site-specific datum

msi = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump * Pump@11

I age TD		PURGIN	IG/SAMPLING INFORM		t		
above TD			OFUEDAL INCODINA	TION _ 43 (New U	(11:00		
	_		GENERAL INFORMA	IION S /New C	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	n : •==	•
Site Elkton, m		Purging/Sampling Poir	t ID (Well No.)	4500	Project No20	917	
General Wellhead Condition	Not Cample		Liev. (mar/10)		ft. Weather <u>C</u>	mid 50	ercasti.
	No Pad		LEVEL/WELL DEPTH MEA				
Static Water Level (ft btoc)	A	TD (ft btoc) <u>多多</u> .	Previous TD (ft	btoc) _ NA Static	Water Level Elev. (msl / i	re)	ft.
Sediment ThicknessN F		ent Description	1 500				tructed: Yes / Nd
Top of Screen (ft btoc)	j.	Length	(ft.) x 0.10 <u>1 . 2</u>	····	wdown during micropurgi	- ,	_ 1
Measured By <i>E</i> 角ラ	CAM	Wel	l Headspace Reading (ppm o	or %) N-A	Dat	te/Time <u> </u>	8/03 1111
	•		PURGE DATA				
A 11	٨١	Λ	Macro Volume Calculat	lons	٨٢۵	45.8.	4-a (C)
Well TD NA	- Static Water Level <u>#V I</u>	T = Water Column	ft. x 0.17 (2 in.) or 0.66 (4 in.) x 3	gallons or _	NP ×	: 5 Of gallons
Well TD 33.09		,14 125	المجالة Micro Volume Calculati	ion	\\\\a_\\		
Well TD	- Static Water Level	= Water Column 10	ft. × 0.00118 = 6.01	> 3gailons x 3.785 <u>U ⋅ U</u>		to first parameter	rmeasurement
_			•	016	0 m L		-140-1-401
	Start Stop Time Time	evolume (Gallon (liters)	Specific Conductance	Dissolved Oxygen/ Redox	Temperature (C ^o /F ^o)	t urbidity /p	oH/Color/ Odor
Purge Volume 1 05/18/a	3 1132 -1133	_	ued prior to to	king first pa	rameter mea	· · · · · · · · · · · · · · ·	ont.
Purge Volume 2	1137	2.25	0.354	9.52/-61	12,55		OS Cloudy M.
Purge Volume 3	1140	3.0	0,353	8,82/ -68	12.48	492 16	19 Cloudy m.
Purge Volume 4	1143	3.5	0.353	8,43/-67	[2,45	419/6	.13 Claudulm.
Purge Volume 5	1140	4,0	0.352	3.80/-6	12.42	507/0	09 Cloudy S
Purge Volume 6	1150	4.50	0,352	3,42/-59	12.42		02 Cloudy 3
Purge Volume 7	1153	5.00	0,351	3.00 / -56	12,43	508/5	196 Cloudy 1
Purge Volume 8	1156	5.75	0.352	2.75 (-55	12,40	462/5	592 Claudy/m
Purge Volume 9	(159	6.25	0,351	2,67/-55	(2.40	404/ 5	592 Cloudy 1
Total Volume	1202	7,00	0.351	2.381-53	12,383	321 / <u>4</u>	5,89 Cloudy/5
(۱ ۱۶۰۰)	1		Sampled @				5=slight
Sample ID No. MW-43	1.1		SAMPLING DATA			HCI	m=mild st=streng
Sample ID No.	Date/Time 05/18	Sampled By	EAZ/CAM	Method <u>bus</u> _	Preservative		iltered: yes 10
	, ,		Sa-	·		Ict	
		FIELD	PARAMETERS (After Samp	le Collection)			
Time	Temperature	O°)	/ °F) Specif	ic Conductance	(µmhos/cm)	рН	(std units)
			ORP	1	11/52		
Resourced Smith & Arregister Inc.			ON	1-25	DITTY	•	11/02

Tur bidity

11/97 revised 7/01 AR102120

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (mst / re	e) ft.	Comments	
a) Air-light liquid b) Light liquid water					
c) Dense liquid					
d) TD e) Thickness of light liquid (b - a)		ft.			
f) Thickness of dense liquid (d - c)		ft.			
		COMMENTS			

Field Parameters	Stabilization Criteria			
Dissolved Oxygen	±10% (if measuring)			
Conductivity	3% of Full Scale Range			
рН	0.10 Standard Units			
Turbidity	10 N.T.U.			
Temperature	0.2 °C			
Eh / Redox	Not Applicable			
Drawdown	≤10% of Screen Length			

Abbreviations:

btoc = Below Top of Casing

re = Elevation relative to site-specific datum

insl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-

Teflon/PVC/HDPE Bailer & ID (in.)

Submersible/Dlaphragm/Peristaltic Pump

Pg 2

& Pure To

PURGING/SAMPLING INFORMATION FORM

0.0		GENERAL INFORMA	TION (News	000	
Site Elkton, MD	Purging/Sampling Poin	t ID (Well No.)	1.43 (0)	Project No.	2017
General Wellhead Condition Not C.		g Elev. (msl / re)N	A	ft. Weather	
No Par	,	LEVEL/WELL DEPTH ME			
Static Water Level (ft bloc) 20.1	4 TD (ft bloc) 33.0	Previous TD (f	t btoc) NA Stat	ic Water Level Elev. (msl / r	e) ft.
Sediment Thickness NA ft.	Sediment Description		Sediment Re	moval Method Bladde	Obstructed: Yes / No
Top of Screen (ft btoc)	Screen Length	(ft.) x 0.10 5		awdown during micropurgir	ng ()
Measured By EAZ/CAM) Wel	l Headspace Reading (ppm	or %) , \> A	Date	e/Time <u>&\$ 18 63 111 </u>
·		PURGE DATA			•
». A	. . .	Macro Volume Calcula			A. A. A.
Well TD Static Wate	r Level _ NA= Water Column _ 16	ft. x 0.17 (2 in.) or 0.66	(4 in.) <u>N A</u> x 3		NA x 5 M gallons
ma - 0	- A (1)	Micro Volume Calcula		A:6	
Well TD 33. 69 - Static Water	r Level 2019 = Water Column 12	. <u>45</u> ft. x 0.00118 = <u>0.01</u>	Sgallons x 3.785	liters to remove prior t	o first parameter measurement
Start Stop Date Time Time		Specific Conductance	Dissolved Oxygen/ Redox	Temperature	Turbidity /pH/Color/ Odor
Purge Volume 105 1205	8.0	0.351	2.02/-53	12,38	272 / 5,88 Cloudy
Purge Volume 2 1208	8.75	0.350	1.79/-57	12.37	220/5.87 Cloud
Purge Volume 3 1211	9,0	6.349	1711-57	12,37	182 15,86 Cloud
Purge Volume 4 1214	10,0	0,348	1,52/-46	12.35	159 15.86 Clean
Purge Volume 5 1217	11,0	0.347	1.51 -44	12,30	108 /5,34 Cloud
Purge Volume 6 1220	— (1.5	0,346	1.40/-40	12.28	93/5.82 Clear
Purge Volume 7 1223	12.5	0.345	1,37/- 32	12,78	86,8/5,79 Clear
Purge Volume 8 1727	(EE				
Purge Volume 9					
Total Volume					
13-1	, t	Sampled & SAMPLING DATA	1224	C)	Hel sight
Sample ID No. MW-43-1 Date/Time	Sampled By	EAZ/CAM	Method <u>low</u>	+low Preservative	H2504 Fillered: yes/10
		(Ice
		PARAMETERS (After Sam	ple Collection)	341 m5 (e)	w = = = =
Time 1247 Tem	perature <u>12,30</u> 6)∘F) Speci	,	(µmhos/cm)	pH(std units)
			+ 6	Turbidity	67.9
Rosengarten, Smith & Associates, Inc.) ق		CEBICOTY	11/97
		Ø	.0 1.28		AR102122 AR102122

NAPL MEASUREMENTS

Interface Measurements From	ft bloc	Elevation (msl / re)) ft.	Comments.
a) Air-light liquid	· · · · · · · · · · · · · · · · · · ·			
b) Light liquid water	·			
c) Dense liquid				
d) TD				
e) Thickness of light liquid (b - a)		ft.		
f) Thickness of dense liquid (d - c)	· · · · · · · · · · · · · · · · · · ·	ft.		
		COMMENTS	٠	
				

Field Parameters	Stabilization Criteria			
Dissolved Oxygen	±10% (if measuring)			
Conductivity	3% of Full Scale Range			
pH	0.10 Standard Units			
Turbidity	10 N.T.U.			
Temperature .	0.2 °C			
Eh / Redox	Not Applicable			
Drawdown	≾10% of Screen Length			

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump

AR102123

* Pump @ 6

PURGING/SAMPLING INFORMATION FORM

GENERAL INFORMATION

TILL MO				- · · · · · · · · · · · · · · · · · · ·	-
Site Elkton, MD	Purging/Sampling Point ID		. =	Project No. 201	
General Wellhead Condition Normal		v. (msl / re) 5	· ·	_ ft. Weather <u></u>	al 4 Over cast
, <i>a</i> , / , a	le	/EL/WELL DEPTH MEAS ·			m id 50 's
Static Water Level (ft bloc)	TD (ft bloc) 29.75	Previous TD (ft b		/ater Level Elev. (msi / re)	
	diment Description		Sediment Remov	al Method	Obstructed: Yes No
	een Length	_(ft.) x 0.10	maximum drawo	lown during micropurging	
Measured By EAZ/CAM	Well Hea	adspace Reading (ppm or	%)	Date/	Time <u>65/19/03 130</u> 8
		PURGE DATA			, .
		Macro Volume Calculatio	ns		_
Well TD Static Water Level _	NA Water Column NA	ft. x 0.17 (2 in.) or 0.66 (4	in.) <u> </u>	NA gallons or	NA x 5 gallons
	-	Micro Voluma Calculatio	n .		
Well TD 29.75 - Static Water Level	Water Column 10.15	ft. x 0.00118 = 0 . 012	_ gallons x 3.785 <u>ዕ ነ</u> ዕ ሂ	liters to remove prior to	first parameter measurement
	,		OR 45	imb	
Start Stop	Volume	Specific	Dissolved Oxygen/	Temperature	Turbidity /pH/Color/ Odor
Date Time Time	(Gallons/liters)	Conductance	Redox	(C9/F°)	
Purge Volume 1 65 18 03 /311 - [3]	6.045 Temes	red poice to	talking first	- parameter	measurements,
Purge Volume 2 13/3	0.75	0.385	7.75 / - [12.16	65,9/5,65Cler/5. Color
Purge Volume 3	2,25	0.384	5,42/-6	12,03	51.5 5,69 Clear 5 cdc1
Purge Volume 41319	4.25	0,383	3.21/-10	11.95	28,2/ 5,70 Clear/ None
Purge Volume 5 132Z	6,60	0.332	2,25/-10	11.99	23,3/5,71 Clear & alm
Purge Volume 6 1325	4.5	0.378	1.761-7	11.98	18.1 /5,69 Clear S.c.do
Purge Volume 71375	4,6	0.372	1.41/-1	11.94	8.8/5.68 Clear 5. oder
Purge Volume 8 / 331	10.5	0.366	1,25/+6	11.95	5.6 5.66 Clear/s ale
Purge Volume 9 1334	12.0.	0.360	1.20/+12	11.90	4.7/ 5.64 Class (5.00)
Total Volume 1337	13.5	0.355	1.17/120	11,91	3,615,63 clear/scalor
		200-1-16	1338		5=51,3Nt
7-10	- 1	Sampled &	1390	•	Hel stistma
Sample ID No. MW-2-6 Date/Time 05/1	Sampled By E	3	Method Low fla	• Preservative	HIVE'S
Butter Time Cas T	Jampied by	A C /CA	_ ivietifod	r reservative	
	FIELD DAD	AMPTEDO (After Occur)	0.84	m5/cm	ICE
Time 1357 Temperature		AMETERS (After Sample			pH <u>5,59</u> (std units)
Time 1354 Temperature	(°C)(°F)	Specific	Conductance 0.33	(µmnos/cm)	
			OBP 48	Turbidity	, 2.7
Rosengarten, Smith & Associates, Inc.			P.O 1.41	· ~	11/97 revised 7/01
			•		AR102124

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevatio	n (msl / re) ft.	Comments	•			
a) Air-light liquid				 				
b) Light liquid water			···					
c) Dense liquid				·				
d) TD								
e) Thickness of light liquid (b - a)		ft.						
f) Thickness of dense liquid (d - c)		ft.						
COMMENTS								
					•			

Field Parameters	Stabilization Criteria			
Dissolved Oxygen	±10% (if measuring)			
Conductivity	3% of Full Scale Range			
рН	0.10 Standard Units			
Turbidity	10 N.T.U.			
Temperature	0.2 °C			
Eh / Redox	Not Applicable			
Drawdown	≤10% of Screen Length			

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to site-specific datum

msi = Elevation relative to mean sea level

TD = Total Depth in = inch ft = feet / foot

Notes:

Purge/Sample Methods-

Teflon/PVC/HDPE Bailer & ID (in.)

Submersible/Diaphragm/Peristaltic Pump

AR102125

A Purp TD

PURGING/SAMPLING INFORMATION FORM

	GENERAL INFORMATION 15eV		
Site Elkton mo Purging/Samplin	GENERAL INFORMATION The state of the state	Project No. 2017	
General Wellhead Condition Not Completed Top of	Casing Elev. (msl / re) NA	ft. Weather Cool + Oc	
	LUID LEVEL/WELL DEPTH MEASUREMENTS	hish 50-	S
Static Water Level (ft bloc) 20.10 TD (ft bloc) 5	3.C9 Previous TD (ft btoc) NA Sta	itic Water Level Elev. (msl / re)	ft.
Sediment Thickness NA ft. Sediment Description	Sediment Re	emoval Method Blander Runp O	bstructed: Yes (No)
Top of Screen (ft bloc) Screen Length 15	(ft.) x 0.10 maximum c	Irawdown during micropurging	•
Measured By EAZ/CALO	Well Headspace Reading (ppm or %)	Date/Time OS	18/0.3 1419
·	PURGE DATA	/	•
A) A	Macro Volume Calculations		4.4
Well TD NA - Static Water Level NA Water Column		B	x 5 Mgallons
27.40	Micro Volume Calculation		
Well TD 33.09 - Static Water Level 20.16 Water Column	12.99 ft. x 0.00118 = 0.0/5 gallons x 3.785 0.		eter measurement
	and I	GO THE	
Start Stop Volume Date Time Time (Gallons(lite)	Specific m Dissolved Oxygen/ Conductance Redox	Temperature Turbidity	y /pH/Color/ Odor
land on the state	1 1	st parameter near	erement.
Purge Volume 1 05 18 05 1426 - 1430 0.06 r. Purge Volume 2 143 0.350	A 237 C 57419	12.45 27.17	E'76 Charles ador
Purge Volume 3 1434 0.750	8.337 3.27/+17	12:74 12:21	5.74 clear MONE
Purge Volume 4 1437 1,25	0,337 2,61/+16	12.67 8.5	15.74 clear/NONE
Purge Volume 5 440 2,00	0, 338 2,20 /414	12064 61	5.74 clear NONE
Purge Volume 6 1443 2.25	0.338 1.98/+13	12,66 6,8	15,74 Clear NONE
Purge Volume 7 1443 3.0	0,338 1,73/+10	12.66 5,6	5,74 clear NONE
Purge Volume 8 1449 3.25	0,338 1,58/+10	12.67 3.5	5,74 clear s. oder
Purge Volume 9 1452 4.0	0,339 1,59/+7	12.68 3.6/	5,74 char NONE
Total Volume			
	Sampled @ 1453		5 = Slight
112 mia 1 t	SAMPLING DATA	HCI	m-mod
Sample ID No. MW-413- Date/Time C5/18/07 Sample	ed By EAZ/CAM Method Low L	Preservative H. Sou	_Filtered: yes (no)
1 1	6	1 2 - 2	_
F	IELD PARAMETERS (After Sample Collection)	ms cm bee	5.7
Time 1525 Temperature 12:40	(°Ĉ/ °F) Specific Conductance	340 (umhos/em) pH 5	(sto units)
	000 477		C* A
Rosengarten, Smith & Associates, Inc.	UKY 722	Turbidoty '	₹. ₽
	Q.O. 1.25		revised 7/01 AR102126

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elev	vation (msl / re) ft.	Comments	
a) Air-light liquid				· · · · · · · · · · · · · · · · · · ·	
ب) Light liquid water			<u> </u>		
c) Dမည်se liquid			·		
d) TD					
e) Thickness of ng/:! liquid (b - a)	-	ft.			
f) Thickness of dense liquid (d - c)		ft.			
}		COMMENTS	•		
			· · · · · · · · · · · · · · · · · · ·		
				·	

Field Parameters	Stabilization Criteria		
Dissolved Oxygen	±10% (if measuring)		
Conductivity	3% of Full Scale Range		
рН	0.10 Standard Units		
Turbidity	10 N.T.U.		
Temperature	0.2 °C		
En / Redox	Not Applicable		
Drawdown	≤ 10% of Screen Length		

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to sile-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.)

Submersible/Diaphragm/Peristaltic Pump

Pure TD

AR102128

GENERAL INFORMATION

Site Elkt	on MD		. Purgir	ng/Sampling	Point ID (V	Vell No.)	5-42		Projec	t No	2017		
General Wellhea	•	. 4		Top of C	asing Elev	(msl / re)5	1.60		ft.	Weather _	2001+0	vercos	<u>+_</u>
						EL/WELL DEPTH		ITS			High 4	0'5	٠
Static Water Leve	el (ft btoc)	16-64	TD (ft	btoc) 33	,10	Previous T	D (ft btoc) <u>33</u>	.40 Sta	atic Water Le	vel Elev. (msl /	/ re)	ft.	
Sediment Thickn			Sediment Desc	ription	4.				emoval Meth	od Bladde	r Pump 0	bstructed: Yes	s)@#
Top of Screen (f	t btoc)		Screen Length	20)	(ft.) × 0.10	2	_ maximum d	irawdown du	ring micropur	ging •	00€	ell riser h
Measured By	EAZ/C	AM			Well Head	Ispace Reading (p	pm or %)	NA		Da	ate/Time <u>Ø</u> 5	803 K"	nt 1.84 be
			-			PURGE DATA				_		1615	, , ,
					M	acro Volume Calc							
Well TD	A .	Static Water Lev	el NA = Wa	ter Column		t. x 0.17 (2 in.) or 0		NA x3	3 N A	4 gallons or	NA	x5 ga	llons
					IV.	licro Volume Calc	ulation					•	
Well TD3	8.10 -	Static Water Lev	el 16.64 = Wa	ter Column	21,46	t. x 0.00118 = <u>Ø , (</u>	ÚZ5 gallons	x 3.785 <u>6</u> ,	095 liters t	to remove prior	r to first parame	ter measuren	nent
				-		1 1			95 mL	·			
		art Stop	Volum			pecific M S		ed Oxygen/	Tempe	erature	Turbidity	//pH/Color/ O	dor
	. 1	me Time	_	n (liters)	C	Conductance	Redox			")	1		
Purge Volume 1	05 18 03	1718-17	72 \$ _ C	.095	remag	sed Prior	-to-ta	King.	the tio	st pare	rmeter	measi	arement.
Purge Volume 2		1722		.0		0.748	6.04	340°	t	<u>5,20</u>	240	15,00 G	doody's code
Purge Volume 3		1725		2.25		0,481	3.05	363	1	2.75	156	5.01 ck	audy/NON
Purge Volume 4		1728		3.75	. <u>-</u>	0.425	1.67	376		12.72	50,2/		oady/NEN
Purge Volume 5		1731		5,25	. <u>.</u>	0.411	1.01	382		12.76	21,0	4.98 0	loudy/NONE
Purge Volume 6		1734		. 75	. <u>-</u>	0,412	0.69	39%		7.80	0.4	1497 c	toudy NON
Purge Volume 7		1737	\$	2.25	. <u> </u>	0,415	0.56	1,389		2.76	6,2	4975	cloudy NONT
Purge Volume 8		1740	_9	.50	_	0,413	0.49	391		12,72	6.8	501 S.	cloudy NONI
Purge Volume 9		1743		,0"	· <u>-</u>	0.417	0.3	11 390		12.69	6.8	5.02	Clear None
Total Volume		1746	i	2.0	_	0.470	<u> </u>	1392		12.67	O.7	5.04 (Llear NONE
						Sample	da	,				5 = 56	sht
	or 42	~l ,	f			SAMPLING DA	TA				HCl HO1	m=mi	
Sample ID No. 1	UM - 1	ate/Time 05	503	Sample	1 By <u>€</u>	AZ/CAM	Method	Lowfl	4W	Preservati	ve <u>H₂≾ô y</u>	_Fillered: ye	tre (C)
		1	•			•				\	Ice		_
				FIE	LD PARA	METERS (After S	ample Collect	ion) t		175	√		
Time		Temperat	ure		(°C))°F)	· ·	pecific Conduct			(µ mhes/ cm	ı) pH	(std (units)
							_			1 1			
Rosengarten, Smith & A	Associates Inc			•		C	ORV		Car	Lidity			11/97
							DO.		. 5.4			1evis	sed 7/01

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation	(msl / re) ft.	Comments			
a) Air-light liquid							
b) Light liquid water				<u></u>			
c) Dense liquid							
d) TD							
e) Thickness of light liquid (b - a)		ft.					
f) Thickness of dense liquid (d - c) _		ft.		·			
COMMENTS							
		·· ·-· · · · · · · · · · · · · · · · ·					

Field Parameters	Stabilization Criteria				
Dissolved Oxygen	±10% (if measuring)				
Conductivity	3% of Full Scale Range				
pН	0.10 Standard Units				
Turbidity	10 N.T.U.				
Temperature	0.2 °C				
Eh / Redox	Not Applicable				
Drawdown	≤10% of Screen Length				

Abbreviations:

btoc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-

Teflon/PVC/HDPE Bailer & ID (in.)

Submersible/Diaphragm/Peristaltic Pump

& Pump Eto

PURGING/SAMPLING INFORMATION FORM

GENERAL INFORMATION

O -							
Site Elston Mr)	_ Purging/Sampling Point	ID (Well No.)	42	Project No	7017	
General Wellhead Conditio	n Normal		Elev. (msl / re)		ft. Weather _(ool + overcast	
		FLUID	LEVEL/WELL DEPTH MEAS	SUREMENTS		High 40's	
Static Water Level (ft btoc)	16,64	TD (ft btoc) 33,10	Previous TD (ft t	toc) <u>38,40</u> Stati	c Water Level Elev. (msl /	/ re) ft.	
Sediment Thickness	<u>A</u> ft.	Sediment Description		Sediment Rer	noval Method Blades	Pump Obstructed: (ES/ No	
Top of Screen (ft btoc)		Screen Length 20	(ft.) x 0.10 2 , Ø		awdown during micropurg	ging Wellriser he	اید. پاید
Measured By	Z/CAM		Headspace Reading (ppm or	%) <u>NA</u>	Da	ate/Time c5(s03	Ĉ
	v		PURGE DATA			1615	
			Macro Volume Calculation	ns	•		
Well TDNA	Static Water Le	vel N A = Water Column N	4 ft. x 0.17 (2 in.) or 0.66 (4	in.) NA x3	NA gallons or	x5 <u>&A</u> gallons	
	•	611	Micro Volume Calculation	on			
Well TD	Static Water Le	vel 16,64 Water Column 21.4	6 ft. x 0.00118 ≈ <u>♂.025</u>	gallons x 3.785 🙆 🖒	95 liters to remove prior	r to first parameter measurement	
			[م	01 95	m (
Date	Start Stop Time Time	Volume (Gallona liters)	Specific mS Cm	Dissolved Oxygen/ Redox	Temperature (C [*] /F ^o)	Turbidity /pH/Color/ Odor	
	•			•	<u> </u>		٠.
Purge Volume 1	1749	13,25	0.417	0.21 / 392	12.67	5.3/5.05 clear No	
Purge Volume 2	1752	14.5	0,418	0,21 395	12.67	38/ 5.08 c/car/5.0	
Purge Volume 3	1755	5.75	0,418	0.20/396	12,66	8-1 15,08 clear No	·Nt
Purge Volume 4					· · · · · · · · · · · · · · · · · · ·		
Purge Volume 5							
Purge Volume 6							
Purge Volume 7							
Purge Volume 8 Purge Volume 9							
Total Volume	·					<u> </u>	
Total volume		<u> </u>		1751 /in 1	des ms/m	(O camples)	
			Sampled @ SAMPLING DATA	ITSE CINCI	sacs may	HCI M=mild	
Sample ID No MO -42	-\ Data/Time ass	18 63 1756 Sampled By	E OS /CM 100	_ Method _ laus-	Claric Programina	main steetmin	
Sample ID No. 10	Date/Time CS	Sampled by	E H Z/CAM	Wiethod tags	Preservati	ve ਸੁੰਤੂਨਮ Filtered: yes / no	
		cimi D a			1.	Ice	
Time 1828	T		ARAMETERS (After Sampl	•	m5/cm		
Time	Tempera	ature(2169(°C)/	"h) Specific		.4 (9 (µmhos/cm	n) pH <u>5,19</u> (std units)	
				orp +1	100 Tuob	idity 10.0	
Rosengarten, Smith & Associates, Inc.				p.c. c		11/97 revised 7/01	
				h.c.	10	AR102130	

NAPL MEASUREMENTS

Interface Measurements From	ft btoc		Elevation (msl / re) ft.	Comments			
a) Aìr-light liquid							
b) Light liquid water			<u> </u>				
c) Dense liquid							
d) TD	<u> </u>						
e) Thickness of light liquid (b - a)		ft.					
f) Thickness of dense liquid (d - c)		ft.					
COMMENTS							
			· .				
		. 4.					

Field Parameters	Stabilization Criteria			
Dissolved Oxygen	±10% (if measuring)			
Conductivity	3% of Full Scale Range			
рН	0.10 Standard Units			
Turbidity	10 N.T.U.			
Temperature	0.2 °C			
Eh / Redox	Not Applicable			
Drawdown	≤10% of Screen Length			

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to site-specific datum

msi = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump

* Pumperett

PURGING/SAMPLING INFORMATION FORM

GENERAL INFORMATION Well

Site Elkton, MD	F	urging/Sampling Point I	D (Well No.) <u> </u>	(Dea	Project No. 20	17
General Wellhead Condition Not		Top of Casing E	lev. (msl / re)		ft. Weather <u>C</u>	sol+ overcost
No F	* .	FLUID L	EVEL/WELL DEPTH MEA	SUREMENTS	H	gh Ho's / slight drizzle
Static Water Level (ft btoc)15 ,	79 1	D (ft btoc) 40.1	Z Previous TD (ft	btoc) NA Static	Water Level Elev. (msl / 🗗	
Sediment ThicknessNA	ft. Sediment	Description	·		oval Method Blackler	
Top of Screen (ft btoc)	Screen Le	ngth	(ft.) x 0.10 2 .O		wdown during micropurging	
Measured By EAZ/CAM			eadspace Reading (ppm o	A1 A		/Time 05/18/03 18.32
			PURGE DATA			
			Macro Volume Calculat	ions		
Well TD Na - Static V	Vater Level A	= Water Column NA	ft. x 0.17 (2 in.) or 0.66 (4 in.) NA x 3	NA gallons or _	炒ん x 5 以A gallons
			Micro Volume Calculat	ion		
Well TD 40,12 - Static V	Vater Level 15.7	Water Column 24.3	3 ft. x 0.00118 = <u>0.0</u> 2	9 gallons x 3.785 0,110	liters to remove prior to	o first parameter measurement
			٦)	or 110	oml	,
		olume	Specific molch	Dissolved Oxygen/	Temperature	Turbidity /pH/Color/ Odor
, 1		Gallon (liters)	Conductance	Redox	(C)/F°)	
Purge Volume 1 05 18 5 3 18	<u>50 -1852</u>	0,110 Fe	moved prior	to taking fir	st parameter	reading.
Purge Volume 2	<u> </u>	0,500	0.328	4.44 315	13.09	105 (5, 38 5, cloudy / NE
Purge Volume 3	<u>856</u>	01.5	0.328	2,43/313	13.00	460/5,37 s. chandy/s.
Purge Volume 4	859	2.25	0,317	1.63 314	17.48	367/5,385: cloody/ NON
	902	4.00	2,327	0.64/316	12,97	311 5,33 + cloudy 5, at
Purge Volúme 6	1905	5.5	0,325	0.43 305	1297	31/5.35 A.clock NON
Purge Volume 7	1908	7.0	0.322	017/293	12.97	205 5.36 s. cloudy/NEN
Purge Volume 8	all -	8.5	01322	0.0 290	12.97	128/5,35 s. cloud Non
	1914	10.5	6,322	0.0/284	12.96	59 5,35 car Non
Total Volume	117	12,0	0,322	e.c/281	12.96	38.1/5,35 clear/ NON
			Sampled@19	77	•	s-slight
on 141-1	1 1		SAMPLING DATA	, - 1	~ !	HCi M=mild
Sample ID No. MW-44-1 Date/Tim	ne C5 1803	1927 Sampled By _	EAZ/CAM.	Method low -	Preservative	M NOS
	-1 1		L		mélcr	Ice
• -	· ·	7 32 FIELD PA	RAMETERS (After Samp	ole Collection)	W. Jr.	
Time 1940	Temperature	7.83@\.	F) Speci	ic Conductance 0.32	(µmhos/cm)	pH <u>540</u> (std units)
		\cup	·	000 255	4	
Rosengarten, Smith & Associates, Inc.			1	UKY -,	Turbidaty	•. · 11/97
				D.O. 0.0	24.3	revised 7/01
						AR102132

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl / re)	ft.	Comments		
a) Air-light liquid	···					
b) Light liquid water	·					
c) Dense liquid						
d) TD						
e) Thickness of light liquid (b - a)		ft.				
f) Thickness of dense liquid (d - c)		ft.				
COMMENTS						
	<u> </u>					

Field Parameters	Stabilization Criteria		
Dissolved Oxygen	±10% (if measuring)		
Conductivity	3% of Full Scale Range		
рН	0.10 Standard Units		
Turbidity	10 N.T.U.		
Temperature	0.2 °C		
Eh / Redox	Not Applicable		
Drawdown	≾10% of Screen Length		

Abbreviations:

btoc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflor/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump

Pump & 164 above TD

PURGING/SAMPLING INFORMATION FORM

ر مان		GENERAL INFORMA	ATION (NAS)		
Site Elkton.MD	Purging/Sampling	Point ID (Well No.)	44 (New Well)	Project No. 20	17
General Wellhead Condition No	+ Complete TopofCa	asing Elev. (msl / re)		ft. Weather 6	ol & Over past
No	Pad FL	UID LEVEL/WELL DEPTH ME	ASUREMENTS	Hi	sh 40's slight drezel
Static Water Level (ft btoc) 15.	4.5	Previous TD (f	t btoc) NA Stat	ic Water Level Elev. 📺sl / re	•
Sediment Thickness \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Sediment Re	moval Method	Obstructed: Yes / No
Top of Screen (ft btoc)	Screen Length	(ft.) x 0.10	フ, co maximum dr	moval Method Andrews awdown during micropurgir	ig ,
Measured By EAZ/CAM		Well Headspace Reading (ppm	41 1		e/Time 05 63
· -		PURGE DATA		· · · · · · · · · · · · · · · · · · ·	
		Macro Volume Calcula	tions		
Well TD Statio	Water Level Water Column _			NA gallons or	N# x 5 NAgallons
		Micro Volume Calcula			N = LLSS g
Well TD 40,12 - Statio	Water Level 15,79 Water Column			liters to remove prior to	o first parameter measurement
		,		10m L	
Start	Stop Volume	Specific m5/cm	Dissolved Oxygen/	Temperature	Turbidity /pH/Color/ Odor
Date Time	Time (Gallons/liters)	Conductance	Redox	(C ²)F°)	,
Purge Volume 1 1920	13.0	0,321	0.0/274	12:95	25.1/5.30 clear NONE
Purge Volume 2 1927	7 14,75	01321	0.01766	12,94	20.0/5,38 clear NON
Purge Volume 3 1 ¶ 2	6 160	0.321	o.c/263	12.93	20,2/5,38 clear/NON
5					
Purge Volume 5					
Purge Volume 6					
Purge Volume 7					
Purge Volume 8		·			
Purge Volume 9			· · · · · · · · · · · · · · · · · · ·		
Total Volume			·		
		Samoled @	1927		5= 51,94
	. 1	SAMPLING DATA			Ha m=mild
Sample ID No. MW-44-1 Date/	Fime <u>05 18 03 1927</u> Sampled	By EAZ/CAM	Method low-	Preservative	
		1, 2, , , , , , , , , , , , , , , , , ,			Ico
	FIE	ELD PARAMETERS (After Sam	ple Collection)	m5/cm	
Time	Temperature	<u> </u>	ific Conductance	(<u>umhos/cm</u>)	pH (std units)
		U '			(3.2 3)
Rosengarten, Smith & Associates, Inc.			ORP	Turbidity	11/07
reosengariett, Simili de Associates, me.			P.O.		11/97 revised 7/01
			-		AR102134

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl / re) ft.	Comments		
a) Air-light liquid					
b) Light liquid water					
c) Dense liquid					
d) TD					
e) Thickness of light liquid (b - a)	ft.				
f) Thickness of dense liquid (d - c)	ft.				
COMMENTS					
		÷ .			
	· · · · · · · · · · · · · · · · · · ·	·			

Field Parameters	Stabilization Criteria		
Dissolved Oxygen	±10% (if measuring)		
Conductivity	3% of Full Scale Range		
pН	0.10 Standard Units		
Turbidity	10 N.T.U.		
Temperature	0.2 °C		
Eh / Redox	Not Applicable		
Drawdown	≤ 10% of Screen Length		

Abbreviations:

btoc = Below Top of Casing
re = Elevation relative to site-specific datum
msl = Elevation relative to mean sea level
TD = Total Depth in. = inch ft, = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump * Purpose 70'

PURGING/SAMPLING INFORMATION FORM

GENERAL INFORMATION

· -	OENENAL III			
Site Elkton, MO	Purging/Sampling Point ID (Well No.)	100-42	Project No2	1012
General Wellhead Condition Normal			ft. Weather	
,	FLUID LEVEL/WELL DEI			
Static Water Level (ft btoc) 16.64	TD (ft btoc) 35.10 Previo	ous TD (ft btoc) 38.40 Stat	ic Water Level Elev. (msl / r	e) ft.
Sediment Thickness NA ft.	Sediment Description		moval Method Bladder	Pump Obstructed: (es / No
Top of Screen (ft btoc)	Screen Length (ft.) x 0.10	Z,O maximum di	rawdown during micropurgia	mg kink If below too
Measured By <u>EAZ/CAM</u>	Well Headspace Readii	ng (ppm or %) NA	Date	e/Time <u>(5 5 03</u>
,	PURGE	DATA		, , , , , , , , , , , , , , , , , , , ,
	Macro Volume	Calculations		
Well TD Static Water	Level <u>NA</u> = Water Column <u>NA</u> ft. x 0.17 (2 in.)) or 0.66 (4 in.) \(\lambda \kappa \) x 3	NA gailons or _	NA × 5 gallons
	Micro Volume	Calculation		
Well TD Static Water	_evel 16, 15 = Water Column 21. 46 ft. x 0.00118 =	0,625 gallons x 3.785 6,00	is liters to remove prior t	o first parameter measurement
		P To	5mL	
Start Stop	Volume Specific	Slam Dissolved Oxygen/	Temperature	Turbidity /pH/Color/ Odor
Date Time Time	(Gallons (Ters) Conductance	Redox	©)F°)	
Purge Volume 1 05 13 03 1956 - 1	958 0,095 removed prior	to taking first (parameter me	asurements
Purge Volume 2 1959	0.500 0.417	381/373637	11.90	51.0/5.18 dear NONE
Purge Volume 3 ZCC 2	1,50 0,415	1.98 1 389	11.90	34.9 5,18 clear 13. eder
Purge Volume 4 2cc5	2.5 0.410	0.75/ 399	11.86	28,3 5,04 clear / NONE
Purge Volume 5	3,25 0,395	0.09/ 402	11.85	12.8 5.02 clear / NONE
Purge Volume 6 ZCIL	4.0 0.401	0.0 / 403	11.85	20.6 5.00 clear 5. colos
Purge Volume 7 2014		00/404	11.87	22,3/4,99 clear NONE
Purge Volume 8 Zo (¬			11.94	12.0/ 498 clear New E
Purge Volume 9			12.01	10,4/ 4.98 clear wont
Total Volume . 201			11.97	7.3/4.98 clear/Non
	Sample	d @ 2024		5-slight
17-11	SAMPLING	G DATA	^1	Her mand
Sample ID No. MW-9-Date/Time <u>O</u> :	5 18 03 2024 Sampled By EAT/CAM	Method dw	Preservative	
334			a) a	Town in the second
(E) ZO (EE)	11.98 EZFIELD PARAMETERS (AF	ter Sample Collection) 💍 🐧 🕏	4C/GZ ms/cm	47 (67)
Time 5 1803 1823 Tempe	erature (C) °F)	Specific Conductance	(µmhos/cm)	pH _5H (std units)
7 1		741C	111. 40	2)
Rosengarten, Smith & Associates, Inc.	ORP	Tur	bidity to CE	11/97
	$\sigma \sigma$	ter Sample Collection) Specific Conductance Tur	0,4	revised 7/0}
		0.0		AR102136
		÷ • •		

NAPL MEASUREMENTS

Interface Measurements From	ft btoc		Elevation (msl / re) ft.	Comments	•		
a) Air-light liquid							
b) Light liquid water							
c) Dense liquid							
d) TD			·				
e) Thickness of light liquid (b - a)		ft,					
f) Thickness of dense liquid (d - c)		ft.					
COMMENTS							

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
pН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≤10% of Screen Length

Abbreviations:

btoc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump

* Pump at 11 ft above to **PURGING/SAMPLING INFORMATION FORM** Purging/Sampling Point ID (Well No.) <u>MW-44</u> (New Yell) 2017 Project No. Weather Cool + Fore clouds General Wellhead Condition Not Comp Top of Casing Elev. (msl / re)

		N	o tad			FLUID I	_EVEL/WELL	DEPTH MEA	SUREMENTS	S		Low-m	d40 s	Dark
Static Water Level ((ft btoc)	4 15	180		TD (ft'btoc)	40.12	P	revious TD (ft	btoc) N	A Static V	Water Level Elev.	(msl / re)		ft.
Sediment Thickness		NA		Sedime	nt Description				s	ediment Remo	val Method Who	ale from	Obst	ructed: Yes / No
Top of Screen (ft bt	toc)			Screen	Length	20	(ft.) x 0.10	2.			down during micr		` ,	1
Measured By	EAZ	101	m		 	Well i	Headspace Re	eading (ppm o	r %)	NA		Date/Time	25/18	3 03
		•					PUR	GE DATA					•	•
								me Calculati			_			
Well TD	J A	- Static	Water Lev	/el <u>/ / /</u>	<u>∱</u> = Water Co	umn <u>N</u>	ft. x 0.17 (2	2 in.) or 0.66 (4 in.) <i>\(\int 1</i>	} хз	NA gallor	ns or	A ×	5 gallons
11A	_				**1		Micro Volu	me Calculati		_				
Well TD 40.1	<u>Z</u>	- Static	Water Lev	/el <u>] 5,</u>	Water Co	umn 24.3	ft. x 0.001	18 = <u>0.0</u> E	🕻 gallons x	3.785 0,116	liters to remove	e prior to first	parameter	measurement
								4		r 110 mL	•			
· D	ate	Start Time	Stop Time		Volume (Gallons/liter	3	Specific Conductan	us (cm	Dissolved (Redox		Temperature	7	Furbidity /pl	H/Color/ Odor
	<i>i</i> i			;				١		in State		<u>ــــــــــــــــــــــــــــــــــــ</u>	-1	
	ৰ্ষাহ্ব03		-2051		0.110		e movec		to		aking tir			warzalewen.
Purge Volume 2	<i>a</i> .		252		0.25	3	_0.37		613	347	11, 71		4	clear / S. edar
_			055 180	•	1.5		_0.3	_,	465	332	1193			clear/s.odo
	<u> </u>		<u> </u>		2,25	<u> </u>	013		0,51	316 2:F	12,23			5 clear/s. edo
Purge Volume 5			101	•	4.0.		0.3		0,0/	315	12.61	51	$\frac{\cdot 1/5,0}{31}$	14 clear / NONE
Purge Volume 6			104	•	<u> </u>		0.3		0.0	<u> 3iO</u>	12.60		510	18 clear/ NONE
Purge Volume 7			107	•	8.0		0.32		F	307	12.58		5 / 5.R	
Purge Volume 8 _		7	110	•	4.5		0,3	<u> 20</u>	0.0	300	12.50	Š <u>i</u>	5/5/1	2 clear / 5 ex
Purge Volume 9				•										
Total Volume								. 1 ^	- Au-7					
		. •							2112					5=slight
	311 ~ L	14-11	1	1	210		,	LING DATA		, 61	•	Ĥ	Cl 2000	m=mile st=strong
Sample ID No	110	'Date/Ti	ime <u>0</u> 5/1	803	-112 St	impled By _	EAZICE	1W	Method _	low to	<u> </u>	ervative 	Fil	Itered: yes

FIELD PARAMETERS (After Sample Collection) Temperature 12.07 pH 5.20 (std units) Specific Conductance _0.320 Turbidity N/A

Rosengarten, Smith & Associates, Inc.

revised 7/01

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl / i	re) ft.	Comments			
a) Air-light liquid							
b) Light liquid water			·				
c) Dense liquid							
d) TD							
e) Thickness of light liquid (b - a)		ft.					
f) Thickness of dense liquid (d - c)		ft.					
COMMENTS							

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
. pH	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≾10% of Screen Length

Abbreviations:

btoc = Below Top of Casing
re = Elevation relative to site-specific datum
msl = Elevation relative to mean sea level
TD ≈ Total Depth in. = inch ft. ≈ feet / foot

Notes:

Purge/Sample Methods-Tetlon/PVC/HDPE Bailer & ID (in.) Submersible/Dlaphragm/Peristaltic Pump

Pamp set @ 15+ above

PURGING/SAMPLING INFORMATION FORM

· · -					
Site Elsten, MD	Purging/Sampling Point I	D (Well No.)	· 2	Project No.	2017-
General Wellhead Condition <u>Wa</u>	Top of Casing E	lev. (msl / re) <u>58</u> .	47	ft. Weather_	Clear + mid 70's
•	FLUID L	EVEL/WELL DEPTH MEAS			
Static Water Level (ft btoc) 18.31	TD (ft btoc) 29,7	S Previous TD (ft I	otoc) <u>29.75</u> Static	Water Level Elev. (ms	l / re) ft.
Sediment Thickness NA ft.	Sediment Description NA		Sediment Rem	oval Method <u>NA</u>	Obstructed: Yes / No
Top of Screen (ft btoc)	Screen Length	(ft.) x 0.10		wdown during micropu	ırging
Measured By <u>EAZ</u>	Well H	leadspace Reading (ppm o	r%)		Date/Time
	•	PURGE DATA	,		
		Macro Volume Calculation			_
Well TD Static Water	er Level <u>M A =</u> Water Column <u>N</u>	A ft. x 0.17 (2 in.) or 0.66 (4	in.) <u>NA</u> x3_	<i>№</i> A gallons o	r NA x 5 NH gallons
_		Micro Volume Calculation		_	
Well TD 29,75 - Static Water	er Level 1용,텡= Water Column <u>10위</u>	-) ft. x 0.00118 = <u>0、013</u>	gallons x 3.785 <i>0 . Ó 5</i>	Iiters to remove pri	ior to first parameter measurement
Start Sto		Specific MCM	Dissolved Oxygen/	Temperature	Turbidity /pH/Color/ Odor
Date Time Time	`	Conductance	Redox	(C°/F°)	<u>r</u>
Purge Volume 1 20/24/03 1334	 	noved prior to	taking tinst	1	measurements.
Purge Volume 2 1337		9,62	<u>>19.99/-6</u> 1	15.63	360.0/6.44/cloudy N
Purge Volume 3 340		9.30	18.2 / -167	14.06	334,0/6.41 /claudy / M
Purge Volume 4 1343		<u> 3,12</u>	15,49/-170	13.67	766.0/6.31/c/cuchij/St
Purge Volume 5 1346		7.12	14.18/-172	13.46	217.0/ 6.22 c/0009/512
Purge Volume 6 340		6.52	13.10 / - /72	13.48	172.0/6.14 CLEAR /m. c.
Purge Volume 7		6.40	12.49 1-170	13.84	169 607 CLOUNG / M. 02
Purge Volume 8 (35	11.50	6.28	12.47 / -169	13.63	158 / 6.2 CLOVDY/M.O.
Purge Volume 9 35	7/15	6.11	12.44 / -166	<u>13.53</u> 13.49	159 /5,99 except /57.0
Total Volume		6.04		73.77	1524596 elocor /in Ol
	S' ₂	AMPLED AT 14:00	9 1.00		5 3 15/1
	i t	SAMPLING DATA	1 ~		HCI MIZITIES
Sample ID No. My-2- Date/Time_	조년 7년 호크 Sampled By _	EAZ	Method <u> sw f/</u>	Preserva	ative Hash Filtered: yes Tho
	, ,				Ter
122 111 28	1 . 10	ARAMETERS (After Samp	le Collection)	57 mmh	/ 03
Time Hara 1428 Tem	perature 13, 41 (C)	F) Specifi	c Conductance	(Membos/c	m) pH <u>5.93</u> (std units)
·			- 0 - 152	_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_
Rosengarten, Smith & Associates, Inc.			ORP-152	Turbidetp	****
			D.O. 14.31		revised 7/01 AR102140
			• · · · · ·		/ 11 / 10 / 170

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation	(msl·/ re) ft.	Comments			
a) Air-light liquid							
b) Light liquid water							
c) Dense liquid		<u> </u>					
d) TD							
e) Thickness of light liquid (b - a)		ft.					
f) Thickness of dense liquid (d - c)		ft.					
COMMENTS							
		•					

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
рН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≾10% of Screen Length

Abbreviations:

btoc = Below Top of Casing
re = Elevation relative to site-specific datum
msl = Elevation relative to mean sea level
TD = Total Depth in. = inch ft. = feet / foot

Notes:

GENERAL INFORMATION

Site General Wellhead Condition				Purging/Sampling Point ID (Well No.) <u>mw¹ み</u>				Project No.				
					FLUI	D LEVEL/WELL DEPTH I	MEASUREMENTS					
Static Water Lev	vel (ft btoc)	·			TD (ft btoc)	Previous Ti	O (ft btoc)	Static V	Vater Level Elev. (msl / r	e)		ft.
Sediment Thickr	ness		_ ft.	Sedimen	t Description		Sedir	ment Remov	/al Method		Obstructe	d: Yes / No
Top of Screen (ft btoc)		_	Screen L	ength	(ft.) x 0.10	max	imum drawo	down during micropurgi	ng		
Measured By		· · · · · · · · · · · · · · · · · · ·			We	ell Headspace Reading (pp	om or %)		Dat	e/Time		
		•				PURGE DATA	A					
						Macro Volume Calc	ulations			•		
Well TD		Static	Water Lev	el	= Water Column	ft. x 0.17 (2 in.) or 0.	66 (4 in.)	x3	gallons or _		x5	gallons
						Micro Volume Calc	ulation					
Well TD		Static	Water Lev	el	= Water Column	ft. x 0.00118 =	gallons x 3.78	85	_ liters to remove prior t	o first par	ameter mea	surement
	Date	Start Time	Stop Time		Volume (Gallons/liters)	Specific Conductance	Dissolved Oxy Redox	gen/	Temperature (C ^o /F ^o)	Turk	idity /pH/Co	olor/ Odor
Purge Volume 1	1 124/6	3 1404	IZ		14	5.88	12.59/-1	63	13.46	144	1594	10000 ST
							14377		73.70	70	/ ~ .	70-000, 2.2
Purge Volume 2 Purge Volume 3					<u> </u>							
Purge Volume 4												
Purge Volume 5				•								
Purge Volume 6						···						
Purge Volume 7												
Purge Volume 8												
Purge Volume 9												
Total Volume												
												
						SAMPLING DA	TA					
Sample ID No		_ Date/T	ime		Sampled B	у	Method		Preservative	e	Filtere	d: yes/no
					FIELD	PARAMETERS (After S	ample Collection)					
Time		_	Temperat	ture	(°(C / °F) Sp	ecific Conductance _		(µmhos/cm)	pH _		_ (std units)

Rosengarten, Smith & Associates, Inc.

11/97 revised 7/01

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl	/ re) ft.	Comments		
a) Air-light liquid			·			
b) Light liquid water						
c) Dense ‼quid						
d) TD						
e) Thickness of light liquid (b - a)		ft.				
f) Thickness of dense liquid (d - c)		ft.				
COMMENTS						

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
рН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≾10% of Screen Length

Abbreviations:

btoc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump

Fump 1st above 70

Per	1
1.7	

Site_Eleton	Purging/Sampling Point ID (Well I	40) MW-43	Project No	20-17
General Wellhead Condition	1		ft. Wea	ther Clear + Mid 80's
	FLUID LEVEL/M	ELL DEPTH MEASUREMENTS		-
Static Water Level (ft btoc) 19,32	TD (ft btoc) <u>33,09</u>	Previous TD (ft btoc) _ 글을, 증	Static Water Level Elev	/. (msi / re)ft.
Sediment Thickness NA ft.	Sediment Description NA		ment Removal Method	Obstructed: Yes / No
Top of Screen (ft bloc)いれ	Screen Length S (ft.) x		imum drawdown during mi	
Measured By <u>EAZ/SK</u>	Well Headspa	ce Reading (ppm or %)2(0,3 ppm	Date/Time 06/24/03 1129
		PURGE DATA	4[0]	•
EAZ		Volume Calculations	,	
Well TD 33.09 - Static Water Le	evel ===================================).17 (2 in.) or 0.66 (4 in.) <u>N.A</u>	x3 <i>NA</i> _gallo	ons orX A gallons
22.00		Volume Calculation		
Well TD 33.01 - Static Water Le	evel <u>[1,32</u> Water Column <u>13,77</u> ft. x 0	0.00118 = <u>0,62<i>5</i></u> gallons x 3.78	85 <u>0 , 0역년</u> liters to remo	ve prior to first parameter measurement
		(den)		
Start Stop Date Time Time	Volume Speci (Gallons/liters) Cond	fic (m < (c ^m) Dissolved Oxy uctance Redox	gen/ Temperature (C9/F°)	Turbidity /pH/Color/ Odor
Purge Volume 1 06/24/03 1138 (1	132.19) 0.094 removed	orior to taking	Sirst paras	neter reading.
Purge Volume 2	2,0		13,59	7 7
Purge Volume 3			-124 13.20	
Purge Volume 4 1147			123 13,0	
Purge Volume 5150			-120 13,1	
Purge Volume 6 1153			-116 13,3	38 23,9/6,05 clear m. ede
Purge Volume 7	9.5	10,50	111 13.3	33 19.9/6.00 Cont mod
Purge Volume 8 1154	11.0 (z.s) c	<u> 9,37/-</u>	105 13.3	154 5.96 clear M. a
Purge Volume 9 1262		<u> 9.34</u>	49 13.	17 12.0/5.93 clear M. oc
Total Volume 1205	<u> </u>	0,30 9,27	-91 130	35 9.1/5.89/clear/M =c
	5	ampled@		5=Slight
		AMPLING DATA	_	HC) M=Mild
Sample ID No. MK -43-1 Date/Time O	<u> 6 2403 Sampled By E D</u>	7 Method (ow flour Pre	servative H, 504 Filtered: yes /100)
	1 (•	Ic &
	FIELD PARAME	TERS (After Sample Collection)	7.4	. c
Time 1227 Temper	ature 13,31 (Cy°F)	Specific Conductance _	0,406 (HID	hos/cm) pH <u>5,82</u> (std units)
Rosengarten, Smith & Associates, Inc.		O'R	P - 81	Turbicky 2.9
			7,95	revised 7/01
		DO	(, 1 - 5	AR102144

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl	/ re) ft.	Comments	
a) Air-light liquid					
b) Light liquid water			 -		
c) Dense liquid			·		·
d) TD					
e) Thickness of light liquid (b - a)		ft.			
f) Thickness of dense liquid (d - c)		ft.			
		COMMENTS		•	
					

Field Parameters	Stabilization Criteria		
Dissolved Oxygen	±10% (if measuring)		
Conductivity	3% of Full Scale Range		
pH	0.10 Standard Units		
Turbidity	10 N.T.U.		
Temperature	0.2 °C		
Eh / Redox	Not Applicable		
Drawdown	≾10% of Screen Length		

Abbreviations:

btoc = Below Top of Casing
re = Elevation relative to site-specific datum
msl = Elevation relative to mean sea level
TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Dlaphragm/Peristaltic Pump

P3,2

Site	Purging/Sampling Point ID (Well No.) Project No					
General Wellhead Cond	ition	Top of Casing E	Elev. (msl / re)	····		
		FLUID L	EVEL/WELL DEPTH N	IEASUREMENTS		
Static Water Level (ft bto	oc)	TD (ft btoc)	Previous TE) (ft btoc) Statio	Water Level Elev. (msl / re)	ft.
Sediment Thickness	ft. Sedi	ment Description		Sediment Rem	noval Method	Obstructed: Yes / No
Top of Screen (ft btoc)	Scre	en Length	(ft.) x 0.10	maximum dra	awdown during micropurging	
Measured By		Well I	leadspace Reading (pp	m or %)	Date/T	ime
			PURGE DATA	١.		
			Macro Volume Calcu	ılations		4
Well TD	Static Water Level	= Water Column	ft. x 0.17 (2 in.) or 0.6	66 (4 in.)x 3 _	gallons or	x 5 gallons
			Micro Volume Calcu	ılation		•
Weil TD	Static Water Level	= Water Column	ft. x 0.00118 =	gallons x 3.785	liters to remove prior to fi	rst parameter measurement
Date	Start Stop Time Time	Votume (Gallons/liters)	Specific Conductance	Dissolved Oxygen/ Redox	Temperature (C ^o /F ^o)	Turbidity /pH/Color/ Odor
Purge Volume 1 Da 2	403 1208	1575 (6.75)	0,394	397 -33	13.29	77/53 clear M.
Purge Volume 2	1211	17.0 (8.0)	0,401	8,841-77	13.28	4.5 /5,82/ clear M
Purge Volume 3	1214	18,5 (9,5)	0.405	3,45/-78	13:32	3.1 (5.83/c/ear/m
D 14-1 5				·		
Purge Volume 6			· · · · · · · · · · · · · · · · · · ·			
Purge Volume 7	·····			·	<u> </u>	
Purge Volume 8						
Purge Volume 9						
Total Volume				<u>-</u>		
			Sampled &	21217		
Sample ID No.	Date/Time	Sampled By _		Method	Preservative _	Filtered: yes / no
		FIELD PA	ARAMETERS (After Sa	ample Collection)		
Time	Temperature _	(°C/		ecific Conductance	(µmhos/cm)	pH (std units)

NAPL MEASUREMENTS

Interface Measurements From	ft btoc		Elevation (msl / re) ft.	Comments
a) Air-light liquid		-		
b) Light liquid water				
c) Dense liquid				
d) TD				
e) Thickness of light liquid (b - a)		ft.		
f) Thickness of dense liquid (d - c)		ft.		
		COMME	NTS	

Field Parameters	Stabilization Criteria		
Dissolved Oxygen	±10% (if measuring)		
Conductivity	3% of Full Scale Range		
рН	0.10 Standard Units		
Turbidity	10 N.T.U.		
Temperature	0.2 °C		
Eh / Redox	Not Applicable		
Drawdown	≤10% of Screen Length		

Abbreviations:

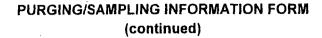
btoc = Below Top of Casing

re = Elevation relative to site-specific datum

msl ≈ Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:


Purge/Sample Methods-Tetlon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump

Pamp @ 1ft above

PURGING/SAMPLING INFORMATION FORM

PAGE!

Site Elkton	Purging/Sampling Point ID (Well No.)	MW-44	Project No.	2017
General Wellhead Condition	Top of Casing Elev. (msl / re)		ft. Weather <u>C</u>	lear + 90's
	FLUID LEVEL/WELL DEI	PTH MEASUREMENTS		
Static Water Level (ft btoc) 14,01		ous TD (ft btoc) 40.12 Stati	c Water Level Elev. (msl / re) <u>N A</u> ft.
Sediment Thickness NA ft.	Sediment Description NA	Sediment Ren	noval Method <i>N</i> _A	Obstructed: Yes / No
Top of Screen (ft bloc) NA	Screen Length (ft.) x 0.10	maximum dra	awdown during micropurgin	g
Measured By EAZ	Well Headspace Readii			Time 06/24/0 3
	PURGE	* "		-94/
	Macro Volume	Calculations		
Well TD 15 A - Static Water Le	vel <u>NA</u> = Water Column <u>NA</u> ft. x 0.17 (2 in:		MA gallons or	NA x5 Mallons
	Micro Volume	Calculation		
Well TD 40.17 - Static Water Le	vel <u>[4,61</u> = Water Column <u>26,11</u> ft. x 0.00118 =	0.031 gallons x 3.785 0.11	The liters to remove prior to	first parameter measurement
•				·
Start Stop Date Time Time	Volume Specific (Gallons/liters) Conductance	Dissolved Oxygen/	Temperature	Turbidity /pH/Color/ Odor
Purge Volume 1 06/24/03 1525	0.117 remove	1	1	Mearurement
Targe Volume 1 O C/Z 40	<u>0,750</u> 2.48			315.0/5.23/cloudy/N.0
		<u> </u>	14.52	
Purge Volume 3 153	2.75 1.29	<u>>19.99 / 4</u> 219.99 / <i>3</i> 2	14.79	335,0/5,80 Cloudy/No Co
Purge Volume 4 1534	$\frac{3.75}{3.5}$		16.14 15.01	421 /5.88 /CLOUDY /N. Ode
Purge Volume 5	$\frac{3.0}{13}$	<u> </u>		580/ 5.45/cco01/0 000
Purge Volume 6	- 4.0 - 33.7 - 33.7	7/0.99 / 161	14.34	449/5//CLOUDY/N. OPER
Purge Volume 7 543	- 3183	719.99 176	14.26	354 5.13 CLOSOI/N COOK
Purge Volume 8	6.5 .708	>19.99 1181	14.13	154/5.18/CLOUDY/N.OLOGO
Purge Volume 9 1549	<u>70 .691 </u>	<u> </u>	14.04	134 5-24 CLOCON N. GOOD
Total Volume 1552	<u>90</u> .679	<u> </u>	14.23	121/527CLOUS/NOON
•	5Am PCED@ 1620	,		sesticht;
	SAMPLING		~ ,	Hei m= Madera
Sample ID No. MW -44-/Date/Time Obj	24/03 Sampled By FAZ	Method <u>low</u> -	Preservative	Filtered: yes kno
				Lee
	FIELD PARAMETERS (AF	fter Sample Collection)		
Time $\sqrt{633}$ Tempera	ature 15,54 (°C) °F)	Specific Conductance7	66 (umtos/cm)	pH(std units)
			40	
Description Could S. Associates Inc.		ORP	1771 Tur	-bidity
Rosengarten, Smith & Associates, Inc.				36.5 revised 7/01
		\mathfrak{D}	719.99	AR102148

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl / re) ft.	Comments
a) Air-light liquid			
b) Light liquid water			
c) Dense liquid			
d) TD			<u> </u>
e) Thickness of light liquid (b - a)		· ft.	
f) Thickness of dense liquid (d - c)		ft.	
		COMMENTS	

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
pН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≾10% of Screen Length

Abbreviations:

btoc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

PAMER

Site				Purging/Sampling Point ID (Well No.)		44	Project No.	
General Wellhea	d Condition _			_ Top of Casin	g Elev. (msl / re)			
				FLUI	LEVEL/WELL DEPTH	MEASUREMENTS		
Static Water Leve	el (ft btoc)			TD (ft btoc)	Previous T	D (ft btoc) Stati	c Water Level Elev. (msl	′ re) ft.
Sediment Thickn	ess	ft.	Sedime	nt Description		Sediment Rer	novai Method	Obstructed: Yes / No
Top of Screen (fi	t btoc)		Screen	Length	(ft.) x 0.10	maximum dr	awdown during micropur	ging
Measured By				We	ll Headspace Reading (p	pm or %)	D:	ate/Time
•					PURGE DAT	A		
					Macro Volume Calc	ulations	•	
Well TD		Static Water	Level	_ = Water Column	ft. x 0.17 (2 in.) or 0	.66 (4 in.) x 3	gallons or	x 5 gallons
					Micro Volume Calc	ulation		
Well TD		Static Water	Level	_ = Water Column	ft. x 0.00118 =	gallons x 3.785	liters to remove prio	r to first parameter measurement
Purge Volume 1 Purge Volume 2 Purge Volume 3 Purge Volume 4 Purge Volume 5 Purge Volume 6 Purge Volume 7 Purge Volume 8 Purge Volume 9 Total Volume	Date Til	art Stop me Time 1555 1558 1601 1604 1607 1610 1613 1616 1619		Volume (Gallons/liters) 10.5 11.5 13.96 14.25 15.5 16.75 19.00	Specific Conductance .685 .665 .667 .667	Dissolved Oxygen/ Redox > 1991 182 > 1999 182 > 19.99 180 > 19.99 180 > 19.99 181 > 19.99 181 > 19.99 181 > 19.99 181	Temperature (C°/F°) j4.16 14.02 14.10 14.05 14.01 14.13 14.10	Turbidity /pH/Color/ Odor 109 / 5 3 / Cloudy / No CAI 191, / 5.3 / CLOUDY / NO CAI 87. / 5.35 / CLOUDY / NO CAI 81.2 / 5.36 / CLOUDY / NO CAI 701 / 5.37 / CLOUDY / NO CAI 61 / 538 / CLOUDY / NO CAI 56 / 539 / CLOUDY / NO CAI 44 / 5.39 / CLOUDY / NO CAI 44 / 5.39 / CLOUDY / NO CAI
					SAMPLING DA	TA		
Sample ID No	C	Date/Time		Sampled By	·	Method	Preservati	veFiltered: yes / no
Time		Temp	erature	FIELD (°C	PARAMETERS (After S	ample Collection) pecific Conductance	(µmhos/cm	n) pH (std units)

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation	on (msi / re) ft.	Comments	
a) Air-light liquid	· 				
b) Light liquid water	· · · · · · · · · · · · · · · · · · ·		·		
c) Dense liquid					
d) TD					·
e) Thickness of light liquid (b - a)		ft.			
f) Thickness of dense liquid (d - c)		ft.			
		COMMENTS			·

Field Parameters	Stabilization Criteria		
Dissolved Oxygen	±10% (if measuring)		
Conductivity	3% of Full Scale Range		
рН	0.10 Standard Units		
Turbidity	10 N.T.U.		
Temperature	0.2 °C		
Eh / Redox	Not Applicable		
Drawdown	≾10% of Screen Length		

Abbreviations:

btoc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Primp @ IFT above TD

PURGING/SAMPLING INFORMATION FORM

Site Elban MD	Purging/Sampling Point ID (Well No	n) MW,-42	Project No	2017
General Wellhead Condition Norma	Top of Casing Elev. (msl /		ft. Weather <u>C</u>	lear 90's
	FLUID LEVEL/WE	LL DEPTH MEASUREMENTS	_	
Static Water Level (ft btoc) 14,91	TD (ft btoc) <u>3名, (</u> の	Previous TD (ft btoc) <u>3号元</u> の Stati	ic Water Level Elev. (msl / r	re) ft.
Sediment Thicknessft.	Sediment Description		moval Method <u>ルケ A</u>	Obstructed: Yes / No
Top of Screen (ft btoc) NA	Screen Length 20 (ft.) x 0	0.10 Z 10 maximum dra	awdown during micropurgi	ng
Measured By EAZ	Well Headspace	e Reading (ppm or %) 99, 2	Dat	e/Time 06/24/03 1640
	F	PURGE DATA		· · ·
0		olume Calculations		
Well TD Static Water Le	evel NA = Water Column NA ft. x 0.1	17 (2 in.) or 0.66 (4 in.) <u>DA</u> x 3	<i>N_A</i> gallons or _	N A x 5 N A gallons
		olume Calculation		·
Well TD Static Water Le	evel 14.91 = Water Column 23.19 ft. x 0.0)0118 = <u> </u>	<u>0 √</u> liters to remove prior	to first parameter measurement
Purge Volume 1 362403 1655	Volume Specific (Gallons/liters) Conductor	ctance (Redox Prior to first	\	Turbidity /pH/Color/ Odor
Purge Volume 2 1058		$\frac{10}{0.01}$ $\frac{19.98}{0.01}$ $\frac{19.98}{0.01}$ $\frac{10.00}{0.000}$	15.08	71000/6,42/fan ly No Col
Purge Volume 3 1701 Purge Volume 4 1704			<u>14,46</u> 14,10	>1000 /6,39 Finaly/N Cd
Purge Volume 5 1707		<u>.89</u> <u>719.99 /-37</u> .80	14,16	71000 /6,44/Tanly/No 0
Purge Volume 6 17.00		175 219,99 /-33	14,57	769.8/6.47/ Cloudy/No Co 462,0/6.51/cloude/No Co
Purge Volume 7 (713		2171 219,99/-29	14,59	3700/6,48/cloudy/No C
Purge Volume 8 1716		719.99/-27	14.68	273.0/6.48/(leady) No ON
Purge Volume 9 1719		7.62 719.99/-23	14.71	232.0/ 6.47/Cloudy/ALC
Total Volume 1722	10.5 & 2	157 719.90/-20	14,43	139.0/6.45/Cloudy/NOCA
Sample ID No. MW-42 Date/Time	SA:	mpled © 1742 MPLING DATA Method fow f	low Preservative	s-slight Hel Memoderate
Time15 55 Temper	FIELD PARAMETE	ERS (After Sample Collection) Specific Conductance 2	128 (µmños/cm)	ICE
Rosengarten, Smith & Associates, Inc.		ORP: -5 DO: 719.5	Turbiel 19	171,C 11/97 revised 7/01 AR102152

NAPL MEASUREMENTS

nterface Measurements From	ft btoc	Elevation (msl / re) ft.	Comments
a) Air-light liquid			·
b) Light liquid water		<u> </u>	
c) Dense liquid		·	
d) TD			
e) Thickness of light liquid (b - a)		ft.	
f) Thickness of dense liquid (d - c)		ft.	
		COMMENTS	

Field Parameters	Stabilization Criteria		
Dissolved Oxygen	±10% (if measuring)		
Conductivity	3% of Full Scale Range		
рН	0.10 Standard Units		
Turbidity	10 N.T.U.		
Temperature	0.2 °C		
Eh / Redox	Not Applicable		
Drawdown	≾10% of Screen Length		

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to site-specific datum

ınsl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Pg 2

Site		Purging/Sampling Point	ID (Well No.)	-42	Project No.	
General Wellhead Cor	ndition	Top of Casing I	Elev. (msl / re)		·	
		FLUID L	EVEL/WELL DEPTH MEA	ASUREMENTS		•
Static Water Level (ft b	otoc)	TD (ft btoc)	Previous TD (f	t btoc) Stati	c Water Level Elev. (msl / re)	ft.
Sediment Thickness _	ft. Sedin	nent Description		Sediment Ren	noval Method	Obstructed: Yes / No
Top of Screen (ft btoc	Scree	en Length	(ft.) x 0.10	maximum dra	awdown during micropurging	
Measured By		Well I	Headspace Reading (ppm	or %)	Date/Tim	e
			PURGE DATA			
			Macro Volume Calculat	tions		
Well TD	Static Water Level	= Water Column	ft. x 0.17 (2 in.) or 0.66	(4 in.) x 3	gallons or	x 5 gallons
			Micro Volume Calculat	tion		
Well TD	Static Water Level	= Water Column	ft. x 0.00118 =	gallons x 3.785	liters to remove prior to first	parameter measurement
Purge Volume 2 Purge Volume 3 Purge Volume 4 Purge Volume 5 Purge Volume 6 Purge Volume 7 Purge Volume 8 Purge Volume 9	Start Stop Time Time 403 1725 1728 1731 1734 1737 1740	Volume (Gallons/liters) 11, 5 (0.5) 12, 0 (1) 13, 5 (2.5) 15, 0 (4,0) 16, 5 (5.5)	Specific m5/cm Conductance 2,53 2,49 2,46 2,42 2,38	Dissolved Oxygen/ Redox 7/9,99/-17 2/9,99/-14 2/9,99/-11 2/9,99/-4	(C ^O)F°) 14.72 14.61 14.08 14.08 14.09	Turbidity /pH/Color/ Odor 3.0/6.45 / Cloudy / N. C. 2.0/6,44/ Cloudy / N. C. 5.0/6.41/ Cloudy / N. C. 8.0/6.34/ Cloudy / N. C. 4.0/6.34/ Cloudy / N. C.
			SAMPLING DATA			
Sample ID No	Date/Time	Sampled By _		Method	Preservative	Filtered: yes / no
		FIELD P	ARAMETERS (After Sam	ple Collection)		
Time	Temperature	(°C/	°F) Speci	fic Conductance	(µmhos/cm)	pH (std units)

NAPL MEASUREMENTS

nterface Measurements From	ft btoc		Elevation (msl / re) ft.		Comments	
a) Air-light liquid						
b) Light liquid water						
c) Dense liquid		-				
d) TD						
e) Thickness of light liquid (b - a)		ft.				
f) Thickness of dense liquid (d - c)		ft.	u et e		:	
		COMMEN	ITS			
						

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
pH	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≾10% of Screen Length

Abbreviations:

btoc = Below Top of Casing
re = Elevation relative to site-specific datum
msl = Elevation relative to mean sea level
TD = Total Depth in, = inch (t, = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump

site Elkton	Purging/Sampling Poi	GENERAL INFORM nt ID (Well No.)		Project No. <u>201</u>	7-18
General Wellhead Condition QOOR				ft. Weather <u>(</u>	oudy
J		LEVEL/WELL DEPTH MI	•		/
Static Water Level (ft btoc) 18.74	TD (ft btoc)	Previous TD	(ft btoc) Static	: Water Level Elev. (msl / re)) ft.
	ent Description		Sediment Rem	oval Method	Obstructed: Yes / No
Top of Screen (ft btoc) Screen	Length	(ft.) x 0.10	maximum dra	wdown during micropurging	
Measured By	We	II Headspace Reading (ppr	n or %)	Date/	Time (97-22-03
		PURGE DATA			
		Macro Volume Calcul	ations		
Well TD Static Water Level	= Water Column	ft. x 0.17 (2 in.) or 0.6	6 (4 in.) x 3 _	gallons or	x 5 gallons
		Micro Volume Calcul			
Well TD Static Water Level	= Water Column	ft. x 0.00118 =	gallons x 3.785	liters to remove prior to	first parameter measurement
Purge Volume 1 7/2 2/03 \$.30 \$.43 Purge Volume 2 8 .45 Purge Volume 3 8 .48 Purge Volume 4 8 .48 Purge Volume 5 8 .50 Purge Volume 6 8 .53 Purge Volume 7 8 .53 Purge Volume 8 Purge Volume 9 Total Volume	Volume (Gallons/liters) 1.06 2.00 3.00 4.00 5.00 0.00 7.00 8:00	Specific Conductance 1.2 1.1 1.0 0.69 .60 .57	Dissolved Oxygen/ Redox 13 3 / -222 12 5 / -224 12.2 / -223 12.3 / -216 12.1 / -203 12.0 / -198 12.0 / -194 11.4 / -189	Temperature (C)/F°) 14.9 15.8 16.0 15. 14.4 14.5 14.6	Turbidity /pH/Color/ Odor 990/554/Brown 780/5.52 790/5.50 780/5.53 460/5.53 400/5.54 380/5.53
Sample ID No. $\frac{MW-Z}{9:08}$ Date/Time $\frac{7-22-0}{5}$	15.2 FIELD	PARAMETERS (After Sar	mple Collection) →	Preservative Preservative (µmhos/cm)	(C C Q

Rosengarten, Smith & Associates, Inc.

		NAPL WEAS		•		
Interface Measurements From	ft btoc	.*	Elevation (msl / re) ft.		Comments	
a) Air-light liquid						
b) Light liquid water	<u> </u>					
c) Dense liquid			<u> </u>			
d) TD			·		·	
e) Thickness of light liquid (b - a)		ft.				·
f) Thickness of dense liquid (d - c)		ft.				
					÷ ;	
		COMM	ENTS			
				.	3	
			······································		2. 14. ₁₀	

Field Parameters	Stabilization Criteria				
Dissolved Oxygen	±10% (if measuring)				
Conductivity	3% of Full Scale Range				
ρΗ	0.10 Standard Units				
Turbidity	10 N.T.U.				
Temperature	0.2 °C				
Eh / Redox	Not Applicable				
Drawdown	≾10% of Screen Length				

Abbreviations:

btoc = Below Top of Casing re = Elevation relative to site-specific datum msi = Elevation relative to mean sea level TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump

=1112			GENERAL INFORM		*	7 14
Site KIKto		Purging/Sampling Poi	nt ID (Well No.)	-43	Project No. $\frac{261}{}$	1-18
General Wellhead Cond	dition 900	Top of Casin	g Elev. (msl / re)		ft. Weather <u>C</u>	loudy
	J .		LEVEL/WELL DEPTH M	EASUREMENTS T		/
Static Water Level (ft bt	toc) 19,26	TD (ft btoc)	Previous TD	(ft btoc) Static	Water Level Elev. (msl / r	e) ft.
Sediment Thickness	ft. Sedim	ent Description		Sediment Rem	noval Method	Obstructed: Yes / No
Top of Screen (ft btoc)	Scree	n Length	(ft.) x 0.10	maximum dra	wdown during micropurgir	ng balan a
Measured By	<u> </u>	We	II Headspace Reading (ppr	n or %)	Date	e/Time <u>17-22-03</u>
			PURGE DATA			
			Macro Volume Calcu	ations		
Well TD	Static Water Level	= Water Column	ft. x 0.17 (2 in.) or 0.6	6 (4 in.) x 3 _	gallons or _	x 5 gallons
			Micro Volume Calcu	ation		
Well TD	Static Water Level	= Water Column	ft. x 0.00118 =	gallons x 3.785	liters to remove prior t	o first parameter measurement
Purge Volume 2 Purge Volume 3 Purge Volume 5 Purge Volume 6 Purge Volume 7 Purge Volume 8	03 10:30 10:31 10:33 10:35 10:37 10:31	Volume (Gallons/liters)	Specific Conductance 43 42 42 42 42	Dissolved Oxygen/ Redox 12.0/-88 11.9/-92 11.8/-95 11.6/-98 11.4/-101 11.3/-104	Temperature (C°/F°) 6	Turbidity /pH/Color/ Odor 46/5.42/Clear 40/5.39 39/5.39 39/5.39 38/5.41
Sample ID No. MW-	43 _{Date/Time} 7-22 - 63	3/10:45 Sampled By	SAMPLING DAT	A Method /n w f	Preservative	Filtered: yes / no
Time 10.51	Temperature	3 200 1	PARAMETERS (After Sa (7 °F) Spe	mple Collection) ecific Conductance	(µmhos/cm)	pH <u>5.56</u> (std units)

Rosengarten, Smith & Associates, Inc.

NAPL MEASUREMENTS

Interface Measurements From	ft btoc		Elevation (msl / re) ft.	:	Comments		
a) Air-light liquid	<u> </u>					·	
b) Light liquid water							· ———
c) Dense liquid							
d) TD							
e) Thickness of light liquid (b - a)		ft.					
f) Thickness of dense liquid (d - c)		ft.	•				
			•			.:	
		COMME	NTS		•		
			<u>-</u>				
	 		 	1			

Field Parameters	Stabilization Criteria		
Dissolved Oxygen	±10% (if measuring)		
Conductivity	3% of Full Scale Range		
рН	0.10 Standard Units		
Turbidity	10 N.T.U.		
Temperature	0.2 °C		
Eh / Redox	Not Applicable		
Drawdown	≾10% of Screen Length		

Abbreviations;

btoc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea tevel

TD = Total Depth in, = inch ft. = feet / foot

Notes:

- Clipta	_		GENERAL INFORM		·	≈'		
Site FK10	<u>m</u>	Purging/Sampling Poi	nt ID (Well No.)	0 - 42				
General Wellhead Condition 600		Top of Casin	g Elev. (msl / re)					
	<u> </u>	FLUIC	LEVEL/WELL DEPTH M	EASUREMENTS				
Static Water Level (ft btoo	<u> 15.51 </u>	TD (ft btoc)	Previous TD	(ft btoc) Statio	Water Level Elev. (msl / re)		ft.	
Sediment Thickness		ent Description		Sediment Ren	noval Method	_ Obstructe	d: Yes / No	
Top of Screen (ft btoc)	Scree	n Length	(ft.) x 0.10	maximum dra	wdown during micropurging	•		
Measured By <u>JKA</u>		We	II Headspace Reading (ppi	n or %)	Date/Tir	ne		
			PÜRGE DATA					
			Macro Volume Calcu	lations				
Well TD	Static Water Level	= Water Column	ft. x 0.17 (2 in.) or 0.6	6 (4 in.)x 3 _	gallons or	x5_	gallons	
			Micro Volume Calcu	lation				
Well TD	Static Water Level	= Water Column	ft. x 0.00118 =	gallons x 3.785	liters to remove prior to firs	st parameter mea	surement	
Purge Volume 6 Purge Volume 7 Purge Volume 8 Purge Volume 9 Total Volume	12:04 12:06 12:08 12:10 12:12	Volume (Gallons/liters)	Specific Conductance .32 .31 .30 .29 .29	Dissolved Oxygen/ Redox 16.4/-52 16.7/-48 16.7/-46 16.7/-44 16.8/-43 16.7/-42	16.5 15.9 15.3 15.3 15.2	Turbidity /pH/Co 790/8.5 790/7.95 790/7.82 70/7.80 70/7.81	7/Brown	
Sample ID No. <u>MW-4</u>	$\frac{2}{2}$ Date/Time $\frac{7-22-03}{2}$	FIELD	PARAMETERS (After Sa	mple Collection)	Preservative	.		
Time 12,	lemperature	<u> </u>) °F) Spe	ecific Conductance	<u>O</u> (μmhos/cm)	рн <u>7.82</u>	_ (std units)	

Rosengarten, Smith & Associates, Inc.

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl / re) ft.	Comments
a) Air-light liquid			
b) Light liquid water			
c) Dense liquid			
d) TD			
e) Thickness of light liquid (b - a)		ft.	
f) Thickness of dense liquid (d - c)		ft.	
		COMMENTS	

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
рН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≾10% of Screen Length

Abbreviations:

btoc ≈ Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

GENERAL INFORMATION Purging/Sampling Point ID (Well No.) MW-44 Project No. 2017-18 Top of Casing Elev. (msl / re) General Wellhead Condition FLUID LEVEL/WELL DEPTH MEASUREMENTS Static Water Level (ft btoc) 15.5 TD (ft btoc) _____ Previous TD (ft btoc) _____ ft. Sediment Removal Method _____ Sediment Thickness ft. Sediment Description Obstructed: Yes / No Top of Screen (ft btoc) ____ Screen Length (ft.) x 0.10 maximum drawdown during micropurging Measured By ____ JKA Date/Time <u>07-22-03</u> Well Headspace Reading (ppm or %) **PURGE DATA Macro Volume Calculations** Well TD ______ - Static Water Level ___ = Water Column _____ ft. x 0.17 (2 in.) or 0.66 (4 in.) _____ x 3 ____ gallons or ____ x 5 gallons Micro Volume Calculation Well TD - Static Water Level = Water Column ft. x 0.00118 = _____ gallons x 3.785 _____ liters to remove prior to first parameter measurement Volume Specific Dissolved Oxvgen/ Temperature Start Stop Turbidity /pH/Color/ Odor Date Time Time (Gallons/liters) Conductance Redox (C)P/F°) Purge Volume 107-22-03 1:15 Purge Volume 2 Purge Volume 3 Purge Volume 4 Purge ∀oiume 5 [©]urge Volume 6 Purge Volume 7 Purge Volume 8 Purge Volume 9 Total Volume SAMPLING DATA Sample ID No. MW-44 Date/Time Sampled By Preservative Filtered: yes / no 12.3/238 FIELD PARAMETERS (After Sample Collection) Time 2:00 (µmhos/cm) Temperature (°C / °F) Specific Conductance (std units) Rosengarten, Smith & Associates, Inc.

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl / re) ft.	Comments
a) Air-light liquid			_
b) Light liquid water			
c) Dense liquid			
d) TD			
e) Thickness of light liquid (b - a)		ft.	
f) Thickness of dense liquid (d - c)		ft.	
		COMMENTS	

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
pН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≾10% of Screen Length

Abbreviations:

btoc = Below Top of Casing

re = Elevation relative to site-specific datum

msi = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

GENERAL INFORMATION SILE Elkton-GERAIL Project No. 2017 Top of Casing Elev (msi / re) ____ 5 名、 4 子 Weather ove recast, General Wellhead Condition Drotector - 900d Concrete pod - broken in Showers FLUID LEVEL/WELL DEPTH MEASUREMENTS Static Water Level (ft bloc) 19-29 TD (ft bloc) 29. 75 (pro nos) Previous TD (ft bloc) Static Water Level Elev. (msl / re) Sediment Removal Method WA Sediment Description WA Sediment Thickness N/A ft. Obstructed: Yes / No. _____ (ft.) x 0.10 __ _ Top of Screen (ft bloc) Screen Length maximum drawdown during micropurging Date/Time 08/21/03/09/5 Measured By CAMONTONO Well Headspace Reading (ppm or %) **PURGE DATA** Macro Volume Calculations Well TD <u>WA</u> - Static Water Level <u>1929</u> = Water Column _____x5 ___gallons Micro Volume Calculation Well TD 29.75 - Static Water Level 1929 = Water Column 10-46 It. x 0.00118 = 0.019 gallons x 3.7850.071 liters to remove prior to first parameter measurement saliva. Dissolved Oxygen/ Temperature Turbidity /pH/Color Odor Start Stop Volume Specific Date Time Time (C°/F°) (Gallons liters) Conductance Redox Purge Volume 1 8/16 927 0931 Purge Volume 2 2/7/a 0935 Purge Volume 3 8/26 W55,-Purge Volume 4 Purge Volume 5 0943 Purge Volume, o 0945 0.82 14.0 Purce volume 7 2948 0.80 ユこチ 10.5 140 Purge Volume 8 17.25 0949 Purge Volume 9 0950 Total Volume Sample ID No. <u>AU-2-1</u> Date/Time 8/26/03 0959 Sampled By <u>Chuluttan</u> Method <u>MULVO purge</u> Preservative Voice (ILU, ISO3, H2SO4, ICE) SAMPLING DATA FIELD PARAMETERS (After Sample Collection) 0,61 5/11 (µmhos/cm) pH 6.98 (std units) Time 1705 Temperature 14-6 (°C / °F) Specific Conductance

Rosengarten, Smith & Associates, Inc.

11/97

0934 stop to change cond units to us/am
0937 begin purpossogie show believe S/m

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Ele	vation (mst / re) ft.		Comments	
a) Air-light liquid				_		
b) Light liquid water						
c) Dense liquid				_		
d) TD				_		
e) Thickness of light liquid (b - a)		ft.				
f) Thickness of dense liquid (d - c)		ft.				
		COMMENTS	i		·	
					· · · · · · · · · · · · · · · · · · ·	

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
рН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≾10% of Screen Length

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to site-specific datum

msi = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristallic Pump

Site Elkton - GE Racker	Purging/Sampling Point ID (Well No.)	MW-43	Project No. 2017	
General Wellhead Condition V. Gnod	Top of Casing Elev. (msi / re) _		ft. Weather <u>ever-</u>	cost, hurid 85°F
		DEPTH MEASUREMENTS		7
Static Water Level (ft btoc)	TD (ft bloc) 33.05 (previos) Pre	evious TD (ft btoc) Stati	c Water Level Elev. (msl / re) _	ft.
Sediment Thickness ft. Sedime	nt Description WA	Sediment Rer	noval Method	_ Obstructed: Yes / No
Top of Screen (ft bloc) Screen	Length(ft.) x 0.10		awdown during micropurging	
$\mathcal{C}\Lambda M$		ading (ppm or %)		ne
		SE DATA		
	Macro Volun	ne Calculations		
Well TD Static Water Level	= Water Columnfx 0.17 (2	in.) or 0.66 (4 in.) x 3	gallons or	x 5 gallons
23. 4	(Micro Volun	ne Calculation		
Well TD 33.09 - Static Water Level 19.3	$ \underline{\mathbf{K}} = \text{Water Column } \underline{1331} \underline{\qquad} \text{tt.} \times 0.00116 $	8 = <u>0024</u> gallons x 3.785 <u>0.0</u> 9	$\overline{\mathbf{q}}$ liters to remove prior to fire	st parameter measurement
Purge Volume 1 Purge Volume 2 Purge Volume 3 Purge Volume 4 Purge Volume 5 Purge Volume 6 Purge Volume 7 Purge Volume 8 Purge Volume 8 Purge Volume 9 Total Volume	Volume (Gallons(liters)) Specific Conductance Conductance Specific Conductance Conductance Specific Conductance Cond	Dissolved Oxygen/ Redox 199/-112 199/-118 199/-128 199/-136	Temperature (C°/F°) 13.7 13.7 19	Turbidity /pH/Color/Odor) (190 / 6.88 1. Cloudy 90 6.38 do 90 6.34 v.cloudy 10 6.38 sli. Cloudy
Sample ID No. MW-43-1 Date/Time 8/24/03	1190 Sampled By Chilou	ING DATA Levo Method	Preservative 1	HCL, HNO3, Filtered: yes/100 250%, ICR
Time 1153 Temperature	FIELD PARAMETERS (C) °F)	(After Sample Collection) Specific Conductance	wS/CW\ (µmhos/cm)	
Rosengarten, Smith & Associates, Inc. Clean flow-	knowle cell, very clo	why w/ abudant sad	event	11/97 revised 7/01

NAPL MEASUREMENTS

Interface Measurements From	ft btoc		Elevation (msl / re) ft.	Comments
a) Air-light liquid				
b) Light liquid water				
c) Dense liquid		•		·
d) TD				
e) Thickness of light liquid (b - a)	·	ft.		•
f) Thickness of dense liquid (d - c)		ft.		
	·		•	
		COMME	NTS	
				· ·

Field Parameters	Stabilization Criteria	
Dissolved Oxygen	±10% (if measuring)	
Conductivity	3% of Full Scale Range	
рН	0.10 Standard Units	
Turbidity	10 N.T.U.	
Temperature	0.2 °C	
Eh / Redox	Not Applicable	
Drawdown	≾10% of Screen Length	

Abbreviations:

btoc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump

	Purging/Sampling Poin Top of Casing FLUID TD (ft btoc) <u>38 / / / / / / / / / / / / / / / / / / /</u>	LEVEL/WELL DEPTH MI (OUTEVIOUS) Previous TD (ft.) x 0.10	ATION /- Y Z EASUREMENTS (ff bloc) Static	c Water Level Elev. (msl noval Method nwdown during micropu	/ re)	ft. eted: Yes / No
		Macro Volume Calcul	ations			
Well TD Static Water Level _	= Water Column	ft. x 0.17 (2 in.) or 0.6	6 (4 in.) x 3 _	gallons or	x5	gallons
7 4		Micro Volume Calcul	atlon			
Well TD 38:10 - Static Water Level	7.29 = Water Column 20.6	$\frac{2!}{!}$ ft. x 0.00118 = $\frac{0.02}{!}$	<i>.</i> 5 gallons x 3.785 <u>∂,</u> 0°	iters to remove pri	or to first parameter m	easurement
Purge Volume 1 Purge Volume 2 Purge Volume 3 Purge Volume 4 Purge Volume 5 Purge Volume 6 Purge Volume 7 Purge Volume 8 Purge Volume 8 Purge Volume 9 Total Volume	Volume (Gallons (liters)) 2 4 5.5 7 10 17 16 70 72 73	Specific Conductance 7.9 MS/CM 7.9 7.7 2.6 2.4 7.3 7.2 7.5 1.8 1.9	Dissolved Oxygen/ Redox 199 - 77 199 - 78 199 - 76 199 - 76 199 - 76 199 - 64 199 - 41 199 - 38 199 - 38	Temperature (C)F°) 15.5 15.8 15.0 15.0 15.0 15.2 15.1	*	sliclardy Sliclardy Sliclardy
Sample ID No $MW-42$ Date/Time $8/26$	FIELD	PARAMETERS (After Sai	Method	Preserva MS/CW_(µmhos/c)	ItNOS, Ice	red: yes/@
Rosengarten, Smith & Associates, Inc. * 1341 * 1343	Prup on	entour		(риново	") PIT 1	11/97 revised 7/01

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl / re) ft.	Comments
a) Air-light liquid			
b) Light liquid water	·		
c) Dense liquid			
d) TD			
e) Thickness of light liquid (b - a)		ft.	
f) Thickness of dense liquid (d - c)		ft.	
		COMMENTS	
ı			

Field Parameters	Stabilization Criteria		
Dissolved Oxygen	±10% (if measuring)		
Conductivity	3% of Full Scale Range		
pН	0.10 Standard Units		
Turbidity	10 N.T.U.		
Temperature	0.2 °C		
Eh / Redox	Not Applicable		
Drawdown	≾10% of Screen Length		

Abbreviations:

btoc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump

Site GERALLAR Elkfour	Purging/Sampling Point	ID (Well No.) MW	W	Project No. <u>70</u> <i>l</i>	7		
General Wellhead Condition U. GOOD		Elev. (msl / re)		ft. Weather _S	way softy cloudy breeze		
(EVEL/WELL DEPTH MEAS			uned 850T		
Static Water Level (ft bloc)	TD (ft btoc) 40:12	Previous TD (ft)	otoc) Static	Water Level Elev. (msl /	re) ft.		
Sediment Thickness Not hall ft.	Sediment Description	/L .	Sediment Rem	oval Method	Obstructed: Yes / No		
Sediment Thickness Not follow ft. Sediment Description // Sediment Removal Method Obstructed: Yes / No Top of Screen (ft bloc) Screen Length 20 (ft.) x 0.10 2 maximum drawdown during micropurging Measured By							
Measured By	Well I	leadspace Reading (ppm o	r %)	Da	ate/Time		
•		PURGE DATA					
		Macro Volume Calculati	ons				
Well TD Static Water Lev	vel = Water Column	ft. x 0.17 (2 in.) or 0.66 (4	I in.) x 3 _	gallons or	x 5 gallons		
	4	Micro Volume Calculation	on				
Well TD 40-12 - Static Water Lev	vel (644= Water Column <u>25</u> 5	08 ft. x 0.00118 = 004 3	gallons x 3.785 <u>0 . //6</u> _	liters to remove prior	to first parameter measurement		
Purge Volume 1 Purge Volume 2 Purge Volume 3 Purge Volume 4 Purge Volume 5 Purge Volume 6 Purge Volume 7 Purge Volume 8 Purge Volume 9 Total Volume	Volume (Gallons/liters) 3.5 4 5 6 7 8 8.5	Specific Conductance/No S/CM	Dissolved Oxygen/ Redox 1199 62 1199 187 1199 206 1199 205 1199 252 1199 235 1199 237	Temperature (C°/F°) [5.9 [5.] 15.0 [4.9 [4.9 [4.8 [4.6 [4.6	Turbidity/pH/Color/Odor 250 /6.45 /51 clash 250 /5.22/ clowey 230 /5.04/ minor clowey 210 4.92 / minor clowey 210 4.87 class 170 /4.88/ dp. 150 /4.82/ do. 160 4.87 do. 150 /4.86 do		
Sample ID No. Mw-44-1 Date/Time $\frac{9(7)}{1}$		ARAMETERS (After Samp	e Collection)	•	If CC yes / no $\frac{HNO_2}{42SO_4}$ Filtered: yes / no $\frac{HNO_2}{42SO_4}$ (std units)		
Rosengarten, Smith & Associates, Inc.		· fairer			11/97 revised 7/01		

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl / re) ft.		Comments			
a) Air-light liquid							
b) Light liquid water							
c) Dense liquid							
d) TD							
e) Thickness of light liquid (b - a)		ft.					
f) Thickness of dense liquid (d - c)		ft.					
					•		
COMMENTS							
	· <u> </u>						
	•						

Field Parameters	Stabilization Criteria			
Dissolved Oxygen	±10% (if measuring)			
Conductivity	3% of Full Scale Range			
pН	0.10 Standard Units			
Turbidity	10 N.T.U.			
Temperature	0.2 °C			
Eh / Redox	Not Applicable			
Drawdown	≾10% of Screen Length			

Abbreviations:

bloc ≈ Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

				OLINEINAL IIII OINIIA	11011		
Site GE PAILCA	R El	le fon MP	Purging/Sampling Point	ID (Well No.)	· Z	Project No2	717
General Wellhead Condi	tion			Elev. (msl / re)		ft. Weather <u> </u>	ain down to dreste
			FLUID	LEVEL/WELL DEPTH MEA	SUREMENTS	hu	mid no wind
Static Water Level (ft btoo	c)		TD (ft btoc) 29.75 p	revious TD (ft	btoc) NA Static	Water Level Elev. (msi /	re) ft.
Sediment Thickness			· · · · · · · · · · · · · · · · · · ·			val Method	
Top of Screen (ft btoc)				(ft.) x 0.10		down during micropurgi	ing
Meastired By	Monte	210	Well	Headspace Reading (ppm o	or %)	Da	te/Time
			·	PURGE DATA			
		•		Macro Volume Calculati	lons		
Well TD NA	Static \	Water Level <u>19.₩</u>	3 = Water Column	ft. x 0.17 (2 in.) or 0.66 (4 in.) x 3	gallons or _	x 5gallons
			_	Micro Volume Calculati	on		
Well TD 29.75	Stat.C \	Water Level 194	3 = Water Column <u>[0.37</u>	ft. x 0.00118 = 0.012	gallons x 3.785 0.046	liters to remove prior	to first parameter measurement
Date	Start Time	Stop Time	Volume (Ga!lonstiters)	Specific MS/CM Conductance	Disserved Oxygen/ Redox		Turbidity /pH/Color/ Odor
Purge Volume 1 09(23)	21001	1043	1	1007	-98 /11.57	14.50	219 /7.77/shelady
Purge Volume 2	0/ 1/1	1045	2	GW	-75/1081	14.38	719 750 20. 18
Purge Volume 3		1048	3	91	-64/10.66	14.30	244 77.36 do. d
Purge Volume 4		1051	ų		-48 10.51	14.22	295 7.23 do. 100
		In 53-5		5.54	-40/ 10.4Y	14.31	331 7.19 do.
Purge Volume 6		1056,5	5 6	5.7.2	-51 / 10.18	14,42	343 7.21 do
Purge Volume 7		1054	7	5.22	-55 / Laoy	1450	351 7724 do.
Purge Volume 8		1101.5	9	45.2	- 58 1 9.91	14.46	346 (7.25)
Purge Volume 9		1104.5	9	5.2y	-6/ 9.83	14.32	349 / 7.26/
Total Volume	* 54	ntre (1110	•		•		
10:38 primpon	(جمهو کے کا 6ء کو SAMPLING DATA		•	Sheen on Heo in Container
Sample ID No. Mw-2-	d Date/Tir	me 9123 13	1110 Sampled By	CfM	MethodM.Cro	Preservativ	re HCL , KE Filtered: yes (no)
	-			• · · · · · · · · · · · · · · · · · · ·			
Time 1120		Temperature	14,39 FIELD		ic Conductance 5.17	ws/(w (µmhos/cm)	pH 7,7°1 (std units)
				-6908	PG.01 CO 19		
Rosengarten, Smith & Associates, I	nc.						11/97 revised 7/01

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl / re) ft.	Comments
a) Air-light liquid	· · · · · · · · · · · · · · · · · · ·		
b) Light liquid water		·	
c) Dense liquid			
d) TD			
e) Thickness of light liquid (b - a)		ft.	
f) Thickness of dense liquid (d - c)		ft.	
·			
·		COMMENTS	
			,

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
рН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≾10% of Screen Length

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Dlaphragm/Peristaltic Pump

Site GERALLCAR ELKEN	A Purging/Sampling Poin	t ID (Well No.)	1-43	Project No 2013	-18
General Wellhead Condition 900d					rest stillair, huniel
·	FLUID	LEVEL/WELL DEPTH M	EASUREMENTS		
Static Water Level (ft btoc)	TD (ft bloc) 33.09 (<u> </u>	(ft btoc) NA Static	Water Level Elev. (msl / re) ft.
Sediment Thicknessft.	Sediment Description			val Method	
Top of Screen (ft bloc)	Screen Length			down during micropurging	g
Measured By	Well	Headspace Reading (pp	m or %)	Date	/Time
		PURGE DATA			
		Macro Volume Calcu	lations		
Well TD Static Water	r Level ≈ Water Column	ft. x 0.17 (2 in.) or 0.6	66 (4 in.) x 3	gallons or	x 5 gallons
		Micro Volume Calcu			
Well TD 33. 39 - Static Water	r Level <u>19.43</u> = Water Column <u>/3.16</u>	ft. x 0.00118 = 0.0	<u> </u>	liters to remove prior to	first parameter measurement
Start Stop Date Time Time		Specific mskm Conductance	(lovered = Redor/l Dissolved Oxygen/ Redox	Temperature	Turbidity /pH/Color/ Odor
Purge Volume 19 2307 1150 115	3	0.514	-105/9.21	14.43	99.1/7.54/claur (Nooch
	5.5 2	0,501	-101 7.95	14.13	916 17.50 do. /do
Purge Volume 3 (15	3	DIVAY	-96 / 2 TY 7.48	14.24	8691754 do. 1010.
Purge Volume 4		0490	-92 17.08	14.36	80.1 7.34 do do
Purge Volume 5	.03.5	0.486	-90 /6.89	14.35	81.4/7.31/do/do
	<u> </u>	0185	89 /6.71	14.41	37.8 17.76 / do. (do
Purge Volume 7	<u> </u>	0.483	-88 /6.58	14.45	800/7.23/
Purge Volume 8	211 8	0.485	-87 /6.49	14.42	304 17,271
Purge Volume 9		 <u>-</u>	<u> </u>		1
Total Volume ¥ 1215 SA	MILEP				
torn purpose: 1148	,				
Hoo in container: 1150	· /	SAMPLING DAT			HN05,142804
Sample ID No. MW-434 Date/Time _	1-23-03/1215 Sampled By	CAMONTON	MethodMICRO	Preservative	IHL CE Filtered: yes / 60
	1	, , ,			1
	FIELD	PARAMETERS (After Sa	mple Collection)		
Time	perature 14.59 (°C	/°F) Spo	ecific Conductance 🔼 💆	(µmhos/cm)	pH 7.17 (std units)
	·- •	·			,
Rosengarten, Smith & Associates, Inc.			90 490		· 11/97
•					revised 7/01

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	El	evation (msl / re) ft.	Comments	
a) Air-light liquid					
b) Light liquid water					
c) Dense liquid	· · · · · · · · · · · · · · · · · · ·			·	
d) TD					
e) Thickness of light liquid (b - a)		ft.			
f) Thickness of dense liquid (d - c)		ft.			
		COMMENT	S		

Field Parameters	Stabilization Criteria		
Dissolved Oxygen	±10% (if measuring)		
Conductivity	3% of Full Scale Range		
рН	0.10 Standard Units		
Turbidity	10 N.T.U.		
Temperature	0.2 °C		
Eh / Redox	Not Applicable		
Drawdown	≾10% of Screen Length		

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to site-specific datum

msi = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Baller & ID (in.) Submersible/Diaphragm/Peristaltic Pump

PURGING/SAMPLING ORMATION FORM

Site GERAILIGA - Elkfor	Purging/Sampling Point ID (Well No.)	1-42 P	roject No. 7017	18
General Wellhead Condition Vary Soul	Top of Casing Elev. (msl / re)	ff	t. Weather <u>Port</u>	a cloudy humid
	FLUID LEVEL/WELL DEPTH ME	EASUREMENTS	sun a	Suc jours
Static Water Level (ft bloc) 17.69	TD (ft btoc) Previous TD ((ft btoc) 38.10 Static Wate	er Level Elev. (msl / re)	ft.
	nent Description	Sediment Removal I	Method	Obstructed: Yes / No
Top of Screen (ft bloc) Scree	n Length (ft.) x 0.10	maximum drawdow	vn during micropurging	
Measured By	Well Headspace Reading (ppm	ı or %)	Date/Time	9
. ,	PURGE DATA			
	Macro Volume Calcula	ations		
Well TD Static Water Level	= Water Column ft. x 0.17 (2 in.) or 0.66	6 (4 in.)x 3	gallons or	x 5 gallons
	Micro Volume Calcula	ation		
Well TD 38 (O - Static Water Level 13	. <u>.५</u> = Water Column <u>ट०५।</u> ft. x 0.00118 = <u></u>	<u>3구</u> gallons x 3.785 <u>ይ ር</u> ነ	iters to remove prior to first	parameter measurement
	<i>C</i> 1			
Start Stop	Volume Specific M (L/M (Gallons (iters) Conductance			Furbidity /pH/Color/ Odor
Date Time Time		, ,	C9/F°)	nu 1 1 1
Purge Volume 1 913 2215 2215 PA	u 1 3.22	1924/-34	(3.6)	44 /8.36/clear/Nocod
Purge Volume 2 2:275	3.19	11991 -35		34 / 8.42 / do. do.
Purge Volume 3 2:29	3 312	119.4 /-34		18/8.50/do./du
Purge Volume 4 2:31	3.06	119.99/-32		0 8.57 do. 100.
Purge Volume 5	6.1 7.84	119.99/-26	14.75 41	
Purge Volume 6 2-36.5	8 2.76	191991-25	N.71 50	
Purge Volume 7 2142	<u> 7-65</u>	17-45/-21	15.06 631	-
Purge Volume 8 2:46	1 2.49	A19.99 / -16	14.78 65	10101
Purge Volume 9 2:51.	13 7-34	9 1999 /-11	14.59 660	1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total Volume 2.515	15 2.13	1º19.99/-4		185/do, 60
Pund on 2:21 3:01.5	17 2.16	\$ 19.99 (-3	14.47 667	18.99 do lão
Hed in container 2:2215	SAMPLING DATA	11	HN	03 HCL
Sample ID No. MW-48-1 Date/Time 9/23/03	3:05 PM Sampled By Chilanter	Method MICVS	Preservative 12 Si	Ou (CL Filtered: yes / 60)
	FIELD PARAMETERS (After San	nnia Callastian)	;	
Time 3.05 PM Temperature	14.53 (After San	cific Conductance 2.10	MS/CM (µmhos/cm)	oH_ 8-97 (std units)
Rosengarten, Smith & Associates, Inc.	pumpin@ 1:15 pm	2:34 x chon	ge meter	bathey 11/97 revised 7/01

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl / re) ft.	Comments
a) Air-light liquid			
b) Light liquid water			
c) Dense liquid			
d) TD			
e) Thickness of light liquid (b - a)		ft.	
f) Thickness of dense liquid (d - c)		ft.	
	·	COMMENTS	

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
рН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≾10% of Screen Length

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to site-specific datum

msi = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump

Site GERALCAX- Elkbu	Purging/Sampling Poir	nt ID (Well No.)	1-44	Project No. 70	17-18
General Wellhead Condition Vary 9000	Top of Casin	g Elev. (msl / re)			sunny, humid
,		LEVEL/WELL DEPTH ME/	ASUREMENTS		
Static Water Level (ft btoc) 16.73	TD (ft btoc)	Previous TD (f	t btoc) <u>4012</u> Stati	c Water Level Elev. (msl.	/ re) ft.
	ediment Description		Sediment Ren	noval Method	Obstructed: Yes / No
Top of Screen (ft btoc) S	creen Length	(ft.) x 0.10	maximum dra	awdown during micropur	ging
Measured By	We	Il Headspace Reading (ppm	or %)	D	ate/Time
		PURGE DATA		V 1	
_		Macro Volume Calcula	tions		
Well TD Static Water Leve	= Water Column	ft. x 0.17 (2 in.) or 0.66	(4 in.) x 3	gallons or	x 5 gallons
	1	Misro Volume Calculat	Hon		
Well TD 40.12 - Static Water Leve	I <u> </u>	39 ft. x 0.00118 = 0, 047	gallons x 3.785 <u>O./ (</u>	iters to remove prio	r to first parameter measurement
		<i>C</i> 1			
Start Stop	Volume	Specific MS CM	Dissolved Oxygen/	Temperature	Turbidity /pH/Color/ Odor
Date Time Time	(Gallons/liters)	Conductance	Redox	((Q¢/F°)	in 1 1.1 1
Purge Volume 1 9 <u>(23/03-333) - 3:33</u> pm	^ 1	0.93	19.99 / 151	14.33	196/6.70/clear/no
Purge Volume 2 3:35.5	2	0.746	199/172	14.07	755 /6,66 / do. /a
Purge Volume 3 3:38	4	0.550	1836/ 280	13.95	417 5.22 do la
Purge Volume 4 3,42	6	0.499	15.39 310	13.80	402/4.35/db./di
Purge Volume 5 3: 46	4	6.489	15.74/323	13.83	412/4.80/ do. (do
Purge Volume 6	10	0.478	13,54, 326	13.87	413/4i79/do/do
Purge Volume 7 3:50	11	0,479	13.04/328	13.84	408/4.81 / do/do
Purge Volume 8 X SAM 115	. 		· · · · · · · · · · · · · · · · · · ·		<u>' </u>
Purge Volume 9					
Total Volume	·		 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Punpon 3:30 pm					
Hoo in container,	1	, SAMPLING DATA	11		HN03, Hz 504
Hzo w continuir Sample ID No. MW-44-I Date/Time 973	103 3:55 pt Sampled By	Montew	Method _/U[[C rd	Preservat	ive #KL ToFiltered: yes no
		•			,
4:22 bw		PARAMETERS (After Sam		CI	
Time Z:550M Temperatu	re <u>/4,02</u> (°C	/ °F) Speci	fic Conductance <u>0, 50</u>	1 M) (µmhos/cn	n) pH 4,90 (std units)
,	N. M. A. C.)			
Rosengarten, Smith & Associates, Inc.	pumpin (D 1:20 pm			11/97
	V	•			revised 7/01

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Eleva	ation (msl / re) ft.	•	Comments	
a) Air-light liquid			<u> </u>			·
b) Light liquid water			- <u></u>			
c) Dense liquid					·	
d) TD						
e) Thickness of light liquid (b - a)		ft.				
f) Thickness of dense liquid (d - c)		ft.				
		COMMENTS	·			

Field Parameters	Stabilization Criteria		
Dissolved Oxygen	±10% (if measuring)		
Conductivity	3% of Full Scale Range		
рН	0.10 Standard Units		
Turbidity	10 N.T.U.		
Temperature	0.2 °C		
Eh / Redox	Not Applicable		
Drawdown	≤10% of Screen Length		

Abbreviations:

btoc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristallic Pump

General Wellhead Condition 1 Constitution 2 Constit	Site GE P	AILCAR -	Elkton	Purging/Sampling Po	int ID (Well No.)	N-2	Project No. 2017	7
To (ft bloc)				_			ft. Weather OV	ercest, while house
Static Water Level (Intotoc)				_			hi 6	v's - 10 70's
Top of Screen (It bloc) Screen Length (It) x 0.10 maximum drawdown during micropurging	Static Water Leve	el (ft btoc)		TD (ft btoc) NA	Previous TD (ft btoc) <u> </u>	c Water Level Elev. (msl / re	e) ft.
Well TD Static Water Level = Water Column It x 0.17 (2 in.) or 0.68 (4 in.) x 3 gallons or x 5 gallons	Sediment Thickno	ess NA	ft. Sedi	ment Description	٠.	•		
Purge Volume 2	Top of Screen (ft	t btoc)	Scre	en Length	(ft.) x 0.10	maximum dra	awdown during micropurgin	g
Macro Volume Calculations	Measured By	24 Monte	40	We	ell Headspace Reading (ppm	or %)	Date	e/Time
Start Stop Volume Specific Conductance Specific Conductance Specific Conductance Start Stop Volume Start Stop Conductance Co					PURGE DATA			
Well TD 21.35 Start Stop Date Time Time (Gallore/filters) Specific Conductance Redox Co. F.) Specific Conductance Redox Co. F.) Turbidity /pH/Color/ Odor Co. F.) Co. F. C					Macro Volume Calcula	tions		
Start Stop Volume Specific Specifi	Well TD	Stati	ic Water Level	= Water Column	ft. x 0.17 (2 in.) or 0.66	(4 in.)x 3	gallons or	x 5 gallons
Start Stop Volume Specific Conductance Conduct					Micro Volume Calcula	tion		
Start Stop Volume Specific Dissolved Oxygen/ Temperature Turbidity /pH/Color/ Odor COPF)	Well TD 21	- Stati	ic Water Level i	<u> </u>	1.46 ft. x 0.00118 = 0.01	2 gallons x 3.785 <u>∂ . 0</u>	T liters to remove prior to	first parameter measurement
Start Stop Date Time Time Gallon (Filters) Specific Conductance Redox Golf Cope Redox Golf Cope Redox Golf Cope Redox Golf Cope Redox Golf					104 S/C+40			
Purge Volume 1			•		Specific	Dissolved Oxygen/	Temperature	Turbidity /pH/Color/ Odor
Purge Volume 2 Purge Volume 2 Purge Volume 3 Purge Volume 3 Purge Volume 4 Purge Volume 4 Purge Volume 5 Purge Volume 5 Purge Volume 6 Purge Volume 6 Purge Volume 6 Purge Volume 7 Purge Volume 8 Purge Volume 9 Purge Volume 9 Total Volume Sample ID No. MW-2-1 Date/Time 10/21/03 1040 Sampled By Montary Method Micro parage Preservative Host Filtered: yes /filio				(Gallons/liters)		,		1 talenda de
Purge Volume 3 1031 5.5 6.46 3.70 -55 14.48 40.14 173 7.47 40.14 173	Purge Volume 1	10/21/023	1026		<u>'</u>			
Purge Volume 4 10 33.5 7.5 6.36 8.38 - 36 14.41 173 (7.47 do. 1.6.32 8.2 1 - 3.7 14.44 166 7.48 do. 1.6.32 8.2 1 - 3.7 14.44 166 7.48 do. 1.6.32 8.12 -3.6 14.44 168 7.47 do. 1.6.32 8.12 -3.6 14.44 do. 1.6.32 8.12 -3.6 14.44 do. 1.6.32 8.12 do.	Purge Volume 2		1028	·	6,83	9.19/,-33		·,
Purge Volume 6 1037 10 (0.36 3.12 - 36 14.44 168 7.47 clo. 1 v. Purge Volume 8 Purge Volume 9 Total Volume Sample ID No. MW-2-1 Date/Time 10/21/03 1040 Sampled By Charles Method Mura prae Preservative Hossia Filtered: yes/fig0 164	Purge Volume 3		1031			270/-35	14.48	
Purge Volume 6 1037 10 (0.36 3.12 - 36 14.44 168 7.47 clo. 1 v. Purge Volume 8 Purge Volume 9 Total Volume Sample ID No. MW-2-1 Date/Time 10/21/03 1040 Sampled By Charles Method Mura prae Preservative Hossia Filtered: yes/fig0 164	Purge Volume 4	·	10 33.5	7.5	6.36	8.38/-36	14.41	173 / 7.47 do /v
Purge Volume 7 Purge Volume 8 Purge Volume 9 Total Volume Sampling Data Sampling Data Sample ID No. MW-2-1 Date/Time 10/21/03 1040 Sampled By AMONTON Method Micro page Preservative How Filtered: yes (no) 100	Purge Volume 5		1036	4	6.32	8.21-37	14.44	166/7.43 (dolv.
Purge Volume 8 Purge Volume 9 Total Volume SAMPLING DATA Sample ID No. MW-2-1 Date/Time 10/21/03 1040 Sampled By AMouton Method Micropras Preservative Host Filtered: yes (fig.)	Purge Volume 6		1037	10	6.36	8.12 1-36	14.44	168 7.47 do. / v.
Purge Volume 9 Total Volume SAMPLING DATA Fillered: yes/fig) Sample ID No. MW-2-1 Date/Time 10/21/03 1040 Sampled By AMouters Method Micropage Preservative How Filtered: yes/fig) ICE	Purge Volume 7	SAMA PLE			·			
Sample ID No. MW-2-1 Date/Time 10/21/03 1040 Sampled By AMouters Method Micropage Preservative Hosty Filtered: yes/fig)	Purge Volume 8							
Sample ID No. MW-2-1 Date/Time 10/21/03 1040 Sampled By AMouters Method Micropage Preservative How Filtered: yes/fig)	Purge Volume 9				·			
Sample ID No. MW-2-1 Date/Time 10/21/03 1040 Sampled By AMouters Method Micropara Preservative Host Filtered: yes (no)	Total Volume		·					
Sample ID No. MW-2-1 Date/Time 10/21/03 1040 Sampled By AMouters Method Micropara Preservative Host Filtered: yes (no)								
ارد								
ارد	Sample ID No. <u>/</u>	1W-2-1 Date/	Time 10/21/0	23 1040 Sampled B	y comouters	Method <u>Micro</u>	Preservative	Hosy Filtered: yes (fig)
FIELD DAPAMETERS (After Sample Callection)			•				<i>t</i>	ICE
TILLD FAITABLE LING (Alter Sample Conection)				FIELI	D PARAMETERS (After Sam	ple Collection)		
Time 1052 Temperature 14.47 (°C / °F) Specific Conductance 6.31 (µmhos/cm) pH 7.43 (std units)	Time <u>1052</u>	<u>) </u>	Temperature _			/ -	(µmhos/cm)	pH 7,48 (std units)
ms/cm								
Rosengarten, Smith & Associates, Inc. PJANON IN 78	Rosengarten, Smith & A	Associates, Inc.	D. LA. L. AVA	w 2 1			11/2001	11/97

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl	/re)ft.	Comments	
a) Air-light liquìd			!		
b) Light liquid water	·····				
c) Dense liquid					
d) TD					
e) Thickness of light liquid (b - a)		ft.			
f) Thickness of dense liquid (d - c)		ft.			
				ng.	
		COMMENTS			

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
рН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≾10% of Screen Length

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump

Site GERALLON - Elleton PL	Purging/Sampling Point ID (Well No.)	W-43	Project No. 2017	18
General Wellhead Condition pal + Diotator	Top of Casing Elev. (msl / re)	·	ft. Weather 0 V	ercast, windy hourd
axcellent	FLUID LEVEL/WELL DEPTH N	MEASUREMENTS	hi 60'3-	10 70%
Static Water Level (ft btoc) TE	D (ft btoc) NA Previous TI	D (ft bloc) 33.0% Static	Water Level Elev. (msl / re)	ft.
Sediment Thickness 15 ft. Sediment D	Description	Sediment Remo	oval Method	Obstructed: Yes / No
Top of Screen (ft btoc) Screen Len	ength (ft.) x 0.10	maximum drav	vdown during micropurging	
Measured By CAMONTERS	Well Headspace Reading (pp	om or %)	Date/	Time
	PURGE DATA	Ą		
•	Macro Volume Calc	ulations		
Well TD Static Water Level =	= Water Column ft. x 0.17 (2 in.) or 0.	.66 (4 in.) x 3	gallons or	x 5gallons
	Micro Volume Calc			
Well TD 33.09 - Static Water Level 973 =		016 gallons x 3.785 0,05	ilters to remove prior to	īrst parameter measurement
·	ms/cm			
	/olume Specific Sallon (/liters) Conductance	Dissolved Oxygen/ Redox	Temperature (C°)F°)	Turbidity /pH/Color/ Odor
Purge Volume 1 10/21/03/120 1122.5	2 3.55	8.07/-56	14.13	161 /7.51/clear/slio
Purge Volume 2	4.5 2.48	7.931-55	14.03	124/754/clear/ do.
Purge Volume 3 129	6.5 2.14	7.71 1-52		01 /7.49/do./do.
Purge Volume 4 (\3/	8.25 2.02	7.621-50		5.3 /7.46/ do /do.
·	9.0-5	7.51 1-47		7.6/7.42/ du. /du
Purge Volume 5	11 1.49	7.49 1-45	14.0.8	77/7.40/ do. /do
Purge Volume 7				
Purge Volume 8				
Purge Volume 9				
Total Volume				<u> </u>
	/ SAMPLING DA	TA ,	11	HLL HNES
Sample ID No. MW-43-I Date/Time 10 21 03	1140 Sampled By CAMOUTERS	Method Micro	Preservative	Filtered: yes no
1	,	,		Ice
	FIELD PARAMETERS (After S	ample Collection)	mSlc.	
Time 150 Temperature 15	1110	pecific Conductance 1, 85	I(µmhos/cm)	pH 7.39 (std units)
	<u>√.18</u> (°C)/ °F) S _F	becine Conductance	(parinosicin)	pri (sta driits)
, .	<u>√1.18</u> (*5/ °F) S _F	Decine Conductance	(µmiosicin)	pri (std drifts)

NAPL MEASUREMENTS

Interface Measurements From a) Air-light liquid	ft btoc		Elevation (msl / re) ft.	Comments
b) Light liquid water c) Dense liquid				
d) TD				
e) Thickness of light liquid (b - a)		ft.		
f) Thickness of dense iiquid (d - c)		ft.	•	
		COMME	NTS	

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
рН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≾10% of Screen Length

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristallic Pump

Site GERAILCAR -Elikbu	Purging/Sampling Point ID (Well No.)	1W-42	Project No. 2017	-18
General Wellhead Condition Protector + com				cast partly survey
excellent			windy k	76's lo huscielit
Static Water Level (ft btoc)	TD (ft btoc) Previous T	D (ft btoc) 38.10 Static)	Water Level Elev. (msl / re) _	ft.
	ent Description	Sediment Remo	val Method	Obstructed: Yes / No
	Length (ft.) x 0.10	maximum draw	down during micropurging	
Measured By Monteri	Well Headspace Reading (p	pm or %)	Date/Ti	me
•	PURGE DAT			
	Macro Volume Cald	ulations		
Well TD Static Water Level	= Water Column ft. x 0.17 (2 in.) or 0	.66 (4 in.)x 3	gallons or	x 5 gallons
	Micro Volume Calc		·	
Well TD <u>3名(つ</u> - Static Water Level <u></u> l64と	$o = \text{Water Column } 21.14 \text{ ft. } \times 0.00118 = 0.00118$	<u>) ごく gailons x 3.785 の,094</u>	1 liters to remove prior to fir	st parameter measurement
	, Cl			
Start Stop	Volume Specific Specific	Dissolved Oxygen/	Temperature	Turbidity /pH/Color/ Odor
Date Time Time	(Galloris/liters) Conductance	Redox ru	(C ⁹ F°)	soca la lulud de a
Purge Volume 1 10(21/03 1357, 140)	2 2.38	15.97/-17		1999 827/4 511 cala
Purge Volume 2 1404	3.75 2.24	14.40/-20		99 P.44 / cloury, ylwrsd
Purge Volume 3 (409	6.25 2.11	13.61 -18		149/3.60 / do. /do
Purge Volume 4 1414	8.75 7.00	1301-15		99/2069/do. (do
Purge Volume 5	11 1.37	12.80/-10		199/2,73/do./do.
Purge Volume 6 * sit to moty combine 1427 1429	13 1.81	13 24 1/ O		18.65 /Milky - 60. 2y/c
Purge Volume 7 1434	17 1.7	1212/0		- 8,70 do (2)
Purge Volume 8 1438	17	12.4/		7
Purge Volume 9 1440 Total Volume 1442	18 1-	1266/2		18.74 do. (do.
Total Volume 1942	18.75	12,51/3		1875 do 100
stop 1445		, ,	•	CLI HNO3
4/1/2/17 1 - 1 - 1 - 1 - 1	SAMPLING DA	MA ·		() (11403
Sample ID No. MW-42-I Date/Time 10/21/03	3 1950 Sampled By CTYVIDATOL	Method <u>/VIIC/W</u>	Preservative IT	Filtered: yes / ho)
				(6.0
Time 1502 Temperature	FIELD PARAMETERS (After S	Sample Collection)	mS/cm (unitos/cm)	o 2 S
Time 133 C Temperature	<u>1475</u> (©(°F) s	pecific Conductance /. 49	(umhos/cm)	pH RRO (std units)
Rosengarten, Smith & Associates, Inc.	·	•		11/97
	PUMP IN 1235			revised 7/01

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (ms	sl/re)ft.	Comments	
a) Air-light liquid					
b) Light liquid water			<u> </u>		
c) Dense liquid			- <u></u> -	<u> </u>	_,
· d) TD					
e) Thickness of light liquid (b - a)		ft.			
f) Thickness of dense liquid (d - c)		ft.			
•		COMMENTS	_		

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
ρΗ	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≤10% of Screen Length

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristallic Pump

PURGING/SAMPLING INFORMATION FORM

GENERAL INFORMATION

Site GE PAICER-EIKton	Purging/Sampling Po	int ID (Well No.)	1-44	Project No.		
General Wellhead Condition Courses Sco -		ng Elev. (msi / re)		ft. Weather	overcast	loith sunny
exce l'lant	3 '	D LEVEL/WELL DEPTH ME			10 40'5	unuidity low
Static Water Level (ft btoc)	TD (ft btoc)//	Previous TD (f	t btoc) 40.12 Stati	c Water Level Elev. (ms	sl / re)	ft.
Sediment Thicknessft. Se	diment Description		Sediment Ren	noval Method		Obstructed: Yes / No
Top of Screen (ft btoc) Sc	reen Length	(ft.) x 0.10	maximum dra	awdown during micropu	ırging	
Measured By CAMONTUS	.`We	ell Headspace Reading (ppm	or %)	<u> </u>	Date/Time	
		PURGE DATA		•		
		Macro Volume Calcula	tions			
Well TD Static Water Level	= Water Column	ft. x 0.17 (2 in.) or 0.66	(4 in.) x 3	gallons o	r	x 5 gallons
	_	Micro Volume Calcula				
Well TD 40,12 - Static Water Level	$16.1\frac{7}{2}$ = Water Column 2)-99 ft. x 0.00118 = 0.02	<u>ી</u> gallons x 3.785 <u>ે, [0</u>	7 liters to remove pr	ior to first para	meter measurement
Date Start Stop	Volume (Gallon (liters) 1.5 3 4 5.75 6.35 8 9	Specific AS/CWI Conductance 0.612 0.510 0.477 0.446 0.438 0.438 0.436 0.438	Dissolved Oxygen/ Redox [7.91 190 [1.17 217 (0.62 / 249 [0.14 / 269 9.92 / 777 9.85 280 9.86 284 9.83 287	Temperature (C9F°) 13.26 13.87 13.87 13.76 13.76 13.76 13.76	629 660/4 660/4 660/4	42/ do /do
Sample ID No. MW-44-IDate/Time 10/2/1	FIEL	JPARAMETERS (After Sam	Method <u>MICr</u> U	na S/c	ICA	イルレュ Y_Filtered: yes /何)
Rosenparten Smith & Associates Inc.	_					11/97

revised 7/01

NAPL MEASUREMENTS

Interface Measurements From	ft btoc		Elevation (msl / re) ft.	Comments
a) Air-light liquid				
b) Light liquid water			·	
c) Dense liquid				
d) TD				
e) Thickness of light liquid (b - a)		ft.		
f) Thickness of dense liquid (d - c)		ft.		
		COMME	NTS	
				

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
рН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≾10% of Screen Length

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to site-specific datum

msi = Elevation relative to mean sea level

TD = Total Depth in. = inch (t, = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristallic Pump

PURGING/SAMPLING INFORMATION FORM

GENERAL INFORMATION Site (It PAILCAL General Wellhead Condition No Commit Top of Casing Elev. (msl / re) ___ procketor goodsheps FLUID LEVEL/WELL DEPTH MEASUREMENTS TD (ft btoc) _____/A___ Previous TD (ft btoc) 29.75 Static Water Level (ft btoc) Static Water Level Elev. (msl / re) ____ ft. Sediment Thickness Sediment Description _____ Sediment Removal Method Obstructed: Yes / No (ft.) x 0.10 _____ maximum drawdown during micropurging Top of Screen (ft btoc) ____ Screen Length Measured By Chunton How istarday Well Headspace Reading (ppm or %) Date/Time **PURGE DATA Macro Volume Calculations** Well TD ______ - Static Water Level ____ = Water Column _____ ft. x 0.17 (2 in.) or 0.66 (4 in.) _____ x 3 _____ gallons or _____ x 5 ___ gallons Micro Volume Calculation Well TD 29.75 ____ - Static Water Level 19.13 = Water Column 10.12 ft. x 0.00118 = 0.c/25 3 gallons x 3.785 0, 0474 liters to remove prior to first parameter measurement Specific mS/CM Turbidity /pH/Color/ Odor /c/c/ Start Stop Volume . Dissolved Oxygen/ Temperature | Date Time Time (Gallons/liters) Conductance + 13 Redox Purge Volume 1 13/20/03 1528 1535 803 820 Purge Volume 2 1545 Purge Volume 3 1550 Purge Volume 4 1555 Purge Volume 5 SAMPLE Purge Volume 6 Purge Volume 7 Purge Volume 8 Purge Volume 9 Total Volume HCL, HNO? SAMPLING DATA Method MICO Preservative 12 504 Filtered: yes / (no) Sample ID No. MW-1-1 Date/Time 11/20/07 1556 Sampled By Church FIELD PARAMETERS (After Sample Collection) Time /(245 (umhos/cm) Temperature Specific Conductance MS/CHA 11/20/03 Rosengarten, Smith & Associates, Inc. AR102188

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl / r	re) ft.	Comments	
a) Air-light liquid	·		·		
b) Light liquid water			· · ·		
c) Dense liquid					
d) TD					
e) Thickness of light liquid (b - a)		ft.			
f) Thickness of dense liquid (d - c)		ft.			•
		COMMENTS			

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
pН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≾10% of Screen Length

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Dlaphragm/Peristaltic Pump

PURGING/SAMPLING INFORMATION FORM

Site GEEKLON	Purging/Sampling Point ID (W	Vell No.)	-45	Project No. 7	
General Wellhead Condition Courses pod (12)	Livotale Top of Casing Elev.	(msl / re)		ft. Weather <u>/</u> 2	or bresse
excellent '	V	L/WELL DEPTH MEAS		_	503
Static Water Level (ft btoc) 19.73	TD (ft btoc) 33.09	Previous TD (ft t	otoc) W A Static V	Vater Level Elev. (msl / re)	ft.
Sediment Thicknessft. Sedime	nt Description		Sediment Remov	val Method	Obstructed: Yes / No
	Length(ft.) x 0.10	maximum draw	down during micropurging	
Measured By CAMbateus - Interp	Vose Well Head	Ispace Reading (ppm or	· %)	Date/	Time
•	·	PURGE DATA			
	Ma	acro Volume Calculatio	ons		
Well TD Static Water Level				gallons or	x 5 gallons
		icro Volume Calculatio			
Well TD 33,09 - Static Water Level (9,1)	2= Water Column 13.36 ft	t. x 0.00118 = <u>O. Oi</u> 6	gallons x 3.785 <u>0,0 </u>	liters to remove prior to	first parameter measurement
		c1.			
Start Stop Date Time Time	Volume S (Gallons/liters) C	pecific MS/CM conductance	Dissolved Oxygen/ Redox	Temperature ((9°/F°)	Turbidity /pH/Color/ Odor
Purge Volume 1 112103 0831 0833		0.489	119.99 /-45	13.00	173 /sig/claus/5/15
Purge Volume 2 03355		2470	419.99 / -45		194 /331 Clear di
Purge Volume 3 0835		1,458	119.99 / -36		93 5.32 do / do
Purge Volume 4 0841		1453	11991 -32		04/530/do/do
Purge Volume 5 0343		1,45)	119.99 7-30	-{-}}+61/	101/530/do/do
Purge Volume 60345		,441	119.41/-29		19/513/doldo
Purge Volume 7 0847		,449	419-99/-32	1314 8	54 535 / 20 / 00
Purge Volume 8 SANALE			,		
Purge Volume 9					
Total Volume					
1.1		SAMPĻING DATA			HCL HNO3
Sample ID No. MW-47 Date/Time 11/21/03	<u>ONSO</u> Sampled By <u>Ch</u>	Moulero	MethodM(LiU	Preservative	Filtered: yes /no
• (,		, ,		· · · · · · · · · · · · · · · · · · ·
	FIELD PARA	METERS (After Sampl	le Collection)		
Time 0900 Temperature	3.75 (°C) °F)		c Conductance <u>0.44</u>	(µmhos/cm)	pH <u>5.44</u> (std units)
		ł .		ms/cm	
Rosengarten, Smith & Associates, Inc.	in 1320 ill	160103		1. (2.1/2.1)	. 11/97
PU MP O	N 6830 N	1 21/0%			revised 7/01
1014		e e e e e e e e e e e e e e e e e e e			· AR102190

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl / re) ft.	Comments
a) Air-light liquid			
b) Light liquid water			
c) Dense liquid			
d) TD			
e) Thickness of light liquid (b - a)			
f) Thickness of dense liquid (d - c)		ft.	
		COMMENTS	
			

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
рН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≤10% of Screen Length

Abbreviations:

bloc ≈ Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump

PURGING/SAMPLING INFORMATION FORM

	GENERAL INFO	RMATION		
Site GE MILCAR	Purging/Sampling Point ID (Well No.)	1W-42	Project No. 20	17-18
General Wellhead Condition Excellent	Top of Casing Elev. (msl / re)		· ·	en breeze
	FLUID LEVEL/WELL DEPTH	MEASUREMENTS		30'5 "
Static Water Level (ft bloc)	TD (ft btoc) 32./0 Previous	TD (ft btoc) NA Static	Water Level Elev. (msl / re) ੍	ft.
Sediment Thicknessft. Sediment	t Description	Sediment Remo	oval Method	Obstructed: Yes / No
Top of Screen (ft btoc) Screen L	.ength (ft.) x 0.10	maximum draw	down during micropurging	
Measured By CAMonter Hum	1 11 Well Headspace Reading (ppm or %)	Date/T	ime
,	prof purge da			
	Macro Volume Cal			
Well TD Static Water Level	= Water Column ft. x 0.17 (2 in.) or	0.66 (4 in.) x 3	gallons or	x 5 gallons
	Micro Volume Cal			
Well TD <u>38.(0</u> - Static Water Level 16.17	Water Columnft. x 0.00118 =	gallons x 3.785	liters to remove prior to fi	rst parameter measurement
	Volume (Gallon (/liters) Specific MS (Conductance 2.33) 2.21 3.15 4.19 5.190 1.88 1.83	Dissolved Oxygen/ Redox 1997 / -11 9.997 / -15 19.997 / -15 19.997 / -13 19.997 / -1	Temperature (C9/F°) 14.35 14.30 14.31 14.25 14.27 14.31	Turbidity/pH/Color/Odgr //w-12/ // //w-12/ // //w-12/ // //w-12/ // // // // // // // // // // // // /
	FIELD PARAMETERS (After	·		Filtered: yes /(ho)
Rosengarten, Smith & Associates, Inc.	1038 (du)			11/97 revised 7/01 AR102192

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl / re) ft.	Comments
a) Air-light liquid	·		
b) Light liquid water			
c) Dense liquid			
d) TD			
e) Thickness of light liquid (b - a)	·	ft.	
f) Thickness of dense liquid (d - c)	·	ft.	
	ı		
	•	COMMENTS	
	,		

Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
рН	0.10 Standard Units
Turbidity	10 N.T.Ú.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≤10% of Screen Length

Abbreviations:

bloc = Below Top of Casing

re = Elevation relative to site-specific datum

msl = Elevation relative to mean sea level

TD = Total Depth in. = inch ft. = feet / foot

Notes:

Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump

PURGING/SAMPLING INFORMATION FORM

Site GEELKTON	Purging/Sampling Point ID (Well No.)	W-44	Project No	8
General Wellhead Condition	Top of Casing Elev. (msl / re)		ft. Weather <u>claar</u>	brugg 50'S
	FLUID LEVEL/WELL DEP	TH MEASUREMENTS		<i>'</i> (J
Static Water Level (ft btoc) 15.28	TD (ft btoc) 40./2 Previous	us TD (ft btoc) <u>VA</u> Static \	Water Level Elev. (msl / re)	ft.
	nt Description	Sediment Remo	val Method	Obstructed: Yes / No
Top of Screen (ft btoc) Screen	Length (ft.) x 0.10	maximum draw	down during micropurging	
Measured By Companies Hers	integline Well Headspace Reading		Date/Tim	e
	Macro Volume C			
Well TD Static Water Level	= Water Column ft. x 0.17 (2 in.)	or 0.66 (4 in.) x 3	gallons or	x 5 gallons
	Micro Volume			
Well TD 40,12 - Static Water Level 15.2	8 = Water Column 24.84 ft. x 0.00118 =	0.029 gallons x 3.785 O. 11	liters to remove prior to first	parameter measurement
•	_	- 1		
Start Stop Date Time Time	Volume Specific Conductance	Dissolved Oxygen/ Redox	Temperature (C°)F°)	Turbidity /pH/Color/ Odor
Purge Volume 1 ///21/03 1119 1121.5	1.5 0.629	11999/220	14.06 3	0.9 /5.90 / Sili.
Purge Volume 2	2 0.584	11991/233	13.98 30	7/573/dp 3/a
Purge Volume 3 1124	3 0,513	1491/246	13.42 26.	
Purge Volume 4 [126	4 0472	119.49 , 261	<u>i3.95</u> 30	1/5.22 CHay do
Purge Volume 5	5 0.456	1997, 274	13.93 22.6	
Purge Volume 6	5.5 0.445	1999/282	13.92 215	1
Purge Volume 7	7.5 0.448	919.99/288	13.94 200	7 3 10 10 10 10 10 10 10 10 10 10 10 10 10
Purge Volume 8 \\ \tag{1133}	3.5 0.442	9 1999/ 292	13.95 273	/5.00/clu./do.
Purge Volume 9	Smitte			' ' '
Total Volume	<u> </u>			
Sample ID No. MW-44-1 Date/Time # 121/03	SAMPLING 1135 Sampled By Charles	DATA Method Micro	if Preservative	SUL HW03 SUL Filtered: yes (no)
1160	FIELD PARAMETERS (After		nslow	
Time Temperature	4.02 (C1)F)	Specific Conductance 0 143	29 (umhos/cm)	pH <u>4-99</u> (std units)
Diemo in	0945 11/21/03			
	r r			11/97 revised 7/01
pumon	11/8 11/21/03			AR102194

NAPL MEASUREMENTS

Interface Measurements From	ft btoc	Elevation (msl / re) ft.	Comments
a) Air-light liquid			
b) Light liquid water			
c) Dense liquid			
d) TD			
e) Thickness of light liquid (b - a)		ft.	
f) Thickness of dense liquid (d - c)		ft.	
		COMMENTS	
			

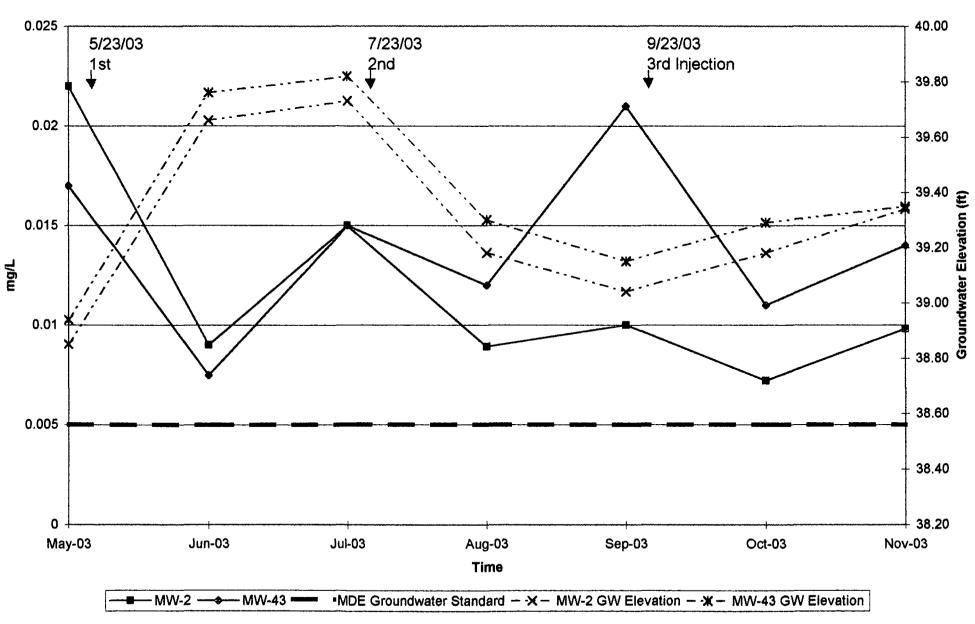
Field Parameters	Stabilization Criteria
Dissolved Oxygen	±10% (if measuring)
Conductivity	3% of Full Scale Range
рН	0.10 Standard Units
Turbidity	10 N.T.U.
Temperature	0.2 °C
Eh / Redox	Not Applicable
Drawdown	≾10% of Screen Length

Abbreviations:

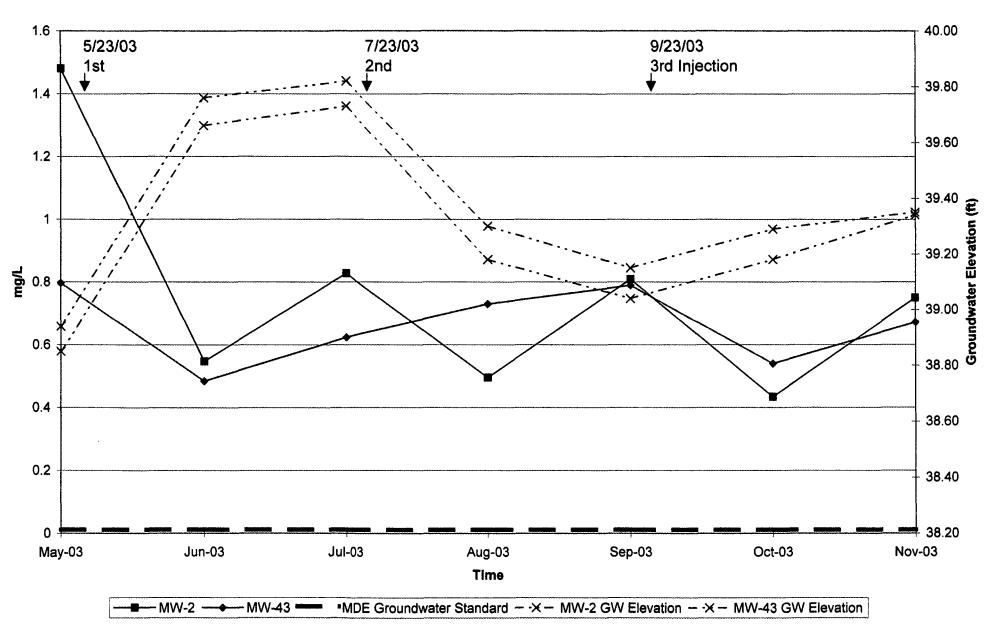
btoc = Below Top of Casing
re = Elevation relative to site-specific datum
msl = Elevation relative to mean sea level
TD = Total Depth in. = inch ft. = feet / foot

Notes:

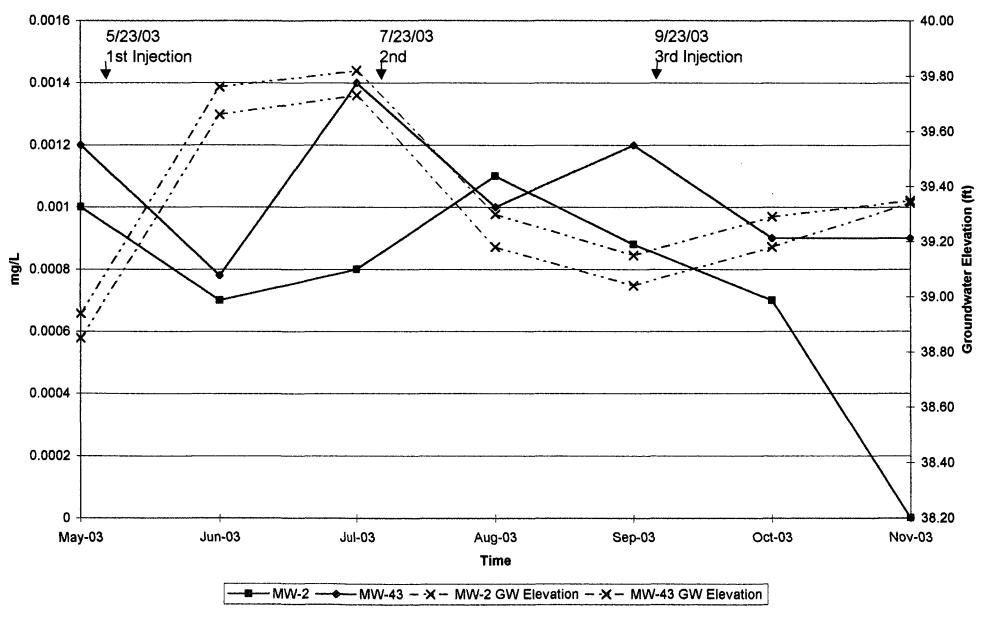
Purge/Sample Methods-Teflon/PVC/HDPE Bailer & ID (in.) Submersible/Diaphragm/Peristaltic Pump RSA Project No. 2017 GE Railcar, Elkton, MD In-situ Remediation Pilot Study

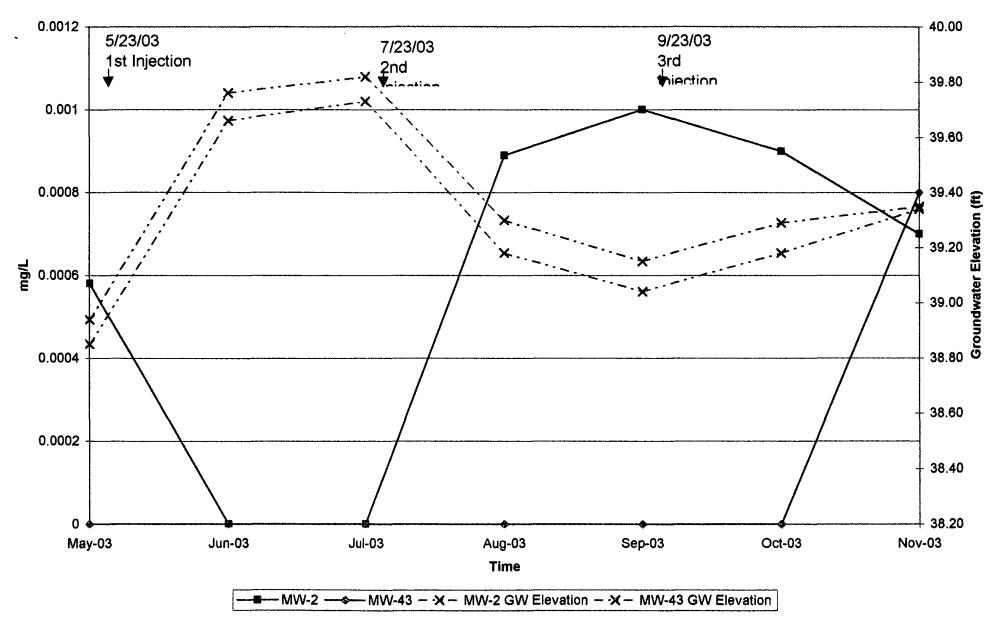

APPENDIX 4

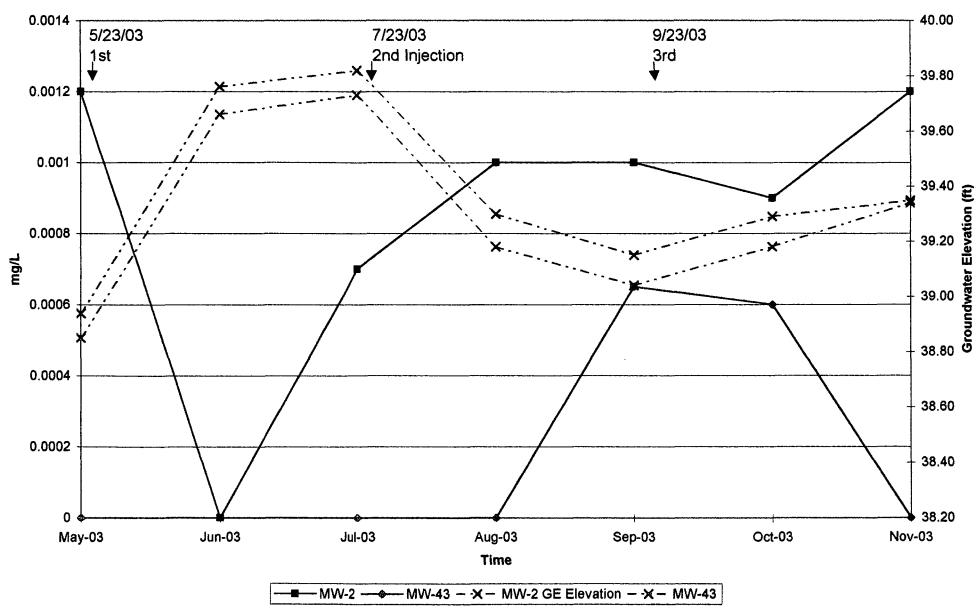
Charts of Volatile Organic Compounds and Degradation Indicator Parameters

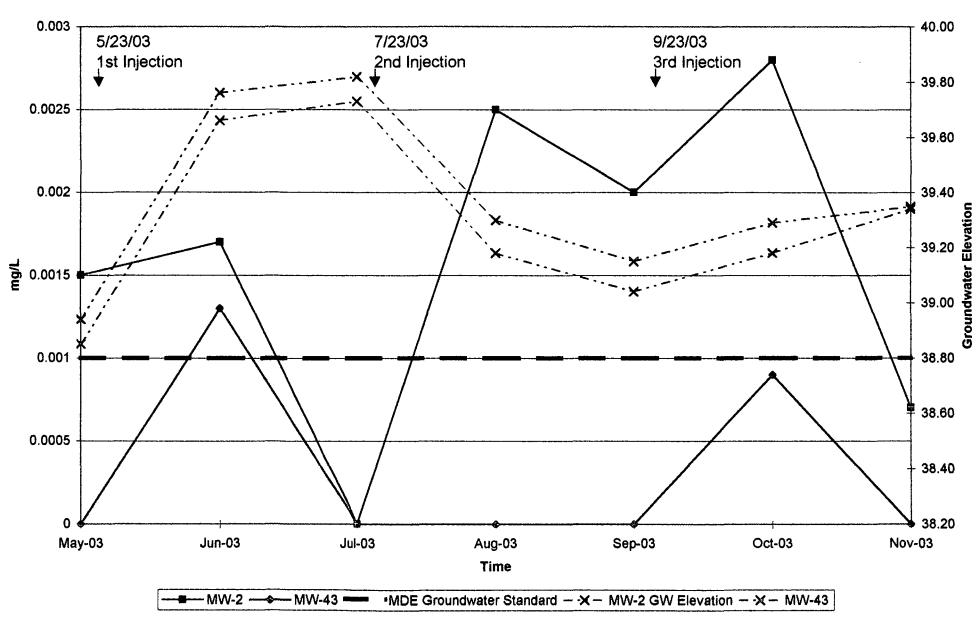

RSA Project No. 2017 GE Railcar, Elkton, MD In-situ Remediation Pilot Study

MW-2 & MW-43 PSA Charts Volatile Organic Compounds

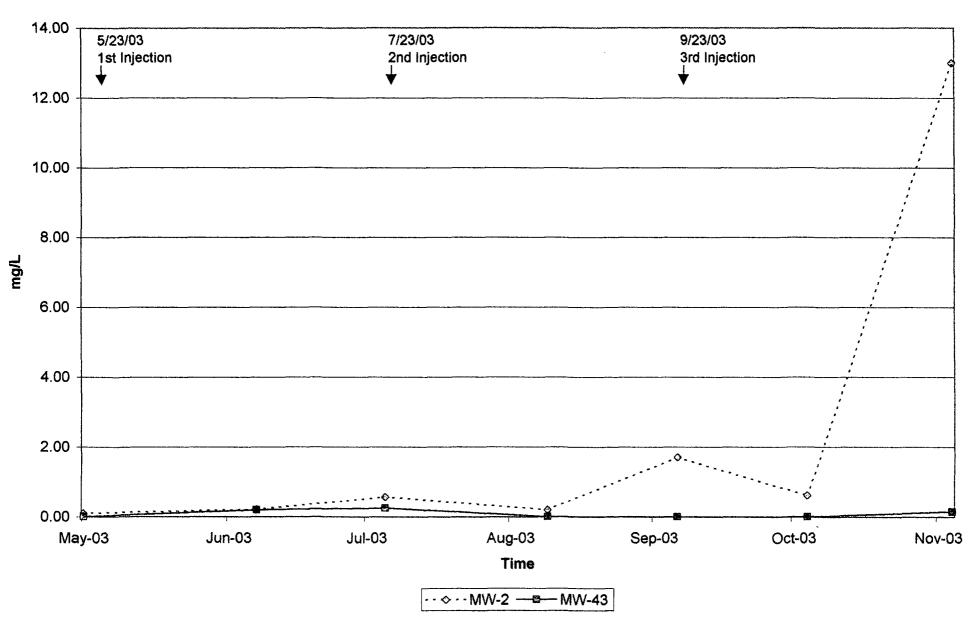

Benzene Concentration & Groundwater Elevation GE Railcar, Elkton, Maryland MW-2 & MW-43 Pilot Study Area

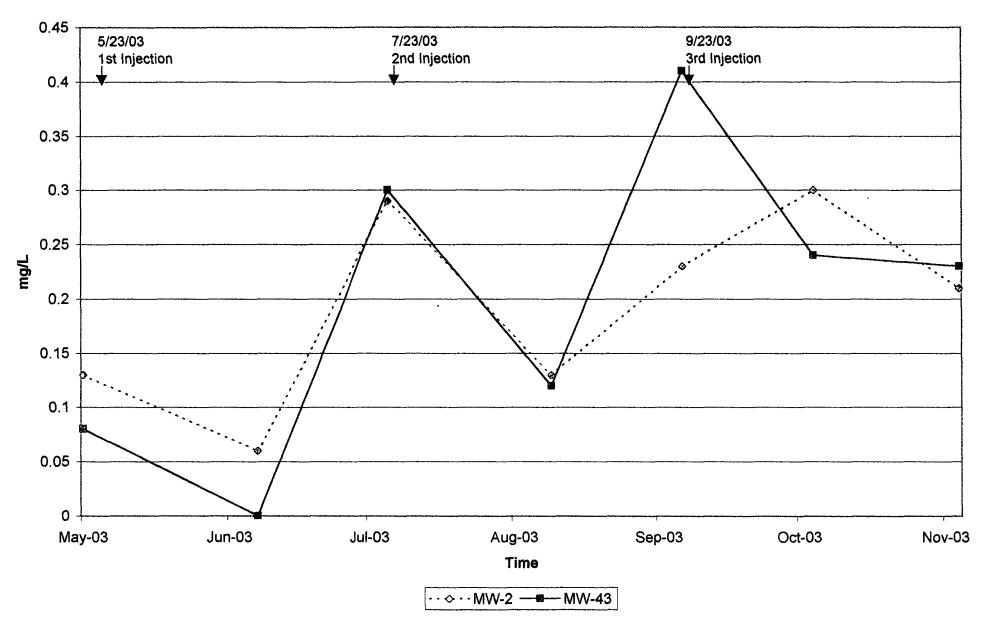

Chlorobenzene Concentration & Groundwater Elevation GE Railcar, Elkton, Maryland MW-2 & MW-43 Pilot Study Area


1,1-Dichloroethane Concentration & Groundwater Elevation GE Railcar, Elkton, Maryland MW-2 & MW-43 Pilot Study Area

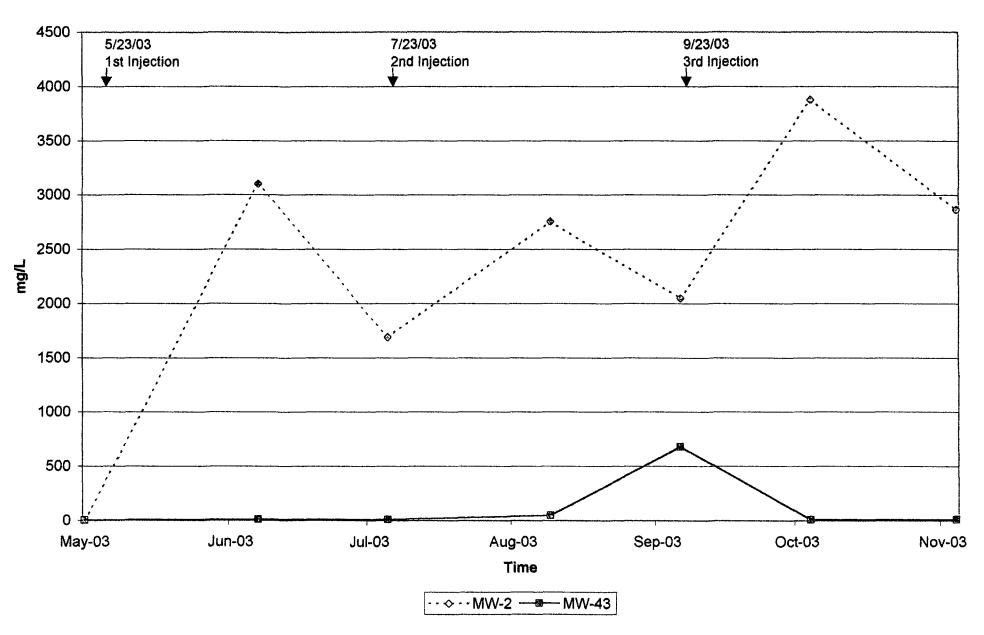

cis-1,2-Dichloroethene Concentration & Groundwater Elevation GE Railcar, Elkton, Maryland MW-2 & MW-43 Pilot Study Area

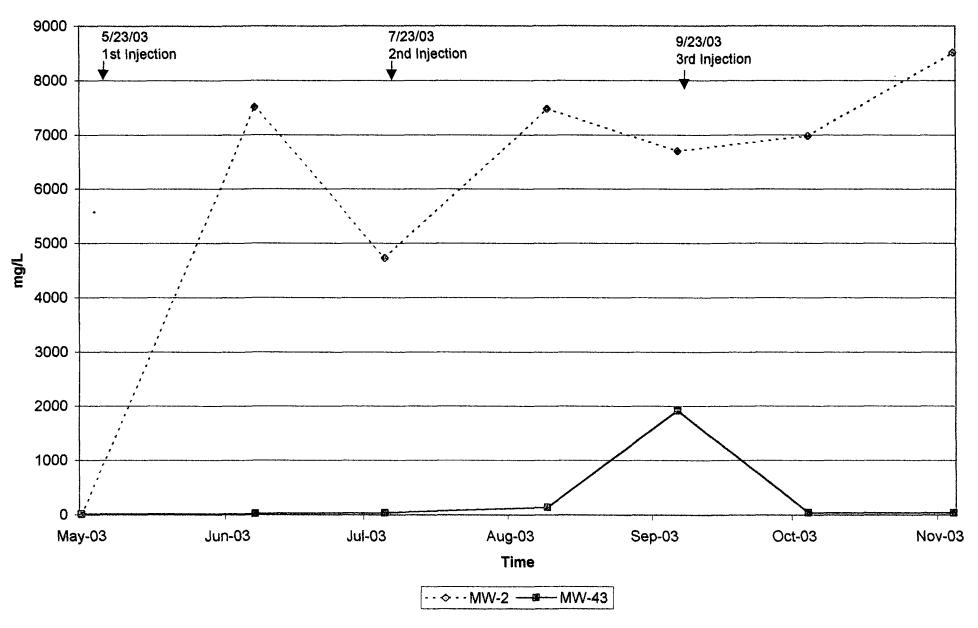
trans-1,2-Dichloroethene Concentration & Groundwater Elevation GE Railcar, Elkton, Maryland MW-2 & MW-43 Pilot Study Area

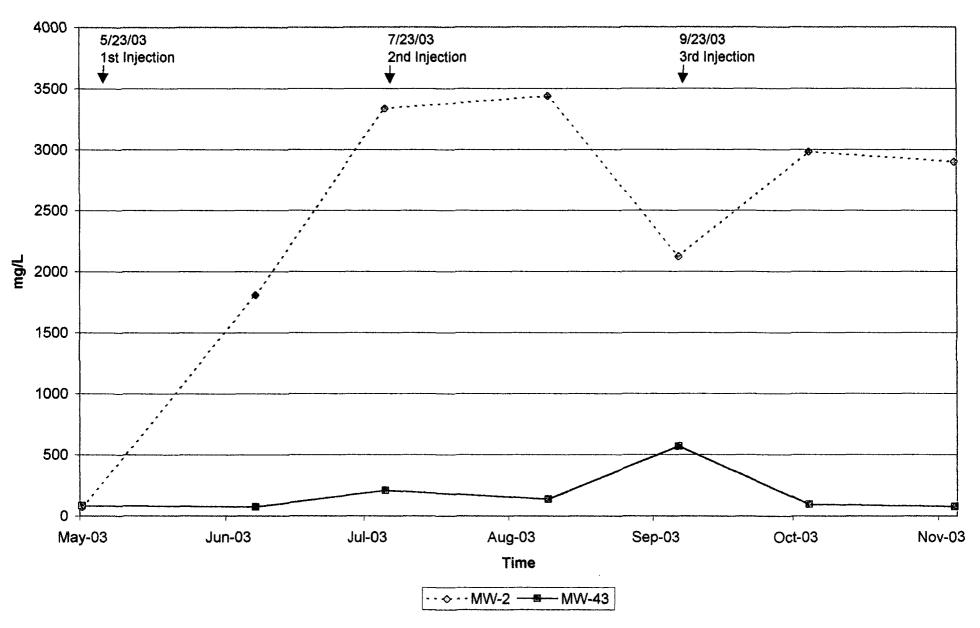

1,1,2,2-Tetrachloroethane Concentration & Groundwater Elevation GE Railcar, Elkton, Maryland MW-2 & MW-43 Pilot Study Area

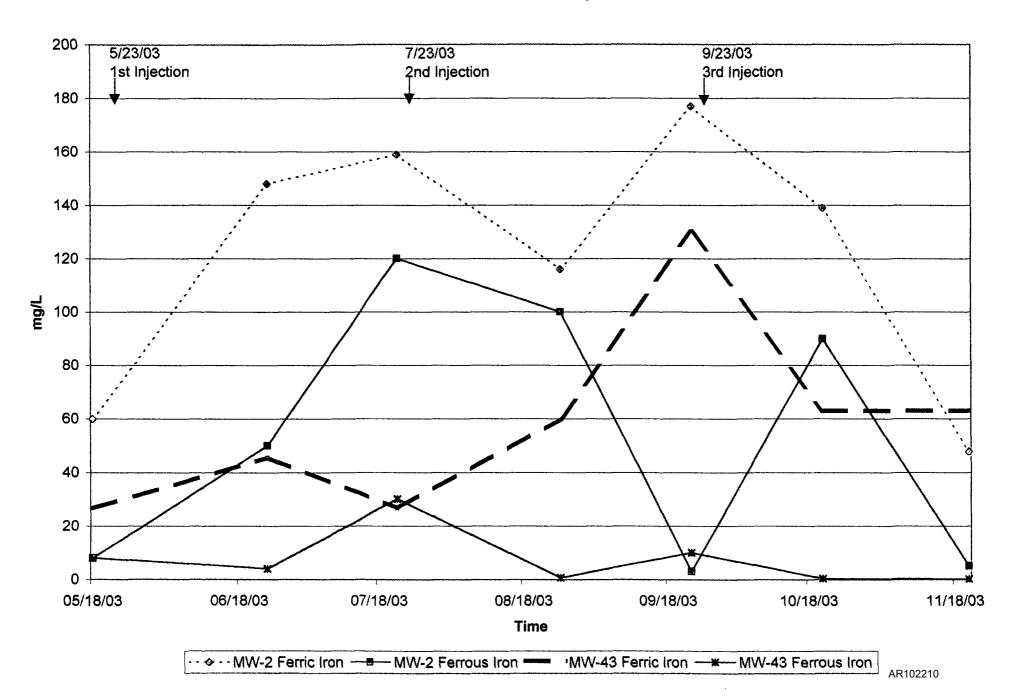

RSA Project No. 2017 GE Railcar, Elkton, MD In-situ Remediation Pilot Study

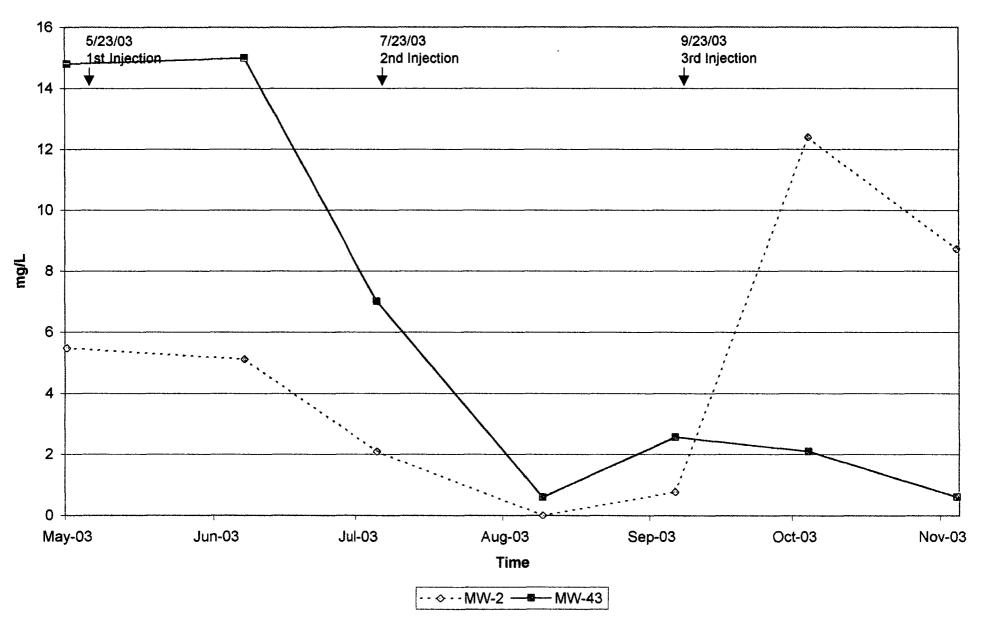
MW-2 & MW-43 PSA Charts Degradation Indicator Parameters

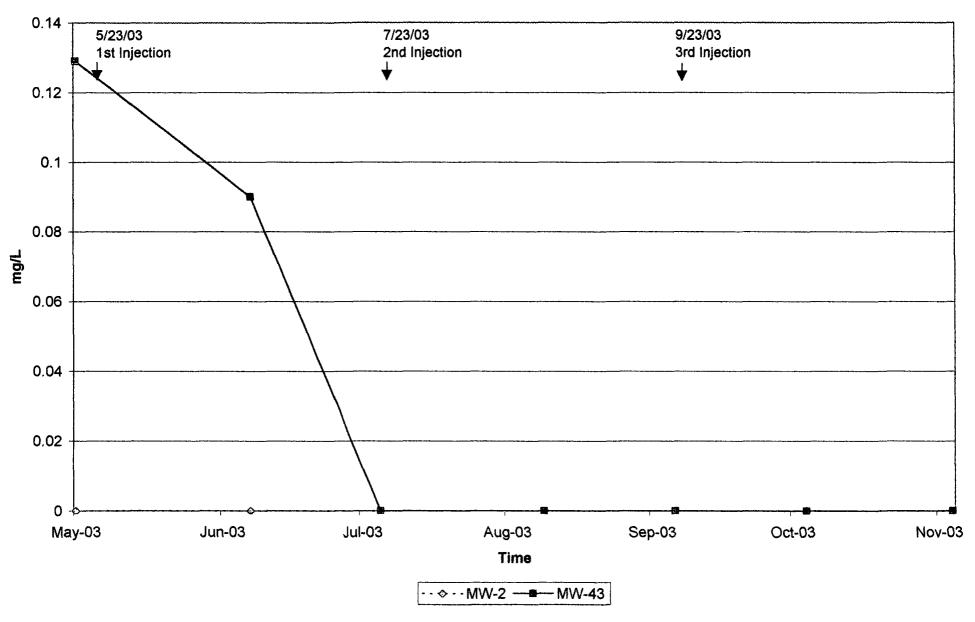

TPH, Diesel Range Organics Concentration in Groundwater GE Railcar, Elkton, Maryland MW-2 & MW-43 Pilot Study Area

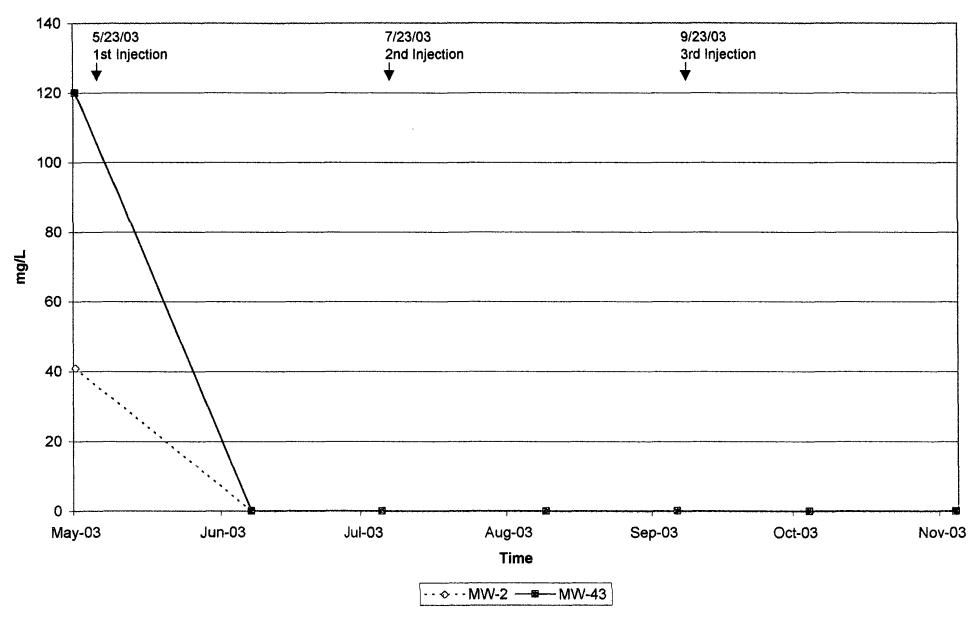

TPH, Gasoline Range Organics Concentration in Groundwater GE Railcar, Elkton, Maryland MW-2 & MW-43 Pilot Study Area


Total Organic Carbon Concentration in Groundwater GE Railcar, Elkton, Maryland MW-2 & MW-43 Pilot Study Area

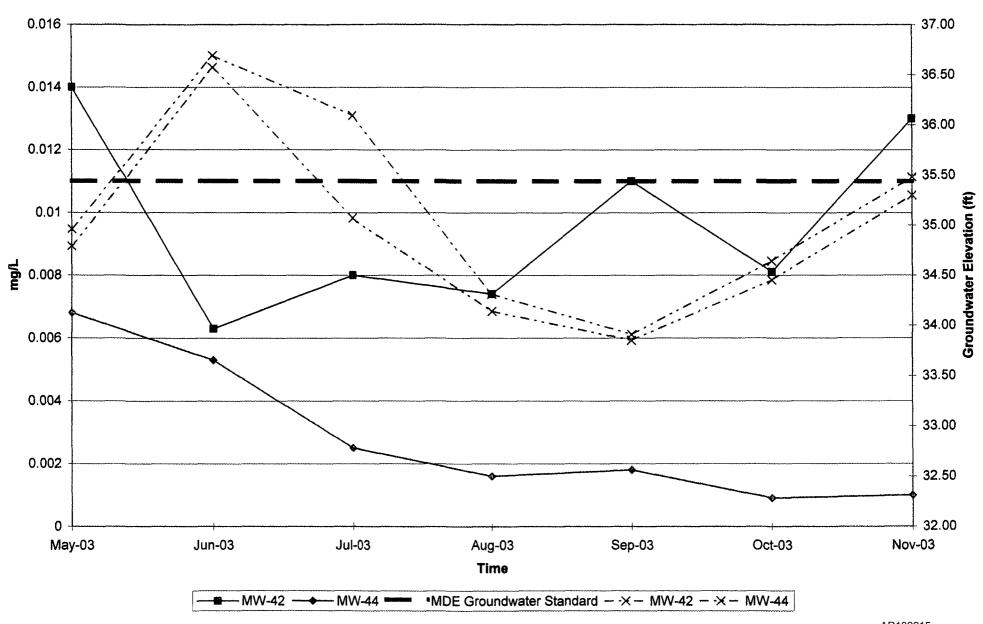

Chemical Oxygen Demand Concentration in Groundwater GE Railcar, Elkton, Maryland MW-2 & MW-43 Pilot Study Area

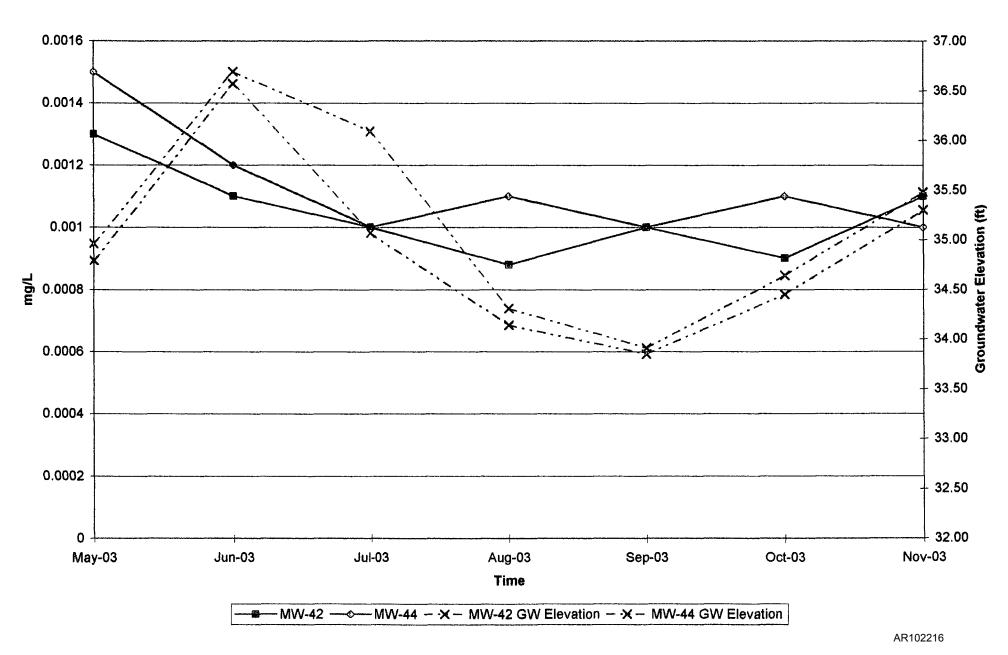

Total Alkalinity Concentration in Groundwater GE Railcar, Elkton, Maryland MW-2 & MW-43 Pilot Study Area


Ferric & Ferrous Iron Concentration in Groundwater GE Railcar, Elkton, Maryland MW-2 & MW-43 Pilot Study Area

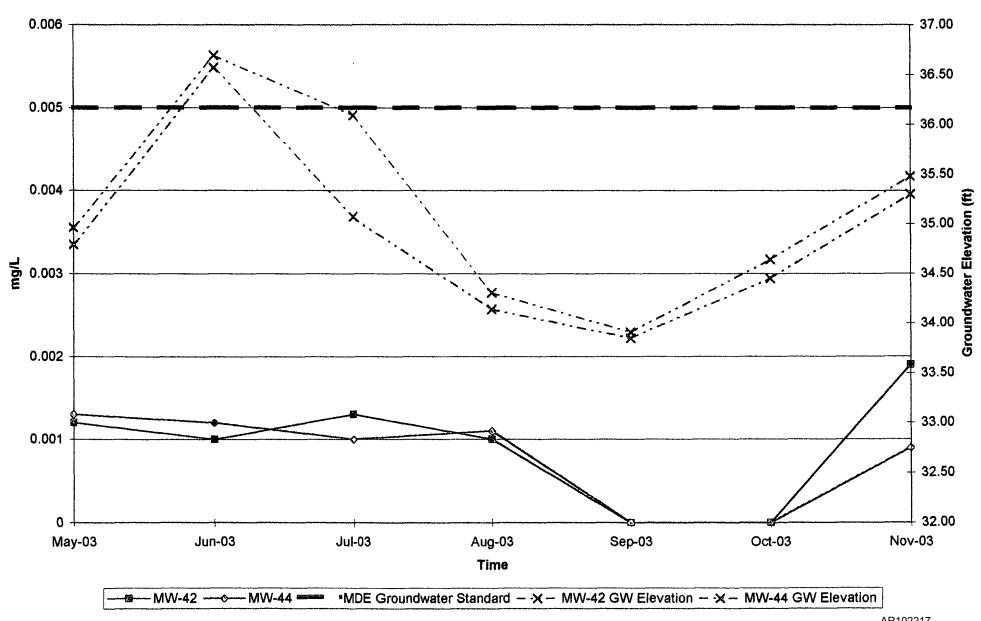

Sulfate Concentration in Groundwater GE Railcar, Elkton, Maryland MW-2 & MW-43 Pilot Study Area

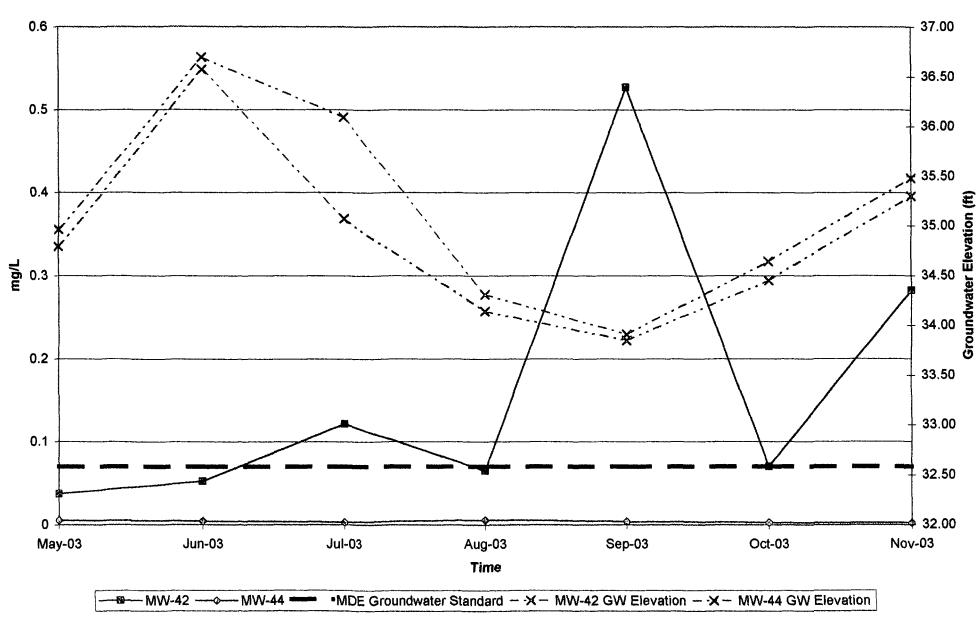
Nitrate Concentration in Groundwater GE Railcar, Elkton, Maryland MW-2 & MW-43 Pilot Study Area

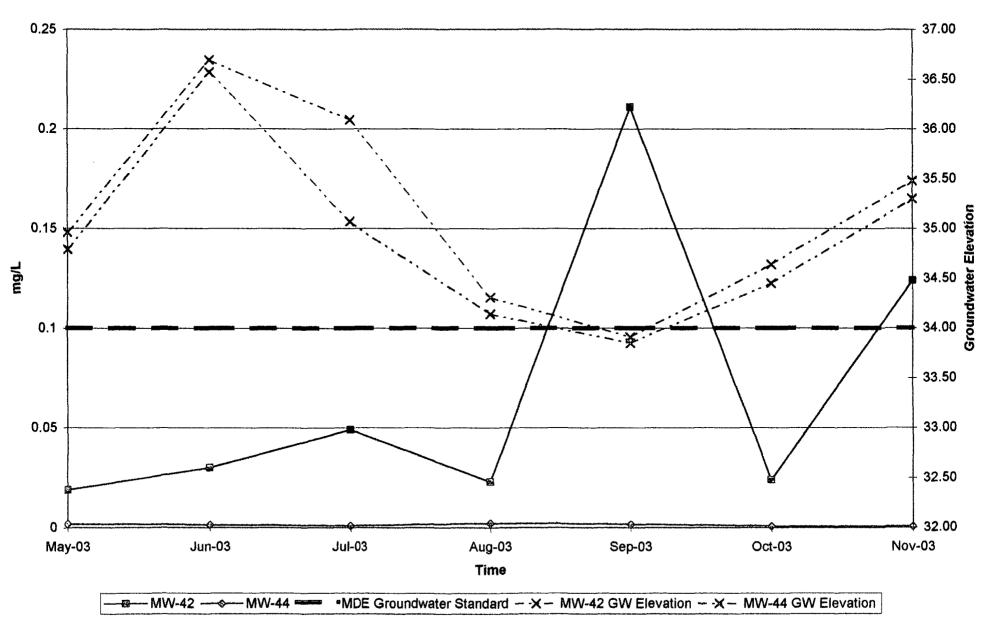

Methane Concentration in Groundwater GE Railcar, Elkton, Maryland MW-2 & MW-43 Pilot Study Area

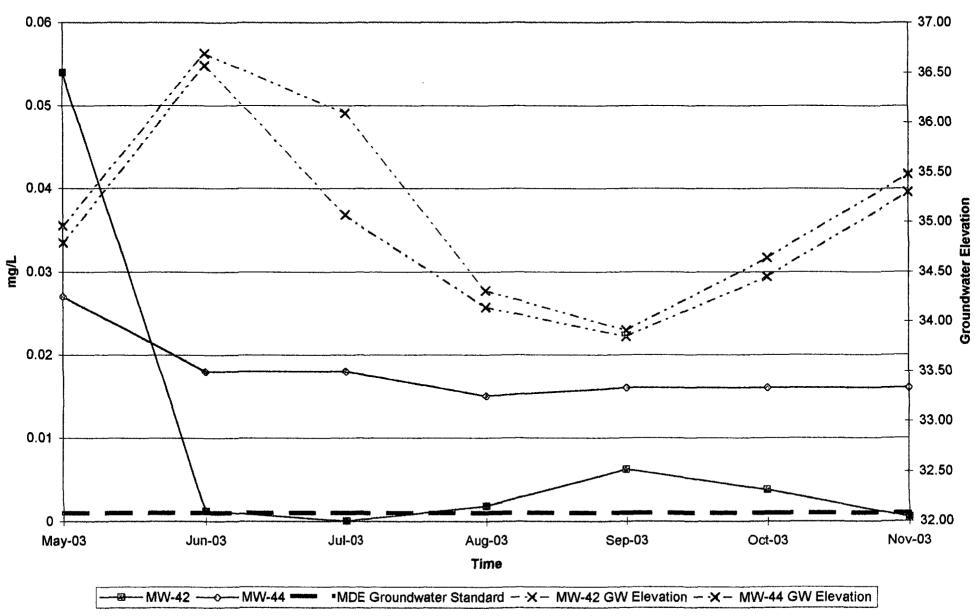

RSA Project No. 2017 GE Railcar, Elkton, MD In-situ Remediation Pilot Study

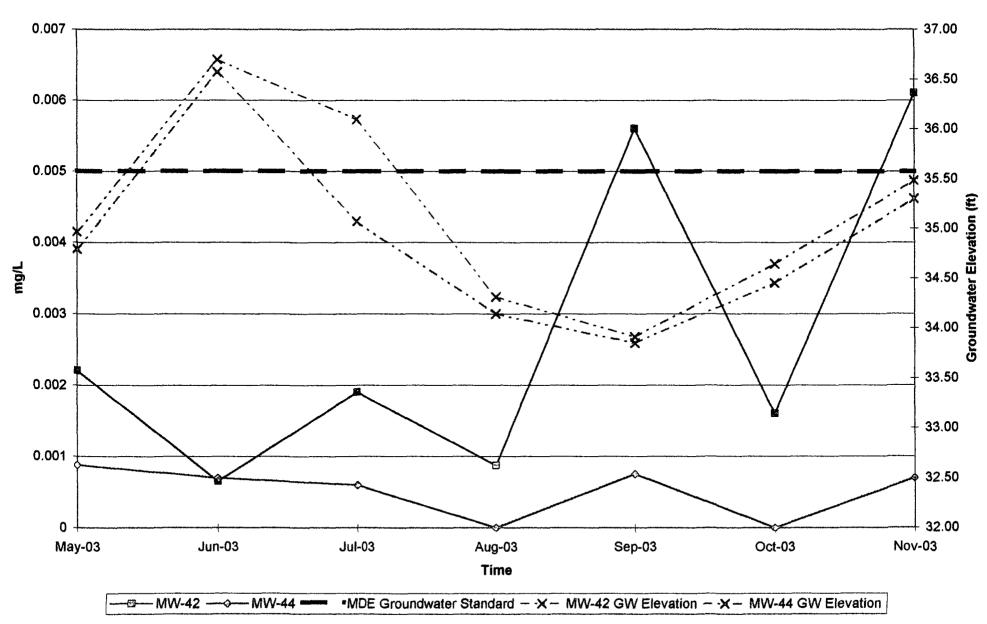
MW-42 & MW-44 PSA Charts Volatile Organic Compounds

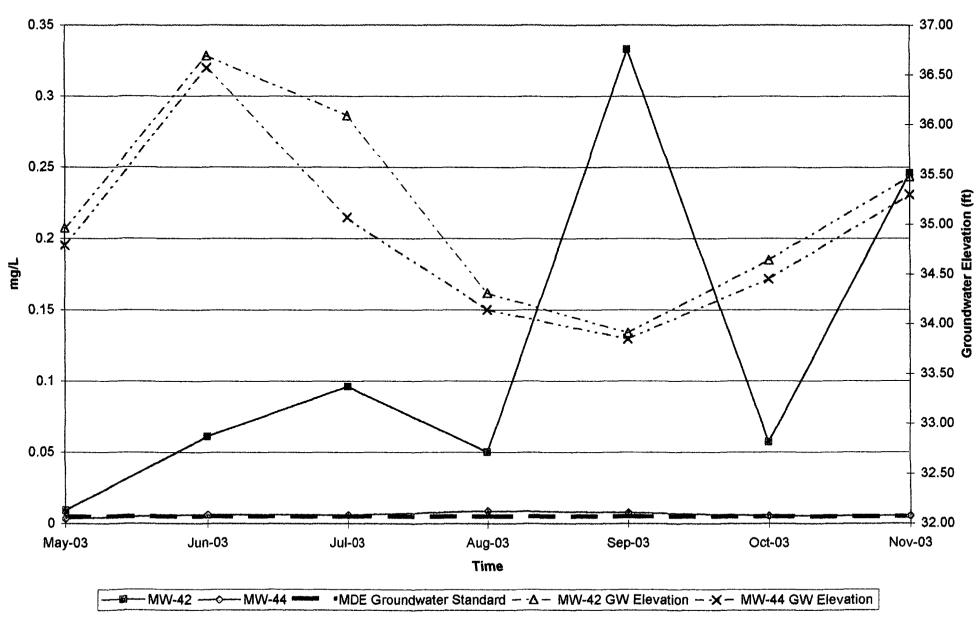

Chlorobenzene Concentration & Groundwater Elevation GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area

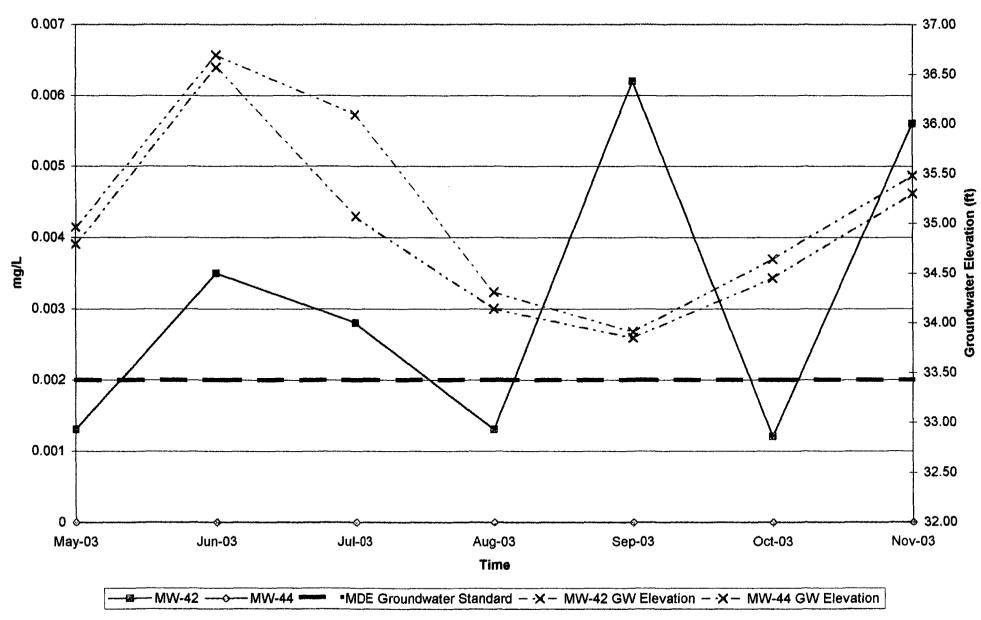

Chloroform Concentration & Groundwater Elevation GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area


1,2-Dichloroethane Concentration & Groundwater Elevation GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area

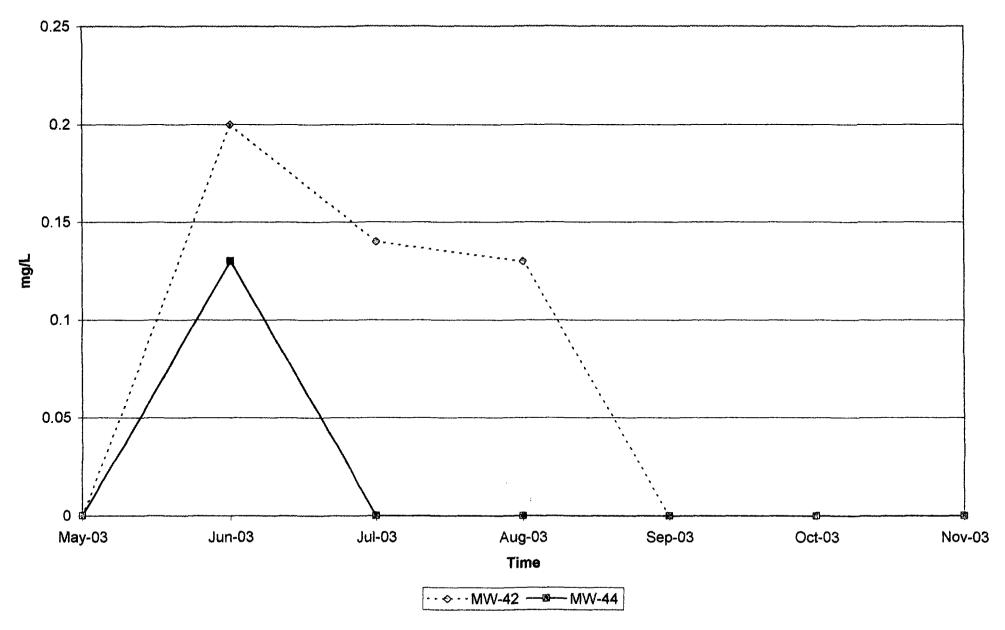

cis-1,2-Dichloroethene Concentration & Groundwater Elevation GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area


trans-1,2-Dichloroethene Concentration & Groundwater Elevation GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area

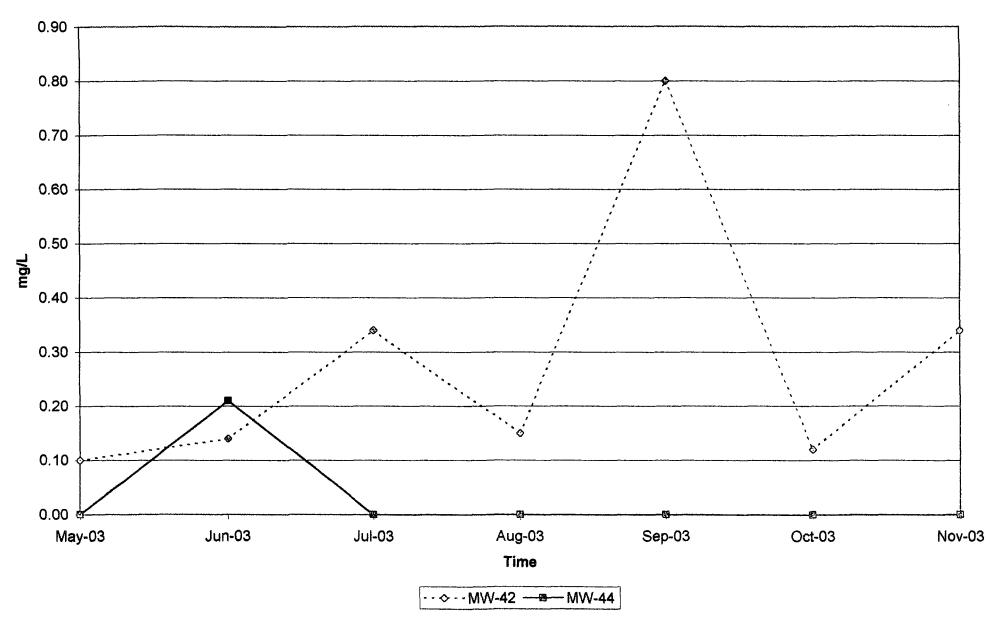

1,1,2,2-Tetrachloroethane Concentration & Groundwater Elevation GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area


1,1,2-Trichloroethane Concentration & Groundwater Elevation GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area

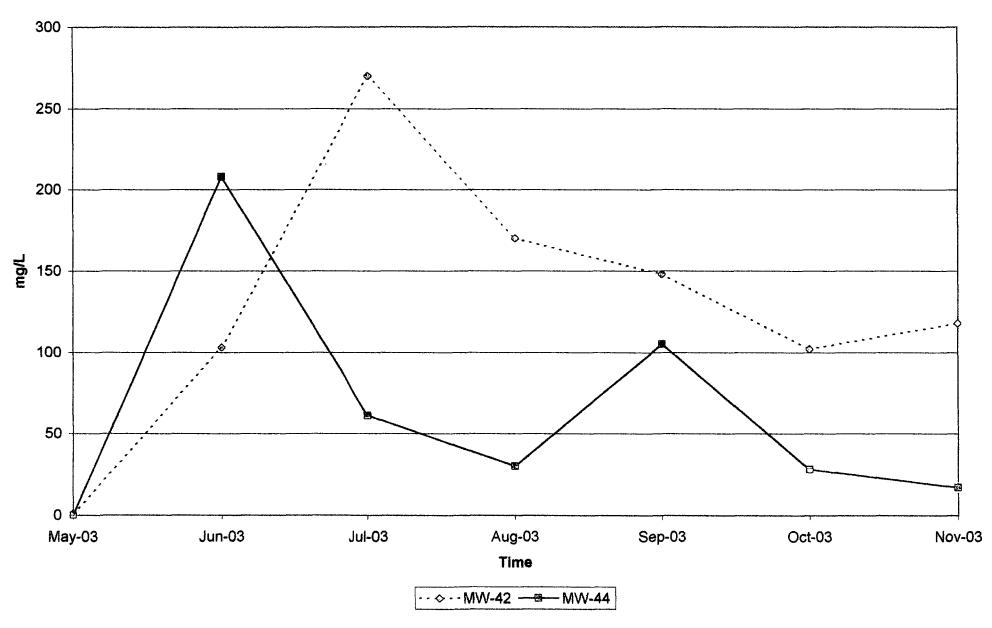
Trichloroethene Concentration & Groundwater Elevation GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area

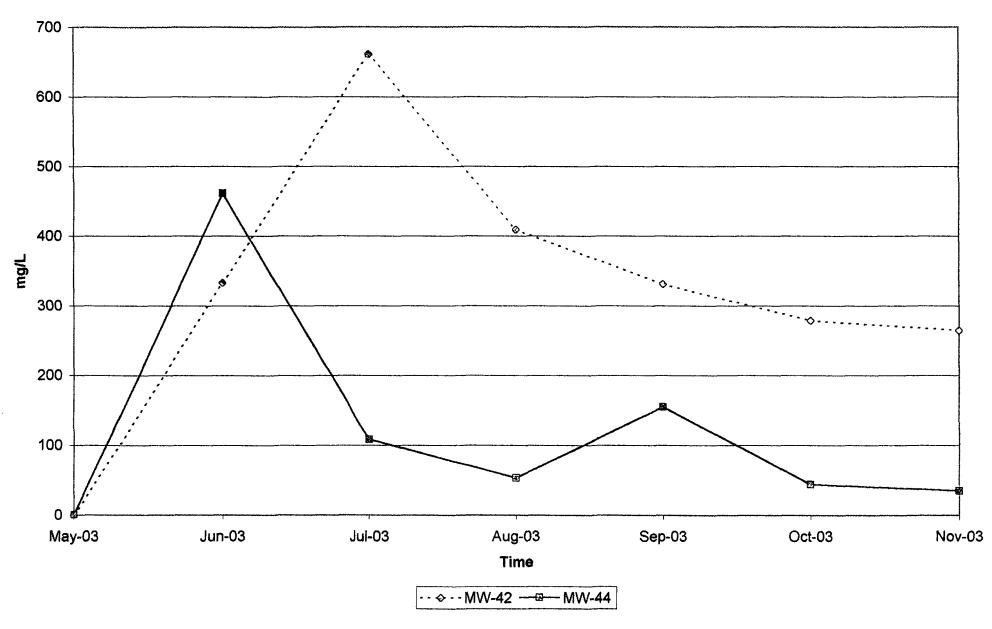


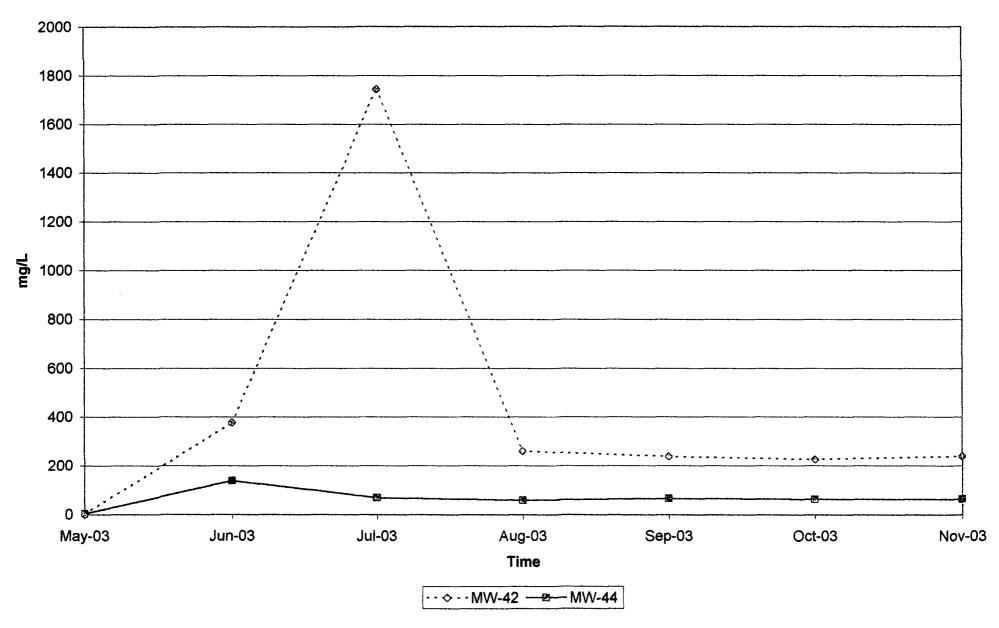
Vinyl Chloride Concentration & Groundwater Elevation GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area

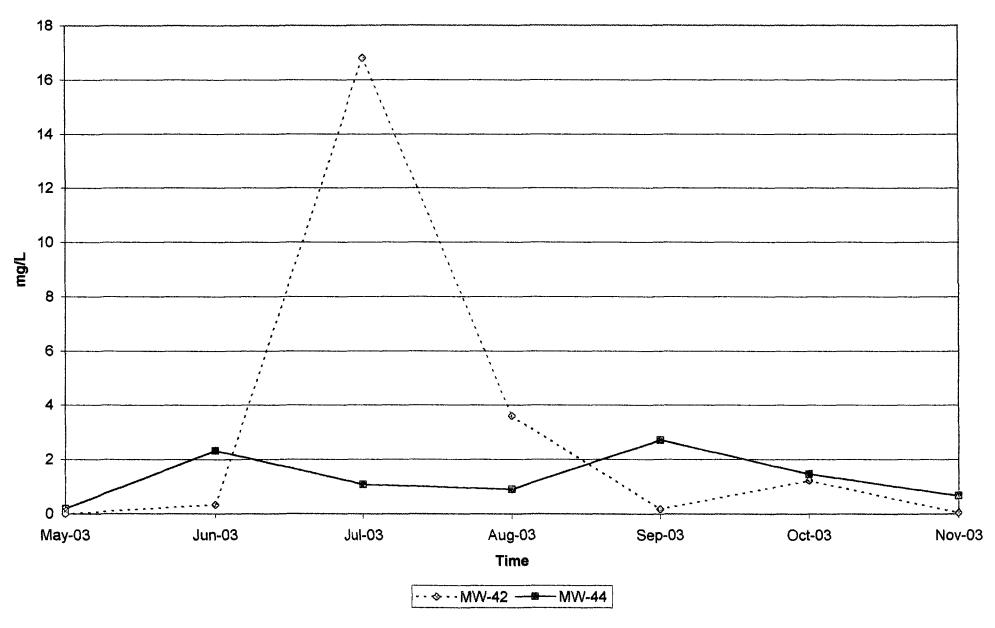


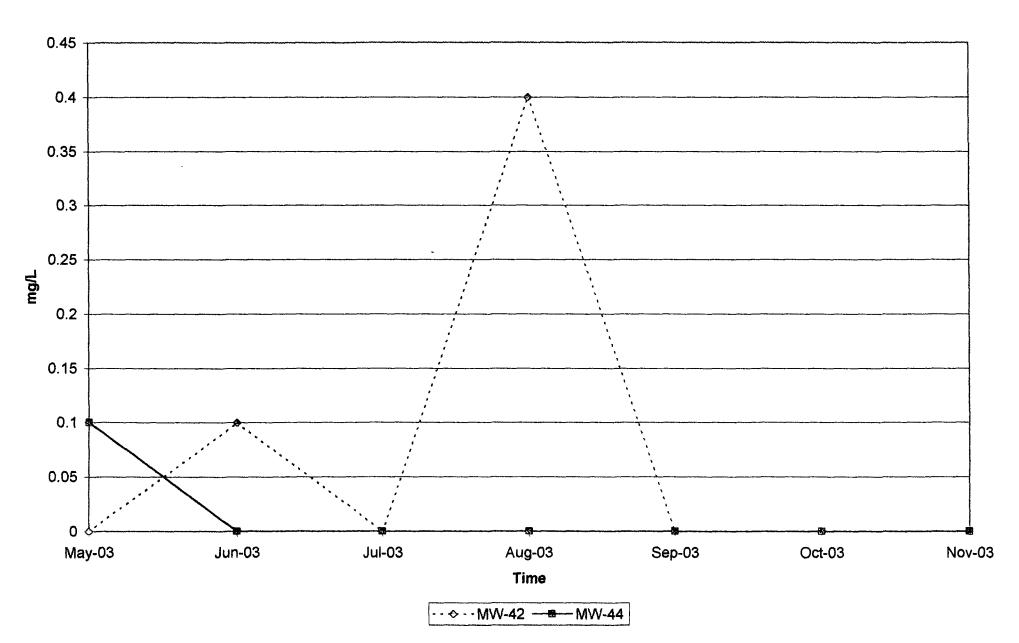
MW-42 & MW-44 PSA Charts Dechlorination Indicator Parameters

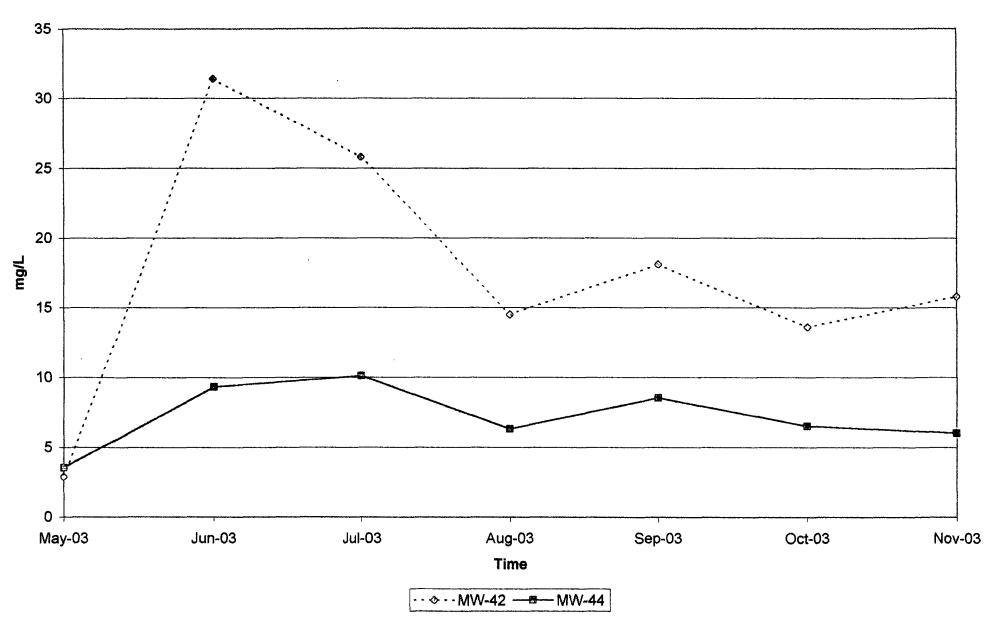

TPH, Diesel Range Organics Concentration in Groundwater GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area

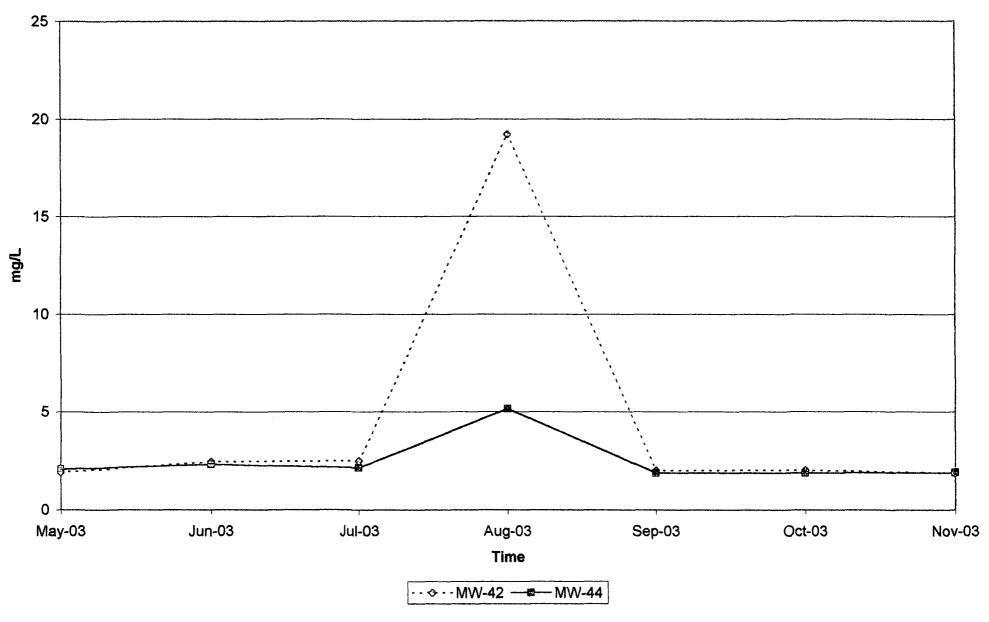

TPH, Gasoline Range Organics Concentration in Groundwater GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area

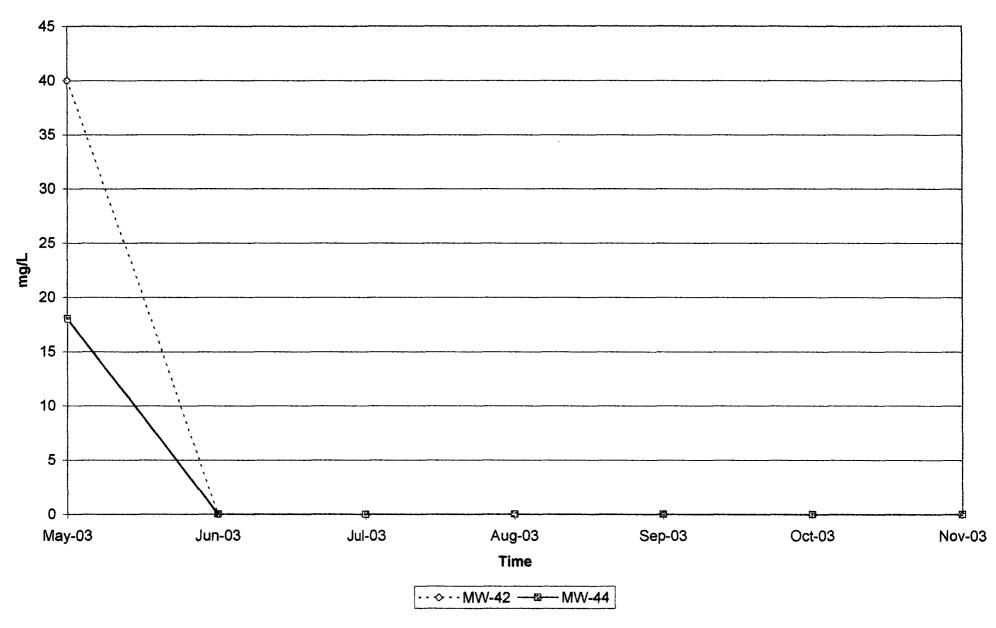

Total Organic Carbon Concentration in Groundwater GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area


Chemical Oxygen Demand Concentration in Groundwater GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area


Total Alkalinity Concentration in Groundwater GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area


Ferric Iron Concentration in Groundwater GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area


Ferrous Iron Concentration in Groundwater GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area


Sulfate Concentration in Groundwater GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area

Nitrate Concentration in Groundwater GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area

Methane Concentration in Groundwater GE Railcar, Elkton, Maryland MW-42 & MW-44 Pilot Study Area

