

Red Shaper SS

HYDROGEOLOGIC SUMMARY REPORT

SHOPE'S LANDFILL GIRARD TOWNSHIP, PENNSYLVANIA

Prepared for

(")

LORD CORPORATION 2000 W. Grandview Boulevard Erie, Pennsylvania 16512

Prepared by

AWARE Incorporated 80 Airport Road West Milford, New Jersey 07480 (201) 728-1940

September 1985

U.S. Environmental Protection Agency Hazardous Waste Enforcement Branch

AR300002 CAROL STOKES Environmental Scientist

841 Chestnut Building Philadelphia, PA 19,107

(215) 597-9800

consultants in environmental management

September 17, 1985

Mr. James Wright Lord Corporation 2000 W. Grandview Blvd. Erie, PA 16512

RE: Hydrogeologic Summary Report, Shope's Landfill

Dear Mr. Wright:

We are pleased to submit the final copy of the Hydrogeologic Summary Report for Shope's Landfill. This report describes the hydrogeologic conditions of the site with a particular emphasis on contaminant migration based upon existing and newly conducted hydrogeologic data.

A significant finding that has been reported herein is that several of the newly constructed deep wells including W-3C, W-12C, and W-20C appear to contain low levels of contaminants. However, due to hydrogeologic conditions of the zone in which these wells are screened, it is believed that the apparent contamination in these wells is a function of the well construction rather than evidence of actual contamination in the deep groundwater zone. As described in the report, the aquitard overlying the deep wells represents a significant confining bed and should control vertical migration of the plume. On this basis, we recommended that a lithium tracer test be conducted to determine whether or not downward leakage through the well annulus is occurring.

A lithium tracer test was performed by Lord on deep well W-20C subsequent to preparation of this report. The adjacent intermediate well, W-20B, was purged to dryness and then charged with a 5 percent LiCl solution. Water was then pumped from well W-20C. Groups of four replicate samples were collected at various times, between which the well was continuously pumped. Samples were collected as replicates to identify any natural variability that may be present. The analysis of the data indicates that the levels of lithium in well W-20C increased to levels significantly above background levels during the purging cycle after the shallower adjacent well was charged with lithium. This confirms that downward leakage through the annular well seal is causing this apparent contamination in the deep zone.

The data are presented as follows:

artricar

AR300003

 $M_{\rm SU(2)}$

80 Airport Road ● West Milford, New Jersey 07480 ● Phone (201) 728-1940

Mr. James Wright Page 2 September 17, 1985

Total Volume Purged (gal)	No. of Samples	Lithium (mg/1)
Background	4	0.020 ± .002
	4	0.020 ± .002
10	4	0.020 ± .002
15	4	0.070 ± .001
20	À	0 180 1 006

The deep wells in which this apparent annular leakage has occurred have been constructed in accordance with standard monitoring well installation practices. However, unusually difficult hydrogeologic conditions, including high downward hydraulic gradient coupled with the low well yields in the relatively impermeable deep zone, have created a situation in which very small amounts of contaminant leakage downward through the well seal cap have shown up as measurable levels in these deep wells.

We are also in the process of evaluating the effectiveness of the remedial measures implemented at the Shope's Landfill. Thus far our evaluation indicates that the plan's effectiveness coincides remarkably well with the predictions which accompanied its design. Water levels beneath the capped landfill have declined very nearly as predicted in the September 1982 "Flow Net Analysis of the Subsurface Cutoff Wall and Impervious Cap" report. Moreover, this decline has occurred in spite of the fact that groundwater levels outside the capped area are generally higher than the July 1981 levels upon which the flow net analysis was based. For example, water levels beneath the cap have declined from 2 to 3½ feet while outside, the cap water levels have generally risen 1½ to 3 feet.

As a result of this general decline in groundwater levels, the extent to which the groundwater table intersects the base of the waste is significantly less than it was prior to implementation of the remedial plan. As you will recall, the preremedial plan waste/groundwater table intersection was presented in Figure 1 of the September 1981 remedial action plan report. We are presently studying the impact of seasonal fluctuations in groundwater levels in an effort to estimate the actual effectiveness of the remedial in comparison to original projections.

If you have any questions or wish to discuss this further, please do not hesitate to contact us.

Very truly yours,

AWARE Incorporated

Scott D. MacMillin

Senior Hydrogeologist

Robert D. Moster Jn

Robert D. Mutch, Jr., P.HG., P.E. Vice President

Vice President /cs

/cs Encl. AR300004

TABLE OF CONTENTS	
	Page No.
Letter of Transmittal	
Table of Contents	i
List of Figures List of Tables List of Sheets	ii ii ii
1.0 INTRODUCTION	1
2.0 HYDROGEOLOGIC FIELD INVESTIGATION 2.1 Exploratory Drilling and Monitoring Well	2
Installation	2 3 4
2.2 In-Situ Permenbility Testing 2.3 Laboratory Soils Testing	4
2.4 Site Survey	5
3.0 GEOLOGIC CONDITIONS 3.1 Regional Geologic Setting 3.2 Site Geology	6 6 7
3.2.1 Glaciofluvial Deposits	8
3.2.2 Ashtabula Till	8
3.2.3 Maumee III Lacustrine Deposits	9
4.0 GROUNDWATER CONDITIONS	11
4.1 Water Table Aquifer 4.2 Intermediate Confined Zone	11 12
4.3 Deep Confined Zone	14
4.4 Hydrogeologic Cross Sections	15
5.0 GROUNDWATER QUALITY	17
6.0 CONCLUSIONS	20
REFERENCES	
APPENDICES	
A 11 A M - B - 1	

Appendix A - Test Boring Logs Appendix B - Key to Soils Identification & Glossary of Geologic Terms Appendix C - In-Situ Permeability Test Data Appendix D - Laboratory Soils Testing Data

AR300005

LIST OF FIGURES

		Page No.
Figure 3.1	Generalized Geologic Column	6
Figure 3.2	Location Map with Regional Surficial Geologic Overlay	7
	LIST OF TABLES	
Table 2.1	Summary of Permeability Test Results	4
Table 3.1	Glacial Advances and Associated Deposition in	
	Northwestern PA	6
Table 4.1	Water Level Data	11
Table 4.2	Summary of Hydrogeologic Data	15
Cable 5.1	Summary of TVO and THVO Data (12/84 - 1/85)	17

LIST OF SHEETS (in pocket at end of report)

Sheet	1	Site Plan
Sheet	2	Water Table Contour Map
Sheet	3	Piezometric Contour Map, Intermediate Zone
Sheet	4	Piezometric Contour Map, Deep Zone
Sheet	5	Geologic Cross Section A-A
Sheet	6	Geologic Cross Section B-B
Sheet	7	Geologic Cross Section C-C
Sheet	8	Hydrogeologic Cross Section B-B
Sheet	9	TVO Isocon Map - Intermediate Zone

AR300006

1.0 INTRODUCTION

The Shope's Landfill dates to the late 1950s when dumping in the rear portion of Melvin Shope's property began. The waste that was disposed at the site originated from the Lord Corporation where Mr. Shope was employed in the maintenance department. The waste consisted of scrap rubber, paper, wooden pallets, cement, oils, solvents, acids, and caustics. The landfill was closed after having covered an area of approximately 4.5 acres.

Hydrogeologic work at the landfill was conducted initially in 1979-80 by Dr. Samuel Harrison of Alleghany College. This work included the installation of 37 wells at well cluster numbers 1 through 11.

Further hydrogeologic work was conducted by Wehran Engineering in 1981 as a prelude to the development of a remedial program for the landfill. This investigation was intended to address several data gaps that were vital to the design of the remedial program. Furthermore, this investigation was intended to address the existence of groundwater contamination beyond the areas investigated by Dr. Harrison. This work was accomplished, in part, by the installation of a number of monitoring wells and piezometers at locations numbered 12 through 19.

On the basis of this hydrogeologic work, a number of remedial options were proposed. An option was selected that included the removal of exposed drums, regrading of the site, removal of standing pools of leachate, improvements to surface water drainage, installation of an impermeable cap, and construction of an upgradient groundwater cutoff wall. These remedial measures were implemented during the summer and fall of 1982.

A consent order was entered into by the Lord Corporation and the Pennsylvania Department of Environmental Protection (PADER) in which, in addition to the requirements associated with the implementation of the remedial plan, a comprehensive groundwater monitoring program was set forth. As such, quarterly monitoring was conducted for two years, followed by the preparation of a draft long-term monitoring program in October, 1984. The draft long-term monitoring plan set forth a major expansion of the existing monitoring well network in addition to the specification of a sampling and analytical schedule.

The installation of the new monitoring wells in November and December 1984, enabled the collection of a significant body of hydrogeologic data. This report serves to place hydrogeologic data from previous investigations into perspective with the newly collected data. In this way, significant additional conclusions have been drawn with respect to groundwater. The field methods utilized during the current work and the interpretation of the hydrogeologic conditions are discussed in detail in the following sections.

AR300007

2.0 HYDROGEOLOGIC FIELD INVESTIGATION

A hydrogeologic field investigation of the Shope's Landfill site was undertaken by AWARE Incorporated during November and December 1984. The investigation was predicated upon the following criteria:

- To construct 19 new monitoring wells and to replace one existing monitoring well as specified by the draft Long-Term Monitoring Plan.
- 2. To more fully define the extent and character of the geologic materials beneath the site.
- 3. To collect undisturbed soil samples for laboratory permeability testing.
- To conduct in situ permeability testing on selected newly installed monitoring wells.
- 5. To measure static water levels at all new and existing monitoring wells for use in the determination of groundwater flow directions.

The Shope's site is depicted on the Site Plan, Sheet 1. This map indicates the location of all newly installed and existing monitoring wells.

2.1 Exploratory Drilling and Monitoring Well Installation

Twenty new monitoring wells were installed at the Shope's site. Fifteen of these were installed as triplets at five separate locations. These wells are designated W-20 through W-24 with A, B, and C suffixes corresponding, respectively, to shallow, intermediate and deep wells. Two wells, W-lWT and W-25WT were installed as replacement and new shallow wells, respectively. The remaining three wells, W-3C, W-7A, and W-12D were all installed as deep wells immediately adjacent to existing shallower wells. The drilling and well installation was conducted during November and December 1984.

All drilling was conducted by Empire Soils Investigations, Inc. of Orchard Park, New York. The drilling was completed under the supervision of an experienced geologist from AWARE. The geologist maintained a continuous log of the work as it proceeded and directed the well installation operation. The borings were advanced by one of two drill rigs. The drilling at the locations with the poorest access conditions was performed with a CME Model 45 drill rig mounted on a trailer that was moved into position with its integral winch and/or with the use of a small bulldozer equipped with a winch. The other borings were completed with a truck-mounted Acker Model 81 drill rig.

The drilling of all borings was initiated with the use of 3-3/4 inch I.D. hollow stem augers. Beyond a depth of approximately 60 feet, most borings were continued using the mud rotary method with a 3-5/8 inch roller bit. The drilling fluid was recirculated and a drilling mud consisting of pure bentonite was used only when required by drilling conditions.

The soils were sampled continuously with a split spoon sampler at all new boring locations. At the locations of existing wells, samples were collected at five foot intervals. The soils were visually classified A Profile Continuously classified according to a system modified after Burmister (1958). Representative

portions of each sample were stored in glass jars. Selected jar samples were subjected to laboratory grain size testing as discussed in Section 2.3. Complete geologic descriptions of the sampled soils are found in the Test Boring Logs (Appendix A) based upon both the visual and laboratory classification.

Undisturbed soil samples were collected from three of the borings. These were collected by pressing a three inch (I.D.) Shelby tube into the soils below the bottom of the boring. Following retrieval, the samples were sealed and transported to the laboratory by the field geologist. Particular care was exercised to avoid freezing and excess vibration of the sample. All undisturbed sample intervals are indicated on the appropriate boring logs.

Monitoring wells were constructed at each test boring location as previously discussed. These wells were constructed of two inch "black" steel pipe with welded couplings. Each well was equipped with a five foot length of wirewound stainless steel well screen with a 0.010 inch slot size. Each screen was packed with a uniform medium-grained sand and sealed with bentonite pellets or a tremie-emplaced bentonite slurry. The remaining annular space above the bentonite seal was filled with cement-bentonite grout by the tremie method. Each well was equipped with a lockable cap. Following their construction, each well was developed with compressed air to remove any fine materials and drilling fluids that may have been introduced during the drilling process. A drawing of record for each of the monitoring wells is presented on the test boring logs in Appendix A.

2.2 In Situ Permeability Testing

In situ permeability tests were performed on selected newly installed monitoring wells and well points by the use of the "variable head" method, as described below. The results of these tests represent determination of the horizontal permeability of the geologic materials adjacent to the screened interval of each well.

The particular "variable head" borehole test utilized for this project was developed by Hvorslev for the United States Army Corps of Engineers, and summarized in Cedergren (1977). These tests were conducted as follows:

- The static water level in the well to be tested was measured and recorded.
 The water level in the well was then lowered by bailing or pumping, and a
- measurement of the depressed water level or drawdown was recorded.

 3. At frequent time intervals, the water level in the well and the respective time elapsed from the beginning of the recovery period were measured and recorded.

The method of analysis assumes that the rate of inflow to the well screen after evacuation is proportional to the hydraulic conductivity (k), expressed in cm/sec, and to the unrecovered head distance. A plot of the unrecovered head distance or Head Ratio versus Time (t) indicates an exponential decline in the recovery rate with time. Equation 2.1 is used to keral to be permeability.

= $r^2 \ln(L/R) \ln H_1 H_2$)

Eq. 2.1

2L (t₂ - t₁)

Where: R = sand pack radius (cm)

riser radius (cm) L = effective intake length

 $t_1 = time interval corresponding to <math>h_1$ (sec)

t₂ = time interval corresponding to h₂ (sec)

 h_1 = head ratio at t_1 (dimensionless)

 $h_2 = \text{head ratio at } t_2 \text{ (dimensionless)}$

k = permeability (cm/sec)

The individual permeability plots are presented in Appendix C. The results of the permeability testing are summarized on Table 2.1.

Several in situ permeability tests were conducted on shallow water table wells that recovered too rapidly to measure, given the equipment that was employed. On the basis of past experience, it is believed that the permeability of these particular soils is probably in excess of 1 x 10 cm/sec.

2.3 Laboratory Soils Testing

2.3 Laboratory Soils Testing

A number of soil samples were selected for laboratory soils testing. Eleven split spoon samples were subjected to mechanical grain size testing including mechanical sieving and Atterburg limits testing. In addition, four undisturbed tube samples were tested for permeability, mechanical sieving, hydrometer, Atterburg limits, and moisture content.

The soils were tested by the Wehran Engineering Soils Laboratory in Middletown, New York. The procedures followed in all of the testing performed were consistent with standard labortory procedures with the exception of the permeability testing. The permeability tests on the undisturbed tube samples were performed in a flexible-walled triaxial permeameter under falling head conditions. This apparatus is considered superior to a conventional rigidwalled permeameter because it allows placing the soil specimen under a confining pressure before and during testing. The confining pressure insures that sample fracturing and effluent bypass will not occur during testing. Also, the confining pressure can be adjusted to equal the in situ confining pressure experienced by the soil under natural conditions. Furthermore, this system allows application of the effluent under significant back pressures which insure saturation of specimens prior to actual testing. AR300010

The laboratory test data is presented in Appendix D.

TABLE 2.1

SUMMARY OF PERMEABILITY TEST RESULTS

Test

Test

"p 4 p

(1)

Geologic Unit	Boring	Interval	Type_	Permeability	(cm/sec)
Maumee IIIC Lacustrine Dep. (Coarse) (Coarse) (Fine)	W-12C W-22A W-20B W-20B	15.5-21.5 5.5-9 22-23	In-Situ In-Situ Lab	2.9 x 9.2 x 2.8 x	10-5 (Crad) 10-4 (Suppl) OK 10-7 (Table of Crad) 10-7
(Fine)	´ W-2OB	23-24	Lab	8.4 x	10-7
Ashtabula Till-Ashtabula					
(Fine)	W-12D	22-24	Lab	1.0 x	10 ⁻⁷ 10 ⁻⁷ 10 ⁻⁷
(Fine)	W-12B	24-28	In-Situ	8.3 x	10-7
(Fine)	W-20B	34-36	Lab	1.4 x	10-7
					rr-o Sand
Maumee IIIB Lacustrine Dep.					7/
(Coarse)	W-12A	49-52.5	In-Situ	7.2 x	10-7 Sand 10-5 For sand 10-6 11-6 Sand 10-7 11-6 Sand
(Coarse)	W-21B	43.5-49.5	In-Situ	5.2 x	10 5 Cata 2001
(Coarse)	W-22B	43-53	In-Situ	2.1 x	10 6
(Coarse)	W-24B	54-59	In-Situ	2.6 x	10-7
(Fine)	~ W-23B	34-37.5	In-Situ	1.8 X	10
$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$	V				
Maumee IIIA Lacustrine Dep.					. /
(Coarse)	W-21C	101-104.5	In-Situ	9.7 x 1.1 x 1.1 x	10 6
(Coarse)	W-22C	76-79.5	In-Situ	1.1 x	10_4 ~~~/
(Coarse)	W-23C	81-85	In-Situ	1.1 x	10 4 5
(Coarse)	W-24C	81-87	In-Situ	5.3 x	10 7 f sand -

AR300011

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

Conse Vs fine

2.4 Site Survey

Site survey work was completed in conjunction with the hydrogeologic field investigation by Urban Engineers, Inc. of Erie, Pennsylvania. This work was conducted during October and December, 1984.

The initial survey work was conducted to provide the locations of the new monitoring well clusters, W-20 through W-25. The locations have been provided within the context of a site grid. This grid has been referenced to the south property line which had been surveyed by Weislogel-Billie Associates in March 1983.

The locations of the existing a nitoring well clusters were not surveyed by Urban Engineers, Inc. Locations of these clusters have been provided by site surveys conducted in July, 1981 and August, 1983 by Wehran Engineering Corporation. Locations of the existing clusters have been placed in the new grid system with the use of these existing surveys.

A second survey was conducted by Urban Engineering, Inc. to determine the elevation of all new and existing monitoring wells in the study area. The elevation of both the ground surface and the top of the well have been provided. This elevation survey has been referenced to the same datum that was employed for previous site surveys by Wehran Engineering Corporation. Wehran had referenced this datum approximately to mean sea level.

3.0 GEOLOGIC CONDITIONS

In this section, the characteristics and extent of the geologic materials encountered within the area under consideration are described. In order to put the site into perspective within the larger geologic framework of the region and to describe the geologic history that led to the formation of each of the stratum, a brief discussion of the regional geology is presented. This discussion of the regional geology is based on the published geologic data for the area, as well as the results of our field investigation. The geology of the actual site is then described in detail based upon our interpretation of the existing data.

3.1 Regional Geologic Setting

The Shope's site is situated on the edge of the Lake Plain subprovince of the Central Lowland physiographic province. The site is underlain by a thick sequence of glacially deposited materials that is in turn underlain by shales of Upper Devonian age. The region is geologically bounded to the south by the escarpment slope of the glaciated section of the Appalachian Plateaus Province and to the north by Lake Erie.

The bedrock consists of shale of the lower Conneaut Group which is locally termed the Girard Shale (Tomikel and Shepps, 1967). These shales were deposited during the Upper Devonian and serve as a transitional zone from fine grained shales of the underlying Canadaway Formation to coarse grained shales and sandstones of the overlying upper Conneaut group. The Girard Shale is locally exposed only in deeply eroded beds of major streams in the area.

The bedrock is overlain by a thick sequence of glacial material. These materials are reported by Shepps, et al (1959) to exist at a thickness of 40 to 80 feet, but locally may be significantly thicker. These glacial materials were deposited by a number of the seven separate advances of the continental ice sheet that blanketed the area during the Pleistocene Epoch. The glacial deposits that directly overlie the bedrock were deposited by the early glacial advances with the upper material being deposited by successively more recent glaciation.

Glacial till was deposited by the glacial ice which repeatedly advanced over the region. The materials in the glacial till had been picked up both locally in northeastern Pennsylvania and from other locations to the northeast. Other related glacial materials were deposited by meltwater flowing adjacent to or through the ice or emanating from the front of the ice sheet. Lacustrine deposits were laid down during interglacial events when lake waters filled what is now the Erie basin. Table 3.1 provides a perspective as to the overall sequence of the glacial advances and associated glacely that took place during the Pleistocene Epoch.

					$N_{ij} \cdot M_{ij}$			
PERIOD	посн	STAGE	UNIT	THICKNESS (FT)	GENERALIZED DESCRIPTION			
	QUATERNARY PLEISTOCEME WISCONSIN		elacio- Fluvial Deposits	0-5	5 Brown f-m SAND, little to end SILT, Stratified, well sorted.			
		MA LA			TI	ASHTABULA TILL (GIRARD)	3-8	f-m SAND, some to and f-m GRAVEL, tittle to some SILT, non-stratified paorly sorted.
				MAUMEE III C LACUSTRINE DEPOSITS	10-31	Predominantly coarse grained consisting of SAND, y trace to and SILT, trace to and GRAVEL, freq. interbedded with SILT & CLAY occ. fine zones consisting of laminated SILT to SILT & CLAY, no to and SAND.		
ITERNARY			ASHTABULA TILL (ASHTABULA)	7-42	Fine grained zones consisting of CLAYEY SILT, 2 little to and SAND, trace to little GRAVEL Coarse grained zones consisting of SAND, little to some SILT, little to and GRAVEL.			
/NO		MAUMEETE, LACUSTRINE DEPOSITS			Course zones of stratified SAND, trace to some SILT, trace to and GRAVEL. Fine zones of laminated SILT, trace to some SAND.			
·			ļ			,	ASHTABULA TILL (PAINESVILLE)	14-4
		:	MAUMEE IT. LACUSTRINE DEPOSITS	14-20	Fine zones of laminated CLAY & SILT, no to Dittle SAND, no to trace GRAVEL, Coarse zones of stratified SAND, no to some SILT.			
		:	ASHTABULA TILL (EUCLIO)	٤.	SILT & CLAY, trace to little SAND, trace GRAVEL.			
	_	1.1.	interpretation?		near Short lacustrate			
	B 1	∪k0°6 ; ′	if remain view		FIGURER R 3000 14			
	(., ii _150 ⁷	Action with	, t-12.7	GEOLOGIC SECTION			

TABLE 3.1 GLACIAL ADVANCES AND ASSOCIATED DEPOSITION IN NORTHWESTERN PENNSYLVANIA (After Schooler, 1974, and Fullerton, 1980)

STAGE	SUBSTAGE	GLACIAL ADVANCE	MORAINE	GLACIAL TILL UNIT	GLACIAL LACUSTRINE UNIT	Before AGE (BEYOND-1950
Wisconsin	Woodfordian	Ashtabula	Girard	Ashtabula		12,950
					Maumee IIIC	•
			Ashtabula	Ashtabula		13,600
					Maumee IIIB	
			Painesville	e Ashtabula		14,100
					Maumee IIIA	
			Euclid	Ashtabula		
.)			L		Maumee II	
	Cary	Hiram	Defiance	Hiram		14,500
		Lavery	Lavery	Lavery		15,500
		_Kent	Cleveland	Kent		
	Farmdalian					
	Altonian	Titusville				
Sanaamanian	ŋ					

Sangamonian?

Illinoian?

Maple Dale

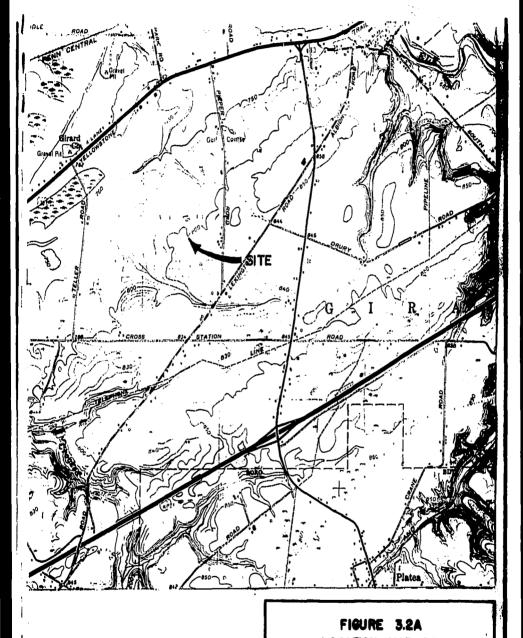
Pre-Illinoian?

Slippery Rock

AR300015

Each successive glacial advance extended a lessor distance into northwestern Pennsylvania. The last three advances—the Lavery, Hiram and Ashtabula—extended only a few miles beyond the present Lake Erie shoreline. A series of closely spaced ridges parallel to the lake shore correspond to the end of each of these three glacial advances. These ridges, which are termed end moraines, consist of glacial till that were transported by and deposited at the leading edge of the ice that corresponds to each of the advances.

The Ashtabula advance had four minor subadvances and associated retreats. As a result the Ashtabula moraine can be subdivided into four additional moraines termed (from oldest to youngest) Euclid, Painesville, Ashtabula and Girard. This series of moraine ridges was termed the "Lake Escarpment Moraine System" by Leverett (1902). The Girard moraine was deposited as recently as 12,950 years before present (Fullerton, 1980).


A glacial meltwater lake filled the present day Erie basin contemporaneous with the Ashtabula advances. This lake, termed Maumee III, was dammed by the Ashtabula ice and drained westward to an outlet at Fort Wayne, Indiana. Maumee III had a surface elevation of approximatly 780 feet based upon the elevation of existing beach strand lines and ridges associated with this glacial lake (Schooler, 1974). As the Ashtabula ice temporarilly receded, the waters of Maumee III inundated the area between the ice front and the previously deposited moraine into which lacustrine deposits were then laid down. These lacustrine deposits were, in turn, overun by a successive ice advance with the deposition of additional glacial till. In this manner, a series of glacial tills corresponding to each of the Ashtabula end moraines was deposited in the area, each of which was separated by continuous deposits of glaciolacustrine material laid down during the inundation by glacial Lake Maumee III.

The vicinity of the Shopes site is depicted on Figure 3.2. The overlay to this figure depicts the surficial glacial deposits as they have been mapped by Schooler (1974). Of primary interest are the Ashtabula and Girard end moraines and a beach ridge formed along the shorline of the last inundation of Lake Maumee III.

3.2 Site Geology

Detailed descriptions of the materials encountered on site are presented on the boring logs in the Appendix to this report. The soil descriptions presented are based on visual examination, the results of laboratory grain size analysis, and index testing. The descriptions are in accordance with a modification of the soil classification system suggested by D. M. Burmister (1958). An outline of the modified Burmister system used in this study is presented on the "Key to Soils Identification", in Appendix B. The results of the laboratory tests are presented in Appendix D. The geologic strata are graphically depicted on the hydrogeologic cross sections on sheets 5 and 6 in the map pocket at the back of this report.

AR 300016

LOCATION MAP OF SHOPE'S LANGUAGE 17. PROM: ALBION, PA. (1989, NEW., 1977) USES GUADRANGLE

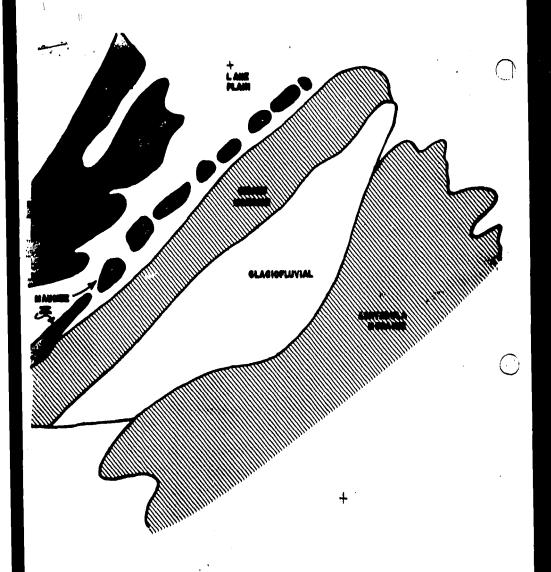


FIGURE 3.2B
REGIONAL SURFICIAL
GEOLOGIC OVERLAY
GLASSAL GENAME

AR300018

The geologic units that underlie the site have previously been described as they occur on a regional basis. The following sections will provide a more detailed description of these units as they were encountered beneath the Shope's site. The units will be described in reverse stratigraphic sequence, that is, in the order in which they were encountered from the land surface. In general, these units consist of a sequence of interbedded glacial tills and glaciolacustrine deposits with minor occurrences of glaciofluvial deposits. Bedrock has not been encountered in any of the borings that have been drilled, to date, at the Shope's site.

3.2.1 Glaciofluvial Deposits

Glaciofluvial deposits are found as a veneer of sediments only on the topographically higher areas of the southern portion of the site. These deposits range in thickness up to five feet. This unit is composed predominantly of stratified sand with minor amounts of silt. The glaciofluvial deposits represent the reworking of the glacial till by glacial meltwater along the margin of the retreating glacial ice.

3.2.2 Ashtabula Till

The Ashtabula Till has been encountered in all of the areas of the site that have been investigated. In all, four separate subunits of the Ashtabula Till have been observed. These subunits correspond to the Painesville, Ashtabula, Girard subadvances and possibly a later subadvance of the Ashtabula ice sheet as indicated on Table 3.1. Each subunit is described as follows:

Land Bearing

Girard Subunit

The uppermost subunit of the Ashtabula Till corresponds to the last readvance of the Ashtabula ice sheet that occurred subsequent to the inundation by Lake Maumee III. This till forms the Girard Moraine which is the northern most ridge in the Lake Moraine System. This till has been observed only at the western limit of the study area in borings W-22 and W-24 at thicknesses ranging up to 8 feet. This subunit is relatively coarse grained consisting typically of "SAND, some to and Gravel, little to some Silt & Clay." The coarse grained nature of this till probably represents the scouring and subsequent redeposition of glacial lake beach deposits.

Ashtabula Subunit

The Ashtabula subunit was encountered in all of the borings in the study area, ranging in thickness from 7 to 42 feet. This subunit is predominately fine grained, consisting of "Clayey SILT, little to and SAND trace to little Gravel." Laboratory permeability tests conducted on this subunit indicate a mean permeability value of 1.2 x 177 [1994] Coarser grained deposits within this till subunit were observed in a

number of borings, particularly in southern portions of the study area in the vicinity of the disposal area. These coarser grained deposits probably represent the reworking of lacustrine beach deposits and consist typically of "SAND, little to some Silt, trace to little Gravel".

Painesville Subunit

The Painesville subunit of the Ashtabula till was found to be substantially more fine grained than the overlying tills with a thickness ranging from 14 to 41 feet. This till, which was encountered in all of the deep borings, consists typically of "Clayey SILT, little to and SAND, trace Gravel". However, occasional coarse grained zones consisting of "SAND, little to some Silt, little to and Gravel" occur discontinuously within this subunit. It is believed that the bulk permeability of this subunit is somewhat less than 1 x 10 cm/sec on the basis of the visual differences in grain size between this subunit and the Ashtabula subunit compared to the measured permeability of the Ashtabula.

Euclid Subunit

The upper surface of the Euclid subunit was encountered in only two of the deepest borings W-20 and W- 21. However, the entire subunit is believed to continuously underlie the entire study area. The Euclid was observed to consist typically of SILT & CLAY, trace to little Sand, trace Gravel. The permeability of this subunit is presumed to be low.

3.2.3 Maumee III Lacustrine Deposits

Lacustrine deposits corresponding to Lake Maumee III have been observed as interbedded sequences between each of the subunits of the Ashtabula Till. The Maumee III has been subdivided, for the purpose of this report, into three subunits based upon their position relative to the till subunits. These lacustrine subunits have been designated Maumee III A, III B, and III C, as indicated on the geologic cross sections, sheets 5 and 6. The subunits of the Maumee III lacustrine deposits are described as follows:

III C Subunit

The III C was exposed at the ground surface and/or was encountered at shallow depth in nearly all of the borings. This subunit ranges in thickness from 10 to 31 feet. The III C is predominantly coarse grained and probably representative of lake shore, beach deposition. It consists typically of "SAND, trace to and Silt, trace to and Fravel" frequently interbedded with laminations of Silt & Total U.S. permeability of the III C subunit is approximatly 1 x 10 cm/sec.

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

Fine grained zones of the III C were also encountered in a number of borings. These deposits consist of "laminated SILT & CLAY, none to and SAND". The mean permeability from two laboratory tests was determined to be 4.8 x 10 cm/sec.

IIIB Subunit

The IIIB subunit was encountered at intermediate depths beneath the study area at a thickness ranging between 5 and 24 feet. This subunit consists alternately of relatively coarse zones and fine zones with mean permeability values demonstrated to be 2 x 10^{-0} cm/sec and 1.4 x 10^{-7} cm/sec, respectively. The coarse zones can be described as "stratified fine SAND, trace to some Silt, trace to and Gravel", occasionally interbedded with laminations of Silt & Clay. The finer grained zones typically consist of "laminated SILT, trace to some Sand."

IIIA Subunit

The IIIA subunit was encountered at the bottom of each of the deep borings at a thickness ranging from 14 to more than 20 feet. The IIIA is more fine grained than the overlying lacustrine deposits, and is probably representative of an off-shore depositional environment. However, these coarser grained zones were occasionally encountered in each of the borings in which the deepest wells were screened. The fine grained zones consist of "laminated CLAY & SILT, no to little Sand, no to trace Gravel." The coarse zones consist of "stratified fine SAND, no to gome Silt" and possess a mean permeability determined to be 1.6 x 10^{-5} cm/sec.

AUN 12 16/10

AR300021

4.0 GROUNDWATER CONDITIONS

The geologic conditions beneath the study area have been described in detail in the preceeding section. This section describes the occurrence of groundwater as it is contained within the geologic framework. Groundwater has been observed to occur within three zones beneath the Shope's study area:

1. As an unconfined water table zone within the shallow soils.

 As an intermediate depth confined zone within the coarser grained soils of the Maumee III B and the coarse-grained Ashtabula Till.

 As a deep confined zone within the coarser grained deposits of the Maumee III A.

Monitoring wells have been installed in each of these zones, allowing the determination of their respective piezometric surfaces. Groundwater measurements from all of the monitoring wells are presented in Table 4.1.

Deeper water bearing zones probably exist below those that were studied as a part of this investigation. These zones may be contained within deeper glacial deposits and/or bedrock that underlies the site.

4.1 Water Table Aquifer

An unconfined water table aquifer occurs within the shallow soils beneath the study area and ranges in depth from 15 to 30 feet. These shallow soils primarily consist of the coarse grained Ashtabula Till and Maumee III C lacustrine deposits but intermittently consist of fine grained soils as well. In general, however, these shallow soils are among the most permeable that occur at the site, with an estimated permeability of approximatly lx10 cm/sec.

The unconfined water table aquifer receives recharge predominantly through direct infiltration of precipitation. As such, the surface of this zone is especially subject to seasonal variations.

The surface of the unconfined aquifer occurs at relatively shallow depths beneath the site, ranging from zero to approximately nine feet below ground surface except below the waste disposal area where it is somewhat deeper. Contours of equal water table elevation were interpolated from water level data obtained from the wells. The water table surface generally reflects the ground surface topography with a gradient ranging from 0.03 to 0.07. The water table surface as shown on Sheet 2 is very similar to that configured by both Harrison (1980) and Wehran (1981).

The direction of lateral groundwater flow is assumed to be perpendicular to the groundwater contours as indicated on the water table contour map. Flow is generally to the north and west. This component of flow presumably discharges to the north and west of the site. The water table surface in the nearly coincident with ground surface in the northeast seep area and the low, wet area immediately west of the site.

TABLE 4.1 SHOPE'S LANDFILL WATER LEVEL DATA

Well	Well Depth	Ground- water Zone *	Ground Surface Elevation	Reference Point Elevation	December Water Depth	r 11, 1985 Water Elevation	January Water Depth	16, 1985 Water Elevation
W-1	101.5	Deep	789.7	-	_		46.4	744.87
W-1A	28.0	Int.	790.2	791.87	6.6	785.27	6.8	785.07
W-1B	21.0	WT/Int	790.5	=	-	,	4.7	786.84
W-1WT	15.0	WT	790.2	793,26	8.65	784.61	8.2	785.06
W-2	61.3	Int.	827.3	829.55	17.55	812.05	17.8	811.75
W-2A	52.5	Int.	826.7	829.01	19.78	809.23	18.0	811.01
W-2B	37.5	WT/Int	827.3	829.55	19.4	810.15	-	829.55
W-2C	29.0	WT/Int	827.3	829.55	-	-	14.8	814.75
W-2WT	24.0	WT	815.5	818.72	-	-	5.9	812.82
W-3	37.0	Int.	799.2	800.66	-	-	5.4	795,26
W-3A	28.0	Int.	799.6	800.79	6.04	794.75	5.2	795.59
W-3B	15.8	WT/Int	800.0	800.84	5.44	795.4	5.2	795 .6 4
W-3C	85.5	Deep	800.0	800.61	11.85	788.76	-	-
W-3WT	13.5	WT .	800,2	803.83	-		3.8	800.03
W-4	48.8	Int.	794.7	797.22	19.72	777.5	18.0	779.22
W-4A	34.0	Int.	795.0	797.06	14.4	782.66	10.8	786.26
W-4WT	13.5	WT	795.0	796.70	-	-	2.8	793 .9 0
W-5	51,3	Int.	812.5	815.20	13.23	801.97	11.0	804.20
W-5A	41.5	Int.	812.5	815,20	9.76	805.44	8.2	807.00
W-5B	19.3	WT/Int	810.9	814.33	7.44	806.89	5.1	809.23
W-5WT	10.0	WT	812.8	817.73	-	=	6.6	811.13
W-6A	27.2	Int.	790.9	793,60	0,6	793.00	0.2	793.40
W-6WT		WT	791.6	794.75	-	-	4.9	789.85
W-7	48.0	Int.	809.9	811.81	_	-	7.6	804,21
W-7A	107.0	Deep	809.6	812.56	63.15	749.41	64.0	748.56
W-7WT	13.0	WT .	809.4	811.62	-	-	3.6	808.02
W-8			794.4	796.86	3.7	793.16	-	-
W-8A	28.5	Int.	794.4	796.86	2,95	793.91	2.4	794.46
W-8WT	9.5	WT	794.6	796.38	-	-	2.2	794.18
W-9	55.0	Int.	795.2	797.38	7.24	790,14	6.7	790.68
W-9A	31.0	Int.	795.2	797.38	2.78	794.68	2.8	794.58
W-9WT	8.5	WT	794.7	797.04	-	-	2.6	794.44

AR300023

		Ground-	Ground	Reference		ber 11, 1985	Janua	ry 16, 1985
dell	Well Depth	Water Zone	Surface Elevation	Point Elevation	Water Depth	Water Elevation	Water Depth	Water Elevation
√-10	57.0	Int.	793.7	795.85	16.82	779.03	16.0	779.85
√-10A	32.5	Int.	793.7	795.85	16.32	779.53	14.4	781.45
		WT	793.7	795.85				
V-10WT	24.0	M.T	172.1	792.02	-	-	14.5	781.35
√ –11	59.0	Int.	781.9	785.07	_	-	5.9	779.17
/-11A	31.1	Int.	781.9	785.07	-	-	6.0	779.07
/-11WT	7.5	WT	782.3	784.98	-	-	5.3	779.68
I-12A	52.5	Int.	788.8	790.83	-	_	7.0	783.83
I-12R	28.0	Int.	788.9	792.23	-	_ =	8.4	783.83
-12C	20.0	ŴT.	788.8	791.34	-		11.1	780.24
I-12D	94.0	Deep	788.2	791.13	16.5	774.63	43.0	748.13
!-14	11.0	WT	817.3	820.62	-	820.62	13.6	807.02
I-1 5	13.0	WT	819.1	820.97	17.4	803.57	16.8	804.17
-16	18.0	WT	818.6	820.67	22.5	798.17	21.9	798.77
-18	18.0	WT	812.4	816.41	-	816.41	20.2	796.21
-20A	16.0	WT	787.9	790.52	5.6	784.92	5.8	784.72
-20B	47.0	Int.	787.4	790.26	_	790.26	0.0	790.26
-20C	86.0	Deep	788.1	791.14	12.75	778.39	41.9	749.24
-21A	14.5	WT.	782.7	786.04	7.98	778.06	7.1	778.94
-21B	48.5	Int.	782.8	785.33	7.45	777.88	6.5	778.83
-21C	105.5	Deep	783.1	785.57	33,46	752.11	33.1	752.47
-22A	10.5	WT	775 0	1177 7/	, ,	770 0/	4.7	772 0/
-22h -22B			775.0	777.74	4.4	773.34		773.04
-22C	52.0 80.0	Int.	775.0	777.32	0.12	777.20	0.0	777.32
-220	60.0	Deep	775.0	777.37	29.32	748.05	28.9	748.47
-23A	13.5	WT	776.5	779.28	3,38	775.90	2.1	777.18
-23B	37.0	Int.	776.6	779.45	6.22	773.23	4.9	774.55
-23C	84.0	Deep	776.4	779.09	35.02	744.07	34.7	744.39
-24A	10.0	WT	783.8	786.66	3,47	783.19	4.2	782.46
-24B	59.0	Int.	783.5	786.47	9.9	776.57	9.3	777.17
-24C	86.0	Deep	783.1	786.03	42.95	743.08	42.6	743.43
-25WT	15.0	WT	786.1	789.18	3.7	785.48	3.8	785.38

Notes: * Groundwater zones abbreviated as follows:

WT-Water Table Aquifer; Int.=Intermediate Depth Confined Zone; Deep-Deep Confined Zone

** Reference points as follows:

-wells with steel protective casings: top of casing with cap off

-reteal wells without protective conjugation for all labeled accounts.

⁻steel wells without protective casings: top of locking cap with cap opened -PVC wells without protective casings: top of PVC with cap off.

Therefore, these specific areas are most likely receiving groundwater discharge from the water table aquifer.

Slight vertical components of flow have been identified within the water table aquifer. A small downward flow component is present in the topographically higher areas and a slight upward flow component is present in the low lying discharge areas. This vertical flow would be expected to be somewhat more pronounced in the lower permeability soils but nearly absent in the coarse grained high permeability soils in which horizontal flow would be predominate.

The rate of horizontal groundwater flow within the water table aquifer can be estimated through the use of Equation 4.1

$$V_{S} = \frac{K_1}{N}$$
 Eq. 4.1

Where:

Vs = seepage velocity (cm\sec)

K = permeability (cm\sec)

i = hydraulic gradient (dimensionless)
N_a = effective porosity (dimensionless)

The permeability has been estimated to be $1x10^{-4}$ cm\sec. The average hydraulic gradient is 0.05. A typical value of the effective porosity can be assumed to be 0.3 (Freeze and Cherry, 1979). Inserting the above data in Equation 4.1 yields a horizontal flow rate of 1.7x10⁻⁵ cm\sec or 0.047 ft\day.

4.2 Intermediate Depth Confined Zone

Groundwater occurs under confined conditions in a laterally continuous zone beneath the entire site. The confined zone is found primarily in the coarse grained soils of the Maumee III B lacustrine deposits but is also found in the coarse grained Ashtabula Till beneath the southern portion of the site. The geologic deposits comprising this zone have a moderately low permeability shown previously from in-situ test results to be on the order of 2x10 cm/sec. Further analysis, discussed subsequently, indicates that the actual permeability of this unit is probably somewhat higher, on the order of 5x10 cm/sec. However this unit cannot truly be termed an aquifer as it probably would not be capable of transmitting significant quantities of water under ordinary hydraulic gradients (Freeze and Cherry, 1979). Therefore, this unit will be termed a "water bearing zone". This water bearing zone is almost completly confined by overlying fine grained till and lacustrine deposits represented, respectively, by the Ashtabula subunit and the Maumee III B subunit. The permeability of these subunits has previously bear accompleted to the order of 1x10 cm/sec.

An area has been identified beneath the disposal area in which full confinement of this zone is not afforded, (Cross-Section B-B, Sheet 6). In this area, the potential exists for hydraulic communication between the overlying water table zone and the intermediate depth confined zone

The piezometric surface has been defined through the use of water level measurements from monitoring wells screened in the Maumee III B at elevations ranging from 723 to 760 feet. The use of water levels from slightly shallower monitoring wells in the same zone would have yielded a very similar piezometric surface configuration. The configuration of this surface has been depicted on the Intermediate Depth Piezometric Surface Contour Map (Sheet 3). This surface is shown to slope to the north west in a similar but more subdued manner than that of the overlying water table zone. The configuration of these contours is very similar to that which was depicted by Harrison (1980).

The intermediate depth confined zone receives recharge from the area south of the site where the Maumee III B is believed to outcrop at the surface. Flow through the zone is primarily horizontal toward the northwest to a discharge area represented by a low lying area beyond the border of the study area.

The direction of vertical flow through the overlying confining layer tends to be variable and is dependent upon the topographic position of the water table aquifer. In the topographically higher areas of the site such as beneath the landfill and the hill at W-2, the water table surface is significantly higher than the piezometric surface in the intermediate confined zone. This provides the potential for downward flow through the confining layer and through gaps in the confining layer that have been identified beneath the disposal area. In the topographically lower areas of the site such as the area to the north of the landfill, the piezometric surface is higher than the water table surface. In fact, at several locations, such as W-20 and W-22, the piezometric surface is above the ground surface. Under these conditions, the potential exists for upward flow through the confining layer. However, the actual rate of vertical flow through the confining layer is very slow, being limited by the low permeability of the unit.

The rate of horizontal flow through the intermediate depth confined zone can be estimated with the use of Equation 4.1. The data required for this calculation includes the permeability and hydraulic gradient that have been determined, respectively, to be 2×10^{-0} cm/sec and 0.05 and an effective porosity assumed to be 0.3.

$$V_{8} = (2x10^{-6})(0.05)$$
0.3

 $= 3.3 \times 10^{-7}$ cm\sec = 0.34 ft/yr

It is known that the contaminants within this zone have involved aparagramate 200 feet over a period of 25 years. Back calulating on the basis 300 rate of 8 ft/yr indicates that the in-situ permeability values that have been

Line of

Aberist BS Contract to 600'

incorporated in the initial calculation may not be representative of the unit as a whole. A more typical permeability value for the intermediate confined zone would appear to be approximatly $5x10^{-5}$ cm/sec.

4.3 Deep Confined Zone

A deep confined water bearing zone has been identified at a depth ranging from approximatly 75 to 105 feet below the ground surface. This zone is contained within the coarser grained layers of the Maumee III A lacustrine deposits. The Maumee III A has been described previously as possessing a permeability on the order of 1×10^{-5} cm/sec. This zone is fully confined by the tills represented by the Ashtabula subunit with a permeability anticipated to be less than 1×10^{-7} cm/sec.

The piezometric surface in this deep zone has been depicted on the Deep Confined Zone, Piezometric Contour Map (Sheet 4). This map was prepared from water level measurements obtained from the deepest site wells. However, the water level datum from one well, W-3, was omitted from this map. This particular datum is believed to be in error based upon a comparison of water levels from the other wells on the same date and the data from the same well, W-3, on subsequent dates. The piezometric surface indicates, contrary to the shallower groundwater zones, that groundwater in the deep confined zone flows toward the southwest. Furthermore, the piezometric surface in this zone is very deep, some 25 to 50 feet deeper than that of the overlying zones.

The deep confined zone probably receives its recharge through the slow downward flow through the confining layer that necessarily would occur under the influence of the considerable downward vertical gradient that has been identified. The lateral flow direction within this zone was observed to be parallel to the strike of the elacial deposition. That is, this groundwater flow path passes through soil that should be fairly consistent in type and depth. This flow path is shown to be directly to the regionally low area represented by Crooked Creek. Therefore, Crooked Creek most likely serves as the discharge point of this deep confined zone.

The rate of recharge to the deep confined zone is likely to be very slow on account of the low permeability of the confining layer. This rate can be calculated with the use of Equation 4.1. The permeability of the confining layer is conservatively stated at 1 x 10^{-7} cm/sec. The vertical hydraulic gradient across the confining layer at W-12 is calculated to be 1.0. The effective porosity is assumed to be 0.3. On the basis of these data groundwater moves downward through the confining layer at a rate of 3.3 x 10^{-7} cm/sec or 0.001 ft/day.

 $= 3.3 \times 10^{-7} \text{ cm/sec} = 0.34 \text{ ft/yr}$

AR300027

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

and with the state

1

The rate of horizontal flow through the deep confined zone can also be calculated with the use of Equation 4.1. The permeability of the zone has been shown to be 1 x 10^{-5} cm/sec, the hydraulic gradient is approximately 0.01 and the effective porosity is assumed to be 0.3. Based upon these data it can be seen that water moves through this zone at a very slow rate of approximately 0.001 ft/day.

$$V = (1 \times 10^{-5})(0.01)$$

 $= 3.3 \times 10^{-7} \text{ cm/sec} = 0.34 \text{ ft/yr}$

4.4 Hydrogeologic Cross Section

A hydrogeologic cross section has been prepared (Sheet 7) in order to further define groundwater flow directions and the interrelationships between the various water bearing zones. The hydrogeologic section is drawn along the same orientation as the Geologic Cross Section B-B. Of particular note is that the hydrogeologic section depicts the vertical distribution of potential, or hydraulic head, through the geologic cross section. It achieves this by means of portraying lines of equal potential, or head, which are known as equipotential lines. By knowing the position of the equipotential lines, directions of groundwater movement throughout the cross section can be depicted. This results from the fact that the laws of groundwater hydraulics dictate that groundwater flow must be at right angles to the equipotentials. Although the exaggerated scale of the section (necessary for clarity) distorts the orthogonality to a degree, groundwater flow patterns are clearly outlined by the flow arrows accompanying the equipotentials.

This hydrogeologic section is not intended to be a rigorous quantitative representation of the actual system, but is intended to qualitatively portray the direction and relative quantity of groundwater flow.

The hydrogeologic section is based upon a number of assumptions that are consistent with the previous discussion. These assumptions are as follows:

- Water table aquifer represented by coarse grained Ashtabula Till and coarse grained Maumee IIIC lacustrine deposits.
- . Intermediate water bearing zone represented by coarse grained Ashtabula Till and coarse grained Maumee IIIB lacustrine deposits.
- Deep water bearing zone represented by coarse grained Maumee IIIA lacustrine deposits.
- . Confining layer (aquitards) represented by fine grained Ashtabula Till and fine grained Maumee III lacustrine deposits.

 AR300028
- . Water table surface and piezometric surfaces as depicted on the

respective contour maps.

The pattern and rates of groundwater flow can be summarized based upon the hydrogeologic cross sections, the groundwater contour maps, and the previously described calculations. Furthurmore, Table 4.2 summarizes the values for permeability, porosity, hydraulic gradient porosity, and ground water flow rates for each of the described strata.

A shallow water table aquifer exists within the highly permeable surficial soils which receive recharge directly from infiltrating precipitation. Lateral flow takes place to the north and west. Partial discharge of the water occurs in the low lying areas on the margin of the site.

An intermediate depth water bearing zone is confined by an aquitard that is nearly continuous beneath the study area. Water enters this moderately low peremability zone through infiltration of precipitation in a recharge area south of the site and through leakage through gaps in the confining layer. Flow within this zone is predominantly in a lateral direction toward discharge areas located beyond the site margin.

A deep water bearing zone is fully confined by a thick low permeability aquitard. Water enters this zone primarily through slow leakage downward through the aquitard under the influence of a strong downward gradient but limited by the low permeability of the unit. Due to the small volume of recharge to this confined zone, little driving force exists to cause water movement in a lateral direction. Therefore, lateral flow occurs slowly under a very low hydraulic gradient toward the southwest to be discharged to Crooked Creek.

Table 4.2
Summary Of Hydrogeologic Data

Hydrogeologic Zone	Permeability (cm/sec)	Porosity Dimensionless	Hydraulic Gradient (Dimensionless)	Groundwater Flow Rate (ft/yr)
Horizontal Flow			 	
Water Table Aquifer	1×10 ⁻⁴	0.3	0.05	17
Intermediate Depth Confined Zone	5x10 ⁻⁵	0.3	0.05	8
Deep Confined Zone	1×10 ⁻⁵	0.3	0.01	0.34
Vertical Flow	-7			1R3Q0,029
Deep Confining Layer	1×10 ⁻⁷	0.3	1.0	11. 2 AD 131 E 3

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

5.0 GROUNDWATER QUALITY

The perspective gained from the analysis of groundwater flow conditions has aided greatly in the interpretation of groundwater quality data. This has allowed the determination and prediction of groundwater contaminant flow on a vertical basis as well as a lateral basis, something that was not possible at the time that the March 1984 Groundwater Quality Study (Wehran) was prepared.

Groundwater samples were obtained from all of the newly installed monitoring wells during January and April 1985, by personnel from Lord. These wells were sampled by the means of an ISCO Model 2600 submersible bladder pump. The pump was decontamination in the field prior to use in each of the wells. However, tubing used within the pump for the April sampling event was permanantly dedicated to each well. The sample analyses were performed by Lord. The parameters for which the samples were analyzed include a list of chlorinated and non-chlorinated hydrocarbons referred to in the Draft Long Term Monitoring Plan as Category A and C parameters, respectively. In addition, the samples were subjected to a total volatile organic scan (TVO) and a total halogenated volatile organic scan (TWO) in accordance with the method described in the Draft Long Term Monitoring Plan.

Groundwater samples have also been collected and analyzed from selected previously existing wells, as a part of the current monitoring plan. These wells were sampled both in December 1984, and March 1985, by personnel from Lord. The samples were analyzed for the same parameters as the newly installed wells in addition to a number of metals and indicator analyses.

The TVO and THVO data from selected wells that were sampled as described above have been utilized for this water quality evaluation. These data are tabulated on Table 5.1. The well data have been separated into those from wells screened in the water table, the intermediate, and deep zones. In the case where more than one well is screened in a particular zone, only the data from the more contaminated well have been presented. Water quality data for Chloride, Specific Conductance, and metals are not available for the newly installed wells. Therefore, these parameters have not been utilized in this evaluation of water quality.

The shallow water table zone appears to be relatively uncontaminated on the basis of TVO and THVO data with the exception of the two wells located immediately downgradient of the disposal area. Wells W-IWT and W-3WT each had elevated levels of THVO in Dec/Jan at 51.4 ppb and 107.3 ppb, respectively. The THVO in 3WT decreased to BT in April Levels of TVO in all wells, including W-IWT and W-3WT, were below the threshold.

In contrast to the conditions in the water table zone, the intermediate water bearing zone appears to be significantly contaminated. On the basis of the most recent TVO data, it appears that a contamination plume has spread approximately 200 feet downgradient of the margin of the waste disposal area. TVO levels within this plume range from a high of 48,357.5 ppb in well W-3 in Dec/Jan downward to the TVO threshold level of 100 ppb which is Applied 100 be the outer margin of the plume. THVO levels within the plume closely

provided its

TABLE 5.1 SUMMARY OF TVO & THVO DATA 12/84 - 1/85

Water	Table Z		Int	ermediate !			Deep Zon	
Well	TVO	THVO	Well	TVO	THVO	We11	TVÕ	THVO
 lwt	ВТ	51.4	. 1B	378	54.1	1	710	159
3WT	BT	107	3	48,400	765	3C	363	361
4WT	BT	BT	4A	172	173	-		
SWT	BT	BT	-			-		
6WT	BT	BT	6A	BT	BT	-		
7WT	BT	BT				7A	BT	28.5
8WT	BT	BT	-	in Dr		-		
9WT	BT	BT	9A	BT	BT	~		
10WT	BT	BT	10	BT	BT	_		
11WT	BT	BT	11A	112	169	_		
12C	BT	BT	12A	BT	55.1	12D	BT	64.9
20A	BT	29.6	20B	2350	28.6	20C	815	B'
21A	BT	BT	21B	BT	BT	21C	BT	B
22A	BT	BT	22B	BT	30.1	22C	BT	40.8
23A	BT	~	23B	BT	29.2	23C	BT	B
24A	BT	BT	24B	BT	28.9	24C	BT	B
25WT	BT	BT	-		,	A-1-0		-
				4/85-5/85				
1WT	BT	54.8	1B	324	BT	1	365	85.2
3WT	BT	BT	3	40,100	736	3C	1050	52.3
4WT	BT	BT	4A	112	BT	_		_
5WT	BT	BT	-					
6WT	BT	BT	_			_		
7WT	BT	BT	_			7A	BT	B7
9WT	BT	BT	_			-		
10WT	BT	BT	10	BT	BT	-		
11WT	BT	BT				-		
12C	BT	BT	12A	BT	BT	120	BT	B
20A	BT	BT	20B	2,720	3.53	20C	1630	B
21A	BT	BT	21B	BT	BT	21C	BT	30.9
22A	BT	BT	22B	BT	BT	22C	BT	B7
23A	BT	BT	23B	BT	50.0	23C	BT	Bi
						24C		45.6
24A	BT	BT	24B	BT	27.3	24G	117	43.r

NOTES:

* Indicates data from samples collected 8/83 Bt indicates sample level does not exceed threshold levels, or follows:

TVO-100ppb THVO-25ppb

AR300031

parallel the TVO levels. An exception to this is well $W-12\mbox{\em M}$ in which the Dec/Jan THVO level of 55.1 was somewhat above the respective 25 ppm threshold while the TVO level at 66.6 ppb was somewhat below the respective 100 ppm threshold, suggesting that well W-12A is located on the edge of the existing plume. However, both TVO and THVO in 12A decreased to BT in March/April. The contamination plume within the intermediate zone is depicted on Sheet 8 on the basis of the TVO data.

It is not possible to draw any firm conclusion as to water quality in the deep water bearing zone on the basis of the available data. It is believed that this deep zone is uncontaminated due to the fact that it is fully confined by a thick, continuous low permeability glacial till unit. However, this cannot be demonstrated at this time because no wells exist in the deep zone in a downgradient direction from the site. This is so because it has been determined that the deep zone flows to the southwest, which is nearly opposite of the flow direction of the overlying water table and intermediate zones.

Several of the deep wells located to the northwest of the site, W-1, W-3C, and W-12D, exhibit contaminant levels in excess of the threshold levels. However, based upon the observed hydrogeologic conditions as previously described, it is believed that these wells should not be contaminated. 1.4-16-

The elevated levels of TVO and THVO in well W-1 which ranges from 3 to 7 times above the threshold are probably a result of preferential migration downward through the well seal. This may be because this is an older well which may have been installed using methods that would be considered outdated today, and because this well is under the influence of a significant downward gradient.

Despite the careful drilling and well installation practices that have been followed in the construction of W-3C and W-12D, it is possible that contaminants could have been carried down to the completion depth of these wells by the drilling process. Adequate development of these wells has been difficult to achieve due to the moderately low permeability of the strata in which they are screened. This has prevented rapid flushing of these wells. Therefore, it is likely that contaminants carried downward by drilling simply have not been removed from these wells by the development and well purging that have been conducted to date. However, continued purging of these wells over a period of several months has failed to achieve significant improvement in these wells.

The water quality in both the intermediate and deep zones at well location W-20B and W-20C, provides a paradox as compared to the other existing data. The intermediate zone at W-20B is relatively contaminated with a TVO level ranging up to 2720 ppb. This contamination has been corroborated by noticable odors in undisturbed Shelby tube soil samples that have been collected at intermediate depths in the boring in which this well was constructed. It is difficult to explain this contamination because W-20B is located cross gradient, not downgradient from the site. Furthermore, the observed contamination plume emanating from the site is separated from well W-20B by an uncontaminated well W-9A, which makes it even more difficult AR 9414 37 contamination in this well. This data suggests the possibility of a separate

19

contaminant source other than the Shope's disposal area;

17 - 2 TIX

On the basis of the observed hydrogeologic conditions, it is most likely that the deep well, W-20C, is not actually) contaminated. It is possible that the elevated TVO value of 814.9 ppb is a result of relict contamination from the drilling process in the same manner as that discussed for W-3C and W-12D. It is also conceivable that apparent contamination in this well could be attributed to preferential migration through the well seal.

In summary, groundwater within the shallow water table zone remains relatively uncontaminated except for that on the immediate margin of the site. The bulk of the groundwater contaminants have moved downward into the underlying intermediate zone under the influence of the downward vertical gradient that has been shown to exist beneath the entire disposal area. Contaminated groundwater within this intermediate zone has moved laterally to the northwest of the disposal area. The water bearing zone in the deep zone is confined from the overlying zones by a thick, low permeability till unit and is believed to be uncontaminated. Groundwater flow in this deep zone is toward the southwest.

AR300033

PRIBLES

6.0 CONCLUSIONS

The most significant aspects of the hydrogeologic investigation are summarized, as follows:

- l) The study area is underlain by a thick sequence of glacial deposits. These deposits consist alternately of at least four continuous glacial tills interbedded with at least three continuous glaciolacustrine units.
- 2) Bedrock exists beneath the glacial deposits and consists of a Devonian shale. This bedrock has not been encountered during this investigation on account of its great depth.
- 3) An unconfined water table aquifer exists within the surficial coarse grained tills and lacustrine deposits. Lateral flow within this shallow zone is toward the north and west in response to the ground surface topography.
- 4) An intermediate depth confined groundwater zone exists primarily within the relatively coarse grained materials of an interbedded lacustrine unit. The permeability of this unit is not sufficiently high for this zone to be termed an aquifer. Groundwater moves through this intermediate confined zone to the north and west at a relatively slow rate. This zone receives recharge from a recharge area located south of the site and through leakage and gaps in the confining layer beneath the disposal area.
- 5) A deep confined zone exists within a deeper interbedded lacustrine unit. This unit flows to the southwest to a discharge area represented by Crooked Creek.
- 6) Groundwater contamination has been identified in the water table only on the downgradient margin of the disposal area. Contaminants have moved downward into the underlying intermediate depth confined zone under the influence of downward vertical gradients that exist beneath the disposal area. Contaminants have moved laterally within the intermediate zone to a point approximately 200 feet northwest of the disposal area. Groundwater within the deep confined zone is believed to be uncontaminated.

a for a first of the first

1: -1.

AR300034

REFERENCES

AWARE Inc., 1984. <u>Draft Long-Term Monitoring Plan, Shope's Landfill, Girard Twp., PA</u>, unpublished report.

Burmister, D M., 1958. "Suggested Methods of Tests for Identification of Soils", <u>Procedures for Testing Soils</u>, American Society of Testing Materials.

Cedergren, H.R., 1967. <u>Seepage, Drainage and Flow Nets</u>, John Wiley & Sons, Inc., New York.

Freeze, R.A. and J.A. Cherry, 1979. <u>Groundwater</u>, Prentice Hall, Englewood Cliffs.

Fullerton, D.S., 1980. <u>Preliminary Correlation of Post Erie Interstadial Events (16,000-10,000 Radiocarbon Years Before Present), Central and Eastern Great Lakes Region, and Hudson, Champlain, and St. Lawrence Lowlands, United States and Canada, USGS Professional Paper 1089, Washington.</u>

Harrison, S.S., 1980. Final Report on the Hydrogeology of the Shope's Landfill, unpublished report.

Lord Corp., 1984, Shope Landfill Annual Report, unpublished report.

Schooler, E.E., 1974. <u>Pleistocene</u> <u>Beach Ridges</u> <u>of Northwestern Pennsylvania</u>, Pennsylvania Topographic and Geologic Survey, General Geology Report 64, Harrisburg.

Shepps, V.C. et al, 1959. <u>Glacial Geology of Northwestern Pennsylvania</u>, Pennsylvania Topographic and Geologic Survey, Bulletin G-32, Harrisburg.

Tomikel, J.C. and V.C. Shepps, 1967.

Pennsylvania, Pennsylvania Geologic Survey, Information Circular 56, Harrisburg.

White, G.W. et al, 1969. <u>Pliestocene Stratigraphy of Northwestern Pennsylvania</u>, Pennsylvania Topographic and Geologic Survey, Harrisburg.

Wehran Engineering Corp., 1981. <u>Hydrogeologic Assessment, Interim Report, Shope's Landfill</u>, unpublished report.

 1981.	Remedial	Action	Plan,	Shope's	<u>Landfill</u> ,	unpublished	report.

, 1982. The Flow Net Analysis of the Subsurface Cut-Off Wall and Impervious Cap, unpublished report.

report. 1984. Groundwater Quality Study, Shope's Landfill, unpublished

AR300035

APPENDIX A

AR300036

 $\mathcal{L}_{i,j}(x_{i,j}^{-1},x_{i,j}^{-1},x_{i,j})$

BORING NO. W-IW TEST BORING LOG (replacement) PROJECT CLIENT : SHOPE'S LA NO 1 01 PROJECT NO. 6278 EQUIPMENT : CMG-45 (TRAILER CONTRACTOR: EMPIRE 3016 LING METHOD: AUGER INTAKE RISER TYPE STAINLES 710.2 ACK STEEL DIAMETER 2" HSA 35 DATE STARTED: 12/3/84 2 DATE COMPLETED: 12/3/84
DRILLER: SEMINAICH
NSPECTOR: MACMICLIN DIAM 2. COUPLING MELDED LAFLORD 3% WEIGHT CONSTRUCTION 1404 SAMPLE 30. DEPTH REMARKS PER 6 inches **CLASSIFICATION** NO. 3.10902 FILL CLAY SILT, some & Soud 2 8.8 little of Grand, Creworked 9.11 Glassel Till) 3 55 10.7 Rise wood fragment 14-12 55 4 11-11 3.4 ď 5 55 5.6 55 6 8.8 7-12 MAUMEE ITE LACUSTRINE 55 14-14 laminated SICT. some of Sand occumed SAND interbed -4-6 8 SS 8-10 ABHTABULA TILL SICT CLAY, some of Sand little of Grant 16' bor:no End of AR300037

F	<u> </u>		**	XE TOT			TE	ST E	BORIN	G LO	G	Ĺ	IG NO.W-	30
	IECT		SH		ORP	ANDFIL	L						10.1 of 2 NO.: 6278	
ONT	RAC	TOR	FY	1010	6 9	014		EQUIPMEN	NT ACK	FR 82		,	110.1.00.2.7	
				ER		NTAKE	DRILL	ING MET	HOD: AUG	FRIROT			OUND WELL P	
YPE			LAC		1 5	TAINLES			SAMPLER	CORE	TUBE	D.EV. 80		00,6
	ETE		3		٠.	<u>s.</u>	TYPE	H.S.A.	2"			DATE COM	MED: 11/29/8 Pleted: 12/5/1	<u> </u>
W.	TINE		ARLO	-		ROFO	WEIGHT		140#			DRILLER:	SKURA	7_
CON	STR	UCTIO	ΜĒ		SAN	PLE	FALL		33				MACMILLIN	
•	ا		DEPTH	NO.	TYPE	PLOWS PER 6 Inches		CL	ASSI FICA	TION			REMARKS	
	\top	1	†⁰	ī	55	3-2	M		1110 L	ACUST	RINE	1		
		ڻ			<u> </u>		lami		SICT	CLAY		ļ		
	١,			<u> </u>	-	10.5		inter boda	اس لها	£ 'S	AND,			
	1	į	, -2	2	55	7-6	3	انج سه	1+ + C(n,	,	•	1		
		Locking	ŀ	╌]		
] ;	707	t			<u> </u>					6.7	1		
			[L_		@9	here.	me 9 m;	, straty	jiev	become	saturated	
			F10	3	55	5.8	ح ا	161, 30	my S	anj		@9	•	
			1.	2	32	7-1	ļ .					ł		
1			ŀ								*T3,			
+1019		!	ŀ					ر بر معلقه،	آبه و	4				
Š			t	<u> </u>		フ・フ	9	- aping 7	0 5 5	,ו,טטא,	HI 5,14,			
-			15	4	55	7-9	ا ا		,					
ř	11		[انها	15,5 , <i>6</i> ,	erome of	- 5A	ND,			
ģ			1] "	(1)4 -(1-4 8	ع کر اس	* # \J AC (
Bentonite			-	<u> </u>	-	0 0					19.5			
Ð	1		-20	5	55	10-12		ASTAB	ULA T	ILL (Ca	2/96)	Aone	rent solven	+
C mend-	1		t	\neg				(6	ZAVEL,	•••	1	l adac	19'- 50'	
į	S.		[bason	ne less disti	net
Š	ا۳ا							DOW,	Some S	2; 17 V C	ley .	-i+h	depth	
J	H		25	6	55	15-15		non. 2	tra tufiad,	non 30	-404			
	H		ŀ			25-23								
	11		†				1							
]		1											
			[_	7	6,	10-10								
			-30		55	15-14								
			 								į			
			}				}							
						5-4					34.5'			
			-36	9	SS	6-7	M		TIL L	ACUSTR	INE			
	Ιİ						ے ن	, <u>C</u>	ard)	ا ام الما	8			
							3 -	DAND,	little Si	it, Strat				
	H		 	\dashv			-	,_	 -		39'			
			149	9	55	8-10	١.	(§	111)		ا	AR:	300038	
j	{		Ηl	-		12-12	l an	nina fel L. C.	SICT	1111/6 +	Je. 11,			
			ΙI				pet '	שור שיד	in ter bed	11 + 20	백.			
ı			[]		l						ļ			
				10	5.	20-10					45'			
				70	~	20-14		ASHT	ABULA	TW C	Carrel T			

	ľ	ĴF	¥		Ē		TEST	BORIN	G LOG	BORING	NO, ω-?
ROJEC	_		51	HOF	E's	LANDE	ice			SHEET NO. 2	of 2
LIENT				RC	SAM	086				PROJECT NO.	6278
W E SONSTR	LL	TION	DEPTH	NO.	TYPE	BLOWS PER 6 inches	(CLASSIFICAT	ION	REM	ARKS
	T		-	Г			AS HTA	BULA TILL	(Contid)		
ŀ	I						45.	AND, som	e & Gravel,		
			-	 	⊢	50.33	Same.	Clayer 5	u 14		
	1		50	11	55	50.33 27-35	400	Silt n	m SAND	}	
							17-17	- ,,			
.										· }	
4.00	1		25								
9		_	t I		ŀ					,/	•
1	1	8	⊦∣	H	<u> </u>	<u> इर्</u> गळ्ळा		(Fine)	<u></u>	-	
10 × 40 × 10 × 10 × 10 × 10 × 10 × 10 ×	١		ю	12	SS	37,117,0	<u></u>	•			
5		Slurry					L layey L:Hie	5 50.1	ir f Gmul,		
:	1	Ñ					,,,,,,	7			
	1	4	5	13	55	50-looks					
		5	F'	-							
~		Bentonide	-								
	Ì	ά,		124	cc	75-100fb.3				,	
Ι,		1.	20	14	22						
_	Ĺ	1	֡֡֡֞֞֞֞֡֞֞֡֞֜֞֜֞֡֡֞֜֞֜֡֓֡֡֞֜֜֡֡֡֡֡֡֡֡֡֡								
Q	Z	1	-	Н		100/0.5					
	ľ			15	55	100,0,7			•		
	l										
\neg	1		:				,	L.	6 4 m d 44 4	.	
			. Q			rodo C	@ 79,	t Soul	SILT & CLA	۲	
	┪		֡֡֡֓֞֞֡֓֞֡֓֓֞֜֞֜֡֡֡֡֡֞֜֞֡֓֡֡֡֡֡֡֡֡֡֡֡֡֡	16	55	100/0,5	Grav	el		1	
i	3		ŀ				MAIIM	e ar	4CUSTRINE	4	
, 🗏			<u> </u>				INVINE	(Sov)			
		ĺ	25	17	55	40-60 D>65	med	,	wall sarted	1	
'			:	\vdash				,		1	
								-1 F	88'	-	
			9				E٧٦	of po	، وماء	1	
			۱					i.	•	ADON	იიაი
•	•									AR30	0033
										1	
,										İ	

F								BORING	LOG		.NO.ω-7A
_	JECT NT:	_	.Or	0	200	<u>Candfii</u> Rp	<u> </u>			SHEET NO. 2	
	W EL STRU	L CTION	WTHF	NO.	SAM TYPE	PLE BLOWS PER 6 inches	c	CLASSIFICATION	ON	REM	ARKS
			1 1	10	SS	17.15	MAUMA	M III . LAC	(Contid)		
			20			12-13	gray CLAY	laminated	SILT		
				=	SS	14-16			4.1		
			<u>.</u>	12	SS	5.5	\$14T	become to	Sand		
							ASH	TABULA TIL	± 58'		
5.0.4			éO	13	55	19-18		P, little f	-		
Cement-Bertonite Gront			25					, q			
Best				14	55				i	1	
ement.	2		70	اسما	55		•				
J		See!	<u> </u>	12							
			25	16	55						
			io						<u></u> go <u>'</u>		
		Beston:4	:	17	55		& SAND	Cons) Clay			4.
		Ó	25	19	55	30-30	€ 35 ', e nd; ⊆ Grant	grading to SICTO CLAY	, little		
		+				18.45					
Ü,			0	19	55	30.30 38.40	endie	TAL CLAY	90' + 514T, some	AR3(004 0
			25			25-28	5 5.	I, tau Ga	+ SICT, some		; -
ď		Ì		20	SS	33.30					

_		_							en ampi
	F	T)	ļ	¥	- - - -		TEST BORING LOG	BORING	NO. ω. 7Α
	PROJ	ECT	S	HOI	5, ع		FILL	SHEET NO. 3	
ŀ	CLIE	NT:	 40	RC	2000	CORP		PROJECT NO.	6278
	CONS	YELI	HEADO	NO.	SAM	BLOWS PER 6 inches	CLASSIFICATION	REMA	ARKS
		}		20	-	31.30	ASHTABULA TILL (Confid)		
	San Park		<u> </u>	21		25.35 35.40	MAUMEETI A LACUSTRINE (Clay & Sill) (Clay &		
_			 	22		804V0	S SAND, little Silt End of boring		
			-						
							· .		
		• •	-	ļ					••••
	•							AR3	0004 j

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

TEST BORING LOG BORING NO.W-12D SHEET NO. PROJECT NO. 6278 CLIENT: L LORD EMPIRE EQUIPMENT :CME 45 (TRAILEL RISER DRILLING METHOD ROTAE GROUND WELL PROTOSO 789.2 791.13 INTAKE CASING SAMPLER CORE ELEV.: 789.2 CLACK STEEL MAINESS DIAMETER DATE STARTED: 12/6/84 TYPE 2. 5T HSA COUPLING DIAM DATE COMPLETED: 12/13/14 WELDED WEIGHT FALL 140# DRILLER: SMITH / CONSTRUCTION E push SAMPLE NSPECTOR MACHILLIN/MUTCH 30" DEPTH BLOWS PER 6 inches **CLASSIFICATION** REMARKS NO. TYPE ·ō ASHTABULA TILL (Fine) Drilled adjacent to existing well Cluster W-12, A-B-C MAUMEE III & LACUSTRINE -5 For complete soil وديجاءه description in 0'-55' interval refer to Wehron Ю Š Jem. A. Op. 10-14 21' Noticebt oder in ASHTABULA TILL (Fine) tube when opened Riser UD-12 ST in laboratory AR300042

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

MAUMEE TER LACUSTRINE

245.5

A	Ţ	UF	Y	X		•	TEST BORING LOG	BORING NO.W-120
PROJE			HC	PE		LANDFI	٠٠.	SHEET NO. 2 of 2
CLIEN	Τ:		ᅊ	٩_	201	80	1	PROJECT NO. 6278
W CONST	ELI	CTION	E SECTION	NO.	TYPE	BLOWS PER 6 inches	CLASSIFICATION	REMARKS
							MAUMEE ITS EAC (Contid) (Silt & Clay)	a,
			50				(5.4)	
			ŀ					
ļ			25				ASHTABULA TILL (Fins)	4'
			-	١	55	64-100	Clayey SICT and mut SAND, trace fine Gravel	
			60					
		-		2	55	58.50 51		
		4	65				@65; goding to CLAY1510	7
		Slurry		3	55	100/0,5	some Som Sand, little for Grand	
								· ·
	3.5	-Bentonik		4	55	100-100 120		
]'	۳		75				@75; grading to CLAY45	g
		•	•	5	55	63-61 130	little f Soul, little c to trace Grant massive]
\dashv	-		•				•	
				6		32-36 64		
						20.5		
				7	55	29·30 E 4	± 1	8, 1
_		ļ	•		_		MAUMER TIT & LACUSTRINE (Sand) SAND, little Sitt, free lowered	
)' 				8	55		Silly Chy	413000113
Li		-	25	9			DI 94, becamiled middle CLAY	- 1,5 10 15

PROJECT SHOPE'S CANDETIL CLIUNT: COPO CORD CONTRACTOR: FMPIRE TOIL EQUIPMENT: CMS-45(TEALER) PROJECT NO: ACT TO THE STREET NO. 1 of 1 PROJECT NO: ACT TO THE STREET NO. 1 PROJECT NO: ACT TO THE STREET NO. 1 PROJECT NO: ACT TO THE STREET NO. 1 PROJECT NO: ACT TO THE STREET NO. 1 PROJECT NO: ACT TO THE STREET NO. 1 PROJECT NO: ACT TO THE STREET NO. 1 PROJECT NO: ACT TO THE STREET NO. 1 PROJECT NO: ACT TO THE STREET NO. 1 PROJECT NO: ACT TO THE STREET NO. 1 PROJECT NO: ACT TO THE STREET NO. 1 PROJECT NO: ACT TO THE STREET NO. 1 PROJECT NO: ACT TO THE STREET NO. 1 PROJECT NO: ACT TO THE STREET NO. 1 PROJECT NO: ACT TO THE STREET NO. 1 PRO	FILLI	FAF	Æ				ST B	ORIN	G LO	3	BORING NO.W-20A
CONTRACTOR: SM PIRSE SOIL TYPE NISER NATKE DRILLING METHOD. AUGGS. TYPE ALCOSTORY CALLSTORY CALLING SAMPLER CORE TUBE ELV. 17879 17968 COMPLIES CALCSTORY CALCSOPY CALLSTORY CALLING SAMPLER CORE TUBE ELV. 17879 17968 COUPLING CALCSTORY CALCSOPY CALLSTORY CALLSTORY CALCSOPY CALCS CALCSOPY CALCSOPY CALCSOPY CALCSOPY CALCSOPY CALCSOPY CALCSOPY		SHO	PE'S		ANDF	ILC					SHEET NO. 1 of 1
TYPE NAC STER INTAKE DRILLING METHOD: A JGGE LEV: 7739 7932 7932 10AMETER 2" TYPE IN.S.A. OABING SAMPLER CORE TUBE LEV: 7739 7932 10AMETER 2" TYPE IN.S.A. OATE COMPLETED: 12/5/8 10AMETER CORETON IN COMPLETED: 12/5/8 10AMETER CORETON IN COMPLETED: 12/5/8 10AMETER CORETON IN COMPLETED: 12/5/8 10AMETER CORETON IN COMPLETED: 12/5/8 10AMETER CORETON IN COMPLETED: 12/5/8 10AMETER CORETON IN COMPLETED: 12/5/8 10AMETER CORETON IN COMPLETED: 12/5/8 10AMETER CORETON IN COMPLETED: 12/5/8 10AMETER CORETON IN COMPLETED: 12/5/8 10AMETER CORETON IN COMPLETED: 12/5/8 10AMETER CORETON IN COMPLETED: 12/5/8 10AMETER CORETON IN COMPLETED: 12/5/8 10AMETER CORETON IN COMPLETED: 12/5/8 10AMETER CORETON IN COMPLETED: 12/5/8 10AMETER CORETON IN COMPLETED: 12/5/8 10AMETER CORETON IN CO	CLIENT :	LOR	CO	eo.	-		FAIIIBLE	IT ' C 44.0	ueles		PROJECT NO. 6279
TYPE ALSO TYPE A	JOH INAU IOR					DRILL	ING MET	10D: A	JGGQ	(E.E.)	GROUND WELL SHARES
DIAMETER 2° 2° TYPE M.S.A. DATE COMPLETE: 12/5/87 COUPLING LUSCOSD LUSCOSD LUSCOSD LAW 20/47 CONSTRUCTION L SAMPLE B NO. TYPE PER SCHOOL G School MAUMENT TILLEN: 9/1174 MAUMENT TILLEN: 9/1174 CLASSIFICATION REMARKS MAUMENT TILLEN: 9/1174 MAUMENT TILLEN: 9/1174 CONSTRUCTION REMARKS MAUMENT TILLEN: 9/1174 Conspicion of school Conspicion	TYPE						CASING	SAMPLER		TUBE	D.EV.: 7879 79082
GOUPLING LOSCOPP LOSCOPP LANGE SAMPLE SAMPLE						TYPE					DATE STARTED: 12/5/84
CONSTRUCTION SAMPLE NO. TYPE S INChes MAUMEF TITE L'ACUSTRING Gand) For complete 30:1 description, see loy of adjacent boring, W-20 C Find of boring 16.5'						DIAM					DATE COMPLETED: 12/5/84
Trad of boring End of boring Lassification REMARKS For complete 30:1 description, see by of adjusted boring, w-20 c						WEIGHT					DRILLER: SMITH
MAUMEE TIT & LACUSTRINE South Maumee Tit & LACUSTRINE For complete 30 is description, see by of adjacent boring, w-20 c	CONSTRUCTIO	쁴빏	- 1			FALL	<u> </u>	<u> </u>			INSPECTOR: MACMILLINI
MAUMEE TIT & LACUSTRINE Gand) For complete soil description, see lay of adjacent baring, W-20 c End of baring 16.5'	97	[발	NO. T	YPE	PER		CL/	ASSIFICA	TION		REMARKS
[]	Ran	5 . 10 . 15 20	NO.		6 inches		AUMEE (G	FIII a			For complete soil description, see lay of adjacent boring,

		HIE -	_	_							00:4:	<u> </u>	^				1.000
)F		F) RF	F	E			TE	ST		ORIN	G LO	ن 		RING		U-20B
PRO.							ANDFIL	4						SHEET	NO. T	01	
CLIE	NT:	TAB	<u>, 40</u>			COR			FAITE	MEN	T: CME	116/00	411.00	PHOJE	CT NO.:	627	
-	INAC	100	_		ER		SOIL	DRILL	ING M	ETH	ob A	JGER	HILER)	 	IGROLINO	WELL	PROTES
TYPI	Ē				5764		AINLESS		CASIN		SAMPLER		TUBE	ELEV.:	7824		79926
DIAM	ETE			2 '			3.	TYPE	W.5./	١.			ST	DATE S	TARTED:	12/4	184
COUP	LING		_		en	14	FLOSD	DIAM	31/4				3"	DATE	COMPLET	D: 12/	
	WE	LL		٤		SAN	IPLE	WEIGHT					PUSH	DRILLE	R: Sn	HTH	
CON	NSTR	UCTIO	_	Ξ			BLOWS	FALL	L			L	<u> </u>	INSPEC	TOR: M	AC MIL	LIN
	6==	ก	-1	DEPTH	NO.	TYPE				CLA	SSI FICA	TION		i	REM	ARKS	
·	٦١				NO.	I TOTE	6 Inches										
	╅	7	┪	٥		_		MA	UME	E	III c 4	ACUST	RINE	1			
			[50-4)			For	complet	59;	1
			Ĺ							١.	20041				scriptio		
		•	Ĺ											إه	adjec	en+ t	oring,
			Ļ	5			L]							1-200		
			ŀ	٦				1						-			
		19	ļ	- [1			
		5	ŀ]			
		ننہ	ŀ	١										l			
		Lacking Cap	ŀ	ю										ĺ			
	1	7	ŀ	١													
			ŀ	ı													
			ŀ	J													
		_	ŀ	J													
		Seal	ŀ	15			 										
		(P	ŀ											l			
	!													l			
	!	Slurry	`	1]			l									
		3	Ì	<u>"</u>				1									
	1	V	ſ	20													
	R.		ſ	J				L		_				١	ticabl.		1
	14	Genton: Je	ļ	Į						(5	(i+)						
	1	4	ŀ	1	nD\$0	ST				•	•			406	ود س	77 C	MENER
	i	5	k	25		٠,								in	labor	• * • ′ ′ ′ ′	
	;	Ġ	ŀ	- 1	1		<u> </u>										
	!		ŀ	J				1									
			ł	ı													
	┦ ┆	\dashv	╅		l												
		Ī	ŀ	30				l .					31'	l			
		1	ŀ	- [<u> </u>	45 H	TA	BULA	TILL		1			
	1		t	- [-	, = 11	.,,,							
			1	J				l									
				36	W.D	ST											
] [_[`	៕	2	۱ د											
	I		Ţ											ĺ			
			ļ	-	- [38′	1			
	H		Ļ	- [I			MA	UME	€	III & LA	CUSTR	INE				
لام			ŀ	4 d	I					(=	ond)			A	220	nnı.	E
đ	1 !		ŀ	- [I		\vdash	1						l H	R30	J U 4	J
_			ŀ	١	I											•	•
7.			ŀ	Į	Į									1			
Soul Pack			ŀ	_1										ŀ			
v			۲	10	1												
			Ŀ	_[L					47.5	L			
			/					E	100	ь	פריים						

TEST BORING LOG BORING NO.W-20C PROJECT! SHOPE'S LANDFILL SHEET NO. 1 PROJECT NO.: LOCO CORP EMPIRE SOILS EQUIPMENT : ACKER 82 CASING SAMPLER CORE TUBE GROUND WELL RISER INTAKE TYPE ELEV.: 793.1 BLACK STREET, STAINLESS 79114 DIAMETER 2 • DATE STARTED: 11/21/84 55 2" DIAM DATE COMPLETED: 11/29/14 COUPLING AP OF D WELDED WEIGHT 140# WELL CONSTRUCTION L SAMPLE NSPECTOR: MACMICEN 30" NO. BLOWS CLASSIFICATION REMARKS PER TYPE 6 Inches ٥ MAUMEE TITAL ACUST RINE

Brown SAND, 1144 & Gravel

1144 (1 S.H., non-stretified 2-1 55 3.7 4- 5 2 55 5-8 @ 3.5; become stratified 4-5 3 55 4-3 @ 6; become comit SAND, some france Gravel trace Clay & Silt, non - stratified 3-2 become saturated = 7.5 4 55 2-2 2-2 5 55 2-2 3.2 6 55 1-1 2-2 55 @ 12; become 1 - 2 Brown from SAND , no to 8 55 1-2 li H le Sitt, stratified 2-1 9 SS 2-9 Bester: Je 55 <u>5. 5</u> 8-11 0 3-3 Ì (5,1+) 55 11 19-6 Interbedded & interbedded, gray 8-12 12 SS SKT WIN SILTECLAY 14-16 or & SAND & SILT 8-10 55 13 10-14 12-12 55 11-15 2-10 55 16-14 ASTABULA TILL (Fine) 8-8 Clayey BIET, and com-f SAND, little i Grand 55 55 9-6 1-7 SS 18 38' 6-10 11- 11 MAUMEE TE . LACUSTRINE 19 55 10-13 · (50.4) AR300046 16-20 20 55 5-m BAND, someth Silt, 17-19 @40; goding to SAND, tare Sitt 28.32 55 21 30.24 G43' staling to SAND, and 23-30 GRAVEC

F			¥	X				BORING	LOG	BORING	
CLIE	JECT NT:		0/2		200	ANDFILL	-		· · · · · · · · · · · · · · · · · · ·	PROJECT NO. 2.	
(WEL		Ē			PLE	(LASSIFICATI	ON	REMA	
	П		1_	_	1		MAUME	TIL . LAC	. (Contid)		
		•	ŀ			25.25 30.45 45.50 38.55			1 5147, 49		
			20	<u> </u>		31127	AS	TABULA	TILL (Fine)		
+	11						Gny	sict and	f SAND		
Grant			25	25	55	100/0.5	i #/e	f Grave	!		
7			ŀ			<u> </u>	•				
Cement - Bertanile		Seel	<u>.</u> م	26	55	38-100/04					
4			F								
Ç	2	Slurry	65	27	SS	65·1∞ Q3	SICT,	eriding to			
	O X		ŀ				4 G	ravel			
		į	ŀ		L_						
		Ben tons de	2	28	55	45-100/as					
		Ĭ									
	┨┠	╁	-				071'	المالية	CLAYI		
		Ţ		29	SS	58-100/QU	514	ending the following of the following the fo	Grant .		
	П		٦	-	H		1, H/e	۲۰ ۲۳ و۰۰	J .		
	$ \ $				l						
	1		†	20	25	60-70				'	
	$\ \ $		20	استر	 	100/0.5		•			
		•	1				A	e me a	82'		
يد			ŀ			18-30	MAUME	EMALA (Sond)	CUSTRINE	ı	
ď			īz	21	>2	40.55		SAND IN	HIL F) 5/1+ 4		
	三		ŀ				Clay,	مهر العد	871	1.	
ŗ				32	SS	70-3 8		15KT, 1m	L (Fin) coff) Growl,		
			֓֡֡֓֞֓֓֓֡֓֞֜֞֜֜֡֓֓֡֓֡֓֡֡֡֓֡֓֡֡֡֡֡֡				tun t		±91'		
			ŀ				MAUM	SETTAL.	ACUSTONIE	A D 21	00047
<u>~~</u>				33	SS	28.50	•	d SIGT	CLAY	HUS	,,,,,
Colla	pred 1		. 1						_		•
			H				وه ادع	hacies	97'		

										MONTHAL
AM	PF	TO TO	ì		TE	ST E	ORIN	G LO	G	BORING NO.W-21A
HOJECT:	5	TOPA	15	LANOF	LL					SHEET NO. 1 of 1
CHENT:	<u> </u>	<u>ad</u> 19180		OK S		EQUIPME	T ACK	R 82		PROJECT NO.: 6278
		ER		NTAKE		ING MET	100: AUG	JAR.		GROUND WELL PROTES
PEDIAMETER	BLACK		1 9	MINKERS	TYPE		SAMPLER	CORE	TUBE	DATE STARTED: 11/20/84
COUPLING	2		w	ELOSO_	DIAM	H.S.A.	<u> </u>			DATE COMPLETED: 11/20/84
CONSTRUCTI		_		1PLE	WEIGHT					NSPECTOR! MACMICCIN
4	DEPTH	┢	Γ	BLOWS	FALL		ASSI FICA		<u> </u>	REMARKS
	→ 8	HO.	T) E	PER 6 Inches	<u></u>		155I FICA	IIVN		NEMARKS
	Ţ					STAB	ULA 7	166		For complete soil
. 11.	,				il .					description, see los
†	֡֞֜֝֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓				1					of adjacent boring,
ا ل ف	-5	i								W-216
8 8	LL [*]		1		1					
a a	7			 -	1				8'	
	7		l		m	UMES	- TIT -	LACUS		
, <u> </u>	-10	. '			1112	(5	and)	271-0-	1 - 1	
(. "	l			H	`				ł
	•				H					
Å		Н	ĺ	 						
'.B									15'	
	Ι."				E	nd of	boring)		
	┡			<u> </u>	}	•	_			
	ŀ									
	20									
		П								
	- 1			-						ľ
	<u> </u>									1
	25									
	٦									
	- -									
	 									ľ
	-30				Į					
				 						,
	-	1 1								
		Ιl								
	-36				İ					
		Ιl			١,					
	H	Ш			1					
	ليرا	Ιl]
• •	[79	Ιl								AR300048
	[Ιl								
	- F I									e e
	اسا	ll			Ĭ					
	ר"ן	<u> </u>								
					L					L

												77.1 41	<i>i</i> 1 .
E 0	90 31			XE IOI		,	TE	ST (BORIN	G LO	G		NO.W.21B
PROJ	TEG Ni :					NOFILL						PROJECT NO.	1012
CONT	RAC	TOR:	oeo E		C	50145		EQUIPME	NT : ACK	FA 92		T NOULD I NO.	. 02 /8
				ER		NTAKE	DRILL	ING MET	HOD! AU	GFR		GROUN	D WELL PROTE
TYPE				STEE		AINLESS		CASING	SAMPLER	CORE	TUBE	ELEV.: 782,1	
DIAM			2'			2'	TYPE	H5A	 	<u> </u>	 	DATE STARTED); /20/84 TED: 20/84 -
COUP	LINE		JELL	1		LOFD	DIAM WEIGHT	73 74	+	 		DRILLER: 51	URA
CON	STR	UCTIO	١Ę	L	SAN	APLE	FALL					NSPECTOR: M	ACMILLIN
•		\	T. COL	NO.	TYPE	BLOWS PER 6 Inches		CL	ASSI FICA	TION		REI	MARKS
			†°				<u> </u>	'5 HT/	BULA	TILL		descrip	plete soil tion, see los seent boring,
		400 Endon	9				MĀ	um <i>ee</i>	TILL o 4 Sond)	ACUSTE	8'		
G			- 5				 	₍	5 (1+)				
-			ŀ				<u> </u>				18'		
į	11		ŀ	l			ي ا	<u> ASHT</u>	A BULA	TILL			
7	1		-20	1 1		┝──┤]						
ď	H		ŀ	IJ			ĺ						
1	S. C.		ŀ	i i									
1	a	~	t	ll		 							
Cement - Bondonde		See	<u> </u>				ĺ						
Ú			25				1						
		\$					1						
		Slury											
		۷,	-	Ιİ		 	1						
		Ť	-30				ŀ						
	Ιl	Beatemile	 	ιl		 	(
	Ιl	ž	ŀ										
		w.											
		1	[_								35'		1
	∐		-35				M	NUME	· III a	LACUST	RINE		
	1	4	∔.	l Ì		\square						,	
		1	ŀ										
		1	 	ſl]						
			140				}					AR30(701.0
	1 1		ł									וטטעו	7043
1			[d ·
اسے	H												-1
24 4			•					_{[e}	5-d) —			.*	

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

FILLE	¥	¥			TEST	BORING	LOG		NO.W-218	
PROJECT : S	HO	PF:		AND FILL				SHEET NO. 2	01 2	1(
	RC	, <u>c</u>	SAM	PLE				PROJECT NO.	6278	ł
WELL CONSTRUCTION	E S	NO.	SAM	ELCWS FER 6 inches		CLASSIFICATIO		REMA	ARKS	
. 1	1				MAUM	GE TITE LAC	· (Contid)			1
							49.5			
***************************************	20				End	of poriso		1		l
	1	ŀ				, –				
	[
	ŀ									
	F									
	H									l
	ľ									
	H									l
	ŀ									1
	ŀ									ı
	ŀ									l
	Γ					*		İ		1/
	ŀ							,		
								1		ı
	-									l
									,	l
	-									l
	ŀ						•			l
	Γ								•	l
	ŀ									l
	1									l
	┡									ı
	ŀ									
	[,,			l
	ŀ									l
	ŗ									l
	H							ŀ		l
								l	•	1.
	F									1
•	ţ l							8020	0050	L
	[หนวบ	0050	K
	ŀ									l`
	Γl									1
•	H							ŀ		ı

W.,

	_										MGIRAL
		RE			ΤE	ST B	ORIN	G LO	3		NO.ω-21C
PROJECT!		IOPE		ANDFIL	<u> </u>					SHEET NO.	
CONTRACTO		<u>RD</u> Emp	CO	3014		EQUIPMEN	T:ACK	FR 22		PROJECT NO.	6278
		SER		INTAKE	DRILL	NG MET	IOD AUGE	R/MUD. R	OTARY		D WELL PROTO
TYPE	OLA	CK 910	K 5	TANKESS			SAMPLER	CORE	TUBE	ELEV.: 783.	
DIAMETER		2000	+	\$ ^	TYPE	HSA.	2.			DATE STARTED	
COUPLING				FLOFO	WEIGHT	379"	140#			DRILLER: 5	KURA
CONSTRUCT	LION		SAI	APLE	FALL		30"			NSPECTOR:	HACM KLIN
_ T\		NO.	TYPE	PER 6 inches		CLA	SSI FICA	TION		REI	MARKS
	\Box '		55	1-2		ASI	TABUL	A. TILL	_		
	 	ŀ	 	2-0	Bro)wa m.	J SA	ND, so	ome '	1	
	! 	2	55	6.5	<u>چ</u> .	G~	ivel hi	HK S: H	& Clay		
	. L		1	4.3	70	n strat	fieI		,,	Saturated	a 6'
	م ا	3 3	SS	1	ì					.Seturette	(B) (C)
!	L	4	55	2-1	!				21	1	
	اند	-	-	1-1	- 	UME	- 430° - 2	LACUST	<u>8′</u>	1	
	دمدانمه) آ	15	55	2-2	1111			LACUSI	MIME		
	ין ר	0	احد	1-1		,	Sand)	_			
	- }-	6	SS	1-1	Brow	w-t =	sano, s	omr f- m	Gauil		
	ŀ	17	55	1-1-	+	race (+)	S:1+, #	Clay			
1	ŀ	\vdash	 	1-5							
	ן ד	5 8	SS	3-4	<u> </u>	(5:1	<u> </u>				
3	-	9	55	7-5	brow	n, lamin	ited Cla	ayey SIG	T 18'		
9	F	10	55	6-9 7-11	ı .			TILL (F			
	Į,	•	55	12-12				CLAY, 9			
-		<u> "</u>	12	10-14	4	}	d, trace	w to	Secret .		
4		12	55	14-13							
A 1	ŀ.	-	 -	6-6				o Clay			
đ 🗼	Ľ	5 13	SS	7-9	5	بلنوستما	f-= 5AI	UD, torr	ŧ.		
Centut - Bastonite	F	14	55	12-12		امسة					
الق	1	15	ss	9.9							
9	Į,	d <u>'</u>	در	11-12							
11	J.	16	SS	7-7							
	ŀ	-	╁──	9-1	l						
	į	17	SS	9-17						•	
	Ĺ.,	6 18	55	9-15 20-26	<u> </u>			44	35'		
	_ } `	-		37-55	<u>m</u>			ACUST	INF		
	t	19	SS	65-90		(ċ	5:1+)			i	
	Ĺ	20	SS	50-90	G	س امس	nated =	SILT, to	* C		
	H	rd	 	18-38				Clay e			
11	t	21	SS	40-50		inations	, vec	~ 1-7 T	-'''	AR300	1051
	Ţ	22	SS	2840		•				71100	,001
	ŀ	-	 	4165	1				,,_,		
11	H	6 23	55	22.43 69-100)	- -	/a			45'		
1 1	Ì	_	1			(.3)	,				

F	Ų	UF	X	¥.		•	TEST BORING LOG	BORING NO. W. 210
_	ECT					5 6 AN	DEKL	SHEET NO. 2 of 3 PROJECT NO. 6278
LIE	NT:		10		SAM	PLE	1	PROJECT NO. 62 /8
	N E L I	L CTION	5	NO.	TYPE	BLOWS PER 6 inches	CLASSIFICATION	REMARKS
	П		7				MAUMEE III & LAC. (Cont'4)	
	11		t				GAO; prior stapped & 2400 and	
	11		Ĺ.	_		18-16	SILT 49.5	}
	H		۴	23 A	55	30.45	ASHTABULA TILL (Fine)	1
	H		1	Ė				<u> </u>
	11		ŀ	<u> </u>	-	42.50	Gray SILT & & SAND, time : & Gravel	
			55	24	55	55-60	, , , , , , , , , , , , , , , , , , , ,	
	11		ŗ	Γ				
			ŀ					
	} }			25	cc	26-45 70-1092		
			60	23	- 2	70.1092		
			ŀ	ĺ)
			[L		00.18		
+,			65	26	SS	20-18 40-65		
:	!		Ţ					ĺ
J			ŀ					
į	1 1		t		CC	20-40		
ţ			70	27	55	100/2"		}
ŭ	3		ł					
Cement Bentoniale Grent	ů,		ļ		<u> </u>		@77, grading to SILT,	
ì			L	28	55	100/4"	some of Sand, drace from	
ز		_	ľ	Ť			Gmuel	
		7			İ			
	H	Slurry Seal	ŀ		-	20-32		Į
	Н	ì	po	27	22	55-70		
		V	ŀ					
		4	1	L			@83', grading to CLAY4	
	П	Beaton L		30	SS	15-22	SICT that I Soul]
	П	ď	25	-	Ť	35 37.	SICT, trace of Soul,	
	1 1	1	[ĺ			
	Н	ł	1		-	17-21		
	11		铋	31	55	30-45		
		1	ŀ				491	# D 2 O O O E 2
		1	1				MAUMEE TE & CACUSTRINE (Chyt Sill)	AR300052
	$ \ $		موا	32	55	22-25 30-40	gray CLAY & SICT, fraguent	
	$ \ $	í	۳		<u> </u>		Sitt Cominations	
,	{		[],	ļ

F		Ų.	Y	X			TEST BORING LOG	BORING NO Wate
	JECT	; (SH	OP	5	LANDE	ILC	SHEET NO. S of 3
CLIE			101		٥٥			PROJECT NO. 62 78
CON	W E L	CTION	HUDO	NO.	SAM TYPE	BLOWS FER 6 inches	CLASS: FICATION	REMARKI
•	П	1	[MAUMEE IL & LAC. (Conty) (Clay & Silt)	
			Ī	_		22-35	92.5	
		1	200	33	ככ	22-35 42-60	ASTABULA TILL (FIM)	
ď		Ŝ					MAUMEE TE & LACUSTRINE	•
		Bandanik	105	34	55	25-40 25-40	ned SAND, stratified 1045'	
Son	国	0	F				ASTABULA TILL (FINE) SILT & CLAY, LITH 5. SAN	
			F		-	31.25	tree from Gravel	
			[10	35	25	31.25 34.52	End of bening	
			[
			[
			[•
			\vdash					
			Ŀ					
			-					
			<u> </u>					
			-					
			<u> </u>				,	
			<u> </u>					
								AR300053
			[Ī			
			ĹΙ	÷				

BORING NO 202 TEST BORING LOG **三**在2017年 MPIER SOLL EQUIPMENT : CME-45(TRAKER) 10010 100 LIV. 7760 100 DRILLING METHOD: CASING SAMPLER CORE HIER INTAKE L STANKETS DIAMETER DATE STARTED HE DIAM DATE COMPLETIONS
DRILLER: SKUC MAN COUPLING WEIGHT CONSTRUCTION 1406 300 BLOWS CLASSIFICATION PER 6 Inches REMARKS NO. ō of Programming for Fign komplete soil ASHTABULA TILL description, see 145 of edjacent being w-22.B CHAUMPE TENCACUSTEIN (G.4) (ちぶ) 13' Boring End AR30005

TEST BORING LOG BORING NO. W.22 B PROJECT ! S HOPES LANDFILL PROJECT NO : 62 LORD CORP CONTRACTOR EQUIPMENT : CMF . 45 (TRAILER) EMPIRE SOIL GROUND WELL PROTOS DRILLING METHOD! HOLLOW STEM AUSCA RISER INTAKE CASING SAMPLER CORE TUBE ELEV.: 775.0 BLACK STEEL STAINESS DATE STARTED: 11/5/84 DIAMETER TYPE 2" HSA 55 DATE COMPLETED: 11/7/84 COUPLING WELDED WELDED DIAM 2 " WEIGHT FALL DRILLER SKURA WELL 140# Ľ SAMPLE NSPECTOR: MACMILLIN 300 DEPTH BLOWS PER CLASSI FICATION REMARKS NO. 6 Inches ٥ 2.3 TOPSOIL 55 ١ ASHTAGULA TILL (Coord)

Conof SAND and GRAVER,

Some Silt + Clay 10-11 become saturated @21 3-6 5-3 2 55 2-2 MAUMEE III O LACUSTRINE (SOW) 3 55 m SANO, truce (1) Silt PS; grading to Simile SAND little of Gravel, stratified S.m SANO tre 2.3 2 -1 55 4 3.7 4-9 5 55 9.9 (S:I+) Ю 5.8 6 55 eq' become interbedded & interlaminated CLAY4SICT with SICT 9-11 11-8 7 55 8-10 @ 16', become interbedded with 9-9 8 55 7-8 & SAND, little Al Silt, frees Sco.+ 5-6 9 55 8-12 ASHTABULA TILL (FAI) 6-6 55 10 Cement - Bentonite 9.9 Clayer SILT and fine SAND, trace Gravel, non stratified, 1-4 55 11 6-6 D.0c 4-4 MOSSIVE 55 12 6-6 8-14 13 55 X X 20.28 20.50 55 14 40.43 @ 28', grading to Clays, SILT, 6-9 15 littleful of Soul, trace (4) 11-18 f Gravel 10-11 32' 55 16 18-21 (COOTH) 1.9 picome interbedded 55 17 14-20 stratified from SAND 8-13 18 55 Silt tracest to no 14.20 25.24 55 19 28-24 Pock 10-9 20 55 13-23 13-13 @ 40' become & SAND, some 21 AR300055 55 23-55 Silt, traceful & Grand 36.45 22 55 non- statisfied 80-100 36-55 MAUMEE IL CACUSTRINE SS 23

AUF	R	Ę	TEST BORING LOG	BORING NO. W-222
ROJECT :	SHOP		<u> </u>	SHEET NO. 2 of 2
LIENT:	LORD	CORP.		PROJECT NO. 6278
WELL CONSTRUCTION	ф Б Б	TYPE BLOWS FER 6 inches	CLASSIFICATION	REMARKS
			MAUMEE III LAC. (Contid)	
	24	55 60,100/6	stratified from SAND, no to	
,圁	25	55 100/6"	little Silt occationally interbedded with	
2 B	50 25		& SAND & SILT, French &	
	1 1		Gravel, non sorted	
ار ا		60.00	,	
Ñ	25 26	55 50-30	ASTABULA TILL (Fine)	
	[
	.		Clayey SILT ONLY SAND, 1:41kf,	
	├	25.36) Graver	
	27	55 50-51	60'	
			End of Boring	
	l I		•	
• •	[
	⊦l ∣			
	<u> </u>		·	
	[•
	<u> </u>			
	<u> </u>			
	,			
	<u> </u>		•	
			,	
	[
	 	 		,
	t			
1	}			
	<u> </u>			
	-			
	t			
	[
,	}			
	[I			
	}			AR300056
	t I I			
i)	-			
				Ĥ.,
				l .

	A				Æ			TE	ST E	ORIN	G LO	G	BORING NO. ω-22
PR				51	TOP	513	LAN	FILL					SHEET NO. 1 of 2 PROJECT NO. 6278
CON			OR	<u> </u>		COL	501L		EQUIPMEN	IT: CME	45(TA	AILER)	PROJECT NO.: 6278
i			\Box	RIS	ER		NTAKE	DRILL	ING MET	100; MVC	ROTAR	Υ	GROUND WELL PROT
TYP		***			STAG	<u> 251</u>	AINKESS	TVDE		SAMPLER	CORE	TUBE	ELEV.: 775.0 777
DA				JEL O		1	ELDED	TYPE	H5A	2"		ļ	DATE STARTED: 11/9/84 DATE COMPLETED: 11/12/84
			CTIO				PLE	WEIGHT	- /-	140#			DRILLER: SKURA
8	NS	TRU	CTIO	띄늘		SAN		FALL		30.			INSPECTOR: MACMILLIN
		7	X	DEPTH	NO.	TYPE	BLOWS PER 6 inches		CLA	SSI FICA	TION		REMARKS
		1	\rightarrow	₫°	П				70	P5016),0'	- 11 - 11
	1	1		-	IJ			<u> </u>	STAB	JLA TI	4		For complete soil description, see les
		l	ا	. ŀ								44.0	of adjecent boring,
		1	Locking Cap	 			 -	m	AUME	e III c	LACUS	4,0	ώ·22Β
	ı		7	, [-5] ''''	(Sand)	-7-03		,
			نذ]	•				
			Ŏ	ļ.				4					
	-		~	1	İΙ			 	,	<u> </u>			
				ŀю				1	(Ş.14]			
		ļ		1	1 1			i i					
		1						1					
4		Ì			lí]					
Growt	-	:		-15				∦					
U	i	÷		-				1					
4	-	:		1				1				18'	
Cenent - Bentanite				1	1				Λς u	TAGUL	A TIL		
7	-	Ų.		-20]		1171-0-0	,	-	
Ŏ	1	ع ا		1				4					
1	- 1			+ 1				1					
7	1	¥.		1				ff					
Ĺ	l	ÿ						1					
Ŭ		i		-25									
		:		+1								i	
	-			-									
		:						l					
		į		-30				1					
		1						1					
	İ	i		11									
					1.							ſ	•
				-35									
				[]		- 1							
				[]				1					
				 									
				40									#D2000E3
		İ		1		1						l	AR300057
				1	ı							- 1	•
					- 1			<u> </u>				44'	*
				46	- 1			MA		TIE L	CUSTE	1106	
	- 1			1 1	- 1				/4	54)			

AWARE	TEST BORING LOG	BORING NO.W.220
ROJECT: SHOPE'S LAN	NO FILL	SHEET NO. 2 of 2 PROJECT NO. 6278
WELL SAMPLE CONSTRUCTION NO. TYPE FER	CLASSIFICATION	REMARKS
6 inche	MAUMEE TIT & LAC. (Contid)	
Sear De la Contact de	53' ASHTABULA TILL (Fine)	
29 55 16-16 20 29 55 25-50	# 67 MAUMEE TITA LACUSTRINE	
30 55 14-26 28-30 31 55 14-28	S SAND, there Sit, interbedded	
95 15.30 32 SS 32.25	End of boning	AR 30005 <u>8</u>

1		-T)					_ 	TF	ST (BORIN	6 1 0		BORING NO.W.23A
	<u> </u>		01	A 1			4.10.5		.51		J LO		SHEET NO. 1 of 1
1	PROJ	NT :		.00		ORF	ANDFILE						PROJECT NO.: 62 8 7
ı	CONT			_	HPIR	•	5016		EQUIPME	NT : CME	45 CTEA	ILER)	
Ţ	-		\Box	RIS			TAKE	DRILL		HOD: A			GROUND WELL PROTOS
ł	TYPE		101		TERL		AINCE ST	TYPE	CASING	SAMPLER	CORE	TUBE	DEV.: 776.5 772.28
ŀ	COUP		٠.	3,	•••		5.	DIAM	H.S.A.	 	 		DATE STARTED: 11/29/84
ł					_			WEIGHT		 			DRILLER: SWINNICH
1	CON	STRU	CTION	E	<u> </u>	SAMI		FALL		İ			NSPECTOR: MACMICLIN
I	•	7		DEPTH	NO.	TYPE	PER 6 inches		CL	ASSIFICA	TION		REMARKS
ł	_	11		to⊤	\Box				τ	Pool			
ĺ	Sec.			[MA	UMGE :	II a LAC	USTEIN	6-	For complete soil
1	()	11			Ιİ				(5)	7 (S.H.)			description see
Į		▋▐		1		Ĺ			(5	and)			is all edjacent
			- 4	 -5		Ļ			•	•			1000,00,000
1			•			ŀ							
ı		[]	- 1	ŀ		ŀ		l					[
1		\sqcup	7	ŀ		-							1
J	يد		Φ	l i		ŀ		l]
1	ď		Bertonite See	10		ŀ		l					Į į
J			ŝ	t i		t		1]
1	Q.		3]				L					
-	V'	=	a)	Ĺ		[_ (£',	14)			1
ŀ				l _{i5}		-		<u> </u>				15']
				 		Ļ		E.	له له	boring			}
1				┡│		-			-7				
1				ŀ		}]					
1				<u> </u>		ŀ							
				-20		<u> </u>							[
1				[]	1	1		Ì]
İ													
J				ŀΙ		Ĺ]
1				25	1	Į.		1]
-				 		- }		1					
1				ŀ∣		ŀ							
1				ŀ	1	}		1					
-				ŀ∣	IJ	ŀ		1					
1				-30		ŀ							
1				t 1	1	t		}					j
1				[l					
I				[.									
1				-36	1	ſ		1					i i
I				 ~	[Į.							!
ı				⊦∤	' J	-							1
1				ŀ	- (H							
I				Ի .	'	ŀ							
				*9	ŀ	十							AR300059
				[]		ı							
				[
I				Ĺĺ	- 1	[
1				45	[Ļ							[,
1				۱ ۱	-	ŀ							<u>'</u>

										11.79
					TE	ST E	ORIN	G LO	G	BORING NO.64-238
PROJECT:	SHO	PFS	LA	NDFILL						SHEET NO. 1 of 1
CLIENT : CONTRACTO	LOR	O C	ORI	01 <u>6</u>		EQUIP ME	IT: CME	45 (TRA	(EE)	PROJECT NO.: 6272
		SER		NTAKE	DRILL	ING MET	100: A	JGE E		GROUND WELL PROTOSO
TYPE DIAMETER		STEEL	52	TAINLESS	TYPE		SAMPLER	CORE	TUBE	ELEV.: 776.6 779.45 DATE STARTED: 11/29/34
COUPLING	LLEC	Orn	-	2"	DIAM	H.5 A		 	3"	DATE COMPLETED: 11/90/84
WELL		_		PLE	WEIGHT				PUSH	DRILLER: SWINNICH
COMSTRUCT		╟─┐	-	BLOWS	FALL	<u>.</u>	L	l	<u> </u>	INSPECTOR! MACMILL IN
97			TYPE	PER 6 inches	1	CL	ASSI FICAT	TION		REMARKS
	∵†°					70	PSOIL		1.0	
].]) F			 	MAG	JMEE]	TE CA	CUSTRI	<u>'NE</u> 3'_	For complete soil description see los
	اہ						, (m.) , (m.)	-		on edjerent boring
	. اق			<u> </u>	1	(,2	and j			₩.23.C
		1]					ω· 23·C
٠,	enseking F									
?	31									,
9	1			 						
	ŀĸ	기								
į	t				1					
7	Ĺ							. – – .	13_′	
Ö	ŀ					(<	÷,17) _			
-	-15	s				•				
Ceres 2 - Gestra. 2.	st									
, ·	Sl ² ,				ľ					Noticeble odor in
		UP.	٢.							Lube when opened
		23-1	-1							in laboratory
-	\$									
<u>\</u>	a o				ļ ·				23'	
č;	<u>"</u> [1				ASHT	ABULA	TILL		
	Γ [25	100-	_						•	
	1 "	23.2	ST							
1	ŀ]
	ŀ	1 1								
		J								
	[*	1			1					
	ŀ	1 1								
1=	ł				1				34'	
!	ţ	[]			M	AUME	т.	ACUST		
; 	[*	ΊΙ			-		3,14			
	_}								37.5	
	1		ŀ	——	Ε	ان لبہ	ومنهوط		., 	;
	· •	JI	ŀ		-		-			1000000
	[*	<u> </u>	l							AR300060
	[• · · · · · · · · · · · · · · · · · · ·
' '	-		ļ							γ'
	ŀ		ı		1			•		
	140	1	ŀ							
	r	1 1			I					

W	CT: Sh	ope	B L	and:	ERNG	rogeol	ogic I	ivestiç	ation	, Eric	e, PA	
DORING		ACT			re Soi		stigat	cas.	nc.	CORE	TUBE	JOB NO. 02361137 ELEVATION 815.3 DATE STARTED 7-21-81
	TIME		TER	EL		EEN -17.8'			SS 2"			DATE FINISHED 7-21-81 DRILLER Joe Genovese
							WT.		140# 30"			INSPECTOR Ron Stoufer
	ELL RUCTION	1227	HO.	TYPE	BLOWS PER		CL	1 3 3 I F	I C A 1	10 N		REMARKS
tonite	1/2" I.D. steel casing 1/4" O.D. stainless steel screen.	0 8 25 25	2 3 4	SS SS SS	7 5 - 7 40/0.2 10 - 6 5 - 1 12 4 - 7 1 - 6 6 - 6	Gray	GLACI	FILL Le and Little LAL TIL L CLAY, Lated,	yellow Silt.	DSIT: f. Gr	_	At 10', encountered a liquid that smelled similar to acetone At 12.5', encountered black rubbery materia (rubber cement?) the consistency of jello
		40										AR300061

1

													Mary of
DΛ	/ S WE	HOAI	V FA	GN	ERING							TEST BO	ORING LOG
W	5 00	SULTING	HG	ron w refis	TUIN							BORING	NO. 18
		ope '	s L	andf	ill Hydi	cogeolo	qic In	vestig	ation,	Erie	, PA	SHEET NO.	I QF
CLIENT		rd C	orp	orat	ion. Er	le. PA	eerics	tions	Inc.			JOB NO. O	
ROUN	D WATE	2						CAS.	CAMP	CORE	TUBE	DATE STAR	TED 7-21-81
DATE	TIME	- WA	TER	EL.	16'	- 18	TYPE DIA.	HSA 3 3/4"	SS 2"		 	DATE FINIS	HED 7-21-81 Joe Genovese
							WT.		140#				Ron Stoufer
	L	Ц—			IPLE]		FALL		30"	<u> </u>	Ļ	 	
	ELL			1			CLA	\ S S F	I C A 1	TION		RE	MARKS
CONSTI	RUCTION		NO.	TYPE	BLOWS PER 6 INCHES						_		
+	11							FILL					
 	П					B)1-	whha				a		
	- 11	}			4			r, pa					
		[•	1	SS	7 - 7		elow 1				•		
		[]			7				15	5.51			
H	- 11	1	2		3 <u>8 - 18</u> 15 - 15	l ——					_		
	- {}	10		1 1	7 - 5		GLAC	IAL TI	IT DEE	POSIT:			
	- []	ן"ן	3	SS	5 - 9			ottled			Ì		
	- []		4	ss	15 - 22 5 - 5			& SILT stiff		e c.			
1					12 - 4	Ballu-	MULSE,	20444		3.01	}		
	- []	-18	5	ss	4 - 4	L							
	_ᇙᅱ╽		6	ss	5 - 4			END OF	BORTA	iG	ヽ ̄		
	er ee		7	ss	6 - 8	\Box		PHD OF	DOIG	10			
1 1		-											
ן ונ	ree ree	20											
grout	8												
g/ §	ë ë	+											
f bentonite	stainless steel	20	. 1										
E k	S ta	-											
en d		1											
Sand pack	0		1										
L/A	2 V	30	1										
	1	1											
ŭ -	- 7												
		+1											
		76											
		[]	1								i		
		+											
		100					•					AR30	0063
		"										_ HILOU	
		1									-1		
		1											
		48											

WE WEHRAN ENGINEERING TEST BORING LOG BORING NO. PROJECT: Shope's Landfill Hydrogeologic Investigation, Erie, PA SHEET NO. **OF** 02361137 CLIENT: Lord Corporation, Erie, PA
BORING CONTRACTOR: Hand augered
PROUND WATER
DATE TIME WATER EL. SCREEN JOB NO. ELEVATION DATE STARTED 7-21-81 DATE FINISHED 7-21-81 DRILLER RON Stouter SAMP | CORE TUBE TYPE DIA. INSPECTOR Ron Stouf r WT. FALL SAMPLE CLASSIFICATION **REMARKS** CONSTRUCTION HO, TYPE GLACIAL TILL DEPOSIT: Brown CLAY & SILT, at 0.8' be-coming brown f. SAND, trace Silt, trace f. Gravel. 3.51 END OF BORING cuttings slotted PVC casing backfill with Sand pack 1 1/2" 1 AR300064

Well Lithology 5.5. Normia 9/16/80 #7 #9 GLACIAL TILL brown+gry mottled sandy learn, 0-9% 0-3 mottled silt /cam Some grand; cohesive:

grance to fine brown sand 3-412 motter buy fine sand 41/2-12' fine gravely sandy los grey, (WATER) 9%-21 61m-gray gravelly silt loam gry way aravelly silt 12'-31' and fine sand (plastic) loam (heaves) porastes GLACIO-LACUSTRINE (SILT) to bing gravely loam blu-prey gravelly siltlam and then to 50/50 fine grand and silt by 24 (bounces) then back to blue-grey frie gravely 51-14-loan gry fin grally sitt 31'-48' GLACIAL TILL loam to clay loan bran gravelly sandy lam (drive hard) gry fungavely loam: Small
seem at 20.

SLACIO-LACUSTRINE (SANO) 48-50 grey come sand an (Casing settled as plug drilled fine grand (>10gpm out) grandly fire sandy loam 50-55 gray silt loam (4 to loam Crot very permeable; a GLACIO-LACUSTRINE (SILT)

This gravelly sitt leam 27 -40 E Brown gravelly savely Isam 0-24 (heaving) gray silt (some water) (sensitive) no gravel
Very gravelly silt loam. (water at 18') gary quartily clay loam a silt loam (loose, driver eac 24-40 (drove itled; a little water) drills very hand - no detec 40-42' litholyic change- us mos ū wate 42-56 guy fine grantly sittle with the said cond

AR300065

#// # 2 A-WT (to well # 3-0-5' brown gravelly sandy /cam 5:11' mottled olive fine sand D-11 & red-brown sandy loam 11 13 1315 very coanse gravely 11-31 gray very fin gravely siltleam Sandy boam (cobbles) -31-54' as about but more grand (very little water) No water on mostling W. 77 below 1316 - 12 54-51' 28-3122 gravel juge sex #28+2C+2WT -10 WT 0-6" dark been loam topseil 0-29' Brown gravely sandy loam 6-138 widelish brown gravily sandy loan (1005e, caring settles) grading to greenes Litau: no me -15 % fan sand and greening tan gre 29'-39' gay very gravelly silt bam (lots of water at upper contact) Sandy leam - no mottles No Water - No well were W.T. below 151/3' here SWT 0-6" black sitt lean topsoil 6-56" gray and yellow motified eith learn 0-8" black silt locan topsoil x-32" mottled ten and ging loam (dance) 36-48" Gray and tan mottled very for sand + sill Coplantic-sensitive) 2-78" tan sandy loam 48-54" gry fine sand + 117+ 78-14" dense mothed gray and brown five sand 54-92 gray grandly sandy lam (water) フWT mettled loam II WT " 36-د 0-4" black loam topsoil fine from sand 7 b-108" 4-18" fan loam 18-60" brown gravelly loam to granelly 108"-13" grey fur sand and some soiff sandy loam (10th of water and charge Que of the charge of 60-92" done mother ofthe brown fine Ta (compati, dome, water at top of contact) AR300066

- 14 copper tubing Majorath Actor assessments for The sound of Extended The code ny said. Airsie The Paris Lengthy F/S CONSTAURTION 3/4 20 min 80 PA Wished We per mais udante PAC Place -سائط وروت (di = 9m) & 34" schditto glast conplings 78-12" Linkmite clay I chan sund سيوانه يؤون أواله فالمواجد . 342344 14 galv. Tec with prace 14" see zy"bailvelve calibreká to discharge 500250ml/minute 3/4 galv. nipple Clean Sund In 2º long perempent (pely ethydia) * Jan fin gravit to provint settling (settling) 2 B+2C have tips made of 44" scholitt pre sictled and severed with nylon unesh affiled with black placks electricions tape. * 1/5 The fellowing Pls are made of exhault 40 puz with convented completings; RC, 3A, 3B, 5A, 5B, 8A, 9A, cthis Pls on scholar to threated joint. Appendix 3. Conservation of 195 and Wate Take Wells. w-ent 5/475 AR3000,67 Water TARK Wall

APPENDIX B

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

AR300068

Cley Soils - Plasticity Classification

-
•
Ç
F
5
Ľ
•
•
•
5
ā
6
-
n
3
6
8
n
ä
,
•
=
2

Moterial			Fractions	Pessing	Retains On	Material	Degree of	Overall Fletilrity less	
	Molerial rela	Referial relained on the 9-in. strve			ij.		OVERALL PRESTURITY	Sand - Silt - Clay Compo	
COMBLES	Material pass and relained	Material passing on the 9-in, sieve and relained on the 3-in, sieve		.	Jir.	Clayey Sil.T Sil.T & CLAY	Slight	1 to 5	
GRAVEL	Material pers and retained	Material passing on the 3 in, sieve and retained on the Mo. 10 sieve	Course (e) Medium (m) Fine (f)	2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 in. 3/11 in. No. 10	CLAY & SILT Sily CLAY	Medium	5 to 10	
SAND	Material peso and retained	Material passing the Mo. 10 sleve and relained on the Mo. 200 sleve	Course (c) Medium (m) Fine (f)	No. 10 No. 30 No. 60	No. 30 No. 60 No. 200	CLAY	Very ligh	20 to 40 40 and greater	
SILT	Material pess that is non-pl exhibits little air dried.	Material pessing the Mo. 200 steve that is non-playic in character and exhibit little or no strength when air dried.		No. 206		 Solls presing the No. 206 sleve which can be made to exhibit pletricity and clay qualifies within a certain range of moisture content, and which exhibits conciderable strength when air dried. 	e which can be made to of moisture content, and o	eshibit pheticity and clay which eshibits conciderable	
	Įē S	Prestration Resistance and Soil Properties On Busis of the Standard Penetration Test AAtta Perk, Hanna and Theories, 1999.	mee and Soil Properties indand Penetration Test	·		Terms 16es	Terms Identifying Composition of Soli	п	
	Ş			į		Written	Defice:	Defining Range of Ferrenings by Welphi	
(Fa	(Fairly Reliable)		(Rethe	(Rether Unreliable)	9	pum	•	35 to 50	
Number of Rions Per Foot, H	"	Relative Dersity	Number of Blows Per Foot, N	O)	Contaistency	Some		20 to 35 50 to 20	
•	ř	Very Loose	Delow 2 2-4	> 1.	Very Soft Soft	Irace	•	0 to 10	
4-16 10-18 10-56 Over 58		Lonse Median Dense Very Dense	4-8 8-15 15-20 Over 38	2 (A > E	Medium Stiff Vory Stiff Ilard	 Plus (4) or minus (-) sign uses, after identifying term denotes extremes of range; e.g., Some (-) Gravel. Indicates 20 to 24 percent Gravel; None (1) Gravel: indicates 31 to 35 percent Gravel. 	ler idenlifying term demote 24 percent Gravel; Nome (extremes of sunge; e.g.,	•
	3000 69								1,8

GLOSSARY

- alluvium A general term for deposits resulting from the operations of modern rivers. These include deposits of riverbeds, flood plains, lakes, and fans at the foot of steep slopes.
- 2. anisotropic having physical properties that vary in different directions.
- annulus The circular opening around a pipe or tube placed into a borehole; that area between the outside of the pipe and the sides of the borehole.
- 4. aquifer A distinct water-bearing zone or stratum capable of producing water.
- 5. aquifer, artesian An aquifer which is confined under pressure by impermeable formations above and below and from which water levels (hydrostatic head) in wells will rise above the base of the confining bed.
 - 6. aquifer, unconfined An aquifer in which the ground-water table is open to the atmosphere, i.e., the aquifer is not under pressure from confinement.
- aquitard A saturated formation which yields insignificant amounts of water compared to an aquifer, but through which considerable leakage of water occurs.
- basalt An extrusive rock composed primarily of calcic plagioclase and pryoxene, with or without olivine. More generally, any fine-grained, dark-colored igneous rock.
- bedding plane dividing surfaces which separate individual units within sedimentary or stratified rock; or a tendency for massive rock (no beds) to split generally parallel to ground surface.
- bedrock solid rock exposed at land surface or overlain by unconsolidated material.
- 11. bentonite A clay mineral which is an altered volcanic ash. It exhibits an unusual property of expanding several times its original volume when mixed in water. For this reason, bentonite is used to seal the annulus around piezometers and wells to prevent interaquifer exchange or contamination by surface waters.
- diabase A rock of basaltic composition, consisting essentially of labradorite and pyroxene, and characterized by ophitic (coarse-grained) texture.
- 13. dip The angle at which a unit layer or planar feature is inclined from the horizontal. The dip occurs at right angles to the strike,

AR300070

- 14. fluvial of, or relating to, rivers, or produced by river action.
- 15. fractures breaks in rocks due to intense folding or faulting.
- 16. glaciolacustrine pertaining to lakes produced by glacial action or materials deposited from them.
- 17. ground water Subsurface water occurring in a zone of saturation.
- interbedded occurring between beds, or lying in a bed parallel to other beds of a different material.
- 20. joints fractures in rock, more or less vertical or transverse to bedding, where no movement has occurred.
- 21. joint sets groups of generally parallel joints.

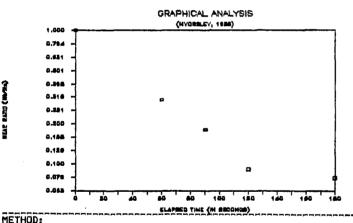
in sity - In its natural position or place.

18.

- 22. lacustrine produced by, belonging or pertaining to, or growing (forming) in lakes.
- 23. lens a body of sand or rock thick in the middle, thinning at its edges.
- lignite A brownish-black coal in which the alteration of vegetal material
 has proceeded further than in peat but not so far as sub-bituminous coal.
- 25. litho-stratigraphic based only on the physical and petrographic features of rocks.
- 26. metamorphic Includes all those rocks which have formed in the solid state in response to pronounced changes of temperature, pressure, and chemical environment.
- moraine An accumulation of drift having initial constructional topography, built within a glaciated region chiefly by the direct action of glacier ice.
- 28. NX bit part of the drilling apparatus user in test borings. Consists of a hollow core 2 1/8" in diameter which makes a hole 3" in diameter.
- 29. outwash Sediments deposited by streams originating from glaciers.
- 30. peridotite A coarse-grained, ultramafic rock consisting of olivine and pyroxene with accessory constituents.
- 31. permeability The ability of a porous medium (i.e., soil, rock) to transmit water.
- piezometer A tube or pipe placed into water-bearing zones in soil or rock to enable measurement of water level.
- 33. piezometric surface The surface to which confined water will rise if gir 20007 its full head, i.e., the level which water will rise if well or piezometer placed at the bottom of a confined aquifer.

- porosity Ratio of the volume of space in soil or rock not occupied by soil particles or rock to a total unit volume of soil or rock, usually stated as a percentage.
- 35. PVC well screen A slotted well point or perforated pipe which is installed below ground surface at a depth to collect ground water inflow and keep out sediment. PVC is the abbreviation for polyvinyl chloride, the material of construction.
- 36. sill An intrusive body of igneous rock of approximately uniform thickness and relatively thin compared with its lateral extent, which has been emplaced parallel to the bedding or schistosity of the intruded rocks.
- 37. slickensides polished and striated (scratched) surfaces resulting from friction along a fault plane.
- 38. splic spoon drilling tool used to obtain a sample, standard size 2 feet long, 1 1/2 inch inside diameter; pushed into boring with hammer.
- static water level The elevation at which the water surface equilibrates in a well or piezometer.
- 40. stratified formed or lying in beds, layers, or strata.

34.


- 41. strike the course or bearing of the line generated by any imaginary horizontal plane (e.g., the earth's surface) intersecting an inclined bed or other structural plane. The bearing of a horizontal line in an inclined plane. Strike is always perpendicular to the dip of the inclined plane.
- 42. till Heterogeneous, non-stratified sediment deposited by a glacier. It is characterized by its wide spectrum and variable ratio of soil particle sizes and by its high density.
- 43. time-stratigraphic Term applied to rock units with boundaries based on geologic time.
- 44. unconformable A distinct break in the continuity of deposition of successive strata; not succeeding the underlying strata in immediate order of age or in parallel position.
- 45. varves Sedimentary beds or laminations deposited within one year's time; or a pair of contrasting laminae representing seasonal deposition within one year.
- 46. water table The upper surface of the zone of saturation when the aquifer is unconfined as measured by the water levels in wells. Unconfined water in which the hydrostatic pressure is equal to the atmospheric pressure.

AR300072

47. well cluster - Two or more well points set within the same boring, but sealed off from each other in order to monitor ground water at different depths. Also, separate wells in adjacent borings intended to monitor different zones of saturation.

APPENDIX C

AWARE, INC. VARIABLE HEAD FIEZOMETER NO. W-22A PERMEABILITY TEST TEST DATA PROJECT NO: 6279 IELAPSED TIME CLIENT: LORD CORP HEAD RATIO 0 1,000 GEOLOGIC UNIT: MAUMEE IIIC LACUSTRINE 60 0.303 (SAND) 90 0.182 SOIL 120 0.091 CLASSIFICATION: f-m SAND tr Silt, grading to: 180 0.079 fmc SAND, little f Gravel TESTED BY: PDM DATE OF TEST: 12-12-84

 $\frac{r^2}{2L(t_2-t_1)}$ k = in(L/R) in(H₁/H₂)

K= permeability in cm/sec r = well radius 2.54 cm

R = bore radius 10.16 cm L = sand length 198.12 cm

H1 = head ratio at ti

t1 = elapsed time at H1

H2 = head ratio at t2 t2 = elapsed time at H2

1 (dimensionless) 0 seconds 0.182 (dimensionless) 90 seconds

AR300075

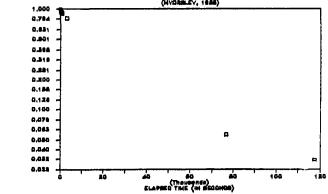
cm/sec

9.2E-04

MOURAL 4,, .. AWARE, INC. PIEZOMETER NO. W-21B VARIABLE HEAD PERMEABILITY TEST TEST DATA PROJECT NO: 6279 IELAPSED TIME HEAD RATIO LORD CORP CLIENT: 1.000 300 0.993 MAUMEE III LACUSTRINE GEOLOGIC UNIT: (SAND) 600 0.987 0.982 900 SOIL 0.976 m-f SAND, grading to f SAND 1500 CLASSIFICATION: 0.961 and SILT 2400 6000 0.943 7800 0.906 12540 0.855 TESTED BY: PDM 22440 0.768 84240 0.387 DATE OF TEST: 12-12-84 0.340 95640 108540 0.293 168360 0.146 GRAPHICAL ANALYSIS (HYDRRLEY, 1986) 0.714 0.631 0.501 0.281 METHOD: k = $ln(L/R) ln(H_1/H_2)$ 2L(t2 - t1) Where: K≖ permeability ` in cm/sec 5.2E-07 cm/sec 2.54 cm r = well radius R = bore radius 10.16 cm L = sand length 213.36 cm H1 = head ratio at t1 0.387 (dimensionless) t1 = elapsed time at H1 84240 seconds AR300076 H2 = head ratio at t2 0.131 (dimensionless) t2 = elapsed time at H2183180 seconds

The page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

li


PRIMINAL 700 AWARE, INC. FIEZOMETER NO. W-22-B VARIABLE HEAD PERMEABILITY TEST TTEST DATA PROJECT NO: 6279 IELAPSED TIME HEAD RATIO CLIENT: LORD CORP 1 0 1,000 MAUMEE IIIB LACUSTRINE 0.935 GEOLOGIC UNIT: 120 (SAND) 240 0.886 0.816 SOIL 420 CLASSIFICATION: f-m SAND, no to little Silt! 720 0.733 interbedded with f Sand & 1320 0.510 Silt, tr Gravel (GT?) 0.285 2640 5940 0.028 TESTED BY: 0.005 PDM 15720 DATE OF TEST: 12-12-84 GRAPHICAL ANALYSIS (HYDROLEY, 1986) 0.631 0.251 6.158 0.100 480.0 0.040 0.088 METHOD: k = _1n(L/R) 1n(H₁/H₂) 2L(t2 - 21) Where: K= permeability in cm/sec 2.1E-05 cm/sec r = well radius 2.54 cm R = bore radius 10.16 cm L = sand length 198.12 cm H1 = head ratio at t1 0.510 (dimensionless) t1 = elapsed time at H1 1320 seconds H2 = head ratio at t2 AR300077 0.285 (dimensionless) t2 = elapsed time at H2 2640 seconds

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

 \mathbb{R}

AWARE, INC. PIEZOMETER NO. W-23B VARIABLE HEAD PERMEABILITY TEST TEST DATA PROJECT NO: 6279 IELAPSED TIME I HEAD RATIO LORD CORP CLIENT: 1.000 0 MAUMEE III & LACUSTRINE 600 0.997 GEOLOGIC UNIT: 900 0.997 (SILT) 1140 0.993 SOIL 0.990 CLASSIFICATION: massive SILT, interbedded 1440 2940 0.983 with SILT & CLAY and with 11040 0.960 GT 72840 0.727 84540 0.691 PDM TESTED BY: 0.651 97740 157440 DATE OF TEST: 0.494 12-12-84 165240 0.475 GRAPHICAL ANALYSIS (HYORALEY, 1988) 4.000 0.000 0.912 0.271 0.432 8.784 0,754 0.724 0.692 0,681 0.651 0.663 0.575 0.880 0.528 0.501 0.479 METHOD: k = ln(L/R) ln(H₄/H₂) 2L(t2 - t1) Where: K= permeability 1.8E-07 in cm/sec K ≈ cm/sec 2.54 cm r = well radius R = bore radius 10.16 cm L = sand length 243.84 cm Hi = head ratio at t1 0.993 (dimensionless) t1 = elapsed time at H1 1140 seconds H2 = head ratio at t2 0.651 (dimensionless) AR300078 t2 = elapsed time at H2 97740 seconds

AWARE, INC. VARIABLE HEAD PIEZOMETER NO. W-24B PERMEABILITY TEST PROJECT NO: 6279 ITEST DATA IELAPSED TIME | HEAD RATIO CLIENT: LORD CORP 0 1.000 MAUMEE IIIa 300 0.948 GEOLOGIC UNIT: 600 0.927 SOIL 900 0.913 m-f SAND, trace to little 3120 0.816 CLASSIFICATION: 76800 Silt 0.056 117300 0.031 TESTED BY: PDM DATE OF TEST: 12-12-84 GRAPHICAL ANALYSIS (HYDROLEY, 1986)

METHOD: k = _ln(L/R) ln(H₁/H₂)

2L(t2 - t1) Where:

K= permeability r = well radius

R = bore radius

in cm/sec 2.54 cm

5.08 cm

152.4 cm

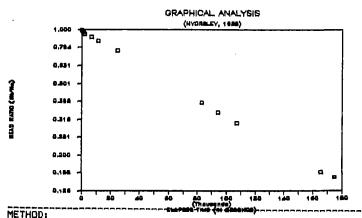
L = sand length

H1 = head ratio at t1 t1 = elapsed time at H1

H2 = head ratio at t2 t2 = elapsed time at H2 0.816 (dimensionless)

3120 seconds 76800 seconds

0.056 (dimensionless)


K =

AR300079

cm/sec

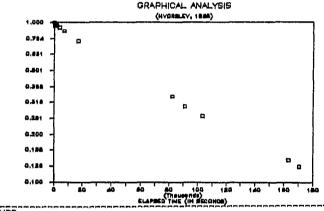
2.6E-06

AWARE, INC. VARIABLE HEAD PIEZOMETER NO. W-210 PERMEABILITY TEST PROJECT NO: 6279 ITEST DATA CLIENT: LORD CORP IELAPSED TIME I HEAD RATIO 0 1.000 GEOLOGIC UNIT: MAUMEE IIIA LACUSTRINE 120 **0.787** (SAND) 960 0.971 SOIL 2040 0.950 CLASSIFICATION: m SAND, trace SILT 6300 0.708 0.863 11140 24600 0.767 82860 0.393 TESTED BY: PDM 94260 0.347 107160 0.302 DATE OF TEST: 12-12-84 165642 0.161 174660 0.150

_ln(L/R) ln(H₄/H₂) 2L(ta - ta)

L = sand length

Where: K= permeability in cm/sec К≔ 9.7E-07 CM/SEC r = well radius 2.54 cm R = bore radius 5.08 cm


106.68 cm H1 = head ratio at t1 0.393 (dimensionless)

t1 = elapsed time at H1 82860 seconds

H2 = head ratio at t2 0.150 (dimensionless) t2 = elapsed time at H2174660 seconds

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

AWARE, INC. VARIABLE HEAD PIEZOMETER NO. W-22C PERMEABILITY TEST TTEST DATA PROJECT NO: 6279 IELAPSED TIME I HEAD RATIO LORD CORP CLIENT: 1.000 O MAUMEE IIIA LACUSTRINE GEOLOGIC UNIT: 300 0.957 900 0.962 (SAND) 1800 0.948 0.924 CLASSIFICATION: f SAND, trace Silt 3660 interbedded with Clay & 7200 0.882 Silt 16920 0.763 0.346 81960 0.299 TESTED BY: FDM 90900 103200 0.261 163140 0.137 DATE OF TEST: 12-12-84 170700 0.126

METHOD: ln(L/R) ln(H₁/H₂)

2L(ta - t1) Where:

K= permeability 2.54 cm r = well radius 5.08 cm

R = bore radius L = sand length 106.68 cm

H1 = head ratio at t1 0.763 (dimensionless)

in cm/sec

16920 seconds t1 = elapsed time at H1 0.126 (dimensionless) H2 = head ratio at t2

170700 seconds t2 = elapsed time at H2

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

1.1E-06

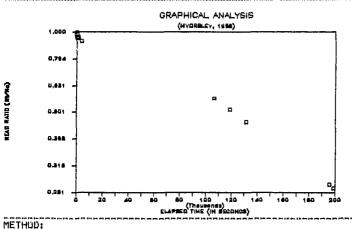
CM/58C

AR300081

ΚĦ

MAI AWARE, INC. VARGABLE HEAD PIEZOMETER NO. W-230 PERPEABILITY TEST 6279 PRODECT NO: TTEST DATA TELAPSED TIME | HEAD RATIO CLIENT: LURD CURF 1.000 0 GEOLOGIC UNIT: MAUMEE LILA LACUSTRINE 300 0.679 0.455 600 0.276 900 CLASSIFICATION: f SAND, trace Silt, 2460 0.097 interbedded with Laminated Clay & Silt TESTED BY: DATE OF LEST: 12-12-84 ~2.597 O ~2.597 GRAPHICAL ANALYSIS (HYDROLEY, 1986) 1,000 3.651 0,516 0.184 0.128 ELAPSED TIME (IN SDEDNOS)

 $\frac{r^2}{2L(t_D-t_A)}\ln(L/R)\ln(H_A/H_D)$ Where: Km permeability 10 CM/58C . = 1.1E-04 cm/sec r = well radius 2.54 cm R = bore radius 5.08 cm L = sand length 167.64 cm HI = head ratio at ti 0.455 (dimensionless) ti = elapsed time at Hi 600 seconds H2 = head ratio at t2 0.276 (dimension)ess)


METHOD:

t2 = elapsed time at H2

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

900 seconds

AWARE, INC. PIEZOMETER NO. W-24C VARTABLE HEAD PERMEABILITY TEST TIEST DATA PROJECT NO: 6279 TELAPSED TIME I HEAD RATIO CLIENTE LORD CORP 0 1.000 GEOLOGIC UNIT: MAUMEE IIIA LACUSTRINE 300 0.981 660 0.955 450 0.955 f SAND, little Silt, with 1260 0.948 CLASSIFICATION: 0.948 laminations Clay & Silt 1500 0.922 3900 106260 0.565 TESTED BY: PDM 118560 0.513 131460 0.461 DATE OF TEST: 12-12-84 195900 0.269 198960 0.261

 $\frac{r^2}{2L(t_2 - t_1)} \ln(L/R) \ln(H_1/H_2)$ k ≖

Where:

K= permeability Κ = 5.36-07 cm/sec in cm/sec r = well radius 2.54 cm

R = bore radius 5.08 cm L = sand length 182.88 cm

Hi = head ratio at ti 0.461 (dimensionless)

ti = elapsed time at Hi 131460 seconds

H2 = head ratio at t20.261 (dimensionless) t2 = elapsed time at H2 198960 seconds

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

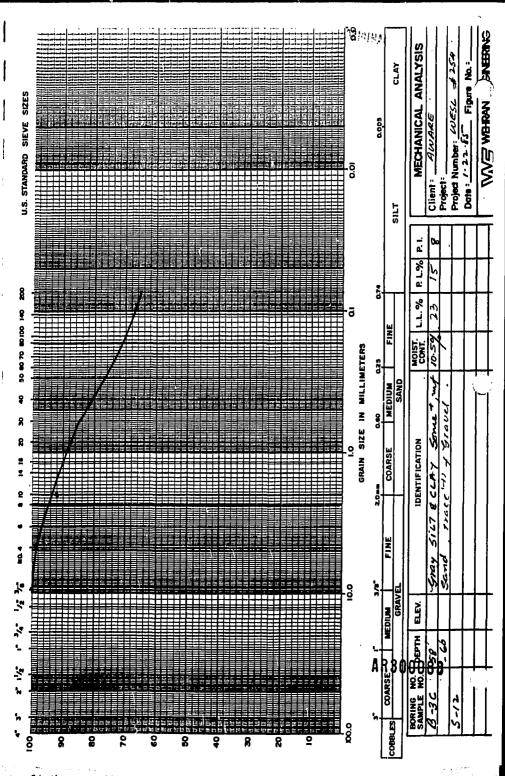
VARIABLE HEAD PERMEABILITY TEST PIEZOMETER No. W-12A TEST DATA PROJECT: SHOPES LANDFILL ELAPSED CLIENT: LORG CORP. TIME HE AD RATIO (hrs) (h, / h,) JOB NO: 6279 DATE OF TEST: 7/22/81 (R.S. - WE) 1,00 0,00 SCREENED INTERVAL: ,95 0.78 MAUMEE III B (Coorse) . 89 1.61 .70 4.42 METHOD: 7.12 .63 K= 24 (+,.+.) 1, (4/R) 1, (4,/H2) 9.72 . 53 14.03 . 40 ELAPSED TIME (HA) CALCULATIONS: K= (1.9) 21. (106.7/10.2) 1. (1.00) 2 (106.7)(34992-0) r: 1.9 cm R: 10.2 cm K: 7.2 x10-7 cm/sec AR300084 L: 106.7 cm H. 1.00 tion O sec H. 0.52 1. 9.72 hrr = 34.992 sec

THE VARIABLE HEAD PERMEABILITY TEST UMUSE PIEZOMETER No. W-12 B TEST DATA PROJECT: SHOPE'S CANDEILL ELAPSED TIME HEAD RATIO CLIENT: LORD CORP. (h_{+} / h_{0}) (H.,) JOB NO: 6279 7/22/81 DATE OF TEST: (R.S. · WE) 0.00 1.00 SCREENED INTERVAL: ,94 0.63 ASHTABULA TILL-ASHTABULA (Fine) 1.46 . 88 5,28 .65 6.95 ,57 METHOD: 9.57 .46 K= 24(12.1) In (L/R) In (H./Hz) 13.88 .31 0,2.. ELAPSED TIME (H.C.) CALCUL ATIONS: K. (1.9) 1 1. (122/10.2) 1. (1.00) 1.9 cm R: 10,2 .-122 cm K. 8:3 x 10-7 cm/sec AR300085 H.: 1.00 0500 H. . .46 1. 9.57 hr = 34440 sec

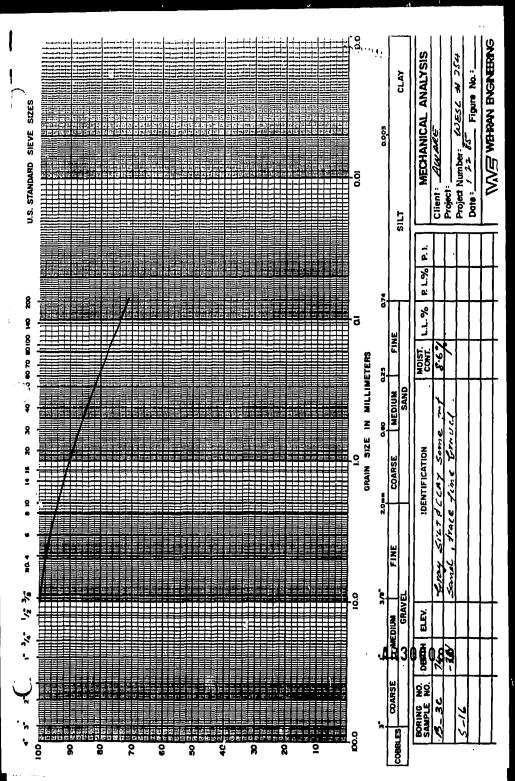
VARIABLE HEAD **AWARE** PERMEABILITY TEST CORPORATION PIEZOMETER No. W-12C SHOPES LANDFILL TEST DATA PROJECT: HEAD RATIO LORD CORP ELAPSED TIME CLIENT: (Min) JOB NO: 6279 DATE OF TEST: 7/22/31 (h. / h.) (R.S. - WE) 60,1 0,0 SCREENED INTERVAL: , 94 3.0 MAJMEE TIC (Coarse) . 88 7.0 .72 13.0 21.0 . 48 METHOD: K. 2 (4,+1) 1, (L/R) 1, (H, /H2) . 30 310 50,0 .12 0.1 . ELAPSED TIME (Min) CALCUL ATIONS: $K: \frac{(1.9)^2 \ln(91/10.2)}{2 (91)(1300.0)} \ln(\frac{1.00}{.30})$ 1.9 cm

t, 31 min: 1800 sec

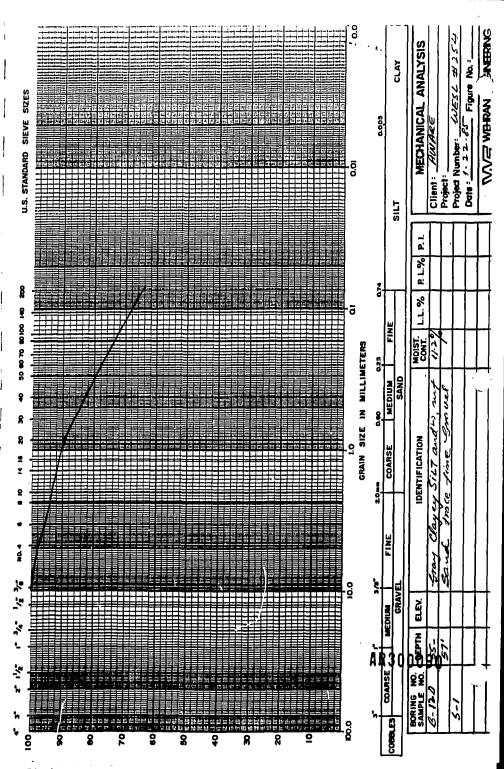
K. 2.9 x10-5 cm/sec AR300086

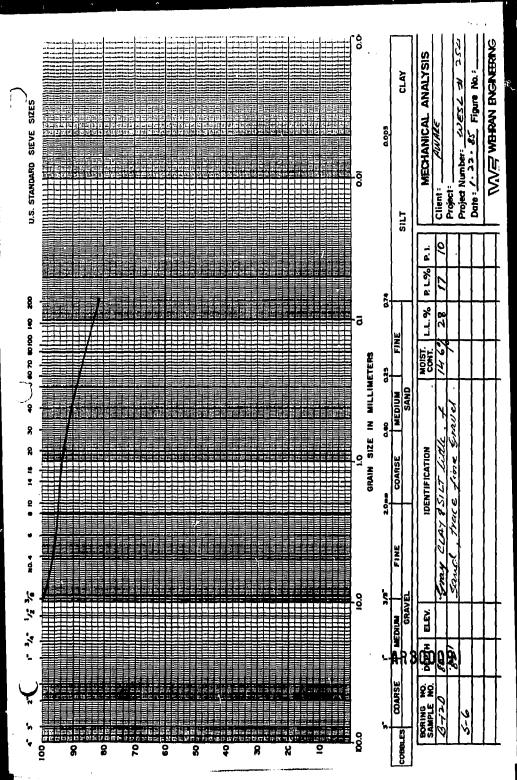

R:

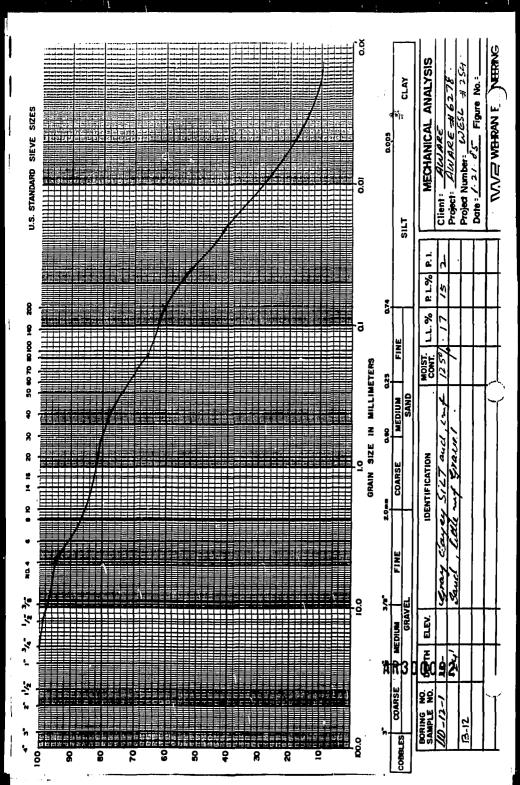
10,20-

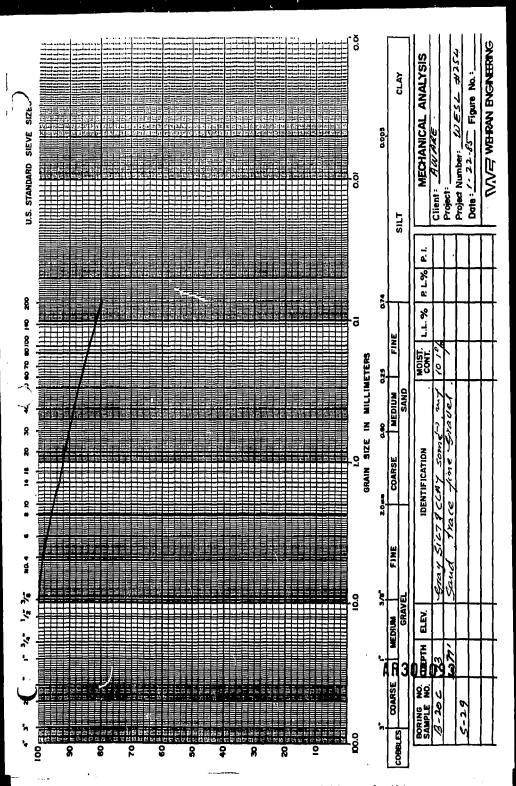

916-1.00 046

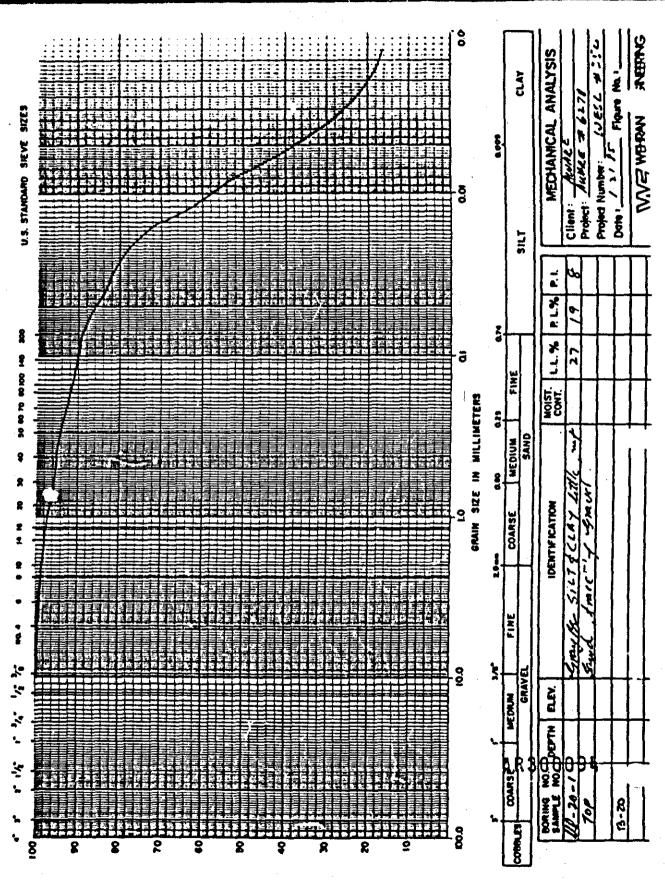
APPENDIX D

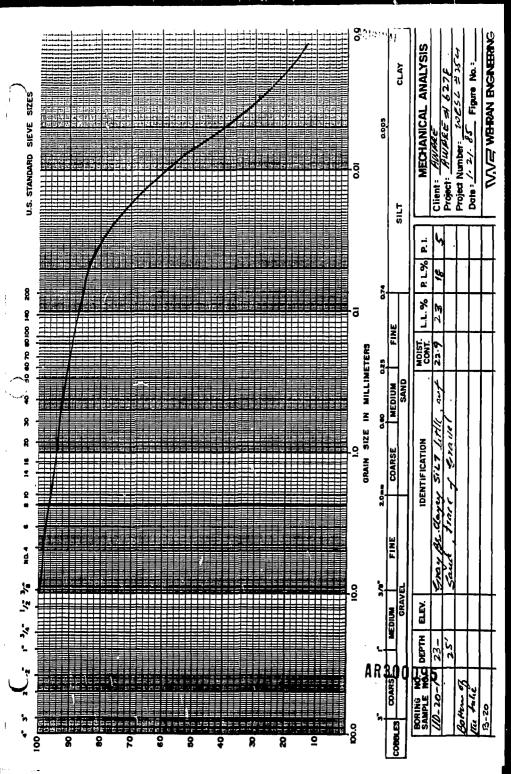

AR300087

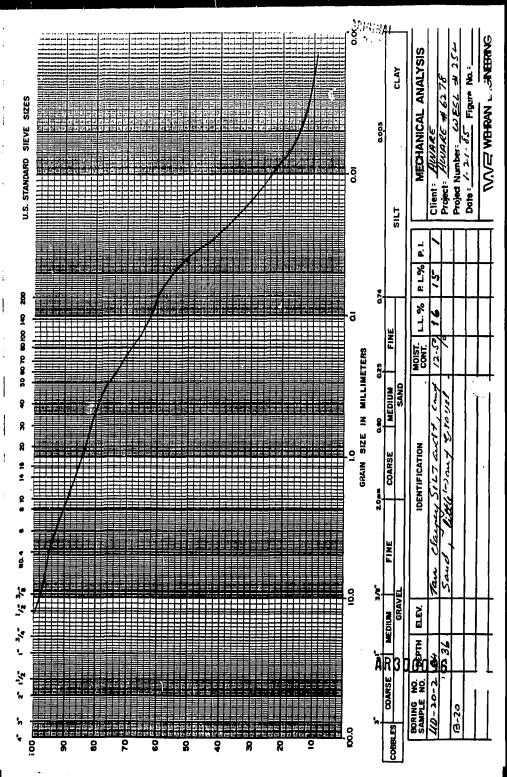

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

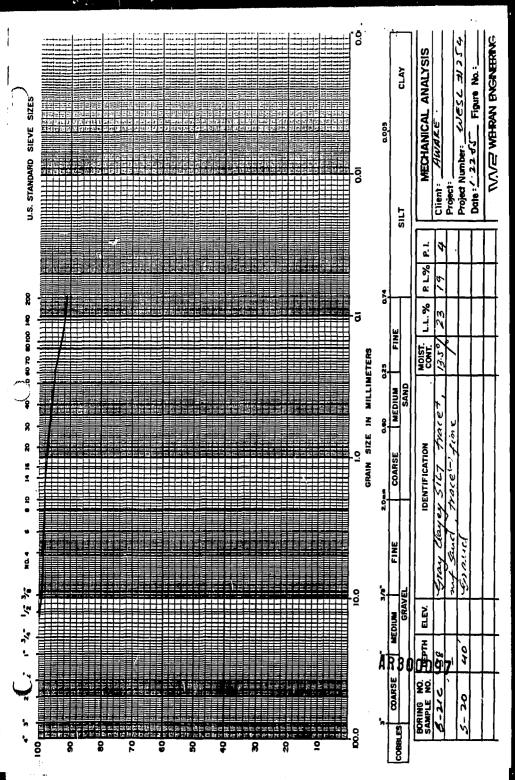

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

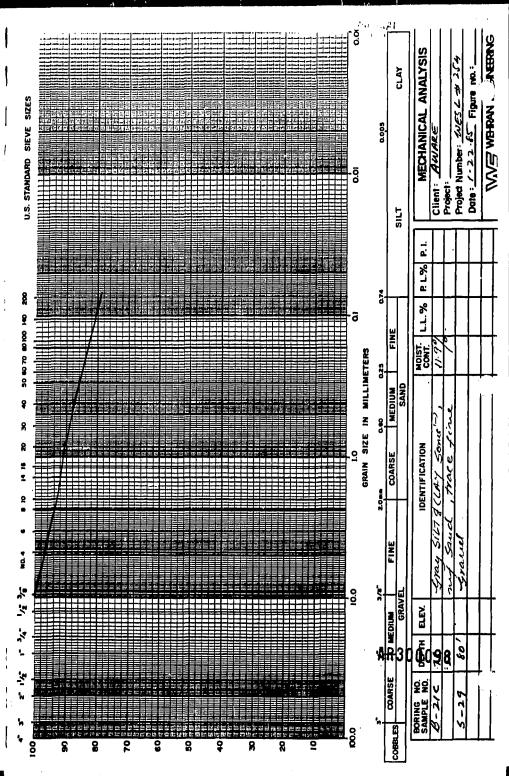

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

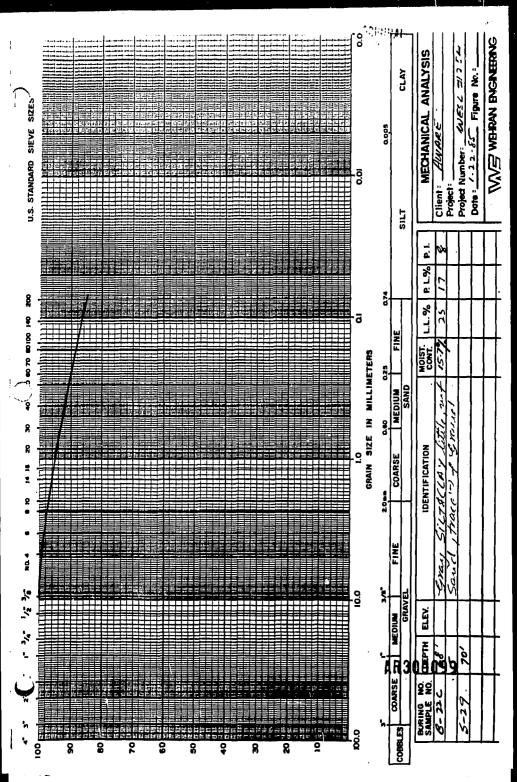

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.


If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

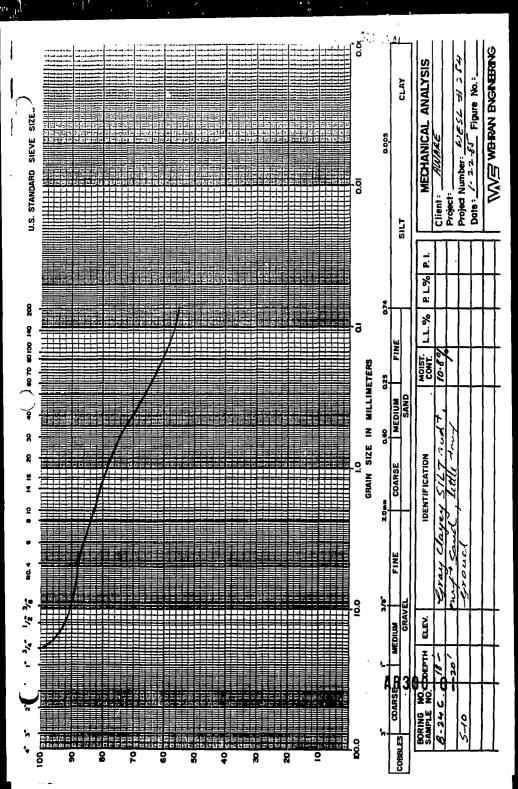

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

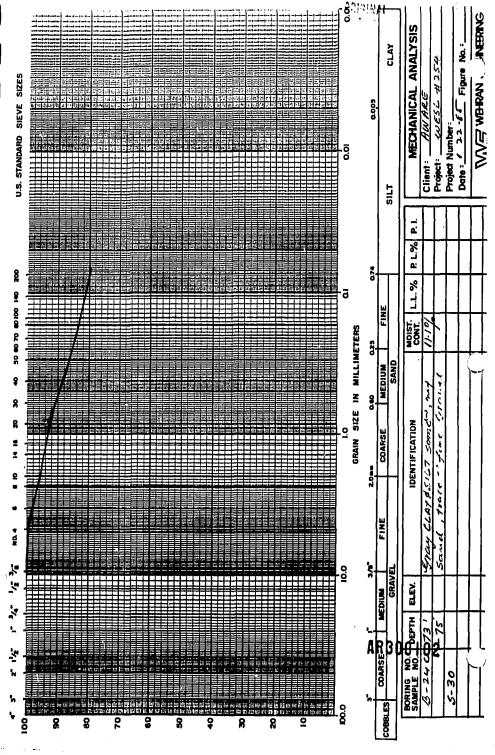

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page


If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page


If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.


If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.


If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

WEHRAN ENGINEERING SOILS LAB

PERMEABILITY TEST BY TRIAXIAL CELL WITH BACK PRESSURE

Constant Head Method

	Project: Sample No.	10-12-1 22-2	Proje Date:	et No. <u>were 43</u>	294
	Dimensions of Spec Height Diamete (Inches) (Inches)	imen: er	Weight of Specin	nen:	□▼
	1.4000 1.2 3	<i>18</i> .	Initial Weight	963, 0 Grams	11
	2. 4.000 2. 2. %	27	Final Weight	Lbs 1951-4- Grams	
	3,0000 3,2.82	9	Dry Weight	Lbs Grams	
	4.40 4.2.87	18.		Lbs	
	5. 400 5. 2.8	2.7		Moisture Content:	<u> </u>
		2 In. Ave. 2.		Initia' Final	12.7. % 11.3 %
)	Area 6.2803	9 In ² 40.	5/862 CMS2		
-	Volume 257/2/5		22	et Initial 146	o o pef
	Density, Wet Final:	144 3 pc			6 pef
	Back Pressure:	- 90 psi	Efft. Conf Pressure:	ining	0.5 tsf
	Saturation: 10	0.5%	$K_{20} = \frac{Q \times Q}{11 \times Q}$	L x Rt A x t	
	5p.78.	<i>;</i> /· / /	1		
	-	Trial 1	Trial 2	Trial 3	Trial 4
	Q cc	·32 x · 6	1/871.6	. 29+.6	, 26 K.
	L ems	10:16	10:16	10.16	10:16

_	1,1181 1	1 101 2	11IBI 3	11017
Q cc	· 32 x · 6	1/87.6	.294.6	, 26 x.6
L ems	10:16	10:16	10.16	10.16
Rt (Temp /6.3°)	1.043	1.043	1.043	1.043
h_ems	174 14.12.	17+14-12	17+14-12	17214112
A Sq. ems	40.5186	40.5186	40.51, 11	40.5/86
t Sec.	1832	1154	1856	1688
K ₂₀ em/sec	1.1414157	1.019+157	1.021+107	1.00 6+10-7
Remarks: 474	· claure Sixt	and Curt Sa	end, little med	Ar300103
1,,	,			

K₂₀ Avg. em/see

1.900 %

:.				- 1 <u>- 1</u> -	
₩.	WEHRAN CONSUME	ENGINEERING BIGINEBS (1-11)	LOG OF UNDISTURBED SOIL SAMPLES		
Project	AWAPE # 6	98 # 6278 Project Numb		n West ASSA	
	1 w 15		Dio. 3_Inches		
Sample	1/0-12-1	22-241	Recovery 21		
Date	1-15-95	<u>-</u>	Remarks	2 YOF OF 2507	
TOP OF SAMPLE	INCHES			TYPE OF TEST PERFORMED	
5 10	23				
<u> </u>	- 22				
	1 . 1		_		
	21			· · · · · · ·	
	- 20				
				`	
	19		,,,		
	18 }				
•	1			1	
	- 17				
	- 16				
		very sh	SILT and, cuf		
	- 4				
	13 4	ray clayey s	ILT and, Conf S	sand	
	7 " 7	the my Grace			
	12 41	71 mg 91th	(, d, 'a) {		
	- ii				
] '' [•		
	- 10				
	e _				
] " [
	- 8				
	7				
	- 6				
	- 5	···			
	┥ 4 ├──				
	- 3		······································		
	1 1			4830010P	
	2				
	┦ ,				
SAMPLE					

Sier

PERMEADULTY TEST BY TRIAXIAL CELL WITH DACK PRESSURE

Constant Head Method

	Project: Sample No	AUAPE 462 SILT UD.20-		ect No. <u>a.xi.36 4/3</u> 21 <u>6/050</u>	254
	Dimensions Height (Inches)	s of Specimen: Diameter (Inches)	Weight of Specia	<u>men</u> :	口不
	1.3.7/0	1.2.800	Initial Weight	857.7 Grams	14
	2.3.715	2. 2. 890	Final Weight	8432 Grams	R =
	3. 3.718	3.2.965	Dry Weight	C73.7 Grams	
	4. 37/7	4. 2.966		LDS	
	5. 3.7/7	5. 2.890		Moisture Content:	<u></u>
	Avg.	3.7/62 In. Ave. 2. 9.437/4 CMS 7.	7022 In. 37158 CMS	Initial Final	23.6 % 21.55 %
)	Area é	6.6/522 In2 42.	6787 CMS2		
,	Volume	24.5834. in3.014226	ft. Density, V	Wet Initial (32.)	g oct
	Density, W	et Final: 130.7 pcf			

_	Trial 1	Trial 2	Trial 3	Trial 4
S cc	. 157.6	2.57.6	. 457.6	1524.6
ems	9.43914	9.43914	9.439141	9.43914
Rt (Temp // 🚜)	1.043	1.643	1.043	1.043.
ems	17414.12	17414.12	17-14-12	1771412
A Sq. ems	42.6787	42.6787	42.6787	42.6789
Sec.	798	525	946	1104.
K ₂₀ cm/sec	2.902-x10-7	2.745+10-7	.2.742×10-7	2.718 + 10-7

Efft. Confining

 $K_{20} = \frac{Q \times L \times Rt}{h \times A \times t}$

Pressure:

70_psi

1005 x

Remarks: Grayes dayer Six lettle, my Sand, 1 11309165-7.

K₂₀ Avg. cm/sec

O.S tsf

duning setup and resting

Back Pressure:

Saturation:

	Office of	./. /h
WEHRAN ENGINEERING CONSUME ENGINEERING	LOG OF UNDISTURBED SOIL	SAMPLES
Project AWABE # 627B	Project Number UESL	# 254
Client AWAPE	Dia, 3 Inches	1,
Sample UD-70-1	Recovery 2'	22"
Date 1-15-84	Remarks	TYPE OF TEST
SAMPLE INCHES		TYPE OF TEST PERFORMED
23		
1.	•	
20 0		
21 Drom c.t	"Sand, Somer SIlt	1. /
15 15 15 M of 1	6VL .	T
- - EV. 7		V 7=
19 GEGIN, ABrown	SILT, some of Sand.	Kics
	ungle stonging different first	& Bag.
		1/1.
17 F Gray Brown	Clayey Sivi little	W
16 Can + Said.	trant igrand.	<u> </u>
10 /		
15		
14		
11		7
13		A
12 		
<u> </u>		
11	,	À
10		
و		Ι Ρ΄
8		 [
7		<u> </u>
		4
. 6	· n	V
5		· K
4	•	
	H	1 · V
3	10	00100
2	An:	300106
		ا مراد ا
A	# \$115 · · · >	ļ
BUTTOM OF		<u> </u>
SOTTOM OF SAMPLE	it.	i

WEHRAN ENGINEERING SOILS LAB

PERMEABILITY TEST BY TRIAXIAL CELL WITH BACK PRESSURE

Constant Head Method

	Project: Sample No.	AWARE #627	Proj Dat	et No. LESL et /·/	4 75 Y
	Dimensions of Sp rieight Diame (inches) (Inches	eter	Weight of Spec	imen:	$\Box \bar{\Lambda}$
	1. 3.981 1, 2	828	Initial Weight	966-6 Grams	.
	2.3.982 2.2.	827	Final Weight	4550 Grams	,
	3. 3.983 .3. 28		Dry Weight	862-4 Grams	
	4. 3.922 4. 2.	829		ДИЗ	K
	5.3.982 5. 2	827 '		Moisture Content	; <u> </u>
		82 In. Ave. 37.		Initial Final	<u>2.0</u> %
\mathcal{C}		1039 In2 40			
	Volume -25.0	085. In 3.0/447	Cit. Density,	Wet Initial 14	7.2 gef
	Density, Wet Fin	al: 1457.5 po			1.36 pcf
	Back Pressure:	90 ps	Efft. Cor Pressure:		O.S tsf
	Saturation: 1	00.9%	$K_{20} = \frac{Q}{h}$	<u>k L x Rt</u> x A x t	
		Trial 1	Trial 2	Trial 3	Trial 4

	Trial 1	Trial 2	Trial 3	Trial 4
Q cc	·48× · 618	· 17x-618	· 1×.61	. 27×.68
Lems	10.11478	10:11428	10.11416	10.114.15
Rt (Temp // 3°)	1.043	1.043	1.043	1.043
h ems	1771412	174/4.17	1741443	174/4112
A Sq. ems	40.51862	40.51862	40.5/862	40.51862
· t Sec.	2149	424	468	1234
K ₂₀ cm/sec	1.497 ×10-7	1.382+10	1.414× 10-7	1.466410-7
	de inga dista	with ing Ston	of field hut	1R300107
A	6 ''	,	• • • • • • • • • • • • • • • • • • • •	7 1.33000 = 2

K20 Avg. em/see

WEHRAN ENGINEERING SOILS LAB

PERMEABILITY TEST BY TRIAXIAL CELL WITH BACK PRESSURE

Constant Head Method

AWARE # 6278 Project No. Larse #25억 Project: Date: UD-20-1 Sample No. ப்...ensions of Specimen: Weight of Specimen: Diameter Height (In lies) (Inches) 870.4 Grams 1, 2.940 Initial Weight 1.3920 Lha 2.3.980 2.2.840 Final Weight Grams R = 11 Lbs 711.4 Grams 3.3.981 3.2.840 Dry Weight Lbs 4.3.981 4.2840 5. 3.981 5. 2.840 **Moisture Content:** 3.9806 In. Ave. 2.840 In. 22.4 % Initial Avg. 21.75 % 10.110724CMS 7.2/36 CMS Final 40.86897 CMS2 6. 33470 In2 Area 25.2159 . in3 .01459 cft. 131.5 pcf Volume Density, Wet Initial 130.9 pel 107.5 Density, Dry Density, Wet Final: 90 psi Efft. Confining Back Pressure: 0 5 tsf Pressure:

Trial 1	Trial 2 '	Trial 3	Trial 4
137.16	. 2-4.6	. 2×.6	/ × · 6
10.1107	10.1107	10:1107	10:1107
1.043	1.043	1043	, 1.043.
17+14:12.	17+14-12-	17714317	17+14-12
20.86877	40 66699	40.86877	40.56877.
207	155	161	10
4.347 710-7	8.3271151	8.017410-7	8.062+10-7
	137.16 10.1107 1.043 1741412 20.86877	137.16 .24.6 10.1107 .00.1107 1.043 .1.043 17414.12 .174.14.12 20.86877 .40.86879 207 .15.15	137.6 .24.6 .2×.6 10.1107 10.1107 10.1107 1.043 1.043 1.043 17.14.12 17.14.12 17.14.14 20.86877 40.86879 40.86879 207 15.5 161

Saturation: 10/4%

Remarks: of ray Men Charge y Char Alt in f Guid, trake 300108

 $K_{20} = \frac{Q \times L \times Rt}{h \times A \times t}$

Kan Avg. em/nec

W	WEHRAN ENGINEERING CONSUME MONTHS	LOG OF UNDISTURBED SOIL	SAMPLES
\	WARE & 6278	Project Number was 52 14 25	7
) Client A	WAKE		
Somple	20-2	Recovery 26"	
TOP OF SAMPLE	INCHES	Nemeras	TYPE OF TEST PERFORMED
	26 Upper 311 C.F. Sand	, to I GUL 1 HASI YE	highlan.
	22 Tan Clayery S.	127 and - and soul	
,	21 little nu f Grace		
	·		
i	20		
	19		ļ
	16		
	17		<u> </u>
	16		
	15		
7	14	·	
	13		
	12	····	
	ñ		
	10		
	9		
	8		
	7		
,	6		
	5	2 _{0,} 8	
.	4	i	12
	3	AR3	00109
	2	N A	less citavion
	0		frame / 1 4/0.
BOTTOM OF SAMPLE	0	In terms with the particular and particular particular and par	

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

				A SE	, u
M	层 WE	HRAN ENGINEERING BUING (NGMIIK)	LOG OF UNDISTURE	ED SOIL S	AMPLES'
Project AWF	P.F	計62.78	Project Number 1455L	725年	1
Sample 2	3-1		Recovery		925,
Dois			Remarks		i
TAN OF SAMPLE	INCHES	3			TYPE OF TEST PERFORMED
		Bury Ct SAND, 11	i land by.		, !
a secondary	1, 23		· · · · · · · · · · · · · · · · · · ·		A
<u> </u>	22	<u> </u>	 		
	21				
		\ .			
	20.	170	14 1		110
ļ	19	shouth odoro	3,7, 1 my y		100
	18	Shortly orders	in upin)	247
ļ	17	Lex Pusuri			410-
	16				·
					60
	15				
	14				
	- 13				165 ITNG
<u> </u>	12				
}	i ii			.,	
	10	<u> </u>	· 		
	9				
	8	,			
'	1				
	7				
	6	1.			
	-				
	4	Low of Sund, s	1.3, / mple:		
<u> </u>	3		<u> </u>	<u>'</u>	
1	1				
, p	2		THE PERSON NAMED IN	- AH3 0	0110
11	-	manufact promotions (they are yet a classical promotion and part of a			
BOTTOM OF SAMPLE	0	Art was a sure of the sure of	•		

If the page filmed in this frame is not as readable or legible as this label, it is due to substandard color or condition of the original page.

PLEASE REFER TO THE ADMINISTRATIVE RECORD FILE FOR THE MAP THAT CORRESPONDS WITH PAGES AR300111 THROUGH AR300118

the page filmed in this frame is not as readable on legible as this el, it is due to substandard color or condition of the original page.

	DOC	10 153420
PAGE	#_AR	300111

•	SHOPE CANDSILL	
PERABLE UNIT	00	•
•		•
ADMINISTRATIV	RECORDS- SECTIONVOLUME_	
report or doc	UMENT TITLE HYDROGEOLOGIC SO	HUMON
Ri. PORT		
date of docum	ENT 985	
	111144	: a . v. a C
DESCRIPTOR OF	IMAGERY WATER TABLE CONT	OUR HAT
· · · · · · · · · · · · · · · · · · ·		

_	000 ID 153420
Page 1	AR 300 11Z

ITE MAME		
IIE NAME_LOLD	SHOPE CANDFILL	·
PERASLE UNIT_	00	
DMINISTRATIVE	RECORDS- SECTION_	VOLUME
	40° 20° 4	
	e versioner. Little of the control o	
EPORT OR DOCU	MENT TITLE HADROG	JOLOGIC SOHHARY
•		
2:5027		<u> </u>
		•
ATE OF DOCUM	NT 7/25	
ESCRIPTON OF	MAGERY PIEZONET	RIC CONTOUR
WAR - IDTU	SHOP STAIDSH S	
	en og Agrika en 1920 i Da	•
HIMEED AND TV	PE OF IMAGERY ITEM(S	1 ONCESTED MAP

000 ID 153420

<u>Imagery cover sheet</u> <u>Unscannable Item</u>
SITE NAME LORD SHOPE LANDSILL
operable unit_ oc
ADMINISTRATIVE RECORDS- SECTION
REPORT OR DOCUMENT TITLE HUDES GLED LOCAL SOMMERCH
Rusoki
DATE OF DOCUMENT 7/25
DESCRIPTON OF IMAGERY PIFTONETRIC CONTONE
MAP-DEEP CODE
NUMBER AND TYPE OF IMAGERY ITEM(S) 1 OVERSITED MAP

		000 10 153420	
PAGE	#_	AR 300 114	•

1555 454 5 444 445	
Perable unit_ 	
DMINISTRATIVE RECORDS- SECTION_	VOLUME
report or document title hydrog	JOLEGEN COMMUNICA
	2000000
R. Per1	
ATE OF DOCUMENT 1/85	· .
ESCRIPTON OF IMAGERY CHEDUDGING	cross SCCTION A-A
	,

_	000	10153420
page #_	AR	300115

SITE NAME LORD SHOPE LANDFILL	
Operable unit	
ADMINISTRATIVE RECORDS- SECTION	VOLUME
report or document title <u>hydrog</u> e	occonc somumey
Ri-Port	· · · · · · · · · · · · · · · · · · ·
DATE OF DOCUMENT_7/85	
DESCRIPTON OF IMAGERY_ GEOLOGIC	cross section
8-8	
Number and type of Imagery Item(s)	1 OVERSIZED HAP

		000 10 15342D
PAGE	#_	AR 300116

SITE NAME LOED S	HOPE. 'CAND'	Sic.		• .	
OPERABLE UNIT	⊃				<u> </u>
ADMINISTRATIVE RE	CORDS- SE	CTION_	VOLUM		•
report or docume	INT TITLE	HYDROGL	تصدوحه	SUHLIVA	e ~
Rifery					· ·
date of document	7/25	·····	· · · · · · · · · · · · · · · · · · ·		
descripton of IMA	GERY_ <u>Ches</u>	لتحديد	C2088	San	670 C-
		· · · · · · · · · · · · · · · · · · ·			
NUMBER AND TYPE (of imagery	/ ITEM(S)	1 04625	מציבום	MAP

,	000 10 153420	
Page #	AR 300 117	_

SITE NAME	LORD SHOPE	المانكة الد		
OPERABLE.	UNIT 00	· · · · · · · · · · · · · · · · · · ·		
	-	RDS- SECTION	VOLUE	
			4050	16
				·
report of	DOCUMENT	TITLE HUDEN	هن د د د د د د د د د د د د د د د د د د د	SUMMARY
R. PORT				<u>.</u>
DATE OF D	CUMENT_5	125		
	N OF WAR	RY HYDROGIC		CROSS
•	8-B			
NUMBER A	ND TYPE OF	MAGERY ITEN	(8) 1 04c	Reizzo HAP

	00010 153450
Page 1	AR 300118

TE NAME LOED			
erable unit°		ONVOLUME	•
	· · · · · · · · · · · · · · · · · · ·	·	
eport or docum	ENT TITLE HUE	progratory 5	whener -
ate of Documen			·
escripton of im	agery tvo	ISOCON .	1AP -

AR300119

If the page diffuence this frame is not as readable or leadble to this label, it is due to substandard color or condition of the original page