

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III ENVIRONMENTAL SCIENCE CENTER 701 MAPES ROAD FORT MEADE, MARYLAND 20755-5350

DATE : July 8, 2005

SUBJECT: Region III Data QA Review

FROM : Khin-Cho Thaung KCT Region III ESAT RPO (3EA21)

TO : Christian Matta Regional Project Manager (3HS23)

Attached is the inorganic data validation report for the Big John Salvage-Hoult Road Site (Case#: 34031; SDG#: MC1AR0, MC1AS4, MC1AW5) completed by the Region III Environmental Services Assistance Team (ESAT) contractor under the direction of Region III EAID.

If you have any questions regarding this review, please call me at (410) 305-2743.

Attachments

cc: Tad Yancheski (TETRA)

TO File #: 0023 TDF#: 0578

ANALYTICAL SERVICES AND QUALITY ASSURANCE BRANCH

Printed on 100% recycled/recyclable paper with 100% post-consumer fiber and process chlorine free. Customer Service Hotline: 1-800-438-2474 Lockheed Martin Information Technology ESAT Region 3 US EPA Environmental Science Center 701 Mapes Road Ft. Meade, MD 20755-5350 Telephone 410-305-3037 Facsimile 410-305-3597

LOCKHEED MARTIN We never forget who we're working for[™]

DATE: June 14, 2005

SUBJECT: Inorganic Data Validation (IM2 Level) Case: 34031 SDGs: MC1AR0, MC1AS4 and MC1AW5 Site: Big John Salvage - Hoult Road

FROM: Donald M. Brown $\mathcal{D}^{\mathcal{W}}$ Inorganic Data Reviewer

> Mahboobeh Mecanic^M Senior Oversight Chemist

TO: Khin-Cho Thaung ESAT Region 3 Project Officer

OVERVIEW

Case 34031, Sample Delivery Groups (SDGs) MC1AR0, MC1AS4 and MC1AW5, consisted of forty-seven (47) filtrate aqueous samples analyzed for dissolved metals. All samples were analyzed by Ceimic Corporation (CEIMIC). The sample set contained three (3) filtrate rinsate blanks and five (5) field duplicate pairs. Samples were analyzed in accordance with Contract Laboratory Program (CLP) Statement of Work (SOW) ILM05.3 through Routine Analytical Services (RAS) program.

SUMMARY

All samples were successfully analyzed for all Target Analyte List (TAL) parameters with the exception of silver (Ag) in SDGs MC1AS4 and MC1AW5. Areas of concern with respect to data usability are listed below.

Rinsate blanks were utilized to evaluate sample results for field contamination based on corresponding sampling dates and/or corresponding samplers for this case.

Data in this case have been impacted by outliers present in the laboratory and rinsate blanks as well as the continuing calibration verification and laboratory control sample analyses. Details of these outliers are discussed under "Major and Minor Problems"; specific samples affected are outlined in "Table 1A" and qualified analytical results for all samples are summarized on the Data Summary Forms (DSFs).

The CCV standard recovery was slightly low (<90%) for Na in SDG MC1AR0. Positive results reported for this analyte in affected samples in this SDG may be biased low and have been qualifed "L" on the DSFs.

<u>NOTES</u>

Reported results between MDLs and Contract Required Quantitation Limits (CRQLs) were qualified "J" on the DSFs unless superseded by "B".

The Chain of Custody (CoC) Records list all samples in this data set (SDGs MC1AR0, MC1AS4 and MC1AW5) for total metals, dissolved metals and cyanide analyses. However, the SDG Narratives explain that these SDGs report the results for dissolved metals analysis only. The total metals and cyanide analyses results are provided in separate SDGs.

For the samples in this data set, the sampler assigned the same EPA sample numbers for both total and dissolved metals analyses. The SDG Narratives explain that the Sample Management Office (SMO) has assigned new CLP sample identification (ID) numbers for the dissolved metals portion of the sample IDs listed on the CoC Records.

One (1) of the CCV standard recoveries (CCV05) was high (>110%) for Sb and selenium (Se) in the second analytical run of SDG MC1AS4; however, the samples affected (MC1AX8, MC1AX9, MC1AW2 and MC1AW4) had non-detected results for these analytes in this SDG. Therefore, data were not qualified due to this outlier.

One (1) of the CRQL check standard recoveries (CRI04) was low (<70%) for Fe in the second analytical run of SDG MC1AS4. The laboratory did not reanalyze this CRQL check standard for this analyte; however, the sample associated with this check standard (MC1AW4) had a reported result greater than two times the CRQL (>2XCRQL). Therefore, no data were qualified based on this finding.

Reported results for field duplicate pairs MC1AR1/MC1AR7, MC1AS2/MC1AT9, MC1AT3/MC1AT8, MC1AW3/MC1AX6 and MC1AW7/MC1AX5 were within 20% RPD, ±CRQL for all analytes.

Data for Case 34031, SDGs MC1AR0, MC1AS4 and MC1AW5, were reviewed in accordance with National Functional Guidelines for Evaluating Inorganic Analyses with Modification for use within Region III.

Page 1 of 9

OIN,

TABLE 1A SUMMARY OF QUALIFIERS ON DATA SUMMARY FORM AFTER DATA VALIDATION

Case 34031, SDG MC1AR0

<u>ANALYTE</u>	SAMPLES AFFECTED	POSITIVE <u>VALUES</u>	NON- DETECTED <u>VALUES</u>	BIAS	COMMENTS*
Sb	MC1AR0, MC1AR1, MC1AR2, MC1AR5, MC1AR6		UL	Low	CBN (-3.912 J μg/L) `
As	MC1AR6, MC1AR9	J			>MDL <crql CVH (117%)</crql
	MC1AR4, MC1AS2	K		High	CVH (117%)
Ве	MC1AR0, MC1AR1, MC1AR2, MC1AR3, MC1AR4, MC1AR5, MC1AR6, MC1AR7, MC1AS0, MC1AS2	• •	UL	Low	CBN (-0.119 J μg/L)
	MC1AS1, MC1AS3, MC1AS5, MC1AS6, MC1AT3, MC1AT4, MC1AT5, MC1AT8, MC1AT9		UL	Low	CBN (-0.129 J µg/L)
Ca	MC1AR0, MC1AS2, MC1AT3, MC1AT8, MC1AT9	В		High	RB (344 J μg/L)
Cu	MC1AR3, MC1AR6, MC1AR7, MC1AS1, MC1AS5, MC1AS6, MC1AT5	B	· ·	High	RB (2.7 J μg/L)

* See explanation of comments in Table 1B

、AR119207

Page 3 of 9

TABLE 1A SUMMARY OF QUALIFIERS ON DATA SUMMARY FORM AFTER DATA VALIDATION

Case 34031, SDG MC1AR0

<u>ANALYTE</u>	SAMPLES AFFECTED	POSITIVE VALUES	NON- DETECTED <u>VALUES</u>	BIAS	<u>COMMENTS*</u>
Ag	MC1AS1, MC1AS3, MC1AS5, MC1AS6, MC1AT3, MC1AT4, MC1AT5, MC1AT8, MC1AT9		UL .	Low	CBN (-1.536 J µg/L)
Na	MC1AR2	J			>MDL <crql CVL (89.6%)</crql
	MC1AR0, MC1AR1, MC1AR3, MC1AR4, MC1AR5, MC1AR6, MC1AR7, MC1AR9, MC1AS0, MC1AS2	, ,	÷	Low	CVL (89.6%)
Zn	MC1AR9, MC1AS0	В		High	RB (22.0 J μg/L) CVH (111%)

* See explanation of comments in Table 1B

Page 5 of 9

C. D. C. M. B.

TABLE 1A SUMMARY OF QUALIFIERS ON DATA SUMMARY FORM AFTER DATA VALIDATION

Case 34031, SDG MC1AS4

ANALYTE	SAMPLES <u>AFFECTED</u>	POSITIVE <u>VALUES</u>	NON- DETECTED <u>VALUES</u>	BIAS	COMMENTS*
Cu	MC1AS4, MC1AS7, MC1AS8, MC1AS9, MC1AT0, MC1AT1, MC1AT2, MC1AT6, MC1AT7, MC1AW4	В		High	RB (2.7 J μg/L)
	MC1AW2, MC1AW3 MC1AX3, MC1AX6	, В	/	High	RB (2.5 J μg/L)
(MCÍAW7, MCIAX0, MCIAX5	, В		High	RB (2.1 J μg/L)
Fe	MC1AS4, MC1AS7, MC1AS8, MC1AT0, MC1AT1, MC1AT2, MC1AT6, MC1AT7		UL	Low	CBN (-37.704 J μg/L)
	MC1AX1, MC1AX3		UL	Low	CBN (-26.108 J µg/L)
	MC1AX9		UL	Low	CBN (-25.283 J µg/L)
Рb	MC1AW2, MC1AX8, MC1AX9		UL	Low	CBN (-3.101 J μg/L)
	MC1AW4		UL	Low	CBN (-3.218 J µg/L)
Mg	MC1AT0, MC1AT1, MC1AT2	В		High	RB (50.9 J μg/L)
	MC1AX8, MC1AX9		UL	Low	CBN (-33.846 J µg/L)

* See explanation of comments in Table 1B

Page 7 of 9

"Cineal

TABLE 1A SUMMARY OF QUALIFIERS ON DATA SUMMARY FORM AFTER DATA VALIDATION

Case 34031, SDG MC1AS4

ANALYTE	SAMPLES <u>AFFECTED</u>	POSITIVE <u>VALUES</u>	NON- DETECTED <u>VALUES</u>	BIAS	<u>COMMENTS*</u>
Na	MC1AX8, MC1AX9	J			>MDL <crql CBN (-209.084 J μg/L)</crql
Zn	MC1AT7	B	· .	High	RB (22.0 J µg/L)
·	MC1AW2, MC1AW3 MC1AX3, MC1AX6	•	Ň	High	RB (16.4 J μg/L)

* See explanation of comments in Table 1B

l

Page 9 of 9

Ching

TABLE 1A SUMMARY OF QUALIFIERS ON DATA SUMMARY FORM AFTER DATA VALIDATION

Case 34031, SDG MC1AW5

ANALYTE	SAMPLES	POSITIVE VALUES	L	NON- DETECTEI YALUES) BIAS	COMMENTS*
Zn	MC1AW6, MC1AX4			· .	High	RB (22.0 J μg/L)
	١					

* See explanation of comments in Table 1B

Appendix A

Glossary of Data Qualifier Codes

t

E.

Appendix B

Data Summary Forms

O.P.C.

Case #: 34031 Site : Lab. :

Number of Soil Samples: 0
Number of Water Samples: 20

			ALL D	ISSOLVED N	ETAL	S					
Sample Number :		MC1AR0		MC1AR1		MC1AR2		MC1AR3		MC1AR4	
Sampling Location : Prefix : BJS-		MW04C-04	05	MW06C-0405		MW11B-0405		MW12B-0405		MW12C-04	05
Field QC :		,		Dup of MC1AR7							
Matrix :		Water		Water		Water		Water		Water	
Units :		ug/L		ug/L		ug/L		ug/L		ug/L	
Date Sampled :		4/11/2005		4/12/2005		4/11/2005		4/11/2005		4/11/2005	
Time Sampled :		12:50		13:00		12:30		11:10		10:15	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	200	68.7	J								
ANTIMONY	60		-ÚL		UL		UL.				
*ARSENIC	10			•					ł	12.6	к
BARIUM	200	17.6	₫J\	79.5	J	31,3	J	338	1.2007.00 1.100 1.100 1.100	- 367	
BERYLLIUM	5		UL		UL		UL		UL		UL
*GADMIUM	5										
CALCIUM	5000	680	В	2510	J	88200		39600		16100	
CHROMIUM	10.										
COBALT	50		THE REAL PROPERTY OF			d'	-		-		
COPPER	25							1.8	B		
IRON	100	TATION CONTRACTOR				19.8	В	141	В	422	
LEAD	10	6-15-16-175									
MAGNESIUM	5000	120	B	509	J	16700	100000-000	9010		4570	J
MANGANESE	15	1.1 .	B	5:5	B	1.3	8	302		1.18.	
MERCURY	0.2	And the real of the second states and	-		THE PARTY OF	127			200000000000000000000000000000000000000		
*NICKEL	40				id and the						
POTASSIUM	5000	446	В	726	J	1340	J	2250	J	1860	J
SELENIUM	35.										
SILVER	10		UL		UL		UL		UL		UL
SODIUM	5000	176000	i Lines	327000	T	4080	j,	88100	L,	523000	<u>.</u>
THALLIUM	25				CALCOLUMN 1				•	No. of Concession, Surgery of Concession, State	1000 - 1 1000 - 1000
VANADIUM	50			A COLORADOR ST			244				
ZINC	60										

CRQL = Contract Required Quantitation Limit

To calculate sample quantitation limits: (CRQL * Dilution Factor)

t

*Action Level Exists

Revised 09/99

SEE NARRATIVE FOR CODE DEFINITIONS

œ	egy,

Case #: 34031

Site :

Lab. :

SDG : MC1AR0 BIG JOHN SALVAGE HOULT RD CEIMIC

Lao			ALL D	ISSOLVED N	IETAL	S ·						
Sample Number :		MC1AR5		MC1AR6	MC1AR6 MC		MC1AR7		MC1AR9			
Sampling Location : Prefix : BJS-		MW17B-0405		MW17C-04	MW17C-0405 MW18-040		5 MW01A1-0405		405	MW01A2-0405		
Field QC:	,				Dup		Dup of MC1AR1					
Matrix :		Water		Water		Water		Water		Water		
Units :		ug/L		ug/L		ug/L		ug/L		ug/L		
Date Sampled :		4/12/2005		4/12/2005		4/12/2005		4/13/2005		4/13/2005		
Time Sampled :		09:40		09:00		12:15	`	11:10		10:15		
Dilution Factor :		.1.0		1.0		1.0		1.0		1.0		
ANALYTE	CRQL	Result	Fiag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	
ALUMINUM	200			468		51.4	J					
ANTIMONY	60,		ULS		UL							
*ARSENIC	10			8.5	J			7.9	J.		1	
BARIUM	200		刮尿	29.4	J	80.1	J	70.1	的器	31113	-J.	
BERYLLIUM	5	•	UL		UL		UL	0.55	J		UL	
CADMIUM	5		e e									
CALCIUM	5000	20600		3660	J	2480	J	7230		37800		
CHROMIUM	10			2.0.,	IJŢ					8.0	J	
COBALT	50							28.6	J	90.4		
COPPER	25			3:0	B	- 2.1	B.		武 迎		制設	
IRON	100			523				9540		3110		
LEAD	- 10							- 1900 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975	19-20-07-07-0 			
MAGNESIUM	5000	5870		890	J	476	J	7600		13200		
MANGANESE	15.	17.5	B	19.7	B	5.4	B	430		16000		
MERCURY	0.2											
NICKEL	40			4.4	J		Sal k	37.8	的語	26.5	Ĵ	
POTASSIUM	5000	1360	J	3370	J	828	J	935	J	2200	J	
SELENIUM	35						14. 2013 14. 2013			Quels all		
SILVER	10		UL		UL .		UĽ		UL		UL	
SODIUM	5000	86800		219000	<u>ال</u>	316000	L.	21900-	1 s	15400	L.	
THALLIUM	25											
VANADIUM	-50			3.3	J.				包括公			
ZINC	60							10.0	в	24.1	в	
CRQL = Contract Required Quantitation Lin			*Actio	n Level Exists	ــــــا ۶	L	SEE N	IARRATIVE F			_	

CRQL = Contract Required Quantitation Limit To calculate sample quantitation limits: (CRQL * Dilution Factor)

Revised 09/99

5

ORIGINIA,

Case #: 34031

Site : Lab. : SDG : MC1AR0

BIG JOHN SALVAGE HOULT RD

CEIMIC

			ALL D	ISSOLVED M	ETALS	3					
Sample Number :		MC1AS1		MC1AS2		MC1AS3	MC1AS5			MC1AS6	
Sampling Location : Prefix : BJS-		MW01B-0405		MW01C-0405 MW03B		MW03B-04	MW03B-0405 MW05B-04		05	MW05C-04	105
Field QC :				Dup of MC1AT9							
Matrix :		Water		Water		Water		Water		Water	
Units :		ug/L		ug/L		ug/L		ug/L		ug/L	
Date Sampled :		4/13/2005		4/13/2005		4/12/2005		4/12/2005		4/12/2005	
Time Sampled :		.12:00		08:55		15:25		12:20		17:00	
Dilution Factor :	1	1.0		1.0 <u>.</u>		1.0		1.0		1.0	
ANALYTE	CRQL	Result -	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	200									81.5	J
ANTIMONY	60										100 at 1
ARSENIC	10			47.5	к						
BARIUM	200	349		53.0	J	46.1	J	300		60.1	J.,
BERYLLIUM	5		UL		UL		UL		UL		UL
CADMIUM	5						- 3 165				
CALCIUM	5000	73000		1380	в	93100		42800		2020	J
GHROMIUM	10										
COBALT	50										
COPPER	n. 25.	2:0	B					s 1.7	В	1.8	B
IRON	100	3490				630					
UEAD	10										
MAGNESIUM	5000	10500		305	J	19000		6310		279	J
MANGANESE	15	308			В	841		58.6		1.8	B
MERCURY	0.2	0.085	В			•		0.029	В	0.059	в
NICKEL	40										
POTASSIUM	5000	1410	́ J	486	В	1540	J	1500	J	683	J
SELENIUM	35										
SILVER	_10		UL		UL		UL		UL		UL
SODIUM	5000	29600		46000	Ľ.	45500		55600		193000	
THALLIUM	25										
VANADIUM	50									2.0	J
ZINC	60										
CRQL = Contract Required Quantitation Lin	nit		*Actio	n Level Exists	5		SEE N	IARRATIVE F	ORCO	DDE DEFINIT	IONS

CRQL = Contract Required Quantitation Limit To calculate sample quantitation limits: (CRQL * Dilution Factor)

Revised 09/99

Grand Mis,

Case #	#: 34031
--------	-----------------

Site : Lab. :

SDG : MC1AR0 BIG JOHN SALVAGE HOULT RD CEIMIC

			ALL D	ISSOLVED M	IETALS	<u> </u>						
Sample Number :		MC1AT3		MC1AT4		MC1AT5	MC1AT5		MC1AT8			
Sampling Location : Prefix : BJS-		MW10C-04	05	MW15B-04	MW15B-0405 M		MW15C-0405		MW19-0405		5	
Field QC :		Dup of MC1	IAT8						Dup of MC1AT3		Dup of MC1AS2	
Matrix :		Water		Water		Water		Water		Water		
Units :		ug/L		ug/L		ug/L		ug/L		ug/L		
Date Sampled :		4/13/2005		4/12/2005		4/12/2005		4/13/2005		4/13/2005		
Time Sampled :		08:45		16:15		17:00		08:00		09:20		
Dilution Factor :		1.0		1.0		1.0		1.0		1.0		
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	
ALUMINUM	200					•						
ANTIMONY	60,	977 - S. S. Ba	Value (1									
*ARSENIC	10	. 5.9	J							49.3		
BARIUM	200	30:7	J	- 105	÷J ==	34,2	J	. 31.6	Jest	55:8	-Dista	
BERYLLIUM	5		UL		UL		UL		UL		UL	
*CADMIUM	5											
CALCIUM	5000	1100	В	81400		4930	J	1140	в	1430	В	
CHROMIUM	10											
COBALT	50					۲.						
COPPER	25				10 5	1.7	В					
IRON	100	19.1	В	638				20.5	В			
LEAD I HAR I I WAR AND I HAR I H	10				影響							
MAGNESIUM	5000	248	В	18400		1030	J	272	J	300	J	
MANGANESE	. 15	0.81	B .	93.2		7.2	В	1.1	Bar	4.8	B	
MERCURY	0.2		inter and the second	0.084	В	0.12	В	This was not a start of the second		(14) Marson and an a	No. 40111	
NICKEL	40				n fransfi	5.4	J .			and the second second	1997 - 1997 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	
POTASSIUM	5000	544	B	1600	J	962	J	608	B	593	В	
SELENIUM	.35					研究教育			17.2 FC			
SILVER	10		UL		UL		UL		UL		UL	
SODIUM	5000	282000		165000		185000	的短期	295000		149000		
THALLIUM	25		NAMES OF TAXABLE								10.00 Contractor of	
VANADIUM	- 50							And Section .	AD SOL			
ZINC	60											
CRQL = Contract Required Quantitation Lim	it		*Actio	n Level Exists	3		SEEN	IARRATIVE F	ORCO	DDE DEFINIT	IONS	

To calculate sample quantitation limits: (CRQL * Dilution Factor)

1

Revised 09/99

Prefix : All sample locations are prefixed BJS-

AR119217

Page __5_ of __10__

0

Case #: 34031

١

Site : Lab. :

SDG MUTA34	
BIG JOHN SALVÅGE HOULT RD	
CEIMIC	

000.000000

Number	of	Soil	Samples	:
110111001	ς.	000	001110100	•

Number of Water Samples: 20

		CLIMIC		ALL D	ISSOLVED M	ETAL	6					
Matrix : Water Ug/L Ug/L<	Sample Number :		MC1AS4		MC1AS7		MC1AS8	* x	MC1AS9		MC1AT0	
Mark Units: Ug/L	Sampling Location : Prefix : BJS-		MW03C-04	05	MW06B-04	05	MW07B-04	0 5	MW07C-04	05	MW09B-04	05
Date Sampled : 4/12/2005 4/12/2005 4/13/2005 11:16 11:16 11:16 11:16 11:16 11:16 11:16 11:16 11:16 11:16 11:16 11:16 11:16 11:16 11:16	Matrix :		Water		Water		Water		Water		Water	
Time Sampled : 16:15 13:30 15:45 14:30 11:15 Dilution Factor : 1.0	Units :		ug/L		ug/L		ug/L		ug/L		ug/L	
Dilution Factor : 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ANALYTE CRQL Result Flag	Date Sampled :		4/12/2005		4/12/2005		4/13/2005		4/13/2005		4/13/2005	
Dilution Factor : 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ANALYTE CRQL Result Flag	Time Sampled :		16:15		13:30		15:45		14:30		11:15	,
ALUMINUM 200 86.1 J I <			1.0		1.0		1.0		1.0		1.0	
ANTIMONY 600 10 10 10 110 117.9 11 1600 112 100 BARIUM 7200 4333 10 01	ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ARSENIC 10	ALUMINUM	200	,		86.1	J						
BARIUM 200 433 J 683 J 17.9 J 160 J 663.4 J BERYLLIUM 5 UL 9380 UL UL UL 9380 UL UL UL 9380 UL UL UL 0.015 B UL <td>ANTIMONY.</td> <td>60</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>s or door Lagrande</td> <td></td> <td></td>	ANTIMONY.	60								s or door Lagrande		
BERYLLIUM 5 UL	*ARSENIC		-						``			
CADMIUM 55 37700 13500 2280 J 32200 996 B CALCIUM 5000 37700 13500 2280 J 32200 996 B CAROMIUM 100 100 100 13500 2280 J 32200 996 B COBALT 50 100 125 42.7 B 221 B 225 B 222 B IRON 100 UL UL UL UL 9380 UL UL TEAD 100 UL UL UL 9380 UL UL MAGNESIUM 5000 7330 2540 J 498 J 6430 156 B MARGANESE 115 106 11344 12.77 B 514 2.88 B NICKEL 400 1488 J 996 J 1410 J 631 B SELENIUM 5000 2450 J 1750 J 996 J 1410 J 631	BARIUM	200	43.3		68.3	J.	17.9	J	160-	J	63.4	Ð.
CALCIUM 5000 37700 13500 2280 J 32200 996 B CCHROMIUM 10	BERYLLIUM			UL		UL		UL		UL	•	UL
CHROMIUM 10	*CADMIUM -	5										
COBALT 50 I <thi< th=""> <thi< td="" th<=""><td>CALCIUM</td><td>5000</td><td>37700</td><td></td><td>13500</td><td></td><td>2280</td><td>J</td><td>32200</td><td></td><td>996</td><td>в</td></thi<></thi<>	CALCIUM	5000	37700		13500		2280	J	32200		996	в
COPPER 225 227 B 124 B 211 B 225 B 222 B IRON 100 UL UL UL UL 9380 UL UL MAGNESIUM 5000 7330 2540 J 498 J 6430 156 B MAGNESIUM 5000 7330 2540 J 498 J 6430 156 B MARCURY 0.2 166 1344 127 B 5514 228 B NICKEL 400 418 J 6430 156 B SELENIUM 5000 2450 J 1750 J 996 J 1410 J 631 B SILVER 10 R R R R R 199000 </td <td>CHROMIUM</td> <td>10</td> <td></td> <td></td> <td>Charles and</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	CHROMIUM	10			Charles and							
IRON 100 UL UL UL 9380 UL UL MAGNESIUM 5000 7330 2540 J 498 J 6430 156 B MANGANESE 115 166 11344 12.77 B 5144 288 B MERCURY 0.2 1 116 116 116 116 116 116 B NICKEL 400 115 116 11750 J 996 J 1410 J 631 B SILVER 10 R R R R R R R 199000 <td>COBALT</td> <td>50</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	COBALT	50		•								
LEAD 10 20 2540 J 498 J 6430 156 B MAGNESIUM 5000 7330 2540 J 498 J 6430 156 B MAGNESIUM 115 1166 11343 1277 B 15144 218 B MERCURY 0.2 0.2 0.015 B 156 B 156 </td <td>COPPER</td> <td>25</td> <td>2.7</td> <td>B</td> <td>2.4</td> <td>В</td> <td>2,1</td> <td>B</td> <td>2.5</td> <td>B</td> <td>2.2</td> <td>8</td>	COPPER	25	2.7	B	2.4	В	2,1	B	2.5	B	2.2	8
MAGNESIUM 5000 7330 2540 J 498 J 6430 156 B MANGANESE 115 166 11344 12:7 B 5144 28 B MERCURY 0.2 1 116 11344 0.015 B 115 28 B NICKEL 400 1418 J 0.015 B 115 166 11344 115 116 B 115 28 B 115 116 B 116 28 B 115 116 B 115 116 B 116 116 B 116 116 B 116 116 B 116 <td>IRON</td> <td>100</td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>UL</td> <td></td> <td>UL</td> <td>9380</td> <td></td> <td></td> <td>UL</td>	IRON	100		· · · · · · · · · · · · · · · · · · ·		UL		UL	9380			UL
MANGANESE1 15 166 1134 12.7 B 514 28 B MERCURY 0.2 - - 0.015 B - 28 B NICKEL 40 438 J - 0.015 B - 1631 B POTASSIUM 5000 2450 J 1750 J 996 J 1410 J 631 B SILVER 10 R R R R R 199000 4 199000 </td <td>ALEAD</td> <td>10</td> <td></td> <td>a la come</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ALEAD	10		a la come								
MERCURY 0.2 Image: second	MAGNESIUM	5000	7330	· .	2540	J	498		6430		156	
NICKEL 40.<	MANGANESE	15	166		134			B	514		2.8.(B
POTASSIUM 5000 2450 J 1750 J 996 J 1410 J 631 B SELENIUM 355 355 8 9 3 199000 <td>MERCURY</td> <td>0.2</td> <td></td> <td></td> <td></td> <td></td> <td>0.015</td> <td>В</td> <td></td> <td></td> <td></td> <td></td>	MERCURY	0.2					0.015	В				
SELENIUM 35 8 9 199000	INICKEL	. 40.			4.8	j⊆,						
SILVER 10 R </td <td>POTASSIUM</td> <td></td> <td>2450</td> <td>-</td> <td>1750</td> <td>J</td> <td>996</td> <td>J</td> <td>1410</td> <td>J</td> <td>631</td> <td>в</td>	POTASSIUM		2450	-	1750	J	996	J	1410	J	631	в
SODIUM 5000 201000 474000 40 199000 47 199000	SELENIUM	35						10-10-10 10-10-10				
THALLIUM 25	SILVER	10		R				R		R		R
VANADIUM 50 2/8 J 2/8 J 2/4 J 4 2/8 J 2/8 J 2/4 J 4 2/8 J 2/8 J 2/4 J 4 4 2/8 J 2/8	SODIUM	5000	201000		174000		206000		199000	2.5	4 199000 -	
ZINC 60	THALLIUM										·	
	VANADIUM	50	- 2.8	J.	. 2:8	J	2.4	J277			2.8	J
CRQL = Contract Required Quantitation Limit *Action Level Exists SEE NARRATIVE FOR CODE DEFINITIONS	ZINC	60										
	CRQL = Contract Required Quantitation Lin	nit		*Actio	n Level Exists	3		SEEN	IARRATIVE F	OR CO	DDE DEFINIT	IONS

*Action Level Exists To calculate sample quantitation limits: (CRQL * Dilution Factor)

Revised 09/99

٦

ORIGINAL

Case #: 34031

Site : Lab. : SDG : MC1AS4 BIG JOHN SALVAGE HOULT RD CEIMIC

			ALL D	ISSOLVED N	IETALS	<u> </u>	•					
Sample Number :		MC1AT1		MC1AT2	•	MC1AT6		MC1AT7		MC1AW2		
Sampling Location : Prefix : BJS-		MW09C-04	05	MW10B-04	05 È	MW16B-04	05	MW16C-04	MW02A-04	05		
Matrix :		Water		Water		Water		Water		Water		
Units :		ug/L		ug/L		ug/L		ug/L		ug/L		
Date Sampled :		4/13/2005		4/13/2005		4/13/2005		4/13/2005		4/14/2005		
Time Sampled :		12:05		13:05		16:10		14:30		08:10		
Dilution Factor :		1.0		1.0		1.0		1.0		1.0		
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	
ALUMINUM	200			62.8	J			53.2	J			
ANTIMONY	60								1000 (1995) 1997 - 1995		UL.	
*ARSENIC	10			8.1	Ĵ							
BARIUM	200	90.3	J P	. 22.2	创新	-42.9	IJ		$\mathbf{J}_{1,2}^{h}$	179	J AL	
BERYLLIUM	5		UL		UL		UL		ŮL		UL	
*CADMIUM	5											
CALCIUM	5000	1350	В	1260	В	1820	J	2530	J	39200		
*CHROMIUM	10								22.7			
COBALT	50		-							9.2	J	
COPPER +	25	3.5	B 2.	2.2	B	2:2	.В. у	3.0.	B		B	
IRON	100		UL		UL		UL		UL	9580		
*LEAD	10										ULED	
MAGNESIUM	5000	228	В	182	В	428	J	560	J	11700		
MANGANESE	<u>15</u>		B.2	1.7	B	5.6	В.,	5.8	B	1390		
MERCURY	0.2	0.016	В			*****	Transfer to		and the second			
INICKEL	40									11.5	J.	
POTASSIUM	5000	893	В	1090	J	883	В	1300	J	2800	J	
SELENIUM	35											
SILVER	10	THE REAL PROPERTY OF	R		R		R		R		R	
SODIUM	5000	303000		259000		115000	100.07	114000		40100		
THALLIUM	25		-		-		The Station	THE CONTRACTOR OF STREET, STREE	-			
VANADIUM	50	3.4;	Jec	- 5.3	<u>J</u>	2.2	1)	2.7	J			
ZINC	60			n Level Existe					В	19.6	В	

CRQL = Contract Required Quantitation Limit To calculate sample quantitation limits: (CRQL * Dilution Factor) *Action Level Exists

SEE NARRATIVE FOR CODE DEFINITIONS Revised 09/99

Page __7__ of __10__

ORIGINAI

Case #: 34031

Site : Lab. :

SDG : MC1AS4

BIG JOHN SALVAGE HOULT RD

CEIMIC

Lab. :	CEIMIC		ALL D	ISSOLVED M		<u> </u>					
Sample Number :		MC1AW3		MC1AW4		MC1AW7		MC1AX0		MC1AX1	
Sampling Location : Prefix : BJS-		MW03A-0405 MW04A-0405				MW08A-04	05	MW13A-04	05	MW13B-04	405
Field QC :		Dup of MC	1AX6		•	Dup of MC1	IAX5				
Matrix :		Water		Water		Water		Water		Water	
Units :		ug/L		ug/L		ug/L		ug/L		ug/L	
Date Sampled :		4/14/2005		4/13/2005		4/14/2005		4/14/2005		4/14/2005	
Time Sampled :		13:15		17:45		12:00		14:50		13:30	
Dilution Factor :		1.0		1.0	•	1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Fla
ALUMINUM	200			59.2	J	97.2	J	195	J		
ANTIMONY	60				ULE		i and	Carlot St. 2			
ARSENIC	10	23.4									
BARIUM	200	107	J	140	J	41.4	Ĵ.	125	J	422	
BERYLLIUM	5		UL		UL	0.65	J.	0.20	J .		U
CADMIUM	5					0:40	J	0.71	Ĵ		
CALCIUM	5000	30800		20900		3860	J	4900	J	39000	
CHROMIUM	- 10-	. 21	IJ	1.9	J.			1.5	J		
COBALT	50	4.3	J.	1.2	J	10.8	J	17.2	J		
COPPER	25		B	2.9	B	- 3.0	. B	4.1	В		
IRON	100	40400		39700		64.4	J	279			UL
LEAD	10				UL						C.
MAGNESIUM	5000	12600		8420		4210	J	4440	J	7890	
MANGANESE	15	3830		37007		354		594		371	
MERCURY	0.2						١				
NICKEL	40		的感			15.9	IJ	23.8	Ĵ.	19 (19 (19 (19 (19 (19 (19 (19 (19 (19 (
POTASSIUM	5000	1790	J	2050	J	2190	J	2030	J	2260	J
SELENIUM	.35							22. V. 74. 51			
SILVER	10		R		R		R		R		R
SODIUM	5000	19200		20000		13400		.2240	J	32400	
THALLIUM	25					(
VANADIUM	- 50										
ZINC	60	14.3	в			25.9	J	42.9	J		

CRQL = Contract Required Quantitation Limit To calculate sample quantitation limits: (CRQL * Dilution Factor)

Revised 09/99

Prefix : All sample locations are prefixed BJS-

AR119220

ORIGINAL

Case #:	34031
Site :	

Lab. :

SDG : MC1AS4 BIG JOHN SALVAGE HOULT RD CEIMIC

Lad. :	CEIMIC		ALL D	ISSOLVED M	ETAL	S .					
Sample Number :		MC1AX3		MC1AX5		MC1AX6		MC1AX8		MC1AX9	
Sampling Location : Prefix : BJS-		MW14C-04	05	MW21-040	MW22-040	5	GWEQ-02		GWEQ-03		
Field QC :		Dup of			AW7	Dup of MC1	IAW3	Rinsate Bla	ink	Rinsate Bla	ank
Matrix :		Water		Water		Water		Water		Water	
Units :		ug/L		ug/L		ug/L		ug/L		ug/L	
Date Sampled :		4/14/2005		4/14/2005		4/14/2005		4/14/2005	·	4/14/2005	
Time Sampled :		11:30		11:40 .		13:00		14:30		15:45	
Dilution Factor :	-	1.0		1.0		1.0		1.0		1.0	
ANALYTE	CROL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Fla
ALUMINUM	200	46.3	J	102	J			1			1
TANTIMONY	60.						1.1		UL		UE
*ARSENIC	10	7.3	J			20.6	. .]			
BARIUM	200	87.9	J	41.5	J	96:0-+	J	0.57	打扮	-1.0	J
BERYLLIUM	5		UL	0.66	J		UL		UL		UL
CADMIUM	5			0.47	J						
CALCIUM	5000	2660	J	3850	J	31500		211	В	279	в
CHROMIUM	10					3.4	J.				
COBALT	50			10.6	J	5.0	J	,	UL		UL
COPPER	25	3.9	B	4.1	B	3.4	B	2:5	Ĵ.	2.1	Į D
IRON	100		UL	55.9	J	38100		· 110			UL
LIEAD	10								UL		U
MAGNESIUM	5000	441	J	4160	J	12800			UL		UL
MANGANESE	15	26.1	B	343	a ing ang ang ang ang ang ang ang ang ang a	4070		8.0	J	4.7	В
MERCURY	0.2	The second s					-				
NICKEL	40		13(4)(F	17.3	J.	8.4	J.				
POTASSIUM	5000	1460	, j	2130	J	1750	J	288	В	264	В
SELENIUM	35	10.5	j) si								
SILVER	10		R		R		R	,	R		R
SODIUM	5000	314000		13200		18500		173	J	142	IJ
THALLIUM	25	WALL BURGER AND A STATE			-				CONTRACTOR AND A		
VANADIUM	50	6.9	J.,		10.XC.27						in an
ZINC	60	7.6	в	27.4	J	14.2	в	16.4	J	i l	I

To calculate sample quantitation limits: (CRQL * Dilution Factor)

Revised 09/99

.

Prefix : All sample locations are prefixed BJS-

(

Number of Soil Samples: 0

Number of Water Samples: 7

ORIGINAL

Case #: 34031 SDG : MC1AW5 BIG JOHN SALVAGE HOULT RD CEIMIC

Sample Number : Sampling Location : Prefix : BJS- Matrix : Units : Date Sampled : Time Sampled : Dilution Factor : ANALYTE ALUMINUM ANTIMONY.	CRQL 200	MC1AW5 MW05A-04 Water ug/L 4/13/2005 18:50 1.0 Result	05 Flag	MC1AW6 MW06A-04 Water ug/L 4/13/2005 19:45 1.0 Result		MC1AW8 MW08B-04 Water ug/L 4/14/2005 10:30 1.0	05	MC1AW9 MW08C-04 Water ug/L 4/14/2005 09:25	05	MC1AX2 MW14B-04 Water ug/L 4/14/2005 10:50	05
Matrix : Units : Date Sampled : Time Sampled : Dilution Factor : ANALYTE ALUMINUM	200	Water ug/L 4/13/2005 18:50 1.0		Water ug/L 4/13/2005 19:45 1.0		Water ug/L 4/14/2005 10:30	05	Water ug/L 4/14/2005 09:25	05	Water ug/L 4/14/2005	05
Units : Date Sampled : Time Sampled : Dilution Factor : ANALYTE ALUMINUM	200	ug/L 4/13/2005 18:50 1.0	Flag	ug/L 4/13/2005 19:45 1.0		ug/L 4/14/2005 10:30		ug/L 4/14/2005 09:25		ug/L 4/14/2005	
Date Sampled : Time Sampled : Dilution Factor : ANALYTE ALUMINUM	200	4/13/2005 18:50 1.0	Flag	4/13/2005 19:45 1.0		4/14/2005 10:30		4/14/2005 09:25		4/14/2005	
Time Sampled : Dilution Factor : ANALYTE ALUMINUM	200	18:50 1.0	Flag	19:45 1.0		10:30		09:25			
Dilution Factor : ANALYTE ALUMINUM	200	1.0	Flag	1.0						10:50	
ANALYTE ALUMINUM	200		Flag			10					
ALUMINUM	200	Result	Flag	Result		1.0		1.0		1.0	
	Section and Section 3.			110301	Flag	Result	Flag	Result	Flag	Result	Flag
ANTIMONY	e 60		UL		UL	72.2	J	58.5	J		UL
											1.540
ARSENIC	10	19.2						6.1	J		
BARIUM	200	· · · 139)	J	244		342		188	Jaki	65:0	J
BERYLLIUM	5		UL		UL		UL		UL		UL
CADMIUM	5			West second							
CALCIUM	5000	13000		26000		40700		8420	304 V2.9(6)C22	47800	22 22 22 20 20 20 20 20 20 20 20 20 20 2
CHROMIUM	10	2.3	٥J 🖓	2.5	ĴŚ						
COBALT	50	2.8	в	10.7	J			0.69	в	0.66	в
COPPER	25	4:1	B	.2.8	BER	1 2.3 ·	B	2.4	B	2.3	B
IRON	100	25200		19400		34.0	В	66.4	в	32.2	В
LEAD	* 10					2:0)	2.0	J		
MAGNESIUM	5000	8650		9410		7200		1360	J	9270	
MANGANESE	15	3530		2330		44.9		14.4	J	107	
MERCURY	0.2										
NICKEL	40	* . 43-	.Yoc	10.7	-D						
POTASSIUM	5000	1650	J	1600	J	2130	J	1120	В	1980	J
SELENIUM	35										
SILVER	10		R		R		R		R		R
SODIUM	5000	40500		28800		36300		153000	5.4 M	23600	
THALLIUM	25										
VANADIUM	50			en a de la TARA							
ZINC	60			11.7	В			·			

CRQL = Contract Required Quantitation Limit To calculate sample quantitation limits: (CRQL * Dilution Factor)

*Action Level Exists

SEE NARRATIVE FOR CODE DEFINITIONS Revised 09/99

Prefix : All sample locations are prefixed BJS-

Site :

Lab. :

OPICINAL

Site : Lab. : SDG : MC1AW5 BIG JOHN SALVAGE HOULT RD CEIMIC

Lab	CEIMIC			ISSOLVED N	ETAL	-					
Sample Number :		MC1AX4	ALL D	MC1AX7				r		<u></u>	
•		MW15A-04	05	GWEQ-01							
Sampling Location : Prefix : BJS-		10100 15/4-04	05	Rinsate Bla	t.						
		1.1.1.1.1.1.1			INK						
Matrix :		Water		Water							
Units :		ug/L		ug/L							
Date Sampled :		4/13/2005		4/13/2005							
Time Sampled :		19:05		16:45							
Dilution Factor :		1.0	Г <u></u>	1.0	T		·		12		T
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	200		UL		UL		640-045-04	and an and a second second	aran sama		Section 2007
ANTIMONY	- 7 60					1000 Par 1990			98 8 4 (* 1		
*ARSENIC	10	10.5	WOR BEARING		-		-				
BARIUM	200	67.6	J	0.88	B						
BERYLLIUM	5		UL		UL					COLUMN DESCRIPTION	-
CADMIUM	5										
CALCIUM	5000	37900		344	В		t the state of the state of				
CHROMIUM	10	- 3.4	Ĵ				10. Å 19				
COBALT	50	28.8	J								
COPPER	-25	2.5	B	2.7	B						12.13
IRON	100	1630		70.6	В						
LEAD	10										
MAGNESIUM	5000	14500		50.9	J						
MANGANESE	-15			5.8	B						
MERCURY	0.2										
NICKEL	40		J.								
POTASSIUM	5000	1470	J	130	в						
SELENIUM								R. S. B.			
SILVER	10		R		R	·					
SODIUM	5000	13400		689	J						
THALLIUM	25					and the second sector				ANNUAL AND ADDRESS OF ADDRES	
VANADIUM	-50	andra San Alana ang ang ang ang ang ang ang ang ang				and a second			16 X 14		
ZINC	· 60	12.4	В	22.0	J	A COLORADORI SI CALL		AND DESCRIPTION OF A DE	STATISTICS AND A STATISTICS	arandarak karantaranan (kara	
CROL = Contract Required Quantitation Lim	**		** -41	n Level Eviste							<u> </u>

CRQL = Contract Required Quantitation Limit To calculate sample quantitation limits: (CRQL * Dilution Factor)

*Action Level Exists

SEE NARRATIVE FOR CODE DEFINITIONS Revised 09/99

Appendix C

Chain-of-Custody Records

ORIGINIA,

Region: Project Code:	3 T47121.0103			Date Shipped: Carrier Name:	4/12/2005 FedEx		Chai	n of Custody I	Record		Sampler Signature:	
Account Code: CERCLIS ID:	2005T03W30	2DD2C		Airbill: Shipped to:	Ceimic Corpo		Relind	quished By	(Date	/ Time)	Received By	(Date / Time)
Spill ID: Site Name/State:	Big John Sal	vage CLP 3	4031/WV		10 Dean Knau Narragansett	uss Drive RI 02882	2					<u></u>
Project Leader: Action: Sampling Co:	Tad Yanches Remedial Inv Tetra Tech, I	vestigation			(401) 782-890	10	3 4					
INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND		No./ TIVE/ Bottles	STATION LOCATION		SAMPLE DATE	COLLECT /TIME	-	GANIC PLE No.	QC Type
The second second second second	ound Water/	/G	(21)(ØM(2)	(HNO3)		BJS-MW02B-04	405	S: 4/12/2005	10:35	C0016	<u></u>	
Ground Gr	derson ound Water/ nnis	/G 🏈	(21) DM (21)	1011 (HNO3)		BJS-MW02C-04	405	S: 4/12/2005	9:05	C0017		
Group Gro	derson ound Water/ dim Petrov	/G 🖤	(21) (21)	HIGE (HNO3)		BJS-MW04B-04	405	S: 4/11/2005	10:40	C0022		
C0023 Gro	ound Water/ dim Petrov	/g (6	V (21) (21), TM	(HNO3), 8 550 (NaOH) (3	73 (HNO3),))	BJS-MW04C-04	405	S: 4/11/2005	12:50	C0023		
C0055 Gro	ound Water/ dim Petrov	/G 👷 Ct	N (21) TN	(HNO3), 1223 (NaOH)	<u>1221 (HNO3),</u> (3)	BJS-MW17B-04	405	S: 4/12/2005	9:40	C0055		-
C0056 Gr	ound Water/ dim Petrov	/G C I	1 (21) (21) TM	(HNO3), 1238 (NaOH)	1231 (HNO3),	BJS-MW17C-0	405	S: 4/12/2005	9:00	C0056		

MCIANI Rec & 4-27-05 grs DM, Hg mcoo ZI neil 4-28-05 grs TM, Ng, Cu

Shipment for Case Complete? N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment Iced?
CN = Cyanide, DM ≈	CLP TAL Dissolved Metals, TM = CLP TAL Total Metals		

TR Number: 3-035066262-041205-0009

PR provides preliminary results. Requests for preliminary results will increase analytical costs.

Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax

P - (AR119225

\$EPA			ct Laboratory ffic Report & (stody Re	ecord			Cas DAS	e No: No:	34031	F
Region: Project Code:	3			Date Shipped: Carrier Name:	4/12/2005 FedEx		Cha	in of Custody	Record		Sampler Signature:	
Account Code:	T47121.010 2005T03W3	02DD2C		Airbill:	8483 3674 43	357	Relir	nquished By	(Date	/ Time)	Received By	(Date / Time)
CERCLIS ID:	WVD05482	7944		Shipped to:	Ceimic Corpo		1					
Spill ID:					10 Dean Kna	uss Drive	2				<u> </u>	
Site Name/State	big sonn oc		_P 34031/WV		Narragansett (401) 782-89		<u> </u>					·
Project Leader:	Tad Yanche				(-101) / 02 00		3					
Action: Sampling Co:	Remedial Ir Tetra Tech.	•	On				4.					· · · · · · · · · · · · · · · · · · ·
INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAG N PRESERVATI		STATION LOCATION	1		E COLLECT E/TIME		GANIC PLE No.	QC Type
MC0030 MC1AR1	Ground Water/ Dennis Anderson	/G	CN (21) DM (21) TM	(928)(HNO3), 92 936 (NaOH) (3)	9 (HNO3),	BJS-MW06C-0	405	S: 4/12/2005	13:00	C0030		
MC0041 MCIAR2	Ground Water/ Dennis Anderson	/G	CN (21)(DM)(21); TM (21)	(1038)(HNO3), 1 1040 (HNO3), 1 1060 (NaOH), 1	041 (HNO3),	BJS-MW11B-0	405	S: 4/11/2005	12:30	C0041		MS/MSD
MC0043 MCiAR-3	Ground Water/ Dennis Anderson	/G	CN (21) (DM)(21), TM	(1072)(HNO3), 1 1080 (NaOH) (3	073 (HNO3),)	BJS-MW12B-0	405	S: 4/11/2005	11:10	C0043		
MC0044 MCIAR4	Ground Water/ Dennis	/G	CN (21) (DM) 21), TM (21)	(1082)(HNO3), 1 1090 (NaOH) (3	083 (HNO3),)	BJS-MW12C-0	405	S: 4/11/2005	10:15	C0044		
мС0057 МСІАК7	Anderson Ground Water/ Dennis Anderson	/G	CN (21), DM (21), TM (21)	(1240 (HNO3), 1 1248 (NaOH) (3	241 (HNO3),)	BJS-MW18-04	105	S: 4/12/2005	12:15	C0057		Field Duplicate

SDG MC0023 4-29-05 TM, CN, Kg JIS

Shipment for Case Complete? N	Sample(s) to be used for laboratory QC: MC0041	Additional Sampler Signature(s):	Chain of Custody Seal Number:
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment Iced?
CN = Cyanide, DM = CL	P TAL Dissolved Metals, TM = CLP TAL Total Metals		

TR Number: 3-035066262-041205-0011

PR provides preliminary results. Requests for preliminary results will increase analytical costs. Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax

F2V5.1.047 Page 1 of 1

GI AR119226

<pre>SEPA</pre>	Inorgan		rct Laboratory ffic Report & (Chain of Cu		ecord	<u> </u>		DAS	e No:	34031 Sampler	R
Region: Project Code: Account Code [.]	3 T47121.010 2005T03W3		:	Date Shipped: Carrier Name: Airbill:	4/13/2005 FedEx 8483 3674 44	105 ·		in of Custody		/ Time}	Signature: Received By	(Date / Time)
CERCLIS ID: Spill ID:	WVD05482			Shipped to:	Ceimic Corpo 10 Dean Kna	uss Drive	1 2					
Site Name/State: Project Leader: Action: Sampling Co:	Big John Sa Tad Yanche Remedial Ir Tetra Tech,	eski nvestigat	LP 34031/WV		Narragansett (401) 782-899		3					
INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAG PRESERVAT		STATION LOCATION		SAMPLE	COLLECT /TIME	÷	I GANIC PLE No.	QC Type
CONTRACTOR OF A DESCRIPTION OF A DESCRIP	Ground Water/ Vadim Petrov	/G	CN (21). (21), TM	(HNO3), 7 768 (NaOH) (3)	81 (HNO3),	BJS-MW01A1-0	405	S: 4/13/2005	11:10	C0011	<u></u>	
	Ground Water/ Vadim Petrov	/G	CN (21), (21), (21), TM	HNO3), 77 778 (NaOH) (3	7 <u>0 (HNO3)</u> ,	BJS-MW01A2-0	405	S: 4/13/2005	10:15	C0012		
C0014	Ground Water/ Vadim Petrov	/G	CN (21) (21); TM	HNO3), 78 796 (NaOH) (3)	39 (HNO3),	BJS-MW01C-04	405	S: 4/13/2005	8:55	C0014		
C0039	Ground Water/ Dennis	/G	CN (21)(21), TM	(HNO3), 1026 (NaOH) ((019 (HNO3), 3)	BJS-MW10C-04	405	S: 4/13/2005	8:45	C0039		
	Anderson Ground Water/ Dennis	/G	CN (21), (21), TM	(HNO3), 1258 (NaOH) ((251 (HNO3), 3)	BJS-MW19-04	05	S: 4/13/2005	8:00	C0058		Field Duplicate
	Anderson Ground Water/ Vadim Petrov	/G	CN (21), (21), (21), (7)	HNO3), 1268 (NaOH) (1261 (HNO3), 3)	BJS-MW20-04	05	S: 4/13/2005	9:20	C0059		Field Duplicate

SDG-MC0023 4-29-05 TM, CN, Hg gTS SDG-MCIARO 5-3-05 DM, Hg JJS

Shipment for Case Complete? N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C. Grab = G	Shipment Iced?
CN = Cyanide, DM =	CLP TAL Dissolved Metals, TM = CLP TAL Total Metals		
TR Number:	3-035066262-041305-0009		

PR provides preliminary results. Requests for preliminary results will increase analytical costs.

Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax

_____ F2V5.1.047 Page"1 of 1 *

€€₽4	USEPA C Inorgani		ct Laboratory ffic Report & (stody Re	cord	V	/	Cas DAS	e No: No:	34031	R
Region:	3			Date Shipped:	1/13/2005		Chai	n of Custody	Record		Sampler Signature:	
Project Code: Account Code: CERCLIS ID:	T47121.010 2005T03W3	02DD2C			FedEx 8483 3674 43	68	Relin	quished By	(Date	/ Time)	Received By	(Date / Time)
Spill ID:	WVD054827	944			Ceimic Corpo 10 Dean Knau		1					
Site Name/State	Dig oonn Oc	-	P 34031/WV		Narragansett (401) 782-890		2			۹		
Project Leader: Action:	Tad Yanche Remedial In		on			·•	3					
Sampling Co:	Tetra Tech,						4					
INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/	ANALYSIS/ TURNAROUND	TAG No PRESERVATIVE	-	STATION LOCATION			COLLECT F/TIME	•	GANIC PLE No.	QC Type
NC0013	Ground Water/ Vadim Petrov	/G	CN (21), DM (21), TM (21)	779 (HNO3), 780 787 (NaOH) (3)	(HNO3),	BJS-MW01B-0	405	S: 4/13/2005	12:00	C0013	· .	
MC0028 . LIAS7	Ground Water/ Dennis Anderson	/G	CN (21), DM (21), TM (21)	917 (HNO3), 918 925 (NaOH) (3)	(HNO3),	BJS-MW06B-0	405	S: 4/12/2005	13:30	C0028		
1C0036 [1A70	Ground Water/ Dennis	/G	CN (21), DM (21), TM (21)	988 (HNO3), 989 996 (NaOH) (3)	(HNO3),	BJS-MW09B-0	405	S: 4/13/2005	11:15	C0036	、	
1C0037	Anderson Ground Water/ Dennis Anderson	./G	CN (21), DM (21), TM (21)	1006 (NaOH), 99 999 (HNO3) (3)	3 (HNO3),	BJS-MW09C-0	405	S: 4/13/2005	12:05	C0037		\
100054 CIA17	Ground Water/ Vadim Petrov	/G	CN (21), DM (21), TM (21)	1196 (HNO3), 11 1198 (HNO3), 11 1218 (NaOH), 12	99 (HNO3),	BJS-MW16C-0	405	S: 4/13/2005	14:30	C0054		MS/MSD

Shipment for Case Complete? N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:	
Completerin	MC0054			
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment Iced?	
CN = Cyanide, DM = CL	P TAL Dissolved Metals, TM = CLP TAL Total Metals			
TR Number:	3-035066262-041305-0012		REGION COPY	Ó.O.
PR provides preliminary res	ults. Requests for preliminary results will increase analytical cos		F2V5.1.047 ² Page 1 of 1	N.
703/818-4602	anagement Office, Attn: Heather Bauer, CSC, 15000 Conten	ence Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax	1200 How Fage 101	Š.
3				

~

١

€ EPA			act Laboratory Iffic Report & (ustody Re	cord			Cas DAS	e No:	34031	F	2
Region: Project Code:	3		······································	Date Shipped:	4/13/2005	-	Chai	in of Custody	Record		Sampler Signature:	· ·	_
Account Code:	T47121.010 2005T03W3		2	Carrier Name: Airbill:	FedEx 8483 3674 44	16	Relin	quished By	(Date	/ Time}	Received By	(Date / Time	e)
CERCLIS ID:	WVD05482	7944	-	Shipped to:	Ceimic Corpo		1		·····	<u> </u>	1		-/
Spill (D:	ſ			Chipped to:	10 Dean Knau								
Site Name/State	Big John Sa	alvage C	LP 34031/WV		Narragansett		2						
Project Leader:	rad ranone				(401) 782-890	0	3			<u>-</u>			
Action:	Remedial In	-	lion				4						
Sampling Co:	Tetra Tech,	Inc.			·		4						
INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC TYPE		TAG PRESERVAT		STATION LOCATION			COLLECT E/TIME		GANIC PLE No.	QC Туре	
100019 h C1AS	Ground Water/ Vadim Petrov	/G	CN (21), DM (21), TM	(836)(HNO3), 83 844 (NaOH) (3)		BJS-MW03B-0	405	S: 4/12/2005	15:25	C0019		n-	
10025 NCIASS	Ground Water/ Vadim Petrov	/G	CN (21), DA (21), TM	890 (HNO3), 89 898 (NaOH) (3)	91 (HNO3),	BJS-MW05B-0	405	S: 4/12/2005	12:20	C0025			
10026 101AS6	Ground Water/ Vadim Petrov	/G	CN (21), DM(21); TM (21)	(899)(HNO3), 90 907 (NaOH) (3)		BJS-MW05C-0	405	S: 4/12/2005	17:00	C0026	,		
100051 20174	Ground Water/ Dennis	/G	, CN (21), OM (21), TM (21)	(1166)(HNO3), 1 1174 (NaOH) (3	1167 (HNO3), 3)	BJS-MW15B-0	405	S: 4/12/2005	16:15	C0051	_	~	
1C0052 1C1AT5	Anderson Ground Water/ Dennis	/G	CN (21) DM (21), TM (21)	(1176 (HNO3), 1184 (NaOH) (1177 (HNO3), 3)	BJS-MW15C-0	405	S: 4/12/2005	17:00	C0052			
IC0188	Anderson Field QC/ Dennis	/G	CN (21) (DM)(21), TM (21)	4241 (HNO3), 4 4249 (NaOH) (4242 (HNO3), 3)	EQ-SD1-040	5	S: 4/11/2005	14:30	C0188		Rinsate	
AC0189	Anderson Field QC/ Dennis Anderson	/G	CN (21) DM (21), TM (21)	4250 (HNO3), 4 4258 (NaOH) (3		EQ-SW1-040	5	S: 4/11/2005	14:00	C0189		Rinsate	

506 mc0023, Tm, CN, Hg 4-29-05 gTS

Shipment for Case Complete? N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seat Number:
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High = CLP TAL Dissolved Metals, TM = CLP TAL Total Metals	Type/Designate: Composite = C, Grab = G	Shipment Iced?

3-035066262-041305-0004 TR Number:

PR provides preliminary results. Requests for preliminary results will increase analytical costs.

Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax

F2V5.1.047 Page 1 of 1 -

5 EPA			ct Laboratory ffic Report & C	-	stody Re	cord	V		Case DAS	• No:	34031	
Region: Project Code:	3	2		Date Shipped:	4/13/2005 FedEx	·····;	Cha	in of Custody	Record		Sampler Signature:	
Account Code: CERCLIS ID: Spill ID: Site Name/State: Project Leader: Action:	T47121.010 2005T03W3 WVD054827 Big John Sa Tad Yanche Remedial Ir	02DD2C 7944 alvage CL eski	P 34031/WV	Airbill: Shipped to:	8483 3674 43 Ceimic Corpor 10 Dean Knau Narragansett I (401) 782-890	ration Iss Drive RI 02882	Relin 1 2 3	quished By	(Date	/ Time)	Received By	(Date / Time
Sampling Co: INORGANIC SAMPLE No.	Tetra Tech, MATRIX/ SAMPLER	Inc. CONC/ TYPE	ANALYSIS/ TURNAROUND	TAG N PRESERVATION		STATION	4		COLLECT		GANIC PLE No.	QC Type
	Ground Water/ /adim Petrov	/G	CN (21), DM (21), TM (21)	845 (HNO3), 84 853 (NaOH) (3)	6 (HNO3),	BJS-MW03C-0	405	S: 4/12/2005	16:15	C0020		
A58 [Ground Water/ Dennis Anderson	/G	CN (21), DM (21), TM (21)	938 (HNO3), 93 946 (NaOH) (3)	9 (HNO3),	BJS-MW07B-0	405	S: 4/13)2005	15:45	C0031		·
120032 C	Ground Water/ Dennis Anderson	/G	CN (21), DM (21), TM (21)	948 (HNO3), 94 956 (NaOH) (3)	9 (HNO3),	BJS-MW07C-(405	S: 4/13/2005	14:30	C0032		
C0038 C	Ground Water/ Dennis Anderson	/G	CN (21), DM (21), TM (21)	1008 (HNO3), 1 1016 (NaOH) (3		BJS-MW10B-(405	S: 4/13/2005	13:05	C0038		`.
C0053. C	Ground Water/ adim Petrov	/G	CN (21), DM (21), TM (21)	1186 (HNO3), 1 1194 (NaOH) (3		BJS-MW16B-0	405	S: 4/13/2005	16:10	C0053		
C0196 F	ield QC/	/G	CN (21), TM (21)	4332 (HNO3), 4	338 (NaOH)	BJS-FBO1-0	45	S: 4/13/2005	16:15	C0196		

Shipment for Case Complete? N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:	-
Analysis Key: CN = Cyanide, DM = Cl	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment Iced?	ļ
PR provides preliminary res	3-035066262-041305-0016 sults. Requests for preliminary results will increase analytical co anagement Office, Attn: Heather Bauer, CSC, 15000 Confe	sts. rence Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax	F2V\$91.04739age 1 of 1	- ALCINA

€EPA	- 0		ct Laboratory ffic Report & C		ustody Rec	cord	·		Case DAS N		34031	R	GINA
Region:	3			Date Shipped:	4/14/2005	1	Chai	in of Custody Re	ecord		Sampler Signature:	-	1 21
Project Code: Account Code:	T47121.0103 2005T03W30			Carrier Name: Airbill:	FedEx 8483 3674 4380	10 I	Relin	quished By	(Date i	/ Time)	Received By	(Date / Time)	1
CERCLIS ID:	WVD0548279			Shipped to:	Ceimic Corpora		1	<u> </u>					1
Spill ID: Site Name/State:	v. Die Jahr Dr		D 240240004		10 Dean Knaus Narragansett R	ss Drive	2				· ·		1
Project Leader:	Big sonn oan	•	P 34031/WV		(401) 782-8900		3				<u></u>	!	1
Action:	Remedial Inv	nvestigatio	วก	1		/	[· .	<u> </u>		4
Sampling Co:	Tetra Tech,	Inc.	·	<u> </u>			4	·		, 			1
INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAGI PRESERVAT		STATION LOCATION		SAMPLE CO DATE/TI			GANIC PLE No.	QC Type	
MCIAWZ	Ground Water/ Dennis Anderson	/G		797 (HNO3), 79 806 (NaOH) (3)		BJS-MW02A-04	105	S: 4/14/2005	8:10	C0015			ı
MC0021	Anderson Ground Water/ Vadim Petrov	/G	CN (21), DM 21), TM	854 (HNO3), 85 862 (NaOH) (3)	· · //	BJS-MW04A-04	405	S: 4/13/2005 1	17:45	C0021			
	Ground Water/ Vadim Petrov	/G	CN (21), DM 21), TM	881 (HNO3), 88 889 (NaOH) (3)	· //	BJS-MW05A-04	405	S: 4/13/2005 1	18:50	C0024			
	Ground Water/ Vadim Petrov	/G	CN (21)(DM (21), TM (21)	908 (HNO3), 90 916 (NaOH) (3)		BJS-MW06A-04	405	S: 4/13/2005 1	19:45	C0027			
MCIAX4	Ground Water/ Dennis	/G	CN (21), DM (21), TM	1156 (HNO3), 1 1164 (NaOH) (3		BJS-MW15A-04	¥05	S: 4/13/2005 1	19:05	C0050			
MC0195 MCIAX7	Anderson Field QC/ Dennis Anderson	/G	CN (21) DM (21), TM	4316 (HNO3), 4 4323 (NaOH) (3		BJS-GWEQ-0	11	S: 4/13/2005 1	16:45	C0195		Rinsate	

Shipment for Case Complete? N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment iced?
CN = Cyanide, DM = C	LP TAL Dissolved Metals, TM = CLP TAL Total Metals		

.

.

1

 TR Number:
 3-035066262-041405-0027

 PR provides preliminary results.
 Requests for preliminary results will increase analytical costs.

 Send Copy to:
 Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax 703/818-4602

REGIONAR119231 F2V5.1.047 Page 1 of 1.

~ 1

€EPA			ct Laboratory ffic Report & C	Program hain of Custody Re	cord			Cas DAS	e No: No:	3403	1	,	R
Region: Project Code:	3 T47121.010			Date Shipped: 4/14/2005 Carrier Name: FedFx				Chain of Custody Record			Sampler ~ Signature:		
Account Code:	2005T03W3					Relinqu	elinquished By (Date / Time)		Received By (Date / Ti		l'ime)		
CERCLIS ID:	WVD05482	7944											
Spill ID: Site Name/State				10 Dean Knauss Drive		2							
Project Leader:	Dig Joini Od	•	P 34031/WV	(401) 782-890	0 \		<u> </u>						
Action:	Tad Yanche Remedial Ir		on			3							
Sampling Co:	Tetra Tech,	•				4			-				
INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/	ANALYSIS/ TURNAROUND	TAG No./ PRESERVATIVE/ Bottles	STATION LOCATION		Sample (Date/			GANIC PLE No.		QC Type	
NCIAW3	Ground Water/ Dennis Anderson	/G	CN (21), DM (21), TM (21)	827 (HNO3), 828 (HNO3), 835 (NaOH) (3)	BJS-MW03A-040	05 5	S: 4/14/2005	13:15	C0018	· ·	- -	·	· · · · · · · · · · · · · · · · · · ·
/C0033	Ground Water/ Vadim Petrov	/G	CN (21), DM (21), TM (21)	958 (HNO3), 959 (HNO3), 966 (NaOH) (3)	BJS-MW08A-040	05 \$	S: 4/14/2005	12:00	C0033			· ·	
	Ground Water/ Vadim Petrov	/G	CN (21), DM (21), TM (21)	1102 (HNO3), 1103 (HNO3), 1110 (NaOH) (3)	BJS-MW13B-040	05 \$	S: 4/14/2005	13:30	C0046		•		
	Ground Water/ Vadim Petrov	_/G	CN (21), DM (21), TM (21)	1280 (HNO3), 1281 (HNO3), 1288 (NaOH) (3)	BJS-MW21-040	5 \$	S: 4/14/2005	11:40	C0061		Field D	uplicate	
	Ground Water/ Dennis Anderson	İG	CN (21), DM (21), TM (21)	1290 (HNO3), 1291 (HNO3), 1298 (NaOH) (3)	BJS-MW22-040)5 : 	S: 4/14/2005	13:00	C0062		Field D	uplicate	

Shipment for Case Complete? N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:		
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment Iced?		
CN = Cyanide, DM = CL	P TAL Dissolved Metals, TM = CLP TAL Total Metals	· · · · · · · · · · · · · · · · · · ·			
TR Number:	3-035066262-041405-0010		REGION () AR119232 F2V5.1.047 Page 1 of 1	.1	
	anagement Office, Attn: Heather Bauer, CSC, 15000 Conf	costs. erence Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax	AR119232 F2V5.1.047 Page 1 of 1	Q. Lis	

Sepa			ct Laboratory ffic Report & C	-	ustody Re	cord			Cas DAS	e No: No:	34031	R	Ż
Region: Project Code:	3 T47121.010			Date Shipped: Carrier Name:	4/14/2005 FedEx		Chai	n of Custody	Record		Sampler Signature:		
Account Code:	2005T03W3			Airbill:			Relinquished By		(Date	/ Time)	Received By	(Date / Time)	-
CERCLIS ID:	WVD05482	7,944		Shipped to:	Ceimic Corpo		1						
Spill ID:					10 Dean Knauss Drive		2						\neg
Site Name/State Project Leader:	Dig toini o	Big John Salvage CLP 34031/WV			Narragansett RI 02882 (401) 782-8900								
Action:	Tad Yanch Remedial II		-		. ,		3				[
Sampling Co:	Tetra Tech	-					4						
INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAG PRESERVAT		STATION LOCATION	.		COLLECT		GANIC PLE No.	QC Туре	ن
100034 101AW8	Ground Water/ Vadim Petrov	/G	CN (21) DM (21), TM	968 (HNO3), 96 976 (NaOH) (3)		BJS-MW08B-04	405	S: 4/14/2005	10:30	C0034			—
100035 101AU9	Ground Water/ Vadim Petrov	/G	CN (21), DM (21), TM	978 (HNO3), 97 986 (NaOH) (3)		BJS-MW08C-04	405	S: 4/14/2005	9:25	C0035			
1C0048 1CIAXZ	Ground Water/ Dennis Anderson	/G	CN (21), OM (21), TM (21)	1124 (HNO3), 1144 (NaOH), 1	1125 (HNO3),	BJS-MW14B-04	405	S: 4/14/2005	10:50	C0048		MS/MSD	
1C0049 CIAX3	Ground Water/ Dennis Anderson	/G	DM (21)	(6) 1147 (HNO3) (1	1)	BJS-MW14C-04	405	S: 4/14/2005	11:30	C0049			
1C01A1	Field QC/ Vadim Petrov	/G	CN (21), TM (21)	4387 (HNO3), 4 (2)	4396 (NaOH)	BJS-FBO2-04	15	S: 4/14/2005	9:15	C01A1			
MC01A2	Field QC/ Dennis Anderson	/G	CN (21), TM (21)	4398 (HNO3), 4 (2)	4406 (NaOH)	BJS-FBO3-04	15	S: 4/14/2005	9:50	C01A2			

Shipment for Case Complete? N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:
Completes N	MC0048		
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment Iced?
CN = Cyanide, DM = Cl	P TAL Dissolved Metals, TM = CLP TAL Total Metals		
			and a contract attraction descent and the same to a branch of

 TR Number:
 3-035066262-041405-0003

 PR provides preliminary results. Requests for preliminary results will increase analytical costs.

 Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax

 703/818-4602 ۰.

REGION AR119233 F2V5.1.047 Page 1 of 1

€EPA		USEPA Contract Laboratory Program Inorganic Traffic Report & Chain of Custody Record							Case DAS I	e No: No:	34031		R
Region: Project Code:	3 T47121.010			Date Shipped: Carrier Name:				Chain of Custody Record			Sampler Signature:		
Account Code: CERCLIS ID: Spill ID:	2005T03W3 WVD054823			Airbill: 8511 7210 0648 Relia Shipped to: Ceimic Corporation 1 10 Dean Knauss Drive		Relinquished By (Date / Time)			Received By	(Date)	Time)		
Site Name/State Project Leader: Action:	Big John Sa Tad Yanche Remedial Ir	eski	P 34031/WV		Narragansett RI 02882 2 (401) 782-8900 3			· · · · · · · · · · · · · · · · · · ·					
Sampling Co:	Tetra Tech,	Inc.					4						
INORGANIC SAMPLE No.	Matrix/ Sampler	CONC/ TYPE	ANALYSIS/ TURNAROUND	·· F	€No./ TⅣE/ Bottles	STATION LOCATION		SAMPLE DATE	COLLECT /TIME		GANIC PLE No.	QC Type	
MC0045 MCIAXO	Ground Water/ Vadim Petrov	/G	CN (21), DM (21), TM (21)	1092 (HNO3), 1100 (NaOH)	1093 (HNO3), (3)	BJS-MW13A-0	405	S: 4/14/2005	14:50	C0045			
мс0049 M CIA X3	Ground Water/ Dennis Anderson	/G	DM (21)	1146 (HNO3)	(1)	BJS-MW14C-0	405	S: 4/14/2005	11:30	C0049			
MC01A3 MCIAX8	Field QC/ Dennis Anderson	/G	CN (21), DM (21), TM (21)	4427 (HNO3), 4435 (NaOH)		BJS-GWEQ-0	02	S: 4/14/2005	14:30	C01A3		Rinsate	
MCOIA4 MCIAX9	Field QC/ Vadim Petrov	/G	CN (21), DM (21), TM (21)	4436 (HNO3), 4444 (NaOH)		BJS-GWEQ-0	03	S: 4/14/2005	15:45	C01A4		Rinsate	

Shipment for Case Complete? N	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:		
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment Iced?		
CN = Cyanide, DM = CL	P TAL Dissolved Metals, TM = CLP TAL Total Metals				

TR Number: 3-035066262-041405-0014

PR provides preliminary results. Requests for preliminary results will increase analytical costs.

Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax

REGIONAR119234 F2V5.1.047 Page 1 of 1

U.S EPA Region III Analytical Request Form									
RAS CASE #: CT3328 340.3/	#:	: NSF #:							
Date: 3/7/2005	QAP	P/SAP: Y	(ES	Data Va	lidation Level: M3 &	: IM2			
Site: BIG JOHN SALVAGE - Noult				·					
Address: 900 HOULT RD	City: FAIRMO			: WV					
Latitude: 39° 29' 54"			0° 7' 12"				-		
Program: SUPERFUND	CERCLIS#: WVD054	1827944	Activity: RI/F						
Account #: 05T03 N302DD2C0371LA00	Operable Unit:	······································	Spill ID: 035						
Preparer: KYLE SWARTZWELDER	Phone: 302-738-755		Fax: 302-454-598		E-mail: kyle.swart				
OSC/RPM: CHRISTIAN MATTA 3452			Fax: 215-814-300			ristian@epamail.epa.go			
Site Leader: TAD YANCHESKI	Phone: 302-738-755		Fax: 302-454-5988 E-ma			nail: tad.yancheski@tetratech.com			
EPA CO: JIM CLARK / Contract Type: RACS									
Analytical TAT: 14 days /4/16			Analytical + Validation TAT: 30 days						
Ship Date From: 4/3/05		· · ·	Ship Date To: 4/1:	5/05					
Samples	Method	Paran				Matrix			
46	OLMO4.3 LIBRT		- SVOCS, PEST/PC	BS ONLY	Y	SOIL	23362,23354		
132	ILM05.3 CHEN		AES TAL+Hg+CN		·····	SOIL	23363		
86	OLMO4.3 LIBRI					SOIL	23364		
123	OLMO4.3 LIBRI	Y TCL				AQ	23365		
123 246	ILM05.3 Ceimica	the second s	AES TAL +HG+CN			AQ	23366		
123/	ILM05.3		AES TAL +HG - D	<u>M</u>		AQ			
14	OLC03.2 A4	TCL				AQ	23367		
14	ILM05.3 DATAC		MS TAL+HG+CN		· · · · · · · · · · · · · · · · · · ·	AQ	23368		
++4	OLM04.3	TCL				SEDIMEN			
114	TLM05.3	TCP-A	AES TAL+HG+CN			SEDIMEN	T		

Instruction: See Big John Salvage - Hoult Road Site Final Ri/Fs Work Plan - February 2005, Section 4.4 (Identification Of Potential Sampling Approaches And Appropriate Analytical Methods) For A Complete Listing Of All Proposed Analytical Methods.

Please Provide Electronic Data Deliverables For All Data

Cirliginal

Big John Salvage – Case 34031 duplicate pairs

Samples
C0018 / MC0018 [,]
C0014 / MC0014
C0033 / MC0033 ⁄
C0030 / MC0030-
C0039 / MC0039 🦳
C0001 / MC0001
C0002 / MC0002
C00F9 / MC00F9
C00E7 / MC00E7
C00B2 / MC00B2
C00A1 / MC00A1
C0093 / MC0093
C0077 / MC0077
C0182 / MC0182
C0086 / MC0086
C0066 / MC0066
C00L9 / MC00L9
C0111 / MC0111
C0112 / MC0112
C00L1 / MC00L1
C0104 / MC0104
C0105 / MC0105

Duplicates

C0062 / MC0062 / C0059 / MC0059 / C0061 / MC0061

C0057 / MC0057 ~ C0058 / MC0058 -C00G1 /MC00G1 C00G2 /MC00G2 C00G4 /MC00G4 63 C00G5 /MC00G5 C00C4 / MC00C4 C00C5 / MC00C5 C00C6 / MC00C6 C00C7 / MC00C7 C00C8 / MC00C8 C00C9 / MC00C9 C00D0 / MC00D0 C0155/MC0155(BJS-SW-WT3-1-0405) ··) 11 2 C0135 / MC0135(·') 3 μ C0156 / MC0156 (C0153 / MC0153 C0134 / MC0134 C0154 / MC0154

ORIGINIAL

ORIGINIA,

Appendix D

Laboratory Case Narrative

AR119237

When ICP-AES raw data have been reprocessed in an SDG, the words "Reprocessed on" followed by the date and time of reprocessing will sometimes be printed in the header of each standard and sample raw data report. The word "Reprocessed" is used when the original sequence data is regenerated after it was collected and processed with incorrect information (such as sample information, standard nomenclature) or settings (such as background correction, internal standard, dilution factor, QC concentration, wrong IEC table, etc.)

QA/QC Samples:

Matrix spike and duplicate analysis – as well as ICP fivefold serial dilution – were performed on sample MC1AR2, as indicated on the Traffic Reports / Chains of Custody for sample MC0041. A post-digestion spike was not required for this SDG.

Observations:

A "U" flag in the C column on the Form IA-IN or any other form indicates that the concentration of that analyte in the sample is undetected at the experimentally-determined method detection limit (MDL). If any analyte is detected at a concentration between the Contract Required Quantitation Limit (CRQL) and the MDL, a "J" flag is shown in the C column on the form.

The "N", "*" and "E" qualifiers do not apply to this SDG. No analyte is detected in any sample in this SDG at a concentration exceeding the experimentally-determined linear range of the ICP-AES instrument, or the high calibration point of the CVAA instrument.

Due to a software limitation, please note that all ICP-AES target analytes are reported on the Form IIB-IN for the CRQL Check (CRI) standard, even though seven target analytes (Al, Ba, Ca, Fe, Mg, K, Na) do not require such monitoring.

Deviations from Contract:

Arsenic and Zinc responses are high (117 and 111%, respectively) in one of the ICP-AES Continuing Calibration Verification [CCV] standards.

End of SDG Narrative.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Ryan Montalbano Supervisor, Inorganic Laboratories

04/29/2005 Date ORIGINA,

When ICP-AES and CVAA raw data have been reprocessed in an SDG, the words "Reprocessed on" followed by the date and time of reprocessing will sometimes be printed in the header of each standard and sample raw data report. The word "Reprocessed" is used when the original sequence data is regenerated after it was collected and processed with incorrect information (such as sample information, standard nomenclature) or settings (such as background correction, internal standard, dilution factor, QC concentration, wrong IEC table, etc.)

QA/QC Samples:

Matrix spike and duplicate analysis – as well as ICP fivefold serial dilution – were performed on sample MC1AT7, as indicated on the Traffic Reports / Chains of Custody for sample MC0054. A post-digestion spike was not required for this SDG.

Observations:

A "U" flag in the C column on the Form IA-IN or any other form indicates that the concentration of that analyte in the sample is undetected at the experimentally-determined method detection limit (MDL). If any analyte is detected at a concentration between the Contract Required Quantitation Limit (CRQL) and the MDL, a "J" flag is shown in the C column on the form.

The "N", "*" and "E" qualifiers do not apply to this SDG. No analyte is detected in any sample in this SDG at a concentration exceeding the experimentally-determined linear range of the ICP-AES instrument, or the high calibration point of the CVAA instrument.

Due to a software limitation, please note that all ICP-AES target analytes are reported on the Form IIB-IN for the CRQL Check (CRI) standard, even though seven target analytes (Al, Ba, Ca, Fe, Mg, K, Na) do not require such monitoring.

Deviations from Contract:

Three Continuing Calibration Verification [CCV] standards had high response for Antimony (111%, 112%, 111%) and one CCV standard had a high response for Selenium (111%).

End of SDG Narrative.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Ryan Montalbano Supervisor, Inorganic Laboratories

OPIGINA,

QA/QC Samples:

Matrix spike and duplicate analysis – as well as ICP fivefold serial dilution – were performed on sample MC1AX2, as indicated on the Traffic Reports / Chains of Custody for sample MC0048. A post-digestion spike was not required for this SDG.

OPICINA,

0003-

AR119240

Observations:

A "U" flag in the C column on the Form IA-IN or any other form indicates that the concentration of that analyte in the sample is undetected at the experimentally-determined method detection limit (MDL). If any analyte is detected at a concentration between the Contract Required Quantitation Limit (CRQL) and the MDL, a "J" flag is shown in the C column on the form.

The "N", "*" and "E" qualifiers do not apply to this SDG. No analyte is detected in any sample in this SDG at a concentration exceeding the experimentally-determined linear range of the ICP-AES instrument, or the high calibration point of the CVAA instrument.

Due to a software limitation, please note that all ICP-AES target analytes are reported on the Form IIB-IN for the CRQL Check (CRI) standard, even though seven target analytes (Al, Ba, Ca, Fe, Mg, K, Na) do not require such monitoring.

Deviations from Contract:

None.

End of SDG Narrative.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Ryan Montalbano Supervisor, Inorganic Laboratories 05/12/2005 Date delivery. NOTE: Regardless of content, this e-mail shall not operate to bind CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

-----Original Message-----From: Ryan Montalbano [mailto:rmontalbano@ceimic.com] Sent: Thursday, April 21, 2005_11:45 AM To: 'Benhoff, Michael' Subject: Case 34031 Incorrect/duplicated sample numbers (Thu. 04/14/05) Importance: High

Hi Mike.

For samples received on Thursday 04/14/05 for Case 34031, the sampler continued to use the same sample ID's for the TM and DM samples. The ID's for this shipment are as follows: MC0011-MC0014, MC0019-MC0020, MC0025-MC0026, MC0028, MC0031-MC0032, MC0036-MC0039, MC0051-MC0054, MC0058-MC0059, and MC0188-MC0189. Please provide new IDs for the DM analysis.

Thanks! -Ryan

Ryan Montalbano Internal Coordinator, CLP OLM04.3/ILM05.3 Ceimic Corporation 10 Dean Knauss Drive Narragansett, RI 02882 (401)782-8900 Fax (401)782-8905 rmontalbano@ceimic.com

ORIGINen,

delivery. NOTE: Regardless of content, this e-mail shall not operate to bind CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose. ORIGINIA,

____`_____

-----Original Message-----From: Ryan Montalbano [mailto:rmontalbano@ceimic.com] Sent: Thursday, April 21, 2005 11:45 AM To: 'Benhoff, Michael' Subject: Case 34031 Incorrect/duplicated sample numbers (Thu. 04/14/05) Importance: High

Hi Mike.

For samples received on Thursday 04/14/05 for Case 34031, the sampler continued to use the same sample ID's for the TM and DM samples. The ID's for this shipment are as follows: MC0011-MC0014, MC0019-MC0020, MC0025-MC0026, MC0028, MC0031-MC0032, MC0036-MC0039, MC0051-MC0054, MC0058-MC0059, and MC0188-MC0189. Please provide new IDs for the DM analysis.

ز 2

Thanks! -Ryan

Ryan Montalbano Internal Coordinator, CLP OLM04.3/ILM05.3 Ceimic Corporation 10 Dean Knauss Drive Narragansett, RI 02882 (401)782-8900 Fax (401)782-8905 rmontalbano@ceimic.com -----Original Message-----From: Ryan Montalbano [mailto:rmontalbano@ceimic.com] Sent: Thursday, April 21, 2005 6:19 PM To: 'Benhoff, Michael' Subject: Case 34031 Incorrect/duplicated sample numbers (Fri. 04/15/05)

Hi Mike.

For samples received on Friday 04/15/05 for Case 34031, the sampler continued to use the same sample ID's for the TM and DM samples. The ID's for this shipment are as follows: MC0015, MC0018, MC0021, MC0024, MC0027, MC0033-MC0035, MC0045-MC0046, MC0048-MC0050, MC0061, MC0062, MC0195, MC01A3, MC01A4. Please provide new IDs for the DM analysis.

This appears to be the final shipment for this Case (it is not scheduled for the week of 04/17), although the TRs do NOT indicate Case Complete.

Thanks! -Ryan

۱

Ryan Montalbano Internal Coordinator, CLP OLM04.3/ILM05.3 Ceimic Corporation 10 Dean Knauss Drive Narragansett, RI 02882 (401)782-8900 Fax (401)782-8905 rmontalbano@ceimic.com ORIGIP