Ruetgers-Nease

Chemical Company, Inc. • A subsidiary of Rütgerswerke AG

April 19, 1991

201 Struble Road State College Pennsylvania 18801

Phone: 814-238-2424 Fax: 814-238-1587

David Byro U.S.EPA Region III (3HW-21) 841 Chestnut Building Philadelphia, PA 19107 Jack Wagner PaDER 200 Pine Street Williamsport, PA 17701-6510

3

Re: RI/FS Data Validation Report Ruetgers-Nease Chemical Company State College, PA Site

Enclosed please find a copy of the raw data and data validation report for samples collected at the Ruetgers-Nease Chemical Company, Inc. as part of the Remedial Investigation/Feasibility Study of the State College, PA Site. The data included is for 6 soil samples, 6 fish tissue samples, 8 sediment samples and 2 aqueous field blank samples.

As I mentioned to you earlier, the results reported in several samples (e.g. fish) for kepone are not consistent with previous data that has been generated. As a result, we have asked the laboratory to re-extract and analyze several fish tissue samples that had been retained and kept frozen by SMC Environmental Services. When the results of those duplicate analyses are available, we will forward those results to you. Based on Ruetgers-Nease's previous experience in the analysis of samples for kepone, we know that the analysis is extremely difficult and want to ensure that we are all in agreement on the data on which conclusions will be based.

If you have any questions after reviewing this data, please contact me.

Sincerely,

in W.Fs

Steven W. Foard Manager Environmental 255r2iges

cc: B. Greene- Ruetgers-Nease K. Reinert- SMC

Specialists in Environmental Risk Assessment and Data Validation

The Commons at Valley Forge, Unit 4, 1220 Valley Forge Rd. P.O. Box 911, Valley Forge, PA 19481 (215) 935-5577

1

QUALITY ASSURANCE REVIEW OF THE

RUETGERS-NEASE CHEMICAL COMPANY, INC.

STATE COLLEGE, PA SITE

February 28, 1991

Prepared for:

SMC ENVIRONMENTAL SERVICES 501 Allendale Road King of Prussia, PA 19406

Prepared by:

ENVIRONMENTAL STANDARDS, INC. 1220 Valley Forge Road P.O. Box 911 Valley Forge, PA 19481

TABLE OF CONTENTS

Section 1

Quality Assurance Review

A. Data Evaluation

B. Conclusions

Section 2

Analytical Results

Section 3

Analytical Data Support Documentation

- A. Case 0110/SDG01
- B. Case 0109/SDG01
- C. Case 1212/SDG01
- D. Case 1213/SDG01

Section 4

Project Case Narratives and Chain-of-Custodies

AR302526

Introduction

This quality assurance review is based upon a review of all data generated from the 6 soil samples, 6 fish tissue samples, 8 sediment samples and 2 aqueous field blank samples that were collected during December of 1990 and January of 1991 for the Ruetgers-Nease Chemical Company, Inc. State College Site. The samples that have undergone a rigorous quality assurance review are listed on Table 1. The data packages were received in 4 distinct Sample Delivery Groups (SDGs), as specified on Table 1.

This review has been performed with guidance from the "Functional Guidelines for Evaluating Organics Analyses With Modifications for Use Within Region III" (U.S. EPA, 1988).

The reported analytical results are presented as a summary of the data in Section 2. All of the analytical data were examined to determine contractual compliance relative to the analytical requirements and deliverables specified in the U.S. EPA Contract Laboratory Program (CLP) protocol and/or the project-specific Standard Operating Procedures for Mirex and Kepone. Qualifier codes have been placed next to the results so that the data user can quickly assess the qualitative and/or quantitative reliability of any result. Details of this quality assurance review are presented in the narrative section of this report. This report was prepared to provide a critical review of the laboratory analyses and reported analytical results. Rigorous quality assurance reviews of laboratory-generated data routinely identify various problems associated with analytical measurements, even from the most experienced and capable laboratories. The nature and extent of problems identified in this critical review should not be interpreted to mean that those results that do not have qualifier codes are less than valid.

ORIGINAL IR_{COL}

TABLE 1

SAMPLES INCLUDED IN THIS QUALITY ASSURANCE REVIEW

SMC Environmental Services Sample Number	Laboratory Sample Number	Case Number/ SDG	Date of Sample Collection	Fractions Examined
36-1-7-91-SED1	7978-01	0110/SDG01	1/7/91	V,M,K
39-1-7-91-SED2	7978-02	0110/SDG01	1/7/91	V,M,K
40-1-7-91-SED6	7978-06	0110/SDG01	1/7/91	V,M,K
41-1-7-91-SED4	7978-04	0110/SDG01	1/7/91	V,M,K
42-1-7-91-SED3	7978-03	0110/SDG01	1/7/91	V,M,K
43-1-7-91-SED5	7978-05	0110/SDG01	1/7/91	V,M,K
37-1-7-91-SED1- MS	7978-01MS	0110/SDG01	1/7/91	V,M,K
38-1-7-91-SED1-MSD	7978-01MSD	0110/SDG01	1/7/91	V,M,K
44-1-8-91-SS4	7977-01	0109/SDG01	1/8/91	V,M,K
45-1-8-91-SS5	7977-02	0109/SDG01	1/8/91	V,M,K
46-1-8-91-SS6	7977-03	0109/SDG01	1/8/19	V,M,K
47-1-8-91-FB	7977-04	0109/SDG01	1/8/91	V,M,K
1-12-11-90- SS3	7839-01	1213/SDG01	12/11/90	M,K
3-12-11-90-SS1	7839-02	1213/SDG01	12/11/90	M,K
4-12-11-90-SS2	7839-03	1213/SDG01	12/11/90	M,K
2-12-11-90-FB	7839-04	1213/SDG01	12/11/90	M,K
F3U	7838-01	1212/SDG01	12/11/90	M,K
F3L	7838-02	1212/SDG01	12/11/90	M,K
F2U	7838-03	1212/SDG01	12/11/90	M,K
F2L	7838-04	1212/SDG01	12/11/90	M,K
F1U	7838-05	1212/SDG01	12/11/90	M,K
FIL	7838-06	1212/SDG01	12/11/90	M,K

NOTES:

V - TCL Volatiles

M - Mirex K - Kepone

Section 1 Quality Assurance Review

A. Data Evaluation

The organic analyses of 6 soil samples, 6 fish tissue samples, 8 sediment samples and 2 aqueous field blank samples were performed by Enseco-ERCO Laboratory of Cambridge, Massachusetts. The samples were analyzed for the Target Compound List (TCL) volatiles by CLP protocols and for mirex and kepone utilizing the project-specific analytical SOPs. The findings in this report are based upon a rigorous review of holding times, blank analysis results, matrix spike recoveries, GC/MS tuning, target compound matching quality, isotope ratios, calibrations, system performance and quantitation of positive results. The analytical results are provided in Section 2 of this report.

Overall, the organic data was good. Contractual criteria and reporting requirements were met for this data set, with the exception of the following. It should be emphasized that the following items are contractual in nature and <u>do not</u> necessarily affect data usability. Data usability is addressed separately.

Correctable Deficiencies

- 1. For the medium VOA analysis of sample 43-1-7-91-SED5 (Case 0110/SDG01), the VOA surrogate recoveries on Form II did not include the appropriate "D" qualifier indicating that the surrogate recoveries were diluted out. This notation correctly appears in the raw data (pg. 103).
- 2. The Form V for the initial calibration associated with the medium-level VOA analysis of sample 43-1-7-91-SED5 (Case 0110/SDG01) indicates that this BFB tune and initial calibration are applicable to "low water" samples. Based on the data provided, this should be "medium soil". It appears possible that the calibration may actually be for "low water", since the same calibration is specified in Case 0109/SDG01 as being applicable to the VOA analysis of an aqueous field blank. This will also be addressed as a potential noncorrectable deficiency.
- 3. The Form V for the BFB tune associated with sample 47-1-8-91-FB (Case 0109/SDG01) performed on 1/10/91 at 09:40 on MS-V3 has incorrect percent relative abundance values for mass ions (m/z) 50 and 176. Although the values observed in the raw data differ by 0.1-0.3, the percent relative abundances were still met with respect to the CLP acceptance criteria.
- 4. The concentrations of mirex and kepone added to the matrix spikes of sample 36-1-7-91-SED1 (Case 0110/SDG01) are not consistent with those specified in the project-specific SOP. However, it appears there is a reasonable possibility that the concentrations added were consistent with the SOP but were merely transcribed to the QC result form

-page 2

(pg. 001) incorrectly. If the reviewer's suspicions are correct, the following discrepancies exist for the percent recoveries.

Compound	Reported <u>MS & MSD Recovery</u>	Calculated MS & MSD Recovery
mirex	16% and 16%	90.1% and 88.9%
kepone	0% and NC	7% and NC
NOTE:		

NC - not calculable

- 5. The Form I's provided for the mirex and kepone analyses for samples 36-1-7-91-SED1 and 39-1-7-91-SED2 (Case 1110/SDG01) indicate that these samples were analyzed on 1/15/91. While it is true that the <u>initial</u> analyses of these samples were performed on 1/15/91, data from these analyses were <u>not</u> reported. The analytical results for these samples is based on the ten-fold dilutions that were performed on 1/19/91 for both target analytes. Accordingly, it appears most appropriate to report that the analysis was performed on 1/19/91 on the Form I.
- 6. The reported results of "not-detected" for mirex and kepone in sample 44-1-8-91-SS4 (Case 0109/SDG01) are incorrect. Examination of the raw data revealed that mirex (5.9 μ g/Kg) and kepone (51.7 μ g/Kg) are confidently present in this sample (all qualitative ion ratio criteria were met for this sample for the quantitation as well as the confirmation cluster). Since the concentrations of mirex and kepone were detected at levels less than the quantitation limits, these results should be considered estimated. Accordingly, these results have been added to the data table with the appropriate "J" qualifier. Documentation of the reviewer's calculations are presented as the last several pages of Section 3, Part B.
- 7. The Project Case Narratives and field Chain-of-Custody records for the tissue samples for Case 1212/SDG01 were located in the data package received for the soil samples for Case 1213/SDG01 and vice-versa.
- 8. The method blanks summary form (Form IV) associated with the analysis for mirex and kepone (Case 1213/SDG01) indicates that the aqueous method blank associated with sample 2-12-11-90-FB was extracted on 12/4/90, yet the aforementioned sample was not received at the laboratory until 12/12/90. It appears that the method blank extraction date may be in error. If this method blank was, in fact, extracted 8 days before the sample was received, this represents a noncorrectable deficiency.

Noncorrectable Deficiencies

8.

- 1. It appears that the initial and continuing VOA calibrations associated with the mediumlevel soil analyses of sample 43-1-7-91-SED5 (Case 0110/SDG01) were actually lowlevel "water" calibrations. The CLP protocol requires that medium-level calibrations (containing additional methanol to simulate sample analysis conditions) must be performed (SOW288, D-29/VOA). From an analytical viewpoint, although this is technically not consistent with the CLP protocols, this analysis may have actually been more appropriate utilizing the low-level water calibration. Since only a very small volume (20 μ l) of the methanol extract was utilized for analysis, the low-level water calibration appears to more closely simulate the sample analysis conditions.
- 2. A medium-level VOA matrix spike and matrix spike duplicate associated with sample 43-1-7-91-SED5 (Case 0110/SDG01) were not performed as required by the CLP protocols (SOW288, E-22/VOA).
- 3. The percent difference for kepone was above the maximum percent difference criteria of 40% specified in the project-specific SOP, for both the quantitation and confirmation clusters. All 8 sediment samples for Case 0110/SDG01 were associated with this noncompliant continuing calibration standard. Similarly, the positive results for kepone in 7 of the 8 project samples were quantitated using this noncompliant standard.
- 4. The reported concentration of kepone in sample 45-1-8-91-SS5 (Case 0109/SDG01) was in excess of the calibration range, the dilution that was performed to properly quantitate mirex in this sample effectively diluted kepone out of the extract. Accordingly, a third analysis (at a less dilution) should have been performed to properly quantitate the kepone in this sample.
- 5. The percent difference for kepone was above the maximum criteria of 40% for both the quantitation and confirmation clusters and above the 30% criteria for mirex in the confirmation cluster in the continuing calibration standard associated with sample F2L (Case 1212/SDG01). Kepone was detected (and reported) in this sample.
- 6. The instrument level of mirex in sample 1-12-11-90-SS3 (Case 1213/SDG01) was observed to be in excess of the calibrated range. Although the laboratory appropriately flagged this result with an "E" qualifier on the Form I, a subsequent dilution analysis was not performed as required.
- 7. The instrument level for kepone in sample F3L (Case 1212/SDG01) was in excess of the highest calibration standard. A dilution reanalysis was not performed as required.

The percent difference for kepone in the calibration associated with samples 1-12-11-90-SS3, 3-12-11-90-SS1 and 4-12-11-90-SS2 (Case 1213/SDG01) was in excess of the AR 302530

-page 4

maximum criteria of 40% for the quantitation cluster. Kepone was detected (and reported) in 2 of the 3 aforementioned samples.

9. The laboratory did not perform a matrix spike (MS) and matrix spike duplicate (MSD) for mirex and kepone in Case 1212/SDG01 which consisted of 6 tissue samples.

Comments

- 1. Secondary dilutions were performed for the analysis of mirex in samples 43-1-7-91-SED5, 45-1-8-91-SS5 and 46-1-8-91-SS6. The reported results for mirex in the aforementioned samples have been flagged "*" on the data tables. The latter of the two analysis dates that appear on the data table corresponds to the secondary dilution analyses. The concentration of mirex obtained in the initial analyses of these samples resulted in instrument levels in excess of the calibration range. Accordingly, the C_{13} -mirex internal standard was diluted out and additional C_{13} -mirex was added to the diluted extracts just prior to the GC/MS analyses at a concentration of 1 ng/ μ l.
- 2. Dilutions were performed for the analysis for mirex and kepone in samples 36-1-7-91-SED1, 39-17-91-SED2, 40-1-7-91-SED6, 41-1-7-91-SED4, 42-1-7-91-SED3, 37-1-7-91-SED1-MS and 38-1-7-91-SED-MSD. According to the data provided, these dilutions were performed due to the highly colored extracts that were obtained for these samples. The C₁₃-mirex was effectively diluted out of these samples and the laboratory respiked additional C₁₃-mirex to the sample extracts just prior to the GC/MS analysis of the aforementioned samples.

With regard to data usability, principal areas of concern include blank results, matrix spike recoveries, surrogate recoveries and calibrations. Based upon a review of the data provided, the following data qualifiers are offered.

Data Oualifiers

- Due to the trace level presence of methylene chloride, acetone, 2-butanone and chloroform in the laboratory method blanks, the reported presence of these compounds in the following samples are qualitatively questionable and have been flagged "B" on the data tables.

<u>Compounds</u>

Applicable Samples

methylene chloride

All positive sample results exceptisant 128545-1-8-91-SS5 and 46-1-8-91-SS6

ORIGINAL

-page 5

<u>Compounds</u>

acetone

Applicable Samples

39-1-7-91-SED2, 41-1-7-91-SED4, 37-1-7-91-SED1-MS, 38-1-7-91-SED1-MSD and 45-1-8-91-SS5

chloroform

2-butanone

All positive sample results.

44-1-8-91-SS4, 45-1-8-91-SS5 and 46-1-8-91-SS6

- The analysis for VOA compounds reported as "not-detected" for samples 41-1-7-91-SED4 and 41-1-7-91-SED4DL should be considered unreliable and have been flagged "R" on the data tables. Similarly, positive VOA results in these samples should be considered estimated and have been flagged "J" on the data tables. Very low recoveries (12%-23%) were obtained for the VOA surrogate compound d₈-toluene in the analyses of the aforementioned samples. It should, however, be noted that very high (218%-288%) recoveries were obtained for the VOA surrogate bromofluorobenzene in these samples and acceptable (102%-104%) recoveries were obtained for the VOA surrogate d₄-1,2-dichloroethane in these samples. Accordingly, it appears that an interference is evident that may be primarily affecting the analysis for late-eluting VOA compounds. This is further corroborated by the fact that low area counts were obtained for the last internal standard d₅-chlorobenzene in both analyses of sample 41-1-7-91-SED4.
- The reported result for 1,1,2,2-tetrachloroethane in sample 41-1-7-91-SED4 should be considered estimated and has been flagged "J" on the data table. The instrument level that this result was based on was in excess of the calibrated range. The subsequent dilution analysis of this sample yielded an instrument level for this compound within the calibrated range.
- The reported results for methylene chloride in samples 45-1-8-91-SS5 and 46-1-8-91-SS6 should be considered estimated and have been flagged "J" on the data tables. A high relative standard deviation was calculated for the response factors obtained for methylene chloride in the initial multi-point calibration.
- The reported results for kepone in samples 3-12-11-90-SS1, 4-12-11-90-SS2, F2L, 36-1-7-91-SED1, 39-1-7-91-SED2, 40-1-7-91-SED6, 41-1-7-91-SED4 and 43-1-7-91-SED5 should be considered estimated and have been flagged "J" on the data tables. High percent differences (>40%) were obtained between the response factors (quantitation cluster) used to quantitate these results compared to the average response factors calculated from the initial multi-point calibration.

The laboratory reported results for the compound in the samples presented below with the following qualifiers. The reviewer agrees with the laboratory's qualification.

Sample	Compound	Qualification
4-12-11-90-SS2	kepone	x
36-1-7-91-SED1	kepone mirex	z y
39-1-7-91-SED2	kepone	x,y
40-1-7-91-SED6	kepone	x,y,z

NOTES:

- Presence of this compound is strongly indicated, but the ion abundance х ratio criteria were not met for the confirmation cluster ions.
- Presence of the compound is strongly indicated, but not all specified ions y in the clusters are present.
- Presence of this compound is strongly indicated, but the ion abundance z ratio criteria were not met for the quantitation cluster ion.
- The reported concentrations of kepone in samples 45-1-8-91-SS5 and F3L and mirex in sample 1-12-11-90-SS3 should be considered estimated and have been flagged "J" on the data tables. The instrument levels that these results were based on were in excess of the calibration range.
- The actual concentration of kepone in sample 36-1-7-91-SED1 may be substantially higher than reported and has been flagged "J" on the data table. A very low (7%) recovery was obtained for kepone in the matrix spike associated with sample 36-1-7-91-SED1.
- The laboratory reported "not-detected" for kepone in sample 46-1-8-91-SS6; however, the laboratory qualified this by stating that the "analysis at no dilution indicates the presence of kepone." Examination of the raw data for the undiluted analysis of this revealed that all qualitative criteria (quantitation cluster and confirmation cluster ion abundance criteria) were met for this sample; however, the ion abundance criteria for the quantitation cluster for the C₁₃-mirex internal standard was slightly outside the specified criteria for this analysis. This does not diminish the qualitative reliability of this kepone identification. Accordingly, the calculated concentration of Roy article (restimated "J")

for kepone in sample 46-1-8-91-SS6 has been added to the data table. Documentation of the reviewer's calculation is presented as the last several pages of Section 3, Part B.

- Tentatively Identified Compounds (TICs) for the VOA analyses performed have been evaluated and are presented on the data tables. The only VOA TIC that was apparent was a compound that did not reveal a successful mass spectral tentative identification (viz., unknown) for samples 41-1-7-91-SED4 and 41-1-7-91-SED4DL.
- Per CLP protocols, all results reported below the quantitation limits should be considered estimated and have been flagged "J" on the data tables.

A complete support documentation of this quality assurance review is presented in Section 3 of this report.

B. Conclusions

This quality assurance review has identified aspects of the analytical data that have required qualification. The majority of the data appear to be acceptable for use although a portion of the sample results should be considered estimated (or designated unreliable) due to interferences. To confidently use any of the analytical results from the data sets examined, the data users should understand the qualifications and limitations stated in this report.

Report prepared by:

Rock J. Vitale Quality Assurance Specialist/Principal

ENVIRONMENTAL STANDARDS, INC. 1220 Valley Forge Road P.O. Box 911 Valley Forge, PA 19481

(215) 935-5577

Date: 2 28 91

AR302534

ORIGINAL IR_{OSJ}

SECTION 2

ANALYTICAL RESULTS

e en eul su debras de els composés en la composés de la composition de la composition de la RISO2535 de compos

.

YOLATILE DREANIC ANALYSES	AKALYTIC	AL RESULTS	NIL SULUS	REPORTED DW A	BAY WEIGHT BAS	SI									-page 2
SMC Environmental Services	Sample Haut		-16-1-1-91	-16-1-1-6	-16-1-1-81	41-1-1-91-	-16-1-1-11	12-1-1-91-	-16-1-1-61	-16-1-1-18		-16-1-11	-16-8-1-51	-16-8-1-91	-16-8-1-11
 Laboratory Sample Number			19-8261	5602 7978-42	3516-66	7978-AA	1049-8/6/	5035	54-8/6/	Status 7978-eths	ESHIB-8/6/	10-1161	1911-02	556 7971-03	H-1161
Remarks							Dilution								Field Blank
B mits			51/5	62/64	61/64	Sy/Sm	5y/Se	i y fa	5 X/Sa	5X/6a	es/ke	6y/Sm	61/6n	6y/in	۲.
volattie compones	Poant. Linit (Ay)	teart. linit (Sel)													
cis-1, 3-Bichlereprepene	5	5				~	*								
Branoforn	s	s					-								
2-Hexamone	=	=									,				
4-Hethyl-2-Pentamme		2				-	-								
Tetracklersethese	5					÷.									
Talsene	5	5	11			.	-			5	s				
Chiler obenzene	s	5				5	-		12,000	s	s				
Ethy Ibenzene		~				5	~								
Styrene		un					-								
Total Xylenes	~	~				18	-		E M/I						
Numeritation Limit Aultipli	- <u>s</u>	-	2.4	3	8.	5.3	2.5	2 .8	3	2.51	5.3	×.	1.3	1.2	
late of Sample Collection			16/10/10	16/10/10	16/10/10	16/10/18	16/19/10	16/19/19	16/19/10	16/10/10	16/19/10	16/00/10	16/00/10	11/06/51	16/10/10
late Sample Received by Lai	beratary		16/60/10	16/69/10	16/64/10	16/60/10	16/60/10	15/63/10	16/60/18	16/69/19	16/69/18	16/69/10	16/60/10	16/60/18	16/64/11
lete ef Saple Analysis			14/11/18	15/11/10	14/S1/10	16/11/10	01/12/JJ	16/01/10	16/11/10	16/51/10	16/51/10	16/01/10	16/01/10	16/01/10	15/01/10
Instrument Used for Analysi	i		12-51	24-51	ZA-SI	24-51	24-53	21-51	54-53	24-53	24-53	8	14-52	14-51	5
															Ī

MITES:

ES: - Compound was not detected.
This result is qualitatively suspect since this compound use detected in field and/or laboratory blanks at similar levels.
R Mureliable result - Compound may or any met be present in this sample.
R Mureliable result - Compound may or any met be present in this sample.
R Mureliable result - Compound may or any met be present in this sample.
R Mureliable result - Compound may or any met be present in this sample.
R Mureliable result - Compound may or any met be present in this sample.
R Mureliable result - Compound may or any met be present in this sample.
R Mureliable result - Compound may or any met be present in this cample.
R Mureliable result - Compound may or any met be present in the present in the result.
R Mureliable result - Compound may or any met be present in the transferition.
R Mis cample.
R Mis cample of the a low biss identified during the quality assumed review.
R Mis signific compound.

ORIGINAL IRecij

đ

1
1
İ

÷

CLP - TEMTATIVE LY IDEMTIFIED COMPOUNDS - ESTI	NATED CONCENTRA	III SHOIL	SOLIDS REPORTE	D ON A DAY WEIG	ALL BASIS	-		:		-	-		E afei
SMC Environmental Services Sample Humber	36-1-7-91-	39-1-7-91-	-16-1-1-W	11-1-7-91- cen	-16-1-1-11	42-1-7-91-	43-1-7-91- cenc	31-1-7-91- ct 0146	31-1- cent	44-1- 4 -91-	45-1- 9 -91-	-1-1-1-9	- - - -
laberatory Sample Number	19-8/6/	1978-02	30-9161	7976-04	7978-94N	1978-83	54-8/6/	SN10-8/6/	85N18-8727	10-1161	19-1161	19/1-118	N-1161
Rewarks					Bilution								field Blank
lkmits	fil/pu	ê Xîs	5X/fm	52/6	6x/fm	5y/fm	by/m	1 Zin	ey/se	5y/Su	61/5	6x/See	1 The
Centroesters													
VOLATILE CONPONENTS									2		,	<u> </u>	
Untroven (Neucher of Peaks)				C (1)MI	f (1)011								

WOTES:

ł.

•

·. : :

.

ì

Compound us not detected.
I this result is qualitatively support since this compound uss detected in field and/or laboratary blanks at similar levels.
R Mureliable result - Compound may or may not be present in this sample.
R Muncliation is appreximate due to limitations. identified during the quality assurance review (data validation).
R This compound use not detected, but the quantitation limit is probably higher due to a low bias identified during the quality assurance review.
M This fraction use not analyzed.

AR302537

÷

EXTRACTABLE ORGANIC ANALYS	IS - ANALYTI	CAL RESULTS	10438 SOI 105 -	TED ON A BRY I	KEIGKE BASIS	- page 4
SKC Environmental Services	Sample Numb	ţ	1-12-11-54-	3-12-11-94-	+-12-11-96-	2-12-11-34-
laboratery Sample Number			10-6EQ/	20-6201	286 11-621	7839-M
Ren arks						Field Blank
#nits	_		izjîn	63/64	fa)/fa	1
Contraction	Reporting Limit (Aq)	Reporting Limit (Sol)				
k epone				53 J	t £2	
Mirex	· WSI	8.5	: 161	ä		
 Keperting Limit Wultiplier			1.21	1.13	1.43	8
Bate of Sample Collection			N/11/21	86/11/21	12/11/96	12/11/56
Bate Sample Received by La	beratory		N/21/21	N/21/21	N\$ 21 21	12/12/30
Nate Sample Extracted			12/11/50	W [1][2]	N/ [1][7	12/14/96
Bate of Sample Analysis			6/12/21	66/12/21	N/12/21	12/19/94
Enstrument Used for Analys	is		ecussa	ECH553	ecusa:	CLISSE

.•

4

· · ·

- MNTES: Compound use met detected.
 This result is qualitatively sespect since this compound use detected in field and/or identatory blanks at similar levels.
 Bureliable result Compound any or may met be present in this sample.
 deantitation is appreximate due to limitations identifiel during the quality assurance review (data validation).
 R. This compound use not detected, but the quantifield during the quality assurance review.

AR302538

ORIGINAL (P.e.T)

æ

		.			A NULLITU UNI	3	_	r shed
SMC Environmental Services Laboratory Sample Number	s Sample Houd	t	1318-111	F31 7838-42	F7N 1438-43	F21 7839-44	11331-15	Fit 1138-46
Percent Lipi d s			1.42%	1.3	#: -	1.13	1.12	1.3
Bhuits	-		iy/in	6x/6a	iy/sa	iy/in	ly/Sa	5x/fm
Centre events	Reporting [timit (Mq)]	Reporting Lisit (Sol)						
Kepene	.13	5		7 5		6	8	
Airex	1.MSA	×	110	ä	E	NE	11	
teperting Limit Multiplier			I. H	1.8		2.11	8 .	1.8
Bate of Sample Collection			12/11/94	12/11/50	N/11/21	N/ 11/21	12/11/94	12/11/96
bate Sample Received by La	aboratory		12/21/21	N[21]21	1 2/12/94	12/12/30	12/12/24	12/12/9
Bate Sample Extracted			12/11/5	12/18/54	N/ 101/21	66/01/ 21	N()81/21	12/18/50
Bate of Sample Awalysis			12/21/34	12/12/50	14/12/21	12/28/94	12/17/51	12/21/50
Einstrament üsen for Analys	sis		ecussa	ectes:3	essir)	ecuss3	eculosa	rcussa
-		-				-	_	-

.. .

÷

•. .

. .

- MIES: Compound use met detected. It is result is qualitatively sespect since this compound use detected in field and/or laboratory blanks at similar levels. I threliable result Compound may or may met be present in this sample. 3 quantitation is approximate due to limitations identified during the quality asserance review (data validation). Whis compound use and tetected, but the quantitation limit is probably higher due to a low bias identified during the quality asserance review.

AR302539

ORIGINAL (Recij

.

4

EXTRACTABLE DRGANIC ANALYS	IT ANALYI	CAL RESULTS	- ML SOLIDS	EPORTED ON A I	BRY LIE LENT BASI					19 344
SMC Environmental Services	Sample Rund	ţ	36-1-7-91- SEM	-16-1-1-60 State	40-1-7-91- SFIK	41-1-7-91- cena	-1-111-51- SEIRS	43-1-7-91-	37-1-7-91- CURING	31-1-1-11-
Laboratory Sample Humber			19-8/6/	1978-02	1928-06	H-8/6/	1918-43	19145	SHI0-8/6/	1978-01NSA
Remarks										
#nî ts			63/fa	ex/ka	6x/64	6x/6n	51)/Sea	5y/fa	6y/se	1
S STATE OF A STATE	Reporting Limit (Aq)	Reporting Limit (Sol)						Analyzed Tvice		
l epone	.13	8.9	8.1.3	18.4.3		1913		t /99	5	
Nirex	0.MSA	11.5	36.9.2	42.4.3	165.3	6X		6244*	~	~
Reporting Limit Multiplier			24.8	16.8	1.11	1.12	19.3		24.1	21.3
Bate of Sample Collection			16/10/10	16/19/11	16/10/10	16/10/10	16/16/10	16/10/10	16/10/10	16/10/10
Nate Sample Received by La	beratery		16/60/10	16/69/11	16/60/11	16/64/10	16/60/10	16/60/10	16/64/10	16/64/10
Bate Sample Extracted			16/01/14	- 16/01/14	16/01/10	16/01/10	- 16/01/10	16/01/10	16/01/10	16/01/10
Bate of Sample Analysis			16/51/18	16/61/18	16/21/10	16/61/10	16/61/10	1/13 51/1	16/61/10	16/61/10
Instrument Used for Analys	is		ecitss3	ECUSS3	ESSI128	ecussa	ecuesa	ecussa	CLESS	KURSS

. •

•

.

- NNES: Compound use net detected. I This result is qualitatively suspect since this compound use detected in field and/or laboratory blanks at similar levels. Recellable result Compound may or may net be present in this sample. J domitation is approximate due to limitations identified during the quality assertance review (data validation). UThis compound use and effected, but the quantitation limit is probably higher due to a low bias identified during the quality assertance review. S Matrin spike compound.

AR302540

.

4

EXTRACTABLE ORGANIC ANALYS	IS - ANALYTI	CAL RESULTS	e sol Tos R Po	TED ON A DRY H	ELIGHT BASIS	l afted-
SMC Environmental Services	Sample Numb	ł.	-16-1-1-11	-14-8-1-59	-16-9-1-9)	-16-1-1-1)
- - - - - -		-	23	222	28	æ
laboratory Sample Aumber			10-1161	20-1161	19-1191	H-1161
Ace arks						Field Slank
W hits			iy/ta	۶¥/۲	ing /Kg	1
S onse and	Reporting Limit (Aq)	Reporting Limit (Sol)		m alyzed Tvice	Aualyzed Tuice	
Kepene	•.132	9 .4	L <i>L</i> .13	. 11	[8]	
llirex	0.0054	18.5	1.6.3	1520*	-4/11	
Reporting Limit Multiplier	-		1.21	1.24	1.17	1.8
Bate of Sample Collection			16/88/10	16/88/18	16/88/18	16/201/10
Bate Sample Received by La	beratory		16/64/11	16/64/11	15/64/18	16/60/10
late Sample Extracted			16/01/10	16/01/10	16/01/11	16/01/10
Bate of Sample Maalysis			16/21/1	1/12 & 1/15	1/12 = 1/15	16/21/1
listrument Used for Analysi	i		CUSSE	ESSID:	ESSI0	ecuss3

- MIES: Compound was not fetethel.
 This result is qualitatively suspect since this compound was detected in field and/or laboratory blanks at similar levels.
 Nereliable result Compound may or may not be present in this sample.
 Remediation is approximate due to limitations identified during the quality assumance review (data validation).
 R this compound was not detected, but the quantifaction limit is probably higher due to a low kiss identified during the quality assumance review.
 R this compound was not detected, but the quantifaction limit is probably higher due to a low kiss identified during the quality assumance review.

AR302541

DRIGINAL IRect

4

VOLATILE BAGANIC ANALYSES	LITY AND		- ALL SOLIDS	REPORTED DW A	ber weight bas	SI	1								Ŧ
SMC Environmental Services	Sample Kan		36-1-7-91- 36-1-7-91- 56世1	39-1-7-91- SE02	(1-1-7-91- SEM	-11-1-1-91- SEM	-11-1-91- SEMM	42-1-1-91- SE03	43-1-7-91- SEIS	-12-1-1-1E	STIES	-14-1-1-191-	15-1- 1 -11-	1-1-1-1-1 556	H-1-1-11
Laberatory Sample Momber			1978-81	28-8262	1978-86	1978-84	1978-948L	1978-83	54-8/6/	7978-0105	1978-01#SH	14-1161	21-1161	1911-19	H-1161
Reserts							bilution		_						field Bla
lenits			6y/Su	5/5	£y/‰	6x/fm	6y/Sm	E.	6y/in	6y/in	6y/im	fy/fm	fy/fm	6y/6a	1/fm
Sanagana Contronanos	(teamt. limit (Aq)	(namt. Limit (Sal)													
Chi ereetiane	=	=					-								
treese thane	=	=					•								
Vinyl Chloride	=	=				16.2	-								
Ch lerve thane	=					-	=								
tethylene thloride	5	5	-	3	.	=	14 8	=		:	31		:	C 1	
Acetone	=	=	Ħ			12.8	-			12 1			2		
Carbon Disulfide	5	un .					[9]								
1,1-Bichlereethene	5	5				-	-			~	s				
1,1-Pichiereethane	5	5				-	-								
Tetal 1,2-Bichlereethene	s	5				2	F #2								
Chlereferm	5	5					-					-	85	4.6	
1,2-Bichlereethane	5	5				-	-								
2-Butanese		=	1 12	*	-	.	19 8			-	13 #	-			
1,1,1-Trichlerethame	s	s				-	-								
[Carbon Tetrachleride	s	s				-	-								
Viey! Acetate	8	2				(but	A								
Bremedicki eremethane	<u>م</u>	2				-	-								
1,1,2,2-Tetrachierethane	s	5				3256 3	1586 3						5		
[1,2-Bickleropropane	~	S				=	g at								
trans-1,3-#ichlaraprapene	AF	s				35	-								
Trichlerectione	83	5				1 11	r <i>1</i> 3			5	5				
1916 reach1 ar ene thate	02	s				Cr.	œ								
1.1.2-Trichlor eethane	54	ۍ. ا				¥	24.3								
B eat cue	2	~				-	•			~	s				
					_		-				-			-	

:

ORIGINAL IRectj

.4